xref: /linux/net/sctp/ulpqueue.c (revision b68fc09be48edbc47de1a0f3d42ef8adf6c0ac55)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This abstraction carries sctp events to the ULP (sockets).
10  *
11  * This SCTP implementation is free software;
12  * you can redistribute it and/or modify it under the terms of
13  * the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This SCTP implementation is distributed in the hope that it
18  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
19  *                 ************************
20  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
21  * See the GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with GNU CC; see the file COPYING.  If not, see
25  * <http://www.gnu.org/licenses/>.
26  *
27  * Please send any bug reports or fixes you make to the
28  * email address(es):
29  *    lksctp developers <linux-sctp@vger.kernel.org>
30  *
31  * Written or modified by:
32  *    Jon Grimm             <jgrimm@us.ibm.com>
33  *    La Monte H.P. Yarroll <piggy@acm.org>
34  *    Sridhar Samudrala     <sri@us.ibm.com>
35  */
36 
37 #include <linux/slab.h>
38 #include <linux/types.h>
39 #include <linux/skbuff.h>
40 #include <net/sock.h>
41 #include <net/busy_poll.h>
42 #include <net/sctp/structs.h>
43 #include <net/sctp/sctp.h>
44 #include <net/sctp/sm.h>
45 
46 /* Forward declarations for internal helpers.  */
47 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq,
48 					      struct sctp_ulpevent *);
49 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *,
50 					      struct sctp_ulpevent *);
51 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq);
52 
53 /* 1st Level Abstractions */
54 
55 /* Initialize a ULP queue from a block of memory.  */
56 struct sctp_ulpq *sctp_ulpq_init(struct sctp_ulpq *ulpq,
57 				 struct sctp_association *asoc)
58 {
59 	memset(ulpq, 0, sizeof(struct sctp_ulpq));
60 
61 	ulpq->asoc = asoc;
62 	skb_queue_head_init(&ulpq->reasm);
63 	skb_queue_head_init(&ulpq->reasm_uo);
64 	skb_queue_head_init(&ulpq->lobby);
65 	ulpq->pd_mode  = 0;
66 
67 	return ulpq;
68 }
69 
70 
71 /* Flush the reassembly and ordering queues.  */
72 void sctp_ulpq_flush(struct sctp_ulpq *ulpq)
73 {
74 	struct sk_buff *skb;
75 	struct sctp_ulpevent *event;
76 
77 	while ((skb = __skb_dequeue(&ulpq->lobby)) != NULL) {
78 		event = sctp_skb2event(skb);
79 		sctp_ulpevent_free(event);
80 	}
81 
82 	while ((skb = __skb_dequeue(&ulpq->reasm)) != NULL) {
83 		event = sctp_skb2event(skb);
84 		sctp_ulpevent_free(event);
85 	}
86 
87 	while ((skb = __skb_dequeue(&ulpq->reasm_uo)) != NULL) {
88 		event = sctp_skb2event(skb);
89 		sctp_ulpevent_free(event);
90 	}
91 }
92 
93 /* Dispose of a ulpqueue.  */
94 void sctp_ulpq_free(struct sctp_ulpq *ulpq)
95 {
96 	sctp_ulpq_flush(ulpq);
97 }
98 
99 /* Process an incoming DATA chunk.  */
100 int sctp_ulpq_tail_data(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk,
101 			gfp_t gfp)
102 {
103 	struct sk_buff_head temp;
104 	struct sctp_ulpevent *event;
105 	int event_eor = 0;
106 
107 	/* Create an event from the incoming chunk. */
108 	event = sctp_ulpevent_make_rcvmsg(chunk->asoc, chunk, gfp);
109 	if (!event)
110 		return -ENOMEM;
111 
112 	event->ssn = ntohs(chunk->subh.data_hdr->ssn);
113 	event->ppid = chunk->subh.data_hdr->ppid;
114 
115 	/* Do reassembly if needed.  */
116 	event = sctp_ulpq_reasm(ulpq, event);
117 
118 	/* Do ordering if needed.  */
119 	if ((event) && (event->msg_flags & MSG_EOR)) {
120 		/* Create a temporary list to collect chunks on.  */
121 		skb_queue_head_init(&temp);
122 		__skb_queue_tail(&temp, sctp_event2skb(event));
123 
124 		event = sctp_ulpq_order(ulpq, event);
125 	}
126 
127 	/* Send event to the ULP.  'event' is the sctp_ulpevent for
128 	 * very first SKB on the 'temp' list.
129 	 */
130 	if (event) {
131 		event_eor = (event->msg_flags & MSG_EOR) ? 1 : 0;
132 		sctp_ulpq_tail_event(ulpq, event);
133 	}
134 
135 	return event_eor;
136 }
137 
138 /* Add a new event for propagation to the ULP.  */
139 /* Clear the partial delivery mode for this socket.   Note: This
140  * assumes that no association is currently in partial delivery mode.
141  */
142 int sctp_clear_pd(struct sock *sk, struct sctp_association *asoc)
143 {
144 	struct sctp_sock *sp = sctp_sk(sk);
145 
146 	if (atomic_dec_and_test(&sp->pd_mode)) {
147 		/* This means there are no other associations in PD, so
148 		 * we can go ahead and clear out the lobby in one shot
149 		 */
150 		if (!skb_queue_empty(&sp->pd_lobby)) {
151 			skb_queue_splice_tail_init(&sp->pd_lobby,
152 						   &sk->sk_receive_queue);
153 			return 1;
154 		}
155 	} else {
156 		/* There are other associations in PD, so we only need to
157 		 * pull stuff out of the lobby that belongs to the
158 		 * associations that is exiting PD (all of its notifications
159 		 * are posted here).
