1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 93 #include <linux/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/sockios.h> 107 #include <linux/atalk.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 118 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 119 120 static int sock_close(struct inode *inode, struct file *file); 121 static unsigned int sock_poll(struct file *file, 122 struct poll_table_struct *wait); 123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 124 #ifdef CONFIG_COMPAT 125 static long compat_sock_ioctl(struct file *file, 126 unsigned int cmd, unsigned long arg); 127 #endif 128 static int sock_fasync(int fd, struct file *filp, int on); 129 static ssize_t sock_sendpage(struct file *file, struct page *page, 130 int offset, size_t size, loff_t *ppos, int more); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 135 /* 136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 137 * in the operation structures but are done directly via the socketcall() multiplexor. 138 */ 139 140 static const struct file_operations socket_file_ops = { 141 .owner = THIS_MODULE, 142 .llseek = no_llseek, 143 .read_iter = sock_read_iter, 144 .write_iter = sock_write_iter, 145 .poll = sock_poll, 146 .unlocked_ioctl = sock_ioctl, 147 #ifdef CONFIG_COMPAT 148 .compat_ioctl = compat_sock_ioctl, 149 #endif 150 .mmap = sock_mmap, 151 .release = sock_close, 152 .fasync = sock_fasync, 153 .sendpage = sock_sendpage, 154 .splice_write = generic_splice_sendpage, 155 .splice_read = sock_splice_read, 156 }; 157 158 /* 159 * The protocol list. Each protocol is registered in here. 160 */ 161 162 static DEFINE_SPINLOCK(net_family_lock); 163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 164 165 /* 166 * Statistics counters of the socket lists 167 */ 168 169 static DEFINE_PER_CPU(int, sockets_in_use); 170 171 /* 172 * Support routines. 173 * Move socket addresses back and forth across the kernel/user 174 * divide and look after the messy bits. 175 */ 176 177 /** 178 * move_addr_to_kernel - copy a socket address into kernel space 179 * @uaddr: Address in user space 180 * @kaddr: Address in kernel space 181 * @ulen: Length in user space 182 * 183 * The address is copied into kernel space. If the provided address is 184 * too long an error code of -EINVAL is returned. If the copy gives 185 * invalid addresses -EFAULT is returned. On a success 0 is returned. 186 */ 187 188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 189 { 190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 191 return -EINVAL; 192 if (ulen == 0) 193 return 0; 194 if (copy_from_user(kaddr, uaddr, ulen)) 195 return -EFAULT; 196 return audit_sockaddr(ulen, kaddr); 197 } 198 199 /** 200 * move_addr_to_user - copy an address to user space 201 * @kaddr: kernel space address 202 * @klen: length of address in kernel 203 * @uaddr: user space address 204 * @ulen: pointer to user length field 205 * 206 * The value pointed to by ulen on entry is the buffer length available. 207 * This is overwritten with the buffer space used. -EINVAL is returned 208 * if an overlong buffer is specified or a negative buffer size. -EFAULT 209 * is returned if either the buffer or the length field are not 210 * accessible. 211 * After copying the data up to the limit the user specifies, the true 212 * length of the data is written over the length limit the user 213 * specified. Zero is returned for a success. 214 */ 215 216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 217 void __user *uaddr, int __user *ulen) 218 { 219 int err; 220 int len; 221 222 BUG_ON(klen > sizeof(struct sockaddr_storage)); 223 err = get_user(len, ulen); 224 if (err) 225 return err; 226 if (len > klen) 227 len = klen; 228 if (len < 0) 229 return -EINVAL; 230 if (len) { 231 if (audit_sockaddr(klen, kaddr)) 232 return -ENOMEM; 233 if (copy_to_user(uaddr, kaddr, len)) 234 return -EFAULT; 235 } 236 /* 237 * "fromlen shall refer to the value before truncation.." 238 * 1003.1g 239 */ 240 return __put_user(klen, ulen); 241 } 242 243 static struct kmem_cache *sock_inode_cachep __read_mostly; 244 245 static struct inode *sock_alloc_inode(struct super_block *sb) 246 { 247 struct socket_alloc *ei; 248 struct socket_wq *wq; 249 250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 251 if (!ei) 252 return NULL; 253 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 254 if (!wq) { 255 kmem_cache_free(sock_inode_cachep, ei); 256 return NULL; 257 } 258 init_waitqueue_head(&wq->wait); 259 wq->fasync_list = NULL; 260 wq->flags = 0; 261 RCU_INIT_POINTER(ei->socket.wq, wq); 262 263 ei->socket.state = SS_UNCONNECTED; 264 ei->socket.flags = 0; 265 ei->socket.ops = NULL; 266 ei->socket.sk = NULL; 267 ei->socket.file = NULL; 268 269 return &ei->vfs_inode; 270 } 271 272 static void sock_destroy_inode(struct inode *inode) 273 { 274 struct socket_alloc *ei; 275 struct socket_wq *wq; 276 277 ei = container_of(inode, struct socket_alloc, vfs_inode); 278 wq = rcu_dereference_protected(ei->socket.wq, 1); 279 kfree_rcu(wq, rcu); 280 kmem_cache_free(sock_inode_cachep, ei); 281 } 282 283 static void init_once(void *foo) 284 { 285 struct socket_alloc *ei = (struct socket_alloc *)foo; 286 287 inode_init_once(&ei->vfs_inode); 288 } 289 290 static void init_inodecache(void) 291 { 292 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 293 sizeof(struct socket_alloc), 294 0, 295 (SLAB_HWCACHE_ALIGN | 296 SLAB_RECLAIM_ACCOUNT | 297 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 298 init_once); 299 BUG_ON(sock_inode_cachep == NULL); 300 } 301 302 static const struct super_operations sockfs_ops = { 303 .alloc_inode = sock_alloc_inode, 304 .destroy_inode = sock_destroy_inode, 305 .statfs = simple_statfs, 306 }; 307 308 /* 309 * sockfs_dname() is called from d_path(). 310 */ 311 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 312 { 313 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 314 d_inode(dentry)->i_ino); 315 } 316 317 static const struct dentry_operations sockfs_dentry_operations = { 318 .d_dname = sockfs_dname, 319 }; 320 321 static int sockfs_xattr_get(const struct xattr_handler *handler, 322 struct dentry *dentry, struct inode *inode, 323 const char *suffix, void *value, size_t size) 324 { 325 if (value) { 326 if (dentry->d_name.len + 1 > size) 327 return -ERANGE; 328 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 329 } 330 return dentry->d_name.len + 1; 331 } 332 333 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 334 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 335 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 336 337 static const struct xattr_handler sockfs_xattr_handler = { 338 .name = XATTR_NAME_SOCKPROTONAME, 339 .get = sockfs_xattr_get, 340 }; 341 342 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 343 struct dentry *dentry, struct inode *inode, 344 const char *suffix, const void *value, 345 size_t size, int flags) 346 { 347 /* Handled by LSM. */ 348 return -EAGAIN; 349 } 350 351 static const struct xattr_handler sockfs_security_xattr_handler = { 352 .prefix = XATTR_SECURITY_PREFIX, 353 .set = sockfs_security_xattr_set, 354 }; 355 356 static const struct xattr_handler *sockfs_xattr_handlers[] = { 357 &sockfs_xattr_handler, 358 &sockfs_security_xattr_handler, 359 NULL 360 }; 361 362 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 363 int flags, const char *dev_name, void *data) 364 { 365 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops, 366 sockfs_xattr_handlers, 367 &sockfs_dentry_operations, SOCKFS_MAGIC); 368 } 369 370 static struct vfsmount *sock_mnt __read_mostly; 371 372 static struct file_system_type sock_fs_type = { 373 .name = "sockfs", 374 .mount = sockfs_mount, 375 .kill_sb = kill_anon_super, 376 }; 377 378 /* 379 * Obtains the first available file descriptor and sets it up for use. 380 * 381 * These functions create file structures and maps them to fd space 382 * of the current process. On success it returns file descriptor 383 * and file struct implicitly stored in sock->file. 384 * Note that another thread may close file descriptor before we return 385 * from this function. We use the fact that now we do not refer 386 * to socket after mapping. If one day we will need it, this 387 * function will increment ref. count on file by 1. 388 * 389 * In any case returned fd MAY BE not valid! 390 * This race condition is unavoidable 391 * with shared fd spaces, we cannot solve it inside kernel, 392 * but we take care of internal coherence yet. 393 */ 394 395 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 396 { 397 struct qstr name = { .name = "" }; 398 struct path path; 399 struct file *file; 400 401 if (dname) { 402 name.name = dname; 403 name.len = strlen(name.name); 404 } else if (sock->sk) { 405 name.name = sock->sk->sk_prot_creator->name; 406 name.len = strlen(name.name); 407 } 408 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 409 if (unlikely(!path.dentry)) 410 return ERR_PTR(-ENOMEM); 411 path.mnt = mntget(sock_mnt); 412 413 d_instantiate(path.dentry, SOCK_INODE(sock)); 414 415 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 416 &socket_file_ops); 417 if (IS_ERR(file)) { 418 /* drop dentry, keep inode */ 419 ihold(d_inode(path.dentry)); 420 path_put(&path); 421 return file; 422 } 423 424 sock->file = file; 425 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 426 file->private_data = sock; 427 return file; 428 } 429 EXPORT_SYMBOL(sock_alloc_file); 430 431 static int sock_map_fd(struct socket *sock, int flags) 432 { 433 struct file *newfile; 434 int fd = get_unused_fd_flags(flags); 435 if (unlikely(fd < 0)) 436 return fd; 437 438 newfile = sock_alloc_file(sock, flags, NULL); 439 if (likely(!IS_ERR(newfile))) { 440 fd_install(fd, newfile); 441 return fd; 442 } 443 444 put_unused_fd(fd); 445 return PTR_ERR(newfile); 446 } 447 448 struct socket *sock_from_file(struct file *file, int *err) 449 { 450 if (file->f_op == &socket_file_ops) 451 return file->private_data; /* set in sock_map_fd */ 452 453 *err = -ENOTSOCK; 454 return NULL; 455 } 456 EXPORT_SYMBOL(sock_from_file); 457 458 /** 459 * sockfd_lookup - Go from a file number to its socket slot 460 * @fd: file handle 461 * @err: pointer to an error code return 462 * 463 * The file handle passed in is locked and the socket it is bound 464 * to is returned. If an error occurs the err pointer is overwritten 465 * with a negative errno code and NULL is returned. The function checks 466 * for both invalid handles and passing a handle which is not a socket. 467 * 468 * On a success the socket object pointer is returned. 