1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, write to 32 * the Free Software Foundation, 59 Temple Place - Suite 330, 33 * Boston, MA 02111-1307, USA. 34 * 35 * Please send any bug reports or fixes you make to the 36 * email address(es): 37 * lksctp developers <lksctp-developers@lists.sourceforge.net> 38 * 39 * Or submit a bug report through the following website: 40 * http://www.sf.net/projects/lksctp 41 * 42 * Written or modified by: 43 * La Monte H.P. Yarroll <piggy@acm.org> 44 * Narasimha Budihal <narsi@refcode.org> 45 * Karl Knutson <karl@athena.chicago.il.us> 46 * Jon Grimm <jgrimm@us.ibm.com> 47 * Xingang Guo <xingang.guo@intel.com> 48 * Daisy Chang <daisyc@us.ibm.com> 49 * Sridhar Samudrala <samudrala@us.ibm.com> 50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 51 * Ardelle Fan <ardelle.fan@intel.com> 52 * Ryan Layer <rmlayer@us.ibm.com> 53 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 54 * Kevin Gao <kevin.gao@intel.com> 55 * 56 * Any bugs reported given to us we will try to fix... any fixes shared will 57 * be incorporated into the next SCTP release. 58 */ 59 60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 61 62 #include <linux/types.h> 63 #include <linux/kernel.h> 64 #include <linux/wait.h> 65 #include <linux/time.h> 66 #include <linux/ip.h> 67 #include <linux/capability.h> 68 #include <linux/fcntl.h> 69 #include <linux/poll.h> 70 #include <linux/init.h> 71 #include <linux/crypto.h> 72 #include <linux/slab.h> 73 74 #include <net/ip.h> 75 #include <net/icmp.h> 76 #include <net/route.h> 77 #include <net/ipv6.h> 78 #include <net/inet_common.h> 79 80 #include <linux/socket.h> /* for sa_family_t */ 81 #include <linux/export.h> 82 #include <net/sock.h> 83 #include <net/sctp/sctp.h> 84 #include <net/sctp/sm.h> 85 86 /* WARNING: Please do not remove the SCTP_STATIC attribute to 87 * any of the functions below as they are used to export functions 88 * used by a project regression testsuite. 89 */ 90 91 /* Forward declarations for internal helper functions. */ 92 static int sctp_writeable(struct sock *sk); 93 static void sctp_wfree(struct sk_buff *skb); 94 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 95 size_t msg_len); 96 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p); 97 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 98 static int sctp_wait_for_accept(struct sock *sk, long timeo); 99 static void sctp_wait_for_close(struct sock *sk, long timeo); 100 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 101 union sctp_addr *addr, int len); 102 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 103 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 104 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 105 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 106 static int sctp_send_asconf(struct sctp_association *asoc, 107 struct sctp_chunk *chunk); 108 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 109 static int sctp_autobind(struct sock *sk); 110 static void sctp_sock_migrate(struct sock *, struct sock *, 111 struct sctp_association *, sctp_socket_type_t); 112 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG; 113 114 extern struct kmem_cache *sctp_bucket_cachep; 115 extern long sysctl_sctp_mem[3]; 116 extern int sysctl_sctp_rmem[3]; 117 extern int sysctl_sctp_wmem[3]; 118 119 static int sctp_memory_pressure; 120 static atomic_long_t sctp_memory_allocated; 121 struct percpu_counter sctp_sockets_allocated; 122 123 static void sctp_enter_memory_pressure(struct sock *sk) 124 { 125 sctp_memory_pressure = 1; 126 } 127 128 129 /* Get the sndbuf space available at the time on the association. */ 130 static inline int sctp_wspace(struct sctp_association *asoc) 131 { 132 int amt; 133 134 if (asoc->ep->sndbuf_policy) 135 amt = asoc->sndbuf_used; 136 else 137 amt = sk_wmem_alloc_get(asoc->base.sk); 138 139 if (amt >= asoc->base.sk->sk_sndbuf) { 140 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 141 amt = 0; 142 else { 143 amt = sk_stream_wspace(asoc->base.sk); 144 if (amt < 0) 145 amt = 0; 146 } 147 } else { 148 amt = asoc->base.sk->sk_sndbuf - amt; 149 } 150 return amt; 151 } 152 153 /* Increment the used sndbuf space count of the corresponding association by 154 * the size of the outgoing data chunk. 155 * Also, set the skb destructor for sndbuf accounting later. 156 * 157 * Since it is always 1-1 between chunk and skb, and also a new skb is always 158 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 159 * destructor in the data chunk skb for the purpose of the sndbuf space 160 * tracking. 161 */ 162 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 163 { 164 struct sctp_association *asoc = chunk->asoc; 165 struct sock *sk = asoc->base.sk; 166 167 /* The sndbuf space is tracked per association. */ 168 sctp_association_hold(asoc); 169 170 skb_set_owner_w(chunk->skb, sk); 171 172 chunk->skb->destructor = sctp_wfree; 173 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 174 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 175 176 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 177 sizeof(struct sk_buff) + 178 sizeof(struct sctp_chunk); 179 180 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 181 sk->sk_wmem_queued += chunk->skb->truesize; 182 sk_mem_charge(sk, chunk->skb->truesize); 183 } 184 185 /* Verify that this is a valid address. */ 186 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 187 int len) 188 { 189 struct sctp_af *af; 190 191 /* Verify basic sockaddr. */ 192 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 193 if (!af) 194 return -EINVAL; 195 196 /* Is this a valid SCTP address? */ 197 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 198 return -EINVAL; 199 200 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 201 return -EINVAL; 202 203 return 0; 204 } 205 206 /* Look up the association by its id. If this is not a UDP-style 207 * socket, the ID field is always ignored. 208 */ 209 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 210 { 211 struct sctp_association *asoc = NULL; 212 213 /* If this is not a UDP-style socket, assoc id should be ignored. */ 214 if (!sctp_style(sk, UDP)) { 215 /* Return NULL if the socket state is not ESTABLISHED. It 216 * could be a TCP-style listening socket or a socket which 217 * hasn't yet called connect() to establish an association. 218 */ 219 if (!sctp_sstate(sk, ESTABLISHED)) 220 return NULL; 221 222 /* Get the first and the only association from the list. */ 223 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 224 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 225 struct sctp_association, asocs); 226 return asoc; 227 } 228 229 /* Otherwise this is a UDP-style socket. */ 230 if (!id || (id == (sctp_assoc_t)-1)) 231 return NULL; 232 233 spin_lock_bh(&sctp_assocs_id_lock); 234 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 235 spin_unlock_bh(&sctp_assocs_id_lock); 236 237 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 238 return NULL; 239 240 return asoc; 241 } 242 243 /* Look up the transport from an address and an assoc id. If both address and 244 * id are specified, the associations matching the address and the id should be 245 * the same. 246 */ 247 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 248 struct sockaddr_storage *addr, 249 sctp_assoc_t id) 250 { 251 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 252 struct sctp_transport *transport; 253 union sctp_addr *laddr = (union sctp_addr *)addr; 254 255 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 256 laddr, 257 &transport); 258 259 if (!addr_asoc) 260 return NULL; 261 262 id_asoc = sctp_id2assoc(sk, id); 263 if (id_asoc && (id_asoc != addr_asoc)) 264 return NULL; 265 266 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 267 (union sctp_addr *)addr); 268 269 return transport; 270 } 271 272 /* API 3.1.2 bind() - UDP Style Syntax 273 * The syntax of bind() is, 274 * 275 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 276 * 277 * sd - the socket descriptor returned by socket(). 278 * addr - the address structure (struct sockaddr_in or struct 279 * sockaddr_in6 [RFC 2553]), 280 * addr_len - the size of the address structure. 281 */ 282 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 283 { 284 int retval = 0; 285 286 sctp_lock_sock(sk); 287 288 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n", 289 sk, addr, addr_len); 290 291 /* Disallow binding twice. */ 292 if (!sctp_sk(sk)->ep->base.bind_addr.port) 293 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 294 addr_len); 295 else 296 retval = -EINVAL; 297 298 sctp_release_sock(sk); 299 300 return retval; 301 } 302 303 static long sctp_get_port_local(struct sock *, union sctp_addr *); 304 305 /* Verify this is a valid sockaddr. */ 306 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 307 union sctp_addr *addr, int len) 308 { 309 struct sctp_af *af; 310 311 /* Check minimum size. */ 312 if (len < sizeof (struct sockaddr)) 313 return NULL; 314 315 /* V4 mapped address are really of AF_INET family */ 316 if (addr->sa.sa_family == AF_INET6 && 317 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { 318 if (!opt->pf->af_supported(AF_INET, opt)) 319 return NULL; 320 } else { 321 /* Does this PF support this AF? */ 322 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 323 return NULL; 324 } 325 326 /* If we get this far, af is valid. */ 327 af = sctp_get_af_specific(addr->sa.sa_family); 328 329 if (len < af->sockaddr_len) 330 return NULL; 331 332 return af; 333 } 334 335 /* Bind a local address either to an endpoint or to an association. */ 336 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 337 { 338 struct sctp_sock *sp = sctp_sk(sk); 339 struct sctp_endpoint *ep = sp->ep; 340 struct sctp_bind_addr *bp = &ep->base.bind_addr; 341 struct sctp_af *af; 342 unsigned short snum; 343 int ret = 0; 344 345 /* Common sockaddr verification. */ 346 af = sctp_sockaddr_af(sp, addr, len); 347 if (!af) { 348 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n", 349 sk, addr, len); 350 return -EINVAL; 351 } 352 353 snum = ntohs(addr->v4.sin_port); 354 355 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ", 356 ", port: %d, new port: %d, len: %d)\n", 357 sk, 358 addr, 359 bp->port, snum, 360 len); 361 362 /* PF specific bind() address verification. */ 363 if (!sp->pf->bind_verify(sp, addr)) 364 return -EADDRNOTAVAIL; 365 366 /* We must either be unbound, or bind to the same port. 367 * It's OK to allow 0 ports if we are already bound. 368 * We'll just inhert an already bound port in this case 369 */ 370 if (bp->port) { 371 if (!snum) 372 snum = bp->port; 373 else if (snum != bp->port) { 374 SCTP_DEBUG_PRINTK("sctp_do_bind:" 375 " New port %d does not match existing port " 376 "%d.\n", snum, bp->port); 377 return -EINVAL; 378 } 379 } 380 381 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 382 return -EACCES; 383 384 /* See if the address matches any of the addresses we may have 385 * already bound before checking against other endpoints. 386 */ 387 if (sctp_bind_addr_match(bp, addr, sp)) 388 return -EINVAL; 389 390 /* Make sure we are allowed to bind here. 391 * The function sctp_get_port_local() does duplicate address 392 * detection. 393 */ 394 addr->v4.sin_port = htons(snum); 395 if ((ret = sctp_get_port_local(sk, addr))) { 396 return -EADDRINUSE; 397 } 398 399 /* Refresh ephemeral port. */ 400 if (!bp->port) 401 bp->port = inet_sk(sk)->inet_num; 402 403 /* Add the address to the bind address list. 404 * Use GFP_ATOMIC since BHs will be disabled. 405 */ 406 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC); 407 408 /* Copy back into socket for getsockname() use. */ 409 if (!ret) { 410 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 411 af->to_sk_saddr(addr, sk); 412 } 413 414 return ret; 415 } 416 417 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 418 * 419 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 420 * at any one time. If a sender, after sending an ASCONF chunk, decides 421 * it needs to transfer another ASCONF Chunk, it MUST wait until the 422 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 423 * subsequent ASCONF. Note this restriction binds each side, so at any 424 * time two ASCONF may be in-transit on any given association (one sent 425 * from each endpoint). 426 */ 427 static int sctp_send_asconf(struct sctp_association *asoc, 428 struct sctp_chunk *chunk) 429 { 430 int retval = 0; 431 432 /* If there is an outstanding ASCONF chunk, queue it for later 433 * transmission. 434 */ 435 if (asoc->addip_last_asconf) { 436 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 437 goto out; 438 } 439 440 /* Hold the chunk until an ASCONF_ACK is received. */ 441 sctp_chunk_hold(chunk); 442 retval = sctp_primitive_ASCONF(asoc, chunk); 443 if (retval) 444 sctp_chunk_free(chunk); 445 else 446 asoc->addip_last_asconf = chunk; 447 448 out: 449 return retval; 450 } 451 452 /* Add a list of addresses as bind addresses to local endpoint or 453 * association. 454 * 455 * Basically run through each address specified in the addrs/addrcnt 456 * array/length pair, determine if it is IPv6 or IPv4 and call 457 * sctp_do_bind() on it. 458 * 459 * If any of them fails, then the operation will be reversed and the 460 * ones that were added will be removed. 461 * 462 * Only sctp_setsockopt_bindx() is supposed to call this function. 463 */ 464 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 465 { 466 int cnt; 467 int retval = 0; 468 void *addr_buf; 469 struct sockaddr *sa_addr; 470 struct sctp_af *af; 471 472 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n", 473 sk, addrs, addrcnt); 474 475 addr_buf = addrs; 476 for (cnt = 0; cnt < addrcnt; cnt++) { 477 /* The list may contain either IPv4 or IPv6 address; 478 * determine the address length for walking thru the list. 479 */ 480 sa_addr = addr_buf; 481 af = sctp_get_af_specific(sa_addr->sa_family); 482 if (!af) { 483 retval = -EINVAL; 484 goto err_bindx_add; 485 } 486 487 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 488 af->sockaddr_len); 489 490 addr_buf += af->sockaddr_len; 491 492 err_bindx_add: 493 if (retval < 0) { 494 /* Failed. Cleanup the ones that have been added */ 495 if (cnt > 0) 496 sctp_bindx_rem(sk, addrs, cnt); 497 return retval; 498 } 499 } 500 501 return retval; 502 } 503 504 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 505 * associations that are part of the endpoint indicating that a list of local 506 * addresses are added to the endpoint. 507 * 508 * If any of the addresses is already in the bind address list of the 509 * association, we do not send the chunk for that association. But it will not 510 * affect other associations. 511 * 512 * Only sctp_setsockopt_bindx() is supposed to call this function. 513 */ 514 static int sctp_send_asconf_add_ip(struct sock *sk, 515 struct sockaddr *addrs, 516 int addrcnt) 517 { 518 struct sctp_sock *sp; 519 struct sctp_endpoint *ep; 520 struct sctp_association *asoc; 521 struct sctp_bind_addr *bp; 522 struct sctp_chunk *chunk; 523 struct sctp_sockaddr_entry *laddr; 524 union sctp_addr *addr; 525 union sctp_addr saveaddr; 526 void *addr_buf; 527 struct sctp_af *af; 528 struct list_head *p; 529 int i; 530 int retval = 0; 531 532 if (!sctp_addip_enable) 533 return retval; 534 535 sp = sctp_sk(sk); 536 ep = sp->ep; 537 538 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 539 __func__, sk, addrs, addrcnt); 540 541 list_for_each_entry(asoc, &ep->asocs, asocs) { 542 543 if (!asoc->peer.asconf_capable) 544 continue; 545 546 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 547 continue; 548 549 if (!sctp_state(asoc, ESTABLISHED)) 550 continue; 551 552 /* Check if any address in the packed array of addresses is 553 * in the bind address list of the association. If so, 554 * do not send the asconf chunk to its peer, but continue with 555 * other associations. 556 */ 557 addr_buf = addrs; 558 for (i = 0; i < addrcnt; i++) { 559 addr = addr_buf; 560 af = sctp_get_af_specific(addr->v4.sin_family); 561 if (!af) { 562 retval = -EINVAL; 563 goto out; 564 } 565 566 if (sctp_assoc_lookup_laddr(asoc, addr)) 567 break; 568 569 addr_buf += af->sockaddr_len; 570 } 571 if (i < addrcnt) 572 continue; 573 574 /* Use the first valid address in bind addr list of 575 * association as Address Parameter of ASCONF CHUNK. 576 */ 577 bp = &asoc->base.bind_addr; 578 p = bp->address_list.next; 579 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 580 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 581 addrcnt, SCTP_PARAM_ADD_IP); 582 if (!chunk) { 583 retval = -ENOMEM; 584 goto out; 585 } 586 587 /* Add the new addresses to the bind address list with 588 * use_as_src set to 0. 589 */ 590 addr_buf = addrs; 591 for (i = 0; i < addrcnt; i++) { 592 addr = addr_buf; 593 af = sctp_get_af_specific(addr->v4.sin_family); 594 memcpy(&saveaddr, addr, af->sockaddr_len); 595 retval = sctp_add_bind_addr(bp, &saveaddr, 596 SCTP_ADDR_NEW, GFP_ATOMIC); 597 addr_buf += af->sockaddr_len; 598 } 599 if (asoc->src_out_of_asoc_ok) { 600 struct sctp_transport *trans; 601 602 list_for_each_entry(trans, 603 &asoc->peer.transport_addr_list, transports) { 604 /* Clear the source and route cache */ 605 dst_release(trans->dst); 606 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 607 2*asoc->pathmtu, 4380)); 608 trans->ssthresh = asoc->peer.i.a_rwnd; 609 trans->rto = asoc->rto_initial; 610 trans->rtt = trans->srtt = trans->rttvar = 0; 611 sctp_transport_route(trans, NULL, 612 sctp_sk(asoc->base.sk)); 613 } 614 } 615 retval = sctp_send_asconf(asoc, chunk); 616 } 617 618 out: 619 return retval; 620 } 621 622 /* Remove a list of addresses from bind addresses list. Do not remove the 623 * last address. 624 * 625 * Basically run through each address specified in the addrs/addrcnt 626 * array/length pair, determine if it is IPv6 or IPv4 and call 627 * sctp_del_bind() on it. 628 * 629 * If any of them fails, then the operation will be reversed and the 630 * ones that were removed will be added back. 631 * 632 * At least one address has to be left; if only one address is 633 * available, the operation will return -EBUSY. 634 * 635 * Only sctp_setsockopt_bindx() is supposed to call this function. 636 */ 637 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 638 { 639 struct sctp_sock *sp = sctp_sk(sk); 640 struct sctp_endpoint *ep = sp->ep; 641 int cnt; 642 struct sctp_bind_addr *bp = &ep->base.bind_addr; 643 int retval = 0; 644 void *addr_buf; 645 union sctp_addr *sa_addr; 646 struct sctp_af *af; 647 648 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n", 649 sk, addrs, addrcnt); 650 651 addr_buf = addrs; 652 for (cnt = 0; cnt < addrcnt; cnt++) { 653 /* If the bind address list is empty or if there is only one 654 * bind address, there is nothing more to be removed (we need 655 * at least one address here). 656 */ 657 if (list_empty(&bp->address_list) || 658 (sctp_list_single_entry(&bp->address_list))) { 659 retval = -EBUSY; 660 goto err_bindx_rem; 661 } 662 663 sa_addr = addr_buf; 664 af = sctp_get_af_specific(sa_addr->sa.sa_family); 665 if (!af) { 666 retval = -EINVAL; 667 goto err_bindx_rem; 668 } 669 670 if (!af->addr_valid(sa_addr, sp, NULL)) { 671 retval = -EADDRNOTAVAIL; 672 goto err_bindx_rem; 673 } 674 675 if (sa_addr->v4.sin_port && 676 sa_addr->v4.sin_port != htons(bp->port)) { 677 retval = -EINVAL; 678 goto err_bindx_rem; 679 } 680 681 if (!sa_addr->v4.sin_port) 682 sa_addr->v4.sin_port = htons(bp->port); 683 684 /* FIXME - There is probably a need to check if sk->sk_saddr and 685 * sk->sk_rcv_addr are currently set to one of the addresses to 686 * be removed. This is something which needs to be looked into 687 * when we are fixing the outstanding issues with multi-homing 688 * socket routing and failover schemes. Refer to comments in 689 * sctp_do_bind(). -daisy 690 */ 691 retval = sctp_del_bind_addr(bp, sa_addr); 692 693 addr_buf += af->sockaddr_len; 694 err_bindx_rem: 695 if (retval < 0) { 696 /* Failed. Add the ones that has been removed back */ 697 if (cnt > 0) 698 sctp_bindx_add(sk, addrs, cnt); 699 return retval; 700 } 701 } 702 703 return retval; 704 } 705 706 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 707 * the associations that are part of the endpoint indicating that a list of 708 * local addresses are removed from the endpoint. 709 * 710 * If any of the addresses is already in the bind address list of the 711 * association, we do not send the chunk for that association. But it will not 712 * affect other associations. 713 * 714 * Only sctp_setsockopt_bindx() is supposed to call this function. 715 */ 716 static int sctp_send_asconf_del_ip(struct sock *sk, 717 struct sockaddr *addrs, 718 int addrcnt) 719 { 720 struct sctp_sock *sp; 721 struct sctp_endpoint *ep; 722 struct sctp_association *asoc; 723 struct sctp_transport *transport; 724 struct sctp_bind_addr *bp; 725 struct sctp_chunk *chunk; 726 union sctp_addr *laddr; 727 void *addr_buf; 728 struct sctp_af *af; 729 struct sctp_sockaddr_entry *saddr; 730 int i; 731 int retval = 0; 732 int stored = 0; 733 734 chunk = NULL; 735 if (!sctp_addip_enable) 736 return retval; 737 738 sp = sctp_sk(sk); 739 ep = sp->ep; 740 741 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 742 __func__, sk, addrs, addrcnt); 743 744 list_for_each_entry(asoc, &ep->asocs, asocs) { 745 746 if (!asoc->peer.asconf_capable) 747 continue; 748 749 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 750 continue; 751 752 if (!sctp_state(asoc, ESTABLISHED)) 753 continue; 754 755 /* Check if any address in the packed array of addresses is 756 * not present in the bind address list of the association. 757 * If so, do not send the asconf chunk to its peer, but 758 * continue with other associations. 759 */ 760 addr_buf = addrs; 761 for (i = 0; i < addrcnt; i++) { 762 laddr = addr_buf; 763 af = sctp_get_af_specific(laddr->v4.sin_family); 764 if (!af) { 765 retval = -EINVAL; 766 goto out; 767 } 768 769 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 770 break; 771 772 addr_buf += af->sockaddr_len; 773 } 774 if (i < addrcnt) 775 continue; 776 777 /* Find one address in the association's bind address list 778 * that is not in the packed array of addresses. This is to 779 * make sure that we do not delete all the addresses in the 780 * association. 781 */ 782 bp = &asoc->base.bind_addr; 783 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 784 addrcnt, sp); 785 if ((laddr == NULL) && (addrcnt == 1)) { 786 if (asoc->asconf_addr_del_pending) 787 continue; 788 asoc->asconf_addr_del_pending = 789 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 790 if (asoc->asconf_addr_del_pending == NULL) { 791 retval = -ENOMEM; 792 goto out; 793 } 794 asoc->asconf_addr_del_pending->sa.sa_family = 795 addrs->sa_family; 796 asoc->asconf_addr_del_pending->v4.sin_port = 797 htons(bp->port); 798 if (addrs->sa_family == AF_INET) { 799 struct sockaddr_in *sin; 800 801 sin = (struct sockaddr_in *)addrs; 802 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 803 } else if (addrs->sa_family == AF_INET6) { 804 struct sockaddr_in6 *sin6; 805 806 sin6 = (struct sockaddr_in6 *)addrs; 807 ipv6_addr_copy(&asoc->asconf_addr_del_pending->v6.sin6_addr, &sin6->sin6_addr); 808 } 809 SCTP_DEBUG_PRINTK_IPADDR("send_asconf_del_ip: keep the last address asoc: %p ", 810 " at %p\n", asoc, asoc->asconf_addr_del_pending, 811 asoc->asconf_addr_del_pending); 812 asoc->src_out_of_asoc_ok = 1; 813 stored = 1; 814 goto skip_mkasconf; 815 } 816 817 /* We do not need RCU protection throughout this loop 818 * because this is done under a socket lock from the 819 * setsockopt call. 820 */ 821 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 822 SCTP_PARAM_DEL_IP); 823 if (!chunk) { 824 retval = -ENOMEM; 825 goto out; 826 } 827 828 skip_mkasconf: 829 /* Reset use_as_src flag for the addresses in the bind address 830 * list that are to be deleted. 831 */ 832 addr_buf = addrs; 833 for (i = 0; i < addrcnt; i++) { 834 laddr = addr_buf; 835 af = sctp_get_af_specific(laddr->v4.sin_family); 836 list_for_each_entry(saddr, &bp->address_list, list) { 837 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 838 saddr->state = SCTP_ADDR_DEL; 839 } 840 addr_buf += af->sockaddr_len; 841 } 842 843 /* Update the route and saddr entries for all the transports 844 * as some of the addresses in the bind address list are 845 * about to be deleted and cannot be used as source addresses. 846 */ 847 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 848 transports) { 849 dst_release(transport->dst); 850 sctp_transport_route(transport, NULL, 851 sctp_sk(asoc->base.sk)); 852 } 853 854 if (stored) 855 /* We don't need to transmit ASCONF */ 856 continue; 857 retval = sctp_send_asconf(asoc, chunk); 858 } 859 out: 860 return retval; 861 } 862 863 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 864 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 865 { 866 struct sock *sk = sctp_opt2sk(sp); 867 union sctp_addr *addr; 868 struct sctp_af *af; 869 870 /* It is safe to write port space in caller. */ 871 addr = &addrw->a; 872 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 873 af = sctp_get_af_specific(addr->sa.sa_family); 874 if (!af) 875 return -EINVAL; 876 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 877 return -EINVAL; 878 879 if (addrw->state == SCTP_ADDR_NEW) 880 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 881 else 882 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 883 } 884 885 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 886 * 887 * API 8.1 888 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 889 * int flags); 890 * 891 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 892 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 893 * or IPv6 addresses. 894 * 895 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 896 * Section 3.1.2 for this usage. 897 * 898 * addrs is a pointer to an array of one or more socket addresses. Each 899 * address is contained in its appropriate structure (i.e. struct 900 * sockaddr_in or struct sockaddr_in6) the family of the address type 901 * must be used to distinguish the address length (note that this 902 * representation is termed a "packed array" of addresses). The caller 903 * specifies the number of addresses in the array with addrcnt. 