1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, write to 32 * the Free Software Foundation, 59 Temple Place - Suite 330, 33 * Boston, MA 02111-1307, USA. 34 * 35 * Please send any bug reports or fixes you make to the 36 * email address(es): 37 * lksctp developers <lksctp-developers@lists.sourceforge.net> 38 * 39 * Or submit a bug report through the following website: 40 * http://www.sf.net/projects/lksctp 41 * 42 * Written or modified by: 43 * La Monte H.P. Yarroll <piggy@acm.org> 44 * Narasimha Budihal <narsi@refcode.org> 45 * Karl Knutson <karl@athena.chicago.il.us> 46 * Jon Grimm <jgrimm@us.ibm.com> 47 * Xingang Guo <xingang.guo@intel.com> 48 * Daisy Chang <daisyc@us.ibm.com> 49 * Sridhar Samudrala <samudrala@us.ibm.com> 50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 51 * Ardelle Fan <ardelle.fan@intel.com> 52 * Ryan Layer <rmlayer@us.ibm.com> 53 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 54 * Kevin Gao <kevin.gao@intel.com> 55 * 56 * Any bugs reported given to us we will try to fix... any fixes shared will 57 * be incorporated into the next SCTP release. 58 */ 59 60 #include <linux/types.h> 61 #include <linux/kernel.h> 62 #include <linux/wait.h> 63 #include <linux/time.h> 64 #include <linux/ip.h> 65 #include <linux/capability.h> 66 #include <linux/fcntl.h> 67 #include <linux/poll.h> 68 #include <linux/init.h> 69 #include <linux/crypto.h> 70 71 #include <net/ip.h> 72 #include <net/icmp.h> 73 #include <net/route.h> 74 #include <net/ipv6.h> 75 #include <net/inet_common.h> 76 77 #include <linux/socket.h> /* for sa_family_t */ 78 #include <net/sock.h> 79 #include <net/sctp/sctp.h> 80 #include <net/sctp/sm.h> 81 82 /* WARNING: Please do not remove the SCTP_STATIC attribute to 83 * any of the functions below as they are used to export functions 84 * used by a project regression testsuite. 85 */ 86 87 /* Forward declarations for internal helper functions. */ 88 static int sctp_writeable(struct sock *sk); 89 static void sctp_wfree(struct sk_buff *skb); 90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 91 size_t msg_len); 92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p); 93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 94 static int sctp_wait_for_accept(struct sock *sk, long timeo); 95 static void sctp_wait_for_close(struct sock *sk, long timeo); 96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 97 union sctp_addr *addr, int len); 98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 102 static int sctp_send_asconf(struct sctp_association *asoc, 103 struct sctp_chunk *chunk); 104 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 105 static int sctp_autobind(struct sock *sk); 106 static void sctp_sock_migrate(struct sock *, struct sock *, 107 struct sctp_association *, sctp_socket_type_t); 108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG; 109 110 extern struct kmem_cache *sctp_bucket_cachep; 111 extern int sysctl_sctp_mem[3]; 112 extern int sysctl_sctp_rmem[3]; 113 extern int sysctl_sctp_wmem[3]; 114 115 static int sctp_memory_pressure; 116 static atomic_t sctp_memory_allocated; 117 struct percpu_counter sctp_sockets_allocated; 118 119 static void sctp_enter_memory_pressure(struct sock *sk) 120 { 121 sctp_memory_pressure = 1; 122 } 123 124 125 /* Get the sndbuf space available at the time on the association. */ 126 static inline int sctp_wspace(struct sctp_association *asoc) 127 { 128 int amt; 129 130 if (asoc->ep->sndbuf_policy) 131 amt = asoc->sndbuf_used; 132 else 133 amt = sk_wmem_alloc_get(asoc->base.sk); 134 135 if (amt >= asoc->base.sk->sk_sndbuf) { 136 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 137 amt = 0; 138 else { 139 amt = sk_stream_wspace(asoc->base.sk); 140 if (amt < 0) 141 amt = 0; 142 } 143 } else { 144 amt = asoc->base.sk->sk_sndbuf - amt; 145 } 146 return amt; 147 } 148 149 /* Increment the used sndbuf space count of the corresponding association by 150 * the size of the outgoing data chunk. 151 * Also, set the skb destructor for sndbuf accounting later. 152 * 153 * Since it is always 1-1 between chunk and skb, and also a new skb is always 154 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 155 * destructor in the data chunk skb for the purpose of the sndbuf space 156 * tracking. 157 */ 158 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 159 { 160 struct sctp_association *asoc = chunk->asoc; 161 struct sock *sk = asoc->base.sk; 162 163 /* The sndbuf space is tracked per association. */ 164 sctp_association_hold(asoc); 165 166 skb_set_owner_w(chunk->skb, sk); 167 168 chunk->skb->destructor = sctp_wfree; 169 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 170 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 171 172 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 173 sizeof(struct sk_buff) + 174 sizeof(struct sctp_chunk); 175 176 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 177 sk->sk_wmem_queued += chunk->skb->truesize; 178 sk_mem_charge(sk, chunk->skb->truesize); 179 } 180 181 /* Verify that this is a valid address. */ 182 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 183 int len) 184 { 185 struct sctp_af *af; 186 187 /* Verify basic sockaddr. */ 188 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 189 if (!af) 190 return -EINVAL; 191 192 /* Is this a valid SCTP address? */ 193 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 194 return -EINVAL; 195 196 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 197 return -EINVAL; 198 199 return 0; 200 } 201 202 /* Look up the association by its id. If this is not a UDP-style 203 * socket, the ID field is always ignored. 204 */ 205 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 206 { 207 struct sctp_association *asoc = NULL; 208 209 /* If this is not a UDP-style socket, assoc id should be ignored. */ 210 if (!sctp_style(sk, UDP)) { 211 /* Return NULL if the socket state is not ESTABLISHED. It 212 * could be a TCP-style listening socket or a socket which 213 * hasn't yet called connect() to establish an association. 214 */ 215 if (!sctp_sstate(sk, ESTABLISHED)) 216 return NULL; 217 218 /* Get the first and the only association from the list. */ 219 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 220 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 221 struct sctp_association, asocs); 222 return asoc; 223 } 224 225 /* Otherwise this is a UDP-style socket. */ 226 if (!id || (id == (sctp_assoc_t)-1)) 227 return NULL; 228 229 spin_lock_bh(&sctp_assocs_id_lock); 230 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 231 spin_unlock_bh(&sctp_assocs_id_lock); 232 233 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 234 return NULL; 235 236 return asoc; 237 } 238 239 /* Look up the transport from an address and an assoc id. If both address and 240 * id are specified, the associations matching the address and the id should be 241 * the same. 242 */ 243 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 244 struct sockaddr_storage *addr, 245 sctp_assoc_t id) 246 { 247 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 248 struct sctp_transport *transport; 249 union sctp_addr *laddr = (union sctp_addr *)addr; 250 251 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 252 laddr, 253 &transport); 254 255 if (!addr_asoc) 256 return NULL; 257 258 id_asoc = sctp_id2assoc(sk, id); 259 if (id_asoc && (id_asoc != addr_asoc)) 260 return NULL; 261 262 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 263 (union sctp_addr *)addr); 264 265 return transport; 266 } 267 268 /* API 3.1.2 bind() - UDP Style Syntax 269 * The syntax of bind() is, 270 * 271 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 272 * 273 * sd - the socket descriptor returned by socket(). 274 * addr - the address structure (struct sockaddr_in or struct 275 * sockaddr_in6 [RFC 2553]), 276 * addr_len - the size of the address structure. 277 */ 278 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 279 { 280 int retval = 0; 281 282 sctp_lock_sock(sk); 283 284 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n", 285 sk, addr, addr_len); 286 287 /* Disallow binding twice. */ 288 if (!sctp_sk(sk)->ep->base.bind_addr.port) 289 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 290 addr_len); 291 else 292 retval = -EINVAL; 293 294 sctp_release_sock(sk); 295 296 return retval; 297 } 298 299 static long sctp_get_port_local(struct sock *, union sctp_addr *); 300 301 /* Verify this is a valid sockaddr. */ 302 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 303 union sctp_addr *addr, int len) 304 { 305 struct sctp_af *af; 306 307 /* Check minimum size. */ 308 if (len < sizeof (struct sockaddr)) 309 return NULL; 310 311 /* V4 mapped address are really of AF_INET family */ 312 if (addr->sa.sa_family == AF_INET6 && 313 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { 314 if (!opt->pf->af_supported(AF_INET, opt)) 315 return NULL; 316 } else { 317 /* Does this PF support this AF? */ 318 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 319 return NULL; 320 } 321 322 /* If we get this far, af is valid. */ 323 af = sctp_get_af_specific(addr->sa.sa_family); 324 325 if (len < af->sockaddr_len) 326 return NULL; 327 328 return af; 329 } 330 331 /* Bind a local address either to an endpoint or to an association. */ 332 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 333 { 334 struct sctp_sock *sp = sctp_sk(sk); 335 struct sctp_endpoint *ep = sp->ep; 336 struct sctp_bind_addr *bp = &ep->base.bind_addr; 337 struct sctp_af *af; 338 unsigned short snum; 339 int ret = 0; 340 341 /* Common sockaddr verification. */ 342 af = sctp_sockaddr_af(sp, addr, len); 343 if (!af) { 344 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n", 345 sk, addr, len); 346 return -EINVAL; 347 } 348 349 snum = ntohs(addr->v4.sin_port); 350 351 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ", 352 ", port: %d, new port: %d, len: %d)\n", 353 sk, 354 addr, 355 bp->port, snum, 356 len); 357 358 /* PF specific bind() address verification. */ 359 if (!sp->pf->bind_verify(sp, addr)) 360 return -EADDRNOTAVAIL; 361 362 /* We must either be unbound, or bind to the same port. 363 * It's OK to allow 0 ports if we are already bound. 