469 */ 470 471 struct socket *sockfd_lookup(int fd, int *err) 472 { 473 struct file *file; 474 struct socket *sock; 475 476 file = fget(fd); 477 if (!file) { 478 *err = -EBADF; 479 return NULL; 480 } 481 482 sock = sock_from_file(file, err); 483 if (!sock) 484 fput(file); 485 return sock; 486 } 487 EXPORT_SYMBOL(sockfd_lookup); 488 489 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 490 { 491 struct fd f = fdget(fd); 492 struct socket *sock; 493 494 *err = -EBADF; 495 if (f.file) { 496 sock = sock_from_file(f.file, err); 497 if (likely(sock)) { 498 *fput_needed = f.flags; 499 return sock; 500 } 501 fdput(f); 502 } 503 return NULL; 504 } 505 506 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 507 size_t size) 508 { 509 ssize_t len; 510 ssize_t used = 0; 511 512 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 513 if (len < 0) 514 return len; 515 used += len; 516 if (buffer) { 517 if (size < used) 518 return -ERANGE; 519 buffer += len; 520 } 521 522 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 523 used += len; 524 if (buffer) { 525 if (size < used) 526 return -ERANGE; 527 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 528 buffer += len; 529 } 530 531 return used; 532 } 533 534 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 535 { 536 int err = simple_setattr(dentry, iattr); 537 538 if (!err && (iattr->ia_valid & ATTR_UID)) { 539 struct socket *sock = SOCKET_I(d_inode(dentry)); 540 541 sock->sk->sk_uid = iattr->ia_uid; 542 } 543 544 return err; 545 } 546 547 static const struct inode_operations sockfs_inode_ops = { 548 .listxattr = sockfs_listxattr, 549 .setattr = sockfs_setattr, 550 }; 551 552 /** 553 * sock_alloc - allocate a socket 554 * 555 * Allocate a new inode and socket object. The two are bound together 556 * and initialised. The socket is then returned. If we are out of inodes 557 * NULL is returned. 558 */ 559 560 struct socket *sock_alloc(void) 561 { 562 struct inode *inode; 563 struct socket *sock; 564 565 inode = new_inode_pseudo(sock_mnt->mnt_sb); 566 if (!inode) 567 return NULL; 568 569 sock = SOCKET_I(inode); 570 571 kmemcheck_annotate_bitfield(sock, type); 572 inode->i_ino = get_next_ino(); 573 inode->i_mode = S_IFSOCK | S_IRWXUGO; 574 inode->i_uid = current_fsuid(); 575 inode->i_gid = current_fsgid(); 576 inode->i_op = &sockfs_inode_ops; 577 578 this_cpu_add(sockets_in_use, 1); 579 return sock; 580 } 581 EXPORT_SYMBOL(sock_alloc); 582 583 /** 584 * sock_release - close a socket 585 * @sock: socket to close 586 * 587 * The socket is released from the protocol stack if it has a release 588 * callback, and the inode is then released if the socket is bound to 589 * an inode not a file. 590 */ 591 592 void sock_release(struct socket *sock) 593 { 594 if (sock->ops) { 595 struct module *owner = sock->ops->owner; 596 597 sock->ops->release(sock); 598 sock->ops = NULL; 599 module_put(owner); 600 } 601 602 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 603 pr_err("%s: fasync list not empty!\n", __func__); 604 605 this_cpu_sub(sockets_in_use, 1); 606 if (!sock->file) { 607 iput(SOCK_INODE(sock)); 608 return; 609 } 610 sock->file = NULL; 611 } 612 EXPORT_SYMBOL(sock_release); 613 614 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 615 { 616 u8 flags = *tx_flags; 617 618 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 619 flags |= SKBTX_HW_TSTAMP; 620 621 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 622 flags |= SKBTX_SW_TSTAMP; 623 624 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 625 flags |= SKBTX_SCHED_TSTAMP; 626 627 *tx_flags = flags; 628 } 629 EXPORT_SYMBOL(__sock_tx_timestamp); 630 631 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 632 { 633 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 634 BUG_ON(ret == -EIOCBQUEUED); 635 return ret; 636 } 637 638 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 639 { 640 int err = security_socket_sendmsg(sock, msg, 641 msg_data_left(msg)); 642 643 return err ?: sock_sendmsg_nosec(sock, msg); 644 } 645 EXPORT_SYMBOL(sock_sendmsg); 646 647 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 648 struct kvec *vec, size_t num, size_t size) 649 { 650 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 651 return sock_sendmsg(sock, msg); 652 } 653 EXPORT_SYMBOL(kernel_sendmsg); 654 655 static bool skb_is_err_queue(const struct sk_buff *skb) 656 { 657 /* pkt_type of skbs enqueued on the error queue are set to 658 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 659 * in recvmsg, since skbs received on a local socket will never 660 * have a pkt_type of PACKET_OUTGOING. 661 */ 662 return skb->pkt_type == PACKET_OUTGOING; 663 } 664 665 /* On transmit, software and hardware timestamps are returned independently. 666 * As the two skb clones share the hardware timestamp, which may be updated 667 * before the software timestamp is received, a hardware TX timestamp may be 668 * returned only if there is no software TX timestamp. Ignore false software 669 * timestamps, which may be made in the __sock_recv_timestamp() call when the 670 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a 671 * hardware timestamp. 672 */ 673 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 674 { 675 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 676 } 677 678 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 679 { 680 struct scm_ts_pktinfo ts_pktinfo; 681 struct net_device *orig_dev; 682 683 if (!skb_mac_header_was_set(skb)) 684 return; 685 686 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 687 688 rcu_read_lock(); 689 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 690 if (orig_dev) 691 ts_pktinfo.if_index = orig_dev->ifindex; 692 rcu_read_unlock(); 693 694 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 695 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 696 sizeof(ts_pktinfo), &ts_pktinfo); 697 } 698 699 /* 700 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 701 */ 702 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 703 struct sk_buff *skb) 704 { 705 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 706 struct scm_timestamping tss; 707 int empty = 1, false_tstamp = 0; 708 struct skb_shared_hwtstamps *shhwtstamps = 709 skb_hwtstamps(skb); 710 711 /* Race occurred between timestamp enabling and packet 712 receiving. Fill in the current time for now. */ 713 if (need_software_tstamp && skb->tstamp == 0) { 714 __net_timestamp(skb); 715 false_tstamp = 1; 716 } 717 718 if (need_software_tstamp) { 719 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 720 struct timeval tv; 721 skb_get_timestamp(skb, &tv); 722 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 723 sizeof(tv), &tv); 724 } else { 725 struct timespec ts; 726 skb_get_timestampns(skb, &ts); 727 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 728 sizeof(ts), &ts); 729 } 730 } 731 732 memset(&tss, 0, sizeof(tss)); 733 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 734 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 735 empty = 0; 736 if (shhwtstamps && 737 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 738 !skb_is_swtx_tstamp(skb, false_tstamp) && 739 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { 740 empty = 0; 741 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 742 !skb_is_err_queue(skb)) 743 put_ts_pktinfo(msg, skb); 744 } 745 if (!empty) { 746 put_cmsg(msg, SOL_SOCKET, 747 SCM_TIMESTAMPING, sizeof(tss), &tss); 748 749 if (skb_is_err_queue(skb) && skb->len && 750 SKB_EXT_ERR(skb)->opt_stats) 751 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 752 skb->len, skb->data); 753 } 754 } 755 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 756 757 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 758 struct sk_buff *skb) 759 { 760 int ack; 761 762 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 763 return; 764 if (!skb->wifi_acked_valid) 765 return; 766 767 ack = skb->wifi_acked; 768 769 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 770 } 771 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 772 773 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 774 struct sk_buff *skb) 775 { 776 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 777 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 778 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 779 } 780 781 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 782 struct sk_buff *skb) 783 { 784 sock_recv_timestamp(msg, sk, skb); 785 sock_recv_drops(msg, sk, skb); 786 } 787 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 788 789 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 790 int flags) 791 { 792 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags); 793 } 794 795 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 796 { 797 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 798 799 return err ?: sock_recvmsg_nosec(sock, msg, flags); 800 } 801 EXPORT_SYMBOL(sock_recvmsg); 802 803 /** 804 * kernel_recvmsg - Receive a message from a socket (kernel space) 805 * @sock: The socket to receive the message from 806 * @msg: Received message 807 * @vec: Input s/g array for message data 808 * @num: Size of input s/g array 809 * @size: Number of bytes to read 810 * @flags: Message flags (MSG_DONTWAIT, etc...) 811 * 812 * On return the msg structure contains the scatter/gather array passed in the 813 * vec argument. The array is modified so that it consists of the unfilled 814 * portion of the original array. 815 * 816 * The returned value is the total number of bytes received, or an error. 817 */ 818 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 819 struct kvec *vec, size_t num, size_t size, int flags) 820 { 821 mm_segment_t oldfs = get_fs(); 822 int result; 823 824 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size); 825 set_fs(KERNEL_DS); 826 result = sock_recvmsg(sock, msg, flags); 827 set_fs(oldfs); 828 return result; 829 } 830 EXPORT_SYMBOL(kernel_recvmsg); 831 832 static ssize_t sock_sendpage(struct file *file, struct page *page, 833 int offset, size_t size, loff_t *ppos, int more) 834 { 835 struct socket *sock; 836 int flags; 837 838 sock = file->private_data; 839 840 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 841 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 842 flags |= more; 843 844 return kernel_sendpage(sock, page, offset, size, flags); 845 } 846 847 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 848 struct pipe_inode_info *pipe, size_t len, 849 unsigned int flags) 850 { 851 struct socket *sock = file->private_data; 852 853 if (unlikely(!sock->ops->splice_read)) 854 return -EINVAL; 855 856 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 857 } 858 859 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 860 { 861 struct file *file = iocb->ki_filp; 862 struct socket *sock = file->private_data; 863 struct msghdr msg = {.msg_iter = *to, 864 .msg_iocb = iocb}; 865 ssize_t res; 866 867 if (file->f_flags & O_NONBLOCK) 868 msg.msg_flags = MSG_DONTWAIT; 869 870 if (iocb->ki_pos != 0) 871 return -ESPIPE; 872 873 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 874 return 0; 875 876 res = sock_recvmsg(sock, &msg, msg.msg_flags); 877 *to = msg.msg_iter; 878 return res; 879 } 880 881 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 882 { 883 struct file *file = iocb->ki_filp; 884 struct socket *sock = file->private_data; 885 struct msghdr msg = {.msg_iter = *from, 886 .msg_iocb = iocb}; 887 ssize_t res; 888 889 if (iocb->ki_pos != 0) 890 return -ESPIPE; 891 892 if (file->f_flags & O_NONBLOCK) 893 msg.msg_flags = MSG_DONTWAIT; 894 895 if (sock->type == SOCK_SEQPACKET) 896 msg.msg_flags |= MSG_EOR; 897 898 res = sock_sendmsg(sock, &msg); 899 *from = msg.msg_iter; 900 return res; 901 } 902 903 /* 904 * Atomic setting of ioctl hooks to avoid race 905 * with module unload. 