1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/wanrouter.h> 73 #include <linux/if_bridge.h> 74 #include <linux/if_frad.h> 75 #include <linux/if_vlan.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 92 #include <asm/uaccess.h> 93 #include <asm/unistd.h> 94 95 #include <net/compat.h> 96 #include <net/wext.h> 97 #include <net/cls_cgroup.h> 98 99 #include <net/sock.h> 100 #include <linux/netfilter.h> 101 102 #include <linux/if_tun.h> 103 #include <linux/ipv6_route.h> 104 #include <linux/route.h> 105 #include <linux/sockios.h> 106 #include <linux/atalk.h> 107 108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 110 unsigned long nr_segs, loff_t pos); 111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 112 unsigned long nr_segs, loff_t pos); 113 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 114 115 static int sock_close(struct inode *inode, struct file *file); 116 static unsigned int sock_poll(struct file *file, 117 struct poll_table_struct *wait); 118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 119 #ifdef CONFIG_COMPAT 120 static long compat_sock_ioctl(struct file *file, 121 unsigned int cmd, unsigned long arg); 122 #endif 123 static int sock_fasync(int fd, struct file *filp, int on); 124 static ssize_t sock_sendpage(struct file *file, struct page *page, 125 int offset, size_t size, loff_t *ppos, int more); 126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 127 struct pipe_inode_info *pipe, size_t len, 128 unsigned int flags); 129 130 /* 131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 132 * in the operation structures but are done directly via the socketcall() multiplexor. 133 */ 134 135 static const struct file_operations socket_file_ops = { 136 .owner = THIS_MODULE, 137 .llseek = no_llseek, 138 .aio_read = sock_aio_read, 139 .aio_write = sock_aio_write, 140 .poll = sock_poll, 141 .unlocked_ioctl = sock_ioctl, 142 #ifdef CONFIG_COMPAT 143 .compat_ioctl = compat_sock_ioctl, 144 #endif 145 .mmap = sock_mmap, 146 .open = sock_no_open, /* special open code to disallow open via /proc */ 147 .release = sock_close, 148 .fasync = sock_fasync, 149 .sendpage = sock_sendpage, 150 .splice_write = generic_splice_sendpage, 151 .splice_read = sock_splice_read, 152 }; 153 154 /* 155 * The protocol list. Each protocol is registered in here. 156 */ 157 158 static DEFINE_SPINLOCK(net_family_lock); 159 static const struct net_proto_family *net_families[NPROTO] __read_mostly; 160 161 /* 162 * Statistics counters of the socket lists 163 */ 164 165 static DEFINE_PER_CPU(int, sockets_in_use); 166 167 /* 168 * Support routines. 169 * Move socket addresses back and forth across the kernel/user 170 * divide and look after the messy bits. 171 */ 172 173 /** 174 * move_addr_to_kernel - copy a socket address into kernel space 175 * @uaddr: Address in user space 176 * @kaddr: Address in kernel space 177 * @ulen: Length in user space 178 * 179 * The address is copied into kernel space. If the provided address is 180 * too long an error code of -EINVAL is returned. If the copy gives 181 * invalid addresses -EFAULT is returned. On a success 0 is returned. 182 */ 183 184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr) 185 { 186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 187 return -EINVAL; 188 if (ulen == 0) 189 return 0; 190 if (copy_from_user(kaddr, uaddr, ulen)) 191 return -EFAULT; 192 return audit_sockaddr(ulen, kaddr); 193 } 194 195 /** 196 * move_addr_to_user - copy an address to user space 197 * @kaddr: kernel space address 198 * @klen: length of address in kernel 199 * @uaddr: user space address 200 * @ulen: pointer to user length field 201 * 202 * The value pointed to by ulen on entry is the buffer length available. 203 * This is overwritten with the buffer space used. -EINVAL is returned 204 * if an overlong buffer is specified or a negative buffer size. -EFAULT 205 * is returned if either the buffer or the length field are not 206 * accessible. 207 * After copying the data up to the limit the user specifies, the true 208 * length of the data is written over the length limit the user 209 * specified. Zero is returned for a success. 210 */ 211 212 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr, 213 int __user *ulen) 214 { 215 int err; 216 int len; 217 218 err = get_user(len, ulen); 219 if (err) 220 return err; 221 if (len > klen) 222 len = klen; 223 if (len < 0 || len > sizeof(struct sockaddr_storage)) 224 return -EINVAL; 225 if (len) { 226 if (audit_sockaddr(klen, kaddr)) 227 return -ENOMEM; 228 if (copy_to_user(uaddr, kaddr, len)) 229 return -EFAULT; 230 } 231 /* 232 * "fromlen shall refer to the value before truncation.." 233 * 1003.1g 234 */ 235 return __put_user(klen, ulen); 236 } 237 238 static struct kmem_cache *sock_inode_cachep __read_mostly; 239 240 static struct inode *sock_alloc_inode(struct super_block *sb) 241 { 242 struct socket_alloc *ei; 243 244 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 245 if (!ei) 246 return NULL; 247 ei->socket.wq = kmalloc(sizeof(struct socket_wq), GFP_KERNEL); 248 if (!ei->socket.wq) { 249 kmem_cache_free(sock_inode_cachep, ei); 250 return NULL; 251 } 252 init_waitqueue_head(&ei->socket.wq->wait); 253 ei->socket.wq->fasync_list = NULL; 254 255 ei->socket.state = SS_UNCONNECTED; 256 ei->socket.flags = 0; 257 ei->socket.ops = NULL; 258 ei->socket.sk = NULL; 259 ei->socket.file = NULL; 260 261 return &ei->vfs_inode; 262 } 263 264 265 static void wq_free_rcu(struct rcu_head *head) 266 { 267 struct socket_wq *wq = container_of(head, struct socket_wq, rcu); 268 269 kfree(wq); 270 } 271 272 static void sock_destroy_inode(struct inode *inode) 273 { 274 struct socket_alloc *ei; 275 276 ei = container_of(inode, struct socket_alloc, vfs_inode); 277 call_rcu(&ei->socket.wq->rcu, wq_free_rcu); 278 kmem_cache_free(sock_inode_cachep, ei); 279 } 280 281 static void init_once(void *foo) 282 { 283 struct socket_alloc *ei = (struct socket_alloc *)foo; 284 285 inode_init_once(&ei->vfs_inode); 286 } 287 288 static int init_inodecache(void) 289 { 290 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 291 sizeof(struct socket_alloc), 292 0, 293 (SLAB_HWCACHE_ALIGN | 294 SLAB_RECLAIM_ACCOUNT | 295 SLAB_MEM_SPREAD), 296 init_once); 297 if (sock_inode_cachep == NULL) 298 return -ENOMEM; 299 return 0; 300 } 301 302 static const struct super_operations sockfs_ops = { 303 .alloc_inode = sock_alloc_inode, 304 .destroy_inode = sock_destroy_inode, 305 .statfs = simple_statfs, 306 }; 307 308 static int sockfs_get_sb(struct file_system_type *fs_type, 309 int flags, const char *dev_name, void *data, 310 struct vfsmount *mnt) 311 { 312 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC, 313 mnt); 314 } 315 316 static struct vfsmount *sock_mnt __read_mostly; 317 318 static struct file_system_type sock_fs_type = { 319 .name = "sockfs", 320 .get_sb = sockfs_get_sb, 321 .kill_sb = kill_anon_super, 322 }; 323 324 /* 325 * sockfs_dname() is called from d_path(). 326 */ 327 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 328 { 329 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 330 dentry->d_inode->i_ino); 331 } 332 333 static const struct dentry_operations sockfs_dentry_operations = { 334 .d_dname = sockfs_dname, 335 }; 336 337 /* 338 * Obtains the first available file descriptor and sets it up for use. 339 * 340 * These functions create file structures and maps them to fd space 341 * of the current process. On success it returns file descriptor 342 * and file struct implicitly stored in sock->file. 343 * Note that another thread may close file descriptor before we return 344 * from this function. We use the fact that now we do not refer 345 * to socket after mapping. If one day we will need it, this 346 * function will increment ref. count on file by 1. 347 * 348 * In any case returned fd MAY BE not valid! 349 * This race condition is unavoidable 350 * with shared fd spaces, we cannot solve it inside kernel, 351 * but we take care of internal coherence yet. 352 */ 353 354 static int sock_alloc_file(struct socket *sock, struct file **f, int flags) 355 { 356 struct qstr name = { .name = "" }; 357 struct path path; 358 struct file *file; 359 int fd; 360 361 fd = get_unused_fd_flags(flags); 362 if (unlikely(fd < 0)) 363 return fd; 364 365 path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name); 366 if (unlikely(!path.dentry)) { 367 put_unused_fd(fd); 368 return -ENOMEM; 369 } 370 path.mnt = mntget(sock_mnt); 371 372 path.dentry->d_op = &sockfs_dentry_operations; 373 d_instantiate(path.dentry, SOCK_INODE(sock)); 374 SOCK_INODE(sock)->i_fop = &socket_file_ops; 375 376 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 377 &socket_file_ops); 378 if (unlikely(!file)) { 379 /* drop dentry, keep inode */ 380 atomic_inc(&path.dentry->d_inode->i_count); 381 path_put(&path); 382 put_unused_fd(fd); 383 return -ENFILE; 384 } 385 386 sock->file = file; 387 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 388 file->f_pos = 0; 389 file->private_data = sock; 390 391 *f = file; 392 return fd; 393 } 394 395 int sock_map_fd(struct socket *sock, int flags) 396 { 397 struct file *newfile; 398 int fd = sock_alloc_file(sock, &newfile, flags); 399 400 if (likely(fd >= 0)) 401 fd_install(fd, newfile); 402 403 return fd; 404 } 405 EXPORT_SYMBOL(sock_map_fd); 406 407 static struct socket *sock_from_file(struct file *file, int *err) 408 { 409 if (file->f_op == &socket_file_ops) 410 return file->private_data; /* set in sock_map_fd */ 411 412 *err = -ENOTSOCK; 413 return NULL; 414 } 415 416 /** 417 * sockfd_lookup - Go from a file number to its socket slot 418 * @fd: file handle 419 * @err: pointer to an error code return 420 * 421 * The file handle passed in is locked and the socket it is bound 422 * too is returned. If an error occurs the err pointer is overwritten 423 * with a negative errno code and NULL is returned. The function checks 424 * for both invalid handles and passing a handle which is not a socket. 425 * 426 * On a success the socket object pointer is returned. 