1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, see 32 * <http://www.gnu.org/licenses/>. 33 * 34 * Please send any bug reports or fixes you make to the 35 * email address(es): 36 * lksctp developers <linux-sctp@vger.kernel.org> 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Narasimha Budihal <narsi@refcode.org> 41 * Karl Knutson <karl@athena.chicago.il.us> 42 * Jon Grimm <jgrimm@us.ibm.com> 43 * Xingang Guo <xingang.guo@intel.com> 44 * Daisy Chang <daisyc@us.ibm.com> 45 * Sridhar Samudrala <samudrala@us.ibm.com> 46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 47 * Ardelle Fan <ardelle.fan@intel.com> 48 * Ryan Layer <rmlayer@us.ibm.com> 49 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 50 * Kevin Gao <kevin.gao@intel.com> 51 */ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <crypto/hash.h> 56 #include <linux/types.h> 57 #include <linux/kernel.h> 58 #include <linux/wait.h> 59 #include <linux/time.h> 60 #include <linux/sched/signal.h> 61 #include <linux/ip.h> 62 #include <linux/capability.h> 63 #include <linux/fcntl.h> 64 #include <linux/poll.h> 65 #include <linux/init.h> 66 #include <linux/slab.h> 67 #include <linux/file.h> 68 #include <linux/compat.h> 69 #include <linux/rhashtable.h> 70 71 #include <net/ip.h> 72 #include <net/icmp.h> 73 #include <net/route.h> 74 #include <net/ipv6.h> 75 #include <net/inet_common.h> 76 #include <net/busy_poll.h> 77 78 #include <linux/socket.h> /* for sa_family_t */ 79 #include <linux/export.h> 80 #include <net/sock.h> 81 #include <net/sctp/sctp.h> 82 #include <net/sctp/sm.h> 83 #include <net/sctp/stream_sched.h> 84 85 /* Forward declarations for internal helper functions. */ 86 static int sctp_writeable(struct sock *sk); 87 static void sctp_wfree(struct sk_buff *skb); 88 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 89 size_t msg_len); 90 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 91 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 92 static int sctp_wait_for_accept(struct sock *sk, long timeo); 93 static void sctp_wait_for_close(struct sock *sk, long timeo); 94 static void sctp_destruct_sock(struct sock *sk); 95 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 96 union sctp_addr *addr, int len); 97 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 98 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 99 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 100 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 101 static int sctp_send_asconf(struct sctp_association *asoc, 102 struct sctp_chunk *chunk); 103 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 104 static int sctp_autobind(struct sock *sk); 105 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 106 struct sctp_association *assoc, 107 enum sctp_socket_type type); 108 109 static unsigned long sctp_memory_pressure; 110 static atomic_long_t sctp_memory_allocated; 111 struct percpu_counter sctp_sockets_allocated; 112 113 static void sctp_enter_memory_pressure(struct sock *sk) 114 { 115 sctp_memory_pressure = 1; 116 } 117 118 119 /* Get the sndbuf space available at the time on the association. */ 120 static inline int sctp_wspace(struct sctp_association *asoc) 121 { 122 int amt; 123 124 if (asoc->ep->sndbuf_policy) 125 amt = asoc->sndbuf_used; 126 else 127 amt = sk_wmem_alloc_get(asoc->base.sk); 128 129 if (amt >= asoc->base.sk->sk_sndbuf) { 130 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 131 amt = 0; 132 else { 133 amt = sk_stream_wspace(asoc->base.sk); 134 if (amt < 0) 135 amt = 0; 136 } 137 } else { 138 amt = asoc->base.sk->sk_sndbuf - amt; 139 } 140 return amt; 141 } 142 143 /* Increment the used sndbuf space count of the corresponding association by 144 * the size of the outgoing data chunk. 145 * Also, set the skb destructor for sndbuf accounting later. 146 * 147 * Since it is always 1-1 between chunk and skb, and also a new skb is always 148 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 149 * destructor in the data chunk skb for the purpose of the sndbuf space 150 * tracking. 151 */ 152 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 153 { 154 struct sctp_association *asoc = chunk->asoc; 155 struct sock *sk = asoc->base.sk; 156 157 /* The sndbuf space is tracked per association. */ 158 sctp_association_hold(asoc); 159 160 if (chunk->shkey) 161 sctp_auth_shkey_hold(chunk->shkey); 162 163 skb_set_owner_w(chunk->skb, sk); 164 165 chunk->skb->destructor = sctp_wfree; 166 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 167 skb_shinfo(chunk->skb)->destructor_arg = chunk; 168 169 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 170 sizeof(struct sk_buff) + 171 sizeof(struct sctp_chunk); 172 173 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 174 sk->sk_wmem_queued += chunk->skb->truesize; 175 sk_mem_charge(sk, chunk->skb->truesize); 176 } 177 178 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 179 { 180 skb_orphan(chunk->skb); 181 } 182 183 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 184 void (*cb)(struct sctp_chunk *)) 185 186 { 187 struct sctp_outq *q = &asoc->outqueue; 188 struct sctp_transport *t; 189 struct sctp_chunk *chunk; 190 191 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 192 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 193 cb(chunk); 194 195 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 196 cb(chunk); 197 198 list_for_each_entry(chunk, &q->sacked, transmitted_list) 199 cb(chunk); 200 201 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 202 cb(chunk); 203 204 list_for_each_entry(chunk, &q->out_chunk_list, list) 205 cb(chunk); 206 } 207 208 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 209 void (*cb)(struct sk_buff *, struct sock *)) 210 211 { 212 struct sk_buff *skb, *tmp; 213 214 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 215 cb(skb, sk); 216 217 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 218 cb(skb, sk); 219 220 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 221 cb(skb, sk); 222 } 223 224 /* Verify that this is a valid address. */ 225 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 226 int len) 227 { 228 struct sctp_af *af; 229 230 /* Verify basic sockaddr. */ 231 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 232 if (!af) 233 return -EINVAL; 234 235 /* Is this a valid SCTP address? */ 236 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 237 return -EINVAL; 238 239 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 240 return -EINVAL; 241 242 return 0; 243 } 244 245 /* Look up the association by its id. If this is not a UDP-style 246 * socket, the ID field is always ignored. 247 */ 248 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 249 { 250 struct sctp_association *asoc = NULL; 251 252 /* If this is not a UDP-style socket, assoc id should be ignored. */ 253 if (!sctp_style(sk, UDP)) { 254 /* Return NULL if the socket state is not ESTABLISHED. It 255 * could be a TCP-style listening socket or a socket which 256 * hasn't yet called connect() to establish an association. 257 */ 258 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 259 return NULL; 260 261 /* Get the first and the only association from the list. */ 262 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 263 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 264 struct sctp_association, asocs); 265 return asoc; 266 } 267 268 /* Otherwise this is a UDP-style socket. */ 269 if (!id || (id == (sctp_assoc_t)-1)) 270 return NULL; 271 272 spin_lock_bh(&sctp_assocs_id_lock); 273 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 274 spin_unlock_bh(&sctp_assocs_id_lock); 275 276 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 277 return NULL; 278 279 return asoc; 280 } 281 282 /* Look up the transport from an address and an assoc id. If both address and 283 * id are specified, the associations matching the address and the id should be 284 * the same. 285 */ 286 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 287 struct sockaddr_storage *addr, 288 sctp_assoc_t id) 289 { 290 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 291 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 292 union sctp_addr *laddr = (union sctp_addr *)addr; 293 struct sctp_transport *transport; 294 295 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 296 return NULL; 297 298 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 299 laddr, 300 &transport); 301 302 if (!addr_asoc) 303 return NULL; 304 305 id_asoc = sctp_id2assoc(sk, id); 306 if (id_asoc && (id_asoc != addr_asoc)) 307 return NULL; 308 309 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 310 (union sctp_addr *)addr); 311 312 return transport; 313 } 314 315 /* API 3.1.2 bind() - UDP Style Syntax 316 * The syntax of bind() is, 317 * 318 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 319 * 320 * sd - the socket descriptor returned by socket(). 321 * addr - the address structure (struct sockaddr_in or struct 322 * sockaddr_in6 [RFC 2553]), 323 * addr_len - the size of the address structure. 324 */ 325 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 326 { 327 int retval = 0; 328 329 lock_sock(sk); 330 331 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 332 addr, addr_len); 333 334 /* Disallow binding twice. */ 335 if (!sctp_sk(sk)->ep->base.bind_addr.port) 336 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 337 addr_len); 338 else 339 retval = -EINVAL; 340 341 release_sock(sk); 342 343 return retval; 344 } 345 346 static long sctp_get_port_local(struct sock *, union sctp_addr *); 347 348 /* Verify this is a valid sockaddr. */ 349 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 350 union sctp_addr *addr, int len) 351 { 352 struct sctp_af *af; 353 354 /* Check minimum size. */ 355 if (len < sizeof (struct sockaddr)) 356 return NULL; 357 358 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 359 return NULL; 360 361 if (addr->sa.sa_family == AF_INET6) { 362 if (len < SIN6_LEN_RFC2133) 363 return NULL; 364 /* V4 mapped address are really of AF_INET family */ 365 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 366 !opt->pf->af_supported(AF_INET, opt)) 367 return NULL; 368 } 369 370 /* If we get this far, af is valid. */ 371 af = sctp_get_af_specific(addr->sa.sa_family); 372 373 if (len < af->sockaddr_len) 374 return NULL; 375 376 return af; 377 } 378 379 /* Bind a local address either to an endpoint or to an association. */ 380 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 381 { 382 struct net *net = sock_net(sk); 383 struct sctp_sock *sp = sctp_sk(sk); 384 struct sctp_endpoint *ep = sp->ep; 385 struct sctp_bind_addr *bp = &ep->base.bind_addr; 386 struct sctp_af *af; 387 unsigned short snum; 388 int ret = 0; 389 390 /* Common sockaddr verification. */ 391 af = sctp_sockaddr_af(sp, addr, len); 392 if (!af) { 393 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 394 __func__, sk, addr, len); 395 return -EINVAL; 396 } 397 398 snum = ntohs(addr->v4.sin_port); 399 400 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 401 __func__, sk, &addr->sa, bp->port, snum, len); 402 403 /* PF specific bind() address verification. */ 404 if (!sp->pf->bind_verify(sp, addr)) 405 return -EADDRNOTAVAIL; 406 407 /* We must either be unbound, or bind to the same port. 408 * It's OK to allow 0 ports if we are already bound. 409 * We'll just inhert an already bound port in this case 410 */ 411 if (bp->port) { 412 if (!snum) 413 snum = bp->port; 414 else if (snum != bp->port) { 415 pr_debug("%s: new port %d doesn't match existing port " 416 "%d\n", __func__, snum, bp->port); 417 return -EINVAL; 418 } 419 } 420 421 if (snum && snum < inet_prot_sock(net) && 422 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 423 return -EACCES; 424 425 /* See if the address matches any of the addresses we may have 426 * already bound before checking against other endpoints. 427 */ 428 if (sctp_bind_addr_match(bp, addr, sp)) 429 return -EINVAL; 430 431 /* Make sure we are allowed to bind here. 432 * The function sctp_get_port_local() does duplicate address 433 * detection. 434 */ 435 addr->v4.sin_port = htons(snum); 436 if ((ret = sctp_get_port_local(sk, addr))) { 437 return -EADDRINUSE; 438 } 439 440 /* Refresh ephemeral port. */ 441 if (!bp->port) 442 bp->port = inet_sk(sk)->inet_num; 443 444 /* Add the address to the bind address list. 445 * Use GFP_ATOMIC since BHs will be disabled. 446 */ 447 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 448 SCTP_ADDR_SRC, GFP_ATOMIC); 449 450 /* Copy back into socket for getsockname() use. */ 451 if (!ret) { 452 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 453 sp->pf->to_sk_saddr(addr, sk); 454 } 455 456 return ret; 457 } 458 459 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 460 * 461 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 462 * at any one time. If a sender, after sending an ASCONF chunk, decides 463 * it needs to transfer another ASCONF Chunk, it MUST wait until the 464 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 465 * subsequent ASCONF. Note this restriction binds each side, so at any 466 * time two ASCONF may be in-transit on any given association (one sent 467 * from each endpoint). 468 */ 469 static int sctp_send_asconf(struct sctp_association *asoc, 470 struct sctp_chunk *chunk) 471 { 472 struct net *net = sock_net(asoc->base.sk); 473 int retval = 0; 474 475 /* If there is an outstanding ASCONF chunk, queue it for later 476 * transmission. 477 */ 478 if (asoc->addip_last_asconf) { 479 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 480 goto out; 481 } 482 483 /* Hold the chunk until an ASCONF_ACK is received. */ 484 sctp_chunk_hold(chunk); 485 retval = sctp_primitive_ASCONF(net, asoc, chunk); 486 if (retval) 487 sctp_chunk_free(chunk); 488 else 489 asoc->addip_last_asconf = chunk; 490 491 out: 492 return retval; 493 } 494 495 /* Add a list of addresses as bind addresses to local endpoint or 496 * association. 497 * 498 * Basically run through each address specified in the addrs/addrcnt 499 * array/length pair, determine if it is IPv6 or IPv4 and call 500 * sctp_do_bind() on it. 501 * 502 * If any of them fails, then the operation will be reversed and the 503 * ones that were added will be removed. 504 * 505 * Only sctp_setsockopt_bindx() is supposed to call this function. 506 */ 507 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 508 { 509 int cnt; 510 int retval = 0; 511 void *addr_buf; 512 struct sockaddr *sa_addr; 513 struct sctp_af *af; 514 515 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 516 addrs, addrcnt); 517 518 addr_buf = addrs; 519 for (cnt = 0; cnt < addrcnt; cnt++) { 520 /* The list may contain either IPv4 or IPv6 address; 521 * determine the address length for walking thru the list. 522 */ 523 sa_addr = addr_buf; 524 af = sctp_get_af_specific(sa_addr->sa_family); 525 if (!af) { 526 retval = -EINVAL; 527 goto err_bindx_add; 528 } 529 530 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 531 af->sockaddr_len); 532 533 addr_buf += af->sockaddr_len; 534 535 err_bindx_add: 536 if (retval < 0) { 537 /* Failed. Cleanup the ones that have been added */ 538 if (cnt > 0) 539 sctp_bindx_rem(sk, addrs, cnt); 540 return retval; 541 } 542 } 543 544 return retval; 545 } 546 547 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 548 * associations that are part of the endpoint indicating that a list of local 549 * addresses are added to the endpoint. 550 * 551 * If any of the addresses is already in the bind address list of the 552 * association, we do not send the chunk for that association. But it will not 553 * affect other associations. 554 * 555 * Only sctp_setsockopt_bindx() is supposed to call this function. 556 */ 557 static int sctp_send_asconf_add_ip(struct sock *sk, 558 struct sockaddr *addrs, 559 int addrcnt) 560 { 561 struct net *net = sock_net(sk); 562 struct sctp_sock *sp; 563 struct sctp_endpoint *ep; 564 struct sctp_association *asoc; 565 struct sctp_bind_addr *bp; 566 struct sctp_chunk *chunk; 567 struct sctp_sockaddr_entry *laddr; 568 union sctp_addr *addr; 569 union sctp_addr saveaddr; 570 void *addr_buf; 571 struct sctp_af *af; 572 struct list_head *p; 573 int i; 574 int retval = 0; 575 576 if (!net->sctp.addip_enable) 577 return retval; 578 579 sp = sctp_sk(sk); 580 ep = sp->ep; 581 582 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 583 __func__, sk, addrs, addrcnt); 584 585 list_for_each_entry(asoc, &ep->asocs, asocs) { 586 if (!asoc->peer.asconf_capable) 587 continue; 588 589 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 590 continue; 591 592 if (!sctp_state(asoc, ESTABLISHED)) 593 continue; 594 595 /* Check if any address in the packed array of addresses is 596 * in the bind address list of the association. If so, 597 * do not send the asconf chunk to its peer, but continue with 598 * other associations. 599 */ 600 addr_buf = addrs; 601 for (i = 0; i < addrcnt; i++) { 602 addr = addr_buf; 603 af = sctp_get_af_specific(addr->v4.sin_family); 604 if (!af) { 605 retval = -EINVAL; 606 goto out; 607 } 608 609 if (sctp_assoc_lookup_laddr(asoc, addr)) 610 break; 611 612 addr_buf += af->sockaddr_len; 613 } 614 if (i < addrcnt) 615 continue; 616 617 /* Use the first valid address in bind addr list of 618 * association as Address Parameter of ASCONF CHUNK. 619 */ 620 bp = &asoc->base.bind_addr; 621 p = bp->address_list.next; 622 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 623 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 624 addrcnt, SCTP_PARAM_ADD_IP); 625 if (!chunk) { 626 retval = -ENOMEM; 627 goto out; 628 } 629 630 /* Add the new addresses to the bind address list with 631 * use_as_src set to 0. 632 */ 633 addr_buf = addrs; 634 for (i = 0; i < addrcnt; i++) { 635 addr = addr_buf; 636 af = sctp_get_af_specific(addr->v4.sin_family); 637 memcpy(&saveaddr, addr, af->sockaddr_len); 638 retval = sctp_add_bind_addr(bp, &saveaddr, 639 sizeof(saveaddr), 640 SCTP_ADDR_NEW, GFP_ATOMIC); 641 addr_buf += af->sockaddr_len; 642 } 643 if (asoc->src_out_of_asoc_ok) { 644 struct sctp_transport *trans; 645 646 list_for_each_entry(trans, 647 &asoc->peer.transport_addr_list, transports) { 648 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 649 2*asoc->pathmtu, 4380)); 650 trans->ssthresh = asoc->peer.i.a_rwnd; 651 trans->rto = asoc->rto_initial; 652 sctp_max_rto(asoc, trans); 653 trans->rtt = trans->srtt = trans->rttvar = 0; 654 /* Clear the source and route cache */ 655 sctp_transport_route(trans, NULL, 656 sctp_sk(asoc->base.sk)); 657 } 658 } 659 retval = sctp_send_asconf(asoc, chunk); 660 } 661 662 out: 663 return retval; 664 } 665 666 /* Remove a list of addresses from bind addresses list. Do not remove the 667 * last address. 668 * 669 * Basically run through each address specified in the addrs/addrcnt 670 * array/length pair, determine if it is IPv6 or IPv4 and call 671 * sctp_del_bind() on it. 672 * 673 * If any of them fails, then the operation will be reversed and the 674 * ones that were removed will be added back. 675 * 676 * At least one address has to be left; if only one address is 677 * available, the operation will return -EBUSY. 678 * 679 * Only sctp_setsockopt_bindx() is supposed to call this function. 680 */ 681 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 682 { 683 struct sctp_sock *sp = sctp_sk(sk); 684 struct sctp_endpoint *ep = sp->ep; 685 int cnt; 686 struct sctp_bind_addr *bp = &ep->base.bind_addr; 687 int retval = 0; 688 void *addr_buf; 689 union sctp_addr *sa_addr; 690 struct sctp_af *af; 691 692 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 693 __func__, sk, addrs, addrcnt); 694 695 addr_buf = addrs; 696 for (cnt = 0; cnt < addrcnt; cnt++) { 697 /* If the bind address list is empty or if there is only one 698 * bind address, there is nothing more to be removed (we need 699 * at least one address here). 700 */ 701 if (list_empty(&bp->address_list) || 702 (sctp_list_single_entry(&bp->address_list))) { 703 retval = -EBUSY; 704 goto err_bindx_rem; 705 } 706 707 sa_addr = addr_buf; 708 af = sctp_get_af_specific(sa_addr->sa.sa_family); 709 if (!af) { 710 retval = -EINVAL; 711 goto err_bindx_rem; 712 } 713 714 if (!af->addr_valid(sa_addr, sp, NULL)) { 715 retval = -EADDRNOTAVAIL; 716 goto err_bindx_rem; 717 } 718 719 if (sa_addr->v4.sin_port && 720 sa_addr->v4.sin_port != htons(bp->port)) { 721 retval = -EINVAL; 722 goto err_bindx_rem; 723 } 724 725 if (!sa_addr->v4.sin_port) 726 sa_addr->v4.sin_port = htons(bp->port); 727 728 /* FIXME - There is probably a need to check if sk->sk_saddr and 729 * sk->sk_rcv_addr are currently set to one of the addresses to 730 * be removed. This is something which needs to be looked into 731 * when we are fixing the outstanding issues with multi-homing 732 * socket routing and failover schemes. Refer to comments in 733 * sctp_do_bind(). -daisy 734 */ 735 retval = sctp_del_bind_addr(bp, sa_addr); 736 737 addr_buf += af->sockaddr_len; 738 err_bindx_rem: 739 if (retval < 0) { 740 /* Failed. Add the ones that has been removed back */ 741 if (cnt > 0) 742 sctp_bindx_add(sk, addrs, cnt); 743 return retval; 744 } 745 } 746 747 return retval; 748 } 749 750 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 751 * the associations that are part of the endpoint indicating that a list of 752 * local addresses are removed from the endpoint. 753 * 754 * If any of the addresses is already in the bind address list of the 755 * association, we do not send the chunk for that association. But it will not 756 * affect other associations. 757 * 758 * Only sctp_setsockopt_bindx() is supposed to call this function. 759 */ 760 static int sctp_send_asconf_del_ip(struct sock *sk, 761 struct sockaddr *addrs, 762 int addrcnt) 763 { 764 struct net *net = sock_net(sk); 765 struct sctp_sock *sp; 766 struct sctp_endpoint *ep; 767 struct sctp_association *asoc; 768 struct sctp_transport *transport; 769 struct sctp_bind_addr *bp; 770 struct sctp_chunk *chunk; 771 union sctp_addr *laddr; 772 void *addr_buf; 773 struct sctp_af *af; 774 struct sctp_sockaddr_entry *saddr; 775 int i; 776 int retval = 0; 777 int stored = 0; 778 779 chunk = NULL; 780 if (!net->sctp.addip_enable) 781 return retval; 782 783 sp = sctp_sk(sk); 784 ep = sp->ep; 785 786 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 787 __func__, sk, addrs, addrcnt); 788 789 list_for_each_entry(asoc, &ep->asocs, asocs) { 790 791 if (!asoc->peer.asconf_capable) 792 continue; 793 794 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 795 continue; 796 797 if (!sctp_state(asoc, ESTABLISHED)) 798 continue; 799 800 /* Check if any address in the packed array of addresses is 801 * not present in the bind address list of the association. 802 * If so, do not send the asconf chunk to its peer, but 803 * continue with other associations. 804 */ 805 addr_buf = addrs; 806 for (i = 0; i < addrcnt; i++) { 807 laddr = addr_buf; 808 af = sctp_get_af_specific(laddr->v4.sin_family); 809 if (!af) { 810 retval = -EINVAL; 811 goto out; 812 } 813 814 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 815 break; 816 817 addr_buf += af->sockaddr_len; 818 } 819 if (i < addrcnt) 820 continue; 821 822 /* Find one address in the association's bind address list 823 * that is not in the packed array of addresses. This is to 824 * make sure that we do not delete all the addresses in the 825 * association. 826 */ 827 bp = &asoc->base.bind_addr; 828 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 829 addrcnt, sp); 830 if ((laddr == NULL) && (addrcnt == 1)) { 831 if (asoc->asconf_addr_del_pending) 832 continue; 833 asoc->asconf_addr_del_pending = 834 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 835 if (asoc->asconf_addr_del_pending == NULL) { 836 retval = -ENOMEM; 837 goto out; 838 } 839 asoc->asconf_addr_del_pending->sa.sa_family = 840 addrs->sa_family; 841 asoc->asconf_addr_del_pending->v4.sin_port = 842 htons(bp->port); 843 if (addrs->sa_family == AF_INET) { 844 struct sockaddr_in *sin; 845 846 sin = (struct sockaddr_in *)addrs; 847 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 848 } else if (addrs->sa_family == AF_INET6) { 849 struct sockaddr_in6 *sin6; 850 851 sin6 = (struct sockaddr_in6 *)addrs; 852 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 853 } 854 855 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 856 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 857 asoc->asconf_addr_del_pending); 858 859 asoc->src_out_of_asoc_ok = 1; 860 stored = 1; 861 goto skip_mkasconf; 862 } 863 864 if (laddr == NULL) 865 return -EINVAL; 866 867 /* We do not need RCU protection throughout this loop 868 * because this is done under a socket lock from the 869 * setsockopt call. 870 */ 871 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 872 SCTP_PARAM_DEL_IP); 873 if (!chunk) { 874 retval = -ENOMEM; 875 goto out; 876 } 877 878 skip_mkasconf: 879 /* Reset use_as_src flag for the addresses in the bind address 880 * list that are to be deleted. 881 */ 882 addr_buf = addrs; 883 for (i = 0; i < addrcnt; i++) { 884 laddr = addr_buf; 885 af = sctp_get_af_specific(laddr->v4.sin_family); 886 list_for_each_entry(saddr, &bp->address_list, list) { 887 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 888 saddr->state = SCTP_ADDR_DEL; 889 } 890 addr_buf += af->sockaddr_len; 891 } 892 893 /* Update the route and saddr entries for all the transports 894 * as some of the addresses in the bind address list are 895 * about to be deleted and cannot be used as source addresses. 896 */ 897 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 898 transports) { 899 sctp_transport_route(transport, NULL, 900 sctp_sk(asoc->base.sk)); 901 } 902 903 if (stored) 904 /* We don't need to transmit ASCONF */ 905 continue; 906 retval = sctp_send_asconf(asoc, chunk); 907 } 908 out: 909 return retval; 910 } 911 912 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 913 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 914 { 915 struct sock *sk = sctp_opt2sk(sp); 916 union sctp_addr *addr; 917 struct sctp_af *af; 918 919 /* It is safe to write port space in caller. */ 920 addr = &addrw->a; 921 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 922 af = sctp_get_af_specific(addr->sa.sa_family); 923 if (!af) 924 return -EINVAL; 925 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 926 return -EINVAL; 927 928 if (addrw->state == SCTP_ADDR_NEW) 929 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 930 else 931 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 932 } 933 934 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 935 * 936 * API 8.1 937 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 938 * int flags); 939 * 940 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 941 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 942 * or IPv6 addresses. 943 * 944 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 945 * Section 3.1.2 for this usage. 946 * 947 * addrs is a pointer to an array of one or more socket addresses. Each 948 * address is contained in its appropriate structure (i.e. struct 949 * sockaddr_in or struct sockaddr_in6) the family of the address type 950 * must be used to distinguish the address length (note that this 951 * representation is termed a "packed array" of addresses). The caller 952 * specifies the number of addresses in the array with addrcnt. 953 * 954 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 955 * -1, and sets errno to the appropriate error code. 956 * 957 * For SCTP, the port given in each socket address must be the same, or 958 * sctp_bindx() will fail, setting errno to EINVAL. 959 * 960 * The flags parameter is formed from the bitwise OR of zero or more of 961 * the following currently defined flags: 962 * 963 * SCTP_BINDX_ADD_ADDR 964 * 965 * SCTP_BINDX_REM_ADDR 966 * 967 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 968 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 969 * addresses from the association. The two flags are mutually exclusive; 970 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 971 * not remove all addresses from an association; sctp_bindx() will 972 * reject such an attempt with EINVAL. 973 * 974 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 975 * additional addresses with an endpoint after calling bind(). Or use 976 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 977 * socket is associated with so that no new association accepted will be 978 * associated with those addresses. If the endpoint supports dynamic 979 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 980 * endpoint to send the appropriate message to the peer to change the 981 * peers address lists. 982 * 983 * Adding and removing addresses from a connected association is 984 * optional functionality. Implementations that do not support this 985 * functionality should return EOPNOTSUPP. 986 * 987 * Basically do nothing but copying the addresses from user to kernel 988 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 989 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 990 * from userspace. 991 * 992 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 993 * it. 994 * 995 * sk The sk of the socket 996 * addrs The pointer to the addresses in user land 997 * addrssize Size of the addrs buffer 998 * op Operation to perform (add or remove, see the flags of 999 * sctp_bindx) 1000 * 1001 * Returns 0 if ok, <0 errno code on error. 1002 */ 1003 static int sctp_setsockopt_bindx(struct sock *sk, 1004 struct sockaddr __user *addrs, 1005 int addrs_size, int op) 1006 { 1007 struct sockaddr *kaddrs; 1008 int err; 1009 int addrcnt = 0; 1010 int walk_size = 0; 1011 struct sockaddr *sa_addr; 1012 void *addr_buf; 1013 struct sctp_af *af; 1014 1015 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 1016 __func__, sk, addrs, addrs_size, op); 1017 1018 if (unlikely(addrs_size <= 0)) 1019 return -EINVAL; 1020 1021 kaddrs = vmemdup_user(addrs, addrs_size); 1022 if (unlikely(IS_ERR(kaddrs))) 1023 return PTR_ERR(kaddrs); 1024 1025 /* Walk through the addrs buffer and count the number of addresses. */ 1026 addr_buf = kaddrs; 1027 while (walk_size < addrs_size) { 1028 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1029 kvfree(kaddrs); 1030 return -EINVAL; 1031 } 1032 1033 sa_addr = addr_buf; 1034 af = sctp_get_af_specific(sa_addr->sa_family); 1035 1036 /* If the address family is not supported or if this address 1037 * causes the address buffer to overflow return EINVAL. 1038 */ 1039 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1040 kvfree(kaddrs); 1041 return -EINVAL; 1042 } 1043 addrcnt++; 1044 addr_buf += af->sockaddr_len; 1045 walk_size += af->sockaddr_len; 1046 } 1047 1048 /* Do the work. */ 1049 switch (op) { 1050 case SCTP_BINDX_ADD_ADDR: 1051 /* Allow security module to validate bindx addresses. */ 1052 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1053 (struct sockaddr *)kaddrs, 1054 addrs_size); 1055 if (err) 1056 goto out; 1057 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1058 if (err) 1059 goto out; 1060 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1061 break; 1062 1063 case SCTP_BINDX_REM_ADDR: 1064 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1065 if (err) 1066 goto out; 1067 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1068 break; 1069 1070 default: 1071 err = -EINVAL; 1072 break; 1073 } 1074 1075 out: 1076 kvfree(kaddrs); 1077 1078 return err; 1079 } 1080 1081 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1082 * 1083 * Common routine for handling connect() and sctp_connectx(). 1084 * Connect will come in with just a single address. 1085 */ 1086 static int __sctp_connect(struct sock *sk, 1087 struct sockaddr *kaddrs, 1088 int addrs_size, int flags, 1089 sctp_assoc_t *assoc_id) 1090 { 1091 struct net *net = sock_net(sk); 1092 struct sctp_sock *sp; 1093 struct sctp_endpoint *ep; 1094 struct sctp_association *asoc = NULL; 1095 struct sctp_association *asoc2; 1096 struct sctp_transport *transport; 1097 union sctp_addr to; 1098 enum sctp_scope scope; 1099 long timeo; 1100 int err = 0; 1101 int addrcnt = 0; 1102 int walk_size = 0; 1103 union sctp_addr *sa_addr = NULL; 1104 void *addr_buf; 1105 unsigned short port; 1106 1107 sp = sctp_sk(sk); 1108 ep = sp->ep; 1109 1110 /* connect() cannot be done on a socket that is already in ESTABLISHED 1111 * state - UDP-style peeled off socket or a TCP-style socket that 1112 * is already connected. 1113 * It cannot be done even on a TCP-style listening socket. 