xref: /linux/net/socket.c (revision 0d5ec7919f3747193f051036b2301734a4b5e1d6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/splice.h>
61 #include <linux/net.h>
62 #include <linux/interrupt.h>
63 #include <linux/thread_info.h>
64 #include <linux/rcupdate.h>
65 #include <linux/netdevice.h>
66 #include <linux/proc_fs.h>
67 #include <linux/seq_file.h>
68 #include <linux/mutex.h>
69 #include <linux/if_bridge.h>
70 #include <linux/if_vlan.h>
71 #include <linux/ptp_classify.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/cache.h>
75 #include <linux/module.h>
76 #include <linux/highmem.h>
77 #include <linux/mount.h>
78 #include <linux/pseudo_fs.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/compat.h>
82 #include <linux/kmod.h>
83 #include <linux/audit.h>
84 #include <linux/wireless.h>
85 #include <linux/nsproxy.h>
86 #include <linux/magic.h>
87 #include <linux/slab.h>
88 #include <linux/xattr.h>
89 #include <linux/nospec.h>
90 #include <linux/indirect_call_wrapper.h>
91 #include <linux/io_uring/net.h>
92 
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/termios.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 #include <linux/ptp_clock_kernel.h>
111 #include <trace/events/sock.h>
112 
113 #include "core/dev.h"
114 
115 #ifdef CONFIG_NET_RX_BUSY_POLL
116 unsigned int sysctl_net_busy_read __read_mostly;
117 unsigned int sysctl_net_busy_poll __read_mostly;
118 #endif
119 
120 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
121 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
122 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
123 
124 static int sock_close(struct inode *inode, struct file *file);
125 static __poll_t sock_poll(struct file *file,
126 			      struct poll_table_struct *wait);
127 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
128 #ifdef CONFIG_COMPAT
129 static long compat_sock_ioctl(struct file *file,
130 			      unsigned int cmd, unsigned long arg);
131 #endif
132 static int sock_fasync(int fd, struct file *filp, int on);
133 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
134 				struct pipe_inode_info *pipe, size_t len,
135 				unsigned int flags);
136 static void sock_splice_eof(struct file *file);
137 
138 #ifdef CONFIG_PROC_FS
139 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
140 {
141 	struct socket *sock = f->private_data;
142 	const struct proto_ops *ops = READ_ONCE(sock->ops);
143 
144 	if (ops->show_fdinfo)
145 		ops->show_fdinfo(m, sock);
146 }
147 #else
148 #define sock_show_fdinfo NULL
149 #endif
150 
151 /*
152  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
153  *	in the operation structures but are done directly via the socketcall() multiplexor.
154  */
155 
156 static const struct file_operations socket_file_ops = {
157 	.owner =	THIS_MODULE,
158 	.read_iter =	sock_read_iter,
159 	.write_iter =	sock_write_iter,
160 	.poll =		sock_poll,
161 	.unlocked_ioctl = sock_ioctl,
162 #ifdef CONFIG_COMPAT
163 	.compat_ioctl = compat_sock_ioctl,
164 #endif
165 	.uring_cmd =    io_uring_cmd_sock,
166 	.mmap =		sock_mmap,
167 	.release =	sock_close,
168 	.fasync =	sock_fasync,
169 	.splice_write = splice_to_socket,
170 	.splice_read =	sock_splice_read,
171 	.splice_eof =	sock_splice_eof,
172 	.show_fdinfo =	sock_show_fdinfo,
173 };
174 
175 static const char * const pf_family_names[] = {
176 	[PF_UNSPEC]	= "PF_UNSPEC",
177 	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
178 	[PF_INET]	= "PF_INET",
179 	[PF_AX25]	= "PF_AX25",
180 	[PF_IPX]	= "PF_IPX",
181 	[PF_APPLETALK]	= "PF_APPLETALK",
182 	[PF_NETROM]	= "PF_NETROM",
183 	[PF_BRIDGE]	= "PF_BRIDGE",
184 	[PF_ATMPVC]	= "PF_ATMPVC",
185 	[PF_X25]	= "PF_X25",
186 	[PF_INET6]	= "PF_INET6",
187 	[PF_ROSE]	= "PF_ROSE",
188 	[PF_DECnet]	= "PF_DECnet",
189 	[PF_NETBEUI]	= "PF_NETBEUI",
190 	[PF_SECURITY]	= "PF_SECURITY",
191 	[PF_KEY]	= "PF_KEY",
192 	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
193 	[PF_PACKET]	= "PF_PACKET",
194 	[PF_ASH]	= "PF_ASH",
195 	[PF_ECONET]	= "PF_ECONET",
196 	[PF_ATMSVC]	= "PF_ATMSVC",
197 	[PF_RDS]	= "PF_RDS",
198 	[PF_SNA]	= "PF_SNA",
199 	[PF_IRDA]	= "PF_IRDA",
200 	[PF_PPPOX]	= "PF_PPPOX",
201 	[PF_WANPIPE]	= "PF_WANPIPE",
202 	[PF_LLC]	= "PF_LLC",
203 	[PF_IB]		= "PF_IB",
204 	[PF_MPLS]	= "PF_MPLS",
205 	[PF_CAN]	= "PF_CAN",
206 	[PF_TIPC]	= "PF_TIPC",
207 	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
208 	[PF_IUCV]	= "PF_IUCV",
209 	[PF_RXRPC]	= "PF_RXRPC",
210 	[PF_ISDN]	= "PF_ISDN",
211 	[PF_PHONET]	= "PF_PHONET",
212 	[PF_IEEE802154]	= "PF_IEEE802154",
213 	[PF_CAIF]	= "PF_CAIF",
214 	[PF_ALG]	= "PF_ALG",
215 	[PF_NFC]	= "PF_NFC",
216 	[PF_VSOCK]	= "PF_VSOCK",
217 	[PF_KCM]	= "PF_KCM",
218 	[PF_QIPCRTR]	= "PF_QIPCRTR",
219 	[PF_SMC]	= "PF_SMC",
220 	[PF_XDP]	= "PF_XDP",
221 	[PF_MCTP]	= "PF_MCTP",
222 };
223 
224 /*
225  *	The protocol list. Each protocol is registered in here.
226  */
227 
228 static DEFINE_SPINLOCK(net_family_lock);
229 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
230 
231 /*
232  * Support routines.
233  * Move socket addresses back and forth across the kernel/user
234  * divide and look after the messy bits.
235  */
236 
237 /**
238  *	move_addr_to_kernel	-	copy a socket address into kernel space
239  *	@uaddr: Address in user space
240  *	@kaddr: Address in kernel space
241  *	@ulen: Length in user space
242  *
243  *	The address is copied into kernel space. If the provided address is
244  *	too long an error code of -EINVAL is returned. If the copy gives
245  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
246  */
247 
248 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
249 {
250 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
251 		return -EINVAL;
252 	if (ulen == 0)
253 		return 0;
254 	if (copy_from_user(kaddr, uaddr, ulen))
255 		return -EFAULT;
256 	return audit_sockaddr(ulen, kaddr);
257 }
258 
259 /**
260  *	move_addr_to_user	-	copy an address to user space
261  *	@kaddr: kernel space address
262  *	@klen: length of address in kernel
263  *	@uaddr: user space address
264  *	@ulen: pointer to user length field
265  *
266  *	The value pointed to by ulen on entry is the buffer length available.
267  *	This is overwritten with the buffer space used. -EINVAL is returned
268  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
269  *	is returned if either the buffer or the length field are not
270  *	accessible.
271  *	After copying the data up to the limit the user specifies, the true
272  *	length of the data is written over the length limit the user
273  *	specified. Zero is returned for a success.
274  */
275 
276 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
277 			     void __user *uaddr, int __user *ulen)
278 {
279 	int err;
280 	int len;
281 
282 	BUG_ON(klen > sizeof(struct sockaddr_storage));
283 	err = get_user(len, ulen);
284 	if (err)
285 		return err;
286 	if (len > klen)
287 		len = klen;
288 	if (len < 0)
289 		return -EINVAL;
290 	if (len) {
291 		if (audit_sockaddr(klen, kaddr))
292 			return -ENOMEM;
293 		if (copy_to_user(uaddr, kaddr, len))
294 			return -EFAULT;
295 	}
296 	/*
297 	 *      "fromlen shall refer to the value before truncation.."
298 	 *                      1003.1g
299 	 */
300 	return __put_user(klen, ulen);
301 }
302 
303 static struct kmem_cache *sock_inode_cachep __ro_after_init;
304 
305 static struct inode *sock_alloc_inode(struct super_block *sb)
306 {
307 	struct socket_alloc *ei;
308 
309 	ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
310 	if (!ei)
311 		return NULL;
312 	init_waitqueue_head(&ei->socket.wq.wait);
313 	ei->socket.wq.fasync_list = NULL;
314 	ei->socket.wq.flags = 0;
315 
316 	ei->socket.state = SS_UNCONNECTED;
317 	ei->socket.flags = 0;
318 	ei->socket.ops = NULL;
319 	ei->socket.sk = NULL;
320 	ei->socket.file = NULL;
321 
322 	return &ei->vfs_inode;
323 }
324 
325 static void sock_free_inode(struct inode *inode)
326 {
327 	struct socket_alloc *ei;
328 
329 	ei = container_of(inode, struct socket_alloc, vfs_inode);
330 	kmem_cache_free(sock_inode_cachep, ei);
331 }
332 
333 static void init_once(void *foo)
334 {
335 	struct socket_alloc *ei = (struct socket_alloc *)foo;
336 
337 	inode_init_once(&ei->vfs_inode);
338 }
339 
340 static void init_inodecache(void)
341 {
342 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
343 					      sizeof(struct socket_alloc),
344 					      0,
345 					      (SLAB_HWCACHE_ALIGN |
346 					       SLAB_RECLAIM_ACCOUNT |
347 					       SLAB_ACCOUNT),
348 					      init_once);
349 	BUG_ON(sock_inode_cachep == NULL);
350 }
351 
352 static const struct super_operations sockfs_ops = {
353 	.alloc_inode	= sock_alloc_inode,
354 	.free_inode	= sock_free_inode,
355 	.statfs		= simple_statfs,
356 };
357 
358 /*
359  * sockfs_dname() is called from d_path().
360  */
361 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
362 {
363 	return dynamic_dname(buffer, buflen, "socket:[%lu]",
364 				d_inode(dentry)->i_ino);
365 }
366 
367 static const struct dentry_operations sockfs_dentry_operations = {
368 	.d_dname  = sockfs_dname,
369 };
370 
371 static int sockfs_xattr_get(const struct xattr_handler *handler,
372 			    struct dentry *dentry, struct inode *inode,
373 			    const char *suffix, void *value, size_t size)
374 {
375 	if (value) {
376 		if (dentry->d_name.len + 1 > size)
377 			return -ERANGE;
378 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
379 	}
380 	return dentry->d_name.len + 1;
381 }
382 
383 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
384 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
385 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
386 
387 static const struct xattr_handler sockfs_xattr_handler = {
388 	.name = XATTR_NAME_SOCKPROTONAME,
389 	.get = sockfs_xattr_get,
390 };
391 
392 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
393 				     struct mnt_idmap *idmap,
394 				     struct dentry *dentry, struct inode *inode,
395 				     const char *suffix, const void *value,
396 				     size_t size, int flags)
397 {
398 	/* Handled by LSM. */
399 	return -EAGAIN;
400 }
401 
402 static const struct xattr_handler sockfs_security_xattr_handler = {
403 	.prefix = XATTR_SECURITY_PREFIX,
404 	.set = sockfs_security_xattr_set,
405 };
406 
407 static const struct xattr_handler * const sockfs_xattr_handlers[] = {
408 	&sockfs_xattr_handler,
409 	&sockfs_security_xattr_handler,
410 	NULL
411 };
412 
413 static int sockfs_init_fs_context(struct fs_context *fc)
414 {
415 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
416 	if (!ctx)
417 		return -ENOMEM;
418 	ctx->ops = &sockfs_ops;
419 	ctx->dops = &sockfs_dentry_operations;
420 	ctx->xattr = sockfs_xattr_handlers;
421 	return 0;
422 }
423 
424 static struct vfsmount *sock_mnt __read_mostly;
425 
426 static struct file_system_type sock_fs_type = {
427 	.name =		"sockfs",
428 	.init_fs_context = sockfs_init_fs_context,
429 	.kill_sb =	kill_anon_super,
430 };
431 
432 /*
433  *	Obtains the first available file descriptor and sets it up for use.
434  *
435  *	These functions create file structures and maps them to fd space
436  *	of the current process. On success it returns file descriptor
437  *	and file struct implicitly stored in sock->file.
438  *	Note that another thread may close file descriptor before we return
439  *	from this function. We use the fact that now we do not refer
440  *	to socket after mapping. If one day we will need it, this
441  *	function will increment ref. count on file by 1.
442  *
443  *	In any case returned fd MAY BE not valid!
444  *	This race condition is unavoidable
445  *	with shared fd spaces, we cannot solve it inside kernel,
446  *	but we take care of internal coherence yet.
447  */
448 
449 /**
450  *	sock_alloc_file - Bind a &socket to a &file
451  *	@sock: socket
452  *	@flags: file status flags
453  *	@dname: protocol name
454  *
455  *	Returns the &file bound with @sock, implicitly storing it
456  *	in sock->file. If dname is %NULL, sets to "".
457  *
458  *	On failure @sock is released, and an ERR pointer is returned.
459  *
460  *	This function uses GFP_KERNEL internally.
461  */
462 
463 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
464 {
465 	struct file *file;
466 
467 	if (!dname)
468 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
469 
470 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
471 				O_RDWR | (flags & O_NONBLOCK),
472 				&socket_file_ops);
473 	if (IS_ERR(file)) {
474 		sock_release(sock);
475 		return file;
476 	}
477 
478 	file->f_mode |= FMODE_NOWAIT;
479 	sock->file = file;
480 	file->private_data = sock;
481 	stream_open(SOCK_INODE(sock), file);
482 	/*
483 	 * Disable permission and pre-content events, but enable legacy
484 	 * inotify events for legacy users.
