xref: /linux/net/sctp/socket.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, write to
32  * the Free Software Foundation, 59 Temple Place - Suite 330,
33  * Boston, MA 02111-1307, USA.
34  *
35  * Please send any bug reports or fixes you make to the
36  * email address(es):
37  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
38  *
39  * Or submit a bug report through the following website:
40  *    http://www.sf.net/projects/lksctp
41  *
42  * Written or modified by:
43  *    La Monte H.P. Yarroll <piggy@acm.org>
44  *    Narasimha Budihal     <narsi@refcode.org>
45  *    Karl Knutson          <karl@athena.chicago.il.us>
46  *    Jon Grimm             <jgrimm@us.ibm.com>
47  *    Xingang Guo           <xingang.guo@intel.com>
48  *    Daisy Chang           <daisyc@us.ibm.com>
49  *    Sridhar Samudrala     <samudrala@us.ibm.com>
50  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
51  *    Ardelle Fan	    <ardelle.fan@intel.com>
52  *    Ryan Layer	    <rmlayer@us.ibm.com>
53  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
54  *    Kevin Gao             <kevin.gao@intel.com>
55  *
56  * Any bugs reported given to us we will try to fix... any fixes shared will
57  * be incorporated into the next SCTP release.
58  */
59 
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61 
62 #include <linux/types.h>
63 #include <linux/kernel.h>
64 #include <linux/wait.h>
65 #include <linux/time.h>
66 #include <linux/ip.h>
67 #include <linux/capability.h>
68 #include <linux/fcntl.h>
69 #include <linux/poll.h>
70 #include <linux/init.h>
71 #include <linux/crypto.h>
72 #include <linux/slab.h>
73 
74 #include <net/ip.h>
75 #include <net/icmp.h>
76 #include <net/route.h>
77 #include <net/ipv6.h>
78 #include <net/inet_common.h>
79 
80 #include <linux/socket.h> /* for sa_family_t */
81 #include <linux/export.h>
82 #include <net/sock.h>
83 #include <net/sctp/sctp.h>
84 #include <net/sctp/sm.h>
85 
86 /* WARNING:  Please do not remove the SCTP_STATIC attribute to
87  * any of the functions below as they are used to export functions
88  * used by a project regression testsuite.
89  */
90 
91 /* Forward declarations for internal helper functions. */
92 static int sctp_writeable(struct sock *sk);
93 static void sctp_wfree(struct sk_buff *skb);
94 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
95 				size_t msg_len);
96 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
97 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
98 static int sctp_wait_for_accept(struct sock *sk, long timeo);
99 static void sctp_wait_for_close(struct sock *sk, long timeo);
100 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
101 					union sctp_addr *addr, int len);
102 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
103 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
104 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
105 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
106 static int sctp_send_asconf(struct sctp_association *asoc,
107 			    struct sctp_chunk *chunk);
108 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
109 static int sctp_autobind(struct sock *sk);
110 static void sctp_sock_migrate(struct sock *, struct sock *,
111 			      struct sctp_association *, sctp_socket_type_t);
112 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
113 
114 extern struct kmem_cache *sctp_bucket_cachep;
115 extern long sysctl_sctp_mem[3];
116 extern int sysctl_sctp_rmem[3];
117 extern int sysctl_sctp_wmem[3];
118 
119 static int sctp_memory_pressure;
120 static atomic_long_t sctp_memory_allocated;
121 struct percpu_counter sctp_sockets_allocated;
122 
123 static void sctp_enter_memory_pressure(struct sock *sk)
124 {
125 	sctp_memory_pressure = 1;
126 }
127 
128 
129 /* Get the sndbuf space available at the time on the association.  */
130 static inline int sctp_wspace(struct sctp_association *asoc)
131 {
132 	int amt;
133 
134 	if (asoc->ep->sndbuf_policy)
135 		amt = asoc->sndbuf_used;
136 	else
137 		amt = sk_wmem_alloc_get(asoc->base.sk);
138 
139 	if (amt >= asoc->base.sk->sk_sndbuf) {
140 		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
141 			amt = 0;
142 		else {
143 			amt = sk_stream_wspace(asoc->base.sk);
144 			if (amt < 0)
145 				amt = 0;
146 		}
147 	} else {
148 		amt = asoc->base.sk->sk_sndbuf - amt;
149 	}
150 	return amt;
151 }
152 
153 /* Increment the used sndbuf space count of the corresponding association by
154  * the size of the outgoing data chunk.
155  * Also, set the skb destructor for sndbuf accounting later.
156  *
157  * Since it is always 1-1 between chunk and skb, and also a new skb is always
158  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
159  * destructor in the data chunk skb for the purpose of the sndbuf space
160  * tracking.
161  */
162 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
163 {
164 	struct sctp_association *asoc = chunk->asoc;
165 	struct sock *sk = asoc->base.sk;
166 
167 	/* The sndbuf space is tracked per association.  */
168 	sctp_association_hold(asoc);
169 
170 	skb_set_owner_w(chunk->skb, sk);
171 
172 	chunk->skb->destructor = sctp_wfree;
173 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
174 	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
175 
176 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
177 				sizeof(struct sk_buff) +
178 				sizeof(struct sctp_chunk);
179 
180 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
181 	sk->sk_wmem_queued += chunk->skb->truesize;
182 	sk_mem_charge(sk, chunk->skb->truesize);
183 }
184 
185 /* Verify that this is a valid address. */
186 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
187 				   int len)
188 {
189 	struct sctp_af *af;
190 
191 	/* Verify basic sockaddr. */
192 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
193 	if (!af)
194 		return -EINVAL;
195 
196 	/* Is this a valid SCTP address?  */
197 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
198 		return -EINVAL;
199 
200 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
201 		return -EINVAL;
202 
203 	return 0;
204 }
205 
206 /* Look up the association by its id.  If this is not a UDP-style
207  * socket, the ID field is always ignored.
208  */
209 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
210 {
211 	struct sctp_association *asoc = NULL;
212 
213 	/* If this is not a UDP-style socket, assoc id should be ignored. */
214 	if (!sctp_style(sk, UDP)) {
215 		/* Return NULL if the socket state is not ESTABLISHED. It
216 		 * could be a TCP-style listening socket or a socket which
217 		 * hasn't yet called connect() to establish an association.
218 		 */
219 		if (!sctp_sstate(sk, ESTABLISHED))
220 			return NULL;
221 
222 		/* Get the first and the only association from the list. */
223 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
224 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
225 					  struct sctp_association, asocs);
226 		return asoc;
227 	}
228 
229 	/* Otherwise this is a UDP-style socket. */
230 	if (!id || (id == (sctp_assoc_t)-1))
231 		return NULL;
232 
233 	spin_lock_bh(&sctp_assocs_id_lock);
234 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
235 	spin_unlock_bh(&sctp_assocs_id_lock);
236 
237 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
238 		return NULL;
239 
240 	return asoc;
241 }
242 
243 /* Look up the transport from an address and an assoc id. If both address and
244  * id are specified, the associations matching the address and the id should be
245  * the same.
246  */
247 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
248 					      struct sockaddr_storage *addr,
249 					      sctp_assoc_t id)
250 {
251 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
252 	struct sctp_transport *transport;
253 	union sctp_addr *laddr = (union sctp_addr *)addr;
254 
255 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
256 					       laddr,
257 					       &transport);
258 
259 	if (!addr_asoc)
260 		return NULL;
261 
262 	id_asoc = sctp_id2assoc(sk, id);
263 	if (id_asoc && (id_asoc != addr_asoc))
264 		return NULL;
265 
266 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
267 						(union sctp_addr *)addr);
268 
269 	return transport;
270 }
271 
272 /* API 3.1.2 bind() - UDP Style Syntax
273  * The syntax of bind() is,
274  *
275  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
276  *
277  *   sd      - the socket descriptor returned by socket().
278  *   addr    - the address structure (struct sockaddr_in or struct
279  *             sockaddr_in6 [RFC 2553]),
280  *   addr_len - the size of the address structure.
281  */
282 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
283 {
284 	int retval = 0;
285 
286 	sctp_lock_sock(sk);
287 
288 	SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
289 			  sk, addr, addr_len);
290 
291 	/* Disallow binding twice. */
292 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
293 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
294 				      addr_len);
295 	else
296 		retval = -EINVAL;
297 
298 	sctp_release_sock(sk);
299 
300 	return retval;
301 }
302 
303 static long sctp_get_port_local(struct sock *, union sctp_addr *);
304 
305 /* Verify this is a valid sockaddr. */
306 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
307 					union sctp_addr *addr, int len)
308 {
309 	struct sctp_af *af;
310 
311 	/* Check minimum size.  */
312 	if (len < sizeof (struct sockaddr))
313 		return NULL;
314 
315 	/* V4 mapped address are really of AF_INET family */
316 	if (addr->sa.sa_family == AF_INET6 &&
317 	    ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
318 		if (!opt->pf->af_supported(AF_INET, opt))
319 			return NULL;
320 	} else {
321 		/* Does this PF support this AF? */
322 		if (!opt->pf->af_supported(addr->sa.sa_family, opt))
323 			return NULL;
324 	}
325 
326 	/* If we get this far, af is valid. */
327 	af = sctp_get_af_specific(addr->sa.sa_family);
328 
329 	if (len < af->sockaddr_len)
330 		return NULL;
331 
332 	return af;
333 }
334 
335 /* Bind a local address either to an endpoint or to an association.  */
336 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
337 {
338 	struct sctp_sock *sp = sctp_sk(sk);
339 	struct sctp_endpoint *ep = sp->ep;
340 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
341 	struct sctp_af *af;
342 	unsigned short snum;
343 	int ret = 0;
344 
345 	/* Common sockaddr verification. */
346 	af = sctp_sockaddr_af(sp, addr, len);
347 	if (!af) {
348 		SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
349 				  sk, addr, len);
350 		return -EINVAL;
351 	}
352 
353 	snum = ntohs(addr->v4.sin_port);
354 
355 	SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
356 				 ", port: %d, new port: %d, len: %d)\n",
357 				 sk,
358 				 addr,
359 				 bp->port, snum,
360 				 len);
361 
362 	/* PF specific bind() address verification. */
363 	if (!sp->pf->bind_verify(sp, addr))
364 		return -EADDRNOTAVAIL;
365 
366 	/* We must either be unbound, or bind to the same port.
367 	 * It's OK to allow 0 ports if we are already bound.
368 	 * We'll just inhert an already bound port in this case
369 	 */
370 	if (bp->port) {
371 		if (!snum)
372 			snum = bp->port;
373 		else if (snum != bp->port) {
374 			SCTP_DEBUG_PRINTK("sctp_do_bind:"
375 				  " New port %d does not match existing port "
376 				  "%d.\n", snum, bp->port);
377 			return -EINVAL;
378 		}
379 	}
380 
381 	if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
382 		return -EACCES;
383 
384 	/* See if the address matches any of the addresses we may have
385 	 * already bound before checking against other endpoints.
386 	 */
387 	if (sctp_bind_addr_match(bp, addr, sp))
388 		return -EINVAL;
389 
390 	/* Make sure we are allowed to bind here.
391 	 * The function sctp_get_port_local() does duplicate address
392 	 * detection.
393 	 */
394 	addr->v4.sin_port = htons(snum);
395 	if ((ret = sctp_get_port_local(sk, addr))) {
396 		return -EADDRINUSE;
397 	}
398 
399 	/* Refresh ephemeral port.  */
400 	if (!bp->port)
401 		bp->port = inet_sk(sk)->inet_num;
402 
403 	/* Add the address to the bind address list.
404 	 * Use GFP_ATOMIC since BHs will be disabled.
405 	 */
406 	ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
407 
408 	/* Copy back into socket for getsockname() use. */
409 	if (!ret) {
410 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
411 		af->to_sk_saddr(addr, sk);
412 	}
413 
414 	return ret;
415 }
416 
417  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
418  *
419  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
420  * at any one time.  If a sender, after sending an ASCONF chunk, decides
421  * it needs to transfer another ASCONF Chunk, it MUST wait until the
422  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
423  * subsequent ASCONF. Note this restriction binds each side, so at any
424  * time two ASCONF may be in-transit on any given association (one sent
425  * from each endpoint).
426  */
427 static int sctp_send_asconf(struct sctp_association *asoc,
428 			    struct sctp_chunk *chunk)
429 {
430 	int		retval = 0;
431 
432 	/* If there is an outstanding ASCONF chunk, queue it for later
433 	 * transmission.
434 	 */
435 	if (asoc->addip_last_asconf) {
436 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
437 		goto out;
438 	}
439 
440 	/* Hold the chunk until an ASCONF_ACK is received. */
441 	sctp_chunk_hold(chunk);
442 	retval = sctp_primitive_ASCONF(asoc, chunk);
443 	if (retval)
444 		sctp_chunk_free(chunk);
445 	else
446 		asoc->addip_last_asconf = chunk;
447 
448 out:
449 	return retval;
450 }
451 
452 /* Add a list of addresses as bind addresses to local endpoint or
453  * association.
454  *
455  * Basically run through each address specified in the addrs/addrcnt
456  * array/length pair, determine if it is IPv6 or IPv4 and call
457  * sctp_do_bind() on it.
458  *
459  * If any of them fails, then the operation will be reversed and the
460  * ones that were added will be removed.
461  *
462  * Only sctp_setsockopt_bindx() is supposed to call this function.
463  */
464 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
465 {
466 	int cnt;
467 	int retval = 0;
468 	void *addr_buf;
469 	struct sockaddr *sa_addr;
470 	struct sctp_af *af;
471 
472 	SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
473 			  sk, addrs, addrcnt);
474 
475 	addr_buf = addrs;
476 	for (cnt = 0; cnt < addrcnt; cnt++) {
477 		/* The list may contain either IPv4 or IPv6 address;
478 		 * determine the address length for walking thru the list.
479 		 */
480 		sa_addr = addr_buf;
481 		af = sctp_get_af_specific(sa_addr->sa_family);
482 		if (!af) {
483 			retval = -EINVAL;
484 			goto err_bindx_add;
485 		}
486 
487 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
488 				      af->sockaddr_len);
489 
490 		addr_buf += af->sockaddr_len;
491 
492 err_bindx_add:
493 		if (retval < 0) {
494 			/* Failed. Cleanup the ones that have been added */
495 			if (cnt > 0)
496 				sctp_bindx_rem(sk, addrs, cnt);
497 			return retval;
498 		}
499 	}
500 
501 	return retval;
502 }
503 
504 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
505  * associations that are part of the endpoint indicating that a list of local
506  * addresses are added to the endpoint.
507  *
508  * If any of the addresses is already in the bind address list of the
509  * association, we do not send the chunk for that association.  But it will not
510  * affect other associations.
511  *
512  * Only sctp_setsockopt_bindx() is supposed to call this function.
513  */
514 static int sctp_send_asconf_add_ip(struct sock		*sk,
515 				   struct sockaddr	*addrs,
516 				   int 			addrcnt)
517 {
518 	struct sctp_sock		*sp;
519 	struct sctp_endpoint		*ep;
520 	struct sctp_association		*asoc;
521 	struct sctp_bind_addr		*bp;
522 	struct sctp_chunk		*chunk;
523 	struct sctp_sockaddr_entry	*laddr;
524 	union sctp_addr			*addr;
525 	union sctp_addr			saveaddr;
526 	void				*addr_buf;
527 	struct sctp_af			*af;
528 	struct list_head		*p;
529 	int 				i;
530 	int 				retval = 0;
531 
532 	if (!sctp_addip_enable)
533 		return retval;
534 
535 	sp = sctp_sk(sk);
536 	ep = sp->ep;
537 
538 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
539 			  __func__, sk, addrs, addrcnt);
540 
541 	list_for_each_entry(asoc, &ep->asocs, asocs) {
542 
543 		if (!asoc->peer.asconf_capable)
544 			continue;
545 
546 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
547 			continue;
548 
549 		if (!sctp_state(asoc, ESTABLISHED))
550 			continue;
551 
552 		/* Check if any address in the packed array of addresses is
553 		 * in the bind address list of the association. If so,
554 		 * do not send the asconf chunk to its peer, but continue with
555 		 * other associations.
556 		 */
557 		addr_buf = addrs;
558 		for (i = 0; i < addrcnt; i++) {
559 			addr = addr_buf;
560 			af = sctp_get_af_specific(addr->v4.sin_family);
561 			if (!af) {
562 				retval = -EINVAL;
563 				goto out;
564 			}
565 
566 			if (sctp_assoc_lookup_laddr(asoc, addr))
567 				break;
568 
569 			addr_buf += af->sockaddr_len;
570 		}
571 		if (i < addrcnt)
572 			continue;
573 
574 		/* Use the first valid address in bind addr list of
575 		 * association as Address Parameter of ASCONF CHUNK.
576 		 */
577 		bp = &asoc->base.bind_addr;
578 		p = bp->address_list.next;
579 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
580 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
581 						   addrcnt, SCTP_PARAM_ADD_IP);
582 		if (!chunk) {
583 			retval = -ENOMEM;
584 			goto out;
585 		}
586 
587 		/* Add the new addresses to the bind address list with
588 		 * use_as_src set to 0.
589 		 */
590 		addr_buf = addrs;
591 		for (i = 0; i < addrcnt; i++) {
592 			addr = addr_buf;
593 			af = sctp_get_af_specific(addr->v4.sin_family);
594 			memcpy(&saveaddr, addr, af->sockaddr_len);
595 			retval = sctp_add_bind_addr(bp, &saveaddr,
596 						    SCTP_ADDR_NEW, GFP_ATOMIC);
597 			addr_buf += af->sockaddr_len;
598 		}
599 		if (asoc->src_out_of_asoc_ok) {
600 			struct sctp_transport *trans;
601 
602 			list_for_each_entry(trans,
603 			    &asoc->peer.transport_addr_list, transports) {
604 				/* Clear the source and route cache */
605 				dst_release(trans->dst);
606 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
607 				    2*asoc->pathmtu, 4380));
608 				trans->ssthresh = asoc->peer.i.a_rwnd;
609 				trans->rto = asoc->rto_initial;
610 				trans->rtt = trans->srtt = trans->rttvar = 0;
611 				sctp_transport_route(trans, NULL,
612 				    sctp_sk(asoc->base.sk));
613 			}
614 		}
615 		retval = sctp_send_asconf(asoc, chunk);
616 	}
617 
618 out:
619 	return retval;
620 }
621 
622 /* Remove a list of addresses from bind addresses list.  Do not remove the
623  * last address.
624  *
625  * Basically run through each address specified in the addrs/addrcnt
626  * array/length pair, determine if it is IPv6 or IPv4 and call
627  * sctp_del_bind() on it.
628  *
629  * If any of them fails, then the operation will be reversed and the
630  * ones that were removed will be added back.
631  *
632  * At least one address has to be left; if only one address is
633  * available, the operation will return -EBUSY.
634  *
635  * Only sctp_setsockopt_bindx() is supposed to call this function.
636  */
637 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
638 {
639 	struct sctp_sock *sp = sctp_sk(sk);
640 	struct sctp_endpoint *ep = sp->ep;
641 	int cnt;
642 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
643 	int retval = 0;
644 	void *addr_buf;
645 	union sctp_addr *sa_addr;
646 	struct sctp_af *af;
647 
648 	SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
649 			  sk, addrs, addrcnt);
650 
651 	addr_buf = addrs;
652 	for (cnt = 0; cnt < addrcnt; cnt++) {
653 		/* If the bind address list is empty or if there is only one
654 		 * bind address, there is nothing more to be removed (we need
655 		 * at least one address here).
656 		 */
657 		if (list_empty(&bp->address_list) ||
658 		    (sctp_list_single_entry(&bp->address_list))) {
659 			retval = -EBUSY;
660 			goto err_bindx_rem;
661 		}
662 
663 		sa_addr = addr_buf;
664 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
665 		if (!af) {
666 			retval = -EINVAL;
667 			goto err_bindx_rem;
668 		}
669 
670 		if (!af->addr_valid(sa_addr, sp, NULL)) {
671 			retval = -EADDRNOTAVAIL;
672 			goto err_bindx_rem;
673 		}
674 
675 		if (sa_addr->v4.sin_port &&
676 		    sa_addr->v4.sin_port != htons(bp->port)) {
677 			retval = -EINVAL;
678 			goto err_bindx_rem;
679 		}
680 
681 		if (!sa_addr->v4.sin_port)
682 			sa_addr->v4.sin_port = htons(bp->port);
683 
684 		/* FIXME - There is probably a need to check if sk->sk_saddr and
685 		 * sk->sk_rcv_addr are currently set to one of the addresses to
686 		 * be removed. This is something which needs to be looked into
687 		 * when we are fixing the outstanding issues with multi-homing
688 		 * socket routing and failover schemes. Refer to comments in
689 		 * sctp_do_bind(). -daisy
690 		 */
691 		retval = sctp_del_bind_addr(bp, sa_addr);
692 
693 		addr_buf += af->sockaddr_len;
694 err_bindx_rem:
695 		if (retval < 0) {
696 			/* Failed. Add the ones that has been removed back */
697 			if (cnt > 0)
698 				sctp_bindx_add(sk, addrs, cnt);
699 			return retval;
700 		}
701 	}
702 
703 	return retval;
704 }
705 
706 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
707  * the associations that are part of the endpoint indicating that a list of
708  * local addresses are removed from the endpoint.
709  *
710  * If any of the addresses is already in the bind address list of the
711  * association, we do not send the chunk for that association.  But it will not
712  * affect other associations.
713  *
714  * Only sctp_setsockopt_bindx() is supposed to call this function.
715  */
716 static int sctp_send_asconf_del_ip(struct sock		*sk,
717 				   struct sockaddr	*addrs,
718 				   int			addrcnt)
719 {
720 	struct sctp_sock	*sp;
721 	struct sctp_endpoint	*ep;
722 	struct sctp_association	*asoc;
723 	struct sctp_transport	*transport;
724 	struct sctp_bind_addr	*bp;
725 	struct sctp_chunk	*chunk;
726 	union sctp_addr		*laddr;
727 	void			*addr_buf;
728 	struct sctp_af		*af;
729 	struct sctp_sockaddr_entry *saddr;
730 	int 			i;
731 	int 			retval = 0;
732 	int			stored = 0;
733 
734 	chunk = NULL;
735 	if (!sctp_addip_enable)
736 		return retval;
737 
738 	sp = sctp_sk(sk);
739 	ep = sp->ep;
740 
741 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
742 			  __func__, sk, addrs, addrcnt);
743 
744 	list_for_each_entry(asoc, &ep->asocs, asocs) {
745 
746 		if (!asoc->peer.asconf_capable)
747 			continue;
748 
749 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
750 			continue;
751 
752 		if (!sctp_state(asoc, ESTABLISHED))
753 			continue;
754 
755 		/* Check if any address in the packed array of addresses is
756 		 * not present in the bind address list of the association.
757 		 * If so, do not send the asconf chunk to its peer, but
758 		 * continue with other associations.
759 		 */
760 		addr_buf = addrs;
761 		for (i = 0; i < addrcnt; i++) {
762 			laddr = addr_buf;
763 			af = sctp_get_af_specific(laddr->v4.sin_family);
764 			if (!af) {
765 				retval = -EINVAL;
766 				goto out;
767 			}
768 
769 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
770 				break;
771 
772 			addr_buf += af->sockaddr_len;
773 		}
774 		if (i < addrcnt)
775 			continue;
776 
777 		/* Find one address in the association's bind address list
778 		 * that is not in the packed array of addresses. This is to
779 		 * make sure that we do not delete all the addresses in the
780 		 * association.
781 		 */
782 		bp = &asoc->base.bind_addr;
783 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
784 					       addrcnt, sp);
785 		if ((laddr == NULL) && (addrcnt == 1)) {
786 			if (asoc->asconf_addr_del_pending)
787 				continue;
788 			asoc->asconf_addr_del_pending =
789 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
790 			if (asoc->asconf_addr_del_pending == NULL) {
791 				retval = -ENOMEM;
792 				goto out;
793 			}
794 			asoc->asconf_addr_del_pending->sa.sa_family =
795 				    addrs->sa_family;
796 			asoc->asconf_addr_del_pending->v4.sin_port =
797 				    htons(bp->port);
798 			if (addrs->sa_family == AF_INET) {
799 				struct sockaddr_in *sin;
800 
801 				sin = (struct sockaddr_in *)addrs;
802 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
803 			} else if (addrs->sa_family == AF_INET6) {
804 				struct sockaddr_in6 *sin6;
805 
806 				sin6 = (struct sockaddr_in6 *)addrs;
807 				ipv6_addr_copy(&asoc->asconf_addr_del_pending->v6.sin6_addr, &sin6->sin6_addr);
808 			}
809 			SCTP_DEBUG_PRINTK_IPADDR("send_asconf_del_ip: keep the last address asoc: %p ",
810 			    " at %p\n", asoc, asoc->asconf_addr_del_pending,
811 			    asoc->asconf_addr_del_pending);
812 			asoc->src_out_of_asoc_ok = 1;
813 			stored = 1;
814 			goto skip_mkasconf;
815 		}
816 
817 		/* We do not need RCU protection throughout this loop
818 		 * because this is done under a socket lock from the
819 		 * setsockopt call.
820 		 */
821 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
822 						   SCTP_PARAM_DEL_IP);
823 		if (!chunk) {
824 			retval = -ENOMEM;
825 			goto out;
826 		}
827 
828 skip_mkasconf:
829 		/* Reset use_as_src flag for the addresses in the bind address
830 		 * list that are to be deleted.
831 		 */
832 		addr_buf = addrs;
833 		for (i = 0; i < addrcnt; i++) {
834 			laddr = addr_buf;
835 			af = sctp_get_af_specific(laddr->v4.sin_family);
836 			list_for_each_entry(saddr, &bp->address_list, list) {
837 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
838 					saddr->state = SCTP_ADDR_DEL;
839 			}
840 			addr_buf += af->sockaddr_len;
841 		}
842 
843 		/* Update the route and saddr entries for all the transports
844 		 * as some of the addresses in the bind address list are
845 		 * about to be deleted and cannot be used as source addresses.
846 		 */
847 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
848 					transports) {
849 			dst_release(transport->dst);
850 			sctp_transport_route(transport, NULL,
851 					     sctp_sk(asoc->base.sk));
852 		}
853 
854 		if (stored)
855 			/* We don't need to transmit ASCONF */
856 			continue;
857 		retval = sctp_send_asconf(asoc, chunk);
858 	}
859 out:
860 	return retval;
861 }
862 
863 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
864 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
865 {
866 	struct sock *sk = sctp_opt2sk(sp);
867 	union sctp_addr *addr;
868 	struct sctp_af *af;
869 
870 	/* It is safe to write port space in caller. */
871 	addr = &addrw->a;
872 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
873 	af = sctp_get_af_specific(addr->sa.sa_family);
874 	if (!af)
875 		return -EINVAL;
876 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
877 		return -EINVAL;
878 
879 	if (addrw->state == SCTP_ADDR_NEW)
880 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
881 	else
882 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
883 }
884 
885 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
886  *
887  * API 8.1
888  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
889  *                int flags);
890  *
891  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
892  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
893  * or IPv6 addresses.
894  *
895  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
896  * Section 3.1.2 for this usage.
897  *
898  * addrs is a pointer to an array of one or more socket addresses. Each
899  * address is contained in its appropriate structure (i.e. struct
900  * sockaddr_in or struct sockaddr_in6) the family of the address type
901  * must be used to distinguish the address length (note that this
902  * representation is termed a "packed array" of addresses). The caller
903  * specifies the number of addresses in the array with addrcnt.
