xref: /linux/net/socket.c (revision 02091cbe9cc4f18167208eec1d6de636cc731817)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/splice.h>
61 #include <linux/net.h>
62 #include <linux/interrupt.h>
63 #include <linux/thread_info.h>
64 #include <linux/rcupdate.h>
65 #include <linux/netdevice.h>
66 #include <linux/proc_fs.h>
67 #include <linux/seq_file.h>
68 #include <linux/mutex.h>
69 #include <linux/if_bridge.h>
70 #include <linux/if_vlan.h>
71 #include <linux/ptp_classify.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/cache.h>
75 #include <linux/module.h>
76 #include <linux/highmem.h>
77 #include <linux/mount.h>
78 #include <linux/pseudo_fs.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/compat.h>
82 #include <linux/kmod.h>
83 #include <linux/audit.h>
84 #include <linux/wireless.h>
85 #include <linux/nsproxy.h>
86 #include <linux/magic.h>
87 #include <linux/slab.h>
88 #include <linux/xattr.h>
89 #include <linux/nospec.h>
90 #include <linux/indirect_call_wrapper.h>
91 #include <linux/io_uring.h>
92 
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/termios.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 #include <linux/ptp_clock_kernel.h>
111 #include <trace/events/sock.h>
112 
113 #ifdef CONFIG_NET_RX_BUSY_POLL
114 unsigned int sysctl_net_busy_read __read_mostly;
115 unsigned int sysctl_net_busy_poll __read_mostly;
116 #endif
117 
118 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
119 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
120 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
121 
122 static int sock_close(struct inode *inode, struct file *file);
123 static __poll_t sock_poll(struct file *file,
124 			      struct poll_table_struct *wait);
125 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
126 #ifdef CONFIG_COMPAT
127 static long compat_sock_ioctl(struct file *file,
128 			      unsigned int cmd, unsigned long arg);
129 #endif
130 static int sock_fasync(int fd, struct file *filp, int on);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 static void sock_splice_eof(struct file *file);
135 
136 #ifdef CONFIG_PROC_FS
137 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
138 {
139 	struct socket *sock = f->private_data;
140 	const struct proto_ops *ops = READ_ONCE(sock->ops);
141 
142 	if (ops->show_fdinfo)
143 		ops->show_fdinfo(m, sock);
144 }
145 #else
146 #define sock_show_fdinfo NULL
147 #endif
148 
149 /*
150  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
151  *	in the operation structures but are done directly via the socketcall() multiplexor.
152  */
153 
154 static const struct file_operations socket_file_ops = {
155 	.owner =	THIS_MODULE,
156 	.llseek =	no_llseek,
157 	.read_iter =	sock_read_iter,
158 	.write_iter =	sock_write_iter,
159 	.poll =		sock_poll,
160 	.unlocked_ioctl = sock_ioctl,
161 #ifdef CONFIG_COMPAT
162 	.compat_ioctl = compat_sock_ioctl,
163 #endif
164 	.uring_cmd =    io_uring_cmd_sock,
165 	.mmap =		sock_mmap,
166 	.release =	sock_close,
167 	.fasync =	sock_fasync,
168 	.splice_write = splice_to_socket,
169 	.splice_read =	sock_splice_read,
170 	.splice_eof =	sock_splice_eof,
171 	.show_fdinfo =	sock_show_fdinfo,
172 };
173 
174 static const char * const pf_family_names[] = {
175 	[PF_UNSPEC]	= "PF_UNSPEC",
176 	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
177 	[PF_INET]	= "PF_INET",
178 	[PF_AX25]	= "PF_AX25",
179 	[PF_IPX]	= "PF_IPX",
180 	[PF_APPLETALK]	= "PF_APPLETALK",
181 	[PF_NETROM]	= "PF_NETROM",
182 	[PF_BRIDGE]	= "PF_BRIDGE",
183 	[PF_ATMPVC]	= "PF_ATMPVC",
184 	[PF_X25]	= "PF_X25",
185 	[PF_INET6]	= "PF_INET6",
186 	[PF_ROSE]	= "PF_ROSE",
187 	[PF_DECnet]	= "PF_DECnet",
188 	[PF_NETBEUI]	= "PF_NETBEUI",
189 	[PF_SECURITY]	= "PF_SECURITY",
190 	[PF_KEY]	= "PF_KEY",
191 	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
192 	[PF_PACKET]	= "PF_PACKET",
193 	[PF_ASH]	= "PF_ASH",
194 	[PF_ECONET]	= "PF_ECONET",
195 	[PF_ATMSVC]	= "PF_ATMSVC",
196 	[PF_RDS]	= "PF_RDS",
197 	[PF_SNA]	= "PF_SNA",
198 	[PF_IRDA]	= "PF_IRDA",
199 	[PF_PPPOX]	= "PF_PPPOX",
200 	[PF_WANPIPE]	= "PF_WANPIPE",
201 	[PF_LLC]	= "PF_LLC",
202 	[PF_IB]		= "PF_IB",
203 	[PF_MPLS]	= "PF_MPLS",
204 	[PF_CAN]	= "PF_CAN",
205 	[PF_TIPC]	= "PF_TIPC",
206 	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
207 	[PF_IUCV]	= "PF_IUCV",
208 	[PF_RXRPC]	= "PF_RXRPC",
209 	[PF_ISDN]	= "PF_ISDN",
210 	[PF_PHONET]	= "PF_PHONET",
211 	[PF_IEEE802154]	= "PF_IEEE802154",
212 	[PF_CAIF]	= "PF_CAIF",
213 	[PF_ALG]	= "PF_ALG",
214 	[PF_NFC]	= "PF_NFC",
215 	[PF_VSOCK]	= "PF_VSOCK",
216 	[PF_KCM]	= "PF_KCM",
217 	[PF_QIPCRTR]	= "PF_QIPCRTR",
218 	[PF_SMC]	= "PF_SMC",
219 	[PF_XDP]	= "PF_XDP",
220 	[PF_MCTP]	= "PF_MCTP",
221 };
222 
223 /*
224  *	The protocol list. Each protocol is registered in here.
225  */
226 
227 static DEFINE_SPINLOCK(net_family_lock);
228 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
229 
230 /*
231  * Support routines.
232  * Move socket addresses back and forth across the kernel/user
233  * divide and look after the messy bits.
234  */
235 
236 /**
237  *	move_addr_to_kernel	-	copy a socket address into kernel space
238  *	@uaddr: Address in user space
239  *	@kaddr: Address in kernel space
240  *	@ulen: Length in user space
241  *
242  *	The address is copied into kernel space. If the provided address is
243  *	too long an error code of -EINVAL is returned. If the copy gives
244  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
245  */
246 
247 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
248 {
249 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
250 		return -EINVAL;
251 	if (ulen == 0)
252 		return 0;
253 	if (copy_from_user(kaddr, uaddr, ulen))
254 		return -EFAULT;
255 	return audit_sockaddr(ulen, kaddr);
256 }
257 
258 /**
259  *	move_addr_to_user	-	copy an address to user space
260  *	@kaddr: kernel space address
261  *	@klen: length of address in kernel
262  *	@uaddr: user space address
263  *	@ulen: pointer to user length field
264  *
265  *	The value pointed to by ulen on entry is the buffer length available.
266  *	This is overwritten with the buffer space used. -EINVAL is returned
267  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
268  *	is returned if either the buffer or the length field are not
269  *	accessible.
270  *	After copying the data up to the limit the user specifies, the true
271  *	length of the data is written over the length limit the user
272  *	specified. Zero is returned for a success.
273  */
274 
275 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
276 			     void __user *uaddr, int __user *ulen)
277 {
278 	int err;
279 	int len;
280 
281 	BUG_ON(klen > sizeof(struct sockaddr_storage));
282 	err = get_user(len, ulen);
283 	if (err)
284 		return err;
285 	if (len > klen)
286 		len = klen;
287 	if (len < 0)
288 		return -EINVAL;
289 	if (len) {
290 		if (audit_sockaddr(klen, kaddr))
291 			return -ENOMEM;
292 		if (copy_to_user(uaddr, kaddr, len))
293 			return -EFAULT;
294 	}
295 	/*
296 	 *      "fromlen shall refer to the value before truncation.."
297 	 *                      1003.1g
298 	 */
299 	return __put_user(klen, ulen);
300 }
301 
302 static struct kmem_cache *sock_inode_cachep __ro_after_init;
303 
304 static struct inode *sock_alloc_inode(struct super_block *sb)
305 {
306 	struct socket_alloc *ei;
307 
308 	ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
309 	if (!ei)
310 		return NULL;
311 	init_waitqueue_head(&ei->socket.wq.wait);
312 	ei->socket.wq.fasync_list = NULL;
313 	ei->socket.wq.flags = 0;
314 
315 	ei->socket.state = SS_UNCONNECTED;
316 	ei->socket.flags = 0;
317 	ei->socket.ops = NULL;
318 	ei->socket.sk = NULL;
319 	ei->socket.file = NULL;
320 
321 	return &ei->vfs_inode;
322 }
323 
324 static void sock_free_inode(struct inode *inode)
325 {
326 	struct socket_alloc *ei;
327 
328 	ei = container_of(inode, struct socket_alloc, vfs_inode);
329 	kmem_cache_free(sock_inode_cachep, ei);
330 }
331 
332 static void init_once(void *foo)
333 {
334 	struct socket_alloc *ei = (struct socket_alloc *)foo;
335 
336 	inode_init_once(&ei->vfs_inode);
337 }
338 
339 static void init_inodecache(void)
340 {
341 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
342 					      sizeof(struct socket_alloc),
343 					      0,
344 					      (SLAB_HWCACHE_ALIGN |
345 					       SLAB_RECLAIM_ACCOUNT |
346 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
347 					      init_once);
348 	BUG_ON(sock_inode_cachep == NULL);
349 }
350 
351 static const struct super_operations sockfs_ops = {
352 	.alloc_inode	= sock_alloc_inode,
353 	.free_inode	= sock_free_inode,
354 	.statfs		= simple_statfs,
355 };
356 
357 /*
358  * sockfs_dname() is called from d_path().
359  */
360 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
361 {
362 	return dynamic_dname(buffer, buflen, "socket:[%lu]",
363 				d_inode(dentry)->i_ino);
364 }
365 
366 static const struct dentry_operations sockfs_dentry_operations = {
367 	.d_dname  = sockfs_dname,
368 };
369 
370 static int sockfs_xattr_get(const struct xattr_handler *handler,
371 			    struct dentry *dentry, struct inode *inode,
372 			    const char *suffix, void *value, size_t size)
373 {
374 	if (value) {
375 		if (dentry->d_name.len + 1 > size)
376 			return -ERANGE;
377 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
378 	}
379 	return dentry->d_name.len + 1;
380 }
381 
382 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
383 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
384 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
385 
386 static const struct xattr_handler sockfs_xattr_handler = {
387 	.name = XATTR_NAME_SOCKPROTONAME,
388 	.get = sockfs_xattr_get,
389 };
390 
391 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
392 				     struct mnt_idmap *idmap,
393 				     struct dentry *dentry, struct inode *inode,
394 				     const char *suffix, const void *value,
395 				     size_t size, int flags)
396 {
397 	/* Handled by LSM. */
398 	return -EAGAIN;
399 }
400 
401 static const struct xattr_handler sockfs_security_xattr_handler = {
402 	.prefix = XATTR_SECURITY_PREFIX,
403 	.set = sockfs_security_xattr_set,
404 };
405 
406 static const struct xattr_handler *sockfs_xattr_handlers[] = {
407 	&sockfs_xattr_handler,
408 	&sockfs_security_xattr_handler,
409 	NULL
410 };
411 
412 static int sockfs_init_fs_context(struct fs_context *fc)
413 {
414 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
415 	if (!ctx)
416 		return -ENOMEM;
417 	ctx->ops = &sockfs_ops;
418 	ctx->dops = &sockfs_dentry_operations;
419 	ctx->xattr = sockfs_xattr_handlers;
420 	return 0;
421 }
422 
423 static struct vfsmount *sock_mnt __read_mostly;
424 
425 static struct file_system_type sock_fs_type = {
426 	.name =		"sockfs",
427 	.init_fs_context = sockfs_init_fs_context,
428 	.kill_sb =	kill_anon_super,
429 };
430 
431 /*
432  *	Obtains the first available file descriptor and sets it up for use.
433  *
434  *	These functions create file structures and maps them to fd space
435  *	of the current process. On success it returns file descriptor
436  *	and file struct implicitly stored in sock->file.
437  *	Note that another thread may close file descriptor before we return
438  *	from this function. We use the fact that now we do not refer
439  *	to socket after mapping. If one day we will need it, this
440  *	function will increment ref. count on file by 1.
441  *
442  *	In any case returned fd MAY BE not valid!
443  *	This race condition is unavoidable
444  *	with shared fd spaces, we cannot solve it inside kernel,
445  *	but we take care of internal coherence yet.
446  */
447 
448 /**
449  *	sock_alloc_file - Bind a &socket to a &file
450  *	@sock: socket
451  *	@flags: file status flags
452  *	@dname: protocol name
453  *
454  *	Returns the &file bound with @sock, implicitly storing it
455  *	in sock->file. If dname is %NULL, sets to "".
456  *
457  *	On failure @sock is released, and an ERR pointer is returned.
458  *
459  *	This function uses GFP_KERNEL internally.