1114 */ 1115 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1116 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1117 err = -EISCONN; 1118 goto out_free; 1119 } 1120 1121 /* Walk through the addrs buffer and count the number of addresses. */ 1122 addr_buf = kaddrs; 1123 while (walk_size < addrs_size) { 1124 struct sctp_af *af; 1125 1126 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1127 err = -EINVAL; 1128 goto out_free; 1129 } 1130 1131 sa_addr = addr_buf; 1132 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1133 1134 /* If the address family is not supported or if this address 1135 * causes the address buffer to overflow return EINVAL. 1136 */ 1137 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1138 err = -EINVAL; 1139 goto out_free; 1140 } 1141 1142 port = ntohs(sa_addr->v4.sin_port); 1143 1144 /* Save current address so we can work with it */ 1145 memcpy(&to, sa_addr, af->sockaddr_len); 1146 1147 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1148 if (err) 1149 goto out_free; 1150 1151 /* Make sure the destination port is correctly set 1152 * in all addresses. 1153 */ 1154 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1155 err = -EINVAL; 1156 goto out_free; 1157 } 1158 1159 /* Check if there already is a matching association on the 1160 * endpoint (other than the one created here). 1161 */ 1162 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1163 if (asoc2 && asoc2 != asoc) { 1164 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1165 err = -EISCONN; 1166 else 1167 err = -EALREADY; 1168 goto out_free; 1169 } 1170 1171 /* If we could not find a matching association on the endpoint, 1172 * make sure that there is no peeled-off association matching 1173 * the peer address even on another socket. 1174 */ 1175 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1176 err = -EADDRNOTAVAIL; 1177 goto out_free; 1178 } 1179 1180 if (!asoc) { 1181 /* If a bind() or sctp_bindx() is not called prior to 1182 * an sctp_connectx() call, the system picks an 1183 * ephemeral port and will choose an address set 1184 * equivalent to binding with a wildcard address. 1185 */ 1186 if (!ep->base.bind_addr.port) { 1187 if (sctp_autobind(sk)) { 1188 err = -EAGAIN; 1189 goto out_free; 1190 } 1191 } else { 1192 /* 1193 * If an unprivileged user inherits a 1-many 1194 * style socket with open associations on a 1195 * privileged port, it MAY be permitted to 1196 * accept new associations, but it SHOULD NOT 1197 * be permitted to open new associations. 1198 */ 1199 if (ep->base.bind_addr.port < 1200 inet_prot_sock(net) && 1201 !ns_capable(net->user_ns, 1202 CAP_NET_BIND_SERVICE)) { 1203 err = -EACCES; 1204 goto out_free; 1205 } 1206 } 1207 1208 scope = sctp_scope(&to); 1209 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1210 if (!asoc) { 1211 err = -ENOMEM; 1212 goto out_free; 1213 } 1214 1215 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1216 GFP_KERNEL); 1217 if (err < 0) { 1218 goto out_free; 1219 } 1220 1221 } 1222 1223 /* Prime the peer's transport structures. */ 1224 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1225 SCTP_UNKNOWN); 1226 if (!transport) { 1227 err = -ENOMEM; 1228 goto out_free; 1229 } 1230 1231 addrcnt++; 1232 addr_buf += af->sockaddr_len; 1233 walk_size += af->sockaddr_len; 1234 } 1235 1236 /* In case the user of sctp_connectx() wants an association 1237 * id back, assign one now. 1238 */ 1239 if (assoc_id) { 1240 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1241 if (err < 0) 1242 goto out_free; 1243 } 1244 1245 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1246 if (err < 0) { 1247 goto out_free; 1248 } 1249 1250 /* Initialize sk's dport and daddr for getpeername() */ 1251 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1252 sp->pf->to_sk_daddr(sa_addr, sk); 1253 sk->sk_err = 0; 1254 1255 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1256 1257 if (assoc_id) 1258 *assoc_id = asoc->assoc_id; 1259 1260 err = sctp_wait_for_connect(asoc, &timeo); 1261 /* Note: the asoc may be freed after the return of 1262 * sctp_wait_for_connect. 1263 */ 1264 1265 /* Don't free association on exit. */ 1266 asoc = NULL; 1267 1268 out_free: 1269 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1270 __func__, asoc, kaddrs, err); 1271 1272 if (asoc) { 1273 /* sctp_primitive_ASSOCIATE may have added this association 1274 * To the hash table, try to unhash it, just in case, its a noop 1275 * if it wasn't hashed so we're safe 1276 */ 1277 sctp_association_free(asoc); 1278 } 1279 return err; 1280 } 1281 1282 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1283 * 1284 * API 8.9 1285 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1286 * sctp_assoc_t *asoc); 1287 * 1288 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1289 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1290 * or IPv6 addresses. 1291 * 1292 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1293 * Section 3.1.2 for this usage. 1294 * 1295 * addrs is a pointer to an array of one or more socket addresses. Each 1296 * address is contained in its appropriate structure (i.e. struct 1297 * sockaddr_in or struct sockaddr_in6) the family of the address type 1298 * must be used to distengish the address length (note that this 1299 * representation is termed a "packed array" of addresses). The caller 1300 * specifies the number of addresses in the array with addrcnt. 1301 * 1302 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1303 * the association id of the new association. On failure, sctp_connectx() 1304 * returns -1, and sets errno to the appropriate error code. The assoc_id 1305 * is not touched by the kernel. 1306 * 1307 * For SCTP, the port given in each socket address must be the same, or 1308 * sctp_connectx() will fail, setting errno to EINVAL. 1309 * 1310 * An application can use sctp_connectx to initiate an association with 1311 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1312 * allows a caller to specify multiple addresses at which a peer can be 1313 * reached. The way the SCTP stack uses the list of addresses to set up 1314 * the association is implementation dependent. This function only 1315 * specifies that the stack will try to make use of all the addresses in 1316 * the list when needed. 1317 * 1318 * Note that the list of addresses passed in is only used for setting up 1319 * the association. It does not necessarily equal the set of addresses 1320 * the peer uses for the resulting association. If the caller wants to 1321 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1322 * retrieve them after the association has been set up. 1323 * 1324 * Basically do nothing but copying the addresses from user to kernel 1325 * land and invoking either sctp_connectx(). This is used for tunneling 1326 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1327 * 1328 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1329 * it. 1330 * 1331 * sk The sk of the socket 1332 * addrs The pointer to the addresses in user land 1333 * addrssize Size of the addrs buffer 1334 * 1335 * Returns >=0 if ok, <0 errno code on error. 1336 */ 1337 static int __sctp_setsockopt_connectx(struct sock *sk, 1338 struct sockaddr __user *addrs, 1339 int addrs_size, 1340 sctp_assoc_t *assoc_id) 1341 { 1342 struct sockaddr *kaddrs; 1343 int err = 0, flags = 0; 1344 1345 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1346 __func__, sk, addrs, addrs_size); 1347 1348 if (unlikely(addrs_size <= 0)) 1349 return -EINVAL; 1350 1351 kaddrs = vmemdup_user(addrs, addrs_size); 1352 if (unlikely(IS_ERR(kaddrs))) 1353 return PTR_ERR(kaddrs); 1354 1355 /* Allow security module to validate connectx addresses. */ 1356 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1357 (struct sockaddr *)kaddrs, 1358 addrs_size); 1359 if (err) 1360 goto out_free; 1361 1362 /* in-kernel sockets don't generally have a file allocated to them 1363 * if all they do is call sock_create_kern(). 1364 */ 1365 if (sk->sk_socket->file) 1366 flags = sk->sk_socket->file->f_flags; 1367 1368 err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1369 1370 out_free: 1371 kvfree(kaddrs); 1372 1373 return err; 1374 } 1375 1376 /* 1377 * This is an older interface. It's kept for backward compatibility 1378 * to the option that doesn't provide association id. 1379 */ 1380 static int sctp_setsockopt_connectx_old(struct sock *sk, 1381 struct sockaddr __user *addrs, 1382 int addrs_size) 1383 { 1384 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1385 } 1386 1387 /* 1388 * New interface for the API. The since the API is done with a socket 1389 * option, to make it simple we feed back the association id is as a return 1390 * indication to the call. Error is always negative and association id is 1391 * always positive. 1392 */ 1393 static int sctp_setsockopt_connectx(struct sock *sk, 1394 struct sockaddr __user *addrs, 1395 int addrs_size) 1396 { 1397 sctp_assoc_t assoc_id = 0; 1398 int err = 0; 1399 1400 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1401 1402 if (err) 1403 return err; 1404 else 1405 return assoc_id; 1406 } 1407 1408 /* 1409 * New (hopefully final) interface for the API. 1410 * We use the sctp_getaddrs_old structure so that use-space library 1411 * can avoid any unnecessary allocations. The only different part 1412 * is that we store the actual length of the address buffer into the 1413 * addrs_num structure member. That way we can re-use the existing 1414 * code. 1415 */ 1416 #ifdef CONFIG_COMPAT 1417 struct compat_sctp_getaddrs_old { 1418 sctp_assoc_t assoc_id; 1419 s32 addr_num; 1420 compat_uptr_t addrs; /* struct sockaddr * */ 1421 }; 1422 #endif 1423 1424 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1425 char __user *optval, 1426 int __user *optlen) 1427 { 1428 struct sctp_getaddrs_old param; 1429 sctp_assoc_t assoc_id = 0; 1430 int err = 0; 1431 1432 #ifdef CONFIG_COMPAT 1433 if (in_compat_syscall()) { 1434 struct compat_sctp_getaddrs_old param32; 1435 1436 if (len < sizeof(param32)) 1437 return -EINVAL; 1438 if (copy_from_user(¶m32, optval, sizeof(param32))) 1439 return -EFAULT; 1440 1441 param.assoc_id = param32.assoc_id; 1442 param.addr_num = param32.addr_num; 1443 param.addrs = compat_ptr(param32.addrs); 1444 } else 1445 #endif 1446 { 1447 if (len < sizeof(param)) 1448 return -EINVAL; 1449 if (copy_from_user(¶m, optval, sizeof(param))) 1450 return -EFAULT; 1451 } 1452 1453 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1454 param.addrs, param.addr_num, 1455 &assoc_id); 1456 if (err == 0 || err == -EINPROGRESS) { 1457 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1458 return -EFAULT; 1459 if (put_user(sizeof(assoc_id), optlen)) 1460 return -EFAULT; 1461 } 1462 1463 return err; 1464 } 1465 1466 /* API 3.1.4 close() - UDP Style Syntax 1467 * Applications use close() to perform graceful shutdown (as described in 1468 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1469 * by a UDP-style socket. 1470 * 1471 * The syntax is 1472 * 1473 * ret = close(int sd); 1474 * 1475 * sd - the socket descriptor of the associations to be closed. 1476 * 1477 * To gracefully shutdown a specific association represented by the 1478 * UDP-style socket, an application should use the sendmsg() call, 1479 * passing no user data, but including the appropriate flag in the 1480 * ancillary data (see Section xxxx). 1481 * 1482 * If sd in the close() call is a branched-off socket representing only 1483 * one association, the shutdown is performed on that association only. 1484 * 1485 * 4.1.6 close() - TCP Style Syntax 1486 * 1487 * Applications use close() to gracefully close down an association. 1488 * 1489 * The syntax is: 1490 * 1491 * int close(int sd); 1492 * 1493 * sd - the socket descriptor of the association to be closed. 1494 * 1495 * After an application calls close() on a socket descriptor, no further 1496 * socket operations will succeed on that descriptor. 1497 * 1498 * API 7.1.4 SO_LINGER 1499 * 1500 * An application using the TCP-style socket can use this option to 1501 * perform the SCTP ABORT primitive. The linger option structure is: 1502 * 1503 * struct linger { 1504 * int l_onoff; // option on/off 1505 * int l_linger; // linger time 1506 * }; 1507 * 1508 * To enable the option, set l_onoff to 1. If the l_linger value is set 1509 * to 0, calling close() is the same as the ABORT primitive. If the 1510 * value is set to a negative value, the setsockopt() call will return 1511 * an error. If the value is set to a positive value linger_time, the 1512 * close() can be blocked for at most linger_time ms. If the graceful 1513 * shutdown phase does not finish during this period, close() will 1514 * return but the graceful shutdown phase continues in the system. 1515 */ 1516 static void sctp_close(struct sock *sk, long timeout) 1517 { 1518 struct net *net = sock_net(sk); 1519 struct sctp_endpoint *ep; 1520 struct sctp_association *asoc; 1521 struct list_head *pos, *temp; 1522 unsigned int data_was_unread; 1523 1524 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1525 1526 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1527 sk->sk_shutdown = SHUTDOWN_MASK; 1528 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1529 1530 ep = sctp_sk(sk)->ep; 1531 1532 /* Clean up any skbs sitting on the receive queue. */ 1533 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1534 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1535 1536 /* Walk all associations on an endpoint. */ 1537 list_for_each_safe(pos, temp, &ep->asocs) { 1538 asoc = list_entry(pos, struct sctp_association, asocs); 1539 1540 if (sctp_style(sk, TCP)) { 1541 /* A closed association can still be in the list if 1542 * it belongs to a TCP-style listening socket that is 1543 * not yet accepted. If so, free it. If not, send an 1544 * ABORT or SHUTDOWN based on the linger options. 1545 */ 1546 if (sctp_state(asoc, CLOSED)) { 1547 sctp_association_free(asoc); 1548 continue; 1549 } 1550 } 1551 1552 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1553 !skb_queue_empty(&asoc->ulpq.reasm) || 1554 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1555 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1556 struct sctp_chunk *chunk; 1557 1558 chunk = sctp_make_abort_user(asoc, NULL, 0); 1559 sctp_primitive_ABORT(net, asoc, chunk); 1560 } else 1561 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1562 } 1563 1564 /* On a TCP-style socket, block for at most linger_time if set. */ 1565 if (sctp_style(sk, TCP) && timeout) 1566 sctp_wait_for_close(sk, timeout); 1567 1568 /* This will run the backlog queue. */ 1569 release_sock(sk); 1570 1571 /* Supposedly, no process has access to the socket, but 1572 * the net layers still may. 1573 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1574 * held and that should be grabbed before socket lock. 1575 */ 1576 spin_lock_bh(&net->sctp.addr_wq_lock); 1577 bh_lock_sock_nested(sk); 1578 1579 /* Hold the sock, since sk_common_release() will put sock_put() 1580 * and we have just a little more cleanup. 1581 */ 1582 sock_hold(sk); 1583 sk_common_release(sk); 1584 1585 bh_unlock_sock(sk); 1586 spin_unlock_bh(&net->sctp.addr_wq_lock); 1587 1588 sock_put(sk); 1589 1590 SCTP_DBG_OBJCNT_DEC(sock); 1591 } 1592 1593 /* Handle EPIPE error. */ 1594 static int sctp_error(struct sock *sk, int flags, int err) 1595 { 1596 if (err == -EPIPE) 1597 err = sock_error(sk) ? : -EPIPE; 1598 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1599 send_sig(SIGPIPE, current, 0); 1600 return err; 1601 } 1602 1603 /* API 3.1.3 sendmsg() - UDP Style Syntax 1604 * 1605 * An application uses sendmsg() and recvmsg() calls to transmit data to 1606 * and receive data from its peer. 1607 * 1608 * ssize_t sendmsg(int socket, const struct msghdr *message, 1609 * int flags); 1610 * 1611 * socket - the socket descriptor of the endpoint. 1612 * message - pointer to the msghdr structure which contains a single 1613 * user message and possibly some ancillary data. 1614 * 1615 * See Section 5 for complete description of the data 1616 * structures. 1617 * 1618 * flags - flags sent or received with the user message, see Section 1619 * 5 for complete description of the flags. 1620 * 1621 * Note: This function could use a rewrite especially when explicit 1622 * connect support comes in. 1623 */ 1624 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1625 1626 static int sctp_msghdr_parse(const struct msghdr *msg, 1627 struct sctp_cmsgs *cmsgs); 1628 1629 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1630 struct sctp_sndrcvinfo *srinfo, 1631 const struct msghdr *msg, size_t msg_len) 1632 { 1633 __u16 sflags; 1634 int err; 1635 1636 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1637 return -EPIPE; 1638 1639 if (msg_len > sk->sk_sndbuf) 1640 return -EMSGSIZE; 1641 1642 memset(cmsgs, 0, sizeof(*cmsgs)); 1643 err = sctp_msghdr_parse(msg, cmsgs); 1644 if (err) { 1645 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1646 return err; 1647 } 1648 1649 memset(srinfo, 0, sizeof(*srinfo)); 1650 if (cmsgs->srinfo) { 1651 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1652 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1653 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1654 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1655 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1656 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1657 } 1658 1659 if (cmsgs->sinfo) { 1660 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1661 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1662 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1663 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1664 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1665 } 1666 1667 if (cmsgs->prinfo) { 1668 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1669 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1670 cmsgs->prinfo->pr_policy); 1671 } 1672 1673 sflags = srinfo->sinfo_flags; 1674 if (!sflags && msg_len) 1675 return 0; 1676 1677 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1678 return -EINVAL; 1679 1680 if (((sflags & SCTP_EOF) && msg_len > 0) || 1681 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1682 return -EINVAL; 1683 1684 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1685 return -EINVAL; 1686 1687 return 0; 1688 } 1689 1690 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1691 struct sctp_cmsgs *cmsgs, 1692 union sctp_addr *daddr, 1693 struct sctp_transport **tp) 1694 { 1695 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1696 struct net *net = sock_net(sk); 1697 struct sctp_association *asoc; 1698 enum sctp_scope scope; 1699 struct cmsghdr *cmsg; 1700 struct sctp_af *af; 1701 int err; 1702 1703 *tp = NULL; 1704 1705 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1706 return -EINVAL; 1707 1708 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1709 sctp_sstate(sk, CLOSING))) 1710 return -EADDRNOTAVAIL; 1711 1712 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1713 return -EADDRNOTAVAIL; 1714 1715 if (!ep->base.bind_addr.port) { 1716 if (sctp_autobind(sk)) 1717 return -EAGAIN; 1718 } else { 1719 if (ep->base.bind_addr.port < inet_prot_sock(net) && 1720 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1721 return -EACCES; 1722 } 1723 1724 scope = sctp_scope(daddr); 1725 1726 /* Label connection socket for first association 1-to-many 1727 * style for client sequence socket()->sendmsg(). This 1728 * needs to be done before sctp_assoc_add_peer() as that will 1729 * set up the initial packet that needs to account for any 1730 * security ip options (CIPSO/CALIPSO) added to the packet. 1731 */ 1732 af = sctp_get_af_specific(daddr->sa.sa_family); 1733 if (!af) 1734 return -EINVAL; 1735 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1736 (struct sockaddr *)daddr, 1737 af->sockaddr_len); 1738 if (err < 0) 1739 return err; 1740 1741 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1742 if (!asoc) 1743 return -ENOMEM; 1744 1745 if (sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL) < 0) { 1746 err = -ENOMEM; 1747 goto free; 1748 } 1749 1750 if (cmsgs->init) { 1751 struct sctp_initmsg *init = cmsgs->init; 1752 1753 if (init->sinit_num_ostreams) { 1754 __u16 outcnt = init->sinit_num_ostreams; 1755 1756 asoc->c.sinit_num_ostreams = outcnt; 1757 /* outcnt has been changed, need to re-init stream */ 1758 err = sctp_stream_init(&asoc->stream, outcnt, 0, 1759 GFP_KERNEL); 1760 if (err) 1761 goto free; 1762 } 1763 1764 if (init->sinit_max_instreams) 1765 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1766 1767 if (init->sinit_max_attempts) 1768 asoc->max_init_attempts = init->sinit_max_attempts; 1769 1770 if (init->sinit_max_init_timeo) 1771 asoc->max_init_timeo = 1772 msecs_to_jiffies(init->sinit_max_init_timeo); 1773 } 1774 1775 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1776 if (!*tp) { 1777 err = -ENOMEM; 1778 goto free; 1779 } 1780 1781 if (!cmsgs->addrs_msg) 1782 return 0; 1783 1784 /* sendv addr list parse */ 1785 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1786 struct sctp_transport *transport; 1787 struct sctp_association *old; 1788 union sctp_addr _daddr; 1789 int dlen; 1790 1791 if (cmsg->cmsg_level != IPPROTO_SCTP || 1792 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1793 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1794 continue; 1795 1796 daddr = &_daddr; 1797 memset(daddr, 0, sizeof(*daddr)); 1798 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1799 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1800 if (dlen < sizeof(struct in_addr)) { 1801 err = -EINVAL; 1802 goto free; 1803 } 1804 1805 dlen = sizeof(struct in_addr); 1806 daddr->v4.sin_family = AF_INET; 1807 daddr->v4.sin_port = htons(asoc->peer.port); 1808 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1809 } else { 1810 if (dlen < sizeof(struct in6_addr)) { 1811 err = -EINVAL; 1812 goto free; 1813 } 1814 1815 dlen = sizeof(struct in6_addr); 1816 daddr->v6.sin6_family = AF_INET6; 1817 daddr->v6.sin6_port = htons(asoc->peer.port); 1818 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1819 } 1820 err = sctp_verify_addr(sk, daddr, sizeof(*daddr)); 1821 if (err) 1822 goto free; 1823 1824 old = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1825 if (old && old != asoc) { 1826 if (old->state >= SCTP_STATE_ESTABLISHED) 1827 err = -EISCONN; 1828 else 1829 err = -EALREADY; 1830 goto free; 1831 } 1832 1833 if (sctp_endpoint_is_peeled_off(ep, daddr)) { 1834 err = -EADDRNOTAVAIL; 1835 goto free; 1836 } 1837 1838 transport = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, 1839 SCTP_UNKNOWN); 1840 if (!transport) { 1841 err = -ENOMEM; 1842 goto free; 1843 } 1844 } 1845 1846 return 0; 1847 1848 free: 1849 sctp_association_free(asoc); 1850 return err; 1851 } 1852 1853 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1854 __u16 sflags, struct msghdr *msg, 1855 size_t msg_len) 1856 { 1857 struct sock *sk = asoc->base.sk; 1858 struct net *net = sock_net(sk); 1859 1860 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1861 return -EPIPE; 1862 1863 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1864 !sctp_state(asoc, ESTABLISHED)) 1865 return 0; 1866 1867 if (sflags & SCTP_EOF) { 1868 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1869 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1870 1871 return 0; 1872 } 1873 1874 if (sflags & SCTP_ABORT) { 1875 struct sctp_chunk *chunk; 1876 1877 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1878 if (!chunk) 1879 return -ENOMEM; 1880 1881 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1882 sctp_primitive_ABORT(net, asoc, chunk); 1883 1884 return 0; 1885 } 1886 1887 return 1; 1888 } 1889 1890 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1891 struct msghdr *msg, size_t msg_len, 1892 struct sctp_transport *transport, 1893 struct sctp_sndrcvinfo *sinfo) 1894 { 1895 struct sock *sk = asoc->base.sk; 1896 struct sctp_sock *sp = sctp_sk(sk); 1897 struct net *net = sock_net(sk); 1898 struct sctp_datamsg *datamsg; 1899 bool wait_connect = false; 1900 struct sctp_chunk *chunk; 1901 long timeo; 1902 int err; 1903 1904 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1905 err = -EINVAL; 1906 goto err; 1907 } 1908 1909 if (unlikely(!asoc->stream.out[sinfo->sinfo_stream].ext)) { 1910 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1911 if (err) 1912 goto err; 1913 } 1914 1915 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1916 err = -EMSGSIZE; 1917 goto err; 1918 } 1919 1920 if (asoc->pmtu_pending) { 1921 if (sp->param_flags & SPP_PMTUD_ENABLE) 1922 sctp_assoc_sync_pmtu(asoc); 1923 asoc->pmtu_pending = 0; 1924 } 1925 1926 if (sctp_wspace(asoc) < msg_len) 1927 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1928 1929 if (!sctp_wspace(asoc)) { 1930 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1931 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1932 if (err) 1933 goto err; 1934 } 1935 1936 if (sctp_state(asoc, CLOSED)) { 1937 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1938 if (err) 1939 goto err; 1940 1941 if (sp->strm_interleave) { 1942 timeo = sock_sndtimeo(sk, 0); 1943 err = sctp_wait_for_connect(asoc, &timeo); 1944 if (err) 1945 goto err; 1946 } else { 1947 wait_connect = true; 1948 } 1949 1950 pr_debug("%s: we associated primitively\n", __func__); 1951 } 1952 1953 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1954 if (IS_ERR(datamsg)) { 1955 err = PTR_ERR(datamsg); 1956 goto err; 1957 } 1958 1959 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1960 1961 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1962 sctp_chunk_hold(chunk); 1963 sctp_set_owner_w(chunk); 1964 chunk->transport = transport; 1965 } 1966 1967 err = sctp_primitive_SEND(net, asoc, datamsg); 1968 if (err) { 1969 sctp_datamsg_free(datamsg); 1970 goto err; 1971 } 1972 1973 pr_debug("%s: we sent primitively\n", __func__); 1974 1975 sctp_datamsg_put(datamsg); 1976 1977 if (unlikely(wait_connect)) { 1978 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1979 sctp_wait_for_connect(asoc, &timeo); 1980 } 1981 1982 err = msg_len; 1983 1984 err: 1985 return err; 1986 } 1987 1988 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1989 const struct msghdr *msg, 1990 struct sctp_cmsgs *cmsgs) 1991 { 1992 union sctp_addr *daddr = NULL; 1993 int err; 1994 1995 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1996 int len = msg->msg_namelen; 1997 1998 if (len > sizeof(*daddr)) 1999 len = sizeof(*daddr); 2000 2001 daddr = (union sctp_addr *)msg->msg_name; 2002 2003 err = sctp_verify_addr(sk, daddr, len); 2004 if (err) 2005 return ERR_PTR(err); 2006 } 2007 2008 return daddr; 2009 } 2010 2011 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 2012 struct sctp_sndrcvinfo *sinfo, 2013 struct sctp_cmsgs *cmsgs) 2014 { 2015 if (!cmsgs->srinfo && !cmsgs->sinfo) { 2016 sinfo->sinfo_stream = asoc->default_stream; 2017 sinfo->sinfo_ppid = asoc->default_ppid; 2018 sinfo->sinfo_context = asoc->default_context; 2019 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 2020 2021 if (!cmsgs->prinfo) 2022 sinfo->sinfo_flags = asoc->default_flags; 2023 } 2024 2025 if (!cmsgs->srinfo && !cmsgs->prinfo) 2026 sinfo->sinfo_timetolive = asoc->default_timetolive; 2027 2028 if (cmsgs->authinfo) { 2029 /* Reuse sinfo_tsn to indicate that authinfo was set and 2030 * sinfo_ssn to save the keyid on tx path. 2031 */ 2032 sinfo->sinfo_tsn = 1; 2033 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 2034 } 2035 } 2036 2037 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 2038 { 2039 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 2040 struct sctp_transport *transport = NULL; 2041 struct sctp_sndrcvinfo _sinfo, *sinfo; 2042 struct sctp_association *asoc; 2043 struct sctp_cmsgs cmsgs; 2044 union sctp_addr *daddr; 2045 bool new = false; 2046 __u16 sflags; 2047 int err; 2048 2049 /* Parse and get snd_info */ 2050 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 2051 if (err) 2052 goto out; 2053 2054 sinfo = &_sinfo; 2055 sflags = sinfo->sinfo_flags; 2056 2057 /* Get daddr from msg */ 2058 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 2059 if (IS_ERR(daddr)) { 2060 err = PTR_ERR(daddr); 2061 goto out; 2062 } 2063 2064 lock_sock(sk); 2065 2066 /* SCTP_SENDALL process */ 2067 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 2068 list_for_each_entry(asoc, &ep->asocs, asocs) { 2069 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2070 msg_len); 2071 if (err == 0) 2072 continue; 2073 if (err < 0) 2074 goto out_unlock; 2075 2076 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2077 2078 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 2079 NULL, sinfo); 2080 if (err < 0) 2081 goto out_unlock; 2082 2083 iov_iter_revert(&msg->msg_iter, err); 2084 } 2085 2086 goto out_unlock; 2087 } 2088 2089 /* Get and check or create asoc */ 2090 if (daddr) { 2091 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 2092 if (asoc) { 2093 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2094 msg_len); 2095 if (err <= 0) 2096 goto out_unlock; 2097 } else { 2098 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 2099 &transport); 2100 if (err) 2101 goto out_unlock; 2102 2103 asoc = transport->asoc; 2104 new = true; 2105 } 2106 2107 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 2108 transport = NULL; 2109 } else { 2110 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2111 if (!asoc) { 2112 err = -EPIPE; 2113 goto out_unlock; 2114 } 2115 2116 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2117 if (err <= 0) 2118 goto out_unlock; 2119 } 2120 2121 /* Update snd_info with the asoc */ 2122 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2123 2124 /* Send msg to the asoc */ 2125 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2126 if (err < 0 && err != -ESRCH && new) 2127 sctp_association_free(asoc); 2128 2129 out_unlock: 2130 release_sock(sk); 2131 out: 2132 return sctp_error(sk, msg->msg_flags, err); 2133 } 2134 2135 /* This is an extended version of skb_pull() that removes the data from the 2136 * start of a skb even when data is spread across the list of skb's in the 2137 * frag_list. len specifies the total amount of data that needs to be removed. 2138 * when 'len' bytes could be removed from the skb, it returns 0. 2139 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2140 * could not be removed. 2141 */ 2142 static int sctp_skb_pull(struct sk_buff *skb, int len) 2143 { 2144 struct sk_buff *list; 2145 int skb_len = skb_headlen(skb); 2146 int rlen; 2147 2148 if (len <= skb_len) { 2149 __skb_pull(skb, len); 2150 return 0; 2151 } 2152 len -= skb_len; 2153 __skb_pull(skb, skb_len); 2154 2155 skb_walk_frags(skb, list) { 2156 rlen = sctp_skb_pull(list, len); 2157 skb->len -= (len-rlen); 2158 skb->data_len -= (len-rlen); 2159 2160 if (!rlen) 2161 return 0; 2162 2163 len = rlen; 2164 } 2165 2166 return len; 2167 } 2168 2169 /* API 3.1.3 recvmsg() - UDP Style Syntax 2170 * 2171 * ssize_t recvmsg(int socket, struct msghdr *message, 2172 * int flags); 2173 * 2174 * socket - the socket descriptor of the endpoint. 2175 * message - pointer to the msghdr structure which contains a single 2176 * user message and possibly some ancillary data. 2177 * 2178 * See Section 5 for complete description of the data 2179 * structures. 2180 * 2181 * flags - flags sent or received with the user message, see Section 2182 * 5 for complete description of the flags. 2183 */ 2184 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2185 int noblock, int flags, int *addr_len) 2186 { 2187 struct sctp_ulpevent *event = NULL; 2188 struct sctp_sock *sp = sctp_sk(sk); 2189 struct sk_buff *skb, *head_skb; 2190 int copied; 2191 int err = 0; 2192 int skb_len; 2193 2194 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2195 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2196 addr_len); 2197 2198 lock_sock(sk); 2199 2200 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2201 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2202 err = -ENOTCONN; 2203 goto out; 2204 } 2205 2206 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2207 if (!skb) 2208 goto out; 2209 2210 /* Get the total length of the skb including any skb's in the 2211 * frag_list. 2212 */ 2213 skb_len = skb->len; 2214 2215 copied = skb_len; 2216 if (copied > len) 2217 copied = len; 2218 2219 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2220 2221 event = sctp_skb2event(skb); 2222 2223 if (err) 2224 goto out_free; 2225 2226 if (event->chunk && event->chunk->head_skb) 2227 head_skb = event->chunk->head_skb; 2228 else 2229 head_skb = skb; 2230 sock_recv_ts_and_drops(msg, sk, head_skb); 2231 if (sctp_ulpevent_is_notification(event)) { 2232 msg->msg_flags |= MSG_NOTIFICATION; 2233 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2234 } else { 2235 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2236 } 2237 2238 /* Check if we allow SCTP_NXTINFO. */ 2239 if (sp->recvnxtinfo) 2240 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2241 /* Check if we allow SCTP_RCVINFO. */ 2242 if (sp->recvrcvinfo) 2243 sctp_ulpevent_read_rcvinfo(event, msg); 2244 /* Check if we allow SCTP_SNDRCVINFO. */ 2245 if (sp->subscribe.sctp_data_io_event) 2246 sctp_ulpevent_read_sndrcvinfo(event, msg); 2247 2248 err = copied; 2249 2250 /* If skb's length exceeds the user's buffer, update the skb and 2251 * push it back to the receive_queue so that the next call to 2252 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2253 */ 2254 if (skb_len > copied) { 2255 msg->msg_flags &= ~MSG_EOR; 2256 if (flags & MSG_PEEK) 2257 goto out_free; 2258 sctp_skb_pull(skb, copied); 2259 skb_queue_head(&sk->sk_receive_queue, skb); 2260 2261 /* When only partial message is copied to the user, increase 2262 * rwnd by that amount. If all the data in the skb is read, 2263 * rwnd is updated when the event is freed. 