xref: /linux/net/socket.c (revision 0408c58be5a475c99b271f08d85859f7b59ec767)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119 
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 			      struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 			      unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 			     int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 
135 /*
136  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137  *	in the operation structures but are done directly via the socketcall() multiplexor.
138  */
139 
140 static const struct file_operations socket_file_ops = {
141 	.owner =	THIS_MODULE,
142 	.llseek =	no_llseek,
143 	.read_iter =	sock_read_iter,
144 	.write_iter =	sock_write_iter,
145 	.poll =		sock_poll,
146 	.unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 	.compat_ioctl = compat_sock_ioctl,
149 #endif
150 	.mmap =		sock_mmap,
151 	.release =	sock_close,
152 	.fasync =	sock_fasync,
153 	.sendpage =	sock_sendpage,
154 	.splice_write = generic_splice_sendpage,
155 	.splice_read =	sock_splice_read,
156 };
157 
158 /*
159  *	The protocol list. Each protocol is registered in here.
160  */
161 
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164 
165 /*
166  *	Statistics counters of the socket lists
167  */
168 
169 static DEFINE_PER_CPU(int, sockets_in_use);
170 
171 /*
172  * Support routines.
173  * Move socket addresses back and forth across the kernel/user
174  * divide and look after the messy bits.
175  */
176 
177 /**
178  *	move_addr_to_kernel	-	copy a socket address into kernel space
179  *	@uaddr: Address in user space
180  *	@kaddr: Address in kernel space
181  *	@ulen: Length in user space
182  *
183  *	The address is copied into kernel space. If the provided address is
184  *	too long an error code of -EINVAL is returned. If the copy gives
185  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
186  */
187 
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189 {
190 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 		return -EINVAL;
192 	if (ulen == 0)
193 		return 0;
194 	if (copy_from_user(kaddr, uaddr, ulen))
195 		return -EFAULT;
196 	return audit_sockaddr(ulen, kaddr);
197 }
198 
199 /**
200  *	move_addr_to_user	-	copy an address to user space
201  *	@kaddr: kernel space address
202  *	@klen: length of address in kernel
203  *	@uaddr: user space address
204  *	@ulen: pointer to user length field
205  *
206  *	The value pointed to by ulen on entry is the buffer length available.
207  *	This is overwritten with the buffer space used. -EINVAL is returned
208  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
209  *	is returned if either the buffer or the length field are not
210  *	accessible.
211  *	After copying the data up to the limit the user specifies, the true
212  *	length of the data is written over the length limit the user
213  *	specified. Zero is returned for a success.
214  */
215 
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 			     void __user *uaddr, int __user *ulen)
218 {
219 	int err;
220 	int len;
221 
222 	BUG_ON(klen > sizeof(struct sockaddr_storage));
223 	err = get_user(len, ulen);
224 	if (err)
225 		return err;
226 	if (len > klen)
227 		len = klen;
228 	if (len < 0)
229 		return -EINVAL;
230 	if (len) {
231 		if (audit_sockaddr(klen, kaddr))
232 			return -ENOMEM;
233 		if (copy_to_user(uaddr, kaddr, len))
234 			return -EFAULT;
235 	}
236 	/*
237 	 *      "fromlen shall refer to the value before truncation.."
238 	 *                      1003.1g
239 	 */
240 	return __put_user(klen, ulen);
241 }
242 
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
244 
245 static struct inode *sock_alloc_inode(struct super_block *sb)
246 {
247 	struct socket_alloc *ei;
248 	struct socket_wq *wq;
249 
250 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 	if (!ei)
252 		return NULL;
253 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 	if (!wq) {
255 		kmem_cache_free(sock_inode_cachep, ei);
256 		return NULL;
257 	}
258 	init_waitqueue_head(&wq->wait);
259 	wq->fasync_list = NULL;
260 	wq->flags = 0;
261 	RCU_INIT_POINTER(ei->socket.wq, wq);
262 
263 	ei->socket.state = SS_UNCONNECTED;
264 	ei->socket.flags = 0;
265 	ei->socket.ops = NULL;
266 	ei->socket.sk = NULL;
267 	ei->socket.file = NULL;
268 
269 	return &ei->vfs_inode;
270 }
271 
272 static void sock_destroy_inode(struct inode *inode)
273 {
274 	struct socket_alloc *ei;
275 	struct socket_wq *wq;
276 
277 	ei = container_of(inode, struct socket_alloc, vfs_inode);
278 	wq = rcu_dereference_protected(ei->socket.wq, 1);
279 	kfree_rcu(wq, rcu);
280 	kmem_cache_free(sock_inode_cachep, ei);
281 }
282 
283 static void init_once(void *foo)
284 {
285 	struct socket_alloc *ei = (struct socket_alloc *)foo;
286 
287 	inode_init_once(&ei->vfs_inode);
288 }
289 
290 static void init_inodecache(void)
291 {
292 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 					      sizeof(struct socket_alloc),
294 					      0,
295 					      (SLAB_HWCACHE_ALIGN |
296 					       SLAB_RECLAIM_ACCOUNT |
297 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
298 					      init_once);
299 	BUG_ON(sock_inode_cachep == NULL);
300 }
301 
302 static const struct super_operations sockfs_ops = {
303 	.alloc_inode	= sock_alloc_inode,
304 	.destroy_inode	= sock_destroy_inode,
305 	.statfs		= simple_statfs,
306 };
307 
308 /*
309  * sockfs_dname() is called from d_path().
310  */
311 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
312 {
313 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
314 				d_inode(dentry)->i_ino);
315 }
316 
317 static const struct dentry_operations sockfs_dentry_operations = {
318 	.d_dname  = sockfs_dname,
319 };
320 
321 static int sockfs_xattr_get(const struct xattr_handler *handler,
322 			    struct dentry *dentry, struct inode *inode,
323 			    const char *suffix, void *value, size_t size)
324 {
325 	if (value) {
326 		if (dentry->d_name.len + 1 > size)
327 			return -ERANGE;
328 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
329 	}
330 	return dentry->d_name.len + 1;
331 }
332 
333 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
334 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
335 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
336 
337 static const struct xattr_handler sockfs_xattr_handler = {
338 	.name = XATTR_NAME_SOCKPROTONAME,
339 	.get = sockfs_xattr_get,
340 };
341 
342 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
343 				     struct dentry *dentry, struct inode *inode,
344 				     const char *suffix, const void *value,
345 				     size_t size, int flags)
346 {
347 	/* Handled by LSM. */
348 	return -EAGAIN;
349 }
350 
351 static const struct xattr_handler sockfs_security_xattr_handler = {
352 	.prefix = XATTR_SECURITY_PREFIX,
353 	.set = sockfs_security_xattr_set,
354 };
355 
356 static const struct xattr_handler *sockfs_xattr_handlers[] = {
357 	&sockfs_xattr_handler,
358 	&sockfs_security_xattr_handler,
359 	NULL
360 };
361 
362 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
363 			 int flags, const char *dev_name, void *data)
364 {
365 	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
366 				  sockfs_xattr_handlers,
367 				  &sockfs_dentry_operations, SOCKFS_MAGIC);
368 }
369 
370 static struct vfsmount *sock_mnt __read_mostly;
371 
372 static struct file_system_type sock_fs_type = {
373 	.name =		"sockfs",
374 	.mount =	sockfs_mount,
375 	.kill_sb =	kill_anon_super,
376 };
377 
378 /*
379  *	Obtains the first available file descriptor and sets it up for use.
380  *
381  *	These functions create file structures and maps them to fd space
382  *	of the current process. On success it returns file descriptor
383  *	and file struct implicitly stored in sock->file.
384  *	Note that another thread may close file descriptor before we return
385  *	from this function. We use the fact that now we do not refer
386  *	to socket after mapping. If one day we will need it, this
387  *	function will increment ref. count on file by 1.
388  *
389  *	In any case returned fd MAY BE not valid!
390  *	This race condition is unavoidable
391  *	with shared fd spaces, we cannot solve it inside kernel,
392  *	but we take care of internal coherence yet.
393  */
394 
395 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
396 {
397 	struct qstr name = { .name = "" };
398 	struct path path;
399 	struct file *file;
400 
401 	if (dname) {
402 		name.name = dname;
403 		name.len = strlen(name.name);
404 	} else if (sock->sk) {
405 		name.name = sock->sk->sk_prot_creator->name;
406 		name.len = strlen(name.name);
407 	}
408 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
409 	if (unlikely(!path.dentry))
410 		return ERR_PTR(-ENOMEM);
411 	path.mnt = mntget(sock_mnt);
412 
413 	d_instantiate(path.dentry, SOCK_INODE(sock));
414 
415 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
416 		  &socket_file_ops);
417 	if (IS_ERR(file)) {
418 		/* drop dentry, keep inode */
419 		ihold(d_inode(path.dentry));
420 		path_put(&path);
421 		return file;
422 	}
423 
424 	sock->file = file;
425 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
426 	file->private_data = sock;
427 	return file;
428 }
429 EXPORT_SYMBOL(sock_alloc_file);
430 
431 static int sock_map_fd(struct socket *sock, int flags)
432 {
433 	struct file *newfile;
434 	int fd = get_unused_fd_flags(flags);
435 	if (unlikely(fd < 0))
436 		return fd;
437 
438 	newfile = sock_alloc_file(sock, flags, NULL);
439 	if (likely(!IS_ERR(newfile))) {
440 		fd_install(fd, newfile);
441 		return fd;
442 	}
443 
444 	put_unused_fd(fd);
445 	return PTR_ERR(newfile);
446 }
447 
448 struct socket *sock_from_file(struct file *file, int *err)
449 {
450 	if (file->f_op == &socket_file_ops)
451 		return file->private_data;	/* set in sock_map_fd */
452 
453 	*err = -ENOTSOCK;
454 	return NULL;
455 }
456 EXPORT_SYMBOL(sock_from_file);
457 
458 /**
459  *	sockfd_lookup - Go from a file number to its socket slot
460  *	@fd: file handle
461  *	@err: pointer to an error code return
462  *
463  *	The file handle passed in is locked and the socket it is bound
464  *	to is returned. If an error occurs the err pointer is overwritten
465  *	with a negative errno code and NULL is returned. The function checks
466  *	for both invalid handles and passing a handle which is not a socket.
467  *
468  *	On a success the socket object pointer is returned.
469  */
470 
471 struct socket *sockfd_lookup(int fd, int *err)
472 {
473 	struct file *file;
474 	struct socket *sock;
475 
476 	file = fget(fd);
477 	if (!file) {
478 		*err = -EBADF;
479 		return NULL;
480 	}
481 
482 	sock = sock_from_file(file, err);
483 	if (!sock)
484 		fput(file);
485 	return sock;
486 }
487 EXPORT_SYMBOL(sockfd_lookup);
488 
489 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
490 {
491 	struct fd f = fdget(fd);
492 	struct socket *sock;
493 
494 	*err = -EBADF;
495 	if (f.file) {
496 		sock = sock_from_file(f.file, err);
497 		if (likely(sock)) {
498 			*fput_needed = f.flags;
499 			return sock;
500 		}
501 		fdput(f);
502 	}
503 	return NULL;
504 }
505 
506 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
507 				size_t size)
508 {
509 	ssize_t len;
510 	ssize_t used = 0;
511 
512 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
513 	if (len < 0)
514 		return len;
515 	used += len;
516 	if (buffer) {
517 		if (size < used)
518 			return -ERANGE;
519 		buffer += len;
520 	}
521 
522 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
523 	used += len;
524 	if (buffer) {
525 		if (size < used)
526 			return -ERANGE;
527 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
528 		buffer += len;
529 	}
530 
531 	return used;
532 }
533 
534 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
535 {
536 	int err = simple_setattr(dentry, iattr);
537 
538 	if (!err && (iattr->ia_valid & ATTR_UID)) {
539 		struct socket *sock = SOCKET_I(d_inode(dentry));
540 
541 		sock->sk->sk_uid = iattr->ia_uid;
542 	}
543 
544 	return err;
545 }
546 
547 static const struct inode_operations sockfs_inode_ops = {
548 	.listxattr = sockfs_listxattr,
549 	.setattr = sockfs_setattr,
550 };
551 
552 /**
553  *	sock_alloc	-	allocate a socket
554  *
555  *	Allocate a new inode and socket object. The two are bound together
556  *	and initialised. The socket is then returned. If we are out of inodes
557  *	NULL is returned.