460  */
461 
462 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
463 {
464 	struct file *file;
465 
466 	if (!dname)
467 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
468 
469 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
470 				O_RDWR | (flags & O_NONBLOCK),
471 				&socket_file_ops);
472 	if (IS_ERR(file)) {
473 		sock_release(sock);
474 		return file;
475 	}
476 
477 	file->f_mode |= FMODE_NOWAIT;
478 	sock->file = file;
479 	file->private_data = sock;
480 	stream_open(SOCK_INODE(sock), file);
481 	return file;
482 }
483 EXPORT_SYMBOL(sock_alloc_file);
484 
485 static int sock_map_fd(struct socket *sock, int flags)
486 {
487 	struct file *newfile;
488 	int fd = get_unused_fd_flags(flags);
489 	if (unlikely(fd < 0)) {
490 		sock_release(sock);
491 		return fd;
492 	}
493 
494 	newfile = sock_alloc_file(sock, flags, NULL);
495 	if (!IS_ERR(newfile)) {
496 		fd_install(fd, newfile);
497 		return fd;
498 	}
499 
500 	put_unused_fd(fd);
501 	return PTR_ERR(newfile);
502 }
503 
504 /**
505  *	sock_from_file - Return the &socket bounded to @file.
506  *	@file: file
507  *
508  *	On failure returns %NULL.
509  */
510 
511 struct socket *sock_from_file(struct file *file)
512 {
513 	if (file->f_op == &socket_file_ops)
514 		return file->private_data;	/* set in sock_alloc_file */
515 
516 	return NULL;
517 }
518 EXPORT_SYMBOL(sock_from_file);
519 
520 /**
521  *	sockfd_lookup - Go from a file number to its socket slot
522  *	@fd: file handle
523  *	@err: pointer to an error code return
524  *
525  *	The file handle passed in is locked and the socket it is bound
526  *	to is returned. If an error occurs the err pointer is overwritten
527  *	with a negative errno code and NULL is returned. The function checks
528  *	for both invalid handles and passing a handle which is not a socket.
529  *
530  *	On a success the socket object pointer is returned.
531  */
532 
533 struct socket *sockfd_lookup(int fd, int *err)
534 {
535 	struct file *file;
536 	struct socket *sock;
537 
538 	file = fget(fd);
539 	if (!file) {
540 		*err = -EBADF;
541 		return NULL;
542 	}
543 
544 	sock = sock_from_file(file);
545 	if (!sock) {
546 		*err = -ENOTSOCK;
547 		fput(file);
548 	}
549 	return sock;
550 }
551 EXPORT_SYMBOL(sockfd_lookup);
552 
553 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
554 {
555 	struct fd f = fdget(fd);
556 	struct socket *sock;
557 
558 	*err = -EBADF;
559 	if (f.file) {
560 		sock = sock_from_file(f.file);
561 		if (likely(sock)) {
562 			*fput_needed = f.flags & FDPUT_FPUT;
563 			return sock;
564 		}
565 		*err = -ENOTSOCK;
566 		fdput(f);
567 	}
568 	return NULL;
569 }
570 
571 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
572 				size_t size)
573 {
574 	ssize_t len;
575 	ssize_t used = 0;
576 
577 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
578 	if (len < 0)
579 		return len;
580 	used += len;
581 	if (buffer) {
582 		if (size < used)
583 			return -ERANGE;
584 		buffer += len;
585 	}
586 
587 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
588 	used += len;
589 	if (buffer) {
590 		if (size < used)
591 			return -ERANGE;
592 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
593 		buffer += len;
594 	}
595 
596 	return used;
597 }
598 
599 static int sockfs_setattr(struct mnt_idmap *idmap,
600 			  struct dentry *dentry, struct iattr *iattr)
601 {
602 	int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
603 
604 	if (!err && (iattr->ia_valid & ATTR_UID)) {
605 		struct socket *sock = SOCKET_I(d_inode(dentry));
606 
607 		if (sock->sk)
608 			sock->sk->sk_uid = iattr->ia_uid;
609 		else
610 			err = -ENOENT;
611 	}
612 
613 	return err;
614 }
615 
616 static const struct inode_operations sockfs_inode_ops = {
617 	.listxattr = sockfs_listxattr,
618 	.setattr = sockfs_setattr,
619 };
620 
621 /**
622  *	sock_alloc - allocate a socket
623  *
624  *	Allocate a new inode and socket object. The two are bound together
625  *	and initialised. The socket is then returned. If we are out of inodes
626  *	NULL is returned. This functions uses GFP_KERNEL internally.
627  */
628 
629 struct socket *sock_alloc(void)
630 {
631 	struct inode *inode;
632 	struct socket *sock;
633 
634 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
635 	if (!inode)
636 		return NULL;
637 
638 	sock = SOCKET_I(inode);
639 
640 	inode->i_ino = get_next_ino();
641 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
642 	inode->i_uid = current_fsuid();
643 	inode->i_gid = current_fsgid();
644 	inode->i_op = &sockfs_inode_ops;
645 
646 	return sock;
647 }
648 EXPORT_SYMBOL(sock_alloc);
649 
650 static void __sock_release(struct socket *sock, struct inode *inode)
651 {
652 	const struct proto_ops *ops = READ_ONCE(sock->ops);
653 
654 	if (ops) {
655 		struct module *owner = ops->owner;
656 
657 		if (inode)
658 			inode_lock(inode);
659 		ops->release(sock);
660 		sock->sk = NULL;
661 		if (inode)
662 			inode_unlock(inode);
663 		sock->ops = NULL;
664 		module_put(owner);
665 	}
666 
667 	if (sock->wq.fasync_list)
668 		pr_err("%s: fasync list not empty!\n", __func__);
669 
670 	if (!sock->file) {
671 		iput(SOCK_INODE(sock));
672 		return;
673 	}
674 	sock->file = NULL;
675 }
676 
677 /**
678  *	sock_release - close a socket
679  *	@sock: socket to close
680  *
681  *	The socket is released from the protocol stack if it has a release
682  *	callback, and the inode is then released if the socket is bound to
683  *	an inode not a file.
684  */
685 void sock_release(struct socket *sock)
686 {
687 	__sock_release(sock, NULL);
688 }
689 EXPORT_SYMBOL(sock_release);
690 
691 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
692 {
693 	u8 flags = *tx_flags;
694 
695 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
696 		flags |= SKBTX_HW_TSTAMP;
697 
698 		/* PTP hardware clocks can provide a free running cycle counter
699 		 * as a time base for virtual clocks. Tell driver to use the
700 		 * free running cycle counter for timestamp if socket is bound
701 		 * to virtual clock.
702 		 */
703 		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
704 			flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
705 	}
706 
707 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
708 		flags |= SKBTX_SW_TSTAMP;
709 
710 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
711 		flags |= SKBTX_SCHED_TSTAMP;
712 
713 	*tx_flags = flags;
714 }
715 EXPORT_SYMBOL(__sock_tx_timestamp);
716 
717 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
718 					   size_t));
719 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
720 					    size_t));
721 
722 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
723 						 int flags)
724 {
725 	trace_sock_send_length(sk, ret, 0);
726 }
727 
728 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
729 {
730 	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
731 				     inet_sendmsg, sock, msg,
732 				     msg_data_left(msg));
733 	BUG_ON(ret == -EIOCBQUEUED);
734 
735 	if (trace_sock_send_length_enabled())
736 		call_trace_sock_send_length(sock->sk, ret, 0);
737 	return ret;
738 }
739 
740 /**
741  *	sock_sendmsg - send a message through @sock
742  *	@sock: socket
743  *	@msg: message to send
744  *
745  *	Sends @msg through @sock, passing through LSM.
746  *	Returns the number of bytes sent, or an error code.
747  */
748 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
749 {
750 	int err = security_socket_sendmsg(sock, msg,
751 					  msg_data_left(msg));
752 
753 	return err ?: sock_sendmsg_nosec(sock, msg);
754 }
755 EXPORT_SYMBOL(sock_sendmsg);
756 
757 /**
758  *	kernel_sendmsg - send a message through @sock (kernel-space)
759  *	@sock: socket
760  *	@msg: message header
761  *	@vec: kernel vec
762  *	@num: vec array length
763  *	@size: total message data size
764  *
765  *	Builds the message data with @vec and sends it through @sock.
766  *	Returns the number of bytes sent, or an error code.
767  */
768 
769 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
770 		   struct kvec *vec, size_t num, size_t size)
771 {
772 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
773 	return sock_sendmsg(sock, msg);
774 }
775 EXPORT_SYMBOL(kernel_sendmsg);
776 
777 /**
778  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
779  *	@sk: sock
780  *	@msg: message header
781  *	@vec: output s/g array
782  *	@num: output s/g array length
783  *	@size: total message data size
784  *
785  *	Builds the message data with @vec and sends it through @sock.
786  *	Returns the number of bytes sent, or an error code.
787  *	Caller must hold @sk.
788  */
789 
790 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
791 			  struct kvec *vec, size_t num, size_t size)
792 {
793 	struct socket *sock = sk->sk_socket;
794 	const struct proto_ops *ops = READ_ONCE(sock->ops);
795 
796 	if (!ops->sendmsg_locked)
797 		return sock_no_sendmsg_locked(sk, msg, size);
798 
799 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
800 
801 	return ops->sendmsg_locked(sk, msg, msg_data_left(msg));
802 }
803 EXPORT_SYMBOL(kernel_sendmsg_locked);
804 
805 static bool skb_is_err_queue(const struct sk_buff *skb)
806 {
807 	/* pkt_type of skbs enqueued on the error queue are set to
808 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
809 	 * in recvmsg, since skbs received on a local socket will never
810 	 * have a pkt_type of PACKET_OUTGOING.
811 	 */
812 	return skb->pkt_type == PACKET_OUTGOING;
813 }
814 
815 /* On transmit, software and hardware timestamps are returned independently.
816  * As the two skb clones share the hardware timestamp, which may be updated
817  * before the software timestamp is received, a hardware TX timestamp may be
818  * returned only if there is no software TX timestamp. Ignore false software
819  * timestamps, which may be made in the __sock_recv_timestamp() call when the
820  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
821  * hardware timestamp.
822  */
823 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
824 {
825 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
826 }
827 
828 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
829 {
830 	bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
831 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
832 	struct net_device *orig_dev;
833 	ktime_t hwtstamp;
834 
835 	rcu_read_lock();
836 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
837 	if (orig_dev) {
838 		*if_index = orig_dev->ifindex;
839 		hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
840 	} else {
841 		hwtstamp = shhwtstamps->hwtstamp;
842 	}
843 	rcu_read_unlock();
844 
845 	return hwtstamp;
846 }
847 
848 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
849 			   int if_index)
850 {
851 	struct scm_ts_pktinfo ts_pktinfo;
852 	struct net_device *orig_dev;
853 
854 	if (!skb_mac_header_was_set(skb))
855 		return;
856 
857 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
858 
859 	if (!if_index) {
860 		rcu_read_lock();
861 		orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
862 		if (orig_dev)
863 			if_index = orig_dev->ifindex;
864 		rcu_read_unlock();
865 	}
866 	ts_pktinfo.if_index = if_index;
867 
868 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
869 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
870 		 sizeof(ts_pktinfo), &ts_pktinfo);
871 }
872 
873 /*
874  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
875  */
876 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
877 	struct sk_buff *skb)
878 {
879 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
880 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
881 	struct scm_timestamping_internal tss;
882 	int empty = 1, false_tstamp = 0;
883 	struct skb_shared_hwtstamps *shhwtstamps =
884 		skb_hwtstamps(skb);
885 	int if_index;
886 	ktime_t hwtstamp;
887 	u32 tsflags;
888 
889 	/* Race occurred between timestamp enabling and packet
890 	   receiving.  Fill in the current time for now. */
891 	if (need_software_tstamp && skb->tstamp == 0) {
892 		__net_timestamp(skb);
893 		false_tstamp = 1;
894 	}
895 
896 	if (need_software_tstamp) {
897 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
898 			if (new_tstamp) {
899 				struct __kernel_sock_timeval tv;
900 
901 				skb_get_new_timestamp(skb, &tv);
902 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
903 					 sizeof(tv), &tv);
904 			} else {
905 				struct __kernel_old_timeval tv;
906 
907 				skb_get_timestamp(skb, &tv);
908 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
909 					 sizeof(tv), &tv);
910 			}
911 		} else {
912 			if (new_tstamp) {
913 				struct __kernel_timespec ts;
914 
915 				skb_get_new_timestampns(skb, &ts);
916 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
917 					 sizeof(ts), &ts);
918 			} else {
919 				struct __kernel_old_timespec ts;
920 
921 				skb_get_timestampns(skb, &ts);
922 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
923 					 sizeof(ts), &ts);
924 			}
925 		}
926 	}
927 
928 	memset(&tss, 0, sizeof(tss));
929 	tsflags = READ_ONCE(sk->sk_tsflags);
930 	if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
931 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
932 		empty = 0;
933 	if (shhwtstamps &&
934 	    (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
935 	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
936 		if_index = 0;
937 		if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
938 			hwtstamp = get_timestamp(sk, skb, &if_index);
939 		else
940 			hwtstamp = shhwtstamps->hwtstamp;
941 
942 		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
943 			hwtstamp = ptp_convert_timestamp(&hwtstamp,
944 							 READ_ONCE(sk->sk_bind_phc));
945 
946 		if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
947 			empty = 0;
948 
949 			if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
950 			    !skb_is_err_queue(skb))
951 				put_ts_pktinfo(msg, skb, if_index);
952 		}
953 	}
954 	if (!empty) {
955 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
956 			put_cmsg_scm_timestamping64(msg, &tss);
957 		else
958 			put_cmsg_scm_timestamping(msg, &tss);
959 
960 		if (skb_is_err_queue(skb) && skb->len &&
961 		    SKB_EXT_ERR(skb)->opt_stats)
962 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
963 				 skb->len, skb->data);
964 	}
965 }
966 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
967 
968 #ifdef CONFIG_WIRELESS
969 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
970 	struct sk_buff *skb)
971 {
972 	int ack;
973 
974 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
975 		return;
976 	if (!skb->wifi_acked_valid)
977 		return;
978 
979 	ack = skb->wifi_acked;
980 
981 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
982 }
983 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
984 #endif
985 
986 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
987 				   struct sk_buff *skb)
988 {
989 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
990 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
991 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
992 }
993 
994 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
995 			   struct sk_buff *skb)
996 {
997 	if (sock_flag(sk, SOCK_RCVMARK) && skb) {
998 		/* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
999 		__u32 mark = skb->mark;
1000 
1001 		put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
1002 	}
1003 }
1004 
1005 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1006 		       struct sk_buff *skb)
1007 {
1008 	sock_recv_timestamp(msg, sk, skb);
1009 	sock_recv_drops(msg, sk, skb);
1010 	sock_recv_mark(msg, sk, skb);
1011 }
1012 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1013 
1014 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1015 					   size_t, int));
1016 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1017 					    size_t, int));
1018 
1019 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1020 {
1021 	trace_sock_recv_length(sk, ret, flags);
1022 }
1023 
1024 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1025 				     int flags)
1026 {
1027 	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1028 				     inet6_recvmsg,
1029 				     inet_recvmsg, sock, msg,
1030 				     msg_data_left(msg), flags);
1031 	if (trace_sock_recv_length_enabled())
1032 		call_trace_sock_recv_length(sock->sk, ret, flags);
1033 	return ret;
1034 }
1035 
1036 /**
1037  *	sock_recvmsg - receive a message from @sock
1038  *	@sock: socket
1039  *	@msg: message to receive
1040  *	@flags: message flags
1041  *
1042  *	Receives @msg from @sock, passing through LSM. Returns the total number
1043  *	of bytes received, or an error.
