1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 International Business Machines Corp. 6 * Copyright (c) 2001 Intel Corp. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * This module provides the abstraction for an SCTP transport representing 12 * a remote transport address. For local transport addresses, we just use 13 * union sctp_addr. 14 * 15 * Please send any bug reports or fixes you make to the 16 * email address(es): 17 * lksctp developers <linux-sctp@vger.kernel.org> 18 * 19 * Written or modified by: 20 * La Monte H.P. Yarroll <piggy@acm.org> 21 * Karl Knutson <karl@athena.chicago.il.us> 22 * Jon Grimm <jgrimm@us.ibm.com> 23 * Xingang Guo <xingang.guo@intel.com> 24 * Hui Huang <hui.huang@nokia.com> 25 * Sridhar Samudrala <sri@us.ibm.com> 26 * Ardelle Fan <ardelle.fan@intel.com> 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include <linux/slab.h> 32 #include <linux/types.h> 33 #include <linux/random.h> 34 #include <net/sctp/sctp.h> 35 #include <net/sctp/sm.h> 36 37 /* 1st Level Abstractions. */ 38 39 /* Initialize a new transport from provided memory. */ 40 static void sctp_transport_init(struct net *net, 41 struct sctp_transport *peer, 42 const union sctp_addr *addr, 43 gfp_t gfp) 44 { 45 /* Copy in the address. */ 46 peer->af_specific = sctp_get_af_specific(addr->sa.sa_family); 47 memcpy(&peer->ipaddr, addr, peer->af_specific->sockaddr_len); 48 memset(&peer->saddr, 0, sizeof(union sctp_addr)); 49 50 peer->sack_generation = 0; 51 52 /* From 6.3.1 RTO Calculation: 53 * 54 * C1) Until an RTT measurement has been made for a packet sent to the 55 * given destination transport address, set RTO to the protocol 56 * parameter 'RTO.Initial'. 57 */ 58 peer->rto = msecs_to_jiffies(net->sctp.rto_initial); 59 60 peer->last_time_heard = 0; 61 peer->last_time_ecne_reduced = jiffies; 62 63 peer->param_flags = SPP_HB_DISABLE | 64 SPP_PMTUD_ENABLE | 65 SPP_SACKDELAY_ENABLE; 66 67 /* Initialize the default path max_retrans. */ 68 peer->pathmaxrxt = net->sctp.max_retrans_path; 69 peer->pf_retrans = net->sctp.pf_retrans; 70 71 INIT_LIST_HEAD(&peer->transmitted); 72 INIT_LIST_HEAD(&peer->send_ready); 73 INIT_LIST_HEAD(&peer->transports); 74 75 timer_setup(&peer->T3_rtx_timer, sctp_generate_t3_rtx_event, 0); 76 timer_setup(&peer->hb_timer, sctp_generate_heartbeat_event, 0); 77 timer_setup(&peer->reconf_timer, sctp_generate_reconf_event, 0); 78 timer_setup(&peer->probe_timer, sctp_generate_probe_event, 0); 79 timer_setup(&peer->proto_unreach_timer, 80 sctp_generate_proto_unreach_event, 0); 81 82 /* Initialize the 64-bit random nonce sent with heartbeat. */ 83 get_random_bytes(&peer->hb_nonce, sizeof(peer->hb_nonce)); 84 85 refcount_set(&peer->refcnt, 1); 86 } 87 88 /* Allocate and initialize a new transport. */ 89 struct sctp_transport *sctp_transport_new(struct net *net, 90 const union sctp_addr *addr, 91 gfp_t gfp) 92 { 93 struct sctp_transport *transport; 94 95 transport = kzalloc(sizeof(*transport), gfp); 96 if (!transport) 97 return NULL; 98 99 sctp_transport_init(net, transport, addr, gfp); 100 101 SCTP_DBG_OBJCNT_INC(transport); 102 103 return transport; 104 } 105 106 /* This transport is no longer needed. Free up if possible, or 107 * delay until it last reference count. 108 */ 109 void sctp_transport_free(struct sctp_transport *transport) 110 { 111 transport->dead = 1; 112 113 /* Try to delete the heartbeat timer. */ 114 if (timer_delete(&transport->hb_timer)) 115 sctp_transport_put(transport); 116 117 /* Delete the T3_rtx timer if it's active. 