485 	 */
486 	file_set_fsnotify_mode(file, FMODE_NONOTIFY_PERM);
487 	return file;
488 }
489 EXPORT_SYMBOL(sock_alloc_file);
490 
491 static int sock_map_fd(struct socket *sock, int flags)
492 {
493 	struct file *newfile;
494 	int fd = get_unused_fd_flags(flags);
495 	if (unlikely(fd < 0)) {
496 		sock_release(sock);
497 		return fd;
498 	}
499 
500 	newfile = sock_alloc_file(sock, flags, NULL);
501 	if (!IS_ERR(newfile)) {
502 		fd_install(fd, newfile);
503 		return fd;
504 	}
505 
506 	put_unused_fd(fd);
507 	return PTR_ERR(newfile);
508 }
509 
510 /**
511  *	sock_from_file - Return the &socket bounded to @file.
512  *	@file: file
513  *
514  *	On failure returns %NULL.
515  */
516 
517 struct socket *sock_from_file(struct file *file)
518 {
519 	if (likely(file->f_op == &socket_file_ops))
520 		return file->private_data;	/* set in sock_alloc_file */
521 
522 	return NULL;
523 }
524 EXPORT_SYMBOL(sock_from_file);
525 
526 /**
527  *	sockfd_lookup - Go from a file number to its socket slot
528  *	@fd: file handle
529  *	@err: pointer to an error code return
530  *
531  *	The file handle passed in is locked and the socket it is bound
532  *	to is returned. If an error occurs the err pointer is overwritten
533  *	with a negative errno code and NULL is returned. The function checks
534  *	for both invalid handles and passing a handle which is not a socket.
535  *
536  *	On a success the socket object pointer is returned.
537  */
538 
539 struct socket *sockfd_lookup(int fd, int *err)
540 {
541 	struct file *file;
542 	struct socket *sock;
543 
544 	file = fget(fd);
545 	if (!file) {
546 		*err = -EBADF;
547 		return NULL;
548 	}
549 
550 	sock = sock_from_file(file);
551 	if (!sock) {
552 		*err = -ENOTSOCK;
553 		fput(file);
554 	}
555 	return sock;
556 }
557 EXPORT_SYMBOL(sockfd_lookup);
558 
559 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
560 				size_t size)
561 {
562 	ssize_t len;
563 	ssize_t used = 0;
564 
565 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
566 	if (len < 0)
567 		return len;
568 	used += len;
569 	if (buffer) {
570 		if (size < used)
571 			return -ERANGE;
572 		buffer += len;
573 	}
574 
575 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
576 	used += len;
577 	if (buffer) {
578 		if (size < used)
579 			return -ERANGE;
580 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
581 		buffer += len;
582 	}
583 
584 	return used;
585 }
586 
587 static int sockfs_setattr(struct mnt_idmap *idmap,
588 			  struct dentry *dentry, struct iattr *iattr)
589 {
590 	int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
591 
592 	if (!err && (iattr->ia_valid & ATTR_UID)) {
593 		struct socket *sock = SOCKET_I(d_inode(dentry));
594 
595 		if (sock->sk)
596 			sock->sk->sk_uid = iattr->ia_uid;
597 		else
598 			err = -ENOENT;
599 	}
600 
601 	return err;
602 }
603 
604 static const struct inode_operations sockfs_inode_ops = {
605 	.listxattr = sockfs_listxattr,
606 	.setattr = sockfs_setattr,
607 };
608 
609 /**
610  *	sock_alloc - allocate a socket
611  *
612  *	Allocate a new inode and socket object. The two are bound together
613  *	and initialised. The socket is then returned. If we are out of inodes
614  *	NULL is returned. This functions uses GFP_KERNEL internally.
615  */
616 
617 struct socket *sock_alloc(void)
618 {
619 	struct inode *inode;
620 	struct socket *sock;
621 
622 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
623 	if (!inode)
624 		return NULL;
625 
626 	sock = SOCKET_I(inode);
627 
628 	inode->i_ino = get_next_ino();
629 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
630 	inode->i_uid = current_fsuid();
631 	inode->i_gid = current_fsgid();
632 	inode->i_op = &sockfs_inode_ops;
633 
634 	return sock;
635 }
636 EXPORT_SYMBOL(sock_alloc);
637 
638 static void __sock_release(struct socket *sock, struct inode *inode)
639 {
640 	const struct proto_ops *ops = READ_ONCE(sock->ops);
641 
642 	if (ops) {
643 		struct module *owner = ops->owner;
644 
645 		if (inode)
646 			inode_lock(inode);
647 		ops->release(sock);
648 		sock->sk = NULL;
649 		if (inode)
650 			inode_unlock(inode);
651 		sock->ops = NULL;
652 		module_put(owner);
653 	}
654 
655 	if (sock->wq.fasync_list)
656 		pr_err("%s: fasync list not empty!\n", __func__);
657 
658 	if (!sock->file) {
659 		iput(SOCK_INODE(sock));
660 		return;
661 	}
662 	sock->file = NULL;
663 }
664 
665 /**
666  *	sock_release - close a socket
667  *	@sock: socket to close
668  *
669  *	The socket is released from the protocol stack if it has a release
670  *	callback, and the inode is then released if the socket is bound to
671  *	an inode not a file.
672  */
673 void sock_release(struct socket *sock)
674 {
675 	__sock_release(sock, NULL);
676 }
677 EXPORT_SYMBOL(sock_release);
678 
679 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags)
680 {
681 	u8 flags = *tx_flags;
682 
683 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
684 		flags |= SKBTX_HW_TSTAMP_NOBPF;
685 
686 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
687 		flags |= SKBTX_SW_TSTAMP;
688 
689 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
690 		flags |= SKBTX_SCHED_TSTAMP;
691 
692 	if (tsflags & SOF_TIMESTAMPING_TX_COMPLETION)
693 		flags |= SKBTX_COMPLETION_TSTAMP;
694 
695 	*tx_flags = flags;
696 }
697 EXPORT_SYMBOL(__sock_tx_timestamp);
698 
699 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
700 					   size_t));
701 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
702 					    size_t));
703 
704 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
705 						 int flags)
706 {
707 	trace_sock_send_length(sk, ret, 0);
708 }
709 
710 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
711 {
712 	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
713 				     inet_sendmsg, sock, msg,
714 				     msg_data_left(msg));
715 	BUG_ON(ret == -EIOCBQUEUED);
716 
717 	if (trace_sock_send_length_enabled())
718 		call_trace_sock_send_length(sock->sk, ret, 0);
719 	return ret;
720 }
721 
722 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
723 {
724 	int err = security_socket_sendmsg(sock, msg,
725 					  msg_data_left(msg));
726 
727 	return err ?: sock_sendmsg_nosec(sock, msg);
728 }
729 
730 /**
731  *	sock_sendmsg - send a message through @sock
732  *	@sock: socket
733  *	@msg: message to send
734  *
735  *	Sends @msg through @sock, passing through LSM.
736  *	Returns the number of bytes sent, or an error code.
737  */
738 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
739 {
740 	struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
741 	struct sockaddr_storage address;
742 	int save_len = msg->msg_namelen;
743 	int ret;
744 
745 	if (msg->msg_name) {
746 		memcpy(&address, msg->msg_name, msg->msg_namelen);
747 		msg->msg_name = &address;
748 	}
749 
750 	ret = __sock_sendmsg(sock, msg);
751 	msg->msg_name = save_addr;
752 	msg->msg_namelen = save_len;
753 
754 	return ret;
755 }
756 EXPORT_SYMBOL(sock_sendmsg);
757 
758 /**
759  *	kernel_sendmsg - send a message through @sock (kernel-space)
760  *	@sock: socket
761  *	@msg: message header
762  *	@vec: kernel vec
763  *	@num: vec array length
764  *	@size: total message data size
765  *
766  *	Builds the message data with @vec and sends it through @sock.
767  *	Returns the number of bytes sent, or an error code.
768  */
769 
770 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
771 		   struct kvec *vec, size_t num, size_t size)
772 {
773 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
774 	return sock_sendmsg(sock, msg);
775 }
776 EXPORT_SYMBOL(kernel_sendmsg);
777 
778 static bool skb_is_err_queue(const struct sk_buff *skb)
779 {
780 	/* pkt_type of skbs enqueued on the error queue are set to
781 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
782 	 * in recvmsg, since skbs received on a local socket will never
783 	 * have a pkt_type of PACKET_OUTGOING.
784 	 */
785 	return skb->pkt_type == PACKET_OUTGOING;
786 }
787 
788 /* On transmit, software and hardware timestamps are returned independently.
789  * As the two skb clones share the hardware timestamp, which may be updated
790  * before the software timestamp is received, a hardware TX timestamp may be
791  * returned only if there is no software TX timestamp. Ignore false software
792  * timestamps, which may be made in the __sock_recv_timestamp() call when the
793  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
794  * hardware timestamp.
795  */
796 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
797 {
798 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
799 }
800 
801 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
802 {
803 	bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
804 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
805 	struct net_device *orig_dev;
806 	ktime_t hwtstamp;
807 
808 	rcu_read_lock();
809 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
810 	if (orig_dev) {
811 		*if_index = orig_dev->ifindex;
812 		hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
813 	} else {
814 		hwtstamp = shhwtstamps->hwtstamp;
815 	}
816 	rcu_read_unlock();
817 
818 	return hwtstamp;
819 }
820 
821 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
822 			   int if_index)
823 {
824 	struct scm_ts_pktinfo ts_pktinfo;
825 	struct net_device *orig_dev;
826 
827 	if (!skb_mac_header_was_set(skb))
828 		return;
829 
830 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
831 
832 	if (!if_index) {
833 		rcu_read_lock();
834 		orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
835 		if (orig_dev)
836 			if_index = orig_dev->ifindex;
837 		rcu_read_unlock();
838 	}
839 	ts_pktinfo.if_index = if_index;
840 
841 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
842 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
843 		 sizeof(ts_pktinfo), &ts_pktinfo);
844 }
845 
846 bool skb_has_tx_timestamp(struct sk_buff *skb, const struct sock *sk)
847 {
848 	const struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
849 	u32 tsflags = READ_ONCE(sk->sk_tsflags);
850 
851 	if (serr->ee.ee_errno != ENOMSG ||
852 	   serr->ee.ee_origin != SO_EE_ORIGIN_TIMESTAMPING)
853 		return false;
854 
855 	/* software time stamp available and wanted */
856 	if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) && skb->tstamp)
857 		return true;
858 	/* hardware time stamps available and wanted */
859 	return (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
860 		skb_hwtstamps(skb)->hwtstamp;
861 }
862 
863 int skb_get_tx_timestamp(struct sk_buff *skb, struct sock *sk,
864 			  struct timespec64 *ts)
865 {
866 	u32 tsflags = READ_ONCE(sk->sk_tsflags);
867 	ktime_t hwtstamp;
868 	int if_index = 0;
869 
870 	if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
871 	    ktime_to_timespec64_cond(skb->tstamp, ts))
872 		return SOF_TIMESTAMPING_TX_SOFTWARE;
873 
874 	if (!(tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) ||
875 	    skb_is_swtx_tstamp(skb, false))
876 		return -ENOENT;
877 
878 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
879 		hwtstamp = get_timestamp(sk, skb, &if_index);
880 	else
881 		hwtstamp = skb_hwtstamps(skb)->hwtstamp;
882 
883 	if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
884 		hwtstamp = ptp_convert_timestamp(&hwtstamp,
885 						READ_ONCE(sk->sk_bind_phc));
886 	if (!ktime_to_timespec64_cond(hwtstamp, ts))
887 		return -ENOENT;
888 
889 	return SOF_TIMESTAMPING_TX_HARDWARE;
890 }
891 
892 /*
893  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
894  */
895 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
896 	struct sk_buff *skb)
897 {
898 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
899 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
900 	struct scm_timestamping_internal tss;
901 	int empty = 1, false_tstamp = 0;
902 	struct skb_shared_hwtstamps *shhwtstamps =
903 		skb_hwtstamps(skb);
904 	int if_index;
905 	ktime_t hwtstamp;
906 	u32 tsflags;
907 
908 	/* Race occurred between timestamp enabling and packet
909 	   receiving.  Fill in the current time for now. */
910 	if (need_software_tstamp && skb->tstamp == 0) {
911 		__net_timestamp(skb);
912 		false_tstamp = 1;
913 	}
914 
915 	if (need_software_tstamp) {
916 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
917 			if (new_tstamp) {
918 				struct __kernel_sock_timeval tv;
919 
920 				skb_get_new_timestamp(skb, &tv);
921 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
922 					 sizeof(tv), &tv);
923 			} else {
924 				struct __kernel_old_timeval tv;
925 
926 				skb_get_timestamp(skb, &tv);
927 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
928 					 sizeof(tv), &tv);
929 			}
930 		} else {
931 			if (new_tstamp) {
932 				struct __kernel_timespec ts;
933 
934 				skb_get_new_timestampns(skb, &ts);
935 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
936 					 sizeof(ts), &ts);
937 			} else {
938 				struct __kernel_old_timespec ts;
939 
940 				skb_get_timestampns(skb, &ts);
941 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
942 					 sizeof(ts), &ts);
943 			}
944 		}
945 	}
946 
947 	memset(&tss, 0, sizeof(tss));
948 	tsflags = READ_ONCE(sk->sk_tsflags);
949 	if ((tsflags & SOF_TIMESTAMPING_SOFTWARE &&
950 	     (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
951 	      skb_is_err_queue(skb) ||
952 	      !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
953 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
954 		empty = 0;
955 	if (shhwtstamps &&
956 	    (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
957 	     (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
958 	      skb_is_err_queue(skb) ||
959 	      !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
960 	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
961 		if_index = 0;
962 		if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
963 			hwtstamp = get_timestamp(sk, skb, &if_index);
964 		else
965 			hwtstamp = shhwtstamps->hwtstamp;
966 
967 		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
968 			hwtstamp = ptp_convert_timestamp(&hwtstamp,
969 							 READ_ONCE(sk->sk_bind_phc));
970 
971 		if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
972 			empty = 0;
973 
974 			if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
975 			    !skb_is_err_queue(skb))
976 				put_ts_pktinfo(msg, skb, if_index);
977 		}
978 	}
979 	if (!empty) {
980 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
981 			put_cmsg_scm_timestamping64(msg, &tss);
982 		else
983 			put_cmsg_scm_timestamping(msg, &tss);
984 
985 		if (skb_is_err_queue(skb) && skb->len &&
986 		    SKB_EXT_ERR(skb)->opt_stats)
987 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
988 				 skb->len, skb->data);
989 	}
990 }
991 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
992 
993 #ifdef CONFIG_WIRELESS
994 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
995 	struct sk_buff *skb)
996 {
997 	int ack;
998 
999 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
1000 		return;
1001 	if (!skb->wifi_acked_valid)
1002 		return;
1003 
1004 	ack = skb->wifi_acked;
1005 
1006 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
1007 }
1008 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
1009 #endif
1010 
1011 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
1012 				   struct sk_buff *skb)
1013 {
1014 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
1015 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
1016 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
1017 }
1018 
1019 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
1020 			   struct sk_buff *skb)
1021 {
1022 	if (sock_flag(sk, SOCK_RCVMARK) && skb) {
1023 		/* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
1024 		__u32 mark = skb->mark;
1025 
1026 		put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
1027 	}
1028 }
1029 
1030 static void sock_recv_priority(struct msghdr *msg, struct sock *sk,
1031 			       struct sk_buff *skb)
1032 {
1033 	if (sock_flag(sk, SOCK_RCVPRIORITY) && skb) {
1034 		__u32 priority = skb->priority;
1035 
1036 		put_cmsg(msg, SOL_SOCKET, SO_PRIORITY, sizeof(__u32), &priority);
1037 	}
1038 }
1039 
1040 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1041 		       struct sk_buff *skb)
1042 {
1043 	sock_recv_timestamp(msg, sk, skb);
1044 	sock_recv_drops(msg, sk, skb);
1045 	sock_recv_mark(msg, sk, skb);
1046 	sock_recv_priority(msg, sk, skb);
1047 }
1048 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1049 
1050 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1051 					   size_t, int));
1052 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1053 					    size_t, int));
1054 
1055 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1056 {
1057 	trace_sock_recv_length(sk, ret, flags);
1058 }
1059 
1060 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1061 				     int flags)
1062 {
1063 	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1064 				     inet6_recvmsg,
1065 				     inet_recvmsg, sock, msg,
1066 				     msg_data_left(msg), flags);
1067 	if (trace_sock_recv_length_enabled())
1068 		call_trace_sock_recv_length(sock->sk, ret, flags);
1069 	return ret;
1070 }
1071 
1072 /**
1073  *	sock_recvmsg - receive a message from @sock
1074  *	@sock: socket
1075  *	@msg: message to receive
1076  *	@flags: message flags
1077  *
1078  *	Receives @msg from @sock, passing through LSM. Returns the total number
1079  *	of bytes received, or an error.
