xref: /linux/net/socket.c (revision 4b9d25b4d38035b7b2624afd6852dfe4684f0226)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/splice.h>
61 #include <linux/net.h>
62 #include <linux/interrupt.h>
63 #include <linux/thread_info.h>
64 #include <linux/rcupdate.h>
65 #include <linux/netdevice.h>
66 #include <linux/proc_fs.h>
67 #include <linux/seq_file.h>
68 #include <linux/mutex.h>
69 #include <linux/if_bridge.h>
70 #include <linux/if_vlan.h>
71 #include <linux/ptp_classify.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/cache.h>
75 #include <linux/module.h>
76 #include <linux/highmem.h>
77 #include <linux/mount.h>
78 #include <linux/pseudo_fs.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/compat.h>
82 #include <linux/kmod.h>
83 #include <linux/audit.h>
84 #include <linux/wireless.h>
85 #include <linux/nsproxy.h>
86 #include <linux/magic.h>
87 #include <linux/slab.h>
88 #include <linux/xattr.h>
89 #include <linux/nospec.h>
90 #include <linux/indirect_call_wrapper.h>
91 #include <linux/io_uring/net.h>
92 
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/termios.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 #include <linux/ptp_clock_kernel.h>
111 #include <trace/events/sock.h>
112 
113 #include "core/dev.h"
114 
115 #ifdef CONFIG_NET_RX_BUSY_POLL
116 unsigned int sysctl_net_busy_read __read_mostly;
117 unsigned int sysctl_net_busy_poll __read_mostly;
118 #endif
119 
120 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
121 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
122 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
123 
124 static int sock_close(struct inode *inode, struct file *file);
125 static __poll_t sock_poll(struct file *file,
126 			      struct poll_table_struct *wait);
127 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
128 #ifdef CONFIG_COMPAT
129 static long compat_sock_ioctl(struct file *file,
130 			      unsigned int cmd, unsigned long arg);
131 #endif
132 static int sock_fasync(int fd, struct file *filp, int on);
133 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
134 				struct pipe_inode_info *pipe, size_t len,
135 				unsigned int flags);
136 static void sock_splice_eof(struct file *file);
137 
138 #ifdef CONFIG_PROC_FS
sock_show_fdinfo(struct seq_file * m,struct file * f)139 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
140 {
141 	struct socket *sock = f->private_data;
142 	const struct proto_ops *ops = READ_ONCE(sock->ops);
143 
144 	if (ops->show_fdinfo)
145 		ops->show_fdinfo(m, sock);
146 }
147 #else
148 #define sock_show_fdinfo NULL
149 #endif
150 
151 /*
152  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
153  *	in the operation structures but are done directly via the socketcall() multiplexor.
154  */
155 
156 static const struct file_operations socket_file_ops = {
157 	.owner =	THIS_MODULE,
158 	.read_iter =	sock_read_iter,
159 	.write_iter =	sock_write_iter,
160 	.poll =		sock_poll,
161 	.unlocked_ioctl = sock_ioctl,
162 #ifdef CONFIG_COMPAT
163 	.compat_ioctl = compat_sock_ioctl,
164 #endif
165 	.uring_cmd =    io_uring_cmd_sock,
166 	.mmap =		sock_mmap,
167 	.release =	sock_close,
168 	.fasync =	sock_fasync,
169 	.splice_write = splice_to_socket,
170 	.splice_read =	sock_splice_read,
171 	.splice_eof =	sock_splice_eof,
172 	.show_fdinfo =	sock_show_fdinfo,
173 };
174 
175 static const char * const pf_family_names[] = {
176 	[PF_UNSPEC]	= "PF_UNSPEC",
177 	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
178 	[PF_INET]	= "PF_INET",
179 	[PF_AX25]	= "PF_AX25",
180 	[PF_IPX]	= "PF_IPX",
181 	[PF_APPLETALK]	= "PF_APPLETALK",
182 	[PF_NETROM]	= "PF_NETROM",
183 	[PF_BRIDGE]	= "PF_BRIDGE",
184 	[PF_ATMPVC]	= "PF_ATMPVC",
185 	[PF_X25]	= "PF_X25",
186 	[PF_INET6]	= "PF_INET6",
187 	[PF_ROSE]	= "PF_ROSE",
188 	[PF_DECnet]	= "PF_DECnet",
189 	[PF_NETBEUI]	= "PF_NETBEUI",
190 	[PF_SECURITY]	= "PF_SECURITY",
191 	[PF_KEY]	= "PF_KEY",
192 	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
193 	[PF_PACKET]	= "PF_PACKET",
194 	[PF_ASH]	= "PF_ASH",
195 	[PF_ECONET]	= "PF_ECONET",
196 	[PF_ATMSVC]	= "PF_ATMSVC",
197 	[PF_RDS]	= "PF_RDS",
198 	[PF_SNA]	= "PF_SNA",
199 	[PF_IRDA]	= "PF_IRDA",
200 	[PF_PPPOX]	= "PF_PPPOX",
201 	[PF_WANPIPE]	= "PF_WANPIPE",
202 	[PF_LLC]	= "PF_LLC",
203 	[PF_IB]		= "PF_IB",
204 	[PF_MPLS]	= "PF_MPLS",
205 	[PF_CAN]	= "PF_CAN",
206 	[PF_TIPC]	= "PF_TIPC",
207 	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
208 	[PF_IUCV]	= "PF_IUCV",
209 	[PF_RXRPC]	= "PF_RXRPC",
210 	[PF_ISDN]	= "PF_ISDN",
211 	[PF_PHONET]	= "PF_PHONET",
212 	[PF_IEEE802154]	= "PF_IEEE802154",
213 	[PF_CAIF]	= "PF_CAIF",
214 	[PF_ALG]	= "PF_ALG",
215 	[PF_NFC]	= "PF_NFC",
216 	[PF_VSOCK]	= "PF_VSOCK",
217 	[PF_KCM]	= "PF_KCM",
218 	[PF_QIPCRTR]	= "PF_QIPCRTR",
219 	[PF_SMC]	= "PF_SMC",
220 	[PF_XDP]	= "PF_XDP",
221 	[PF_MCTP]	= "PF_MCTP",
222 };
223 
224 /*
225  *	The protocol list. Each protocol is registered in here.
226  */
227 
228 static DEFINE_SPINLOCK(net_family_lock);
229 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
230 
231 /*
232  * Support routines.
233  * Move socket addresses back and forth across the kernel/user
234  * divide and look after the messy bits.
235  */
236 
237 /**
238  *	move_addr_to_kernel	-	copy a socket address into kernel space
239  *	@uaddr: Address in user space
240  *	@kaddr: Address in kernel space
241  *	@ulen: Length in user space
242  *
243  *	The address is copied into kernel space. If the provided address is
244  *	too long an error code of -EINVAL is returned. If the copy gives
245  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
246  */
247 
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr_storage * kaddr)248 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
249 {
250 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
251 		return -EINVAL;
252 	if (ulen == 0)
253 		return 0;
254 	if (copy_from_user(kaddr, uaddr, ulen))
255 		return -EFAULT;
256 	return audit_sockaddr(ulen, kaddr);
257 }
258 
259 /**
260  *	move_addr_to_user	-	copy an address to user space
261  *	@kaddr: kernel space address
262  *	@klen: length of address in kernel
263  *	@uaddr: user space address
264  *	@ulen: pointer to user length field
265  *
266  *	The value pointed to by ulen on entry is the buffer length available.
267  *	This is overwritten with the buffer space used. -EINVAL is returned
268  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
269  *	is returned if either the buffer or the length field are not
270  *	accessible.
271  *	After copying the data up to the limit the user specifies, the true
272  *	length of the data is written over the length limit the user
273  *	specified. Zero is returned for a success.
274  */
275 
move_addr_to_user(struct sockaddr_storage * kaddr,int klen,void __user * uaddr,int __user * ulen)276 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
277 			     void __user *uaddr, int __user *ulen)
278 {
279 	int len;
280 
281 	BUG_ON(klen > sizeof(struct sockaddr_storage));
282 
283 	if (can_do_masked_user_access())
284 		ulen = masked_user_access_begin(ulen);
285 	else if (!user_access_begin(ulen, 4))
286 		return -EFAULT;
287 
288 	unsafe_get_user(len, ulen, efault_end);
289 
290 	if (len > klen)
291 		len = klen;
292 	/*
293 	 *      "fromlen shall refer to the value before truncation.."
294 	 *                      1003.1g
295 	 */
296 	if (len >= 0)
297 		unsafe_put_user(klen, ulen, efault_end);
298 
299 	user_access_end();
300 
301 	if (len) {
302 		if (len < 0)
303 			return -EINVAL;
304 		if (audit_sockaddr(klen, kaddr))
305 			return -ENOMEM;
306 		if (copy_to_user(uaddr, kaddr, len))
307 			return -EFAULT;
308 	}
309 	return 0;
310 
311 efault_end:
312 	user_access_end();
313 	return -EFAULT;
314 }
315 
316 static struct kmem_cache *sock_inode_cachep __ro_after_init;
317 
sock_alloc_inode(struct super_block * sb)318 static struct inode *sock_alloc_inode(struct super_block *sb)
319 {
320 	struct socket_alloc *ei;
321 
322 	ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
323 	if (!ei)
324 		return NULL;
325 	init_waitqueue_head(&ei->socket.wq.wait);
326 	ei->socket.wq.fasync_list = NULL;
327 	ei->socket.wq.flags = 0;
328 
329 	ei->socket.state = SS_UNCONNECTED;
330 	ei->socket.flags = 0;
331 	ei->socket.ops = NULL;
332 	ei->socket.sk = NULL;
333 	ei->socket.file = NULL;
334 
335 	return &ei->vfs_inode;
336 }
337 
sock_free_inode(struct inode * inode)338 static void sock_free_inode(struct inode *inode)
339 {
340 	struct socket_alloc *ei;
341 
342 	ei = container_of(inode, struct socket_alloc, vfs_inode);
343 	kmem_cache_free(sock_inode_cachep, ei);
344 }
345 
init_once(void * foo)346 static void init_once(void *foo)
347 {
348 	struct socket_alloc *ei = (struct socket_alloc *)foo;
349 
350 	inode_init_once(&ei->vfs_inode);
351 }
352 
init_inodecache(void)353 static void init_inodecache(void)
354 {
355 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
356 					      sizeof(struct socket_alloc),
357 					      0,
358 					      (SLAB_HWCACHE_ALIGN |
359 					       SLAB_RECLAIM_ACCOUNT |
360 					       SLAB_ACCOUNT),
361 					      init_once);
362 	BUG_ON(sock_inode_cachep == NULL);
363 }
364 
365 static const struct super_operations sockfs_ops = {
366 	.alloc_inode	= sock_alloc_inode,
367 	.free_inode	= sock_free_inode,
368 	.statfs		= simple_statfs,
369 };
370 
371 /*
372  * sockfs_dname() is called from d_path().
373  */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)374 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
375 {
376 	return dynamic_dname(buffer, buflen, "socket:[%lu]",
377 				d_inode(dentry)->i_ino);
378 }
379 
380 static const struct dentry_operations sockfs_dentry_operations = {
381 	.d_dname  = sockfs_dname,
382 };
383 
sockfs_xattr_get(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,void * value,size_t size)384 static int sockfs_xattr_get(const struct xattr_handler *handler,
385 			    struct dentry *dentry, struct inode *inode,
386 			    const char *suffix, void *value, size_t size)
387 {
388 	if (value) {
389 		if (dentry->d_name.len + 1 > size)
390 			return -ERANGE;
391 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
392 	}
393 	return dentry->d_name.len + 1;
394 }
395 
396 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
397 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
398 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
399 
400 static const struct xattr_handler sockfs_xattr_handler = {
401 	.name = XATTR_NAME_SOCKPROTONAME,
402 	.get = sockfs_xattr_get,
403 };
404 
sockfs_security_xattr_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * dentry,struct inode * inode,const char * suffix,const void * value,size_t size,int flags)405 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
406 				     struct mnt_idmap *idmap,
407 				     struct dentry *dentry, struct inode *inode,
408 				     const char *suffix, const void *value,
409 				     size_t size, int flags)
410 {
411 	/* Handled by LSM. */
412 	return -EAGAIN;
413 }
414 
415 static const struct xattr_handler sockfs_security_xattr_handler = {
416 	.prefix = XATTR_SECURITY_PREFIX,
417 	.set = sockfs_security_xattr_set,
418 };
419 
420 static const struct xattr_handler * const sockfs_xattr_handlers[] = {
421 	&sockfs_xattr_handler,
422 	&sockfs_security_xattr_handler,
423 	NULL
424 };
425 
sockfs_init_fs_context(struct fs_context * fc)426 static int sockfs_init_fs_context(struct fs_context *fc)
427 {
428 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
429 	if (!ctx)
430 		return -ENOMEM;
431 	ctx->ops = &sockfs_ops;
432 	ctx->dops = &sockfs_dentry_operations;
433 	ctx->xattr = sockfs_xattr_handlers;
434 	return 0;
435 }
436 
437 static struct vfsmount *sock_mnt __read_mostly;
438 
439 static struct file_system_type sock_fs_type = {
440 	.name =		"sockfs",
441 	.init_fs_context = sockfs_init_fs_context,
442 	.kill_sb =	kill_anon_super,
443 };
444 
445 /*
446  *	Obtains the first available file descriptor and sets it up for use.
447  *
448  *	These functions create file structures and maps them to fd space
449  *	of the current process. On success it returns file descriptor
450  *	and file struct implicitly stored in sock->file.
451  *	Note that another thread may close file descriptor before we return
452  *	from this function. We use the fact that now we do not refer
453  *	to socket after mapping. If one day we will need it, this
454  *	function will increment ref. count on file by 1.
455  *
456  *	In any case returned fd MAY BE not valid!
457  *	This race condition is unavoidable
458  *	with shared fd spaces, we cannot solve it inside kernel,
459  *	but we take care of internal coherence yet.
460  */
461 
462 /**
463  *	sock_alloc_file - Bind a &socket to a &file
464  *	@sock: socket
465  *	@flags: file status flags
466  *	@dname: protocol name
467  *
468  *	Returns the &file bound with @sock, implicitly storing it
469  *	in sock->file. If dname is %NULL, sets to "".
470  *
471  *	On failure @sock is released, and an ERR pointer is returned.
472  *
473  *	This function uses GFP_KERNEL internally.
474  */
475 
sock_alloc_file(struct socket * sock,int flags,const char * dname)476 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
477 {
478 	struct file *file;
479 
480 	if (!dname)
481 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
482 
483 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
484 				O_RDWR | (flags & O_NONBLOCK),
485 				&socket_file_ops);
486 	if (IS_ERR(file)) {
487 		sock_release(sock);
488 		return file;
489 	}
490 
491 	file->f_mode |= FMODE_NOWAIT;
492 	sock->file = file;
493 	file->private_data = sock;
494 	stream_open(SOCK_INODE(sock), file);
495 	/*
496 	 * Disable permission and pre-content events, but enable legacy
497 	 * inotify events for legacy users.