427 */ 428 429 struct socket *sockfd_lookup(int fd, int *err) 430 { 431 struct file *file; 432 struct socket *sock; 433 434 file = fget(fd); 435 if (!file) { 436 *err = -EBADF; 437 return NULL; 438 } 439 440 sock = sock_from_file(file, err); 441 if (!sock) 442 fput(file); 443 return sock; 444 } 445 EXPORT_SYMBOL(sockfd_lookup); 446 447 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 448 { 449 struct file *file; 450 struct socket *sock; 451 452 *err = -EBADF; 453 file = fget_light(fd, fput_needed); 454 if (file) { 455 sock = sock_from_file(file, err); 456 if (sock) 457 return sock; 458 fput_light(file, *fput_needed); 459 } 460 return NULL; 461 } 462 463 /** 464 * sock_alloc - allocate a socket 465 * 466 * Allocate a new inode and socket object. The two are bound together 467 * and initialised. The socket is then returned. If we are out of inodes 468 * NULL is returned. 469 */ 470 471 static struct socket *sock_alloc(void) 472 { 473 struct inode *inode; 474 struct socket *sock; 475 476 inode = new_inode(sock_mnt->mnt_sb); 477 if (!inode) 478 return NULL; 479 480 sock = SOCKET_I(inode); 481 482 kmemcheck_annotate_bitfield(sock, type); 483 inode->i_mode = S_IFSOCK | S_IRWXUGO; 484 inode->i_uid = current_fsuid(); 485 inode->i_gid = current_fsgid(); 486 487 percpu_add(sockets_in_use, 1); 488 return sock; 489 } 490 491 /* 492 * In theory you can't get an open on this inode, but /proc provides 493 * a back door. Remember to keep it shut otherwise you'll let the 494 * creepy crawlies in. 495 */ 496 497 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 498 { 499 return -ENXIO; 500 } 501 502 const struct file_operations bad_sock_fops = { 503 .owner = THIS_MODULE, 504 .open = sock_no_open, 505 .llseek = noop_llseek, 506 }; 507 508 /** 509 * sock_release - close a socket 510 * @sock: socket to close 511 * 512 * The socket is released from the protocol stack if it has a release 513 * callback, and the inode is then released if the socket is bound to 514 * an inode not a file. 515 */ 516 517 void sock_release(struct socket *sock) 518 { 519 if (sock->ops) { 520 struct module *owner = sock->ops->owner; 521 522 sock->ops->release(sock); 523 sock->ops = NULL; 524 module_put(owner); 525 } 526 527 if (sock->wq->fasync_list) 528 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 529 530 percpu_sub(sockets_in_use, 1); 531 if (!sock->file) { 532 iput(SOCK_INODE(sock)); 533 return; 534 } 535 sock->file = NULL; 536 } 537 EXPORT_SYMBOL(sock_release); 538 539 int sock_tx_timestamp(struct msghdr *msg, struct sock *sk, 540 union skb_shared_tx *shtx) 541 { 542 shtx->flags = 0; 543 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE)) 544 shtx->hardware = 1; 545 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE)) 546 shtx->software = 1; 547 return 0; 548 } 549 EXPORT_SYMBOL(sock_tx_timestamp); 550 551 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 552 struct msghdr *msg, size_t size) 553 { 554 struct sock_iocb *si = kiocb_to_siocb(iocb); 555 int err; 556 557 sock_update_classid(sock->sk); 558 559 si->sock = sock; 560 si->scm = NULL; 561 si->msg = msg; 562 si->size = size; 563 564 err = security_socket_sendmsg(sock, msg, size); 565 if (err) 566 return err; 567 568 return sock->ops->sendmsg(iocb, sock, msg, size); 569 } 570 571 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 572 { 573 struct kiocb iocb; 574 struct sock_iocb siocb; 575 int ret; 576 577 init_sync_kiocb(&iocb, NULL); 578 iocb.private = &siocb; 579 ret = __sock_sendmsg(&iocb, sock, msg, size); 580 if (-EIOCBQUEUED == ret) 581 ret = wait_on_sync_kiocb(&iocb); 582 return ret; 583 } 584 EXPORT_SYMBOL(sock_sendmsg); 585 586 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 587 struct kvec *vec, size_t num, size_t size) 588 { 589 mm_segment_t oldfs = get_fs(); 590 int result; 591 592 set_fs(KERNEL_DS); 593 /* 594 * the following is safe, since for compiler definitions of kvec and 595 * iovec are identical, yielding the same in-core layout and alignment 596 */ 597 msg->msg_iov = (struct iovec *)vec; 598 msg->msg_iovlen = num; 599 result = sock_sendmsg(sock, msg, size); 600 set_fs(oldfs); 601 return result; 602 } 603 EXPORT_SYMBOL(kernel_sendmsg); 604 605 static int ktime2ts(ktime_t kt, struct timespec *ts) 606 { 607 if (kt.tv64) { 608 *ts = ktime_to_timespec(kt); 609 return 1; 610 } else { 611 return 0; 612 } 613 } 614 615 /* 616 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 617 */ 618 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 619 struct sk_buff *skb) 620 { 621 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 622 struct timespec ts[3]; 623 int empty = 1; 624 struct skb_shared_hwtstamps *shhwtstamps = 625 skb_hwtstamps(skb); 626 627 /* Race occurred between timestamp enabling and packet 628 receiving. Fill in the current time for now. */ 629 if (need_software_tstamp && skb->tstamp.tv64 == 0) 630 __net_timestamp(skb); 631 632 if (need_software_tstamp) { 633 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 634 struct timeval tv; 635 skb_get_timestamp(skb, &tv); 636 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 637 sizeof(tv), &tv); 638 } else { 639 skb_get_timestampns(skb, &ts[0]); 640 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 641 sizeof(ts[0]), &ts[0]); 642 } 643 } 644 645 646 memset(ts, 0, sizeof(ts)); 647 if (skb->tstamp.tv64 && 648 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) { 649 skb_get_timestampns(skb, ts + 0); 650 empty = 0; 651 } 652 if (shhwtstamps) { 653 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) && 654 ktime2ts(shhwtstamps->syststamp, ts + 1)) 655 empty = 0; 656 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) && 657 ktime2ts(shhwtstamps->hwtstamp, ts + 2)) 658 empty = 0; 659 } 660 if (!empty) 661 put_cmsg(msg, SOL_SOCKET, 662 SCM_TIMESTAMPING, sizeof(ts), &ts); 663 } 664 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 665 666 inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 667 { 668 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount) 669 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 670 sizeof(__u32), &skb->dropcount); 671 } 672 673 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 674 struct sk_buff *skb) 675 { 676 sock_recv_timestamp(msg, sk, skb); 677 sock_recv_drops(msg, sk, skb); 678 } 679 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 680 681 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock, 682 struct msghdr *msg, size_t size, int flags) 683 { 684 struct sock_iocb *si = kiocb_to_siocb(iocb); 685 686 sock_update_classid(sock->sk); 687 688 si->sock = sock; 689 si->scm = NULL; 690 si->msg = msg; 691 si->size = size; 692 si->flags = flags; 693 694 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 695 } 696 697 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 698 struct msghdr *msg, size_t size, int flags) 699 { 700 int err = security_socket_recvmsg(sock, msg, size, flags); 701 702 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags); 703 } 704 705 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 706 size_t size, int flags) 707 { 708 struct kiocb iocb; 709 struct sock_iocb siocb; 710 int ret; 711 712 init_sync_kiocb(&iocb, NULL); 713 iocb.private = &siocb; 714 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 715 if (-EIOCBQUEUED == ret) 716 ret = wait_on_sync_kiocb(&iocb); 717 return ret; 718 } 719 EXPORT_SYMBOL(sock_recvmsg); 720 721 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 722 size_t size, int flags) 723 { 724 struct kiocb iocb; 725 struct sock_iocb siocb; 726 int ret; 727 728 init_sync_kiocb(&iocb, NULL); 729 iocb.private = &siocb; 730 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags); 731 if (-EIOCBQUEUED == ret) 732 ret = wait_on_sync_kiocb(&iocb); 733 return ret; 734 } 735 736 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 737 struct kvec *vec, size_t num, size_t size, int flags) 738 { 739 mm_segment_t oldfs = get_fs(); 740 int result; 741 742 set_fs(KERNEL_DS); 743 /* 744 * the following is safe, since for compiler definitions of kvec and 745 * iovec are identical, yielding the same in-core layout and alignment 746 */ 747 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 748 result = sock_recvmsg(sock, msg, size, flags); 749 set_fs(oldfs); 750 return result; 751 } 752 EXPORT_SYMBOL(kernel_recvmsg); 753 754 static void sock_aio_dtor(struct kiocb *iocb) 755 { 756 kfree(iocb->private); 757 } 758 759 static ssize_t sock_sendpage(struct file *file, struct page *page, 760 int offset, size_t size, loff_t *ppos, int more) 761 { 762 struct socket *sock; 763 int flags; 764 765 sock = file->private_data; 766 767 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 768 if (more) 769 flags |= MSG_MORE; 770 771 return kernel_sendpage(sock, page, offset, size, flags); 772 } 773 774 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 775 struct pipe_inode_info *pipe, size_t len, 776 unsigned int flags) 777 { 778 struct socket *sock = file->private_data; 779 780 if (unlikely(!sock->ops->splice_read)) 781 return -EINVAL; 782 783 sock_update_classid(sock->sk); 784 785 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 786 } 787 788 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 789 struct sock_iocb *siocb) 790 { 791 if (!is_sync_kiocb(iocb)) { 792 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 793 if (!siocb) 794 return NULL; 795 iocb->ki_dtor = sock_aio_dtor; 796 } 797 798 siocb->kiocb = iocb; 799 iocb->private = siocb; 800 return siocb; 801 } 802 803 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 804 struct file *file, const struct iovec *iov, 805 unsigned long nr_segs) 806 { 807 struct socket *sock = file->private_data; 808 size_t size = 0; 809 int i; 810 811 for (i = 0; i < nr_segs; i++) 812 size += iov[i].iov_len; 813 814 msg->msg_name = NULL; 815 msg->msg_namelen = 0; 816 msg->msg_control = NULL; 817 msg->msg_controllen = 0; 818 msg->msg_iov = (struct iovec *)iov; 819 msg->msg_iovlen = nr_segs; 820 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 821 822 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 823 } 824 825 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 826 unsigned long nr_segs, loff_t pos) 827 { 828 struct sock_iocb siocb, *x; 829 830 if (pos != 0) 831 return -ESPIPE; 832 833 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 834 return 0; 835 836 837 x = alloc_sock_iocb(iocb, &siocb); 838 if (!x) 839 return -ENOMEM; 840 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 841 } 842 843 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 844 struct file *file, const struct iovec *iov, 845 unsigned long nr_segs) 846 { 847 struct socket *sock = file->private_data; 848 size_t size = 0; 849 int i; 850 851 for (i = 0; i < nr_segs; i++) 852 size += iov[i].iov_len; 853 854 msg->msg_name = NULL; 855 msg->msg_namelen = 0; 856 msg->msg_control = NULL; 857 msg->msg_controllen = 0; 858 msg->msg_iov = (struct iovec *)iov; 859 msg->msg_iovlen = nr_segs; 860 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 861 if (sock->type == SOCK_SEQPACKET) 862 msg->msg_flags |= MSG_EOR; 863 864 return __sock_sendmsg(iocb, sock, msg, size); 865 } 866 867 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 868 unsigned long nr_segs, loff_t pos) 869 { 870 struct sock_iocb siocb, *x; 871 872 if (pos != 0) 873 return -ESPIPE; 874 875 x = alloc_sock_iocb(iocb, &siocb); 876 if (!x) 877 return -ENOMEM; 878 879 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 880 } 881 882 /* 883 * Atomic setting of ioctl hooks to avoid race 884 * with module unload. 