1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * (C) Copyright IBM Corp. 2001, 2004 4 * Copyright (c) 1999-2000 Cisco, Inc. 5 * Copyright (c) 1999-2001 Motorola, Inc. 6 * Copyright (c) 2001-2003 Intel Corp. 7 * Copyright (c) 2001-2002 Nokia, Inc. 8 * Copyright (c) 2001 La Monte H.P. Yarroll 9 * 10 * This file is part of the SCTP kernel implementation 11 * 12 * These functions interface with the sockets layer to implement the 13 * SCTP Extensions for the Sockets API. 14 * 15 * Note that the descriptions from the specification are USER level 16 * functions--this file is the functions which populate the struct proto 17 * for SCTP which is the BOTTOM of the sockets interface. 18 * 19 * Please send any bug reports or fixes you make to the 20 * email address(es): 21 * lksctp developers <linux-sctp@vger.kernel.org> 22 * 23 * Written or modified by: 24 * La Monte H.P. Yarroll <piggy@acm.org> 25 * Narasimha Budihal <narsi@refcode.org> 26 * Karl Knutson <karl@athena.chicago.il.us> 27 * Jon Grimm <jgrimm@us.ibm.com> 28 * Xingang Guo <xingang.guo@intel.com> 29 * Daisy Chang <daisyc@us.ibm.com> 30 * Sridhar Samudrala <samudrala@us.ibm.com> 31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 32 * Ardelle Fan <ardelle.fan@intel.com> 33 * Ryan Layer <rmlayer@us.ibm.com> 34 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 35 * Kevin Gao <kevin.gao@intel.com> 36 */ 37 38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 39 40 #include <crypto/hash.h> 41 #include <linux/types.h> 42 #include <linux/kernel.h> 43 #include <linux/wait.h> 44 #include <linux/time.h> 45 #include <linux/sched/signal.h> 46 #include <linux/ip.h> 47 #include <linux/capability.h> 48 #include <linux/fcntl.h> 49 #include <linux/poll.h> 50 #include <linux/init.h> 51 #include <linux/slab.h> 52 #include <linux/file.h> 53 #include <linux/compat.h> 54 #include <linux/rhashtable.h> 55 56 #include <net/ip.h> 57 #include <net/icmp.h> 58 #include <net/route.h> 59 #include <net/ipv6.h> 60 #include <net/inet_common.h> 61 #include <net/busy_poll.h> 62 63 #include <linux/socket.h> /* for sa_family_t */ 64 #include <linux/export.h> 65 #include <net/sock.h> 66 #include <net/sctp/sctp.h> 67 #include <net/sctp/sm.h> 68 #include <net/sctp/stream_sched.h> 69 70 /* Forward declarations for internal helper functions. */ 71 static bool sctp_writeable(struct sock *sk); 72 static void sctp_wfree(struct sk_buff *skb); 73 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 74 size_t msg_len); 75 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 76 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 77 static int sctp_wait_for_accept(struct sock *sk, long timeo); 78 static void sctp_wait_for_close(struct sock *sk, long timeo); 79 static void sctp_destruct_sock(struct sock *sk); 80 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 81 union sctp_addr *addr, int len); 82 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 83 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 84 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 85 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 86 static int sctp_send_asconf(struct sctp_association *asoc, 87 struct sctp_chunk *chunk); 88 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 89 static int sctp_autobind(struct sock *sk); 90 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 91 struct sctp_association *assoc, 92 enum sctp_socket_type type); 93 94 static unsigned long sctp_memory_pressure; 95 static atomic_long_t sctp_memory_allocated; 96 struct percpu_counter sctp_sockets_allocated; 97 98 static void sctp_enter_memory_pressure(struct sock *sk) 99 { 100 sctp_memory_pressure = 1; 101 } 102 103 104 /* Get the sndbuf space available at the time on the association. */ 105 static inline int sctp_wspace(struct sctp_association *asoc) 106 { 107 struct sock *sk = asoc->base.sk; 108 109 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used 110 : sk_stream_wspace(sk); 111 } 112 113 /* Increment the used sndbuf space count of the corresponding association by 114 * the size of the outgoing data chunk. 115 * Also, set the skb destructor for sndbuf accounting later. 116 * 117 * Since it is always 1-1 between chunk and skb, and also a new skb is always 118 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 119 * destructor in the data chunk skb for the purpose of the sndbuf space 120 * tracking. 121 */ 122 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 123 { 124 struct sctp_association *asoc = chunk->asoc; 125 struct sock *sk = asoc->base.sk; 126 127 /* The sndbuf space is tracked per association. */ 128 sctp_association_hold(asoc); 129 130 if (chunk->shkey) 131 sctp_auth_shkey_hold(chunk->shkey); 132 133 skb_set_owner_w(chunk->skb, sk); 134 135 chunk->skb->destructor = sctp_wfree; 136 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 137 skb_shinfo(chunk->skb)->destructor_arg = chunk; 138 139 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 140 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); 141 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk); 142 sk_mem_charge(sk, chunk->skb->truesize); 143 } 144 145 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 146 { 147 skb_orphan(chunk->skb); 148 } 149 150 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 151 void (*cb)(struct sctp_chunk *)) 152 153 { 154 struct sctp_outq *q = &asoc->outqueue; 155 struct sctp_transport *t; 156 struct sctp_chunk *chunk; 157 158 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 159 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 160 cb(chunk); 161 162 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 163 cb(chunk); 164 165 list_for_each_entry(chunk, &q->sacked, transmitted_list) 166 cb(chunk); 167 168 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 169 cb(chunk); 170 171 list_for_each_entry(chunk, &q->out_chunk_list, list) 172 cb(chunk); 173 } 174 175 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 176 void (*cb)(struct sk_buff *, struct sock *)) 177 178 { 179 struct sk_buff *skb, *tmp; 180 181 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 182 cb(skb, sk); 183 184 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 185 cb(skb, sk); 186 187 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 188 cb(skb, sk); 189 } 190 191 /* Verify that this is a valid address. */ 192 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 193 int len) 194 { 195 struct sctp_af *af; 196 197 /* Verify basic sockaddr. */ 198 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 199 if (!af) 200 return -EINVAL; 201 202 /* Is this a valid SCTP address? */ 203 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 204 return -EINVAL; 205 206 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 207 return -EINVAL; 208 209 return 0; 210 } 211 212 /* Look up the association by its id. If this is not a UDP-style 213 * socket, the ID field is always ignored. 214 */ 215 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 216 { 217 struct sctp_association *asoc = NULL; 218 219 /* If this is not a UDP-style socket, assoc id should be ignored. */ 220 if (!sctp_style(sk, UDP)) { 221 /* Return NULL if the socket state is not ESTABLISHED. It 222 * could be a TCP-style listening socket or a socket which 223 * hasn't yet called connect() to establish an association. 224 */ 225 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 226 return NULL; 227 228 /* Get the first and the only association from the list. */ 229 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 230 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 231 struct sctp_association, asocs); 232 return asoc; 233 } 234 235 /* Otherwise this is a UDP-style socket. */ 236 if (id <= SCTP_ALL_ASSOC) 237 return NULL; 238 239 spin_lock_bh(&sctp_assocs_id_lock); 240 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 241 if (asoc && (asoc->base.sk != sk || asoc->base.dead)) 242 asoc = NULL; 243 spin_unlock_bh(&sctp_assocs_id_lock); 244 245 return asoc; 246 } 247 248 /* Look up the transport from an address and an assoc id. If both address and 249 * id are specified, the associations matching the address and the id should be 250 * the same. 251 */ 252 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 253 struct sockaddr_storage *addr, 254 sctp_assoc_t id) 255 { 256 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 257 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 258 union sctp_addr *laddr = (union sctp_addr *)addr; 259 struct sctp_transport *transport; 260 261 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 262 return NULL; 263 264 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 265 laddr, 266 &transport); 267 268 if (!addr_asoc) 269 return NULL; 270 271 id_asoc = sctp_id2assoc(sk, id); 272 if (id_asoc && (id_asoc != addr_asoc)) 273 return NULL; 274 275 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 276 (union sctp_addr *)addr); 277 278 return transport; 279 } 280 281 /* API 3.1.2 bind() - UDP Style Syntax 282 * The syntax of bind() is, 283 * 284 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 285 * 286 * sd - the socket descriptor returned by socket(). 287 * addr - the address structure (struct sockaddr_in or struct 288 * sockaddr_in6 [RFC 2553]), 289 * addr_len - the size of the address structure. 290 */ 291 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 292 { 293 int retval = 0; 294 295 lock_sock(sk); 296 297 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 298 addr, addr_len); 299 300 /* Disallow binding twice. */ 301 if (!sctp_sk(sk)->ep->base.bind_addr.port) 302 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 303 addr_len); 304 else 305 retval = -EINVAL; 306 307 release_sock(sk); 308 309 return retval; 310 } 311 312 static int sctp_get_port_local(struct sock *, union sctp_addr *); 313 314 /* Verify this is a valid sockaddr. */ 315 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 316 union sctp_addr *addr, int len) 317 { 318 struct sctp_af *af; 319 320 /* Check minimum size. */ 321 if (len < sizeof (struct sockaddr)) 322 return NULL; 323 324 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 325 return NULL; 326 327 if (addr->sa.sa_family == AF_INET6) { 328 if (len < SIN6_LEN_RFC2133) 329 return NULL; 330 /* V4 mapped address are really of AF_INET family */ 331 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 332 !opt->pf->af_supported(AF_INET, opt)) 333 return NULL; 334 } 335 336 /* If we get this far, af is valid. */ 337 af = sctp_get_af_specific(addr->sa.sa_family); 338 339 if (len < af->sockaddr_len) 340 return NULL; 341 342 return af; 343 } 344 345 /* Bind a local address either to an endpoint or to an association. */ 346 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 347 { 348 struct net *net = sock_net(sk); 349 struct sctp_sock *sp = sctp_sk(sk); 350 struct sctp_endpoint *ep = sp->ep; 351 struct sctp_bind_addr *bp = &ep->base.bind_addr; 352 struct sctp_af *af; 353 unsigned short snum; 354 int ret = 0; 355 356 /* Common sockaddr verification. */ 357 af = sctp_sockaddr_af(sp, addr, len); 358 if (!af) { 359 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 360 __func__, sk, addr, len); 361 return -EINVAL; 362 } 363 364 snum = ntohs(addr->v4.sin_port); 365 366 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 367 __func__, sk, &addr->sa, bp->port, snum, len); 368 369 /* PF specific bind() address verification. */ 370 if (!sp->pf->bind_verify(sp, addr)) 371 return -EADDRNOTAVAIL; 372 373 /* We must either be unbound, or bind to the same port. 374 * It's OK to allow 0 ports if we are already bound. 375 * We'll just inhert an already bound port in this case 376 */ 377 if (bp->port) { 378 if (!snum) 379 snum = bp->port; 380 else if (snum != bp->port) { 381 pr_debug("%s: new port %d doesn't match existing port " 382 "%d\n", __func__, snum, bp->port); 383 return -EINVAL; 384 } 385 } 386 387 if (snum && snum < inet_prot_sock(net) && 388 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 389 return -EACCES; 390 391 /* See if the address matches any of the addresses we may have 392 * already bound before checking against other endpoints. 393 */ 394 if (sctp_bind_addr_match(bp, addr, sp)) 395 return -EINVAL; 396 397 /* Make sure we are allowed to bind here. 398 * The function sctp_get_port_local() does duplicate address 399 * detection. 400 */ 401 addr->v4.sin_port = htons(snum); 402 if (sctp_get_port_local(sk, addr)) 403 return -EADDRINUSE; 404 405 /* Refresh ephemeral port. */ 406 if (!bp->port) 407 bp->port = inet_sk(sk)->inet_num; 408 409 /* Add the address to the bind address list. 410 * Use GFP_ATOMIC since BHs will be disabled. 411 */ 412 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 413 SCTP_ADDR_SRC, GFP_ATOMIC); 414 415 if (ret) { 416 sctp_put_port(sk); 417 return ret; 418 } 419 /* Copy back into socket for getsockname() use. */ 420 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 421 sp->pf->to_sk_saddr(addr, sk); 422 423 return ret; 424 } 425 426 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 427 * 428 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 429 * at any one time. If a sender, after sending an ASCONF chunk, decides 430 * it needs to transfer another ASCONF Chunk, it MUST wait until the 431 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 432 * subsequent ASCONF. Note this restriction binds each side, so at any 433 * time two ASCONF may be in-transit on any given association (one sent 434 * from each endpoint). 435 */ 436 static int sctp_send_asconf(struct sctp_association *asoc, 437 struct sctp_chunk *chunk) 438 { 439 struct net *net = sock_net(asoc->base.sk); 440 int retval = 0; 441 442 /* If there is an outstanding ASCONF chunk, queue it for later 443 * transmission. 444 */ 445 if (asoc->addip_last_asconf) { 446 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 447 goto out; 448 } 449 450 /* Hold the chunk until an ASCONF_ACK is received. */ 451 sctp_chunk_hold(chunk); 452 retval = sctp_primitive_ASCONF(net, asoc, chunk); 453 if (retval) 454 sctp_chunk_free(chunk); 455 else 456 asoc->addip_last_asconf = chunk; 457 458 out: 459 return retval; 460 } 461 462 /* Add a list of addresses as bind addresses to local endpoint or 463 * association. 464 * 465 * Basically run through each address specified in the addrs/addrcnt 466 * array/length pair, determine if it is IPv6 or IPv4 and call 467 * sctp_do_bind() on it. 468 * 469 * If any of them fails, then the operation will be reversed and the 470 * ones that were added will be removed. 471 * 472 * Only sctp_setsockopt_bindx() is supposed to call this function. 473 */ 474 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 475 { 476 int cnt; 477 int retval = 0; 478 void *addr_buf; 479 struct sockaddr *sa_addr; 480 struct sctp_af *af; 481 482 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 483 addrs, addrcnt); 484 485 addr_buf = addrs; 486 for (cnt = 0; cnt < addrcnt; cnt++) { 487 /* The list may contain either IPv4 or IPv6 address; 488 * determine the address length for walking thru the list. 489 */ 490 sa_addr = addr_buf; 491 af = sctp_get_af_specific(sa_addr->sa_family); 492 if (!af) { 493 retval = -EINVAL; 494 goto err_bindx_add; 495 } 496 497 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 498 af->sockaddr_len); 499 500 addr_buf += af->sockaddr_len; 501 502 err_bindx_add: 503 if (retval < 0) { 504 /* Failed. Cleanup the ones that have been added */ 505 if (cnt > 0) 506 sctp_bindx_rem(sk, addrs, cnt); 507 return retval; 508 } 509 } 510 511 return retval; 512 } 513 514 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 515 * associations that are part of the endpoint indicating that a list of local 516 * addresses are added to the endpoint. 517 * 518 * If any of the addresses is already in the bind address list of the 519 * association, we do not send the chunk for that association. But it will not 520 * affect other associations. 521 * 522 * Only sctp_setsockopt_bindx() is supposed to call this function. 523 */ 524 static int sctp_send_asconf_add_ip(struct sock *sk, 525 struct sockaddr *addrs, 526 int addrcnt) 527 { 528 struct net *net = sock_net(sk); 529 struct sctp_sock *sp; 530 struct sctp_endpoint *ep; 531 struct sctp_association *asoc; 532 struct sctp_bind_addr *bp; 533 struct sctp_chunk *chunk; 534 struct sctp_sockaddr_entry *laddr; 535 union sctp_addr *addr; 536 union sctp_addr saveaddr; 537 void *addr_buf; 538 struct sctp_af *af; 539 struct list_head *p; 540 int i; 541 int retval = 0; 542 543 if (!net->sctp.addip_enable) 544 return retval; 545 546 sp = sctp_sk(sk); 547 ep = sp->ep; 548 549 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 550 __func__, sk, addrs, addrcnt); 551 552 list_for_each_entry(asoc, &ep->asocs, asocs) { 553 if (!asoc->peer.asconf_capable) 554 continue; 555 556 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 557 continue; 558 559 if (!sctp_state(asoc, ESTABLISHED)) 560 continue; 561 562 /* Check if any address in the packed array of addresses is 563 * in the bind address list of the association. If so, 564 * do not send the asconf chunk to its peer, but continue with 565 * other associations. 566 */ 567 addr_buf = addrs; 568 for (i = 0; i < addrcnt; i++) { 569 addr = addr_buf; 570 af = sctp_get_af_specific(addr->v4.sin_family); 571 if (!af) { 572 retval = -EINVAL; 573 goto out; 574 } 575 576 if (sctp_assoc_lookup_laddr(asoc, addr)) 577 break; 578 579 addr_buf += af->sockaddr_len; 580 } 581 if (i < addrcnt) 582 continue; 583 584 /* Use the first valid address in bind addr list of 585 * association as Address Parameter of ASCONF CHUNK. 586 */ 587 bp = &asoc->base.bind_addr; 588 p = bp->address_list.next; 589 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 590 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 591 addrcnt, SCTP_PARAM_ADD_IP); 592 if (!chunk) { 593 retval = -ENOMEM; 594 goto out; 595 } 596 597 /* Add the new addresses to the bind address list with 598 * use_as_src set to 0. 599 */ 600 addr_buf = addrs; 601 for (i = 0; i < addrcnt; i++) { 602 addr = addr_buf; 603 af = sctp_get_af_specific(addr->v4.sin_family); 604 memcpy(&saveaddr, addr, af->sockaddr_len); 605 retval = sctp_add_bind_addr(bp, &saveaddr, 606 sizeof(saveaddr), 607 SCTP_ADDR_NEW, GFP_ATOMIC); 608 addr_buf += af->sockaddr_len; 609 } 610 if (asoc->src_out_of_asoc_ok) { 611 struct sctp_transport *trans; 612 613 list_for_each_entry(trans, 614 &asoc->peer.transport_addr_list, transports) { 615 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 616 2*asoc->pathmtu, 4380)); 617 trans->ssthresh = asoc->peer.i.a_rwnd; 618 trans->rto = asoc->rto_initial; 619 sctp_max_rto(asoc, trans); 620 trans->rtt = trans->srtt = trans->rttvar = 0; 621 /* Clear the source and route cache */ 622 sctp_transport_route(trans, NULL, 623 sctp_sk(asoc->base.sk)); 624 } 625 } 626 retval = sctp_send_asconf(asoc, chunk); 627 } 628 629 out: 630 return retval; 631 } 632 633 /* Remove a list of addresses from bind addresses list. Do not remove the 634 * last address. 635 * 636 * Basically run through each address specified in the addrs/addrcnt 637 * array/length pair, determine if it is IPv6 or IPv4 and call 638 * sctp_del_bind() on it. 639 * 640 * If any of them fails, then the operation will be reversed and the 641 * ones that were removed will be added back. 642 * 643 * At least one address has to be left; if only one address is 644 * available, the operation will return -EBUSY. 645 * 646 * Only sctp_setsockopt_bindx() is supposed to call this function. 647 */ 648 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 649 { 650 struct sctp_sock *sp = sctp_sk(sk); 651 struct sctp_endpoint *ep = sp->ep; 652 int cnt; 653 struct sctp_bind_addr *bp = &ep->base.bind_addr; 654 int retval = 0; 655 void *addr_buf; 656 union sctp_addr *sa_addr; 657 struct sctp_af *af; 658 659 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 660 __func__, sk, addrs, addrcnt); 661 662 addr_buf = addrs; 663 for (cnt = 0; cnt < addrcnt; cnt++) { 664 /* If the bind address list is empty or if there is only one 665 * bind address, there is nothing more to be removed (we need 666 * at least one address here). 667 */ 668 if (list_empty(&bp->address_list) || 669 (sctp_list_single_entry(&bp->address_list))) { 670 retval = -EBUSY; 671 goto err_bindx_rem; 672 } 673 674 sa_addr = addr_buf; 675 af = sctp_get_af_specific(sa_addr->sa.sa_family); 676 if (!af) { 677 retval = -EINVAL; 678 goto err_bindx_rem; 679 } 680 681 if (!af->addr_valid(sa_addr, sp, NULL)) { 682 retval = -EADDRNOTAVAIL; 683 goto err_bindx_rem; 684 } 685 686 if (sa_addr->v4.sin_port && 687 sa_addr->v4.sin_port != htons(bp->port)) { 688 retval = -EINVAL; 689 goto err_bindx_rem; 690 } 691 692 if (!sa_addr->v4.sin_port) 693 sa_addr->v4.sin_port = htons(bp->port); 694 695 /* FIXME - There is probably a need to check if sk->sk_saddr and 696 * sk->sk_rcv_addr are currently set to one of the addresses to 697 * be removed. This is something which needs to be looked into 698 * when we are fixing the outstanding issues with multi-homing 699 * socket routing and failover schemes. Refer to comments in 700 * sctp_do_bind(). -daisy 701 */ 702 retval = sctp_del_bind_addr(bp, sa_addr); 703 704 addr_buf += af->sockaddr_len; 705 err_bindx_rem: 706 if (retval < 0) { 707 /* Failed. Add the ones that has been removed back */ 708 if (cnt > 0) 709 sctp_bindx_add(sk, addrs, cnt); 710 return retval; 711 } 712 } 713 714 return retval; 715 } 716 717 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 718 * the associations that are part of the endpoint indicating that a list of 719 * local addresses are removed from the endpoint. 720 * 721 * If any of the addresses is already in the bind address list of the 722 * association, we do not send the chunk for that association. But it will not 723 * affect other associations. 724 * 725 * Only sctp_setsockopt_bindx() is supposed to call this function. 726 */ 727 static int sctp_send_asconf_del_ip(struct sock *sk, 728 struct sockaddr *addrs, 729 int addrcnt) 730 { 731 struct net *net = sock_net(sk); 732 struct sctp_sock *sp; 733 struct sctp_endpoint *ep; 734 struct sctp_association *asoc; 735 struct sctp_transport *transport; 736 struct sctp_bind_addr *bp; 737 struct sctp_chunk *chunk; 738 union sctp_addr *laddr; 739 void *addr_buf; 740 struct sctp_af *af; 741 struct sctp_sockaddr_entry *saddr; 742 int i; 743 int retval = 0; 744 int stored = 0; 745 746 chunk = NULL; 747 if (!net->sctp.addip_enable) 748 return retval; 749 750 sp = sctp_sk(sk); 751 ep = sp->ep; 752 753 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 754 __func__, sk, addrs, addrcnt); 755 756 list_for_each_entry(asoc, &ep->asocs, asocs) { 757 758 if (!asoc->peer.asconf_capable) 759 continue; 760 761 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 762 continue; 763 764 if (!sctp_state(asoc, ESTABLISHED)) 765 continue; 766 767 /* Check if any address in the packed array of addresses is 768 * not present in the bind address list of the association. 769 * If so, do not send the asconf chunk to its peer, but 770 * continue with other associations. 771 */ 772 addr_buf = addrs; 773 for (i = 0; i < addrcnt; i++) { 774 laddr = addr_buf; 775 af = sctp_get_af_specific(laddr->v4.sin_family); 776 if (!af) { 777 retval = -EINVAL; 778 goto out; 779 } 780 781 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 782 break; 783 784 addr_buf += af->sockaddr_len; 785 } 786 if (i < addrcnt) 787 continue; 788 789 /* Find one address in the association's bind address list 790 * that is not in the packed array of addresses. This is to 791 * make sure that we do not delete all the addresses in the 792 * association. 793 */ 794 bp = &asoc->base.bind_addr; 795 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 796 addrcnt, sp); 797 if ((laddr == NULL) && (addrcnt == 1)) { 798 if (asoc->asconf_addr_del_pending) 799 continue; 800 asoc->asconf_addr_del_pending = 801 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 802 if (asoc->asconf_addr_del_pending == NULL) { 803 retval = -ENOMEM; 804 goto out; 805 } 806 asoc->asconf_addr_del_pending->sa.sa_family = 807 addrs->sa_family; 808 asoc->asconf_addr_del_pending->v4.sin_port = 809 htons(bp->port); 810 if (addrs->sa_family == AF_INET) { 811 struct sockaddr_in *sin; 812 813 sin = (struct sockaddr_in *)addrs; 814 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 815 } else if (addrs->sa_family == AF_INET6) { 816 struct sockaddr_in6 *sin6; 817 818 sin6 = (struct sockaddr_in6 *)addrs; 819 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 820 } 821 822 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 823 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 824 asoc->asconf_addr_del_pending); 825 826 asoc->src_out_of_asoc_ok = 1; 827 stored = 1; 828 goto skip_mkasconf; 829 } 830 831 if (laddr == NULL) 832 return -EINVAL; 833 834 /* We do not need RCU protection throughout this loop 835 * because this is done under a socket lock from the 836 * setsockopt call. 837 */ 838 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 839 SCTP_PARAM_DEL_IP); 840 if (!chunk) { 841 retval = -ENOMEM; 842 goto out; 843 } 844 845 skip_mkasconf: 846 /* Reset use_as_src flag for the addresses in the bind address 847 * list that are to be deleted. 848 */ 849 addr_buf = addrs; 850 for (i = 0; i < addrcnt; i++) { 851 laddr = addr_buf; 852 af = sctp_get_af_specific(laddr->v4.sin_family); 853 list_for_each_entry(saddr, &bp->address_list, list) { 854 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 855 saddr->state = SCTP_ADDR_DEL; 856 } 857 addr_buf += af->sockaddr_len; 858 } 859 860 /* Update the route and saddr entries for all the transports 861 * as some of the addresses in the bind address list are 862 * about to be deleted and cannot be used as source addresses. 863 */ 864 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 865 transports) { 866 sctp_transport_route(transport, NULL, 867 sctp_sk(asoc->base.sk)); 868 } 869 870 if (stored) 871 /* We don't need to transmit ASCONF */ 872 continue; 873 retval = sctp_send_asconf(asoc, chunk); 874 } 875 out: 876 return retval; 877 } 878 879 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 880 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 881 { 882 struct sock *sk = sctp_opt2sk(sp); 883 union sctp_addr *addr; 884 struct sctp_af *af; 885 886 /* It is safe to write port space in caller. */ 887 addr = &addrw->a; 888 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 889 af = sctp_get_af_specific(addr->sa.sa_family); 890 if (!af) 891 return -EINVAL; 892 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 893 return -EINVAL; 894 895 if (addrw->state == SCTP_ADDR_NEW) 896 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 897 else 898 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 899 } 900 901 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 902 * 903 * API 8.1 904 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 905 * int flags); 906 * 907 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 908 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 909 * or IPv6 addresses. 910 * 911 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 912 * Section 3.1.2 for this usage. 913 * 914 * addrs is a pointer to an array of one or more socket addresses. Each 915 * address is contained in its appropriate structure (i.e. struct 916 * sockaddr_in or struct sockaddr_in6) the family of the address type 917 * must be used to distinguish the address length (note that this 918 * representation is termed a "packed array" of addresses). The caller 919 * specifies the number of addresses in the array with addrcnt. 920 * 921 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 922 * -1, and sets errno to the appropriate error code. 923 * 924 * For SCTP, the port given in each socket address must be the same, or 925 * sctp_bindx() will fail, setting errno to EINVAL. 926 * 927 * The flags parameter is formed from the bitwise OR of zero or more of 928 * the following currently defined flags: 929 * 930 * SCTP_BINDX_ADD_ADDR 931 * 932 * SCTP_BINDX_REM_ADDR 933 * 934 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 935 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 936 * addresses from the association. The two flags are mutually exclusive; 937 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 938 * not remove all addresses from an association; sctp_bindx() will 939 * reject such an attempt with EINVAL. 940 * 941 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 942 * additional addresses with an endpoint after calling bind(). Or use 943 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 944 * socket is associated with so that no new association accepted will be 945 * associated with those addresses. If the endpoint supports dynamic 946 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 947 * endpoint to send the appropriate message to the peer to change the 948 * peers address lists. 949 * 950 * Adding and removing addresses from a connected association is 951 * optional functionality. Implementations that do not support this 952 * functionality should return EOPNOTSUPP. 953 * 954 * Basically do nothing but copying the addresses from user to kernel 955 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 956 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 957 * from userspace. 958 * 959 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 960 * it. 961 * 962 * sk The sk of the socket 963 * addrs The pointer to the addresses in user land 964 * addrssize Size of the addrs buffer 965 * op Operation to perform (add or remove, see the flags of 966 * sctp_bindx) 967 * 968 * Returns 0 if ok, <0 errno code on error. 969 */ 970 static int sctp_setsockopt_bindx(struct sock *sk, 971 struct sockaddr __user *addrs, 972 int addrs_size, int op) 973 { 974 struct sockaddr *kaddrs; 975 int err; 976 int addrcnt = 0; 977 int walk_size = 0; 978 struct sockaddr *sa_addr; 979 void *addr_buf; 980 struct sctp_af *af; 981 982 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 983 __func__, sk, addrs, addrs_size, op); 984 985 if (unlikely(addrs_size <= 0)) 986 return -EINVAL; 987 988 kaddrs = memdup_user(addrs, addrs_size); 989 if (IS_ERR(kaddrs)) 990 return PTR_ERR(kaddrs); 991 992 /* Walk through the addrs buffer and count the number of addresses. */ 993 addr_buf = kaddrs; 994 while (walk_size < addrs_size) { 995 if (walk_size + sizeof(sa_family_t) > addrs_size) { 996 kfree(kaddrs); 997 return -EINVAL; 998 } 999 1000 sa_addr = addr_buf; 1001 af = sctp_get_af_specific(sa_addr->sa_family); 1002 1003 /* If the address family is not supported or if this address 1004 * causes the address buffer to overflow return EINVAL. 1005 */ 1006 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1007 kfree(kaddrs); 1008 return -EINVAL; 1009 } 1010 addrcnt++; 1011 addr_buf += af->sockaddr_len; 1012 walk_size += af->sockaddr_len; 1013 } 1014 1015 /* Do the work. */ 1016 switch (op) { 1017 case SCTP_BINDX_ADD_ADDR: 1018 /* Allow security module to validate bindx addresses. */ 1019 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1020 (struct sockaddr *)kaddrs, 1021 addrs_size); 1022 if (err) 1023 goto out; 1024 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1025 if (err) 1026 goto out; 1027 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1028 break; 1029 1030 case SCTP_BINDX_REM_ADDR: 1031 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1032 if (err) 1033 goto out; 1034 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1035 break; 1036 1037 default: 1038 err = -EINVAL; 1039 break; 1040 } 1041 1042 out: 1043 kfree(kaddrs); 1044 1045 return err; 1046 } 1047 1048 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1049 * 1050 * Common routine for handling connect() and sctp_connectx(). 1051 * Connect will come in with just a single address. 1052 */ 1053 static int __sctp_connect(struct sock *sk, 1054 struct sockaddr *kaddrs, 1055 int addrs_size, int flags, 1056 sctp_assoc_t *assoc_id) 1057 { 1058 struct net *net = sock_net(sk); 1059 struct sctp_sock *sp; 1060 struct sctp_endpoint *ep; 1061 struct sctp_association *asoc = NULL; 1062 struct sctp_association *asoc2; 1063 struct sctp_transport *transport; 1064 union sctp_addr to; 1065 enum sctp_scope scope; 1066 long timeo; 1067 int err = 0; 1068 int addrcnt = 0; 1069 int walk_size = 0; 1070 union sctp_addr *sa_addr = NULL; 1071 void *addr_buf; 1072 unsigned short port; 1073 1074 sp = sctp_sk(sk); 1075 ep = sp->ep; 1076 1077 /* connect() cannot be done on a socket that is already in ESTABLISHED 1078 * state - UDP-style peeled off socket or a TCP-style socket that 1079 * is already connected. 1080 * It cannot be done even on a TCP-style listening socket. 1081 */ 1082 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1083 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1084 err = -EISCONN; 1085 goto out_free; 1086 } 1087 1088 /* Walk through the addrs buffer and count the number of addresses. */ 1089 addr_buf = kaddrs; 1090 while (walk_size < addrs_size) { 1091 struct sctp_af *af; 1092 1093 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1094 err = -EINVAL; 1095 goto out_free; 1096 } 1097 1098 sa_addr = addr_buf; 1099 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1100 1101 /* If the address family is not supported or if this address 1102 * causes the address buffer to overflow return EINVAL. 1103 */ 1104 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1105 err = -EINVAL; 1106 goto out_free; 1107 } 1108 1109 port = ntohs(sa_addr->v4.sin_port); 1110 1111 /* Save current address so we can work with it */ 1112 memcpy(&to, sa_addr, af->sockaddr_len); 1113 1114 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1115 if (err) 1116 goto out_free; 1117 1118 /* Make sure the destination port is correctly set 1119 * in all addresses. 1120 */ 1121 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1122 err = -EINVAL; 1123 goto out_free; 1124 } 1125 1126 /* Check if there already is a matching association on the 1127 * endpoint (other than the one created here). 1128 */ 1129 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1130 if (asoc2 && asoc2 != asoc) { 1131 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1132 err = -EISCONN; 1133 else 1134 err = -EALREADY; 1135 goto out_free; 1136 } 1137 1138 /* If we could not find a matching association on the endpoint, 1139 * make sure that there is no peeled-off association matching 1140 * the peer address even on another socket. 1141 */ 1142 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1143 err = -EADDRNOTAVAIL; 1144 goto out_free; 1145 } 1146 1147 if (!asoc) { 1148 /* If a bind() or sctp_bindx() is not called prior to 1149 * an sctp_connectx() call, the system picks an 1150 * ephemeral port and will choose an address set 1151 * equivalent to binding with a wildcard address. 1152 */ 1153 if (!ep->base.bind_addr.port) { 1154 if (sctp_autobind(sk)) { 1155 err = -EAGAIN; 1156 goto out_free; 1157 } 1158 } else { 1159 /* 1160 * If an unprivileged user inherits a 1-many 1161 * style socket with open associations on a 1162 * privileged port, it MAY be permitted to 1163 * accept new associations, but it SHOULD NOT 1164 * be permitted to open new associations. 