906 */ 907 908 static DEFINE_MUTEX(br_ioctl_mutex); 909 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 910 911 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 912 { 913 mutex_lock(&br_ioctl_mutex); 914 br_ioctl_hook = hook; 915 mutex_unlock(&br_ioctl_mutex); 916 } 917 EXPORT_SYMBOL(brioctl_set); 918 919 static DEFINE_MUTEX(vlan_ioctl_mutex); 920 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 921 922 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 923 { 924 mutex_lock(&vlan_ioctl_mutex); 925 vlan_ioctl_hook = hook; 926 mutex_unlock(&vlan_ioctl_mutex); 927 } 928 EXPORT_SYMBOL(vlan_ioctl_set); 929 930 static DEFINE_MUTEX(dlci_ioctl_mutex); 931 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 932 933 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 934 { 935 mutex_lock(&dlci_ioctl_mutex); 936 dlci_ioctl_hook = hook; 937 mutex_unlock(&dlci_ioctl_mutex); 938 } 939 EXPORT_SYMBOL(dlci_ioctl_set); 940 941 static long sock_do_ioctl(struct net *net, struct socket *sock, 942 unsigned int cmd, unsigned long arg) 943 { 944 int err; 945 void __user *argp = (void __user *)arg; 946 947 err = sock->ops->ioctl(sock, cmd, arg); 948 949 /* 950 * If this ioctl is unknown try to hand it down 951 * to the NIC driver. 952 */ 953 if (err == -ENOIOCTLCMD) 954 err = dev_ioctl(net, cmd, argp); 955 956 return err; 957 } 958 959 /* 960 * With an ioctl, arg may well be a user mode pointer, but we don't know 961 * what to do with it - that's up to the protocol still. 962 */ 963 964 static struct ns_common *get_net_ns(struct ns_common *ns) 965 { 966 return &get_net(container_of(ns, struct net, ns))->ns; 967 } 968 969 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 970 { 971 struct socket *sock; 972 struct sock *sk; 973 void __user *argp = (void __user *)arg; 974 int pid, err; 975 struct net *net; 976 977 sock = file->private_data; 978 sk = sock->sk; 979 net = sock_net(sk); 980 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 981 err = dev_ioctl(net, cmd, argp); 982 } else 983 #ifdef CONFIG_WEXT_CORE 984 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 985 err = dev_ioctl(net, cmd, argp); 986 } else 987 #endif 988 switch (cmd) { 989 case FIOSETOWN: 990 case SIOCSPGRP: 991 err = -EFAULT; 992 if (get_user(pid, (int __user *)argp)) 993 break; 994 f_setown(sock->file, pid, 1); 995 err = 0; 996 break; 997 case FIOGETOWN: 998 case SIOCGPGRP: 999 err = put_user(f_getown(sock->file), 1000 (int __user *)argp); 1001 break; 1002 case SIOCGIFBR: 1003 case SIOCSIFBR: 1004 case SIOCBRADDBR: 1005 case SIOCBRDELBR: 1006 err = -ENOPKG; 1007 if (!br_ioctl_hook) 1008 request_module("bridge"); 1009 1010 mutex_lock(&br_ioctl_mutex); 1011 if (br_ioctl_hook) 1012 err = br_ioctl_hook(net, cmd, argp); 1013 mutex_unlock(&br_ioctl_mutex); 1014 break; 1015 case SIOCGIFVLAN: 1016 case SIOCSIFVLAN: 1017 err = -ENOPKG; 1018 if (!vlan_ioctl_hook) 1019 request_module("8021q"); 1020 1021 mutex_lock(&vlan_ioctl_mutex); 1022 if (vlan_ioctl_hook) 1023 err = vlan_ioctl_hook(net, argp); 1024 mutex_unlock(&vlan_ioctl_mutex); 1025 break; 1026 case SIOCADDDLCI: 1027 case SIOCDELDLCI: 1028 err = -ENOPKG; 1029 if (!dlci_ioctl_hook) 1030 request_module("dlci"); 1031 1032 mutex_lock(&dlci_ioctl_mutex); 1033 if (dlci_ioctl_hook) 1034 err = dlci_ioctl_hook(cmd, argp); 1035 mutex_unlock(&dlci_ioctl_mutex); 1036 break; 1037 case SIOCGSKNS: 1038 err = -EPERM; 1039 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1040 break; 1041 1042 err = open_related_ns(&net->ns, get_net_ns); 1043 break; 1044 default: 1045 err = sock_do_ioctl(net, sock, cmd, arg); 1046 break; 1047 } 1048 return err; 1049 } 1050 1051 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1052 { 1053 int err; 1054 struct socket *sock = NULL; 1055 1056 err = security_socket_create(family, type, protocol, 1); 1057 if (err) 1058 goto out; 1059 1060 sock = sock_alloc(); 1061 if (!sock) { 1062 err = -ENOMEM; 1063 goto out; 1064 } 1065 1066 sock->type = type; 1067 err = security_socket_post_create(sock, family, type, protocol, 1); 1068 if (err) 1069 goto out_release; 1070 1071 out: 1072 *res = sock; 1073 return err; 1074 out_release: 1075 sock_release(sock); 1076 sock = NULL; 1077 goto out; 1078 } 1079 EXPORT_SYMBOL(sock_create_lite); 1080 1081 /* No kernel lock held - perfect */ 1082 static unsigned int sock_poll(struct file *file, poll_table *wait) 1083 { 1084 unsigned int busy_flag = 0; 1085 struct socket *sock; 1086 1087 /* 1088 * We can't return errors to poll, so it's either yes or no. 1089 */ 1090 sock = file->private_data; 1091 1092 if (sk_can_busy_loop(sock->sk)) { 1093 /* this socket can poll_ll so tell the system call */ 1094 busy_flag = POLL_BUSY_LOOP; 1095 1096 /* once, only if requested by syscall */ 1097 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1098 sk_busy_loop(sock->sk, 1); 1099 } 1100 1101 return busy_flag | sock->ops->poll(file, sock, wait); 1102 } 1103 1104 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1105 { 1106 struct socket *sock = file->private_data; 1107 1108 return sock->ops->mmap(file, sock, vma); 1109 } 1110 1111 static int sock_close(struct inode *inode, struct file *filp) 1112 { 1113 sock_release(SOCKET_I(inode)); 1114 return 0; 1115 } 1116 1117 /* 1118 * Update the socket async list 1119 * 1120 * Fasync_list locking strategy. 1121 * 1122 * 1. fasync_list is modified only under process context socket lock 1123 * i.e. under semaphore. 1124 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1125 * or under socket lock 1126 */ 1127 1128 static int sock_fasync(int fd, struct file *filp, int on) 1129 { 1130 struct socket *sock = filp->private_data; 1131 struct sock *sk = sock->sk; 1132 struct socket_wq *wq; 1133 1134 if (sk == NULL) 1135 return -EINVAL; 1136 1137 lock_sock(sk); 1138 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk)); 1139 fasync_helper(fd, filp, on, &wq->fasync_list); 1140 1141 if (!wq->fasync_list) 1142 sock_reset_flag(sk, SOCK_FASYNC); 1143 else 1144 sock_set_flag(sk, SOCK_FASYNC); 1145 1146 release_sock(sk); 1147 return 0; 1148 } 1149 1150 /* This function may be called only under rcu_lock */ 1151 1152 int sock_wake_async(struct socket_wq *wq, int how, int band) 1153 { 1154 if (!wq || !wq->fasync_list) 1155 return -1; 1156 1157 switch (how) { 1158 case SOCK_WAKE_WAITD: 1159 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1160 break; 1161 goto call_kill; 1162 case SOCK_WAKE_SPACE: 1163 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1164 break; 1165 /* fall through */ 1166 case SOCK_WAKE_IO: 1167 call_kill: 1168 kill_fasync(&wq->fasync_list, SIGIO, band); 1169 break; 1170 case SOCK_WAKE_URG: 1171 kill_fasync(&wq->fasync_list, SIGURG, band); 1172 } 1173 1174 return 0; 1175 } 1176 EXPORT_SYMBOL(sock_wake_async); 1177 1178 int __sock_create(struct net *net, int family, int type, int protocol, 1179 struct socket **res, int kern) 1180 { 1181 int err; 1182 struct socket *sock; 1183 const struct net_proto_family *pf; 1184 1185 /* 1186 * Check protocol is in range 1187 */ 1188 if (family < 0 || family >= NPROTO) 1189 return -EAFNOSUPPORT; 1190 if (type < 0 || type >= SOCK_MAX) 1191 return -EINVAL; 1192 1193 /* Compatibility. 1194 1195 This uglymoron is moved from INET layer to here to avoid 1196 deadlock in module load. 1197 */ 1198 if (family == PF_INET && type == SOCK_PACKET) { 1199 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1200 current->comm); 1201 family = PF_PACKET; 1202 } 1203 1204 err = security_socket_create(family, type, protocol, kern); 1205 if (err) 1206 return err; 1207 1208 /* 1209 * Allocate the socket and allow the family to set things up. if 1210 * the protocol is 0, the family is instructed to select an appropriate 1211 * default. 1212 */ 1213 sock = sock_alloc(); 1214 if (!sock) { 1215 net_warn_ratelimited("socket: no more sockets\n"); 1216 return -ENFILE; /* Not exactly a match, but its the 1217 closest posix thing */ 1218 } 1219 1220 sock->type = type; 1221 1222 #ifdef CONFIG_MODULES 1223 /* Attempt to load a protocol module if the find failed. 1224 * 1225 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1226 * requested real, full-featured networking support upon configuration. 1227 * Otherwise module support will break! 1228 */ 1229 if (rcu_access_pointer(net_families[family]) == NULL) 1230 request_module("net-pf-%d", family); 1231 #endif 1232 1233 rcu_read_lock(); 1234 pf = rcu_dereference(net_families[family]); 1235 err = -EAFNOSUPPORT; 1236 if (!pf) 1237 goto out_release; 1238 1239 /* 1240 * We will call the ->create function, that possibly is in a loadable 1241 * module, so we have to bump that loadable module refcnt first. 1242 */ 1243 if (!try_module_get(pf->owner)) 1244 goto out_release; 1245 1246 /* Now protected by module ref count */ 1247 rcu_read_unlock(); 1248 1249 err = pf->create(net, sock, protocol, kern); 1250 if (err < 0) 1251 goto out_module_put; 1252 1253 /* 1254 * Now to bump the refcnt of the [loadable] module that owns this 1255 * socket at sock_release time we decrement its refcnt. 1256 */ 1257 if (!try_module_get(sock->ops->owner)) 1258 goto out_module_busy; 1259 1260 /* 1261 * Now that we're done with the ->create function, the [loadable] 1262 * module can have its refcnt decremented 1263 */ 1264 module_put(pf->owner); 1265 err = security_socket_post_create(sock, family, type, protocol, kern); 1266 if (err) 1267 goto out_sock_release; 1268 *res = sock; 1269 1270 return 0; 1271 1272 out_module_busy: 1273 err = -EAFNOSUPPORT; 1274 out_module_put: 1275 sock->ops = NULL; 1276 module_put(pf->owner); 1277 out_sock_release: 1278 sock_release(sock); 1279 return err; 1280 1281 out_release: 1282 rcu_read_unlock(); 1283 goto out_sock_release; 1284 } 1285 EXPORT_SYMBOL(__sock_create); 1286 1287 int sock_create(int family, int type, int protocol, struct socket **res) 1288 { 1289 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1290 } 1291 EXPORT_SYMBOL(sock_create); 1292 1293 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1294 { 1295 return __sock_create(net, family, type, protocol, res, 1); 1296 } 1297 EXPORT_SYMBOL(sock_create_kern); 1298 1299 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1300 { 1301 int retval; 1302 struct socket *sock; 1303 int flags; 1304 1305 /* Check the SOCK_* constants for consistency. */ 1306 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1307 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1308 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1309 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1310 1311 flags = type & ~SOCK_TYPE_MASK; 1312 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1313 return -EINVAL; 1314 type &= SOCK_TYPE_MASK; 1315 1316 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1317 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1318 1319 retval = sock_create(family, type, protocol, &sock); 1320 if (retval < 0) 1321 goto out; 1322 1323 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1324 if (retval < 0) 1325 goto out_release; 1326 1327 out: 1328 /* It may be already another descriptor 8) Not kernel problem. */ 1329 return retval; 1330 1331 out_release: 1332 sock_release(sock); 1333 return retval; 1334 } 1335 1336 /* 1337 * Create a pair of connected sockets. 