1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This abstraction carries sctp events to the ULP (sockets). 10 * 11 * This SCTP implementation is free software; 12 * you can redistribute it and/or modify it under the terms of 13 * the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This SCTP implementation is distributed in the hope that it 18 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 19 * ************************ 20 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 21 * See the GNU General Public License for more details. 22 * 23 * You should have received a copy of the GNU General Public License 24 * along with GNU CC; see the file COPYING. If not, see 25 * <http://www.gnu.org/licenses/>. 26 * 27 * Please send any bug reports or fixes you make to the 28 * email address(es): 29 * lksctp developers <linux-sctp@vger.kernel.org> 30 * 31 * Written or modified by: 32 * Jon Grimm <jgrimm@us.ibm.com> 33 * La Monte H.P. Yarroll <piggy@acm.org> 34 * Sridhar Samudrala <sri@us.ibm.com> 35 */ 36 37 #include <linux/slab.h> 38 #include <linux/types.h> 39 #include <linux/skbuff.h> 40 #include <net/sock.h> 41 #include <net/sctp/structs.h> 42 #include <net/sctp/sctp.h> 43 #include <net/sctp/sm.h> 44 45 /* Forward declarations for internal helpers. */ 46 static struct sctp_ulpevent * sctp_ulpq_reasm(struct sctp_ulpq *ulpq, 47 struct sctp_ulpevent *); 48 static struct sctp_ulpevent * sctp_ulpq_order(struct sctp_ulpq *, 49 struct sctp_ulpevent *); 50 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq); 51 52 /* 1st Level Abstractions */ 53 54 /* Initialize a ULP queue from a block of memory. */ 55 struct sctp_ulpq *sctp_ulpq_init(struct sctp_ulpq *ulpq, 56 struct sctp_association *asoc) 57 { 58 memset(ulpq, 0, sizeof(struct sctp_ulpq)); 59 60 ulpq->asoc = asoc; 61 skb_queue_head_init(&ulpq->reasm); 62 skb_queue_head_init(&ulpq->lobby); 63 ulpq->pd_mode = 0; 64 65 return ulpq; 66 } 67 68 69 /* Flush the reassembly and ordering queues. */ 70 void sctp_ulpq_flush(struct sctp_ulpq *ulpq) 71 { 72 struct sk_buff *skb; 73 struct sctp_ulpevent *event; 74 75 while ((skb = __skb_dequeue(&ulpq->lobby)) != NULL) { 76 event = sctp_skb2event(skb); 77 sctp_ulpevent_free(event); 78 } 79 80 while ((skb = __skb_dequeue(&ulpq->reasm)) != NULL) { 81 event = sctp_skb2event(skb); 82 sctp_ulpevent_free(event); 83 } 84 85 } 86 87 /* Dispose of a ulpqueue. */ 88 void sctp_ulpq_free(struct sctp_ulpq *ulpq) 89 { 90 sctp_ulpq_flush(ulpq); 91 } 92 93 /* Process an incoming DATA chunk. */ 94 int sctp_ulpq_tail_data(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk, 95 gfp_t gfp) 96 { 97 struct sk_buff_head temp; 98 struct sctp_ulpevent *event; 99 int event_eor = 0; 100 101 /* Create an event from the incoming chunk. */ 102 event = sctp_ulpevent_make_rcvmsg(chunk->asoc, chunk, gfp); 103 if (!event) 104 return -ENOMEM; 105 106 /* Do reassembly if needed. */ 107 event = sctp_ulpq_reasm(ulpq, event); 108 109 /* Do ordering if needed. */ 110 if ((event) && (event->msg_flags & MSG_EOR)){ 111 /* Create a temporary list to collect chunks on. */ 112 skb_queue_head_init(&temp); 113 __skb_queue_tail(&temp, sctp_event2skb(event)); 114 115 event = sctp_ulpq_order(ulpq, event); 116 } 117 118 /* Send event to the ULP. 'event' is the sctp_ulpevent for 119 * very first SKB on the 'temp' list. 120 */ 121 if (event) { 122 event_eor = (event->msg_flags & MSG_EOR) ? 1 : 0; 123 sctp_ulpq_tail_event(ulpq, event); 124 } 125 126 return event_eor; 127 } 128 129 /* Add a new event for propagation to the ULP. */ 130 /* Clear the partial delivery mode for this socket. Note: This 131 * assumes that no association is currently in partial delivery mode. 132 */ 133 int sctp_clear_pd(struct sock *sk, struct sctp_association *asoc) 134 { 135 struct sctp_sock *sp = sctp_sk(sk); 136 137 if (atomic_dec_and_test(&sp->pd_mode)) { 138 /* This means there are no other associations in PD, so 139 * we can go ahead and clear out the lobby in one shot 140 */ 141 if (!skb_queue_empty(&sp->pd_lobby)) { 142 struct list_head *list; 143 sctp_skb_list_tail(&sp->pd_lobby, &sk->sk_receive_queue); 144 list = (struct list_head *)&sctp_sk(sk)->pd_lobby; 145 INIT_LIST_HEAD(list); 146 return 1; 147 } 148 } else { 149 /* There are other associations in PD, so we only need to 150 * pull stuff out of the lobby that belongs to the 151 * associations that is exiting PD (all of its notifications 152 * are posted here). 