1165 */ 1166 if (ep->base.bind_addr.port < 1167 inet_prot_sock(net) && 1168 !ns_capable(net->user_ns, 1169 CAP_NET_BIND_SERVICE)) { 1170 err = -EACCES; 1171 goto out_free; 1172 } 1173 } 1174 1175 scope = sctp_scope(&to); 1176 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1177 if (!asoc) { 1178 err = -ENOMEM; 1179 goto out_free; 1180 } 1181 1182 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1183 GFP_KERNEL); 1184 if (err < 0) { 1185 goto out_free; 1186 } 1187 1188 } 1189 1190 /* Prime the peer's transport structures. */ 1191 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1192 SCTP_UNKNOWN); 1193 if (!transport) { 1194 err = -ENOMEM; 1195 goto out_free; 1196 } 1197 1198 addrcnt++; 1199 addr_buf += af->sockaddr_len; 1200 walk_size += af->sockaddr_len; 1201 } 1202 1203 /* In case the user of sctp_connectx() wants an association 1204 * id back, assign one now. 1205 */ 1206 if (assoc_id) { 1207 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1208 if (err < 0) 1209 goto out_free; 1210 } 1211 1212 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1213 if (err < 0) { 1214 goto out_free; 1215 } 1216 1217 /* Initialize sk's dport and daddr for getpeername() */ 1218 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1219 sp->pf->to_sk_daddr(sa_addr, sk); 1220 sk->sk_err = 0; 1221 1222 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1223 1224 if (assoc_id) 1225 *assoc_id = asoc->assoc_id; 1226 1227 err = sctp_wait_for_connect(asoc, &timeo); 1228 /* Note: the asoc may be freed after the return of 1229 * sctp_wait_for_connect. 1230 */ 1231 1232 /* Don't free association on exit. */ 1233 asoc = NULL; 1234 1235 out_free: 1236 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1237 __func__, asoc, kaddrs, err); 1238 1239 if (asoc) { 1240 /* sctp_primitive_ASSOCIATE may have added this association 1241 * To the hash table, try to unhash it, just in case, its a noop 1242 * if it wasn't hashed so we're safe 1243 */ 1244 sctp_association_free(asoc); 1245 } 1246 return err; 1247 } 1248 1249 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1250 * 1251 * API 8.9 1252 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1253 * sctp_assoc_t *asoc); 1254 * 1255 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1256 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1257 * or IPv6 addresses. 1258 * 1259 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1260 * Section 3.1.2 for this usage. 1261 * 1262 * addrs is a pointer to an array of one or more socket addresses. Each 1263 * address is contained in its appropriate structure (i.e. struct 1264 * sockaddr_in or struct sockaddr_in6) the family of the address type 1265 * must be used to distengish the address length (note that this 1266 * representation is termed a "packed array" of addresses). The caller 1267 * specifies the number of addresses in the array with addrcnt. 1268 * 1269 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1270 * the association id of the new association. On failure, sctp_connectx() 1271 * returns -1, and sets errno to the appropriate error code. The assoc_id 1272 * is not touched by the kernel. 1273 * 1274 * For SCTP, the port given in each socket address must be the same, or 1275 * sctp_connectx() will fail, setting errno to EINVAL. 1276 * 1277 * An application can use sctp_connectx to initiate an association with 1278 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1279 * allows a caller to specify multiple addresses at which a peer can be 1280 * reached. The way the SCTP stack uses the list of addresses to set up 1281 * the association is implementation dependent. This function only 1282 * specifies that the stack will try to make use of all the addresses in 1283 * the list when needed. 1284 * 1285 * Note that the list of addresses passed in is only used for setting up 1286 * the association. It does not necessarily equal the set of addresses 1287 * the peer uses for the resulting association. If the caller wants to 1288 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1289 * retrieve them after the association has been set up. 1290 * 1291 * Basically do nothing but copying the addresses from user to kernel 1292 * land and invoking either sctp_connectx(). This is used for tunneling 1293 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1294 * 1295 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1296 * it. 1297 * 1298 * sk The sk of the socket 1299 * addrs The pointer to the addresses in user land 1300 * addrssize Size of the addrs buffer 1301 * 1302 * Returns >=0 if ok, <0 errno code on error. 1303 */ 1304 static int __sctp_setsockopt_connectx(struct sock *sk, 1305 struct sockaddr __user *addrs, 1306 int addrs_size, 1307 sctp_assoc_t *assoc_id) 1308 { 1309 struct sockaddr *kaddrs; 1310 int err = 0, flags = 0; 1311 1312 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1313 __func__, sk, addrs, addrs_size); 1314 1315 if (unlikely(addrs_size <= 0)) 1316 return -EINVAL; 1317 1318 kaddrs = memdup_user(addrs, addrs_size); 1319 if (IS_ERR(kaddrs)) 1320 return PTR_ERR(kaddrs); 1321 1322 /* Allow security module to validate connectx addresses. */ 1323 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1324 (struct sockaddr *)kaddrs, 1325 addrs_size); 1326 if (err) 1327 goto out_free; 1328 1329 /* in-kernel sockets don't generally have a file allocated to them 1330 * if all they do is call sock_create_kern(). 1331 */ 1332 if (sk->sk_socket->file) 1333 flags = sk->sk_socket->file->f_flags; 1334 1335 err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1336 1337 out_free: 1338 kfree(kaddrs); 1339 1340 return err; 1341 } 1342 1343 /* 1344 * This is an older interface. It's kept for backward compatibility 1345 * to the option that doesn't provide association id. 1346 */ 1347 static int sctp_setsockopt_connectx_old(struct sock *sk, 1348 struct sockaddr __user *addrs, 1349 int addrs_size) 1350 { 1351 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1352 } 1353 1354 /* 1355 * New interface for the API. The since the API is done with a socket 1356 * option, to make it simple we feed back the association id is as a return 1357 * indication to the call. Error is always negative and association id is 1358 * always positive. 1359 */ 1360 static int sctp_setsockopt_connectx(struct sock *sk, 1361 struct sockaddr __user *addrs, 1362 int addrs_size) 1363 { 1364 sctp_assoc_t assoc_id = 0; 1365 int err = 0; 1366 1367 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1368 1369 if (err) 1370 return err; 1371 else 1372 return assoc_id; 1373 } 1374 1375 /* 1376 * New (hopefully final) interface for the API. 1377 * We use the sctp_getaddrs_old structure so that use-space library 1378 * can avoid any unnecessary allocations. The only different part 1379 * is that we store the actual length of the address buffer into the 1380 * addrs_num structure member. That way we can re-use the existing 1381 * code. 1382 */ 1383 #ifdef CONFIG_COMPAT 1384 struct compat_sctp_getaddrs_old { 1385 sctp_assoc_t assoc_id; 1386 s32 addr_num; 1387 compat_uptr_t addrs; /* struct sockaddr * */ 1388 }; 1389 #endif 1390 1391 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1392 char __user *optval, 1393 int __user *optlen) 1394 { 1395 struct sctp_getaddrs_old param; 1396 sctp_assoc_t assoc_id = 0; 1397 int err = 0; 1398 1399 #ifdef CONFIG_COMPAT 1400 if (in_compat_syscall()) { 1401 struct compat_sctp_getaddrs_old param32; 1402 1403 if (len < sizeof(param32)) 1404 return -EINVAL; 1405 if (copy_from_user(¶m32, optval, sizeof(param32))) 1406 return -EFAULT; 1407 1408 param.assoc_id = param32.assoc_id; 1409 param.addr_num = param32.addr_num; 1410 param.addrs = compat_ptr(param32.addrs); 1411 } else 1412 #endif 1413 { 1414 if (len < sizeof(param)) 1415 return -EINVAL; 1416 if (copy_from_user(¶m, optval, sizeof(param))) 1417 return -EFAULT; 1418 } 1419 1420 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1421 param.addrs, param.addr_num, 1422 &assoc_id); 1423 if (err == 0 || err == -EINPROGRESS) { 1424 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1425 return -EFAULT; 1426 if (put_user(sizeof(assoc_id), optlen)) 1427 return -EFAULT; 1428 } 1429 1430 return err; 1431 } 1432 1433 /* API 3.1.4 close() - UDP Style Syntax 1434 * Applications use close() to perform graceful shutdown (as described in 1435 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1436 * by a UDP-style socket. 1437 * 1438 * The syntax is 1439 * 1440 * ret = close(int sd); 1441 * 1442 * sd - the socket descriptor of the associations to be closed. 1443 * 1444 * To gracefully shutdown a specific association represented by the 1445 * UDP-style socket, an application should use the sendmsg() call, 1446 * passing no user data, but including the appropriate flag in the 1447 * ancillary data (see Section xxxx). 1448 * 1449 * If sd in the close() call is a branched-off socket representing only 1450 * one association, the shutdown is performed on that association only. 1451 * 1452 * 4.1.6 close() - TCP Style Syntax 1453 * 1454 * Applications use close() to gracefully close down an association. 1455 * 1456 * The syntax is: 1457 * 1458 * int close(int sd); 1459 * 1460 * sd - the socket descriptor of the association to be closed. 1461 * 1462 * After an application calls close() on a socket descriptor, no further 1463 * socket operations will succeed on that descriptor. 1464 * 1465 * API 7.1.4 SO_LINGER 1466 * 1467 * An application using the TCP-style socket can use this option to 1468 * perform the SCTP ABORT primitive. The linger option structure is: 1469 * 1470 * struct linger { 1471 * int l_onoff; // option on/off 1472 * int l_linger; // linger time 1473 * }; 1474 * 1475 * To enable the option, set l_onoff to 1. If the l_linger value is set 1476 * to 0, calling close() is the same as the ABORT primitive. If the 1477 * value is set to a negative value, the setsockopt() call will return 1478 * an error. If the value is set to a positive value linger_time, the 1479 * close() can be blocked for at most linger_time ms. If the graceful 1480 * shutdown phase does not finish during this period, close() will 1481 * return but the graceful shutdown phase continues in the system. 1482 */ 1483 static void sctp_close(struct sock *sk, long timeout) 1484 { 1485 struct net *net = sock_net(sk); 1486 struct sctp_endpoint *ep; 1487 struct sctp_association *asoc; 1488 struct list_head *pos, *temp; 1489 unsigned int data_was_unread; 1490 1491 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1492 1493 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1494 sk->sk_shutdown = SHUTDOWN_MASK; 1495 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1496 1497 ep = sctp_sk(sk)->ep; 1498 1499 /* Clean up any skbs sitting on the receive queue. */ 1500 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1501 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1502 1503 /* Walk all associations on an endpoint. */ 1504 list_for_each_safe(pos, temp, &ep->asocs) { 1505 asoc = list_entry(pos, struct sctp_association, asocs); 1506 1507 if (sctp_style(sk, TCP)) { 1508 /* A closed association can still be in the list if 1509 * it belongs to a TCP-style listening socket that is 1510 * not yet accepted. If so, free it. If not, send an 1511 * ABORT or SHUTDOWN based on the linger options. 1512 */ 1513 if (sctp_state(asoc, CLOSED)) { 1514 sctp_association_free(asoc); 1515 continue; 1516 } 1517 } 1518 1519 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1520 !skb_queue_empty(&asoc->ulpq.reasm) || 1521 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1522 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1523 struct sctp_chunk *chunk; 1524 1525 chunk = sctp_make_abort_user(asoc, NULL, 0); 1526 sctp_primitive_ABORT(net, asoc, chunk); 1527 } else 1528 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1529 } 1530 1531 /* On a TCP-style socket, block for at most linger_time if set. */ 1532 if (sctp_style(sk, TCP) && timeout) 1533 sctp_wait_for_close(sk, timeout); 1534 1535 /* This will run the backlog queue. */ 1536 release_sock(sk); 1537 1538 /* Supposedly, no process has access to the socket, but 1539 * the net layers still may. 1540 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1541 * held and that should be grabbed before socket lock. 1542 */ 1543 spin_lock_bh(&net->sctp.addr_wq_lock); 1544 bh_lock_sock_nested(sk); 1545 1546 /* Hold the sock, since sk_common_release() will put sock_put() 1547 * and we have just a little more cleanup. 1548 */ 1549 sock_hold(sk); 1550 sk_common_release(sk); 1551 1552 bh_unlock_sock(sk); 1553 spin_unlock_bh(&net->sctp.addr_wq_lock); 1554 1555 sock_put(sk); 1556 1557 SCTP_DBG_OBJCNT_DEC(sock); 1558 } 1559 1560 /* Handle EPIPE error. */ 1561 static int sctp_error(struct sock *sk, int flags, int err) 1562 { 1563 if (err == -EPIPE) 1564 err = sock_error(sk) ? : -EPIPE; 1565 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1566 send_sig(SIGPIPE, current, 0); 1567 return err; 1568 } 1569 1570 /* API 3.1.3 sendmsg() - UDP Style Syntax 1571 * 1572 * An application uses sendmsg() and recvmsg() calls to transmit data to 1573 * and receive data from its peer. 1574 * 1575 * ssize_t sendmsg(int socket, const struct msghdr *message, 1576 * int flags); 1577 * 1578 * socket - the socket descriptor of the endpoint. 1579 * message - pointer to the msghdr structure which contains a single 1580 * user message and possibly some ancillary data. 1581 * 1582 * See Section 5 for complete description of the data 1583 * structures. 1584 * 1585 * flags - flags sent or received with the user message, see Section 1586 * 5 for complete description of the flags. 1587 * 1588 * Note: This function could use a rewrite especially when explicit 1589 * connect support comes in. 1590 */ 1591 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1592 1593 static int sctp_msghdr_parse(const struct msghdr *msg, 1594 struct sctp_cmsgs *cmsgs); 1595 1596 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1597 struct sctp_sndrcvinfo *srinfo, 1598 const struct msghdr *msg, size_t msg_len) 1599 { 1600 __u16 sflags; 1601 int err; 1602 1603 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1604 return -EPIPE; 1605 1606 if (msg_len > sk->sk_sndbuf) 1607 return -EMSGSIZE; 1608 1609 memset(cmsgs, 0, sizeof(*cmsgs)); 1610 err = sctp_msghdr_parse(msg, cmsgs); 1611 if (err) { 1612 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1613 return err; 1614 } 1615 1616 memset(srinfo, 0, sizeof(*srinfo)); 1617 if (cmsgs->srinfo) { 1618 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1619 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1620 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1621 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1622 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1623 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1624 } 1625 1626 if (cmsgs->sinfo) { 1627 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1628 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1629 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1630 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1631 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1632 } 1633 1634 if (cmsgs->prinfo) { 1635 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1636 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1637 cmsgs->prinfo->pr_policy); 1638 } 1639 1640 sflags = srinfo->sinfo_flags; 1641 if (!sflags && msg_len) 1642 return 0; 1643 1644 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1645 return -EINVAL; 1646 1647 if (((sflags & SCTP_EOF) && msg_len > 0) || 1648 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1649 return -EINVAL; 1650 1651 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1652 return -EINVAL; 1653 1654 return 0; 1655 } 1656 1657 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1658 struct sctp_cmsgs *cmsgs, 1659 union sctp_addr *daddr, 1660 struct sctp_transport **tp) 1661 { 1662 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1663 struct net *net = sock_net(sk); 1664 struct sctp_association *asoc; 1665 enum sctp_scope scope; 1666 struct cmsghdr *cmsg; 1667 __be32 flowinfo = 0; 1668 struct sctp_af *af; 1669 int err; 1670 1671 *tp = NULL; 1672 1673 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1674 return -EINVAL; 1675 1676 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1677 sctp_sstate(sk, CLOSING))) 1678 return -EADDRNOTAVAIL; 1679 1680 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1681 return -EADDRNOTAVAIL; 1682 1683 if (!ep->base.bind_addr.port) { 1684 if (sctp_autobind(sk)) 1685 return -EAGAIN; 1686 } else { 1687 if (ep->base.bind_addr.port < inet_prot_sock(net) && 1688 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1689 return -EACCES; 1690 } 1691 1692 scope = sctp_scope(daddr); 1693 1694 /* Label connection socket for first association 1-to-many 1695 * style for client sequence socket()->sendmsg(). This 1696 * needs to be done before sctp_assoc_add_peer() as that will 1697 * set up the initial packet that needs to account for any 1698 * security ip options (CIPSO/CALIPSO) added to the packet. 1699 */ 1700 af = sctp_get_af_specific(daddr->sa.sa_family); 1701 if (!af) 1702 return -EINVAL; 1703 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1704 (struct sockaddr *)daddr, 1705 af->sockaddr_len); 1706 if (err < 0) 1707 return err; 1708 1709 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1710 if (!asoc) 1711 return -ENOMEM; 1712 1713 if (sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL) < 0) { 1714 err = -ENOMEM; 1715 goto free; 1716 } 1717 1718 if (cmsgs->init) { 1719 struct sctp_initmsg *init = cmsgs->init; 1720 1721 if (init->sinit_num_ostreams) { 1722 __u16 outcnt = init->sinit_num_ostreams; 1723 1724 asoc->c.sinit_num_ostreams = outcnt; 1725 /* outcnt has been changed, need to re-init stream */ 1726 err = sctp_stream_init(&asoc->stream, outcnt, 0, 1727 GFP_KERNEL); 1728 if (err) 1729 goto free; 1730 } 1731 1732 if (init->sinit_max_instreams) 1733 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1734 1735 if (init->sinit_max_attempts) 1736 asoc->max_init_attempts = init->sinit_max_attempts; 1737 1738 if (init->sinit_max_init_timeo) 1739 asoc->max_init_timeo = 1740 msecs_to_jiffies(init->sinit_max_init_timeo); 1741 } 1742 1743 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1744 if (!*tp) { 1745 err = -ENOMEM; 1746 goto free; 1747 } 1748 1749 if (!cmsgs->addrs_msg) 1750 return 0; 1751 1752 if (daddr->sa.sa_family == AF_INET6) 1753 flowinfo = daddr->v6.sin6_flowinfo; 1754 1755 /* sendv addr list parse */ 1756 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1757 struct sctp_transport *transport; 1758 struct sctp_association *old; 1759 union sctp_addr _daddr; 1760 int dlen; 1761 1762 if (cmsg->cmsg_level != IPPROTO_SCTP || 1763 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1764 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1765 continue; 1766 1767 daddr = &_daddr; 1768 memset(daddr, 0, sizeof(*daddr)); 1769 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1770 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1771 if (dlen < sizeof(struct in_addr)) { 1772 err = -EINVAL; 1773 goto free; 1774 } 1775 1776 dlen = sizeof(struct in_addr); 1777 daddr->v4.sin_family = AF_INET; 1778 daddr->v4.sin_port = htons(asoc->peer.port); 1779 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1780 } else { 1781 if (dlen < sizeof(struct in6_addr)) { 1782 err = -EINVAL; 1783 goto free; 1784 } 1785 1786 dlen = sizeof(struct in6_addr); 1787 daddr->v6.sin6_flowinfo = flowinfo; 1788 daddr->v6.sin6_family = AF_INET6; 1789 daddr->v6.sin6_port = htons(asoc->peer.port); 1790 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1791 } 1792 err = sctp_verify_addr(sk, daddr, sizeof(*daddr)); 1793 if (err) 1794 goto free; 1795 1796 old = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1797 if (old && old != asoc) { 1798 if (old->state >= SCTP_STATE_ESTABLISHED) 1799 err = -EISCONN; 1800 else 1801 err = -EALREADY; 1802 goto free; 1803 } 1804 1805 if (sctp_endpoint_is_peeled_off(ep, daddr)) { 1806 err = -EADDRNOTAVAIL; 1807 goto free; 1808 } 1809 1810 transport = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, 1811 SCTP_UNKNOWN); 1812 if (!transport) { 1813 err = -ENOMEM; 1814 goto free; 1815 } 1816 } 1817 1818 return 0; 1819 1820 free: 1821 sctp_association_free(asoc); 1822 return err; 1823 } 1824 1825 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1826 __u16 sflags, struct msghdr *msg, 1827 size_t msg_len) 1828 { 1829 struct sock *sk = asoc->base.sk; 1830 struct net *net = sock_net(sk); 1831 1832 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1833 return -EPIPE; 1834 1835 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1836 !sctp_state(asoc, ESTABLISHED)) 1837 return 0; 1838 1839 if (sflags & SCTP_EOF) { 1840 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1841 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1842 1843 return 0; 1844 } 1845 1846 if (sflags & SCTP_ABORT) { 1847 struct sctp_chunk *chunk; 1848 1849 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1850 if (!chunk) 1851 return -ENOMEM; 1852 1853 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1854 sctp_primitive_ABORT(net, asoc, chunk); 1855 iov_iter_revert(&msg->msg_iter, msg_len); 1856 1857 return 0; 1858 } 1859 1860 return 1; 1861 } 1862 1863 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1864 struct msghdr *msg, size_t msg_len, 1865 struct sctp_transport *transport, 1866 struct sctp_sndrcvinfo *sinfo) 1867 { 1868 struct sock *sk = asoc->base.sk; 1869 struct sctp_sock *sp = sctp_sk(sk); 1870 struct net *net = sock_net(sk); 1871 struct sctp_datamsg *datamsg; 1872 bool wait_connect = false; 1873 struct sctp_chunk *chunk; 1874 long timeo; 1875 int err; 1876 1877 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1878 err = -EINVAL; 1879 goto err; 1880 } 1881 1882 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { 1883 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1884 if (err) 1885 goto err; 1886 } 1887 1888 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1889 err = -EMSGSIZE; 1890 goto err; 1891 } 1892 1893 if (asoc->pmtu_pending) { 1894 if (sp->param_flags & SPP_PMTUD_ENABLE) 1895 sctp_assoc_sync_pmtu(asoc); 1896 asoc->pmtu_pending = 0; 1897 } 1898 1899 if (sctp_wspace(asoc) < (int)msg_len) 1900 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1901 1902 if (sk_under_memory_pressure(sk)) 1903 sk_mem_reclaim(sk); 1904 1905 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) { 1906 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1907 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1908 if (err) 1909 goto err; 1910 } 1911 1912 if (sctp_state(asoc, CLOSED)) { 1913 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1914 if (err) 1915 goto err; 1916 1917 if (asoc->ep->intl_enable) { 1918 timeo = sock_sndtimeo(sk, 0); 1919 err = sctp_wait_for_connect(asoc, &timeo); 1920 if (err) { 1921 err = -ESRCH; 1922 goto err; 1923 } 1924 } else { 1925 wait_connect = true; 1926 } 1927 1928 pr_debug("%s: we associated primitively\n", __func__); 1929 } 1930 1931 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1932 if (IS_ERR(datamsg)) { 1933 err = PTR_ERR(datamsg); 1934 goto err; 1935 } 1936 1937 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1938 1939 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1940 sctp_chunk_hold(chunk); 1941 sctp_set_owner_w(chunk); 1942 chunk->transport = transport; 1943 } 1944 1945 err = sctp_primitive_SEND(net, asoc, datamsg); 1946 if (err) { 1947 sctp_datamsg_free(datamsg); 1948 goto err; 1949 } 1950 1951 pr_debug("%s: we sent primitively\n", __func__); 1952 1953 sctp_datamsg_put(datamsg); 1954 1955 if (unlikely(wait_connect)) { 1956 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1957 sctp_wait_for_connect(asoc, &timeo); 1958 } 1959 1960 err = msg_len; 1961 1962 err: 1963 return err; 1964 } 1965 1966 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1967 const struct msghdr *msg, 1968 struct sctp_cmsgs *cmsgs) 1969 { 1970 union sctp_addr *daddr = NULL; 1971 int err; 1972 1973 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1974 int len = msg->msg_namelen; 1975 1976 if (len > sizeof(*daddr)) 1977 len = sizeof(*daddr); 1978 1979 daddr = (union sctp_addr *)msg->msg_name; 1980 1981 err = sctp_verify_addr(sk, daddr, len); 1982 if (err) 1983 return ERR_PTR(err); 1984 } 1985 1986 return daddr; 1987 } 1988 1989 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 1990 struct sctp_sndrcvinfo *sinfo, 1991 struct sctp_cmsgs *cmsgs) 1992 { 1993 if (!cmsgs->srinfo && !cmsgs->sinfo) { 1994 sinfo->sinfo_stream = asoc->default_stream; 1995 sinfo->sinfo_ppid = asoc->default_ppid; 1996 sinfo->sinfo_context = asoc->default_context; 1997 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 1998 1999 if (!cmsgs->prinfo) 2000 sinfo->sinfo_flags = asoc->default_flags; 2001 } 2002 2003 if (!cmsgs->srinfo && !cmsgs->prinfo) 2004 sinfo->sinfo_timetolive = asoc->default_timetolive; 2005 2006 if (cmsgs->authinfo) { 2007 /* Reuse sinfo_tsn to indicate that authinfo was set and 2008 * sinfo_ssn to save the keyid on tx path. 2009 */ 2010 sinfo->sinfo_tsn = 1; 2011 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 2012 } 2013 } 2014 2015 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 2016 { 2017 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 2018 struct sctp_transport *transport = NULL; 2019 struct sctp_sndrcvinfo _sinfo, *sinfo; 2020 struct sctp_association *asoc, *tmp; 2021 struct sctp_cmsgs cmsgs; 2022 union sctp_addr *daddr; 2023 bool new = false; 2024 __u16 sflags; 2025 int err; 2026 2027 /* Parse and get snd_info */ 2028 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 2029 if (err) 2030 goto out; 2031 2032 sinfo = &_sinfo; 2033 sflags = sinfo->sinfo_flags; 2034 2035 /* Get daddr from msg */ 2036 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 2037 if (IS_ERR(daddr)) { 2038 err = PTR_ERR(daddr); 2039 goto out; 2040 } 2041 2042 lock_sock(sk); 2043 2044 /* SCTP_SENDALL process */ 2045 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 2046 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) { 2047 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2048 msg_len); 2049 if (err == 0) 2050 continue; 2051 if (err < 0) 2052 goto out_unlock; 2053 2054 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2055 2056 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 2057 NULL, sinfo); 2058 if (err < 0) 2059 goto out_unlock; 2060 2061 iov_iter_revert(&msg->msg_iter, err); 2062 } 2063 2064 goto out_unlock; 2065 } 2066 2067 /* Get and check or create asoc */ 2068 if (daddr) { 2069 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 2070 if (asoc) { 2071 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2072 msg_len); 2073 if (err <= 0) 2074 goto out_unlock; 2075 } else { 2076 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 2077 &transport); 2078 if (err) 2079 goto out_unlock; 2080 2081 asoc = transport->asoc; 2082 new = true; 2083 } 2084 2085 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 2086 transport = NULL; 2087 } else { 2088 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2089 if (!asoc) { 2090 err = -EPIPE; 2091 goto out_unlock; 2092 } 2093 2094 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2095 if (err <= 0) 2096 goto out_unlock; 2097 } 2098 2099 /* Update snd_info with the asoc */ 2100 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2101 2102 /* Send msg to the asoc */ 2103 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2104 if (err < 0 && err != -ESRCH && new) 2105 sctp_association_free(asoc); 2106 2107 out_unlock: 2108 release_sock(sk); 2109 out: 2110 return sctp_error(sk, msg->msg_flags, err); 2111 } 2112 2113 /* This is an extended version of skb_pull() that removes the data from the 2114 * start of a skb even when data is spread across the list of skb's in the 2115 * frag_list. len specifies the total amount of data that needs to be removed. 2116 * when 'len' bytes could be removed from the skb, it returns 0. 2117 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2118 * could not be removed. 2119 */ 2120 static int sctp_skb_pull(struct sk_buff *skb, int len) 2121 { 2122 struct sk_buff *list; 2123 int skb_len = skb_headlen(skb); 2124 int rlen; 2125 2126 if (len <= skb_len) { 2127 __skb_pull(skb, len); 2128 return 0; 2129 } 2130 len -= skb_len; 2131 __skb_pull(skb, skb_len); 2132 2133 skb_walk_frags(skb, list) { 2134 rlen = sctp_skb_pull(list, len); 2135 skb->len -= (len-rlen); 2136 skb->data_len -= (len-rlen); 2137 2138 if (!rlen) 2139 return 0; 2140 2141 len = rlen; 2142 } 2143 2144 return len; 2145 } 2146 2147 /* API 3.1.3 recvmsg() - UDP Style Syntax 2148 * 2149 * ssize_t recvmsg(int socket, struct msghdr *message, 2150 * int flags); 2151 * 2152 * socket - the socket descriptor of the endpoint. 2153 * message - pointer to the msghdr structure which contains a single 2154 * user message and possibly some ancillary data. 2155 * 2156 * See Section 5 for complete description of the data 2157 * structures. 2158 * 2159 * flags - flags sent or received with the user message, see Section 2160 * 5 for complete description of the flags. 2161 */ 2162 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2163 int noblock, int flags, int *addr_len) 2164 { 2165 struct sctp_ulpevent *event = NULL; 2166 struct sctp_sock *sp = sctp_sk(sk); 2167 struct sk_buff *skb, *head_skb; 2168 int copied; 2169 int err = 0; 2170 int skb_len; 2171 2172 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2173 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2174 addr_len); 2175 2176 lock_sock(sk); 2177 2178 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2179 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2180 err = -ENOTCONN; 2181 goto out; 2182 } 2183 2184 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2185 if (!skb) 2186 goto out; 2187 2188 /* Get the total length of the skb including any skb's in the 2189 * frag_list. 2190 */ 2191 skb_len = skb->len; 2192 2193 copied = skb_len; 2194 if (copied > len) 2195 copied = len; 2196 2197 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2198 2199 event = sctp_skb2event(skb); 2200 2201 if (err) 2202 goto out_free; 2203 2204 if (event->chunk && event->chunk->head_skb) 2205 head_skb = event->chunk->head_skb; 2206 else 2207 head_skb = skb; 2208 sock_recv_ts_and_drops(msg, sk, head_skb); 2209 if (sctp_ulpevent_is_notification(event)) { 2210 msg->msg_flags |= MSG_NOTIFICATION; 2211 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2212 } else { 2213 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2214 } 2215 2216 /* Check if we allow SCTP_NXTINFO. */ 2217 if (sp->recvnxtinfo) 2218 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2219 /* Check if we allow SCTP_RCVINFO. */ 2220 if (sp->recvrcvinfo) 2221 sctp_ulpevent_read_rcvinfo(event, msg); 2222 /* Check if we allow SCTP_SNDRCVINFO. */ 2223 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT)) 2224 sctp_ulpevent_read_sndrcvinfo(event, msg); 2225 2226 err = copied; 2227 2228 /* If skb's length exceeds the user's buffer, update the skb and 2229 * push it back to the receive_queue so that the next call to 2230 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2231 */ 2232 if (skb_len > copied) { 2233 msg->msg_flags &= ~MSG_EOR; 2234 if (flags & MSG_PEEK) 2235 goto out_free; 2236 sctp_skb_pull(skb, copied); 2237 skb_queue_head(&sk->sk_receive_queue, skb); 2238 2239 /* When only partial message is copied to the user, increase 2240 * rwnd by that amount. If all the data in the skb is read, 2241 * rwnd is updated when the event is freed. 2242 */ 2243 if (!sctp_ulpevent_is_notification(event)) 2244 sctp_assoc_rwnd_increase(event->asoc, copied); 2245 goto out; 2246 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2247 (event->msg_flags & MSG_EOR)) 2248 msg->msg_flags |= MSG_EOR; 2249 else 2250 msg->msg_flags &= ~MSG_EOR; 2251 2252 out_free: 2253 if (flags & MSG_PEEK) { 2254 /* Release the skb reference acquired after peeking the skb in 2255 * sctp_skb_recv_datagram(). 2256 */ 2257 kfree_skb(skb); 2258 } else { 2259 /* Free the event which includes releasing the reference to 2260 * the owner of the skb, freeing the skb and updating the 2261 * rwnd. 2262 */ 2263 sctp_ulpevent_free(event); 2264 } 2265 out: 2266 release_sock(sk); 2267 return err; 2268 } 2269 2270 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2271 * 2272 * This option is a on/off flag. If enabled no SCTP message 2273 * fragmentation will be performed. Instead if a message being sent 2274 * exceeds the current PMTU size, the message will NOT be sent and 2275 * instead a error will be indicated to the user. 2276 */ 2277 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2278 char __user *optval, 2279 unsigned int optlen) 2280 { 2281 int val; 2282 2283 if (optlen < sizeof(int)) 2284 return -EINVAL; 2285 2286 if (get_user(val, (int __user *)optval)) 2287 return -EFAULT; 2288 2289 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2290 2291 return 0; 2292 } 2293 2294 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2295 unsigned int optlen) 2296 { 2297 struct sctp_event_subscribe subscribe; 2298 __u8 *sn_type = (__u8 *)&subscribe; 2299 struct sctp_sock *sp = sctp_sk(sk); 2300 struct sctp_association *asoc; 2301 int i; 2302 2303 if (optlen > sizeof(struct sctp_event_subscribe)) 2304 return -EINVAL; 2305 2306 if (copy_from_user(&subscribe, optval, optlen)) 2307 return -EFAULT; 2308 2309 for (i = 0; i < optlen; i++) 2310 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i, 2311 sn_type[i]); 2312 2313 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2314 asoc->subscribe = sctp_sk(sk)->subscribe; 2315 2316 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2317 * if there is no data to be sent or retransmit, the stack will 2318 * immediately send up this notification. 2319 */ 2320 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) { 2321 struct sctp_ulpevent *event; 2322 2323 asoc = sctp_id2assoc(sk, 0); 2324 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2325 event = sctp_ulpevent_make_sender_dry_event(asoc, 2326 GFP_USER | __GFP_NOWARN); 2327 if (!event) 2328 return -ENOMEM; 2329 2330 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2331 } 2332 } 2333 2334 return 0; 2335 } 2336 2337 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2338 * 2339 * This socket option is applicable to the UDP-style socket only. When 2340 * set it will cause associations that are idle for more than the 2341 * specified number of seconds to automatically close. An association 2342 * being idle is defined an association that has NOT sent or received 2343 * user data. The special value of '0' indicates that no automatic 2344 * close of any associations should be performed. The option expects an 2345 * integer defining the number of seconds of idle time before an 2346 * association is closed. 