1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 International Business Machines Corp. 6 * Copyright (c) 2001 Intel Corp. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * This module provides the abstraction for an SCTP transport representing 12 * a remote transport address. For local transport addresses, we just use 13 * union sctp_addr. 14 * 15 * Please send any bug reports or fixes you make to the 16 * email address(es): 17 * lksctp developers <linux-sctp@vger.kernel.org> 18 * 19 * Written or modified by: 20 * La Monte H.P. Yarroll <piggy@acm.org> 21 * Karl Knutson <karl@athena.chicago.il.us> 22 * Jon Grimm <jgrimm@us.ibm.com> 23 * Xingang Guo <xingang.guo@intel.com> 24 * Hui Huang <hui.huang@nokia.com> 25 * Sridhar Samudrala <sri@us.ibm.com> 26 * Ardelle Fan <ardelle.fan@intel.com> 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include <linux/slab.h> 32 #include <linux/types.h> 33 #include <linux/random.h> 34 #include <net/sctp/sctp.h> 35 #include <net/sctp/sm.h> 36 37 /* 1st Level Abstractions. */ 38 39 /* Initialize a new transport from provided memory. */ 40 static void sctp_transport_init(struct net *net, 41 struct sctp_transport *peer, 42 const union sctp_addr *addr, 43 gfp_t gfp) 44 { 45 /* Copy in the address. */ 46 peer->af_specific = sctp_get_af_specific(addr->sa.sa_family); 47 memcpy(&peer->ipaddr, addr, peer->af_specific->sockaddr_len); 48 memset(&peer->saddr, 0, sizeof(union sctp_addr)); 49 50 peer->sack_generation = 0; 51 52 /* From 6.3.1 RTO Calculation: 53 * 54 * C1) Until an RTT measurement has been made for a packet sent to the 55 * given destination transport address, set RTO to the protocol 56 * parameter 'RTO.Initial'. 57 */ 58 peer->rto = msecs_to_jiffies(net->sctp.rto_initial); 59 60 peer->last_time_heard = 0; 61 peer->last_time_ecne_reduced = jiffies; 62 63 peer->param_flags = SPP_HB_DISABLE | 64 SPP_PMTUD_ENABLE | 65 SPP_SACKDELAY_ENABLE; 66 67 /* Initialize the default path max_retrans. */ 68 peer->pathmaxrxt = net->sctp.max_retrans_path; 69 peer->pf_retrans = net->sctp.pf_retrans; 70 71 INIT_LIST_HEAD(&peer->transmitted); 72 INIT_LIST_HEAD(&peer->send_ready); 73 INIT_LIST_HEAD(&peer->transports); 74 75 timer_setup(&peer->T3_rtx_timer, sctp_generate_t3_rtx_event, 0); 76 timer_setup(&peer->hb_timer, sctp_generate_heartbeat_event, 0); 77 timer_setup(&peer->reconf_timer, sctp_generate_reconf_event, 0); 78 timer_setup(&peer->probe_timer, sctp_generate_probe_event, 0); 79 timer_setup(&peer->proto_unreach_timer, 80 sctp_generate_proto_unreach_event, 0); 81 82 /* Initialize the 64-bit random nonce sent with heartbeat. */ 83 get_random_bytes(&peer->hb_nonce, sizeof(peer->hb_nonce)); 84 85 refcount_set(&peer->refcnt, 1); 86 } 87 88 /* Allocate and initialize a new transport. */ 89 struct sctp_transport *sctp_transport_new(struct net *net, 90 const union sctp_addr *addr, 91 gfp_t gfp) 92 { 93 struct sctp_transport *transport; 94 95 transport = kzalloc(sizeof(*transport), gfp); 96 if (!transport) 97 return NULL; 98 99 sctp_transport_init(net, transport, addr, gfp); 100 101 SCTP_DBG_OBJCNT_INC(transport); 102 103 return transport; 104 } 105 106 /* This transport is no longer needed. Free up if possible, or 107 * delay until it last reference count. 108 */ 109 void sctp_transport_free(struct sctp_transport *transport) 110 { 111 transport->dead = 1; 112 113 /* Try to delete the heartbeat timer. */ 114 if (timer_delete(&transport->hb_timer)) 115 sctp_transport_put(transport); 116 117 /* Delete the T3_rtx timer if it's active. 