xref: /linux/net/sctp/socket.c (revision f24e9f586b377749dff37554696cf3a105540c94)
1 /* SCTP kernel reference Implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel reference Implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * The SCTP reference implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * The SCTP reference implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, write to
32  * the Free Software Foundation, 59 Temple Place - Suite 330,
33  * Boston, MA 02111-1307, USA.
34  *
35  * Please send any bug reports or fixes you make to the
36  * email address(es):
37  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
38  *
39  * Or submit a bug report through the following website:
40  *    http://www.sf.net/projects/lksctp
41  *
42  * Written or modified by:
43  *    La Monte H.P. Yarroll <piggy@acm.org>
44  *    Narasimha Budihal     <narsi@refcode.org>
45  *    Karl Knutson          <karl@athena.chicago.il.us>
46  *    Jon Grimm             <jgrimm@us.ibm.com>
47  *    Xingang Guo           <xingang.guo@intel.com>
48  *    Daisy Chang           <daisyc@us.ibm.com>
49  *    Sridhar Samudrala     <samudrala@us.ibm.com>
50  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
51  *    Ardelle Fan	    <ardelle.fan@intel.com>
52  *    Ryan Layer	    <rmlayer@us.ibm.com>
53  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
54  *    Kevin Gao             <kevin.gao@intel.com>
55  *
56  * Any bugs reported given to us we will try to fix... any fixes shared will
57  * be incorporated into the next SCTP release.
58  */
59 
60 #include <linux/types.h>
61 #include <linux/kernel.h>
62 #include <linux/wait.h>
63 #include <linux/time.h>
64 #include <linux/ip.h>
65 #include <linux/capability.h>
66 #include <linux/fcntl.h>
67 #include <linux/poll.h>
68 #include <linux/init.h>
69 #include <linux/crypto.h>
70 
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
76 
77 #include <linux/socket.h> /* for sa_family_t */
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81 
82 /* WARNING:  Please do not remove the SCTP_STATIC attribute to
83  * any of the functions below as they are used to export functions
84  * used by a project regression testsuite.
85  */
86 
87 /* Forward declarations for internal helper functions. */
88 static int sctp_writeable(struct sock *sk);
89 static void sctp_wfree(struct sk_buff *skb);
90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
91 				size_t msg_len);
92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
94 static int sctp_wait_for_accept(struct sock *sk, long timeo);
95 static void sctp_wait_for_close(struct sock *sk, long timeo);
96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
97 					union sctp_addr *addr, int len);
98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
102 static int sctp_send_asconf(struct sctp_association *asoc,
103 			    struct sctp_chunk *chunk);
104 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
105 static int sctp_autobind(struct sock *sk);
106 static void sctp_sock_migrate(struct sock *, struct sock *,
107 			      struct sctp_association *, sctp_socket_type_t);
108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
109 
110 extern kmem_cache_t *sctp_bucket_cachep;
111 
112 /* Get the sndbuf space available at the time on the association.  */
113 static inline int sctp_wspace(struct sctp_association *asoc)
114 {
115 	struct sock *sk = asoc->base.sk;
116 	int amt = 0;
117 
118 	if (asoc->ep->sndbuf_policy) {
119 		/* make sure that no association uses more than sk_sndbuf */
120 		amt = sk->sk_sndbuf - asoc->sndbuf_used;
121 	} else {
122 		/* do socket level accounting */
123 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
124 	}
125 
126 	if (amt < 0)
127 		amt = 0;
128 
129 	return amt;
130 }
131 
132 /* Increment the used sndbuf space count of the corresponding association by
133  * the size of the outgoing data chunk.
134  * Also, set the skb destructor for sndbuf accounting later.
135  *
136  * Since it is always 1-1 between chunk and skb, and also a new skb is always
137  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
138  * destructor in the data chunk skb for the purpose of the sndbuf space
139  * tracking.
140  */
141 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
142 {
143 	struct sctp_association *asoc = chunk->asoc;
144 	struct sock *sk = asoc->base.sk;
145 
146 	/* The sndbuf space is tracked per association.  */
147 	sctp_association_hold(asoc);
148 
149 	skb_set_owner_w(chunk->skb, sk);
150 
151 	chunk->skb->destructor = sctp_wfree;
152 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
153 	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
154 
155 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
156 				sizeof(struct sk_buff) +
157 				sizeof(struct sctp_chunk);
158 
159 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
160 }
161 
162 /* Verify that this is a valid address. */
163 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
164 				   int len)
165 {
166 	struct sctp_af *af;
167 
168 	/* Verify basic sockaddr. */
169 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
170 	if (!af)
171 		return -EINVAL;
172 
173 	/* Is this a valid SCTP address?  */
174 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
175 		return -EINVAL;
176 
177 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
178 		return -EINVAL;
179 
180 	return 0;
181 }
182 
183 /* Look up the association by its id.  If this is not a UDP-style
184  * socket, the ID field is always ignored.
185  */
186 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
187 {
188 	struct sctp_association *asoc = NULL;
189 
190 	/* If this is not a UDP-style socket, assoc id should be ignored. */
191 	if (!sctp_style(sk, UDP)) {
192 		/* Return NULL if the socket state is not ESTABLISHED. It
193 		 * could be a TCP-style listening socket or a socket which
194 		 * hasn't yet called connect() to establish an association.
195 		 */
196 		if (!sctp_sstate(sk, ESTABLISHED))
197 			return NULL;
198 
199 		/* Get the first and the only association from the list. */
200 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
201 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
202 					  struct sctp_association, asocs);
203 		return asoc;
204 	}
205 
206 	/* Otherwise this is a UDP-style socket. */
207 	if (!id || (id == (sctp_assoc_t)-1))
208 		return NULL;
209 
210 	spin_lock_bh(&sctp_assocs_id_lock);
211 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
212 	spin_unlock_bh(&sctp_assocs_id_lock);
213 
214 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
215 		return NULL;
216 
217 	return asoc;
218 }
219 
220 /* Look up the transport from an address and an assoc id. If both address and
221  * id are specified, the associations matching the address and the id should be
222  * the same.
223  */
224 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
225 					      struct sockaddr_storage *addr,
226 					      sctp_assoc_t id)
227 {
228 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
229 	struct sctp_transport *transport;
230 	union sctp_addr *laddr = (union sctp_addr *)addr;
231 
232 	laddr->v4.sin_port = ntohs(laddr->v4.sin_port);
233 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
234 					       (union sctp_addr *)addr,
235 					       &transport);
236 	laddr->v4.sin_port = htons(laddr->v4.sin_port);
237 
238 	if (!addr_asoc)
239 		return NULL;
240 
241 	id_asoc = sctp_id2assoc(sk, id);
242 	if (id_asoc && (id_asoc != addr_asoc))
243 		return NULL;
244 
245 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
246 						(union sctp_addr *)addr);
247 
248 	return transport;
249 }
250 
251 /* API 3.1.2 bind() - UDP Style Syntax
252  * The syntax of bind() is,
253  *
254  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
255  *
256  *   sd      - the socket descriptor returned by socket().
257  *   addr    - the address structure (struct sockaddr_in or struct
258  *             sockaddr_in6 [RFC 2553]),
259  *   addr_len - the size of the address structure.
260  */
261 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
262 {
263 	int retval = 0;
264 
265 	sctp_lock_sock(sk);
266 
267 	SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
268 			  sk, addr, addr_len);
269 
270 	/* Disallow binding twice. */
271 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
272 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
273 				      addr_len);
274 	else
275 		retval = -EINVAL;
276 
277 	sctp_release_sock(sk);
278 
279 	return retval;
280 }
281 
282 static long sctp_get_port_local(struct sock *, union sctp_addr *);
283 
284 /* Verify this is a valid sockaddr. */
285 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
286 					union sctp_addr *addr, int len)
287 {
288 	struct sctp_af *af;
289 
290 	/* Check minimum size.  */
291 	if (len < sizeof (struct sockaddr))
292 		return NULL;
293 
294 	/* Does this PF support this AF? */
295 	if (!opt->pf->af_supported(addr->sa.sa_family, opt))
296 		return NULL;
297 
298 	/* If we get this far, af is valid. */
299 	af = sctp_get_af_specific(addr->sa.sa_family);
300 
301 	if (len < af->sockaddr_len)
302 		return NULL;
303 
304 	return af;
305 }
306 
307 /* Bind a local address either to an endpoint or to an association.  */
308 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
309 {
310 	struct sctp_sock *sp = sctp_sk(sk);
311 	struct sctp_endpoint *ep = sp->ep;
312 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
313 	struct sctp_af *af;
314 	unsigned short snum;
315 	int ret = 0;
316 
317 	/* Common sockaddr verification. */
318 	af = sctp_sockaddr_af(sp, addr, len);
319 	if (!af) {
320 		SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
321 				  sk, addr, len);
322 		return -EINVAL;
323 	}
324 
325 	snum = ntohs(addr->v4.sin_port);
326 
327 	SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
328 				 ", port: %d, new port: %d, len: %d)\n",
329 				 sk,
330 				 addr,
331 				 bp->port, snum,
332 				 len);
333 
334 	/* PF specific bind() address verification. */
335 	if (!sp->pf->bind_verify(sp, addr))
336 		return -EADDRNOTAVAIL;
337 
338 	/* We must either be unbound, or bind to the same port.  */
339 	if (bp->port && (snum != bp->port)) {
340 		SCTP_DEBUG_PRINTK("sctp_do_bind:"
341 				  " New port %d does not match existing port "
342 				  "%d.\n", snum, bp->port);
343 		return -EINVAL;
344 	}
345 
346 	if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
347 		return -EACCES;
348 
349 	/* Make sure we are allowed to bind here.
350 	 * The function sctp_get_port_local() does duplicate address
351 	 * detection.
352 	 */
353 	if ((ret = sctp_get_port_local(sk, addr))) {
354 		if (ret == (long) sk) {
355 			/* This endpoint has a conflicting address. */
356 			return -EINVAL;
357 		} else {
358 			return -EADDRINUSE;
359 		}
360 	}
361 
362 	/* Refresh ephemeral port.  */
363 	if (!bp->port)
364 		bp->port = inet_sk(sk)->num;
365 
366 	/* Add the address to the bind address list.  */
367 	sctp_local_bh_disable();
368 	sctp_write_lock(&ep->base.addr_lock);
369 
370 	/* Use GFP_ATOMIC since BHs are disabled.  */
371 	addr->v4.sin_port = ntohs(addr->v4.sin_port);
372 	ret = sctp_add_bind_addr(bp, addr, 1, GFP_ATOMIC);
373 	addr->v4.sin_port = htons(addr->v4.sin_port);
374 	sctp_write_unlock(&ep->base.addr_lock);
375 	sctp_local_bh_enable();
376 
377 	/* Copy back into socket for getsockname() use. */
378 	if (!ret) {
379 		inet_sk(sk)->sport = htons(inet_sk(sk)->num);
380 		af->to_sk_saddr(addr, sk);
381 	}
382 
383 	return ret;
384 }
385 
386  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
387  *
388  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
389  * at any one time.  If a sender, after sending an ASCONF chunk, decides
390  * it needs to transfer another ASCONF Chunk, it MUST wait until the
391  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
392  * subsequent ASCONF. Note this restriction binds each side, so at any
393  * time two ASCONF may be in-transit on any given association (one sent
394  * from each endpoint).
395  */
396 static int sctp_send_asconf(struct sctp_association *asoc,
397 			    struct sctp_chunk *chunk)
398 {
399 	int		retval = 0;
400 
401 	/* If there is an outstanding ASCONF chunk, queue it for later
402 	 * transmission.
403 	 */
404 	if (asoc->addip_last_asconf) {
405 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
406 		goto out;
407 	}
408 
409 	/* Hold the chunk until an ASCONF_ACK is received. */
410 	sctp_chunk_hold(chunk);
411 	retval = sctp_primitive_ASCONF(asoc, chunk);
412 	if (retval)
413 		sctp_chunk_free(chunk);
414 	else
415 		asoc->addip_last_asconf = chunk;
416 
417 out:
418 	return retval;
419 }
420 
421 /* Add a list of addresses as bind addresses to local endpoint or
422  * association.
423  *
424  * Basically run through each address specified in the addrs/addrcnt
425  * array/length pair, determine if it is IPv6 or IPv4 and call
426  * sctp_do_bind() on it.
427  *
428  * If any of them fails, then the operation will be reversed and the
429  * ones that were added will be removed.
430  *
431  * Only sctp_setsockopt_bindx() is supposed to call this function.
432  */
433 int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
434 {
435 	int cnt;
436 	int retval = 0;
437 	void *addr_buf;
438 	struct sockaddr *sa_addr;
439 	struct sctp_af *af;
440 
441 	SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
442 			  sk, addrs, addrcnt);
443 
444 	addr_buf = addrs;
445 	for (cnt = 0; cnt < addrcnt; cnt++) {
446 		/* The list may contain either IPv4 or IPv6 address;
447 		 * determine the address length for walking thru the list.
448 		 */
449 		sa_addr = (struct sockaddr *)addr_buf;
450 		af = sctp_get_af_specific(sa_addr->sa_family);
451 		if (!af) {
452 			retval = -EINVAL;
453 			goto err_bindx_add;
454 		}
455 
456 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
457 				      af->sockaddr_len);
458 
459 		addr_buf += af->sockaddr_len;
460 
461 err_bindx_add:
462 		if (retval < 0) {
463 			/* Failed. Cleanup the ones that have been added */
464 			if (cnt > 0)
465 				sctp_bindx_rem(sk, addrs, cnt);
466 			return retval;
467 		}
468 	}
469 
470 	return retval;
471 }
472 
473 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
474  * associations that are part of the endpoint indicating that a list of local
475  * addresses are added to the endpoint.
476  *
477  * If any of the addresses is already in the bind address list of the
478  * association, we do not send the chunk for that association.  But it will not
479  * affect other associations.
480  *
481  * Only sctp_setsockopt_bindx() is supposed to call this function.
482  */
483 static int sctp_send_asconf_add_ip(struct sock		*sk,
484 				   struct sockaddr	*addrs,
485 				   int 			addrcnt)
486 {
487 	struct sctp_sock		*sp;
488 	struct sctp_endpoint		*ep;
489 	struct sctp_association		*asoc;
490 	struct sctp_bind_addr		*bp;
491 	struct sctp_chunk		*chunk;
492 	struct sctp_sockaddr_entry	*laddr;
493 	union sctp_addr			*addr;
494 	union sctp_addr			saveaddr;
495 	void				*addr_buf;
496 	struct sctp_af			*af;
497 	struct list_head		*pos;
498 	struct list_head		*p;
499 	int 				i;
500 	int 				retval = 0;
501 
502 	if (!sctp_addip_enable)
503 		return retval;
504 
505 	sp = sctp_sk(sk);
506 	ep = sp->ep;
507 
508 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
509 			  __FUNCTION__, sk, addrs, addrcnt);
510 
511 	list_for_each(pos, &ep->asocs) {
512 		asoc = list_entry(pos, struct sctp_association, asocs);
513 
514 		if (!asoc->peer.asconf_capable)
515 			continue;
516 
517 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
518 			continue;
519 
520 		if (!sctp_state(asoc, ESTABLISHED))
521 			continue;
522 
523 		/* Check if any address in the packed array of addresses is
524 	         * in the bind address list of the association. If so,
525 		 * do not send the asconf chunk to its peer, but continue with
526 		 * other associations.
527 		 */
528 		addr_buf = addrs;
529 		for (i = 0; i < addrcnt; i++) {
530 			addr = (union sctp_addr *)addr_buf;
531 			af = sctp_get_af_specific(addr->v4.sin_family);
532 			if (!af) {
533 				retval = -EINVAL;
534 				goto out;
535 			}
536 
537 			if (sctp_assoc_lookup_laddr(asoc, addr))
538 				break;
539 
540 			addr_buf += af->sockaddr_len;
541 		}
542 		if (i < addrcnt)
543 			continue;
544 
545 		/* Use the first address in bind addr list of association as
546 		 * Address Parameter of ASCONF CHUNK.
547 		 */
548 		sctp_read_lock(&asoc->base.addr_lock);
549 		bp = &asoc->base.bind_addr;
550 		p = bp->address_list.next;
551 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
552 		sctp_read_unlock(&asoc->base.addr_lock);
553 
554 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
555 						   addrcnt, SCTP_PARAM_ADD_IP);
556 		if (!chunk) {
557 			retval = -ENOMEM;
558 			goto out;
559 		}
560 
561 		retval = sctp_send_asconf(asoc, chunk);
562 		if (retval)
563 			goto out;
564 
565 		/* Add the new addresses to the bind address list with
566 		 * use_as_src set to 0.
567 		 */
568 		sctp_local_bh_disable();
569 		sctp_write_lock(&asoc->base.addr_lock);
570 		addr_buf = addrs;
571 		for (i = 0; i < addrcnt; i++) {
572 			addr = (union sctp_addr *)addr_buf;
573 			af = sctp_get_af_specific(addr->v4.sin_family);
574 			memcpy(&saveaddr, addr, af->sockaddr_len);
575 			saveaddr.v4.sin_port = ntohs(saveaddr.v4.sin_port);
576 			retval = sctp_add_bind_addr(bp, &saveaddr, 0,
577 						    GFP_ATOMIC);
578 			addr_buf += af->sockaddr_len;
579 		}
580 		sctp_write_unlock(&asoc->base.addr_lock);
581 		sctp_local_bh_enable();
582 	}
583 
584 out:
585 	return retval;
586 }
587 
588 /* Remove a list of addresses from bind addresses list.  Do not remove the
589  * last address.
590  *
591  * Basically run through each address specified in the addrs/addrcnt
592  * array/length pair, determine if it is IPv6 or IPv4 and call
593  * sctp_del_bind() on it.
594  *
595  * If any of them fails, then the operation will be reversed and the
596  * ones that were removed will be added back.
597  *
598  * At least one address has to be left; if only one address is
599  * available, the operation will return -EBUSY.
600  *
601  * Only sctp_setsockopt_bindx() is supposed to call this function.
602  */
603 int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
604 {
605 	struct sctp_sock *sp = sctp_sk(sk);
606 	struct sctp_endpoint *ep = sp->ep;
607 	int cnt;
608 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
609 	int retval = 0;
610 	union sctp_addr saveaddr;
611 	void *addr_buf;
612 	struct sockaddr *sa_addr;
613 	struct sctp_af *af;
614 
615 	SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
616 			  sk, addrs, addrcnt);
617 
618 	addr_buf = addrs;
619 	for (cnt = 0; cnt < addrcnt; cnt++) {
620 		/* If the bind address list is empty or if there is only one
621 		 * bind address, there is nothing more to be removed (we need
622 		 * at least one address here).
623 		 */
624 		if (list_empty(&bp->address_list) ||
625 		    (sctp_list_single_entry(&bp->address_list))) {
626 			retval = -EBUSY;
627 			goto err_bindx_rem;
628 		}
629 
630 		/* The list may contain either IPv4 or IPv6 address;
631 		 * determine the address length to copy the address to
632 		 * saveaddr.
633 		 */
634 		sa_addr = (struct sockaddr *)addr_buf;
635 		af = sctp_get_af_specific(sa_addr->sa_family);
636 		if (!af) {
637 			retval = -EINVAL;
638 			goto err_bindx_rem;
639 		}
640 		memcpy(&saveaddr, sa_addr, af->sockaddr_len);
641 		saveaddr.v4.sin_port = ntohs(saveaddr.v4.sin_port);
642 		if (saveaddr.v4.sin_port != bp->port) {
643 			retval = -EINVAL;
644 			goto err_bindx_rem;
645 		}
646 
647 		/* FIXME - There is probably a need to check if sk->sk_saddr and
648 		 * sk->sk_rcv_addr are currently set to one of the addresses to
649 		 * be removed. This is something which needs to be looked into
650 		 * when we are fixing the outstanding issues with multi-homing
651 		 * socket routing and failover schemes. Refer to comments in
652 		 * sctp_do_bind(). -daisy
653 		 */
654 		sctp_local_bh_disable();
655 		sctp_write_lock(&ep->base.addr_lock);
656 
657 		retval = sctp_del_bind_addr(bp, &saveaddr);
658 
659 		sctp_write_unlock(&ep->base.addr_lock);
660 		sctp_local_bh_enable();
661 
662 		addr_buf += af->sockaddr_len;
663 err_bindx_rem:
664 		if (retval < 0) {
665 			/* Failed. Add the ones that has been removed back */
666 			if (cnt > 0)
667 				sctp_bindx_add(sk, addrs, cnt);
668 			return retval;
669 		}
670 	}
671 
672 	return retval;
673 }
674 
675 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
676  * the associations that are part of the endpoint indicating that a list of
677  * local addresses are removed from the endpoint.
678  *
679  * If any of the addresses is already in the bind address list of the
680  * association, we do not send the chunk for that association.  But it will not
681  * affect other associations.
682  *
683  * Only sctp_setsockopt_bindx() is supposed to call this function.
684  */
685 static int sctp_send_asconf_del_ip(struct sock		*sk,
686 				   struct sockaddr	*addrs,
687 				   int			addrcnt)
688 {
689 	struct sctp_sock	*sp;
690 	struct sctp_endpoint	*ep;
691 	struct sctp_association	*asoc;
692 	struct sctp_transport	*transport;
693 	struct sctp_bind_addr	*bp;
694 	struct sctp_chunk	*chunk;
695 	union sctp_addr		*laddr;
696 	union sctp_addr		saveaddr;
697 	void			*addr_buf;
698 	struct sctp_af		*af;
699 	struct list_head	*pos, *pos1;
700 	struct sctp_sockaddr_entry *saddr;
701 	int 			i;
702 	int 			retval = 0;
703 
704 	if (!sctp_addip_enable)
705 		return retval;
706 
707 	sp = sctp_sk(sk);
708 	ep = sp->ep;
709 
710 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
711 			  __FUNCTION__, sk, addrs, addrcnt);
712 
713 	list_for_each(pos, &ep->asocs) {
714 		asoc = list_entry(pos, struct sctp_association, asocs);
715 
716 		if (!asoc->peer.asconf_capable)
717 			continue;
718 
719 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
720 			continue;
721 
722 		if (!sctp_state(asoc, ESTABLISHED))
723 			continue;
724 
725 		/* Check if any address in the packed array of addresses is
726 	         * not present in the bind address list of the association.
727 		 * If so, do not send the asconf chunk to its peer, but
728 		 * continue with other associations.
729 		 */
730 		addr_buf = addrs;
731 		for (i = 0; i < addrcnt; i++) {
732 			laddr = (union sctp_addr *)addr_buf;
733 			af = sctp_get_af_specific(laddr->v4.sin_family);
734 			if (!af) {
735 				retval = -EINVAL;
736 				goto out;
737 			}
738 
739 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
740 				break;
741 
742 			addr_buf += af->sockaddr_len;
743 		}
744 		if (i < addrcnt)
745 			continue;
746 
747 		/* Find one address in the association's bind address list
748 		 * that is not in the packed array of addresses. This is to
749 		 * make sure that we do not delete all the addresses in the
750 		 * association.
751 		 */
752 		sctp_read_lock(&asoc->base.addr_lock);
753 		bp = &asoc->base.bind_addr;
754 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
755 					       addrcnt, sp);
756 		sctp_read_unlock(&asoc->base.addr_lock);
757 		if (!laddr)
758 			continue;
759 
760 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
761 						   SCTP_PARAM_DEL_IP);
762 		if (!chunk) {
763 			retval = -ENOMEM;
764 			goto out;
765 		}
766 
767 		/* Reset use_as_src flag for the addresses in the bind address
768 		 * list that are to be deleted.