364 * We'll just inhert an already bound port in this case 365 */ 366 if (bp->port) { 367 if (!snum) 368 snum = bp->port; 369 else if (snum != bp->port) { 370 SCTP_DEBUG_PRINTK("sctp_do_bind:" 371 " New port %d does not match existing port " 372 "%d.\n", snum, bp->port); 373 return -EINVAL; 374 } 375 } 376 377 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 378 return -EACCES; 379 380 /* See if the address matches any of the addresses we may have 381 * already bound before checking against other endpoints. 382 */ 383 if (sctp_bind_addr_match(bp, addr, sp)) 384 return -EINVAL; 385 386 /* Make sure we are allowed to bind here. 387 * The function sctp_get_port_local() does duplicate address 388 * detection. 389 */ 390 addr->v4.sin_port = htons(snum); 391 if ((ret = sctp_get_port_local(sk, addr))) { 392 return -EADDRINUSE; 393 } 394 395 /* Refresh ephemeral port. */ 396 if (!bp->port) 397 bp->port = inet_sk(sk)->num; 398 399 /* Add the address to the bind address list. 400 * Use GFP_ATOMIC since BHs will be disabled. 401 */ 402 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC); 403 404 /* Copy back into socket for getsockname() use. */ 405 if (!ret) { 406 inet_sk(sk)->sport = htons(inet_sk(sk)->num); 407 af->to_sk_saddr(addr, sk); 408 } 409 410 return ret; 411 } 412 413 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 414 * 415 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 416 * at any one time. If a sender, after sending an ASCONF chunk, decides 417 * it needs to transfer another ASCONF Chunk, it MUST wait until the 418 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 419 * subsequent ASCONF. Note this restriction binds each side, so at any 420 * time two ASCONF may be in-transit on any given association (one sent 421 * from each endpoint). 422 */ 423 static int sctp_send_asconf(struct sctp_association *asoc, 424 struct sctp_chunk *chunk) 425 { 426 int retval = 0; 427 428 /* If there is an outstanding ASCONF chunk, queue it for later 429 * transmission. 430 */ 431 if (asoc->addip_last_asconf) { 432 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 433 goto out; 434 } 435 436 /* Hold the chunk until an ASCONF_ACK is received. */ 437 sctp_chunk_hold(chunk); 438 retval = sctp_primitive_ASCONF(asoc, chunk); 439 if (retval) 440 sctp_chunk_free(chunk); 441 else 442 asoc->addip_last_asconf = chunk; 443 444 out: 445 return retval; 446 } 447 448 /* Add a list of addresses as bind addresses to local endpoint or 449 * association. 450 * 451 * Basically run through each address specified in the addrs/addrcnt 452 * array/length pair, determine if it is IPv6 or IPv4 and call 453 * sctp_do_bind() on it. 454 * 455 * If any of them fails, then the operation will be reversed and the 456 * ones that were added will be removed. 457 * 458 * Only sctp_setsockopt_bindx() is supposed to call this function. 459 */ 460 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 461 { 462 int cnt; 463 int retval = 0; 464 void *addr_buf; 465 struct sockaddr *sa_addr; 466 struct sctp_af *af; 467 468 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n", 469 sk, addrs, addrcnt); 470 471 addr_buf = addrs; 472 for (cnt = 0; cnt < addrcnt; cnt++) { 473 /* The list may contain either IPv4 or IPv6 address; 474 * determine the address length for walking thru the list. 475 */ 476 sa_addr = (struct sockaddr *)addr_buf; 477 af = sctp_get_af_specific(sa_addr->sa_family); 478 if (!af) { 479 retval = -EINVAL; 480 goto err_bindx_add; 481 } 482 483 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 484 af->sockaddr_len); 485 486 addr_buf += af->sockaddr_len; 487 488 err_bindx_add: 489 if (retval < 0) { 490 /* Failed. Cleanup the ones that have been added */ 491 if (cnt > 0) 492 sctp_bindx_rem(sk, addrs, cnt); 493 return retval; 494 } 495 } 496 497 return retval; 498 } 499 500 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 501 * associations that are part of the endpoint indicating that a list of local 502 * addresses are added to the endpoint. 503 * 504 * If any of the addresses is already in the bind address list of the 505 * association, we do not send the chunk for that association. But it will not 506 * affect other associations. 507 * 508 * Only sctp_setsockopt_bindx() is supposed to call this function. 509 */ 510 static int sctp_send_asconf_add_ip(struct sock *sk, 511 struct sockaddr *addrs, 512 int addrcnt) 513 { 514 struct sctp_sock *sp; 515 struct sctp_endpoint *ep; 516 struct sctp_association *asoc; 517 struct sctp_bind_addr *bp; 518 struct sctp_chunk *chunk; 519 struct sctp_sockaddr_entry *laddr; 520 union sctp_addr *addr; 521 union sctp_addr saveaddr; 522 void *addr_buf; 523 struct sctp_af *af; 524 struct list_head *p; 525 int i; 526 int retval = 0; 527 528 if (!sctp_addip_enable) 529 return retval; 530 531 sp = sctp_sk(sk); 532 ep = sp->ep; 533 534 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 535 __func__, sk, addrs, addrcnt); 536 537 list_for_each_entry(asoc, &ep->asocs, asocs) { 538 539 if (!asoc->peer.asconf_capable) 540 continue; 541 542 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 543 continue; 544 545 if (!sctp_state(asoc, ESTABLISHED)) 546 continue; 547 548 /* Check if any address in the packed array of addresses is 549 * in the bind address list of the association. If so, 550 * do not send the asconf chunk to its peer, but continue with 551 * other associations. 552 */ 553 addr_buf = addrs; 554 for (i = 0; i < addrcnt; i++) { 555 addr = (union sctp_addr *)addr_buf; 556 af = sctp_get_af_specific(addr->v4.sin_family); 557 if (!af) { 558 retval = -EINVAL; 559 goto out; 560 } 561 562 if (sctp_assoc_lookup_laddr(asoc, addr)) 563 break; 564 565 addr_buf += af->sockaddr_len; 566 } 567 if (i < addrcnt) 568 continue; 569 570 /* Use the first valid address in bind addr list of 571 * association as Address Parameter of ASCONF CHUNK. 572 */ 573 bp = &asoc->base.bind_addr; 574 p = bp->address_list.next; 575 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 576 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 577 addrcnt, SCTP_PARAM_ADD_IP); 578 if (!chunk) { 579 retval = -ENOMEM; 580 goto out; 581 } 582 583 retval = sctp_send_asconf(asoc, chunk); 584 if (retval) 585 goto out; 586 587 /* Add the new addresses to the bind address list with 588 * use_as_src set to 0. 589 */ 590 addr_buf = addrs; 591 for (i = 0; i < addrcnt; i++) { 592 addr = (union sctp_addr *)addr_buf; 593 af = sctp_get_af_specific(addr->v4.sin_family); 594 memcpy(&saveaddr, addr, af->sockaddr_len); 595 retval = sctp_add_bind_addr(bp, &saveaddr, 596 SCTP_ADDR_NEW, GFP_ATOMIC); 597 addr_buf += af->sockaddr_len; 598 } 599 } 600 601 out: 602 return retval; 603 } 604 605 /* Remove a list of addresses from bind addresses list. Do not remove the 606 * last address. 607 * 608 * Basically run through each address specified in the addrs/addrcnt 609 * array/length pair, determine if it is IPv6 or IPv4 and call 610 * sctp_del_bind() on it. 611 * 612 * If any of them fails, then the operation will be reversed and the 613 * ones that were removed will be added back. 614 * 615 * At least one address has to be left; if only one address is 616 * available, the operation will return -EBUSY. 617 * 618 * Only sctp_setsockopt_bindx() is supposed to call this function. 619 */ 620 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 621 { 622 struct sctp_sock *sp = sctp_sk(sk); 623 struct sctp_endpoint *ep = sp->ep; 624 int cnt; 625 struct sctp_bind_addr *bp = &ep->base.bind_addr; 626 int retval = 0; 627 void *addr_buf; 628 union sctp_addr *sa_addr; 629 struct sctp_af *af; 630 631 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n", 632 sk, addrs, addrcnt); 633 634 addr_buf = addrs; 635 for (cnt = 0; cnt < addrcnt; cnt++) { 636 /* If the bind address list is empty or if there is only one 637 * bind address, there is nothing more to be removed (we need 638 * at least one address here). 639 */ 640 if (list_empty(&bp->address_list) || 641 (sctp_list_single_entry(&bp->address_list))) { 642 retval = -EBUSY; 643 goto err_bindx_rem; 644 } 645 646 sa_addr = (union sctp_addr *)addr_buf; 647 af = sctp_get_af_specific(sa_addr->sa.sa_family); 648 if (!af) { 649 retval = -EINVAL; 650 goto err_bindx_rem; 651 } 652 653 if (!af->addr_valid(sa_addr, sp, NULL)) { 654 retval = -EADDRNOTAVAIL; 655 goto err_bindx_rem; 656 } 657 658 if (sa_addr->v4.sin_port != htons(bp->port)) { 659 retval = -EINVAL; 660 goto err_bindx_rem; 661 } 662 663 /* FIXME - There is probably a need to check if sk->sk_saddr and 664 * sk->sk_rcv_addr are currently set to one of the addresses to 665 * be removed. This is something which needs to be looked into 666 * when we are fixing the outstanding issues with multi-homing 667 * socket routing and failover schemes. Refer to comments in 668 * sctp_do_bind(). -daisy 669 */ 670 retval = sctp_del_bind_addr(bp, sa_addr); 671 672 addr_buf += af->sockaddr_len; 673 err_bindx_rem: 674 if (retval < 0) { 675 /* Failed. Add the ones that has been removed back */ 676 if (cnt > 0) 677 sctp_bindx_add(sk, addrs, cnt); 678 return retval; 679 } 680 } 681 682 return retval; 683 } 684 685 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 686 * the associations that are part of the endpoint indicating that a list of 687 * local addresses are removed from the endpoint. 