498 	 */
499 	file_set_fsnotify_mode(file, FMODE_NONOTIFY_PERM);
500 	return file;
501 }
502 EXPORT_SYMBOL(sock_alloc_file);
503 
sock_map_fd(struct socket * sock,int flags)504 static int sock_map_fd(struct socket *sock, int flags)
505 {
506 	struct file *newfile;
507 	int fd = get_unused_fd_flags(flags);
508 	if (unlikely(fd < 0)) {
509 		sock_release(sock);
510 		return fd;
511 	}
512 
513 	newfile = sock_alloc_file(sock, flags, NULL);
514 	if (!IS_ERR(newfile)) {
515 		fd_install(fd, newfile);
516 		return fd;
517 	}
518 
519 	put_unused_fd(fd);
520 	return PTR_ERR(newfile);
521 }
522 
523 /**
524  *	sock_from_file - Return the &socket bounded to @file.
525  *	@file: file
526  *
527  *	On failure returns %NULL.
528  */
529 
sock_from_file(struct file * file)530 struct socket *sock_from_file(struct file *file)
531 {
532 	if (likely(file->f_op == &socket_file_ops))
533 		return file->private_data;	/* set in sock_alloc_file */
534 
535 	return NULL;
536 }
537 EXPORT_SYMBOL(sock_from_file);
538 
539 /**
540  *	sockfd_lookup - Go from a file number to its socket slot
541  *	@fd: file handle
542  *	@err: pointer to an error code return
543  *
544  *	The file handle passed in is locked and the socket it is bound
545  *	to is returned. If an error occurs the err pointer is overwritten
546  *	with a negative errno code and NULL is returned. The function checks
547  *	for both invalid handles and passing a handle which is not a socket.
548  *
549  *	On a success the socket object pointer is returned.
550  */
551 
sockfd_lookup(int fd,int * err)552 struct socket *sockfd_lookup(int fd, int *err)
553 {
554 	struct file *file;
555 	struct socket *sock;
556 
557 	file = fget(fd);
558 	if (!file) {
559 		*err = -EBADF;
560 		return NULL;
561 	}
562 
563 	sock = sock_from_file(file);
564 	if (!sock) {
565 		*err = -ENOTSOCK;
566 		fput(file);
567 	}
568 	return sock;
569 }
570 EXPORT_SYMBOL(sockfd_lookup);
571 
sockfs_listxattr(struct dentry * dentry,char * buffer,size_t size)572 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
573 				size_t size)
574 {
575 	ssize_t len;
576 	ssize_t used = 0;
577 
578 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
579 	if (len < 0)
580 		return len;
581 	used += len;
582 	if (buffer) {
583 		if (size < used)
584 			return -ERANGE;
585 		buffer += len;
586 	}
587 
588 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
589 	used += len;
590 	if (buffer) {
591 		if (size < used)
592 			return -ERANGE;
593 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
594 		buffer += len;
595 	}
596 
597 	return used;
598 }
599 
sockfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * iattr)600 static int sockfs_setattr(struct mnt_idmap *idmap,
601 			  struct dentry *dentry, struct iattr *iattr)
602 {
603 	int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
604 
605 	if (!err && (iattr->ia_valid & ATTR_UID)) {
606 		struct socket *sock = SOCKET_I(d_inode(dentry));
607 
608 		if (sock->sk) {
609 			/* Paired with READ_ONCE() in sk_uid() */
610 			WRITE_ONCE(sock->sk->sk_uid, iattr->ia_uid);
611 		} else {
612 			err = -ENOENT;
613 		}
614 	}
615 
616 	return err;
617 }
618 
619 static const struct inode_operations sockfs_inode_ops = {
620 	.listxattr = sockfs_listxattr,
621 	.setattr = sockfs_setattr,
622 };
623 
624 /**
625  *	sock_alloc - allocate a socket
626  *
627  *	Allocate a new inode and socket object. The two are bound together
628  *	and initialised. The socket is then returned. If we are out of inodes
629  *	NULL is returned. This functions uses GFP_KERNEL internally.
630  */
631 
sock_alloc(void)632 struct socket *sock_alloc(void)
633 {
634 	struct inode *inode;
635 	struct socket *sock;
636 
637 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
638 	if (!inode)
639 		return NULL;
640 
641 	sock = SOCKET_I(inode);
642 
643 	inode->i_ino = get_next_ino();
644 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
645 	inode->i_uid = current_fsuid();
646 	inode->i_gid = current_fsgid();
647 	inode->i_op = &sockfs_inode_ops;
648 
649 	return sock;
650 }
651 EXPORT_SYMBOL(sock_alloc);
652 
__sock_release(struct socket * sock,struct inode * inode)653 static void __sock_release(struct socket *sock, struct inode *inode)
654 {
655 	const struct proto_ops *ops = READ_ONCE(sock->ops);
656 
657 	if (ops) {
658 		struct module *owner = ops->owner;
659 
660 		if (inode)
661 			inode_lock(inode);
662 		ops->release(sock);
663 		sock->sk = NULL;
664 		if (inode)
665 			inode_unlock(inode);
666 		sock->ops = NULL;
667 		module_put(owner);
668 	}
669 
670 	if (sock->wq.fasync_list)
671 		pr_err("%s: fasync list not empty!\n", __func__);
672 
673 	if (!sock->file) {
674 		iput(SOCK_INODE(sock));
675 		return;
676 	}
677 	sock->file = NULL;
678 }
679 
680 /**
681  *	sock_release - close a socket
682  *	@sock: socket to close
683  *
684  *	The socket is released from the protocol stack if it has a release
685  *	callback, and the inode is then released if the socket is bound to
686  *	an inode not a file.
687  */
sock_release(struct socket * sock)688 void sock_release(struct socket *sock)
689 {
690 	__sock_release(sock, NULL);
691 }
692 EXPORT_SYMBOL(sock_release);
693 
__sock_tx_timestamp(__u32 tsflags,__u8 * tx_flags)694 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags)
695 {
696 	u8 flags = *tx_flags;
697 
698 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
699 		flags |= SKBTX_HW_TSTAMP_NOBPF;
700 
701 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
702 		flags |= SKBTX_SW_TSTAMP;
703 
704 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
705 		flags |= SKBTX_SCHED_TSTAMP;
706 
707 	if (tsflags & SOF_TIMESTAMPING_TX_COMPLETION)
708 		flags |= SKBTX_COMPLETION_TSTAMP;
709 
710 	*tx_flags = flags;
711 }
712 EXPORT_SYMBOL(__sock_tx_timestamp);
713 
714 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
715 					   size_t));
716 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
717 					    size_t));
718 
call_trace_sock_send_length(struct sock * sk,int ret,int flags)719 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
720 						 int flags)
721 {
722 	trace_sock_send_length(sk, ret, 0);
723 }
724 
sock_sendmsg_nosec(struct socket * sock,struct msghdr * msg)725 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
726 {
727 	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
728 				     inet_sendmsg, sock, msg,
729 				     msg_data_left(msg));
730 	BUG_ON(ret == -EIOCBQUEUED);
731 
732 	if (trace_sock_send_length_enabled())
733 		call_trace_sock_send_length(sock->sk, ret, 0);
734 	return ret;
735 }
736 
__sock_sendmsg(struct socket * sock,struct msghdr * msg)737 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
738 {
739 	int err = security_socket_sendmsg(sock, msg,
740 					  msg_data_left(msg));
741 
742 	return err ?: sock_sendmsg_nosec(sock, msg);
743 }
744 
745 /**
746  *	sock_sendmsg - send a message through @sock
747  *	@sock: socket
748  *	@msg: message to send
749  *
750  *	Sends @msg through @sock, passing through LSM.
751  *	Returns the number of bytes sent, or an error code.
752  */
sock_sendmsg(struct socket * sock,struct msghdr * msg)753 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
754 {
755 	struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
756 	struct sockaddr_storage address;
757 	int save_len = msg->msg_namelen;
758 	int ret;
759 
760 	if (msg->msg_name) {
761 		memcpy(&address, msg->msg_name, msg->msg_namelen);
762 		msg->msg_name = &address;
763 	}
764 
765 	ret = __sock_sendmsg(sock, msg);
766 	msg->msg_name = save_addr;
767 	msg->msg_namelen = save_len;
768 
769 	return ret;
770 }
771 EXPORT_SYMBOL(sock_sendmsg);
772 
773 /**
774  *	kernel_sendmsg - send a message through @sock (kernel-space)
775  *	@sock: socket
776  *	@msg: message header
777  *	@vec: kernel vec
778  *	@num: vec array length
779  *	@size: total message data size
780  *
781  *	Builds the message data with @vec and sends it through @sock.
782  *	Returns the number of bytes sent, or an error code.
783  */
784 
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)785 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
786 		   struct kvec *vec, size_t num, size_t size)
787 {
788 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
789 	return sock_sendmsg(sock, msg);
790 }
791 EXPORT_SYMBOL(kernel_sendmsg);
792 
skb_is_err_queue(const struct sk_buff * skb)793 static bool skb_is_err_queue(const struct sk_buff *skb)
794 {
795 	/* pkt_type of skbs enqueued on the error queue are set to
796 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
797 	 * in recvmsg, since skbs received on a local socket will never
798 	 * have a pkt_type of PACKET_OUTGOING.
799 	 */
800 	return skb->pkt_type == PACKET_OUTGOING;
801 }
802 
803 /* On transmit, software and hardware timestamps are returned independently.
804  * As the two skb clones share the hardware timestamp, which may be updated
805  * before the software timestamp is received, a hardware TX timestamp may be
806  * returned only if there is no software TX timestamp. Ignore false software
807  * timestamps, which may be made in the __sock_recv_timestamp() call when the
808  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
809  * hardware timestamp.
810  */
skb_is_swtx_tstamp(const struct sk_buff * skb,int false_tstamp)811 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
812 {
813 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
814 }
815 
get_timestamp(struct sock * sk,struct sk_buff * skb,int * if_index)816 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
817 {
818 	bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
819 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
820 	struct net_device *orig_dev;
821 	ktime_t hwtstamp;
822 
823 	rcu_read_lock();
824 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
825 	if (orig_dev) {
826 		*if_index = orig_dev->ifindex;
827 		hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
828 	} else {
829 		hwtstamp = shhwtstamps->hwtstamp;
830 	}
831 	rcu_read_unlock();
832 
833 	return hwtstamp;
834 }
835 
put_ts_pktinfo(struct msghdr * msg,struct sk_buff * skb,int if_index)836 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
837 			   int if_index)
838 {
839 	struct scm_ts_pktinfo ts_pktinfo;
840 	struct net_device *orig_dev;
841 
842 	if (!skb_mac_header_was_set(skb))
843 		return;
844 
845 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
846 
847 	if (!if_index) {
848 		rcu_read_lock();
849 		orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
850 		if (orig_dev)
851 			if_index = orig_dev->ifindex;
852 		rcu_read_unlock();
853 	}
854 	ts_pktinfo.if_index = if_index;
855 
856 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
857 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
858 		 sizeof(ts_pktinfo), &ts_pktinfo);
859 }
860 
skb_has_tx_timestamp(struct sk_buff * skb,const struct sock * sk)861 bool skb_has_tx_timestamp(struct sk_buff *skb, const struct sock *sk)
862 {
863 	const struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
864 	u32 tsflags = READ_ONCE(sk->sk_tsflags);
865 
866 	if (serr->ee.ee_errno != ENOMSG ||
867 	   serr->ee.ee_origin != SO_EE_ORIGIN_TIMESTAMPING)
868 		return false;
869 
870 	/* software time stamp available and wanted */
871 	if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) && skb->tstamp)
872 		return true;
873 	/* hardware time stamps available and wanted */
874 	return (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
875 		skb_hwtstamps(skb)->hwtstamp;
876 }
877 
skb_get_tx_timestamp(struct sk_buff * skb,struct sock * sk,struct timespec64 * ts)878 int skb_get_tx_timestamp(struct sk_buff *skb, struct sock *sk,
879 			  struct timespec64 *ts)
880 {
881 	u32 tsflags = READ_ONCE(sk->sk_tsflags);
882 	ktime_t hwtstamp;
883 	int if_index = 0;
884 
885 	if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
886 	    ktime_to_timespec64_cond(skb->tstamp, ts))
887 		return SOF_TIMESTAMPING_TX_SOFTWARE;
888 
889 	if (!(tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) ||
890 	    skb_is_swtx_tstamp(skb, false))
891 		return -ENOENT;
892 
893 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
894 		hwtstamp = get_timestamp(sk, skb, &if_index);
895 	else
896 		hwtstamp = skb_hwtstamps(skb)->hwtstamp;
897 
898 	if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
899 		hwtstamp = ptp_convert_timestamp(&hwtstamp,
900 						READ_ONCE(sk->sk_bind_phc));
901 	if (!ktime_to_timespec64_cond(hwtstamp, ts))
902 		return -ENOENT;
903 
904 	return SOF_TIMESTAMPING_TX_HARDWARE;
905 }
906 
907 /*
908  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
909  */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)910 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
911 	struct sk_buff *skb)
912 {
913 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
914 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
915 	struct scm_timestamping_internal tss;
916 	int empty = 1, false_tstamp = 0;
917 	struct skb_shared_hwtstamps *shhwtstamps =
918 		skb_hwtstamps(skb);
919 	int if_index;
920 	ktime_t hwtstamp;
921 	u32 tsflags;
922 
923 	/* Race occurred between timestamp enabling and packet
924 	   receiving.  Fill in the current time for now. */
925 	if (need_software_tstamp && skb->tstamp == 0) {
926 		__net_timestamp(skb);
927 		false_tstamp = 1;
928 	}
929 
930 	if (need_software_tstamp) {
931 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
932 			if (new_tstamp) {
933 				struct __kernel_sock_timeval tv;
934 
935 				skb_get_new_timestamp(skb, &tv);
936 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
937 					 sizeof(tv), &tv);
938 			} else {
939 				struct __kernel_old_timeval tv;
940 
941 				skb_get_timestamp(skb, &tv);
942 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
943 					 sizeof(tv), &tv);
944 			}
945 		} else {
946 			if (new_tstamp) {
947 				struct __kernel_timespec ts;
948 
949 				skb_get_new_timestampns(skb, &ts);
950 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
951 					 sizeof(ts), &ts);
952 			} else {
953 				struct __kernel_old_timespec ts;
954 
955 				skb_get_timestampns(skb, &ts);
956 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
957 					 sizeof(ts), &ts);
958 			}
959 		}
960 	}
961 
962 	memset(&tss, 0, sizeof(tss));
963 	tsflags = READ_ONCE(sk->sk_tsflags);
964 	if ((tsflags & SOF_TIMESTAMPING_SOFTWARE &&
965 	     (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
966 	      skb_is_err_queue(skb) ||
967 	      !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
968 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
969 		empty = 0;
970 	if (shhwtstamps &&
971 	    (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
972 	     (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
973 	      skb_is_err_queue(skb) ||
974 	      !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
975 	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
976 		if_index = 0;
977 		if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
978 			hwtstamp = get_timestamp(sk, skb, &if_index);
979 		else
980 			hwtstamp = shhwtstamps->hwtstamp;
981 
982 		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
983 			hwtstamp = ptp_convert_timestamp(&hwtstamp,
984 							 READ_ONCE(sk->sk_bind_phc));
985 
986 		if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
987 			empty = 0;
988 
989 			if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
990 			    !skb_is_err_queue(skb))
991 				put_ts_pktinfo(msg, skb, if_index);
992 		}
993 	}
994 	if (!empty) {
995 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
996 			put_cmsg_scm_timestamping64(msg, &tss);
997 		else
998 			put_cmsg_scm_timestamping(msg, &tss);
999 
1000 		if (skb_is_err_queue(skb) && skb->len &&
1001 		    SKB_EXT_ERR(skb)->opt_stats)
1002 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
1003 				 skb->len, skb->data);
1004 	}
1005 }
1006 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
1007 
1008 #ifdef CONFIG_WIRELESS
__sock_recv_wifi_status(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1009 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
1010 	struct sk_buff *skb)
1011 {
1012 	int ack;
1013 
1014 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
1015 		return;
1016 	if (!skb->wifi_acked_valid)
1017 		return;
1018 
1019 	ack = skb->wifi_acked;
1020 
1021 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
1022 }
1023 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
1024 #endif
1025 
sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1026 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
1027 				   struct sk_buff *skb)
1028 {
1029 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
1030 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
1031 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
1032 }
1033 
sock_recv_mark(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1034 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
1035 			   struct sk_buff *skb)
1036 {
1037 	if (sock_flag(sk, SOCK_RCVMARK) && skb) {
1038 		/* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
1039 		__u32 mark = skb->mark;
1040 
1041 		put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
1042 	}
1043 }
1044 
sock_recv_priority(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1045 static void sock_recv_priority(struct msghdr *msg, struct sock *sk,
1046 			       struct sk_buff *skb)
1047 {
1048 	if (sock_flag(sk, SOCK_RCVPRIORITY) && skb) {
1049 		__u32 priority = skb->priority;
1050 
1051 		put_cmsg(msg, SOL_SOCKET, SO_PRIORITY, sizeof(__u32), &priority);
1052 	}
1053 }
1054 
__sock_recv_cmsgs(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1055 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1056 		       struct sk_buff *skb)
1057 {
1058 	sock_recv_timestamp(msg, sk, skb);
1059 	sock_recv_drops(msg, sk, skb);
1060 	sock_recv_mark(msg, sk, skb);
1061 	sock_recv_priority(msg, sk, skb);
1062 }
1063 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1064 
1065 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1066 					   size_t, int));
1067 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1068 					    size_t, int));
1069 
call_trace_sock_recv_length(struct sock * sk,int ret,int flags)1070 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1071 {
1072 	trace_sock_recv_length(sk, ret, flags);
1073 }
1074 
sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,int flags)1075 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1076 				     int flags)
1077 {
1078 	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1079 				     inet6_recvmsg,
1080 				     inet_recvmsg, sock, msg,
1081 				     msg_data_left(msg), flags);
1082 	if (trace_sock_recv_length_enabled())
1083 		call_trace_sock_recv_length(sock->sk, ret, flags);
1084 	return ret;
1085 }
1086 
1087 /**
1088  *	sock_recvmsg - receive a message from @sock
1089  *	@sock: socket
1090  *	@msg: message to receive
1091  *	@flags: message flags
1092  *
1093  *	Receives @msg from @sock, passing through LSM. Returns the total number
1094  *	of bytes received, or an error.