769 		 */
770 		sctp_local_bh_disable();
771 		sctp_write_lock(&asoc->base.addr_lock);
772 		addr_buf = addrs;
773 		for (i = 0; i < addrcnt; i++) {
774 			laddr = (union sctp_addr *)addr_buf;
775 			af = sctp_get_af_specific(laddr->v4.sin_family);
776 			memcpy(&saveaddr, laddr, af->sockaddr_len);
777 			saveaddr.v4.sin_port = ntohs(saveaddr.v4.sin_port);
778 			list_for_each(pos1, &bp->address_list) {
779 				saddr = list_entry(pos1,
780 						   struct sctp_sockaddr_entry,
781 						   list);
782 				if (sctp_cmp_addr_exact(&saddr->a, &saveaddr))
783 					saddr->use_as_src = 0;
784 			}
785 			addr_buf += af->sockaddr_len;
786 		}
787 		sctp_write_unlock(&asoc->base.addr_lock);
788 		sctp_local_bh_enable();
789 
790 		/* Update the route and saddr entries for all the transports
791 		 * as some of the addresses in the bind address list are
792 		 * about to be deleted and cannot be used as source addresses.
793 		 */
794 		list_for_each(pos1, &asoc->peer.transport_addr_list) {
795 			transport = list_entry(pos1, struct sctp_transport,
796 					       transports);
797 			dst_release(transport->dst);
798 			sctp_transport_route(transport, NULL,
799 					     sctp_sk(asoc->base.sk));
800 		}
801 
802 		retval = sctp_send_asconf(asoc, chunk);
803 	}
804 out:
805 	return retval;
806 }
807 
808 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
809  *
810  * API 8.1
811  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
812  *                int flags);
813  *
814  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
815  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
816  * or IPv6 addresses.
817  *
818  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
819  * Section 3.1.2 for this usage.
820  *
821  * addrs is a pointer to an array of one or more socket addresses. Each
822  * address is contained in its appropriate structure (i.e. struct
823  * sockaddr_in or struct sockaddr_in6) the family of the address type
824  * must be used to distengish the address length (note that this
825  * representation is termed a "packed array" of addresses). The caller
826  * specifies the number of addresses in the array with addrcnt.
827  *
828  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
829  * -1, and sets errno to the appropriate error code.
830  *
831  * For SCTP, the port given in each socket address must be the same, or
832  * sctp_bindx() will fail, setting errno to EINVAL.
833  *
834  * The flags parameter is formed from the bitwise OR of zero or more of
835  * the following currently defined flags:
836  *
837  * SCTP_BINDX_ADD_ADDR
838  *
839  * SCTP_BINDX_REM_ADDR
840  *
841  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
842  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
843  * addresses from the association. The two flags are mutually exclusive;
844  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
845  * not remove all addresses from an association; sctp_bindx() will
846  * reject such an attempt with EINVAL.
847  *
848  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
849  * additional addresses with an endpoint after calling bind().  Or use
850  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
851  * socket is associated with so that no new association accepted will be
852  * associated with those addresses. If the endpoint supports dynamic
853  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
854  * endpoint to send the appropriate message to the peer to change the
855  * peers address lists.
856  *
857  * Adding and removing addresses from a connected association is
858  * optional functionality. Implementations that do not support this
859  * functionality should return EOPNOTSUPP.
860  *
861  * Basically do nothing but copying the addresses from user to kernel
862  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
863  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
864  * from userspace.
865  *
866  * We don't use copy_from_user() for optimization: we first do the
867  * sanity checks (buffer size -fast- and access check-healthy
868  * pointer); if all of those succeed, then we can alloc the memory
869  * (expensive operation) needed to copy the data to kernel. Then we do
870  * the copying without checking the user space area
871  * (__copy_from_user()).
872  *
873  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
874  * it.
875  *
876  * sk        The sk of the socket
877  * addrs     The pointer to the addresses in user land
878  * addrssize Size of the addrs buffer
879  * op        Operation to perform (add or remove, see the flags of
880  *           sctp_bindx)
881  *
882  * Returns 0 if ok, <0 errno code on error.
883  */
884 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
885 				      struct sockaddr __user *addrs,
886 				      int addrs_size, int op)
887 {
888 	struct sockaddr *kaddrs;
889 	int err;
890 	int addrcnt = 0;
891 	int walk_size = 0;
892 	struct sockaddr *sa_addr;
893 	void *addr_buf;
894 	struct sctp_af *af;
895 
896 	SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
897 			  " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
898 
899 	if (unlikely(addrs_size <= 0))
900 		return -EINVAL;
901 
902 	/* Check the user passed a healthy pointer.  */
903 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
904 		return -EFAULT;
905 
906 	/* Alloc space for the address array in kernel memory.  */
907 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
908 	if (unlikely(!kaddrs))
909 		return -ENOMEM;
910 
911 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
912 		kfree(kaddrs);
913 		return -EFAULT;
914 	}
915 
916 	/* Walk through the addrs buffer and count the number of addresses. */
917 	addr_buf = kaddrs;
918 	while (walk_size < addrs_size) {
919 		sa_addr = (struct sockaddr *)addr_buf;
920 		af = sctp_get_af_specific(sa_addr->sa_family);
921 
922 		/* If the address family is not supported or if this address
923 		 * causes the address buffer to overflow return EINVAL.
924 		 */
925 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
926 			kfree(kaddrs);
927 			return -EINVAL;
928 		}
929 		addrcnt++;
930 		addr_buf += af->sockaddr_len;
931 		walk_size += af->sockaddr_len;
932 	}
933 
934 	/* Do the work. */
935 	switch (op) {
936 	case SCTP_BINDX_ADD_ADDR:
937 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
938 		if (err)
939 			goto out;
940 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
941 		break;
942 
943 	case SCTP_BINDX_REM_ADDR:
944 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
945 		if (err)
946 			goto out;
947 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
948 		break;
949 
950 	default:
951 		err = -EINVAL;
952 		break;
953         };
954 
955 out:
956 	kfree(kaddrs);
957 
958 	return err;
959 }
960 
961 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
962  *
963  * Common routine for handling connect() and sctp_connectx().
964  * Connect will come in with just a single address.
965  */
966 static int __sctp_connect(struct sock* sk,
967 			  struct sockaddr *kaddrs,
968 			  int addrs_size)
969 {
970 	struct sctp_sock *sp;
971 	struct sctp_endpoint *ep;
972 	struct sctp_association *asoc = NULL;
973 	struct sctp_association *asoc2;
974 	struct sctp_transport *transport;
975 	union sctp_addr to;
976 	struct sctp_af *af;
977 	sctp_scope_t scope;
978 	long timeo;
979 	int err = 0;
980 	int addrcnt = 0;
981 	int walk_size = 0;
982 	struct sockaddr *sa_addr;
983 	void *addr_buf;
984 
985 	sp = sctp_sk(sk);
986 	ep = sp->ep;
987 
988 	/* connect() cannot be done on a socket that is already in ESTABLISHED
989 	 * state - UDP-style peeled off socket or a TCP-style socket that
990 	 * is already connected.
991 	 * It cannot be done even on a TCP-style listening socket.
992 	 */
993 	if (sctp_sstate(sk, ESTABLISHED) ||
994 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
995 		err = -EISCONN;
996 		goto out_free;
997 	}
998 
999 	/* Walk through the addrs buffer and count the number of addresses. */
1000 	addr_buf = kaddrs;
1001 	while (walk_size < addrs_size) {
1002 		sa_addr = (struct sockaddr *)addr_buf;
1003 		af = sctp_get_af_specific(sa_addr->sa_family);
1004 
1005 		/* If the address family is not supported or if this address
1006 		 * causes the address buffer to overflow return EINVAL.
1007 		 */
1008 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1009 			err = -EINVAL;
1010 			goto out_free;
1011 		}
1012 
1013 		err = sctp_verify_addr(sk, (union sctp_addr *)sa_addr,
1014 				       af->sockaddr_len);
1015 		if (err)
1016 			goto out_free;
1017 
1018 		memcpy(&to, sa_addr, af->sockaddr_len);
1019 		to.v4.sin_port = ntohs(to.v4.sin_port);
1020 
1021 		/* Check if there already is a matching association on the
1022 		 * endpoint (other than the one created here).
1023 		 */
1024 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1025 		if (asoc2 && asoc2 != asoc) {
1026 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1027 				err = -EISCONN;
1028 			else
1029 				err = -EALREADY;
1030 			goto out_free;
1031 		}
1032 
1033 		/* If we could not find a matching association on the endpoint,
1034 		 * make sure that there is no peeled-off association matching
1035 		 * the peer address even on another socket.
1036 		 */
1037 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1038 			err = -EADDRNOTAVAIL;
1039 			goto out_free;
1040 		}
1041 
1042 		if (!asoc) {
1043 			/* If a bind() or sctp_bindx() is not called prior to
1044 			 * an sctp_connectx() call, the system picks an
1045 			 * ephemeral port and will choose an address set
1046 			 * equivalent to binding with a wildcard address.
1047 			 */
1048 			if (!ep->base.bind_addr.port) {
1049 				if (sctp_autobind(sk)) {
1050 					err = -EAGAIN;
1051 					goto out_free;
1052 				}
1053 			} else {
1054 				/*
1055 				 * If an unprivileged user inherits a 1-many
1056 				 * style socket with open associations on a
1057 				 * privileged port, it MAY be permitted to
1058 				 * accept new associations, but it SHOULD NOT
1059 				 * be permitted to open new associations.
1060 				 */
1061 				if (ep->base.bind_addr.port < PROT_SOCK &&
1062 				    !capable(CAP_NET_BIND_SERVICE)) {
1063 					err = -EACCES;
1064 					goto out_free;
1065 				}
1066 			}
1067 
1068 			scope = sctp_scope(&to);
1069 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1070 			if (!asoc) {
1071 				err = -ENOMEM;
1072 				goto out_free;
1073 			}
1074 		}
1075 
1076 		/* Prime the peer's transport structures.  */
1077 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1078 						SCTP_UNKNOWN);
1079 		if (!transport) {
1080 			err = -ENOMEM;
1081 			goto out_free;
1082 		}
1083 
1084 		addrcnt++;
1085 		addr_buf += af->sockaddr_len;
1086 		walk_size += af->sockaddr_len;
1087 	}
1088 
1089 	err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1090 	if (err < 0) {
1091 		goto out_free;
1092 	}
1093 
1094 	err = sctp_primitive_ASSOCIATE(asoc, NULL);
1095 	if (err < 0) {
1096 		goto out_free;
1097 	}
1098 
1099 	/* Initialize sk's dport and daddr for getpeername() */
1100 	inet_sk(sk)->dport = htons(asoc->peer.port);
1101 	af = sctp_get_af_specific(to.sa.sa_family);
1102 	af->to_sk_daddr(&to, sk);
1103 	sk->sk_err = 0;
1104 
1105 	timeo = sock_sndtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK);
1106 	err = sctp_wait_for_connect(asoc, &timeo);
1107 
1108 	/* Don't free association on exit. */
1109 	asoc = NULL;
1110 
1111 out_free:
1112 
1113 	SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1114 		          " kaddrs: %p err: %d\n",
1115 	                  asoc, kaddrs, err);
1116 	if (asoc)
1117 		sctp_association_free(asoc);
1118 	return err;
1119 }
1120 
1121 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1122  *
1123  * API 8.9
1124  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt);
1125  *
1126  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1127  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1128  * or IPv6 addresses.
1129  *
1130  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1131  * Section 3.1.2 for this usage.
1132  *
1133  * addrs is a pointer to an array of one or more socket addresses. Each
1134  * address is contained in its appropriate structure (i.e. struct
1135  * sockaddr_in or struct sockaddr_in6) the family of the address type
1136  * must be used to distengish the address length (note that this
1137  * representation is termed a "packed array" of addresses). The caller
1138  * specifies the number of addresses in the array with addrcnt.
1139  *
1140  * On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns
1141  * -1, and sets errno to the appropriate error code.
1142  *
1143  * For SCTP, the port given in each socket address must be the same, or
1144  * sctp_connectx() will fail, setting errno to EINVAL.
1145  *
1146  * An application can use sctp_connectx to initiate an association with
1147  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1148  * allows a caller to specify multiple addresses at which a peer can be
1149  * reached.  The way the SCTP stack uses the list of addresses to set up
1150  * the association is implementation dependant.  This function only
1151  * specifies that the stack will try to make use of all the addresses in
1152  * the list when needed.
1153  *
1154  * Note that the list of addresses passed in is only used for setting up
1155  * the association.  It does not necessarily equal the set of addresses
1156  * the peer uses for the resulting association.  If the caller wants to
1157  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1158  * retrieve them after the association has been set up.
1159  *
1160  * Basically do nothing but copying the addresses from user to kernel
1161  * land and invoking either sctp_connectx(). This is used for tunneling
1162  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1163  *
1164  * We don't use copy_from_user() for optimization: we first do the
1165  * sanity checks (buffer size -fast- and access check-healthy
1166  * pointer); if all of those succeed, then we can alloc the memory
1167  * (expensive operation) needed to copy the data to kernel. Then we do
1168  * the copying without checking the user space area
1169  * (__copy_from_user()).
1170  *
1171  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1172  * it.
1173  *
1174  * sk        The sk of the socket
1175  * addrs     The pointer to the addresses in user land
1176  * addrssize Size of the addrs buffer
1177  *
1178  * Returns 0 if ok, <0 errno code on error.
1179  */
1180 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1181 				      struct sockaddr __user *addrs,
1182 				      int addrs_size)
1183 {
1184 	int err = 0;
1185 	struct sockaddr *kaddrs;
1186 
1187 	SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1188 			  __FUNCTION__, sk, addrs, addrs_size);
1189 
1190 	if (unlikely(addrs_size <= 0))
1191 		return -EINVAL;
1192 
1193 	/* Check the user passed a healthy pointer.  */
1194 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1195 		return -EFAULT;
1196 
1197 	/* Alloc space for the address array in kernel memory.  */
1198 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1199 	if (unlikely(!kaddrs))
1200 		return -ENOMEM;
1201 
1202 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1203 		err = -EFAULT;
1204 	} else {
1205 		err = __sctp_connect(sk, kaddrs, addrs_size);
1206 	}
1207 
1208 	kfree(kaddrs);
1209 	return err;
1210 }
1211 
1212 /* API 3.1.4 close() - UDP Style Syntax
1213  * Applications use close() to perform graceful shutdown (as described in
1214  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1215  * by a UDP-style socket.
1216  *
1217  * The syntax is
1218  *
1219  *   ret = close(int sd);
1220  *
1221  *   sd      - the socket descriptor of the associations to be closed.
1222  *
1223  * To gracefully shutdown a specific association represented by the
1224  * UDP-style socket, an application should use the sendmsg() call,
1225  * passing no user data, but including the appropriate flag in the
1226  * ancillary data (see Section xxxx).
1227  *
1228  * If sd in the close() call is a branched-off socket representing only
1229  * one association, the shutdown is performed on that association only.
1230  *
1231  * 4.1.6 close() - TCP Style Syntax
1232  *
1233  * Applications use close() to gracefully close down an association.
1234  *
1235  * The syntax is:
1236  *
1237  *    int close(int sd);
1238  *
1239  *      sd      - the socket descriptor of the association to be closed.
1240  *
1241  * After an application calls close() on a socket descriptor, no further
1242  * socket operations will succeed on that descriptor.
1243  *
1244  * API 7.1.4 SO_LINGER
1245  *
1246  * An application using the TCP-style socket can use this option to
1247  * perform the SCTP ABORT primitive.  The linger option structure is:
1248  *
1249  *  struct  linger {
1250  *     int     l_onoff;                // option on/off
1251  *     int     l_linger;               // linger time
1252  * };
1253  *
1254  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1255  * to 0, calling close() is the same as the ABORT primitive.  If the
1256  * value is set to a negative value, the setsockopt() call will return
1257  * an error.  If the value is set to a positive value linger_time, the
1258  * close() can be blocked for at most linger_time ms.  If the graceful
1259  * shutdown phase does not finish during this period, close() will
1260  * return but the graceful shutdown phase continues in the system.
1261  */
1262 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1263 {
1264 	struct sctp_endpoint *ep;
1265 	struct sctp_association *asoc;
1266 	struct list_head *pos, *temp;
1267 
1268 	SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1269 
1270 	sctp_lock_sock(sk);
1271 	sk->sk_shutdown = SHUTDOWN_MASK;
1272 
1273 	ep = sctp_sk(sk)->ep;
1274 
1275 	/* Walk all associations on an endpoint.  */
1276 	list_for_each_safe(pos, temp, &ep->asocs) {
1277 		asoc = list_entry(pos, struct sctp_association, asocs);
1278 
1279 		if (sctp_style(sk, TCP)) {
1280 			/* A closed association can still be in the list if
1281 			 * it belongs to a TCP-style listening socket that is
1282 			 * not yet accepted. If so, free it. If not, send an
1283 			 * ABORT or SHUTDOWN based on the linger options.
1284 			 */
1285 			if (sctp_state(asoc, CLOSED)) {
1286 				sctp_unhash_established(asoc);
1287 				sctp_association_free(asoc);
1288 				continue;
1289 			}
1290 		}
1291 
1292 		if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1293 			struct sctp_chunk *chunk;
1294 
1295 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1296 			if (chunk)
1297 				sctp_primitive_ABORT(asoc, chunk);
1298 		} else
1299 			sctp_primitive_SHUTDOWN(asoc, NULL);
1300 	}
1301 
1302 	/* Clean up any skbs sitting on the receive queue.  */
1303 	sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1304 	sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1305 
1306 	/* On a TCP-style socket, block for at most linger_time if set. */
1307 	if (sctp_style(sk, TCP) && timeout)
1308 		sctp_wait_for_close(sk, timeout);
1309 
1310 	/* This will run the backlog queue.  */
1311 	sctp_release_sock(sk);
1312 
1313 	/* Supposedly, no process has access to the socket, but
1314 	 * the net layers still may.
1315 	 */
1316 	sctp_local_bh_disable();
1317 	sctp_bh_lock_sock(sk);
1318 
1319 	/* Hold the sock, since sk_common_release() will put sock_put()
1320 	 * and we have just a little more cleanup.
1321 	 */
1322 	sock_hold(sk);
1323 	sk_common_release(sk);
1324 
1325 	sctp_bh_unlock_sock(sk);
1326 	sctp_local_bh_enable();
1327 
1328 	sock_put(sk);
1329 
1330 	SCTP_DBG_OBJCNT_DEC(sock);
1331 }
1332 
1333 /* Handle EPIPE error. */
1334 static int sctp_error(struct sock *sk, int flags, int err)
1335 {
1336 	if (err == -EPIPE)
1337 		err = sock_error(sk) ? : -EPIPE;
1338 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1339 		send_sig(SIGPIPE, current, 0);
1340 	return err;
1341 }
1342 
1343 /* API 3.1.3 sendmsg() - UDP Style Syntax
1344  *
1345  * An application uses sendmsg() and recvmsg() calls to transmit data to
1346  * and receive data from its peer.
1347  *
1348  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1349  *                  int flags);
1350  *
1351  *  socket  - the socket descriptor of the endpoint.
1352  *  message - pointer to the msghdr structure which contains a single
1353  *            user message and possibly some ancillary data.
1354  *
1355  *            See Section 5 for complete description of the data
1356  *            structures.
1357  *
1358  *  flags   - flags sent or received with the user message, see Section
1359  *            5 for complete description of the flags.
1360  *
1361  * Note:  This function could use a rewrite especially when explicit
1362  * connect support comes in.
1363  */
1364 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1365 
1366 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1367 
1368 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1369 			     struct msghdr *msg, size_t msg_len)
1370 {
1371 	struct sctp_sock *sp;
1372 	struct sctp_endpoint *ep;
1373 	struct sctp_association *new_asoc=NULL, *asoc=NULL;
1374 	struct sctp_transport *transport, *chunk_tp;
1375 	struct sctp_chunk *chunk;
1376 	union sctp_addr to;
1377 	struct sockaddr *msg_name = NULL;
1378 	struct sctp_sndrcvinfo default_sinfo = { 0 };
1379 	struct sctp_sndrcvinfo *sinfo;
1380 	struct sctp_initmsg *sinit;
1381 	sctp_assoc_t associd = 0;
1382 	sctp_cmsgs_t cmsgs = { NULL };
1383 	int err;
1384 	sctp_scope_t scope;
1385 	long timeo;
1386 	__u16 sinfo_flags = 0;
1387 	struct sctp_datamsg *datamsg;
1388 	struct list_head *pos;
1389 	int msg_flags = msg->msg_flags;
1390 
1391 	SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1392 			  sk, msg, msg_len);
1393 
1394 	err = 0;
1395 	sp = sctp_sk(sk);
1396 	ep = sp->ep;
1397 
1398 	SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1399 
1400 	/* We cannot send a message over a TCP-style listening socket. */
1401 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1402 		err = -EPIPE;
1403 		goto out_nounlock;
1404 	}
1405 
1406 	/* Parse out the SCTP CMSGs.  */
1407 	err = sctp_msghdr_parse(msg, &cmsgs);
1408 
1409 	if (err) {
1410 		SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1411 		goto out_nounlock;
1412 	}
1413 
1414 	/* Fetch the destination address for this packet.  This
1415 	 * address only selects the association--it is not necessarily
1416 	 * the address we will send to.
1417 	 * For a peeled-off socket, msg_name is ignored.
1418 	 */
1419 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1420 		int msg_namelen = msg->msg_namelen;
1421 
1422 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1423 				       msg_namelen);
1424 		if (err)
1425 			return err;
1426 
1427 		if (msg_namelen > sizeof(to))
1428 			msg_namelen = sizeof(to);
1429 		memcpy(&to, msg->msg_name, msg_namelen);
1430 		SCTP_DEBUG_PRINTK("Just memcpy'd. msg_name is "
1431 				  "0x%x:%u.\n",
1432 				  to.v4.sin_addr.s_addr, to.v4.sin_port);
1433 
1434 		to.v4.sin_port = ntohs(to.v4.sin_port);
1435 		msg_name = msg->msg_name;
1436 	}
1437 
1438 	sinfo = cmsgs.info;
1439 	sinit = cmsgs.init;
1440 
1441 	/* Did the user specify SNDRCVINFO?  */
1442 	if (sinfo) {
1443 		sinfo_flags = sinfo->sinfo_flags;
1444 		associd = sinfo->sinfo_assoc_id;
1445 	}
1446 
1447 	SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1448 			  msg_len, sinfo_flags);
1449 
1450 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1451 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1452 		err = -EINVAL;
1453 		goto out_nounlock;
1454 	}
1455 
1456 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1457 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1458 	 * If SCTP_ABORT is set, the message length could be non zero with
1459 	 * the msg_iov set to the user abort reason.
1460  	 */
1461 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1462 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1463 		err = -EINVAL;
1464 		goto out_nounlock;
1465 	}
1466 
1467 	/* If SCTP_ADDR_OVER is set, there must be an address
1468 	 * specified in msg_name.
1469 	 */
1470 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1471 		err = -EINVAL;
1472 		goto out_nounlock;
1473 	}
1474 
1475 	transport = NULL;
1476 
1477 	SCTP_DEBUG_PRINTK("About to look up association.\n");
1478 
1479 	sctp_lock_sock(sk);
1480 
1481 	/* If a msg_name has been specified, assume this is to be used.  */
1482 	if (msg_name) {
1483 		/* Look for a matching association on the endpoint. */
1484 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1485 		if (!asoc) {
1486 			/* If we could not find a matching association on the
1487 			 * endpoint, make sure that it is not a TCP-style
1488 			 * socket that already has an association or there is
1489 			 * no peeled-off association on another socket.
1490 			 */
1491 			if ((sctp_style(sk, TCP) &&
1492 			     sctp_sstate(sk, ESTABLISHED)) ||
1493 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1494 				err = -EADDRNOTAVAIL;
1495 				goto out_unlock;
1496 			}
1497 		}
1498 	} else {
1499 		asoc = sctp_id2assoc(sk, associd);
1500 		if (!asoc) {
1501 			err = -EPIPE;
1502 			goto out_unlock;
1503 		}
1504 	}
1505 
1506 	if (asoc) {
1507 		SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1508 
1509 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1510 		 * socket that has an association in CLOSED state. This can
1511 		 * happen when an accepted socket has an association that is
1512 		 * already CLOSED.