118 * There is no point in not doing this now and letting 119 * structure hang around in memory since we know 120 * the transport is going away. 121 */ 122 if (timer_delete(&transport->T3_rtx_timer)) 123 sctp_transport_put(transport); 124 125 if (timer_delete(&transport->reconf_timer)) 126 sctp_transport_put(transport); 127 128 if (timer_delete(&transport->probe_timer)) 129 sctp_transport_put(transport); 130 131 /* Delete the ICMP proto unreachable timer if it's active. */ 132 if (timer_delete(&transport->proto_unreach_timer)) 133 sctp_transport_put(transport); 134 135 sctp_transport_put(transport); 136 } 137 138 static void sctp_transport_destroy_rcu(struct rcu_head *head) 139 { 140 struct sctp_transport *transport; 141 142 transport = container_of(head, struct sctp_transport, rcu); 143 144 dst_release(transport->dst); 145 kfree(transport); 146 SCTP_DBG_OBJCNT_DEC(transport); 147 } 148 149 /* Destroy the transport data structure. 150 * Assumes there are no more users of this structure. 151 */ 152 static void sctp_transport_destroy(struct sctp_transport *transport) 153 { 154 if (unlikely(refcount_read(&transport->refcnt))) { 155 WARN(1, "Attempt to destroy undead transport %p!\n", transport); 156 return; 157 } 158 159 sctp_packet_free(&transport->packet); 160 161 if (transport->asoc) 162 sctp_association_put(transport->asoc); 163 164 call_rcu(&transport->rcu, sctp_transport_destroy_rcu); 165 } 166 167 /* Start T3_rtx timer if it is not already running and update the heartbeat 168 * timer. This routine is called every time a DATA chunk is sent. 169 */ 170 void sctp_transport_reset_t3_rtx(struct sctp_transport *transport) 171 { 172 /* RFC 2960 6.3.2 Retransmission Timer Rules 173 * 174 * R1) Every time a DATA chunk is sent to any address(including a 175 * retransmission), if the T3-rtx timer of that address is not running 176 * start it running so that it will expire after the RTO of that 177 * address. 178 */ 179 180 if (!timer_pending(&transport->T3_rtx_timer)) 181 if (!mod_timer(&transport->T3_rtx_timer, 182 jiffies + transport->rto)) 183 sctp_transport_hold(transport); 184 } 185 186 void sctp_transport_reset_hb_timer(struct sctp_transport *transport) 187 { 188 unsigned long expires; 189 190 /* When a data chunk is sent, reset the heartbeat interval. */ 191 expires = jiffies + sctp_transport_timeout(transport); 192 if (!mod_timer(&transport->hb_timer, 193 expires + get_random_u32_below(transport->rto))) 194 sctp_transport_hold(transport); 195 } 196 197 void sctp_transport_reset_reconf_timer(struct sctp_transport *transport) 198 { 199 if (!timer_pending(&transport->reconf_timer)) 200 if (!mod_timer(&transport->reconf_timer, 201 jiffies + transport->rto)) 202 sctp_transport_hold(transport); 203 } 204 205 void sctp_transport_reset_probe_timer(struct sctp_transport *transport) 206 { 207 if (!mod_timer(&transport->probe_timer, 208 jiffies + transport->probe_interval)) 209 sctp_transport_hold(transport); 210 } 211 212 void sctp_transport_reset_raise_timer(struct sctp_transport *transport) 213 { 214 if (!mod_timer(&transport->probe_timer, 215 jiffies + transport->probe_interval * 30)) 216 sctp_transport_hold(transport); 217 } 218 219 /* This transport has been assigned to an association. 220 * Initialize fields from the association or from the sock itself. 221 * Register the reference count in the association. 