xref: /linux/net/sctp/ulpqueue.c (revision 89e47d3b8a273b0eac21e4bf6d7fdb86b654fa16)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This abstraction carries sctp events to the ULP (sockets).
10  *
11  * This SCTP implementation is free software;
12  * you can redistribute it and/or modify it under the terms of
13  * the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This SCTP implementation is distributed in the hope that it
18  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
19  *                 ************************
20  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
21  * See the GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with GNU CC; see the file COPYING.  If not, see
25  * <http://www.gnu.org/licenses/>.
26  *
27  * Please send any bug reports or fixes you make to the
28  * email address(es):
29  *    lksctp developers <linux-sctp@vger.kernel.org>
30  *
31  * Written or modified by:
32  *    Jon Grimm             <jgrimm@us.ibm.com>
33  *    La Monte H.P. Yarroll <piggy@acm.org>
34  *    Sridhar Samudrala     <sri@us.ibm.com>
35  */
36 
37 #include <linux/slab.h>
38 #include <linux/types.h>
39 #include <linux/skbuff.h>
40 #include <net/sock.h>
41 #include <net/sctp/structs.h>
42 #include <net/sctp/sctp.h>
43 #include <net/sctp/sm.h>
44 
45 /* Forward declarations for internal helpers.  */
46 static struct sctp_ulpevent * sctp_ulpq_reasm(struct sctp_ulpq *ulpq,
47 					      struct sctp_ulpevent *);
48 static struct sctp_ulpevent * sctp_ulpq_order(struct sctp_ulpq *,
49 					      struct sctp_ulpevent *);
50 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq);
51 
52 /* 1st Level Abstractions */
53 
54 /* Initialize a ULP queue from a block of memory.  */
55 struct sctp_ulpq *sctp_ulpq_init(struct sctp_ulpq *ulpq,
56 				 struct sctp_association *asoc)
57 {
58 	memset(ulpq, 0, sizeof(struct sctp_ulpq));
59 
60 	ulpq->asoc = asoc;
61 	skb_queue_head_init(&ulpq->reasm);
62 	skb_queue_head_init(&ulpq->lobby);
63 	ulpq->pd_mode  = 0;
64 
65 	return ulpq;
66 }
67 
68 
69 /* Flush the reassembly and ordering queues.  */
70 void sctp_ulpq_flush(struct sctp_ulpq *ulpq)
71 {
72 	struct sk_buff *skb;
73 	struct sctp_ulpevent *event;
74 
75 	while ((skb = __skb_dequeue(&ulpq->lobby)) != NULL) {
76 		event = sctp_skb2event(skb);
77 		sctp_ulpevent_free(event);
78 	}
79 
80 	while ((skb = __skb_dequeue(&ulpq->reasm)) != NULL) {
81 		event = sctp_skb2event(skb);
82 		sctp_ulpevent_free(event);
83 	}
84 
85 }
86 
87 /* Dispose of a ulpqueue.  */
88 void sctp_ulpq_free(struct sctp_ulpq *ulpq)
89 {
90 	sctp_ulpq_flush(ulpq);
91 }
92 
93 /* Process an incoming DATA chunk.  */
94 int sctp_ulpq_tail_data(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk,
95 			gfp_t gfp)
96 {
97 	struct sk_buff_head temp;
98 	struct sctp_ulpevent *event;
99 	int event_eor = 0;
100 
101 	/* Create an event from the incoming chunk. */
102 	event = sctp_ulpevent_make_rcvmsg(chunk->asoc, chunk, gfp);
103 	if (!event)
104 		return -ENOMEM;
105 
106 	/* Do reassembly if needed.  */
107 	event = sctp_ulpq_reasm(ulpq, event);
108 
109 	/* Do ordering if needed.  */
110 	if ((event) && (event->msg_flags & MSG_EOR)){
111 		/* Create a temporary list to collect chunks on.  */
112 		skb_queue_head_init(&temp);
113 		__skb_queue_tail(&temp, sctp_event2skb(event));
114 
115 		event = sctp_ulpq_order(ulpq, event);
116 	}
117 
118 	/* Send event to the ULP.  'event' is the sctp_ulpevent for
119 	 * very first SKB on the 'temp' list.
120 	 */
121 	if (event) {
122 		event_eor = (event->msg_flags & MSG_EOR) ? 1 : 0;
123 		sctp_ulpq_tail_event(ulpq, event);
124 	}
125 
126 	return event_eor;
127 }
128 
129 /* Add a new event for propagation to the ULP.  */
130 /* Clear the partial delivery mode for this socket.   Note: This
131  * assumes that no association is currently in partial delivery mode.
132  */
133 int sctp_clear_pd(struct sock *sk, struct sctp_association *asoc)
134 {
135 	struct sctp_sock *sp = sctp_sk(sk);
136 
137 	if (atomic_dec_and_test(&sp->pd_mode)) {
138 		/* This means there are no other associations in PD, so
139 		 * we can go ahead and clear out the lobby in one shot
140 		 */
141 		if (!skb_queue_empty(&sp->pd_lobby)) {
142 			struct list_head *list;
143 			sctp_skb_list_tail(&sp->pd_lobby, &sk->sk_receive_queue);
144 			list = (struct list_head *)&sctp_sk(sk)->pd_lobby;
145 			INIT_LIST_HEAD(list);
146 			return 1;
147 		}
148 	} else {
149 		/* There are other associations in PD, so we only need to
150 		 * pull stuff out of the lobby that belongs to the
151 		 * associations that is exiting PD (all of its notifications
152 		 * are posted here).