2264 */ 2265 if (!sctp_ulpevent_is_notification(event)) 2266 sctp_assoc_rwnd_increase(event->asoc, copied); 2267 goto out; 2268 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2269 (event->msg_flags & MSG_EOR)) 2270 msg->msg_flags |= MSG_EOR; 2271 else 2272 msg->msg_flags &= ~MSG_EOR; 2273 2274 out_free: 2275 if (flags & MSG_PEEK) { 2276 /* Release the skb reference acquired after peeking the skb in 2277 * sctp_skb_recv_datagram(). 2278 */ 2279 kfree_skb(skb); 2280 } else { 2281 /* Free the event which includes releasing the reference to 2282 * the owner of the skb, freeing the skb and updating the 2283 * rwnd. 2284 */ 2285 sctp_ulpevent_free(event); 2286 } 2287 out: 2288 release_sock(sk); 2289 return err; 2290 } 2291 2292 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2293 * 2294 * This option is a on/off flag. If enabled no SCTP message 2295 * fragmentation will be performed. Instead if a message being sent 2296 * exceeds the current PMTU size, the message will NOT be sent and 2297 * instead a error will be indicated to the user. 2298 */ 2299 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2300 char __user *optval, 2301 unsigned int optlen) 2302 { 2303 int val; 2304 2305 if (optlen < sizeof(int)) 2306 return -EINVAL; 2307 2308 if (get_user(val, (int __user *)optval)) 2309 return -EFAULT; 2310 2311 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2312 2313 return 0; 2314 } 2315 2316 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2317 unsigned int optlen) 2318 { 2319 struct sctp_association *asoc; 2320 struct sctp_ulpevent *event; 2321 2322 if (optlen > sizeof(struct sctp_event_subscribe)) 2323 return -EINVAL; 2324 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2325 return -EFAULT; 2326 2327 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2328 * if there is no data to be sent or retransmit, the stack will 2329 * immediately send up this notification. 2330 */ 2331 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, 2332 &sctp_sk(sk)->subscribe)) { 2333 asoc = sctp_id2assoc(sk, 0); 2334 2335 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2336 event = sctp_ulpevent_make_sender_dry_event(asoc, 2337 GFP_USER | __GFP_NOWARN); 2338 if (!event) 2339 return -ENOMEM; 2340 2341 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2342 } 2343 } 2344 2345 return 0; 2346 } 2347 2348 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2349 * 2350 * This socket option is applicable to the UDP-style socket only. When 2351 * set it will cause associations that are idle for more than the 2352 * specified number of seconds to automatically close. An association 2353 * being idle is defined an association that has NOT sent or received 2354 * user data. The special value of '0' indicates that no automatic 2355 * close of any associations should be performed. The option expects an 2356 * integer defining the number of seconds of idle time before an 2357 * association is closed. 2358 */ 2359 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2360 unsigned int optlen) 2361 { 2362 struct sctp_sock *sp = sctp_sk(sk); 2363 struct net *net = sock_net(sk); 2364 2365 /* Applicable to UDP-style socket only */ 2366 if (sctp_style(sk, TCP)) 2367 return -EOPNOTSUPP; 2368 if (optlen != sizeof(int)) 2369 return -EINVAL; 2370 if (copy_from_user(&sp->autoclose, optval, optlen)) 2371 return -EFAULT; 2372 2373 if (sp->autoclose > net->sctp.max_autoclose) 2374 sp->autoclose = net->sctp.max_autoclose; 2375 2376 return 0; 2377 } 2378 2379 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2380 * 2381 * Applications can enable or disable heartbeats for any peer address of 2382 * an association, modify an address's heartbeat interval, force a 2383 * heartbeat to be sent immediately, and adjust the address's maximum 2384 * number of retransmissions sent before an address is considered 2385 * unreachable. The following structure is used to access and modify an 2386 * address's parameters: 2387 * 2388 * struct sctp_paddrparams { 2389 * sctp_assoc_t spp_assoc_id; 2390 * struct sockaddr_storage spp_address; 2391 * uint32_t spp_hbinterval; 2392 * uint16_t spp_pathmaxrxt; 2393 * uint32_t spp_pathmtu; 2394 * uint32_t spp_sackdelay; 2395 * uint32_t spp_flags; 2396 * }; 2397 * 2398 * spp_assoc_id - (one-to-many style socket) This is filled in the 2399 * application, and identifies the association for 2400 * this query. 2401 * spp_address - This specifies which address is of interest. 2402 * spp_hbinterval - This contains the value of the heartbeat interval, 2403 * in milliseconds. If a value of zero 2404 * is present in this field then no changes are to 2405 * be made to this parameter. 2406 * spp_pathmaxrxt - This contains the maximum number of 2407 * retransmissions before this address shall be 2408 * considered unreachable. If a value of zero 2409 * is present in this field then no changes are to 2410 * be made to this parameter. 2411 * spp_pathmtu - When Path MTU discovery is disabled the value 2412 * specified here will be the "fixed" path mtu. 2413 * Note that if the spp_address field is empty 2414 * then all associations on this address will 2415 * have this fixed path mtu set upon them. 2416 * 2417 * spp_sackdelay - When delayed sack is enabled, this value specifies 2418 * the number of milliseconds that sacks will be delayed 2419 * for. This value will apply to all addresses of an 2420 * association if the spp_address field is empty. Note 2421 * also, that if delayed sack is enabled and this 2422 * value is set to 0, no change is made to the last 2423 * recorded delayed sack timer value. 2424 * 2425 * spp_flags - These flags are used to control various features 2426 * on an association. The flag field may contain 2427 * zero or more of the following options. 2428 * 2429 * SPP_HB_ENABLE - Enable heartbeats on the 2430 * specified address. Note that if the address 2431 * field is empty all addresses for the association 2432 * have heartbeats enabled upon them. 2433 * 2434 * SPP_HB_DISABLE - Disable heartbeats on the 2435 * speicifed address. Note that if the address 2436 * field is empty all addresses for the association 2437 * will have their heartbeats disabled. Note also 2438 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2439 * mutually exclusive, only one of these two should 2440 * be specified. Enabling both fields will have 2441 * undetermined results. 2442 * 2443 * SPP_HB_DEMAND - Request a user initiated heartbeat 2444 * to be made immediately. 2445 * 2446 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2447 * heartbeat delayis to be set to the value of 0 2448 * milliseconds. 2449 * 2450 * SPP_PMTUD_ENABLE - This field will enable PMTU 2451 * discovery upon the specified address. Note that 2452 * if the address feild is empty then all addresses 2453 * on the association are effected. 2454 * 2455 * SPP_PMTUD_DISABLE - This field will disable PMTU 2456 * discovery upon the specified address. Note that 2457 * if the address feild is empty then all addresses 2458 * on the association are effected. Not also that 2459 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2460 * exclusive. Enabling both will have undetermined 2461 * results. 2462 * 2463 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2464 * on delayed sack. The time specified in spp_sackdelay 2465 * is used to specify the sack delay for this address. Note 2466 * that if spp_address is empty then all addresses will 2467 * enable delayed sack and take on the sack delay 2468 * value specified in spp_sackdelay. 2469 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2470 * off delayed sack. If the spp_address field is blank then 2471 * delayed sack is disabled for the entire association. Note 2472 * also that this field is mutually exclusive to 2473 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2474 * results. 2475 */ 2476 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2477 struct sctp_transport *trans, 2478 struct sctp_association *asoc, 2479 struct sctp_sock *sp, 2480 int hb_change, 2481 int pmtud_change, 2482 int sackdelay_change) 2483 { 2484 int error; 2485 2486 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2487 struct net *net = sock_net(trans->asoc->base.sk); 2488 2489 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2490 if (error) 2491 return error; 2492 } 2493 2494 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2495 * this field is ignored. Note also that a value of zero indicates 2496 * the current setting should be left unchanged. 2497 */ 2498 if (params->spp_flags & SPP_HB_ENABLE) { 2499 2500 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2501 * set. This lets us use 0 value when this flag 2502 * is set. 2503 */ 2504 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2505 params->spp_hbinterval = 0; 2506 2507 if (params->spp_hbinterval || 2508 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2509 if (trans) { 2510 trans->hbinterval = 2511 msecs_to_jiffies(params->spp_hbinterval); 2512 } else if (asoc) { 2513 asoc->hbinterval = 2514 msecs_to_jiffies(params->spp_hbinterval); 2515 } else { 2516 sp->hbinterval = params->spp_hbinterval; 2517 } 2518 } 2519 } 2520 2521 if (hb_change) { 2522 if (trans) { 2523 trans->param_flags = 2524 (trans->param_flags & ~SPP_HB) | hb_change; 2525 } else if (asoc) { 2526 asoc->param_flags = 2527 (asoc->param_flags & ~SPP_HB) | hb_change; 2528 } else { 2529 sp->param_flags = 2530 (sp->param_flags & ~SPP_HB) | hb_change; 2531 } 2532 } 2533 2534 /* When Path MTU discovery is disabled the value specified here will 2535 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2536 * include the flag SPP_PMTUD_DISABLE for this field to have any 2537 * effect). 2538 */ 2539 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2540 if (trans) { 2541 trans->pathmtu = params->spp_pathmtu; 2542 sctp_assoc_sync_pmtu(asoc); 2543 } else if (asoc) { 2544 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2545 } else { 2546 sp->pathmtu = params->spp_pathmtu; 2547 } 2548 } 2549 2550 if (pmtud_change) { 2551 if (trans) { 2552 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2553 (params->spp_flags & SPP_PMTUD_ENABLE); 2554 trans->param_flags = 2555 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2556 if (update) { 2557 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2558 sctp_assoc_sync_pmtu(asoc); 2559 } 2560 } else if (asoc) { 2561 asoc->param_flags = 2562 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2563 } else { 2564 sp->param_flags = 2565 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2566 } 2567 } 2568 2569 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2570 * value of this field is ignored. Note also that a value of zero 2571 * indicates the current setting should be left unchanged. 2572 */ 2573 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2574 if (trans) { 2575 trans->sackdelay = 2576 msecs_to_jiffies(params->spp_sackdelay); 2577 } else if (asoc) { 2578 asoc->sackdelay = 2579 msecs_to_jiffies(params->spp_sackdelay); 2580 } else { 2581 sp->sackdelay = params->spp_sackdelay; 2582 } 2583 } 2584 2585 if (sackdelay_change) { 2586 if (trans) { 2587 trans->param_flags = 2588 (trans->param_flags & ~SPP_SACKDELAY) | 2589 sackdelay_change; 2590 } else if (asoc) { 2591 asoc->param_flags = 2592 (asoc->param_flags & ~SPP_SACKDELAY) | 2593 sackdelay_change; 2594 } else { 2595 sp->param_flags = 2596 (sp->param_flags & ~SPP_SACKDELAY) | 2597 sackdelay_change; 2598 } 2599 } 2600 2601 /* Note that a value of zero indicates the current setting should be 2602 left unchanged. 2603 */ 2604 if (params->spp_pathmaxrxt) { 2605 if (trans) { 2606 trans->pathmaxrxt = params->spp_pathmaxrxt; 2607 } else if (asoc) { 2608 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2609 } else { 2610 sp->pathmaxrxt = params->spp_pathmaxrxt; 2611 } 2612 } 2613 2614 return 0; 2615 } 2616 2617 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2618 char __user *optval, 2619 unsigned int optlen) 2620 { 2621 struct sctp_paddrparams params; 2622 struct sctp_transport *trans = NULL; 2623 struct sctp_association *asoc = NULL; 2624 struct sctp_sock *sp = sctp_sk(sk); 2625 int error; 2626 int hb_change, pmtud_change, sackdelay_change; 2627 2628 if (optlen != sizeof(struct sctp_paddrparams)) 2629 return -EINVAL; 2630 2631 if (copy_from_user(¶ms, optval, optlen)) 2632 return -EFAULT; 2633 2634 /* Validate flags and value parameters. */ 2635 hb_change = params.spp_flags & SPP_HB; 2636 pmtud_change = params.spp_flags & SPP_PMTUD; 2637 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2638 2639 if (hb_change == SPP_HB || 2640 pmtud_change == SPP_PMTUD || 2641 sackdelay_change == SPP_SACKDELAY || 2642 params.spp_sackdelay > 500 || 2643 (params.spp_pathmtu && 2644 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2645 return -EINVAL; 2646 2647 /* If an address other than INADDR_ANY is specified, and 2648 * no transport is found, then the request is invalid. 2649 */ 2650 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2651 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2652 params.spp_assoc_id); 2653 if (!trans) 2654 return -EINVAL; 2655 } 2656 2657 /* Get association, if assoc_id != 0 and the socket is a one 2658 * to many style socket, and an association was not found, then 2659 * the id was invalid. 2660 */ 2661 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2662 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2663 return -EINVAL; 2664 2665 /* Heartbeat demand can only be sent on a transport or 2666 * association, but not a socket. 2667 */ 2668 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2669 return -EINVAL; 2670 2671 /* Process parameters. */ 2672 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2673 hb_change, pmtud_change, 2674 sackdelay_change); 2675 2676 if (error) 2677 return error; 2678 2679 /* If changes are for association, also apply parameters to each 2680 * transport. 2681 */ 2682 if (!trans && asoc) { 2683 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2684 transports) { 2685 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2686 hb_change, pmtud_change, 2687 sackdelay_change); 2688 } 2689 } 2690 2691 return 0; 2692 } 2693 2694 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2695 { 2696 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2697 } 2698 2699 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2700 { 2701 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2702 } 2703 2704 /* 2705 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2706 * 2707 * This option will effect the way delayed acks are performed. This 2708 * option allows you to get or set the delayed ack time, in 2709 * milliseconds. It also allows changing the delayed ack frequency. 2710 * Changing the frequency to 1 disables the delayed sack algorithm. If 2711 * the assoc_id is 0, then this sets or gets the endpoints default 2712 * values. If the assoc_id field is non-zero, then the set or get 2713 * effects the specified association for the one to many model (the 2714 * assoc_id field is ignored by the one to one model). Note that if 2715 * sack_delay or sack_freq are 0 when setting this option, then the 2716 * current values will remain unchanged. 2717 * 2718 * struct sctp_sack_info { 2719 * sctp_assoc_t sack_assoc_id; 2720 * uint32_t sack_delay; 2721 * uint32_t sack_freq; 2722 * }; 2723 * 2724 * sack_assoc_id - This parameter, indicates which association the user 2725 * is performing an action upon. Note that if this field's value is 2726 * zero then the endpoints default value is changed (effecting future 2727 * associations only). 2728 * 2729 * sack_delay - This parameter contains the number of milliseconds that 2730 * the user is requesting the delayed ACK timer be set to. Note that 2731 * this value is defined in the standard to be between 200 and 500 2732 * milliseconds. 2733 * 2734 * sack_freq - This parameter contains the number of packets that must 2735 * be received before a sack is sent without waiting for the delay 2736 * timer to expire. The default value for this is 2, setting this 2737 * value to 1 will disable the delayed sack algorithm. 2738 */ 2739 2740 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2741 char __user *optval, unsigned int optlen) 2742 { 2743 struct sctp_sack_info params; 2744 struct sctp_transport *trans = NULL; 2745 struct sctp_association *asoc = NULL; 2746 struct sctp_sock *sp = sctp_sk(sk); 2747 2748 if (optlen == sizeof(struct sctp_sack_info)) { 2749 if (copy_from_user(¶ms, optval, optlen)) 2750 return -EFAULT; 2751 2752 if (params.sack_delay == 0 && params.sack_freq == 0) 2753 return 0; 2754 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2755 pr_warn_ratelimited(DEPRECATED 2756 "%s (pid %d) " 2757 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2758 "Use struct sctp_sack_info instead\n", 2759 current->comm, task_pid_nr(current)); 2760 if (copy_from_user(¶ms, optval, optlen)) 2761 return -EFAULT; 2762 2763 if (params.sack_delay == 0) 2764 params.sack_freq = 1; 2765 else 2766 params.sack_freq = 0; 2767 } else 2768 return -EINVAL; 2769 2770 /* Validate value parameter. */ 2771 if (params.sack_delay > 500) 2772 return -EINVAL; 2773 2774 /* Get association, if sack_assoc_id != 0 and the socket is a one 2775 * to many style socket, and an association was not found, then 2776 * the id was invalid. 2777 */ 2778 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2779 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2780 return -EINVAL; 2781 2782 if (params.sack_delay) { 2783 if (asoc) { 2784 asoc->sackdelay = 2785 msecs_to_jiffies(params.sack_delay); 2786 asoc->param_flags = 2787 sctp_spp_sackdelay_enable(asoc->param_flags); 2788 } else { 2789 sp->sackdelay = params.sack_delay; 2790 sp->param_flags = 2791 sctp_spp_sackdelay_enable(sp->param_flags); 2792 } 2793 } 2794 2795 if (params.sack_freq == 1) { 2796 if (asoc) { 2797 asoc->param_flags = 2798 sctp_spp_sackdelay_disable(asoc->param_flags); 2799 } else { 2800 sp->param_flags = 2801 sctp_spp_sackdelay_disable(sp->param_flags); 2802 } 2803 } else if (params.sack_freq > 1) { 2804 if (asoc) { 2805 asoc->sackfreq = params.sack_freq; 2806 asoc->param_flags = 2807 sctp_spp_sackdelay_enable(asoc->param_flags); 2808 } else { 2809 sp->sackfreq = params.sack_freq; 2810 sp->param_flags = 2811 sctp_spp_sackdelay_enable(sp->param_flags); 2812 } 2813 } 2814 2815 /* If change is for association, also apply to each transport. */ 2816 if (asoc) { 2817 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2818 transports) { 2819 if (params.sack_delay) { 2820 trans->sackdelay = 2821 msecs_to_jiffies(params.sack_delay); 2822 trans->param_flags = 2823 sctp_spp_sackdelay_enable(trans->param_flags); 2824 } 2825 if (params.sack_freq == 1) { 2826 trans->param_flags = 2827 sctp_spp_sackdelay_disable(trans->param_flags); 2828 } else if (params.sack_freq > 1) { 2829 trans->sackfreq = params.sack_freq; 2830 trans->param_flags = 2831 sctp_spp_sackdelay_enable(trans->param_flags); 2832 } 2833 } 2834 } 2835 2836 return 0; 2837 } 2838 2839 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2840 * 2841 * Applications can specify protocol parameters for the default association 2842 * initialization. The option name argument to setsockopt() and getsockopt() 2843 * is SCTP_INITMSG. 2844 * 2845 * Setting initialization parameters is effective only on an unconnected 2846 * socket (for UDP-style sockets only future associations are effected 2847 * by the change). With TCP-style sockets, this option is inherited by 2848 * sockets derived from a listener socket. 2849 */ 2850 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2851 { 2852 struct sctp_initmsg sinit; 2853 struct sctp_sock *sp = sctp_sk(sk); 2854 2855 if (optlen != sizeof(struct sctp_initmsg)) 2856 return -EINVAL; 2857 if (copy_from_user(&sinit, optval, optlen)) 2858 return -EFAULT; 2859 2860 if (sinit.sinit_num_ostreams) 2861 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2862 if (sinit.sinit_max_instreams) 2863 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2864 if (sinit.sinit_max_attempts) 2865 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2866 if (sinit.sinit_max_init_timeo) 2867 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2868 2869 return 0; 2870 } 2871 2872 /* 2873 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2874 * 2875 * Applications that wish to use the sendto() system call may wish to 2876 * specify a default set of parameters that would normally be supplied 2877 * through the inclusion of ancillary data. This socket option allows 2878 * such an application to set the default sctp_sndrcvinfo structure. 2879 * The application that wishes to use this socket option simply passes 2880 * in to this call the sctp_sndrcvinfo structure defined in Section 2881 * 5.2.2) The input parameters accepted by this call include 2882 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2883 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2884 * to this call if the caller is using the UDP model. 2885 */ 2886 static int sctp_setsockopt_default_send_param(struct sock *sk, 2887 char __user *optval, 2888 unsigned int optlen) 2889 { 2890 struct sctp_sock *sp = sctp_sk(sk); 2891 struct sctp_association *asoc; 2892 struct sctp_sndrcvinfo info; 2893 2894 if (optlen != sizeof(info)) 2895 return -EINVAL; 2896 if (copy_from_user(&info, optval, optlen)) 2897 return -EFAULT; 2898 if (info.sinfo_flags & 2899 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2900 SCTP_ABORT | SCTP_EOF)) 2901 return -EINVAL; 2902 2903 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2904 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2905 return -EINVAL; 2906 if (asoc) { 2907 asoc->default_stream = info.sinfo_stream; 2908 asoc->default_flags = info.sinfo_flags; 2909 asoc->default_ppid = info.sinfo_ppid; 2910 asoc->default_context = info.sinfo_context; 2911 asoc->default_timetolive = info.sinfo_timetolive; 2912 } else { 2913 sp->default_stream = info.sinfo_stream; 2914 sp->default_flags = info.sinfo_flags; 2915 sp->default_ppid = info.sinfo_ppid; 2916 sp->default_context = info.sinfo_context; 2917 sp->default_timetolive = info.sinfo_timetolive; 2918 } 2919 2920 return 0; 2921 } 2922 2923 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2924 * (SCTP_DEFAULT_SNDINFO) 2925 */ 2926 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2927 char __user *optval, 2928 unsigned int optlen) 2929 { 2930 struct sctp_sock *sp = sctp_sk(sk); 2931 struct sctp_association *asoc; 2932 struct sctp_sndinfo info; 2933 2934 if (optlen != sizeof(info)) 2935 return -EINVAL; 2936 if (copy_from_user(&info, optval, optlen)) 2937 return -EFAULT; 2938 if (info.snd_flags & 2939 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2940 SCTP_ABORT | SCTP_EOF)) 2941 return -EINVAL; 2942 2943 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 2944 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 2945 return -EINVAL; 2946 if (asoc) { 2947 asoc->default_stream = info.snd_sid; 2948 asoc->default_flags = info.snd_flags; 2949 asoc->default_ppid = info.snd_ppid; 2950 asoc->default_context = info.snd_context; 2951 } else { 2952 sp->default_stream = info.snd_sid; 2953 sp->default_flags = info.snd_flags; 2954 sp->default_ppid = info.snd_ppid; 2955 sp->default_context = info.snd_context; 2956 } 2957 2958 return 0; 2959 } 2960 2961 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2962 * 2963 * Requests that the local SCTP stack use the enclosed peer address as 2964 * the association primary. The enclosed address must be one of the 2965 * association peer's addresses. 2966 */ 2967 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2968 unsigned int optlen) 2969 { 2970 struct sctp_prim prim; 2971 struct sctp_transport *trans; 2972 struct sctp_af *af; 2973 int err; 2974 2975 if (optlen != sizeof(struct sctp_prim)) 2976 return -EINVAL; 2977 2978 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2979 return -EFAULT; 2980 2981 /* Allow security module to validate address but need address len. */ 2982 af = sctp_get_af_specific(prim.ssp_addr.ss_family); 2983 if (!af) 2984 return -EINVAL; 2985 2986 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 2987 (struct sockaddr *)&prim.ssp_addr, 2988 af->sockaddr_len); 2989 if (err) 2990 return err; 2991 2992 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2993 if (!trans) 2994 return -EINVAL; 2995 2996 sctp_assoc_set_primary(trans->asoc, trans); 2997 2998 return 0; 2999 } 3000 3001 /* 3002 * 7.1.5 SCTP_NODELAY 3003 * 3004 * Turn on/off any Nagle-like algorithm. This means that packets are 3005 * generally sent as soon as possible and no unnecessary delays are 3006 * introduced, at the cost of more packets in the network. Expects an 3007 * integer boolean flag. 3008 */ 3009 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 3010 unsigned int optlen) 3011 { 3012 int val; 3013 3014 if (optlen < sizeof(int)) 3015 return -EINVAL; 3016 if (get_user(val, (int __user *)optval)) 3017 return -EFAULT; 3018 3019 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 3020 return 0; 3021 } 3022 3023 /* 3024 * 3025 * 7.1.1 SCTP_RTOINFO 3026 * 3027 * The protocol parameters used to initialize and bound retransmission 3028 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3029 * and modify these parameters. 3030 * All parameters are time values, in milliseconds. A value of 0, when 3031 * modifying the parameters, indicates that the current value should not 3032 * be changed. 3033 * 3034 */ 3035 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 3036 { 3037 struct sctp_rtoinfo rtoinfo; 3038 struct sctp_association *asoc; 3039 unsigned long rto_min, rto_max; 3040 struct sctp_sock *sp = sctp_sk(sk); 3041 3042 if (optlen != sizeof (struct sctp_rtoinfo)) 3043 return -EINVAL; 3044 3045 if (copy_from_user(&rtoinfo, optval, optlen)) 3046 return -EFAULT; 3047 3048 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 3049 3050 /* Set the values to the specific association */ 3051 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 3052 return -EINVAL; 3053 3054 rto_max = rtoinfo.srto_max; 3055 rto_min = rtoinfo.srto_min; 3056 3057 if (rto_max) 3058 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3059 else 3060 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3061 3062 if (rto_min) 3063 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3064 else 3065 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3066 3067 if (rto_min > rto_max) 3068 return -EINVAL; 3069 3070 if (asoc) { 3071 if (rtoinfo.srto_initial != 0) 3072 asoc->rto_initial = 3073 msecs_to_jiffies(rtoinfo.srto_initial); 3074 asoc->rto_max = rto_max; 3075 asoc->rto_min = rto_min; 3076 } else { 3077 /* If there is no association or the association-id = 0 3078 * set the values to the endpoint. 3079 */ 3080 if (rtoinfo.srto_initial != 0) 3081 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 3082 sp->rtoinfo.srto_max = rto_max; 3083 sp->rtoinfo.srto_min = rto_min; 3084 } 3085 3086 return 0; 3087 } 3088 3089 /* 3090 * 3091 * 7.1.2 SCTP_ASSOCINFO 3092 * 3093 * This option is used to tune the maximum retransmission attempts 3094 * of the association. 3095 * Returns an error if the new association retransmission value is 3096 * greater than the sum of the retransmission value of the peer. 3097 * See [SCTP] for more information. 3098 * 3099 */ 3100 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 3101 { 3102 3103 struct sctp_assocparams assocparams; 3104 struct sctp_association *asoc; 3105 3106 if (optlen != sizeof(struct sctp_assocparams)) 3107 return -EINVAL; 3108 if (copy_from_user(&assocparams, optval, optlen)) 3109 return -EFAULT; 3110 3111 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 3112 3113 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 3114 return -EINVAL; 3115 3116 /* Set the values to the specific association */ 3117 if (asoc) { 3118 if (assocparams.sasoc_asocmaxrxt != 0) { 3119 __u32 path_sum = 0; 3120 int paths = 0; 3121 struct sctp_transport *peer_addr; 3122 3123 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3124 transports) { 3125 path_sum += peer_addr->pathmaxrxt; 3126 paths++; 3127 } 3128 3129 /* Only validate asocmaxrxt if we have more than 3130 * one path/transport. We do this because path 3131 * retransmissions are only counted when we have more 3132 * then one path. 3133 */ 3134 if (paths > 1 && 3135 assocparams.sasoc_asocmaxrxt > path_sum) 3136 return -EINVAL; 3137 3138 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3139 } 3140 3141 if (assocparams.sasoc_cookie_life != 0) 3142 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3143 } else { 3144 /* Set the values to the endpoint */ 3145 struct sctp_sock *sp = sctp_sk(sk); 3146 3147 if (assocparams.sasoc_asocmaxrxt != 0) 3148 sp->assocparams.sasoc_asocmaxrxt = 3149 assocparams.sasoc_asocmaxrxt; 3150 if (assocparams.sasoc_cookie_life != 0) 3151 sp->assocparams.sasoc_cookie_life = 3152 assocparams.sasoc_cookie_life; 3153 } 3154 return 0; 3155 } 3156 3157 /* 3158 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3159 * 3160 * This socket option is a boolean flag which turns on or off mapped V4 3161 * addresses. If this option is turned on and the socket is type 3162 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3163 * If this option is turned off, then no mapping will be done of V4 3164 * addresses and a user will receive both PF_INET6 and PF_INET type 3165 * addresses on the socket. 3166 */ 3167 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3168 { 3169 int val; 3170 struct sctp_sock *sp = sctp_sk(sk); 3171 3172 if (optlen < sizeof(int)) 3173 return -EINVAL; 3174 if (get_user(val, (int __user *)optval)) 3175 return -EFAULT; 3176 if (val) 3177 sp->v4mapped = 1; 3178 else 3179 sp->v4mapped = 0; 3180 3181 return 0; 3182 } 3183 3184 /* 3185 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3186 * This option will get or set the maximum size to put in any outgoing 3187 * SCTP DATA chunk. If a message is larger than this size it will be 3188 * fragmented by SCTP into the specified size. Note that the underlying 3189 * SCTP implementation may fragment into smaller sized chunks when the 3190 * PMTU of the underlying association is smaller than the value set by 3191 * the user. The default value for this option is '0' which indicates 3192 * the user is NOT limiting fragmentation and only the PMTU will effect 3193 * SCTP's choice of DATA chunk size. Note also that values set larger 3194 * than the maximum size of an IP datagram will effectively let SCTP 3195 * control fragmentation (i.e. the same as setting this option to 0). 3196 * 3197 * The following structure is used to access and modify this parameter: 3198 * 3199 * struct sctp_assoc_value { 3200 * sctp_assoc_t assoc_id; 3201 * uint32_t assoc_value; 3202 * }; 3203 * 3204 * assoc_id: This parameter is ignored for one-to-one style sockets. 3205 * For one-to-many style sockets this parameter indicates which 3206 * association the user is performing an action upon. Note that if 3207 * this field's value is zero then the endpoints default value is 3208 * changed (effecting future associations only). 3209 * assoc_value: This parameter specifies the maximum size in bytes. 3210 */ 3211 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3212 { 3213 struct sctp_sock *sp = sctp_sk(sk); 3214 struct sctp_assoc_value params; 3215 struct sctp_association *asoc; 3216 int val; 3217 3218 if (optlen == sizeof(int)) { 3219 pr_warn_ratelimited(DEPRECATED 3220 "%s (pid %d) " 3221 "Use of int in maxseg socket option.