153 */ 154 if (!skb_queue_empty(&sp->pd_lobby) && asoc) { 155 struct sk_buff *skb, *tmp; 156 struct sctp_ulpevent *event; 157 158 sctp_skb_for_each(skb, &sp->pd_lobby, tmp) { 159 event = sctp_skb2event(skb); 160 if (event->asoc == asoc) { 161 __skb_unlink(skb, &sp->pd_lobby); 162 __skb_queue_tail(&sk->sk_receive_queue, 163 skb); 164 } 165 } 166 } 167 } 168 169 return 0; 170 } 171 172 /* Set the pd_mode on the socket and ulpq */ 173 static void sctp_ulpq_set_pd(struct sctp_ulpq *ulpq) 174 { 175 struct sctp_sock *sp = sctp_sk(ulpq->asoc->base.sk); 176 177 atomic_inc(&sp->pd_mode); 178 ulpq->pd_mode = 1; 179 } 180 181 /* Clear the pd_mode and restart any pending messages waiting for delivery. */ 182 static int sctp_ulpq_clear_pd(struct sctp_ulpq *ulpq) 183 { 184 ulpq->pd_mode = 0; 185 sctp_ulpq_reasm_drain(ulpq); 186 return sctp_clear_pd(ulpq->asoc->base.sk, ulpq->asoc); 187 } 188 189 /* If the SKB of 'event' is on a list, it is the first such member 190 * of that list. 191 */ 192 int sctp_ulpq_tail_event(struct sctp_ulpq *ulpq, struct sctp_ulpevent *event) 193 { 194 struct sock *sk = ulpq->asoc->base.sk; 195 struct sk_buff_head *queue, *skb_list; 196 struct sk_buff *skb = sctp_event2skb(event); 197 int clear_pd = 0; 198 199 skb_list = (struct sk_buff_head *) skb->prev; 200 201 /* If the socket is just going to throw this away, do not 202 * even try to deliver it. 203 */ 204 if (sock_flag(sk, SOCK_DEAD) || (sk->sk_shutdown & RCV_SHUTDOWN)) 205 goto out_free; 206 207 /* Check if the user wishes to receive this event. */ 208 if (!sctp_ulpevent_is_enabled(event, &sctp_sk(sk)->subscribe)) 209 goto out_free; 210 211 /* If we are in partial delivery mode, post to the lobby until 212 * partial delivery is cleared, unless, of course _this_ is 213 * the association the cause of the partial delivery. 214 */ 215 216 if (atomic_read(&sctp_sk(sk)->pd_mode) == 0) { 217 queue = &sk->sk_receive_queue; 218 } else { 219 if (ulpq->pd_mode) { 220 /* If the association is in partial delivery, we 221 * need to finish delivering the partially processed 222 * packet before passing any other data. This is 223 * because we don't truly support stream interleaving. 224 */ 225 if ((event->msg_flags & MSG_NOTIFICATION) || 226 (SCTP_DATA_NOT_FRAG == 227 (event->msg_flags & SCTP_DATA_FRAG_MASK))) 228 queue = &sctp_sk(sk)->pd_lobby; 229 else { 230 clear_pd = event->msg_flags & MSG_EOR; 231 queue = &sk->sk_receive_queue; 232 } 233 } else { 234 /* 235 * If fragment interleave is enabled, we 236 * can queue this to the receive queue instead 237 * of the lobby. 238 */ 239 if (sctp_sk(sk)->frag_interleave) 240 queue = &sk->sk_receive_queue; 241 else 242 queue = &sctp_sk(sk)->pd_lobby; 243 } 244 } 245 246 /* If we are harvesting multiple skbs they will be 247 * collected on a list. 248 */ 249 if (skb_list) 250 sctp_skb_list_tail(skb_list, queue); 251 else 252 __skb_queue_tail(queue, skb); 253 254 /* Did we just complete partial delivery and need to get 255 * rolling again? Move pending data to the receive 256 * queue. 