1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/splice.h>
61 #include <linux/net.h>
62 #include <linux/interrupt.h>
63 #include <linux/thread_info.h>
64 #include <linux/rcupdate.h>
65 #include <linux/netdevice.h>
66 #include <linux/proc_fs.h>
67 #include <linux/seq_file.h>
68 #include <linux/mutex.h>
69 #include <linux/if_bridge.h>
70 #include <linux/if_vlan.h>
71 #include <linux/ptp_classify.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/cache.h>
75 #include <linux/module.h>
76 #include <linux/highmem.h>
77 #include <linux/mount.h>
78 #include <linux/pseudo_fs.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/compat.h>
82 #include <linux/kmod.h>
83 #include <linux/audit.h>
84 #include <linux/wireless.h>
85 #include <linux/nsproxy.h>
86 #include <linux/magic.h>
87 #include <linux/slab.h>
88 #include <linux/xattr.h>
89 #include <linux/nospec.h>
90 #include <linux/indirect_call_wrapper.h>
91 #include <linux/io_uring/net.h>
92
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/termios.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 #include <linux/ptp_clock_kernel.h>
111 #include <trace/events/sock.h>
112
113 #include "core/dev.h"
114
115 #ifdef CONFIG_NET_RX_BUSY_POLL
116 unsigned int sysctl_net_busy_read __read_mostly;
117 unsigned int sysctl_net_busy_poll __read_mostly;
118 #endif
119
120 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
121 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
122 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
123
124 static int sock_close(struct inode *inode, struct file *file);
125 static __poll_t sock_poll(struct file *file,
126 struct poll_table_struct *wait);
127 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
128 #ifdef CONFIG_COMPAT
129 static long compat_sock_ioctl(struct file *file,
130 unsigned int cmd, unsigned long arg);
131 #endif
132 static int sock_fasync(int fd, struct file *filp, int on);
133 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
134 struct pipe_inode_info *pipe, size_t len,
135 unsigned int flags);
136 static void sock_splice_eof(struct file *file);
137
138 #ifdef CONFIG_PROC_FS
sock_show_fdinfo(struct seq_file * m,struct file * f)139 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
140 {
141 struct socket *sock = f->private_data;
142 const struct proto_ops *ops = READ_ONCE(sock->ops);
143
144 if (ops->show_fdinfo)
145 ops->show_fdinfo(m, sock);
146 }
147 #else
148 #define sock_show_fdinfo NULL
149 #endif
150
151 /*
152 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
153 * in the operation structures but are done directly via the socketcall() multiplexor.
154 */
155
156 static const struct file_operations socket_file_ops = {
157 .owner = THIS_MODULE,
158 .read_iter = sock_read_iter,
159 .write_iter = sock_write_iter,
160 .poll = sock_poll,
161 .unlocked_ioctl = sock_ioctl,
162 #ifdef CONFIG_COMPAT
163 .compat_ioctl = compat_sock_ioctl,
164 #endif
165 .uring_cmd = io_uring_cmd_sock,
166 .mmap = sock_mmap,
167 .release = sock_close,
168 .fasync = sock_fasync,
169 .splice_write = splice_to_socket,
170 .splice_read = sock_splice_read,
171 .splice_eof = sock_splice_eof,
172 .show_fdinfo = sock_show_fdinfo,
173 };
174
175 static const char * const pf_family_names[] = {
176 [PF_UNSPEC] = "PF_UNSPEC",
177 [PF_UNIX] = "PF_UNIX/PF_LOCAL",
178 [PF_INET] = "PF_INET",
179 [PF_AX25] = "PF_AX25",
180 [PF_IPX] = "PF_IPX",
181 [PF_APPLETALK] = "PF_APPLETALK",
182 [PF_NETROM] = "PF_NETROM",
183 [PF_BRIDGE] = "PF_BRIDGE",
184 [PF_ATMPVC] = "PF_ATMPVC",
185 [PF_X25] = "PF_X25",
186 [PF_INET6] = "PF_INET6",
187 [PF_ROSE] = "PF_ROSE",
188 [PF_DECnet] = "PF_DECnet",
189 [PF_NETBEUI] = "PF_NETBEUI",
190 [PF_SECURITY] = "PF_SECURITY",
191 [PF_KEY] = "PF_KEY",
192 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE",
193 [PF_PACKET] = "PF_PACKET",
194 [PF_ASH] = "PF_ASH",
195 [PF_ECONET] = "PF_ECONET",
196 [PF_ATMSVC] = "PF_ATMSVC",
197 [PF_RDS] = "PF_RDS",
198 [PF_SNA] = "PF_SNA",
199 [PF_IRDA] = "PF_IRDA",
200 [PF_PPPOX] = "PF_PPPOX",
201 [PF_WANPIPE] = "PF_WANPIPE",
202 [PF_LLC] = "PF_LLC",
203 [PF_IB] = "PF_IB",
204 [PF_MPLS] = "PF_MPLS",
205 [PF_CAN] = "PF_CAN",
206 [PF_TIPC] = "PF_TIPC",
207 [PF_BLUETOOTH] = "PF_BLUETOOTH",
208 [PF_IUCV] = "PF_IUCV",
209 [PF_RXRPC] = "PF_RXRPC",
210 [PF_ISDN] = "PF_ISDN",
211 [PF_PHONET] = "PF_PHONET",
212 [PF_IEEE802154] = "PF_IEEE802154",
213 [PF_CAIF] = "PF_CAIF",
214 [PF_ALG] = "PF_ALG",
215 [PF_NFC] = "PF_NFC",
216 [PF_VSOCK] = "PF_VSOCK",
217 [PF_KCM] = "PF_KCM",
218 [PF_QIPCRTR] = "PF_QIPCRTR",
219 [PF_SMC] = "PF_SMC",
220 [PF_XDP] = "PF_XDP",
221 [PF_MCTP] = "PF_MCTP",
222 };
223
224 /*
225 * The protocol list. Each protocol is registered in here.
226 */
227
228 static DEFINE_SPINLOCK(net_family_lock);
229 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
230
231 /*
232 * Support routines.
233 * Move socket addresses back and forth across the kernel/user
234 * divide and look after the messy bits.
235 */
236
237 /**
238 * move_addr_to_kernel - copy a socket address into kernel space
239 * @uaddr: Address in user space
240 * @kaddr: Address in kernel space
241 * @ulen: Length in user space
242 *
243 * The address is copied into kernel space. If the provided address is
244 * too long an error code of -EINVAL is returned. If the copy gives
245 * invalid addresses -EFAULT is returned. On a success 0 is returned.
246 */
247
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr_storage * kaddr)248 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
249 {
250 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
251 return -EINVAL;
252 if (ulen == 0)
253 return 0;
254 if (copy_from_user(kaddr, uaddr, ulen))
255 return -EFAULT;
256 return audit_sockaddr(ulen, kaddr);
257 }
258
259 /**
260 * move_addr_to_user - copy an address to user space
261 * @kaddr: kernel space address
262 * @klen: length of address in kernel
263 * @uaddr: user space address
264 * @ulen: pointer to user length field
265 *
266 * The value pointed to by ulen on entry is the buffer length available.
267 * This is overwritten with the buffer space used. -EINVAL is returned
268 * if an overlong buffer is specified or a negative buffer size. -EFAULT
269 * is returned if either the buffer or the length field are not
270 * accessible.
271 * After copying the data up to the limit the user specifies, the true
272 * length of the data is written over the length limit the user
273 * specified. Zero is returned for a success.
274 */
275
move_addr_to_user(struct sockaddr_storage * kaddr,int klen,void __user * uaddr,int __user * ulen)276 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
277 void __user *uaddr, int __user *ulen)
278 {
279 int len;
280
281 BUG_ON(klen > sizeof(struct sockaddr_storage));
282
283 if (can_do_masked_user_access())
284 ulen = masked_user_access_begin(ulen);
285 else if (!user_access_begin(ulen, 4))
286 return -EFAULT;
287
288 unsafe_get_user(len, ulen, efault_end);
289
290 if (len > klen)
291 len = klen;
292 /*
293 * "fromlen shall refer to the value before truncation.."
294 * 1003.1g
295 */
296 if (len >= 0)
297 unsafe_put_user(klen, ulen, efault_end);
298
299 user_access_end();
300
301 if (len) {
302 if (len < 0)
303 return -EINVAL;
304 if (audit_sockaddr(klen, kaddr))
305 return -ENOMEM;
306 if (copy_to_user(uaddr, kaddr, len))
307 return -EFAULT;
308 }
309 return 0;
310
311 efault_end:
312 user_access_end();
313 return -EFAULT;
314 }
315
316 static struct kmem_cache *sock_inode_cachep __ro_after_init;
317
sock_alloc_inode(struct super_block * sb)318 static struct inode *sock_alloc_inode(struct super_block *sb)
319 {
320 struct socket_alloc *ei;
321
322 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
323 if (!ei)
324 return NULL;
325 init_waitqueue_head(&ei->socket.wq.wait);
326 ei->socket.wq.fasync_list = NULL;
327 ei->socket.wq.flags = 0;
328
329 ei->socket.state = SS_UNCONNECTED;
330 ei->socket.flags = 0;
331 ei->socket.ops = NULL;
332 ei->socket.sk = NULL;
333 ei->socket.file = NULL;
334
335 return &ei->vfs_inode;
336 }
337
sock_free_inode(struct inode * inode)338 static void sock_free_inode(struct inode *inode)
339 {
340 struct socket_alloc *ei;
341
342 ei = container_of(inode, struct socket_alloc, vfs_inode);
343 kmem_cache_free(sock_inode_cachep, ei);
344 }
345
init_once(void * foo)346 static void init_once(void *foo)
347 {
348 struct socket_alloc *ei = (struct socket_alloc *)foo;
349
350 inode_init_once(&ei->vfs_inode);
351 }
352
init_inodecache(void)353 static void init_inodecache(void)
354 {
355 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
356 sizeof(struct socket_alloc),
357 0,
358 (SLAB_HWCACHE_ALIGN |
359 SLAB_RECLAIM_ACCOUNT |
360 SLAB_ACCOUNT),
361 init_once);
362 BUG_ON(sock_inode_cachep == NULL);
363 }
364
365 static const struct super_operations sockfs_ops = {
366 .alloc_inode = sock_alloc_inode,
367 .free_inode = sock_free_inode,
368 .statfs = simple_statfs,
369 };
370
371 /*
372 * sockfs_dname() is called from d_path().
373 */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)374 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
375 {
376 return dynamic_dname(buffer, buflen, "socket:[%lu]",
377 d_inode(dentry)->i_ino);
378 }
379
380 static const struct dentry_operations sockfs_dentry_operations = {
381 .d_dname = sockfs_dname,
382 };
383
sockfs_xattr_get(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,void * value,size_t size)384 static int sockfs_xattr_get(const struct xattr_handler *handler,
385 struct dentry *dentry, struct inode *inode,
386 const char *suffix, void *value, size_t size)
387 {
388 if (value) {
389 if (dentry->d_name.len + 1 > size)
390 return -ERANGE;
391 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
392 }
393 return dentry->d_name.len + 1;
394 }
395
396 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
397 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
398 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
399
400 static const struct xattr_handler sockfs_xattr_handler = {
401 .name = XATTR_NAME_SOCKPROTONAME,
402 .get = sockfs_xattr_get,
403 };
404
sockfs_security_xattr_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * dentry,struct inode * inode,const char * suffix,const void * value,size_t size,int flags)405 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
406 struct mnt_idmap *idmap,
407 struct dentry *dentry, struct inode *inode,
408 const char *suffix, const void *value,
409 size_t size, int flags)
410 {
411 /* Handled by LSM. */
412 return -EAGAIN;
413 }
414
415 static const struct xattr_handler sockfs_security_xattr_handler = {
416 .prefix = XATTR_SECURITY_PREFIX,
417 .set = sockfs_security_xattr_set,
418 };
419
420 static const struct xattr_handler * const sockfs_xattr_handlers[] = {
421 &sockfs_xattr_handler,
422 &sockfs_security_xattr_handler,
423 NULL
424 };
425
sockfs_init_fs_context(struct fs_context * fc)426 static int sockfs_init_fs_context(struct fs_context *fc)
427 {
428 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
429 if (!ctx)
430 return -ENOMEM;
431 ctx->ops = &sockfs_ops;
432 ctx->dops = &sockfs_dentry_operations;
433 ctx->xattr = sockfs_xattr_handlers;
434 return 0;
435 }
436
437 static struct vfsmount *sock_mnt __read_mostly;
438
439 static struct file_system_type sock_fs_type = {
440 .name = "sockfs",
441 .init_fs_context = sockfs_init_fs_context,
442 .kill_sb = kill_anon_super,
443 };
444
445 /*
446 * Obtains the first available file descriptor and sets it up for use.
447 *
448 * These functions create file structures and maps them to fd space
449 * of the current process. On success it returns file descriptor
450 * and file struct implicitly stored in sock->file.
451 * Note that another thread may close file descriptor before we return
452 * from this function. We use the fact that now we do not refer
453 * to socket after mapping. If one day we will need it, this
454 * function will increment ref. count on file by 1.
455 *
456 * In any case returned fd MAY BE not valid!
457 * This race condition is unavoidable
458 * with shared fd spaces, we cannot solve it inside kernel,
459 * but we take care of internal coherence yet.
460 */
461
462 /**
463 * sock_alloc_file - Bind a &socket to a &file
464 * @sock: socket
465 * @flags: file status flags
466 * @dname: protocol name
467 *
468 * Returns the &file bound with @sock, implicitly storing it
469 * in sock->file. If dname is %NULL, sets to "".
470 *
471 * On failure @sock is released, and an ERR pointer is returned.
472 *
473 * This function uses GFP_KERNEL internally.
474 */
475
sock_alloc_file(struct socket * sock,int flags,const char * dname)476 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
477 {
478 struct file *file;
479
480 if (!dname)
481 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
482
483 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
484 O_RDWR | (flags & O_NONBLOCK),
485 &socket_file_ops);
486 if (IS_ERR(file)) {
487 sock_release(sock);
488 return file;
489 }
490
491 file->f_mode |= FMODE_NOWAIT;
492 sock->file = file;
493 file->private_data = sock;
494 stream_open(SOCK_INODE(sock), file);
495 /*
496 * Disable permission and pre-content events, but enable legacy
497 * inotify events for legacy users.