1044  */
1045 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1046 {
1047 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1048 
1049 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
1050 }
1051 EXPORT_SYMBOL(sock_recvmsg);
1052 
1053 /**
1054  *	kernel_recvmsg - Receive a message from a socket (kernel space)
1055  *	@sock: The socket to receive the message from
1056  *	@msg: Received message
1057  *	@vec: Input s/g array for message data
1058  *	@num: Size of input s/g array
1059  *	@size: Number of bytes to read
1060  *	@flags: Message flags (MSG_DONTWAIT, etc...)
1061  *
1062  *	On return the msg structure contains the scatter/gather array passed in the
1063  *	vec argument. The array is modified so that it consists of the unfilled
1064  *	portion of the original array.
1065  *
1066  *	The returned value is the total number of bytes received, or an error.
1067  */
1068 
1069 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1070 		   struct kvec *vec, size_t num, size_t size, int flags)
1071 {
1072 	msg->msg_control_is_user = false;
1073 	iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1074 	return sock_recvmsg(sock, msg, flags);
1075 }
1076 EXPORT_SYMBOL(kernel_recvmsg);
1077 
1078 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1079 				struct pipe_inode_info *pipe, size_t len,
1080 				unsigned int flags)
1081 {
1082 	struct socket *sock = file->private_data;
1083 	const struct proto_ops *ops;
1084 
1085 	ops = READ_ONCE(sock->ops);
1086 	if (unlikely(!ops->splice_read))
1087 		return copy_splice_read(file, ppos, pipe, len, flags);
1088 
1089 	return ops->splice_read(sock, ppos, pipe, len, flags);
1090 }
1091 
1092 static void sock_splice_eof(struct file *file)
1093 {
1094 	struct socket *sock = file->private_data;
1095 	const struct proto_ops *ops;
1096 
1097 	ops = READ_ONCE(sock->ops);
1098 	if (ops->splice_eof)
1099 		ops->splice_eof(sock);
1100 }
1101 
1102 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1103 {
1104 	struct file *file = iocb->ki_filp;
1105 	struct socket *sock = file->private_data;
1106 	struct msghdr msg = {.msg_iter = *to,
1107 			     .msg_iocb = iocb};
1108 	ssize_t res;
1109 
1110 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1111 		msg.msg_flags = MSG_DONTWAIT;
1112 
1113 	if (iocb->ki_pos != 0)
1114 		return -ESPIPE;
1115 
1116 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1117 		return 0;
1118 
1119 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1120 	*to = msg.msg_iter;
1121 	return res;
1122 }
1123 
1124 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1125 {
1126 	struct file *file = iocb->ki_filp;
1127 	struct socket *sock = file->private_data;
1128 	struct msghdr msg = {.msg_iter = *from,
1129 			     .msg_iocb = iocb};
1130 	ssize_t res;
1131 
1132 	if (iocb->ki_pos != 0)
1133 		return -ESPIPE;
1134 
1135 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1136 		msg.msg_flags = MSG_DONTWAIT;
1137 
1138 	if (sock->type == SOCK_SEQPACKET)
1139 		msg.msg_flags |= MSG_EOR;
1140 
1141 	res = sock_sendmsg(sock, &msg);
1142 	*from = msg.msg_iter;
1143 	return res;
1144 }
1145 
1146 /*
1147  * Atomic setting of ioctl hooks to avoid race
1148  * with module unload.
1149  */
1150 
1151 static DEFINE_MUTEX(br_ioctl_mutex);
1152 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1153 			    unsigned int cmd, struct ifreq *ifr,
1154 			    void __user *uarg);
1155 
1156 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1157 			     unsigned int cmd, struct ifreq *ifr,
1158 			     void __user *uarg))
1159 {
1160 	mutex_lock(&br_ioctl_mutex);
1161 	br_ioctl_hook = hook;
1162 	mutex_unlock(&br_ioctl_mutex);
1163 }
1164 EXPORT_SYMBOL(brioctl_set);
1165 
1166 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1167 		  struct ifreq *ifr, void __user *uarg)
1168 {
1169 	int err = -ENOPKG;
1170 
1171 	if (!br_ioctl_hook)
1172 		request_module("bridge");
1173 
1174 	mutex_lock(&br_ioctl_mutex);
1175 	if (br_ioctl_hook)
1176 		err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1177 	mutex_unlock(&br_ioctl_mutex);
1178 
1179 	return err;
1180 }
1181 
1182 static DEFINE_MUTEX(vlan_ioctl_mutex);
1183 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1184 
1185 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1186 {
1187 	mutex_lock(&vlan_ioctl_mutex);
1188 	vlan_ioctl_hook = hook;
1189 	mutex_unlock(&vlan_ioctl_mutex);
1190 }
1191 EXPORT_SYMBOL(vlan_ioctl_set);
1192 
1193 static long sock_do_ioctl(struct net *net, struct socket *sock,
1194 			  unsigned int cmd, unsigned long arg)
1195 {
1196 	const struct proto_ops *ops = READ_ONCE(sock->ops);
1197 	struct ifreq ifr;
1198 	bool need_copyout;
1199 	int err;
1200 	void __user *argp = (void __user *)arg;
1201 	void __user *data;
1202 
1203 	err = ops->ioctl(sock, cmd, arg);
1204 
1205 	/*
1206 	 * If this ioctl is unknown try to hand it down
1207 	 * to the NIC driver.
1208 	 */
1209 	if (err != -ENOIOCTLCMD)
1210 		return err;
1211 
1212 	if (!is_socket_ioctl_cmd(cmd))
1213 		return -ENOTTY;
1214 
1215 	if (get_user_ifreq(&ifr, &data, argp))
1216 		return -EFAULT;
1217 	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1218 	if (!err && need_copyout)
1219 		if (put_user_ifreq(&ifr, argp))
1220 			return -EFAULT;
1221 
1222 	return err;
1223 }
1224 
1225 /*
1226  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1227  *	what to do with it - that's up to the protocol still.
1228  */
1229 
1230 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1231 {
1232 	const struct proto_ops  *ops;
1233 	struct socket *sock;
1234 	struct sock *sk;
1235 	void __user *argp = (void __user *)arg;
1236 	int pid, err;
1237 	struct net *net;
1238 
1239 	sock = file->private_data;
1240 	ops = READ_ONCE(sock->ops);
1241 	sk = sock->sk;
1242 	net = sock_net(sk);
1243 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1244 		struct ifreq ifr;
1245 		void __user *data;
1246 		bool need_copyout;
1247 		if (get_user_ifreq(&ifr, &data, argp))
1248 			return -EFAULT;
1249 		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1250 		if (!err && need_copyout)
1251 			if (put_user_ifreq(&ifr, argp))
1252 				return -EFAULT;
1253 	} else
1254 #ifdef CONFIG_WEXT_CORE
1255 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1256 		err = wext_handle_ioctl(net, cmd, argp);
1257 	} else
1258 #endif
1259 		switch (cmd) {
1260 		case FIOSETOWN:
1261 		case SIOCSPGRP:
1262 			err = -EFAULT;
1263 			if (get_user(pid, (int __user *)argp))
1264 				break;
1265 			err = f_setown(sock->file, pid, 1);
1266 			break;
1267 		case FIOGETOWN:
1268 		case SIOCGPGRP:
1269 			err = put_user(f_getown(sock->file),
1270 				       (int __user *)argp);
1271 			break;
1272 		case SIOCGIFBR:
1273 		case SIOCSIFBR:
1274 		case SIOCBRADDBR:
1275 		case SIOCBRDELBR:
1276 			err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1277 			break;
1278 		case SIOCGIFVLAN:
1279 		case SIOCSIFVLAN:
1280 			err = -ENOPKG;
1281 			if (!vlan_ioctl_hook)
1282 				request_module("8021q");
1283 
1284 			mutex_lock(&vlan_ioctl_mutex);
1285 			if (vlan_ioctl_hook)
1286 				err = vlan_ioctl_hook(net, argp);
1287 			mutex_unlock(&vlan_ioctl_mutex);
1288 			break;
1289 		case SIOCGSKNS:
1290 			err = -EPERM;
1291 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1292 				break;
1293 
1294 			err = open_related_ns(&net->ns, get_net_ns);
1295 			break;
1296 		case SIOCGSTAMP_OLD:
1297 		case SIOCGSTAMPNS_OLD:
1298 			if (!ops->gettstamp) {
1299 				err = -ENOIOCTLCMD;
1300 				break;
1301 			}
1302 			err = ops->gettstamp(sock, argp,
1303 					     cmd == SIOCGSTAMP_OLD,
1304 					     !IS_ENABLED(CONFIG_64BIT));
1305 			break;
1306 		case SIOCGSTAMP_NEW:
1307 		case SIOCGSTAMPNS_NEW:
1308 			if (!ops->gettstamp) {
1309 				err = -ENOIOCTLCMD;
1310 				break;
1311 			}
1312 			err = ops->gettstamp(sock, argp,
1313 					     cmd == SIOCGSTAMP_NEW,
1314 					     false);
1315 			break;
1316 
1317 		case SIOCGIFCONF:
1318 			err = dev_ifconf(net, argp);
1319 			break;
1320 
1321 		default:
1322 			err = sock_do_ioctl(net, sock, cmd, arg);
1323 			break;
1324 		}
1325 	return err;
1326 }
1327 
1328 /**
1329  *	sock_create_lite - creates a socket
1330  *	@family: protocol family (AF_INET, ...)
1331  *	@type: communication type (SOCK_STREAM, ...)
1332  *	@protocol: protocol (0, ...)
1333  *	@res: new socket
1334  *
1335  *	Creates a new socket and assigns it to @res, passing through LSM.
1336  *	The new socket initialization is not complete, see kernel_accept().
1337  *	Returns 0 or an error. On failure @res is set to %NULL.
1338  *	This function internally uses GFP_KERNEL.
1339  */
1340 
1341 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1342 {
1343 	int err;
1344 	struct socket *sock = NULL;
1345 
1346 	err = security_socket_create(family, type, protocol, 1);
1347 	if (err)
1348 		goto out;
1349 
1350 	sock = sock_alloc();
1351 	if (!sock) {
1352 		err = -ENOMEM;
1353 		goto out;
1354 	}
1355 
1356 	sock->type = type;
1357 	err = security_socket_post_create(sock, family, type, protocol, 1);
1358 	if (err)
1359 		goto out_release;
1360 
1361 out:
1362 	*res = sock;
1363 	return err;
1364 out_release:
1365 	sock_release(sock);
1366 	sock = NULL;
1367 	goto out;
1368 }
1369 EXPORT_SYMBOL(sock_create_lite);
1370 
1371 /* No kernel lock held - perfect */
1372 static __poll_t sock_poll(struct file *file, poll_table *wait)
1373 {
1374 	struct socket *sock = file->private_data;
1375 	const struct proto_ops *ops = READ_ONCE(sock->ops);
1376 	__poll_t events = poll_requested_events(wait), flag = 0;
1377 
1378 	if (!ops->poll)
1379 		return 0;
1380 
1381 	if (sk_can_busy_loop(sock->sk)) {
1382 		/* poll once if requested by the syscall */
1383 		if (events & POLL_BUSY_LOOP)
1384 			sk_busy_loop(sock->sk, 1);
1385 
1386 		/* if this socket can poll_ll, tell the system call */
1387 		flag = POLL_BUSY_LOOP;
1388 	}
1389 
1390 	return ops->poll(file, sock, wait) | flag;
1391 }
1392 
1393 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1394 {
1395 	struct socket *sock = file->private_data;
1396 
1397 	return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1398 }
1399 
1400 static int sock_close(struct inode *inode, struct file *filp)
1401 {
1402 	__sock_release(SOCKET_I(inode), inode);
1403 	return 0;
1404 }
1405 
1406 /*
1407  *	Update the socket async list
1408  *
1409  *	Fasync_list locking strategy.
