xref: /linux/net/socket.c (revision 0678df8271820bcf8fb4f877129f05d68a237de4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/splice.h>
61 #include <linux/net.h>
62 #include <linux/interrupt.h>
63 #include <linux/thread_info.h>
64 #include <linux/rcupdate.h>
65 #include <linux/netdevice.h>
66 #include <linux/proc_fs.h>
67 #include <linux/seq_file.h>
68 #include <linux/mutex.h>
69 #include <linux/if_bridge.h>
70 #include <linux/if_vlan.h>
71 #include <linux/ptp_classify.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/cache.h>
75 #include <linux/module.h>
76 #include <linux/highmem.h>
77 #include <linux/mount.h>
78 #include <linux/pseudo_fs.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/compat.h>
82 #include <linux/kmod.h>
83 #include <linux/audit.h>
84 #include <linux/wireless.h>
85 #include <linux/nsproxy.h>
86 #include <linux/magic.h>
87 #include <linux/slab.h>
88 #include <linux/xattr.h>
89 #include <linux/nospec.h>
90 #include <linux/indirect_call_wrapper.h>
91 #include <linux/io_uring.h>
92 
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/termios.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 #include <linux/ptp_clock_kernel.h>
111 #include <trace/events/sock.h>
112 
113 #ifdef CONFIG_NET_RX_BUSY_POLL
114 unsigned int sysctl_net_busy_read __read_mostly;
115 unsigned int sysctl_net_busy_poll __read_mostly;
116 #endif
117 
118 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
119 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
120 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
121 
122 static int sock_close(struct inode *inode, struct file *file);
123 static __poll_t sock_poll(struct file *file,
124 			      struct poll_table_struct *wait);
125 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
126 #ifdef CONFIG_COMPAT
127 static long compat_sock_ioctl(struct file *file,
128 			      unsigned int cmd, unsigned long arg);
129 #endif
130 static int sock_fasync(int fd, struct file *filp, int on);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 static void sock_splice_eof(struct file *file);
135 
136 #ifdef CONFIG_PROC_FS
137 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
138 {
139 	struct socket *sock = f->private_data;
140 	const struct proto_ops *ops = READ_ONCE(sock->ops);
141 
142 	if (ops->show_fdinfo)
143 		ops->show_fdinfo(m, sock);
144 }
145 #else
146 #define sock_show_fdinfo NULL
147 #endif
148 
149 /*
150  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
151  *	in the operation structures but are done directly via the socketcall() multiplexor.
152  */
153 
154 static const struct file_operations socket_file_ops = {
155 	.owner =	THIS_MODULE,
156 	.llseek =	no_llseek,
157 	.read_iter =	sock_read_iter,
158 	.write_iter =	sock_write_iter,
159 	.poll =		sock_poll,
160 	.unlocked_ioctl = sock_ioctl,
161 #ifdef CONFIG_COMPAT
162 	.compat_ioctl = compat_sock_ioctl,
163 #endif
164 	.uring_cmd =    io_uring_cmd_sock,
165 	.mmap =		sock_mmap,
166 	.release =	sock_close,
167 	.fasync =	sock_fasync,
168 	.splice_write = splice_to_socket,
169 	.splice_read =	sock_splice_read,
170 	.splice_eof =	sock_splice_eof,
171 	.show_fdinfo =	sock_show_fdinfo,
172 };
173 
174 static const char * const pf_family_names[] = {
175 	[PF_UNSPEC]	= "PF_UNSPEC",
176 	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
177 	[PF_INET]	= "PF_INET",
178 	[PF_AX25]	= "PF_AX25",
179 	[PF_IPX]	= "PF_IPX",
180 	[PF_APPLETALK]	= "PF_APPLETALK",
181 	[PF_NETROM]	= "PF_NETROM",
182 	[PF_BRIDGE]	= "PF_BRIDGE",
183 	[PF_ATMPVC]	= "PF_ATMPVC",
184 	[PF_X25]	= "PF_X25",
185 	[PF_INET6]	= "PF_INET6",
186 	[PF_ROSE]	= "PF_ROSE",
187 	[PF_DECnet]	= "PF_DECnet",
188 	[PF_NETBEUI]	= "PF_NETBEUI",
189 	[PF_SECURITY]	= "PF_SECURITY",
190 	[PF_KEY]	= "PF_KEY",
191 	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
192 	[PF_PACKET]	= "PF_PACKET",
193 	[PF_ASH]	= "PF_ASH",
194 	[PF_ECONET]	= "PF_ECONET",
195 	[PF_ATMSVC]	= "PF_ATMSVC",
196 	[PF_RDS]	= "PF_RDS",
197 	[PF_SNA]	= "PF_SNA",
198 	[PF_IRDA]	= "PF_IRDA",
199 	[PF_PPPOX]	= "PF_PPPOX",
200 	[PF_WANPIPE]	= "PF_WANPIPE",
201 	[PF_LLC]	= "PF_LLC",
202 	[PF_IB]		= "PF_IB",
203 	[PF_MPLS]	= "PF_MPLS",
204 	[PF_CAN]	= "PF_CAN",
205 	[PF_TIPC]	= "PF_TIPC",
206 	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
207 	[PF_IUCV]	= "PF_IUCV",
208 	[PF_RXRPC]	= "PF_RXRPC",
209 	[PF_ISDN]	= "PF_ISDN",
210 	[PF_PHONET]	= "PF_PHONET",
211 	[PF_IEEE802154]	= "PF_IEEE802154",
212 	[PF_CAIF]	= "PF_CAIF",
213 	[PF_ALG]	= "PF_ALG",
214 	[PF_NFC]	= "PF_NFC",
215 	[PF_VSOCK]	= "PF_VSOCK",
216 	[PF_KCM]	= "PF_KCM",
217 	[PF_QIPCRTR]	= "PF_QIPCRTR",
218 	[PF_SMC]	= "PF_SMC",
219 	[PF_XDP]	= "PF_XDP",
220 	[PF_MCTP]	= "PF_MCTP",
221 };
222 
223 /*
224  *	The protocol list. Each protocol is registered in here.
225  */
226 
227 static DEFINE_SPINLOCK(net_family_lock);
228 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
229 
230 /*
231  * Support routines.
232  * Move socket addresses back and forth across the kernel/user
233  * divide and look after the messy bits.
234  */
235 
236 /**
237  *	move_addr_to_kernel	-	copy a socket address into kernel space
238  *	@uaddr: Address in user space
239  *	@kaddr: Address in kernel space
240  *	@ulen: Length in user space
241  *
242  *	The address is copied into kernel space. If the provided address is
243  *	too long an error code of -EINVAL is returned. If the copy gives
244  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
245  */
246 
247 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
248 {
249 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
250 		return -EINVAL;
251 	if (ulen == 0)
252 		return 0;
253 	if (copy_from_user(kaddr, uaddr, ulen))
254 		return -EFAULT;
255 	return audit_sockaddr(ulen, kaddr);
256 }
257 
258 /**
259  *	move_addr_to_user	-	copy an address to user space
260  *	@kaddr: kernel space address
261  *	@klen: length of address in kernel
262  *	@uaddr: user space address
263  *	@ulen: pointer to user length field
264  *
265  *	The value pointed to by ulen on entry is the buffer length available.
266  *	This is overwritten with the buffer space used. -EINVAL is returned
267  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
268  *	is returned if either the buffer or the length field are not
269  *	accessible.
270  *	After copying the data up to the limit the user specifies, the true
271  *	length of the data is written over the length limit the user
272  *	specified. Zero is returned for a success.
273  */
274 
275 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
276 			     void __user *uaddr, int __user *ulen)
277 {
278 	int err;
279 	int len;
280 
281 	BUG_ON(klen > sizeof(struct sockaddr_storage));
282 	err = get_user(len, ulen);
283 	if (err)
284 		return err;
285 	if (len > klen)
286 		len = klen;
287 	if (len < 0)
288 		return -EINVAL;
289 	if (len) {
290 		if (audit_sockaddr(klen, kaddr))
291 			return -ENOMEM;
292 		if (copy_to_user(uaddr, kaddr, len))
293 			return -EFAULT;
294 	}
295 	/*
296 	 *      "fromlen shall refer to the value before truncation.."
297 	 *                      1003.1g
298 	 */
299 	return __put_user(klen, ulen);
300 }
301 
302 static struct kmem_cache *sock_inode_cachep __ro_after_init;
303 
304 static struct inode *sock_alloc_inode(struct super_block *sb)
305 {
306 	struct socket_alloc *ei;
307 
308 	ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
309 	if (!ei)
310 		return NULL;
311 	init_waitqueue_head(&ei->socket.wq.wait);
312 	ei->socket.wq.fasync_list = NULL;
313 	ei->socket.wq.flags = 0;
314 
315 	ei->socket.state = SS_UNCONNECTED;
316 	ei->socket.flags = 0;
317 	ei->socket.ops = NULL;
318 	ei->socket.sk = NULL;
319 	ei->socket.file = NULL;
320 
321 	return &ei->vfs_inode;
322 }
323 
324 static void sock_free_inode(struct inode *inode)
325 {
326 	struct socket_alloc *ei;
327 
328 	ei = container_of(inode, struct socket_alloc, vfs_inode);
329 	kmem_cache_free(sock_inode_cachep, ei);
330 }
331 
332 static void init_once(void *foo)
333 {
334 	struct socket_alloc *ei = (struct socket_alloc *)foo;
335 
336 	inode_init_once(&ei->vfs_inode);
337 }
338 
339 static void init_inodecache(void)
340 {
341 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
342 					      sizeof(struct socket_alloc),
343 					      0,
344 					      (SLAB_HWCACHE_ALIGN |
345 					       SLAB_RECLAIM_ACCOUNT |
346 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
347 					      init_once);
348 	BUG_ON(sock_inode_cachep == NULL);
349 }
350 
351 static const struct super_operations sockfs_ops = {
352 	.alloc_inode	= sock_alloc_inode,
353 	.free_inode	= sock_free_inode,
354 	.statfs		= simple_statfs,
355 };
356 
357 /*
358  * sockfs_dname() is called from d_path().
359  */
360 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
361 {
362 	return dynamic_dname(buffer, buflen, "socket:[%lu]",
363 				d_inode(dentry)->i_ino);
364 }
365 
366 static const struct dentry_operations sockfs_dentry_operations = {
367 	.d_dname  = sockfs_dname,
368 };
369 
370 static int sockfs_xattr_get(const struct xattr_handler *handler,
371 			    struct dentry *dentry, struct inode *inode,
372 			    const char *suffix, void *value, size_t size)
373 {
374 	if (value) {
375 		if (dentry->d_name.len + 1 > size)
376 			return -ERANGE;
377 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
378 	}
379 	return dentry->d_name.len + 1;
380 }
381 
382 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
383 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
384 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
385 
386 static const struct xattr_handler sockfs_xattr_handler = {
387 	.name = XATTR_NAME_SOCKPROTONAME,
388 	.get = sockfs_xattr_get,
389 };
390 
391 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
392 				     struct mnt_idmap *idmap,
393 				     struct dentry *dentry, struct inode *inode,
394 				     const char *suffix, const void *value,
395 				     size_t size, int flags)
396 {
397 	/* Handled by LSM. */
398 	return -EAGAIN;
399 }
400 
401 static const struct xattr_handler sockfs_security_xattr_handler = {
402 	.prefix = XATTR_SECURITY_PREFIX,
403 	.set = sockfs_security_xattr_set,
404 };
405 
406 static const struct xattr_handler * const sockfs_xattr_handlers[] = {
407 	&sockfs_xattr_handler,
408 	&sockfs_security_xattr_handler,
409 	NULL
410 };
411 
412 static int sockfs_init_fs_context(struct fs_context *fc)
413 {
414 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
415 	if (!ctx)
416 		return -ENOMEM;
417 	ctx->ops = &sockfs_ops;
418 	ctx->dops = &sockfs_dentry_operations;
419 	ctx->xattr = sockfs_xattr_handlers;
420 	return 0;
421 }
422 
423 static struct vfsmount *sock_mnt __read_mostly;
424 
425 static struct file_system_type sock_fs_type = {
426 	.name =		"sockfs",
427 	.init_fs_context = sockfs_init_fs_context,
428 	.kill_sb =	kill_anon_super,
429 };
430 
431 /*
432  *	Obtains the first available file descriptor and sets it up for use.
433  *
434  *	These functions create file structures and maps them to fd space
435  *	of the current process. On success it returns file descriptor
436  *	and file struct implicitly stored in sock->file.
437  *	Note that another thread may close file descriptor before we return
438  *	from this function. We use the fact that now we do not refer
439  *	to socket after mapping. If one day we will need it, this
440  *	function will increment ref. count on file by 1.
441  *
442  *	In any case returned fd MAY BE not valid!
443  *	This race condition is unavoidable
444  *	with shared fd spaces, we cannot solve it inside kernel,
445  *	but we take care of internal coherence yet.
446  */
447 
448 /**
449  *	sock_alloc_file - Bind a &socket to a &file
450  *	@sock: socket
451  *	@flags: file status flags
452  *	@dname: protocol name
453  *
454  *	Returns the &file bound with @sock, implicitly storing it
455  *	in sock->file. If dname is %NULL, sets to "".
456  *
457  *	On failure @sock is released, and an ERR pointer is returned.
458  *
459  *	This function uses GFP_KERNEL internally.
