xref: /linux/net/sctp/socket.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /* SCTP kernel reference Implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel reference Implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * The SCTP reference implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * The SCTP reference implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, write to
32  * the Free Software Foundation, 59 Temple Place - Suite 330,
33  * Boston, MA 02111-1307, USA.
34  *
35  * Please send any bug reports or fixes you make to the
36  * email address(es):
37  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
38  *
39  * Or submit a bug report through the following website:
40  *    http://www.sf.net/projects/lksctp
41  *
42  * Written or modified by:
43  *    La Monte H.P. Yarroll <piggy@acm.org>
44  *    Narasimha Budihal     <narsi@refcode.org>
45  *    Karl Knutson          <karl@athena.chicago.il.us>
46  *    Jon Grimm             <jgrimm@us.ibm.com>
47  *    Xingang Guo           <xingang.guo@intel.com>
48  *    Daisy Chang           <daisyc@us.ibm.com>
49  *    Sridhar Samudrala     <samudrala@us.ibm.com>
50  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
51  *    Ardelle Fan	    <ardelle.fan@intel.com>
52  *    Ryan Layer	    <rmlayer@us.ibm.com>
53  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
54  *    Kevin Gao             <kevin.gao@intel.com>
55  *
56  * Any bugs reported given to us we will try to fix... any fixes shared will
57  * be incorporated into the next SCTP release.
58  */
59 
60 #include <linux/config.h>
61 #include <linux/types.h>
62 #include <linux/kernel.h>
63 #include <linux/wait.h>
64 #include <linux/time.h>
65 #include <linux/ip.h>
66 #include <linux/capability.h>
67 #include <linux/fcntl.h>
68 #include <linux/poll.h>
69 #include <linux/init.h>
70 #include <linux/crypto.h>
71 
72 #include <net/ip.h>
73 #include <net/icmp.h>
74 #include <net/route.h>
75 #include <net/ipv6.h>
76 #include <net/inet_common.h>
77 
78 #include <linux/socket.h> /* for sa_family_t */
79 #include <net/sock.h>
80 #include <net/sctp/sctp.h>
81 #include <net/sctp/sm.h>
82 
83 /* WARNING:  Please do not remove the SCTP_STATIC attribute to
84  * any of the functions below as they are used to export functions
85  * used by a project regression testsuite.
86  */
87 
88 /* Forward declarations for internal helper functions. */
89 static int sctp_writeable(struct sock *sk);
90 static void sctp_wfree(struct sk_buff *skb);
91 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
92 				size_t msg_len);
93 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
94 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
95 static int sctp_wait_for_accept(struct sock *sk, long timeo);
96 static void sctp_wait_for_close(struct sock *sk, long timeo);
97 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
98 					union sctp_addr *addr, int len);
99 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
100 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
102 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
103 static int sctp_send_asconf(struct sctp_association *asoc,
104 			    struct sctp_chunk *chunk);
105 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
106 static int sctp_autobind(struct sock *sk);
107 static void sctp_sock_migrate(struct sock *, struct sock *,
108 			      struct sctp_association *, sctp_socket_type_t);
109 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
110 
111 extern kmem_cache_t *sctp_bucket_cachep;
112 
113 /* Get the sndbuf space available at the time on the association.  */
114 static inline int sctp_wspace(struct sctp_association *asoc)
115 {
116 	struct sock *sk = asoc->base.sk;
117 	int amt = 0;
118 
119 	if (asoc->ep->sndbuf_policy) {
120 		/* make sure that no association uses more than sk_sndbuf */
121 		amt = sk->sk_sndbuf - asoc->sndbuf_used;
122 	} else {
123 		/* do socket level accounting */
124 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
125 	}
126 
127 	if (amt < 0)
128 		amt = 0;
129 
130 	return amt;
131 }
132 
133 /* Increment the used sndbuf space count of the corresponding association by
134  * the size of the outgoing data chunk.
135  * Also, set the skb destructor for sndbuf accounting later.
136  *
137  * Since it is always 1-1 between chunk and skb, and also a new skb is always
138  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
139  * destructor in the data chunk skb for the purpose of the sndbuf space
140  * tracking.
141  */
142 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
143 {
144 	struct sctp_association *asoc = chunk->asoc;
145 	struct sock *sk = asoc->base.sk;
146 
147 	/* The sndbuf space is tracked per association.  */
148 	sctp_association_hold(asoc);
149 
150 	skb_set_owner_w(chunk->skb, sk);
151 
152 	chunk->skb->destructor = sctp_wfree;
153 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
154 	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
155 
156 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
157 				sizeof(struct sk_buff) +
158 				sizeof(struct sctp_chunk);
159 
160 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
161 }
162 
163 /* Verify that this is a valid address. */
164 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
165 				   int len)
166 {
167 	struct sctp_af *af;
168 
169 	/* Verify basic sockaddr. */
170 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
171 	if (!af)
172 		return -EINVAL;
173 
174 	/* Is this a valid SCTP address?  */
175 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
176 		return -EINVAL;
177 
178 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
179 		return -EINVAL;
180 
181 	return 0;
182 }
183 
184 /* Look up the association by its id.  If this is not a UDP-style
185  * socket, the ID field is always ignored.
186  */
187 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
188 {
189 	struct sctp_association *asoc = NULL;
190 
191 	/* If this is not a UDP-style socket, assoc id should be ignored. */
192 	if (!sctp_style(sk, UDP)) {
193 		/* Return NULL if the socket state is not ESTABLISHED. It
194 		 * could be a TCP-style listening socket or a socket which
195 		 * hasn't yet called connect() to establish an association.
196 		 */
197 		if (!sctp_sstate(sk, ESTABLISHED))
198 			return NULL;
199 
200 		/* Get the first and the only association from the list. */
201 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
202 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
203 					  struct sctp_association, asocs);
204 		return asoc;
205 	}
206 
207 	/* Otherwise this is a UDP-style socket. */
208 	if (!id || (id == (sctp_assoc_t)-1))
209 		return NULL;
210 
211 	spin_lock_bh(&sctp_assocs_id_lock);
212 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
213 	spin_unlock_bh(&sctp_assocs_id_lock);
214 
215 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
216 		return NULL;
217 
218 	return asoc;
219 }
220 
221 /* Look up the transport from an address and an assoc id. If both address and
222  * id are specified, the associations matching the address and the id should be
223  * the same.
224  */
225 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
226 					      struct sockaddr_storage *addr,
227 					      sctp_assoc_t id)
228 {
229 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
230 	struct sctp_transport *transport;
231 	union sctp_addr *laddr = (union sctp_addr *)addr;
232 
233 	laddr->v4.sin_port = ntohs(laddr->v4.sin_port);
234 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
235 					       (union sctp_addr *)addr,
236 					       &transport);
237 	laddr->v4.sin_port = htons(laddr->v4.sin_port);
238 
239 	if (!addr_asoc)
240 		return NULL;
241 
242 	id_asoc = sctp_id2assoc(sk, id);
243 	if (id_asoc && (id_asoc != addr_asoc))
244 		return NULL;
245 
246 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
247 						(union sctp_addr *)addr);
248 
249 	return transport;
250 }
251 
252 /* API 3.1.2 bind() - UDP Style Syntax
253  * The syntax of bind() is,
254  *
255  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
256  *
257  *   sd      - the socket descriptor returned by socket().
258  *   addr    - the address structure (struct sockaddr_in or struct
259  *             sockaddr_in6 [RFC 2553]),
260  *   addr_len - the size of the address structure.
261  */
262 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
263 {
264 	int retval = 0;
265 
266 	sctp_lock_sock(sk);
267 
268 	SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
269 			  sk, addr, addr_len);
270 
271 	/* Disallow binding twice. */
272 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
273 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
274 				      addr_len);
275 	else
276 		retval = -EINVAL;
277 
278 	sctp_release_sock(sk);
279 
280 	return retval;
281 }
282 
283 static long sctp_get_port_local(struct sock *, union sctp_addr *);
284 
285 /* Verify this is a valid sockaddr. */
286 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
287 					union sctp_addr *addr, int len)
288 {
289 	struct sctp_af *af;
290 
291 	/* Check minimum size.  */
292 	if (len < sizeof (struct sockaddr))
293 		return NULL;
294 
295 	/* Does this PF support this AF? */
296 	if (!opt->pf->af_supported(addr->sa.sa_family, opt))
297 		return NULL;
298 
299 	/* If we get this far, af is valid. */
300 	af = sctp_get_af_specific(addr->sa.sa_family);
301 
302 	if (len < af->sockaddr_len)
303 		return NULL;
304 
305 	return af;
306 }
307 
308 /* Bind a local address either to an endpoint or to an association.  */
309 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
310 {
311 	struct sctp_sock *sp = sctp_sk(sk);
312 	struct sctp_endpoint *ep = sp->ep;
313 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
314 	struct sctp_af *af;
315 	unsigned short snum;
316 	int ret = 0;
317 
318 	/* Common sockaddr verification. */
319 	af = sctp_sockaddr_af(sp, addr, len);
320 	if (!af) {
321 		SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
322 				  sk, addr, len);
323 		return -EINVAL;
324 	}
325 
326 	snum = ntohs(addr->v4.sin_port);
327 
328 	SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
329 				 ", port: %d, new port: %d, len: %d)\n",
330 				 sk,
331 				 addr,
332 				 bp->port, snum,
333 				 len);
334 
335 	/* PF specific bind() address verification. */
336 	if (!sp->pf->bind_verify(sp, addr))
337 		return -EADDRNOTAVAIL;
338 
339 	/* We must either be unbound, or bind to the same port.  */
340 	if (bp->port && (snum != bp->port)) {
341 		SCTP_DEBUG_PRINTK("sctp_do_bind:"
342 				  " New port %d does not match existing port "
343 				  "%d.\n", snum, bp->port);
344 		return -EINVAL;
345 	}
346 
347 	if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
348 		return -EACCES;
349 
350 	/* Make sure we are allowed to bind here.
351 	 * The function sctp_get_port_local() does duplicate address
352 	 * detection.
353 	 */
354 	if ((ret = sctp_get_port_local(sk, addr))) {
355 		if (ret == (long) sk) {
356 			/* This endpoint has a conflicting address. */
357 			return -EINVAL;
358 		} else {
359 			return -EADDRINUSE;
360 		}
361 	}
362 
363 	/* Refresh ephemeral port.  */
364 	if (!bp->port)
365 		bp->port = inet_sk(sk)->num;
366 
367 	/* Add the address to the bind address list.  */
368 	sctp_local_bh_disable();
369 	sctp_write_lock(&ep->base.addr_lock);
370 
371 	/* Use GFP_ATOMIC since BHs are disabled.  */
372 	addr->v4.sin_port = ntohs(addr->v4.sin_port);
373 	ret = sctp_add_bind_addr(bp, addr, GFP_ATOMIC);
374 	addr->v4.sin_port = htons(addr->v4.sin_port);
375 	sctp_write_unlock(&ep->base.addr_lock);
376 	sctp_local_bh_enable();
377 
378 	/* Copy back into socket for getsockname() use. */
379 	if (!ret) {
380 		inet_sk(sk)->sport = htons(inet_sk(sk)->num);
381 		af->to_sk_saddr(addr, sk);
382 	}
383 
384 	return ret;
385 }
386 
387  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
388  *
389  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
390  * at any one time.  If a sender, after sending an ASCONF chunk, decides
391  * it needs to transfer another ASCONF Chunk, it MUST wait until the
392  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
393  * subsequent ASCONF. Note this restriction binds each side, so at any
394  * time two ASCONF may be in-transit on any given association (one sent
395  * from each endpoint).
396  */
397 static int sctp_send_asconf(struct sctp_association *asoc,
398 			    struct sctp_chunk *chunk)
399 {
400 	int		retval = 0;
401 
402 	/* If there is an outstanding ASCONF chunk, queue it for later
403 	 * transmission.
404 	 */
405 	if (asoc->addip_last_asconf) {
406 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
407 		goto out;
408 	}
409 
410 	/* Hold the chunk until an ASCONF_ACK is received. */
411 	sctp_chunk_hold(chunk);
412 	retval = sctp_primitive_ASCONF(asoc, chunk);
413 	if (retval)
414 		sctp_chunk_free(chunk);
415 	else
416 		asoc->addip_last_asconf = chunk;
417 
418 out:
419 	return retval;
420 }
421 
422 /* Add a list of addresses as bind addresses to local endpoint or
423  * association.
424  *
425  * Basically run through each address specified in the addrs/addrcnt
426  * array/length pair, determine if it is IPv6 or IPv4 and call
427  * sctp_do_bind() on it.
428  *
429  * If any of them fails, then the operation will be reversed and the
430  * ones that were added will be removed.
431  *
432  * Only sctp_setsockopt_bindx() is supposed to call this function.
433  */
434 int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
435 {
436 	int cnt;
437 	int retval = 0;
438 	void *addr_buf;
439 	struct sockaddr *sa_addr;
440 	struct sctp_af *af;
441 
442 	SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
443 			  sk, addrs, addrcnt);
444 
445 	addr_buf = addrs;
446 	for (cnt = 0; cnt < addrcnt; cnt++) {
447 		/* The list may contain either IPv4 or IPv6 address;
448 		 * determine the address length for walking thru the list.
449 		 */
450 		sa_addr = (struct sockaddr *)addr_buf;
451 		af = sctp_get_af_specific(sa_addr->sa_family);
452 		if (!af) {
453 			retval = -EINVAL;
454 			goto err_bindx_add;
455 		}
456 
457 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
458 				      af->sockaddr_len);
459 
460 		addr_buf += af->sockaddr_len;
461 
462 err_bindx_add:
463 		if (retval < 0) {
464 			/* Failed. Cleanup the ones that have been added */
465 			if (cnt > 0)
466 				sctp_bindx_rem(sk, addrs, cnt);
467 			return retval;
468 		}
469 	}
470 
471 	return retval;
472 }
473 
474 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
475  * associations that are part of the endpoint indicating that a list of local
476  * addresses are added to the endpoint.
477  *
478  * If any of the addresses is already in the bind address list of the
479  * association, we do not send the chunk for that association.  But it will not
480  * affect other associations.
481  *
482  * Only sctp_setsockopt_bindx() is supposed to call this function.
483  */
484 static int sctp_send_asconf_add_ip(struct sock		*sk,
485 				   struct sockaddr	*addrs,
486 				   int 			addrcnt)
487 {
488 	struct sctp_sock		*sp;
489 	struct sctp_endpoint		*ep;
490 	struct sctp_association		*asoc;
491 	struct sctp_bind_addr		*bp;
492 	struct sctp_chunk		*chunk;
493 	struct sctp_sockaddr_entry	*laddr;
494 	union sctp_addr			*addr;
495 	void				*addr_buf;
496 	struct sctp_af			*af;
497 	struct list_head		*pos;
498 	struct list_head		*p;
499 	int 				i;
500 	int 				retval = 0;
501 
502 	if (!sctp_addip_enable)
503 		return retval;
504 
505 	sp = sctp_sk(sk);
506 	ep = sp->ep;
507 
508 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
509 			  __FUNCTION__, sk, addrs, addrcnt);
510 
511 	list_for_each(pos, &ep->asocs) {
512 		asoc = list_entry(pos, struct sctp_association, asocs);
513 
514 		if (!asoc->peer.asconf_capable)
515 			continue;
516 
517 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
518 			continue;
519 
520 		if (!sctp_state(asoc, ESTABLISHED))
521 			continue;
522 
523 		/* Check if any address in the packed array of addresses is
524 	         * in the bind address list of the association. If so,
525 		 * do not send the asconf chunk to its peer, but continue with
526 		 * other associations.
527 		 */
528 		addr_buf = addrs;
529 		for (i = 0; i < addrcnt; i++) {
530 			addr = (union sctp_addr *)addr_buf;
531 			af = sctp_get_af_specific(addr->v4.sin_family);
532 			if (!af) {
533 				retval = -EINVAL;
534 				goto out;
535 			}
536 
537 			if (sctp_assoc_lookup_laddr(asoc, addr))
538 				break;
539 
540 			addr_buf += af->sockaddr_len;
541 		}
542 		if (i < addrcnt)
543 			continue;
544 
545 		/* Use the first address in bind addr list of association as
546 		 * Address Parameter of ASCONF CHUNK.
547 		 */
548 		sctp_read_lock(&asoc->base.addr_lock);
549 		bp = &asoc->base.bind_addr;
550 		p = bp->address_list.next;
551 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
552 		sctp_read_unlock(&asoc->base.addr_lock);
553 
554 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
555 						   addrcnt, SCTP_PARAM_ADD_IP);
556 		if (!chunk) {
557 			retval = -ENOMEM;
558 			goto out;
559 		}
560 
561 		retval = sctp_send_asconf(asoc, chunk);
562 
563 		/* FIXME: After sending the add address ASCONF chunk, we
564 		 * cannot append the address to the association's binding
565 		 * address list, because the new address may be used as the
566 		 * source of a message sent to the peer before the ASCONF
567 		 * chunk is received by the peer.  So we should wait until
568 		 * ASCONF_ACK is received.
569 		 */
570 	}
571 
572 out:
573 	return retval;
574 }
575 
576 /* Remove a list of addresses from bind addresses list.  Do not remove the
577  * last address.
578  *
579  * Basically run through each address specified in the addrs/addrcnt
580  * array/length pair, determine if it is IPv6 or IPv4 and call
581  * sctp_del_bind() on it.
582  *
583  * If any of them fails, then the operation will be reversed and the
584  * ones that were removed will be added back.
585  *
586  * At least one address has to be left; if only one address is
587  * available, the operation will return -EBUSY.
588  *
589  * Only sctp_setsockopt_bindx() is supposed to call this function.
590  */
591 int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
592 {
593 	struct sctp_sock *sp = sctp_sk(sk);
594 	struct sctp_endpoint *ep = sp->ep;
595 	int cnt;
596 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
597 	int retval = 0;
598 	union sctp_addr saveaddr;
599 	void *addr_buf;
600 	struct sockaddr *sa_addr;
601 	struct sctp_af *af;
602 
603 	SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
604 			  sk, addrs, addrcnt);
605 
606 	addr_buf = addrs;
607 	for (cnt = 0; cnt < addrcnt; cnt++) {
608 		/* If the bind address list is empty or if there is only one
609 		 * bind address, there is nothing more to be removed (we need
610 		 * at least one address here).
611 		 */
612 		if (list_empty(&bp->address_list) ||
613 		    (sctp_list_single_entry(&bp->address_list))) {
614 			retval = -EBUSY;
615 			goto err_bindx_rem;
616 		}
617 
618 		/* The list may contain either IPv4 or IPv6 address;
619 		 * determine the address length to copy the address to
620 		 * saveaddr.
621 		 */
622 		sa_addr = (struct sockaddr *)addr_buf;
623 		af = sctp_get_af_specific(sa_addr->sa_family);
624 		if (!af) {
625 			retval = -EINVAL;
626 			goto err_bindx_rem;
627 		}
628 		memcpy(&saveaddr, sa_addr, af->sockaddr_len);
629 		saveaddr.v4.sin_port = ntohs(saveaddr.v4.sin_port);
630 		if (saveaddr.v4.sin_port != bp->port) {
631 			retval = -EINVAL;
632 			goto err_bindx_rem;
633 		}
634 
635 		/* FIXME - There is probably a need to check if sk->sk_saddr and
636 		 * sk->sk_rcv_addr are currently set to one of the addresses to
637 		 * be removed. This is something which needs to be looked into
638 		 * when we are fixing the outstanding issues with multi-homing
639 		 * socket routing and failover schemes. Refer to comments in
640 		 * sctp_do_bind(). -daisy
641 		 */
642 		sctp_local_bh_disable();
643 		sctp_write_lock(&ep->base.addr_lock);
644 
645 		retval = sctp_del_bind_addr(bp, &saveaddr);
646 
647 		sctp_write_unlock(&ep->base.addr_lock);
648 		sctp_local_bh_enable();
649 
650 		addr_buf += af->sockaddr_len;
651 err_bindx_rem:
652 		if (retval < 0) {
653 			/* Failed. Add the ones that has been removed back */
654 			if (cnt > 0)
655 				sctp_bindx_add(sk, addrs, cnt);
656 			return retval;
657 		}
658 	}
659 
660 	return retval;
661 }
662 
663 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
664  * the associations that are part of the endpoint indicating that a list of
665  * local addresses are removed from the endpoint.
666  *
667  * If any of the addresses is already in the bind address list of the
668  * association, we do not send the chunk for that association.  But it will not
669  * affect other associations.
670  *
671  * Only sctp_setsockopt_bindx() is supposed to call this function.
672  */
673 static int sctp_send_asconf_del_ip(struct sock		*sk,
674 				   struct sockaddr	*addrs,
675 				   int			addrcnt)
676 {
677 	struct sctp_sock	*sp;
678 	struct sctp_endpoint	*ep;
679 	struct sctp_association	*asoc;
680 	struct sctp_bind_addr	*bp;
681 	struct sctp_chunk	*chunk;
682 	union sctp_addr		*laddr;
683 	void			*addr_buf;
684 	struct sctp_af		*af;
685 	struct list_head	*pos;
686 	int 			i;
687 	int 			retval = 0;
688 
689 	if (!sctp_addip_enable)
690 		return retval;
691 
692 	sp = sctp_sk(sk);
693 	ep = sp->ep;
694 
695 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
696 			  __FUNCTION__, sk, addrs, addrcnt);
697 
698 	list_for_each(pos, &ep->asocs) {
699 		asoc = list_entry(pos, struct sctp_association, asocs);
700 
701 		if (!asoc->peer.asconf_capable)
702 			continue;
703 
704 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
705 			continue;
706 
707 		if (!sctp_state(asoc, ESTABLISHED))
708 			continue;
709 
710 		/* Check if any address in the packed array of addresses is
711 	         * not present in the bind address list of the association.
712 		 * If so, do not send the asconf chunk to its peer, but
713 		 * continue with other associations.
714 		 */
715 		addr_buf = addrs;
716 		for (i = 0; i < addrcnt; i++) {
717 			laddr = (union sctp_addr *)addr_buf;
718 			af = sctp_get_af_specific(laddr->v4.sin_family);
719 			if (!af) {
720 				retval = -EINVAL;
721 				goto out;
722 			}
723 
724 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
725 				break;
726 
727 			addr_buf += af->sockaddr_len;
728 		}
729 		if (i < addrcnt)
730 			continue;
731 
732 		/* Find one address in the association's bind address list
733 		 * that is not in the packed array of addresses. This is to
734 		 * make sure that we do not delete all the addresses in the
735 		 * association.
736 		 */
737 		sctp_read_lock(&asoc->base.addr_lock);
738 		bp = &asoc->base.bind_addr;
739 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
740 					       addrcnt, sp);
741 		sctp_read_unlock(&asoc->base.addr_lock);
742 		if (!laddr)
743 			continue;
744 
745 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
746 						   SCTP_PARAM_DEL_IP);
747 		if (!chunk) {
748 			retval = -ENOMEM;
749 			goto out;
750 		}
751 
752 		retval = sctp_send_asconf(asoc, chunk);
753 
754 		/* FIXME: After sending the delete address ASCONF chunk, we
755 		 * cannot remove the addresses from the association's bind
756 		 * address list, because there maybe some packet send to
757 		 * the delete addresses, so we should wait until ASCONF_ACK
758 		 * packet is received.
759 		 */
760 	}
761 out:
762 	return retval;
763 }
764 
765 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
766  *
767  * API 8.1
768  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
769  *                int flags);
770  *
771  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
772  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
773  * or IPv6 addresses.
774  *
775  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
776  * Section 3.1.2 for this usage.