1080  */
1081 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1082 {
1083 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1084 
1085 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
1086 }
1087 EXPORT_SYMBOL(sock_recvmsg);
1088 
1089 /**
1090  *	kernel_recvmsg - Receive a message from a socket (kernel space)
1091  *	@sock: The socket to receive the message from
1092  *	@msg: Received message
1093  *	@vec: Input s/g array for message data
1094  *	@num: Size of input s/g array
1095  *	@size: Number of bytes to read
1096  *	@flags: Message flags (MSG_DONTWAIT, etc...)
1097  *
1098  *	On return the msg structure contains the scatter/gather array passed in the
1099  *	vec argument. The array is modified so that it consists of the unfilled
1100  *	portion of the original array.
1101  *
1102  *	The returned value is the total number of bytes received, or an error.
1103  */
1104 
1105 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1106 		   struct kvec *vec, size_t num, size_t size, int flags)
1107 {
1108 	msg->msg_control_is_user = false;
1109 	iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1110 	return sock_recvmsg(sock, msg, flags);
1111 }
1112 EXPORT_SYMBOL(kernel_recvmsg);
1113 
1114 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1115 				struct pipe_inode_info *pipe, size_t len,
1116 				unsigned int flags)
1117 {
1118 	struct socket *sock = file->private_data;
1119 	const struct proto_ops *ops;
1120 
1121 	ops = READ_ONCE(sock->ops);
1122 	if (unlikely(!ops->splice_read))
1123 		return copy_splice_read(file, ppos, pipe, len, flags);
1124 
1125 	return ops->splice_read(sock, ppos, pipe, len, flags);
1126 }
1127 
1128 static void sock_splice_eof(struct file *file)
1129 {
1130 	struct socket *sock = file->private_data;
1131 	const struct proto_ops *ops;
1132 
1133 	ops = READ_ONCE(sock->ops);
1134 	if (ops->splice_eof)
1135 		ops->splice_eof(sock);
1136 }
1137 
1138 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1139 {
1140 	struct file *file = iocb->ki_filp;
1141 	struct socket *sock = file->private_data;
1142 	struct msghdr msg = {.msg_iter = *to,
1143 			     .msg_iocb = iocb};
1144 	ssize_t res;
1145 
1146 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1147 		msg.msg_flags = MSG_DONTWAIT;
1148 
1149 	if (iocb->ki_pos != 0)
1150 		return -ESPIPE;
1151 
1152 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1153 		return 0;
1154 
1155 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1156 	*to = msg.msg_iter;
1157 	return res;
1158 }
1159 
1160 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1161 {
1162 	struct file *file = iocb->ki_filp;
1163 	struct socket *sock = file->private_data;
1164 	struct msghdr msg = {.msg_iter = *from,
1165 			     .msg_iocb = iocb};
1166 	ssize_t res;
1167 
1168 	if (iocb->ki_pos != 0)
1169 		return -ESPIPE;
1170 
1171 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1172 		msg.msg_flags = MSG_DONTWAIT;
1173 
1174 	if (sock->type == SOCK_SEQPACKET)
1175 		msg.msg_flags |= MSG_EOR;
1176 
1177 	res = __sock_sendmsg(sock, &msg);
1178 	*from = msg.msg_iter;
1179 	return res;
1180 }
1181 
1182 /*
1183  * Atomic setting of ioctl hooks to avoid race
1184  * with module unload.
1185  */
1186 
1187 static DEFINE_MUTEX(br_ioctl_mutex);
1188 static int (*br_ioctl_hook)(struct net *net, unsigned int cmd,
1189 			    void __user *uarg);
1190 
1191 void brioctl_set(int (*hook)(struct net *net, unsigned int cmd,
1192 			     void __user *uarg))
1193 {
1194 	mutex_lock(&br_ioctl_mutex);
1195 	br_ioctl_hook = hook;
1196 	mutex_unlock(&br_ioctl_mutex);
1197 }
1198 EXPORT_SYMBOL(brioctl_set);
1199 
1200 int br_ioctl_call(struct net *net, unsigned int cmd, void __user *uarg)
1201 {
1202 	int err = -ENOPKG;
1203 
1204 	if (!br_ioctl_hook)
1205 		request_module("bridge");
1206 
1207 	mutex_lock(&br_ioctl_mutex);
1208 	if (br_ioctl_hook)
1209 		err = br_ioctl_hook(net, cmd, uarg);
1210 	mutex_unlock(&br_ioctl_mutex);
1211 
1212 	return err;
1213 }
1214 
1215 static DEFINE_MUTEX(vlan_ioctl_mutex);
1216 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1217 
1218 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1219 {
1220 	mutex_lock(&vlan_ioctl_mutex);
1221 	vlan_ioctl_hook = hook;
1222 	mutex_unlock(&vlan_ioctl_mutex);
1223 }
1224 EXPORT_SYMBOL(vlan_ioctl_set);
1225 
1226 static long sock_do_ioctl(struct net *net, struct socket *sock,
1227 			  unsigned int cmd, unsigned long arg)
1228 {
1229 	const struct proto_ops *ops = READ_ONCE(sock->ops);
1230 	struct ifreq ifr;
1231 	bool need_copyout;
1232 	int err;
1233 	void __user *argp = (void __user *)arg;
1234 	void __user *data;
1235 
1236 	err = ops->ioctl(sock, cmd, arg);
1237 
1238 	/*
1239 	 * If this ioctl is unknown try to hand it down
1240 	 * to the NIC driver.
1241 	 */
1242 	if (err != -ENOIOCTLCMD)
1243 		return err;
1244 
1245 	if (!is_socket_ioctl_cmd(cmd))
1246 		return -ENOTTY;
1247 
1248 	if (get_user_ifreq(&ifr, &data, argp))
1249 		return -EFAULT;
1250 	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1251 	if (!err && need_copyout)
1252 		if (put_user_ifreq(&ifr, argp))
1253 			return -EFAULT;
1254 
1255 	return err;
1256 }
1257 
1258 /*
1259  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1260  *	what to do with it - that's up to the protocol still.
1261  */
1262 
1263 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1264 {
1265 	const struct proto_ops  *ops;
1266 	struct socket *sock;
1267 	struct sock *sk;
1268 	void __user *argp = (void __user *)arg;
1269 	int pid, err;
1270 	struct net *net;
1271 
1272 	sock = file->private_data;
1273 	ops = READ_ONCE(sock->ops);
1274 	sk = sock->sk;
1275 	net = sock_net(sk);
1276 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1277 		struct ifreq ifr;
1278 		void __user *data;
1279 		bool need_copyout;
1280 		if (get_user_ifreq(&ifr, &data, argp))
1281 			return -EFAULT;
1282 		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1283 		if (!err && need_copyout)
1284 			if (put_user_ifreq(&ifr, argp))
1285 				return -EFAULT;
1286 	} else
1287 #ifdef CONFIG_WEXT_CORE
1288 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1289 		err = wext_handle_ioctl(net, cmd, argp);
1290 	} else
1291 #endif
1292 		switch (cmd) {
1293 		case FIOSETOWN:
1294 		case SIOCSPGRP:
1295 			err = -EFAULT;
1296 			if (get_user(pid, (int __user *)argp))
1297 				break;
1298 			err = f_setown(sock->file, pid, 1);
1299 			break;
1300 		case FIOGETOWN:
1301 		case SIOCGPGRP:
1302 			err = put_user(f_getown(sock->file),
1303 				       (int __user *)argp);
1304 			break;
1305 		case SIOCGIFBR:
1306 		case SIOCSIFBR:
1307 		case SIOCBRADDBR:
1308 		case SIOCBRDELBR:
1309 		case SIOCBRADDIF:
1310 		case SIOCBRDELIF:
1311 			err = br_ioctl_call(net, cmd, argp);
1312 			break;
1313 		case SIOCGIFVLAN:
1314 		case SIOCSIFVLAN:
1315 			err = -ENOPKG;
1316 			if (!vlan_ioctl_hook)
1317 				request_module("8021q");
1318 
1319 			mutex_lock(&vlan_ioctl_mutex);
1320 			if (vlan_ioctl_hook)
1321 				err = vlan_ioctl_hook(net, argp);
1322 			mutex_unlock(&vlan_ioctl_mutex);
1323 			break;
1324 		case SIOCGSKNS:
1325 			err = -EPERM;
1326 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1327 				break;
1328 
1329 			err = open_related_ns(&net->ns, get_net_ns);
1330 			break;
1331 		case SIOCGSTAMP_OLD:
1332 		case SIOCGSTAMPNS_OLD:
1333 			if (!ops->gettstamp) {
1334 				err = -ENOIOCTLCMD;
1335 				break;
1336 			}
1337 			err = ops->gettstamp(sock, argp,
1338 					     cmd == SIOCGSTAMP_OLD,
1339 					     !IS_ENABLED(CONFIG_64BIT));
1340 			break;
1341 		case SIOCGSTAMP_NEW:
1342 		case SIOCGSTAMPNS_NEW:
1343 			if (!ops->gettstamp) {
1344 				err = -ENOIOCTLCMD;
1345 				break;
1346 			}
1347 			err = ops->gettstamp(sock, argp,
1348 					     cmd == SIOCGSTAMP_NEW,
1349 					     false);
1350 			break;
1351 
1352 		case SIOCGIFCONF:
1353 			err = dev_ifconf(net, argp);
1354 			break;
1355 
1356 		default:
1357 			err = sock_do_ioctl(net, sock, cmd, arg);
1358 			break;
1359 		}
1360 	return err;
1361 }
1362 
1363 /**
1364  *	sock_create_lite - creates a socket
1365  *	@family: protocol family (AF_INET, ...)
1366  *	@type: communication type (SOCK_STREAM, ...)
1367  *	@protocol: protocol (0, ...)
1368  *	@res: new socket
1369  *
1370  *	Creates a new socket and assigns it to @res, passing through LSM.
1371  *	The new socket initialization is not complete, see kernel_accept().
1372  *	Returns 0 or an error. On failure @res is set to %NULL.
1373  *	This function internally uses GFP_KERNEL.
1374  */
1375 
1376 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1377 {
1378 	int err;
1379 	struct socket *sock = NULL;
1380 
1381 	err = security_socket_create(family, type, protocol, 1);
1382 	if (err)
1383 		goto out;
1384 
1385 	sock = sock_alloc();
1386 	if (!sock) {
1387 		err = -ENOMEM;
1388 		goto out;
1389 	}
1390 
1391 	sock->type = type;
1392 	err = security_socket_post_create(sock, family, type, protocol, 1);
1393 	if (err)
1394 		goto out_release;
1395 
1396 out:
1397 	*res = sock;
1398 	return err;
1399 out_release:
1400 	sock_release(sock);
1401 	sock = NULL;
1402 	goto out;
1403 }
1404 EXPORT_SYMBOL(sock_create_lite);
1405 
1406 /* No kernel lock held - perfect */
1407 static __poll_t sock_poll(struct file *file, poll_table *wait)
1408 {
1409 	struct socket *sock = file->private_data;
1410 	const struct proto_ops *ops = READ_ONCE(sock->ops);
1411 	__poll_t events = poll_requested_events(wait), flag = 0;
1412 
1413 	if (!ops->poll)
1414 		return 0;
1415 
1416 	if (sk_can_busy_loop(sock->sk)) {
1417 		/* poll once if requested by the syscall */
1418 		if (events & POLL_BUSY_LOOP)
1419 			sk_busy_loop(sock->sk, 1);
1420 
1421 		/* if this socket can poll_ll, tell the system call */
1422 		flag = POLL_BUSY_LOOP;
1423 	}
1424 
1425 	return ops->poll(file, sock, wait) | flag;
1426 }
1427 
1428 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1429 {
1430 	struct socket *sock = file->private_data;
1431 
1432 	return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1433 }
1434 
1435 static int sock_close(struct inode *inode, struct file *filp)
1436 {
1437 	__sock_release(SOCKET_I(inode), inode);
1438 	return 0;
1439 }
1440 
1441 /*
1442  *	Update the socket async list
1443  *
1444  *	Fasync_list locking strategy.