118 * There is no point in not doing this now and letting 119 * structure hang around in memory since we know 120 * the transport is going away. 121 */ 122 if (timer_delete(&transport->T3_rtx_timer)) 123 sctp_transport_put(transport); 124 125 if (timer_delete(&transport->reconf_timer)) 126 sctp_transport_put(transport); 127 128 if (timer_delete(&transport->probe_timer)) 129 sctp_transport_put(transport); 130 131 /* Delete the ICMP proto unreachable timer if it's active. */ 132 if (timer_delete(&transport->proto_unreach_timer)) 133 sctp_transport_put(transport); 134 135 sctp_transport_put(transport); 136 } 137 138 static void sctp_transport_destroy_rcu(struct rcu_head *head) 139 { 140 struct sctp_transport *transport; 141 142 transport = container_of(head, struct sctp_transport, rcu); 143 144 dst_release(transport->dst); 145 kfree(transport); 146 SCTP_DBG_OBJCNT_DEC(transport); 147 } 148 149 /* Destroy the transport data structure. 150 * Assumes there are no more users of this structure. 151 */ 152 static void sctp_transport_destroy(struct sctp_transport *transport) 153 { 154 if (unlikely(refcount_read(&transport->refcnt))) { 155 WARN(1, "Attempt to destroy undead transport %p!\n", transport); 156 return; 157 } 158 159 sctp_packet_free(&transport->packet); 160 161 if (transport->asoc) 162 sctp_association_put(transport->asoc); 163 164 call_rcu(&transport->rcu, sctp_transport_destroy_rcu); 165 } 166 167 /* Start T3_rtx timer if it is not already running and update the heartbeat 168 * timer. This routine is called every time a DATA chunk is sent. 169 */ 170 void sctp_transport_reset_t3_rtx(struct sctp_transport *transport) 171 { 172 /* RFC 2960 6.3.2 Retransmission Timer Rules 173 * 174 * R1) Every time a DATA chunk is sent to any address(including a 175 * retransmission), if the T3-rtx timer of that address is not running 176 * start it running so that it will expire after the RTO of that 177 * address. 178 */ 179 180 if (!timer_pending(&transport->T3_rtx_timer)) 181 if (!mod_timer(&transport->T3_rtx_timer, 182 jiffies + transport->rto)) 183 sctp_transport_hold(transport); 184 } 185 186 void sctp_transport_reset_hb_timer(struct sctp_transport *transport) 187 { 188 unsigned long expires; 189 190 /* When a data chunk is sent, reset the heartbeat interval. */ 191 expires = jiffies + sctp_transport_timeout(transport); 192 if (!mod_timer(&transport->hb_timer, 193 expires + get_random_u32_below(transport->rto))) 194 sctp_transport_hold(transport); 195 } 196 197 void sctp_transport_reset_reconf_timer(struct sctp_transport *transport) 198 { 199 if (!timer_pending(&transport->reconf_timer)) 200 if (!mod_timer(&transport->reconf_timer, 201 jiffies + transport->rto)) 202 sctp_transport_hold(transport); 203 } 204 205 void sctp_transport_reset_probe_timer(struct sctp_transport *transport) 206 { 207 if (!mod_timer(&transport->probe_timer, 208 jiffies + transport->probe_interval)) 209 sctp_transport_hold(transport); 210 } 211 212 void sctp_transport_reset_raise_timer(struct sctp_transport *transport) 213 { 214 if (!mod_timer(&transport->probe_timer, 215 jiffies + transport->probe_interval * 30)) 216 sctp_transport_hold(transport); 217 } 218 219 /* This transport has been assigned to an association. 220 * Initialize fields from the association or from the sock itself. 221 * Register the reference count in the association. 