460  */
461 
462 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
463 {
464 	struct file *file;
465 
466 	if (!dname)
467 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
468 
469 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
470 				O_RDWR | (flags & O_NONBLOCK),
471 				&socket_file_ops);
472 	if (IS_ERR(file)) {
473 		sock_release(sock);
474 		return file;
475 	}
476 
477 	file->f_mode |= FMODE_NOWAIT;
478 	sock->file = file;
479 	file->private_data = sock;
480 	stream_open(SOCK_INODE(sock), file);
481 	return file;
482 }
483 EXPORT_SYMBOL(sock_alloc_file);
484 
485 static int sock_map_fd(struct socket *sock, int flags)
486 {
487 	struct file *newfile;
488 	int fd = get_unused_fd_flags(flags);
489 	if (unlikely(fd < 0)) {
490 		sock_release(sock);
491 		return fd;
492 	}
493 
494 	newfile = sock_alloc_file(sock, flags, NULL);
495 	if (!IS_ERR(newfile)) {
496 		fd_install(fd, newfile);
497 		return fd;
498 	}
499 
500 	put_unused_fd(fd);
501 	return PTR_ERR(newfile);
502 }
503 
504 /**
505  *	sock_from_file - Return the &socket bounded to @file.
506  *	@file: file
507  *
508  *	On failure returns %NULL.
509  */
510 
511 struct socket *sock_from_file(struct file *file)
512 {
513 	if (file->f_op == &socket_file_ops)
514 		return file->private_data;	/* set in sock_alloc_file */
515 
516 	return NULL;
517 }
518 EXPORT_SYMBOL(sock_from_file);
519 
520 /**
521  *	sockfd_lookup - Go from a file number to its socket slot
522  *	@fd: file handle
523  *	@err: pointer to an error code return
524  *
525  *	The file handle passed in is locked and the socket it is bound
526  *	to is returned. If an error occurs the err pointer is overwritten
527  *	with a negative errno code and NULL is returned. The function checks
528  *	for both invalid handles and passing a handle which is not a socket.
529  *
530  *	On a success the socket object pointer is returned.
531  */
532 
533 struct socket *sockfd_lookup(int fd, int *err)
534 {
535 	struct file *file;
536 	struct socket *sock;
537 
538 	file = fget(fd);
539 	if (!file) {
540 		*err = -EBADF;
541 		return NULL;
542 	}
543 
544 	sock = sock_from_file(file);
545 	if (!sock) {
546 		*err = -ENOTSOCK;
547 		fput(file);
548 	}
549 	return sock;
550 }
551 EXPORT_SYMBOL(sockfd_lookup);
552 
553 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
554 {
555 	struct fd f = fdget(fd);
556 	struct socket *sock;
557 
558 	*err = -EBADF;
559 	if (f.file) {
560 		sock = sock_from_file(f.file);
561 		if (likely(sock)) {
562 			*fput_needed = f.flags & FDPUT_FPUT;
563 			return sock;
564 		}
565 		*err = -ENOTSOCK;
566 		fdput(f);
567 	}
568 	return NULL;
569 }
570 
571 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
572 				size_t size)
573 {
574 	ssize_t len;
575 	ssize_t used = 0;
576 
577 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
578 	if (len < 0)
579 		return len;
580 	used += len;
581 	if (buffer) {
582 		if (size < used)
583 			return -ERANGE;
584 		buffer += len;
585 	}
586 
587 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
588 	used += len;
589 	if (buffer) {
590 		if (size < used)
591 			return -ERANGE;
592 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
593 		buffer += len;
594 	}
595 
596 	return used;
597 }
598 
599 static int sockfs_setattr(struct mnt_idmap *idmap,
600 			  struct dentry *dentry, struct iattr *iattr)
601 {
602 	int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
603 
604 	if (!err && (iattr->ia_valid & ATTR_UID)) {
605 		struct socket *sock = SOCKET_I(d_inode(dentry));
606 
607 		if (sock->sk)
608 			sock->sk->sk_uid = iattr->ia_uid;
609 		else
610 			err = -ENOENT;
611 	}
612 
613 	return err;
614 }
615 
616 static const struct inode_operations sockfs_inode_ops = {
617 	.listxattr = sockfs_listxattr,
618 	.setattr = sockfs_setattr,
619 };
620 
621 /**
622  *	sock_alloc - allocate a socket
623  *
624  *	Allocate a new inode and socket object. The two are bound together
625  *	and initialised. The socket is then returned. If we are out of inodes
626  *	NULL is returned. This functions uses GFP_KERNEL internally.
627  */
628 
629 struct socket *sock_alloc(void)
630 {
631 	struct inode *inode;
632 	struct socket *sock;
633 
634 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
635 	if (!inode)
636 		return NULL;
637 
638 	sock = SOCKET_I(inode);
639 
640 	inode->i_ino = get_next_ino();
641 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
642 	inode->i_uid = current_fsuid();
643 	inode->i_gid = current_fsgid();
644 	inode->i_op = &sockfs_inode_ops;
645 
646 	return sock;
647 }
648 EXPORT_SYMBOL(sock_alloc);
649 
650 static void __sock_release(struct socket *sock, struct inode *inode)
651 {
652 	const struct proto_ops *ops = READ_ONCE(sock->ops);
653 
654 	if (ops) {
655 		struct module *owner = ops->owner;
656 
657 		if (inode)
658 			inode_lock(inode);
659 		ops->release(sock);
660 		sock->sk = NULL;
661 		if (inode)
662 			inode_unlock(inode);
663 		sock->ops = NULL;
664 		module_put(owner);
665 	}
666 
667 	if (sock->wq.fasync_list)
668 		pr_err("%s: fasync list not empty!\n", __func__);
669 
670 	if (!sock->file) {
671 		iput(SOCK_INODE(sock));
672 		return;
673 	}
674 	sock->file = NULL;
675 }
676 
677 /**
678  *	sock_release - close a socket
679  *	@sock: socket to close
680  *
681  *	The socket is released from the protocol stack if it has a release
682  *	callback, and the inode is then released if the socket is bound to
683  *	an inode not a file.
684  */
685 void sock_release(struct socket *sock)
686 {
687 	__sock_release(sock, NULL);
688 }
689 EXPORT_SYMBOL(sock_release);
690 
691 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
692 {
693 	u8 flags = *tx_flags;
694 
695 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
696 		flags |= SKBTX_HW_TSTAMP;
697 
698 		/* PTP hardware clocks can provide a free running cycle counter
699 		 * as a time base for virtual clocks. Tell driver to use the
700 		 * free running cycle counter for timestamp if socket is bound
701 		 * to virtual clock.
702 		 */
703 		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
704 			flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
705 	}
706 
707 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
708 		flags |= SKBTX_SW_TSTAMP;
709 
710 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
711 		flags |= SKBTX_SCHED_TSTAMP;
712 
713 	*tx_flags = flags;
714 }
715 EXPORT_SYMBOL(__sock_tx_timestamp);
716 
717 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
718 					   size_t));
719 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
720 					    size_t));
721 
722 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
723 						 int flags)
724 {
725 	trace_sock_send_length(sk, ret, 0);
726 }
727 
728 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
729 {
730 	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
731 				     inet_sendmsg, sock, msg,
732 				     msg_data_left(msg));
733 	BUG_ON(ret == -EIOCBQUEUED);
734 
735 	if (trace_sock_send_length_enabled())
736 		call_trace_sock_send_length(sock->sk, ret, 0);
737 	return ret;
738 }
739 
740 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
741 {
742 	int err = security_socket_sendmsg(sock, msg,
743 					  msg_data_left(msg));
744 
745 	return err ?: sock_sendmsg_nosec(sock, msg);
746 }
747 
748 /**
749  *	sock_sendmsg - send a message through @sock
750  *	@sock: socket
751  *	@msg: message to send
752  *
753  *	Sends @msg through @sock, passing through LSM.
754  *	Returns the number of bytes sent, or an error code.
755  */
756 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
757 {
758 	struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
759 	struct sockaddr_storage address;
760 	int ret;
761 
762 	if (msg->msg_name) {
763 		memcpy(&address, msg->msg_name, msg->msg_namelen);
764 		msg->msg_name = &address;
765 	}
766 
767 	ret = __sock_sendmsg(sock, msg);
768 	msg->msg_name = save_addr;
769 
770 	return ret;
771 }
772 EXPORT_SYMBOL(sock_sendmsg);
773 
774 /**
775  *	kernel_sendmsg - send a message through @sock (kernel-space)
776  *	@sock: socket
777  *	@msg: message header
778  *	@vec: kernel vec
779  *	@num: vec array length
780  *	@size: total message data size
781  *
782  *	Builds the message data with @vec and sends it through @sock.
783  *	Returns the number of bytes sent, or an error code.
784  */
785 
786 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
787 		   struct kvec *vec, size_t num, size_t size)
788 {
789 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
790 	return sock_sendmsg(sock, msg);
791 }
792 EXPORT_SYMBOL(kernel_sendmsg);
793 
794 /**
795  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
796  *	@sk: sock
797  *	@msg: message header
798  *	@vec: output s/g array
799  *	@num: output s/g array length
800  *	@size: total message data size
801  *
802  *	Builds the message data with @vec and sends it through @sock.
803  *	Returns the number of bytes sent, or an error code.
804  *	Caller must hold @sk.
805  */
806 
807 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
808 			  struct kvec *vec, size_t num, size_t size)
809 {
810 	struct socket *sock = sk->sk_socket;
811 	const struct proto_ops *ops = READ_ONCE(sock->ops);
812 
813 	if (!ops->sendmsg_locked)
814 		return sock_no_sendmsg_locked(sk, msg, size);
815 
816 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
817 
818 	return ops->sendmsg_locked(sk, msg, msg_data_left(msg));
819 }
820 EXPORT_SYMBOL(kernel_sendmsg_locked);
821 
822 static bool skb_is_err_queue(const struct sk_buff *skb)
823 {
824 	/* pkt_type of skbs enqueued on the error queue are set to
825 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
826 	 * in recvmsg, since skbs received on a local socket will never
827 	 * have a pkt_type of PACKET_OUTGOING.
828 	 */
829 	return skb->pkt_type == PACKET_OUTGOING;
830 }
831 
832 /* On transmit, software and hardware timestamps are returned independently.
833  * As the two skb clones share the hardware timestamp, which may be updated
834  * before the software timestamp is received, a hardware TX timestamp may be
835  * returned only if there is no software TX timestamp. Ignore false software
836  * timestamps, which may be made in the __sock_recv_timestamp() call when the
837  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
838  * hardware timestamp.
839  */
840 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
841 {
842 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
843 }
844 
845 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
846 {
847 	bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
848 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
849 	struct net_device *orig_dev;
850 	ktime_t hwtstamp;
851 
852 	rcu_read_lock();
853 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
854 	if (orig_dev) {
855 		*if_index = orig_dev->ifindex;
856 		hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
857 	} else {
858 		hwtstamp = shhwtstamps->hwtstamp;
859 	}
860 	rcu_read_unlock();
861 
862 	return hwtstamp;
863 }
864 
865 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
866 			   int if_index)
867 {
868 	struct scm_ts_pktinfo ts_pktinfo;
869 	struct net_device *orig_dev;
870 
871 	if (!skb_mac_header_was_set(skb))
872 		return;
873 
874 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
875 
876 	if (!if_index) {
877 		rcu_read_lock();
878 		orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
879 		if (orig_dev)
880 			if_index = orig_dev->ifindex;
881 		rcu_read_unlock();
882 	}
883 	ts_pktinfo.if_index = if_index;
884 
885 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
886 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
887 		 sizeof(ts_pktinfo), &ts_pktinfo);
888 }
889 
890 /*
891  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
892  */
893 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
894 	struct sk_buff *skb)
895 {
896 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
897 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
898 	struct scm_timestamping_internal tss;
899 	int empty = 1, false_tstamp = 0;
900 	struct skb_shared_hwtstamps *shhwtstamps =
901 		skb_hwtstamps(skb);
902 	int if_index;
903 	ktime_t hwtstamp;
904 	u32 tsflags;
905 
906 	/* Race occurred between timestamp enabling and packet
907 	   receiving.  Fill in the current time for now. */
908 	if (need_software_tstamp && skb->tstamp == 0) {
909 		__net_timestamp(skb);
910 		false_tstamp = 1;
911 	}
912 
913 	if (need_software_tstamp) {
914 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
915 			if (new_tstamp) {
916 				struct __kernel_sock_timeval tv;
917 
918 				skb_get_new_timestamp(skb, &tv);
919 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
920 					 sizeof(tv), &tv);
921 			} else {
922 				struct __kernel_old_timeval tv;
923 
924 				skb_get_timestamp(skb, &tv);
925 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
926 					 sizeof(tv), &tv);
927 			}
928 		} else {
929 			if (new_tstamp) {
930 				struct __kernel_timespec ts;
931 
932 				skb_get_new_timestampns(skb, &ts);
933 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
934 					 sizeof(ts), &ts);
935 			} else {
936 				struct __kernel_old_timespec ts;
937 
938 				skb_get_timestampns(skb, &ts);
939 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
940 					 sizeof(ts), &ts);
941 			}
942 		}
943 	}
944 
945 	memset(&tss, 0, sizeof(tss));
946 	tsflags = READ_ONCE(sk->sk_tsflags);
947 	if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
948 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
949 		empty = 0;
950 	if (shhwtstamps &&
951 	    (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
952 	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
953 		if_index = 0;
954 		if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
955 			hwtstamp = get_timestamp(sk, skb, &if_index);
956 		else
957 			hwtstamp = shhwtstamps->hwtstamp;
958 
959 		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
960 			hwtstamp = ptp_convert_timestamp(&hwtstamp,
961 							 READ_ONCE(sk->sk_bind_phc));
962 
963 		if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
964 			empty = 0;
965 
966 			if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
967 			    !skb_is_err_queue(skb))
968 				put_ts_pktinfo(msg, skb, if_index);
969 		}
970 	}
971 	if (!empty) {
972 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
973 			put_cmsg_scm_timestamping64(msg, &tss);
974 		else
975 			put_cmsg_scm_timestamping(msg, &tss);
976 
977 		if (skb_is_err_queue(skb) && skb->len &&
978 		    SKB_EXT_ERR(skb)->opt_stats)
979 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
980 				 skb->len, skb->data);
981 	}
982 }
983 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
984 
985 #ifdef CONFIG_WIRELESS
986 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
987 	struct sk_buff *skb)
988 {
989 	int ack;
990 
991 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
992 		return;
993 	if (!skb->wifi_acked_valid)
994 		return;
995 
996 	ack = skb->wifi_acked;
997 
998 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
999 }
1000 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
1001 #endif
1002 
1003 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
1004 				   struct sk_buff *skb)
1005 {
1006 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
1007 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
1008 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
1009 }
1010 
1011 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
1012 			   struct sk_buff *skb)
1013 {
1014 	if (sock_flag(sk, SOCK_RCVMARK) && skb) {
1015 		/* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
1016 		__u32 mark = skb->mark;
1017 
1018 		put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
1019 	}
1020 }
1021 
1022 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1023 		       struct sk_buff *skb)
1024 {
1025 	sock_recv_timestamp(msg, sk, skb);
1026 	sock_recv_drops(msg, sk, skb);
1027 	sock_recv_mark(msg, sk, skb);
1028 }
1029 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1030 
1031 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1032 					   size_t, int));
1033 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1034 					    size_t, int));
1035 
1036 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1037 {
1038 	trace_sock_recv_length(sk, ret, flags);
1039 }
1040 
1041 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1042 				     int flags)
1043 {
1044 	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1045 				     inet6_recvmsg,
1046 				     inet_recvmsg, sock, msg,
1047 				     msg_data_left(msg), flags);
1048 	if (trace_sock_recv_length_enabled())
1049 		call_trace_sock_recv_length(sock->sk, ret, flags);
1050 	return ret;
1051 }
1052 
1053 /**
1054  *	sock_recvmsg - receive a message from @sock
1055  *	@sock: socket
1056  *	@msg: message to receive
1057  *	@flags: message flags
1058  *
1059  *	Receives @msg from @sock, passing through LSM. Returns the total number
1060  *	of bytes received, or an error.