257 */ 258 if (clear_pd) 259 sctp_ulpq_clear_pd(ulpq); 260 261 if (queue == &sk->sk_receive_queue) 262 sk->sk_data_ready(sk, 0); 263 return 1; 264 265 out_free: 266 if (skb_list) 267 sctp_queue_purge_ulpevents(skb_list); 268 else 269 sctp_ulpevent_free(event); 270 271 return 0; 272 } 273 274 /* 2nd Level Abstractions */ 275 276 /* Helper function to store chunks that need to be reassembled. */ 277 static void sctp_ulpq_store_reasm(struct sctp_ulpq *ulpq, 278 struct sctp_ulpevent *event) 279 { 280 struct sk_buff *pos; 281 struct sctp_ulpevent *cevent; 282 __u32 tsn, ctsn; 283 284 tsn = event->tsn; 285 286 /* See if it belongs at the end. */ 287 pos = skb_peek_tail(&ulpq->reasm); 288 if (!pos) { 289 __skb_queue_tail(&ulpq->reasm, sctp_event2skb(event)); 290 return; 291 } 292 293 /* Short circuit just dropping it at the end. */ 294 cevent = sctp_skb2event(pos); 295 ctsn = cevent->tsn; 296 if (TSN_lt(ctsn, tsn)) { 297 __skb_queue_tail(&ulpq->reasm, sctp_event2skb(event)); 298 return; 299 } 300 301 /* Find the right place in this list. We store them by TSN. */ 302 skb_queue_walk(&ulpq->reasm, pos) { 303 cevent = sctp_skb2event(pos); 304 ctsn = cevent->tsn; 305 306 if (TSN_lt(tsn, ctsn)) 307 break; 308 } 309 310 /* Insert before pos. */ 311 __skb_queue_before(&ulpq->reasm, pos, sctp_event2skb(event)); 312 313 } 314 315 /* Helper function to return an event corresponding to the reassembled 316 * datagram. 317 * This routine creates a re-assembled skb given the first and last skb's 318 * as stored in the reassembly queue. The skb's may be non-linear if the sctp 319 * payload was fragmented on the way and ip had to reassemble them. 320 * We add the rest of skb's to the first skb's fraglist. 321 */ 322 static struct sctp_ulpevent *sctp_make_reassembled_event(struct net *net, 323 struct sk_buff_head *queue, struct sk_buff *f_frag, 324 struct sk_buff *l_frag) 325 { 326 struct sk_buff *pos; 327 struct sk_buff *new = NULL; 328 struct sctp_ulpevent *event; 329 struct sk_buff *pnext, *last; 330 struct sk_buff *list = skb_shinfo(f_frag)->frag_list; 331 332 /* Store the pointer to the 2nd skb */ 333 if (f_frag == l_frag) 334 pos = NULL; 335 else 336 pos = f_frag->next; 337 338 /* Get the last skb in the f_frag's frag_list if present. */ 339 for (last = list; list; last = list, list = list->next); 340 341 /* Add the list of remaining fragments to the first fragments 342 * frag_list. 343 */ 344 if (last) 345 last->next = pos; 346 else { 347 if (skb_cloned(f_frag)) { 348 /* This is a cloned skb, we can't just modify 349 * the frag_list. We need a new skb to do that. 350 * Instead of calling skb_unshare(), we'll do it 351 * ourselves since we need to delay the free. 352 */ 353 new = skb_copy(f_frag, GFP_ATOMIC); 354 if (!new) 355 return NULL; /* try again later */ 356 357 sctp_skb_set_owner_r(new, f_frag->sk); 358 359 skb_shinfo(new)->frag_list = pos; 360 } else 361 skb_shinfo(f_frag)->frag_list = pos; 362 } 363 364 /* Remove the first fragment from the reassembly queue. */ 365 __skb_unlink(f_frag, queue); 366 367 /* if we did unshare, then free the old skb and re-assign */ 368 if (new) { 369 kfree_skb(f_frag); 370 f_frag = new; 371 } 372 373 while (pos) { 374 375 pnext = pos->next; 376 377 /* Update the len and data_len fields of the first fragment. */ 378 f_frag->len += pos->len; 379 f_frag->data_len += pos->len; 380 381 /* Remove the fragment from the reassembly queue. */ 382 __skb_unlink(pos, queue); 383 384 /* Break if we have reached the last fragment. */ 385 if (pos == l_frag) 386 break; 387 pos->next = pnext; 388 pos = pnext; 389 } 390 391 event = sctp_skb2event(f_frag); 392 SCTP_INC_STATS(net, SCTP_MIB_REASMUSRMSGS); 393 394 return event; 395 } 396 397 398 /* Helper function to check if an incoming chunk has filled up the last 399 * missing fragment in a SCTP datagram and return the corresponding event. 400 */ 401 static struct sctp_ulpevent *sctp_ulpq_retrieve_reassembled(struct sctp_ulpq *ulpq) 402 { 403 struct sk_buff *pos; 404 struct sctp_ulpevent *cevent; 405 struct sk_buff *first_frag = NULL; 406 __u32 ctsn, next_tsn; 407 struct sctp_ulpevent *retval = NULL; 408 struct sk_buff *pd_first = NULL; 409 struct sk_buff *pd_last = NULL; 410 size_t pd_len = 0; 411 struct sctp_association *asoc; 412 u32 pd_point; 413 414 /* Initialized to 0 just to avoid compiler warning message. Will 415 * never be used with this value. It is referenced only after it 416 * is set when we find the first fragment of a message. 