498 */
499 file_set_fsnotify_mode(file, FMODE_NONOTIFY_PERM);
500 return file;
501 }
502 EXPORT_SYMBOL(sock_alloc_file);
503
sock_map_fd(struct socket * sock,int flags)504 static int sock_map_fd(struct socket *sock, int flags)
505 {
506 struct file *newfile;
507 int fd = get_unused_fd_flags(flags);
508 if (unlikely(fd < 0)) {
509 sock_release(sock);
510 return fd;
511 }
512
513 newfile = sock_alloc_file(sock, flags, NULL);
514 if (!IS_ERR(newfile)) {
515 fd_install(fd, newfile);
516 return fd;
517 }
518
519 put_unused_fd(fd);
520 return PTR_ERR(newfile);
521 }
522
523 /**
524 * sock_from_file - Return the &socket bounded to @file.
525 * @file: file
526 *
527 * On failure returns %NULL.
528 */
529
sock_from_file(struct file * file)530 struct socket *sock_from_file(struct file *file)
531 {
532 if (likely(file->f_op == &socket_file_ops))
533 return file->private_data; /* set in sock_alloc_file */
534
535 return NULL;
536 }
537 EXPORT_SYMBOL(sock_from_file);
538
539 /**
540 * sockfd_lookup - Go from a file number to its socket slot
541 * @fd: file handle
542 * @err: pointer to an error code return
543 *
544 * The file handle passed in is locked and the socket it is bound
545 * to is returned. If an error occurs the err pointer is overwritten
546 * with a negative errno code and NULL is returned. The function checks
547 * for both invalid handles and passing a handle which is not a socket.
548 *
549 * On a success the socket object pointer is returned.
550 */
551
sockfd_lookup(int fd,int * err)552 struct socket *sockfd_lookup(int fd, int *err)
553 {
554 struct file *file;
555 struct socket *sock;
556
557 file = fget(fd);
558 if (!file) {
559 *err = -EBADF;
560 return NULL;
561 }
562
563 sock = sock_from_file(file);
564 if (!sock) {
565 *err = -ENOTSOCK;
566 fput(file);
567 }
568 return sock;
569 }
570 EXPORT_SYMBOL(sockfd_lookup);
571
sockfs_listxattr(struct dentry * dentry,char * buffer,size_t size)572 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
573 size_t size)
574 {
575 ssize_t len;
576 ssize_t used = 0;
577
578 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
579 if (len < 0)
580 return len;
581 used += len;
582 if (buffer) {
583 if (size < used)
584 return -ERANGE;
585 buffer += len;
586 }
587
588 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
589 used += len;
590 if (buffer) {
591 if (size < used)
592 return -ERANGE;
593 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
594 buffer += len;
595 }
596
597 return used;
598 }
599
sockfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * iattr)600 static int sockfs_setattr(struct mnt_idmap *idmap,
601 struct dentry *dentry, struct iattr *iattr)
602 {
603 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
604
605 if (!err && (iattr->ia_valid & ATTR_UID)) {
606 struct socket *sock = SOCKET_I(d_inode(dentry));
607
608 if (sock->sk) {
609 /* Paired with READ_ONCE() in sk_uid() */
610 WRITE_ONCE(sock->sk->sk_uid, iattr->ia_uid);
611 } else {
612 err = -ENOENT;
613 }
614 }
615
616 return err;
617 }
618
619 static const struct inode_operations sockfs_inode_ops = {
620 .listxattr = sockfs_listxattr,
621 .setattr = sockfs_setattr,
622 };
623
624 /**
625 * sock_alloc - allocate a socket
626 *
627 * Allocate a new inode and socket object. The two are bound together
628 * and initialised. The socket is then returned. If we are out of inodes
629 * NULL is returned. This functions uses GFP_KERNEL internally.
630 */
631
sock_alloc(void)632 struct socket *sock_alloc(void)
633 {
634 struct inode *inode;
635 struct socket *sock;
636
637 inode = new_inode_pseudo(sock_mnt->mnt_sb);
638 if (!inode)
639 return NULL;
640
641 sock = SOCKET_I(inode);
642
643 inode->i_ino = get_next_ino();
644 inode->i_mode = S_IFSOCK | S_IRWXUGO;
645 inode->i_uid = current_fsuid();
646 inode->i_gid = current_fsgid();
647 inode->i_op = &sockfs_inode_ops;
648
649 return sock;
650 }
651 EXPORT_SYMBOL(sock_alloc);
652
__sock_release(struct socket * sock,struct inode * inode)653 static void __sock_release(struct socket *sock, struct inode *inode)
654 {
655 const struct proto_ops *ops = READ_ONCE(sock->ops);
656
657 if (ops) {
658 struct module *owner = ops->owner;
659
660 if (inode)
661 inode_lock(inode);
662 ops->release(sock);
663 sock->sk = NULL;
664 if (inode)
665 inode_unlock(inode);
666 sock->ops = NULL;
667 module_put(owner);
668 }
669
670 if (sock->wq.fasync_list)
671 pr_err("%s: fasync list not empty!\n", __func__);
672
673 if (!sock->file) {
674 iput(SOCK_INODE(sock));
675 return;
676 }
677 sock->file = NULL;
678 }
679
680 /**
681 * sock_release - close a socket
682 * @sock: socket to close
683 *
684 * The socket is released from the protocol stack if it has a release
685 * callback, and the inode is then released if the socket is bound to
686 * an inode not a file.
687 */
sock_release(struct socket * sock)688 void sock_release(struct socket *sock)
689 {
690 __sock_release(sock, NULL);
691 }
692 EXPORT_SYMBOL(sock_release);
693
__sock_tx_timestamp(__u32 tsflags,__u8 * tx_flags)694 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags)
695 {
696 u8 flags = *tx_flags;
697
698 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
699 flags |= SKBTX_HW_TSTAMP_NOBPF;
700
701 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
702 flags |= SKBTX_SW_TSTAMP;
703
704 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
705 flags |= SKBTX_SCHED_TSTAMP;
706
707 if (tsflags & SOF_TIMESTAMPING_TX_COMPLETION)
708 flags |= SKBTX_COMPLETION_TSTAMP;
709
710 *tx_flags = flags;
711 }
712 EXPORT_SYMBOL(__sock_tx_timestamp);
713
714 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
715 size_t));
716 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
717 size_t));
718
call_trace_sock_send_length(struct sock * sk,int ret,int flags)719 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
720 int flags)
721 {
722 trace_sock_send_length(sk, ret, 0);
723 }
724
sock_sendmsg_nosec(struct socket * sock,struct msghdr * msg)725 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
726 {
727 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
728 inet_sendmsg, sock, msg,
729 msg_data_left(msg));
730 BUG_ON(ret == -EIOCBQUEUED);
731
732 if (trace_sock_send_length_enabled())
733 call_trace_sock_send_length(sock->sk, ret, 0);
734 return ret;
735 }
736
__sock_sendmsg(struct socket * sock,struct msghdr * msg)737 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
738 {
739 int err = security_socket_sendmsg(sock, msg,
740 msg_data_left(msg));
741
742 return err ?: sock_sendmsg_nosec(sock, msg);
743 }
744
745 /**
746 * sock_sendmsg - send a message through @sock
747 * @sock: socket
748 * @msg: message to send
749 *
750 * Sends @msg through @sock, passing through LSM.
751 * Returns the number of bytes sent, or an error code.
752 */
sock_sendmsg(struct socket * sock,struct msghdr * msg)753 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
754 {
755 struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
756 struct sockaddr_storage address;
757 int save_len = msg->msg_namelen;
758 int ret;
759
760 if (msg->msg_name) {
761 memcpy(&address, msg->msg_name, msg->msg_namelen);
762 msg->msg_name = &address;
763 }
764
765 ret = __sock_sendmsg(sock, msg);
766 msg->msg_name = save_addr;
767 msg->msg_namelen = save_len;
768
769 return ret;
770 }
771 EXPORT_SYMBOL(sock_sendmsg);
772
773 /**
774 * kernel_sendmsg - send a message through @sock (kernel-space)
775 * @sock: socket
776 * @msg: message header
777 * @vec: kernel vec
778 * @num: vec array length
779 * @size: total message data size
780 *
781 * Builds the message data with @vec and sends it through @sock.
782 * Returns the number of bytes sent, or an error code.
783 */
784
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)785 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
786 struct kvec *vec, size_t num, size_t size)
787 {
788 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
789 return sock_sendmsg(sock, msg);
790 }
791 EXPORT_SYMBOL(kernel_sendmsg);
792
skb_is_err_queue(const struct sk_buff * skb)793 static bool skb_is_err_queue(const struct sk_buff *skb)
794 {
795 /* pkt_type of skbs enqueued on the error queue are set to
796 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
797 * in recvmsg, since skbs received on a local socket will never
798 * have a pkt_type of PACKET_OUTGOING.
799 */
800 return skb->pkt_type == PACKET_OUTGOING;
801 }
802
803 /* On transmit, software and hardware timestamps are returned independently.
804 * As the two skb clones share the hardware timestamp, which may be updated
805 * before the software timestamp is received, a hardware TX timestamp may be
806 * returned only if there is no software TX timestamp. Ignore false software
807 * timestamps, which may be made in the __sock_recv_timestamp() call when the
808 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
809 * hardware timestamp.
810 */
skb_is_swtx_tstamp(const struct sk_buff * skb,int false_tstamp)811 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
812 {
813 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
814 }
815
get_timestamp(struct sock * sk,struct sk_buff * skb,int * if_index)816 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
817 {
818 bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
819 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
820 struct net_device *orig_dev;
821 ktime_t hwtstamp;
822
823 rcu_read_lock();
824 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
825 if (orig_dev) {
826 *if_index = orig_dev->ifindex;
827 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
828 } else {
829 hwtstamp = shhwtstamps->hwtstamp;
830 }
831 rcu_read_unlock();
832
833 return hwtstamp;
834 }
835
put_ts_pktinfo(struct msghdr * msg,struct sk_buff * skb,int if_index)836 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
837 int if_index)
838 {
839 struct scm_ts_pktinfo ts_pktinfo;
840 struct net_device *orig_dev;
841
842 if (!skb_mac_header_was_set(skb))
843 return;
844
845 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
846
847 if (!if_index) {
848 rcu_read_lock();
849 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
850 if (orig_dev)
851 if_index = orig_dev->ifindex;
852 rcu_read_unlock();
853 }
854 ts_pktinfo.if_index = if_index;
855
856 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
857 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
858 sizeof(ts_pktinfo), &ts_pktinfo);
859 }
860
skb_has_tx_timestamp(struct sk_buff * skb,const struct sock * sk)861 bool skb_has_tx_timestamp(struct sk_buff *skb, const struct sock *sk)
862 {
863 const struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
864 u32 tsflags = READ_ONCE(sk->sk_tsflags);
865
866 if (serr->ee.ee_errno != ENOMSG ||
867 serr->ee.ee_origin != SO_EE_ORIGIN_TIMESTAMPING)
868 return false;
869
870 /* software time stamp available and wanted */
871 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) && skb->tstamp)
872 return true;
873 /* hardware time stamps available and wanted */
874 return (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
875 skb_hwtstamps(skb)->hwtstamp;
876 }
877
skb_get_tx_timestamp(struct sk_buff * skb,struct sock * sk,struct timespec64 * ts)878 int skb_get_tx_timestamp(struct sk_buff *skb, struct sock *sk,
879 struct timespec64 *ts)
880 {
881 u32 tsflags = READ_ONCE(sk->sk_tsflags);
882 ktime_t hwtstamp;
883 int if_index = 0;
884
885 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
886 ktime_to_timespec64_cond(skb->tstamp, ts))
887 return SOF_TIMESTAMPING_TX_SOFTWARE;
888
889 if (!(tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) ||
890 skb_is_swtx_tstamp(skb, false))
891 return -ENOENT;
892
893 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
894 hwtstamp = get_timestamp(sk, skb, &if_index);
895 else
896 hwtstamp = skb_hwtstamps(skb)->hwtstamp;
897
898 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
899 hwtstamp = ptp_convert_timestamp(&hwtstamp,
900 READ_ONCE(sk->sk_bind_phc));
901 if (!ktime_to_timespec64_cond(hwtstamp, ts))
902 return -ENOENT;
903
904 return SOF_TIMESTAMPING_TX_HARDWARE;
905 }
906
907 /*
908 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
909 */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)910 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
911 struct sk_buff *skb)
912 {
913 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
914 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
915 struct scm_timestamping_internal tss;
916 int empty = 1, false_tstamp = 0;
917 struct skb_shared_hwtstamps *shhwtstamps =
918 skb_hwtstamps(skb);
919 int if_index;
920 ktime_t hwtstamp;
921 u32 tsflags;
922
923 /* Race occurred between timestamp enabling and packet
924 receiving. Fill in the current time for now. */
925 if (need_software_tstamp && skb->tstamp == 0) {
926 __net_timestamp(skb);
927 false_tstamp = 1;
928 }
929
930 if (need_software_tstamp) {
931 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
932 if (new_tstamp) {
933 struct __kernel_sock_timeval tv;
934
935 skb_get_new_timestamp(skb, &tv);
936 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
937 sizeof(tv), &tv);
938 } else {
939 struct __kernel_old_timeval tv;
940
941 skb_get_timestamp(skb, &tv);
942 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
943 sizeof(tv), &tv);
944 }
945 } else {
946 if (new_tstamp) {
947 struct __kernel_timespec ts;
948
949 skb_get_new_timestampns(skb, &ts);
950 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
951 sizeof(ts), &ts);
952 } else {
953 struct __kernel_old_timespec ts;
954
955 skb_get_timestampns(skb, &ts);
956 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
957 sizeof(ts), &ts);
958 }
959 }
960 }
961
962 memset(&tss, 0, sizeof(tss));
963 tsflags = READ_ONCE(sk->sk_tsflags);
964 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE &&
965 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
966 skb_is_err_queue(skb) ||
967 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
968 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
969 empty = 0;
970 if (shhwtstamps &&
971 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
972 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
973 skb_is_err_queue(skb) ||
974 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
975 !skb_is_swtx_tstamp(skb, false_tstamp)) {
976 if_index = 0;
977 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
978 hwtstamp = get_timestamp(sk, skb, &if_index);
979 else
980 hwtstamp = shhwtstamps->hwtstamp;
981
982 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
983 hwtstamp = ptp_convert_timestamp(&hwtstamp,
984 READ_ONCE(sk->sk_bind_phc));
985
986 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
987 empty = 0;
988
989 if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
990 !skb_is_err_queue(skb))
991 put_ts_pktinfo(msg, skb, if_index);
992 }
993 }
994 if (!empty) {
995 if (sock_flag(sk, SOCK_TSTAMP_NEW))
996 put_cmsg_scm_timestamping64(msg, &tss);
997 else
998 put_cmsg_scm_timestamping(msg, &tss);
999
1000 if (skb_is_err_queue(skb) && skb->len &&
1001 SKB_EXT_ERR(skb)->opt_stats)
1002 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
1003 skb->len, skb->data);
1004 }
1005 }
1006 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
1007
1008 #ifdef CONFIG_WIRELESS
__sock_recv_wifi_status(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1009 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
1010 struct sk_buff *skb)
1011 {
1012 int ack;
1013
1014 if (!sock_flag(sk, SOCK_WIFI_STATUS))
1015 return;
1016 if (!skb->wifi_acked_valid)
1017 return;
1018
1019 ack = skb->wifi_acked;
1020
1021 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
1022 }
1023 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
1024 #endif
1025
sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1026 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
1027 struct sk_buff *skb)
1028 {
1029 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
1030 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
1031 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
1032 }
1033
sock_recv_mark(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1034 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
1035 struct sk_buff *skb)
1036 {
1037 if (sock_flag(sk, SOCK_RCVMARK) && skb) {
1038 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
1039 __u32 mark = skb->mark;
1040
1041 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
1042 }
1043 }
1044
sock_recv_priority(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1045 static void sock_recv_priority(struct msghdr *msg, struct sock *sk,
1046 struct sk_buff *skb)
1047 {
1048 if (sock_flag(sk, SOCK_RCVPRIORITY) && skb) {
1049 __u32 priority = skb->priority;
1050
1051 put_cmsg(msg, SOL_SOCKET, SO_PRIORITY, sizeof(__u32), &priority);
1052 }
1053 }
1054
__sock_recv_cmsgs(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1055 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1056 struct sk_buff *skb)
1057 {
1058 sock_recv_timestamp(msg, sk, skb);
1059 sock_recv_drops(msg, sk, skb);
1060 sock_recv_mark(msg, sk, skb);
1061 sock_recv_priority(msg, sk, skb);
1062 }
1063 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1064
1065 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1066 size_t, int));
1067 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1068 size_t, int));
1069
call_trace_sock_recv_length(struct sock * sk,int ret,int flags)1070 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1071 {
1072 trace_sock_recv_length(sk, ret, flags);
1073 }
1074
sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,int flags)1075 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1076 int flags)
1077 {
1078 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1079 inet6_recvmsg,
1080 inet_recvmsg, sock, msg,
1081 msg_data_left(msg), flags);
1082 if (trace_sock_recv_length_enabled())
1083 call_trace_sock_recv_length(sock->sk, ret, flags);
1084 return ret;
1085 }
1086
1087 /**
1088 * sock_recvmsg - receive a message from @sock
1089 * @sock: socket
1090 * @msg: message to receive
1091 * @flags: message flags
1092 *
1093 * Receives @msg from @sock, passing through LSM. Returns the total number
1094 * of bytes received, or an error.