1410  *
1411  *	1. fasync_list is modified only under process context socket lock
1412  *	   i.e. under semaphore.
1413  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1414  *	   or under socket lock
1415  */
1416 
1417 static int sock_fasync(int fd, struct file *filp, int on)
1418 {
1419 	struct socket *sock = filp->private_data;
1420 	struct sock *sk = sock->sk;
1421 	struct socket_wq *wq = &sock->wq;
1422 
1423 	if (sk == NULL)
1424 		return -EINVAL;
1425 
1426 	lock_sock(sk);
1427 	fasync_helper(fd, filp, on, &wq->fasync_list);
1428 
1429 	if (!wq->fasync_list)
1430 		sock_reset_flag(sk, SOCK_FASYNC);
1431 	else
1432 		sock_set_flag(sk, SOCK_FASYNC);
1433 
1434 	release_sock(sk);
1435 	return 0;
1436 }
1437 
1438 /* This function may be called only under rcu_lock */
1439 
1440 int sock_wake_async(struct socket_wq *wq, int how, int band)
1441 {
1442 	if (!wq || !wq->fasync_list)
1443 		return -1;
1444 
1445 	switch (how) {
1446 	case SOCK_WAKE_WAITD:
1447 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1448 			break;
1449 		goto call_kill;
1450 	case SOCK_WAKE_SPACE:
1451 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1452 			break;
1453 		fallthrough;
1454 	case SOCK_WAKE_IO:
1455 call_kill:
1456 		kill_fasync(&wq->fasync_list, SIGIO, band);
1457 		break;
1458 	case SOCK_WAKE_URG:
1459 		kill_fasync(&wq->fasync_list, SIGURG, band);
1460 	}
1461 
1462 	return 0;
1463 }
1464 EXPORT_SYMBOL(sock_wake_async);
1465 
1466 /**
1467  *	__sock_create - creates a socket
1468  *	@net: net namespace
1469  *	@family: protocol family (AF_INET, ...)
1470  *	@type: communication type (SOCK_STREAM, ...)
1471  *	@protocol: protocol (0, ...)
1472  *	@res: new socket
1473  *	@kern: boolean for kernel space sockets
1474  *
1475  *	Creates a new socket and assigns it to @res, passing through LSM.
1476  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1477  *	be set to true if the socket resides in kernel space.
1478  *	This function internally uses GFP_KERNEL.
1479  */
1480 
1481 int __sock_create(struct net *net, int family, int type, int protocol,
1482 			 struct socket **res, int kern)
1483 {
1484 	int err;
1485 	struct socket *sock;
1486 	const struct net_proto_family *pf;
1487 
1488 	/*
1489 	 *      Check protocol is in range
1490 	 */
1491 	if (family < 0 || family >= NPROTO)
1492 		return -EAFNOSUPPORT;
1493 	if (type < 0 || type >= SOCK_MAX)
1494 		return -EINVAL;
1495 
1496 	/* Compatibility.
1497 
1498 	   This uglymoron is moved from INET layer to here to avoid
1499 	   deadlock in module load.
1500 	 */
1501 	if (family == PF_INET && type == SOCK_PACKET) {
1502 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1503 			     current->comm);
1504 		family = PF_PACKET;
1505 	}
1506 
1507 	err = security_socket_create(family, type, protocol, kern);
1508 	if (err)
1509 		return err;
1510 
1511 	/*
1512 	 *	Allocate the socket and allow the family to set things up. if
1513 	 *	the protocol is 0, the family is instructed to select an appropriate
1514 	 *	default.
1515 	 */
1516 	sock = sock_alloc();
1517 	if (!sock) {
1518 		net_warn_ratelimited("socket: no more sockets\n");
1519 		return -ENFILE;	/* Not exactly a match, but its the
1520 				   closest posix thing */
1521 	}
1522 
1523 	sock->type = type;
1524 
1525 #ifdef CONFIG_MODULES
1526 	/* Attempt to load a protocol module if the find failed.
1527 	 *
1528 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1529 	 * requested real, full-featured networking support upon configuration.
1530 	 * Otherwise module support will break!
1531 	 */
1532 	if (rcu_access_pointer(net_families[family]) == NULL)
1533 		request_module("net-pf-%d", family);
1534 #endif
1535 
1536 	rcu_read_lock();
1537 	pf = rcu_dereference(net_families[family]);
1538 	err = -EAFNOSUPPORT;
1539 	if (!pf)
1540 		goto out_release;
1541 
1542 	/*
1543 	 * We will call the ->create function, that possibly is in a loadable
1544 	 * module, so we have to bump that loadable module refcnt first.
1545 	 */
1546 	if (!try_module_get(pf->owner))
1547 		goto out_release;
1548 
1549 	/* Now protected by module ref count */
1550 	rcu_read_unlock();
1551 
1552 	err = pf->create(net, sock, protocol, kern);
1553 	if (err < 0)
1554 		goto out_module_put;
1555 
1556 	/*
1557 	 * Now to bump the refcnt of the [loadable] module that owns this
1558 	 * socket at sock_release time we decrement its refcnt.
1559 	 */
1560 	if (!try_module_get(sock->ops->owner))
1561 		goto out_module_busy;
1562 
1563 	/*
1564 	 * Now that we're done with the ->create function, the [loadable]
1565 	 * module can have its refcnt decremented
1566 	 */
1567 	module_put(pf->owner);
1568 	err = security_socket_post_create(sock, family, type, protocol, kern);
1569 	if (err)
1570 		goto out_sock_release;
1571 	*res = sock;
1572 
1573 	return 0;
1574 
1575 out_module_busy:
1576 	err = -EAFNOSUPPORT;
1577 out_module_put:
1578 	sock->ops = NULL;
1579 	module_put(pf->owner);
1580 out_sock_release:
1581 	sock_release(sock);
1582 	return err;
1583 
1584 out_release:
1585 	rcu_read_unlock();
1586 	goto out_sock_release;
1587 }
1588 EXPORT_SYMBOL(__sock_create);
1589 
1590 /**
1591  *	sock_create - creates a socket
1592  *	@family: protocol family (AF_INET, ...)
1593  *	@type: communication type (SOCK_STREAM, ...)
1594  *	@protocol: protocol (0, ...)
1595  *	@res: new socket
1596  *
1597  *	A wrapper around __sock_create().
1598  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1599  */
1600 
1601 int sock_create(int family, int type, int protocol, struct socket **res)
1602 {
1603 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1604 }
1605 EXPORT_SYMBOL(sock_create);
1606 
1607 /**
1608  *	sock_create_kern - creates a socket (kernel space)
1609  *	@net: net namespace
1610  *	@family: protocol family (AF_INET, ...)
1611  *	@type: communication type (SOCK_STREAM, ...)
1612  *	@protocol: protocol (0, ...)
1613  *	@res: new socket
1614  *
1615  *	A wrapper around __sock_create().
1616  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1617  */
1618 
1619 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1620 {
1621 	return __sock_create(net, family, type, protocol, res, 1);
1622 }
1623 EXPORT_SYMBOL(sock_create_kern);
1624 
1625 static struct socket *__sys_socket_create(int family, int type, int protocol)
1626 {
1627 	struct socket *sock;
1628 	int retval;
1629 
1630 	/* Check the SOCK_* constants for consistency.  */
1631 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1632 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1633 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1634 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1635 
1636 	if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1637 		return ERR_PTR(-EINVAL);
1638 	type &= SOCK_TYPE_MASK;
1639 
1640 	retval = sock_create(family, type, protocol, &sock);
1641 	if (retval < 0)
1642 		return ERR_PTR(retval);
1643 
1644 	return sock;
1645 }
1646 
1647 struct file *__sys_socket_file(int family, int type, int protocol)
1648 {
1649 	struct socket *sock;
1650 	int flags;
1651 
1652 	sock = __sys_socket_create(family, type, protocol);
1653 	if (IS_ERR(sock))
1654 		return ERR_CAST(sock);
1655 
1656 	flags = type & ~SOCK_TYPE_MASK;
1657 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1658 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1659 
1660 	return sock_alloc_file(sock, flags, NULL);
1661 }
1662 
1663 /*	A hook for bpf progs to attach to and update socket protocol.
1664  *
1665  *	A static noinline declaration here could cause the compiler to
1666  *	optimize away the function. A global noinline declaration will
1667  *	keep the definition, but may optimize away the callsite.
1668  *	Therefore, __weak is needed to ensure that the call is still
1669  *	emitted, by telling the compiler that we don't know what the
1670  *	function might eventually be.
1671  *
1672  *	__diag_* below are needed to dismiss the missing prototype warning.
1673  */
1674 
1675 __diag_push();
1676 __diag_ignore_all("-Wmissing-prototypes",
1677 		  "A fmod_ret entry point for BPF programs");
1678 
1679 __weak noinline int update_socket_protocol(int family, int type, int protocol)
1680 {
1681 	return protocol;
1682 }
1683 
1684 __diag_pop();
1685 
1686 int __sys_socket(int family, int type, int protocol)
1687 {
1688 	struct socket *sock;
1689 	int flags;
1690 
1691 	sock = __sys_socket_create(family, type,
1692 				   update_socket_protocol(family, type, protocol));
1693 	if (IS_ERR(sock))
1694 		return PTR_ERR(sock);
1695 
1696 	flags = type & ~SOCK_TYPE_MASK;
1697 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1698 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1699 
1700 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1701 }
1702 
1703 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1704 {
1705 	return __sys_socket(family, type, protocol);
1706 }
1707 
1708 /*
1709  *	Create a pair of connected sockets.
1710  */
1711 
1712 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1713 {
1714 	struct socket *sock1, *sock2;
1715 	int fd1, fd2, err;
1716 	struct file *newfile1, *newfile2;
1717 	int flags;
1718 
1719 	flags = type & ~SOCK_TYPE_MASK;
1720 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1721 		return -EINVAL;
1722 	type &= SOCK_TYPE_MASK;
1723 
1724 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1725 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1726 
1727 	/*
1728 	 * reserve descriptors and make sure we won't fail
1729 	 * to return them to userland.
1730 	 */
1731 	fd1 = get_unused_fd_flags(flags);
1732 	if (unlikely(fd1 < 0))
1733 		return fd1;
1734 
1735 	fd2 = get_unused_fd_flags(flags);
1736 	if (unlikely(fd2 < 0)) {
1737 		put_unused_fd(fd1);
1738 		return fd2;
1739 	}
1740 
1741 	err = put_user(fd1, &usockvec[0]);
1742 	if (err)
1743 		goto out;
1744 
1745 	err = put_user(fd2, &usockvec[1]);
1746 	if (err)
1747 		goto out;
1748 
1749 	/*
1750 	 * Obtain the first socket and check if the underlying protocol
1751 	 * supports the socketpair call.
1752 	 */
1753 
1754 	err = sock_create(family, type, protocol, &sock1);
1755 	if (unlikely(err < 0))
1756 		goto out;
1757 
1758 	err = sock_create(family, type, protocol, &sock2);
1759 	if (unlikely(err < 0)) {
1760 		sock_release(sock1);
1761 		goto out;
1762 	}
1763 
1764 	err = security_socket_socketpair(sock1, sock2);
1765 	if (unlikely(err)) {
1766 		sock_release(sock2);
1767 		sock_release(sock1);
1768 		goto out;
1769 	}
1770 
1771 	err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1772 	if (unlikely(err < 0)) {
1773 		sock_release(sock2);
1774 		sock_release(sock1);
1775 		goto out;
1776 	}
1777 
1778 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1779 	if (IS_ERR(newfile1)) {
1780 		err = PTR_ERR(newfile1);
1781 		sock_release(sock2);
1782 		goto out;
1783 	}
1784 
1785 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1786 	if (IS_ERR(newfile2)) {
1787 		err = PTR_ERR(newfile2);
1788 		fput(newfile1);
1789 		goto out;
1790 	}
1791 
1792 	audit_fd_pair(fd1, fd2);
1793 
1794 	fd_install(fd1, newfile1);
1795 	fd_install(fd2, newfile2);
1796 	return 0;
1797 
1798 out:
1799 	put_unused_fd(fd2);
1800 	put_unused_fd(fd1);
1801 	return err;
1802 }
1803 
1804 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1805 		int __user *, usockvec)
1806 {
1807 	return __sys_socketpair(family, type, protocol, usockvec);
1808 }
1809 
1810 /*
1811  *	Bind a name to a socket. Nothing much to do here since it's
1812  *	the protocol's responsibility to handle the local address.
1813  *
1814  *	We move the socket address to kernel space before we call
1815  *	the protocol layer (having also checked the address is ok).