\n" 3222 "Use struct sctp_assoc_value instead\n", 3223 current->comm, task_pid_nr(current)); 3224 if (copy_from_user(&val, optval, optlen)) 3225 return -EFAULT; 3226 params.assoc_id = 0; 3227 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3228 if (copy_from_user(¶ms, optval, optlen)) 3229 return -EFAULT; 3230 val = params.assoc_value; 3231 } else { 3232 return -EINVAL; 3233 } 3234 3235 asoc = sctp_id2assoc(sk, params.assoc_id); 3236 3237 if (val) { 3238 int min_len, max_len; 3239 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3240 sizeof(struct sctp_data_chunk); 3241 3242 min_len = sctp_mtu_payload(sp, SCTP_DEFAULT_MINSEGMENT, 3243 datasize); 3244 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3245 3246 if (val < min_len || val > max_len) 3247 return -EINVAL; 3248 } 3249 3250 if (asoc) { 3251 asoc->user_frag = val; 3252 sctp_assoc_update_frag_point(asoc); 3253 } else { 3254 if (params.assoc_id && sctp_style(sk, UDP)) 3255 return -EINVAL; 3256 sp->user_frag = val; 3257 } 3258 3259 return 0; 3260 } 3261 3262 3263 /* 3264 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3265 * 3266 * Requests that the peer mark the enclosed address as the association 3267 * primary. The enclosed address must be one of the association's 3268 * locally bound addresses. The following structure is used to make a 3269 * set primary request: 3270 */ 3271 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3272 unsigned int optlen) 3273 { 3274 struct net *net = sock_net(sk); 3275 struct sctp_sock *sp; 3276 struct sctp_association *asoc = NULL; 3277 struct sctp_setpeerprim prim; 3278 struct sctp_chunk *chunk; 3279 struct sctp_af *af; 3280 int err; 3281 3282 sp = sctp_sk(sk); 3283 3284 if (!net->sctp.addip_enable) 3285 return -EPERM; 3286 3287 if (optlen != sizeof(struct sctp_setpeerprim)) 3288 return -EINVAL; 3289 3290 if (copy_from_user(&prim, optval, optlen)) 3291 return -EFAULT; 3292 3293 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3294 if (!asoc) 3295 return -EINVAL; 3296 3297 if (!asoc->peer.asconf_capable) 3298 return -EPERM; 3299 3300 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3301 return -EPERM; 3302 3303 if (!sctp_state(asoc, ESTABLISHED)) 3304 return -ENOTCONN; 3305 3306 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3307 if (!af) 3308 return -EINVAL; 3309 3310 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3311 return -EADDRNOTAVAIL; 3312 3313 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3314 return -EADDRNOTAVAIL; 3315 3316 /* Allow security module to validate address. */ 3317 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3318 (struct sockaddr *)&prim.sspp_addr, 3319 af->sockaddr_len); 3320 if (err) 3321 return err; 3322 3323 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3324 chunk = sctp_make_asconf_set_prim(asoc, 3325 (union sctp_addr *)&prim.sspp_addr); 3326 if (!chunk) 3327 return -ENOMEM; 3328 3329 err = sctp_send_asconf(asoc, chunk); 3330 3331 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3332 3333 return err; 3334 } 3335 3336 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3337 unsigned int optlen) 3338 { 3339 struct sctp_setadaptation adaptation; 3340 3341 if (optlen != sizeof(struct sctp_setadaptation)) 3342 return -EINVAL; 3343 if (copy_from_user(&adaptation, optval, optlen)) 3344 return -EFAULT; 3345 3346 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3347 3348 return 0; 3349 } 3350 3351 /* 3352 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3353 * 3354 * The context field in the sctp_sndrcvinfo structure is normally only 3355 * used when a failed message is retrieved holding the value that was 3356 * sent down on the actual send call. This option allows the setting of 3357 * a default context on an association basis that will be received on 3358 * reading messages from the peer. This is especially helpful in the 3359 * one-2-many model for an application to keep some reference to an 3360 * internal state machine that is processing messages on the 3361 * association. Note that the setting of this value only effects 3362 * received messages from the peer and does not effect the value that is 3363 * saved with outbound messages. 3364 */ 3365 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3366 unsigned int optlen) 3367 { 3368 struct sctp_assoc_value params; 3369 struct sctp_sock *sp; 3370 struct sctp_association *asoc; 3371 3372 if (optlen != sizeof(struct sctp_assoc_value)) 3373 return -EINVAL; 3374 if (copy_from_user(¶ms, optval, optlen)) 3375 return -EFAULT; 3376 3377 sp = sctp_sk(sk); 3378 3379 if (params.assoc_id != 0) { 3380 asoc = sctp_id2assoc(sk, params.assoc_id); 3381 if (!asoc) 3382 return -EINVAL; 3383 asoc->default_rcv_context = params.assoc_value; 3384 } else { 3385 sp->default_rcv_context = params.assoc_value; 3386 } 3387 3388 return 0; 3389 } 3390 3391 /* 3392 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3393 * 3394 * This options will at a minimum specify if the implementation is doing 3395 * fragmented interleave. Fragmented interleave, for a one to many 3396 * socket, is when subsequent calls to receive a message may return 3397 * parts of messages from different associations. Some implementations 3398 * may allow you to turn this value on or off. If so, when turned off, 3399 * no fragment interleave will occur (which will cause a head of line 3400 * blocking amongst multiple associations sharing the same one to many 3401 * socket). When this option is turned on, then each receive call may 3402 * come from a different association (thus the user must receive data 3403 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3404 * association each receive belongs to. 3405 * 3406 * This option takes a boolean value. A non-zero value indicates that 3407 * fragmented interleave is on. A value of zero indicates that 3408 * fragmented interleave is off. 3409 * 3410 * Note that it is important that an implementation that allows this 3411 * option to be turned on, have it off by default. Otherwise an unaware 3412 * application using the one to many model may become confused and act 3413 * incorrectly. 3414 */ 3415 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3416 char __user *optval, 3417 unsigned int optlen) 3418 { 3419 int val; 3420 3421 if (optlen != sizeof(int)) 3422 return -EINVAL; 3423 if (get_user(val, (int __user *)optval)) 3424 return -EFAULT; 3425 3426 sctp_sk(sk)->frag_interleave = !!val; 3427 3428 if (!sctp_sk(sk)->frag_interleave) 3429 sctp_sk(sk)->strm_interleave = 0; 3430 3431 return 0; 3432 } 3433 3434 /* 3435 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3436 * (SCTP_PARTIAL_DELIVERY_POINT) 3437 * 3438 * This option will set or get the SCTP partial delivery point. This 3439 * point is the size of a message where the partial delivery API will be 3440 * invoked to help free up rwnd space for the peer. Setting this to a 3441 * lower value will cause partial deliveries to happen more often. The 3442 * calls argument is an integer that sets or gets the partial delivery 3443 * point. Note also that the call will fail if the user attempts to set 3444 * this value larger than the socket receive buffer size. 3445 * 3446 * Note that any single message having a length smaller than or equal to 3447 * the SCTP partial delivery point will be delivered in one single read 3448 * call as long as the user provided buffer is large enough to hold the 3449 * message. 3450 */ 3451 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3452 char __user *optval, 3453 unsigned int optlen) 3454 { 3455 u32 val; 3456 3457 if (optlen != sizeof(u32)) 3458 return -EINVAL; 3459 if (get_user(val, (int __user *)optval)) 3460 return -EFAULT; 3461 3462 /* Note: We double the receive buffer from what the user sets 3463 * it to be, also initial rwnd is based on rcvbuf/2. 3464 */ 3465 if (val > (sk->sk_rcvbuf >> 1)) 3466 return -EINVAL; 3467 3468 sctp_sk(sk)->pd_point = val; 3469 3470 return 0; /* is this the right error code? */ 3471 } 3472 3473 /* 3474 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3475 * 3476 * This option will allow a user to change the maximum burst of packets 3477 * that can be emitted by this association. Note that the default value 3478 * is 4, and some implementations may restrict this setting so that it 3479 * can only be lowered. 3480 * 3481 * NOTE: This text doesn't seem right. Do this on a socket basis with 3482 * future associations inheriting the socket value. 3483 */ 3484 static int sctp_setsockopt_maxburst(struct sock *sk, 3485 char __user *optval, 3486 unsigned int optlen) 3487 { 3488 struct sctp_assoc_value params; 3489 struct sctp_sock *sp; 3490 struct sctp_association *asoc; 3491 int val; 3492 int assoc_id = 0; 3493 3494 if (optlen == sizeof(int)) { 3495 pr_warn_ratelimited(DEPRECATED 3496 "%s (pid %d) " 3497 "Use of int in max_burst socket option deprecated.\n" 3498 "Use struct sctp_assoc_value instead\n", 3499 current->comm, task_pid_nr(current)); 3500 if (copy_from_user(&val, optval, optlen)) 3501 return -EFAULT; 3502 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3503 if (copy_from_user(¶ms, optval, optlen)) 3504 return -EFAULT; 3505 val = params.assoc_value; 3506 assoc_id = params.assoc_id; 3507 } else 3508 return -EINVAL; 3509 3510 sp = sctp_sk(sk); 3511 3512 if (assoc_id != 0) { 3513 asoc = sctp_id2assoc(sk, assoc_id); 3514 if (!asoc) 3515 return -EINVAL; 3516 asoc->max_burst = val; 3517 } else 3518 sp->max_burst = val; 3519 3520 return 0; 3521 } 3522 3523 /* 3524 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3525 * 3526 * This set option adds a chunk type that the user is requesting to be 3527 * received only in an authenticated way. Changes to the list of chunks 3528 * will only effect future associations on the socket. 3529 */ 3530 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3531 char __user *optval, 3532 unsigned int optlen) 3533 { 3534 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3535 struct sctp_authchunk val; 3536 3537 if (!ep->auth_enable) 3538 return -EACCES; 3539 3540 if (optlen != sizeof(struct sctp_authchunk)) 3541 return -EINVAL; 3542 if (copy_from_user(&val, optval, optlen)) 3543 return -EFAULT; 3544 3545 switch (val.sauth_chunk) { 3546 case SCTP_CID_INIT: 3547 case SCTP_CID_INIT_ACK: 3548 case SCTP_CID_SHUTDOWN_COMPLETE: 3549 case SCTP_CID_AUTH: 3550 return -EINVAL; 3551 } 3552 3553 /* add this chunk id to the endpoint */ 3554 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3555 } 3556 3557 /* 3558 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3559 * 3560 * This option gets or sets the list of HMAC algorithms that the local 3561 * endpoint requires the peer to use. 3562 */ 3563 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3564 char __user *optval, 3565 unsigned int optlen) 3566 { 3567 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3568 struct sctp_hmacalgo *hmacs; 3569 u32 idents; 3570 int err; 3571 3572 if (!ep->auth_enable) 3573 return -EACCES; 3574 3575 if (optlen < sizeof(struct sctp_hmacalgo)) 3576 return -EINVAL; 3577 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3578 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3579 3580 hmacs = memdup_user(optval, optlen); 3581 if (IS_ERR(hmacs)) 3582 return PTR_ERR(hmacs); 3583 3584 idents = hmacs->shmac_num_idents; 3585 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3586 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3587 err = -EINVAL; 3588 goto out; 3589 } 3590 3591 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3592 out: 3593 kfree(hmacs); 3594 return err; 3595 } 3596 3597 /* 3598 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3599 * 3600 * This option will set a shared secret key which is used to build an 3601 * association shared key. 3602 */ 3603 static int sctp_setsockopt_auth_key(struct sock *sk, 3604 char __user *optval, 3605 unsigned int optlen) 3606 { 3607 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3608 struct sctp_authkey *authkey; 3609 struct sctp_association *asoc; 3610 int ret; 3611 3612 if (!ep->auth_enable) 3613 return -EACCES; 3614 3615 if (optlen <= sizeof(struct sctp_authkey)) 3616 return -EINVAL; 3617 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3618 * this. 3619 */ 3620 optlen = min_t(unsigned int, optlen, USHRT_MAX + 3621 sizeof(struct sctp_authkey)); 3622 3623 authkey = memdup_user(optval, optlen); 3624 if (IS_ERR(authkey)) 3625 return PTR_ERR(authkey); 3626 3627 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3628 ret = -EINVAL; 3629 goto out; 3630 } 3631 3632 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3633 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3634 ret = -EINVAL; 3635 goto out; 3636 } 3637 3638 ret = sctp_auth_set_key(ep, asoc, authkey); 3639 out: 3640 kzfree(authkey); 3641 return ret; 3642 } 3643 3644 /* 3645 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3646 * 3647 * This option will get or set the active shared key to be used to build 3648 * the association shared key. 3649 */ 3650 static int sctp_setsockopt_active_key(struct sock *sk, 3651 char __user *optval, 3652 unsigned int optlen) 3653 { 3654 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3655 struct sctp_authkeyid val; 3656 struct sctp_association *asoc; 3657 3658 if (!ep->auth_enable) 3659 return -EACCES; 3660 3661 if (optlen != sizeof(struct sctp_authkeyid)) 3662 return -EINVAL; 3663 if (copy_from_user(&val, optval, optlen)) 3664 return -EFAULT; 3665 3666 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3667 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3668 return -EINVAL; 3669 3670 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3671 } 3672 3673 /* 3674 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3675 * 3676 * This set option will delete a shared secret key from use. 3677 */ 3678 static int sctp_setsockopt_del_key(struct sock *sk, 3679 char __user *optval, 3680 unsigned int optlen) 3681 { 3682 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3683 struct sctp_authkeyid val; 3684 struct sctp_association *asoc; 3685 3686 if (!ep->auth_enable) 3687 return -EACCES; 3688 3689 if (optlen != sizeof(struct sctp_authkeyid)) 3690 return -EINVAL; 3691 if (copy_from_user(&val, optval, optlen)) 3692 return -EFAULT; 3693 3694 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3695 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3696 return -EINVAL; 3697 3698 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3699 3700 } 3701 3702 /* 3703 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3704 * 3705 * This set option will deactivate a shared secret key. 3706 */ 3707 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval, 3708 unsigned int optlen) 3709 { 3710 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3711 struct sctp_authkeyid val; 3712 struct sctp_association *asoc; 3713 3714 if (!ep->auth_enable) 3715 return -EACCES; 3716 3717 if (optlen != sizeof(struct sctp_authkeyid)) 3718 return -EINVAL; 3719 if (copy_from_user(&val, optval, optlen)) 3720 return -EFAULT; 3721 3722 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3723 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3724 return -EINVAL; 3725 3726 return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3727 } 3728 3729 /* 3730 * 8.1.23 SCTP_AUTO_ASCONF 3731 * 3732 * This option will enable or disable the use of the automatic generation of 3733 * ASCONF chunks to add and delete addresses to an existing association. Note 3734 * that this option has two caveats namely: a) it only affects sockets that 3735 * are bound to all addresses available to the SCTP stack, and b) the system 3736 * administrator may have an overriding control that turns the ASCONF feature 3737 * off no matter what setting the socket option may have. 3738 * This option expects an integer boolean flag, where a non-zero value turns on 3739 * the option, and a zero value turns off the option. 3740 * Note. In this implementation, socket operation overrides default parameter 3741 * being set by sysctl as well as FreeBSD implementation 3742 */ 3743 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3744 unsigned int optlen) 3745 { 3746 int val; 3747 struct sctp_sock *sp = sctp_sk(sk); 3748 3749 if (optlen < sizeof(int)) 3750 return -EINVAL; 3751 if (get_user(val, (int __user *)optval)) 3752 return -EFAULT; 3753 if (!sctp_is_ep_boundall(sk) && val) 3754 return -EINVAL; 3755 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3756 return 0; 3757 3758 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3759 if (val == 0 && sp->do_auto_asconf) { 3760 list_del(&sp->auto_asconf_list); 3761 sp->do_auto_asconf = 0; 3762 } else if (val && !sp->do_auto_asconf) { 3763 list_add_tail(&sp->auto_asconf_list, 3764 &sock_net(sk)->sctp.auto_asconf_splist); 3765 sp->do_auto_asconf = 1; 3766 } 3767 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3768 return 0; 3769 } 3770 3771 /* 3772 * SCTP_PEER_ADDR_THLDS 3773 * 3774 * This option allows us to alter the partially failed threshold for one or all 3775 * transports in an association. See Section 6.1 of: 3776 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3777 */ 3778 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3779 char __user *optval, 3780 unsigned int optlen) 3781 { 3782 struct sctp_paddrthlds val; 3783 struct sctp_transport *trans; 3784 struct sctp_association *asoc; 3785 3786 if (optlen < sizeof(struct sctp_paddrthlds)) 3787 return -EINVAL; 3788 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 3789 sizeof(struct sctp_paddrthlds))) 3790 return -EFAULT; 3791 3792 3793 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3794 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3795 if (!asoc) 3796 return -ENOENT; 3797 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3798 transports) { 3799 if (val.spt_pathmaxrxt) 3800 trans->pathmaxrxt = val.spt_pathmaxrxt; 3801 trans->pf_retrans = val.spt_pathpfthld; 3802 } 3803 3804 if (val.spt_pathmaxrxt) 3805 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3806 asoc->pf_retrans = val.spt_pathpfthld; 3807 } else { 3808 trans = sctp_addr_id2transport(sk, &val.spt_address, 3809 val.spt_assoc_id); 3810 if (!trans) 3811 return -ENOENT; 3812 3813 if (val.spt_pathmaxrxt) 3814 trans->pathmaxrxt = val.spt_pathmaxrxt; 3815 trans->pf_retrans = val.spt_pathpfthld; 3816 } 3817 3818 return 0; 3819 } 3820 3821 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 3822 char __user *optval, 3823 unsigned int optlen) 3824 { 3825 int val; 3826 3827 if (optlen < sizeof(int)) 3828 return -EINVAL; 3829 if (get_user(val, (int __user *) optval)) 3830 return -EFAULT; 3831 3832 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 3833 3834 return 0; 3835 } 3836 3837 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 3838 char __user *optval, 3839 unsigned int optlen) 3840 { 3841 int val; 3842 3843 if (optlen < sizeof(int)) 3844 return -EINVAL; 3845 if (get_user(val, (int __user *) optval)) 3846 return -EFAULT; 3847 3848 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 3849 3850 return 0; 3851 } 3852 3853 static int sctp_setsockopt_pr_supported(struct sock *sk, 3854 char __user *optval, 3855 unsigned int optlen) 3856 { 3857 struct sctp_assoc_value params; 3858 struct sctp_association *asoc; 3859 int retval = -EINVAL; 3860 3861 if (optlen != sizeof(params)) 3862 goto out; 3863 3864 if (copy_from_user(¶ms, optval, optlen)) { 3865 retval = -EFAULT; 3866 goto out; 3867 } 3868 3869 asoc = sctp_id2assoc(sk, params.assoc_id); 3870 if (asoc) { 3871 asoc->prsctp_enable = !!params.assoc_value; 3872 } else if (!params.assoc_id) { 3873 struct sctp_sock *sp = sctp_sk(sk); 3874 3875 sp->ep->prsctp_enable = !!params.assoc_value; 3876 } else { 3877 goto out; 3878 } 3879 3880 retval = 0; 3881 3882 out: 3883 return retval; 3884 } 3885 3886 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3887 char __user *optval, 3888 unsigned int optlen) 3889 { 3890 struct sctp_default_prinfo info; 3891 struct sctp_association *asoc; 3892 int retval = -EINVAL; 3893 3894 if (optlen != sizeof(info)) 3895 goto out; 3896 3897 if (copy_from_user(&info, optval, sizeof(info))) { 3898 retval = -EFAULT; 3899 goto out; 3900 } 3901 3902 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 3903 goto out; 3904 3905 if (info.pr_policy == SCTP_PR_SCTP_NONE) 3906 info.pr_value = 0; 3907 3908 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 3909 if (asoc) { 3910 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 3911 asoc->default_timetolive = info.pr_value; 3912 } else if (!info.pr_assoc_id) { 3913 struct sctp_sock *sp = sctp_sk(sk); 3914 3915 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 3916 sp->default_timetolive = info.pr_value; 3917 } else { 3918 goto out; 3919 } 3920 3921 retval = 0; 3922 3923 out: 3924 return retval; 3925 } 3926 3927 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 3928 char __user *optval, 3929 unsigned int optlen) 3930 { 3931 struct sctp_assoc_value params; 3932 struct sctp_association *asoc; 3933 int retval = -EINVAL; 3934 3935 if (optlen != sizeof(params)) 3936 goto out; 3937 3938 if (copy_from_user(¶ms, optval, optlen)) { 3939 retval = -EFAULT; 3940 goto out; 3941 } 3942 3943 asoc = sctp_id2assoc(sk, params.assoc_id); 3944 if (asoc) { 3945 asoc->reconf_enable = !!params.assoc_value; 3946 } else if (!params.assoc_id) { 3947 struct sctp_sock *sp = sctp_sk(sk); 3948 3949 sp->ep->reconf_enable = !!params.assoc_value; 3950 } else { 3951 goto out; 3952 } 3953 3954 retval = 0; 3955 3956 out: 3957 return retval; 3958 } 3959 3960 static int sctp_setsockopt_enable_strreset(struct sock *sk, 3961 char __user *optval, 3962 unsigned int optlen) 3963 { 3964 struct sctp_assoc_value params; 3965 struct sctp_association *asoc; 3966 int retval = -EINVAL; 3967 3968 if (optlen != sizeof(params)) 3969 goto out; 3970 3971 if (copy_from_user(¶ms, optval, optlen)) { 3972 retval = -EFAULT; 3973 goto out; 3974 } 3975 3976 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 3977 goto out; 3978 3979 asoc = sctp_id2assoc(sk, params.assoc_id); 3980 if (asoc) { 3981 asoc->strreset_enable = params.assoc_value; 3982 } else if (!params.assoc_id) { 3983 struct sctp_sock *sp = sctp_sk(sk); 3984 3985 sp->ep->strreset_enable = params.assoc_value; 3986 } else { 3987 goto out; 3988 } 3989 3990 retval = 0; 3991 3992 out: 3993 return retval; 3994 } 3995 3996 static int sctp_setsockopt_reset_streams(struct sock *sk, 3997 char __user *optval, 3998 unsigned int optlen) 3999 { 4000 struct sctp_reset_streams *params; 4001 struct sctp_association *asoc; 4002 int retval = -EINVAL; 4003 4004 if (optlen < sizeof(*params)) 4005 return -EINVAL; 4006 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4007 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4008 sizeof(__u16) * sizeof(*params)); 4009 4010 params = memdup_user(optval, optlen); 4011 if (IS_ERR(params)) 4012 return PTR_ERR(params); 4013 4014 if (params->srs_number_streams * sizeof(__u16) > 4015 optlen - sizeof(*params)) 4016 goto out; 4017 4018 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4019 if (!asoc) 4020 goto out; 4021 4022 retval = sctp_send_reset_streams(asoc, params); 4023 4024 out: 4025 kfree(params); 4026 return retval; 4027 } 4028 4029 static int sctp_setsockopt_reset_assoc(struct sock *sk, 4030 char __user *optval, 4031 unsigned int optlen) 4032 { 4033 struct sctp_association *asoc; 4034 sctp_assoc_t associd; 4035 int retval = -EINVAL; 4036 4037 if (optlen != sizeof(associd)) 4038 goto out; 4039 4040 if (copy_from_user(&associd, optval, optlen)) { 4041 retval = -EFAULT; 4042 goto out; 4043 } 4044 4045 asoc = sctp_id2assoc(sk, associd); 4046 if (!asoc) 4047 goto out; 4048 4049 retval = sctp_send_reset_assoc(asoc); 4050 4051 out: 4052 return retval; 4053 } 4054 4055 static int sctp_setsockopt_add_streams(struct sock *sk, 4056 char __user *optval, 4057 unsigned int optlen) 4058 { 4059 struct sctp_association *asoc; 4060 struct sctp_add_streams params; 4061 int retval = -EINVAL; 4062 4063 if (optlen != sizeof(params)) 4064 goto out; 4065 4066 if (copy_from_user(¶ms, optval, optlen)) { 4067 retval = -EFAULT; 4068 goto out; 4069 } 4070 4071 asoc = sctp_id2assoc(sk, params.sas_assoc_id); 4072 if (!asoc) 4073 goto out; 4074 4075 retval = sctp_send_add_streams(asoc, ¶ms); 4076 4077 out: 4078 return retval; 4079 } 4080 4081 static int sctp_setsockopt_scheduler(struct sock *sk, 4082 char __user *optval, 4083 unsigned int optlen) 4084 { 4085 struct sctp_association *asoc; 4086 struct sctp_assoc_value params; 4087 int retval = -EINVAL; 4088 4089 if (optlen < sizeof(params)) 4090 goto out; 4091 4092 optlen = sizeof(params); 4093 if (copy_from_user(¶ms, optval, optlen)) { 4094 retval = -EFAULT; 4095 goto out; 4096 } 4097 4098 if (params.assoc_value > SCTP_SS_MAX) 4099 goto out; 4100 4101 asoc = sctp_id2assoc(sk, params.assoc_id); 4102 if (!asoc) 4103 goto out; 4104 4105 retval = sctp_sched_set_sched(asoc, params.assoc_value); 4106 4107 out: 4108 return retval; 4109 } 4110 4111 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4112 char __user *optval, 4113 unsigned int optlen) 4114 { 4115 struct sctp_association *asoc; 4116 struct sctp_stream_value params; 4117 int retval = -EINVAL; 4118 4119 if (optlen < sizeof(params)) 4120 goto out; 4121 4122 optlen = sizeof(params); 4123 if (copy_from_user(¶ms, optval, optlen)) { 4124 retval = -EFAULT; 4125 goto out; 4126 } 4127 4128 asoc = sctp_id2assoc(sk, params.assoc_id); 4129 if (!asoc) 4130 goto out; 4131 4132 retval = sctp_sched_set_value(asoc, params.stream_id, 4133 params.stream_value, GFP_KERNEL); 4134 4135 out: 4136 return retval; 4137 } 4138 4139 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4140 char __user *optval, 4141 unsigned int optlen) 4142 { 4143 struct sctp_sock *sp = sctp_sk(sk); 4144 struct net *net = sock_net(sk); 4145 struct sctp_assoc_value params; 4146 int retval = -EINVAL; 4147 4148 if (optlen < sizeof(params)) 4149 goto out; 4150 4151 optlen = sizeof(params); 4152 if (copy_from_user(¶ms, optval, optlen)) { 4153 retval = -EFAULT; 4154 goto out; 4155 } 4156 4157 if (params.assoc_id) 4158 goto out; 4159 4160 if (!net->sctp.intl_enable || !sp->frag_interleave) { 4161 retval = -EPERM; 4162 goto out; 4163 } 4164 4165 sp->strm_interleave = !!params.assoc_value; 4166 4167 retval = 0; 4168 4169 out: 4170 return retval; 4171 } 4172 4173 /* API 6.2 setsockopt(), getsockopt() 4174 * 4175 * Applications use setsockopt() and getsockopt() to set or retrieve 4176 * socket options. Socket options are used to change the default 4177 * behavior of sockets calls. They are described in Section 7. 4178 * 4179 * The syntax is: 4180 * 4181 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4182 * int __user *optlen); 4183 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4184 * int optlen); 4185 * 4186 * sd - the socket descript. 4187 * level - set to IPPROTO_SCTP for all SCTP options. 4188 * optname - the option name. 4189 * optval - the buffer to store the value of the option. 4190 * optlen - the size of the buffer. 4191 */ 4192 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4193 char __user *optval, unsigned int optlen) 4194 { 4195 int retval = 0; 4196 4197 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4198 4199 /* I can hardly begin to describe how wrong this is. This is 4200 * so broken as to be worse than useless. The API draft 4201 * REALLY is NOT helpful here... I am not convinced that the 4202 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4203 * are at all well-founded. 4204 */ 4205 if (level != SOL_SCTP) { 4206 struct sctp_af *af = sctp_sk(sk)->pf->af; 4207 retval = af->setsockopt(sk, level, optname, optval, optlen); 4208 goto out_nounlock; 4209 } 4210 4211 lock_sock(sk); 4212 4213 switch (optname) { 4214 case SCTP_SOCKOPT_BINDX_ADD: 4215 /* 'optlen' is the size of the addresses buffer. */ 4216 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4217 optlen, SCTP_BINDX_ADD_ADDR); 4218 break; 4219 4220 case SCTP_SOCKOPT_BINDX_REM: 4221 /* 'optlen' is the size of the addresses buffer. */ 4222 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4223 optlen, SCTP_BINDX_REM_ADDR); 4224 break; 4225 4226 case SCTP_SOCKOPT_CONNECTX_OLD: 4227 /* 'optlen' is the size of the addresses buffer. */ 4228 retval = sctp_setsockopt_connectx_old(sk, 4229 (struct sockaddr __user *)optval, 4230 optlen); 4231 break; 4232 4233 case SCTP_SOCKOPT_CONNECTX: 4234 /* 'optlen' is the size of the addresses buffer. */ 4235 retval = sctp_setsockopt_connectx(sk, 4236 (struct sockaddr __user *)optval, 4237 optlen); 4238 break; 4239 4240 case SCTP_DISABLE_FRAGMENTS: 4241 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 4242 break; 4243 4244 case SCTP_EVENTS: 4245 retval = sctp_setsockopt_events(sk, optval, optlen); 4246 break; 4247 4248 case SCTP_AUTOCLOSE: 4249 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 4250 break; 4251 4252 case SCTP_PEER_ADDR_PARAMS: 4253 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 4254 break; 4255 4256 case SCTP_DELAYED_SACK: 4257 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 4258 break; 4259 case SCTP_PARTIAL_DELIVERY_POINT: 4260 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 4261 break; 4262 4263 case SCTP_INITMSG: 4264 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 4265 break; 4266 case SCTP_DEFAULT_SEND_PARAM: 4267 retval = sctp_setsockopt_default_send_param(sk, optval, 4268 optlen); 4269 break; 4270 case SCTP_DEFAULT_SNDINFO: 4271 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 4272 break; 4273 case SCTP_PRIMARY_ADDR: 4274 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 4275 break; 4276 case SCTP_SET_PEER_PRIMARY_ADDR: 4277 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 4278 break; 4279 case SCTP_NODELAY: 4280 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 4281 break; 4282 case SCTP_RTOINFO: 4283 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 4284 break; 4285 case SCTP_ASSOCINFO: 4286 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 4287 break; 4288 case SCTP_I_WANT_MAPPED_V4_ADDR: 4289 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 4290 break; 4291 case SCTP_MAXSEG: 4292 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 4293 break; 4294 case SCTP_ADAPTATION_LAYER: 4295 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 4296 break; 4297 case SCTP_CONTEXT: 4298 retval = sctp_setsockopt_context(sk, optval, optlen); 4299 break; 4300 case SCTP_FRAGMENT_INTERLEAVE: 4301 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 4302 break; 4303 case SCTP_MAX_BURST: 4304 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 4305 break; 4306 case SCTP_AUTH_CHUNK: 4307 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 4308 break; 4309 case SCTP_HMAC_IDENT: 4310 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 4311 break; 4312 case SCTP_AUTH_KEY: 4313 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 4314 break; 4315 case SCTP_AUTH_ACTIVE_KEY: 4316 retval = sctp_setsockopt_active_key(sk, optval, optlen); 4317 break; 4318 case SCTP_AUTH_DELETE_KEY: 4319 retval = sctp_setsockopt_del_key(sk, optval, optlen); 4320 break; 4321 case SCTP_AUTH_DEACTIVATE_KEY: 4322 retval = sctp_setsockopt_deactivate_key(sk, optval, optlen); 4323 break; 4324 case SCTP_AUTO_ASCONF: 4325 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 4326 break; 4327 case SCTP_PEER_ADDR_THLDS: 4328 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 4329 break; 4330 case SCTP_RECVRCVINFO: 4331 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 4332 break; 4333 case SCTP_RECVNXTINFO: 4334 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 4335 break; 4336 case SCTP_PR_SUPPORTED: 4337 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 4338 break; 4339 case SCTP_DEFAULT_PRINFO: 4340 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 4341 break; 4342 case SCTP_RECONFIG_SUPPORTED: 4343 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen); 4344 break; 4345 case SCTP_ENABLE_STREAM_RESET: 4346 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen); 4347 break; 4348 case SCTP_RESET_STREAMS: 4349 retval = sctp_setsockopt_reset_streams(sk, optval, optlen); 4350 break; 4351 case SCTP_RESET_ASSOC: 4352 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen); 4353 break; 4354 case SCTP_ADD_STREAMS: 4355 retval = sctp_setsockopt_add_streams(sk, optval, optlen); 4356 break; 4357 case SCTP_STREAM_SCHEDULER: 4358 retval = sctp_setsockopt_scheduler(sk, optval, optlen); 4359 break; 4360 case SCTP_STREAM_SCHEDULER_VALUE: 4361 retval = sctp_setsockopt_scheduler_value(sk, optval, optlen); 4362 break; 4363 case SCTP_INTERLEAVING_SUPPORTED: 4364 retval = sctp_setsockopt_interleaving_supported(sk, optval, 4365 optlen); 4366 break; 4367 default: 4368 retval = -ENOPROTOOPT; 4369 break; 4370 } 4371 4372 release_sock(sk); 4373 4374 out_nounlock: 4375 return retval; 4376 } 4377 4378 /* API 3.1.6 connect() - UDP Style Syntax 4379 * 4380 * An application may use the connect() call in the UDP model to initiate an 4381 * association without sending data. 4382 * 4383 * The syntax is: 4384 * 4385 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4386 * 4387 * sd: the socket descriptor to have a new association added to. 4388 * 4389 * nam: the address structure (either struct sockaddr_in or struct 4390 * sockaddr_in6 defined in RFC2553 [7]). 