1445  *
1446  *	1. fasync_list is modified only under process context socket lock
1447  *	   i.e. under semaphore.
1448  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1449  *	   or under socket lock
1450  */
1451 
1452 static int sock_fasync(int fd, struct file *filp, int on)
1453 {
1454 	struct socket *sock = filp->private_data;
1455 	struct sock *sk = sock->sk;
1456 	struct socket_wq *wq = &sock->wq;
1457 
1458 	if (sk == NULL)
1459 		return -EINVAL;
1460 
1461 	lock_sock(sk);
1462 	fasync_helper(fd, filp, on, &wq->fasync_list);
1463 
1464 	if (!wq->fasync_list)
1465 		sock_reset_flag(sk, SOCK_FASYNC);
1466 	else
1467 		sock_set_flag(sk, SOCK_FASYNC);
1468 
1469 	release_sock(sk);
1470 	return 0;
1471 }
1472 
1473 /* This function may be called only under rcu_lock */
1474 
1475 int sock_wake_async(struct socket_wq *wq, int how, int band)
1476 {
1477 	if (!wq || !wq->fasync_list)
1478 		return -1;
1479 
1480 	switch (how) {
1481 	case SOCK_WAKE_WAITD:
1482 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1483 			break;
1484 		goto call_kill;
1485 	case SOCK_WAKE_SPACE:
1486 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1487 			break;
1488 		fallthrough;
1489 	case SOCK_WAKE_IO:
1490 call_kill:
1491 		kill_fasync(&wq->fasync_list, SIGIO, band);
1492 		break;
1493 	case SOCK_WAKE_URG:
1494 		kill_fasync(&wq->fasync_list, SIGURG, band);
1495 	}
1496 
1497 	return 0;
1498 }
1499 EXPORT_SYMBOL(sock_wake_async);
1500 
1501 /**
1502  *	__sock_create - creates a socket
1503  *	@net: net namespace
1504  *	@family: protocol family (AF_INET, ...)
1505  *	@type: communication type (SOCK_STREAM, ...)
1506  *	@protocol: protocol (0, ...)
1507  *	@res: new socket
1508  *	@kern: boolean for kernel space sockets
1509  *
1510  *	Creates a new socket and assigns it to @res, passing through LSM.
1511  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1512  *	be set to true if the socket resides in kernel space.
1513  *	This function internally uses GFP_KERNEL.
1514  */
1515 
1516 int __sock_create(struct net *net, int family, int type, int protocol,
1517 			 struct socket **res, int kern)
1518 {
1519 	int err;
1520 	struct socket *sock;
1521 	const struct net_proto_family *pf;
1522 
1523 	/*
1524 	 *      Check protocol is in range
1525 	 */
1526 	if (family < 0 || family >= NPROTO)
1527 		return -EAFNOSUPPORT;
1528 	if (type < 0 || type >= SOCK_MAX)
1529 		return -EINVAL;
1530 
1531 	/* Compatibility.
1532 
1533 	   This uglymoron is moved from INET layer to here to avoid
1534 	   deadlock in module load.
1535 	 */
1536 	if (family == PF_INET && type == SOCK_PACKET) {
1537 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1538 			     current->comm);
1539 		family = PF_PACKET;
1540 	}
1541 
1542 	err = security_socket_create(family, type, protocol, kern);
1543 	if (err)
1544 		return err;
1545 
1546 	/*
1547 	 *	Allocate the socket and allow the family to set things up. if
1548 	 *	the protocol is 0, the family is instructed to select an appropriate
1549 	 *	default.
1550 	 */
1551 	sock = sock_alloc();
1552 	if (!sock) {
1553 		net_warn_ratelimited("socket: no more sockets\n");
1554 		return -ENFILE;	/* Not exactly a match, but its the
1555 				   closest posix thing */
1556 	}
1557 
1558 	sock->type = type;
1559 
1560 #ifdef CONFIG_MODULES
1561 	/* Attempt to load a protocol module if the find failed.
1562 	 *
1563 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1564 	 * requested real, full-featured networking support upon configuration.
1565 	 * Otherwise module support will break!
1566 	 */
1567 	if (rcu_access_pointer(net_families[family]) == NULL)
1568 		request_module("net-pf-%d", family);
1569 #endif
1570 
1571 	rcu_read_lock();
1572 	pf = rcu_dereference(net_families[family]);
1573 	err = -EAFNOSUPPORT;
1574 	if (!pf)
1575 		goto out_release;
1576 
1577 	/*
1578 	 * We will call the ->create function, that possibly is in a loadable
1579 	 * module, so we have to bump that loadable module refcnt first.
1580 	 */
1581 	if (!try_module_get(pf->owner))
1582 		goto out_release;
1583 
1584 	/* Now protected by module ref count */
1585 	rcu_read_unlock();
1586 
1587 	err = pf->create(net, sock, protocol, kern);
1588 	if (err < 0) {
1589 		/* ->create should release the allocated sock->sk object on error
1590 		 * and make sure sock->sk is set to NULL to avoid use-after-free
1591 		 */
1592 		DEBUG_NET_WARN_ONCE(sock->sk,
1593 				    "%ps must clear sock->sk on failure, family: %d, type: %d, protocol: %d\n",
1594 				    pf->create, family, type, protocol);
1595 		goto out_module_put;
1596 	}
1597 
1598 	/*
1599 	 * Now to bump the refcnt of the [loadable] module that owns this
1600 	 * socket at sock_release time we decrement its refcnt.
1601 	 */
1602 	if (!try_module_get(sock->ops->owner))
1603 		goto out_module_busy;
1604 
1605 	/*
1606 	 * Now that we're done with the ->create function, the [loadable]
1607 	 * module can have its refcnt decremented
1608 	 */
1609 	module_put(pf->owner);
1610 	err = security_socket_post_create(sock, family, type, protocol, kern);
1611 	if (err)
1612 		goto out_sock_release;
1613 	*res = sock;
1614 
1615 	return 0;
1616 
1617 out_module_busy:
1618 	err = -EAFNOSUPPORT;
1619 out_module_put:
1620 	sock->ops = NULL;
1621 	module_put(pf->owner);
1622 out_sock_release:
1623 	sock_release(sock);
1624 	return err;
1625 
1626 out_release:
1627 	rcu_read_unlock();
1628 	goto out_sock_release;
1629 }
1630 EXPORT_SYMBOL(__sock_create);
1631 
1632 /**
1633  *	sock_create - creates a socket
1634  *	@family: protocol family (AF_INET, ...)
1635  *	@type: communication type (SOCK_STREAM, ...)
1636  *	@protocol: protocol (0, ...)
1637  *	@res: new socket
1638  *
1639  *	A wrapper around __sock_create().
1640  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1641  */
1642 
1643 int sock_create(int family, int type, int protocol, struct socket **res)
1644 {
1645 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1646 }
1647 EXPORT_SYMBOL(sock_create);
1648 
1649 /**
1650  *	sock_create_kern - creates a socket (kernel space)
1651  *	@net: net namespace
1652  *	@family: protocol family (AF_INET, ...)
1653  *	@type: communication type (SOCK_STREAM, ...)
1654  *	@protocol: protocol (0, ...)
1655  *	@res: new socket
1656  *
1657  *	A wrapper around __sock_create().
1658  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1659  */
1660 
1661 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1662 {
1663 	return __sock_create(net, family, type, protocol, res, 1);
1664 }
1665 EXPORT_SYMBOL(sock_create_kern);
1666 
1667 static struct socket *__sys_socket_create(int family, int type, int protocol)
1668 {
1669 	struct socket *sock;
1670 	int retval;
1671 
1672 	/* Check the SOCK_* constants for consistency.  */
1673 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1674 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1675 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1676 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1677 
1678 	if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1679 		return ERR_PTR(-EINVAL);
1680 	type &= SOCK_TYPE_MASK;
1681 
1682 	retval = sock_create(family, type, protocol, &sock);
1683 	if (retval < 0)
1684 		return ERR_PTR(retval);
1685 
1686 	return sock;
1687 }
1688 
1689 struct file *__sys_socket_file(int family, int type, int protocol)
1690 {
1691 	struct socket *sock;
1692 	int flags;
1693 
1694 	sock = __sys_socket_create(family, type, protocol);
1695 	if (IS_ERR(sock))
1696 		return ERR_CAST(sock);
1697 
1698 	flags = type & ~SOCK_TYPE_MASK;
1699 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1700 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1701 
1702 	return sock_alloc_file(sock, flags, NULL);
1703 }
1704 
1705 /*	A hook for bpf progs to attach to and update socket protocol.
1706  *
1707  *	A static noinline declaration here could cause the compiler to
1708  *	optimize away the function. A global noinline declaration will
1709  *	keep the definition, but may optimize away the callsite.
1710  *	Therefore, __weak is needed to ensure that the call is still
1711  *	emitted, by telling the compiler that we don't know what the
1712  *	function might eventually be.
1713  */
1714 
1715 __bpf_hook_start();
1716 
1717 __weak noinline int update_socket_protocol(int family, int type, int protocol)
1718 {
1719 	return protocol;
1720 }
1721 
1722 __bpf_hook_end();
1723 
1724 int __sys_socket(int family, int type, int protocol)
1725 {
1726 	struct socket *sock;
1727 	int flags;
1728 
1729 	sock = __sys_socket_create(family, type,
1730 				   update_socket_protocol(family, type, protocol));
1731 	if (IS_ERR(sock))
1732 		return PTR_ERR(sock);
1733 
1734 	flags = type & ~SOCK_TYPE_MASK;
1735 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1736 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1737 
1738 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1739 }
1740 
1741 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1742 {
1743 	return __sys_socket(family, type, protocol);
1744 }
1745 
1746 /*
1747  *	Create a pair of connected sockets.
1748  */
1749 
1750 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1751 {
1752 	struct socket *sock1, *sock2;
1753 	int fd1, fd2, err;
1754 	struct file *newfile1, *newfile2;
1755 	int flags;
1756 
1757 	flags = type & ~SOCK_TYPE_MASK;
1758 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1759 		return -EINVAL;
1760 	type &= SOCK_TYPE_MASK;
1761 
1762 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1763 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1764 
1765 	/*
1766 	 * reserve descriptors and make sure we won't fail
1767 	 * to return them to userland.
1768 	 */
1769 	fd1 = get_unused_fd_flags(flags);
1770 	if (unlikely(fd1 < 0))
1771 		return fd1;
1772 
1773 	fd2 = get_unused_fd_flags(flags);
1774 	if (unlikely(fd2 < 0)) {
1775 		put_unused_fd(fd1);
1776 		return fd2;
1777 	}
1778 
1779 	err = put_user(fd1, &usockvec[0]);
1780 	if (err)
1781 		goto out;
1782 
1783 	err = put_user(fd2, &usockvec[1]);
1784 	if (err)
1785 		goto out;
1786 
1787 	/*
1788 	 * Obtain the first socket and check if the underlying protocol
1789 	 * supports the socketpair call.
1790 	 */
1791 
1792 	err = sock_create(family, type, protocol, &sock1);
1793 	if (unlikely(err < 0))
1794 		goto out;
1795 
1796 	err = sock_create(family, type, protocol, &sock2);
1797 	if (unlikely(err < 0)) {
1798 		sock_release(sock1);
1799 		goto out;
1800 	}
1801 
1802 	err = security_socket_socketpair(sock1, sock2);
1803 	if (unlikely(err)) {
1804 		sock_release(sock2);
1805 		sock_release(sock1);
1806 		goto out;
1807 	}
1808 
1809 	err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1810 	if (unlikely(err < 0)) {
1811 		sock_release(sock2);
1812 		sock_release(sock1);
1813 		goto out;
1814 	}
1815 
1816 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1817 	if (IS_ERR(newfile1)) {
1818 		err = PTR_ERR(newfile1);
1819 		sock_release(sock2);
1820 		goto out;
1821 	}
1822 
1823 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1824 	if (IS_ERR(newfile2)) {
1825 		err = PTR_ERR(newfile2);
1826 		fput(newfile1);
1827 		goto out;
1828 	}
1829 
1830 	audit_fd_pair(fd1, fd2);
1831 
1832 	fd_install(fd1, newfile1);
1833 	fd_install(fd2, newfile2);
1834 	return 0;
1835 
1836 out:
1837 	put_unused_fd(fd2);
1838 	put_unused_fd(fd1);
1839 	return err;
1840 }
1841 
1842 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1843 		int __user *, usockvec)
1844 {
1845 	return __sys_socketpair(family, type, protocol, usockvec);
1846 }
1847 
1848 int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address,
1849 		      int addrlen)
1850 {
1851 	int err;
1852 
1853 	err = security_socket_bind(sock, (struct sockaddr *)address,
1854 				   addrlen);
1855 	if (!err)
1856 		err = READ_ONCE(sock->ops)->bind(sock,
1857 						 (struct sockaddr *)address,
1858 						 addrlen);
1859 	return err;
1860 }
1861 
1862 /*
1863  *	Bind a name to a socket. Nothing much to do here since it's
1864  *	the protocol's responsibility to handle the local address.
1865  *
1866  *	We move the socket address to kernel space before we call
1867  *	the protocol layer (having also checked the address is ok).