153 		 */
154 		if (!skb_queue_empty(&sp->pd_lobby) && asoc) {
155 			struct sk_buff *skb, *tmp;
156 			struct sctp_ulpevent *event;
157 
158 			sctp_skb_for_each(skb, &sp->pd_lobby, tmp) {
159 				event = sctp_skb2event(skb);
160 				if (event->asoc == asoc) {
161 					__skb_unlink(skb, &sp->pd_lobby);
162 					__skb_queue_tail(&sk->sk_receive_queue,
163 							 skb);
164 				}
165 			}
166 		}
167 	}
168 
169 	return 0;
170 }
171 
172 /* Set the pd_mode on the socket and ulpq */
173 static void sctp_ulpq_set_pd(struct sctp_ulpq *ulpq)
174 {
175 	struct sctp_sock *sp = sctp_sk(ulpq->asoc->base.sk);
176 
177 	atomic_inc(&sp->pd_mode);
178 	ulpq->pd_mode = 1;
179 }
180 
181 /* Clear the pd_mode and restart any pending messages waiting for delivery. */
182 static int sctp_ulpq_clear_pd(struct sctp_ulpq *ulpq)
183 {
184 	ulpq->pd_mode = 0;
185 	sctp_ulpq_reasm_drain(ulpq);
186 	return sctp_clear_pd(ulpq->asoc->base.sk, ulpq->asoc);
187 }
188 
189 /* If the SKB of 'event' is on a list, it is the first such member
190  * of that list.
191  */
192 int sctp_ulpq_tail_event(struct sctp_ulpq *ulpq, struct sctp_ulpevent *event)
193 {
194 	struct sock *sk = ulpq->asoc->base.sk;
195 	struct sk_buff_head *queue, *skb_list;
196 	struct sk_buff *skb = sctp_event2skb(event);
197 	int clear_pd = 0;
198 
199 	skb_list = (struct sk_buff_head *) skb->prev;
200 
201 	/* If the socket is just going to throw this away, do not
202 	 * even try to deliver it.
203 	 */
204 	if (sock_flag(sk, SOCK_DEAD) || (sk->sk_shutdown & RCV_SHUTDOWN))
205 		goto out_free;
206 
207 	/* Check if the user wishes to receive this event.  */
208 	if (!sctp_ulpevent_is_enabled(event, &sctp_sk(sk)->subscribe))
209 		goto out_free;
210 
211 	/* If we are in partial delivery mode, post to the lobby until
212 	 * partial delivery is cleared, unless, of course _this_ is
213 	 * the association the cause of the partial delivery.
214 	 */
215 
216 	if (atomic_read(&sctp_sk(sk)->pd_mode) == 0) {
217 		queue = &sk->sk_receive_queue;
218 	} else {
219 		if (ulpq->pd_mode) {
220 			/* If the association is in partial delivery, we
221 			 * need to finish delivering the partially processed
222 			 * packet before passing any other data.  This is
223 			 * because we don't truly support stream interleaving.
224 			 */
225 			if ((event->msg_flags & MSG_NOTIFICATION) ||
226 			    (SCTP_DATA_NOT_FRAG ==
227 				    (event->msg_flags & SCTP_DATA_FRAG_MASK)))
228 				queue = &sctp_sk(sk)->pd_lobby;
229 			else {
230 				clear_pd = event->msg_flags & MSG_EOR;
231 				queue = &sk->sk_receive_queue;
232 			}
233 		} else {
234 			/*
235 			 * If fragment interleave is enabled, we
236 			 * can queue this to the receive queue instead
237 			 * of the lobby.
238 			 */
239 			if (sctp_sk(sk)->frag_interleave)
240 				queue = &sk->sk_receive_queue;
241 			else
242 				queue = &sctp_sk(sk)->pd_lobby;
243 		}
244 	}
245 
246 	/* If we are harvesting multiple skbs they will be
247 	 * collected on a list.
248 	 */
249 	if (skb_list)
250 		sctp_skb_list_tail(skb_list, queue);
251 	else
252 		__skb_queue_tail(queue, skb);
253 
254 	/* Did we just complete partial delivery and need to get
255 	 * rolling again?  Move pending data to the receive
256 	 * queue.