904 * 905 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 906 * -1, and sets errno to the appropriate error code. 907 * 908 * For SCTP, the port given in each socket address must be the same, or 909 * sctp_bindx() will fail, setting errno to EINVAL. 910 * 911 * The flags parameter is formed from the bitwise OR of zero or more of 912 * the following currently defined flags: 913 * 914 * SCTP_BINDX_ADD_ADDR 915 * 916 * SCTP_BINDX_REM_ADDR 917 * 918 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 919 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 920 * addresses from the association. The two flags are mutually exclusive; 921 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 922 * not remove all addresses from an association; sctp_bindx() will 923 * reject such an attempt with EINVAL. 924 * 925 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 926 * additional addresses with an endpoint after calling bind(). Or use 927 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 928 * socket is associated with so that no new association accepted will be 929 * associated with those addresses. If the endpoint supports dynamic 930 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 931 * endpoint to send the appropriate message to the peer to change the 932 * peers address lists. 933 * 934 * Adding and removing addresses from a connected association is 935 * optional functionality. Implementations that do not support this 936 * functionality should return EOPNOTSUPP. 937 * 938 * Basically do nothing but copying the addresses from user to kernel 939 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 940 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 941 * from userspace. 942 * 943 * We don't use copy_from_user() for optimization: we first do the 944 * sanity checks (buffer size -fast- and access check-healthy 945 * pointer); if all of those succeed, then we can alloc the memory 946 * (expensive operation) needed to copy the data to kernel. Then we do 947 * the copying without checking the user space area 948 * (__copy_from_user()). 949 * 950 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 951 * it. 952 * 953 * sk The sk of the socket 954 * addrs The pointer to the addresses in user land 955 * addrssize Size of the addrs buffer 956 * op Operation to perform (add or remove, see the flags of 957 * sctp_bindx) 958 * 959 * Returns 0 if ok, <0 errno code on error. 960 */ 961 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk, 962 struct sockaddr __user *addrs, 963 int addrs_size, int op) 964 { 965 struct sockaddr *kaddrs; 966 int err; 967 int addrcnt = 0; 968 int walk_size = 0; 969 struct sockaddr *sa_addr; 970 void *addr_buf; 971 struct sctp_af *af; 972 973 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p" 974 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op); 975 976 if (unlikely(addrs_size <= 0)) 977 return -EINVAL; 978 979 /* Check the user passed a healthy pointer. */ 980 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 981 return -EFAULT; 982 983 /* Alloc space for the address array in kernel memory. */ 984 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 985 if (unlikely(!kaddrs)) 986 return -ENOMEM; 987 988 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 989 kfree(kaddrs); 990 return -EFAULT; 991 } 992 993 /* Walk through the addrs buffer and count the number of addresses. */ 994 addr_buf = kaddrs; 995 while (walk_size < addrs_size) { 996 if (walk_size + sizeof(sa_family_t) > addrs_size) { 997 kfree(kaddrs); 998 return -EINVAL; 999 } 1000 1001 sa_addr = addr_buf; 1002 af = sctp_get_af_specific(sa_addr->sa_family); 1003 1004 /* If the address family is not supported or if this address 1005 * causes the address buffer to overflow return EINVAL. 1006 */ 1007 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1008 kfree(kaddrs); 1009 return -EINVAL; 1010 } 1011 addrcnt++; 1012 addr_buf += af->sockaddr_len; 1013 walk_size += af->sockaddr_len; 1014 } 1015 1016 /* Do the work. */ 1017 switch (op) { 1018 case SCTP_BINDX_ADD_ADDR: 1019 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1020 if (err) 1021 goto out; 1022 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1023 break; 1024 1025 case SCTP_BINDX_REM_ADDR: 1026 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1027 if (err) 1028 goto out; 1029 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1030 break; 1031 1032 default: 1033 err = -EINVAL; 1034 break; 1035 } 1036 1037 out: 1038 kfree(kaddrs); 1039 1040 return err; 1041 } 1042 1043 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1044 * 1045 * Common routine for handling connect() and sctp_connectx(). 1046 * Connect will come in with just a single address. 1047 */ 1048 static int __sctp_connect(struct sock* sk, 1049 struct sockaddr *kaddrs, 1050 int addrs_size, 1051 sctp_assoc_t *assoc_id) 1052 { 1053 struct sctp_sock *sp; 1054 struct sctp_endpoint *ep; 1055 struct sctp_association *asoc = NULL; 1056 struct sctp_association *asoc2; 1057 struct sctp_transport *transport; 1058 union sctp_addr to; 1059 struct sctp_af *af; 1060 sctp_scope_t scope; 1061 long timeo; 1062 int err = 0; 1063 int addrcnt = 0; 1064 int walk_size = 0; 1065 union sctp_addr *sa_addr = NULL; 1066 void *addr_buf; 1067 unsigned short port; 1068 unsigned int f_flags = 0; 1069 1070 sp = sctp_sk(sk); 1071 ep = sp->ep; 1072 1073 /* connect() cannot be done on a socket that is already in ESTABLISHED 1074 * state - UDP-style peeled off socket or a TCP-style socket that 1075 * is already connected. 1076 * It cannot be done even on a TCP-style listening socket. 1077 */ 1078 if (sctp_sstate(sk, ESTABLISHED) || 1079 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1080 err = -EISCONN; 1081 goto out_free; 1082 } 1083 1084 /* Walk through the addrs buffer and count the number of addresses. */ 1085 addr_buf = kaddrs; 1086 while (walk_size < addrs_size) { 1087 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1088 err = -EINVAL; 1089 goto out_free; 1090 } 1091 1092 sa_addr = addr_buf; 1093 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1094 1095 /* If the address family is not supported or if this address 1096 * causes the address buffer to overflow return EINVAL. 1097 */ 1098 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1099 err = -EINVAL; 1100 goto out_free; 1101 } 1102 1103 port = ntohs(sa_addr->v4.sin_port); 1104 1105 /* Save current address so we can work with it */ 1106 memcpy(&to, sa_addr, af->sockaddr_len); 1107 1108 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1109 if (err) 1110 goto out_free; 1111 1112 /* Make sure the destination port is correctly set 1113 * in all addresses. 1114 */ 1115 if (asoc && asoc->peer.port && asoc->peer.port != port) 1116 goto out_free; 1117 1118 1119 /* Check if there already is a matching association on the 1120 * endpoint (other than the one created here). 1121 */ 1122 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1123 if (asoc2 && asoc2 != asoc) { 1124 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1125 err = -EISCONN; 1126 else 1127 err = -EALREADY; 1128 goto out_free; 1129 } 1130 1131 /* If we could not find a matching association on the endpoint, 1132 * make sure that there is no peeled-off association matching 1133 * the peer address even on another socket. 1134 */ 1135 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1136 err = -EADDRNOTAVAIL; 1137 goto out_free; 1138 } 1139 1140 if (!asoc) { 1141 /* If a bind() or sctp_bindx() is not called prior to 1142 * an sctp_connectx() call, the system picks an 1143 * ephemeral port and will choose an address set 1144 * equivalent to binding with a wildcard address. 1145 */ 1146 if (!ep->base.bind_addr.port) { 1147 if (sctp_autobind(sk)) { 1148 err = -EAGAIN; 1149 goto out_free; 1150 } 1151 } else { 1152 /* 1153 * If an unprivileged user inherits a 1-many 1154 * style socket with open associations on a 1155 * privileged port, it MAY be permitted to 1156 * accept new associations, but it SHOULD NOT 1157 * be permitted to open new associations. 1158 */ 1159 if (ep->base.bind_addr.port < PROT_SOCK && 1160 !capable(CAP_NET_BIND_SERVICE)) { 1161 err = -EACCES; 1162 goto out_free; 1163 } 1164 } 1165 1166 scope = sctp_scope(&to); 1167 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1168 if (!asoc) { 1169 err = -ENOMEM; 1170 goto out_free; 1171 } 1172 1173 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1174 GFP_KERNEL); 1175 if (err < 0) { 1176 goto out_free; 1177 } 1178 1179 } 1180 1181 /* Prime the peer's transport structures. */ 1182 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1183 SCTP_UNKNOWN); 1184 if (!transport) { 1185 err = -ENOMEM; 1186 goto out_free; 1187 } 1188 1189 addrcnt++; 1190 addr_buf += af->sockaddr_len; 1191 walk_size += af->sockaddr_len; 1192 } 1193 1194 /* In case the user of sctp_connectx() wants an association 1195 * id back, assign one now. 1196 */ 1197 if (assoc_id) { 1198 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1199 if (err < 0) 1200 goto out_free; 1201 } 1202 1203 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1204 if (err < 0) { 1205 goto out_free; 1206 } 1207 1208 /* Initialize sk's dport and daddr for getpeername() */ 1209 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1210 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1211 af->to_sk_daddr(sa_addr, sk); 1212 sk->sk_err = 0; 1213 1214 /* in-kernel sockets don't generally have a file allocated to them 1215 * if all they do is call sock_create_kern(). 1216 */ 1217 if (sk->sk_socket->file) 1218 f_flags = sk->sk_socket->file->f_flags; 1219 1220 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1221 1222 err = sctp_wait_for_connect(asoc, &timeo); 1223 if ((err == 0 || err == -EINPROGRESS) && assoc_id) 1224 *assoc_id = asoc->assoc_id; 1225 1226 /* Don't free association on exit. */ 1227 asoc = NULL; 1228 1229 out_free: 1230 1231 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p" 1232 " kaddrs: %p err: %d\n", 1233 asoc, kaddrs, err); 1234 if (asoc) 1235 sctp_association_free(asoc); 1236 return err; 1237 } 1238 1239 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1240 * 1241 * API 8.9 1242 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1243 * sctp_assoc_t *asoc); 1244 * 1245 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1246 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1247 * or IPv6 addresses. 1248 * 1249 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1250 * Section 3.1.2 for this usage. 1251 * 1252 * addrs is a pointer to an array of one or more socket addresses. Each 1253 * address is contained in its appropriate structure (i.e. struct 1254 * sockaddr_in or struct sockaddr_in6) the family of the address type 1255 * must be used to distengish the address length (note that this 1256 * representation is termed a "packed array" of addresses). The caller 1257 * specifies the number of addresses in the array with addrcnt. 1258 * 1259 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1260 * the association id of the new association. On failure, sctp_connectx() 1261 * returns -1, and sets errno to the appropriate error code. The assoc_id 1262 * is not touched by the kernel. 1263 * 1264 * For SCTP, the port given in each socket address must be the same, or 1265 * sctp_connectx() will fail, setting errno to EINVAL. 1266 * 1267 * An application can use sctp_connectx to initiate an association with 1268 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1269 * allows a caller to specify multiple addresses at which a peer can be 1270 * reached. The way the SCTP stack uses the list of addresses to set up 1271 * the association is implementation dependent. This function only 1272 * specifies that the stack will try to make use of all the addresses in 1273 * the list when needed. 1274 * 1275 * Note that the list of addresses passed in is only used for setting up 1276 * the association. It does not necessarily equal the set of addresses 1277 * the peer uses for the resulting association. If the caller wants to 1278 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1279 * retrieve them after the association has been set up. 1280 * 1281 * Basically do nothing but copying the addresses from user to kernel 1282 * land and invoking either sctp_connectx(). This is used for tunneling 1283 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1284 * 1285 * We don't use copy_from_user() for optimization: we first do the 1286 * sanity checks (buffer size -fast- and access check-healthy 1287 * pointer); if all of those succeed, then we can alloc the memory 1288 * (expensive operation) needed to copy the data to kernel. Then we do 1289 * the copying without checking the user space area 1290 * (__copy_from_user()). 1291 * 1292 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1293 * it. 1294 * 1295 * sk The sk of the socket 1296 * addrs The pointer to the addresses in user land 1297 * addrssize Size of the addrs buffer 1298 * 1299 * Returns >=0 if ok, <0 errno code on error. 1300 */ 1301 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk, 1302 struct sockaddr __user *addrs, 1303 int addrs_size, 1304 sctp_assoc_t *assoc_id) 1305 { 1306 int err = 0; 1307 struct sockaddr *kaddrs; 1308 1309 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n", 1310 __func__, sk, addrs, addrs_size); 1311 1312 if (unlikely(addrs_size <= 0)) 1313 return -EINVAL; 1314 1315 /* Check the user passed a healthy pointer. */ 1316 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1317 return -EFAULT; 1318 1319 /* Alloc space for the address array in kernel memory. */ 1320 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 1321 if (unlikely(!kaddrs)) 1322 return -ENOMEM; 1323 1324 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1325 err = -EFAULT; 1326 } else { 1327 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1328 } 1329 1330 kfree(kaddrs); 1331 1332 return err; 1333 } 1334 1335 /* 1336 * This is an older interface. It's kept for backward compatibility 1337 * to the option that doesn't provide association id. 1338 */ 1339 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk, 1340 struct sockaddr __user *addrs, 1341 int addrs_size) 1342 { 1343 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1344 } 1345 1346 /* 1347 * New interface for the API. The since the API is done with a socket 1348 * option, to make it simple we feed back the association id is as a return 1349 * indication to the call. Error is always negative and association id is 1350 * always positive. 1351 */ 1352 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk, 1353 struct sockaddr __user *addrs, 1354 int addrs_size) 1355 { 1356 sctp_assoc_t assoc_id = 0; 1357 int err = 0; 1358 1359 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1360 1361 if (err) 1362 return err; 1363 else 1364 return assoc_id; 1365 } 1366 1367 /* 1368 * New (hopefully final) interface for the API. 1369 * We use the sctp_getaddrs_old structure so that use-space library 1370 * can avoid any unnecessary allocations. The only defferent part 1371 * is that we store the actual length of the address buffer into the 1372 * addrs_num structure member. That way we can re-use the existing 1373 * code. 1374 */ 1375 SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len, 1376 char __user *optval, 1377 int __user *optlen) 1378 { 1379 struct sctp_getaddrs_old param; 1380 sctp_assoc_t assoc_id = 0; 1381 int err = 0; 1382 1383 if (len < sizeof(param)) 1384 return -EINVAL; 1385 1386 if (copy_from_user(¶m, optval, sizeof(param))) 1387 return -EFAULT; 1388 1389 err = __sctp_setsockopt_connectx(sk, 1390 (struct sockaddr __user *)param.addrs, 1391 param.addr_num, &assoc_id); 1392 1393 if (err == 0 || err == -EINPROGRESS) { 1394 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1395 return -EFAULT; 1396 if (put_user(sizeof(assoc_id), optlen)) 1397 return -EFAULT; 1398 } 1399 1400 return err; 1401 } 1402 1403 /* API 3.1.4 close() - UDP Style Syntax 1404 * Applications use close() to perform graceful shutdown (as described in 1405 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1406 * by a UDP-style socket. 1407 * 1408 * The syntax is 1409 * 1410 * ret = close(int sd); 1411 * 1412 * sd - the socket descriptor of the associations to be closed. 1413 * 1414 * To gracefully shutdown a specific association represented by the 1415 * UDP-style socket, an application should use the sendmsg() call, 1416 * passing no user data, but including the appropriate flag in the 1417 * ancillary data (see Section xxxx). 1418 * 1419 * If sd in the close() call is a branched-off socket representing only 1420 * one association, the shutdown is performed on that association only. 1421 * 1422 * 4.1.6 close() - TCP Style Syntax 1423 * 1424 * Applications use close() to gracefully close down an association. 1425 * 1426 * The syntax is: 1427 * 1428 * int close(int sd); 1429 * 1430 * sd - the socket descriptor of the association to be closed. 1431 * 1432 * After an application calls close() on a socket descriptor, no further 1433 * socket operations will succeed on that descriptor. 1434 * 1435 * API 7.1.4 SO_LINGER 1436 * 1437 * An application using the TCP-style socket can use this option to 1438 * perform the SCTP ABORT primitive. The linger option structure is: 1439 * 1440 * struct linger { 1441 * int l_onoff; // option on/off 1442 * int l_linger; // linger time 1443 * }; 1444 * 1445 * To enable the option, set l_onoff to 1. If the l_linger value is set 1446 * to 0, calling close() is the same as the ABORT primitive. If the 1447 * value is set to a negative value, the setsockopt() call will return 1448 * an error. If the value is set to a positive value linger_time, the 1449 * close() can be blocked for at most linger_time ms. If the graceful 1450 * shutdown phase does not finish during this period, close() will 1451 * return but the graceful shutdown phase continues in the system. 1452 */ 1453 SCTP_STATIC void sctp_close(struct sock *sk, long timeout) 1454 { 1455 struct sctp_endpoint *ep; 1456 struct sctp_association *asoc; 1457 struct list_head *pos, *temp; 1458 unsigned int data_was_unread; 1459 1460 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout); 1461 1462 sctp_lock_sock(sk); 1463 sk->sk_shutdown = SHUTDOWN_MASK; 1464 sk->sk_state = SCTP_SS_CLOSING; 1465 1466 ep = sctp_sk(sk)->ep; 1467 1468 /* Clean up any skbs sitting on the receive queue. */ 1469 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1470 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1471 1472 /* Walk all associations on an endpoint. */ 1473 list_for_each_safe(pos, temp, &ep->asocs) { 1474 asoc = list_entry(pos, struct sctp_association, asocs); 1475 1476 if (sctp_style(sk, TCP)) { 1477 /* A closed association can still be in the list if 1478 * it belongs to a TCP-style listening socket that is 1479 * not yet accepted. If so, free it. If not, send an 1480 * ABORT or SHUTDOWN based on the linger options. 1481 */ 1482 if (sctp_state(asoc, CLOSED)) { 1483 sctp_unhash_established(asoc); 1484 sctp_association_free(asoc); 1485 continue; 1486 } 1487 } 1488 1489 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1490 !skb_queue_empty(&asoc->ulpq.reasm) || 1491 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1492 struct sctp_chunk *chunk; 1493 1494 chunk = sctp_make_abort_user(asoc, NULL, 0); 1495 if (chunk) 1496 sctp_primitive_ABORT(asoc, chunk); 1497 } else 1498 sctp_primitive_SHUTDOWN(asoc, NULL); 1499 } 1500 1501 /* On a TCP-style socket, block for at most linger_time if set. */ 1502 if (sctp_style(sk, TCP) && timeout) 1503 sctp_wait_for_close(sk, timeout); 1504 1505 /* This will run the backlog queue. */ 1506 sctp_release_sock(sk); 1507 1508 /* Supposedly, no process has access to the socket, but 1509 * the net layers still may. 1510 */ 1511 sctp_local_bh_disable(); 1512 sctp_bh_lock_sock(sk); 1513 1514 /* Hold the sock, since sk_common_release() will put sock_put() 1515 * and we have just a little more cleanup. 1516 */ 1517 sock_hold(sk); 1518 sk_common_release(sk); 1519 1520 sctp_bh_unlock_sock(sk); 1521 sctp_local_bh_enable(); 1522 1523 sock_put(sk); 1524 1525 SCTP_DBG_OBJCNT_DEC(sock); 1526 } 1527 1528 /* Handle EPIPE error. */ 1529 static int sctp_error(struct sock *sk, int flags, int err) 1530 { 1531 if (err == -EPIPE) 1532 err = sock_error(sk) ? : -EPIPE; 1533 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1534 send_sig(SIGPIPE, current, 0); 1535 return err; 1536 } 1537 1538 /* API 3.1.3 sendmsg() - UDP Style Syntax 1539 * 1540 * An application uses sendmsg() and recvmsg() calls to transmit data to 1541 * and receive data from its peer. 1542 * 1543 * ssize_t sendmsg(int socket, const struct msghdr *message, 1544 * int flags); 1545 * 1546 * socket - the socket descriptor of the endpoint. 1547 * message - pointer to the msghdr structure which contains a single 1548 * user message and possibly some ancillary data. 1549 * 1550 * See Section 5 for complete description of the data 1551 * structures. 1552 * 1553 * flags - flags sent or received with the user message, see Section 1554 * 5 for complete description of the flags. 1555 * 1556 * Note: This function could use a rewrite especially when explicit 1557 * connect support comes in. 1558 */ 1559 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1560 1561 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1562 1563 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1564 struct msghdr *msg, size_t msg_len) 1565 { 1566 struct sctp_sock *sp; 1567 struct sctp_endpoint *ep; 1568 struct sctp_association *new_asoc=NULL, *asoc=NULL; 1569 struct sctp_transport *transport, *chunk_tp; 1570 struct sctp_chunk *chunk; 1571 union sctp_addr to; 1572 struct sockaddr *msg_name = NULL; 1573 struct sctp_sndrcvinfo default_sinfo; 1574 struct sctp_sndrcvinfo *sinfo; 1575 struct sctp_initmsg *sinit; 1576 sctp_assoc_t associd = 0; 1577 sctp_cmsgs_t cmsgs = { NULL }; 1578 int err; 1579 sctp_scope_t scope; 1580 long timeo; 1581 __u16 sinfo_flags = 0; 1582 struct sctp_datamsg *datamsg; 1583 int msg_flags = msg->msg_flags; 1584 1585 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n", 1586 sk, msg, msg_len); 1587 1588 err = 0; 1589 sp = sctp_sk(sk); 1590 ep = sp->ep; 1591 1592 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep); 1593 1594 /* We cannot send a message over a TCP-style listening socket. */ 1595 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1596 err = -EPIPE; 1597 goto out_nounlock; 1598 } 1599 1600 /* Parse out the SCTP CMSGs. */ 1601 err = sctp_msghdr_parse(msg, &cmsgs); 1602 1603 if (err) { 1604 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err); 1605 goto out_nounlock; 1606 } 1607 1608 /* Fetch the destination address for this packet. This 1609 * address only selects the association--it is not necessarily 1610 * the address we will send to. 1611 * For a peeled-off socket, msg_name is ignored. 1612 */ 1613 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1614 int msg_namelen = msg->msg_namelen; 1615 1616 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1617 msg_namelen); 1618 if (err) 1619 return err; 1620 1621 if (msg_namelen > sizeof(to)) 1622 msg_namelen = sizeof(to); 1623 memcpy(&to, msg->msg_name, msg_namelen); 1624 msg_name = msg->msg_name; 1625 } 1626 1627 sinfo = cmsgs.info; 1628 sinit = cmsgs.init; 1629 1630 /* Did the user specify SNDRCVINFO? */ 1631 if (sinfo) { 1632 sinfo_flags = sinfo->sinfo_flags; 1633 associd = sinfo->sinfo_assoc_id; 1634 } 1635 1636 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n", 1637 msg_len, sinfo_flags); 1638 1639 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1640 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1641 err = -EINVAL; 1642 goto out_nounlock; 1643 } 1644 1645 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1646 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1647 * If SCTP_ABORT is set, the message length could be non zero with 1648 * the msg_iov set to the user abort reason. 1649 */ 1650 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1651 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1652 err = -EINVAL; 1653 goto out_nounlock; 1654 } 1655 1656 /* If SCTP_ADDR_OVER is set, there must be an address 1657 * specified in msg_name. 1658 */ 1659 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1660 err = -EINVAL; 1661 goto out_nounlock; 1662 } 1663 1664 transport = NULL; 1665 1666 SCTP_DEBUG_PRINTK("About to look up association.\n"); 1667 1668 sctp_lock_sock(sk); 1669 1670 /* If a msg_name has been specified, assume this is to be used. */ 1671 if (msg_name) { 1672 /* Look for a matching association on the endpoint. */ 1673 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1674 if (!asoc) { 1675 /* If we could not find a matching association on the 1676 * endpoint, make sure that it is not a TCP-style 1677 * socket that already has an association or there is 1678 * no peeled-off association on another socket. 1679 */ 1680 if ((sctp_style(sk, TCP) && 1681 sctp_sstate(sk, ESTABLISHED)) || 1682 sctp_endpoint_is_peeled_off(ep, &to)) { 1683 err = -EADDRNOTAVAIL; 1684 goto out_unlock; 1685 } 1686 } 1687 } else { 1688 asoc = sctp_id2assoc(sk, associd); 1689 if (!asoc) { 1690 err = -EPIPE; 1691 goto out_unlock; 1692 } 1693 } 1694 1695 if (asoc) { 1696 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc); 1697 1698 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1699 * socket that has an association in CLOSED state. This can 1700 * happen when an accepted socket has an association that is 1701 * already CLOSED. 1702 */ 1703 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1704 err = -EPIPE; 1705 goto out_unlock; 1706 } 1707 1708 if (sinfo_flags & SCTP_EOF) { 1709 SCTP_DEBUG_PRINTK("Shutting down association: %p\n", 1710 asoc); 1711 sctp_primitive_SHUTDOWN(asoc, NULL); 1712 err = 0; 1713 goto out_unlock; 1714 } 1715 if (sinfo_flags & SCTP_ABORT) { 1716 1717 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1718 if (!chunk) { 1719 err = -ENOMEM; 1720 goto out_unlock; 1721 } 1722 1723 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc); 1724 sctp_primitive_ABORT(asoc, chunk); 1725 err = 0; 1726 goto out_unlock; 1727 } 1728 } 1729 1730 /* Do we need to create the association? */ 1731 if (!asoc) { 1732 SCTP_DEBUG_PRINTK("There is no association yet.