558  */
559 
560 struct socket *sock_alloc(void)
561 {
562 	struct inode *inode;
563 	struct socket *sock;
564 
565 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
566 	if (!inode)
567 		return NULL;
568 
569 	sock = SOCKET_I(inode);
570 
571 	kmemcheck_annotate_bitfield(sock, type);
572 	inode->i_ino = get_next_ino();
573 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
574 	inode->i_uid = current_fsuid();
575 	inode->i_gid = current_fsgid();
576 	inode->i_op = &sockfs_inode_ops;
577 
578 	this_cpu_add(sockets_in_use, 1);
579 	return sock;
580 }
581 EXPORT_SYMBOL(sock_alloc);
582 
583 /**
584  *	sock_release	-	close a socket
585  *	@sock: socket to close
586  *
587  *	The socket is released from the protocol stack if it has a release
588  *	callback, and the inode is then released if the socket is bound to
589  *	an inode not a file.
590  */
591 
592 void sock_release(struct socket *sock)
593 {
594 	if (sock->ops) {
595 		struct module *owner = sock->ops->owner;
596 
597 		sock->ops->release(sock);
598 		sock->ops = NULL;
599 		module_put(owner);
600 	}
601 
602 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
603 		pr_err("%s: fasync list not empty!\n", __func__);
604 
605 	this_cpu_sub(sockets_in_use, 1);
606 	if (!sock->file) {
607 		iput(SOCK_INODE(sock));
608 		return;
609 	}
610 	sock->file = NULL;
611 }
612 EXPORT_SYMBOL(sock_release);
613 
614 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
615 {
616 	u8 flags = *tx_flags;
617 
618 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
619 		flags |= SKBTX_HW_TSTAMP;
620 
621 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
622 		flags |= SKBTX_SW_TSTAMP;
623 
624 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
625 		flags |= SKBTX_SCHED_TSTAMP;
626 
627 	*tx_flags = flags;
628 }
629 EXPORT_SYMBOL(__sock_tx_timestamp);
630 
631 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
632 {
633 	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
634 	BUG_ON(ret == -EIOCBQUEUED);
635 	return ret;
636 }
637 
638 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
639 {
640 	int err = security_socket_sendmsg(sock, msg,
641 					  msg_data_left(msg));
642 
643 	return err ?: sock_sendmsg_nosec(sock, msg);
644 }
645 EXPORT_SYMBOL(sock_sendmsg);
646 
647 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
648 		   struct kvec *vec, size_t num, size_t size)
649 {
650 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
651 	return sock_sendmsg(sock, msg);
652 }
653 EXPORT_SYMBOL(kernel_sendmsg);
654 
655 static bool skb_is_err_queue(const struct sk_buff *skb)
656 {
657 	/* pkt_type of skbs enqueued on the error queue are set to
658 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
659 	 * in recvmsg, since skbs received on a local socket will never
660 	 * have a pkt_type of PACKET_OUTGOING.
661 	 */
662 	return skb->pkt_type == PACKET_OUTGOING;
663 }
664 
665 /* On transmit, software and hardware timestamps are returned independently.
666  * As the two skb clones share the hardware timestamp, which may be updated
667  * before the software timestamp is received, a hardware TX timestamp may be
668  * returned only if there is no software TX timestamp. Ignore false software
669  * timestamps, which may be made in the __sock_recv_timestamp() call when the
670  * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
671  * hardware timestamp.
672  */
673 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
674 {
675 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
676 }
677 
678 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
679 {
680 	struct scm_ts_pktinfo ts_pktinfo;
681 	struct net_device *orig_dev;
682 
683 	if (!skb_mac_header_was_set(skb))
684 		return;
685 
686 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
687 
688 	rcu_read_lock();
689 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
690 	if (orig_dev)
691 		ts_pktinfo.if_index = orig_dev->ifindex;
692 	rcu_read_unlock();
693 
694 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
695 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
696 		 sizeof(ts_pktinfo), &ts_pktinfo);
697 }
698 
699 /*
700  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
701  */
702 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
703 	struct sk_buff *skb)
704 {
705 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
706 	struct scm_timestamping tss;
707 	int empty = 1, false_tstamp = 0;
708 	struct skb_shared_hwtstamps *shhwtstamps =
709 		skb_hwtstamps(skb);
710 
711 	/* Race occurred between timestamp enabling and packet
712 	   receiving.  Fill in the current time for now. */
713 	if (need_software_tstamp && skb->tstamp == 0) {
714 		__net_timestamp(skb);
715 		false_tstamp = 1;
716 	}
717 
718 	if (need_software_tstamp) {
719 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
720 			struct timeval tv;
721 			skb_get_timestamp(skb, &tv);
722 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
723 				 sizeof(tv), &tv);
724 		} else {
725 			struct timespec ts;
726 			skb_get_timestampns(skb, &ts);
727 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
728 				 sizeof(ts), &ts);
729 		}
730 	}
731 
732 	memset(&tss, 0, sizeof(tss));
733 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
734 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
735 		empty = 0;
736 	if (shhwtstamps &&
737 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
738 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
739 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
740 		empty = 0;
741 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
742 		    !skb_is_err_queue(skb))
743 			put_ts_pktinfo(msg, skb);
744 	}
745 	if (!empty) {
746 		put_cmsg(msg, SOL_SOCKET,
747 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
748 
749 		if (skb_is_err_queue(skb) && skb->len &&
750 		    SKB_EXT_ERR(skb)->opt_stats)
751 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
752 				 skb->len, skb->data);
753 	}
754 }
755 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
756 
757 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
758 	struct sk_buff *skb)
759 {
760 	int ack;
761 
762 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
763 		return;
764 	if (!skb->wifi_acked_valid)
765 		return;
766 
767 	ack = skb->wifi_acked;
768 
769 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
770 }
771 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
772 
773 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
774 				   struct sk_buff *skb)
775 {
776 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
777 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
778 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
779 }
780 
781 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
782 	struct sk_buff *skb)
783 {
784 	sock_recv_timestamp(msg, sk, skb);
785 	sock_recv_drops(msg, sk, skb);
786 }
787 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
788 
789 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
790 				     int flags)
791 {
792 	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
793 }
794 
795 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
796 {
797 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
798 
799 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
800 }
801 EXPORT_SYMBOL(sock_recvmsg);
802 
803 /**
804  * kernel_recvmsg - Receive a message from a socket (kernel space)
805  * @sock:       The socket to receive the message from
806  * @msg:        Received message
807  * @vec:        Input s/g array for message data
808  * @num:        Size of input s/g array
809  * @size:       Number of bytes to read
810  * @flags:      Message flags (MSG_DONTWAIT, etc...)
811  *
812  * On return the msg structure contains the scatter/gather array passed in the
813  * vec argument. The array is modified so that it consists of the unfilled
814  * portion of the original array.
815  *
816  * The returned value is the total number of bytes received, or an error.
817  */
818 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
819 		   struct kvec *vec, size_t num, size_t size, int flags)
820 {
821 	mm_segment_t oldfs = get_fs();
822 	int result;
823 
824 	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
825 	set_fs(KERNEL_DS);
826 	result = sock_recvmsg(sock, msg, flags);
827 	set_fs(oldfs);
828 	return result;
829 }
830 EXPORT_SYMBOL(kernel_recvmsg);
831 
832 static ssize_t sock_sendpage(struct file *file, struct page *page,
833 			     int offset, size_t size, loff_t *ppos, int more)
834 {
835 	struct socket *sock;
836 	int flags;
837 
838 	sock = file->private_data;
839 
840 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
841 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
842 	flags |= more;
843 
844 	return kernel_sendpage(sock, page, offset, size, flags);
845 }
846 
847 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
848 				struct pipe_inode_info *pipe, size_t len,
849 				unsigned int flags)
850 {
851 	struct socket *sock = file->private_data;
852 
853 	if (unlikely(!sock->ops->splice_read))
854 		return -EINVAL;
855 
856 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
857 }
858 
859 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
860 {
861 	struct file *file = iocb->ki_filp;
862 	struct socket *sock = file->private_data;
863 	struct msghdr msg = {.msg_iter = *to,
864 			     .msg_iocb = iocb};
865 	ssize_t res;
866 
867 	if (file->f_flags & O_NONBLOCK)
868 		msg.msg_flags = MSG_DONTWAIT;
869 
870 	if (iocb->ki_pos != 0)
871 		return -ESPIPE;
872 
873 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
874 		return 0;
875 
876 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
877 	*to = msg.msg_iter;
878 	return res;
879 }
880 
881 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
882 {
883 	struct file *file = iocb->ki_filp;
884 	struct socket *sock = file->private_data;
885 	struct msghdr msg = {.msg_iter = *from,
886 			     .msg_iocb = iocb};
887 	ssize_t res;
888 
889 	if (iocb->ki_pos != 0)
890 		return -ESPIPE;
891 
892 	if (file->f_flags & O_NONBLOCK)
893 		msg.msg_flags = MSG_DONTWAIT;
894 
895 	if (sock->type == SOCK_SEQPACKET)
896 		msg.msg_flags |= MSG_EOR;
897 
898 	res = sock_sendmsg(sock, &msg);
899 	*from = msg.msg_iter;
900 	return res;
901 }
902 
903 /*
904  * Atomic setting of ioctl hooks to avoid race
905  * with module unload.
906  */
907 
908 static DEFINE_MUTEX(br_ioctl_mutex);
909 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
910 
911 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
912 {
913 	mutex_lock(&br_ioctl_mutex);
914 	br_ioctl_hook = hook;
915 	mutex_unlock(&br_ioctl_mutex);
916 }
917 EXPORT_SYMBOL(brioctl_set);
918 
919 static DEFINE_MUTEX(vlan_ioctl_mutex);
920 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
921 
922 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
923 {
924 	mutex_lock(&vlan_ioctl_mutex);
925 	vlan_ioctl_hook = hook;
926 	mutex_unlock(&vlan_ioctl_mutex);
927 }
928 EXPORT_SYMBOL(vlan_ioctl_set);
929 
930 static DEFINE_MUTEX(dlci_ioctl_mutex);
931 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
932 
933 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
934 {
935 	mutex_lock(&dlci_ioctl_mutex);
936 	dlci_ioctl_hook = hook;
937 	mutex_unlock(&dlci_ioctl_mutex);
938 }
939 EXPORT_SYMBOL(dlci_ioctl_set);
940 
941 static long sock_do_ioctl(struct net *net, struct socket *sock,
942 				 unsigned int cmd, unsigned long arg)
943 {
944 	int err;
945 	void __user *argp = (void __user *)arg;
946 
947 	err = sock->ops->ioctl(sock, cmd, arg);
948 
949 	/*
950 	 * If this ioctl is unknown try to hand it down
951 	 * to the NIC driver.
952 	 */
953 	if (err == -ENOIOCTLCMD)
954 		err = dev_ioctl(net, cmd, argp);
955 
956 	return err;
957 }
958 
959 /*
960  *	With an ioctl, arg may well be a user mode pointer, but we don't know
961  *	what to do with it - that's up to the protocol still.