1338 */ 1339 1340 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1341 int __user *, usockvec) 1342 { 1343 struct socket *sock1, *sock2; 1344 int fd1, fd2, err; 1345 struct file *newfile1, *newfile2; 1346 int flags; 1347 1348 flags = type & ~SOCK_TYPE_MASK; 1349 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1350 return -EINVAL; 1351 type &= SOCK_TYPE_MASK; 1352 1353 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1354 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1355 1356 /* 1357 * Obtain the first socket and check if the underlying protocol 1358 * supports the socketpair call. 1359 */ 1360 1361 err = sock_create(family, type, protocol, &sock1); 1362 if (err < 0) 1363 goto out; 1364 1365 err = sock_create(family, type, protocol, &sock2); 1366 if (err < 0) 1367 goto out_release_1; 1368 1369 err = sock1->ops->socketpair(sock1, sock2); 1370 if (err < 0) 1371 goto out_release_both; 1372 1373 fd1 = get_unused_fd_flags(flags); 1374 if (unlikely(fd1 < 0)) { 1375 err = fd1; 1376 goto out_release_both; 1377 } 1378 1379 fd2 = get_unused_fd_flags(flags); 1380 if (unlikely(fd2 < 0)) { 1381 err = fd2; 1382 goto out_put_unused_1; 1383 } 1384 1385 newfile1 = sock_alloc_file(sock1, flags, NULL); 1386 if (IS_ERR(newfile1)) { 1387 err = PTR_ERR(newfile1); 1388 goto out_put_unused_both; 1389 } 1390 1391 newfile2 = sock_alloc_file(sock2, flags, NULL); 1392 if (IS_ERR(newfile2)) { 1393 err = PTR_ERR(newfile2); 1394 goto out_fput_1; 1395 } 1396 1397 err = put_user(fd1, &usockvec[0]); 1398 if (err) 1399 goto out_fput_both; 1400 1401 err = put_user(fd2, &usockvec[1]); 1402 if (err) 1403 goto out_fput_both; 1404 1405 audit_fd_pair(fd1, fd2); 1406 1407 fd_install(fd1, newfile1); 1408 fd_install(fd2, newfile2); 1409 /* fd1 and fd2 may be already another descriptors. 1410 * Not kernel problem. 1411 */ 1412 1413 return 0; 1414 1415 out_fput_both: 1416 fput(newfile2); 1417 fput(newfile1); 1418 put_unused_fd(fd2); 1419 put_unused_fd(fd1); 1420 goto out; 1421 1422 out_fput_1: 1423 fput(newfile1); 1424 put_unused_fd(fd2); 1425 put_unused_fd(fd1); 1426 sock_release(sock2); 1427 goto out; 1428 1429 out_put_unused_both: 1430 put_unused_fd(fd2); 1431 out_put_unused_1: 1432 put_unused_fd(fd1); 1433 out_release_both: 1434 sock_release(sock2); 1435 out_release_1: 1436 sock_release(sock1); 1437 out: 1438 return err; 1439 } 1440 1441 /* 1442 * Bind a name to a socket. Nothing much to do here since it's 1443 * the protocol's responsibility to handle the local address. 1444 * 1445 * We move the socket address to kernel space before we call 1446 * the protocol layer (having also checked the address is ok). 1447 */ 1448 1449 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1450 { 1451 struct socket *sock; 1452 struct sockaddr_storage address; 1453 int err, fput_needed; 1454 1455 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1456 if (sock) { 1457 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1458 if (err >= 0) { 1459 err = security_socket_bind(sock, 1460 (struct sockaddr *)&address, 1461 addrlen); 1462 if (!err) 1463 err = sock->ops->bind(sock, 1464 (struct sockaddr *) 1465 &address, addrlen); 1466 } 1467 fput_light(sock->file, fput_needed); 1468 } 1469 return err; 1470 } 1471 1472 /* 1473 * Perform a listen. Basically, we allow the protocol to do anything 1474 * necessary for a listen, and if that works, we mark the socket as 1475 * ready for listening. 1476 */ 1477 1478 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1479 { 1480 struct socket *sock; 1481 int err, fput_needed; 1482 int somaxconn; 1483 1484 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1485 if (sock) { 1486 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1487 if ((unsigned int)backlog > somaxconn) 1488 backlog = somaxconn; 1489 1490 err = security_socket_listen(sock, backlog); 1491 if (!err) 1492 err = sock->ops->listen(sock, backlog); 1493 1494 fput_light(sock->file, fput_needed); 1495 } 1496 return err; 1497 } 1498 1499 /* 1500 * For accept, we attempt to create a new socket, set up the link 1501 * with the client, wake up the client, then return the new 1502 * connected fd. We collect the address of the connector in kernel 1503 * space and move it to user at the very end. This is unclean because 1504 * we open the socket then return an error. 1505 * 1506 * 1003.1g adds the ability to recvmsg() to query connection pending 1507 * status to recvmsg. We need to add that support in a way thats 1508 * clean when we restucture accept also. 1509 */ 1510 1511 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1512 int __user *, upeer_addrlen, int, flags) 1513 { 1514 struct socket *sock, *newsock; 1515 struct file *newfile; 1516 int err, len, newfd, fput_needed; 1517 struct sockaddr_storage address; 1518 1519 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1520 return -EINVAL; 1521 1522 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1523 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1524 1525 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1526 if (!sock) 1527 goto out; 1528 1529 err = -ENFILE; 1530 newsock = sock_alloc(); 1531 if (!newsock) 1532 goto out_put; 1533 1534 newsock->type = sock->type; 1535 newsock->ops = sock->ops; 1536 1537 /* 1538 * We don't need try_module_get here, as the listening socket (sock) 1539 * has the protocol module (sock->ops->owner) held. 1540 */ 1541 __module_get(newsock->ops->owner); 1542 1543 newfd = get_unused_fd_flags(flags); 1544 if (unlikely(newfd < 0)) { 1545 err = newfd; 1546 sock_release(newsock); 1547 goto out_put; 1548 } 1549 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1550 if (IS_ERR(newfile)) { 1551 err = PTR_ERR(newfile); 1552 put_unused_fd(newfd); 1553 sock_release(newsock); 1554 goto out_put; 1555 } 1556 1557 err = security_socket_accept(sock, newsock); 1558 if (err) 1559 goto out_fd; 1560 1561 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false); 1562 if (err < 0) 1563 goto out_fd; 1564 1565 if (upeer_sockaddr) { 1566 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1567 &len, 2) < 0) { 1568 err = -ECONNABORTED; 1569 goto out_fd; 1570 } 1571 err = move_addr_to_user(&address, 1572 len, upeer_sockaddr, upeer_addrlen); 1573 if (err < 0) 1574 goto out_fd; 1575 } 1576 1577 /* File flags are not inherited via accept() unlike another OSes. */ 1578 1579 fd_install(newfd, newfile); 1580 err = newfd; 1581 1582 out_put: 1583 fput_light(sock->file, fput_needed); 1584 out: 1585 return err; 1586 out_fd: 1587 fput(newfile); 1588 put_unused_fd(newfd); 1589 goto out_put; 1590 } 1591 1592 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1593 int __user *, upeer_addrlen) 1594 { 1595 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1596 } 1597 1598 /* 1599 * Attempt to connect to a socket with the server address. The address 1600 * is in user space so we verify it is OK and move it to kernel space. 1601 * 1602 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1603 * break bindings 1604 * 1605 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1606 * other SEQPACKET protocols that take time to connect() as it doesn't 1607 * include the -EINPROGRESS status for such sockets. 1608 */ 1609 1610 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1611 int, addrlen) 1612 { 1613 struct socket *sock; 1614 struct sockaddr_storage address; 1615 int err, fput_needed; 1616 1617 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1618 if (!sock) 1619 goto out; 1620 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1621 if (err < 0) 1622 goto out_put; 1623 1624 err = 1625 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1626 if (err) 1627 goto out_put; 1628 1629 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1630 sock->file->f_flags); 1631 out_put: 1632 fput_light(sock->file, fput_needed); 1633 out: 1634 return err; 1635 } 1636 1637 /* 1638 * Get the local address ('name') of a socket object. Move the obtained 1639 * name to user space. 1640 */ 1641 1642 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1643 int __user *, usockaddr_len) 1644 { 1645 struct socket *sock; 1646 struct sockaddr_storage address; 1647 int len, err, fput_needed; 1648 1649 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1650 if (!sock) 1651 goto out; 1652 1653 err = security_socket_getsockname(sock); 1654 if (err) 1655 goto out_put; 1656 1657 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1658 if (err) 1659 goto out_put; 1660 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1661 1662 out_put: 1663 fput_light(sock->file, fput_needed); 1664 out: 1665 return err; 1666 } 1667 1668 /* 1669 * Get the remote address ('name') of a socket object. Move the obtained 1670 * name to user space. 1671 */ 1672 1673 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1674 int __user *, usockaddr_len) 1675 { 1676 struct socket *sock; 1677 struct sockaddr_storage address; 1678 int len, err, fput_needed; 1679 1680 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1681 if (sock != NULL) { 1682 err = security_socket_getpeername(sock); 1683 if (err) { 1684 fput_light(sock->file, fput_needed); 1685 return err; 1686 } 1687 1688 err = 1689 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1690 1); 1691 if (!err) 1692 err = move_addr_to_user(&address, len, usockaddr, 1693 usockaddr_len); 1694 fput_light(sock->file, fput_needed); 1695 } 1696 return err; 1697 } 1698 1699 /* 1700 * Send a datagram to a given address. We move the address into kernel 1701 * space and check the user space data area is readable before invoking 1702 * the protocol. 1703 */ 1704 1705 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1706 unsigned int, flags, struct sockaddr __user *, addr, 1707 int, addr_len) 1708 { 1709 struct socket *sock; 1710 struct sockaddr_storage address; 1711 int err; 1712 struct msghdr msg; 1713 struct iovec iov; 1714 int fput_needed; 1715 1716 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1717 if (unlikely(err)) 1718 return err; 1719 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1720 if (!sock) 1721 goto out; 1722 1723 msg.msg_name = NULL; 1724 msg.msg_control = NULL; 1725 msg.msg_controllen = 0; 1726 msg.msg_namelen = 0; 1727 if (addr) { 1728 err = move_addr_to_kernel(addr, addr_len, &address); 1729 if (err < 0) 1730 goto out_put; 1731 msg.msg_name = (struct sockaddr *)&address; 1732 msg.msg_namelen = addr_len; 1733 } 1734 if (sock->file->f_flags & O_NONBLOCK) 1735 flags |= MSG_DONTWAIT; 1736 msg.msg_flags = flags; 1737 err = sock_sendmsg(sock, &msg); 1738 1739 out_put: 1740 fput_light(sock->file, fput_needed); 1741 out: 1742 return err; 1743 } 1744 1745 /* 1746 * Send a datagram down a socket. 1747 */ 1748 1749 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1750 unsigned int, flags) 1751 { 1752 return sys_sendto(fd, buff, len, flags, NULL, 0); 1753 } 1754 1755 /* 1756 * Receive a frame from the socket and optionally record the address of the 1757 * sender. We verify the buffers are writable and if needed move the 1758 * sender address from kernel to user space. 1759 */ 1760 1761 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1762 unsigned int, flags, struct sockaddr __user *, addr, 1763 int __user *, addr_len) 1764 { 1765 struct socket *sock; 1766 struct iovec iov; 1767 struct msghdr msg; 1768 struct sockaddr_storage address; 1769 int err, err2; 1770 int fput_needed; 1771 1772 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1773 if (unlikely(err)) 1774 return err; 1775 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1776 if (!sock) 1777 goto out; 1778 1779 msg.msg_control = NULL; 1780 msg.msg_controllen = 0; 1781 /* Save some cycles and don't copy the address if not needed */ 1782 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1783 /* We assume all kernel code knows the size of sockaddr_storage */ 1784 msg.msg_namelen = 0; 1785 msg.msg_iocb = NULL; 1786 msg.msg_flags = 0; 1787 if (sock->file->f_flags & O_NONBLOCK) 1788 flags |= MSG_DONTWAIT; 1789 err = sock_recvmsg(sock, &msg, flags); 1790 1791 if (err >= 0 && addr != NULL) { 1792 err2 = move_addr_to_user(&address, 1793 msg.msg_namelen, addr, addr_len); 1794 if (err2 < 0) 1795 err = err2; 1796 } 1797 1798 fput_light(sock->file, fput_needed); 1799 out: 1800 return err; 1801 } 1802 1803 /* 1804 * Receive a datagram from a socket. 