1 /* SCTP kernel implementation 2 * Copyright (c) 1999-2000 Cisco, Inc. 3 * Copyright (c) 1999-2001 Motorola, Inc. 4 * Copyright (c) 2001-2003 International Business Machines Corp. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 La Monte H.P. Yarroll 7 * 8 * This file is part of the SCTP kernel implementation 9 * 10 * This module provides the abstraction for an SCTP tranport representing 11 * a remote transport address. For local transport addresses, we just use 12 * union sctp_addr. 13 * 14 * This SCTP implementation is free software; 15 * you can redistribute it and/or modify it under the terms of 16 * the GNU General Public License as published by 17 * the Free Software Foundation; either version 2, or (at your option) 18 * any later version. 19 * 20 * This SCTP implementation is distributed in the hope that it 21 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 22 * ************************ 23 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 24 * See the GNU General Public License for more details. 25 * 26 * You should have received a copy of the GNU General Public License 27 * along with GNU CC; see the file COPYING. If not, write to 28 * the Free Software Foundation, 59 Temple Place - Suite 330, 29 * Boston, MA 02111-1307, USA. 30 * 31 * Please send any bug reports or fixes you make to the 32 * email address(es): 33 * lksctp developers <lksctp-developers@lists.sourceforge.net> 34 * 35 * Or submit a bug report through the following website: 36 * http://www.sf.net/projects/lksctp 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Karl Knutson <karl@athena.chicago.il.us> 41 * Jon Grimm <jgrimm@us.ibm.com> 42 * Xingang Guo <xingang.guo@intel.com> 43 * Hui Huang <hui.huang@nokia.com> 44 * Sridhar Samudrala <sri@us.ibm.com> 45 * Ardelle Fan <ardelle.fan@intel.com> 46 * 47 * Any bugs reported given to us we will try to fix... any fixes shared will 48 * be incorporated into the next SCTP release. 49 */ 50 51 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 52 53 #include <linux/slab.h> 54 #include <linux/types.h> 55 #include <linux/random.h> 56 #include <net/sctp/sctp.h> 57 #include <net/sctp/sm.h> 58 59 /* 1st Level Abstractions. */ 60 61 /* Initialize a new transport from provided memory. */ 62 static struct sctp_transport *sctp_transport_init(struct net *net, 63 struct sctp_transport *peer, 64 const union sctp_addr *addr, 65 gfp_t gfp) 66 { 67 /* Copy in the address. */ 68 peer->ipaddr = *addr; 69 peer->af_specific = sctp_get_af_specific(addr->sa.sa_family); 70 memset(&peer->saddr, 0, sizeof(union sctp_addr)); 71 72 peer->sack_generation = 0; 73 74 /* From 6.3.1 RTO Calculation: 75 * 76 * C1) Until an RTT measurement has been made for a packet sent to the 77 * given destination transport address, set RTO to the protocol 78 * parameter 'RTO.Initial'. 79 */ 80 peer->rto = msecs_to_jiffies(net->sctp.rto_initial); 81 82 peer->last_time_heard = jiffies; 83 peer->last_time_ecne_reduced = jiffies; 84 85 peer->param_flags = SPP_HB_DISABLE | 86 SPP_PMTUD_ENABLE | 87 SPP_SACKDELAY_ENABLE; 88 89 /* Initialize the default path max_retrans. */ 90 peer->pathmaxrxt = net->sctp.max_retrans_path; 91 peer->pf_retrans = net->sctp.pf_retrans; 92 93 INIT_LIST_HEAD(&peer->transmitted); 94 INIT_LIST_HEAD(&peer->send_ready); 95 INIT_LIST_HEAD(&peer->transports); 96 97 setup_timer(&peer->T3_rtx_timer, sctp_generate_t3_rtx_event, 98 (unsigned long)peer); 99 setup_timer(&peer->hb_timer, sctp_generate_heartbeat_event, 100 (unsigned long)peer); 101 setup_timer(&peer->proto_unreach_timer, 102 sctp_generate_proto_unreach_event, (unsigned long)peer); 103 104 /* Initialize the 64-bit random