1095 */
sock_recvmsg(struct socket * sock,struct msghdr * msg,int flags)1096 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1097 {
1098 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1099
1100 return err ?: sock_recvmsg_nosec(sock, msg, flags);
1101 }
1102 EXPORT_SYMBOL(sock_recvmsg);
1103
1104 /**
1105 * kernel_recvmsg - Receive a message from a socket (kernel space)
1106 * @sock: The socket to receive the message from
1107 * @msg: Received message
1108 * @vec: Input s/g array for message data
1109 * @num: Size of input s/g array
1110 * @size: Number of bytes to read
1111 * @flags: Message flags (MSG_DONTWAIT, etc...)
1112 *
1113 * On return the msg structure contains the scatter/gather array passed in the
1114 * vec argument. The array is modified so that it consists of the unfilled
1115 * portion of the original array.
1116 *
1117 * The returned value is the total number of bytes received, or an error.
1118 */
1119
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)1120 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1121 struct kvec *vec, size_t num, size_t size, int flags)
1122 {
1123 msg->msg_control_is_user = false;
1124 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1125 return sock_recvmsg(sock, msg, flags);
1126 }
1127 EXPORT_SYMBOL(kernel_recvmsg);
1128
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1129 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1130 struct pipe_inode_info *pipe, size_t len,
1131 unsigned int flags)
1132 {
1133 struct socket *sock = file->private_data;
1134 const struct proto_ops *ops;
1135
1136 ops = READ_ONCE(sock->ops);
1137 if (unlikely(!ops->splice_read))
1138 return copy_splice_read(file, ppos, pipe, len, flags);
1139
1140 return ops->splice_read(sock, ppos, pipe, len, flags);
1141 }
1142
sock_splice_eof(struct file * file)1143 static void sock_splice_eof(struct file *file)
1144 {
1145 struct socket *sock = file->private_data;
1146 const struct proto_ops *ops;
1147
1148 ops = READ_ONCE(sock->ops);
1149 if (ops->splice_eof)
1150 ops->splice_eof(sock);
1151 }
1152
sock_read_iter(struct kiocb * iocb,struct iov_iter * to)1153 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1154 {
1155 struct file *file = iocb->ki_filp;
1156 struct socket *sock = file->private_data;
1157 struct msghdr msg = {.msg_iter = *to,
1158 .msg_iocb = iocb};
1159 ssize_t res;
1160
1161 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1162 msg.msg_flags = MSG_DONTWAIT;
1163
1164 if (iocb->ki_pos != 0)
1165 return -ESPIPE;
1166
1167 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
1168 return 0;
1169
1170 res = sock_recvmsg(sock, &msg, msg.msg_flags);
1171 *to = msg.msg_iter;
1172 return res;
1173 }
1174
sock_write_iter(struct kiocb * iocb,struct iov_iter * from)1175 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1176 {
1177 struct file *file = iocb->ki_filp;
1178 struct socket *sock = file->private_data;
1179 struct msghdr msg = {.msg_iter = *from,
1180 .msg_iocb = iocb};
1181 ssize_t res;
1182
1183 if (iocb->ki_pos != 0)
1184 return -ESPIPE;
1185
1186 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1187 msg.msg_flags = MSG_DONTWAIT;
1188
1189 if (sock->type == SOCK_SEQPACKET)
1190 msg.msg_flags |= MSG_EOR;
1191
1192 if (iocb->ki_flags & IOCB_NOSIGNAL)
1193 msg.msg_flags |= MSG_NOSIGNAL;
1194
1195 res = __sock_sendmsg(sock, &msg);
1196 *from = msg.msg_iter;
1197 return res;
1198 }
1199
1200 /*
1201 * Atomic setting of ioctl hooks to avoid race
1202 * with module unload.
1203 */
1204
1205 static DEFINE_MUTEX(br_ioctl_mutex);
1206 static int (*br_ioctl_hook)(struct net *net, unsigned int cmd,
1207 void __user *uarg);
1208
brioctl_set(int (* hook)(struct net * net,unsigned int cmd,void __user * uarg))1209 void brioctl_set(int (*hook)(struct net *net, unsigned int cmd,
1210 void __user *uarg))
1211 {
1212 mutex_lock(&br_ioctl_mutex);
1213 br_ioctl_hook = hook;
1214 mutex_unlock(&br_ioctl_mutex);
1215 }
1216 EXPORT_SYMBOL(brioctl_set);
1217
br_ioctl_call(struct net * net,unsigned int cmd,void __user * uarg)1218 int br_ioctl_call(struct net *net, unsigned int cmd, void __user *uarg)
1219 {
1220 int err = -ENOPKG;
1221
1222 if (!br_ioctl_hook)
1223 request_module("bridge");
1224
1225 mutex_lock(&br_ioctl_mutex);
1226 if (br_ioctl_hook)
1227 err = br_ioctl_hook(net, cmd, uarg);
1228 mutex_unlock(&br_ioctl_mutex);
1229
1230 return err;
1231 }
1232
1233 static DEFINE_MUTEX(vlan_ioctl_mutex);
1234 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1235
vlan_ioctl_set(int (* hook)(struct net *,void __user *))1236 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1237 {
1238 mutex_lock(&vlan_ioctl_mutex);
1239 vlan_ioctl_hook = hook;
1240 mutex_unlock(&vlan_ioctl_mutex);
1241 }
1242 EXPORT_SYMBOL(vlan_ioctl_set);
1243
sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)1244 static long sock_do_ioctl(struct net *net, struct socket *sock,
1245 unsigned int cmd, unsigned long arg)
1246 {
1247 const struct proto_ops *ops = READ_ONCE(sock->ops);
1248 struct ifreq ifr;
1249 bool need_copyout;
1250 int err;
1251 void __user *argp = (void __user *)arg;
1252 void __user *data;
1253
1254 err = ops->ioctl(sock, cmd, arg);
1255
1256 /*
1257 * If this ioctl is unknown try to hand it down
1258 * to the NIC driver.
1259 */
1260 if (err != -ENOIOCTLCMD)
1261 return err;
1262
1263 if (!is_socket_ioctl_cmd(cmd))
1264 return -ENOTTY;
1265
1266 if (get_user_ifreq(&ifr, &data, argp))
1267 return -EFAULT;
1268 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1269 if (!err && need_copyout)
1270 if (put_user_ifreq(&ifr, argp))
1271 return -EFAULT;
1272
1273 return err;
1274 }
1275
1276 /*
1277 * With an ioctl, arg may well be a user mode pointer, but we don't know
1278 * what to do with it - that's up to the protocol still.
1279 */
1280
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)1281 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1282 {
1283 const struct proto_ops *ops;
1284 struct socket *sock;
1285 struct sock *sk;
1286 void __user *argp = (void __user *)arg;
1287 int pid, err;
1288 struct net *net;
1289
1290 sock = file->private_data;
1291 ops = READ_ONCE(sock->ops);
1292 sk = sock->sk;
1293 net = sock_net(sk);
1294 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1295 struct ifreq ifr;
1296 void __user *data;
1297 bool need_copyout;
1298 if (get_user_ifreq(&ifr, &data, argp))
1299 return -EFAULT;
1300 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1301 if (!err && need_copyout)
1302 if (put_user_ifreq(&ifr, argp))
1303 return -EFAULT;
1304 } else
1305 #ifdef CONFIG_WEXT_CORE
1306 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1307 err = wext_handle_ioctl(net, cmd, argp);
1308 } else
1309 #endif
1310 switch (cmd) {
1311 case FIOSETOWN:
1312 case SIOCSPGRP:
1313 err = -EFAULT;
1314 if (get_user(pid, (int __user *)argp))
1315 break;
1316 err = f_setown(sock->file, pid, 1);
1317 break;
1318 case FIOGETOWN:
1319 case SIOCGPGRP:
1320 err = put_user(f_getown(sock->file),
1321 (int __user *)argp);
1322 break;
1323 case SIOCGIFBR:
1324 case SIOCSIFBR:
1325 case SIOCBRADDBR:
1326 case SIOCBRDELBR:
1327 case SIOCBRADDIF:
1328 case SIOCBRDELIF:
1329 err = br_ioctl_call(net, cmd, argp);
1330 break;
1331 case SIOCGIFVLAN:
1332 case SIOCSIFVLAN:
1333 err = -ENOPKG;
1334 if (!vlan_ioctl_hook)
1335 request_module("8021q");
1336
1337 mutex_lock(&vlan_ioctl_mutex);
1338 if (vlan_ioctl_hook)
1339 err = vlan_ioctl_hook(net, argp);
1340 mutex_unlock(&vlan_ioctl_mutex);
1341 break;
1342 case SIOCGSKNS:
1343 err = -EPERM;
1344 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1345 break;
1346
1347 err = open_related_ns(&net->ns, get_net_ns);
1348 break;
1349 case SIOCGSTAMP_OLD:
1350 case SIOCGSTAMPNS_OLD:
1351 if (!ops->gettstamp) {
1352 err = -ENOIOCTLCMD;
1353 break;
1354 }
1355 err = ops->gettstamp(sock, argp,
1356 cmd == SIOCGSTAMP_OLD,
1357 !IS_ENABLED(CONFIG_64BIT));
1358 break;
1359 case SIOCGSTAMP_NEW:
1360 case SIOCGSTAMPNS_NEW:
1361 if (!ops->gettstamp) {
1362 err = -ENOIOCTLCMD;
1363 break;
1364 }
1365 err = ops->gettstamp(sock, argp,
1366 cmd == SIOCGSTAMP_NEW,
1367 false);
1368 break;
1369
1370 case SIOCGIFCONF:
1371 err = dev_ifconf(net, argp);
1372 break;
1373
1374 default:
1375 err = sock_do_ioctl(net, sock, cmd, arg);
1376 break;
1377 }
1378 return err;
1379 }
1380
1381 /**
1382 * sock_create_lite - creates a socket
1383 * @family: protocol family (AF_INET, ...)
1384 * @type: communication type (SOCK_STREAM, ...)
1385 * @protocol: protocol (0, ...)
1386 * @res: new socket
1387 *
1388 * Creates a new socket and assigns it to @res, passing through LSM.
1389 * The new socket initialization is not complete, see kernel_accept().
1390 * Returns 0 or an error. On failure @res is set to %NULL.
1391 * This function internally uses GFP_KERNEL.