1816  */
1817 
1818 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1819 {
1820 	struct socket *sock;
1821 	struct sockaddr_storage address;
1822 	int err, fput_needed;
1823 
1824 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1825 	if (sock) {
1826 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1827 		if (!err) {
1828 			err = security_socket_bind(sock,
1829 						   (struct sockaddr *)&address,
1830 						   addrlen);
1831 			if (!err)
1832 				err = READ_ONCE(sock->ops)->bind(sock,
1833 						      (struct sockaddr *)
1834 						      &address, addrlen);
1835 		}
1836 		fput_light(sock->file, fput_needed);
1837 	}
1838 	return err;
1839 }
1840 
1841 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1842 {
1843 	return __sys_bind(fd, umyaddr, addrlen);
1844 }
1845 
1846 /*
1847  *	Perform a listen. Basically, we allow the protocol to do anything
1848  *	necessary for a listen, and if that works, we mark the socket as
1849  *	ready for listening.
1850  */
1851 
1852 int __sys_listen(int fd, int backlog)
1853 {
1854 	struct socket *sock;
1855 	int err, fput_needed;
1856 	int somaxconn;
1857 
1858 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1859 	if (sock) {
1860 		somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1861 		if ((unsigned int)backlog > somaxconn)
1862 			backlog = somaxconn;
1863 
1864 		err = security_socket_listen(sock, backlog);
1865 		if (!err)
1866 			err = READ_ONCE(sock->ops)->listen(sock, backlog);
1867 
1868 		fput_light(sock->file, fput_needed);
1869 	}
1870 	return err;
1871 }
1872 
1873 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1874 {
1875 	return __sys_listen(fd, backlog);
1876 }
1877 
1878 struct file *do_accept(struct file *file, unsigned file_flags,
1879 		       struct sockaddr __user *upeer_sockaddr,
1880 		       int __user *upeer_addrlen, int flags)
1881 {
1882 	struct socket *sock, *newsock;
1883 	struct file *newfile;
1884 	int err, len;
1885 	struct sockaddr_storage address;
1886 	const struct proto_ops *ops;
1887 
1888 	sock = sock_from_file(file);
1889 	if (!sock)
1890 		return ERR_PTR(-ENOTSOCK);
1891 
1892 	newsock = sock_alloc();
1893 	if (!newsock)
1894 		return ERR_PTR(-ENFILE);
1895 	ops = READ_ONCE(sock->ops);
1896 
1897 	newsock->type = sock->type;
1898 	newsock->ops = ops;
1899 
1900 	/*
1901 	 * We don't need try_module_get here, as the listening socket (sock)
1902 	 * has the protocol module (sock->ops->owner) held.
1903 	 */
1904 	__module_get(ops->owner);
1905 
1906 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1907 	if (IS_ERR(newfile))
1908 		return newfile;
1909 
1910 	err = security_socket_accept(sock, newsock);
1911 	if (err)
1912 		goto out_fd;
1913 
1914 	err = ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1915 					false);
1916 	if (err < 0)
1917 		goto out_fd;
1918 
1919 	if (upeer_sockaddr) {
1920 		len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1921 		if (len < 0) {
1922 			err = -ECONNABORTED;
1923 			goto out_fd;
1924 		}
1925 		err = move_addr_to_user(&address,
1926 					len, upeer_sockaddr, upeer_addrlen);
1927 		if (err < 0)
1928 			goto out_fd;
1929 	}
1930 
1931 	/* File flags are not inherited via accept() unlike another OSes. */
1932 	return newfile;
1933 out_fd:
1934 	fput(newfile);
1935 	return ERR_PTR(err);
1936 }
1937 
1938 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1939 			      int __user *upeer_addrlen, int flags)
1940 {
1941 	struct file *newfile;
1942 	int newfd;
1943 
1944 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1945 		return -EINVAL;
1946 
1947 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1948 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1949 
1950 	newfd = get_unused_fd_flags(flags);
1951 	if (unlikely(newfd < 0))
1952 		return newfd;
1953 
1954 	newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen,
1955 			    flags);
1956 	if (IS_ERR(newfile)) {
1957 		put_unused_fd(newfd);
1958 		return PTR_ERR(newfile);
1959 	}
1960 	fd_install(newfd, newfile);
1961 	return newfd;
1962 }
1963 
1964 /*
1965  *	For accept, we attempt to create a new socket, set up the link
1966  *	with the client, wake up the client, then return the new
1967  *	connected fd. We collect the address of the connector in kernel
1968  *	space and move it to user at the very end. This is unclean because
1969  *	we open the socket then return an error.
1970  *
1971  *	1003.1g adds the ability to recvmsg() to query connection pending
1972  *	status to recvmsg. We need to add that support in a way thats
1973  *	clean when we restructure accept also.
1974  */
1975 
1976 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1977 		  int __user *upeer_addrlen, int flags)
1978 {
1979 	int ret = -EBADF;
1980 	struct fd f;
1981 
1982 	f = fdget(fd);
1983 	if (f.file) {
1984 		ret = __sys_accept4_file(f.file, upeer_sockaddr,
1985 					 upeer_addrlen, flags);
1986 		fdput(f);
1987 	}
1988 
1989 	return ret;
1990 }
1991 
1992 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1993 		int __user *, upeer_addrlen, int, flags)
1994 {
1995 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1996 }
1997 
1998 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1999 		int __user *, upeer_addrlen)
2000 {
2001 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
2002 }
2003 
2004 /*
2005  *	Attempt to connect to a socket with the server address.  The address
2006  *	is in user space so we verify it is OK and move it to kernel space.
2007  *
2008  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2009  *	break bindings
2010  *
2011  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2012  *	other SEQPACKET protocols that take time to connect() as it doesn't
2013  *	include the -EINPROGRESS status for such sockets.
2014  */
2015 
2016 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2017 		       int addrlen, int file_flags)
2018 {
2019 	struct socket *sock;
2020 	int err;
2021 
2022 	sock = sock_from_file(file);
2023 	if (!sock) {
2024 		err = -ENOTSOCK;
2025 		goto out;
2026 	}
2027 
2028 	err =
2029 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2030 	if (err)
2031 		goto out;
2032 
2033 	err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address,
2034 				addrlen, sock->file->f_flags | file_flags);
2035 out:
2036 	return err;
2037 }
2038 
2039 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2040 {
2041 	int ret = -EBADF;
2042 	struct fd f;
2043 
2044 	f = fdget(fd);
2045 	if (f.file) {
2046 		struct sockaddr_storage address;
2047 
2048 		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2049 		if (!ret)
2050 			ret = __sys_connect_file(f.file, &address, addrlen, 0);
2051 		fdput(f);
2052 	}
2053 
2054 	return ret;
2055 }
2056 
2057 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2058 		int, addrlen)
2059 {
2060 	return __sys_connect(fd, uservaddr, addrlen);
2061 }
2062 
2063 /*
2064  *	Get the local address ('name') of a socket object. Move the obtained
2065  *	name to user space.
2066  */
2067 
2068 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2069 		      int __user *usockaddr_len)
2070 {
2071 	struct socket *sock;
2072 	struct sockaddr_storage address;
2073 	int err, fput_needed;
2074 
2075 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2076 	if (!sock)
2077 		goto out;
2078 
2079 	err = security_socket_getsockname(sock);
2080 	if (err)
2081 		goto out_put;
2082 
2083 	err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0);
2084 	if (err < 0)
2085 		goto out_put;
2086 	/* "err" is actually length in this case */
2087 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2088 
2089 out_put:
2090 	fput_light(sock->file, fput_needed);
2091 out:
2092 	return err;
2093 }
2094 
2095 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2096 		int __user *, usockaddr_len)
2097 {
2098 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
2099 }
2100 
2101 /*
2102  *	Get the remote address ('name') of a socket object. Move the obtained
2103  *	name to user space.
2104  */
2105 
2106 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2107 		      int __user *usockaddr_len)
2108 {
2109 	struct socket *sock;
2110 	struct sockaddr_storage address;
2111 	int err, fput_needed;
2112 
2113 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2114 	if (sock != NULL) {
2115 		const struct proto_ops *ops = READ_ONCE(sock->ops);
2116 
2117 		err = security_socket_getpeername(sock);
2118 		if (err) {
2119 			fput_light(sock->file, fput_needed);
2120 			return err;
2121 		}
2122 
2123 		err = ops->getname(sock, (struct sockaddr *)&address, 1);
2124 		if (err >= 0)
2125 			/* "err" is actually length in this case */
2126 			err = move_addr_to_user(&address, err, usockaddr,
2127 						usockaddr_len);
2128 		fput_light(sock->file, fput_needed);
2129 	}
2130 	return err;
2131 }
2132 
2133 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2134 		int __user *, usockaddr_len)
2135 {
2136 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
2137 }
2138 
2139 /*
2140  *	Send a datagram to a given address. We move the address into kernel
2141  *	space and check the user space data area is readable before invoking
2142  *	the protocol.
2143  */
2144 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2145 		 struct sockaddr __user *addr,  int addr_len)
2146 {
2147 	struct socket *sock;
2148 	struct sockaddr_storage address;
2149 	int err;
2150 	struct msghdr msg;
2151 	struct iovec iov;
2152 	int fput_needed;
2153 
2154 	err = import_single_range(ITER_SOURCE, buff, len, &iov, &msg.msg_iter);
2155 	if (unlikely(err))
2156 		return err;
2157 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2158 	if (!sock)
2159 		goto out;
2160 
2161 	msg.msg_name = NULL;
2162 	msg.msg_control = NULL;
2163 	msg.msg_controllen = 0;
2164 	msg.msg_namelen = 0;
2165 	msg.msg_ubuf = NULL;
2166 	if (addr) {
2167 		err = move_addr_to_kernel(addr, addr_len, &address);
2168 		if (err < 0)
2169 			goto out_put;
2170 		msg.msg_name = (struct sockaddr *)&address;
2171 		msg.msg_namelen = addr_len;
2172 	}
2173 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2174 	if (sock->file->f_flags & O_NONBLOCK)
2175 		flags |= MSG_DONTWAIT;
2176 	msg.msg_flags = flags;
2177 	err = sock_sendmsg(sock, &msg);
2178 
2179 out_put:
2180 	fput_light(sock->file, fput_needed);
2181 out:
2182 	return err;
2183 }
2184 
2185 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2186 		unsigned int, flags, struct sockaddr __user *, addr,
2187 		int, addr_len)
2188 {
2189 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2190 }
2191 
2192 /*
2193  *	Send a datagram down a socket.
2194  */
2195 
2196 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2197 		unsigned int, flags)
2198 {
2199 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2200 }
2201 
2202 /*
2203  *	Receive a frame from the socket and optionally record the address of the
2204  *	sender. We verify the buffers are writable and if needed move the
2205  *	sender address from kernel to user space.
2206  */
2207 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2208 		   struct sockaddr __user *addr, int __user *addr_len)
2209 {
2210 	struct sockaddr_storage address;
2211 	struct msghdr msg = {
2212 		/* Save some cycles and don't copy the address if not needed */
2213 		.msg_name = addr ? (struct sockaddr *)&address : NULL,
2214 	};
2215 	struct socket *sock;
2216 	struct iovec iov;
2217 	int err, err2;
2218 	int fput_needed;
2219 
2220 	err = import_single_range(ITER_DEST, ubuf, size, &iov, &msg.msg_iter);
2221 	if (unlikely(err))
2222 		return err;
2223 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2224 	if (!sock)
2225 		goto out;
2226 
2227 	if (sock->file->f_flags & O_NONBLOCK)
2228 		flags |= MSG_DONTWAIT;
2229 	err = sock_recvmsg(sock, &msg, flags);
2230 
2231 	if (err >= 0 && addr != NULL) {
2232 		err2 = move_addr_to_user(&address,
2233 					 msg.msg_namelen, addr, addr_len);
2234 		if (err2 < 0)
2235 			err = err2;
2236 	}
2237 
2238 	fput_light(sock->file, fput_needed);
2239 out:
2240 	return err;
2241 }
2242 
2243 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2244 		unsigned int, flags, struct sockaddr __user *, addr,
2245 		int __user *, addr_len)
2246 {
2247 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2248 }
2249 
2250 /*
2251  *	Receive a datagram from a socket.
2252  */
2253 
2254 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2255 		unsigned int, flags)
2256 {
2257 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2258 }
2259 
2260 static bool sock_use_custom_sol_socket(const struct socket *sock)
2261 {
2262 	return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2263 }
2264 
2265 /*
2266  *	Set a socket option. Because we don't know the option lengths we have
2267  *	to pass the user mode parameter for the protocols to sort out.
2268  */
2269 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2270 		int optlen)
2271 {
2272 	sockptr_t optval = USER_SOCKPTR(user_optval);
2273 	const struct proto_ops *ops;
2274 	char *kernel_optval = NULL;
2275 	int err, fput_needed;
2276 	struct socket *sock;
2277 
2278 	if (optlen < 0)
2279 		return -EINVAL;
2280 
2281 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2282 	if (!sock)
2283 		return err;
2284 
2285 	err = security_socket_setsockopt(sock, level, optname);
2286 	if (err)
2287 		goto out_put;
2288 
2289 	if (!in_compat_syscall())
2290 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2291 						     user_optval, &optlen,
2292 						     &kernel_optval);
2293 	if (err < 0)
2294 		goto out_put;
2295 	if (err > 0) {
2296 		err = 0;
2297 		goto out_put;
2298 	}
2299 
2300 	if (kernel_optval)
2301 		optval = KERNEL_SOCKPTR(kernel_optval);
2302 	ops = READ_ONCE(sock->ops);
2303 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2304 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2305 	else if (unlikely(!ops->setsockopt))
2306 		err = -EOPNOTSUPP;
2307 	else
2308 		err = ops->setsockopt(sock, level, optname, optval,
2309 					    optlen);
2310 	kfree(kernel_optval);
2311 out_put:
2312 	fput_light(sock->file, fput_needed);
2313 	return err;
2314 }
2315 
2316 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2317 		char __user *, optval, int, optlen)
2318 {
2319 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2320 }
2321 
2322 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2323 							 int optname));
2324 
2325 /*
2326  *	Get a socket option. Because we don't know the option lengths we have
2327  *	to pass a user mode parameter for the protocols to sort out.