nonce sent with heartbeat. */ 105 get_random_bytes(&peer->hb_nonce, sizeof(peer->hb_nonce)); 106 107 atomic_set(&peer->refcnt, 1); 108 109 return peer; 110 } 111 112 /* Allocate and initialize a new transport. */ 113 struct sctp_transport *sctp_transport_new(struct net *net, 114 const union sctp_addr *addr, 115 gfp_t gfp) 116 { 117 struct sctp_transport *transport; 118 119 transport = t_new(struct sctp_transport, gfp); 120 if (!transport) 121 goto fail; 122 123 if (!sctp_transport_init(net, transport, addr, gfp)) 124 goto fail_init; 125 126 transport->malloced = 1; 127 SCTP_DBG_OBJCNT_INC(transport); 128 129 return transport; 130 131 fail_init: 132 kfree(transport); 133 134 fail: 135 return NULL; 136 } 137 138 /* This transport is no longer needed. Free up if possible, or 139 * delay until it last reference count. 140 */ 141 void sctp_transport_free(struct sctp_transport *transport) 142 { 143 transport->dead = 1; 144 145 /* Try to delete the heartbeat timer. */ 146 if (del_timer(&transport->hb_timer)) 147 sctp_transport_put(transport); 148 149 /* Delete the T3_rtx timer if it's active. 150 * There is no point in not doing this now and letting 151 * structure hang around in memory since we know 152 * the tranport is going away. 153 */ 154 if (timer_pending(&transport->T3_rtx_timer) && 155 del_timer(&transport->T3_rtx_timer)) 156 sctp_transport_put(transport); 157 158 /* Delete the ICMP proto unreachable timer if it's active. */ 159 if (timer_pending(&transport->proto_unreach_timer) && 160 del_timer(&transport->proto_unreach_timer)) 161 sctp_association_put(transport->asoc); 162 163 sctp_transport_put(transport); 164 } 165 166 static void sctp_transport_destroy_rcu(struct rcu_head *head) 167 { 168 struct sctp_transport *transport; 169 170 transport = container_of(head, struct sctp_transport, rcu); 171 if (transport->asoc) 172 sctp_association_put(transport->asoc); 173 174 sctp_packet_free(&transport->packet); 175 176 dst_release(transport->dst); 177 kfree(transport); 178 SCTP_DBG_OBJCNT_DEC(transport); 179 } 180 181 /* Destroy the transport data structure. 182 * Assumes there are no more users of this structure. 183 */ 184 static void sctp_transport_destroy(struct sctp_transport *transport) 185 { 186 SCTP_ASSERT(transport->dead, "Transport is not dead", return); 187 188 call_rcu(&transport->rcu, sctp_transport_destroy_rcu); 189 } 190 191 /* Start T3_rtx timer if it is not already running and update the heartbeat 192 * timer. This routine is called every time a DATA chunk is sent. 193 */ 194 void sctp_transport_reset_timers(struct sctp_transport *transport) 195 { 196 /* RFC 2960 6.3.2 Retransmission Timer Rules 197 * 198 * R1) Every time a DATA chunk is sent to any address(including a 199 * retransmission), if the T3-rtx timer of that address is not running 200 * start it running so that it will expire after the RTO of that 201 * address. 202 */ 203 204 if (!timer_pending(&transport->T3_rtx_timer)) 205 if (!mod_timer(&transport->T3_rtx_timer, 206 jiffies + transport->rto)) 207 sctp_transport_hold(transport); 208 209 /* When a data chunk is sent, reset the heartbeat interval. */ 210 if (!mod_timer(&transport->hb_timer, 211 sctp_transport_timeout(transport))) 212 sctp_transport_hold(transport); 213 } 214 215 /* This transport has been assigned to an association. 216 * Initialize fields from the association or from the sock itself. 217 * Register the reference count in the association. 