417 */ 418 next_tsn = 0; 419 420 /* The chunks are held in the reasm queue sorted by TSN. 421 * Walk through the queue sequentially and look for a sequence of 422 * fragmented chunks that complete a datagram. 423 * 'first_frag' and next_tsn are reset when we find a chunk which 424 * is the first fragment of a datagram. Once these 2 fields are set 425 * we expect to find the remaining middle fragments and the last 426 * fragment in order. If not, first_frag is reset to NULL and we 427 * start the next pass when we find another first fragment. 428 * 429 * There is a potential to do partial delivery if user sets 430 * SCTP_PARTIAL_DELIVERY_POINT option. Lets count some things here 431 * to see if can do PD. 432 */ 433 skb_queue_walk(&ulpq->reasm, pos) { 434 cevent = sctp_skb2event(pos); 435 ctsn = cevent->tsn; 436 437 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { 438 case SCTP_DATA_FIRST_FRAG: 439 /* If this "FIRST_FRAG" is the first 440 * element in the queue, then count it towards 441 * possible PD. 442 */ 443 if (pos == ulpq->reasm.next) { 444 pd_first = pos; 445 pd_last = pos; 446 pd_len = pos->len; 447 } else { 448 pd_first = NULL; 449 pd_last = NULL; 450 pd_len = 0; 451 } 452 453 first_frag = pos; 454 next_tsn = ctsn + 1; 455 break; 456 457 case SCTP_DATA_MIDDLE_FRAG: 458 if ((first_frag) && (ctsn == next_tsn)) { 459 next_tsn++; 460 if (pd_first) { 461 pd_last = pos; 462 pd_len += pos->len; 463 } 464 } else 465 first_frag = NULL; 466 break; 467 468 case SCTP_DATA_LAST_FRAG: 469 if (first_frag && (ctsn == next_tsn)) 470 goto found; 471 else 472 first_frag = NULL; 473 break; 474 } 475 } 476 477 asoc = ulpq->asoc; 478 if (pd_first) { 479 /* Make sure we can enter partial deliver. 480 * We can trigger partial delivery only if framgent 481 * interleave is set, or the socket is not already 482 * in partial delivery. 483 */ 484 if (!sctp_sk(asoc->base.sk)->frag_interleave && 485 atomic_read(&sctp_sk(asoc->base.sk)->pd_mode)) 486 goto done; 487 488 cevent = sctp_skb2event(pd_first); 489 pd_point = sctp_sk(asoc->base.sk)->pd_point; 490 if (pd_point && pd_point <= pd_len) { 491 retval = sctp_make_reassembled_event(sock_net(asoc->base.sk), 492 &ulpq->reasm, 493 pd_first, 494 pd_last); 495 if (retval) 496 sctp_ulpq_set_pd(ulpq); 497 } 498 } 499 done: 500 return retval; 501 found: 502 retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk), 503 &ulpq->reasm, first_frag, pos); 504 if (retval) 505 retval->msg_flags |= MSG_EOR; 506 goto done; 507 } 508 509 /* Retrieve the next set of fragments of a partial message. */ 510 static struct sctp_ulpevent *sctp_ulpq_retrieve_partial(struct sctp_ulpq *ulpq) 511 { 512 struct sk_buff *pos, *last_frag, *first_frag; 513 struct sctp_ulpevent *cevent; 514 __u32 ctsn, next_tsn; 515 int is_last; 516 struct sctp_ulpevent *retval; 517 518 /* The chunks are held in the reasm queue sorted by TSN. 519 * Walk through the queue sequentially and look for the first 520 * sequence of fragmented chunks. 521 */ 522 523 if (skb_queue_empty(&ulpq->reasm)) 524 return NULL; 525 526 last_frag = first_frag = NULL; 527 retval = NULL; 528 next_tsn = 0; 529 is_last = 0; 530 531 skb_queue_walk(&ulpq->reasm, pos) { 532 cevent = sctp_skb2event(pos); 533 ctsn = cevent->tsn; 534 535 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { 536 case SCTP_DATA_FIRST_FRAG: 537 if (!first_frag) 538 return NULL; 539 goto done; 540 case SCTP_DATA_MIDDLE_FRAG: 541 if (!first_frag) { 542 first_frag = pos; 543 next_tsn = ctsn + 1; 544 last_frag = pos; 545 } else if (next_tsn == ctsn) { 546 next_tsn++; 547 last_frag = pos; 548 } else 549 goto done; 550 break; 551 case SCTP_DATA_LAST_FRAG: 552 if (!first_frag) 553 first_frag = pos; 554 else if (ctsn != next_tsn) 555 goto done; 556 last_frag = pos; 557 is_last = 1; 558 goto done; 559 default: 560 return NULL; 561 } 562 } 563 564 /* We have the reassembled event. There is no need to look 565 * further. 