1 /* SCTP kernel implementation 2 * Copyright (c) 1999-2000 Cisco, Inc. 3 * Copyright (c) 1999-2001 Motorola, Inc. 4 * Copyright (c) 2001-2003 International Business Machines Corp. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 La Monte H.P. Yarroll 7 * 8 * This file is part of the SCTP kernel implementation 9 * 10 * This module provides the abstraction for an SCTP tranport representing 11 * a remote transport address. For local transport addresses, we just use 12 * union sctp_addr. 13 * 14 * This SCTP implementation is free software; 15 * you can redistribute it and/or modify it under the terms of 16 * the GNU General Public License as published by 17 * the Free Software Foundation; either version 2, or (at your option) 18 * any later version. 19 * 20 * This SCTP implementation is distributed in the hope that it 21 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 22 * ************************ 23 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 24 * See the GNU General Public License for more details. 25 * 26 * You should have received a copy of the GNU General Public License 27 * along with GNU CC; see the file COPYING. If not, write to 28 * the Free Software Foundation, 59 Temple Place - Suite 330, 29 * Boston, MA 02111-1307, USA. 30 * 31 * Please send any bug reports or fixes you make to the 32 * email address(es): 33 * lksctp developers <lksctp-developers@lists.sourceforge.net> 34 * 35 * Or submit a bug report through the following website: 36 * http://www.sf.net/projects/lksctp 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Karl Knutson <karl@athena.chicago.il.us> 41 * Jon Grimm <jgrimm@us.ibm.com> 42 * Xingang Guo <xingang.guo@intel.com> 43 * Hui Huang <hui.huang@nokia.com> 44 * Sridhar Samudrala <sri@us.ibm.com> 45 * Ardelle Fan <ardelle.fan@intel.com> 46 * 47 * Any bugs reported given to us we will try to fix... any fixes shared will 48 * be incorporated into the next SCTP release. 49 */ 50 51 #include <linux/types.h> 52 #include <linux/random.h> 53 #include <net/sctp/sctp.h> 54 #include <net/sctp/sm.h> 55 56 /* 1st Level Abstractions. */ 57 58 /* Initialize a new transport from provided memory. */ 59 static struct sctp_transport *sctp_transport_init(struct sctp_transport *peer, 60 const union sctp_addr *addr, 61 gfp_t gfp) 62 { 63 /* Copy in the address. */ 64 peer->ipaddr = *addr; 65 peer->af_specific = sctp_get_af_specific(addr->sa.sa_family); 66 peer->asoc = NULL; 67 68 peer->dst = NULL; 69 memset(&peer->saddr, 0, sizeof(union sctp_addr)); 70 71 /* From 6.3.1 RTO Calculation: 72 * 73 * C1) Until an RTT measurement has been made for a packet sent to the 74 * given destination transport address, set RTO to the protocol 75 * parameter 'RTO.Initial'. 76 */ 77 peer->last_rto = peer->rto = msecs_to_jiffies(sctp_rto_initial); 78 peer->rtt = 0; 79 peer->rttvar = 0; 80 peer->srtt = 0; 81 peer->rto_pending = 0; 82 peer->hb_sent = 0; 83 peer->fast_recovery = 0; 84 85 peer->last_time_heard = jiffies; 86 peer->last_time_used = jiffies; 87 peer->last_time_ecne_reduced = jiffies; 88 89 peer->init_sent_count = 0; 90 91 peer->param_flags = SPP_HB_DISABLE | 92 SPP_PMTUD_ENABLE | 93 SPP_SACKDELAY_ENABLE; 94 peer->hbinterval = 0; 95 96 /* Initialize the default path max_retrans. */ 97 peer->pathmaxrxt = sctp_max_retrans_path; 98 peer->error_count = 0; 99 100 INIT_LIST_HEAD(&peer->transmitted); 101 