218 */ 219 void sctp_transport_set_owner(struct sctp_transport *transport, 220 struct sctp_association *asoc) 221 { 222 transport->asoc = asoc; 223 sctp_association_hold(asoc); 224 } 225 226 /* Initialize the pmtu of a transport. */ 227 void sctp_transport_pmtu(struct sctp_transport *transport, struct sock *sk) 228 { 229 /* If we don't have a fresh route, look one up */ 230 if (!transport->dst || transport->dst->obsolete) { 231 dst_release(transport->dst); 232 transport->af_specific->get_dst(transport, &transport->saddr, 233 &transport->fl, sk); 234 } 235 236 if (transport->dst) { 237 transport->pathmtu = dst_mtu(transport->dst); 238 } else 239 transport->pathmtu = SCTP_DEFAULT_MAXSEGMENT; 240 } 241 242 void sctp_transport_update_pmtu(struct sock *sk, struct sctp_transport *t, u32 pmtu) 243 { 244 struct dst_entry *dst; 245 246 if (unlikely(pmtu < SCTP_DEFAULT_MINSEGMENT)) { 247 pr_warn("%s: Reported pmtu %d too low, using default minimum of %d\n", 248 __func__, pmtu, 249 SCTP_DEFAULT_MINSEGMENT); 250 /* Use default minimum segment size and disable 251 * pmtu discovery on this transport. 252 */ 253 t->pathmtu = SCTP_DEFAULT_MINSEGMENT; 254 } else { 255 t->pathmtu = pmtu; 256 } 257 258 dst = sctp_transport_dst_check(t); 259 if (!dst) 260 t->af_specific->get_dst(t, &t->saddr, &t->fl, sk); 261 262 if (dst) { 263 dst->ops->update_pmtu(dst, sk, NULL, pmtu); 264 265 dst = sctp_transport_dst_check(t); 266 if (!dst) 267 t->af_specific->get_dst(t, &t->saddr, &t->fl, sk); 268 } 269 } 270 271 /* Caches the dst entry and source address for a transport's destination 272 * address. 273 */ 274 void sctp_transport_route(struct sctp_transport *transport, 275 union sctp_addr *saddr, struct sctp_sock *opt) 276 { 277 struct sctp_association *asoc = transport->asoc; 278 struct sctp_af *af = transport->af_specific; 279 280 af->get_dst(transport, saddr, &transport->fl, sctp_opt2sk(opt)); 281 282 if (saddr) 283 memcpy(&transport->saddr, saddr, sizeof(union sctp_addr)); 284 else 285 af->get_saddr(opt, transport, &transport->fl); 286 287 if ((transport->param_flags & SPP_PMTUD_DISABLE) && transport->pathmtu) { 288 return; 289 } 290 if (transport->dst) { 291 transport->pathmtu = dst_mtu(transport->dst); 292 293 /* Initialize sk->sk_rcv_saddr, if the transport is the 294 * association's active path for getsockname(). 295 */ 296 if (asoc && (!asoc->peer.primary_path || 297 (transport == asoc->peer.active_path))) 298 opt->pf->af->to_sk_saddr(&transport->saddr, 299 asoc->base.sk); 300 } else 301 transport->pathmtu = SCTP_DEFAULT_MAXSEGMENT; 302 } 303 304 /* Hold a reference to a transport. */ 305 void sctp_transport_hold(struct sctp_transport *transport) 306 { 307 atomic_inc(&transport->refcnt); 308 } 309 310 /* Release a reference to a transport and clean up 311 * if there are no more references. 312 */ 313 void sctp_transport_put(struct sctp_transport *transport) 314 { 315 if (atomic_dec_and_test(&transport->refcnt)) 316 sctp_transport_destroy(transport); 317 } 318 319 /* Update transport's RTO based on the newly calculated RTT. */ 320 void sctp_transport_update_rto(struct sctp_transport *tp, __u32 rtt) 321 { 322 /* Check for valid transport. */ 323 SCTP_ASSERT(tp, "NULL transport", return); 324 325 /* We should not be doing any RTO updates unless rto_pending is set. */ 326 SCTP_ASSERT(tp->rto_pending, "rto_pending not set", return); 327 328 if (tp->rttvar || tp->srtt) { 329 struct net *net = sock_net(tp->asoc->base.sk); 330 /* 6.3.1 C3) When a new RTT measurement R' is made, set 331 * RTTVAR <- (1 - RTO.Beta) * RTTVAR + RTO.Beta * |SRTT - R'| 332 * SRTT <- (1 - RTO.Alpha) * SRTT + RTO.Alpha * R' 333 */ 334 335 /* Note: The above algorithm has been rewritten to 336 * express rto_beta and rto_alpha as inverse powers 337 * of two. 338 * For example, assuming the default value of RTO.Alpha of 339 * 1/8, rto_alpha would be expressed as 3. 