566 */ 567 done: 568 retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk), 569 &ulpq->reasm, first_frag, last_frag); 570 if (retval && is_last) 571 retval->msg_flags |= MSG_EOR; 572 573 return retval; 574 } 575 576 577 /* Helper function to reassemble chunks. Hold chunks on the reasm queue that 578 * need reassembling. 579 */ 580 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq, 581 struct sctp_ulpevent *event) 582 { 583 struct sctp_ulpevent *retval = NULL; 584 585 /* Check if this is part of a fragmented message. */ 586 if (SCTP_DATA_NOT_FRAG == (event->msg_flags & SCTP_DATA_FRAG_MASK)) { 587 event->msg_flags |= MSG_EOR; 588 return event; 589 } 590 591 sctp_ulpq_store_reasm(ulpq, event); 592 if (!ulpq->pd_mode) 593 retval = sctp_ulpq_retrieve_reassembled(ulpq); 594 else { 595 __u32 ctsn, ctsnap; 596 597 /* Do not even bother unless this is the next tsn to 598 * be delivered. 599 */ 600 ctsn = event->tsn; 601 ctsnap = sctp_tsnmap_get_ctsn(&ulpq->asoc->peer.tsn_map); 602 if (TSN_lte(ctsn, ctsnap)) 603 retval = sctp_ulpq_retrieve_partial(ulpq); 604 } 605 606 return retval; 607 } 608 609 /* Retrieve the first part (sequential fragments) for partial delivery. */ 610 static struct sctp_ulpevent *sctp_ulpq_retrieve_first(struct sctp_ulpq *ulpq) 611 { 612 struct sk_buff *pos, *last_frag, *first_frag; 613 struct sctp_ulpevent *cevent; 614 __u32 ctsn, next_tsn; 615 struct sctp_ulpevent *retval; 616 617 /* The chunks are held in the reasm queue sorted by TSN. 618 * Walk through the queue sequentially and look for a sequence of 619 * fragmented chunks that start a datagram. 620 */ 621 622 if (skb_queue_empty(&ulpq->reasm)) 623 return NULL; 624 625 last_frag = first_frag = NULL; 626 retval = NULL; 627 next_tsn = 0; 628 629 skb_queue_walk(&ulpq->reasm, pos) { 630 cevent = sctp_skb2event(pos); 631 ctsn = cevent->tsn; 632 633 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { 634 case SCTP_DATA_FIRST_FRAG: 635 if (!first_frag) { 636 first_frag = pos; 637 next_tsn = ctsn + 1; 638 last_frag = pos; 639 } else 640 goto done; 641 break; 642 643 case SCTP_DATA_MIDDLE_FRAG: 644 if (!first_frag) 645 return NULL; 646 if (ctsn == next_tsn) { 647 next_tsn++; 648 last_frag = pos; 649 } else 650 goto done; 651 break; 652 653 case SCTP_DATA_LAST_FRAG: 654 if (!first_frag) 655 return NULL; 656 else 657 goto done; 658 break; 659 660 default: 661 return NULL; 662 } 663 } 664 665 /* We have the reassembled event. There is no need to look 666 * further. 667 */ 668 done: 669 retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk), 670 &ulpq->reasm, first_frag, last_frag); 671 return retval; 672 } 673 674 /* 675 * Flush out stale fragments from the reassembly queue when processing 676 * a Forward TSN. 677 * 678 * RFC 3758, Section 3.6 679 * 680 * After receiving and processing a FORWARD TSN, the data receiver MUST 681 * take cautions in updating its re-assembly queue. The receiver MUST 682 * remove any partially reassembled message, which is still missing one 683 * or more TSNs earlier than or equal to the new cumulative TSN point. 684 * In the event that the receiver has invoked the partial delivery API, 685 * a notification SHOULD also be generated to inform the upper layer API 686 * that the message being partially delivered will NOT be completed. 687 */ 688 void sctp_ulpq_reasm_flushtsn(struct sctp_ulpq *ulpq, __u32 fwd_tsn) 689 { 690 struct sk_buff *pos, *tmp; 691 struct sctp_ulpevent *event; 692 __u32 tsn; 693 694 if (skb_queue_empty(&ulpq->reasm)) 695 return; 696 697 skb_queue_walk_safe(&ulpq->reasm, pos, tmp) { 698 event = sctp_skb2event(pos); 699 tsn = event->tsn; 700 701 /* Since the entire message must be abandoned by the 702 * sender (item A3 in Section 3.5, RFC 3758), we can 703 * free all fragments on the list that are less then 704 * or equal to ctsn_point 705 */ 706 if (TSN_lte(tsn, fwd_tsn)) { 707 __skb_unlink(pos, &ulpq->reasm); 708 sctp_ulpevent_free(event); 709 } else 710 break; 711 } 712 } 713 714 /* 715 * Drain the reassembly