1868  */
1869 
1870 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1871 {
1872 	struct socket *sock;
1873 	struct sockaddr_storage address;
1874 	CLASS(fd, f)(fd);
1875 	int err;
1876 
1877 	if (fd_empty(f))
1878 		return -EBADF;
1879 	sock = sock_from_file(fd_file(f));
1880 	if (unlikely(!sock))
1881 		return -ENOTSOCK;
1882 
1883 	err = move_addr_to_kernel(umyaddr, addrlen, &address);
1884 	if (unlikely(err))
1885 		return err;
1886 
1887 	return __sys_bind_socket(sock, &address, addrlen);
1888 }
1889 
1890 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1891 {
1892 	return __sys_bind(fd, umyaddr, addrlen);
1893 }
1894 
1895 /*
1896  *	Perform a listen. Basically, we allow the protocol to do anything
1897  *	necessary for a listen, and if that works, we mark the socket as
1898  *	ready for listening.
1899  */
1900 int __sys_listen_socket(struct socket *sock, int backlog)
1901 {
1902 	int somaxconn, err;
1903 
1904 	somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1905 	if ((unsigned int)backlog > somaxconn)
1906 		backlog = somaxconn;
1907 
1908 	err = security_socket_listen(sock, backlog);
1909 	if (!err)
1910 		err = READ_ONCE(sock->ops)->listen(sock, backlog);
1911 	return err;
1912 }
1913 
1914 int __sys_listen(int fd, int backlog)
1915 {
1916 	CLASS(fd, f)(fd);
1917 	struct socket *sock;
1918 
1919 	if (fd_empty(f))
1920 		return -EBADF;
1921 	sock = sock_from_file(fd_file(f));
1922 	if (unlikely(!sock))
1923 		return -ENOTSOCK;
1924 
1925 	return __sys_listen_socket(sock, backlog);
1926 }
1927 
1928 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1929 {
1930 	return __sys_listen(fd, backlog);
1931 }
1932 
1933 struct file *do_accept(struct file *file, struct proto_accept_arg *arg,
1934 		       struct sockaddr __user *upeer_sockaddr,
1935 		       int __user *upeer_addrlen, int flags)
1936 {
1937 	struct socket *sock, *newsock;
1938 	struct file *newfile;
1939 	int err, len;
1940 	struct sockaddr_storage address;
1941 	const struct proto_ops *ops;
1942 
1943 	sock = sock_from_file(file);
1944 	if (!sock)
1945 		return ERR_PTR(-ENOTSOCK);
1946 
1947 	newsock = sock_alloc();
1948 	if (!newsock)
1949 		return ERR_PTR(-ENFILE);
1950 	ops = READ_ONCE(sock->ops);
1951 
1952 	newsock->type = sock->type;
1953 	newsock->ops = ops;
1954 
1955 	/*
1956 	 * We don't need try_module_get here, as the listening socket (sock)
1957 	 * has the protocol module (sock->ops->owner) held.
1958 	 */
1959 	__module_get(ops->owner);
1960 
1961 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1962 	if (IS_ERR(newfile))
1963 		return newfile;
1964 
1965 	err = security_socket_accept(sock, newsock);
1966 	if (err)
1967 		goto out_fd;
1968 
1969 	arg->flags |= sock->file->f_flags;
1970 	err = ops->accept(sock, newsock, arg);
1971 	if (err < 0)
1972 		goto out_fd;
1973 
1974 	if (upeer_sockaddr) {
1975 		len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1976 		if (len < 0) {
1977 			err = -ECONNABORTED;
1978 			goto out_fd;
1979 		}
1980 		err = move_addr_to_user(&address,
1981 					len, upeer_sockaddr, upeer_addrlen);
1982 		if (err < 0)
1983 			goto out_fd;
1984 	}
1985 
1986 	/* File flags are not inherited via accept() unlike another OSes. */
1987 	return newfile;
1988 out_fd:
1989 	fput(newfile);
1990 	return ERR_PTR(err);
1991 }
1992 
1993 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1994 			      int __user *upeer_addrlen, int flags)
1995 {
1996 	struct proto_accept_arg arg = { };
1997 	struct file *newfile;
1998 	int newfd;
1999 
2000 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
2001 		return -EINVAL;
2002 
2003 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
2004 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
2005 
2006 	newfd = get_unused_fd_flags(flags);
2007 	if (unlikely(newfd < 0))
2008 		return newfd;
2009 
2010 	newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen,
2011 			    flags);
2012 	if (IS_ERR(newfile)) {
2013 		put_unused_fd(newfd);
2014 		return PTR_ERR(newfile);
2015 	}
2016 	fd_install(newfd, newfile);
2017 	return newfd;
2018 }
2019 
2020 /*
2021  *	For accept, we attempt to create a new socket, set up the link
2022  *	with the client, wake up the client, then return the new
2023  *	connected fd. We collect the address of the connector in kernel
2024  *	space and move it to user at the very end. This is unclean because
2025  *	we open the socket then return an error.
2026  *
2027  *	1003.1g adds the ability to recvmsg() to query connection pending
2028  *	status to recvmsg. We need to add that support in a way thats
2029  *	clean when we restructure accept also.
2030  */
2031 
2032 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
2033 		  int __user *upeer_addrlen, int flags)
2034 {
2035 	CLASS(fd, f)(fd);
2036 
2037 	if (fd_empty(f))
2038 		return -EBADF;
2039 	return __sys_accept4_file(fd_file(f), upeer_sockaddr,
2040 					 upeer_addrlen, flags);
2041 }
2042 
2043 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
2044 		int __user *, upeer_addrlen, int, flags)
2045 {
2046 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
2047 }
2048 
2049 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
2050 		int __user *, upeer_addrlen)
2051 {
2052 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
2053 }
2054 
2055 /*
2056  *	Attempt to connect to a socket with the server address.  The address
2057  *	is in user space so we verify it is OK and move it to kernel space.
2058  *
2059  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2060  *	break bindings
2061  *
2062  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2063  *	other SEQPACKET protocols that take time to connect() as it doesn't
2064  *	include the -EINPROGRESS status for such sockets.
2065  */
2066 
2067 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2068 		       int addrlen, int file_flags)
2069 {
2070 	struct socket *sock;
2071 	int err;
2072 
2073 	sock = sock_from_file(file);
2074 	if (!sock) {
2075 		err = -ENOTSOCK;
2076 		goto out;
2077 	}
2078 
2079 	err =
2080 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2081 	if (err)
2082 		goto out;
2083 
2084 	err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address,
2085 				addrlen, sock->file->f_flags | file_flags);
2086 out:
2087 	return err;
2088 }
2089 
2090 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2091 {
2092 	struct sockaddr_storage address;
2093 	CLASS(fd, f)(fd);
2094 	int ret;
2095 
2096 	if (fd_empty(f))
2097 		return -EBADF;
2098 
2099 	ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2100 	if (ret)
2101 		return ret;
2102 
2103 	return __sys_connect_file(fd_file(f), &address, addrlen, 0);
2104 }
2105 
2106 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2107 		int, addrlen)
2108 {
2109 	return __sys_connect(fd, uservaddr, addrlen);
2110 }
2111 
2112 /*
2113  *	Get the local address ('name') of a socket object. Move the obtained
2114  *	name to user space.
2115  */
2116 
2117 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2118 		      int __user *usockaddr_len)
2119 {
2120 	struct socket *sock;
2121 	struct sockaddr_storage address;
2122 	CLASS(fd, f)(fd);
2123 	int err;
2124 
2125 	if (fd_empty(f))
2126 		return -EBADF;
2127 	sock = sock_from_file(fd_file(f));
2128 	if (unlikely(!sock))
2129 		return -ENOTSOCK;
2130 
2131 	err = security_socket_getsockname(sock);
2132 	if (err)
2133 		return err;
2134 
2135 	err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0);
2136 	if (err < 0)
2137 		return err;
2138 
2139 	/* "err" is actually length in this case */
2140 	return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2141 }
2142 
2143 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2144 		int __user *, usockaddr_len)
2145 {
2146 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
2147 }
2148 
2149 /*
2150  *	Get the remote address ('name') of a socket object. Move the obtained
2151  *	name to user space.
2152  */
2153 
2154 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2155 		      int __user *usockaddr_len)
2156 {
2157 	struct socket *sock;
2158 	struct sockaddr_storage address;
2159 	CLASS(fd, f)(fd);
2160 	int err;
2161 
2162 	if (fd_empty(f))
2163 		return -EBADF;
2164 	sock = sock_from_file(fd_file(f));
2165 	if (unlikely(!sock))
2166 		return -ENOTSOCK;
2167 
2168 	err = security_socket_getpeername(sock);
2169 	if (err)
2170 		return err;
2171 
2172 	err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 1);
2173 	if (err < 0)
2174 		return err;
2175 
2176 	/* "err" is actually length in this case */
2177 	return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2178 }
2179 
2180 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2181 		int __user *, usockaddr_len)
2182 {
2183 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
2184 }
2185 
2186 /*
2187  *	Send a datagram to a given address. We move the address into kernel
2188  *	space and check the user space data area is readable before invoking
2189  *	the protocol.
2190  */
2191 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2192 		 struct sockaddr __user *addr,  int addr_len)
2193 {
2194 	struct socket *sock;
2195 	struct sockaddr_storage address;
2196 	int err;
2197 	struct msghdr msg;
2198 
2199 	err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter);
2200 	if (unlikely(err))
2201 		return err;
2202 
2203 	CLASS(fd, f)(fd);
2204 	if (fd_empty(f))
2205 		return -EBADF;
2206 	sock = sock_from_file(fd_file(f));
2207 	if (unlikely(!sock))
2208 		return -ENOTSOCK;
2209 
2210 	msg.msg_name = NULL;
2211 	msg.msg_control = NULL;
2212 	msg.msg_controllen = 0;
2213 	msg.msg_namelen = 0;
2214 	msg.msg_ubuf = NULL;
2215 	if (addr) {
2216 		err = move_addr_to_kernel(addr, addr_len, &address);
2217 		if (err < 0)
2218 			return err;
2219 		msg.msg_name = (struct sockaddr *)&address;
2220 		msg.msg_namelen = addr_len;
2221 	}
2222 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2223 	if (sock->file->f_flags & O_NONBLOCK)
2224 		flags |= MSG_DONTWAIT;
2225 	msg.msg_flags = flags;
2226 	return __sock_sendmsg(sock, &msg);
2227 }
2228 
2229 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2230 		unsigned int, flags, struct sockaddr __user *, addr,
2231 		int, addr_len)
2232 {
2233 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2234 }
2235 
2236 /*
2237  *	Send a datagram down a socket.
2238  */
2239 
2240 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2241 		unsigned int, flags)
2242 {
2243 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2244 }
2245 
2246 /*
2247  *	Receive a frame from the socket and optionally record the address of the
2248  *	sender. We verify the buffers are writable and if needed move the
2249  *	sender address from kernel to user space.
2250  */
2251 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2252 		   struct sockaddr __user *addr, int __user *addr_len)
2253 {
2254 	struct sockaddr_storage address;
2255 	struct msghdr msg = {
2256 		/* Save some cycles and don't copy the address if not needed */
2257 		.msg_name = addr ? (struct sockaddr *)&address : NULL,
2258 	};
2259 	struct socket *sock;
2260 	int err, err2;
2261 
2262 	err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter);
2263 	if (unlikely(err))
2264 		return err;
2265 
2266 	CLASS(fd, f)(fd);
2267 
2268 	if (fd_empty(f))
2269 		return -EBADF;
2270 	sock = sock_from_file(fd_file(f));
2271 	if (unlikely(!sock))
2272 		return -ENOTSOCK;
2273 
2274 	if (sock->file->f_flags & O_NONBLOCK)
2275 		flags |= MSG_DONTWAIT;
2276 	err = sock_recvmsg(sock, &msg, flags);
2277 
2278 	if (err >= 0 && addr != NULL) {
2279 		err2 = move_addr_to_user(&address,
2280 					 msg.msg_namelen, addr, addr_len);
2281 		if (err2 < 0)
2282 			err = err2;
2283 	}
2284 	return err;
2285 }
2286 
2287 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2288 		unsigned int, flags, struct sockaddr __user *, addr,
2289 		int __user *, addr_len)
2290 {
2291 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2292 }
2293 
2294 /*
2295  *	Receive a datagram from a socket.
2296  */
2297 
2298 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2299 		unsigned int, flags)
2300 {
2301 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2302 }
2303 
2304 static bool sock_use_custom_sol_socket(const struct socket *sock)
2305 {
2306 	return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2307 }
2308 
2309 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
2310 		       int optname, sockptr_t optval, int optlen)
2311 {
2312 	const struct proto_ops *ops;
2313 	char *kernel_optval = NULL;
2314 	int err;
2315 
2316 	if (optlen < 0)
2317 		return -EINVAL;
2318 
2319 	err = security_socket_setsockopt(sock, level, optname);
2320 	if (err)
2321 		goto out_put;
2322 
2323 	if (!compat)
2324 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2325 						     optval, &optlen,
2326 						     &kernel_optval);
2327 	if (err < 0)
2328 		goto out_put;
2329 	if (err > 0) {
2330 		err = 0;
2331 		goto out_put;
2332 	}
2333 
2334 	if (kernel_optval)
2335 		optval = KERNEL_SOCKPTR(kernel_optval);
2336 	ops = READ_ONCE(sock->ops);
2337 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2338 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2339 	else if (unlikely(!ops->setsockopt))
2340 		err = -EOPNOTSUPP;
2341 	else
2342 		err = ops->setsockopt(sock, level, optname, optval,
2343 					    optlen);
2344 	kfree(kernel_optval);
2345 out_put:
2346 	return err;
2347 }
2348 EXPORT_SYMBOL(do_sock_setsockopt);
2349 
2350 /* Set a socket option. Because we don't know the option lengths we have
2351  * to pass the user mode parameter for the protocols to sort out.