1392 */
1393
sock_create_lite(int family,int type,int protocol,struct socket ** res)1394 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1395 {
1396 int err;
1397 struct socket *sock = NULL;
1398
1399 err = security_socket_create(family, type, protocol, 1);
1400 if (err)
1401 goto out;
1402
1403 sock = sock_alloc();
1404 if (!sock) {
1405 err = -ENOMEM;
1406 goto out;
1407 }
1408
1409 sock->type = type;
1410 err = security_socket_post_create(sock, family, type, protocol, 1);
1411 if (err)
1412 goto out_release;
1413
1414 out:
1415 *res = sock;
1416 return err;
1417 out_release:
1418 sock_release(sock);
1419 sock = NULL;
1420 goto out;
1421 }
1422 EXPORT_SYMBOL(sock_create_lite);
1423
1424 /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)1425 static __poll_t sock_poll(struct file *file, poll_table *wait)
1426 {
1427 struct socket *sock = file->private_data;
1428 const struct proto_ops *ops = READ_ONCE(sock->ops);
1429 __poll_t events = poll_requested_events(wait), flag = 0;
1430
1431 if (!ops->poll)
1432 return 0;
1433
1434 if (sk_can_busy_loop(sock->sk)) {
1435 /* poll once if requested by the syscall */
1436 if (events & POLL_BUSY_LOOP)
1437 sk_busy_loop(sock->sk, 1);
1438
1439 /* if this socket can poll_ll, tell the system call */
1440 flag = POLL_BUSY_LOOP;
1441 }
1442
1443 return ops->poll(file, sock, wait) | flag;
1444 }
1445
sock_mmap(struct file * file,struct vm_area_struct * vma)1446 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1447 {
1448 struct socket *sock = file->private_data;
1449
1450 return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1451 }
1452
sock_close(struct inode * inode,struct file * filp)1453 static int sock_close(struct inode *inode, struct file *filp)
1454 {
1455 __sock_release(SOCKET_I(inode), inode);
1456 return 0;
1457 }
1458
1459 /*
1460 * Update the socket async list
1461 *
1462 * Fasync_list locking strategy.
1463 *
1464 * 1. fasync_list is modified only under process context socket lock
1465 * i.e. under semaphore.
1466 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1467 * or under socket lock
1468 */
1469
sock_fasync(int fd,struct file * filp,int on)1470 static int sock_fasync(int fd, struct file *filp, int on)
1471 {
1472 struct socket *sock = filp->private_data;
1473 struct sock *sk = sock->sk;
1474 struct socket_wq *wq = &sock->wq;
1475
1476 if (sk == NULL)
1477 return -EINVAL;
1478
1479 lock_sock(sk);
1480 fasync_helper(fd, filp, on, &wq->fasync_list);
1481
1482 if (!wq->fasync_list)
1483 sock_reset_flag(sk, SOCK_FASYNC);
1484 else
1485 sock_set_flag(sk, SOCK_FASYNC);
1486
1487 release_sock(sk);
1488 return 0;
1489 }
1490
1491 /* This function may be called only under rcu_lock */
1492
sock_wake_async(struct socket_wq * wq,int how,int band)1493 int sock_wake_async(struct socket_wq *wq, int how, int band)
1494 {
1495 if (!wq || !wq->fasync_list)
1496 return -1;
1497
1498 switch (how) {
1499 case SOCK_WAKE_WAITD:
1500 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1501 break;
1502 goto call_kill;
1503 case SOCK_WAKE_SPACE:
1504 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1505 break;
1506 fallthrough;
1507 case SOCK_WAKE_IO:
1508 call_kill:
1509 kill_fasync(&wq->fasync_list, SIGIO, band);
1510 break;
1511 case SOCK_WAKE_URG:
1512 kill_fasync(&wq->fasync_list, SIGURG, band);
1513 }
1514
1515 return 0;
1516 }
1517 EXPORT_SYMBOL(sock_wake_async);
1518
1519 /**
1520 * __sock_create - creates a socket
1521 * @net: net namespace
1522 * @family: protocol family (AF_INET, ...)
1523 * @type: communication type (SOCK_STREAM, ...)
1524 * @protocol: protocol (0, ...)
1525 * @res: new socket
1526 * @kern: boolean for kernel space sockets
1527 *
1528 * Creates a new socket and assigns it to @res, passing through LSM.
1529 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1530 * be set to true if the socket resides in kernel space.
1531 * This function internally uses GFP_KERNEL.
1532 */
1533
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1534 int __sock_create(struct net *net, int family, int type, int protocol,
1535 struct socket **res, int kern)
1536 {
1537 int err;
1538 struct socket *sock;
1539 const struct net_proto_family *pf;
1540
1541 /*
1542 * Check protocol is in range
1543 */
1544 if (family < 0 || family >= NPROTO)
1545 return -EAFNOSUPPORT;
1546 if (type < 0 || type >= SOCK_MAX)
1547 return -EINVAL;
1548
1549 /* Compatibility.
1550
1551 This uglymoron is moved from INET layer to here to avoid
1552 deadlock in module load.
1553 */
1554 if (family == PF_INET && type == SOCK_PACKET) {
1555 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1556 current->comm);
1557 family = PF_PACKET;
1558 }
1559
1560 err = security_socket_create(family, type, protocol, kern);
1561 if (err)
1562 return err;
1563
1564 /*
1565 * Allocate the socket and allow the family to set things up. if
1566 * the protocol is 0, the family is instructed to select an appropriate
1567 * default.
1568 */
1569 sock = sock_alloc();
1570 if (!sock) {
1571 net_warn_ratelimited("socket: no more sockets\n");
1572 return -ENFILE; /* Not exactly a match, but its the
1573 closest posix thing */
1574 }
1575
1576 sock->type = type;
1577
1578 #ifdef CONFIG_MODULES
1579 /* Attempt to load a protocol module if the find failed.
1580 *
1581 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1582 * requested real, full-featured networking support upon configuration.
1583 * Otherwise module support will break!
1584 */
1585 if (rcu_access_pointer(net_families[family]) == NULL)
1586 request_module("net-pf-%d", family);
1587 #endif
1588
1589 rcu_read_lock();
1590 pf = rcu_dereference(net_families[family]);
1591 err = -EAFNOSUPPORT;
1592 if (!pf)
1593 goto out_release;
1594
1595 /*
1596 * We will call the ->create function, that possibly is in a loadable
1597 * module, so we have to bump that loadable module refcnt first.
1598 */
1599 if (!try_module_get(pf->owner))
1600 goto out_release;
1601
1602 /* Now protected by module ref count */
1603 rcu_read_unlock();
1604
1605 err = pf->create(net, sock, protocol, kern);
1606 if (err < 0) {
1607 /* ->create should release the allocated sock->sk object on error
1608 * and make sure sock->sk is set to NULL to avoid use-after-free
1609 */
1610 DEBUG_NET_WARN_ONCE(sock->sk,
1611 "%ps must clear sock->sk on failure, family: %d, type: %d, protocol: %d\n",
1612 pf->create, family, type, protocol);
1613 goto out_module_put;
1614 }
1615
1616 /*
1617 * Now to bump the refcnt of the [loadable] module that owns this
1618 * socket at sock_release time we decrement its refcnt.
1619 */
1620 if (!try_module_get(sock->ops->owner))
1621 goto out_module_busy;
1622
1623 /*
1624 * Now that we're done with the ->create function, the [loadable]
1625 * module can have its refcnt decremented
1626 */
1627 module_put(pf->owner);
1628 err = security_socket_post_create(sock, family, type, protocol, kern);
1629 if (err)
1630 goto out_sock_release;
1631 *res = sock;
1632
1633 return 0;
1634
1635 out_module_busy:
1636 err = -EAFNOSUPPORT;
1637 out_module_put:
1638 sock->ops = NULL;
1639 module_put(pf->owner);
1640 out_sock_release:
1641 sock_release(sock);
1642 return err;
1643
1644 out_release:
1645 rcu_read_unlock();
1646 goto out_sock_release;
1647 }
1648 EXPORT_SYMBOL(__sock_create);
1649
1650 /**
1651 * sock_create - creates a socket
1652 * @family: protocol family (AF_INET, ...)
1653 * @type: communication type (SOCK_STREAM, ...)
1654 * @protocol: protocol (0, ...)
1655 * @res: new socket
1656 *
1657 * A wrapper around __sock_create().
1658 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1659 */
1660
sock_create(int family,int type,int protocol,struct socket ** res)1661 int sock_create(int family, int type, int protocol, struct socket **res)
1662 {
1663 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1664 }
1665 EXPORT_SYMBOL(sock_create);
1666
1667 /**
1668 * sock_create_kern - creates a socket (kernel space)
1669 * @net: net namespace
1670 * @family: protocol family (AF_INET, ...)
1671 * @type: communication type (SOCK_STREAM, ...)
1672 * @protocol: protocol (0, ...)
1673 * @res: new socket
1674 *
1675 * A wrapper around __sock_create().
1676 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1677 */
1678
sock_create_kern(struct net * net,int family,int type,int protocol,struct socket ** res)1679 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1680 {
1681 return __sock_create(net, family, type, protocol, res, 1);
1682 }
1683 EXPORT_SYMBOL(sock_create_kern);
1684
__sys_socket_create(int family,int type,int protocol)1685 static struct socket *__sys_socket_create(int family, int type, int protocol)
1686 {
1687 struct socket *sock;
1688 int retval;
1689
1690 /* Check the SOCK_* constants for consistency. */
1691 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1692 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1693 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1694 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1695
1696 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1697 return ERR_PTR(-EINVAL);
1698 type &= SOCK_TYPE_MASK;
1699
1700 retval = sock_create(family, type, protocol, &sock);
1701 if (retval < 0)
1702 return ERR_PTR(retval);
1703
1704 return sock;
1705 }
1706
__sys_socket_file(int family,int type,int protocol)1707 struct file *__sys_socket_file(int family, int type, int protocol)
1708 {
1709 struct socket *sock;
1710 int flags;
1711
1712 sock = __sys_socket_create(family, type, protocol);
1713 if (IS_ERR(sock))
1714 return ERR_CAST(sock);
1715
1716 flags = type & ~SOCK_TYPE_MASK;
1717 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1718 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1719
1720 return sock_alloc_file(sock, flags, NULL);
1721 }
1722
1723 /* A hook for bpf progs to attach to and update socket protocol.
1724 *
1725 * A static noinline declaration here could cause the compiler to
1726 * optimize away the function. A global noinline declaration will
1727 * keep the definition, but may optimize away the callsite.
1728 * Therefore, __weak is needed to ensure that the call is still
1729 * emitted, by telling the compiler that we don't know what the
1730 * function might eventually be.
1731 */
1732
1733 __bpf_hook_start();
1734
update_socket_protocol(int family,int type,int protocol)1735 __weak noinline int update_socket_protocol(int family, int type, int protocol)
1736 {
1737 return protocol;
1738 }
1739
1740 __bpf_hook_end();
1741
__sys_socket(int family,int type,int protocol)1742 int __sys_socket(int family, int type, int protocol)
1743 {
1744 struct socket *sock;
1745 int flags;
1746
1747 sock = __sys_socket_create(family, type,
1748 update_socket_protocol(family, type, protocol));
1749 if (IS_ERR(sock))
1750 return PTR_ERR(sock);
1751
1752 flags = type & ~SOCK_TYPE_MASK;
1753 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1754 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1755
1756 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1757 }
1758
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1759 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1760 {
1761 return __sys_socket(family, type, protocol);
1762 }
1763
1764 /*
1765 * Create a pair of connected sockets.
1766 */
1767
__sys_socketpair(int family,int type,int protocol,int __user * usockvec)1768 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1769 {
1770 struct socket *sock1, *sock2;
1771 int fd1, fd2, err;
1772 struct file *newfile1, *newfile2;
1773 int flags;
1774
1775 flags = type & ~SOCK_TYPE_MASK;
1776 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1777 return -EINVAL;
1778 type &= SOCK_TYPE_MASK;
1779
1780 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1781 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1782
1783 /*
1784 * reserve descriptors and make sure we won't fail
1785 * to return them to userland.
1786 */
1787 fd1 = get_unused_fd_flags(flags);
1788 if (unlikely(fd1 < 0))
1789 return fd1;
1790
1791 fd2 = get_unused_fd_flags(flags);
1792 if (unlikely(fd2 < 0)) {
1793 put_unused_fd(fd1);
1794 return fd2;
1795 }
1796
1797 err = put_user(fd1, &usockvec[0]);
1798 if (err)
1799 goto out;
1800
1801 err = put_user(fd2, &usockvec[1]);
1802 if (err)
1803 goto out;
1804
1805 /*
1806 * Obtain the first socket and check if the underlying protocol
1807 * supports the socketpair call.
1808 */
1809
1810 err = sock_create(family, type, protocol, &sock1);
1811 if (unlikely(err < 0))
1812 goto out;
1813
1814 err = sock_create(family, type, protocol, &sock2);
1815 if (unlikely(err < 0)) {
1816 sock_release(sock1);
1817 goto out;
1818 }
1819
1820 err = security_socket_socketpair(sock1, sock2);
1821 if (unlikely(err)) {
1822 sock_release(sock2);
1823 sock_release(sock1);
1824 goto out;
1825 }
1826
1827 err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1828 if (unlikely(err < 0)) {
1829 sock_release(sock2);
1830 sock_release(sock1);
1831 goto out;
1832 }
1833
1834 newfile1 = sock_alloc_file(sock1, flags, NULL);
1835 if (IS_ERR(newfile1)) {
1836 err = PTR_ERR(newfile1);
1837 sock_release(sock2);
1838 goto out;
1839 }
1840
1841 newfile2 = sock_alloc_file(sock2, flags, NULL);
1842 if (IS_ERR(newfile2)) {
1843 err = PTR_ERR(newfile2);
1844 fput(newfile1);
1845 goto out;
1846 }
1847
1848 audit_fd_pair(fd1, fd2);
1849
1850 fd_install(fd1, newfile1);
1851 fd_install(fd2, newfile2);
1852 return 0;
1853
1854 out:
1855 put_unused_fd(fd2);
1856 put_unused_fd(fd1);
1857 return err;
1858 }
1859
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1860 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1861 int __user *, usockvec)
1862 {
1863 return __sys_socketpair(family, type, protocol, usockvec);
1864 }
1865
__sys_bind_socket(struct socket * sock,struct sockaddr_storage * address,int addrlen)1866 int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address,
1867 int addrlen)
1868 {
1869 int err;
1870
1871 err = security_socket_bind(sock, (struct sockaddr *)address,
1872 addrlen);
1873 if (!err)
1874 err = READ_ONCE(sock->ops)->bind(sock,
1875 (struct sockaddr_unsized *)address,
1876 addrlen);
1877 return err;
1878 }
1879
1880 /*
1881 * Bind a name to a socket. Nothing much to do here since it's
1882 * the protocol's responsibility to handle the local address.