962  */
963 
964 static struct ns_common *get_net_ns(struct ns_common *ns)
965 {
966 	return &get_net(container_of(ns, struct net, ns))->ns;
967 }
968 
969 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
970 {
971 	struct socket *sock;
972 	struct sock *sk;
973 	void __user *argp = (void __user *)arg;
974 	int pid, err;
975 	struct net *net;
976 
977 	sock = file->private_data;
978 	sk = sock->sk;
979 	net = sock_net(sk);
980 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
981 		err = dev_ioctl(net, cmd, argp);
982 	} else
983 #ifdef CONFIG_WEXT_CORE
984 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
985 		err = dev_ioctl(net, cmd, argp);
986 	} else
987 #endif
988 		switch (cmd) {
989 		case FIOSETOWN:
990 		case SIOCSPGRP:
991 			err = -EFAULT;
992 			if (get_user(pid, (int __user *)argp))
993 				break;
994 			f_setown(sock->file, pid, 1);
995 			err = 0;
996 			break;
997 		case FIOGETOWN:
998 		case SIOCGPGRP:
999 			err = put_user(f_getown(sock->file),
1000 				       (int __user *)argp);
1001 			break;
1002 		case SIOCGIFBR:
1003 		case SIOCSIFBR:
1004 		case SIOCBRADDBR:
1005 		case SIOCBRDELBR:
1006 			err = -ENOPKG;
1007 			if (!br_ioctl_hook)
1008 				request_module("bridge");
1009 
1010 			mutex_lock(&br_ioctl_mutex);
1011 			if (br_ioctl_hook)
1012 				err = br_ioctl_hook(net, cmd, argp);
1013 			mutex_unlock(&br_ioctl_mutex);
1014 			break;
1015 		case SIOCGIFVLAN:
1016 		case SIOCSIFVLAN:
1017 			err = -ENOPKG;
1018 			if (!vlan_ioctl_hook)
1019 				request_module("8021q");
1020 
1021 			mutex_lock(&vlan_ioctl_mutex);
1022 			if (vlan_ioctl_hook)
1023 				err = vlan_ioctl_hook(net, argp);
1024 			mutex_unlock(&vlan_ioctl_mutex);
1025 			break;
1026 		case SIOCADDDLCI:
1027 		case SIOCDELDLCI:
1028 			err = -ENOPKG;
1029 			if (!dlci_ioctl_hook)
1030 				request_module("dlci");
1031 
1032 			mutex_lock(&dlci_ioctl_mutex);
1033 			if (dlci_ioctl_hook)
1034 				err = dlci_ioctl_hook(cmd, argp);
1035 			mutex_unlock(&dlci_ioctl_mutex);
1036 			break;
1037 		case SIOCGSKNS:
1038 			err = -EPERM;
1039 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1040 				break;
1041 
1042 			err = open_related_ns(&net->ns, get_net_ns);
1043 			break;
1044 		default:
1045 			err = sock_do_ioctl(net, sock, cmd, arg);
1046 			break;
1047 		}
1048 	return err;
1049 }
1050 
1051 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1052 {
1053 	int err;
1054 	struct socket *sock = NULL;
1055 
1056 	err = security_socket_create(family, type, protocol, 1);
1057 	if (err)
1058 		goto out;
1059 
1060 	sock = sock_alloc();
1061 	if (!sock) {
1062 		err = -ENOMEM;
1063 		goto out;
1064 	}
1065 
1066 	sock->type = type;
1067 	err = security_socket_post_create(sock, family, type, protocol, 1);
1068 	if (err)
1069 		goto out_release;
1070 
1071 out:
1072 	*res = sock;
1073 	return err;
1074 out_release:
1075 	sock_release(sock);
1076 	sock = NULL;
1077 	goto out;
1078 }
1079 EXPORT_SYMBOL(sock_create_lite);
1080 
1081 /* No kernel lock held - perfect */
1082 static unsigned int sock_poll(struct file *file, poll_table *wait)
1083 {
1084 	unsigned int busy_flag = 0;
1085 	struct socket *sock;
1086 
1087 	/*
1088 	 *      We can't return errors to poll, so it's either yes or no.
1089 	 */
1090 	sock = file->private_data;
1091 
1092 	if (sk_can_busy_loop(sock->sk)) {
1093 		/* this socket can poll_ll so tell the system call */
1094 		busy_flag = POLL_BUSY_LOOP;
1095 
1096 		/* once, only if requested by syscall */
1097 		if (wait && (wait->_key & POLL_BUSY_LOOP))
1098 			sk_busy_loop(sock->sk, 1);
1099 	}
1100 
1101 	return busy_flag | sock->ops->poll(file, sock, wait);
1102 }
1103 
1104 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1105 {
1106 	struct socket *sock = file->private_data;
1107 
1108 	return sock->ops->mmap(file, sock, vma);
1109 }
1110 
1111 static int sock_close(struct inode *inode, struct file *filp)
1112 {
1113 	sock_release(SOCKET_I(inode));
1114 	return 0;
1115 }
1116 
1117 /*
1118  *	Update the socket async list
1119  *
1120  *	Fasync_list locking strategy.
1121  *
1122  *	1. fasync_list is modified only under process context socket lock
1123  *	   i.e. under semaphore.
1124  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1125  *	   or under socket lock
1126  */
1127 
1128 static int sock_fasync(int fd, struct file *filp, int on)
1129 {
1130 	struct socket *sock = filp->private_data;
1131 	struct sock *sk = sock->sk;
1132 	struct socket_wq *wq;
1133 
1134 	if (sk == NULL)
1135 		return -EINVAL;
1136 
1137 	lock_sock(sk);
1138 	wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1139 	fasync_helper(fd, filp, on, &wq->fasync_list);
1140 
1141 	if (!wq->fasync_list)
1142 		sock_reset_flag(sk, SOCK_FASYNC);
1143 	else
1144 		sock_set_flag(sk, SOCK_FASYNC);
1145 
1146 	release_sock(sk);
1147 	return 0;
1148 }
1149 
1150 /* This function may be called only under rcu_lock */
1151 
1152 int sock_wake_async(struct socket_wq *wq, int how, int band)
1153 {
1154 	if (!wq || !wq->fasync_list)
1155 		return -1;
1156 
1157 	switch (how) {
1158 	case SOCK_WAKE_WAITD:
1159 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1160 			break;
1161 		goto call_kill;
1162 	case SOCK_WAKE_SPACE:
1163 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1164 			break;
1165 		/* fall through */
1166 	case SOCK_WAKE_IO:
1167 call_kill:
1168 		kill_fasync(&wq->fasync_list, SIGIO, band);
1169 		break;
1170 	case SOCK_WAKE_URG:
1171 		kill_fasync(&wq->fasync_list, SIGURG, band);
1172 	}
1173 
1174 	return 0;
1175 }
1176 EXPORT_SYMBOL(sock_wake_async);
1177 
1178 int __sock_create(struct net *net, int family, int type, int protocol,
1179 			 struct socket **res, int kern)
1180 {
1181 	int err;
1182 	struct socket *sock;
1183 	const struct net_proto_family *pf;
1184 
1185 	/*
1186 	 *      Check protocol is in range
1187 	 */
1188 	if (family < 0 || family >= NPROTO)
1189 		return -EAFNOSUPPORT;
1190 	if (type < 0 || type >= SOCK_MAX)
1191 		return -EINVAL;
1192 
1193 	/* Compatibility.
1194 
1195 	   This uglymoron is moved from INET layer to here to avoid
1196 	   deadlock in module load.
1197 	 */
1198 	if (family == PF_INET && type == SOCK_PACKET) {
1199 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1200 			     current->comm);
1201 		family = PF_PACKET;
1202 	}
1203 
1204 	err = security_socket_create(family, type, protocol, kern);
1205 	if (err)
1206 		return err;
1207 
1208 	/*
1209 	 *	Allocate the socket and allow the family to set things up. if
1210 	 *	the protocol is 0, the family is instructed to select an appropriate
1211 	 *	default.
1212 	 */
1213 	sock = sock_alloc();
1214 	if (!sock) {
1215 		net_warn_ratelimited("socket: no more sockets\n");
1216 		return -ENFILE;	/* Not exactly a match, but its the
1217 				   closest posix thing */
1218 	}
1219 
1220 	sock->type = type;
1221 
1222 #ifdef CONFIG_MODULES
1223 	/* Attempt to load a protocol module if the find failed.
1224 	 *
1225 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1226 	 * requested real, full-featured networking support upon configuration.
1227 	 * Otherwise module support will break!
1228 	 */
1229 	if (rcu_access_pointer(net_families[family]) == NULL)
1230 		request_module("net-pf-%d", family);
1231 #endif
1232 
1233 	rcu_read_lock();
1234 	pf = rcu_dereference(net_families[family]);
1235 	err = -EAFNOSUPPORT;
1236 	if (!pf)
1237 		goto out_release;
1238 
1239 	/*
1240 	 * We will call the ->create function, that possibly is in a loadable
1241 	 * module, so we have to bump that loadable module refcnt first.
1242 	 */
1243 	if (!try_module_get(pf->owner))
1244 		goto out_release;
1245 
1246 	/* Now protected by module ref count */
1247 	rcu_read_unlock();
1248 
1249 	err = pf->create(net, sock, protocol, kern);
1250 	if (err < 0)
1251 		goto out_module_put;
1252 
1253 	/*
1254 	 * Now to bump the refcnt of the [loadable] module that owns this
1255 	 * socket at sock_release time we decrement its refcnt.
1256 	 */
1257 	if (!try_module_get(sock->ops->owner))
1258 		goto out_module_busy;
1259 
1260 	/*
1261 	 * Now that we're done with the ->create function, the [loadable]
1262 	 * module can have its refcnt decremented
1263 	 */
1264 	module_put(pf->owner);
1265 	err = security_socket_post_create(sock, family, type, protocol, kern);
1266 	if (err)
1267 		goto out_sock_release;
1268 	*res = sock;
1269 
1270 	return 0;
1271 
1272 out_module_busy:
1273 	err = -EAFNOSUPPORT;
1274 out_module_put:
1275 	sock->ops = NULL;
1276 	module_put(pf->owner);
1277 out_sock_release:
1278 	sock_release(sock);
1279 	return err;
1280 
1281 out_release:
1282 	rcu_read_unlock();
1283 	goto out_sock_release;
1284 }
1285 EXPORT_SYMBOL(__sock_create);
1286 
1287 int sock_create(int family, int type, int protocol, struct socket **res)
1288 {
1289 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1290 }
1291 EXPORT_SYMBOL(sock_create);
1292 
1293 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1294 {
1295 	return __sock_create(net, family, type, protocol, res, 1);
1296 }
1297 EXPORT_SYMBOL(sock_create_kern);
1298 
1299 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1300 {
1301 	int retval;
1302 	struct socket *sock;
1303 	int flags;
1304 
1305 	/* Check the SOCK_* constants for consistency.  */
1306 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1307 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1308 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1309 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1310 
1311 	flags = type & ~SOCK_TYPE_MASK;
1312 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1313 		return -EINVAL;
1314 	type &= SOCK_TYPE_MASK;
1315 
1316 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1317 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1318 
1319 	retval = sock_create(family, type, protocol, &sock);
1320 	if (retval < 0)
1321 		goto out;
1322 
1323 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1324 	if (retval < 0)
1325 		goto out_release;
1326 
1327 out:
1328 	/* It may be already another descriptor 8) Not kernel problem. */
1329 	return retval;
1330 
1331 out_release:
1332 	sock_release(sock);
1333 	return retval;
1334 }
1335 
1336 /*
1337  *	Create a pair of connected sockets.
1338  */
1339 
1340 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1341 		int __user *, usockvec)
1342 {
1343 	struct socket *sock1, *sock2;
1344 	int fd1, fd2, err;
1345 	struct file *newfile1, *newfile2;
1346 	int flags;
1347 
1348 	flags = type & ~SOCK_TYPE_MASK;
1349 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1350 		return -EINVAL;
1351 	type &= SOCK_TYPE_MASK;
1352 
1353 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1354 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1355 
1356 	/*
1357 	 * Obtain the first socket and check if the underlying protocol
1358 	 * supports the socketpair call.
1359 	 */
1360 
1361 	err = sock_create(family, type, protocol, &sock1);
1362 	if (err < 0)
1363 		goto out;
1364 
1365 	err = sock_create(family, type, protocol, &sock2);
1366 	if (err < 0)
1367 		goto out_release_1;
1368 
1369 	err = sock1->ops->socketpair(sock1, sock2);
1370 	if (err < 0)
1371 		goto out_release_both;
1372 
1373 	fd1 = get_unused_fd_flags(flags);
1374 	if (unlikely(fd1 < 0)) {
1375 		err = fd1;
1376 		goto out_release_both;
1377 	}
1378 
1379 	fd2 = get_unused_fd_flags(flags);
1380 	if (unlikely(fd2 < 0)) {
1381 		err = fd2;
1382 		goto out_put_unused_1;
1383 	}
1384 
1385 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1386 	if (IS_ERR(newfile1)) {
1387 		err = PTR_ERR(newfile1);
1388 		goto out_put_unused_both;
1389 	}
1390 
1391 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1392 	if (IS_ERR(newfile2)) {
1393 		err = PTR_ERR(newfile2);
1394 		goto out_fput_1;
1395 	}
1396 
1397 	err = put_user(fd1, &usockvec[0]);
1398 	if (err)
1399 		goto out_fput_both;
1400 
1401 	err = put_user(fd2, &usockvec[1]);
1402 	if (err)
1403 		goto out_fput_both;
1404 
1405 	audit_fd_pair(fd1, fd2);
1406 
1407 	fd_install(fd1, newfile1);
1408 	fd_install(fd2, newfile2);
1409 	/* fd1 and fd2 may be already another descriptors.