2352  */
2353 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2354 		     int optlen)
2355 {
2356 	sockptr_t optval = USER_SOCKPTR(user_optval);
2357 	bool compat = in_compat_syscall();
2358 	struct socket *sock;
2359 	CLASS(fd, f)(fd);
2360 
2361 	if (fd_empty(f))
2362 		return -EBADF;
2363 	sock = sock_from_file(fd_file(f));
2364 	if (unlikely(!sock))
2365 		return -ENOTSOCK;
2366 
2367 	return do_sock_setsockopt(sock, compat, level, optname, optval, optlen);
2368 }
2369 
2370 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2371 		char __user *, optval, int, optlen)
2372 {
2373 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2374 }
2375 
2376 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2377 							 int optname));
2378 
2379 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
2380 		       int optname, sockptr_t optval, sockptr_t optlen)
2381 {
2382 	int max_optlen __maybe_unused = 0;
2383 	const struct proto_ops *ops;
2384 	int err;
2385 
2386 	err = security_socket_getsockopt(sock, level, optname);
2387 	if (err)
2388 		return err;
2389 
2390 	if (!compat)
2391 		copy_from_sockptr(&max_optlen, optlen, sizeof(int));
2392 
2393 	ops = READ_ONCE(sock->ops);
2394 	if (level == SOL_SOCKET) {
2395 		err = sk_getsockopt(sock->sk, level, optname, optval, optlen);
2396 	} else if (unlikely(!ops->getsockopt)) {
2397 		err = -EOPNOTSUPP;
2398 	} else {
2399 		if (WARN_ONCE(optval.is_kernel || optlen.is_kernel,
2400 			      "Invalid argument type"))
2401 			return -EOPNOTSUPP;
2402 
2403 		err = ops->getsockopt(sock, level, optname, optval.user,
2404 				      optlen.user);
2405 	}
2406 
2407 	if (!compat)
2408 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2409 						     optval, optlen, max_optlen,
2410 						     err);
2411 
2412 	return err;
2413 }
2414 EXPORT_SYMBOL(do_sock_getsockopt);
2415 
2416 /*
2417  *	Get a socket option. Because we don't know the option lengths we have
2418  *	to pass a user mode parameter for the protocols to sort out.
2419  */
2420 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2421 		int __user *optlen)
2422 {
2423 	struct socket *sock;
2424 	CLASS(fd, f)(fd);
2425 
2426 	if (fd_empty(f))
2427 		return -EBADF;
2428 	sock = sock_from_file(fd_file(f));
2429 	if (unlikely(!sock))
2430 		return -ENOTSOCK;
2431 
2432 	return do_sock_getsockopt(sock, in_compat_syscall(), level, optname,
2433 				 USER_SOCKPTR(optval), USER_SOCKPTR(optlen));
2434 }
2435 
2436 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2437 		char __user *, optval, int __user *, optlen)
2438 {
2439 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2440 }
2441 
2442 /*
2443  *	Shutdown a socket.
2444  */
2445 
2446 int __sys_shutdown_sock(struct socket *sock, int how)
2447 {
2448 	int err;
2449 
2450 	err = security_socket_shutdown(sock, how);
2451 	if (!err)
2452 		err = READ_ONCE(sock->ops)->shutdown(sock, how);
2453 
2454 	return err;
2455 }
2456 
2457 int __sys_shutdown(int fd, int how)
2458 {
2459 	struct socket *sock;
2460 	CLASS(fd, f)(fd);
2461 
2462 	if (fd_empty(f))
2463 		return -EBADF;
2464 	sock = sock_from_file(fd_file(f));
2465 	if (unlikely(!sock))
2466 		return -ENOTSOCK;
2467 
2468 	return __sys_shutdown_sock(sock, how);
2469 }
2470 
2471 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2472 {
2473 	return __sys_shutdown(fd, how);
2474 }
2475 
2476 /* A couple of helpful macros for getting the address of the 32/64 bit
2477  * fields which are the same type (int / unsigned) on our platforms.
2478  */
2479 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2480 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2481 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2482 
2483 struct used_address {
2484 	struct sockaddr_storage name;
2485 	unsigned int name_len;
2486 };
2487 
2488 int __copy_msghdr(struct msghdr *kmsg,
2489 		  struct user_msghdr *msg,
2490 		  struct sockaddr __user **save_addr)
2491 {
2492 	ssize_t err;
2493 
2494 	kmsg->msg_control_is_user = true;
2495 	kmsg->msg_get_inq = 0;
2496 	kmsg->msg_control_user = msg->msg_control;
2497 	kmsg->msg_controllen = msg->msg_controllen;
2498 	kmsg->msg_flags = msg->msg_flags;
2499 
2500 	kmsg->msg_namelen = msg->msg_namelen;
2501 	if (!msg->msg_name)
2502 		kmsg->msg_namelen = 0;
2503 
2504 	if (kmsg->msg_namelen < 0)
2505 		return -EINVAL;
2506 
2507 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2508 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2509 
2510 	if (save_addr)
2511 		*save_addr = msg->msg_name;
2512 
2513 	if (msg->msg_name && kmsg->msg_namelen) {
2514 		if (!save_addr) {
2515 			err = move_addr_to_kernel(msg->msg_name,
2516 						  kmsg->msg_namelen,
2517 						  kmsg->msg_name);
2518 			if (err < 0)
2519 				return err;
2520 		}
2521 	} else {
2522 		kmsg->msg_name = NULL;
2523 		kmsg->msg_namelen = 0;
2524 	}
2525 
2526 	if (msg->msg_iovlen > UIO_MAXIOV)
2527 		return -EMSGSIZE;
2528 
2529 	kmsg->msg_iocb = NULL;
2530 	kmsg->msg_ubuf = NULL;
2531 	return 0;
2532 }
2533 
2534 static int copy_msghdr_from_user(struct msghdr *kmsg,
2535 				 struct user_msghdr __user *umsg,
2536 				 struct sockaddr __user **save_addr,
2537 				 struct iovec **iov)
2538 {
2539 	struct user_msghdr msg;
2540 	ssize_t err;
2541 
2542 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2543 		return -EFAULT;
2544 
2545 	err = __copy_msghdr(kmsg, &msg, save_addr);
2546 	if (err)
2547 		return err;
2548 
2549 	err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2550 			    msg.msg_iov, msg.msg_iovlen,
2551 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2552 	return err < 0 ? err : 0;
2553 }
2554 
2555 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2556 			   unsigned int flags, struct used_address *used_address,
2557 			   unsigned int allowed_msghdr_flags)
2558 {
2559 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2560 				__aligned(sizeof(__kernel_size_t));
2561 	/* 20 is size of ipv6_pktinfo */
2562 	unsigned char *ctl_buf = ctl;
2563 	int ctl_len;
2564 	ssize_t err;
2565 
2566 	err = -ENOBUFS;
2567 
2568 	if (msg_sys->msg_controllen > INT_MAX)
2569 		goto out;
2570 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2571 	ctl_len = msg_sys->msg_controllen;
2572 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2573 		err =
2574 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2575 						     sizeof(ctl));
2576 		if (err)
2577 			goto out;
2578 		ctl_buf = msg_sys->msg_control;
2579 		ctl_len = msg_sys->msg_controllen;
2580 	} else if (ctl_len) {
2581 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2582 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2583 		if (ctl_len > sizeof(ctl)) {
2584 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2585 			if (ctl_buf == NULL)
2586 				goto out;
2587 		}
2588 		err = -EFAULT;
2589 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2590 			goto out_freectl;
2591 		msg_sys->msg_control = ctl_buf;
2592 		msg_sys->msg_control_is_user = false;
2593 	}
2594 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2595 	msg_sys->msg_flags = flags;
2596 
2597 	if (sock->file->f_flags & O_NONBLOCK)
2598 		msg_sys->msg_flags |= MSG_DONTWAIT;
2599 	/*
2600 	 * If this is sendmmsg() and current destination address is same as
2601 	 * previously succeeded address, omit asking LSM's decision.
2602 	 * used_address->name_len is initialized to UINT_MAX so that the first
2603 	 * destination address never matches.
2604 	 */
2605 	if (used_address && msg_sys->msg_name &&
2606 	    used_address->name_len == msg_sys->msg_namelen &&
2607 	    !memcmp(&used_address->name, msg_sys->msg_name,
2608 		    used_address->name_len)) {
2609 		err = sock_sendmsg_nosec(sock, msg_sys);
2610 		goto out_freectl;
2611 	}
2612 	err = __sock_sendmsg(sock, msg_sys);
2613 	/*
2614 	 * If this is sendmmsg() and sending to current destination address was
2615 	 * successful, remember it.
2616 	 */
2617 	if (used_address && err >= 0) {
2618 		used_address->name_len = msg_sys->msg_namelen;
2619 		if (msg_sys->msg_name)
2620 			memcpy(&used_address->name, msg_sys->msg_name,
2621 			       used_address->name_len);
2622 	}
2623 
2624 out_freectl:
2625 	if (ctl_buf != ctl)
2626 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2627 out:
2628 	return err;
2629 }
2630 
2631 static int sendmsg_copy_msghdr(struct msghdr *msg,
2632 			       struct user_msghdr __user *umsg, unsigned flags,
2633 			       struct iovec **iov)
2634 {
2635 	int err;
2636 
2637 	if (flags & MSG_CMSG_COMPAT) {
2638 		struct compat_msghdr __user *msg_compat;
2639 
2640 		msg_compat = (struct compat_msghdr __user *) umsg;
2641 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2642 	} else {
2643 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2644 	}
2645 	if (err < 0)
2646 		return err;
2647 
2648 	return 0;
2649 }
2650 
2651 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2652 			 struct msghdr *msg_sys, unsigned int flags,
2653 			 struct used_address *used_address,
2654 			 unsigned int allowed_msghdr_flags)
2655 {
2656 	struct sockaddr_storage address;
2657 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2658 	ssize_t err;
2659 
2660 	msg_sys->msg_name = &address;
2661 
2662 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2663 	if (err < 0)
2664 		return err;
2665 
2666 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2667 				allowed_msghdr_flags);
2668 	kfree(iov);
2669 	return err;
2670 }
2671 
2672 /*
2673  *	BSD sendmsg interface
2674  */
2675 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2676 			unsigned int flags)
2677 {
2678 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2679 }
2680 
2681 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2682 		   bool forbid_cmsg_compat)
2683 {
2684 	struct msghdr msg_sys;
2685 	struct socket *sock;
2686 
2687 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2688 		return -EINVAL;
2689 
2690 	CLASS(fd, f)(fd);
2691 
2692 	if (fd_empty(f))
2693 		return -EBADF;
2694 	sock = sock_from_file(fd_file(f));
2695 	if (unlikely(!sock))
2696 		return -ENOTSOCK;
2697 
2698 	return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2699 }
2700 
2701 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2702 {
2703 	return __sys_sendmsg(fd, msg, flags, true);
2704 }
2705 
2706 /*
2707  *	Linux sendmmsg interface
2708  */
2709 
2710 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2711 		   unsigned int flags, bool forbid_cmsg_compat)
2712 {
2713 	int err, datagrams;
2714 	struct socket *sock;
2715 	struct mmsghdr __user *entry;
2716 	struct compat_mmsghdr __user *compat_entry;
2717 	struct msghdr msg_sys;
2718 	struct used_address used_address;
2719 	unsigned int oflags = flags;
2720 
2721 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2722 		return -EINVAL;
2723 
2724 	if (vlen > UIO_MAXIOV)
2725 		vlen = UIO_MAXIOV;
2726 
2727 	datagrams = 0;
2728 
2729 	CLASS(fd, f)(fd);
2730 
2731 	if (fd_empty(f))
2732 		return -EBADF;
2733 	sock = sock_from_file(fd_file(f));
2734 	if (unlikely(!sock))
2735 		return -ENOTSOCK;
2736 
2737 	used_address.name_len = UINT_MAX;
2738 	entry = mmsg;
2739 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2740 	err = 0;
2741 	flags |= MSG_BATCH;
2742 
2743 	while (datagrams < vlen) {
2744 		if (datagrams == vlen - 1)
2745 			flags = oflags;
2746 
2747 		if (MSG_CMSG_COMPAT & flags) {
2748 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2749 					     &msg_sys, flags, &used_address, MSG_EOR);
2750 			if (err < 0)
2751 				break;
2752 			err = __put_user(err, &compat_entry->msg_len);
2753 			++compat_entry;
2754 		} else {
2755 			err = ___sys_sendmsg(sock,
2756 					     (struct user_msghdr __user *)entry,
2757 					     &msg_sys, flags, &used_address, MSG_EOR);
2758 			if (err < 0)
2759 				break;
2760 			err = put_user(err, &entry->msg_len);
2761 			++entry;
2762 		}
2763 
2764 		if (err)
2765 			break;
2766 		++datagrams;
2767 		if (msg_data_left(&msg_sys))
2768 			break;
2769 		cond_resched();
2770 	}
2771 
2772 	/* We only return an error if no datagrams were able to be sent */
2773 	if (datagrams != 0)
2774 		return datagrams;
2775 
2776 	return err;
2777 }
2778 
2779 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2780 		unsigned int, vlen, unsigned int, flags)
2781 {
2782 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2783 }
2784 
2785 static int recvmsg_copy_msghdr(struct msghdr *msg,
2786 			       struct user_msghdr __user *umsg, unsigned flags,
2787 			       struct sockaddr __user **uaddr,
2788 			       struct iovec **iov)
2789 {
2790 	ssize_t err;
2791 
2792 	if (MSG_CMSG_COMPAT & flags) {
2793 		struct compat_msghdr __user *msg_compat;
2794 
2795 		msg_compat = (struct compat_msghdr __user *) umsg;
2796 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2797 	} else {
2798 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2799 	}
2800 	if (err < 0)
2801 		return err;
2802 
2803 	return 0;
2804 }
2805 
2806 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2807 			   struct user_msghdr __user *msg,
2808 			   struct sockaddr __user *uaddr,
2809 			   unsigned int flags, int nosec)
2810 {
2811 	struct compat_msghdr __user *msg_compat =
2812 					(struct compat_msghdr __user *) msg;
2813 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2814 	struct sockaddr_storage addr;
2815 	unsigned long cmsg_ptr;
2816 	int len;
2817 	ssize_t err;
2818 
2819 	msg_sys->msg_name = &addr;
2820 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2821 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2822 
2823 	/* We assume all kernel code knows the size of sockaddr_storage */
2824 	msg_sys->msg_namelen = 0;
2825 
2826 	if (sock->file->f_flags & O_NONBLOCK)
2827 		flags |= MSG_DONTWAIT;
2828 
2829 	if (unlikely(nosec))
2830 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2831 	else
2832 		err = sock_recvmsg(sock, msg_sys, flags);
2833 
2834 	if (err < 0)
2835 		goto out;
2836 	len = err;
2837 
2838 	if (uaddr != NULL) {
2839 		err = move_addr_to_user(&addr,
2840 					msg_sys->msg_namelen, uaddr,
2841 					uaddr_len);
2842 		if (err < 0)
2843 			goto out;
2844 	}
2845 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2846 			 COMPAT_FLAGS(msg));
2847 	if (err)
2848 		goto out;
2849 	if (MSG_CMSG_COMPAT & flags)
2850 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2851 				 &msg_compat->msg_controllen);
2852 	else
2853 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2854 				 &msg->msg_controllen);
2855 	if (err)
2856 		goto out;
2857 	err = len;
2858 out:
2859 	return err;
2860 }
2861 
2862 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2863 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2864 {
2865 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2866 	/* user mode address pointers */
2867 	struct sockaddr __user *uaddr;
2868 	ssize_t err;
2869 
2870 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2871 	if (err < 0)
2872 		return err;
2873 
2874 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2875 	kfree(iov);
2876 	return err;
2877 }
2878 
2879 /*
2880  *	BSD recvmsg interface
2881  */
2882 
2883 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2884 			struct user_msghdr __user *umsg,
2885 			struct sockaddr __user *uaddr, unsigned int flags)
2886 {
2887 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2888 }
2889 
2890 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2891 		   bool forbid_cmsg_compat)
2892 {
2893 	struct msghdr msg_sys;
2894 	struct socket *sock;
2895 
2896 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2897 		return -EINVAL;
2898 
2899 	CLASS(fd, f)(fd);
2900 
2901 	if (fd_empty(f))
2902 		return -EBADF;
2903 	sock = sock_from_file(fd_file(f));
2904 	if (unlikely(!sock))
2905 		return -ENOTSOCK;
2906 
2907 	return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2908 }
2909 
2910 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2911 		unsigned int, flags)
2912 {
2913 	return __sys_recvmsg(fd, msg, flags, true);
2914 }
2915 
2916 /*
2917  *     Linux recvmmsg interface
2918  */
2919 
2920 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2921 			  unsigned int vlen, unsigned int flags,
2922 			  struct timespec64 *timeout)
2923 {
2924 	int err = 0, datagrams;
2925 	struct socket *sock;
2926 	struct mmsghdr __user *entry;
2927 	struct compat_mmsghdr __user *compat_entry;
2928 	struct msghdr msg_sys;
2929 	struct timespec64 end_time;
2930 	struct timespec64 timeout64;
2931 
2932 	if (timeout &&
2933 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2934 				    timeout->tv_nsec))
2935 		return -EINVAL;
2936 
2937 	datagrams = 0;
2938 
2939 	CLASS(fd, f)(fd);
2940 
2941 	if (fd_empty(f))
2942 		return -EBADF;
2943 	sock = sock_from_file(fd_file(f));
2944 	if (unlikely(!sock))
2945 		return -ENOTSOCK;
2946 
2947 	if (likely(!(flags & MSG_ERRQUEUE))) {
2948 		err = sock_error(sock->sk);
2949 		if (err)
2950 			return err;
2951 	}
2952 
2953 	entry = mmsg;
2954 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2955 
2956 	while (datagrams < vlen) {
2957 		/*
2958 		 * No need to ask LSM for more than the first datagram.