INIT_LIST_HEAD(&peer->send_ready); 102 INIT_LIST_HEAD(&peer->transports); 103 104 peer->T3_rtx_timer.expires = 0; 105 peer->hb_timer.expires = 0; 106 107 setup_timer(&peer->T3_rtx_timer, sctp_generate_t3_rtx_event, 108 (unsigned long)peer); 109 setup_timer(&peer->hb_timer, sctp_generate_heartbeat_event, 110 (unsigned long)peer); 111 112 /* Initialize the 64-bit random nonce sent with heartbeat. */ 113 get_random_bytes(&peer->hb_nonce, sizeof(peer->hb_nonce)); 114 115 atomic_set(&peer->refcnt, 1); 116 peer->dead = 0; 117 118 peer->malloced = 0; 119 120 /* Initialize the state information for SFR-CACC */ 121 peer->cacc.changeover_active = 0; 122 peer->cacc.cycling_changeover = 0; 123 peer->cacc.next_tsn_at_change = 0; 124 peer->cacc.cacc_saw_newack = 0; 125 126 return peer; 127 } 128 129 /* Allocate and initialize a new transport. */ 130 struct sctp_transport *sctp_transport_new(const union sctp_addr *addr, 131 gfp_t gfp) 132 { 133 struct sctp_transport *transport; 134 135 transport = t_new(struct sctp_transport, gfp); 136 if (!transport) 137 goto fail; 138 139 if (!sctp_transport_init(transport, addr, gfp)) 140 goto fail_init; 141 142 transport->malloced = 1; 143 SCTP_DBG_OBJCNT_INC(transport); 144 145 return transport; 146 147 fail_init: 148 kfree(transport); 149 150 fail: 151 return NULL; 152 } 153 154 /* This transport is no longer needed. Free up if possible, or 155 * delay until it last reference count. 156 */ 157 void sctp_transport_free(struct sctp_transport *transport) 158 { 159 transport->dead = 1; 160 161 /* Try to delete the heartbeat timer. */ 162 if (del_timer(&transport->hb_timer)) 163 sctp_transport_put(transport); 164 165 /* Delete the T3_rtx timer if it's active. 166 * There is no point in not doing this now and letting 167 * structure hang around in memory since we know 168 * the tranport is going away. 169 */ 170 if (timer_pending(&transport->T3_rtx_timer) && 171 del_timer(&transport->T3_rtx_timer)) 172 sctp_transport_put(transport); 173 174 175 sctp_transport_put(transport); 176 } 177 178 /* Destroy the transport data structure. 179 * Assumes there are no more users of this structure. 180 */ 181 static void sctp_transport_destroy(struct sctp_transport *transport) 182 { 183 SCTP_ASSERT(transport->dead, "Transport is not dead", return); 184 185 if (transport->asoc) 186 sctp_association_put(transport->asoc); 187 188 sctp_packet_free(&transport->packet); 189 190 dst_release(transport->dst); 191 kfree(transport); 192 SCTP_DBG_OBJCNT_DEC(transport); 193 } 194 195 /* Start T3_rtx timer if it is not already running and update the heartbeat 196 * timer. This routine is called every time a DATA chunk is sent. 197 */ 198 void sctp_transport_reset_timers(struct sctp_transport *transport, int force) 199 { 200 /* RFC 2960 6.3.2 Retransmission Timer Rules 201 * 202 * R1) Every time a DATA chunk is sent to any address(including a 203 * retransmission), if the T3-rtx timer of that address is not running 204 * start it running so that it will expire after the RTO of that 205 * address. 206 */ 207 208 if (force || !timer_pending(&transport->T3_rtx_timer)) 209 if (!mod_timer(&transport->T3_rtx_timer, 210 jiffies + transport->rto)) 211 sctp_transport_hold(transport); 212 213 /* When a data chunk is sent, reset the heartbeat interval. */ 214 if (!mod_timer(&transport->hb_timer, 215 sctp_transport_timeout(transport))) 216 sctp_transport_hold(transport); 217 } 218 219 /* This transport has been assigned to an association. 