160 		 */
161 		if (!skb_queue_empty(&sp->pd_lobby) && asoc) {
162 			struct sk_buff *skb, *tmp;
163 			struct sctp_ulpevent *event;
164 
165 			sctp_skb_for_each(skb, &sp->pd_lobby, tmp) {
166 				event = sctp_skb2event(skb);
167 				if (event->asoc == asoc) {
168 					__skb_unlink(skb, &sp->pd_lobby);
169 					__skb_queue_tail(&sk->sk_receive_queue,
170 							 skb);
171 				}
172 			}
173 		}
174 	}
175 
176 	return 0;
177 }
178 
179 /* Set the pd_mode on the socket and ulpq */
180 static void sctp_ulpq_set_pd(struct sctp_ulpq *ulpq)
181 {
182 	struct sctp_sock *sp = sctp_sk(ulpq->asoc->base.sk);
183 
184 	atomic_inc(&sp->pd_mode);
185 	ulpq->pd_mode = 1;
186 }
187 
188 /* Clear the pd_mode and restart any pending messages waiting for delivery. */
189 static int sctp_ulpq_clear_pd(struct sctp_ulpq *ulpq)
190 {
191 	ulpq->pd_mode = 0;
192 	sctp_ulpq_reasm_drain(ulpq);
193 	return sctp_clear_pd(ulpq->asoc->base.sk, ulpq->asoc);
194 }
195 
196 /* If the SKB of 'event' is on a list, it is the first such member
197  * of that list.
198  */
199 int sctp_ulpq_tail_event(struct sctp_ulpq *ulpq, struct sctp_ulpevent *event)
200 {
201 	struct sock *sk = ulpq->asoc->base.sk;
202 	struct sctp_sock *sp = sctp_sk(sk);
203 	struct sk_buff_head *queue, *skb_list;
204 	struct sk_buff *skb = sctp_event2skb(event);
205 	int clear_pd = 0;
206 
207 	skb_list = (struct sk_buff_head *) skb->prev;
208 
209 	/* If the socket is just going to throw this away, do not
210 	 * even try to deliver it.
211 	 */
212 	if (sk->sk_shutdown & RCV_SHUTDOWN &&
213 	    (sk->sk_shutdown & SEND_SHUTDOWN ||
214 	     !sctp_ulpevent_is_notification(event)))
215 		goto out_free;
216 
217 	if (!sctp_ulpevent_is_notification(event)) {
218 		sk_mark_napi_id(sk, skb);
219 		sk_incoming_cpu_update(sk);
220 	}
221 	/* Check if the user wishes to receive this event.  */
222 	if (!sctp_ulpevent_is_enabled(event, &sp->subscribe))
223 		goto out_free;
224 
225 	/* If we are in partial delivery mode, post to the lobby until
226 	 * partial delivery is cleared, unless, of course _this_ is
227 	 * the association the cause of the partial delivery.
228 	 */
229 
230 	if (atomic_read(&sp->pd_mode) == 0) {
231 		queue = &sk->sk_receive_queue;
232 	} else {
233 		if (ulpq->pd_mode) {
234 			/* If the association is in partial delivery, we
235 			 * need to finish delivering the partially processed
236 			 * packet before passing any other data.  This is
237 			 * because we don't truly support stream interleaving.
238 			 */
239 			if ((event->msg_flags & MSG_NOTIFICATION) ||
240 			    (SCTP_DATA_NOT_FRAG ==
241 				    (event->msg_flags & SCTP_DATA_FRAG_MASK)))
242 				queue = &sp->pd_lobby;
243 			else {
244 				clear_pd = event->msg_flags & MSG_EOR;
245 				queue = &sk->sk_receive_queue;
246 			}
247 		} else {
248 			/*
249 			 * If fragment interleave is enabled, we
250 			 * can queue this to the receive queue instead
251 			 * of the lobby.
252 			 */
253 			if (sp->frag_interleave)
254 				queue = &sk->sk_receive_queue;
255 			else
256 				queue = &sp->pd_lobby;
257 		}
258 	}
259 
260 	/* If we are harvesting multiple skbs they will be
261 	 * collected on a list.
262 	 */
263 	if (skb_list)
264 		skb_queue_splice_tail_init(skb_list, queue);
265 	else
266 		__skb_queue_tail(queue, skb);
267 
268 	/* Did we just complete partial delivery and need to get
269 	 * rolling again?  Move pending data to the receive
270 	 * queue.