1095  */
sock_recvmsg(struct socket * sock,struct msghdr * msg,int flags)1096 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1097 {
1098 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1099 
1100 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
1101 }
1102 EXPORT_SYMBOL(sock_recvmsg);
1103 
1104 /**
1105  *	kernel_recvmsg - Receive a message from a socket (kernel space)
1106  *	@sock: The socket to receive the message from
1107  *	@msg: Received message
1108  *	@vec: Input s/g array for message data
1109  *	@num: Size of input s/g array
1110  *	@size: Number of bytes to read
1111  *	@flags: Message flags (MSG_DONTWAIT, etc...)
1112  *
1113  *	On return the msg structure contains the scatter/gather array passed in the
1114  *	vec argument. The array is modified so that it consists of the unfilled
1115  *	portion of the original array.
1116  *
1117  *	The returned value is the total number of bytes received, or an error.
1118  */
1119 
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)1120 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1121 		   struct kvec *vec, size_t num, size_t size, int flags)
1122 {
1123 	msg->msg_control_is_user = false;
1124 	iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1125 	return sock_recvmsg(sock, msg, flags);
1126 }
1127 EXPORT_SYMBOL(kernel_recvmsg);
1128 
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1129 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1130 				struct pipe_inode_info *pipe, size_t len,
1131 				unsigned int flags)
1132 {
1133 	struct socket *sock = file->private_data;
1134 	const struct proto_ops *ops;
1135 
1136 	ops = READ_ONCE(sock->ops);
1137 	if (unlikely(!ops->splice_read))
1138 		return copy_splice_read(file, ppos, pipe, len, flags);
1139 
1140 	return ops->splice_read(sock, ppos, pipe, len, flags);
1141 }
1142 
sock_splice_eof(struct file * file)1143 static void sock_splice_eof(struct file *file)
1144 {
1145 	struct socket *sock = file->private_data;
1146 	const struct proto_ops *ops;
1147 
1148 	ops = READ_ONCE(sock->ops);
1149 	if (ops->splice_eof)
1150 		ops->splice_eof(sock);
1151 }
1152 
sock_read_iter(struct kiocb * iocb,struct iov_iter * to)1153 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1154 {
1155 	struct file *file = iocb->ki_filp;
1156 	struct socket *sock = file->private_data;
1157 	struct msghdr msg = {.msg_iter = *to,
1158 			     .msg_iocb = iocb};
1159 	ssize_t res;
1160 
1161 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1162 		msg.msg_flags = MSG_DONTWAIT;
1163 
1164 	if (iocb->ki_pos != 0)
1165 		return -ESPIPE;
1166 
1167 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1168 		return 0;
1169 
1170 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1171 	*to = msg.msg_iter;
1172 	return res;
1173 }
1174 
sock_write_iter(struct kiocb * iocb,struct iov_iter * from)1175 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1176 {
1177 	struct file *file = iocb->ki_filp;
1178 	struct socket *sock = file->private_data;
1179 	struct msghdr msg = {.msg_iter = *from,
1180 			     .msg_iocb = iocb};
1181 	ssize_t res;
1182 
1183 	if (iocb->ki_pos != 0)
1184 		return -ESPIPE;
1185 
1186 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1187 		msg.msg_flags = MSG_DONTWAIT;
1188 
1189 	if (sock->type == SOCK_SEQPACKET)
1190 		msg.msg_flags |= MSG_EOR;
1191 
1192 	if (iocb->ki_flags & IOCB_NOSIGNAL)
1193 		msg.msg_flags |= MSG_NOSIGNAL;
1194 
1195 	res = __sock_sendmsg(sock, &msg);
1196 	*from = msg.msg_iter;
1197 	return res;
1198 }
1199 
1200 /*
1201  * Atomic setting of ioctl hooks to avoid race
1202  * with module unload.
1203  */
1204 
1205 static DEFINE_MUTEX(br_ioctl_mutex);
1206 static int (*br_ioctl_hook)(struct net *net, unsigned int cmd,
1207 			    void __user *uarg);
1208 
brioctl_set(int (* hook)(struct net * net,unsigned int cmd,void __user * uarg))1209 void brioctl_set(int (*hook)(struct net *net, unsigned int cmd,
1210 			     void __user *uarg))
1211 {
1212 	mutex_lock(&br_ioctl_mutex);
1213 	br_ioctl_hook = hook;
1214 	mutex_unlock(&br_ioctl_mutex);
1215 }
1216 EXPORT_SYMBOL(brioctl_set);
1217 
br_ioctl_call(struct net * net,unsigned int cmd,void __user * uarg)1218 int br_ioctl_call(struct net *net, unsigned int cmd, void __user *uarg)
1219 {
1220 	int err = -ENOPKG;
1221 
1222 	if (!br_ioctl_hook)
1223 		request_module("bridge");
1224 
1225 	mutex_lock(&br_ioctl_mutex);
1226 	if (br_ioctl_hook)
1227 		err = br_ioctl_hook(net, cmd, uarg);
1228 	mutex_unlock(&br_ioctl_mutex);
1229 
1230 	return err;
1231 }
1232 
1233 static DEFINE_MUTEX(vlan_ioctl_mutex);
1234 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1235 
vlan_ioctl_set(int (* hook)(struct net *,void __user *))1236 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1237 {
1238 	mutex_lock(&vlan_ioctl_mutex);
1239 	vlan_ioctl_hook = hook;
1240 	mutex_unlock(&vlan_ioctl_mutex);
1241 }
1242 EXPORT_SYMBOL(vlan_ioctl_set);
1243 
sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)1244 static long sock_do_ioctl(struct net *net, struct socket *sock,
1245 			  unsigned int cmd, unsigned long arg)
1246 {
1247 	const struct proto_ops *ops = READ_ONCE(sock->ops);
1248 	struct ifreq ifr;
1249 	bool need_copyout;
1250 	int err;
1251 	void __user *argp = (void __user *)arg;
1252 	void __user *data;
1253 
1254 	err = ops->ioctl(sock, cmd, arg);
1255 
1256 	/*
1257 	 * If this ioctl is unknown try to hand it down
1258 	 * to the NIC driver.
1259 	 */
1260 	if (err != -ENOIOCTLCMD)
1261 		return err;
1262 
1263 	if (!is_socket_ioctl_cmd(cmd))
1264 		return -ENOTTY;
1265 
1266 	if (get_user_ifreq(&ifr, &data, argp))
1267 		return -EFAULT;
1268 	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1269 	if (!err && need_copyout)
1270 		if (put_user_ifreq(&ifr, argp))
1271 			return -EFAULT;
1272 
1273 	return err;
1274 }
1275 
1276 /*
1277  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1278  *	what to do with it - that's up to the protocol still.
1279  */
1280 
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)1281 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1282 {
1283 	const struct proto_ops  *ops;
1284 	struct socket *sock;
1285 	struct sock *sk;
1286 	void __user *argp = (void __user *)arg;
1287 	int pid, err;
1288 	struct net *net;
1289 
1290 	sock = file->private_data;
1291 	ops = READ_ONCE(sock->ops);
1292 	sk = sock->sk;
1293 	net = sock_net(sk);
1294 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1295 		struct ifreq ifr;
1296 		void __user *data;
1297 		bool need_copyout;
1298 		if (get_user_ifreq(&ifr, &data, argp))
1299 			return -EFAULT;
1300 		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1301 		if (!err && need_copyout)
1302 			if (put_user_ifreq(&ifr, argp))
1303 				return -EFAULT;
1304 	} else
1305 #ifdef CONFIG_WEXT_CORE
1306 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1307 		err = wext_handle_ioctl(net, cmd, argp);
1308 	} else
1309 #endif
1310 		switch (cmd) {
1311 		case FIOSETOWN:
1312 		case SIOCSPGRP:
1313 			err = -EFAULT;
1314 			if (get_user(pid, (int __user *)argp))
1315 				break;
1316 			err = f_setown(sock->file, pid, 1);
1317 			break;
1318 		case FIOGETOWN:
1319 		case SIOCGPGRP:
1320 			err = put_user(f_getown(sock->file),
1321 				       (int __user *)argp);
1322 			break;
1323 		case SIOCGIFBR:
1324 		case SIOCSIFBR:
1325 		case SIOCBRADDBR:
1326 		case SIOCBRDELBR:
1327 		case SIOCBRADDIF:
1328 		case SIOCBRDELIF:
1329 			err = br_ioctl_call(net, cmd, argp);
1330 			break;
1331 		case SIOCGIFVLAN:
1332 		case SIOCSIFVLAN:
1333 			err = -ENOPKG;
1334 			if (!vlan_ioctl_hook)
1335 				request_module("8021q");
1336 
1337 			mutex_lock(&vlan_ioctl_mutex);
1338 			if (vlan_ioctl_hook)
1339 				err = vlan_ioctl_hook(net, argp);
1340 			mutex_unlock(&vlan_ioctl_mutex);
1341 			break;
1342 		case SIOCGSKNS:
1343 			err = -EPERM;
1344 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1345 				break;
1346 
1347 			err = open_related_ns(&net->ns, get_net_ns);
1348 			break;
1349 		case SIOCGSTAMP_OLD:
1350 		case SIOCGSTAMPNS_OLD:
1351 			if (!ops->gettstamp) {
1352 				err = -ENOIOCTLCMD;
1353 				break;
1354 			}
1355 			err = ops->gettstamp(sock, argp,
1356 					     cmd == SIOCGSTAMP_OLD,
1357 					     !IS_ENABLED(CONFIG_64BIT));
1358 			break;
1359 		case SIOCGSTAMP_NEW:
1360 		case SIOCGSTAMPNS_NEW:
1361 			if (!ops->gettstamp) {
1362 				err = -ENOIOCTLCMD;
1363 				break;
1364 			}
1365 			err = ops->gettstamp(sock, argp,
1366 					     cmd == SIOCGSTAMP_NEW,
1367 					     false);
1368 			break;
1369 
1370 		case SIOCGIFCONF:
1371 			err = dev_ifconf(net, argp);
1372 			break;
1373 
1374 		default:
1375 			err = sock_do_ioctl(net, sock, cmd, arg);
1376 			break;
1377 		}
1378 	return err;
1379 }
1380 
1381 /**
1382  *	sock_create_lite - creates a socket
1383  *	@family: protocol family (AF_INET, ...)
1384  *	@type: communication type (SOCK_STREAM, ...)
1385  *	@protocol: protocol (0, ...)
1386  *	@res: new socket
1387  *
1388  *	Creates a new socket and assigns it to @res, passing through LSM.
1389  *	The new socket initialization is not complete, see kernel_accept().
1390  *	Returns 0 or an error. On failure @res is set to %NULL.
1391  *	This function internally uses GFP_KERNEL.