220 * Initialize fields from the association or from the sock itself. 221 * Register the reference count in the association. 222 */ 223 void sctp_transport_set_owner(struct sctp_transport *transport, 224 struct sctp_association *asoc) 225 { 226 transport->asoc = asoc; 227 sctp_association_hold(asoc); 228 } 229 230 /* Initialize the pmtu of a transport. */ 231 void sctp_transport_pmtu(struct sctp_transport *transport) 232 { 233 struct dst_entry *dst; 234 235 dst = transport->af_specific->get_dst(NULL, &transport->ipaddr, NULL); 236 237 if (dst) { 238 transport->pathmtu = dst_mtu(dst); 239 dst_release(dst); 240 } else 241 transport->pathmtu = SCTP_DEFAULT_MAXSEGMENT; 242 } 243 244 /* this is a complete rip-off from __sk_dst_check 245 * the cookie is always 0 since this is how it's used in the 246 * pmtu code 247 */ 248 static struct dst_entry *sctp_transport_dst_check(struct sctp_transport *t) 249 { 250 struct dst_entry *dst = t->dst; 251 252 if (dst && dst->obsolete && dst->ops->check(dst, 0) == NULL) { 253 dst_release(t->dst); 254 t->dst = NULL; 255 return NULL; 256 } 257 258 return dst; 259 } 260 261 void sctp_transport_update_pmtu(struct sctp_transport *t, u32 pmtu) 262 { 263 struct dst_entry *dst; 264 265 if (unlikely(pmtu < SCTP_DEFAULT_MINSEGMENT)) { 266 printk(KERN_WARNING "%s: Reported pmtu %d too low, " 267 "using default minimum of %d\n", 268 __func__, pmtu, 269 SCTP_DEFAULT_MINSEGMENT); 270 /* Use default minimum segment size and disable 271 * pmtu discovery on this transport. 272 */ 273 t->pathmtu = SCTP_DEFAULT_MINSEGMENT; 274 } else { 275 t->pathmtu = pmtu; 276 } 277 278 dst = sctp_transport_dst_check(t); 279 if (dst) 280 dst->ops->update_pmtu(dst, pmtu); 281 } 282 283 /* Caches the dst entry and source address for a transport's destination 284 * address. 285 */ 286 void sctp_transport_route(struct sctp_transport *transport, 287 union sctp_addr *saddr, struct sctp_sock *opt) 288 { 289 struct sctp_association *asoc = transport->asoc; 290 struct sctp_af *af = transport->af_specific; 291 union sctp_addr *daddr = &transport->ipaddr; 292 struct dst_entry *dst; 293 294 dst = af->get_dst(asoc, daddr, saddr); 295 296 if (saddr) 297 memcpy(&transport->saddr, saddr, sizeof(union sctp_addr)); 298 else 299 af->get_saddr(opt, asoc, dst, daddr, &transport->saddr); 300 301 transport->dst = dst; 302 if ((transport->param_flags & SPP_PMTUD_DISABLE) && transport->pathmtu) { 303 return; 304 } 305 if (dst) { 306 transport->pathmtu = dst_mtu(dst); 307 308 /* Initialize sk->sk_rcv_saddr, if the transport is the 309 * association's active path for getsockname(). 310 */ 311 if (asoc && (!asoc->peer.primary_path || 312 (transport == asoc->peer.active_path))) 313 opt->pf->af->to_sk_saddr(&transport->saddr, 314 asoc->base.sk); 315 } else 316 transport->pathmtu = SCTP_DEFAULT_MAXSEGMENT; 317 } 318 319 /* Hold a reference to a transport. */ 320 void sctp_transport_hold(struct sctp_transport *transport) 321 { 322 atomic_inc(&transport->refcnt); 323 } 324 325 /* Release a reference to a transport and clean up 326 * if there are no more references. 