2959 		 */
2960 		if (MSG_CMSG_COMPAT & flags) {
2961 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2962 					     &msg_sys, flags & ~MSG_WAITFORONE,
2963 					     datagrams);
2964 			if (err < 0)
2965 				break;
2966 			err = __put_user(err, &compat_entry->msg_len);
2967 			++compat_entry;
2968 		} else {
2969 			err = ___sys_recvmsg(sock,
2970 					     (struct user_msghdr __user *)entry,
2971 					     &msg_sys, flags & ~MSG_WAITFORONE,
2972 					     datagrams);
2973 			if (err < 0)
2974 				break;
2975 			err = put_user(err, &entry->msg_len);
2976 			++entry;
2977 		}
2978 
2979 		if (err)
2980 			break;
2981 		++datagrams;
2982 
2983 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2984 		if (flags & MSG_WAITFORONE)
2985 			flags |= MSG_DONTWAIT;
2986 
2987 		if (timeout) {
2988 			ktime_get_ts64(&timeout64);
2989 			*timeout = timespec64_sub(end_time, timeout64);
2990 			if (timeout->tv_sec < 0) {
2991 				timeout->tv_sec = timeout->tv_nsec = 0;
2992 				break;
2993 			}
2994 
2995 			/* Timeout, return less than vlen datagrams */
2996 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2997 				break;
2998 		}
2999 
3000 		/* Out of band data, return right away */
3001 		if (msg_sys.msg_flags & MSG_OOB)
3002 			break;
3003 		cond_resched();
3004 	}
3005 
3006 	if (err == 0)
3007 		return datagrams;
3008 
3009 	if (datagrams == 0)
3010 		return err;
3011 
3012 	/*
3013 	 * We may return less entries than requested (vlen) if the
3014 	 * sock is non block and there aren't enough datagrams...
3015 	 */
3016 	if (err != -EAGAIN) {
3017 		/*
3018 		 * ... or  if recvmsg returns an error after we
3019 		 * received some datagrams, where we record the
3020 		 * error to return on the next call or if the
3021 		 * app asks about it using getsockopt(SO_ERROR).
3022 		 */
3023 		WRITE_ONCE(sock->sk->sk_err, -err);
3024 	}
3025 	return datagrams;
3026 }
3027 
3028 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
3029 		   unsigned int vlen, unsigned int flags,
3030 		   struct __kernel_timespec __user *timeout,
3031 		   struct old_timespec32 __user *timeout32)
3032 {
3033 	int datagrams;
3034 	struct timespec64 timeout_sys;
3035 
3036 	if (timeout && get_timespec64(&timeout_sys, timeout))
3037 		return -EFAULT;
3038 
3039 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
3040 		return -EFAULT;
3041 
3042 	if (!timeout && !timeout32)
3043 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
3044 
3045 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
3046 
3047 	if (datagrams <= 0)
3048 		return datagrams;
3049 
3050 	if (timeout && put_timespec64(&timeout_sys, timeout))
3051 		datagrams = -EFAULT;
3052 
3053 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
3054 		datagrams = -EFAULT;
3055 
3056 	return datagrams;
3057 }
3058 
3059 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
3060 		unsigned int, vlen, unsigned int, flags,
3061 		struct __kernel_timespec __user *, timeout)
3062 {
3063 	if (flags & MSG_CMSG_COMPAT)
3064 		return -EINVAL;
3065 
3066 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
3067 }
3068 
3069 #ifdef CONFIG_COMPAT_32BIT_TIME
3070 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3071 		unsigned int, vlen, unsigned int, flags,
3072 		struct old_timespec32 __user *, timeout)
3073 {
3074 	if (flags & MSG_CMSG_COMPAT)
3075 		return -EINVAL;
3076 
3077 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
3078 }
3079 #endif
3080 
3081 #ifdef __ARCH_WANT_SYS_SOCKETCALL
3082 /* Argument list sizes for sys_socketcall */
3083 #define AL(x) ((x) * sizeof(unsigned long))
3084 static const unsigned char nargs[21] = {
3085 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3086 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3087 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3088 	AL(4), AL(5), AL(4)
3089 };
3090 
3091 #undef AL
3092 
3093 /*
3094  *	System call vectors.
3095  *
3096  *	Argument checking cleaned up. Saved 20% in size.
3097  *  This function doesn't need to set the kernel lock because
3098  *  it is set by the callees.
3099  */
3100 
3101 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3102 {
3103 	unsigned long a[AUDITSC_ARGS];
3104 	unsigned long a0, a1;
3105 	int err;
3106 	unsigned int len;
3107 
3108 	if (call < 1 || call > SYS_SENDMMSG)
3109 		return -EINVAL;
3110 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
3111 
3112 	len = nargs[call];
3113 	if (len > sizeof(a))
3114 		return -EINVAL;
3115 
3116 	/* copy_from_user should be SMP safe. */
3117 	if (copy_from_user(a, args, len))
3118 		return -EFAULT;
3119 
3120 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3121 	if (err)
3122 		return err;
3123 
3124 	a0 = a[0];
3125 	a1 = a[1];
3126 
3127 	switch (call) {
3128 	case SYS_SOCKET:
3129 		err = __sys_socket(a0, a1, a[2]);
3130 		break;
3131 	case SYS_BIND:
3132 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3133 		break;
3134 	case SYS_CONNECT:
3135 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3136 		break;
3137 	case SYS_LISTEN:
3138 		err = __sys_listen(a0, a1);
3139 		break;
3140 	case SYS_ACCEPT:
3141 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3142 				    (int __user *)a[2], 0);
3143 		break;
3144 	case SYS_GETSOCKNAME:
3145 		err =
3146 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
3147 				      (int __user *)a[2]);
3148 		break;
3149 	case SYS_GETPEERNAME:
3150 		err =
3151 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
3152 				      (int __user *)a[2]);
3153 		break;
3154 	case SYS_SOCKETPAIR:
3155 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3156 		break;
3157 	case SYS_SEND:
3158 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3159 				   NULL, 0);
3160 		break;
3161 	case SYS_SENDTO:
3162 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3163 				   (struct sockaddr __user *)a[4], a[5]);
3164 		break;
3165 	case SYS_RECV:
3166 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3167 				     NULL, NULL);
3168 		break;
3169 	case SYS_RECVFROM:
3170 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3171 				     (struct sockaddr __user *)a[4],
3172 				     (int __user *)a[5]);
3173 		break;
3174 	case SYS_SHUTDOWN:
3175 		err = __sys_shutdown(a0, a1);
3176 		break;
3177 	case SYS_SETSOCKOPT:
3178 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3179 				       a[4]);
3180 		break;
3181 	case SYS_GETSOCKOPT:
3182 		err =
3183 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3184 				     (int __user *)a[4]);
3185 		break;
3186 	case SYS_SENDMSG:
3187 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3188 				    a[2], true);
3189 		break;
3190 	case SYS_SENDMMSG:
3191 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3192 				     a[3], true);
3193 		break;
3194 	case SYS_RECVMSG:
3195 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3196 				    a[2], true);
3197 		break;
3198 	case SYS_RECVMMSG:
3199 		if (IS_ENABLED(CONFIG_64BIT))
3200 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3201 					     a[2], a[3],
3202 					     (struct __kernel_timespec __user *)a[4],
3203 					     NULL);
3204 		else
3205 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3206 					     a[2], a[3], NULL,
3207 					     (struct old_timespec32 __user *)a[4]);
3208 		break;
3209 	case SYS_ACCEPT4:
3210 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3211 				    (int __user *)a[2], a[3]);
3212 		break;
3213 	default:
3214 		err = -EINVAL;
3215 		break;
3216 	}
3217 	return err;
3218 }
3219 
3220 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3221 
3222 /**
3223  *	sock_register - add a socket protocol handler
3224  *	@ops: description of protocol
3225  *
3226  *	This function is called by a protocol handler that wants to
3227  *	advertise its address family, and have it linked into the
3228  *	socket interface. The value ops->family corresponds to the
3229  *	socket system call protocol family.
3230  */
3231 int sock_register(const struct net_proto_family *ops)
3232 {
3233 	int err;
3234 
3235 	if (ops->family >= NPROTO) {
3236 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3237 		return -ENOBUFS;
3238 	}
3239 
3240 	spin_lock(&net_family_lock);
3241 	if (rcu_dereference_protected(net_families[ops->family],
3242 				      lockdep_is_held(&net_family_lock)))
3243 		err = -EEXIST;
3244 	else {
3245 		rcu_assign_pointer(net_families[ops->family], ops);
3246 		err = 0;
3247 	}
3248 	spin_unlock(&net_family_lock);
3249 
3250 	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3251 	return err;
3252 }
3253 EXPORT_SYMBOL(sock_register);
3254 
3255 /**
3256  *	sock_unregister - remove a protocol handler
3257  *	@family: protocol family to remove
3258  *
3259  *	This function is called by a protocol handler that wants to
3260  *	remove its address family, and have it unlinked from the
3261  *	new socket creation.
3262  *
3263  *	If protocol handler is a module, then it can use module reference
3264  *	counts to protect against new references. If protocol handler is not
3265  *	a module then it needs to provide its own protection in
3266  *	the ops->create routine.
3267  */
3268 void sock_unregister(int family)
3269 {
3270 	BUG_ON(family < 0 || family >= NPROTO);
3271 
3272 	spin_lock(&net_family_lock);
3273 	RCU_INIT_POINTER(net_families[family], NULL);
3274 	spin_unlock(&net_family_lock);
3275 
3276 	synchronize_rcu();
3277 
3278 	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3279 }
3280 EXPORT_SYMBOL(sock_unregister);
3281 
3282 bool sock_is_registered(int family)
3283 {
3284 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3285 }
3286 
3287 static int __init sock_init(void)
3288 {
3289 	int err;
3290 	/*
3291 	 *      Initialize the network sysctl infrastructure.
3292 	 */
3293 	err = net_sysctl_init();
3294 	if (err)
3295 		goto out;
3296 
3297 	/*
3298 	 *      Initialize skbuff SLAB cache
3299 	 */
3300 	skb_init();
3301 
3302 	/*
3303 	 *      Initialize the protocols module.