777  *
778  * addrs is a pointer to an array of one or more socket addresses. Each
779  * address is contained in its appropriate structure (i.e. struct
780  * sockaddr_in or struct sockaddr_in6) the family of the address type
781  * must be used to distengish the address length (note that this
782  * representation is termed a "packed array" of addresses). The caller
783  * specifies the number of addresses in the array with addrcnt.
784  *
785  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
786  * -1, and sets errno to the appropriate error code.
787  *
788  * For SCTP, the port given in each socket address must be the same, or
789  * sctp_bindx() will fail, setting errno to EINVAL.
790  *
791  * The flags parameter is formed from the bitwise OR of zero or more of
792  * the following currently defined flags:
793  *
794  * SCTP_BINDX_ADD_ADDR
795  *
796  * SCTP_BINDX_REM_ADDR
797  *
798  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
799  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
800  * addresses from the association. The two flags are mutually exclusive;
801  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
802  * not remove all addresses from an association; sctp_bindx() will
803  * reject such an attempt with EINVAL.
804  *
805  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
806  * additional addresses with an endpoint after calling bind().  Or use
807  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
808  * socket is associated with so that no new association accepted will be
809  * associated with those addresses. If the endpoint supports dynamic
810  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
811  * endpoint to send the appropriate message to the peer to change the
812  * peers address lists.
813  *
814  * Adding and removing addresses from a connected association is
815  * optional functionality. Implementations that do not support this
816  * functionality should return EOPNOTSUPP.
817  *
818  * Basically do nothing but copying the addresses from user to kernel
819  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
820  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
821  * from userspace.
822  *
823  * We don't use copy_from_user() for optimization: we first do the
824  * sanity checks (buffer size -fast- and access check-healthy
825  * pointer); if all of those succeed, then we can alloc the memory
826  * (expensive operation) needed to copy the data to kernel. Then we do
827  * the copying without checking the user space area
828  * (__copy_from_user()).
829  *
830  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
831  * it.
832  *
833  * sk        The sk of the socket
834  * addrs     The pointer to the addresses in user land
835  * addrssize Size of the addrs buffer
836  * op        Operation to perform (add or remove, see the flags of
837  *           sctp_bindx)
838  *
839  * Returns 0 if ok, <0 errno code on error.
840  */
841 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
842 				      struct sockaddr __user *addrs,
843 				      int addrs_size, int op)
844 {
845 	struct sockaddr *kaddrs;
846 	int err;
847 	int addrcnt = 0;
848 	int walk_size = 0;
849 	struct sockaddr *sa_addr;
850 	void *addr_buf;
851 	struct sctp_af *af;
852 
853 	SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
854 			  " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
855 
856 	if (unlikely(addrs_size <= 0))
857 		return -EINVAL;
858 
859 	/* Check the user passed a healthy pointer.  */
860 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
861 		return -EFAULT;
862 
863 	/* Alloc space for the address array in kernel memory.  */
864 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
865 	if (unlikely(!kaddrs))
866 		return -ENOMEM;
867 
868 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
869 		kfree(kaddrs);
870 		return -EFAULT;
871 	}
872 
873 	/* Walk through the addrs buffer and count the number of addresses. */
874 	addr_buf = kaddrs;
875 	while (walk_size < addrs_size) {
876 		sa_addr = (struct sockaddr *)addr_buf;
877 		af = sctp_get_af_specific(sa_addr->sa_family);
878 
879 		/* If the address family is not supported or if this address
880 		 * causes the address buffer to overflow return EINVAL.
881 		 */
882 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
883 			kfree(kaddrs);
884 			return -EINVAL;
885 		}
886 		addrcnt++;
887 		addr_buf += af->sockaddr_len;
888 		walk_size += af->sockaddr_len;
889 	}
890 
891 	/* Do the work. */
892 	switch (op) {
893 	case SCTP_BINDX_ADD_ADDR:
894 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
895 		if (err)
896 			goto out;
897 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
898 		break;
899 
900 	case SCTP_BINDX_REM_ADDR:
901 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
902 		if (err)
903 			goto out;
904 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
905 		break;
906 
907 	default:
908 		err = -EINVAL;
909 		break;
910         };
911 
912 out:
913 	kfree(kaddrs);
914 
915 	return err;
916 }
917 
918 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
919  *
920  * Common routine for handling connect() and sctp_connectx().
921  * Connect will come in with just a single address.
922  */
923 static int __sctp_connect(struct sock* sk,
924 			  struct sockaddr *kaddrs,
925 			  int addrs_size)
926 {
927 	struct sctp_sock *sp;
928 	struct sctp_endpoint *ep;
929 	struct sctp_association *asoc = NULL;
930 	struct sctp_association *asoc2;
931 	struct sctp_transport *transport;
932 	union sctp_addr to;
933 	struct sctp_af *af;
934 	sctp_scope_t scope;
935 	long timeo;
936 	int err = 0;
937 	int addrcnt = 0;
938 	int walk_size = 0;
939 	struct sockaddr *sa_addr;
940 	void *addr_buf;
941 
942 	sp = sctp_sk(sk);
943 	ep = sp->ep;
944 
945 	/* connect() cannot be done on a socket that is already in ESTABLISHED
946 	 * state - UDP-style peeled off socket or a TCP-style socket that
947 	 * is already connected.
948 	 * It cannot be done even on a TCP-style listening socket.
949 	 */
950 	if (sctp_sstate(sk, ESTABLISHED) ||
951 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
952 		err = -EISCONN;
953 		goto out_free;
954 	}
955 
956 	/* Walk through the addrs buffer and count the number of addresses. */
957 	addr_buf = kaddrs;
958 	while (walk_size < addrs_size) {
959 		sa_addr = (struct sockaddr *)addr_buf;
960 		af = sctp_get_af_specific(sa_addr->sa_family);
961 
962 		/* If the address family is not supported or if this address
963 		 * causes the address buffer to overflow return EINVAL.
964 		 */
965 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
966 			err = -EINVAL;
967 			goto out_free;
968 		}
969 
970 		err = sctp_verify_addr(sk, (union sctp_addr *)sa_addr,
971 				       af->sockaddr_len);
972 		if (err)
973 			goto out_free;
974 
975 		memcpy(&to, sa_addr, af->sockaddr_len);
976 		to.v4.sin_port = ntohs(to.v4.sin_port);
977 
978 		/* Check if there already is a matching association on the
979 		 * endpoint (other than the one created here).
980 		 */
981 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
982 		if (asoc2 && asoc2 != asoc) {
983 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
984 				err = -EISCONN;
985 			else
986 				err = -EALREADY;
987 			goto out_free;
988 		}
989 
990 		/* If we could not find a matching association on the endpoint,
991 		 * make sure that there is no peeled-off association matching
992 		 * the peer address even on another socket.
993 		 */
994 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
995 			err = -EADDRNOTAVAIL;
996 			goto out_free;
997 		}
998 
999 		if (!asoc) {
1000 			/* If a bind() or sctp_bindx() is not called prior to
1001 			 * an sctp_connectx() call, the system picks an
1002 			 * ephemeral port and will choose an address set
1003 			 * equivalent to binding with a wildcard address.
1004 			 */
1005 			if (!ep->base.bind_addr.port) {
1006 				if (sctp_autobind(sk)) {
1007 					err = -EAGAIN;
1008 					goto out_free;
1009 				}
1010 			} else {
1011 				/*
1012 				 * If an unprivileged user inherits a 1-many
1013 				 * style socket with open associations on a
1014 				 * privileged port, it MAY be permitted to
1015 				 * accept new associations, but it SHOULD NOT
1016 				 * be permitted to open new associations.
1017 				 */
1018 				if (ep->base.bind_addr.port < PROT_SOCK &&
1019 				    !capable(CAP_NET_BIND_SERVICE)) {
1020 					err = -EACCES;
1021 					goto out_free;
1022 				}
1023 			}
1024 
1025 			scope = sctp_scope(&to);
1026 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1027 			if (!asoc) {
1028 				err = -ENOMEM;
1029 				goto out_free;
1030 			}
1031 		}
1032 
1033 		/* Prime the peer's transport structures.  */
1034 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1035 						SCTP_UNKNOWN);
1036 		if (!transport) {
1037 			err = -ENOMEM;
1038 			goto out_free;
1039 		}
1040 
1041 		addrcnt++;
1042 		addr_buf += af->sockaddr_len;
1043 		walk_size += af->sockaddr_len;
1044 	}
1045 
1046 	err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1047 	if (err < 0) {
1048 		goto out_free;
1049 	}
1050 
1051 	err = sctp_primitive_ASSOCIATE(asoc, NULL);
1052 	if (err < 0) {
1053 		goto out_free;
1054 	}
1055 
1056 	/* Initialize sk's dport and daddr for getpeername() */
1057 	inet_sk(sk)->dport = htons(asoc->peer.port);
1058 	af = sctp_get_af_specific(to.sa.sa_family);
1059 	af->to_sk_daddr(&to, sk);
1060 	sk->sk_err = 0;
1061 
1062 	timeo = sock_sndtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK);
1063 	err = sctp_wait_for_connect(asoc, &timeo);
1064 
1065 	/* Don't free association on exit. */
1066 	asoc = NULL;
1067 
1068 out_free:
1069 
1070 	SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1071 		          " kaddrs: %p err: %d\n",
1072 	                  asoc, kaddrs, err);
1073 	if (asoc)
1074 		sctp_association_free(asoc);
1075 	return err;
1076 }
1077 
1078 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1079  *
1080  * API 8.9
1081  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt);
1082  *
1083  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1084  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1085  * or IPv6 addresses.
1086  *
1087  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1088  * Section 3.1.2 for this usage.
1089  *
1090  * addrs is a pointer to an array of one or more socket addresses. Each
1091  * address is contained in its appropriate structure (i.e. struct
1092  * sockaddr_in or struct sockaddr_in6) the family of the address type
1093  * must be used to distengish the address length (note that this
1094  * representation is termed a "packed array" of addresses). The caller
1095  * specifies the number of addresses in the array with addrcnt.
1096  *
1097  * On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns
1098  * -1, and sets errno to the appropriate error code.
1099  *
1100  * For SCTP, the port given in each socket address must be the same, or
1101  * sctp_connectx() will fail, setting errno to EINVAL.
1102  *
1103  * An application can use sctp_connectx to initiate an association with
1104  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1105  * allows a caller to specify multiple addresses at which a peer can be
1106  * reached.  The way the SCTP stack uses the list of addresses to set up
1107  * the association is implementation dependant.  This function only
1108  * specifies that the stack will try to make use of all the addresses in
1109  * the list when needed.
1110  *
1111  * Note that the list of addresses passed in is only used for setting up
1112  * the association.  It does not necessarily equal the set of addresses
1113  * the peer uses for the resulting association.  If the caller wants to
1114  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1115  * retrieve them after the association has been set up.
1116  *
1117  * Basically do nothing but copying the addresses from user to kernel
1118  * land and invoking either sctp_connectx(). This is used for tunneling
1119  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1120  *
1121  * We don't use copy_from_user() for optimization: we first do the
1122  * sanity checks (buffer size -fast- and access check-healthy
1123  * pointer); if all of those succeed, then we can alloc the memory
1124  * (expensive operation) needed to copy the data to kernel. Then we do
1125  * the copying without checking the user space area
1126  * (__copy_from_user()).
1127  *
1128  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1129  * it.
1130  *
1131  * sk        The sk of the socket
1132  * addrs     The pointer to the addresses in user land
1133  * addrssize Size of the addrs buffer
1134  *
1135  * Returns 0 if ok, <0 errno code on error.
1136  */
1137 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1138 				      struct sockaddr __user *addrs,
1139 				      int addrs_size)
1140 {
1141 	int err = 0;
1142 	struct sockaddr *kaddrs;
1143 
1144 	SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1145 			  __FUNCTION__, sk, addrs, addrs_size);
1146 
1147 	if (unlikely(addrs_size <= 0))
1148 		return -EINVAL;
1149 
1150 	/* Check the user passed a healthy pointer.  */
1151 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1152 		return -EFAULT;
1153 
1154 	/* Alloc space for the address array in kernel memory.  */
1155 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1156 	if (unlikely(!kaddrs))
1157 		return -ENOMEM;
1158 
1159 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1160 		err = -EFAULT;
1161 	} else {
1162 		err = __sctp_connect(sk, kaddrs, addrs_size);
1163 	}
1164 
1165 	kfree(kaddrs);
1166 	return err;
1167 }
1168 
1169 /* API 3.1.4 close() - UDP Style Syntax
1170  * Applications use close() to perform graceful shutdown (as described in
1171  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1172  * by a UDP-style socket.
1173  *
1174  * The syntax is
1175  *
1176  *   ret = close(int sd);
1177  *
1178  *   sd      - the socket descriptor of the associations to be closed.
1179  *
1180  * To gracefully shutdown a specific association represented by the
1181  * UDP-style socket, an application should use the sendmsg() call,
1182  * passing no user data, but including the appropriate flag in the
1183  * ancillary data (see Section xxxx).
1184  *
1185  * If sd in the close() call is a branched-off socket representing only
1186  * one association, the shutdown is performed on that association only.
1187  *
1188  * 4.1.6 close() - TCP Style Syntax
1189  *
1190  * Applications use close() to gracefully close down an association.
1191  *
1192  * The syntax is:
1193  *
1194  *    int close(int sd);
1195  *
1196  *      sd      - the socket descriptor of the association to be closed.
1197  *
1198  * After an application calls close() on a socket descriptor, no further
1199  * socket operations will succeed on that descriptor.
1200  *
1201  * API 7.1.4 SO_LINGER
1202  *
1203  * An application using the TCP-style socket can use this option to
1204  * perform the SCTP ABORT primitive.  The linger option structure is:
1205  *
1206  *  struct  linger {
1207  *     int     l_onoff;                // option on/off
1208  *     int     l_linger;               // linger time
1209  * };
1210  *
1211  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1212  * to 0, calling close() is the same as the ABORT primitive.  If the
1213  * value is set to a negative value, the setsockopt() call will return
1214  * an error.  If the value is set to a positive value linger_time, the
1215  * close() can be blocked for at most linger_time ms.  If the graceful
1216  * shutdown phase does not finish during this period, close() will
1217  * return but the graceful shutdown phase continues in the system.
1218  */
1219 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1220 {
1221 	struct sctp_endpoint *ep;
1222 	struct sctp_association *asoc;
1223 	struct list_head *pos, *temp;
1224 
1225 	SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1226 
1227 	sctp_lock_sock(sk);
1228 	sk->sk_shutdown = SHUTDOWN_MASK;
1229 
1230 	ep = sctp_sk(sk)->ep;
1231 
1232 	/* Walk all associations on an endpoint.  */
1233 	list_for_each_safe(pos, temp, &ep->asocs) {
1234 		asoc = list_entry(pos, struct sctp_association, asocs);
1235 
1236 		if (sctp_style(sk, TCP)) {
1237 			/* A closed association can still be in the list if
1238 			 * it belongs to a TCP-style listening socket that is
1239 			 * not yet accepted. If so, free it. If not, send an
1240 			 * ABORT or SHUTDOWN based on the linger options.
1241 			 */
1242 			if (sctp_state(asoc, CLOSED)) {
1243 				sctp_unhash_established(asoc);
1244 				sctp_association_free(asoc);
1245 				continue;
1246 			}
1247 		}
1248 
1249 		if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)
1250 			sctp_primitive_ABORT(asoc, NULL);
1251 		else
1252 			sctp_primitive_SHUTDOWN(asoc, NULL);
1253 	}
1254 
1255 	/* Clean up any skbs sitting on the receive queue.  */
1256 	sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1257 	sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1258 
1259 	/* On a TCP-style socket, block for at most linger_time if set. */
1260 	if (sctp_style(sk, TCP) && timeout)
1261 		sctp_wait_for_close(sk, timeout);
1262 
1263 	/* This will run the backlog queue.  */
1264 	sctp_release_sock(sk);
1265 
1266 	/* Supposedly, no process has access to the socket, but
1267 	 * the net layers still may.
1268 	 */
1269 	sctp_local_bh_disable();
1270 	sctp_bh_lock_sock(sk);
1271 
1272 	/* Hold the sock, since sk_common_release() will put sock_put()
1273 	 * and we have just a little more cleanup.
1274 	 */
1275 	sock_hold(sk);
1276 	sk_common_release(sk);
1277 
1278 	sctp_bh_unlock_sock(sk);
1279 	sctp_local_bh_enable();
1280 
1281 	sock_put(sk);
1282 
1283 	SCTP_DBG_OBJCNT_DEC(sock);
1284 }
1285 
1286 /* Handle EPIPE error. */
1287 static int sctp_error(struct sock *sk, int flags, int err)
1288 {
1289 	if (err == -EPIPE)
1290 		err = sock_error(sk) ? : -EPIPE;
1291 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1292 		send_sig(SIGPIPE, current, 0);
1293 	return err;
1294 }
1295 
1296 /* API 3.1.3 sendmsg() - UDP Style Syntax
1297  *
1298  * An application uses sendmsg() and recvmsg() calls to transmit data to
1299  * and receive data from its peer.
1300  *
1301  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1302  *                  int flags);
1303  *
1304  *  socket  - the socket descriptor of the endpoint.
1305  *  message - pointer to the msghdr structure which contains a single
1306  *            user message and possibly some ancillary data.
1307  *
1308  *            See Section 5 for complete description of the data
1309  *            structures.
1310  *
1311  *  flags   - flags sent or received with the user message, see Section
1312  *            5 for complete description of the flags.
1313  *
1314  * Note:  This function could use a rewrite especially when explicit
1315  * connect support comes in.
1316  */
1317 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1318 
1319 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1320 
1321 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1322 			     struct msghdr *msg, size_t msg_len)
1323 {
1324 	struct sctp_sock *sp;
1325 	struct sctp_endpoint *ep;
1326 	struct sctp_association *new_asoc=NULL, *asoc=NULL;
1327 	struct sctp_transport *transport, *chunk_tp;
1328 	struct sctp_chunk *chunk;
1329 	union sctp_addr to;
1330 	struct sockaddr *msg_name = NULL;
1331 	struct sctp_sndrcvinfo default_sinfo = { 0 };
1332 	struct sctp_sndrcvinfo *sinfo;
1333 	struct sctp_initmsg *sinit;
1334 	sctp_assoc_t associd = 0;
1335 	sctp_cmsgs_t cmsgs = { NULL };
1336 	int err;
1337 	sctp_scope_t scope;
1338 	long timeo;
1339 	__u16 sinfo_flags = 0;
1340 	struct sctp_datamsg *datamsg;
1341 	struct list_head *pos;
1342 	int msg_flags = msg->msg_flags;
1343 
1344 	SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1345 			  sk, msg, msg_len);
1346 
1347 	err = 0;
1348 	sp = sctp_sk(sk);
1349 	ep = sp->ep;
1350 
1351 	SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1352 
1353 	/* We cannot send a message over a TCP-style listening socket. */
1354 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1355 		err = -EPIPE;
1356 		goto out_nounlock;
1357 	}
1358 
1359 	/* Parse out the SCTP CMSGs.  */
1360 	err = sctp_msghdr_parse(msg, &cmsgs);
1361 
1362 	if (err) {
1363 		SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1364 		goto out_nounlock;
1365 	}
1366 
1367 	/* Fetch the destination address for this packet.  This
1368 	 * address only selects the association--it is not necessarily
1369 	 * the address we will send to.
1370 	 * For a peeled-off socket, msg_name is ignored.
1371 	 */
1372 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1373 		int msg_namelen = msg->msg_namelen;
1374 
1375 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1376 				       msg_namelen);
1377 		if (err)
1378 			return err;
1379 
1380 		if (msg_namelen > sizeof(to))
1381 			msg_namelen = sizeof(to);
1382 		memcpy(&to, msg->msg_name, msg_namelen);
1383 		SCTP_DEBUG_PRINTK("Just memcpy'd. msg_name is "
1384 				  "0x%x:%u.\n",
1385 				  to.v4.sin_addr.s_addr, to.v4.sin_port);
1386 
1387 		to.v4.sin_port = ntohs(to.v4.sin_port);
1388 		msg_name = msg->msg_name;
1389 	}
1390 
1391 	sinfo = cmsgs.info;
1392 	sinit = cmsgs.init;
1393 
1394 	/* Did the user specify SNDRCVINFO?  */
1395 	if (sinfo) {
1396 		sinfo_flags = sinfo->sinfo_flags;
1397 		associd = sinfo->sinfo_assoc_id;
1398 	}
1399 
1400 	SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1401 			  msg_len, sinfo_flags);
1402 
1403 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1404 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1405 		err = -EINVAL;
1406 		goto out_nounlock;
1407 	}
1408 
1409 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1410 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1411 	 * If SCTP_ABORT is set, the message length could be non zero with
1412 	 * the msg_iov set to the user abort reason.
1413  	 */
1414 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1415 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1416 		err = -EINVAL;
1417 		goto out_nounlock;
1418 	}
1419 
1420 	/* If SCTP_ADDR_OVER is set, there must be an address
1421 	 * specified in msg_name.
1422 	 */
1423 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1424 		err = -EINVAL;
1425 		goto out_nounlock;
1426 	}
1427 
1428 	transport = NULL;
1429 
1430 	SCTP_DEBUG_PRINTK("About to look up association.\n");
1431 
1432 	sctp_lock_sock(sk);
1433 
1434 	/* If a msg_name has been specified, assume this is to be used.  */
1435 	if (msg_name) {
1436 		/* Look for a matching association on the endpoint. */
1437 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1438 		if (!asoc) {
1439 			/* If we could not find a matching association on the
1440 			 * endpoint, make sure that it is not a TCP-style
1441 			 * socket that already has an association or there is
1442 			 * no peeled-off association on another socket.
1443 			 */
1444 			if ((sctp_style(sk, TCP) &&
1445 			     sctp_sstate(sk, ESTABLISHED)) ||
1446 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1447 				err = -EADDRNOTAVAIL;
1448 				goto out_unlock;
1449 			}
1450 		}
1451 	} else {
1452 		asoc = sctp_id2assoc(sk, associd);
1453 		if (!asoc) {
1454 			err = -EPIPE;
1455 			goto out_unlock;
1456 		}
1457 	}
1458 
1459 	if (asoc) {
1460 		SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1461 
1462 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1463 		 * socket that has an association in CLOSED state. This can
1464 		 * happen when an accepted socket has an association that is
1465 		 * already CLOSED.
1466 		 */
1467 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1468 			err = -EPIPE;
1469 			goto out_unlock;
1470 		}
1471 
1472 		if (sinfo_flags & SCTP_EOF) {
1473 			SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1474 					  asoc);
1475 			sctp_primitive_SHUTDOWN(asoc, NULL);
1476 			err = 0;
1477 			goto out_unlock;
1478 		}
1479 		if (sinfo_flags & SCTP_ABORT) {
1480 			SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1481 			sctp_primitive_ABORT(asoc, msg);
1482 			err = 0;
1483 			goto out_unlock;
1484 		}
1485 	}
1486 
1487 	/* Do we need to create the association?  */
1488 	if (!asoc) {
1489 		SCTP_DEBUG_PRINTK("There is no association yet.\n");
1490 
1491 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1492 			err = -EINVAL;
1493 			goto out_unlock;
1494 		}
1495 
1496 		/* Check for invalid stream against the stream counts,
1497 		 * either the default or the user specified stream counts.