4391 * 4392 * len: the size of the address. 4393 */ 4394 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4395 int addr_len, int flags) 4396 { 4397 struct inet_sock *inet = inet_sk(sk); 4398 struct sctp_af *af; 4399 int err = 0; 4400 4401 lock_sock(sk); 4402 4403 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4404 addr, addr_len); 4405 4406 /* We may need to bind the socket. */ 4407 if (!inet->inet_num) { 4408 if (sk->sk_prot->get_port(sk, 0)) { 4409 release_sock(sk); 4410 return -EAGAIN; 4411 } 4412 inet->inet_sport = htons(inet->inet_num); 4413 } 4414 4415 /* Validate addr_len before calling common connect/connectx routine. */ 4416 af = sctp_get_af_specific(addr->sa_family); 4417 if (!af || addr_len < af->sockaddr_len) { 4418 err = -EINVAL; 4419 } else { 4420 /* Pass correct addr len to common routine (so it knows there 4421 * is only one address being passed. 4422 */ 4423 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4424 } 4425 4426 release_sock(sk); 4427 return err; 4428 } 4429 4430 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4431 int addr_len, int flags) 4432 { 4433 if (addr_len < sizeof(uaddr->sa_family)) 4434 return -EINVAL; 4435 4436 if (uaddr->sa_family == AF_UNSPEC) 4437 return -EOPNOTSUPP; 4438 4439 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4440 } 4441 4442 /* FIXME: Write comments. */ 4443 static int sctp_disconnect(struct sock *sk, int flags) 4444 { 4445 return -EOPNOTSUPP; /* STUB */ 4446 } 4447 4448 /* 4.1.4 accept() - TCP Style Syntax 4449 * 4450 * Applications use accept() call to remove an established SCTP 4451 * association from the accept queue of the endpoint. A new socket 4452 * descriptor will be returned from accept() to represent the newly 4453 * formed association. 4454 */ 4455 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4456 { 4457 struct sctp_sock *sp; 4458 struct sctp_endpoint *ep; 4459 struct sock *newsk = NULL; 4460 struct sctp_association *asoc; 4461 long timeo; 4462 int error = 0; 4463 4464 lock_sock(sk); 4465 4466 sp = sctp_sk(sk); 4467 ep = sp->ep; 4468 4469 if (!sctp_style(sk, TCP)) { 4470 error = -EOPNOTSUPP; 4471 goto out; 4472 } 4473 4474 if (!sctp_sstate(sk, LISTENING)) { 4475 error = -EINVAL; 4476 goto out; 4477 } 4478 4479 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4480 4481 error = sctp_wait_for_accept(sk, timeo); 4482 if (error) 4483 goto out; 4484 4485 /* We treat the list of associations on the endpoint as the accept 4486 * queue and pick the first association on the list. 4487 */ 4488 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4489 4490 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4491 if (!newsk) { 4492 error = -ENOMEM; 4493 goto out; 4494 } 4495 4496 /* Populate the fields of the newsk from the oldsk and migrate the 4497 * asoc to the newsk. 4498 */ 4499 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4500 4501 out: 4502 release_sock(sk); 4503 *err = error; 4504 return newsk; 4505 } 4506 4507 /* The SCTP ioctl handler. */ 4508 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4509 { 4510 int rc = -ENOTCONN; 4511 4512 lock_sock(sk); 4513 4514 /* 4515 * SEQPACKET-style sockets in LISTENING state are valid, for 4516 * SCTP, so only discard TCP-style sockets in LISTENING state. 4517 */ 4518 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4519 goto out; 4520 4521 switch (cmd) { 4522 case SIOCINQ: { 4523 struct sk_buff *skb; 4524 unsigned int amount = 0; 4525 4526 skb = skb_peek(&sk->sk_receive_queue); 4527 if (skb != NULL) { 4528 /* 4529 * We will only return the amount of this packet since 4530 * that is all that will be read. 4531 */ 4532 amount = skb->len; 4533 } 4534 rc = put_user(amount, (int __user *)arg); 4535 break; 4536 } 4537 default: 4538 rc = -ENOIOCTLCMD; 4539 break; 4540 } 4541 out: 4542 release_sock(sk); 4543 return rc; 4544 } 4545 4546 /* This is the function which gets called during socket creation to 4547 * initialized the SCTP-specific portion of the sock. 4548 * The sock structure should already be zero-filled memory. 4549 */ 4550 static int sctp_init_sock(struct sock *sk) 4551 { 4552 struct net *net = sock_net(sk); 4553 struct sctp_sock *sp; 4554 4555 pr_debug("%s: sk:%p\n", __func__, sk); 4556 4557 sp = sctp_sk(sk); 4558 4559 /* Initialize the SCTP per socket area. */ 4560 switch (sk->sk_type) { 4561 case SOCK_SEQPACKET: 4562 sp->type = SCTP_SOCKET_UDP; 4563 break; 4564 case SOCK_STREAM: 4565 sp->type = SCTP_SOCKET_TCP; 4566 break; 4567 default: 4568 return -ESOCKTNOSUPPORT; 4569 } 4570 4571 sk->sk_gso_type = SKB_GSO_SCTP; 4572 4573 /* Initialize default send parameters. These parameters can be 4574 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4575 */ 4576 sp->default_stream = 0; 4577 sp->default_ppid = 0; 4578 sp->default_flags = 0; 4579 sp->default_context = 0; 4580 sp->default_timetolive = 0; 4581 4582 sp->default_rcv_context = 0; 4583 sp->max_burst = net->sctp.max_burst; 4584 4585 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4586 4587 /* Initialize default setup parameters. These parameters 4588 * can be modified with the SCTP_INITMSG socket option or 4589 * overridden by the SCTP_INIT CMSG. 4590 */ 4591 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4592 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4593 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4594 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4595 4596 /* Initialize default RTO related parameters. These parameters can 4597 * be modified for with the SCTP_RTOINFO socket option. 4598 */ 4599 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4600 sp->rtoinfo.srto_max = net->sctp.rto_max; 4601 sp->rtoinfo.srto_min = net->sctp.rto_min; 4602 4603 /* Initialize default association related parameters. These parameters 4604 * can be modified with the SCTP_ASSOCINFO socket option. 4605 */ 4606 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4607 sp->assocparams.sasoc_number_peer_destinations = 0; 4608 sp->assocparams.sasoc_peer_rwnd = 0; 4609 sp->assocparams.sasoc_local_rwnd = 0; 4610 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 4611 4612 /* Initialize default event subscriptions. By default, all the 4613 * options are off. 4614 */ 4615 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 4616 4617 /* Default Peer Address Parameters. These defaults can 4618 * be modified via SCTP_PEER_ADDR_PARAMS 4619 */ 4620 sp->hbinterval = net->sctp.hb_interval; 4621 sp->pathmaxrxt = net->sctp.max_retrans_path; 4622 sp->pathmtu = 0; /* allow default discovery */ 4623 sp->sackdelay = net->sctp.sack_timeout; 4624 sp->sackfreq = 2; 4625 sp->param_flags = SPP_HB_ENABLE | 4626 SPP_PMTUD_ENABLE | 4627 SPP_SACKDELAY_ENABLE; 4628 4629 /* If enabled no SCTP message fragmentation will be performed. 4630 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 4631 */ 4632 sp->disable_fragments = 0; 4633 4634 /* Enable Nagle algorithm by default. */ 4635 sp->nodelay = 0; 4636 4637 sp->recvrcvinfo = 0; 4638 sp->recvnxtinfo = 0; 4639 4640 /* Enable by default. */ 4641 sp->v4mapped = 1; 4642 4643 /* Auto-close idle associations after the configured 4644 * number of seconds. A value of 0 disables this 4645 * feature. Configure through the SCTP_AUTOCLOSE socket option, 4646 * for UDP-style sockets only. 4647 */ 4648 sp->autoclose = 0; 4649 4650 /* User specified fragmentation limit. */ 4651 sp->user_frag = 0; 4652 4653 sp->adaptation_ind = 0; 4654 4655 sp->pf = sctp_get_pf_specific(sk->sk_family); 4656 4657 /* Control variables for partial data delivery. */ 4658 atomic_set(&sp->pd_mode, 0); 4659 skb_queue_head_init(&sp->pd_lobby); 4660 sp->frag_interleave = 0; 4661 4662 /* Create a per socket endpoint structure. Even if we 4663 * change the data structure relationships, this may still 4664 * be useful for storing pre-connect address information. 4665 */ 4666 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 4667 if (!sp->ep) 4668 return -ENOMEM; 4669 4670 sp->hmac = NULL; 4671 4672 sk->sk_destruct = sctp_destruct_sock; 4673 4674 SCTP_DBG_OBJCNT_INC(sock); 4675 4676 local_bh_disable(); 4677 sk_sockets_allocated_inc(sk); 4678 sock_prot_inuse_add(net, sk->sk_prot, 1); 4679 4680 /* Nothing can fail after this block, otherwise 4681 * sctp_destroy_sock() will be called without addr_wq_lock held 4682 */ 4683 if (net->sctp.default_auto_asconf) { 4684 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 4685 list_add_tail(&sp->auto_asconf_list, 4686 &net->sctp.auto_asconf_splist); 4687 sp->do_auto_asconf = 1; 4688 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 4689 } else { 4690 sp->do_auto_asconf = 0; 4691 } 4692 4693 local_bh_enable(); 4694 4695 return 0; 4696 } 4697 4698 /* Cleanup any SCTP per socket resources. Must be called with 4699 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 4700 */ 4701 static void sctp_destroy_sock(struct sock *sk) 4702 { 4703 struct sctp_sock *sp; 4704 4705 pr_debug("%s: sk:%p\n", __func__, sk); 4706 4707 /* Release our hold on the endpoint. */ 4708 sp = sctp_sk(sk); 4709 /* This could happen during socket init, thus we bail out 4710 * early, since the rest of the below is not setup either. 4711 */ 4712 if (sp->ep == NULL) 4713 return; 4714 4715 if (sp->do_auto_asconf) { 4716 sp->do_auto_asconf = 0; 4717 list_del(&sp->auto_asconf_list); 4718 } 4719 sctp_endpoint_free(sp->ep); 4720 local_bh_disable(); 4721 sk_sockets_allocated_dec(sk); 4722 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 4723 local_bh_enable(); 4724 } 4725 4726 /* Triggered when there are no references on the socket anymore */ 4727 static void sctp_destruct_sock(struct sock *sk) 4728 { 4729 struct sctp_sock *sp = sctp_sk(sk); 4730 4731 /* Free up the HMAC transform. */ 4732 crypto_free_shash(sp->hmac); 4733 4734 inet_sock_destruct(sk); 4735 } 4736 4737 /* API 4.1.7 shutdown() - TCP Style Syntax 4738 * int shutdown(int socket, int how); 4739 * 4740 * sd - the socket descriptor of the association to be closed. 4741 * how - Specifies the type of shutdown. The values are 4742 * as follows: 4743 * SHUT_RD 4744 * Disables further receive operations. No SCTP 4745 * protocol action is taken. 4746 * SHUT_WR 4747 * Disables further send operations, and initiates 4748 * the SCTP shutdown sequence. 4749 * SHUT_RDWR 4750 * Disables further send and receive operations 4751 * and initiates the SCTP shutdown sequence. 4752 */ 4753 static void sctp_shutdown(struct sock *sk, int how) 4754 { 4755 struct net *net = sock_net(sk); 4756 struct sctp_endpoint *ep; 4757 4758 if (!sctp_style(sk, TCP)) 4759 return; 4760 4761 ep = sctp_sk(sk)->ep; 4762 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 4763 struct sctp_association *asoc; 4764 4765 inet_sk_set_state(sk, SCTP_SS_CLOSING); 4766 asoc = list_entry(ep->asocs.next, 4767 struct sctp_association, asocs); 4768 sctp_primitive_SHUTDOWN(net, asoc, NULL); 4769 } 4770 } 4771 4772 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 4773 struct sctp_info *info) 4774 { 4775 struct sctp_transport *prim; 4776 struct list_head *pos; 4777 int mask; 4778 4779 memset(info, 0, sizeof(*info)); 4780 if (!asoc) { 4781 struct sctp_sock *sp = sctp_sk(sk); 4782 4783 info->sctpi_s_autoclose = sp->autoclose; 4784 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 4785 info->sctpi_s_pd_point = sp->pd_point; 4786 info->sctpi_s_nodelay = sp->nodelay; 4787 info->sctpi_s_disable_fragments = sp->disable_fragments; 4788 info->sctpi_s_v4mapped = sp->v4mapped; 4789 info->sctpi_s_frag_interleave = sp->frag_interleave; 4790 info->sctpi_s_type = sp->type; 4791 4792 return 0; 4793 } 4794 4795 info->sctpi_tag = asoc->c.my_vtag; 4796 info->sctpi_state = asoc->state; 4797 info->sctpi_rwnd = asoc->a_rwnd; 4798 info->sctpi_unackdata = asoc->unack_data; 4799 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4800 info->sctpi_instrms = asoc->stream.incnt; 4801 info->sctpi_outstrms = asoc->stream.outcnt; 4802 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 4803 info->sctpi_inqueue++; 4804 list_for_each(pos, &asoc->outqueue.out_chunk_list) 4805 info->sctpi_outqueue++; 4806 info->sctpi_overall_error = asoc->overall_error_count; 4807 info->sctpi_max_burst = asoc->max_burst; 4808 info->sctpi_maxseg = asoc->frag_point; 4809 info->sctpi_peer_rwnd = asoc->peer.rwnd; 4810 info->sctpi_peer_tag = asoc->c.peer_vtag; 4811 4812 mask = asoc->peer.ecn_capable << 1; 4813 mask = (mask | asoc->peer.ipv4_address) << 1; 4814 mask = (mask | asoc->peer.ipv6_address) << 1; 4815 mask = (mask | asoc->peer.hostname_address) << 1; 4816 mask = (mask | asoc->peer.asconf_capable) << 1; 4817 mask = (mask | asoc->peer.prsctp_capable) << 1; 4818 mask = (mask | asoc->peer.auth_capable); 4819 info->sctpi_peer_capable = mask; 4820 mask = asoc->peer.sack_needed << 1; 4821 mask = (mask | asoc->peer.sack_generation) << 1; 4822 mask = (mask | asoc->peer.zero_window_announced); 4823 info->sctpi_peer_sack = mask; 4824 4825 info->sctpi_isacks = asoc->stats.isacks; 4826 info->sctpi_osacks = asoc->stats.osacks; 4827 info->sctpi_opackets = asoc->stats.opackets; 4828 info->sctpi_ipackets = asoc->stats.ipackets; 4829 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 4830 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 4831 info->sctpi_idupchunks = asoc->stats.idupchunks; 4832 info->sctpi_gapcnt = asoc->stats.gapcnt; 4833 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 4834 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 4835 info->sctpi_oodchunks = asoc->stats.oodchunks; 4836 info->sctpi_iodchunks = asoc->stats.iodchunks; 4837 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 4838 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 4839 4840 prim = asoc->peer.primary_path; 4841 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 4842 info->sctpi_p_state = prim->state; 4843 info->sctpi_p_cwnd = prim->cwnd; 4844 info->sctpi_p_srtt = prim->srtt; 4845 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 4846 info->sctpi_p_hbinterval = prim->hbinterval; 4847 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 4848 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 4849 info->sctpi_p_ssthresh = prim->ssthresh; 4850 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 4851 info->sctpi_p_flight_size = prim->flight_size; 4852 info->sctpi_p_error = prim->error_count; 4853 4854 return 0; 4855 } 4856 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 4857 4858 /* use callback to avoid exporting the core structure */ 4859 void sctp_transport_walk_start(struct rhashtable_iter *iter) 4860 { 4861 rhltable_walk_enter(&sctp_transport_hashtable, iter); 4862 4863 rhashtable_walk_start(iter); 4864 } 4865 4866 void sctp_transport_walk_stop(struct rhashtable_iter *iter) 4867 { 4868 rhashtable_walk_stop(iter); 4869 rhashtable_walk_exit(iter); 4870 } 4871 4872 struct sctp_transport *sctp_transport_get_next(struct net *net, 4873 struct rhashtable_iter *iter) 4874 { 4875 struct sctp_transport *t; 4876 4877 t = rhashtable_walk_next(iter); 4878 for (; t; t = rhashtable_walk_next(iter)) { 4879 if (IS_ERR(t)) { 4880 if (PTR_ERR(t) == -EAGAIN) 4881 continue; 4882 break; 4883 } 4884 4885 if (net_eq(sock_net(t->asoc->base.sk), net) && 4886 t->asoc->peer.primary_path == t) 4887 break; 4888 } 4889 4890 return t; 4891 } 4892 4893 struct sctp_transport *sctp_transport_get_idx(struct net *net, 4894 struct rhashtable_iter *iter, 4895 int pos) 4896 { 4897 void *obj = SEQ_START_TOKEN; 4898 4899 while (pos && (obj = sctp_transport_get_next(net, iter)) && 4900 !IS_ERR(obj)) 4901 pos--; 4902 4903 return obj; 4904 } 4905 4906 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 4907 void *p) { 4908 int err = 0; 4909 int hash = 0; 4910 struct sctp_ep_common *epb; 4911 struct sctp_hashbucket *head; 4912 4913 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 4914 hash++, head++) { 4915 read_lock_bh(&head->lock); 4916 sctp_for_each_hentry(epb, &head->chain) { 4917 err = cb(sctp_ep(epb), p); 4918 if (err) 4919 break; 4920 } 4921 read_unlock_bh(&head->lock); 4922 } 4923 4924 return err; 4925 } 4926 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 4927 4928 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 4929 struct net *net, 4930 const union sctp_addr *laddr, 4931 const union sctp_addr *paddr, void *p) 4932 { 4933 struct sctp_transport *transport; 4934 int err; 4935 4936 rcu_read_lock(); 4937 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 4938 rcu_read_unlock(); 4939 if (!transport) 4940 return -ENOENT; 4941 4942 err = cb(transport, p); 4943 sctp_transport_put(transport); 4944 4945 return err; 4946 } 4947 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 4948 4949 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 4950 int (*cb_done)(struct sctp_transport *, void *), 4951 struct net *net, int *pos, void *p) { 4952 struct rhashtable_iter hti; 4953 struct sctp_transport *tsp; 4954 int ret; 4955 4956 again: 4957 ret = 0; 4958 sctp_transport_walk_start(&hti); 4959 4960 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 4961 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 4962 if (!sctp_transport_hold(tsp)) 4963 continue; 4964 ret = cb(tsp, p); 4965 if (ret) 4966 break; 4967 (*pos)++; 4968 sctp_transport_put(tsp); 4969 } 4970 sctp_transport_walk_stop(&hti); 4971 4972 if (ret) { 4973 if (cb_done && !cb_done(tsp, p)) { 4974 (*pos)++; 4975 sctp_transport_put(tsp); 4976 goto again; 4977 } 4978 sctp_transport_put(tsp); 4979 } 4980 4981 return ret; 4982 } 4983 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 4984 4985 /* 7.2.1 Association Status (SCTP_STATUS) 4986 4987 * Applications can retrieve current status information about an 4988 * association, including association state, peer receiver window size, 4989 * number of unacked data chunks, and number of data chunks pending 4990 * receipt. This information is read-only. 4991 */ 4992 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 4993 char __user *optval, 4994 int __user *optlen) 4995 { 4996 struct sctp_status status; 4997 struct sctp_association *asoc = NULL; 4998 struct sctp_transport *transport; 4999 sctp_assoc_t associd; 5000 int retval = 0; 5001 5002 if (len < sizeof(status)) { 5003 retval = -EINVAL; 5004 goto out; 5005 } 5006 5007 len = sizeof(status); 5008 if (copy_from_user(&status, optval, len)) { 5009 retval = -EFAULT; 5010 goto out; 5011 } 5012 5013 associd = status.sstat_assoc_id; 5014 asoc = sctp_id2assoc(sk, associd); 5015 if (!asoc) { 5016 retval = -EINVAL; 5017 goto out; 5018 } 5019 5020 transport = asoc->peer.primary_path; 5021 5022 status.sstat_assoc_id = sctp_assoc2id(asoc); 5023 status.sstat_state = sctp_assoc_to_state(asoc); 5024 status.sstat_rwnd = asoc->peer.rwnd; 5025 status.sstat_unackdata = asoc->unack_data; 5026 5027 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5028 status.sstat_instrms = asoc->stream.incnt; 5029 status.sstat_outstrms = asoc->stream.outcnt; 5030 status.sstat_fragmentation_point = asoc->frag_point; 5031 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5032 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5033 transport->af_specific->sockaddr_len); 5034 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5035 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5036 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5037 status.sstat_primary.spinfo_state = transport->state; 5038 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5039 status.sstat_primary.spinfo_srtt = transport->srtt; 5040 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5041 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5042 5043 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5044 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5045 5046 if (put_user(len, optlen)) { 5047 retval = -EFAULT; 5048 goto out; 5049 } 5050 5051 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5052 __func__, len, status.sstat_state, status.sstat_rwnd, 5053 status.sstat_assoc_id); 5054 5055 if (copy_to_user(optval, &status, len)) { 5056 retval = -EFAULT; 5057 goto out; 5058 } 5059 5060 out: 5061 return retval; 5062 } 5063 5064 5065 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5066 * 5067 * Applications can retrieve information about a specific peer address 5068 * of an association, including its reachability state, congestion 5069 * window, and retransmission timer values. This information is 5070 * read-only. 5071 */ 5072 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5073 char __user *optval, 5074 int __user *optlen) 5075 { 5076 struct sctp_paddrinfo pinfo; 5077 struct sctp_transport *transport; 5078 int retval = 0; 5079 5080 if (len < sizeof(pinfo)) { 5081 retval = -EINVAL; 5082 goto out; 5083 } 5084 5085 len = sizeof(pinfo); 5086 if (copy_from_user(&pinfo, optval, len)) { 5087 retval = -EFAULT; 5088 goto out; 5089 } 5090 5091 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5092 pinfo.spinfo_assoc_id); 5093 if (!transport) 5094 return -EINVAL; 5095 5096 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5097 pinfo.spinfo_state = transport->state; 5098 pinfo.spinfo_cwnd = transport->cwnd; 5099 pinfo.spinfo_srtt = transport->srtt; 5100 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5101 pinfo.spinfo_mtu = transport->pathmtu; 5102 5103 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5104 pinfo.spinfo_state = SCTP_ACTIVE; 5105 5106 if (put_user(len, optlen)) { 5107 retval = -EFAULT; 5108 goto out; 5109 } 5110 5111 if (copy_to_user(optval, &pinfo, len)) { 5112 retval = -EFAULT; 5113 goto out; 5114 } 5115 5116 out: 5117 return retval; 5118 } 5119 5120 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5121 * 5122 * This option is a on/off flag. If enabled no SCTP message 5123 * fragmentation will be performed. Instead if a message being sent 5124 * exceeds the current PMTU size, the message will NOT be sent and 5125 * instead a error will be indicated to the user. 5126 */ 5127 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5128 char __user *optval, int __user *optlen) 5129 { 5130 int val; 5131 5132 if (len < sizeof(int)) 5133 return -EINVAL; 5134 5135 len = sizeof(int); 5136 val = (sctp_sk(sk)->disable_fragments == 1); 5137 if (put_user(len, optlen)) 5138 return -EFAULT; 5139 if (copy_to_user(optval, &val, len)) 5140 return -EFAULT; 5141 return 0; 5142 } 5143 5144 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5145 * 5146 * This socket option is used to specify various notifications and 5147 * ancillary data the user wishes to receive. 5148 */ 5149 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5150 int __user *optlen) 5151 { 5152 if (len == 0) 5153 return -EINVAL; 5154 if (len > sizeof(struct sctp_event_subscribe)) 5155 len = sizeof(struct sctp_event_subscribe); 5156 if (put_user(len, optlen)) 5157 return -EFAULT; 5158 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 5159 return -EFAULT; 5160 return 0; 5161 } 5162 5163 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5164 * 5165 * This socket option is applicable to the UDP-style socket only. When 5166 * set it will cause associations that are idle for more than the 5167 * specified number of seconds to automatically close. An association 5168 * being idle is defined an association that has NOT sent or received 5169 * user data. The special value of '0' indicates that no automatic 5170 * close of any associations should be performed. The option expects an 5171 * integer defining the number of seconds of idle time before an 5172 * association is closed. 5173 */ 5174 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5175 { 5176 /* Applicable to UDP-style socket only */ 5177 if (sctp_style(sk, TCP)) 5178 return -EOPNOTSUPP; 5179 if (len < sizeof(int)) 5180 return -EINVAL; 5181 len = sizeof(int); 5182 if (put_user(len, optlen)) 5183 return -EFAULT; 5184 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5185 return -EFAULT; 5186 return 0; 5187 } 5188 5189 /* Helper routine to branch off an association to a new socket. */ 5190 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5191 { 5192 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5193 struct sctp_sock *sp = sctp_sk(sk); 5194 struct socket *sock; 5195 int err = 0; 5196 5197 /* Do not peel off from one netns to another one. */ 5198 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5199 return -EINVAL; 5200 5201 if (!asoc) 5202 return -EINVAL; 5203 5204 /* An association cannot be branched off from an already peeled-off 5205 * socket, nor is this supported for tcp style sockets. 5206 */ 5207 if (!sctp_style(sk, UDP)) 5208 return -EINVAL; 5209 5210 /* Create a new socket. */ 5211 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5212 if (err < 0) 5213 return err; 5214 5215 sctp_copy_sock(sock->sk, sk, asoc); 5216 5217 /* Make peeled-off sockets more like 1-1 accepted sockets. 5218 * Set the daddr and initialize id to something more random and also 5219 * copy over any ip options. 5220 */ 5221 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 5222 sp->pf->copy_ip_options(sk, sock->sk); 5223 5224 /* Populate the fields of the newsk from the oldsk and migrate the 5225 * asoc to the newsk. 5226 */ 5227 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5228 5229 *sockp = sock; 5230 5231 return err; 5232 } 5233 EXPORT_SYMBOL(sctp_do_peeloff); 5234 5235 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5236 struct file **newfile, unsigned flags) 5237 { 5238 struct socket *newsock; 5239 int retval; 5240 5241 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5242 if (retval < 0) 5243 goto out; 5244 5245 /* Map the socket to an unused fd that can be returned to the user. */ 5246 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5247 if (retval < 0) { 5248 sock_release(newsock); 5249 goto out; 5250 } 5251 5252 *newfile = sock_alloc_file(newsock, 0, NULL); 5253 if (IS_ERR(*newfile)) { 5254 put_unused_fd(retval); 5255 retval = PTR_ERR(*newfile); 5256 *newfile = NULL; 5257 return retval; 5258 } 5259 5260 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5261 retval); 5262 5263 peeloff->sd = retval; 5264 5265 if (flags & SOCK_NONBLOCK) 5266 (*newfile)->f_flags |= O_NONBLOCK; 5267 out: 5268 return retval; 5269 } 5270 5271 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5272 { 5273 sctp_peeloff_arg_t peeloff; 5274 struct file *newfile = NULL; 5275 int retval = 0; 5276 5277 if (len < sizeof(sctp_peeloff_arg_t)) 5278 return -EINVAL; 5279 len = sizeof(sctp_peeloff_arg_t); 5280 if (copy_from_user(&peeloff, optval, len)) 5281 return -EFAULT; 5282 5283 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5284 if (retval < 0) 5285 goto out; 5286 5287 /* Return the fd mapped to the new socket. */ 5288 if (put_user(len, optlen)) { 5289 fput(newfile); 5290 put_unused_fd(retval); 5291 return -EFAULT; 5292 } 5293 5294 if (copy_to_user(optval, &peeloff, len)) { 5295 fput(newfile); 5296 put_unused_fd(retval); 5297 return -EFAULT; 5298 } 5299 fd_install(retval, newfile); 5300 out: 5301 return retval; 5302 } 5303 5304 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5305 char __user *optval, int __user *optlen) 5306 { 5307 sctp_peeloff_flags_arg_t peeloff; 5308 struct file *newfile = NULL; 5309 int retval = 0; 5310 5311 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5312 return -EINVAL; 5313 len = sizeof(sctp_peeloff_flags_arg_t); 5314 if (copy_from_user(&peeloff, optval, len)) 5315 return -EFAULT; 5316 5317 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5318 &newfile, peeloff.flags); 5319 if (retval < 0) 5320 goto out; 5321 5322 /* Return the fd mapped to the new socket. */ 5323 if (put_user(len, optlen)) { 5324 fput(newfile); 5325 put_unused_fd(retval); 5326 return -EFAULT; 5327 } 5328 5329 if (copy_to_user(optval, &peeloff, len)) { 5330 fput(newfile); 5331 put_unused_fd(retval); 5332 return -EFAULT; 5333 } 5334 fd_install(retval, newfile); 5335 out: 5336 return retval; 5337 } 5338 5339 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5340 * 5341 * Applications can enable or disable heartbeats for any peer address of 5342 * an association, modify an address's heartbeat interval, force a 5343 * heartbeat to be sent immediately, and adjust the address's maximum 5344 * number of retransmissions sent before an address is considered 5345 * unreachable. The following structure is used to access and modify an 5346 * address's parameters: 5347 * 5348 * struct sctp_paddrparams { 5349 * sctp_assoc_t spp_assoc_id; 5350 * struct sockaddr_storage spp_address; 5351 * uint32_t spp_hbinterval; 5352 * uint16_t spp_pathmaxrxt; 5353 * uint32_t spp_pathmtu; 5354 * uint32_t spp_sackdelay; 5355 * uint32_t spp_flags; 5356 * }; 5357 * 5358 * spp_assoc_id - (one-to-many style socket) This is filled in the 5359 * application, and identifies the association for 5360 * this query. 5361 * spp_address - This specifies which address is of interest. 5362 * spp_hbinterval - This contains the value of the heartbeat interval, 5363 * in milliseconds. If a value of zero 5364 * is present in this field then no changes are to 5365 * be made to this parameter. 5366 * spp_pathmaxrxt - This contains the maximum number of 5367 * retransmissions before this address shall be 5368 * considered unreachable. If a value of zero 5369 * is present in this field then no changes are to 5370 * be made to this parameter. 5371 * spp_pathmtu - When Path MTU discovery is disabled the value 5372 * specified here will be the "fixed" path mtu. 5373 * Note that if the spp_address field is empty 5374 * then all associations on this address will 5375 * have this fixed path mtu set upon them. 5376 * 5377 * spp_sackdelay - When delayed sack is enabled, this value specifies 5378 * the number of milliseconds that sacks will be delayed 5379 * for. This value will apply to all addresses of an 5380 * association if the spp_address field is empty. Note 5381 * also, that if delayed sack is enabled and this 5382 * value is set to 0, no change is made to the last 5383 * recorded delayed sack timer value. 5384 * 5385 * spp_flags - These flags are used to control various features 5386 * on an association. The flag field may contain 5387 * zero or more of the following options. 5388 * 5389 * SPP_HB_ENABLE - Enable heartbeats on the 5390 * specified address. Note that if the address 5391 * field is empty all addresses for the association 5392 * have heartbeats enabled upon them. 5393 * 5394 * SPP_HB_DISABLE - Disable heartbeats on the 5395 * speicifed address. Note that if the address 5396 * field is empty all addresses for the association 5397 * will have their heartbeats disabled. Note also 5398 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5399 * mutually exclusive, only one of these two should 5400 * be specified. Enabling both fields will have 5401 * undetermined results. 5402 * 5403 * SPP_HB_DEMAND - Request a user initiated heartbeat 5404 * to be made immediately. 5405 * 5406 * SPP_PMTUD_ENABLE - This field will enable PMTU 5407 * discovery upon the specified address. Note that 5408 * if the address feild is empty then all addresses 5409 * on the association are effected. 5410 * 5411 * SPP_PMTUD_DISABLE - This field will disable PMTU 5412 * discovery upon the specified address. Note that 5413 * if the address feild is empty then all addresses 5414 * on the association are effected. Not also that 5415 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5416 * exclusive. Enabling both will have undetermined 5417 * results. 5418 * 5419 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5420 * on delayed sack. The time specified in spp_sackdelay 5421 * is used to specify the sack delay for this address. Note 5422 * that if spp_address is empty then all addresses will 5423 * enable delayed sack and take on the sack delay 5424 * value specified in spp_sackdelay. 5425 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5426 * off delayed sack. If the spp_address field is blank then 5427 * delayed sack is disabled for the entire association. Note 5428 * also that this field is mutually exclusive to 5429 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5430 * results. 