904  *
905  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
906  * -1, and sets errno to the appropriate error code.
907  *
908  * For SCTP, the port given in each socket address must be the same, or
909  * sctp_bindx() will fail, setting errno to EINVAL.
910  *
911  * The flags parameter is formed from the bitwise OR of zero or more of
912  * the following currently defined flags:
913  *
914  * SCTP_BINDX_ADD_ADDR
915  *
916  * SCTP_BINDX_REM_ADDR
917  *
918  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
919  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
920  * addresses from the association. The two flags are mutually exclusive;
921  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
922  * not remove all addresses from an association; sctp_bindx() will
923  * reject such an attempt with EINVAL.
924  *
925  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
926  * additional addresses with an endpoint after calling bind().  Or use
927  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
928  * socket is associated with so that no new association accepted will be
929  * associated with those addresses. If the endpoint supports dynamic
930  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
931  * endpoint to send the appropriate message to the peer to change the
932  * peers address lists.
933  *
934  * Adding and removing addresses from a connected association is
935  * optional functionality. Implementations that do not support this
936  * functionality should return EOPNOTSUPP.
937  *
938  * Basically do nothing but copying the addresses from user to kernel
939  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
940  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
941  * from userspace.
942  *
943  * We don't use copy_from_user() for optimization: we first do the
944  * sanity checks (buffer size -fast- and access check-healthy
945  * pointer); if all of those succeed, then we can alloc the memory
946  * (expensive operation) needed to copy the data to kernel. Then we do
947  * the copying without checking the user space area
948  * (__copy_from_user()).
949  *
950  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
951  * it.
952  *
953  * sk        The sk of the socket
954  * addrs     The pointer to the addresses in user land
955  * addrssize Size of the addrs buffer
956  * op        Operation to perform (add or remove, see the flags of
957  *           sctp_bindx)
958  *
959  * Returns 0 if ok, <0 errno code on error.
960  */
961 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
962 				      struct sockaddr __user *addrs,
963 				      int addrs_size, int op)
964 {
965 	struct sockaddr *kaddrs;
966 	int err;
967 	int addrcnt = 0;
968 	int walk_size = 0;
969 	struct sockaddr *sa_addr;
970 	void *addr_buf;
971 	struct sctp_af *af;
972 
973 	SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
974 			  " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
975 
976 	if (unlikely(addrs_size <= 0))
977 		return -EINVAL;
978 
979 	/* Check the user passed a healthy pointer.  */
980 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
981 		return -EFAULT;
982 
983 	/* Alloc space for the address array in kernel memory.  */
984 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
985 	if (unlikely(!kaddrs))
986 		return -ENOMEM;
987 
988 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
989 		kfree(kaddrs);
990 		return -EFAULT;
991 	}
992 
993 	/* Walk through the addrs buffer and count the number of addresses. */
994 	addr_buf = kaddrs;
995 	while (walk_size < addrs_size) {
996 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
997 			kfree(kaddrs);
998 			return -EINVAL;
999 		}
1000 
1001 		sa_addr = addr_buf;
1002 		af = sctp_get_af_specific(sa_addr->sa_family);
1003 
1004 		/* If the address family is not supported or if this address
1005 		 * causes the address buffer to overflow return EINVAL.
1006 		 */
1007 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1008 			kfree(kaddrs);
1009 			return -EINVAL;
1010 		}
1011 		addrcnt++;
1012 		addr_buf += af->sockaddr_len;
1013 		walk_size += af->sockaddr_len;
1014 	}
1015 
1016 	/* Do the work. */
1017 	switch (op) {
1018 	case SCTP_BINDX_ADD_ADDR:
1019 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1020 		if (err)
1021 			goto out;
1022 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1023 		break;
1024 
1025 	case SCTP_BINDX_REM_ADDR:
1026 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1027 		if (err)
1028 			goto out;
1029 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1030 		break;
1031 
1032 	default:
1033 		err = -EINVAL;
1034 		break;
1035 	}
1036 
1037 out:
1038 	kfree(kaddrs);
1039 
1040 	return err;
1041 }
1042 
1043 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1044  *
1045  * Common routine for handling connect() and sctp_connectx().
1046  * Connect will come in with just a single address.
1047  */
1048 static int __sctp_connect(struct sock* sk,
1049 			  struct sockaddr *kaddrs,
1050 			  int addrs_size,
1051 			  sctp_assoc_t *assoc_id)
1052 {
1053 	struct sctp_sock *sp;
1054 	struct sctp_endpoint *ep;
1055 	struct sctp_association *asoc = NULL;
1056 	struct sctp_association *asoc2;
1057 	struct sctp_transport *transport;
1058 	union sctp_addr to;
1059 	struct sctp_af *af;
1060 	sctp_scope_t scope;
1061 	long timeo;
1062 	int err = 0;
1063 	int addrcnt = 0;
1064 	int walk_size = 0;
1065 	union sctp_addr *sa_addr = NULL;
1066 	void *addr_buf;
1067 	unsigned short port;
1068 	unsigned int f_flags = 0;
1069 
1070 	sp = sctp_sk(sk);
1071 	ep = sp->ep;
1072 
1073 	/* connect() cannot be done on a socket that is already in ESTABLISHED
1074 	 * state - UDP-style peeled off socket or a TCP-style socket that
1075 	 * is already connected.
1076 	 * It cannot be done even on a TCP-style listening socket.
1077 	 */
1078 	if (sctp_sstate(sk, ESTABLISHED) ||
1079 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1080 		err = -EISCONN;
1081 		goto out_free;
1082 	}
1083 
1084 	/* Walk through the addrs buffer and count the number of addresses. */
1085 	addr_buf = kaddrs;
1086 	while (walk_size < addrs_size) {
1087 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1088 			err = -EINVAL;
1089 			goto out_free;
1090 		}
1091 
1092 		sa_addr = addr_buf;
1093 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1094 
1095 		/* If the address family is not supported or if this address
1096 		 * causes the address buffer to overflow return EINVAL.
1097 		 */
1098 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1099 			err = -EINVAL;
1100 			goto out_free;
1101 		}
1102 
1103 		port = ntohs(sa_addr->v4.sin_port);
1104 
1105 		/* Save current address so we can work with it */
1106 		memcpy(&to, sa_addr, af->sockaddr_len);
1107 
1108 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1109 		if (err)
1110 			goto out_free;
1111 
1112 		/* Make sure the destination port is correctly set
1113 		 * in all addresses.
1114 		 */
1115 		if (asoc && asoc->peer.port && asoc->peer.port != port)
1116 			goto out_free;
1117 
1118 
1119 		/* Check if there already is a matching association on the
1120 		 * endpoint (other than the one created here).
1121 		 */
1122 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1123 		if (asoc2 && asoc2 != asoc) {
1124 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1125 				err = -EISCONN;
1126 			else
1127 				err = -EALREADY;
1128 			goto out_free;
1129 		}
1130 
1131 		/* If we could not find a matching association on the endpoint,
1132 		 * make sure that there is no peeled-off association matching
1133 		 * the peer address even on another socket.
1134 		 */
1135 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1136 			err = -EADDRNOTAVAIL;
1137 			goto out_free;
1138 		}
1139 
1140 		if (!asoc) {
1141 			/* If a bind() or sctp_bindx() is not called prior to
1142 			 * an sctp_connectx() call, the system picks an
1143 			 * ephemeral port and will choose an address set
1144 			 * equivalent to binding with a wildcard address.
1145 			 */
1146 			if (!ep->base.bind_addr.port) {
1147 				if (sctp_autobind(sk)) {
1148 					err = -EAGAIN;
1149 					goto out_free;
1150 				}
1151 			} else {
1152 				/*
1153 				 * If an unprivileged user inherits a 1-many
1154 				 * style socket with open associations on a
1155 				 * privileged port, it MAY be permitted to
1156 				 * accept new associations, but it SHOULD NOT
1157 				 * be permitted to open new associations.
1158 				 */
1159 				if (ep->base.bind_addr.port < PROT_SOCK &&
1160 				    !capable(CAP_NET_BIND_SERVICE)) {
1161 					err = -EACCES;
1162 					goto out_free;
1163 				}
1164 			}
1165 
1166 			scope = sctp_scope(&to);
1167 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1168 			if (!asoc) {
1169 				err = -ENOMEM;
1170 				goto out_free;
1171 			}
1172 
1173 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1174 							      GFP_KERNEL);
1175 			if (err < 0) {
1176 				goto out_free;
1177 			}
1178 
1179 		}
1180 
1181 		/* Prime the peer's transport structures.  */
1182 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1183 						SCTP_UNKNOWN);
1184 		if (!transport) {
1185 			err = -ENOMEM;
1186 			goto out_free;
1187 		}
1188 
1189 		addrcnt++;
1190 		addr_buf += af->sockaddr_len;
1191 		walk_size += af->sockaddr_len;
1192 	}
1193 
1194 	/* In case the user of sctp_connectx() wants an association
1195 	 * id back, assign one now.
1196 	 */
1197 	if (assoc_id) {
1198 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1199 		if (err < 0)
1200 			goto out_free;
1201 	}
1202 
1203 	err = sctp_primitive_ASSOCIATE(asoc, NULL);
1204 	if (err < 0) {
1205 		goto out_free;
1206 	}
1207 
1208 	/* Initialize sk's dport and daddr for getpeername() */
1209 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1210 	af = sctp_get_af_specific(sa_addr->sa.sa_family);
1211 	af->to_sk_daddr(sa_addr, sk);
1212 	sk->sk_err = 0;
1213 
1214 	/* in-kernel sockets don't generally have a file allocated to them
1215 	 * if all they do is call sock_create_kern().
1216 	 */
1217 	if (sk->sk_socket->file)
1218 		f_flags = sk->sk_socket->file->f_flags;
1219 
1220 	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1221 
1222 	err = sctp_wait_for_connect(asoc, &timeo);
1223 	if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1224 		*assoc_id = asoc->assoc_id;
1225 
1226 	/* Don't free association on exit. */
1227 	asoc = NULL;
1228 
1229 out_free:
1230 
1231 	SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1232 			  " kaddrs: %p err: %d\n",
1233 			  asoc, kaddrs, err);
1234 	if (asoc)
1235 		sctp_association_free(asoc);
1236 	return err;
1237 }
1238 
1239 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1240  *
1241  * API 8.9
1242  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1243  * 			sctp_assoc_t *asoc);
1244  *
1245  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1246  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1247  * or IPv6 addresses.
1248  *
1249  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1250  * Section 3.1.2 for this usage.
1251  *
1252  * addrs is a pointer to an array of one or more socket addresses. Each
1253  * address is contained in its appropriate structure (i.e. struct
1254  * sockaddr_in or struct sockaddr_in6) the family of the address type
1255  * must be used to distengish the address length (note that this
1256  * representation is termed a "packed array" of addresses). The caller
1257  * specifies the number of addresses in the array with addrcnt.
1258  *
1259  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1260  * the association id of the new association.  On failure, sctp_connectx()
1261  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1262  * is not touched by the kernel.
1263  *
1264  * For SCTP, the port given in each socket address must be the same, or
1265  * sctp_connectx() will fail, setting errno to EINVAL.
1266  *
1267  * An application can use sctp_connectx to initiate an association with
1268  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1269  * allows a caller to specify multiple addresses at which a peer can be
1270  * reached.  The way the SCTP stack uses the list of addresses to set up
1271  * the association is implementation dependent.  This function only
1272  * specifies that the stack will try to make use of all the addresses in
1273  * the list when needed.
1274  *
1275  * Note that the list of addresses passed in is only used for setting up
1276  * the association.  It does not necessarily equal the set of addresses
1277  * the peer uses for the resulting association.  If the caller wants to
1278  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1279  * retrieve them after the association has been set up.
1280  *
1281  * Basically do nothing but copying the addresses from user to kernel
1282  * land and invoking either sctp_connectx(). This is used for tunneling
1283  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1284  *
1285  * We don't use copy_from_user() for optimization: we first do the
1286  * sanity checks (buffer size -fast- and access check-healthy
1287  * pointer); if all of those succeed, then we can alloc the memory
1288  * (expensive operation) needed to copy the data to kernel. Then we do
1289  * the copying without checking the user space area
1290  * (__copy_from_user()).
1291  *
1292  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1293  * it.
1294  *
1295  * sk        The sk of the socket
1296  * addrs     The pointer to the addresses in user land
1297  * addrssize Size of the addrs buffer
1298  *
1299  * Returns >=0 if ok, <0 errno code on error.
1300  */
1301 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk,
1302 				      struct sockaddr __user *addrs,
1303 				      int addrs_size,
1304 				      sctp_assoc_t *assoc_id)
1305 {
1306 	int err = 0;
1307 	struct sockaddr *kaddrs;
1308 
1309 	SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1310 			  __func__, sk, addrs, addrs_size);
1311 
1312 	if (unlikely(addrs_size <= 0))
1313 		return -EINVAL;
1314 
1315 	/* Check the user passed a healthy pointer.  */
1316 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1317 		return -EFAULT;
1318 
1319 	/* Alloc space for the address array in kernel memory.  */
1320 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1321 	if (unlikely(!kaddrs))
1322 		return -ENOMEM;
1323 
1324 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1325 		err = -EFAULT;
1326 	} else {
1327 		err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1328 	}
1329 
1330 	kfree(kaddrs);
1331 
1332 	return err;
1333 }
1334 
1335 /*
1336  * This is an older interface.  It's kept for backward compatibility
1337  * to the option that doesn't provide association id.
1338  */
1339 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk,
1340 				      struct sockaddr __user *addrs,
1341 				      int addrs_size)
1342 {
1343 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1344 }
1345 
1346 /*
1347  * New interface for the API.  The since the API is done with a socket
1348  * option, to make it simple we feed back the association id is as a return
1349  * indication to the call.  Error is always negative and association id is
1350  * always positive.
1351  */
1352 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1353 				      struct sockaddr __user *addrs,
1354 				      int addrs_size)
1355 {
1356 	sctp_assoc_t assoc_id = 0;
1357 	int err = 0;
1358 
1359 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1360 
1361 	if (err)
1362 		return err;
1363 	else
1364 		return assoc_id;
1365 }
1366 
1367 /*
1368  * New (hopefully final) interface for the API.
1369  * We use the sctp_getaddrs_old structure so that use-space library
1370  * can avoid any unnecessary allocations.   The only defferent part
1371  * is that we store the actual length of the address buffer into the
1372  * addrs_num structure member.  That way we can re-use the existing
1373  * code.
1374  */
1375 SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len,
1376 					char __user *optval,
1377 					int __user *optlen)
1378 {
1379 	struct sctp_getaddrs_old param;
1380 	sctp_assoc_t assoc_id = 0;
1381 	int err = 0;
1382 
1383 	if (len < sizeof(param))
1384 		return -EINVAL;
1385 
1386 	if (copy_from_user(&param, optval, sizeof(param)))
1387 		return -EFAULT;
1388 
1389 	err = __sctp_setsockopt_connectx(sk,
1390 			(struct sockaddr __user *)param.addrs,
1391 			param.addr_num, &assoc_id);
1392 
1393 	if (err == 0 || err == -EINPROGRESS) {
1394 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1395 			return -EFAULT;
1396 		if (put_user(sizeof(assoc_id), optlen))
1397 			return -EFAULT;
1398 	}
1399 
1400 	return err;
1401 }
1402 
1403 /* API 3.1.4 close() - UDP Style Syntax
1404  * Applications use close() to perform graceful shutdown (as described in
1405  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1406  * by a UDP-style socket.
1407  *
1408  * The syntax is
1409  *
1410  *   ret = close(int sd);
1411  *
1412  *   sd      - the socket descriptor of the associations to be closed.
1413  *
1414  * To gracefully shutdown a specific association represented by the
1415  * UDP-style socket, an application should use the sendmsg() call,
1416  * passing no user data, but including the appropriate flag in the
1417  * ancillary data (see Section xxxx).
1418  *
1419  * If sd in the close() call is a branched-off socket representing only
1420  * one association, the shutdown is performed on that association only.
1421  *
1422  * 4.1.6 close() - TCP Style Syntax
1423  *
1424  * Applications use close() to gracefully close down an association.
1425  *
1426  * The syntax is:
1427  *
1428  *    int close(int sd);
1429  *
1430  *      sd      - the socket descriptor of the association to be closed.
1431  *
1432  * After an application calls close() on a socket descriptor, no further
1433  * socket operations will succeed on that descriptor.
1434  *
1435  * API 7.1.4 SO_LINGER
1436  *
1437  * An application using the TCP-style socket can use this option to
1438  * perform the SCTP ABORT primitive.  The linger option structure is:
1439  *
1440  *  struct  linger {
1441  *     int     l_onoff;                // option on/off
1442  *     int     l_linger;               // linger time
1443  * };
1444  *
1445  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1446  * to 0, calling close() is the same as the ABORT primitive.  If the
1447  * value is set to a negative value, the setsockopt() call will return
1448  * an error.  If the value is set to a positive value linger_time, the
1449  * close() can be blocked for at most linger_time ms.  If the graceful
1450  * shutdown phase does not finish during this period, close() will
1451  * return but the graceful shutdown phase continues in the system.
1452  */
1453 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1454 {
1455 	struct sctp_endpoint *ep;
1456 	struct sctp_association *asoc;
1457 	struct list_head *pos, *temp;
1458 	unsigned int data_was_unread;
1459 
1460 	SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1461 
1462 	sctp_lock_sock(sk);
1463 	sk->sk_shutdown = SHUTDOWN_MASK;
1464 	sk->sk_state = SCTP_SS_CLOSING;
1465 
1466 	ep = sctp_sk(sk)->ep;
1467 
1468 	/* Clean up any skbs sitting on the receive queue.  */
1469 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1470 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1471 
1472 	/* Walk all associations on an endpoint.  */
1473 	list_for_each_safe(pos, temp, &ep->asocs) {
1474 		asoc = list_entry(pos, struct sctp_association, asocs);
1475 
1476 		if (sctp_style(sk, TCP)) {
1477 			/* A closed association can still be in the list if
1478 			 * it belongs to a TCP-style listening socket that is
1479 			 * not yet accepted. If so, free it. If not, send an
1480 			 * ABORT or SHUTDOWN based on the linger options.
1481 			 */
1482 			if (sctp_state(asoc, CLOSED)) {
1483 				sctp_unhash_established(asoc);
1484 				sctp_association_free(asoc);
1485 				continue;
1486 			}
1487 		}
1488 
1489 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1490 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1491 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1492 			struct sctp_chunk *chunk;
1493 
1494 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1495 			if (chunk)
1496 				sctp_primitive_ABORT(asoc, chunk);
1497 		} else
1498 			sctp_primitive_SHUTDOWN(asoc, NULL);
1499 	}
1500 
1501 	/* On a TCP-style socket, block for at most linger_time if set. */
1502 	if (sctp_style(sk, TCP) && timeout)
1503 		sctp_wait_for_close(sk, timeout);
1504 
1505 	/* This will run the backlog queue.  */
1506 	sctp_release_sock(sk);
1507 
1508 	/* Supposedly, no process has access to the socket, but
1509 	 * the net layers still may.
1510 	 */
1511 	sctp_local_bh_disable();
1512 	sctp_bh_lock_sock(sk);
1513 
1514 	/* Hold the sock, since sk_common_release() will put sock_put()
1515 	 * and we have just a little more cleanup.
1516 	 */
1517 	sock_hold(sk);
1518 	sk_common_release(sk);
1519 
1520 	sctp_bh_unlock_sock(sk);
1521 	sctp_local_bh_enable();
1522 
1523 	sock_put(sk);
1524 
1525 	SCTP_DBG_OBJCNT_DEC(sock);
1526 }
1527 
1528 /* Handle EPIPE error. */
1529 static int sctp_error(struct sock *sk, int flags, int err)
1530 {
1531 	if (err == -EPIPE)
1532 		err = sock_error(sk) ? : -EPIPE;
1533 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1534 		send_sig(SIGPIPE, current, 0);
1535 	return err;
1536 }
1537 
1538 /* API 3.1.3 sendmsg() - UDP Style Syntax
1539  *
1540  * An application uses sendmsg() and recvmsg() calls to transmit data to
1541  * and receive data from its peer.
1542  *
1543  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1544  *                  int flags);
1545  *
1546  *  socket  - the socket descriptor of the endpoint.
1547  *  message - pointer to the msghdr structure which contains a single
1548  *            user message and possibly some ancillary data.
1549  *
1550  *            See Section 5 for complete description of the data
1551  *            structures.
1552  *
1553  *  flags   - flags sent or received with the user message, see Section
1554  *            5 for complete description of the flags.
1555  *
1556  * Note:  This function could use a rewrite especially when explicit
1557  * connect support comes in.
1558  */
1559 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1560 
1561 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1562 
1563 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1564 			     struct msghdr *msg, size_t msg_len)
1565 {
1566 	struct sctp_sock *sp;
1567 	struct sctp_endpoint *ep;
1568 	struct sctp_association *new_asoc=NULL, *asoc=NULL;
1569 	struct sctp_transport *transport, *chunk_tp;
1570 	struct sctp_chunk *chunk;
1571 	union sctp_addr to;
1572 	struct sockaddr *msg_name = NULL;
1573 	struct sctp_sndrcvinfo default_sinfo;
1574 	struct sctp_sndrcvinfo *sinfo;
1575 	struct sctp_initmsg *sinit;
1576 	sctp_assoc_t associd = 0;
1577 	sctp_cmsgs_t cmsgs = { NULL };
1578 	int err;
1579 	sctp_scope_t scope;
1580 	long timeo;
1581 	__u16 sinfo_flags = 0;
1582 	struct sctp_datamsg *datamsg;
1583 	int msg_flags = msg->msg_flags;
1584 
1585 	SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1586 			  sk, msg, msg_len);
1587 
1588 	err = 0;
1589 	sp = sctp_sk(sk);
1590 	ep = sp->ep;
1591 
1592 	SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1593 
1594 	/* We cannot send a message over a TCP-style listening socket. */
1595 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1596 		err = -EPIPE;
1597 		goto out_nounlock;
1598 	}
1599 
1600 	/* Parse out the SCTP CMSGs.  */
1601 	err = sctp_msghdr_parse(msg, &cmsgs);
1602 
1603 	if (err) {
1604 		SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1605 		goto out_nounlock;
1606 	}
1607 
1608 	/* Fetch the destination address for this packet.  This
1609 	 * address only selects the association--it is not necessarily
1610 	 * the address we will send to.
1611 	 * For a peeled-off socket, msg_name is ignored.
1612 	 */
1613 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1614 		int msg_namelen = msg->msg_namelen;
1615 
1616 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1617 				       msg_namelen);
1618 		if (err)
1619 			return err;
1620 
1621 		if (msg_namelen > sizeof(to))
1622 			msg_namelen = sizeof(to);
1623 		memcpy(&to, msg->msg_name, msg_namelen);
1624 		msg_name = msg->msg_name;
1625 	}
1626 
1627 	sinfo = cmsgs.info;
1628 	sinit = cmsgs.init;
1629 
1630 	/* Did the user specify SNDRCVINFO?  */
1631 	if (sinfo) {
1632 		sinfo_flags = sinfo->sinfo_flags;
1633 		associd = sinfo->sinfo_assoc_id;
1634 	}
1635 
1636 	SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1637 			  msg_len, sinfo_flags);
1638 
1639 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1640 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1641 		err = -EINVAL;
1642 		goto out_nounlock;
1643 	}
1644 
1645 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1646 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1647 	 * If SCTP_ABORT is set, the message length could be non zero with
1648 	 * the msg_iov set to the user abort reason.
1649 	 */
1650 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1651 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1652 		err = -EINVAL;
1653 		goto out_nounlock;
1654 	}
1655 
1656 	/* If SCTP_ADDR_OVER is set, there must be an address
1657 	 * specified in msg_name.
1658 	 */
1659 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1660 		err = -EINVAL;
1661 		goto out_nounlock;
1662 	}
1663 
1664 	transport = NULL;
1665 
1666 	SCTP_DEBUG_PRINTK("About to look up association.\n");
1667 
1668 	sctp_lock_sock(sk);
1669 
1670 	/* If a msg_name has been specified, assume this is to be used.  */
1671 	if (msg_name) {
1672 		/* Look for a matching association on the endpoint. */
1673 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1674 		if (!asoc) {
1675 			/* If we could not find a matching association on the
1676 			 * endpoint, make sure that it is not a TCP-style
1677 			 * socket that already has an association or there is
1678 			 * no peeled-off association on another socket.
1679 			 */
1680 			if ((sctp_style(sk, TCP) &&
1681 			     sctp_sstate(sk, ESTABLISHED)) ||
1682 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1683 				err = -EADDRNOTAVAIL;
1684 				goto out_unlock;
1685 			}
1686 		}
1687 	} else {
1688 		asoc = sctp_id2assoc(sk, associd);
1689 		if (!asoc) {
1690 			err = -EPIPE;
1691 			goto out_unlock;
1692 		}
1693 	}
1694 
1695 	if (asoc) {
1696 		SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1697 
1698 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1699 		 * socket that has an association in CLOSED state. This can
1700 		 * happen when an accepted socket has an association that is
1701 		 * already CLOSED.
1702 		 */
1703 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1704 			err = -EPIPE;
1705 			goto out_unlock;
1706 		}
1707 
1708 		if (sinfo_flags & SCTP_EOF) {
1709 			SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1710 					  asoc);
1711 			sctp_primitive_SHUTDOWN(asoc, NULL);
1712 			err = 0;
1713 			goto out_unlock;
1714 		}
1715 		if (sinfo_flags & SCTP_ABORT) {
1716 
1717 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1718 			if (!chunk) {
1719 				err = -ENOMEM;
1720 				goto out_unlock;
1721 			}
1722 
1723 			SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1724 			sctp_primitive_ABORT(asoc, chunk);
1725 			err = 0;
1726 			goto out_unlock;
1727 		}
1728 	}
1729 
1730 	/* Do we need to create the association?  */
1731 	if (!asoc) {
1732 		SCTP_DEBUG_PRINTK("There is no association yet.\n");
1733 
1734 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1735 			err = -EINVAL;
1736 			goto out_unlock;
1737 		}
1738 
1739 		/* Check for invalid stream against the stream counts,
1740 		 * either the default or the user specified stream counts.
1741 		 */
1742 		if (sinfo) {
1743 			if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1744 				/* Check against the defaults. */
1745 				if (sinfo->sinfo_stream >=
1746 				    sp->initmsg.sinit_num_ostreams) {
1747 					err = -EINVAL;
1748 					goto out_unlock;
1749 				}
1750 			} else {
1751 				/* Check against the requested.  */
1752 				if (sinfo->sinfo_stream >=
1753 				    sinit->sinit_num_ostreams) {
1754 					err = -EINVAL;
1755 					goto out_unlock;
1756 				}
1757 			}
1758 		}
1759 
1760 		/*
1761 		 * API 3.1.2 bind() - UDP Style Syntax
1762 		 * If a bind() or sctp_bindx() is not called prior to a
1763 		 * sendmsg() call that initiates a new association, the
1764 		 * system picks an ephemeral port and will choose an address
1765 		 * set equivalent to binding with a wildcard address.
1766 		 */
1767 		if (!ep->base.bind_addr.port) {
1768 			if (sctp_autobind(sk)) {
1769 				err = -EAGAIN;
1770 				goto out_unlock;
1771 			}
1772 		} else {
1773 			/*
1774 			 * If an unprivileged user inherits a one-to-many
1775 			 * style socket with open associations on a privileged
1776 			 * port, it MAY be permitted to accept new associations,
1777 			 * but it SHOULD NOT be permitted to open new
1778 			 * associations.