1498 		 */
1499 		if (sinfo) {
1500 			if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1501 				/* Check against the defaults. */
1502 				if (sinfo->sinfo_stream >=
1503 				    sp->initmsg.sinit_num_ostreams) {
1504 					err = -EINVAL;
1505 					goto out_unlock;
1506 				}
1507 			} else {
1508 				/* Check against the requested.  */
1509 				if (sinfo->sinfo_stream >=
1510 				    sinit->sinit_num_ostreams) {
1511 					err = -EINVAL;
1512 					goto out_unlock;
1513 				}
1514 			}
1515 		}
1516 
1517 		/*
1518 		 * API 3.1.2 bind() - UDP Style Syntax
1519 		 * If a bind() or sctp_bindx() is not called prior to a
1520 		 * sendmsg() call that initiates a new association, the
1521 		 * system picks an ephemeral port and will choose an address
1522 		 * set equivalent to binding with a wildcard address.
1523 		 */
1524 		if (!ep->base.bind_addr.port) {
1525 			if (sctp_autobind(sk)) {
1526 				err = -EAGAIN;
1527 				goto out_unlock;
1528 			}
1529 		} else {
1530 			/*
1531 			 * If an unprivileged user inherits a one-to-many
1532 			 * style socket with open associations on a privileged
1533 			 * port, it MAY be permitted to accept new associations,
1534 			 * but it SHOULD NOT be permitted to open new
1535 			 * associations.
1536 			 */
1537 			if (ep->base.bind_addr.port < PROT_SOCK &&
1538 			    !capable(CAP_NET_BIND_SERVICE)) {
1539 				err = -EACCES;
1540 				goto out_unlock;
1541 			}
1542 		}
1543 
1544 		scope = sctp_scope(&to);
1545 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1546 		if (!new_asoc) {
1547 			err = -ENOMEM;
1548 			goto out_unlock;
1549 		}
1550 		asoc = new_asoc;
1551 
1552 		/* If the SCTP_INIT ancillary data is specified, set all
1553 		 * the association init values accordingly.
1554 		 */
1555 		if (sinit) {
1556 			if (sinit->sinit_num_ostreams) {
1557 				asoc->c.sinit_num_ostreams =
1558 					sinit->sinit_num_ostreams;
1559 			}
1560 			if (sinit->sinit_max_instreams) {
1561 				asoc->c.sinit_max_instreams =
1562 					sinit->sinit_max_instreams;
1563 			}
1564 			if (sinit->sinit_max_attempts) {
1565 				asoc->max_init_attempts
1566 					= sinit->sinit_max_attempts;
1567 			}
1568 			if (sinit->sinit_max_init_timeo) {
1569 				asoc->max_init_timeo =
1570 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1571 			}
1572 		}
1573 
1574 		/* Prime the peer's transport structures.  */
1575 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1576 		if (!transport) {
1577 			err = -ENOMEM;
1578 			goto out_free;
1579 		}
1580 		err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1581 		if (err < 0) {
1582 			err = -ENOMEM;
1583 			goto out_free;
1584 		}
1585 	}
1586 
1587 	/* ASSERT: we have a valid association at this point.  */
1588 	SCTP_DEBUG_PRINTK("We have a valid association.\n");
1589 
1590 	if (!sinfo) {
1591 		/* If the user didn't specify SNDRCVINFO, make up one with
1592 		 * some defaults.
1593 		 */
1594 		default_sinfo.sinfo_stream = asoc->default_stream;
1595 		default_sinfo.sinfo_flags = asoc->default_flags;
1596 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1597 		default_sinfo.sinfo_context = asoc->default_context;
1598 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1599 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1600 		sinfo = &default_sinfo;
1601 	}
1602 
1603 	/* API 7.1.7, the sndbuf size per association bounds the
1604 	 * maximum size of data that can be sent in a single send call.
1605 	 */
1606 	if (msg_len > sk->sk_sndbuf) {
1607 		err = -EMSGSIZE;
1608 		goto out_free;
1609 	}
1610 
1611 	/* If fragmentation is disabled and the message length exceeds the
1612 	 * association fragmentation point, return EMSGSIZE.  The I-D
1613 	 * does not specify what this error is, but this looks like
1614 	 * a great fit.
1615 	 */
1616 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1617 		err = -EMSGSIZE;
1618 		goto out_free;
1619 	}
1620 
1621 	if (sinfo) {
1622 		/* Check for invalid stream. */
1623 		if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1624 			err = -EINVAL;
1625 			goto out_free;
1626 		}
1627 	}
1628 
1629 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1630 	if (!sctp_wspace(asoc)) {
1631 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1632 		if (err)
1633 			goto out_free;
1634 	}
1635 
1636 	/* If an address is passed with the sendto/sendmsg call, it is used
1637 	 * to override the primary destination address in the TCP model, or
1638 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1639 	 */
1640 	if ((sctp_style(sk, TCP) && msg_name) ||
1641 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1642 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1643 		if (!chunk_tp) {
1644 			err = -EINVAL;
1645 			goto out_free;
1646 		}
1647 	} else
1648 		chunk_tp = NULL;
1649 
1650 	/* Auto-connect, if we aren't connected already. */
1651 	if (sctp_state(asoc, CLOSED)) {
1652 		err = sctp_primitive_ASSOCIATE(asoc, NULL);
1653 		if (err < 0)
1654 			goto out_free;
1655 		SCTP_DEBUG_PRINTK("We associated primitively.\n");
1656 	}
1657 
1658 	/* Break the message into multiple chunks of maximum size. */
1659 	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1660 	if (!datamsg) {
1661 		err = -ENOMEM;
1662 		goto out_free;
1663 	}
1664 
1665 	/* Now send the (possibly) fragmented message. */
1666 	list_for_each(pos, &datamsg->chunks) {
1667 		chunk = list_entry(pos, struct sctp_chunk, frag_list);
1668 		sctp_datamsg_track(chunk);
1669 
1670 		/* Do accounting for the write space.  */
1671 		sctp_set_owner_w(chunk);
1672 
1673 		chunk->transport = chunk_tp;
1674 
1675 		/* Send it to the lower layers.  Note:  all chunks
1676 		 * must either fail or succeed.   The lower layer
1677 		 * works that way today.  Keep it that way or this
1678 		 * breaks.
1679 		 */
1680 		err = sctp_primitive_SEND(asoc, chunk);
1681 		/* Did the lower layer accept the chunk? */
1682 		if (err)
1683 			sctp_chunk_free(chunk);
1684 		SCTP_DEBUG_PRINTK("We sent primitively.\n");
1685 	}
1686 
1687 	sctp_datamsg_free(datamsg);
1688 	if (err)
1689 		goto out_free;
1690 	else
1691 		err = msg_len;
1692 
1693 	/* If we are already past ASSOCIATE, the lower
1694 	 * layers are responsible for association cleanup.
1695 	 */
1696 	goto out_unlock;
1697 
1698 out_free:
1699 	if (new_asoc)
1700 		sctp_association_free(asoc);
1701 out_unlock:
1702 	sctp_release_sock(sk);
1703 
1704 out_nounlock:
1705 	return sctp_error(sk, msg_flags, err);
1706 
1707 #if 0
1708 do_sock_err:
1709 	if (msg_len)
1710 		err = msg_len;
1711 	else
1712 		err = sock_error(sk);
1713 	goto out;
1714 
1715 do_interrupted:
1716 	if (msg_len)
1717 		err = msg_len;
1718 	goto out;
1719 #endif /* 0 */
1720 }
1721 
1722 /* This is an extended version of skb_pull() that removes the data from the
1723  * start of a skb even when data is spread across the list of skb's in the
1724  * frag_list. len specifies the total amount of data that needs to be removed.
1725  * when 'len' bytes could be removed from the skb, it returns 0.
1726  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
1727  * could not be removed.
1728  */
1729 static int sctp_skb_pull(struct sk_buff *skb, int len)
1730 {
1731 	struct sk_buff *list;
1732 	int skb_len = skb_headlen(skb);
1733 	int rlen;
1734 
1735 	if (len <= skb_len) {
1736 		__skb_pull(skb, len);
1737 		return 0;
1738 	}
1739 	len -= skb_len;
1740 	__skb_pull(skb, skb_len);
1741 
1742 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next) {
1743 		rlen = sctp_skb_pull(list, len);
1744 		skb->len -= (len-rlen);
1745 		skb->data_len -= (len-rlen);
1746 
1747 		if (!rlen)
1748 			return 0;
1749 
1750 		len = rlen;
1751 	}
1752 
1753 	return len;
1754 }
1755 
1756 /* API 3.1.3  recvmsg() - UDP Style Syntax
1757  *
1758  *  ssize_t recvmsg(int socket, struct msghdr *message,
1759  *                    int flags);
1760  *
1761  *  socket  - the socket descriptor of the endpoint.
1762  *  message - pointer to the msghdr structure which contains a single
1763  *            user message and possibly some ancillary data.
1764  *
1765  *            See Section 5 for complete description of the data
1766  *            structures.
1767  *
1768  *  flags   - flags sent or received with the user message, see Section
1769  *            5 for complete description of the flags.
1770  */
1771 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1772 
1773 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1774 			     struct msghdr *msg, size_t len, int noblock,
1775 			     int flags, int *addr_len)
1776 {
1777 	struct sctp_ulpevent *event = NULL;
1778 	struct sctp_sock *sp = sctp_sk(sk);
1779 	struct sk_buff *skb;
1780 	int copied;
1781 	int err = 0;
1782 	int skb_len;
1783 
1784 	SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1785 			  "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1786 			  "len", len, "knoblauch", noblock,
1787 			  "flags", flags, "addr_len", addr_len);
1788 
1789 	sctp_lock_sock(sk);
1790 
1791 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1792 		err = -ENOTCONN;
1793 		goto out;
1794 	}
1795 
1796 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1797 	if (!skb)
1798 		goto out;
1799 
1800 	/* Get the total length of the skb including any skb's in the
1801 	 * frag_list.
1802 	 */
1803 	skb_len = skb->len;
1804 
1805 	copied = skb_len;
1806 	if (copied > len)
1807 		copied = len;
1808 
1809 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1810 
1811 	event = sctp_skb2event(skb);
1812 
1813 	if (err)
1814 		goto out_free;
1815 
1816 	sock_recv_timestamp(msg, sk, skb);
1817 	if (sctp_ulpevent_is_notification(event)) {
1818 		msg->msg_flags |= MSG_NOTIFICATION;
1819 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
1820 	} else {
1821 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1822 	}
1823 
1824 	/* Check if we allow SCTP_SNDRCVINFO. */
1825 	if (sp->subscribe.sctp_data_io_event)
1826 		sctp_ulpevent_read_sndrcvinfo(event, msg);
1827 #if 0
1828 	/* FIXME: we should be calling IP/IPv6 layers.  */
1829 	if (sk->sk_protinfo.af_inet.cmsg_flags)
1830 		ip_cmsg_recv(msg, skb);
1831 #endif
1832 
1833 	err = copied;
1834 
1835 	/* If skb's length exceeds the user's buffer, update the skb and
1836 	 * push it back to the receive_queue so that the next call to
1837 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
1838 	 */
1839 	if (skb_len > copied) {
1840 		msg->msg_flags &= ~MSG_EOR;
1841 		if (flags & MSG_PEEK)
1842 			goto out_free;
1843 		sctp_skb_pull(skb, copied);
1844 		skb_queue_head(&sk->sk_receive_queue, skb);
1845 
1846 		/* When only partial message is copied to the user, increase
1847 		 * rwnd by that amount. If all the data in the skb is read,
1848 		 * rwnd is updated when the event is freed.
1849 		 */
1850 		sctp_assoc_rwnd_increase(event->asoc, copied);
1851 		goto out;
1852 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
1853 		   (event->msg_flags & MSG_EOR))
1854 		msg->msg_flags |= MSG_EOR;
1855 	else
1856 		msg->msg_flags &= ~MSG_EOR;
1857 
1858 out_free:
1859 	if (flags & MSG_PEEK) {
1860 		/* Release the skb reference acquired after peeking the skb in
1861 		 * sctp_skb_recv_datagram().
1862 		 */
1863 		kfree_skb(skb);
1864 	} else {
1865 		/* Free the event which includes releasing the reference to
1866 		 * the owner of the skb, freeing the skb and updating the
1867 		 * rwnd.
1868 		 */
1869 		sctp_ulpevent_free(event);
1870 	}
1871 out:
1872 	sctp_release_sock(sk);
1873 	return err;
1874 }
1875 
1876 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
1877  *
1878  * This option is a on/off flag.  If enabled no SCTP message
1879  * fragmentation will be performed.  Instead if a message being sent
1880  * exceeds the current PMTU size, the message will NOT be sent and
1881  * instead a error will be indicated to the user.
1882  */
1883 static int sctp_setsockopt_disable_fragments(struct sock *sk,
1884 					    char __user *optval, int optlen)
1885 {
1886 	int val;
1887 
1888 	if (optlen < sizeof(int))
1889 		return -EINVAL;
1890 
1891 	if (get_user(val, (int __user *)optval))
1892 		return -EFAULT;
1893 
1894 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
1895 
1896 	return 0;
1897 }
1898 
1899 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
1900 					int optlen)
1901 {
1902 	if (optlen != sizeof(struct sctp_event_subscribe))
1903 		return -EINVAL;
1904 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
1905 		return -EFAULT;
1906 	return 0;
1907 }
1908 
1909 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
1910  *
1911  * This socket option is applicable to the UDP-style socket only.  When
1912  * set it will cause associations that are idle for more than the
1913  * specified number of seconds to automatically close.  An association
1914  * being idle is defined an association that has NOT sent or received
1915  * user data.  The special value of '0' indicates that no automatic
1916  * close of any associations should be performed.  The option expects an
1917  * integer defining the number of seconds of idle time before an
1918  * association is closed.
1919  */
1920 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
1921 					    int optlen)
1922 {
1923 	struct sctp_sock *sp = sctp_sk(sk);
1924 
1925 	/* Applicable to UDP-style socket only */
1926 	if (sctp_style(sk, TCP))
1927 		return -EOPNOTSUPP;
1928 	if (optlen != sizeof(int))
1929 		return -EINVAL;
1930 	if (copy_from_user(&sp->autoclose, optval, optlen))
1931 		return -EFAULT;
1932 
1933 	return 0;
1934 }
1935 
1936 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
1937  *
1938  * Applications can enable or disable heartbeats for any peer address of
1939  * an association, modify an address's heartbeat interval, force a
1940  * heartbeat to be sent immediately, and adjust the address's maximum
1941  * number of retransmissions sent before an address is considered
1942  * unreachable.  The following structure is used to access and modify an
1943  * address's parameters:
1944  *
1945  *  struct sctp_paddrparams {
1946  *     sctp_assoc_t            spp_assoc_id;
1947  *     struct sockaddr_storage spp_address;
1948  *     uint32_t                spp_hbinterval;
1949  *     uint16_t                spp_pathmaxrxt;
1950  *     uint32_t                spp_pathmtu;
1951  *     uint32_t                spp_sackdelay;
1952  *     uint32_t                spp_flags;
1953  * };
1954  *
1955  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
1956  *                     application, and identifies the association for
1957  *                     this query.
1958  *   spp_address     - This specifies which address is of interest.
1959  *   spp_hbinterval  - This contains the value of the heartbeat interval,
1960  *                     in milliseconds.  If a  value of zero
1961  *                     is present in this field then no changes are to
1962  *                     be made to this parameter.
1963  *   spp_pathmaxrxt  - This contains the maximum number of
1964  *                     retransmissions before this address shall be
1965  *                     considered unreachable. If a  value of zero
1966  *                     is present in this field then no changes are to
1967  *                     be made to this parameter.
1968  *   spp_pathmtu     - When Path MTU discovery is disabled the value
1969  *                     specified here will be the "fixed" path mtu.
1970  *                     Note that if the spp_address field is empty
1971  *                     then all associations on this address will
1972  *                     have this fixed path mtu set upon them.
1973  *
1974  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
1975  *                     the number of milliseconds that sacks will be delayed
1976  *                     for. This value will apply to all addresses of an
1977  *                     association if the spp_address field is empty. Note
1978  *                     also, that if delayed sack is enabled and this
1979  *                     value is set to 0, no change is made to the last
1980  *                     recorded delayed sack timer value.
1981  *
1982  *   spp_flags       - These flags are used to control various features
1983  *                     on an association. The flag field may contain
1984  *                     zero or more of the following options.
1985  *
1986  *                     SPP_HB_ENABLE  - Enable heartbeats on the
1987  *                     specified address. Note that if the address
1988  *                     field is empty all addresses for the association
1989  *                     have heartbeats enabled upon them.
1990  *
1991  *                     SPP_HB_DISABLE - Disable heartbeats on the
1992  *                     speicifed address. Note that if the address
1993  *                     field is empty all addresses for the association
1994  *                     will have their heartbeats disabled. Note also
1995  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
1996  *                     mutually exclusive, only one of these two should
1997  *                     be specified. Enabling both fields will have
1998  *                     undetermined results.
1999  *
2000  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2001  *                     to be made immediately.
2002  *
2003  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2004  *                     discovery upon the specified address. Note that
2005  *                     if the address feild is empty then all addresses
2006  *                     on the association are effected.
2007  *
2008  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2009  *                     discovery upon the specified address. Note that
2010  *                     if the address feild is empty then all addresses
2011  *                     on the association are effected. Not also that
2012  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2013  *                     exclusive. Enabling both will have undetermined
2014  *                     results.
2015  *
2016  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2017  *                     on delayed sack. The time specified in spp_sackdelay
2018  *                     is used to specify the sack delay for this address. Note
2019  *                     that if spp_address is empty then all addresses will
2020  *                     enable delayed sack and take on the sack delay
2021  *                     value specified in spp_sackdelay.
2022  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2023  *                     off delayed sack. If the spp_address field is blank then
2024  *                     delayed sack is disabled for the entire association. Note
2025  *                     also that this field is mutually exclusive to
2026  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2027  *                     results.
2028  */
2029 int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2030 				struct sctp_transport   *trans,
2031 				struct sctp_association *asoc,
2032 				struct sctp_sock        *sp,
2033 				int                      hb_change,
2034 				int                      pmtud_change,
2035 				int                      sackdelay_change)
2036 {
2037 	int error;
2038 
2039 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2040 		error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2041 		if (error)
2042 			return error;
2043 	}
2044 
2045 	if (params->spp_hbinterval) {
2046 		if (trans) {
2047 			trans->hbinterval = msecs_to_jiffies(params->spp_hbinterval);
2048 		} else if (asoc) {
2049 			asoc->hbinterval = msecs_to_jiffies(params->spp_hbinterval);
2050 		} else {
2051 			sp->hbinterval = params->spp_hbinterval;
2052 		}
2053 	}
2054 
2055 	if (hb_change) {
2056 		if (trans) {
2057 			trans->param_flags =
2058 				(trans->param_flags & ~SPP_HB) | hb_change;
2059 		} else if (asoc) {
2060 			asoc->param_flags =
2061 				(asoc->param_flags & ~SPP_HB) | hb_change;
2062 		} else {
2063 			sp->param_flags =
2064 				(sp->param_flags & ~SPP_HB) | hb_change;
2065 		}
2066 	}
2067 
2068 	if (params->spp_pathmtu) {
2069 		if (trans) {
2070 			trans->pathmtu = params->spp_pathmtu;
2071 			sctp_assoc_sync_pmtu(asoc);
2072 		} else if (asoc) {
2073 			asoc->pathmtu = params->spp_pathmtu;
2074 			sctp_frag_point(sp, params->spp_pathmtu);
2075 		} else {
2076 			sp->pathmtu = params->spp_pathmtu;
2077 		}
2078 	}
2079 
2080 	if (pmtud_change) {
2081 		if (trans) {
2082 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2083 				(params->spp_flags & SPP_PMTUD_ENABLE);
2084 			trans->param_flags =
2085 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2086 			if (update) {
2087 				sctp_transport_pmtu(trans);
2088 				sctp_assoc_sync_pmtu(asoc);
2089 			}
2090 		} else if (asoc) {
2091 			asoc->param_flags =
2092 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2093 		} else {
2094 			sp->param_flags =
2095 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2096 		}
2097 	}
2098 
2099 	if (params->spp_sackdelay) {
2100 		if (trans) {
2101 			trans->sackdelay =
2102 				msecs_to_jiffies(params->spp_sackdelay);
2103 		} else if (asoc) {
2104 			asoc->sackdelay =
2105 				msecs_to_jiffies(params->spp_sackdelay);
2106 		} else {
2107 			sp->sackdelay = params->spp_sackdelay;
2108 		}
2109 	}
2110 
2111 	if (sackdelay_change) {
2112 		if (trans) {
2113 			trans->param_flags =
2114 				(trans->param_flags & ~SPP_SACKDELAY) |
2115 				sackdelay_change;
2116 		} else if (asoc) {
2117 			asoc->param_flags =
2118 				(asoc->param_flags & ~SPP_SACKDELAY) |
2119 				sackdelay_change;
2120 		} else {
2121 			sp->param_flags =
2122 				(sp->param_flags & ~SPP_SACKDELAY) |
2123 				sackdelay_change;
2124 		}
2125 	}
2126 
2127 	if (params->spp_pathmaxrxt) {
2128 		if (trans) {
2129 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2130 		} else if (asoc) {
2131 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2132 		} else {
2133 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2134 		}
2135 	}
2136 
2137 	return 0;
2138 }
2139 
2140 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2141 					    char __user *optval, int optlen)
2142 {
2143 	struct sctp_paddrparams  params;
2144 	struct sctp_transport   *trans = NULL;
2145 	struct sctp_association *asoc = NULL;
2146 	struct sctp_sock        *sp = sctp_sk(sk);
2147 	int error;
2148 	int hb_change, pmtud_change, sackdelay_change;
2149 
2150 	if (optlen != sizeof(struct sctp_paddrparams))
2151 		return - EINVAL;
2152 
2153 	if (copy_from_user(&params, optval, optlen))
2154 		return -EFAULT;
2155 
2156 	/* Validate flags and value parameters. */
2157 	hb_change        = params.spp_flags & SPP_HB;
2158 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2159 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2160 
2161 	if (hb_change        == SPP_HB ||
2162 	    pmtud_change     == SPP_PMTUD ||
2163 	    sackdelay_change == SPP_SACKDELAY ||
2164 	    params.spp_sackdelay > 500 ||
2165 	    (params.spp_pathmtu
2166 	    && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2167 		return -EINVAL;
2168 
2169 	/* If an address other than INADDR_ANY is specified, and
2170 	 * no transport is found, then the request is invalid.
2171 	 */
2172 	if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
2173 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2174 					       params.spp_assoc_id);
2175 		if (!trans)
2176 			return -EINVAL;
2177 	}
2178 
2179 	/* Get association, if assoc_id != 0 and the socket is a one
2180 	 * to many style socket, and an association was not found, then
2181 	 * the id was invalid.
2182 	 */
2183 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2184 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2185 		return -EINVAL;
2186 
2187 	/* Heartbeat demand can only be sent on a transport or
2188 	 * association, but not a socket.
2189 	 */
2190 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2191 		return -EINVAL;
2192 
2193 	/* Process parameters. */
2194 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2195 					    hb_change, pmtud_change,
2196 					    sackdelay_change);
2197 
2198 	if (error)
2199 		return error;
2200 
2201 	/* If changes are for association, also apply parameters to each
2202 	 * transport.
2203 	 */
2204 	if (!trans && asoc) {
2205 		struct list_head *pos;
2206 
2207 		list_for_each(pos, &asoc->peer.transport_addr_list) {
2208 			trans = list_entry(pos, struct sctp_transport,
2209 					   transports);
2210 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2211 						    hb_change, pmtud_change,
2212 						    sackdelay_change);
2213 		}
2214 	}
2215 
2216 	return 0;
2217 }
2218 
2219 /* 7.1.24. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
2220  *
2221  *   This options will get or set the delayed ack timer.  The time is set
2222  *   in milliseconds.  If the assoc_id is 0, then this sets or gets the
2223  *   endpoints default delayed ack timer value.  If the assoc_id field is
2224  *   non-zero, then the set or get effects the specified association.