2328  */
2329 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2330 		int __user *optlen)
2331 {
2332 	int max_optlen __maybe_unused;
2333 	const struct proto_ops *ops;
2334 	int err, fput_needed;
2335 	struct socket *sock;
2336 
2337 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2338 	if (!sock)
2339 		return err;
2340 
2341 	err = security_socket_getsockopt(sock, level, optname);
2342 	if (err)
2343 		goto out_put;
2344 
2345 	if (!in_compat_syscall())
2346 		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2347 
2348 	ops = READ_ONCE(sock->ops);
2349 	if (level == SOL_SOCKET)
2350 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2351 	else if (unlikely(!ops->getsockopt))
2352 		err = -EOPNOTSUPP;
2353 	else
2354 		err = ops->getsockopt(sock, level, optname, optval,
2355 					    optlen);
2356 
2357 	if (!in_compat_syscall())
2358 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2359 						     optval, optlen, max_optlen,
2360 						     err);
2361 out_put:
2362 	fput_light(sock->file, fput_needed);
2363 	return err;
2364 }
2365 
2366 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2367 		char __user *, optval, int __user *, optlen)
2368 {
2369 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2370 }
2371 
2372 /*
2373  *	Shutdown a socket.
2374  */
2375 
2376 int __sys_shutdown_sock(struct socket *sock, int how)
2377 {
2378 	int err;
2379 
2380 	err = security_socket_shutdown(sock, how);
2381 	if (!err)
2382 		err = READ_ONCE(sock->ops)->shutdown(sock, how);
2383 
2384 	return err;
2385 }
2386 
2387 int __sys_shutdown(int fd, int how)
2388 {
2389 	int err, fput_needed;
2390 	struct socket *sock;
2391 
2392 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2393 	if (sock != NULL) {
2394 		err = __sys_shutdown_sock(sock, how);
2395 		fput_light(sock->file, fput_needed);
2396 	}
2397 	return err;
2398 }
2399 
2400 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2401 {
2402 	return __sys_shutdown(fd, how);
2403 }
2404 
2405 /* A couple of helpful macros for getting the address of the 32/64 bit
2406  * fields which are the same type (int / unsigned) on our platforms.
2407  */
2408 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2409 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2410 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2411 
2412 struct used_address {
2413 	struct sockaddr_storage name;
2414 	unsigned int name_len;
2415 };
2416 
2417 int __copy_msghdr(struct msghdr *kmsg,
2418 		  struct user_msghdr *msg,
2419 		  struct sockaddr __user **save_addr)
2420 {
2421 	ssize_t err;
2422 
2423 	kmsg->msg_control_is_user = true;
2424 	kmsg->msg_get_inq = 0;
2425 	kmsg->msg_control_user = msg->msg_control;
2426 	kmsg->msg_controllen = msg->msg_controllen;
2427 	kmsg->msg_flags = msg->msg_flags;
2428 
2429 	kmsg->msg_namelen = msg->msg_namelen;
2430 	if (!msg->msg_name)
2431 		kmsg->msg_namelen = 0;
2432 
2433 	if (kmsg->msg_namelen < 0)
2434 		return -EINVAL;
2435 
2436 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2437 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2438 
2439 	if (save_addr)
2440 		*save_addr = msg->msg_name;
2441 
2442 	if (msg->msg_name && kmsg->msg_namelen) {
2443 		if (!save_addr) {
2444 			err = move_addr_to_kernel(msg->msg_name,
2445 						  kmsg->msg_namelen,
2446 						  kmsg->msg_name);
2447 			if (err < 0)
2448 				return err;
2449 		}
2450 	} else {
2451 		kmsg->msg_name = NULL;
2452 		kmsg->msg_namelen = 0;
2453 	}
2454 
2455 	if (msg->msg_iovlen > UIO_MAXIOV)
2456 		return -EMSGSIZE;
2457 
2458 	kmsg->msg_iocb = NULL;
2459 	kmsg->msg_ubuf = NULL;
2460 	return 0;
2461 }
2462 
2463 static int copy_msghdr_from_user(struct msghdr *kmsg,
2464 				 struct user_msghdr __user *umsg,
2465 				 struct sockaddr __user **save_addr,
2466 				 struct iovec **iov)
2467 {
2468 	struct user_msghdr msg;
2469 	ssize_t err;
2470 
2471 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2472 		return -EFAULT;
2473 
2474 	err = __copy_msghdr(kmsg, &msg, save_addr);
2475 	if (err)
2476 		return err;
2477 
2478 	err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2479 			    msg.msg_iov, msg.msg_iovlen,
2480 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2481 	return err < 0 ? err : 0;
2482 }
2483 
2484 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2485 			   unsigned int flags, struct used_address *used_address,
2486 			   unsigned int allowed_msghdr_flags)
2487 {
2488 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2489 				__aligned(sizeof(__kernel_size_t));
2490 	/* 20 is size of ipv6_pktinfo */
2491 	unsigned char *ctl_buf = ctl;
2492 	int ctl_len;
2493 	ssize_t err;
2494 
2495 	err = -ENOBUFS;
2496 
2497 	if (msg_sys->msg_controllen > INT_MAX)
2498 		goto out;
2499 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2500 	ctl_len = msg_sys->msg_controllen;
2501 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2502 		err =
2503 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2504 						     sizeof(ctl));
2505 		if (err)
2506 			goto out;
2507 		ctl_buf = msg_sys->msg_control;
2508 		ctl_len = msg_sys->msg_controllen;
2509 	} else if (ctl_len) {
2510 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2511 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2512 		if (ctl_len > sizeof(ctl)) {
2513 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2514 			if (ctl_buf == NULL)
2515 				goto out;
2516 		}
2517 		err = -EFAULT;
2518 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2519 			goto out_freectl;
2520 		msg_sys->msg_control = ctl_buf;
2521 		msg_sys->msg_control_is_user = false;
2522 	}
2523 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2524 	msg_sys->msg_flags = flags;
2525 
2526 	if (sock->file->f_flags & O_NONBLOCK)
2527 		msg_sys->msg_flags |= MSG_DONTWAIT;
2528 	/*
2529 	 * If this is sendmmsg() and current destination address is same as
2530 	 * previously succeeded address, omit asking LSM's decision.
2531 	 * used_address->name_len is initialized to UINT_MAX so that the first
2532 	 * destination address never matches.
2533 	 */
2534 	if (used_address && msg_sys->msg_name &&
2535 	    used_address->name_len == msg_sys->msg_namelen &&
2536 	    !memcmp(&used_address->name, msg_sys->msg_name,
2537 		    used_address->name_len)) {
2538 		err = sock_sendmsg_nosec(sock, msg_sys);
2539 		goto out_freectl;
2540 	}
2541 	err = sock_sendmsg(sock, msg_sys);
2542 	/*
2543 	 * If this is sendmmsg() and sending to current destination address was
2544 	 * successful, remember it.
2545 	 */
2546 	if (used_address && err >= 0) {
2547 		used_address->name_len = msg_sys->msg_namelen;
2548 		if (msg_sys->msg_name)
2549 			memcpy(&used_address->name, msg_sys->msg_name,
2550 			       used_address->name_len);
2551 	}
2552 
2553 out_freectl:
2554 	if (ctl_buf != ctl)
2555 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2556 out:
2557 	return err;
2558 }
2559 
2560 int sendmsg_copy_msghdr(struct msghdr *msg,
2561 			struct user_msghdr __user *umsg, unsigned flags,
2562 			struct iovec **iov)
2563 {
2564 	int err;
2565 
2566 	if (flags & MSG_CMSG_COMPAT) {
2567 		struct compat_msghdr __user *msg_compat;
2568 
2569 		msg_compat = (struct compat_msghdr __user *) umsg;
2570 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2571 	} else {
2572 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2573 	}
2574 	if (err < 0)
2575 		return err;
2576 
2577 	return 0;
2578 }
2579 
2580 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2581 			 struct msghdr *msg_sys, unsigned int flags,
2582 			 struct used_address *used_address,
2583 			 unsigned int allowed_msghdr_flags)
2584 {
2585 	struct sockaddr_storage address;
2586 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2587 	ssize_t err;
2588 
2589 	msg_sys->msg_name = &address;
2590 
2591 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2592 	if (err < 0)
2593 		return err;
2594 
2595 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2596 				allowed_msghdr_flags);
2597 	kfree(iov);
2598 	return err;
2599 }
2600 
2601 /*
2602  *	BSD sendmsg interface
2603  */
2604 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2605 			unsigned int flags)
2606 {
2607 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2608 }
2609 
2610 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2611 		   bool forbid_cmsg_compat)
2612 {
2613 	int fput_needed, err;
2614 	struct msghdr msg_sys;
2615 	struct socket *sock;
2616 
2617 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2618 		return -EINVAL;
2619 
2620 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2621 	if (!sock)
2622 		goto out;
2623 
2624 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2625 
2626 	fput_light(sock->file, fput_needed);
2627 out:
2628 	return err;
2629 }
2630 
2631 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2632 {
2633 	return __sys_sendmsg(fd, msg, flags, true);
2634 }
2635 
2636 /*
2637  *	Linux sendmmsg interface
2638  */
2639 
2640 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2641 		   unsigned int flags, bool forbid_cmsg_compat)
2642 {
2643 	int fput_needed, err, datagrams;
2644 	struct socket *sock;
2645 	struct mmsghdr __user *entry;
2646 	struct compat_mmsghdr __user *compat_entry;
2647 	struct msghdr msg_sys;
2648 	struct used_address used_address;
2649 	unsigned int oflags = flags;
2650 
2651 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2652 		return -EINVAL;
2653 
2654 	if (vlen > UIO_MAXIOV)
2655 		vlen = UIO_MAXIOV;
2656 
2657 	datagrams = 0;
2658 
2659 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2660 	if (!sock)
2661 		return err;
2662 
2663 	used_address.name_len = UINT_MAX;
2664 	entry = mmsg;
2665 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2666 	err = 0;
2667 	flags |= MSG_BATCH;
2668 
2669 	while (datagrams < vlen) {
2670 		if (datagrams == vlen - 1)
2671 			flags = oflags;
2672 
2673 		if (MSG_CMSG_COMPAT & flags) {
2674 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2675 					     &msg_sys, flags, &used_address, MSG_EOR);
2676 			if (err < 0)
2677 				break;
2678 			err = __put_user(err, &compat_entry->msg_len);
2679 			++compat_entry;
2680 		} else {
2681 			err = ___sys_sendmsg(sock,
2682 					     (struct user_msghdr __user *)entry,
2683 					     &msg_sys, flags, &used_address, MSG_EOR);
2684 			if (err < 0)
2685 				break;
2686 			err = put_user(err, &entry->msg_len);
2687 			++entry;
2688 		}
2689 
2690 		if (err)
2691 			break;
2692 		++datagrams;
2693 		if (msg_data_left(&msg_sys))
2694 			break;
2695 		cond_resched();
2696 	}
2697 
2698 	fput_light(sock->file, fput_needed);
2699 
2700 	/* We only return an error if no datagrams were able to be sent */
2701 	if (datagrams != 0)
2702 		return datagrams;
2703 
2704 	return err;
2705 }
2706 
2707 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2708 		unsigned int, vlen, unsigned int, flags)
2709 {
2710 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2711 }
2712 
2713 int recvmsg_copy_msghdr(struct msghdr *msg,
2714 			struct user_msghdr __user *umsg, unsigned flags,
2715 			struct sockaddr __user **uaddr,
2716 			struct iovec **iov)
2717 {
2718 	ssize_t err;
2719 
2720 	if (MSG_CMSG_COMPAT & flags) {
2721 		struct compat_msghdr __user *msg_compat;
2722 
2723 		msg_compat = (struct compat_msghdr __user *) umsg;
2724 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2725 	} else {
2726 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2727 	}
2728 	if (err < 0)
2729 		return err;
2730 
2731 	return 0;
2732 }
2733 
2734 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2735 			   struct user_msghdr __user *msg,
2736 			   struct sockaddr __user *uaddr,
2737 			   unsigned int flags, int nosec)
2738 {
2739 	struct compat_msghdr __user *msg_compat =
2740 					(struct compat_msghdr __user *) msg;
2741 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2742 	struct sockaddr_storage addr;
2743 	unsigned long cmsg_ptr;
2744 	int len;
2745 	ssize_t err;
2746 
2747 	msg_sys->msg_name = &addr;
2748 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2749 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2750 
2751 	/* We assume all kernel code knows the size of sockaddr_storage */
2752 	msg_sys->msg_namelen = 0;
2753 
2754 	if (sock->file->f_flags & O_NONBLOCK)
2755 		flags |= MSG_DONTWAIT;
2756 
2757 	if (unlikely(nosec))
2758 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2759 	else
2760 		err = sock_recvmsg(sock, msg_sys, flags);
2761 
2762 	if (err < 0)
2763 		goto out;
2764 	len = err;
2765 
2766 	if (uaddr != NULL) {
2767 		err = move_addr_to_user(&addr,
2768 					msg_sys->msg_namelen, uaddr,
2769 					uaddr_len);
2770 		if (err < 0)
2771 			goto out;
2772 	}
2773 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2774 			 COMPAT_FLAGS(msg));
2775 	if (err)
2776 		goto out;
2777 	if (MSG_CMSG_COMPAT & flags)
2778 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2779 				 &msg_compat->msg_controllen);
2780 	else
2781 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2782 				 &msg->msg_controllen);
2783 	if (err)
2784 		goto out;
2785 	err = len;
2786 out:
2787 	return err;
2788 }
2789 
2790 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2791 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2792 {
2793 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2794 	/* user mode address pointers */
2795 	struct sockaddr __user *uaddr;
2796 	ssize_t err;
2797 
2798 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2799 	if (err < 0)
2800 		return err;
2801 
2802 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2803 	kfree(iov);
2804 	return err;
2805 }
2806 
2807 /*
2808  *	BSD recvmsg interface
2809  */
2810 
2811 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2812 			struct user_msghdr __user *umsg,
2813 			struct sockaddr __user *uaddr, unsigned int flags)
2814 {
2815 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2816 }
2817 
2818 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2819 		   bool forbid_cmsg_compat)
2820 {
2821 	int fput_needed, err;
2822 	struct msghdr msg_sys;
2823 	struct socket *sock;
2824 
2825 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2826 		return -EINVAL;
2827 
2828 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2829 	if (!sock)
2830 		goto out;
2831 
2832 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2833 
2834 	fput_light(sock->file, fput_needed);
2835 out:
2836 	return err;
2837 }
2838 
2839 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2840 		unsigned int, flags)
2841 {
2842 	return __sys_recvmsg(fd, msg, flags, true);
2843 }
2844 
2845 /*
2846  *     Linux recvmmsg interface
2847  */
2848 
2849 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2850 			  unsigned int vlen, unsigned int flags,
2851 			  struct timespec64 *timeout)
2852 {
2853 	int fput_needed, err, datagrams;
2854 	struct socket *sock;
2855 	struct mmsghdr __user *entry;
2856 	struct compat_mmsghdr __user *compat_entry;
2857 	struct msghdr msg_sys;
2858 	struct timespec64 end_time;
2859 	struct timespec64 timeout64;
2860 
2861 	if (timeout &&
2862 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2863 				    timeout->tv_nsec))
2864 		return -EINVAL;
2865 
2866 	datagrams = 0;
2867 
2868 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2869 	if (!sock)
2870 		return err;
2871 
2872 	if (likely(!(flags & MSG_ERRQUEUE))) {
2873 		err = sock_error(sock->sk);
2874 		if (err) {
2875 			datagrams = err;
2876 			goto out_put;
2877 		}
2878 	}
2879 
2880 	entry = mmsg;
2881 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2882 
2883 	while (datagrams < vlen) {
2884 		/*
2885 		 * No need to ask LSM for more than the first datagram.