222 */ 223 void sctp_transport_set_owner(struct sctp_transport *transport, 224 struct sctp_association *asoc) 225 { 226 transport->asoc = asoc; 227 sctp_association_hold(asoc); 228 } 229 230 /* Initialize the pmtu of a transport. */ 231 void sctp_transport_pmtu(struct sctp_transport *transport, struct sock *sk) 232 { 233 /* If we don't have a fresh route, look one up */ 234 if (!transport->dst || READ_ONCE(transport->dst->obsolete)) { 235 sctp_transport_dst_release(transport); 236 transport->af_specific->get_dst(transport, &transport->saddr, 237 &transport->fl, sk); 238 } 239 240 if (transport->param_flags & SPP_PMTUD_DISABLE) { 241 struct sctp_association *asoc = transport->asoc; 242 243 if (!transport->pathmtu && asoc && asoc->pathmtu) 244 transport->pathmtu = asoc->pathmtu; 245 if (transport->pathmtu) 246 return; 247 } 248 249 if (transport->dst) 250 transport->pathmtu = sctp_dst_mtu(transport->dst); 251 else 252 transport->pathmtu = SCTP_DEFAULT_MAXSEGMENT; 253 254 sctp_transport_pl_update(transport); 255 } 256 257 void sctp_transport_pl_send(struct sctp_transport *t) 258 { 259 if (t->pl.probe_count < SCTP_MAX_PROBES) 260 goto out; 261 262 t->pl.probe_count = 0; 263 if (t->pl.state == SCTP_PL_BASE) { 264 if (t->pl.probe_size == SCTP_BASE_PLPMTU) { /* BASE_PLPMTU Confirmation Failed */ 265 t->pl.state = SCTP_PL_ERROR; /* Base -> Error */ 266 267 t->pl.pmtu = SCTP_BASE_PLPMTU; 268 t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t); 269 sctp_assoc_sync_pmtu(t->asoc); 270 } 271 } else if (t->pl.state == SCTP_PL_SEARCH) { 272 if (t->pl.pmtu == t->pl.probe_size) { /* Black Hole Detected */ 273 t->pl.state = SCTP_PL_BASE; /* Search -> Base */ 274 t->pl.probe_size = SCTP_BASE_PLPMTU; 275 t->pl.probe_high = 0; 276 277 t->pl.pmtu = SCTP_BASE_PLPMTU; 278 t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t); 279 sctp_assoc_sync_pmtu(t->asoc); 280 } else { /* Normal probe failure. */ 281 t->pl.probe_high = t->pl.probe_size; 282 t->pl.probe_size = t->pl.pmtu; 283 } 284 } else if (t->pl.state == SCTP_PL_COMPLETE) { 285 if (t->pl.pmtu == t->pl.probe_size) { /* Black Hole Detected */ 286 t->pl.state = SCTP_PL_BASE; /* Search Complete -> Base */ 287 t->pl.probe_size = SCTP_BASE_PLPMTU; 288 289 t->pl.pmtu = SCTP_BASE_PLPMTU; 290 t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t); 291 sctp_assoc_sync_pmtu(t->asoc); 292 } 293 } 294 295 out: 296 pr_debug("%s: PLPMTUD: transport: %p, state: %d, pmtu: %d, size: %d, high: %d\n", 297 __func__, t, t->pl.state, t->pl.pmtu, t->pl.probe_size, t->pl.probe_high); 298 t->pl.probe_count++; 299 } 300 301 bool sctp_transport_pl_recv(struct sctp_transport *t) 302 { 303 pr_debug("%s: PLPMTUD: transport: %p, state: %d, pmtu: %d, size: %d, high: %d\n", 304 __func__, t, t->pl.state, t->pl.pmtu, t->pl.probe_size, t->pl.probe_high); 305 306 t->pl.pmtu = t->pl.probe_size; 307 t->pl.probe_count = 0; 308 if (t->pl.state == SCTP_PL_BASE) { 309 t->pl.state = SCTP_PL_SEARCH; /* Base -> Search */ 310 t->pl.probe_size += SCTP_PL_BIG_STEP; 311 } else if (t->pl.state == SCTP_PL_ERROR) { 312 t->pl.state = SCTP_PL_SEARCH; /* Error -> Search */ 313 314 t->pl.pmtu = t->pl.probe_size; 315 t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t); 316 sctp_assoc_sync_pmtu(t->asoc); 317 t->pl.probe_size += SCTP_PL_BIG_STEP; 318 } else if (t->pl.state == SCTP_PL_SEARCH) { 319 if (!t->pl.probe_high) { 320 if (t->pl.probe_size < SCTP_MAX_PLPMTU) { 321 t->pl.probe_size = min(t->pl.probe_size + SCTP_PL_BIG_STEP, 322 SCTP_MAX_PLPMTU); 323 return false; 324 } 325 t->pl.probe_high = SCTP_MAX_PLPMTU; 326 } 327 t->pl.probe_size += SCTP_PL_MIN_STEP; 328 if (t->pl.probe_size >= t->pl.probe_high) { 329 t->pl.probe_high = 0; 330 t->pl.state = SCTP_PL_COMPLETE; /* Search -> Search Complete */ 331 332 t->pl.probe_size = t->pl.pmtu; 333 t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t); 334 sctp_assoc_sync_pmtu(t->asoc); 335 sctp_transport_reset_raise_timer(t); 336 } 337 } else if (t->pl.state == SCTP_PL_COMPLETE) { 338 /* Raise probe_size again after 30 * interval in Search Complete */ 339 t->pl.state = SCTP_PL_SEARCH; /* Search Complete -> Search */ 340 t->pl.probe_size = min(t->pl.probe_size + SCTP_PL_MIN_STEP, SCTP_MAX_PLPMTU); 341 } 342 343 return t->pl.state == SCTP_PL_COMPLETE; 344 } 345 346 static bool sctp_transport_pl_toobig(struct sctp_transport *t, u32 pmtu) 347 { 348 pr_debug("%s: PLPMTUD: transport: %p, state: %d, pmtu: %d, size: %d, ptb: %d\n", 349 __func__, t, t->pl.state, t->pl.pmtu, t->pl.probe_size, pmtu); 350 351 if (pmtu < SCTP_MIN_PLPMTU || pmtu >= t->pl.probe_size) 352 return false; 353 354 if (t->pl.state == SCTP_PL_BASE) { 355 if (pmtu >= SCTP_MIN_PLPMTU && pmtu < SCTP_BASE_PLPMTU) { 356 t->pl.state = SCTP_PL_ERROR; /* Base -> Error */ 357 358 t->pl.pmtu = SCTP_BASE_PLPMTU; 359 t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t); 360 return true; 361 } 362 } else if (t->pl.state == SCTP_PL_SEARCH) { 363 if (pmtu >= SCTP_BASE_PLPMTU && pmtu < t->pl.pmtu) { 364 t->pl.state = SCTP_PL_BASE; /* Search -> Base */ 365 t->pl.probe_size = SCTP_BASE_PLPMTU; 366 t->pl.probe_count = 0; 367 368 t->pl.probe_high = 0; 369 t->pl.pmtu = SCTP_BASE_PLPMTU; 370 t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t); 371 return true; 372 } else if (pmtu > t->pl.pmtu && pmtu < t->pl.probe_size) { 373 t->pl.probe_size = pmtu; 374 t->pl.probe_count = 0; 375 } 376 } else if (t->pl.state == SCTP_PL_COMPLETE) { 377 if (pmtu >= SCTP_BASE_PLPMTU && pmtu < t->pl.pmtu) { 378 t->pl.state = SCTP_PL_BASE; /* Complete -> Base */ 379 t->pl.probe_size = SCTP_BASE_PLPMTU; 380 t->pl.probe_count = 0; 381 382 t->pl.probe_high = 0; 383 t->pl.pmtu = SCTP_BASE_PLPMTU; 384 t->pathmtu = t->pl.pmtu + sctp_transport_pl_hlen(t); 385 sctp_transport_reset_probe_timer(t); 386 return true; 387 } 388 } 389 390 return false; 391 } 392 393 bool sctp_transport_update_pmtu(struct sctp_transport *t, u32 pmtu) 394 { 395 struct sock *sk = t->asoc->base.sk; 396 struct dst_entry *dst; 397 bool change = true; 398 399 if (unlikely(pmtu < SCTP_DEFAULT_MINSEGMENT)) { 400 pr_warn_ratelimited("%s: Reported pmtu %d too low, using default minimum of %d\n", 401 __func__, pmtu, SCTP_DEFAULT_MINSEGMENT); 402 /* Use default minimum segment instead */ 403 pmtu = SCTP_DEFAULT_MINSEGMENT; 404 } 405 pmtu = SCTP_TRUNC4(pmtu); 406 407 if (sctp_transport_pl_enabled(t)) 408 return sctp_transport_pl_toobig(t, pmtu - sctp_transport_pl_hlen(t)); 409 410 dst = sctp_transport_dst_check(t); 411 if (dst) { 412 struct sctp_pf *pf = sctp_get_pf_specific(dst->ops->family); 413 union sctp_addr addr; 414 415 pf->af->from_sk(&addr, sk); 416 pf->to_sk_daddr(&t->ipaddr, sk); 417 dst->ops->update_pmtu(dst, sk, NULL, pmtu, true); 418 pf->to_sk_daddr(&addr, sk); 419 420 dst = sctp_transport_dst_check(t); 421 } 422 423 if (!dst) { 424 t->af_specific->get_dst(t, &t->saddr, &t->fl, sk); 425 dst = t->dst; 426 } 427 428 if (dst) { 429 /* Re-fetch, as under layers may have a higher minimum size */ 430 pmtu = sctp_dst_mtu(dst); 431 change = t->pathmtu != pmtu; 432 } 433 t->pathmtu = pmtu; 434 435 return change; 436 } 437 438 /* Caches the dst entry and source address for a transport's destination 439 * address. 