885 */ 886 887 static DEFINE_MUTEX(br_ioctl_mutex); 888 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 889 890 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 891 { 892 mutex_lock(&br_ioctl_mutex); 893 br_ioctl_hook = hook; 894 mutex_unlock(&br_ioctl_mutex); 895 } 896 EXPORT_SYMBOL(brioctl_set); 897 898 static DEFINE_MUTEX(vlan_ioctl_mutex); 899 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 900 901 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 902 { 903 mutex_lock(&vlan_ioctl_mutex); 904 vlan_ioctl_hook = hook; 905 mutex_unlock(&vlan_ioctl_mutex); 906 } 907 EXPORT_SYMBOL(vlan_ioctl_set); 908 909 static DEFINE_MUTEX(dlci_ioctl_mutex); 910 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 911 912 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 913 { 914 mutex_lock(&dlci_ioctl_mutex); 915 dlci_ioctl_hook = hook; 916 mutex_unlock(&dlci_ioctl_mutex); 917 } 918 EXPORT_SYMBOL(dlci_ioctl_set); 919 920 static long sock_do_ioctl(struct net *net, struct socket *sock, 921 unsigned int cmd, unsigned long arg) 922 { 923 int err; 924 void __user *argp = (void __user *)arg; 925 926 err = sock->ops->ioctl(sock, cmd, arg); 927 928 /* 929 * If this ioctl is unknown try to hand it down 930 * to the NIC driver. 931 */ 932 if (err == -ENOIOCTLCMD) 933 err = dev_ioctl(net, cmd, argp); 934 935 return err; 936 } 937 938 /* 939 * With an ioctl, arg may well be a user mode pointer, but we don't know 940 * what to do with it - that's up to the protocol still. 941 */ 942 943 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 944 { 945 struct socket *sock; 946 struct sock *sk; 947 void __user *argp = (void __user *)arg; 948 int pid, err; 949 struct net *net; 950 951 sock = file->private_data; 952 sk = sock->sk; 953 net = sock_net(sk); 954 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 955 err = dev_ioctl(net, cmd, argp); 956 } else 957 #ifdef CONFIG_WEXT_CORE 958 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 959 err = dev_ioctl(net, cmd, argp); 960 } else 961 #endif 962 switch (cmd) { 963 case FIOSETOWN: 964 case SIOCSPGRP: 965 err = -EFAULT; 966 if (get_user(pid, (int __user *)argp)) 967 break; 968 err = f_setown(sock->file, pid, 1); 969 break; 970 case FIOGETOWN: 971 case SIOCGPGRP: 972 err = put_user(f_getown(sock->file), 973 (int __user *)argp); 974 break; 975 case SIOCGIFBR: 976 case SIOCSIFBR: 977 case SIOCBRADDBR: 978 case SIOCBRDELBR: 979 err = -ENOPKG; 980 if (!br_ioctl_hook) 981 request_module("bridge"); 982 983 mutex_lock(&br_ioctl_mutex); 984 if (br_ioctl_hook) 985 err = br_ioctl_hook(net, cmd, argp); 986 mutex_unlock(&br_ioctl_mutex); 987 break; 988 case SIOCGIFVLAN: 989 case SIOCSIFVLAN: 990 err = -ENOPKG; 991 if (!vlan_ioctl_hook) 992 request_module("8021q"); 993 994 mutex_lock(&vlan_ioctl_mutex); 995 if (vlan_ioctl_hook) 996 err = vlan_ioctl_hook(net, argp); 997 mutex_unlock(&vlan_ioctl_mutex); 998 break; 999 case SIOCADDDLCI: 1000 case SIOCDELDLCI: 1001 err = -ENOPKG; 1002 if (!dlci_ioctl_hook) 1003 request_module("dlci"); 1004 1005 mutex_lock(&dlci_ioctl_mutex); 1006 if (dlci_ioctl_hook) 1007 err = dlci_ioctl_hook(cmd, argp); 1008 mutex_unlock(&dlci_ioctl_mutex); 1009 break; 1010 default: 1011 err = sock_do_ioctl(net, sock, cmd, arg); 1012 break; 1013 } 1014 return err; 1015 } 1016 1017 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1018 { 1019 int err; 1020 struct socket *sock = NULL; 1021 1022 err = security_socket_create(family, type, protocol, 1); 1023 if (err) 1024 goto out; 1025 1026 sock = sock_alloc(); 1027 if (!sock) { 1028 err = -ENOMEM; 1029 goto out; 1030 } 1031 1032 sock->type = type; 1033 err = security_socket_post_create(sock, family, type, protocol, 1); 1034 if (err) 1035 goto out_release; 1036 1037 out: 1038 *res = sock; 1039 return err; 1040 out_release: 1041 sock_release(sock); 1042 sock = NULL; 1043 goto out; 1044 } 1045 EXPORT_SYMBOL(sock_create_lite); 1046 1047 /* No kernel lock held - perfect */ 1048 static unsigned int sock_poll(struct file *file, poll_table *wait) 1049 { 1050 struct socket *sock; 1051 1052 /* 1053 * We can't return errors to poll, so it's either yes or no. 1054 */ 1055 sock = file->private_data; 1056 return sock->ops->poll(file, sock, wait); 1057 } 1058 1059 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1060 { 1061 struct socket *sock = file->private_data; 1062 1063 return sock->ops->mmap(file, sock, vma); 1064 } 1065 1066 static int sock_close(struct inode *inode, struct file *filp) 1067 { 1068 /* 1069 * It was possible the inode is NULL we were 1070 * closing an unfinished socket. 1071 */ 1072 1073 if (!inode) { 1074 printk(KERN_DEBUG "sock_close: NULL inode\n"); 1075 return 0; 1076 } 1077 sock_release(SOCKET_I(inode)); 1078 return 0; 1079 } 1080 1081 /* 1082 * Update the socket async list 1083 * 1084 * Fasync_list locking strategy. 1085 * 1086 * 1. fasync_list is modified only under process context socket lock 1087 * i.e. under semaphore. 1088 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1089 * or under socket lock 1090 */ 1091 1092 static int sock_fasync(int fd, struct file *filp, int on) 1093 { 1094 struct socket *sock = filp->private_data; 1095 struct sock *sk = sock->sk; 1096 1097 if (sk == NULL) 1098 return -EINVAL; 1099 1100 lock_sock(sk); 1101 1102 fasync_helper(fd, filp, on, &sock->wq->fasync_list); 1103 1104 if (!sock->wq->fasync_list) 1105 sock_reset_flag(sk, SOCK_FASYNC); 1106 else 1107 sock_set_flag(sk, SOCK_FASYNC); 1108 1109 release_sock(sk); 1110 return 0; 1111 } 1112 1113 /* This function may be called only under socket lock or callback_lock or rcu_lock */ 1114 1115 int sock_wake_async(struct socket *sock, int how, int band) 1116 { 1117 struct socket_wq *wq; 1118 1119 if (!sock) 1120 return -1; 1121 rcu_read_lock(); 1122 wq = rcu_dereference(sock->wq); 1123 if (!wq || !wq->fasync_list) { 1124 rcu_read_unlock(); 1125 return -1; 1126 } 1127 switch (how) { 1128 case SOCK_WAKE_WAITD: 1129 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1130 break; 1131 goto call_kill; 1132 case SOCK_WAKE_SPACE: 1133 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1134 break; 1135 /* fall through */ 1136 case SOCK_WAKE_IO: 1137 call_kill: 1138 kill_fasync(&wq->fasync_list, SIGIO, band); 1139 break; 1140 case SOCK_WAKE_URG: 1141 kill_fasync(&wq->fasync_list, SIGURG, band); 1142 } 1143 rcu_read_unlock(); 1144 return 0; 1145 } 1146 EXPORT_SYMBOL(sock_wake_async); 1147 1148 static int __sock_create(struct net *net, int family, int type, int protocol, 1149 struct socket **res, int kern) 1150 { 1151 int err; 1152 struct socket *sock; 1153 const struct net_proto_family *pf; 1154 1155 /* 1156 * Check protocol is in range 1157 */ 1158 if (family < 0 || family >= NPROTO) 1159 return -EAFNOSUPPORT; 1160 if (type < 0 || type >= SOCK_MAX) 1161 return -EINVAL; 1162 1163 /* Compatibility. 1164 1165 This uglymoron is moved from INET layer to here to avoid 1166 deadlock in module load. 1167 */ 1168 if (family == PF_INET && type == SOCK_PACKET) { 1169 static int warned; 1170 if (!warned) { 1171 warned = 1; 1172 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1173 current->comm); 1174 } 1175 family = PF_PACKET; 1176 } 1177 1178 err = security_socket_create(family, type, protocol, kern); 1179 if (err) 1180 return err; 1181 1182 /* 1183 * Allocate the socket and allow the family to set things up. if 1184 * the protocol is 0, the family is instructed to select an appropriate 1185 * default. 1186 */ 1187 sock = sock_alloc(); 1188 if (!sock) { 1189 if (net_ratelimit()) 1190 printk(KERN_WARNING "socket: no more sockets\n"); 1191 return -ENFILE; /* Not exactly a match, but its the 1192 closest posix thing */ 1193 } 1194 1195 sock->type = type; 1196 1197 #ifdef CONFIG_MODULES 1198 /* Attempt to load a protocol module if the find failed. 1199 * 1200 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1201 * requested real, full-featured networking support upon configuration. 1202 * Otherwise module support will break! 1203 */ 1204 if (net_families[family] == NULL) 1205 request_module("net-pf-%d", family); 1206 #endif 1207 1208 rcu_read_lock(); 1209 pf = rcu_dereference(net_families[family]); 1210 err = -EAFNOSUPPORT; 1211 if (!pf) 1212 goto out_release; 1213 1214 /* 1215 * We will call the ->create function, that possibly is in a loadable 1216 * module, so we have to bump that loadable module refcnt first. 1217 */ 1218 if (!try_module_get(pf->owner)) 1219 goto out_release; 1220 1221 /* Now protected by module ref count */ 1222 rcu_read_unlock(); 1223 1224 err = pf->create(net, sock, protocol, kern); 1225 if (err < 0) 1226 goto out_module_put; 1227 1228 /* 1229 * Now to bump the refcnt of the [loadable] module that owns this 1230 * socket at sock_release time we decrement its refcnt. 