1061  */
1062 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1063 {
1064 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1065 
1066 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
1067 }
1068 EXPORT_SYMBOL(sock_recvmsg);
1069 
1070 /**
1071  *	kernel_recvmsg - Receive a message from a socket (kernel space)
1072  *	@sock: The socket to receive the message from
1073  *	@msg: Received message
1074  *	@vec: Input s/g array for message data
1075  *	@num: Size of input s/g array
1076  *	@size: Number of bytes to read
1077  *	@flags: Message flags (MSG_DONTWAIT, etc...)
1078  *
1079  *	On return the msg structure contains the scatter/gather array passed in the
1080  *	vec argument. The array is modified so that it consists of the unfilled
1081  *	portion of the original array.
1082  *
1083  *	The returned value is the total number of bytes received, or an error.
1084  */
1085 
1086 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1087 		   struct kvec *vec, size_t num, size_t size, int flags)
1088 {
1089 	msg->msg_control_is_user = false;
1090 	iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1091 	return sock_recvmsg(sock, msg, flags);
1092 }
1093 EXPORT_SYMBOL(kernel_recvmsg);
1094 
1095 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1096 				struct pipe_inode_info *pipe, size_t len,
1097 				unsigned int flags)
1098 {
1099 	struct socket *sock = file->private_data;
1100 	const struct proto_ops *ops;
1101 
1102 	ops = READ_ONCE(sock->ops);
1103 	if (unlikely(!ops->splice_read))
1104 		return copy_splice_read(file, ppos, pipe, len, flags);
1105 
1106 	return ops->splice_read(sock, ppos, pipe, len, flags);
1107 }
1108 
1109 static void sock_splice_eof(struct file *file)
1110 {
1111 	struct socket *sock = file->private_data;
1112 	const struct proto_ops *ops;
1113 
1114 	ops = READ_ONCE(sock->ops);
1115 	if (ops->splice_eof)
1116 		ops->splice_eof(sock);
1117 }
1118 
1119 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1120 {
1121 	struct file *file = iocb->ki_filp;
1122 	struct socket *sock = file->private_data;
1123 	struct msghdr msg = {.msg_iter = *to,
1124 			     .msg_iocb = iocb};
1125 	ssize_t res;
1126 
1127 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1128 		msg.msg_flags = MSG_DONTWAIT;
1129 
1130 	if (iocb->ki_pos != 0)
1131 		return -ESPIPE;
1132 
1133 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1134 		return 0;
1135 
1136 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1137 	*to = msg.msg_iter;
1138 	return res;
1139 }
1140 
1141 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1142 {
1143 	struct file *file = iocb->ki_filp;
1144 	struct socket *sock = file->private_data;
1145 	struct msghdr msg = {.msg_iter = *from,
1146 			     .msg_iocb = iocb};
1147 	ssize_t res;
1148 
1149 	if (iocb->ki_pos != 0)
1150 		return -ESPIPE;
1151 
1152 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1153 		msg.msg_flags = MSG_DONTWAIT;
1154 
1155 	if (sock->type == SOCK_SEQPACKET)
1156 		msg.msg_flags |= MSG_EOR;
1157 
1158 	res = __sock_sendmsg(sock, &msg);
1159 	*from = msg.msg_iter;
1160 	return res;
1161 }
1162 
1163 /*
1164  * Atomic setting of ioctl hooks to avoid race
1165  * with module unload.
1166  */
1167 
1168 static DEFINE_MUTEX(br_ioctl_mutex);
1169 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1170 			    unsigned int cmd, struct ifreq *ifr,
1171 			    void __user *uarg);
1172 
1173 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1174 			     unsigned int cmd, struct ifreq *ifr,
1175 			     void __user *uarg))
1176 {
1177 	mutex_lock(&br_ioctl_mutex);
1178 	br_ioctl_hook = hook;
1179 	mutex_unlock(&br_ioctl_mutex);
1180 }
1181 EXPORT_SYMBOL(brioctl_set);
1182 
1183 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1184 		  struct ifreq *ifr, void __user *uarg)
1185 {
1186 	int err = -ENOPKG;
1187 
1188 	if (!br_ioctl_hook)
1189 		request_module("bridge");
1190 
1191 	mutex_lock(&br_ioctl_mutex);
1192 	if (br_ioctl_hook)
1193 		err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1194 	mutex_unlock(&br_ioctl_mutex);
1195 
1196 	return err;
1197 }
1198 
1199 static DEFINE_MUTEX(vlan_ioctl_mutex);
1200 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1201 
1202 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1203 {
1204 	mutex_lock(&vlan_ioctl_mutex);
1205 	vlan_ioctl_hook = hook;
1206 	mutex_unlock(&vlan_ioctl_mutex);
1207 }
1208 EXPORT_SYMBOL(vlan_ioctl_set);
1209 
1210 static long sock_do_ioctl(struct net *net, struct socket *sock,
1211 			  unsigned int cmd, unsigned long arg)
1212 {
1213 	const struct proto_ops *ops = READ_ONCE(sock->ops);
1214 	struct ifreq ifr;
1215 	bool need_copyout;
1216 	int err;
1217 	void __user *argp = (void __user *)arg;
1218 	void __user *data;
1219 
1220 	err = ops->ioctl(sock, cmd, arg);
1221 
1222 	/*
1223 	 * If this ioctl is unknown try to hand it down
1224 	 * to the NIC driver.
1225 	 */
1226 	if (err != -ENOIOCTLCMD)
1227 		return err;
1228 
1229 	if (!is_socket_ioctl_cmd(cmd))
1230 		return -ENOTTY;
1231 
1232 	if (get_user_ifreq(&ifr, &data, argp))
1233 		return -EFAULT;
1234 	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1235 	if (!err && need_copyout)
1236 		if (put_user_ifreq(&ifr, argp))
1237 			return -EFAULT;
1238 
1239 	return err;
1240 }
1241 
1242 /*
1243  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1244  *	what to do with it - that's up to the protocol still.
1245  */
1246 
1247 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1248 {
1249 	const struct proto_ops  *ops;
1250 	struct socket *sock;
1251 	struct sock *sk;
1252 	void __user *argp = (void __user *)arg;
1253 	int pid, err;
1254 	struct net *net;
1255 
1256 	sock = file->private_data;
1257 	ops = READ_ONCE(sock->ops);
1258 	sk = sock->sk;
1259 	net = sock_net(sk);
1260 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1261 		struct ifreq ifr;
1262 		void __user *data;
1263 		bool need_copyout;
1264 		if (get_user_ifreq(&ifr, &data, argp))
1265 			return -EFAULT;
1266 		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1267 		if (!err && need_copyout)
1268 			if (put_user_ifreq(&ifr, argp))
1269 				return -EFAULT;
1270 	} else
1271 #ifdef CONFIG_WEXT_CORE
1272 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1273 		err = wext_handle_ioctl(net, cmd, argp);
1274 	} else
1275 #endif
1276 		switch (cmd) {
1277 		case FIOSETOWN:
1278 		case SIOCSPGRP:
1279 			err = -EFAULT;
1280 			if (get_user(pid, (int __user *)argp))
1281 				break;
1282 			err = f_setown(sock->file, pid, 1);
1283 			break;
1284 		case FIOGETOWN:
1285 		case SIOCGPGRP:
1286 			err = put_user(f_getown(sock->file),
1287 				       (int __user *)argp);
1288 			break;
1289 		case SIOCGIFBR:
1290 		case SIOCSIFBR:
1291 		case SIOCBRADDBR:
1292 		case SIOCBRDELBR:
1293 			err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1294 			break;
1295 		case SIOCGIFVLAN:
1296 		case SIOCSIFVLAN:
1297 			err = -ENOPKG;
1298 			if (!vlan_ioctl_hook)
1299 				request_module("8021q");
1300 
1301 			mutex_lock(&vlan_ioctl_mutex);
1302 			if (vlan_ioctl_hook)
1303 				err = vlan_ioctl_hook(net, argp);
1304 			mutex_unlock(&vlan_ioctl_mutex);
1305 			break;
1306 		case SIOCGSKNS:
1307 			err = -EPERM;
1308 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1309 				break;
1310 
1311 			err = open_related_ns(&net->ns, get_net_ns);
1312 			break;
1313 		case SIOCGSTAMP_OLD:
1314 		case SIOCGSTAMPNS_OLD:
1315 			if (!ops->gettstamp) {
1316 				err = -ENOIOCTLCMD;
1317 				break;
1318 			}
1319 			err = ops->gettstamp(sock, argp,
1320 					     cmd == SIOCGSTAMP_OLD,
1321 					     !IS_ENABLED(CONFIG_64BIT));
1322 			break;
1323 		case SIOCGSTAMP_NEW:
1324 		case SIOCGSTAMPNS_NEW:
1325 			if (!ops->gettstamp) {
1326 				err = -ENOIOCTLCMD;
1327 				break;
1328 			}
1329 			err = ops->gettstamp(sock, argp,
1330 					     cmd == SIOCGSTAMP_NEW,
1331 					     false);
1332 			break;
1333 
1334 		case SIOCGIFCONF:
1335 			err = dev_ifconf(net, argp);
1336 			break;
1337 
1338 		default:
1339 			err = sock_do_ioctl(net, sock, cmd, arg);
1340 			break;
1341 		}
1342 	return err;
1343 }
1344 
1345 /**
1346  *	sock_create_lite - creates a socket
1347  *	@family: protocol family (AF_INET, ...)
1348  *	@type: communication type (SOCK_STREAM, ...)
1349  *	@protocol: protocol (0, ...)
1350  *	@res: new socket
1351  *
1352  *	Creates a new socket and assigns it to @res, passing through LSM.
1353  *	The new socket initialization is not complete, see kernel_accept().
1354  *	Returns 0 or an error. On failure @res is set to %NULL.
1355  *	This function internally uses GFP_KERNEL.
1356  */
1357 
1358 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1359 {
1360 	int err;
1361 	struct socket *sock = NULL;
1362 
1363 	err = security_socket_create(family, type, protocol, 1);
1364 	if (err)
1365 		goto out;
1366 
1367 	sock = sock_alloc();
1368 	if (!sock) {
1369 		err = -ENOMEM;
1370 		goto out;
1371 	}
1372 
1373 	sock->type = type;
1374 	err = security_socket_post_create(sock, family, type, protocol, 1);
1375 	if (err)
1376 		goto out_release;
1377 
1378 out:
1379 	*res = sock;
1380 	return err;
1381 out_release:
1382 	sock_release(sock);
1383 	sock = NULL;
1384 	goto out;
1385 }
1386 EXPORT_SYMBOL(sock_create_lite);
1387 
1388 /* No kernel lock held - perfect */
1389 static __poll_t sock_poll(struct file *file, poll_table *wait)
1390 {
1391 	struct socket *sock = file->private_data;
1392 	const struct proto_ops *ops = READ_ONCE(sock->ops);
1393 	__poll_t events = poll_requested_events(wait), flag = 0;
1394 
1395 	if (!ops->poll)
1396 		return 0;
1397 
1398 	if (sk_can_busy_loop(sock->sk)) {
1399 		/* poll once if requested by the syscall */
1400 		if (events & POLL_BUSY_LOOP)
1401 			sk_busy_loop(sock->sk, 1);
1402 
1403 		/* if this socket can poll_ll, tell the system call */
1404 		flag = POLL_BUSY_LOOP;
1405 	}
1406 
1407 	return ops->poll(file, sock, wait) | flag;
1408 }
1409 
1410 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1411 {
1412 	struct socket *sock = file->private_data;
1413 
1414 	return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1415 }
1416 
1417 static int sock_close(struct inode *inode, struct file *filp)
1418 {
1419 	__sock_release(SOCKET_I(inode), inode);
1420 	return 0;
1421 }
1422 
1423 /*
1424  *	Update the socket async list
1425  *
1426  *	Fasync_list locking strategy.