1410 	 * Not kernel problem.
1411 	 */
1412 
1413 	return 0;
1414 
1415 out_fput_both:
1416 	fput(newfile2);
1417 	fput(newfile1);
1418 	put_unused_fd(fd2);
1419 	put_unused_fd(fd1);
1420 	goto out;
1421 
1422 out_fput_1:
1423 	fput(newfile1);
1424 	put_unused_fd(fd2);
1425 	put_unused_fd(fd1);
1426 	sock_release(sock2);
1427 	goto out;
1428 
1429 out_put_unused_both:
1430 	put_unused_fd(fd2);
1431 out_put_unused_1:
1432 	put_unused_fd(fd1);
1433 out_release_both:
1434 	sock_release(sock2);
1435 out_release_1:
1436 	sock_release(sock1);
1437 out:
1438 	return err;
1439 }
1440 
1441 /*
1442  *	Bind a name to a socket. Nothing much to do here since it's
1443  *	the protocol's responsibility to handle the local address.
1444  *
1445  *	We move the socket address to kernel space before we call
1446  *	the protocol layer (having also checked the address is ok).
1447  */
1448 
1449 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1450 {
1451 	struct socket *sock;
1452 	struct sockaddr_storage address;
1453 	int err, fput_needed;
1454 
1455 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1456 	if (sock) {
1457 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1458 		if (err >= 0) {
1459 			err = security_socket_bind(sock,
1460 						   (struct sockaddr *)&address,
1461 						   addrlen);
1462 			if (!err)
1463 				err = sock->ops->bind(sock,
1464 						      (struct sockaddr *)
1465 						      &address, addrlen);
1466 		}
1467 		fput_light(sock->file, fput_needed);
1468 	}
1469 	return err;
1470 }
1471 
1472 /*
1473  *	Perform a listen. Basically, we allow the protocol to do anything
1474  *	necessary for a listen, and if that works, we mark the socket as
1475  *	ready for listening.
1476  */
1477 
1478 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1479 {
1480 	struct socket *sock;
1481 	int err, fput_needed;
1482 	int somaxconn;
1483 
1484 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1485 	if (sock) {
1486 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1487 		if ((unsigned int)backlog > somaxconn)
1488 			backlog = somaxconn;
1489 
1490 		err = security_socket_listen(sock, backlog);
1491 		if (!err)
1492 			err = sock->ops->listen(sock, backlog);
1493 
1494 		fput_light(sock->file, fput_needed);
1495 	}
1496 	return err;
1497 }
1498 
1499 /*
1500  *	For accept, we attempt to create a new socket, set up the link
1501  *	with the client, wake up the client, then return the new
1502  *	connected fd. We collect the address of the connector in kernel
1503  *	space and move it to user at the very end. This is unclean because
1504  *	we open the socket then return an error.
1505  *
1506  *	1003.1g adds the ability to recvmsg() to query connection pending
1507  *	status to recvmsg. We need to add that support in a way thats
1508  *	clean when we restucture accept also.
1509  */
1510 
1511 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1512 		int __user *, upeer_addrlen, int, flags)
1513 {
1514 	struct socket *sock, *newsock;
1515 	struct file *newfile;
1516 	int err, len, newfd, fput_needed;
1517 	struct sockaddr_storage address;
1518 
1519 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1520 		return -EINVAL;
1521 
1522 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1523 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1524 
1525 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1526 	if (!sock)
1527 		goto out;
1528 
1529 	err = -ENFILE;
1530 	newsock = sock_alloc();
1531 	if (!newsock)
1532 		goto out_put;
1533 
1534 	newsock->type = sock->type;
1535 	newsock->ops = sock->ops;
1536 
1537 	/*
1538 	 * We don't need try_module_get here, as the listening socket (sock)
1539 	 * has the protocol module (sock->ops->owner) held.
1540 	 */
1541 	__module_get(newsock->ops->owner);
1542 
1543 	newfd = get_unused_fd_flags(flags);
1544 	if (unlikely(newfd < 0)) {
1545 		err = newfd;
1546 		sock_release(newsock);
1547 		goto out_put;
1548 	}
1549 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1550 	if (IS_ERR(newfile)) {
1551 		err = PTR_ERR(newfile);
1552 		put_unused_fd(newfd);
1553 		sock_release(newsock);
1554 		goto out_put;
1555 	}
1556 
1557 	err = security_socket_accept(sock, newsock);
1558 	if (err)
1559 		goto out_fd;
1560 
1561 	err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1562 	if (err < 0)
1563 		goto out_fd;
1564 
1565 	if (upeer_sockaddr) {
1566 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1567 					  &len, 2) < 0) {
1568 			err = -ECONNABORTED;
1569 			goto out_fd;
1570 		}
1571 		err = move_addr_to_user(&address,
1572 					len, upeer_sockaddr, upeer_addrlen);
1573 		if (err < 0)
1574 			goto out_fd;
1575 	}
1576 
1577 	/* File flags are not inherited via accept() unlike another OSes. */
1578 
1579 	fd_install(newfd, newfile);
1580 	err = newfd;
1581 
1582 out_put:
1583 	fput_light(sock->file, fput_needed);
1584 out:
1585 	return err;
1586 out_fd:
1587 	fput(newfile);
1588 	put_unused_fd(newfd);
1589 	goto out_put;
1590 }
1591 
1592 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1593 		int __user *, upeer_addrlen)
1594 {
1595 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1596 }
1597 
1598 /*
1599  *	Attempt to connect to a socket with the server address.  The address
1600  *	is in user space so we verify it is OK and move it to kernel space.
1601  *
1602  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1603  *	break bindings
1604  *
1605  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1606  *	other SEQPACKET protocols that take time to connect() as it doesn't
1607  *	include the -EINPROGRESS status for such sockets.
1608  */
1609 
1610 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1611 		int, addrlen)
1612 {
1613 	struct socket *sock;
1614 	struct sockaddr_storage address;
1615 	int err, fput_needed;
1616 
1617 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1618 	if (!sock)
1619 		goto out;
1620 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1621 	if (err < 0)
1622 		goto out_put;
1623 
1624 	err =
1625 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1626 	if (err)
1627 		goto out_put;
1628 
1629 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1630 				 sock->file->f_flags);
1631 out_put:
1632 	fput_light(sock->file, fput_needed);
1633 out:
1634 	return err;
1635 }
1636 
1637 /*
1638  *	Get the local address ('name') of a socket object. Move the obtained
1639  *	name to user space.
1640  */
1641 
1642 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1643 		int __user *, usockaddr_len)
1644 {
1645 	struct socket *sock;
1646 	struct sockaddr_storage address;
1647 	int len, err, fput_needed;
1648 
1649 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1650 	if (!sock)
1651 		goto out;
1652 
1653 	err = security_socket_getsockname(sock);
1654 	if (err)
1655 		goto out_put;
1656 
1657 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1658 	if (err)
1659 		goto out_put;
1660 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1661 
1662 out_put:
1663 	fput_light(sock->file, fput_needed);
1664 out:
1665 	return err;
1666 }
1667 
1668 /*
1669  *	Get the remote address ('name') of a socket object. Move the obtained
1670  *	name to user space.
1671  */
1672 
1673 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1674 		int __user *, usockaddr_len)
1675 {
1676 	struct socket *sock;
1677 	struct sockaddr_storage address;
1678 	int len, err, fput_needed;
1679 
1680 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1681 	if (sock != NULL) {
1682 		err = security_socket_getpeername(sock);
1683 		if (err) {
1684 			fput_light(sock->file, fput_needed);
1685 			return err;
1686 		}
1687 
1688 		err =
1689 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1690 				       1);
1691 		if (!err)
1692 			err = move_addr_to_user(&address, len, usockaddr,
1693 						usockaddr_len);
1694 		fput_light(sock->file, fput_needed);
1695 	}
1696 	return err;
1697 }
1698 
1699 /*
1700  *	Send a datagram to a given address. We move the address into kernel
1701  *	space and check the user space data area is readable before invoking
1702  *	the protocol.
1703  */
1704 
1705 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1706 		unsigned int, flags, struct sockaddr __user *, addr,
1707 		int, addr_len)
1708 {
1709 	struct socket *sock;
1710 	struct sockaddr_storage address;
1711 	int err;
1712 	struct msghdr msg;
1713 	struct iovec iov;
1714 	int fput_needed;
1715 
1716 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1717 	if (unlikely(err))
1718 		return err;
1719 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1720 	if (!sock)
1721 		goto out;
1722 
1723 	msg.msg_name = NULL;
1724 	msg.msg_control = NULL;
1725 	msg.msg_controllen = 0;
1726 	msg.msg_namelen = 0;
1727 	if (addr) {
1728 		err = move_addr_to_kernel(addr, addr_len, &address);
1729 		if (err < 0)
1730 			goto out_put;
1731 		msg.msg_name = (struct sockaddr *)&address;
1732 		msg.msg_namelen = addr_len;
1733 	}
1734 	if (sock->file->f_flags & O_NONBLOCK)
1735 		flags |= MSG_DONTWAIT;
1736 	msg.msg_flags = flags;
1737 	err = sock_sendmsg(sock, &msg);
1738 
1739 out_put:
1740 	fput_light(sock->file, fput_needed);
1741 out:
1742 	return err;
1743 }
1744 
1745 /*
1746  *	Send a datagram down a socket.
1747  */
1748 
1749 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1750 		unsigned int, flags)
1751 {
1752 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1753 }
1754 
1755 /*
1756  *	Receive a frame from the socket and optionally record the address of the
1757  *	sender. We verify the buffers are writable and if needed move the
1758  *	sender address from kernel to user space.
1759  */
1760 
1761 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1762 		unsigned int, flags, struct sockaddr __user *, addr,
1763 		int __user *, addr_len)
1764 {
1765 	struct socket *sock;
1766 	struct iovec iov;
1767 	struct msghdr msg;
1768 	struct sockaddr_storage address;
1769 	int err, err2;
1770 	int fput_needed;
1771 
1772 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1773 	if (unlikely(err))
1774 		return err;
1775 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1776 	if (!sock)
1777 		goto out;
1778 
1779 	msg.msg_control = NULL;
1780 	msg.msg_controllen = 0;
1781 	/* Save some cycles and don't copy the address if not needed */
1782 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1783 	/* We assume all kernel code knows the size of sockaddr_storage */
1784 	msg.msg_namelen = 0;
1785 	msg.msg_iocb = NULL;
1786 	msg.msg_flags = 0;
1787 	if (sock->file->f_flags & O_NONBLOCK)
1788 		flags |= MSG_DONTWAIT;
1789 	err = sock_recvmsg(sock, &msg, flags);
1790 
1791 	if (err >= 0 && addr != NULL) {
1792 		err2 = move_addr_to_user(&address,
1793 					 msg.msg_namelen, addr, addr_len);
1794 		if (err2 < 0)
1795 			err = err2;
1796 	}
1797 
1798 	fput_light(sock->file, fput_needed);
1799 out:
1800 	return err;
1801 }
1802 
1803 /*
1804  *	Receive a datagram from a socket.
1805  */
1806 
1807 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1808 		unsigned int, flags)
1809 {
1810 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1811 }
1812 
1813 /*
1814  *	Set a socket option. Because we don't know the option lengths we have
1815  *	to pass the user mode parameter for the protocols to sort out.