\n"); 1733 1734 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1735 err = -EINVAL; 1736 goto out_unlock; 1737 } 1738 1739 /* Check for invalid stream against the stream counts, 1740 * either the default or the user specified stream counts. 1741 */ 1742 if (sinfo) { 1743 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) { 1744 /* Check against the defaults. */ 1745 if (sinfo->sinfo_stream >= 1746 sp->initmsg.sinit_num_ostreams) { 1747 err = -EINVAL; 1748 goto out_unlock; 1749 } 1750 } else { 1751 /* Check against the requested. */ 1752 if (sinfo->sinfo_stream >= 1753 sinit->sinit_num_ostreams) { 1754 err = -EINVAL; 1755 goto out_unlock; 1756 } 1757 } 1758 } 1759 1760 /* 1761 * API 3.1.2 bind() - UDP Style Syntax 1762 * If a bind() or sctp_bindx() is not called prior to a 1763 * sendmsg() call that initiates a new association, the 1764 * system picks an ephemeral port and will choose an address 1765 * set equivalent to binding with a wildcard address. 1766 */ 1767 if (!ep->base.bind_addr.port) { 1768 if (sctp_autobind(sk)) { 1769 err = -EAGAIN; 1770 goto out_unlock; 1771 } 1772 } else { 1773 /* 1774 * If an unprivileged user inherits a one-to-many 1775 * style socket with open associations on a privileged 1776 * port, it MAY be permitted to accept new associations, 1777 * but it SHOULD NOT be permitted to open new 1778 * associations. 1779 */ 1780 if (ep->base.bind_addr.port < PROT_SOCK && 1781 !capable(CAP_NET_BIND_SERVICE)) { 1782 err = -EACCES; 1783 goto out_unlock; 1784 } 1785 } 1786 1787 scope = sctp_scope(&to); 1788 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1789 if (!new_asoc) { 1790 err = -ENOMEM; 1791 goto out_unlock; 1792 } 1793 asoc = new_asoc; 1794 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1795 if (err < 0) { 1796 err = -ENOMEM; 1797 goto out_free; 1798 } 1799 1800 /* If the SCTP_INIT ancillary data is specified, set all 1801 * the association init values accordingly. 1802 */ 1803 if (sinit) { 1804 if (sinit->sinit_num_ostreams) { 1805 asoc->c.sinit_num_ostreams = 1806 sinit->sinit_num_ostreams; 1807 } 1808 if (sinit->sinit_max_instreams) { 1809 asoc->c.sinit_max_instreams = 1810 sinit->sinit_max_instreams; 1811 } 1812 if (sinit->sinit_max_attempts) { 1813 asoc->max_init_attempts 1814 = sinit->sinit_max_attempts; 1815 } 1816 if (sinit->sinit_max_init_timeo) { 1817 asoc->max_init_timeo = 1818 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1819 } 1820 } 1821 1822 /* Prime the peer's transport structures. */ 1823 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1824 if (!transport) { 1825 err = -ENOMEM; 1826 goto out_free; 1827 } 1828 } 1829 1830 /* ASSERT: we have a valid association at this point. */ 1831 SCTP_DEBUG_PRINTK("We have a valid association.\n"); 1832 1833 if (!sinfo) { 1834 /* If the user didn't specify SNDRCVINFO, make up one with 1835 * some defaults. 1836 */ 1837 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1838 default_sinfo.sinfo_stream = asoc->default_stream; 1839 default_sinfo.sinfo_flags = asoc->default_flags; 1840 default_sinfo.sinfo_ppid = asoc->default_ppid; 1841 default_sinfo.sinfo_context = asoc->default_context; 1842 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1843 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1844 sinfo = &default_sinfo; 1845 } 1846 1847 /* API 7.1.7, the sndbuf size per association bounds the 1848 * maximum size of data that can be sent in a single send call. 1849 */ 1850 if (msg_len > sk->sk_sndbuf) { 1851 err = -EMSGSIZE; 1852 goto out_free; 1853 } 1854 1855 if (asoc->pmtu_pending) 1856 sctp_assoc_pending_pmtu(asoc); 1857 1858 /* If fragmentation is disabled and the message length exceeds the 1859 * association fragmentation point, return EMSGSIZE. The I-D 1860 * does not specify what this error is, but this looks like 1861 * a great fit. 1862 */ 1863 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1864 err = -EMSGSIZE; 1865 goto out_free; 1866 } 1867 1868 /* Check for invalid stream. */ 1869 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1870 err = -EINVAL; 1871 goto out_free; 1872 } 1873 1874 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1875 if (!sctp_wspace(asoc)) { 1876 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1877 if (err) 1878 goto out_free; 1879 } 1880 1881 /* If an address is passed with the sendto/sendmsg call, it is used 1882 * to override the primary destination address in the TCP model, or 1883 * when SCTP_ADDR_OVER flag is set in the UDP model. 1884 */ 1885 if ((sctp_style(sk, TCP) && msg_name) || 1886 (sinfo_flags & SCTP_ADDR_OVER)) { 1887 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1888 if (!chunk_tp) { 1889 err = -EINVAL; 1890 goto out_free; 1891 } 1892 } else 1893 chunk_tp = NULL; 1894 1895 /* Auto-connect, if we aren't connected already. */ 1896 if (sctp_state(asoc, CLOSED)) { 1897 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1898 if (err < 0) 1899 goto out_free; 1900 SCTP_DEBUG_PRINTK("We associated primitively.\n"); 1901 } 1902 1903 /* Break the message into multiple chunks of maximum size. */ 1904 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1905 if (!datamsg) { 1906 err = -ENOMEM; 1907 goto out_free; 1908 } 1909 1910 /* Now send the (possibly) fragmented message. */ 1911 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1912 sctp_chunk_hold(chunk); 1913 1914 /* Do accounting for the write space. */ 1915 sctp_set_owner_w(chunk); 1916 1917 chunk->transport = chunk_tp; 1918 } 1919 1920 /* Send it to the lower layers. Note: all chunks 1921 * must either fail or succeed. The lower layer 1922 * works that way today. Keep it that way or this 1923 * breaks. 1924 */ 1925 err = sctp_primitive_SEND(asoc, datamsg); 1926 /* Did the lower layer accept the chunk? */ 1927 if (err) 1928 sctp_datamsg_free(datamsg); 1929 else 1930 sctp_datamsg_put(datamsg); 1931 1932 SCTP_DEBUG_PRINTK("We sent primitively.\n"); 1933 1934 if (err) 1935 goto out_free; 1936 else 1937 err = msg_len; 1938 1939 /* If we are already past ASSOCIATE, the lower 1940 * layers are responsible for association cleanup. 1941 */ 1942 goto out_unlock; 1943 1944 out_free: 1945 if (new_asoc) 1946 sctp_association_free(asoc); 1947 out_unlock: 1948 sctp_release_sock(sk); 1949 1950 out_nounlock: 1951 return sctp_error(sk, msg_flags, err); 1952 1953 #if 0 1954 do_sock_err: 1955 if (msg_len) 1956 err = msg_len; 1957 else 1958 err = sock_error(sk); 1959 goto out; 1960 1961 do_interrupted: 1962 if (msg_len) 1963 err = msg_len; 1964 goto out; 1965 #endif /* 0 */ 1966 } 1967 1968 /* This is an extended version of skb_pull() that removes the data from the 1969 * start of a skb even when data is spread across the list of skb's in the 1970 * frag_list. len specifies the total amount of data that needs to be removed. 1971 * when 'len' bytes could be removed from the skb, it returns 0. 1972 * If 'len' exceeds the total skb length, it returns the no. of bytes that 1973 * could not be removed. 1974 */ 1975 static int sctp_skb_pull(struct sk_buff *skb, int len) 1976 { 1977 struct sk_buff *list; 1978 int skb_len = skb_headlen(skb); 1979 int rlen; 1980 1981 if (len <= skb_len) { 1982 __skb_pull(skb, len); 1983 return 0; 1984 } 1985 len -= skb_len; 1986 __skb_pull(skb, skb_len); 1987 1988 skb_walk_frags(skb, list) { 1989 rlen = sctp_skb_pull(list, len); 1990 skb->len -= (len-rlen); 1991 skb->data_len -= (len-rlen); 1992 1993 if (!rlen) 1994 return 0; 1995 1996 len = rlen; 1997 } 1998 1999 return len; 2000 } 2001 2002 /* API 3.1.3 recvmsg() - UDP Style Syntax 2003 * 2004 * ssize_t recvmsg(int socket, struct msghdr *message, 2005 * int flags); 2006 * 2007 * socket - the socket descriptor of the endpoint. 2008 * message - pointer to the msghdr structure which contains a single 2009 * user message and possibly some ancillary data. 2010 * 2011 * See Section 5 for complete description of the data 2012 * structures. 2013 * 2014 * flags - flags sent or received with the user message, see Section 2015 * 5 for complete description of the flags. 2016 */ 2017 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); 2018 2019 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 2020 struct msghdr *msg, size_t len, int noblock, 2021 int flags, int *addr_len) 2022 { 2023 struct sctp_ulpevent *event = NULL; 2024 struct sctp_sock *sp = sctp_sk(sk); 2025 struct sk_buff *skb; 2026 int copied; 2027 int err = 0; 2028 int skb_len; 2029 2030 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: " 2031 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg, 2032 "len", len, "knoblauch", noblock, 2033 "flags", flags, "addr_len", addr_len); 2034 2035 sctp_lock_sock(sk); 2036 2037 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 2038 err = -ENOTCONN; 2039 goto out; 2040 } 2041 2042 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2043 if (!skb) 2044 goto out; 2045 2046 /* Get the total length of the skb including any skb's in the 2047 * frag_list. 2048 */ 2049 skb_len = skb->len; 2050 2051 copied = skb_len; 2052 if (copied > len) 2053 copied = len; 2054 2055 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 2056 2057 event = sctp_skb2event(skb); 2058 2059 if (err) 2060 goto out_free; 2061 2062 sock_recv_ts_and_drops(msg, sk, skb); 2063 if (sctp_ulpevent_is_notification(event)) { 2064 msg->msg_flags |= MSG_NOTIFICATION; 2065 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2066 } else { 2067 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 2068 } 2069 2070 /* Check if we allow SCTP_SNDRCVINFO. */ 2071 if (sp->subscribe.sctp_data_io_event) 2072 sctp_ulpevent_read_sndrcvinfo(event, msg); 2073 #if 0 2074 /* FIXME: we should be calling IP/IPv6 layers. */ 2075 if (sk->sk_protinfo.af_inet.cmsg_flags) 2076 ip_cmsg_recv(msg, skb); 2077 #endif 2078 2079 err = copied; 2080 2081 /* If skb's length exceeds the user's buffer, update the skb and 2082 * push it back to the receive_queue so that the next call to 2083 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2084 */ 2085 if (skb_len > copied) { 2086 msg->msg_flags &= ~MSG_EOR; 2087 if (flags & MSG_PEEK) 2088 goto out_free; 2089 sctp_skb_pull(skb, copied); 2090 skb_queue_head(&sk->sk_receive_queue, skb); 2091 2092 /* When only partial message is copied to the user, increase 2093 * rwnd by that amount. If all the data in the skb is read, 2094 * rwnd is updated when the event is freed. 2095 */ 2096 if (!sctp_ulpevent_is_notification(event)) 2097 sctp_assoc_rwnd_increase(event->asoc, copied); 2098 goto out; 2099 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2100 (event->msg_flags & MSG_EOR)) 2101 msg->msg_flags |= MSG_EOR; 2102 else 2103 msg->msg_flags &= ~MSG_EOR; 2104 2105 out_free: 2106 if (flags & MSG_PEEK) { 2107 /* Release the skb reference acquired after peeking the skb in 2108 * sctp_skb_recv_datagram(). 2109 */ 2110 kfree_skb(skb); 2111 } else { 2112 /* Free the event which includes releasing the reference to 2113 * the owner of the skb, freeing the skb and updating the 2114 * rwnd. 2115 */ 2116 sctp_ulpevent_free(event); 2117 } 2118 out: 2119 sctp_release_sock(sk); 2120 return err; 2121 } 2122 2123 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2124 * 2125 * This option is a on/off flag. If enabled no SCTP message 2126 * fragmentation will be performed. Instead if a message being sent 2127 * exceeds the current PMTU size, the message will NOT be sent and 2128 * instead a error will be indicated to the user. 2129 */ 2130 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2131 char __user *optval, 2132 unsigned int optlen) 2133 { 2134 int val; 2135 2136 if (optlen < sizeof(int)) 2137 return -EINVAL; 2138 2139 if (get_user(val, (int __user *)optval)) 2140 return -EFAULT; 2141 2142 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2143 2144 return 0; 2145 } 2146 2147 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2148 unsigned int optlen) 2149 { 2150 struct sctp_association *asoc; 2151 struct sctp_ulpevent *event; 2152 2153 if (optlen > sizeof(struct sctp_event_subscribe)) 2154 return -EINVAL; 2155 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2156 return -EFAULT; 2157 2158 /* 2159 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2160 * if there is no data to be sent or retransmit, the stack will 2161 * immediately send up this notification. 2162 */ 2163 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, 2164 &sctp_sk(sk)->subscribe)) { 2165 asoc = sctp_id2assoc(sk, 0); 2166 2167 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2168 event = sctp_ulpevent_make_sender_dry_event(asoc, 2169 GFP_ATOMIC); 2170 if (!event) 2171 return -ENOMEM; 2172 2173 sctp_ulpq_tail_event(&asoc->ulpq, event); 2174 } 2175 } 2176 2177 return 0; 2178 } 2179 2180 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2181 * 2182 * This socket option is applicable to the UDP-style socket only. When 2183 * set it will cause associations that are idle for more than the 2184 * specified number of seconds to automatically close. An association 2185 * being idle is defined an association that has NOT sent or received 2186 * user data. The special value of '0' indicates that no automatic 2187 * close of any associations should be performed. The option expects an 2188 * integer defining the number of seconds of idle time before an 2189 * association is closed. 2190 */ 2191 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2192 unsigned int optlen) 2193 { 2194 struct sctp_sock *sp = sctp_sk(sk); 2195 2196 /* Applicable to UDP-style socket only */ 2197 if (sctp_style(sk, TCP)) 2198 return -EOPNOTSUPP; 2199 if (optlen != sizeof(int)) 2200 return -EINVAL; 2201 if (copy_from_user(&sp->autoclose, optval, optlen)) 2202 return -EFAULT; 2203 /* make sure it won't exceed MAX_SCHEDULE_TIMEOUT */ 2204 sp->autoclose = min_t(long, sp->autoclose, MAX_SCHEDULE_TIMEOUT / HZ); 2205 2206 return 0; 2207 } 2208 2209 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2210 * 2211 * Applications can enable or disable heartbeats for any peer address of 2212 * an association, modify an address's heartbeat interval, force a 2213 * heartbeat to be sent immediately, and adjust the address's maximum 2214 * number of retransmissions sent before an address is considered 2215 * unreachable. The following structure is used to access and modify an 2216 * address's parameters: 2217 * 2218 * struct sctp_paddrparams { 2219 * sctp_assoc_t spp_assoc_id; 2220 * struct sockaddr_storage spp_address; 2221 * uint32_t spp_hbinterval; 2222 * uint16_t spp_pathmaxrxt; 2223 * uint32_t spp_pathmtu; 2224 * uint32_t spp_sackdelay; 2225 * uint32_t spp_flags; 2226 * }; 2227 * 2228 * spp_assoc_id - (one-to-many style socket) This is filled in the 2229 * application, and identifies the association for 2230 * this query. 2231 * spp_address - This specifies which address is of interest. 2232 * spp_hbinterval - This contains the value of the heartbeat interval, 2233 * in milliseconds. If a value of zero 2234 * is present in this field then no changes are to 2235 * be made to this parameter. 2236 * spp_pathmaxrxt - This contains the maximum number of 2237 * retransmissions before this address shall be 2238 * considered unreachable. If a value of zero 2239 * is present in this field then no changes are to 2240 * be made to this parameter. 2241 * spp_pathmtu - When Path MTU discovery is disabled the value 2242 * specified here will be the "fixed" path mtu. 2243 * Note that if the spp_address field is empty 2244 * then all associations on this address will 2245 * have this fixed path mtu set upon them. 2246 * 2247 * spp_sackdelay - When delayed sack is enabled, this value specifies 2248 * the number of milliseconds that sacks will be delayed 2249 * for. This value will apply to all addresses of an 2250 * association if the spp_address field is empty. Note 2251 * also, that if delayed sack is enabled and this 2252 * value is set to 0, no change is made to the last 2253 * recorded delayed sack timer value. 2254 * 2255 * spp_flags - These flags are used to control various features 2256 * on an association. The flag field may contain 2257 * zero or more of the following options. 2258 * 2259 * SPP_HB_ENABLE - Enable heartbeats on the 2260 * specified address. Note that if the address 2261 * field is empty all addresses for the association 2262 * have heartbeats enabled upon them. 2263 * 2264 * SPP_HB_DISABLE - Disable heartbeats on the 2265 * speicifed address. Note that if the address 2266 * field is empty all addresses for the association 2267 * will have their heartbeats disabled. Note also 2268 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2269 * mutually exclusive, only one of these two should 2270 * be specified. Enabling both fields will have 2271 * undetermined results. 2272 * 2273 * SPP_HB_DEMAND - Request a user initiated heartbeat 2274 * to be made immediately. 2275 * 2276 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2277 * heartbeat delayis to be set to the value of 0 2278 * milliseconds. 2279 * 2280 * SPP_PMTUD_ENABLE - This field will enable PMTU 2281 * discovery upon the specified address. Note that 2282 * if the address feild is empty then all addresses 2283 * on the association are effected. 2284 * 2285 * SPP_PMTUD_DISABLE - This field will disable PMTU 2286 * discovery upon the specified address. Note that 2287 * if the address feild is empty then all addresses 2288 * on the association are effected. Not also that 2289 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2290 * exclusive. Enabling both will have undetermined 2291 * results. 2292 * 2293 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2294 * on delayed sack. The time specified in spp_sackdelay 2295 * is used to specify the sack delay for this address. Note 2296 * that if spp_address is empty then all addresses will 2297 * enable delayed sack and take on the sack delay 2298 * value specified in spp_sackdelay. 2299 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2300 * off delayed sack. If the spp_address field is blank then 2301 * delayed sack is disabled for the entire association. Note 2302 * also that this field is mutually exclusive to 2303 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2304 * results. 2305 */ 2306 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2307 struct sctp_transport *trans, 2308 struct sctp_association *asoc, 2309 struct sctp_sock *sp, 2310 int hb_change, 2311 int pmtud_change, 2312 int sackdelay_change) 2313 { 2314 int error; 2315 2316 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2317 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans); 2318 if (error) 2319 return error; 2320 } 2321 2322 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2323 * this field is ignored. Note also that a value of zero indicates 2324 * the current setting should be left unchanged. 2325 */ 2326 if (params->spp_flags & SPP_HB_ENABLE) { 2327 2328 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2329 * set. This lets us use 0 value when this flag 2330 * is set. 2331 */ 2332 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2333 params->spp_hbinterval = 0; 2334 2335 if (params->spp_hbinterval || 2336 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2337 if (trans) { 2338 trans->hbinterval = 2339 msecs_to_jiffies(params->spp_hbinterval); 2340 } else if (asoc) { 2341 asoc->hbinterval = 2342 msecs_to_jiffies(params->spp_hbinterval); 2343 } else { 2344 sp->hbinterval = params->spp_hbinterval; 2345 } 2346 } 2347 } 2348 2349 if (hb_change) { 2350 if (trans) { 2351 trans->param_flags = 2352 (trans->param_flags & ~SPP_HB) | hb_change; 2353 } else if (asoc) { 2354 asoc->param_flags = 2355 (asoc->param_flags & ~SPP_HB) | hb_change; 2356 } else { 2357 sp->param_flags = 2358 (sp->param_flags & ~SPP_HB) | hb_change; 2359 } 2360 } 2361 2362 /* When Path MTU discovery is disabled the value specified here will 2363 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2364 * include the flag SPP_PMTUD_DISABLE for this field to have any 2365 * effect). 2366 */ 2367 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2368 if (trans) { 2369 trans->pathmtu = params->spp_pathmtu; 2370 sctp_assoc_sync_pmtu(asoc); 2371 } else if (asoc) { 2372 asoc->pathmtu = params->spp_pathmtu; 2373 sctp_frag_point(asoc, params->spp_pathmtu); 2374 } else { 2375 sp->pathmtu = params->spp_pathmtu; 2376 } 2377 } 2378 2379 if (pmtud_change) { 2380 if (trans) { 2381 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2382 (params->spp_flags & SPP_PMTUD_ENABLE); 2383 trans->param_flags = 2384 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2385 if (update) { 2386 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2387 sctp_assoc_sync_pmtu(asoc); 2388 } 2389 } else if (asoc) { 2390 asoc->param_flags = 2391 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2392 } else { 2393 sp->param_flags = 2394 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2395 } 2396 } 2397 2398 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2399 * value of this field is ignored. Note also that a value of zero 2400 * indicates the current setting should be left unchanged. 2401 */ 2402 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2403 if (trans) { 2404 trans->sackdelay = 2405 msecs_to_jiffies(params->spp_sackdelay); 2406 } else if (asoc) { 2407 asoc->sackdelay = 2408 msecs_to_jiffies(params->spp_sackdelay); 2409 } else { 2410 sp->sackdelay = params->spp_sackdelay; 2411 } 2412 } 2413 2414 if (sackdelay_change) { 2415 if (trans) { 2416 trans->param_flags = 2417 (trans->param_flags & ~SPP_SACKDELAY) | 2418 sackdelay_change; 2419 } else if (asoc) { 2420 asoc->param_flags = 2421 (asoc->param_flags & ~SPP_SACKDELAY) | 2422 sackdelay_change; 2423 } else { 2424 sp->param_flags = 2425 (sp->param_flags & ~SPP_SACKDELAY) | 2426 sackdelay_change; 2427 } 2428 } 2429 2430 /* Note that a value of zero indicates the current setting should be 2431 left unchanged. 2432 */ 2433 if (params->spp_pathmaxrxt) { 2434 if (trans) { 2435 trans->pathmaxrxt = params->spp_pathmaxrxt; 2436 } else if (asoc) { 2437 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2438 } else { 2439 sp->pathmaxrxt = params->spp_pathmaxrxt; 2440 } 2441 } 2442 2443 return 0; 2444 } 2445 2446 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2447 char __user *optval, 2448 unsigned int optlen) 2449 { 2450 struct sctp_paddrparams params; 2451 struct sctp_transport *trans = NULL; 2452 struct sctp_association *asoc = NULL; 2453 struct sctp_sock *sp = sctp_sk(sk); 2454 int error; 2455 int hb_change, pmtud_change, sackdelay_change; 2456 2457 if (optlen != sizeof(struct sctp_paddrparams)) 2458 return - EINVAL; 2459 2460 if (copy_from_user(¶ms, optval, optlen)) 2461 return -EFAULT; 2462 2463 /* Validate flags and value parameters. */ 2464 hb_change = params.spp_flags & SPP_HB; 2465 pmtud_change = params.spp_flags & SPP_PMTUD; 2466 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2467 2468 if (hb_change == SPP_HB || 2469 pmtud_change == SPP_PMTUD || 2470 sackdelay_change == SPP_SACKDELAY || 2471 params.spp_sackdelay > 500 || 2472 (params.spp_pathmtu && 2473 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2474 return -EINVAL; 2475 2476 /* If an address other than INADDR_ANY is specified, and 2477 * no transport is found, then the request is invalid. 2478 */ 2479 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) { 2480 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2481 params.spp_assoc_id); 2482 if (!trans) 2483 return -EINVAL; 2484 } 2485 2486 /* Get association, if assoc_id != 0 and the socket is a one 2487 * to many style socket, and an association was not found, then 2488 * the id was invalid. 2489 */ 2490 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2491 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2492 return -EINVAL; 2493 2494 /* Heartbeat demand can only be sent on a transport or 2495 * association, but not a socket. 2496 */ 2497 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2498 return -EINVAL; 2499 2500 /* Process parameters. */ 2501 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2502 hb_change, pmtud_change, 2503 sackdelay_change); 2504 2505 if (error) 2506 return error; 2507 2508 /* If changes are for association, also apply parameters to each 2509 * transport. 2510 */ 2511 if (!trans && asoc) { 2512 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2513 transports) { 2514 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2515 hb_change, pmtud_change, 2516 sackdelay_change); 2517 } 2518 } 2519 2520 return 0; 2521 } 2522 2523 /* 2524 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2525 * 2526 * This option will effect the way delayed acks are performed. This 2527 * option allows you to get or set the delayed ack time, in 2528 * milliseconds. It also allows changing the delayed ack frequency. 2529 * Changing the frequency to 1 disables the delayed sack algorithm. If 2530 * the assoc_id is 0, then this sets or gets the endpoints default 2531 * values. If the assoc_id field is non-zero, then the set or get 2532 * effects the specified association for the one to many model (the 2533 * assoc_id field is ignored by the one to one model). Note that if 2534 * sack_delay or sack_freq are 0 when setting this option, then the 2535 * current values will remain unchanged. 2536 * 2537 * struct sctp_sack_info { 2538 * sctp_assoc_t sack_assoc_id; 2539 * uint32_t sack_delay; 2540 * uint32_t sack_freq; 2541 * }; 2542 * 2543 * sack_assoc_id - This parameter, indicates which association the user 2544 * is performing an action upon. Note that if this field's value is 2545 * zero then the endpoints default value is changed (effecting future 2546 * associations only). 2547 * 2548 * sack_delay - This parameter contains the number of milliseconds that 2549 * the user is requesting the delayed ACK timer be set to. Note that 2550 * this value is defined in the standard to be between 200 and 500 2551 * milliseconds. 2552 * 2553 * sack_freq - This parameter contains the number of packets that must 2554 * be received before a sack is sent without waiting for the delay 2555 * timer to expire. The default value for this is 2, setting this 2556 * value to 1 will disable the delayed sack algorithm. 