2886 		 */
2887 		if (MSG_CMSG_COMPAT & flags) {
2888 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2889 					     &msg_sys, flags & ~MSG_WAITFORONE,
2890 					     datagrams);
2891 			if (err < 0)
2892 				break;
2893 			err = __put_user(err, &compat_entry->msg_len);
2894 			++compat_entry;
2895 		} else {
2896 			err = ___sys_recvmsg(sock,
2897 					     (struct user_msghdr __user *)entry,
2898 					     &msg_sys, flags & ~MSG_WAITFORONE,
2899 					     datagrams);
2900 			if (err < 0)
2901 				break;
2902 			err = put_user(err, &entry->msg_len);
2903 			++entry;
2904 		}
2905 
2906 		if (err)
2907 			break;
2908 		++datagrams;
2909 
2910 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2911 		if (flags & MSG_WAITFORONE)
2912 			flags |= MSG_DONTWAIT;
2913 
2914 		if (timeout) {
2915 			ktime_get_ts64(&timeout64);
2916 			*timeout = timespec64_sub(end_time, timeout64);
2917 			if (timeout->tv_sec < 0) {
2918 				timeout->tv_sec = timeout->tv_nsec = 0;
2919 				break;
2920 			}
2921 
2922 			/* Timeout, return less than vlen datagrams */
2923 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2924 				break;
2925 		}
2926 
2927 		/* Out of band data, return right away */
2928 		if (msg_sys.msg_flags & MSG_OOB)
2929 			break;
2930 		cond_resched();
2931 	}
2932 
2933 	if (err == 0)
2934 		goto out_put;
2935 
2936 	if (datagrams == 0) {
2937 		datagrams = err;
2938 		goto out_put;
2939 	}
2940 
2941 	/*
2942 	 * We may return less entries than requested (vlen) if the
2943 	 * sock is non block and there aren't enough datagrams...
2944 	 */
2945 	if (err != -EAGAIN) {
2946 		/*
2947 		 * ... or  if recvmsg returns an error after we
2948 		 * received some datagrams, where we record the
2949 		 * error to return on the next call or if the
2950 		 * app asks about it using getsockopt(SO_ERROR).
2951 		 */
2952 		WRITE_ONCE(sock->sk->sk_err, -err);
2953 	}
2954 out_put:
2955 	fput_light(sock->file, fput_needed);
2956 
2957 	return datagrams;
2958 }
2959 
2960 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2961 		   unsigned int vlen, unsigned int flags,
2962 		   struct __kernel_timespec __user *timeout,
2963 		   struct old_timespec32 __user *timeout32)
2964 {
2965 	int datagrams;
2966 	struct timespec64 timeout_sys;
2967 
2968 	if (timeout && get_timespec64(&timeout_sys, timeout))
2969 		return -EFAULT;
2970 
2971 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2972 		return -EFAULT;
2973 
2974 	if (!timeout && !timeout32)
2975 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2976 
2977 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2978 
2979 	if (datagrams <= 0)
2980 		return datagrams;
2981 
2982 	if (timeout && put_timespec64(&timeout_sys, timeout))
2983 		datagrams = -EFAULT;
2984 
2985 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2986 		datagrams = -EFAULT;
2987 
2988 	return datagrams;
2989 }
2990 
2991 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2992 		unsigned int, vlen, unsigned int, flags,
2993 		struct __kernel_timespec __user *, timeout)
2994 {
2995 	if (flags & MSG_CMSG_COMPAT)
2996 		return -EINVAL;
2997 
2998 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2999 }
3000 
3001 #ifdef CONFIG_COMPAT_32BIT_TIME
3002 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3003 		unsigned int, vlen, unsigned int, flags,
3004 		struct old_timespec32 __user *, timeout)
3005 {
3006 	if (flags & MSG_CMSG_COMPAT)
3007 		return -EINVAL;
3008 
3009 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
3010 }
3011 #endif
3012 
3013 #ifdef __ARCH_WANT_SYS_SOCKETCALL
3014 /* Argument list sizes for sys_socketcall */
3015 #define AL(x) ((x) * sizeof(unsigned long))
3016 static const unsigned char nargs[21] = {
3017 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3018 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3019 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3020 	AL(4), AL(5), AL(4)
3021 };
3022 
3023 #undef AL
3024 
3025 /*
3026  *	System call vectors.
3027  *
3028  *	Argument checking cleaned up. Saved 20% in size.
3029  *  This function doesn't need to set the kernel lock because
3030  *  it is set by the callees.
3031  */
3032 
3033 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3034 {
3035 	unsigned long a[AUDITSC_ARGS];
3036 	unsigned long a0, a1;
3037 	int err;
3038 	unsigned int len;
3039 
3040 	if (call < 1 || call > SYS_SENDMMSG)
3041 		return -EINVAL;
3042 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
3043 
3044 	len = nargs[call];
3045 	if (len > sizeof(a))
3046 		return -EINVAL;
3047 
3048 	/* copy_from_user should be SMP safe. */
3049 	if (copy_from_user(a, args, len))
3050 		return -EFAULT;
3051 
3052 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3053 	if (err)
3054 		return err;
3055 
3056 	a0 = a[0];
3057 	a1 = a[1];
3058 
3059 	switch (call) {
3060 	case SYS_SOCKET:
3061 		err = __sys_socket(a0, a1, a[2]);
3062 		break;
3063 	case SYS_BIND:
3064 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3065 		break;
3066 	case SYS_CONNECT:
3067 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3068 		break;
3069 	case SYS_LISTEN:
3070 		err = __sys_listen(a0, a1);
3071 		break;
3072 	case SYS_ACCEPT:
3073 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3074 				    (int __user *)a[2], 0);
3075 		break;
3076 	case SYS_GETSOCKNAME:
3077 		err =
3078 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
3079 				      (int __user *)a[2]);
3080 		break;
3081 	case SYS_GETPEERNAME:
3082 		err =
3083 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
3084 				      (int __user *)a[2]);
3085 		break;
3086 	case SYS_SOCKETPAIR:
3087 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3088 		break;
3089 	case SYS_SEND:
3090 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3091 				   NULL, 0);
3092 		break;
3093 	case SYS_SENDTO:
3094 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3095 				   (struct sockaddr __user *)a[4], a[5]);
3096 		break;
3097 	case SYS_RECV:
3098 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3099 				     NULL, NULL);
3100 		break;
3101 	case SYS_RECVFROM:
3102 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3103 				     (struct sockaddr __user *)a[4],
3104 				     (int __user *)a[5]);
3105 		break;
3106 	case SYS_SHUTDOWN:
3107 		err = __sys_shutdown(a0, a1);
3108 		break;
3109 	case SYS_SETSOCKOPT:
3110 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3111 				       a[4]);
3112 		break;
3113 	case SYS_GETSOCKOPT:
3114 		err =
3115 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3116 				     (int __user *)a[4]);
3117 		break;
3118 	case SYS_SENDMSG:
3119 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3120 				    a[2], true);
3121 		break;
3122 	case SYS_SENDMMSG:
3123 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3124 				     a[3], true);
3125 		break;
3126 	case SYS_RECVMSG:
3127 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3128 				    a[2], true);
3129 		break;
3130 	case SYS_RECVMMSG:
3131 		if (IS_ENABLED(CONFIG_64BIT))
3132 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3133 					     a[2], a[3],
3134 					     (struct __kernel_timespec __user *)a[4],
3135 					     NULL);
3136 		else
3137 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3138 					     a[2], a[3], NULL,
3139 					     (struct old_timespec32 __user *)a[4]);
3140 		break;
3141 	case SYS_ACCEPT4:
3142 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3143 				    (int __user *)a[2], a[3]);
3144 		break;
3145 	default:
3146 		err = -EINVAL;
3147 		break;
3148 	}
3149 	return err;
3150 }
3151 
3152 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3153 
3154 /**
3155  *	sock_register - add a socket protocol handler
3156  *	@ops: description of protocol
3157  *
3158  *	This function is called by a protocol handler that wants to
3159  *	advertise its address family, and have it linked into the
3160  *	socket interface. The value ops->family corresponds to the
3161  *	socket system call protocol family.
3162  */
3163 int sock_register(const struct net_proto_family *ops)
3164 {
3165 	int err;
3166 
3167 	if (ops->family >= NPROTO) {
3168 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3169 		return -ENOBUFS;
3170 	}
3171 
3172 	spin_lock(&net_family_lock);
3173 	if (rcu_dereference_protected(net_families[ops->family],
3174 				      lockdep_is_held(&net_family_lock)))
3175 		err = -EEXIST;
3176 	else {
3177 		rcu_assign_pointer(net_families[ops->family], ops);
3178 		err = 0;
3179 	}
3180 	spin_unlock(&net_family_lock);
3181 
3182 	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3183 	return err;
3184 }
3185 EXPORT_SYMBOL(sock_register);
3186 
3187 /**
3188  *	sock_unregister - remove a protocol handler
3189  *	@family: protocol family to remove
3190  *
3191  *	This function is called by a protocol handler that wants to
3192  *	remove its address family, and have it unlinked from the
3193  *	new socket creation.
3194  *
3195  *	If protocol handler is a module, then it can use module reference
3196  *	counts to protect against new references. If protocol handler is not
3197  *	a module then it needs to provide its own protection in
3198  *	the ops->create routine.
3199  */
3200 void sock_unregister(int family)
3201 {
3202 	BUG_ON(family < 0 || family >= NPROTO);
3203 
3204 	spin_lock(&net_family_lock);
3205 	RCU_INIT_POINTER(net_families[family], NULL);
3206 	spin_unlock(&net_family_lock);
3207 
3208 	synchronize_rcu();
3209 
3210 	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3211 }
3212 EXPORT_SYMBOL(sock_unregister);
3213 
3214 bool sock_is_registered(int family)
3215 {
3216 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3217 }
3218 
3219 static int __init sock_init(void)
3220 {
3221 	int err;
3222 	/*
3223 	 *      Initialize the network sysctl infrastructure.
3224 	 */
3225 	err = net_sysctl_init();
3226 	if (err)
3227 		goto out;
3228 
3229 	/*
3230 	 *      Initialize skbuff SLAB cache
3231 	 */
3232 	skb_init();
3233 
3234 	/*
3235 	 *      Initialize the protocols module.
3236 	 */
3237 
3238 	init_inodecache();
3239 
3240 	err = register_filesystem(&sock_fs_type);
3241 	if (err)
3242 		goto out;
3243 	sock_mnt = kern_mount(&sock_fs_type);
3244 	if (IS_ERR(sock_mnt)) {
3245 		err = PTR_ERR(sock_mnt);
3246 		goto out_mount;
3247 	}
3248 
3249 	/* The real protocol initialization is performed in later initcalls.