340 */ 341 tp->rttvar = tp->rttvar - (tp->rttvar >> net->sctp.rto_beta) 342 + (((__u32)abs64((__s64)tp->srtt - (__s64)rtt)) >> net->sctp.rto_beta); 343 tp->srtt = tp->srtt - (tp->srtt >> net->sctp.rto_alpha) 344 + (rtt >> net->sctp.rto_alpha); 345 } else { 346 /* 6.3.1 C2) When the first RTT measurement R is made, set 347 * SRTT <- R, RTTVAR <- R/2. 348 */ 349 tp->srtt = rtt; 350 tp->rttvar = rtt >> 1; 351 } 352 353 /* 6.3.1 G1) Whenever RTTVAR is computed, if RTTVAR = 0, then 354 * adjust RTTVAR <- G, where G is the CLOCK GRANULARITY. 355 */ 356 if (tp->rttvar == 0) 357 tp->rttvar = SCTP_CLOCK_GRANULARITY; 358 359 /* 6.3.1 C3) After the computation, update RTO <- SRTT + 4 * RTTVAR. */ 360 tp->rto = tp->srtt + (tp->rttvar << 2); 361 362 /* 6.3.1 C6) Whenever RTO is computed, if it is less than RTO.Min 363 * seconds then it is rounded up to RTO.Min seconds. 364 */ 365 if (tp->rto < tp->asoc->rto_min) 366 tp->rto = tp->asoc->rto_min; 367 368 /* 6.3.1 C7) A maximum value may be placed on RTO provided it is 369 * at least RTO.max seconds. 370 */ 371 if (tp->rto > tp->asoc->rto_max) 372 tp->rto = tp->asoc->rto_max; 373 374 sctp_max_rto(tp->asoc, tp); 375 tp->rtt = rtt; 376 377 /* Reset rto_pending so that a new RTT measurement is started when a 378 * new data chunk is sent. 379 */ 380 tp->rto_pending = 0; 381 382 SCTP_DEBUG_PRINTK("%s: transport: %p, rtt: %d, srtt: %d " 383 "rttvar: %d, rto: %ld\n", __func__, 384 tp, rtt, tp->srtt, tp->rttvar, tp->rto); 385 } 386 387 /* This routine updates the transport's cwnd and partial_bytes_acked 388 * parameters based on the bytes acked in the received SACK. 389 */ 390 void sctp_transport_raise_cwnd(struct sctp_transport *transport, 391 __u32 sack_ctsn, __u32 bytes_acked) 392 { 393 struct sctp_association *asoc = transport->asoc; 394 __u32 cwnd, ssthresh, flight_size, pba, pmtu; 395 396 cwnd = transport->cwnd; 397 flight_size = transport->flight_size; 398 399 /* See if we need to exit Fast Recovery first */ 400 if (asoc->fast_recovery && 401 TSN_lte(asoc->fast_recovery_exit, sack_ctsn)) 402 asoc->fast_recovery = 0; 403 404 /* The appropriate cwnd increase algorithm is performed if, and only 405 * if the cumulative TSN whould advanced and the congestion window is 406 * being fully utilized. 407 */ 408 if (TSN_lte(sack_ctsn, transport->asoc->ctsn_ack_point) || 409 (flight_size < cwnd)) 410 return; 411 412 ssthresh = transport->ssthresh; 413 pba = transport->partial_bytes_acked; 414 pmtu = transport->asoc->pathmtu; 415 416 if (cwnd <= ssthresh) { 417 /* RFC 4960 7.2.1 418 * o When cwnd is less than or equal to ssthresh, an SCTP 419 * endpoint MUST use the slow-start algorithm to increase 420 * cwnd only if the current congestion window is being fully 421 * utilized, an incoming SACK advances the Cumulative TSN 422 * Ack Point, and the data sender is not in Fast Recovery. 423 * Only when these three conditions are met can the cwnd be 424 * increased; otherwise, the cwnd MUST not be increased. 425 * If these conditions are met, then cwnd MUST be increased 426 * by, at most, the lesser of 1) the total size of the 427 * previously outstanding DATA chunk(s) acknowledged, and 428 * 2) the destination's path MTU. This upper bound protects 429 * against the ACK-Splitting attack outlined in [SAVAGE99]. 