1392  */
1393 
sock_create_lite(int family,int type,int protocol,struct socket ** res)1394 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1395 {
1396 	int err;
1397 	struct socket *sock = NULL;
1398 
1399 	err = security_socket_create(family, type, protocol, 1);
1400 	if (err)
1401 		goto out;
1402 
1403 	sock = sock_alloc();
1404 	if (!sock) {
1405 		err = -ENOMEM;
1406 		goto out;
1407 	}
1408 
1409 	sock->type = type;
1410 	err = security_socket_post_create(sock, family, type, protocol, 1);
1411 	if (err)
1412 		goto out_release;
1413 
1414 out:
1415 	*res = sock;
1416 	return err;
1417 out_release:
1418 	sock_release(sock);
1419 	sock = NULL;
1420 	goto out;
1421 }
1422 EXPORT_SYMBOL(sock_create_lite);
1423 
1424 /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)1425 static __poll_t sock_poll(struct file *file, poll_table *wait)
1426 {
1427 	struct socket *sock = file->private_data;
1428 	const struct proto_ops *ops = READ_ONCE(sock->ops);
1429 	__poll_t events = poll_requested_events(wait), flag = 0;
1430 
1431 	if (!ops->poll)
1432 		return 0;
1433 
1434 	if (sk_can_busy_loop(sock->sk)) {
1435 		/* poll once if requested by the syscall */
1436 		if (events & POLL_BUSY_LOOP)
1437 			sk_busy_loop(sock->sk, 1);
1438 
1439 		/* if this socket can poll_ll, tell the system call */
1440 		flag = POLL_BUSY_LOOP;
1441 	}
1442 
1443 	return ops->poll(file, sock, wait) | flag;
1444 }
1445 
sock_mmap(struct file * file,struct vm_area_struct * vma)1446 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1447 {
1448 	struct socket *sock = file->private_data;
1449 
1450 	return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1451 }
1452 
sock_close(struct inode * inode,struct file * filp)1453 static int sock_close(struct inode *inode, struct file *filp)
1454 {
1455 	__sock_release(SOCKET_I(inode), inode);
1456 	return 0;
1457 }
1458 
1459 /*
1460  *	Update the socket async list
1461  *
1462  *	Fasync_list locking strategy.
1463  *
1464  *	1. fasync_list is modified only under process context socket lock
1465  *	   i.e. under semaphore.
1466  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1467  *	   or under socket lock
1468  */
1469 
sock_fasync(int fd,struct file * filp,int on)1470 static int sock_fasync(int fd, struct file *filp, int on)
1471 {
1472 	struct socket *sock = filp->private_data;
1473 	struct sock *sk = sock->sk;
1474 	struct socket_wq *wq = &sock->wq;
1475 
1476 	if (sk == NULL)
1477 		return -EINVAL;
1478 
1479 	lock_sock(sk);
1480 	fasync_helper(fd, filp, on, &wq->fasync_list);
1481 
1482 	if (!wq->fasync_list)
1483 		sock_reset_flag(sk, SOCK_FASYNC);
1484 	else
1485 		sock_set_flag(sk, SOCK_FASYNC);
1486 
1487 	release_sock(sk);
1488 	return 0;
1489 }
1490 
1491 /* This function may be called only under rcu_lock */
1492 
sock_wake_async(struct socket_wq * wq,int how,int band)1493 int sock_wake_async(struct socket_wq *wq, int how, int band)
1494 {
1495 	if (!wq || !wq->fasync_list)
1496 		return -1;
1497 
1498 	switch (how) {
1499 	case SOCK_WAKE_WAITD:
1500 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1501 			break;
1502 		goto call_kill;
1503 	case SOCK_WAKE_SPACE:
1504 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1505 			break;
1506 		fallthrough;
1507 	case SOCK_WAKE_IO:
1508 call_kill:
1509 		kill_fasync(&wq->fasync_list, SIGIO, band);
1510 		break;
1511 	case SOCK_WAKE_URG:
1512 		kill_fasync(&wq->fasync_list, SIGURG, band);
1513 	}
1514 
1515 	return 0;
1516 }
1517 EXPORT_SYMBOL(sock_wake_async);
1518 
1519 /**
1520  *	__sock_create - creates a socket
1521  *	@net: net namespace
1522  *	@family: protocol family (AF_INET, ...)
1523  *	@type: communication type (SOCK_STREAM, ...)
1524  *	@protocol: protocol (0, ...)
1525  *	@res: new socket
1526  *	@kern: boolean for kernel space sockets
1527  *
1528  *	Creates a new socket and assigns it to @res, passing through LSM.
1529  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1530  *	be set to true if the socket resides in kernel space.
1531  *	This function internally uses GFP_KERNEL.
1532  */
1533 
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1534 int __sock_create(struct net *net, int family, int type, int protocol,
1535 			 struct socket **res, int kern)
1536 {
1537 	int err;
1538 	struct socket *sock;
1539 	const struct net_proto_family *pf;
1540 
1541 	/*
1542 	 *      Check protocol is in range
1543 	 */
1544 	if (family < 0 || family >= NPROTO)
1545 		return -EAFNOSUPPORT;
1546 	if (type < 0 || type >= SOCK_MAX)
1547 		return -EINVAL;
1548 
1549 	/* Compatibility.
1550 
1551 	   This uglymoron is moved from INET layer to here to avoid
1552 	   deadlock in module load.
1553 	 */
1554 	if (family == PF_INET && type == SOCK_PACKET) {
1555 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1556 			     current->comm);
1557 		family = PF_PACKET;
1558 	}
1559 
1560 	err = security_socket_create(family, type, protocol, kern);
1561 	if (err)
1562 		return err;
1563 
1564 	/*
1565 	 *	Allocate the socket and allow the family to set things up. if
1566 	 *	the protocol is 0, the family is instructed to select an appropriate
1567 	 *	default.
1568 	 */
1569 	sock = sock_alloc();
1570 	if (!sock) {
1571 		net_warn_ratelimited("socket: no more sockets\n");
1572 		return -ENFILE;	/* Not exactly a match, but its the
1573 				   closest posix thing */
1574 	}
1575 
1576 	sock->type = type;
1577 
1578 #ifdef CONFIG_MODULES
1579 	/* Attempt to load a protocol module if the find failed.
1580 	 *
1581 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1582 	 * requested real, full-featured networking support upon configuration.
1583 	 * Otherwise module support will break!
1584 	 */
1585 	if (rcu_access_pointer(net_families[family]) == NULL)
1586 		request_module("net-pf-%d", family);
1587 #endif
1588 
1589 	rcu_read_lock();
1590 	pf = rcu_dereference(net_families[family]);
1591 	err = -EAFNOSUPPORT;
1592 	if (!pf)
1593 		goto out_release;
1594 
1595 	/*
1596 	 * We will call the ->create function, that possibly is in a loadable
1597 	 * module, so we have to bump that loadable module refcnt first.
1598 	 */
1599 	if (!try_module_get(pf->owner))
1600 		goto out_release;
1601 
1602 	/* Now protected by module ref count */
1603 	rcu_read_unlock();
1604 
1605 	err = pf->create(net, sock, protocol, kern);
1606 	if (err < 0) {
1607 		/* ->create should release the allocated sock->sk object on error
1608 		 * and make sure sock->sk is set to NULL to avoid use-after-free
1609 		 */
1610 		DEBUG_NET_WARN_ONCE(sock->sk,
1611 				    "%ps must clear sock->sk on failure, family: %d, type: %d, protocol: %d\n",
1612 				    pf->create, family, type, protocol);
1613 		goto out_module_put;
1614 	}
1615 
1616 	/*
1617 	 * Now to bump the refcnt of the [loadable] module that owns this
1618 	 * socket at sock_release time we decrement its refcnt.
1619 	 */
1620 	if (!try_module_get(sock->ops->owner))
1621 		goto out_module_busy;
1622 
1623 	/*
1624 	 * Now that we're done with the ->create function, the [loadable]
1625 	 * module can have its refcnt decremented
1626 	 */
1627 	module_put(pf->owner);
1628 	err = security_socket_post_create(sock, family, type, protocol, kern);
1629 	if (err)
1630 		goto out_sock_release;
1631 	*res = sock;
1632 
1633 	return 0;
1634 
1635 out_module_busy:
1636 	err = -EAFNOSUPPORT;
1637 out_module_put:
1638 	sock->ops = NULL;
1639 	module_put(pf->owner);
1640 out_sock_release:
1641 	sock_release(sock);
1642 	return err;
1643 
1644 out_release:
1645 	rcu_read_unlock();
1646 	goto out_sock_release;
1647 }
1648 EXPORT_SYMBOL(__sock_create);
1649 
1650 /**
1651  *	sock_create - creates a socket
1652  *	@family: protocol family (AF_INET, ...)
1653  *	@type: communication type (SOCK_STREAM, ...)
1654  *	@protocol: protocol (0, ...)
1655  *	@res: new socket
1656  *
1657  *	A wrapper around __sock_create().
1658  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1659  */
1660 
sock_create(int family,int type,int protocol,struct socket ** res)1661 int sock_create(int family, int type, int protocol, struct socket **res)
1662 {
1663 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1664 }
1665 EXPORT_SYMBOL(sock_create);
1666 
1667 /**
1668  *	sock_create_kern - creates a socket (kernel space)
1669  *	@net: net namespace
1670  *	@family: protocol family (AF_INET, ...)
1671  *	@type: communication type (SOCK_STREAM, ...)
1672  *	@protocol: protocol (0, ...)
1673  *	@res: new socket
1674  *
1675  *	A wrapper around __sock_create().
1676  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1677  */
1678 
sock_create_kern(struct net * net,int family,int type,int protocol,struct socket ** res)1679 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1680 {
1681 	return __sock_create(net, family, type, protocol, res, 1);
1682 }
1683 EXPORT_SYMBOL(sock_create_kern);
1684 
__sys_socket_create(int family,int type,int protocol)1685 static struct socket *__sys_socket_create(int family, int type, int protocol)
1686 {
1687 	struct socket *sock;
1688 	int retval;
1689 
1690 	/* Check the SOCK_* constants for consistency.  */
1691 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1692 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1693 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1694 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1695 
1696 	if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1697 		return ERR_PTR(-EINVAL);
1698 	type &= SOCK_TYPE_MASK;
1699 
1700 	retval = sock_create(family, type, protocol, &sock);
1701 	if (retval < 0)
1702 		return ERR_PTR(retval);
1703 
1704 	return sock;
1705 }
1706 
__sys_socket_file(int family,int type,int protocol)1707 struct file *__sys_socket_file(int family, int type, int protocol)
1708 {
1709 	struct socket *sock;
1710 	int flags;
1711 
1712 	sock = __sys_socket_create(family, type, protocol);
1713 	if (IS_ERR(sock))
1714 		return ERR_CAST(sock);
1715 
1716 	flags = type & ~SOCK_TYPE_MASK;
1717 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1718 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1719 
1720 	return sock_alloc_file(sock, flags, NULL);
1721 }
1722 
1723 /*	A hook for bpf progs to attach to and update socket protocol.
1724  *
1725  *	A static noinline declaration here could cause the compiler to
1726  *	optimize away the function. A global noinline declaration will
1727  *	keep the definition, but may optimize away the callsite.
1728  *	Therefore, __weak is needed to ensure that the call is still
1729  *	emitted, by telling the compiler that we don't know what the
1730  *	function might eventually be.
1731  */
1732 
1733 __bpf_hook_start();
1734 
update_socket_protocol(int family,int type,int protocol)1735 __weak noinline int update_socket_protocol(int family, int type, int protocol)
1736 {
1737 	return protocol;
1738 }
1739 
1740 __bpf_hook_end();
1741 
__sys_socket(int family,int type,int protocol)1742 int __sys_socket(int family, int type, int protocol)
1743 {
1744 	struct socket *sock;
1745 	int flags;
1746 
1747 	sock = __sys_socket_create(family, type,
1748 				   update_socket_protocol(family, type, protocol));
1749 	if (IS_ERR(sock))
1750 		return PTR_ERR(sock);
1751 
1752 	flags = type & ~SOCK_TYPE_MASK;
1753 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1754 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1755 
1756 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1757 }
1758 
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1759 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1760 {
1761 	return __sys_socket(family, type, protocol);
1762 }
1763 
1764 /*
1765  *	Create a pair of connected sockets.
1766  */
1767 
__sys_socketpair(int family,int type,int protocol,int __user * usockvec)1768 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1769 {
1770 	struct socket *sock1, *sock2;
1771 	int fd1, fd2, err;
1772 	struct file *newfile1, *newfile2;
1773 	int flags;
1774 
1775 	flags = type & ~SOCK_TYPE_MASK;
1776 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1777 		return -EINVAL;
1778 	type &= SOCK_TYPE_MASK;
1779 
1780 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1781 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1782 
1783 	/*
1784 	 * reserve descriptors and make sure we won't fail
1785 	 * to return them to userland.
1786 	 */
1787 	fd1 = get_unused_fd_flags(flags);
1788 	if (unlikely(fd1 < 0))
1789 		return fd1;
1790 
1791 	fd2 = get_unused_fd_flags(flags);
1792 	if (unlikely(fd2 < 0)) {
1793 		put_unused_fd(fd1);
1794 		return fd2;
1795 	}
1796 
1797 	err = put_user(fd1, &usockvec[0]);
1798 	if (err)
1799 		goto out;
1800 
1801 	err = put_user(fd2, &usockvec[1]);
1802 	if (err)
1803 		goto out;
1804 
1805 	/*
1806 	 * Obtain the first socket and check if the underlying protocol
1807 	 * supports the socketpair call.
1808 	 */
1809 
1810 	err = sock_create(family, type, protocol, &sock1);
1811 	if (unlikely(err < 0))
1812 		goto out;
1813 
1814 	err = sock_create(family, type, protocol, &sock2);
1815 	if (unlikely(err < 0)) {
1816 		sock_release(sock1);
1817 		goto out;
1818 	}
1819 
1820 	err = security_socket_socketpair(sock1, sock2);
1821 	if (unlikely(err)) {
1822 		sock_release(sock2);
1823 		sock_release(sock1);
1824 		goto out;
1825 	}
1826 
1827 	err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1828 	if (unlikely(err < 0)) {
1829 		sock_release(sock2);
1830 		sock_release(sock1);
1831 		goto out;
1832 	}
1833 
1834 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1835 	if (IS_ERR(newfile1)) {
1836 		err = PTR_ERR(newfile1);
1837 		sock_release(sock2);
1838 		goto out;
1839 	}
1840 
1841 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1842 	if (IS_ERR(newfile2)) {
1843 		err = PTR_ERR(newfile2);
1844 		fput(newfile1);
1845 		goto out;
1846 	}
1847 
1848 	audit_fd_pair(fd1, fd2);
1849 
1850 	fd_install(fd1, newfile1);
1851 	fd_install(fd2, newfile2);
1852 	return 0;
1853 
1854 out:
1855 	put_unused_fd(fd2);
1856 	put_unused_fd(fd1);
1857 	return err;
1858 }
1859 
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1860 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1861 		int __user *, usockvec)
1862 {
1863 	return __sys_socketpair(family, type, protocol, usockvec);
1864 }
1865 
__sys_bind_socket(struct socket * sock,struct sockaddr_storage * address,int addrlen)1866 int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address,
1867 		      int addrlen)
1868 {
1869 	int err;
1870 
1871 	err = security_socket_bind(sock, (struct sockaddr *)address,
1872 				   addrlen);
1873 	if (!err)
1874 		err = READ_ONCE(sock->ops)->bind(sock,
1875 						 (struct sockaddr_unsized *)address,
1876 						 addrlen);
1877 	return err;
1878 }
1879 
1880 /*
1881  *	Bind a name to a socket. Nothing much to do here since it's
1882  *	the protocol's responsibility to handle the local address.