688 * 689 * If any of the addresses is already in the bind address list of the 690 * association, we do not send the chunk for that association. But it will not 691 * affect other associations. 692 * 693 * Only sctp_setsockopt_bindx() is supposed to call this function. 694 */ 695 static int sctp_send_asconf_del_ip(struct sock *sk, 696 struct sockaddr *addrs, 697 int addrcnt) 698 { 699 struct sctp_sock *sp; 700 struct sctp_endpoint *ep; 701 struct sctp_association *asoc; 702 struct sctp_transport *transport; 703 struct sctp_bind_addr *bp; 704 struct sctp_chunk *chunk; 705 union sctp_addr *laddr; 706 void *addr_buf; 707 struct sctp_af *af; 708 struct sctp_sockaddr_entry *saddr; 709 int i; 710 int retval = 0; 711 712 if (!sctp_addip_enable) 713 return retval; 714 715 sp = sctp_sk(sk); 716 ep = sp->ep; 717 718 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 719 __func__, sk, addrs, addrcnt); 720 721 list_for_each_entry(asoc, &ep->asocs, asocs) { 722 723 if (!asoc->peer.asconf_capable) 724 continue; 725 726 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 727 continue; 728 729 if (!sctp_state(asoc, ESTABLISHED)) 730 continue; 731 732 /* Check if any address in the packed array of addresses is 733 * not present in the bind address list of the association. 734 * If so, do not send the asconf chunk to its peer, but 735 * continue with other associations. 736 */ 737 addr_buf = addrs; 738 for (i = 0; i < addrcnt; i++) { 739 laddr = (union sctp_addr *)addr_buf; 740 af = sctp_get_af_specific(laddr->v4.sin_family); 741 if (!af) { 742 retval = -EINVAL; 743 goto out; 744 } 745 746 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 747 break; 748 749 addr_buf += af->sockaddr_len; 750 } 751 if (i < addrcnt) 752 continue; 753 754 /* Find one address in the association's bind address list 755 * that is not in the packed array of addresses. This is to 756 * make sure that we do not delete all the addresses in the 757 * association. 758 */ 759 bp = &asoc->base.bind_addr; 760 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 761 addrcnt, sp); 762 if (!laddr) 763 continue; 764 765 /* We do not need RCU protection throughout this loop 766 * because this is done under a socket lock from the 767 * setsockopt call. 768 */ 769 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 770 SCTP_PARAM_DEL_IP); 771 if (!chunk) { 772 retval = -ENOMEM; 773 goto out; 774 } 775 776 /* Reset use_as_src flag for the addresses in the bind address 777 * list that are to be deleted. 778 */ 779 addr_buf = addrs; 780 for (i = 0; i < addrcnt; i++) { 781 laddr = (union sctp_addr *)addr_buf; 782 af = sctp_get_af_specific(laddr->v4.sin_family); 783 list_for_each_entry(saddr, &bp->address_list, list) { 784 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 785 saddr->state = SCTP_ADDR_DEL; 786 } 787 addr_buf += af->sockaddr_len; 788 } 789 790 /* Update the route and saddr entries for all the transports 791 * as some of the addresses in the bind address list are 792 * about to be deleted and cannot be used as source addresses. 793 */ 794 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 795 transports) { 796 dst_release(transport->dst); 797 sctp_transport_route(transport, NULL, 798 sctp_sk(asoc->base.sk)); 799 } 800 801 retval = sctp_send_asconf(asoc, chunk); 802 } 803 out: 804 return retval; 805 } 806 807 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 808 * 809 * API 8.1 810 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 811 * int flags); 812 * 813 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 814 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 815 * or IPv6 addresses. 816 * 817 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 818 * Section 3.1.2 for this usage. 819 * 820 * addrs is a pointer to an array of one or more socket addresses. Each 821 * address is contained in its appropriate structure (i.e. struct 822 * sockaddr_in or struct sockaddr_in6) the family of the address type 823 * must be used to distinguish the address length (note that this 824 * representation is termed a "packed array" of addresses). The caller 825 * specifies the number of addresses in the array with addrcnt. 826 * 827 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 828 * -1, and sets errno to the appropriate error code. 829 * 830 * For SCTP, the port given in each socket address must be the same, or 831 * sctp_bindx() will fail, setting errno to EINVAL. 832 * 833 * The flags parameter is formed from the bitwise OR of zero or more of 834 * the following currently defined flags: 835 * 836 * SCTP_BINDX_ADD_ADDR 837 * 838 * SCTP_BINDX_REM_ADDR 839 * 840 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 841 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 842 * addresses from the association. The two flags are mutually exclusive; 843 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 844 * not remove all addresses from an association; sctp_bindx() will 845 * reject such an attempt with EINVAL. 846 * 847 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 848 * additional addresses with an endpoint after calling bind(). Or use 849 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 850 * socket is associated with so that no new association accepted will be 851 * associated with those addresses. If the endpoint supports dynamic 852 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 853 * endpoint to send the appropriate message to the peer to change the 854 * peers address lists. 855 * 856 * Adding and removing addresses from a connected association is 857 * optional functionality. Implementations that do not support this 858 * functionality should return EOPNOTSUPP. 859 * 860 * Basically do nothing but copying the addresses from user to kernel 861 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 862 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 863 * from userspace. 864 * 865 * We don't use copy_from_user() for optimization: we first do the 866 * sanity checks (buffer size -fast- and access check-healthy 867 * pointer); if all of those succeed, then we can alloc the memory 868 * (expensive operation) needed to copy the data to kernel. Then we do 869 * the copying without checking the user space area 870 * (__copy_from_user()). 871 * 872 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 873 * it. 874 * 875 * sk The sk of the socket 876 * addrs The pointer to the addresses in user land 877 * addrssize Size of the addrs buffer 878 * op Operation to perform (add or remove, see the flags of 879 * sctp_bindx) 880 * 881 * Returns 0 if ok, <0 errno code on error. 882 */ 883 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk, 884 struct sockaddr __user *addrs, 885 int addrs_size, int op) 886 { 887 struct sockaddr *kaddrs; 888 int err; 889 int addrcnt = 0; 890 int walk_size = 0; 891 struct sockaddr *sa_addr; 892 void *addr_buf; 893 struct sctp_af *af; 894 895 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p" 896 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op); 897 898 if (unlikely(addrs_size <= 0)) 899 return -EINVAL; 900 901 /* Check the user passed a healthy pointer. */ 902 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 903 return -EFAULT; 904 905 /* Alloc space for the address array in kernel memory. */ 906 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 907 if (unlikely(!kaddrs)) 908 return -ENOMEM; 909 910 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 911 kfree(kaddrs); 912 return -EFAULT; 913 } 914 915 /* Walk through the addrs buffer and count the number of addresses. */ 916 addr_buf = kaddrs; 917 while (walk_size < addrs_size) { 918 sa_addr = (struct sockaddr *)addr_buf; 919 af = sctp_get_af_specific(sa_addr->sa_family); 920 921 /* If the address family is not supported or if this address 922 * causes the address buffer to overflow return EINVAL. 923 */ 924 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 925 kfree(kaddrs); 926 return -EINVAL; 927 } 928 addrcnt++; 929 addr_buf += af->sockaddr_len; 930 walk_size += af->sockaddr_len; 931 } 932 933 /* Do the work. */ 934 switch (op) { 935 case SCTP_BINDX_ADD_ADDR: 936 err = sctp_bindx_add(sk, kaddrs, addrcnt); 937 if (err) 938 goto out; 939 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 940 break; 941 942 case SCTP_BINDX_REM_ADDR: 943 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 944 if (err) 945 goto out; 946 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 947 break; 948 949 default: 950 err = -EINVAL; 951 break; 952 } 953 954 out: 955 kfree(kaddrs); 956 957 return err; 958 } 959 960 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 961 * 962 * Common routine for handling connect() and sctp_connectx(). 963 * Connect will come in with just a single address. 964 */ 965 static int __sctp_connect(struct sock* sk, 966 struct sockaddr *kaddrs, 967 int addrs_size, 968 sctp_assoc_t *assoc_id) 969 { 970 struct sctp_sock *sp; 971 struct sctp_endpoint *ep; 972 struct sctp_association *asoc = NULL; 973 struct sctp_association *asoc2; 974 struct sctp_transport *transport; 975 union sctp_addr to; 976 struct sctp_af *af; 977 sctp_scope_t scope; 978 long timeo; 979 int err = 0; 980 int addrcnt = 0; 981 int walk_size = 0; 982 union sctp_addr *sa_addr = NULL; 983 void *addr_buf; 984 unsigned short port; 985 unsigned int f_flags = 0; 986 987 sp = sctp_sk(sk); 988 ep = sp->ep; 989 990 /* connect() cannot be done on a socket that is already in ESTABLISHED 991 * state - UDP-style peeled off socket or a TCP-style socket that 992 * is already connected. 993 * It cannot be done even on a TCP-style listening socket. 