430 */ 431 if (asoc->fast_recovery) 432 return; 433 434 if (bytes_acked > pmtu) 435 cwnd += pmtu; 436 else 437 cwnd += bytes_acked; 438 SCTP_DEBUG_PRINTK("%s: SLOW START: transport: %p, " 439 "bytes_acked: %d, cwnd: %d, ssthresh: %d, " 440 "flight_size: %d, pba: %d\n", 441 __func__, 442 transport, bytes_acked, cwnd, 443 ssthresh, flight_size, pba); 444 } else { 445 /* RFC 2960 7.2.2 Whenever cwnd is greater than ssthresh, 446 * upon each SACK arrival that advances the Cumulative TSN Ack 447 * Point, increase partial_bytes_acked by the total number of 448 * bytes of all new chunks acknowledged in that SACK including 449 * chunks acknowledged by the new Cumulative TSN Ack and by 450 * Gap Ack Blocks. 451 * 452 * When partial_bytes_acked is equal to or greater than cwnd 453 * and before the arrival of the SACK the sender had cwnd or 454 * more bytes of data outstanding (i.e., before arrival of the 455 * SACK, flightsize was greater than or equal to cwnd), 456 * increase cwnd by MTU, and reset partial_bytes_acked to 457 * (partial_bytes_acked - cwnd). 458 */ 459 pba += bytes_acked; 460 if (pba >= cwnd) { 461 cwnd += pmtu; 462 pba = ((cwnd < pba) ? (pba - cwnd) : 0); 463 } 464 SCTP_DEBUG_PRINTK("%s: CONGESTION AVOIDANCE: " 465 "transport: %p, bytes_acked: %d, cwnd: %d, " 466 "ssthresh: %d, flight_size: %d, pba: %d\n", 467 __func__, 468 transport, bytes_acked, cwnd, 469 ssthresh, flight_size, pba); 470 } 471 472 transport->cwnd = cwnd; 473 transport->partial_bytes_acked = pba; 474 } 475 476 /* This routine is used to lower the transport's cwnd when congestion is 477 * detected. 478 */ 479 void sctp_transport_lower_cwnd(struct sctp_transport *transport, 480 sctp_lower_cwnd_t reason) 481 { 482 struct sctp_association *asoc = transport->asoc; 483 484 switch (reason) { 485 case SCTP_LOWER_CWND_T3_RTX: 486 /* RFC 2960 Section 7.2.3, sctpimpguide 487 * When the T3-rtx timer expires on an address, SCTP should 488 * perform slow start by: 489 * ssthresh = max(cwnd/2, 4*MTU) 490 * cwnd = 1*MTU 491 * partial_bytes_acked = 0 492 */ 493 transport->ssthresh = max(transport->cwnd/2, 494 4*asoc->pathmtu); 495 transport->cwnd = asoc->pathmtu; 496 497 /* T3-rtx also clears fast recovery */ 498 asoc->fast_recovery = 0; 499 break; 500 501 case SCTP_LOWER_CWND_FAST_RTX: 502 /* RFC 2960 7.2.4 Adjust the ssthresh and cwnd of the 503 * destination address(es) to which the missing DATA chunks 504 * were last sent, according to the formula described in 505 * Section 7.2.3. 506 * 507 * RFC 2960 7.2.3, sctpimpguide Upon detection of packet 508 * losses from SACK (see Section 7.2.4), An endpoint 509 * should do the following: 510 * ssthresh = max(cwnd/2, 4*MTU) 511 * cwnd = ssthresh 512 * partial_bytes_acked = 0 513 */ 514 if (asoc->fast_recovery) 515 return; 516 517 /* Mark Fast recovery */ 518 asoc->fast_recovery = 1; 519 asoc->fast_recovery_exit = asoc->next_tsn - 1; 520 521 transport->ssthresh = max(transport->cwnd/2, 522 4*asoc->pathmtu); 523 transport->cwnd = transport->ssthresh; 524 break; 525 526 case SCTP_LOWER_CWND_ECNE: 527 /* RFC 2481 Section 6.1.2. 528 * If the sender receives an ECN-Echo ACK packet 529 * then the sender knows that congestion was encountered in the 530 * network on the path from the sender to the receiver. The 531 * indication of congestion should be treated just as a 532 * congestion loss in non-ECN Capable TCP. That is, the TCP 533 * source halves the congestion window "cwnd" and reduces the 534 * slow start threshold "ssthresh". 535 * A critical condition is that TCP does not react to 536 * congestion indications more than once every window of 537 * data (or more loosely more than once every round-trip time). 