257 	 */
258 	if (clear_pd)
259 		sctp_ulpq_clear_pd(ulpq);
260 
261 	if (queue == &sk->sk_receive_queue)
262 		sk->sk_data_ready(sk, 0);
263 	return 1;
264 
265 out_free:
266 	if (skb_list)
267 		sctp_queue_purge_ulpevents(skb_list);
268 	else
269 		sctp_ulpevent_free(event);
270 
271 	return 0;
272 }
273 
274 /* 2nd Level Abstractions */
275 
276 /* Helper function to store chunks that need to be reassembled.  */
277 static void sctp_ulpq_store_reasm(struct sctp_ulpq *ulpq,
278 					 struct sctp_ulpevent *event)
279 {
280 	struct sk_buff *pos;
281 	struct sctp_ulpevent *cevent;
282 	__u32 tsn, ctsn;
283 
284 	tsn = event->tsn;
285 
286 	/* See if it belongs at the end. */
287 	pos = skb_peek_tail(&ulpq->reasm);
288 	if (!pos) {
289 		__skb_queue_tail(&ulpq->reasm, sctp_event2skb(event));
290 		return;
291 	}
292 
293 	/* Short circuit just dropping it at the end. */
294 	cevent = sctp_skb2event(pos);
295 	ctsn = cevent->tsn;
296 	if (TSN_lt(ctsn, tsn)) {
297 		__skb_queue_tail(&ulpq->reasm, sctp_event2skb(event));
298 		return;
299 	}
300 
301 	/* Find the right place in this list. We store them by TSN.  */
302 	skb_queue_walk(&ulpq->reasm, pos) {
303 		cevent = sctp_skb2event(pos);
304 		ctsn = cevent->tsn;
305 
306 		if (TSN_lt(tsn, ctsn))
307 			break;
308 	}
309 
310 	/* Insert before pos. */
311 	__skb_queue_before(&ulpq->reasm, pos, sctp_event2skb(event));
312 
313 }
314 
315 /* Helper function to return an event corresponding to the reassembled
316  * datagram.
317  * This routine creates a re-assembled skb given the first and last skb's
318  * as stored in the reassembly queue. The skb's may be non-linear if the sctp
319  * payload was fragmented on the way and ip had to reassemble them.
320  * We add the rest of skb's to the first skb's fraglist.
321  */
322 static struct sctp_ulpevent *sctp_make_reassembled_event(struct net *net,
323 	struct sk_buff_head *queue, struct sk_buff *f_frag,
324 	struct sk_buff *l_frag)
325 {
326 	struct sk_buff *pos;
327 	struct sk_buff *new = NULL;
328 	struct sctp_ulpevent *event;
329 	struct sk_buff *pnext, *last;
330 	struct sk_buff *list = skb_shinfo(f_frag)->frag_list;
331 
332 	/* Store the pointer to the 2nd skb */
333 	if (f_frag == l_frag)
334 		pos = NULL;
335 	else
336 		pos = f_frag->next;
337 
338 	/* Get the last skb in the f_frag's frag_list if present. */
339 	for (last = list; list; last = list, list = list->next);
340 
341 	/* Add the list of remaining fragments to the first fragments
342 	 * frag_list.
343 	 */
344 	if (last)
345 		last->next = pos;
346 	else {
347 		if (skb_cloned(f_frag)) {
348 			/* This is a cloned skb, we can't just modify
349 			 * the frag_list.  We need a new skb to do that.
350 			 * Instead of calling skb_unshare(), we'll do it
351 			 * ourselves since we need to delay the free.
352 			 */
353 			new = skb_copy(f_frag, GFP_ATOMIC);
354 			if (!new)
355 				return NULL;	/* try again later */
356 
357 			sctp_skb_set_owner_r(new, f_frag->sk);
358 
359 			skb_shinfo(new)->frag_list = pos;
360 		} else
361 			skb_shinfo(f_frag)->frag_list = pos;
362 	}
363 
364 	/* Remove the first fragment from the reassembly queue.  */
365 	__skb_unlink(f_frag, queue);
366 
367 	/* if we did unshare, then free the old skb and re-assign */
368 	if (new) {
369 		kfree_skb(f_frag);
370 		f_frag = new;
371 	}
372 
373 	while (pos) {
374 
375 		pnext = pos->next;
376 
377 		/* Update the len and data_len fields of the first fragment. */
378 		f_frag->len += pos->len;
379 		f_frag->data_len += pos->len;
380 
381 		/* Remove the fragment from the reassembly queue.  */
382 		__skb_unlink(pos, queue);
383 
384 		/* Break if we have reached the last fragment.  */
385 		if (pos == l_frag)
386 			break;
387 		pos->next = pnext;
388 		pos = pnext;
389 	}
390 
391 	event = sctp_skb2event(f_frag);
392 	SCTP_INC_STATS(net, SCTP_MIB_REASMUSRMSGS);
393 
394 	return event;
395 }
396 
397 
398 /* Helper function to check if an incoming chunk has filled up the last
399  * missing fragment in a SCTP datagram and return the corresponding event.
400  */
401 static struct sctp_ulpevent *sctp_ulpq_retrieve_reassembled(struct sctp_ulpq *ulpq)
402 {
403 	struct sk_buff *pos;
404 	struct sctp_ulpevent *cevent;
405 	struct sk_buff *first_frag = NULL;
406 	__u32 ctsn, next_tsn;
407 	struct sctp_ulpevent *retval = NULL;
408 	struct sk_buff *pd_first = NULL;
409 	struct sk_buff *pd_last = NULL;
410 	size_t pd_len = 0;
411 	struct sctp_association *asoc;
412 	u32 pd_point;
413 
414 	/* Initialized to 0 just to avoid compiler warning message.  Will
415 	 * never be used with this value. It is referenced only after it
416 	 * is set when we find the first fragment of a message.
417 	 */
418 	next_tsn = 0;
419 
420 	/* The chunks are held in the reasm queue sorted by TSN.
421 	 * Walk through the queue sequentially and look for a sequence of
422 	 * fragmented chunks that complete a datagram.