2347 */ 2348 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2349 unsigned int optlen) 2350 { 2351 struct sctp_sock *sp = sctp_sk(sk); 2352 struct net *net = sock_net(sk); 2353 2354 /* Applicable to UDP-style socket only */ 2355 if (sctp_style(sk, TCP)) 2356 return -EOPNOTSUPP; 2357 if (optlen != sizeof(int)) 2358 return -EINVAL; 2359 if (copy_from_user(&sp->autoclose, optval, optlen)) 2360 return -EFAULT; 2361 2362 if (sp->autoclose > net->sctp.max_autoclose) 2363 sp->autoclose = net->sctp.max_autoclose; 2364 2365 return 0; 2366 } 2367 2368 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2369 * 2370 * Applications can enable or disable heartbeats for any peer address of 2371 * an association, modify an address's heartbeat interval, force a 2372 * heartbeat to be sent immediately, and adjust the address's maximum 2373 * number of retransmissions sent before an address is considered 2374 * unreachable. The following structure is used to access and modify an 2375 * address's parameters: 2376 * 2377 * struct sctp_paddrparams { 2378 * sctp_assoc_t spp_assoc_id; 2379 * struct sockaddr_storage spp_address; 2380 * uint32_t spp_hbinterval; 2381 * uint16_t spp_pathmaxrxt; 2382 * uint32_t spp_pathmtu; 2383 * uint32_t spp_sackdelay; 2384 * uint32_t spp_flags; 2385 * uint32_t spp_ipv6_flowlabel; 2386 * uint8_t spp_dscp; 2387 * }; 2388 * 2389 * spp_assoc_id - (one-to-many style socket) This is filled in the 2390 * application, and identifies the association for 2391 * this query. 2392 * spp_address - This specifies which address is of interest. 2393 * spp_hbinterval - This contains the value of the heartbeat interval, 2394 * in milliseconds. If a value of zero 2395 * is present in this field then no changes are to 2396 * be made to this parameter. 2397 * spp_pathmaxrxt - This contains the maximum number of 2398 * retransmissions before this address shall be 2399 * considered unreachable. If a value of zero 2400 * is present in this field then no changes are to 2401 * be made to this parameter. 2402 * spp_pathmtu - When Path MTU discovery is disabled the value 2403 * specified here will be the "fixed" path mtu. 2404 * Note that if the spp_address field is empty 2405 * then all associations on this address will 2406 * have this fixed path mtu set upon them. 2407 * 2408 * spp_sackdelay - When delayed sack is enabled, this value specifies 2409 * the number of milliseconds that sacks will be delayed 2410 * for. This value will apply to all addresses of an 2411 * association if the spp_address field is empty. Note 2412 * also, that if delayed sack is enabled and this 2413 * value is set to 0, no change is made to the last 2414 * recorded delayed sack timer value. 2415 * 2416 * spp_flags - These flags are used to control various features 2417 * on an association. The flag field may contain 2418 * zero or more of the following options. 2419 * 2420 * SPP_HB_ENABLE - Enable heartbeats on the 2421 * specified address. Note that if the address 2422 * field is empty all addresses for the association 2423 * have heartbeats enabled upon them. 2424 * 2425 * SPP_HB_DISABLE - Disable heartbeats on the 2426 * speicifed address. Note that if the address 2427 * field is empty all addresses for the association 2428 * will have their heartbeats disabled. Note also 2429 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2430 * mutually exclusive, only one of these two should 2431 * be specified. Enabling both fields will have 2432 * undetermined results. 2433 * 2434 * SPP_HB_DEMAND - Request a user initiated heartbeat 2435 * to be made immediately. 2436 * 2437 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2438 * heartbeat delayis to be set to the value of 0 2439 * milliseconds. 2440 * 2441 * SPP_PMTUD_ENABLE - This field will enable PMTU 2442 * discovery upon the specified address. Note that 2443 * if the address feild is empty then all addresses 2444 * on the association are effected. 2445 * 2446 * SPP_PMTUD_DISABLE - This field will disable PMTU 2447 * discovery upon the specified address. Note that 2448 * if the address feild is empty then all addresses 2449 * on the association are effected. Not also that 2450 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2451 * exclusive. Enabling both will have undetermined 2452 * results. 2453 * 2454 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2455 * on delayed sack. The time specified in spp_sackdelay 2456 * is used to specify the sack delay for this address. Note 2457 * that if spp_address is empty then all addresses will 2458 * enable delayed sack and take on the sack delay 2459 * value specified in spp_sackdelay. 2460 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2461 * off delayed sack. If the spp_address field is blank then 2462 * delayed sack is disabled for the entire association. Note 2463 * also that this field is mutually exclusive to 2464 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2465 * results. 2466 * 2467 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2468 * setting of the IPV6 flow label value. The value is 2469 * contained in the spp_ipv6_flowlabel field. 2470 * Upon retrieval, this flag will be set to indicate that 2471 * the spp_ipv6_flowlabel field has a valid value returned. 2472 * If a specific destination address is set (in the 2473 * spp_address field), then the value returned is that of 2474 * the address. If just an association is specified (and 2475 * no address), then the association's default flow label 2476 * is returned. If neither an association nor a destination 2477 * is specified, then the socket's default flow label is 2478 * returned. For non-IPv6 sockets, this flag will be left 2479 * cleared. 2480 * 2481 * SPP_DSCP: Setting this flag enables the setting of the 2482 * Differentiated Services Code Point (DSCP) value 2483 * associated with either the association or a specific 2484 * address. The value is obtained in the spp_dscp field. 2485 * Upon retrieval, this flag will be set to indicate that 2486 * the spp_dscp field has a valid value returned. If a 2487 * specific destination address is set when called (in the 2488 * spp_address field), then that specific destination 2489 * address's DSCP value is returned. If just an association 2490 * is specified, then the association's default DSCP is 2491 * returned. If neither an association nor a destination is 2492 * specified, then the socket's default DSCP is returned. 2493 * 2494 * spp_ipv6_flowlabel 2495 * - This field is used in conjunction with the 2496 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2497 * The 20 least significant bits are used for the flow 2498 * label. This setting has precedence over any IPv6-layer 2499 * setting. 2500 * 2501 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2502 * and contains the DSCP. The 6 most significant bits are 2503 * used for the DSCP. This setting has precedence over any 2504 * IPv4- or IPv6- layer setting. 2505 */ 2506 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2507 struct sctp_transport *trans, 2508 struct sctp_association *asoc, 2509 struct sctp_sock *sp, 2510 int hb_change, 2511 int pmtud_change, 2512 int sackdelay_change) 2513 { 2514 int error; 2515 2516 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2517 struct net *net = sock_net(trans->asoc->base.sk); 2518 2519 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2520 if (error) 2521 return error; 2522 } 2523 2524 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2525 * this field is ignored. Note also that a value of zero indicates 2526 * the current setting should be left unchanged. 2527 */ 2528 if (params->spp_flags & SPP_HB_ENABLE) { 2529 2530 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2531 * set. This lets us use 0 value when this flag 2532 * is set. 2533 */ 2534 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2535 params->spp_hbinterval = 0; 2536 2537 if (params->spp_hbinterval || 2538 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2539 if (trans) { 2540 trans->hbinterval = 2541 msecs_to_jiffies(params->spp_hbinterval); 2542 } else if (asoc) { 2543 asoc->hbinterval = 2544 msecs_to_jiffies(params->spp_hbinterval); 2545 } else { 2546 sp->hbinterval = params->spp_hbinterval; 2547 } 2548 } 2549 } 2550 2551 if (hb_change) { 2552 if (trans) { 2553 trans->param_flags = 2554 (trans->param_flags & ~SPP_HB) | hb_change; 2555 } else if (asoc) { 2556 asoc->param_flags = 2557 (asoc->param_flags & ~SPP_HB) | hb_change; 2558 } else { 2559 sp->param_flags = 2560 (sp->param_flags & ~SPP_HB) | hb_change; 2561 } 2562 } 2563 2564 /* When Path MTU discovery is disabled the value specified here will 2565 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2566 * include the flag SPP_PMTUD_DISABLE for this field to have any 2567 * effect). 2568 */ 2569 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2570 if (trans) { 2571 trans->pathmtu = params->spp_pathmtu; 2572 sctp_assoc_sync_pmtu(asoc); 2573 } else if (asoc) { 2574 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2575 } else { 2576 sp->pathmtu = params->spp_pathmtu; 2577 } 2578 } 2579 2580 if (pmtud_change) { 2581 if (trans) { 2582 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2583 (params->spp_flags & SPP_PMTUD_ENABLE); 2584 trans->param_flags = 2585 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2586 if (update) { 2587 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2588 sctp_assoc_sync_pmtu(asoc); 2589 } 2590 } else if (asoc) { 2591 asoc->param_flags = 2592 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2593 } else { 2594 sp->param_flags = 2595 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2596 } 2597 } 2598 2599 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2600 * value of this field is ignored. Note also that a value of zero 2601 * indicates the current setting should be left unchanged. 2602 */ 2603 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2604 if (trans) { 2605 trans->sackdelay = 2606 msecs_to_jiffies(params->spp_sackdelay); 2607 } else if (asoc) { 2608 asoc->sackdelay = 2609 msecs_to_jiffies(params->spp_sackdelay); 2610 } else { 2611 sp->sackdelay = params->spp_sackdelay; 2612 } 2613 } 2614 2615 if (sackdelay_change) { 2616 if (trans) { 2617 trans->param_flags = 2618 (trans->param_flags & ~SPP_SACKDELAY) | 2619 sackdelay_change; 2620 } else if (asoc) { 2621 asoc->param_flags = 2622 (asoc->param_flags & ~SPP_SACKDELAY) | 2623 sackdelay_change; 2624 } else { 2625 sp->param_flags = 2626 (sp->param_flags & ~SPP_SACKDELAY) | 2627 sackdelay_change; 2628 } 2629 } 2630 2631 /* Note that a value of zero indicates the current setting should be 2632 left unchanged. 2633 */ 2634 if (params->spp_pathmaxrxt) { 2635 if (trans) { 2636 trans->pathmaxrxt = params->spp_pathmaxrxt; 2637 } else if (asoc) { 2638 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2639 } else { 2640 sp->pathmaxrxt = params->spp_pathmaxrxt; 2641 } 2642 } 2643 2644 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2645 if (trans) { 2646 if (trans->ipaddr.sa.sa_family == AF_INET6) { 2647 trans->flowlabel = params->spp_ipv6_flowlabel & 2648 SCTP_FLOWLABEL_VAL_MASK; 2649 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2650 } 2651 } else if (asoc) { 2652 struct sctp_transport *t; 2653 2654 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2655 transports) { 2656 if (t->ipaddr.sa.sa_family != AF_INET6) 2657 continue; 2658 t->flowlabel = params->spp_ipv6_flowlabel & 2659 SCTP_FLOWLABEL_VAL_MASK; 2660 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2661 } 2662 asoc->flowlabel = params->spp_ipv6_flowlabel & 2663 SCTP_FLOWLABEL_VAL_MASK; 2664 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2665 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2666 sp->flowlabel = params->spp_ipv6_flowlabel & 2667 SCTP_FLOWLABEL_VAL_MASK; 2668 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2669 } 2670 } 2671 2672 if (params->spp_flags & SPP_DSCP) { 2673 if (trans) { 2674 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2675 trans->dscp |= SCTP_DSCP_SET_MASK; 2676 } else if (asoc) { 2677 struct sctp_transport *t; 2678 2679 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2680 transports) { 2681 t->dscp = params->spp_dscp & 2682 SCTP_DSCP_VAL_MASK; 2683 t->dscp |= SCTP_DSCP_SET_MASK; 2684 } 2685 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2686 asoc->dscp |= SCTP_DSCP_SET_MASK; 2687 } else { 2688 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2689 sp->dscp |= SCTP_DSCP_SET_MASK; 2690 } 2691 } 2692 2693 return 0; 2694 } 2695 2696 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2697 char __user *optval, 2698 unsigned int optlen) 2699 { 2700 struct sctp_paddrparams params; 2701 struct sctp_transport *trans = NULL; 2702 struct sctp_association *asoc = NULL; 2703 struct sctp_sock *sp = sctp_sk(sk); 2704 int error; 2705 int hb_change, pmtud_change, sackdelay_change; 2706 2707 if (optlen == sizeof(params)) { 2708 if (copy_from_user(¶ms, optval, optlen)) 2709 return -EFAULT; 2710 } else if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2711 spp_ipv6_flowlabel), 4)) { 2712 if (copy_from_user(¶ms, optval, optlen)) 2713 return -EFAULT; 2714 if (params.spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2715 return -EINVAL; 2716 } else { 2717 return -EINVAL; 2718 } 2719 2720 /* Validate flags and value parameters. */ 2721 hb_change = params.spp_flags & SPP_HB; 2722 pmtud_change = params.spp_flags & SPP_PMTUD; 2723 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2724 2725 if (hb_change == SPP_HB || 2726 pmtud_change == SPP_PMTUD || 2727 sackdelay_change == SPP_SACKDELAY || 2728 params.spp_sackdelay > 500 || 2729 (params.spp_pathmtu && 2730 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2731 return -EINVAL; 2732 2733 /* If an address other than INADDR_ANY is specified, and 2734 * no transport is found, then the request is invalid. 2735 */ 2736 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2737 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2738 params.spp_assoc_id); 2739 if (!trans) 2740 return -EINVAL; 2741 } 2742 2743 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 2744 * socket is a one to many style socket, and an association 2745 * was not found, then the id was invalid. 2746 */ 2747 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2748 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 2749 sctp_style(sk, UDP)) 2750 return -EINVAL; 2751 2752 /* Heartbeat demand can only be sent on a transport or 2753 * association, but not a socket. 2754 */ 2755 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2756 return -EINVAL; 2757 2758 /* Process parameters. */ 2759 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2760 hb_change, pmtud_change, 2761 sackdelay_change); 2762 2763 if (error) 2764 return error; 2765 2766 /* If changes are for association, also apply parameters to each 2767 * transport. 2768 */ 2769 if (!trans && asoc) { 2770 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2771 transports) { 2772 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2773 hb_change, pmtud_change, 2774 sackdelay_change); 2775 } 2776 } 2777 2778 return 0; 2779 } 2780 2781 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2782 { 2783 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2784 } 2785 2786 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2787 { 2788 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2789 } 2790 2791 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params, 2792 struct sctp_association *asoc) 2793 { 2794 struct sctp_transport *trans; 2795 2796 if (params->sack_delay) { 2797 asoc->sackdelay = msecs_to_jiffies(params->sack_delay); 2798 asoc->param_flags = 2799 sctp_spp_sackdelay_enable(asoc->param_flags); 2800 } 2801 if (params->sack_freq == 1) { 2802 asoc->param_flags = 2803 sctp_spp_sackdelay_disable(asoc->param_flags); 2804 } else if (params->sack_freq > 1) { 2805 asoc->sackfreq = params->sack_freq; 2806 asoc->param_flags = 2807 sctp_spp_sackdelay_enable(asoc->param_flags); 2808 } 2809 2810 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2811 transports) { 2812 if (params->sack_delay) { 2813 trans->sackdelay = msecs_to_jiffies(params->sack_delay); 2814 trans->param_flags = 2815 sctp_spp_sackdelay_enable(trans->param_flags); 2816 } 2817 if (params->sack_freq == 1) { 2818 trans->param_flags = 2819 sctp_spp_sackdelay_disable(trans->param_flags); 2820 } else if (params->sack_freq > 1) { 2821 trans->sackfreq = params->sack_freq; 2822 trans->param_flags = 2823 sctp_spp_sackdelay_enable(trans->param_flags); 2824 } 2825 } 2826 } 2827 2828 /* 2829 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2830 * 2831 * This option will effect the way delayed acks are performed. This 2832 * option allows you to get or set the delayed ack time, in 2833 * milliseconds. It also allows changing the delayed ack frequency. 2834 * Changing the frequency to 1 disables the delayed sack algorithm. If 2835 * the assoc_id is 0, then this sets or gets the endpoints default 2836 * values. If the assoc_id field is non-zero, then the set or get 2837 * effects the specified association for the one to many model (the 2838 * assoc_id field is ignored by the one to one model). Note that if 2839 * sack_delay or sack_freq are 0 when setting this option, then the 2840 * current values will remain unchanged. 2841 * 2842 * struct sctp_sack_info { 2843 * sctp_assoc_t sack_assoc_id; 2844 * uint32_t sack_delay; 2845 * uint32_t sack_freq; 2846 * }; 2847 * 2848 * sack_assoc_id - This parameter, indicates which association the user 2849 * is performing an action upon. Note that if this field's value is 2850 * zero then the endpoints default value is changed (effecting future 2851 * associations only). 2852 * 2853 * sack_delay - This parameter contains the number of milliseconds that 2854 * the user is requesting the delayed ACK timer be set to. Note that 2855 * this value is defined in the standard to be between 200 and 500 2856 * milliseconds. 2857 * 2858 * sack_freq - This parameter contains the number of packets that must 2859 * be received before a sack is sent without waiting for the delay 2860 * timer to expire. The default value for this is 2, setting this 2861 * value to 1 will disable the delayed sack algorithm. 2862 */ 2863 2864 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2865 char __user *optval, unsigned int optlen) 2866 { 2867 struct sctp_sock *sp = sctp_sk(sk); 2868 struct sctp_association *asoc; 2869 struct sctp_sack_info params; 2870 2871 if (optlen == sizeof(struct sctp_sack_info)) { 2872 if (copy_from_user(¶ms, optval, optlen)) 2873 return -EFAULT; 2874 2875 if (params.sack_delay == 0 && params.sack_freq == 0) 2876 return 0; 2877 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2878 pr_warn_ratelimited(DEPRECATED 2879 "%s (pid %d) " 2880 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2881 "Use struct sctp_sack_info instead\n", 2882 current->comm, task_pid_nr(current)); 2883 if (copy_from_user(¶ms, optval, optlen)) 2884 return -EFAULT; 2885 2886 if (params.sack_delay == 0) 2887 params.sack_freq = 1; 2888 else 2889 params.sack_freq = 0; 2890 } else 2891 return -EINVAL; 2892 2893 /* Validate value parameter. */ 2894 if (params.sack_delay > 500) 2895 return -EINVAL; 2896 2897 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 2898 * socket is a one to many style socket, and an association 2899 * was not found, then the id was invalid. 2900 */ 2901 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2902 if (!asoc && params.sack_assoc_id > SCTP_ALL_ASSOC && 2903 sctp_style(sk, UDP)) 2904 return -EINVAL; 2905 2906 if (asoc) { 2907 sctp_apply_asoc_delayed_ack(¶ms, asoc); 2908 2909 return 0; 2910 } 2911 2912 if (sctp_style(sk, TCP)) 2913 params.sack_assoc_id = SCTP_FUTURE_ASSOC; 2914 2915 if (params.sack_assoc_id == SCTP_FUTURE_ASSOC || 2916 params.sack_assoc_id == SCTP_ALL_ASSOC) { 2917 if (params.sack_delay) { 2918 sp->sackdelay = params.sack_delay; 2919 sp->param_flags = 2920 sctp_spp_sackdelay_enable(sp->param_flags); 2921 } 2922 if (params.sack_freq == 1) { 2923 sp->param_flags = 2924 sctp_spp_sackdelay_disable(sp->param_flags); 2925 } else if (params.sack_freq > 1) { 2926 sp->sackfreq = params.sack_freq; 2927 sp->param_flags = 2928 sctp_spp_sackdelay_enable(sp->param_flags); 2929 } 2930 } 2931 2932 if (params.sack_assoc_id == SCTP_CURRENT_ASSOC || 2933 params.sack_assoc_id == SCTP_ALL_ASSOC) 2934 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2935 sctp_apply_asoc_delayed_ack(¶ms, asoc); 2936 2937 return 0; 2938 } 2939 2940 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2941 * 2942 * Applications can specify protocol parameters for the default association 2943 * initialization. The option name argument to setsockopt() and getsockopt() 2944 * is SCTP_INITMSG. 2945 * 2946 * Setting initialization parameters is effective only on an unconnected 2947 * socket (for UDP-style sockets only future associations are effected 2948 * by the change). With TCP-style sockets, this option is inherited by 2949 * sockets derived from a listener socket. 2950 */ 2951 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2952 { 2953 struct sctp_initmsg sinit; 2954 struct sctp_sock *sp = sctp_sk(sk); 2955 2956 if (optlen != sizeof(struct sctp_initmsg)) 2957 return -EINVAL; 2958 if (copy_from_user(&sinit, optval, optlen)) 2959 return -EFAULT; 2960 2961 if (sinit.sinit_num_ostreams) 2962 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2963 if (sinit.sinit_max_instreams) 2964 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2965 if (sinit.sinit_max_attempts) 2966 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2967 if (sinit.sinit_max_init_timeo) 2968 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2969 2970 return 0; 2971 } 2972 2973 /* 2974 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2975 * 2976 * Applications that wish to use the sendto() system call may wish to 2977 * specify a default set of parameters that would normally be supplied 2978 * through the inclusion of ancillary data. This socket option allows 2979 * such an application to set the default sctp_sndrcvinfo structure. 2980 * The application that wishes to use this socket option simply passes 2981 * in to this call the sctp_sndrcvinfo structure defined in Section 2982 * 5.2.2) The input parameters accepted by this call include 2983 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2984 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2985 * to this call if the caller is using the UDP model. 2986 */ 2987 static int sctp_setsockopt_default_send_param(struct sock *sk, 2988 char __user *optval, 2989 unsigned int optlen) 2990 { 2991 struct sctp_sock *sp = sctp_sk(sk); 2992 struct sctp_association *asoc; 2993 struct sctp_sndrcvinfo info; 2994 2995 if (optlen != sizeof(info)) 2996 return -EINVAL; 2997 if (copy_from_user(&info, optval, optlen)) 2998 return -EFAULT; 2999 if (info.sinfo_flags & 3000 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 3001 SCTP_ABORT | SCTP_EOF)) 3002 return -EINVAL; 3003 3004 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 3005 if (!asoc && info.sinfo_assoc_id > SCTP_ALL_ASSOC && 3006 sctp_style(sk, UDP)) 3007 return -EINVAL; 3008 3009 if (asoc) { 3010 asoc->default_stream = info.sinfo_stream; 3011 asoc->default_flags = info.sinfo_flags; 3012 asoc->default_ppid = info.sinfo_ppid; 3013 asoc->default_context = info.sinfo_context; 3014 asoc->default_timetolive = info.sinfo_timetolive; 3015 3016 return 0; 3017 } 3018 3019 if (sctp_style(sk, TCP)) 3020 info.sinfo_assoc_id = SCTP_FUTURE_ASSOC; 3021 3022 if (info.sinfo_assoc_id == SCTP_FUTURE_ASSOC || 3023 info.sinfo_assoc_id == SCTP_ALL_ASSOC) { 3024 sp->default_stream = info.sinfo_stream; 3025 sp->default_flags = info.sinfo_flags; 3026 sp->default_ppid = info.sinfo_ppid; 3027 sp->default_context = info.sinfo_context; 3028 sp->default_timetolive = info.sinfo_timetolive; 3029 } 3030 3031 if (info.sinfo_assoc_id == SCTP_CURRENT_ASSOC || 3032 info.sinfo_assoc_id == SCTP_ALL_ASSOC) { 3033 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 3034 asoc->default_stream = info.sinfo_stream; 3035 asoc->default_flags = info.sinfo_flags; 3036 asoc->default_ppid = info.sinfo_ppid; 3037 asoc->default_context = info.sinfo_context; 3038 asoc->default_timetolive = info.sinfo_timetolive; 3039 } 3040 } 3041 3042 return 0; 3043 } 3044 3045 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 3046 * (SCTP_DEFAULT_SNDINFO) 3047 */ 3048 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 3049 char __user *optval, 3050 unsigned int optlen) 3051 { 3052 struct sctp_sock *sp = sctp_sk(sk); 3053 struct sctp_association *asoc; 3054 struct sctp_sndinfo info; 3055 3056 if (optlen != sizeof(info)) 3057 return -EINVAL; 3058 if (copy_from_user(&info, optval, optlen)) 3059 return -EFAULT; 3060 if (info.snd_flags & 3061 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 3062 SCTP_ABORT | SCTP_EOF)) 3063 return -EINVAL; 3064 3065 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 3066 if (!asoc && info.snd_assoc_id > SCTP_ALL_ASSOC && 3067 sctp_style(sk, UDP)) 3068 return -EINVAL; 3069 3070 if (asoc) { 3071 asoc->default_stream = info.snd_sid; 3072 asoc->default_flags = info.snd_flags; 3073 asoc->default_ppid = info.snd_ppid; 3074 asoc->default_context = info.snd_context; 3075 3076 return 0; 3077 } 3078 3079 if (sctp_style(sk, TCP)) 3080 info.snd_assoc_id = SCTP_FUTURE_ASSOC; 3081 3082 if (info.snd_assoc_id == SCTP_FUTURE_ASSOC || 3083 info.snd_assoc_id == SCTP_ALL_ASSOC) { 3084 sp->default_stream = info.snd_sid; 3085 sp->default_flags = info.snd_flags; 3086 sp->default_ppid = info.snd_ppid; 3087 sp->default_context = info.snd_context; 3088 } 3089 3090 if (info.snd_assoc_id == SCTP_CURRENT_ASSOC || 3091 info.snd_assoc_id == SCTP_ALL_ASSOC) { 3092 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 3093 asoc->default_stream = info.snd_sid; 3094 asoc->default_flags = info.snd_flags; 3095 asoc->default_ppid = info.snd_ppid; 3096 asoc->default_context = info.snd_context; 3097 } 3098 } 3099 3100 return 0; 3101 } 3102 3103 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 3104 * 3105 * Requests that the local SCTP stack use the enclosed peer address as 3106 * the association primary. The enclosed address must be one of the 3107 * association peer's addresses. 3108 */ 3109 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 3110 unsigned int optlen) 3111 { 3112 struct sctp_prim prim; 3113 struct sctp_transport *trans; 3114 struct sctp_af *af; 3115 int err; 3116 3117 if (optlen != sizeof(struct sctp_prim)) 3118 return -EINVAL; 3119 3120 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 3121 return -EFAULT; 3122 3123 /* Allow security module to validate address but need address len. */ 3124 af = sctp_get_af_specific(prim.ssp_addr.ss_family); 3125 if (!af) 3126 return -EINVAL; 3127 3128 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3129 (struct sockaddr *)&prim.ssp_addr, 3130 af->sockaddr_len); 3131 if (err) 3132 return err; 3133 3134 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 3135 if (!trans) 3136 return -EINVAL; 3137 3138 sctp_assoc_set_primary(trans->asoc, trans); 3139 3140 return 0; 3141 } 3142 3143 /* 3144 * 7.1.5 SCTP_NODELAY 3145 * 3146 * Turn on/off any Nagle-like algorithm. This means that packets are 3147 * generally sent as soon as possible and no unnecessary delays are 3148 * introduced, at the cost of more packets in the network. Expects an 3149 * integer boolean flag. 3150 */ 3151 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 3152 unsigned int optlen) 3153 { 3154 int val; 3155 3156 if (optlen < sizeof(int)) 3157 return -EINVAL; 3158 if (get_user(val, (int __user *)optval)) 3159 return -EFAULT; 3160 3161 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 3162 return 0; 3163 } 3164 3165 /* 3166 * 3167 * 7.1.1 SCTP_RTOINFO 3168 * 3169 * The protocol parameters used to initialize and bound retransmission 3170 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3171 * and modify these parameters. 3172 * All parameters are time values, in milliseconds. A value of 0, when 3173 * modifying the parameters, indicates that the current value should not 3174 * be changed. 3175 * 3176 */ 3177 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 3178 { 3179 struct sctp_rtoinfo rtoinfo; 3180 struct sctp_association *asoc; 3181 unsigned long rto_min, rto_max; 3182 struct sctp_sock *sp = sctp_sk(sk); 3183 3184 if (optlen != sizeof (struct sctp_rtoinfo)) 3185 return -EINVAL; 3186 3187 if (copy_from_user(&rtoinfo, optval, optlen)) 3188 return -EFAULT; 3189 3190 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 3191 3192 /* Set the values to the specific association */ 3193 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 3194 sctp_style(sk, UDP)) 3195 return -EINVAL; 3196 3197 rto_max = rtoinfo.srto_max; 3198 rto_min = rtoinfo.srto_min; 3199 3200 if (rto_max) 3201 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3202 else 3203 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3204 3205 if (rto_min) 3206 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3207 else 3208 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3209 3210 if (rto_min > rto_max) 3211 return -EINVAL; 3212 3213 if (asoc) { 3214 if (rtoinfo.srto_initial != 0) 3215 asoc->rto_initial = 3216 msecs_to_jiffies(rtoinfo.srto_initial); 3217 asoc->rto_max = rto_max; 3218 asoc->rto_min = rto_min; 3219 } else { 3220 /* If there is no association or the association-id = 0 3221 * set the values to the endpoint. 3222 */ 3223 if (rtoinfo.srto_initial != 0) 3224 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 3225 sp->rtoinfo.srto_max = rto_max; 3226 sp->rtoinfo.srto_min = rto_min; 3227 } 3228 3229 return 0; 3230 } 3231 3232 /* 3233 * 3234 * 7.1.2 SCTP_ASSOCINFO 3235 * 3236 * This option is used to tune the maximum retransmission attempts 3237 * of the association. 3238 * Returns an error if the new association retransmission value is 3239 * greater than the sum of the retransmission value of the peer. 3240 * See [SCTP] for more information. 3241 * 3242 */ 3243 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 3244 { 3245 3246 struct sctp_assocparams assocparams; 3247 struct sctp_association *asoc; 3248 3249 if (optlen != sizeof(struct sctp_assocparams)) 3250 return -EINVAL; 3251 if (copy_from_user(&assocparams, optval, optlen)) 3252 return -EFAULT; 3253 3254 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 3255 3256 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 3257 sctp_style(sk, UDP)) 3258 return -EINVAL; 3259 3260 /* Set the values to the specific association */ 3261 if (asoc) { 3262 if (assocparams.sasoc_asocmaxrxt != 0) { 3263 __u32 path_sum = 0; 3264 int paths = 0; 3265 struct sctp_transport *peer_addr; 3266 3267 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3268 transports) { 3269 path_sum += peer_addr->pathmaxrxt; 3270 paths++; 3271 } 3272 3273 /* Only validate asocmaxrxt if we have more than 3274 * one path/transport. We do this because path 3275 * retransmissions are only counted when we have more 3276 * then one path. 3277 */ 3278 if (paths > 1 && 3279 assocparams.sasoc_asocmaxrxt > path_sum) 3280 return -EINVAL; 3281 3282 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3283 } 3284 3285 if (assocparams.sasoc_cookie_life != 0) 3286 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3287 } else { 3288 /* Set the values to the endpoint */ 3289 struct sctp_sock *sp = sctp_sk(sk); 3290 3291 if (assocparams.sasoc_asocmaxrxt != 0) 3292 sp->assocparams.sasoc_asocmaxrxt = 3293 assocparams.sasoc_asocmaxrxt; 3294 if (assocparams.sasoc_cookie_life != 0) 3295 sp->assocparams.sasoc_cookie_life = 3296 assocparams.sasoc_cookie_life; 3297 } 3298 return 0; 3299 } 3300 3301 /* 3302 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3303 * 3304 * This socket option is a boolean flag which turns on or off mapped V4 3305 * addresses. If this option is turned on and the socket is type 3306 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3307 * If this option is turned off, then no mapping will be done of V4 3308 * addresses and a user will receive both PF_INET6 and PF_INET type 3309 * addresses on the socket. 3310 */ 3311 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3312 { 3313 int val; 3314 struct sctp_sock *sp = sctp_sk(sk); 3315 3316 if (optlen < sizeof(int)) 3317 return -EINVAL; 3318 if (get_user(val, (int __user *)optval)) 3319 return -EFAULT; 3320 if (val) 3321 sp->v4mapped = 1; 3322 else 3323 sp->v4mapped = 0; 3324 3325 return 0; 3326 } 3327 3328 /* 3329 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3330 * This option will get or set the maximum size to put in any outgoing 3331 * SCTP DATA chunk. If a message is larger than this size it will be 3332 * fragmented by SCTP into the specified size. Note that the underlying 3333 * SCTP implementation may fragment into smaller sized chunks when the 3334 * PMTU of the underlying association is smaller than the value set by 3335 * the user. The default value for this option is '0' which indicates 3336 * the user is NOT limiting fragmentation and only the PMTU will effect 3337 * SCTP's choice of DATA chunk size. Note also that values set larger 3338 * than the maximum size of an IP datagram will effectively let SCTP 3339 * control fragmentation (i.e. the same as setting this option to 0). 3340 * 3341 * The following structure is used to access and modify this parameter: 3342 * 3343 * struct sctp_assoc_value { 3344 * sctp_assoc_t assoc_id; 3345 * uint32_t assoc_value; 3346 * }; 3347 * 3348 * assoc_id: This parameter is ignored for one-to-one style sockets. 3349 * For one-to-many style sockets this parameter indicates which 3350 * association the user is performing an action upon. Note that if 3351 * this field's value is zero then the endpoints default value is 3352 * changed (effecting future associations only). 3353 * assoc_value: This parameter specifies the maximum size in bytes. 3354 */ 3355 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3356 { 3357 struct sctp_sock *sp = sctp_sk(sk); 3358 struct sctp_assoc_value params; 3359 struct sctp_association *asoc; 3360 int val; 3361 3362 if (optlen == sizeof(int)) { 3363 pr_warn_ratelimited(DEPRECATED 3364 "%s (pid %d) " 3365 "Use of int in maxseg socket option.