1816  */
1817 
1818 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1819 		char __user *, optval, int, optlen)
1820 {
1821 	int err, fput_needed;
1822 	struct socket *sock;
1823 
1824 	if (optlen < 0)
1825 		return -EINVAL;
1826 
1827 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1828 	if (sock != NULL) {
1829 		err = security_socket_setsockopt(sock, level, optname);
1830 		if (err)
1831 			goto out_put;
1832 
1833 		if (level == SOL_SOCKET)
1834 			err =
1835 			    sock_setsockopt(sock, level, optname, optval,
1836 					    optlen);
1837 		else
1838 			err =
1839 			    sock->ops->setsockopt(sock, level, optname, optval,
1840 						  optlen);
1841 out_put:
1842 		fput_light(sock->file, fput_needed);
1843 	}
1844 	return err;
1845 }
1846 
1847 /*
1848  *	Get a socket option. Because we don't know the option lengths we have
1849  *	to pass a user mode parameter for the protocols to sort out.
1850  */
1851 
1852 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1853 		char __user *, optval, int __user *, optlen)
1854 {
1855 	int err, fput_needed;
1856 	struct socket *sock;
1857 
1858 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1859 	if (sock != NULL) {
1860 		err = security_socket_getsockopt(sock, level, optname);
1861 		if (err)
1862 			goto out_put;
1863 
1864 		if (level == SOL_SOCKET)
1865 			err =
1866 			    sock_getsockopt(sock, level, optname, optval,
1867 					    optlen);
1868 		else
1869 			err =
1870 			    sock->ops->getsockopt(sock, level, optname, optval,
1871 						  optlen);
1872 out_put:
1873 		fput_light(sock->file, fput_needed);
1874 	}
1875 	return err;
1876 }
1877 
1878 /*
1879  *	Shutdown a socket.
1880  */
1881 
1882 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1883 {
1884 	int err, fput_needed;
1885 	struct socket *sock;
1886 
1887 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1888 	if (sock != NULL) {
1889 		err = security_socket_shutdown(sock, how);
1890 		if (!err)
1891 			err = sock->ops->shutdown(sock, how);
1892 		fput_light(sock->file, fput_needed);
1893 	}
1894 	return err;
1895 }
1896 
1897 /* A couple of helpful macros for getting the address of the 32/64 bit
1898  * fields which are the same type (int / unsigned) on our platforms.
1899  */
1900 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1901 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1902 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1903 
1904 struct used_address {
1905 	struct sockaddr_storage name;
1906 	unsigned int name_len;
1907 };
1908 
1909 static int copy_msghdr_from_user(struct msghdr *kmsg,
1910 				 struct user_msghdr __user *umsg,
1911 				 struct sockaddr __user **save_addr,
1912 				 struct iovec **iov)
1913 {
1914 	struct sockaddr __user *uaddr;
1915 	struct iovec __user *uiov;
1916 	size_t nr_segs;
1917 	ssize_t err;
1918 
1919 	if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1920 	    __get_user(uaddr, &umsg->msg_name) ||
1921 	    __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1922 	    __get_user(uiov, &umsg->msg_iov) ||
1923 	    __get_user(nr_segs, &umsg->msg_iovlen) ||
1924 	    __get_user(kmsg->msg_control, &umsg->msg_control) ||
1925 	    __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1926 	    __get_user(kmsg->msg_flags, &umsg->msg_flags))
1927 		return -EFAULT;
1928 
1929 	if (!uaddr)
1930 		kmsg->msg_namelen = 0;
1931 
1932 	if (kmsg->msg_namelen < 0)
1933 		return -EINVAL;
1934 
1935 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1936 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1937 
1938 	if (save_addr)
1939 		*save_addr = uaddr;
1940 
1941 	if (uaddr && kmsg->msg_namelen) {
1942 		if (!save_addr) {
1943 			err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1944 						  kmsg->msg_name);
1945 			if (err < 0)
1946 				return err;
1947 		}
1948 	} else {
1949 		kmsg->msg_name = NULL;
1950 		kmsg->msg_namelen = 0;
1951 	}
1952 
1953 	if (nr_segs > UIO_MAXIOV)
1954 		return -EMSGSIZE;
1955 
1956 	kmsg->msg_iocb = NULL;
1957 
1958 	return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1959 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
1960 }
1961 
1962 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1963 			 struct msghdr *msg_sys, unsigned int flags,
1964 			 struct used_address *used_address,
1965 			 unsigned int allowed_msghdr_flags)
1966 {
1967 	struct compat_msghdr __user *msg_compat =
1968 	    (struct compat_msghdr __user *)msg;
1969 	struct sockaddr_storage address;
1970 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1971 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1972 				__aligned(sizeof(__kernel_size_t));
1973 	/* 20 is size of ipv6_pktinfo */
1974 	unsigned char *ctl_buf = ctl;
1975 	int ctl_len;
1976 	ssize_t err;
1977 
1978 	msg_sys->msg_name = &address;
1979 
1980 	if (MSG_CMSG_COMPAT & flags)
1981 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1982 	else
1983 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1984 	if (err < 0)
1985 		return err;
1986 
1987 	err = -ENOBUFS;
1988 
1989 	if (msg_sys->msg_controllen > INT_MAX)
1990 		goto out_freeiov;
1991 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1992 	ctl_len = msg_sys->msg_controllen;
1993 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1994 		err =
1995 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1996 						     sizeof(ctl));
1997 		if (err)
1998 			goto out_freeiov;
1999 		ctl_buf = msg_sys->msg_control;
2000 		ctl_len = msg_sys->msg_controllen;
2001 	} else if (ctl_len) {
2002 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2003 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2004 		if (ctl_len > sizeof(ctl)) {
2005 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2006 			if (ctl_buf == NULL)
2007 				goto out_freeiov;
2008 		}
2009 		err = -EFAULT;
2010 		/*
2011 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2012 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2013 		 * checking falls down on this.
2014 		 */
2015 		if (copy_from_user(ctl_buf,
2016 				   (void __user __force *)msg_sys->msg_control,
2017 				   ctl_len))
2018 			goto out_freectl;
2019 		msg_sys->msg_control = ctl_buf;
2020 	}
2021 	msg_sys->msg_flags = flags;
2022 
2023 	if (sock->file->f_flags & O_NONBLOCK)
2024 		msg_sys->msg_flags |= MSG_DONTWAIT;
2025 	/*
2026 	 * If this is sendmmsg() and current destination address is same as
2027 	 * previously succeeded address, omit asking LSM's decision.
2028 	 * used_address->name_len is initialized to UINT_MAX so that the first
2029 	 * destination address never matches.
2030 	 */
2031 	if (used_address && msg_sys->msg_name &&
2032 	    used_address->name_len == msg_sys->msg_namelen &&
2033 	    !memcmp(&used_address->name, msg_sys->msg_name,
2034 		    used_address->name_len)) {
2035 		err = sock_sendmsg_nosec(sock, msg_sys);
2036 		goto out_freectl;
2037 	}
2038 	err = sock_sendmsg(sock, msg_sys);
2039 	/*
2040 	 * If this is sendmmsg() and sending to current destination address was
2041 	 * successful, remember it.
2042 	 */
2043 	if (used_address && err >= 0) {
2044 		used_address->name_len = msg_sys->msg_namelen;
2045 		if (msg_sys->msg_name)
2046 			memcpy(&used_address->name, msg_sys->msg_name,
2047 			       used_address->name_len);
2048 	}
2049 
2050 out_freectl:
2051 	if (ctl_buf != ctl)
2052 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2053 out_freeiov:
2054 	kfree(iov);
2055 	return err;
2056 }
2057 
2058 /*
2059  *	BSD sendmsg interface
2060  */
2061 
2062 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2063 {
2064 	int fput_needed, err;
2065 	struct msghdr msg_sys;
2066 	struct socket *sock;
2067 
2068 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2069 	if (!sock)
2070 		goto out;
2071 
2072 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2073 
2074 	fput_light(sock->file, fput_needed);
2075 out:
2076 	return err;
2077 }
2078 
2079 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2080 {
2081 	if (flags & MSG_CMSG_COMPAT)
2082 		return -EINVAL;
2083 	return __sys_sendmsg(fd, msg, flags);
2084 }
2085 
2086 /*
2087  *	Linux sendmmsg interface
2088  */
2089 
2090 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2091 		   unsigned int flags)
2092 {
2093 	int fput_needed, err, datagrams;
2094 	struct socket *sock;
2095 	struct mmsghdr __user *entry;
2096 	struct compat_mmsghdr __user *compat_entry;
2097 	struct msghdr msg_sys;
2098 	struct used_address used_address;
2099 	unsigned int oflags = flags;
2100 
2101 	if (vlen > UIO_MAXIOV)
2102 		vlen = UIO_MAXIOV;
2103 
2104 	datagrams = 0;
2105 
2106 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2107 	if (!sock)
2108 		return err;
2109 
2110 	used_address.name_len = UINT_MAX;
2111 	entry = mmsg;
2112 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2113 	err = 0;
2114 	flags |= MSG_BATCH;
2115 
2116 	while (datagrams < vlen) {
2117 		if (datagrams == vlen - 1)
2118 			flags = oflags;
2119 
2120 		if (MSG_CMSG_COMPAT & flags) {
2121 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2122 					     &msg_sys, flags, &used_address, MSG_EOR);
2123 			if (err < 0)
2124 				break;
2125 			err = __put_user(err, &compat_entry->msg_len);
2126 			++compat_entry;
2127 		} else {
2128 			err = ___sys_sendmsg(sock,
2129 					     (struct user_msghdr __user *)entry,
2130 					     &msg_sys, flags, &used_address, MSG_EOR);
2131 			if (err < 0)
2132 				break;
2133 			err = put_user(err, &entry->msg_len);
2134 			++entry;
2135 		}
2136 
2137 		if (err)
2138 			break;
2139 		++datagrams;
2140 		if (msg_data_left(&msg_sys))
2141 			break;
2142 		cond_resched();
2143 	}
2144 
2145 	fput_light(sock->file, fput_needed);
2146 
2147 	/* We only return an error if no datagrams were able to be sent */
2148 	if (datagrams != 0)
2149 		return datagrams;
2150 
2151 	return err;
2152 }
2153 
2154 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2155 		unsigned int, vlen, unsigned int, flags)
2156 {
2157 	if (flags & MSG_CMSG_COMPAT)
2158 		return -EINVAL;
2159 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2160 }
2161 
2162 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2163 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2164 {
2165 	struct compat_msghdr __user *msg_compat =
2166 	    (struct compat_msghdr __user *)msg;
2167 	struct iovec iovstack[UIO_FASTIOV];
2168 	struct iovec *iov = iovstack;
2169 	unsigned long cmsg_ptr;
2170 	int len;
2171 	ssize_t err;
2172 
2173 	/* kernel mode address */
2174 	struct sockaddr_storage addr;
2175 
2176 	/* user mode address pointers */
2177 	struct sockaddr __user *uaddr;
2178 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2179 
2180 	msg_sys->msg_name = &addr;
2181 
2182 	if (MSG_CMSG_COMPAT & flags)
2183 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2184 	else
2185 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2186 	if (err < 0)
2187 		return err;
2188 
2189 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2190 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2191 
2192 	/* We assume all kernel code knows the size of sockaddr_storage */
2193 	msg_sys->msg_namelen = 0;
2194 
2195 	if (sock->file->f_flags & O_NONBLOCK)
2196 		flags |= MSG_DONTWAIT;
2197 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2198 	if (err < 0)
2199 		goto out_freeiov;
2200 	len = err;
2201 
2202 	if (uaddr != NULL) {
2203 		err = move_addr_to_user(&addr,
2204 					msg_sys->msg_namelen, uaddr,
2205 					uaddr_len);
2206 		if (err < 0)
2207 			goto out_freeiov;
2208 	}
2209 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2210 			 COMPAT_FLAGS(msg));
2211 	if (err)
2212 		goto out_freeiov;
2213 	if (MSG_CMSG_COMPAT & flags)
2214 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2215 				 &msg_compat->msg_controllen);
2216 	else
2217 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2218 				 &msg->msg_controllen);
2219 	if (err)
2220 		goto out_freeiov;
2221 	err = len;
2222 
2223 out_freeiov:
2224 	kfree(iov);
2225 	return err;
2226 }
2227 
2228 /*
2229  *	BSD recvmsg interface
2230  */
2231 
2232 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2233 {
2234 	int fput_needed, err;
2235 	struct msghdr msg_sys;
2236 	struct socket *sock;
2237 
2238 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2239 	if (!sock)
2240 		goto out;
2241 
2242 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2243 
2244 	fput_light(sock->file, fput_needed);
2245 out:
2246 	return err;
2247 }
2248 
2249 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2250 		unsigned int, flags)
2251 {
2252 	if (flags & MSG_CMSG_COMPAT)
2253 		return -EINVAL;
2254 	return __sys_recvmsg(fd, msg, flags);
2255 }
2256 
2257 /*
2258  *     Linux recvmmsg interface
2259  */
2260 
2261 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2262 		   unsigned int flags, struct timespec *timeout)
2263 {
2264 	int fput_needed, err, datagrams;
2265 	struct socket *sock;
2266 	struct mmsghdr __user *entry;
2267 	struct compat_mmsghdr __user *compat_entry;
2268 	struct msghdr msg_sys;
2269 	struct timespec64 end_time;
2270 	struct timespec64 timeout64;
2271 
2272 	if (timeout &&
2273 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2274 				    timeout->tv_nsec))
2275 		return -EINVAL;
2276 
2277 	datagrams = 0;
2278 
2279 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2280 	if (!sock)
2281 		return err;
2282 
2283 	err = sock_error(sock->sk);
2284 	if (err) {
2285 		datagrams = err;
2286 		goto out_put;
2287 	}
2288 
2289 	entry = mmsg;
2290 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2291 
2292 	while (datagrams < vlen) {
2293 		/*
2294 		 * No need to ask LSM for more than the first datagram.