queue. If we just cleared parted delivery, it 716 * is possible that the reassembly queue will contain already reassembled 717 * messages. Retrieve any such messages and give them to the user. 718 */ 719 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq) 720 { 721 struct sctp_ulpevent *event = NULL; 722 struct sk_buff_head temp; 723 724 if (skb_queue_empty(&ulpq->reasm)) 725 return; 726 727 while ((event = sctp_ulpq_retrieve_reassembled(ulpq)) != NULL) { 728 /* Do ordering if needed. */ 729 if ((event) && (event->msg_flags & MSG_EOR)){ 730 skb_queue_head_init(&temp); 731 __skb_queue_tail(&temp, sctp_event2skb(event)); 732 733 event = sctp_ulpq_order(ulpq, event); 734 } 735 736 /* Send event to the ULP. 'event' is the 737 * sctp_ulpevent for very first SKB on the temp' list. 738 */ 739 if (event) 740 sctp_ulpq_tail_event(ulpq, event); 741 } 742 } 743 744 745 /* Helper function to gather skbs that have possibly become 746 * ordered by an an incoming chunk. 747 */ 748 static void sctp_ulpq_retrieve_ordered(struct sctp_ulpq *ulpq, 749 struct sctp_ulpevent *event) 750 { 751 struct sk_buff_head *event_list; 752 struct sk_buff *pos, *tmp; 753 struct sctp_ulpevent *cevent; 754 struct sctp_stream *in; 755 __u16 sid, csid, cssn; 756 757 sid = event->stream; 758 in = &ulpq->asoc->ssnmap->in; 759 760 event_list = (struct sk_buff_head *) sctp_event2skb(event)->prev; 761 762 /* We are holding the chunks by stream, by SSN. */ 763 sctp_skb_for_each(pos, &ulpq->lobby, tmp) { 764 cevent = (struct sctp_ulpevent *) pos->cb; 765 csid = cevent->stream; 766 cssn = cevent->ssn; 767 768 /* Have we gone too far? */ 769 if (csid > sid) 770 break; 771 772 /* Have we not gone far enough? */ 773 if (csid < sid) 774 continue; 775 776 if (cssn != sctp_ssn_peek(in, sid)) 777 break; 778 779 /* Found it, so mark in the ssnmap. */ 780 sctp_ssn_next(in, sid); 781 782 __skb_unlink(pos, &ulpq->lobby); 783 784 /* Attach all gathered skbs to the event. */ 785 __skb_queue_tail(event_list, pos); 786 } 787 } 788 789 /* Helper function to store chunks needing ordering. */ 790 static void sctp_ulpq_store_ordered(struct sctp_ulpq *ulpq, 791 struct sctp_ulpevent *event) 792 { 793 struct sk_buff *pos; 794 struct sctp_ulpevent *cevent; 795 __u16 sid, csid; 796 __u16 ssn, cssn; 797 798 pos = skb_peek_tail(&ulpq->lobby); 799 if (!pos) { 800 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); 801 return; 802 } 803 804 sid = event->stream; 805 ssn = event->ssn; 806 807 cevent = (struct sctp_ulpevent *) pos->cb; 808 csid = cevent->stream; 809 cssn = cevent->ssn; 810 if (sid > csid) { 811 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); 812 return; 813 } 814 815 if ((sid == csid) && SSN_lt(cssn, ssn)) { 816 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); 817 return; 818 } 819 820 /* Find the right place in this list. We store them by 821 * stream ID and then by SSN. 822 */ 823 skb_queue_walk(&ulpq->lobby, pos) { 824 cevent = (struct sctp_ulpevent *) pos->cb; 825 csid = cevent->stream; 826 cssn = cevent->ssn; 827 828 if (csid > sid) 829 break; 830 if (csid == sid && SSN_lt(ssn, cssn)) 831 break; 832 } 833 834 835 /* Insert before pos. */ 836 __skb_queue_before(&ulpq->lobby, pos, sctp_event2skb(event)); 837 } 838 839 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *ulpq, 840 struct sctp_ulpevent *event) 841 { 842 __u16 sid, ssn; 843 struct sctp_stream *in; 844 845 /* Check if this message needs ordering. */ 846 if (SCTP_DATA_UNORDERED & event->msg_flags) 847 return event; 848 849 /* Note: The stream ID must be verified before this routine. */ 850 sid = event->stream; 851 ssn = event->ssn; 852 in = &ulpq->asoc->ssnmap->in; 853 854 /* Is this the expected SSN for this stream ID? */ 855 if (ssn != sctp_ssn_peek(in, sid)) { 856 /* We've received something out of order, so find where it 857 * needs to be placed. We order by stream and then by SSN. 858 */ 859 sctp_ulpq_store_ordered(ulpq, event); 860 return NULL; 861 } 862 863 /* Mark that the next chunk has been found. */ 864 sctp_ssn_next(in, sid); 865 866 /* Go find any other chunks that were waiting for 867 * ordering. 