1779 			 */
1780 			if (ep->base.bind_addr.port < PROT_SOCK &&
1781 			    !capable(CAP_NET_BIND_SERVICE)) {
1782 				err = -EACCES;
1783 				goto out_unlock;
1784 			}
1785 		}
1786 
1787 		scope = sctp_scope(&to);
1788 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1789 		if (!new_asoc) {
1790 			err = -ENOMEM;
1791 			goto out_unlock;
1792 		}
1793 		asoc = new_asoc;
1794 		err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1795 		if (err < 0) {
1796 			err = -ENOMEM;
1797 			goto out_free;
1798 		}
1799 
1800 		/* If the SCTP_INIT ancillary data is specified, set all
1801 		 * the association init values accordingly.
1802 		 */
1803 		if (sinit) {
1804 			if (sinit->sinit_num_ostreams) {
1805 				asoc->c.sinit_num_ostreams =
1806 					sinit->sinit_num_ostreams;
1807 			}
1808 			if (sinit->sinit_max_instreams) {
1809 				asoc->c.sinit_max_instreams =
1810 					sinit->sinit_max_instreams;
1811 			}
1812 			if (sinit->sinit_max_attempts) {
1813 				asoc->max_init_attempts
1814 					= sinit->sinit_max_attempts;
1815 			}
1816 			if (sinit->sinit_max_init_timeo) {
1817 				asoc->max_init_timeo =
1818 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1819 			}
1820 		}
1821 
1822 		/* Prime the peer's transport structures.  */
1823 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1824 		if (!transport) {
1825 			err = -ENOMEM;
1826 			goto out_free;
1827 		}
1828 	}
1829 
1830 	/* ASSERT: we have a valid association at this point.  */
1831 	SCTP_DEBUG_PRINTK("We have a valid association.\n");
1832 
1833 	if (!sinfo) {
1834 		/* If the user didn't specify SNDRCVINFO, make up one with
1835 		 * some defaults.
1836 		 */
1837 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1838 		default_sinfo.sinfo_stream = asoc->default_stream;
1839 		default_sinfo.sinfo_flags = asoc->default_flags;
1840 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1841 		default_sinfo.sinfo_context = asoc->default_context;
1842 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1843 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1844 		sinfo = &default_sinfo;
1845 	}
1846 
1847 	/* API 7.1.7, the sndbuf size per association bounds the
1848 	 * maximum size of data that can be sent in a single send call.
1849 	 */
1850 	if (msg_len > sk->sk_sndbuf) {
1851 		err = -EMSGSIZE;
1852 		goto out_free;
1853 	}
1854 
1855 	if (asoc->pmtu_pending)
1856 		sctp_assoc_pending_pmtu(asoc);
1857 
1858 	/* If fragmentation is disabled and the message length exceeds the
1859 	 * association fragmentation point, return EMSGSIZE.  The I-D
1860 	 * does not specify what this error is, but this looks like
1861 	 * a great fit.
1862 	 */
1863 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1864 		err = -EMSGSIZE;
1865 		goto out_free;
1866 	}
1867 
1868 	/* Check for invalid stream. */
1869 	if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1870 		err = -EINVAL;
1871 		goto out_free;
1872 	}
1873 
1874 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1875 	if (!sctp_wspace(asoc)) {
1876 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1877 		if (err)
1878 			goto out_free;
1879 	}
1880 
1881 	/* If an address is passed with the sendto/sendmsg call, it is used
1882 	 * to override the primary destination address in the TCP model, or
1883 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1884 	 */
1885 	if ((sctp_style(sk, TCP) && msg_name) ||
1886 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1887 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1888 		if (!chunk_tp) {
1889 			err = -EINVAL;
1890 			goto out_free;
1891 		}
1892 	} else
1893 		chunk_tp = NULL;
1894 
1895 	/* Auto-connect, if we aren't connected already. */
1896 	if (sctp_state(asoc, CLOSED)) {
1897 		err = sctp_primitive_ASSOCIATE(asoc, NULL);
1898 		if (err < 0)
1899 			goto out_free;
1900 		SCTP_DEBUG_PRINTK("We associated primitively.\n");
1901 	}
1902 
1903 	/* Break the message into multiple chunks of maximum size. */
1904 	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1905 	if (!datamsg) {
1906 		err = -ENOMEM;
1907 		goto out_free;
1908 	}
1909 
1910 	/* Now send the (possibly) fragmented message. */
1911 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1912 		sctp_chunk_hold(chunk);
1913 
1914 		/* Do accounting for the write space.  */
1915 		sctp_set_owner_w(chunk);
1916 
1917 		chunk->transport = chunk_tp;
1918 	}
1919 
1920 	/* Send it to the lower layers.  Note:  all chunks
1921 	 * must either fail or succeed.   The lower layer
1922 	 * works that way today.  Keep it that way or this
1923 	 * breaks.
1924 	 */
1925 	err = sctp_primitive_SEND(asoc, datamsg);
1926 	/* Did the lower layer accept the chunk? */
1927 	if (err)
1928 		sctp_datamsg_free(datamsg);
1929 	else
1930 		sctp_datamsg_put(datamsg);
1931 
1932 	SCTP_DEBUG_PRINTK("We sent primitively.\n");
1933 
1934 	if (err)
1935 		goto out_free;
1936 	else
1937 		err = msg_len;
1938 
1939 	/* If we are already past ASSOCIATE, the lower
1940 	 * layers are responsible for association cleanup.
1941 	 */
1942 	goto out_unlock;
1943 
1944 out_free:
1945 	if (new_asoc)
1946 		sctp_association_free(asoc);
1947 out_unlock:
1948 	sctp_release_sock(sk);
1949 
1950 out_nounlock:
1951 	return sctp_error(sk, msg_flags, err);
1952 
1953 #if 0
1954 do_sock_err:
1955 	if (msg_len)
1956 		err = msg_len;
1957 	else
1958 		err = sock_error(sk);
1959 	goto out;
1960 
1961 do_interrupted:
1962 	if (msg_len)
1963 		err = msg_len;
1964 	goto out;
1965 #endif /* 0 */
1966 }
1967 
1968 /* This is an extended version of skb_pull() that removes the data from the
1969  * start of a skb even when data is spread across the list of skb's in the
1970  * frag_list. len specifies the total amount of data that needs to be removed.
1971  * when 'len' bytes could be removed from the skb, it returns 0.
1972  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
1973  * could not be removed.
1974  */
1975 static int sctp_skb_pull(struct sk_buff *skb, int len)
1976 {
1977 	struct sk_buff *list;
1978 	int skb_len = skb_headlen(skb);
1979 	int rlen;
1980 
1981 	if (len <= skb_len) {
1982 		__skb_pull(skb, len);
1983 		return 0;
1984 	}
1985 	len -= skb_len;
1986 	__skb_pull(skb, skb_len);
1987 
1988 	skb_walk_frags(skb, list) {
1989 		rlen = sctp_skb_pull(list, len);
1990 		skb->len -= (len-rlen);
1991 		skb->data_len -= (len-rlen);
1992 
1993 		if (!rlen)
1994 			return 0;
1995 
1996 		len = rlen;
1997 	}
1998 
1999 	return len;
2000 }
2001 
2002 /* API 3.1.3  recvmsg() - UDP Style Syntax
2003  *
2004  *  ssize_t recvmsg(int socket, struct msghdr *message,
2005  *                    int flags);
2006  *
2007  *  socket  - the socket descriptor of the endpoint.
2008  *  message - pointer to the msghdr structure which contains a single
2009  *            user message and possibly some ancillary data.
2010  *
2011  *            See Section 5 for complete description of the data
2012  *            structures.
2013  *
2014  *  flags   - flags sent or received with the user message, see Section
2015  *            5 for complete description of the flags.
2016  */
2017 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
2018 
2019 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
2020 			     struct msghdr *msg, size_t len, int noblock,
2021 			     int flags, int *addr_len)
2022 {
2023 	struct sctp_ulpevent *event = NULL;
2024 	struct sctp_sock *sp = sctp_sk(sk);
2025 	struct sk_buff *skb;
2026 	int copied;
2027 	int err = 0;
2028 	int skb_len;
2029 
2030 	SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
2031 			  "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
2032 			  "len", len, "knoblauch", noblock,
2033 			  "flags", flags, "addr_len", addr_len);
2034 
2035 	sctp_lock_sock(sk);
2036 
2037 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2038 		err = -ENOTCONN;
2039 		goto out;
2040 	}
2041 
2042 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2043 	if (!skb)
2044 		goto out;
2045 
2046 	/* Get the total length of the skb including any skb's in the
2047 	 * frag_list.
2048 	 */
2049 	skb_len = skb->len;
2050 
2051 	copied = skb_len;
2052 	if (copied > len)
2053 		copied = len;
2054 
2055 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2056 
2057 	event = sctp_skb2event(skb);
2058 
2059 	if (err)
2060 		goto out_free;
2061 
2062 	sock_recv_ts_and_drops(msg, sk, skb);
2063 	if (sctp_ulpevent_is_notification(event)) {
2064 		msg->msg_flags |= MSG_NOTIFICATION;
2065 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2066 	} else {
2067 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2068 	}
2069 
2070 	/* Check if we allow SCTP_SNDRCVINFO. */
2071 	if (sp->subscribe.sctp_data_io_event)
2072 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2073 #if 0
2074 	/* FIXME: we should be calling IP/IPv6 layers.  */
2075 	if (sk->sk_protinfo.af_inet.cmsg_flags)
2076 		ip_cmsg_recv(msg, skb);
2077 #endif
2078 
2079 	err = copied;
2080 
2081 	/* If skb's length exceeds the user's buffer, update the skb and
2082 	 * push it back to the receive_queue so that the next call to
2083 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2084 	 */
2085 	if (skb_len > copied) {
2086 		msg->msg_flags &= ~MSG_EOR;
2087 		if (flags & MSG_PEEK)
2088 			goto out_free;
2089 		sctp_skb_pull(skb, copied);
2090 		skb_queue_head(&sk->sk_receive_queue, skb);
2091 
2092 		/* When only partial message is copied to the user, increase
2093 		 * rwnd by that amount. If all the data in the skb is read,
2094 		 * rwnd is updated when the event is freed.
2095 		 */
2096 		if (!sctp_ulpevent_is_notification(event))
2097 			sctp_assoc_rwnd_increase(event->asoc, copied);
2098 		goto out;
2099 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2100 		   (event->msg_flags & MSG_EOR))
2101 		msg->msg_flags |= MSG_EOR;
2102 	else
2103 		msg->msg_flags &= ~MSG_EOR;
2104 
2105 out_free:
2106 	if (flags & MSG_PEEK) {
2107 		/* Release the skb reference acquired after peeking the skb in
2108 		 * sctp_skb_recv_datagram().
2109 		 */
2110 		kfree_skb(skb);
2111 	} else {
2112 		/* Free the event which includes releasing the reference to
2113 		 * the owner of the skb, freeing the skb and updating the
2114 		 * rwnd.
2115 		 */
2116 		sctp_ulpevent_free(event);
2117 	}
2118 out:
2119 	sctp_release_sock(sk);
2120 	return err;
2121 }
2122 
2123 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2124  *
2125  * This option is a on/off flag.  If enabled no SCTP message
2126  * fragmentation will be performed.  Instead if a message being sent
2127  * exceeds the current PMTU size, the message will NOT be sent and
2128  * instead a error will be indicated to the user.
2129  */
2130 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2131 					     char __user *optval,
2132 					     unsigned int optlen)
2133 {
2134 	int val;
2135 
2136 	if (optlen < sizeof(int))
2137 		return -EINVAL;
2138 
2139 	if (get_user(val, (int __user *)optval))
2140 		return -EFAULT;
2141 
2142 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2143 
2144 	return 0;
2145 }
2146 
2147 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2148 				  unsigned int optlen)
2149 {
2150 	struct sctp_association *asoc;
2151 	struct sctp_ulpevent *event;
2152 
2153 	if (optlen > sizeof(struct sctp_event_subscribe))
2154 		return -EINVAL;
2155 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2156 		return -EFAULT;
2157 
2158 	/*
2159 	 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2160 	 * if there is no data to be sent or retransmit, the stack will
2161 	 * immediately send up this notification.
2162 	 */
2163 	if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2164 				       &sctp_sk(sk)->subscribe)) {
2165 		asoc = sctp_id2assoc(sk, 0);
2166 
2167 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2168 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2169 					GFP_ATOMIC);
2170 			if (!event)
2171 				return -ENOMEM;
2172 
2173 			sctp_ulpq_tail_event(&asoc->ulpq, event);
2174 		}
2175 	}
2176 
2177 	return 0;
2178 }
2179 
2180 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2181  *
2182  * This socket option is applicable to the UDP-style socket only.  When
2183  * set it will cause associations that are idle for more than the
2184  * specified number of seconds to automatically close.  An association
2185  * being idle is defined an association that has NOT sent or received
2186  * user data.  The special value of '0' indicates that no automatic
2187  * close of any associations should be performed.  The option expects an
2188  * integer defining the number of seconds of idle time before an
2189  * association is closed.
2190  */
2191 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2192 				     unsigned int optlen)
2193 {
2194 	struct sctp_sock *sp = sctp_sk(sk);
2195 
2196 	/* Applicable to UDP-style socket only */
2197 	if (sctp_style(sk, TCP))
2198 		return -EOPNOTSUPP;
2199 	if (optlen != sizeof(int))
2200 		return -EINVAL;
2201 	if (copy_from_user(&sp->autoclose, optval, optlen))
2202 		return -EFAULT;
2203 	/* make sure it won't exceed MAX_SCHEDULE_TIMEOUT */
2204 	sp->autoclose = min_t(long, sp->autoclose, MAX_SCHEDULE_TIMEOUT / HZ);
2205 
2206 	return 0;
2207 }
2208 
2209 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2210  *
2211  * Applications can enable or disable heartbeats for any peer address of
2212  * an association, modify an address's heartbeat interval, force a
2213  * heartbeat to be sent immediately, and adjust the address's maximum
2214  * number of retransmissions sent before an address is considered
2215  * unreachable.  The following structure is used to access and modify an
2216  * address's parameters:
2217  *
2218  *  struct sctp_paddrparams {
2219  *     sctp_assoc_t            spp_assoc_id;
2220  *     struct sockaddr_storage spp_address;
2221  *     uint32_t                spp_hbinterval;
2222  *     uint16_t                spp_pathmaxrxt;
2223  *     uint32_t                spp_pathmtu;
2224  *     uint32_t                spp_sackdelay;
2225  *     uint32_t                spp_flags;
2226  * };
2227  *
2228  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2229  *                     application, and identifies the association for
2230  *                     this query.
2231  *   spp_address     - This specifies which address is of interest.
2232  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2233  *                     in milliseconds.  If a  value of zero
2234  *                     is present in this field then no changes are to
2235  *                     be made to this parameter.
2236  *   spp_pathmaxrxt  - This contains the maximum number of
2237  *                     retransmissions before this address shall be
2238  *                     considered unreachable. If a  value of zero
2239  *                     is present in this field then no changes are to
2240  *                     be made to this parameter.
2241  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2242  *                     specified here will be the "fixed" path mtu.
2243  *                     Note that if the spp_address field is empty
2244  *                     then all associations on this address will
2245  *                     have this fixed path mtu set upon them.
2246  *
2247  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2248  *                     the number of milliseconds that sacks will be delayed
2249  *                     for. This value will apply to all addresses of an
2250  *                     association if the spp_address field is empty. Note
2251  *                     also, that if delayed sack is enabled and this
2252  *                     value is set to 0, no change is made to the last
2253  *                     recorded delayed sack timer value.
2254  *
2255  *   spp_flags       - These flags are used to control various features
2256  *                     on an association. The flag field may contain
2257  *                     zero or more of the following options.
2258  *
2259  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2260  *                     specified address. Note that if the address
2261  *                     field is empty all addresses for the association
2262  *                     have heartbeats enabled upon them.
2263  *
2264  *                     SPP_HB_DISABLE - Disable heartbeats on the
2265  *                     speicifed address. Note that if the address
2266  *                     field is empty all addresses for the association
2267  *                     will have their heartbeats disabled. Note also
2268  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2269  *                     mutually exclusive, only one of these two should
2270  *                     be specified. Enabling both fields will have
2271  *                     undetermined results.
2272  *
2273  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2274  *                     to be made immediately.
2275  *
2276  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2277  *                     heartbeat delayis to be set to the value of 0
2278  *                     milliseconds.
2279  *
2280  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2281  *                     discovery upon the specified address. Note that
2282  *                     if the address feild is empty then all addresses
2283  *                     on the association are effected.
2284  *
2285  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2286  *                     discovery upon the specified address. Note that
2287  *                     if the address feild is empty then all addresses
2288  *                     on the association are effected. Not also that
2289  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2290  *                     exclusive. Enabling both will have undetermined
2291  *                     results.
2292  *
2293  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2294  *                     on delayed sack. The time specified in spp_sackdelay
2295  *                     is used to specify the sack delay for this address. Note
2296  *                     that if spp_address is empty then all addresses will
2297  *                     enable delayed sack and take on the sack delay
2298  *                     value specified in spp_sackdelay.
2299  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2300  *                     off delayed sack. If the spp_address field is blank then
2301  *                     delayed sack is disabled for the entire association. Note
2302  *                     also that this field is mutually exclusive to
2303  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2304  *                     results.
2305  */
2306 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2307 				       struct sctp_transport   *trans,
2308 				       struct sctp_association *asoc,
2309 				       struct sctp_sock        *sp,
2310 				       int                      hb_change,
2311 				       int                      pmtud_change,
2312 				       int                      sackdelay_change)
2313 {
2314 	int error;
2315 
2316 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2317 		error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2318 		if (error)
2319 			return error;
2320 	}
2321 
2322 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2323 	 * this field is ignored.  Note also that a value of zero indicates
2324 	 * the current setting should be left unchanged.
2325 	 */
2326 	if (params->spp_flags & SPP_HB_ENABLE) {
2327 
2328 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2329 		 * set.  This lets us use 0 value when this flag
2330 		 * is set.
2331 		 */
2332 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2333 			params->spp_hbinterval = 0;
2334 
2335 		if (params->spp_hbinterval ||
2336 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2337 			if (trans) {
2338 				trans->hbinterval =
2339 				    msecs_to_jiffies(params->spp_hbinterval);
2340 			} else if (asoc) {
2341 				asoc->hbinterval =
2342 				    msecs_to_jiffies(params->spp_hbinterval);
2343 			} else {
2344 				sp->hbinterval = params->spp_hbinterval;
2345 			}
2346 		}
2347 	}
2348 
2349 	if (hb_change) {
2350 		if (trans) {
2351 			trans->param_flags =
2352 				(trans->param_flags & ~SPP_HB) | hb_change;
2353 		} else if (asoc) {
2354 			asoc->param_flags =
2355 				(asoc->param_flags & ~SPP_HB) | hb_change;
2356 		} else {
2357 			sp->param_flags =
2358 				(sp->param_flags & ~SPP_HB) | hb_change;
2359 		}
2360 	}
2361 
2362 	/* When Path MTU discovery is disabled the value specified here will
2363 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2364 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2365 	 * effect).
2366 	 */
2367 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2368 		if (trans) {
2369 			trans->pathmtu = params->spp_pathmtu;
2370 			sctp_assoc_sync_pmtu(asoc);
2371 		} else if (asoc) {
2372 			asoc->pathmtu = params->spp_pathmtu;
2373 			sctp_frag_point(asoc, params->spp_pathmtu);
2374 		} else {
2375 			sp->pathmtu = params->spp_pathmtu;
2376 		}
2377 	}
2378 
2379 	if (pmtud_change) {
2380 		if (trans) {
2381 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2382 				(params->spp_flags & SPP_PMTUD_ENABLE);
2383 			trans->param_flags =
2384 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2385 			if (update) {
2386 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2387 				sctp_assoc_sync_pmtu(asoc);
2388 			}
2389 		} else if (asoc) {
2390 			asoc->param_flags =
2391 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2392 		} else {
2393 			sp->param_flags =
2394 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2395 		}
2396 	}
2397 
2398 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2399 	 * value of this field is ignored.  Note also that a value of zero
2400 	 * indicates the current setting should be left unchanged.
2401 	 */
2402 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2403 		if (trans) {
2404 			trans->sackdelay =
2405 				msecs_to_jiffies(params->spp_sackdelay);
2406 		} else if (asoc) {
2407 			asoc->sackdelay =
2408 				msecs_to_jiffies(params->spp_sackdelay);
2409 		} else {
2410 			sp->sackdelay = params->spp_sackdelay;
2411 		}
2412 	}
2413 
2414 	if (sackdelay_change) {
2415 		if (trans) {
2416 			trans->param_flags =
2417 				(trans->param_flags & ~SPP_SACKDELAY) |
2418 				sackdelay_change;
2419 		} else if (asoc) {
2420 			asoc->param_flags =
2421 				(asoc->param_flags & ~SPP_SACKDELAY) |
2422 				sackdelay_change;
2423 		} else {
2424 			sp->param_flags =
2425 				(sp->param_flags & ~SPP_SACKDELAY) |
2426 				sackdelay_change;
2427 		}
2428 	}
2429 
2430 	/* Note that a value of zero indicates the current setting should be
2431 	   left unchanged.
2432 	 */
2433 	if (params->spp_pathmaxrxt) {
2434 		if (trans) {
2435 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2436 		} else if (asoc) {
2437 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2438 		} else {
2439 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2440 		}
2441 	}
2442 
2443 	return 0;
2444 }
2445 
2446 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2447 					    char __user *optval,
2448 					    unsigned int optlen)
2449 {
2450 	struct sctp_paddrparams  params;
2451 	struct sctp_transport   *trans = NULL;
2452 	struct sctp_association *asoc = NULL;
2453 	struct sctp_sock        *sp = sctp_sk(sk);
2454 	int error;
2455 	int hb_change, pmtud_change, sackdelay_change;
2456 
2457 	if (optlen != sizeof(struct sctp_paddrparams))
2458 		return - EINVAL;
2459 
2460 	if (copy_from_user(&params, optval, optlen))
2461 		return -EFAULT;
2462 
2463 	/* Validate flags and value parameters. */
2464 	hb_change        = params.spp_flags & SPP_HB;
2465 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2466 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2467 
2468 	if (hb_change        == SPP_HB ||
2469 	    pmtud_change     == SPP_PMTUD ||
2470 	    sackdelay_change == SPP_SACKDELAY ||
2471 	    params.spp_sackdelay > 500 ||
2472 	    (params.spp_pathmtu &&
2473 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2474 		return -EINVAL;
2475 
2476 	/* If an address other than INADDR_ANY is specified, and
2477 	 * no transport is found, then the request is invalid.
2478 	 */
2479 	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
2480 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2481 					       params.spp_assoc_id);
2482 		if (!trans)
2483 			return -EINVAL;
2484 	}
2485 
2486 	/* Get association, if assoc_id != 0 and the socket is a one
2487 	 * to many style socket, and an association was not found, then
2488 	 * the id was invalid.
2489 	 */
2490 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2491 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2492 		return -EINVAL;
2493 
2494 	/* Heartbeat demand can only be sent on a transport or
2495 	 * association, but not a socket.
2496 	 */
2497 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2498 		return -EINVAL;
2499 
2500 	/* Process parameters. */
2501 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2502 					    hb_change, pmtud_change,
2503 					    sackdelay_change);
2504 
2505 	if (error)
2506 		return error;
2507 
2508 	/* If changes are for association, also apply parameters to each
2509 	 * transport.
2510 	 */
2511 	if (!trans && asoc) {
2512 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2513 				transports) {
2514 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2515 						    hb_change, pmtud_change,
2516 						    sackdelay_change);
2517 		}
2518 	}
2519 
2520 	return 0;
2521 }
2522 
2523 /*
2524  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2525  *
2526  * This option will effect the way delayed acks are performed.  This
2527  * option allows you to get or set the delayed ack time, in
2528  * milliseconds.  It also allows changing the delayed ack frequency.
2529  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2530  * the assoc_id is 0, then this sets or gets the endpoints default
2531  * values.  If the assoc_id field is non-zero, then the set or get
2532  * effects the specified association for the one to many model (the
2533  * assoc_id field is ignored by the one to one model).  Note that if
2534  * sack_delay or sack_freq are 0 when setting this option, then the
2535  * current values will remain unchanged.
2536  *
2537  * struct sctp_sack_info {
2538  *     sctp_assoc_t            sack_assoc_id;
2539  *     uint32_t                sack_delay;
2540  *     uint32_t                sack_freq;
2541  * };
2542  *
2543  * sack_assoc_id -  This parameter, indicates which association the user
2544  *    is performing an action upon.  Note that if this field's value is
2545  *    zero then the endpoints default value is changed (effecting future
2546  *    associations only).
2547  *
2548  * sack_delay -  This parameter contains the number of milliseconds that
2549  *    the user is requesting the delayed ACK timer be set to.  Note that
2550  *    this value is defined in the standard to be between 200 and 500
2551  *    milliseconds.
2552  *
2553  * sack_freq -  This parameter contains the number of packets that must
2554  *    be received before a sack is sent without waiting for the delay
2555  *    timer to expire.  The default value for this is 2, setting this
2556  *    value to 1 will disable the delayed sack algorithm.
2557  */
2558 
2559 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2560 				       char __user *optval, unsigned int optlen)
2561 {
2562 	struct sctp_sack_info    params;
2563 	struct sctp_transport   *trans = NULL;
2564 	struct sctp_association *asoc = NULL;
2565 	struct sctp_sock        *sp = sctp_sk(sk);
2566 
2567 	if (optlen == sizeof(struct sctp_sack_info)) {
2568 		if (copy_from_user(&params, optval, optlen))
2569 			return -EFAULT;
2570 
2571 		if (params.sack_delay == 0 && params.sack_freq == 0)
2572 			return 0;
2573 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2574 		pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
2575 		pr_warn("Use struct sctp_sack_info instead\n");
2576 		if (copy_from_user(&params, optval, optlen))
2577 			return -EFAULT;
2578 
2579 		if (params.sack_delay == 0)
2580 			params.sack_freq = 1;
2581 		else
2582 			params.sack_freq = 0;
2583 	} else
2584 		return - EINVAL;
2585 
2586 	/* Validate value parameter. */
2587 	if (params.sack_delay > 500)
2588 		return -EINVAL;
2589 
2590 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2591 	 * to many style socket, and an association was not found, then
2592 	 * the id was invalid.