994 */ 995 if (sctp_sstate(sk, ESTABLISHED) || 996 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 997 err = -EISCONN; 998 goto out_free; 999 } 1000 1001 /* Walk through the addrs buffer and count the number of addresses. */ 1002 addr_buf = kaddrs; 1003 while (walk_size < addrs_size) { 1004 sa_addr = (union sctp_addr *)addr_buf; 1005 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1006 port = ntohs(sa_addr->v4.sin_port); 1007 1008 /* If the address family is not supported or if this address 1009 * causes the address buffer to overflow return EINVAL. 1010 */ 1011 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1012 err = -EINVAL; 1013 goto out_free; 1014 } 1015 1016 /* Save current address so we can work with it */ 1017 memcpy(&to, sa_addr, af->sockaddr_len); 1018 1019 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1020 if (err) 1021 goto out_free; 1022 1023 /* Make sure the destination port is correctly set 1024 * in all addresses. 1025 */ 1026 if (asoc && asoc->peer.port && asoc->peer.port != port) 1027 goto out_free; 1028 1029 1030 /* Check if there already is a matching association on the 1031 * endpoint (other than the one created here). 1032 */ 1033 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1034 if (asoc2 && asoc2 != asoc) { 1035 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1036 err = -EISCONN; 1037 else 1038 err = -EALREADY; 1039 goto out_free; 1040 } 1041 1042 /* If we could not find a matching association on the endpoint, 1043 * make sure that there is no peeled-off association matching 1044 * the peer address even on another socket. 1045 */ 1046 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1047 err = -EADDRNOTAVAIL; 1048 goto out_free; 1049 } 1050 1051 if (!asoc) { 1052 /* If a bind() or sctp_bindx() is not called prior to 1053 * an sctp_connectx() call, the system picks an 1054 * ephemeral port and will choose an address set 1055 * equivalent to binding with a wildcard address. 1056 */ 1057 if (!ep->base.bind_addr.port) { 1058 if (sctp_autobind(sk)) { 1059 err = -EAGAIN; 1060 goto out_free; 1061 } 1062 } else { 1063 /* 1064 * If an unprivileged user inherits a 1-many 1065 * style socket with open associations on a 1066 * privileged port, it MAY be permitted to 1067 * accept new associations, but it SHOULD NOT 1068 * be permitted to open new associations. 1069 */ 1070 if (ep->base.bind_addr.port < PROT_SOCK && 1071 !capable(CAP_NET_BIND_SERVICE)) { 1072 err = -EACCES; 1073 goto out_free; 1074 } 1075 } 1076 1077 scope = sctp_scope(&to); 1078 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1079 if (!asoc) { 1080 err = -ENOMEM; 1081 goto out_free; 1082 } 1083 1084 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1085 GFP_KERNEL); 1086 if (err < 0) { 1087 goto out_free; 1088 } 1089 1090 } 1091 1092 /* Prime the peer's transport structures. */ 1093 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1094 SCTP_UNKNOWN); 1095 if (!transport) { 1096 err = -ENOMEM; 1097 goto out_free; 1098 } 1099 1100 addrcnt++; 1101 addr_buf += af->sockaddr_len; 1102 walk_size += af->sockaddr_len; 1103 } 1104 1105 /* In case the user of sctp_connectx() wants an association 1106 * id back, assign one now. 1107 */ 1108 if (assoc_id) { 1109 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1110 if (err < 0) 1111 goto out_free; 1112 } 1113 1114 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1115 if (err < 0) { 1116 goto out_free; 1117 } 1118 1119 /* Initialize sk's dport and daddr for getpeername() */ 1120 inet_sk(sk)->dport = htons(asoc->peer.port); 1121 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1122 af->to_sk_daddr(sa_addr, sk); 1123 sk->sk_err = 0; 1124 1125 /* in-kernel sockets don't generally have a file allocated to them 1126 * if all they do is call sock_create_kern(). 1127 */ 1128 if (sk->sk_socket->file) 1129 f_flags = sk->sk_socket->file->f_flags; 1130 1131 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1132 1133 err = sctp_wait_for_connect(asoc, &timeo); 1134 if ((err == 0 || err == -EINPROGRESS) && assoc_id) 1135 *assoc_id = asoc->assoc_id; 1136 1137 /* Don't free association on exit. */ 1138 asoc = NULL; 1139 1140 out_free: 1141 1142 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p" 1143 " kaddrs: %p err: %d\n", 1144 asoc, kaddrs, err); 1145 if (asoc) 1146 sctp_association_free(asoc); 1147 return err; 1148 } 1149 1150 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1151 * 1152 * API 8.9 1153 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1154 * sctp_assoc_t *asoc); 1155 * 1156 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1157 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1158 * or IPv6 addresses. 1159 * 1160 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1161 * Section 3.1.2 for this usage. 1162 * 1163 * addrs is a pointer to an array of one or more socket addresses. Each 1164 * address is contained in its appropriate structure (i.e. struct 1165 * sockaddr_in or struct sockaddr_in6) the family of the address type 1166 * must be used to distengish the address length (note that this 1167 * representation is termed a "packed array" of addresses). The caller 1168 * specifies the number of addresses in the array with addrcnt. 1169 * 1170 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1171 * the association id of the new association. On failure, sctp_connectx() 1172 * returns -1, and sets errno to the appropriate error code. The assoc_id 1173 * is not touched by the kernel. 1174 * 1175 * For SCTP, the port given in each socket address must be the same, or 1176 * sctp_connectx() will fail, setting errno to EINVAL. 1177 * 1178 * An application can use sctp_connectx to initiate an association with 1179 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1180 * allows a caller to specify multiple addresses at which a peer can be 1181 * reached. The way the SCTP stack uses the list of addresses to set up 1182 * the association is implementation dependant. This function only 1183 * specifies that the stack will try to make use of all the addresses in 1184 * the list when needed. 1185 * 1186 * Note that the list of addresses passed in is only used for setting up 1187 * the association. It does not necessarily equal the set of addresses 1188 * the peer uses for the resulting association. If the caller wants to 1189 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1190 * retrieve them after the association has been set up. 1191 * 1192 * Basically do nothing but copying the addresses from user to kernel 1193 * land and invoking either sctp_connectx(). This is used for tunneling 1194 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1195 * 1196 * We don't use copy_from_user() for optimization: we first do the 1197 * sanity checks (buffer size -fast- and access check-healthy 1198 * pointer); if all of those succeed, then we can alloc the memory 1199 * (expensive operation) needed to copy the data to kernel. Then we do 1200 * the copying without checking the user space area 1201 * (__copy_from_user()). 1202 * 1203 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1204 * it. 1205 * 1206 * sk The sk of the socket 1207 * addrs The pointer to the addresses in user land 1208 * addrssize Size of the addrs buffer 1209 * 1210 * Returns >=0 if ok, <0 errno code on error. 1211 */ 1212 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk, 1213 struct sockaddr __user *addrs, 1214 int addrs_size, 1215 sctp_assoc_t *assoc_id) 1216 { 1217 int err = 0; 1218 struct sockaddr *kaddrs; 1219 1220 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n", 1221 __func__, sk, addrs, addrs_size); 1222 1223 if (unlikely(addrs_size <= 0)) 1224 return -EINVAL; 1225 1226 /* Check the user passed a healthy pointer. */ 1227 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1228 return -EFAULT; 1229 1230 /* Alloc space for the address array in kernel memory. */ 1231 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 1232 if (unlikely(!kaddrs)) 1233 return -ENOMEM; 1234 1235 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1236 err = -EFAULT; 1237 } else { 1238 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1239 } 1240 1241 kfree(kaddrs); 1242 1243 return err; 1244 } 1245 1246 /* 1247 * This is an older interface. It's kept for backward compatibility 1248 * to the option that doesn't provide association id. 1249 */ 1250 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk, 1251 struct sockaddr __user *addrs, 1252 int addrs_size) 1253 { 1254 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1255 } 1256 1257 /* 1258 * New interface for the API. The since the API is done with a socket 1259 * option, to make it simple we feed back the association id is as a return 1260 * indication to the call. Error is always negative and association id is 1261 * always positive. 1262 */ 1263 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk, 1264 struct sockaddr __user *addrs, 1265 int addrs_size) 1266 { 1267 sctp_assoc_t assoc_id = 0; 1268 int err = 0; 1269 1270 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1271 1272 if (err) 1273 return err; 1274 else 1275 return assoc_id; 1276 } 1277 1278 /* 1279 * New (hopefully final) interface for the API. 1280 * We use the sctp_getaddrs_old structure so that use-space library 1281 * can avoid any unnecessary allocations. The only defferent part 1282 * is that we store the actual length of the address buffer into the 1283 * addrs_num structure member. That way we can re-use the existing 1284 * code. 1285 */ 1286 SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len, 1287 char __user *optval, 1288 int __user *optlen) 1289 { 1290 struct sctp_getaddrs_old param; 1291 sctp_assoc_t assoc_id = 0; 1292 int err = 0; 1293 1294 if (len < sizeof(param)) 1295 return -EINVAL; 1296 1297 if (copy_from_user(¶m, optval, sizeof(param))) 1298 return -EFAULT; 1299 1300 err = __sctp_setsockopt_connectx(sk, 1301 (struct sockaddr __user *)param.addrs, 1302 param.addr_num, &assoc_id); 1303 1304 if (err == 0 || err == -EINPROGRESS) { 1305 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1306 return -EFAULT; 1307 if (put_user(sizeof(assoc_id), optlen)) 1308 return -EFAULT; 1309 } 1310 1311 return err; 1312 } 1313 1314 /* API 3.1.4 close() - UDP Style Syntax 1315 * Applications use close() to perform graceful shutdown (as described in 1316 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1317 * by a UDP-style socket. 