5431 */ 5432 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5433 char __user *optval, int __user *optlen) 5434 { 5435 struct sctp_paddrparams params; 5436 struct sctp_transport *trans = NULL; 5437 struct sctp_association *asoc = NULL; 5438 struct sctp_sock *sp = sctp_sk(sk); 5439 5440 if (len < sizeof(struct sctp_paddrparams)) 5441 return -EINVAL; 5442 len = sizeof(struct sctp_paddrparams); 5443 if (copy_from_user(¶ms, optval, len)) 5444 return -EFAULT; 5445 5446 /* If an address other than INADDR_ANY is specified, and 5447 * no transport is found, then the request is invalid. 5448 */ 5449 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5450 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5451 params.spp_assoc_id); 5452 if (!trans) { 5453 pr_debug("%s: failed no transport\n", __func__); 5454 return -EINVAL; 5455 } 5456 } 5457 5458 /* Get association, if assoc_id != 0 and the socket is a one 5459 * to many style socket, and an association was not found, then 5460 * the id was invalid. 5461 */ 5462 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5463 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 5464 pr_debug("%s: failed no association\n", __func__); 5465 return -EINVAL; 5466 } 5467 5468 if (trans) { 5469 /* Fetch transport values. */ 5470 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5471 params.spp_pathmtu = trans->pathmtu; 5472 params.spp_pathmaxrxt = trans->pathmaxrxt; 5473 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5474 5475 /*draft-11 doesn't say what to return in spp_flags*/ 5476 params.spp_flags = trans->param_flags; 5477 } else if (asoc) { 5478 /* Fetch association values. */ 5479 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5480 params.spp_pathmtu = asoc->pathmtu; 5481 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5482 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5483 5484 /*draft-11 doesn't say what to return in spp_flags*/ 5485 params.spp_flags = asoc->param_flags; 5486 } else { 5487 /* Fetch socket values. */ 5488 params.spp_hbinterval = sp->hbinterval; 5489 params.spp_pathmtu = sp->pathmtu; 5490 params.spp_sackdelay = sp->sackdelay; 5491 params.spp_pathmaxrxt = sp->pathmaxrxt; 5492 5493 /*draft-11 doesn't say what to return in spp_flags*/ 5494 params.spp_flags = sp->param_flags; 5495 } 5496 5497 if (copy_to_user(optval, ¶ms, len)) 5498 return -EFAULT; 5499 5500 if (put_user(len, optlen)) 5501 return -EFAULT; 5502 5503 return 0; 5504 } 5505 5506 /* 5507 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 5508 * 5509 * This option will effect the way delayed acks are performed. This 5510 * option allows you to get or set the delayed ack time, in 5511 * milliseconds. It also allows changing the delayed ack frequency. 5512 * Changing the frequency to 1 disables the delayed sack algorithm. If 5513 * the assoc_id is 0, then this sets or gets the endpoints default 5514 * values. If the assoc_id field is non-zero, then the set or get 5515 * effects the specified association for the one to many model (the 5516 * assoc_id field is ignored by the one to one model). Note that if 5517 * sack_delay or sack_freq are 0 when setting this option, then the 5518 * current values will remain unchanged. 5519 * 5520 * struct sctp_sack_info { 5521 * sctp_assoc_t sack_assoc_id; 5522 * uint32_t sack_delay; 5523 * uint32_t sack_freq; 5524 * }; 5525 * 5526 * sack_assoc_id - This parameter, indicates which association the user 5527 * is performing an action upon. Note that if this field's value is 5528 * zero then the endpoints default value is changed (effecting future 5529 * associations only). 5530 * 5531 * sack_delay - This parameter contains the number of milliseconds that 5532 * the user is requesting the delayed ACK timer be set to. Note that 5533 * this value is defined in the standard to be between 200 and 500 5534 * milliseconds. 5535 * 5536 * sack_freq - This parameter contains the number of packets that must 5537 * be received before a sack is sent without waiting for the delay 5538 * timer to expire. The default value for this is 2, setting this 5539 * value to 1 will disable the delayed sack algorithm. 5540 */ 5541 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 5542 char __user *optval, 5543 int __user *optlen) 5544 { 5545 struct sctp_sack_info params; 5546 struct sctp_association *asoc = NULL; 5547 struct sctp_sock *sp = sctp_sk(sk); 5548 5549 if (len >= sizeof(struct sctp_sack_info)) { 5550 len = sizeof(struct sctp_sack_info); 5551 5552 if (copy_from_user(¶ms, optval, len)) 5553 return -EFAULT; 5554 } else if (len == sizeof(struct sctp_assoc_value)) { 5555 pr_warn_ratelimited(DEPRECATED 5556 "%s (pid %d) " 5557 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 5558 "Use struct sctp_sack_info instead\n", 5559 current->comm, task_pid_nr(current)); 5560 if (copy_from_user(¶ms, optval, len)) 5561 return -EFAULT; 5562 } else 5563 return -EINVAL; 5564 5565 /* Get association, if sack_assoc_id != 0 and the socket is a one 5566 * to many style socket, and an association was not found, then 5567 * the id was invalid. 5568 */ 5569 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 5570 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 5571 return -EINVAL; 5572 5573 if (asoc) { 5574 /* Fetch association values. */ 5575 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 5576 params.sack_delay = jiffies_to_msecs( 5577 asoc->sackdelay); 5578 params.sack_freq = asoc->sackfreq; 5579 5580 } else { 5581 params.sack_delay = 0; 5582 params.sack_freq = 1; 5583 } 5584 } else { 5585 /* Fetch socket values. */ 5586 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 5587 params.sack_delay = sp->sackdelay; 5588 params.sack_freq = sp->sackfreq; 5589 } else { 5590 params.sack_delay = 0; 5591 params.sack_freq = 1; 5592 } 5593 } 5594 5595 if (copy_to_user(optval, ¶ms, len)) 5596 return -EFAULT; 5597 5598 if (put_user(len, optlen)) 5599 return -EFAULT; 5600 5601 return 0; 5602 } 5603 5604 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 5605 * 5606 * Applications can specify protocol parameters for the default association 5607 * initialization. The option name argument to setsockopt() and getsockopt() 5608 * is SCTP_INITMSG. 5609 * 5610 * Setting initialization parameters is effective only on an unconnected 5611 * socket (for UDP-style sockets only future associations are effected 5612 * by the change). With TCP-style sockets, this option is inherited by 5613 * sockets derived from a listener socket. 5614 */ 5615 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 5616 { 5617 if (len < sizeof(struct sctp_initmsg)) 5618 return -EINVAL; 5619 len = sizeof(struct sctp_initmsg); 5620 if (put_user(len, optlen)) 5621 return -EFAULT; 5622 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 5623 return -EFAULT; 5624 return 0; 5625 } 5626 5627 5628 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 5629 char __user *optval, int __user *optlen) 5630 { 5631 struct sctp_association *asoc; 5632 int cnt = 0; 5633 struct sctp_getaddrs getaddrs; 5634 struct sctp_transport *from; 5635 void __user *to; 5636 union sctp_addr temp; 5637 struct sctp_sock *sp = sctp_sk(sk); 5638 int addrlen; 5639 size_t space_left; 5640 int bytes_copied; 5641 5642 if (len < sizeof(struct sctp_getaddrs)) 5643 return -EINVAL; 5644 5645 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5646 return -EFAULT; 5647 5648 /* For UDP-style sockets, id specifies the association to query. */ 5649 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5650 if (!asoc) 5651 return -EINVAL; 5652 5653 to = optval + offsetof(struct sctp_getaddrs, addrs); 5654 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5655 5656 list_for_each_entry(from, &asoc->peer.transport_addr_list, 5657 transports) { 5658 memcpy(&temp, &from->ipaddr, sizeof(temp)); 5659 addrlen = sctp_get_pf_specific(sk->sk_family) 5660 ->addr_to_user(sp, &temp); 5661 if (space_left < addrlen) 5662 return -ENOMEM; 5663 if (copy_to_user(to, &temp, addrlen)) 5664 return -EFAULT; 5665 to += addrlen; 5666 cnt++; 5667 space_left -= addrlen; 5668 } 5669 5670 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 5671 return -EFAULT; 5672 bytes_copied = ((char __user *)to) - optval; 5673 if (put_user(bytes_copied, optlen)) 5674 return -EFAULT; 5675 5676 return 0; 5677 } 5678 5679 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 5680 size_t space_left, int *bytes_copied) 5681 { 5682 struct sctp_sockaddr_entry *addr; 5683 union sctp_addr temp; 5684 int cnt = 0; 5685 int addrlen; 5686 struct net *net = sock_net(sk); 5687 5688 rcu_read_lock(); 5689 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 5690 if (!addr->valid) 5691 continue; 5692 5693 if ((PF_INET == sk->sk_family) && 5694 (AF_INET6 == addr->a.sa.sa_family)) 5695 continue; 5696 if ((PF_INET6 == sk->sk_family) && 5697 inet_v6_ipv6only(sk) && 5698 (AF_INET == addr->a.sa.sa_family)) 5699 continue; 5700 memcpy(&temp, &addr->a, sizeof(temp)); 5701 if (!temp.v4.sin_port) 5702 temp.v4.sin_port = htons(port); 5703 5704 addrlen = sctp_get_pf_specific(sk->sk_family) 5705 ->addr_to_user(sctp_sk(sk), &temp); 5706 5707 if (space_left < addrlen) { 5708 cnt = -ENOMEM; 5709 break; 5710 } 5711 memcpy(to, &temp, addrlen); 5712 5713 to += addrlen; 5714 cnt++; 5715 space_left -= addrlen; 5716 *bytes_copied += addrlen; 5717 } 5718 rcu_read_unlock(); 5719 5720 return cnt; 5721 } 5722 5723 5724 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 5725 char __user *optval, int __user *optlen) 5726 { 5727 struct sctp_bind_addr *bp; 5728 struct sctp_association *asoc; 5729 int cnt = 0; 5730 struct sctp_getaddrs getaddrs; 5731 struct sctp_sockaddr_entry *addr; 5732 void __user *to; 5733 union sctp_addr temp; 5734 struct sctp_sock *sp = sctp_sk(sk); 5735 int addrlen; 5736 int err = 0; 5737 size_t space_left; 5738 int bytes_copied = 0; 5739 void *addrs; 5740 void *buf; 5741 5742 if (len < sizeof(struct sctp_getaddrs)) 5743 return -EINVAL; 5744 5745 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5746 return -EFAULT; 5747 5748 /* 5749 * For UDP-style sockets, id specifies the association to query. 5750 * If the id field is set to the value '0' then the locally bound 5751 * addresses are returned without regard to any particular 5752 * association. 5753 */ 5754 if (0 == getaddrs.assoc_id) { 5755 bp = &sctp_sk(sk)->ep->base.bind_addr; 5756 } else { 5757 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5758 if (!asoc) 5759 return -EINVAL; 5760 bp = &asoc->base.bind_addr; 5761 } 5762 5763 to = optval + offsetof(struct sctp_getaddrs, addrs); 5764 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5765 5766 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 5767 if (!addrs) 5768 return -ENOMEM; 5769 5770 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 5771 * addresses from the global local address list. 5772 */ 5773 if (sctp_list_single_entry(&bp->address_list)) { 5774 addr = list_entry(bp->address_list.next, 5775 struct sctp_sockaddr_entry, list); 5776 if (sctp_is_any(sk, &addr->a)) { 5777 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 5778 space_left, &bytes_copied); 5779 if (cnt < 0) { 5780 err = cnt; 5781 goto out; 5782 } 5783 goto copy_getaddrs; 5784 } 5785 } 5786 5787 buf = addrs; 5788 /* Protection on the bound address list is not needed since 5789 * in the socket option context we hold a socket lock and 5790 * thus the bound address list can't change. 5791 */ 5792 list_for_each_entry(addr, &bp->address_list, list) { 5793 memcpy(&temp, &addr->a, sizeof(temp)); 5794 addrlen = sctp_get_pf_specific(sk->sk_family) 5795 ->addr_to_user(sp, &temp); 5796 if (space_left < addrlen) { 5797 err = -ENOMEM; /*fixme: right error?*/ 5798 goto out; 5799 } 5800 memcpy(buf, &temp, addrlen); 5801 buf += addrlen; 5802 bytes_copied += addrlen; 5803 cnt++; 5804 space_left -= addrlen; 5805 } 5806 5807 copy_getaddrs: 5808 if (copy_to_user(to, addrs, bytes_copied)) { 5809 err = -EFAULT; 5810 goto out; 5811 } 5812 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 5813 err = -EFAULT; 5814 goto out; 5815 } 5816 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 5817 * but we can't change it anymore. 5818 */ 5819 if (put_user(bytes_copied, optlen)) 5820 err = -EFAULT; 5821 out: 5822 kfree(addrs); 5823 return err; 5824 } 5825 5826 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 5827 * 5828 * Requests that the local SCTP stack use the enclosed peer address as 5829 * the association primary. The enclosed address must be one of the 5830 * association peer's addresses. 5831 */ 5832 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 5833 char __user *optval, int __user *optlen) 5834 { 5835 struct sctp_prim prim; 5836 struct sctp_association *asoc; 5837 struct sctp_sock *sp = sctp_sk(sk); 5838 5839 if (len < sizeof(struct sctp_prim)) 5840 return -EINVAL; 5841 5842 len = sizeof(struct sctp_prim); 5843 5844 if (copy_from_user(&prim, optval, len)) 5845 return -EFAULT; 5846 5847 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 5848 if (!asoc) 5849 return -EINVAL; 5850 5851 if (!asoc->peer.primary_path) 5852 return -ENOTCONN; 5853 5854 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 5855 asoc->peer.primary_path->af_specific->sockaddr_len); 5856 5857 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 5858 (union sctp_addr *)&prim.ssp_addr); 5859 5860 if (put_user(len, optlen)) 5861 return -EFAULT; 5862 if (copy_to_user(optval, &prim, len)) 5863 return -EFAULT; 5864 5865 return 0; 5866 } 5867 5868 /* 5869 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 5870 * 5871 * Requests that the local endpoint set the specified Adaptation Layer 5872 * Indication parameter for all future INIT and INIT-ACK exchanges. 5873 */ 5874 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 5875 char __user *optval, int __user *optlen) 5876 { 5877 struct sctp_setadaptation adaptation; 5878 5879 if (len < sizeof(struct sctp_setadaptation)) 5880 return -EINVAL; 5881 5882 len = sizeof(struct sctp_setadaptation); 5883 5884 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 5885 5886 if (put_user(len, optlen)) 5887 return -EFAULT; 5888 if (copy_to_user(optval, &adaptation, len)) 5889 return -EFAULT; 5890 5891 return 0; 5892 } 5893 5894 /* 5895 * 5896 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 5897 * 5898 * Applications that wish to use the sendto() system call may wish to 5899 * specify a default set of parameters that would normally be supplied 5900 * through the inclusion of ancillary data. This socket option allows 5901 * such an application to set the default sctp_sndrcvinfo structure. 5902 5903 5904 * The application that wishes to use this socket option simply passes 5905 * in to this call the sctp_sndrcvinfo structure defined in Section 5906 * 5.2.2) The input parameters accepted by this call include 5907 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 5908 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 5909 * to this call if the caller is using the UDP model. 5910 * 5911 * For getsockopt, it get the default sctp_sndrcvinfo structure. 5912 */ 5913 static int sctp_getsockopt_default_send_param(struct sock *sk, 5914 int len, char __user *optval, 5915 int __user *optlen) 5916 { 5917 struct sctp_sock *sp = sctp_sk(sk); 5918 struct sctp_association *asoc; 5919 struct sctp_sndrcvinfo info; 5920 5921 if (len < sizeof(info)) 5922 return -EINVAL; 5923 5924 len = sizeof(info); 5925 5926 if (copy_from_user(&info, optval, len)) 5927 return -EFAULT; 5928 5929 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 5930 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 5931 return -EINVAL; 5932 if (asoc) { 5933 info.sinfo_stream = asoc->default_stream; 5934 info.sinfo_flags = asoc->default_flags; 5935 info.sinfo_ppid = asoc->default_ppid; 5936 info.sinfo_context = asoc->default_context; 5937 info.sinfo_timetolive = asoc->default_timetolive; 5938 } else { 5939 info.sinfo_stream = sp->default_stream; 5940 info.sinfo_flags = sp->default_flags; 5941 info.sinfo_ppid = sp->default_ppid; 5942 info.sinfo_context = sp->default_context; 5943 info.sinfo_timetolive = sp->default_timetolive; 5944 } 5945 5946 if (put_user(len, optlen)) 5947 return -EFAULT; 5948 if (copy_to_user(optval, &info, len)) 5949 return -EFAULT; 5950 5951 return 0; 5952 } 5953 5954 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 5955 * (SCTP_DEFAULT_SNDINFO) 5956 */ 5957 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 5958 char __user *optval, 5959 int __user *optlen) 5960 { 5961 struct sctp_sock *sp = sctp_sk(sk); 5962 struct sctp_association *asoc; 5963 struct sctp_sndinfo info; 5964 5965 if (len < sizeof(info)) 5966 return -EINVAL; 5967 5968 len = sizeof(info); 5969 5970 if (copy_from_user(&info, optval, len)) 5971 return -EFAULT; 5972 5973 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 5974 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 5975 return -EINVAL; 5976 if (asoc) { 5977 info.snd_sid = asoc->default_stream; 5978 info.snd_flags = asoc->default_flags; 5979 info.snd_ppid = asoc->default_ppid; 5980 info.snd_context = asoc->default_context; 5981 } else { 5982 info.snd_sid = sp->default_stream; 5983 info.snd_flags = sp->default_flags; 5984 info.snd_ppid = sp->default_ppid; 5985 info.snd_context = sp->default_context; 5986 } 5987 5988 if (put_user(len, optlen)) 5989 return -EFAULT; 5990 if (copy_to_user(optval, &info, len)) 5991 return -EFAULT; 5992 5993 return 0; 5994 } 5995 5996 /* 5997 * 5998 * 7.1.5 SCTP_NODELAY 5999 * 6000 * Turn on/off any Nagle-like algorithm. This means that packets are 6001 * generally sent as soon as possible and no unnecessary delays are 6002 * introduced, at the cost of more packets in the network. Expects an 6003 * integer boolean flag. 6004 */ 6005 6006 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6007 char __user *optval, int __user *optlen) 6008 { 6009 int val; 6010 6011 if (len < sizeof(int)) 6012 return -EINVAL; 6013 6014 len = sizeof(int); 6015 val = (sctp_sk(sk)->nodelay == 1); 6016 if (put_user(len, optlen)) 6017 return -EFAULT; 6018 if (copy_to_user(optval, &val, len)) 6019 return -EFAULT; 6020 return 0; 6021 } 6022 6023 /* 6024 * 6025 * 7.1.1 SCTP_RTOINFO 6026 * 6027 * The protocol parameters used to initialize and bound retransmission 6028 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6029 * and modify these parameters. 6030 * All parameters are time values, in milliseconds. A value of 0, when 6031 * modifying the parameters, indicates that the current value should not 6032 * be changed. 6033 * 6034 */ 6035 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6036 char __user *optval, 6037 int __user *optlen) { 6038 struct sctp_rtoinfo rtoinfo; 6039 struct sctp_association *asoc; 6040 6041 if (len < sizeof (struct sctp_rtoinfo)) 6042 return -EINVAL; 6043 6044 len = sizeof(struct sctp_rtoinfo); 6045 6046 if (copy_from_user(&rtoinfo, optval, len)) 6047 return -EFAULT; 6048 6049 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6050 6051 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 6052 return -EINVAL; 6053 6054 /* Values corresponding to the specific association. */ 6055 if (asoc) { 6056 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6057 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6058 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6059 } else { 6060 /* Values corresponding to the endpoint. */ 6061 struct sctp_sock *sp = sctp_sk(sk); 6062 6063 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6064 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6065 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6066 } 6067 6068 if (put_user(len, optlen)) 6069 return -EFAULT; 6070 6071 if (copy_to_user(optval, &rtoinfo, len)) 6072 return -EFAULT; 6073 6074 return 0; 6075 } 6076 6077 /* 6078 * 6079 * 7.1.2 SCTP_ASSOCINFO 6080 * 6081 * This option is used to tune the maximum retransmission attempts 6082 * of the association. 6083 * Returns an error if the new association retransmission value is 6084 * greater than the sum of the retransmission value of the peer. 6085 * See [SCTP] for more information. 6086 * 6087 */ 6088 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6089 char __user *optval, 6090 int __user *optlen) 6091 { 6092 6093 struct sctp_assocparams assocparams; 6094 struct sctp_association *asoc; 6095 struct list_head *pos; 6096 int cnt = 0; 6097 6098 if (len < sizeof (struct sctp_assocparams)) 6099 return -EINVAL; 6100 6101 len = sizeof(struct sctp_assocparams); 6102 6103 if (copy_from_user(&assocparams, optval, len)) 6104 return -EFAULT; 6105 6106 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6107 6108 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 6109 return -EINVAL; 6110 6111 /* Values correspoinding to the specific association */ 6112 if (asoc) { 6113 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6114 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6115 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6116 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6117 6118 list_for_each(pos, &asoc->peer.transport_addr_list) { 6119 cnt++; 6120 } 6121 6122 assocparams.sasoc_number_peer_destinations = cnt; 6123 } else { 6124 /* Values corresponding to the endpoint */ 6125 struct sctp_sock *sp = sctp_sk(sk); 6126 6127 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6128 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6129 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6130 assocparams.sasoc_cookie_life = 6131 sp->assocparams.sasoc_cookie_life; 6132 assocparams.sasoc_number_peer_destinations = 6133 sp->assocparams. 6134 sasoc_number_peer_destinations; 6135 } 6136 6137 if (put_user(len, optlen)) 6138 return -EFAULT; 6139 6140 if (copy_to_user(optval, &assocparams, len)) 6141 return -EFAULT; 6142 6143 return 0; 6144 } 6145 6146 /* 6147 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6148 * 6149 * This socket option is a boolean flag which turns on or off mapped V4 6150 * addresses. If this option is turned on and the socket is type 6151 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6152 * If this option is turned off, then no mapping will be done of V4 6153 * addresses and a user will receive both PF_INET6 and PF_INET type 6154 * addresses on the socket. 6155 */ 6156 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6157 char __user *optval, int __user *optlen) 6158 { 6159 int val; 6160 struct sctp_sock *sp = sctp_sk(sk); 6161 6162 if (len < sizeof(int)) 6163 return -EINVAL; 6164 6165 len = sizeof(int); 6166 val = sp->v4mapped; 6167 if (put_user(len, optlen)) 6168 return -EFAULT; 6169 if (copy_to_user(optval, &val, len)) 6170 return -EFAULT; 6171 6172 return 0; 6173 } 6174 6175 /* 6176 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6177 * (chapter and verse is quoted at sctp_setsockopt_context()) 6178 */ 6179 static int sctp_getsockopt_context(struct sock *sk, int len, 6180 char __user *optval, int __user *optlen) 6181 { 6182 struct sctp_assoc_value params; 6183 struct sctp_sock *sp; 6184 struct sctp_association *asoc; 6185 6186 if (len < sizeof(struct sctp_assoc_value)) 6187 return -EINVAL; 6188 6189 len = sizeof(struct sctp_assoc_value); 6190 6191 if (copy_from_user(¶ms, optval, len)) 6192 return -EFAULT; 6193 6194 sp = sctp_sk(sk); 6195 6196 if (params.assoc_id != 0) { 6197 asoc = sctp_id2assoc(sk, params.assoc_id); 6198 if (!asoc) 6199 return -EINVAL; 6200 params.assoc_value = asoc->default_rcv_context; 6201 } else { 6202 params.assoc_value = sp->default_rcv_context; 6203 } 6204 6205 if (put_user(len, optlen)) 6206 return -EFAULT; 6207 if (copy_to_user(optval, ¶ms, len)) 6208 return -EFAULT; 6209 6210 return 0; 6211 } 6212 6213 /* 6214 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6215 * This option will get or set the maximum size to put in any outgoing 6216 * SCTP DATA chunk. If a message is larger than this size it will be 6217 * fragmented by SCTP into the specified size. Note that the underlying 6218 * SCTP implementation may fragment into smaller sized chunks when the 6219 * PMTU of the underlying association is smaller than the value set by 6220 * the user. The default value for this option is '0' which indicates 6221 * the user is NOT limiting fragmentation and only the PMTU will effect 6222 * SCTP's choice of DATA chunk size. Note also that values set larger 6223 * than the maximum size of an IP datagram will effectively let SCTP 6224 * control fragmentation (i.e. the same as setting this option to 0). 6225 * 6226 * The following structure is used to access and modify this parameter: 6227 * 6228 * struct sctp_assoc_value { 6229 * sctp_assoc_t assoc_id; 6230 * uint32_t assoc_value; 6231 * }; 6232 * 6233 * assoc_id: This parameter is ignored for one-to-one style sockets. 6234 * For one-to-many style sockets this parameter indicates which 6235 * association the user is performing an action upon. Note that if 6236 * this field's value is zero then the endpoints default value is 6237 * changed (effecting future associations only). 6238 * assoc_value: This parameter specifies the maximum size in bytes. 6239 */ 6240 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6241 char __user *optval, int __user *optlen) 6242 { 6243 struct sctp_assoc_value params; 6244 struct sctp_association *asoc; 6245 6246 if (len == sizeof(int)) { 6247 pr_warn_ratelimited(DEPRECATED 6248 "%s (pid %d) " 6249 "Use of int in maxseg socket option.\n" 6250 "Use struct sctp_assoc_value instead\n", 6251 current->comm, task_pid_nr(current)); 6252 params.assoc_id = 0; 6253 } else if (len >= sizeof(struct sctp_assoc_value)) { 6254 len = sizeof(struct sctp_assoc_value); 6255 if (copy_from_user(¶ms, optval, len)) 6256 return -EFAULT; 6257 } else 6258 return -EINVAL; 6259 6260 asoc = sctp_id2assoc(sk, params.assoc_id); 6261 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 6262 return -EINVAL; 6263 6264 if (asoc) 6265 params.assoc_value = asoc->frag_point; 6266 else 6267 params.assoc_value = sctp_sk(sk)->user_frag; 6268 6269 if (put_user(len, optlen)) 6270 return -EFAULT; 6271 if (len == sizeof(int)) { 6272 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6273 return -EFAULT; 6274 } else { 6275 if (copy_to_user(optval, ¶ms, len)) 6276 return -EFAULT; 6277 } 6278 6279 return 0; 6280 } 6281 6282 /* 6283 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6284 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6285 */ 6286 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6287 char __user *optval, int __user *optlen) 6288 { 6289 int val; 6290 6291 if (len < sizeof(int)) 6292 return -EINVAL; 6293 6294 len = sizeof(int); 6295 6296 val = sctp_sk(sk)->frag_interleave; 6297 if (put_user(len, optlen)) 6298 return -EFAULT; 6299 if (copy_to_user(optval, &val, len)) 6300 return -EFAULT; 6301 6302 return 0; 6303 } 6304 6305 /* 6306 * 7.1.25. Set or Get the sctp partial delivery point 6307 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6308 */ 6309 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6310 char __user *optval, 6311 int __user *optlen) 6312 { 6313 u32 val; 6314 6315 if (len < sizeof(u32)) 6316 return -EINVAL; 6317 6318 len = sizeof(u32); 6319 6320 val = sctp_sk(sk)->pd_point; 6321 if (put_user(len, optlen)) 6322 return -EFAULT; 6323 if (copy_to_user(optval, &val, len)) 6324 return -EFAULT; 6325 6326 return 0; 6327 } 6328 6329 /* 6330 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6331 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6332 */ 6333 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6334 char __user *optval, 6335 int __user *optlen) 6336 { 6337 struct sctp_assoc_value params; 6338 struct sctp_sock *sp; 6339 struct sctp_association *asoc; 6340 6341 if (len == sizeof(int)) { 6342 pr_warn_ratelimited(DEPRECATED 6343 "%s (pid %d) " 6344 "Use of int in max_burst socket option.\n" 6345 "Use struct sctp_assoc_value instead\n", 6346 current->comm, task_pid_nr(current)); 6347 params.assoc_id = 0; 6348 } else if (len >= sizeof(struct sctp_assoc_value)) { 6349 len = sizeof(struct sctp_assoc_value); 6350 if (copy_from_user(¶ms, optval, len)) 6351 return -EFAULT; 6352 } else 6353 return -EINVAL; 6354 6355 sp = sctp_sk(sk); 6356 6357 if (params.assoc_id != 0) { 6358 asoc = sctp_id2assoc(sk, params.assoc_id); 6359 if (!asoc) 6360 return -EINVAL; 6361 params.assoc_value = asoc->max_burst; 6362 } else 6363 params.assoc_value = sp->max_burst; 6364 6365 if (len == sizeof(int)) { 6366 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6367 return -EFAULT; 6368 } else { 6369 if (copy_to_user(optval, ¶ms, len)) 6370 return -EFAULT; 6371 } 6372 6373 return 0; 6374 6375 } 6376 6377 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6378 char __user *optval, int __user *optlen) 6379 { 6380 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6381 struct sctp_hmacalgo __user *p = (void __user *)optval; 6382 struct sctp_hmac_algo_param *hmacs; 6383 __u16 data_len = 0; 6384 u32 num_idents; 6385 int i; 6386 6387 if (!ep->auth_enable) 6388 return -EACCES; 6389 6390 hmacs = ep->auth_hmacs_list; 6391 data_len = ntohs(hmacs->param_hdr.length) - 6392 sizeof(struct sctp_paramhdr); 6393 6394 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6395 return -EINVAL; 6396 6397 len = sizeof(struct sctp_hmacalgo) + data_len; 6398 num_idents = data_len / sizeof(u16); 6399 6400 if (put_user(len, optlen)) 6401 return -EFAULT; 6402 if (put_user(num_idents, &p->shmac_num_idents)) 6403 return -EFAULT; 6404 for (i = 0; i < num_idents; i++) { 6405 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6406 6407 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6408 return -EFAULT; 6409 } 6410 return 0; 6411 } 6412 6413 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6414 char __user *optval, int __user *optlen) 6415 { 6416 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6417 struct sctp_authkeyid val; 6418 struct sctp_association *asoc; 6419 6420 if (!ep->auth_enable) 6421 return -EACCES; 6422 6423 if (len < sizeof(struct sctp_authkeyid)) 6424 return -EINVAL; 6425 6426 len = sizeof(struct sctp_authkeyid); 6427 if (copy_from_user(&val, optval, len)) 6428 return -EFAULT; 6429 6430 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6431 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6432 return -EINVAL; 6433 6434 if (asoc) 6435 val.scact_keynumber = asoc->active_key_id; 6436 else 6437 val.scact_keynumber = ep->active_key_id; 6438 6439 if (put_user(len, optlen)) 6440 return -EFAULT; 6441 if (copy_to_user(optval, &val, len)) 6442 return -EFAULT; 6443 6444 return 0; 6445 } 6446 6447 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6448 char __user *optval, int __user *optlen) 6449 { 6450 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6451 struct sctp_authchunks __user *p = (void __user *)optval; 6452 struct sctp_authchunks val; 6453 struct sctp_association *asoc; 6454 struct sctp_chunks_param *ch; 6455 u32 num_chunks = 0; 6456 char __user *to; 6457 6458 if (!ep->auth_enable) 6459 return -EACCES; 6460 6461 if (len < sizeof(struct sctp_authchunks)) 6462 return -EINVAL; 6463 6464 if (copy_from_user(&val, optval, sizeof(val))) 6465 return -EFAULT; 6466 6467 to = p->gauth_chunks; 6468 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6469 if (!asoc) 6470 return -EINVAL; 6471 6472 ch = asoc->peer.peer_chunks; 6473 if (!ch) 6474 goto num; 6475 6476 /* See if the user provided enough room for all the data */ 6477 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6478 if (len < num_chunks) 6479 return -EINVAL; 6480 6481 if (copy_to_user(to, ch->chunks, num_chunks)) 6482 return -EFAULT; 6483 num: 6484 len = sizeof(struct sctp_authchunks) + num_chunks; 6485 if (put_user(len, optlen)) 6486 return -EFAULT; 6487 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6488 return -EFAULT; 6489 return 0; 6490 } 6491 6492 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 6493 char __user *optval, int __user *optlen) 6494 { 6495 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6496 struct sctp_authchunks __user *p = (void __user *)optval; 6497 struct sctp_authchunks val; 6498 struct sctp_association *asoc; 6499 struct sctp_chunks_param *ch; 6500 u32 num_chunks = 0; 6501 char __user *to; 6502 6503 if (!ep->auth_enable) 6504 return -EACCES; 6505 6506 if (len < sizeof(struct sctp_authchunks)) 6507 return -EINVAL; 6508 6509 if (copy_from_user(&val, optval, sizeof(val))) 6510 return -EFAULT; 6511 6512 to = p->gauth_chunks; 6513 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6514 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 6515 return -EINVAL; 6516 6517 if (asoc) 6518 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 6519 else 6520 ch = ep->auth_chunk_list; 6521 6522 if (!ch) 6523 goto num; 6524 6525 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6526 if (len < sizeof(struct sctp_authchunks) + num_chunks) 6527 return -EINVAL; 6528 6529 if (copy_to_user(to, ch->chunks, num_chunks)) 6530 return -EFAULT; 6531 num: 6532 len = sizeof(struct sctp_authchunks) + num_chunks; 6533 if (put_user(len, optlen)) 6534 return -EFAULT; 6535 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6536 return -EFAULT; 6537 6538 return 0; 6539 } 6540 6541 /* 6542 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 6543 * This option gets the current number of associations that are attached 6544 * to a one-to-many style socket. The option value is an uint32_t. 6545 */ 6546 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 6547 char __user *optval, int __user *optlen) 6548 { 6549 struct sctp_sock *sp = sctp_sk(sk); 6550 struct sctp_association *asoc; 6551 u32 val = 0; 6552 6553 if (sctp_style(sk, TCP)) 6554 return -EOPNOTSUPP; 6555 6556 if (len < sizeof(u32)) 6557 return -EINVAL; 6558 6559 len = sizeof(u32); 6560 6561 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6562 val++; 6563 } 6564 6565 if (put_user(len, optlen)) 6566 return -EFAULT; 6567 if (copy_to_user(optval, &val, len)) 6568 return -EFAULT; 6569 6570 return 0; 6571 } 6572 6573 /* 6574 * 8.1.23 SCTP_AUTO_ASCONF 6575 * See the corresponding setsockopt entry as description 6576 */ 6577 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 6578 char __user *optval, int __user *optlen) 6579 { 6580 int val = 0; 6581 6582 if (len < sizeof(int)) 6583 return -EINVAL; 6584 6585 len = sizeof(int); 6586 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 6587 val = 1; 6588 if (put_user(len, optlen)) 6589 return -EFAULT; 6590 if (copy_to_user(optval, &val, len)) 6591 return -EFAULT; 6592 return 0; 6593 } 6594 6595 /* 6596 * 8.2.6. Get the Current Identifiers of Associations 6597 * (SCTP_GET_ASSOC_ID_LIST) 6598 * 6599 * This option gets the current list of SCTP association identifiers of 6600 * the SCTP associations handled by a one-to-many style socket. 