440 */ 441 void sctp_transport_route(struct sctp_transport *transport, 442 union sctp_addr *saddr, struct sctp_sock *opt) 443 { 444 struct sctp_association *asoc = transport->asoc; 445 struct sctp_af *af = transport->af_specific; 446 447 sctp_transport_dst_release(transport); 448 af->get_dst(transport, saddr, &transport->fl, sctp_opt2sk(opt)); 449 450 if (saddr) 451 memcpy(&transport->saddr, saddr, sizeof(union sctp_addr)); 452 else 453 af->get_saddr(opt, transport, &transport->fl); 454 455 sctp_transport_pmtu(transport, sctp_opt2sk(opt)); 456 457 /* Initialize sk->sk_rcv_saddr, if the transport is the 458 * association's active path for getsockname(). 459 */ 460 if (transport->dst && asoc && 461 (!asoc->peer.primary_path || transport == asoc->peer.active_path)) 462 opt->pf->to_sk_saddr(&transport->saddr, asoc->base.sk); 463 } 464 465 /* Hold a reference to a transport. */ 466 int sctp_transport_hold(struct sctp_transport *transport) 467 { 468 return refcount_inc_not_zero(&transport->refcnt); 469 } 470 471 /* Release a reference to a transport and clean up 472 * if there are no more references. 473 */ 474 void sctp_transport_put(struct sctp_transport *transport) 475 { 476 if (refcount_dec_and_test(&transport->refcnt)) 477 sctp_transport_destroy(transport); 478 } 479 480 /* Update transport's RTO based on the newly calculated RTT. */ 481 void sctp_transport_update_rto(struct sctp_transport *tp, __u32 rtt) 482 { 483 if (unlikely(!tp->rto_pending)) 484 /* We should not be doing any RTO updates unless rto_pending is set. */ 485 pr_debug("%s: rto_pending not set on transport %p!\n", __func__, tp); 486 487 if (tp->rttvar || tp->srtt) { 488 struct net *net = tp->asoc->base.net; 489 /* 6.3.1 C3) When a new RTT measurement R' is made, set 490 * RTTVAR <- (1 - RTO.Beta) * RTTVAR + RTO.Beta * |SRTT - R'| 491 * SRTT <- (1 - RTO.Alpha) * SRTT + RTO.Alpha * R' 492 */ 493 494 /* Note: The above algorithm has been rewritten to 495 * express rto_beta and rto_alpha as inverse powers 496 * of two. 497 * For example, assuming the default value of RTO.Alpha of 498 * 1/8, rto_alpha would be expressed as 3. 499 */ 500 tp->rttvar = tp->rttvar - (tp->rttvar >> net->sctp.rto_beta) 501 + (((__u32)abs((__s64)tp->srtt - (__s64)rtt)) >> net->sctp.rto_beta); 502 tp->srtt = tp->srtt - (tp->srtt >> net->sctp.rto_alpha) 503 + (rtt >> net->sctp.rto_alpha); 504 } else { 505 /* 6.3.1 C2) When the first RTT measurement R is made, set 506 * SRTT <- R, RTTVAR <- R/2. 507 */ 508 tp->srtt = rtt; 509 tp->rttvar = rtt >> 1; 510 } 511 512 /* 6.3.1 G1) Whenever RTTVAR is computed, if RTTVAR = 0, then 513 * adjust RTTVAR <- G, where G is the CLOCK GRANULARITY. 514 */ 515 if (tp->rttvar == 0) 516 tp->rttvar = SCTP_CLOCK_GRANULARITY; 517 518 /* 6.3.1 C3) After the computation, update RTO <- SRTT + 4 * RTTVAR. */ 519 tp->rto = tp->srtt + (tp->rttvar << 2); 520 521 /* 6.3.1 C6) Whenever RTO is computed, if it is less than RTO.Min 522 * seconds then it is rounded up to RTO.Min seconds. 523 */ 524 if (tp->rto < tp->asoc->rto_min) 525 tp->rto = tp->asoc->rto_min; 526 527 /* 6.3.1 C7) A maximum value may be placed on RTO provided it is 528 * at least RTO.max seconds. 