271 	 */
272 	if (clear_pd)
273 		sctp_ulpq_clear_pd(ulpq);
274 
275 	if (queue == &sk->sk_receive_queue && !sp->data_ready_signalled) {
276 		if (!sock_owned_by_user(sk))
277 			sp->data_ready_signalled = 1;
278 		sk->sk_data_ready(sk);
279 	}
280 	return 1;
281 
282 out_free:
283 	if (skb_list)
284 		sctp_queue_purge_ulpevents(skb_list);
285 	else
286 		sctp_ulpevent_free(event);
287 
288 	return 0;
289 }
290 
291 /* 2nd Level Abstractions */
292 
293 /* Helper function to store chunks that need to be reassembled.  */
294 static void sctp_ulpq_store_reasm(struct sctp_ulpq *ulpq,
295 					 struct sctp_ulpevent *event)
296 {
297 	struct sk_buff *pos;
298 	struct sctp_ulpevent *cevent;
299 	__u32 tsn, ctsn;
300 
301 	tsn = event->tsn;
302 
303 	/* See if it belongs at the end. */
304 	pos = skb_peek_tail(&ulpq->reasm);
305 	if (!pos) {
306 		__skb_queue_tail(&ulpq->reasm, sctp_event2skb(event));
307 		return;
308 	}
309 
310 	/* Short circuit just dropping it at the end. */
311 	cevent = sctp_skb2event(pos);
312 	ctsn = cevent->tsn;
313 	if (TSN_lt(ctsn, tsn)) {
314 		__skb_queue_tail(&ulpq->reasm, sctp_event2skb(event));
315 		return;
316 	}
317 
318 	/* Find the right place in this list. We store them by TSN.  */
319 	skb_queue_walk(&ulpq->reasm, pos) {
320 		cevent = sctp_skb2event(pos);
321 		ctsn = cevent->tsn;
322 
323 		if (TSN_lt(tsn, ctsn))
324 			break;
325 	}
326 
327 	/* Insert before pos. */
328 	__skb_queue_before(&ulpq->reasm, pos, sctp_event2skb(event));
329 
330 }
331 
332 /* Helper function to return an event corresponding to the reassembled
333  * datagram.
334  * This routine creates a re-assembled skb given the first and last skb's
335  * as stored in the reassembly queue. The skb's may be non-linear if the sctp
336  * payload was fragmented on the way and ip had to reassemble them.
337  * We add the rest of skb's to the first skb's fraglist.
338  */
339 struct sctp_ulpevent *sctp_make_reassembled_event(struct net *net,
340 						  struct sk_buff_head *queue,
341 						  struct sk_buff *f_frag,
342 						  struct sk_buff *l_frag)
343 {
344 	struct sk_buff *pos;
345 	struct sk_buff *new = NULL;
346 	struct sctp_ulpevent *event;
347 	struct sk_buff *pnext, *last;
348 	struct sk_buff *list = skb_shinfo(f_frag)->frag_list;
349 
350 	/* Store the pointer to the 2nd skb */
351 	if (f_frag == l_frag)
352 		pos = NULL;
353 	else
354 		pos = f_frag->next;
355 
356 	/* Get the last skb in the f_frag's frag_list if present. */
357 	for (last = list; list; last = list, list = list->next)
358 		;
359 
360 	/* Add the list of remaining fragments to the first fragments
361 	 * frag_list.
362 	 */
363 	if (last)
364 		last->next = pos;
365 	else {
366 		if (skb_cloned(f_frag)) {
367 			/* This is a cloned skb, we can't just modify
368 			 * the frag_list.  We need a new skb to do that.
369 			 * Instead of calling skb_unshare(), we'll do it
370 			 * ourselves since we need to delay the free.
371 			 */
372 			new = skb_copy(f_frag, GFP_ATOMIC);
373 			if (!new)
374 				return NULL;	/* try again later */
375 
376 			sctp_skb_set_owner_r(new, f_frag->sk);
377 
378 			skb_shinfo(new)->frag_list = pos;
379 		} else
380 			skb_shinfo(f_frag)->frag_list = pos;
381 	}
382 
383 	/* Remove the first fragment from the reassembly queue.  */
384 	__skb_unlink(f_frag, queue);
385 
386 	/* if we did unshare, then free the old skb and re-assign */
387 	if (new) {
388 		kfree_skb(f_frag);
389 		f_frag = new;
390 	}
391 
392 	while (pos) {
393 
394 		pnext = pos->next;
395 
396 		/* Update the len and data_len fields of the first fragment. */
397 		f_frag->len += pos->len;
398 		f_frag->data_len += pos->len;
399 
400 		/* Remove the fragment from the reassembly queue.  */
401 		__skb_unlink(pos, queue);
402 
403 		/* Break if we have reached the last fragment.  */
404 		if (pos == l_frag)
405 			break;
406 		pos->next = pnext;
407 		pos = pnext;
408 	}
409 
410 	event = sctp_skb2event(f_frag);
411 	SCTP_INC_STATS(net, SCTP_MIB_REASMUSRMSGS);
412 
413 	return event;
414 }
415 
416 
417 /* Helper function to check if an incoming chunk has filled up the last
418  * missing fragment in a SCTP datagram and return the corresponding event.
419  */
420 static struct sctp_ulpevent *sctp_ulpq_retrieve_reassembled(struct sctp_ulpq *ulpq)
421 {
422 	struct sk_buff *pos;
423 	struct sctp_ulpevent *cevent;
424 	struct sk_buff *first_frag = NULL;
425 	__u32 ctsn, next_tsn;
426 	struct sctp_ulpevent *retval = NULL;
427 	struct sk_buff *pd_first = NULL;
428 	struct sk_buff *pd_last = NULL;
429 	size_t pd_len = 0;
430 	struct sctp_association *asoc;
431 	u32 pd_point;
432 
433 	/* Initialized to 0 just to avoid compiler warning message.  Will
434 	 * never be used with this value. It is referenced only after it
435 	 * is set when we find the first fragment of a message.