2295 		 */
2296 		if (MSG_CMSG_COMPAT & flags) {
2297 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2298 					     &msg_sys, flags & ~MSG_WAITFORONE,
2299 					     datagrams);
2300 			if (err < 0)
2301 				break;
2302 			err = __put_user(err, &compat_entry->msg_len);
2303 			++compat_entry;
2304 		} else {
2305 			err = ___sys_recvmsg(sock,
2306 					     (struct user_msghdr __user *)entry,
2307 					     &msg_sys, flags & ~MSG_WAITFORONE,
2308 					     datagrams);
2309 			if (err < 0)
2310 				break;
2311 			err = put_user(err, &entry->msg_len);
2312 			++entry;
2313 		}
2314 
2315 		if (err)
2316 			break;
2317 		++datagrams;
2318 
2319 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2320 		if (flags & MSG_WAITFORONE)
2321 			flags |= MSG_DONTWAIT;
2322 
2323 		if (timeout) {
2324 			ktime_get_ts64(&timeout64);
2325 			*timeout = timespec64_to_timespec(
2326 					timespec64_sub(end_time, timeout64));
2327 			if (timeout->tv_sec < 0) {
2328 				timeout->tv_sec = timeout->tv_nsec = 0;
2329 				break;
2330 			}
2331 
2332 			/* Timeout, return less than vlen datagrams */
2333 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2334 				break;
2335 		}
2336 
2337 		/* Out of band data, return right away */
2338 		if (msg_sys.msg_flags & MSG_OOB)
2339 			break;
2340 		cond_resched();
2341 	}
2342 
2343 	if (err == 0)
2344 		goto out_put;
2345 
2346 	if (datagrams == 0) {
2347 		datagrams = err;
2348 		goto out_put;
2349 	}
2350 
2351 	/*
2352 	 * We may return less entries than requested (vlen) if the
2353 	 * sock is non block and there aren't enough datagrams...
2354 	 */
2355 	if (err != -EAGAIN) {
2356 		/*
2357 		 * ... or  if recvmsg returns an error after we
2358 		 * received some datagrams, where we record the
2359 		 * error to return on the next call or if the
2360 		 * app asks about it using getsockopt(SO_ERROR).
2361 		 */
2362 		sock->sk->sk_err = -err;
2363 	}
2364 out_put:
2365 	fput_light(sock->file, fput_needed);
2366 
2367 	return datagrams;
2368 }
2369 
2370 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2371 		unsigned int, vlen, unsigned int, flags,
2372 		struct timespec __user *, timeout)
2373 {
2374 	int datagrams;
2375 	struct timespec timeout_sys;
2376 
2377 	if (flags & MSG_CMSG_COMPAT)
2378 		return -EINVAL;
2379 
2380 	if (!timeout)
2381 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2382 
2383 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2384 		return -EFAULT;
2385 
2386 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2387 
2388 	if (datagrams > 0 &&
2389 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2390 		datagrams = -EFAULT;
2391 
2392 	return datagrams;
2393 }
2394 
2395 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2396 /* Argument list sizes for sys_socketcall */
2397 #define AL(x) ((x) * sizeof(unsigned long))
2398 static const unsigned char nargs[21] = {
2399 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2400 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2401 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2402 	AL(4), AL(5), AL(4)
2403 };
2404 
2405 #undef AL
2406 
2407 /*
2408  *	System call vectors.
2409  *
2410  *	Argument checking cleaned up. Saved 20% in size.
2411  *  This function doesn't need to set the kernel lock because
2412  *  it is set by the callees.
2413  */
2414 
2415 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2416 {
2417 	unsigned long a[AUDITSC_ARGS];
2418 	unsigned long a0, a1;
2419 	int err;
2420 	unsigned int len;
2421 
2422 	if (call < 1 || call > SYS_SENDMMSG)
2423 		return -EINVAL;
2424 
2425 	len = nargs[call];
2426 	if (len > sizeof(a))
2427 		return -EINVAL;
2428 
2429 	/* copy_from_user should be SMP safe. */
2430 	if (copy_from_user(a, args, len))
2431 		return -EFAULT;
2432 
2433 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2434 	if (err)
2435 		return err;
2436 
2437 	a0 = a[0];
2438 	a1 = a[1];
2439 
2440 	switch (call) {
2441 	case SYS_SOCKET:
2442 		err = sys_socket(a0, a1, a[2]);
2443 		break;
2444 	case SYS_BIND:
2445 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2446 		break;
2447 	case SYS_CONNECT:
2448 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2449 		break;
2450 	case SYS_LISTEN:
2451 		err = sys_listen(a0, a1);
2452 		break;
2453 	case SYS_ACCEPT:
2454 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2455 				  (int __user *)a[2], 0);
2456 		break;
2457 	case SYS_GETSOCKNAME:
2458 		err =
2459 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2460 				    (int __user *)a[2]);
2461 		break;
2462 	case SYS_GETPEERNAME:
2463 		err =
2464 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2465 				    (int __user *)a[2]);
2466 		break;
2467 	case SYS_SOCKETPAIR:
2468 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2469 		break;
2470 	case SYS_SEND:
2471 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2472 		break;
2473 	case SYS_SENDTO:
2474 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2475 				 (struct sockaddr __user *)a[4], a[5]);
2476 		break;
2477 	case SYS_RECV:
2478 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2479 		break;
2480 	case SYS_RECVFROM:
2481 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2482 				   (struct sockaddr __user *)a[4],
2483 				   (int __user *)a[5]);
2484 		break;
2485 	case SYS_SHUTDOWN:
2486 		err = sys_shutdown(a0, a1);
2487 		break;
2488 	case SYS_SETSOCKOPT:
2489 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2490 		break;
2491 	case SYS_GETSOCKOPT:
2492 		err =
2493 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2494 				   (int __user *)a[4]);
2495 		break;
2496 	case SYS_SENDMSG:
2497 		err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2498 		break;
2499 	case SYS_SENDMMSG:
2500 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2501 		break;
2502 	case SYS_RECVMSG:
2503 		err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2504 		break;
2505 	case SYS_RECVMMSG:
2506 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2507 				   (struct timespec __user *)a[4]);
2508 		break;
2509 	case SYS_ACCEPT4:
2510 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2511 				  (int __user *)a[2], a[3]);
2512 		break;
2513 	default:
2514 		err = -EINVAL;
2515 		break;
2516 	}
2517 	return err;
2518 }
2519 
2520 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2521 
2522 /**
2523  *	sock_register - add a socket protocol handler
2524  *	@ops: description of protocol
2525  *
2526  *	This function is called by a protocol handler that wants to
2527  *	advertise its address family, and have it linked into the
2528  *	socket interface. The value ops->family corresponds to the
2529  *	socket system call protocol family.
2530  */
2531 int sock_register(const struct net_proto_family *ops)
2532 {
2533 	int err;
2534 
2535 	if (ops->family >= NPROTO) {
2536 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2537 		return -ENOBUFS;
2538 	}
2539 
2540 	spin_lock(&net_family_lock);
2541 	if (rcu_dereference_protected(net_families[ops->family],
2542 				      lockdep_is_held(&net_family_lock)))
2543 		err = -EEXIST;
2544 	else {
2545 		rcu_assign_pointer(net_families[ops->family], ops);
2546 		err = 0;
2547 	}
2548 	spin_unlock(&net_family_lock);
2549 
2550 	pr_info("NET: Registered protocol family %d\n", ops->family);
2551 	return err;
2552 }
2553 EXPORT_SYMBOL(sock_register);
2554 
2555 /**
2556  *	sock_unregister - remove a protocol handler
2557  *	@family: protocol family to remove
2558  *
2559  *	This function is called by a protocol handler that wants to
2560  *	remove its address family, and have it unlinked from the
2561  *	new socket creation.
2562  *
2563  *	If protocol handler is a module, then it can use module reference
2564  *	counts to protect against new references. If protocol handler is not
2565  *	a module then it needs to provide its own protection in
2566  *	the ops->create routine.
2567  */
2568 void sock_unregister(int family)
2569 {
2570 	BUG_ON(family < 0 || family >= NPROTO);
2571 
2572 	spin_lock(&net_family_lock);
2573 	RCU_INIT_POINTER(net_families[family], NULL);
2574 	spin_unlock(&net_family_lock);
2575 
2576 	synchronize_rcu();
2577 
2578 	pr_info("NET: Unregistered protocol family %d\n", family);
2579 }
2580 EXPORT_SYMBOL(sock_unregister);
2581 
2582 static int __init sock_init(void)
2583 {
2584 	int err;
2585 	/*
2586 	 *      Initialize the network sysctl infrastructure.
2587 	 */
2588 	err = net_sysctl_init();
2589 	if (err)
2590 		goto out;
2591 
2592 	/*
2593 	 *      Initialize skbuff SLAB cache
2594 	 */
2595 	skb_init();
2596 
2597 	/*
2598 	 *      Initialize the protocols module.
2599 	 */
2600 
2601 	init_inodecache();
2602 
2603 	err = register_filesystem(&sock_fs_type);
2604 	if (err)
2605 		goto out_fs;
2606 	sock_mnt = kern_mount(&sock_fs_type);
2607 	if (IS_ERR(sock_mnt)) {
2608 		err = PTR_ERR(sock_mnt);
2609 		goto out_mount;
2610 	}
2611 
2612 	/* The real protocol initialization is performed in later initcalls.