\n" 3366 "Use struct sctp_assoc_value instead\n", 3367 current->comm, task_pid_nr(current)); 3368 if (copy_from_user(&val, optval, optlen)) 3369 return -EFAULT; 3370 params.assoc_id = SCTP_FUTURE_ASSOC; 3371 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3372 if (copy_from_user(¶ms, optval, optlen)) 3373 return -EFAULT; 3374 val = params.assoc_value; 3375 } else { 3376 return -EINVAL; 3377 } 3378 3379 asoc = sctp_id2assoc(sk, params.assoc_id); 3380 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 3381 sctp_style(sk, UDP)) 3382 return -EINVAL; 3383 3384 if (val) { 3385 int min_len, max_len; 3386 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3387 sizeof(struct sctp_data_chunk); 3388 3389 min_len = sctp_min_frag_point(sp, datasize); 3390 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3391 3392 if (val < min_len || val > max_len) 3393 return -EINVAL; 3394 } 3395 3396 if (asoc) { 3397 asoc->user_frag = val; 3398 sctp_assoc_update_frag_point(asoc); 3399 } else { 3400 sp->user_frag = val; 3401 } 3402 3403 return 0; 3404 } 3405 3406 3407 /* 3408 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3409 * 3410 * Requests that the peer mark the enclosed address as the association 3411 * primary. The enclosed address must be one of the association's 3412 * locally bound addresses. The following structure is used to make a 3413 * set primary request: 3414 */ 3415 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3416 unsigned int optlen) 3417 { 3418 struct net *net = sock_net(sk); 3419 struct sctp_sock *sp; 3420 struct sctp_association *asoc = NULL; 3421 struct sctp_setpeerprim prim; 3422 struct sctp_chunk *chunk; 3423 struct sctp_af *af; 3424 int err; 3425 3426 sp = sctp_sk(sk); 3427 3428 if (!net->sctp.addip_enable) 3429 return -EPERM; 3430 3431 if (optlen != sizeof(struct sctp_setpeerprim)) 3432 return -EINVAL; 3433 3434 if (copy_from_user(&prim, optval, optlen)) 3435 return -EFAULT; 3436 3437 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3438 if (!asoc) 3439 return -EINVAL; 3440 3441 if (!asoc->peer.asconf_capable) 3442 return -EPERM; 3443 3444 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3445 return -EPERM; 3446 3447 if (!sctp_state(asoc, ESTABLISHED)) 3448 return -ENOTCONN; 3449 3450 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3451 if (!af) 3452 return -EINVAL; 3453 3454 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3455 return -EADDRNOTAVAIL; 3456 3457 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3458 return -EADDRNOTAVAIL; 3459 3460 /* Allow security module to validate address. */ 3461 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3462 (struct sockaddr *)&prim.sspp_addr, 3463 af->sockaddr_len); 3464 if (err) 3465 return err; 3466 3467 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3468 chunk = sctp_make_asconf_set_prim(asoc, 3469 (union sctp_addr *)&prim.sspp_addr); 3470 if (!chunk) 3471 return -ENOMEM; 3472 3473 err = sctp_send_asconf(asoc, chunk); 3474 3475 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3476 3477 return err; 3478 } 3479 3480 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3481 unsigned int optlen) 3482 { 3483 struct sctp_setadaptation adaptation; 3484 3485 if (optlen != sizeof(struct sctp_setadaptation)) 3486 return -EINVAL; 3487 if (copy_from_user(&adaptation, optval, optlen)) 3488 return -EFAULT; 3489 3490 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3491 3492 return 0; 3493 } 3494 3495 /* 3496 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3497 * 3498 * The context field in the sctp_sndrcvinfo structure is normally only 3499 * used when a failed message is retrieved holding the value that was 3500 * sent down on the actual send call. This option allows the setting of 3501 * a default context on an association basis that will be received on 3502 * reading messages from the peer. This is especially helpful in the 3503 * one-2-many model for an application to keep some reference to an 3504 * internal state machine that is processing messages on the 3505 * association. Note that the setting of this value only effects 3506 * received messages from the peer and does not effect the value that is 3507 * saved with outbound messages. 3508 */ 3509 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3510 unsigned int optlen) 3511 { 3512 struct sctp_sock *sp = sctp_sk(sk); 3513 struct sctp_assoc_value params; 3514 struct sctp_association *asoc; 3515 3516 if (optlen != sizeof(struct sctp_assoc_value)) 3517 return -EINVAL; 3518 if (copy_from_user(¶ms, optval, optlen)) 3519 return -EFAULT; 3520 3521 asoc = sctp_id2assoc(sk, params.assoc_id); 3522 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 3523 sctp_style(sk, UDP)) 3524 return -EINVAL; 3525 3526 if (asoc) { 3527 asoc->default_rcv_context = params.assoc_value; 3528 3529 return 0; 3530 } 3531 3532 if (sctp_style(sk, TCP)) 3533 params.assoc_id = SCTP_FUTURE_ASSOC; 3534 3535 if (params.assoc_id == SCTP_FUTURE_ASSOC || 3536 params.assoc_id == SCTP_ALL_ASSOC) 3537 sp->default_rcv_context = params.assoc_value; 3538 3539 if (params.assoc_id == SCTP_CURRENT_ASSOC || 3540 params.assoc_id == SCTP_ALL_ASSOC) 3541 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3542 asoc->default_rcv_context = params.assoc_value; 3543 3544 return 0; 3545 } 3546 3547 /* 3548 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3549 * 3550 * This options will at a minimum specify if the implementation is doing 3551 * fragmented interleave. Fragmented interleave, for a one to many 3552 * socket, is when subsequent calls to receive a message may return 3553 * parts of messages from different associations. Some implementations 3554 * may allow you to turn this value on or off. If so, when turned off, 3555 * no fragment interleave will occur (which will cause a head of line 3556 * blocking amongst multiple associations sharing the same one to many 3557 * socket). When this option is turned on, then each receive call may 3558 * come from a different association (thus the user must receive data 3559 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3560 * association each receive belongs to. 3561 * 3562 * This option takes a boolean value. A non-zero value indicates that 3563 * fragmented interleave is on. A value of zero indicates that 3564 * fragmented interleave is off. 3565 * 3566 * Note that it is important that an implementation that allows this 3567 * option to be turned on, have it off by default. Otherwise an unaware 3568 * application using the one to many model may become confused and act 3569 * incorrectly. 3570 */ 3571 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3572 char __user *optval, 3573 unsigned int optlen) 3574 { 3575 int val; 3576 3577 if (optlen != sizeof(int)) 3578 return -EINVAL; 3579 if (get_user(val, (int __user *)optval)) 3580 return -EFAULT; 3581 3582 sctp_sk(sk)->frag_interleave = !!val; 3583 3584 if (!sctp_sk(sk)->frag_interleave) 3585 sctp_sk(sk)->ep->intl_enable = 0; 3586 3587 return 0; 3588 } 3589 3590 /* 3591 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3592 * (SCTP_PARTIAL_DELIVERY_POINT) 3593 * 3594 * This option will set or get the SCTP partial delivery point. This 3595 * point is the size of a message where the partial delivery API will be 3596 * invoked to help free up rwnd space for the peer. Setting this to a 3597 * lower value will cause partial deliveries to happen more often. The 3598 * calls argument is an integer that sets or gets the partial delivery 3599 * point. Note also that the call will fail if the user attempts to set 3600 * this value larger than the socket receive buffer size. 3601 * 3602 * Note that any single message having a length smaller than or equal to 3603 * the SCTP partial delivery point will be delivered in one single read 3604 * call as long as the user provided buffer is large enough to hold the 3605 * message. 3606 */ 3607 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3608 char __user *optval, 3609 unsigned int optlen) 3610 { 3611 u32 val; 3612 3613 if (optlen != sizeof(u32)) 3614 return -EINVAL; 3615 if (get_user(val, (int __user *)optval)) 3616 return -EFAULT; 3617 3618 /* Note: We double the receive buffer from what the user sets 3619 * it to be, also initial rwnd is based on rcvbuf/2. 3620 */ 3621 if (val > (sk->sk_rcvbuf >> 1)) 3622 return -EINVAL; 3623 3624 sctp_sk(sk)->pd_point = val; 3625 3626 return 0; /* is this the right error code? */ 3627 } 3628 3629 /* 3630 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3631 * 3632 * This option will allow a user to change the maximum burst of packets 3633 * that can be emitted by this association. Note that the default value 3634 * is 4, and some implementations may restrict this setting so that it 3635 * can only be lowered. 3636 * 3637 * NOTE: This text doesn't seem right. Do this on a socket basis with 3638 * future associations inheriting the socket value. 3639 */ 3640 static int sctp_setsockopt_maxburst(struct sock *sk, 3641 char __user *optval, 3642 unsigned int optlen) 3643 { 3644 struct sctp_sock *sp = sctp_sk(sk); 3645 struct sctp_assoc_value params; 3646 struct sctp_association *asoc; 3647 3648 if (optlen == sizeof(int)) { 3649 pr_warn_ratelimited(DEPRECATED 3650 "%s (pid %d) " 3651 "Use of int in max_burst socket option deprecated.\n" 3652 "Use struct sctp_assoc_value instead\n", 3653 current->comm, task_pid_nr(current)); 3654 if (copy_from_user(¶ms.assoc_value, optval, optlen)) 3655 return -EFAULT; 3656 params.assoc_id = SCTP_FUTURE_ASSOC; 3657 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3658 if (copy_from_user(¶ms, optval, optlen)) 3659 return -EFAULT; 3660 } else 3661 return -EINVAL; 3662 3663 asoc = sctp_id2assoc(sk, params.assoc_id); 3664 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 3665 sctp_style(sk, UDP)) 3666 return -EINVAL; 3667 3668 if (asoc) { 3669 asoc->max_burst = params.assoc_value; 3670 3671 return 0; 3672 } 3673 3674 if (sctp_style(sk, TCP)) 3675 params.assoc_id = SCTP_FUTURE_ASSOC; 3676 3677 if (params.assoc_id == SCTP_FUTURE_ASSOC || 3678 params.assoc_id == SCTP_ALL_ASSOC) 3679 sp->max_burst = params.assoc_value; 3680 3681 if (params.assoc_id == SCTP_CURRENT_ASSOC || 3682 params.assoc_id == SCTP_ALL_ASSOC) 3683 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3684 asoc->max_burst = params.assoc_value; 3685 3686 return 0; 3687 } 3688 3689 /* 3690 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3691 * 3692 * This set option adds a chunk type that the user is requesting to be 3693 * received only in an authenticated way. Changes to the list of chunks 3694 * will only effect future associations on the socket. 3695 */ 3696 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3697 char __user *optval, 3698 unsigned int optlen) 3699 { 3700 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3701 struct sctp_authchunk val; 3702 3703 if (!ep->auth_enable) 3704 return -EACCES; 3705 3706 if (optlen != sizeof(struct sctp_authchunk)) 3707 return -EINVAL; 3708 if (copy_from_user(&val, optval, optlen)) 3709 return -EFAULT; 3710 3711 switch (val.sauth_chunk) { 3712 case SCTP_CID_INIT: 3713 case SCTP_CID_INIT_ACK: 3714 case SCTP_CID_SHUTDOWN_COMPLETE: 3715 case SCTP_CID_AUTH: 3716 return -EINVAL; 3717 } 3718 3719 /* add this chunk id to the endpoint */ 3720 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3721 } 3722 3723 /* 3724 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3725 * 3726 * This option gets or sets the list of HMAC algorithms that the local 3727 * endpoint requires the peer to use. 3728 */ 3729 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3730 char __user *optval, 3731 unsigned int optlen) 3732 { 3733 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3734 struct sctp_hmacalgo *hmacs; 3735 u32 idents; 3736 int err; 3737 3738 if (!ep->auth_enable) 3739 return -EACCES; 3740 3741 if (optlen < sizeof(struct sctp_hmacalgo)) 3742 return -EINVAL; 3743 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3744 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3745 3746 hmacs = memdup_user(optval, optlen); 3747 if (IS_ERR(hmacs)) 3748 return PTR_ERR(hmacs); 3749 3750 idents = hmacs->shmac_num_idents; 3751 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3752 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3753 err = -EINVAL; 3754 goto out; 3755 } 3756 3757 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3758 out: 3759 kfree(hmacs); 3760 return err; 3761 } 3762 3763 /* 3764 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3765 * 3766 * This option will set a shared secret key which is used to build an 3767 * association shared key. 3768 */ 3769 static int sctp_setsockopt_auth_key(struct sock *sk, 3770 char __user *optval, 3771 unsigned int optlen) 3772 { 3773 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3774 struct sctp_authkey *authkey; 3775 struct sctp_association *asoc; 3776 int ret = -EINVAL; 3777 3778 if (!ep->auth_enable) 3779 return -EACCES; 3780 3781 if (optlen <= sizeof(struct sctp_authkey)) 3782 return -EINVAL; 3783 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3784 * this. 3785 */ 3786 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey)); 3787 3788 authkey = memdup_user(optval, optlen); 3789 if (IS_ERR(authkey)) 3790 return PTR_ERR(authkey); 3791 3792 if (authkey->sca_keylength > optlen - sizeof(*authkey)) 3793 goto out; 3794 3795 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3796 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC && 3797 sctp_style(sk, UDP)) 3798 goto out; 3799 3800 if (asoc) { 3801 ret = sctp_auth_set_key(ep, asoc, authkey); 3802 goto out; 3803 } 3804 3805 if (sctp_style(sk, TCP)) 3806 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC; 3807 3808 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC || 3809 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3810 ret = sctp_auth_set_key(ep, asoc, authkey); 3811 if (ret) 3812 goto out; 3813 } 3814 3815 ret = 0; 3816 3817 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC || 3818 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3819 list_for_each_entry(asoc, &ep->asocs, asocs) { 3820 int res = sctp_auth_set_key(ep, asoc, authkey); 3821 3822 if (res && !ret) 3823 ret = res; 3824 } 3825 } 3826 3827 out: 3828 kzfree(authkey); 3829 return ret; 3830 } 3831 3832 /* 3833 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3834 * 3835 * This option will get or set the active shared key to be used to build 3836 * the association shared key. 3837 */ 3838 static int sctp_setsockopt_active_key(struct sock *sk, 3839 char __user *optval, 3840 unsigned int optlen) 3841 { 3842 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3843 struct sctp_association *asoc; 3844 struct sctp_authkeyid val; 3845 int ret = 0; 3846 3847 if (!ep->auth_enable) 3848 return -EACCES; 3849 3850 if (optlen != sizeof(struct sctp_authkeyid)) 3851 return -EINVAL; 3852 if (copy_from_user(&val, optval, optlen)) 3853 return -EFAULT; 3854 3855 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3856 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3857 sctp_style(sk, UDP)) 3858 return -EINVAL; 3859 3860 if (asoc) 3861 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3862 3863 if (sctp_style(sk, TCP)) 3864 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3865 3866 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3867 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3868 ret = sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3869 if (ret) 3870 return ret; 3871 } 3872 3873 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3874 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3875 list_for_each_entry(asoc, &ep->asocs, asocs) { 3876 int res = sctp_auth_set_active_key(ep, asoc, 3877 val.scact_keynumber); 3878 3879 if (res && !ret) 3880 ret = res; 3881 } 3882 } 3883 3884 return ret; 3885 } 3886 3887 /* 3888 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3889 * 3890 * This set option will delete a shared secret key from use. 3891 */ 3892 static int sctp_setsockopt_del_key(struct sock *sk, 3893 char __user *optval, 3894 unsigned int optlen) 3895 { 3896 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3897 struct sctp_association *asoc; 3898 struct sctp_authkeyid val; 3899 int ret = 0; 3900 3901 if (!ep->auth_enable) 3902 return -EACCES; 3903 3904 if (optlen != sizeof(struct sctp_authkeyid)) 3905 return -EINVAL; 3906 if (copy_from_user(&val, optval, optlen)) 3907 return -EFAULT; 3908 3909 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3910 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3911 sctp_style(sk, UDP)) 3912 return -EINVAL; 3913 3914 if (asoc) 3915 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3916 3917 if (sctp_style(sk, TCP)) 3918 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3919 3920 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3921 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3922 ret = sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3923 if (ret) 3924 return ret; 3925 } 3926 3927 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3928 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3929 list_for_each_entry(asoc, &ep->asocs, asocs) { 3930 int res = sctp_auth_del_key_id(ep, asoc, 3931 val.scact_keynumber); 3932 3933 if (res && !ret) 3934 ret = res; 3935 } 3936 } 3937 3938 return ret; 3939 } 3940 3941 /* 3942 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3943 * 3944 * This set option will deactivate a shared secret key. 3945 */ 3946 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval, 3947 unsigned int optlen) 3948 { 3949 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3950 struct sctp_association *asoc; 3951 struct sctp_authkeyid val; 3952 int ret = 0; 3953 3954 if (!ep->auth_enable) 3955 return -EACCES; 3956 3957 if (optlen != sizeof(struct sctp_authkeyid)) 3958 return -EINVAL; 3959 if (copy_from_user(&val, optval, optlen)) 3960 return -EFAULT; 3961 3962 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3963 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3964 sctp_style(sk, UDP)) 3965 return -EINVAL; 3966 3967 if (asoc) 3968 return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3969 3970 if (sctp_style(sk, TCP)) 3971 val.scact_assoc_id = SCTP_FUTURE_ASSOC; 3972 3973 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3974 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3975 ret = sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3976 if (ret) 3977 return ret; 3978 } 3979 3980 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3981 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3982 list_for_each_entry(asoc, &ep->asocs, asocs) { 3983 int res = sctp_auth_deact_key_id(ep, asoc, 3984 val.scact_keynumber); 3985 3986 if (res && !ret) 3987 ret = res; 3988 } 3989 } 3990 3991 return ret; 3992 } 3993 3994 /* 3995 * 8.1.23 SCTP_AUTO_ASCONF 3996 * 3997 * This option will enable or disable the use of the automatic generation of 3998 * ASCONF chunks to add and delete addresses to an existing association. Note 3999 * that this option has two caveats namely: a) it only affects sockets that 4000 * are bound to all addresses available to the SCTP stack, and b) the system 4001 * administrator may have an overriding control that turns the ASCONF feature 4002 * off no matter what setting the socket option may have. 4003 * This option expects an integer boolean flag, where a non-zero value turns on 4004 * the option, and a zero value turns off the option. 4005 * Note. In this implementation, socket operation overrides default parameter 4006 * being set by sysctl as well as FreeBSD implementation 4007 */ 4008 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 4009 unsigned int optlen) 4010 { 4011 int val; 4012 struct sctp_sock *sp = sctp_sk(sk); 4013 4014 if (optlen < sizeof(int)) 4015 return -EINVAL; 4016 if (get_user(val, (int __user *)optval)) 4017 return -EFAULT; 4018 if (!sctp_is_ep_boundall(sk) && val) 4019 return -EINVAL; 4020 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 4021 return 0; 4022 4023 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 4024 if (val == 0 && sp->do_auto_asconf) { 4025 list_del(&sp->auto_asconf_list); 4026 sp->do_auto_asconf = 0; 4027 } else if (val && !sp->do_auto_asconf) { 4028 list_add_tail(&sp->auto_asconf_list, 4029 &sock_net(sk)->sctp.auto_asconf_splist); 4030 sp->do_auto_asconf = 1; 4031 } 4032 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 4033 return 0; 4034 } 4035 4036 /* 4037 * SCTP_PEER_ADDR_THLDS 4038 * 4039 * This option allows us to alter the partially failed threshold for one or all 4040 * transports in an association. See Section 6.1 of: 4041 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 4042 */ 4043 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 4044 char __user *optval, 4045 unsigned int optlen) 4046 { 4047 struct sctp_paddrthlds val; 4048 struct sctp_transport *trans; 4049 struct sctp_association *asoc; 4050 4051 if (optlen < sizeof(struct sctp_paddrthlds)) 4052 return -EINVAL; 4053 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 4054 sizeof(struct sctp_paddrthlds))) 4055 return -EFAULT; 4056 4057 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 4058 trans = sctp_addr_id2transport(sk, &val.spt_address, 4059 val.spt_assoc_id); 4060 if (!trans) 4061 return -ENOENT; 4062 4063 if (val.spt_pathmaxrxt) 4064 trans->pathmaxrxt = val.spt_pathmaxrxt; 4065 trans->pf_retrans = val.spt_pathpfthld; 4066 4067 return 0; 4068 } 4069 4070 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 4071 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 4072 sctp_style(sk, UDP)) 4073 return -EINVAL; 4074 4075 if (asoc) { 4076 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 4077 transports) { 4078 if (val.spt_pathmaxrxt) 4079 trans->pathmaxrxt = val.spt_pathmaxrxt; 4080 trans->pf_retrans = val.spt_pathpfthld; 4081 } 4082 4083 if (val.spt_pathmaxrxt) 4084 asoc->pathmaxrxt = val.spt_pathmaxrxt; 4085 asoc->pf_retrans = val.spt_pathpfthld; 4086 } else { 4087 struct sctp_sock *sp = sctp_sk(sk); 4088 4089 if (val.spt_pathmaxrxt) 4090 sp->pathmaxrxt = val.spt_pathmaxrxt; 4091 sp->pf_retrans = val.spt_pathpfthld; 4092 } 4093 4094 return 0; 4095 } 4096 4097 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 4098 char __user *optval, 4099 unsigned int optlen) 4100 { 4101 int val; 4102 4103 if (optlen < sizeof(int)) 4104 return -EINVAL; 4105 if (get_user(val, (int __user *) optval)) 4106 return -EFAULT; 4107 4108 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 4109 4110 return 0; 4111 } 4112 4113 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 4114 char __user *optval, 4115 unsigned int optlen) 4116 { 4117 int val; 4118 4119 if (optlen < sizeof(int)) 4120 return -EINVAL; 4121 if (get_user(val, (int __user *) optval)) 4122 return -EFAULT; 4123 4124 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 4125 4126 return 0; 4127 } 4128 4129 static int sctp_setsockopt_pr_supported(struct sock *sk, 4130 char __user *optval, 4131 unsigned int optlen) 4132 { 4133 struct sctp_assoc_value params; 4134 struct sctp_association *asoc; 4135 4136 if (optlen != sizeof(params)) 4137 return -EINVAL; 4138 4139 if (copy_from_user(¶ms, optval, optlen)) 4140 return -EFAULT; 4141 4142 asoc = sctp_id2assoc(sk, params.assoc_id); 4143 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4144 sctp_style(sk, UDP)) 4145 return -EINVAL; 4146 4147 sctp_sk(sk)->ep->prsctp_enable = !!params.assoc_value; 4148 4149 return 0; 4150 } 4151 4152 static int sctp_setsockopt_default_prinfo(struct sock *sk, 4153 char __user *optval, 4154 unsigned int optlen) 4155 { 4156 struct sctp_sock *sp = sctp_sk(sk); 4157 struct sctp_default_prinfo info; 4158 struct sctp_association *asoc; 4159 int retval = -EINVAL; 4160 4161 if (optlen != sizeof(info)) 4162 goto out; 4163 4164 if (copy_from_user(&info, optval, sizeof(info))) { 4165 retval = -EFAULT; 4166 goto out; 4167 } 4168 4169 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 4170 goto out; 4171 4172 if (info.pr_policy == SCTP_PR_SCTP_NONE) 4173 info.pr_value = 0; 4174 4175 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 4176 if (!asoc && info.pr_assoc_id > SCTP_ALL_ASSOC && 4177 sctp_style(sk, UDP)) 4178 goto out; 4179 4180 retval = 0; 4181 4182 if (asoc) { 4183 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 4184 asoc->default_timetolive = info.pr_value; 4185 goto out; 4186 } 4187 4188 if (sctp_style(sk, TCP)) 4189 info.pr_assoc_id = SCTP_FUTURE_ASSOC; 4190 4191 if (info.pr_assoc_id == SCTP_FUTURE_ASSOC || 4192 info.pr_assoc_id == SCTP_ALL_ASSOC) { 4193 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 4194 sp->default_timetolive = info.pr_value; 4195 } 4196 4197 if (info.pr_assoc_id == SCTP_CURRENT_ASSOC || 4198 info.pr_assoc_id == SCTP_ALL_ASSOC) { 4199 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4200 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 4201 asoc->default_timetolive = info.pr_value; 4202 } 4203 } 4204 4205 out: 4206 return retval; 4207 } 4208 4209 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 4210 char __user *optval, 4211 unsigned int optlen) 4212 { 4213 struct sctp_assoc_value params; 4214 struct sctp_association *asoc; 4215 int retval = -EINVAL; 4216 4217 if (optlen != sizeof(params)) 4218 goto out; 4219 4220 if (copy_from_user(¶ms, optval, optlen)) { 4221 retval = -EFAULT; 4222 goto out; 4223 } 4224 4225 asoc = sctp_id2assoc(sk, params.assoc_id); 4226 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4227 sctp_style(sk, UDP)) 4228 goto out; 4229 4230 sctp_sk(sk)->ep->reconf_enable = !!params.assoc_value; 4231 4232 retval = 0; 4233 4234 out: 4235 return retval; 4236 } 4237 4238 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4239 char __user *optval, 4240 unsigned int optlen) 4241 { 4242 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 4243 struct sctp_assoc_value params; 4244 struct sctp_association *asoc; 4245 int retval = -EINVAL; 4246 4247 if (optlen != sizeof(params)) 4248 goto out; 4249 4250 if (copy_from_user(¶ms, optval, optlen)) { 4251 retval = -EFAULT; 4252 goto out; 4253 } 4254 4255 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4256 goto out; 4257 4258 asoc = sctp_id2assoc(sk, params.assoc_id); 4259 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 4260 sctp_style(sk, UDP)) 4261 goto out; 4262 4263 retval = 0; 4264 4265 if (asoc) { 4266 asoc->strreset_enable = params.assoc_value; 4267 goto out; 4268 } 4269 4270 if (sctp_style(sk, TCP)) 4271 params.assoc_id = SCTP_FUTURE_ASSOC; 4272 4273 if (params.assoc_id == SCTP_FUTURE_ASSOC || 4274 params.assoc_id == SCTP_ALL_ASSOC) 4275 ep->strreset_enable = params.assoc_value; 4276 4277 if (params.assoc_id == SCTP_CURRENT_ASSOC || 4278 params.assoc_id == SCTP_ALL_ASSOC) 4279 list_for_each_entry(asoc, &ep->asocs, asocs) 4280 asoc->strreset_enable = params.assoc_value; 4281 4282 out: 4283 return retval; 4284 } 4285 4286 static int sctp_setsockopt_reset_streams(struct sock *sk, 4287 char __user *optval, 4288 unsigned int optlen) 4289 { 4290 struct sctp_reset_streams *params; 4291 struct sctp_association *asoc; 4292 int retval = -EINVAL; 4293 4294 if (optlen < sizeof(*params)) 4295 return -EINVAL; 4296 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4297 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4298 sizeof(__u16) * sizeof(*params)); 4299 4300 params = memdup_user(optval, optlen); 4301 if (IS_ERR(params)) 4302 return PTR_ERR(params); 4303 4304 if (params->srs_number_streams * sizeof(__u16) > 4305 optlen - sizeof(*params)) 4306 goto out; 4307 4308 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4309 if (!asoc) 4310 goto out; 4311 4312 retval = sctp_send_reset_streams(asoc, params); 4313 4314 out: 4315 kfree(params); 4316 return retval; 4317 } 4318 4319 static int sctp_setsockopt_reset_assoc(struct sock *sk, 4320 char __user *optval, 4321 unsigned int optlen) 4322 { 4323 struct sctp_association *asoc; 4324 sctp_assoc_t associd; 4325 int retval = -EINVAL; 4326 4327 if (optlen != sizeof(associd)) 4328 goto out; 4329 4330 if (copy_from_user(&associd, optval, optlen)) { 4331 retval = -EFAULT; 4332 goto out; 4333 } 4334 4335 asoc = sctp_id2assoc(sk, associd); 4336 if (!asoc) 4337 goto out; 4338 4339 retval = sctp_send_reset_assoc(asoc); 4340 4341 out: 4342 return retval; 4343 } 4344 4345 static int sctp_setsockopt_add_streams(struct sock *sk, 4346 char __user *optval, 4347 unsigned int optlen) 4348 { 4349 struct sctp_association *asoc; 4350 struct sctp_add_streams params; 4351 int retval = -EINVAL; 4352 4353 if (optlen != sizeof(params)) 4354 goto out; 4355 4356 if (copy_from_user(¶ms, optval, optlen)) { 4357 retval = -EFAULT; 4358 goto out; 4359 } 4360 4361 asoc = sctp_id2assoc(sk, params.sas_assoc_id); 4362 if (!asoc) 4363 goto out; 4364 4365 retval = sctp_send_add_streams(asoc, ¶ms); 4366 4367 out: 4368 return retval; 4369 } 4370 4371 static int sctp_setsockopt_scheduler(struct sock *sk, 4372 char __user *optval, 4373 unsigned int optlen) 4374 { 4375 struct sctp_sock *sp = sctp_sk(sk); 4376 struct sctp_association *asoc; 4377 struct sctp_assoc_value params; 4378 int retval = 0; 4379 4380 if (optlen < sizeof(params)) 4381 return -EINVAL; 4382 4383 optlen = sizeof(params); 4384 if (copy_from_user(¶ms, optval, optlen)) 4385 return -EFAULT; 4386 4387 if (params.assoc_value > SCTP_SS_MAX) 4388 return -EINVAL; 4389 4390 asoc = sctp_id2assoc(sk, params.assoc_id); 4391 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 4392 sctp_style(sk, UDP)) 4393 return -EINVAL; 4394 4395 if (asoc) 4396 return sctp_sched_set_sched(asoc, params.assoc_value); 4397 4398 if (sctp_style(sk, TCP)) 4399 params.assoc_id = SCTP_FUTURE_ASSOC; 4400 4401 if (params.assoc_id == SCTP_FUTURE_ASSOC || 4402 params.assoc_id == SCTP_ALL_ASSOC) 4403 sp->default_ss = params.assoc_value; 4404 4405 if (params.assoc_id == SCTP_CURRENT_ASSOC || 4406 params.assoc_id == SCTP_ALL_ASSOC) { 4407 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4408 int ret = sctp_sched_set_sched(asoc, 4409 params.assoc_value); 4410 4411 if (ret && !retval) 4412 retval = ret; 4413 } 4414 } 4415 4416 return retval; 4417 } 4418 4419 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4420 char __user *optval, 4421 unsigned int optlen) 4422 { 4423 struct sctp_stream_value params; 4424 struct sctp_association *asoc; 4425 int retval = -EINVAL; 4426 4427 if (optlen < sizeof(params)) 4428 goto out; 4429 4430 optlen = sizeof(params); 4431 if (copy_from_user(¶ms, optval, optlen)) { 4432 retval = -EFAULT; 4433 goto out; 4434 } 4435 4436 asoc = sctp_id2assoc(sk, params.assoc_id); 4437 if (!asoc && params.assoc_id != SCTP_CURRENT_ASSOC && 4438 sctp_style(sk, UDP)) 4439 goto out; 4440 4441 if (asoc) { 4442 retval = sctp_sched_set_value(asoc, params.stream_id, 4443 params.stream_value, GFP_KERNEL); 4444 goto out; 4445 } 4446 4447 retval = 0; 4448 4449 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) { 4450 int ret = sctp_sched_set_value(asoc, params.stream_id, 4451 params.stream_value, GFP_KERNEL); 4452 if (ret && !retval) /* try to return the 1st error. */ 4453 retval = ret; 4454 } 4455 4456 out: 4457 return retval; 4458 } 4459 4460 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4461 char __user *optval, 4462 unsigned int optlen) 4463 { 4464 struct sctp_sock *sp = sctp_sk(sk); 4465 struct sctp_assoc_value params; 4466 struct sctp_association *asoc; 4467 int retval = -EINVAL; 4468 4469 if (optlen < sizeof(params)) 4470 goto out; 4471 4472 optlen = sizeof(params); 4473 if (copy_from_user(¶ms, optval, optlen)) { 4474 retval = -EFAULT; 4475 goto out; 4476 } 4477 4478 asoc = sctp_id2assoc(sk, params.assoc_id); 4479 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4480 sctp_style(sk, UDP)) 4481 goto out; 4482 4483 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) { 4484 retval = -EPERM; 4485 goto out; 4486 } 4487 4488 sp->ep->intl_enable = !!params.assoc_value; 4489 4490 retval = 0; 4491 4492 out: 4493 return retval; 4494 } 4495 4496 static int sctp_setsockopt_reuse_port(struct sock *sk, char __user *optval, 4497 unsigned int optlen) 4498 { 4499 int val; 4500 4501 if (!sctp_style(sk, TCP)) 4502 return -EOPNOTSUPP; 4503 4504 if (sctp_sk(sk)->ep->base.bind_addr.port) 4505 return -EFAULT; 4506 4507 if (optlen < sizeof(int)) 4508 return -EINVAL; 4509 4510 if (get_user(val, (int __user *)optval)) 4511 return -EFAULT; 4512 4513 sctp_sk(sk)->reuse = !!val; 4514 4515 return 0; 4516 } 4517 4518 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param, 4519 struct sctp_association *asoc) 4520 { 4521 struct sctp_ulpevent *event; 4522 4523 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on); 4524 4525 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) { 4526 if (sctp_outq_is_empty(&asoc->outqueue)) { 4527 event = sctp_ulpevent_make_sender_dry_event(asoc, 4528 GFP_USER | __GFP_NOWARN); 4529 if (!event) 4530 return -ENOMEM; 4531 4532 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 4533 } 4534 } 4535 4536 return 0; 4537 } 4538 4539 static int sctp_setsockopt_event(struct sock *sk, char __user *optval, 4540 unsigned int optlen) 4541 { 4542 struct sctp_sock *sp = sctp_sk(sk); 4543 struct sctp_association *asoc; 4544 struct sctp_event param; 4545 int retval = 0; 4546 4547 if (optlen < sizeof(param)) 4548 return -EINVAL; 4549 4550 optlen = sizeof(param); 4551 if (copy_from_user(¶m, optval, optlen)) 4552 return -EFAULT; 4553 4554 if (param.se_type < SCTP_SN_TYPE_BASE || 4555 param.se_type > SCTP_SN_TYPE_MAX) 4556 return -EINVAL; 4557 4558 asoc = sctp_id2assoc(sk, param.se_assoc_id); 4559 if (!asoc && param.se_assoc_id > SCTP_ALL_ASSOC && 4560 sctp_style(sk, UDP)) 4561 return -EINVAL; 4562 4563 if (asoc) 4564 return sctp_assoc_ulpevent_type_set(¶m, asoc); 4565 4566 if (sctp_style(sk, TCP)) 4567 param.se_assoc_id = SCTP_FUTURE_ASSOC; 4568 4569 if (param.se_assoc_id == SCTP_FUTURE_ASSOC || 4570 param.se_assoc_id == SCTP_ALL_ASSOC) 4571 sctp_ulpevent_type_set(&sp->subscribe, 4572 param.se_type, param.se_on); 4573 4574 if (param.se_assoc_id == SCTP_CURRENT_ASSOC || 4575 param.se_assoc_id == SCTP_ALL_ASSOC) { 4576 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4577 int ret = sctp_assoc_ulpevent_type_set(¶m, asoc); 4578 4579 if (ret && !retval) 4580 retval = ret; 4581 } 4582 } 4583 4584 return retval; 4585 } 4586 4587 /* API 6.2 setsockopt(), getsockopt() 4588 * 4589 * Applications use setsockopt() and getsockopt() to set or retrieve 4590 * socket options. Socket options are used to change the default 4591 * behavior of sockets calls. They are described in Section 7. 4592 * 4593 * The syntax is: 4594 * 4595 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4596 * int __user *optlen); 4597 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4598 * int optlen); 4599 * 4600 * sd - the socket descript. 4601 * level - set to IPPROTO_SCTP for all SCTP options. 4602 * optname - the option name. 4603 * optval - the buffer to store the value of the option. 4604 * optlen - the size of the buffer. 4605 */ 4606 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4607 char __user *optval, unsigned int optlen) 4608 { 4609 int retval = 0; 4610 4611 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4612 4613 /* I can hardly begin to describe how wrong this is. This is 4614 * so broken as to be worse than useless. The API draft 4615 * REALLY is NOT helpful here... I am not convinced that the 4616 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4617 * are at all well-founded. 