222 */ 223 void sctp_transport_set_owner(struct sctp_transport *transport, 224 struct sctp_association *asoc) 225 { 226 transport->asoc = asoc; 227 sctp_association_hold(asoc); 228 } 229 230 /* Initialize the pmtu of a transport. */ 231 void sctp_transport_pmtu(struct sctp_transport *transport, struct sock *sk) 232 { 233 /* If we don't have a fresh route, look one up */ 234 if (!transport->dst || READ_ONCE(transport->dst->obsolete)) { 235 sctp_transport_dst_release(transport); 236 transport->af_specific->get_dst(transport, &transport->saddr, 237 &transport->fl, sk); 238 } 239 240 if (transport->param_flags & SPP_PMTUD_DISABLE) { 241 struct sctp_association *asoc = transport->asoc; 242 243 if (!transport->pathmtu && asoc && asoc->pathmtu) 244 transport->pathmtu = asoc->pathmtu; 245 if (transport->pathmtu) 246 return; 247 } 248 249 if (transport->dst) 250 transport->pathmtu = sctp_dst_mtu(transport->dst); 251 else 252 transport->pathmtu = SCTP_DEFAULT_MAXSEGMENT; 253 254 sctp_transport_pl_update(transport); 255 } 256 257 void sctp_transport_pl_send(struct sctp_transport *t) 258 { 259 if (t->pl.probe_count < SCTP_MAX_PROBES) 260 goto out; 261 262 t->pl.probe_count = 0; 263 if (t->pl.state == SCTP_PL_BASE) { 264 if (t->pl.probe_size == SCTP_BASE_PLPMTU) { /* BASE_PLPMTU Confirmation Failed */ 265 t->pl.state = SCTP_PL_ERROR; /* Base -> Error */ 266 267 t->pl.pmtu = SCTP_BASE_PLPMTU; 268 t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t); 269 sctp_assoc_sync_pmtu(t->asoc); 270 } 271 } else if (t->pl.state == SCTP_PL_SEARCH) { 272 if (t->pl.pmtu == t->pl.probe_size) { /* Black Hole Detected */ 273 t->pl.state = SCTP_PL_BASE; /* Search -> Base */ 274 t->pl.probe_size = SCTP_BASE_PLPMTU; 275 t->pl.probe_high = 0; 276 277 t->pl.pmtu = SCTP_BASE_PLPMTU; 278 t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t); 279 sctp_assoc_sync_pmtu(t->asoc); 280 } else { /* Normal probe failure. */ 281 t->pl.probe_high = t->pl.probe_size; 282 t->pl.probe_size = t->pl.pmtu; 283 } 284 } else if (t->pl.state == SCTP_PL_COMPLETE) { 285 if (t->pl.pmtu == t->pl.probe_size) { /* Black Hole Detected */ 286 t->pl.state = SCTP_PL_BASE; /* Search Complete -> Base */ 287 t->pl.probe_size = SCTP_BASE_PLPMTU; 288 289 t->pl.pmtu = SCTP_BASE_PLPMTU; 290 t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t); 291 sctp_assoc_sync_pmtu(t->asoc); 292 } 293 } 294 295 out: 296 pr_debug("%s: PLPMTUD: transport: %p, state: %d, pmtu: %d, size: %d, high: %d\n", 297 __func__, t, t->pl.state, t->pl.pmtu, t->pl.probe_size, t->pl.probe_high); 298 t->pl.probe_count++; 299 } 300 301 bool sctp_transport_pl_recv(struct sctp_transport *t) 302 { 303 pr_debug("%s: PLPMTUD: transport: %p, state: %d, pmtu: %d, size: %d, high: %d\n", 304 __func__, t, t->pl.state, t->pl.pmtu, t->pl.probe_size, t->pl.probe_high); 305 306 t->pl.pmtu = t->pl.probe_size; 307 t->pl.probe_count = 0; 308 if (t->pl.state == SCTP_PL_BASE) { 309 t->pl.state = SCTP_PL_SEARCH; /* Base -> Search */ 310 t->pl.probe_size += SCTP_PL_BIG_STEP; 311 } else if (t->pl.state == SCTP_PL_ERROR) { 312 t->pl.state = SCTP_PL_SEARCH; /* Error -> Search */ 313 314 t->pl.pmtu = t->pl.probe_size; 315 t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t); 316 sctp_assoc_sync_pmtu(t->asoc); 317 t->pl.probe_size += SCTP_PL_BIG_STEP; 318 } else if (t->pl.state == SCTP_PL_SEARCH) { 319 if (!t->pl.probe_high) { 320 if (t->pl.probe_size < SCTP_MAX_PLPMTU) { 321 t->pl.probe_size = min(t->pl.probe_size + SCTP_PL_BIG_STEP, 322 SCTP_MAX_PLPMTU); 323 return false; 324 } 325 t->pl.probe_high = SCTP_MAX_PLPMTU; 326 } 327 t->pl.probe_size += SCTP_PL_MIN_STEP; 328 if (t->pl.probe_size >= t->pl.probe_high) { 329 t->pl.probe_high = 0; 330 t->pl.state = SCTP_PL_COMPLETE; /* Search -> Search Complete */ 331 332 t->pl.probe_size = t->pl.pmtu; 333 t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t); 334 sctp_assoc_sync_pmtu(t->asoc); 335 sctp_transport_reset_raise_timer(t); 336 } 337 } else if (t->pl.state == SCTP_PL_COMPLETE) { 338 /* Raise probe_size again after 30 * interval in Search Complete */ 339 t->pl.state = SCTP_PL_SEARCH; /* Search Complete -> Search */ 340 t->pl.probe_size = min(t->pl.probe_size + SCTP_PL_MIN_STEP, SCTP_MAX_PLPMTU); 341 } 342 343 return t->pl.state == SCTP_PL_COMPLETE; 344 } 345 346 static bool sctp_transport_pl_toobig(struct sctp_transport *t, u32 pmtu) 347 { 348 pr_debug("%s: PLPMTUD: transport: %p, state: %d, pmtu: %d, size: %d, ptb: %d\n", 349 __func__, t, t->pl.state, t->pl.pmtu, t->pl.probe_size, pmtu); 350 351 if (pmtu < SCTP_MIN_PLPMTU || pmtu >= t->pl.probe_size) 352 return false; 353 354 if (t->pl.state == SCTP_PL_BASE) { 355 if (pmtu >= SCTP_MIN_PLPMTU && pmtu < SCTP_BASE_PLPMTU) { 356 t->pl.state = SCTP_PL_ERROR; /* Base -> Error */ 357 358 t->pl.pmtu = SCTP_BASE_PLPMTU; 359 t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t); 360 return true; 361 } 362 } else if (t->pl.state == SCTP_PL_SEARCH) { 363 if (pmtu >= SCTP_BASE_PLPMTU && pmtu < t->pl.pmtu) { 364 t->pl.state = SCTP_PL_BASE; /* Search -> Base */ 365 t->pl.probe_size = SCTP_BASE_PLPMTU; 366 t->pl.probe_count = 0; 367 368 t->pl.probe_high = 0; 369 t->pl.pmtu = SCTP_BASE_PLPMTU; 370 t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t); 371 return true; 372 } else if (pmtu > t->pl.pmtu && pmtu < t->pl.probe_size) { 373 t->pl.probe_size = pmtu; 374 t->pl.probe_count = 0; 375 } 376 } else if (t->pl.state == SCTP_PL_COMPLETE) { 377 if (pmtu >= SCTP_BASE_PLPMTU && pmtu < t->pl.pmtu) { 378 t->pl.state = SCTP_PL_BASE; /* Complete -> Base */ 379 t->pl.probe_size = SCTP_BASE_PLPMTU; 380 t->pl.probe_count = 0; 381 382 t->pl.probe_high = 0; 383 t->pl.pmtu = SCTP_BASE_PLPMTU; 384 t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t); 385 sctp_transport_reset_probe_timer(t); 386 return true; 387 } 388 } 389 390 return false; 391 } 392 393 bool sctp_transport_update_pmtu(struct sctp_transport *t, u32 pmtu) 394 { 395 struct sock *sk = t->asoc->base.sk; 396 struct dst_entry *dst; 397 bool change = true; 398 399 if (unlikely(pmtu < SCTP_DEFAULT_MINSEGMENT)) { 400 pr_warn_ratelimited("%s: Reported pmtu %d too low, using default minimum of %d\n", 401 __func__, pmtu, SCTP_DEFAULT_MINSEGMENT); 402 /* Use default minimum segment instead */ 403 pmtu = SCTP_DEFAULT_MINSEGMENT; 404 } 405 pmtu = SCTP_TRUNC4(pmtu); 406 407 if (sctp_transport_pl_enabled(t)) 408 return sctp_transport_pl_toobig(t, pmtu - sctp_transport_pl_hlen(t)); 409 410 dst = sctp_transport_dst_check(t); 411 if (dst) { 412 struct sctp_pf *pf = sctp_get_pf_specific(dst->ops->family); 413 union sctp_addr addr; 414 415 pf->af->from_sk(&addr, sk); 416 pf->to_sk_daddr(&t->ipaddr, sk); 417 dst->ops->update_pmtu(dst, sk, NULL, pmtu, true); 418 pf->to_sk_daddr(&addr, sk); 419 420 dst = sctp_transport_dst_check(t); 421 } 422 423 if (!dst) { 424 t->af_specific->get_dst(t, &t->saddr, &t->fl, sk); 425 dst = t->dst; 426 } 427 428 if (dst) { 429 /* Re-fetch, as under layers may have a higher minimum size */ 430 pmtu = sctp_dst_mtu(dst); 431 change = t->pathmtu != pmtu; 432 } 433 t->pathmtu = pmtu; 434 435 return change; 436 } 437 438 /* Caches the dst entry and source address for a transport's destination 439 * address. 