327 */ 328 void sctp_transport_put(struct sctp_transport *transport) 329 { 330 if (atomic_dec_and_test(&transport->refcnt)) 331 sctp_transport_destroy(transport); 332 } 333 334 /* Update transport's RTO based on the newly calculated RTT. */ 335 void sctp_transport_update_rto(struct sctp_transport *tp, __u32 rtt) 336 { 337 /* Check for valid transport. */ 338 SCTP_ASSERT(tp, "NULL transport", return); 339 340 /* We should not be doing any RTO updates unless rto_pending is set. */ 341 SCTP_ASSERT(tp->rto_pending, "rto_pending not set", return); 342 343 if (tp->rttvar || tp->srtt) { 344 /* 6.3.1 C3) When a new RTT measurement R' is made, set 345 * RTTVAR <- (1 - RTO.Beta) * RTTVAR + RTO.Beta * |SRTT - R'| 346 * SRTT <- (1 - RTO.Alpha) * SRTT + RTO.Alpha * R' 347 */ 348 349 /* Note: The above algorithm has been rewritten to 350 * express rto_beta and rto_alpha as inverse powers 351 * of two. 352 * For example, assuming the default value of RTO.Alpha of 353 * 1/8, rto_alpha would be expressed as 3. 354 */ 355 tp->rttvar = tp->rttvar - (tp->rttvar >> sctp_rto_beta) 356 + ((abs(tp->srtt - rtt)) >> sctp_rto_beta); 357 tp->srtt = tp->srtt - (tp->srtt >> sctp_rto_alpha) 358 + (rtt >> sctp_rto_alpha); 359 } else { 360 /* 6.3.1 C2) When the first RTT measurement R is made, set 361 * SRTT <- R, RTTVAR <- R/2. 362 */ 363 tp->srtt = rtt; 364 tp->rttvar = rtt >> 1; 365 } 366 367 /* 6.3.1 G1) Whenever RTTVAR is computed, if RTTVAR = 0, then 368 * adjust RTTVAR <- G, where G is the CLOCK GRANULARITY. 369 */ 370 if (tp->rttvar == 0) 371 tp->rttvar = SCTP_CLOCK_GRANULARITY; 372 373 /* 6.3.1 C3) After the computation, update RTO <- SRTT + 4 * RTTVAR. */ 374 tp->rto = tp->srtt + (tp->rttvar << 2); 375 376 /* 6.3.1 C6) Whenever RTO is computed, if it is less than RTO.Min 377 * seconds then it is rounded up to RTO.Min seconds. 378 */ 379 if (tp->rto < tp->asoc->rto_min) 380 tp->rto = tp->asoc->rto_min; 381 382 /* 6.3.1 C7) A maximum value may be placed on RTO provided it is 383 * at least RTO.max seconds. 384 */ 385 if (tp->rto > tp->asoc->rto_max) 386 tp->rto = tp->asoc->rto_max; 387 388 tp->rtt = rtt; 389 tp->last_rto = tp->rto; 390 391 /* Reset rto_pending so that a new RTT measurement is started when a 392 * new data chunk is sent. 393 */ 394 tp->rto_pending = 0; 395 396 SCTP_DEBUG_PRINTK("%s: transport: %p, rtt: %d, srtt: %d " 397 "rttvar: %d, rto: %ld\n", __func__, 398 tp, rtt, tp->srtt, tp->rttvar, tp->rto); 399 } 400 401 /* This routine updates the transport's cwnd and partial_bytes_acked 402 * parameters based on the bytes acked in the received SACK. 403 */ 404 void sctp_transport_raise_cwnd(struct sctp_transport *transport, 405 __u32 sack_ctsn, __u32 bytes_acked) 406 { 407 __u32 cwnd, ssthresh, flight_size, pba, pmtu; 408 409 cwnd = transport->cwnd; 410 flight_size = transport->flight_size; 411 412 /* See if we need to exit Fast Recovery first */ 413 if (transport->fast_recovery && 414 TSN_lte(transport->fast_recovery_exit, sack_ctsn)) 415 transport->fast_recovery = 0; 416 417 /* The appropriate cwnd increase algorithm is performed if, and only 418 * if the cumulative TSN whould advanced and the congestion window is 419 * being fully utilized. 420 */ 421 if (TSN_lte(sack_ctsn, transport->asoc->ctsn_ack_point) || 422 (flight_size < cwnd)) 423 return; 424 425 ssthresh = transport->ssthresh; 426 pba = transport->partial_bytes_acked; 427 pmtu = transport->asoc->pathmtu; 428 429 if (cwnd <= ssthresh) { 430 /* RFC 4960 7.2.1 431 * o When cwnd is less than or equal to ssthresh, an SCTP 432 * endpoint MUST use the slow-start algorithm to increase 433 * cwnd only if the current congestion window is being fully 434 * utilized, an incoming SACK advances the Cumulative TSN 435 * Ack Point, and the data sender is not in Fast Recovery. 