423 	 * 'first_frag' and next_tsn are reset when we find a chunk which
424 	 * is the first fragment of a datagram. Once these 2 fields are set
425 	 * we expect to find the remaining middle fragments and the last
426 	 * fragment in order. If not, first_frag is reset to NULL and we
427 	 * start the next pass when we find another first fragment.
428 	 *
429 	 * There is a potential to do partial delivery if user sets
430 	 * SCTP_PARTIAL_DELIVERY_POINT option. Lets count some things here
431 	 * to see if can do PD.
432 	 */
433 	skb_queue_walk(&ulpq->reasm, pos) {
434 		cevent = sctp_skb2event(pos);
435 		ctsn = cevent->tsn;
436 
437 		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
438 		case SCTP_DATA_FIRST_FRAG:
439 			/* If this "FIRST_FRAG" is the first
440 			 * element in the queue, then count it towards
441 			 * possible PD.
442 			 */
443 			if (pos == ulpq->reasm.next) {
444 			    pd_first = pos;
445 			    pd_last = pos;
446 			    pd_len = pos->len;
447 			} else {
448 			    pd_first = NULL;
449 			    pd_last = NULL;
450 			    pd_len = 0;
451 			}
452 
453 			first_frag = pos;
454 			next_tsn = ctsn + 1;
455 			break;
456 
457 		case SCTP_DATA_MIDDLE_FRAG:
458 			if ((first_frag) && (ctsn == next_tsn)) {
459 				next_tsn++;
460 				if (pd_first) {
461 				    pd_last = pos;
462 				    pd_len += pos->len;
463 				}
464 			} else
465 				first_frag = NULL;
466 			break;
467 
468 		case SCTP_DATA_LAST_FRAG:
469 			if (first_frag && (ctsn == next_tsn))
470 				goto found;
471 			else
472 				first_frag = NULL;
473 			break;
474 		}
475 	}
476 
477 	asoc = ulpq->asoc;
478 	if (pd_first) {
479 		/* Make sure we can enter partial deliver.
480 		 * We can trigger partial delivery only if framgent
481 		 * interleave is set, or the socket is not already
482 		 * in  partial delivery.
483 		 */
484 		if (!sctp_sk(asoc->base.sk)->frag_interleave &&
485 		    atomic_read(&sctp_sk(asoc->base.sk)->pd_mode))
486 			goto done;
487 
488 		cevent = sctp_skb2event(pd_first);
489 		pd_point = sctp_sk(asoc->base.sk)->pd_point;
490 		if (pd_point && pd_point <= pd_len) {
491 			retval = sctp_make_reassembled_event(sock_net(asoc->base.sk),
492 							     &ulpq->reasm,
493 							     pd_first,
494 							     pd_last);
495 			if (retval)
496 				sctp_ulpq_set_pd(ulpq);
497 		}
498 	}
499 done:
500 	return retval;
501 found:
502 	retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk),
503 					     &ulpq->reasm, first_frag, pos);
504 	if (retval)
505 		retval->msg_flags |= MSG_EOR;
506 	goto done;
507 }
508 
509 /* Retrieve the next set of fragments of a partial message. */
510 static struct sctp_ulpevent *sctp_ulpq_retrieve_partial(struct sctp_ulpq *ulpq)
511 {
512 	struct sk_buff *pos, *last_frag, *first_frag;
513 	struct sctp_ulpevent *cevent;
514 	__u32 ctsn, next_tsn;
515 	int is_last;
516 	struct sctp_ulpevent *retval;
517 
518 	/* The chunks are held in the reasm queue sorted by TSN.
519 	 * Walk through the queue sequentially and look for the first
520 	 * sequence of fragmented chunks.
521 	 */
522 
523 	if (skb_queue_empty(&ulpq->reasm))
524 		return NULL;
525 
526 	last_frag = first_frag = NULL;
527 	retval = NULL;
528 	next_tsn = 0;
529 	is_last = 0;
530 
531 	skb_queue_walk(&ulpq->reasm, pos) {
532 		cevent = sctp_skb2event(pos);
533 		ctsn = cevent->tsn;
534 
535 		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
536 		case SCTP_DATA_FIRST_FRAG:
537 			if (!first_frag)
538 				return NULL;
539 			goto done;
540 		case SCTP_DATA_MIDDLE_FRAG:
541 			if (!first_frag) {
542 				first_frag = pos;
543 				next_tsn = ctsn + 1;
544 				last_frag = pos;
545 			} else if (next_tsn == ctsn) {
546 				next_tsn++;
547 				last_frag = pos;
548 			} else
549 				goto done;
550 			break;
551 		case SCTP_DATA_LAST_FRAG:
552 			if (!first_frag)
553 				first_frag = pos;
554 			else if (ctsn != next_tsn)
555 				goto done;
556 			last_frag = pos;
557 			is_last = 1;
558 			goto done;
559 		default:
560 			return NULL;
561 		}
562 	}
563 
564 	/* We have the reassembled event. There is no need to look
565 	 * further.
566 	 */
567 done:
568 	retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk),
569 					&ulpq->reasm, first_frag, last_frag);
570 	if (retval && is_last)
571 		retval->msg_flags |= MSG_EOR;
572 
573 	return retval;
574 }
575 
576 
577 /* Helper function to reassemble chunks.  Hold chunks on the reasm queue that
578  * need reassembling.