1427  *
1428  *	1. fasync_list is modified only under process context socket lock
1429  *	   i.e. under semaphore.
1430  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1431  *	   or under socket lock
1432  */
1433 
1434 static int sock_fasync(int fd, struct file *filp, int on)
1435 {
1436 	struct socket *sock = filp->private_data;
1437 	struct sock *sk = sock->sk;
1438 	struct socket_wq *wq = &sock->wq;
1439 
1440 	if (sk == NULL)
1441 		return -EINVAL;
1442 
1443 	lock_sock(sk);
1444 	fasync_helper(fd, filp, on, &wq->fasync_list);
1445 
1446 	if (!wq->fasync_list)
1447 		sock_reset_flag(sk, SOCK_FASYNC);
1448 	else
1449 		sock_set_flag(sk, SOCK_FASYNC);
1450 
1451 	release_sock(sk);
1452 	return 0;
1453 }
1454 
1455 /* This function may be called only under rcu_lock */
1456 
1457 int sock_wake_async(struct socket_wq *wq, int how, int band)
1458 {
1459 	if (!wq || !wq->fasync_list)
1460 		return -1;
1461 
1462 	switch (how) {
1463 	case SOCK_WAKE_WAITD:
1464 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1465 			break;
1466 		goto call_kill;
1467 	case SOCK_WAKE_SPACE:
1468 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1469 			break;
1470 		fallthrough;
1471 	case SOCK_WAKE_IO:
1472 call_kill:
1473 		kill_fasync(&wq->fasync_list, SIGIO, band);
1474 		break;
1475 	case SOCK_WAKE_URG:
1476 		kill_fasync(&wq->fasync_list, SIGURG, band);
1477 	}
1478 
1479 	return 0;
1480 }
1481 EXPORT_SYMBOL(sock_wake_async);
1482 
1483 /**
1484  *	__sock_create - creates a socket
1485  *	@net: net namespace
1486  *	@family: protocol family (AF_INET, ...)
1487  *	@type: communication type (SOCK_STREAM, ...)
1488  *	@protocol: protocol (0, ...)
1489  *	@res: new socket
1490  *	@kern: boolean for kernel space sockets
1491  *
1492  *	Creates a new socket and assigns it to @res, passing through LSM.
1493  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1494  *	be set to true if the socket resides in kernel space.
1495  *	This function internally uses GFP_KERNEL.
1496  */
1497 
1498 int __sock_create(struct net *net, int family, int type, int protocol,
1499 			 struct socket **res, int kern)
1500 {
1501 	int err;
1502 	struct socket *sock;
1503 	const struct net_proto_family *pf;
1504 
1505 	/*
1506 	 *      Check protocol is in range
1507 	 */
1508 	if (family < 0 || family >= NPROTO)
1509 		return -EAFNOSUPPORT;
1510 	if (type < 0 || type >= SOCK_MAX)
1511 		return -EINVAL;
1512 
1513 	/* Compatibility.
1514 
1515 	   This uglymoron is moved from INET layer to here to avoid
1516 	   deadlock in module load.
1517 	 */
1518 	if (family == PF_INET && type == SOCK_PACKET) {
1519 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1520 			     current->comm);
1521 		family = PF_PACKET;
1522 	}
1523 
1524 	err = security_socket_create(family, type, protocol, kern);
1525 	if (err)
1526 		return err;
1527 
1528 	/*
1529 	 *	Allocate the socket and allow the family to set things up. if
1530 	 *	the protocol is 0, the family is instructed to select an appropriate
1531 	 *	default.
1532 	 */
1533 	sock = sock_alloc();
1534 	if (!sock) {
1535 		net_warn_ratelimited("socket: no more sockets\n");
1536 		return -ENFILE;	/* Not exactly a match, but its the
1537 				   closest posix thing */
1538 	}
1539 
1540 	sock->type = type;
1541 
1542 #ifdef CONFIG_MODULES
1543 	/* Attempt to load a protocol module if the find failed.
1544 	 *
1545 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1546 	 * requested real, full-featured networking support upon configuration.
1547 	 * Otherwise module support will break!
1548 	 */
1549 	if (rcu_access_pointer(net_families[family]) == NULL)
1550 		request_module("net-pf-%d", family);
1551 #endif
1552 
1553 	rcu_read_lock();
1554 	pf = rcu_dereference(net_families[family]);
1555 	err = -EAFNOSUPPORT;
1556 	if (!pf)
1557 		goto out_release;
1558 
1559 	/*
1560 	 * We will call the ->create function, that possibly is in a loadable
1561 	 * module, so we have to bump that loadable module refcnt first.
1562 	 */
1563 	if (!try_module_get(pf->owner))
1564 		goto out_release;
1565 
1566 	/* Now protected by module ref count */
1567 	rcu_read_unlock();
1568 
1569 	err = pf->create(net, sock, protocol, kern);
1570 	if (err < 0)
1571 		goto out_module_put;
1572 
1573 	/*
1574 	 * Now to bump the refcnt of the [loadable] module that owns this
1575 	 * socket at sock_release time we decrement its refcnt.
1576 	 */
1577 	if (!try_module_get(sock->ops->owner))
1578 		goto out_module_busy;
1579 
1580 	/*
1581 	 * Now that we're done with the ->create function, the [loadable]
1582 	 * module can have its refcnt decremented
1583 	 */
1584 	module_put(pf->owner);
1585 	err = security_socket_post_create(sock, family, type, protocol, kern);
1586 	if (err)
1587 		goto out_sock_release;
1588 	*res = sock;
1589 
1590 	return 0;
1591 
1592 out_module_busy:
1593 	err = -EAFNOSUPPORT;
1594 out_module_put:
1595 	sock->ops = NULL;
1596 	module_put(pf->owner);
1597 out_sock_release:
1598 	sock_release(sock);
1599 	return err;
1600 
1601 out_release:
1602 	rcu_read_unlock();
1603 	goto out_sock_release;
1604 }
1605 EXPORT_SYMBOL(__sock_create);
1606 
1607 /**
1608  *	sock_create - creates a socket
1609  *	@family: protocol family (AF_INET, ...)
1610  *	@type: communication type (SOCK_STREAM, ...)
1611  *	@protocol: protocol (0, ...)
1612  *	@res: new socket
1613  *
1614  *	A wrapper around __sock_create().
1615  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1616  */
1617 
1618 int sock_create(int family, int type, int protocol, struct socket **res)
1619 {
1620 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1621 }
1622 EXPORT_SYMBOL(sock_create);
1623 
1624 /**
1625  *	sock_create_kern - creates a socket (kernel space)
1626  *	@net: net namespace
1627  *	@family: protocol family (AF_INET, ...)
1628  *	@type: communication type (SOCK_STREAM, ...)
1629  *	@protocol: protocol (0, ...)
1630  *	@res: new socket
1631  *
1632  *	A wrapper around __sock_create().
1633  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1634  */
1635 
1636 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1637 {
1638 	return __sock_create(net, family, type, protocol, res, 1);
1639 }
1640 EXPORT_SYMBOL(sock_create_kern);
1641 
1642 static struct socket *__sys_socket_create(int family, int type, int protocol)
1643 {
1644 	struct socket *sock;
1645 	int retval;
1646 
1647 	/* Check the SOCK_* constants for consistency.  */
1648 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1649 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1650 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1651 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1652 
1653 	if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1654 		return ERR_PTR(-EINVAL);
1655 	type &= SOCK_TYPE_MASK;
1656 
1657 	retval = sock_create(family, type, protocol, &sock);
1658 	if (retval < 0)
1659 		return ERR_PTR(retval);
1660 
1661 	return sock;
1662 }
1663 
1664 struct file *__sys_socket_file(int family, int type, int protocol)
1665 {
1666 	struct socket *sock;
1667 	int flags;
1668 
1669 	sock = __sys_socket_create(family, type, protocol);
1670 	if (IS_ERR(sock))
1671 		return ERR_CAST(sock);
1672 
1673 	flags = type & ~SOCK_TYPE_MASK;
1674 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1675 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1676 
1677 	return sock_alloc_file(sock, flags, NULL);
1678 }
1679 
1680 /*	A hook for bpf progs to attach to and update socket protocol.
1681  *
1682  *	A static noinline declaration here could cause the compiler to
1683  *	optimize away the function. A global noinline declaration will
1684  *	keep the definition, but may optimize away the callsite.
1685  *	Therefore, __weak is needed to ensure that the call is still
1686  *	emitted, by telling the compiler that we don't know what the
1687  *	function might eventually be.
1688  */
1689 
1690 __bpf_hook_start();
1691 
1692 __weak noinline int update_socket_protocol(int family, int type, int protocol)
1693 {
1694 	return protocol;
1695 }
1696 
1697 __bpf_hook_end();
1698 
1699 int __sys_socket(int family, int type, int protocol)
1700 {
1701 	struct socket *sock;
1702 	int flags;
1703 
1704 	sock = __sys_socket_create(family, type,
1705 				   update_socket_protocol(family, type, protocol));
1706 	if (IS_ERR(sock))
1707 		return PTR_ERR(sock);
1708 
1709 	flags = type & ~SOCK_TYPE_MASK;
1710 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1711 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1712 
1713 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1714 }
1715 
1716 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1717 {
1718 	return __sys_socket(family, type, protocol);
1719 }
1720 
1721 /*
1722  *	Create a pair of connected sockets.
1723  */
1724 
1725 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1726 {
1727 	struct socket *sock1, *sock2;
1728 	int fd1, fd2, err;
1729 	struct file *newfile1, *newfile2;
1730 	int flags;
1731 
1732 	flags = type & ~SOCK_TYPE_MASK;
1733 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1734 		return -EINVAL;
1735 	type &= SOCK_TYPE_MASK;
1736 
1737 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1738 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1739 
1740 	/*
1741 	 * reserve descriptors and make sure we won't fail
1742 	 * to return them to userland.
1743 	 */
1744 	fd1 = get_unused_fd_flags(flags);
1745 	if (unlikely(fd1 < 0))
1746 		return fd1;
1747 
1748 	fd2 = get_unused_fd_flags(flags);
1749 	if (unlikely(fd2 < 0)) {
1750 		put_unused_fd(fd1);
1751 		return fd2;
1752 	}
1753 
1754 	err = put_user(fd1, &usockvec[0]);
1755 	if (err)
1756 		goto out;
1757 
1758 	err = put_user(fd2, &usockvec[1]);
1759 	if (err)
1760 		goto out;
1761 
1762 	/*
1763 	 * Obtain the first socket and check if the underlying protocol
1764 	 * supports the socketpair call.
1765 	 */
1766 
1767 	err = sock_create(family, type, protocol, &sock1);
1768 	if (unlikely(err < 0))
1769 		goto out;
1770 
1771 	err = sock_create(family, type, protocol, &sock2);
1772 	if (unlikely(err < 0)) {
1773 		sock_release(sock1);
1774 		goto out;
1775 	}
1776 
1777 	err = security_socket_socketpair(sock1, sock2);
1778 	if (unlikely(err)) {
1779 		sock_release(sock2);
1780 		sock_release(sock1);
1781 		goto out;
1782 	}
1783 
1784 	err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1785 	if (unlikely(err < 0)) {
1786 		sock_release(sock2);
1787 		sock_release(sock1);
1788 		goto out;
1789 	}
1790 
1791 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1792 	if (IS_ERR(newfile1)) {
1793 		err = PTR_ERR(newfile1);
1794 		sock_release(sock2);
1795 		goto out;
1796 	}
1797 
1798 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1799 	if (IS_ERR(newfile2)) {
1800 		err = PTR_ERR(newfile2);
1801 		fput(newfile1);
1802 		goto out;
1803 	}
1804 
1805 	audit_fd_pair(fd1, fd2);
1806 
1807 	fd_install(fd1, newfile1);
1808 	fd_install(fd2, newfile2);
1809 	return 0;
1810 
1811 out:
1812 	put_unused_fd(fd2);
1813 	put_unused_fd(fd1);
1814 	return err;
1815 }
1816 
1817 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1818 		int __user *, usockvec)
1819 {
1820 	return __sys_socketpair(family, type, protocol, usockvec);
1821 }
1822 
1823 /*
1824  *	Bind a name to a socket. Nothing much to do here since it's
1825  *	the protocol's responsibility to handle the local address.
1826  *
1827  *	We move the socket address to kernel space before we call
1828  *	the protocol layer (having also checked the address is ok).
1829  */
1830 
1831 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1832 {
1833 	struct socket *sock;
1834 	struct sockaddr_storage address;
1835 	int err, fput_needed;
1836 
1837 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1838 	if (sock) {
1839 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1840 		if (!err) {
1841 			err = security_socket_bind(sock,
1842 						   (struct sockaddr *)&address,
1843 						   addrlen);
1844 			if (!err)
1845 				err = READ_ONCE(sock->ops)->bind(sock,
1846 						      (struct sockaddr *)
1847 						      &address, addrlen);
1848 		}
1849 		fput_light(sock->file, fput_needed);
1850 	}
1851 	return err;
1852 }
1853 
1854 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1855 {
1856 	return __sys_bind(fd, umyaddr, addrlen);
1857 }
1858 
1859 /*
1860  *	Perform a listen. Basically, we allow the protocol to do anything
1861  *	necessary for a listen, and if that works, we mark the socket as
1862  *	ready for listening.