1513 		 */
1514 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1515 			err = -EPIPE;
1516 			goto out_unlock;
1517 		}
1518 
1519 		if (sinfo_flags & SCTP_EOF) {
1520 			SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1521 					  asoc);
1522 			sctp_primitive_SHUTDOWN(asoc, NULL);
1523 			err = 0;
1524 			goto out_unlock;
1525 		}
1526 		if (sinfo_flags & SCTP_ABORT) {
1527 			struct sctp_chunk *chunk;
1528 
1529 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1530 			if (!chunk) {
1531 				err = -ENOMEM;
1532 				goto out_unlock;
1533 			}
1534 
1535 			SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1536 			sctp_primitive_ABORT(asoc, chunk);
1537 			err = 0;
1538 			goto out_unlock;
1539 		}
1540 	}
1541 
1542 	/* Do we need to create the association?  */
1543 	if (!asoc) {
1544 		SCTP_DEBUG_PRINTK("There is no association yet.\n");
1545 
1546 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1547 			err = -EINVAL;
1548 			goto out_unlock;
1549 		}
1550 
1551 		/* Check for invalid stream against the stream counts,
1552 		 * either the default or the user specified stream counts.
1553 		 */
1554 		if (sinfo) {
1555 			if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1556 				/* Check against the defaults. */
1557 				if (sinfo->sinfo_stream >=
1558 				    sp->initmsg.sinit_num_ostreams) {
1559 					err = -EINVAL;
1560 					goto out_unlock;
1561 				}
1562 			} else {
1563 				/* Check against the requested.  */
1564 				if (sinfo->sinfo_stream >=
1565 				    sinit->sinit_num_ostreams) {
1566 					err = -EINVAL;
1567 					goto out_unlock;
1568 				}
1569 			}
1570 		}
1571 
1572 		/*
1573 		 * API 3.1.2 bind() - UDP Style Syntax
1574 		 * If a bind() or sctp_bindx() is not called prior to a
1575 		 * sendmsg() call that initiates a new association, the
1576 		 * system picks an ephemeral port and will choose an address
1577 		 * set equivalent to binding with a wildcard address.
1578 		 */
1579 		if (!ep->base.bind_addr.port) {
1580 			if (sctp_autobind(sk)) {
1581 				err = -EAGAIN;
1582 				goto out_unlock;
1583 			}
1584 		} else {
1585 			/*
1586 			 * If an unprivileged user inherits a one-to-many
1587 			 * style socket with open associations on a privileged
1588 			 * port, it MAY be permitted to accept new associations,
1589 			 * but it SHOULD NOT be permitted to open new
1590 			 * associations.
1591 			 */
1592 			if (ep->base.bind_addr.port < PROT_SOCK &&
1593 			    !capable(CAP_NET_BIND_SERVICE)) {
1594 				err = -EACCES;
1595 				goto out_unlock;
1596 			}
1597 		}
1598 
1599 		scope = sctp_scope(&to);
1600 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1601 		if (!new_asoc) {
1602 			err = -ENOMEM;
1603 			goto out_unlock;
1604 		}
1605 		asoc = new_asoc;
1606 
1607 		/* If the SCTP_INIT ancillary data is specified, set all
1608 		 * the association init values accordingly.
1609 		 */
1610 		if (sinit) {
1611 			if (sinit->sinit_num_ostreams) {
1612 				asoc->c.sinit_num_ostreams =
1613 					sinit->sinit_num_ostreams;
1614 			}
1615 			if (sinit->sinit_max_instreams) {
1616 				asoc->c.sinit_max_instreams =
1617 					sinit->sinit_max_instreams;
1618 			}
1619 			if (sinit->sinit_max_attempts) {
1620 				asoc->max_init_attempts
1621 					= sinit->sinit_max_attempts;
1622 			}
1623 			if (sinit->sinit_max_init_timeo) {
1624 				asoc->max_init_timeo =
1625 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1626 			}
1627 		}
1628 
1629 		/* Prime the peer's transport structures.  */
1630 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1631 		if (!transport) {
1632 			err = -ENOMEM;
1633 			goto out_free;
1634 		}
1635 		err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1636 		if (err < 0) {
1637 			err = -ENOMEM;
1638 			goto out_free;
1639 		}
1640 	}
1641 
1642 	/* ASSERT: we have a valid association at this point.  */
1643 	SCTP_DEBUG_PRINTK("We have a valid association.\n");
1644 
1645 	if (!sinfo) {
1646 		/* If the user didn't specify SNDRCVINFO, make up one with
1647 		 * some defaults.
1648 		 */
1649 		default_sinfo.sinfo_stream = asoc->default_stream;
1650 		default_sinfo.sinfo_flags = asoc->default_flags;
1651 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1652 		default_sinfo.sinfo_context = asoc->default_context;
1653 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1654 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1655 		sinfo = &default_sinfo;
1656 	}
1657 
1658 	/* API 7.1.7, the sndbuf size per association bounds the
1659 	 * maximum size of data that can be sent in a single send call.
1660 	 */
1661 	if (msg_len > sk->sk_sndbuf) {
1662 		err = -EMSGSIZE;
1663 		goto out_free;
1664 	}
1665 
1666 	/* If fragmentation is disabled and the message length exceeds the
1667 	 * association fragmentation point, return EMSGSIZE.  The I-D
1668 	 * does not specify what this error is, but this looks like
1669 	 * a great fit.
1670 	 */
1671 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1672 		err = -EMSGSIZE;
1673 		goto out_free;
1674 	}
1675 
1676 	if (sinfo) {
1677 		/* Check for invalid stream. */
1678 		if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1679 			err = -EINVAL;
1680 			goto out_free;
1681 		}
1682 	}
1683 
1684 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1685 	if (!sctp_wspace(asoc)) {
1686 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1687 		if (err)
1688 			goto out_free;
1689 	}
1690 
1691 	/* If an address is passed with the sendto/sendmsg call, it is used
1692 	 * to override the primary destination address in the TCP model, or
1693 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1694 	 */
1695 	if ((sctp_style(sk, TCP) && msg_name) ||
1696 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1697 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1698 		if (!chunk_tp) {
1699 			err = -EINVAL;
1700 			goto out_free;
1701 		}
1702 	} else
1703 		chunk_tp = NULL;
1704 
1705 	/* Auto-connect, if we aren't connected already. */
1706 	if (sctp_state(asoc, CLOSED)) {
1707 		err = sctp_primitive_ASSOCIATE(asoc, NULL);
1708 		if (err < 0)
1709 			goto out_free;
1710 		SCTP_DEBUG_PRINTK("We associated primitively.\n");
1711 	}
1712 
1713 	/* Break the message into multiple chunks of maximum size. */
1714 	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1715 	if (!datamsg) {
1716 		err = -ENOMEM;
1717 		goto out_free;
1718 	}
1719 
1720 	/* Now send the (possibly) fragmented message. */
1721 	list_for_each(pos, &datamsg->chunks) {
1722 		chunk = list_entry(pos, struct sctp_chunk, frag_list);
1723 		sctp_datamsg_track(chunk);
1724 
1725 		/* Do accounting for the write space.  */
1726 		sctp_set_owner_w(chunk);
1727 
1728 		chunk->transport = chunk_tp;
1729 
1730 		/* Send it to the lower layers.  Note:  all chunks
1731 		 * must either fail or succeed.   The lower layer
1732 		 * works that way today.  Keep it that way or this
1733 		 * breaks.
1734 		 */
1735 		err = sctp_primitive_SEND(asoc, chunk);
1736 		/* Did the lower layer accept the chunk? */
1737 		if (err)
1738 			sctp_chunk_free(chunk);
1739 		SCTP_DEBUG_PRINTK("We sent primitively.\n");
1740 	}
1741 
1742 	sctp_datamsg_free(datamsg);
1743 	if (err)
1744 		goto out_free;
1745 	else
1746 		err = msg_len;
1747 
1748 	/* If we are already past ASSOCIATE, the lower
1749 	 * layers are responsible for association cleanup.
1750 	 */
1751 	goto out_unlock;
1752 
1753 out_free:
1754 	if (new_asoc)
1755 		sctp_association_free(asoc);
1756 out_unlock:
1757 	sctp_release_sock(sk);
1758 
1759 out_nounlock:
1760 	return sctp_error(sk, msg_flags, err);
1761 
1762 #if 0
1763 do_sock_err:
1764 	if (msg_len)
1765 		err = msg_len;
1766 	else
1767 		err = sock_error(sk);
1768 	goto out;
1769 
1770 do_interrupted:
1771 	if (msg_len)
1772 		err = msg_len;
1773 	goto out;
1774 #endif /* 0 */
1775 }
1776 
1777 /* This is an extended version of skb_pull() that removes the data from the
1778  * start of a skb even when data is spread across the list of skb's in the
1779  * frag_list. len specifies the total amount of data that needs to be removed.
1780  * when 'len' bytes could be removed from the skb, it returns 0.
1781  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
1782  * could not be removed.
1783  */
1784 static int sctp_skb_pull(struct sk_buff *skb, int len)
1785 {
1786 	struct sk_buff *list;
1787 	int skb_len = skb_headlen(skb);
1788 	int rlen;
1789 
1790 	if (len <= skb_len) {
1791 		__skb_pull(skb, len);
1792 		return 0;
1793 	}
1794 	len -= skb_len;
1795 	__skb_pull(skb, skb_len);
1796 
1797 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next) {
1798 		rlen = sctp_skb_pull(list, len);
1799 		skb->len -= (len-rlen);
1800 		skb->data_len -= (len-rlen);
1801 
1802 		if (!rlen)
1803 			return 0;
1804 
1805 		len = rlen;
1806 	}
1807 
1808 	return len;
1809 }
1810 
1811 /* API 3.1.3  recvmsg() - UDP Style Syntax
1812  *
1813  *  ssize_t recvmsg(int socket, struct msghdr *message,
1814  *                    int flags);
1815  *
1816  *  socket  - the socket descriptor of the endpoint.
1817  *  message - pointer to the msghdr structure which contains a single
1818  *            user message and possibly some ancillary data.
1819  *
1820  *            See Section 5 for complete description of the data
1821  *            structures.
1822  *
1823  *  flags   - flags sent or received with the user message, see Section
1824  *            5 for complete description of the flags.
1825  */
1826 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1827 
1828 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1829 			     struct msghdr *msg, size_t len, int noblock,
1830 			     int flags, int *addr_len)
1831 {
1832 	struct sctp_ulpevent *event = NULL;
1833 	struct sctp_sock *sp = sctp_sk(sk);
1834 	struct sk_buff *skb;
1835 	int copied;
1836 	int err = 0;
1837 	int skb_len;
1838 
1839 	SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1840 			  "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1841 			  "len", len, "knoblauch", noblock,
1842 			  "flags", flags, "addr_len", addr_len);
1843 
1844 	sctp_lock_sock(sk);
1845 
1846 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1847 		err = -ENOTCONN;
1848 		goto out;
1849 	}
1850 
1851 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1852 	if (!skb)
1853 		goto out;
1854 
1855 	/* Get the total length of the skb including any skb's in the
1856 	 * frag_list.
1857 	 */
1858 	skb_len = skb->len;
1859 
1860 	copied = skb_len;
1861 	if (copied > len)
1862 		copied = len;
1863 
1864 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1865 
1866 	event = sctp_skb2event(skb);
1867 
1868 	if (err)
1869 		goto out_free;
1870 
1871 	sock_recv_timestamp(msg, sk, skb);
1872 	if (sctp_ulpevent_is_notification(event)) {
1873 		msg->msg_flags |= MSG_NOTIFICATION;
1874 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
1875 	} else {
1876 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1877 	}
1878 
1879 	/* Check if we allow SCTP_SNDRCVINFO. */
1880 	if (sp->subscribe.sctp_data_io_event)
1881 		sctp_ulpevent_read_sndrcvinfo(event, msg);
1882 #if 0
1883 	/* FIXME: we should be calling IP/IPv6 layers.  */
1884 	if (sk->sk_protinfo.af_inet.cmsg_flags)
1885 		ip_cmsg_recv(msg, skb);
1886 #endif
1887 
1888 	err = copied;
1889 
1890 	/* If skb's length exceeds the user's buffer, update the skb and
1891 	 * push it back to the receive_queue so that the next call to
1892 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
1893 	 */
1894 	if (skb_len > copied) {
1895 		msg->msg_flags &= ~MSG_EOR;
1896 		if (flags & MSG_PEEK)
1897 			goto out_free;
1898 		sctp_skb_pull(skb, copied);
1899 		skb_queue_head(&sk->sk_receive_queue, skb);
1900 
1901 		/* When only partial message is copied to the user, increase
1902 		 * rwnd by that amount. If all the data in the skb is read,
1903 		 * rwnd is updated when the event is freed.
1904 		 */
1905 		sctp_assoc_rwnd_increase(event->asoc, copied);
1906 		goto out;
1907 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
1908 		   (event->msg_flags & MSG_EOR))
1909 		msg->msg_flags |= MSG_EOR;
1910 	else
1911 		msg->msg_flags &= ~MSG_EOR;
1912 
1913 out_free:
1914 	if (flags & MSG_PEEK) {
1915 		/* Release the skb reference acquired after peeking the skb in
1916 		 * sctp_skb_recv_datagram().
1917 		 */
1918 		kfree_skb(skb);
1919 	} else {
1920 		/* Free the event which includes releasing the reference to
1921 		 * the owner of the skb, freeing the skb and updating the
1922 		 * rwnd.
1923 		 */
1924 		sctp_ulpevent_free(event);
1925 	}
1926 out:
1927 	sctp_release_sock(sk);
1928 	return err;
1929 }
1930 
1931 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
1932  *
1933  * This option is a on/off flag.  If enabled no SCTP message
1934  * fragmentation will be performed.  Instead if a message being sent
1935  * exceeds the current PMTU size, the message will NOT be sent and
1936  * instead a error will be indicated to the user.
1937  */
1938 static int sctp_setsockopt_disable_fragments(struct sock *sk,
1939 					    char __user *optval, int optlen)
1940 {
1941 	int val;
1942 
1943 	if (optlen < sizeof(int))
1944 		return -EINVAL;
1945 
1946 	if (get_user(val, (int __user *)optval))
1947 		return -EFAULT;
1948 
1949 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
1950 
1951 	return 0;
1952 }
1953 
1954 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
1955 					int optlen)
1956 {
1957 	if (optlen != sizeof(struct sctp_event_subscribe))
1958 		return -EINVAL;
1959 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
1960 		return -EFAULT;
1961 	return 0;
1962 }
1963 
1964 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
1965  *
1966  * This socket option is applicable to the UDP-style socket only.  When
1967  * set it will cause associations that are idle for more than the
1968  * specified number of seconds to automatically close.  An association
1969  * being idle is defined an association that has NOT sent or received
1970  * user data.  The special value of '0' indicates that no automatic
1971  * close of any associations should be performed.  The option expects an
1972  * integer defining the number of seconds of idle time before an
1973  * association is closed.
1974  */
1975 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
1976 					    int optlen)
1977 {
1978 	struct sctp_sock *sp = sctp_sk(sk);
1979 
1980 	/* Applicable to UDP-style socket only */
1981 	if (sctp_style(sk, TCP))
1982 		return -EOPNOTSUPP;
1983 	if (optlen != sizeof(int))
1984 		return -EINVAL;
1985 	if (copy_from_user(&sp->autoclose, optval, optlen))
1986 		return -EFAULT;
1987 
1988 	return 0;
1989 }
1990 
1991 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
1992  *
1993  * Applications can enable or disable heartbeats for any peer address of
1994  * an association, modify an address's heartbeat interval, force a
1995  * heartbeat to be sent immediately, and adjust the address's maximum
1996  * number of retransmissions sent before an address is considered
1997  * unreachable.  The following structure is used to access and modify an
1998  * address's parameters:
1999  *
2000  *  struct sctp_paddrparams {
2001  *     sctp_assoc_t            spp_assoc_id;
2002  *     struct sockaddr_storage spp_address;
2003  *     uint32_t                spp_hbinterval;
2004  *     uint16_t                spp_pathmaxrxt;
2005  *     uint32_t                spp_pathmtu;
2006  *     uint32_t                spp_sackdelay;
2007  *     uint32_t                spp_flags;
2008  * };
2009  *
2010  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2011  *                     application, and identifies the association for
2012  *                     this query.
2013  *   spp_address     - This specifies which address is of interest.
2014  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2015  *                     in milliseconds.  If a  value of zero
2016  *                     is present in this field then no changes are to
2017  *                     be made to this parameter.
2018  *   spp_pathmaxrxt  - This contains the maximum number of
2019  *                     retransmissions before this address shall be
2020  *                     considered unreachable. If a  value of zero
2021  *                     is present in this field then no changes are to
2022  *                     be made to this parameter.
2023  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2024  *                     specified here will be the "fixed" path mtu.
2025  *                     Note that if the spp_address field is empty
2026  *                     then all associations on this address will
2027  *                     have this fixed path mtu set upon them.
2028  *
2029  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2030  *                     the number of milliseconds that sacks will be delayed
2031  *                     for. This value will apply to all addresses of an
2032  *                     association if the spp_address field is empty. Note
2033  *                     also, that if delayed sack is enabled and this
2034  *                     value is set to 0, no change is made to the last
2035  *                     recorded delayed sack timer value.
2036  *
2037  *   spp_flags       - These flags are used to control various features
2038  *                     on an association. The flag field may contain
2039  *                     zero or more of the following options.
2040  *
2041  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2042  *                     specified address. Note that if the address
2043  *                     field is empty all addresses for the association
2044  *                     have heartbeats enabled upon them.
2045  *
2046  *                     SPP_HB_DISABLE - Disable heartbeats on the
2047  *                     speicifed address. Note that if the address
2048  *                     field is empty all addresses for the association
2049  *                     will have their heartbeats disabled. Note also
2050  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2051  *                     mutually exclusive, only one of these two should
2052  *                     be specified. Enabling both fields will have
2053  *                     undetermined results.
2054  *
2055  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2056  *                     to be made immediately.
2057  *
2058  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2059  *                     discovery upon the specified address. Note that
2060  *                     if the address feild is empty then all addresses
2061  *                     on the association are effected.
2062  *
2063  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2064  *                     discovery upon the specified address. Note that
2065  *                     if the address feild is empty then all addresses
2066  *                     on the association are effected. Not also that
2067  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2068  *                     exclusive. Enabling both will have undetermined
2069  *                     results.
2070  *
2071  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2072  *                     on delayed sack. The time specified in spp_sackdelay
2073  *                     is used to specify the sack delay for this address. Note
2074  *                     that if spp_address is empty then all addresses will
2075  *                     enable delayed sack and take on the sack delay
2076  *                     value specified in spp_sackdelay.
2077  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2078  *                     off delayed sack. If the spp_address field is blank then
2079  *                     delayed sack is disabled for the entire association. Note
2080  *                     also that this field is mutually exclusive to
2081  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2082  *                     results.
2083  */
2084 int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2085 				struct sctp_transport   *trans,
2086 				struct sctp_association *asoc,
2087 				struct sctp_sock        *sp,
2088 				int                      hb_change,
2089 				int                      pmtud_change,
2090 				int                      sackdelay_change)
2091 {
2092 	int error;
2093 
2094 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2095 		error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2096 		if (error)
2097 			return error;
2098 	}
2099 
2100 	if (params->spp_hbinterval) {
2101 		if (trans) {
2102 			trans->hbinterval = msecs_to_jiffies(params->spp_hbinterval);
2103 		} else if (asoc) {
2104 			asoc->hbinterval = msecs_to_jiffies(params->spp_hbinterval);
2105 		} else {
2106 			sp->hbinterval = params->spp_hbinterval;
2107 		}
2108 	}
2109 
2110 	if (hb_change) {
2111 		if (trans) {
2112 			trans->param_flags =
2113 				(trans->param_flags & ~SPP_HB) | hb_change;
2114 		} else if (asoc) {
2115 			asoc->param_flags =
2116 				(asoc->param_flags & ~SPP_HB) | hb_change;
2117 		} else {
2118 			sp->param_flags =
2119 				(sp->param_flags & ~SPP_HB) | hb_change;
2120 		}
2121 	}
2122 
2123 	if (params->spp_pathmtu) {
2124 		if (trans) {
2125 			trans->pathmtu = params->spp_pathmtu;
2126 			sctp_assoc_sync_pmtu(asoc);
2127 		} else if (asoc) {
2128 			asoc->pathmtu = params->spp_pathmtu;
2129 			sctp_frag_point(sp, params->spp_pathmtu);
2130 		} else {
2131 			sp->pathmtu = params->spp_pathmtu;
2132 		}
2133 	}
2134 
2135 	if (pmtud_change) {
2136 		if (trans) {
2137 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2138 				(params->spp_flags & SPP_PMTUD_ENABLE);
2139 			trans->param_flags =
2140 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2141 			if (update) {
2142 				sctp_transport_pmtu(trans);
2143 				sctp_assoc_sync_pmtu(asoc);
2144 			}
2145 		} else if (asoc) {
2146 			asoc->param_flags =
2147 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2148 		} else {
2149 			sp->param_flags =
2150 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2151 		}
2152 	}
2153 
2154 	if (params->spp_sackdelay) {
2155 		if (trans) {
2156 			trans->sackdelay =
2157 				msecs_to_jiffies(params->spp_sackdelay);
2158 		} else if (asoc) {
2159 			asoc->sackdelay =
2160 				msecs_to_jiffies(params->spp_sackdelay);
2161 		} else {
2162 			sp->sackdelay = params->spp_sackdelay;
2163 		}
2164 	}
2165 
2166 	if (sackdelay_change) {
2167 		if (trans) {
2168 			trans->param_flags =
2169 				(trans->param_flags & ~SPP_SACKDELAY) |
2170 				sackdelay_change;
2171 		} else if (asoc) {
2172 			asoc->param_flags =
2173 				(asoc->param_flags & ~SPP_SACKDELAY) |
2174 				sackdelay_change;
2175 		} else {
2176 			sp->param_flags =
2177 				(sp->param_flags & ~SPP_SACKDELAY) |
2178 				sackdelay_change;
2179 		}
2180 	}
2181 
2182 	if (params->spp_pathmaxrxt) {
2183 		if (trans) {
2184 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2185 		} else if (asoc) {
2186 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2187 		} else {
2188 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2189 		}
2190 	}
2191 
2192 	return 0;
2193 }
2194 
2195 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2196 					    char __user *optval, int optlen)
2197 {
2198 	struct sctp_paddrparams  params;
2199 	struct sctp_transport   *trans = NULL;
2200 	struct sctp_association *asoc = NULL;
2201 	struct sctp_sock        *sp = sctp_sk(sk);
2202 	int error;
2203 	int hb_change, pmtud_change, sackdelay_change;
2204 
2205 	if (optlen != sizeof(struct sctp_paddrparams))
2206 		return - EINVAL;
2207 
2208 	if (copy_from_user(&params, optval, optlen))
2209 		return -EFAULT;
2210 
2211 	/* Validate flags and value parameters. */
2212 	hb_change        = params.spp_flags & SPP_HB;
2213 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2214 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2215 
2216 	if (hb_change        == SPP_HB ||
2217 	    pmtud_change     == SPP_PMTUD ||
2218 	    sackdelay_change == SPP_SACKDELAY ||
2219 	    params.spp_sackdelay > 500 ||
2220 	    (params.spp_pathmtu
2221 	    && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2222 		return -EINVAL;
2223 
2224 	/* If an address other than INADDR_ANY is specified, and
2225 	 * no transport is found, then the request is invalid.