436 * Only when these three conditions are met can the cwnd be 437 * increased; otherwise, the cwnd MUST not be increased. 438 * If these conditions are met, then cwnd MUST be increased 439 * by, at most, the lesser of 1) the total size of the 440 * previously outstanding DATA chunk(s) acknowledged, and 441 * 2) the destination's path MTU. This upper bound protects 442 * against the ACK-Splitting attack outlined in [SAVAGE99]. 443 */ 444 if (transport->fast_recovery) 445 return; 446 447 if (bytes_acked > pmtu) 448 cwnd += pmtu; 449 else 450 cwnd += bytes_acked; 451 SCTP_DEBUG_PRINTK("%s: SLOW START: transport: %p, " 452 "bytes_acked: %d, cwnd: %d, ssthresh: %d, " 453 "flight_size: %d, pba: %d\n", 454 __func__, 455 transport, bytes_acked, cwnd, 456 ssthresh, flight_size, pba); 457 } else { 458 /* RFC 2960 7.2.2 Whenever cwnd is greater than ssthresh, 459 * upon each SACK arrival that advances the Cumulative TSN Ack 460 * Point, increase partial_bytes_acked by the total number of 461 * bytes of all new chunks acknowledged in that SACK including 462 * chunks acknowledged by the new Cumulative TSN Ack and by 463 * Gap Ack Blocks. 464 * 465 * When partial_bytes_acked is equal to or greater than cwnd 466 * and before the arrival of the SACK the sender had cwnd or 467 * more bytes of data outstanding (i.e., before arrival of the 468 * SACK, flightsize was greater than or equal to cwnd), 469 * increase cwnd by MTU, and reset partial_bytes_acked to 470 * (partial_bytes_acked - cwnd). 471 */ 472 pba += bytes_acked; 473 if (pba >= cwnd) { 474 cwnd += pmtu; 475 pba = ((cwnd < pba) ? (pba - cwnd) : 0); 476 } 477 SCTP_DEBUG_PRINTK("%s: CONGESTION AVOIDANCE: " 478 "transport: %p, bytes_acked: %d, cwnd: %d, " 479 "ssthresh: %d, flight_size: %d, pba: %d\n", 480 __func__, 481 transport, bytes_acked, cwnd, 482 ssthresh, flight_size, pba); 483 } 484 485 transport->cwnd = cwnd; 486 transport->partial_bytes_acked = pba; 487 } 488 489 /* This routine is used to lower the transport's cwnd when congestion is 490 * detected. 491 */ 492 void sctp_transport_lower_cwnd(struct sctp_transport *transport, 493 sctp_lower_cwnd_t reason) 494 { 495 switch (reason) { 496 case SCTP_LOWER_CWND_T3_RTX: 497 /* RFC 2960 Section 7.2.3, sctpimpguide 498 * When the T3-rtx timer expires on an address, SCTP should 499 * perform slow start by: 500 * ssthresh = max(cwnd/2, 4*MTU) 501 * cwnd = 1*MTU 502 * partial_bytes_acked = 0 503 */ 504 transport->ssthresh = max(transport->cwnd/2, 505 4*transport->asoc->pathmtu); 506 transport->cwnd = transport->asoc->pathmtu; 507 508 /* T3-rtx also clears fast recovery on the transport */ 509 transport->fast_recovery = 0; 510 break; 511 512 case SCTP_LOWER_CWND_FAST_RTX: 513 /* RFC 2960 7.2.4 Adjust the ssthresh and cwnd of the 514 * destination address(es) to which the missing DATA chunks 515 * were last sent, according to the formula described in 516 * Section 7.2.3. 