2593 	 */
2594 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2595 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2596 		return -EINVAL;
2597 
2598 	if (params.sack_delay) {
2599 		if (asoc) {
2600 			asoc->sackdelay =
2601 				msecs_to_jiffies(params.sack_delay);
2602 			asoc->param_flags =
2603 				(asoc->param_flags & ~SPP_SACKDELAY) |
2604 				SPP_SACKDELAY_ENABLE;
2605 		} else {
2606 			sp->sackdelay = params.sack_delay;
2607 			sp->param_flags =
2608 				(sp->param_flags & ~SPP_SACKDELAY) |
2609 				SPP_SACKDELAY_ENABLE;
2610 		}
2611 	}
2612 
2613 	if (params.sack_freq == 1) {
2614 		if (asoc) {
2615 			asoc->param_flags =
2616 				(asoc->param_flags & ~SPP_SACKDELAY) |
2617 				SPP_SACKDELAY_DISABLE;
2618 		} else {
2619 			sp->param_flags =
2620 				(sp->param_flags & ~SPP_SACKDELAY) |
2621 				SPP_SACKDELAY_DISABLE;
2622 		}
2623 	} else if (params.sack_freq > 1) {
2624 		if (asoc) {
2625 			asoc->sackfreq = params.sack_freq;
2626 			asoc->param_flags =
2627 				(asoc->param_flags & ~SPP_SACKDELAY) |
2628 				SPP_SACKDELAY_ENABLE;
2629 		} else {
2630 			sp->sackfreq = params.sack_freq;
2631 			sp->param_flags =
2632 				(sp->param_flags & ~SPP_SACKDELAY) |
2633 				SPP_SACKDELAY_ENABLE;
2634 		}
2635 	}
2636 
2637 	/* If change is for association, also apply to each transport. */
2638 	if (asoc) {
2639 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2640 				transports) {
2641 			if (params.sack_delay) {
2642 				trans->sackdelay =
2643 					msecs_to_jiffies(params.sack_delay);
2644 				trans->param_flags =
2645 					(trans->param_flags & ~SPP_SACKDELAY) |
2646 					SPP_SACKDELAY_ENABLE;
2647 			}
2648 			if (params.sack_freq == 1) {
2649 				trans->param_flags =
2650 					(trans->param_flags & ~SPP_SACKDELAY) |
2651 					SPP_SACKDELAY_DISABLE;
2652 			} else if (params.sack_freq > 1) {
2653 				trans->sackfreq = params.sack_freq;
2654 				trans->param_flags =
2655 					(trans->param_flags & ~SPP_SACKDELAY) |
2656 					SPP_SACKDELAY_ENABLE;
2657 			}
2658 		}
2659 	}
2660 
2661 	return 0;
2662 }
2663 
2664 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2665  *
2666  * Applications can specify protocol parameters for the default association
2667  * initialization.  The option name argument to setsockopt() and getsockopt()
2668  * is SCTP_INITMSG.
2669  *
2670  * Setting initialization parameters is effective only on an unconnected
2671  * socket (for UDP-style sockets only future associations are effected
2672  * by the change).  With TCP-style sockets, this option is inherited by
2673  * sockets derived from a listener socket.
2674  */
2675 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2676 {
2677 	struct sctp_initmsg sinit;
2678 	struct sctp_sock *sp = sctp_sk(sk);
2679 
2680 	if (optlen != sizeof(struct sctp_initmsg))
2681 		return -EINVAL;
2682 	if (copy_from_user(&sinit, optval, optlen))
2683 		return -EFAULT;
2684 
2685 	if (sinit.sinit_num_ostreams)
2686 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2687 	if (sinit.sinit_max_instreams)
2688 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2689 	if (sinit.sinit_max_attempts)
2690 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2691 	if (sinit.sinit_max_init_timeo)
2692 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2693 
2694 	return 0;
2695 }
2696 
2697 /*
2698  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2699  *
2700  *   Applications that wish to use the sendto() system call may wish to
2701  *   specify a default set of parameters that would normally be supplied
2702  *   through the inclusion of ancillary data.  This socket option allows
2703  *   such an application to set the default sctp_sndrcvinfo structure.
2704  *   The application that wishes to use this socket option simply passes
2705  *   in to this call the sctp_sndrcvinfo structure defined in Section
2706  *   5.2.2) The input parameters accepted by this call include
2707  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2708  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2709  *   to this call if the caller is using the UDP model.
2710  */
2711 static int sctp_setsockopt_default_send_param(struct sock *sk,
2712 					      char __user *optval,
2713 					      unsigned int optlen)
2714 {
2715 	struct sctp_sndrcvinfo info;
2716 	struct sctp_association *asoc;
2717 	struct sctp_sock *sp = sctp_sk(sk);
2718 
2719 	if (optlen != sizeof(struct sctp_sndrcvinfo))
2720 		return -EINVAL;
2721 	if (copy_from_user(&info, optval, optlen))
2722 		return -EFAULT;
2723 
2724 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2725 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2726 		return -EINVAL;
2727 
2728 	if (asoc) {
2729 		asoc->default_stream = info.sinfo_stream;
2730 		asoc->default_flags = info.sinfo_flags;
2731 		asoc->default_ppid = info.sinfo_ppid;
2732 		asoc->default_context = info.sinfo_context;
2733 		asoc->default_timetolive = info.sinfo_timetolive;
2734 	} else {
2735 		sp->default_stream = info.sinfo_stream;
2736 		sp->default_flags = info.sinfo_flags;
2737 		sp->default_ppid = info.sinfo_ppid;
2738 		sp->default_context = info.sinfo_context;
2739 		sp->default_timetolive = info.sinfo_timetolive;
2740 	}
2741 
2742 	return 0;
2743 }
2744 
2745 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2746  *
2747  * Requests that the local SCTP stack use the enclosed peer address as
2748  * the association primary.  The enclosed address must be one of the
2749  * association peer's addresses.
2750  */
2751 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2752 					unsigned int optlen)
2753 {
2754 	struct sctp_prim prim;
2755 	struct sctp_transport *trans;
2756 
2757 	if (optlen != sizeof(struct sctp_prim))
2758 		return -EINVAL;
2759 
2760 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2761 		return -EFAULT;
2762 
2763 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2764 	if (!trans)
2765 		return -EINVAL;
2766 
2767 	sctp_assoc_set_primary(trans->asoc, trans);
2768 
2769 	return 0;
2770 }
2771 
2772 /*
2773  * 7.1.5 SCTP_NODELAY
2774  *
2775  * Turn on/off any Nagle-like algorithm.  This means that packets are
2776  * generally sent as soon as possible and no unnecessary delays are
2777  * introduced, at the cost of more packets in the network.  Expects an
2778  *  integer boolean flag.
2779  */
2780 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2781 				   unsigned int optlen)
2782 {
2783 	int val;
2784 
2785 	if (optlen < sizeof(int))
2786 		return -EINVAL;
2787 	if (get_user(val, (int __user *)optval))
2788 		return -EFAULT;
2789 
2790 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2791 	return 0;
2792 }
2793 
2794 /*
2795  *
2796  * 7.1.1 SCTP_RTOINFO
2797  *
2798  * The protocol parameters used to initialize and bound retransmission
2799  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2800  * and modify these parameters.
2801  * All parameters are time values, in milliseconds.  A value of 0, when
2802  * modifying the parameters, indicates that the current value should not
2803  * be changed.
2804  *
2805  */
2806 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2807 {
2808 	struct sctp_rtoinfo rtoinfo;
2809 	struct sctp_association *asoc;
2810 
2811 	if (optlen != sizeof (struct sctp_rtoinfo))
2812 		return -EINVAL;
2813 
2814 	if (copy_from_user(&rtoinfo, optval, optlen))
2815 		return -EFAULT;
2816 
2817 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2818 
2819 	/* Set the values to the specific association */
2820 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2821 		return -EINVAL;
2822 
2823 	if (asoc) {
2824 		if (rtoinfo.srto_initial != 0)
2825 			asoc->rto_initial =
2826 				msecs_to_jiffies(rtoinfo.srto_initial);
2827 		if (rtoinfo.srto_max != 0)
2828 			asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2829 		if (rtoinfo.srto_min != 0)
2830 			asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2831 	} else {
2832 		/* If there is no association or the association-id = 0
2833 		 * set the values to the endpoint.
2834 		 */
2835 		struct sctp_sock *sp = sctp_sk(sk);
2836 
2837 		if (rtoinfo.srto_initial != 0)
2838 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2839 		if (rtoinfo.srto_max != 0)
2840 			sp->rtoinfo.srto_max = rtoinfo.srto_max;
2841 		if (rtoinfo.srto_min != 0)
2842 			sp->rtoinfo.srto_min = rtoinfo.srto_min;
2843 	}
2844 
2845 	return 0;
2846 }
2847 
2848 /*
2849  *
2850  * 7.1.2 SCTP_ASSOCINFO
2851  *
2852  * This option is used to tune the maximum retransmission attempts
2853  * of the association.
2854  * Returns an error if the new association retransmission value is
2855  * greater than the sum of the retransmission value  of the peer.
2856  * See [SCTP] for more information.
2857  *
2858  */
2859 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2860 {
2861 
2862 	struct sctp_assocparams assocparams;
2863 	struct sctp_association *asoc;
2864 
2865 	if (optlen != sizeof(struct sctp_assocparams))
2866 		return -EINVAL;
2867 	if (copy_from_user(&assocparams, optval, optlen))
2868 		return -EFAULT;
2869 
2870 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2871 
2872 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2873 		return -EINVAL;
2874 
2875 	/* Set the values to the specific association */
2876 	if (asoc) {
2877 		if (assocparams.sasoc_asocmaxrxt != 0) {
2878 			__u32 path_sum = 0;
2879 			int   paths = 0;
2880 			struct sctp_transport *peer_addr;
2881 
2882 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2883 					transports) {
2884 				path_sum += peer_addr->pathmaxrxt;
2885 				paths++;
2886 			}
2887 
2888 			/* Only validate asocmaxrxt if we have more than
2889 			 * one path/transport.  We do this because path
2890 			 * retransmissions are only counted when we have more
2891 			 * then one path.
2892 			 */
2893 			if (paths > 1 &&
2894 			    assocparams.sasoc_asocmaxrxt > path_sum)
2895 				return -EINVAL;
2896 
2897 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2898 		}
2899 
2900 		if (assocparams.sasoc_cookie_life != 0) {
2901 			asoc->cookie_life.tv_sec =
2902 					assocparams.sasoc_cookie_life / 1000;
2903 			asoc->cookie_life.tv_usec =
2904 					(assocparams.sasoc_cookie_life % 1000)
2905 					* 1000;
2906 		}
2907 	} else {
2908 		/* Set the values to the endpoint */
2909 		struct sctp_sock *sp = sctp_sk(sk);
2910 
2911 		if (assocparams.sasoc_asocmaxrxt != 0)
2912 			sp->assocparams.sasoc_asocmaxrxt =
2913 						assocparams.sasoc_asocmaxrxt;
2914 		if (assocparams.sasoc_cookie_life != 0)
2915 			sp->assocparams.sasoc_cookie_life =
2916 						assocparams.sasoc_cookie_life;
2917 	}
2918 	return 0;
2919 }
2920 
2921 /*
2922  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2923  *
2924  * This socket option is a boolean flag which turns on or off mapped V4
2925  * addresses.  If this option is turned on and the socket is type
2926  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2927  * If this option is turned off, then no mapping will be done of V4
2928  * addresses and a user will receive both PF_INET6 and PF_INET type
2929  * addresses on the socket.
2930  */
2931 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
2932 {
2933 	int val;
2934 	struct sctp_sock *sp = sctp_sk(sk);
2935 
2936 	if (optlen < sizeof(int))
2937 		return -EINVAL;
2938 	if (get_user(val, (int __user *)optval))
2939 		return -EFAULT;
2940 	if (val)
2941 		sp->v4mapped = 1;
2942 	else
2943 		sp->v4mapped = 0;
2944 
2945 	return 0;
2946 }
2947 
2948 /*
2949  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
2950  * This option will get or set the maximum size to put in any outgoing
2951  * SCTP DATA chunk.  If a message is larger than this size it will be
2952  * fragmented by SCTP into the specified size.  Note that the underlying
2953  * SCTP implementation may fragment into smaller sized chunks when the
2954  * PMTU of the underlying association is smaller than the value set by
2955  * the user.  The default value for this option is '0' which indicates
2956  * the user is NOT limiting fragmentation and only the PMTU will effect
2957  * SCTP's choice of DATA chunk size.  Note also that values set larger
2958  * than the maximum size of an IP datagram will effectively let SCTP
2959  * control fragmentation (i.e. the same as setting this option to 0).
2960  *
2961  * The following structure is used to access and modify this parameter:
2962  *
2963  * struct sctp_assoc_value {
2964  *   sctp_assoc_t assoc_id;
2965  *   uint32_t assoc_value;
2966  * };
2967  *
2968  * assoc_id:  This parameter is ignored for one-to-one style sockets.
2969  *    For one-to-many style sockets this parameter indicates which
2970  *    association the user is performing an action upon.  Note that if
2971  *    this field's value is zero then the endpoints default value is
2972  *    changed (effecting future associations only).
2973  * assoc_value:  This parameter specifies the maximum size in bytes.
2974  */
2975 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
2976 {
2977 	struct sctp_assoc_value params;
2978 	struct sctp_association *asoc;
2979 	struct sctp_sock *sp = sctp_sk(sk);
2980 	int val;
2981 
2982 	if (optlen == sizeof(int)) {
2983 		pr_warn("Use of int in maxseg socket option deprecated\n");
2984 		pr_warn("Use struct sctp_assoc_value instead\n");
2985 		if (copy_from_user(&val, optval, optlen))
2986 			return -EFAULT;
2987 		params.assoc_id = 0;
2988 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2989 		if (copy_from_user(&params, optval, optlen))
2990 			return -EFAULT;
2991 		val = params.assoc_value;
2992 	} else
2993 		return -EINVAL;
2994 
2995 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2996 		return -EINVAL;
2997 
2998 	asoc = sctp_id2assoc(sk, params.assoc_id);
2999 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3000 		return -EINVAL;
3001 
3002 	if (asoc) {
3003 		if (val == 0) {
3004 			val = asoc->pathmtu;
3005 			val -= sp->pf->af->net_header_len;
3006 			val -= sizeof(struct sctphdr) +
3007 					sizeof(struct sctp_data_chunk);
3008 		}
3009 		asoc->user_frag = val;
3010 		asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3011 	} else {
3012 		sp->user_frag = val;
3013 	}
3014 
3015 	return 0;
3016 }
3017 
3018 
3019 /*
3020  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3021  *
3022  *   Requests that the peer mark the enclosed address as the association
3023  *   primary. The enclosed address must be one of the association's
3024  *   locally bound addresses. The following structure is used to make a
3025  *   set primary request:
3026  */
3027 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3028 					     unsigned int optlen)
3029 {
3030 	struct sctp_sock	*sp;
3031 	struct sctp_association	*asoc = NULL;
3032 	struct sctp_setpeerprim	prim;
3033 	struct sctp_chunk	*chunk;
3034 	struct sctp_af		*af;
3035 	int 			err;
3036 
3037 	sp = sctp_sk(sk);
3038 
3039 	if (!sctp_addip_enable)
3040 		return -EPERM;
3041 
3042 	if (optlen != sizeof(struct sctp_setpeerprim))
3043 		return -EINVAL;
3044 
3045 	if (copy_from_user(&prim, optval, optlen))
3046 		return -EFAULT;
3047 
3048 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3049 	if (!asoc)
3050 		return -EINVAL;
3051 
3052 	if (!asoc->peer.asconf_capable)
3053 		return -EPERM;
3054 
3055 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3056 		return -EPERM;
3057 
3058 	if (!sctp_state(asoc, ESTABLISHED))
3059 		return -ENOTCONN;
3060 
3061 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3062 	if (!af)
3063 		return -EINVAL;
3064 
3065 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3066 		return -EADDRNOTAVAIL;
3067 
3068 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3069 		return -EADDRNOTAVAIL;
3070 
3071 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3072 	chunk = sctp_make_asconf_set_prim(asoc,
3073 					  (union sctp_addr *)&prim.sspp_addr);
3074 	if (!chunk)
3075 		return -ENOMEM;
3076 
3077 	err = sctp_send_asconf(asoc, chunk);
3078 
3079 	SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
3080 
3081 	return err;
3082 }
3083 
3084 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3085 					    unsigned int optlen)
3086 {
3087 	struct sctp_setadaptation adaptation;
3088 
3089 	if (optlen != sizeof(struct sctp_setadaptation))
3090 		return -EINVAL;
3091 	if (copy_from_user(&adaptation, optval, optlen))
3092 		return -EFAULT;
3093 
3094 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3095 
3096 	return 0;
3097 }
3098 
3099 /*
3100  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3101  *
3102  * The context field in the sctp_sndrcvinfo structure is normally only
3103  * used when a failed message is retrieved holding the value that was
3104  * sent down on the actual send call.  This option allows the setting of
3105  * a default context on an association basis that will be received on
3106  * reading messages from the peer.  This is especially helpful in the
3107  * one-2-many model for an application to keep some reference to an
3108  * internal state machine that is processing messages on the
3109  * association.  Note that the setting of this value only effects
3110  * received messages from the peer and does not effect the value that is
3111  * saved with outbound messages.
3112  */
3113 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3114 				   unsigned int optlen)
3115 {
3116 	struct sctp_assoc_value params;
3117 	struct sctp_sock *sp;
3118 	struct sctp_association *asoc;
3119 
3120 	if (optlen != sizeof(struct sctp_assoc_value))
3121 		return -EINVAL;
3122 	if (copy_from_user(&params, optval, optlen))
3123 		return -EFAULT;
3124 
3125 	sp = sctp_sk(sk);
3126 
3127 	if (params.assoc_id != 0) {
3128 		asoc = sctp_id2assoc(sk, params.assoc_id);
3129 		if (!asoc)
3130 			return -EINVAL;
3131 		asoc->default_rcv_context = params.assoc_value;
3132 	} else {
3133 		sp->default_rcv_context = params.assoc_value;
3134 	}
3135 
3136 	return 0;
3137 }
3138 
3139 /*
3140  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3141  *
3142  * This options will at a minimum specify if the implementation is doing
3143  * fragmented interleave.  Fragmented interleave, for a one to many
3144  * socket, is when subsequent calls to receive a message may return
3145  * parts of messages from different associations.  Some implementations
3146  * may allow you to turn this value on or off.  If so, when turned off,
3147  * no fragment interleave will occur (which will cause a head of line
3148  * blocking amongst multiple associations sharing the same one to many
3149  * socket).  When this option is turned on, then each receive call may
3150  * come from a different association (thus the user must receive data
3151  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3152  * association each receive belongs to.
3153  *
3154  * This option takes a boolean value.  A non-zero value indicates that
3155  * fragmented interleave is on.  A value of zero indicates that
3156  * fragmented interleave is off.
3157  *
3158  * Note that it is important that an implementation that allows this
3159  * option to be turned on, have it off by default.  Otherwise an unaware
3160  * application using the one to many model may become confused and act
3161  * incorrectly.
3162  */
3163 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3164 					       char __user *optval,
3165 					       unsigned int optlen)
3166 {
3167 	int val;
3168 
3169 	if (optlen != sizeof(int))
3170 		return -EINVAL;
3171 	if (get_user(val, (int __user *)optval))
3172 		return -EFAULT;
3173 
3174 	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3175 
3176 	return 0;
3177 }
3178 
3179 /*
3180  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3181  *       (SCTP_PARTIAL_DELIVERY_POINT)
3182  *
3183  * This option will set or get the SCTP partial delivery point.  This
3184  * point is the size of a message where the partial delivery API will be
3185  * invoked to help free up rwnd space for the peer.  Setting this to a
3186  * lower value will cause partial deliveries to happen more often.  The
3187  * calls argument is an integer that sets or gets the partial delivery
3188  * point.  Note also that the call will fail if the user attempts to set
3189  * this value larger than the socket receive buffer size.
3190  *
3191  * Note that any single message having a length smaller than or equal to
3192  * the SCTP partial delivery point will be delivered in one single read
3193  * call as long as the user provided buffer is large enough to hold the
3194  * message.
3195  */
3196 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3197 						  char __user *optval,
3198 						  unsigned int optlen)
3199 {
3200 	u32 val;
3201 
3202 	if (optlen != sizeof(u32))
3203 		return -EINVAL;
3204 	if (get_user(val, (int __user *)optval))
3205 		return -EFAULT;
3206 
3207 	/* Note: We double the receive buffer from what the user sets
3208 	 * it to be, also initial rwnd is based on rcvbuf/2.
3209 	 */
3210 	if (val > (sk->sk_rcvbuf >> 1))
3211 		return -EINVAL;
3212 
3213 	sctp_sk(sk)->pd_point = val;
3214 
3215 	return 0; /* is this the right error code? */
3216 }
3217 
3218 /*
3219  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3220  *
3221  * This option will allow a user to change the maximum burst of packets
3222  * that can be emitted by this association.  Note that the default value
3223  * is 4, and some implementations may restrict this setting so that it
3224  * can only be lowered.
3225  *
3226  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3227  * future associations inheriting the socket value.
3228  */
3229 static int sctp_setsockopt_maxburst(struct sock *sk,
3230 				    char __user *optval,
3231 				    unsigned int optlen)
3232 {
3233 	struct sctp_assoc_value params;
3234 	struct sctp_sock *sp;
3235 	struct sctp_association *asoc;
3236 	int val;
3237 	int assoc_id = 0;
3238 
3239 	if (optlen == sizeof(int)) {
3240 		pr_warn("Use of int in max_burst socket option deprecated\n");
3241 		pr_warn("Use struct sctp_assoc_value instead\n");
3242 		if (copy_from_user(&val, optval, optlen))
3243 			return -EFAULT;
3244 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3245 		if (copy_from_user(&params, optval, optlen))
3246 			return -EFAULT;
3247 		val = params.assoc_value;
3248 		assoc_id = params.assoc_id;
3249 	} else
3250 		return -EINVAL;
3251 
3252 	sp = sctp_sk(sk);
3253 
3254 	if (assoc_id != 0) {
3255 		asoc = sctp_id2assoc(sk, assoc_id);
3256 		if (!asoc)
3257 			return -EINVAL;
3258 		asoc->max_burst = val;
3259 	} else
3260 		sp->max_burst = val;
3261 
3262 	return 0;
3263 }
3264 
3265 /*
3266  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3267  *
3268  * This set option adds a chunk type that the user is requesting to be
3269  * received only in an authenticated way.  Changes to the list of chunks
3270  * will only effect future associations on the socket.
3271  */
3272 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3273 				      char __user *optval,
3274 				      unsigned int optlen)
3275 {
3276 	struct sctp_authchunk val;
3277 
3278 	if (!sctp_auth_enable)
3279 		return -EACCES;
3280 
3281 	if (optlen != sizeof(struct sctp_authchunk))
3282 		return -EINVAL;
3283 	if (copy_from_user(&val, optval, optlen))
3284 		return -EFAULT;
3285 
3286 	switch (val.sauth_chunk) {
3287 	case SCTP_CID_INIT:
3288 	case SCTP_CID_INIT_ACK:
3289 	case SCTP_CID_SHUTDOWN_COMPLETE:
3290 	case SCTP_CID_AUTH:
3291 		return -EINVAL;
3292 	}
3293 
3294 	/* add this chunk id to the endpoint */
3295 	return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3296 }
3297 
3298 /*
3299  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3300  *
3301  * This option gets or sets the list of HMAC algorithms that the local
3302  * endpoint requires the peer to use.
3303  */
3304 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3305 				      char __user *optval,
3306 				      unsigned int optlen)
3307 {
3308 	struct sctp_hmacalgo *hmacs;
3309 	u32 idents;
3310 	int err;
3311 
3312 	if (!sctp_auth_enable)
3313 		return -EACCES;
3314 
3315 	if (optlen < sizeof(struct sctp_hmacalgo))
3316 		return -EINVAL;
3317 
3318 	hmacs= memdup_user(optval, optlen);
3319 	if (IS_ERR(hmacs))
3320 		return PTR_ERR(hmacs);
3321 
3322 	idents = hmacs->shmac_num_idents;
3323 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3324 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3325 		err = -EINVAL;
3326 		goto out;
3327 	}
3328 
3329 	err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3330 out:
3331 	kfree(hmacs);
3332 	return err;
3333 }
3334 
3335 /*
3336  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3337  *
3338  * This option will set a shared secret key which is used to build an
3339  * association shared key.
3340  */
3341 static int sctp_setsockopt_auth_key(struct sock *sk,
3342 				    char __user *optval,
3343 				    unsigned int optlen)
3344 {
3345 	struct sctp_authkey *authkey;
3346 	struct sctp_association *asoc;
3347 	int ret;
3348 
3349 	if (!sctp_auth_enable)
3350 		return -EACCES;
3351 
3352 	if (optlen <= sizeof(struct sctp_authkey))
3353 		return -EINVAL;
3354 
3355 	authkey= memdup_user(optval, optlen);
3356 	if (IS_ERR(authkey))
3357 		return PTR_ERR(authkey);
3358 
3359 	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3360 		ret = -EINVAL;
3361 		goto out;
3362 	}
3363 
3364 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3365 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3366 		ret = -EINVAL;
3367 		goto out;
3368 	}
3369 
3370 	ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3371 out:
3372 	kfree(authkey);
3373 	return ret;
3374 }
3375 
3376 /*
3377  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3378  *
3379  * This option will get or set the active shared key to be used to build
3380  * the association shared key.
3381  */
3382 static int sctp_setsockopt_active_key(struct sock *sk,
3383 				      char __user *optval,
3384 				      unsigned int optlen)
3385 {
3386 	struct sctp_authkeyid val;
3387 	struct sctp_association *asoc;
3388 
3389 	if (!sctp_auth_enable)
3390 		return -EACCES;
3391 
3392 	if (optlen != sizeof(struct sctp_authkeyid))
3393 		return -EINVAL;
3394 	if (copy_from_user(&val, optval, optlen))
3395 		return -EFAULT;
3396 
3397 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3398 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3399 		return -EINVAL;
3400 
3401 	return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3402 					val.scact_keynumber);
3403 }
3404 
3405 /*
3406  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3407  *
3408  * This set option will delete a shared secret key from use.
3409  */
3410 static int sctp_setsockopt_del_key(struct sock *sk,
3411 				   char __user *optval,
3412 				   unsigned int optlen)
3413 {
3414 	struct sctp_authkeyid val;
3415 	struct sctp_association *asoc;
3416 
3417 	if (!sctp_auth_enable)
3418 		return -EACCES;
3419 
3420 	if (optlen != sizeof(struct sctp_authkeyid))
3421 		return -EINVAL;
3422 	if (copy_from_user(&val, optval, optlen))
3423 		return -EFAULT;
3424 
3425 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3426 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3427 		return -EINVAL;
3428 
3429 	return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3430 				    val.scact_keynumber);
3431 
3432 }
3433 
3434 /*
3435  * 8.1.23 SCTP_AUTO_ASCONF
3436  *
3437  * This option will enable or disable the use of the automatic generation of
3438  * ASCONF chunks to add and delete addresses to an existing association.  Note
3439  * that this option has two caveats namely: a) it only affects sockets that
3440  * are bound to all addresses available to the SCTP stack, and b) the system
3441  * administrator may have an overriding control that turns the ASCONF feature
3442  * off no matter what setting the socket option may have.
3443  * This option expects an integer boolean flag, where a non-zero value turns on
3444  * the option, and a zero value turns off the option.
3445  * Note. In this implementation, socket operation overrides default parameter
3446  * being set by sysctl as well as FreeBSD implementation
3447  */
3448 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3449 					unsigned int optlen)
3450 {
3451 	int val;
3452 	struct sctp_sock *sp = sctp_sk(sk);
3453 
3454 	if (optlen < sizeof(int))
3455 		return -EINVAL;
3456 	if (get_user(val, (int __user *)optval))
3457 		return -EFAULT;
3458 	if (!sctp_is_ep_boundall(sk) && val)
3459 		return -EINVAL;
3460 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3461 		return 0;
3462 
3463 	if (val == 0 && sp->do_auto_asconf) {
3464 		list_del(&sp->auto_asconf_list);
3465 		sp->do_auto_asconf = 0;
3466 	} else if (val && !sp->do_auto_asconf) {
3467 		list_add_tail(&sp->auto_asconf_list,
3468 		    &sctp_auto_asconf_splist);
3469 		sp->do_auto_asconf = 1;
3470 	}
3471 	return 0;
3472 }
3473 
3474 
3475 /* API 6.2 setsockopt(), getsockopt()
3476  *
3477  * Applications use setsockopt() and getsockopt() to set or retrieve
3478  * socket options.  Socket options are used to change the default
3479  * behavior of sockets calls.  They are described in Section 7.