2226 	 */
2227 	if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
2228 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2229 					       params.spp_assoc_id);
2230 		if (!trans)
2231 			return -EINVAL;
2232 	}
2233 
2234 	/* Get association, if assoc_id != 0 and the socket is a one
2235 	 * to many style socket, and an association was not found, then
2236 	 * the id was invalid.
2237 	 */
2238 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2239 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2240 		return -EINVAL;
2241 
2242 	/* Heartbeat demand can only be sent on a transport or
2243 	 * association, but not a socket.
2244 	 */
2245 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2246 		return -EINVAL;
2247 
2248 	/* Process parameters. */
2249 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2250 					    hb_change, pmtud_change,
2251 					    sackdelay_change);
2252 
2253 	if (error)
2254 		return error;
2255 
2256 	/* If changes are for association, also apply parameters to each
2257 	 * transport.
2258 	 */
2259 	if (!trans && asoc) {
2260 		struct list_head *pos;
2261 
2262 		list_for_each(pos, &asoc->peer.transport_addr_list) {
2263 			trans = list_entry(pos, struct sctp_transport,
2264 					   transports);
2265 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2266 						    hb_change, pmtud_change,
2267 						    sackdelay_change);
2268 		}
2269 	}
2270 
2271 	return 0;
2272 }
2273 
2274 /* 7.1.24. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
2275  *
2276  *   This options will get or set the delayed ack timer.  The time is set
2277  *   in milliseconds.  If the assoc_id is 0, then this sets or gets the
2278  *   endpoints default delayed ack timer value.  If the assoc_id field is
2279  *   non-zero, then the set or get effects the specified association.
2280  *
2281  *   struct sctp_assoc_value {
2282  *       sctp_assoc_t            assoc_id;
2283  *       uint32_t                assoc_value;
2284  *   };
2285  *
2286  *     assoc_id    - This parameter, indicates which association the
2287  *                   user is preforming an action upon. Note that if
2288  *                   this field's value is zero then the endpoints
2289  *                   default value is changed (effecting future
2290  *                   associations only).
2291  *
2292  *     assoc_value - This parameter contains the number of milliseconds
2293  *                   that the user is requesting the delayed ACK timer
2294  *                   be set to. Note that this value is defined in
2295  *                   the standard to be between 200 and 500 milliseconds.
2296  *
2297  *                   Note: a value of zero will leave the value alone,
2298  *                   but disable SACK delay. A non-zero value will also
2299  *                   enable SACK delay.
2300  */
2301 
2302 static int sctp_setsockopt_delayed_ack_time(struct sock *sk,
2303 					    char __user *optval, int optlen)
2304 {
2305 	struct sctp_assoc_value  params;
2306 	struct sctp_transport   *trans = NULL;
2307 	struct sctp_association *asoc = NULL;
2308 	struct sctp_sock        *sp = sctp_sk(sk);
2309 
2310 	if (optlen != sizeof(struct sctp_assoc_value))
2311 		return - EINVAL;
2312 
2313 	if (copy_from_user(&params, optval, optlen))
2314 		return -EFAULT;
2315 
2316 	/* Validate value parameter. */
2317 	if (params.assoc_value > 500)
2318 		return -EINVAL;
2319 
2320 	/* Get association, if assoc_id != 0 and the socket is a one
2321 	 * to many style socket, and an association was not found, then
2322 	 * the id was invalid.
2323  	 */
2324 	asoc = sctp_id2assoc(sk, params.assoc_id);
2325 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
2326 		return -EINVAL;
2327 
2328 	if (params.assoc_value) {
2329 		if (asoc) {
2330 			asoc->sackdelay =
2331 				msecs_to_jiffies(params.assoc_value);
2332 			asoc->param_flags =
2333 				(asoc->param_flags & ~SPP_SACKDELAY) |
2334 				SPP_SACKDELAY_ENABLE;
2335 		} else {
2336 			sp->sackdelay = params.assoc_value;
2337 			sp->param_flags =
2338 				(sp->param_flags & ~SPP_SACKDELAY) |
2339 				SPP_SACKDELAY_ENABLE;
2340 		}
2341 	} else {
2342 		if (asoc) {
2343 			asoc->param_flags =
2344 				(asoc->param_flags & ~SPP_SACKDELAY) |
2345 				SPP_SACKDELAY_DISABLE;
2346 		} else {
2347 			sp->param_flags =
2348 				(sp->param_flags & ~SPP_SACKDELAY) |
2349 				SPP_SACKDELAY_DISABLE;
2350 		}
2351 	}
2352 
2353 	/* If change is for association, also apply to each transport. */
2354 	if (asoc) {
2355 		struct list_head *pos;
2356 
2357 		list_for_each(pos, &asoc->peer.transport_addr_list) {
2358 			trans = list_entry(pos, struct sctp_transport,
2359 					   transports);
2360 			if (params.assoc_value) {
2361 				trans->sackdelay =
2362 					msecs_to_jiffies(params.assoc_value);
2363 				trans->param_flags =
2364 					(trans->param_flags & ~SPP_SACKDELAY) |
2365 					SPP_SACKDELAY_ENABLE;
2366 			} else {
2367 				trans->param_flags =
2368 					(trans->param_flags & ~SPP_SACKDELAY) |
2369 					SPP_SACKDELAY_DISABLE;
2370 			}
2371 		}
2372 	}
2373 
2374 	return 0;
2375 }
2376 
2377 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2378  *
2379  * Applications can specify protocol parameters for the default association
2380  * initialization.  The option name argument to setsockopt() and getsockopt()
2381  * is SCTP_INITMSG.
2382  *
2383  * Setting initialization parameters is effective only on an unconnected
2384  * socket (for UDP-style sockets only future associations are effected
2385  * by the change).  With TCP-style sockets, this option is inherited by
2386  * sockets derived from a listener socket.
2387  */
2388 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen)
2389 {
2390 	struct sctp_initmsg sinit;
2391 	struct sctp_sock *sp = sctp_sk(sk);
2392 
2393 	if (optlen != sizeof(struct sctp_initmsg))
2394 		return -EINVAL;
2395 	if (copy_from_user(&sinit, optval, optlen))
2396 		return -EFAULT;
2397 
2398 	if (sinit.sinit_num_ostreams)
2399 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2400 	if (sinit.sinit_max_instreams)
2401 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2402 	if (sinit.sinit_max_attempts)
2403 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2404 	if (sinit.sinit_max_init_timeo)
2405 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2406 
2407 	return 0;
2408 }
2409 
2410 /*
2411  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2412  *
2413  *   Applications that wish to use the sendto() system call may wish to
2414  *   specify a default set of parameters that would normally be supplied
2415  *   through the inclusion of ancillary data.  This socket option allows
2416  *   such an application to set the default sctp_sndrcvinfo structure.
2417  *   The application that wishes to use this socket option simply passes
2418  *   in to this call the sctp_sndrcvinfo structure defined in Section
2419  *   5.2.2) The input parameters accepted by this call include
2420  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2421  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2422  *   to this call if the caller is using the UDP model.
2423  */
2424 static int sctp_setsockopt_default_send_param(struct sock *sk,
2425 						char __user *optval, int optlen)
2426 {
2427 	struct sctp_sndrcvinfo info;
2428 	struct sctp_association *asoc;
2429 	struct sctp_sock *sp = sctp_sk(sk);
2430 
2431 	if (optlen != sizeof(struct sctp_sndrcvinfo))
2432 		return -EINVAL;
2433 	if (copy_from_user(&info, optval, optlen))
2434 		return -EFAULT;
2435 
2436 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2437 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2438 		return -EINVAL;
2439 
2440 	if (asoc) {
2441 		asoc->default_stream = info.sinfo_stream;
2442 		asoc->default_flags = info.sinfo_flags;
2443 		asoc->default_ppid = info.sinfo_ppid;
2444 		asoc->default_context = info.sinfo_context;
2445 		asoc->default_timetolive = info.sinfo_timetolive;
2446 	} else {
2447 		sp->default_stream = info.sinfo_stream;
2448 		sp->default_flags = info.sinfo_flags;
2449 		sp->default_ppid = info.sinfo_ppid;
2450 		sp->default_context = info.sinfo_context;
2451 		sp->default_timetolive = info.sinfo_timetolive;
2452 	}
2453 
2454 	return 0;
2455 }
2456 
2457 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2458  *
2459  * Requests that the local SCTP stack use the enclosed peer address as
2460  * the association primary.  The enclosed address must be one of the
2461  * association peer's addresses.
2462  */
2463 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2464 					int optlen)
2465 {
2466 	struct sctp_prim prim;
2467 	struct sctp_transport *trans;
2468 
2469 	if (optlen != sizeof(struct sctp_prim))
2470 		return -EINVAL;
2471 
2472 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2473 		return -EFAULT;
2474 
2475 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2476 	if (!trans)
2477 		return -EINVAL;
2478 
2479 	sctp_assoc_set_primary(trans->asoc, trans);
2480 
2481 	return 0;
2482 }
2483 
2484 /*
2485  * 7.1.5 SCTP_NODELAY
2486  *
2487  * Turn on/off any Nagle-like algorithm.  This means that packets are
2488  * generally sent as soon as possible and no unnecessary delays are
2489  * introduced, at the cost of more packets in the network.  Expects an
2490  *  integer boolean flag.
2491  */
2492 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2493 					int optlen)
2494 {
2495 	int val;
2496 
2497 	if (optlen < sizeof(int))
2498 		return -EINVAL;
2499 	if (get_user(val, (int __user *)optval))
2500 		return -EFAULT;
2501 
2502 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2503 	return 0;
2504 }
2505 
2506 /*
2507  *
2508  * 7.1.1 SCTP_RTOINFO
2509  *
2510  * The protocol parameters used to initialize and bound retransmission
2511  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2512  * and modify these parameters.
2513  * All parameters are time values, in milliseconds.  A value of 0, when
2514  * modifying the parameters, indicates that the current value should not
2515  * be changed.
2516  *
2517  */
2518 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) {
2519 	struct sctp_rtoinfo rtoinfo;
2520 	struct sctp_association *asoc;
2521 
2522 	if (optlen != sizeof (struct sctp_rtoinfo))
2523 		return -EINVAL;
2524 
2525 	if (copy_from_user(&rtoinfo, optval, optlen))
2526 		return -EFAULT;
2527 
2528 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2529 
2530 	/* Set the values to the specific association */
2531 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2532 		return -EINVAL;
2533 
2534 	if (asoc) {
2535 		if (rtoinfo.srto_initial != 0)
2536 			asoc->rto_initial =
2537 				msecs_to_jiffies(rtoinfo.srto_initial);
2538 		if (rtoinfo.srto_max != 0)
2539 			asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2540 		if (rtoinfo.srto_min != 0)
2541 			asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2542 	} else {
2543 		/* If there is no association or the association-id = 0
2544 		 * set the values to the endpoint.
2545 		 */
2546 		struct sctp_sock *sp = sctp_sk(sk);
2547 
2548 		if (rtoinfo.srto_initial != 0)
2549 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2550 		if (rtoinfo.srto_max != 0)
2551 			sp->rtoinfo.srto_max = rtoinfo.srto_max;
2552 		if (rtoinfo.srto_min != 0)
2553 			sp->rtoinfo.srto_min = rtoinfo.srto_min;
2554 	}
2555 
2556 	return 0;
2557 }
2558 
2559 /*
2560  *
2561  * 7.1.2 SCTP_ASSOCINFO
2562  *
2563  * This option is used to tune the the maximum retransmission attempts
2564  * of the association.
2565  * Returns an error if the new association retransmission value is
2566  * greater than the sum of the retransmission value  of the peer.
2567  * See [SCTP] for more information.
2568  *
2569  */
2570 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen)
2571 {
2572 
2573 	struct sctp_assocparams assocparams;
2574 	struct sctp_association *asoc;
2575 
2576 	if (optlen != sizeof(struct sctp_assocparams))
2577 		return -EINVAL;
2578 	if (copy_from_user(&assocparams, optval, optlen))
2579 		return -EFAULT;
2580 
2581 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2582 
2583 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2584 		return -EINVAL;
2585 
2586 	/* Set the values to the specific association */
2587 	if (asoc) {
2588 		if (assocparams.sasoc_asocmaxrxt != 0) {
2589 			__u32 path_sum = 0;
2590 			int   paths = 0;
2591 			struct list_head *pos;
2592 			struct sctp_transport *peer_addr;
2593 
2594 			list_for_each(pos, &asoc->peer.transport_addr_list) {
2595 				peer_addr = list_entry(pos,
2596 						struct sctp_transport,
2597 						transports);
2598 				path_sum += peer_addr->pathmaxrxt;
2599 				paths++;
2600 			}
2601 
2602 			/* Only validate asocmaxrxt if we have more then
2603 			 * one path/transport.  We do this because path
2604 			 * retransmissions are only counted when we have more
2605 			 * then one path.
2606 			 */
2607 			if (paths > 1 &&
2608 			    assocparams.sasoc_asocmaxrxt > path_sum)
2609 				return -EINVAL;
2610 
2611 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2612 		}
2613 
2614 		if (assocparams.sasoc_cookie_life != 0) {
2615 			asoc->cookie_life.tv_sec =
2616 					assocparams.sasoc_cookie_life / 1000;
2617 			asoc->cookie_life.tv_usec =
2618 					(assocparams.sasoc_cookie_life % 1000)
2619 					* 1000;
2620 		}
2621 	} else {
2622 		/* Set the values to the endpoint */
2623 		struct sctp_sock *sp = sctp_sk(sk);
2624 
2625 		if (assocparams.sasoc_asocmaxrxt != 0)
2626 			sp->assocparams.sasoc_asocmaxrxt =
2627 						assocparams.sasoc_asocmaxrxt;
2628 		if (assocparams.sasoc_cookie_life != 0)
2629 			sp->assocparams.sasoc_cookie_life =
2630 						assocparams.sasoc_cookie_life;
2631 	}
2632 	return 0;
2633 }
2634 
2635 /*
2636  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2637  *
2638  * This socket option is a boolean flag which turns on or off mapped V4
2639  * addresses.  If this option is turned on and the socket is type
2640  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2641  * If this option is turned off, then no mapping will be done of V4
2642  * addresses and a user will receive both PF_INET6 and PF_INET type
2643  * addresses on the socket.
2644  */
2645 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen)
2646 {
2647 	int val;
2648 	struct sctp_sock *sp = sctp_sk(sk);
2649 
2650 	if (optlen < sizeof(int))
2651 		return -EINVAL;
2652 	if (get_user(val, (int __user *)optval))
2653 		return -EFAULT;
2654 	if (val)
2655 		sp->v4mapped = 1;
2656 	else
2657 		sp->v4mapped = 0;
2658 
2659 	return 0;
2660 }
2661 
2662 /*
2663  * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
2664  *
2665  * This socket option specifies the maximum size to put in any outgoing
2666  * SCTP chunk.  If a message is larger than this size it will be
2667  * fragmented by SCTP into the specified size.  Note that the underlying
2668  * SCTP implementation may fragment into smaller sized chunks when the
2669  * PMTU of the underlying association is smaller than the value set by
2670  * the user.
2671  */
2672 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen)
2673 {
2674 	struct sctp_association *asoc;
2675 	struct list_head *pos;
2676 	struct sctp_sock *sp = sctp_sk(sk);
2677 	int val;
2678 
2679 	if (optlen < sizeof(int))
2680 		return -EINVAL;
2681 	if (get_user(val, (int __user *)optval))
2682 		return -EFAULT;
2683 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2684 		return -EINVAL;
2685 	sp->user_frag = val;
2686 
2687 	/* Update the frag_point of the existing associations. */
2688 	list_for_each(pos, &(sp->ep->asocs)) {
2689 		asoc = list_entry(pos, struct sctp_association, asocs);
2690 		asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu);
2691 	}
2692 
2693 	return 0;
2694 }
2695 
2696 
2697 /*
2698  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2699  *
2700  *   Requests that the peer mark the enclosed address as the association
2701  *   primary. The enclosed address must be one of the association's
2702  *   locally bound addresses. The following structure is used to make a
2703  *   set primary request:
2704  */
2705 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2706 					     int optlen)
2707 {
2708 	struct sctp_sock	*sp;
2709 	struct sctp_endpoint	*ep;
2710 	struct sctp_association	*asoc = NULL;
2711 	struct sctp_setpeerprim	prim;
2712 	struct sctp_chunk	*chunk;
2713 	int 			err;
2714 
2715 	sp = sctp_sk(sk);
2716 	ep = sp->ep;
2717 
2718 	if (!sctp_addip_enable)
2719 		return -EPERM;
2720 
2721 	if (optlen != sizeof(struct sctp_setpeerprim))
2722 		return -EINVAL;
2723 
2724 	if (copy_from_user(&prim, optval, optlen))
2725 		return -EFAULT;
2726 
2727 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2728 	if (!asoc)
2729 		return -EINVAL;
2730 
2731 	if (!asoc->peer.asconf_capable)
2732 		return -EPERM;
2733 
2734 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2735 		return -EPERM;
2736 
2737 	if (!sctp_state(asoc, ESTABLISHED))
2738 		return -ENOTCONN;
2739 
2740 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2741 		return -EADDRNOTAVAIL;
2742 
2743 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
2744 	chunk = sctp_make_asconf_set_prim(asoc,
2745 					  (union sctp_addr *)&prim.sspp_addr);
2746 	if (!chunk)
2747 		return -ENOMEM;
2748 
2749 	err = sctp_send_asconf(asoc, chunk);
2750 
2751 	SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2752 
2753 	return err;
2754 }
2755 
2756 static int sctp_setsockopt_adaption_layer(struct sock *sk, char __user *optval,
2757 					  int optlen)
2758 {
2759 	struct sctp_setadaption adaption;
2760 
2761 	if (optlen != sizeof(struct sctp_setadaption))
2762 		return -EINVAL;
2763 	if (copy_from_user(&adaption, optval, optlen))
2764 		return -EFAULT;
2765 
2766 	sctp_sk(sk)->adaption_ind = adaption.ssb_adaption_ind;
2767 
2768 	return 0;
2769 }
2770 
2771 /* API 6.2 setsockopt(), getsockopt()
2772  *
2773  * Applications use setsockopt() and getsockopt() to set or retrieve
2774  * socket options.  Socket options are used to change the default
2775  * behavior of sockets calls.  They are described in Section 7.
2776  *
2777  * The syntax is:
2778  *
2779  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
2780  *                    int __user *optlen);
2781  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
2782  *                    int optlen);
2783  *
2784  *   sd      - the socket descript.
2785  *   level   - set to IPPROTO_SCTP for all SCTP options.
2786  *   optname - the option name.
2787  *   optval  - the buffer to store the value of the option.
2788  *   optlen  - the size of the buffer.
2789  */
2790 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
2791 				char __user *optval, int optlen)
2792 {
2793 	int retval = 0;
2794 
2795 	SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
2796 			  sk, optname);
2797 
2798 	/* I can hardly begin to describe how wrong this is.  This is
2799 	 * so broken as to be worse than useless.  The API draft
2800 	 * REALLY is NOT helpful here...  I am not convinced that the
2801 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
2802 	 * are at all well-founded.
2803 	 */
2804 	if (level != SOL_SCTP) {
2805 		struct sctp_af *af = sctp_sk(sk)->pf->af;
2806 		retval = af->setsockopt(sk, level, optname, optval, optlen);
2807 		goto out_nounlock;
2808 	}
2809 
2810 	sctp_lock_sock(sk);
2811 
2812 	switch (optname) {
2813 	case SCTP_SOCKOPT_BINDX_ADD:
2814 		/* 'optlen' is the size of the addresses buffer. */
2815 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2816 					       optlen, SCTP_BINDX_ADD_ADDR);
2817 		break;
2818 
2819 	case SCTP_SOCKOPT_BINDX_REM:
2820 		/* 'optlen' is the size of the addresses buffer. */
2821 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2822 					       optlen, SCTP_BINDX_REM_ADDR);
2823 		break;
2824 
2825 	case SCTP_SOCKOPT_CONNECTX:
2826 		/* 'optlen' is the size of the addresses buffer. */
2827 		retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval,
2828 					       optlen);
2829 		break;
2830 
2831 	case SCTP_DISABLE_FRAGMENTS:
2832 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
2833 		break;
2834 
2835 	case SCTP_EVENTS:
2836 		retval = sctp_setsockopt_events(sk, optval, optlen);
2837 		break;
2838 
2839 	case SCTP_AUTOCLOSE:
2840 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
2841 		break;
2842 
2843 	case SCTP_PEER_ADDR_PARAMS:
2844 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
2845 		break;
2846 
2847 	case SCTP_DELAYED_ACK_TIME:
2848 		retval = sctp_setsockopt_delayed_ack_time(sk, optval, optlen);
2849 		break;
2850 
2851 	case SCTP_INITMSG:
2852 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
2853 		break;
2854 	case SCTP_DEFAULT_SEND_PARAM:
2855 		retval = sctp_setsockopt_default_send_param(sk, optval,
2856 							    optlen);
2857 		break;
2858 	case SCTP_PRIMARY_ADDR:
2859 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
2860 		break;
2861 	case SCTP_SET_PEER_PRIMARY_ADDR:
2862 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
2863 		break;
2864 	case SCTP_NODELAY:
2865 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
2866 		break;
2867 	case SCTP_RTOINFO:
2868 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
2869 		break;
2870 	case SCTP_ASSOCINFO:
2871 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
2872 		break;
2873 	case SCTP_I_WANT_MAPPED_V4_ADDR:
2874 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
2875 		break;
2876 	case SCTP_MAXSEG:
2877 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
2878 		break;
2879 	case SCTP_ADAPTION_LAYER:
2880 		retval = sctp_setsockopt_adaption_layer(sk, optval, optlen);
2881 		break;
2882 
2883 	default:
2884 		retval = -ENOPROTOOPT;
2885 		break;
2886 	};
2887 
2888 	sctp_release_sock(sk);
2889 
2890 out_nounlock:
2891 	return retval;
2892 }
2893 
2894 /* API 3.1.6 connect() - UDP Style Syntax
2895  *
2896  * An application may use the connect() call in the UDP model to initiate an
2897  * association without sending data.
2898  *
2899  * The syntax is:
2900  *
2901  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
2902  *
2903  * sd: the socket descriptor to have a new association added to.
2904  *
2905  * nam: the address structure (either struct sockaddr_in or struct
2906  *    sockaddr_in6 defined in RFC2553 [7]).
2907  *
2908  * len: the size of the address.
2909  */
2910 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
2911 			     int addr_len)
2912 {
2913 	int err = 0;
2914 	struct sctp_af *af;
2915 
2916 	sctp_lock_sock(sk);
2917 
2918 	SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
2919 			  __FUNCTION__, sk, addr, addr_len);
2920 
2921 	/* Validate addr_len before calling common connect/connectx routine. */
2922 	af = sctp_get_af_specific(addr->sa_family);
2923 	if (!af || addr_len < af->sockaddr_len) {
2924 		err = -EINVAL;
2925 	} else {
2926 		/* Pass correct addr len to common routine (so it knows there
2927 		 * is only one address being passed.
2928 		 */
2929 		err = __sctp_connect(sk, addr, af->sockaddr_len);
2930 	}
2931 
2932 	sctp_release_sock(sk);
2933 	return err;
2934 }
2935 
2936 /* FIXME: Write comments. */
2937 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
2938 {
2939 	return -EOPNOTSUPP; /* STUB */
2940 }
2941 
2942 /* 4.1.4 accept() - TCP Style Syntax
2943  *
2944  * Applications use accept() call to remove an established SCTP
2945  * association from the accept queue of the endpoint.  A new socket
2946  * descriptor will be returned from accept() to represent the newly
2947  * formed association.