440 */ 441 void sctp_transport_route(struct sctp_transport *transport, 442 union sctp_addr *saddr, struct sctp_sock *opt) 443 { 444 struct sctp_association *asoc = transport->asoc; 445 struct sctp_af *af = transport->af_specific; 446 447 sctp_transport_dst_release(transport); 448 af->get_dst(transport, saddr, &transport->fl, sctp_opt2sk(opt)); 449 450 if (saddr) 451 memcpy(&transport->saddr, saddr, sizeof(union sctp_addr)); 452 else 453 af->get_saddr(opt, transport, &transport->fl); 454 455 sctp_transport_pmtu(transport, sctp_opt2sk(opt)); 456 457 /* Initialize sk->sk_rcv_saddr, if the transport is the 458 * association's active path for getsockname(). 459 */ 460 if (transport->dst && asoc && 461 (!asoc->peer.primary_path || transport == asoc->peer.active_path)) 462 opt->pf->to_sk_saddr(&transport->saddr, asoc->base.sk); 463 } 464 465 /* Hold a reference to a transport. */ 466 int sctp_transport_hold(struct sctp_transport *transport) 467 { 468 return refcount_inc_not_zero(&transport->refcnt); 469 } 470 471 /* Release a reference to a transport and clean up 472 * if there are no more references. 473 */ 474 void sctp_transport_put(struct sctp_transport *transport) 475 { 476 if (refcount_dec_and_test(&transport->refcnt)) 477 sctp_transport_destroy(transport); 478 } 479 480 /* Update transport's RTO based on the newly calculated RTT. */ 481 void sctp_transport_update_rto(struct sctp_transport *tp, __u32 rtt) 482 { 483 if (unlikely(!tp->rto_pending)) 484 /* We should not be doing any RTO updates unless rto_pending is set. */ 485 pr_debug("%s: rto_pending not set on transport %p!\n", __func__, tp); 486 487 if (tp->rttvar || tp->srtt) { 488 struct net *net = tp->asoc->base.net; 489 unsigned int rto_beta, rto_alpha; 490 /* 6.3.1 C3) When a new RTT measurement R' is made, set 491 * RTTVAR <- (1 - RTO.Beta) * RTTVAR + RTO.Beta * |SRTT - R'| 492 * SRTT <- (1 - RTO.Alpha) * SRTT + RTO.Alpha * R' 493 */ 494 495 /* Note: The above algorithm has been rewritten to 496 * express rto_beta and rto_alpha as inverse powers 497 * of two. 498 * For example, assuming the default value of RTO.Alpha of 499 * 1/8, rto_alpha would be expressed as 3. 500 */ 501 rto_beta = READ_ONCE(net->sctp.rto_beta); 502 if (rto_beta < 32) 503 tp->rttvar = tp->rttvar - (tp->rttvar >> rto_beta) 504 + (((__u32)abs((__s64)tp->srtt - (__s64)rtt)) >> rto_beta); 505 rto_alpha = READ_ONCE(net->sctp.rto_alpha); 506 if (rto_alpha < 32) 507 tp->srtt = tp->srtt - (tp->srtt >> rto_alpha) 508 + (rtt >> rto_alpha); 509 } else { 510 /* 6.3.1 C2) When the first RTT measurement R is made, set 511 * SRTT <- R, RTTVAR <- R/2. 512 */ 513 tp->srtt = rtt; 514 tp->rttvar = rtt >> 1; 515 } 516 517 /* 6.3.1 G1) Whenever RTTVAR is computed, if RTTVAR = 0, then 518 * adjust RTTVAR <- G, where G is the CLOCK GRANULARITY. 519 */ 520 if (tp->rttvar == 0) 521 tp->rttvar = SCTP_CLOCK_GRANULARITY; 522 523 /* 6.3.1 C3) After the computation, update RTO <- SRTT + 4 * RTTVAR. */ 524 tp->rto = tp->srtt + (tp->rttvar << 2); 525 526 /* 6.3.1 C6) Whenever RTO is computed, if it is less than RTO.Min 527 * seconds then it is rounded up to RTO.Min seconds. 528 */ 529 if (tp->rto < tp->asoc->rto_min) 530 tp->rto = tp->asoc->rto_min; 531 532 /* 6.3.1 C7) A maximum value may be placed on RTO provided it is 533 * at least RTO.max seconds. 