579  */
580 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq,
581 						struct sctp_ulpevent *event)
582 {
583 	struct sctp_ulpevent *retval = NULL;
584 
585 	/* Check if this is part of a fragmented message.  */
586 	if (SCTP_DATA_NOT_FRAG == (event->msg_flags & SCTP_DATA_FRAG_MASK)) {
587 		event->msg_flags |= MSG_EOR;
588 		return event;
589 	}
590 
591 	sctp_ulpq_store_reasm(ulpq, event);
592 	if (!ulpq->pd_mode)
593 		retval = sctp_ulpq_retrieve_reassembled(ulpq);
594 	else {
595 		__u32 ctsn, ctsnap;
596 
597 		/* Do not even bother unless this is the next tsn to
598 		 * be delivered.
599 		 */
600 		ctsn = event->tsn;
601 		ctsnap = sctp_tsnmap_get_ctsn(&ulpq->asoc->peer.tsn_map);
602 		if (TSN_lte(ctsn, ctsnap))
603 			retval = sctp_ulpq_retrieve_partial(ulpq);
604 	}
605 
606 	return retval;
607 }
608 
609 /* Retrieve the first part (sequential fragments) for partial delivery.  */
610 static struct sctp_ulpevent *sctp_ulpq_retrieve_first(struct sctp_ulpq *ulpq)
611 {
612 	struct sk_buff *pos, *last_frag, *first_frag;
613 	struct sctp_ulpevent *cevent;
614 	__u32 ctsn, next_tsn;
615 	struct sctp_ulpevent *retval;
616 
617 	/* The chunks are held in the reasm queue sorted by TSN.
618 	 * Walk through the queue sequentially and look for a sequence of
619 	 * fragmented chunks that start a datagram.
620 	 */
621 
622 	if (skb_queue_empty(&ulpq->reasm))
623 		return NULL;
624 
625 	last_frag = first_frag = NULL;
626 	retval = NULL;
627 	next_tsn = 0;
628 
629 	skb_queue_walk(&ulpq->reasm, pos) {
630 		cevent = sctp_skb2event(pos);
631 		ctsn = cevent->tsn;
632 
633 		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
634 		case SCTP_DATA_FIRST_FRAG:
635 			if (!first_frag) {
636 				first_frag = pos;
637 				next_tsn = ctsn + 1;
638 				last_frag = pos;
639 			} else
640 				goto done;
641 			break;
642 
643 		case SCTP_DATA_MIDDLE_FRAG:
644 			if (!first_frag)
645 				return NULL;
646 			if (ctsn == next_tsn) {
647 				next_tsn++;
648 				last_frag = pos;
649 			} else
650 				goto done;
651 			break;
652 
653 		case SCTP_DATA_LAST_FRAG:
654 			if (!first_frag)
655 				return NULL;
656 			else
657 				goto done;
658 			break;
659 
660 		default:
661 			return NULL;
662 		}
663 	}
664 
665 	/* We have the reassembled event. There is no need to look
666 	 * further.
667 	 */
668 done:
669 	retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk),
670 					&ulpq->reasm, first_frag, last_frag);
671 	return retval;
672 }
673 
674 /*
675  * Flush out stale fragments from the reassembly queue when processing
676  * a Forward TSN.
677  *
678  * RFC 3758, Section 3.6
679  *
680  * After receiving and processing a FORWARD TSN, the data receiver MUST
681  * take cautions in updating its re-assembly queue.  The receiver MUST
682  * remove any partially reassembled message, which is still missing one
683  * or more TSNs earlier than or equal to the new cumulative TSN point.
684  * In the event that the receiver has invoked the partial delivery API,
685  * a notification SHOULD also be generated to inform the upper layer API
686  * that the message being partially delivered will NOT be completed.
687  */
688 void sctp_ulpq_reasm_flushtsn(struct sctp_ulpq *ulpq, __u32 fwd_tsn)
689 {
690 	struct sk_buff *pos, *tmp;
691 	struct sctp_ulpevent *event;
692 	__u32 tsn;
693 
694 	if (skb_queue_empty(&ulpq->reasm))
695 		return;
696 
697 	skb_queue_walk_safe(&ulpq->reasm, pos, tmp) {
698 		event = sctp_skb2event(pos);
699 		tsn = event->tsn;
700 
701 		/* Since the entire message must be abandoned by the
702 		 * sender (item A3 in Section 3.5, RFC 3758), we can
703 		 * free all fragments on the list that are less then
704 		 * or equal to ctsn_point
705 		 */
706 		if (TSN_lte(tsn, fwd_tsn)) {
707 			__skb_unlink(pos, &ulpq->reasm);
708 			sctp_ulpevent_free(event);
709 		} else
710 			break;
711 	}
712 }
713 
714 /*
715  * Drain the reassembly queue.  If we just cleared parted delivery, it
716  * is possible that the reassembly queue will contain already reassembled
717  * messages.  Retrieve any such messages and give them to the user.