1883  *
1884  *	We move the socket address to kernel space before we call
1885  *	the protocol layer (having also checked the address is ok).
1886  */
1887 
__sys_bind(int fd,struct sockaddr __user * umyaddr,int addrlen)1888 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1889 {
1890 	struct socket *sock;
1891 	struct sockaddr_storage address;
1892 	CLASS(fd, f)(fd);
1893 	int err;
1894 
1895 	if (fd_empty(f))
1896 		return -EBADF;
1897 	sock = sock_from_file(fd_file(f));
1898 	if (unlikely(!sock))
1899 		return -ENOTSOCK;
1900 
1901 	err = move_addr_to_kernel(umyaddr, addrlen, &address);
1902 	if (unlikely(err))
1903 		return err;
1904 
1905 	return __sys_bind_socket(sock, &address, addrlen);
1906 }
1907 
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1908 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1909 {
1910 	return __sys_bind(fd, umyaddr, addrlen);
1911 }
1912 
1913 /*
1914  *	Perform a listen. Basically, we allow the protocol to do anything
1915  *	necessary for a listen, and if that works, we mark the socket as
1916  *	ready for listening.
1917  */
__sys_listen_socket(struct socket * sock,int backlog)1918 int __sys_listen_socket(struct socket *sock, int backlog)
1919 {
1920 	int somaxconn, err;
1921 
1922 	somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1923 	if ((unsigned int)backlog > somaxconn)
1924 		backlog = somaxconn;
1925 
1926 	err = security_socket_listen(sock, backlog);
1927 	if (!err)
1928 		err = READ_ONCE(sock->ops)->listen(sock, backlog);
1929 	return err;
1930 }
1931 
__sys_listen(int fd,int backlog)1932 int __sys_listen(int fd, int backlog)
1933 {
1934 	CLASS(fd, f)(fd);
1935 	struct socket *sock;
1936 
1937 	if (fd_empty(f))
1938 		return -EBADF;
1939 	sock = sock_from_file(fd_file(f));
1940 	if (unlikely(!sock))
1941 		return -ENOTSOCK;
1942 
1943 	return __sys_listen_socket(sock, backlog);
1944 }
1945 
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1946 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1947 {
1948 	return __sys_listen(fd, backlog);
1949 }
1950 
do_accept(struct file * file,struct proto_accept_arg * arg,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1951 struct file *do_accept(struct file *file, struct proto_accept_arg *arg,
1952 		       struct sockaddr __user *upeer_sockaddr,
1953 		       int __user *upeer_addrlen, int flags)
1954 {
1955 	struct socket *sock, *newsock;
1956 	struct file *newfile;
1957 	int err, len;
1958 	struct sockaddr_storage address;
1959 	const struct proto_ops *ops;
1960 
1961 	sock = sock_from_file(file);
1962 	if (!sock)
1963 		return ERR_PTR(-ENOTSOCK);
1964 
1965 	newsock = sock_alloc();
1966 	if (!newsock)
1967 		return ERR_PTR(-ENFILE);
1968 	ops = READ_ONCE(sock->ops);
1969 
1970 	newsock->type = sock->type;
1971 	newsock->ops = ops;
1972 
1973 	/*
1974 	 * We don't need try_module_get here, as the listening socket (sock)
1975 	 * has the protocol module (sock->ops->owner) held.
1976 	 */
1977 	__module_get(ops->owner);
1978 
1979 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1980 	if (IS_ERR(newfile))
1981 		return newfile;
1982 
1983 	err = security_socket_accept(sock, newsock);
1984 	if (err)
1985 		goto out_fd;
1986 
1987 	arg->flags |= sock->file->f_flags;
1988 	err = ops->accept(sock, newsock, arg);
1989 	if (err < 0)
1990 		goto out_fd;
1991 
1992 	if (upeer_sockaddr) {
1993 		len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1994 		if (len < 0) {
1995 			err = -ECONNABORTED;
1996 			goto out_fd;
1997 		}
1998 		err = move_addr_to_user(&address,
1999 					len, upeer_sockaddr, upeer_addrlen);
2000 		if (err < 0)
2001 			goto out_fd;
2002 	}
2003 
2004 	/* File flags are not inherited via accept() unlike another OSes. */
2005 	return newfile;
2006 out_fd:
2007 	fput(newfile);
2008 	return ERR_PTR(err);
2009 }
2010 
__sys_accept4_file(struct file * file,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)2011 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
2012 			      int __user *upeer_addrlen, int flags)
2013 {
2014 	struct proto_accept_arg arg = { };
2015 
2016 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
2017 		return -EINVAL;
2018 
2019 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
2020 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
2021 
2022 	return FD_ADD(flags, do_accept(file, &arg, upeer_sockaddr, upeer_addrlen, flags));
2023 }
2024 
2025 /*
2026  *	For accept, we attempt to create a new socket, set up the link
2027  *	with the client, wake up the client, then return the new
2028  *	connected fd. We collect the address of the connector in kernel
2029  *	space and move it to user at the very end. This is unclean because
2030  *	we open the socket then return an error.
2031  *
2032  *	1003.1g adds the ability to recvmsg() to query connection pending
2033  *	status to recvmsg. We need to add that support in a way thats
2034  *	clean when we restructure accept also.
2035  */
2036 
__sys_accept4(int fd,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)2037 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
2038 		  int __user *upeer_addrlen, int flags)
2039 {
2040 	CLASS(fd, f)(fd);
2041 
2042 	if (fd_empty(f))
2043 		return -EBADF;
2044 	return __sys_accept4_file(fd_file(f), upeer_sockaddr,
2045 					 upeer_addrlen, flags);
2046 }
2047 
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)2048 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
2049 		int __user *, upeer_addrlen, int, flags)
2050 {
2051 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
2052 }
2053 
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)2054 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
2055 		int __user *, upeer_addrlen)
2056 {
2057 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
2058 }
2059 
2060 /*
2061  *	Attempt to connect to a socket with the server address.  The address
2062  *	is in user space so we verify it is OK and move it to kernel space.
2063  *
2064  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2065  *	break bindings
2066  *
2067  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2068  *	other SEQPACKET protocols that take time to connect() as it doesn't
2069  *	include the -EINPROGRESS status for such sockets.
2070  */
2071 
__sys_connect_file(struct file * file,struct sockaddr_storage * address,int addrlen,int file_flags)2072 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2073 		       int addrlen, int file_flags)
2074 {
2075 	struct socket *sock;
2076 	int err;
2077 
2078 	sock = sock_from_file(file);
2079 	if (!sock) {
2080 		err = -ENOTSOCK;
2081 		goto out;
2082 	}
2083 
2084 	err =
2085 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2086 	if (err)
2087 		goto out;
2088 
2089 	err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr_unsized *)address,
2090 					    addrlen, sock->file->f_flags | file_flags);
2091 out:
2092 	return err;
2093 }
2094 
__sys_connect(int fd,struct sockaddr __user * uservaddr,int addrlen)2095 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2096 {
2097 	struct sockaddr_storage address;
2098 	CLASS(fd, f)(fd);
2099 	int ret;
2100 
2101 	if (fd_empty(f))
2102 		return -EBADF;
2103 
2104 	ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2105 	if (ret)
2106 		return ret;
2107 
2108 	return __sys_connect_file(fd_file(f), &address, addrlen, 0);
2109 }
2110 
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)2111 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2112 		int, addrlen)
2113 {
2114 	return __sys_connect(fd, uservaddr, addrlen);
2115 }
2116 
do_getsockname(struct socket * sock,int peer,struct sockaddr __user * usockaddr,int __user * usockaddr_len)2117 int do_getsockname(struct socket *sock, int peer,
2118 		   struct sockaddr __user *usockaddr, int __user *usockaddr_len)
2119 {
2120 	struct sockaddr_storage address;
2121 	int err;
2122 
2123 	if (peer)
2124 		err = security_socket_getpeername(sock);
2125 	else
2126 		err = security_socket_getsockname(sock);
2127 	if (err)
2128 		return err;
2129 	err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, peer);
2130 	if (err < 0)
2131 		return err;
2132 	/* "err" is actually length in this case */
2133 	return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2134 }
2135 
2136 /*
2137  *	Get the remote or local address ('name') of a socket object. Move the
2138  *	obtained name to user space.
2139  */
__sys_getsockname(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len,int peer)2140 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2141 		      int __user *usockaddr_len, int peer)
2142 {
2143 	struct socket *sock;
2144 	CLASS(fd, f)(fd);
2145 
2146 	if (fd_empty(f))
2147 		return -EBADF;
2148 	sock = sock_from_file(fd_file(f));
2149 	if (unlikely(!sock))
2150 		return -ENOTSOCK;
2151 	return do_getsockname(sock, peer, usockaddr, usockaddr_len);
2152 }
2153 
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2154 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2155 		int __user *, usockaddr_len)
2156 {
2157 	return __sys_getsockname(fd, usockaddr, usockaddr_len, 0);
2158 }
2159 
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2160 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2161 		int __user *, usockaddr_len)
2162 {
2163 	return __sys_getsockname(fd, usockaddr, usockaddr_len, 1);
2164 }
2165 
2166 /*
2167  *	Send a datagram to a given address. We move the address into kernel
2168  *	space and check the user space data area is readable before invoking
2169  *	the protocol.
2170  */
__sys_sendto(int fd,void __user * buff,size_t len,unsigned int flags,struct sockaddr __user * addr,int addr_len)2171 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2172 		 struct sockaddr __user *addr,  int addr_len)
2173 {
2174 	struct socket *sock;
2175 	struct sockaddr_storage address;
2176 	int err;
2177 	struct msghdr msg;
2178 
2179 	err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter);
2180 	if (unlikely(err))
2181 		return err;
2182 
2183 	CLASS(fd, f)(fd);
2184 	if (fd_empty(f))
2185 		return -EBADF;
2186 	sock = sock_from_file(fd_file(f));
2187 	if (unlikely(!sock))
2188 		return -ENOTSOCK;
2189 
2190 	msg.msg_name = NULL;
2191 	msg.msg_control = NULL;
2192 	msg.msg_controllen = 0;
2193 	msg.msg_namelen = 0;
2194 	msg.msg_ubuf = NULL;
2195 	if (addr) {
2196 		err = move_addr_to_kernel(addr, addr_len, &address);
2197 		if (err < 0)
2198 			return err;
2199 		msg.msg_name = (struct sockaddr *)&address;
2200 		msg.msg_namelen = addr_len;
2201 	}
2202 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2203 	if (sock->file->f_flags & O_NONBLOCK)
2204 		flags |= MSG_DONTWAIT;
2205 	msg.msg_flags = flags;
2206 	return __sock_sendmsg(sock, &msg);
2207 }
2208 
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned int,flags,struct sockaddr __user *,addr,int,addr_len)2209 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2210 		unsigned int, flags, struct sockaddr __user *, addr,
2211 		int, addr_len)
2212 {
2213 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2214 }
2215 
2216 /*
2217  *	Send a datagram down a socket.
2218  */
2219 
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned int,flags)2220 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2221 		unsigned int, flags)
2222 {
2223 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2224 }
2225 
2226 /*
2227  *	Receive a frame from the socket and optionally record the address of the
2228  *	sender. We verify the buffers are writable and if needed move the
2229  *	sender address from kernel to user space.
2230  */
__sys_recvfrom(int fd,void __user * ubuf,size_t size,unsigned int flags,struct sockaddr __user * addr,int __user * addr_len)2231 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2232 		   struct sockaddr __user *addr, int __user *addr_len)
2233 {
2234 	struct sockaddr_storage address;
2235 	struct msghdr msg = {
2236 		/* Save some cycles and don't copy the address if not needed */
2237 		.msg_name = addr ? (struct sockaddr *)&address : NULL,
2238 	};
2239 	struct socket *sock;
2240 	int err, err2;
2241 
2242 	err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter);
2243 	if (unlikely(err))
2244 		return err;
2245 
2246 	CLASS(fd, f)(fd);
2247 
2248 	if (fd_empty(f))
2249 		return -EBADF;
2250 	sock = sock_from_file(fd_file(f));
2251 	if (unlikely(!sock))
2252 		return -ENOTSOCK;
2253 
2254 	if (sock->file->f_flags & O_NONBLOCK)
2255 		flags |= MSG_DONTWAIT;
2256 	err = sock_recvmsg(sock, &msg, flags);
2257 
2258 	if (err >= 0 && addr != NULL) {
2259 		err2 = move_addr_to_user(&address,
2260 					 msg.msg_namelen, addr, addr_len);
2261 		if (err2 < 0)
2262 			err = err2;
2263 	}
2264 	return err;
2265 }
2266 
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags,struct sockaddr __user *,addr,int __user *,addr_len)2267 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2268 		unsigned int, flags, struct sockaddr __user *, addr,
2269 		int __user *, addr_len)
2270 {
2271 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2272 }
2273 
2274 /*
2275  *	Receive a datagram from a socket.
2276  */
2277 
SYSCALL_DEFINE4(recv,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags)2278 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2279 		unsigned int, flags)
2280 {
2281 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2282 }
2283 
sock_use_custom_sol_socket(const struct socket * sock)2284 static bool sock_use_custom_sol_socket(const struct socket *sock)
2285 {
2286 	return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2287 }
2288 
do_sock_setsockopt(struct socket * sock,bool compat,int level,int optname,sockptr_t optval,int optlen)2289 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
2290 		       int optname, sockptr_t optval, int optlen)
2291 {
2292 	const struct proto_ops *ops;
2293 	char *kernel_optval = NULL;
2294 	int err;
2295 
2296 	if (optlen < 0)
2297 		return -EINVAL;
2298 
2299 	err = security_socket_setsockopt(sock, level, optname);
2300 	if (err)
2301 		goto out_put;
2302 
2303 	if (!compat)
2304 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2305 						     optval, &optlen,
2306 						     &kernel_optval);
2307 	if (err < 0)
2308 		goto out_put;
2309 	if (err > 0) {
2310 		err = 0;
2311 		goto out_put;
2312 	}
2313 
2314 	if (kernel_optval)
2315 		optval = KERNEL_SOCKPTR(kernel_optval);
2316 	ops = READ_ONCE(sock->ops);
2317 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2318 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2319 	else if (unlikely(!ops->setsockopt))
2320 		err = -EOPNOTSUPP;
2321 	else
2322 		err = ops->setsockopt(sock, level, optname, optval,
2323 					    optlen);
2324 	kfree(kernel_optval);
2325 out_put:
2326 	return err;
2327 }
2328 EXPORT_SYMBOL(do_sock_setsockopt);
2329 
2330 /* Set a socket option. Because we don't know the option lengths we have
2331  * to pass the user mode parameter for the protocols to sort out.