3480  *
3481  * The syntax is:
3482  *
3483  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
3484  *                    int __user *optlen);
3485  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3486  *                    int optlen);
3487  *
3488  *   sd      - the socket descript.
3489  *   level   - set to IPPROTO_SCTP for all SCTP options.
3490  *   optname - the option name.
3491  *   optval  - the buffer to store the value of the option.
3492  *   optlen  - the size of the buffer.
3493  */
3494 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
3495 				char __user *optval, unsigned int optlen)
3496 {
3497 	int retval = 0;
3498 
3499 	SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
3500 			  sk, optname);
3501 
3502 	/* I can hardly begin to describe how wrong this is.  This is
3503 	 * so broken as to be worse than useless.  The API draft
3504 	 * REALLY is NOT helpful here...  I am not convinced that the
3505 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3506 	 * are at all well-founded.
3507 	 */
3508 	if (level != SOL_SCTP) {
3509 		struct sctp_af *af = sctp_sk(sk)->pf->af;
3510 		retval = af->setsockopt(sk, level, optname, optval, optlen);
3511 		goto out_nounlock;
3512 	}
3513 
3514 	sctp_lock_sock(sk);
3515 
3516 	switch (optname) {
3517 	case SCTP_SOCKOPT_BINDX_ADD:
3518 		/* 'optlen' is the size of the addresses buffer. */
3519 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3520 					       optlen, SCTP_BINDX_ADD_ADDR);
3521 		break;
3522 
3523 	case SCTP_SOCKOPT_BINDX_REM:
3524 		/* 'optlen' is the size of the addresses buffer. */
3525 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3526 					       optlen, SCTP_BINDX_REM_ADDR);
3527 		break;
3528 
3529 	case SCTP_SOCKOPT_CONNECTX_OLD:
3530 		/* 'optlen' is the size of the addresses buffer. */
3531 		retval = sctp_setsockopt_connectx_old(sk,
3532 					    (struct sockaddr __user *)optval,
3533 					    optlen);
3534 		break;
3535 
3536 	case SCTP_SOCKOPT_CONNECTX:
3537 		/* 'optlen' is the size of the addresses buffer. */
3538 		retval = sctp_setsockopt_connectx(sk,
3539 					    (struct sockaddr __user *)optval,
3540 					    optlen);
3541 		break;
3542 
3543 	case SCTP_DISABLE_FRAGMENTS:
3544 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3545 		break;
3546 
3547 	case SCTP_EVENTS:
3548 		retval = sctp_setsockopt_events(sk, optval, optlen);
3549 		break;
3550 
3551 	case SCTP_AUTOCLOSE:
3552 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3553 		break;
3554 
3555 	case SCTP_PEER_ADDR_PARAMS:
3556 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3557 		break;
3558 
3559 	case SCTP_DELAYED_SACK:
3560 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3561 		break;
3562 	case SCTP_PARTIAL_DELIVERY_POINT:
3563 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3564 		break;
3565 
3566 	case SCTP_INITMSG:
3567 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3568 		break;
3569 	case SCTP_DEFAULT_SEND_PARAM:
3570 		retval = sctp_setsockopt_default_send_param(sk, optval,
3571 							    optlen);
3572 		break;
3573 	case SCTP_PRIMARY_ADDR:
3574 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3575 		break;
3576 	case SCTP_SET_PEER_PRIMARY_ADDR:
3577 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3578 		break;
3579 	case SCTP_NODELAY:
3580 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3581 		break;
3582 	case SCTP_RTOINFO:
3583 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3584 		break;
3585 	case SCTP_ASSOCINFO:
3586 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3587 		break;
3588 	case SCTP_I_WANT_MAPPED_V4_ADDR:
3589 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3590 		break;
3591 	case SCTP_MAXSEG:
3592 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3593 		break;
3594 	case SCTP_ADAPTATION_LAYER:
3595 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3596 		break;
3597 	case SCTP_CONTEXT:
3598 		retval = sctp_setsockopt_context(sk, optval, optlen);
3599 		break;
3600 	case SCTP_FRAGMENT_INTERLEAVE:
3601 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3602 		break;
3603 	case SCTP_MAX_BURST:
3604 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3605 		break;
3606 	case SCTP_AUTH_CHUNK:
3607 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3608 		break;
3609 	case SCTP_HMAC_IDENT:
3610 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3611 		break;
3612 	case SCTP_AUTH_KEY:
3613 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3614 		break;
3615 	case SCTP_AUTH_ACTIVE_KEY:
3616 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
3617 		break;
3618 	case SCTP_AUTH_DELETE_KEY:
3619 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
3620 		break;
3621 	case SCTP_AUTO_ASCONF:
3622 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3623 		break;
3624 	default:
3625 		retval = -ENOPROTOOPT;
3626 		break;
3627 	}
3628 
3629 	sctp_release_sock(sk);
3630 
3631 out_nounlock:
3632 	return retval;
3633 }
3634 
3635 /* API 3.1.6 connect() - UDP Style Syntax
3636  *
3637  * An application may use the connect() call in the UDP model to initiate an
3638  * association without sending data.
3639  *
3640  * The syntax is:
3641  *
3642  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3643  *
3644  * sd: the socket descriptor to have a new association added to.
3645  *
3646  * nam: the address structure (either struct sockaddr_in or struct
3647  *    sockaddr_in6 defined in RFC2553 [7]).
3648  *
3649  * len: the size of the address.
3650  */
3651 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3652 			     int addr_len)
3653 {
3654 	int err = 0;
3655 	struct sctp_af *af;
3656 
3657 	sctp_lock_sock(sk);
3658 
3659 	SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3660 			  __func__, sk, addr, addr_len);
3661 
3662 	/* Validate addr_len before calling common connect/connectx routine. */
3663 	af = sctp_get_af_specific(addr->sa_family);
3664 	if (!af || addr_len < af->sockaddr_len) {
3665 		err = -EINVAL;
3666 	} else {
3667 		/* Pass correct addr len to common routine (so it knows there
3668 		 * is only one address being passed.
3669 		 */
3670 		err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3671 	}
3672 
3673 	sctp_release_sock(sk);
3674 	return err;
3675 }
3676 
3677 /* FIXME: Write comments. */
3678 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3679 {
3680 	return -EOPNOTSUPP; /* STUB */
3681 }
3682 
3683 /* 4.1.4 accept() - TCP Style Syntax
3684  *
3685  * Applications use accept() call to remove an established SCTP
3686  * association from the accept queue of the endpoint.  A new socket
3687  * descriptor will be returned from accept() to represent the newly
3688  * formed association.
3689  */
3690 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3691 {
3692 	struct sctp_sock *sp;
3693 	struct sctp_endpoint *ep;
3694 	struct sock *newsk = NULL;
3695 	struct sctp_association *asoc;
3696 	long timeo;
3697 	int error = 0;
3698 
3699 	sctp_lock_sock(sk);
3700 
3701 	sp = sctp_sk(sk);
3702 	ep = sp->ep;
3703 
3704 	if (!sctp_style(sk, TCP)) {
3705 		error = -EOPNOTSUPP;
3706 		goto out;
3707 	}
3708 
3709 	if (!sctp_sstate(sk, LISTENING)) {
3710 		error = -EINVAL;
3711 		goto out;
3712 	}
3713 
3714 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3715 
3716 	error = sctp_wait_for_accept(sk, timeo);
3717 	if (error)
3718 		goto out;
3719 
3720 	/* We treat the list of associations on the endpoint as the accept
3721 	 * queue and pick the first association on the list.
3722 	 */
3723 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3724 
3725 	newsk = sp->pf->create_accept_sk(sk, asoc);
3726 	if (!newsk) {
3727 		error = -ENOMEM;
3728 		goto out;
3729 	}
3730 
3731 	/* Populate the fields of the newsk from the oldsk and migrate the
3732 	 * asoc to the newsk.
3733 	 */
3734 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3735 
3736 out:
3737 	sctp_release_sock(sk);
3738 	*err = error;
3739 	return newsk;
3740 }
3741 
3742 /* The SCTP ioctl handler. */
3743 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3744 {
3745 	int rc = -ENOTCONN;
3746 
3747 	sctp_lock_sock(sk);
3748 
3749 	/*
3750 	 * SEQPACKET-style sockets in LISTENING state are valid, for
3751 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
3752 	 */
3753 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3754 		goto out;
3755 
3756 	switch (cmd) {
3757 	case SIOCINQ: {
3758 		struct sk_buff *skb;
3759 		unsigned int amount = 0;
3760 
3761 		skb = skb_peek(&sk->sk_receive_queue);
3762 		if (skb != NULL) {
3763 			/*
3764 			 * We will only return the amount of this packet since
3765 			 * that is all that will be read.
3766 			 */
3767 			amount = skb->len;
3768 		}
3769 		rc = put_user(amount, (int __user *)arg);
3770 		break;
3771 	}
3772 	default:
3773 		rc = -ENOIOCTLCMD;
3774 		break;
3775 	}
3776 out:
3777 	sctp_release_sock(sk);
3778 	return rc;
3779 }
3780 
3781 /* This is the function which gets called during socket creation to
3782  * initialized the SCTP-specific portion of the sock.
3783  * The sock structure should already be zero-filled memory.
3784  */
3785 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3786 {
3787 	struct sctp_endpoint *ep;
3788 	struct sctp_sock *sp;
3789 
3790 	SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3791 
3792 	sp = sctp_sk(sk);
3793 
3794 	/* Initialize the SCTP per socket area.  */
3795 	switch (sk->sk_type) {
3796 	case SOCK_SEQPACKET:
3797 		sp->type = SCTP_SOCKET_UDP;
3798 		break;
3799 	case SOCK_STREAM:
3800 		sp->type = SCTP_SOCKET_TCP;
3801 		break;
3802 	default:
3803 		return -ESOCKTNOSUPPORT;
3804 	}
3805 
3806 	/* Initialize default send parameters. These parameters can be
3807 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3808 	 */
3809 	sp->default_stream = 0;
3810 	sp->default_ppid = 0;
3811 	sp->default_flags = 0;
3812 	sp->default_context = 0;
3813 	sp->default_timetolive = 0;
3814 
3815 	sp->default_rcv_context = 0;
3816 	sp->max_burst = sctp_max_burst;
3817 
3818 	/* Initialize default setup parameters. These parameters
3819 	 * can be modified with the SCTP_INITMSG socket option or
3820 	 * overridden by the SCTP_INIT CMSG.
3821 	 */
3822 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
3823 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
3824 	sp->initmsg.sinit_max_attempts   = sctp_max_retrans_init;
3825 	sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3826 
3827 	/* Initialize default RTO related parameters.  These parameters can
3828 	 * be modified for with the SCTP_RTOINFO socket option.
3829 	 */
3830 	sp->rtoinfo.srto_initial = sctp_rto_initial;
3831 	sp->rtoinfo.srto_max     = sctp_rto_max;
3832 	sp->rtoinfo.srto_min     = sctp_rto_min;
3833 
3834 	/* Initialize default association related parameters. These parameters
3835 	 * can be modified with the SCTP_ASSOCINFO socket option.
3836 	 */
3837 	sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3838 	sp->assocparams.sasoc_number_peer_destinations = 0;
3839 	sp->assocparams.sasoc_peer_rwnd = 0;
3840 	sp->assocparams.sasoc_local_rwnd = 0;
3841 	sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3842 
3843 	/* Initialize default event subscriptions. By default, all the
3844 	 * options are off.
3845 	 */
3846 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3847 
3848 	/* Default Peer Address Parameters.  These defaults can
3849 	 * be modified via SCTP_PEER_ADDR_PARAMS
3850 	 */
3851 	sp->hbinterval  = sctp_hb_interval;
3852 	sp->pathmaxrxt  = sctp_max_retrans_path;
3853 	sp->pathmtu     = 0; // allow default discovery
3854 	sp->sackdelay   = sctp_sack_timeout;
3855 	sp->sackfreq	= 2;
3856 	sp->param_flags = SPP_HB_ENABLE |
3857 			  SPP_PMTUD_ENABLE |
3858 			  SPP_SACKDELAY_ENABLE;
3859 
3860 	/* If enabled no SCTP message fragmentation will be performed.
3861 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3862 	 */
3863 	sp->disable_fragments = 0;
3864 
3865 	/* Enable Nagle algorithm by default.  */
3866 	sp->nodelay           = 0;
3867 
3868 	/* Enable by default. */
3869 	sp->v4mapped          = 1;
3870 
3871 	/* Auto-close idle associations after the configured
3872 	 * number of seconds.  A value of 0 disables this
3873 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
3874 	 * for UDP-style sockets only.
3875 	 */
3876 	sp->autoclose         = 0;
3877 
3878 	/* User specified fragmentation limit. */
3879 	sp->user_frag         = 0;
3880 
3881 	sp->adaptation_ind = 0;
3882 
3883 	sp->pf = sctp_get_pf_specific(sk->sk_family);
3884 
3885 	/* Control variables for partial data delivery. */
3886 	atomic_set(&sp->pd_mode, 0);
3887 	skb_queue_head_init(&sp->pd_lobby);
3888 	sp->frag_interleave = 0;
3889 
3890 	/* Create a per socket endpoint structure.  Even if we
3891 	 * change the data structure relationships, this may still
3892 	 * be useful for storing pre-connect address information.
3893 	 */
3894 	ep = sctp_endpoint_new(sk, GFP_KERNEL);
3895 	if (!ep)
3896 		return -ENOMEM;
3897 
3898 	sp->ep = ep;
3899 	sp->hmac = NULL;
3900 
3901 	SCTP_DBG_OBJCNT_INC(sock);
3902 
3903 	local_bh_disable();
3904 	percpu_counter_inc(&sctp_sockets_allocated);
3905 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3906 	if (sctp_default_auto_asconf) {
3907 		list_add_tail(&sp->auto_asconf_list,
3908 		    &sctp_auto_asconf_splist);
3909 		sp->do_auto_asconf = 1;
3910 	} else
3911 		sp->do_auto_asconf = 0;
3912 	local_bh_enable();
3913 
3914 	return 0;
3915 }
3916 
3917 /* Cleanup any SCTP per socket resources.  */
3918 SCTP_STATIC void sctp_destroy_sock(struct sock *sk)
3919 {
3920 	struct sctp_sock *sp;
3921 
3922 	SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3923 
3924 	/* Release our hold on the endpoint. */
3925 	sp = sctp_sk(sk);
3926 	if (sp->do_auto_asconf) {
3927 		sp->do_auto_asconf = 0;
3928 		list_del(&sp->auto_asconf_list);
3929 	}
3930 	sctp_endpoint_free(sp->ep);
3931 	local_bh_disable();
3932 	percpu_counter_dec(&sctp_sockets_allocated);
3933 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3934 	local_bh_enable();
3935 }
3936 
3937 /* API 4.1.7 shutdown() - TCP Style Syntax
3938  *     int shutdown(int socket, int how);
3939  *
3940  *     sd      - the socket descriptor of the association to be closed.
3941  *     how     - Specifies the type of shutdown.  The  values  are
3942  *               as follows:
3943  *               SHUT_RD
3944  *                     Disables further receive operations. No SCTP
3945  *                     protocol action is taken.
3946  *               SHUT_WR
3947  *                     Disables further send operations, and initiates
3948  *                     the SCTP shutdown sequence.
3949  *               SHUT_RDWR
3950  *                     Disables further send  and  receive  operations
3951  *                     and initiates the SCTP shutdown sequence.
3952  */
3953 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3954 {
3955 	struct sctp_endpoint *ep;
3956 	struct sctp_association *asoc;
3957 
3958 	if (!sctp_style(sk, TCP))
3959 		return;
3960 
3961 	if (how & SEND_SHUTDOWN) {
3962 		ep = sctp_sk(sk)->ep;
3963 		if (!list_empty(&ep->asocs)) {
3964 			asoc = list_entry(ep->asocs.next,
3965 					  struct sctp_association, asocs);
3966 			sctp_primitive_SHUTDOWN(asoc, NULL);
3967 		}
3968 	}
3969 }
3970 
3971 /* 7.2.1 Association Status (SCTP_STATUS)
3972 
3973  * Applications can retrieve current status information about an
3974  * association, including association state, peer receiver window size,
3975  * number of unacked data chunks, and number of data chunks pending
3976  * receipt.  This information is read-only.
3977  */
3978 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3979 				       char __user *optval,
3980 				       int __user *optlen)
3981 {
3982 	struct sctp_status status;
3983 	struct sctp_association *asoc = NULL;
3984 	struct sctp_transport *transport;
3985 	sctp_assoc_t associd;
3986 	int retval = 0;
3987 
3988 	if (len < sizeof(status)) {
3989 		retval = -EINVAL;
3990 		goto out;
3991 	}
3992 
3993 	len = sizeof(status);
3994 	if (copy_from_user(&status, optval, len)) {
3995 		retval = -EFAULT;
3996 		goto out;
3997 	}
3998 
3999 	associd = status.sstat_assoc_id;
4000 	asoc = sctp_id2assoc(sk, associd);
4001 	if (!asoc) {
4002 		retval = -EINVAL;
4003 		goto out;
4004 	}
4005 
4006 	transport = asoc->peer.primary_path;
4007 
4008 	status.sstat_assoc_id = sctp_assoc2id(asoc);
4009 	status.sstat_state = asoc->state;
4010 	status.sstat_rwnd =  asoc->peer.rwnd;
4011 	status.sstat_unackdata = asoc->unack_data;
4012 
4013 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4014 	status.sstat_instrms = asoc->c.sinit_max_instreams;
4015 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4016 	status.sstat_fragmentation_point = asoc->frag_point;
4017 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4018 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4019 			transport->af_specific->sockaddr_len);
4020 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
4021 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4022 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
4023 	status.sstat_primary.spinfo_state = transport->state;
4024 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
4025 	status.sstat_primary.spinfo_srtt = transport->srtt;
4026 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4027 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
4028 
4029 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4030 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4031 
4032 	if (put_user(len, optlen)) {
4033 		retval = -EFAULT;
4034 		goto out;
4035 	}
4036 
4037 	SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
4038 			  len, status.sstat_state, status.sstat_rwnd,
4039 			  status.sstat_assoc_id);
4040 
4041 	if (copy_to_user(optval, &status, len)) {
4042 		retval = -EFAULT;
4043 		goto out;
4044 	}
4045 
4046 out:
4047 	return retval;
4048 }
4049 
4050 
4051 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4052  *
4053  * Applications can retrieve information about a specific peer address
4054  * of an association, including its reachability state, congestion
4055  * window, and retransmission timer values.  This information is
4056  * read-only.
4057  */
4058 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4059 					  char __user *optval,
4060 					  int __user *optlen)
4061 {
4062 	struct sctp_paddrinfo pinfo;
4063 	struct sctp_transport *transport;
4064 	int retval = 0;
4065 
4066 	if (len < sizeof(pinfo)) {
4067 		retval = -EINVAL;
4068 		goto out;
4069 	}
4070 
4071 	len = sizeof(pinfo);
4072 	if (copy_from_user(&pinfo, optval, len)) {
4073 		retval = -EFAULT;
4074 		goto out;
4075 	}
4076 
4077 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4078 					   pinfo.spinfo_assoc_id);
4079 	if (!transport)
4080 		return -EINVAL;
4081 
4082 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4083 	pinfo.spinfo_state = transport->state;
4084 	pinfo.spinfo_cwnd = transport->cwnd;
4085 	pinfo.spinfo_srtt = transport->srtt;
4086 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4087 	pinfo.spinfo_mtu = transport->pathmtu;
4088 
4089 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
4090 		pinfo.spinfo_state = SCTP_ACTIVE;
4091 
4092 	if (put_user(len, optlen)) {
4093 		retval = -EFAULT;
4094 		goto out;
4095 	}
4096 
4097 	if (copy_to_user(optval, &pinfo, len)) {
4098 		retval = -EFAULT;
4099 		goto out;
4100 	}
4101 
4102 out:
4103 	return retval;
4104 }
4105 
4106 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4107  *
4108  * This option is a on/off flag.  If enabled no SCTP message
4109  * fragmentation will be performed.  Instead if a message being sent
4110  * exceeds the current PMTU size, the message will NOT be sent and
4111  * instead a error will be indicated to the user.
4112  */
4113 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4114 					char __user *optval, int __user *optlen)
4115 {
4116 	int val;
4117 
4118 	if (len < sizeof(int))
4119 		return -EINVAL;
4120 
4121 	len = sizeof(int);
4122 	val = (sctp_sk(sk)->disable_fragments == 1);
4123 	if (put_user(len, optlen))
4124 		return -EFAULT;
4125 	if (copy_to_user(optval, &val, len))
4126 		return -EFAULT;
4127 	return 0;
4128 }
4129 
4130 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4131  *
4132  * This socket option is used to specify various notifications and
4133  * ancillary data the user wishes to receive.
4134  */
4135 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4136 				  int __user *optlen)
4137 {
4138 	if (len < sizeof(struct sctp_event_subscribe))
4139 		return -EINVAL;
4140 	len = sizeof(struct sctp_event_subscribe);
4141 	if (put_user(len, optlen))
4142 		return -EFAULT;
4143 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4144 		return -EFAULT;
4145 	return 0;
4146 }
4147 
4148 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4149  *
4150  * This socket option is applicable to the UDP-style socket only.  When
4151  * set it will cause associations that are idle for more than the
4152  * specified number of seconds to automatically close.  An association
4153  * being idle is defined an association that has NOT sent or received
4154  * user data.  The special value of '0' indicates that no automatic
4155  * close of any associations should be performed.  The option expects an
4156  * integer defining the number of seconds of idle time before an
4157  * association is closed.
4158  */
4159 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4160 {
4161 	/* Applicable to UDP-style socket only */
4162 	if (sctp_style(sk, TCP))
4163 		return -EOPNOTSUPP;
4164 	if (len < sizeof(int))
4165 		return -EINVAL;
4166 	len = sizeof(int);
4167 	if (put_user(len, optlen))
4168 		return -EFAULT;
4169 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4170 		return -EFAULT;
4171 	return 0;
4172 }
4173 
4174 /* Helper routine to branch off an association to a new socket.  */
4175 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
4176 				struct socket **sockp)
4177 {
4178 	struct sock *sk = asoc->base.sk;
4179 	struct socket *sock;
4180 	struct sctp_af *af;
4181 	int err = 0;
4182 
4183 	/* An association cannot be branched off from an already peeled-off
4184 	 * socket, nor is this supported for tcp style sockets.
4185 	 */
4186 	if (!sctp_style(sk, UDP))
4187 		return -EINVAL;
4188 
4189 	/* Create a new socket.  */
4190 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4191 	if (err < 0)
4192 		return err;
4193 
4194 	sctp_copy_sock(sock->sk, sk, asoc);
4195 
4196 	/* Make peeled-off sockets more like 1-1 accepted sockets.
4197 	 * Set the daddr and initialize id to something more random
4198 	 */
4199 	af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
4200 	af->to_sk_daddr(&asoc->peer.primary_addr, sk);
4201 
4202 	/* Populate the fields of the newsk from the oldsk and migrate the
4203 	 * asoc to the newsk.
4204 	 */
4205 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4206 
4207 	*sockp = sock;
4208 
4209 	return err;
4210 }
4211 
4212 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4213 {
4214 	sctp_peeloff_arg_t peeloff;
4215 	struct socket *newsock;
4216 	int retval = 0;
4217 	struct sctp_association *asoc;
4218 
4219 	if (len < sizeof(sctp_peeloff_arg_t))
4220 		return -EINVAL;
4221 	len = sizeof(sctp_peeloff_arg_t);
4222 	if (copy_from_user(&peeloff, optval, len))
4223 		return -EFAULT;
4224 
4225 	asoc = sctp_id2assoc(sk, peeloff.associd);
4226 	if (!asoc) {
4227 		retval = -EINVAL;
4228 		goto out;
4229 	}
4230 
4231 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __func__, sk, asoc);
4232 
4233 	retval = sctp_do_peeloff(asoc, &newsock);
4234 	if (retval < 0)
4235 		goto out;
4236 
4237 	/* Map the socket to an unused fd that can be returned to the user.  */
4238 	retval = sock_map_fd(newsock, 0);
4239 	if (retval < 0) {
4240 		sock_release(newsock);
4241 		goto out;
4242 	}
4243 
4244 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
4245 			  __func__, sk, asoc, newsock->sk, retval);
4246 
4247 	/* Return the fd mapped to the new socket.  */
4248 	peeloff.sd = retval;
4249 	if (put_user(len, optlen))
4250 		return -EFAULT;
4251 	if (copy_to_user(optval, &peeloff, len))
4252 		retval = -EFAULT;
4253 
4254 out:
4255 	return retval;
4256 }
4257 
4258 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4259  *
4260  * Applications can enable or disable heartbeats for any peer address of
4261  * an association, modify an address's heartbeat interval, force a
4262  * heartbeat to be sent immediately, and adjust the address's maximum
4263  * number of retransmissions sent before an address is considered
4264  * unreachable.  The following structure is used to access and modify an
4265  * address's parameters:
4266  *
4267  *  struct sctp_paddrparams {
4268  *     sctp_assoc_t            spp_assoc_id;
4269  *     struct sockaddr_storage spp_address;
4270  *     uint32_t                spp_hbinterval;
4271  *     uint16_t                spp_pathmaxrxt;
4272  *     uint32_t                spp_pathmtu;
4273  *     uint32_t                spp_sackdelay;
4274  *     uint32_t                spp_flags;
4275  * };
4276  *
4277  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
4278  *                     application, and identifies the association for
4279  *                     this query.
4280  *   spp_address     - This specifies which address is of interest.
4281  *   spp_hbinterval  - This contains the value of the heartbeat interval,
4282  *                     in milliseconds.  If a  value of zero
4283  *                     is present in this field then no changes are to
4284  *                     be made to this parameter.
4285  *   spp_pathmaxrxt  - This contains the maximum number of
4286  *                     retransmissions before this address shall be
4287  *                     considered unreachable. If a  value of zero
4288  *                     is present in this field then no changes are to
4289  *                     be made to this parameter.
4290  *   spp_pathmtu     - When Path MTU discovery is disabled the value
4291  *                     specified here will be the "fixed" path mtu.
4292  *                     Note that if the spp_address field is empty
4293  *                     then all associations on this address will
4294  *                     have this fixed path mtu set upon them.
4295  *
4296  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
4297  *                     the number of milliseconds that sacks will be delayed
4298  *                     for. This value will apply to all addresses of an
4299  *                     association if the spp_address field is empty. Note
4300  *                     also, that if delayed sack is enabled and this
4301  *                     value is set to 0, no change is made to the last
4302  *                     recorded delayed sack timer value.
4303  *
4304  *   spp_flags       - These flags are used to control various features
4305  *                     on an association. The flag field may contain
4306  *                     zero or more of the following options.
4307  *
4308  *                     SPP_HB_ENABLE  - Enable heartbeats on the
4309  *                     specified address. Note that if the address
4310  *                     field is empty all addresses for the association
4311  *                     have heartbeats enabled upon them.
4312  *
4313  *                     SPP_HB_DISABLE - Disable heartbeats on the
4314  *                     speicifed address. Note that if the address
4315  *                     field is empty all addresses for the association
4316  *                     will have their heartbeats disabled. Note also
4317  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
4318  *                     mutually exclusive, only one of these two should
4319  *                     be specified. Enabling both fields will have
4320  *                     undetermined results.
4321  *
4322  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
4323  *                     to be made immediately.