2557 */ 2558 2559 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2560 char __user *optval, unsigned int optlen) 2561 { 2562 struct sctp_sack_info params; 2563 struct sctp_transport *trans = NULL; 2564 struct sctp_association *asoc = NULL; 2565 struct sctp_sock *sp = sctp_sk(sk); 2566 2567 if (optlen == sizeof(struct sctp_sack_info)) { 2568 if (copy_from_user(¶ms, optval, optlen)) 2569 return -EFAULT; 2570 2571 if (params.sack_delay == 0 && params.sack_freq == 0) 2572 return 0; 2573 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2574 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n"); 2575 pr_warn("Use struct sctp_sack_info instead\n"); 2576 if (copy_from_user(¶ms, optval, optlen)) 2577 return -EFAULT; 2578 2579 if (params.sack_delay == 0) 2580 params.sack_freq = 1; 2581 else 2582 params.sack_freq = 0; 2583 } else 2584 return - EINVAL; 2585 2586 /* Validate value parameter. */ 2587 if (params.sack_delay > 500) 2588 return -EINVAL; 2589 2590 /* Get association, if sack_assoc_id != 0 and the socket is a one 2591 * to many style socket, and an association was not found, then 2592 * the id was invalid. 2593 */ 2594 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2595 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2596 return -EINVAL; 2597 2598 if (params.sack_delay) { 2599 if (asoc) { 2600 asoc->sackdelay = 2601 msecs_to_jiffies(params.sack_delay); 2602 asoc->param_flags = 2603 (asoc->param_flags & ~SPP_SACKDELAY) | 2604 SPP_SACKDELAY_ENABLE; 2605 } else { 2606 sp->sackdelay = params.sack_delay; 2607 sp->param_flags = 2608 (sp->param_flags & ~SPP_SACKDELAY) | 2609 SPP_SACKDELAY_ENABLE; 2610 } 2611 } 2612 2613 if (params.sack_freq == 1) { 2614 if (asoc) { 2615 asoc->param_flags = 2616 (asoc->param_flags & ~SPP_SACKDELAY) | 2617 SPP_SACKDELAY_DISABLE; 2618 } else { 2619 sp->param_flags = 2620 (sp->param_flags & ~SPP_SACKDELAY) | 2621 SPP_SACKDELAY_DISABLE; 2622 } 2623 } else if (params.sack_freq > 1) { 2624 if (asoc) { 2625 asoc->sackfreq = params.sack_freq; 2626 asoc->param_flags = 2627 (asoc->param_flags & ~SPP_SACKDELAY) | 2628 SPP_SACKDELAY_ENABLE; 2629 } else { 2630 sp->sackfreq = params.sack_freq; 2631 sp->param_flags = 2632 (sp->param_flags & ~SPP_SACKDELAY) | 2633 SPP_SACKDELAY_ENABLE; 2634 } 2635 } 2636 2637 /* If change is for association, also apply to each transport. */ 2638 if (asoc) { 2639 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2640 transports) { 2641 if (params.sack_delay) { 2642 trans->sackdelay = 2643 msecs_to_jiffies(params.sack_delay); 2644 trans->param_flags = 2645 (trans->param_flags & ~SPP_SACKDELAY) | 2646 SPP_SACKDELAY_ENABLE; 2647 } 2648 if (params.sack_freq == 1) { 2649 trans->param_flags = 2650 (trans->param_flags & ~SPP_SACKDELAY) | 2651 SPP_SACKDELAY_DISABLE; 2652 } else if (params.sack_freq > 1) { 2653 trans->sackfreq = params.sack_freq; 2654 trans->param_flags = 2655 (trans->param_flags & ~SPP_SACKDELAY) | 2656 SPP_SACKDELAY_ENABLE; 2657 } 2658 } 2659 } 2660 2661 return 0; 2662 } 2663 2664 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2665 * 2666 * Applications can specify protocol parameters for the default association 2667 * initialization. The option name argument to setsockopt() and getsockopt() 2668 * is SCTP_INITMSG. 2669 * 2670 * Setting initialization parameters is effective only on an unconnected 2671 * socket (for UDP-style sockets only future associations are effected 2672 * by the change). With TCP-style sockets, this option is inherited by 2673 * sockets derived from a listener socket. 2674 */ 2675 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2676 { 2677 struct sctp_initmsg sinit; 2678 struct sctp_sock *sp = sctp_sk(sk); 2679 2680 if (optlen != sizeof(struct sctp_initmsg)) 2681 return -EINVAL; 2682 if (copy_from_user(&sinit, optval, optlen)) 2683 return -EFAULT; 2684 2685 if (sinit.sinit_num_ostreams) 2686 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2687 if (sinit.sinit_max_instreams) 2688 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2689 if (sinit.sinit_max_attempts) 2690 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2691 if (sinit.sinit_max_init_timeo) 2692 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2693 2694 return 0; 2695 } 2696 2697 /* 2698 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2699 * 2700 * Applications that wish to use the sendto() system call may wish to 2701 * specify a default set of parameters that would normally be supplied 2702 * through the inclusion of ancillary data. This socket option allows 2703 * such an application to set the default sctp_sndrcvinfo structure. 2704 * The application that wishes to use this socket option simply passes 2705 * in to this call the sctp_sndrcvinfo structure defined in Section 2706 * 5.2.2) The input parameters accepted by this call include 2707 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2708 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2709 * to this call if the caller is using the UDP model. 2710 */ 2711 static int sctp_setsockopt_default_send_param(struct sock *sk, 2712 char __user *optval, 2713 unsigned int optlen) 2714 { 2715 struct sctp_sndrcvinfo info; 2716 struct sctp_association *asoc; 2717 struct sctp_sock *sp = sctp_sk(sk); 2718 2719 if (optlen != sizeof(struct sctp_sndrcvinfo)) 2720 return -EINVAL; 2721 if (copy_from_user(&info, optval, optlen)) 2722 return -EFAULT; 2723 2724 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2725 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2726 return -EINVAL; 2727 2728 if (asoc) { 2729 asoc->default_stream = info.sinfo_stream; 2730 asoc->default_flags = info.sinfo_flags; 2731 asoc->default_ppid = info.sinfo_ppid; 2732 asoc->default_context = info.sinfo_context; 2733 asoc->default_timetolive = info.sinfo_timetolive; 2734 } else { 2735 sp->default_stream = info.sinfo_stream; 2736 sp->default_flags = info.sinfo_flags; 2737 sp->default_ppid = info.sinfo_ppid; 2738 sp->default_context = info.sinfo_context; 2739 sp->default_timetolive = info.sinfo_timetolive; 2740 } 2741 2742 return 0; 2743 } 2744 2745 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2746 * 2747 * Requests that the local SCTP stack use the enclosed peer address as 2748 * the association primary. The enclosed address must be one of the 2749 * association peer's addresses. 2750 */ 2751 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2752 unsigned int optlen) 2753 { 2754 struct sctp_prim prim; 2755 struct sctp_transport *trans; 2756 2757 if (optlen != sizeof(struct sctp_prim)) 2758 return -EINVAL; 2759 2760 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2761 return -EFAULT; 2762 2763 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2764 if (!trans) 2765 return -EINVAL; 2766 2767 sctp_assoc_set_primary(trans->asoc, trans); 2768 2769 return 0; 2770 } 2771 2772 /* 2773 * 7.1.5 SCTP_NODELAY 2774 * 2775 * Turn on/off any Nagle-like algorithm. This means that packets are 2776 * generally sent as soon as possible and no unnecessary delays are 2777 * introduced, at the cost of more packets in the network. Expects an 2778 * integer boolean flag. 2779 */ 2780 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2781 unsigned int optlen) 2782 { 2783 int val; 2784 2785 if (optlen < sizeof(int)) 2786 return -EINVAL; 2787 if (get_user(val, (int __user *)optval)) 2788 return -EFAULT; 2789 2790 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2791 return 0; 2792 } 2793 2794 /* 2795 * 2796 * 7.1.1 SCTP_RTOINFO 2797 * 2798 * The protocol parameters used to initialize and bound retransmission 2799 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2800 * and modify these parameters. 2801 * All parameters are time values, in milliseconds. A value of 0, when 2802 * modifying the parameters, indicates that the current value should not 2803 * be changed. 2804 * 2805 */ 2806 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 2807 { 2808 struct sctp_rtoinfo rtoinfo; 2809 struct sctp_association *asoc; 2810 2811 if (optlen != sizeof (struct sctp_rtoinfo)) 2812 return -EINVAL; 2813 2814 if (copy_from_user(&rtoinfo, optval, optlen)) 2815 return -EFAULT; 2816 2817 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2818 2819 /* Set the values to the specific association */ 2820 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2821 return -EINVAL; 2822 2823 if (asoc) { 2824 if (rtoinfo.srto_initial != 0) 2825 asoc->rto_initial = 2826 msecs_to_jiffies(rtoinfo.srto_initial); 2827 if (rtoinfo.srto_max != 0) 2828 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max); 2829 if (rtoinfo.srto_min != 0) 2830 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min); 2831 } else { 2832 /* If there is no association or the association-id = 0 2833 * set the values to the endpoint. 2834 */ 2835 struct sctp_sock *sp = sctp_sk(sk); 2836 2837 if (rtoinfo.srto_initial != 0) 2838 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2839 if (rtoinfo.srto_max != 0) 2840 sp->rtoinfo.srto_max = rtoinfo.srto_max; 2841 if (rtoinfo.srto_min != 0) 2842 sp->rtoinfo.srto_min = rtoinfo.srto_min; 2843 } 2844 2845 return 0; 2846 } 2847 2848 /* 2849 * 2850 * 7.1.2 SCTP_ASSOCINFO 2851 * 2852 * This option is used to tune the maximum retransmission attempts 2853 * of the association. 2854 * Returns an error if the new association retransmission value is 2855 * greater than the sum of the retransmission value of the peer. 2856 * See [SCTP] for more information. 2857 * 2858 */ 2859 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 2860 { 2861 2862 struct sctp_assocparams assocparams; 2863 struct sctp_association *asoc; 2864 2865 if (optlen != sizeof(struct sctp_assocparams)) 2866 return -EINVAL; 2867 if (copy_from_user(&assocparams, optval, optlen)) 2868 return -EFAULT; 2869 2870 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2871 2872 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2873 return -EINVAL; 2874 2875 /* Set the values to the specific association */ 2876 if (asoc) { 2877 if (assocparams.sasoc_asocmaxrxt != 0) { 2878 __u32 path_sum = 0; 2879 int paths = 0; 2880 struct sctp_transport *peer_addr; 2881 2882 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 2883 transports) { 2884 path_sum += peer_addr->pathmaxrxt; 2885 paths++; 2886 } 2887 2888 /* Only validate asocmaxrxt if we have more than 2889 * one path/transport. We do this because path 2890 * retransmissions are only counted when we have more 2891 * then one path. 2892 */ 2893 if (paths > 1 && 2894 assocparams.sasoc_asocmaxrxt > path_sum) 2895 return -EINVAL; 2896 2897 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 2898 } 2899 2900 if (assocparams.sasoc_cookie_life != 0) { 2901 asoc->cookie_life.tv_sec = 2902 assocparams.sasoc_cookie_life / 1000; 2903 asoc->cookie_life.tv_usec = 2904 (assocparams.sasoc_cookie_life % 1000) 2905 * 1000; 2906 } 2907 } else { 2908 /* Set the values to the endpoint */ 2909 struct sctp_sock *sp = sctp_sk(sk); 2910 2911 if (assocparams.sasoc_asocmaxrxt != 0) 2912 sp->assocparams.sasoc_asocmaxrxt = 2913 assocparams.sasoc_asocmaxrxt; 2914 if (assocparams.sasoc_cookie_life != 0) 2915 sp->assocparams.sasoc_cookie_life = 2916 assocparams.sasoc_cookie_life; 2917 } 2918 return 0; 2919 } 2920 2921 /* 2922 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 2923 * 2924 * This socket option is a boolean flag which turns on or off mapped V4 2925 * addresses. If this option is turned on and the socket is type 2926 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 2927 * If this option is turned off, then no mapping will be done of V4 2928 * addresses and a user will receive both PF_INET6 and PF_INET type 2929 * addresses on the socket. 2930 */ 2931 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 2932 { 2933 int val; 2934 struct sctp_sock *sp = sctp_sk(sk); 2935 2936 if (optlen < sizeof(int)) 2937 return -EINVAL; 2938 if (get_user(val, (int __user *)optval)) 2939 return -EFAULT; 2940 if (val) 2941 sp->v4mapped = 1; 2942 else 2943 sp->v4mapped = 0; 2944 2945 return 0; 2946 } 2947 2948 /* 2949 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 2950 * This option will get or set the maximum size to put in any outgoing 2951 * SCTP DATA chunk. If a message is larger than this size it will be 2952 * fragmented by SCTP into the specified size. Note that the underlying 2953 * SCTP implementation may fragment into smaller sized chunks when the 2954 * PMTU of the underlying association is smaller than the value set by 2955 * the user. The default value for this option is '0' which indicates 2956 * the user is NOT limiting fragmentation and only the PMTU will effect 2957 * SCTP's choice of DATA chunk size. Note also that values set larger 2958 * than the maximum size of an IP datagram will effectively let SCTP 2959 * control fragmentation (i.e. the same as setting this option to 0). 2960 * 2961 * The following structure is used to access and modify this parameter: 2962 * 2963 * struct sctp_assoc_value { 2964 * sctp_assoc_t assoc_id; 2965 * uint32_t assoc_value; 2966 * }; 2967 * 2968 * assoc_id: This parameter is ignored for one-to-one style sockets. 2969 * For one-to-many style sockets this parameter indicates which 2970 * association the user is performing an action upon. Note that if 2971 * this field's value is zero then the endpoints default value is 2972 * changed (effecting future associations only). 2973 * assoc_value: This parameter specifies the maximum size in bytes. 2974 */ 2975 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 2976 { 2977 struct sctp_assoc_value params; 2978 struct sctp_association *asoc; 2979 struct sctp_sock *sp = sctp_sk(sk); 2980 int val; 2981 2982 if (optlen == sizeof(int)) { 2983 pr_warn("Use of int in maxseg socket option deprecated\n"); 2984 pr_warn("Use struct sctp_assoc_value instead\n"); 2985 if (copy_from_user(&val, optval, optlen)) 2986 return -EFAULT; 2987 params.assoc_id = 0; 2988 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2989 if (copy_from_user(¶ms, optval, optlen)) 2990 return -EFAULT; 2991 val = params.assoc_value; 2992 } else 2993 return -EINVAL; 2994 2995 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 2996 return -EINVAL; 2997 2998 asoc = sctp_id2assoc(sk, params.assoc_id); 2999 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 3000 return -EINVAL; 3001 3002 if (asoc) { 3003 if (val == 0) { 3004 val = asoc->pathmtu; 3005 val -= sp->pf->af->net_header_len; 3006 val -= sizeof(struct sctphdr) + 3007 sizeof(struct sctp_data_chunk); 3008 } 3009 asoc->user_frag = val; 3010 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 3011 } else { 3012 sp->user_frag = val; 3013 } 3014 3015 return 0; 3016 } 3017 3018 3019 /* 3020 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3021 * 3022 * Requests that the peer mark the enclosed address as the association 3023 * primary. The enclosed address must be one of the association's 3024 * locally bound addresses. The following structure is used to make a 3025 * set primary request: 3026 */ 3027 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3028 unsigned int optlen) 3029 { 3030 struct sctp_sock *sp; 3031 struct sctp_association *asoc = NULL; 3032 struct sctp_setpeerprim prim; 3033 struct sctp_chunk *chunk; 3034 struct sctp_af *af; 3035 int err; 3036 3037 sp = sctp_sk(sk); 3038 3039 if (!sctp_addip_enable) 3040 return -EPERM; 3041 3042 if (optlen != sizeof(struct sctp_setpeerprim)) 3043 return -EINVAL; 3044 3045 if (copy_from_user(&prim, optval, optlen)) 3046 return -EFAULT; 3047 3048 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3049 if (!asoc) 3050 return -EINVAL; 3051 3052 if (!asoc->peer.asconf_capable) 3053 return -EPERM; 3054 3055 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3056 return -EPERM; 3057 3058 if (!sctp_state(asoc, ESTABLISHED)) 3059 return -ENOTCONN; 3060 3061 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3062 if (!af) 3063 return -EINVAL; 3064 3065 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3066 return -EADDRNOTAVAIL; 3067 3068 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3069 return -EADDRNOTAVAIL; 3070 3071 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3072 chunk = sctp_make_asconf_set_prim(asoc, 3073 (union sctp_addr *)&prim.sspp_addr); 3074 if (!chunk) 3075 return -ENOMEM; 3076 3077 err = sctp_send_asconf(asoc, chunk); 3078 3079 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n"); 3080 3081 return err; 3082 } 3083 3084 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3085 unsigned int optlen) 3086 { 3087 struct sctp_setadaptation adaptation; 3088 3089 if (optlen != sizeof(struct sctp_setadaptation)) 3090 return -EINVAL; 3091 if (copy_from_user(&adaptation, optval, optlen)) 3092 return -EFAULT; 3093 3094 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3095 3096 return 0; 3097 } 3098 3099 /* 3100 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3101 * 3102 * The context field in the sctp_sndrcvinfo structure is normally only 3103 * used when a failed message is retrieved holding the value that was 3104 * sent down on the actual send call. This option allows the setting of 3105 * a default context on an association basis that will be received on 3106 * reading messages from the peer. This is especially helpful in the 3107 * one-2-many model for an application to keep some reference to an 3108 * internal state machine that is processing messages on the 3109 * association. Note that the setting of this value only effects 3110 * received messages from the peer and does not effect the value that is 3111 * saved with outbound messages. 3112 */ 3113 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3114 unsigned int optlen) 3115 { 3116 struct sctp_assoc_value params; 3117 struct sctp_sock *sp; 3118 struct sctp_association *asoc; 3119 3120 if (optlen != sizeof(struct sctp_assoc_value)) 3121 return -EINVAL; 3122 if (copy_from_user(¶ms, optval, optlen)) 3123 return -EFAULT; 3124 3125 sp = sctp_sk(sk); 3126 3127 if (params.assoc_id != 0) { 3128 asoc = sctp_id2assoc(sk, params.assoc_id); 3129 if (!asoc) 3130 return -EINVAL; 3131 asoc->default_rcv_context = params.assoc_value; 3132 } else { 3133 sp->default_rcv_context = params.assoc_value; 3134 } 3135 3136 return 0; 3137 } 3138 3139 /* 3140 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3141 * 3142 * This options will at a minimum specify if the implementation is doing 3143 * fragmented interleave. Fragmented interleave, for a one to many 3144 * socket, is when subsequent calls to receive a message may return 3145 * parts of messages from different associations. Some implementations 3146 * may allow you to turn this value on or off. If so, when turned off, 3147 * no fragment interleave will occur (which will cause a head of line 3148 * blocking amongst multiple associations sharing the same one to many 3149 * socket). When this option is turned on, then each receive call may 3150 * come from a different association (thus the user must receive data 3151 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3152 * association each receive belongs to. 3153 * 3154 * This option takes a boolean value. A non-zero value indicates that 3155 * fragmented interleave is on. A value of zero indicates that 3156 * fragmented interleave is off. 3157 * 3158 * Note that it is important that an implementation that allows this 3159 * option to be turned on, have it off by default. Otherwise an unaware 3160 * application using the one to many model may become confused and act 3161 * incorrectly. 3162 */ 3163 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3164 char __user *optval, 3165 unsigned int optlen) 3166 { 3167 int val; 3168 3169 if (optlen != sizeof(int)) 3170 return -EINVAL; 3171 if (get_user(val, (int __user *)optval)) 3172 return -EFAULT; 3173 3174 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 3175 3176 return 0; 3177 } 3178 3179 /* 3180 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3181 * (SCTP_PARTIAL_DELIVERY_POINT) 3182 * 3183 * This option will set or get the SCTP partial delivery point. This 3184 * point is the size of a message where the partial delivery API will be 3185 * invoked to help free up rwnd space for the peer. Setting this to a 3186 * lower value will cause partial deliveries to happen more often. The 3187 * calls argument is an integer that sets or gets the partial delivery 3188 * point. Note also that the call will fail if the user attempts to set 3189 * this value larger than the socket receive buffer size. 3190 * 3191 * Note that any single message having a length smaller than or equal to 3192 * the SCTP partial delivery point will be delivered in one single read 3193 * call as long as the user provided buffer is large enough to hold the 3194 * message. 3195 */ 3196 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3197 char __user *optval, 3198 unsigned int optlen) 3199 { 3200 u32 val; 3201 3202 if (optlen != sizeof(u32)) 3203 return -EINVAL; 3204 if (get_user(val, (int __user *)optval)) 3205 return -EFAULT; 3206 3207 /* Note: We double the receive buffer from what the user sets 3208 * it to be, also initial rwnd is based on rcvbuf/2. 3209 */ 3210 if (val > (sk->sk_rcvbuf >> 1)) 3211 return -EINVAL; 3212 3213 sctp_sk(sk)->pd_point = val; 3214 3215 return 0; /* is this the right error code? */ 3216 } 3217 3218 /* 3219 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3220 * 3221 * This option will allow a user to change the maximum burst of packets 3222 * that can be emitted by this association. Note that the default value 3223 * is 4, and some implementations may restrict this setting so that it 3224 * can only be lowered. 3225 * 3226 * NOTE: This text doesn't seem right. Do this on a socket basis with 3227 * future associations inheriting the socket value. 3228 */ 3229 static int sctp_setsockopt_maxburst(struct sock *sk, 3230 char __user *optval, 3231 unsigned int optlen) 3232 { 3233 struct sctp_assoc_value params; 3234 struct sctp_sock *sp; 3235 struct sctp_association *asoc; 3236 int val; 3237 int assoc_id = 0; 3238 3239 if (optlen == sizeof(int)) { 3240 pr_warn("Use of int in max_burst socket option deprecated\n"); 3241 pr_warn("Use struct sctp_assoc_value instead\n"); 3242 if (copy_from_user(&val, optval, optlen)) 3243 return -EFAULT; 3244 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3245 if (copy_from_user(¶ms, optval, optlen)) 3246 return -EFAULT; 3247 val = params.assoc_value; 3248 assoc_id = params.assoc_id; 3249 } else 3250 return -EINVAL; 3251 3252 sp = sctp_sk(sk); 3253 3254 if (assoc_id != 0) { 3255 asoc = sctp_id2assoc(sk, assoc_id); 3256 if (!asoc) 3257 return -EINVAL; 3258 asoc->max_burst = val; 3259 } else 3260 sp->max_burst = val; 3261 3262 return 0; 3263 } 3264 3265 /* 3266 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3267 * 3268 * This set option adds a chunk type that the user is requesting to be 3269 * received only in an authenticated way. Changes to the list of chunks 3270 * will only effect future associations on the socket. 3271 */ 3272 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3273 char __user *optval, 3274 unsigned int optlen) 3275 { 3276 struct sctp_authchunk val; 3277 3278 if (!sctp_auth_enable) 3279 return -EACCES; 3280 3281 if (optlen != sizeof(struct sctp_authchunk)) 3282 return -EINVAL; 3283 if (copy_from_user(&val, optval, optlen)) 3284 return -EFAULT; 3285 3286 switch (val.sauth_chunk) { 3287 case SCTP_CID_INIT: 3288 case SCTP_CID_INIT_ACK: 3289 case SCTP_CID_SHUTDOWN_COMPLETE: 3290 case SCTP_CID_AUTH: 3291 return -EINVAL; 3292 } 3293 3294 /* add this chunk id to the endpoint */ 3295 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk); 3296 } 3297 3298 /* 3299 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3300 * 3301 * This option gets or sets the list of HMAC algorithms that the local 3302 * endpoint requires the peer to use. 3303 */ 3304 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3305 char __user *optval, 3306 unsigned int optlen) 3307 { 3308 struct sctp_hmacalgo *hmacs; 3309 u32 idents; 3310 int err; 3311 3312 if (!sctp_auth_enable) 3313 return -EACCES; 3314 3315 if (optlen < sizeof(struct sctp_hmacalgo)) 3316 return -EINVAL; 3317 3318 hmacs= memdup_user(optval, optlen); 3319 if (IS_ERR(hmacs)) 3320 return PTR_ERR(hmacs); 3321 3322 idents = hmacs->shmac_num_idents; 3323 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3324 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3325 err = -EINVAL; 3326 goto out; 3327 } 3328 3329 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs); 3330 out: 3331 kfree(hmacs); 3332 return err; 3333 } 3334 3335 /* 3336 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3337 * 3338 * This option will set a shared secret key which is used to build an 3339 * association shared key. 3340 */ 3341 static int sctp_setsockopt_auth_key(struct sock *sk, 3342 char __user *optval, 3343 unsigned int optlen) 3344 { 3345 struct sctp_authkey *authkey; 3346 struct sctp_association *asoc; 3347 int ret; 3348 3349 if (!sctp_auth_enable) 3350 return -EACCES; 3351 3352 if (optlen <= sizeof(struct sctp_authkey)) 3353 return -EINVAL; 3354 3355 authkey= memdup_user(optval, optlen); 3356 if (IS_ERR(authkey)) 3357 return PTR_ERR(authkey); 3358 3359 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3360 ret = -EINVAL; 3361 goto out; 3362 } 3363 3364 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3365 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3366 ret = -EINVAL; 3367 goto out; 3368 } 3369 3370 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey); 3371 out: 3372 kfree(authkey); 3373 return ret; 3374 } 3375 3376 /* 3377 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3378 * 3379 * This option will get or set the active shared key to be used to build 3380 * the association shared key. 3381 */ 3382 static int sctp_setsockopt_active_key(struct sock *sk, 3383 char __user *optval, 3384 unsigned int optlen) 3385 { 3386 struct sctp_authkeyid val; 3387 struct sctp_association *asoc; 3388 3389 if (!sctp_auth_enable) 3390 return -EACCES; 3391 3392 if (optlen != sizeof(struct sctp_authkeyid)) 3393 return -EINVAL; 3394 if (copy_from_user(&val, optval, optlen)) 3395 return -EFAULT; 3396 3397 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3398 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3399 return -EINVAL; 3400 3401 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc, 3402 val.scact_keynumber); 3403 } 3404 3405 /* 3406 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3407 * 3408 * This set option will delete a shared secret key from use. 3409 */ 3410 static int sctp_setsockopt_del_key(struct sock *sk, 3411 char __user *optval, 3412 unsigned int optlen) 3413 { 3414 struct sctp_authkeyid val; 3415 struct sctp_association *asoc; 3416 3417 if (!sctp_auth_enable) 3418 return -EACCES; 3419 3420 if (optlen != sizeof(struct sctp_authkeyid)) 3421 return -EINVAL; 3422 if (copy_from_user(&val, optval, optlen)) 3423 return -EFAULT; 3424 3425 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3426 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3427 return -EINVAL; 3428 3429 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc, 3430 val.scact_keynumber); 3431 3432 } 3433 3434 /* 3435 * 8.1.23 SCTP_AUTO_ASCONF 3436 * 3437 * This option will enable or disable the use of the automatic generation of 3438 * ASCONF chunks to add and delete addresses to an existing association. Note 3439 * that this option has two caveats namely: a) it only affects sockets that 3440 * are bound to all addresses available to the SCTP stack, and b) the system 3441 * administrator may have an overriding control that turns the ASCONF feature 3442 * off no matter what setting the socket option may have. 3443 * This option expects an integer boolean flag, where a non-zero value turns on 3444 * the option, and a zero value turns off the option. 