4618 */ 4619 if (level != SOL_SCTP) { 4620 struct sctp_af *af = sctp_sk(sk)->pf->af; 4621 retval = af->setsockopt(sk, level, optname, optval, optlen); 4622 goto out_nounlock; 4623 } 4624 4625 lock_sock(sk); 4626 4627 switch (optname) { 4628 case SCTP_SOCKOPT_BINDX_ADD: 4629 /* 'optlen' is the size of the addresses buffer. */ 4630 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4631 optlen, SCTP_BINDX_ADD_ADDR); 4632 break; 4633 4634 case SCTP_SOCKOPT_BINDX_REM: 4635 /* 'optlen' is the size of the addresses buffer. */ 4636 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4637 optlen, SCTP_BINDX_REM_ADDR); 4638 break; 4639 4640 case SCTP_SOCKOPT_CONNECTX_OLD: 4641 /* 'optlen' is the size of the addresses buffer. */ 4642 retval = sctp_setsockopt_connectx_old(sk, 4643 (struct sockaddr __user *)optval, 4644 optlen); 4645 break; 4646 4647 case SCTP_SOCKOPT_CONNECTX: 4648 /* 'optlen' is the size of the addresses buffer. */ 4649 retval = sctp_setsockopt_connectx(sk, 4650 (struct sockaddr __user *)optval, 4651 optlen); 4652 break; 4653 4654 case SCTP_DISABLE_FRAGMENTS: 4655 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 4656 break; 4657 4658 case SCTP_EVENTS: 4659 retval = sctp_setsockopt_events(sk, optval, optlen); 4660 break; 4661 4662 case SCTP_AUTOCLOSE: 4663 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 4664 break; 4665 4666 case SCTP_PEER_ADDR_PARAMS: 4667 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 4668 break; 4669 4670 case SCTP_DELAYED_SACK: 4671 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 4672 break; 4673 case SCTP_PARTIAL_DELIVERY_POINT: 4674 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 4675 break; 4676 4677 case SCTP_INITMSG: 4678 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 4679 break; 4680 case SCTP_DEFAULT_SEND_PARAM: 4681 retval = sctp_setsockopt_default_send_param(sk, optval, 4682 optlen); 4683 break; 4684 case SCTP_DEFAULT_SNDINFO: 4685 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 4686 break; 4687 case SCTP_PRIMARY_ADDR: 4688 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 4689 break; 4690 case SCTP_SET_PEER_PRIMARY_ADDR: 4691 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 4692 break; 4693 case SCTP_NODELAY: 4694 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 4695 break; 4696 case SCTP_RTOINFO: 4697 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 4698 break; 4699 case SCTP_ASSOCINFO: 4700 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 4701 break; 4702 case SCTP_I_WANT_MAPPED_V4_ADDR: 4703 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 4704 break; 4705 case SCTP_MAXSEG: 4706 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 4707 break; 4708 case SCTP_ADAPTATION_LAYER: 4709 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 4710 break; 4711 case SCTP_CONTEXT: 4712 retval = sctp_setsockopt_context(sk, optval, optlen); 4713 break; 4714 case SCTP_FRAGMENT_INTERLEAVE: 4715 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 4716 break; 4717 case SCTP_MAX_BURST: 4718 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 4719 break; 4720 case SCTP_AUTH_CHUNK: 4721 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 4722 break; 4723 case SCTP_HMAC_IDENT: 4724 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 4725 break; 4726 case SCTP_AUTH_KEY: 4727 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 4728 break; 4729 case SCTP_AUTH_ACTIVE_KEY: 4730 retval = sctp_setsockopt_active_key(sk, optval, optlen); 4731 break; 4732 case SCTP_AUTH_DELETE_KEY: 4733 retval = sctp_setsockopt_del_key(sk, optval, optlen); 4734 break; 4735 case SCTP_AUTH_DEACTIVATE_KEY: 4736 retval = sctp_setsockopt_deactivate_key(sk, optval, optlen); 4737 break; 4738 case SCTP_AUTO_ASCONF: 4739 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 4740 break; 4741 case SCTP_PEER_ADDR_THLDS: 4742 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 4743 break; 4744 case SCTP_RECVRCVINFO: 4745 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 4746 break; 4747 case SCTP_RECVNXTINFO: 4748 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 4749 break; 4750 case SCTP_PR_SUPPORTED: 4751 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 4752 break; 4753 case SCTP_DEFAULT_PRINFO: 4754 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 4755 break; 4756 case SCTP_RECONFIG_SUPPORTED: 4757 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen); 4758 break; 4759 case SCTP_ENABLE_STREAM_RESET: 4760 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen); 4761 break; 4762 case SCTP_RESET_STREAMS: 4763 retval = sctp_setsockopt_reset_streams(sk, optval, optlen); 4764 break; 4765 case SCTP_RESET_ASSOC: 4766 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen); 4767 break; 4768 case SCTP_ADD_STREAMS: 4769 retval = sctp_setsockopt_add_streams(sk, optval, optlen); 4770 break; 4771 case SCTP_STREAM_SCHEDULER: 4772 retval = sctp_setsockopt_scheduler(sk, optval, optlen); 4773 break; 4774 case SCTP_STREAM_SCHEDULER_VALUE: 4775 retval = sctp_setsockopt_scheduler_value(sk, optval, optlen); 4776 break; 4777 case SCTP_INTERLEAVING_SUPPORTED: 4778 retval = sctp_setsockopt_interleaving_supported(sk, optval, 4779 optlen); 4780 break; 4781 case SCTP_REUSE_PORT: 4782 retval = sctp_setsockopt_reuse_port(sk, optval, optlen); 4783 break; 4784 case SCTP_EVENT: 4785 retval = sctp_setsockopt_event(sk, optval, optlen); 4786 break; 4787 default: 4788 retval = -ENOPROTOOPT; 4789 break; 4790 } 4791 4792 release_sock(sk); 4793 4794 out_nounlock: 4795 return retval; 4796 } 4797 4798 /* API 3.1.6 connect() - UDP Style Syntax 4799 * 4800 * An application may use the connect() call in the UDP model to initiate an 4801 * association without sending data. 4802 * 4803 * The syntax is: 4804 * 4805 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4806 * 4807 * sd: the socket descriptor to have a new association added to. 4808 * 4809 * nam: the address structure (either struct sockaddr_in or struct 4810 * sockaddr_in6 defined in RFC2553 [7]). 4811 * 4812 * len: the size of the address. 4813 */ 4814 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4815 int addr_len, int flags) 4816 { 4817 struct sctp_af *af; 4818 int err = -EINVAL; 4819 4820 lock_sock(sk); 4821 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4822 addr, addr_len); 4823 4824 /* Validate addr_len before calling common connect/connectx routine. */ 4825 af = sctp_get_af_specific(addr->sa_family); 4826 if (af && addr_len >= af->sockaddr_len) 4827 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4828 4829 release_sock(sk); 4830 return err; 4831 } 4832 4833 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4834 int addr_len, int flags) 4835 { 4836 if (addr_len < sizeof(uaddr->sa_family)) 4837 return -EINVAL; 4838 4839 if (uaddr->sa_family == AF_UNSPEC) 4840 return -EOPNOTSUPP; 4841 4842 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4843 } 4844 4845 /* FIXME: Write comments. */ 4846 static int sctp_disconnect(struct sock *sk, int flags) 4847 { 4848 return -EOPNOTSUPP; /* STUB */ 4849 } 4850 4851 /* 4.1.4 accept() - TCP Style Syntax 4852 * 4853 * Applications use accept() call to remove an established SCTP 4854 * association from the accept queue of the endpoint. A new socket 4855 * descriptor will be returned from accept() to represent the newly 4856 * formed association. 4857 */ 4858 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4859 { 4860 struct sctp_sock *sp; 4861 struct sctp_endpoint *ep; 4862 struct sock *newsk = NULL; 4863 struct sctp_association *asoc; 4864 long timeo; 4865 int error = 0; 4866 4867 lock_sock(sk); 4868 4869 sp = sctp_sk(sk); 4870 ep = sp->ep; 4871 4872 if (!sctp_style(sk, TCP)) { 4873 error = -EOPNOTSUPP; 4874 goto out; 4875 } 4876 4877 if (!sctp_sstate(sk, LISTENING)) { 4878 error = -EINVAL; 4879 goto out; 4880 } 4881 4882 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4883 4884 error = sctp_wait_for_accept(sk, timeo); 4885 if (error) 4886 goto out; 4887 4888 /* We treat the list of associations on the endpoint as the accept 4889 * queue and pick the first association on the list. 4890 */ 4891 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4892 4893 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4894 if (!newsk) { 4895 error = -ENOMEM; 4896 goto out; 4897 } 4898 4899 /* Populate the fields of the newsk from the oldsk and migrate the 4900 * asoc to the newsk. 4901 */ 4902 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4903 if (error) { 4904 sk_common_release(newsk); 4905 newsk = NULL; 4906 } 4907 4908 out: 4909 release_sock(sk); 4910 *err = error; 4911 return newsk; 4912 } 4913 4914 /* The SCTP ioctl handler. */ 4915 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4916 { 4917 int rc = -ENOTCONN; 4918 4919 lock_sock(sk); 4920 4921 /* 4922 * SEQPACKET-style sockets in LISTENING state are valid, for 4923 * SCTP, so only discard TCP-style sockets in LISTENING state. 4924 */ 4925 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4926 goto out; 4927 4928 switch (cmd) { 4929 case SIOCINQ: { 4930 struct sk_buff *skb; 4931 unsigned int amount = 0; 4932 4933 skb = skb_peek(&sk->sk_receive_queue); 4934 if (skb != NULL) { 4935 /* 4936 * We will only return the amount of this packet since 4937 * that is all that will be read. 4938 */ 4939 amount = skb->len; 4940 } 4941 rc = put_user(amount, (int __user *)arg); 4942 break; 4943 } 4944 default: 4945 rc = -ENOIOCTLCMD; 4946 break; 4947 } 4948 out: 4949 release_sock(sk); 4950 return rc; 4951 } 4952 4953 /* This is the function which gets called during socket creation to 4954 * initialized the SCTP-specific portion of the sock. 4955 * The sock structure should already be zero-filled memory. 4956 */ 4957 static int sctp_init_sock(struct sock *sk) 4958 { 4959 struct net *net = sock_net(sk); 4960 struct sctp_sock *sp; 4961 4962 pr_debug("%s: sk:%p\n", __func__, sk); 4963 4964 sp = sctp_sk(sk); 4965 4966 /* Initialize the SCTP per socket area. */ 4967 switch (sk->sk_type) { 4968 case SOCK_SEQPACKET: 4969 sp->type = SCTP_SOCKET_UDP; 4970 break; 4971 case SOCK_STREAM: 4972 sp->type = SCTP_SOCKET_TCP; 4973 break; 4974 default: 4975 return -ESOCKTNOSUPPORT; 4976 } 4977 4978 sk->sk_gso_type = SKB_GSO_SCTP; 4979 4980 /* Initialize default send parameters. These parameters can be 4981 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4982 */ 4983 sp->default_stream = 0; 4984 sp->default_ppid = 0; 4985 sp->default_flags = 0; 4986 sp->default_context = 0; 4987 sp->default_timetolive = 0; 4988 4989 sp->default_rcv_context = 0; 4990 sp->max_burst = net->sctp.max_burst; 4991 4992 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4993 4994 /* Initialize default setup parameters. These parameters 4995 * can be modified with the SCTP_INITMSG socket option or 4996 * overridden by the SCTP_INIT CMSG. 4997 */ 4998 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4999 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 5000 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 5001 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 5002 5003 /* Initialize default RTO related parameters. These parameters can 5004 * be modified for with the SCTP_RTOINFO socket option. 5005 */ 5006 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 5007 sp->rtoinfo.srto_max = net->sctp.rto_max; 5008 sp->rtoinfo.srto_min = net->sctp.rto_min; 5009 5010 /* Initialize default association related parameters. These parameters 5011 * can be modified with the SCTP_ASSOCINFO socket option. 5012 */ 5013 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 5014 sp->assocparams.sasoc_number_peer_destinations = 0; 5015 sp->assocparams.sasoc_peer_rwnd = 0; 5016 sp->assocparams.sasoc_local_rwnd = 0; 5017 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 5018 5019 /* Initialize default event subscriptions. By default, all the 5020 * options are off. 5021 */ 5022 sp->subscribe = 0; 5023 5024 /* Default Peer Address Parameters. These defaults can 5025 * be modified via SCTP_PEER_ADDR_PARAMS 5026 */ 5027 sp->hbinterval = net->sctp.hb_interval; 5028 sp->pathmaxrxt = net->sctp.max_retrans_path; 5029 sp->pf_retrans = net->sctp.pf_retrans; 5030 sp->pathmtu = 0; /* allow default discovery */ 5031 sp->sackdelay = net->sctp.sack_timeout; 5032 sp->sackfreq = 2; 5033 sp->param_flags = SPP_HB_ENABLE | 5034 SPP_PMTUD_ENABLE | 5035 SPP_SACKDELAY_ENABLE; 5036 sp->default_ss = SCTP_SS_DEFAULT; 5037 5038 /* If enabled no SCTP message fragmentation will be performed. 5039 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 5040 */ 5041 sp->disable_fragments = 0; 5042 5043 /* Enable Nagle algorithm by default. */ 5044 sp->nodelay = 0; 5045 5046 sp->recvrcvinfo = 0; 5047 sp->recvnxtinfo = 0; 5048 5049 /* Enable by default. */ 5050 sp->v4mapped = 1; 5051 5052 /* Auto-close idle associations after the configured 5053 * number of seconds. A value of 0 disables this 5054 * feature. Configure through the SCTP_AUTOCLOSE socket option, 5055 * for UDP-style sockets only. 5056 */ 5057 sp->autoclose = 0; 5058 5059 /* User specified fragmentation limit. */ 5060 sp->user_frag = 0; 5061 5062 sp->adaptation_ind = 0; 5063 5064 sp->pf = sctp_get_pf_specific(sk->sk_family); 5065 5066 /* Control variables for partial data delivery. */ 5067 atomic_set(&sp->pd_mode, 0); 5068 skb_queue_head_init(&sp->pd_lobby); 5069 sp->frag_interleave = 0; 5070 5071 /* Create a per socket endpoint structure. Even if we 5072 * change the data structure relationships, this may still 5073 * be useful for storing pre-connect address information. 5074 */ 5075 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 5076 if (!sp->ep) 5077 return -ENOMEM; 5078 5079 sp->hmac = NULL; 5080 5081 sk->sk_destruct = sctp_destruct_sock; 5082 5083 SCTP_DBG_OBJCNT_INC(sock); 5084 5085 local_bh_disable(); 5086 sk_sockets_allocated_inc(sk); 5087 sock_prot_inuse_add(net, sk->sk_prot, 1); 5088 5089 /* Nothing can fail after this block, otherwise 5090 * sctp_destroy_sock() will be called without addr_wq_lock held 5091 */ 5092 if (net->sctp.default_auto_asconf) { 5093 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 5094 list_add_tail(&sp->auto_asconf_list, 5095 &net->sctp.auto_asconf_splist); 5096 sp->do_auto_asconf = 1; 5097 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 5098 } else { 5099 sp->do_auto_asconf = 0; 5100 } 5101 5102 local_bh_enable(); 5103 5104 return 0; 5105 } 5106 5107 /* Cleanup any SCTP per socket resources. Must be called with 5108 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 5109 */ 5110 static void sctp_destroy_sock(struct sock *sk) 5111 { 5112 struct sctp_sock *sp; 5113 5114 pr_debug("%s: sk:%p\n", __func__, sk); 5115 5116 /* Release our hold on the endpoint. */ 5117 sp = sctp_sk(sk); 5118 /* This could happen during socket init, thus we bail out 5119 * early, since the rest of the below is not setup either. 5120 */ 5121 if (sp->ep == NULL) 5122 return; 5123 5124 if (sp->do_auto_asconf) { 5125 sp->do_auto_asconf = 0; 5126 list_del(&sp->auto_asconf_list); 5127 } 5128 sctp_endpoint_free(sp->ep); 5129 local_bh_disable(); 5130 sk_sockets_allocated_dec(sk); 5131 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 5132 local_bh_enable(); 5133 } 5134 5135 /* Triggered when there are no references on the socket anymore */ 5136 static void sctp_destruct_sock(struct sock *sk) 5137 { 5138 struct sctp_sock *sp = sctp_sk(sk); 5139 5140 /* Free up the HMAC transform. */ 5141 crypto_free_shash(sp->hmac); 5142 5143 inet_sock_destruct(sk); 5144 } 5145 5146 /* API 4.1.7 shutdown() - TCP Style Syntax 5147 * int shutdown(int socket, int how); 5148 * 5149 * sd - the socket descriptor of the association to be closed. 5150 * how - Specifies the type of shutdown. The values are 5151 * as follows: 5152 * SHUT_RD 5153 * Disables further receive operations. No SCTP 5154 * protocol action is taken. 5155 * SHUT_WR 5156 * Disables further send operations, and initiates 5157 * the SCTP shutdown sequence. 5158 * SHUT_RDWR 5159 * Disables further send and receive operations 5160 * and initiates the SCTP shutdown sequence. 5161 */ 5162 static void sctp_shutdown(struct sock *sk, int how) 5163 { 5164 struct net *net = sock_net(sk); 5165 struct sctp_endpoint *ep; 5166 5167 if (!sctp_style(sk, TCP)) 5168 return; 5169 5170 ep = sctp_sk(sk)->ep; 5171 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 5172 struct sctp_association *asoc; 5173 5174 inet_sk_set_state(sk, SCTP_SS_CLOSING); 5175 asoc = list_entry(ep->asocs.next, 5176 struct sctp_association, asocs); 5177 sctp_primitive_SHUTDOWN(net, asoc, NULL); 5178 } 5179 } 5180 5181 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 5182 struct sctp_info *info) 5183 { 5184 struct sctp_transport *prim; 5185 struct list_head *pos; 5186 int mask; 5187 5188 memset(info, 0, sizeof(*info)); 5189 if (!asoc) { 5190 struct sctp_sock *sp = sctp_sk(sk); 5191 5192 info->sctpi_s_autoclose = sp->autoclose; 5193 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 5194 info->sctpi_s_pd_point = sp->pd_point; 5195 info->sctpi_s_nodelay = sp->nodelay; 5196 info->sctpi_s_disable_fragments = sp->disable_fragments; 5197 info->sctpi_s_v4mapped = sp->v4mapped; 5198 info->sctpi_s_frag_interleave = sp->frag_interleave; 5199 info->sctpi_s_type = sp->type; 5200 5201 return 0; 5202 } 5203 5204 info->sctpi_tag = asoc->c.my_vtag; 5205 info->sctpi_state = asoc->state; 5206 info->sctpi_rwnd = asoc->a_rwnd; 5207 info->sctpi_unackdata = asoc->unack_data; 5208 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5209 info->sctpi_instrms = asoc->stream.incnt; 5210 info->sctpi_outstrms = asoc->stream.outcnt; 5211 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 5212 info->sctpi_inqueue++; 5213 list_for_each(pos, &asoc->outqueue.out_chunk_list) 5214 info->sctpi_outqueue++; 5215 info->sctpi_overall_error = asoc->overall_error_count; 5216 info->sctpi_max_burst = asoc->max_burst; 5217 info->sctpi_maxseg = asoc->frag_point; 5218 info->sctpi_peer_rwnd = asoc->peer.rwnd; 5219 info->sctpi_peer_tag = asoc->c.peer_vtag; 5220 5221 mask = asoc->peer.ecn_capable << 1; 5222 mask = (mask | asoc->peer.ipv4_address) << 1; 5223 mask = (mask | asoc->peer.ipv6_address) << 1; 5224 mask = (mask | asoc->peer.hostname_address) << 1; 5225 mask = (mask | asoc->peer.asconf_capable) << 1; 5226 mask = (mask | asoc->peer.prsctp_capable) << 1; 5227 mask = (mask | asoc->peer.auth_capable); 5228 info->sctpi_peer_capable = mask; 5229 mask = asoc->peer.sack_needed << 1; 5230 mask = (mask | asoc->peer.sack_generation) << 1; 5231 mask = (mask | asoc->peer.zero_window_announced); 5232 info->sctpi_peer_sack = mask; 5233 5234 info->sctpi_isacks = asoc->stats.isacks; 5235 info->sctpi_osacks = asoc->stats.osacks; 5236 info->sctpi_opackets = asoc->stats.opackets; 5237 info->sctpi_ipackets = asoc->stats.ipackets; 5238 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 5239 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 5240 info->sctpi_idupchunks = asoc->stats.idupchunks; 5241 info->sctpi_gapcnt = asoc->stats.gapcnt; 5242 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 5243 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 5244 info->sctpi_oodchunks = asoc->stats.oodchunks; 5245 info->sctpi_iodchunks = asoc->stats.iodchunks; 5246 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 5247 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 5248 5249 prim = asoc->peer.primary_path; 5250 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 5251 info->sctpi_p_state = prim->state; 5252 info->sctpi_p_cwnd = prim->cwnd; 5253 info->sctpi_p_srtt = prim->srtt; 5254 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 5255 info->sctpi_p_hbinterval = prim->hbinterval; 5256 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 5257 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 5258 info->sctpi_p_ssthresh = prim->ssthresh; 5259 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 5260 info->sctpi_p_flight_size = prim->flight_size; 5261 info->sctpi_p_error = prim->error_count; 5262 5263 return 0; 5264 } 5265 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 5266 5267 /* use callback to avoid exporting the core structure */ 5268 void sctp_transport_walk_start(struct rhashtable_iter *iter) 5269 { 5270 rhltable_walk_enter(&sctp_transport_hashtable, iter); 5271 5272 rhashtable_walk_start(iter); 5273 } 5274 5275 void sctp_transport_walk_stop(struct rhashtable_iter *iter) 5276 { 5277 rhashtable_walk_stop(iter); 5278 rhashtable_walk_exit(iter); 5279 } 5280 5281 struct sctp_transport *sctp_transport_get_next(struct net *net, 5282 struct rhashtable_iter *iter) 5283 { 5284 struct sctp_transport *t; 5285 5286 t = rhashtable_walk_next(iter); 5287 for (; t; t = rhashtable_walk_next(iter)) { 5288 if (IS_ERR(t)) { 5289 if (PTR_ERR(t) == -EAGAIN) 5290 continue; 5291 break; 5292 } 5293 5294 if (!sctp_transport_hold(t)) 5295 continue; 5296 5297 if (net_eq(sock_net(t->asoc->base.sk), net) && 5298 t->asoc->peer.primary_path == t) 5299 break; 5300 5301 sctp_transport_put(t); 5302 } 5303 5304 return t; 5305 } 5306 5307 struct sctp_transport *sctp_transport_get_idx(struct net *net, 5308 struct rhashtable_iter *iter, 5309 int pos) 5310 { 5311 struct sctp_transport *t; 5312 5313 if (!pos) 5314 return SEQ_START_TOKEN; 5315 5316 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { 5317 if (!--pos) 5318 break; 5319 sctp_transport_put(t); 5320 } 5321 5322 return t; 5323 } 5324 5325 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5326 void *p) { 5327 int err = 0; 5328 int hash = 0; 5329 struct sctp_ep_common *epb; 5330 struct sctp_hashbucket *head; 5331 5332 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5333 hash++, head++) { 5334 read_lock_bh(&head->lock); 5335 sctp_for_each_hentry(epb, &head->chain) { 5336 err = cb(sctp_ep(epb), p); 5337 if (err) 5338 break; 5339 } 5340 read_unlock_bh(&head->lock); 5341 } 5342 5343 return err; 5344 } 5345 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5346 5347 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 5348 struct net *net, 5349 const union sctp_addr *laddr, 5350 const union sctp_addr *paddr, void *p) 5351 { 5352 struct sctp_transport *transport; 5353 int err; 5354 5355 rcu_read_lock(); 5356 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 5357 rcu_read_unlock(); 5358 if (!transport) 5359 return -ENOENT; 5360 5361 err = cb(transport, p); 5362 sctp_transport_put(transport); 5363 5364 return err; 5365 } 5366 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5367 5368 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 5369 int (*cb_done)(struct sctp_transport *, void *), 5370 struct net *net, int *pos, void *p) { 5371 struct rhashtable_iter hti; 5372 struct sctp_transport *tsp; 5373 int ret; 5374 5375 again: 5376 ret = 0; 5377 sctp_transport_walk_start(&hti); 5378 5379 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5380 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5381 ret = cb(tsp, p); 5382 if (ret) 5383 break; 5384 (*pos)++; 5385 sctp_transport_put(tsp); 5386 } 5387 sctp_transport_walk_stop(&hti); 5388 5389 if (ret) { 5390 if (cb_done && !cb_done(tsp, p)) { 5391 (*pos)++; 5392 sctp_transport_put(tsp); 5393 goto again; 5394 } 5395 sctp_transport_put(tsp); 5396 } 5397 5398 return ret; 5399 } 5400 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 5401 5402 /* 7.2.1 Association Status (SCTP_STATUS) 5403 5404 * Applications can retrieve current status information about an 5405 * association, including association state, peer receiver window size, 5406 * number of unacked data chunks, and number of data chunks pending 5407 * receipt. This information is read-only. 5408 */ 5409 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5410 char __user *optval, 5411 int __user *optlen) 5412 { 5413 struct sctp_status status; 5414 struct sctp_association *asoc = NULL; 5415 struct sctp_transport *transport; 5416 sctp_assoc_t associd; 5417 int retval = 0; 5418 5419 if (len < sizeof(status)) { 5420 retval = -EINVAL; 5421 goto out; 5422 } 5423 5424 len = sizeof(status); 5425 if (copy_from_user(&status, optval, len)) { 5426 retval = -EFAULT; 5427 goto out; 5428 } 5429 5430 associd = status.sstat_assoc_id; 5431 asoc = sctp_id2assoc(sk, associd); 5432 if (!asoc) { 5433 retval = -EINVAL; 5434 goto out; 5435 } 5436 5437 transport = asoc->peer.primary_path; 5438 5439 status.sstat_assoc_id = sctp_assoc2id(asoc); 5440 status.sstat_state = sctp_assoc_to_state(asoc); 5441 status.sstat_rwnd = asoc->peer.rwnd; 5442 status.sstat_unackdata = asoc->unack_data; 5443 5444 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5445 status.sstat_instrms = asoc->stream.incnt; 5446 status.sstat_outstrms = asoc->stream.outcnt; 5447 status.sstat_fragmentation_point = asoc->frag_point; 5448 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5449 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5450 transport->af_specific->sockaddr_len); 5451 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5452 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5453 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5454 status.sstat_primary.spinfo_state = transport->state; 5455 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5456 status.sstat_primary.spinfo_srtt = transport->srtt; 5457 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5458 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5459 5460 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5461 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5462 5463 if (put_user(len, optlen)) { 5464 retval = -EFAULT; 5465 goto out; 5466 } 5467 5468 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5469 __func__, len, status.sstat_state, status.sstat_rwnd, 5470 status.sstat_assoc_id); 5471 5472 if (copy_to_user(optval, &status, len)) { 5473 retval = -EFAULT; 5474 goto out; 5475 } 5476 5477 out: 5478 return retval; 5479 } 5480 5481 5482 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5483 * 5484 * Applications can retrieve information about a specific peer address 5485 * of an association, including its reachability state, congestion 5486 * window, and retransmission timer values. This information is 5487 * read-only. 5488 */ 5489 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5490 char __user *optval, 5491 int __user *optlen) 5492 { 5493 struct sctp_paddrinfo pinfo; 5494 struct sctp_transport *transport; 5495 int retval = 0; 5496 5497 if (len < sizeof(pinfo)) { 5498 retval = -EINVAL; 5499 goto out; 5500 } 5501 5502 len = sizeof(pinfo); 5503 if (copy_from_user(&pinfo, optval, len)) { 5504 retval = -EFAULT; 5505 goto out; 5506 } 5507 5508 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5509 pinfo.spinfo_assoc_id); 5510 if (!transport) 5511 return -EINVAL; 5512 5513 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5514 pinfo.spinfo_state = transport->state; 5515 pinfo.spinfo_cwnd = transport->cwnd; 5516 pinfo.spinfo_srtt = transport->srtt; 5517 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5518 pinfo.spinfo_mtu = transport->pathmtu; 5519 5520 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5521 pinfo.spinfo_state = SCTP_ACTIVE; 5522 5523 if (put_user(len, optlen)) { 5524 retval = -EFAULT; 5525 goto out; 5526 } 5527 5528 if (copy_to_user(optval, &pinfo, len)) { 5529 retval = -EFAULT; 5530 goto out; 5531 } 5532 5533 out: 5534 return retval; 5535 } 5536 5537 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5538 * 5539 * This option is a on/off flag. If enabled no SCTP message 5540 * fragmentation will be performed. Instead if a message being sent 5541 * exceeds the current PMTU size, the message will NOT be sent and 5542 * instead a error will be indicated to the user. 5543 */ 5544 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5545 char __user *optval, int __user *optlen) 5546 { 5547 int val; 5548 5549 if (len < sizeof(int)) 5550 return -EINVAL; 5551 5552 len = sizeof(int); 5553 val = (sctp_sk(sk)->disable_fragments == 1); 5554 if (put_user(len, optlen)) 5555 return -EFAULT; 5556 if (copy_to_user(optval, &val, len)) 5557 return -EFAULT; 5558 return 0; 5559 } 5560 5561 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5562 * 5563 * This socket option is used to specify various notifications and 5564 * ancillary data the user wishes to receive. 5565 */ 5566 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5567 int __user *optlen) 5568 { 5569 struct sctp_event_subscribe subscribe; 5570 __u8 *sn_type = (__u8 *)&subscribe; 5571 int i; 5572 5573 if (len == 0) 5574 return -EINVAL; 5575 if (len > sizeof(struct sctp_event_subscribe)) 5576 len = sizeof(struct sctp_event_subscribe); 5577 if (put_user(len, optlen)) 5578 return -EFAULT; 5579 5580 for (i = 0; i < len; i++) 5581 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe, 5582 SCTP_SN_TYPE_BASE + i); 5583 5584 if (copy_to_user(optval, &subscribe, len)) 5585 return -EFAULT; 5586 5587 return 0; 5588 } 5589 5590 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5591 * 5592 * This socket option is applicable to the UDP-style socket only. When 5593 * set it will cause associations that are idle for more than the 5594 * specified number of seconds to automatically close. An association 5595 * being idle is defined an association that has NOT sent or received 5596 * user data. The special value of '0' indicates that no automatic 5597 * close of any associations should be performed. The option expects an 5598 * integer defining the number of seconds of idle time before an 5599 * association is closed. 5600 */ 5601 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5602 { 5603 /* Applicable to UDP-style socket only */ 5604 if (sctp_style(sk, TCP)) 5605 return -EOPNOTSUPP; 5606 if (len < sizeof(int)) 5607 return -EINVAL; 5608 len = sizeof(int); 5609 if (put_user(len, optlen)) 5610 return -EFAULT; 5611 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5612 return -EFAULT; 5613 return 0; 5614 } 5615 5616 /* Helper routine to branch off an association to a new socket. */ 5617 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5618 { 5619 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5620 struct sctp_sock *sp = sctp_sk(sk); 5621 struct socket *sock; 5622 int err = 0; 5623 5624 /* Do not peel off from one netns to another one. */ 5625 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5626 return -EINVAL; 5627 5628 if (!asoc) 5629 return -EINVAL; 5630 5631 /* An association cannot be branched off from an already peeled-off 5632 * socket, nor is this supported for tcp style sockets. 5633 */ 5634 if (!sctp_style(sk, UDP)) 5635 return -EINVAL; 5636 5637 /* Create a new socket. */ 5638 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5639 if (err < 0) 5640 return err; 5641 5642 sctp_copy_sock(sock->sk, sk, asoc); 5643 5644 /* Make peeled-off sockets more like 1-1 accepted sockets. 5645 * Set the daddr and initialize id to something more random and also 5646 * copy over any ip options. 5647 */ 5648 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 5649 sp->pf->copy_ip_options(sk, sock->sk); 5650 5651 /* Populate the fields of the newsk from the oldsk and migrate the 5652 * asoc to the newsk. 5653 */ 5654 err = sctp_sock_migrate(sk, sock->sk, asoc, 5655 SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5656 if (err) { 5657 sock_release(sock); 5658 sock = NULL; 5659 } 5660 5661 *sockp = sock; 5662 5663 return err; 5664 } 5665 EXPORT_SYMBOL(sctp_do_peeloff); 5666 5667 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5668 struct file **newfile, unsigned flags) 5669 { 5670 struct socket *newsock; 5671 int retval; 5672 5673 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5674 if (retval < 0) 5675 goto out; 5676 5677 /* Map the socket to an unused fd that can be returned to the user. */ 5678 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5679 if (retval < 0) { 5680 sock_release(newsock); 5681 goto out; 5682 } 5683 5684 *newfile = sock_alloc_file(newsock, 0, NULL); 5685 if (IS_ERR(*newfile)) { 5686 put_unused_fd(retval); 5687 retval = PTR_ERR(*newfile); 5688 *newfile = NULL; 5689 return retval; 5690 } 5691 5692 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5693 retval); 5694 5695 peeloff->sd = retval; 5696 5697 if (flags & SOCK_NONBLOCK) 5698 (*newfile)->f_flags |= O_NONBLOCK; 5699 out: 5700 return retval; 5701 } 5702 5703 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5704 { 5705 sctp_peeloff_arg_t peeloff; 5706 struct file *newfile = NULL; 5707 int retval = 0; 5708 5709 if (len < sizeof(sctp_peeloff_arg_t)) 5710 return -EINVAL; 5711 len = sizeof(sctp_peeloff_arg_t); 5712 if (copy_from_user(&peeloff, optval, len)) 5713 return -EFAULT; 5714 5715 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5716 if (retval < 0) 5717 goto out; 5718 5719 /* Return the fd mapped to the new socket. */ 5720 if (put_user(len, optlen)) { 5721 fput(newfile); 5722 put_unused_fd(retval); 5723 return -EFAULT; 5724 } 5725 5726 if (copy_to_user(optval, &peeloff, len)) { 5727 fput(newfile); 5728 put_unused_fd(retval); 5729 return -EFAULT; 5730 } 5731 fd_install(retval, newfile); 5732 out: 5733 return retval; 5734 } 5735 5736 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5737 char __user *optval, int __user *optlen) 5738 { 5739 sctp_peeloff_flags_arg_t peeloff; 5740 struct file *newfile = NULL; 5741 int retval = 0; 5742 5743 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5744 return -EINVAL; 5745 len = sizeof(sctp_peeloff_flags_arg_t); 5746 if (copy_from_user(&peeloff, optval, len)) 5747 return -EFAULT; 5748 5749 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5750 &newfile, peeloff.flags); 5751 if (retval < 0) 5752 goto out; 5753 5754 /* Return the fd mapped to the new socket. */ 5755 if (put_user(len, optlen)) { 5756 fput(newfile); 5757 put_unused_fd(retval); 5758 return -EFAULT; 5759 } 5760 5761 if (copy_to_user(optval, &peeloff, len)) { 5762 fput(newfile); 5763 put_unused_fd(retval); 5764 return -EFAULT; 5765 } 5766 fd_install(retval, newfile); 5767 out: 5768 return retval; 5769 } 5770 5771 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5772 * 5773 * Applications can enable or disable heartbeats for any peer address of 5774 * an association, modify an address's heartbeat interval, force a 5775 * heartbeat to be sent immediately, and adjust the address's maximum 5776 * number of retransmissions sent before an address is considered 5777 * unreachable. The following structure is used to access and modify an 5778 * address's parameters: 5779 * 5780 * struct sctp_paddrparams { 5781 * sctp_assoc_t spp_assoc_id; 5782 * struct sockaddr_storage spp_address; 5783 * uint32_t spp_hbinterval; 5784 * uint16_t spp_pathmaxrxt; 5785 * uint32_t spp_pathmtu; 5786 * uint32_t spp_sackdelay; 5787 * uint32_t spp_flags; 5788 * }; 5789 * 5790 * spp_assoc_id - (one-to-many style socket) This is filled in the 5791 * application, and identifies the association for 5792 * this query. 5793 * spp_address - This specifies which address is of interest. 5794 * spp_hbinterval - This contains the value of the heartbeat interval, 5795 * in milliseconds. If a value of zero 5796 * is present in this field then no changes are to 5797 * be made to this parameter. 5798 * spp_pathmaxrxt - This contains the maximum number of 5799 * retransmissions before this address shall be 5800 * considered unreachable. If a value of zero 5801 * is present in this field then no changes are to 5802 * be made to this parameter. 5803 * spp_pathmtu - When Path MTU discovery is disabled the value 5804 * specified here will be the "fixed" path mtu. 5805 * Note that if the spp_address field is empty 5806 * then all associations on this address will 5807 * have this fixed path mtu set upon them. 5808 * 5809 * spp_sackdelay - When delayed sack is enabled, this value specifies 5810 * the number of milliseconds that sacks will be delayed 5811 * for. This value will apply to all addresses of an 5812 * association if the spp_address field is empty. Note 5813 * also, that if delayed sack is enabled and this 5814 * value is set to 0, no change is made to the last 5815 * recorded delayed sack timer value. 5816 * 5817 * spp_flags - These flags are used to control various features 5818 * on an association. The flag field may contain 5819 * zero or more of the following options. 5820 * 5821 * SPP_HB_ENABLE - Enable heartbeats on the 5822 * specified address. Note that if the address 5823 * field is empty all addresses for the association 5824 * have heartbeats enabled upon them. 5825 * 5826 * SPP_HB_DISABLE - Disable heartbeats on the 5827 * speicifed address. Note that if the address 5828 * field is empty all addresses for the association 5829 * will have their heartbeats disabled. Note also 5830 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5831 * mutually exclusive, only one of these two should 5832 * be specified. Enabling both fields will have 5833 * undetermined results. 