6601 */ 6602 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 6603 char __user *optval, int __user *optlen) 6604 { 6605 struct sctp_sock *sp = sctp_sk(sk); 6606 struct sctp_association *asoc; 6607 struct sctp_assoc_ids *ids; 6608 u32 num = 0; 6609 6610 if (sctp_style(sk, TCP)) 6611 return -EOPNOTSUPP; 6612 6613 if (len < sizeof(struct sctp_assoc_ids)) 6614 return -EINVAL; 6615 6616 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6617 num++; 6618 } 6619 6620 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 6621 return -EINVAL; 6622 6623 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 6624 6625 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 6626 if (unlikely(!ids)) 6627 return -ENOMEM; 6628 6629 ids->gaids_number_of_ids = num; 6630 num = 0; 6631 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6632 ids->gaids_assoc_id[num++] = asoc->assoc_id; 6633 } 6634 6635 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 6636 kfree(ids); 6637 return -EFAULT; 6638 } 6639 6640 kfree(ids); 6641 return 0; 6642 } 6643 6644 /* 6645 * SCTP_PEER_ADDR_THLDS 6646 * 6647 * This option allows us to fetch the partially failed threshold for one or all 6648 * transports in an association. See Section 6.1 of: 6649 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 6650 */ 6651 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 6652 char __user *optval, 6653 int len, 6654 int __user *optlen) 6655 { 6656 struct sctp_paddrthlds val; 6657 struct sctp_transport *trans; 6658 struct sctp_association *asoc; 6659 6660 if (len < sizeof(struct sctp_paddrthlds)) 6661 return -EINVAL; 6662 len = sizeof(struct sctp_paddrthlds); 6663 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 6664 return -EFAULT; 6665 6666 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 6667 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 6668 if (!asoc) 6669 return -ENOENT; 6670 6671 val.spt_pathpfthld = asoc->pf_retrans; 6672 val.spt_pathmaxrxt = asoc->pathmaxrxt; 6673 } else { 6674 trans = sctp_addr_id2transport(sk, &val.spt_address, 6675 val.spt_assoc_id); 6676 if (!trans) 6677 return -ENOENT; 6678 6679 val.spt_pathmaxrxt = trans->pathmaxrxt; 6680 val.spt_pathpfthld = trans->pf_retrans; 6681 } 6682 6683 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 6684 return -EFAULT; 6685 6686 return 0; 6687 } 6688 6689 /* 6690 * SCTP_GET_ASSOC_STATS 6691 * 6692 * This option retrieves local per endpoint statistics. It is modeled 6693 * after OpenSolaris' implementation 6694 */ 6695 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 6696 char __user *optval, 6697 int __user *optlen) 6698 { 6699 struct sctp_assoc_stats sas; 6700 struct sctp_association *asoc = NULL; 6701 6702 /* User must provide at least the assoc id */ 6703 if (len < sizeof(sctp_assoc_t)) 6704 return -EINVAL; 6705 6706 /* Allow the struct to grow and fill in as much as possible */ 6707 len = min_t(size_t, len, sizeof(sas)); 6708 6709 if (copy_from_user(&sas, optval, len)) 6710 return -EFAULT; 6711 6712 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 6713 if (!asoc) 6714 return -EINVAL; 6715 6716 sas.sas_rtxchunks = asoc->stats.rtxchunks; 6717 sas.sas_gapcnt = asoc->stats.gapcnt; 6718 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 6719 sas.sas_osacks = asoc->stats.osacks; 6720 sas.sas_isacks = asoc->stats.isacks; 6721 sas.sas_octrlchunks = asoc->stats.octrlchunks; 6722 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 6723 sas.sas_oodchunks = asoc->stats.oodchunks; 6724 sas.sas_iodchunks = asoc->stats.iodchunks; 6725 sas.sas_ouodchunks = asoc->stats.ouodchunks; 6726 sas.sas_iuodchunks = asoc->stats.iuodchunks; 6727 sas.sas_idupchunks = asoc->stats.idupchunks; 6728 sas.sas_opackets = asoc->stats.opackets; 6729 sas.sas_ipackets = asoc->stats.ipackets; 6730 6731 /* New high max rto observed, will return 0 if not a single 6732 * RTO update took place. obs_rto_ipaddr will be bogus 6733 * in such a case 6734 */ 6735 sas.sas_maxrto = asoc->stats.max_obs_rto; 6736 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 6737 sizeof(struct sockaddr_storage)); 6738 6739 /* Mark beginning of a new observation period */ 6740 asoc->stats.max_obs_rto = asoc->rto_min; 6741 6742 if (put_user(len, optlen)) 6743 return -EFAULT; 6744 6745 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 6746 6747 if (copy_to_user(optval, &sas, len)) 6748 return -EFAULT; 6749 6750 return 0; 6751 } 6752 6753 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 6754 char __user *optval, 6755 int __user *optlen) 6756 { 6757 int val = 0; 6758 6759 if (len < sizeof(int)) 6760 return -EINVAL; 6761 6762 len = sizeof(int); 6763 if (sctp_sk(sk)->recvrcvinfo) 6764 val = 1; 6765 if (put_user(len, optlen)) 6766 return -EFAULT; 6767 if (copy_to_user(optval, &val, len)) 6768 return -EFAULT; 6769 6770 return 0; 6771 } 6772 6773 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 6774 char __user *optval, 6775 int __user *optlen) 6776 { 6777 int val = 0; 6778 6779 if (len < sizeof(int)) 6780 return -EINVAL; 6781 6782 len = sizeof(int); 6783 if (sctp_sk(sk)->recvnxtinfo) 6784 val = 1; 6785 if (put_user(len, optlen)) 6786 return -EFAULT; 6787 if (copy_to_user(optval, &val, len)) 6788 return -EFAULT; 6789 6790 return 0; 6791 } 6792 6793 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 6794 char __user *optval, 6795 int __user *optlen) 6796 { 6797 struct sctp_assoc_value params; 6798 struct sctp_association *asoc; 6799 int retval = -EFAULT; 6800 6801 if (len < sizeof(params)) { 6802 retval = -EINVAL; 6803 goto out; 6804 } 6805 6806 len = sizeof(params); 6807 if (copy_from_user(¶ms, optval, len)) 6808 goto out; 6809 6810 asoc = sctp_id2assoc(sk, params.assoc_id); 6811 if (asoc) { 6812 params.assoc_value = asoc->prsctp_enable; 6813 } else if (!params.assoc_id) { 6814 struct sctp_sock *sp = sctp_sk(sk); 6815 6816 params.assoc_value = sp->ep->prsctp_enable; 6817 } else { 6818 retval = -EINVAL; 6819 goto out; 6820 } 6821 6822 if (put_user(len, optlen)) 6823 goto out; 6824 6825 if (copy_to_user(optval, ¶ms, len)) 6826 goto out; 6827 6828 retval = 0; 6829 6830 out: 6831 return retval; 6832 } 6833 6834 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 6835 char __user *optval, 6836 int __user *optlen) 6837 { 6838 struct sctp_default_prinfo info; 6839 struct sctp_association *asoc; 6840 int retval = -EFAULT; 6841 6842 if (len < sizeof(info)) { 6843 retval = -EINVAL; 6844 goto out; 6845 } 6846 6847 len = sizeof(info); 6848 if (copy_from_user(&info, optval, len)) 6849 goto out; 6850 6851 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 6852 if (asoc) { 6853 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 6854 info.pr_value = asoc->default_timetolive; 6855 } else if (!info.pr_assoc_id) { 6856 struct sctp_sock *sp = sctp_sk(sk); 6857 6858 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 6859 info.pr_value = sp->default_timetolive; 6860 } else { 6861 retval = -EINVAL; 6862 goto out; 6863 } 6864 6865 if (put_user(len, optlen)) 6866 goto out; 6867 6868 if (copy_to_user(optval, &info, len)) 6869 goto out; 6870 6871 retval = 0; 6872 6873 out: 6874 return retval; 6875 } 6876 6877 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 6878 char __user *optval, 6879 int __user *optlen) 6880 { 6881 struct sctp_prstatus params; 6882 struct sctp_association *asoc; 6883 int policy; 6884 int retval = -EINVAL; 6885 6886 if (len < sizeof(params)) 6887 goto out; 6888 6889 len = sizeof(params); 6890 if (copy_from_user(¶ms, optval, len)) { 6891 retval = -EFAULT; 6892 goto out; 6893 } 6894 6895 policy = params.sprstat_policy; 6896 if (policy & ~SCTP_PR_SCTP_MASK) 6897 goto out; 6898 6899 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 6900 if (!asoc) 6901 goto out; 6902 6903 if (policy == SCTP_PR_SCTP_NONE) { 6904 params.sprstat_abandoned_unsent = 0; 6905 params.sprstat_abandoned_sent = 0; 6906 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 6907 params.sprstat_abandoned_unsent += 6908 asoc->abandoned_unsent[policy]; 6909 params.sprstat_abandoned_sent += 6910 asoc->abandoned_sent[policy]; 6911 } 6912 } else { 6913 params.sprstat_abandoned_unsent = 6914 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 6915 params.sprstat_abandoned_sent = 6916 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 6917 } 6918 6919 if (put_user(len, optlen)) { 6920 retval = -EFAULT; 6921 goto out; 6922 } 6923 6924 if (copy_to_user(optval, ¶ms, len)) { 6925 retval = -EFAULT; 6926 goto out; 6927 } 6928 6929 retval = 0; 6930 6931 out: 6932 return retval; 6933 } 6934 6935 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 6936 char __user *optval, 6937 int __user *optlen) 6938 { 6939 struct sctp_stream_out_ext *streamoute; 6940 struct sctp_association *asoc; 6941 struct sctp_prstatus params; 6942 int retval = -EINVAL; 6943 int policy; 6944 6945 if (len < sizeof(params)) 6946 goto out; 6947 6948 len = sizeof(params); 6949 if (copy_from_user(¶ms, optval, len)) { 6950 retval = -EFAULT; 6951 goto out; 6952 } 6953 6954 policy = params.sprstat_policy; 6955 if (policy & ~SCTP_PR_SCTP_MASK) 6956 goto out; 6957 6958 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 6959 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 6960 goto out; 6961 6962 streamoute = asoc->stream.out[params.sprstat_sid].ext; 6963 if (!streamoute) { 6964 /* Not allocated yet, means all stats are 0 */ 6965 params.sprstat_abandoned_unsent = 0; 6966 params.sprstat_abandoned_sent = 0; 6967 retval = 0; 6968 goto out; 6969 } 6970 6971 if (policy == SCTP_PR_SCTP_NONE) { 6972 params.sprstat_abandoned_unsent = 0; 6973 params.sprstat_abandoned_sent = 0; 6974 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 6975 params.sprstat_abandoned_unsent += 6976 streamoute->abandoned_unsent[policy]; 6977 params.sprstat_abandoned_sent += 6978 streamoute->abandoned_sent[policy]; 6979 } 6980 } else { 6981 params.sprstat_abandoned_unsent = 6982 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 6983 params.sprstat_abandoned_sent = 6984 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 6985 } 6986 6987 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 6988 retval = -EFAULT; 6989 goto out; 6990 } 6991 6992 retval = 0; 6993 6994 out: 6995 return retval; 6996 } 6997 6998 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 6999 char __user *optval, 7000 int __user *optlen) 7001 { 7002 struct sctp_assoc_value params; 7003 struct sctp_association *asoc; 7004 int retval = -EFAULT; 7005 7006 if (len < sizeof(params)) { 7007 retval = -EINVAL; 7008 goto out; 7009 } 7010 7011 len = sizeof(params); 7012 if (copy_from_user(¶ms, optval, len)) 7013 goto out; 7014 7015 asoc = sctp_id2assoc(sk, params.assoc_id); 7016 if (asoc) { 7017 params.assoc_value = asoc->reconf_enable; 7018 } else if (!params.assoc_id) { 7019 struct sctp_sock *sp = sctp_sk(sk); 7020 7021 params.assoc_value = sp->ep->reconf_enable; 7022 } else { 7023 retval = -EINVAL; 7024 goto out; 7025 } 7026 7027 if (put_user(len, optlen)) 7028 goto out; 7029 7030 if (copy_to_user(optval, ¶ms, len)) 7031 goto out; 7032 7033 retval = 0; 7034 7035 out: 7036 return retval; 7037 } 7038 7039 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7040 char __user *optval, 7041 int __user *optlen) 7042 { 7043 struct sctp_assoc_value params; 7044 struct sctp_association *asoc; 7045 int retval = -EFAULT; 7046 7047 if (len < sizeof(params)) { 7048 retval = -EINVAL; 7049 goto out; 7050 } 7051 7052 len = sizeof(params); 7053 if (copy_from_user(¶ms, optval, len)) 7054 goto out; 7055 7056 asoc = sctp_id2assoc(sk, params.assoc_id); 7057 if (asoc) { 7058 params.assoc_value = asoc->strreset_enable; 7059 } else if (!params.assoc_id) { 7060 struct sctp_sock *sp = sctp_sk(sk); 7061 7062 params.assoc_value = sp->ep->strreset_enable; 7063 } else { 7064 retval = -EINVAL; 7065 goto out; 7066 } 7067 7068 if (put_user(len, optlen)) 7069 goto out; 7070 7071 if (copy_to_user(optval, ¶ms, len)) 7072 goto out; 7073 7074 retval = 0; 7075 7076 out: 7077 return retval; 7078 } 7079 7080 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7081 char __user *optval, 7082 int __user *optlen) 7083 { 7084 struct sctp_assoc_value params; 7085 struct sctp_association *asoc; 7086 int retval = -EFAULT; 7087 7088 if (len < sizeof(params)) { 7089 retval = -EINVAL; 7090 goto out; 7091 } 7092 7093 len = sizeof(params); 7094 if (copy_from_user(¶ms, optval, len)) 7095 goto out; 7096 7097 asoc = sctp_id2assoc(sk, params.assoc_id); 7098 if (!asoc) { 7099 retval = -EINVAL; 7100 goto out; 7101 } 7102 7103 params.assoc_value = sctp_sched_get_sched(asoc); 7104 7105 if (put_user(len, optlen)) 7106 goto out; 7107 7108 if (copy_to_user(optval, ¶ms, len)) 7109 goto out; 7110 7111 retval = 0; 7112 7113 out: 7114 return retval; 7115 } 7116 7117 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7118 char __user *optval, 7119 int __user *optlen) 7120 { 7121 struct sctp_stream_value params; 7122 struct sctp_association *asoc; 7123 int retval = -EFAULT; 7124 7125 if (len < sizeof(params)) { 7126 retval = -EINVAL; 7127 goto out; 7128 } 7129 7130 len = sizeof(params); 7131 if (copy_from_user(¶ms, optval, len)) 7132 goto out; 7133 7134 asoc = sctp_id2assoc(sk, params.assoc_id); 7135 if (!asoc) { 7136 retval = -EINVAL; 7137 goto out; 7138 } 7139 7140 retval = sctp_sched_get_value(asoc, params.stream_id, 7141 ¶ms.stream_value); 7142 if (retval) 7143 goto out; 7144 7145 if (put_user(len, optlen)) { 7146 retval = -EFAULT; 7147 goto out; 7148 } 7149 7150 if (copy_to_user(optval, ¶ms, len)) { 7151 retval = -EFAULT; 7152 goto out; 7153 } 7154 7155 out: 7156 return retval; 7157 } 7158 7159 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7160 char __user *optval, 7161 int __user *optlen) 7162 { 7163 struct sctp_assoc_value params; 7164 struct sctp_association *asoc; 7165 int retval = -EFAULT; 7166 7167 if (len < sizeof(params)) { 7168 retval = -EINVAL; 7169 goto out; 7170 } 7171 7172 len = sizeof(params); 7173 if (copy_from_user(¶ms, optval, len)) 7174 goto out; 7175 7176 asoc = sctp_id2assoc(sk, params.assoc_id); 7177 if (asoc) { 7178 params.assoc_value = asoc->intl_enable; 7179 } else if (!params.assoc_id) { 7180 struct sctp_sock *sp = sctp_sk(sk); 7181 7182 params.assoc_value = sp->strm_interleave; 7183 } else { 7184 retval = -EINVAL; 7185 goto out; 7186 } 7187 7188 if (put_user(len, optlen)) 7189 goto out; 7190 7191 if (copy_to_user(optval, ¶ms, len)) 7192 goto out; 7193 7194 retval = 0; 7195 7196 out: 7197 return retval; 7198 } 7199 7200 static int sctp_getsockopt(struct sock *sk, int level, int optname, 7201 char __user *optval, int __user *optlen) 7202 { 7203 int retval = 0; 7204 int len; 7205 7206 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 7207 7208 /* I can hardly begin to describe how wrong this is. This is 7209 * so broken as to be worse than useless. The API draft 7210 * REALLY is NOT helpful here... I am not convinced that the 7211 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 7212 * are at all well-founded. 7213 */ 7214 if (level != SOL_SCTP) { 7215 struct sctp_af *af = sctp_sk(sk)->pf->af; 7216 7217 retval = af->getsockopt(sk, level, optname, optval, optlen); 7218 return retval; 7219 } 7220 7221 if (get_user(len, optlen)) 7222 return -EFAULT; 7223 7224 if (len < 0) 7225 return -EINVAL; 7226 7227 lock_sock(sk); 7228 7229 switch (optname) { 7230 case SCTP_STATUS: 7231 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 7232 break; 7233 case SCTP_DISABLE_FRAGMENTS: 7234 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 7235 optlen); 7236 break; 7237 case SCTP_EVENTS: 7238 retval = sctp_getsockopt_events(sk, len, optval, optlen); 7239 break; 7240 case SCTP_AUTOCLOSE: 7241 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 7242 break; 7243 case SCTP_SOCKOPT_PEELOFF: 7244 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 7245 break; 7246 case SCTP_SOCKOPT_PEELOFF_FLAGS: 7247 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 7248 break; 7249 case SCTP_PEER_ADDR_PARAMS: 7250 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 7251 optlen); 7252 break; 7253 case SCTP_DELAYED_SACK: 7254 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 7255 optlen); 7256 break; 7257 case SCTP_INITMSG: 7258 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 7259 break; 7260 case SCTP_GET_PEER_ADDRS: 7261 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 7262 optlen); 7263 break; 7264 case SCTP_GET_LOCAL_ADDRS: 7265 retval = sctp_getsockopt_local_addrs(sk, len, optval, 7266 optlen); 7267 break; 7268 case SCTP_SOCKOPT_CONNECTX3: 7269 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 7270 break; 7271 case SCTP_DEFAULT_SEND_PARAM: 7272 retval = sctp_getsockopt_default_send_param(sk, len, 7273 optval, optlen); 7274 break; 7275 case SCTP_DEFAULT_SNDINFO: 7276 retval = sctp_getsockopt_default_sndinfo(sk, len, 7277 optval, optlen); 7278 break; 7279 case SCTP_PRIMARY_ADDR: 7280 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 7281 break; 7282 case SCTP_NODELAY: 7283 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 7284 break; 7285 case SCTP_RTOINFO: 7286 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 7287 break; 7288 case SCTP_ASSOCINFO: 7289 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 7290 break; 7291 case SCTP_I_WANT_MAPPED_V4_ADDR: 7292 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 7293 break; 7294 case SCTP_MAXSEG: 7295 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 7296 break; 7297 case SCTP_GET_PEER_ADDR_INFO: 7298 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 7299 optlen); 7300 break; 7301 case SCTP_ADAPTATION_LAYER: 7302 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 7303 optlen); 7304 break; 7305 case SCTP_CONTEXT: 7306 retval = sctp_getsockopt_context(sk, len, optval, optlen); 7307 break; 7308 case SCTP_FRAGMENT_INTERLEAVE: 7309 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 7310 optlen); 7311 break; 7312 case SCTP_PARTIAL_DELIVERY_POINT: 7313 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 7314 optlen); 7315 break; 7316 case SCTP_MAX_BURST: 7317 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 7318 break; 7319 case SCTP_AUTH_KEY: 7320 case SCTP_AUTH_CHUNK: 7321 case SCTP_AUTH_DELETE_KEY: 7322 case SCTP_AUTH_DEACTIVATE_KEY: 7323 retval = -EOPNOTSUPP; 7324 break; 7325 case SCTP_HMAC_IDENT: 7326 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 7327 break; 7328 case SCTP_AUTH_ACTIVE_KEY: 7329 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 7330 break; 7331 case SCTP_PEER_AUTH_CHUNKS: 7332 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 7333 optlen); 7334 break; 7335 case SCTP_LOCAL_AUTH_CHUNKS: 7336 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 7337 optlen); 7338 break; 7339 case SCTP_GET_ASSOC_NUMBER: 7340 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 7341 break; 7342 case SCTP_GET_ASSOC_ID_LIST: 7343 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 7344 break; 7345 case SCTP_AUTO_ASCONF: 7346 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 7347 break; 7348 case SCTP_PEER_ADDR_THLDS: 7349 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 7350 break; 7351 case SCTP_GET_ASSOC_STATS: 7352 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 7353 break; 7354 case SCTP_RECVRCVINFO: 7355 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 7356 break; 7357 case SCTP_RECVNXTINFO: 7358 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 7359 break; 7360 case SCTP_PR_SUPPORTED: 7361 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 7362 break; 7363 case SCTP_DEFAULT_PRINFO: 7364 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 7365 optlen); 7366 break; 7367 case SCTP_PR_ASSOC_STATUS: 7368 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 7369 optlen); 7370 break; 7371 case SCTP_PR_STREAM_STATUS: 7372 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 7373 optlen); 7374 break; 7375 case SCTP_RECONFIG_SUPPORTED: 7376 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 7377 optlen); 7378 break; 7379 case SCTP_ENABLE_STREAM_RESET: 7380 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 7381 optlen); 7382 break; 7383 case SCTP_STREAM_SCHEDULER: 7384 retval = sctp_getsockopt_scheduler(sk, len, optval, 7385 optlen); 7386 break; 7387 case SCTP_STREAM_SCHEDULER_VALUE: 7388 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 7389 optlen); 7390 break; 7391 case SCTP_INTERLEAVING_SUPPORTED: 7392 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 7393 optlen); 7394 break; 7395 default: 7396 retval = -ENOPROTOOPT; 7397 break; 7398 } 7399 7400 release_sock(sk); 7401 return retval; 7402 } 7403 7404 static int sctp_hash(struct sock *sk) 7405 { 7406 /* STUB */ 7407 return 0; 7408 } 7409 7410 static void sctp_unhash(struct sock *sk) 7411 { 7412 /* STUB */ 7413 } 7414 7415 /* Check if port is acceptable. Possibly find first available port. 7416 * 7417 * The port hash table (contained in the 'global' SCTP protocol storage 7418 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 7419 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 7420 * list (the list number is the port number hashed out, so as you 7421 * would expect from a hash function, all the ports in a given list have 7422 * such a number that hashes out to the same list number; you were 7423 * expecting that, right?); so each list has a set of ports, with a 7424 * link to the socket (struct sock) that uses it, the port number and 7425 * a fastreuse flag (FIXME: NPI ipg). 7426 */ 7427 static struct sctp_bind_bucket *sctp_bucket_create( 7428 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 7429 7430 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 7431 { 7432 struct sctp_bind_hashbucket *head; /* hash list */ 7433 struct sctp_bind_bucket *pp; 7434 unsigned short snum; 7435 int ret; 7436 7437 snum = ntohs(addr->v4.sin_port); 7438 7439 pr_debug("%s: begins, snum:%d\n", __func__, snum); 7440 7441 local_bh_disable(); 7442 7443 if (snum == 0) { 7444 /* Search for an available port. */ 7445 int low, high, remaining, index; 7446 unsigned int rover; 7447 struct net *net = sock_net(sk); 7448 7449 inet_get_local_port_range(net, &low, &high); 7450 remaining = (high - low) + 1; 7451 rover = prandom_u32() % remaining + low; 7452 7453 do { 7454 rover++; 7455 if ((rover < low) || (rover > high)) 7456 rover = low; 7457 if (inet_is_local_reserved_port(net, rover)) 7458 continue; 7459 index = sctp_phashfn(sock_net(sk), rover); 7460 head = &sctp_port_hashtable[index]; 7461 spin_lock(&head->lock); 7462 sctp_for_each_hentry(pp, &head->chain) 7463 if ((pp->port == rover) && 7464 net_eq(sock_net(sk), pp->net)) 7465 goto next; 7466 break; 7467 next: 7468 spin_unlock(&head->lock); 7469 } while (--remaining > 0); 7470 7471 /* Exhausted local port range during search? */ 7472 ret = 1; 7473 if (remaining <= 0) 7474 goto fail; 7475 7476 /* OK, here is the one we will use. HEAD (the port 7477 * hash table list entry) is non-NULL and we hold it's 7478 * mutex. 7479 */ 7480 snum = rover; 7481 } else { 7482 /* We are given an specific port number; we verify 7483 * that it is not being used. If it is used, we will 7484 * exahust the search in the hash list corresponding 7485 * to the port number (snum) - we detect that with the 7486 * port iterator, pp being NULL. 7487 */ 7488 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 7489 spin_lock(&head->lock); 7490 sctp_for_each_hentry(pp, &head->chain) { 7491 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 7492 goto pp_found; 7493 } 7494 } 7495 pp = NULL; 7496 goto pp_not_found; 7497 pp_found: 7498 if (!hlist_empty(&pp->owner)) { 7499 /* We had a port hash table hit - there is an 7500 * available port (pp != NULL) and it is being 7501 * used by other socket (pp->owner not empty); that other 7502 * socket is going to be sk2. 7503 */ 7504 int reuse = sk->sk_reuse; 7505 struct sock *sk2; 7506 7507 pr_debug("%s: found a possible match\n", __func__); 7508 7509 if (pp->fastreuse && sk->sk_reuse && 7510 sk->sk_state != SCTP_SS_LISTENING) 7511 goto success; 7512 7513 /* Run through the list of sockets bound to the port 7514 * (pp->port) [via the pointers bind_next and 7515 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 7516 * we get the endpoint they describe and run through 7517 * the endpoint's list of IP (v4 or v6) addresses, 7518 * comparing each of the addresses with the address of 7519 * the socket sk. If we find a match, then that means 7520 * that this port/socket (sk) combination are already 7521 * in an endpoint. 7522 */ 7523 sk_for_each_bound(sk2, &pp->owner) { 7524 struct sctp_endpoint *ep2; 7525 ep2 = sctp_sk(sk2)->ep; 7526 7527 if (sk == sk2 || 7528 (reuse && sk2->sk_reuse && 7529 sk2->sk_state != SCTP_SS_LISTENING)) 7530 continue; 7531 7532 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 7533 sctp_sk(sk2), sctp_sk(sk))) { 7534 ret = (long)sk2; 7535 goto fail_unlock; 7536 } 7537 } 7538 7539 pr_debug("%s: found a match\n", __func__); 7540 } 7541 pp_not_found: 7542 /* If there was a hash table miss, create a new port. */ 7543 ret = 1; 7544 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 7545 goto fail_unlock; 7546 7547 /* In either case (hit or miss), make sure fastreuse is 1 only 7548 * if sk->sk_reuse is too (that is, if the caller requested 7549 * SO_REUSEADDR on this socket -sk-). 7550 */ 7551 if (hlist_empty(&pp->owner)) { 7552 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 7553 pp->fastreuse = 1; 7554 else 7555 pp->fastreuse = 0; 7556 } else if (pp->fastreuse && 7557 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 7558 pp->fastreuse = 0; 7559 7560 /* We are set, so fill up all the data in the hash table 7561 * entry, tie the socket list information with the rest of the 7562 * sockets FIXME: Blurry, NPI (ipg). 7563 */ 7564 success: 7565 if (!sctp_sk(sk)->bind_hash) { 7566 inet_sk(sk)->inet_num = snum; 7567 sk_add_bind_node(sk, &pp->owner); 7568 sctp_sk(sk)->bind_hash = pp; 7569 } 7570 ret = 0; 7571 7572 fail_unlock: 7573 spin_unlock(&head->lock); 7574 7575 fail: 7576 local_bh_enable(); 7577 return ret; 7578 } 7579 7580 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 7581 * port is requested. 7582 */ 7583 static int sctp_get_port(struct sock *sk, unsigned short snum) 7584 { 7585 union sctp_addr addr; 7586 struct sctp_af *af = sctp_sk(sk)->pf->af; 7587 7588 /* Set up a dummy address struct from the sk. */ 7589 af->from_sk(&addr, sk); 7590 addr.v4.sin_port = htons(snum); 7591 7592 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 7593 return !!sctp_get_port_local(sk, &addr); 7594 } 7595 7596 /* 7597 * Move a socket to LISTENING state. 7598 */ 7599 static int sctp_listen_start(struct sock *sk, int backlog) 7600 { 7601 struct sctp_sock *sp = sctp_sk(sk); 7602 struct sctp_endpoint *ep = sp->ep; 7603 struct crypto_shash *tfm = NULL; 7604 char alg[32]; 7605 7606 /* Allocate HMAC for generating cookie. */ 7607 if (!sp->hmac && sp->sctp_hmac_alg) { 7608 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 7609 tfm = crypto_alloc_shash(alg, 0, 0); 7610 if (IS_ERR(tfm)) { 7611 net_info_ratelimited("failed to load transform for %s: %ld\n", 7612 sp->sctp_hmac_alg, PTR_ERR(tfm)); 7613 return -ENOSYS; 7614 } 7615 sctp_sk(sk)->hmac = tfm; 7616 } 7617 7618 /* 7619 * If a bind() or sctp_bindx() is not called prior to a listen() 7620 * call that allows new associations to be accepted, the system 7621 * picks an ephemeral port and will choose an address set equivalent 7622 * to binding with a wildcard address. 7623 * 7624 * This is not currently spelled out in the SCTP sockets 7625 * extensions draft, but follows the practice as seen in TCP 7626 * sockets. 7627 * 7628 */ 7629 inet_sk_set_state(sk, SCTP_SS_LISTENING); 7630 if (!ep->base.bind_addr.port) { 7631 if (sctp_autobind(sk)) 7632 return -EAGAIN; 7633 } else { 7634 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 7635 inet_sk_set_state(sk, SCTP_SS_CLOSED); 7636 return -EADDRINUSE; 7637 } 7638 } 7639 7640 sk->sk_max_ack_backlog = backlog; 7641 sctp_hash_endpoint(ep); 7642 return 0; 7643 } 7644 7645 /* 7646 * 4.1.3 / 5.1.3 listen() 7647 * 7648 * By default, new associations are not accepted for UDP style sockets. 7649 * An application uses listen() to mark a socket as being able to 7650 * accept new associations. 7651 * 7652 * On TCP style sockets, applications use listen() to ready the SCTP 7653 * endpoint for accepting inbound associations. 7654 * 7655 * On both types of endpoints a backlog of '0' disables listening. 7656 * 7657 * Move a socket to LISTENING state. 7658 */ 7659 int sctp_inet_listen(struct socket *sock, int backlog) 7660 { 7661 struct sock *sk = sock->sk; 7662 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7663 int err = -EINVAL; 7664 7665 if (unlikely(backlog < 0)) 7666 return err; 7667 7668 lock_sock(sk); 7669 7670 /* Peeled-off sockets are not allowed to listen(). */ 7671 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 7672 goto out; 7673 7674 if (sock->state != SS_UNCONNECTED) 7675 goto out; 7676 7677 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 7678 goto out; 7679 7680 /* If backlog is zero, disable listening. */ 7681 if (!backlog) { 7682 if (sctp_sstate(sk, CLOSED)) 7683 goto out; 7684 7685 err = 0; 7686 sctp_unhash_endpoint(ep); 7687 sk->sk_state = SCTP_SS_CLOSED; 7688 if (sk->sk_reuse) 7689 sctp_sk(sk)->bind_hash->fastreuse = 1; 7690 goto out; 7691 } 7692 7693 /* If we are already listening, just update the backlog */ 7694 if (sctp_sstate(sk, LISTENING)) 7695 sk->sk_max_ack_backlog = backlog; 7696 else { 7697 err = sctp_listen_start(sk, backlog); 7698 if (err) 7699 goto out; 7700 } 7701 7702 err = 0; 7703 out: 7704 release_sock(sk); 7705 return err; 7706 } 7707 7708 /* 7709 * This function is done by modeling the current datagram_poll() and the 7710 * tcp_poll(). Note that, based on these implementations, we don't 7711 * lock the socket in this function, even though it seems that, 7712 * ideally, locking or some other mechanisms can be used to ensure 7713 * the integrity of the counters (sndbuf and wmem_alloc) used 7714 * in this place. We assume that we don't need locks either until proven 7715 * otherwise. 7716 * 7717 * Another thing to note is that we include the Async I/O support 7718 * here, again, by modeling the current TCP/UDP code. We don't have 7719 * a good way to test with it yet. 7720 */ 7721 __poll_t sctp_poll_mask(struct socket *sock, __poll_t events) 7722 { 7723 struct sock *sk = sock->sk; 7724 struct sctp_sock *sp = sctp_sk(sk); 7725 __poll_t mask; 7726 7727 sock_rps_record_flow(sk); 7728 7729 /* A TCP-style listening socket becomes readable when the accept queue 7730 * is not empty. 7731 */ 7732 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 7733 return (!list_empty(&sp->ep->asocs)) ? 