3445 * Note. In this implementation, socket operation overrides default parameter 3446 * being set by sysctl as well as FreeBSD implementation 3447 */ 3448 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3449 unsigned int optlen) 3450 { 3451 int val; 3452 struct sctp_sock *sp = sctp_sk(sk); 3453 3454 if (optlen < sizeof(int)) 3455 return -EINVAL; 3456 if (get_user(val, (int __user *)optval)) 3457 return -EFAULT; 3458 if (!sctp_is_ep_boundall(sk) && val) 3459 return -EINVAL; 3460 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3461 return 0; 3462 3463 if (val == 0 && sp->do_auto_asconf) { 3464 list_del(&sp->auto_asconf_list); 3465 sp->do_auto_asconf = 0; 3466 } else if (val && !sp->do_auto_asconf) { 3467 list_add_tail(&sp->auto_asconf_list, 3468 &sctp_auto_asconf_splist); 3469 sp->do_auto_asconf = 1; 3470 } 3471 return 0; 3472 } 3473 3474 3475 /* API 6.2 setsockopt(), getsockopt() 3476 * 3477 * Applications use setsockopt() and getsockopt() to set or retrieve 3478 * socket options. Socket options are used to change the default 3479 * behavior of sockets calls. They are described in Section 7. 3480 * 3481 * The syntax is: 3482 * 3483 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3484 * int __user *optlen); 3485 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3486 * int optlen); 3487 * 3488 * sd - the socket descript. 3489 * level - set to IPPROTO_SCTP for all SCTP options. 3490 * optname - the option name. 3491 * optval - the buffer to store the value of the option. 3492 * optlen - the size of the buffer. 3493 */ 3494 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname, 3495 char __user *optval, unsigned int optlen) 3496 { 3497 int retval = 0; 3498 3499 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n", 3500 sk, optname); 3501 3502 /* I can hardly begin to describe how wrong this is. This is 3503 * so broken as to be worse than useless. The API draft 3504 * REALLY is NOT helpful here... I am not convinced that the 3505 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3506 * are at all well-founded. 3507 */ 3508 if (level != SOL_SCTP) { 3509 struct sctp_af *af = sctp_sk(sk)->pf->af; 3510 retval = af->setsockopt(sk, level, optname, optval, optlen); 3511 goto out_nounlock; 3512 } 3513 3514 sctp_lock_sock(sk); 3515 3516 switch (optname) { 3517 case SCTP_SOCKOPT_BINDX_ADD: 3518 /* 'optlen' is the size of the addresses buffer. */ 3519 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3520 optlen, SCTP_BINDX_ADD_ADDR); 3521 break; 3522 3523 case SCTP_SOCKOPT_BINDX_REM: 3524 /* 'optlen' is the size of the addresses buffer. */ 3525 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3526 optlen, SCTP_BINDX_REM_ADDR); 3527 break; 3528 3529 case SCTP_SOCKOPT_CONNECTX_OLD: 3530 /* 'optlen' is the size of the addresses buffer. */ 3531 retval = sctp_setsockopt_connectx_old(sk, 3532 (struct sockaddr __user *)optval, 3533 optlen); 3534 break; 3535 3536 case SCTP_SOCKOPT_CONNECTX: 3537 /* 'optlen' is the size of the addresses buffer. */ 3538 retval = sctp_setsockopt_connectx(sk, 3539 (struct sockaddr __user *)optval, 3540 optlen); 3541 break; 3542 3543 case SCTP_DISABLE_FRAGMENTS: 3544 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3545 break; 3546 3547 case SCTP_EVENTS: 3548 retval = sctp_setsockopt_events(sk, optval, optlen); 3549 break; 3550 3551 case SCTP_AUTOCLOSE: 3552 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3553 break; 3554 3555 case SCTP_PEER_ADDR_PARAMS: 3556 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3557 break; 3558 3559 case SCTP_DELAYED_SACK: 3560 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 3561 break; 3562 case SCTP_PARTIAL_DELIVERY_POINT: 3563 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3564 break; 3565 3566 case SCTP_INITMSG: 3567 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3568 break; 3569 case SCTP_DEFAULT_SEND_PARAM: 3570 retval = sctp_setsockopt_default_send_param(sk, optval, 3571 optlen); 3572 break; 3573 case SCTP_PRIMARY_ADDR: 3574 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3575 break; 3576 case SCTP_SET_PEER_PRIMARY_ADDR: 3577 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3578 break; 3579 case SCTP_NODELAY: 3580 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3581 break; 3582 case SCTP_RTOINFO: 3583 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3584 break; 3585 case SCTP_ASSOCINFO: 3586 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3587 break; 3588 case SCTP_I_WANT_MAPPED_V4_ADDR: 3589 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3590 break; 3591 case SCTP_MAXSEG: 3592 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3593 break; 3594 case SCTP_ADAPTATION_LAYER: 3595 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3596 break; 3597 case SCTP_CONTEXT: 3598 retval = sctp_setsockopt_context(sk, optval, optlen); 3599 break; 3600 case SCTP_FRAGMENT_INTERLEAVE: 3601 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 3602 break; 3603 case SCTP_MAX_BURST: 3604 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 3605 break; 3606 case SCTP_AUTH_CHUNK: 3607 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 3608 break; 3609 case SCTP_HMAC_IDENT: 3610 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 3611 break; 3612 case SCTP_AUTH_KEY: 3613 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 3614 break; 3615 case SCTP_AUTH_ACTIVE_KEY: 3616 retval = sctp_setsockopt_active_key(sk, optval, optlen); 3617 break; 3618 case SCTP_AUTH_DELETE_KEY: 3619 retval = sctp_setsockopt_del_key(sk, optval, optlen); 3620 break; 3621 case SCTP_AUTO_ASCONF: 3622 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 3623 break; 3624 default: 3625 retval = -ENOPROTOOPT; 3626 break; 3627 } 3628 3629 sctp_release_sock(sk); 3630 3631 out_nounlock: 3632 return retval; 3633 } 3634 3635 /* API 3.1.6 connect() - UDP Style Syntax 3636 * 3637 * An application may use the connect() call in the UDP model to initiate an 3638 * association without sending data. 3639 * 3640 * The syntax is: 3641 * 3642 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 3643 * 3644 * sd: the socket descriptor to have a new association added to. 3645 * 3646 * nam: the address structure (either struct sockaddr_in or struct 3647 * sockaddr_in6 defined in RFC2553 [7]). 3648 * 3649 * len: the size of the address. 3650 */ 3651 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr, 3652 int addr_len) 3653 { 3654 int err = 0; 3655 struct sctp_af *af; 3656 3657 sctp_lock_sock(sk); 3658 3659 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n", 3660 __func__, sk, addr, addr_len); 3661 3662 /* Validate addr_len before calling common connect/connectx routine. */ 3663 af = sctp_get_af_specific(addr->sa_family); 3664 if (!af || addr_len < af->sockaddr_len) { 3665 err = -EINVAL; 3666 } else { 3667 /* Pass correct addr len to common routine (so it knows there 3668 * is only one address being passed. 3669 */ 3670 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 3671 } 3672 3673 sctp_release_sock(sk); 3674 return err; 3675 } 3676 3677 /* FIXME: Write comments. */ 3678 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags) 3679 { 3680 return -EOPNOTSUPP; /* STUB */ 3681 } 3682 3683 /* 4.1.4 accept() - TCP Style Syntax 3684 * 3685 * Applications use accept() call to remove an established SCTP 3686 * association from the accept queue of the endpoint. A new socket 3687 * descriptor will be returned from accept() to represent the newly 3688 * formed association. 3689 */ 3690 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err) 3691 { 3692 struct sctp_sock *sp; 3693 struct sctp_endpoint *ep; 3694 struct sock *newsk = NULL; 3695 struct sctp_association *asoc; 3696 long timeo; 3697 int error = 0; 3698 3699 sctp_lock_sock(sk); 3700 3701 sp = sctp_sk(sk); 3702 ep = sp->ep; 3703 3704 if (!sctp_style(sk, TCP)) { 3705 error = -EOPNOTSUPP; 3706 goto out; 3707 } 3708 3709 if (!sctp_sstate(sk, LISTENING)) { 3710 error = -EINVAL; 3711 goto out; 3712 } 3713 3714 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 3715 3716 error = sctp_wait_for_accept(sk, timeo); 3717 if (error) 3718 goto out; 3719 3720 /* We treat the list of associations on the endpoint as the accept 3721 * queue and pick the first association on the list. 3722 */ 3723 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 3724 3725 newsk = sp->pf->create_accept_sk(sk, asoc); 3726 if (!newsk) { 3727 error = -ENOMEM; 3728 goto out; 3729 } 3730 3731 /* Populate the fields of the newsk from the oldsk and migrate the 3732 * asoc to the newsk. 3733 */ 3734 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 3735 3736 out: 3737 sctp_release_sock(sk); 3738 *err = error; 3739 return newsk; 3740 } 3741 3742 /* The SCTP ioctl handler. */ 3743 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3744 { 3745 int rc = -ENOTCONN; 3746 3747 sctp_lock_sock(sk); 3748 3749 /* 3750 * SEQPACKET-style sockets in LISTENING state are valid, for 3751 * SCTP, so only discard TCP-style sockets in LISTENING state. 3752 */ 3753 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 3754 goto out; 3755 3756 switch (cmd) { 3757 case SIOCINQ: { 3758 struct sk_buff *skb; 3759 unsigned int amount = 0; 3760 3761 skb = skb_peek(&sk->sk_receive_queue); 3762 if (skb != NULL) { 3763 /* 3764 * We will only return the amount of this packet since 3765 * that is all that will be read. 3766 */ 3767 amount = skb->len; 3768 } 3769 rc = put_user(amount, (int __user *)arg); 3770 break; 3771 } 3772 default: 3773 rc = -ENOIOCTLCMD; 3774 break; 3775 } 3776 out: 3777 sctp_release_sock(sk); 3778 return rc; 3779 } 3780 3781 /* This is the function which gets called during socket creation to 3782 * initialized the SCTP-specific portion of the sock. 3783 * The sock structure should already be zero-filled memory. 3784 */ 3785 SCTP_STATIC int sctp_init_sock(struct sock *sk) 3786 { 3787 struct sctp_endpoint *ep; 3788 struct sctp_sock *sp; 3789 3790 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk); 3791 3792 sp = sctp_sk(sk); 3793 3794 /* Initialize the SCTP per socket area. */ 3795 switch (sk->sk_type) { 3796 case SOCK_SEQPACKET: 3797 sp->type = SCTP_SOCKET_UDP; 3798 break; 3799 case SOCK_STREAM: 3800 sp->type = SCTP_SOCKET_TCP; 3801 break; 3802 default: 3803 return -ESOCKTNOSUPPORT; 3804 } 3805 3806 /* Initialize default send parameters. These parameters can be 3807 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 3808 */ 3809 sp->default_stream = 0; 3810 sp->default_ppid = 0; 3811 sp->default_flags = 0; 3812 sp->default_context = 0; 3813 sp->default_timetolive = 0; 3814 3815 sp->default_rcv_context = 0; 3816 sp->max_burst = sctp_max_burst; 3817 3818 /* Initialize default setup parameters. These parameters 3819 * can be modified with the SCTP_INITMSG socket option or 3820 * overridden by the SCTP_INIT CMSG. 3821 */ 3822 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 3823 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 3824 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init; 3825 sp->initmsg.sinit_max_init_timeo = sctp_rto_max; 3826 3827 /* Initialize default RTO related parameters. These parameters can 3828 * be modified for with the SCTP_RTOINFO socket option. 3829 */ 3830 sp->rtoinfo.srto_initial = sctp_rto_initial; 3831 sp->rtoinfo.srto_max = sctp_rto_max; 3832 sp->rtoinfo.srto_min = sctp_rto_min; 3833 3834 /* Initialize default association related parameters. These parameters 3835 * can be modified with the SCTP_ASSOCINFO socket option. 3836 */ 3837 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association; 3838 sp->assocparams.sasoc_number_peer_destinations = 0; 3839 sp->assocparams.sasoc_peer_rwnd = 0; 3840 sp->assocparams.sasoc_local_rwnd = 0; 3841 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life; 3842 3843 /* Initialize default event subscriptions. By default, all the 3844 * options are off. 3845 */ 3846 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 3847 3848 /* Default Peer Address Parameters. These defaults can 3849 * be modified via SCTP_PEER_ADDR_PARAMS 3850 */ 3851 sp->hbinterval = sctp_hb_interval; 3852 sp->pathmaxrxt = sctp_max_retrans_path; 3853 sp->pathmtu = 0; // allow default discovery 3854 sp->sackdelay = sctp_sack_timeout; 3855 sp->sackfreq = 2; 3856 sp->param_flags = SPP_HB_ENABLE | 3857 SPP_PMTUD_ENABLE | 3858 SPP_SACKDELAY_ENABLE; 3859 3860 /* If enabled no SCTP message fragmentation will be performed. 3861 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 3862 */ 3863 sp->disable_fragments = 0; 3864 3865 /* Enable Nagle algorithm by default. */ 3866 sp->nodelay = 0; 3867 3868 /* Enable by default. */ 3869 sp->v4mapped = 1; 3870 3871 /* Auto-close idle associations after the configured 3872 * number of seconds. A value of 0 disables this 3873 * feature. Configure through the SCTP_AUTOCLOSE socket option, 3874 * for UDP-style sockets only. 3875 */ 3876 sp->autoclose = 0; 3877 3878 /* User specified fragmentation limit. */ 3879 sp->user_frag = 0; 3880 3881 sp->adaptation_ind = 0; 3882 3883 sp->pf = sctp_get_pf_specific(sk->sk_family); 3884 3885 /* Control variables for partial data delivery. */ 3886 atomic_set(&sp->pd_mode, 0); 3887 skb_queue_head_init(&sp->pd_lobby); 3888 sp->frag_interleave = 0; 3889 3890 /* Create a per socket endpoint structure. Even if we 3891 * change the data structure relationships, this may still 3892 * be useful for storing pre-connect address information. 3893 */ 3894 ep = sctp_endpoint_new(sk, GFP_KERNEL); 3895 if (!ep) 3896 return -ENOMEM; 3897 3898 sp->ep = ep; 3899 sp->hmac = NULL; 3900 3901 SCTP_DBG_OBJCNT_INC(sock); 3902 3903 local_bh_disable(); 3904 percpu_counter_inc(&sctp_sockets_allocated); 3905 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3906 if (sctp_default_auto_asconf) { 3907 list_add_tail(&sp->auto_asconf_list, 3908 &sctp_auto_asconf_splist); 3909 sp->do_auto_asconf = 1; 3910 } else 3911 sp->do_auto_asconf = 0; 3912 local_bh_enable(); 3913 3914 return 0; 3915 } 3916 3917 /* Cleanup any SCTP per socket resources. */ 3918 SCTP_STATIC void sctp_destroy_sock(struct sock *sk) 3919 { 3920 struct sctp_sock *sp; 3921 3922 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk); 3923 3924 /* Release our hold on the endpoint. */ 3925 sp = sctp_sk(sk); 3926 if (sp->do_auto_asconf) { 3927 sp->do_auto_asconf = 0; 3928 list_del(&sp->auto_asconf_list); 3929 } 3930 sctp_endpoint_free(sp->ep); 3931 local_bh_disable(); 3932 percpu_counter_dec(&sctp_sockets_allocated); 3933 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3934 local_bh_enable(); 3935 } 3936 3937 /* API 4.1.7 shutdown() - TCP Style Syntax 3938 * int shutdown(int socket, int how); 3939 * 3940 * sd - the socket descriptor of the association to be closed. 3941 * how - Specifies the type of shutdown. The values are 3942 * as follows: 3943 * SHUT_RD 3944 * Disables further receive operations. No SCTP 3945 * protocol action is taken. 3946 * SHUT_WR 3947 * Disables further send operations, and initiates 3948 * the SCTP shutdown sequence. 3949 * SHUT_RDWR 3950 * Disables further send and receive operations 3951 * and initiates the SCTP shutdown sequence. 3952 */ 3953 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how) 3954 { 3955 struct sctp_endpoint *ep; 3956 struct sctp_association *asoc; 3957 3958 if (!sctp_style(sk, TCP)) 3959 return; 3960 3961 if (how & SEND_SHUTDOWN) { 3962 ep = sctp_sk(sk)->ep; 3963 if (!list_empty(&ep->asocs)) { 3964 asoc = list_entry(ep->asocs.next, 3965 struct sctp_association, asocs); 3966 sctp_primitive_SHUTDOWN(asoc, NULL); 3967 } 3968 } 3969 } 3970 3971 /* 7.2.1 Association Status (SCTP_STATUS) 3972 3973 * Applications can retrieve current status information about an 3974 * association, including association state, peer receiver window size, 3975 * number of unacked data chunks, and number of data chunks pending 3976 * receipt. This information is read-only. 3977 */ 3978 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 3979 char __user *optval, 3980 int __user *optlen) 3981 { 3982 struct sctp_status status; 3983 struct sctp_association *asoc = NULL; 3984 struct sctp_transport *transport; 3985 sctp_assoc_t associd; 3986 int retval = 0; 3987 3988 if (len < sizeof(status)) { 3989 retval = -EINVAL; 3990 goto out; 3991 } 3992 3993 len = sizeof(status); 3994 if (copy_from_user(&status, optval, len)) { 3995 retval = -EFAULT; 3996 goto out; 3997 } 3998 3999 associd = status.sstat_assoc_id; 4000 asoc = sctp_id2assoc(sk, associd); 4001 if (!asoc) { 4002 retval = -EINVAL; 4003 goto out; 4004 } 4005 4006 transport = asoc->peer.primary_path; 4007 4008 status.sstat_assoc_id = sctp_assoc2id(asoc); 4009 status.sstat_state = asoc->state; 4010 status.sstat_rwnd = asoc->peer.rwnd; 4011 status.sstat_unackdata = asoc->unack_data; 4012 4013 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4014 status.sstat_instrms = asoc->c.sinit_max_instreams; 4015 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 4016 status.sstat_fragmentation_point = asoc->frag_point; 4017 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4018 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 4019 transport->af_specific->sockaddr_len); 4020 /* Map ipv4 address into v4-mapped-on-v6 address. */ 4021 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4022 (union sctp_addr *)&status.sstat_primary.spinfo_address); 4023 status.sstat_primary.spinfo_state = transport->state; 4024 status.sstat_primary.spinfo_cwnd = transport->cwnd; 4025 status.sstat_primary.spinfo_srtt = transport->srtt; 4026 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 4027 status.sstat_primary.spinfo_mtu = transport->pathmtu; 4028 4029 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 4030 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 4031 4032 if (put_user(len, optlen)) { 4033 retval = -EFAULT; 4034 goto out; 4035 } 4036 4037 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n", 4038 len, status.sstat_state, status.sstat_rwnd, 4039 status.sstat_assoc_id); 4040 4041 if (copy_to_user(optval, &status, len)) { 4042 retval = -EFAULT; 4043 goto out; 4044 } 4045 4046 out: 4047 return retval; 4048 } 4049 4050 4051 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 4052 * 4053 * Applications can retrieve information about a specific peer address 4054 * of an association, including its reachability state, congestion 4055 * window, and retransmission timer values. This information is 4056 * read-only. 4057 */ 4058 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 4059 char __user *optval, 4060 int __user *optlen) 4061 { 4062 struct sctp_paddrinfo pinfo; 4063 struct sctp_transport *transport; 4064 int retval = 0; 4065 4066 if (len < sizeof(pinfo)) { 4067 retval = -EINVAL; 4068 goto out; 4069 } 4070 4071 len = sizeof(pinfo); 4072 if (copy_from_user(&pinfo, optval, len)) { 4073 retval = -EFAULT; 4074 goto out; 4075 } 4076 4077 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 4078 pinfo.spinfo_assoc_id); 4079 if (!transport) 4080 return -EINVAL; 4081 4082 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4083 pinfo.spinfo_state = transport->state; 4084 pinfo.spinfo_cwnd = transport->cwnd; 4085 pinfo.spinfo_srtt = transport->srtt; 4086 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 4087 pinfo.spinfo_mtu = transport->pathmtu; 4088 4089 if (pinfo.spinfo_state == SCTP_UNKNOWN) 4090 pinfo.spinfo_state = SCTP_ACTIVE; 4091 4092 if (put_user(len, optlen)) { 4093 retval = -EFAULT; 4094 goto out; 4095 } 4096 4097 if (copy_to_user(optval, &pinfo, len)) { 4098 retval = -EFAULT; 4099 goto out; 4100 } 4101 4102 out: 4103 return retval; 4104 } 4105 4106 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 4107 * 4108 * This option is a on/off flag. If enabled no SCTP message 4109 * fragmentation will be performed. Instead if a message being sent 4110 * exceeds the current PMTU size, the message will NOT be sent and 4111 * instead a error will be indicated to the user. 4112 */ 4113 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 4114 char __user *optval, int __user *optlen) 4115 { 4116 int val; 4117 4118 if (len < sizeof(int)) 4119 return -EINVAL; 4120 4121 len = sizeof(int); 4122 val = (sctp_sk(sk)->disable_fragments == 1); 4123 if (put_user(len, optlen)) 4124 return -EFAULT; 4125 if (copy_to_user(optval, &val, len)) 4126 return -EFAULT; 4127 return 0; 4128 } 4129 4130 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 4131 * 4132 * This socket option is used to specify various notifications and 4133 * ancillary data the user wishes to receive. 4134 */ 4135 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 4136 int __user *optlen) 4137 { 4138 if (len < sizeof(struct sctp_event_subscribe)) 4139 return -EINVAL; 4140 len = sizeof(struct sctp_event_subscribe); 4141 if (put_user(len, optlen)) 4142 return -EFAULT; 4143 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 4144 return -EFAULT; 4145 return 0; 4146 } 4147 4148 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 4149 * 4150 * This socket option is applicable to the UDP-style socket only. When 4151 * set it will cause associations that are idle for more than the 4152 * specified number of seconds to automatically close. An association 4153 * being idle is defined an association that has NOT sent or received 4154 * user data. The special value of '0' indicates that no automatic 4155 * close of any associations should be performed. The option expects an 4156 * integer defining the number of seconds of idle time before an 4157 * association is closed. 4158 */ 4159 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 4160 { 4161 /* Applicable to UDP-style socket only */ 4162 if (sctp_style(sk, TCP)) 4163 return -EOPNOTSUPP; 4164 if (len < sizeof(int)) 4165 return -EINVAL; 4166 len = sizeof(int); 4167 if (put_user(len, optlen)) 4168 return -EFAULT; 4169 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 4170 return -EFAULT; 4171 return 0; 4172 } 4173 4174 /* Helper routine to branch off an association to a new socket. */ 4175 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc, 4176 struct socket **sockp) 4177 { 4178 struct sock *sk = asoc->base.sk; 4179 struct socket *sock; 4180 struct sctp_af *af; 4181 int err = 0; 4182 4183 /* An association cannot be branched off from an already peeled-off 4184 * socket, nor is this supported for tcp style sockets. 4185 */ 4186 if (!sctp_style(sk, UDP)) 4187 return -EINVAL; 4188 4189 /* Create a new socket. */ 4190 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 4191 if (err < 0) 4192 return err; 4193 4194 sctp_copy_sock(sock->sk, sk, asoc); 4195 4196 /* Make peeled-off sockets more like 1-1 accepted sockets. 4197 * Set the daddr and initialize id to something more random 4198 */ 4199 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family); 4200 af->to_sk_daddr(&asoc->peer.primary_addr, sk); 4201 4202 /* Populate the fields of the newsk from the oldsk and migrate the 4203 * asoc to the newsk. 4204 */ 4205 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 4206 4207 *sockp = sock; 4208 4209 return err; 4210 } 4211 4212 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 4213 { 4214 sctp_peeloff_arg_t peeloff; 4215 struct socket *newsock; 4216 int retval = 0; 4217 struct sctp_association *asoc; 4218 4219 if (len < sizeof(sctp_peeloff_arg_t)) 4220 return -EINVAL; 4221 len = sizeof(sctp_peeloff_arg_t); 4222 if (copy_from_user(&peeloff, optval, len)) 4223 return -EFAULT; 4224 4225 asoc = sctp_id2assoc(sk, peeloff.associd); 4226 if (!asoc) { 4227 retval = -EINVAL; 4228 goto out; 4229 } 4230 4231 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __func__, sk, asoc); 4232 4233 retval = sctp_do_peeloff(asoc, &newsock); 4234 if (retval < 0) 4235 goto out; 4236 4237 /* Map the socket to an unused fd that can be returned to the user. */ 4238 retval = sock_map_fd(newsock, 0); 4239 if (retval < 0) { 4240 sock_release(newsock); 4241 goto out; 4242 } 4243 4244 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n", 4245 __func__, sk, asoc, newsock->sk, retval); 4246 4247 /* Return the fd mapped to the new socket. */ 4248 peeloff.sd = retval; 4249 if (put_user(len, optlen)) 4250 return -EFAULT; 4251 if (copy_to_user(optval, &peeloff, len)) 4252 retval = -EFAULT; 4253 4254 out: 4255 return retval; 4256 } 4257 4258 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 4259 * 4260 * Applications can enable or disable heartbeats for any peer address of 4261 * an association, modify an address's heartbeat interval, force a 4262 * heartbeat to be sent immediately, and adjust the address's maximum 4263 * number of retransmissions sent before an address is considered 4264 * unreachable. The following structure is used to access and modify an 4265 * address's parameters: 4266 * 4267 * struct sctp_paddrparams { 4268 * sctp_assoc_t spp_assoc_id; 4269 * struct sockaddr_storage spp_address; 4270 * uint32_t spp_hbinterval; 4271 * uint16_t spp_pathmaxrxt; 4272 * uint32_t spp_pathmtu; 4273 * uint32_t spp_sackdelay; 4274 * uint32_t spp_flags; 4275 * }; 4276 * 4277 * spp_assoc_id - (one-to-many style socket) This is filled in the 4278 * application, and identifies the association for 4279 * this query. 