2948  */
2949 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
2950 {
2951 	struct sctp_sock *sp;
2952 	struct sctp_endpoint *ep;
2953 	struct sock *newsk = NULL;
2954 	struct sctp_association *asoc;
2955 	long timeo;
2956 	int error = 0;
2957 
2958 	sctp_lock_sock(sk);
2959 
2960 	sp = sctp_sk(sk);
2961 	ep = sp->ep;
2962 
2963 	if (!sctp_style(sk, TCP)) {
2964 		error = -EOPNOTSUPP;
2965 		goto out;
2966 	}
2967 
2968 	if (!sctp_sstate(sk, LISTENING)) {
2969 		error = -EINVAL;
2970 		goto out;
2971 	}
2972 
2973 	timeo = sock_rcvtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK);
2974 
2975 	error = sctp_wait_for_accept(sk, timeo);
2976 	if (error)
2977 		goto out;
2978 
2979 	/* We treat the list of associations on the endpoint as the accept
2980 	 * queue and pick the first association on the list.
2981 	 */
2982 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
2983 
2984 	newsk = sp->pf->create_accept_sk(sk, asoc);
2985 	if (!newsk) {
2986 		error = -ENOMEM;
2987 		goto out;
2988 	}
2989 
2990 	/* Populate the fields of the newsk from the oldsk and migrate the
2991 	 * asoc to the newsk.
2992 	 */
2993 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
2994 
2995 out:
2996 	sctp_release_sock(sk);
2997  	*err = error;
2998 	return newsk;
2999 }
3000 
3001 /* The SCTP ioctl handler. */
3002 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3003 {
3004 	return -ENOIOCTLCMD;
3005 }
3006 
3007 /* This is the function which gets called during socket creation to
3008  * initialized the SCTP-specific portion of the sock.
3009  * The sock structure should already be zero-filled memory.
3010  */
3011 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3012 {
3013 	struct sctp_endpoint *ep;
3014 	struct sctp_sock *sp;
3015 
3016 	SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3017 
3018 	sp = sctp_sk(sk);
3019 
3020 	/* Initialize the SCTP per socket area.  */
3021 	switch (sk->sk_type) {
3022 	case SOCK_SEQPACKET:
3023 		sp->type = SCTP_SOCKET_UDP;
3024 		break;
3025 	case SOCK_STREAM:
3026 		sp->type = SCTP_SOCKET_TCP;
3027 		break;
3028 	default:
3029 		return -ESOCKTNOSUPPORT;
3030 	}
3031 
3032 	/* Initialize default send parameters. These parameters can be
3033 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3034 	 */
3035 	sp->default_stream = 0;
3036 	sp->default_ppid = 0;
3037 	sp->default_flags = 0;
3038 	sp->default_context = 0;
3039 	sp->default_timetolive = 0;
3040 
3041 	/* Initialize default setup parameters. These parameters
3042 	 * can be modified with the SCTP_INITMSG socket option or
3043 	 * overridden by the SCTP_INIT CMSG.
3044 	 */
3045 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
3046 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
3047 	sp->initmsg.sinit_max_attempts   = sctp_max_retrans_init;
3048 	sp->initmsg.sinit_max_init_timeo = jiffies_to_msecs(sctp_rto_max);
3049 
3050 	/* Initialize default RTO related parameters.  These parameters can
3051 	 * be modified for with the SCTP_RTOINFO socket option.
3052 	 */
3053 	sp->rtoinfo.srto_initial = jiffies_to_msecs(sctp_rto_initial);
3054 	sp->rtoinfo.srto_max     = jiffies_to_msecs(sctp_rto_max);
3055 	sp->rtoinfo.srto_min     = jiffies_to_msecs(sctp_rto_min);
3056 
3057 	/* Initialize default association related parameters. These parameters
3058 	 * can be modified with the SCTP_ASSOCINFO socket option.
3059 	 */
3060 	sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3061 	sp->assocparams.sasoc_number_peer_destinations = 0;
3062 	sp->assocparams.sasoc_peer_rwnd = 0;
3063 	sp->assocparams.sasoc_local_rwnd = 0;
3064 	sp->assocparams.sasoc_cookie_life =
3065 		jiffies_to_msecs(sctp_valid_cookie_life);
3066 
3067 	/* Initialize default event subscriptions. By default, all the
3068 	 * options are off.
3069 	 */
3070 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3071 
3072 	/* Default Peer Address Parameters.  These defaults can
3073 	 * be modified via SCTP_PEER_ADDR_PARAMS
3074 	 */
3075 	sp->hbinterval  = jiffies_to_msecs(sctp_hb_interval);
3076 	sp->pathmaxrxt  = sctp_max_retrans_path;
3077 	sp->pathmtu     = 0; // allow default discovery
3078 	sp->sackdelay   = jiffies_to_msecs(sctp_sack_timeout);
3079 	sp->param_flags = SPP_HB_ENABLE |
3080 	                  SPP_PMTUD_ENABLE |
3081 	                  SPP_SACKDELAY_ENABLE;
3082 
3083 	/* If enabled no SCTP message fragmentation will be performed.
3084 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3085 	 */
3086 	sp->disable_fragments = 0;
3087 
3088 	/* Turn on/off any Nagle-like algorithm.  */
3089 	sp->nodelay           = 1;
3090 
3091 	/* Enable by default. */
3092 	sp->v4mapped          = 1;
3093 
3094 	/* Auto-close idle associations after the configured
3095 	 * number of seconds.  A value of 0 disables this
3096 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
3097 	 * for UDP-style sockets only.
3098 	 */
3099 	sp->autoclose         = 0;
3100 
3101 	/* User specified fragmentation limit. */
3102 	sp->user_frag         = 0;
3103 
3104 	sp->adaption_ind = 0;
3105 
3106 	sp->pf = sctp_get_pf_specific(sk->sk_family);
3107 
3108 	/* Control variables for partial data delivery. */
3109 	sp->pd_mode           = 0;
3110 	skb_queue_head_init(&sp->pd_lobby);
3111 
3112 	/* Create a per socket endpoint structure.  Even if we
3113 	 * change the data structure relationships, this may still
3114 	 * be useful for storing pre-connect address information.
3115 	 */
3116 	ep = sctp_endpoint_new(sk, GFP_KERNEL);
3117 	if (!ep)
3118 		return -ENOMEM;
3119 
3120 	sp->ep = ep;
3121 	sp->hmac = NULL;
3122 
3123 	SCTP_DBG_OBJCNT_INC(sock);
3124 	return 0;
3125 }
3126 
3127 /* Cleanup any SCTP per socket resources.  */
3128 SCTP_STATIC int sctp_destroy_sock(struct sock *sk)
3129 {
3130 	struct sctp_endpoint *ep;
3131 
3132 	SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3133 
3134 	/* Release our hold on the endpoint. */
3135 	ep = sctp_sk(sk)->ep;
3136 	sctp_endpoint_free(ep);
3137 
3138 	return 0;
3139 }
3140 
3141 /* API 4.1.7 shutdown() - TCP Style Syntax
3142  *     int shutdown(int socket, int how);
3143  *
3144  *     sd      - the socket descriptor of the association to be closed.
3145  *     how     - Specifies the type of shutdown.  The  values  are
3146  *               as follows:
3147  *               SHUT_RD
3148  *                     Disables further receive operations. No SCTP
3149  *                     protocol action is taken.
3150  *               SHUT_WR
3151  *                     Disables further send operations, and initiates
3152  *                     the SCTP shutdown sequence.
3153  *               SHUT_RDWR
3154  *                     Disables further send  and  receive  operations
3155  *                     and initiates the SCTP shutdown sequence.
3156  */
3157 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3158 {
3159 	struct sctp_endpoint *ep;
3160 	struct sctp_association *asoc;
3161 
3162 	if (!sctp_style(sk, TCP))
3163 		return;
3164 
3165 	if (how & SEND_SHUTDOWN) {
3166 		ep = sctp_sk(sk)->ep;
3167 		if (!list_empty(&ep->asocs)) {
3168 			asoc = list_entry(ep->asocs.next,
3169 					  struct sctp_association, asocs);
3170 			sctp_primitive_SHUTDOWN(asoc, NULL);
3171 		}
3172 	}
3173 }
3174 
3175 /* 7.2.1 Association Status (SCTP_STATUS)
3176 
3177  * Applications can retrieve current status information about an
3178  * association, including association state, peer receiver window size,
3179  * number of unacked data chunks, and number of data chunks pending
3180  * receipt.  This information is read-only.
3181  */
3182 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3183 				       char __user *optval,
3184 				       int __user *optlen)
3185 {
3186 	struct sctp_status status;
3187 	struct sctp_association *asoc = NULL;
3188 	struct sctp_transport *transport;
3189 	sctp_assoc_t associd;
3190 	int retval = 0;
3191 
3192 	if (len != sizeof(status)) {
3193 		retval = -EINVAL;
3194 		goto out;
3195 	}
3196 
3197 	if (copy_from_user(&status, optval, sizeof(status))) {
3198 		retval = -EFAULT;
3199 		goto out;
3200 	}
3201 
3202 	associd = status.sstat_assoc_id;
3203 	asoc = sctp_id2assoc(sk, associd);
3204 	if (!asoc) {
3205 		retval = -EINVAL;
3206 		goto out;
3207 	}
3208 
3209 	transport = asoc->peer.primary_path;
3210 
3211 	status.sstat_assoc_id = sctp_assoc2id(asoc);
3212 	status.sstat_state = asoc->state;
3213 	status.sstat_rwnd =  asoc->peer.rwnd;
3214 	status.sstat_unackdata = asoc->unack_data;
3215 
3216 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
3217 	status.sstat_instrms = asoc->c.sinit_max_instreams;
3218 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
3219 	status.sstat_fragmentation_point = asoc->frag_point;
3220 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3221 	memcpy(&status.sstat_primary.spinfo_address,
3222 	       &(transport->ipaddr), sizeof(union sctp_addr));
3223 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
3224 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3225 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
3226 	status.sstat_primary.spinfo_state = transport->state;
3227 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
3228 	status.sstat_primary.spinfo_srtt = transport->srtt;
3229 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
3230 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
3231 
3232 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
3233 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
3234 
3235 	if (put_user(len, optlen)) {
3236 		retval = -EFAULT;
3237 		goto out;
3238 	}
3239 
3240 	SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
3241 			  len, status.sstat_state, status.sstat_rwnd,
3242 			  status.sstat_assoc_id);
3243 
3244 	if (copy_to_user(optval, &status, len)) {
3245 		retval = -EFAULT;
3246 		goto out;
3247 	}
3248 
3249 out:
3250 	return (retval);
3251 }
3252 
3253 
3254 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
3255  *
3256  * Applications can retrieve information about a specific peer address
3257  * of an association, including its reachability state, congestion
3258  * window, and retransmission timer values.  This information is
3259  * read-only.
3260  */
3261 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
3262 					  char __user *optval,
3263 					  int __user *optlen)
3264 {
3265 	struct sctp_paddrinfo pinfo;
3266 	struct sctp_transport *transport;
3267 	int retval = 0;
3268 
3269 	if (len != sizeof(pinfo)) {
3270 		retval = -EINVAL;
3271 		goto out;
3272 	}
3273 
3274 	if (copy_from_user(&pinfo, optval, sizeof(pinfo))) {
3275 		retval = -EFAULT;
3276 		goto out;
3277 	}
3278 
3279 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
3280 					   pinfo.spinfo_assoc_id);
3281 	if (!transport)
3282 		return -EINVAL;
3283 
3284 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3285 	pinfo.spinfo_state = transport->state;
3286 	pinfo.spinfo_cwnd = transport->cwnd;
3287 	pinfo.spinfo_srtt = transport->srtt;
3288 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
3289 	pinfo.spinfo_mtu = transport->pathmtu;
3290 
3291 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
3292 		pinfo.spinfo_state = SCTP_ACTIVE;
3293 
3294 	if (put_user(len, optlen)) {
3295 		retval = -EFAULT;
3296 		goto out;
3297 	}
3298 
3299 	if (copy_to_user(optval, &pinfo, len)) {
3300 		retval = -EFAULT;
3301 		goto out;
3302 	}
3303 
3304 out:
3305 	return (retval);
3306 }
3307 
3308 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
3309  *
3310  * This option is a on/off flag.  If enabled no SCTP message
3311  * fragmentation will be performed.  Instead if a message being sent
3312  * exceeds the current PMTU size, the message will NOT be sent and
3313  * instead a error will be indicated to the user.
3314  */
3315 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
3316 					char __user *optval, int __user *optlen)
3317 {
3318 	int val;
3319 
3320 	if (len < sizeof(int))
3321 		return -EINVAL;
3322 
3323 	len = sizeof(int);
3324 	val = (sctp_sk(sk)->disable_fragments == 1);
3325 	if (put_user(len, optlen))
3326 		return -EFAULT;
3327 	if (copy_to_user(optval, &val, len))
3328 		return -EFAULT;
3329 	return 0;
3330 }
3331 
3332 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
3333  *
3334  * This socket option is used to specify various notifications and
3335  * ancillary data the user wishes to receive.
3336  */
3337 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
3338 				  int __user *optlen)
3339 {
3340 	if (len != sizeof(struct sctp_event_subscribe))
3341 		return -EINVAL;
3342 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
3343 		return -EFAULT;
3344 	return 0;
3345 }
3346 
3347 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
3348  *
3349  * This socket option is applicable to the UDP-style socket only.  When
3350  * set it will cause associations that are idle for more than the
3351  * specified number of seconds to automatically close.  An association
3352  * being idle is defined an association that has NOT sent or received
3353  * user data.  The special value of '0' indicates that no automatic
3354  * close of any associations should be performed.  The option expects an
3355  * integer defining the number of seconds of idle time before an
3356  * association is closed.
3357  */
3358 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
3359 {
3360 	/* Applicable to UDP-style socket only */
3361 	if (sctp_style(sk, TCP))
3362 		return -EOPNOTSUPP;
3363 	if (len != sizeof(int))
3364 		return -EINVAL;
3365 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, len))
3366 		return -EFAULT;
3367 	return 0;
3368 }
3369 
3370 /* Helper routine to branch off an association to a new socket.  */
3371 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
3372 				struct socket **sockp)
3373 {
3374 	struct sock *sk = asoc->base.sk;
3375 	struct socket *sock;
3376 	int err = 0;
3377 
3378 	/* An association cannot be branched off from an already peeled-off
3379 	 * socket, nor is this supported for tcp style sockets.
3380 	 */
3381 	if (!sctp_style(sk, UDP))
3382 		return -EINVAL;
3383 
3384 	/* Create a new socket.  */
3385 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
3386 	if (err < 0)
3387 		return err;
3388 
3389 	/* Populate the fields of the newsk from the oldsk and migrate the
3390 	 * asoc to the newsk.
3391 	 */
3392 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
3393 	*sockp = sock;
3394 
3395 	return err;
3396 }
3397 
3398 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
3399 {
3400 	sctp_peeloff_arg_t peeloff;
3401 	struct socket *newsock;
3402 	int retval = 0;
3403 	struct sctp_association *asoc;
3404 
3405 	if (len != sizeof(sctp_peeloff_arg_t))
3406 		return -EINVAL;
3407 	if (copy_from_user(&peeloff, optval, len))
3408 		return -EFAULT;
3409 
3410 	asoc = sctp_id2assoc(sk, peeloff.associd);
3411 	if (!asoc) {
3412 		retval = -EINVAL;
3413 		goto out;
3414 	}
3415 
3416 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc);
3417 
3418 	retval = sctp_do_peeloff(asoc, &newsock);
3419 	if (retval < 0)
3420 		goto out;
3421 
3422 	/* Map the socket to an unused fd that can be returned to the user.  */
3423 	retval = sock_map_fd(newsock);
3424 	if (retval < 0) {
3425 		sock_release(newsock);
3426 		goto out;
3427 	}
3428 
3429 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
3430 			  __FUNCTION__, sk, asoc, newsock->sk, retval);
3431 
3432 	/* Return the fd mapped to the new socket.  */
3433 	peeloff.sd = retval;
3434 	if (copy_to_user(optval, &peeloff, len))
3435 		retval = -EFAULT;
3436 
3437 out:
3438 	return retval;
3439 }
3440 
3441 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
3442  *
3443  * Applications can enable or disable heartbeats for any peer address of
3444  * an association, modify an address's heartbeat interval, force a
3445  * heartbeat to be sent immediately, and adjust the address's maximum
3446  * number of retransmissions sent before an address is considered
3447  * unreachable.  The following structure is used to access and modify an
3448  * address's parameters:
3449  *
3450  *  struct sctp_paddrparams {
3451  *     sctp_assoc_t            spp_assoc_id;
3452  *     struct sockaddr_storage spp_address;
3453  *     uint32_t                spp_hbinterval;
3454  *     uint16_t                spp_pathmaxrxt;
3455  *     uint32_t                spp_pathmtu;
3456  *     uint32_t                spp_sackdelay;
3457  *     uint32_t                spp_flags;
3458  * };
3459  *
3460  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
3461  *                     application, and identifies the association for
3462  *                     this query.
3463  *   spp_address     - This specifies which address is of interest.
3464  *   spp_hbinterval  - This contains the value of the heartbeat interval,
3465  *                     in milliseconds.  If a  value of zero
3466  *                     is present in this field then no changes are to
3467  *                     be made to this parameter.
3468  *   spp_pathmaxrxt  - This contains the maximum number of
3469  *                     retransmissions before this address shall be
3470  *                     considered unreachable. If a  value of zero
3471  *                     is present in this field then no changes are to
3472  *                     be made to this parameter.
3473  *   spp_pathmtu     - When Path MTU discovery is disabled the value
3474  *                     specified here will be the "fixed" path mtu.
3475  *                     Note that if the spp_address field is empty
3476  *                     then all associations on this address will
3477  *                     have this fixed path mtu set upon them.
3478  *
3479  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
3480  *                     the number of milliseconds that sacks will be delayed
3481  *                     for. This value will apply to all addresses of an
3482  *                     association if the spp_address field is empty. Note
3483  *                     also, that if delayed sack is enabled and this
3484  *                     value is set to 0, no change is made to the last
3485  *                     recorded delayed sack timer value.
3486  *
3487  *   spp_flags       - These flags are used to control various features
3488  *                     on an association. The flag field may contain
3489  *                     zero or more of the following options.
3490  *
3491  *                     SPP_HB_ENABLE  - Enable heartbeats on the
3492  *                     specified address. Note that if the address
3493  *                     field is empty all addresses for the association
3494  *                     have heartbeats enabled upon them.
3495  *
3496  *                     SPP_HB_DISABLE - Disable heartbeats on the
3497  *                     speicifed address. Note that if the address
3498  *                     field is empty all addresses for the association
3499  *                     will have their heartbeats disabled. Note also
3500  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
3501  *                     mutually exclusive, only one of these two should
3502  *                     be specified. Enabling both fields will have
3503  *                     undetermined results.
3504  *
3505  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
3506  *                     to be made immediately.
3507  *
3508  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
3509  *                     discovery upon the specified address. Note that
3510  *                     if the address feild is empty then all addresses
3511  *                     on the association are effected.
3512  *
3513  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
3514  *                     discovery upon the specified address. Note that
3515  *                     if the address feild is empty then all addresses
3516  *                     on the association are effected. Not also that
3517  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
3518  *                     exclusive. Enabling both will have undetermined
3519  *                     results.
3520  *
3521  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
3522  *                     on delayed sack. The time specified in spp_sackdelay
3523  *                     is used to specify the sack delay for this address. Note
3524  *                     that if spp_address is empty then all addresses will
3525  *                     enable delayed sack and take on the sack delay
3526  *                     value specified in spp_sackdelay.
3527  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
3528  *                     off delayed sack. If the spp_address field is blank then
3529  *                     delayed sack is disabled for the entire association. Note
3530  *                     also that this field is mutually exclusive to
3531  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
3532  *                     results.
3533  */
3534 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
3535 					    char __user *optval, int __user *optlen)
3536 {
3537 	struct sctp_paddrparams  params;
3538 	struct sctp_transport   *trans = NULL;
3539 	struct sctp_association *asoc = NULL;
3540 	struct sctp_sock        *sp = sctp_sk(sk);
3541 
3542 	if (len != sizeof(struct sctp_paddrparams))
3543 		return -EINVAL;
3544 
3545 	if (copy_from_user(&params, optval, len))
3546 		return -EFAULT;
3547 
3548 	/* If an address other than INADDR_ANY is specified, and
3549 	 * no transport is found, then the request is invalid.
3550 	 */
3551 	if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
3552 		trans = sctp_addr_id2transport(sk, &params.spp_address,
3553 					       params.spp_assoc_id);
3554 		if (!trans) {
3555 			SCTP_DEBUG_PRINTK("Failed no transport\n");
3556 			return -EINVAL;
3557 		}
3558 	}
3559 
3560 	/* Get association, if assoc_id != 0 and the socket is a one
3561 	 * to many style socket, and an association was not found, then
3562 	 * the id was invalid.
3563 	 */
3564 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
3565 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
3566 		SCTP_DEBUG_PRINTK("Failed no association\n");
3567 		return -EINVAL;
3568 	}
3569 
3570 	if (trans) {
3571 		/* Fetch transport values. */
3572 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
3573 		params.spp_pathmtu    = trans->pathmtu;
3574 		params.spp_pathmaxrxt = trans->pathmaxrxt;
3575 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
3576 
3577 		/*draft-11 doesn't say what to return in spp_flags*/
3578 		params.spp_flags      = trans->param_flags;
3579 	} else if (asoc) {
3580 		/* Fetch association values. */
3581 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
3582 		params.spp_pathmtu    = asoc->pathmtu;
3583 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
3584 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
3585 
3586 		/*draft-11 doesn't say what to return in spp_flags*/
3587 		params.spp_flags      = asoc->param_flags;
3588 	} else {
3589 		/* Fetch socket values. */
3590 		params.spp_hbinterval = sp->hbinterval;
3591 		params.spp_pathmtu    = sp->pathmtu;
3592 		params.spp_sackdelay  = sp->sackdelay;
3593 		params.spp_pathmaxrxt = sp->pathmaxrxt;
3594 
3595 		/*draft-11 doesn't say what to return in spp_flags*/
3596 		params.spp_flags      = sp->param_flags;
3597 	}
3598 
3599 	if (copy_to_user(optval, &params, len))
3600 		return -EFAULT;
3601 
3602 	if (put_user(len, optlen))
3603 		return -EFAULT;
3604 
3605 	return 0;
3606 }
3607 
3608 /* 7.1.24. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
3609  *
3610  *   This options will get or set the delayed ack timer.  The time is set
3611  *   in milliseconds.  If the assoc_id is 0, then this sets or gets the
3612  *   endpoints default delayed ack timer value.  If the assoc_id field is
3613  *   non-zero, then the set or get effects the specified association.
3614  *
3615  *   struct sctp_assoc_value {
3616  *       sctp_assoc_t            assoc_id;
3617  *       uint32_t                assoc_value;
3618  *   };
3619  *
3620  *     assoc_id    - This parameter, indicates which association the
3621  *                   user is preforming an action upon. Note that if
3622  *                   this field's value is zero then the endpoints
3623  *                   default value is changed (effecting future
3624  *                   associations only).
3625  *
3626  *     assoc_value - This parameter contains the number of milliseconds
3627  *                   that the user is requesting the delayed ACK timer
3628  *                   be set to. Note that this value is defined in
3629  *                   the standard to be between 200 and 500 milliseconds.
3630  *
3631  *                   Note: a value of zero will leave the value alone,
3632  *                   but disable SACK delay. A non-zero value will also
3633  *                   enable SACK delay.
3634  */
3635 static int sctp_getsockopt_delayed_ack_time(struct sock *sk, int len,
3636 					    char __user *optval,
3637 					    int __user *optlen)
3638 {
3639 	struct sctp_assoc_value  params;
3640 	struct sctp_association *asoc = NULL;
3641 	struct sctp_sock        *sp = sctp_sk(sk);
3642 
3643 	if (len != sizeof(struct sctp_assoc_value))
3644 		return - EINVAL;
3645 
3646 	if (copy_from_user(&params, optval, len))
3647 		return -EFAULT;
3648 
3649 	/* Get association, if assoc_id != 0 and the socket is a one
3650 	 * to many style socket, and an association was not found, then
3651 	 * the id was invalid.