1883 *
1884 * We move the socket address to kernel space before we call
1885 * the protocol layer (having also checked the address is ok).
1886 */
1887
__sys_bind(int fd,struct sockaddr __user * umyaddr,int addrlen)1888 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1889 {
1890 struct socket *sock;
1891 struct sockaddr_storage address;
1892 CLASS(fd, f)(fd);
1893 int err;
1894
1895 if (fd_empty(f))
1896 return -EBADF;
1897 sock = sock_from_file(fd_file(f));
1898 if (unlikely(!sock))
1899 return -ENOTSOCK;
1900
1901 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1902 if (unlikely(err))
1903 return err;
1904
1905 return __sys_bind_socket(sock, &address, addrlen);
1906 }
1907
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1908 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1909 {
1910 return __sys_bind(fd, umyaddr, addrlen);
1911 }
1912
1913 /*
1914 * Perform a listen. Basically, we allow the protocol to do anything
1915 * necessary for a listen, and if that works, we mark the socket as
1916 * ready for listening.
1917 */
__sys_listen_socket(struct socket * sock,int backlog)1918 int __sys_listen_socket(struct socket *sock, int backlog)
1919 {
1920 int somaxconn, err;
1921
1922 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1923 if ((unsigned int)backlog > somaxconn)
1924 backlog = somaxconn;
1925
1926 err = security_socket_listen(sock, backlog);
1927 if (!err)
1928 err = READ_ONCE(sock->ops)->listen(sock, backlog);
1929 return err;
1930 }
1931
__sys_listen(int fd,int backlog)1932 int __sys_listen(int fd, int backlog)
1933 {
1934 CLASS(fd, f)(fd);
1935 struct socket *sock;
1936
1937 if (fd_empty(f))
1938 return -EBADF;
1939 sock = sock_from_file(fd_file(f));
1940 if (unlikely(!sock))
1941 return -ENOTSOCK;
1942
1943 return __sys_listen_socket(sock, backlog);
1944 }
1945
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1946 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1947 {
1948 return __sys_listen(fd, backlog);
1949 }
1950
do_accept(struct file * file,struct proto_accept_arg * arg,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1951 struct file *do_accept(struct file *file, struct proto_accept_arg *arg,
1952 struct sockaddr __user *upeer_sockaddr,
1953 int __user *upeer_addrlen, int flags)
1954 {
1955 struct socket *sock, *newsock;
1956 struct file *newfile;
1957 int err, len;
1958 struct sockaddr_storage address;
1959 const struct proto_ops *ops;
1960
1961 sock = sock_from_file(file);
1962 if (!sock)
1963 return ERR_PTR(-ENOTSOCK);
1964
1965 newsock = sock_alloc();
1966 if (!newsock)
1967 return ERR_PTR(-ENFILE);
1968 ops = READ_ONCE(sock->ops);
1969
1970 newsock->type = sock->type;
1971 newsock->ops = ops;
1972
1973 /*
1974 * We don't need try_module_get here, as the listening socket (sock)
1975 * has the protocol module (sock->ops->owner) held.
1976 */
1977 __module_get(ops->owner);
1978
1979 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1980 if (IS_ERR(newfile))
1981 return newfile;
1982
1983 err = security_socket_accept(sock, newsock);
1984 if (err)
1985 goto out_fd;
1986
1987 arg->flags |= sock->file->f_flags;
1988 err = ops->accept(sock, newsock, arg);
1989 if (err < 0)
1990 goto out_fd;
1991
1992 if (upeer_sockaddr) {
1993 len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1994 if (len < 0) {
1995 err = -ECONNABORTED;
1996 goto out_fd;
1997 }
1998 err = move_addr_to_user(&address,
1999 len, upeer_sockaddr, upeer_addrlen);
2000 if (err < 0)
2001 goto out_fd;
2002 }
2003
2004 /* File flags are not inherited via accept() unlike another OSes. */
2005 return newfile;
2006 out_fd:
2007 fput(newfile);
2008 return ERR_PTR(err);
2009 }
2010
__sys_accept4_file(struct file * file,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)2011 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
2012 int __user *upeer_addrlen, int flags)
2013 {
2014 struct proto_accept_arg arg = { };
2015
2016 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
2017 return -EINVAL;
2018
2019 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
2020 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
2021
2022 return FD_ADD(flags, do_accept(file, &arg, upeer_sockaddr, upeer_addrlen, flags));
2023 }
2024
2025 /*
2026 * For accept, we attempt to create a new socket, set up the link
2027 * with the client, wake up the client, then return the new
2028 * connected fd. We collect the address of the connector in kernel
2029 * space and move it to user at the very end. This is unclean because
2030 * we open the socket then return an error.
2031 *
2032 * 1003.1g adds the ability to recvmsg() to query connection pending
2033 * status to recvmsg. We need to add that support in a way thats
2034 * clean when we restructure accept also.
2035 */
2036
__sys_accept4(int fd,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)2037 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
2038 int __user *upeer_addrlen, int flags)
2039 {
2040 CLASS(fd, f)(fd);
2041
2042 if (fd_empty(f))
2043 return -EBADF;
2044 return __sys_accept4_file(fd_file(f), upeer_sockaddr,
2045 upeer_addrlen, flags);
2046 }
2047
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)2048 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
2049 int __user *, upeer_addrlen, int, flags)
2050 {
2051 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
2052 }
2053
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)2054 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
2055 int __user *, upeer_addrlen)
2056 {
2057 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
2058 }
2059
2060 /*
2061 * Attempt to connect to a socket with the server address. The address
2062 * is in user space so we verify it is OK and move it to kernel space.
2063 *
2064 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2065 * break bindings
2066 *
2067 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2068 * other SEQPACKET protocols that take time to connect() as it doesn't
2069 * include the -EINPROGRESS status for such sockets.
2070 */
2071
__sys_connect_file(struct file * file,struct sockaddr_storage * address,int addrlen,int file_flags)2072 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2073 int addrlen, int file_flags)
2074 {
2075 struct socket *sock;
2076 int err;
2077
2078 sock = sock_from_file(file);
2079 if (!sock) {
2080 err = -ENOTSOCK;
2081 goto out;
2082 }
2083
2084 err =
2085 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2086 if (err)
2087 goto out;
2088
2089 err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr_unsized *)address,
2090 addrlen, sock->file->f_flags | file_flags);
2091 out:
2092 return err;
2093 }
2094
__sys_connect(int fd,struct sockaddr __user * uservaddr,int addrlen)2095 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2096 {
2097 struct sockaddr_storage address;
2098 CLASS(fd, f)(fd);
2099 int ret;
2100
2101 if (fd_empty(f))
2102 return -EBADF;
2103
2104 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2105 if (ret)
2106 return ret;
2107
2108 return __sys_connect_file(fd_file(f), &address, addrlen, 0);
2109 }
2110
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)2111 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2112 int, addrlen)
2113 {
2114 return __sys_connect(fd, uservaddr, addrlen);
2115 }
2116
do_getsockname(struct socket * sock,int peer,struct sockaddr __user * usockaddr,int __user * usockaddr_len)2117 int do_getsockname(struct socket *sock, int peer,
2118 struct sockaddr __user *usockaddr, int __user *usockaddr_len)
2119 {
2120 struct sockaddr_storage address;
2121 int err;
2122
2123 if (peer)
2124 err = security_socket_getpeername(sock);
2125 else
2126 err = security_socket_getsockname(sock);
2127 if (err)
2128 return err;
2129 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, peer);
2130 if (err < 0)
2131 return err;
2132 /* "err" is actually length in this case */
2133 return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2134 }
2135
2136 /*
2137 * Get the remote or local address ('name') of a socket object. Move the
2138 * obtained name to user space.
2139 */
__sys_getsockname(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len,int peer)2140 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2141 int __user *usockaddr_len, int peer)
2142 {
2143 struct socket *sock;
2144 CLASS(fd, f)(fd);
2145
2146 if (fd_empty(f))
2147 return -EBADF;
2148 sock = sock_from_file(fd_file(f));
2149 if (unlikely(!sock))
2150 return -ENOTSOCK;
2151 return do_getsockname(sock, peer, usockaddr, usockaddr_len);
2152 }
2153
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2154 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2155 int __user *, usockaddr_len)
2156 {
2157 return __sys_getsockname(fd, usockaddr, usockaddr_len, 0);
2158 }
2159
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2160 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2161 int __user *, usockaddr_len)
2162 {
2163 return __sys_getsockname(fd, usockaddr, usockaddr_len, 1);
2164 }
2165
2166 /*
2167 * Send a datagram to a given address. We move the address into kernel
2168 * space and check the user space data area is readable before invoking
2169 * the protocol.
2170 */
__sys_sendto(int fd,void __user * buff,size_t len,unsigned int flags,struct sockaddr __user * addr,int addr_len)2171 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2172 struct sockaddr __user *addr, int addr_len)
2173 {
2174 struct socket *sock;
2175 struct sockaddr_storage address;
2176 int err;
2177 struct msghdr msg;
2178
2179 err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter);
2180 if (unlikely(err))
2181 return err;
2182
2183 CLASS(fd, f)(fd);
2184 if (fd_empty(f))
2185 return -EBADF;
2186 sock = sock_from_file(fd_file(f));
2187 if (unlikely(!sock))
2188 return -ENOTSOCK;
2189
2190 msg.msg_name = NULL;
2191 msg.msg_control = NULL;
2192 msg.msg_controllen = 0;
2193 msg.msg_namelen = 0;
2194 msg.msg_ubuf = NULL;
2195 if (addr) {
2196 err = move_addr_to_kernel(addr, addr_len, &address);
2197 if (err < 0)
2198 return err;
2199 msg.msg_name = (struct sockaddr *)&address;
2200 msg.msg_namelen = addr_len;
2201 }
2202 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2203 if (sock->file->f_flags & O_NONBLOCK)
2204 flags |= MSG_DONTWAIT;
2205 msg.msg_flags = flags;
2206 return __sock_sendmsg(sock, &msg);
2207 }
2208
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned int,flags,struct sockaddr __user *,addr,int,addr_len)2209 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2210 unsigned int, flags, struct sockaddr __user *, addr,
2211 int, addr_len)
2212 {
2213 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2214 }
2215
2216 /*
2217 * Send a datagram down a socket.
2218 */
2219
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned int,flags)2220 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2221 unsigned int, flags)
2222 {
2223 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2224 }
2225
2226 /*
2227 * Receive a frame from the socket and optionally record the address of the
2228 * sender. We verify the buffers are writable and if needed move the
2229 * sender address from kernel to user space.
2230 */
__sys_recvfrom(int fd,void __user * ubuf,size_t size,unsigned int flags,struct sockaddr __user * addr,int __user * addr_len)2231 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2232 struct sockaddr __user *addr, int __user *addr_len)
2233 {
2234 struct sockaddr_storage address;
2235 struct msghdr msg = {
2236 /* Save some cycles and don't copy the address if not needed */
2237 .msg_name = addr ? (struct sockaddr *)&address : NULL,
2238 };
2239 struct socket *sock;
2240 int err, err2;
2241
2242 err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter);
2243 if (unlikely(err))
2244 return err;
2245
2246 CLASS(fd, f)(fd);
2247
2248 if (fd_empty(f))
2249 return -EBADF;
2250 sock = sock_from_file(fd_file(f));
2251 if (unlikely(!sock))
2252 return -ENOTSOCK;
2253
2254 if (sock->file->f_flags & O_NONBLOCK)
2255 flags |= MSG_DONTWAIT;
2256 err = sock_recvmsg(sock, &msg, flags);
2257
2258 if (err >= 0 && addr != NULL) {
2259 err2 = move_addr_to_user(&address,
2260 msg.msg_namelen, addr, addr_len);
2261 if (err2 < 0)
2262 err = err2;
2263 }
2264 return err;
2265 }
2266
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags,struct sockaddr __user *,addr,int __user *,addr_len)2267 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2268 unsigned int, flags, struct sockaddr __user *, addr,
2269 int __user *, addr_len)
2270 {
2271 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2272 }
2273
2274 /*
2275 * Receive a datagram from a socket.
2276 */
2277
SYSCALL_DEFINE4(recv,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags)2278 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2279 unsigned int, flags)
2280 {
2281 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2282 }
2283
sock_use_custom_sol_socket(const struct socket * sock)2284 static bool sock_use_custom_sol_socket(const struct socket *sock)
2285 {
2286 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2287 }
2288
do_sock_setsockopt(struct socket * sock,bool compat,int level,int optname,sockptr_t optval,int optlen)2289 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
2290 int optname, sockptr_t optval, int optlen)
2291 {
2292 const struct proto_ops *ops;
2293 char *kernel_optval = NULL;
2294 int err;
2295
2296 if (optlen < 0)
2297 return -EINVAL;
2298
2299 err = security_socket_setsockopt(sock, level, optname);
2300 if (err)
2301 goto out_put;
2302
2303 if (!compat)
2304 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2305 optval, &optlen,
2306 &kernel_optval);
2307 if (err < 0)
2308 goto out_put;
2309 if (err > 0) {
2310 err = 0;
2311 goto out_put;
2312 }
2313
2314 if (kernel_optval)
2315 optval = KERNEL_SOCKPTR(kernel_optval);
2316 ops = READ_ONCE(sock->ops);
2317 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2318 err = sock_setsockopt(sock, level, optname, optval, optlen);
2319 else if (unlikely(!ops->setsockopt))
2320 err = -EOPNOTSUPP;
2321 else
2322 err = ops->setsockopt(sock, level, optname, optval,
2323 optlen);
2324 kfree(kernel_optval);
2325 out_put:
2326 return err;
2327 }
2328 EXPORT_SYMBOL(do_sock_setsockopt);
2329
2330 /* Set a socket option. Because we don't know the option lengths we have
2331 * to pass the user mode parameter for the protocols to sort out.