436 	 */
437 	next_tsn = 0;
438 
439 	/* The chunks are held in the reasm queue sorted by TSN.
440 	 * Walk through the queue sequentially and look for a sequence of
441 	 * fragmented chunks that complete a datagram.
442 	 * 'first_frag' and next_tsn are reset when we find a chunk which
443 	 * is the first fragment of a datagram. Once these 2 fields are set
444 	 * we expect to find the remaining middle fragments and the last
445 	 * fragment in order. If not, first_frag is reset to NULL and we
446 	 * start the next pass when we find another first fragment.
447 	 *
448 	 * There is a potential to do partial delivery if user sets
449 	 * SCTP_PARTIAL_DELIVERY_POINT option. Lets count some things here
450 	 * to see if can do PD.
451 	 */
452 	skb_queue_walk(&ulpq->reasm, pos) {
453 		cevent = sctp_skb2event(pos);
454 		ctsn = cevent->tsn;
455 
456 		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
457 		case SCTP_DATA_FIRST_FRAG:
458 			/* If this "FIRST_FRAG" is the first
459 			 * element in the queue, then count it towards
460 			 * possible PD.
461 			 */
462 			if (skb_queue_is_first(&ulpq->reasm, pos)) {
463 			    pd_first = pos;
464 			    pd_last = pos;
465 			    pd_len = pos->len;
466 			} else {
467 			    pd_first = NULL;
468 			    pd_last = NULL;
469 			    pd_len = 0;
470 			}
471 
472 			first_frag = pos;
473 			next_tsn = ctsn + 1;
474 			break;
475 
476 		case SCTP_DATA_MIDDLE_FRAG:
477 			if ((first_frag) && (ctsn == next_tsn)) {
478 				next_tsn++;
479 				if (pd_first) {
480 				    pd_last = pos;
481 				    pd_len += pos->len;
482 				}
483 			} else
484 				first_frag = NULL;
485 			break;
486 
487 		case SCTP_DATA_LAST_FRAG:
488 			if (first_frag && (ctsn == next_tsn))
489 				goto found;
490 			else
491 				first_frag = NULL;
492 			break;
493 		}
494 	}
495 
496 	asoc = ulpq->asoc;
497 	if (pd_first) {
498 		/* Make sure we can enter partial deliver.
499 		 * We can trigger partial delivery only if framgent
500 		 * interleave is set, or the socket is not already
501 		 * in  partial delivery.
502 		 */
503 		if (!sctp_sk(asoc->base.sk)->frag_interleave &&
504 		    atomic_read(&sctp_sk(asoc->base.sk)->pd_mode))
505 			goto done;
506 
507 		cevent = sctp_skb2event(pd_first);
508 		pd_point = sctp_sk(asoc->base.sk)->pd_point;
509 		if (pd_point && pd_point <= pd_len) {
510 			retval = sctp_make_reassembled_event(sock_net(asoc->base.sk),
511 							     &ulpq->reasm,
512 							     pd_first,
513 							     pd_last);
514 			if (retval)
515 				sctp_ulpq_set_pd(ulpq);
516 		}
517 	}
518 done:
519 	return retval;
520 found:
521 	retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk),
522 					     &ulpq->reasm, first_frag, pos);
523 	if (retval)
524 		retval->msg_flags |= MSG_EOR;
525 	goto done;
526 }
527 
528 /* Retrieve the next set of fragments of a partial message. */
529 static struct sctp_ulpevent *sctp_ulpq_retrieve_partial(struct sctp_ulpq *ulpq)
530 {
531 	struct sk_buff *pos, *last_frag, *first_frag;
532 	struct sctp_ulpevent *cevent;
533 	__u32 ctsn, next_tsn;
534 	int is_last;
535 	struct sctp_ulpevent *retval;
536 
537 	/* The chunks are held in the reasm queue sorted by TSN.
538 	 * Walk through the queue sequentially and look for the first
539 	 * sequence of fragmented chunks.
540 	 */
541 
542 	if (skb_queue_empty(&ulpq->reasm))
543 		return NULL;
544 
545 	last_frag = first_frag = NULL;
546 	retval = NULL;
547 	next_tsn = 0;
548 	is_last = 0;
549 
550 	skb_queue_walk(&ulpq->reasm, pos) {
551 		cevent = sctp_skb2event(pos);
552 		ctsn = cevent->tsn;
553 
554 		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
555 		case SCTP_DATA_FIRST_FRAG:
556 			if (!first_frag)
557 				return NULL;
558 			goto done;
559 		case SCTP_DATA_MIDDLE_FRAG:
560 			if (!first_frag) {
561 				first_frag = pos;
562 				next_tsn = ctsn + 1;
563 				last_frag = pos;
564 			} else if (next_tsn == ctsn) {
565 				next_tsn++;
566 				last_frag = pos;
567 			} else
568 				goto done;
569 			break;
570 		case SCTP_DATA_LAST_FRAG:
571 			if (!first_frag)
572 				first_frag = pos;
573 			else if (ctsn != next_tsn)
574 				goto done;
575 			last_frag = pos;
576 			is_last = 1;
577 			goto done;
578 		default:
579 			return NULL;
580 		}
581 	}
582 
583 	/* We have the reassembled event. There is no need to look
584 	 * further.