1231 */ 1232 if (!try_module_get(sock->ops->owner)) 1233 goto out_module_busy; 1234 1235 /* 1236 * Now that we're done with the ->create function, the [loadable] 1237 * module can have its refcnt decremented 1238 */ 1239 module_put(pf->owner); 1240 err = security_socket_post_create(sock, family, type, protocol, kern); 1241 if (err) 1242 goto out_sock_release; 1243 *res = sock; 1244 1245 return 0; 1246 1247 out_module_busy: 1248 err = -EAFNOSUPPORT; 1249 out_module_put: 1250 sock->ops = NULL; 1251 module_put(pf->owner); 1252 out_sock_release: 1253 sock_release(sock); 1254 return err; 1255 1256 out_release: 1257 rcu_read_unlock(); 1258 goto out_sock_release; 1259 } 1260 1261 int sock_create(int family, int type, int protocol, struct socket **res) 1262 { 1263 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1264 } 1265 EXPORT_SYMBOL(sock_create); 1266 1267 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1268 { 1269 return __sock_create(&init_net, family, type, protocol, res, 1); 1270 } 1271 EXPORT_SYMBOL(sock_create_kern); 1272 1273 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1274 { 1275 int retval; 1276 struct socket *sock; 1277 int flags; 1278 1279 /* Check the SOCK_* constants for consistency. */ 1280 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1281 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1282 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1283 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1284 1285 flags = type & ~SOCK_TYPE_MASK; 1286 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1287 return -EINVAL; 1288 type &= SOCK_TYPE_MASK; 1289 1290 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1291 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1292 1293 retval = sock_create(family, type, protocol, &sock); 1294 if (retval < 0) 1295 goto out; 1296 1297 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1298 if (retval < 0) 1299 goto out_release; 1300 1301 out: 1302 /* It may be already another descriptor 8) Not kernel problem. */ 1303 return retval; 1304 1305 out_release: 1306 sock_release(sock); 1307 return retval; 1308 } 1309 1310 /* 1311 * Create a pair of connected sockets. 1312 */ 1313 1314 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1315 int __user *, usockvec) 1316 { 1317 struct socket *sock1, *sock2; 1318 int fd1, fd2, err; 1319 struct file *newfile1, *newfile2; 1320 int flags; 1321 1322 flags = type & ~SOCK_TYPE_MASK; 1323 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1324 return -EINVAL; 1325 type &= SOCK_TYPE_MASK; 1326 1327 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1328 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1329 1330 /* 1331 * Obtain the first socket and check if the underlying protocol 1332 * supports the socketpair call. 1333 */ 1334 1335 err = sock_create(family, type, protocol, &sock1); 1336 if (err < 0) 1337 goto out; 1338 1339 err = sock_create(family, type, protocol, &sock2); 1340 if (err < 0) 1341 goto out_release_1; 1342 1343 err = sock1->ops->socketpair(sock1, sock2); 1344 if (err < 0) 1345 goto out_release_both; 1346 1347 fd1 = sock_alloc_file(sock1, &newfile1, flags); 1348 if (unlikely(fd1 < 0)) { 1349 err = fd1; 1350 goto out_release_both; 1351 } 1352 1353 fd2 = sock_alloc_file(sock2, &newfile2, flags); 1354 if (unlikely(fd2 < 0)) { 1355 err = fd2; 1356 fput(newfile1); 1357 put_unused_fd(fd1); 1358 sock_release(sock2); 1359 goto out; 1360 } 1361 1362 audit_fd_pair(fd1, fd2); 1363 fd_install(fd1, newfile1); 1364 fd_install(fd2, newfile2); 1365 /* fd1 and fd2 may be already another descriptors. 1366 * Not kernel problem. 1367 */ 1368 1369 err = put_user(fd1, &usockvec[0]); 1370 if (!err) 1371 err = put_user(fd2, &usockvec[1]); 1372 if (!err) 1373 return 0; 1374 1375 sys_close(fd2); 1376 sys_close(fd1); 1377 return err; 1378 1379 out_release_both: 1380 sock_release(sock2); 1381 out_release_1: 1382 sock_release(sock1); 1383 out: 1384 return err; 1385 } 1386 1387 /* 1388 * Bind a name to a socket. Nothing much to do here since it's 1389 * the protocol's responsibility to handle the local address. 1390 * 1391 * We move the socket address to kernel space before we call 1392 * the protocol layer (having also checked the address is ok). 1393 */ 1394 1395 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1396 { 1397 struct socket *sock; 1398 struct sockaddr_storage address; 1399 int err, fput_needed; 1400 1401 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1402 if (sock) { 1403 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address); 1404 if (err >= 0) { 1405 err = security_socket_bind(sock, 1406 (struct sockaddr *)&address, 1407 addrlen); 1408 if (!err) 1409 err = sock->ops->bind(sock, 1410 (struct sockaddr *) 1411 &address, addrlen); 1412 } 1413 fput_light(sock->file, fput_needed); 1414 } 1415 return err; 1416 } 1417 1418 /* 1419 * Perform a listen. Basically, we allow the protocol to do anything 1420 * necessary for a listen, and if that works, we mark the socket as 1421 * ready for listening. 1422 */ 1423 1424 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1425 { 1426 struct socket *sock; 1427 int err, fput_needed; 1428 int somaxconn; 1429 1430 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1431 if (sock) { 1432 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1433 if ((unsigned)backlog > somaxconn) 1434 backlog = somaxconn; 1435 1436 err = security_socket_listen(sock, backlog); 1437 if (!err) 1438 err = sock->ops->listen(sock, backlog); 1439 1440 fput_light(sock->file, fput_needed); 1441 } 1442 return err; 1443 } 1444 1445 /* 1446 * For accept, we attempt to create a new socket, set up the link 1447 * with the client, wake up the client, then return the new 1448 * connected fd. We collect the address of the connector in kernel 1449 * space and move it to user at the very end. This is unclean because 1450 * we open the socket then return an error. 1451 * 1452 * 1003.1g adds the ability to recvmsg() to query connection pending 1453 * status to recvmsg. We need to add that support in a way thats 1454 * clean when we restucture accept also. 1455 */ 1456 1457 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1458 int __user *, upeer_addrlen, int, flags) 1459 { 1460 struct socket *sock, *newsock; 1461 struct file *newfile; 1462 int err, len, newfd, fput_needed; 1463 struct sockaddr_storage address; 1464 1465 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1466 return -EINVAL; 1467 1468 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1469 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1470 1471 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1472 if (!sock) 1473 goto out; 1474 1475 err = -ENFILE; 1476 newsock = sock_alloc(); 1477 if (!newsock) 1478 goto out_put; 1479 1480 newsock->type = sock->type; 1481 newsock->ops = sock->ops; 1482 1483 /* 1484 * We don't need try_module_get here, as the listening socket (sock) 1485 * has the protocol module (sock->ops->owner) held. 1486 */ 1487 __module_get(newsock->ops->owner); 1488 1489 newfd = sock_alloc_file(newsock, &newfile, flags); 1490 if (unlikely(newfd < 0)) { 1491 err = newfd; 1492 sock_release(newsock); 1493 goto out_put; 1494 } 1495 1496 err = security_socket_accept(sock, newsock); 1497 if (err) 1498 goto out_fd; 1499 1500 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1501 if (err < 0) 1502 goto out_fd; 1503 1504 if (upeer_sockaddr) { 1505 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1506 &len, 2) < 0) { 1507 err = -ECONNABORTED; 1508 goto out_fd; 1509 } 1510 err = move_addr_to_user((struct sockaddr *)&address, 1511 len, upeer_sockaddr, upeer_addrlen); 1512 if (err < 0) 1513 goto out_fd; 1514 } 1515 1516 /* File flags are not inherited via accept() unlike another OSes. */ 1517 1518 fd_install(newfd, newfile); 1519 err = newfd; 1520 1521 out_put: 1522 fput_light(sock->file, fput_needed); 1523 out: 1524 return err; 1525 out_fd: 1526 fput(newfile); 1527 put_unused_fd(newfd); 1528 goto out_put; 1529 } 1530 1531 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1532 int __user *, upeer_addrlen) 1533 { 1534 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1535 } 1536 1537 /* 1538 * Attempt to connect to a socket with the server address. The address 1539 * is in user space so we verify it is OK and move it to kernel space. 1540 * 1541 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1542 * break bindings 1543 * 1544 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1545 * other SEQPACKET protocols that take time to connect() as it doesn't 1546 * include the -EINPROGRESS status for such sockets. 1547 */ 1548 1549 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1550 int, addrlen) 1551 { 1552 struct socket *sock; 1553 struct sockaddr_storage address; 1554 int err, fput_needed; 1555 1556 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1557 if (!sock) 1558 goto out; 1559 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address); 1560 if (err < 0) 1561 goto out_put; 1562 1563 err = 1564 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1565 if (err) 1566 goto out_put; 1567 1568 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1569 sock->file->f_flags); 1570 out_put: 1571 fput_light(sock->file, fput_needed); 1572 out: 1573 return err; 1574 } 1575 1576 /* 1577 * Get the local address ('name') of a socket object. Move the obtained 1578 * name to user space. 1579 */ 1580 1581 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1582 int __user *, usockaddr_len) 1583 { 1584 struct socket *sock; 1585 struct sockaddr_storage address; 1586 int len, err, fput_needed; 1587 1588 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1589 if (!sock) 1590 goto out; 1591 1592 err = security_socket_getsockname(sock); 1593 if (err) 1594 goto out_put; 1595 1596 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1597 if (err) 1598 goto out_put; 1599 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len); 1600 1601 out_put: 1602 fput_light(sock->file, fput_needed); 1603 out: 1604 return err; 1605 } 1606 1607 /* 1608 * Get the remote address ('name') of a socket object. Move the obtained 1609 * name to user space. 