517 * 518 * RFC 2960 7.2.3, sctpimpguide Upon detection of packet 519 * losses from SACK (see Section 7.2.4), An endpoint 520 * should do the following: 521 * ssthresh = max(cwnd/2, 4*MTU) 522 * cwnd = ssthresh 523 * partial_bytes_acked = 0 524 */ 525 if (transport->fast_recovery) 526 return; 527 528 /* Mark Fast recovery */ 529 transport->fast_recovery = 1; 530 transport->fast_recovery_exit = transport->asoc->next_tsn - 1; 531 532 transport->ssthresh = max(transport->cwnd/2, 533 4*transport->asoc->pathmtu); 534 transport->cwnd = transport->ssthresh; 535 break; 536 537 case SCTP_LOWER_CWND_ECNE: 538 /* RFC 2481 Section 6.1.2. 539 * If the sender receives an ECN-Echo ACK packet 540 * then the sender knows that congestion was encountered in the 541 * network on the path from the sender to the receiver. The 542 * indication of congestion should be treated just as a 543 * congestion loss in non-ECN Capable TCP. That is, the TCP 544 * source halves the congestion window "cwnd" and reduces the 545 * slow start threshold "ssthresh". 546 * A critical condition is that TCP does not react to 547 * congestion indications more than once every window of 548 * data (or more loosely more than once every round-trip time). 549 */ 550 if (time_after(jiffies, transport->last_time_ecne_reduced + 551 transport->rtt)) { 552 transport->ssthresh = max(transport->cwnd/2, 553 4*transport->asoc->pathmtu); 554 transport->cwnd = transport->ssthresh; 555 transport->last_time_ecne_reduced = jiffies; 556 } 557 break; 558 559 case SCTP_LOWER_CWND_INACTIVE: 560 /* RFC 2960 Section 7.2.1, sctpimpguide 561 * When the endpoint does not transmit data on a given 562 * transport address, the cwnd of the transport address 563 * should be adjusted to max(cwnd/2, 4*MTU) per RTO. 564 * NOTE: Although the draft recommends that this check needs 565 * to be done every RTO interval, we do it every hearbeat 566 * interval. 567 */ 568 if (time_after(jiffies, transport->last_time_used + 569 transport->rto)) 570 transport->cwnd = max(transport->cwnd/2, 571 4*transport->asoc->pathmtu); 572 break; 573 } 574 575 transport->partial_bytes_acked = 0; 576 SCTP_DEBUG_PRINTK("%s: transport: %p reason: %d cwnd: " 577 "%d ssthresh: %d\n", __func__, 578 transport, reason, 579 transport->cwnd, transport->ssthresh); 580 } 581 582 /* What is the next timeout value for this transport? */ 583 unsigned long sctp_transport_timeout(struct sctp_transport *t) 584 { 585 unsigned long timeout; 586 timeout = t->rto + sctp_jitter(t->rto); 587 if (t->state != SCTP_UNCONFIRMED) 588 timeout += t->hbinterval; 589 timeout += jiffies; 590 return timeout; 591 } 592 593 /* Reset transport variables to their initial values */ 594 void sctp_transport_reset(struct sctp_transport *t) 595 { 596 struct sctp_association *asoc = t->asoc; 597 598 /* RFC 2960 (bis), Section 5.2.4 599 * All the congestion control parameters (e.g., cwnd, ssthresh) 600 * related to this peer MUST be reset to their initial values 601 * (see Section 6.2.1) 602 */ 603 t->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); 604 t->ssthresh = asoc->peer.i.a_rwnd; 605 t->last_rto = t->rto = asoc->rto_initial; 606 t->rtt = 0; 607 t->srtt = 0; 608 t->rttvar = 0; 609 610 /* Reset these additional varibles so that we have a clean 611 * slate. 612 */ 613 t->partial_bytes_acked = 0; 614 t->flight_size = 0; 615 t->error_count = 0; 616 t->rto_pending = 0; 617 t->hb_sent = 0; 618 t->fast_recovery = 0; 619 620 /* Initialize the state information for SFR-CACC */ 621 t->cacc.changeover_active = 0; 622 t->cacc.cycling_changeover = 0; 623 t->cacc.next_tsn_at_change = 0; 624 t->cacc.cacc_saw_newack = 0; 625 } 626