2225  *
2226  *   struct sctp_assoc_value {
2227  *       sctp_assoc_t            assoc_id;
2228  *       uint32_t                assoc_value;
2229  *   };
2230  *
2231  *     assoc_id    - This parameter, indicates which association the
2232  *                   user is preforming an action upon. Note that if
2233  *                   this field's value is zero then the endpoints
2234  *                   default value is changed (effecting future
2235  *                   associations only).
2236  *
2237  *     assoc_value - This parameter contains the number of milliseconds
2238  *                   that the user is requesting the delayed ACK timer
2239  *                   be set to. Note that this value is defined in
2240  *                   the standard to be between 200 and 500 milliseconds.
2241  *
2242  *                   Note: a value of zero will leave the value alone,
2243  *                   but disable SACK delay. A non-zero value will also
2244  *                   enable SACK delay.
2245  */
2246 
2247 static int sctp_setsockopt_delayed_ack_time(struct sock *sk,
2248 					    char __user *optval, int optlen)
2249 {
2250 	struct sctp_assoc_value  params;
2251 	struct sctp_transport   *trans = NULL;
2252 	struct sctp_association *asoc = NULL;
2253 	struct sctp_sock        *sp = sctp_sk(sk);
2254 
2255 	if (optlen != sizeof(struct sctp_assoc_value))
2256 		return - EINVAL;
2257 
2258 	if (copy_from_user(&params, optval, optlen))
2259 		return -EFAULT;
2260 
2261 	/* Validate value parameter. */
2262 	if (params.assoc_value > 500)
2263 		return -EINVAL;
2264 
2265 	/* Get association, if assoc_id != 0 and the socket is a one
2266 	 * to many style socket, and an association was not found, then
2267 	 * the id was invalid.
2268  	 */
2269 	asoc = sctp_id2assoc(sk, params.assoc_id);
2270 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
2271 		return -EINVAL;
2272 
2273 	if (params.assoc_value) {
2274 		if (asoc) {
2275 			asoc->sackdelay =
2276 				msecs_to_jiffies(params.assoc_value);
2277 			asoc->param_flags =
2278 				(asoc->param_flags & ~SPP_SACKDELAY) |
2279 				SPP_SACKDELAY_ENABLE;
2280 		} else {
2281 			sp->sackdelay = params.assoc_value;
2282 			sp->param_flags =
2283 				(sp->param_flags & ~SPP_SACKDELAY) |
2284 				SPP_SACKDELAY_ENABLE;
2285 		}
2286 	} else {
2287 		if (asoc) {
2288 			asoc->param_flags =
2289 				(asoc->param_flags & ~SPP_SACKDELAY) |
2290 				SPP_SACKDELAY_DISABLE;
2291 		} else {
2292 			sp->param_flags =
2293 				(sp->param_flags & ~SPP_SACKDELAY) |
2294 				SPP_SACKDELAY_DISABLE;
2295 		}
2296 	}
2297 
2298 	/* If change is for association, also apply to each transport. */
2299 	if (asoc) {
2300 		struct list_head *pos;
2301 
2302 		list_for_each(pos, &asoc->peer.transport_addr_list) {
2303 			trans = list_entry(pos, struct sctp_transport,
2304 					   transports);
2305 			if (params.assoc_value) {
2306 				trans->sackdelay =
2307 					msecs_to_jiffies(params.assoc_value);
2308 				trans->param_flags =
2309 					(trans->param_flags & ~SPP_SACKDELAY) |
2310 					SPP_SACKDELAY_ENABLE;
2311 			} else {
2312 				trans->param_flags =
2313 					(trans->param_flags & ~SPP_SACKDELAY) |
2314 					SPP_SACKDELAY_DISABLE;
2315 			}
2316 		}
2317 	}
2318 
2319 	return 0;
2320 }
2321 
2322 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2323  *
2324  * Applications can specify protocol parameters for the default association
2325  * initialization.  The option name argument to setsockopt() and getsockopt()
2326  * is SCTP_INITMSG.
2327  *
2328  * Setting initialization parameters is effective only on an unconnected
2329  * socket (for UDP-style sockets only future associations are effected
2330  * by the change).  With TCP-style sockets, this option is inherited by
2331  * sockets derived from a listener socket.
2332  */
2333 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen)
2334 {
2335 	struct sctp_initmsg sinit;
2336 	struct sctp_sock *sp = sctp_sk(sk);
2337 
2338 	if (optlen != sizeof(struct sctp_initmsg))
2339 		return -EINVAL;
2340 	if (copy_from_user(&sinit, optval, optlen))
2341 		return -EFAULT;
2342 
2343 	if (sinit.sinit_num_ostreams)
2344 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2345 	if (sinit.sinit_max_instreams)
2346 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2347 	if (sinit.sinit_max_attempts)
2348 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2349 	if (sinit.sinit_max_init_timeo)
2350 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2351 
2352 	return 0;
2353 }
2354 
2355 /*
2356  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2357  *
2358  *   Applications that wish to use the sendto() system call may wish to
2359  *   specify a default set of parameters that would normally be supplied
2360  *   through the inclusion of ancillary data.  This socket option allows
2361  *   such an application to set the default sctp_sndrcvinfo structure.
2362  *   The application that wishes to use this socket option simply passes
2363  *   in to this call the sctp_sndrcvinfo structure defined in Section
2364  *   5.2.2) The input parameters accepted by this call include
2365  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2366  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2367  *   to this call if the caller is using the UDP model.
2368  */
2369 static int sctp_setsockopt_default_send_param(struct sock *sk,
2370 						char __user *optval, int optlen)
2371 {
2372 	struct sctp_sndrcvinfo info;
2373 	struct sctp_association *asoc;
2374 	struct sctp_sock *sp = sctp_sk(sk);
2375 
2376 	if (optlen != sizeof(struct sctp_sndrcvinfo))
2377 		return -EINVAL;
2378 	if (copy_from_user(&info, optval, optlen))
2379 		return -EFAULT;
2380 
2381 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2382 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2383 		return -EINVAL;
2384 
2385 	if (asoc) {
2386 		asoc->default_stream = info.sinfo_stream;
2387 		asoc->default_flags = info.sinfo_flags;
2388 		asoc->default_ppid = info.sinfo_ppid;
2389 		asoc->default_context = info.sinfo_context;
2390 		asoc->default_timetolive = info.sinfo_timetolive;
2391 	} else {
2392 		sp->default_stream = info.sinfo_stream;
2393 		sp->default_flags = info.sinfo_flags;
2394 		sp->default_ppid = info.sinfo_ppid;
2395 		sp->default_context = info.sinfo_context;
2396 		sp->default_timetolive = info.sinfo_timetolive;
2397 	}
2398 
2399 	return 0;
2400 }
2401 
2402 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2403  *
2404  * Requests that the local SCTP stack use the enclosed peer address as
2405  * the association primary.  The enclosed address must be one of the
2406  * association peer's addresses.
2407  */
2408 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2409 					int optlen)
2410 {
2411 	struct sctp_prim prim;
2412 	struct sctp_transport *trans;
2413 
2414 	if (optlen != sizeof(struct sctp_prim))
2415 		return -EINVAL;
2416 
2417 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2418 		return -EFAULT;
2419 
2420 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2421 	if (!trans)
2422 		return -EINVAL;
2423 
2424 	sctp_assoc_set_primary(trans->asoc, trans);
2425 
2426 	return 0;
2427 }
2428 
2429 /*
2430  * 7.1.5 SCTP_NODELAY
2431  *
2432  * Turn on/off any Nagle-like algorithm.  This means that packets are
2433  * generally sent as soon as possible and no unnecessary delays are
2434  * introduced, at the cost of more packets in the network.  Expects an
2435  *  integer boolean flag.
2436  */
2437 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2438 					int optlen)
2439 {
2440 	int val;
2441 
2442 	if (optlen < sizeof(int))
2443 		return -EINVAL;
2444 	if (get_user(val, (int __user *)optval))
2445 		return -EFAULT;
2446 
2447 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2448 	return 0;
2449 }
2450 
2451 /*
2452  *
2453  * 7.1.1 SCTP_RTOINFO
2454  *
2455  * The protocol parameters used to initialize and bound retransmission
2456  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2457  * and modify these parameters.
2458  * All parameters are time values, in milliseconds.  A value of 0, when
2459  * modifying the parameters, indicates that the current value should not
2460  * be changed.
2461  *
2462  */
2463 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) {
2464 	struct sctp_rtoinfo rtoinfo;
2465 	struct sctp_association *asoc;
2466 
2467 	if (optlen != sizeof (struct sctp_rtoinfo))
2468 		return -EINVAL;
2469 
2470 	if (copy_from_user(&rtoinfo, optval, optlen))
2471 		return -EFAULT;
2472 
2473 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2474 
2475 	/* Set the values to the specific association */
2476 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2477 		return -EINVAL;
2478 
2479 	if (asoc) {
2480 		if (rtoinfo.srto_initial != 0)
2481 			asoc->rto_initial =
2482 				msecs_to_jiffies(rtoinfo.srto_initial);
2483 		if (rtoinfo.srto_max != 0)
2484 			asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2485 		if (rtoinfo.srto_min != 0)
2486 			asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2487 	} else {
2488 		/* If there is no association or the association-id = 0
2489 		 * set the values to the endpoint.
2490 		 */
2491 		struct sctp_sock *sp = sctp_sk(sk);
2492 
2493 		if (rtoinfo.srto_initial != 0)
2494 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2495 		if (rtoinfo.srto_max != 0)
2496 			sp->rtoinfo.srto_max = rtoinfo.srto_max;
2497 		if (rtoinfo.srto_min != 0)
2498 			sp->rtoinfo.srto_min = rtoinfo.srto_min;
2499 	}
2500 
2501 	return 0;
2502 }
2503 
2504 /*
2505  *
2506  * 7.1.2 SCTP_ASSOCINFO
2507  *
2508  * This option is used to tune the the maximum retransmission attempts
2509  * of the association.
2510  * Returns an error if the new association retransmission value is
2511  * greater than the sum of the retransmission value  of the peer.
2512  * See [SCTP] for more information.
2513  *
2514  */
2515 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen)
2516 {
2517 
2518 	struct sctp_assocparams assocparams;
2519 	struct sctp_association *asoc;
2520 
2521 	if (optlen != sizeof(struct sctp_assocparams))
2522 		return -EINVAL;
2523 	if (copy_from_user(&assocparams, optval, optlen))
2524 		return -EFAULT;
2525 
2526 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2527 
2528 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2529 		return -EINVAL;
2530 
2531 	/* Set the values to the specific association */
2532 	if (asoc) {
2533 		if (assocparams.sasoc_asocmaxrxt != 0) {
2534 			__u32 path_sum = 0;
2535 			int   paths = 0;
2536 			struct list_head *pos;
2537 			struct sctp_transport *peer_addr;
2538 
2539 			list_for_each(pos, &asoc->peer.transport_addr_list) {
2540 				peer_addr = list_entry(pos,
2541 						struct sctp_transport,
2542 						transports);
2543 				path_sum += peer_addr->pathmaxrxt;
2544 				paths++;
2545 			}
2546 
2547 			/* Only validate asocmaxrxt if we have more then
2548 			 * one path/transport.  We do this because path
2549 			 * retransmissions are only counted when we have more
2550 			 * then one path.
2551 			 */
2552 			if (paths > 1 &&
2553 			    assocparams.sasoc_asocmaxrxt > path_sum)
2554 				return -EINVAL;
2555 
2556 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2557 		}
2558 
2559 		if (assocparams.sasoc_cookie_life != 0) {
2560 			asoc->cookie_life.tv_sec =
2561 					assocparams.sasoc_cookie_life / 1000;
2562 			asoc->cookie_life.tv_usec =
2563 					(assocparams.sasoc_cookie_life % 1000)
2564 					* 1000;
2565 		}
2566 	} else {
2567 		/* Set the values to the endpoint */
2568 		struct sctp_sock *sp = sctp_sk(sk);
2569 
2570 		if (assocparams.sasoc_asocmaxrxt != 0)
2571 			sp->assocparams.sasoc_asocmaxrxt =
2572 						assocparams.sasoc_asocmaxrxt;
2573 		if (assocparams.sasoc_cookie_life != 0)
2574 			sp->assocparams.sasoc_cookie_life =
2575 						assocparams.sasoc_cookie_life;
2576 	}
2577 	return 0;
2578 }
2579 
2580 /*
2581  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2582  *
2583  * This socket option is a boolean flag which turns on or off mapped V4
2584  * addresses.  If this option is turned on and the socket is type
2585  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2586  * If this option is turned off, then no mapping will be done of V4
2587  * addresses and a user will receive both PF_INET6 and PF_INET type
2588  * addresses on the socket.
2589  */
2590 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen)
2591 {
2592 	int val;
2593 	struct sctp_sock *sp = sctp_sk(sk);
2594 
2595 	if (optlen < sizeof(int))
2596 		return -EINVAL;
2597 	if (get_user(val, (int __user *)optval))
2598 		return -EFAULT;
2599 	if (val)
2600 		sp->v4mapped = 1;
2601 	else
2602 		sp->v4mapped = 0;
2603 
2604 	return 0;
2605 }
2606 
2607 /*
2608  * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
2609  *
2610  * This socket option specifies the maximum size to put in any outgoing
2611  * SCTP chunk.  If a message is larger than this size it will be
2612  * fragmented by SCTP into the specified size.  Note that the underlying
2613  * SCTP implementation may fragment into smaller sized chunks when the
2614  * PMTU of the underlying association is smaller than the value set by
2615  * the user.
2616  */
2617 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen)
2618 {
2619 	struct sctp_association *asoc;
2620 	struct list_head *pos;
2621 	struct sctp_sock *sp = sctp_sk(sk);
2622 	int val;
2623 
2624 	if (optlen < sizeof(int))
2625 		return -EINVAL;
2626 	if (get_user(val, (int __user *)optval))
2627 		return -EFAULT;
2628 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2629 		return -EINVAL;
2630 	sp->user_frag = val;
2631 
2632 	/* Update the frag_point of the existing associations. */
2633 	list_for_each(pos, &(sp->ep->asocs)) {
2634 		asoc = list_entry(pos, struct sctp_association, asocs);
2635 		asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu);
2636 	}
2637 
2638 	return 0;
2639 }
2640 
2641 
2642 /*
2643  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2644  *
2645  *   Requests that the peer mark the enclosed address as the association
2646  *   primary. The enclosed address must be one of the association's
2647  *   locally bound addresses. The following structure is used to make a
2648  *   set primary request:
2649  */
2650 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2651 					     int optlen)
2652 {
2653 	struct sctp_sock	*sp;
2654 	struct sctp_endpoint	*ep;
2655 	struct sctp_association	*asoc = NULL;
2656 	struct sctp_setpeerprim	prim;
2657 	struct sctp_chunk	*chunk;
2658 	int 			err;
2659 
2660 	sp = sctp_sk(sk);
2661 	ep = sp->ep;
2662 
2663 	if (!sctp_addip_enable)
2664 		return -EPERM;
2665 
2666 	if (optlen != sizeof(struct sctp_setpeerprim))
2667 		return -EINVAL;
2668 
2669 	if (copy_from_user(&prim, optval, optlen))
2670 		return -EFAULT;
2671 
2672 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2673 	if (!asoc)
2674 		return -EINVAL;
2675 
2676 	if (!asoc->peer.asconf_capable)
2677 		return -EPERM;
2678 
2679 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2680 		return -EPERM;
2681 
2682 	if (!sctp_state(asoc, ESTABLISHED))
2683 		return -ENOTCONN;
2684 
2685 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2686 		return -EADDRNOTAVAIL;
2687 
2688 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
2689 	chunk = sctp_make_asconf_set_prim(asoc,
2690 					  (union sctp_addr *)&prim.sspp_addr);
2691 	if (!chunk)
2692 		return -ENOMEM;
2693 
2694 	err = sctp_send_asconf(asoc, chunk);
2695 
2696 	SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2697 
2698 	return err;
2699 }
2700 
2701 static int sctp_setsockopt_adaption_layer(struct sock *sk, char __user *optval,
2702 					  int optlen)
2703 {
2704 	struct sctp_setadaption adaption;
2705 
2706 	if (optlen != sizeof(struct sctp_setadaption))
2707 		return -EINVAL;
2708 	if (copy_from_user(&adaption, optval, optlen))
2709 		return -EFAULT;
2710 
2711 	sctp_sk(sk)->adaption_ind = adaption.ssb_adaption_ind;
2712 
2713 	return 0;
2714 }
2715 
2716 /* API 6.2 setsockopt(), getsockopt()
2717  *
2718  * Applications use setsockopt() and getsockopt() to set or retrieve
2719  * socket options.  Socket options are used to change the default
2720  * behavior of sockets calls.  They are described in Section 7.
2721  *
2722  * The syntax is:
2723  *
2724  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
2725  *                    int __user *optlen);
2726  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
2727  *                    int optlen);
2728  *
2729  *   sd      - the socket descript.
2730  *   level   - set to IPPROTO_SCTP for all SCTP options.
2731  *   optname - the option name.
2732  *   optval  - the buffer to store the value of the option.
2733  *   optlen  - the size of the buffer.
2734  */
2735 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
2736 				char __user *optval, int optlen)
2737 {
2738 	int retval = 0;
2739 
2740 	SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
2741 			  sk, optname);
2742 
2743 	/* I can hardly begin to describe how wrong this is.  This is
2744 	 * so broken as to be worse than useless.  The API draft
2745 	 * REALLY is NOT helpful here...  I am not convinced that the
2746 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
2747 	 * are at all well-founded.
2748 	 */
2749 	if (level != SOL_SCTP) {
2750 		struct sctp_af *af = sctp_sk(sk)->pf->af;
2751 		retval = af->setsockopt(sk, level, optname, optval, optlen);
2752 		goto out_nounlock;
2753 	}
2754 
2755 	sctp_lock_sock(sk);
2756 
2757 	switch (optname) {
2758 	case SCTP_SOCKOPT_BINDX_ADD:
2759 		/* 'optlen' is the size of the addresses buffer. */
2760 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2761 					       optlen, SCTP_BINDX_ADD_ADDR);
2762 		break;
2763 
2764 	case SCTP_SOCKOPT_BINDX_REM:
2765 		/* 'optlen' is the size of the addresses buffer. */
2766 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2767 					       optlen, SCTP_BINDX_REM_ADDR);
2768 		break;
2769 
2770 	case SCTP_SOCKOPT_CONNECTX:
2771 		/* 'optlen' is the size of the addresses buffer. */
2772 		retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval,
2773 					       optlen);
2774 		break;
2775 
2776 	case SCTP_DISABLE_FRAGMENTS:
2777 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
2778 		break;
2779 
2780 	case SCTP_EVENTS:
2781 		retval = sctp_setsockopt_events(sk, optval, optlen);
2782 		break;
2783 
2784 	case SCTP_AUTOCLOSE:
2785 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
2786 		break;
2787 
2788 	case SCTP_PEER_ADDR_PARAMS:
2789 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
2790 		break;
2791 
2792 	case SCTP_DELAYED_ACK_TIME:
2793 		retval = sctp_setsockopt_delayed_ack_time(sk, optval, optlen);
2794 		break;
2795 
2796 	case SCTP_INITMSG:
2797 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
2798 		break;
2799 	case SCTP_DEFAULT_SEND_PARAM:
2800 		retval = sctp_setsockopt_default_send_param(sk, optval,
2801 							    optlen);
2802 		break;
2803 	case SCTP_PRIMARY_ADDR:
2804 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
2805 		break;
2806 	case SCTP_SET_PEER_PRIMARY_ADDR:
2807 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
2808 		break;
2809 	case SCTP_NODELAY:
2810 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
2811 		break;
2812 	case SCTP_RTOINFO:
2813 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
2814 		break;
2815 	case SCTP_ASSOCINFO:
2816 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
2817 		break;
2818 	case SCTP_I_WANT_MAPPED_V4_ADDR:
2819 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
2820 		break;
2821 	case SCTP_MAXSEG:
2822 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
2823 		break;
2824 	case SCTP_ADAPTION_LAYER:
2825 		retval = sctp_setsockopt_adaption_layer(sk, optval, optlen);
2826 		break;
2827 
2828 	default:
2829 		retval = -ENOPROTOOPT;
2830 		break;
2831 	};
2832 
2833 	sctp_release_sock(sk);
2834 
2835 out_nounlock:
2836 	return retval;
2837 }
2838 
2839 /* API 3.1.6 connect() - UDP Style Syntax
2840  *
2841  * An application may use the connect() call in the UDP model to initiate an
2842  * association without sending data.
2843  *
2844  * The syntax is:
2845  *
2846  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
2847  *
2848  * sd: the socket descriptor to have a new association added to.
2849  *
2850  * nam: the address structure (either struct sockaddr_in or struct
2851  *    sockaddr_in6 defined in RFC2553 [7]).
2852  *
2853  * len: the size of the address.
2854  */
2855 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
2856 			     int addr_len)
2857 {
2858 	int err = 0;
2859 	struct sctp_af *af;
2860 
2861 	sctp_lock_sock(sk);
2862 
2863 	SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
2864 			  __FUNCTION__, sk, addr, addr_len);
2865 
2866 	/* Validate addr_len before calling common connect/connectx routine. */
2867 	af = sctp_get_af_specific(addr->sa_family);
2868 	if (!af || addr_len < af->sockaddr_len) {
2869 		err = -EINVAL;
2870 	} else {
2871 		/* Pass correct addr len to common routine (so it knows there
2872 		 * is only one address being passed.
2873 		 */
2874 		err = __sctp_connect(sk, addr, af->sockaddr_len);
2875 	}
2876 
2877 	sctp_release_sock(sk);
2878 	return err;
2879 }
2880 
2881 /* FIXME: Write comments. */
2882 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
2883 {
2884 	return -EOPNOTSUPP; /* STUB */
2885 }
2886 
2887 /* 4.1.4 accept() - TCP Style Syntax
2888  *
2889  * Applications use accept() call to remove an established SCTP
2890  * association from the accept queue of the endpoint.  A new socket
2891  * descriptor will be returned from accept() to represent the newly
2892  * formed association.
2893  */
2894 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
2895 {
2896 	struct sctp_sock *sp;
2897 	struct sctp_endpoint *ep;
2898 	struct sock *newsk = NULL;
2899 	struct sctp_association *asoc;
2900 	long timeo;
2901 	int error = 0;
2902 
2903 	sctp_lock_sock(sk);
2904 
2905 	sp = sctp_sk(sk);
2906 	ep = sp->ep;
2907 
2908 	if (!sctp_style(sk, TCP)) {
2909 		error = -EOPNOTSUPP;
2910 		goto out;
2911 	}
2912 
2913 	if (!sctp_sstate(sk, LISTENING)) {
2914 		error = -EINVAL;
2915 		goto out;
2916 	}
2917 
2918 	timeo = sock_rcvtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK);
2919 
2920 	error = sctp_wait_for_accept(sk, timeo);
2921 	if (error)
2922 		goto out;
2923 
2924 	/* We treat the list of associations on the endpoint as the accept
2925 	 * queue and pick the first association on the list.
2926 	 */
2927 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
2928 
2929 	newsk = sp->pf->create_accept_sk(sk, asoc);
2930 	if (!newsk) {
2931 		error = -ENOMEM;
2932 		goto out;
2933 	}
2934 
2935 	/* Populate the fields of the newsk from the oldsk and migrate the
2936 	 * asoc to the newsk.