3652  	 */
3653 	asoc = sctp_id2assoc(sk, params.assoc_id);
3654 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3655 		return -EINVAL;
3656 
3657 	if (asoc) {
3658 		/* Fetch association values. */
3659 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE)
3660 			params.assoc_value = jiffies_to_msecs(
3661 				asoc->sackdelay);
3662 		else
3663 			params.assoc_value = 0;
3664 	} else {
3665 		/* Fetch socket values. */
3666 		if (sp->param_flags & SPP_SACKDELAY_ENABLE)
3667 			params.assoc_value  = sp->sackdelay;
3668 		else
3669 			params.assoc_value  = 0;
3670 	}
3671 
3672 	if (copy_to_user(optval, &params, len))
3673 		return -EFAULT;
3674 
3675 	if (put_user(len, optlen))
3676 		return -EFAULT;
3677 
3678 	return 0;
3679 }
3680 
3681 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
3682  *
3683  * Applications can specify protocol parameters for the default association
3684  * initialization.  The option name argument to setsockopt() and getsockopt()
3685  * is SCTP_INITMSG.
3686  *
3687  * Setting initialization parameters is effective only on an unconnected
3688  * socket (for UDP-style sockets only future associations are effected
3689  * by the change).  With TCP-style sockets, this option is inherited by
3690  * sockets derived from a listener socket.
3691  */
3692 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
3693 {
3694 	if (len != sizeof(struct sctp_initmsg))
3695 		return -EINVAL;
3696 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
3697 		return -EFAULT;
3698 	return 0;
3699 }
3700 
3701 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len,
3702 					      char __user *optval,
3703 					      int __user *optlen)
3704 {
3705 	sctp_assoc_t id;
3706 	struct sctp_association *asoc;
3707 	struct list_head *pos;
3708 	int cnt = 0;
3709 
3710 	if (len != sizeof(sctp_assoc_t))
3711 		return -EINVAL;
3712 
3713 	if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
3714 		return -EFAULT;
3715 
3716 	/* For UDP-style sockets, id specifies the association to query.  */
3717 	asoc = sctp_id2assoc(sk, id);
3718 	if (!asoc)
3719 		return -EINVAL;
3720 
3721 	list_for_each(pos, &asoc->peer.transport_addr_list) {
3722 		cnt ++;
3723 	}
3724 
3725 	return cnt;
3726 }
3727 
3728 /*
3729  * Old API for getting list of peer addresses. Does not work for 32-bit
3730  * programs running on a 64-bit kernel
3731  */
3732 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len,
3733 					  char __user *optval,
3734 					  int __user *optlen)
3735 {
3736 	struct sctp_association *asoc;
3737 	struct list_head *pos;
3738 	int cnt = 0;
3739 	struct sctp_getaddrs_old getaddrs;
3740 	struct sctp_transport *from;
3741 	void __user *to;
3742 	union sctp_addr temp;
3743 	struct sctp_sock *sp = sctp_sk(sk);
3744 	int addrlen;
3745 
3746 	if (len != sizeof(struct sctp_getaddrs_old))
3747 		return -EINVAL;
3748 
3749 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old)))
3750 		return -EFAULT;
3751 
3752 	if (getaddrs.addr_num <= 0) return -EINVAL;
3753 
3754 	/* For UDP-style sockets, id specifies the association to query.  */
3755 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3756 	if (!asoc)
3757 		return -EINVAL;
3758 
3759 	to = (void __user *)getaddrs.addrs;
3760 	list_for_each(pos, &asoc->peer.transport_addr_list) {
3761 		from = list_entry(pos, struct sctp_transport, transports);
3762 		memcpy(&temp, &from->ipaddr, sizeof(temp));
3763 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3764 		addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
3765 		temp.v4.sin_port = htons(temp.v4.sin_port);
3766 		if (copy_to_user(to, &temp, addrlen))
3767 			return -EFAULT;
3768 		to += addrlen ;
3769 		cnt ++;
3770 		if (cnt >= getaddrs.addr_num) break;
3771 	}
3772 	getaddrs.addr_num = cnt;
3773 	if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old)))
3774 		return -EFAULT;
3775 
3776 	return 0;
3777 }
3778 
3779 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
3780 				      char __user *optval, int __user *optlen)
3781 {
3782 	struct sctp_association *asoc;
3783 	struct list_head *pos;
3784 	int cnt = 0;
3785 	struct sctp_getaddrs getaddrs;
3786 	struct sctp_transport *from;
3787 	void __user *to;
3788 	union sctp_addr temp;
3789 	struct sctp_sock *sp = sctp_sk(sk);
3790 	int addrlen;
3791 	size_t space_left;
3792 	int bytes_copied;
3793 
3794 	if (len < sizeof(struct sctp_getaddrs))
3795 		return -EINVAL;
3796 
3797 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
3798 		return -EFAULT;
3799 
3800 	/* For UDP-style sockets, id specifies the association to query.  */
3801 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3802 	if (!asoc)
3803 		return -EINVAL;
3804 
3805 	to = optval + offsetof(struct sctp_getaddrs,addrs);
3806 	space_left = len - sizeof(struct sctp_getaddrs) -
3807 			offsetof(struct sctp_getaddrs,addrs);
3808 
3809 	list_for_each(pos, &asoc->peer.transport_addr_list) {
3810 		from = list_entry(pos, struct sctp_transport, transports);
3811 		memcpy(&temp, &from->ipaddr, sizeof(temp));
3812 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3813 		addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
3814 		if(space_left < addrlen)
3815 			return -ENOMEM;
3816 		temp.v4.sin_port = htons(temp.v4.sin_port);
3817 		if (copy_to_user(to, &temp, addrlen))
3818 			return -EFAULT;
3819 		to += addrlen;
3820 		cnt++;
3821 		space_left -= addrlen;
3822 	}
3823 
3824 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
3825 		return -EFAULT;
3826 	bytes_copied = ((char __user *)to) - optval;
3827 	if (put_user(bytes_copied, optlen))
3828 		return -EFAULT;
3829 
3830 	return 0;
3831 }
3832 
3833 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len,
3834 					       char __user *optval,
3835 					       int __user *optlen)
3836 {
3837 	sctp_assoc_t id;
3838 	struct sctp_bind_addr *bp;
3839 	struct sctp_association *asoc;
3840 	struct list_head *pos;
3841 	struct sctp_sockaddr_entry *addr;
3842 	rwlock_t *addr_lock;
3843 	unsigned long flags;
3844 	int cnt = 0;
3845 
3846 	if (len != sizeof(sctp_assoc_t))
3847 		return -EINVAL;
3848 
3849 	if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
3850 		return -EFAULT;
3851 
3852 	/*
3853 	 *  For UDP-style sockets, id specifies the association to query.
3854 	 *  If the id field is set to the value '0' then the locally bound
3855 	 *  addresses are returned without regard to any particular
3856 	 *  association.
3857 	 */
3858 	if (0 == id) {
3859 		bp = &sctp_sk(sk)->ep->base.bind_addr;
3860 		addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
3861 	} else {
3862 		asoc = sctp_id2assoc(sk, id);
3863 		if (!asoc)
3864 			return -EINVAL;
3865 		bp = &asoc->base.bind_addr;
3866 		addr_lock = &asoc->base.addr_lock;
3867 	}
3868 
3869 	sctp_read_lock(addr_lock);
3870 
3871 	/* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
3872 	 * addresses from the global local address list.
3873 	 */
3874 	if (sctp_list_single_entry(&bp->address_list)) {
3875 		addr = list_entry(bp->address_list.next,
3876 				  struct sctp_sockaddr_entry, list);
3877 		if (sctp_is_any(&addr->a)) {
3878 			sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3879 			list_for_each(pos, &sctp_local_addr_list) {
3880 				addr = list_entry(pos,
3881 						  struct sctp_sockaddr_entry,
3882 						  list);
3883 				if ((PF_INET == sk->sk_family) &&
3884 				    (AF_INET6 == addr->a.sa.sa_family))
3885 					continue;
3886 				cnt++;
3887 			}
3888 			sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3889 						    flags);
3890 		} else {
3891 			cnt = 1;
3892 		}
3893 		goto done;
3894 	}
3895 
3896 	list_for_each(pos, &bp->address_list) {
3897 		cnt ++;
3898 	}
3899 
3900 done:
3901 	sctp_read_unlock(addr_lock);
3902 	return cnt;
3903 }
3904 
3905 /* Helper function that copies local addresses to user and returns the number
3906  * of addresses copied.
3907  */
3908 static int sctp_copy_laddrs_to_user_old(struct sock *sk, __u16 port, int max_addrs,
3909 					void __user *to)
3910 {
3911 	struct list_head *pos;
3912 	struct sctp_sockaddr_entry *addr;
3913 	unsigned long flags;
3914 	union sctp_addr temp;
3915 	int cnt = 0;
3916 	int addrlen;
3917 
3918 	sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3919 	list_for_each(pos, &sctp_local_addr_list) {
3920 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3921 		if ((PF_INET == sk->sk_family) &&
3922 		    (AF_INET6 == addr->a.sa.sa_family))
3923 			continue;
3924 		memcpy(&temp, &addr->a, sizeof(temp));
3925 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3926 								&temp);
3927 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3928 		temp.v4.sin_port = htons(port);
3929 		if (copy_to_user(to, &temp, addrlen)) {
3930 			sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3931 						    flags);
3932 			return -EFAULT;
3933 		}
3934 		to += addrlen;
3935 		cnt ++;
3936 		if (cnt >= max_addrs) break;
3937 	}
3938 	sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags);
3939 
3940 	return cnt;
3941 }
3942 
3943 static int sctp_copy_laddrs_to_user(struct sock *sk, __u16 port,
3944 				    void __user **to, size_t space_left)
3945 {
3946 	struct list_head *pos;
3947 	struct sctp_sockaddr_entry *addr;
3948 	unsigned long flags;
3949 	union sctp_addr temp;
3950 	int cnt = 0;
3951 	int addrlen;
3952 
3953 	sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3954 	list_for_each(pos, &sctp_local_addr_list) {
3955 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3956 		if ((PF_INET == sk->sk_family) &&
3957 		    (AF_INET6 == addr->a.sa.sa_family))
3958 			continue;
3959 		memcpy(&temp, &addr->a, sizeof(temp));
3960 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3961 								&temp);
3962 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3963 		if(space_left<addrlen)
3964 			return -ENOMEM;
3965 		temp.v4.sin_port = htons(port);
3966 		if (copy_to_user(*to, &temp, addrlen)) {
3967 			sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3968 						    flags);
3969 			return -EFAULT;
3970 		}
3971 		*to += addrlen;
3972 		cnt ++;
3973 		space_left -= addrlen;
3974 	}
3975 	sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags);
3976 
3977 	return cnt;
3978 }
3979 
3980 /* Old API for getting list of local addresses. Does not work for 32-bit
3981  * programs running on a 64-bit kernel
3982  */
3983 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len,
3984 					   char __user *optval, int __user *optlen)
3985 {
3986 	struct sctp_bind_addr *bp;
3987 	struct sctp_association *asoc;
3988 	struct list_head *pos;
3989 	int cnt = 0;
3990 	struct sctp_getaddrs_old getaddrs;
3991 	struct sctp_sockaddr_entry *addr;
3992 	void __user *to;
3993 	union sctp_addr temp;
3994 	struct sctp_sock *sp = sctp_sk(sk);
3995 	int addrlen;
3996 	rwlock_t *addr_lock;
3997 	int err = 0;
3998 
3999 	if (len != sizeof(struct sctp_getaddrs_old))
4000 		return -EINVAL;
4001 
4002 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old)))
4003 		return -EFAULT;
4004 
4005 	if (getaddrs.addr_num <= 0) return -EINVAL;
4006 	/*
4007 	 *  For UDP-style sockets, id specifies the association to query.
4008 	 *  If the id field is set to the value '0' then the locally bound
4009 	 *  addresses are returned without regard to any particular
4010 	 *  association.
4011 	 */
4012 	if (0 == getaddrs.assoc_id) {
4013 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4014 		addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
4015 	} else {
4016 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4017 		if (!asoc)
4018 			return -EINVAL;
4019 		bp = &asoc->base.bind_addr;
4020 		addr_lock = &asoc->base.addr_lock;
4021 	}
4022 
4023 	to = getaddrs.addrs;
4024 
4025 	sctp_read_lock(addr_lock);
4026 
4027 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4028 	 * addresses from the global local address list.
4029 	 */
4030 	if (sctp_list_single_entry(&bp->address_list)) {
4031 		addr = list_entry(bp->address_list.next,
4032 				  struct sctp_sockaddr_entry, list);
4033 		if (sctp_is_any(&addr->a)) {
4034 			cnt = sctp_copy_laddrs_to_user_old(sk, bp->port,
4035 							   getaddrs.addr_num,
4036 							   to);
4037 			if (cnt < 0) {
4038 				err = cnt;
4039 				goto unlock;
4040 			}
4041 			goto copy_getaddrs;
4042 		}
4043 	}
4044 
4045 	list_for_each(pos, &bp->address_list) {
4046 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
4047 		memcpy(&temp, &addr->a, sizeof(temp));
4048 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4049 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4050 		temp.v4.sin_port = htons(temp.v4.sin_port);
4051 		if (copy_to_user(to, &temp, addrlen)) {
4052 			err = -EFAULT;
4053 			goto unlock;
4054 		}
4055 		to += addrlen;
4056 		cnt ++;
4057 		if (cnt >= getaddrs.addr_num) break;
4058 	}
4059 
4060 copy_getaddrs:
4061 	getaddrs.addr_num = cnt;
4062 	if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old)))
4063 		err = -EFAULT;
4064 
4065 unlock:
4066 	sctp_read_unlock(addr_lock);
4067 	return err;
4068 }
4069 
4070 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4071 				       char __user *optval, int __user *optlen)
4072 {
4073 	struct sctp_bind_addr *bp;
4074 	struct sctp_association *asoc;
4075 	struct list_head *pos;
4076 	int cnt = 0;
4077 	struct sctp_getaddrs getaddrs;
4078 	struct sctp_sockaddr_entry *addr;
4079 	void __user *to;
4080 	union sctp_addr temp;
4081 	struct sctp_sock *sp = sctp_sk(sk);
4082 	int addrlen;
4083 	rwlock_t *addr_lock;
4084 	int err = 0;
4085 	size_t space_left;
4086 	int bytes_copied;
4087 
4088 	if (len <= sizeof(struct sctp_getaddrs))
4089 		return -EINVAL;
4090 
4091 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4092 		return -EFAULT;
4093 
4094 	/*
4095 	 *  For UDP-style sockets, id specifies the association to query.
4096 	 *  If the id field is set to the value '0' then the locally bound
4097 	 *  addresses are returned without regard to any particular
4098 	 *  association.
4099 	 */
4100 	if (0 == getaddrs.assoc_id) {
4101 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4102 		addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
4103 	} else {
4104 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4105 		if (!asoc)
4106 			return -EINVAL;
4107 		bp = &asoc->base.bind_addr;
4108 		addr_lock = &asoc->base.addr_lock;
4109 	}
4110 
4111 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4112 	space_left = len - sizeof(struct sctp_getaddrs) -
4113 			 offsetof(struct sctp_getaddrs,addrs);
4114 
4115 	sctp_read_lock(addr_lock);
4116 
4117 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4118 	 * addresses from the global local address list.
4119 	 */
4120 	if (sctp_list_single_entry(&bp->address_list)) {
4121 		addr = list_entry(bp->address_list.next,
4122 				  struct sctp_sockaddr_entry, list);
4123 		if (sctp_is_any(&addr->a)) {
4124 			cnt = sctp_copy_laddrs_to_user(sk, bp->port,
4125 						       &to, space_left);
4126 			if (cnt < 0) {
4127 				err = cnt;
4128 				goto unlock;
4129 			}
4130 			goto copy_getaddrs;
4131 		}
4132 	}
4133 
4134 	list_for_each(pos, &bp->address_list) {
4135 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
4136 		memcpy(&temp, &addr->a, sizeof(temp));
4137 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4138 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4139 		if(space_left < addrlen)
4140 			return -ENOMEM; /*fixme: right error?*/
4141 		temp.v4.sin_port = htons(temp.v4.sin_port);
4142 		if (copy_to_user(to, &temp, addrlen)) {
4143 			err = -EFAULT;
4144 			goto unlock;
4145 		}
4146 		to += addrlen;
4147 		cnt ++;
4148 		space_left -= addrlen;
4149 	}
4150 
4151 copy_getaddrs:
4152 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4153 		return -EFAULT;
4154 	bytes_copied = ((char __user *)to) - optval;
4155 	if (put_user(bytes_copied, optlen))
4156 		return -EFAULT;
4157 
4158 unlock:
4159 	sctp_read_unlock(addr_lock);
4160 	return err;
4161 }
4162 
4163 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4164  *
4165  * Requests that the local SCTP stack use the enclosed peer address as
4166  * the association primary.  The enclosed address must be one of the
4167  * association peer's addresses.
4168  */
4169 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4170 					char __user *optval, int __user *optlen)
4171 {
4172 	struct sctp_prim prim;
4173 	struct sctp_association *asoc;
4174 	struct sctp_sock *sp = sctp_sk(sk);
4175 
4176 	if (len != sizeof(struct sctp_prim))
4177 		return -EINVAL;
4178 
4179 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
4180 		return -EFAULT;
4181 
4182 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4183 	if (!asoc)
4184 		return -EINVAL;
4185 
4186 	if (!asoc->peer.primary_path)
4187 		return -ENOTCONN;
4188 
4189 	asoc->peer.primary_path->ipaddr.v4.sin_port =
4190 		htons(asoc->peer.primary_path->ipaddr.v4.sin_port);
4191 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4192 	       sizeof(union sctp_addr));
4193 	asoc->peer.primary_path->ipaddr.v4.sin_port =
4194 		ntohs(asoc->peer.primary_path->ipaddr.v4.sin_port);
4195 
4196 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4197 			(union sctp_addr *)&prim.ssp_addr);
4198 
4199 	if (copy_to_user(optval, &prim, sizeof(struct sctp_prim)))
4200 		return -EFAULT;
4201 
4202 	return 0;
4203 }
4204 
4205 /*
4206  * 7.1.11  Set Adaption Layer Indicator (SCTP_ADAPTION_LAYER)
4207  *
4208  * Requests that the local endpoint set the specified Adaption Layer
4209  * Indication parameter for all future INIT and INIT-ACK exchanges.
4210  */
4211 static int sctp_getsockopt_adaption_layer(struct sock *sk, int len,
4212 				  char __user *optval, int __user *optlen)
4213 {
4214 	struct sctp_setadaption adaption;
4215 
4216 	if (len != sizeof(struct sctp_setadaption))
4217 		return -EINVAL;
4218 
4219 	adaption.ssb_adaption_ind = sctp_sk(sk)->adaption_ind;
4220 	if (copy_to_user(optval, &adaption, len))
4221 		return -EFAULT;
4222 
4223 	return 0;
4224 }
4225 
4226 /*
4227  *
4228  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4229  *
4230  *   Applications that wish to use the sendto() system call may wish to
4231  *   specify a default set of parameters that would normally be supplied
4232  *   through the inclusion of ancillary data.  This socket option allows
4233  *   such an application to set the default sctp_sndrcvinfo structure.
4234 
4235 
4236  *   The application that wishes to use this socket option simply passes
4237  *   in to this call the sctp_sndrcvinfo structure defined in Section
4238  *   5.2.2) The input parameters accepted by this call include
4239  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4240  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
4241  *   to this call if the caller is using the UDP model.
4242  *
4243  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
4244  */
4245 static int sctp_getsockopt_default_send_param(struct sock *sk,
4246 					int len, char __user *optval,
4247 					int __user *optlen)
4248 {
4249 	struct sctp_sndrcvinfo info;
4250 	struct sctp_association *asoc;
4251 	struct sctp_sock *sp = sctp_sk(sk);
4252 
4253 	if (len != sizeof(struct sctp_sndrcvinfo))
4254 		return -EINVAL;
4255 	if (copy_from_user(&info, optval, sizeof(struct sctp_sndrcvinfo)))
4256 		return -EFAULT;
4257 
4258 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4259 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4260 		return -EINVAL;
4261 
4262 	if (asoc) {
4263 		info.sinfo_stream = asoc->default_stream;
4264 		info.sinfo_flags = asoc->default_flags;
4265 		info.sinfo_ppid = asoc->default_ppid;
4266 		info.sinfo_context = asoc->default_context;
4267 		info.sinfo_timetolive = asoc->default_timetolive;
4268 	} else {
4269 		info.sinfo_stream = sp->default_stream;
4270 		info.sinfo_flags = sp->default_flags;
4271 		info.sinfo_ppid = sp->default_ppid;
4272 		info.sinfo_context = sp->default_context;
4273 		info.sinfo_timetolive = sp->default_timetolive;
4274 	}
4275 
4276 	if (copy_to_user(optval, &info, sizeof(struct sctp_sndrcvinfo)))
4277 		return -EFAULT;
4278 
4279 	return 0;
4280 }
4281 
4282 /*
4283  *
4284  * 7.1.5 SCTP_NODELAY
4285  *
4286  * Turn on/off any Nagle-like algorithm.  This means that packets are
4287  * generally sent as soon as possible and no unnecessary delays are
4288  * introduced, at the cost of more packets in the network.  Expects an
4289  * integer boolean flag.
4290  */
4291 
4292 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4293 				   char __user *optval, int __user *optlen)
4294 {
4295 	int val;
4296 
4297 	if (len < sizeof(int))
4298 		return -EINVAL;
4299 
4300 	len = sizeof(int);
4301 	val = (sctp_sk(sk)->nodelay == 1);
4302 	if (put_user(len, optlen))
4303 		return -EFAULT;
4304 	if (copy_to_user(optval, &val, len))
4305 		return -EFAULT;
4306 	return 0;
4307 }
4308 
4309 /*
4310  *
4311  * 7.1.1 SCTP_RTOINFO
4312  *
4313  * The protocol parameters used to initialize and bound retransmission
4314  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4315  * and modify these parameters.
4316  * All parameters are time values, in milliseconds.  A value of 0, when
4317  * modifying the parameters, indicates that the current value should not
4318  * be changed.
4319  *
4320  */
4321 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4322 				char __user *optval,
4323 				int __user *optlen) {
4324 	struct sctp_rtoinfo rtoinfo;
4325 	struct sctp_association *asoc;
4326 
4327 	if (len != sizeof (struct sctp_rtoinfo))
4328 		return -EINVAL;
4329 
4330 	if (copy_from_user(&rtoinfo, optval, sizeof (struct sctp_rtoinfo)))
4331 		return -EFAULT;
4332 
4333 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4334 
4335 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4336 		return -EINVAL;
4337 
4338 	/* Values corresponding to the specific association. */
4339 	if (asoc) {
4340 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4341 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4342 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4343 	} else {
4344 		/* Values corresponding to the endpoint. */
4345 		struct sctp_sock *sp = sctp_sk(sk);
4346 
4347 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4348 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
4349 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
4350 	}
4351 
4352 	if (put_user(len, optlen))
4353 		return -EFAULT;
4354 
4355 	if (copy_to_user(optval, &rtoinfo, len))
4356 		return -EFAULT;
4357 
4358 	return 0;
4359 }
4360 
4361 /*
4362  *
4363  * 7.1.2 SCTP_ASSOCINFO
4364  *
4365  * This option is used to tune the the maximum retransmission attempts
4366  * of the association.
4367  * Returns an error if the new association retransmission value is
4368  * greater than the sum of the retransmission value  of the peer.