4324  *
4325  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
4326  *                     discovery upon the specified address. Note that
4327  *                     if the address feild is empty then all addresses
4328  *                     on the association are effected.
4329  *
4330  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
4331  *                     discovery upon the specified address. Note that
4332  *                     if the address feild is empty then all addresses
4333  *                     on the association are effected. Not also that
4334  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4335  *                     exclusive. Enabling both will have undetermined
4336  *                     results.
4337  *
4338  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
4339  *                     on delayed sack. The time specified in spp_sackdelay
4340  *                     is used to specify the sack delay for this address. Note
4341  *                     that if spp_address is empty then all addresses will
4342  *                     enable delayed sack and take on the sack delay
4343  *                     value specified in spp_sackdelay.
4344  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
4345  *                     off delayed sack. If the spp_address field is blank then
4346  *                     delayed sack is disabled for the entire association. Note
4347  *                     also that this field is mutually exclusive to
4348  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
4349  *                     results.
4350  */
4351 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4352 					    char __user *optval, int __user *optlen)
4353 {
4354 	struct sctp_paddrparams  params;
4355 	struct sctp_transport   *trans = NULL;
4356 	struct sctp_association *asoc = NULL;
4357 	struct sctp_sock        *sp = sctp_sk(sk);
4358 
4359 	if (len < sizeof(struct sctp_paddrparams))
4360 		return -EINVAL;
4361 	len = sizeof(struct sctp_paddrparams);
4362 	if (copy_from_user(&params, optval, len))
4363 		return -EFAULT;
4364 
4365 	/* If an address other than INADDR_ANY is specified, and
4366 	 * no transport is found, then the request is invalid.
4367 	 */
4368 	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
4369 		trans = sctp_addr_id2transport(sk, &params.spp_address,
4370 					       params.spp_assoc_id);
4371 		if (!trans) {
4372 			SCTP_DEBUG_PRINTK("Failed no transport\n");
4373 			return -EINVAL;
4374 		}
4375 	}
4376 
4377 	/* Get association, if assoc_id != 0 and the socket is a one
4378 	 * to many style socket, and an association was not found, then
4379 	 * the id was invalid.
4380 	 */
4381 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4382 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4383 		SCTP_DEBUG_PRINTK("Failed no association\n");
4384 		return -EINVAL;
4385 	}
4386 
4387 	if (trans) {
4388 		/* Fetch transport values. */
4389 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4390 		params.spp_pathmtu    = trans->pathmtu;
4391 		params.spp_pathmaxrxt = trans->pathmaxrxt;
4392 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
4393 
4394 		/*draft-11 doesn't say what to return in spp_flags*/
4395 		params.spp_flags      = trans->param_flags;
4396 	} else if (asoc) {
4397 		/* Fetch association values. */
4398 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4399 		params.spp_pathmtu    = asoc->pathmtu;
4400 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
4401 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
4402 
4403 		/*draft-11 doesn't say what to return in spp_flags*/
4404 		params.spp_flags      = asoc->param_flags;
4405 	} else {
4406 		/* Fetch socket values. */
4407 		params.spp_hbinterval = sp->hbinterval;
4408 		params.spp_pathmtu    = sp->pathmtu;
4409 		params.spp_sackdelay  = sp->sackdelay;
4410 		params.spp_pathmaxrxt = sp->pathmaxrxt;
4411 
4412 		/*draft-11 doesn't say what to return in spp_flags*/
4413 		params.spp_flags      = sp->param_flags;
4414 	}
4415 
4416 	if (copy_to_user(optval, &params, len))
4417 		return -EFAULT;
4418 
4419 	if (put_user(len, optlen))
4420 		return -EFAULT;
4421 
4422 	return 0;
4423 }
4424 
4425 /*
4426  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
4427  *
4428  * This option will effect the way delayed acks are performed.  This
4429  * option allows you to get or set the delayed ack time, in
4430  * milliseconds.  It also allows changing the delayed ack frequency.
4431  * Changing the frequency to 1 disables the delayed sack algorithm.  If
4432  * the assoc_id is 0, then this sets or gets the endpoints default
4433  * values.  If the assoc_id field is non-zero, then the set or get
4434  * effects the specified association for the one to many model (the
4435  * assoc_id field is ignored by the one to one model).  Note that if
4436  * sack_delay or sack_freq are 0 when setting this option, then the
4437  * current values will remain unchanged.
4438  *
4439  * struct sctp_sack_info {
4440  *     sctp_assoc_t            sack_assoc_id;
4441  *     uint32_t                sack_delay;
4442  *     uint32_t                sack_freq;
4443  * };
4444  *
4445  * sack_assoc_id -  This parameter, indicates which association the user
4446  *    is performing an action upon.  Note that if this field's value is
4447  *    zero then the endpoints default value is changed (effecting future
4448  *    associations only).
4449  *
4450  * sack_delay -  This parameter contains the number of milliseconds that
4451  *    the user is requesting the delayed ACK timer be set to.  Note that
4452  *    this value is defined in the standard to be between 200 and 500
4453  *    milliseconds.
4454  *
4455  * sack_freq -  This parameter contains the number of packets that must
4456  *    be received before a sack is sent without waiting for the delay
4457  *    timer to expire.  The default value for this is 2, setting this
4458  *    value to 1 will disable the delayed sack algorithm.
4459  */
4460 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4461 					    char __user *optval,
4462 					    int __user *optlen)
4463 {
4464 	struct sctp_sack_info    params;
4465 	struct sctp_association *asoc = NULL;
4466 	struct sctp_sock        *sp = sctp_sk(sk);
4467 
4468 	if (len >= sizeof(struct sctp_sack_info)) {
4469 		len = sizeof(struct sctp_sack_info);
4470 
4471 		if (copy_from_user(&params, optval, len))
4472 			return -EFAULT;
4473 	} else if (len == sizeof(struct sctp_assoc_value)) {
4474 		pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
4475 		pr_warn("Use struct sctp_sack_info instead\n");
4476 		if (copy_from_user(&params, optval, len))
4477 			return -EFAULT;
4478 	} else
4479 		return - EINVAL;
4480 
4481 	/* Get association, if sack_assoc_id != 0 and the socket is a one
4482 	 * to many style socket, and an association was not found, then
4483 	 * the id was invalid.
4484 	 */
4485 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4486 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4487 		return -EINVAL;
4488 
4489 	if (asoc) {
4490 		/* Fetch association values. */
4491 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4492 			params.sack_delay = jiffies_to_msecs(
4493 				asoc->sackdelay);
4494 			params.sack_freq = asoc->sackfreq;
4495 
4496 		} else {
4497 			params.sack_delay = 0;
4498 			params.sack_freq = 1;
4499 		}
4500 	} else {
4501 		/* Fetch socket values. */
4502 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4503 			params.sack_delay  = sp->sackdelay;
4504 			params.sack_freq = sp->sackfreq;
4505 		} else {
4506 			params.sack_delay  = 0;
4507 			params.sack_freq = 1;
4508 		}
4509 	}
4510 
4511 	if (copy_to_user(optval, &params, len))
4512 		return -EFAULT;
4513 
4514 	if (put_user(len, optlen))
4515 		return -EFAULT;
4516 
4517 	return 0;
4518 }
4519 
4520 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4521  *
4522  * Applications can specify protocol parameters for the default association
4523  * initialization.  The option name argument to setsockopt() and getsockopt()
4524  * is SCTP_INITMSG.
4525  *
4526  * Setting initialization parameters is effective only on an unconnected
4527  * socket (for UDP-style sockets only future associations are effected
4528  * by the change).  With TCP-style sockets, this option is inherited by
4529  * sockets derived from a listener socket.
4530  */
4531 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4532 {
4533 	if (len < sizeof(struct sctp_initmsg))
4534 		return -EINVAL;
4535 	len = sizeof(struct sctp_initmsg);
4536 	if (put_user(len, optlen))
4537 		return -EFAULT;
4538 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4539 		return -EFAULT;
4540 	return 0;
4541 }
4542 
4543 
4544 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4545 				      char __user *optval, int __user *optlen)
4546 {
4547 	struct sctp_association *asoc;
4548 	int cnt = 0;
4549 	struct sctp_getaddrs getaddrs;
4550 	struct sctp_transport *from;
4551 	void __user *to;
4552 	union sctp_addr temp;
4553 	struct sctp_sock *sp = sctp_sk(sk);
4554 	int addrlen;
4555 	size_t space_left;
4556 	int bytes_copied;
4557 
4558 	if (len < sizeof(struct sctp_getaddrs))
4559 		return -EINVAL;
4560 
4561 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4562 		return -EFAULT;
4563 
4564 	/* For UDP-style sockets, id specifies the association to query.  */
4565 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4566 	if (!asoc)
4567 		return -EINVAL;
4568 
4569 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4570 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4571 
4572 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4573 				transports) {
4574 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4575 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4576 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4577 		if (space_left < addrlen)
4578 			return -ENOMEM;
4579 		if (copy_to_user(to, &temp, addrlen))
4580 			return -EFAULT;
4581 		to += addrlen;
4582 		cnt++;
4583 		space_left -= addrlen;
4584 	}
4585 
4586 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4587 		return -EFAULT;
4588 	bytes_copied = ((char __user *)to) - optval;
4589 	if (put_user(bytes_copied, optlen))
4590 		return -EFAULT;
4591 
4592 	return 0;
4593 }
4594 
4595 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4596 			    size_t space_left, int *bytes_copied)
4597 {
4598 	struct sctp_sockaddr_entry *addr;
4599 	union sctp_addr temp;
4600 	int cnt = 0;
4601 	int addrlen;
4602 
4603 	rcu_read_lock();
4604 	list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4605 		if (!addr->valid)
4606 			continue;
4607 
4608 		if ((PF_INET == sk->sk_family) &&
4609 		    (AF_INET6 == addr->a.sa.sa_family))
4610 			continue;
4611 		if ((PF_INET6 == sk->sk_family) &&
4612 		    inet_v6_ipv6only(sk) &&
4613 		    (AF_INET == addr->a.sa.sa_family))
4614 			continue;
4615 		memcpy(&temp, &addr->a, sizeof(temp));
4616 		if (!temp.v4.sin_port)
4617 			temp.v4.sin_port = htons(port);
4618 
4619 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4620 								&temp);
4621 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4622 		if (space_left < addrlen) {
4623 			cnt =  -ENOMEM;
4624 			break;
4625 		}
4626 		memcpy(to, &temp, addrlen);
4627 
4628 		to += addrlen;
4629 		cnt ++;
4630 		space_left -= addrlen;
4631 		*bytes_copied += addrlen;
4632 	}
4633 	rcu_read_unlock();
4634 
4635 	return cnt;
4636 }
4637 
4638 
4639 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4640 				       char __user *optval, int __user *optlen)
4641 {
4642 	struct sctp_bind_addr *bp;
4643 	struct sctp_association *asoc;
4644 	int cnt = 0;
4645 	struct sctp_getaddrs getaddrs;
4646 	struct sctp_sockaddr_entry *addr;
4647 	void __user *to;
4648 	union sctp_addr temp;
4649 	struct sctp_sock *sp = sctp_sk(sk);
4650 	int addrlen;
4651 	int err = 0;
4652 	size_t space_left;
4653 	int bytes_copied = 0;
4654 	void *addrs;
4655 	void *buf;
4656 
4657 	if (len < sizeof(struct sctp_getaddrs))
4658 		return -EINVAL;
4659 
4660 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4661 		return -EFAULT;
4662 
4663 	/*
4664 	 *  For UDP-style sockets, id specifies the association to query.
4665 	 *  If the id field is set to the value '0' then the locally bound
4666 	 *  addresses are returned without regard to any particular
4667 	 *  association.
4668 	 */
4669 	if (0 == getaddrs.assoc_id) {
4670 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4671 	} else {
4672 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4673 		if (!asoc)
4674 			return -EINVAL;
4675 		bp = &asoc->base.bind_addr;
4676 	}
4677 
4678 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4679 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4680 
4681 	addrs = kmalloc(space_left, GFP_KERNEL);
4682 	if (!addrs)
4683 		return -ENOMEM;
4684 
4685 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4686 	 * addresses from the global local address list.
4687 	 */
4688 	if (sctp_list_single_entry(&bp->address_list)) {
4689 		addr = list_entry(bp->address_list.next,
4690 				  struct sctp_sockaddr_entry, list);
4691 		if (sctp_is_any(sk, &addr->a)) {
4692 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4693 						space_left, &bytes_copied);
4694 			if (cnt < 0) {
4695 				err = cnt;
4696 				goto out;
4697 			}
4698 			goto copy_getaddrs;
4699 		}
4700 	}
4701 
4702 	buf = addrs;
4703 	/* Protection on the bound address list is not needed since
4704 	 * in the socket option context we hold a socket lock and
4705 	 * thus the bound address list can't change.
4706 	 */
4707 	list_for_each_entry(addr, &bp->address_list, list) {
4708 		memcpy(&temp, &addr->a, sizeof(temp));
4709 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4710 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4711 		if (space_left < addrlen) {
4712 			err =  -ENOMEM; /*fixme: right error?*/
4713 			goto out;
4714 		}
4715 		memcpy(buf, &temp, addrlen);
4716 		buf += addrlen;
4717 		bytes_copied += addrlen;
4718 		cnt ++;
4719 		space_left -= addrlen;
4720 	}
4721 
4722 copy_getaddrs:
4723 	if (copy_to_user(to, addrs, bytes_copied)) {
4724 		err = -EFAULT;
4725 		goto out;
4726 	}
4727 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4728 		err = -EFAULT;
4729 		goto out;
4730 	}
4731 	if (put_user(bytes_copied, optlen))
4732 		err = -EFAULT;
4733 out:
4734 	kfree(addrs);
4735 	return err;
4736 }
4737 
4738 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4739  *
4740  * Requests that the local SCTP stack use the enclosed peer address as
4741  * the association primary.  The enclosed address must be one of the
4742  * association peer's addresses.
4743  */
4744 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4745 					char __user *optval, int __user *optlen)
4746 {
4747 	struct sctp_prim prim;
4748 	struct sctp_association *asoc;
4749 	struct sctp_sock *sp = sctp_sk(sk);
4750 
4751 	if (len < sizeof(struct sctp_prim))
4752 		return -EINVAL;
4753 
4754 	len = sizeof(struct sctp_prim);
4755 
4756 	if (copy_from_user(&prim, optval, len))
4757 		return -EFAULT;
4758 
4759 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4760 	if (!asoc)
4761 		return -EINVAL;
4762 
4763 	if (!asoc->peer.primary_path)
4764 		return -ENOTCONN;
4765 
4766 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4767 		asoc->peer.primary_path->af_specific->sockaddr_len);
4768 
4769 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4770 			(union sctp_addr *)&prim.ssp_addr);
4771 
4772 	if (put_user(len, optlen))
4773 		return -EFAULT;
4774 	if (copy_to_user(optval, &prim, len))
4775 		return -EFAULT;
4776 
4777 	return 0;
4778 }
4779 
4780 /*
4781  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4782  *
4783  * Requests that the local endpoint set the specified Adaptation Layer
4784  * Indication parameter for all future INIT and INIT-ACK exchanges.
4785  */
4786 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4787 				  char __user *optval, int __user *optlen)
4788 {
4789 	struct sctp_setadaptation adaptation;
4790 
4791 	if (len < sizeof(struct sctp_setadaptation))
4792 		return -EINVAL;
4793 
4794 	len = sizeof(struct sctp_setadaptation);
4795 
4796 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4797 
4798 	if (put_user(len, optlen))
4799 		return -EFAULT;
4800 	if (copy_to_user(optval, &adaptation, len))
4801 		return -EFAULT;
4802 
4803 	return 0;
4804 }
4805 
4806 /*
4807  *
4808  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4809  *
4810  *   Applications that wish to use the sendto() system call may wish to
4811  *   specify a default set of parameters that would normally be supplied
4812  *   through the inclusion of ancillary data.  This socket option allows
4813  *   such an application to set the default sctp_sndrcvinfo structure.
4814 
4815 
4816  *   The application that wishes to use this socket option simply passes
4817  *   in to this call the sctp_sndrcvinfo structure defined in Section
4818  *   5.2.2) The input parameters accepted by this call include
4819  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4820  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
4821  *   to this call if the caller is using the UDP model.
4822  *
4823  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
4824  */
4825 static int sctp_getsockopt_default_send_param(struct sock *sk,
4826 					int len, char __user *optval,
4827 					int __user *optlen)
4828 {
4829 	struct sctp_sndrcvinfo info;
4830 	struct sctp_association *asoc;
4831 	struct sctp_sock *sp = sctp_sk(sk);
4832 
4833 	if (len < sizeof(struct sctp_sndrcvinfo))
4834 		return -EINVAL;
4835 
4836 	len = sizeof(struct sctp_sndrcvinfo);
4837 
4838 	if (copy_from_user(&info, optval, len))
4839 		return -EFAULT;
4840 
4841 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4842 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4843 		return -EINVAL;
4844 
4845 	if (asoc) {
4846 		info.sinfo_stream = asoc->default_stream;
4847 		info.sinfo_flags = asoc->default_flags;
4848 		info.sinfo_ppid = asoc->default_ppid;
4849 		info.sinfo_context = asoc->default_context;
4850 		info.sinfo_timetolive = asoc->default_timetolive;
4851 	} else {
4852 		info.sinfo_stream = sp->default_stream;
4853 		info.sinfo_flags = sp->default_flags;
4854 		info.sinfo_ppid = sp->default_ppid;
4855 		info.sinfo_context = sp->default_context;
4856 		info.sinfo_timetolive = sp->default_timetolive;
4857 	}
4858 
4859 	if (put_user(len, optlen))
4860 		return -EFAULT;
4861 	if (copy_to_user(optval, &info, len))
4862 		return -EFAULT;
4863 
4864 	return 0;
4865 }
4866 
4867 /*
4868  *
4869  * 7.1.5 SCTP_NODELAY
4870  *
4871  * Turn on/off any Nagle-like algorithm.  This means that packets are
4872  * generally sent as soon as possible and no unnecessary delays are
4873  * introduced, at the cost of more packets in the network.  Expects an
4874  * integer boolean flag.
4875  */
4876 
4877 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4878 				   char __user *optval, int __user *optlen)
4879 {
4880 	int val;
4881 
4882 	if (len < sizeof(int))
4883 		return -EINVAL;
4884 
4885 	len = sizeof(int);
4886 	val = (sctp_sk(sk)->nodelay == 1);
4887 	if (put_user(len, optlen))
4888 		return -EFAULT;
4889 	if (copy_to_user(optval, &val, len))
4890 		return -EFAULT;
4891 	return 0;
4892 }
4893 
4894 /*
4895  *
4896  * 7.1.1 SCTP_RTOINFO
4897  *
4898  * The protocol parameters used to initialize and bound retransmission
4899  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4900  * and modify these parameters.
4901  * All parameters are time values, in milliseconds.  A value of 0, when
4902  * modifying the parameters, indicates that the current value should not
4903  * be changed.
4904  *
4905  */
4906 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4907 				char __user *optval,
4908 				int __user *optlen) {
4909 	struct sctp_rtoinfo rtoinfo;
4910 	struct sctp_association *asoc;
4911 
4912 	if (len < sizeof (struct sctp_rtoinfo))
4913 		return -EINVAL;
4914 
4915 	len = sizeof(struct sctp_rtoinfo);
4916 
4917 	if (copy_from_user(&rtoinfo, optval, len))
4918 		return -EFAULT;
4919 
4920 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4921 
4922 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4923 		return -EINVAL;
4924 
4925 	/* Values corresponding to the specific association. */
4926 	if (asoc) {
4927 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4928 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4929 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4930 	} else {
4931 		/* Values corresponding to the endpoint. */
4932 		struct sctp_sock *sp = sctp_sk(sk);
4933 
4934 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4935 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
4936 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
4937 	}
4938 
4939 	if (put_user(len, optlen))
4940 		return -EFAULT;
4941 
4942 	if (copy_to_user(optval, &rtoinfo, len))
4943 		return -EFAULT;
4944 
4945 	return 0;
4946 }
4947 
4948 /*
4949  *
4950  * 7.1.2 SCTP_ASSOCINFO
4951  *
4952  * This option is used to tune the maximum retransmission attempts
4953  * of the association.
4954  * Returns an error if the new association retransmission value is
4955  * greater than the sum of the retransmission value  of the peer.
4956  * See [SCTP] for more information.
4957  *
4958  */
4959 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4960 				     char __user *optval,
4961 				     int __user *optlen)
4962 {
4963 
4964 	struct sctp_assocparams assocparams;
4965 	struct sctp_association *asoc;
4966 	struct list_head *pos;
4967 	int cnt = 0;
4968 
4969 	if (len < sizeof (struct sctp_assocparams))
4970 		return -EINVAL;
4971 
4972 	len = sizeof(struct sctp_assocparams);
4973 
4974 	if (copy_from_user(&assocparams, optval, len))
4975 		return -EFAULT;
4976 
4977 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4978 
4979 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4980 		return -EINVAL;
4981 
4982 	/* Values correspoinding to the specific association */
4983 	if (asoc) {
4984 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4985 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4986 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4987 		assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4988 						* 1000) +
4989 						(asoc->cookie_life.tv_usec
4990 						/ 1000);
4991 
4992 		list_for_each(pos, &asoc->peer.transport_addr_list) {
4993 			cnt ++;
4994 		}
4995 
4996 		assocparams.sasoc_number_peer_destinations = cnt;
4997 	} else {
4998 		/* Values corresponding to the endpoint */
4999 		struct sctp_sock *sp = sctp_sk(sk);
5000 
5001 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5002 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5003 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5004 		assocparams.sasoc_cookie_life =
5005 					sp->assocparams.sasoc_cookie_life;
5006 		assocparams.sasoc_number_peer_destinations =
5007 					sp->assocparams.
5008 					sasoc_number_peer_destinations;
5009 	}
5010 
5011 	if (put_user(len, optlen))
5012 		return -EFAULT;
5013 
5014 	if (copy_to_user(optval, &assocparams, len))
5015 		return -EFAULT;
5016 
5017 	return 0;
5018 }
5019 
5020 /*
5021  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5022  *
5023  * This socket option is a boolean flag which turns on or off mapped V4
5024  * addresses.  If this option is turned on and the socket is type
5025  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5026  * If this option is turned off, then no mapping will be done of V4
5027  * addresses and a user will receive both PF_INET6 and PF_INET type
5028  * addresses on the socket.
5029  */
5030 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5031 				    char __user *optval, int __user *optlen)
5032 {
5033 	int val;
5034 	struct sctp_sock *sp = sctp_sk(sk);
5035 
5036 	if (len < sizeof(int))
5037 		return -EINVAL;
5038 
5039 	len = sizeof(int);
5040 	val = sp->v4mapped;
5041 	if (put_user(len, optlen))
5042 		return -EFAULT;
5043 	if (copy_to_user(optval, &val, len))
5044 		return -EFAULT;
5045 
5046 	return 0;
5047 }
5048 
5049 /*
5050  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
5051  * (chapter and verse is quoted at sctp_setsockopt_context())
5052  */
5053 static int sctp_getsockopt_context(struct sock *sk, int len,
5054 				   char __user *optval, int __user *optlen)
5055 {
5056 	struct sctp_assoc_value params;
5057 	struct sctp_sock *sp;
5058 	struct sctp_association *asoc;
5059 
5060 	if (len < sizeof(struct sctp_assoc_value))
5061 		return -EINVAL;
5062 
5063 	len = sizeof(struct sctp_assoc_value);
5064 
5065 	if (copy_from_user(&params, optval, len))
5066 		return -EFAULT;
5067 
5068 	sp = sctp_sk(sk);
5069 
5070 	if (params.assoc_id != 0) {
5071 		asoc = sctp_id2assoc(sk, params.assoc_id);
5072 		if (!asoc)
5073 			return -EINVAL;
5074 		params.assoc_value = asoc->default_rcv_context;
5075 	} else {
5076 		params.assoc_value = sp->default_rcv_context;
5077 	}
5078 
5079 	if (put_user(len, optlen))
5080 		return -EFAULT;
5081 	if (copy_to_user(optval, &params, len))
5082 		return -EFAULT;
5083 
5084 	return 0;
5085 }
5086 
5087 /*
5088  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5089  * This option will get or set the maximum size to put in any outgoing
5090  * SCTP DATA chunk.  If a message is larger than this size it will be
5091  * fragmented by SCTP into the specified size.  Note that the underlying
5092  * SCTP implementation may fragment into smaller sized chunks when the
5093  * PMTU of the underlying association is smaller than the value set by
5094  * the user.  The default value for this option is '0' which indicates
5095  * the user is NOT limiting fragmentation and only the PMTU will effect
5096  * SCTP's choice of DATA chunk size.  Note also that values set larger
5097  * than the maximum size of an IP datagram will effectively let SCTP
5098  * control fragmentation (i.e. the same as setting this option to 0).
5099  *
5100  * The following structure is used to access and modify this parameter:
5101  *
5102  * struct sctp_assoc_value {
5103  *   sctp_assoc_t assoc_id;
5104  *   uint32_t assoc_value;
5105  * };
5106  *
5107  * assoc_id:  This parameter is ignored for one-to-one style sockets.
5108  *    For one-to-many style sockets this parameter indicates which
5109  *    association the user is performing an action upon.  Note that if
5110  *    this field's value is zero then the endpoints default value is
5111  *    changed (effecting future associations only).
5112  * assoc_value:  This parameter specifies the maximum size in bytes.