718  */
719 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq)
720 {
721 	struct sctp_ulpevent *event = NULL;
722 	struct sk_buff_head temp;
723 
724 	if (skb_queue_empty(&ulpq->reasm))
725 		return;
726 
727 	while ((event = sctp_ulpq_retrieve_reassembled(ulpq)) != NULL) {
728 		/* Do ordering if needed.  */
729 		if ((event) && (event->msg_flags & MSG_EOR)){
730 			skb_queue_head_init(&temp);
731 			__skb_queue_tail(&temp, sctp_event2skb(event));
732 
733 			event = sctp_ulpq_order(ulpq, event);
734 		}
735 
736 		/* Send event to the ULP.  'event' is the
737 		 * sctp_ulpevent for  very first SKB on the  temp' list.
738 		 */
739 		if (event)
740 			sctp_ulpq_tail_event(ulpq, event);
741 	}
742 }
743 
744 
745 /* Helper function to gather skbs that have possibly become
746  * ordered by an an incoming chunk.
747  */
748 static void sctp_ulpq_retrieve_ordered(struct sctp_ulpq *ulpq,
749 					      struct sctp_ulpevent *event)
750 {
751 	struct sk_buff_head *event_list;
752 	struct sk_buff *pos, *tmp;
753 	struct sctp_ulpevent *cevent;
754 	struct sctp_stream *in;
755 	__u16 sid, csid, cssn;
756 
757 	sid = event->stream;
758 	in  = &ulpq->asoc->ssnmap->in;
759 
760 	event_list = (struct sk_buff_head *) sctp_event2skb(event)->prev;
761 
762 	/* We are holding the chunks by stream, by SSN.  */
763 	sctp_skb_for_each(pos, &ulpq->lobby, tmp) {
764 		cevent = (struct sctp_ulpevent *) pos->cb;
765 		csid = cevent->stream;
766 		cssn = cevent->ssn;
767 
768 		/* Have we gone too far?  */
769 		if (csid > sid)
770 			break;
771 
772 		/* Have we not gone far enough?  */
773 		if (csid < sid)
774 			continue;
775 
776 		if (cssn != sctp_ssn_peek(in, sid))
777 			break;
778 
779 		/* Found it, so mark in the ssnmap. */
780 		sctp_ssn_next(in, sid);
781 
782 		__skb_unlink(pos, &ulpq->lobby);
783 
784 		/* Attach all gathered skbs to the event.  */
785 		__skb_queue_tail(event_list, pos);
786 	}
787 }
788 
789 /* Helper function to store chunks needing ordering.  */
790 static void sctp_ulpq_store_ordered(struct sctp_ulpq *ulpq,
791 					   struct sctp_ulpevent *event)
792 {
793 	struct sk_buff *pos;
794 	struct sctp_ulpevent *cevent;
795 	__u16 sid, csid;
796 	__u16 ssn, cssn;
797 
798 	pos = skb_peek_tail(&ulpq->lobby);
799 	if (!pos) {
800 		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
801 		return;
802 	}
803 
804 	sid = event->stream;
805 	ssn = event->ssn;
806 
807 	cevent = (struct sctp_ulpevent *) pos->cb;
808 	csid = cevent->stream;
809 	cssn = cevent->ssn;
810 	if (sid > csid) {
811 		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
812 		return;
813 	}
814 
815 	if ((sid == csid) && SSN_lt(cssn, ssn)) {
816 		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
817 		return;
818 	}
819 
820 	/* Find the right place in this list.  We store them by
821 	 * stream ID and then by SSN.
822 	 */
823 	skb_queue_walk(&ulpq->lobby, pos) {
824 		cevent = (struct sctp_ulpevent *) pos->cb;
825 		csid = cevent->stream;
826 		cssn = cevent->ssn;
827 
828 		if (csid > sid)
829 			break;
830 		if (csid == sid && SSN_lt(ssn, cssn))
831 			break;
832 	}
833 
834 
835 	/* Insert before pos. */
836 	__skb_queue_before(&ulpq->lobby, pos, sctp_event2skb(event));
837 }
838 
839 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *ulpq,
840 					     struct sctp_ulpevent *event)
841 {
842 	__u16 sid, ssn;
843 	struct sctp_stream *in;
844 
845 	/* Check if this message needs ordering.  */
846 	if (SCTP_DATA_UNORDERED & event->msg_flags)
847 		return event;
848 
849 	/* Note: The stream ID must be verified before this routine.  */
850 	sid = event->stream;
851 	ssn = event->ssn;
852 	in  = &ulpq->asoc->ssnmap->in;
853 
854 	/* Is this the expected SSN for this stream ID?  */
855 	if (ssn != sctp_ssn_peek(in, sid)) {
856 		/* We've received something out of order, so find where it
857 		 * needs to be placed.  We order by stream and then by SSN.
858 		 */
859 		sctp_ulpq_store_ordered(ulpq, event);
860 		return NULL;
861 	}
862 
863 	/* Mark that the next chunk has been found.  */
864 	sctp_ssn_next(in, sid);
865 
866 	/* Go find any other chunks that were waiting for
867 	 * ordering.
868 	 */
869 	sctp_ulpq_retrieve_ordered(ulpq, event);
870 
871 	return event;
872 }
873 
874 /* Helper function to gather skbs that have possibly become
875  * ordered by forward tsn skipping their dependencies.