5834 * 5835 * SPP_HB_DEMAND - Request a user initiated heartbeat 5836 * to be made immediately. 5837 * 5838 * SPP_PMTUD_ENABLE - This field will enable PMTU 5839 * discovery upon the specified address. Note that 5840 * if the address feild is empty then all addresses 5841 * on the association are effected. 5842 * 5843 * SPP_PMTUD_DISABLE - This field will disable PMTU 5844 * discovery upon the specified address. Note that 5845 * if the address feild is empty then all addresses 5846 * on the association are effected. Not also that 5847 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5848 * exclusive. Enabling both will have undetermined 5849 * results. 5850 * 5851 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5852 * on delayed sack. The time specified in spp_sackdelay 5853 * is used to specify the sack delay for this address. Note 5854 * that if spp_address is empty then all addresses will 5855 * enable delayed sack and take on the sack delay 5856 * value specified in spp_sackdelay. 5857 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5858 * off delayed sack. If the spp_address field is blank then 5859 * delayed sack is disabled for the entire association. Note 5860 * also that this field is mutually exclusive to 5861 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5862 * results. 5863 * 5864 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5865 * setting of the IPV6 flow label value. The value is 5866 * contained in the spp_ipv6_flowlabel field. 5867 * Upon retrieval, this flag will be set to indicate that 5868 * the spp_ipv6_flowlabel field has a valid value returned. 5869 * If a specific destination address is set (in the 5870 * spp_address field), then the value returned is that of 5871 * the address. If just an association is specified (and 5872 * no address), then the association's default flow label 5873 * is returned. If neither an association nor a destination 5874 * is specified, then the socket's default flow label is 5875 * returned. For non-IPv6 sockets, this flag will be left 5876 * cleared. 5877 * 5878 * SPP_DSCP: Setting this flag enables the setting of the 5879 * Differentiated Services Code Point (DSCP) value 5880 * associated with either the association or a specific 5881 * address. The value is obtained in the spp_dscp field. 5882 * Upon retrieval, this flag will be set to indicate that 5883 * the spp_dscp field has a valid value returned. If a 5884 * specific destination address is set when called (in the 5885 * spp_address field), then that specific destination 5886 * address's DSCP value is returned. If just an association 5887 * is specified, then the association's default DSCP is 5888 * returned. If neither an association nor a destination is 5889 * specified, then the socket's default DSCP is returned. 5890 * 5891 * spp_ipv6_flowlabel 5892 * - This field is used in conjunction with the 5893 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5894 * The 20 least significant bits are used for the flow 5895 * label. This setting has precedence over any IPv6-layer 5896 * setting. 5897 * 5898 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5899 * and contains the DSCP. The 6 most significant bits are 5900 * used for the DSCP. This setting has precedence over any 5901 * IPv4- or IPv6- layer setting. 5902 */ 5903 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5904 char __user *optval, int __user *optlen) 5905 { 5906 struct sctp_paddrparams params; 5907 struct sctp_transport *trans = NULL; 5908 struct sctp_association *asoc = NULL; 5909 struct sctp_sock *sp = sctp_sk(sk); 5910 5911 if (len >= sizeof(params)) 5912 len = sizeof(params); 5913 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 5914 spp_ipv6_flowlabel), 4)) 5915 len = ALIGN(offsetof(struct sctp_paddrparams, 5916 spp_ipv6_flowlabel), 4); 5917 else 5918 return -EINVAL; 5919 5920 if (copy_from_user(¶ms, optval, len)) 5921 return -EFAULT; 5922 5923 /* If an address other than INADDR_ANY is specified, and 5924 * no transport is found, then the request is invalid. 5925 */ 5926 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5927 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5928 params.spp_assoc_id); 5929 if (!trans) { 5930 pr_debug("%s: failed no transport\n", __func__); 5931 return -EINVAL; 5932 } 5933 } 5934 5935 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 5936 * socket is a one to many style socket, and an association 5937 * was not found, then the id was invalid. 5938 */ 5939 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5940 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 5941 sctp_style(sk, UDP)) { 5942 pr_debug("%s: failed no association\n", __func__); 5943 return -EINVAL; 5944 } 5945 5946 if (trans) { 5947 /* Fetch transport values. */ 5948 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5949 params.spp_pathmtu = trans->pathmtu; 5950 params.spp_pathmaxrxt = trans->pathmaxrxt; 5951 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5952 5953 /*draft-11 doesn't say what to return in spp_flags*/ 5954 params.spp_flags = trans->param_flags; 5955 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5956 params.spp_ipv6_flowlabel = trans->flowlabel & 5957 SCTP_FLOWLABEL_VAL_MASK; 5958 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5959 } 5960 if (trans->dscp & SCTP_DSCP_SET_MASK) { 5961 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 5962 params.spp_flags |= SPP_DSCP; 5963 } 5964 } else if (asoc) { 5965 /* Fetch association values. */ 5966 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5967 params.spp_pathmtu = asoc->pathmtu; 5968 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5969 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5970 5971 /*draft-11 doesn't say what to return in spp_flags*/ 5972 params.spp_flags = asoc->param_flags; 5973 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5974 params.spp_ipv6_flowlabel = asoc->flowlabel & 5975 SCTP_FLOWLABEL_VAL_MASK; 5976 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5977 } 5978 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 5979 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 5980 params.spp_flags |= SPP_DSCP; 5981 } 5982 } else { 5983 /* Fetch socket values. */ 5984 params.spp_hbinterval = sp->hbinterval; 5985 params.spp_pathmtu = sp->pathmtu; 5986 params.spp_sackdelay = sp->sackdelay; 5987 params.spp_pathmaxrxt = sp->pathmaxrxt; 5988 5989 /*draft-11 doesn't say what to return in spp_flags*/ 5990 params.spp_flags = sp->param_flags; 5991 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5992 params.spp_ipv6_flowlabel = sp->flowlabel & 5993 SCTP_FLOWLABEL_VAL_MASK; 5994 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5995 } 5996 if (sp->dscp & SCTP_DSCP_SET_MASK) { 5997 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 5998 params.spp_flags |= SPP_DSCP; 5999 } 6000 } 6001 6002 if (copy_to_user(optval, ¶ms, len)) 6003 return -EFAULT; 6004 6005 if (put_user(len, optlen)) 6006 return -EFAULT; 6007 6008 return 0; 6009 } 6010 6011 /* 6012 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 6013 * 6014 * This option will effect the way delayed acks are performed. This 6015 * option allows you to get or set the delayed ack time, in 6016 * milliseconds. It also allows changing the delayed ack frequency. 6017 * Changing the frequency to 1 disables the delayed sack algorithm. If 6018 * the assoc_id is 0, then this sets or gets the endpoints default 6019 * values. If the assoc_id field is non-zero, then the set or get 6020 * effects the specified association for the one to many model (the 6021 * assoc_id field is ignored by the one to one model). Note that if 6022 * sack_delay or sack_freq are 0 when setting this option, then the 6023 * current values will remain unchanged. 6024 * 6025 * struct sctp_sack_info { 6026 * sctp_assoc_t sack_assoc_id; 6027 * uint32_t sack_delay; 6028 * uint32_t sack_freq; 6029 * }; 6030 * 6031 * sack_assoc_id - This parameter, indicates which association the user 6032 * is performing an action upon. Note that if this field's value is 6033 * zero then the endpoints default value is changed (effecting future 6034 * associations only). 6035 * 6036 * sack_delay - This parameter contains the number of milliseconds that 6037 * the user is requesting the delayed ACK timer be set to. Note that 6038 * this value is defined in the standard to be between 200 and 500 6039 * milliseconds. 6040 * 6041 * sack_freq - This parameter contains the number of packets that must 6042 * be received before a sack is sent without waiting for the delay 6043 * timer to expire. The default value for this is 2, setting this 6044 * value to 1 will disable the delayed sack algorithm. 6045 */ 6046 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 6047 char __user *optval, 6048 int __user *optlen) 6049 { 6050 struct sctp_sack_info params; 6051 struct sctp_association *asoc = NULL; 6052 struct sctp_sock *sp = sctp_sk(sk); 6053 6054 if (len >= sizeof(struct sctp_sack_info)) { 6055 len = sizeof(struct sctp_sack_info); 6056 6057 if (copy_from_user(¶ms, optval, len)) 6058 return -EFAULT; 6059 } else if (len == sizeof(struct sctp_assoc_value)) { 6060 pr_warn_ratelimited(DEPRECATED 6061 "%s (pid %d) " 6062 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 6063 "Use struct sctp_sack_info instead\n", 6064 current->comm, task_pid_nr(current)); 6065 if (copy_from_user(¶ms, optval, len)) 6066 return -EFAULT; 6067 } else 6068 return -EINVAL; 6069 6070 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 6071 * socket is a one to many style socket, and an association 6072 * was not found, then the id was invalid. 6073 */ 6074 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 6075 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC && 6076 sctp_style(sk, UDP)) 6077 return -EINVAL; 6078 6079 if (asoc) { 6080 /* Fetch association values. */ 6081 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 6082 params.sack_delay = jiffies_to_msecs(asoc->sackdelay); 6083 params.sack_freq = asoc->sackfreq; 6084 6085 } else { 6086 params.sack_delay = 0; 6087 params.sack_freq = 1; 6088 } 6089 } else { 6090 /* Fetch socket values. */ 6091 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 6092 params.sack_delay = sp->sackdelay; 6093 params.sack_freq = sp->sackfreq; 6094 } else { 6095 params.sack_delay = 0; 6096 params.sack_freq = 1; 6097 } 6098 } 6099 6100 if (copy_to_user(optval, ¶ms, len)) 6101 return -EFAULT; 6102 6103 if (put_user(len, optlen)) 6104 return -EFAULT; 6105 6106 return 0; 6107 } 6108 6109 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 6110 * 6111 * Applications can specify protocol parameters for the default association 6112 * initialization. The option name argument to setsockopt() and getsockopt() 6113 * is SCTP_INITMSG. 6114 * 6115 * Setting initialization parameters is effective only on an unconnected 6116 * socket (for UDP-style sockets only future associations are effected 6117 * by the change). With TCP-style sockets, this option is inherited by 6118 * sockets derived from a listener socket. 6119 */ 6120 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 6121 { 6122 if (len < sizeof(struct sctp_initmsg)) 6123 return -EINVAL; 6124 len = sizeof(struct sctp_initmsg); 6125 if (put_user(len, optlen)) 6126 return -EFAULT; 6127 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 6128 return -EFAULT; 6129 return 0; 6130 } 6131 6132 6133 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 6134 char __user *optval, int __user *optlen) 6135 { 6136 struct sctp_association *asoc; 6137 int cnt = 0; 6138 struct sctp_getaddrs getaddrs; 6139 struct sctp_transport *from; 6140 void __user *to; 6141 union sctp_addr temp; 6142 struct sctp_sock *sp = sctp_sk(sk); 6143 int addrlen; 6144 size_t space_left; 6145 int bytes_copied; 6146 6147 if (len < sizeof(struct sctp_getaddrs)) 6148 return -EINVAL; 6149 6150 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6151 return -EFAULT; 6152 6153 /* For UDP-style sockets, id specifies the association to query. */ 6154 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6155 if (!asoc) 6156 return -EINVAL; 6157 6158 to = optval + offsetof(struct sctp_getaddrs, addrs); 6159 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6160 6161 list_for_each_entry(from, &asoc->peer.transport_addr_list, 6162 transports) { 6163 memcpy(&temp, &from->ipaddr, sizeof(temp)); 6164 addrlen = sctp_get_pf_specific(sk->sk_family) 6165 ->addr_to_user(sp, &temp); 6166 if (space_left < addrlen) 6167 return -ENOMEM; 6168 if (copy_to_user(to, &temp, addrlen)) 6169 return -EFAULT; 6170 to += addrlen; 6171 cnt++; 6172 space_left -= addrlen; 6173 } 6174 6175 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 6176 return -EFAULT; 6177 bytes_copied = ((char __user *)to) - optval; 6178 if (put_user(bytes_copied, optlen)) 6179 return -EFAULT; 6180 6181 return 0; 6182 } 6183 6184 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 6185 size_t space_left, int *bytes_copied) 6186 { 6187 struct sctp_sockaddr_entry *addr; 6188 union sctp_addr temp; 6189 int cnt = 0; 6190 int addrlen; 6191 struct net *net = sock_net(sk); 6192 6193 rcu_read_lock(); 6194 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 6195 if (!addr->valid) 6196 continue; 6197 6198 if ((PF_INET == sk->sk_family) && 6199 (AF_INET6 == addr->a.sa.sa_family)) 6200 continue; 6201 if ((PF_INET6 == sk->sk_family) && 6202 inet_v6_ipv6only(sk) && 6203 (AF_INET == addr->a.sa.sa_family)) 6204 continue; 6205 memcpy(&temp, &addr->a, sizeof(temp)); 6206 if (!temp.v4.sin_port) 6207 temp.v4.sin_port = htons(port); 6208 6209 addrlen = sctp_get_pf_specific(sk->sk_family) 6210 ->addr_to_user(sctp_sk(sk), &temp); 6211 6212 if (space_left < addrlen) { 6213 cnt = -ENOMEM; 6214 break; 6215 } 6216 memcpy(to, &temp, addrlen); 6217 6218 to += addrlen; 6219 cnt++; 6220 space_left -= addrlen; 6221 *bytes_copied += addrlen; 6222 } 6223 rcu_read_unlock(); 6224 6225 return cnt; 6226 } 6227 6228 6229 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 6230 char __user *optval, int __user *optlen) 6231 { 6232 struct sctp_bind_addr *bp; 6233 struct sctp_association *asoc; 6234 int cnt = 0; 6235 struct sctp_getaddrs getaddrs; 6236 struct sctp_sockaddr_entry *addr; 6237 void __user *to; 6238 union sctp_addr temp; 6239 struct sctp_sock *sp = sctp_sk(sk); 6240 int addrlen; 6241 int err = 0; 6242 size_t space_left; 6243 int bytes_copied = 0; 6244 void *addrs; 6245 void *buf; 6246 6247 if (len < sizeof(struct sctp_getaddrs)) 6248 return -EINVAL; 6249 6250 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6251 return -EFAULT; 6252 6253 /* 6254 * For UDP-style sockets, id specifies the association to query. 6255 * If the id field is set to the value '0' then the locally bound 6256 * addresses are returned without regard to any particular 6257 * association. 6258 */ 6259 if (0 == getaddrs.assoc_id) { 6260 bp = &sctp_sk(sk)->ep->base.bind_addr; 6261 } else { 6262 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6263 if (!asoc) 6264 return -EINVAL; 6265 bp = &asoc->base.bind_addr; 6266 } 6267 6268 to = optval + offsetof(struct sctp_getaddrs, addrs); 6269 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6270 6271 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 6272 if (!addrs) 6273 return -ENOMEM; 6274 6275 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 6276 * addresses from the global local address list. 6277 */ 6278 if (sctp_list_single_entry(&bp->address_list)) { 6279 addr = list_entry(bp->address_list.next, 6280 struct sctp_sockaddr_entry, list); 6281 if (sctp_is_any(sk, &addr->a)) { 6282 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 6283 space_left, &bytes_copied); 6284 if (cnt < 0) { 6285 err = cnt; 6286 goto out; 6287 } 6288 goto copy_getaddrs; 6289 } 6290 } 6291 6292 buf = addrs; 6293 /* Protection on the bound address list is not needed since 6294 * in the socket option context we hold a socket lock and 6295 * thus the bound address list can't change. 6296 */ 6297 list_for_each_entry(addr, &bp->address_list, list) { 6298 memcpy(&temp, &addr->a, sizeof(temp)); 6299 addrlen = sctp_get_pf_specific(sk->sk_family) 6300 ->addr_to_user(sp, &temp); 6301 if (space_left < addrlen) { 6302 err = -ENOMEM; /*fixme: right error?*/ 6303 goto out; 6304 } 6305 memcpy(buf, &temp, addrlen); 6306 buf += addrlen; 6307 bytes_copied += addrlen; 6308 cnt++; 6309 space_left -= addrlen; 6310 } 6311 6312 copy_getaddrs: 6313 if (copy_to_user(to, addrs, bytes_copied)) { 6314 err = -EFAULT; 6315 goto out; 6316 } 6317 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 6318 err = -EFAULT; 6319 goto out; 6320 } 6321 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 6322 * but we can't change it anymore. 6323 */ 6324 if (put_user(bytes_copied, optlen)) 6325 err = -EFAULT; 6326 out: 6327 kfree(addrs); 6328 return err; 6329 } 6330 6331 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6332 * 6333 * Requests that the local SCTP stack use the enclosed peer address as 6334 * the association primary. The enclosed address must be one of the 6335 * association peer's addresses. 6336 */ 6337 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6338 char __user *optval, int __user *optlen) 6339 { 6340 struct sctp_prim prim; 6341 struct sctp_association *asoc; 6342 struct sctp_sock *sp = sctp_sk(sk); 6343 6344 if (len < sizeof(struct sctp_prim)) 6345 return -EINVAL; 6346 6347 len = sizeof(struct sctp_prim); 6348 6349 if (copy_from_user(&prim, optval, len)) 6350 return -EFAULT; 6351 6352 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6353 if (!asoc) 6354 return -EINVAL; 6355 6356 if (!asoc->peer.primary_path) 6357 return -ENOTCONN; 6358 6359 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6360 asoc->peer.primary_path->af_specific->sockaddr_len); 6361 6362 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6363 (union sctp_addr *)&prim.ssp_addr); 6364 6365 if (put_user(len, optlen)) 6366 return -EFAULT; 6367 if (copy_to_user(optval, &prim, len)) 6368 return -EFAULT; 6369 6370 return 0; 6371 } 6372 6373 /* 6374 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6375 * 6376 * Requests that the local endpoint set the specified Adaptation Layer 6377 * Indication parameter for all future INIT and INIT-ACK exchanges. 6378 */ 6379 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6380 char __user *optval, int __user *optlen) 6381 { 6382 struct sctp_setadaptation adaptation; 6383 6384 if (len < sizeof(struct sctp_setadaptation)) 6385 return -EINVAL; 6386 6387 len = sizeof(struct sctp_setadaptation); 6388 6389 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6390 6391 if (put_user(len, optlen)) 6392 return -EFAULT; 6393 if (copy_to_user(optval, &adaptation, len)) 6394 return -EFAULT; 6395 6396 return 0; 6397 } 6398 6399 /* 6400 * 6401 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6402 * 6403 * Applications that wish to use the sendto() system call may wish to 6404 * specify a default set of parameters that would normally be supplied 6405 * through the inclusion of ancillary data. This socket option allows 6406 * such an application to set the default sctp_sndrcvinfo structure. 6407 6408 6409 * The application that wishes to use this socket option simply passes 6410 * in to this call the sctp_sndrcvinfo structure defined in Section 6411 * 5.2.2) The input parameters accepted by this call include 6412 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6413 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6414 * to this call if the caller is using the UDP model. 6415 * 6416 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6417 */ 6418 static int sctp_getsockopt_default_send_param(struct sock *sk, 6419 int len, char __user *optval, 6420 int __user *optlen) 6421 { 6422 struct sctp_sock *sp = sctp_sk(sk); 6423 struct sctp_association *asoc; 6424 struct sctp_sndrcvinfo info; 6425 6426 if (len < sizeof(info)) 6427 return -EINVAL; 6428 6429 len = sizeof(info); 6430 6431 if (copy_from_user(&info, optval, len)) 6432 return -EFAULT; 6433 6434 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6435 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC && 6436 sctp_style(sk, UDP)) 6437 return -EINVAL; 6438 6439 if (asoc) { 6440 info.sinfo_stream = asoc->default_stream; 6441 info.sinfo_flags = asoc->default_flags; 6442 info.sinfo_ppid = asoc->default_ppid; 6443 info.sinfo_context = asoc->default_context; 6444 info.sinfo_timetolive = asoc->default_timetolive; 6445 } else { 6446 info.sinfo_stream = sp->default_stream; 6447 info.sinfo_flags = sp->default_flags; 6448 info.sinfo_ppid = sp->default_ppid; 6449 info.sinfo_context = sp->default_context; 6450 info.sinfo_timetolive = sp->default_timetolive; 6451 } 6452 6453 if (put_user(len, optlen)) 6454 return -EFAULT; 6455 if (copy_to_user(optval, &info, len)) 6456 return -EFAULT; 6457 6458 return 0; 6459 } 6460 6461 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6462 * (SCTP_DEFAULT_SNDINFO) 6463 */ 6464 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6465 char __user *optval, 6466 int __user *optlen) 6467 { 6468 struct sctp_sock *sp = sctp_sk(sk); 6469 struct sctp_association *asoc; 6470 struct sctp_sndinfo info; 6471 6472 if (len < sizeof(info)) 6473 return -EINVAL; 6474 6475 len = sizeof(info); 6476 6477 if (copy_from_user(&info, optval, len)) 6478 return -EFAULT; 6479 6480 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6481 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC && 6482 sctp_style(sk, UDP)) 6483 return -EINVAL; 6484 6485 if (asoc) { 6486 info.snd_sid = asoc->default_stream; 6487 info.snd_flags = asoc->default_flags; 6488 info.snd_ppid = asoc->default_ppid; 6489 info.snd_context = asoc->default_context; 6490 } else { 6491 info.snd_sid = sp->default_stream; 6492 info.snd_flags = sp->default_flags; 6493 info.snd_ppid = sp->default_ppid; 6494 info.snd_context = sp->default_context; 6495 } 6496 6497 if (put_user(len, optlen)) 6498 return -EFAULT; 6499 if (copy_to_user(optval, &info, len)) 6500 return -EFAULT; 6501 6502 return 0; 6503 } 6504 6505 /* 6506 * 6507 * 7.1.5 SCTP_NODELAY 6508 * 6509 * Turn on/off any Nagle-like algorithm. This means that packets are 6510 * generally sent as soon as possible and no unnecessary delays are 6511 * introduced, at the cost of more packets in the network. Expects an 6512 * integer boolean flag. 6513 */ 6514 6515 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6516 char __user *optval, int __user *optlen) 6517 { 6518 int val; 6519 6520 if (len < sizeof(int)) 6521 return -EINVAL; 6522 6523 len = sizeof(int); 6524 val = (sctp_sk(sk)->nodelay == 1); 6525 if (put_user(len, optlen)) 6526 return -EFAULT; 6527 if (copy_to_user(optval, &val, len)) 6528 return -EFAULT; 6529 return 0; 6530 } 6531 6532 /* 6533 * 6534 * 7.1.1 SCTP_RTOINFO 6535 * 6536 * The protocol parameters used to initialize and bound retransmission 6537 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6538 * and modify these parameters. 6539 * All parameters are time values, in milliseconds. A value of 0, when 6540 * modifying the parameters, indicates that the current value should not 6541 * be changed. 6542 * 6543 */ 6544 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6545 char __user *optval, 6546 int __user *optlen) { 6547 struct sctp_rtoinfo rtoinfo; 6548 struct sctp_association *asoc; 6549 6550 if (len < sizeof (struct sctp_rtoinfo)) 6551 return -EINVAL; 6552 6553 len = sizeof(struct sctp_rtoinfo); 6554 6555 if (copy_from_user(&rtoinfo, optval, len)) 6556 return -EFAULT; 6557 6558 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6559 6560 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 6561 sctp_style(sk, UDP)) 6562 return -EINVAL; 6563 6564 /* Values corresponding to the specific association. */ 6565 if (asoc) { 6566 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6567 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6568 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6569 } else { 6570 /* Values corresponding to the endpoint. */ 6571 struct sctp_sock *sp = sctp_sk(sk); 6572 6573 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6574 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6575 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6576 } 6577 6578 if (put_user(len, optlen)) 6579 return -EFAULT; 6580 6581 if (copy_to_user(optval, &rtoinfo, len)) 6582 return -EFAULT; 6583 6584 return 0; 6585 } 6586 6587 /* 6588 * 6589 * 7.1.2 SCTP_ASSOCINFO 6590 * 6591 * This option is used to tune the maximum retransmission attempts 6592 * of the association. 6593 * Returns an error if the new association retransmission value is 6594 * greater than the sum of the retransmission value of the peer. 6595 * See [SCTP] for more information. 6596 * 6597 */ 6598 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6599 char __user *optval, 6600 int __user *optlen) 6601 { 6602 6603 struct sctp_assocparams assocparams; 6604 struct sctp_association *asoc; 6605 struct list_head *pos; 6606 int cnt = 0; 6607 6608 if (len < sizeof (struct sctp_assocparams)) 6609 return -EINVAL; 6610 6611 len = sizeof(struct sctp_assocparams); 6612 6613 if (copy_from_user(&assocparams, optval, len)) 6614 return -EFAULT; 6615 6616 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6617 6618 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 6619 sctp_style(sk, UDP)) 6620 return -EINVAL; 6621 6622 /* Values correspoinding to the specific association */ 6623 if (asoc) { 6624 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6625 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6626 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6627 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6628 6629 list_for_each(pos, &asoc->peer.transport_addr_list) { 6630 cnt++; 6631 } 6632 6633 assocparams.sasoc_number_peer_destinations = cnt; 6634 } else { 6635 /* Values corresponding to the endpoint */ 6636 struct sctp_sock *sp = sctp_sk(sk); 6637 6638 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6639 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6640 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6641 assocparams.sasoc_cookie_life = 6642 sp->assocparams.sasoc_cookie_life; 6643 assocparams.sasoc_number_peer_destinations = 6644 sp->assocparams. 6645 sasoc_number_peer_destinations; 6646 } 6647 6648 if (put_user(len, optlen)) 6649 return -EFAULT; 6650 6651 if (copy_to_user(optval, &assocparams, len)) 6652 return -EFAULT; 6653 6654 return 0; 6655 } 6656 6657 /* 6658 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6659 * 6660 * This socket option is a boolean flag which turns on or off mapped V4 6661 * addresses. If this option is turned on and the socket is type 6662 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6663 * If this option is turned off, then no mapping will be done of V4 6664 * addresses and a user will receive both PF_INET6 and PF_INET type 6665 * addresses on the socket. 6666 */ 6667 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6668 char __user *optval, int __user *optlen) 6669 { 6670 int val; 6671 struct sctp_sock *sp = sctp_sk(sk); 6672 6673 if (len < sizeof(int)) 6674 return -EINVAL; 6675 6676 len = sizeof(int); 6677 val = sp->v4mapped; 6678 if (put_user(len, optlen)) 6679 return -EFAULT; 6680 if (copy_to_user(optval, &val, len)) 6681 return -EFAULT; 6682 6683 return 0; 6684 } 6685 6686 /* 6687 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6688 * (chapter and verse is quoted at sctp_setsockopt_context()) 6689 */ 6690 static int sctp_getsockopt_context(struct sock *sk, int len, 6691 char __user *optval, int __user *optlen) 6692 { 6693 struct sctp_assoc_value params; 6694 struct sctp_association *asoc; 6695 6696 if (len < sizeof(struct sctp_assoc_value)) 6697 return -EINVAL; 6698 6699 len = sizeof(struct sctp_assoc_value); 6700 6701 if (copy_from_user(¶ms, optval, len)) 6702 return -EFAULT; 6703 6704 asoc = sctp_id2assoc(sk, params.assoc_id); 6705 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6706 sctp_style(sk, UDP)) 6707 return -EINVAL; 6708 6709 params.assoc_value = asoc ? asoc->default_rcv_context 6710 : sctp_sk(sk)->default_rcv_context; 6711 6712 if (put_user(len, optlen)) 6713 return -EFAULT; 6714 if (copy_to_user(optval, ¶ms, len)) 6715 return -EFAULT; 6716 6717 return 0; 6718 } 6719 6720 /* 6721 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6722 * This option will get or set the maximum size to put in any outgoing 6723 * SCTP DATA chunk. If a message is larger than this size it will be 6724 * fragmented by SCTP into the specified size. Note that the underlying 6725 * SCTP implementation may fragment into smaller sized chunks when the 6726 * PMTU of the underlying association is smaller than the value set by 6727 * the user. The default value for this option is '0' which indicates 6728 * the user is NOT limiting fragmentation and only the PMTU will effect 6729 * SCTP's choice of DATA chunk size. Note also that values set larger 6730 * than the maximum size of an IP datagram will effectively let SCTP 6731 * control fragmentation (i.e. the same as setting this option to 0). 6732 * 6733 * The following structure is used to access and modify this parameter: 6734 * 6735 * struct sctp_assoc_value { 6736 * sctp_assoc_t assoc_id; 6737 * uint32_t assoc_value; 6738 * }; 6739 * 6740 * assoc_id: This parameter is ignored for one-to-one style sockets. 6741 * For one-to-many style sockets this parameter indicates which 6742 * association the user is performing an action upon. Note that if 6743 * this field's value is zero then the endpoints default value is 6744 * changed (effecting future associations only). 6745 * assoc_value: This parameter specifies the maximum size in bytes. 6746 */ 6747 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6748 char __user *optval, int __user *optlen) 6749 { 6750 struct sctp_assoc_value params; 6751 struct sctp_association *asoc; 6752 6753 if (len == sizeof(int)) { 6754 pr_warn_ratelimited(DEPRECATED 6755 "%s (pid %d) " 6756 "Use of int in maxseg socket option.\n" 6757 "Use struct sctp_assoc_value instead\n", 6758 current->comm, task_pid_nr(current)); 6759 params.assoc_id = SCTP_FUTURE_ASSOC; 6760 } else if (len >= sizeof(struct sctp_assoc_value)) { 6761 len = sizeof(struct sctp_assoc_value); 6762 if (copy_from_user(¶ms, optval, len)) 6763 return -EFAULT; 6764 } else 6765 return -EINVAL; 6766 6767 asoc = sctp_id2assoc(sk, params.assoc_id); 6768 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6769 sctp_style(sk, UDP)) 6770 return -EINVAL; 6771 6772 if (asoc) 6773 params.assoc_value = asoc->frag_point; 6774 else 6775 params.assoc_value = sctp_sk(sk)->user_frag; 6776 6777 if (put_user(len, optlen)) 6778 return -EFAULT; 6779 if (len == sizeof(int)) { 6780 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6781 return -EFAULT; 6782 } else { 6783 if (copy_to_user(optval, ¶ms, len)) 6784 return -EFAULT; 6785 } 6786 6787 return 0; 6788 } 6789 6790 /* 6791 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6792 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6793 */ 6794 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6795 char __user *optval, int __user *optlen) 6796 { 6797 int val; 6798 6799 if (len < sizeof(int)) 6800 return -EINVAL; 6801 6802 len = sizeof(int); 6803 6804 val = sctp_sk(sk)->frag_interleave; 6805 if (put_user(len, optlen)) 6806 return -EFAULT; 6807 if (copy_to_user(optval, &val, len)) 6808 return -EFAULT; 6809 6810 return 0; 6811 } 6812 6813 /* 6814 * 7.1.25. Set or Get the sctp partial delivery point 6815 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6816 */ 6817 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6818 char __user *optval, 6819 int __user *optlen) 6820 { 6821 u32 val; 6822 6823 if (len < sizeof(u32)) 6824 return -EINVAL; 6825 6826 len = sizeof(u32); 6827 6828 val = sctp_sk(sk)->pd_point; 6829 if (put_user(len, optlen)) 6830 return -EFAULT; 6831 if (copy_to_user(optval, &val, len)) 6832 return -EFAULT; 6833 6834 return 0; 6835 } 6836 6837 /* 6838 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6839 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6840 */ 6841 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6842 char __user *optval, 6843 int __user *optlen) 6844 { 6845 struct sctp_assoc_value params; 6846 struct sctp_association *asoc; 6847 6848 if (len == sizeof(int)) { 6849 pr_warn_ratelimited(DEPRECATED 6850 "%s (pid %d) " 6851 "Use of int in max_burst socket option.