4369  * See [SCTP] for more information.
4370  *
4371  */
4372 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4373 				     char __user *optval,
4374 				     int __user *optlen)
4375 {
4376 
4377 	struct sctp_assocparams assocparams;
4378 	struct sctp_association *asoc;
4379 	struct list_head *pos;
4380 	int cnt = 0;
4381 
4382 	if (len != sizeof (struct sctp_assocparams))
4383 		return -EINVAL;
4384 
4385 	if (copy_from_user(&assocparams, optval,
4386 			sizeof (struct sctp_assocparams)))
4387 		return -EFAULT;
4388 
4389 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4390 
4391 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4392 		return -EINVAL;
4393 
4394 	/* Values correspoinding to the specific association */
4395 	if (asoc) {
4396 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4397 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4398 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4399 		assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4400 						* 1000) +
4401 						(asoc->cookie_life.tv_usec
4402 						/ 1000);
4403 
4404 		list_for_each(pos, &asoc->peer.transport_addr_list) {
4405 			cnt ++;
4406 		}
4407 
4408 		assocparams.sasoc_number_peer_destinations = cnt;
4409 	} else {
4410 		/* Values corresponding to the endpoint */
4411 		struct sctp_sock *sp = sctp_sk(sk);
4412 
4413 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
4414 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
4415 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
4416 		assocparams.sasoc_cookie_life =
4417 					sp->assocparams.sasoc_cookie_life;
4418 		assocparams.sasoc_number_peer_destinations =
4419 					sp->assocparams.
4420 					sasoc_number_peer_destinations;
4421 	}
4422 
4423 	if (put_user(len, optlen))
4424 		return -EFAULT;
4425 
4426 	if (copy_to_user(optval, &assocparams, len))
4427 		return -EFAULT;
4428 
4429 	return 0;
4430 }
4431 
4432 /*
4433  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
4434  *
4435  * This socket option is a boolean flag which turns on or off mapped V4
4436  * addresses.  If this option is turned on and the socket is type
4437  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
4438  * If this option is turned off, then no mapping will be done of V4
4439  * addresses and a user will receive both PF_INET6 and PF_INET type
4440  * addresses on the socket.
4441  */
4442 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
4443 				    char __user *optval, int __user *optlen)
4444 {
4445 	int val;
4446 	struct sctp_sock *sp = sctp_sk(sk);
4447 
4448 	if (len < sizeof(int))
4449 		return -EINVAL;
4450 
4451 	len = sizeof(int);
4452 	val = sp->v4mapped;
4453 	if (put_user(len, optlen))
4454 		return -EFAULT;
4455 	if (copy_to_user(optval, &val, len))
4456 		return -EFAULT;
4457 
4458 	return 0;
4459 }
4460 
4461 /*
4462  * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
4463  *
4464  * This socket option specifies the maximum size to put in any outgoing
4465  * SCTP chunk.  If a message is larger than this size it will be
4466  * fragmented by SCTP into the specified size.  Note that the underlying
4467  * SCTP implementation may fragment into smaller sized chunks when the
4468  * PMTU of the underlying association is smaller than the value set by
4469  * the user.
4470  */
4471 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
4472 				  char __user *optval, int __user *optlen)
4473 {
4474 	int val;
4475 
4476 	if (len < sizeof(int))
4477 		return -EINVAL;
4478 
4479 	len = sizeof(int);
4480 
4481 	val = sctp_sk(sk)->user_frag;
4482 	if (put_user(len, optlen))
4483 		return -EFAULT;
4484 	if (copy_to_user(optval, &val, len))
4485 		return -EFAULT;
4486 
4487 	return 0;
4488 }
4489 
4490 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
4491 				char __user *optval, int __user *optlen)
4492 {
4493 	int retval = 0;
4494 	int len;
4495 
4496 	SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
4497 			  sk, optname);
4498 
4499 	/* I can hardly begin to describe how wrong this is.  This is
4500 	 * so broken as to be worse than useless.  The API draft
4501 	 * REALLY is NOT helpful here...  I am not convinced that the
4502 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
4503 	 * are at all well-founded.
4504 	 */
4505 	if (level != SOL_SCTP) {
4506 		struct sctp_af *af = sctp_sk(sk)->pf->af;
4507 
4508 		retval = af->getsockopt(sk, level, optname, optval, optlen);
4509 		return retval;
4510 	}
4511 
4512 	if (get_user(len, optlen))
4513 		return -EFAULT;
4514 
4515 	sctp_lock_sock(sk);
4516 
4517 	switch (optname) {
4518 	case SCTP_STATUS:
4519 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
4520 		break;
4521 	case SCTP_DISABLE_FRAGMENTS:
4522 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
4523 							   optlen);
4524 		break;
4525 	case SCTP_EVENTS:
4526 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
4527 		break;
4528 	case SCTP_AUTOCLOSE:
4529 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
4530 		break;
4531 	case SCTP_SOCKOPT_PEELOFF:
4532 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
4533 		break;
4534 	case SCTP_PEER_ADDR_PARAMS:
4535 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
4536 							  optlen);
4537 		break;
4538 	case SCTP_DELAYED_ACK_TIME:
4539 		retval = sctp_getsockopt_delayed_ack_time(sk, len, optval,
4540 							  optlen);
4541 		break;
4542 	case SCTP_INITMSG:
4543 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
4544 		break;
4545 	case SCTP_GET_PEER_ADDRS_NUM_OLD:
4546 		retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval,
4547 							    optlen);
4548 		break;
4549 	case SCTP_GET_LOCAL_ADDRS_NUM_OLD:
4550 		retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval,
4551 							     optlen);
4552 		break;
4553 	case SCTP_GET_PEER_ADDRS_OLD:
4554 		retval = sctp_getsockopt_peer_addrs_old(sk, len, optval,
4555 							optlen);
4556 		break;
4557 	case SCTP_GET_LOCAL_ADDRS_OLD:
4558 		retval = sctp_getsockopt_local_addrs_old(sk, len, optval,
4559 							 optlen);
4560 		break;
4561 	case SCTP_GET_PEER_ADDRS:
4562 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
4563 						    optlen);
4564 		break;
4565 	case SCTP_GET_LOCAL_ADDRS:
4566 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
4567 						     optlen);
4568 		break;
4569 	case SCTP_DEFAULT_SEND_PARAM:
4570 		retval = sctp_getsockopt_default_send_param(sk, len,
4571 							    optval, optlen);
4572 		break;
4573 	case SCTP_PRIMARY_ADDR:
4574 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
4575 		break;
4576 	case SCTP_NODELAY:
4577 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
4578 		break;
4579 	case SCTP_RTOINFO:
4580 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
4581 		break;
4582 	case SCTP_ASSOCINFO:
4583 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
4584 		break;
4585 	case SCTP_I_WANT_MAPPED_V4_ADDR:
4586 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
4587 		break;
4588 	case SCTP_MAXSEG:
4589 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
4590 		break;
4591 	case SCTP_GET_PEER_ADDR_INFO:
4592 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
4593 							optlen);
4594 		break;
4595 	case SCTP_ADAPTION_LAYER:
4596 		retval = sctp_getsockopt_adaption_layer(sk, len, optval,
4597 							optlen);
4598 		break;
4599 	default:
4600 		retval = -ENOPROTOOPT;
4601 		break;
4602 	};
4603 
4604 	sctp_release_sock(sk);
4605 	return retval;
4606 }
4607 
4608 static void sctp_hash(struct sock *sk)
4609 {
4610 	/* STUB */
4611 }
4612 
4613 static void sctp_unhash(struct sock *sk)
4614 {
4615 	/* STUB */
4616 }
4617 
4618 /* Check if port is acceptable.  Possibly find first available port.
4619  *
4620  * The port hash table (contained in the 'global' SCTP protocol storage
4621  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
4622  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
4623  * list (the list number is the port number hashed out, so as you
4624  * would expect from a hash function, all the ports in a given list have
4625  * such a number that hashes out to the same list number; you were
4626  * expecting that, right?); so each list has a set of ports, with a
4627  * link to the socket (struct sock) that uses it, the port number and
4628  * a fastreuse flag (FIXME: NPI ipg).
4629  */
4630 static struct sctp_bind_bucket *sctp_bucket_create(
4631 	struct sctp_bind_hashbucket *head, unsigned short snum);
4632 
4633 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
4634 {
4635 	struct sctp_bind_hashbucket *head; /* hash list */
4636 	struct sctp_bind_bucket *pp; /* hash list port iterator */
4637 	unsigned short snum;
4638 	int ret;
4639 
4640 	/* NOTE:  Remember to put this back to net order. */
4641 	addr->v4.sin_port = ntohs(addr->v4.sin_port);
4642 	snum = addr->v4.sin_port;
4643 
4644 	SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
4645 	sctp_local_bh_disable();
4646 
4647 	if (snum == 0) {
4648 		/* Search for an available port.
4649 		 *
4650 		 * 'sctp_port_rover' was the last port assigned, so
4651 		 * we start to search from 'sctp_port_rover +
4652 		 * 1'. What we do is first check if port 'rover' is
4653 		 * already in the hash table; if not, we use that; if
4654 		 * it is, we try next.
4655 		 */
4656 		int low = sysctl_local_port_range[0];
4657 		int high = sysctl_local_port_range[1];
4658 		int remaining = (high - low) + 1;
4659 		int rover;
4660 		int index;
4661 
4662 		sctp_spin_lock(&sctp_port_alloc_lock);
4663 		rover = sctp_port_rover;
4664 		do {
4665 			rover++;
4666 			if ((rover < low) || (rover > high))
4667 				rover = low;
4668 			index = sctp_phashfn(rover);
4669 			head = &sctp_port_hashtable[index];
4670 			sctp_spin_lock(&head->lock);
4671 			for (pp = head->chain; pp; pp = pp->next)
4672 				if (pp->port == rover)
4673 					goto next;
4674 			break;
4675 		next:
4676 			sctp_spin_unlock(&head->lock);
4677 		} while (--remaining > 0);
4678 		sctp_port_rover = rover;
4679 		sctp_spin_unlock(&sctp_port_alloc_lock);
4680 
4681 		/* Exhausted local port range during search? */
4682 		ret = 1;
4683 		if (remaining <= 0)
4684 			goto fail;
4685 
4686 		/* OK, here is the one we will use.  HEAD (the port
4687 		 * hash table list entry) is non-NULL and we hold it's
4688 		 * mutex.
4689 		 */
4690 		snum = rover;
4691 	} else {
4692 		/* We are given an specific port number; we verify
4693 		 * that it is not being used. If it is used, we will
4694 		 * exahust the search in the hash list corresponding
4695 		 * to the port number (snum) - we detect that with the
4696 		 * port iterator, pp being NULL.
4697 		 */
4698 		head = &sctp_port_hashtable[sctp_phashfn(snum)];
4699 		sctp_spin_lock(&head->lock);
4700 		for (pp = head->chain; pp; pp = pp->next) {
4701 			if (pp->port == snum)
4702 				goto pp_found;
4703 		}
4704 	}
4705 	pp = NULL;
4706 	goto pp_not_found;
4707 pp_found:
4708 	if (!hlist_empty(&pp->owner)) {
4709 		/* We had a port hash table hit - there is an
4710 		 * available port (pp != NULL) and it is being
4711 		 * used by other socket (pp->owner not empty); that other
4712 		 * socket is going to be sk2.
4713 		 */
4714 		int reuse = sk->sk_reuse;
4715 		struct sock *sk2;
4716 		struct hlist_node *node;
4717 
4718 		SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
4719 		if (pp->fastreuse && sk->sk_reuse)
4720 			goto success;
4721 
4722 		/* Run through the list of sockets bound to the port
4723 		 * (pp->port) [via the pointers bind_next and
4724 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
4725 		 * we get the endpoint they describe and run through
4726 		 * the endpoint's list of IP (v4 or v6) addresses,
4727 		 * comparing each of the addresses with the address of
4728 		 * the socket sk. If we find a match, then that means
4729 		 * that this port/socket (sk) combination are already
4730 		 * in an endpoint.
4731 		 */
4732 		sk_for_each_bound(sk2, node, &pp->owner) {
4733 			struct sctp_endpoint *ep2;
4734 			ep2 = sctp_sk(sk2)->ep;
4735 
4736 			if (reuse && sk2->sk_reuse)
4737 				continue;
4738 
4739 			if (sctp_bind_addr_match(&ep2->base.bind_addr, addr,
4740 						 sctp_sk(sk))) {
4741 				ret = (long)sk2;
4742 				goto fail_unlock;
4743 			}
4744 		}
4745 		SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
4746 	}
4747 pp_not_found:
4748 	/* If there was a hash table miss, create a new port.  */
4749 	ret = 1;
4750 	if (!pp && !(pp = sctp_bucket_create(head, snum)))
4751 		goto fail_unlock;
4752 
4753 	/* In either case (hit or miss), make sure fastreuse is 1 only
4754 	 * if sk->sk_reuse is too (that is, if the caller requested
4755 	 * SO_REUSEADDR on this socket -sk-).
4756 	 */
4757 	if (hlist_empty(&pp->owner))
4758 		pp->fastreuse = sk->sk_reuse ? 1 : 0;
4759 	else if (pp->fastreuse && !sk->sk_reuse)
4760 		pp->fastreuse = 0;
4761 
4762 	/* We are set, so fill up all the data in the hash table
4763 	 * entry, tie the socket list information with the rest of the
4764 	 * sockets FIXME: Blurry, NPI (ipg).
4765 	 */
4766 success:
4767 	inet_sk(sk)->num = snum;
4768 	if (!sctp_sk(sk)->bind_hash) {
4769 		sk_add_bind_node(sk, &pp->owner);
4770 		sctp_sk(sk)->bind_hash = pp;
4771 	}
4772 	ret = 0;
4773 
4774 fail_unlock:
4775 	sctp_spin_unlock(&head->lock);
4776 
4777 fail:
4778 	sctp_local_bh_enable();
4779 	addr->v4.sin_port = htons(addr->v4.sin_port);
4780 	return ret;
4781 }
4782 
4783 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
4784  * port is requested.
4785  */
4786 static int sctp_get_port(struct sock *sk, unsigned short snum)
4787 {
4788 	long ret;
4789 	union sctp_addr addr;
4790 	struct sctp_af *af = sctp_sk(sk)->pf->af;
4791 
4792 	/* Set up a dummy address struct from the sk. */
4793 	af->from_sk(&addr, sk);
4794 	addr.v4.sin_port = htons(snum);
4795 
4796 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
4797 	ret = sctp_get_port_local(sk, &addr);
4798 
4799 	return (ret ? 1 : 0);
4800 }
4801 
4802 /*
4803  * 3.1.3 listen() - UDP Style Syntax
4804  *
4805  *   By default, new associations are not accepted for UDP style sockets.
4806  *   An application uses listen() to mark a socket as being able to
4807  *   accept new associations.
4808  */
4809 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog)
4810 {
4811 	struct sctp_sock *sp = sctp_sk(sk);
4812 	struct sctp_endpoint *ep = sp->ep;
4813 
4814 	/* Only UDP style sockets that are not peeled off are allowed to
4815 	 * listen().
4816 	 */
4817 	if (!sctp_style(sk, UDP))
4818 		return -EINVAL;
4819 
4820 	/* If backlog is zero, disable listening. */
4821 	if (!backlog) {
4822 		if (sctp_sstate(sk, CLOSED))
4823 			return 0;
4824 
4825 		sctp_unhash_endpoint(ep);
4826 		sk->sk_state = SCTP_SS_CLOSED;
4827 	}
4828 
4829 	/* Return if we are already listening. */
4830 	if (sctp_sstate(sk, LISTENING))
4831 		return 0;
4832 
4833 	/*
4834 	 * If a bind() or sctp_bindx() is not called prior to a listen()
4835 	 * call that allows new associations to be accepted, the system
4836 	 * picks an ephemeral port and will choose an address set equivalent
4837 	 * to binding with a wildcard address.
4838 	 *
4839 	 * This is not currently spelled out in the SCTP sockets
4840 	 * extensions draft, but follows the practice as seen in TCP
4841 	 * sockets.
4842 	 */
4843 	if (!ep->base.bind_addr.port) {
4844 		if (sctp_autobind(sk))
4845 			return -EAGAIN;
4846 	}
4847 	sk->sk_state = SCTP_SS_LISTENING;
4848 	sctp_hash_endpoint(ep);
4849 	return 0;
4850 }
4851 
4852 /*
4853  * 4.1.3 listen() - TCP Style Syntax
4854  *
4855  *   Applications uses listen() to ready the SCTP endpoint for accepting
4856  *   inbound associations.
4857  */
4858 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog)
4859 {
4860 	struct sctp_sock *sp = sctp_sk(sk);
4861 	struct sctp_endpoint *ep = sp->ep;
4862 
4863 	/* If backlog is zero, disable listening. */
4864 	if (!backlog) {
4865 		if (sctp_sstate(sk, CLOSED))
4866 			return 0;
4867 
4868 		sctp_unhash_endpoint(ep);
4869 		sk->sk_state = SCTP_SS_CLOSED;
4870 	}
4871 
4872 	if (sctp_sstate(sk, LISTENING))
4873 		return 0;
4874 
4875 	/*
4876 	 * If a bind() or sctp_bindx() is not called prior to a listen()
4877 	 * call that allows new associations to be accepted, the system
4878 	 * picks an ephemeral port and will choose an address set equivalent
4879 	 * to binding with a wildcard address.
4880 	 *
4881 	 * This is not currently spelled out in the SCTP sockets
4882 	 * extensions draft, but follows the practice as seen in TCP
4883 	 * sockets.
4884 	 */
4885 	if (!ep->base.bind_addr.port) {
4886 		if (sctp_autobind(sk))
4887 			return -EAGAIN;
4888 	}
4889 	sk->sk_state = SCTP_SS_LISTENING;
4890 	sk->sk_max_ack_backlog = backlog;
4891 	sctp_hash_endpoint(ep);
4892 	return 0;
4893 }
4894 
4895 /*
4896  *  Move a socket to LISTENING state.
4897  */
4898 int sctp_inet_listen(struct socket *sock, int backlog)
4899 {
4900 	struct sock *sk = sock->sk;
4901 	struct crypto_hash *tfm = NULL;
4902 	int err = -EINVAL;
4903 
4904 	if (unlikely(backlog < 0))
4905 		goto out;
4906 
4907 	sctp_lock_sock(sk);
4908 
4909 	if (sock->state != SS_UNCONNECTED)
4910 		goto out;
4911 
4912 	/* Allocate HMAC for generating cookie. */
4913 	if (sctp_hmac_alg) {
4914 		tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
4915 		if (!tfm) {
4916 			err = -ENOSYS;
4917 			goto out;
4918 		}
4919 	}
4920 
4921 	switch (sock->type) {
4922 	case SOCK_SEQPACKET:
4923 		err = sctp_seqpacket_listen(sk, backlog);
4924 		break;
4925 	case SOCK_STREAM:
4926 		err = sctp_stream_listen(sk, backlog);
4927 		break;
4928 	default:
4929 		break;
4930 	};
4931 	if (err)
4932 		goto cleanup;
4933 
4934 	/* Store away the transform reference. */
4935 	sctp_sk(sk)->hmac = tfm;
4936 out:
4937 	sctp_release_sock(sk);
4938 	return err;
4939 cleanup:
4940 	crypto_free_hash(tfm);
4941 	goto out;
4942 }
4943 
4944 /*
4945  * This function is done by modeling the current datagram_poll() and the
4946  * tcp_poll().  Note that, based on these implementations, we don't
4947  * lock the socket in this function, even though it seems that,
4948  * ideally, locking or some other mechanisms can be used to ensure
4949  * the integrity of the counters (sndbuf and wmem_alloc) used
4950  * in this place.  We assume that we don't need locks either until proven
4951  * otherwise.
4952  *
4953  * Another thing to note is that we include the Async I/O support
4954  * here, again, by modeling the current TCP/UDP code.  We don't have
4955  * a good way to test with it yet.
4956  */
4957 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
4958 {
4959 	struct sock *sk = sock->sk;
4960 	struct sctp_sock *sp = sctp_sk(sk);
4961 	unsigned int mask;
4962 
4963 	poll_wait(file, sk->sk_sleep, wait);
4964 
4965 	/* A TCP-style listening socket becomes readable when the accept queue
4966 	 * is not empty.
4967 	 */
4968 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4969 		return (!list_empty(&sp->ep->asocs)) ?
4970 		       	(POLLIN | POLLRDNORM) : 0;
4971 
4972 	mask = 0;
4973 
4974 	/* Is there any exceptional events?  */
4975 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
4976 		mask |= POLLERR;
4977 	if (sk->sk_shutdown & RCV_SHUTDOWN)
4978 		mask |= POLLRDHUP;
4979 	if (sk->sk_shutdown == SHUTDOWN_MASK)
4980 		mask |= POLLHUP;
4981 
4982 	/* Is it readable?  Reconsider this code with TCP-style support.  */
4983 	if (!skb_queue_empty(&sk->sk_receive_queue) ||
4984 	    (sk->sk_shutdown & RCV_SHUTDOWN))
4985 		mask |= POLLIN | POLLRDNORM;
4986 
4987 	/* The association is either gone or not ready.  */
4988 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
4989 		return mask;
4990 
4991 	/* Is it writable?  */
4992 	if (sctp_writeable(sk)) {
4993 		mask |= POLLOUT | POLLWRNORM;
4994 	} else {
4995 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
4996 		/*
4997 		 * Since the socket is not locked, the buffer
4998 		 * might be made available after the writeable check and
4999 		 * before the bit is set.  This could cause a lost I/O
5000 		 * signal.  tcp_poll() has a race breaker for this race
5001 		 * condition.  Based on their implementation, we put
5002 		 * in the following code to cover it as well.
5003 		 */
5004 		if (sctp_writeable(sk))
5005 			mask |= POLLOUT | POLLWRNORM;
5006 	}
5007 	return mask;
5008 }
5009 
5010 /********************************************************************
5011  * 2nd Level Abstractions
5012  ********************************************************************/
5013 
5014 static struct sctp_bind_bucket *sctp_bucket_create(
5015 	struct sctp_bind_hashbucket *head, unsigned short snum)
5016 {
5017 	struct sctp_bind_bucket *pp;
5018 
5019 	pp = kmem_cache_alloc(sctp_bucket_cachep, SLAB_ATOMIC);
5020 	SCTP_DBG_OBJCNT_INC(bind_bucket);
5021 	if (pp) {
5022 		pp->port = snum;
5023 		pp->fastreuse = 0;
5024 		INIT_HLIST_HEAD(&pp->owner);
5025 		if ((pp->next = head->chain) != NULL)
5026 			pp->next->pprev = &pp->next;
5027 		head->chain = pp;
5028 		pp->pprev = &head->chain;
5029 	}
5030 	return pp;
5031 }
5032 
5033 /* Caller must hold hashbucket lock for this tb with local BH disabled */
5034 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
5035 {
5036 	if (pp && hlist_empty(&pp->owner)) {
5037 		if (pp->next)
5038 			pp->next->pprev = pp->pprev;
5039 		*(pp->pprev) = pp->next;
5040 		kmem_cache_free(sctp_bucket_cachep, pp);
5041 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
5042 	}
5043 }
5044 
5045 /* Release this socket's reference to a local port.  */
5046 static inline void __sctp_put_port(struct sock *sk)
5047 {
5048 	struct sctp_bind_hashbucket *head =
5049 		&sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)];
5050 	struct sctp_bind_bucket *pp;
5051 
5052 	sctp_spin_lock(&head->lock);
5053 	pp = sctp_sk(sk)->bind_hash;
5054 	__sk_del_bind_node(sk);
5055 	sctp_sk(sk)->bind_hash = NULL;
5056 	inet_sk(sk)->num = 0;
5057 	sctp_bucket_destroy(pp);
5058 	sctp_spin_unlock(&head->lock);
5059 }
5060 
5061 void sctp_put_port(struct sock *sk)
5062 {
5063 	sctp_local_bh_disable();
5064 	__sctp_put_port(sk);
5065 	sctp_local_bh_enable();
5066 }
5067 
5068 /*
5069  * The system picks an ephemeral port and choose an address set equivalent
5070  * to binding with a wildcard address.