1805 */ 1806 1807 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1808 unsigned int, flags) 1809 { 1810 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1811 } 1812 1813 /* 1814 * Set a socket option. Because we don't know the option lengths we have 1815 * to pass the user mode parameter for the protocols to sort out. 1816 */ 1817 1818 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1819 char __user *, optval, int, optlen) 1820 { 1821 int err, fput_needed; 1822 struct socket *sock; 1823 1824 if (optlen < 0) 1825 return -EINVAL; 1826 1827 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1828 if (sock != NULL) { 1829 err = security_socket_setsockopt(sock, level, optname); 1830 if (err) 1831 goto out_put; 1832 1833 if (level == SOL_SOCKET) 1834 err = 1835 sock_setsockopt(sock, level, optname, optval, 1836 optlen); 1837 else 1838 err = 1839 sock->ops->setsockopt(sock, level, optname, optval, 1840 optlen); 1841 out_put: 1842 fput_light(sock->file, fput_needed); 1843 } 1844 return err; 1845 } 1846 1847 /* 1848 * Get a socket option. Because we don't know the option lengths we have 1849 * to pass a user mode parameter for the protocols to sort out. 1850 */ 1851 1852 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1853 char __user *, optval, int __user *, optlen) 1854 { 1855 int err, fput_needed; 1856 struct socket *sock; 1857 1858 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1859 if (sock != NULL) { 1860 err = security_socket_getsockopt(sock, level, optname); 1861 if (err) 1862 goto out_put; 1863 1864 if (level == SOL_SOCKET) 1865 err = 1866 sock_getsockopt(sock, level, optname, optval, 1867 optlen); 1868 else 1869 err = 1870 sock->ops->getsockopt(sock, level, optname, optval, 1871 optlen); 1872 out_put: 1873 fput_light(sock->file, fput_needed); 1874 } 1875 return err; 1876 } 1877 1878 /* 1879 * Shutdown a socket. 1880 */ 1881 1882 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1883 { 1884 int err, fput_needed; 1885 struct socket *sock; 1886 1887 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1888 if (sock != NULL) { 1889 err = security_socket_shutdown(sock, how); 1890 if (!err) 1891 err = sock->ops->shutdown(sock, how); 1892 fput_light(sock->file, fput_needed); 1893 } 1894 return err; 1895 } 1896 1897 /* A couple of helpful macros for getting the address of the 32/64 bit 1898 * fields which are the same type (int / unsigned) on our platforms. 1899 */ 1900 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1901 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1902 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1903 1904 struct used_address { 1905 struct sockaddr_storage name; 1906 unsigned int name_len; 1907 }; 1908 1909 static int copy_msghdr_from_user(struct msghdr *kmsg, 1910 struct user_msghdr __user *umsg, 1911 struct sockaddr __user **save_addr, 1912 struct iovec **iov) 1913 { 1914 struct sockaddr __user *uaddr; 1915 struct iovec __user *uiov; 1916 size_t nr_segs; 1917 ssize_t err; 1918 1919 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) || 1920 __get_user(uaddr, &umsg->msg_name) || 1921 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) || 1922 __get_user(uiov, &umsg->msg_iov) || 1923 __get_user(nr_segs, &umsg->msg_iovlen) || 1924 __get_user(kmsg->msg_control, &umsg->msg_control) || 1925 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) || 1926 __get_user(kmsg->msg_flags, &umsg->msg_flags)) 1927 return -EFAULT; 1928 1929 if (!uaddr) 1930 kmsg->msg_namelen = 0; 1931 1932 if (kmsg->msg_namelen < 0) 1933 return -EINVAL; 1934 1935 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 1936 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 1937 1938 if (save_addr) 1939 *save_addr = uaddr; 1940 1941 if (uaddr && kmsg->msg_namelen) { 1942 if (!save_addr) { 1943 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen, 1944 kmsg->msg_name); 1945 if (err < 0) 1946 return err; 1947 } 1948 } else { 1949 kmsg->msg_name = NULL; 1950 kmsg->msg_namelen = 0; 1951 } 1952 1953 if (nr_segs > UIO_MAXIOV) 1954 return -EMSGSIZE; 1955 1956 kmsg->msg_iocb = NULL; 1957 1958 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs, 1959 UIO_FASTIOV, iov, &kmsg->msg_iter); 1960 } 1961 1962 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 1963 struct msghdr *msg_sys, unsigned int flags, 1964 struct used_address *used_address, 1965 unsigned int allowed_msghdr_flags) 1966 { 1967 struct compat_msghdr __user *msg_compat = 1968 (struct compat_msghdr __user *)msg; 1969 struct sockaddr_storage address; 1970 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1971 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1972 __aligned(sizeof(__kernel_size_t)); 1973 /* 20 is size of ipv6_pktinfo */ 1974 unsigned char *ctl_buf = ctl; 1975 int ctl_len; 1976 ssize_t err; 1977 1978 msg_sys->msg_name = &address; 1979 1980 if (MSG_CMSG_COMPAT & flags) 1981 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 1982 else 1983 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 1984 if (err < 0) 1985 return err; 1986 1987 err = -ENOBUFS; 1988 1989 if (msg_sys->msg_controllen > INT_MAX) 1990 goto out_freeiov; 1991 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 1992 ctl_len = msg_sys->msg_controllen; 1993 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1994 err = 1995 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 1996 sizeof(ctl)); 1997 if (err) 1998 goto out_freeiov; 1999 ctl_buf = msg_sys->msg_control; 2000 ctl_len = msg_sys->msg_controllen; 2001 } else if (ctl_len) { 2002 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2003 CMSG_ALIGN(sizeof(struct cmsghdr))); 2004 if (ctl_len > sizeof(ctl)) { 2005 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2006 if (ctl_buf == NULL) 2007 goto out_freeiov; 2008 } 2009 err = -EFAULT; 2010 /* 2011 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2012 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2013 * checking falls down on this. 2014 */ 2015 if (copy_from_user(ctl_buf, 2016 (void __user __force *)msg_sys->msg_control, 2017 ctl_len)) 2018 goto out_freectl; 2019 msg_sys->msg_control = ctl_buf; 2020 } 2021 msg_sys->msg_flags = flags; 2022 2023 if (sock->file->f_flags & O_NONBLOCK) 2024 msg_sys->msg_flags |= MSG_DONTWAIT; 2025 /* 2026 * If this is sendmmsg() and current destination address is same as 2027 * previously succeeded address, omit asking LSM's decision. 2028 * used_address->name_len is initialized to UINT_MAX so that the first 2029 * destination address never matches. 2030 */ 2031 if (used_address && msg_sys->msg_name && 2032 used_address->name_len == msg_sys->msg_namelen && 2033 !memcmp(&used_address->name, msg_sys->msg_name, 2034 used_address->name_len)) { 2035 err = sock_sendmsg_nosec(sock, msg_sys); 2036 goto out_freectl; 2037 } 2038 err = sock_sendmsg(sock, msg_sys); 2039 /* 2040 * If this is sendmmsg() and sending to current destination address was 2041 * successful, remember it. 2042 */ 2043 if (used_address && err >= 0) { 2044 used_address->name_len = msg_sys->msg_namelen; 2045 if (msg_sys->msg_name) 2046 memcpy(&used_address->name, msg_sys->msg_name, 2047 used_address->name_len); 2048 } 2049 2050 out_freectl: 2051 if (ctl_buf != ctl) 2052 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2053 out_freeiov: 2054 kfree(iov); 2055 return err; 2056 } 2057 2058 /* 2059 * BSD sendmsg interface 2060 */ 2061 2062 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2063 { 2064 int fput_needed, err; 2065 struct msghdr msg_sys; 2066 struct socket *sock; 2067 2068 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2069 if (!sock) 2070 goto out; 2071 2072 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2073 2074 fput_light(sock->file, fput_needed); 2075 out: 2076 return err; 2077 } 2078 2079 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2080 { 2081 if (flags & MSG_CMSG_COMPAT) 2082 return -EINVAL; 2083 return __sys_sendmsg(fd, msg, flags); 2084 } 2085 2086 /* 2087 * Linux sendmmsg interface 2088 */ 2089 2090 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2091 unsigned int flags) 2092 { 2093 int fput_needed, err, datagrams; 2094 struct socket *sock; 2095 struct mmsghdr __user *entry; 2096 struct compat_mmsghdr __user *compat_entry; 2097 struct msghdr msg_sys; 2098 struct used_address used_address; 2099 unsigned int oflags = flags; 2100 2101 if (vlen > UIO_MAXIOV) 2102 vlen = UIO_MAXIOV; 2103 2104 datagrams = 0; 2105 2106 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2107 if (!sock) 2108 return err; 2109 2110 used_address.name_len = UINT_MAX; 2111 entry = mmsg; 2112 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2113 err = 0; 2114 flags |= MSG_BATCH; 2115 2116 while (datagrams < vlen) { 2117 if (datagrams == vlen - 1) 2118 flags = oflags; 2119 2120 if (MSG_CMSG_COMPAT & flags) { 2121 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2122 &msg_sys, flags, &used_address, MSG_EOR); 2123 if (err < 0) 2124 break; 2125 err = __put_user(err, &compat_entry->msg_len); 2126 ++compat_entry; 2127 } else { 2128 err = ___sys_sendmsg(sock, 2129 (struct user_msghdr __user *)entry, 2130 &msg_sys, flags, &used_address, MSG_EOR); 2131 if (err < 0) 2132 break; 2133 err = put_user(err, &entry->msg_len); 2134 ++entry; 2135 } 2136 2137 if (err) 2138 break; 2139 ++datagrams; 2140 if (msg_data_left(&msg_sys)) 2141 break; 2142 cond_resched(); 2143 } 2144 2145 fput_light(sock->file, fput_needed); 2146 2147 /* We only return an error if no datagrams were able to be sent */ 2148 if (datagrams != 0) 2149 return datagrams; 2150 2151 return err; 2152 } 2153 2154 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2155 unsigned int, vlen, unsigned int, flags) 2156 { 2157 if (flags & MSG_CMSG_COMPAT) 2158 return -EINVAL; 2159 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2160 } 2161 2162 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2163 struct msghdr *msg_sys, unsigned int flags, int nosec) 2164 { 2165 struct compat_msghdr __user *msg_compat = 2166 (struct compat_msghdr __user *)msg; 2167 struct iovec iovstack[UIO_FASTIOV]; 2168 struct iovec *iov = iovstack; 2169 unsigned long cmsg_ptr; 2170 int len; 2171 ssize_t err; 2172 2173 /* kernel mode address */ 2174 struct sockaddr_storage addr; 2175 2176 /* user mode address pointers */ 2177 struct sockaddr __user *uaddr; 2178 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2179 2180 msg_sys->msg_name = &addr; 2181 2182 if (MSG_CMSG_COMPAT & flags) 2183 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2184 else 2185 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2186 if (err < 0) 2187 return err; 2188 2189 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2190 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2191 2192 /* We assume all kernel code knows the size of sockaddr_storage */ 2193 msg_sys->msg_namelen = 0; 2194 2195 if (sock->file->f_flags & O_NONBLOCK) 2196 flags |= MSG_DONTWAIT; 2197 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2198 if (err < 0) 2199 goto