529 */ 530 if (tp->rto > tp->asoc->rto_max) 531 tp->rto = tp->asoc->rto_max; 532 533 sctp_max_rto(tp->asoc, tp); 534 tp->rtt = rtt; 535 536 /* Reset rto_pending so that a new RTT measurement is started when a 537 * new data chunk is sent. 538 */ 539 tp->rto_pending = 0; 540 541 pr_debug("%s: transport:%p, rtt:%d, srtt:%d rttvar:%d, rto:%ld\n", 542 __func__, tp, rtt, tp->srtt, tp->rttvar, tp->rto); 543 } 544 545 /* This routine updates the transport's cwnd and partial_bytes_acked 546 * parameters based on the bytes acked in the received SACK. 547 */ 548 void sctp_transport_raise_cwnd(struct sctp_transport *transport, 549 __u32 sack_ctsn, __u32 bytes_acked) 550 { 551 struct sctp_association *asoc = transport->asoc; 552 __u32 cwnd, ssthresh, flight_size, pba, pmtu; 553 554 cwnd = transport->cwnd; 555 flight_size = transport->flight_size; 556 557 /* See if we need to exit Fast Recovery first */ 558 if (asoc->fast_recovery && 559 TSN_lte(asoc->fast_recovery_exit, sack_ctsn)) 560 asoc->fast_recovery = 0; 561 562 ssthresh = transport->ssthresh; 563 pba = transport->partial_bytes_acked; 564 pmtu = transport->asoc->pathmtu; 565 566 if (cwnd <= ssthresh) { 567 /* RFC 4960 7.2.1 568 * o When cwnd is less than or equal to ssthresh, an SCTP 569 * endpoint MUST use the slow-start algorithm to increase 570 * cwnd only if the current congestion window is being fully 571 * utilized, an incoming SACK advances the Cumulative TSN 572 * Ack Point, and the data sender is not in Fast Recovery. 573 * Only when these three conditions are met can the cwnd be 574 * increased; otherwise, the cwnd MUST not be increased. 575 * If these conditions are met, then cwnd MUST be increased 576 * by, at most, the lesser of 1) the total size of the 577 * previously outstanding DATA chunk(s) acknowledged, and 578 * 2) the destination's path MTU. This upper bound protects 579 * against the ACK-Splitting attack outlined in [SAVAGE99]. 580 */ 581 if (asoc->fast_recovery) 582 return; 583 584 /* The appropriate cwnd increase algorithm is performed 585 * if, and only if the congestion window is being fully 586 * utilized. Note that RFC4960 Errata 3.22 removed the 587 * other condition on ctsn moving. 588 */ 589 if (flight_size < cwnd) 590 return; 591 592 if (bytes_acked > pmtu) 593 cwnd += pmtu; 594 else 595 cwnd += bytes_acked; 596 597 pr_debug("%s: slow start: transport:%p, bytes_acked:%d, " 598 "cwnd:%d, ssthresh:%d, flight_size:%d, pba:%d\n", 599 __func__, transport, bytes_acked, cwnd, ssthresh, 600 flight_size, pba); 601 } else { 602 /* RFC 2960 7.2.2 Whenever cwnd is greater than ssthresh, 603 * upon each SACK arrival, increase partial_bytes_acked 604 * by the total number of bytes of all new chunks 605 * acknowledged in that SACK including chunks 606 * acknowledged by the new Cumulative TSN Ack and by Gap 607 * Ack Blocks. (updated by RFC4960 Errata 3.22) 608 * 609 * When partial_bytes_acked is greater than cwnd and 610 * before the arrival of the SACK the sender had less 611 * bytes of data outstanding than cwnd (i.e., before 612 * arrival of the SACK, flightsize was less than cwnd), 613 * reset partial_bytes_acked to cwnd. (RFC 4960 Errata 614 * 3.26) 615 * 616 * When partial_bytes_acked is equal to or greater than 617 * cwnd and before the arrival of the SACK the sender 618 * had cwnd or more bytes of data outstanding (i.e., 619 * before arrival of the SACK, flightsize was greater 620 * than or equal to cwnd), partial_bytes_acked is reset 621 * to (partial_bytes_acked - cwnd). Next, cwnd is 622 * increased by MTU. (RFC 4960 Errata 3.12) 623 */ 624 pba += bytes_acked; 625 if (pba > cwnd && flight_size < cwnd) 626 pba = cwnd; 627 if (pba >= cwnd && flight_size >= cwnd) { 628 pba = pba - cwnd; 629 cwnd += pmtu; 630 } 631 632 pr_debug("%s: congestion avoidance: transport:%p, " 633 "bytes_acked:%d, cwnd:%d, ssthresh:%d, " 634 "flight_size:%d, pba:%d\n", __func__, 635 transport, bytes_acked, cwnd, ssthresh, 636 flight_size, pba); 637 } 638 639 transport->cwnd = cwnd; 640 transport->partial_bytes_acked = pba; 641 } 642 643 /* This routine is used to lower the transport's cwnd when congestion is 644 * detected. 