4280 * spp_address - This specifies which address is of interest. 4281 * spp_hbinterval - This contains the value of the heartbeat interval, 4282 * in milliseconds. If a value of zero 4283 * is present in this field then no changes are to 4284 * be made to this parameter. 4285 * spp_pathmaxrxt - This contains the maximum number of 4286 * retransmissions before this address shall be 4287 * considered unreachable. If a value of zero 4288 * is present in this field then no changes are to 4289 * be made to this parameter. 4290 * spp_pathmtu - When Path MTU discovery is disabled the value 4291 * specified here will be the "fixed" path mtu. 4292 * Note that if the spp_address field is empty 4293 * then all associations on this address will 4294 * have this fixed path mtu set upon them. 4295 * 4296 * spp_sackdelay - When delayed sack is enabled, this value specifies 4297 * the number of milliseconds that sacks will be delayed 4298 * for. This value will apply to all addresses of an 4299 * association if the spp_address field is empty. Note 4300 * also, that if delayed sack is enabled and this 4301 * value is set to 0, no change is made to the last 4302 * recorded delayed sack timer value. 4303 * 4304 * spp_flags - These flags are used to control various features 4305 * on an association. The flag field may contain 4306 * zero or more of the following options. 4307 * 4308 * SPP_HB_ENABLE - Enable heartbeats on the 4309 * specified address. Note that if the address 4310 * field is empty all addresses for the association 4311 * have heartbeats enabled upon them. 4312 * 4313 * SPP_HB_DISABLE - Disable heartbeats on the 4314 * speicifed address. Note that if the address 4315 * field is empty all addresses for the association 4316 * will have their heartbeats disabled. Note also 4317 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 4318 * mutually exclusive, only one of these two should 4319 * be specified. Enabling both fields will have 4320 * undetermined results. 4321 * 4322 * SPP_HB_DEMAND - Request a user initiated heartbeat 4323 * to be made immediately. 4324 * 4325 * SPP_PMTUD_ENABLE - This field will enable PMTU 4326 * discovery upon the specified address. Note that 4327 * if the address feild is empty then all addresses 4328 * on the association are effected. 4329 * 4330 * SPP_PMTUD_DISABLE - This field will disable PMTU 4331 * discovery upon the specified address. Note that 4332 * if the address feild is empty then all addresses 4333 * on the association are effected. Not also that 4334 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 4335 * exclusive. Enabling both will have undetermined 4336 * results. 4337 * 4338 * SPP_SACKDELAY_ENABLE - Setting this flag turns 4339 * on delayed sack. The time specified in spp_sackdelay 4340 * is used to specify the sack delay for this address. Note 4341 * that if spp_address is empty then all addresses will 4342 * enable delayed sack and take on the sack delay 4343 * value specified in spp_sackdelay. 4344 * SPP_SACKDELAY_DISABLE - Setting this flag turns 4345 * off delayed sack. If the spp_address field is blank then 4346 * delayed sack is disabled for the entire association. Note 4347 * also that this field is mutually exclusive to 4348 * SPP_SACKDELAY_ENABLE, setting both will have undefined 4349 * results. 4350 */ 4351 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 4352 char __user *optval, int __user *optlen) 4353 { 4354 struct sctp_paddrparams params; 4355 struct sctp_transport *trans = NULL; 4356 struct sctp_association *asoc = NULL; 4357 struct sctp_sock *sp = sctp_sk(sk); 4358 4359 if (len < sizeof(struct sctp_paddrparams)) 4360 return -EINVAL; 4361 len = sizeof(struct sctp_paddrparams); 4362 if (copy_from_user(¶ms, optval, len)) 4363 return -EFAULT; 4364 4365 /* If an address other than INADDR_ANY is specified, and 4366 * no transport is found, then the request is invalid. 4367 */ 4368 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) { 4369 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 4370 params.spp_assoc_id); 4371 if (!trans) { 4372 SCTP_DEBUG_PRINTK("Failed no transport\n"); 4373 return -EINVAL; 4374 } 4375 } 4376 4377 /* Get association, if assoc_id != 0 and the socket is a one 4378 * to many style socket, and an association was not found, then 4379 * the id was invalid. 4380 */ 4381 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 4382 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 4383 SCTP_DEBUG_PRINTK("Failed no association\n"); 4384 return -EINVAL; 4385 } 4386 4387 if (trans) { 4388 /* Fetch transport values. */ 4389 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 4390 params.spp_pathmtu = trans->pathmtu; 4391 params.spp_pathmaxrxt = trans->pathmaxrxt; 4392 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 4393 4394 /*draft-11 doesn't say what to return in spp_flags*/ 4395 params.spp_flags = trans->param_flags; 4396 } else if (asoc) { 4397 /* Fetch association values. */ 4398 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 4399 params.spp_pathmtu = asoc->pathmtu; 4400 params.spp_pathmaxrxt = asoc->pathmaxrxt; 4401 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 4402 4403 /*draft-11 doesn't say what to return in spp_flags*/ 4404 params.spp_flags = asoc->param_flags; 4405 } else { 4406 /* Fetch socket values. */ 4407 params.spp_hbinterval = sp->hbinterval; 4408 params.spp_pathmtu = sp->pathmtu; 4409 params.spp_sackdelay = sp->sackdelay; 4410 params.spp_pathmaxrxt = sp->pathmaxrxt; 4411 4412 /*draft-11 doesn't say what to return in spp_flags*/ 4413 params.spp_flags = sp->param_flags; 4414 } 4415 4416 if (copy_to_user(optval, ¶ms, len)) 4417 return -EFAULT; 4418 4419 if (put_user(len, optlen)) 4420 return -EFAULT; 4421 4422 return 0; 4423 } 4424 4425 /* 4426 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 4427 * 4428 * This option will effect the way delayed acks are performed. This 4429 * option allows you to get or set the delayed ack time, in 4430 * milliseconds. It also allows changing the delayed ack frequency. 4431 * Changing the frequency to 1 disables the delayed sack algorithm. If 4432 * the assoc_id is 0, then this sets or gets the endpoints default 4433 * values. If the assoc_id field is non-zero, then the set or get 4434 * effects the specified association for the one to many model (the 4435 * assoc_id field is ignored by the one to one model). Note that if 4436 * sack_delay or sack_freq are 0 when setting this option, then the 4437 * current values will remain unchanged. 4438 * 4439 * struct sctp_sack_info { 4440 * sctp_assoc_t sack_assoc_id; 4441 * uint32_t sack_delay; 4442 * uint32_t sack_freq; 4443 * }; 4444 * 4445 * sack_assoc_id - This parameter, indicates which association the user 4446 * is performing an action upon. Note that if this field's value is 4447 * zero then the endpoints default value is changed (effecting future 4448 * associations only). 4449 * 4450 * sack_delay - This parameter contains the number of milliseconds that 4451 * the user is requesting the delayed ACK timer be set to. Note that 4452 * this value is defined in the standard to be between 200 and 500 4453 * milliseconds. 4454 * 4455 * sack_freq - This parameter contains the number of packets that must 4456 * be received before a sack is sent without waiting for the delay 4457 * timer to expire. The default value for this is 2, setting this 4458 * value to 1 will disable the delayed sack algorithm. 4459 */ 4460 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 4461 char __user *optval, 4462 int __user *optlen) 4463 { 4464 struct sctp_sack_info params; 4465 struct sctp_association *asoc = NULL; 4466 struct sctp_sock *sp = sctp_sk(sk); 4467 4468 if (len >= sizeof(struct sctp_sack_info)) { 4469 len = sizeof(struct sctp_sack_info); 4470 4471 if (copy_from_user(¶ms, optval, len)) 4472 return -EFAULT; 4473 } else if (len == sizeof(struct sctp_assoc_value)) { 4474 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n"); 4475 pr_warn("Use struct sctp_sack_info instead\n"); 4476 if (copy_from_user(¶ms, optval, len)) 4477 return -EFAULT; 4478 } else 4479 return - EINVAL; 4480 4481 /* Get association, if sack_assoc_id != 0 and the socket is a one 4482 * to many style socket, and an association was not found, then 4483 * the id was invalid. 4484 */ 4485 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 4486 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 4487 return -EINVAL; 4488 4489 if (asoc) { 4490 /* Fetch association values. */ 4491 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 4492 params.sack_delay = jiffies_to_msecs( 4493 asoc->sackdelay); 4494 params.sack_freq = asoc->sackfreq; 4495 4496 } else { 4497 params.sack_delay = 0; 4498 params.sack_freq = 1; 4499 } 4500 } else { 4501 /* Fetch socket values. */ 4502 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 4503 params.sack_delay = sp->sackdelay; 4504 params.sack_freq = sp->sackfreq; 4505 } else { 4506 params.sack_delay = 0; 4507 params.sack_freq = 1; 4508 } 4509 } 4510 4511 if (copy_to_user(optval, ¶ms, len)) 4512 return -EFAULT; 4513 4514 if (put_user(len, optlen)) 4515 return -EFAULT; 4516 4517 return 0; 4518 } 4519 4520 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 4521 * 4522 * Applications can specify protocol parameters for the default association 4523 * initialization. The option name argument to setsockopt() and getsockopt() 4524 * is SCTP_INITMSG. 4525 * 4526 * Setting initialization parameters is effective only on an unconnected 4527 * socket (for UDP-style sockets only future associations are effected 4528 * by the change). With TCP-style sockets, this option is inherited by 4529 * sockets derived from a listener socket. 4530 */ 4531 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 4532 { 4533 if (len < sizeof(struct sctp_initmsg)) 4534 return -EINVAL; 4535 len = sizeof(struct sctp_initmsg); 4536 if (put_user(len, optlen)) 4537 return -EFAULT; 4538 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 4539 return -EFAULT; 4540 return 0; 4541 } 4542 4543 4544 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 4545 char __user *optval, int __user *optlen) 4546 { 4547 struct sctp_association *asoc; 4548 int cnt = 0; 4549 struct sctp_getaddrs getaddrs; 4550 struct sctp_transport *from; 4551 void __user *to; 4552 union sctp_addr temp; 4553 struct sctp_sock *sp = sctp_sk(sk); 4554 int addrlen; 4555 size_t space_left; 4556 int bytes_copied; 4557 4558 if (len < sizeof(struct sctp_getaddrs)) 4559 return -EINVAL; 4560 4561 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4562 return -EFAULT; 4563 4564 /* For UDP-style sockets, id specifies the association to query. */ 4565 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4566 if (!asoc) 4567 return -EINVAL; 4568 4569 to = optval + offsetof(struct sctp_getaddrs,addrs); 4570 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4571 4572 list_for_each_entry(from, &asoc->peer.transport_addr_list, 4573 transports) { 4574 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4575 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4576 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4577 if (space_left < addrlen) 4578 return -ENOMEM; 4579 if (copy_to_user(to, &temp, addrlen)) 4580 return -EFAULT; 4581 to += addrlen; 4582 cnt++; 4583 space_left -= addrlen; 4584 } 4585 4586 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4587 return -EFAULT; 4588 bytes_copied = ((char __user *)to) - optval; 4589 if (put_user(bytes_copied, optlen)) 4590 return -EFAULT; 4591 4592 return 0; 4593 } 4594 4595 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 4596 size_t space_left, int *bytes_copied) 4597 { 4598 struct sctp_sockaddr_entry *addr; 4599 union sctp_addr temp; 4600 int cnt = 0; 4601 int addrlen; 4602 4603 rcu_read_lock(); 4604 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) { 4605 if (!addr->valid) 4606 continue; 4607 4608 if ((PF_INET == sk->sk_family) && 4609 (AF_INET6 == addr->a.sa.sa_family)) 4610 continue; 4611 if ((PF_INET6 == sk->sk_family) && 4612 inet_v6_ipv6only(sk) && 4613 (AF_INET == addr->a.sa.sa_family)) 4614 continue; 4615 memcpy(&temp, &addr->a, sizeof(temp)); 4616 if (!temp.v4.sin_port) 4617 temp.v4.sin_port = htons(port); 4618 4619 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4620 &temp); 4621 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4622 if (space_left < addrlen) { 4623 cnt = -ENOMEM; 4624 break; 4625 } 4626 memcpy(to, &temp, addrlen); 4627 4628 to += addrlen; 4629 cnt ++; 4630 space_left -= addrlen; 4631 *bytes_copied += addrlen; 4632 } 4633 rcu_read_unlock(); 4634 4635 return cnt; 4636 } 4637 4638 4639 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 4640 char __user *optval, int __user *optlen) 4641 { 4642 struct sctp_bind_addr *bp; 4643 struct sctp_association *asoc; 4644 int cnt = 0; 4645 struct sctp_getaddrs getaddrs; 4646 struct sctp_sockaddr_entry *addr; 4647 void __user *to; 4648 union sctp_addr temp; 4649 struct sctp_sock *sp = sctp_sk(sk); 4650 int addrlen; 4651 int err = 0; 4652 size_t space_left; 4653 int bytes_copied = 0; 4654 void *addrs; 4655 void *buf; 4656 4657 if (len < sizeof(struct sctp_getaddrs)) 4658 return -EINVAL; 4659 4660 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4661 return -EFAULT; 4662 4663 /* 4664 * For UDP-style sockets, id specifies the association to query. 4665 * If the id field is set to the value '0' then the locally bound 4666 * addresses are returned without regard to any particular 4667 * association. 4668 */ 4669 if (0 == getaddrs.assoc_id) { 4670 bp = &sctp_sk(sk)->ep->base.bind_addr; 4671 } else { 4672 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4673 if (!asoc) 4674 return -EINVAL; 4675 bp = &asoc->base.bind_addr; 4676 } 4677 4678 to = optval + offsetof(struct sctp_getaddrs,addrs); 4679 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4680 4681 addrs = kmalloc(space_left, GFP_KERNEL); 4682 if (!addrs) 4683 return -ENOMEM; 4684 4685 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4686 * addresses from the global local address list. 4687 */ 4688 if (sctp_list_single_entry(&bp->address_list)) { 4689 addr = list_entry(bp->address_list.next, 4690 struct sctp_sockaddr_entry, list); 4691 if (sctp_is_any(sk, &addr->a)) { 4692 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 4693 space_left, &bytes_copied); 4694 if (cnt < 0) { 4695 err = cnt; 4696 goto out; 4697 } 4698 goto copy_getaddrs; 4699 } 4700 } 4701 4702 buf = addrs; 4703 /* Protection on the bound address list is not needed since 4704 * in the socket option context we hold a socket lock and 4705 * thus the bound address list can't change. 4706 */ 4707 list_for_each_entry(addr, &bp->address_list, list) { 4708 memcpy(&temp, &addr->a, sizeof(temp)); 4709 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4710 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4711 if (space_left < addrlen) { 4712 err = -ENOMEM; /*fixme: right error?*/ 4713 goto out; 4714 } 4715 memcpy(buf, &temp, addrlen); 4716 buf += addrlen; 4717 bytes_copied += addrlen; 4718 cnt ++; 4719 space_left -= addrlen; 4720 } 4721 4722 copy_getaddrs: 4723 if (copy_to_user(to, addrs, bytes_copied)) { 4724 err = -EFAULT; 4725 goto out; 4726 } 4727 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 4728 err = -EFAULT; 4729 goto out; 4730 } 4731 if (put_user(bytes_copied, optlen)) 4732 err = -EFAULT; 4733 out: 4734 kfree(addrs); 4735 return err; 4736 } 4737 4738 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 4739 * 4740 * Requests that the local SCTP stack use the enclosed peer address as 4741 * the association primary. The enclosed address must be one of the 4742 * association peer's addresses. 4743 */ 4744 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 4745 char __user *optval, int __user *optlen) 4746 { 4747 struct sctp_prim prim; 4748 struct sctp_association *asoc; 4749 struct sctp_sock *sp = sctp_sk(sk); 4750 4751 if (len < sizeof(struct sctp_prim)) 4752 return -EINVAL; 4753 4754 len = sizeof(struct sctp_prim); 4755 4756 if (copy_from_user(&prim, optval, len)) 4757 return -EFAULT; 4758 4759 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 4760 if (!asoc) 4761 return -EINVAL; 4762 4763 if (!asoc->peer.primary_path) 4764 return -ENOTCONN; 4765 4766 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 4767 asoc->peer.primary_path->af_specific->sockaddr_len); 4768 4769 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, 4770 (union sctp_addr *)&prim.ssp_addr); 4771 4772 if (put_user(len, optlen)) 4773 return -EFAULT; 4774 if (copy_to_user(optval, &prim, len)) 4775 return -EFAULT; 4776 4777 return 0; 4778 } 4779 4780 /* 4781 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 4782 * 4783 * Requests that the local endpoint set the specified Adaptation Layer 4784 * Indication parameter for all future INIT and INIT-ACK exchanges. 4785 */ 4786 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 4787 char __user *optval, int __user *optlen) 4788 { 4789 struct sctp_setadaptation adaptation; 4790 4791 if (len < sizeof(struct sctp_setadaptation)) 4792 return -EINVAL; 4793 4794 len = sizeof(struct sctp_setadaptation); 4795 4796 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 4797 4798 if (put_user(len, optlen)) 4799 return -EFAULT; 4800 if (copy_to_user(optval, &adaptation, len)) 4801 return -EFAULT; 4802 4803 return 0; 4804 } 4805 4806 /* 4807 * 4808 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 4809 * 4810 * Applications that wish to use the sendto() system call may wish to 4811 * specify a default set of parameters that would normally be supplied 4812 * through the inclusion of ancillary data. This socket option allows 4813 * such an application to set the default sctp_sndrcvinfo structure. 4814 4815 4816 * The application that wishes to use this socket option simply passes 4817 * in to this call the sctp_sndrcvinfo structure defined in Section 4818 * 5.2.2) The input parameters accepted by this call include 4819 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 4820 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 4821 * to this call if the caller is using the UDP model. 4822 * 4823 * For getsockopt, it get the default sctp_sndrcvinfo structure. 4824 */ 4825 static int sctp_getsockopt_default_send_param(struct sock *sk, 4826 int len, char __user *optval, 4827 int __user *optlen) 4828 { 4829 struct sctp_sndrcvinfo info; 4830 struct sctp_association *asoc; 4831 struct sctp_sock *sp = sctp_sk(sk); 4832 4833 if (len < sizeof(struct sctp_sndrcvinfo)) 4834 return -EINVAL; 4835 4836 len = sizeof(struct sctp_sndrcvinfo); 4837 4838 if (copy_from_user(&info, optval, len)) 4839 return -EFAULT; 4840 4841 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 4842 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 4843 return -EINVAL; 4844 4845 if (asoc) { 4846 info.sinfo_stream = asoc->default_stream; 4847 info.sinfo_flags = asoc->default_flags; 4848 info.sinfo_ppid = asoc->default_ppid; 4849 info.sinfo_context = asoc->default_context; 4850 info.sinfo_timetolive = asoc->default_timetolive; 4851 } else { 4852 info.sinfo_stream = sp->default_stream; 4853 info.sinfo_flags = sp->default_flags; 4854 info.sinfo_ppid = sp->default_ppid; 4855 info.sinfo_context = sp->default_context; 4856 info.sinfo_timetolive = sp->default_timetolive; 4857 } 4858 4859 if (put_user(len, optlen)) 4860 return -EFAULT; 4861 if (copy_to_user(optval, &info, len)) 4862 return -EFAULT; 4863 4864 return 0; 4865 } 4866 4867 /* 4868 * 4869 * 7.1.5 SCTP_NODELAY 4870 * 4871 * Turn on/off any Nagle-like algorithm. This means that packets are 4872 * generally sent as soon as possible and no unnecessary delays are 4873 * introduced, at the cost of more packets in the network. Expects an 4874 * integer boolean flag. 4875 */ 4876 4877 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 4878 char __user *optval, int __user *optlen) 4879 { 4880 int val; 4881 4882 if (len < sizeof(int)) 4883 return -EINVAL; 4884 4885 len = sizeof(int); 4886 val = (sctp_sk(sk)->nodelay == 1); 4887 if (put_user(len, optlen)) 4888 return -EFAULT; 4889 if (copy_to_user(optval, &val, len)) 4890 return -EFAULT; 4891 return 0; 4892 } 4893 4894 /* 4895 * 4896 * 7.1.1 SCTP_RTOINFO 4897 * 4898 * The protocol parameters used to initialize and bound retransmission 4899 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 4900 * and modify these parameters. 4901 * All parameters are time values, in milliseconds. A value of 0, when 4902 * modifying the parameters, indicates that the current value should not 4903 * be changed. 4904 * 4905 */ 4906 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 4907 char __user *optval, 4908 int __user *optlen) { 4909 struct sctp_rtoinfo rtoinfo; 4910 struct sctp_association *asoc; 4911 4912 if (len < sizeof (struct sctp_rtoinfo)) 4913 return -EINVAL; 4914 4915 len = sizeof(struct sctp_rtoinfo); 4916 4917 if (copy_from_user(&rtoinfo, optval, len)) 4918 return -EFAULT; 4919 4920 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 4921 4922 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 4923 return -EINVAL; 4924 4925 /* Values corresponding to the specific association. */ 4926 if (asoc) { 4927 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 4928 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 4929 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 4930 } else { 4931 /* Values corresponding to the endpoint. */ 4932 struct sctp_sock *sp = sctp_sk(sk); 4933 4934 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 4935 rtoinfo.srto_max = sp->rtoinfo.srto_max; 4936 rtoinfo.srto_min = sp->rtoinfo.srto_min; 4937 } 4938 4939 if (put_user(len, optlen)) 4940 return -EFAULT; 4941 4942 if (copy_to_user(optval, &rtoinfo, len)) 4943 return -EFAULT; 4944 4945 return 0; 4946 } 4947 4948 /* 4949 * 4950 * 7.1.2 SCTP_ASSOCINFO 4951 * 4952 * This option is used to tune the maximum retransmission attempts 4953 * of the association. 4954 * Returns an error if the new association retransmission value is 4955 * greater than the sum of the retransmission value of the peer. 4956 * See [SCTP] for more information. 4957 * 4958 */ 4959 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 4960 char __user *optval, 4961 int __user *optlen) 4962 { 4963 4964 struct sctp_assocparams assocparams; 4965 struct sctp_association *asoc; 4966 struct list_head *pos; 4967 int cnt = 0; 4968 4969 if (len < sizeof (struct sctp_assocparams)) 4970 return -EINVAL; 4971 4972 len = sizeof(struct sctp_assocparams); 4973 4974 if (copy_from_user(&assocparams, optval, len)) 4975 return -EFAULT; 4976 4977 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 4978 4979 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 4980 return -EINVAL; 4981 4982 /* Values correspoinding to the specific association */ 4983 if (asoc) { 4984 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 4985 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 4986 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 4987 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec 4988 * 1000) + 4989 (asoc->cookie_life.tv_usec 4990 / 1000); 4991 4992 list_for_each(pos, &asoc->peer.transport_addr_list) { 4993 cnt ++; 4994 } 4995 4996 assocparams.sasoc_number_peer_destinations = cnt; 4997 } else { 4998 /* Values corresponding to the endpoint */ 4999 struct sctp_sock *sp = sctp_sk(sk); 5000 5001 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 5002 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 5003 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 5004 assocparams.sasoc_cookie_life = 5005 sp->assocparams.sasoc_cookie_life; 5006 assocparams.sasoc_number_peer_destinations = 5007 sp->assocparams. 5008 sasoc_number_peer_destinations; 5009 } 5010 5011 if (put_user(len, optlen)) 5012 return -EFAULT; 5013 5014 if (copy_to_user(optval, &assocparams, len)) 5015 return -EFAULT; 5016 5017 return 0; 5018 } 5019 5020 /* 5021 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 5022 * 5023 * This socket option is a boolean flag which turns on or off mapped V4 5024 * addresses. If this option is turned on and the socket is type 5025 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 5026 * If this option is turned off, then no mapping will be done of V4 5027 * addresses and a user will receive both PF_INET6 and PF_INET type 5028 * addresses on the socket. 5029 */ 5030 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 5031 char __user *optval, int __user *optlen) 5032 { 5033 int val; 5034 struct sctp_sock *sp = sctp_sk(sk); 5035 5036 if (len < sizeof(int)) 5037 return -EINVAL; 5038 5039 len = sizeof(int); 5040 val = sp->v4mapped; 5041 if (put_user(len, optlen)) 5042 return -EFAULT; 5043 if (copy_to_user(optval, &val, len)) 5044 return -EFAULT; 5045 5046 return 0; 5047 } 5048 5049 /* 5050 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 5051 * (chapter and verse is quoted at sctp_setsockopt_context()) 5052 */ 5053 static int sctp_getsockopt_context(struct sock *sk, int len, 5054 char __user *optval, int __user *optlen) 5055 { 5056 struct sctp_assoc_value params; 5057 struct sctp_sock *sp; 5058 struct sctp_association *asoc; 5059 5060 if (len < sizeof(struct sctp_assoc_value)) 5061 return -EINVAL; 5062 5063 len = sizeof(struct sctp_assoc_value); 5064 5065 if (copy_from_user(¶ms, optval, len)) 5066 return -EFAULT; 5067 5068 sp = sctp_sk(sk); 5069 5070 if (params.assoc_id != 0) { 5071 asoc = sctp_id2assoc(sk, params.assoc_id); 5072 if (!asoc) 5073 return -EINVAL; 5074 params.assoc_value = asoc->default_rcv_context; 5075 } else { 5076 params.assoc_value = sp->default_rcv_context; 5077 } 5078 5079 if (put_user(len, optlen)) 5080 return -EFAULT; 5081 if (copy_to_user(optval, ¶ms, len)) 5082 return -EFAULT; 5083 5084 return 0; 5085 } 5086 5087 /* 5088 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 5089 * This option will get or set the maximum size to put in any outgoing 5090 * SCTP DATA chunk. If a message is larger than this size it will be 5091 * fragmented by SCTP into the specified size. Note that the underlying 5092 * SCTP implementation may fragment into smaller sized chunks when the 5093 * PMTU of the underlying association is smaller than the value set by 5094 * the user. The default value for this option is '0' which indicates 5095 * the user is NOT limiting fragmentation and only the PMTU will effect 5096 * SCTP's choice of DATA chunk size. Note also that values set larger 5097 * than the maximum size of an IP datagram will effectively let SCTP 5098 * control fragmentation (i.e. the same as setting this option to 0). 