2937 	 */
2938 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
2939 
2940 out:
2941 	sctp_release_sock(sk);
2942  	*err = error;
2943 	return newsk;
2944 }
2945 
2946 /* The SCTP ioctl handler. */
2947 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
2948 {
2949 	return -ENOIOCTLCMD;
2950 }
2951 
2952 /* This is the function which gets called during socket creation to
2953  * initialized the SCTP-specific portion of the sock.
2954  * The sock structure should already be zero-filled memory.
2955  */
2956 SCTP_STATIC int sctp_init_sock(struct sock *sk)
2957 {
2958 	struct sctp_endpoint *ep;
2959 	struct sctp_sock *sp;
2960 
2961 	SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
2962 
2963 	sp = sctp_sk(sk);
2964 
2965 	/* Initialize the SCTP per socket area.  */
2966 	switch (sk->sk_type) {
2967 	case SOCK_SEQPACKET:
2968 		sp->type = SCTP_SOCKET_UDP;
2969 		break;
2970 	case SOCK_STREAM:
2971 		sp->type = SCTP_SOCKET_TCP;
2972 		break;
2973 	default:
2974 		return -ESOCKTNOSUPPORT;
2975 	}
2976 
2977 	/* Initialize default send parameters. These parameters can be
2978 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
2979 	 */
2980 	sp->default_stream = 0;
2981 	sp->default_ppid = 0;
2982 	sp->default_flags = 0;
2983 	sp->default_context = 0;
2984 	sp->default_timetolive = 0;
2985 
2986 	/* Initialize default setup parameters. These parameters
2987 	 * can be modified with the SCTP_INITMSG socket option or
2988 	 * overridden by the SCTP_INIT CMSG.
2989 	 */
2990 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
2991 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
2992 	sp->initmsg.sinit_max_attempts   = sctp_max_retrans_init;
2993 	sp->initmsg.sinit_max_init_timeo = jiffies_to_msecs(sctp_rto_max);
2994 
2995 	/* Initialize default RTO related parameters.  These parameters can
2996 	 * be modified for with the SCTP_RTOINFO socket option.
2997 	 */
2998 	sp->rtoinfo.srto_initial = jiffies_to_msecs(sctp_rto_initial);
2999 	sp->rtoinfo.srto_max     = jiffies_to_msecs(sctp_rto_max);
3000 	sp->rtoinfo.srto_min     = jiffies_to_msecs(sctp_rto_min);
3001 
3002 	/* Initialize default association related parameters. These parameters
3003 	 * can be modified with the SCTP_ASSOCINFO socket option.
3004 	 */
3005 	sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3006 	sp->assocparams.sasoc_number_peer_destinations = 0;
3007 	sp->assocparams.sasoc_peer_rwnd = 0;
3008 	sp->assocparams.sasoc_local_rwnd = 0;
3009 	sp->assocparams.sasoc_cookie_life =
3010 		jiffies_to_msecs(sctp_valid_cookie_life);
3011 
3012 	/* Initialize default event subscriptions. By default, all the
3013 	 * options are off.
3014 	 */
3015 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3016 
3017 	/* Default Peer Address Parameters.  These defaults can
3018 	 * be modified via SCTP_PEER_ADDR_PARAMS
3019 	 */
3020 	sp->hbinterval  = jiffies_to_msecs(sctp_hb_interval);
3021 	sp->pathmaxrxt  = sctp_max_retrans_path;
3022 	sp->pathmtu     = 0; // allow default discovery
3023 	sp->sackdelay   = jiffies_to_msecs(sctp_sack_timeout);
3024 	sp->param_flags = SPP_HB_ENABLE |
3025 	                  SPP_PMTUD_ENABLE |
3026 	                  SPP_SACKDELAY_ENABLE;
3027 
3028 	/* If enabled no SCTP message fragmentation will be performed.
3029 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3030 	 */
3031 	sp->disable_fragments = 0;
3032 
3033 	/* Turn on/off any Nagle-like algorithm.  */
3034 	sp->nodelay           = 1;
3035 
3036 	/* Enable by default. */
3037 	sp->v4mapped          = 1;
3038 
3039 	/* Auto-close idle associations after the configured
3040 	 * number of seconds.  A value of 0 disables this
3041 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
3042 	 * for UDP-style sockets only.
3043 	 */
3044 	sp->autoclose         = 0;
3045 
3046 	/* User specified fragmentation limit. */
3047 	sp->user_frag         = 0;
3048 
3049 	sp->adaption_ind = 0;
3050 
3051 	sp->pf = sctp_get_pf_specific(sk->sk_family);
3052 
3053 	/* Control variables for partial data delivery. */
3054 	sp->pd_mode           = 0;
3055 	skb_queue_head_init(&sp->pd_lobby);
3056 
3057 	/* Create a per socket endpoint structure.  Even if we
3058 	 * change the data structure relationships, this may still
3059 	 * be useful for storing pre-connect address information.
3060 	 */
3061 	ep = sctp_endpoint_new(sk, GFP_KERNEL);
3062 	if (!ep)
3063 		return -ENOMEM;
3064 
3065 	sp->ep = ep;
3066 	sp->hmac = NULL;
3067 
3068 	SCTP_DBG_OBJCNT_INC(sock);
3069 	return 0;
3070 }
3071 
3072 /* Cleanup any SCTP per socket resources.  */
3073 SCTP_STATIC int sctp_destroy_sock(struct sock *sk)
3074 {
3075 	struct sctp_endpoint *ep;
3076 
3077 	SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3078 
3079 	/* Release our hold on the endpoint. */
3080 	ep = sctp_sk(sk)->ep;
3081 	sctp_endpoint_free(ep);
3082 
3083 	return 0;
3084 }
3085 
3086 /* API 4.1.7 shutdown() - TCP Style Syntax
3087  *     int shutdown(int socket, int how);
3088  *
3089  *     sd      - the socket descriptor of the association to be closed.
3090  *     how     - Specifies the type of shutdown.  The  values  are
3091  *               as follows:
3092  *               SHUT_RD
3093  *                     Disables further receive operations. No SCTP
3094  *                     protocol action is taken.
3095  *               SHUT_WR
3096  *                     Disables further send operations, and initiates
3097  *                     the SCTP shutdown sequence.
3098  *               SHUT_RDWR
3099  *                     Disables further send  and  receive  operations
3100  *                     and initiates the SCTP shutdown sequence.
3101  */
3102 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3103 {
3104 	struct sctp_endpoint *ep;
3105 	struct sctp_association *asoc;
3106 
3107 	if (!sctp_style(sk, TCP))
3108 		return;
3109 
3110 	if (how & SEND_SHUTDOWN) {
3111 		ep = sctp_sk(sk)->ep;
3112 		if (!list_empty(&ep->asocs)) {
3113 			asoc = list_entry(ep->asocs.next,
3114 					  struct sctp_association, asocs);
3115 			sctp_primitive_SHUTDOWN(asoc, NULL);
3116 		}
3117 	}
3118 }
3119 
3120 /* 7.2.1 Association Status (SCTP_STATUS)
3121 
3122  * Applications can retrieve current status information about an
3123  * association, including association state, peer receiver window size,
3124  * number of unacked data chunks, and number of data chunks pending
3125  * receipt.  This information is read-only.
3126  */
3127 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3128 				       char __user *optval,
3129 				       int __user *optlen)
3130 {
3131 	struct sctp_status status;
3132 	struct sctp_association *asoc = NULL;
3133 	struct sctp_transport *transport;
3134 	sctp_assoc_t associd;
3135 	int retval = 0;
3136 
3137 	if (len != sizeof(status)) {
3138 		retval = -EINVAL;
3139 		goto out;
3140 	}
3141 
3142 	if (copy_from_user(&status, optval, sizeof(status))) {
3143 		retval = -EFAULT;
3144 		goto out;
3145 	}
3146 
3147 	associd = status.sstat_assoc_id;
3148 	asoc = sctp_id2assoc(sk, associd);
3149 	if (!asoc) {
3150 		retval = -EINVAL;
3151 		goto out;
3152 	}
3153 
3154 	transport = asoc->peer.primary_path;
3155 
3156 	status.sstat_assoc_id = sctp_assoc2id(asoc);
3157 	status.sstat_state = asoc->state;
3158 	status.sstat_rwnd =  asoc->peer.rwnd;
3159 	status.sstat_unackdata = asoc->unack_data;
3160 
3161 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
3162 	status.sstat_instrms = asoc->c.sinit_max_instreams;
3163 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
3164 	status.sstat_fragmentation_point = asoc->frag_point;
3165 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3166 	memcpy(&status.sstat_primary.spinfo_address,
3167 	       &(transport->ipaddr), sizeof(union sctp_addr));
3168 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
3169 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3170 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
3171 	status.sstat_primary.spinfo_state = transport->state;
3172 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
3173 	status.sstat_primary.spinfo_srtt = transport->srtt;
3174 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
3175 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
3176 
3177 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
3178 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
3179 
3180 	if (put_user(len, optlen)) {
3181 		retval = -EFAULT;
3182 		goto out;
3183 	}
3184 
3185 	SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
3186 			  len, status.sstat_state, status.sstat_rwnd,
3187 			  status.sstat_assoc_id);
3188 
3189 	if (copy_to_user(optval, &status, len)) {
3190 		retval = -EFAULT;
3191 		goto out;
3192 	}
3193 
3194 out:
3195 	return (retval);
3196 }
3197 
3198 
3199 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
3200  *
3201  * Applications can retrieve information about a specific peer address
3202  * of an association, including its reachability state, congestion
3203  * window, and retransmission timer values.  This information is
3204  * read-only.
3205  */
3206 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
3207 					  char __user *optval,
3208 					  int __user *optlen)
3209 {
3210 	struct sctp_paddrinfo pinfo;
3211 	struct sctp_transport *transport;
3212 	int retval = 0;
3213 
3214 	if (len != sizeof(pinfo)) {
3215 		retval = -EINVAL;
3216 		goto out;
3217 	}
3218 
3219 	if (copy_from_user(&pinfo, optval, sizeof(pinfo))) {
3220 		retval = -EFAULT;
3221 		goto out;
3222 	}
3223 
3224 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
3225 					   pinfo.spinfo_assoc_id);
3226 	if (!transport)
3227 		return -EINVAL;
3228 
3229 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3230 	pinfo.spinfo_state = transport->state;
3231 	pinfo.spinfo_cwnd = transport->cwnd;
3232 	pinfo.spinfo_srtt = transport->srtt;
3233 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
3234 	pinfo.spinfo_mtu = transport->pathmtu;
3235 
3236 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
3237 		pinfo.spinfo_state = SCTP_ACTIVE;
3238 
3239 	if (put_user(len, optlen)) {
3240 		retval = -EFAULT;
3241 		goto out;
3242 	}
3243 
3244 	if (copy_to_user(optval, &pinfo, len)) {
3245 		retval = -EFAULT;
3246 		goto out;
3247 	}
3248 
3249 out:
3250 	return (retval);
3251 }
3252 
3253 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
3254  *
3255  * This option is a on/off flag.  If enabled no SCTP message
3256  * fragmentation will be performed.  Instead if a message being sent
3257  * exceeds the current PMTU size, the message will NOT be sent and
3258  * instead a error will be indicated to the user.
3259  */
3260 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
3261 					char __user *optval, int __user *optlen)
3262 {
3263 	int val;
3264 
3265 	if (len < sizeof(int))
3266 		return -EINVAL;
3267 
3268 	len = sizeof(int);
3269 	val = (sctp_sk(sk)->disable_fragments == 1);
3270 	if (put_user(len, optlen))
3271 		return -EFAULT;
3272 	if (copy_to_user(optval, &val, len))
3273 		return -EFAULT;
3274 	return 0;
3275 }
3276 
3277 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
3278  *
3279  * This socket option is used to specify various notifications and
3280  * ancillary data the user wishes to receive.
3281  */
3282 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
3283 				  int __user *optlen)
3284 {
3285 	if (len != sizeof(struct sctp_event_subscribe))
3286 		return -EINVAL;
3287 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
3288 		return -EFAULT;
3289 	return 0;
3290 }
3291 
3292 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
3293  *
3294  * This socket option is applicable to the UDP-style socket only.  When
3295  * set it will cause associations that are idle for more than the
3296  * specified number of seconds to automatically close.  An association
3297  * being idle is defined an association that has NOT sent or received
3298  * user data.  The special value of '0' indicates that no automatic
3299  * close of any associations should be performed.  The option expects an
3300  * integer defining the number of seconds of idle time before an
3301  * association is closed.
3302  */
3303 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
3304 {
3305 	/* Applicable to UDP-style socket only */
3306 	if (sctp_style(sk, TCP))
3307 		return -EOPNOTSUPP;
3308 	if (len != sizeof(int))
3309 		return -EINVAL;
3310 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, len))
3311 		return -EFAULT;
3312 	return 0;
3313 }
3314 
3315 /* Helper routine to branch off an association to a new socket.  */
3316 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
3317 				struct socket **sockp)
3318 {
3319 	struct sock *sk = asoc->base.sk;
3320 	struct socket *sock;
3321 	int err = 0;
3322 
3323 	/* An association cannot be branched off from an already peeled-off
3324 	 * socket, nor is this supported for tcp style sockets.
3325 	 */
3326 	if (!sctp_style(sk, UDP))
3327 		return -EINVAL;
3328 
3329 	/* Create a new socket.  */
3330 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
3331 	if (err < 0)
3332 		return err;
3333 
3334 	/* Populate the fields of the newsk from the oldsk and migrate the
3335 	 * asoc to the newsk.
3336 	 */
3337 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
3338 	*sockp = sock;
3339 
3340 	return err;
3341 }
3342 
3343 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
3344 {
3345 	sctp_peeloff_arg_t peeloff;
3346 	struct socket *newsock;
3347 	int retval = 0;
3348 	struct sctp_association *asoc;
3349 
3350 	if (len != sizeof(sctp_peeloff_arg_t))
3351 		return -EINVAL;
3352 	if (copy_from_user(&peeloff, optval, len))
3353 		return -EFAULT;
3354 
3355 	asoc = sctp_id2assoc(sk, peeloff.associd);
3356 	if (!asoc) {
3357 		retval = -EINVAL;
3358 		goto out;
3359 	}
3360 
3361 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc);
3362 
3363 	retval = sctp_do_peeloff(asoc, &newsock);
3364 	if (retval < 0)
3365 		goto out;
3366 
3367 	/* Map the socket to an unused fd that can be returned to the user.  */
3368 	retval = sock_map_fd(newsock);
3369 	if (retval < 0) {
3370 		sock_release(newsock);
3371 		goto out;
3372 	}
3373 
3374 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
3375 			  __FUNCTION__, sk, asoc, newsock->sk, retval);
3376 
3377 	/* Return the fd mapped to the new socket.  */
3378 	peeloff.sd = retval;
3379 	if (copy_to_user(optval, &peeloff, len))
3380 		retval = -EFAULT;
3381 
3382 out:
3383 	return retval;
3384 }
3385 
3386 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
3387  *
3388  * Applications can enable or disable heartbeats for any peer address of
3389  * an association, modify an address's heartbeat interval, force a
3390  * heartbeat to be sent immediately, and adjust the address's maximum
3391  * number of retransmissions sent before an address is considered
3392  * unreachable.  The following structure is used to access and modify an
3393  * address's parameters:
3394  *
3395  *  struct sctp_paddrparams {
3396  *     sctp_assoc_t            spp_assoc_id;
3397  *     struct sockaddr_storage spp_address;
3398  *     uint32_t                spp_hbinterval;
3399  *     uint16_t                spp_pathmaxrxt;
3400  *     uint32_t                spp_pathmtu;
3401  *     uint32_t                spp_sackdelay;
3402  *     uint32_t                spp_flags;
3403  * };
3404  *
3405  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
3406  *                     application, and identifies the association for
3407  *                     this query.
3408  *   spp_address     - This specifies which address is of interest.
3409  *   spp_hbinterval  - This contains the value of the heartbeat interval,
3410  *                     in milliseconds.  If a  value of zero
3411  *                     is present in this field then no changes are to
3412  *                     be made to this parameter.
3413  *   spp_pathmaxrxt  - This contains the maximum number of
3414  *                     retransmissions before this address shall be
3415  *                     considered unreachable. If a  value of zero
3416  *                     is present in this field then no changes are to
3417  *                     be made to this parameter.
3418  *   spp_pathmtu     - When Path MTU discovery is disabled the value
3419  *                     specified here will be the "fixed" path mtu.
3420  *                     Note that if the spp_address field is empty
3421  *                     then all associations on this address will
3422  *                     have this fixed path mtu set upon them.
3423  *
3424  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
3425  *                     the number of milliseconds that sacks will be delayed
3426  *                     for. This value will apply to all addresses of an
3427  *                     association if the spp_address field is empty. Note
3428  *                     also, that if delayed sack is enabled and this
3429  *                     value is set to 0, no change is made to the last
3430  *                     recorded delayed sack timer value.
3431  *
3432  *   spp_flags       - These flags are used to control various features
3433  *                     on an association. The flag field may contain
3434  *                     zero or more of the following options.
3435  *
3436  *                     SPP_HB_ENABLE  - Enable heartbeats on the
3437  *                     specified address. Note that if the address
3438  *                     field is empty all addresses for the association
3439  *                     have heartbeats enabled upon them.
3440  *
3441  *                     SPP_HB_DISABLE - Disable heartbeats on the
3442  *                     speicifed address. Note that if the address
3443  *                     field is empty all addresses for the association
3444  *                     will have their heartbeats disabled. Note also
3445  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
3446  *                     mutually exclusive, only one of these two should
3447  *                     be specified. Enabling both fields will have
3448  *                     undetermined results.
3449  *
3450  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
3451  *                     to be made immediately.
3452  *
3453  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
3454  *                     discovery upon the specified address. Note that
3455  *                     if the address feild is empty then all addresses
3456  *                     on the association are effected.
3457  *
3458  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
3459  *                     discovery upon the specified address. Note that
3460  *                     if the address feild is empty then all addresses
3461  *                     on the association are effected. Not also that
3462  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
3463  *                     exclusive. Enabling both will have undetermined
3464  *                     results.
3465  *
3466  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
3467  *                     on delayed sack. The time specified in spp_sackdelay
3468  *                     is used to specify the sack delay for this address. Note
3469  *                     that if spp_address is empty then all addresses will
3470  *                     enable delayed sack and take on the sack delay
3471  *                     value specified in spp_sackdelay.
3472  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
3473  *                     off delayed sack. If the spp_address field is blank then
3474  *                     delayed sack is disabled for the entire association. Note
3475  *                     also that this field is mutually exclusive to
3476  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
3477  *                     results.
3478  */
3479 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
3480 					    char __user *optval, int __user *optlen)
3481 {
3482 	struct sctp_paddrparams  params;
3483 	struct sctp_transport   *trans = NULL;
3484 	struct sctp_association *asoc = NULL;
3485 	struct sctp_sock        *sp = sctp_sk(sk);
3486 
3487 	if (len != sizeof(struct sctp_paddrparams))
3488 		return -EINVAL;
3489 
3490 	if (copy_from_user(&params, optval, len))
3491 		return -EFAULT;
3492 
3493 	/* If an address other than INADDR_ANY is specified, and
3494 	 * no transport is found, then the request is invalid.
3495 	 */
3496 	if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
3497 		trans = sctp_addr_id2transport(sk, &params.spp_address,
3498 					       params.spp_assoc_id);
3499 		if (!trans) {
3500 			SCTP_DEBUG_PRINTK("Failed no transport\n");
3501 			return -EINVAL;
3502 		}
3503 	}
3504 
3505 	/* Get association, if assoc_id != 0 and the socket is a one
3506 	 * to many style socket, and an association was not found, then
3507 	 * the id was invalid.
3508 	 */
3509 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
3510 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
3511 		SCTP_DEBUG_PRINTK("Failed no association\n");
3512 		return -EINVAL;
3513 	}
3514 
3515 	if (trans) {
3516 		/* Fetch transport values. */
3517 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
3518 		params.spp_pathmtu    = trans->pathmtu;
3519 		params.spp_pathmaxrxt = trans->pathmaxrxt;
3520 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
3521 
3522 		/*draft-11 doesn't say what to return in spp_flags*/
3523 		params.spp_flags      = trans->param_flags;
3524 	} else if (asoc) {
3525 		/* Fetch association values. */
3526 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
3527 		params.spp_pathmtu    = asoc->pathmtu;
3528 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
3529 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
3530 
3531 		/*draft-11 doesn't say what to return in spp_flags*/
3532 		params.spp_flags      = asoc->param_flags;
3533 	} else {
3534 		/* Fetch socket values. */
3535 		params.spp_hbinterval = sp->hbinterval;
3536 		params.spp_pathmtu    = sp->pathmtu;
3537 		params.spp_sackdelay  = sp->sackdelay;
3538 		params.spp_pathmaxrxt = sp->pathmaxrxt;
3539 
3540 		/*draft-11 doesn't say what to return in spp_flags*/
3541 		params.spp_flags      = sp->param_flags;
3542 	}
3543 
3544 	if (copy_to_user(optval, &params, len))
3545 		return -EFAULT;
3546 
3547 	if (put_user(len, optlen))
3548 		return -EFAULT;
3549 
3550 	return 0;
3551 }
3552 
3553 /* 7.1.24. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
3554  *
3555  *   This options will get or set the delayed ack timer.  The time is set
3556  *   in milliseconds.  If the assoc_id is 0, then this sets or gets the
3557  *   endpoints default delayed ack timer value.  If the assoc_id field is
3558  *   non-zero, then the set or get effects the specified association.
3559  *
3560  *   struct sctp_assoc_value {
3561  *       sctp_assoc_t            assoc_id;
3562  *       uint32_t                assoc_value;
3563  *   };
3564  *
3565  *     assoc_id    - This parameter, indicates which association the
3566  *                   user is preforming an action upon. Note that if
3567  *                   this field's value is zero then the endpoints
3568  *                   default value is changed (effecting future
3569  *                   associations only).
3570  *
3571  *     assoc_value - This parameter contains the number of milliseconds
3572  *                   that the user is requesting the delayed ACK timer
3573  *                   be set to. Note that this value is defined in
3574  *                   the standard to be between 200 and 500 milliseconds.
3575  *
3576  *                   Note: a value of zero will leave the value alone,
3577  *                   but disable SACK delay. A non-zero value will also
3578  *                   enable SACK delay.
3579  */
3580 static int sctp_getsockopt_delayed_ack_time(struct sock *sk, int len,
3581 					    char __user *optval,
3582 					    int __user *optlen)
3583 {
3584 	struct sctp_assoc_value  params;
3585 	struct sctp_association *asoc = NULL;
3586 	struct sctp_sock        *sp = sctp_sk(sk);
3587 
3588 	if (len != sizeof(struct sctp_assoc_value))
3589 		return - EINVAL;
3590 
3591 	if (copy_from_user(&params, optval, len))
3592 		return -EFAULT;
3593 
3594 	/* Get association, if assoc_id != 0 and the socket is a one
3595 	 * to many style socket, and an association was not found, then
3596 	 * the id was invalid.