\n" 6852 "Use struct sctp_assoc_value instead\n", 6853 current->comm, task_pid_nr(current)); 6854 params.assoc_id = SCTP_FUTURE_ASSOC; 6855 } else if (len >= sizeof(struct sctp_assoc_value)) { 6856 len = sizeof(struct sctp_assoc_value); 6857 if (copy_from_user(¶ms, optval, len)) 6858 return -EFAULT; 6859 } else 6860 return -EINVAL; 6861 6862 asoc = sctp_id2assoc(sk, params.assoc_id); 6863 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6864 sctp_style(sk, UDP)) 6865 return -EINVAL; 6866 6867 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst; 6868 6869 if (len == sizeof(int)) { 6870 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6871 return -EFAULT; 6872 } else { 6873 if (copy_to_user(optval, ¶ms, len)) 6874 return -EFAULT; 6875 } 6876 6877 return 0; 6878 6879 } 6880 6881 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6882 char __user *optval, int __user *optlen) 6883 { 6884 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6885 struct sctp_hmacalgo __user *p = (void __user *)optval; 6886 struct sctp_hmac_algo_param *hmacs; 6887 __u16 data_len = 0; 6888 u32 num_idents; 6889 int i; 6890 6891 if (!ep->auth_enable) 6892 return -EACCES; 6893 6894 hmacs = ep->auth_hmacs_list; 6895 data_len = ntohs(hmacs->param_hdr.length) - 6896 sizeof(struct sctp_paramhdr); 6897 6898 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6899 return -EINVAL; 6900 6901 len = sizeof(struct sctp_hmacalgo) + data_len; 6902 num_idents = data_len / sizeof(u16); 6903 6904 if (put_user(len, optlen)) 6905 return -EFAULT; 6906 if (put_user(num_idents, &p->shmac_num_idents)) 6907 return -EFAULT; 6908 for (i = 0; i < num_idents; i++) { 6909 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6910 6911 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6912 return -EFAULT; 6913 } 6914 return 0; 6915 } 6916 6917 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6918 char __user *optval, int __user *optlen) 6919 { 6920 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6921 struct sctp_authkeyid val; 6922 struct sctp_association *asoc; 6923 6924 if (!ep->auth_enable) 6925 return -EACCES; 6926 6927 if (len < sizeof(struct sctp_authkeyid)) 6928 return -EINVAL; 6929 6930 len = sizeof(struct sctp_authkeyid); 6931 if (copy_from_user(&val, optval, len)) 6932 return -EFAULT; 6933 6934 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6935 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6936 return -EINVAL; 6937 6938 if (asoc) 6939 val.scact_keynumber = asoc->active_key_id; 6940 else 6941 val.scact_keynumber = ep->active_key_id; 6942 6943 if (put_user(len, optlen)) 6944 return -EFAULT; 6945 if (copy_to_user(optval, &val, len)) 6946 return -EFAULT; 6947 6948 return 0; 6949 } 6950 6951 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6952 char __user *optval, int __user *optlen) 6953 { 6954 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6955 struct sctp_authchunks __user *p = (void __user *)optval; 6956 struct sctp_authchunks val; 6957 struct sctp_association *asoc; 6958 struct sctp_chunks_param *ch; 6959 u32 num_chunks = 0; 6960 char __user *to; 6961 6962 if (!ep->auth_enable) 6963 return -EACCES; 6964 6965 if (len < sizeof(struct sctp_authchunks)) 6966 return -EINVAL; 6967 6968 if (copy_from_user(&val, optval, sizeof(val))) 6969 return -EFAULT; 6970 6971 to = p->gauth_chunks; 6972 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6973 if (!asoc) 6974 return -EINVAL; 6975 6976 ch = asoc->peer.peer_chunks; 6977 if (!ch) 6978 goto num; 6979 6980 /* See if the user provided enough room for all the data */ 6981 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6982 if (len < num_chunks) 6983 return -EINVAL; 6984 6985 if (copy_to_user(to, ch->chunks, num_chunks)) 6986 return -EFAULT; 6987 num: 6988 len = sizeof(struct sctp_authchunks) + num_chunks; 6989 if (put_user(len, optlen)) 6990 return -EFAULT; 6991 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6992 return -EFAULT; 6993 return 0; 6994 } 6995 6996 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 6997 char __user *optval, int __user *optlen) 6998 { 6999 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7000 struct sctp_authchunks __user *p = (void __user *)optval; 7001 struct sctp_authchunks val; 7002 struct sctp_association *asoc; 7003 struct sctp_chunks_param *ch; 7004 u32 num_chunks = 0; 7005 char __user *to; 7006 7007 if (!ep->auth_enable) 7008 return -EACCES; 7009 7010 if (len < sizeof(struct sctp_authchunks)) 7011 return -EINVAL; 7012 7013 if (copy_from_user(&val, optval, sizeof(val))) 7014 return -EFAULT; 7015 7016 to = p->gauth_chunks; 7017 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 7018 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC && 7019 sctp_style(sk, UDP)) 7020 return -EINVAL; 7021 7022 ch = asoc ? (struct sctp_chunks_param *)asoc->c.auth_chunks 7023 : ep->auth_chunk_list; 7024 if (!ch) 7025 goto num; 7026 7027 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7028 if (len < sizeof(struct sctp_authchunks) + num_chunks) 7029 return -EINVAL; 7030 7031 if (copy_to_user(to, ch->chunks, num_chunks)) 7032 return -EFAULT; 7033 num: 7034 len = sizeof(struct sctp_authchunks) + num_chunks; 7035 if (put_user(len, optlen)) 7036 return -EFAULT; 7037 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7038 return -EFAULT; 7039 7040 return 0; 7041 } 7042 7043 /* 7044 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 7045 * This option gets the current number of associations that are attached 7046 * to a one-to-many style socket. The option value is an uint32_t. 7047 */ 7048 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 7049 char __user *optval, int __user *optlen) 7050 { 7051 struct sctp_sock *sp = sctp_sk(sk); 7052 struct sctp_association *asoc; 7053 u32 val = 0; 7054 7055 if (sctp_style(sk, TCP)) 7056 return -EOPNOTSUPP; 7057 7058 if (len < sizeof(u32)) 7059 return -EINVAL; 7060 7061 len = sizeof(u32); 7062 7063 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7064 val++; 7065 } 7066 7067 if (put_user(len, optlen)) 7068 return -EFAULT; 7069 if (copy_to_user(optval, &val, len)) 7070 return -EFAULT; 7071 7072 return 0; 7073 } 7074 7075 /* 7076 * 8.1.23 SCTP_AUTO_ASCONF 7077 * See the corresponding setsockopt entry as description 7078 */ 7079 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 7080 char __user *optval, int __user *optlen) 7081 { 7082 int val = 0; 7083 7084 if (len < sizeof(int)) 7085 return -EINVAL; 7086 7087 len = sizeof(int); 7088 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 7089 val = 1; 7090 if (put_user(len, optlen)) 7091 return -EFAULT; 7092 if (copy_to_user(optval, &val, len)) 7093 return -EFAULT; 7094 return 0; 7095 } 7096 7097 /* 7098 * 8.2.6. Get the Current Identifiers of Associations 7099 * (SCTP_GET_ASSOC_ID_LIST) 7100 * 7101 * This option gets the current list of SCTP association identifiers of 7102 * the SCTP associations handled by a one-to-many style socket. 7103 */ 7104 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 7105 char __user *optval, int __user *optlen) 7106 { 7107 struct sctp_sock *sp = sctp_sk(sk); 7108 struct sctp_association *asoc; 7109 struct sctp_assoc_ids *ids; 7110 u32 num = 0; 7111 7112 if (sctp_style(sk, TCP)) 7113 return -EOPNOTSUPP; 7114 7115 if (len < sizeof(struct sctp_assoc_ids)) 7116 return -EINVAL; 7117 7118 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7119 num++; 7120 } 7121 7122 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 7123 return -EINVAL; 7124 7125 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 7126 7127 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 7128 if (unlikely(!ids)) 7129 return -ENOMEM; 7130 7131 ids->gaids_number_of_ids = num; 7132 num = 0; 7133 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7134 ids->gaids_assoc_id[num++] = asoc->assoc_id; 7135 } 7136 7137 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 7138 kfree(ids); 7139 return -EFAULT; 7140 } 7141 7142 kfree(ids); 7143 return 0; 7144 } 7145 7146 /* 7147 * SCTP_PEER_ADDR_THLDS 7148 * 7149 * This option allows us to fetch the partially failed threshold for one or all 7150 * transports in an association. See Section 6.1 of: 7151 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 7152 */ 7153 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 7154 char __user *optval, 7155 int len, 7156 int __user *optlen) 7157 { 7158 struct sctp_paddrthlds val; 7159 struct sctp_transport *trans; 7160 struct sctp_association *asoc; 7161 7162 if (len < sizeof(struct sctp_paddrthlds)) 7163 return -EINVAL; 7164 len = sizeof(struct sctp_paddrthlds); 7165 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 7166 return -EFAULT; 7167 7168 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 7169 trans = sctp_addr_id2transport(sk, &val.spt_address, 7170 val.spt_assoc_id); 7171 if (!trans) 7172 return -ENOENT; 7173 7174 val.spt_pathmaxrxt = trans->pathmaxrxt; 7175 val.spt_pathpfthld = trans->pf_retrans; 7176 7177 goto out; 7178 } 7179 7180 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 7181 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 7182 sctp_style(sk, UDP)) 7183 return -EINVAL; 7184 7185 if (asoc) { 7186 val.spt_pathpfthld = asoc->pf_retrans; 7187 val.spt_pathmaxrxt = asoc->pathmaxrxt; 7188 } else { 7189 struct sctp_sock *sp = sctp_sk(sk); 7190 7191 val.spt_pathpfthld = sp->pf_retrans; 7192 val.spt_pathmaxrxt = sp->pathmaxrxt; 7193 } 7194 7195 out: 7196 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 7197 return -EFAULT; 7198 7199 return 0; 7200 } 7201 7202 /* 7203 * SCTP_GET_ASSOC_STATS 7204 * 7205 * This option retrieves local per endpoint statistics. It is modeled 7206 * after OpenSolaris' implementation 7207 */ 7208 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 7209 char __user *optval, 7210 int __user *optlen) 7211 { 7212 struct sctp_assoc_stats sas; 7213 struct sctp_association *asoc = NULL; 7214 7215 /* User must provide at least the assoc id */ 7216 if (len < sizeof(sctp_assoc_t)) 7217 return -EINVAL; 7218 7219 /* Allow the struct to grow and fill in as much as possible */ 7220 len = min_t(size_t, len, sizeof(sas)); 7221 7222 if (copy_from_user(&sas, optval, len)) 7223 return -EFAULT; 7224 7225 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 7226 if (!asoc) 7227 return -EINVAL; 7228 7229 sas.sas_rtxchunks = asoc->stats.rtxchunks; 7230 sas.sas_gapcnt = asoc->stats.gapcnt; 7231 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 7232 sas.sas_osacks = asoc->stats.osacks; 7233 sas.sas_isacks = asoc->stats.isacks; 7234 sas.sas_octrlchunks = asoc->stats.octrlchunks; 7235 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 7236 sas.sas_oodchunks = asoc->stats.oodchunks; 7237 sas.sas_iodchunks = asoc->stats.iodchunks; 7238 sas.sas_ouodchunks = asoc->stats.ouodchunks; 7239 sas.sas_iuodchunks = asoc->stats.iuodchunks; 7240 sas.sas_idupchunks = asoc->stats.idupchunks; 7241 sas.sas_opackets = asoc->stats.opackets; 7242 sas.sas_ipackets = asoc->stats.ipackets; 7243 7244 /* New high max rto observed, will return 0 if not a single 7245 * RTO update took place. obs_rto_ipaddr will be bogus 7246 * in such a case 7247 */ 7248 sas.sas_maxrto = asoc->stats.max_obs_rto; 7249 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 7250 sizeof(struct sockaddr_storage)); 7251 7252 /* Mark beginning of a new observation period */ 7253 asoc->stats.max_obs_rto = asoc->rto_min; 7254 7255 if (put_user(len, optlen)) 7256 return -EFAULT; 7257 7258 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 7259 7260 if (copy_to_user(optval, &sas, len)) 7261 return -EFAULT; 7262 7263 return 0; 7264 } 7265 7266 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 7267 char __user *optval, 7268 int __user *optlen) 7269 { 7270 int val = 0; 7271 7272 if (len < sizeof(int)) 7273 return -EINVAL; 7274 7275 len = sizeof(int); 7276 if (sctp_sk(sk)->recvrcvinfo) 7277 val = 1; 7278 if (put_user(len, optlen)) 7279 return -EFAULT; 7280 if (copy_to_user(optval, &val, len)) 7281 return -EFAULT; 7282 7283 return 0; 7284 } 7285 7286 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 7287 char __user *optval, 7288 int __user *optlen) 7289 { 7290 int val = 0; 7291 7292 if (len < sizeof(int)) 7293 return -EINVAL; 7294 7295 len = sizeof(int); 7296 if (sctp_sk(sk)->recvnxtinfo) 7297 val = 1; 7298 if (put_user(len, optlen)) 7299 return -EFAULT; 7300 if (copy_to_user(optval, &val, len)) 7301 return -EFAULT; 7302 7303 return 0; 7304 } 7305 7306 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 7307 char __user *optval, 7308 int __user *optlen) 7309 { 7310 struct sctp_assoc_value params; 7311 struct sctp_association *asoc; 7312 int retval = -EFAULT; 7313 7314 if (len < sizeof(params)) { 7315 retval = -EINVAL; 7316 goto out; 7317 } 7318 7319 len = sizeof(params); 7320 if (copy_from_user(¶ms, optval, len)) 7321 goto out; 7322 7323 asoc = sctp_id2assoc(sk, params.assoc_id); 7324 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7325 sctp_style(sk, UDP)) { 7326 retval = -EINVAL; 7327 goto out; 7328 } 7329 7330 params.assoc_value = asoc ? asoc->peer.prsctp_capable 7331 : sctp_sk(sk)->ep->prsctp_enable; 7332 7333 if (put_user(len, optlen)) 7334 goto out; 7335 7336 if (copy_to_user(optval, ¶ms, len)) 7337 goto out; 7338 7339 retval = 0; 7340 7341 out: 7342 return retval; 7343 } 7344 7345 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7346 char __user *optval, 7347 int __user *optlen) 7348 { 7349 struct sctp_default_prinfo info; 7350 struct sctp_association *asoc; 7351 int retval = -EFAULT; 7352 7353 if (len < sizeof(info)) { 7354 retval = -EINVAL; 7355 goto out; 7356 } 7357 7358 len = sizeof(info); 7359 if (copy_from_user(&info, optval, len)) 7360 goto out; 7361 7362 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7363 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC && 7364 sctp_style(sk, UDP)) { 7365 retval = -EINVAL; 7366 goto out; 7367 } 7368 7369 if (asoc) { 7370 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7371 info.pr_value = asoc->default_timetolive; 7372 } else { 7373 struct sctp_sock *sp = sctp_sk(sk); 7374 7375 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7376 info.pr_value = sp->default_timetolive; 7377 } 7378 7379 if (put_user(len, optlen)) 7380 goto out; 7381 7382 if (copy_to_user(optval, &info, len)) 7383 goto out; 7384 7385 retval = 0; 7386 7387 out: 7388 return retval; 7389 } 7390 7391 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7392 char __user *optval, 7393 int __user *optlen) 7394 { 7395 struct sctp_prstatus params; 7396 struct sctp_association *asoc; 7397 int policy; 7398 int retval = -EINVAL; 7399 7400 if (len < sizeof(params)) 7401 goto out; 7402 7403 len = sizeof(params); 7404 if (copy_from_user(¶ms, optval, len)) { 7405 retval = -EFAULT; 7406 goto out; 7407 } 7408 7409 policy = params.sprstat_policy; 7410 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7411 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7412 goto out; 7413 7414 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7415 if (!asoc) 7416 goto out; 7417 7418 if (policy == SCTP_PR_SCTP_ALL) { 7419 params.sprstat_abandoned_unsent = 0; 7420 params.sprstat_abandoned_sent = 0; 7421 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7422 params.sprstat_abandoned_unsent += 7423 asoc->abandoned_unsent[policy]; 7424 params.sprstat_abandoned_sent += 7425 asoc->abandoned_sent[policy]; 7426 } 7427 } else { 7428 params.sprstat_abandoned_unsent = 7429 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7430 params.sprstat_abandoned_sent = 7431 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7432 } 7433 7434 if (put_user(len, optlen)) { 7435 retval = -EFAULT; 7436 goto out; 7437 } 7438 7439 if (copy_to_user(optval, ¶ms, len)) { 7440 retval = -EFAULT; 7441 goto out; 7442 } 7443 7444 retval = 0; 7445 7446 out: 7447 return retval; 7448 } 7449 7450 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7451 char __user *optval, 7452 int __user *optlen) 7453 { 7454 struct sctp_stream_out_ext *streamoute; 7455 struct sctp_association *asoc; 7456 struct sctp_prstatus params; 7457 int retval = -EINVAL; 7458 int policy; 7459 7460 if (len < sizeof(params)) 7461 goto out; 7462 7463 len = sizeof(params); 7464 if (copy_from_user(¶ms, optval, len)) { 7465 retval = -EFAULT; 7466 goto out; 7467 } 7468 7469 policy = params.sprstat_policy; 7470 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7471 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7472 goto out; 7473 7474 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7475 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7476 goto out; 7477 7478 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; 7479 if (!streamoute) { 7480 /* Not allocated yet, means all stats are 0 */ 7481 params.sprstat_abandoned_unsent = 0; 7482 params.sprstat_abandoned_sent = 0; 7483 retval = 0; 7484 goto out; 7485 } 7486 7487 if (policy == SCTP_PR_SCTP_ALL) { 7488 params.sprstat_abandoned_unsent = 0; 7489 params.sprstat_abandoned_sent = 0; 7490 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7491 params.sprstat_abandoned_unsent += 7492 streamoute->abandoned_unsent[policy]; 7493 params.sprstat_abandoned_sent += 7494 streamoute->abandoned_sent[policy]; 7495 } 7496 } else { 7497 params.sprstat_abandoned_unsent = 7498 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7499 params.sprstat_abandoned_sent = 7500 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7501 } 7502 7503 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7504 retval = -EFAULT; 7505 goto out; 7506 } 7507 7508 retval = 0; 7509 7510 out: 7511 return retval; 7512 } 7513 7514 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7515 char __user *optval, 7516 int __user *optlen) 7517 { 7518 struct sctp_assoc_value params; 7519 struct sctp_association *asoc; 7520 int retval = -EFAULT; 7521 7522 if (len < sizeof(params)) { 7523 retval = -EINVAL; 7524 goto out; 7525 } 7526 7527 len = sizeof(params); 7528 if (copy_from_user(¶ms, optval, len)) 7529 goto out; 7530 7531 asoc = sctp_id2assoc(sk, params.assoc_id); 7532 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7533 sctp_style(sk, UDP)) { 7534 retval = -EINVAL; 7535 goto out; 7536 } 7537 7538 params.assoc_value = asoc ? asoc->peer.reconf_capable 7539 : sctp_sk(sk)->ep->reconf_enable; 7540 7541 if (put_user(len, optlen)) 7542 goto out; 7543 7544 if (copy_to_user(optval, ¶ms, len)) 7545 goto out; 7546 7547 retval = 0; 7548 7549 out: 7550 return retval; 7551 } 7552 7553 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7554 char __user *optval, 7555 int __user *optlen) 7556 { 7557 struct sctp_assoc_value params; 7558 struct sctp_association *asoc; 7559 int retval = -EFAULT; 7560 7561 if (len < sizeof(params)) { 7562 retval = -EINVAL; 7563 goto out; 7564 } 7565 7566 len = sizeof(params); 7567 if (copy_from_user(¶ms, optval, len)) 7568 goto out; 7569 7570 asoc = sctp_id2assoc(sk, params.assoc_id); 7571 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7572 sctp_style(sk, UDP)) { 7573 retval = -EINVAL; 7574 goto out; 7575 } 7576 7577 params.assoc_value = asoc ? asoc->strreset_enable 7578 : sctp_sk(sk)->ep->strreset_enable; 7579 7580 if (put_user(len, optlen)) 7581 goto out; 7582 7583 if (copy_to_user(optval, ¶ms, len)) 7584 goto out; 7585 7586 retval = 0; 7587 7588 out: 7589 return retval; 7590 } 7591 7592 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7593 char __user *optval, 7594 int __user *optlen) 7595 { 7596 struct sctp_assoc_value params; 7597 struct sctp_association *asoc; 7598 int retval = -EFAULT; 7599 7600 if (len < sizeof(params)) { 7601 retval = -EINVAL; 7602 goto out; 7603 } 7604 7605 len = sizeof(params); 7606 if (copy_from_user(¶ms, optval, len)) 7607 goto out; 7608 7609 asoc = sctp_id2assoc(sk, params.assoc_id); 7610 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7611 sctp_style(sk, UDP)) { 7612 retval = -EINVAL; 7613 goto out; 7614 } 7615 7616 params.assoc_value = asoc ? sctp_sched_get_sched(asoc) 7617 : sctp_sk(sk)->default_ss; 7618 7619 if (put_user(len, optlen)) 7620 goto out; 7621 7622 if (copy_to_user(optval, ¶ms, len)) 7623 goto out; 7624 7625 retval = 0; 7626 7627 out: 7628 return retval; 7629 } 7630 7631 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7632 char __user *optval, 7633 int __user *optlen) 7634 { 7635 struct sctp_stream_value params; 7636 struct sctp_association *asoc; 7637 int retval = -EFAULT; 7638 7639 if (len < sizeof(params)) { 7640 retval = -EINVAL; 7641 goto out; 7642 } 7643 7644 len = sizeof(params); 7645 if (copy_from_user(¶ms, optval, len)) 7646 goto out; 7647 7648 asoc = sctp_id2assoc(sk, params.assoc_id); 7649 if (!asoc) { 7650 retval = -EINVAL; 7651 goto out; 7652 } 7653 7654 retval = sctp_sched_get_value(asoc, params.stream_id, 7655 ¶ms.stream_value); 7656 if (retval) 7657 goto out; 7658 7659 if (put_user(len, optlen)) { 7660 retval = -EFAULT; 7661 goto out; 7662 } 7663 7664 if (copy_to_user(optval, ¶ms, len)) { 7665 retval = -EFAULT; 7666 goto out; 7667 } 7668 7669 out: 7670 return retval; 7671 } 7672 7673 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7674 char __user *optval, 7675 int __user *optlen) 7676 { 7677 struct sctp_assoc_value params; 7678 struct sctp_association *asoc; 7679 int retval = -EFAULT; 7680 7681 if (len < sizeof(params)) { 7682 retval = -EINVAL; 7683 goto out; 7684 } 7685 7686 len = sizeof(params); 7687 if (copy_from_user(¶ms, optval, len)) 7688 goto out; 7689 7690 asoc = sctp_id2assoc(sk, params.assoc_id); 7691 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7692 sctp_style(sk, UDP)) { 7693 retval = -EINVAL; 7694 goto out; 7695 } 7696 7697 params.assoc_value = asoc ? asoc->peer.intl_capable 7698 : sctp_sk(sk)->ep->intl_enable; 7699 7700 if (put_user(len, optlen)) 7701 goto out; 7702 7703 if (copy_to_user(optval, ¶ms, len)) 7704 goto out; 7705 7706 retval = 0; 7707 7708 out: 7709 return retval; 7710 } 7711 7712 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7713 char __user *optval, 7714 int __user *optlen) 7715 { 7716 int val; 7717 7718 if (len < sizeof(int)) 7719 return -EINVAL; 7720 7721 len = sizeof(int); 7722 val = sctp_sk(sk)->reuse; 7723 if (put_user(len, optlen)) 7724 return -EFAULT; 7725 7726 if (copy_to_user(optval, &val, len)) 7727 return -EFAULT; 7728 7729 return 0; 7730 } 7731 7732 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval, 7733 int __user *optlen) 7734 { 7735 struct sctp_association *asoc; 7736 struct sctp_event param; 7737 __u16 subscribe; 7738 7739 if (len < sizeof(param)) 7740 return -EINVAL; 7741 7742 len = sizeof(param); 7743 if (copy_from_user(¶m, optval, len)) 7744 return -EFAULT; 7745 7746 if (param.se_type < SCTP_SN_TYPE_BASE || 7747 param.se_type > SCTP_SN_TYPE_MAX) 7748 return -EINVAL; 7749 7750 asoc = sctp_id2assoc(sk, param.se_assoc_id); 7751 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC && 7752 sctp_style(sk, UDP)) 7753 return -EINVAL; 7754 7755 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe; 7756 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type); 7757 7758 if (put_user(len, optlen)) 7759 return -EFAULT; 7760 7761 if (copy_to_user(optval, ¶m, len)) 7762 return -EFAULT; 7763 7764 return 0; 7765 } 7766 7767 static int sctp_getsockopt(struct sock *sk, int level, int optname, 7768 char __user *optval, int __user *optlen) 7769 { 7770 int retval = 0; 7771 int len; 7772 7773 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 7774 7775 /* I can hardly begin to describe how wrong this is. This is 7776 * so broken as to be worse than useless. The API draft 7777 * REALLY is NOT helpful here... I am not convinced that the 7778 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 7779 * are at all well-founded. 7780 */ 7781 if (level != SOL_SCTP) { 7782 struct sctp_af *af = sctp_sk(sk)->pf->af; 7783 7784 retval = af->getsockopt(sk, level, optname, optval, optlen); 7785 return retval; 7786 } 7787 7788 if (get_user(len, optlen)) 7789 return -EFAULT; 7790 7791 if (len < 0) 7792 return -EINVAL; 7793 7794 lock_sock(sk); 7795 7796 switch (optname) { 7797 case SCTP_STATUS: 7798 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 7799 break; 7800 case SCTP_DISABLE_FRAGMENTS: 7801 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 7802 optlen); 7803 break; 7804 case SCTP_EVENTS: 7805 retval = sctp_getsockopt_events(sk, len, optval, optlen); 7806 break; 7807 case SCTP_AUTOCLOSE: 7808 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 7809 break; 7810 case SCTP_SOCKOPT_PEELOFF: 7811 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 7812 break; 7813 case SCTP_SOCKOPT_PEELOFF_FLAGS: 7814 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 7815 break; 7816 case SCTP_PEER_ADDR_PARAMS: 7817 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 7818 optlen); 7819 break; 7820 case SCTP_DELAYED_SACK: 7821 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 7822 optlen); 7823 break; 7824 case SCTP_INITMSG: 7825 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 7826 break; 7827 case SCTP_GET_PEER_ADDRS: 7828 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 7829 optlen); 7830 break; 7831 case SCTP_GET_LOCAL_ADDRS: 7832 retval = sctp_getsockopt_local_addrs(sk, len, optval, 7833 optlen); 7834 break; 7835 case SCTP_SOCKOPT_CONNECTX3: 7836 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 7837 break; 7838 case SCTP_DEFAULT_SEND_PARAM: 7839 retval = sctp_getsockopt_default_send_param(sk, len, 7840 optval, optlen); 7841 break; 7842 case SCTP_DEFAULT_SNDINFO: 7843 retval = sctp_getsockopt_default_sndinfo(sk, len, 7844 optval, optlen); 7845 break; 7846 case SCTP_PRIMARY_ADDR: 7847 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 7848 break; 7849 case SCTP_NODELAY: 7850 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 7851 break; 7852 case SCTP_RTOINFO: 7853 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 7854 break; 7855 case SCTP_ASSOCINFO: 7856 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 7857 break; 7858 case SCTP_I_WANT_MAPPED_V4_ADDR: 7859 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 7860 break; 7861 case SCTP_MAXSEG: 7862 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 7863 break; 7864 case SCTP_GET_PEER_ADDR_INFO: 7865 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 7866 optlen); 7867 break; 7868 case SCTP_ADAPTATION_LAYER: 7869 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 7870 optlen); 7871 break; 7872 case SCTP_CONTEXT: 7873 retval = sctp_getsockopt_context(sk, len, optval, optlen); 7874 break; 7875 case SCTP_FRAGMENT_INTERLEAVE: 7876 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 7877 optlen); 7878 break; 7879 case SCTP_PARTIAL_DELIVERY_POINT: 7880 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 7881 optlen); 7882 break; 7883 case SCTP_MAX_BURST: 7884 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 7885 break; 7886 case SCTP_AUTH_KEY: 7887 case SCTP_AUTH_CHUNK: 7888 case SCTP_AUTH_DELETE_KEY: 7889 case SCTP_AUTH_DEACTIVATE_KEY: 7890 retval = -EOPNOTSUPP; 7891 break; 7892 case SCTP_HMAC_IDENT: 7893 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 7894 break; 7895 case SCTP_AUTH_ACTIVE_KEY: 7896 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 7897 break; 7898 case SCTP_PEER_AUTH_CHUNKS: 7899 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 7900 optlen); 7901 break; 7902 case SCTP_LOCAL_AUTH_CHUNKS: 7903 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 7904 optlen); 7905 break; 7906 case SCTP_GET_ASSOC_NUMBER: 7907 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 7908 break; 7909 case SCTP_GET_ASSOC_ID_LIST: 7910 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 7911 break; 7912 case SCTP_AUTO_ASCONF: 7913 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 7914 break; 7915 case SCTP_PEER_ADDR_THLDS: 7916 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 7917 break; 7918 case SCTP_GET_ASSOC_STATS: 7919 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 7920 break; 7921 case SCTP_RECVRCVINFO: 7922 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 7923 break; 7924 case SCTP_RECVNXTINFO: 7925 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 7926 break; 7927 case SCTP_PR_SUPPORTED: 7928 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 7929 break; 7930 case SCTP_DEFAULT_PRINFO: 7931 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 7932 optlen); 7933 break; 7934 case SCTP_PR_ASSOC_STATUS: 7935 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 7936 optlen); 7937 break; 7938 case SCTP_PR_STREAM_STATUS: 7939 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 7940 optlen); 7941 break; 7942 case SCTP_RECONFIG_SUPPORTED: 7943 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 7944 optlen); 7945 break; 7946 case SCTP_ENABLE_STREAM_RESET: 7947 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 7948 optlen); 7949 break; 7950 case SCTP_STREAM_SCHEDULER: 7951 retval = sctp_getsockopt_scheduler(sk, len, optval, 7952 optlen); 7953 break; 7954 case SCTP_STREAM_SCHEDULER_VALUE: 7955 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 7956 optlen); 7957 break; 7958 case SCTP_INTERLEAVING_SUPPORTED: 7959 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 7960 optlen); 7961 break; 7962 case SCTP_REUSE_PORT: 7963 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 7964 break; 7965 case SCTP_EVENT: 7966 retval = sctp_getsockopt_event(sk, len, optval, optlen); 7967 break; 7968 default: 7969 retval = -ENOPROTOOPT; 7970 break; 7971 } 7972 7973 release_sock(sk); 7974 return retval; 7975 } 7976 7977 static int sctp_hash(struct sock *sk) 7978 { 7979 /* STUB */ 7980 return 0; 7981 } 7982 7983 static void sctp_unhash(struct sock *sk) 7984 { 7985 /* STUB */ 7986 } 7987 7988 /* Check if port is acceptable. Possibly find first available port. 7989 * 7990 * The port hash table (contained in the 'global' SCTP protocol storage 7991 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 7992 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 7993 * list (the list number is the port number hashed out, so as you 7994 * would expect from a hash function, all the ports in a given list have 7995 * such a number that hashes out to the same list number; you were 7996 * expecting that, right?); so each list has a set of ports, with a 7997 * link to the socket (struct sock) that uses it, the port number and 7998 * a fastreuse flag (FIXME: NPI ipg). 7999 */ 8000 static struct sctp_bind_bucket *sctp_bucket_create( 8001 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 8002 8003 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 8004 { 8005 struct sctp_sock *sp = sctp_sk(sk); 8006 bool reuse = (sk->sk_reuse || sp->reuse); 8007 struct sctp_bind_hashbucket *head; /* hash list */ 8008 kuid_t uid = sock_i_uid(sk); 8009 struct sctp_bind_bucket *pp; 8010 unsigned short snum; 8011 int ret; 8012 8013 snum = ntohs(addr->v4.sin_port); 8014 8015 pr_debug("%s: begins, snum:%d\n", __func__, snum); 8016 8017 local_bh_disable(); 8018 8019 if (snum == 0) { 8020 /* Search for an available port. */ 8021 int low, high, remaining, index; 8022 unsigned int rover; 8023 struct net *net = sock_net(sk); 8024 8025 inet_get_local_port_range(net, &low, &high); 8026 remaining = (high - low) + 1; 8027 rover = prandom_u32() % remaining + low; 8028 8029 do { 8030 rover++; 8031 if ((rover < low) || (rover > high)) 8032 rover = low; 8033 if (inet_is_local_reserved_port(net, rover)) 8034 continue; 8035 index = sctp_phashfn(sock_net(sk), rover); 8036 head = &sctp_port_hashtable[index]; 8037 spin_lock(&head->lock); 8038 sctp_for_each_hentry(pp, &head->chain) 8039 if ((pp->port == rover) && 8040 net_eq(sock_net(sk), pp->net)) 8041 goto next; 8042 break; 8043 next: 8044 spin_unlock(&head->lock); 8045 } while (--remaining > 0); 8046 8047 /* Exhausted local port range during search? */ 8048 ret = 1; 8049 if (remaining <= 0) 8050 goto fail; 8051 8052 /* OK, here is the one we will use. HEAD (the port 8053 * hash table list entry) is non-NULL and we hold it's 8054 * mutex. 8055 */ 8056 snum = rover; 8057 } else { 8058 /* We are given an specific port number; we verify 8059 * that it is not being used. If it is used, we will 8060 * exahust the search in the hash list corresponding 8061 * to the port number (snum) - we detect that with the 8062 * port iterator, pp being NULL. 8063 */ 8064 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 8065 spin_lock(&head->lock); 8066 sctp_for_each_hentry(pp, &head->chain) { 8067 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 8068 goto pp_found; 8069 } 8070 } 8071 pp = NULL; 8072 goto pp_not_found; 8073 pp_found: 8074 if (!hlist_empty(&pp->owner)) { 8075 /* We had a port hash table hit - there is an 8076 * available port (pp != NULL) and it is being 8077 * used by other socket (pp->owner not empty); that other 8078 * socket is going to be sk2. 8079 */ 8080 struct sock *sk2; 8081 8082 pr_debug("%s: found a possible match\n", __func__); 8083 8084 if ((pp->fastreuse && reuse && 8085 sk->sk_state != SCTP_SS_LISTENING) || 8086 (pp->fastreuseport && sk->sk_reuseport && 8087 uid_eq(pp->fastuid, uid))) 8088 goto success; 8089 8090 /* Run through the list of sockets bound to the port 8091 * (pp->port) [via the pointers bind_next and 8092 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 8093 * we get the endpoint they describe and run through 8094 * the endpoint's list of IP (v4 or v6) addresses, 8095 * comparing each of the addresses with the address of 8096 * the socket sk. If we find a match, then that means 8097 * that this port/socket (sk) combination are already 8098 * in an endpoint. 8099 */ 8100 sk_for_each_bound(sk2, &pp->owner) { 8101 struct sctp_sock *sp2 = sctp_sk(sk2); 8102 struct sctp_endpoint *ep2 = sp2->ep; 8103 8104 if (sk == sk2 || 8105 (reuse && (sk2->sk_reuse || sp2->reuse) && 8106 sk2->sk_state != SCTP_SS_LISTENING) || 8107 (sk->sk_reuseport && sk2->sk_reuseport && 8108 uid_eq(uid, sock_i_uid(sk2)))) 8109 continue; 8110 8111 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, 8112 addr, sp2, sp)) { 8113 ret = 1; 8114 goto fail_unlock; 8115 } 8116 } 8117 8118 pr_debug("%s: found a match\n", __func__); 8119 } 8120 pp_not_found: 8121 /* If there was a hash table miss, create a new port. */ 8122 ret = 1; 8123 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 8124 goto fail_unlock; 8125 8126 /* In either case (hit or miss), make sure fastreuse is 1 only 8127 * if sk->sk_reuse is too (that is, if the caller requested 8128 * SO_REUSEADDR on this socket -sk-). 8129 */ 8130 if (hlist_empty(&pp->owner)) { 8131 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 8132 pp->fastreuse = 1; 8133 else 8134 pp->fastreuse = 0; 8135 8136 if (sk->sk_reuseport) { 8137 pp->fastreuseport = 1; 8138 pp->fastuid = uid; 8139 } else { 8140 pp->fastreuseport = 0; 8141 } 8142 } else { 8143 if (pp->fastreuse && 8144 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 8145 pp->fastreuse = 0; 8146 8147 if (pp->fastreuseport && 8148 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid))) 8149 pp->fastreuseport = 0; 8150 } 8151 8152 /* We are set, so fill up all the data in the hash table 8153 * entry, tie the socket list information with the rest of the 8154 * sockets FIXME: Blurry, NPI (ipg). 8155 */ 8156 success: 8157 if (!sp->bind_hash) { 8158 inet_sk(sk)->inet_num = snum; 8159 sk_add_bind_node(sk, &pp->owner); 8160 sp->bind_hash = pp; 8161 } 8162 ret = 0; 8163 8164 fail_unlock: 8165 spin_unlock(&head->lock); 8166 8167 fail: 8168 local_bh_enable(); 8169 return ret; 8170 } 8171 8172 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 8173 * port is requested. 8174 */ 8175 static int sctp_get_port(struct sock *sk, unsigned short snum) 8176 { 8177 union sctp_addr addr; 8178 struct sctp_af *af = sctp_sk(sk)->pf->af; 8179 8180 /* Set up a dummy address struct from the sk. */ 8181 af->from_sk(&addr, sk); 8182 addr.v4.sin_port = htons(snum); 8183 8184 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 8185 return sctp_get_port_local(sk, &addr); 8186 } 8187 8188 /* 8189 * Move a socket to LISTENING state. 8190 */ 8191 static int sctp_listen_start(struct sock *sk, int backlog) 8192 { 8193 struct sctp_sock *sp = sctp_sk(sk); 8194 struct sctp_endpoint *ep = sp->ep; 8195 struct crypto_shash *tfm = NULL; 8196 char alg[32]; 8197 8198 /* Allocate HMAC for generating cookie. */ 8199 if (!sp->hmac && sp->sctp_hmac_alg) { 8200 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 8201 tfm = crypto_alloc_shash(alg, 0, 0); 8202 if (IS_ERR(tfm)) { 8203 net_info_ratelimited("failed to load transform for %s: %ld\n", 8204 sp->sctp_hmac_alg, PTR_ERR(tfm)); 8205 return -ENOSYS; 8206 } 8207 sctp_sk(sk)->hmac = tfm; 8208 } 8209 8210 /* 8211 * If a bind() or sctp_bindx() is not called prior to a listen() 8212 * call that allows new associations to be accepted, the system 8213 * picks an ephemeral port and will choose an address set equivalent 8214 * to binding with a wildcard address. 8215 * 8216 * This is not currently spelled out in the SCTP sockets 8217 * extensions draft, but follows the practice as seen in TCP 8218 * sockets. 8219 * 8220 */ 8221 inet_sk_set_state(sk, SCTP_SS_LISTENING); 8222 if (!ep->base.bind_addr.port) { 8223 if (sctp_autobind(sk)) 8224 return -EAGAIN; 8225 } else { 8226 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 8227 inet_sk_set_state(sk, SCTP_SS_CLOSED); 8228 return -EADDRINUSE; 8229 } 8230 } 8231 8232 sk->sk_max_ack_backlog = backlog; 8233 return sctp_hash_endpoint(ep); 8234 } 8235 8236 /* 8237 * 4.1.3 / 5.1.3 listen() 8238 * 8239 * By default, new associations are not accepted for UDP style sockets. 8240 * An application uses listen() to mark a socket as being able to 8241 * accept new associations. 8242 * 8243 * On TCP style sockets, applications use listen() to ready the SCTP 8244 * endpoint for accepting inbound associations. 8245 * 8246 * On both types of endpoints a backlog of '0' disables listening. 8247 * 8248 * Move a socket to LISTENING state. 