538 */ 539 if (time_after(jiffies, transport->last_time_ecne_reduced + 540 transport->rtt)) { 541 transport->ssthresh = max(transport->cwnd/2, 542 4*asoc->pathmtu); 543 transport->cwnd = transport->ssthresh; 544 transport->last_time_ecne_reduced = jiffies; 545 } 546 break; 547 548 case SCTP_LOWER_CWND_INACTIVE: 549 /* RFC 2960 Section 7.2.1, sctpimpguide 550 * When the endpoint does not transmit data on a given 551 * transport address, the cwnd of the transport address 552 * should be adjusted to max(cwnd/2, 4*MTU) per RTO. 553 * NOTE: Although the draft recommends that this check needs 554 * to be done every RTO interval, we do it every hearbeat 555 * interval. 556 */ 557 transport->cwnd = max(transport->cwnd/2, 558 4*asoc->pathmtu); 559 break; 560 } 561 562 transport->partial_bytes_acked = 0; 563 SCTP_DEBUG_PRINTK("%s: transport: %p reason: %d cwnd: " 564 "%d ssthresh: %d\n", __func__, 565 transport, reason, 566 transport->cwnd, transport->ssthresh); 567 } 568 569 /* Apply Max.Burst limit to the congestion window: 570 * sctpimpguide-05 2.14.2 571 * D) When the time comes for the sender to 572 * transmit new DATA chunks, the protocol parameter Max.Burst MUST 573 * first be applied to limit how many new DATA chunks may be sent. 574 * The limit is applied by adjusting cwnd as follows: 575 * if ((flightsize+ Max.Burst * MTU) < cwnd) 576 * cwnd = flightsize + Max.Burst * MTU 577 */ 578 579 void sctp_transport_burst_limited(struct sctp_transport *t) 580 { 581 struct sctp_association *asoc = t->asoc; 582 u32 old_cwnd = t->cwnd; 583 u32 max_burst_bytes; 584 585 if (t->burst_limited) 586 return; 587 588 max_burst_bytes = t->flight_size + (asoc->max_burst * asoc->pathmtu); 589 if (max_burst_bytes < old_cwnd) { 590 t->cwnd = max_burst_bytes; 591 t->burst_limited = old_cwnd; 592 } 593 } 594 595 /* Restore the old cwnd congestion window, after the burst had it's 596 * desired effect. 597 */ 598 void sctp_transport_burst_reset(struct sctp_transport *t) 599 { 600 if (t->burst_limited) { 601 t->cwnd = t->burst_limited; 602 t->burst_limited = 0; 603 } 604 } 605 606 /* What is the next timeout value for this transport? */ 607 unsigned long sctp_transport_timeout(struct sctp_transport *t) 608 { 609 unsigned long timeout; 610 timeout = t->rto + sctp_jitter(t->rto); 611 if ((t->state != SCTP_UNCONFIRMED) && 612 (t->state != SCTP_PF)) 613 timeout += t->hbinterval; 614 timeout += jiffies; 615 return timeout; 616 } 617 618 /* Reset transport variables to their initial values */ 619 void sctp_transport_reset(struct sctp_transport *t) 620 { 621 struct sctp_association *asoc = t->asoc; 622 623 /* RFC 2960 (bis), Section 5.2.4 624 * All the congestion control parameters (e.g., cwnd, ssthresh) 625 * related to this peer MUST be reset to their initial values 626 * (see Section 6.2.1) 627 */ 628 t->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); 629 t->burst_limited = 0; 630 t->ssthresh = asoc->peer.i.a_rwnd; 631 t->rto = asoc->rto_initial; 632 sctp_max_rto(asoc, t); 633 t->rtt = 0; 634 t->srtt = 0; 635 t->rttvar = 0; 636 637 /* Reset these additional varibles so that we have a clean 638 * slate. 639 */ 640 t->partial_bytes_acked = 0; 641 t->flight_size = 0; 642 t->error_count = 0; 643 t->rto_pending = 0; 644 t->hb_sent = 0; 645 646 /* Initialize the state information for SFR-CACC */ 647 t->cacc.changeover_active = 0; 648 t->cacc.cycling_changeover = 0; 649 t->cacc.next_tsn_at_change = 0; 650 t->cacc.cacc_saw_newack = 0; 651 } 652 653 /* Schedule retransmission on the given transport */ 654 void sctp_transport_immediate_rtx(struct sctp_transport *t) 655 { 656 /* Stop pending T3_rtx_timer */ 657 if (timer_pending(&t->T3_rtx_timer)) { 658 (void)del_timer(&t->T3_rtx_timer); 659 sctp_transport_put(t); 660 } 661 sctp_retransmit(&t->asoc->outqueue, t, SCTP_RTXR_T3_RTX); 662 if (!timer_pending(&t->T3_rtx_timer)) { 663 if (!mod_timer(&t->T3_rtx_timer, jiffies + t->rto)) 664 sctp_transport_hold(t); 665 } 666 return; 667 } 668