3597  	 */
3598 	asoc = sctp_id2assoc(sk, params.assoc_id);
3599 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3600 		return -EINVAL;
3601 
3602 	if (asoc) {
3603 		/* Fetch association values. */
3604 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE)
3605 			params.assoc_value = jiffies_to_msecs(
3606 				asoc->sackdelay);
3607 		else
3608 			params.assoc_value = 0;
3609 	} else {
3610 		/* Fetch socket values. */
3611 		if (sp->param_flags & SPP_SACKDELAY_ENABLE)
3612 			params.assoc_value  = sp->sackdelay;
3613 		else
3614 			params.assoc_value  = 0;
3615 	}
3616 
3617 	if (copy_to_user(optval, &params, len))
3618 		return -EFAULT;
3619 
3620 	if (put_user(len, optlen))
3621 		return -EFAULT;
3622 
3623 	return 0;
3624 }
3625 
3626 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
3627  *
3628  * Applications can specify protocol parameters for the default association
3629  * initialization.  The option name argument to setsockopt() and getsockopt()
3630  * is SCTP_INITMSG.
3631  *
3632  * Setting initialization parameters is effective only on an unconnected
3633  * socket (for UDP-style sockets only future associations are effected
3634  * by the change).  With TCP-style sockets, this option is inherited by
3635  * sockets derived from a listener socket.
3636  */
3637 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
3638 {
3639 	if (len != sizeof(struct sctp_initmsg))
3640 		return -EINVAL;
3641 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
3642 		return -EFAULT;
3643 	return 0;
3644 }
3645 
3646 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len,
3647 					      char __user *optval,
3648 					      int __user *optlen)
3649 {
3650 	sctp_assoc_t id;
3651 	struct sctp_association *asoc;
3652 	struct list_head *pos;
3653 	int cnt = 0;
3654 
3655 	if (len != sizeof(sctp_assoc_t))
3656 		return -EINVAL;
3657 
3658 	if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
3659 		return -EFAULT;
3660 
3661 	/* For UDP-style sockets, id specifies the association to query.  */
3662 	asoc = sctp_id2assoc(sk, id);
3663 	if (!asoc)
3664 		return -EINVAL;
3665 
3666 	list_for_each(pos, &asoc->peer.transport_addr_list) {
3667 		cnt ++;
3668 	}
3669 
3670 	return cnt;
3671 }
3672 
3673 /*
3674  * Old API for getting list of peer addresses. Does not work for 32-bit
3675  * programs running on a 64-bit kernel
3676  */
3677 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len,
3678 					  char __user *optval,
3679 					  int __user *optlen)
3680 {
3681 	struct sctp_association *asoc;
3682 	struct list_head *pos;
3683 	int cnt = 0;
3684 	struct sctp_getaddrs_old getaddrs;
3685 	struct sctp_transport *from;
3686 	void __user *to;
3687 	union sctp_addr temp;
3688 	struct sctp_sock *sp = sctp_sk(sk);
3689 	int addrlen;
3690 
3691 	if (len != sizeof(struct sctp_getaddrs_old))
3692 		return -EINVAL;
3693 
3694 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old)))
3695 		return -EFAULT;
3696 
3697 	if (getaddrs.addr_num <= 0) return -EINVAL;
3698 
3699 	/* For UDP-style sockets, id specifies the association to query.  */
3700 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3701 	if (!asoc)
3702 		return -EINVAL;
3703 
3704 	to = (void __user *)getaddrs.addrs;
3705 	list_for_each(pos, &asoc->peer.transport_addr_list) {
3706 		from = list_entry(pos, struct sctp_transport, transports);
3707 		memcpy(&temp, &from->ipaddr, sizeof(temp));
3708 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3709 		addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
3710 		temp.v4.sin_port = htons(temp.v4.sin_port);
3711 		if (copy_to_user(to, &temp, addrlen))
3712 			return -EFAULT;
3713 		to += addrlen ;
3714 		cnt ++;
3715 		if (cnt >= getaddrs.addr_num) break;
3716 	}
3717 	getaddrs.addr_num = cnt;
3718 	if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old)))
3719 		return -EFAULT;
3720 
3721 	return 0;
3722 }
3723 
3724 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
3725 				      char __user *optval, int __user *optlen)
3726 {
3727 	struct sctp_association *asoc;
3728 	struct list_head *pos;
3729 	int cnt = 0;
3730 	struct sctp_getaddrs getaddrs;
3731 	struct sctp_transport *from;
3732 	void __user *to;
3733 	union sctp_addr temp;
3734 	struct sctp_sock *sp = sctp_sk(sk);
3735 	int addrlen;
3736 	size_t space_left;
3737 	int bytes_copied;
3738 
3739 	if (len < sizeof(struct sctp_getaddrs))
3740 		return -EINVAL;
3741 
3742 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
3743 		return -EFAULT;
3744 
3745 	/* For UDP-style sockets, id specifies the association to query.  */
3746 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3747 	if (!asoc)
3748 		return -EINVAL;
3749 
3750 	to = optval + offsetof(struct sctp_getaddrs,addrs);
3751 	space_left = len - sizeof(struct sctp_getaddrs) -
3752 			offsetof(struct sctp_getaddrs,addrs);
3753 
3754 	list_for_each(pos, &asoc->peer.transport_addr_list) {
3755 		from = list_entry(pos, struct sctp_transport, transports);
3756 		memcpy(&temp, &from->ipaddr, sizeof(temp));
3757 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3758 		addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
3759 		if(space_left < addrlen)
3760 			return -ENOMEM;
3761 		temp.v4.sin_port = htons(temp.v4.sin_port);
3762 		if (copy_to_user(to, &temp, addrlen))
3763 			return -EFAULT;
3764 		to += addrlen;
3765 		cnt++;
3766 		space_left -= addrlen;
3767 	}
3768 
3769 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
3770 		return -EFAULT;
3771 	bytes_copied = ((char __user *)to) - optval;
3772 	if (put_user(bytes_copied, optlen))
3773 		return -EFAULT;
3774 
3775 	return 0;
3776 }
3777 
3778 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len,
3779 					       char __user *optval,
3780 					       int __user *optlen)
3781 {
3782 	sctp_assoc_t id;
3783 	struct sctp_bind_addr *bp;
3784 	struct sctp_association *asoc;
3785 	struct list_head *pos;
3786 	struct sctp_sockaddr_entry *addr;
3787 	rwlock_t *addr_lock;
3788 	unsigned long flags;
3789 	int cnt = 0;
3790 
3791 	if (len != sizeof(sctp_assoc_t))
3792 		return -EINVAL;
3793 
3794 	if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
3795 		return -EFAULT;
3796 
3797 	/*
3798 	 *  For UDP-style sockets, id specifies the association to query.
3799 	 *  If the id field is set to the value '0' then the locally bound
3800 	 *  addresses are returned without regard to any particular
3801 	 *  association.
3802 	 */
3803 	if (0 == id) {
3804 		bp = &sctp_sk(sk)->ep->base.bind_addr;
3805 		addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
3806 	} else {
3807 		asoc = sctp_id2assoc(sk, id);
3808 		if (!asoc)
3809 			return -EINVAL;
3810 		bp = &asoc->base.bind_addr;
3811 		addr_lock = &asoc->base.addr_lock;
3812 	}
3813 
3814 	sctp_read_lock(addr_lock);
3815 
3816 	/* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
3817 	 * addresses from the global local address list.
3818 	 */
3819 	if (sctp_list_single_entry(&bp->address_list)) {
3820 		addr = list_entry(bp->address_list.next,
3821 				  struct sctp_sockaddr_entry, list);
3822 		if (sctp_is_any(&addr->a)) {
3823 			sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3824 			list_for_each(pos, &sctp_local_addr_list) {
3825 				addr = list_entry(pos,
3826 						  struct sctp_sockaddr_entry,
3827 						  list);
3828 				if ((PF_INET == sk->sk_family) &&
3829 				    (AF_INET6 == addr->a.sa.sa_family))
3830 					continue;
3831 				cnt++;
3832 			}
3833 			sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3834 						    flags);
3835 		} else {
3836 			cnt = 1;
3837 		}
3838 		goto done;
3839 	}
3840 
3841 	list_for_each(pos, &bp->address_list) {
3842 		cnt ++;
3843 	}
3844 
3845 done:
3846 	sctp_read_unlock(addr_lock);
3847 	return cnt;
3848 }
3849 
3850 /* Helper function that copies local addresses to user and returns the number
3851  * of addresses copied.
3852  */
3853 static int sctp_copy_laddrs_to_user_old(struct sock *sk, __u16 port, int max_addrs,
3854 					void __user *to)
3855 {
3856 	struct list_head *pos;
3857 	struct sctp_sockaddr_entry *addr;
3858 	unsigned long flags;
3859 	union sctp_addr temp;
3860 	int cnt = 0;
3861 	int addrlen;
3862 
3863 	sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3864 	list_for_each(pos, &sctp_local_addr_list) {
3865 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3866 		if ((PF_INET == sk->sk_family) &&
3867 		    (AF_INET6 == addr->a.sa.sa_family))
3868 			continue;
3869 		memcpy(&temp, &addr->a, sizeof(temp));
3870 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3871 								&temp);
3872 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3873 		temp.v4.sin_port = htons(port);
3874 		if (copy_to_user(to, &temp, addrlen)) {
3875 			sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3876 						    flags);
3877 			return -EFAULT;
3878 		}
3879 		to += addrlen;
3880 		cnt ++;
3881 		if (cnt >= max_addrs) break;
3882 	}
3883 	sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags);
3884 
3885 	return cnt;
3886 }
3887 
3888 static int sctp_copy_laddrs_to_user(struct sock *sk, __u16 port,
3889 				    void __user **to, size_t space_left)
3890 {
3891 	struct list_head *pos;
3892 	struct sctp_sockaddr_entry *addr;
3893 	unsigned long flags;
3894 	union sctp_addr temp;
3895 	int cnt = 0;
3896 	int addrlen;
3897 
3898 	sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3899 	list_for_each(pos, &sctp_local_addr_list) {
3900 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3901 		if ((PF_INET == sk->sk_family) &&
3902 		    (AF_INET6 == addr->a.sa.sa_family))
3903 			continue;
3904 		memcpy(&temp, &addr->a, sizeof(temp));
3905 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3906 								&temp);
3907 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3908 		if(space_left<addrlen)
3909 			return -ENOMEM;
3910 		temp.v4.sin_port = htons(port);
3911 		if (copy_to_user(*to, &temp, addrlen)) {
3912 			sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3913 						    flags);
3914 			return -EFAULT;
3915 		}
3916 		*to += addrlen;
3917 		cnt ++;
3918 		space_left -= addrlen;
3919 	}
3920 	sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags);
3921 
3922 	return cnt;
3923 }
3924 
3925 /* Old API for getting list of local addresses. Does not work for 32-bit
3926  * programs running on a 64-bit kernel
3927  */
3928 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len,
3929 					   char __user *optval, int __user *optlen)
3930 {
3931 	struct sctp_bind_addr *bp;
3932 	struct sctp_association *asoc;
3933 	struct list_head *pos;
3934 	int cnt = 0;
3935 	struct sctp_getaddrs_old getaddrs;
3936 	struct sctp_sockaddr_entry *addr;
3937 	void __user *to;
3938 	union sctp_addr temp;
3939 	struct sctp_sock *sp = sctp_sk(sk);
3940 	int addrlen;
3941 	rwlock_t *addr_lock;
3942 	int err = 0;
3943 
3944 	if (len != sizeof(struct sctp_getaddrs_old))
3945 		return -EINVAL;
3946 
3947 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old)))
3948 		return -EFAULT;
3949 
3950 	if (getaddrs.addr_num <= 0) return -EINVAL;
3951 	/*
3952 	 *  For UDP-style sockets, id specifies the association to query.
3953 	 *  If the id field is set to the value '0' then the locally bound
3954 	 *  addresses are returned without regard to any particular
3955 	 *  association.
3956 	 */
3957 	if (0 == getaddrs.assoc_id) {
3958 		bp = &sctp_sk(sk)->ep->base.bind_addr;
3959 		addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
3960 	} else {
3961 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3962 		if (!asoc)
3963 			return -EINVAL;
3964 		bp = &asoc->base.bind_addr;
3965 		addr_lock = &asoc->base.addr_lock;
3966 	}
3967 
3968 	to = getaddrs.addrs;
3969 
3970 	sctp_read_lock(addr_lock);
3971 
3972 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
3973 	 * addresses from the global local address list.
3974 	 */
3975 	if (sctp_list_single_entry(&bp->address_list)) {
3976 		addr = list_entry(bp->address_list.next,
3977 				  struct sctp_sockaddr_entry, list);
3978 		if (sctp_is_any(&addr->a)) {
3979 			cnt = sctp_copy_laddrs_to_user_old(sk, bp->port,
3980 							   getaddrs.addr_num,
3981 							   to);
3982 			if (cnt < 0) {
3983 				err = cnt;
3984 				goto unlock;
3985 			}
3986 			goto copy_getaddrs;
3987 		}
3988 	}
3989 
3990 	list_for_each(pos, &bp->address_list) {
3991 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3992 		memcpy(&temp, &addr->a, sizeof(temp));
3993 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3994 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3995 		temp.v4.sin_port = htons(temp.v4.sin_port);
3996 		if (copy_to_user(to, &temp, addrlen)) {
3997 			err = -EFAULT;
3998 			goto unlock;
3999 		}
4000 		to += addrlen;
4001 		cnt ++;
4002 		if (cnt >= getaddrs.addr_num) break;
4003 	}
4004 
4005 copy_getaddrs:
4006 	getaddrs.addr_num = cnt;
4007 	if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old)))
4008 		err = -EFAULT;
4009 
4010 unlock:
4011 	sctp_read_unlock(addr_lock);
4012 	return err;
4013 }
4014 
4015 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4016 				       char __user *optval, int __user *optlen)
4017 {
4018 	struct sctp_bind_addr *bp;
4019 	struct sctp_association *asoc;
4020 	struct list_head *pos;
4021 	int cnt = 0;
4022 	struct sctp_getaddrs getaddrs;
4023 	struct sctp_sockaddr_entry *addr;
4024 	void __user *to;
4025 	union sctp_addr temp;
4026 	struct sctp_sock *sp = sctp_sk(sk);
4027 	int addrlen;
4028 	rwlock_t *addr_lock;
4029 	int err = 0;
4030 	size_t space_left;
4031 	int bytes_copied;
4032 
4033 	if (len <= sizeof(struct sctp_getaddrs))
4034 		return -EINVAL;
4035 
4036 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4037 		return -EFAULT;
4038 
4039 	/*
4040 	 *  For UDP-style sockets, id specifies the association to query.
4041 	 *  If the id field is set to the value '0' then the locally bound
4042 	 *  addresses are returned without regard to any particular
4043 	 *  association.
4044 	 */
4045 	if (0 == getaddrs.assoc_id) {
4046 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4047 		addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
4048 	} else {
4049 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4050 		if (!asoc)
4051 			return -EINVAL;
4052 		bp = &asoc->base.bind_addr;
4053 		addr_lock = &asoc->base.addr_lock;
4054 	}
4055 
4056 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4057 	space_left = len - sizeof(struct sctp_getaddrs) -
4058 			 offsetof(struct sctp_getaddrs,addrs);
4059 
4060 	sctp_read_lock(addr_lock);
4061 
4062 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4063 	 * addresses from the global local address list.
4064 	 */
4065 	if (sctp_list_single_entry(&bp->address_list)) {
4066 		addr = list_entry(bp->address_list.next,
4067 				  struct sctp_sockaddr_entry, list);
4068 		if (sctp_is_any(&addr->a)) {
4069 			cnt = sctp_copy_laddrs_to_user(sk, bp->port,
4070 						       &to, space_left);
4071 			if (cnt < 0) {
4072 				err = cnt;
4073 				goto unlock;
4074 			}
4075 			goto copy_getaddrs;
4076 		}
4077 	}
4078 
4079 	list_for_each(pos, &bp->address_list) {
4080 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
4081 		memcpy(&temp, &addr->a, sizeof(temp));
4082 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4083 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4084 		if(space_left < addrlen)
4085 			return -ENOMEM; /*fixme: right error?*/
4086 		temp.v4.sin_port = htons(temp.v4.sin_port);
4087 		if (copy_to_user(to, &temp, addrlen)) {
4088 			err = -EFAULT;
4089 			goto unlock;
4090 		}
4091 		to += addrlen;
4092 		cnt ++;
4093 		space_left -= addrlen;
4094 	}
4095 
4096 copy_getaddrs:
4097 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4098 		return -EFAULT;
4099 	bytes_copied = ((char __user *)to) - optval;
4100 	if (put_user(bytes_copied, optlen))
4101 		return -EFAULT;
4102 
4103 unlock:
4104 	sctp_read_unlock(addr_lock);
4105 	return err;
4106 }
4107 
4108 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4109  *
4110  * Requests that the local SCTP stack use the enclosed peer address as
4111  * the association primary.  The enclosed address must be one of the
4112  * association peer's addresses.
4113  */
4114 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4115 					char __user *optval, int __user *optlen)
4116 {
4117 	struct sctp_prim prim;
4118 	struct sctp_association *asoc;
4119 	struct sctp_sock *sp = sctp_sk(sk);
4120 
4121 	if (len != sizeof(struct sctp_prim))
4122 		return -EINVAL;
4123 
4124 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
4125 		return -EFAULT;
4126 
4127 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4128 	if (!asoc)
4129 		return -EINVAL;
4130 
4131 	if (!asoc->peer.primary_path)
4132 		return -ENOTCONN;
4133 
4134 	asoc->peer.primary_path->ipaddr.v4.sin_port =
4135 		htons(asoc->peer.primary_path->ipaddr.v4.sin_port);
4136 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4137 	       sizeof(union sctp_addr));
4138 	asoc->peer.primary_path->ipaddr.v4.sin_port =
4139 		ntohs(asoc->peer.primary_path->ipaddr.v4.sin_port);
4140 
4141 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4142 			(union sctp_addr *)&prim.ssp_addr);
4143 
4144 	if (copy_to_user(optval, &prim, sizeof(struct sctp_prim)))
4145 		return -EFAULT;
4146 
4147 	return 0;
4148 }
4149 
4150 /*
4151  * 7.1.11  Set Adaption Layer Indicator (SCTP_ADAPTION_LAYER)
4152  *
4153  * Requests that the local endpoint set the specified Adaption Layer
4154  * Indication parameter for all future INIT and INIT-ACK exchanges.
4155  */
4156 static int sctp_getsockopt_adaption_layer(struct sock *sk, int len,
4157 				  char __user *optval, int __user *optlen)
4158 {
4159 	struct sctp_setadaption adaption;
4160 
4161 	if (len != sizeof(struct sctp_setadaption))
4162 		return -EINVAL;
4163 
4164 	adaption.ssb_adaption_ind = sctp_sk(sk)->adaption_ind;
4165 	if (copy_to_user(optval, &adaption, len))
4166 		return -EFAULT;
4167 
4168 	return 0;
4169 }
4170 
4171 /*
4172  *
4173  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4174  *
4175  *   Applications that wish to use the sendto() system call may wish to
4176  *   specify a default set of parameters that would normally be supplied
4177  *   through the inclusion of ancillary data.  This socket option allows
4178  *   such an application to set the default sctp_sndrcvinfo structure.
4179 
4180 
4181  *   The application that wishes to use this socket option simply passes
4182  *   in to this call the sctp_sndrcvinfo structure defined in Section
4183  *   5.2.2) The input parameters accepted by this call include
4184  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4185  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
4186  *   to this call if the caller is using the UDP model.
4187  *
4188  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
4189  */
4190 static int sctp_getsockopt_default_send_param(struct sock *sk,
4191 					int len, char __user *optval,
4192 					int __user *optlen)
4193 {
4194 	struct sctp_sndrcvinfo info;
4195 	struct sctp_association *asoc;
4196 	struct sctp_sock *sp = sctp_sk(sk);
4197 
4198 	if (len != sizeof(struct sctp_sndrcvinfo))
4199 		return -EINVAL;
4200 	if (copy_from_user(&info, optval, sizeof(struct sctp_sndrcvinfo)))
4201 		return -EFAULT;
4202 
4203 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4204 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4205 		return -EINVAL;
4206 
4207 	if (asoc) {
4208 		info.sinfo_stream = asoc->default_stream;
4209 		info.sinfo_flags = asoc->default_flags;
4210 		info.sinfo_ppid = asoc->default_ppid;
4211 		info.sinfo_context = asoc->default_context;
4212 		info.sinfo_timetolive = asoc->default_timetolive;
4213 	} else {
4214 		info.sinfo_stream = sp->default_stream;
4215 		info.sinfo_flags = sp->default_flags;
4216 		info.sinfo_ppid = sp->default_ppid;
4217 		info.sinfo_context = sp->default_context;
4218 		info.sinfo_timetolive = sp->default_timetolive;
4219 	}
4220 
4221 	if (copy_to_user(optval, &info, sizeof(struct sctp_sndrcvinfo)))
4222 		return -EFAULT;
4223 
4224 	return 0;
4225 }
4226 
4227 /*
4228  *
4229  * 7.1.5 SCTP_NODELAY
4230  *
4231  * Turn on/off any Nagle-like algorithm.  This means that packets are
4232  * generally sent as soon as possible and no unnecessary delays are
4233  * introduced, at the cost of more packets in the network.  Expects an
4234  * integer boolean flag.
4235  */
4236 
4237 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4238 				   char __user *optval, int __user *optlen)
4239 {
4240 	int val;
4241 
4242 	if (len < sizeof(int))
4243 		return -EINVAL;
4244 
4245 	len = sizeof(int);
4246 	val = (sctp_sk(sk)->nodelay == 1);
4247 	if (put_user(len, optlen))
4248 		return -EFAULT;
4249 	if (copy_to_user(optval, &val, len))
4250 		return -EFAULT;
4251 	return 0;
4252 }
4253 
4254 /*
4255  *
4256  * 7.1.1 SCTP_RTOINFO
4257  *
4258  * The protocol parameters used to initialize and bound retransmission
4259  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4260  * and modify these parameters.
4261  * All parameters are time values, in milliseconds.  A value of 0, when
4262  * modifying the parameters, indicates that the current value should not
4263  * be changed.
4264  *
4265  */
4266 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4267 				char __user *optval,
4268 				int __user *optlen) {
4269 	struct sctp_rtoinfo rtoinfo;
4270 	struct sctp_association *asoc;
4271 
4272 	if (len != sizeof (struct sctp_rtoinfo))
4273 		return -EINVAL;
4274 
4275 	if (copy_from_user(&rtoinfo, optval, sizeof (struct sctp_rtoinfo)))
4276 		return -EFAULT;
4277 
4278 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4279 
4280 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4281 		return -EINVAL;
4282 
4283 	/* Values corresponding to the specific association. */
4284 	if (asoc) {
4285 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4286 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4287 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4288 	} else {
4289 		/* Values corresponding to the endpoint. */
4290 		struct sctp_sock *sp = sctp_sk(sk);
4291 
4292 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4293 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
4294 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
4295 	}
4296 
4297 	if (put_user(len, optlen))
4298 		return -EFAULT;
4299 
4300 	if (copy_to_user(optval, &rtoinfo, len))
4301 		return -EFAULT;
4302 
4303 	return 0;
4304 }
4305 
4306 /*
4307  *
4308  * 7.1.2 SCTP_ASSOCINFO
4309  *
4310  * This option is used to tune the the maximum retransmission attempts
4311  * of the association.
4312  * Returns an error if the new association retransmission value is
4313  * greater than the sum of the retransmission value  of the peer.
4314  * See [SCTP] for more information.