585 	 */
586 done:
587 	retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk),
588 					&ulpq->reasm, first_frag, last_frag);
589 	if (retval && is_last)
590 		retval->msg_flags |= MSG_EOR;
591 
592 	return retval;
593 }
594 
595 
596 /* Helper function to reassemble chunks.  Hold chunks on the reasm queue that
597  * need reassembling.
598  */
599 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq,
600 						struct sctp_ulpevent *event)
601 {
602 	struct sctp_ulpevent *retval = NULL;
603 
604 	/* Check if this is part of a fragmented message.  */
605 	if (SCTP_DATA_NOT_FRAG == (event->msg_flags & SCTP_DATA_FRAG_MASK)) {
606 		event->msg_flags |= MSG_EOR;
607 		return event;
608 	}
609 
610 	sctp_ulpq_store_reasm(ulpq, event);
611 	if (!ulpq->pd_mode)
612 		retval = sctp_ulpq_retrieve_reassembled(ulpq);
613 	else {
614 		__u32 ctsn, ctsnap;
615 
616 		/* Do not even bother unless this is the next tsn to
617 		 * be delivered.
618 		 */
619 		ctsn = event->tsn;
620 		ctsnap = sctp_tsnmap_get_ctsn(&ulpq->asoc->peer.tsn_map);
621 		if (TSN_lte(ctsn, ctsnap))
622 			retval = sctp_ulpq_retrieve_partial(ulpq);
623 	}
624 
625 	return retval;
626 }
627 
628 /* Retrieve the first part (sequential fragments) for partial delivery.  */
629 static struct sctp_ulpevent *sctp_ulpq_retrieve_first(struct sctp_ulpq *ulpq)
630 {
631 	struct sk_buff *pos, *last_frag, *first_frag;
632 	struct sctp_ulpevent *cevent;
633 	__u32 ctsn, next_tsn;
634 	struct sctp_ulpevent *retval;
635 
636 	/* The chunks are held in the reasm queue sorted by TSN.
637 	 * Walk through the queue sequentially and look for a sequence of
638 	 * fragmented chunks that start a datagram.
639 	 */
640 
641 	if (skb_queue_empty(&ulpq->reasm))
642 		return NULL;
643 
644 	last_frag = first_frag = NULL;
645 	retval = NULL;
646 	next_tsn = 0;
647 
648 	skb_queue_walk(&ulpq->reasm, pos) {
649 		cevent = sctp_skb2event(pos);
650 		ctsn = cevent->tsn;
651 
652 		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
653 		case SCTP_DATA_FIRST_FRAG:
654 			if (!first_frag) {
655 				first_frag = pos;
656 				next_tsn = ctsn + 1;
657 				last_frag = pos;
658 			} else
659 				goto done;
660 			break;
661 
662 		case SCTP_DATA_MIDDLE_FRAG:
663 			if (!first_frag)
664 				return NULL;
665 			if (ctsn == next_tsn) {
666 				next_tsn++;
667 				last_frag = pos;
668 			} else
669 				goto done;
670 			break;
671 
672 		case SCTP_DATA_LAST_FRAG:
673 			if (!first_frag)
674 				return NULL;
675 			else
676 				goto done;
677 			break;
678 
679 		default:
680 			return NULL;
681 		}
682 	}
683 
684 	/* We have the reassembled event. There is no need to look
685 	 * further.
686 	 */
687 done:
688 	retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk),
689 					&ulpq->reasm, first_frag, last_frag);
690 	return retval;
691 }
692 
693 /*
694  * Flush out stale fragments from the reassembly queue when processing
695  * a Forward TSN.
696  *
697  * RFC 3758, Section 3.6
698  *
699  * After receiving and processing a FORWARD TSN, the data receiver MUST
700  * take cautions in updating its re-assembly queue.  The receiver MUST
701  * remove any partially reassembled message, which is still missing one
702  * or more TSNs earlier than or equal to the new cumulative TSN point.
703  * In the event that the receiver has invoked the partial delivery API,
704  * a notification SHOULD also be generated to inform the upper layer API
705  * that the message being partially delivered will NOT be completed.
706  */
707 void sctp_ulpq_reasm_flushtsn(struct sctp_ulpq *ulpq, __u32 fwd_tsn)
708 {
709 	struct sk_buff *pos, *tmp;
710 	struct sctp_ulpevent *event;
711 	__u32 tsn;
712 
713 	if (skb_queue_empty(&ulpq->reasm))
714 		return;
715 
716 	skb_queue_walk_safe(&ulpq->reasm, pos, tmp) {
717 		event = sctp_skb2event(pos);
718 		tsn = event->tsn;
719 
720 		/* Since the entire message must be abandoned by the
721 		 * sender (item A3 in Section 3.5, RFC 3758), we can
722 		 * free all fragments on the list that are less then
723 		 * or equal to ctsn_point
724 		 */
725 		if (TSN_lte(tsn, fwd_tsn)) {
726 			__skb_unlink(pos, &ulpq->reasm);
727 			sctp_ulpevent_free(event);
728 		} else
729 			break;
730 	}
731 }
732 
733 /*
734  * Drain the reassembly queue.  If we just cleared parted delivery, it
735  * is possible that the reassembly queue will contain already reassembled
736  * messages.  Retrieve any such messages and give them to the user.