1318 * 1319 * The syntax is 1320 * 1321 * ret = close(int sd); 1322 * 1323 * sd - the socket descriptor of the associations to be closed. 1324 * 1325 * To gracefully shutdown a specific association represented by the 1326 * UDP-style socket, an application should use the sendmsg() call, 1327 * passing no user data, but including the appropriate flag in the 1328 * ancillary data (see Section xxxx). 1329 * 1330 * If sd in the close() call is a branched-off socket representing only 1331 * one association, the shutdown is performed on that association only. 1332 * 1333 * 4.1.6 close() - TCP Style Syntax 1334 * 1335 * Applications use close() to gracefully close down an association. 1336 * 1337 * The syntax is: 1338 * 1339 * int close(int sd); 1340 * 1341 * sd - the socket descriptor of the association to be closed. 1342 * 1343 * After an application calls close() on a socket descriptor, no further 1344 * socket operations will succeed on that descriptor. 1345 * 1346 * API 7.1.4 SO_LINGER 1347 * 1348 * An application using the TCP-style socket can use this option to 1349 * perform the SCTP ABORT primitive. The linger option structure is: 1350 * 1351 * struct linger { 1352 * int l_onoff; // option on/off 1353 * int l_linger; // linger time 1354 * }; 1355 * 1356 * To enable the option, set l_onoff to 1. If the l_linger value is set 1357 * to 0, calling close() is the same as the ABORT primitive. If the 1358 * value is set to a negative value, the setsockopt() call will return 1359 * an error. If the value is set to a positive value linger_time, the 1360 * close() can be blocked for at most linger_time ms. If the graceful 1361 * shutdown phase does not finish during this period, close() will 1362 * return but the graceful shutdown phase continues in the system. 1363 */ 1364 SCTP_STATIC void sctp_close(struct sock *sk, long timeout) 1365 { 1366 struct sctp_endpoint *ep; 1367 struct sctp_association *asoc; 1368 struct list_head *pos, *temp; 1369 1370 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout); 1371 1372 sctp_lock_sock(sk); 1373 sk->sk_shutdown = SHUTDOWN_MASK; 1374 sk->sk_state = SCTP_SS_CLOSING; 1375 1376 ep = sctp_sk(sk)->ep; 1377 1378 /* Walk all associations on an endpoint. */ 1379 list_for_each_safe(pos, temp, &ep->asocs) { 1380 asoc = list_entry(pos, struct sctp_association, asocs); 1381 1382 if (sctp_style(sk, TCP)) { 1383 /* A closed association can still be in the list if 1384 * it belongs to a TCP-style listening socket that is 1385 * not yet accepted. If so, free it. If not, send an 1386 * ABORT or SHUTDOWN based on the linger options. 1387 */ 1388 if (sctp_state(asoc, CLOSED)) { 1389 sctp_unhash_established(asoc); 1390 sctp_association_free(asoc); 1391 continue; 1392 } 1393 } 1394 1395 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 1396 struct sctp_chunk *chunk; 1397 1398 chunk = sctp_make_abort_user(asoc, NULL, 0); 1399 if (chunk) 1400 sctp_primitive_ABORT(asoc, chunk); 1401 } else 1402 sctp_primitive_SHUTDOWN(asoc, NULL); 1403 } 1404 1405 /* Clean up any skbs sitting on the receive queue. */ 1406 sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1407 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1408 1409 /* On a TCP-style socket, block for at most linger_time if set. */ 1410 if (sctp_style(sk, TCP) && timeout) 1411 sctp_wait_for_close(sk, timeout); 1412 1413 /* This will run the backlog queue. */ 1414 sctp_release_sock(sk); 1415 1416 /* Supposedly, no process has access to the socket, but 1417 * the net layers still may. 1418 */ 1419 sctp_local_bh_disable(); 1420 sctp_bh_lock_sock(sk); 1421 1422 /* Hold the sock, since sk_common_release() will put sock_put() 1423 * and we have just a little more cleanup. 1424 */ 1425 sock_hold(sk); 1426 sk_common_release(sk); 1427 1428 sctp_bh_unlock_sock(sk); 1429 sctp_local_bh_enable(); 1430 1431 sock_put(sk); 1432 1433 SCTP_DBG_OBJCNT_DEC(sock); 1434 } 1435 1436 /* Handle EPIPE error. */ 1437 static int sctp_error(struct sock *sk, int flags, int err) 1438 { 1439 if (err == -EPIPE) 1440 err = sock_error(sk) ? : -EPIPE; 1441 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1442 send_sig(SIGPIPE, current, 0); 1443 return err; 1444 } 1445 1446 /* API 3.1.3 sendmsg() - UDP Style Syntax 1447 * 1448 * An application uses sendmsg() and recvmsg() calls to transmit data to 1449 * and receive data from its peer. 1450 * 1451 * ssize_t sendmsg(int socket, const struct msghdr *message, 1452 * int flags); 1453 * 1454 * socket - the socket descriptor of the endpoint. 1455 * message - pointer to the msghdr structure which contains a single 1456 * user message and possibly some ancillary data. 1457 * 1458 * See Section 5 for complete description of the data 1459 * structures. 1460 * 1461 * flags - flags sent or received with the user message, see Section 1462 * 5 for complete description of the flags. 1463 * 1464 * Note: This function could use a rewrite especially when explicit 1465 * connect support comes in. 1466 */ 1467 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1468 1469 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1470 1471 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1472 struct msghdr *msg, size_t msg_len) 1473 { 1474 struct sctp_sock *sp; 1475 struct sctp_endpoint *ep; 1476 struct sctp_association *new_asoc=NULL, *asoc=NULL; 1477 struct sctp_transport *transport, *chunk_tp; 1478 struct sctp_chunk *chunk; 1479 union sctp_addr to; 1480 struct sockaddr *msg_name = NULL; 1481 struct sctp_sndrcvinfo default_sinfo = { 0 }; 1482 struct sctp_sndrcvinfo *sinfo; 1483 struct sctp_initmsg *sinit; 1484 sctp_assoc_t associd = 0; 1485 sctp_cmsgs_t cmsgs = { NULL }; 1486 int err; 1487 sctp_scope_t scope; 1488 long timeo; 1489 __u16 sinfo_flags = 0; 1490 struct sctp_datamsg *datamsg; 1491 int msg_flags = msg->msg_flags; 1492 1493 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n", 1494 sk, msg, msg_len); 1495 1496 err = 0; 1497 sp = sctp_sk(sk); 1498 ep = sp->ep; 1499 1500 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep); 1501 1502 /* We cannot send a message over a TCP-style listening socket. */ 1503 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1504 err = -EPIPE; 1505 goto out_nounlock; 1506 } 1507 1508 /* Parse out the SCTP CMSGs. */ 1509 err = sctp_msghdr_parse(msg, &cmsgs); 1510 1511 if (err) { 1512 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err); 1513 goto out_nounlock; 1514 } 1515 1516 /* Fetch the destination address for this packet. This 1517 * address only selects the association--it is not necessarily 1518 * the address we will send to. 1519 * For a peeled-off socket, msg_name is ignored. 1520 */ 1521 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1522 int msg_namelen = msg->msg_namelen; 1523 1524 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1525 msg_namelen); 1526 if (err) 1527 return err; 1528 1529 if (msg_namelen > sizeof(to)) 1530 msg_namelen = sizeof(to); 1531 memcpy(&to, msg->msg_name, msg_namelen); 1532 msg_name = msg->msg_name; 1533 } 1534 1535 sinfo = cmsgs.info; 1536 sinit = cmsgs.init; 1537 1538 /* Did the user specify SNDRCVINFO? */ 1539 if (sinfo) { 1540 sinfo_flags = sinfo->sinfo_flags; 1541 associd = sinfo->sinfo_assoc_id; 1542 } 1543 1544 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n", 1545 msg_len, sinfo_flags); 1546 1547 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1548 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1549 err = -EINVAL; 1550 goto out_nounlock; 1551 } 1552 1553 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1554 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1555 * If SCTP_ABORT is set, the message length could be non zero with 1556 * the msg_iov set to the user abort reason. 1557 */ 1558 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1559 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1560 err = -EINVAL; 1561 goto out_nounlock; 1562 } 1563 1564 /* If SCTP_ADDR_OVER is set, there must be an address 1565 * specified in msg_name. 1566 */ 1567 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1568 err = -EINVAL; 1569 goto out_nounlock; 1570 } 1571 1572 transport = NULL; 1573 1574 SCTP_DEBUG_PRINTK("About to look up association.\n"); 1575 1576 sctp_lock_sock(sk); 1577 1578 /* If a msg_name has been specified, assume this is to be used. */ 1579 if (msg_name) { 1580 /* Look for a matching association on the endpoint. */ 1581 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1582 if (!asoc) { 1583 /* If we could not find a matching association on the 1584 * endpoint, make sure that it is not a TCP-style 1585 * socket that already has an association or there is 1586 * no peeled-off association on another socket. 