5099 * 5100 * The following structure is used to access and modify this parameter: 5101 * 5102 * struct sctp_assoc_value { 5103 * sctp_assoc_t assoc_id; 5104 * uint32_t assoc_value; 5105 * }; 5106 * 5107 * assoc_id: This parameter is ignored for one-to-one style sockets. 5108 * For one-to-many style sockets this parameter indicates which 5109 * association the user is performing an action upon. Note that if 5110 * this field's value is zero then the endpoints default value is 5111 * changed (effecting future associations only). 5112 * assoc_value: This parameter specifies the maximum size in bytes. 5113 */ 5114 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 5115 char __user *optval, int __user *optlen) 5116 { 5117 struct sctp_assoc_value params; 5118 struct sctp_association *asoc; 5119 5120 if (len == sizeof(int)) { 5121 pr_warn("Use of int in maxseg socket option deprecated\n"); 5122 pr_warn("Use struct sctp_assoc_value instead\n"); 5123 params.assoc_id = 0; 5124 } else if (len >= sizeof(struct sctp_assoc_value)) { 5125 len = sizeof(struct sctp_assoc_value); 5126 if (copy_from_user(¶ms, optval, sizeof(params))) 5127 return -EFAULT; 5128 } else 5129 return -EINVAL; 5130 5131 asoc = sctp_id2assoc(sk, params.assoc_id); 5132 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 5133 return -EINVAL; 5134 5135 if (asoc) 5136 params.assoc_value = asoc->frag_point; 5137 else 5138 params.assoc_value = sctp_sk(sk)->user_frag; 5139 5140 if (put_user(len, optlen)) 5141 return -EFAULT; 5142 if (len == sizeof(int)) { 5143 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5144 return -EFAULT; 5145 } else { 5146 if (copy_to_user(optval, ¶ms, len)) 5147 return -EFAULT; 5148 } 5149 5150 return 0; 5151 } 5152 5153 /* 5154 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 5155 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 5156 */ 5157 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 5158 char __user *optval, int __user *optlen) 5159 { 5160 int val; 5161 5162 if (len < sizeof(int)) 5163 return -EINVAL; 5164 5165 len = sizeof(int); 5166 5167 val = sctp_sk(sk)->frag_interleave; 5168 if (put_user(len, optlen)) 5169 return -EFAULT; 5170 if (copy_to_user(optval, &val, len)) 5171 return -EFAULT; 5172 5173 return 0; 5174 } 5175 5176 /* 5177 * 7.1.25. Set or Get the sctp partial delivery point 5178 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 5179 */ 5180 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 5181 char __user *optval, 5182 int __user *optlen) 5183 { 5184 u32 val; 5185 5186 if (len < sizeof(u32)) 5187 return -EINVAL; 5188 5189 len = sizeof(u32); 5190 5191 val = sctp_sk(sk)->pd_point; 5192 if (put_user(len, optlen)) 5193 return -EFAULT; 5194 if (copy_to_user(optval, &val, len)) 5195 return -EFAULT; 5196 5197 return 0; 5198 } 5199 5200 /* 5201 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 5202 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 5203 */ 5204 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 5205 char __user *optval, 5206 int __user *optlen) 5207 { 5208 struct sctp_assoc_value params; 5209 struct sctp_sock *sp; 5210 struct sctp_association *asoc; 5211 5212 if (len == sizeof(int)) { 5213 pr_warn("Use of int in max_burst socket option deprecated\n"); 5214 pr_warn("Use struct sctp_assoc_value instead\n"); 5215 params.assoc_id = 0; 5216 } else if (len >= sizeof(struct sctp_assoc_value)) { 5217 len = sizeof(struct sctp_assoc_value); 5218 if (copy_from_user(¶ms, optval, len)) 5219 return -EFAULT; 5220 } else 5221 return -EINVAL; 5222 5223 sp = sctp_sk(sk); 5224 5225 if (params.assoc_id != 0) { 5226 asoc = sctp_id2assoc(sk, params.assoc_id); 5227 if (!asoc) 5228 return -EINVAL; 5229 params.assoc_value = asoc->max_burst; 5230 } else 5231 params.assoc_value = sp->max_burst; 5232 5233 if (len == sizeof(int)) { 5234 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5235 return -EFAULT; 5236 } else { 5237 if (copy_to_user(optval, ¶ms, len)) 5238 return -EFAULT; 5239 } 5240 5241 return 0; 5242 5243 } 5244 5245 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 5246 char __user *optval, int __user *optlen) 5247 { 5248 struct sctp_hmacalgo __user *p = (void __user *)optval; 5249 struct sctp_hmac_algo_param *hmacs; 5250 __u16 data_len = 0; 5251 u32 num_idents; 5252 5253 if (!sctp_auth_enable) 5254 return -EACCES; 5255 5256 hmacs = sctp_sk(sk)->ep->auth_hmacs_list; 5257 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t); 5258 5259 if (len < sizeof(struct sctp_hmacalgo) + data_len) 5260 return -EINVAL; 5261 5262 len = sizeof(struct sctp_hmacalgo) + data_len; 5263 num_idents = data_len / sizeof(u16); 5264 5265 if (put_user(len, optlen)) 5266 return -EFAULT; 5267 if (put_user(num_idents, &p->shmac_num_idents)) 5268 return -EFAULT; 5269 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len)) 5270 return -EFAULT; 5271 return 0; 5272 } 5273 5274 static int sctp_getsockopt_active_key(struct sock *sk, int len, 5275 char __user *optval, int __user *optlen) 5276 { 5277 struct sctp_authkeyid val; 5278 struct sctp_association *asoc; 5279 5280 if (!sctp_auth_enable) 5281 return -EACCES; 5282 5283 if (len < sizeof(struct sctp_authkeyid)) 5284 return -EINVAL; 5285 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 5286 return -EFAULT; 5287 5288 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 5289 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 5290 return -EINVAL; 5291 5292 if (asoc) 5293 val.scact_keynumber = asoc->active_key_id; 5294 else 5295 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id; 5296 5297 len = sizeof(struct sctp_authkeyid); 5298 if (put_user(len, optlen)) 5299 return -EFAULT; 5300 if (copy_to_user(optval, &val, len)) 5301 return -EFAULT; 5302 5303 return 0; 5304 } 5305 5306 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 5307 char __user *optval, int __user *optlen) 5308 { 5309 struct sctp_authchunks __user *p = (void __user *)optval; 5310 struct sctp_authchunks val; 5311 struct sctp_association *asoc; 5312 struct sctp_chunks_param *ch; 5313 u32 num_chunks = 0; 5314 char __user *to; 5315 5316 if (!sctp_auth_enable) 5317 return -EACCES; 5318 5319 if (len < sizeof(struct sctp_authchunks)) 5320 return -EINVAL; 5321 5322 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5323 return -EFAULT; 5324 5325 to = p->gauth_chunks; 5326 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5327 if (!asoc) 5328 return -EINVAL; 5329 5330 ch = asoc->peer.peer_chunks; 5331 if (!ch) 5332 goto num; 5333 5334 /* See if the user provided enough room for all the data */ 5335 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5336 if (len < num_chunks) 5337 return -EINVAL; 5338 5339 if (copy_to_user(to, ch->chunks, num_chunks)) 5340 return -EFAULT; 5341 num: 5342 len = sizeof(struct sctp_authchunks) + num_chunks; 5343 if (put_user(len, optlen)) return -EFAULT; 5344 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5345 return -EFAULT; 5346 return 0; 5347 } 5348 5349 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 5350 char __user *optval, int __user *optlen) 5351 { 5352 struct sctp_authchunks __user *p = (void __user *)optval; 5353 struct sctp_authchunks val; 5354 struct sctp_association *asoc; 5355 struct sctp_chunks_param *ch; 5356 u32 num_chunks = 0; 5357 char __user *to; 5358 5359 if (!sctp_auth_enable) 5360 return -EACCES; 5361 5362 if (len < sizeof(struct sctp_authchunks)) 5363 return -EINVAL; 5364 5365 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5366 return -EFAULT; 5367 5368 to = p->gauth_chunks; 5369 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5370 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 5371 return -EINVAL; 5372 5373 if (asoc) 5374 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks; 5375 else 5376 ch = sctp_sk(sk)->ep->auth_chunk_list; 5377 5378 if (!ch) 5379 goto num; 5380 5381 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5382 if (len < sizeof(struct sctp_authchunks) + num_chunks) 5383 return -EINVAL; 5384 5385 if (copy_to_user(to, ch->chunks, num_chunks)) 5386 return -EFAULT; 5387 num: 5388 len = sizeof(struct sctp_authchunks) + num_chunks; 5389 if (put_user(len, optlen)) 5390 return -EFAULT; 5391 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5392 return -EFAULT; 5393 5394 return 0; 5395 } 5396 5397 /* 5398 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 5399 * This option gets the current number of associations that are attached 5400 * to a one-to-many style socket. The option value is an uint32_t. 5401 */ 5402 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 5403 char __user *optval, int __user *optlen) 5404 { 5405 struct sctp_sock *sp = sctp_sk(sk); 5406 struct sctp_association *asoc; 5407 u32 val = 0; 5408 5409 if (sctp_style(sk, TCP)) 5410 return -EOPNOTSUPP; 5411 5412 if (len < sizeof(u32)) 5413 return -EINVAL; 5414 5415 len = sizeof(u32); 5416 5417 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5418 val++; 5419 } 5420 5421 if (put_user(len, optlen)) 5422 return -EFAULT; 5423 if (copy_to_user(optval, &val, len)) 5424 return -EFAULT; 5425 5426 return 0; 5427 } 5428 5429 /* 5430 * 8.1.23 SCTP_AUTO_ASCONF 5431 * See the corresponding setsockopt entry as description 5432 */ 5433 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 5434 char __user *optval, int __user *optlen) 5435 { 5436 int val = 0; 5437 5438 if (len < sizeof(int)) 5439 return -EINVAL; 5440 5441 len = sizeof(int); 5442 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 5443 val = 1; 5444 if (put_user(len, optlen)) 5445 return -EFAULT; 5446 if (copy_to_user(optval, &val, len)) 5447 return -EFAULT; 5448 return 0; 5449 } 5450 5451 /* 5452 * 8.2.6. Get the Current Identifiers of Associations 5453 * (SCTP_GET_ASSOC_ID_LIST) 5454 * 5455 * This option gets the current list of SCTP association identifiers of 5456 * the SCTP associations handled by a one-to-many style socket. 5457 */ 5458 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 5459 char __user *optval, int __user *optlen) 5460 { 5461 struct sctp_sock *sp = sctp_sk(sk); 5462 struct sctp_association *asoc; 5463 struct sctp_assoc_ids *ids; 5464 u32 num = 0; 5465 5466 if (sctp_style(sk, TCP)) 5467 return -EOPNOTSUPP; 5468 5469 if (len < sizeof(struct sctp_assoc_ids)) 5470 return -EINVAL; 5471 5472 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5473 num++; 5474 } 5475 5476 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 5477 return -EINVAL; 5478 5479 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 5480 5481 ids = kmalloc(len, GFP_KERNEL); 5482 if (unlikely(!ids)) 5483 return -ENOMEM; 5484 5485 ids->gaids_number_of_ids = num; 5486 num = 0; 5487 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5488 ids->gaids_assoc_id[num++] = asoc->assoc_id; 5489 } 5490 5491 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 5492 kfree(ids); 5493 return -EFAULT; 5494 } 5495 5496 kfree(ids); 5497 return 0; 5498 } 5499 5500 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname, 5501 char __user *optval, int __user *optlen) 5502 { 5503 int retval = 0; 5504 int len; 5505 5506 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n", 5507 sk, optname); 5508 5509 /* I can hardly begin to describe how wrong this is. This is 5510 * so broken as to be worse than useless. The API draft 5511 * REALLY is NOT helpful here... I am not convinced that the 5512 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 5513 * are at all well-founded. 5514 */ 5515 if (level != SOL_SCTP) { 5516 struct sctp_af *af = sctp_sk(sk)->pf->af; 5517 5518 retval = af->getsockopt(sk, level, optname, optval, optlen); 5519 return retval; 5520 } 5521 5522 if (get_user(len, optlen)) 5523 return -EFAULT; 5524 5525 sctp_lock_sock(sk); 5526 5527 switch (optname) { 5528 case SCTP_STATUS: 5529 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 5530 break; 5531 case SCTP_DISABLE_FRAGMENTS: 5532 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 5533 optlen); 5534 break; 5535 case SCTP_EVENTS: 5536 retval = sctp_getsockopt_events(sk, len, optval, optlen); 5537 break; 5538 case SCTP_AUTOCLOSE: 5539 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 5540 break; 5541 case SCTP_SOCKOPT_PEELOFF: 5542 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 5543 break; 5544 case SCTP_PEER_ADDR_PARAMS: 5545 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 5546 optlen); 5547 break; 5548 case SCTP_DELAYED_SACK: 5549 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 5550 optlen); 5551 break; 5552 case SCTP_INITMSG: 5553 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 5554 break; 5555 case SCTP_GET_PEER_ADDRS: 5556 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 5557 optlen); 5558 break; 5559 case SCTP_GET_LOCAL_ADDRS: 5560 retval = sctp_getsockopt_local_addrs(sk, len, optval, 5561 optlen); 5562 break; 5563 case SCTP_SOCKOPT_CONNECTX3: 5564 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 5565 break; 5566 case SCTP_DEFAULT_SEND_PARAM: 5567 retval = sctp_getsockopt_default_send_param(sk, len, 5568 optval, optlen); 5569 break; 5570 case SCTP_PRIMARY_ADDR: 5571 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 5572 break; 5573 case SCTP_NODELAY: 5574 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 5575 break; 5576 case SCTP_RTOINFO: 5577 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 5578 break; 5579 case SCTP_ASSOCINFO: 5580 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 5581 break; 5582 case SCTP_I_WANT_MAPPED_V4_ADDR: 5583 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 5584 break; 5585 case SCTP_MAXSEG: 5586 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 5587 break; 5588 case SCTP_GET_PEER_ADDR_INFO: 5589 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 5590 optlen); 5591 break; 5592 case SCTP_ADAPTATION_LAYER: 5593 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 5594 optlen); 5595 break; 5596 case SCTP_CONTEXT: 5597 retval = sctp_getsockopt_context(sk, len, optval, optlen); 5598 break; 5599 case SCTP_FRAGMENT_INTERLEAVE: 5600 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 5601 optlen); 5602 break; 5603 case SCTP_PARTIAL_DELIVERY_POINT: 5604 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 5605 optlen); 5606 break; 5607 case SCTP_MAX_BURST: 5608 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 5609 break; 5610 case SCTP_AUTH_KEY: 5611 case SCTP_AUTH_CHUNK: 5612 case SCTP_AUTH_DELETE_KEY: 5613 retval = -EOPNOTSUPP; 5614 break; 5615 case SCTP_HMAC_IDENT: 5616 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 5617 break; 5618 case SCTP_AUTH_ACTIVE_KEY: 5619 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 5620 break; 5621 case SCTP_PEER_AUTH_CHUNKS: 5622 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 5623 optlen); 5624 break; 5625 case SCTP_LOCAL_AUTH_CHUNKS: 5626 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 5627 optlen); 5628 break; 5629 case SCTP_GET_ASSOC_NUMBER: 5630 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 5631 break; 5632 case SCTP_GET_ASSOC_ID_LIST: 5633 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 5634 break; 5635 case SCTP_AUTO_ASCONF: 5636 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 5637 break; 5638 default: 5639 retval = -ENOPROTOOPT; 5640 break; 5641 } 5642 5643 sctp_release_sock(sk); 5644 return retval; 5645 } 5646 5647 static void sctp_hash(struct sock *sk) 5648 { 5649 /* STUB */ 5650 } 5651 5652 static void sctp_unhash(struct sock *sk) 5653 { 5654 /* STUB */ 5655 } 5656 5657 /* Check if port is acceptable. Possibly find first available port. 5658 * 5659 * The port hash table (contained in the 'global' SCTP protocol storage 5660 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 5661 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 5662 * list (the list number is the port number hashed out, so as you 5663 * would expect from a hash function, all the ports in a given list have 5664 * such a number that hashes out to the same list number; you were 5665 * expecting that, right?); so each list has a set of ports, with a 5666 * link to the socket (struct sock) that uses it, the port number and 5667 * a fastreuse flag (FIXME: NPI ipg). 5668 */ 5669 static struct sctp_bind_bucket *sctp_bucket_create( 5670 struct sctp_bind_hashbucket *head, unsigned short snum); 5671 5672 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 5673 { 5674 struct sctp_bind_hashbucket *head; /* hash list */ 5675 struct sctp_bind_bucket *pp; /* hash list port iterator */ 5676 struct hlist_node *node; 5677 unsigned short snum; 5678 int ret; 5679 5680 snum = ntohs(addr->v4.sin_port); 5681 5682 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum); 5683 sctp_local_bh_disable(); 5684 5685 if (snum == 0) { 5686 /* Search for an available port. */ 5687 int low, high, remaining, index; 5688 unsigned int rover; 5689 5690 inet_get_local_port_range(&low, &high); 5691 remaining = (high - low) + 1; 5692 rover = net_random() % remaining + low; 5693 5694 do { 5695 rover++; 5696 if ((rover < low) || (rover > high)) 5697 rover = low; 5698 if (inet_is_reserved_local_port(rover)) 5699 continue; 5700 index = sctp_phashfn(rover); 5701 head = &sctp_port_hashtable[index]; 5702 sctp_spin_lock(&head->lock); 5703 sctp_for_each_hentry(pp, node, &head->chain) 5704 if (pp->port == rover) 5705 goto next; 5706 break; 5707 next: 5708 sctp_spin_unlock(&head->lock); 5709 } while (--remaining > 0); 5710 5711 /* Exhausted local port range during search? */ 5712 ret = 1; 5713 if (remaining <= 0) 5714 goto fail; 5715 5716 /* OK, here is the one we will use. HEAD (the port 5717 * hash table list entry) is non-NULL and we hold it's 5718 * mutex. 5719 */ 5720 snum = rover; 5721 } else { 5722 /* We are given an specific port number; we verify 5723 * that it is not being used. If it is used, we will 5724 * exahust the search in the hash list corresponding 5725 * to the port number (snum) - we detect that with the 5726 * port iterator, pp being NULL. 5727 */ 5728 head = &sctp_port_hashtable[sctp_phashfn(snum)]; 5729 sctp_spin_lock(&head->lock); 5730 sctp_for_each_hentry(pp, node, &head->chain) { 5731 if (pp->port == snum) 5732 goto pp_found; 5733 } 5734 } 5735 pp = NULL; 5736 goto pp_not_found; 5737 pp_found: 5738 if (!hlist_empty(&pp->owner)) { 5739 /* We had a port hash table hit - there is an 5740 * available port (pp != NULL) and it is being 5741 * used by other socket (pp->owner not empty); that other 5742 * socket is going to be sk2. 5743 */ 5744 int reuse = sk->sk_reuse; 5745 struct sock *sk2; 5746 5747 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n"); 5748 if (pp->fastreuse && sk->sk_reuse && 5749 sk->sk_state != SCTP_SS_LISTENING) 5750 goto success; 5751 5752 /* Run through the list of sockets bound to the port 5753 * (pp->port) [via the pointers bind_next and 5754 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 5755 * we get the endpoint they describe and run through 5756 * the endpoint's list of IP (v4 or v6) addresses, 5757 * comparing each of the addresses with the address of 5758 * the socket sk. If we find a match, then that means 5759 * that this port/socket (sk) combination are already 5760 * in an endpoint. 5761 */ 5762 sk_for_each_bound(sk2, node, &pp->owner) { 5763 struct sctp_endpoint *ep2; 5764 ep2 = sctp_sk(sk2)->ep; 5765 5766 if (sk == sk2 || 5767 (reuse && sk2->sk_reuse && 5768 sk2->sk_state != SCTP_SS_LISTENING)) 5769 continue; 5770 5771 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 5772 sctp_sk(sk2), sctp_sk(sk))) { 5773 ret = (long)sk2; 5774 goto fail_unlock; 5775 } 5776 } 5777 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n"); 5778 } 5779 pp_not_found: 5780 /* If there was a hash table miss, create a new port. */ 5781 ret = 1; 5782 if (!pp && !(pp = sctp_bucket_create(head, snum))) 5783 goto fail_unlock; 5784 5785 /* In either case (hit or miss), make sure fastreuse is 1 only 5786 * if sk->sk_reuse is too (that is, if the caller requested 5787 * SO_REUSEADDR on this socket -sk-). 5788 */ 5789 if (hlist_empty(&pp->owner)) { 5790 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 5791 pp->fastreuse = 1; 5792 else 5793 pp->fastreuse = 0; 5794 } else if (pp->fastreuse && 5795 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 5796 pp->fastreuse = 0; 5797 5798 /* We are set, so fill up all the data in the hash table 5799 * entry, tie the socket list information with the rest of the 5800 * sockets FIXME: Blurry, NPI (ipg). 5801 */ 5802 success: 5803 if (!sctp_sk(sk)->bind_hash) { 5804 inet_sk(sk)->inet_num = snum; 5805 sk_add_bind_node(sk, &pp->owner); 5806 sctp_sk(sk)->bind_hash = pp; 5807 } 5808 ret = 0; 5809 5810 fail_unlock: 5811 sctp_spin_unlock(&head->lock); 5812 5813 fail: 5814 sctp_local_bh_enable(); 5815 return ret; 5816 } 5817 5818 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 5819 * port is requested. 5820 */ 5821 static int sctp_get_port(struct sock *sk, unsigned short snum) 5822 { 5823 long ret; 5824 union sctp_addr addr; 5825 struct sctp_af *af = sctp_sk(sk)->pf->af; 5826 5827 /* Set up a dummy address struct from the sk. */ 5828 af->from_sk(&addr, sk); 5829 addr.v4.sin_port = htons(snum); 5830 5831 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 5832 ret = sctp_get_port_local(sk, &addr); 5833 5834 return ret ? 1 : 0; 5835 } 5836 5837 /* 5838 * Move a socket to LISTENING state. 5839 */ 5840 SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog) 5841 { 5842 struct sctp_sock *sp = sctp_sk(sk); 5843 struct sctp_endpoint *ep = sp->ep; 5844 struct crypto_hash *tfm = NULL; 5845 5846 /* Allocate HMAC for generating cookie. */ 5847 if (!sctp_sk(sk)->hmac && sctp_hmac_alg) { 5848 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC); 5849 if (IS_ERR(tfm)) { 5850 if (net_ratelimit()) { 5851 pr_info("failed to load transform for %s: %ld\n", 5852 sctp_hmac_alg, PTR_ERR(tfm)); 5853 } 5854 return -ENOSYS; 5855 } 5856 sctp_sk(sk)->hmac = tfm; 5857 } 5858 5859 /* 5860 * If a bind() or sctp_bindx() is not called prior to a listen() 5861 * call that allows new associations to be accepted, the system 5862 * picks an ephemeral port and will choose an address set equivalent 5863 * to binding with a wildcard address. 5864 * 5865 * This is not currently spelled out in the SCTP sockets 5866 * extensions draft, but follows the practice as seen in TCP 5867 * sockets. 5868 * 5869 */ 5870 sk->sk_state = SCTP_SS_LISTENING; 5871 if (!ep->base.bind_addr.port) { 5872 if (sctp_autobind(sk)) 5873 return -EAGAIN; 5874 } else { 5875 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 5876 sk->sk_state = SCTP_SS_CLOSED; 5877 return -EADDRINUSE; 5878 } 5879 } 5880 5881 sk->sk_max_ack_backlog = backlog; 5882 sctp_hash_endpoint(ep); 5883 return 0; 5884 } 5885 5886 /* 5887 * 4.1.3 / 5.1.3 listen() 5888 * 5889 * By default, new associations are not accepted for UDP style sockets. 5890 * An application uses listen() to mark a socket as being able to 5891 * accept new associations. 5892 * 5893 * On TCP style sockets, applications use listen() to ready the SCTP 5894 * endpoint for accepting inbound associations. 5895 * 5896 * On both types of endpoints a backlog of '0' disables listening. 5897 * 5898 * Move a socket to LISTENING state. 5899 */ 5900 int sctp_inet_listen(struct socket *sock, int backlog) 5901 { 5902 struct sock *sk = sock->sk; 5903 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5904 int err = -EINVAL; 5905 5906 if (unlikely(backlog < 0)) 5907 return err; 5908 5909 sctp_lock_sock(sk); 5910 5911 /* Peeled-off sockets are not allowed to listen(). */ 5912 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 5913 goto out; 5914 5915 if (sock->state != SS_UNCONNECTED) 5916 goto out; 5917 5918 /* If backlog is zero, disable listening. */ 5919 if (!backlog) { 5920 if (sctp_sstate(sk, CLOSED)) 5921 goto out; 5922 5923 err = 0; 5924 sctp_unhash_endpoint(ep); 5925 sk->sk_state = SCTP_SS_CLOSED; 5926 if (sk->sk_reuse) 5927 sctp_sk(sk)->bind_hash->fastreuse = 1; 5928 goto out; 5929 } 5930 5931 /* If we are already listening, just update the backlog */ 5932 if (sctp_sstate(sk, LISTENING)) 5933 sk->sk_max_ack_backlog = backlog; 5934 else { 5935 err = sctp_listen_start(sk, backlog); 5936 if (err) 5937 goto out; 5938 } 5939 5940 err = 0; 5941 out: 5942 sctp_release_sock(sk); 5943 return err; 5944 } 5945 5946 /* 5947 * This function is done by modeling the current datagram_poll() and the 5948 * tcp_poll(). Note that, based on these implementations, we don't 5949 * lock the socket in this function, even though it seems that, 5950 * ideally, locking or some other mechanisms can be used to ensure 5951 * the integrity of the counters (sndbuf and wmem_alloc) used 5952 * in this place. We assume that we don't need locks either until proven 5953 * otherwise. 5954 * 5955 * Another thing to note is that we include the Async I/O support 5956 * here, again, by modeling the current TCP/UDP code. We don't have 5957 * a good way to test with it yet. 5958 */ 5959 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 5960 { 5961 struct sock *sk = sock->sk; 5962 struct sctp_sock *sp = sctp_sk(sk); 5963 unsigned int mask; 5964 5965 poll_wait(file, sk_sleep(sk), wait); 5966 5967 /* A TCP-style listening socket becomes readable when the accept queue 5968 * is not empty. 5969 */ 5970 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 5971 return (!list_empty(&sp->ep->asocs)) ? 