3250 	 */
3251 
3252 #ifdef CONFIG_NETFILTER
3253 	err = netfilter_init();
3254 	if (err)
3255 		goto out;
3256 #endif
3257 
3258 	ptp_classifier_init();
3259 
3260 out:
3261 	return err;
3262 
3263 out_mount:
3264 	unregister_filesystem(&sock_fs_type);
3265 	goto out;
3266 }
3267 
3268 core_initcall(sock_init);	/* early initcall */
3269 
3270 #ifdef CONFIG_PROC_FS
3271 void socket_seq_show(struct seq_file *seq)
3272 {
3273 	seq_printf(seq, "sockets: used %d\n",
3274 		   sock_inuse_get(seq->private));
3275 }
3276 #endif				/* CONFIG_PROC_FS */
3277 
3278 /* Handle the fact that while struct ifreq has the same *layout* on
3279  * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3280  * which are handled elsewhere, it still has different *size* due to
3281  * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3282  * resulting in struct ifreq being 32 and 40 bytes respectively).
3283  * As a result, if the struct happens to be at the end of a page and
3284  * the next page isn't readable/writable, we get a fault. To prevent
3285  * that, copy back and forth to the full size.
3286  */
3287 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3288 {
3289 	if (in_compat_syscall()) {
3290 		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3291 
3292 		memset(ifr, 0, sizeof(*ifr));
3293 		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3294 			return -EFAULT;
3295 
3296 		if (ifrdata)
3297 			*ifrdata = compat_ptr(ifr32->ifr_data);
3298 
3299 		return 0;
3300 	}
3301 
3302 	if (copy_from_user(ifr, arg, sizeof(*ifr)))
3303 		return -EFAULT;
3304 
3305 	if (ifrdata)
3306 		*ifrdata = ifr->ifr_data;
3307 
3308 	return 0;
3309 }
3310 EXPORT_SYMBOL(get_user_ifreq);
3311 
3312 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3313 {
3314 	size_t size = sizeof(*ifr);
3315 
3316 	if (in_compat_syscall())
3317 		size = sizeof(struct compat_ifreq);
3318 
3319 	if (copy_to_user(arg, ifr, size))
3320 		return -EFAULT;
3321 
3322 	return 0;
3323 }
3324 EXPORT_SYMBOL(put_user_ifreq);
3325 
3326 #ifdef CONFIG_COMPAT
3327 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3328 {
3329 	compat_uptr_t uptr32;
3330 	struct ifreq ifr;
3331 	void __user *saved;
3332 	int err;
3333 
3334 	if (get_user_ifreq(&ifr, NULL, uifr32))
3335 		return -EFAULT;
3336 
3337 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3338 		return -EFAULT;
3339 
3340 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3341 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3342 
3343 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3344 	if (!err) {
3345 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3346 		if (put_user_ifreq(&ifr, uifr32))
3347 			err = -EFAULT;
3348 	}
3349 	return err;
3350 }
3351 
3352 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3353 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3354 				 struct compat_ifreq __user *u_ifreq32)
3355 {
3356 	struct ifreq ifreq;
3357 	void __user *data;
3358 
3359 	if (!is_socket_ioctl_cmd(cmd))
3360 		return -ENOTTY;
3361 	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3362 		return -EFAULT;
3363 	ifreq.ifr_data = data;
3364 
3365 	return dev_ioctl(net, cmd, &ifreq, data, NULL);
3366 }
3367 
3368 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3369 			 unsigned int cmd, unsigned long arg)
3370 {
3371 	void __user *argp = compat_ptr(arg);
3372 	struct sock *sk = sock->sk;
3373 	struct net *net = sock_net(sk);
3374 	const struct proto_ops *ops;
3375 
3376 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3377 		return sock_ioctl(file, cmd, (unsigned long)argp);
3378 
3379 	switch (cmd) {
3380 	case SIOCWANDEV:
3381 		return compat_siocwandev(net, argp);
3382 	case SIOCGSTAMP_OLD:
3383 	case SIOCGSTAMPNS_OLD:
3384 		ops = READ_ONCE(sock->ops);
3385 		if (!ops->gettstamp)
3386 			return -ENOIOCTLCMD;
3387 		return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3388 				      !COMPAT_USE_64BIT_TIME);
3389 
3390 	case SIOCETHTOOL:
3391 	case SIOCBONDSLAVEINFOQUERY:
3392 	case SIOCBONDINFOQUERY:
3393 	case SIOCSHWTSTAMP:
3394 	case SIOCGHWTSTAMP:
3395 		return compat_ifr_data_ioctl(net, cmd, argp);
3396 
3397 	case FIOSETOWN:
3398 	case SIOCSPGRP:
3399 	case FIOGETOWN:
3400 	case SIOCGPGRP:
3401 	case SIOCBRADDBR:
3402 	case SIOCBRDELBR:
3403 	case SIOCGIFVLAN:
3404 	case SIOCSIFVLAN:
3405 	case SIOCGSKNS:
3406 	case SIOCGSTAMP_NEW:
3407 	case SIOCGSTAMPNS_NEW:
3408 	case SIOCGIFCONF:
3409 	case SIOCSIFBR:
3410 	case SIOCGIFBR:
3411 		return sock_ioctl(file, cmd, arg);
3412 
3413 	case SIOCGIFFLAGS:
3414 	case SIOCSIFFLAGS:
3415 	case SIOCGIFMAP:
3416 	case SIOCSIFMAP:
3417 	case SIOCGIFMETRIC:
3418 	case SIOCSIFMETRIC:
3419 	case SIOCGIFMTU:
3420 	case SIOCSIFMTU:
3421 	case SIOCGIFMEM:
3422 	case SIOCSIFMEM:
3423 	case SIOCGIFHWADDR:
3424 	case SIOCSIFHWADDR:
3425 	case SIOCADDMULTI:
3426 	case SIOCDELMULTI:
3427 	case SIOCGIFINDEX:
3428 	case SIOCGIFADDR:
3429 	case SIOCSIFADDR:
3430 	case SIOCSIFHWBROADCAST:
3431 	case SIOCDIFADDR:
3432 	case SIOCGIFBRDADDR:
3433 	case SIOCSIFBRDADDR:
3434 	case SIOCGIFDSTADDR:
3435 	case SIOCSIFDSTADDR:
3436 	case SIOCGIFNETMASK:
3437 	case SIOCSIFNETMASK:
3438 	case SIOCSIFPFLAGS:
3439 	case SIOCGIFPFLAGS:
3440 	case SIOCGIFTXQLEN:
3441 	case SIOCSIFTXQLEN:
3442 	case SIOCBRADDIF:
3443 	case SIOCBRDELIF:
3444 	case SIOCGIFNAME:
3445 	case SIOCSIFNAME:
3446 	case SIOCGMIIPHY:
3447 	case SIOCGMIIREG:
3448 	case SIOCSMIIREG:
3449 	case SIOCBONDENSLAVE:
3450 	case SIOCBONDRELEASE:
3451 	case SIOCBONDSETHWADDR:
3452 	case SIOCBONDCHANGEACTIVE:
3453 	case SIOCSARP:
3454 	case SIOCGARP:
3455 	case SIOCDARP:
3456 	case SIOCOUTQ:
3457 	case SIOCOUTQNSD:
3458 	case SIOCATMARK:
3459 		return sock_do_ioctl(net, sock, cmd, arg);
3460 	}
3461 
3462 	return -ENOIOCTLCMD;
3463 }
3464 
3465 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3466 			      unsigned long arg)
3467 {
3468 	struct socket *sock = file->private_data;
3469 	const struct proto_ops *ops = READ_ONCE(sock->ops);
3470 	int ret = -ENOIOCTLCMD;
3471 	struct sock *sk;
3472 	struct net *net;
3473 
3474 	sk = sock->sk;
3475 	net = sock_net(sk);
3476 
3477 	if (ops->compat_ioctl)
3478 		ret = ops->compat_ioctl(sock, cmd, arg);
3479 
3480 	if (ret == -ENOIOCTLCMD &&
3481 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3482 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3483 
3484 	if (ret == -ENOIOCTLCMD)
3485 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3486 
3487 	return ret;
3488 }
3489 #endif
3490 
3491 /**
3492  *	kernel_bind - bind an address to a socket (kernel space)
3493  *	@sock: socket
3494  *	@addr: address
3495  *	@addrlen: length of address
3496  *
3497  *	Returns 0 or an error.
3498  */
3499 
3500 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3501 {
3502 	return READ_ONCE(sock->ops)->bind(sock, addr, addrlen);
3503 }
3504 EXPORT_SYMBOL(kernel_bind);
3505 
3506 /**
3507  *	kernel_listen - move socket to listening state (kernel space)
3508  *	@sock: socket
3509  *	@backlog: pending connections queue size
3510  *
3511  *	Returns 0 or an error.
3512  */
3513 
3514 int kernel_listen(struct socket *sock, int backlog)
3515 {
3516 	return READ_ONCE(sock->ops)->listen(sock, backlog);
3517 }
3518 EXPORT_SYMBOL(kernel_listen);
3519 
3520 /**
3521  *	kernel_accept - accept a connection (kernel space)
3522  *	@sock: listening socket
3523  *	@newsock: new connected socket
3524  *	@flags: flags
3525  *
3526  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3527  *	If it fails, @newsock is guaranteed to be %NULL.
3528  *	Returns 0 or an error.
3529  */
3530 
3531 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3532 {
3533 	struct sock *sk = sock->sk;
3534 	const struct proto_ops *ops = READ_ONCE(sock->ops);
3535 	int err;
3536 
3537 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3538 			       newsock);
3539 	if (err < 0)
3540 		goto done;
3541 
3542 	err = ops->accept(sock, *newsock, flags, true);
3543 	if (err < 0) {
3544 		sock_release(*newsock);
3545 		*newsock = NULL;
3546 		goto done;
3547 	}
3548 
3549 	(*newsock)->ops = ops;
3550 	__module_get(ops->owner);
3551 
3552 done:
3553 	return err;
3554 }
3555 EXPORT_SYMBOL(kernel_accept);
3556 
3557 /**
3558  *	kernel_connect - connect a socket (kernel space)
3559  *	@sock: socket
3560  *	@addr: address
3561  *	@addrlen: address length
3562  *	@flags: flags (O_NONBLOCK, ...)
3563  *
3564  *	For datagram sockets, @addr is the address to which datagrams are sent
3565  *	by default, and the only address from which datagrams are received.
3566  *	For stream sockets, attempts to connect to @addr.
3567  *	Returns 0 or an error code.
3568  */
3569 
3570 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3571 		   int flags)
3572 {
3573 	struct sockaddr_storage address;
3574 
3575 	memcpy(&address, addr, addrlen);
3576 
3577 	return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address,
3578 					     addrlen, flags);
3579 }
3580 EXPORT_SYMBOL(kernel_connect);
3581 
3582 /**
3583  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3584  *	@sock: socket
3585  *	@addr: address holder
3586  *
3587  * 	Fills the @addr pointer with the address which the socket is bound.
3588  *	Returns the length of the address in bytes or an error code.
3589  */
3590 
3591 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3592 {
3593 	return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3594 }
3595 EXPORT_SYMBOL(kernel_getsockname);
3596 
3597 /**
3598  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3599  *	@sock: socket
3600  *	@addr: address holder
3601  *
3602  * 	Fills the @addr pointer with the address which the socket is connected.
3603  *	Returns the length of the address in bytes or an error code.
3604  */
3605 
3606 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3607 {
3608 	return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3609 }
3610 EXPORT_SYMBOL(kernel_getpeername);
3611 
3612 /**
3613  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3614  *	@sock: socket
3615  *	@how: connection part
3616  *
3617  *	Returns 0 or an error.
3618  */
3619 
3620 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3621 {
3622 	return READ_ONCE(sock->ops)->shutdown(sock, how);
3623 }
3624 EXPORT_SYMBOL(kernel_sock_shutdown);
3625 
3626 /**
3627  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3628  *	@sk: socket
3629  *
3630  *	This routine returns the IP overhead imposed by a socket i.e.
3631  *	the length of the underlying IP header, depending on whether
3632  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3633  *	on at the socket. Assumes that the caller has a lock on the socket.
3634  */
3635 
3636 u32 kernel_sock_ip_overhead(struct sock *sk)
3637 {
3638 	struct inet_sock *inet;
3639 	struct ip_options_rcu *opt;
3640 	u32 overhead = 0;
3641 #if IS_ENABLED(CONFIG_IPV6)
3642 	struct ipv6_pinfo *np;
3643 	struct ipv6_txoptions *optv6 = NULL;
3644 #endif /* IS_ENABLED(CONFIG_IPV6) */
3645 
3646 	if (!sk)
3647 		return overhead;
3648 
3649 	switch (sk->sk_family) {
3650 	case AF_INET:
3651 		inet = inet_sk(sk);
3652 		overhead += sizeof(struct iphdr);
3653 		opt = rcu_dereference_protected(inet->inet_opt,
3654 						sock_owned_by_user(sk));
3655 		if (opt)
3656 			overhead += opt->opt.optlen;
3657 		return overhead;
3658 #if IS_ENABLED(CONFIG_IPV6)
3659 	case AF_INET6:
3660 		np = inet6_sk(sk);
3661 		overhead += sizeof(struct ipv6hdr);
3662 		if (np)
3663 			optv6 = rcu_dereference_protected(np->opt,
3664 							  sock_owned_by_user(sk));
3665 		if (optv6)
3666 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3667 		return overhead;
3668 #endif /* IS_ENABLED(CONFIG_IPV6) */
3669 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3670 		return overhead;
3671 	}
3672 }
3673 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3674