868 */ 869 sctp_ulpq_retrieve_ordered(ulpq, event); 870 871 return event; 872 } 873 874 /* Helper function to gather skbs that have possibly become 875 * ordered by forward tsn skipping their dependencies. 876 */ 877 static void sctp_ulpq_reap_ordered(struct sctp_ulpq *ulpq, __u16 sid) 878 { 879 struct sk_buff *pos, *tmp; 880 struct sctp_ulpevent *cevent; 881 struct sctp_ulpevent *event; 882 struct sctp_stream *in; 883 struct sk_buff_head temp; 884 struct sk_buff_head *lobby = &ulpq->lobby; 885 __u16 csid, cssn; 886 887 in = &ulpq->asoc->ssnmap->in; 888 889 /* We are holding the chunks by stream, by SSN. */ 890 skb_queue_head_init(&temp); 891 event = NULL; 892 sctp_skb_for_each(pos, lobby, tmp) { 893 cevent = (struct sctp_ulpevent *) pos->cb; 894 csid = cevent->stream; 895 cssn = cevent->ssn; 896 897 /* Have we gone too far? */ 898 if (csid > sid) 899 break; 900 901 /* Have we not gone far enough? */ 902 if (csid < sid) 903 continue; 904 905 /* see if this ssn has been marked by skipping */ 906 if (!SSN_lt(cssn, sctp_ssn_peek(in, csid))) 907 break; 908 909 __skb_unlink(pos, lobby); 910 if (!event) 911 /* Create a temporary list to collect chunks on. */ 912 event = sctp_skb2event(pos); 913 914 /* Attach all gathered skbs to the event. */ 915 __skb_queue_tail(&temp, pos); 916 } 917 918 /* If we didn't reap any data, see if the next expected SSN 919 * is next on the queue and if so, use that. 920 */ 921 if (event == NULL && pos != (struct sk_buff *)lobby) { 922 cevent = (struct sctp_ulpevent *) pos->cb; 923 csid = cevent->stream; 924 cssn = cevent->ssn; 925 926 if (csid == sid && cssn == sctp_ssn_peek(in, csid)) { 927 sctp_ssn_next(in, csid); 928 __skb_unlink(pos, lobby); 929 __skb_queue_tail(&temp, pos); 930 event = sctp_skb2event(pos); 931 } 932 } 933 934 /* Send event to the ULP. 'event' is the sctp_ulpevent for 935 * very first SKB on the 'temp' list. 936 */ 937 if (event) { 938 /* see if we have more ordered that we can deliver */ 939 sctp_ulpq_retrieve_ordered(ulpq, event); 940 sctp_ulpq_tail_event(ulpq, event); 941 } 942 } 943 944 /* Skip over an SSN. This is used during the processing of 945 * Forwared TSN chunk to skip over the abandoned ordered data 946 */ 947 void sctp_ulpq_skip(struct sctp_ulpq *ulpq, __u16 sid, __u16 ssn) 948 { 949 struct sctp_stream *in; 950 951 /* Note: The stream ID must be verified before this routine. */ 952 in = &ulpq->asoc->ssnmap->in; 953 954 /* Is this an old SSN? If so ignore. */ 955 if (SSN_lt(ssn, sctp_ssn_peek(in, sid))) 956 return; 957 958 /* Mark that we are no longer expecting this SSN or lower. */ 959 sctp_ssn_skip(in, sid, ssn); 960 961 /* Go find any other chunks that were waiting for 962 * ordering and deliver them if needed. 963 */ 964 sctp_ulpq_reap_ordered(ulpq, sid); 965 } 966 967 static __u16 sctp_ulpq_renege_list(struct sctp_ulpq *ulpq, 968 struct sk_buff_head *list, __u16 needed) 969 { 970 __u16 freed = 0; 971 __u32 tsn, last_tsn; 972 struct sk_buff *skb, *flist, *last; 973 struct sctp_ulpevent *event; 974 struct sctp_tsnmap *tsnmap; 975 976 tsnmap = &ulpq->asoc->peer.tsn_map; 977 978 while ((skb = skb_peek_tail(list)) != NULL) { 979 event = sctp_skb2event(skb); 980 tsn = event->tsn; 981 982 /* Don't renege below the Cumulative TSN ACK Point. */ 983 if (TSN_lte(tsn, sctp_tsnmap_get_ctsn(tsnmap))) 984 break; 985 986 /* Events in ordering queue may have multiple fragments 987 * corresponding to additional TSNs. Sum the total 988 * freed space; find the last TSN. 989 */ 990 freed += skb_headlen(skb); 991 flist = skb_shinfo(skb)->frag_list; 992 for (last = flist; flist; flist = flist->next) { 993 last = flist; 994 freed += skb_headlen(last); 995 } 996 if (last) 997 last_tsn = sctp_skb2event(last)->tsn; 998 else 999 last_tsn = tsn; 1000 1001 /* Unlink the event, then renege all applicable TSNs. */ 1002 __skb_unlink(skb, list); 1003 sctp_ulpevent_free(event); 1004 while (TSN_lte(tsn, last_tsn)) { 1005 sctp_tsnmap_renege(tsnmap, tsn); 1006 tsn++; 1007 } 1008 if (freed >= needed) 1009 return freed; 1010 } 1011 1012 return freed; 1013 } 1014 1015 /* Renege 'needed' bytes from the ordering queue. */ 1016 static __u16 sctp_ulpq_renege_order(struct sctp_ulpq *ulpq, __u16 needed) 1017 { 1018 return sctp_ulpq_renege_list(ulpq, &ulpq->lobby, needed); 1019 } 1020 1021 /* Renege 'needed' bytes from the reassembly queue. */ 1022 static __u16 sctp_ulpq_renege_frags(struct sctp_ulpq *ulpq, __u16 needed) 1023 { 1024 return sctp_ulpq_renege_list(ulpq, &ulpq->reasm, needed); 1025 } 1026 1027 /* Partial deliver the first message as there is pressure on rwnd. */ 1028 void sctp_ulpq_partial_delivery(struct sctp_ulpq *ulpq, 1029 gfp_t gfp) 1030 { 1031 struct sctp_ulpevent *event; 1032 struct sctp_association *asoc; 1033 struct sctp_sock *sp; 1034 __u32 ctsn; 1035 struct sk_buff *skb; 1036 1037 asoc = ulpq->asoc; 1038 sp = sctp_sk(asoc->base.sk); 1039 1040 /* If the association is already in Partial Delivery mode 1041 * we have nothing to do. 1042 */ 1043 if (ulpq->pd_mode) 1044 return; 1045 1046 /* Data must be at or below the Cumulative TSN ACK Point to 1047 * start partial delivery. 1048 */ 1049 skb = skb_peek(&asoc->ulpq.reasm); 1050 if (skb != NULL) { 1051 ctsn = sctp_skb2event(skb)->tsn; 1052 if (!TSN_lte(ctsn, sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map))) 1053 return; 1054 } 1055 1056 /* If the user enabled fragment interleave socket option, 1057 * multiple associations can enter partial delivery. 1058 * Otherwise, we can only enter partial delivery if the 1059 * socket is not in partial deliver mode. 1060 */ 1061 if (sp->frag_interleave || atomic_read(&sp->pd_mode) == 0) { 1062 /* Is partial delivery possible? */ 1063 event = sctp_ulpq_retrieve_first(ulpq); 1064 /* Send event to the ULP. */ 1065 if (event) { 1066 sctp_ulpq_tail_event(ulpq, event); 1067 sctp_ulpq_set_pd(ulpq); 1068 return; 1069 } 1070 } 1071 } 1072 1073 /* Renege some packets to make room for an incoming chunk. */ 1074 void sctp_ulpq_renege(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk, 1075 gfp_t gfp) 1076 { 1077 struct sctp_association *asoc; 1078 __u16 needed, freed; 1079 1080 asoc = ulpq->asoc; 1081 1082 if (chunk) { 1083 needed = ntohs(chunk->chunk_hdr->length); 1084 needed -= sizeof(sctp_data_chunk_t); 1085 } else 1086 needed = SCTP_DEFAULT_MAXWINDOW; 1087 1088 freed = 0; 1089 1090 if (skb_queue_empty(&asoc->base.sk->sk_receive_queue)) { 1091 freed = sctp_ulpq_renege_order(ulpq, needed); 1092 if (freed < needed) { 1093 freed += sctp_ulpq_renege_frags(ulpq, needed - freed); 1094 } 1095 } 1096 /* If able to free enough room, accept this chunk. */ 1097 if (chunk && (freed >= needed)) { 1098 int retval; 1099 retval = sctp_ulpq_tail_data(ulpq, chunk, gfp); 1100 /* 1101 * Enter partial delivery if chunk has not been 1102 * delivered; otherwise, drain the reassembly queue. 1103 */ 1104 if (retval <= 0) 1105 sctp_ulpq_partial_delivery(ulpq, gfp); 1106 else if (retval == 1) 1107 sctp_ulpq_reasm_drain(ulpq); 1108 } 1109 1110 sk_mem_reclaim(asoc->base.sk); 1111 } 1112 1113 1114 1115 /* Notify the application if an association is aborted and in 1116 * partial delivery mode. Send up any pending received messages. 1117 */ 1118 void sctp_ulpq_abort_pd(struct sctp_ulpq *ulpq, gfp_t gfp) 1119 { 1120 struct sctp_ulpevent *ev = NULL; 1121 struct sock *sk; 1122 1123 if (!ulpq->pd_mode) 1124 return; 1125 1126 sk = ulpq->asoc->base.sk; 1127 if (sctp_ulpevent_type_enabled(SCTP_PARTIAL_DELIVERY_EVENT, 1128 &sctp_sk(sk)->subscribe)) 1129 ev = sctp_ulpevent_make_pdapi(ulpq->asoc, 1130 SCTP_PARTIAL_DELIVERY_ABORTED, 1131 gfp); 1132 if (ev) 1133 __skb_queue_tail(&sk->sk_receive_queue, sctp_event2skb(ev)); 1134 1135 /* If there is data waiting, send it up the socket now. */ 1136 if (sctp_ulpq_clear_pd(ulpq) || ev) 1137 sk->sk_data_ready(sk, 0); 1138 } 1139