2332 */
__sys_setsockopt(int fd,int level,int optname,char __user * user_optval,int optlen)2333 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2334 int optlen)
2335 {
2336 sockptr_t optval = USER_SOCKPTR(user_optval);
2337 bool compat = in_compat_syscall();
2338 struct socket *sock;
2339 CLASS(fd, f)(fd);
2340
2341 if (fd_empty(f))
2342 return -EBADF;
2343 sock = sock_from_file(fd_file(f));
2344 if (unlikely(!sock))
2345 return -ENOTSOCK;
2346
2347 return do_sock_setsockopt(sock, compat, level, optname, optval, optlen);
2348 }
2349
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)2350 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2351 char __user *, optval, int, optlen)
2352 {
2353 return __sys_setsockopt(fd, level, optname, optval, optlen);
2354 }
2355
2356 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2357 int optname));
2358
do_sock_getsockopt(struct socket * sock,bool compat,int level,int optname,sockptr_t optval,sockptr_t optlen)2359 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
2360 int optname, sockptr_t optval, sockptr_t optlen)
2361 {
2362 int max_optlen __maybe_unused = 0;
2363 const struct proto_ops *ops;
2364 int err;
2365
2366 err = security_socket_getsockopt(sock, level, optname);
2367 if (err)
2368 return err;
2369
2370 if (!compat)
2371 copy_from_sockptr(&max_optlen, optlen, sizeof(int));
2372
2373 ops = READ_ONCE(sock->ops);
2374 if (level == SOL_SOCKET) {
2375 err = sk_getsockopt(sock->sk, level, optname, optval, optlen);
2376 } else if (unlikely(!ops->getsockopt)) {
2377 err = -EOPNOTSUPP;
2378 } else {
2379 if (WARN_ONCE(optval.is_kernel || optlen.is_kernel,
2380 "Invalid argument type"))
2381 return -EOPNOTSUPP;
2382
2383 err = ops->getsockopt(sock, level, optname, optval.user,
2384 optlen.user);
2385 }
2386
2387 if (!compat)
2388 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2389 optval, optlen, max_optlen,
2390 err);
2391
2392 return err;
2393 }
2394 EXPORT_SYMBOL(do_sock_getsockopt);
2395
2396 /*
2397 * Get a socket option. Because we don't know the option lengths we have
2398 * to pass a user mode parameter for the protocols to sort out.
2399 */
__sys_getsockopt(int fd,int level,int optname,char __user * optval,int __user * optlen)2400 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2401 int __user *optlen)
2402 {
2403 struct socket *sock;
2404 CLASS(fd, f)(fd);
2405
2406 if (fd_empty(f))
2407 return -EBADF;
2408 sock = sock_from_file(fd_file(f));
2409 if (unlikely(!sock))
2410 return -ENOTSOCK;
2411
2412 return do_sock_getsockopt(sock, in_compat_syscall(), level, optname,
2413 USER_SOCKPTR(optval), USER_SOCKPTR(optlen));
2414 }
2415
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)2416 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2417 char __user *, optval, int __user *, optlen)
2418 {
2419 return __sys_getsockopt(fd, level, optname, optval, optlen);
2420 }
2421
2422 /*
2423 * Shutdown a socket.
2424 */
2425
__sys_shutdown_sock(struct socket * sock,int how)2426 int __sys_shutdown_sock(struct socket *sock, int how)
2427 {
2428 int err;
2429
2430 err = security_socket_shutdown(sock, how);
2431 if (!err)
2432 err = READ_ONCE(sock->ops)->shutdown(sock, how);
2433
2434 return err;
2435 }
2436
__sys_shutdown(int fd,int how)2437 int __sys_shutdown(int fd, int how)
2438 {
2439 struct socket *sock;
2440 CLASS(fd, f)(fd);
2441
2442 if (fd_empty(f))
2443 return -EBADF;
2444 sock = sock_from_file(fd_file(f));
2445 if (unlikely(!sock))
2446 return -ENOTSOCK;
2447
2448 return __sys_shutdown_sock(sock, how);
2449 }
2450
SYSCALL_DEFINE2(shutdown,int,fd,int,how)2451 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2452 {
2453 return __sys_shutdown(fd, how);
2454 }
2455
2456 /* A couple of helpful macros for getting the address of the 32/64 bit
2457 * fields which are the same type (int / unsigned) on our platforms.
2458 */
2459 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2460 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2461 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2462
2463 struct used_address {
2464 struct sockaddr_storage name;
2465 unsigned int name_len;
2466 };
2467
__copy_msghdr(struct msghdr * kmsg,struct user_msghdr * msg,struct sockaddr __user ** save_addr)2468 int __copy_msghdr(struct msghdr *kmsg,
2469 struct user_msghdr *msg,
2470 struct sockaddr __user **save_addr)
2471 {
2472 ssize_t err;
2473
2474 kmsg->msg_control_is_user = true;
2475 kmsg->msg_get_inq = 0;
2476 kmsg->msg_control_user = msg->msg_control;
2477 kmsg->msg_controllen = msg->msg_controllen;
2478 kmsg->msg_flags = msg->msg_flags;
2479
2480 kmsg->msg_namelen = msg->msg_namelen;
2481 if (!msg->msg_name)
2482 kmsg->msg_namelen = 0;
2483
2484 if (kmsg->msg_namelen < 0)
2485 return -EINVAL;
2486
2487 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2488 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2489
2490 if (save_addr)
2491 *save_addr = msg->msg_name;
2492
2493 if (msg->msg_name && kmsg->msg_namelen) {
2494 if (!save_addr) {
2495 err = move_addr_to_kernel(msg->msg_name,
2496 kmsg->msg_namelen,
2497 kmsg->msg_name);
2498 if (err < 0)
2499 return err;
2500 }
2501 } else {
2502 kmsg->msg_name = NULL;
2503 kmsg->msg_namelen = 0;
2504 }
2505
2506 if (msg->msg_iovlen > UIO_MAXIOV)
2507 return -EMSGSIZE;
2508
2509 kmsg->msg_iocb = NULL;
2510 kmsg->msg_ubuf = NULL;
2511 return 0;
2512 }
2513
copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec ** iov)2514 static int copy_msghdr_from_user(struct msghdr *kmsg,
2515 struct user_msghdr __user *umsg,
2516 struct sockaddr __user **save_addr,
2517 struct iovec **iov)
2518 {
2519 struct user_msghdr msg;
2520 ssize_t err;
2521
2522 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2523 return -EFAULT;
2524
2525 err = __copy_msghdr(kmsg, &msg, save_addr);
2526 if (err)
2527 return err;
2528
2529 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2530 msg.msg_iov, msg.msg_iovlen,
2531 UIO_FASTIOV, iov, &kmsg->msg_iter);
2532 return err < 0 ? err : 0;
2533 }
2534
____sys_sendmsg(struct socket * sock,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2535 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2536 unsigned int flags, struct used_address *used_address,
2537 unsigned int allowed_msghdr_flags)
2538 {
2539 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2540 __aligned(sizeof(__kernel_size_t));
2541 /* 20 is size of ipv6_pktinfo */
2542 unsigned char *ctl_buf = ctl;
2543 int ctl_len;
2544 ssize_t err;
2545
2546 err = -ENOBUFS;
2547
2548 if (msg_sys->msg_controllen > INT_MAX)
2549 goto out;
2550 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2551 ctl_len = msg_sys->msg_controllen;
2552 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2553 err =
2554 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2555 sizeof(ctl));
2556 if (err)
2557 goto out;
2558 ctl_buf = msg_sys->msg_control;
2559 ctl_len = msg_sys->msg_controllen;
2560 } else if (ctl_len) {
2561 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2562 CMSG_ALIGN(sizeof(struct cmsghdr)));
2563 if (ctl_len > sizeof(ctl)) {
2564 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2565 if (ctl_buf == NULL)
2566 goto out;
2567 }
2568 err = -EFAULT;
2569 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2570 goto out_freectl;
2571 msg_sys->msg_control = ctl_buf;
2572 msg_sys->msg_control_is_user = false;
2573 }
2574 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2575 msg_sys->msg_flags = flags;
2576
2577 if (sock->file->f_flags & O_NONBLOCK)
2578 msg_sys->msg_flags |= MSG_DONTWAIT;
2579 /*
2580 * If this is sendmmsg() and current destination address is same as
2581 * previously succeeded address, omit asking LSM's decision.
2582 * used_address->name_len is initialized to UINT_MAX so that the first
2583 * destination address never matches.
2584 */
2585 if (used_address && msg_sys->msg_name &&
2586 used_address->name_len == msg_sys->msg_namelen &&
2587 !memcmp(&used_address->name, msg_sys->msg_name,
2588 used_address->name_len)) {
2589 err = sock_sendmsg_nosec(sock, msg_sys);
2590 goto out_freectl;
2591 }
2592 err = __sock_sendmsg(sock, msg_sys);
2593 /*
2594 * If this is sendmmsg() and sending to current destination address was
2595 * successful, remember it.
2596 */
2597 if (used_address && err >= 0) {
2598 used_address->name_len = msg_sys->msg_namelen;
2599 if (msg_sys->msg_name)
2600 memcpy(&used_address->name, msg_sys->msg_name,
2601 used_address->name_len);
2602 }
2603
2604 out_freectl:
2605 if (ctl_buf != ctl)
2606 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2607 out:
2608 return err;
2609 }
2610
sendmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct iovec ** iov)2611 static int sendmsg_copy_msghdr(struct msghdr *msg,
2612 struct user_msghdr __user *umsg, unsigned flags,
2613 struct iovec **iov)
2614 {
2615 int err;
2616
2617 if (flags & MSG_CMSG_COMPAT) {
2618 struct compat_msghdr __user *msg_compat;
2619
2620 msg_compat = (struct compat_msghdr __user *) umsg;
2621 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2622 } else {
2623 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2624 }
2625 if (err < 0)
2626 return err;
2627
2628 return 0;
2629 }
2630
___sys_sendmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2631 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2632 struct msghdr *msg_sys, unsigned int flags,
2633 struct used_address *used_address,
2634 unsigned int allowed_msghdr_flags)
2635 {
2636 struct sockaddr_storage address;
2637 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2638 ssize_t err;
2639
2640 msg_sys->msg_name = &address;
2641
2642 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2643 if (err < 0)
2644 return err;
2645
2646 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2647 allowed_msghdr_flags);
2648 kfree(iov);
2649 return err;
2650 }
2651
2652 /*
2653 * BSD sendmsg interface
2654 */
__sys_sendmsg_sock(struct socket * sock,struct msghdr * msg,unsigned int flags)2655 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2656 unsigned int flags)
2657 {
2658 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2659 }
2660
__sys_sendmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2661 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2662 bool forbid_cmsg_compat)
2663 {
2664 struct msghdr msg_sys;
2665 struct socket *sock;
2666
2667 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2668 return -EINVAL;
2669
2670 CLASS(fd, f)(fd);
2671
2672 if (fd_empty(f))
2673 return -EBADF;
2674 sock = sock_from_file(fd_file(f));
2675 if (unlikely(!sock))
2676 return -ENOTSOCK;
2677
2678 return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2679 }
2680
SYSCALL_DEFINE3(sendmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2681 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2682 {
2683 return __sys_sendmsg(fd, msg, flags, true);
2684 }
2685
2686 /*
2687 * Linux sendmmsg interface
2688 */
2689
__sys_sendmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,bool forbid_cmsg_compat)2690 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2691 unsigned int flags, bool forbid_cmsg_compat)
2692 {
2693 int err, datagrams;
2694 struct socket *sock;
2695 struct mmsghdr __user *entry;
2696 struct compat_mmsghdr __user *compat_entry;
2697 struct msghdr msg_sys;
2698 struct used_address used_address;
2699 unsigned int oflags = flags;
2700
2701 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2702 return -EINVAL;
2703
2704 if (vlen > UIO_MAXIOV)
2705 vlen = UIO_MAXIOV;
2706
2707 datagrams = 0;
2708
2709 CLASS(fd, f)(fd);
2710
2711 if (fd_empty(f))
2712 return -EBADF;
2713 sock = sock_from_file(fd_file(f));
2714 if (unlikely(!sock))
2715 return -ENOTSOCK;
2716
2717 used_address.name_len = UINT_MAX;
2718 entry = mmsg;
2719 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2720 err = 0;
2721 flags |= MSG_BATCH;
2722
2723 while (datagrams < vlen) {
2724 if (datagrams == vlen - 1)
2725 flags = oflags;
2726
2727 if (MSG_CMSG_COMPAT & flags) {
2728 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2729 &msg_sys, flags, &used_address, MSG_EOR);
2730 if (err < 0)
2731 break;
2732 err = __put_user(err, &compat_entry->msg_len);
2733 ++compat_entry;
2734 } else {
2735 err = ___sys_sendmsg(sock,
2736 (struct user_msghdr __user *)entry,
2737 &msg_sys, flags, &used_address, MSG_EOR);
2738 if (err < 0)
2739 break;
2740 err = put_user(err, &entry->msg_len);
2741 ++entry;
2742 }
2743
2744 if (err)
2745 break;
2746 ++datagrams;
2747 if (msg_data_left(&msg_sys))
2748 break;
2749 cond_resched();
2750 }
2751
2752 /* We only return an error if no datagrams were able to be sent */
2753 if (datagrams != 0)
2754 return datagrams;
2755
2756 return err;
2757 }
2758
SYSCALL_DEFINE4(sendmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags)2759 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2760 unsigned int, vlen, unsigned int, flags)
2761 {
2762 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2763 }
2764
recvmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct sockaddr __user ** uaddr,struct iovec ** iov)2765 static int recvmsg_copy_msghdr(struct msghdr *msg,
2766 struct user_msghdr __user *umsg, unsigned flags,
2767 struct sockaddr __user **uaddr,
2768 struct iovec **iov)
2769 {
2770 ssize_t err;
2771
2772 if (MSG_CMSG_COMPAT & flags) {
2773 struct compat_msghdr __user *msg_compat;
2774
2775 msg_compat = (struct compat_msghdr __user *) umsg;
2776 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2777 } else {
2778 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2779 }
2780 if (err < 0)
2781 return err;
2782
2783 return 0;
2784 }
2785
____sys_recvmsg(struct socket * sock,struct msghdr * msg_sys,struct user_msghdr __user * msg,struct sockaddr __user * uaddr,unsigned int flags,int nosec)2786 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2787 struct user_msghdr __user *msg,
2788 struct sockaddr __user *uaddr,
2789 unsigned int flags, int nosec)
2790 {
2791 struct compat_msghdr __user *msg_compat =
2792 (struct compat_msghdr __user *) msg;
2793 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2794 struct sockaddr_storage addr;
2795 unsigned long cmsg_ptr;
2796 int len;
2797 ssize_t err;
2798
2799 msg_sys->msg_name = &addr;
2800 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2801 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2802
2803 /* We assume all kernel code knows the size of sockaddr_storage */
2804 msg_sys->msg_namelen = 0;
2805
2806 if (sock->file->f_flags & O_NONBLOCK)
2807 flags |= MSG_DONTWAIT;
2808
2809 if (unlikely(nosec))
2810 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2811 else
2812 err = sock_recvmsg(sock, msg_sys, flags);
2813
2814 if (err < 0)
2815 goto out;
2816 len = err;
2817
2818 if (uaddr != NULL) {
2819 err = move_addr_to_user(&addr,
2820 msg_sys->msg_namelen, uaddr,
2821 uaddr_len);
2822 if (err < 0)
2823 goto out;
2824 }
2825 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2826 COMPAT_FLAGS(msg));
2827 if (err)
2828 goto out;
2829 if (MSG_CMSG_COMPAT & flags)
2830 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2831 &msg_compat->msg_controllen);
2832 else
2833 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2834 &msg->msg_controllen);
2835 if (err)
2836 goto out;
2837 err = len;
2838 out:
2839 return err;
2840 }
2841
___sys_recvmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,int nosec)2842 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2843 struct msghdr *msg_sys, unsigned int flags, int nosec)
2844 {
2845 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2846 /* user mode address pointers */
2847 struct sockaddr __user *uaddr;
2848 ssize_t err;
2849
2850 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2851 if (err < 0)
2852 return err;
2853
2854 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2855 kfree(iov);
2856 return err;
2857 }
2858
2859 /*
2860 * BSD recvmsg interface
2861 */
2862
__sys_recvmsg_sock(struct socket * sock,struct msghdr * msg,struct user_msghdr __user * umsg,struct sockaddr __user * uaddr,unsigned int flags)2863 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2864 struct user_msghdr __user *umsg,
2865 struct sockaddr __user *uaddr, unsigned int flags)
2866 {
2867 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2868 }
2869
__sys_recvmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2870 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2871 bool forbid_cmsg_compat)
2872 {
2873 struct msghdr msg_sys;
2874 struct socket *sock;
2875
2876 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2877 return -EINVAL;
2878
2879 CLASS(fd, f)(fd);
2880
2881 if (fd_empty(f))
2882 return -EBADF;
2883 sock = sock_from_file(fd_file(f));
2884 if (unlikely(!sock))
2885 return -ENOTSOCK;
2886
2887 return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2888 }
2889
SYSCALL_DEFINE3(recvmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2890 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2891 unsigned int, flags)
2892 {
2893 return __sys_recvmsg(fd, msg, flags, true);
2894 }
2895
2896 /*
2897 * Linux recvmmsg interface
2898 */
2899
do_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec64 * timeout)2900 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2901 unsigned int vlen, unsigned int flags,
2902 struct timespec64 *timeout)
2903 {
2904 int err = 0, datagrams;
2905 struct socket *sock;
2906 struct mmsghdr __user *entry;
2907 struct compat_mmsghdr __user *compat_entry;
2908 struct msghdr msg_sys;
2909 struct timespec64 end_time;
2910 struct timespec64 timeout64;
2911
2912 if (timeout &&
2913 poll_select_set_timeout(&end_time, timeout->tv_sec,
2914 timeout->tv_nsec))
2915 return -EINVAL;
2916
2917 datagrams = 0;
2918
2919 CLASS(fd, f)(fd);
2920
2921 if (fd_empty(f))
2922 return -EBADF;
2923 sock = sock_from_file(fd_file(f));
2924 if (unlikely(!sock))
2925 return -ENOTSOCK;
2926
2927 if (likely(!(flags & MSG_ERRQUEUE))) {
2928 err = sock_error(sock->sk);
2929 if (err)
2930 return err;
2931 }
2932
2933 entry = mmsg;
2934 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2935
2936 while (datagrams < vlen) {
2937 /*
2938 * No need to ask LSM for more than the first datagram.