737  */
738 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq)
739 {
740 	struct sctp_ulpevent *event = NULL;
741 	struct sk_buff_head temp;
742 
743 	if (skb_queue_empty(&ulpq->reasm))
744 		return;
745 
746 	while ((event = sctp_ulpq_retrieve_reassembled(ulpq)) != NULL) {
747 		/* Do ordering if needed.  */
748 		if ((event) && (event->msg_flags & MSG_EOR)) {
749 			skb_queue_head_init(&temp);
750 			__skb_queue_tail(&temp, sctp_event2skb(event));
751 
752 			event = sctp_ulpq_order(ulpq, event);
753 		}
754 
755 		/* Send event to the ULP.  'event' is the
756 		 * sctp_ulpevent for  very first SKB on the  temp' list.
757 		 */
758 		if (event)
759 			sctp_ulpq_tail_event(ulpq, event);
760 	}
761 }
762 
763 
764 /* Helper function to gather skbs that have possibly become
765  * ordered by an an incoming chunk.
766  */
767 static void sctp_ulpq_retrieve_ordered(struct sctp_ulpq *ulpq,
768 					      struct sctp_ulpevent *event)
769 {
770 	struct sk_buff_head *event_list;
771 	struct sk_buff *pos, *tmp;
772 	struct sctp_ulpevent *cevent;
773 	struct sctp_stream *stream;
774 	__u16 sid, csid, cssn;
775 
776 	sid = event->stream;
777 	stream  = &ulpq->asoc->stream;
778 
779 	event_list = (struct sk_buff_head *) sctp_event2skb(event)->prev;
780 
781 	/* We are holding the chunks by stream, by SSN.  */
782 	sctp_skb_for_each(pos, &ulpq->lobby, tmp) {
783 		cevent = (struct sctp_ulpevent *) pos->cb;
784 		csid = cevent->stream;
785 		cssn = cevent->ssn;
786 
787 		/* Have we gone too far?  */
788 		if (csid > sid)
789 			break;
790 
791 		/* Have we not gone far enough?  */
792 		if (csid < sid)
793 			continue;
794 
795 		if (cssn != sctp_ssn_peek(stream, in, sid))
796 			break;
797 
798 		/* Found it, so mark in the stream. */
799 		sctp_ssn_next(stream, in, sid);
800 
801 		__skb_unlink(pos, &ulpq->lobby);
802 
803 		/* Attach all gathered skbs to the event.  */
804 		__skb_queue_tail(event_list, pos);
805 	}
806 }
807 
808 /* Helper function to store chunks needing ordering.  */
809 static void sctp_ulpq_store_ordered(struct sctp_ulpq *ulpq,
810 					   struct sctp_ulpevent *event)
811 {
812 	struct sk_buff *pos;
813 	struct sctp_ulpevent *cevent;
814 	__u16 sid, csid;
815 	__u16 ssn, cssn;
816 
817 	pos = skb_peek_tail(&ulpq->lobby);
818 	if (!pos) {
819 		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
820 		return;
821 	}
822 
823 	sid = event->stream;
824 	ssn = event->ssn;
825 
826 	cevent = (struct sctp_ulpevent *) pos->cb;
827 	csid = cevent->stream;
828 	cssn = cevent->ssn;
829 	if (sid > csid) {
830 		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
831 		return;
832 	}
833 
834 	if ((sid == csid) && SSN_lt(cssn, ssn)) {
835 		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
836 		return;
837 	}
838 
839 	/* Find the right place in this list.  We store them by
840 	 * stream ID and then by SSN.
841 	 */
842 	skb_queue_walk(&ulpq->lobby, pos) {
843 		cevent = (struct sctp_ulpevent *) pos->cb;
844 		csid = cevent->stream;
845 		cssn = cevent->ssn;
846 
847 		if (csid > sid)
848 			break;
849 		if (csid == sid && SSN_lt(ssn, cssn))
850 			break;
851 	}
852 
853 
854 	/* Insert before pos. */
855 	__skb_queue_before(&ulpq->lobby, pos, sctp_event2skb(event));
856 }
857 
858 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *ulpq,
859 					     struct sctp_ulpevent *event)
860 {
861 	__u16 sid, ssn;
862 	struct sctp_stream *stream;
863 
864 	/* Check if this message needs ordering.  */
865 	if (event->msg_flags & SCTP_DATA_UNORDERED)
866 		return event;
867 
868 	/* Note: The stream ID must be verified before this routine.  */
869 	sid = event->stream;
870 	ssn = event->ssn;
871 	stream  = &ulpq->asoc->stream;
872 
873 	/* Is this the expected SSN for this stream ID?  */
874 	if (ssn != sctp_ssn_peek(stream, in, sid)) {
875 		/* We've received something out of order, so find where it
876 		 * needs to be placed.  We order by stream and then by SSN.
877 		 */
878 		sctp_ulpq_store_ordered(ulpq, event);
879 		return NULL;
880 	}
881 
882 	/* Mark that the next chunk has been found.  */
883 	sctp_ssn_next(stream, in, sid);
884 
885 	/* Go find any other chunks that were waiting for
886 	 * ordering.
887 	 */
888 	sctp_ulpq_retrieve_ordered(ulpq, event);
889 
890 	return event;
891 }
892 
893 /* Helper function to gather skbs that have possibly become
894  * ordered by forward tsn skipping their dependencies.