1863  */
1864 
1865 int __sys_listen(int fd, int backlog)
1866 {
1867 	struct socket *sock;
1868 	int err, fput_needed;
1869 	int somaxconn;
1870 
1871 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1872 	if (sock) {
1873 		somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1874 		if ((unsigned int)backlog > somaxconn)
1875 			backlog = somaxconn;
1876 
1877 		err = security_socket_listen(sock, backlog);
1878 		if (!err)
1879 			err = READ_ONCE(sock->ops)->listen(sock, backlog);
1880 
1881 		fput_light(sock->file, fput_needed);
1882 	}
1883 	return err;
1884 }
1885 
1886 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1887 {
1888 	return __sys_listen(fd, backlog);
1889 }
1890 
1891 struct file *do_accept(struct file *file, unsigned file_flags,
1892 		       struct sockaddr __user *upeer_sockaddr,
1893 		       int __user *upeer_addrlen, int flags)
1894 {
1895 	struct socket *sock, *newsock;
1896 	struct file *newfile;
1897 	int err, len;
1898 	struct sockaddr_storage address;
1899 	const struct proto_ops *ops;
1900 
1901 	sock = sock_from_file(file);
1902 	if (!sock)
1903 		return ERR_PTR(-ENOTSOCK);
1904 
1905 	newsock = sock_alloc();
1906 	if (!newsock)
1907 		return ERR_PTR(-ENFILE);
1908 	ops = READ_ONCE(sock->ops);
1909 
1910 	newsock->type = sock->type;
1911 	newsock->ops = ops;
1912 
1913 	/*
1914 	 * We don't need try_module_get here, as the listening socket (sock)
1915 	 * has the protocol module (sock->ops->owner) held.
1916 	 */
1917 	__module_get(ops->owner);
1918 
1919 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1920 	if (IS_ERR(newfile))
1921 		return newfile;
1922 
1923 	err = security_socket_accept(sock, newsock);
1924 	if (err)
1925 		goto out_fd;
1926 
1927 	err = ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1928 					false);
1929 	if (err < 0)
1930 		goto out_fd;
1931 
1932 	if (upeer_sockaddr) {
1933 		len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1934 		if (len < 0) {
1935 			err = -ECONNABORTED;
1936 			goto out_fd;
1937 		}
1938 		err = move_addr_to_user(&address,
1939 					len, upeer_sockaddr, upeer_addrlen);
1940 		if (err < 0)
1941 			goto out_fd;
1942 	}
1943 
1944 	/* File flags are not inherited via accept() unlike another OSes. */
1945 	return newfile;
1946 out_fd:
1947 	fput(newfile);
1948 	return ERR_PTR(err);
1949 }
1950 
1951 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1952 			      int __user *upeer_addrlen, int flags)
1953 {
1954 	struct file *newfile;
1955 	int newfd;
1956 
1957 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1958 		return -EINVAL;
1959 
1960 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1961 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1962 
1963 	newfd = get_unused_fd_flags(flags);
1964 	if (unlikely(newfd < 0))
1965 		return newfd;
1966 
1967 	newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen,
1968 			    flags);
1969 	if (IS_ERR(newfile)) {
1970 		put_unused_fd(newfd);
1971 		return PTR_ERR(newfile);
1972 	}
1973 	fd_install(newfd, newfile);
1974 	return newfd;
1975 }
1976 
1977 /*
1978  *	For accept, we attempt to create a new socket, set up the link
1979  *	with the client, wake up the client, then return the new
1980  *	connected fd. We collect the address of the connector in kernel
1981  *	space and move it to user at the very end. This is unclean because
1982  *	we open the socket then return an error.
1983  *
1984  *	1003.1g adds the ability to recvmsg() to query connection pending
1985  *	status to recvmsg. We need to add that support in a way thats
1986  *	clean when we restructure accept also.
1987  */
1988 
1989 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1990 		  int __user *upeer_addrlen, int flags)
1991 {
1992 	int ret = -EBADF;
1993 	struct fd f;
1994 
1995 	f = fdget(fd);
1996 	if (f.file) {
1997 		ret = __sys_accept4_file(f.file, upeer_sockaddr,
1998 					 upeer_addrlen, flags);
1999 		fdput(f);
2000 	}
2001 
2002 	return ret;
2003 }
2004 
2005 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
2006 		int __user *, upeer_addrlen, int, flags)
2007 {
2008 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
2009 }
2010 
2011 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
2012 		int __user *, upeer_addrlen)
2013 {
2014 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
2015 }
2016 
2017 /*
2018  *	Attempt to connect to a socket with the server address.  The address
2019  *	is in user space so we verify it is OK and move it to kernel space.
2020  *
2021  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2022  *	break bindings
2023  *
2024  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2025  *	other SEQPACKET protocols that take time to connect() as it doesn't
2026  *	include the -EINPROGRESS status for such sockets.
2027  */
2028 
2029 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2030 		       int addrlen, int file_flags)
2031 {
2032 	struct socket *sock;
2033 	int err;
2034 
2035 	sock = sock_from_file(file);
2036 	if (!sock) {
2037 		err = -ENOTSOCK;
2038 		goto out;
2039 	}
2040 
2041 	err =
2042 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2043 	if (err)
2044 		goto out;
2045 
2046 	err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address,
2047 				addrlen, sock->file->f_flags | file_flags);
2048 out:
2049 	return err;
2050 }
2051 
2052 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2053 {
2054 	int ret = -EBADF;
2055 	struct fd f;
2056 
2057 	f = fdget(fd);
2058 	if (f.file) {
2059 		struct sockaddr_storage address;
2060 
2061 		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2062 		if (!ret)
2063 			ret = __sys_connect_file(f.file, &address, addrlen, 0);
2064 		fdput(f);
2065 	}
2066 
2067 	return ret;
2068 }
2069 
2070 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2071 		int, addrlen)
2072 {
2073 	return __sys_connect(fd, uservaddr, addrlen);
2074 }
2075 
2076 /*
2077  *	Get the local address ('name') of a socket object. Move the obtained
2078  *	name to user space.
2079  */
2080 
2081 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2082 		      int __user *usockaddr_len)
2083 {
2084 	struct socket *sock;
2085 	struct sockaddr_storage address;
2086 	int err, fput_needed;
2087 
2088 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2089 	if (!sock)
2090 		goto out;
2091 
2092 	err = security_socket_getsockname(sock);
2093 	if (err)
2094 		goto out_put;
2095 
2096 	err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0);
2097 	if (err < 0)
2098 		goto out_put;
2099 	/* "err" is actually length in this case */
2100 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2101 
2102 out_put:
2103 	fput_light(sock->file, fput_needed);
2104 out:
2105 	return err;
2106 }
2107 
2108 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2109 		int __user *, usockaddr_len)
2110 {
2111 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
2112 }
2113 
2114 /*
2115  *	Get the remote address ('name') of a socket object. Move the obtained
2116  *	name to user space.
2117  */
2118 
2119 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2120 		      int __user *usockaddr_len)
2121 {
2122 	struct socket *sock;
2123 	struct sockaddr_storage address;
2124 	int err, fput_needed;
2125 
2126 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2127 	if (sock != NULL) {
2128 		const struct proto_ops *ops = READ_ONCE(sock->ops);
2129 
2130 		err = security_socket_getpeername(sock);
2131 		if (err) {
2132 			fput_light(sock->file, fput_needed);
2133 			return err;
2134 		}
2135 
2136 		err = ops->getname(sock, (struct sockaddr *)&address, 1);
2137 		if (err >= 0)
2138 			/* "err" is actually length in this case */
2139 			err = move_addr_to_user(&address, err, usockaddr,
2140 						usockaddr_len);
2141 		fput_light(sock->file, fput_needed);
2142 	}
2143 	return err;
2144 }
2145 
2146 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2147 		int __user *, usockaddr_len)
2148 {
2149 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
2150 }
2151 
2152 /*
2153  *	Send a datagram to a given address. We move the address into kernel
2154  *	space and check the user space data area is readable before invoking
2155  *	the protocol.
2156  */
2157 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2158 		 struct sockaddr __user *addr,  int addr_len)
2159 {
2160 	struct socket *sock;
2161 	struct sockaddr_storage address;
2162 	int err;
2163 	struct msghdr msg;
2164 	struct iovec iov;
2165 	int fput_needed;
2166 
2167 	err = import_single_range(ITER_SOURCE, buff, len, &iov, &msg.msg_iter);
2168 	if (unlikely(err))
2169 		return err;
2170 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2171 	if (!sock)
2172 		goto out;
2173 
2174 	msg.msg_name = NULL;
2175 	msg.msg_control = NULL;
2176 	msg.msg_controllen = 0;
2177 	msg.msg_namelen = 0;
2178 	msg.msg_ubuf = NULL;
2179 	if (addr) {
2180 		err = move_addr_to_kernel(addr, addr_len, &address);
2181 		if (err < 0)
2182 			goto out_put;
2183 		msg.msg_name = (struct sockaddr *)&address;
2184 		msg.msg_namelen = addr_len;
2185 	}
2186 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2187 	if (sock->file->f_flags & O_NONBLOCK)
2188 		flags |= MSG_DONTWAIT;
2189 	msg.msg_flags = flags;
2190 	err = __sock_sendmsg(sock, &msg);
2191 
2192 out_put:
2193 	fput_light(sock->file, fput_needed);
2194 out:
2195 	return err;
2196 }
2197 
2198 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2199 		unsigned int, flags, struct sockaddr __user *, addr,
2200 		int, addr_len)
2201 {
2202 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2203 }
2204 
2205 /*
2206  *	Send a datagram down a socket.
2207  */
2208 
2209 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2210 		unsigned int, flags)
2211 {
2212 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2213 }
2214 
2215 /*
2216  *	Receive a frame from the socket and optionally record the address of the
2217  *	sender. We verify the buffers are writable and if needed move the
2218  *	sender address from kernel to user space.
2219  */
2220 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2221 		   struct sockaddr __user *addr, int __user *addr_len)
2222 {
2223 	struct sockaddr_storage address;
2224 	struct msghdr msg = {
2225 		/* Save some cycles and don't copy the address if not needed */
2226 		.msg_name = addr ? (struct sockaddr *)&address : NULL,
2227 	};
2228 	struct socket *sock;
2229 	struct iovec iov;
2230 	int err, err2;
2231 	int fput_needed;
2232 
2233 	err = import_single_range(ITER_DEST, ubuf, size, &iov, &msg.msg_iter);
2234 	if (unlikely(err))
2235 		return err;
2236 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2237 	if (!sock)
2238 		goto out;
2239 
2240 	if (sock->file->f_flags & O_NONBLOCK)
2241 		flags |= MSG_DONTWAIT;
2242 	err = sock_recvmsg(sock, &msg, flags);
2243 
2244 	if (err >= 0 && addr != NULL) {
2245 		err2 = move_addr_to_user(&address,
2246 					 msg.msg_namelen, addr, addr_len);
2247 		if (err2 < 0)
2248 			err = err2;
2249 	}
2250 
2251 	fput_light(sock->file, fput_needed);
2252 out:
2253 	return err;
2254 }
2255 
2256 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2257 		unsigned int, flags, struct sockaddr __user *, addr,
2258 		int __user *, addr_len)
2259 {
2260 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2261 }
2262 
2263 /*
2264  *	Receive a datagram from a socket.
2265  */
2266 
2267 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2268 		unsigned int, flags)
2269 {
2270 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2271 }
2272 
2273 static bool sock_use_custom_sol_socket(const struct socket *sock)
2274 {
2275 	return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2276 }
2277 
2278 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
2279 		       int optname, sockptr_t optval, int optlen)
2280 {
2281 	const struct proto_ops *ops;
2282 	char *kernel_optval = NULL;
2283 	int err;
2284 
2285 	if (optlen < 0)
2286 		return -EINVAL;
2287 
2288 	err = security_socket_setsockopt(sock, level, optname);
2289 	if (err)
2290 		goto out_put;
2291 
2292 	if (!compat)
2293 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2294 						     optval, &optlen,
2295 						     &kernel_optval);
2296 	if (err < 0)
2297 		goto out_put;
2298 	if (err > 0) {
2299 		err = 0;
2300 		goto out_put;
2301 	}
2302 
2303 	if (kernel_optval)
2304 		optval = KERNEL_SOCKPTR(kernel_optval);
2305 	ops = READ_ONCE(sock->ops);
2306 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2307 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2308 	else if (unlikely(!ops->setsockopt))
2309 		err = -EOPNOTSUPP;
2310 	else
2311 		err = ops->setsockopt(sock, level, optname, optval,
2312 					    optlen);
2313 	kfree(kernel_optval);
2314 out_put:
2315 	return err;
2316 }
2317 EXPORT_SYMBOL(do_sock_setsockopt);
2318 
2319 /* Set a socket option. Because we don't know the option lengths we have
2320  * to pass the user mode parameter for the protocols to sort out.