2613 	 */
2614 
2615 #ifdef CONFIG_NETFILTER
2616 	err = netfilter_init();
2617 	if (err)
2618 		goto out;
2619 #endif
2620 
2621 	ptp_classifier_init();
2622 
2623 out:
2624 	return err;
2625 
2626 out_mount:
2627 	unregister_filesystem(&sock_fs_type);
2628 out_fs:
2629 	goto out;
2630 }
2631 
2632 core_initcall(sock_init);	/* early initcall */
2633 
2634 #ifdef CONFIG_PROC_FS
2635 void socket_seq_show(struct seq_file *seq)
2636 {
2637 	int cpu;
2638 	int counter = 0;
2639 
2640 	for_each_possible_cpu(cpu)
2641 	    counter += per_cpu(sockets_in_use, cpu);
2642 
2643 	/* It can be negative, by the way. 8) */
2644 	if (counter < 0)
2645 		counter = 0;
2646 
2647 	seq_printf(seq, "sockets: used %d\n", counter);
2648 }
2649 #endif				/* CONFIG_PROC_FS */
2650 
2651 #ifdef CONFIG_COMPAT
2652 static int do_siocgstamp(struct net *net, struct socket *sock,
2653 			 unsigned int cmd, void __user *up)
2654 {
2655 	mm_segment_t old_fs = get_fs();
2656 	struct timeval ktv;
2657 	int err;
2658 
2659 	set_fs(KERNEL_DS);
2660 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2661 	set_fs(old_fs);
2662 	if (!err)
2663 		err = compat_put_timeval(&ktv, up);
2664 
2665 	return err;
2666 }
2667 
2668 static int do_siocgstampns(struct net *net, struct socket *sock,
2669 			   unsigned int cmd, void __user *up)
2670 {
2671 	mm_segment_t old_fs = get_fs();
2672 	struct timespec kts;
2673 	int err;
2674 
2675 	set_fs(KERNEL_DS);
2676 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2677 	set_fs(old_fs);
2678 	if (!err)
2679 		err = compat_put_timespec(&kts, up);
2680 
2681 	return err;
2682 }
2683 
2684 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2685 {
2686 	struct ifreq __user *uifr;
2687 	int err;
2688 
2689 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2690 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2691 		return -EFAULT;
2692 
2693 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2694 	if (err)
2695 		return err;
2696 
2697 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2698 		return -EFAULT;
2699 
2700 	return 0;
2701 }
2702 
2703 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2704 {
2705 	struct compat_ifconf ifc32;
2706 	struct ifconf ifc;
2707 	struct ifconf __user *uifc;
2708 	struct compat_ifreq __user *ifr32;
2709 	struct ifreq __user *ifr;
2710 	unsigned int i, j;
2711 	int err;
2712 
2713 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2714 		return -EFAULT;
2715 
2716 	memset(&ifc, 0, sizeof(ifc));
2717 	if (ifc32.ifcbuf == 0) {
2718 		ifc32.ifc_len = 0;
2719 		ifc.ifc_len = 0;
2720 		ifc.ifc_req = NULL;
2721 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2722 	} else {
2723 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2724 			sizeof(struct ifreq);
2725 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2726 		ifc.ifc_len = len;
2727 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2728 		ifr32 = compat_ptr(ifc32.ifcbuf);
2729 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2730 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2731 				return -EFAULT;
2732 			ifr++;
2733 			ifr32++;
2734 		}
2735 	}
2736 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2737 		return -EFAULT;
2738 
2739 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2740 	if (err)
2741 		return err;
2742 
2743 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2744 		return -EFAULT;
2745 
2746 	ifr = ifc.ifc_req;
2747 	ifr32 = compat_ptr(ifc32.ifcbuf);
2748 	for (i = 0, j = 0;
2749 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2750 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2751 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2752 			return -EFAULT;
2753 		ifr32++;
2754 		ifr++;
2755 	}
2756 
2757 	if (ifc32.ifcbuf == 0) {
2758 		/* Translate from 64-bit structure multiple to
2759 		 * a 32-bit one.
2760 		 */
2761 		i = ifc.ifc_len;
2762 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2763 		ifc32.ifc_len = i;
2764 	} else {
2765 		ifc32.ifc_len = i;
2766 	}
2767 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2768 		return -EFAULT;
2769 
2770 	return 0;
2771 }
2772 
2773 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2774 {
2775 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2776 	bool convert_in = false, convert_out = false;
2777 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2778 	struct ethtool_rxnfc __user *rxnfc;
2779 	struct ifreq __user *ifr;
2780 	u32 rule_cnt = 0, actual_rule_cnt;
2781 	u32 ethcmd;
2782 	u32 data;
2783 	int ret;
2784 
2785 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2786 		return -EFAULT;
2787 
2788 	compat_rxnfc = compat_ptr(data);
2789 
2790 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2791 		return -EFAULT;
2792 
2793 	/* Most ethtool structures are defined without padding.
2794 	 * Unfortunately struct ethtool_rxnfc is an exception.
2795 	 */
2796 	switch (ethcmd) {
2797 	default:
2798 		break;
2799 	case ETHTOOL_GRXCLSRLALL:
2800 		/* Buffer size is variable */
2801 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2802 			return -EFAULT;
2803 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2804 			return -ENOMEM;
2805 		buf_size += rule_cnt * sizeof(u32);
2806 		/* fall through */
2807 	case ETHTOOL_GRXRINGS:
2808 	case ETHTOOL_GRXCLSRLCNT:
2809 	case ETHTOOL_GRXCLSRULE:
2810 	case ETHTOOL_SRXCLSRLINS:
2811 		convert_out = true;
2812 		/* fall through */
2813 	case ETHTOOL_SRXCLSRLDEL:
2814 		buf_size += sizeof(struct ethtool_rxnfc);
2815 		convert_in = true;
2816 		break;
2817 	}
2818 
2819 	ifr = compat_alloc_user_space(buf_size);
2820 	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2821 
2822 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2823 		return -EFAULT;
2824 
2825 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2826 		     &ifr->ifr_ifru.ifru_data))
2827 		return -EFAULT;
2828 
2829 	if (convert_in) {
2830 		/* We expect there to be holes between fs.m_ext and
2831 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2832 		 */
2833 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2834 			     sizeof(compat_rxnfc->fs.m_ext) !=
2835 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2836 			     sizeof(rxnfc->fs.m_ext));
2837 		BUILD_BUG_ON(
2838 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2839 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2840 			offsetof(struct ethtool_rxnfc, fs.location) -
2841 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2842 
2843 		if (copy_in_user(rxnfc, compat_rxnfc,
2844 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2845 				 (void __user *)rxnfc) ||
2846 		    copy_in_user(&rxnfc->fs.ring_cookie,
2847 				 &compat_rxnfc->fs.ring_cookie,
2848 				 (void __user *)(&rxnfc->fs.location + 1) -
2849 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2850 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2851 				 sizeof(rxnfc->rule_cnt)))
2852 			return -EFAULT;
2853 	}
2854 
2855 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2856 	if (ret)
2857 		return ret;
2858 
2859 	if (convert_out) {
2860 		if (copy_in_user(compat_rxnfc, rxnfc,
2861 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2862 				 (const void __user *)rxnfc) ||
2863 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2864 				 &rxnfc->fs.ring_cookie,
2865 				 (const void __user *)(&rxnfc->fs.location + 1) -
2866 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2867 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2868 				 sizeof(rxnfc->rule_cnt)))
2869 			return -EFAULT;
2870 
2871 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2872 			/* As an optimisation, we only copy the actual
2873 			 * number of rules that the underlying
2874 			 * function returned.  Since Mallory might
2875 			 * change the rule count in user memory, we
2876 			 * check that it is less than the rule count
2877 			 * originally given (as the user buffer size),
2878 			 * which has been range-checked.
2879 			 */
2880 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2881 				return -EFAULT;
2882 			if (actual_rule_cnt < rule_cnt)
2883 				rule_cnt = actual_rule_cnt;
2884 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2885 					 &rxnfc->rule_locs[0],
2886 					 rule_cnt * sizeof(u32)))
2887 				return -EFAULT;
2888 		}
2889 	}
2890 
2891 	return 0;
2892 }
2893 
2894 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2895 {
2896 	void __user *uptr;
2897 	compat_uptr_t uptr32;
2898 	struct ifreq __user *uifr;
2899 
2900 	uifr = compat_alloc_user_space(sizeof(*uifr));
2901 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2902 		return -EFAULT;
2903 
2904 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2905 		return -EFAULT;
2906 
2907 	uptr = compat_ptr(uptr32);
2908 
2909 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2910 		return -EFAULT;
2911 
2912 	return dev_ioctl(net, SIOCWANDEV, uifr);
2913 }
2914 
2915 static int bond_ioctl(struct net *net, unsigned int cmd,
2916 			 struct compat_ifreq __user *ifr32)
2917 {
2918 	struct ifreq kifr;
2919 	mm_segment_t old_fs;
2920 	int err;
2921 
2922 	switch (cmd) {
2923 	case SIOCBONDENSLAVE:
2924 	case SIOCBONDRELEASE:
2925 	case SIOCBONDSETHWADDR:
2926 	case SIOCBONDCHANGEACTIVE:
2927 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2928 			return -EFAULT;
2929 
2930 		old_fs = get_fs();
2931 		set_fs(KERNEL_DS);
2932 		err = dev_ioctl(net, cmd,
2933 				(struct ifreq __user __force *) &kifr);
2934 		set_fs(old_fs);
2935 
2936 		return err;
2937 	default:
2938 		return -ENOIOCTLCMD;
2939 	}
2940 }
2941 
2942 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2943 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2944 				 struct compat_ifreq __user *u_ifreq32)
2945 {
2946 	struct ifreq __user *u_ifreq64;
2947 	char tmp_buf[IFNAMSIZ];
2948 	void __user *data64;
2949 	u32 data32;
2950 
2951 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2952 			   IFNAMSIZ))
2953 		return -EFAULT;
2954 	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2955 		return -EFAULT;
2956 	data64 = compat_ptr(data32);
2957 
2958 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2959 
2960 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2961 			 IFNAMSIZ))
2962 		return -EFAULT;
2963 	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2964 		return -EFAULT;
2965 
2966 	return dev_ioctl(net, cmd, u_ifreq64);
2967 }
2968 
2969 static int dev_ifsioc(struct net *net, struct socket *sock,
2970 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2971 {
2972 	struct ifreq __user *uifr;
2973 	int err;
2974 
2975 	uifr = compat_alloc_user_space(sizeof(*uifr));
2976 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2977 		return -EFAULT;
2978 
2979 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2980 
2981 	if (!err) {
2982 		switch (cmd) {
2983 		case SIOCGIFFLAGS:
2984 		case SIOCGIFMETRIC:
2985 		case SIOCGIFMTU:
2986 		case SIOCGIFMEM:
2987 		case SIOCGIFHWADDR:
2988 		case SIOCGIFINDEX:
2989 		case SIOCGIFADDR:
2990 		case SIOCGIFBRDADDR:
2991 		case SIOCGIFDSTADDR:
2992 		case SIOCGIFNETMASK:
2993 		case SIOCGIFPFLAGS:
2994 		case SIOCGIFTXQLEN:
2995 		case SIOCGMIIPHY:
2996 		case SIOCGMIIREG:
2997 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2998 				err = -EFAULT;
2999 			break;
3000 		}
3001 	}
3002 	return err;
3003 }
3004 
3005 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3006 			struct compat_ifreq __user *uifr32)
3007 {
3008 	struct ifreq ifr;
3009 	struct compat_ifmap __user *uifmap32;
3010 	mm_segment_t old_fs;
3011 	int err;
3012 
3013 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3014 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3015 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3016 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3017 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3018 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3019 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3020 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3021 	if (err)
3022 		return -EFAULT;
3023 
3024 	old_fs = get_fs();
3025 	set_fs(KERNEL_DS);
3026 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
3027 	set_fs(old_fs);
3028 
3029 	if (cmd == SIOCGIFMAP && !err) {