876  */
877 static void sctp_ulpq_reap_ordered(struct sctp_ulpq *ulpq, __u16 sid)
878 {
879 	struct sk_buff *pos, *tmp;
880 	struct sctp_ulpevent *cevent;
881 	struct sctp_ulpevent *event;
882 	struct sctp_stream *in;
883 	struct sk_buff_head temp;
884 	struct sk_buff_head *lobby = &ulpq->lobby;
885 	__u16 csid, cssn;
886 
887 	in  = &ulpq->asoc->ssnmap->in;
888 
889 	/* We are holding the chunks by stream, by SSN.  */
890 	skb_queue_head_init(&temp);
891 	event = NULL;
892 	sctp_skb_for_each(pos, lobby, tmp) {
893 		cevent = (struct sctp_ulpevent *) pos->cb;
894 		csid = cevent->stream;
895 		cssn = cevent->ssn;
896 
897 		/* Have we gone too far?  */
898 		if (csid > sid)
899 			break;
900 
901 		/* Have we not gone far enough?  */
902 		if (csid < sid)
903 			continue;
904 
905 		/* see if this ssn has been marked by skipping */
906 		if (!SSN_lt(cssn, sctp_ssn_peek(in, csid)))
907 			break;
908 
909 		__skb_unlink(pos, lobby);
910 		if (!event)
911 			/* Create a temporary list to collect chunks on.  */
912 			event = sctp_skb2event(pos);
913 
914 		/* Attach all gathered skbs to the event.  */
915 		__skb_queue_tail(&temp, pos);
916 	}
917 
918 	/* If we didn't reap any data, see if the next expected SSN
919 	 * is next on the queue and if so, use that.
920 	 */
921 	if (event == NULL && pos != (struct sk_buff *)lobby) {
922 		cevent = (struct sctp_ulpevent *) pos->cb;
923 		csid = cevent->stream;
924 		cssn = cevent->ssn;
925 
926 		if (csid == sid && cssn == sctp_ssn_peek(in, csid)) {
927 			sctp_ssn_next(in, csid);
928 			__skb_unlink(pos, lobby);
929 			__skb_queue_tail(&temp, pos);
930 			event = sctp_skb2event(pos);
931 		}
932 	}
933 
934 	/* Send event to the ULP.  'event' is the sctp_ulpevent for
935 	 * very first SKB on the 'temp' list.
936 	 */
937 	if (event) {
938 		/* see if we have more ordered that we can deliver */
939 		sctp_ulpq_retrieve_ordered(ulpq, event);
940 		sctp_ulpq_tail_event(ulpq, event);
941 	}
942 }
943 
944 /* Skip over an SSN. This is used during the processing of
945  * Forwared TSN chunk to skip over the abandoned ordered data
946  */
947 void sctp_ulpq_skip(struct sctp_ulpq *ulpq, __u16 sid, __u16 ssn)
948 {
949 	struct sctp_stream *in;
950 
951 	/* Note: The stream ID must be verified before this routine.  */
952 	in  = &ulpq->asoc->ssnmap->in;
953 
954 	/* Is this an old SSN?  If so ignore. */
955 	if (SSN_lt(ssn, sctp_ssn_peek(in, sid)))
956 		return;
957 
958 	/* Mark that we are no longer expecting this SSN or lower. */
959 	sctp_ssn_skip(in, sid, ssn);
960 
961 	/* Go find any other chunks that were waiting for
962 	 * ordering and deliver them if needed.
963 	 */
964 	sctp_ulpq_reap_ordered(ulpq, sid);
965 }
966 
967 static __u16 sctp_ulpq_renege_list(struct sctp_ulpq *ulpq,
968 		struct sk_buff_head *list, __u16 needed)
969 {
970 	__u16 freed = 0;
971 	__u32 tsn, last_tsn;
972 	struct sk_buff *skb, *flist, *last;
973 	struct sctp_ulpevent *event;
974 	struct sctp_tsnmap *tsnmap;
975 
976 	tsnmap = &ulpq->asoc->peer.tsn_map;
977 
978 	while ((skb = skb_peek_tail(list)) != NULL) {
979 		event = sctp_skb2event(skb);
980 		tsn = event->tsn;
981 
982 		/* Don't renege below the Cumulative TSN ACK Point. */
983 		if (TSN_lte(tsn, sctp_tsnmap_get_ctsn(tsnmap)))
984 			break;
985 
986 		/* Events in ordering queue may have multiple fragments
987 		 * corresponding to additional TSNs.  Sum the total
988 		 * freed space; find the last TSN.