out_freeiov; 2200 len = err; 2201 2202 if (uaddr != NULL) { 2203 err = move_addr_to_user(&addr, 2204 msg_sys->msg_namelen, uaddr, 2205 uaddr_len); 2206 if (err < 0) 2207 goto out_freeiov; 2208 } 2209 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2210 COMPAT_FLAGS(msg)); 2211 if (err) 2212 goto out_freeiov; 2213 if (MSG_CMSG_COMPAT & flags) 2214 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2215 &msg_compat->msg_controllen); 2216 else 2217 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2218 &msg->msg_controllen); 2219 if (err) 2220 goto out_freeiov; 2221 err = len; 2222 2223 out_freeiov: 2224 kfree(iov); 2225 return err; 2226 } 2227 2228 /* 2229 * BSD recvmsg interface 2230 */ 2231 2232 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2233 { 2234 int fput_needed, err; 2235 struct msghdr msg_sys; 2236 struct socket *sock; 2237 2238 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2239 if (!sock) 2240 goto out; 2241 2242 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2243 2244 fput_light(sock->file, fput_needed); 2245 out: 2246 return err; 2247 } 2248 2249 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2250 unsigned int, flags) 2251 { 2252 if (flags & MSG_CMSG_COMPAT) 2253 return -EINVAL; 2254 return __sys_recvmsg(fd, msg, flags); 2255 } 2256 2257 /* 2258 * Linux recvmmsg interface 2259 */ 2260 2261 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2262 unsigned int flags, struct timespec *timeout) 2263 { 2264 int fput_needed, err, datagrams; 2265 struct socket *sock; 2266 struct mmsghdr __user *entry; 2267 struct compat_mmsghdr __user *compat_entry; 2268 struct msghdr msg_sys; 2269 struct timespec64 end_time; 2270 struct timespec64 timeout64; 2271 2272 if (timeout && 2273 poll_select_set_timeout(&end_time, timeout->tv_sec, 2274 timeout->tv_nsec)) 2275 return -EINVAL; 2276 2277 datagrams = 0; 2278 2279 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2280 if (!sock) 2281 return err; 2282 2283 err = sock_error(sock->sk); 2284 if (err) { 2285 datagrams = err; 2286 goto out_put; 2287 } 2288 2289 entry = mmsg; 2290 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2291 2292 while (datagrams < vlen) { 2293 /* 2294 * No need to ask LSM for more than the first datagram. 2295 */ 2296 if (MSG_CMSG_COMPAT & flags) { 2297 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2298 &msg_sys, flags & ~MSG_WAITFORONE, 2299 datagrams); 2300 if (err < 0) 2301 break; 2302 err = __put_user(err, &compat_entry->msg_len); 2303 ++compat_entry; 2304 } else { 2305 err = ___sys_recvmsg(sock, 2306 (struct user_msghdr __user *)entry, 2307 &msg_sys, flags & ~MSG_WAITFORONE, 2308 datagrams); 2309 if (err < 0) 2310 break; 2311 err = put_user(err, &entry->msg_len); 2312 ++entry; 2313 } 2314 2315 if (err) 2316 break; 2317 ++datagrams; 2318 2319 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2320 if (flags & MSG_WAITFORONE) 2321 flags |= MSG_DONTWAIT; 2322 2323 if (timeout) { 2324 ktime_get_ts64(&timeout64); 2325 *timeout = timespec64_to_timespec( 2326 timespec64_sub(end_time, timeout64)); 2327 if (timeout->tv_sec < 0) { 2328 timeout->tv_sec = timeout->tv_nsec = 0; 2329 break; 2330 } 2331 2332 /* Timeout, return less than vlen datagrams */ 2333 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2334 break; 2335 } 2336 2337 /* Out of band data, return right away */ 2338 if (msg_sys.msg_flags & MSG_OOB) 2339 break; 2340 cond_resched(); 2341 } 2342 2343 if (err == 0) 2344 goto out_put; 2345 2346 if (datagrams == 0) { 2347 datagrams = err; 2348 goto out_put; 2349 } 2350 2351 /* 2352 * We may return less entries than requested (vlen) if the 2353 * sock is non block and there aren't enough datagrams... 2354 */ 2355 if (err != -EAGAIN) { 2356 /* 2357 * ... or if recvmsg returns an error after we 2358 * received some datagrams, where we record the 2359 * error to return on the next call or if the 2360 * app asks about it using getsockopt(SO_ERROR). 2361 */ 2362 sock->sk->sk_err = -err; 2363 } 2364 out_put: 2365 fput_light(sock->file, fput_needed); 2366 2367 return datagrams; 2368 } 2369 2370 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2371 unsigned int, vlen, unsigned int, flags, 2372 struct timespec __user *, timeout) 2373 { 2374 int datagrams; 2375 struct timespec timeout_sys; 2376 2377 if (flags & MSG_CMSG_COMPAT) 2378 return -EINVAL; 2379 2380 if (!timeout) 2381 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2382 2383 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2384 return -EFAULT; 2385 2386 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2387 2388 if (datagrams > 0 && 2389 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2390 datagrams = -EFAULT; 2391 2392 return datagrams; 2393 } 2394 2395 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2396 /* Argument list sizes for sys_socketcall */ 2397 #define AL(x) ((x) * sizeof(unsigned long)) 2398 static const unsigned char nargs[21] = { 2399 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2400 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2401 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2402 AL(4), AL(5), AL(4) 2403 }; 2404 2405 #undef AL 2406 2407 /* 2408 * System call vectors. 2409 * 2410 * Argument checking cleaned up. Saved 20% in size. 2411 * This function doesn't need to set the kernel lock because 2412 * it is set by the callees. 2413 */ 2414 2415 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2416 { 2417 unsigned long a[AUDITSC_ARGS]; 2418 unsigned long a0, a1; 2419 int err; 2420 unsigned int len; 2421 2422 if (call < 1 || call > SYS_SENDMMSG) 2423 return -EINVAL; 2424 2425 len = nargs[call]; 2426 if (len > sizeof(a)) 2427 return -EINVAL; 2428 2429 /* copy_from_user should be SMP safe. */ 2430 if (copy_from_user(a, args, len)) 2431 return -EFAULT; 2432 2433 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2434 if (err) 2435 return err; 2436 2437 a0 = a[0]; 2438 a1 = a[1]; 2439 2440 switch (call) { 2441 case SYS_SOCKET: 2442 err = sys_socket(a0, a1, a[2]); 2443 break; 2444 case SYS_BIND: 2445 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2446 break; 2447 case SYS_CONNECT: 2448 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2449 break; 2450 case SYS_LISTEN: 2451 err = sys_listen(a0, a1); 2452 break; 2453 case SYS_ACCEPT: 2454 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2455 (int __user *)a[2], 0); 2456 break; 2457 case SYS_GETSOCKNAME: 2458 err = 2459 sys_getsockname(a0, (struct sockaddr __user *)a1, 2460 (int __user *)a[2]); 2461 break; 2462 case SYS_GETPEERNAME: 2463 err = 2464 sys_getpeername(a0, (struct sockaddr __user *)a1, 2465 (int __user *)a[2]); 2466 break; 2467 case SYS_SOCKETPAIR: 2468 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2469 break; 2470 case SYS_SEND: 2471 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2472 break; 2473 case SYS_SENDTO: 2474 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2475 (struct sockaddr __user *)a[4], a[5]); 2476 break; 2477 case SYS_RECV: 2478 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2479 break; 2480 case SYS_RECVFROM: 2481 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2482 (struct sockaddr __user *)a[4], 2483 (int __user *)a[5]); 2484 break; 2485 case SYS_SHUTDOWN: 2486 err = sys_shutdown(a0, a1); 2487 break; 2488 case SYS_SETSOCKOPT: 2489 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2490 break; 2491 case SYS_GETSOCKOPT: 2492 err = 2493 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2494 (int __user *)a[4]); 2495 break; 2496 case SYS_SENDMSG: 2497 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2498 break; 2499 case SYS_SENDMMSG: 2500 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2501 break; 2502 case SYS_RECVMSG: 2503 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2504 break; 2505 case SYS_RECVMMSG: 2506 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2507 (struct timespec __user *)a[4]); 2508 break; 2509 case SYS_ACCEPT4: 2510 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2511 (int __user *)a[2], a[3]); 2512 break; 2513 default: 2514 err = -EINVAL; 2515 break; 2516 } 2517 return err; 2518 } 2519 2520 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2521 2522 /** 2523 * sock_register - add a socket protocol handler 2524 * @ops: description of protocol 2525 * 2526 * This function is called by a protocol handler that wants to 2527 * advertise its address family, and have it linked into the 2528 * socket interface. The value ops->family corresponds to the 2529 * socket system call protocol family. 2530 */ 2531 int sock_register(const struct net_proto_family *ops) 2532 { 2533 int err; 2534 2535 if (ops->family >= NPROTO) { 2536 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2537 return -ENOBUFS; 2538 } 2539 2540 spin_lock(&net_family_lock); 2541 if (rcu_dereference_protected(net_families[ops->family], 2542 lockdep_is_held(&net_family_lock))) 2543 err = -EEXIST; 2544 else { 2545 rcu_assign_pointer(net_families[ops->family], ops); 2546 err = 0; 2547 } 2548 spin_unlock(&net_family_lock); 2549 2550 pr_info("NET: Registered protocol family %d\n", ops->family); 2551 return err; 2552 } 2553 EXPORT_SYMBOL(sock_register); 2554 2555 /** 2556 * sock_unregister - remove a protocol handler 2557 * @family: protocol family to remove 2558 * 2559 * This function is called by a protocol handler that wants to 2560 * remove its address family, and have it unlinked from the 2561 * new socket creation. 2562 * 2563 * If protocol handler is a module, then it can use module reference 2564 * counts to protect against new references. If protocol handler is not 2565 * a module then it needs to provide its own protection in 2566 * the ops->create routine. 2567 */ 2568 void sock_unregister(int family) 2569 { 2570 BUG_ON(family < 0 || family >= NPROTO); 2571 2572 spin_lock(&net_family_lock); 2573 RCU_INIT_POINTER(net_families[family], NULL); 2574 spin_unlock(&net_family_lock); 2575 2576 synchronize_rcu(); 2577 2578 pr_info("NET: Unregistered protocol family %d\n", family); 2579 } 2580 EXPORT_SYMBOL(sock_unregister); 2581 2582 static int __init sock_init(void) 2583 { 2584 int err; 2585 /* 2586 * Initialize the network sysctl infrastructure. 2587 */ 2588 err = net_sysctl_init(); 2589 if (err) 2590 goto out; 2591 2592 /* 2593 * Initialize skbuff SLAB cache 2594 */ 2595 skb_init(); 2596 2597 /* 2598 * Initialize the protocols module. 2599 */ 2600 2601 init_inodecache(); 2602 2603 err = register_filesystem(&sock_fs_type); 2604 if (err) 2605 goto out_fs; 2606 sock_mnt = kern_mount(&sock_fs_type); 2607 if (IS_ERR(sock_mnt)) { 2608 err = PTR_ERR(sock_mnt); 2609 goto out_mount; 2610 } 2611 2612 /* The real protocol initialization is performed in later initcalls. 