1610 */ 1611 1612 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1613 int __user *, usockaddr_len) 1614 { 1615 struct socket *sock; 1616 struct sockaddr_storage address; 1617 int len, err, fput_needed; 1618 1619 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1620 if (sock != NULL) { 1621 err = security_socket_getpeername(sock); 1622 if (err) { 1623 fput_light(sock->file, fput_needed); 1624 return err; 1625 } 1626 1627 err = 1628 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1629 1); 1630 if (!err) 1631 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, 1632 usockaddr_len); 1633 fput_light(sock->file, fput_needed); 1634 } 1635 return err; 1636 } 1637 1638 /* 1639 * Send a datagram to a given address. We move the address into kernel 1640 * space and check the user space data area is readable before invoking 1641 * the protocol. 1642 */ 1643 1644 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1645 unsigned, flags, struct sockaddr __user *, addr, 1646 int, addr_len) 1647 { 1648 struct socket *sock; 1649 struct sockaddr_storage address; 1650 int err; 1651 struct msghdr msg; 1652 struct iovec iov; 1653 int fput_needed; 1654 1655 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1656 if (!sock) 1657 goto out; 1658 1659 iov.iov_base = buff; 1660 iov.iov_len = len; 1661 msg.msg_name = NULL; 1662 msg.msg_iov = &iov; 1663 msg.msg_iovlen = 1; 1664 msg.msg_control = NULL; 1665 msg.msg_controllen = 0; 1666 msg.msg_namelen = 0; 1667 if (addr) { 1668 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address); 1669 if (err < 0) 1670 goto out_put; 1671 msg.msg_name = (struct sockaddr *)&address; 1672 msg.msg_namelen = addr_len; 1673 } 1674 if (sock->file->f_flags & O_NONBLOCK) 1675 flags |= MSG_DONTWAIT; 1676 msg.msg_flags = flags; 1677 err = sock_sendmsg(sock, &msg, len); 1678 1679 out_put: 1680 fput_light(sock->file, fput_needed); 1681 out: 1682 return err; 1683 } 1684 1685 /* 1686 * Send a datagram down a socket. 1687 */ 1688 1689 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1690 unsigned, flags) 1691 { 1692 return sys_sendto(fd, buff, len, flags, NULL, 0); 1693 } 1694 1695 /* 1696 * Receive a frame from the socket and optionally record the address of the 1697 * sender. We verify the buffers are writable and if needed move the 1698 * sender address from kernel to user space. 1699 */ 1700 1701 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1702 unsigned, flags, struct sockaddr __user *, addr, 1703 int __user *, addr_len) 1704 { 1705 struct socket *sock; 1706 struct iovec iov; 1707 struct msghdr msg; 1708 struct sockaddr_storage address; 1709 int err, err2; 1710 int fput_needed; 1711 1712 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1713 if (!sock) 1714 goto out; 1715 1716 msg.msg_control = NULL; 1717 msg.msg_controllen = 0; 1718 msg.msg_iovlen = 1; 1719 msg.msg_iov = &iov; 1720 iov.iov_len = size; 1721 iov.iov_base = ubuf; 1722 msg.msg_name = (struct sockaddr *)&address; 1723 msg.msg_namelen = sizeof(address); 1724 if (sock->file->f_flags & O_NONBLOCK) 1725 flags |= MSG_DONTWAIT; 1726 err = sock_recvmsg(sock, &msg, size, flags); 1727 1728 if (err >= 0 && addr != NULL) { 1729 err2 = move_addr_to_user((struct sockaddr *)&address, 1730 msg.msg_namelen, addr, addr_len); 1731 if (err2 < 0) 1732 err = err2; 1733 } 1734 1735 fput_light(sock->file, fput_needed); 1736 out: 1737 return err; 1738 } 1739 1740 /* 1741 * Receive a datagram from a socket. 1742 */ 1743 1744 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1745 unsigned flags) 1746 { 1747 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1748 } 1749 1750 /* 1751 * Set a socket option. Because we don't know the option lengths we have 1752 * to pass the user mode parameter for the protocols to sort out. 1753 */ 1754 1755 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1756 char __user *, optval, int, optlen) 1757 { 1758 int err, fput_needed; 1759 struct socket *sock; 1760 1761 if (optlen < 0) 1762 return -EINVAL; 1763 1764 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1765 if (sock != NULL) { 1766 err = security_socket_setsockopt(sock, level, optname); 1767 if (err) 1768 goto out_put; 1769 1770 if (level == SOL_SOCKET) 1771 err = 1772 sock_setsockopt(sock, level, optname, optval, 1773 optlen); 1774 else 1775 err = 1776 sock->ops->setsockopt(sock, level, optname, optval, 1777 optlen); 1778 out_put: 1779 fput_light(sock->file, fput_needed); 1780 } 1781 return err; 1782 } 1783 1784 /* 1785 * Get a socket option. Because we don't know the option lengths we have 1786 * to pass a user mode parameter for the protocols to sort out. 1787 */ 1788 1789 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1790 char __user *, optval, int __user *, optlen) 1791 { 1792 int err, fput_needed; 1793 struct socket *sock; 1794 1795 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1796 if (sock != NULL) { 1797 err = security_socket_getsockopt(sock, level, optname); 1798 if (err) 1799 goto out_put; 1800 1801 if (level == SOL_SOCKET) 1802 err = 1803 sock_getsockopt(sock, level, optname, optval, 1804 optlen); 1805 else 1806 err = 1807 sock->ops->getsockopt(sock, level, optname, optval, 1808 optlen); 1809 out_put: 1810 fput_light(sock->file, fput_needed); 1811 } 1812 return err; 1813 } 1814 1815 /* 1816 * Shutdown a socket. 1817 */ 1818 1819 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1820 { 1821 int err, fput_needed; 1822 struct socket *sock; 1823 1824 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1825 if (sock != NULL) { 1826 err = security_socket_shutdown(sock, how); 1827 if (!err) 1828 err = sock->ops->shutdown(sock, how); 1829 fput_light(sock->file, fput_needed); 1830 } 1831 return err; 1832 } 1833 1834 /* A couple of helpful macros for getting the address of the 32/64 bit 1835 * fields which are the same type (int / unsigned) on our platforms. 1836 */ 1837 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1838 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1839 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1840 1841 /* 1842 * BSD sendmsg interface 1843 */ 1844 1845 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags) 1846 { 1847 struct compat_msghdr __user *msg_compat = 1848 (struct compat_msghdr __user *)msg; 1849 struct socket *sock; 1850 struct sockaddr_storage address; 1851 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1852 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1853 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1854 /* 20 is size of ipv6_pktinfo */ 1855 unsigned char *ctl_buf = ctl; 1856 struct msghdr msg_sys; 1857 int err, ctl_len, iov_size, total_len; 1858 int fput_needed; 1859 1860 err = -EFAULT; 1861 if (MSG_CMSG_COMPAT & flags) { 1862 if (get_compat_msghdr(&msg_sys, msg_compat)) 1863 return -EFAULT; 1864 } else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1865 return -EFAULT; 1866 1867 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1868 if (!sock) 1869 goto out; 1870 1871 /* do not move before msg_sys is valid */ 1872 err = -EMSGSIZE; 1873 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1874 goto out_put; 1875 1876 /* Check whether to allocate the iovec area */ 1877 err = -ENOMEM; 1878 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1879 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1880 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1881 if (!iov) 1882 goto out_put; 1883 } 1884 1885 /* This will also move the address data into kernel space */ 1886 if (MSG_CMSG_COMPAT & flags) { 1887 err = verify_compat_iovec(&msg_sys, iov, 1888 (struct sockaddr *)&address, 1889 VERIFY_READ); 1890 } else 1891 err = verify_iovec(&msg_sys, iov, 1892 (struct sockaddr *)&address, 1893 VERIFY_READ); 1894 if (err < 0) 1895 goto out_freeiov; 1896 total_len = err; 1897 1898 err = -ENOBUFS; 1899 1900 if (msg_sys.msg_controllen > INT_MAX) 1901 goto out_freeiov; 1902 ctl_len = msg_sys.msg_controllen; 1903 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1904 err = 1905 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, 1906 sizeof(ctl)); 1907 if (err) 1908 goto out_freeiov; 1909 ctl_buf = msg_sys.msg_control; 1910 ctl_len = msg_sys.msg_controllen; 1911 } else if (ctl_len) { 1912 if (ctl_len > sizeof(ctl)) { 1913 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1914 if (ctl_buf == NULL) 1915 goto out_freeiov; 1916 } 1917 err = -EFAULT; 1918 /* 1919 * Careful! Before this, msg_sys.msg_control contains a user pointer. 1920 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1921 * checking falls down on this. 1922 */ 1923 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control, 1924 ctl_len)) 1925 goto out_freectl; 1926 msg_sys.msg_control = ctl_buf; 1927 } 1928 msg_sys.msg_flags = flags; 1929 1930 if (sock->file->f_flags & O_NONBLOCK) 1931 msg_sys.msg_flags |= MSG_DONTWAIT; 1932 err = sock_sendmsg(sock, &msg_sys, total_len); 1933 1934 out_freectl: 1935 if (ctl_buf != ctl) 1936 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1937 out_freeiov: 1938 if (iov != iovstack) 1939 sock_kfree_s(sock->sk, iov, iov_size); 1940 out_put: 1941 fput_light(sock->file, fput_needed); 1942 out: 1943 return err; 1944 } 1945 1946 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg, 1947 struct msghdr *msg_sys, unsigned flags, int nosec) 1948 { 1949 struct compat_msghdr __user *msg_compat = 1950 (struct compat_msghdr __user *)msg; 1951 struct iovec iovstack[UIO_FASTIOV]; 1952 struct iovec *iov = iovstack; 1953 unsigned long cmsg_ptr; 1954 int err, iov_size, total_len, len; 1955 1956 /* kernel mode address */ 1957 struct sockaddr_storage addr; 1958 1959 /* user mode address pointers */ 1960 struct sockaddr __user *uaddr; 1961 int __user *uaddr_len; 1962 1963 if (MSG_CMSG_COMPAT & flags) { 1964 if (get_compat_msghdr(msg_sys, msg_compat)) 1965 return -EFAULT; 1966 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr))) 1967 return -EFAULT; 1968 1969 err = -EMSGSIZE; 1970 if (msg_sys->msg_iovlen > UIO_MAXIOV) 1971 goto out; 1972 1973 /* Check whether to allocate the iovec area */ 1974 err = -ENOMEM; 1975 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec); 1976 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 1977 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1978 if (!iov) 1979 goto out; 1980 } 1981 1982 /* 1983 * Save the user-mode address (verify_iovec will change the 1984 * kernel msghdr to use the kernel address space) 1985 */ 1986 1987 uaddr = (__force void __user *)msg_sys->msg_name; 1988 uaddr_len = COMPAT_NAMELEN(msg); 1989 if (MSG_CMSG_COMPAT & flags) { 1990 err = verify_compat_iovec(msg_sys, iov, 1991 (struct sockaddr *)&addr, 1992 VERIFY_WRITE); 1993 } else 1994 err = verify_iovec(msg_sys, iov, 1995 (struct sockaddr *)&addr, 1996 VERIFY_WRITE); 1997 if (err < 0) 1998 goto out_freeiov; 1999 total_len = err; 2000 2001 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2002 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2003 2004 if (sock->file->f_flags & O_NONBLOCK) 2005 flags |= MSG_DONTWAIT; 2006 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2007 total_len, flags); 2008 if (err < 0) 2009 goto out_freeiov; 2010 len = err; 2011 2012 if (uaddr != NULL) { 2013 err = move_addr_to_user((struct sockaddr *)&addr, 2014 msg_sys->msg_namelen, uaddr, 2015 uaddr_len); 2016 if (err < 0) 2017 goto out_freeiov; 2018 } 2019 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2020 COMPAT_FLAGS(msg)); 2021 if (err) 2022 goto out_freeiov; 2023 if (MSG_CMSG_COMPAT & flags) 2024 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2025 &msg_compat->msg_controllen); 2026 else 2027 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2028 &msg->msg_controllen); 2029 if (err) 2030 goto out_freeiov; 2031 err = len; 2032 2033 out_freeiov: 2034 if (iov != iovstack) 2035 sock_kfree_s(sock->sk, iov, iov_size); 2036 out: 2037 return err; 2038 } 2039 2040 /* 2041 * BSD recvmsg interface 2042 */ 2043 2044 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg, 2045 unsigned int, flags) 2046 { 2047 int fput_needed, err; 2048 struct msghdr msg_sys; 2049 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed); 2050 2051 if (!sock) 2052 goto out; 2053 2054 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2055 2056 fput_light(sock->file, fput_needed); 2057 out: 2058 return err; 2059 } 2060 2061 /* 2062 * Linux recvmmsg interface 2063 */ 2064 2065 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2066 unsigned int flags, struct timespec *timeout) 2067 { 2068 int fput_needed, err, datagrams; 2069 struct socket *sock; 2070 struct mmsghdr __user *entry; 2071 struct compat_mmsghdr __user *compat_entry; 2072 struct msghdr msg_sys; 2073 struct timespec end_time; 2074 2075 if (timeout && 2076 poll_select_set_timeout(&end_time, timeout->tv_sec, 2077 timeout->tv_nsec)) 2078 return -EINVAL; 2079 2080 datagrams = 0; 2081 2082 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2083 if (!sock) 2084 return err; 2085 2086 err = sock_error(sock->sk); 2087 if (err) 2088 goto out_put; 2089 2090 entry = mmsg; 2091 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2092 2093 while (datagrams < vlen) { 2094 /* 2095 * No need to ask LSM for more than the first datagram. 2096 */ 2097 if (MSG_CMSG_COMPAT & flags) { 2098 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry, 2099 &msg_sys, flags, datagrams); 2100 if (err < 0) 2101 break; 2102 err = __put_user(err, &compat_entry->msg_len); 2103 ++compat_entry; 2104 } else { 2105 err = __sys_recvmsg(sock, (struct msghdr __user *)entry, 2106 &msg_sys, flags, datagrams); 2107 if (err < 0) 2108 break; 2109 err = put_user(err, &entry->msg_len); 2110 ++entry; 2111 } 2112 2113 if (err) 2114 break; 2115 ++datagrams; 2116 2117 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2118 if (flags & MSG_WAITFORONE) 2119 flags |= MSG_DONTWAIT; 2120 2121 if (timeout) { 2122 ktime_get_ts(timeout); 2123 *timeout = timespec_sub(end_time, *timeout); 2124 if (timeout->tv_sec < 0) { 2125 timeout->tv_sec = timeout->tv_nsec = 0; 2126 break; 2127 } 2128 2129 /* Timeout, return less than vlen datagrams */ 2130 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2131 break; 2132 } 2133 2134 /* Out of band data, return right away */ 2135 if (msg_sys.msg_flags & MSG_OOB) 2136 break; 2137 } 2138 2139 out_put: 2140 fput_light(sock->file, fput_needed); 2141 2142 if (err == 0) 2143 return datagrams; 2144 2145 if (datagrams != 0) { 2146 /* 2147 * We may return less entries than requested (vlen) if the 2148 * sock is non block and there aren't enough datagrams... 2149 */ 2150 if (err != -EAGAIN) { 2151 /* 2152 * ... or if recvmsg returns an error after we 2153 * received some datagrams, where we record the 2154 * error to return on the next call or if the 2155 * app asks about it using getsockopt(SO_ERROR). 2156 */ 2157 sock->sk->sk_err = -err; 2158 } 2159 2160 return datagrams; 2161 } 2162 2163 return err; 2164 } 2165 2166 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2167 unsigned int, vlen, unsigned int, flags, 2168 struct timespec __user *, timeout) 2169 { 2170 int datagrams; 2171 struct timespec timeout_sys; 2172 2173 if (!timeout) 2174 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2175 2176 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2177 return -EFAULT; 2178 2179 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2180 2181 if (datagrams > 0 && 2182 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2183 datagrams = -EFAULT; 2184 2185 return datagrams; 2186 } 2187 2188 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2189 /* Argument list sizes for sys_socketcall */ 2190 #define AL(x) ((x) * sizeof(unsigned long)) 2191 static const unsigned char nargs[20] = { 2192 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2193 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2194 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2195 AL(4), AL(5) 2196 }; 2197 2198 #undef AL 2199 2200 /* 2201 * System call vectors. 2202 * 2203 * Argument checking cleaned up. Saved 20% in size. 2204 * This function doesn't need to set the kernel lock because 2205 * it is set by the callees. 2206 */ 2207 2208 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2209 { 2210 unsigned long a[6]; 2211 unsigned long a0, a1; 2212 int err; 2213 unsigned int len; 2214 2215 if (call < 1 || call > SYS_RECVMMSG) 2216 return -EINVAL; 2217 2218 len = nargs[call]; 2219 if (len > sizeof(a)) 2220 return -EINVAL; 2221 2222 /* copy_from_user should be SMP safe. */ 2223 if (copy_from_user(a, args, len)) 2224 return -EFAULT; 2225 2226 audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2227 2228 a0 = a[0]; 2229 a1 = a[1]; 2230 2231 switch (call) { 2232 case SYS_SOCKET: 2233 err = sys_socket(a0, a1, a[2]); 2234 break; 2235 case SYS_BIND: 2236 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2237 break; 2238 case SYS_CONNECT: 2239 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2240 break; 2241 case SYS_LISTEN: 2242 err = sys_listen(a0, a1); 2243 break; 2244 case SYS_ACCEPT: 2245 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2246 (int __user *)a[2], 0); 2247 break; 2248 case SYS_GETSOCKNAME: 2249 err = 2250 sys_getsockname(a0, (struct sockaddr __user *)a1, 2251 (int __user *)a[2]); 2252 break; 2253 case SYS_GETPEERNAME: 2254 err = 2255 sys_getpeername(a0, (struct sockaddr __user *)a1, 2256 (int __user *)a[2]); 2257 break; 2258 case SYS_SOCKETPAIR: 2259 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2260 break; 2261 case SYS_SEND: 2262 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2263 break; 2264 case SYS_SENDTO: 2265 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2266 (struct sockaddr __user *)a[4], a[5]); 2267 break; 2268 case SYS_RECV: 2269 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2270 break; 2271 case SYS_RECVFROM: 2272 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2273 (struct sockaddr __user *)a[4], 2274 (int __user *)a[5]); 2275 break; 2276 case SYS_SHUTDOWN: 2277 err = sys_shutdown(a0, a1); 2278 break; 2279 case SYS_SETSOCKOPT: 2280 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2281 break; 2282 case SYS_GETSOCKOPT: 2283 err = 2284 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2285 (int __user *)a[4]); 2286 break; 2287 case SYS_SENDMSG: 2288 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2289 break; 2290 case SYS_RECVMSG: 2291 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2292 break; 2293 case SYS_RECVMMSG: 2294 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2295 (struct timespec __user *)a[4]); 2296 break; 2297 case SYS_ACCEPT4: 2298 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2299 (int __user *)a[2], a[3]); 2300 break; 2301 default: 2302 err = -EINVAL; 2303 break; 2304 } 2305 return err; 2306 } 2307 2308 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2309 2310 /** 2311 * sock_register - add a socket protocol handler 2312 * @ops: description of protocol 2313 * 2314 * This function is called by a protocol handler that wants to 2315 * advertise its address family, and have it linked into the 2316 * socket interface. The value ops->family coresponds to the 2317 * socket system call protocol family. 2318 */ 2319 int sock_register(const struct net_proto_family *ops) 2320 { 2321 int err; 2322 2323 if (ops->family >= NPROTO) { 2324 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, 2325 NPROTO); 2326 return -ENOBUFS; 2327 } 2328 2329 spin_lock(&net_family_lock); 2330 if (net_families[ops->family]) 2331 err = -EEXIST; 2332 else { 2333 net_families[ops->family] = ops; 2334 err = 0; 2335 } 2336 spin_unlock(&net_family_lock); 2337 2338 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family); 2339 return err; 2340 } 2341 EXPORT_SYMBOL(sock_register); 2342 2343 /** 2344 * sock_unregister - remove a protocol handler 2345 * @family: protocol family to remove 2346 * 2347 * This function is called by a protocol handler that wants to 2348 * remove its address family, and have it unlinked from the 2349 * new socket creation. 2350 * 2351 * If protocol handler is a module, then it can use module reference 2352 * counts to protect against new references. If protocol handler is not 2353 * a module then it needs to provide its own protection in 2354 * the ops->create routine. 2355 */ 2356 void sock_unregister(int family) 2357 { 2358 BUG_ON(family < 0 || family >= NPROTO); 2359 2360 spin_lock(&net_family_lock); 2361 net_families[family] = NULL; 2362 spin_unlock(&net_family_lock); 2363 2364 synchronize_rcu(); 2365 2366 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family); 2367 } 2368 EXPORT_SYMBOL(sock_unregister); 2369 2370 static int __init sock_init(void) 2371 { 2372 /* 2373 * Initialize sock SLAB cache. 