5972 (POLLIN | POLLRDNORM) : 0; 5973 5974 mask = 0; 5975 5976 /* Is there any exceptional events? */ 5977 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 5978 mask |= POLLERR; 5979 if (sk->sk_shutdown & RCV_SHUTDOWN) 5980 mask |= POLLRDHUP | POLLIN | POLLRDNORM; 5981 if (sk->sk_shutdown == SHUTDOWN_MASK) 5982 mask |= POLLHUP; 5983 5984 /* Is it readable? Reconsider this code with TCP-style support. */ 5985 if (!skb_queue_empty(&sk->sk_receive_queue)) 5986 mask |= POLLIN | POLLRDNORM; 5987 5988 /* The association is either gone or not ready. */ 5989 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 5990 return mask; 5991 5992 /* Is it writable? */ 5993 if (sctp_writeable(sk)) { 5994 mask |= POLLOUT | POLLWRNORM; 5995 } else { 5996 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 5997 /* 5998 * Since the socket is not locked, the buffer 5999 * might be made available after the writeable check and 6000 * before the bit is set. This could cause a lost I/O 6001 * signal. tcp_poll() has a race breaker for this race 6002 * condition. Based on their implementation, we put 6003 * in the following code to cover it as well. 6004 */ 6005 if (sctp_writeable(sk)) 6006 mask |= POLLOUT | POLLWRNORM; 6007 } 6008 return mask; 6009 } 6010 6011 /******************************************************************** 6012 * 2nd Level Abstractions 6013 ********************************************************************/ 6014 6015 static struct sctp_bind_bucket *sctp_bucket_create( 6016 struct sctp_bind_hashbucket *head, unsigned short snum) 6017 { 6018 struct sctp_bind_bucket *pp; 6019 6020 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 6021 if (pp) { 6022 SCTP_DBG_OBJCNT_INC(bind_bucket); 6023 pp->port = snum; 6024 pp->fastreuse = 0; 6025 INIT_HLIST_HEAD(&pp->owner); 6026 hlist_add_head(&pp->node, &head->chain); 6027 } 6028 return pp; 6029 } 6030 6031 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 6032 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 6033 { 6034 if (pp && hlist_empty(&pp->owner)) { 6035 __hlist_del(&pp->node); 6036 kmem_cache_free(sctp_bucket_cachep, pp); 6037 SCTP_DBG_OBJCNT_DEC(bind_bucket); 6038 } 6039 } 6040 6041 /* Release this socket's reference to a local port. */ 6042 static inline void __sctp_put_port(struct sock *sk) 6043 { 6044 struct sctp_bind_hashbucket *head = 6045 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->inet_num)]; 6046 struct sctp_bind_bucket *pp; 6047 6048 sctp_spin_lock(&head->lock); 6049 pp = sctp_sk(sk)->bind_hash; 6050 __sk_del_bind_node(sk); 6051 sctp_sk(sk)->bind_hash = NULL; 6052 inet_sk(sk)->inet_num = 0; 6053 sctp_bucket_destroy(pp); 6054 sctp_spin_unlock(&head->lock); 6055 } 6056 6057 void sctp_put_port(struct sock *sk) 6058 { 6059 sctp_local_bh_disable(); 6060 __sctp_put_port(sk); 6061 sctp_local_bh_enable(); 6062 } 6063 6064 /* 6065 * The system picks an ephemeral port and choose an address set equivalent 6066 * to binding with a wildcard address. 6067 * One of those addresses will be the primary address for the association. 6068 * This automatically enables the multihoming capability of SCTP. 6069 */ 6070 static int sctp_autobind(struct sock *sk) 6071 { 6072 union sctp_addr autoaddr; 6073 struct sctp_af *af; 6074 __be16 port; 6075 6076 /* Initialize a local sockaddr structure to INADDR_ANY. */ 6077 af = sctp_sk(sk)->pf->af; 6078 6079 port = htons(inet_sk(sk)->inet_num); 6080 af->inaddr_any(&autoaddr, port); 6081 6082 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 6083 } 6084 6085 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 6086 * 6087 * From RFC 2292 6088 * 4.2 The cmsghdr Structure * 6089 * 6090 * When ancillary data is sent or received, any number of ancillary data 6091 * objects can be specified by the msg_control and msg_controllen members of 6092 * the msghdr structure, because each object is preceded by 6093 * a cmsghdr structure defining the object's length (the cmsg_len member). 6094 * Historically Berkeley-derived implementations have passed only one object 6095 * at a time, but this API allows multiple objects to be 6096 * passed in a single call to sendmsg() or recvmsg(). The following example 6097 * shows two ancillary data objects in a control buffer. 6098 * 6099 * |<--------------------------- msg_controllen -------------------------->| 6100 * | | 6101 * 6102 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 6103 * 6104 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 6105 * | | | 6106 * 6107 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 6108 * 6109 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 6110 * | | | | | 6111 * 6112 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6113 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 6114 * 6115 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 6116 * 6117 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6118 * ^ 6119 * | 6120 * 6121 * msg_control 6122 * points here 6123 */ 6124 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg, 6125 sctp_cmsgs_t *cmsgs) 6126 { 6127 struct cmsghdr *cmsg; 6128 struct msghdr *my_msg = (struct msghdr *)msg; 6129 6130 for (cmsg = CMSG_FIRSTHDR(msg); 6131 cmsg != NULL; 6132 cmsg = CMSG_NXTHDR(my_msg, cmsg)) { 6133 if (!CMSG_OK(my_msg, cmsg)) 6134 return -EINVAL; 6135 6136 /* Should we parse this header or ignore? */ 6137 if (cmsg->cmsg_level != IPPROTO_SCTP) 6138 continue; 6139 6140 /* Strictly check lengths following example in SCM code. */ 6141 switch (cmsg->cmsg_type) { 6142 case SCTP_INIT: 6143 /* SCTP Socket API Extension 6144 * 5.2.1 SCTP Initiation Structure (SCTP_INIT) 6145 * 6146 * This cmsghdr structure provides information for 6147 * initializing new SCTP associations with sendmsg(). 6148 * The SCTP_INITMSG socket option uses this same data 6149 * structure. This structure is not used for 6150 * recvmsg(). 6151 * 6152 * cmsg_level cmsg_type cmsg_data[] 6153 * ------------ ------------ ---------------------- 6154 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 6155 */ 6156 if (cmsg->cmsg_len != 6157 CMSG_LEN(sizeof(struct sctp_initmsg))) 6158 return -EINVAL; 6159 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); 6160 break; 6161 6162 case SCTP_SNDRCV: 6163 /* SCTP Socket API Extension 6164 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) 6165 * 6166 * This cmsghdr structure specifies SCTP options for 6167 * sendmsg() and describes SCTP header information 6168 * about a received message through recvmsg(). 6169 * 6170 * cmsg_level cmsg_type cmsg_data[] 6171 * ------------ ------------ ---------------------- 6172 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 6173 */ 6174 if (cmsg->cmsg_len != 6175 CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 6176 return -EINVAL; 6177 6178 cmsgs->info = 6179 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); 6180 6181 /* Minimally, validate the sinfo_flags. */ 6182 if (cmsgs->info->sinfo_flags & 6183 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 6184 SCTP_ABORT | SCTP_EOF)) 6185 return -EINVAL; 6186 break; 6187 6188 default: 6189 return -EINVAL; 6190 } 6191 } 6192 return 0; 6193 } 6194 6195 /* 6196 * Wait for a packet.. 6197 * Note: This function is the same function as in core/datagram.c 6198 * with a few modifications to make lksctp work. 6199 */ 6200 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p) 6201 { 6202 int error; 6203 DEFINE_WAIT(wait); 6204 6205 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 6206 6207 /* Socket errors? */ 6208 error = sock_error(sk); 6209 if (error) 6210 goto out; 6211 6212 if (!skb_queue_empty(&sk->sk_receive_queue)) 6213 goto ready; 6214 6215 /* Socket shut down? */ 6216 if (sk->sk_shutdown & RCV_SHUTDOWN) 6217 goto out; 6218 6219 /* Sequenced packets can come disconnected. If so we report the 6220 * problem. 6221 */ 6222 error = -ENOTCONN; 6223 6224 /* Is there a good reason to think that we may receive some data? */ 6225 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 6226 goto out; 6227 6228 /* Handle signals. */ 6229 if (signal_pending(current)) 6230 goto interrupted; 6231 6232 /* Let another process have a go. Since we are going to sleep 6233 * anyway. Note: This may cause odd behaviors if the message 6234 * does not fit in the user's buffer, but this seems to be the 6235 * only way to honor MSG_DONTWAIT realistically. 6236 */ 6237 sctp_release_sock(sk); 6238 *timeo_p = schedule_timeout(*timeo_p); 6239 sctp_lock_sock(sk); 6240 6241 ready: 6242 finish_wait(sk_sleep(sk), &wait); 6243 return 0; 6244 6245 interrupted: 6246 error = sock_intr_errno(*timeo_p); 6247 6248 out: 6249 finish_wait(sk_sleep(sk), &wait); 6250 *err = error; 6251 return error; 6252 } 6253 6254 /* Receive a datagram. 6255 * Note: This is pretty much the same routine as in core/datagram.c 6256 * with a few changes to make lksctp work. 6257 */ 6258 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 6259 int noblock, int *err) 6260 { 6261 int error; 6262 struct sk_buff *skb; 6263 long timeo; 6264 6265 timeo = sock_rcvtimeo(sk, noblock); 6266 6267 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n", 6268 timeo, MAX_SCHEDULE_TIMEOUT); 6269 6270 do { 6271 /* Again only user level code calls this function, 6272 * so nothing interrupt level 6273 * will suddenly eat the receive_queue. 6274 * 6275 * Look at current nfs client by the way... 6276 * However, this function was correct in any case. 8) 6277 */ 6278 if (flags & MSG_PEEK) { 6279 spin_lock_bh(&sk->sk_receive_queue.lock); 6280 skb = skb_peek(&sk->sk_receive_queue); 6281 if (skb) 6282 atomic_inc(&skb->users); 6283 spin_unlock_bh(&sk->sk_receive_queue.lock); 6284 } else { 6285 skb = skb_dequeue(&sk->sk_receive_queue); 6286 } 6287 6288 if (skb) 6289 return skb; 6290 6291 /* Caller is allowed not to check sk->sk_err before calling. */ 6292 error = sock_error(sk); 6293 if (error) 6294 goto no_packet; 6295 6296 if (sk->sk_shutdown & RCV_SHUTDOWN) 6297 break; 6298 6299 /* User doesn't want to wait. */ 6300 error = -EAGAIN; 6301 if (!timeo) 6302 goto no_packet; 6303 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 6304 6305 return NULL; 6306 6307 no_packet: 6308 *err = error; 6309 return NULL; 6310 } 6311 6312 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 6313 static void __sctp_write_space(struct sctp_association *asoc) 6314 { 6315 struct sock *sk = asoc->base.sk; 6316 struct socket *sock = sk->sk_socket; 6317 6318 if ((sctp_wspace(asoc) > 0) && sock) { 6319 if (waitqueue_active(&asoc->wait)) 6320 wake_up_interruptible(&asoc->wait); 6321 6322 if (sctp_writeable(sk)) { 6323 wait_queue_head_t *wq = sk_sleep(sk); 6324 6325 if (wq && waitqueue_active(wq)) 6326 wake_up_interruptible(wq); 6327 6328 /* Note that we try to include the Async I/O support 6329 * here by modeling from the current TCP/UDP code. 6330 * We have not tested with it yet. 6331 */ 6332 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 6333 sock_wake_async(sock, 6334 SOCK_WAKE_SPACE, POLL_OUT); 6335 } 6336 } 6337 } 6338 6339 /* Do accounting for the sndbuf space. 6340 * Decrement the used sndbuf space of the corresponding association by the 6341 * data size which was just transmitted(freed). 6342 */ 6343 static void sctp_wfree(struct sk_buff *skb) 6344 { 6345 struct sctp_association *asoc; 6346 struct sctp_chunk *chunk; 6347 struct sock *sk; 6348 6349 /* Get the saved chunk pointer. */ 6350 chunk = *((struct sctp_chunk **)(skb->cb)); 6351 asoc = chunk->asoc; 6352 sk = asoc->base.sk; 6353 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 6354 sizeof(struct sk_buff) + 6355 sizeof(struct sctp_chunk); 6356 6357 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 6358 6359 /* 6360 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 6361 */ 6362 sk->sk_wmem_queued -= skb->truesize; 6363 sk_mem_uncharge(sk, skb->truesize); 6364 6365 sock_wfree(skb); 6366 __sctp_write_space(asoc); 6367 6368 sctp_association_put(asoc); 6369 } 6370 6371 /* Do accounting for the receive space on the socket. 6372 * Accounting for the association is done in ulpevent.c 6373 * We set this as a destructor for the cloned data skbs so that 6374 * accounting is done at the correct time. 6375 */ 6376 void sctp_sock_rfree(struct sk_buff *skb) 6377 { 6378 struct sock *sk = skb->sk; 6379 struct sctp_ulpevent *event = sctp_skb2event(skb); 6380 6381 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 6382 6383 /* 6384 * Mimic the behavior of sock_rfree 6385 */ 6386 sk_mem_uncharge(sk, event->rmem_len); 6387 } 6388 6389 6390 /* Helper function to wait for space in the sndbuf. */ 6391 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 6392 size_t msg_len) 6393 { 6394 struct sock *sk = asoc->base.sk; 6395 int err = 0; 6396 long current_timeo = *timeo_p; 6397 DEFINE_WAIT(wait); 6398 6399 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n", 6400 asoc, (long)(*timeo_p), msg_len); 6401 6402 /* Increment the association's refcnt. */ 6403 sctp_association_hold(asoc); 6404 6405 /* Wait on the association specific sndbuf space. */ 6406 for (;;) { 6407 prepare_to_wait_exclusive(&asoc->wait, &wait, 6408 TASK_INTERRUPTIBLE); 6409 if (!*timeo_p) 6410 goto do_nonblock; 6411 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6412 asoc->base.dead) 6413 goto do_error; 6414 if (signal_pending(current)) 6415 goto do_interrupted; 6416 if (msg_len <= sctp_wspace(asoc)) 6417 break; 6418 6419 /* Let another process have a go. Since we are going 6420 * to sleep anyway. 6421 */ 6422 sctp_release_sock(sk); 6423 current_timeo = schedule_timeout(current_timeo); 6424 BUG_ON(sk != asoc->base.sk); 6425 sctp_lock_sock(sk); 6426 6427 *timeo_p = current_timeo; 6428 } 6429 6430 out: 6431 finish_wait(&asoc->wait, &wait); 6432 6433 /* Release the association's refcnt. */ 6434 sctp_association_put(asoc); 6435 6436 return err; 6437 6438 do_error: 6439 err = -EPIPE; 6440 goto out; 6441 6442 do_interrupted: 6443 err = sock_intr_errno(*timeo_p); 6444 goto out; 6445 6446 do_nonblock: 6447 err = -EAGAIN; 6448 goto out; 6449 } 6450 6451 void sctp_data_ready(struct sock *sk, int len) 6452 { 6453 struct socket_wq *wq; 6454 6455 rcu_read_lock(); 6456 wq = rcu_dereference(sk->sk_wq); 6457 if (wq_has_sleeper(wq)) 6458 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | 6459 POLLRDNORM | POLLRDBAND); 6460 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 6461 rcu_read_unlock(); 6462 } 6463 6464 /* If socket sndbuf has changed, wake up all per association waiters. */ 6465 void sctp_write_space(struct sock *sk) 6466 { 6467 struct sctp_association *asoc; 6468 6469 /* Wake up the tasks in each wait queue. */ 6470 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 6471 __sctp_write_space(asoc); 6472 } 6473 } 6474 6475 /* Is there any sndbuf space available on the socket? 6476 * 6477 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 6478 * associations on the same socket. For a UDP-style socket with 6479 * multiple associations, it is possible for it to be "unwriteable" 6480 * prematurely. I assume that this is acceptable because 6481 * a premature "unwriteable" is better than an accidental "writeable" which 6482 * would cause an unwanted block under certain circumstances. For the 1-1 6483 * UDP-style sockets or TCP-style sockets, this code should work. 6484 * - Daisy 6485 */ 6486 static int sctp_writeable(struct sock *sk) 6487 { 6488 int amt = 0; 6489 6490 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 6491 if (amt < 0) 6492 amt = 0; 6493 return amt; 6494 } 6495 6496 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 6497 * returns immediately with EINPROGRESS. 6498 */ 6499 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 6500 { 6501 struct sock *sk = asoc->base.sk; 6502 int err = 0; 6503 long current_timeo = *timeo_p; 6504 DEFINE_WAIT(wait); 6505 6506 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc, 6507 (long)(*timeo_p)); 6508 6509 /* Increment the association's refcnt. */ 6510 sctp_association_hold(asoc); 6511 6512 for (;;) { 6513 prepare_to_wait_exclusive(&asoc->wait, &wait, 6514 TASK_INTERRUPTIBLE); 6515 if (!*timeo_p) 6516 goto do_nonblock; 6517 if (sk->sk_shutdown & RCV_SHUTDOWN) 6518 break; 6519 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6520 asoc->base.dead) 6521 goto do_error; 6522 if (signal_pending(current)) 6523 goto do_interrupted; 6524 6525 if (sctp_state(asoc, ESTABLISHED)) 6526 break; 6527 6528 /* Let another process have a go. Since we are going 6529 * to sleep anyway. 6530 */ 6531 sctp_release_sock(sk); 6532 current_timeo = schedule_timeout(current_timeo); 6533 sctp_lock_sock(sk); 6534 6535 *timeo_p = current_timeo; 6536 } 6537 6538 out: 6539 finish_wait(&asoc->wait, &wait); 6540 6541 /* Release the association's refcnt. */ 6542 sctp_association_put(asoc); 6543 6544 return err; 6545 6546 do_error: 6547 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 6548 err = -ETIMEDOUT; 6549 else 6550 err = -ECONNREFUSED; 6551 goto out; 6552 6553 do_interrupted: 6554 err = sock_intr_errno(*timeo_p); 6555 goto out; 6556 6557 do_nonblock: 6558 err = -EINPROGRESS; 6559 goto out; 6560 } 6561 6562 static int sctp_wait_for_accept(struct sock *sk, long timeo) 6563 { 6564 struct sctp_endpoint *ep; 6565 int err = 0; 6566 DEFINE_WAIT(wait); 6567 6568 ep = sctp_sk(sk)->ep; 6569 6570 6571 for (;;) { 6572 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 6573 TASK_INTERRUPTIBLE); 6574 6575 if (list_empty(&ep->asocs)) { 6576 sctp_release_sock(sk); 6577 timeo = schedule_timeout(timeo); 6578 sctp_lock_sock(sk); 6579 } 6580 6581 err = -EINVAL; 6582 if (!sctp_sstate(sk, LISTENING)) 6583 break; 6584 6585 err = 0; 6586 if (!list_empty(&ep->asocs)) 6587 break; 6588 6589 err = sock_intr_errno(timeo); 6590 if (signal_pending(current)) 6591 break; 6592 6593 err = -EAGAIN; 6594 if (!timeo) 6595 break; 6596 } 6597 6598 finish_wait(sk_sleep(sk), &wait); 6599 6600 return err; 6601 } 6602 6603 static void sctp_wait_for_close(struct sock *sk, long timeout) 6604 { 6605 DEFINE_WAIT(wait); 6606 6607 do { 6608 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 6609 if (list_empty(&sctp_sk(sk)->ep->asocs)) 6610 break; 6611 sctp_release_sock(sk); 6612 timeout = schedule_timeout(timeout); 6613 sctp_lock_sock(sk); 6614 } while (!signal_pending(current) && timeout); 6615 6616 finish_wait(sk_sleep(sk), &wait); 6617 } 6618 6619 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 6620 { 6621 struct sk_buff *frag; 6622 6623 if (!skb->data_len) 6624 goto done; 6625 6626 /* Don't forget the fragments. */ 6627 skb_walk_frags(skb, frag) 6628 sctp_skb_set_owner_r_frag(frag, sk); 6629 6630 done: 6631 sctp_skb_set_owner_r(skb, sk); 6632 } 6633 6634 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 6635 struct sctp_association *asoc) 6636 { 6637 struct inet_sock *inet = inet_sk(sk); 6638 struct inet_sock *newinet; 6639 6640 newsk->sk_type = sk->sk_type; 6641 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 6642 newsk->sk_flags = sk->sk_flags; 6643 newsk->sk_no_check = sk->sk_no_check; 6644 newsk->sk_reuse = sk->sk_reuse; 6645 6646 newsk->sk_shutdown = sk->sk_shutdown; 6647 newsk->sk_destruct = inet_sock_destruct; 6648 newsk->sk_family = sk->sk_family; 6649 newsk->sk_protocol = IPPROTO_SCTP; 6650 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 6651 newsk->sk_sndbuf = sk->sk_sndbuf; 6652 newsk->sk_rcvbuf = sk->sk_rcvbuf; 6653 newsk->sk_lingertime = sk->sk_lingertime; 6654 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 6655 newsk->sk_sndtimeo = sk->sk_sndtimeo; 6656 6657 newinet = inet_sk(newsk); 6658 6659 /* Initialize sk's sport, dport, rcv_saddr and daddr for 6660 * getsockname() and getpeername() 6661 */ 6662 newinet->inet_sport = inet->inet_sport; 6663 newinet->inet_saddr = inet->inet_saddr; 6664 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 6665 newinet->inet_dport = htons(asoc->peer.port); 6666 newinet->pmtudisc = inet->pmtudisc; 6667 newinet->inet_id = asoc->next_tsn ^ jiffies; 6668 6669 newinet->uc_ttl = inet->uc_ttl; 6670 newinet->mc_loop = 1; 6671 newinet->mc_ttl = 1; 6672 newinet->mc_index = 0; 6673 newinet->mc_list = NULL; 6674 } 6675 6676 /* Populate the fields of the newsk from the oldsk and migrate the assoc 6677 * and its messages to the newsk. 6678 */ 6679 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 6680 struct sctp_association *assoc, 6681 sctp_socket_type_t type) 6682 { 6683 struct sctp_sock *oldsp = sctp_sk(oldsk); 6684 struct sctp_sock *newsp = sctp_sk(newsk); 6685 struct sctp_bind_bucket *pp; /* hash list port iterator */ 6686 struct sctp_endpoint *newep = newsp->ep; 6687 struct sk_buff *skb, *tmp; 6688 struct sctp_ulpevent *event; 6689 struct sctp_bind_hashbucket *head; 6690 struct list_head tmplist; 6691 6692 /* Migrate socket buffer sizes and all the socket level options to the 6693 * new socket. 6694 */ 6695 newsk->sk_sndbuf = oldsk->sk_sndbuf; 6696 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 6697 /* Brute force copy old sctp opt. */ 6698 if (oldsp->do_auto_asconf) { 6699 memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist)); 6700 inet_sk_copy_descendant(newsk, oldsk); 6701 memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist)); 6702 } else 6703 inet_sk_copy_descendant(newsk, oldsk); 6704 6705 /* Restore the ep value that was overwritten with the above structure 6706 * copy. 6707 */ 6708 newsp->ep = newep; 6709 newsp->hmac = NULL; 6710 6711 /* Hook this new socket in to the bind_hash list. */ 6712 head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->inet_num)]; 6713 sctp_local_bh_disable(); 6714 sctp_spin_lock(&head->lock); 6715 pp = sctp_sk(oldsk)->bind_hash; 6716 sk_add_bind_node(newsk, &pp->owner); 6717 sctp_sk(newsk)->bind_hash = pp; 6718 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 6719 sctp_spin_unlock(&head->lock); 6720 sctp_local_bh_enable(); 6721 6722 /* Copy the bind_addr list from the original endpoint to the new 6723 * endpoint so that we can handle restarts properly 6724 */ 6725 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 6726 &oldsp->ep->base.bind_addr, GFP_KERNEL); 6727 6728 /* Move any messages in the old socket's receive queue that are for the 6729 * peeled off association to the new socket's receive queue. 6730 */ 6731 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 6732 event = sctp_skb2event(skb); 6733 if (event->asoc == assoc) { 6734 __skb_unlink(skb, &oldsk->sk_receive_queue); 6735 __skb_queue_tail(&newsk->sk_receive_queue, skb); 6736 sctp_skb_set_owner_r_frag(skb, newsk); 6737 } 6738 } 6739 6740 /* Clean up any messages pending delivery due to partial 6741 * delivery. Three cases: 6742 * 1) No partial deliver; no work. 6743 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 6744 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 6745 */ 6746 skb_queue_head_init(&newsp->pd_lobby); 6747 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 6748 6749 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 6750 struct sk_buff_head *queue; 6751 6752 /* Decide which queue to move pd_lobby skbs to. */ 6753 if (assoc->ulpq.pd_mode) { 6754 queue = &newsp->pd_lobby; 6755 } else 6756 queue = &newsk->sk_receive_queue; 6757 6758 /* Walk through the pd_lobby, looking for skbs that 6759 * need moved to the new socket. 6760 */ 6761 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 6762 event = sctp_skb2event(skb); 6763 if (event->asoc == assoc) { 6764 __skb_unlink(skb, &oldsp->pd_lobby); 6765 __skb_queue_tail(queue, skb); 6766 sctp_skb_set_owner_r_frag(skb, newsk); 6767 } 6768 } 6769 6770 /* Clear up any skbs waiting for the partial 6771 * delivery to finish. 6772 */ 6773 if (assoc->ulpq.pd_mode) 6774 sctp_clear_pd(oldsk, NULL); 6775 6776 } 6777 6778 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) 6779 sctp_skb_set_owner_r_frag(skb, newsk); 6780 6781 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) 6782 sctp_skb_set_owner_r_frag(skb, newsk); 6783 6784 /* Set the type of socket to indicate that it is peeled off from the 6785 * original UDP-style socket or created with the accept() call on a 6786 * TCP-style socket.. 6787 */ 6788 newsp->type = type; 6789 6790 /* Mark the new socket "in-use" by the user so that any packets 6791 * that may arrive on the association after we've moved it are 6792 * queued to the backlog. This prevents a potential race between 6793 * backlog processing on the old socket and new-packet processing 6794 * on the new socket. 6795 * 6796 * The caller has just allocated newsk so we can guarantee that other 6797 * paths won't try to lock it and then oldsk. 6798 */ 6799 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 6800 sctp_assoc_migrate(assoc, newsk); 6801 6802 /* If the association on the newsk is already closed before accept() 6803 * is called, set RCV_SHUTDOWN flag. 6804 */ 6805 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 6806 newsk->sk_shutdown |= RCV_SHUTDOWN; 6807 6808 newsk->sk_state = SCTP_SS_ESTABLISHED; 6809 sctp_release_sock(newsk); 6810 } 6811 6812 6813 /* This proto struct describes the ULP interface for SCTP. */ 6814 struct proto sctp_prot = { 6815 .name = "SCTP", 6816 .owner = THIS_MODULE, 6817 .close = sctp_close, 6818 .connect = sctp_connect, 6819 .disconnect = sctp_disconnect, 6820 .accept = sctp_accept, 6821 .ioctl = sctp_ioctl, 6822 .init = sctp_init_sock, 6823 .destroy = sctp_destroy_sock, 6824 .shutdown = sctp_shutdown, 6825 .setsockopt = sctp_setsockopt, 6826 .getsockopt = sctp_getsockopt, 6827 .sendmsg = sctp_sendmsg, 6828 .recvmsg = sctp_recvmsg, 6829 .bind = sctp_bind, 6830 .backlog_rcv = sctp_backlog_rcv, 6831 .hash = sctp_hash, 6832 .unhash = sctp_unhash, 6833 .get_port = sctp_get_port, 6834 .obj_size = sizeof(struct sctp_sock), 6835 .sysctl_mem = sysctl_sctp_mem, 6836 .sysctl_rmem = sysctl_sctp_rmem, 6837 .sysctl_wmem = sysctl_sctp_wmem, 6838 .memory_pressure = &sctp_memory_pressure, 6839 .enter_memory_pressure = sctp_enter_memory_pressure, 6840 .memory_allocated = &sctp_memory_allocated, 6841 .sockets_allocated = &sctp_sockets_allocated, 6842 }; 6843 6844 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 6845 6846 struct proto sctpv6_prot = { 6847 .name = "SCTPv6", 6848 .owner = THIS_MODULE, 6849 .close = sctp_close, 6850 .connect = sctp_connect, 6851 .disconnect = sctp_disconnect, 6852 .accept = sctp_accept, 6853 .ioctl = sctp_ioctl, 6854 .init = sctp_init_sock, 6855 .destroy = sctp_destroy_sock, 6856 .shutdown = sctp_shutdown, 6857 .setsockopt = sctp_setsockopt, 6858 .getsockopt = sctp_getsockopt, 6859 .sendmsg = sctp_sendmsg, 6860 .recvmsg = sctp_recvmsg, 6861 .bind = sctp_bind, 6862 .backlog_rcv = sctp_backlog_rcv, 6863 .hash = sctp_hash, 6864 .unhash = sctp_unhash, 6865 .get_port = sctp_get_port, 6866 .obj_size = sizeof(struct sctp6_sock), 6867 .sysctl_mem = sysctl_sctp_mem, 6868 .sysctl_rmem = sysctl_sctp_rmem, 6869 .sysctl_wmem = sysctl_sctp_wmem, 6870 .memory_pressure = &sctp_memory_pressure, 6871 .enter_memory_pressure = sctp_enter_memory_pressure, 6872 .memory_allocated = &sctp_memory_allocated, 6873 .sockets_allocated = &sctp_sockets_allocated, 6874 }; 6875 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */ 6876