895  */
896 static void sctp_ulpq_reap_ordered(struct sctp_ulpq *ulpq, __u16 sid)
897 {
898 	struct sk_buff *pos, *tmp;
899 	struct sctp_ulpevent *cevent;
900 	struct sctp_ulpevent *event;
901 	struct sctp_stream *stream;
902 	struct sk_buff_head temp;
903 	struct sk_buff_head *lobby = &ulpq->lobby;
904 	__u16 csid, cssn;
905 
906 	stream = &ulpq->asoc->stream;
907 
908 	/* We are holding the chunks by stream, by SSN.  */
909 	skb_queue_head_init(&temp);
910 	event = NULL;
911 	sctp_skb_for_each(pos, lobby, tmp) {
912 		cevent = (struct sctp_ulpevent *) pos->cb;
913 		csid = cevent->stream;
914 		cssn = cevent->ssn;
915 
916 		/* Have we gone too far?  */
917 		if (csid > sid)
918 			break;
919 
920 		/* Have we not gone far enough?  */
921 		if (csid < sid)
922 			continue;
923 
924 		/* see if this ssn has been marked by skipping */
925 		if (!SSN_lt(cssn, sctp_ssn_peek(stream, in, csid)))
926 			break;
927 
928 		__skb_unlink(pos, lobby);
929 		if (!event)
930 			/* Create a temporary list to collect chunks on.  */
931 			event = sctp_skb2event(pos);
932 
933 		/* Attach all gathered skbs to the event.  */
934 		__skb_queue_tail(&temp, pos);
935 	}
936 
937 	/* If we didn't reap any data, see if the next expected SSN
938 	 * is next on the queue and if so, use that.
939 	 */
940 	if (event == NULL && pos != (struct sk_buff *)lobby) {
941 		cevent = (struct sctp_ulpevent *) pos->cb;
942 		csid = cevent->stream;
943 		cssn = cevent->ssn;
944 
945 		if (csid == sid && cssn == sctp_ssn_peek(stream, in, csid)) {
946 			sctp_ssn_next(stream, in, csid);
947 			__skb_unlink(pos, lobby);
948 			__skb_queue_tail(&temp, pos);
949 			event = sctp_skb2event(pos);
950 		}
951 	}
952 
953 	/* Send event to the ULP.  'event' is the sctp_ulpevent for
954 	 * very first SKB on the 'temp' list.
955 	 */
956 	if (event) {
957 		/* see if we have more ordered that we can deliver */
958 		sctp_ulpq_retrieve_ordered(ulpq, event);
959 		sctp_ulpq_tail_event(ulpq, event);
960 	}
961 }
962 
963 /* Skip over an SSN. This is used during the processing of
964  * Forwared TSN chunk to skip over the abandoned ordered data
965  */
966 void sctp_ulpq_skip(struct sctp_ulpq *ulpq, __u16 sid, __u16 ssn)
967 {
968 	struct sctp_stream *stream;
969 
970 	/* Note: The stream ID must be verified before this routine.  */
971 	stream  = &ulpq->asoc->stream;
972 
973 	/* Is this an old SSN?  If so ignore. */
974 	if (SSN_lt(ssn, sctp_ssn_peek(stream, in, sid)))
975 		return;
976 
977 	/* Mark that we are no longer expecting this SSN or lower. */
978 	sctp_ssn_skip(stream, in, sid, ssn);
979 
980 	/* Go find any other chunks that were waiting for
981 	 * ordering and deliver them if needed.
982 	 */
983 	sctp_ulpq_reap_ordered(ulpq, sid);
984 }
985 
986 __u16 sctp_ulpq_renege_list(struct sctp_ulpq *ulpq, struct sk_buff_head *list,
987 			    __u16 needed)
988 {
989 	__u16 freed = 0;
990 	__u32 tsn, last_tsn;
991 	struct sk_buff *skb, *flist, *last;
992 	struct sctp_ulpevent *event;
993 	struct sctp_tsnmap *tsnmap;
994 
995 	tsnmap = &ulpq->asoc->peer.tsn_map;
996 
997 	while ((skb = skb_peek_tail(list)) != NULL) {
998 		event = sctp_skb2event(skb);
999 		tsn = event->tsn;
1000 
1001 		/* Don't renege below the Cumulative TSN ACK Point. */
1002 		if (TSN_lte(tsn, sctp_tsnmap_get_ctsn(tsnmap)))
1003 			break;
1004 
1005 		/* Events in ordering queue may have multiple fragments
1006 		 * corresponding to additional TSNs.  Sum the total
1007 		 * freed space; find the last TSN.