2332  */
__sys_setsockopt(int fd,int level,int optname,char __user * user_optval,int optlen)2333 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2334 		     int optlen)
2335 {
2336 	sockptr_t optval = USER_SOCKPTR(user_optval);
2337 	bool compat = in_compat_syscall();
2338 	struct socket *sock;
2339 	CLASS(fd, f)(fd);
2340 
2341 	if (fd_empty(f))
2342 		return -EBADF;
2343 	sock = sock_from_file(fd_file(f));
2344 	if (unlikely(!sock))
2345 		return -ENOTSOCK;
2346 
2347 	return do_sock_setsockopt(sock, compat, level, optname, optval, optlen);
2348 }
2349 
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)2350 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2351 		char __user *, optval, int, optlen)
2352 {
2353 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2354 }
2355 
2356 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2357 							 int optname));
2358 
do_sock_getsockopt(struct socket * sock,bool compat,int level,int optname,sockptr_t optval,sockptr_t optlen)2359 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
2360 		       int optname, sockptr_t optval, sockptr_t optlen)
2361 {
2362 	int max_optlen __maybe_unused = 0;
2363 	const struct proto_ops *ops;
2364 	int err;
2365 
2366 	err = security_socket_getsockopt(sock, level, optname);
2367 	if (err)
2368 		return err;
2369 
2370 	if (!compat)
2371 		copy_from_sockptr(&max_optlen, optlen, sizeof(int));
2372 
2373 	ops = READ_ONCE(sock->ops);
2374 	if (level == SOL_SOCKET) {
2375 		err = sk_getsockopt(sock->sk, level, optname, optval, optlen);
2376 	} else if (unlikely(!ops->getsockopt)) {
2377 		err = -EOPNOTSUPP;
2378 	} else {
2379 		if (WARN_ONCE(optval.is_kernel || optlen.is_kernel,
2380 			      "Invalid argument type"))
2381 			return -EOPNOTSUPP;
2382 
2383 		err = ops->getsockopt(sock, level, optname, optval.user,
2384 				      optlen.user);
2385 	}
2386 
2387 	if (!compat)
2388 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2389 						     optval, optlen, max_optlen,
2390 						     err);
2391 
2392 	return err;
2393 }
2394 EXPORT_SYMBOL(do_sock_getsockopt);
2395 
2396 /*
2397  *	Get a socket option. Because we don't know the option lengths we have
2398  *	to pass a user mode parameter for the protocols to sort out.
2399  */
__sys_getsockopt(int fd,int level,int optname,char __user * optval,int __user * optlen)2400 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2401 		int __user *optlen)
2402 {
2403 	struct socket *sock;
2404 	CLASS(fd, f)(fd);
2405 
2406 	if (fd_empty(f))
2407 		return -EBADF;
2408 	sock = sock_from_file(fd_file(f));
2409 	if (unlikely(!sock))
2410 		return -ENOTSOCK;
2411 
2412 	return do_sock_getsockopt(sock, in_compat_syscall(), level, optname,
2413 				 USER_SOCKPTR(optval), USER_SOCKPTR(optlen));
2414 }
2415 
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)2416 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2417 		char __user *, optval, int __user *, optlen)
2418 {
2419 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2420 }
2421 
2422 /*
2423  *	Shutdown a socket.
2424  */
2425 
__sys_shutdown_sock(struct socket * sock,int how)2426 int __sys_shutdown_sock(struct socket *sock, int how)
2427 {
2428 	int err;
2429 
2430 	err = security_socket_shutdown(sock, how);
2431 	if (!err)
2432 		err = READ_ONCE(sock->ops)->shutdown(sock, how);
2433 
2434 	return err;
2435 }
2436 
__sys_shutdown(int fd,int how)2437 int __sys_shutdown(int fd, int how)
2438 {
2439 	struct socket *sock;
2440 	CLASS(fd, f)(fd);
2441 
2442 	if (fd_empty(f))
2443 		return -EBADF;
2444 	sock = sock_from_file(fd_file(f));
2445 	if (unlikely(!sock))
2446 		return -ENOTSOCK;
2447 
2448 	return __sys_shutdown_sock(sock, how);
2449 }
2450 
SYSCALL_DEFINE2(shutdown,int,fd,int,how)2451 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2452 {
2453 	return __sys_shutdown(fd, how);
2454 }
2455 
2456 /* A couple of helpful macros for getting the address of the 32/64 bit
2457  * fields which are the same type (int / unsigned) on our platforms.
2458  */
2459 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2460 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2461 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2462 
2463 struct used_address {
2464 	struct sockaddr_storage name;
2465 	unsigned int name_len;
2466 };
2467 
__copy_msghdr(struct msghdr * kmsg,struct user_msghdr * msg,struct sockaddr __user ** save_addr)2468 int __copy_msghdr(struct msghdr *kmsg,
2469 		  struct user_msghdr *msg,
2470 		  struct sockaddr __user **save_addr)
2471 {
2472 	ssize_t err;
2473 
2474 	kmsg->msg_control_is_user = true;
2475 	kmsg->msg_get_inq = 0;
2476 	kmsg->msg_control_user = msg->msg_control;
2477 	kmsg->msg_controllen = msg->msg_controllen;
2478 	kmsg->msg_flags = msg->msg_flags;
2479 
2480 	kmsg->msg_namelen = msg->msg_namelen;
2481 	if (!msg->msg_name)
2482 		kmsg->msg_namelen = 0;
2483 
2484 	if (kmsg->msg_namelen < 0)
2485 		return -EINVAL;
2486 
2487 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2488 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2489 
2490 	if (save_addr)
2491 		*save_addr = msg->msg_name;
2492 
2493 	if (msg->msg_name && kmsg->msg_namelen) {
2494 		if (!save_addr) {
2495 			err = move_addr_to_kernel(msg->msg_name,
2496 						  kmsg->msg_namelen,
2497 						  kmsg->msg_name);
2498 			if (err < 0)
2499 				return err;
2500 		}
2501 	} else {
2502 		kmsg->msg_name = NULL;
2503 		kmsg->msg_namelen = 0;
2504 	}
2505 
2506 	if (msg->msg_iovlen > UIO_MAXIOV)
2507 		return -EMSGSIZE;
2508 
2509 	kmsg->msg_iocb = NULL;
2510 	kmsg->msg_ubuf = NULL;
2511 	return 0;
2512 }
2513 
copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec ** iov)2514 static int copy_msghdr_from_user(struct msghdr *kmsg,
2515 				 struct user_msghdr __user *umsg,
2516 				 struct sockaddr __user **save_addr,
2517 				 struct iovec **iov)
2518 {
2519 	struct user_msghdr msg;
2520 	ssize_t err;
2521 
2522 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2523 		return -EFAULT;
2524 
2525 	err = __copy_msghdr(kmsg, &msg, save_addr);
2526 	if (err)
2527 		return err;
2528 
2529 	err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2530 			    msg.msg_iov, msg.msg_iovlen,
2531 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2532 	return err < 0 ? err : 0;
2533 }
2534 
____sys_sendmsg(struct socket * sock,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2535 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2536 			   unsigned int flags, struct used_address *used_address,
2537 			   unsigned int allowed_msghdr_flags)
2538 {
2539 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2540 				__aligned(sizeof(__kernel_size_t));
2541 	/* 20 is size of ipv6_pktinfo */
2542 	unsigned char *ctl_buf = ctl;
2543 	int ctl_len;
2544 	ssize_t err;
2545 
2546 	err = -ENOBUFS;
2547 
2548 	if (msg_sys->msg_controllen > INT_MAX)
2549 		goto out;
2550 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2551 	ctl_len = msg_sys->msg_controllen;
2552 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2553 		err =
2554 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2555 						     sizeof(ctl));
2556 		if (err)
2557 			goto out;
2558 		ctl_buf = msg_sys->msg_control;
2559 		ctl_len = msg_sys->msg_controllen;
2560 	} else if (ctl_len) {
2561 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2562 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2563 		if (ctl_len > sizeof(ctl)) {
2564 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2565 			if (ctl_buf == NULL)
2566 				goto out;
2567 		}
2568 		err = -EFAULT;
2569 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2570 			goto out_freectl;
2571 		msg_sys->msg_control = ctl_buf;
2572 		msg_sys->msg_control_is_user = false;
2573 	}
2574 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2575 	msg_sys->msg_flags = flags;
2576 
2577 	if (sock->file->f_flags & O_NONBLOCK)
2578 		msg_sys->msg_flags |= MSG_DONTWAIT;
2579 	/*
2580 	 * If this is sendmmsg() and current destination address is same as
2581 	 * previously succeeded address, omit asking LSM's decision.
2582 	 * used_address->name_len is initialized to UINT_MAX so that the first
2583 	 * destination address never matches.
2584 	 */
2585 	if (used_address && msg_sys->msg_name &&
2586 	    used_address->name_len == msg_sys->msg_namelen &&
2587 	    !memcmp(&used_address->name, msg_sys->msg_name,
2588 		    used_address->name_len)) {
2589 		err = sock_sendmsg_nosec(sock, msg_sys);
2590 		goto out_freectl;
2591 	}
2592 	err = __sock_sendmsg(sock, msg_sys);
2593 	/*
2594 	 * If this is sendmmsg() and sending to current destination address was
2595 	 * successful, remember it.
2596 	 */
2597 	if (used_address && err >= 0) {
2598 		used_address->name_len = msg_sys->msg_namelen;
2599 		if (msg_sys->msg_name)
2600 			memcpy(&used_address->name, msg_sys->msg_name,
2601 			       used_address->name_len);
2602 	}
2603 
2604 out_freectl:
2605 	if (ctl_buf != ctl)
2606 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2607 out:
2608 	return err;
2609 }
2610 
sendmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct iovec ** iov)2611 static int sendmsg_copy_msghdr(struct msghdr *msg,
2612 			       struct user_msghdr __user *umsg, unsigned flags,
2613 			       struct iovec **iov)
2614 {
2615 	int err;
2616 
2617 	if (flags & MSG_CMSG_COMPAT) {
2618 		struct compat_msghdr __user *msg_compat;
2619 
2620 		msg_compat = (struct compat_msghdr __user *) umsg;
2621 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2622 	} else {
2623 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2624 	}
2625 	if (err < 0)
2626 		return err;
2627 
2628 	return 0;
2629 }
2630 
___sys_sendmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2631 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2632 			 struct msghdr *msg_sys, unsigned int flags,
2633 			 struct used_address *used_address,
2634 			 unsigned int allowed_msghdr_flags)
2635 {
2636 	struct sockaddr_storage address;
2637 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2638 	ssize_t err;
2639 
2640 	msg_sys->msg_name = &address;
2641 
2642 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2643 	if (err < 0)
2644 		return err;
2645 
2646 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2647 				allowed_msghdr_flags);
2648 	kfree(iov);
2649 	return err;
2650 }
2651 
2652 /*
2653  *	BSD sendmsg interface
2654  */
__sys_sendmsg_sock(struct socket * sock,struct msghdr * msg,unsigned int flags)2655 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2656 			unsigned int flags)
2657 {
2658 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2659 }
2660 
__sys_sendmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2661 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2662 		   bool forbid_cmsg_compat)
2663 {
2664 	struct msghdr msg_sys;
2665 	struct socket *sock;
2666 
2667 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2668 		return -EINVAL;
2669 
2670 	CLASS(fd, f)(fd);
2671 
2672 	if (fd_empty(f))
2673 		return -EBADF;
2674 	sock = sock_from_file(fd_file(f));
2675 	if (unlikely(!sock))
2676 		return -ENOTSOCK;
2677 
2678 	return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2679 }
2680 
SYSCALL_DEFINE3(sendmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2681 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2682 {
2683 	return __sys_sendmsg(fd, msg, flags, true);
2684 }
2685 
2686 /*
2687  *	Linux sendmmsg interface
2688  */
2689 
__sys_sendmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,bool forbid_cmsg_compat)2690 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2691 		   unsigned int flags, bool forbid_cmsg_compat)
2692 {
2693 	int err, datagrams;
2694 	struct socket *sock;
2695 	struct mmsghdr __user *entry;
2696 	struct compat_mmsghdr __user *compat_entry;
2697 	struct msghdr msg_sys;
2698 	struct used_address used_address;
2699 	unsigned int oflags = flags;
2700 
2701 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2702 		return -EINVAL;
2703 
2704 	if (vlen > UIO_MAXIOV)
2705 		vlen = UIO_MAXIOV;
2706 
2707 	datagrams = 0;
2708 
2709 	CLASS(fd, f)(fd);
2710 
2711 	if (fd_empty(f))
2712 		return -EBADF;
2713 	sock = sock_from_file(fd_file(f));
2714 	if (unlikely(!sock))
2715 		return -ENOTSOCK;
2716 
2717 	used_address.name_len = UINT_MAX;
2718 	entry = mmsg;
2719 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2720 	err = 0;
2721 	flags |= MSG_BATCH;
2722 
2723 	while (datagrams < vlen) {
2724 		if (datagrams == vlen - 1)
2725 			flags = oflags;
2726 
2727 		if (MSG_CMSG_COMPAT & flags) {
2728 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2729 					     &msg_sys, flags, &used_address, MSG_EOR);
2730 			if (err < 0)
2731 				break;
2732 			err = __put_user(err, &compat_entry->msg_len);
2733 			++compat_entry;
2734 		} else {
2735 			err = ___sys_sendmsg(sock,
2736 					     (struct user_msghdr __user *)entry,
2737 					     &msg_sys, flags, &used_address, MSG_EOR);
2738 			if (err < 0)
2739 				break;
2740 			err = put_user(err, &entry->msg_len);
2741 			++entry;
2742 		}
2743 
2744 		if (err)
2745 			break;
2746 		++datagrams;
2747 		if (msg_data_left(&msg_sys))
2748 			break;
2749 		cond_resched();
2750 	}
2751 
2752 	/* We only return an error if no datagrams were able to be sent */
2753 	if (datagrams != 0)
2754 		return datagrams;
2755 
2756 	return err;
2757 }
2758 
SYSCALL_DEFINE4(sendmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags)2759 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2760 		unsigned int, vlen, unsigned int, flags)
2761 {
2762 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2763 }
2764 
recvmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct sockaddr __user ** uaddr,struct iovec ** iov)2765 static int recvmsg_copy_msghdr(struct msghdr *msg,
2766 			       struct user_msghdr __user *umsg, unsigned flags,
2767 			       struct sockaddr __user **uaddr,
2768 			       struct iovec **iov)
2769 {
2770 	ssize_t err;
2771 
2772 	if (MSG_CMSG_COMPAT & flags) {
2773 		struct compat_msghdr __user *msg_compat;
2774 
2775 		msg_compat = (struct compat_msghdr __user *) umsg;
2776 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2777 	} else {
2778 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2779 	}
2780 	if (err < 0)
2781 		return err;
2782 
2783 	return 0;
2784 }
2785 
____sys_recvmsg(struct socket * sock,struct msghdr * msg_sys,struct user_msghdr __user * msg,struct sockaddr __user * uaddr,unsigned int flags,int nosec)2786 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2787 			   struct user_msghdr __user *msg,
2788 			   struct sockaddr __user *uaddr,
2789 			   unsigned int flags, int nosec)
2790 {
2791 	struct compat_msghdr __user *msg_compat =
2792 					(struct compat_msghdr __user *) msg;