3030 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3031 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3032 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3033 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3034 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3035 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3036 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3037 		if (err)
3038 			err = -EFAULT;
3039 	}
3040 	return err;
3041 }
3042 
3043 struct rtentry32 {
3044 	u32		rt_pad1;
3045 	struct sockaddr rt_dst;         /* target address               */
3046 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3047 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3048 	unsigned short	rt_flags;
3049 	short		rt_pad2;
3050 	u32		rt_pad3;
3051 	unsigned char	rt_tos;
3052 	unsigned char	rt_class;
3053 	short		rt_pad4;
3054 	short		rt_metric;      /* +1 for binary compatibility! */
3055 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3056 	u32		rt_mtu;         /* per route MTU/Window         */
3057 	u32		rt_window;      /* Window clamping              */
3058 	unsigned short  rt_irtt;        /* Initial RTT                  */
3059 };
3060 
3061 struct in6_rtmsg32 {
3062 	struct in6_addr		rtmsg_dst;
3063 	struct in6_addr		rtmsg_src;
3064 	struct in6_addr		rtmsg_gateway;
3065 	u32			rtmsg_type;
3066 	u16			rtmsg_dst_len;
3067 	u16			rtmsg_src_len;
3068 	u32			rtmsg_metric;
3069 	u32			rtmsg_info;
3070 	u32			rtmsg_flags;
3071 	s32			rtmsg_ifindex;
3072 };
3073 
3074 static int routing_ioctl(struct net *net, struct socket *sock,
3075 			 unsigned int cmd, void __user *argp)
3076 {
3077 	int ret;
3078 	void *r = NULL;
3079 	struct in6_rtmsg r6;
3080 	struct rtentry r4;
3081 	char devname[16];
3082 	u32 rtdev;
3083 	mm_segment_t old_fs = get_fs();
3084 
3085 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3086 		struct in6_rtmsg32 __user *ur6 = argp;
3087 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3088 			3 * sizeof(struct in6_addr));
3089 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3090 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3091 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3092 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3093 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3094 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3095 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3096 
3097 		r = (void *) &r6;
3098 	} else { /* ipv4 */
3099 		struct rtentry32 __user *ur4 = argp;
3100 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3101 					3 * sizeof(struct sockaddr));
3102 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3103 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3104 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3105 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3106 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3107 		ret |= get_user(rtdev, &(ur4->rt_dev));
3108 		if (rtdev) {
3109 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3110 			r4.rt_dev = (char __user __force *)devname;
3111 			devname[15] = 0;
3112 		} else
3113 			r4.rt_dev = NULL;
3114 
3115 		r = (void *) &r4;
3116 	}
3117 
3118 	if (ret) {
3119 		ret = -EFAULT;
3120 		goto out;
3121 	}
3122 
3123 	set_fs(KERNEL_DS);
3124 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3125 	set_fs(old_fs);
3126 
3127 out:
3128 	return ret;
3129 }
3130 
3131 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3132  * for some operations; this forces use of the newer bridge-utils that
3133  * use compatible ioctls
3134  */
3135 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3136 {
3137 	compat_ulong_t tmp;
3138 
3139 	if (get_user(tmp, argp))
3140 		return -EFAULT;
3141 	if (tmp == BRCTL_GET_VERSION)
3142 		return BRCTL_VERSION + 1;
3143 	return -EINVAL;
3144 }
3145 
3146 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3147 			 unsigned int cmd, unsigned long arg)
3148 {
3149 	void __user *argp = compat_ptr(arg);
3150 	struct sock *sk = sock->sk;
3151 	struct net *net = sock_net(sk);
3152 
3153 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3154 		return compat_ifr_data_ioctl(net, cmd, argp);
3155 
3156 	switch (cmd) {
3157 	case SIOCSIFBR:
3158 	case SIOCGIFBR:
3159 		return old_bridge_ioctl(argp);
3160 	case SIOCGIFNAME:
3161 		return dev_ifname32(net, argp);
3162 	case SIOCGIFCONF:
3163 		return dev_ifconf(net, argp);
3164 	case SIOCETHTOOL:
3165 		return ethtool_ioctl(net, argp);
3166 	case SIOCWANDEV:
3167 		return compat_siocwandev(net, argp);
3168 	case SIOCGIFMAP:
3169 	case SIOCSIFMAP:
3170 		return compat_sioc_ifmap(net, cmd, argp);
3171 	case SIOCBONDENSLAVE:
3172 	case SIOCBONDRELEASE:
3173 	case SIOCBONDSETHWADDR:
3174 	case SIOCBONDCHANGEACTIVE:
3175 		return bond_ioctl(net, cmd, argp);
3176 	case SIOCADDRT:
3177 	case SIOCDELRT:
3178 		return routing_ioctl(net, sock, cmd, argp);
3179 	case SIOCGSTAMP:
3180 		return do_siocgstamp(net, sock, cmd, argp);
3181 	case SIOCGSTAMPNS:
3182 		return do_siocgstampns(net, sock, cmd, argp);
3183 	case SIOCBONDSLAVEINFOQUERY:
3184 	case SIOCBONDINFOQUERY:
3185 	case SIOCSHWTSTAMP:
3186 	case SIOCGHWTSTAMP:
3187 		return compat_ifr_data_ioctl(net, cmd, argp);
3188 
3189 	case FIOSETOWN:
3190 	case SIOCSPGRP:
3191 	case FIOGETOWN:
3192 	case SIOCGPGRP:
3193 	case SIOCBRADDBR:
3194 	case SIOCBRDELBR:
3195 	case SIOCGIFVLAN:
3196 	case SIOCSIFVLAN:
3197 	case SIOCADDDLCI:
3198 	case SIOCDELDLCI:
3199 	case SIOCGSKNS:
3200 		return sock_ioctl(file, cmd, arg);
3201 
3202 	case SIOCGIFFLAGS:
3203 	case SIOCSIFFLAGS:
3204 	case SIOCGIFMETRIC:
3205 	case SIOCSIFMETRIC:
3206 	case SIOCGIFMTU:
3207 	case SIOCSIFMTU:
3208 	case SIOCGIFMEM:
3209 	case SIOCSIFMEM:
3210 	case SIOCGIFHWADDR:
3211 	case SIOCSIFHWADDR:
3212 	case SIOCADDMULTI:
3213 	case SIOCDELMULTI:
3214 	case SIOCGIFINDEX:
3215 	case SIOCGIFADDR:
3216 	case SIOCSIFADDR:
3217 	case SIOCSIFHWBROADCAST:
3218 	case SIOCDIFADDR:
3219 	case SIOCGIFBRDADDR:
3220 	case SIOCSIFBRDADDR:
3221 	case SIOCGIFDSTADDR:
3222 	case SIOCSIFDSTADDR:
3223 	case SIOCGIFNETMASK:
3224 	case SIOCSIFNETMASK:
3225 	case SIOCSIFPFLAGS:
3226 	case SIOCGIFPFLAGS:
3227 	case SIOCGIFTXQLEN:
3228 	case SIOCSIFTXQLEN:
3229 	case SIOCBRADDIF:
3230 	case SIOCBRDELIF:
3231 	case SIOCSIFNAME:
3232 	case SIOCGMIIPHY:
3233 	case SIOCGMIIREG:
3234 	case SIOCSMIIREG:
3235 		return dev_ifsioc(net, sock, cmd, argp);
3236 
3237 	case SIOCSARP:
3238 	case SIOCGARP:
3239 	case SIOCDARP:
3240 	case SIOCATMARK:
3241 		return sock_do_ioctl(net, sock, cmd, arg);
3242 	}
3243 
3244 	return -ENOIOCTLCMD;
3245 }
3246 
3247 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3248 			      unsigned long arg)
3249 {
3250 	struct socket *sock = file->private_data;
3251 	int ret = -ENOIOCTLCMD;
3252 	struct sock *sk;
3253 	struct net *net;
3254 
3255 	sk = sock->sk;
3256 	net = sock_net(sk);
3257 
3258 	if (sock->ops->compat_ioctl)
3259 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3260 
3261 	if (ret == -ENOIOCTLCMD &&
3262 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3263 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3264 
3265 	if (ret == -ENOIOCTLCMD)
3266 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3267 
3268 	return ret;
3269 }
3270 #endif
3271 
3272 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3273 {
3274 	return sock->ops->bind(sock, addr, addrlen);
3275 }
3276 EXPORT_SYMBOL(kernel_bind);
3277 
3278 int kernel_listen(struct socket *sock, int backlog)
3279 {
3280 	return sock->ops->listen(sock, backlog);
3281 }
3282 EXPORT_SYMBOL(kernel_listen);
3283 
3284 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3285 {
3286 	struct sock *sk = sock->sk;
3287 	int err;
3288 
3289 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3290 			       newsock);
3291 	if (err < 0)
3292 		goto done;
3293 
3294 	err = sock->ops->accept(sock, *newsock, flags, true);
3295 	if (err < 0) {
3296 		sock_release(*newsock);
3297 		*newsock = NULL;
3298 		goto done;
3299 	}
3300 
3301 	(*newsock)->ops = sock->ops;
3302 	__module_get((*newsock)->ops->owner);
3303 
3304 done:
3305 	return err;
3306 }
3307 EXPORT_SYMBOL(kernel_accept);
3308 
3309 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3310 		   int flags)
3311 {
3312 	return sock->ops->connect(sock, addr, addrlen, flags);
3313 }
3314 EXPORT_SYMBOL(kernel_connect);
3315 
3316 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3317 			 int *addrlen)
3318 {
3319 	return sock->ops->getname(sock, addr, addrlen, 0);
3320 }
3321 EXPORT_SYMBOL(kernel_getsockname);
3322 
3323 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3324 			 int *addrlen)
3325 {
3326 	return sock->ops->getname(sock, addr, addrlen, 1);
3327 }
3328 EXPORT_SYMBOL(kernel_getpeername);
3329 
3330 int kernel_getsockopt(struct socket *sock, int level, int optname,
3331 			char *optval, int *optlen)
3332 {
3333 	mm_segment_t oldfs = get_fs();
3334 	char __user *uoptval;
3335 	int __user *uoptlen;
3336 	int err;
3337 
3338 	uoptval = (char __user __force *) optval;
3339 	uoptlen = (int __user __force *) optlen;
3340 
3341 	set_fs(KERNEL_DS);
3342 	if (level == SOL_SOCKET)
3343 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3344 	else
3345 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3346 					    uoptlen);
3347 	set_fs(oldfs);
3348 	return err;
3349 }
3350 EXPORT_SYMBOL(kernel_getsockopt);
3351 
3352 int kernel_setsockopt(struct socket *sock, int level, int optname,
3353 			char *optval, unsigned int optlen)
3354 {
3355 	mm_segment_t oldfs = get_fs();
3356 	char __user *uoptval;
3357 	int err;
3358 
3359 	uoptval = (char __user __force *) optval;
3360 
3361 	set_fs(KERNEL_DS);
3362 	if (level == SOL_SOCKET)
3363 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3364 	else
3365 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3366 					    optlen);
3367 	set_fs(oldfs);
3368 	return err;
3369 }
3370 EXPORT_SYMBOL(kernel_setsockopt);
3371 
3372 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3373 		    size_t size, int flags)
3374 {
3375 	if (sock->ops->sendpage)
3376 		return sock->ops->sendpage(sock, page, offset, size, flags);
3377 
3378 	return sock_no_sendpage(sock, page, offset, size, flags);
3379 }
3380 EXPORT_SYMBOL(kernel_sendpage);
3381 
3382 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3383 {
3384 	mm_segment_t oldfs = get_fs();
3385 	int err;
3386 
3387 	set_fs(KERNEL_DS);
3388 	err = sock->ops->ioctl(sock, cmd, arg);
3389 	set_fs(oldfs);
3390 
3391 	return err;
3392 }
3393 EXPORT_SYMBOL(kernel_sock_ioctl);
3394 
3395 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3396 {
3397 	return sock->ops->shutdown(sock, how);
3398 }
3399 EXPORT_SYMBOL(kernel_sock_shutdown);
3400 
3401 /* This routine returns the IP overhead imposed by a socket i.e.
3402  * the length of the underlying IP header, depending on whether
3403  * this is an IPv4 or IPv6 socket and the length from IP options turned
3404  * on at the socket. Assumes that the caller has a lock on the socket.
3405  */
3406 u32 kernel_sock_ip_overhead(struct sock *sk)
3407 {
3408 	struct inet_sock *inet;
3409 	struct ip_options_rcu *opt;
3410 	u32 overhead = 0;
3411 	bool owned_by_user;
3412 #if IS_ENABLED(CONFIG_IPV6)
3413 	struct ipv6_pinfo *np;
3414 	struct ipv6_txoptions *optv6 = NULL;
3415 #endif /* IS_ENABLED(CONFIG_IPV6) */
3416 
3417 	if (!sk)
3418 		return overhead;
3419 
3420 	owned_by_user = sock_owned_by_user(sk);
3421 	switch (sk->sk_family) {
3422 	case AF_INET:
3423 		inet = inet_sk(sk);
3424 		overhead += sizeof(struct iphdr);
3425 		opt = rcu_dereference_protected(inet->inet_opt,
3426 						owned_by_user);
3427 		if (opt)
3428 			overhead += opt->opt.optlen;
3429 		return overhead;
3430 #if IS_ENABLED(CONFIG_IPV6)
3431 	case AF_INET6:
3432 		np = inet6_sk(sk);
3433 		overhead += sizeof(struct ipv6hdr);
3434 		if (np)
3435 			optv6 = rcu_dereference_protected(np->opt,
3436 							  owned_by_user);
3437 		if (optv6)
3438 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3439 		return overhead;
3440 #endif /* IS_ENABLED(CONFIG_IPV6) */
3441 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3442 		return overhead;
3443 	}
3444 }
3445 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3446