2939 */
2940 if (MSG_CMSG_COMPAT & flags) {
2941 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2942 &msg_sys, flags & ~MSG_WAITFORONE,
2943 datagrams);
2944 if (err < 0)
2945 break;
2946 err = __put_user(err, &compat_entry->msg_len);
2947 ++compat_entry;
2948 } else {
2949 err = ___sys_recvmsg(sock,
2950 (struct user_msghdr __user *)entry,
2951 &msg_sys, flags & ~MSG_WAITFORONE,
2952 datagrams);
2953 if (err < 0)
2954 break;
2955 err = put_user(err, &entry->msg_len);
2956 ++entry;
2957 }
2958
2959 if (err)
2960 break;
2961 ++datagrams;
2962
2963 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2964 if (flags & MSG_WAITFORONE)
2965 flags |= MSG_DONTWAIT;
2966
2967 if (timeout) {
2968 ktime_get_ts64(&timeout64);
2969 *timeout = timespec64_sub(end_time, timeout64);
2970 if (timeout->tv_sec < 0) {
2971 timeout->tv_sec = timeout->tv_nsec = 0;
2972 break;
2973 }
2974
2975 /* Timeout, return less than vlen datagrams */
2976 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2977 break;
2978 }
2979
2980 /* Out of band data, return right away */
2981 if (msg_sys.msg_flags & MSG_OOB)
2982 break;
2983 cond_resched();
2984 }
2985
2986 if (err == 0)
2987 return datagrams;
2988
2989 if (datagrams == 0)
2990 return err;
2991
2992 /*
2993 * We may return less entries than requested (vlen) if the
2994 * sock is non block and there aren't enough datagrams...
2995 */
2996 if (err != -EAGAIN) {
2997 /*
2998 * ... or if recvmsg returns an error after we
2999 * received some datagrams, where we record the
3000 * error to return on the next call or if the
3001 * app asks about it using getsockopt(SO_ERROR).
3002 */
3003 WRITE_ONCE(sock->sk->sk_err, -err);
3004 }
3005 return datagrams;
3006 }
3007
__sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct __kernel_timespec __user * timeout,struct old_timespec32 __user * timeout32)3008 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
3009 unsigned int vlen, unsigned int flags,
3010 struct __kernel_timespec __user *timeout,
3011 struct old_timespec32 __user *timeout32)
3012 {
3013 int datagrams;
3014 struct timespec64 timeout_sys;
3015
3016 if (timeout && get_timespec64(&timeout_sys, timeout))
3017 return -EFAULT;
3018
3019 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
3020 return -EFAULT;
3021
3022 if (!timeout && !timeout32)
3023 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
3024
3025 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
3026
3027 if (datagrams <= 0)
3028 return datagrams;
3029
3030 if (timeout && put_timespec64(&timeout_sys, timeout))
3031 datagrams = -EFAULT;
3032
3033 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
3034 datagrams = -EFAULT;
3035
3036 return datagrams;
3037 }
3038
SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct __kernel_timespec __user *,timeout)3039 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
3040 unsigned int, vlen, unsigned int, flags,
3041 struct __kernel_timespec __user *, timeout)
3042 {
3043 if (flags & MSG_CMSG_COMPAT)
3044 return -EINVAL;
3045
3046 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
3047 }
3048
3049 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE5(recvmmsg_time32,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct old_timespec32 __user *,timeout)3050 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3051 unsigned int, vlen, unsigned int, flags,
3052 struct old_timespec32 __user *, timeout)
3053 {
3054 if (flags & MSG_CMSG_COMPAT)
3055 return -EINVAL;
3056
3057 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
3058 }
3059 #endif
3060
3061 #ifdef __ARCH_WANT_SYS_SOCKETCALL
3062 /* Argument list sizes for sys_socketcall */
3063 #define AL(x) ((x) * sizeof(unsigned long))
3064 static const unsigned char nargs[21] = {
3065 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3066 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3067 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3068 AL(4), AL(5), AL(4)
3069 };
3070
3071 #undef AL
3072
3073 /*
3074 * System call vectors.
3075 *
3076 * Argument checking cleaned up. Saved 20% in size.
3077 * This function doesn't need to set the kernel lock because
3078 * it is set by the callees.
3079 */
3080
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)3081 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3082 {
3083 unsigned long a[AUDITSC_ARGS];
3084 unsigned long a0, a1;
3085 int err;
3086 unsigned int len;
3087
3088 if (call < 1 || call > SYS_SENDMMSG)
3089 return -EINVAL;
3090 call = array_index_nospec(call, SYS_SENDMMSG + 1);
3091
3092 len = nargs[call];
3093 if (len > sizeof(a))
3094 return -EINVAL;
3095
3096 /* copy_from_user should be SMP safe. */
3097 if (copy_from_user(a, args, len))
3098 return -EFAULT;
3099
3100 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3101 if (err)
3102 return err;
3103
3104 a0 = a[0];
3105 a1 = a[1];
3106
3107 switch (call) {
3108 case SYS_SOCKET:
3109 err = __sys_socket(a0, a1, a[2]);
3110 break;
3111 case SYS_BIND:
3112 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3113 break;
3114 case SYS_CONNECT:
3115 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3116 break;
3117 case SYS_LISTEN:
3118 err = __sys_listen(a0, a1);
3119 break;
3120 case SYS_ACCEPT:
3121 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3122 (int __user *)a[2], 0);
3123 break;
3124 case SYS_GETSOCKNAME:
3125 err =
3126 __sys_getsockname(a0, (struct sockaddr __user *)a1,
3127 (int __user *)a[2], 0);
3128 break;
3129 case SYS_GETPEERNAME:
3130 err =
3131 __sys_getsockname(a0, (struct sockaddr __user *)a1,
3132 (int __user *)a[2], 1);
3133 break;
3134 case SYS_SOCKETPAIR:
3135 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3136 break;
3137 case SYS_SEND:
3138 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3139 NULL, 0);
3140 break;
3141 case SYS_SENDTO:
3142 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3143 (struct sockaddr __user *)a[4], a[5]);
3144 break;
3145 case SYS_RECV:
3146 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3147 NULL, NULL);
3148 break;
3149 case SYS_RECVFROM:
3150 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3151 (struct sockaddr __user *)a[4],
3152 (int __user *)a[5]);
3153 break;
3154 case SYS_SHUTDOWN:
3155 err = __sys_shutdown(a0, a1);
3156 break;
3157 case SYS_SETSOCKOPT:
3158 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3159 a[4]);
3160 break;
3161 case SYS_GETSOCKOPT:
3162 err =
3163 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3164 (int __user *)a[4]);
3165 break;
3166 case SYS_SENDMSG:
3167 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3168 a[2], true);
3169 break;
3170 case SYS_SENDMMSG:
3171 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3172 a[3], true);
3173 break;
3174 case SYS_RECVMSG:
3175 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3176 a[2], true);
3177 break;
3178 case SYS_RECVMMSG:
3179 if (IS_ENABLED(CONFIG_64BIT))
3180 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3181 a[2], a[3],
3182 (struct __kernel_timespec __user *)a[4],
3183 NULL);
3184 else
3185 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3186 a[2], a[3], NULL,
3187 (struct old_timespec32 __user *)a[4]);
3188 break;
3189 case SYS_ACCEPT4:
3190 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3191 (int __user *)a[2], a[3]);
3192 break;
3193 default:
3194 err = -EINVAL;
3195 break;
3196 }
3197 return err;
3198 }
3199
3200 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
3201
3202 /**
3203 * sock_register - add a socket protocol handler
3204 * @ops: description of protocol
3205 *
3206 * This function is called by a protocol handler that wants to
3207 * advertise its address family, and have it linked into the
3208 * socket interface. The value ops->family corresponds to the
3209 * socket system call protocol family.
3210 */
sock_register(const struct net_proto_family * ops)3211 int sock_register(const struct net_proto_family *ops)
3212 {
3213 int err;
3214
3215 if (ops->family >= NPROTO) {
3216 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3217 return -ENOBUFS;
3218 }
3219
3220 spin_lock(&net_family_lock);
3221 if (rcu_dereference_protected(net_families[ops->family],
3222 lockdep_is_held(&net_family_lock)))
3223 err = -EEXIST;
3224 else {
3225 rcu_assign_pointer(net_families[ops->family], ops);
3226 err = 0;
3227 }
3228 spin_unlock(&net_family_lock);
3229
3230 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3231 return err;
3232 }
3233 EXPORT_SYMBOL(sock_register);
3234
3235 /**
3236 * sock_unregister - remove a protocol handler
3237 * @family: protocol family to remove
3238 *
3239 * This function is called by a protocol handler that wants to
3240 * remove its address family, and have it unlinked from the
3241 * new socket creation.
3242 *
3243 * If protocol handler is a module, then it can use module reference
3244 * counts to protect against new references. If protocol handler is not
3245 * a module then it needs to provide its own protection in
3246 * the ops->create routine.
3247 */
sock_unregister(int family)3248 void sock_unregister(int family)
3249 {
3250 BUG_ON(family < 0 || family >= NPROTO);
3251
3252 spin_lock(&net_family_lock);
3253 RCU_INIT_POINTER(net_families[family], NULL);
3254 spin_unlock(&net_family_lock);
3255
3256 synchronize_rcu();
3257
3258 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3259 }
3260 EXPORT_SYMBOL(sock_unregister);
3261
sock_is_registered(int family)3262 bool sock_is_registered(int family)
3263 {
3264 return family < NPROTO && rcu_access_pointer(net_families[family]);
3265 }
3266
sock_init(void)3267 static int __init sock_init(void)
3268 {
3269 int err;
3270 /*
3271 * Initialize the network sysctl infrastructure.
3272 */
3273 err = net_sysctl_init();
3274 if (err)
3275 goto out;
3276
3277 /*
3278 * Initialize skbuff SLAB cache
3279 */
3280 skb_init();
3281
3282 /*
3283 * Initialize the protocols module.
3284 */
3285
3286 init_inodecache();
3287
3288 err = register_filesystem(&sock_fs_type);
3289 if (err)
3290 goto out;
3291 sock_mnt = kern_mount(&sock_fs_type);
3292 if (IS_ERR(sock_mnt)) {
3293 err = PTR_ERR(sock_mnt);
3294 goto out_mount;
3295 }
3296
3297 /* The real protocol initialization is performed in later initcalls.