534 */ 535 if (tp->rto > tp->asoc->rto_max) 536 tp->rto = tp->asoc->rto_max; 537 538 sctp_max_rto(tp->asoc, tp); 539 tp->rtt = rtt; 540 541 /* Reset rto_pending so that a new RTT measurement is started when a 542 * new data chunk is sent. 543 */ 544 tp->rto_pending = 0; 545 546 pr_debug("%s: transport:%p, rtt:%d, srtt:%d rttvar:%d, rto:%ld\n", 547 __func__, tp, rtt, tp->srtt, tp->rttvar, tp->rto); 548 } 549 550 /* This routine updates the transport's cwnd and partial_bytes_acked 551 * parameters based on the bytes acked in the received SACK. 552 */ 553 void sctp_transport_raise_cwnd(struct sctp_transport *transport, 554 __u32 sack_ctsn, __u32 bytes_acked) 555 { 556 struct sctp_association *asoc = transport->asoc; 557 __u32 cwnd, ssthresh, flight_size, pba, pmtu; 558 559 cwnd = transport->cwnd; 560 flight_size = transport->flight_size; 561 562 /* See if we need to exit Fast Recovery first */ 563 if (asoc->fast_recovery && 564 TSN_lte(asoc->fast_recovery_exit, sack_ctsn)) 565 asoc->fast_recovery = 0; 566 567 ssthresh = transport->ssthresh; 568 pba = transport->partial_bytes_acked; 569 pmtu = transport->asoc->pathmtu; 570 571 if (cwnd <= ssthresh) { 572 /* RFC 4960 7.2.1 573 * o When cwnd is less than or equal to ssthresh, an SCTP 574 * endpoint MUST use the slow-start algorithm to increase 575 * cwnd only if the current congestion window is being fully 576 * utilized, an incoming SACK advances the Cumulative TSN 577 * Ack Point, and the data sender is not in Fast Recovery. 578 * Only when these three conditions are met can the cwnd be 579 * increased; otherwise, the cwnd MUST not be increased. 580 * If these conditions are met, then cwnd MUST be increased 581 * by, at most, the lesser of 1) the total size of the 582 * previously outstanding DATA chunk(s) acknowledged, and 583 * 2) the destination's path MTU. This upper bound protects 584 * against the ACK-Splitting attack outlined in [SAVAGE99]. 585 */ 586 if (asoc->fast_recovery) 587 return; 588 589 /* The appropriate cwnd increase algorithm is performed 590 * if, and only if the congestion window is being fully 591 * utilized. Note that RFC4960 Errata 3.22 removed the 592 * other condition on ctsn moving. 593 */ 594 if (flight_size < cwnd) 595 return; 596 597 if (bytes_acked > pmtu) 598 cwnd += pmtu; 599 else 600 cwnd += bytes_acked; 601 602 pr_debug("%s: slow start: transport:%p, bytes_acked:%d, " 603 "cwnd:%d, ssthresh:%d, flight_size:%d, pba:%d\n", 604 __func__, transport, bytes_acked, cwnd, ssthresh, 605 flight_size, pba); 606 } else { 607 /* RFC 2960 7.2.2 Whenever cwnd is greater than ssthresh, 608 * upon each SACK arrival, increase partial_bytes_acked 609 * by the total number of bytes of all new chunks 610 * acknowledged in that SACK including chunks 611 * acknowledged by the new Cumulative TSN Ack and by Gap 612 * Ack Blocks. (updated by RFC4960 Errata 3.22) 613 * 614 * When partial_bytes_acked is greater than cwnd and 615 * before the arrival of the SACK the sender had less 616 * bytes of data outstanding than cwnd (i.e., before 617 * arrival of the SACK, flightsize was less than cwnd), 618 * reset partial_bytes_acked to cwnd. (RFC 4960 Errata 619 * 3.26) 620 * 621 * When partial_bytes_acked is equal to or greater than 622 * cwnd and before the arrival of the SACK the sender 623 * had cwnd or more bytes of data outstanding (i.e., 624 * before arrival of the SACK, flightsize was greater 625 * than or equal to cwnd), partial_bytes_acked is reset 626 * to (partial_bytes_acked - cwnd). Next, cwnd is 627 * increased by MTU. (RFC 4960 Errata 3.12) 628 */ 629 pba += bytes_acked; 630 if (pba > cwnd && flight_size < cwnd) 631 pba = cwnd; 632 if (pba >= cwnd && flight_size >= cwnd) { 633 pba = pba - cwnd; 634 cwnd += pmtu; 635 } 636 637 pr_debug("%s: congestion avoidance: transport:%p, " 638 "bytes_acked:%d, cwnd:%d, ssthresh:%d, " 639 "flight_size:%d, pba:%d\n", __func__, 640 transport, bytes_acked, cwnd, ssthresh, 641 flight_size, pba); 642 } 643 644 transport->cwnd = cwnd; 645 transport->partial_bytes_acked = pba; 646 } 647 648 /* This routine is used to lower the transport's cwnd when congestion is 649 * detected. 650 */ 651 void sctp_transport_lower_cwnd(struct sctp_transport *transport, 652 enum sctp_lower_cwnd reason) 653 { 654 struct sctp_association *asoc = transport->asoc; 655 656 switch (reason) { 657 case SCTP_LOWER_CWND_T3_RTX: 658 /* RFC 2960 Section 7.2.3, sctpimpguide 659 * When the T3-rtx timer expires on an address, SCTP should 660 * perform slow start by: 661 * ssthresh = max(cwnd/2, 4*MTU) 662 * cwnd = 1*MTU 663 * partial_bytes_acked = 0 664 */ 665 transport->ssthresh = max(transport->cwnd/2, 666 4*asoc->pathmtu); 667 transport->cwnd = asoc->pathmtu; 668 669 /* T3-rtx also clears fast recovery */ 670 asoc->fast_recovery = 0; 671 break; 672 673 case SCTP_LOWER_CWND_FAST_RTX: 674 /* RFC 2960 7.2.4 Adjust the ssthresh and cwnd of the 675 * destination address(es) to which the missing DATA chunks 676 * were last sent, according to the formula described in 677 * Section 7.2.3. 678 * 679 * RFC 2960 7.2.3, sctpimpguide Upon detection of packet 680 * losses from SACK (see Section 7.2.4), An endpoint 681 * should do the following: 682 * ssthresh = max(cwnd/2, 4*MTU) 683 * cwnd = ssthresh 684 * partial_bytes_acked = 0 685 */ 686 if (asoc->fast_recovery) 687 return; 688 689 /* Mark Fast recovery */ 690 asoc->fast_recovery = 1; 691 asoc->fast_recovery_exit = asoc->next_tsn - 1; 692 693 transport->ssthresh = max(transport->cwnd/2, 694 4*asoc->pathmtu); 695 transport->cwnd = transport->ssthresh; 696 break; 697 698 case SCTP_LOWER_CWND_ECNE: 699 /* RFC 2481 Section 6.1.2. 700 * If the sender receives an ECN-Echo ACK packet 701 * then the sender knows that congestion was encountered in the 702 * network on the path from the sender to the receiver. The 703 * indication of congestion should be treated just as a 704 * congestion loss in non-ECN Capable TCP. That is, the TCP 705 * source halves the congestion window "cwnd" and reduces the 706 * slow start threshold "ssthresh". 707 * A critical condition is that TCP does not react to 708 * congestion indications more than once every window of 709 * data (or more loosely more than once every round-trip time). 710 */ 711 if (time_after(jiffies, transport->last_time_ecne_reduced + 712 transport->rtt)) { 713 transport->ssthresh = max(transport->cwnd/2, 714 4*asoc->pathmtu); 715 transport->cwnd = transport->ssthresh; 716 transport->last_time_ecne_reduced = jiffies; 717 } 718 break; 719 720 case SCTP_LOWER_CWND_INACTIVE: 721 /* RFC 2960 Section 7.2.1, sctpimpguide 722 * When the endpoint does not transmit data on a given 723 * transport address, the cwnd of the transport address 724 * should be adjusted to max(cwnd/2, 4*MTU) per RTO. 725 * NOTE: Although the draft recommends that this check needs 726 * to be done every RTO interval, we do it every hearbeat 727 * interval. 