4315  *
4316  */
4317 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4318 				     char __user *optval,
4319 				     int __user *optlen)
4320 {
4321 
4322 	struct sctp_assocparams assocparams;
4323 	struct sctp_association *asoc;
4324 	struct list_head *pos;
4325 	int cnt = 0;
4326 
4327 	if (len != sizeof (struct sctp_assocparams))
4328 		return -EINVAL;
4329 
4330 	if (copy_from_user(&assocparams, optval,
4331 			sizeof (struct sctp_assocparams)))
4332 		return -EFAULT;
4333 
4334 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4335 
4336 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4337 		return -EINVAL;
4338 
4339 	/* Values correspoinding to the specific association */
4340 	if (asoc) {
4341 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4342 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4343 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4344 		assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4345 						* 1000) +
4346 						(asoc->cookie_life.tv_usec
4347 						/ 1000);
4348 
4349 		list_for_each(pos, &asoc->peer.transport_addr_list) {
4350 			cnt ++;
4351 		}
4352 
4353 		assocparams.sasoc_number_peer_destinations = cnt;
4354 	} else {
4355 		/* Values corresponding to the endpoint */
4356 		struct sctp_sock *sp = sctp_sk(sk);
4357 
4358 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
4359 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
4360 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
4361 		assocparams.sasoc_cookie_life =
4362 					sp->assocparams.sasoc_cookie_life;
4363 		assocparams.sasoc_number_peer_destinations =
4364 					sp->assocparams.
4365 					sasoc_number_peer_destinations;
4366 	}
4367 
4368 	if (put_user(len, optlen))
4369 		return -EFAULT;
4370 
4371 	if (copy_to_user(optval, &assocparams, len))
4372 		return -EFAULT;
4373 
4374 	return 0;
4375 }
4376 
4377 /*
4378  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
4379  *
4380  * This socket option is a boolean flag which turns on or off mapped V4
4381  * addresses.  If this option is turned on and the socket is type
4382  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
4383  * If this option is turned off, then no mapping will be done of V4
4384  * addresses and a user will receive both PF_INET6 and PF_INET type
4385  * addresses on the socket.
4386  */
4387 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
4388 				    char __user *optval, int __user *optlen)
4389 {
4390 	int val;
4391 	struct sctp_sock *sp = sctp_sk(sk);
4392 
4393 	if (len < sizeof(int))
4394 		return -EINVAL;
4395 
4396 	len = sizeof(int);
4397 	val = sp->v4mapped;
4398 	if (put_user(len, optlen))
4399 		return -EFAULT;
4400 	if (copy_to_user(optval, &val, len))
4401 		return -EFAULT;
4402 
4403 	return 0;
4404 }
4405 
4406 /*
4407  * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
4408  *
4409  * This socket option specifies the maximum size to put in any outgoing
4410  * SCTP chunk.  If a message is larger than this size it will be
4411  * fragmented by SCTP into the specified size.  Note that the underlying
4412  * SCTP implementation may fragment into smaller sized chunks when the
4413  * PMTU of the underlying association is smaller than the value set by
4414  * the user.
4415  */
4416 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
4417 				  char __user *optval, int __user *optlen)
4418 {
4419 	int val;
4420 
4421 	if (len < sizeof(int))
4422 		return -EINVAL;
4423 
4424 	len = sizeof(int);
4425 
4426 	val = sctp_sk(sk)->user_frag;
4427 	if (put_user(len, optlen))
4428 		return -EFAULT;
4429 	if (copy_to_user(optval, &val, len))
4430 		return -EFAULT;
4431 
4432 	return 0;
4433 }
4434 
4435 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
4436 				char __user *optval, int __user *optlen)
4437 {
4438 	int retval = 0;
4439 	int len;
4440 
4441 	SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
4442 			  sk, optname);
4443 
4444 	/* I can hardly begin to describe how wrong this is.  This is
4445 	 * so broken as to be worse than useless.  The API draft
4446 	 * REALLY is NOT helpful here...  I am not convinced that the
4447 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
4448 	 * are at all well-founded.
4449 	 */
4450 	if (level != SOL_SCTP) {
4451 		struct sctp_af *af = sctp_sk(sk)->pf->af;
4452 
4453 		retval = af->getsockopt(sk, level, optname, optval, optlen);
4454 		return retval;
4455 	}
4456 
4457 	if (get_user(len, optlen))
4458 		return -EFAULT;
4459 
4460 	sctp_lock_sock(sk);
4461 
4462 	switch (optname) {
4463 	case SCTP_STATUS:
4464 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
4465 		break;
4466 	case SCTP_DISABLE_FRAGMENTS:
4467 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
4468 							   optlen);
4469 		break;
4470 	case SCTP_EVENTS:
4471 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
4472 		break;
4473 	case SCTP_AUTOCLOSE:
4474 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
4475 		break;
4476 	case SCTP_SOCKOPT_PEELOFF:
4477 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
4478 		break;
4479 	case SCTP_PEER_ADDR_PARAMS:
4480 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
4481 							  optlen);
4482 		break;
4483 	case SCTP_DELAYED_ACK_TIME:
4484 		retval = sctp_getsockopt_delayed_ack_time(sk, len, optval,
4485 							  optlen);
4486 		break;
4487 	case SCTP_INITMSG:
4488 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
4489 		break;
4490 	case SCTP_GET_PEER_ADDRS_NUM_OLD:
4491 		retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval,
4492 							    optlen);
4493 		break;
4494 	case SCTP_GET_LOCAL_ADDRS_NUM_OLD:
4495 		retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval,
4496 							     optlen);
4497 		break;
4498 	case SCTP_GET_PEER_ADDRS_OLD:
4499 		retval = sctp_getsockopt_peer_addrs_old(sk, len, optval,
4500 							optlen);
4501 		break;
4502 	case SCTP_GET_LOCAL_ADDRS_OLD:
4503 		retval = sctp_getsockopt_local_addrs_old(sk, len, optval,
4504 							 optlen);
4505 		break;
4506 	case SCTP_GET_PEER_ADDRS:
4507 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
4508 						    optlen);
4509 		break;
4510 	case SCTP_GET_LOCAL_ADDRS:
4511 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
4512 						     optlen);
4513 		break;
4514 	case SCTP_DEFAULT_SEND_PARAM:
4515 		retval = sctp_getsockopt_default_send_param(sk, len,
4516 							    optval, optlen);
4517 		break;
4518 	case SCTP_PRIMARY_ADDR:
4519 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
4520 		break;
4521 	case SCTP_NODELAY:
4522 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
4523 		break;
4524 	case SCTP_RTOINFO:
4525 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
4526 		break;
4527 	case SCTP_ASSOCINFO:
4528 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
4529 		break;
4530 	case SCTP_I_WANT_MAPPED_V4_ADDR:
4531 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
4532 		break;
4533 	case SCTP_MAXSEG:
4534 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
4535 		break;
4536 	case SCTP_GET_PEER_ADDR_INFO:
4537 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
4538 							optlen);
4539 		break;
4540 	case SCTP_ADAPTION_LAYER:
4541 		retval = sctp_getsockopt_adaption_layer(sk, len, optval,
4542 							optlen);
4543 		break;
4544 	default:
4545 		retval = -ENOPROTOOPT;
4546 		break;
4547 	};
4548 
4549 	sctp_release_sock(sk);
4550 	return retval;
4551 }
4552 
4553 static void sctp_hash(struct sock *sk)
4554 {
4555 	/* STUB */
4556 }
4557 
4558 static void sctp_unhash(struct sock *sk)
4559 {
4560 	/* STUB */
4561 }
4562 
4563 /* Check if port is acceptable.  Possibly find first available port.
4564  *
4565  * The port hash table (contained in the 'global' SCTP protocol storage
4566  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
4567  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
4568  * list (the list number is the port number hashed out, so as you
4569  * would expect from a hash function, all the ports in a given list have
4570  * such a number that hashes out to the same list number; you were
4571  * expecting that, right?); so each list has a set of ports, with a
4572  * link to the socket (struct sock) that uses it, the port number and
4573  * a fastreuse flag (FIXME: NPI ipg).
4574  */
4575 static struct sctp_bind_bucket *sctp_bucket_create(
4576 	struct sctp_bind_hashbucket *head, unsigned short snum);
4577 
4578 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
4579 {
4580 	struct sctp_bind_hashbucket *head; /* hash list */
4581 	struct sctp_bind_bucket *pp; /* hash list port iterator */
4582 	unsigned short snum;
4583 	int ret;
4584 
4585 	/* NOTE:  Remember to put this back to net order. */
4586 	addr->v4.sin_port = ntohs(addr->v4.sin_port);
4587 	snum = addr->v4.sin_port;
4588 
4589 	SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
4590 	sctp_local_bh_disable();
4591 
4592 	if (snum == 0) {
4593 		/* Search for an available port.
4594 		 *
4595 		 * 'sctp_port_rover' was the last port assigned, so
4596 		 * we start to search from 'sctp_port_rover +
4597 		 * 1'. What we do is first check if port 'rover' is
4598 		 * already in the hash table; if not, we use that; if
4599 		 * it is, we try next.
4600 		 */
4601 		int low = sysctl_local_port_range[0];
4602 		int high = sysctl_local_port_range[1];
4603 		int remaining = (high - low) + 1;
4604 		int rover;
4605 		int index;
4606 
4607 		sctp_spin_lock(&sctp_port_alloc_lock);
4608 		rover = sctp_port_rover;
4609 		do {
4610 			rover++;
4611 			if ((rover < low) || (rover > high))
4612 				rover = low;
4613 			index = sctp_phashfn(rover);
4614 			head = &sctp_port_hashtable[index];
4615 			sctp_spin_lock(&head->lock);
4616 			for (pp = head->chain; pp; pp = pp->next)
4617 				if (pp->port == rover)
4618 					goto next;
4619 			break;
4620 		next:
4621 			sctp_spin_unlock(&head->lock);
4622 		} while (--remaining > 0);
4623 		sctp_port_rover = rover;
4624 		sctp_spin_unlock(&sctp_port_alloc_lock);
4625 
4626 		/* Exhausted local port range during search? */
4627 		ret = 1;
4628 		if (remaining <= 0)
4629 			goto fail;
4630 
4631 		/* OK, here is the one we will use.  HEAD (the port
4632 		 * hash table list entry) is non-NULL and we hold it's
4633 		 * mutex.
4634 		 */
4635 		snum = rover;
4636 	} else {
4637 		/* We are given an specific port number; we verify
4638 		 * that it is not being used. If it is used, we will
4639 		 * exahust the search in the hash list corresponding
4640 		 * to the port number (snum) - we detect that with the
4641 		 * port iterator, pp being NULL.
4642 		 */
4643 		head = &sctp_port_hashtable[sctp_phashfn(snum)];
4644 		sctp_spin_lock(&head->lock);
4645 		for (pp = head->chain; pp; pp = pp->next) {
4646 			if (pp->port == snum)
4647 				goto pp_found;
4648 		}
4649 	}
4650 	pp = NULL;
4651 	goto pp_not_found;
4652 pp_found:
4653 	if (!hlist_empty(&pp->owner)) {
4654 		/* We had a port hash table hit - there is an
4655 		 * available port (pp != NULL) and it is being
4656 		 * used by other socket (pp->owner not empty); that other
4657 		 * socket is going to be sk2.
4658 		 */
4659 		int reuse = sk->sk_reuse;
4660 		struct sock *sk2;
4661 		struct hlist_node *node;
4662 
4663 		SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
4664 		if (pp->fastreuse && sk->sk_reuse)
4665 			goto success;
4666 
4667 		/* Run through the list of sockets bound to the port
4668 		 * (pp->port) [via the pointers bind_next and
4669 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
4670 		 * we get the endpoint they describe and run through
4671 		 * the endpoint's list of IP (v4 or v6) addresses,
4672 		 * comparing each of the addresses with the address of
4673 		 * the socket sk. If we find a match, then that means
4674 		 * that this port/socket (sk) combination are already
4675 		 * in an endpoint.
4676 		 */
4677 		sk_for_each_bound(sk2, node, &pp->owner) {
4678 			struct sctp_endpoint *ep2;
4679 			ep2 = sctp_sk(sk2)->ep;
4680 
4681 			if (reuse && sk2->sk_reuse)
4682 				continue;
4683 
4684 			if (sctp_bind_addr_match(&ep2->base.bind_addr, addr,
4685 						 sctp_sk(sk))) {
4686 				ret = (long)sk2;
4687 				goto fail_unlock;
4688 			}
4689 		}
4690 		SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
4691 	}
4692 pp_not_found:
4693 	/* If there was a hash table miss, create a new port.  */
4694 	ret = 1;
4695 	if (!pp && !(pp = sctp_bucket_create(head, snum)))
4696 		goto fail_unlock;
4697 
4698 	/* In either case (hit or miss), make sure fastreuse is 1 only
4699 	 * if sk->sk_reuse is too (that is, if the caller requested
4700 	 * SO_REUSEADDR on this socket -sk-).
4701 	 */
4702 	if (hlist_empty(&pp->owner))
4703 		pp->fastreuse = sk->sk_reuse ? 1 : 0;
4704 	else if (pp->fastreuse && !sk->sk_reuse)
4705 		pp->fastreuse = 0;
4706 
4707 	/* We are set, so fill up all the data in the hash table
4708 	 * entry, tie the socket list information with the rest of the
4709 	 * sockets FIXME: Blurry, NPI (ipg).
4710 	 */
4711 success:
4712 	inet_sk(sk)->num = snum;
4713 	if (!sctp_sk(sk)->bind_hash) {
4714 		sk_add_bind_node(sk, &pp->owner);
4715 		sctp_sk(sk)->bind_hash = pp;
4716 	}
4717 	ret = 0;
4718 
4719 fail_unlock:
4720 	sctp_spin_unlock(&head->lock);
4721 
4722 fail:
4723 	sctp_local_bh_enable();
4724 	addr->v4.sin_port = htons(addr->v4.sin_port);
4725 	return ret;
4726 }
4727 
4728 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
4729  * port is requested.
4730  */
4731 static int sctp_get_port(struct sock *sk, unsigned short snum)
4732 {
4733 	long ret;
4734 	union sctp_addr addr;
4735 	struct sctp_af *af = sctp_sk(sk)->pf->af;
4736 
4737 	/* Set up a dummy address struct from the sk. */
4738 	af->from_sk(&addr, sk);
4739 	addr.v4.sin_port = htons(snum);
4740 
4741 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
4742 	ret = sctp_get_port_local(sk, &addr);
4743 
4744 	return (ret ? 1 : 0);
4745 }
4746 
4747 /*
4748  * 3.1.3 listen() - UDP Style Syntax
4749  *
4750  *   By default, new associations are not accepted for UDP style sockets.
4751  *   An application uses listen() to mark a socket as being able to
4752  *   accept new associations.
4753  */
4754 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog)
4755 {
4756 	struct sctp_sock *sp = sctp_sk(sk);
4757 	struct sctp_endpoint *ep = sp->ep;
4758 
4759 	/* Only UDP style sockets that are not peeled off are allowed to
4760 	 * listen().
4761 	 */
4762 	if (!sctp_style(sk, UDP))
4763 		return -EINVAL;
4764 
4765 	/* If backlog is zero, disable listening. */
4766 	if (!backlog) {
4767 		if (sctp_sstate(sk, CLOSED))
4768 			return 0;
4769 
4770 		sctp_unhash_endpoint(ep);
4771 		sk->sk_state = SCTP_SS_CLOSED;
4772 	}
4773 
4774 	/* Return if we are already listening. */
4775 	if (sctp_sstate(sk, LISTENING))
4776 		return 0;
4777 
4778 	/*
4779 	 * If a bind() or sctp_bindx() is not called prior to a listen()
4780 	 * call that allows new associations to be accepted, the system
4781 	 * picks an ephemeral port and will choose an address set equivalent
4782 	 * to binding with a wildcard address.
4783 	 *
4784 	 * This is not currently spelled out in the SCTP sockets
4785 	 * extensions draft, but follows the practice as seen in TCP
4786 	 * sockets.
4787 	 */
4788 	if (!ep->base.bind_addr.port) {
4789 		if (sctp_autobind(sk))
4790 			return -EAGAIN;
4791 	}
4792 	sk->sk_state = SCTP_SS_LISTENING;
4793 	sctp_hash_endpoint(ep);
4794 	return 0;
4795 }
4796 
4797 /*
4798  * 4.1.3 listen() - TCP Style Syntax
4799  *
4800  *   Applications uses listen() to ready the SCTP endpoint for accepting
4801  *   inbound associations.
4802  */
4803 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog)
4804 {
4805 	struct sctp_sock *sp = sctp_sk(sk);
4806 	struct sctp_endpoint *ep = sp->ep;
4807 
4808 	/* If backlog is zero, disable listening. */
4809 	if (!backlog) {
4810 		if (sctp_sstate(sk, CLOSED))
4811 			return 0;
4812 
4813 		sctp_unhash_endpoint(ep);
4814 		sk->sk_state = SCTP_SS_CLOSED;
4815 	}
4816 
4817 	if (sctp_sstate(sk, LISTENING))
4818 		return 0;
4819 
4820 	/*
4821 	 * If a bind() or sctp_bindx() is not called prior to a listen()
4822 	 * call that allows new associations to be accepted, the system
4823 	 * picks an ephemeral port and will choose an address set equivalent
4824 	 * to binding with a wildcard address.
4825 	 *
4826 	 * This is not currently spelled out in the SCTP sockets
4827 	 * extensions draft, but follows the practice as seen in TCP
4828 	 * sockets.
4829 	 */
4830 	if (!ep->base.bind_addr.port) {
4831 		if (sctp_autobind(sk))
4832 			return -EAGAIN;
4833 	}
4834 	sk->sk_state = SCTP_SS_LISTENING;
4835 	sk->sk_max_ack_backlog = backlog;
4836 	sctp_hash_endpoint(ep);
4837 	return 0;
4838 }
4839 
4840 /*
4841  *  Move a socket to LISTENING state.
4842  */
4843 int sctp_inet_listen(struct socket *sock, int backlog)
4844 {
4845 	struct sock *sk = sock->sk;
4846 	struct crypto_tfm *tfm=NULL;
4847 	int err = -EINVAL;
4848 
4849 	if (unlikely(backlog < 0))
4850 		goto out;
4851 
4852 	sctp_lock_sock(sk);
4853 
4854 	if (sock->state != SS_UNCONNECTED)
4855 		goto out;
4856 
4857 	/* Allocate HMAC for generating cookie. */
4858 	if (sctp_hmac_alg) {
4859 		tfm = sctp_crypto_alloc_tfm(sctp_hmac_alg, 0);
4860 		if (!tfm) {
4861 			err = -ENOSYS;
4862 			goto out;
4863 		}
4864 	}
4865 
4866 	switch (sock->type) {
4867 	case SOCK_SEQPACKET:
4868 		err = sctp_seqpacket_listen(sk, backlog);
4869 		break;
4870 	case SOCK_STREAM:
4871 		err = sctp_stream_listen(sk, backlog);
4872 		break;
4873 	default:
4874 		break;
4875 	};
4876 	if (err)
4877 		goto cleanup;
4878 
4879 	/* Store away the transform reference. */
4880 	sctp_sk(sk)->hmac = tfm;
4881 out:
4882 	sctp_release_sock(sk);
4883 	return err;
4884 cleanup:
4885 	sctp_crypto_free_tfm(tfm);
4886 	goto out;
4887 }
4888 
4889 /*
4890  * This function is done by modeling the current datagram_poll() and the
4891  * tcp_poll().  Note that, based on these implementations, we don't
4892  * lock the socket in this function, even though it seems that,
4893  * ideally, locking or some other mechanisms can be used to ensure
4894  * the integrity of the counters (sndbuf and wmem_alloc) used
4895  * in this place.  We assume that we don't need locks either until proven
4896  * otherwise.
4897  *
4898  * Another thing to note is that we include the Async I/O support
4899  * here, again, by modeling the current TCP/UDP code.  We don't have
4900  * a good way to test with it yet.
4901  */
4902 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
4903 {
4904 	struct sock *sk = sock->sk;
4905 	struct sctp_sock *sp = sctp_sk(sk);
4906 	unsigned int mask;
4907 
4908 	poll_wait(file, sk->sk_sleep, wait);
4909 
4910 	/* A TCP-style listening socket becomes readable when the accept queue
4911 	 * is not empty.
4912 	 */
4913 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4914 		return (!list_empty(&sp->ep->asocs)) ?
4915 		       	(POLLIN | POLLRDNORM) : 0;
4916 
4917 	mask = 0;
4918 
4919 	/* Is there any exceptional events?  */
4920 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
4921 		mask |= POLLERR;
4922 	if (sk->sk_shutdown & RCV_SHUTDOWN)
4923 		mask |= POLLRDHUP;
4924 	if (sk->sk_shutdown == SHUTDOWN_MASK)
4925 		mask |= POLLHUP;
4926 
4927 	/* Is it readable?  Reconsider this code with TCP-style support.  */
4928 	if (!skb_queue_empty(&sk->sk_receive_queue) ||
4929 	    (sk->sk_shutdown & RCV_SHUTDOWN))
4930 		mask |= POLLIN | POLLRDNORM;
4931 
4932 	/* The association is either gone or not ready.  */
4933 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
4934 		return mask;
4935 
4936 	/* Is it writable?  */
4937 	if (sctp_writeable(sk)) {
4938 		mask |= POLLOUT | POLLWRNORM;
4939 	} else {
4940 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
4941 		/*
4942 		 * Since the socket is not locked, the buffer
4943 		 * might be made available after the writeable check and
4944 		 * before the bit is set.  This could cause a lost I/O
4945 		 * signal.  tcp_poll() has a race breaker for this race
4946 		 * condition.  Based on their implementation, we put
4947 		 * in the following code to cover it as well.
4948 		 */
4949 		if (sctp_writeable(sk))
4950 			mask |= POLLOUT | POLLWRNORM;
4951 	}
4952 	return mask;
4953 }
4954 
4955 /********************************************************************
4956  * 2nd Level Abstractions
4957  ********************************************************************/
4958 
4959 static struct sctp_bind_bucket *sctp_bucket_create(
4960 	struct sctp_bind_hashbucket *head, unsigned short snum)
4961 {
4962 	struct sctp_bind_bucket *pp;
4963 
4964 	pp = kmem_cache_alloc(sctp_bucket_cachep, SLAB_ATOMIC);
4965 	SCTP_DBG_OBJCNT_INC(bind_bucket);
4966 	if (pp) {
4967 		pp->port = snum;
4968 		pp->fastreuse = 0;
4969 		INIT_HLIST_HEAD(&pp->owner);
4970 		if ((pp->next = head->chain) != NULL)
4971 			pp->next->pprev = &pp->next;
4972 		head->chain = pp;
4973 		pp->pprev = &head->chain;
4974 	}
4975 	return pp;
4976 }
4977 
4978 /* Caller must hold hashbucket lock for this tb with local BH disabled */
4979 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
4980 {
4981 	if (hlist_empty(&pp->owner)) {
4982 		if (pp->next)
4983 			pp->next->pprev = pp->pprev;
4984 		*(pp->pprev) = pp->next;
4985 		kmem_cache_free(sctp_bucket_cachep, pp);
4986 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
4987 	}
4988 }
4989 
4990 /* Release this socket's reference to a local port.  */
4991 static inline void __sctp_put_port(struct sock *sk)
4992 {
4993 	struct sctp_bind_hashbucket *head =
4994 		&sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)];
4995 	struct sctp_bind_bucket *pp;
4996 
4997 	sctp_spin_lock(&head->lock);
4998 	pp = sctp_sk(sk)->bind_hash;
4999 	__sk_del_bind_node(sk);
5000 	sctp_sk(sk)->bind_hash = NULL;
5001 	inet_sk(sk)->num = 0;
5002 	sctp_bucket_destroy(pp);
5003 	sctp_spin_unlock(&head->lock);
5004 }
5005 
5006 void sctp_put_port(struct sock *sk)
5007 {
5008 	sctp_local_bh_disable();
5009 	__sctp_put_port(sk);
5010 	sctp_local_bh_enable();
5011 }
5012 
5013 /*
5014  * The system picks an ephemeral port and choose an address set equivalent
5015  * to binding with a wildcard address.