2321  */
2322 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2323 		     int optlen)
2324 {
2325 	sockptr_t optval = USER_SOCKPTR(user_optval);
2326 	bool compat = in_compat_syscall();
2327 	int err, fput_needed;
2328 	struct socket *sock;
2329 
2330 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2331 	if (!sock)
2332 		return err;
2333 
2334 	err = do_sock_setsockopt(sock, compat, level, optname, optval, optlen);
2335 
2336 	fput_light(sock->file, fput_needed);
2337 	return err;
2338 }
2339 
2340 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2341 		char __user *, optval, int, optlen)
2342 {
2343 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2344 }
2345 
2346 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2347 							 int optname));
2348 
2349 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
2350 		       int optname, sockptr_t optval, sockptr_t optlen)
2351 {
2352 	int max_optlen __maybe_unused;
2353 	const struct proto_ops *ops;
2354 	int err;
2355 
2356 	err = security_socket_getsockopt(sock, level, optname);
2357 	if (err)
2358 		return err;
2359 
2360 	if (!compat)
2361 		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2362 
2363 	ops = READ_ONCE(sock->ops);
2364 	if (level == SOL_SOCKET) {
2365 		err = sk_getsockopt(sock->sk, level, optname, optval, optlen);
2366 	} else if (unlikely(!ops->getsockopt)) {
2367 		err = -EOPNOTSUPP;
2368 	} else {
2369 		if (WARN_ONCE(optval.is_kernel || optlen.is_kernel,
2370 			      "Invalid argument type"))
2371 			return -EOPNOTSUPP;
2372 
2373 		err = ops->getsockopt(sock, level, optname, optval.user,
2374 				      optlen.user);
2375 	}
2376 
2377 	if (!compat)
2378 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2379 						     optval, optlen, max_optlen,
2380 						     err);
2381 
2382 	return err;
2383 }
2384 EXPORT_SYMBOL(do_sock_getsockopt);
2385 
2386 /*
2387  *	Get a socket option. Because we don't know the option lengths we have
2388  *	to pass a user mode parameter for the protocols to sort out.
2389  */
2390 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2391 		int __user *optlen)
2392 {
2393 	int err, fput_needed;
2394 	struct socket *sock;
2395 	bool compat;
2396 
2397 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2398 	if (!sock)
2399 		return err;
2400 
2401 	compat = in_compat_syscall();
2402 	err = do_sock_getsockopt(sock, compat, level, optname,
2403 				 USER_SOCKPTR(optval), USER_SOCKPTR(optlen));
2404 
2405 	fput_light(sock->file, fput_needed);
2406 	return err;
2407 }
2408 
2409 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2410 		char __user *, optval, int __user *, optlen)
2411 {
2412 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2413 }
2414 
2415 /*
2416  *	Shutdown a socket.
2417  */
2418 
2419 int __sys_shutdown_sock(struct socket *sock, int how)
2420 {
2421 	int err;
2422 
2423 	err = security_socket_shutdown(sock, how);
2424 	if (!err)
2425 		err = READ_ONCE(sock->ops)->shutdown(sock, how);
2426 
2427 	return err;
2428 }
2429 
2430 int __sys_shutdown(int fd, int how)
2431 {
2432 	int err, fput_needed;
2433 	struct socket *sock;
2434 
2435 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2436 	if (sock != NULL) {
2437 		err = __sys_shutdown_sock(sock, how);
2438 		fput_light(sock->file, fput_needed);
2439 	}
2440 	return err;
2441 }
2442 
2443 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2444 {
2445 	return __sys_shutdown(fd, how);
2446 }
2447 
2448 /* A couple of helpful macros for getting the address of the 32/64 bit
2449  * fields which are the same type (int / unsigned) on our platforms.
2450  */
2451 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2452 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2453 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2454 
2455 struct used_address {
2456 	struct sockaddr_storage name;
2457 	unsigned int name_len;
2458 };
2459 
2460 int __copy_msghdr(struct msghdr *kmsg,
2461 		  struct user_msghdr *msg,
2462 		  struct sockaddr __user **save_addr)
2463 {
2464 	ssize_t err;
2465 
2466 	kmsg->msg_control_is_user = true;
2467 	kmsg->msg_get_inq = 0;
2468 	kmsg->msg_control_user = msg->msg_control;
2469 	kmsg->msg_controllen = msg->msg_controllen;
2470 	kmsg->msg_flags = msg->msg_flags;
2471 
2472 	kmsg->msg_namelen = msg->msg_namelen;
2473 	if (!msg->msg_name)
2474 		kmsg->msg_namelen = 0;
2475 
2476 	if (kmsg->msg_namelen < 0)
2477 		return -EINVAL;
2478 
2479 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2480 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2481 
2482 	if (save_addr)
2483 		*save_addr = msg->msg_name;
2484 
2485 	if (msg->msg_name && kmsg->msg_namelen) {
2486 		if (!save_addr) {
2487 			err = move_addr_to_kernel(msg->msg_name,
2488 						  kmsg->msg_namelen,
2489 						  kmsg->msg_name);
2490 			if (err < 0)
2491 				return err;
2492 		}
2493 	} else {
2494 		kmsg->msg_name = NULL;
2495 		kmsg->msg_namelen = 0;
2496 	}
2497 
2498 	if (msg->msg_iovlen > UIO_MAXIOV)
2499 		return -EMSGSIZE;
2500 
2501 	kmsg->msg_iocb = NULL;
2502 	kmsg->msg_ubuf = NULL;
2503 	return 0;
2504 }
2505 
2506 static int copy_msghdr_from_user(struct msghdr *kmsg,
2507 				 struct user_msghdr __user *umsg,
2508 				 struct sockaddr __user **save_addr,
2509 				 struct iovec **iov)
2510 {
2511 	struct user_msghdr msg;
2512 	ssize_t err;
2513 
2514 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2515 		return -EFAULT;
2516 
2517 	err = __copy_msghdr(kmsg, &msg, save_addr);
2518 	if (err)
2519 		return err;
2520 
2521 	err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2522 			    msg.msg_iov, msg.msg_iovlen,
2523 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2524 	return err < 0 ? err : 0;
2525 }
2526 
2527 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2528 			   unsigned int flags, struct used_address *used_address,
2529 			   unsigned int allowed_msghdr_flags)
2530 {
2531 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2532 				__aligned(sizeof(__kernel_size_t));
2533 	/* 20 is size of ipv6_pktinfo */
2534 	unsigned char *ctl_buf = ctl;
2535 	int ctl_len;
2536 	ssize_t err;
2537 
2538 	err = -ENOBUFS;
2539 
2540 	if (msg_sys->msg_controllen > INT_MAX)
2541 		goto out;
2542 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2543 	ctl_len = msg_sys->msg_controllen;
2544 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2545 		err =
2546 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2547 						     sizeof(ctl));
2548 		if (err)
2549 			goto out;
2550 		ctl_buf = msg_sys->msg_control;
2551 		ctl_len = msg_sys->msg_controllen;
2552 	} else if (ctl_len) {
2553 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2554 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2555 		if (ctl_len > sizeof(ctl)) {
2556 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2557 			if (ctl_buf == NULL)
2558 				goto out;
2559 		}
2560 		err = -EFAULT;
2561 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2562 			goto out_freectl;
2563 		msg_sys->msg_control = ctl_buf;
2564 		msg_sys->msg_control_is_user = false;
2565 	}
2566 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2567 	msg_sys->msg_flags = flags;
2568 
2569 	if (sock->file->f_flags & O_NONBLOCK)
2570 		msg_sys->msg_flags |= MSG_DONTWAIT;
2571 	/*
2572 	 * If this is sendmmsg() and current destination address is same as
2573 	 * previously succeeded address, omit asking LSM's decision.
2574 	 * used_address->name_len is initialized to UINT_MAX so that the first
2575 	 * destination address never matches.
2576 	 */
2577 	if (used_address && msg_sys->msg_name &&
2578 	    used_address->name_len == msg_sys->msg_namelen &&
2579 	    !memcmp(&used_address->name, msg_sys->msg_name,
2580 		    used_address->name_len)) {
2581 		err = sock_sendmsg_nosec(sock, msg_sys);
2582 		goto out_freectl;
2583 	}
2584 	err = __sock_sendmsg(sock, msg_sys);
2585 	/*
2586 	 * If this is sendmmsg() and sending to current destination address was
2587 	 * successful, remember it.
2588 	 */
2589 	if (used_address && err >= 0) {
2590 		used_address->name_len = msg_sys->msg_namelen;
2591 		if (msg_sys->msg_name)
2592 			memcpy(&used_address->name, msg_sys->msg_name,
2593 			       used_address->name_len);
2594 	}
2595 
2596 out_freectl:
2597 	if (ctl_buf != ctl)
2598 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2599 out:
2600 	return err;
2601 }
2602 
2603 int sendmsg_copy_msghdr(struct msghdr *msg,
2604 			struct user_msghdr __user *umsg, unsigned flags,
2605 			struct iovec **iov)
2606 {
2607 	int err;
2608 
2609 	if (flags & MSG_CMSG_COMPAT) {
2610 		struct compat_msghdr __user *msg_compat;
2611 
2612 		msg_compat = (struct compat_msghdr __user *) umsg;
2613 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2614 	} else {
2615 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2616 	}
2617 	if (err < 0)
2618 		return err;
2619 
2620 	return 0;
2621 }
2622 
2623 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2624 			 struct msghdr *msg_sys, unsigned int flags,
2625 			 struct used_address *used_address,
2626 			 unsigned int allowed_msghdr_flags)
2627 {
2628 	struct sockaddr_storage address;
2629 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2630 	ssize_t err;
2631 
2632 	msg_sys->msg_name = &address;
2633 
2634 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2635 	if (err < 0)
2636 		return err;
2637 
2638 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2639 				allowed_msghdr_flags);
2640 	kfree(iov);
2641 	return err;
2642 }
2643 
2644 /*
2645  *	BSD sendmsg interface
2646  */
2647 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2648 			unsigned int flags)
2649 {
2650 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2651 }
2652 
2653 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2654 		   bool forbid_cmsg_compat)
2655 {
2656 	int fput_needed, err;
2657 	struct msghdr msg_sys;
2658 	struct socket *sock;
2659 
2660 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2661 		return -EINVAL;
2662 
2663 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2664 	if (!sock)
2665 		goto out;
2666 
2667 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2668 
2669 	fput_light(sock->file, fput_needed);
2670 out:
2671 	return err;
2672 }
2673 
2674 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2675 {
2676 	return __sys_sendmsg(fd, msg, flags, true);
2677 }
2678 
2679 /*
2680  *	Linux sendmmsg interface
2681  */
2682 
2683 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2684 		   unsigned int flags, bool forbid_cmsg_compat)
2685 {
2686 	int fput_needed, err, datagrams;
2687 	struct socket *sock;
2688 	struct mmsghdr __user *entry;
2689 	struct compat_mmsghdr __user *compat_entry;
2690 	struct msghdr msg_sys;
2691 	struct used_address used_address;
2692 	unsigned int oflags = flags;
2693 
2694 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2695 		return -EINVAL;
2696 
2697 	if (vlen > UIO_MAXIOV)
2698 		vlen = UIO_MAXIOV;
2699 
2700 	datagrams = 0;
2701 
2702 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2703 	if (!sock)
2704 		return err;
2705 
2706 	used_address.name_len = UINT_MAX;
2707 	entry = mmsg;
2708 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2709 	err = 0;
2710 	flags |= MSG_BATCH;
2711 
2712 	while (datagrams < vlen) {
2713 		if (datagrams == vlen - 1)
2714 			flags = oflags;
2715 
2716 		if (MSG_CMSG_COMPAT & flags) {
2717 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2718 					     &msg_sys, flags, &used_address, MSG_EOR);
2719 			if (err < 0)
2720 				break;
2721 			err = __put_user(err, &compat_entry->msg_len);
2722 			++compat_entry;
2723 		} else {
2724 			err = ___sys_sendmsg(sock,
2725 					     (struct user_msghdr __user *)entry,
2726 					     &msg_sys, flags, &used_address, MSG_EOR);
2727 			if (err < 0)
2728 				break;
2729 			err = put_user(err, &entry->msg_len);
2730 			++entry;
2731 		}
2732 
2733 		if (err)
2734 			break;
2735 		++datagrams;
2736 		if (msg_data_left(&msg_sys))
2737 			break;
2738 		cond_resched();
2739 	}
2740 
2741 	fput_light(sock->file, fput_needed);
2742 
2743 	/* We only return an error if no datagrams were able to be sent */
2744 	if (datagrams != 0)
2745 		return datagrams;
2746 
2747 	return err;
2748 }
2749 
2750 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2751 		unsigned int, vlen, unsigned int, flags)
2752 {
2753 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2754 }
2755 
2756 int recvmsg_copy_msghdr(struct msghdr *msg,
2757 			struct user_msghdr __user *umsg, unsigned flags,
2758 			struct sockaddr __user **uaddr,
2759 			struct iovec **iov)
2760 {
2761 	ssize_t err;
2762 
2763 	if (MSG_CMSG_COMPAT & flags) {
2764 		struct compat_msghdr __user *msg_compat;
2765 
2766 		msg_compat = (struct compat_msghdr __user *) umsg;
2767 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2768 	} else {
2769 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2770 	}
2771 	if (err < 0)
2772 		return err;
2773 
2774 	return 0;
2775 }
2776 
2777 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2778 			   struct user_msghdr __user *msg,
2779 			   struct sockaddr __user *uaddr,
2780 			   unsigned int flags, int nosec)
2781 {
2782 	struct compat_msghdr __user *msg_compat =
2783 					(struct compat_msghdr __user *) msg;
2784 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2785 	struct sockaddr_storage addr;
2786 	unsigned long cmsg_ptr;
2787 	int len;
2788 	ssize_t err;
2789 
2790 	msg_sys->msg_name = &addr;
2791 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2792 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2793 
2794 	/* We assume all kernel code knows the size of sockaddr_storage */
2795 	msg_sys->msg_namelen = 0;
2796 
2797 	if (sock->file->f_flags & O_NONBLOCK)
2798 		flags |= MSG_DONTWAIT;
2799 
2800 	if (unlikely(nosec))
2801 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2802 	else
2803 		err = sock_recvmsg(sock, msg_sys, flags);
2804 
2805 	if (err < 0)
2806 		goto out;
2807 	len = err;
2808 
2809 	if (uaddr != NULL) {
2810 		err = move_addr_to_user(&addr,
2811 					msg_sys->msg_namelen, uaddr,
2812 					uaddr_len);
2813 		if (err < 0)
2814 			goto out;
2815 	}
2816 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2817 			 COMPAT_FLAGS(msg));
2818 	if (err)
2819 		goto out;
2820 	if (MSG_CMSG_COMPAT & flags)
2821 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2822 				 &msg_compat->msg_controllen);
2823 	else
2824 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2825 				 &msg->msg_controllen);
2826 	if (err)
2827 		goto out;
2828 	err = len;
2829 out:
2830 	return err;
2831 }
2832 
2833 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2834 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2835 {
2836 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2837 	/* user mode address pointers */
2838 	struct sockaddr __user *uaddr;
2839 	ssize_t err;
2840 
2841 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2842 	if (err < 0)
2843 		return err;
2844 
2845 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2846 	kfree(iov);
2847 	return err;
2848 }
2849 
2850 /*
2851  *	BSD recvmsg interface
2852  */
2853 
2854 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2855 			struct user_msghdr __user *umsg,
2856 			struct sockaddr __user *uaddr, unsigned int flags)
2857 {
2858 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2859 }
2860 
2861 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2862 		   bool forbid_cmsg_compat)
2863 {
2864 	int fput_needed, err;
2865 	struct msghdr msg_sys;
2866 	struct socket *sock;
2867 
2868 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2869 		return -EINVAL;
2870 
2871 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2872 	if (!sock)
2873 		goto out;
2874 
2875 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2876 
2877 	fput_light(sock->file, fput_needed);
2878 out:
2879 	return err;
2880 }
2881 
2882 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2883 		unsigned int, flags)
2884 {
2885 	return __sys_recvmsg(fd, msg, flags, true);
2886 }
2887 
2888 /*
2889  *     Linux recvmmsg interface
2890  */
2891 
2892 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2893 			  unsigned int vlen, unsigned int flags,
2894 			  struct timespec64 *timeout)
2895 {
2896 	int fput_needed, err, datagrams;
2897 	struct socket *sock;
2898 	struct mmsghdr __user *entry;
2899 	struct compat_mmsghdr __user *compat_entry;
2900 	struct msghdr msg_sys;
2901 	struct timespec64 end_time;
2902 	struct timespec64 timeout64;
2903 
2904 	if (timeout &&
2905 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2906 				    timeout->tv_nsec))
2907 		return -EINVAL;
2908 
2909 	datagrams = 0;
2910 
2911 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2912 	if (!sock)
2913 		return err;
2914 
2915 	if (likely(!(flags & MSG_ERRQUEUE))) {
2916 		err = sock_error(sock->sk);
2917 		if (err) {
2918 			datagrams = err;
2919 			goto out_put;
2920 		}
2921 	}
2922 
2923 	entry = mmsg;
2924 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2925 
2926 	while (datagrams < vlen) {
2927 		/*
2928 		 * No need to ask LSM for more than the first datagram.