8249 */ 8250 int sctp_inet_listen(struct socket *sock, int backlog) 8251 { 8252 struct sock *sk = sock->sk; 8253 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 8254 int err = -EINVAL; 8255 8256 if (unlikely(backlog < 0)) 8257 return err; 8258 8259 lock_sock(sk); 8260 8261 /* Peeled-off sockets are not allowed to listen(). */ 8262 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 8263 goto out; 8264 8265 if (sock->state != SS_UNCONNECTED) 8266 goto out; 8267 8268 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 8269 goto out; 8270 8271 /* If backlog is zero, disable listening. */ 8272 if (!backlog) { 8273 if (sctp_sstate(sk, CLOSED)) 8274 goto out; 8275 8276 err = 0; 8277 sctp_unhash_endpoint(ep); 8278 sk->sk_state = SCTP_SS_CLOSED; 8279 if (sk->sk_reuse || sctp_sk(sk)->reuse) 8280 sctp_sk(sk)->bind_hash->fastreuse = 1; 8281 goto out; 8282 } 8283 8284 /* If we are already listening, just update the backlog */ 8285 if (sctp_sstate(sk, LISTENING)) 8286 sk->sk_max_ack_backlog = backlog; 8287 else { 8288 err = sctp_listen_start(sk, backlog); 8289 if (err) 8290 goto out; 8291 } 8292 8293 err = 0; 8294 out: 8295 release_sock(sk); 8296 return err; 8297 } 8298 8299 /* 8300 * This function is done by modeling the current datagram_poll() and the 8301 * tcp_poll(). Note that, based on these implementations, we don't 8302 * lock the socket in this function, even though it seems that, 8303 * ideally, locking or some other mechanisms can be used to ensure 8304 * the integrity of the counters (sndbuf and wmem_alloc) used 8305 * in this place. We assume that we don't need locks either until proven 8306 * otherwise. 8307 * 8308 * Another thing to note is that we include the Async I/O support 8309 * here, again, by modeling the current TCP/UDP code. We don't have 8310 * a good way to test with it yet. 8311 */ 8312 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 8313 { 8314 struct sock *sk = sock->sk; 8315 struct sctp_sock *sp = sctp_sk(sk); 8316 __poll_t mask; 8317 8318 poll_wait(file, sk_sleep(sk), wait); 8319 8320 sock_rps_record_flow(sk); 8321 8322 /* A TCP-style listening socket becomes readable when the accept queue 8323 * is not empty. 8324 */ 8325 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 8326 return (!list_empty(&sp->ep->asocs)) ? 8327 (EPOLLIN | EPOLLRDNORM) : 0; 8328 8329 mask = 0; 8330 8331 /* Is there any exceptional events? */ 8332 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 8333 mask |= EPOLLERR | 8334 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 8335 if (sk->sk_shutdown & RCV_SHUTDOWN) 8336 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 8337 if (sk->sk_shutdown == SHUTDOWN_MASK) 8338 mask |= EPOLLHUP; 8339 8340 /* Is it readable? Reconsider this code with TCP-style support. */ 8341 if (!skb_queue_empty(&sk->sk_receive_queue)) 8342 mask |= EPOLLIN | EPOLLRDNORM; 8343 8344 /* The association is either gone or not ready. */ 8345 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 8346 return mask; 8347 8348 /* Is it writable? */ 8349 if (sctp_writeable(sk)) { 8350 mask |= EPOLLOUT | EPOLLWRNORM; 8351 } else { 8352 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 8353 /* 8354 * Since the socket is not locked, the buffer 8355 * might be made available after the writeable check and 8356 * before the bit is set. This could cause a lost I/O 8357 * signal. tcp_poll() has a race breaker for this race 8358 * condition. Based on their implementation, we put 8359 * in the following code to cover it as well. 8360 */ 8361 if (sctp_writeable(sk)) 8362 mask |= EPOLLOUT | EPOLLWRNORM; 8363 } 8364 return mask; 8365 } 8366 8367 /******************************************************************** 8368 * 2nd Level Abstractions 8369 ********************************************************************/ 8370 8371 static struct sctp_bind_bucket *sctp_bucket_create( 8372 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 8373 { 8374 struct sctp_bind_bucket *pp; 8375 8376 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 8377 if (pp) { 8378 SCTP_DBG_OBJCNT_INC(bind_bucket); 8379 pp->port = snum; 8380 pp->fastreuse = 0; 8381 INIT_HLIST_HEAD(&pp->owner); 8382 pp->net = net; 8383 hlist_add_head(&pp->node, &head->chain); 8384 } 8385 return pp; 8386 } 8387 8388 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 8389 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 8390 { 8391 if (pp && hlist_empty(&pp->owner)) { 8392 __hlist_del(&pp->node); 8393 kmem_cache_free(sctp_bucket_cachep, pp); 8394 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8395 } 8396 } 8397 8398 /* Release this socket's reference to a local port. */ 8399 static inline void __sctp_put_port(struct sock *sk) 8400 { 8401 struct sctp_bind_hashbucket *head = 8402 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8403 inet_sk(sk)->inet_num)]; 8404 struct sctp_bind_bucket *pp; 8405 8406 spin_lock(&head->lock); 8407 pp = sctp_sk(sk)->bind_hash; 8408 __sk_del_bind_node(sk); 8409 sctp_sk(sk)->bind_hash = NULL; 8410 inet_sk(sk)->inet_num = 0; 8411 sctp_bucket_destroy(pp); 8412 spin_unlock(&head->lock); 8413 } 8414 8415 void sctp_put_port(struct sock *sk) 8416 { 8417 local_bh_disable(); 8418 __sctp_put_port(sk); 8419 local_bh_enable(); 8420 } 8421 8422 /* 8423 * The system picks an ephemeral port and choose an address set equivalent 8424 * to binding with a wildcard address. 8425 * One of those addresses will be the primary address for the association. 8426 * This automatically enables the multihoming capability of SCTP. 8427 */ 8428 static int sctp_autobind(struct sock *sk) 8429 { 8430 union sctp_addr autoaddr; 8431 struct sctp_af *af; 8432 __be16 port; 8433 8434 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8435 af = sctp_sk(sk)->pf->af; 8436 8437 port = htons(inet_sk(sk)->inet_num); 8438 af->inaddr_any(&autoaddr, port); 8439 8440 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8441 } 8442 8443 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8444 * 8445 * From RFC 2292 8446 * 4.2 The cmsghdr Structure * 8447 * 8448 * When ancillary data is sent or received, any number of ancillary data 8449 * objects can be specified by the msg_control and msg_controllen members of 8450 * the msghdr structure, because each object is preceded by 8451 * a cmsghdr structure defining the object's length (the cmsg_len member). 8452 * Historically Berkeley-derived implementations have passed only one object 8453 * at a time, but this API allows multiple objects to be 8454 * passed in a single call to sendmsg() or recvmsg(). The following example 8455 * shows two ancillary data objects in a control buffer. 8456 * 8457 * |<--------------------------- msg_controllen -------------------------->| 8458 * | | 8459 * 8460 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8461 * 8462 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8463 * | | | 8464 * 8465 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8466 * 8467 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8468 * | | | | | 8469 * 8470 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8471 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8472 * 8473 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8474 * 8475 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8476 * ^ 8477 * | 8478 * 8479 * msg_control 8480 * points here 8481 */ 8482 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8483 { 8484 struct msghdr *my_msg = (struct msghdr *)msg; 8485 struct cmsghdr *cmsg; 8486 8487 for_each_cmsghdr(cmsg, my_msg) { 8488 if (!CMSG_OK(my_msg, cmsg)) 8489 return -EINVAL; 8490 8491 /* Should we parse this header or ignore? */ 8492 if (cmsg->cmsg_level != IPPROTO_SCTP) 8493 continue; 8494 8495 /* Strictly check lengths following example in SCM code. */ 8496 switch (cmsg->cmsg_type) { 8497 case SCTP_INIT: 8498 /* SCTP Socket API Extension 8499 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8500 * 8501 * This cmsghdr structure provides information for 8502 * initializing new SCTP associations with sendmsg(). 8503 * The SCTP_INITMSG socket option uses this same data 8504 * structure. This structure is not used for 8505 * recvmsg(). 8506 * 8507 * cmsg_level cmsg_type cmsg_data[] 8508 * ------------ ------------ ---------------------- 8509 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8510 */ 8511 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8512 return -EINVAL; 8513 8514 cmsgs->init = CMSG_DATA(cmsg); 8515 break; 8516 8517 case SCTP_SNDRCV: 8518 /* SCTP Socket API Extension 8519 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8520 * 8521 * This cmsghdr structure specifies SCTP options for 8522 * sendmsg() and describes SCTP header information 8523 * about a received message through recvmsg(). 8524 * 8525 * cmsg_level cmsg_type cmsg_data[] 8526 * ------------ ------------ ---------------------- 8527 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8528 */ 8529 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8530 return -EINVAL; 8531 8532 cmsgs->srinfo = CMSG_DATA(cmsg); 8533 8534 if (cmsgs->srinfo->sinfo_flags & 8535 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8536 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8537 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8538 return -EINVAL; 8539 break; 8540 8541 case SCTP_SNDINFO: 8542 /* SCTP Socket API Extension 8543 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8544 * 8545 * This cmsghdr structure specifies SCTP options for 8546 * sendmsg(). This structure and SCTP_RCVINFO replaces 8547 * SCTP_SNDRCV which has been deprecated. 8548 * 8549 * cmsg_level cmsg_type cmsg_data[] 8550 * ------------ ------------ --------------------- 8551 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8552 */ 8553 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8554 return -EINVAL; 8555 8556 cmsgs->sinfo = CMSG_DATA(cmsg); 8557 8558 if (cmsgs->sinfo->snd_flags & 8559 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8560 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8561 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8562 return -EINVAL; 8563 break; 8564 case SCTP_PRINFO: 8565 /* SCTP Socket API Extension 8566 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8567 * 8568 * This cmsghdr structure specifies SCTP options for sendmsg(). 8569 * 8570 * cmsg_level cmsg_type cmsg_data[] 8571 * ------------ ------------ --------------------- 8572 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8573 */ 8574 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8575 return -EINVAL; 8576 8577 cmsgs->prinfo = CMSG_DATA(cmsg); 8578 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8579 return -EINVAL; 8580 8581 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8582 cmsgs->prinfo->pr_value = 0; 8583 break; 8584 case SCTP_AUTHINFO: 8585 /* SCTP Socket API Extension 8586 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8587 * 8588 * This cmsghdr structure specifies SCTP options for sendmsg(). 8589 * 8590 * cmsg_level cmsg_type cmsg_data[] 8591 * ------------ ------------ --------------------- 8592 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8593 */ 8594 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8595 return -EINVAL; 8596 8597 cmsgs->authinfo = CMSG_DATA(cmsg); 8598 break; 8599 case SCTP_DSTADDRV4: 8600 case SCTP_DSTADDRV6: 8601 /* SCTP Socket API Extension 8602 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8603 * 8604 * This cmsghdr structure specifies SCTP options for sendmsg(). 8605 * 8606 * cmsg_level cmsg_type cmsg_data[] 8607 * ------------ ------------ --------------------- 8608 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8609 * ------------ ------------ --------------------- 8610 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8611 */ 8612 cmsgs->addrs_msg = my_msg; 8613 break; 8614 default: 8615 return -EINVAL; 8616 } 8617 } 8618 8619 return 0; 8620 } 8621 8622 /* 8623 * Wait for a packet.. 8624 * Note: This function is the same function as in core/datagram.c 8625 * with a few modifications to make lksctp work. 8626 */ 8627 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8628 { 8629 int error; 8630 DEFINE_WAIT(wait); 8631 8632 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8633 8634 /* Socket errors? */ 8635 error = sock_error(sk); 8636 if (error) 8637 goto out; 8638 8639 if (!skb_queue_empty(&sk->sk_receive_queue)) 8640 goto ready; 8641 8642 /* Socket shut down? */ 8643 if (sk->sk_shutdown & RCV_SHUTDOWN) 8644 goto out; 8645 8646 /* Sequenced packets can come disconnected. If so we report the 8647 * problem. 8648 */ 8649 error = -ENOTCONN; 8650 8651 /* Is there a good reason to think that we may receive some data? */ 8652 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8653 goto out; 8654 8655 /* Handle signals. */ 8656 if (signal_pending(current)) 8657 goto interrupted; 8658 8659 /* Let another process have a go. Since we are going to sleep 8660 * anyway. Note: This may cause odd behaviors if the message 8661 * does not fit in the user's buffer, but this seems to be the 8662 * only way to honor MSG_DONTWAIT realistically. 8663 */ 8664 release_sock(sk); 8665 *timeo_p = schedule_timeout(*timeo_p); 8666 lock_sock(sk); 8667 8668 ready: 8669 finish_wait(sk_sleep(sk), &wait); 8670 return 0; 8671 8672 interrupted: 8673 error = sock_intr_errno(*timeo_p); 8674 8675 out: 8676 finish_wait(sk_sleep(sk), &wait); 8677 *err = error; 8678 return error; 8679 } 8680 8681 /* Receive a datagram. 8682 * Note: This is pretty much the same routine as in core/datagram.c 8683 * with a few changes to make lksctp work. 8684 */ 8685 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 8686 int noblock, int *err) 8687 { 8688 int error; 8689 struct sk_buff *skb; 8690 long timeo; 8691 8692 timeo = sock_rcvtimeo(sk, noblock); 8693 8694 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 8695 MAX_SCHEDULE_TIMEOUT); 8696 8697 do { 8698 /* Again only user level code calls this function, 8699 * so nothing interrupt level 8700 * will suddenly eat the receive_queue. 8701 * 8702 * Look at current nfs client by the way... 8703 * However, this function was correct in any case. 8) 8704 */ 8705 if (flags & MSG_PEEK) { 8706 skb = skb_peek(&sk->sk_receive_queue); 8707 if (skb) 8708 refcount_inc(&skb->users); 8709 } else { 8710 skb = __skb_dequeue(&sk->sk_receive_queue); 8711 } 8712 8713 if (skb) 8714 return skb; 8715 8716 /* Caller is allowed not to check sk->sk_err before calling. */ 8717 error = sock_error(sk); 8718 if (error) 8719 goto no_packet; 8720 8721 if (sk->sk_shutdown & RCV_SHUTDOWN) 8722 break; 8723 8724 if (sk_can_busy_loop(sk)) { 8725 sk_busy_loop(sk, noblock); 8726 8727 if (!skb_queue_empty(&sk->sk_receive_queue)) 8728 continue; 8729 } 8730 8731 /* User doesn't want to wait. */ 8732 error = -EAGAIN; 8733 if (!timeo) 8734 goto no_packet; 8735 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 8736 8737 return NULL; 8738 8739 no_packet: 8740 *err = error; 8741 return NULL; 8742 } 8743 8744 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 8745 static void __sctp_write_space(struct sctp_association *asoc) 8746 { 8747 struct sock *sk = asoc->base.sk; 8748 8749 if (sctp_wspace(asoc) <= 0) 8750 return; 8751 8752 if (waitqueue_active(&asoc->wait)) 8753 wake_up_interruptible(&asoc->wait); 8754 8755 if (sctp_writeable(sk)) { 8756 struct socket_wq *wq; 8757 8758 rcu_read_lock(); 8759 wq = rcu_dereference(sk->sk_wq); 8760 if (wq) { 8761 if (waitqueue_active(&wq->wait)) 8762 wake_up_interruptible(&wq->wait); 8763 8764 /* Note that we try to include the Async I/O support 8765 * here by modeling from the current TCP/UDP code. 8766 * We have not tested with it yet. 8767 */ 8768 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 8769 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 8770 } 8771 rcu_read_unlock(); 8772 } 8773 } 8774 8775 static void sctp_wake_up_waiters(struct sock *sk, 8776 struct sctp_association *asoc) 8777 { 8778 struct sctp_association *tmp = asoc; 8779 8780 /* We do accounting for the sndbuf space per association, 8781 * so we only need to wake our own association. 8782 */ 8783 if (asoc->ep->sndbuf_policy) 8784 return __sctp_write_space(asoc); 8785 8786 /* If association goes down and is just flushing its 8787 * outq, then just normally notify others. 8788 */ 8789 if (asoc->base.dead) 8790 return sctp_write_space(sk); 8791 8792 /* Accounting for the sndbuf space is per socket, so we 8793 * need to wake up others, try to be fair and in case of 8794 * other associations, let them have a go first instead 8795 * of just doing a sctp_write_space() call. 8796 * 8797 * Note that we reach sctp_wake_up_waiters() only when 8798 * associations free up queued chunks, thus we are under 8799 * lock and the list of associations on a socket is 8800 * guaranteed not to change. 8801 */ 8802 for (tmp = list_next_entry(tmp, asocs); 1; 8803 tmp = list_next_entry(tmp, asocs)) { 8804 /* Manually skip the head element. */ 8805 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 8806 continue; 8807 /* Wake up association. */ 8808 __sctp_write_space(tmp); 8809 /* We've reached the end. */ 8810 if (tmp == asoc) 8811 break; 8812 } 8813 } 8814 8815 /* Do accounting for the sndbuf space. 8816 * Decrement the used sndbuf space of the corresponding association by the 8817 * data size which was just transmitted(freed). 8818 */ 8819 static void sctp_wfree(struct sk_buff *skb) 8820 { 8821 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 8822 struct sctp_association *asoc = chunk->asoc; 8823 struct sock *sk = asoc->base.sk; 8824 8825 sk_mem_uncharge(sk, skb->truesize); 8826 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk); 8827 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); 8828 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), 8829 &sk->sk_wmem_alloc)); 8830 8831 if (chunk->shkey) { 8832 struct sctp_shared_key *shkey = chunk->shkey; 8833 8834 /* refcnt == 2 and !list_empty mean after this release, it's 8835 * not being used anywhere, and it's time to notify userland 8836 * that this shkey can be freed if it's been deactivated. 8837 */ 8838 if (shkey->deactivated && !list_empty(&shkey->key_list) && 8839 refcount_read(&shkey->refcnt) == 2) { 8840 struct sctp_ulpevent *ev; 8841 8842 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 8843 SCTP_AUTH_FREE_KEY, 8844 GFP_KERNEL); 8845 if (ev) 8846 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 8847 } 8848 sctp_auth_shkey_release(chunk->shkey); 8849 } 8850 8851 sock_wfree(skb); 8852 sctp_wake_up_waiters(sk, asoc); 8853 8854 sctp_association_put(asoc); 8855 } 8856 8857 /* Do accounting for the receive space on the socket. 8858 * Accounting for the association is done in ulpevent.c 8859 * We set this as a destructor for the cloned data skbs so that 8860 * accounting is done at the correct time. 8861 */ 8862 void sctp_sock_rfree(struct sk_buff *skb) 8863 { 8864 struct sock *sk = skb->sk; 8865 struct sctp_ulpevent *event = sctp_skb2event(skb); 8866 8867 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 8868 8869 /* 8870 * Mimic the behavior of sock_rfree 8871 */ 8872 sk_mem_uncharge(sk, event->rmem_len); 8873 } 8874 8875 8876 /* Helper function to wait for space in the sndbuf. */ 8877 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 8878 size_t msg_len) 8879 { 8880 struct sock *sk = asoc->base.sk; 8881 long current_timeo = *timeo_p; 8882 DEFINE_WAIT(wait); 8883 int err = 0; 8884 8885 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 8886 *timeo_p, msg_len); 8887 8888 /* Increment the association's refcnt. */ 8889 sctp_association_hold(asoc); 8890 8891 /* Wait on the association specific sndbuf space. */ 8892 for (;;) { 8893 prepare_to_wait_exclusive(&asoc->wait, &wait, 8894 TASK_INTERRUPTIBLE); 8895 if (asoc->base.dead) 8896 goto do_dead; 8897 if (!*timeo_p) 8898 goto do_nonblock; 8899 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 8900 goto do_error; 8901 if (signal_pending(current)) 8902 goto do_interrupted; 8903 if (sk_under_memory_pressure(sk)) 8904 sk_mem_reclaim(sk); 8905 if ((int)msg_len <= sctp_wspace(asoc) && 8906 sk_wmem_schedule(sk, msg_len)) 8907 break; 8908 8909 /* Let another process have a go. Since we are going 8910 * to sleep anyway. 8911 */ 8912 release_sock(sk); 8913 current_timeo = schedule_timeout(current_timeo); 8914 lock_sock(sk); 8915 if (sk != asoc->base.sk) 8916 goto do_error; 8917 8918 *timeo_p = current_timeo; 8919 } 8920 8921 out: 8922 finish_wait(&asoc->wait, &wait); 8923 8924 /* Release the association's refcnt. */ 8925 sctp_association_put(asoc); 8926 8927 return err; 8928 8929 do_dead: 8930 err = -ESRCH; 8931 goto out; 8932 8933 do_error: 8934 err = -EPIPE; 8935 goto out; 8936 8937 do_interrupted: 8938 err = sock_intr_errno(*timeo_p); 8939 goto out; 8940 8941 do_nonblock: 8942 err = -EAGAIN; 8943 goto out; 8944 } 8945 8946 void sctp_data_ready(struct sock *sk) 8947 { 8948 struct socket_wq *wq; 8949 8950 rcu_read_lock(); 8951 wq = rcu_dereference(sk->sk_wq); 8952 if (skwq_has_sleeper(wq)) 8953 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 8954 EPOLLRDNORM | EPOLLRDBAND); 8955 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 8956 rcu_read_unlock(); 8957 } 8958 8959 /* If socket sndbuf has changed, wake up all per association waiters. */ 8960 void sctp_write_space(struct sock *sk) 8961 { 8962 struct sctp_association *asoc; 8963 8964 /* Wake up the tasks in each wait queue. */ 8965 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 8966 __sctp_write_space(asoc); 8967 } 8968 } 8969 8970 /* Is there any sndbuf space available on the socket? 8971 * 8972 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 8973 * associations on the same socket. For a UDP-style socket with 8974 * multiple associations, it is possible for it to be "unwriteable" 8975 * prematurely. I assume that this is acceptable because 8976 * a premature "unwriteable" is better than an accidental "writeable" which 8977 * would cause an unwanted block under certain circumstances. For the 1-1 8978 * UDP-style sockets or TCP-style sockets, this code should work. 8979 * - Daisy 8980 */ 8981 static bool sctp_writeable(struct sock *sk) 8982 { 8983 return sk->sk_sndbuf > sk->sk_wmem_queued; 8984 } 8985 8986 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 8987 * returns immediately with EINPROGRESS. 8988 */ 8989 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 8990 { 8991 struct sock *sk = asoc->base.sk; 8992 int err = 0; 8993 long current_timeo = *timeo_p; 8994 DEFINE_WAIT(wait); 8995 8996 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 8997 8998 /* Increment the association's refcnt. */ 8999 sctp_association_hold(asoc); 9000 9001 for (;;) { 9002 prepare_to_wait_exclusive(&asoc->wait, &wait, 9003 TASK_INTERRUPTIBLE); 9004 if (!*timeo_p) 9005 goto do_nonblock; 9006 if (sk->sk_shutdown & RCV_SHUTDOWN) 9007 break; 9008 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 9009 asoc->base.dead) 9010 goto do_error; 9011 if (signal_pending(current)) 9012 goto do_interrupted; 9013 9014 if (sctp_state(asoc, ESTABLISHED)) 9015 break; 9016 9017 /* Let another process have a go. Since we are going 9018 * to sleep anyway. 9019 */ 9020 release_sock(sk); 9021 current_timeo = schedule_timeout(current_timeo); 9022 lock_sock(sk); 9023 9024 *timeo_p = current_timeo; 9025 } 9026 9027 out: 9028 finish_wait(&asoc->wait, &wait); 9029 9030 /* Release the association's refcnt. */ 9031 sctp_association_put(asoc); 9032 9033 return err; 9034 9035 do_error: 9036 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 9037 err = -ETIMEDOUT; 9038 else 9039 err = -ECONNREFUSED; 9040 goto out; 9041 9042 do_interrupted: 9043 err = sock_intr_errno(*timeo_p); 9044 goto out; 9045 9046 do_nonblock: 9047 err = -EINPROGRESS; 9048 goto out; 9049 } 9050 9051 static int sctp_wait_for_accept(struct sock *sk, long timeo) 9052 { 9053 struct sctp_endpoint *ep; 9054 int err = 0; 9055 DEFINE_WAIT(wait); 9056 9057 ep = sctp_sk(sk)->ep; 9058 9059 9060 for (;;) { 9061 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 9062 TASK_INTERRUPTIBLE); 9063 9064 if (list_empty(&ep->asocs)) { 9065 release_sock(sk); 9066 timeo = schedule_timeout(timeo); 9067 lock_sock(sk); 9068 } 9069 9070 err = -EINVAL; 9071 if (!sctp_sstate(sk, LISTENING)) 9072 break; 9073 9074 err = 0; 9075 if (!list_empty(&ep->asocs)) 9076 break; 9077 9078 err = sock_intr_errno(timeo); 9079 if (signal_pending(current)) 9080 break; 9081 9082 err = -EAGAIN; 9083 if (!timeo) 9084 break; 9085 } 9086 9087 finish_wait(sk_sleep(sk), &wait); 9088 9089 return err; 9090 } 9091 9092 static void sctp_wait_for_close(struct sock *sk, long timeout) 9093 { 9094 DEFINE_WAIT(wait); 9095 9096 do { 9097 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 9098 if (list_empty(&sctp_sk(sk)->ep->asocs)) 9099 break; 9100 release_sock(sk); 9101 timeout = schedule_timeout(timeout); 9102 lock_sock(sk); 9103 } while (!signal_pending(current) && timeout); 9104 9105 finish_wait(sk_sleep(sk), &wait); 9106 } 9107 9108 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 9109 { 9110 struct sk_buff *frag; 9111 9112 if (!skb->data_len) 9113 goto done; 9114 9115 /* Don't forget the fragments. */ 9116 skb_walk_frags(skb, frag) 9117 sctp_skb_set_owner_r_frag(frag, sk); 9118 9119 done: 9120 sctp_skb_set_owner_r(skb, sk); 9121 } 9122 9123 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 9124 struct sctp_association *asoc) 9125 { 9126 struct inet_sock *inet = inet_sk(sk); 9127 struct inet_sock *newinet; 9128 struct sctp_sock *sp = sctp_sk(sk); 9129 struct sctp_endpoint *ep = sp->ep; 9130 9131 newsk->sk_type = sk->sk_type; 9132 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 9133 newsk->sk_flags = sk->sk_flags; 9134 newsk->sk_tsflags = sk->sk_tsflags; 9135 newsk->sk_no_check_tx = sk->sk_no_check_tx; 9136 newsk->sk_no_check_rx = sk->sk_no_check_rx; 9137 newsk->sk_reuse = sk->sk_reuse; 9138 sctp_sk(newsk)->reuse = sp->reuse; 9139 9140 newsk->sk_shutdown = sk->sk_shutdown; 9141 newsk->sk_destruct = sctp_destruct_sock; 9142 newsk->sk_family = sk->sk_family; 9143 newsk->sk_protocol = IPPROTO_SCTP; 9144 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 9145 newsk->sk_sndbuf = sk->sk_sndbuf; 9146 newsk->sk_rcvbuf = sk->sk_rcvbuf; 9147 newsk->sk_lingertime = sk->sk_lingertime; 9148 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 9149 newsk->sk_sndtimeo = sk->sk_sndtimeo; 9150 newsk->sk_rxhash = sk->sk_rxhash; 9151 9152 newinet = inet_sk(newsk); 9153 9154 /* Initialize sk's sport, dport, rcv_saddr and daddr for 9155 * getsockname() and getpeername() 9156 */ 9157 newinet->inet_sport = inet->inet_sport; 9158 newinet->inet_saddr = inet->inet_saddr; 9159 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 9160 newinet->inet_dport = htons(asoc->peer.port); 9161 newinet->pmtudisc = inet->pmtudisc; 9162 newinet->inet_id = asoc->next_tsn ^ jiffies; 9163 9164 newinet->uc_ttl = inet->uc_ttl; 9165 newinet->mc_loop = 1; 9166 newinet->mc_ttl = 1; 9167 newinet->mc_index = 0; 9168 newinet->mc_list = NULL; 9169 9170 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 9171 net_enable_timestamp(); 9172 9173 /* Set newsk security attributes from orginal sk and connection 9174 * security attribute from ep. 9175 */ 9176 security_sctp_sk_clone(ep, sk, newsk); 9177 } 9178 9179 static inline void sctp_copy_descendant(struct sock *sk_to, 9180 const struct sock *sk_from) 9181 { 9182 int ancestor_size = sizeof(struct inet_sock) + 9183 sizeof(struct sctp_sock) - 9184 offsetof(struct sctp_sock, pd_lobby); 9185 9186 if (sk_from->sk_family == PF_INET6) 9187 ancestor_size += sizeof(struct ipv6_pinfo); 9188 9189 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 9190 } 9191 9192 /* Populate the fields of the newsk from the oldsk and migrate the assoc 9193 * and its messages to the newsk. 9194 */ 9195 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 9196 struct sctp_association *assoc, 9197 enum sctp_socket_type type) 9198 { 9199 struct sctp_sock *oldsp = sctp_sk(oldsk); 9200 struct sctp_sock *newsp = sctp_sk(newsk); 9201 struct sctp_bind_bucket *pp; /* hash list port iterator */ 9202 struct sctp_endpoint *newep = newsp->ep; 9203 struct sk_buff *skb, *tmp; 9204 struct sctp_ulpevent *event; 9205 struct sctp_bind_hashbucket *head; 9206 int err; 9207 9208 /* Migrate socket buffer sizes and all the socket level options to the 9209 * new socket. 9210 */ 9211 newsk->sk_sndbuf = oldsk->sk_sndbuf; 9212 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 9213 /* Brute force copy old sctp opt. */ 9214 sctp_copy_descendant(newsk, oldsk); 9215 9216 /* Restore the ep value that was overwritten with the above structure 9217 * copy. 9218 */ 9219 newsp->ep = newep; 9220 newsp->hmac = NULL; 9221 9222 /* Hook this new socket in to the bind_hash list. */ 9223 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 9224 inet_sk(oldsk)->inet_num)]; 9225 spin_lock_bh(&head->lock); 9226 pp = sctp_sk(oldsk)->bind_hash; 9227 sk_add_bind_node(newsk, &pp->owner); 9228 sctp_sk(newsk)->bind_hash = pp; 9229 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 9230 spin_unlock_bh(&head->lock); 9231 9232 /* Copy the bind_addr list from the original endpoint to the new 9233 * endpoint so that we can handle restarts properly 9234 */ 9235 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 9236 &oldsp->ep->base.bind_addr, GFP_KERNEL); 9237 if (err) 9238 return err; 9239 9240 /* New ep's auth_hmacs should be set if old ep's is set, in case 9241 * that net->sctp.auth_enable has been changed to 0 by users and 9242 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init(). 9243 */ 9244 if (oldsp->ep->auth_hmacs) { 9245 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL); 9246 if (err) 9247 return err; 9248 } 9249 9250 /* Move any messages in the old socket's receive queue that are for the 9251 * peeled off association to the new socket's receive queue. 9252 */ 9253 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 9254 event = sctp_skb2event(skb); 9255 if (event->asoc == assoc) { 9256 __skb_unlink(skb, &oldsk->sk_receive_queue); 9257 __skb_queue_tail(&newsk->sk_receive_queue, skb); 9258 sctp_skb_set_owner_r_frag(skb, newsk); 9259 } 9260 } 9261 9262 /* Clean up any messages pending delivery due to partial 9263 * delivery. Three cases: 9264 * 1) No partial deliver; no work. 9265 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 9266 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 9267 */ 9268 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 9269 9270 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 9271 struct sk_buff_head *queue; 9272 9273 /* Decide which queue to move pd_lobby skbs to. */ 9274 if (assoc->ulpq.pd_mode) { 9275 queue = &newsp->pd_lobby; 9276 } else 9277 queue = &newsk->sk_receive_queue; 9278 9279 /* Walk through the pd_lobby, looking for skbs that 9280 * need moved to the new socket. 9281 */ 9282 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 9283 event = sctp_skb2event(skb); 9284 if (event->asoc == assoc) { 9285 __skb_unlink(skb, &oldsp->pd_lobby); 9286 __skb_queue_tail(queue, skb); 9287 sctp_skb_set_owner_r_frag(skb, newsk); 9288 } 9289 } 9290 9291 /* Clear up any skbs waiting for the partial 9292 * delivery to finish. 9293 */ 9294 if (assoc->ulpq.pd_mode) 9295 sctp_clear_pd(oldsk, NULL); 9296 9297 } 9298 9299 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 9300 9301 /* Set the type of socket to indicate that it is peeled off from the 9302 * original UDP-style socket or created with the accept() call on a 9303 * TCP-style socket.. 9304 */ 9305 newsp->type = type; 9306 9307 /* Mark the new socket "in-use" by the user so that any packets 9308 * that may arrive on the association after we've moved it are 9309 * queued to the backlog. This prevents a potential race between 9310 * backlog processing on the old socket and new-packet processing 9311 * on the new socket. 9312 * 9313 * The caller has just allocated newsk so we can guarantee that other 9314 * paths won't try to lock it and then oldsk. 9315 */ 9316 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 9317 sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w); 9318 sctp_assoc_migrate(assoc, newsk); 9319 sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w); 9320 9321 /* If the association on the newsk is already closed before accept() 9322 * is called, set RCV_SHUTDOWN flag. 9323 */ 9324 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 9325 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 9326 newsk->sk_shutdown |= RCV_SHUTDOWN; 9327 } else { 9328 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 9329 } 9330 9331 release_sock(newsk); 9332 9333 return 0; 9334 } 9335 9336 9337 /* This proto struct describes the ULP interface for SCTP. */ 9338 struct proto sctp_prot = { 9339 .name = "SCTP", 9340 .owner = THIS_MODULE, 9341 .close = sctp_close, 9342 .disconnect = sctp_disconnect, 9343 .accept = sctp_accept, 9344 .ioctl = sctp_ioctl, 9345 .init = sctp_init_sock, 9346 .destroy = sctp_destroy_sock, 9347 .shutdown = sctp_shutdown, 9348 .setsockopt = sctp_setsockopt, 9349 .getsockopt = sctp_getsockopt, 9350 .sendmsg = sctp_sendmsg, 9351 .recvmsg = sctp_recvmsg, 9352 .bind = sctp_bind, 9353 .backlog_rcv = sctp_backlog_rcv, 9354 .hash = sctp_hash, 9355 .unhash = sctp_unhash, 9356 .get_port = sctp_get_port, 9357 .obj_size = sizeof(struct sctp_sock), 9358 .useroffset = offsetof(struct sctp_sock, subscribe), 9359 .usersize = offsetof(struct sctp_sock, initmsg) - 9360 offsetof(struct sctp_sock, subscribe) + 9361 sizeof_field(struct sctp_sock, initmsg), 9362 .sysctl_mem = sysctl_sctp_mem, 9363 .sysctl_rmem = sysctl_sctp_rmem, 9364 .sysctl_wmem = sysctl_sctp_wmem, 9365 .memory_pressure = &sctp_memory_pressure, 9366 .enter_memory_pressure = sctp_enter_memory_pressure, 9367 .memory_allocated = &sctp_memory_allocated, 9368 .sockets_allocated = &sctp_sockets_allocated, 9369 }; 9370 9371 #if IS_ENABLED(CONFIG_IPV6) 9372 9373 #include <net/transp_v6.h> 9374 static void sctp_v6_destroy_sock(struct sock *sk) 9375 { 9376 sctp_destroy_sock(sk); 9377 inet6_destroy_sock(sk); 9378 } 9379 9380 struct proto sctpv6_prot = { 9381 .name = "SCTPv6", 9382 .owner = THIS_MODULE, 9383 .close = sctp_close, 9384 .disconnect = sctp_disconnect, 9385 .accept = sctp_accept, 9386 .ioctl = sctp_ioctl, 9387 .init = sctp_init_sock, 9388 .destroy = sctp_v6_destroy_sock, 9389 .shutdown = sctp_shutdown, 9390 .setsockopt = sctp_setsockopt, 9391 .getsockopt = sctp_getsockopt, 9392 .sendmsg = sctp_sendmsg, 9393 .recvmsg = sctp_recvmsg, 9394 .bind = sctp_bind, 9395 .backlog_rcv = sctp_backlog_rcv, 9396 .hash = sctp_hash, 9397 .unhash = sctp_unhash, 9398 .get_port = sctp_get_port, 9399 .obj_size = sizeof(struct sctp6_sock), 9400 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 9401 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 9402 offsetof(struct sctp6_sock, sctp.subscribe) + 9403 sizeof_field(struct sctp6_sock, sctp.initmsg), 9404 .sysctl_mem = sysctl_sctp_mem, 9405 .sysctl_rmem = sysctl_sctp_rmem, 9406 .sysctl_wmem = sysctl_sctp_wmem, 9407 .memory_pressure = &sctp_memory_pressure, 9408 .enter_memory_pressure = sctp_enter_memory_pressure, 9409 .memory_allocated = &sctp_memory_allocated, 9410 .sockets_allocated = &sctp_sockets_allocated, 9411 }; 9412 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9413