5016  * One of those addresses will be the primary address for the association.
5017  * This automatically enables the multihoming capability of SCTP.
5018  */
5019 static int sctp_autobind(struct sock *sk)
5020 {
5021 	union sctp_addr autoaddr;
5022 	struct sctp_af *af;
5023 	unsigned short port;
5024 
5025 	/* Initialize a local sockaddr structure to INADDR_ANY. */
5026 	af = sctp_sk(sk)->pf->af;
5027 
5028 	port = htons(inet_sk(sk)->num);
5029 	af->inaddr_any(&autoaddr, port);
5030 
5031 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
5032 }
5033 
5034 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
5035  *
5036  * From RFC 2292
5037  * 4.2 The cmsghdr Structure *
5038  *
5039  * When ancillary data is sent or received, any number of ancillary data
5040  * objects can be specified by the msg_control and msg_controllen members of
5041  * the msghdr structure, because each object is preceded by
5042  * a cmsghdr structure defining the object's length (the cmsg_len member).
5043  * Historically Berkeley-derived implementations have passed only one object
5044  * at a time, but this API allows multiple objects to be
5045  * passed in a single call to sendmsg() or recvmsg(). The following example
5046  * shows two ancillary data objects in a control buffer.
5047  *
5048  *   |<--------------------------- msg_controllen -------------------------->|
5049  *   |                                                                       |
5050  *
5051  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
5052  *
5053  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
5054  *   |                                   |                                   |
5055  *
5056  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
5057  *
5058  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
5059  *   |                                |  |                                |  |
5060  *
5061  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5062  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
5063  *
5064  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
5065  *
5066  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5067  *    ^
5068  *    |
5069  *
5070  * msg_control
5071  * points here
5072  */
5073 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
5074 				  sctp_cmsgs_t *cmsgs)
5075 {
5076 	struct cmsghdr *cmsg;
5077 
5078 	for (cmsg = CMSG_FIRSTHDR(msg);
5079 	     cmsg != NULL;
5080 	     cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) {
5081 		if (!CMSG_OK(msg, cmsg))
5082 			return -EINVAL;
5083 
5084 		/* Should we parse this header or ignore?  */
5085 		if (cmsg->cmsg_level != IPPROTO_SCTP)
5086 			continue;
5087 
5088 		/* Strictly check lengths following example in SCM code.  */
5089 		switch (cmsg->cmsg_type) {
5090 		case SCTP_INIT:
5091 			/* SCTP Socket API Extension
5092 			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
5093 			 *
5094 			 * This cmsghdr structure provides information for
5095 			 * initializing new SCTP associations with sendmsg().
5096 			 * The SCTP_INITMSG socket option uses this same data
5097 			 * structure.  This structure is not used for
5098 			 * recvmsg().
5099 			 *
5100 			 * cmsg_level    cmsg_type      cmsg_data[]
5101 			 * ------------  ------------   ----------------------
5102 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
5103 			 */
5104 			if (cmsg->cmsg_len !=
5105 			    CMSG_LEN(sizeof(struct sctp_initmsg)))
5106 				return -EINVAL;
5107 			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
5108 			break;
5109 
5110 		case SCTP_SNDRCV:
5111 			/* SCTP Socket API Extension
5112 			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
5113 			 *
5114 			 * This cmsghdr structure specifies SCTP options for
5115 			 * sendmsg() and describes SCTP header information
5116 			 * about a received message through recvmsg().
5117 			 *
5118 			 * cmsg_level    cmsg_type      cmsg_data[]
5119 			 * ------------  ------------   ----------------------
5120 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
5121 			 */
5122 			if (cmsg->cmsg_len !=
5123 			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
5124 				return -EINVAL;
5125 
5126 			cmsgs->info =
5127 				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
5128 
5129 			/* Minimally, validate the sinfo_flags. */
5130 			if (cmsgs->info->sinfo_flags &
5131 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
5132 			      SCTP_ABORT | SCTP_EOF))
5133 				return -EINVAL;
5134 			break;
5135 
5136 		default:
5137 			return -EINVAL;
5138 		};
5139 	}
5140 	return 0;
5141 }
5142 
5143 /*
5144  * Wait for a packet..
5145  * Note: This function is the same function as in core/datagram.c
5146  * with a few modifications to make lksctp work.
5147  */
5148 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
5149 {
5150 	int error;
5151 	DEFINE_WAIT(wait);
5152 
5153 	prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5154 
5155 	/* Socket errors? */
5156 	error = sock_error(sk);
5157 	if (error)
5158 		goto out;
5159 
5160 	if (!skb_queue_empty(&sk->sk_receive_queue))
5161 		goto ready;
5162 
5163 	/* Socket shut down?  */
5164 	if (sk->sk_shutdown & RCV_SHUTDOWN)
5165 		goto out;
5166 
5167 	/* Sequenced packets can come disconnected.  If so we report the
5168 	 * problem.
5169 	 */
5170 	error = -ENOTCONN;
5171 
5172 	/* Is there a good reason to think that we may receive some data?  */
5173 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
5174 		goto out;
5175 
5176 	/* Handle signals.  */
5177 	if (signal_pending(current))
5178 		goto interrupted;
5179 
5180 	/* Let another process have a go.  Since we are going to sleep
5181 	 * anyway.  Note: This may cause odd behaviors if the message
5182 	 * does not fit in the user's buffer, but this seems to be the
5183 	 * only way to honor MSG_DONTWAIT realistically.
5184 	 */
5185 	sctp_release_sock(sk);
5186 	*timeo_p = schedule_timeout(*timeo_p);
5187 	sctp_lock_sock(sk);
5188 
5189 ready:
5190 	finish_wait(sk->sk_sleep, &wait);
5191 	return 0;
5192 
5193 interrupted:
5194 	error = sock_intr_errno(*timeo_p);
5195 
5196 out:
5197 	finish_wait(sk->sk_sleep, &wait);
5198 	*err = error;
5199 	return error;
5200 }
5201 
5202 /* Receive a datagram.
5203  * Note: This is pretty much the same routine as in core/datagram.c
5204  * with a few changes to make lksctp work.
5205  */
5206 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
5207 					      int noblock, int *err)
5208 {
5209 	int error;
5210 	struct sk_buff *skb;
5211 	long timeo;
5212 
5213 	timeo = sock_rcvtimeo(sk, noblock);
5214 
5215 	SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
5216 			  timeo, MAX_SCHEDULE_TIMEOUT);
5217 
5218 	do {
5219 		/* Again only user level code calls this function,
5220 		 * so nothing interrupt level
5221 		 * will suddenly eat the receive_queue.
5222 		 *
5223 		 *  Look at current nfs client by the way...
5224 		 *  However, this function was corrent in any case. 8)
5225 		 */
5226 		if (flags & MSG_PEEK) {
5227 			spin_lock_bh(&sk->sk_receive_queue.lock);
5228 			skb = skb_peek(&sk->sk_receive_queue);
5229 			if (skb)
5230 				atomic_inc(&skb->users);
5231 			spin_unlock_bh(&sk->sk_receive_queue.lock);
5232 		} else {
5233 			skb = skb_dequeue(&sk->sk_receive_queue);
5234 		}
5235 
5236 		if (skb)
5237 			return skb;
5238 
5239 		/* Caller is allowed not to check sk->sk_err before calling. */
5240 		error = sock_error(sk);
5241 		if (error)
5242 			goto no_packet;
5243 
5244 		if (sk->sk_shutdown & RCV_SHUTDOWN)
5245 			break;
5246 
5247 		/* User doesn't want to wait.  */
5248 		error = -EAGAIN;
5249 		if (!timeo)
5250 			goto no_packet;
5251 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
5252 
5253 	return NULL;
5254 
5255 no_packet:
5256 	*err = error;
5257 	return NULL;
5258 }
5259 
5260 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
5261 static void __sctp_write_space(struct sctp_association *asoc)
5262 {
5263 	struct sock *sk = asoc->base.sk;
5264 	struct socket *sock = sk->sk_socket;
5265 
5266 	if ((sctp_wspace(asoc) > 0) && sock) {
5267 		if (waitqueue_active(&asoc->wait))
5268 			wake_up_interruptible(&asoc->wait);
5269 
5270 		if (sctp_writeable(sk)) {
5271 			if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
5272 				wake_up_interruptible(sk->sk_sleep);
5273 
5274 			/* Note that we try to include the Async I/O support
5275 			 * here by modeling from the current TCP/UDP code.
5276 			 * We have not tested with it yet.
5277 			 */
5278 			if (sock->fasync_list &&
5279 			    !(sk->sk_shutdown & SEND_SHUTDOWN))
5280 				sock_wake_async(sock, 2, POLL_OUT);
5281 		}
5282 	}
5283 }
5284 
5285 /* Do accounting for the sndbuf space.
5286  * Decrement the used sndbuf space of the corresponding association by the
5287  * data size which was just transmitted(freed).
5288  */
5289 static void sctp_wfree(struct sk_buff *skb)
5290 {
5291 	struct sctp_association *asoc;
5292 	struct sctp_chunk *chunk;
5293 	struct sock *sk;
5294 
5295 	/* Get the saved chunk pointer.  */
5296 	chunk = *((struct sctp_chunk **)(skb->cb));
5297 	asoc = chunk->asoc;
5298 	sk = asoc->base.sk;
5299 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
5300 				sizeof(struct sk_buff) +
5301 				sizeof(struct sctp_chunk);
5302 
5303 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
5304 
5305 	sock_wfree(skb);
5306 	__sctp_write_space(asoc);
5307 
5308 	sctp_association_put(asoc);
5309 }
5310 
5311 /* Helper function to wait for space in the sndbuf.  */
5312 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
5313 				size_t msg_len)
5314 {
5315 	struct sock *sk = asoc->base.sk;
5316 	int err = 0;
5317 	long current_timeo = *timeo_p;
5318 	DEFINE_WAIT(wait);
5319 
5320 	SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
5321 	                  asoc, (long)(*timeo_p), msg_len);
5322 
5323 	/* Increment the association's refcnt.  */
5324 	sctp_association_hold(asoc);
5325 
5326 	/* Wait on the association specific sndbuf space. */
5327 	for (;;) {
5328 		prepare_to_wait_exclusive(&asoc->wait, &wait,
5329 					  TASK_INTERRUPTIBLE);
5330 		if (!*timeo_p)
5331 			goto do_nonblock;
5332 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
5333 		    asoc->base.dead)
5334 			goto do_error;
5335 		if (signal_pending(current))
5336 			goto do_interrupted;
5337 		if (msg_len <= sctp_wspace(asoc))
5338 			break;
5339 
5340 		/* Let another process have a go.  Since we are going
5341 		 * to sleep anyway.
5342 		 */
5343 		sctp_release_sock(sk);
5344 		current_timeo = schedule_timeout(current_timeo);
5345 		BUG_ON(sk != asoc->base.sk);
5346 		sctp_lock_sock(sk);
5347 
5348 		*timeo_p = current_timeo;
5349 	}
5350 
5351 out:
5352 	finish_wait(&asoc->wait, &wait);
5353 
5354 	/* Release the association's refcnt.  */
5355 	sctp_association_put(asoc);
5356 
5357 	return err;
5358 
5359 do_error:
5360 	err = -EPIPE;
5361 	goto out;
5362 
5363 do_interrupted:
5364 	err = sock_intr_errno(*timeo_p);
5365 	goto out;
5366 
5367 do_nonblock:
5368 	err = -EAGAIN;
5369 	goto out;
5370 }
5371 
5372 /* If socket sndbuf has changed, wake up all per association waiters.  */
5373 void sctp_write_space(struct sock *sk)
5374 {
5375 	struct sctp_association *asoc;
5376 	struct list_head *pos;
5377 
5378 	/* Wake up the tasks in each wait queue.  */
5379 	list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) {
5380 		asoc = list_entry(pos, struct sctp_association, asocs);
5381 		__sctp_write_space(asoc);
5382 	}
5383 }
5384 
5385 /* Is there any sndbuf space available on the socket?
5386  *
5387  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
5388  * associations on the same socket.  For a UDP-style socket with
5389  * multiple associations, it is possible for it to be "unwriteable"
5390  * prematurely.  I assume that this is acceptable because
5391  * a premature "unwriteable" is better than an accidental "writeable" which
5392  * would cause an unwanted block under certain circumstances.  For the 1-1
5393  * UDP-style sockets or TCP-style sockets, this code should work.
5394  *  - Daisy
5395  */
5396 static int sctp_writeable(struct sock *sk)
5397 {
5398 	int amt = 0;
5399 
5400 	amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
5401 	if (amt < 0)
5402 		amt = 0;
5403 	return amt;
5404 }
5405 
5406 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
5407  * returns immediately with EINPROGRESS.
5408  */
5409 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
5410 {
5411 	struct sock *sk = asoc->base.sk;
5412 	int err = 0;
5413 	long current_timeo = *timeo_p;
5414 	DEFINE_WAIT(wait);
5415 
5416 	SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc,
5417 			  (long)(*timeo_p));
5418 
5419 	/* Increment the association's refcnt.  */
5420 	sctp_association_hold(asoc);
5421 
5422 	for (;;) {
5423 		prepare_to_wait_exclusive(&asoc->wait, &wait,
5424 					  TASK_INTERRUPTIBLE);
5425 		if (!*timeo_p)
5426 			goto do_nonblock;
5427 		if (sk->sk_shutdown & RCV_SHUTDOWN)
5428 			break;
5429 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
5430 		    asoc->base.dead)
5431 			goto do_error;
5432 		if (signal_pending(current))
5433 			goto do_interrupted;
5434 
5435 		if (sctp_state(asoc, ESTABLISHED))
5436 			break;
5437 
5438 		/* Let another process have a go.  Since we are going
5439 		 * to sleep anyway.
5440 		 */
5441 		sctp_release_sock(sk);
5442 		current_timeo = schedule_timeout(current_timeo);
5443 		sctp_lock_sock(sk);
5444 
5445 		*timeo_p = current_timeo;
5446 	}
5447 
5448 out:
5449 	finish_wait(&asoc->wait, &wait);
5450 
5451 	/* Release the association's refcnt.  */
5452 	sctp_association_put(asoc);
5453 
5454 	return err;
5455 
5456 do_error:
5457 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
5458 		err = -ETIMEDOUT;
5459 	else
5460 		err = -ECONNREFUSED;
5461 	goto out;
5462 
5463 do_interrupted:
5464 	err = sock_intr_errno(*timeo_p);
5465 	goto out;
5466 
5467 do_nonblock:
5468 	err = -EINPROGRESS;
5469 	goto out;
5470 }
5471 
5472 static int sctp_wait_for_accept(struct sock *sk, long timeo)
5473 {
5474 	struct sctp_endpoint *ep;
5475 	int err = 0;
5476 	DEFINE_WAIT(wait);
5477 
5478 	ep = sctp_sk(sk)->ep;
5479 
5480 
5481 	for (;;) {
5482 		prepare_to_wait_exclusive(sk->sk_sleep, &wait,
5483 					  TASK_INTERRUPTIBLE);
5484 
5485 		if (list_empty(&ep->asocs)) {
5486 			sctp_release_sock(sk);
5487 			timeo = schedule_timeout(timeo);
5488 			sctp_lock_sock(sk);
5489 		}
5490 
5491 		err = -EINVAL;
5492 		if (!sctp_sstate(sk, LISTENING))
5493 			break;
5494 
5495 		err = 0;
5496 		if (!list_empty(&ep->asocs))
5497 			break;
5498 
5499 		err = sock_intr_errno(timeo);
5500 		if (signal_pending(current))
5501 			break;
5502 
5503 		err = -EAGAIN;
5504 		if (!timeo)
5505 			break;
5506 	}
5507 
5508 	finish_wait(sk->sk_sleep, &wait);
5509 
5510 	return err;
5511 }
5512 
5513 void sctp_wait_for_close(struct sock *sk, long timeout)
5514 {
5515 	DEFINE_WAIT(wait);
5516 
5517 	do {
5518 		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5519 		if (list_empty(&sctp_sk(sk)->ep->asocs))
5520 			break;
5521 		sctp_release_sock(sk);
5522 		timeout = schedule_timeout(timeout);
5523 		sctp_lock_sock(sk);
5524 	} while (!signal_pending(current) && timeout);
5525 
5526 	finish_wait(sk->sk_sleep, &wait);
5527 }
5528 
5529 /* Populate the fields of the newsk from the oldsk and migrate the assoc
5530  * and its messages to the newsk.
5531  */
5532 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
5533 			      struct sctp_association *assoc,
5534 			      sctp_socket_type_t type)
5535 {
5536 	struct sctp_sock *oldsp = sctp_sk(oldsk);
5537 	struct sctp_sock *newsp = sctp_sk(newsk);
5538 	struct sctp_bind_bucket *pp; /* hash list port iterator */
5539 	struct sctp_endpoint *newep = newsp->ep;
5540 	struct sk_buff *skb, *tmp;
5541 	struct sctp_ulpevent *event;
5542 	int flags = 0;
5543 
5544 	/* Migrate socket buffer sizes and all the socket level options to the
5545 	 * new socket.
5546 	 */
5547 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
5548 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
5549 	/* Brute force copy old sctp opt. */
5550 	inet_sk_copy_descendant(newsk, oldsk);
5551 
5552 	/* Restore the ep value that was overwritten with the above structure
5553 	 * copy.
5554 	 */
5555 	newsp->ep = newep;
5556 	newsp->hmac = NULL;
5557 
5558 	/* Hook this new socket in to the bind_hash list. */
5559 	pp = sctp_sk(oldsk)->bind_hash;
5560 	sk_add_bind_node(newsk, &pp->owner);
5561 	sctp_sk(newsk)->bind_hash = pp;
5562 	inet_sk(newsk)->num = inet_sk(oldsk)->num;
5563 
5564 	/* Copy the bind_addr list from the original endpoint to the new
5565 	 * endpoint so that we can handle restarts properly
5566 	 */
5567 	if (assoc->peer.ipv4_address)
5568 		flags |= SCTP_ADDR4_PEERSUPP;
5569 	if (assoc->peer.ipv6_address)
5570 		flags |= SCTP_ADDR6_PEERSUPP;
5571 	sctp_bind_addr_copy(&newsp->ep->base.bind_addr,
5572 			     &oldsp->ep->base.bind_addr,
5573 			     SCTP_SCOPE_GLOBAL, GFP_KERNEL, flags);
5574 
5575 	/* Move any messages in the old socket's receive queue that are for the
5576 	 * peeled off association to the new socket's receive queue.
5577 	 */
5578 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
5579 		event = sctp_skb2event(skb);
5580 		if (event->asoc == assoc) {
5581 			sock_rfree(skb);
5582 			__skb_unlink(skb, &oldsk->sk_receive_queue);
5583 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
5584 			skb_set_owner_r(skb, newsk);
5585 		}
5586 	}
5587 
5588 	/* Clean up any messages pending delivery due to partial
5589 	 * delivery.   Three cases:
5590 	 * 1) No partial deliver;  no work.
5591 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
5592 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
5593 	 */
5594 	skb_queue_head_init(&newsp->pd_lobby);
5595 	sctp_sk(newsk)->pd_mode = assoc->ulpq.pd_mode;
5596 
5597 	if (sctp_sk(oldsk)->pd_mode) {
5598 		struct sk_buff_head *queue;
5599 
5600 		/* Decide which queue to move pd_lobby skbs to. */
5601 		if (assoc->ulpq.pd_mode) {
5602 			queue = &newsp->pd_lobby;
5603 		} else
5604 			queue = &newsk->sk_receive_queue;
5605 
5606 		/* Walk through the pd_lobby, looking for skbs that
5607 		 * need moved to the new socket.
5608 		 */
5609 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
5610 			event = sctp_skb2event(skb);
5611 			if (event->asoc == assoc) {
5612 				sock_rfree(skb);
5613 				__skb_unlink(skb, &oldsp->pd_lobby);
5614 				__skb_queue_tail(queue, skb);
5615 				skb_set_owner_r(skb, newsk);
5616 			}
5617 		}
5618 
5619 		/* Clear up any skbs waiting for the partial
5620 		 * delivery to finish.
5621 		 */
5622 		if (assoc->ulpq.pd_mode)
5623 			sctp_clear_pd(oldsk);
5624 
5625 	}
5626 
5627 	/* Set the type of socket to indicate that it is peeled off from the
5628 	 * original UDP-style socket or created with the accept() call on a
5629 	 * TCP-style socket..
5630 	 */
5631 	newsp->type = type;
5632 
5633 	/* Mark the new socket "in-use" by the user so that any packets
5634 	 * that may arrive on the association after we've moved it are
5635 	 * queued to the backlog.  This prevents a potential race between
5636 	 * backlog processing on the old socket and new-packet processing
5637 	 * on the new socket.
5638 	 */
5639 	sctp_lock_sock(newsk);
5640 	sctp_assoc_migrate(assoc, newsk);
5641 
5642 	/* If the association on the newsk is already closed before accept()
5643 	 * is called, set RCV_SHUTDOWN flag.
5644 	 */
5645 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
5646 		newsk->sk_shutdown |= RCV_SHUTDOWN;
5647 
5648 	newsk->sk_state = SCTP_SS_ESTABLISHED;
5649 	sctp_release_sock(newsk);
5650 }
5651 
5652 /* This proto struct describes the ULP interface for SCTP.  */
5653 struct proto sctp_prot = {
5654 	.name        =	"SCTP",
5655 	.owner       =	THIS_MODULE,
5656 	.close       =	sctp_close,
5657 	.connect     =	sctp_connect,
5658 	.disconnect  =	sctp_disconnect,
5659 	.accept      =	sctp_accept,
5660 	.ioctl       =	sctp_ioctl,
5661 	.init        =	sctp_init_sock,
5662 	.destroy     =	sctp_destroy_sock,
5663 	.shutdown    =	sctp_shutdown,
5664 	.setsockopt  =	sctp_setsockopt,
5665 	.getsockopt  =	sctp_getsockopt,
5666 	.sendmsg     =	sctp_sendmsg,
5667 	.recvmsg     =	sctp_recvmsg,
5668 	.bind        =	sctp_bind,
5669 	.backlog_rcv =	sctp_backlog_rcv,
5670 	.hash        =	sctp_hash,
5671 	.unhash      =	sctp_unhash,
5672 	.get_port    =	sctp_get_port,
5673 	.obj_size    =  sizeof(struct sctp_sock),
5674 };
5675 
5676 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5677 struct proto sctpv6_prot = {
5678 	.name		= "SCTPv6",
5679 	.owner		= THIS_MODULE,
5680 	.close		= sctp_close,
5681 	.connect	= sctp_connect,
5682 	.disconnect	= sctp_disconnect,
5683 	.accept		= sctp_accept,
5684 	.ioctl		= sctp_ioctl,
5685 	.init		= sctp_init_sock,
5686 	.destroy	= sctp_destroy_sock,
5687 	.shutdown	= sctp_shutdown,
5688 	.setsockopt	= sctp_setsockopt,
5689 	.getsockopt	= sctp_getsockopt,
5690 	.sendmsg	= sctp_sendmsg,
5691 	.recvmsg	= sctp_recvmsg,
5692 	.bind		= sctp_bind,
5693 	.backlog_rcv	= sctp_backlog_rcv,
5694 	.hash		= sctp_hash,
5695 	.unhash		= sctp_unhash,
5696 	.get_port	= sctp_get_port,
5697 	.obj_size	= sizeof(struct sctp6_sock),
5698 };
5699 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
5700