989 		 */
990 		freed += skb_headlen(skb);
991 		flist = skb_shinfo(skb)->frag_list;
992 		for (last = flist; flist; flist = flist->next) {
993 			last = flist;
994 			freed += skb_headlen(last);
995 		}
996 		if (last)
997 			last_tsn = sctp_skb2event(last)->tsn;
998 		else
999 			last_tsn = tsn;
1000 
1001 		/* Unlink the event, then renege all applicable TSNs. */
1002 		__skb_unlink(skb, list);
1003 		sctp_ulpevent_free(event);
1004 		while (TSN_lte(tsn, last_tsn)) {
1005 			sctp_tsnmap_renege(tsnmap, tsn);
1006 			tsn++;
1007 		}
1008 		if (freed >= needed)
1009 			return freed;
1010 	}
1011 
1012 	return freed;
1013 }
1014 
1015 /* Renege 'needed' bytes from the ordering queue. */
1016 static __u16 sctp_ulpq_renege_order(struct sctp_ulpq *ulpq, __u16 needed)
1017 {
1018 	return sctp_ulpq_renege_list(ulpq, &ulpq->lobby, needed);
1019 }
1020 
1021 /* Renege 'needed' bytes from the reassembly queue. */
1022 static __u16 sctp_ulpq_renege_frags(struct sctp_ulpq *ulpq, __u16 needed)
1023 {
1024 	return sctp_ulpq_renege_list(ulpq, &ulpq->reasm, needed);
1025 }
1026 
1027 /* Partial deliver the first message as there is pressure on rwnd. */
1028 void sctp_ulpq_partial_delivery(struct sctp_ulpq *ulpq,
1029 				gfp_t gfp)
1030 {
1031 	struct sctp_ulpevent *event;
1032 	struct sctp_association *asoc;
1033 	struct sctp_sock *sp;
1034 	__u32 ctsn;
1035 	struct sk_buff *skb;
1036 
1037 	asoc = ulpq->asoc;
1038 	sp = sctp_sk(asoc->base.sk);
1039 
1040 	/* If the association is already in Partial Delivery mode
1041 	 * we have nothing to do.
1042 	 */
1043 	if (ulpq->pd_mode)
1044 		return;
1045 
1046 	/* Data must be at or below the Cumulative TSN ACK Point to
1047 	 * start partial delivery.
1048 	 */
1049 	skb = skb_peek(&asoc->ulpq.reasm);
1050 	if (skb != NULL) {
1051 		ctsn = sctp_skb2event(skb)->tsn;
1052 		if (!TSN_lte(ctsn, sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map)))
1053 			return;
1054 	}
1055 
1056 	/* If the user enabled fragment interleave socket option,
1057 	 * multiple associations can enter partial delivery.
1058 	 * Otherwise, we can only enter partial delivery if the
1059 	 * socket is not in partial deliver mode.
1060 	 */
1061 	if (sp->frag_interleave || atomic_read(&sp->pd_mode) == 0) {
1062 		/* Is partial delivery possible?  */
1063 		event = sctp_ulpq_retrieve_first(ulpq);
1064 		/* Send event to the ULP.   */
1065 		if (event) {
1066 			sctp_ulpq_tail_event(ulpq, event);
1067 			sctp_ulpq_set_pd(ulpq);
1068 			return;
1069 		}
1070 	}
1071 }
1072 
1073 /* Renege some packets to make room for an incoming chunk.  */
1074 void sctp_ulpq_renege(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk,
1075 		      gfp_t gfp)
1076 {
1077 	struct sctp_association *asoc;
1078 	__u16 needed, freed;
1079 
1080 	asoc = ulpq->asoc;
1081 
1082 	if (chunk) {
1083 		needed = ntohs(chunk->chunk_hdr->length);
1084 		needed -= sizeof(sctp_data_chunk_t);
1085 	} else
1086 		needed = SCTP_DEFAULT_MAXWINDOW;
1087 
1088 	freed = 0;
1089 
1090 	if (skb_queue_empty(&asoc->base.sk->sk_receive_queue)) {
1091 		freed = sctp_ulpq_renege_order(ulpq, needed);
1092 		if (freed < needed) {
1093 			freed += sctp_ulpq_renege_frags(ulpq, needed - freed);
1094 		}
1095 	}
1096 	/* If able to free enough room, accept this chunk. */
1097 	if (chunk && (freed >= needed)) {
1098 		int retval;
1099 		retval = sctp_ulpq_tail_data(ulpq, chunk, gfp);
1100 		/*
1101 		 * Enter partial delivery if chunk has not been
1102 		 * delivered; otherwise, drain the reassembly queue.
1103 		 */
1104 		if (retval <= 0)
1105 			sctp_ulpq_partial_delivery(ulpq, gfp);
1106 		else if (retval == 1)
1107 			sctp_ulpq_reasm_drain(ulpq);
1108 	}
1109 
1110 	sk_mem_reclaim(asoc->base.sk);
1111 }
1112 
1113 
1114 
1115 /* Notify the application if an association is aborted and in
1116  * partial delivery mode.  Send up any pending received messages.
1117  */
1118 void sctp_ulpq_abort_pd(struct sctp_ulpq *ulpq, gfp_t gfp)
1119 {
1120 	struct sctp_ulpevent *ev = NULL;
1121 	struct sock *sk;
1122 
1123 	if (!ulpq->pd_mode)
1124 		return;
1125 
1126 	sk = ulpq->asoc->base.sk;
1127 	if (sctp_ulpevent_type_enabled(SCTP_PARTIAL_DELIVERY_EVENT,
1128 				       &sctp_sk(sk)->subscribe))
1129 		ev = sctp_ulpevent_make_pdapi(ulpq->asoc,
1130 					      SCTP_PARTIAL_DELIVERY_ABORTED,
1131 					      gfp);
1132 	if (ev)
1133 		__skb_queue_tail(&sk->sk_receive_queue, sctp_event2skb(ev));
1134 
1135 	/* If there is data waiting, send it up the socket now. */
1136 	if (sctp_ulpq_clear_pd(ulpq) || ev)
1137 		sk->sk_data_ready(sk, 0);
1138 }
1139