2929 		 */
2930 		if (MSG_CMSG_COMPAT & flags) {
2931 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2932 					     &msg_sys, flags & ~MSG_WAITFORONE,
2933 					     datagrams);
2934 			if (err < 0)
2935 				break;
2936 			err = __put_user(err, &compat_entry->msg_len);
2937 			++compat_entry;
2938 		} else {
2939 			err = ___sys_recvmsg(sock,
2940 					     (struct user_msghdr __user *)entry,
2941 					     &msg_sys, flags & ~MSG_WAITFORONE,
2942 					     datagrams);
2943 			if (err < 0)
2944 				break;
2945 			err = put_user(err, &entry->msg_len);
2946 			++entry;
2947 		}
2948 
2949 		if (err)
2950 			break;
2951 		++datagrams;
2952 
2953 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2954 		if (flags & MSG_WAITFORONE)
2955 			flags |= MSG_DONTWAIT;
2956 
2957 		if (timeout) {
2958 			ktime_get_ts64(&timeout64);
2959 			*timeout = timespec64_sub(end_time, timeout64);
2960 			if (timeout->tv_sec < 0) {
2961 				timeout->tv_sec = timeout->tv_nsec = 0;
2962 				break;
2963 			}
2964 
2965 			/* Timeout, return less than vlen datagrams */
2966 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2967 				break;
2968 		}
2969 
2970 		/* Out of band data, return right away */
2971 		if (msg_sys.msg_flags & MSG_OOB)
2972 			break;
2973 		cond_resched();
2974 	}
2975 
2976 	if (err == 0)
2977 		goto out_put;
2978 
2979 	if (datagrams == 0) {
2980 		datagrams = err;
2981 		goto out_put;
2982 	}
2983 
2984 	/*
2985 	 * We may return less entries than requested (vlen) if the
2986 	 * sock is non block and there aren't enough datagrams...
2987 	 */
2988 	if (err != -EAGAIN) {
2989 		/*
2990 		 * ... or  if recvmsg returns an error after we
2991 		 * received some datagrams, where we record the
2992 		 * error to return on the next call or if the
2993 		 * app asks about it using getsockopt(SO_ERROR).
2994 		 */
2995 		WRITE_ONCE(sock->sk->sk_err, -err);
2996 	}
2997 out_put:
2998 	fput_light(sock->file, fput_needed);
2999 
3000 	return datagrams;
3001 }
3002 
3003 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
3004 		   unsigned int vlen, unsigned int flags,
3005 		   struct __kernel_timespec __user *timeout,
3006 		   struct old_timespec32 __user *timeout32)
3007 {
3008 	int datagrams;
3009 	struct timespec64 timeout_sys;
3010 
3011 	if (timeout && get_timespec64(&timeout_sys, timeout))
3012 		return -EFAULT;
3013 
3014 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
3015 		return -EFAULT;
3016 
3017 	if (!timeout && !timeout32)
3018 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
3019 
3020 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
3021 
3022 	if (datagrams <= 0)
3023 		return datagrams;
3024 
3025 	if (timeout && put_timespec64(&timeout_sys, timeout))
3026 		datagrams = -EFAULT;
3027 
3028 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
3029 		datagrams = -EFAULT;
3030 
3031 	return datagrams;
3032 }
3033 
3034 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
3035 		unsigned int, vlen, unsigned int, flags,
3036 		struct __kernel_timespec __user *, timeout)
3037 {
3038 	if (flags & MSG_CMSG_COMPAT)
3039 		return -EINVAL;
3040 
3041 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
3042 }
3043 
3044 #ifdef CONFIG_COMPAT_32BIT_TIME
3045 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3046 		unsigned int, vlen, unsigned int, flags,
3047 		struct old_timespec32 __user *, timeout)
3048 {
3049 	if (flags & MSG_CMSG_COMPAT)
3050 		return -EINVAL;
3051 
3052 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
3053 }
3054 #endif
3055 
3056 #ifdef __ARCH_WANT_SYS_SOCKETCALL
3057 /* Argument list sizes for sys_socketcall */
3058 #define AL(x) ((x) * sizeof(unsigned long))
3059 static const unsigned char nargs[21] = {
3060 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3061 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3062 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3063 	AL(4), AL(5), AL(4)
3064 };
3065 
3066 #undef AL
3067 
3068 /*
3069  *	System call vectors.
3070  *
3071  *	Argument checking cleaned up. Saved 20% in size.
3072  *  This function doesn't need to set the kernel lock because
3073  *  it is set by the callees.
3074  */
3075 
3076 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3077 {
3078 	unsigned long a[AUDITSC_ARGS];
3079 	unsigned long a0, a1;
3080 	int err;
3081 	unsigned int len;
3082 
3083 	if (call < 1 || call > SYS_SENDMMSG)
3084 		return -EINVAL;
3085 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
3086 
3087 	len = nargs[call];
3088 	if (len > sizeof(a))
3089 		return -EINVAL;
3090 
3091 	/* copy_from_user should be SMP safe. */
3092 	if (copy_from_user(a, args, len))
3093 		return -EFAULT;
3094 
3095 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3096 	if (err)
3097 		return err;
3098 
3099 	a0 = a[0];
3100 	a1 = a[1];
3101 
3102 	switch (call) {
3103 	case SYS_SOCKET:
3104 		err = __sys_socket(a0, a1, a[2]);
3105 		break;
3106 	case SYS_BIND:
3107 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3108 		break;
3109 	case SYS_CONNECT:
3110 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3111 		break;
3112 	case SYS_LISTEN:
3113 		err = __sys_listen(a0, a1);
3114 		break;
3115 	case SYS_ACCEPT:
3116 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3117 				    (int __user *)a[2], 0);
3118 		break;
3119 	case SYS_GETSOCKNAME:
3120 		err =
3121 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
3122 				      (int __user *)a[2]);
3123 		break;
3124 	case SYS_GETPEERNAME:
3125 		err =
3126 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
3127 				      (int __user *)a[2]);
3128 		break;
3129 	case SYS_SOCKETPAIR:
3130 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3131 		break;
3132 	case SYS_SEND:
3133 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3134 				   NULL, 0);
3135 		break;
3136 	case SYS_SENDTO:
3137 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3138 				   (struct sockaddr __user *)a[4], a[5]);
3139 		break;
3140 	case SYS_RECV:
3141 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3142 				     NULL, NULL);
3143 		break;
3144 	case SYS_RECVFROM:
3145 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3146 				     (struct sockaddr __user *)a[4],
3147 				     (int __user *)a[5]);
3148 		break;
3149 	case SYS_SHUTDOWN:
3150 		err = __sys_shutdown(a0, a1);
3151 		break;
3152 	case SYS_SETSOCKOPT:
3153 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3154 				       a[4]);
3155 		break;
3156 	case SYS_GETSOCKOPT:
3157 		err =
3158 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3159 				     (int __user *)a[4]);
3160 		break;
3161 	case SYS_SENDMSG:
3162 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3163 				    a[2], true);
3164 		break;
3165 	case SYS_SENDMMSG:
3166 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3167 				     a[3], true);
3168 		break;
3169 	case SYS_RECVMSG:
3170 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3171 				    a[2], true);
3172 		break;
3173 	case SYS_RECVMMSG:
3174 		if (IS_ENABLED(CONFIG_64BIT))
3175 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3176 					     a[2], a[3],
3177 					     (struct __kernel_timespec __user *)a[4],
3178 					     NULL);
3179 		else
3180 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3181 					     a[2], a[3], NULL,
3182 					     (struct old_timespec32 __user *)a[4]);
3183 		break;
3184 	case SYS_ACCEPT4:
3185 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3186 				    (int __user *)a[2], a[3]);
3187 		break;
3188 	default:
3189 		err = -EINVAL;
3190 		break;
3191 	}
3192 	return err;
3193 }
3194 
3195 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3196 
3197 /**
3198  *	sock_register - add a socket protocol handler
3199  *	@ops: description of protocol
3200  *
3201  *	This function is called by a protocol handler that wants to
3202  *	advertise its address family, and have it linked into the
3203  *	socket interface. The value ops->family corresponds to the
3204  *	socket system call protocol family.
3205  */
3206 int sock_register(const struct net_proto_family *ops)
3207 {
3208 	int err;
3209 
3210 	if (ops->family >= NPROTO) {
3211 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3212 		return -ENOBUFS;
3213 	}
3214 
3215 	spin_lock(&net_family_lock);
3216 	if (rcu_dereference_protected(net_families[ops->family],
3217 				      lockdep_is_held(&net_family_lock)))
3218 		err = -EEXIST;
3219 	else {
3220 		rcu_assign_pointer(net_families[ops->family], ops);
3221 		err = 0;
3222 	}
3223 	spin_unlock(&net_family_lock);
3224 
3225 	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3226 	return err;
3227 }
3228 EXPORT_SYMBOL(sock_register);
3229 
3230 /**
3231  *	sock_unregister - remove a protocol handler
3232  *	@family: protocol family to remove
3233  *
3234  *	This function is called by a protocol handler that wants to
3235  *	remove its address family, and have it unlinked from the
3236  *	new socket creation.
3237  *
3238  *	If protocol handler is a module, then it can use module reference
3239  *	counts to protect against new references. If protocol handler is not
3240  *	a module then it needs to provide its own protection in
3241  *	the ops->create routine.
3242  */
3243 void sock_unregister(int family)
3244 {
3245 	BUG_ON(family < 0 || family >= NPROTO);
3246 
3247 	spin_lock(&net_family_lock);
3248 	RCU_INIT_POINTER(net_families[family], NULL);
3249 	spin_unlock(&net_family_lock);
3250 
3251 	synchronize_rcu();
3252 
3253 	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3254 }
3255 EXPORT_SYMBOL(sock_unregister);
3256 
3257 bool sock_is_registered(int family)
3258 {
3259 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3260 }
3261 
3262 static int __init sock_init(void)
3263 {
3264 	int err;
3265 	/*
3266 	 *      Initialize the network sysctl infrastructure.
3267 	 */
3268 	err = net_sysctl_init();
3269 	if (err)
3270 		goto out;
3271 
3272 	/*
3273 	 *      Initialize skbuff SLAB cache
3274 	 */
3275 	skb_init();
3276 
3277 	/*
3278 	 *      Initialize the protocols module.
3279 	 */
3280 
3281 	init_inodecache();
3282 
3283 	err = register_filesystem(&sock_fs_type);
3284 	if (err)
3285 		goto out;
3286 	sock_mnt = kern_mount(&sock_fs_type);
3287 	if (IS_ERR(sock_mnt)) {
3288 		err = PTR_ERR(sock_mnt);
3289 		goto out_mount;
3290 	}
3291 
3292 	/* The real protocol initialization is performed in later initcalls.