645 */ 646 void sctp_transport_lower_cwnd(struct sctp_transport *transport, 647 enum sctp_lower_cwnd reason) 648 { 649 struct sctp_association *asoc = transport->asoc; 650 651 switch (reason) { 652 case SCTP_LOWER_CWND_T3_RTX: 653 /* RFC 2960 Section 7.2.3, sctpimpguide 654 * When the T3-rtx timer expires on an address, SCTP should 655 * perform slow start by: 656 * ssthresh = max(cwnd/2, 4*MTU) 657 * cwnd = 1*MTU 658 * partial_bytes_acked = 0 659 */ 660 transport->ssthresh = max(transport->cwnd/2, 661 4*asoc->pathmtu); 662 transport->cwnd = asoc->pathmtu; 663 664 /* T3-rtx also clears fast recovery */ 665 asoc->fast_recovery = 0; 666 break; 667 668 case SCTP_LOWER_CWND_FAST_RTX: 669 /* RFC 2960 7.2.4 Adjust the ssthresh and cwnd of the 670 * destination address(es) to which the missing DATA chunks 671 * were last sent, according to the formula described in 672 * Section 7.2.3. 673 * 674 * RFC 2960 7.2.3, sctpimpguide Upon detection of packet 675 * losses from SACK (see Section 7.2.4), An endpoint 676 * should do the following: 677 * ssthresh = max(cwnd/2, 4*MTU) 678 * cwnd = ssthresh 679 * partial_bytes_acked = 0 680 */ 681 if (asoc->fast_recovery) 682 return; 683 684 /* Mark Fast recovery */ 685 asoc->fast_recovery = 1; 686 asoc->fast_recovery_exit = asoc->next_tsn - 1; 687 688 transport->ssthresh = max(transport->cwnd/2, 689 4*asoc->pathmtu); 690 transport->cwnd = transport->ssthresh; 691 break; 692 693 case SCTP_LOWER_CWND_ECNE: 694 /* RFC 2481 Section 6.1.2. 695 * If the sender receives an ECN-Echo ACK packet 696 * then the sender knows that congestion was encountered in the 697 * network on the path from the sender to the receiver. The 698 * indication of congestion should be treated just as a 699 * congestion loss in non-ECN Capable TCP. That is, the TCP 700 * source halves the congestion window "cwnd" and reduces the 701 * slow start threshold "ssthresh". 702 * A critical condition is that TCP does not react to 703 * congestion indications more than once every window of 704 * data (or more loosely more than once every round-trip time). 705 */ 706 if (time_after(jiffies, transport->last_time_ecne_reduced + 707 transport->rtt)) { 708 transport->ssthresh = max(transport->cwnd/2, 709 4*asoc->pathmtu); 710 transport->cwnd = transport->ssthresh; 711 transport->last_time_ecne_reduced = jiffies; 712 } 713 break; 714 715 case SCTP_LOWER_CWND_INACTIVE: 716 /* RFC 2960 Section 7.2.1, sctpimpguide 717 * When the endpoint does not transmit data on a given 718 * transport address, the cwnd of the transport address 719 * should be adjusted to max(cwnd/2, 4*MTU) per RTO. 720 * NOTE: Although the draft recommends that this check needs 721 * to be done every RTO interval, we do it every hearbeat 722 * interval. 