5113  */
5114 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5115 				  char __user *optval, int __user *optlen)
5116 {
5117 	struct sctp_assoc_value params;
5118 	struct sctp_association *asoc;
5119 
5120 	if (len == sizeof(int)) {
5121 		pr_warn("Use of int in maxseg socket option deprecated\n");
5122 		pr_warn("Use struct sctp_assoc_value instead\n");
5123 		params.assoc_id = 0;
5124 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5125 		len = sizeof(struct sctp_assoc_value);
5126 		if (copy_from_user(&params, optval, sizeof(params)))
5127 			return -EFAULT;
5128 	} else
5129 		return -EINVAL;
5130 
5131 	asoc = sctp_id2assoc(sk, params.assoc_id);
5132 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5133 		return -EINVAL;
5134 
5135 	if (asoc)
5136 		params.assoc_value = asoc->frag_point;
5137 	else
5138 		params.assoc_value = sctp_sk(sk)->user_frag;
5139 
5140 	if (put_user(len, optlen))
5141 		return -EFAULT;
5142 	if (len == sizeof(int)) {
5143 		if (copy_to_user(optval, &params.assoc_value, len))
5144 			return -EFAULT;
5145 	} else {
5146 		if (copy_to_user(optval, &params, len))
5147 			return -EFAULT;
5148 	}
5149 
5150 	return 0;
5151 }
5152 
5153 /*
5154  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5155  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5156  */
5157 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5158 					       char __user *optval, int __user *optlen)
5159 {
5160 	int val;
5161 
5162 	if (len < sizeof(int))
5163 		return -EINVAL;
5164 
5165 	len = sizeof(int);
5166 
5167 	val = sctp_sk(sk)->frag_interleave;
5168 	if (put_user(len, optlen))
5169 		return -EFAULT;
5170 	if (copy_to_user(optval, &val, len))
5171 		return -EFAULT;
5172 
5173 	return 0;
5174 }
5175 
5176 /*
5177  * 7.1.25.  Set or Get the sctp partial delivery point
5178  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5179  */
5180 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5181 						  char __user *optval,
5182 						  int __user *optlen)
5183 {
5184 	u32 val;
5185 
5186 	if (len < sizeof(u32))
5187 		return -EINVAL;
5188 
5189 	len = sizeof(u32);
5190 
5191 	val = sctp_sk(sk)->pd_point;
5192 	if (put_user(len, optlen))
5193 		return -EFAULT;
5194 	if (copy_to_user(optval, &val, len))
5195 		return -EFAULT;
5196 
5197 	return 0;
5198 }
5199 
5200 /*
5201  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
5202  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5203  */
5204 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5205 				    char __user *optval,
5206 				    int __user *optlen)
5207 {
5208 	struct sctp_assoc_value params;
5209 	struct sctp_sock *sp;
5210 	struct sctp_association *asoc;
5211 
5212 	if (len == sizeof(int)) {
5213 		pr_warn("Use of int in max_burst socket option deprecated\n");
5214 		pr_warn("Use struct sctp_assoc_value instead\n");
5215 		params.assoc_id = 0;
5216 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5217 		len = sizeof(struct sctp_assoc_value);
5218 		if (copy_from_user(&params, optval, len))
5219 			return -EFAULT;
5220 	} else
5221 		return -EINVAL;
5222 
5223 	sp = sctp_sk(sk);
5224 
5225 	if (params.assoc_id != 0) {
5226 		asoc = sctp_id2assoc(sk, params.assoc_id);
5227 		if (!asoc)
5228 			return -EINVAL;
5229 		params.assoc_value = asoc->max_burst;
5230 	} else
5231 		params.assoc_value = sp->max_burst;
5232 
5233 	if (len == sizeof(int)) {
5234 		if (copy_to_user(optval, &params.assoc_value, len))
5235 			return -EFAULT;
5236 	} else {
5237 		if (copy_to_user(optval, &params, len))
5238 			return -EFAULT;
5239 	}
5240 
5241 	return 0;
5242 
5243 }
5244 
5245 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5246 				    char __user *optval, int __user *optlen)
5247 {
5248 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
5249 	struct sctp_hmac_algo_param *hmacs;
5250 	__u16 data_len = 0;
5251 	u32 num_idents;
5252 
5253 	if (!sctp_auth_enable)
5254 		return -EACCES;
5255 
5256 	hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5257 	data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5258 
5259 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
5260 		return -EINVAL;
5261 
5262 	len = sizeof(struct sctp_hmacalgo) + data_len;
5263 	num_idents = data_len / sizeof(u16);
5264 
5265 	if (put_user(len, optlen))
5266 		return -EFAULT;
5267 	if (put_user(num_idents, &p->shmac_num_idents))
5268 		return -EFAULT;
5269 	if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5270 		return -EFAULT;
5271 	return 0;
5272 }
5273 
5274 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5275 				    char __user *optval, int __user *optlen)
5276 {
5277 	struct sctp_authkeyid val;
5278 	struct sctp_association *asoc;
5279 
5280 	if (!sctp_auth_enable)
5281 		return -EACCES;
5282 
5283 	if (len < sizeof(struct sctp_authkeyid))
5284 		return -EINVAL;
5285 	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5286 		return -EFAULT;
5287 
5288 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5289 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5290 		return -EINVAL;
5291 
5292 	if (asoc)
5293 		val.scact_keynumber = asoc->active_key_id;
5294 	else
5295 		val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5296 
5297 	len = sizeof(struct sctp_authkeyid);
5298 	if (put_user(len, optlen))
5299 		return -EFAULT;
5300 	if (copy_to_user(optval, &val, len))
5301 		return -EFAULT;
5302 
5303 	return 0;
5304 }
5305 
5306 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5307 				    char __user *optval, int __user *optlen)
5308 {
5309 	struct sctp_authchunks __user *p = (void __user *)optval;
5310 	struct sctp_authchunks val;
5311 	struct sctp_association *asoc;
5312 	struct sctp_chunks_param *ch;
5313 	u32    num_chunks = 0;
5314 	char __user *to;
5315 
5316 	if (!sctp_auth_enable)
5317 		return -EACCES;
5318 
5319 	if (len < sizeof(struct sctp_authchunks))
5320 		return -EINVAL;
5321 
5322 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5323 		return -EFAULT;
5324 
5325 	to = p->gauth_chunks;
5326 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5327 	if (!asoc)
5328 		return -EINVAL;
5329 
5330 	ch = asoc->peer.peer_chunks;
5331 	if (!ch)
5332 		goto num;
5333 
5334 	/* See if the user provided enough room for all the data */
5335 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5336 	if (len < num_chunks)
5337 		return -EINVAL;
5338 
5339 	if (copy_to_user(to, ch->chunks, num_chunks))
5340 		return -EFAULT;
5341 num:
5342 	len = sizeof(struct sctp_authchunks) + num_chunks;
5343 	if (put_user(len, optlen)) return -EFAULT;
5344 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5345 		return -EFAULT;
5346 	return 0;
5347 }
5348 
5349 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5350 				    char __user *optval, int __user *optlen)
5351 {
5352 	struct sctp_authchunks __user *p = (void __user *)optval;
5353 	struct sctp_authchunks val;
5354 	struct sctp_association *asoc;
5355 	struct sctp_chunks_param *ch;
5356 	u32    num_chunks = 0;
5357 	char __user *to;
5358 
5359 	if (!sctp_auth_enable)
5360 		return -EACCES;
5361 
5362 	if (len < sizeof(struct sctp_authchunks))
5363 		return -EINVAL;
5364 
5365 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5366 		return -EFAULT;
5367 
5368 	to = p->gauth_chunks;
5369 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5370 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5371 		return -EINVAL;
5372 
5373 	if (asoc)
5374 		ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5375 	else
5376 		ch = sctp_sk(sk)->ep->auth_chunk_list;
5377 
5378 	if (!ch)
5379 		goto num;
5380 
5381 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5382 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
5383 		return -EINVAL;
5384 
5385 	if (copy_to_user(to, ch->chunks, num_chunks))
5386 		return -EFAULT;
5387 num:
5388 	len = sizeof(struct sctp_authchunks) + num_chunks;
5389 	if (put_user(len, optlen))
5390 		return -EFAULT;
5391 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5392 		return -EFAULT;
5393 
5394 	return 0;
5395 }
5396 
5397 /*
5398  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5399  * This option gets the current number of associations that are attached
5400  * to a one-to-many style socket.  The option value is an uint32_t.
5401  */
5402 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5403 				    char __user *optval, int __user *optlen)
5404 {
5405 	struct sctp_sock *sp = sctp_sk(sk);
5406 	struct sctp_association *asoc;
5407 	u32 val = 0;
5408 
5409 	if (sctp_style(sk, TCP))
5410 		return -EOPNOTSUPP;
5411 
5412 	if (len < sizeof(u32))
5413 		return -EINVAL;
5414 
5415 	len = sizeof(u32);
5416 
5417 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5418 		val++;
5419 	}
5420 
5421 	if (put_user(len, optlen))
5422 		return -EFAULT;
5423 	if (copy_to_user(optval, &val, len))
5424 		return -EFAULT;
5425 
5426 	return 0;
5427 }
5428 
5429 /*
5430  * 8.1.23 SCTP_AUTO_ASCONF
5431  * See the corresponding setsockopt entry as description
5432  */
5433 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5434 				   char __user *optval, int __user *optlen)
5435 {
5436 	int val = 0;
5437 
5438 	if (len < sizeof(int))
5439 		return -EINVAL;
5440 
5441 	len = sizeof(int);
5442 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5443 		val = 1;
5444 	if (put_user(len, optlen))
5445 		return -EFAULT;
5446 	if (copy_to_user(optval, &val, len))
5447 		return -EFAULT;
5448 	return 0;
5449 }
5450 
5451 /*
5452  * 8.2.6. Get the Current Identifiers of Associations
5453  *        (SCTP_GET_ASSOC_ID_LIST)
5454  *
5455  * This option gets the current list of SCTP association identifiers of
5456  * the SCTP associations handled by a one-to-many style socket.
5457  */
5458 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5459 				    char __user *optval, int __user *optlen)
5460 {
5461 	struct sctp_sock *sp = sctp_sk(sk);
5462 	struct sctp_association *asoc;
5463 	struct sctp_assoc_ids *ids;
5464 	u32 num = 0;
5465 
5466 	if (sctp_style(sk, TCP))
5467 		return -EOPNOTSUPP;
5468 
5469 	if (len < sizeof(struct sctp_assoc_ids))
5470 		return -EINVAL;
5471 
5472 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5473 		num++;
5474 	}
5475 
5476 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5477 		return -EINVAL;
5478 
5479 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5480 
5481 	ids = kmalloc(len, GFP_KERNEL);
5482 	if (unlikely(!ids))
5483 		return -ENOMEM;
5484 
5485 	ids->gaids_number_of_ids = num;
5486 	num = 0;
5487 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5488 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
5489 	}
5490 
5491 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5492 		kfree(ids);
5493 		return -EFAULT;
5494 	}
5495 
5496 	kfree(ids);
5497 	return 0;
5498 }
5499 
5500 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
5501 				char __user *optval, int __user *optlen)
5502 {
5503 	int retval = 0;
5504 	int len;
5505 
5506 	SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
5507 			  sk, optname);
5508 
5509 	/* I can hardly begin to describe how wrong this is.  This is
5510 	 * so broken as to be worse than useless.  The API draft
5511 	 * REALLY is NOT helpful here...  I am not convinced that the
5512 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5513 	 * are at all well-founded.
5514 	 */
5515 	if (level != SOL_SCTP) {
5516 		struct sctp_af *af = sctp_sk(sk)->pf->af;
5517 
5518 		retval = af->getsockopt(sk, level, optname, optval, optlen);
5519 		return retval;
5520 	}
5521 
5522 	if (get_user(len, optlen))
5523 		return -EFAULT;
5524 
5525 	sctp_lock_sock(sk);
5526 
5527 	switch (optname) {
5528 	case SCTP_STATUS:
5529 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5530 		break;
5531 	case SCTP_DISABLE_FRAGMENTS:
5532 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5533 							   optlen);
5534 		break;
5535 	case SCTP_EVENTS:
5536 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
5537 		break;
5538 	case SCTP_AUTOCLOSE:
5539 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5540 		break;
5541 	case SCTP_SOCKOPT_PEELOFF:
5542 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5543 		break;
5544 	case SCTP_PEER_ADDR_PARAMS:
5545 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5546 							  optlen);
5547 		break;
5548 	case SCTP_DELAYED_SACK:
5549 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5550 							  optlen);
5551 		break;
5552 	case SCTP_INITMSG:
5553 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5554 		break;
5555 	case SCTP_GET_PEER_ADDRS:
5556 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5557 						    optlen);
5558 		break;
5559 	case SCTP_GET_LOCAL_ADDRS:
5560 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
5561 						     optlen);
5562 		break;
5563 	case SCTP_SOCKOPT_CONNECTX3:
5564 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
5565 		break;
5566 	case SCTP_DEFAULT_SEND_PARAM:
5567 		retval = sctp_getsockopt_default_send_param(sk, len,
5568 							    optval, optlen);
5569 		break;
5570 	case SCTP_PRIMARY_ADDR:
5571 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5572 		break;
5573 	case SCTP_NODELAY:
5574 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5575 		break;
5576 	case SCTP_RTOINFO:
5577 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5578 		break;
5579 	case SCTP_ASSOCINFO:
5580 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5581 		break;
5582 	case SCTP_I_WANT_MAPPED_V4_ADDR:
5583 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5584 		break;
5585 	case SCTP_MAXSEG:
5586 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5587 		break;
5588 	case SCTP_GET_PEER_ADDR_INFO:
5589 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5590 							optlen);
5591 		break;
5592 	case SCTP_ADAPTATION_LAYER:
5593 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5594 							optlen);
5595 		break;
5596 	case SCTP_CONTEXT:
5597 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
5598 		break;
5599 	case SCTP_FRAGMENT_INTERLEAVE:
5600 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5601 							     optlen);
5602 		break;
5603 	case SCTP_PARTIAL_DELIVERY_POINT:
5604 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5605 								optlen);
5606 		break;
5607 	case SCTP_MAX_BURST:
5608 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5609 		break;
5610 	case SCTP_AUTH_KEY:
5611 	case SCTP_AUTH_CHUNK:
5612 	case SCTP_AUTH_DELETE_KEY:
5613 		retval = -EOPNOTSUPP;
5614 		break;
5615 	case SCTP_HMAC_IDENT:
5616 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5617 		break;
5618 	case SCTP_AUTH_ACTIVE_KEY:
5619 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5620 		break;
5621 	case SCTP_PEER_AUTH_CHUNKS:
5622 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5623 							optlen);
5624 		break;
5625 	case SCTP_LOCAL_AUTH_CHUNKS:
5626 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5627 							optlen);
5628 		break;
5629 	case SCTP_GET_ASSOC_NUMBER:
5630 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
5631 		break;
5632 	case SCTP_GET_ASSOC_ID_LIST:
5633 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
5634 		break;
5635 	case SCTP_AUTO_ASCONF:
5636 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
5637 		break;
5638 	default:
5639 		retval = -ENOPROTOOPT;
5640 		break;
5641 	}
5642 
5643 	sctp_release_sock(sk);
5644 	return retval;
5645 }
5646 
5647 static void sctp_hash(struct sock *sk)
5648 {
5649 	/* STUB */
5650 }
5651 
5652 static void sctp_unhash(struct sock *sk)
5653 {
5654 	/* STUB */
5655 }
5656 
5657 /* Check if port is acceptable.  Possibly find first available port.
5658  *
5659  * The port hash table (contained in the 'global' SCTP protocol storage
5660  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5661  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5662  * list (the list number is the port number hashed out, so as you
5663  * would expect from a hash function, all the ports in a given list have
5664  * such a number that hashes out to the same list number; you were
5665  * expecting that, right?); so each list has a set of ports, with a
5666  * link to the socket (struct sock) that uses it, the port number and
5667  * a fastreuse flag (FIXME: NPI ipg).
5668  */
5669 static struct sctp_bind_bucket *sctp_bucket_create(
5670 	struct sctp_bind_hashbucket *head, unsigned short snum);
5671 
5672 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5673 {
5674 	struct sctp_bind_hashbucket *head; /* hash list */
5675 	struct sctp_bind_bucket *pp; /* hash list port iterator */
5676 	struct hlist_node *node;
5677 	unsigned short snum;
5678 	int ret;
5679 
5680 	snum = ntohs(addr->v4.sin_port);
5681 
5682 	SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5683 	sctp_local_bh_disable();
5684 
5685 	if (snum == 0) {
5686 		/* Search for an available port. */
5687 		int low, high, remaining, index;
5688 		unsigned int rover;
5689 
5690 		inet_get_local_port_range(&low, &high);
5691 		remaining = (high - low) + 1;
5692 		rover = net_random() % remaining + low;
5693 
5694 		do {
5695 			rover++;
5696 			if ((rover < low) || (rover > high))
5697 				rover = low;
5698 			if (inet_is_reserved_local_port(rover))
5699 				continue;
5700 			index = sctp_phashfn(rover);
5701 			head = &sctp_port_hashtable[index];
5702 			sctp_spin_lock(&head->lock);
5703 			sctp_for_each_hentry(pp, node, &head->chain)
5704 				if (pp->port == rover)
5705 					goto next;
5706 			break;
5707 		next:
5708 			sctp_spin_unlock(&head->lock);
5709 		} while (--remaining > 0);
5710 
5711 		/* Exhausted local port range during search? */
5712 		ret = 1;
5713 		if (remaining <= 0)
5714 			goto fail;
5715 
5716 		/* OK, here is the one we will use.  HEAD (the port
5717 		 * hash table list entry) is non-NULL and we hold it's
5718 		 * mutex.
5719 		 */
5720 		snum = rover;
5721 	} else {
5722 		/* We are given an specific port number; we verify
5723 		 * that it is not being used. If it is used, we will
5724 		 * exahust the search in the hash list corresponding
5725 		 * to the port number (snum) - we detect that with the
5726 		 * port iterator, pp being NULL.
5727 		 */
5728 		head = &sctp_port_hashtable[sctp_phashfn(snum)];
5729 		sctp_spin_lock(&head->lock);
5730 		sctp_for_each_hentry(pp, node, &head->chain) {
5731 			if (pp->port == snum)
5732 				goto pp_found;
5733 		}
5734 	}
5735 	pp = NULL;
5736 	goto pp_not_found;
5737 pp_found:
5738 	if (!hlist_empty(&pp->owner)) {
5739 		/* We had a port hash table hit - there is an
5740 		 * available port (pp != NULL) and it is being
5741 		 * used by other socket (pp->owner not empty); that other
5742 		 * socket is going to be sk2.
5743 		 */
5744 		int reuse = sk->sk_reuse;
5745 		struct sock *sk2;
5746 
5747 		SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5748 		if (pp->fastreuse && sk->sk_reuse &&
5749 			sk->sk_state != SCTP_SS_LISTENING)
5750 			goto success;
5751 
5752 		/* Run through the list of sockets bound to the port
5753 		 * (pp->port) [via the pointers bind_next and
5754 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5755 		 * we get the endpoint they describe and run through
5756 		 * the endpoint's list of IP (v4 or v6) addresses,
5757 		 * comparing each of the addresses with the address of
5758 		 * the socket sk. If we find a match, then that means
5759 		 * that this port/socket (sk) combination are already
5760 		 * in an endpoint.
5761 		 */
5762 		sk_for_each_bound(sk2, node, &pp->owner) {
5763 			struct sctp_endpoint *ep2;
5764 			ep2 = sctp_sk(sk2)->ep;
5765 
5766 			if (sk == sk2 ||
5767 			    (reuse && sk2->sk_reuse &&
5768 			     sk2->sk_state != SCTP_SS_LISTENING))
5769 				continue;
5770 
5771 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
5772 						 sctp_sk(sk2), sctp_sk(sk))) {
5773 				ret = (long)sk2;
5774 				goto fail_unlock;
5775 			}
5776 		}
5777 		SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5778 	}
5779 pp_not_found:
5780 	/* If there was a hash table miss, create a new port.  */
5781 	ret = 1;
5782 	if (!pp && !(pp = sctp_bucket_create(head, snum)))
5783 		goto fail_unlock;
5784 
5785 	/* In either case (hit or miss), make sure fastreuse is 1 only
5786 	 * if sk->sk_reuse is too (that is, if the caller requested
5787 	 * SO_REUSEADDR on this socket -sk-).
5788 	 */
5789 	if (hlist_empty(&pp->owner)) {
5790 		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5791 			pp->fastreuse = 1;
5792 		else
5793 			pp->fastreuse = 0;
5794 	} else if (pp->fastreuse &&
5795 		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
5796 		pp->fastreuse = 0;
5797 
5798 	/* We are set, so fill up all the data in the hash table
5799 	 * entry, tie the socket list information with the rest of the
5800 	 * sockets FIXME: Blurry, NPI (ipg).
5801 	 */
5802 success:
5803 	if (!sctp_sk(sk)->bind_hash) {
5804 		inet_sk(sk)->inet_num = snum;
5805 		sk_add_bind_node(sk, &pp->owner);
5806 		sctp_sk(sk)->bind_hash = pp;
5807 	}
5808 	ret = 0;
5809 
5810 fail_unlock:
5811 	sctp_spin_unlock(&head->lock);
5812 
5813 fail:
5814 	sctp_local_bh_enable();
5815 	return ret;
5816 }
5817 
5818 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
5819  * port is requested.
5820  */
5821 static int sctp_get_port(struct sock *sk, unsigned short snum)
5822 {
5823 	long ret;
5824 	union sctp_addr addr;
5825 	struct sctp_af *af = sctp_sk(sk)->pf->af;
5826 
5827 	/* Set up a dummy address struct from the sk. */
5828 	af->from_sk(&addr, sk);
5829 	addr.v4.sin_port = htons(snum);
5830 
5831 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
5832 	ret = sctp_get_port_local(sk, &addr);
5833 
5834 	return ret ? 1 : 0;
5835 }
5836 
5837 /*
5838  *  Move a socket to LISTENING state.
5839  */
5840 SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog)
5841 {
5842 	struct sctp_sock *sp = sctp_sk(sk);
5843 	struct sctp_endpoint *ep = sp->ep;
5844 	struct crypto_hash *tfm = NULL;
5845 
5846 	/* Allocate HMAC for generating cookie. */
5847 	if (!sctp_sk(sk)->hmac && sctp_hmac_alg) {
5848 		tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
5849 		if (IS_ERR(tfm)) {
5850 			if (net_ratelimit()) {
5851 				pr_info("failed to load transform for %s: %ld\n",
5852 					sctp_hmac_alg, PTR_ERR(tfm));
5853 			}
5854 			return -ENOSYS;
5855 		}
5856 		sctp_sk(sk)->hmac = tfm;
5857 	}
5858 
5859 	/*
5860 	 * If a bind() or sctp_bindx() is not called prior to a listen()
5861 	 * call that allows new associations to be accepted, the system
5862 	 * picks an ephemeral port and will choose an address set equivalent
5863 	 * to binding with a wildcard address.
5864 	 *
5865 	 * This is not currently spelled out in the SCTP sockets
5866 	 * extensions draft, but follows the practice as seen in TCP
5867 	 * sockets.
5868 	 *
5869 	 */
5870 	sk->sk_state = SCTP_SS_LISTENING;
5871 	if (!ep->base.bind_addr.port) {
5872 		if (sctp_autobind(sk))
5873 			return -EAGAIN;
5874 	} else {
5875 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
5876 			sk->sk_state = SCTP_SS_CLOSED;
5877 			return -EADDRINUSE;
5878 		}
5879 	}
5880 
5881 	sk->sk_max_ack_backlog = backlog;
5882 	sctp_hash_endpoint(ep);
5883 	return 0;
5884 }
5885 
5886 /*
5887  * 4.1.3 / 5.1.3 listen()
5888  *
5889  *   By default, new associations are not accepted for UDP style sockets.
5890  *   An application uses listen() to mark a socket as being able to
5891  *   accept new associations.
5892  *
5893  *   On TCP style sockets, applications use listen() to ready the SCTP
5894  *   endpoint for accepting inbound associations.
5895  *
5896  *   On both types of endpoints a backlog of '0' disables listening.
5897  *
5898  *  Move a socket to LISTENING state.
5899  */
5900 int sctp_inet_listen(struct socket *sock, int backlog)
5901 {
5902 	struct sock *sk = sock->sk;
5903 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5904 	int err = -EINVAL;
5905 
5906 	if (unlikely(backlog < 0))
5907 		return err;
5908 
5909 	sctp_lock_sock(sk);
5910 
5911 	/* Peeled-off sockets are not allowed to listen().  */
5912 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
5913 		goto out;
5914 
5915 	if (sock->state != SS_UNCONNECTED)
5916 		goto out;
5917 
5918 	/* If backlog is zero, disable listening. */
5919 	if (!backlog) {
5920 		if (sctp_sstate(sk, CLOSED))
5921 			goto out;
5922 
5923 		err = 0;
5924 		sctp_unhash_endpoint(ep);
5925 		sk->sk_state = SCTP_SS_CLOSED;
5926 		if (sk->sk_reuse)
5927 			sctp_sk(sk)->bind_hash->fastreuse = 1;
5928 		goto out;
5929 	}
5930 
5931 	/* If we are already listening, just update the backlog */
5932 	if (sctp_sstate(sk, LISTENING))
5933 		sk->sk_max_ack_backlog = backlog;
5934 	else {
5935 		err = sctp_listen_start(sk, backlog);
5936 		if (err)
5937 			goto out;
5938 	}
5939 
5940 	err = 0;
5941 out:
5942 	sctp_release_sock(sk);
5943 	return err;
5944 }
5945 
5946 /*
5947  * This function is done by modeling the current datagram_poll() and the
5948  * tcp_poll().  Note that, based on these implementations, we don't
5949  * lock the socket in this function, even though it seems that,
5950  * ideally, locking or some other mechanisms can be used to ensure
5951  * the integrity of the counters (sndbuf and wmem_alloc) used
5952  * in this place.  We assume that we don't need locks either until proven
5953  * otherwise.
5954  *
5955  * Another thing to note is that we include the Async I/O support
5956  * here, again, by modeling the current TCP/UDP code.  We don't have
5957  * a good way to test with it yet.
5958  */
5959 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
5960 {
5961 	struct sock *sk = sock->sk;
5962 	struct sctp_sock *sp = sctp_sk(sk);
5963 	unsigned int mask;
5964 
5965 	poll_wait(file, sk_sleep(sk), wait);
5966 
5967 	/* A TCP-style listening socket becomes readable when the accept queue
5968 	 * is not empty.
5969 	 */
5970 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
5971 		return (!list_empty(&sp->ep->asocs)) ?
5972 			(POLLIN | POLLRDNORM) : 0;
5973 
5974 	mask = 0;
5975 
5976 	/* Is there any exceptional events?  */
5977 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
5978 		mask |= POLLERR;
5979 	if (sk->sk_shutdown & RCV_SHUTDOWN)
5980 		mask |= POLLRDHUP | POLLIN | POLLRDNORM;
5981 	if (sk->sk_shutdown == SHUTDOWN_MASK)
5982 		mask |= POLLHUP;
5983 
5984 	/* Is it readable?  Reconsider this code with TCP-style support.  */
5985 	if (!skb_queue_empty(&sk->sk_receive_queue))
5986 		mask |= POLLIN | POLLRDNORM;
5987 
5988 	/* The association is either gone or not ready.  */
5989 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
5990 		return mask;
5991 
5992 	/* Is it writable?  */
5993 	if (sctp_writeable(sk)) {
5994 		mask |= POLLOUT | POLLWRNORM;
5995 	} else {
5996 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
5997 		/*
5998 		 * Since the socket is not locked, the buffer
5999 		 * might be made available after the writeable check and
6000 		 * before the bit is set.  This could cause a lost I/O
6001 		 * signal.  tcp_poll() has a race breaker for this race
6002 		 * condition.  Based on their implementation, we put
6003 		 * in the following code to cover it as well.
6004 		 */
6005 		if (sctp_writeable(sk))
6006 			mask |= POLLOUT | POLLWRNORM;
6007 	}
6008 	return mask;
6009 }
6010 
6011 /********************************************************************
6012  * 2nd Level Abstractions
6013  ********************************************************************/
6014 
6015 static struct sctp_bind_bucket *sctp_bucket_create(
6016 	struct sctp_bind_hashbucket *head, unsigned short snum)
6017 {
6018 	struct sctp_bind_bucket *pp;
6019 
6020 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6021 	if (pp) {
6022 		SCTP_DBG_OBJCNT_INC(bind_bucket);
6023 		pp->port = snum;
6024 		pp->fastreuse = 0;
6025 		INIT_HLIST_HEAD(&pp->owner);
6026 		hlist_add_head(&pp->node, &head->chain);
6027 	}
6028 	return pp;
6029 }
6030 
6031 /* Caller must hold hashbucket lock for this tb with local BH disabled */
6032 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6033 {
6034 	if (pp && hlist_empty(&pp->owner)) {
6035 		__hlist_del(&pp->node);
6036 		kmem_cache_free(sctp_bucket_cachep, pp);
6037 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
6038 	}
6039 }
6040 
6041 /* Release this socket's reference to a local port.  */
6042 static inline void __sctp_put_port(struct sock *sk)
6043 {
6044 	struct sctp_bind_hashbucket *head =
6045 		&sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->inet_num)];
6046 	struct sctp_bind_bucket *pp;
6047 
6048 	sctp_spin_lock(&head->lock);
6049 	pp = sctp_sk(sk)->bind_hash;
6050 	__sk_del_bind_node(sk);
6051 	sctp_sk(sk)->bind_hash = NULL;
6052 	inet_sk(sk)->inet_num = 0;
6053 	sctp_bucket_destroy(pp);
6054 	sctp_spin_unlock(&head->lock);
6055 }
6056 
6057 void sctp_put_port(struct sock *sk)
6058 {
6059 	sctp_local_bh_disable();
6060 	__sctp_put_port(sk);
6061 	sctp_local_bh_enable();
6062 }
6063 
6064 /*
6065  * The system picks an ephemeral port and choose an address set equivalent
6066  * to binding with a wildcard address.