2793 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2794 	struct sockaddr_storage addr;
2795 	unsigned long cmsg_ptr;
2796 	int len;
2797 	ssize_t err;
2798 
2799 	msg_sys->msg_name = &addr;
2800 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2801 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2802 
2803 	/* We assume all kernel code knows the size of sockaddr_storage */
2804 	msg_sys->msg_namelen = 0;
2805 
2806 	if (sock->file->f_flags & O_NONBLOCK)
2807 		flags |= MSG_DONTWAIT;
2808 
2809 	if (unlikely(nosec))
2810 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2811 	else
2812 		err = sock_recvmsg(sock, msg_sys, flags);
2813 
2814 	if (err < 0)
2815 		goto out;
2816 	len = err;
2817 
2818 	if (uaddr != NULL) {
2819 		err = move_addr_to_user(&addr,
2820 					msg_sys->msg_namelen, uaddr,
2821 					uaddr_len);
2822 		if (err < 0)
2823 			goto out;
2824 	}
2825 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2826 			 COMPAT_FLAGS(msg));
2827 	if (err)
2828 		goto out;
2829 	if (MSG_CMSG_COMPAT & flags)
2830 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2831 				 &msg_compat->msg_controllen);
2832 	else
2833 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2834 				 &msg->msg_controllen);
2835 	if (err)
2836 		goto out;
2837 	err = len;
2838 out:
2839 	return err;
2840 }
2841 
___sys_recvmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,int nosec)2842 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2843 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2844 {
2845 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2846 	/* user mode address pointers */
2847 	struct sockaddr __user *uaddr;
2848 	ssize_t err;
2849 
2850 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2851 	if (err < 0)
2852 		return err;
2853 
2854 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2855 	kfree(iov);
2856 	return err;
2857 }
2858 
2859 /*
2860  *	BSD recvmsg interface
2861  */
2862 
__sys_recvmsg_sock(struct socket * sock,struct msghdr * msg,struct user_msghdr __user * umsg,struct sockaddr __user * uaddr,unsigned int flags)2863 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2864 			struct user_msghdr __user *umsg,
2865 			struct sockaddr __user *uaddr, unsigned int flags)
2866 {
2867 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2868 }
2869 
__sys_recvmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2870 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2871 		   bool forbid_cmsg_compat)
2872 {
2873 	struct msghdr msg_sys;
2874 	struct socket *sock;
2875 
2876 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2877 		return -EINVAL;
2878 
2879 	CLASS(fd, f)(fd);
2880 
2881 	if (fd_empty(f))
2882 		return -EBADF;
2883 	sock = sock_from_file(fd_file(f));
2884 	if (unlikely(!sock))
2885 		return -ENOTSOCK;
2886 
2887 	return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2888 }
2889 
SYSCALL_DEFINE3(recvmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2890 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2891 		unsigned int, flags)
2892 {
2893 	return __sys_recvmsg(fd, msg, flags, true);
2894 }
2895 
2896 /*
2897  *     Linux recvmmsg interface
2898  */
2899 
do_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec64 * timeout)2900 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2901 			  unsigned int vlen, unsigned int flags,
2902 			  struct timespec64 *timeout)
2903 {
2904 	int err = 0, datagrams;
2905 	struct socket *sock;
2906 	struct mmsghdr __user *entry;
2907 	struct compat_mmsghdr __user *compat_entry;
2908 	struct msghdr msg_sys;
2909 	struct timespec64 end_time;
2910 	struct timespec64 timeout64;
2911 
2912 	if (timeout &&
2913 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2914 				    timeout->tv_nsec))
2915 		return -EINVAL;
2916 
2917 	datagrams = 0;
2918 
2919 	CLASS(fd, f)(fd);
2920 
2921 	if (fd_empty(f))
2922 		return -EBADF;
2923 	sock = sock_from_file(fd_file(f));
2924 	if (unlikely(!sock))
2925 		return -ENOTSOCK;
2926 
2927 	if (likely(!(flags & MSG_ERRQUEUE))) {
2928 		err = sock_error(sock->sk);
2929 		if (err)
2930 			return err;
2931 	}
2932 
2933 	entry = mmsg;
2934 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2935 
2936 	while (datagrams < vlen) {
2937 		/*
2938 		 * No need to ask LSM for more than the first datagram.
2939 		 */
2940 		if (MSG_CMSG_COMPAT & flags) {
2941 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2942 					     &msg_sys, flags & ~MSG_WAITFORONE,
2943 					     datagrams);
2944 			if (err < 0)
2945 				break;
2946 			err = __put_user(err, &compat_entry->msg_len);
2947 			++compat_entry;
2948 		} else {
2949 			err = ___sys_recvmsg(sock,
2950 					     (struct user_msghdr __user *)entry,
2951 					     &msg_sys, flags & ~MSG_WAITFORONE,
2952 					     datagrams);
2953 			if (err < 0)
2954 				break;
2955 			err = put_user(err, &entry->msg_len);
2956 			++entry;
2957 		}
2958 
2959 		if (err)
2960 			break;
2961 		++datagrams;
2962 
2963 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2964 		if (flags & MSG_WAITFORONE)
2965 			flags |= MSG_DONTWAIT;
2966 
2967 		if (timeout) {
2968 			ktime_get_ts64(&timeout64);
2969 			*timeout = timespec64_sub(end_time, timeout64);
2970 			if (timeout->tv_sec < 0) {
2971 				timeout->tv_sec = timeout->tv_nsec = 0;
2972 				break;
2973 			}
2974 
2975 			/* Timeout, return less than vlen datagrams */
2976 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2977 				break;
2978 		}
2979 
2980 		/* Out of band data, return right away */
2981 		if (msg_sys.msg_flags & MSG_OOB)
2982 			break;
2983 		cond_resched();
2984 	}
2985 
2986 	if (err == 0)
2987 		return datagrams;
2988 
2989 	if (datagrams == 0)
2990 		return err;
2991 
2992 	/*
2993 	 * We may return less entries than requested (vlen) if the
2994 	 * sock is non block and there aren't enough datagrams...
2995 	 */
2996 	if (err != -EAGAIN) {
2997 		/*
2998 		 * ... or  if recvmsg returns an error after we
2999 		 * received some datagrams, where we record the
3000 		 * error to return on the next call or if the
3001 		 * app asks about it using getsockopt(SO_ERROR).
3002 		 */
3003 		WRITE_ONCE(sock->sk->sk_err, -err);
3004 	}
3005 	return datagrams;
3006 }
3007 
__sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct __kernel_timespec __user * timeout,struct old_timespec32 __user * timeout32)3008 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
3009 		   unsigned int vlen, unsigned int flags,
3010 		   struct __kernel_timespec __user *timeout,
3011 		   struct old_timespec32 __user *timeout32)
3012 {
3013 	int datagrams;
3014 	struct timespec64 timeout_sys;
3015 
3016 	if (timeout && get_timespec64(&timeout_sys, timeout))
3017 		return -EFAULT;
3018 
3019 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
3020 		return -EFAULT;
3021 
3022 	if (!timeout && !timeout32)
3023 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
3024 
3025 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
3026 
3027 	if (datagrams <= 0)
3028 		return datagrams;
3029 
3030 	if (timeout && put_timespec64(&timeout_sys, timeout))
3031 		datagrams = -EFAULT;
3032 
3033 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
3034 		datagrams = -EFAULT;
3035 
3036 	return datagrams;
3037 }
3038 
SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct __kernel_timespec __user *,timeout)3039 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
3040 		unsigned int, vlen, unsigned int, flags,
3041 		struct __kernel_timespec __user *, timeout)
3042 {
3043 	if (flags & MSG_CMSG_COMPAT)
3044 		return -EINVAL;
3045 
3046 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
3047 }
3048 
3049 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE5(recvmmsg_time32,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct old_timespec32 __user *,timeout)3050 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3051 		unsigned int, vlen, unsigned int, flags,
3052 		struct old_timespec32 __user *, timeout)
3053 {
3054 	if (flags & MSG_CMSG_COMPAT)
3055 		return -EINVAL;
3056 
3057 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
3058 }
3059 #endif
3060 
3061 #ifdef __ARCH_WANT_SYS_SOCKETCALL
3062 /* Argument list sizes for sys_socketcall */
3063 #define AL(x) ((x) * sizeof(unsigned long))
3064 static const unsigned char nargs[21] = {
3065 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3066 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3067 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3068 	AL(4), AL(5), AL(4)
3069 };
3070 
3071 #undef AL
3072 
3073 /*
3074  *	System call vectors.
3075  *
3076  *	Argument checking cleaned up. Saved 20% in size.
3077  *  This function doesn't need to set the kernel lock because
3078  *  it is set by the callees.
3079  */
3080 
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)3081 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3082 {
3083 	unsigned long a[AUDITSC_ARGS];
3084 	unsigned long a0, a1;
3085 	int err;
3086 	unsigned int len;
3087 
3088 	if (call < 1 || call > SYS_SENDMMSG)
3089 		return -EINVAL;
3090 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
3091 
3092 	len = nargs[call];
3093 	if (len > sizeof(a))
3094 		return -EINVAL;
3095 
3096 	/* copy_from_user should be SMP safe. */
3097 	if (copy_from_user(a, args, len))
3098 		return -EFAULT;
3099 
3100 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3101 	if (err)
3102 		return err;
3103 
3104 	a0 = a[0];
3105 	a1 = a[1];
3106 
3107 	switch (call) {
3108 	case SYS_SOCKET:
3109 		err = __sys_socket(a0, a1, a[2]);
3110 		break;
3111 	case SYS_BIND:
3112 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3113 		break;
3114 	case SYS_CONNECT:
3115 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3116 		break;
3117 	case SYS_LISTEN:
3118 		err = __sys_listen(a0, a1);
3119 		break;
3120 	case SYS_ACCEPT:
3121 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3122 				    (int __user *)a[2], 0);
3123 		break;
3124 	case SYS_GETSOCKNAME:
3125 		err =
3126 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
3127 				      (int __user *)a[2], 0);
3128 		break;
3129 	case SYS_GETPEERNAME:
3130 		err =
3131 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
3132 				      (int __user *)a[2], 1);
3133 		break;
3134 	case SYS_SOCKETPAIR:
3135 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3136 		break;
3137 	case SYS_SEND:
3138 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3139 				   NULL, 0);
3140 		break;
3141 	case SYS_SENDTO:
3142 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3143 				   (struct sockaddr __user *)a[4], a[5]);
3144 		break;
3145 	case SYS_RECV:
3146 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3147 				     NULL, NULL);
3148 		break;
3149 	case SYS_RECVFROM:
3150 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3151 				     (struct sockaddr __user *)a[4],
3152 				     (int __user *)a[5]);
3153 		break;
3154 	case SYS_SHUTDOWN:
3155 		err = __sys_shutdown(a0, a1);
3156 		break;
3157 	case SYS_SETSOCKOPT:
3158 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3159 				       a[4]);
3160 		break;
3161 	case SYS_GETSOCKOPT:
3162 		err =
3163 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3164 				     (int __user *)a[4]);
3165 		break;
3166 	case SYS_SENDMSG:
3167 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3168 				    a[2], true);
3169 		break;
3170 	case SYS_SENDMMSG:
3171 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3172 				     a[3], true);
3173 		break;
3174 	case SYS_RECVMSG:
3175 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3176 				    a[2], true);
3177 		break;
3178 	case SYS_RECVMMSG:
3179 		if (IS_ENABLED(CONFIG_64BIT))
3180 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3181 					     a[2], a[3],
3182 					     (struct __kernel_timespec __user *)a[4],
3183 					     NULL);
3184 		else
3185 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3186 					     a[2], a[3], NULL,
3187 					     (struct old_timespec32 __user *)a[4]);
3188 		break;
3189 	case SYS_ACCEPT4:
3190 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3191 				    (int __user *)a[2], a[3]);
3192 		break;
3193 	default:
3194 		err = -EINVAL;
3195 		break;
3196 	}
3197 	return err;
3198 }
3199 
3200 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3201 
3202 /**
3203  *	sock_register - add a socket protocol handler
3204  *	@ops: description of protocol
3205  *
3206  *	This function is called by a protocol handler that wants to
3207  *	advertise its address family, and have it linked into the
3208  *	socket interface. The value ops->family corresponds to the
3209  *	socket system call protocol family.
3210  */
sock_register(const struct net_proto_family * ops)3211 int sock_register(const struct net_proto_family *ops)
3212 {
3213 	int err;
3214 
3215 	if (ops->family >= NPROTO) {
3216 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3217 		return -ENOBUFS;
3218 	}
3219 
3220 	spin_lock(&net_family_lock);
3221 	if (rcu_dereference_protected(net_families[ops->family],
3222 				      lockdep_is_held(&net_family_lock)))
3223 		err = -EEXIST;
3224 	else {
3225 		rcu_assign_pointer(net_families[ops->family], ops);
3226 		err = 0;
3227 	}
3228 	spin_unlock(&net_family_lock);
3229 
3230 	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3231 	return err;
3232 }
3233 EXPORT_SYMBOL(sock_register);
3234 
3235 /**
3236  *	sock_unregister - remove a protocol handler
3237  *	@family: protocol family to remove
3238  *
3239  *	This function is called by a protocol handler that wants to
3240  *	remove its address family, and have it unlinked from the
3241  *	new socket creation.
3242  *
3243  *	If protocol handler is a module, then it can use module reference
3244  *	counts to protect against new references. If protocol handler is not
3245  *	a module then it needs to provide its own protection in
3246  *	the ops->create routine.
3247  */
sock_unregister(int family)3248 void sock_unregister(int family)
3249 {
3250 	BUG_ON(family < 0 || family >= NPROTO);
3251 
3252 	spin_lock(&net_family_lock);
3253 	RCU_INIT_POINTER(net_families[family], NULL);
3254 	spin_unlock(&net_family_lock);
3255 
3256 	synchronize_rcu();
3257 
3258 	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3259 }
3260 EXPORT_SYMBOL(sock_unregister);
3261 
sock_is_registered(int family)3262 bool sock_is_registered(int family)
3263 {
3264 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3265 }
3266 
sock_init(void)3267 static int __init sock_init(void)
3268 {
3269 	int err;
3270 	/*
3271 	 *      Initialize the network sysctl infrastructure.
3272 	 */
3273 	err = net_sysctl_init();
3274 	if (err)
3275 		goto out;
3276 
3277 	/*
3278 	 *      Initialize skbuff SLAB cache
3279 	 */
3280 	skb_init();
3281 
3282 	/*
3283 	 *      Initialize the protocols module.