1587 */ 1588 if ((sctp_style(sk, TCP) && 1589 sctp_sstate(sk, ESTABLISHED)) || 1590 sctp_endpoint_is_peeled_off(ep, &to)) { 1591 err = -EADDRNOTAVAIL; 1592 goto out_unlock; 1593 } 1594 } 1595 } else { 1596 asoc = sctp_id2assoc(sk, associd); 1597 if (!asoc) { 1598 err = -EPIPE; 1599 goto out_unlock; 1600 } 1601 } 1602 1603 if (asoc) { 1604 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc); 1605 1606 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1607 * socket that has an association in CLOSED state. This can 1608 * happen when an accepted socket has an association that is 1609 * already CLOSED. 1610 */ 1611 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1612 err = -EPIPE; 1613 goto out_unlock; 1614 } 1615 1616 if (sinfo_flags & SCTP_EOF) { 1617 SCTP_DEBUG_PRINTK("Shutting down association: %p\n", 1618 asoc); 1619 sctp_primitive_SHUTDOWN(asoc, NULL); 1620 err = 0; 1621 goto out_unlock; 1622 } 1623 if (sinfo_flags & SCTP_ABORT) { 1624 1625 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1626 if (!chunk) { 1627 err = -ENOMEM; 1628 goto out_unlock; 1629 } 1630 1631 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc); 1632 sctp_primitive_ABORT(asoc, chunk); 1633 err = 0; 1634 goto out_unlock; 1635 } 1636 } 1637 1638 /* Do we need to create the association? */ 1639 if (!asoc) { 1640 SCTP_DEBUG_PRINTK("There is no association yet.\n"); 1641 1642 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1643 err = -EINVAL; 1644 goto out_unlock; 1645 } 1646 1647 /* Check for invalid stream against the stream counts, 1648 * either the default or the user specified stream counts. 1649 */ 1650 if (sinfo) { 1651 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) { 1652 /* Check against the defaults. */ 1653 if (sinfo->sinfo_stream >= 1654 sp->initmsg.sinit_num_ostreams) { 1655 err = -EINVAL; 1656 goto out_unlock; 1657 } 1658 } else { 1659 /* Check against the requested. */ 1660 if (sinfo->sinfo_stream >= 1661 sinit->sinit_num_ostreams) { 1662 err = -EINVAL; 1663 goto out_unlock; 1664 } 1665 } 1666 } 1667 1668 /* 1669 * API 3.1.2 bind() - UDP Style Syntax 1670 * If a bind() or sctp_bindx() is not called prior to a 1671 * sendmsg() call that initiates a new association, the 1672 * system picks an ephemeral port and will choose an address 1673 * set equivalent to binding with a wildcard address. 1674 */ 1675 if (!ep->base.bind_addr.port) { 1676 if (sctp_autobind(sk)) { 1677 err = -EAGAIN; 1678 goto out_unlock; 1679 } 1680 } else { 1681 /* 1682 * If an unprivileged user inherits a one-to-many 1683 * style socket with open associations on a privileged 1684 * port, it MAY be permitted to accept new associations, 1685 * but it SHOULD NOT be permitted to open new 1686 * associations. 1687 */ 1688 if (ep->base.bind_addr.port < PROT_SOCK && 1689 !capable(CAP_NET_BIND_SERVICE)) { 1690 err = -EACCES; 1691 goto out_unlock; 1692 } 1693 } 1694 1695 scope = sctp_scope(&to); 1696 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1697 if (!new_asoc) { 1698 err = -ENOMEM; 1699 goto out_unlock; 1700 } 1701 asoc = new_asoc; 1702 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1703 if (err < 0) { 1704 err = -ENOMEM; 1705 goto out_free; 1706 } 1707 1708 /* If the SCTP_INIT ancillary data is specified, set all 1709 * the association init values accordingly. 1710 */ 1711 if (sinit) { 1712 if (sinit->sinit_num_ostreams) { 1713 asoc->c.sinit_num_ostreams = 1714 sinit->sinit_num_ostreams; 1715 } 1716 if (sinit->sinit_max_instreams) { 1717 asoc->c.sinit_max_instreams = 1718 sinit->sinit_max_instreams; 1719 } 1720 if (sinit->sinit_max_attempts) { 1721 asoc->max_init_attempts 1722 = sinit->sinit_max_attempts; 1723 } 1724 if (sinit->sinit_max_init_timeo) { 1725 asoc->max_init_timeo = 1726 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1727 } 1728 } 1729 1730 /* Prime the peer's transport structures. */ 1731 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1732 if (!transport) { 1733 err = -ENOMEM; 1734 goto out_free; 1735 } 1736 } 1737 1738 /* ASSERT: we have a valid association at this point. */ 1739 SCTP_DEBUG_PRINTK("We have a valid association.\n"); 1740 1741 if (!sinfo) { 1742 /* If the user didn't specify SNDRCVINFO, make up one with 1743 * some defaults. 1744 */ 1745 default_sinfo.sinfo_stream = asoc->default_stream; 1746 default_sinfo.sinfo_flags = asoc->default_flags; 1747 default_sinfo.sinfo_ppid = asoc->default_ppid; 1748 default_sinfo.sinfo_context = asoc->default_context; 1749 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1750 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1751 sinfo = &default_sinfo; 1752 } 1753 1754 /* API 7.1.7, the sndbuf size per association bounds the 1755 * maximum size of data that can be sent in a single send call. 1756 */ 1757 if (msg_len > sk->sk_sndbuf) { 1758 err = -EMSGSIZE; 1759 goto out_free; 1760 } 1761 1762 if (asoc->pmtu_pending) 1763 sctp_assoc_pending_pmtu(asoc); 1764 1765 /* If fragmentation is disabled and the message length exceeds the 1766 * association fragmentation point, return EMSGSIZE. The I-D 1767 * does not specify what this error is, but this looks like 1768 * a great fit. 1769 */ 1770 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1771 err = -EMSGSIZE; 1772 goto out_free; 1773 } 1774 1775 if (sinfo) { 1776 /* Check for invalid stream. */ 1777 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1778 err = -EINVAL; 1779 goto out_free; 1780 } 1781 } 1782 1783 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1784 if (!sctp_wspace(asoc)) { 1785 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1786 if (err) 1787 goto out_free; 1788 } 1789 1790 /* If an address is passed with the sendto/sendmsg call, it is used 1791 * to override the primary destination address in the TCP model, or 1792 * when SCTP_ADDR_OVER flag is set in the UDP model. 1793 */ 1794 if ((sctp_style(sk, TCP) && msg_name) || 1795 (sinfo_flags & SCTP_ADDR_OVER)) { 1796 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1797 if (!chunk_tp) { 1798 err = -EINVAL; 1799 goto out_free; 1800 } 1801 } else 1802 chunk_tp = NULL; 1803 1804 /* Auto-connect, if we aren't connected already. */ 1805 if (sctp_state(asoc, CLOSED)) { 1806 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1807 if (err < 0) 1808 goto out_free; 1809 SCTP_DEBUG_PRINTK("We associated primitively.\n"); 1810 } 1811 1812 /* Break the message into multiple chunks of maximum size. */ 1813 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1814 if (!datamsg) { 1815 err = -ENOMEM; 1816 goto out_free; 1817 } 1818 1819 /* Now send the (possibly) fragmented message. */ 1820 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1821 sctp_chunk_hold(chunk); 1822 1823 /* Do accounting for the write space. */ 1824 sctp_set_owner_w(chunk); 1825 1826 chunk->transport = chunk_tp; 1827 } 1828 1829 /* Send it to the lower layers. Note: all chunks 1830 * must either fail or succeed. The lower layer 1831 * works that way today. Keep it that way or this 1832 * breaks. 1833 */ 1834 err = sctp_primitive_SEND(asoc, datamsg); 1835 /* Did the lower layer accept the chunk? */ 1836 if (err) 1837 sctp_datamsg_free(datamsg); 1838 else 1839 sctp_datamsg_put(datamsg); 1840 1841 SCTP_DEBUG_PRINTK("We sent primitively.\n"); 1842 1843 if (err) 1844 goto out_free; 1845 else 1846 err = msg_len; 1847 1848 /* If we are already past ASSOCIATE, the lower 1849 * layers are responsible for association cleanup. 1850 */ 1851 goto out_unlock; 1852 1853 out_free: 1854 if (new_asoc) 1855 sctp_association_free(asoc); 1856 out_unlock: 1857 sctp_release_sock(sk); 1858 1859 out_nounlock: 1860 return sctp_error(sk, msg_flags, err); 1861 1862 #if 0 1863 do_sock_err: 1864 if (msg_len) 1865 err = msg_len; 1866 else 1867 err = sock_error(sk); 1868 goto out; 1869 1870 do_interrupted: 1871 if (msg_len) 1872 err = msg_len; 1873 goto out; 1874 #endif /* 0 */ 1875 } 1876 1877 /* This is an extended version of skb_pull() that removes the data from the 1878 * start of a skb even when data is spread across the list of skb's in the 1879 * frag_list. len specifies the total amount of data that needs to be removed. 1880 * when 'len' bytes could be removed from the skb, it returns 0. 1881 * If 'len' exceeds the total skb length, it returns the no. of bytes that 1882 * could not be removed. 1883 */ 1884 static int sctp_skb_pull(struct sk_buff *skb, int len) 1885 { 1886 struct sk_buff *list; 1887 int skb_len = skb_headlen(skb); 1888 int rlen; 1889 1890 if (len <= skb_len) { 1891 __skb_pull(skb, len); 1892 return 0; 1893 } 1894 len -= skb_len; 1895 __skb_pull(skb, skb_len); 1896 1897 skb_walk_frags(skb, list) { 1898 rlen = sctp_skb_pull(list, len); 1899 skb->len -= (len-rlen); 1900 skb->data_len -= (len-rlen); 1901 1902 if (!rlen) 1903 return 0; 1904 1905 len = rlen; 1906 } 1907 1908 return len; 1909 } 1910 1911 /* API 3.1.3 recvmsg() - UDP Style Syntax 1912 * 1913 * ssize_t recvmsg(int socket, struct msghdr *message, 1914 * int flags); 1915 * 1916 * socket - the socket descriptor of the endpoint. 1917 * message - pointer to the msghdr structure which contains a single 1918 * user message and possibly some ancillary data. 1919 * 1920 * See Section 5 for complete description of the data 1921 * structures. 1922 * 1923 * flags - flags sent or received with the user message, see Section 1924 * 5 for complete description of the flags. 