2613 */ 2614 2615 #ifdef CONFIG_NETFILTER 2616 err = netfilter_init(); 2617 if (err) 2618 goto out; 2619 #endif 2620 2621 ptp_classifier_init(); 2622 2623 out: 2624 return err; 2625 2626 out_mount: 2627 unregister_filesystem(&sock_fs_type); 2628 out_fs: 2629 goto out; 2630 } 2631 2632 core_initcall(sock_init); /* early initcall */ 2633 2634 #ifdef CONFIG_PROC_FS 2635 void socket_seq_show(struct seq_file *seq) 2636 { 2637 int cpu; 2638 int counter = 0; 2639 2640 for_each_possible_cpu(cpu) 2641 counter += per_cpu(sockets_in_use, cpu); 2642 2643 /* It can be negative, by the way. 8) */ 2644 if (counter < 0) 2645 counter = 0; 2646 2647 seq_printf(seq, "sockets: used %d\n", counter); 2648 } 2649 #endif /* CONFIG_PROC_FS */ 2650 2651 #ifdef CONFIG_COMPAT 2652 static int do_siocgstamp(struct net *net, struct socket *sock, 2653 unsigned int cmd, void __user *up) 2654 { 2655 mm_segment_t old_fs = get_fs(); 2656 struct timeval ktv; 2657 int err; 2658 2659 set_fs(KERNEL_DS); 2660 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2661 set_fs(old_fs); 2662 if (!err) 2663 err = compat_put_timeval(&ktv, up); 2664 2665 return err; 2666 } 2667 2668 static int do_siocgstampns(struct net *net, struct socket *sock, 2669 unsigned int cmd, void __user *up) 2670 { 2671 mm_segment_t old_fs = get_fs(); 2672 struct timespec kts; 2673 int err; 2674 2675 set_fs(KERNEL_DS); 2676 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2677 set_fs(old_fs); 2678 if (!err) 2679 err = compat_put_timespec(&kts, up); 2680 2681 return err; 2682 } 2683 2684 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2685 { 2686 struct ifreq __user *uifr; 2687 int err; 2688 2689 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2690 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2691 return -EFAULT; 2692 2693 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2694 if (err) 2695 return err; 2696 2697 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2698 return -EFAULT; 2699 2700 return 0; 2701 } 2702 2703 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2704 { 2705 struct compat_ifconf ifc32; 2706 struct ifconf ifc; 2707 struct ifconf __user *uifc; 2708 struct compat_ifreq __user *ifr32; 2709 struct ifreq __user *ifr; 2710 unsigned int i, j; 2711 int err; 2712 2713 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2714 return -EFAULT; 2715 2716 memset(&ifc, 0, sizeof(ifc)); 2717 if (ifc32.ifcbuf == 0) { 2718 ifc32.ifc_len = 0; 2719 ifc.ifc_len = 0; 2720 ifc.ifc_req = NULL; 2721 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2722 } else { 2723 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2724 sizeof(struct ifreq); 2725 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2726 ifc.ifc_len = len; 2727 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2728 ifr32 = compat_ptr(ifc32.ifcbuf); 2729 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2730 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2731 return -EFAULT; 2732 ifr++; 2733 ifr32++; 2734 } 2735 } 2736 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2737 return -EFAULT; 2738 2739 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2740 if (err) 2741 return err; 2742 2743 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2744 return -EFAULT; 2745 2746 ifr = ifc.ifc_req; 2747 ifr32 = compat_ptr(ifc32.ifcbuf); 2748 for (i = 0, j = 0; 2749 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2750 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2751 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2752 return -EFAULT; 2753 ifr32++; 2754 ifr++; 2755 } 2756 2757 if (ifc32.ifcbuf == 0) { 2758 /* Translate from 64-bit structure multiple to 2759 * a 32-bit one. 2760 */ 2761 i = ifc.ifc_len; 2762 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2763 ifc32.ifc_len = i; 2764 } else { 2765 ifc32.ifc_len = i; 2766 } 2767 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2768 return -EFAULT; 2769 2770 return 0; 2771 } 2772 2773 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2774 { 2775 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2776 bool convert_in = false, convert_out = false; 2777 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2778 struct ethtool_rxnfc __user *rxnfc; 2779 struct ifreq __user *ifr; 2780 u32 rule_cnt = 0, actual_rule_cnt; 2781 u32 ethcmd; 2782 u32 data; 2783 int ret; 2784 2785 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2786 return -EFAULT; 2787 2788 compat_rxnfc = compat_ptr(data); 2789 2790 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2791 return -EFAULT; 2792 2793 /* Most ethtool structures are defined without padding. 2794 * Unfortunately struct ethtool_rxnfc is an exception. 2795 */ 2796 switch (ethcmd) { 2797 default: 2798 break; 2799 case ETHTOOL_GRXCLSRLALL: 2800 /* Buffer size is variable */ 2801 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2802 return -EFAULT; 2803 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2804 return -ENOMEM; 2805 buf_size += rule_cnt * sizeof(u32); 2806 /* fall through */ 2807 case ETHTOOL_GRXRINGS: 2808 case ETHTOOL_GRXCLSRLCNT: 2809 case ETHTOOL_GRXCLSRULE: 2810 case ETHTOOL_SRXCLSRLINS: 2811 convert_out = true; 2812 /* fall through */ 2813 case ETHTOOL_SRXCLSRLDEL: 2814 buf_size += sizeof(struct ethtool_rxnfc); 2815 convert_in = true; 2816 break; 2817 } 2818 2819 ifr = compat_alloc_user_space(buf_size); 2820 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); 2821 2822 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2823 return -EFAULT; 2824 2825 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2826 &ifr->ifr_ifru.ifru_data)) 2827 return -EFAULT; 2828 2829 if (convert_in) { 2830 /* We expect there to be holes between fs.m_ext and 2831 * fs.ring_cookie and at the end of fs, but nowhere else. 2832 */ 2833 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2834 sizeof(compat_rxnfc->fs.m_ext) != 2835 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2836 sizeof(rxnfc->fs.m_ext)); 2837 BUILD_BUG_ON( 2838 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2839 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2840 offsetof(struct ethtool_rxnfc, fs.location) - 2841 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2842 2843 if (copy_in_user(rxnfc, compat_rxnfc, 2844 (void __user *)(&rxnfc->fs.m_ext + 1) - 2845 (void __user *)rxnfc) || 2846 copy_in_user(&rxnfc->fs.ring_cookie, 2847 &compat_rxnfc->fs.ring_cookie, 2848 (void __user *)(&rxnfc->fs.location + 1) - 2849 (void __user *)&rxnfc->fs.ring_cookie) || 2850 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2851 sizeof(rxnfc->rule_cnt))) 2852 return -EFAULT; 2853 } 2854 2855 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2856 if (ret) 2857 return ret; 2858 2859 if (convert_out) { 2860 if (copy_in_user(compat_rxnfc, rxnfc, 2861 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2862 (const void __user *)rxnfc) || 2863 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2864 &rxnfc->fs.ring_cookie, 2865 (const void __user *)(&rxnfc->fs.location + 1) - 2866 (const void __user *)&rxnfc->fs.ring_cookie) || 2867 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2868 sizeof(rxnfc->rule_cnt))) 2869 return -EFAULT; 2870 2871 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2872 /* As an optimisation, we only copy the actual 2873 * number of rules that the underlying 2874 * function returned. Since Mallory might 2875 * change the rule count in user memory, we 2876 * check that it is less than the rule count 2877 * originally given (as the user buffer size), 2878 * which has been range-checked. 2879 */ 2880 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2881 return -EFAULT; 2882 if (actual_rule_cnt < rule_cnt) 2883 rule_cnt = actual_rule_cnt; 2884 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2885 &rxnfc->rule_locs[0], 2886 rule_cnt * sizeof(u32))) 2887 return -EFAULT; 2888 } 2889 } 2890 2891 return 0; 2892 } 2893 2894 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2895 { 2896 void __user *uptr; 2897 compat_uptr_t uptr32; 2898 struct ifreq __user *uifr; 2899 2900 uifr = compat_alloc_user_space(sizeof(*uifr)); 2901 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2902 return -EFAULT; 2903 2904 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2905 return -EFAULT; 2906 2907 uptr = compat_ptr(uptr32); 2908 2909 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2910 return -EFAULT; 2911 2912 return dev_ioctl(net, SIOCWANDEV, uifr); 2913 } 2914 2915 static int bond_ioctl(struct net *net, unsigned int cmd, 2916 struct compat_ifreq __user *ifr32) 2917 { 2918 struct ifreq kifr; 2919 mm_segment_t old_fs; 2920 int err; 2921 2922 switch (cmd) { 2923 case SIOCBONDENSLAVE: 2924 case SIOCBONDRELEASE: 2925 case SIOCBONDSETHWADDR: 2926 case SIOCBONDCHANGEACTIVE: 2927 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2928 return -EFAULT; 2929 2930 old_fs = get_fs(); 2931 set_fs(KERNEL_DS); 2932 err = dev_ioctl(net, cmd, 2933 (struct ifreq __user __force *) &kifr); 2934 set_fs(old_fs); 2935 2936 return err; 2937 default: 2938 return -ENOIOCTLCMD; 2939 } 2940 } 2941 2942 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 2943 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 2944 struct compat_ifreq __user *u_ifreq32) 2945 { 2946 struct ifreq __user *u_ifreq64; 2947 char tmp_buf[IFNAMSIZ]; 2948 void __user *data64; 2949 u32 data32; 2950 2951 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2952 IFNAMSIZ)) 2953 return -EFAULT; 2954 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2955 return -EFAULT; 2956 data64 = compat_ptr(data32); 2957 2958 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2959 2960 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2961 IFNAMSIZ)) 2962 return -EFAULT; 2963 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2964 return -EFAULT; 2965 2966 return dev_ioctl(net, cmd, u_ifreq64); 2967 } 2968 2969 static int dev_ifsioc(struct net *net, struct socket *sock, 2970 unsigned int cmd, struct compat_ifreq __user *uifr32) 2971 { 2972 struct ifreq __user *uifr; 2973 int err; 2974 2975 uifr = compat_alloc_user_space(sizeof(*uifr)); 2976 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2977 return -EFAULT; 2978 2979 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2980 2981 if (!err) { 2982 switch (cmd) { 2983 case SIOCGIFFLAGS: 2984 case SIOCGIFMETRIC: 2985 case SIOCGIFMTU: 2986 case SIOCGIFMEM: 2987 case SIOCGIFHWADDR: 2988 case SIOCGIFINDEX: 2989 case SIOCGIFADDR: 2990 case SIOCGIFBRDADDR: 2991 case SIOCGIFDSTADDR: 2992 case SIOCGIFNETMASK: 2993 case SIOCGIFPFLAGS: 2994 case SIOCGIFTXQLEN: 2995 case SIOCGMIIPHY: 2996 case SIOCGMIIREG: 2997 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 2998 err = -EFAULT; 2999 break; 3000 } 3001 } 3002 return err; 3003 } 3004 3005 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3006 struct compat_ifreq __user *uifr32) 3007 { 3008 struct ifreq ifr; 3009 struct compat_ifmap __user *uifmap32; 3010 mm_segment_t old_fs; 3011 int err; 3012 3013 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3014 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3015 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3016 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3017 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3018 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3019 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3020 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3021 if (err) 3022 return -EFAULT; 3023 3024 old_fs = get_fs(); 3025 set_fs(KERNEL_DS); 3026 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 3027 set_fs(old_fs); 3028 3029 if (cmd == SIOCGIFMAP && !err) { 3030 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3031 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3032 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3033 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3034 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3035 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3036 