1008 		 */
1009 		freed += skb_headlen(skb);
1010 		flist = skb_shinfo(skb)->frag_list;
1011 		for (last = flist; flist; flist = flist->next) {
1012 			last = flist;
1013 			freed += skb_headlen(last);
1014 		}
1015 		if (last)
1016 			last_tsn = sctp_skb2event(last)->tsn;
1017 		else
1018 			last_tsn = tsn;
1019 
1020 		/* Unlink the event, then renege all applicable TSNs. */
1021 		__skb_unlink(skb, list);
1022 		sctp_ulpevent_free(event);
1023 		while (TSN_lte(tsn, last_tsn)) {
1024 			sctp_tsnmap_renege(tsnmap, tsn);
1025 			tsn++;
1026 		}
1027 		if (freed >= needed)
1028 			return freed;
1029 	}
1030 
1031 	return freed;
1032 }
1033 
1034 /* Renege 'needed' bytes from the ordering queue. */
1035 static __u16 sctp_ulpq_renege_order(struct sctp_ulpq *ulpq, __u16 needed)
1036 {
1037 	return sctp_ulpq_renege_list(ulpq, &ulpq->lobby, needed);
1038 }
1039 
1040 /* Renege 'needed' bytes from the reassembly queue. */
1041 static __u16 sctp_ulpq_renege_frags(struct sctp_ulpq *ulpq, __u16 needed)
1042 {
1043 	return sctp_ulpq_renege_list(ulpq, &ulpq->reasm, needed);
1044 }
1045 
1046 /* Partial deliver the first message as there is pressure on rwnd. */
1047 void sctp_ulpq_partial_delivery(struct sctp_ulpq *ulpq,
1048 				gfp_t gfp)
1049 {
1050 	struct sctp_ulpevent *event;
1051 	struct sctp_association *asoc;
1052 	struct sctp_sock *sp;
1053 	__u32 ctsn;
1054 	struct sk_buff *skb;
1055 
1056 	asoc = ulpq->asoc;
1057 	sp = sctp_sk(asoc->base.sk);
1058 
1059 	/* If the association is already in Partial Delivery mode
1060 	 * we have nothing to do.
1061 	 */
1062 	if (ulpq->pd_mode)
1063 		return;
1064 
1065 	/* Data must be at or below the Cumulative TSN ACK Point to
1066 	 * start partial delivery.
1067 	 */
1068 	skb = skb_peek(&asoc->ulpq.reasm);
1069 	if (skb != NULL) {
1070 		ctsn = sctp_skb2event(skb)->tsn;
1071 		if (!TSN_lte(ctsn, sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map)))
1072 			return;
1073 	}
1074 
1075 	/* If the user enabled fragment interleave socket option,
1076 	 * multiple associations can enter partial delivery.
1077 	 * Otherwise, we can only enter partial delivery if the
1078 	 * socket is not in partial deliver mode.
1079 	 */
1080 	if (sp->frag_interleave || atomic_read(&sp->pd_mode) == 0) {
1081 		/* Is partial delivery possible?  */
1082 		event = sctp_ulpq_retrieve_first(ulpq);
1083 		/* Send event to the ULP.   */
1084 		if (event) {
1085 			sctp_ulpq_tail_event(ulpq, event);
1086 			sctp_ulpq_set_pd(ulpq);
1087 			return;
1088 		}
1089 	}
1090 }
1091 
1092 /* Renege some packets to make room for an incoming chunk.  */
1093 void sctp_ulpq_renege(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk,
1094 		      gfp_t gfp)
1095 {
1096 	struct sctp_association *asoc = ulpq->asoc;
1097 	__u32 freed = 0;
1098 	__u16 needed;
1099 
1100 	needed = ntohs(chunk->chunk_hdr->length) -
1101 		 sizeof(struct sctp_data_chunk);
1102 
1103 	if (skb_queue_empty(&asoc->base.sk->sk_receive_queue)) {
1104 		freed = sctp_ulpq_renege_order(ulpq, needed);
1105 		if (freed < needed)
1106 			freed += sctp_ulpq_renege_frags(ulpq, needed - freed);
1107 	}
1108 	/* If able to free enough room, accept this chunk. */
1109 	if (freed >= needed) {
1110 		int retval = sctp_ulpq_tail_data(ulpq, chunk, gfp);
1111 		/*
1112 		 * Enter partial delivery if chunk has not been
1113 		 * delivered; otherwise, drain the reassembly queue.
1114 		 */
1115 		if (retval <= 0)
1116 			sctp_ulpq_partial_delivery(ulpq, gfp);
1117 		else if (retval == 1)
1118 			sctp_ulpq_reasm_drain(ulpq);
1119 	}
1120 
1121 	sk_mem_reclaim(asoc->base.sk);
1122 }
1123 
1124 
1125 
1126 /* Notify the application if an association is aborted and in
1127  * partial delivery mode.  Send up any pending received messages.
1128  */
1129 void sctp_ulpq_abort_pd(struct sctp_ulpq *ulpq, gfp_t gfp)
1130 {
1131 	struct sctp_ulpevent *ev = NULL;
1132 	struct sock *sk;
1133 	struct sctp_sock *sp;
1134 
1135 	if (!ulpq->pd_mode)
1136 		return;
1137 
1138 	sk = ulpq->asoc->base.sk;
1139 	sp = sctp_sk(sk);
1140 	if (sctp_ulpevent_type_enabled(SCTP_PARTIAL_DELIVERY_EVENT,
1141 				       &sctp_sk(sk)->subscribe))
1142 		ev = sctp_ulpevent_make_pdapi(ulpq->asoc,
1143 					      SCTP_PARTIAL_DELIVERY_ABORTED,
1144 					      0, 0, 0, gfp);
1145 	if (ev)
1146 		__skb_queue_tail(&sk->sk_receive_queue, sctp_event2skb(ev));
1147 
1148 	/* If there is data waiting, send it up the socket now. */
1149 	if ((sctp_ulpq_clear_pd(ulpq) || ev) && !sp->data_ready_signalled) {
1150 		sp->data_ready_signalled = 1;
1151 		sk->sk_data_ready(sk);
1152 	}
1153 }
1154