728 */ 729 transport->cwnd = max(transport->cwnd/2, 730 4*asoc->pathmtu); 731 /* RFC 4960 Errata 3.27.2: also adjust sshthresh */ 732 transport->ssthresh = transport->cwnd; 733 break; 734 } 735 736 transport->partial_bytes_acked = 0; 737 738 pr_debug("%s: transport:%p, reason:%d, cwnd:%d, ssthresh:%d\n", 739 __func__, transport, reason, transport->cwnd, 740 transport->ssthresh); 741 } 742 743 /* Apply Max.Burst limit to the congestion window: 744 * sctpimpguide-05 2.14.2 745 * D) When the time comes for the sender to 746 * transmit new DATA chunks, the protocol parameter Max.Burst MUST 747 * first be applied to limit how many new DATA chunks may be sent. 748 * The limit is applied by adjusting cwnd as follows: 749 * if ((flightsize+ Max.Burst * MTU) < cwnd) 750 * cwnd = flightsize + Max.Burst * MTU 751 */ 752 753 void sctp_transport_burst_limited(struct sctp_transport *t) 754 { 755 struct sctp_association *asoc = t->asoc; 756 u32 old_cwnd = t->cwnd; 757 u32 max_burst_bytes; 758 759 if (t->burst_limited || asoc->max_burst == 0) 760 return; 761 762 max_burst_bytes = t->flight_size + (asoc->max_burst * asoc->pathmtu); 763 if (max_burst_bytes < old_cwnd) { 764 t->cwnd = max_burst_bytes; 765 t->burst_limited = old_cwnd; 766 } 767 } 768 769 /* Restore the old cwnd congestion window, after the burst had it's 770 * desired effect. 771 */ 772 void sctp_transport_burst_reset(struct sctp_transport *t) 773 { 774 if (t->burst_limited) { 775 t->cwnd = t->burst_limited; 776 t->burst_limited = 0; 777 } 778 } 779 780 /* What is the next timeout value for this transport? */ 781 unsigned long sctp_transport_timeout(struct sctp_transport *trans) 782 { 783 /* RTO + timer slack +/- 50% of RTO */ 784 unsigned long timeout = trans->rto >> 1; 785 786 if (trans->state != SCTP_UNCONFIRMED && 787 trans->state != SCTP_PF) 788 timeout += trans->hbinterval; 789 790 return max_t(unsigned long, timeout, HZ / 5); 791 } 792 793 /* Reset transport variables to their initial values */ 794 void sctp_transport_reset(struct sctp_transport *t) 795 { 796 struct sctp_association *asoc = t->asoc; 797 798 /* RFC 2960 (bis), Section 5.2.4 799 * All the congestion control parameters (e.g., cwnd, ssthresh) 800 * related to this peer MUST be reset to their initial values 801 * (see Section 6.2.1) 802 */ 803 t->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); 804 t->burst_limited = 0; 805 t->ssthresh = asoc->peer.i.a_rwnd; 806 t->rto = asoc->rto_initial; 807 sctp_max_rto(asoc, t); 808 t->rtt = 0; 809 t->srtt = 0; 810 t->rttvar = 0; 811 812 /* Reset these additional variables so that we have a clean slate. */ 813 t->partial_bytes_acked = 0; 814 t->flight_size = 0; 815 t->error_count = 0; 816 t->rto_pending = 0; 817 t->hb_sent = 0; 818 819 /* Initialize the state information for SFR-CACC */ 820 t->cacc.changeover_active = 0; 821 t->cacc.cycling_changeover = 0; 822 t->cacc.next_tsn_at_change = 0; 823 t->cacc.cacc_saw_newack = 0; 824 } 825 826 /* Schedule retransmission on the given transport */ 827 void sctp_transport_immediate_rtx(struct sctp_transport *t) 828 { 829 /* Stop pending T3_rtx_timer */ 830 if (timer_delete(&t->T3_rtx_timer)) 831 sctp_transport_put(t); 832 833 sctp_retransmit(&t->asoc->outqueue, t, SCTP_RTXR_T3_RTX); 834 if (!timer_pending(&t->T3_rtx_timer)) { 835 if (!mod_timer(&t->T3_rtx_timer, jiffies + t->rto)) 836 sctp_transport_hold(t); 837 } 838 } 839 840 /* Drop dst */ 841 void sctp_transport_dst_release(struct sctp_transport *t) 842 { 843 dst_release(t->dst); 844 t->dst = NULL; 845 t->dst_pending_confirm = 0; 846 } 847 848 /* Schedule neighbour confirm */ 849 void sctp_transport_dst_confirm(struct sctp_transport *t) 850 { 851 t->dst_pending_confirm = 1; 852 } 853