2374 */ 2375 2376 sk_init(); 2377 2378 /* 2379 * Initialize skbuff SLAB cache 2380 */ 2381 skb_init(); 2382 2383 /* 2384 * Initialize the protocols module. 2385 */ 2386 2387 init_inodecache(); 2388 register_filesystem(&sock_fs_type); 2389 sock_mnt = kern_mount(&sock_fs_type); 2390 2391 /* The real protocol initialization is performed in later initcalls. 2392 */ 2393 2394 #ifdef CONFIG_NETFILTER 2395 netfilter_init(); 2396 #endif 2397 2398 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2399 skb_timestamping_init(); 2400 #endif 2401 2402 return 0; 2403 } 2404 2405 core_initcall(sock_init); /* early initcall */ 2406 2407 #ifdef CONFIG_PROC_FS 2408 void socket_seq_show(struct seq_file *seq) 2409 { 2410 int cpu; 2411 int counter = 0; 2412 2413 for_each_possible_cpu(cpu) 2414 counter += per_cpu(sockets_in_use, cpu); 2415 2416 /* It can be negative, by the way. 8) */ 2417 if (counter < 0) 2418 counter = 0; 2419 2420 seq_printf(seq, "sockets: used %d\n", counter); 2421 } 2422 #endif /* CONFIG_PROC_FS */ 2423 2424 #ifdef CONFIG_COMPAT 2425 static int do_siocgstamp(struct net *net, struct socket *sock, 2426 unsigned int cmd, struct compat_timeval __user *up) 2427 { 2428 mm_segment_t old_fs = get_fs(); 2429 struct timeval ktv; 2430 int err; 2431 2432 set_fs(KERNEL_DS); 2433 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2434 set_fs(old_fs); 2435 if (!err) { 2436 err = put_user(ktv.tv_sec, &up->tv_sec); 2437 err |= __put_user(ktv.tv_usec, &up->tv_usec); 2438 } 2439 return err; 2440 } 2441 2442 static int do_siocgstampns(struct net *net, struct socket *sock, 2443 unsigned int cmd, struct compat_timespec __user *up) 2444 { 2445 mm_segment_t old_fs = get_fs(); 2446 struct timespec kts; 2447 int err; 2448 2449 set_fs(KERNEL_DS); 2450 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2451 set_fs(old_fs); 2452 if (!err) { 2453 err = put_user(kts.tv_sec, &up->tv_sec); 2454 err |= __put_user(kts.tv_nsec, &up->tv_nsec); 2455 } 2456 return err; 2457 } 2458 2459 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2460 { 2461 struct ifreq __user *uifr; 2462 int err; 2463 2464 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2465 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2466 return -EFAULT; 2467 2468 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2469 if (err) 2470 return err; 2471 2472 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2473 return -EFAULT; 2474 2475 return 0; 2476 } 2477 2478 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2479 { 2480 struct compat_ifconf ifc32; 2481 struct ifconf ifc; 2482 struct ifconf __user *uifc; 2483 struct compat_ifreq __user *ifr32; 2484 struct ifreq __user *ifr; 2485 unsigned int i, j; 2486 int err; 2487 2488 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2489 return -EFAULT; 2490 2491 if (ifc32.ifcbuf == 0) { 2492 ifc32.ifc_len = 0; 2493 ifc.ifc_len = 0; 2494 ifc.ifc_req = NULL; 2495 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2496 } else { 2497 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2498 sizeof(struct ifreq); 2499 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2500 ifc.ifc_len = len; 2501 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2502 ifr32 = compat_ptr(ifc32.ifcbuf); 2503 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2504 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2505 return -EFAULT; 2506 ifr++; 2507 ifr32++; 2508 } 2509 } 2510 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2511 return -EFAULT; 2512 2513 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2514 if (err) 2515 return err; 2516 2517 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2518 return -EFAULT; 2519 2520 ifr = ifc.ifc_req; 2521 ifr32 = compat_ptr(ifc32.ifcbuf); 2522 for (i = 0, j = 0; 2523 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2524 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2525 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2526 return -EFAULT; 2527 ifr32++; 2528 ifr++; 2529 } 2530 2531 if (ifc32.ifcbuf == 0) { 2532 /* Translate from 64-bit structure multiple to 2533 * a 32-bit one. 2534 */ 2535 i = ifc.ifc_len; 2536 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2537 ifc32.ifc_len = i; 2538 } else { 2539 ifc32.ifc_len = i; 2540 } 2541 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2542 return -EFAULT; 2543 2544 return 0; 2545 } 2546 2547 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2548 { 2549 struct ifreq __user *ifr; 2550 u32 data; 2551 void __user *datap; 2552 2553 ifr = compat_alloc_user_space(sizeof(*ifr)); 2554 2555 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2556 return -EFAULT; 2557 2558 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2559 return -EFAULT; 2560 2561 datap = compat_ptr(data); 2562 if (put_user(datap, &ifr->ifr_ifru.ifru_data)) 2563 return -EFAULT; 2564 2565 return dev_ioctl(net, SIOCETHTOOL, ifr); 2566 } 2567 2568 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2569 { 2570 void __user *uptr; 2571 compat_uptr_t uptr32; 2572 struct ifreq __user *uifr; 2573 2574 uifr = compat_alloc_user_space(sizeof(*uifr)); 2575 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2576 return -EFAULT; 2577 2578 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2579 return -EFAULT; 2580 2581 uptr = compat_ptr(uptr32); 2582 2583 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2584 return -EFAULT; 2585 2586 return dev_ioctl(net, SIOCWANDEV, uifr); 2587 } 2588 2589 static int bond_ioctl(struct net *net, unsigned int cmd, 2590 struct compat_ifreq __user *ifr32) 2591 { 2592 struct ifreq kifr; 2593 struct ifreq __user *uifr; 2594 mm_segment_t old_fs; 2595 int err; 2596 u32 data; 2597 void __user *datap; 2598 2599 switch (cmd) { 2600 case SIOCBONDENSLAVE: 2601 case SIOCBONDRELEASE: 2602 case SIOCBONDSETHWADDR: 2603 case SIOCBONDCHANGEACTIVE: 2604 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2605 return -EFAULT; 2606 2607 old_fs = get_fs(); 2608 set_fs(KERNEL_DS); 2609 err = dev_ioctl(net, cmd, &kifr); 2610 set_fs(old_fs); 2611 2612 return err; 2613 case SIOCBONDSLAVEINFOQUERY: 2614 case SIOCBONDINFOQUERY: 2615 uifr = compat_alloc_user_space(sizeof(*uifr)); 2616 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2617 return -EFAULT; 2618 2619 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2620 return -EFAULT; 2621 2622 datap = compat_ptr(data); 2623 if (put_user(datap, &uifr->ifr_ifru.ifru_data)) 2624 return -EFAULT; 2625 2626 return dev_ioctl(net, cmd, uifr); 2627 default: 2628 return -EINVAL; 2629 } 2630 } 2631 2632 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd, 2633 struct compat_ifreq __user *u_ifreq32) 2634 { 2635 struct ifreq __user *u_ifreq64; 2636 char tmp_buf[IFNAMSIZ]; 2637 void __user *data64; 2638 u32 data32; 2639 2640 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2641 IFNAMSIZ)) 2642 return -EFAULT; 2643 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2644 return -EFAULT; 2645 data64 = compat_ptr(data32); 2646 2647 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2648 2649 /* Don't check these user accesses, just let that get trapped 2650 * in the ioctl handler instead. 2651 */ 2652 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2653 IFNAMSIZ)) 2654 return -EFAULT; 2655 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2656 return -EFAULT; 2657 2658 return dev_ioctl(net, cmd, u_ifreq64); 2659 } 2660 2661 static int dev_ifsioc(struct net *net, struct socket *sock, 2662 unsigned int cmd, struct compat_ifreq __user *uifr32) 2663 { 2664 struct ifreq __user *uifr; 2665 int err; 2666 2667 uifr = compat_alloc_user_space(sizeof(*uifr)); 2668 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2669 return -EFAULT; 2670 2671 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2672 2673 if (!err) { 2674 switch (cmd) { 2675 case SIOCGIFFLAGS: 2676 case SIOCGIFMETRIC: 2677 case SIOCGIFMTU: 2678 case SIOCGIFMEM: 2679 case SIOCGIFHWADDR: 2680 case SIOCGIFINDEX: 2681 case SIOCGIFADDR: 2682 case SIOCGIFBRDADDR: 2683 case SIOCGIFDSTADDR: 2684 case SIOCGIFNETMASK: 2685 case SIOCGIFPFLAGS: 2686 case SIOCGIFTXQLEN: 2687 case SIOCGMIIPHY: 2688 case SIOCGMIIREG: 2689 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 2690 err = -EFAULT; 2691 break; 2692 } 2693 } 2694 return err; 2695 } 2696 2697 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2698 struct compat_ifreq __user *uifr32) 2699 { 2700 struct ifreq ifr; 2701 struct compat_ifmap __user *uifmap32; 2702 mm_segment_t old_fs; 2703 int err; 2704 2705 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2706 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2707 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2708 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2709 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2710 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq); 2711 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma); 2712 err |= __get_user(ifr.ifr_map.port, &uifmap32->port); 2713 if (err) 2714 return -EFAULT; 2715 2716 old_fs = get_fs(); 2717 set_fs(KERNEL_DS); 2718 err = dev_ioctl(net, cmd, (void __user *)&ifr); 2719 set_fs(old_fs); 2720 2721 if (cmd == SIOCGIFMAP && !err) { 2722 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 2723 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2724 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2725 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2726 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq); 2727 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma); 2728 err |= __put_user(ifr.ifr_map.port, &uifmap32->port); 2729 if (err) 2730 err = -EFAULT; 2731 } 2732 return err; 2733 } 2734 2735 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32) 2736 { 2737 void __user *uptr; 2738 compat_uptr_t uptr32; 2739 struct ifreq __user *uifr; 2740 2741 uifr = compat_alloc_user_space(sizeof(*uifr)); 2742 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2743 return -EFAULT; 2744 2745 if (get_user(uptr32, &uifr32->ifr_data)) 2746 return -EFAULT; 2747 2748 uptr = compat_ptr(uptr32); 2749 2750 if (put_user(uptr, &uifr->ifr_data)) 2751 return -EFAULT; 2752 2753 return dev_ioctl(net, SIOCSHWTSTAMP, uifr); 2754 } 2755 2756 struct rtentry32 { 2757 u32 rt_pad1; 2758 struct sockaddr rt_dst; /* target address */ 2759 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 2760 struct sockaddr rt_genmask; /* target network mask (IP) */ 2761 unsigned short rt_flags; 2762 short rt_pad2; 2763 u32 rt_pad3; 2764 unsigned char rt_tos; 2765 unsigned char rt_class; 2766 short rt_pad4; 2767 short rt_metric; /* +1 for binary compatibility! */ 2768 /* char * */ u32 rt_dev; /* forcing the device at add */ 2769 u32 rt_mtu; /* per route MTU/Window */ 2770 u32 rt_window; /* Window clamping */ 2771 unsigned short rt_irtt; /* Initial RTT */ 2772 }; 2773 2774 struct in6_rtmsg32 { 2775 struct in6_addr rtmsg_dst; 2776 struct in6_addr rtmsg_src; 2777 struct in6_addr rtmsg_gateway; 2778 u32 rtmsg_type; 2779 u16 rtmsg_dst_len; 2780 u16 rtmsg_src_len; 2781 u32 rtmsg_metric; 2782 u32 rtmsg_info; 2783 u32 rtmsg_flags; 2784 s32 rtmsg_ifindex; 2785 }; 2786 2787 static int routing_ioctl(struct net *net, struct socket *sock, 2788 unsigned int cmd, void __user *argp) 2789 { 2790 int ret; 2791 void *r = NULL; 2792 struct in6_rtmsg r6; 2793 struct rtentry r4; 2794 char devname[16]; 2795 u32 rtdev; 2796 mm_segment_t old_fs = get_fs(); 2797 2798 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 2799 struct in6_rtmsg32 __user *ur6 = argp; 2800 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 2801 3 * sizeof(struct in6_addr)); 2802 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 2803 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 2804 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 2805 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 2806 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 2807 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 2808 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 2809 2810 r = (void *) &r6; 2811 } else { /* ipv4 */ 2812 struct rtentry32 __user *ur4 = argp; 2813 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 2814 3 * sizeof(struct sockaddr)); 2815 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags)); 2816 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric)); 2817 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu)); 2818 ret |= __get_user(r4.rt_window, &(ur4->rt_window)); 2819 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt)); 2820 ret |= __get_user(rtdev, &(ur4->rt_dev)); 2821 if (rtdev) { 2822 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 2823 r4.rt_dev = devname; devname[15] = 0; 2824 } else 2825 r4.rt_dev = NULL; 2826 2827 r = (void *) &r4; 2828 } 2829 2830 if (ret) { 2831 ret = -EFAULT; 2832 goto out; 2833 } 2834 2835 set_fs(KERNEL_DS); 2836 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 2837 set_fs(old_fs); 2838 2839 out: 2840 return ret; 2841 } 2842 2843 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 2844 * for some operations; this forces use of the newer bridge-utils that 2845 * use compatiable ioctls 2846 */ 2847 static int old_bridge_ioctl(compat_ulong_t __user *argp) 2848 { 2849 compat_ulong_t tmp; 2850 2851 if (get_user(tmp, argp)) 2852 return -EFAULT; 2853 if (tmp == BRCTL_GET_VERSION) 2854 return BRCTL_VERSION + 1; 2855 return -EINVAL; 2856 } 2857 2858 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 2859 unsigned int cmd, unsigned long arg) 2860 { 2861 void __user *argp = compat_ptr(arg); 2862 struct sock *sk = sock->sk; 2863 struct net *net = sock_net(sk); 2864 2865 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 2866 return siocdevprivate_ioctl(net, cmd, argp); 2867 2868 switch (cmd) { 2869 case SIOCSIFBR: 2870 case SIOCGIFBR: 2871 return old_bridge_ioctl(argp); 2872 case SIOCGIFNAME: 2873 return dev_ifname32(net, argp); 2874 case SIOCGIFCONF: 2875 return dev_ifconf(net, argp); 2876 case SIOCETHTOOL: 2877 return ethtool_ioctl(net, argp); 2878 case SIOCWANDEV: 2879 return compat_siocwandev(net, argp); 2880 case SIOCGIFMAP: 2881 case SIOCSIFMAP: 2882 return compat_sioc_ifmap(net, cmd, argp); 2883 case SIOCBONDENSLAVE: 2884 case SIOCBONDRELEASE: 2885 case SIOCBONDSETHWADDR: 2886 case SIOCBONDSLAVEINFOQUERY: 2887 case SIOCBONDINFOQUERY: 2888 case SIOCBONDCHANGEACTIVE: 2889 return bond_ioctl(net, cmd, argp); 2890 case SIOCADDRT: 2891 case SIOCDELRT: 2892 return routing_ioctl(net, sock, cmd, argp); 2893 case SIOCGSTAMP: 2894 return do_siocgstamp(net, sock, cmd, argp); 2895 case SIOCGSTAMPNS: 2896 return do_siocgstampns(net, sock, cmd, argp); 2897 case SIOCSHWTSTAMP: 2898 return compat_siocshwtstamp(net, argp); 2899 2900 case FIOSETOWN: 2901 case SIOCSPGRP: 2902 case FIOGETOWN: 2903 case SIOCGPGRP: 2904 case SIOCBRADDBR: 2905 case SIOCBRDELBR: 2906 case SIOCGIFVLAN: 2907 case SIOCSIFVLAN: 2908 case SIOCADDDLCI: 2909 case SIOCDELDLCI: 2910 return sock_ioctl(file, cmd, arg); 2911 2912 case SIOCGIFFLAGS: 2913 case SIOCSIFFLAGS: 2914 case SIOCGIFMETRIC: 2915 case SIOCSIFMETRIC: 2916 case SIOCGIFMTU: 2917 case SIOCSIFMTU: 2918 case SIOCGIFMEM: 2919 case SIOCSIFMEM: 2920 case SIOCGIFHWADDR: 2921 case SIOCSIFHWADDR: 2922 case SIOCADDMULTI: 2923 case SIOCDELMULTI: 2924 case SIOCGIFINDEX: 2925 case SIOCGIFADDR: 2926 case SIOCSIFADDR: 2927 case SIOCSIFHWBROADCAST: 2928 case SIOCDIFADDR: 2929 case SIOCGIFBRDADDR: 2930 case SIOCSIFBRDADDR: 2931 case SIOCGIFDSTADDR: 2932 case SIOCSIFDSTADDR: 2933 case SIOCGIFNETMASK: 2934 case SIOCSIFNETMASK: 2935 case SIOCSIFPFLAGS: 2936 case SIOCGIFPFLAGS: 2937 case SIOCGIFTXQLEN: 2938 case SIOCSIFTXQLEN: 2939 case SIOCBRADDIF: 2940 case SIOCBRDELIF: 2941 case SIOCSIFNAME: 2942 case SIOCGMIIPHY: 2943 case SIOCGMIIREG: 2944 case SIOCSMIIREG: 2945 return dev_ifsioc(net, sock, cmd, argp); 2946 2947 case SIOCSARP: 2948 case SIOCGARP: 2949 case SIOCDARP: 2950 case SIOCATMARK: 2951 return sock_do_ioctl(net, sock, cmd, arg); 2952 } 2953 2954 /* Prevent warning from compat_sys_ioctl, these always 2955 * result in -EINVAL in the native case anyway. */ 2956 switch (cmd) { 2957 case SIOCRTMSG: 2958 case SIOCGIFCOUNT: 2959 case SIOCSRARP: 2960 case SIOCGRARP: 2961 case SIOCDRARP: 2962 case SIOCSIFLINK: 2963 case SIOCGIFSLAVE: 2964 case SIOCSIFSLAVE: 2965 return -EINVAL; 2966 } 2967 2968 return -ENOIOCTLCMD; 2969 } 2970 2971 static long compat_sock_ioctl(struct file *file, unsigned cmd, 2972 unsigned long arg) 2973 { 2974 struct socket *sock = file->private_data; 2975 int ret = -ENOIOCTLCMD; 2976 struct sock *sk; 2977 struct net *net; 2978 2979 sk = sock->sk; 2980 net = sock_net(sk); 2981 2982 if (sock->ops->compat_ioctl) 2983 ret = sock->ops->compat_ioctl(sock, cmd, arg); 2984 2985 if (ret == -ENOIOCTLCMD && 2986 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 2987 ret = compat_wext_handle_ioctl(net, cmd, arg); 2988 2989 if (ret == -ENOIOCTLCMD) 2990 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 2991 2992 return ret; 2993 } 2994 #endif 2995 2996 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 2997 { 2998 return sock->ops->bind(sock, addr, addrlen); 2999 } 3000 EXPORT_SYMBOL(kernel_bind); 3001 3002 int kernel_listen(struct socket *sock, int backlog) 3003 { 3004 return sock->ops->listen(sock, backlog); 3005 } 3006 EXPORT_SYMBOL(kernel_listen); 3007 3008 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3009 { 3010 struct sock *sk = sock->sk; 3011 int err; 3012 3013 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3014 newsock); 3015 if (err < 0) 3016 goto done; 3017 3018 err = sock->ops->accept(sock, *newsock, flags); 3019 if (err < 0) { 3020 sock_release(*newsock); 3021 *newsock = NULL; 3022 goto done; 3023 } 3024 3025 (*newsock)->ops = sock->ops; 3026 __module_get((*newsock)->ops->owner); 3027 3028 done: 3029 return err; 3030 } 3031 EXPORT_SYMBOL(kernel_accept); 3032 3033 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3034 int flags) 3035 { 3036 return sock->ops->connect(sock, addr, addrlen, flags); 3037 } 3038 EXPORT_SYMBOL(kernel_connect); 3039 3040 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3041 int *addrlen) 3042 { 3043 return sock->ops->getname(sock, addr, addrlen, 0); 3044 } 3045 EXPORT_SYMBOL(kernel_getsockname); 3046 3047 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3048 int *addrlen) 3049 { 3050 return sock->ops->getname(sock, addr, addrlen, 1); 3051 } 3052 EXPORT_SYMBOL(kernel_getpeername); 3053 3054 int kernel_getsockopt(struct socket *sock, int level, int optname, 3055 char *optval, int *optlen) 3056 { 3057 mm_segment_t oldfs = get_fs(); 3058 int err; 3059 3060 set_fs(KERNEL_DS); 3061 if (level == SOL_SOCKET) 3062 err = sock_getsockopt(sock, level, optname, optval, optlen); 3063 else 3064 err = sock->ops->getsockopt(sock, level, optname, optval, 3065 optlen); 3066 set_fs(oldfs); 3067 return err; 3068 } 3069 EXPORT_SYMBOL(kernel_getsockopt); 3070 3071 int kernel_setsockopt(struct socket *sock, int level, int optname, 3072 char *optval, unsigned int optlen) 3073 { 3074 mm_segment_t oldfs = get_fs(); 3075 int err; 3076 3077 set_fs(KERNEL_DS); 3078 if (level == SOL_SOCKET) 3079 err = sock_setsockopt(sock, level, optname, optval, optlen); 3080 else 3081 err = sock->ops->setsockopt(sock, level, optname, optval, 3082 optlen); 3083 set_fs(oldfs); 3084 return err; 3085 } 3086 EXPORT_SYMBOL(kernel_setsockopt); 3087 3088 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3089 size_t size, int flags) 3090 { 3091 sock_update_classid(sock->sk); 3092 3093 if (sock->ops->sendpage) 3094 return sock->ops->sendpage(sock, page, offset, size, flags); 3095 3096 return sock_no_sendpage(sock, page, offset, size, flags); 3097 } 3098 EXPORT_SYMBOL(kernel_sendpage); 3099 3100 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3101 { 3102 mm_segment_t oldfs = get_fs(); 3103 int err; 3104 3105 set_fs(KERNEL_DS); 3106 err = sock->ops->ioctl(sock, cmd, arg); 3107 set_fs(oldfs); 3108 3109 return err; 3110 } 3111 EXPORT_SYMBOL(kernel_sock_ioctl); 3112 3113 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3114 { 3115 return sock->ops->shutdown(sock, how); 3116 } 3117 EXPORT_SYMBOL(kernel_sock_shutdown); 3118