3284 	 */
3285 
3286 	init_inodecache();
3287 
3288 	err = register_filesystem(&sock_fs_type);
3289 	if (err)
3290 		goto out;
3291 	sock_mnt = kern_mount(&sock_fs_type);
3292 	if (IS_ERR(sock_mnt)) {
3293 		err = PTR_ERR(sock_mnt);
3294 		goto out_mount;
3295 	}
3296 
3297 	/* The real protocol initialization is performed in later initcalls.
3298 	 */
3299 
3300 #ifdef CONFIG_NETFILTER
3301 	err = netfilter_init();
3302 	if (err)
3303 		goto out;
3304 #endif
3305 
3306 	ptp_classifier_init();
3307 
3308 out:
3309 	return err;
3310 
3311 out_mount:
3312 	unregister_filesystem(&sock_fs_type);
3313 	goto out;
3314 }
3315 
3316 core_initcall(sock_init);	/* early initcall */
3317 
3318 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)3319 void socket_seq_show(struct seq_file *seq)
3320 {
3321 	seq_printf(seq, "sockets: used %d\n",
3322 		   sock_inuse_get(seq->private));
3323 }
3324 #endif				/* CONFIG_PROC_FS */
3325 
3326 /* Handle the fact that while struct ifreq has the same *layout* on
3327  * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3328  * which are handled elsewhere, it still has different *size* due to
3329  * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3330  * resulting in struct ifreq being 32 and 40 bytes respectively).
3331  * As a result, if the struct happens to be at the end of a page and
3332  * the next page isn't readable/writable, we get a fault. To prevent
3333  * that, copy back and forth to the full size.
3334  */
get_user_ifreq(struct ifreq * ifr,void __user ** ifrdata,void __user * arg)3335 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3336 {
3337 	if (in_compat_syscall()) {
3338 		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3339 
3340 		memset(ifr, 0, sizeof(*ifr));
3341 		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3342 			return -EFAULT;
3343 
3344 		if (ifrdata)
3345 			*ifrdata = compat_ptr(ifr32->ifr_data);
3346 
3347 		return 0;
3348 	}
3349 
3350 	if (copy_from_user(ifr, arg, sizeof(*ifr)))
3351 		return -EFAULT;
3352 
3353 	if (ifrdata)
3354 		*ifrdata = ifr->ifr_data;
3355 
3356 	return 0;
3357 }
3358 EXPORT_SYMBOL(get_user_ifreq);
3359 
put_user_ifreq(struct ifreq * ifr,void __user * arg)3360 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3361 {
3362 	size_t size = sizeof(*ifr);
3363 
3364 	if (in_compat_syscall())
3365 		size = sizeof(struct compat_ifreq);
3366 
3367 	if (copy_to_user(arg, ifr, size))
3368 		return -EFAULT;
3369 
3370 	return 0;
3371 }
3372 EXPORT_SYMBOL(put_user_ifreq);
3373 
3374 #ifdef CONFIG_COMPAT
compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)3375 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3376 {
3377 	compat_uptr_t uptr32;
3378 	struct ifreq ifr;
3379 	void __user *saved;
3380 	int err;
3381 
3382 	if (get_user_ifreq(&ifr, NULL, uifr32))
3383 		return -EFAULT;
3384 
3385 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3386 		return -EFAULT;
3387 
3388 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3389 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3390 
3391 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3392 	if (!err) {
3393 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3394 		if (put_user_ifreq(&ifr, uifr32))
3395 			err = -EFAULT;
3396 	}
3397 	return err;
3398 }
3399 
3400 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
compat_ifr_data_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)3401 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3402 				 struct compat_ifreq __user *u_ifreq32)
3403 {
3404 	struct ifreq ifreq;
3405 	void __user *data;
3406 
3407 	if (!is_socket_ioctl_cmd(cmd))
3408 		return -ENOTTY;
3409 	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3410 		return -EFAULT;
3411 	ifreq.ifr_data = data;
3412 
3413 	return dev_ioctl(net, cmd, &ifreq, data, NULL);
3414 }
3415 
compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3416 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3417 			 unsigned int cmd, unsigned long arg)
3418 {
3419 	void __user *argp = compat_ptr(arg);
3420 	struct sock *sk = sock->sk;
3421 	struct net *net = sock_net(sk);
3422 	const struct proto_ops *ops;
3423 
3424 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3425 		return sock_ioctl(file, cmd, (unsigned long)argp);
3426 
3427 	switch (cmd) {
3428 	case SIOCWANDEV:
3429 		return compat_siocwandev(net, argp);
3430 	case SIOCGSTAMP_OLD:
3431 	case SIOCGSTAMPNS_OLD:
3432 		ops = READ_ONCE(sock->ops);
3433 		if (!ops->gettstamp)
3434 			return -ENOIOCTLCMD;
3435 		return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3436 				      !COMPAT_USE_64BIT_TIME);
3437 
3438 	case SIOCETHTOOL:
3439 	case SIOCBONDSLAVEINFOQUERY:
3440 	case SIOCBONDINFOQUERY:
3441 	case SIOCSHWTSTAMP:
3442 	case SIOCGHWTSTAMP:
3443 		return compat_ifr_data_ioctl(net, cmd, argp);
3444 
3445 	case FIOSETOWN:
3446 	case SIOCSPGRP:
3447 	case FIOGETOWN:
3448 	case SIOCGPGRP:
3449 	case SIOCBRADDBR:
3450 	case SIOCBRDELBR:
3451 	case SIOCBRADDIF:
3452 	case SIOCBRDELIF:
3453 	case SIOCGIFVLAN:
3454 	case SIOCSIFVLAN:
3455 	case SIOCGSKNS:
3456 	case SIOCGSTAMP_NEW:
3457 	case SIOCGSTAMPNS_NEW:
3458 	case SIOCGIFCONF:
3459 	case SIOCSIFBR:
3460 	case SIOCGIFBR:
3461 		return sock_ioctl(file, cmd, arg);
3462 
3463 	case SIOCGIFFLAGS:
3464 	case SIOCSIFFLAGS:
3465 	case SIOCGIFMAP:
3466 	case SIOCSIFMAP:
3467 	case SIOCGIFMETRIC:
3468 	case SIOCSIFMETRIC:
3469 	case SIOCGIFMTU:
3470 	case SIOCSIFMTU:
3471 	case SIOCGIFMEM:
3472 	case SIOCSIFMEM:
3473 	case SIOCGIFHWADDR:
3474 	case SIOCSIFHWADDR:
3475 	case SIOCADDMULTI:
3476 	case SIOCDELMULTI:
3477 	case SIOCGIFINDEX:
3478 	case SIOCGIFADDR:
3479 	case SIOCSIFADDR:
3480 	case SIOCSIFHWBROADCAST:
3481 	case SIOCDIFADDR:
3482 	case SIOCGIFBRDADDR:
3483 	case SIOCSIFBRDADDR:
3484 	case SIOCGIFDSTADDR:
3485 	case SIOCSIFDSTADDR:
3486 	case SIOCGIFNETMASK:
3487 	case SIOCSIFNETMASK:
3488 	case SIOCSIFPFLAGS:
3489 	case SIOCGIFPFLAGS:
3490 	case SIOCGIFTXQLEN:
3491 	case SIOCSIFTXQLEN:
3492 	case SIOCGIFNAME:
3493 	case SIOCSIFNAME:
3494 	case SIOCGMIIPHY:
3495 	case SIOCGMIIREG:
3496 	case SIOCSMIIREG:
3497 	case SIOCBONDENSLAVE:
3498 	case SIOCBONDRELEASE:
3499 	case SIOCBONDSETHWADDR:
3500 	case SIOCBONDCHANGEACTIVE:
3501 	case SIOCSARP:
3502 	case SIOCGARP:
3503 	case SIOCDARP:
3504 	case SIOCOUTQ:
3505 	case SIOCOUTQNSD:
3506 	case SIOCATMARK:
3507 		return sock_do_ioctl(net, sock, cmd, arg);
3508 	}
3509 
3510 	return -ENOIOCTLCMD;
3511 }
3512 
compat_sock_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3513 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3514 			      unsigned long arg)
3515 {
3516 	struct socket *sock = file->private_data;
3517 	const struct proto_ops *ops = READ_ONCE(sock->ops);
3518 	int ret = -ENOIOCTLCMD;
3519 	struct sock *sk;
3520 	struct net *net;
3521 
3522 	sk = sock->sk;
3523 	net = sock_net(sk);
3524 
3525 	if (ops->compat_ioctl)
3526 		ret = ops->compat_ioctl(sock, cmd, arg);
3527 
3528 	if (ret == -ENOIOCTLCMD &&
3529 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3530 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3531 
3532 	if (ret == -ENOIOCTLCMD)
3533 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3534 
3535 	return ret;
3536 }
3537 #endif
3538 
3539 /**
3540  *	kernel_bind - bind an address to a socket (kernel space)
3541  *	@sock: socket
3542  *	@addr: address
3543  *	@addrlen: length of address
3544  *
3545  *	Returns 0 or an error.
3546  */
3547 
kernel_bind(struct socket * sock,struct sockaddr_unsized * addr,int addrlen)3548 int kernel_bind(struct socket *sock, struct sockaddr_unsized *addr, int addrlen)
3549 {
3550 	struct sockaddr_storage address;
3551 
3552 	memcpy(&address, addr, addrlen);
3553 
3554 	return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr_unsized *)&address,
3555 					  addrlen);
3556 }
3557 EXPORT_SYMBOL(kernel_bind);
3558 
3559 /**
3560  *	kernel_listen - move socket to listening state (kernel space)
3561  *	@sock: socket
3562  *	@backlog: pending connections queue size
3563  *
3564  *	Returns 0 or an error.
3565  */
3566 
kernel_listen(struct socket * sock,int backlog)3567 int kernel_listen(struct socket *sock, int backlog)
3568 {
3569 	return READ_ONCE(sock->ops)->listen(sock, backlog);
3570 }
3571 EXPORT_SYMBOL(kernel_listen);
3572 
3573 /**
3574  *	kernel_accept - accept a connection (kernel space)
3575  *	@sock: listening socket
3576  *	@newsock: new connected socket
3577  *	@flags: flags
3578  *
3579  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3580  *	If it fails, @newsock is guaranteed to be %NULL.
3581  *	Returns 0 or an error.
3582  */
3583 
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3584 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3585 {
3586 	struct sock *sk = sock->sk;
3587 	const struct proto_ops *ops = READ_ONCE(sock->ops);
3588 	struct proto_accept_arg arg = {
3589 		.flags = flags,
3590 		.kern = true,
3591 	};
3592 	int err;
3593 
3594 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3595 			       newsock);
3596 	if (err < 0)
3597 		goto done;
3598 
3599 	err = ops->accept(sock, *newsock, &arg);
3600 	if (err < 0) {
3601 		sock_release(*newsock);
3602 		*newsock = NULL;
3603 		goto done;
3604 	}
3605 
3606 	(*newsock)->ops = ops;
3607 	__module_get(ops->owner);
3608 
3609 done:
3610 	return err;
3611 }
3612 EXPORT_SYMBOL(kernel_accept);
3613 
3614 /**
3615  *	kernel_connect - connect a socket (kernel space)
3616  *	@sock: socket
3617  *	@addr: address
3618  *	@addrlen: address length
3619  *	@flags: flags (O_NONBLOCK, ...)
3620  *
3621  *	For datagram sockets, @addr is the address to which datagrams are sent
3622  *	by default, and the only address from which datagrams are received.
3623  *	For stream sockets, attempts to connect to @addr.
3624  *	Returns 0 or an error code.
3625  */
3626 
kernel_connect(struct socket * sock,struct sockaddr_unsized * addr,int addrlen,int flags)3627 int kernel_connect(struct socket *sock, struct sockaddr_unsized *addr, int addrlen,
3628 		   int flags)
3629 {
3630 	struct sockaddr_storage address;
3631 
3632 	memcpy(&address, addr, addrlen);
3633 
3634 	return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr_unsized *)&address,
3635 					     addrlen, flags);
3636 }
3637 EXPORT_SYMBOL(kernel_connect);
3638 
3639 /**
3640  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3641  *	@sock: socket
3642  *	@addr: address holder
3643  *
3644  * 	Fills the @addr pointer with the address which the socket is bound.
3645  *	Returns the length of the address in bytes or an error code.
3646  */
3647 
kernel_getsockname(struct socket * sock,struct sockaddr * addr)3648 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3649 {
3650 	return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3651 }
3652 EXPORT_SYMBOL(kernel_getsockname);
3653 
3654 /**
3655  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3656  *	@sock: socket
3657  *	@addr: address holder
3658  *
3659  * 	Fills the @addr pointer with the address which the socket is connected.
3660  *	Returns the length of the address in bytes or an error code.
3661  */
3662 
kernel_getpeername(struct socket * sock,struct sockaddr * addr)3663 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3664 {
3665 	return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3666 }
3667 EXPORT_SYMBOL(kernel_getpeername);
3668 
3669 /**
3670  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3671  *	@sock: socket
3672  *	@how: connection part
3673  *
3674  *	Returns 0 or an error.
3675  */
3676 
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3677 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3678 {
3679 	return READ_ONCE(sock->ops)->shutdown(sock, how);
3680 }
3681 EXPORT_SYMBOL(kernel_sock_shutdown);
3682 
3683 /**
3684  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3685  *	@sk: socket
3686  *
3687  *	This routine returns the IP overhead imposed by a socket i.e.
3688  *	the length of the underlying IP header, depending on whether
3689  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3690  *	on at the socket. Assumes that the caller has a lock on the socket.
3691  */
3692 
kernel_sock_ip_overhead(struct sock * sk)3693 u32 kernel_sock_ip_overhead(struct sock *sk)
3694 {
3695 	struct inet_sock *inet;
3696 	struct ip_options_rcu *opt;
3697 	u32 overhead = 0;
3698 #if IS_ENABLED(CONFIG_IPV6)
3699 	struct ipv6_pinfo *np;
3700 	struct ipv6_txoptions *optv6 = NULL;
3701 #endif /* IS_ENABLED(CONFIG_IPV6) */
3702 
3703 	if (!sk)
3704 		return overhead;
3705 
3706 	switch (sk->sk_family) {
3707 	case AF_INET:
3708 		inet = inet_sk(sk);
3709 		overhead += sizeof(struct iphdr);
3710 		opt = rcu_dereference_protected(inet->inet_opt,
3711 						sock_owned_by_user(sk));
3712 		if (opt)
3713 			overhead += opt->opt.optlen;
3714 		return overhead;
3715 #if IS_ENABLED(CONFIG_IPV6)
3716 	case AF_INET6:
3717 		np = inet6_sk(sk);
3718 		overhead += sizeof(struct ipv6hdr);
3719 		if (np)
3720 			optv6 = rcu_dereference_protected(np->opt,
3721 							  sock_owned_by_user(sk));
3722 		if (optv6)
3723 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3724 		return overhead;
3725 #endif /* IS_ENABLED(CONFIG_IPV6) */
3726 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3727 		return overhead;
3728 	}
3729 }
3730 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3731