723 */ 724 transport->cwnd = max(transport->cwnd/2, 725 4*asoc->pathmtu); 726 /* RFC 4960 Errata 3.27.2: also adjust sshthresh */ 727 transport->ssthresh = transport->cwnd; 728 break; 729 } 730 731 transport->partial_bytes_acked = 0; 732 733 pr_debug("%s: transport:%p, reason:%d, cwnd:%d, ssthresh:%d\n", 734 __func__, transport, reason, transport->cwnd, 735 transport->ssthresh); 736 } 737 738 /* Apply Max.Burst limit to the congestion window: 739 * sctpimpguide-05 2.14.2 740 * D) When the time comes for the sender to 741 * transmit new DATA chunks, the protocol parameter Max.Burst MUST 742 * first be applied to limit how many new DATA chunks may be sent. 743 * The limit is applied by adjusting cwnd as follows: 744 * if ((flightsize+ Max.Burst * MTU) < cwnd) 745 * cwnd = flightsize + Max.Burst * MTU 746 */ 747 748 void sctp_transport_burst_limited(struct sctp_transport *t) 749 { 750 struct sctp_association *asoc = t->asoc; 751 u32 old_cwnd = t->cwnd; 752 u32 max_burst_bytes; 753 754 if (t->burst_limited || asoc->max_burst == 0) 755 return; 756 757 max_burst_bytes = t->flight_size + (asoc->max_burst * asoc->pathmtu); 758 if (max_burst_bytes < old_cwnd) { 759 t->cwnd = max_burst_bytes; 760 t->burst_limited = old_cwnd; 761 } 762 } 763 764 /* Restore the old cwnd congestion window, after the burst had it's 765 * desired effect. 766 */ 767 void sctp_transport_burst_reset(struct sctp_transport *t) 768 { 769 if (t->burst_limited) { 770 t->cwnd = t->burst_limited; 771 t->burst_limited = 0; 772 } 773 } 774 775 /* What is the next timeout value for this transport? */ 776 unsigned long sctp_transport_timeout(struct sctp_transport *trans) 777 { 778 /* RTO + timer slack +/- 50% of RTO */ 779 unsigned long timeout = trans->rto >> 1; 780 781 if (trans->state != SCTP_UNCONFIRMED && 782 trans->state != SCTP_PF) 783 timeout += trans->hbinterval; 784 785 return max_t(unsigned long, timeout, HZ / 5); 786 } 787 788 /* Reset transport variables to their initial values */ 789 void sctp_transport_reset(struct sctp_transport *t) 790 { 791 struct sctp_association *asoc = t->asoc; 792 793 /* RFC 2960 (bis), Section 5.2.4 794 * All the congestion control parameters (e.g., cwnd, ssthresh) 795 * related to this peer MUST be reset to their initial values 796 * (see Section 6.2.1) 797 */ 798 t->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); 799 t->burst_limited = 0; 800 t->ssthresh = asoc->peer.i.a_rwnd; 801 t->rto = asoc->rto_initial; 802 sctp_max_rto(asoc, t); 803 t->rtt = 0; 804 t->srtt = 0; 805 t->rttvar = 0; 806 807 /* Reset these additional variables so that we have a clean slate. */ 808 t->partial_bytes_acked = 0; 809 t->flight_size = 0; 810 t->error_count = 0; 811 t->rto_pending = 0; 812 t->hb_sent = 0; 813 814 /* Initialize the state information for SFR-CACC */ 815 t->cacc.changeover_active = 0; 816 t->cacc.cycling_changeover = 0; 817 t->cacc.next_tsn_at_change = 0; 818 t->cacc.cacc_saw_newack = 0; 819 } 820 821 /* Schedule retransmission on the given transport */ 822 void sctp_transport_immediate_rtx(struct sctp_transport *t) 823 { 824 /* Stop pending T3_rtx_timer */ 825 if (timer_delete(&t->T3_rtx_timer)) 826 sctp_transport_put(t); 827 828 sctp_retransmit(&t->asoc->outqueue, t, SCTP_RTXR_T3_RTX); 829 if (!timer_pending(&t->T3_rtx_timer)) { 830 if (!mod_timer(&t->T3_rtx_timer, jiffies + t->rto)) 831 sctp_transport_hold(t); 832 } 833 } 834 835 /* Drop dst */ 836 void sctp_transport_dst_release(struct sctp_transport *t) 837 { 838 dst_release(t->dst); 839 t->dst = NULL; 840 t->dst_pending_confirm = 0; 841 } 842 843 /* Schedule neighbour confirm */ 844 void sctp_transport_dst_confirm(struct sctp_transport *t) 845 { 846 t->dst_pending_confirm = 1; 847 } 848