1925 */ 1926 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); 1927 1928 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 1929 struct msghdr *msg, size_t len, int noblock, 1930 int flags, int *addr_len) 1931 { 1932 struct sctp_ulpevent *event = NULL; 1933 struct sctp_sock *sp = sctp_sk(sk); 1934 struct sk_buff *skb; 1935 int copied; 1936 int err = 0; 1937 int skb_len; 1938 1939 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: " 1940 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg, 1941 "len", len, "knoblauch", noblock, 1942 "flags", flags, "addr_len", addr_len); 1943 1944 sctp_lock_sock(sk); 1945 1946 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 1947 err = -ENOTCONN; 1948 goto out; 1949 } 1950 1951 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 1952 if (!skb) 1953 goto out; 1954 1955 /* Get the total length of the skb including any skb's in the 1956 * frag_list. 1957 */ 1958 skb_len = skb->len; 1959 1960 copied = skb_len; 1961 if (copied > len) 1962 copied = len; 1963 1964 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 1965 1966 event = sctp_skb2event(skb); 1967 1968 if (err) 1969 goto out_free; 1970 1971 sock_recv_timestamp(msg, sk, skb); 1972 if (sctp_ulpevent_is_notification(event)) { 1973 msg->msg_flags |= MSG_NOTIFICATION; 1974 sp->pf->event_msgname(event, msg->msg_name, addr_len); 1975 } else { 1976 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 1977 } 1978 1979 /* Check if we allow SCTP_SNDRCVINFO. */ 1980 if (sp->subscribe.sctp_data_io_event) 1981 sctp_ulpevent_read_sndrcvinfo(event, msg); 1982 #if 0 1983 /* FIXME: we should be calling IP/IPv6 layers. */ 1984 if (sk->sk_protinfo.af_inet.cmsg_flags) 1985 ip_cmsg_recv(msg, skb); 1986 #endif 1987 1988 err = copied; 1989 1990 /* If skb's length exceeds the user's buffer, update the skb and 1991 * push it back to the receive_queue so that the next call to 1992 * recvmsg() will return the remaining data. Don't set MSG_EOR. 1993 */ 1994 if (skb_len > copied) { 1995 msg->msg_flags &= ~MSG_EOR; 1996 if (flags & MSG_PEEK) 1997 goto out_free; 1998 sctp_skb_pull(skb, copied); 1999 skb_queue_head(&sk->sk_receive_queue, skb); 2000 2001 /* When only partial message is copied to the user, increase 2002 * rwnd by that amount. If all the data in the skb is read, 2003 * rwnd is updated when the event is freed. 2004 */ 2005 if (!sctp_ulpevent_is_notification(event)) 2006 sctp_assoc_rwnd_increase(event->asoc, copied); 2007 goto out; 2008 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2009 (event->msg_flags & MSG_EOR)) 2010 msg->msg_flags |= MSG_EOR; 2011 else 2012 msg->msg_flags &= ~MSG_EOR; 2013 2014 out_free: 2015 if (flags & MSG_PEEK) { 2016 /* Release the skb reference acquired after peeking the skb in 2017 * sctp_skb_recv_datagram(). 2018 */ 2019 kfree_skb(skb); 2020 } else { 2021 /* Free the event which includes releasing the reference to 2022 * the owner of the skb, freeing the skb and updating the 2023 * rwnd. 2024 */ 2025 sctp_ulpevent_free(event); 2026 } 2027 out: 2028 sctp_release_sock(sk); 2029 return err; 2030 } 2031 2032 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2033 * 2034 * This option is a on/off flag. If enabled no SCTP message 2035 * fragmentation will be performed. Instead if a message being sent 2036 * exceeds the current PMTU size, the message will NOT be sent and 2037 * instead a error will be indicated to the user. 2038 */ 2039 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2040 char __user *optval, 2041 unsigned int optlen) 2042 { 2043 int val; 2044 2045 if (optlen < sizeof(int)) 2046 return -EINVAL; 2047 2048 if (get_user(val, (int __user *)optval)) 2049 return -EFAULT; 2050 2051 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2052 2053 return 0; 2054 } 2055 2056 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2057 unsigned int optlen) 2058 { 2059 if (optlen > sizeof(struct sctp_event_subscribe)) 2060 return -EINVAL; 2061 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2062 return -EFAULT; 2063 return 0; 2064 } 2065 2066 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2067 * 2068 * This socket option is applicable to the UDP-style socket only. When 2069 * set it will cause associations that are idle for more than the 2070 * specified number of seconds to automatically close. An association 2071 * being idle is defined an association that has NOT sent or received 2072 * user data. The special value of '0' indicates that no automatic 2073 * close of any associations should be performed. The option expects an 2074 * integer defining the number of seconds of idle time before an 2075 * association is closed. 2076 */ 2077 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2078 unsigned int optlen) 2079 { 2080 struct sctp_sock *sp = sctp_sk(sk); 2081 2082 /* Applicable to UDP-style socket only */ 2083 if (sctp_style(sk, TCP)) 2084 return -EOPNOTSUPP; 2085 if (optlen != sizeof(int)) 2086 return -EINVAL; 2087 if (copy_from_user(&sp->autoclose, optval, optlen)) 2088 return -EFAULT; 2089 2090 return 0; 2091 } 2092 2093 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2094 * 2095 * Applications can enable or disable heartbeats for any peer address of 2096 * an association, modify an address's heartbeat interval, force a 2097 * heartbeat to be sent immediately, and adjust the address's maximum 2098 * number of retransmissions sent before an address is considered 2099 * unreachable. The following structure is used to access and modify an 2100 * address's parameters: 2101 * 2102 * struct sctp_paddrparams { 2103 * sctp_assoc_t spp_assoc_id; 2104 * struct sockaddr_storage spp_address; 2105 * uint32_t spp_hbinterval; 2106 * uint16_t spp_pathmaxrxt; 2107 * uint32_t spp_pathmtu; 2108 * uint32_t spp_sackdelay; 2109 * uint32_t spp_flags; 2110 * }; 2111 * 2112 * spp_assoc_id - (one-to-many style socket) This is filled in the 2113 * application, and identifies the association for 2114 * this query. 2115 * spp_address - This specifies which address is of interest. 2116 * spp_hbinterval - This contains the value of the heartbeat interval, 2117 * in milliseconds. If a value of zero 2118 * is present in this field then no changes are to 2119 * be made to this parameter. 2120 * spp_pathmaxrxt - This contains the maximum number of 2121 * retransmissions before this address shall be 2122 * considered unreachable. If a value of zero 2123 * is present in this field then no changes are to 2124 * be made to this parameter. 2125 * spp_pathmtu - When Path MTU discovery is disabled the value 2126 * specified here will be the "fixed" path mtu. 2127 * Note that if the spp_address field is empty 2128 * then all associations on this address will 2129 * have this fixed path mtu set upon them. 2130 * 2131 * spp_sackdelay - When delayed sack is enabled, this value specifies 2132 * the number of milliseconds that sacks will be delayed 2133 * for. This value will apply to all addresses of an 2134 * association if the spp_address field is empty. Note 2135 * also, that if delayed sack is enabled and this 2136 * value is set to 0, no change is made to the last 2137 * recorded delayed sack timer value. 2138 * 2139 * spp_flags - These flags are used to control various features 2140 * on an association. The flag field may contain 2141 * zero or more of the following options. 2142 * 2143 * SPP_HB_ENABLE - Enable heartbeats on the 2144 * specified address. Note that if the address 2145 * field is empty all addresses for the association 2146 * have heartbeats enabled upon them. 2147 * 2148 * SPP_HB_DISABLE - Disable heartbeats on the 2149 * speicifed address. Note that if the address 2150 * field is empty all addresses for the association 2151 * will have their heartbeats disabled. Note also 2152 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2153 * mutually exclusive, only one of these two should 2154 * be specified. Enabling both fields will have 2155 * undetermined results. 2156 * 2157 * SPP_HB_DEMAND - Request a user initiated heartbeat 2158 * to be made immediately. 2159 * 2160 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2161 * heartbeat delayis to be set to the value of 0 2162 * milliseconds. 2163 * 2164 * SPP_PMTUD_ENABLE - This field will enable PMTU 2165 * discovery upon the specified address. Note that 2166 * if the address feild is empty then all addresses 2167 * on the association are effected. 2168 * 2169 * SPP_PMTUD_DISABLE - This field will disable PMTU 2170 * discovery upon the specified address. Note that 2171 * if the address feild is empty then all addresses 2172 * on the association are effected. Not also that 2173 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2174 * exclusive. Enabling both will have undetermined 2175 * results. 2176 * 2177 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2178 * on delayed sack. The time specified in spp_sackdelay 2179 * is used to specify the sack delay for this address. Note 2180 * that if spp_address is empty then all addresses will 2181 * enable delayed sack and take on the sack delay 2182 * value specified in spp_sackdelay. 2183 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2184 * off delayed sack. If the spp_address field is blank then 2185 * delayed sack is disabled for the entire association. Note 2186 * also that this field is mutually exclusive to 2187 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2188 * results. 2189 */ 2190 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2191 struct sctp_transport *trans, 2192 struct sctp_association *asoc, 2193 struct sctp_sock *sp, 2194 int hb_change, 2195 int pmtud_change, 2196 int sackdelay_change) 2197 { 2198 int error; 2199 2200 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2201 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans); 2202 if (error) 2203 return error; 2204 } 2205 2206 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2207 * this field is ignored. Note also that a value of zero indicates 2208 * the current setting should be left unchanged. 