7734 (EPOLLIN | EPOLLRDNORM) : 0; 7735 7736 mask = 0; 7737 7738 /* Is there any exceptional events? */ 7739 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 7740 mask |= EPOLLERR | 7741 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 7742 if (sk->sk_shutdown & RCV_SHUTDOWN) 7743 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 7744 if (sk->sk_shutdown == SHUTDOWN_MASK) 7745 mask |= EPOLLHUP; 7746 7747 /* Is it readable? Reconsider this code with TCP-style support. */ 7748 if (!skb_queue_empty(&sk->sk_receive_queue)) 7749 mask |= EPOLLIN | EPOLLRDNORM; 7750 7751 /* The association is either gone or not ready. */ 7752 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 7753 return mask; 7754 7755 /* Is it writable? */ 7756 if (sctp_writeable(sk)) { 7757 mask |= EPOLLOUT | EPOLLWRNORM; 7758 } else { 7759 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 7760 /* 7761 * Since the socket is not locked, the buffer 7762 * might be made available after the writeable check and 7763 * before the bit is set. This could cause a lost I/O 7764 * signal. tcp_poll() has a race breaker for this race 7765 * condition. Based on their implementation, we put 7766 * in the following code to cover it as well. 7767 */ 7768 if (sctp_writeable(sk)) 7769 mask |= EPOLLOUT | EPOLLWRNORM; 7770 } 7771 return mask; 7772 } 7773 7774 /******************************************************************** 7775 * 2nd Level Abstractions 7776 ********************************************************************/ 7777 7778 static struct sctp_bind_bucket *sctp_bucket_create( 7779 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 7780 { 7781 struct sctp_bind_bucket *pp; 7782 7783 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 7784 if (pp) { 7785 SCTP_DBG_OBJCNT_INC(bind_bucket); 7786 pp->port = snum; 7787 pp->fastreuse = 0; 7788 INIT_HLIST_HEAD(&pp->owner); 7789 pp->net = net; 7790 hlist_add_head(&pp->node, &head->chain); 7791 } 7792 return pp; 7793 } 7794 7795 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 7796 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 7797 { 7798 if (pp && hlist_empty(&pp->owner)) { 7799 __hlist_del(&pp->node); 7800 kmem_cache_free(sctp_bucket_cachep, pp); 7801 SCTP_DBG_OBJCNT_DEC(bind_bucket); 7802 } 7803 } 7804 7805 /* Release this socket's reference to a local port. */ 7806 static inline void __sctp_put_port(struct sock *sk) 7807 { 7808 struct sctp_bind_hashbucket *head = 7809 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 7810 inet_sk(sk)->inet_num)]; 7811 struct sctp_bind_bucket *pp; 7812 7813 spin_lock(&head->lock); 7814 pp = sctp_sk(sk)->bind_hash; 7815 __sk_del_bind_node(sk); 7816 sctp_sk(sk)->bind_hash = NULL; 7817 inet_sk(sk)->inet_num = 0; 7818 sctp_bucket_destroy(pp); 7819 spin_unlock(&head->lock); 7820 } 7821 7822 void sctp_put_port(struct sock *sk) 7823 { 7824 local_bh_disable(); 7825 __sctp_put_port(sk); 7826 local_bh_enable(); 7827 } 7828 7829 /* 7830 * The system picks an ephemeral port and choose an address set equivalent 7831 * to binding with a wildcard address. 7832 * One of those addresses will be the primary address for the association. 7833 * This automatically enables the multihoming capability of SCTP. 7834 */ 7835 static int sctp_autobind(struct sock *sk) 7836 { 7837 union sctp_addr autoaddr; 7838 struct sctp_af *af; 7839 __be16 port; 7840 7841 /* Initialize a local sockaddr structure to INADDR_ANY. */ 7842 af = sctp_sk(sk)->pf->af; 7843 7844 port = htons(inet_sk(sk)->inet_num); 7845 af->inaddr_any(&autoaddr, port); 7846 7847 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 7848 } 7849 7850 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 7851 * 7852 * From RFC 2292 7853 * 4.2 The cmsghdr Structure * 7854 * 7855 * When ancillary data is sent or received, any number of ancillary data 7856 * objects can be specified by the msg_control and msg_controllen members of 7857 * the msghdr structure, because each object is preceded by 7858 * a cmsghdr structure defining the object's length (the cmsg_len member). 7859 * Historically Berkeley-derived implementations have passed only one object 7860 * at a time, but this API allows multiple objects to be 7861 * passed in a single call to sendmsg() or recvmsg(). The following example 7862 * shows two ancillary data objects in a control buffer. 7863 * 7864 * |<--------------------------- msg_controllen -------------------------->| 7865 * | | 7866 * 7867 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 7868 * 7869 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 7870 * | | | 7871 * 7872 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 7873 * 7874 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 7875 * | | | | | 7876 * 7877 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 7878 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 7879 * 7880 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 7881 * 7882 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 7883 * ^ 7884 * | 7885 * 7886 * msg_control 7887 * points here 7888 */ 7889 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 7890 { 7891 struct msghdr *my_msg = (struct msghdr *)msg; 7892 struct cmsghdr *cmsg; 7893 7894 for_each_cmsghdr(cmsg, my_msg) { 7895 if (!CMSG_OK(my_msg, cmsg)) 7896 return -EINVAL; 7897 7898 /* Should we parse this header or ignore? */ 7899 if (cmsg->cmsg_level != IPPROTO_SCTP) 7900 continue; 7901 7902 /* Strictly check lengths following example in SCM code. */ 7903 switch (cmsg->cmsg_type) { 7904 case SCTP_INIT: 7905 /* SCTP Socket API Extension 7906 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 7907 * 7908 * This cmsghdr structure provides information for 7909 * initializing new SCTP associations with sendmsg(). 7910 * The SCTP_INITMSG socket option uses this same data 7911 * structure. This structure is not used for 7912 * recvmsg(). 7913 * 7914 * cmsg_level cmsg_type cmsg_data[] 7915 * ------------ ------------ ---------------------- 7916 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 7917 */ 7918 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 7919 return -EINVAL; 7920 7921 cmsgs->init = CMSG_DATA(cmsg); 7922 break; 7923 7924 case SCTP_SNDRCV: 7925 /* SCTP Socket API Extension 7926 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 7927 * 7928 * This cmsghdr structure specifies SCTP options for 7929 * sendmsg() and describes SCTP header information 7930 * about a received message through recvmsg(). 7931 * 7932 * cmsg_level cmsg_type cmsg_data[] 7933 * ------------ ------------ ---------------------- 7934 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 7935 */ 7936 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 7937 return -EINVAL; 7938 7939 cmsgs->srinfo = CMSG_DATA(cmsg); 7940 7941 if (cmsgs->srinfo->sinfo_flags & 7942 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 7943 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 7944 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 7945 return -EINVAL; 7946 break; 7947 7948 case SCTP_SNDINFO: 7949 /* SCTP Socket API Extension 7950 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 7951 * 7952 * This cmsghdr structure specifies SCTP options for 7953 * sendmsg(). This structure and SCTP_RCVINFO replaces 7954 * SCTP_SNDRCV which has been deprecated. 7955 * 7956 * cmsg_level cmsg_type cmsg_data[] 7957 * ------------ ------------ --------------------- 7958 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 7959 */ 7960 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 7961 return -EINVAL; 7962 7963 cmsgs->sinfo = CMSG_DATA(cmsg); 7964 7965 if (cmsgs->sinfo->snd_flags & 7966 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 7967 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 7968 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 7969 return -EINVAL; 7970 break; 7971 case SCTP_PRINFO: 7972 /* SCTP Socket API Extension 7973 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 7974 * 7975 * This cmsghdr structure specifies SCTP options for sendmsg(). 7976 * 7977 * cmsg_level cmsg_type cmsg_data[] 7978 * ------------ ------------ --------------------- 7979 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 7980 */ 7981 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 7982 return -EINVAL; 7983 7984 cmsgs->prinfo = CMSG_DATA(cmsg); 7985 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 7986 return -EINVAL; 7987 7988 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 7989 cmsgs->prinfo->pr_value = 0; 7990 break; 7991 case SCTP_AUTHINFO: 7992 /* SCTP Socket API Extension 7993 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 7994 * 7995 * This cmsghdr structure specifies SCTP options for sendmsg(). 7996 * 7997 * cmsg_level cmsg_type cmsg_data[] 7998 * ------------ ------------ --------------------- 7999 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8000 */ 8001 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8002 return -EINVAL; 8003 8004 cmsgs->authinfo = CMSG_DATA(cmsg); 8005 break; 8006 case SCTP_DSTADDRV4: 8007 case SCTP_DSTADDRV6: 8008 /* SCTP Socket API Extension 8009 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8010 * 8011 * This cmsghdr structure specifies SCTP options for sendmsg(). 8012 * 8013 * cmsg_level cmsg_type cmsg_data[] 8014 * ------------ ------------ --------------------- 8015 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8016 * ------------ ------------ --------------------- 8017 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8018 */ 8019 cmsgs->addrs_msg = my_msg; 8020 break; 8021 default: 8022 return -EINVAL; 8023 } 8024 } 8025 8026 return 0; 8027 } 8028 8029 /* 8030 * Wait for a packet.. 8031 * Note: This function is the same function as in core/datagram.c 8032 * with a few modifications to make lksctp work. 8033 */ 8034 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8035 { 8036 int error; 8037 DEFINE_WAIT(wait); 8038 8039 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8040 8041 /* Socket errors? */ 8042 error = sock_error(sk); 8043 if (error) 8044 goto out; 8045 8046 if (!skb_queue_empty(&sk->sk_receive_queue)) 8047 goto ready; 8048 8049 /* Socket shut down? */ 8050 if (sk->sk_shutdown & RCV_SHUTDOWN) 8051 goto out; 8052 8053 /* Sequenced packets can come disconnected. If so we report the 8054 * problem. 8055 */ 8056 error = -ENOTCONN; 8057 8058 /* Is there a good reason to think that we may receive some data? */ 8059 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8060 goto out; 8061 8062 /* Handle signals. */ 8063 if (signal_pending(current)) 8064 goto interrupted; 8065 8066 /* Let another process have a go. Since we are going to sleep 8067 * anyway. Note: This may cause odd behaviors if the message 8068 * does not fit in the user's buffer, but this seems to be the 8069 * only way to honor MSG_DONTWAIT realistically. 8070 */ 8071 release_sock(sk); 8072 *timeo_p = schedule_timeout(*timeo_p); 8073 lock_sock(sk); 8074 8075 ready: 8076 finish_wait(sk_sleep(sk), &wait); 8077 return 0; 8078 8079 interrupted: 8080 error = sock_intr_errno(*timeo_p); 8081 8082 out: 8083 finish_wait(sk_sleep(sk), &wait); 8084 *err = error; 8085 return error; 8086 } 8087 8088 /* Receive a datagram. 8089 * Note: This is pretty much the same routine as in core/datagram.c 8090 * with a few changes to make lksctp work. 8091 */ 8092 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 8093 int noblock, int *err) 8094 { 8095 int error; 8096 struct sk_buff *skb; 8097 long timeo; 8098 8099 timeo = sock_rcvtimeo(sk, noblock); 8100 8101 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 8102 MAX_SCHEDULE_TIMEOUT); 8103 8104 do { 8105 /* Again only user level code calls this function, 8106 * so nothing interrupt level 8107 * will suddenly eat the receive_queue. 8108 * 8109 * Look at current nfs client by the way... 8110 * However, this function was correct in any case. 8) 8111 */ 8112 if (flags & MSG_PEEK) { 8113 skb = skb_peek(&sk->sk_receive_queue); 8114 if (skb) 8115 refcount_inc(&skb->users); 8116 } else { 8117 skb = __skb_dequeue(&sk->sk_receive_queue); 8118 } 8119 8120 if (skb) 8121 return skb; 8122 8123 /* Caller is allowed not to check sk->sk_err before calling. */ 8124 error = sock_error(sk); 8125 if (error) 8126 goto no_packet; 8127 8128 if (sk->sk_shutdown & RCV_SHUTDOWN) 8129 break; 8130 8131 if (sk_can_busy_loop(sk)) { 8132 sk_busy_loop(sk, noblock); 8133 8134 if (!skb_queue_empty(&sk->sk_receive_queue)) 8135 continue; 8136 } 8137 8138 /* User doesn't want to wait. */ 8139 error = -EAGAIN; 8140 if (!timeo) 8141 goto no_packet; 8142 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 8143 8144 return NULL; 8145 8146 no_packet: 8147 *err = error; 8148 return NULL; 8149 } 8150 8151 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 8152 static void __sctp_write_space(struct sctp_association *asoc) 8153 { 8154 struct sock *sk = asoc->base.sk; 8155 8156 if (sctp_wspace(asoc) <= 0) 8157 return; 8158 8159 if (waitqueue_active(&asoc->wait)) 8160 wake_up_interruptible(&asoc->wait); 8161 8162 if (sctp_writeable(sk)) { 8163 struct socket_wq *wq; 8164 8165 rcu_read_lock(); 8166 wq = rcu_dereference(sk->sk_wq); 8167 if (wq) { 8168 if (waitqueue_active(&wq->wait)) 8169 wake_up_interruptible(&wq->wait); 8170 8171 /* Note that we try to include the Async I/O support 8172 * here by modeling from the current TCP/UDP code. 8173 * We have not tested with it yet. 8174 */ 8175 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 8176 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 8177 } 8178 rcu_read_unlock(); 8179 } 8180 } 8181 8182 static void sctp_wake_up_waiters(struct sock *sk, 8183 struct sctp_association *asoc) 8184 { 8185 struct sctp_association *tmp = asoc; 8186 8187 /* We do accounting for the sndbuf space per association, 8188 * so we only need to wake our own association. 8189 */ 8190 if (asoc->ep->sndbuf_policy) 8191 return __sctp_write_space(asoc); 8192 8193 /* If association goes down and is just flushing its 8194 * outq, then just normally notify others. 8195 */ 8196 if (asoc->base.dead) 8197 return sctp_write_space(sk); 8198 8199 /* Accounting for the sndbuf space is per socket, so we 8200 * need to wake up others, try to be fair and in case of 8201 * other associations, let them have a go first instead 8202 * of just doing a sctp_write_space() call. 8203 * 8204 * Note that we reach sctp_wake_up_waiters() only when 8205 * associations free up queued chunks, thus we are under 8206 * lock and the list of associations on a socket is 8207 * guaranteed not to change. 8208 */ 8209 for (tmp = list_next_entry(tmp, asocs); 1; 8210 tmp = list_next_entry(tmp, asocs)) { 8211 /* Manually skip the head element. */ 8212 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 8213 continue; 8214 /* Wake up association. */ 8215 __sctp_write_space(tmp); 8216 /* We've reached the end. */ 8217 if (tmp == asoc) 8218 break; 8219 } 8220 } 8221 8222 /* Do accounting for the sndbuf space. 8223 * Decrement the used sndbuf space of the corresponding association by the 8224 * data size which was just transmitted(freed). 8225 */ 8226 static void sctp_wfree(struct sk_buff *skb) 8227 { 8228 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 8229 struct sctp_association *asoc = chunk->asoc; 8230 struct sock *sk = asoc->base.sk; 8231 8232 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 8233 sizeof(struct sk_buff) + 8234 sizeof(struct sctp_chunk); 8235 8236 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc)); 8237 8238 /* 8239 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 8240 */ 8241 sk->sk_wmem_queued -= skb->truesize; 8242 sk_mem_uncharge(sk, skb->truesize); 8243 8244 if (chunk->shkey) { 8245 struct sctp_shared_key *shkey = chunk->shkey; 8246 8247 /* refcnt == 2 and !list_empty mean after this release, it's 8248 * not being used anywhere, and it's time to notify userland 8249 * that this shkey can be freed if it's been deactivated. 8250 */ 8251 if (shkey->deactivated && !list_empty(&shkey->key_list) && 8252 refcount_read(&shkey->refcnt) == 2) { 8253 struct sctp_ulpevent *ev; 8254 8255 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 8256 SCTP_AUTH_FREE_KEY, 8257 GFP_KERNEL); 8258 if (ev) 8259 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 8260 } 8261 sctp_auth_shkey_release(chunk->shkey); 8262 } 8263 8264 sock_wfree(skb); 8265 sctp_wake_up_waiters(sk, asoc); 8266 8267 sctp_association_put(asoc); 8268 } 8269 8270 /* Do accounting for the receive space on the socket. 8271 * Accounting for the association is done in ulpevent.c 8272 * We set this as a destructor for the cloned data skbs so that 8273 * accounting is done at the correct time. 8274 */ 8275 void sctp_sock_rfree(struct sk_buff *skb) 8276 { 8277 struct sock *sk = skb->sk; 8278 struct sctp_ulpevent *event = sctp_skb2event(skb); 8279 8280 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 8281 8282 /* 8283 * Mimic the behavior of sock_rfree 8284 */ 8285 sk_mem_uncharge(sk, event->rmem_len); 8286 } 8287 8288 8289 /* Helper function to wait for space in the sndbuf. */ 8290 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 8291 size_t msg_len) 8292 { 8293 struct sock *sk = asoc->base.sk; 8294 long current_timeo = *timeo_p; 8295 DEFINE_WAIT(wait); 8296 int err = 0; 8297 8298 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 8299 *timeo_p, msg_len); 8300 8301 /* Increment the association's refcnt. */ 8302 sctp_association_hold(asoc); 8303 8304 /* Wait on the association specific sndbuf space. */ 8305 for (;;) { 8306 prepare_to_wait_exclusive(&asoc->wait, &wait, 8307 TASK_INTERRUPTIBLE); 8308 if (asoc->base.dead) 8309 goto do_dead; 8310 if (!*timeo_p) 8311 goto do_nonblock; 8312 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 8313 goto do_error; 8314 if (signal_pending(current)) 8315 goto do_interrupted; 8316 if (msg_len <= sctp_wspace(asoc)) 8317 break; 8318 8319 /* Let another process have a go. Since we are going 8320 * to sleep anyway. 8321 */ 8322 release_sock(sk); 8323 current_timeo = schedule_timeout(current_timeo); 8324 lock_sock(sk); 8325 if (sk != asoc->base.sk) 8326 goto do_error; 8327 8328 *timeo_p = current_timeo; 8329 } 8330 8331 out: 8332 finish_wait(&asoc->wait, &wait); 8333 8334 /* Release the association's refcnt. */ 8335 sctp_association_put(asoc); 8336 8337 return err; 8338 8339 do_dead: 8340 err = -ESRCH; 8341 goto out; 8342 8343 do_error: 8344 err = -EPIPE; 8345 goto out; 8346 8347 do_interrupted: 8348 err = sock_intr_errno(*timeo_p); 8349 goto out; 8350 8351 do_nonblock: 8352 err = -EAGAIN; 8353 goto out; 8354 } 8355 8356 void sctp_data_ready(struct sock *sk) 8357 { 8358 struct socket_wq *wq; 8359 8360 rcu_read_lock(); 8361 wq = rcu_dereference(sk->sk_wq); 8362 if (skwq_has_sleeper(wq)) 8363 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 8364 EPOLLRDNORM | EPOLLRDBAND); 8365 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 8366 rcu_read_unlock(); 8367 } 8368 8369 /* If socket sndbuf has changed, wake up all per association waiters. */ 8370 void sctp_write_space(struct sock *sk) 8371 { 8372 struct sctp_association *asoc; 8373 8374 /* Wake up the tasks in each wait queue. */ 8375 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 8376 __sctp_write_space(asoc); 8377 } 8378 } 8379 8380 /* Is there any sndbuf space available on the socket? 8381 * 8382 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 8383 * associations on the same socket. For a UDP-style socket with 8384 * multiple associations, it is possible for it to be "unwriteable" 8385 * prematurely. I assume that this is acceptable because 8386 * a premature "unwriteable" is better than an accidental "writeable" which 8387 * would cause an unwanted block under certain circumstances. For the 1-1 8388 * UDP-style sockets or TCP-style sockets, this code should work. 8389 * - Daisy 8390 */ 8391 static int sctp_writeable(struct sock *sk) 8392 { 8393 int amt = 0; 8394 8395 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 8396 if (amt < 0) 8397 amt = 0; 8398 return amt; 8399 } 8400 8401 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 8402 * returns immediately with EINPROGRESS. 8403 */ 8404 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 8405 { 8406 struct sock *sk = asoc->base.sk; 8407 int err = 0; 8408 long current_timeo = *timeo_p; 8409 DEFINE_WAIT(wait); 8410 8411 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 8412 8413 /* Increment the association's refcnt. */ 8414 sctp_association_hold(asoc); 8415 8416 for (;;) { 8417 prepare_to_wait_exclusive(&asoc->wait, &wait, 8418 TASK_INTERRUPTIBLE); 8419 if (!*timeo_p) 8420 goto do_nonblock; 8421 if (sk->sk_shutdown & RCV_SHUTDOWN) 8422 break; 8423 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 8424 asoc->base.dead) 8425 goto do_error; 8426 if (signal_pending(current)) 8427 goto do_interrupted; 8428 8429 if (sctp_state(asoc, ESTABLISHED)) 8430 break; 8431 8432 /* Let another process have a go. Since we are going 8433 * to sleep anyway. 8434 */ 8435 release_sock(sk); 8436 current_timeo = schedule_timeout(current_timeo); 8437 lock_sock(sk); 8438 8439 *timeo_p = current_timeo; 8440 } 8441 8442 out: 8443 finish_wait(&asoc->wait, &wait); 8444 8445 /* Release the association's refcnt. */ 8446 sctp_association_put(asoc); 8447 8448 return err; 8449 8450 do_error: 8451 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 8452 err = -ETIMEDOUT; 8453 else 8454 err = -ECONNREFUSED; 8455 goto out; 8456 8457 do_interrupted: 8458 err = sock_intr_errno(*timeo_p); 8459 goto out; 8460 8461 do_nonblock: 8462 err = -EINPROGRESS; 8463 goto out; 8464 } 8465 8466 static int sctp_wait_for_accept(struct sock *sk, long timeo) 8467 { 8468 struct sctp_endpoint *ep; 8469 int err = 0; 8470 DEFINE_WAIT(wait); 8471 8472 ep = sctp_sk(sk)->ep; 8473 8474 8475 for (;;) { 8476 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 8477 TASK_INTERRUPTIBLE); 8478 8479 if (list_empty(&ep->asocs)) { 8480 release_sock(sk); 8481 timeo = schedule_timeout(timeo); 8482 lock_sock(sk); 8483 } 8484 8485 err = -EINVAL; 8486 if (!sctp_sstate(sk, LISTENING)) 8487 break; 8488 8489 err = 0; 8490 if (!list_empty(&ep->asocs)) 8491 break; 8492 8493 err = sock_intr_errno(timeo); 8494 if (signal_pending(current)) 8495 break; 8496 8497 err = -EAGAIN; 8498 if (!timeo) 8499 break; 8500 } 8501 8502 finish_wait(sk_sleep(sk), &wait); 8503 8504 return err; 8505 } 8506 8507 static void sctp_wait_for_close(struct sock *sk, long timeout) 8508 { 8509 DEFINE_WAIT(wait); 8510 8511 do { 8512 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8513 if (list_empty(&sctp_sk(sk)->ep->asocs)) 8514 break; 8515 release_sock(sk); 8516 timeout = schedule_timeout(timeout); 8517 lock_sock(sk); 8518 } while (!signal_pending(current) && timeout); 8519 8520 finish_wait(sk_sleep(sk), &wait); 8521 } 8522 8523 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 8524 { 8525 struct sk_buff *frag; 8526 8527 if (!skb->data_len) 8528 goto done; 8529 8530 /* Don't forget the fragments. */ 8531 skb_walk_frags(skb, frag) 8532 sctp_skb_set_owner_r_frag(frag, sk); 8533 8534 done: 8535 sctp_skb_set_owner_r(skb, sk); 8536 } 8537 8538 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 8539 struct sctp_association *asoc) 8540 { 8541 struct inet_sock *inet = inet_sk(sk); 8542 struct inet_sock *newinet; 8543 struct sctp_sock *sp = sctp_sk(sk); 8544 struct sctp_endpoint *ep = sp->ep; 8545 8546 newsk->sk_type = sk->sk_type; 8547 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 8548 newsk->sk_flags = sk->sk_flags; 8549 newsk->sk_tsflags = sk->sk_tsflags; 8550 newsk->sk_no_check_tx = sk->sk_no_check_tx; 8551 newsk->sk_no_check_rx = sk->sk_no_check_rx; 8552 newsk->sk_reuse = sk->sk_reuse; 8553 8554 newsk->sk_shutdown = sk->sk_shutdown; 8555 newsk->sk_destruct = sctp_destruct_sock; 8556 newsk->sk_family = sk->sk_family; 8557 newsk->sk_protocol = IPPROTO_SCTP; 8558 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 8559 newsk->sk_sndbuf = sk->sk_sndbuf; 8560 newsk->sk_rcvbuf = sk->sk_rcvbuf; 8561 newsk->sk_lingertime = sk->sk_lingertime; 8562 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 8563 newsk->sk_sndtimeo = sk->sk_sndtimeo; 8564 newsk->sk_rxhash = sk->sk_rxhash; 8565 8566 newinet = inet_sk(newsk); 8567 8568 /* Initialize sk's sport, dport, rcv_saddr and daddr for 8569 * getsockname() and getpeername() 8570 */ 8571 newinet->inet_sport = inet->inet_sport; 8572 newinet->inet_saddr = inet->inet_saddr; 8573 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 8574 newinet->inet_dport = htons(asoc->peer.port); 8575 newinet->pmtudisc = inet->pmtudisc; 8576 newinet->inet_id = asoc->next_tsn ^ jiffies; 8577 8578 newinet->uc_ttl = inet->uc_ttl; 8579 newinet->mc_loop = 1; 8580 newinet->mc_ttl = 1; 8581 newinet->mc_index = 0; 8582 newinet->mc_list = NULL; 8583 8584 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 8585 net_enable_timestamp(); 8586 8587 /* Set newsk security attributes from orginal sk and connection 8588 * security attribute from ep. 8589 */ 8590 security_sctp_sk_clone(ep, sk, newsk); 8591 } 8592 8593 static inline void sctp_copy_descendant(struct sock *sk_to, 8594 const struct sock *sk_from) 8595 { 8596 int ancestor_size = sizeof(struct inet_sock) + 8597 sizeof(struct sctp_sock) - 8598 offsetof(struct sctp_sock, auto_asconf_list); 8599 8600 if (sk_from->sk_family == PF_INET6) 8601 ancestor_size += sizeof(struct ipv6_pinfo); 8602 8603 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 8604 } 8605 8606 /* Populate the fields of the newsk from the oldsk and migrate the assoc 8607 * and its messages to the newsk. 8608 */ 8609 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 8610 struct sctp_association *assoc, 8611 enum sctp_socket_type type) 8612 { 8613 struct sctp_sock *oldsp = sctp_sk(oldsk); 8614 struct sctp_sock *newsp = sctp_sk(newsk); 8615 struct sctp_bind_bucket *pp; /* hash list port iterator */ 8616 struct sctp_endpoint *newep = newsp->ep; 8617 struct sk_buff *skb, *tmp; 8618 struct sctp_ulpevent *event; 8619 struct sctp_bind_hashbucket *head; 8620 8621 /* Migrate socket buffer sizes and all the socket level options to the 8622 * new socket. 8623 */ 8624 newsk->sk_sndbuf = oldsk->sk_sndbuf; 8625 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 8626 /* Brute force copy old sctp opt. */ 8627 sctp_copy_descendant(newsk, oldsk); 8628 8629 /* Restore the ep value that was overwritten with the above structure 8630 * copy. 8631 */ 8632 newsp->ep = newep; 8633 newsp->hmac = NULL; 8634 8635 /* Hook this new socket in to the bind_hash list. */ 8636 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 8637 inet_sk(oldsk)->inet_num)]; 8638 spin_lock_bh(&head->lock); 8639 pp = sctp_sk(oldsk)->bind_hash; 8640 sk_add_bind_node(newsk, &pp->owner); 8641 sctp_sk(newsk)->bind_hash = pp; 8642 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 8643 spin_unlock_bh(&head->lock); 8644 8645 /* Copy the bind_addr list from the original endpoint to the new 8646 * endpoint so that we can handle restarts properly 8647 */ 8648 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 8649 &oldsp->ep->base.bind_addr, GFP_KERNEL); 8650 8651 /* Move any messages in the old socket's receive queue that are for the 8652 * peeled off association to the new socket's receive queue. 8653 */ 8654 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 8655 event = sctp_skb2event(skb); 8656 if (event->asoc == assoc) { 8657 __skb_unlink(skb, &oldsk->sk_receive_queue); 8658 __skb_queue_tail(&newsk->sk_receive_queue, skb); 8659 sctp_skb_set_owner_r_frag(skb, newsk); 8660 } 8661 } 8662 8663 /* Clean up any messages pending delivery due to partial 8664 * delivery. Three cases: 8665 * 1) No partial deliver; no work. 8666 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 8667 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 8668 */ 8669 skb_queue_head_init(&newsp->pd_lobby); 8670 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 8671 8672 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 8673 struct sk_buff_head *queue; 8674 8675 /* Decide which queue to move pd_lobby skbs to. */ 8676 if (assoc->ulpq.pd_mode) { 8677 queue = &newsp->pd_lobby; 8678 } else 8679 queue = &newsk->sk_receive_queue; 8680 8681 /* Walk through the pd_lobby, looking for skbs that 8682 * need moved to the new socket. 8683 */ 8684 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 8685 event = sctp_skb2event(skb); 8686 if (event->asoc == assoc) { 8687 __skb_unlink(skb, &oldsp->pd_lobby); 8688 __skb_queue_tail(queue, skb); 8689 sctp_skb_set_owner_r_frag(skb, newsk); 8690 } 8691 } 8692 8693 /* Clear up any skbs waiting for the partial 8694 * delivery to finish. 8695 */ 8696 if (assoc->ulpq.pd_mode) 8697 sctp_clear_pd(oldsk, NULL); 8698 8699 } 8700 8701 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 8702 8703 /* Set the type of socket to indicate that it is peeled off from the 8704 * original UDP-style socket or created with the accept() call on a 8705 * TCP-style socket.. 8706 */ 8707 newsp->type = type; 8708 8709 /* Mark the new socket "in-use" by the user so that any packets 8710 * that may arrive on the association after we've moved it are 8711 * queued to the backlog. This prevents a potential race between 8712 * backlog processing on the old socket and new-packet processing 8713 * on the new socket. 8714 * 8715 * The caller has just allocated newsk so we can guarantee that other 8716 * paths won't try to lock it and then oldsk. 8717 */ 8718 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 8719 sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w); 8720 sctp_assoc_migrate(assoc, newsk); 8721 sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w); 8722 8723 /* If the association on the newsk is already closed before accept() 8724 * is called, set RCV_SHUTDOWN flag. 8725 */ 8726 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 8727 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 8728 newsk->sk_shutdown |= RCV_SHUTDOWN; 8729 } else { 8730 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 8731 } 8732 8733 release_sock(newsk); 8734 } 8735 8736 8737 /* This proto struct describes the ULP interface for SCTP. */ 8738 struct proto sctp_prot = { 8739 .name = "SCTP", 8740 .owner = THIS_MODULE, 8741 .close = sctp_close, 8742 .disconnect = sctp_disconnect, 8743 .accept = sctp_accept, 8744 .ioctl = sctp_ioctl, 8745 .init = sctp_init_sock, 8746 .destroy = sctp_destroy_sock, 8747 .shutdown = sctp_shutdown, 8748 .setsockopt = sctp_setsockopt, 8749 .getsockopt = sctp_getsockopt, 8750 .sendmsg = sctp_sendmsg, 8751 .recvmsg = sctp_recvmsg, 8752 .bind = sctp_bind, 8753 .backlog_rcv = sctp_backlog_rcv, 8754 .hash = sctp_hash, 8755 .unhash = sctp_unhash, 8756 .get_port = sctp_get_port, 8757 .obj_size = sizeof(struct sctp_sock), 8758 .useroffset = offsetof(struct sctp_sock, subscribe), 8759 .usersize = offsetof(struct sctp_sock, initmsg) - 8760 offsetof(struct sctp_sock, subscribe) + 8761 sizeof_field(struct sctp_sock, initmsg), 8762 .sysctl_mem = sysctl_sctp_mem, 8763 .sysctl_rmem = sysctl_sctp_rmem, 8764 .sysctl_wmem = sysctl_sctp_wmem, 8765 .memory_pressure = &sctp_memory_pressure, 8766 .enter_memory_pressure = sctp_enter_memory_pressure, 8767 .memory_allocated = &sctp_memory_allocated, 8768 .sockets_allocated = &sctp_sockets_allocated, 8769 }; 8770 8771 #if IS_ENABLED(CONFIG_IPV6) 8772 8773 #include <net/transp_v6.h> 8774 static void sctp_v6_destroy_sock(struct sock *sk) 8775 { 8776 sctp_destroy_sock(sk); 8777 inet6_destroy_sock(sk); 8778 } 8779 8780 struct proto sctpv6_prot = { 8781 .name = "SCTPv6", 8782 .owner = THIS_MODULE, 8783 .close = sctp_close, 8784 .disconnect = sctp_disconnect, 8785 .accept = sctp_accept, 8786 .ioctl = sctp_ioctl, 8787 .init = sctp_init_sock, 8788 .destroy = sctp_v6_destroy_sock, 8789 .shutdown = sctp_shutdown, 8790 .setsockopt = sctp_setsockopt, 8791 .getsockopt = sctp_getsockopt, 8792 .sendmsg = sctp_sendmsg, 8793 .recvmsg = sctp_recvmsg, 8794 .bind = sctp_bind, 8795 .backlog_rcv = sctp_backlog_rcv, 8796 .hash = sctp_hash, 8797 .unhash = sctp_unhash, 8798 .get_port = sctp_get_port, 8799 .obj_size = sizeof(struct sctp6_sock), 8800 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 8801 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 8802 offsetof(struct sctp6_sock, sctp.subscribe) + 8803 sizeof_field(struct sctp6_sock, sctp.initmsg), 8804 .sysctl_mem = sysctl_sctp_mem, 8805 .sysctl_rmem = sysctl_sctp_rmem, 8806 .sysctl_wmem = sysctl_sctp_wmem, 8807 .memory_pressure = &sctp_memory_pressure, 8808 .enter_memory_pressure = sctp_enter_memory_pressure, 8809 .memory_allocated = &sctp_memory_allocated, 8810 .sockets_allocated = &sctp_sockets_allocated, 8811 }; 8812 #endif /* IS_ENABLED(CONFIG_IPV6) */ 8813