6067  * One of those addresses will be the primary address for the association.
6068  * This automatically enables the multihoming capability of SCTP.
6069  */
6070 static int sctp_autobind(struct sock *sk)
6071 {
6072 	union sctp_addr autoaddr;
6073 	struct sctp_af *af;
6074 	__be16 port;
6075 
6076 	/* Initialize a local sockaddr structure to INADDR_ANY. */
6077 	af = sctp_sk(sk)->pf->af;
6078 
6079 	port = htons(inet_sk(sk)->inet_num);
6080 	af->inaddr_any(&autoaddr, port);
6081 
6082 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6083 }
6084 
6085 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
6086  *
6087  * From RFC 2292
6088  * 4.2 The cmsghdr Structure *
6089  *
6090  * When ancillary data is sent or received, any number of ancillary data
6091  * objects can be specified by the msg_control and msg_controllen members of
6092  * the msghdr structure, because each object is preceded by
6093  * a cmsghdr structure defining the object's length (the cmsg_len member).
6094  * Historically Berkeley-derived implementations have passed only one object
6095  * at a time, but this API allows multiple objects to be
6096  * passed in a single call to sendmsg() or recvmsg(). The following example
6097  * shows two ancillary data objects in a control buffer.
6098  *
6099  *   |<--------------------------- msg_controllen -------------------------->|
6100  *   |                                                                       |
6101  *
6102  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
6103  *
6104  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6105  *   |                                   |                                   |
6106  *
6107  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
6108  *
6109  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
6110  *   |                                |  |                                |  |
6111  *
6112  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6113  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
6114  *
6115  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
6116  *
6117  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6118  *    ^
6119  *    |
6120  *
6121  * msg_control
6122  * points here
6123  */
6124 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
6125 				  sctp_cmsgs_t *cmsgs)
6126 {
6127 	struct cmsghdr *cmsg;
6128 	struct msghdr *my_msg = (struct msghdr *)msg;
6129 
6130 	for (cmsg = CMSG_FIRSTHDR(msg);
6131 	     cmsg != NULL;
6132 	     cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
6133 		if (!CMSG_OK(my_msg, cmsg))
6134 			return -EINVAL;
6135 
6136 		/* Should we parse this header or ignore?  */
6137 		if (cmsg->cmsg_level != IPPROTO_SCTP)
6138 			continue;
6139 
6140 		/* Strictly check lengths following example in SCM code.  */
6141 		switch (cmsg->cmsg_type) {
6142 		case SCTP_INIT:
6143 			/* SCTP Socket API Extension
6144 			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
6145 			 *
6146 			 * This cmsghdr structure provides information for
6147 			 * initializing new SCTP associations with sendmsg().
6148 			 * The SCTP_INITMSG socket option uses this same data
6149 			 * structure.  This structure is not used for
6150 			 * recvmsg().
6151 			 *
6152 			 * cmsg_level    cmsg_type      cmsg_data[]
6153 			 * ------------  ------------   ----------------------
6154 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
6155 			 */
6156 			if (cmsg->cmsg_len !=
6157 			    CMSG_LEN(sizeof(struct sctp_initmsg)))
6158 				return -EINVAL;
6159 			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
6160 			break;
6161 
6162 		case SCTP_SNDRCV:
6163 			/* SCTP Socket API Extension
6164 			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6165 			 *
6166 			 * This cmsghdr structure specifies SCTP options for
6167 			 * sendmsg() and describes SCTP header information
6168 			 * about a received message through recvmsg().
6169 			 *
6170 			 * cmsg_level    cmsg_type      cmsg_data[]
6171 			 * ------------  ------------   ----------------------
6172 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
6173 			 */
6174 			if (cmsg->cmsg_len !=
6175 			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6176 				return -EINVAL;
6177 
6178 			cmsgs->info =
6179 				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6180 
6181 			/* Minimally, validate the sinfo_flags. */
6182 			if (cmsgs->info->sinfo_flags &
6183 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6184 			      SCTP_ABORT | SCTP_EOF))
6185 				return -EINVAL;
6186 			break;
6187 
6188 		default:
6189 			return -EINVAL;
6190 		}
6191 	}
6192 	return 0;
6193 }
6194 
6195 /*
6196  * Wait for a packet..
6197  * Note: This function is the same function as in core/datagram.c
6198  * with a few modifications to make lksctp work.
6199  */
6200 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
6201 {
6202 	int error;
6203 	DEFINE_WAIT(wait);
6204 
6205 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6206 
6207 	/* Socket errors? */
6208 	error = sock_error(sk);
6209 	if (error)
6210 		goto out;
6211 
6212 	if (!skb_queue_empty(&sk->sk_receive_queue))
6213 		goto ready;
6214 
6215 	/* Socket shut down?  */
6216 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6217 		goto out;
6218 
6219 	/* Sequenced packets can come disconnected.  If so we report the
6220 	 * problem.
6221 	 */
6222 	error = -ENOTCONN;
6223 
6224 	/* Is there a good reason to think that we may receive some data?  */
6225 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6226 		goto out;
6227 
6228 	/* Handle signals.  */
6229 	if (signal_pending(current))
6230 		goto interrupted;
6231 
6232 	/* Let another process have a go.  Since we are going to sleep
6233 	 * anyway.  Note: This may cause odd behaviors if the message
6234 	 * does not fit in the user's buffer, but this seems to be the
6235 	 * only way to honor MSG_DONTWAIT realistically.
6236 	 */
6237 	sctp_release_sock(sk);
6238 	*timeo_p = schedule_timeout(*timeo_p);
6239 	sctp_lock_sock(sk);
6240 
6241 ready:
6242 	finish_wait(sk_sleep(sk), &wait);
6243 	return 0;
6244 
6245 interrupted:
6246 	error = sock_intr_errno(*timeo_p);
6247 
6248 out:
6249 	finish_wait(sk_sleep(sk), &wait);
6250 	*err = error;
6251 	return error;
6252 }
6253 
6254 /* Receive a datagram.
6255  * Note: This is pretty much the same routine as in core/datagram.c
6256  * with a few changes to make lksctp work.
6257  */
6258 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6259 					      int noblock, int *err)
6260 {
6261 	int error;
6262 	struct sk_buff *skb;
6263 	long timeo;
6264 
6265 	timeo = sock_rcvtimeo(sk, noblock);
6266 
6267 	SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
6268 			  timeo, MAX_SCHEDULE_TIMEOUT);
6269 
6270 	do {
6271 		/* Again only user level code calls this function,
6272 		 * so nothing interrupt level
6273 		 * will suddenly eat the receive_queue.
6274 		 *
6275 		 *  Look at current nfs client by the way...
6276 		 *  However, this function was correct in any case. 8)
6277 		 */
6278 		if (flags & MSG_PEEK) {
6279 			spin_lock_bh(&sk->sk_receive_queue.lock);
6280 			skb = skb_peek(&sk->sk_receive_queue);
6281 			if (skb)
6282 				atomic_inc(&skb->users);
6283 			spin_unlock_bh(&sk->sk_receive_queue.lock);
6284 		} else {
6285 			skb = skb_dequeue(&sk->sk_receive_queue);
6286 		}
6287 
6288 		if (skb)
6289 			return skb;
6290 
6291 		/* Caller is allowed not to check sk->sk_err before calling. */
6292 		error = sock_error(sk);
6293 		if (error)
6294 			goto no_packet;
6295 
6296 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6297 			break;
6298 
6299 		/* User doesn't want to wait.  */
6300 		error = -EAGAIN;
6301 		if (!timeo)
6302 			goto no_packet;
6303 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6304 
6305 	return NULL;
6306 
6307 no_packet:
6308 	*err = error;
6309 	return NULL;
6310 }
6311 
6312 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
6313 static void __sctp_write_space(struct sctp_association *asoc)
6314 {
6315 	struct sock *sk = asoc->base.sk;
6316 	struct socket *sock = sk->sk_socket;
6317 
6318 	if ((sctp_wspace(asoc) > 0) && sock) {
6319 		if (waitqueue_active(&asoc->wait))
6320 			wake_up_interruptible(&asoc->wait);
6321 
6322 		if (sctp_writeable(sk)) {
6323 			wait_queue_head_t *wq = sk_sleep(sk);
6324 
6325 			if (wq && waitqueue_active(wq))
6326 				wake_up_interruptible(wq);
6327 
6328 			/* Note that we try to include the Async I/O support
6329 			 * here by modeling from the current TCP/UDP code.
6330 			 * We have not tested with it yet.
6331 			 */
6332 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6333 				sock_wake_async(sock,
6334 						SOCK_WAKE_SPACE, POLL_OUT);
6335 		}
6336 	}
6337 }
6338 
6339 /* Do accounting for the sndbuf space.
6340  * Decrement the used sndbuf space of the corresponding association by the
6341  * data size which was just transmitted(freed).
6342  */
6343 static void sctp_wfree(struct sk_buff *skb)
6344 {
6345 	struct sctp_association *asoc;
6346 	struct sctp_chunk *chunk;
6347 	struct sock *sk;
6348 
6349 	/* Get the saved chunk pointer.  */
6350 	chunk = *((struct sctp_chunk **)(skb->cb));
6351 	asoc = chunk->asoc;
6352 	sk = asoc->base.sk;
6353 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6354 				sizeof(struct sk_buff) +
6355 				sizeof(struct sctp_chunk);
6356 
6357 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6358 
6359 	/*
6360 	 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6361 	 */
6362 	sk->sk_wmem_queued   -= skb->truesize;
6363 	sk_mem_uncharge(sk, skb->truesize);
6364 
6365 	sock_wfree(skb);
6366 	__sctp_write_space(asoc);
6367 
6368 	sctp_association_put(asoc);
6369 }
6370 
6371 /* Do accounting for the receive space on the socket.
6372  * Accounting for the association is done in ulpevent.c
6373  * We set this as a destructor for the cloned data skbs so that
6374  * accounting is done at the correct time.
6375  */
6376 void sctp_sock_rfree(struct sk_buff *skb)
6377 {
6378 	struct sock *sk = skb->sk;
6379 	struct sctp_ulpevent *event = sctp_skb2event(skb);
6380 
6381 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6382 
6383 	/*
6384 	 * Mimic the behavior of sock_rfree
6385 	 */
6386 	sk_mem_uncharge(sk, event->rmem_len);
6387 }
6388 
6389 
6390 /* Helper function to wait for space in the sndbuf.  */
6391 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6392 				size_t msg_len)
6393 {
6394 	struct sock *sk = asoc->base.sk;
6395 	int err = 0;
6396 	long current_timeo = *timeo_p;
6397 	DEFINE_WAIT(wait);
6398 
6399 	SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
6400 			  asoc, (long)(*timeo_p), msg_len);
6401 
6402 	/* Increment the association's refcnt.  */
6403 	sctp_association_hold(asoc);
6404 
6405 	/* Wait on the association specific sndbuf space. */
6406 	for (;;) {
6407 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6408 					  TASK_INTERRUPTIBLE);
6409 		if (!*timeo_p)
6410 			goto do_nonblock;
6411 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6412 		    asoc->base.dead)
6413 			goto do_error;
6414 		if (signal_pending(current))
6415 			goto do_interrupted;
6416 		if (msg_len <= sctp_wspace(asoc))
6417 			break;
6418 
6419 		/* Let another process have a go.  Since we are going
6420 		 * to sleep anyway.
6421 		 */
6422 		sctp_release_sock(sk);
6423 		current_timeo = schedule_timeout(current_timeo);
6424 		BUG_ON(sk != asoc->base.sk);
6425 		sctp_lock_sock(sk);
6426 
6427 		*timeo_p = current_timeo;
6428 	}
6429 
6430 out:
6431 	finish_wait(&asoc->wait, &wait);
6432 
6433 	/* Release the association's refcnt.  */
6434 	sctp_association_put(asoc);
6435 
6436 	return err;
6437 
6438 do_error:
6439 	err = -EPIPE;
6440 	goto out;
6441 
6442 do_interrupted:
6443 	err = sock_intr_errno(*timeo_p);
6444 	goto out;
6445 
6446 do_nonblock:
6447 	err = -EAGAIN;
6448 	goto out;
6449 }
6450 
6451 void sctp_data_ready(struct sock *sk, int len)
6452 {
6453 	struct socket_wq *wq;
6454 
6455 	rcu_read_lock();
6456 	wq = rcu_dereference(sk->sk_wq);
6457 	if (wq_has_sleeper(wq))
6458 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6459 						POLLRDNORM | POLLRDBAND);
6460 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6461 	rcu_read_unlock();
6462 }
6463 
6464 /* If socket sndbuf has changed, wake up all per association waiters.  */
6465 void sctp_write_space(struct sock *sk)
6466 {
6467 	struct sctp_association *asoc;
6468 
6469 	/* Wake up the tasks in each wait queue.  */
6470 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6471 		__sctp_write_space(asoc);
6472 	}
6473 }
6474 
6475 /* Is there any sndbuf space available on the socket?
6476  *
6477  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6478  * associations on the same socket.  For a UDP-style socket with
6479  * multiple associations, it is possible for it to be "unwriteable"
6480  * prematurely.  I assume that this is acceptable because
6481  * a premature "unwriteable" is better than an accidental "writeable" which
6482  * would cause an unwanted block under certain circumstances.  For the 1-1
6483  * UDP-style sockets or TCP-style sockets, this code should work.
6484  *  - Daisy
6485  */
6486 static int sctp_writeable(struct sock *sk)
6487 {
6488 	int amt = 0;
6489 
6490 	amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
6491 	if (amt < 0)
6492 		amt = 0;
6493 	return amt;
6494 }
6495 
6496 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6497  * returns immediately with EINPROGRESS.
6498  */
6499 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6500 {
6501 	struct sock *sk = asoc->base.sk;
6502 	int err = 0;
6503 	long current_timeo = *timeo_p;
6504 	DEFINE_WAIT(wait);
6505 
6506 	SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc,
6507 			  (long)(*timeo_p));
6508 
6509 	/* Increment the association's refcnt.  */
6510 	sctp_association_hold(asoc);
6511 
6512 	for (;;) {
6513 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6514 					  TASK_INTERRUPTIBLE);
6515 		if (!*timeo_p)
6516 			goto do_nonblock;
6517 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6518 			break;
6519 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6520 		    asoc->base.dead)
6521 			goto do_error;
6522 		if (signal_pending(current))
6523 			goto do_interrupted;
6524 
6525 		if (sctp_state(asoc, ESTABLISHED))
6526 			break;
6527 
6528 		/* Let another process have a go.  Since we are going
6529 		 * to sleep anyway.
6530 		 */
6531 		sctp_release_sock(sk);
6532 		current_timeo = schedule_timeout(current_timeo);
6533 		sctp_lock_sock(sk);
6534 
6535 		*timeo_p = current_timeo;
6536 	}
6537 
6538 out:
6539 	finish_wait(&asoc->wait, &wait);
6540 
6541 	/* Release the association's refcnt.  */
6542 	sctp_association_put(asoc);
6543 
6544 	return err;
6545 
6546 do_error:
6547 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6548 		err = -ETIMEDOUT;
6549 	else
6550 		err = -ECONNREFUSED;
6551 	goto out;
6552 
6553 do_interrupted:
6554 	err = sock_intr_errno(*timeo_p);
6555 	goto out;
6556 
6557 do_nonblock:
6558 	err = -EINPROGRESS;
6559 	goto out;
6560 }
6561 
6562 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6563 {
6564 	struct sctp_endpoint *ep;
6565 	int err = 0;
6566 	DEFINE_WAIT(wait);
6567 
6568 	ep = sctp_sk(sk)->ep;
6569 
6570 
6571 	for (;;) {
6572 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
6573 					  TASK_INTERRUPTIBLE);
6574 
6575 		if (list_empty(&ep->asocs)) {
6576 			sctp_release_sock(sk);
6577 			timeo = schedule_timeout(timeo);
6578 			sctp_lock_sock(sk);
6579 		}
6580 
6581 		err = -EINVAL;
6582 		if (!sctp_sstate(sk, LISTENING))
6583 			break;
6584 
6585 		err = 0;
6586 		if (!list_empty(&ep->asocs))
6587 			break;
6588 
6589 		err = sock_intr_errno(timeo);
6590 		if (signal_pending(current))
6591 			break;
6592 
6593 		err = -EAGAIN;
6594 		if (!timeo)
6595 			break;
6596 	}
6597 
6598 	finish_wait(sk_sleep(sk), &wait);
6599 
6600 	return err;
6601 }
6602 
6603 static void sctp_wait_for_close(struct sock *sk, long timeout)
6604 {
6605 	DEFINE_WAIT(wait);
6606 
6607 	do {
6608 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6609 		if (list_empty(&sctp_sk(sk)->ep->asocs))
6610 			break;
6611 		sctp_release_sock(sk);
6612 		timeout = schedule_timeout(timeout);
6613 		sctp_lock_sock(sk);
6614 	} while (!signal_pending(current) && timeout);
6615 
6616 	finish_wait(sk_sleep(sk), &wait);
6617 }
6618 
6619 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6620 {
6621 	struct sk_buff *frag;
6622 
6623 	if (!skb->data_len)
6624 		goto done;
6625 
6626 	/* Don't forget the fragments. */
6627 	skb_walk_frags(skb, frag)
6628 		sctp_skb_set_owner_r_frag(frag, sk);
6629 
6630 done:
6631 	sctp_skb_set_owner_r(skb, sk);
6632 }
6633 
6634 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
6635 		    struct sctp_association *asoc)
6636 {
6637 	struct inet_sock *inet = inet_sk(sk);
6638 	struct inet_sock *newinet;
6639 
6640 	newsk->sk_type = sk->sk_type;
6641 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
6642 	newsk->sk_flags = sk->sk_flags;
6643 	newsk->sk_no_check = sk->sk_no_check;
6644 	newsk->sk_reuse = sk->sk_reuse;
6645 
6646 	newsk->sk_shutdown = sk->sk_shutdown;
6647 	newsk->sk_destruct = inet_sock_destruct;
6648 	newsk->sk_family = sk->sk_family;
6649 	newsk->sk_protocol = IPPROTO_SCTP;
6650 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
6651 	newsk->sk_sndbuf = sk->sk_sndbuf;
6652 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
6653 	newsk->sk_lingertime = sk->sk_lingertime;
6654 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
6655 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
6656 
6657 	newinet = inet_sk(newsk);
6658 
6659 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
6660 	 * getsockname() and getpeername()
6661 	 */
6662 	newinet->inet_sport = inet->inet_sport;
6663 	newinet->inet_saddr = inet->inet_saddr;
6664 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
6665 	newinet->inet_dport = htons(asoc->peer.port);
6666 	newinet->pmtudisc = inet->pmtudisc;
6667 	newinet->inet_id = asoc->next_tsn ^ jiffies;
6668 
6669 	newinet->uc_ttl = inet->uc_ttl;
6670 	newinet->mc_loop = 1;
6671 	newinet->mc_ttl = 1;
6672 	newinet->mc_index = 0;
6673 	newinet->mc_list = NULL;
6674 }
6675 
6676 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6677  * and its messages to the newsk.
6678  */
6679 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6680 			      struct sctp_association *assoc,
6681 			      sctp_socket_type_t type)
6682 {
6683 	struct sctp_sock *oldsp = sctp_sk(oldsk);
6684 	struct sctp_sock *newsp = sctp_sk(newsk);
6685 	struct sctp_bind_bucket *pp; /* hash list port iterator */
6686 	struct sctp_endpoint *newep = newsp->ep;
6687 	struct sk_buff *skb, *tmp;
6688 	struct sctp_ulpevent *event;
6689 	struct sctp_bind_hashbucket *head;
6690 	struct list_head tmplist;
6691 
6692 	/* Migrate socket buffer sizes and all the socket level options to the
6693 	 * new socket.
6694 	 */
6695 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
6696 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6697 	/* Brute force copy old sctp opt. */
6698 	if (oldsp->do_auto_asconf) {
6699 		memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist));
6700 		inet_sk_copy_descendant(newsk, oldsk);
6701 		memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist));
6702 	} else
6703 		inet_sk_copy_descendant(newsk, oldsk);
6704 
6705 	/* Restore the ep value that was overwritten with the above structure
6706 	 * copy.
6707 	 */
6708 	newsp->ep = newep;
6709 	newsp->hmac = NULL;
6710 
6711 	/* Hook this new socket in to the bind_hash list. */
6712 	head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->inet_num)];
6713 	sctp_local_bh_disable();
6714 	sctp_spin_lock(&head->lock);
6715 	pp = sctp_sk(oldsk)->bind_hash;
6716 	sk_add_bind_node(newsk, &pp->owner);
6717 	sctp_sk(newsk)->bind_hash = pp;
6718 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
6719 	sctp_spin_unlock(&head->lock);
6720 	sctp_local_bh_enable();
6721 
6722 	/* Copy the bind_addr list from the original endpoint to the new
6723 	 * endpoint so that we can handle restarts properly
6724 	 */
6725 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6726 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
6727 
6728 	/* Move any messages in the old socket's receive queue that are for the
6729 	 * peeled off association to the new socket's receive queue.
6730 	 */
6731 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6732 		event = sctp_skb2event(skb);
6733 		if (event->asoc == assoc) {
6734 			__skb_unlink(skb, &oldsk->sk_receive_queue);
6735 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
6736 			sctp_skb_set_owner_r_frag(skb, newsk);
6737 		}
6738 	}
6739 
6740 	/* Clean up any messages pending delivery due to partial
6741 	 * delivery.   Three cases:
6742 	 * 1) No partial deliver;  no work.
6743 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6744 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6745 	 */
6746 	skb_queue_head_init(&newsp->pd_lobby);
6747 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6748 
6749 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6750 		struct sk_buff_head *queue;
6751 
6752 		/* Decide which queue to move pd_lobby skbs to. */
6753 		if (assoc->ulpq.pd_mode) {
6754 			queue = &newsp->pd_lobby;
6755 		} else
6756 			queue = &newsk->sk_receive_queue;
6757 
6758 		/* Walk through the pd_lobby, looking for skbs that
6759 		 * need moved to the new socket.
6760 		 */
6761 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6762 			event = sctp_skb2event(skb);
6763 			if (event->asoc == assoc) {
6764 				__skb_unlink(skb, &oldsp->pd_lobby);
6765 				__skb_queue_tail(queue, skb);
6766 				sctp_skb_set_owner_r_frag(skb, newsk);
6767 			}
6768 		}
6769 
6770 		/* Clear up any skbs waiting for the partial
6771 		 * delivery to finish.
6772 		 */
6773 		if (assoc->ulpq.pd_mode)
6774 			sctp_clear_pd(oldsk, NULL);
6775 
6776 	}
6777 
6778 	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
6779 		sctp_skb_set_owner_r_frag(skb, newsk);
6780 
6781 	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
6782 		sctp_skb_set_owner_r_frag(skb, newsk);
6783 
6784 	/* Set the type of socket to indicate that it is peeled off from the
6785 	 * original UDP-style socket or created with the accept() call on a
6786 	 * TCP-style socket..
6787 	 */
6788 	newsp->type = type;
6789 
6790 	/* Mark the new socket "in-use" by the user so that any packets
6791 	 * that may arrive on the association after we've moved it are
6792 	 * queued to the backlog.  This prevents a potential race between
6793 	 * backlog processing on the old socket and new-packet processing
6794 	 * on the new socket.
6795 	 *
6796 	 * The caller has just allocated newsk so we can guarantee that other
6797 	 * paths won't try to lock it and then oldsk.
6798 	 */
6799 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
6800 	sctp_assoc_migrate(assoc, newsk);
6801 
6802 	/* If the association on the newsk is already closed before accept()
6803 	 * is called, set RCV_SHUTDOWN flag.
6804 	 */
6805 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
6806 		newsk->sk_shutdown |= RCV_SHUTDOWN;
6807 
6808 	newsk->sk_state = SCTP_SS_ESTABLISHED;
6809 	sctp_release_sock(newsk);
6810 }
6811 
6812 
6813 /* This proto struct describes the ULP interface for SCTP.  */
6814 struct proto sctp_prot = {
6815 	.name        =	"SCTP",
6816 	.owner       =	THIS_MODULE,
6817 	.close       =	sctp_close,
6818 	.connect     =	sctp_connect,
6819 	.disconnect  =	sctp_disconnect,
6820 	.accept      =	sctp_accept,
6821 	.ioctl       =	sctp_ioctl,
6822 	.init        =	sctp_init_sock,
6823 	.destroy     =	sctp_destroy_sock,
6824 	.shutdown    =	sctp_shutdown,
6825 	.setsockopt  =	sctp_setsockopt,
6826 	.getsockopt  =	sctp_getsockopt,
6827 	.sendmsg     =	sctp_sendmsg,
6828 	.recvmsg     =	sctp_recvmsg,
6829 	.bind        =	sctp_bind,
6830 	.backlog_rcv =	sctp_backlog_rcv,
6831 	.hash        =	sctp_hash,
6832 	.unhash      =	sctp_unhash,
6833 	.get_port    =	sctp_get_port,
6834 	.obj_size    =  sizeof(struct sctp_sock),
6835 	.sysctl_mem  =  sysctl_sctp_mem,
6836 	.sysctl_rmem =  sysctl_sctp_rmem,
6837 	.sysctl_wmem =  sysctl_sctp_wmem,
6838 	.memory_pressure = &sctp_memory_pressure,
6839 	.enter_memory_pressure = sctp_enter_memory_pressure,
6840 	.memory_allocated = &sctp_memory_allocated,
6841 	.sockets_allocated = &sctp_sockets_allocated,
6842 };
6843 
6844 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6845 
6846 struct proto sctpv6_prot = {
6847 	.name		= "SCTPv6",
6848 	.owner		= THIS_MODULE,
6849 	.close		= sctp_close,
6850 	.connect	= sctp_connect,
6851 	.disconnect	= sctp_disconnect,
6852 	.accept		= sctp_accept,
6853 	.ioctl		= sctp_ioctl,
6854 	.init		= sctp_init_sock,
6855 	.destroy	= sctp_destroy_sock,
6856 	.shutdown	= sctp_shutdown,
6857 	.setsockopt	= sctp_setsockopt,
6858 	.getsockopt	= sctp_getsockopt,
6859 	.sendmsg	= sctp_sendmsg,
6860 	.recvmsg	= sctp_recvmsg,
6861 	.bind		= sctp_bind,
6862 	.backlog_rcv	= sctp_backlog_rcv,
6863 	.hash		= sctp_hash,
6864 	.unhash		= sctp_unhash,
6865 	.get_port	= sctp_get_port,
6866 	.obj_size	= sizeof(struct sctp6_sock),
6867 	.sysctl_mem	= sysctl_sctp_mem,
6868 	.sysctl_rmem	= sysctl_sctp_rmem,
6869 	.sysctl_wmem	= sysctl_sctp_wmem,
6870 	.memory_pressure = &sctp_memory_pressure,
6871 	.enter_memory_pressure = sctp_enter_memory_pressure,
6872 	.memory_allocated = &sctp_memory_allocated,
6873 	.sockets_allocated = &sctp_sockets_allocated,
6874 };
6875 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
6876