3304 	 */
3305 
3306 	init_inodecache();
3307 
3308 	err = register_filesystem(&sock_fs_type);
3309 	if (err)
3310 		goto out;
3311 	sock_mnt = kern_mount(&sock_fs_type);
3312 	if (IS_ERR(sock_mnt)) {
3313 		err = PTR_ERR(sock_mnt);
3314 		goto out_mount;
3315 	}
3316 
3317 	/* The real protocol initialization is performed in later initcalls.
3318 	 */
3319 
3320 #ifdef CONFIG_NETFILTER
3321 	err = netfilter_init();
3322 	if (err)
3323 		goto out;
3324 #endif
3325 
3326 	ptp_classifier_init();
3327 
3328 out:
3329 	return err;
3330 
3331 out_mount:
3332 	unregister_filesystem(&sock_fs_type);
3333 	goto out;
3334 }
3335 
3336 core_initcall(sock_init);	/* early initcall */
3337 
3338 #ifdef CONFIG_PROC_FS
3339 void socket_seq_show(struct seq_file *seq)
3340 {
3341 	seq_printf(seq, "sockets: used %d\n",
3342 		   sock_inuse_get(seq->private));
3343 }
3344 #endif				/* CONFIG_PROC_FS */
3345 
3346 /* Handle the fact that while struct ifreq has the same *layout* on
3347  * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3348  * which are handled elsewhere, it still has different *size* due to
3349  * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3350  * resulting in struct ifreq being 32 and 40 bytes respectively).
3351  * As a result, if the struct happens to be at the end of a page and
3352  * the next page isn't readable/writable, we get a fault. To prevent
3353  * that, copy back and forth to the full size.
3354  */
3355 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3356 {
3357 	if (in_compat_syscall()) {
3358 		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3359 
3360 		memset(ifr, 0, sizeof(*ifr));
3361 		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3362 			return -EFAULT;
3363 
3364 		if (ifrdata)
3365 			*ifrdata = compat_ptr(ifr32->ifr_data);
3366 
3367 		return 0;
3368 	}
3369 
3370 	if (copy_from_user(ifr, arg, sizeof(*ifr)))
3371 		return -EFAULT;
3372 
3373 	if (ifrdata)
3374 		*ifrdata = ifr->ifr_data;
3375 
3376 	return 0;
3377 }
3378 EXPORT_SYMBOL(get_user_ifreq);
3379 
3380 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3381 {
3382 	size_t size = sizeof(*ifr);
3383 
3384 	if (in_compat_syscall())
3385 		size = sizeof(struct compat_ifreq);
3386 
3387 	if (copy_to_user(arg, ifr, size))
3388 		return -EFAULT;
3389 
3390 	return 0;
3391 }
3392 EXPORT_SYMBOL(put_user_ifreq);
3393 
3394 #ifdef CONFIG_COMPAT
3395 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3396 {
3397 	compat_uptr_t uptr32;
3398 	struct ifreq ifr;
3399 	void __user *saved;
3400 	int err;
3401 
3402 	if (get_user_ifreq(&ifr, NULL, uifr32))
3403 		return -EFAULT;
3404 
3405 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3406 		return -EFAULT;
3407 
3408 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3409 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3410 
3411 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3412 	if (!err) {
3413 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3414 		if (put_user_ifreq(&ifr, uifr32))
3415 			err = -EFAULT;
3416 	}
3417 	return err;
3418 }
3419 
3420 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3421 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3422 				 struct compat_ifreq __user *u_ifreq32)
3423 {
3424 	struct ifreq ifreq;
3425 	void __user *data;
3426 
3427 	if (!is_socket_ioctl_cmd(cmd))
3428 		return -ENOTTY;
3429 	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3430 		return -EFAULT;
3431 	ifreq.ifr_data = data;
3432 
3433 	return dev_ioctl(net, cmd, &ifreq, data, NULL);
3434 }
3435 
3436 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3437 			 unsigned int cmd, unsigned long arg)
3438 {
3439 	void __user *argp = compat_ptr(arg);
3440 	struct sock *sk = sock->sk;
3441 	struct net *net = sock_net(sk);
3442 	const struct proto_ops *ops;
3443 
3444 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3445 		return sock_ioctl(file, cmd, (unsigned long)argp);
3446 
3447 	switch (cmd) {
3448 	case SIOCWANDEV:
3449 		return compat_siocwandev(net, argp);
3450 	case SIOCGSTAMP_OLD:
3451 	case SIOCGSTAMPNS_OLD:
3452 		ops = READ_ONCE(sock->ops);
3453 		if (!ops->gettstamp)
3454 			return -ENOIOCTLCMD;
3455 		return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3456 				      !COMPAT_USE_64BIT_TIME);
3457 
3458 	case SIOCETHTOOL:
3459 	case SIOCBONDSLAVEINFOQUERY:
3460 	case SIOCBONDINFOQUERY:
3461 	case SIOCSHWTSTAMP:
3462 	case SIOCGHWTSTAMP:
3463 		return compat_ifr_data_ioctl(net, cmd, argp);
3464 
3465 	case FIOSETOWN:
3466 	case SIOCSPGRP:
3467 	case FIOGETOWN:
3468 	case SIOCGPGRP:
3469 	case SIOCBRADDBR:
3470 	case SIOCBRDELBR:
3471 	case SIOCBRADDIF:
3472 	case SIOCBRDELIF:
3473 	case SIOCGIFVLAN:
3474 	case SIOCSIFVLAN:
3475 	case SIOCGSKNS:
3476 	case SIOCGSTAMP_NEW:
3477 	case SIOCGSTAMPNS_NEW:
3478 	case SIOCGIFCONF:
3479 	case SIOCSIFBR:
3480 	case SIOCGIFBR:
3481 		return sock_ioctl(file, cmd, arg);
3482 
3483 	case SIOCGIFFLAGS:
3484 	case SIOCSIFFLAGS:
3485 	case SIOCGIFMAP:
3486 	case SIOCSIFMAP:
3487 	case SIOCGIFMETRIC:
3488 	case SIOCSIFMETRIC:
3489 	case SIOCGIFMTU:
3490 	case SIOCSIFMTU:
3491 	case SIOCGIFMEM:
3492 	case SIOCSIFMEM:
3493 	case SIOCGIFHWADDR:
3494 	case SIOCSIFHWADDR:
3495 	case SIOCADDMULTI:
3496 	case SIOCDELMULTI:
3497 	case SIOCGIFINDEX:
3498 	case SIOCGIFADDR:
3499 	case SIOCSIFADDR:
3500 	case SIOCSIFHWBROADCAST:
3501 	case SIOCDIFADDR:
3502 	case SIOCGIFBRDADDR:
3503 	case SIOCSIFBRDADDR:
3504 	case SIOCGIFDSTADDR:
3505 	case SIOCSIFDSTADDR:
3506 	case SIOCGIFNETMASK:
3507 	case SIOCSIFNETMASK:
3508 	case SIOCSIFPFLAGS:
3509 	case SIOCGIFPFLAGS:
3510 	case SIOCGIFTXQLEN:
3511 	case SIOCSIFTXQLEN:
3512 	case SIOCGIFNAME:
3513 	case SIOCSIFNAME:
3514 	case SIOCGMIIPHY:
3515 	case SIOCGMIIREG:
3516 	case SIOCSMIIREG:
3517 	case SIOCBONDENSLAVE:
3518 	case SIOCBONDRELEASE:
3519 	case SIOCBONDSETHWADDR:
3520 	case SIOCBONDCHANGEACTIVE:
3521 	case SIOCSARP:
3522 	case SIOCGARP:
3523 	case SIOCDARP:
3524 	case SIOCOUTQ:
3525 	case SIOCOUTQNSD:
3526 	case SIOCATMARK:
3527 		return sock_do_ioctl(net, sock, cmd, arg);
3528 	}
3529 
3530 	return -ENOIOCTLCMD;
3531 }
3532 
3533 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3534 			      unsigned long arg)
3535 {
3536 	struct socket *sock = file->private_data;
3537 	const struct proto_ops *ops = READ_ONCE(sock->ops);
3538 	int ret = -ENOIOCTLCMD;
3539 	struct sock *sk;
3540 	struct net *net;
3541 
3542 	sk = sock->sk;
3543 	net = sock_net(sk);
3544 
3545 	if (ops->compat_ioctl)
3546 		ret = ops->compat_ioctl(sock, cmd, arg);
3547 
3548 	if (ret == -ENOIOCTLCMD &&
3549 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3550 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3551 
3552 	if (ret == -ENOIOCTLCMD)
3553 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3554 
3555 	return ret;
3556 }
3557 #endif
3558 
3559 /**
3560  *	kernel_bind - bind an address to a socket (kernel space)
3561  *	@sock: socket
3562  *	@addr: address
3563  *	@addrlen: length of address
3564  *
3565  *	Returns 0 or an error.
3566  */
3567 
3568 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3569 {
3570 	struct sockaddr_storage address;
3571 
3572 	memcpy(&address, addr, addrlen);
3573 
3574 	return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address,
3575 					  addrlen);
3576 }
3577 EXPORT_SYMBOL(kernel_bind);
3578 
3579 /**
3580  *	kernel_listen - move socket to listening state (kernel space)
3581  *	@sock: socket
3582  *	@backlog: pending connections queue size
3583  *
3584  *	Returns 0 or an error.
3585  */
3586 
3587 int kernel_listen(struct socket *sock, int backlog)
3588 {
3589 	return READ_ONCE(sock->ops)->listen(sock, backlog);
3590 }
3591 EXPORT_SYMBOL(kernel_listen);
3592 
3593 /**
3594  *	kernel_accept - accept a connection (kernel space)
3595  *	@sock: listening socket
3596  *	@newsock: new connected socket
3597  *	@flags: flags
3598  *
3599  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3600  *	If it fails, @newsock is guaranteed to be %NULL.
3601  *	Returns 0 or an error.
3602  */
3603 
3604 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3605 {
3606 	struct sock *sk = sock->sk;
3607 	const struct proto_ops *ops = READ_ONCE(sock->ops);
3608 	struct proto_accept_arg arg = {
3609 		.flags = flags,
3610 		.kern = true,
3611 	};
3612 	int err;
3613 
3614 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3615 			       newsock);
3616 	if (err < 0)
3617 		goto done;
3618 
3619 	err = ops->accept(sock, *newsock, &arg);
3620 	if (err < 0) {
3621 		sock_release(*newsock);
3622 		*newsock = NULL;
3623 		goto done;
3624 	}
3625 
3626 	(*newsock)->ops = ops;
3627 	__module_get(ops->owner);
3628 
3629 done:
3630 	return err;
3631 }
3632 EXPORT_SYMBOL(kernel_accept);
3633 
3634 /**
3635  *	kernel_connect - connect a socket (kernel space)
3636  *	@sock: socket
3637  *	@addr: address
3638  *	@addrlen: address length
3639  *	@flags: flags (O_NONBLOCK, ...)
3640  *
3641  *	For datagram sockets, @addr is the address to which datagrams are sent
3642  *	by default, and the only address from which datagrams are received.
3643  *	For stream sockets, attempts to connect to @addr.
3644  *	Returns 0 or an error code.
3645  */
3646 
3647 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3648 		   int flags)
3649 {
3650 	struct sockaddr_storage address;
3651 
3652 	memcpy(&address, addr, addrlen);
3653 
3654 	return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address,
3655 					     addrlen, flags);
3656 }
3657 EXPORT_SYMBOL(kernel_connect);
3658 
3659 /**
3660  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3661  *	@sock: socket
3662  *	@addr: address holder
3663  *
3664  * 	Fills the @addr pointer with the address which the socket is bound.
3665  *	Returns the length of the address in bytes or an error code.
3666  */
3667 
3668 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3669 {
3670 	return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3671 }
3672 EXPORT_SYMBOL(kernel_getsockname);
3673 
3674 /**
3675  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3676  *	@sock: socket
3677  *	@addr: address holder
3678  *
3679  * 	Fills the @addr pointer with the address which the socket is connected.
3680  *	Returns the length of the address in bytes or an error code.
3681  */
3682 
3683 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3684 {
3685 	return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3686 }
3687 EXPORT_SYMBOL(kernel_getpeername);
3688 
3689 /**
3690  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3691  *	@sock: socket
3692  *	@how: connection part
3693  *
3694  *	Returns 0 or an error.
3695  */
3696 
3697 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3698 {
3699 	return READ_ONCE(sock->ops)->shutdown(sock, how);
3700 }
3701 EXPORT_SYMBOL(kernel_sock_shutdown);
3702 
3703 /**
3704  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3705  *	@sk: socket
3706  *
3707  *	This routine returns the IP overhead imposed by a socket i.e.
3708  *	the length of the underlying IP header, depending on whether
3709  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3710  *	on at the socket. Assumes that the caller has a lock on the socket.
3711  */
3712 
3713 u32 kernel_sock_ip_overhead(struct sock *sk)
3714 {
3715 	struct inet_sock *inet;
3716 	struct ip_options_rcu *opt;
3717 	u32 overhead = 0;
3718 #if IS_ENABLED(CONFIG_IPV6)
3719 	struct ipv6_pinfo *np;
3720 	struct ipv6_txoptions *optv6 = NULL;
3721 #endif /* IS_ENABLED(CONFIG_IPV6) */
3722 
3723 	if (!sk)
3724 		return overhead;
3725 
3726 	switch (sk->sk_family) {
3727 	case AF_INET:
3728 		inet = inet_sk(sk);
3729 		overhead += sizeof(struct iphdr);
3730 		opt = rcu_dereference_protected(inet->inet_opt,
3731 						sock_owned_by_user(sk));
3732 		if (opt)
3733 			overhead += opt->opt.optlen;
3734 		return overhead;
3735 #if IS_ENABLED(CONFIG_IPV6)
3736 	case AF_INET6:
3737 		np = inet6_sk(sk);
3738 		overhead += sizeof(struct ipv6hdr);
3739 		if (np)
3740 			optv6 = rcu_dereference_protected(np->opt,
3741 							  sock_owned_by_user(sk));
3742 		if (optv6)
3743 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3744 		return overhead;
3745 #endif /* IS_ENABLED(CONFIG_IPV6) */
3746 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3747 		return overhead;
3748 	}
3749 }
3750 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3751