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3037 if (err) 3038 err = -EFAULT; 3039 } 3040 return err; 3041 } 3042 3043 struct rtentry32 { 3044 u32 rt_pad1; 3045 struct sockaddr rt_dst; /* target address */ 3046 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3047 struct sockaddr rt_genmask; /* target network mask (IP) */ 3048 unsigned short rt_flags; 3049 short rt_pad2; 3050 u32 rt_pad3; 3051 unsigned char rt_tos; 3052 unsigned char rt_class; 3053 short rt_pad4; 3054 short rt_metric; /* +1 for binary compatibility! */ 3055 /* char * */ u32 rt_dev; /* forcing the device at add */ 3056 u32 rt_mtu; /* per route MTU/Window */ 3057 u32 rt_window; /* Window clamping */ 3058 unsigned short rt_irtt; /* Initial RTT */ 3059 }; 3060 3061 struct in6_rtmsg32 { 3062 struct in6_addr rtmsg_dst; 3063 struct in6_addr rtmsg_src; 3064 struct in6_addr rtmsg_gateway; 3065 u32 rtmsg_type; 3066 u16 rtmsg_dst_len; 3067 u16 rtmsg_src_len; 3068 u32 rtmsg_metric; 3069 u32 rtmsg_info; 3070 u32 rtmsg_flags; 3071 s32 rtmsg_ifindex; 3072 }; 3073 3074 static int routing_ioctl(struct net *net, struct socket *sock, 3075 unsigned int cmd, void __user *argp) 3076 { 3077 int ret; 3078 void *r = NULL; 3079 struct in6_rtmsg r6; 3080 struct rtentry r4; 3081 char devname[16]; 3082 u32 rtdev; 3083 mm_segment_t old_fs = get_fs(); 3084 3085 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3086 struct in6_rtmsg32 __user *ur6 = argp; 3087 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3088 3 * sizeof(struct in6_addr)); 3089 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3090 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3091 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3092 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3093 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3094 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3095 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3096 3097 r = (void *) &r6; 3098 } else { /* ipv4 */ 3099 struct rtentry32 __user *ur4 = argp; 3100 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3101 3 * sizeof(struct sockaddr)); 3102 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3103 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3104 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3105 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3106 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3107 ret |= get_user(rtdev, &(ur4->rt_dev)); 3108 if (rtdev) { 3109 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3110 r4.rt_dev = (char __user __force *)devname; 3111 devname[15] = 0; 3112 } else 3113 r4.rt_dev = NULL; 3114 3115 r = (void *) &r4; 3116 } 3117 3118 if (ret) { 3119 ret = -EFAULT; 3120 goto out; 3121 } 3122 3123 set_fs(KERNEL_DS); 3124 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3125 set_fs(old_fs); 3126 3127 out: 3128 return ret; 3129 } 3130 3131 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3132 * for some operations; this forces use of the newer bridge-utils that 3133 * use compatible ioctls 3134 */ 3135 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3136 { 3137 compat_ulong_t tmp; 3138 3139 if (get_user(tmp, argp)) 3140 return -EFAULT; 3141 if (tmp == BRCTL_GET_VERSION) 3142 return BRCTL_VERSION + 1; 3143 return -EINVAL; 3144 } 3145 3146 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3147 unsigned int cmd, unsigned long arg) 3148 { 3149 void __user *argp = compat_ptr(arg); 3150 struct sock *sk = sock->sk; 3151 struct net *net = sock_net(sk); 3152 3153 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3154 return compat_ifr_data_ioctl(net, cmd, argp); 3155 3156 switch (cmd) { 3157 case SIOCSIFBR: 3158 case SIOCGIFBR: 3159 return old_bridge_ioctl(argp); 3160 case SIOCGIFNAME: 3161 return dev_ifname32(net, argp); 3162 case SIOCGIFCONF: 3163 return dev_ifconf(net, argp); 3164 case SIOCETHTOOL: 3165 return ethtool_ioctl(net, argp); 3166 case SIOCWANDEV: 3167 return compat_siocwandev(net, argp); 3168 case SIOCGIFMAP: 3169 case SIOCSIFMAP: 3170 return compat_sioc_ifmap(net, cmd, argp); 3171 case SIOCBONDENSLAVE: 3172 case SIOCBONDRELEASE: 3173 case SIOCBONDSETHWADDR: 3174 case SIOCBONDCHANGEACTIVE: 3175 return bond_ioctl(net, cmd, argp); 3176 case SIOCADDRT: 3177 case SIOCDELRT: 3178 return routing_ioctl(net, sock, cmd, argp); 3179 case SIOCGSTAMP: 3180 return do_siocgstamp(net, sock, cmd, argp); 3181 case SIOCGSTAMPNS: 3182 return do_siocgstampns(net, sock, cmd, argp); 3183 case SIOCBONDSLAVEINFOQUERY: 3184 case SIOCBONDINFOQUERY: 3185 case SIOCSHWTSTAMP: 3186 case SIOCGHWTSTAMP: 3187 return compat_ifr_data_ioctl(net, cmd, argp); 3188 3189 case FIOSETOWN: 3190 case SIOCSPGRP: 3191 case FIOGETOWN: 3192 case SIOCGPGRP: 3193 case SIOCBRADDBR: 3194 case SIOCBRDELBR: 3195 case SIOCGIFVLAN: 3196 case SIOCSIFVLAN: 3197 case SIOCADDDLCI: 3198 case SIOCDELDLCI: 3199 case SIOCGSKNS: 3200 return sock_ioctl(file, cmd, arg); 3201 3202 case SIOCGIFFLAGS: 3203 case SIOCSIFFLAGS: 3204 case SIOCGIFMETRIC: 3205 case SIOCSIFMETRIC: 3206 case SIOCGIFMTU: 3207 case SIOCSIFMTU: 3208 case SIOCGIFMEM: 3209 case SIOCSIFMEM: 3210 case SIOCGIFHWADDR: 3211 case SIOCSIFHWADDR: 3212 case SIOCADDMULTI: 3213 case SIOCDELMULTI: 3214 case SIOCGIFINDEX: 3215 case SIOCGIFADDR: 3216 case SIOCSIFADDR: 3217 case SIOCSIFHWBROADCAST: 3218 case SIOCDIFADDR: 3219 case SIOCGIFBRDADDR: 3220 case SIOCSIFBRDADDR: 3221 case SIOCGIFDSTADDR: 3222 case SIOCSIFDSTADDR: 3223 case SIOCGIFNETMASK: 3224 case SIOCSIFNETMASK: 3225 case SIOCSIFPFLAGS: 3226 case SIOCGIFPFLAGS: 3227 case SIOCGIFTXQLEN: 3228 case SIOCSIFTXQLEN: 3229 case SIOCBRADDIF: 3230 case SIOCBRDELIF: 3231 case SIOCSIFNAME: 3232 case SIOCGMIIPHY: 3233 case SIOCGMIIREG: 3234 case SIOCSMIIREG: 3235 return dev_ifsioc(net, sock, cmd, argp); 3236 3237 case SIOCSARP: 3238 case SIOCGARP: 3239 case SIOCDARP: 3240 case SIOCATMARK: 3241 return sock_do_ioctl(net, sock, cmd, arg); 3242 } 3243 3244 return -ENOIOCTLCMD; 3245 } 3246 3247 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3248 unsigned long arg) 3249 { 3250 struct socket *sock = file->private_data; 3251 int ret = -ENOIOCTLCMD; 3252 struct sock *sk; 3253 struct net *net; 3254 3255 sk = sock->sk; 3256 net = sock_net(sk); 3257 3258 if (sock->ops->compat_ioctl) 3259 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3260 3261 if (ret == -ENOIOCTLCMD && 3262 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3263 ret = compat_wext_handle_ioctl(net, cmd, arg); 3264 3265 if (ret == -ENOIOCTLCMD) 3266 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3267 3268 return ret; 3269 } 3270 #endif 3271 3272 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3273 { 3274 return sock->ops->bind(sock, addr, addrlen); 3275 } 3276 EXPORT_SYMBOL(kernel_bind); 3277 3278 int kernel_listen(struct socket *sock, int backlog) 3279 { 3280 return sock->ops->listen(sock, backlog); 3281 } 3282 EXPORT_SYMBOL(kernel_listen); 3283 3284 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3285 { 3286 struct sock *sk = sock->sk; 3287 int err; 3288 3289 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3290 newsock); 3291 if (err < 0) 3292 goto done; 3293 3294 err = sock->ops->accept(sock, *newsock, flags, true); 3295 if (err < 0) { 3296 sock_release(*newsock); 3297 *newsock = NULL; 3298 goto done; 3299 } 3300 3301 (*newsock)->ops = sock->ops; 3302 __module_get((*newsock)->ops->owner); 3303 3304 done: 3305 return err; 3306 } 3307 EXPORT_SYMBOL(kernel_accept); 3308 3309 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3310 int flags) 3311 { 3312 return sock->ops->connect(sock, addr, addrlen, flags); 3313 } 3314 EXPORT_SYMBOL(kernel_connect); 3315 3316 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3317 int *addrlen) 3318 { 3319 return sock->ops->getname(sock, addr, addrlen, 0); 3320 } 3321 EXPORT_SYMBOL(kernel_getsockname); 3322 3323 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3324 int *addrlen) 3325 { 3326 return sock->ops->getname(sock, addr, addrlen, 1); 3327 } 3328 EXPORT_SYMBOL(kernel_getpeername); 3329 3330 int kernel_getsockopt(struct socket *sock, int level, int optname, 3331 char *optval, int *optlen) 3332 { 3333 mm_segment_t oldfs = get_fs(); 3334 char __user *uoptval; 3335 int __user *uoptlen; 3336 int err; 3337 3338 uoptval = (char __user __force *) optval; 3339 uoptlen = (int __user __force *) optlen; 3340 3341 set_fs(KERNEL_DS); 3342 if (level == SOL_SOCKET) 3343 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3344 else 3345 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3346 uoptlen); 3347 set_fs(oldfs); 3348 return err; 3349 } 3350 EXPORT_SYMBOL(kernel_getsockopt); 3351 3352 int kernel_setsockopt(struct socket *sock, int level, int optname, 3353 char *optval, unsigned int optlen) 3354 { 3355 mm_segment_t oldfs = get_fs(); 3356 char __user *uoptval; 3357 int err; 3358 3359 uoptval = (char __user __force *) optval; 3360 3361 set_fs(KERNEL_DS); 3362 if (level == SOL_SOCKET) 3363 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3364 else 3365 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3366 optlen); 3367 set_fs(oldfs); 3368 return err; 3369 } 3370 EXPORT_SYMBOL(kernel_setsockopt); 3371 3372 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3373 size_t size, int flags) 3374 { 3375 if (sock->ops->sendpage) 3376 return sock->ops->sendpage(sock, page, offset, size, flags); 3377 3378 return sock_no_sendpage(sock, page, offset, size, flags); 3379 } 3380 EXPORT_SYMBOL(kernel_sendpage); 3381 3382 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3383 { 3384 mm_segment_t oldfs = get_fs(); 3385 int err; 3386 3387 set_fs(KERNEL_DS); 3388 err = sock->ops->ioctl(sock, cmd, arg); 3389 set_fs(oldfs); 3390 3391 return err; 3392 } 3393 EXPORT_SYMBOL(kernel_sock_ioctl); 3394 3395 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3396 { 3397 return sock->ops->shutdown(sock, how); 3398 } 3399 EXPORT_SYMBOL(kernel_sock_shutdown); 3400 3401 /* This routine returns the IP overhead imposed by a socket i.e. 3402 * the length of the underlying IP header, depending on whether 3403 * this is an IPv4 or IPv6 socket and the length from IP options turned 3404 * on at the socket. Assumes that the caller has a lock on the socket. 3405 */ 3406 u32 kernel_sock_ip_overhead(struct sock *sk) 3407 { 3408 struct inet_sock *inet; 3409 struct ip_options_rcu *opt; 3410 u32 overhead = 0; 3411 bool owned_by_user; 3412 #if IS_ENABLED(CONFIG_IPV6) 3413 struct ipv6_pinfo *np; 3414 struct ipv6_txoptions *optv6 = NULL; 3415 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3416 3417 if (!sk) 3418 return overhead; 3419 3420 owned_by_user = sock_owned_by_user(sk); 3421 switch (sk->sk_family) { 3422 case AF_INET: 3423 inet = inet_sk(sk); 3424 overhead += sizeof(struct iphdr); 3425 opt = rcu_dereference_protected(inet->inet_opt, 3426 owned_by_user); 3427 if (opt) 3428 overhead += opt->opt.optlen; 3429 return overhead; 3430 #if IS_ENABLED(CONFIG_IPV6) 3431 case AF_INET6: 3432 np = inet6_sk(sk); 3433 overhead += sizeof(struct ipv6hdr); 3434 if (np) 3435 optv6 = rcu_dereference_protected(np->opt, 3436 owned_by_user); 3437 if (optv6) 3438 overhead += (optv6->opt_flen + optv6->opt_nflen); 3439 return overhead; 3440 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3441 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3442 return overhead; 3443 } 3444 } 3445 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3446