5071  * One of those addresses will be the primary address for the association.
5072  * This automatically enables the multihoming capability of SCTP.
5073  */
5074 static int sctp_autobind(struct sock *sk)
5075 {
5076 	union sctp_addr autoaddr;
5077 	struct sctp_af *af;
5078 	unsigned short port;
5079 
5080 	/* Initialize a local sockaddr structure to INADDR_ANY. */
5081 	af = sctp_sk(sk)->pf->af;
5082 
5083 	port = htons(inet_sk(sk)->num);
5084 	af->inaddr_any(&autoaddr, port);
5085 
5086 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
5087 }
5088 
5089 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
5090  *
5091  * From RFC 2292
5092  * 4.2 The cmsghdr Structure *
5093  *
5094  * When ancillary data is sent or received, any number of ancillary data
5095  * objects can be specified by the msg_control and msg_controllen members of
5096  * the msghdr structure, because each object is preceded by
5097  * a cmsghdr structure defining the object's length (the cmsg_len member).
5098  * Historically Berkeley-derived implementations have passed only one object
5099  * at a time, but this API allows multiple objects to be
5100  * passed in a single call to sendmsg() or recvmsg(). The following example
5101  * shows two ancillary data objects in a control buffer.
5102  *
5103  *   |<--------------------------- msg_controllen -------------------------->|
5104  *   |                                                                       |
5105  *
5106  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
5107  *
5108  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
5109  *   |                                   |                                   |
5110  *
5111  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
5112  *
5113  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
5114  *   |                                |  |                                |  |
5115  *
5116  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5117  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
5118  *
5119  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
5120  *
5121  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5122  *    ^
5123  *    |
5124  *
5125  * msg_control
5126  * points here
5127  */
5128 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
5129 				  sctp_cmsgs_t *cmsgs)
5130 {
5131 	struct cmsghdr *cmsg;
5132 
5133 	for (cmsg = CMSG_FIRSTHDR(msg);
5134 	     cmsg != NULL;
5135 	     cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) {
5136 		if (!CMSG_OK(msg, cmsg))
5137 			return -EINVAL;
5138 
5139 		/* Should we parse this header or ignore?  */
5140 		if (cmsg->cmsg_level != IPPROTO_SCTP)
5141 			continue;
5142 
5143 		/* Strictly check lengths following example in SCM code.  */
5144 		switch (cmsg->cmsg_type) {
5145 		case SCTP_INIT:
5146 			/* SCTP Socket API Extension
5147 			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
5148 			 *
5149 			 * This cmsghdr structure provides information for
5150 			 * initializing new SCTP associations with sendmsg().
5151 			 * The SCTP_INITMSG socket option uses this same data
5152 			 * structure.  This structure is not used for
5153 			 * recvmsg().
5154 			 *
5155 			 * cmsg_level    cmsg_type      cmsg_data[]
5156 			 * ------------  ------------   ----------------------
5157 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
5158 			 */
5159 			if (cmsg->cmsg_len !=
5160 			    CMSG_LEN(sizeof(struct sctp_initmsg)))
5161 				return -EINVAL;
5162 			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
5163 			break;
5164 
5165 		case SCTP_SNDRCV:
5166 			/* SCTP Socket API Extension
5167 			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
5168 			 *
5169 			 * This cmsghdr structure specifies SCTP options for
5170 			 * sendmsg() and describes SCTP header information
5171 			 * about a received message through recvmsg().
5172 			 *
5173 			 * cmsg_level    cmsg_type      cmsg_data[]
5174 			 * ------------  ------------   ----------------------
5175 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
5176 			 */
5177 			if (cmsg->cmsg_len !=
5178 			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
5179 				return -EINVAL;
5180 
5181 			cmsgs->info =
5182 				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
5183 
5184 			/* Minimally, validate the sinfo_flags. */
5185 			if (cmsgs->info->sinfo_flags &
5186 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
5187 			      SCTP_ABORT | SCTP_EOF))
5188 				return -EINVAL;
5189 			break;
5190 
5191 		default:
5192 			return -EINVAL;
5193 		};
5194 	}
5195 	return 0;
5196 }
5197 
5198 /*
5199  * Wait for a packet..
5200  * Note: This function is the same function as in core/datagram.c
5201  * with a few modifications to make lksctp work.
5202  */
5203 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
5204 {
5205 	int error;
5206 	DEFINE_WAIT(wait);
5207 
5208 	prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5209 
5210 	/* Socket errors? */
5211 	error = sock_error(sk);
5212 	if (error)
5213 		goto out;
5214 
5215 	if (!skb_queue_empty(&sk->sk_receive_queue))
5216 		goto ready;
5217 
5218 	/* Socket shut down?  */
5219 	if (sk->sk_shutdown & RCV_SHUTDOWN)
5220 		goto out;
5221 
5222 	/* Sequenced packets can come disconnected.  If so we report the
5223 	 * problem.
5224 	 */
5225 	error = -ENOTCONN;
5226 
5227 	/* Is there a good reason to think that we may receive some data?  */
5228 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
5229 		goto out;
5230 
5231 	/* Handle signals.  */
5232 	if (signal_pending(current))
5233 		goto interrupted;
5234 
5235 	/* Let another process have a go.  Since we are going to sleep
5236 	 * anyway.  Note: This may cause odd behaviors if the message
5237 	 * does not fit in the user's buffer, but this seems to be the
5238 	 * only way to honor MSG_DONTWAIT realistically.
5239 	 */
5240 	sctp_release_sock(sk);
5241 	*timeo_p = schedule_timeout(*timeo_p);
5242 	sctp_lock_sock(sk);
5243 
5244 ready:
5245 	finish_wait(sk->sk_sleep, &wait);
5246 	return 0;
5247 
5248 interrupted:
5249 	error = sock_intr_errno(*timeo_p);
5250 
5251 out:
5252 	finish_wait(sk->sk_sleep, &wait);
5253 	*err = error;
5254 	return error;
5255 }
5256 
5257 /* Receive a datagram.
5258  * Note: This is pretty much the same routine as in core/datagram.c
5259  * with a few changes to make lksctp work.
5260  */
5261 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
5262 					      int noblock, int *err)
5263 {
5264 	int error;
5265 	struct sk_buff *skb;
5266 	long timeo;
5267 
5268 	timeo = sock_rcvtimeo(sk, noblock);
5269 
5270 	SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
5271 			  timeo, MAX_SCHEDULE_TIMEOUT);
5272 
5273 	do {
5274 		/* Again only user level code calls this function,
5275 		 * so nothing interrupt level
5276 		 * will suddenly eat the receive_queue.
5277 		 *
5278 		 *  Look at current nfs client by the way...
5279 		 *  However, this function was corrent in any case. 8)
5280 		 */
5281 		if (flags & MSG_PEEK) {
5282 			spin_lock_bh(&sk->sk_receive_queue.lock);
5283 			skb = skb_peek(&sk->sk_receive_queue);
5284 			if (skb)
5285 				atomic_inc(&skb->users);
5286 			spin_unlock_bh(&sk->sk_receive_queue.lock);
5287 		} else {
5288 			skb = skb_dequeue(&sk->sk_receive_queue);
5289 		}
5290 
5291 		if (skb)
5292 			return skb;
5293 
5294 		/* Caller is allowed not to check sk->sk_err before calling. */
5295 		error = sock_error(sk);
5296 		if (error)
5297 			goto no_packet;
5298 
5299 		if (sk->sk_shutdown & RCV_SHUTDOWN)
5300 			break;
5301 
5302 		/* User doesn't want to wait.  */
5303 		error = -EAGAIN;
5304 		if (!timeo)
5305 			goto no_packet;
5306 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
5307 
5308 	return NULL;
5309 
5310 no_packet:
5311 	*err = error;
5312 	return NULL;
5313 }
5314 
5315 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
5316 static void __sctp_write_space(struct sctp_association *asoc)
5317 {
5318 	struct sock *sk = asoc->base.sk;
5319 	struct socket *sock = sk->sk_socket;
5320 
5321 	if ((sctp_wspace(asoc) > 0) && sock) {
5322 		if (waitqueue_active(&asoc->wait))
5323 			wake_up_interruptible(&asoc->wait);
5324 
5325 		if (sctp_writeable(sk)) {
5326 			if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
5327 				wake_up_interruptible(sk->sk_sleep);
5328 
5329 			/* Note that we try to include the Async I/O support
5330 			 * here by modeling from the current TCP/UDP code.
5331 			 * We have not tested with it yet.
5332 			 */
5333 			if (sock->fasync_list &&
5334 			    !(sk->sk_shutdown & SEND_SHUTDOWN))
5335 				sock_wake_async(sock, 2, POLL_OUT);
5336 		}
5337 	}
5338 }
5339 
5340 /* Do accounting for the sndbuf space.
5341  * Decrement the used sndbuf space of the corresponding association by the
5342  * data size which was just transmitted(freed).
5343  */
5344 static void sctp_wfree(struct sk_buff *skb)
5345 {
5346 	struct sctp_association *asoc;
5347 	struct sctp_chunk *chunk;
5348 	struct sock *sk;
5349 
5350 	/* Get the saved chunk pointer.  */
5351 	chunk = *((struct sctp_chunk **)(skb->cb));
5352 	asoc = chunk->asoc;
5353 	sk = asoc->base.sk;
5354 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
5355 				sizeof(struct sk_buff) +
5356 				sizeof(struct sctp_chunk);
5357 
5358 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
5359 
5360 	sock_wfree(skb);
5361 	__sctp_write_space(asoc);
5362 
5363 	sctp_association_put(asoc);
5364 }
5365 
5366 /* Helper function to wait for space in the sndbuf.  */
5367 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
5368 				size_t msg_len)
5369 {
5370 	struct sock *sk = asoc->base.sk;
5371 	int err = 0;
5372 	long current_timeo = *timeo_p;
5373 	DEFINE_WAIT(wait);
5374 
5375 	SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
5376 	                  asoc, (long)(*timeo_p), msg_len);
5377 
5378 	/* Increment the association's refcnt.  */
5379 	sctp_association_hold(asoc);
5380 
5381 	/* Wait on the association specific sndbuf space. */
5382 	for (;;) {
5383 		prepare_to_wait_exclusive(&asoc->wait, &wait,
5384 					  TASK_INTERRUPTIBLE);
5385 		if (!*timeo_p)
5386 			goto do_nonblock;
5387 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
5388 		    asoc->base.dead)
5389 			goto do_error;
5390 		if (signal_pending(current))
5391 			goto do_interrupted;
5392 		if (msg_len <= sctp_wspace(asoc))
5393 			break;
5394 
5395 		/* Let another process have a go.  Since we are going
5396 		 * to sleep anyway.
5397 		 */
5398 		sctp_release_sock(sk);
5399 		current_timeo = schedule_timeout(current_timeo);
5400 		BUG_ON(sk != asoc->base.sk);
5401 		sctp_lock_sock(sk);
5402 
5403 		*timeo_p = current_timeo;
5404 	}
5405 
5406 out:
5407 	finish_wait(&asoc->wait, &wait);
5408 
5409 	/* Release the association's refcnt.  */
5410 	sctp_association_put(asoc);
5411 
5412 	return err;
5413 
5414 do_error:
5415 	err = -EPIPE;
5416 	goto out;
5417 
5418 do_interrupted:
5419 	err = sock_intr_errno(*timeo_p);
5420 	goto out;
5421 
5422 do_nonblock:
5423 	err = -EAGAIN;
5424 	goto out;
5425 }
5426 
5427 /* If socket sndbuf has changed, wake up all per association waiters.  */
5428 void sctp_write_space(struct sock *sk)
5429 {
5430 	struct sctp_association *asoc;
5431 	struct list_head *pos;
5432 
5433 	/* Wake up the tasks in each wait queue.  */
5434 	list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) {
5435 		asoc = list_entry(pos, struct sctp_association, asocs);
5436 		__sctp_write_space(asoc);
5437 	}
5438 }
5439 
5440 /* Is there any sndbuf space available on the socket?
5441  *
5442  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
5443  * associations on the same socket.  For a UDP-style socket with
5444  * multiple associations, it is possible for it to be "unwriteable"
5445  * prematurely.  I assume that this is acceptable because
5446  * a premature "unwriteable" is better than an accidental "writeable" which
5447  * would cause an unwanted block under certain circumstances.  For the 1-1
5448  * UDP-style sockets or TCP-style sockets, this code should work.
5449  *  - Daisy
5450  */
5451 static int sctp_writeable(struct sock *sk)
5452 {
5453 	int amt = 0;
5454 
5455 	amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
5456 	if (amt < 0)
5457 		amt = 0;
5458 	return amt;
5459 }
5460 
5461 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
5462  * returns immediately with EINPROGRESS.
5463  */
5464 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
5465 {
5466 	struct sock *sk = asoc->base.sk;
5467 	int err = 0;
5468 	long current_timeo = *timeo_p;
5469 	DEFINE_WAIT(wait);
5470 
5471 	SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc,
5472 			  (long)(*timeo_p));
5473 
5474 	/* Increment the association's refcnt.  */
5475 	sctp_association_hold(asoc);
5476 
5477 	for (;;) {
5478 		prepare_to_wait_exclusive(&asoc->wait, &wait,
5479 					  TASK_INTERRUPTIBLE);
5480 		if (!*timeo_p)
5481 			goto do_nonblock;
5482 		if (sk->sk_shutdown & RCV_SHUTDOWN)
5483 			break;
5484 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
5485 		    asoc->base.dead)
5486 			goto do_error;
5487 		if (signal_pending(current))
5488 			goto do_interrupted;
5489 
5490 		if (sctp_state(asoc, ESTABLISHED))
5491 			break;
5492 
5493 		/* Let another process have a go.  Since we are going
5494 		 * to sleep anyway.
5495 		 */
5496 		sctp_release_sock(sk);
5497 		current_timeo = schedule_timeout(current_timeo);
5498 		sctp_lock_sock(sk);
5499 
5500 		*timeo_p = current_timeo;
5501 	}
5502 
5503 out:
5504 	finish_wait(&asoc->wait, &wait);
5505 
5506 	/* Release the association's refcnt.  */
5507 	sctp_association_put(asoc);
5508 
5509 	return err;
5510 
5511 do_error:
5512 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
5513 		err = -ETIMEDOUT;
5514 	else
5515 		err = -ECONNREFUSED;
5516 	goto out;
5517 
5518 do_interrupted:
5519 	err = sock_intr_errno(*timeo_p);
5520 	goto out;
5521 
5522 do_nonblock:
5523 	err = -EINPROGRESS;
5524 	goto out;
5525 }
5526 
5527 static int sctp_wait_for_accept(struct sock *sk, long timeo)
5528 {
5529 	struct sctp_endpoint *ep;
5530 	int err = 0;
5531 	DEFINE_WAIT(wait);
5532 
5533 	ep = sctp_sk(sk)->ep;
5534 
5535 
5536 	for (;;) {
5537 		prepare_to_wait_exclusive(sk->sk_sleep, &wait,
5538 					  TASK_INTERRUPTIBLE);
5539 
5540 		if (list_empty(&ep->asocs)) {
5541 			sctp_release_sock(sk);
5542 			timeo = schedule_timeout(timeo);
5543 			sctp_lock_sock(sk);
5544 		}
5545 
5546 		err = -EINVAL;
5547 		if (!sctp_sstate(sk, LISTENING))
5548 			break;
5549 
5550 		err = 0;
5551 		if (!list_empty(&ep->asocs))
5552 			break;
5553 
5554 		err = sock_intr_errno(timeo);
5555 		if (signal_pending(current))
5556 			break;
5557 
5558 		err = -EAGAIN;
5559 		if (!timeo)
5560 			break;
5561 	}
5562 
5563 	finish_wait(sk->sk_sleep, &wait);
5564 
5565 	return err;
5566 }
5567 
5568 void sctp_wait_for_close(struct sock *sk, long timeout)
5569 {
5570 	DEFINE_WAIT(wait);
5571 
5572 	do {
5573 		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5574 		if (list_empty(&sctp_sk(sk)->ep->asocs))
5575 			break;
5576 		sctp_release_sock(sk);
5577 		timeout = schedule_timeout(timeout);
5578 		sctp_lock_sock(sk);
5579 	} while (!signal_pending(current) && timeout);
5580 
5581 	finish_wait(sk->sk_sleep, &wait);
5582 }
5583 
5584 /* Populate the fields of the newsk from the oldsk and migrate the assoc
5585  * and its messages to the newsk.
5586  */
5587 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
5588 			      struct sctp_association *assoc,
5589 			      sctp_socket_type_t type)
5590 {
5591 	struct sctp_sock *oldsp = sctp_sk(oldsk);
5592 	struct sctp_sock *newsp = sctp_sk(newsk);
5593 	struct sctp_bind_bucket *pp; /* hash list port iterator */
5594 	struct sctp_endpoint *newep = newsp->ep;
5595 	struct sk_buff *skb, *tmp;
5596 	struct sctp_ulpevent *event;
5597 	int flags = 0;
5598 
5599 	/* Migrate socket buffer sizes and all the socket level options to the
5600 	 * new socket.
5601 	 */
5602 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
5603 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
5604 	/* Brute force copy old sctp opt. */
5605 	inet_sk_copy_descendant(newsk, oldsk);
5606 
5607 	/* Restore the ep value that was overwritten with the above structure
5608 	 * copy.
5609 	 */
5610 	newsp->ep = newep;
5611 	newsp->hmac = NULL;
5612 
5613 	/* Hook this new socket in to the bind_hash list. */
5614 	pp = sctp_sk(oldsk)->bind_hash;
5615 	sk_add_bind_node(newsk, &pp->owner);
5616 	sctp_sk(newsk)->bind_hash = pp;
5617 	inet_sk(newsk)->num = inet_sk(oldsk)->num;
5618 
5619 	/* Copy the bind_addr list from the original endpoint to the new
5620 	 * endpoint so that we can handle restarts properly
5621 	 */
5622 	if (assoc->peer.ipv4_address)
5623 		flags |= SCTP_ADDR4_PEERSUPP;
5624 	if (assoc->peer.ipv6_address)
5625 		flags |= SCTP_ADDR6_PEERSUPP;
5626 	sctp_bind_addr_copy(&newsp->ep->base.bind_addr,
5627 			     &oldsp->ep->base.bind_addr,
5628 			     SCTP_SCOPE_GLOBAL, GFP_KERNEL, flags);
5629 
5630 	/* Move any messages in the old socket's receive queue that are for the
5631 	 * peeled off association to the new socket's receive queue.
5632 	 */
5633 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
5634 		event = sctp_skb2event(skb);
5635 		if (event->asoc == assoc) {
5636 			sock_rfree(skb);
5637 			__skb_unlink(skb, &oldsk->sk_receive_queue);
5638 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
5639 			skb_set_owner_r(skb, newsk);
5640 		}
5641 	}
5642 
5643 	/* Clean up any messages pending delivery due to partial
5644 	 * delivery.   Three cases:
5645 	 * 1) No partial deliver;  no work.
5646 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
5647 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
5648 	 */
5649 	skb_queue_head_init(&newsp->pd_lobby);
5650 	sctp_sk(newsk)->pd_mode = assoc->ulpq.pd_mode;
5651 
5652 	if (sctp_sk(oldsk)->pd_mode) {
5653 		struct sk_buff_head *queue;
5654 
5655 		/* Decide which queue to move pd_lobby skbs to. */
5656 		if (assoc->ulpq.pd_mode) {
5657 			queue = &newsp->pd_lobby;
5658 		} else
5659 			queue = &newsk->sk_receive_queue;
5660 
5661 		/* Walk through the pd_lobby, looking for skbs that
5662 		 * need moved to the new socket.
5663 		 */
5664 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
5665 			event = sctp_skb2event(skb);
5666 			if (event->asoc == assoc) {
5667 				sock_rfree(skb);
5668 				__skb_unlink(skb, &oldsp->pd_lobby);
5669 				__skb_queue_tail(queue, skb);
5670 				skb_set_owner_r(skb, newsk);
5671 			}
5672 		}
5673 
5674 		/* Clear up any skbs waiting for the partial
5675 		 * delivery to finish.
5676 		 */
5677 		if (assoc->ulpq.pd_mode)
5678 			sctp_clear_pd(oldsk);
5679 
5680 	}
5681 
5682 	/* Set the type of socket to indicate that it is peeled off from the
5683 	 * original UDP-style socket or created with the accept() call on a
5684 	 * TCP-style socket..
5685 	 */
5686 	newsp->type = type;
5687 
5688 	/* Mark the new socket "in-use" by the user so that any packets
5689 	 * that may arrive on the association after we've moved it are
5690 	 * queued to the backlog.  This prevents a potential race between
5691 	 * backlog processing on the old socket and new-packet processing
5692 	 * on the new socket.
5693 	 */
5694 	sctp_lock_sock(newsk);
5695 	sctp_assoc_migrate(assoc, newsk);
5696 
5697 	/* If the association on the newsk is already closed before accept()
5698 	 * is called, set RCV_SHUTDOWN flag.
5699 	 */
5700 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
5701 		newsk->sk_shutdown |= RCV_SHUTDOWN;
5702 
5703 	newsk->sk_state = SCTP_SS_ESTABLISHED;
5704 	sctp_release_sock(newsk);
5705 }
5706 
5707 /* This proto struct describes the ULP interface for SCTP.  */
5708 struct proto sctp_prot = {
5709 	.name        =	"SCTP",
5710 	.owner       =	THIS_MODULE,
5711 	.close       =	sctp_close,
5712 	.connect     =	sctp_connect,
5713 	.disconnect  =	sctp_disconnect,
5714 	.accept      =	sctp_accept,
5715 	.ioctl       =	sctp_ioctl,
5716 	.init        =	sctp_init_sock,
5717 	.destroy     =	sctp_destroy_sock,
5718 	.shutdown    =	sctp_shutdown,
5719 	.setsockopt  =	sctp_setsockopt,
5720 	.getsockopt  =	sctp_getsockopt,
5721 	.sendmsg     =	sctp_sendmsg,
5722 	.recvmsg     =	sctp_recvmsg,
5723 	.bind        =	sctp_bind,
5724 	.backlog_rcv =	sctp_backlog_rcv,
5725 	.hash        =	sctp_hash,
5726 	.unhash      =	sctp_unhash,
5727 	.get_port    =	sctp_get_port,
5728 	.obj_size    =  sizeof(struct sctp_sock),
5729 };
5730 
5731 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5732 struct proto sctpv6_prot = {
5733 	.name		= "SCTPv6",
5734 	.owner		= THIS_MODULE,
5735 	.close		= sctp_close,
5736 	.connect	= sctp_connect,
5737 	.disconnect	= sctp_disconnect,
5738 	.accept		= sctp_accept,
5739 	.ioctl		= sctp_ioctl,
5740 	.init		= sctp_init_sock,
5741 	.destroy	= sctp_destroy_sock,
5742 	.shutdown	= sctp_shutdown,
5743 	.setsockopt	= sctp_setsockopt,
5744 	.getsockopt	= sctp_getsockopt,
5745 	.sendmsg	= sctp_sendmsg,
5746 	.recvmsg	= sctp_recvmsg,
5747 	.bind		= sctp_bind,
5748 	.backlog_rcv	= sctp_backlog_rcv,
5749 	.hash		= sctp_hash,
5750 	.unhash		= sctp_unhash,
5751 	.get_port	= sctp_get_port,
5752 	.obj_size	= sizeof(struct sctp6_sock),
5753 };
5754 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
5755