3293 	 */
3294 
3295 #ifdef CONFIG_NETFILTER
3296 	err = netfilter_init();
3297 	if (err)
3298 		goto out;
3299 #endif
3300 
3301 	ptp_classifier_init();
3302 
3303 out:
3304 	return err;
3305 
3306 out_mount:
3307 	unregister_filesystem(&sock_fs_type);
3308 	goto out;
3309 }
3310 
3311 core_initcall(sock_init);	/* early initcall */
3312 
3313 #ifdef CONFIG_PROC_FS
3314 void socket_seq_show(struct seq_file *seq)
3315 {
3316 	seq_printf(seq, "sockets: used %d\n",
3317 		   sock_inuse_get(seq->private));
3318 }
3319 #endif				/* CONFIG_PROC_FS */
3320 
3321 /* Handle the fact that while struct ifreq has the same *layout* on
3322  * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3323  * which are handled elsewhere, it still has different *size* due to
3324  * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3325  * resulting in struct ifreq being 32 and 40 bytes respectively).
3326  * As a result, if the struct happens to be at the end of a page and
3327  * the next page isn't readable/writable, we get a fault. To prevent
3328  * that, copy back and forth to the full size.
3329  */
3330 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3331 {
3332 	if (in_compat_syscall()) {
3333 		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3334 
3335 		memset(ifr, 0, sizeof(*ifr));
3336 		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3337 			return -EFAULT;
3338 
3339 		if (ifrdata)
3340 			*ifrdata = compat_ptr(ifr32->ifr_data);
3341 
3342 		return 0;
3343 	}
3344 
3345 	if (copy_from_user(ifr, arg, sizeof(*ifr)))
3346 		return -EFAULT;
3347 
3348 	if (ifrdata)
3349 		*ifrdata = ifr->ifr_data;
3350 
3351 	return 0;
3352 }
3353 EXPORT_SYMBOL(get_user_ifreq);
3354 
3355 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3356 {
3357 	size_t size = sizeof(*ifr);
3358 
3359 	if (in_compat_syscall())
3360 		size = sizeof(struct compat_ifreq);
3361 
3362 	if (copy_to_user(arg, ifr, size))
3363 		return -EFAULT;
3364 
3365 	return 0;
3366 }
3367 EXPORT_SYMBOL(put_user_ifreq);
3368 
3369 #ifdef CONFIG_COMPAT
3370 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3371 {
3372 	compat_uptr_t uptr32;
3373 	struct ifreq ifr;
3374 	void __user *saved;
3375 	int err;
3376 
3377 	if (get_user_ifreq(&ifr, NULL, uifr32))
3378 		return -EFAULT;
3379 
3380 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3381 		return -EFAULT;
3382 
3383 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3384 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3385 
3386 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3387 	if (!err) {
3388 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3389 		if (put_user_ifreq(&ifr, uifr32))
3390 			err = -EFAULT;
3391 	}
3392 	return err;
3393 }
3394 
3395 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3396 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3397 				 struct compat_ifreq __user *u_ifreq32)
3398 {
3399 	struct ifreq ifreq;
3400 	void __user *data;
3401 
3402 	if (!is_socket_ioctl_cmd(cmd))
3403 		return -ENOTTY;
3404 	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3405 		return -EFAULT;
3406 	ifreq.ifr_data = data;
3407 
3408 	return dev_ioctl(net, cmd, &ifreq, data, NULL);
3409 }
3410 
3411 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3412 			 unsigned int cmd, unsigned long arg)
3413 {
3414 	void __user *argp = compat_ptr(arg);
3415 	struct sock *sk = sock->sk;
3416 	struct net *net = sock_net(sk);
3417 	const struct proto_ops *ops;
3418 
3419 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3420 		return sock_ioctl(file, cmd, (unsigned long)argp);
3421 
3422 	switch (cmd) {
3423 	case SIOCWANDEV:
3424 		return compat_siocwandev(net, argp);
3425 	case SIOCGSTAMP_OLD:
3426 	case SIOCGSTAMPNS_OLD:
3427 		ops = READ_ONCE(sock->ops);
3428 		if (!ops->gettstamp)
3429 			return -ENOIOCTLCMD;
3430 		return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3431 				      !COMPAT_USE_64BIT_TIME);
3432 
3433 	case SIOCETHTOOL:
3434 	case SIOCBONDSLAVEINFOQUERY:
3435 	case SIOCBONDINFOQUERY:
3436 	case SIOCSHWTSTAMP:
3437 	case SIOCGHWTSTAMP:
3438 		return compat_ifr_data_ioctl(net, cmd, argp);
3439 
3440 	case FIOSETOWN:
3441 	case SIOCSPGRP:
3442 	case FIOGETOWN:
3443 	case SIOCGPGRP:
3444 	case SIOCBRADDBR:
3445 	case SIOCBRDELBR:
3446 	case SIOCGIFVLAN:
3447 	case SIOCSIFVLAN:
3448 	case SIOCGSKNS:
3449 	case SIOCGSTAMP_NEW:
3450 	case SIOCGSTAMPNS_NEW:
3451 	case SIOCGIFCONF:
3452 	case SIOCSIFBR:
3453 	case SIOCGIFBR:
3454 		return sock_ioctl(file, cmd, arg);
3455 
3456 	case SIOCGIFFLAGS:
3457 	case SIOCSIFFLAGS:
3458 	case SIOCGIFMAP:
3459 	case SIOCSIFMAP:
3460 	case SIOCGIFMETRIC:
3461 	case SIOCSIFMETRIC:
3462 	case SIOCGIFMTU:
3463 	case SIOCSIFMTU:
3464 	case SIOCGIFMEM:
3465 	case SIOCSIFMEM:
3466 	case SIOCGIFHWADDR:
3467 	case SIOCSIFHWADDR:
3468 	case SIOCADDMULTI:
3469 	case SIOCDELMULTI:
3470 	case SIOCGIFINDEX:
3471 	case SIOCGIFADDR:
3472 	case SIOCSIFADDR:
3473 	case SIOCSIFHWBROADCAST:
3474 	case SIOCDIFADDR:
3475 	case SIOCGIFBRDADDR:
3476 	case SIOCSIFBRDADDR:
3477 	case SIOCGIFDSTADDR:
3478 	case SIOCSIFDSTADDR:
3479 	case SIOCGIFNETMASK:
3480 	case SIOCSIFNETMASK:
3481 	case SIOCSIFPFLAGS:
3482 	case SIOCGIFPFLAGS:
3483 	case SIOCGIFTXQLEN:
3484 	case SIOCSIFTXQLEN:
3485 	case SIOCBRADDIF:
3486 	case SIOCBRDELIF:
3487 	case SIOCGIFNAME:
3488 	case SIOCSIFNAME:
3489 	case SIOCGMIIPHY:
3490 	case SIOCGMIIREG:
3491 	case SIOCSMIIREG:
3492 	case SIOCBONDENSLAVE:
3493 	case SIOCBONDRELEASE:
3494 	case SIOCBONDSETHWADDR:
3495 	case SIOCBONDCHANGEACTIVE:
3496 	case SIOCSARP:
3497 	case SIOCGARP:
3498 	case SIOCDARP:
3499 	case SIOCOUTQ:
3500 	case SIOCOUTQNSD:
3501 	case SIOCATMARK:
3502 		return sock_do_ioctl(net, sock, cmd, arg);
3503 	}
3504 
3505 	return -ENOIOCTLCMD;
3506 }
3507 
3508 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3509 			      unsigned long arg)
3510 {
3511 	struct socket *sock = file->private_data;
3512 	const struct proto_ops *ops = READ_ONCE(sock->ops);
3513 	int ret = -ENOIOCTLCMD;
3514 	struct sock *sk;
3515 	struct net *net;
3516 
3517 	sk = sock->sk;
3518 	net = sock_net(sk);
3519 
3520 	if (ops->compat_ioctl)
3521 		ret = ops->compat_ioctl(sock, cmd, arg);
3522 
3523 	if (ret == -ENOIOCTLCMD &&
3524 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3525 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3526 
3527 	if (ret == -ENOIOCTLCMD)
3528 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3529 
3530 	return ret;
3531 }
3532 #endif
3533 
3534 /**
3535  *	kernel_bind - bind an address to a socket (kernel space)
3536  *	@sock: socket
3537  *	@addr: address
3538  *	@addrlen: length of address
3539  *
3540  *	Returns 0 or an error.
3541  */
3542 
3543 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3544 {
3545 	struct sockaddr_storage address;
3546 
3547 	memcpy(&address, addr, addrlen);
3548 
3549 	return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address,
3550 					  addrlen);
3551 }
3552 EXPORT_SYMBOL(kernel_bind);
3553 
3554 /**
3555  *	kernel_listen - move socket to listening state (kernel space)
3556  *	@sock: socket
3557  *	@backlog: pending connections queue size
3558  *
3559  *	Returns 0 or an error.
3560  */
3561 
3562 int kernel_listen(struct socket *sock, int backlog)
3563 {
3564 	return READ_ONCE(sock->ops)->listen(sock, backlog);
3565 }
3566 EXPORT_SYMBOL(kernel_listen);
3567 
3568 /**
3569  *	kernel_accept - accept a connection (kernel space)
3570  *	@sock: listening socket
3571  *	@newsock: new connected socket
3572  *	@flags: flags
3573  *
3574  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3575  *	If it fails, @newsock is guaranteed to be %NULL.
3576  *	Returns 0 or an error.
3577  */
3578 
3579 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3580 {
3581 	struct sock *sk = sock->sk;
3582 	const struct proto_ops *ops = READ_ONCE(sock->ops);
3583 	int err;
3584 
3585 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3586 			       newsock);
3587 	if (err < 0)
3588 		goto done;
3589 
3590 	err = ops->accept(sock, *newsock, flags, true);
3591 	if (err < 0) {
3592 		sock_release(*newsock);
3593 		*newsock = NULL;
3594 		goto done;
3595 	}
3596 
3597 	(*newsock)->ops = ops;
3598 	__module_get(ops->owner);
3599 
3600 done:
3601 	return err;
3602 }
3603 EXPORT_SYMBOL(kernel_accept);
3604 
3605 /**
3606  *	kernel_connect - connect a socket (kernel space)
3607  *	@sock: socket
3608  *	@addr: address
3609  *	@addrlen: address length
3610  *	@flags: flags (O_NONBLOCK, ...)
3611  *
3612  *	For datagram sockets, @addr is the address to which datagrams are sent
3613  *	by default, and the only address from which datagrams are received.
3614  *	For stream sockets, attempts to connect to @addr.
3615  *	Returns 0 or an error code.
3616  */
3617 
3618 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3619 		   int flags)
3620 {
3621 	struct sockaddr_storage address;
3622 
3623 	memcpy(&address, addr, addrlen);
3624 
3625 	return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address,
3626 					     addrlen, flags);
3627 }
3628 EXPORT_SYMBOL(kernel_connect);
3629 
3630 /**
3631  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3632  *	@sock: socket
3633  *	@addr: address holder
3634  *
3635  * 	Fills the @addr pointer with the address which the socket is bound.
3636  *	Returns the length of the address in bytes or an error code.
3637  */
3638 
3639 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3640 {
3641 	return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3642 }
3643 EXPORT_SYMBOL(kernel_getsockname);
3644 
3645 /**
3646  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3647  *	@sock: socket
3648  *	@addr: address holder
3649  *
3650  * 	Fills the @addr pointer with the address which the socket is connected.
3651  *	Returns the length of the address in bytes or an error code.
3652  */
3653 
3654 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3655 {
3656 	return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3657 }
3658 EXPORT_SYMBOL(kernel_getpeername);
3659 
3660 /**
3661  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3662  *	@sock: socket
3663  *	@how: connection part
3664  *
3665  *	Returns 0 or an error.
3666  */
3667 
3668 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3669 {
3670 	return READ_ONCE(sock->ops)->shutdown(sock, how);
3671 }
3672 EXPORT_SYMBOL(kernel_sock_shutdown);
3673 
3674 /**
3675  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3676  *	@sk: socket
3677  *
3678  *	This routine returns the IP overhead imposed by a socket i.e.
3679  *	the length of the underlying IP header, depending on whether
3680  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3681  *	on at the socket. Assumes that the caller has a lock on the socket.
3682  */
3683 
3684 u32 kernel_sock_ip_overhead(struct sock *sk)
3685 {
3686 	struct inet_sock *inet;
3687 	struct ip_options_rcu *opt;
3688 	u32 overhead = 0;
3689 #if IS_ENABLED(CONFIG_IPV6)
3690 	struct ipv6_pinfo *np;
3691 	struct ipv6_txoptions *optv6 = NULL;
3692 #endif /* IS_ENABLED(CONFIG_IPV6) */
3693 
3694 	if (!sk)
3695 		return overhead;
3696 
3697 	switch (sk->sk_family) {
3698 	case AF_INET:
3699 		inet = inet_sk(sk);
3700 		overhead += sizeof(struct iphdr);
3701 		opt = rcu_dereference_protected(inet->inet_opt,
3702 						sock_owned_by_user(sk));
3703 		if (opt)
3704 			overhead += opt->opt.optlen;
3705 		return overhead;
3706 #if IS_ENABLED(CONFIG_IPV6)
3707 	case AF_INET6:
3708 		np = inet6_sk(sk);
3709 		overhead += sizeof(struct ipv6hdr);
3710 		if (np)
3711 			optv6 = rcu_dereference_protected(np->opt,
3712 							  sock_owned_by_user(sk));
3713 		if (optv6)
3714 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3715 		return overhead;
3716 #endif /* IS_ENABLED(CONFIG_IPV6) */
3717 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3718 		return overhead;
3719 	}
3720 }
3721 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3722