3298 */
3299
3300 #ifdef CONFIG_NETFILTER
3301 err = netfilter_init();
3302 if (err)
3303 goto out;
3304 #endif
3305
3306 ptp_classifier_init();
3307
3308 out:
3309 return err;
3310
3311 out_mount:
3312 unregister_filesystem(&sock_fs_type);
3313 goto out;
3314 }
3315
3316 core_initcall(sock_init); /* early initcall */
3317
3318 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)3319 void socket_seq_show(struct seq_file *seq)
3320 {
3321 seq_printf(seq, "sockets: used %d\n",
3322 sock_inuse_get(seq->private));
3323 }
3324 #endif /* CONFIG_PROC_FS */
3325
3326 /* Handle the fact that while struct ifreq has the same *layout* on
3327 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3328 * which are handled elsewhere, it still has different *size* due to
3329 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3330 * resulting in struct ifreq being 32 and 40 bytes respectively).
3331 * As a result, if the struct happens to be at the end of a page and
3332 * the next page isn't readable/writable, we get a fault. To prevent
3333 * that, copy back and forth to the full size.
3334 */
get_user_ifreq(struct ifreq * ifr,void __user ** ifrdata,void __user * arg)3335 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3336 {
3337 if (in_compat_syscall()) {
3338 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3339
3340 memset(ifr, 0, sizeof(*ifr));
3341 if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3342 return -EFAULT;
3343
3344 if (ifrdata)
3345 *ifrdata = compat_ptr(ifr32->ifr_data);
3346
3347 return 0;
3348 }
3349
3350 if (copy_from_user(ifr, arg, sizeof(*ifr)))
3351 return -EFAULT;
3352
3353 if (ifrdata)
3354 *ifrdata = ifr->ifr_data;
3355
3356 return 0;
3357 }
3358 EXPORT_SYMBOL(get_user_ifreq);
3359
put_user_ifreq(struct ifreq * ifr,void __user * arg)3360 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3361 {
3362 size_t size = sizeof(*ifr);
3363
3364 if (in_compat_syscall())
3365 size = sizeof(struct compat_ifreq);
3366
3367 if (copy_to_user(arg, ifr, size))
3368 return -EFAULT;
3369
3370 return 0;
3371 }
3372 EXPORT_SYMBOL(put_user_ifreq);
3373
3374 #ifdef CONFIG_COMPAT
compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)3375 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3376 {
3377 compat_uptr_t uptr32;
3378 struct ifreq ifr;
3379 void __user *saved;
3380 int err;
3381
3382 if (get_user_ifreq(&ifr, NULL, uifr32))
3383 return -EFAULT;
3384
3385 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3386 return -EFAULT;
3387
3388 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3389 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3390
3391 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3392 if (!err) {
3393 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3394 if (put_user_ifreq(&ifr, uifr32))
3395 err = -EFAULT;
3396 }
3397 return err;
3398 }
3399
3400 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
compat_ifr_data_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)3401 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3402 struct compat_ifreq __user *u_ifreq32)
3403 {
3404 struct ifreq ifreq;
3405 void __user *data;
3406
3407 if (!is_socket_ioctl_cmd(cmd))
3408 return -ENOTTY;
3409 if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3410 return -EFAULT;
3411 ifreq.ifr_data = data;
3412
3413 return dev_ioctl(net, cmd, &ifreq, data, NULL);
3414 }
3415
compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3416 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3417 unsigned int cmd, unsigned long arg)
3418 {
3419 void __user *argp = compat_ptr(arg);
3420 struct sock *sk = sock->sk;
3421 struct net *net = sock_net(sk);
3422 const struct proto_ops *ops;
3423
3424 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3425 return sock_ioctl(file, cmd, (unsigned long)argp);
3426
3427 switch (cmd) {
3428 case SIOCWANDEV:
3429 return compat_siocwandev(net, argp);
3430 case SIOCGSTAMP_OLD:
3431 case SIOCGSTAMPNS_OLD:
3432 ops = READ_ONCE(sock->ops);
3433 if (!ops->gettstamp)
3434 return -ENOIOCTLCMD;
3435 return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3436 !COMPAT_USE_64BIT_TIME);
3437
3438 case SIOCETHTOOL:
3439 case SIOCBONDSLAVEINFOQUERY:
3440 case SIOCBONDINFOQUERY:
3441 case SIOCSHWTSTAMP:
3442 case SIOCGHWTSTAMP:
3443 return compat_ifr_data_ioctl(net, cmd, argp);
3444
3445 case FIOSETOWN:
3446 case SIOCSPGRP:
3447 case FIOGETOWN:
3448 case SIOCGPGRP:
3449 case SIOCBRADDBR:
3450 case SIOCBRDELBR:
3451 case SIOCBRADDIF:
3452 case SIOCBRDELIF:
3453 case SIOCGIFVLAN:
3454 case SIOCSIFVLAN:
3455 case SIOCGSKNS:
3456 case SIOCGSTAMP_NEW:
3457 case SIOCGSTAMPNS_NEW:
3458 case SIOCGIFCONF:
3459 case SIOCSIFBR:
3460 case SIOCGIFBR:
3461 return sock_ioctl(file, cmd, arg);
3462
3463 case SIOCGIFFLAGS:
3464 case SIOCSIFFLAGS:
3465 case SIOCGIFMAP:
3466 case SIOCSIFMAP:
3467 case SIOCGIFMETRIC:
3468 case SIOCSIFMETRIC:
3469 case SIOCGIFMTU:
3470 case SIOCSIFMTU:
3471 case SIOCGIFMEM:
3472 case SIOCSIFMEM:
3473 case SIOCGIFHWADDR:
3474 case SIOCSIFHWADDR:
3475 case SIOCADDMULTI:
3476 case SIOCDELMULTI:
3477 case SIOCGIFINDEX:
3478 case SIOCGIFADDR:
3479 case SIOCSIFADDR:
3480 case SIOCSIFHWBROADCAST:
3481 case SIOCDIFADDR:
3482 case SIOCGIFBRDADDR:
3483 case SIOCSIFBRDADDR:
3484 case SIOCGIFDSTADDR:
3485 case SIOCSIFDSTADDR:
3486 case SIOCGIFNETMASK:
3487 case SIOCSIFNETMASK:
3488 case SIOCSIFPFLAGS:
3489 case SIOCGIFPFLAGS:
3490 case SIOCGIFTXQLEN:
3491 case SIOCSIFTXQLEN:
3492 case SIOCGIFNAME:
3493 case SIOCSIFNAME:
3494 case SIOCGMIIPHY:
3495 case SIOCGMIIREG:
3496 case SIOCSMIIREG:
3497 case SIOCBONDENSLAVE:
3498 case SIOCBONDRELEASE:
3499 case SIOCBONDSETHWADDR:
3500 case SIOCBONDCHANGEACTIVE:
3501 case SIOCSARP:
3502 case SIOCGARP:
3503 case SIOCDARP:
3504 case SIOCOUTQ:
3505 case SIOCOUTQNSD:
3506 case SIOCATMARK:
3507 return sock_do_ioctl(net, sock, cmd, arg);
3508 }
3509
3510 return -ENOIOCTLCMD;
3511 }
3512
compat_sock_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3513 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3514 unsigned long arg)
3515 {
3516 struct socket *sock = file->private_data;
3517 const struct proto_ops *ops = READ_ONCE(sock->ops);
3518 int ret = -ENOIOCTLCMD;
3519 struct sock *sk;
3520 struct net *net;
3521
3522 sk = sock->sk;
3523 net = sock_net(sk);
3524
3525 if (ops->compat_ioctl)
3526 ret = ops->compat_ioctl(sock, cmd, arg);
3527
3528 if (ret == -ENOIOCTLCMD &&
3529 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3530 ret = compat_wext_handle_ioctl(net, cmd, arg);
3531
3532 if (ret == -ENOIOCTLCMD)
3533 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3534
3535 return ret;
3536 }
3537 #endif
3538
3539 /**
3540 * kernel_bind - bind an address to a socket (kernel space)
3541 * @sock: socket
3542 * @addr: address
3543 * @addrlen: length of address
3544 *
3545 * Returns 0 or an error.
3546 */
3547
kernel_bind(struct socket * sock,struct sockaddr_unsized * addr,int addrlen)3548 int kernel_bind(struct socket *sock, struct sockaddr_unsized *addr, int addrlen)
3549 {
3550 struct sockaddr_storage address;
3551
3552 memcpy(&address, addr, addrlen);
3553
3554 return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr_unsized *)&address,
3555 addrlen);
3556 }
3557 EXPORT_SYMBOL(kernel_bind);
3558
3559 /**
3560 * kernel_listen - move socket to listening state (kernel space)
3561 * @sock: socket
3562 * @backlog: pending connections queue size
3563 *
3564 * Returns 0 or an error.
3565 */
3566
kernel_listen(struct socket * sock,int backlog)3567 int kernel_listen(struct socket *sock, int backlog)
3568 {
3569 return READ_ONCE(sock->ops)->listen(sock, backlog);
3570 }
3571 EXPORT_SYMBOL(kernel_listen);
3572
3573 /**
3574 * kernel_accept - accept a connection (kernel space)
3575 * @sock: listening socket
3576 * @newsock: new connected socket
3577 * @flags: flags
3578 *
3579 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3580 * If it fails, @newsock is guaranteed to be %NULL.
3581 * Returns 0 or an error.
3582 */
3583
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3584 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3585 {
3586 struct sock *sk = sock->sk;
3587 const struct proto_ops *ops = READ_ONCE(sock->ops);
3588 struct proto_accept_arg arg = {
3589 .flags = flags,
3590 .kern = true,
3591 };
3592 int err;
3593
3594 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3595 newsock);
3596 if (err < 0)
3597 goto done;
3598
3599 err = ops->accept(sock, *newsock, &arg);
3600 if (err < 0) {
3601 sock_release(*newsock);
3602 *newsock = NULL;
3603 goto done;
3604 }
3605
3606 (*newsock)->ops = ops;
3607 __module_get(ops->owner);
3608
3609 done:
3610 return err;
3611 }
3612 EXPORT_SYMBOL(kernel_accept);
3613
3614 /**
3615 * kernel_connect - connect a socket (kernel space)
3616 * @sock: socket
3617 * @addr: address
3618 * @addrlen: address length
3619 * @flags: flags (O_NONBLOCK, ...)
3620 *
3621 * For datagram sockets, @addr is the address to which datagrams are sent
3622 * by default, and the only address from which datagrams are received.
3623 * For stream sockets, attempts to connect to @addr.
3624 * Returns 0 or an error code.
3625 */
3626
kernel_connect(struct socket * sock,struct sockaddr_unsized * addr,int addrlen,int flags)3627 int kernel_connect(struct socket *sock, struct sockaddr_unsized *addr, int addrlen,
3628 int flags)
3629 {
3630 struct sockaddr_storage address;
3631
3632 memcpy(&address, addr, addrlen);
3633
3634 return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr_unsized *)&address,
3635 addrlen, flags);
3636 }
3637 EXPORT_SYMBOL(kernel_connect);
3638
3639 /**
3640 * kernel_getsockname - get the address which the socket is bound (kernel space)
3641 * @sock: socket
3642 * @addr: address holder
3643 *
3644 * Fills the @addr pointer with the address which the socket is bound.
3645 * Returns the length of the address in bytes or an error code.
3646 */
3647
kernel_getsockname(struct socket * sock,struct sockaddr * addr)3648 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3649 {
3650 return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3651 }
3652 EXPORT_SYMBOL(kernel_getsockname);
3653
3654 /**
3655 * kernel_getpeername - get the address which the socket is connected (kernel space)
3656 * @sock: socket
3657 * @addr: address holder
3658 *
3659 * Fills the @addr pointer with the address which the socket is connected.
3660 * Returns the length of the address in bytes or an error code.
3661 */
3662
kernel_getpeername(struct socket * sock,struct sockaddr * addr)3663 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3664 {
3665 return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3666 }
3667 EXPORT_SYMBOL(kernel_getpeername);
3668
3669 /**
3670 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3671 * @sock: socket
3672 * @how: connection part
3673 *
3674 * Returns 0 or an error.
3675 */
3676
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3677 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3678 {
3679 return READ_ONCE(sock->ops)->shutdown(sock, how);
3680 }
3681 EXPORT_SYMBOL(kernel_sock_shutdown);
3682
3683 /**
3684 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3685 * @sk: socket
3686 *
3687 * This routine returns the IP overhead imposed by a socket i.e.
3688 * the length of the underlying IP header, depending on whether
3689 * this is an IPv4 or IPv6 socket and the length from IP options turned
3690 * on at the socket. Assumes that the caller has a lock on the socket.
3691 */
3692
kernel_sock_ip_overhead(struct sock * sk)3693 u32 kernel_sock_ip_overhead(struct sock *sk)
3694 {
3695 struct inet_sock *inet;
3696 struct ip_options_rcu *opt;
3697 u32 overhead = 0;
3698 #if IS_ENABLED(CONFIG_IPV6)
3699 struct ipv6_pinfo *np;
3700 struct ipv6_txoptions *optv6 = NULL;
3701 #endif /* IS_ENABLED(CONFIG_IPV6) */
3702
3703 if (!sk)
3704 return overhead;
3705
3706 switch (sk->sk_family) {
3707 case AF_INET:
3708 inet = inet_sk(sk);
3709 overhead += sizeof(struct iphdr);
3710 opt = rcu_dereference_protected(inet->inet_opt,
3711 sock_owned_by_user(sk));
3712 if (opt)
3713 overhead += opt->opt.optlen;
3714 return overhead;
3715 #if IS_ENABLED(CONFIG_IPV6)
3716 case AF_INET6:
3717 np = inet6_sk(sk);
3718 overhead += sizeof(struct ipv6hdr);
3719 if (np)
3720 optv6 = rcu_dereference_protected(np->opt,
3721 sock_owned_by_user(sk));
3722 if (optv6)
3723 overhead += (optv6->opt_flen + optv6->opt_nflen);
3724 return overhead;
3725 #endif /* IS_ENABLED(CONFIG_IPV6) */
3726 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3727 return overhead;
3728 }
3729 }
3730 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3731