2209 */ 2210 if (params->spp_flags & SPP_HB_ENABLE) { 2211 2212 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2213 * set. This lets us use 0 value when this flag 2214 * is set. 2215 */ 2216 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2217 params->spp_hbinterval = 0; 2218 2219 if (params->spp_hbinterval || 2220 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2221 if (trans) { 2222 trans->hbinterval = 2223 msecs_to_jiffies(params->spp_hbinterval); 2224 } else if (asoc) { 2225 asoc->hbinterval = 2226 msecs_to_jiffies(params->spp_hbinterval); 2227 } else { 2228 sp->hbinterval = params->spp_hbinterval; 2229 } 2230 } 2231 } 2232 2233 if (hb_change) { 2234 if (trans) { 2235 trans->param_flags = 2236 (trans->param_flags & ~SPP_HB) | hb_change; 2237 } else if (asoc) { 2238 asoc->param_flags = 2239 (asoc->param_flags & ~SPP_HB) | hb_change; 2240 } else { 2241 sp->param_flags = 2242 (sp->param_flags & ~SPP_HB) | hb_change; 2243 } 2244 } 2245 2246 /* When Path MTU discovery is disabled the value specified here will 2247 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2248 * include the flag SPP_PMTUD_DISABLE for this field to have any 2249 * effect). 2250 */ 2251 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2252 if (trans) { 2253 trans->pathmtu = params->spp_pathmtu; 2254 sctp_assoc_sync_pmtu(asoc); 2255 } else if (asoc) { 2256 asoc->pathmtu = params->spp_pathmtu; 2257 sctp_frag_point(asoc, params->spp_pathmtu); 2258 } else { 2259 sp->pathmtu = params->spp_pathmtu; 2260 } 2261 } 2262 2263 if (pmtud_change) { 2264 if (trans) { 2265 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2266 (params->spp_flags & SPP_PMTUD_ENABLE); 2267 trans->param_flags = 2268 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2269 if (update) { 2270 sctp_transport_pmtu(trans); 2271 sctp_assoc_sync_pmtu(asoc); 2272 } 2273 } else if (asoc) { 2274 asoc->param_flags = 2275 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2276 } else { 2277 sp->param_flags = 2278 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2279 } 2280 } 2281 2282 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2283 * value of this field is ignored. Note also that a value of zero 2284 * indicates the current setting should be left unchanged. 2285 */ 2286 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2287 if (trans) { 2288 trans->sackdelay = 2289 msecs_to_jiffies(params->spp_sackdelay); 2290 } else if (asoc) { 2291 asoc->sackdelay = 2292 msecs_to_jiffies(params->spp_sackdelay); 2293 } else { 2294 sp->sackdelay = params->spp_sackdelay; 2295 } 2296 } 2297 2298 if (sackdelay_change) { 2299 if (trans) { 2300 trans->param_flags = 2301 (trans->param_flags & ~SPP_SACKDELAY) | 2302 sackdelay_change; 2303 } else if (asoc) { 2304 asoc->param_flags = 2305 (asoc->param_flags & ~SPP_SACKDELAY) | 2306 sackdelay_change; 2307 } else { 2308 sp->param_flags = 2309 (sp->param_flags & ~SPP_SACKDELAY) | 2310 sackdelay_change; 2311 } 2312 } 2313 2314 /* Note that unless the spp_flag is set to SPP_PMTUD_ENABLE the value 2315 * of this field is ignored. Note also that a value of zero 2316 * indicates the current setting should be left unchanged. 2317 */ 2318 if ((params->spp_flags & SPP_PMTUD_ENABLE) && params->spp_pathmaxrxt) { 2319 if (trans) { 2320 trans->pathmaxrxt = params->spp_pathmaxrxt; 2321 } else if (asoc) { 2322 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2323 } else { 2324 sp->pathmaxrxt = params->spp_pathmaxrxt; 2325 } 2326 } 2327 2328 return 0; 2329 } 2330 2331 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2332 char __user *optval, 2333 unsigned int optlen) 2334 { 2335 struct sctp_paddrparams params; 2336 struct sctp_transport *trans = NULL; 2337 struct sctp_association *asoc = NULL; 2338 struct sctp_sock *sp = sctp_sk(sk); 2339 int error; 2340 int hb_change, pmtud_change, sackdelay_change; 2341 2342 if (optlen != sizeof(struct sctp_paddrparams)) 2343 return - EINVAL; 2344 2345 if (copy_from_user(¶ms, optval, optlen)) 2346 return -EFAULT; 2347 2348 /* Validate flags and value parameters. */ 2349 hb_change = params.spp_flags & SPP_HB; 2350 pmtud_change = params.spp_flags & SPP_PMTUD; 2351 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2352 2353 if (hb_change == SPP_HB || 2354 pmtud_change == SPP_PMTUD || 2355 sackdelay_change == SPP_SACKDELAY || 2356 params.spp_sackdelay > 500 || 2357 (params.spp_pathmtu 2358 && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2359 return -EINVAL; 2360 2361 /* If an address other than INADDR_ANY is specified, and 2362 * no transport is found, then the request is invalid. 2363 */ 2364 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) { 2365 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2366 params.spp_assoc_id); 2367 if (!trans) 2368 return -EINVAL; 2369 } 2370 2371 /* Get association, if assoc_id != 0 and the socket is a one 2372 * to many style socket, and an association was not found, then 2373 * the id was invalid. 2374 */ 2375 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2376 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2377 return -EINVAL; 2378 2379 /* Heartbeat demand can only be sent on a transport or 2380 * association, but not a socket. 2381 */ 2382 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2383 return -EINVAL; 2384 2385 /* Process parameters. */ 2386 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2387 hb_change, pmtud_change, 2388 sackdelay_change); 2389 2390 if (error) 2391 return error; 2392 2393 /* If changes are for association, also apply parameters to each 2394 * transport. 2395 */ 2396 if (!trans && asoc) { 2397 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2398 transports) { 2399 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2400 hb_change, pmtud_change, 2401 sackdelay_change); 2402 } 2403 } 2404 2405 return 0; 2406 } 2407 2408 /* 2409 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2410 * 2411 * This option will effect the way delayed acks are performed. This 2412 * option allows you to get or set the delayed ack time, in 2413 * milliseconds. It also allows changing the delayed ack frequency. 2414 * Changing the frequency to 1 disables the delayed sack algorithm. If 2415 * the assoc_id is 0, then this sets or gets the endpoints default 2416 * values. If the assoc_id field is non-zero, then the set or get 2417 * effects the specified association for the one to many model (the 2418 * assoc_id field is ignored by the one to one model). Note that if 2419 * sack_delay or sack_freq are 0 when setting this option, then the 2420 * current values will remain unchanged. 2421 * 2422 * struct sctp_sack_info { 2423 * sctp_assoc_t sack_assoc_id; 2424 * uint32_t sack_delay; 2425 * uint32_t sack_freq; 2426 * }; 2427 * 2428 * sack_assoc_id - This parameter, indicates which association the user 2429 * is performing an action upon. Note that if this field's value is 2430 * zero then the endpoints default value is changed (effecting future 2431 * associations only). 2432 * 2433 * sack_delay - This parameter contains the number of milliseconds that 2434 * the user is requesting the delayed ACK timer be set to. Note that 2435 * this value is defined in the standard to be between 200 and 500 2436 * milliseconds. 2437 * 2438 * sack_freq - This parameter contains the number of packets that must 2439 * be received before a sack is sent without waiting for the delay 2440 * timer to expire. The default value for this is 2, setting this 2441 * value to 1 will disable the delayed sack algorithm. 2442 */ 2443 2444 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2445 char __user *optval, unsigned int optlen) 2446 { 2447 struct sctp_sack_info params; 2448 struct sctp_transport *trans = NULL; 2449 struct sctp_association *asoc = NULL; 2450 struct sctp_sock *sp = sctp_sk(sk); 2451 2452 if (optlen == sizeof(struct sctp_sack_info)) { 2453 if (copy_from_user(¶ms, optval, optlen)) 2454 return -EFAULT; 2455 2456 if (params.sack_delay == 0 && params.sack_freq == 0) 2457 return 0; 2458 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2459 printk(KERN_WARNING "SCTP: Use of struct sctp_assoc_value " 2460 "in delayed_ack socket option deprecated\n"); 2461 printk(KERN_WARNING "SCTP: Use struct sctp_sack_info instead\n"); 2462 if (copy_from_user(¶ms, optval, optlen)) 2463 return -EFAULT; 2464 2465 if (params.sack_delay == 0) 2466 params.sack_freq = 1; 2467 else 2468 params.sack_freq = 0; 2469 } else 2470 return - EINVAL; 2471 2472 /* Validate value parameter. */ 2473 if (params.sack_delay > 500) 2474 return -EINVAL; 2475 2476 /* Get association, if sack_assoc_id != 0 and the socket is a one 2477 * to many style socket, and an association was not found, then 2478 * the id was invalid. 2479 */ 2480 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2481 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2482 return -EINVAL; 2483 2484 if (params.sack_delay) { 2485 if (asoc) { 2486 asoc->sackdelay = 2487 msecs_to_jiffies(params.sack_delay); 2488 asoc->param_flags = 2489 (asoc->param_flags & ~SPP_SACKDELAY) | 2490 SPP_SACKDELAY_ENABLE; 2491 } else { 2492 sp->sackdelay = params.sack_delay; 2493 sp->param_flags = 2494 (sp->param_flags & ~SPP_SACKDELAY) | 2495 SPP_SACKDELAY_ENABLE; 2496 } 2497 } 2498 2499 if (params.sack_freq == 1) { 2500 if (asoc) { 2501 asoc->param_flags = 2502 (asoc->param_flags & ~SPP_SACKDELAY) | 2503 SPP_SACKDELAY_DISABLE; 2504 } else { 2505 sp->param_flags = 2506 (sp->param_flags & ~SPP_SACKDELAY) | 2507 SPP_SACKDELAY_DISABLE; 2508 } 2509 } else if (params.sack_freq > 1) { 2510 if (asoc) { 2511 asoc->sackfreq = params.sack_freq; 2512 asoc->param_flags = 2513 (asoc->param_flags & ~SPP_SACKDELAY) | 2514 SPP_SACKDELAY_ENABLE; 2515 } else { 2516 sp->sackfreq = params.sack_freq; 2517 sp->param_flags = 2518 (sp->param_flags & ~SPP_SACKDELAY) | 2519 SPP_SACKDELAY_ENABLE; 2520 } 2521 } 2522 2523 /* If change is for association, also apply to each transport. */ 2524 if (asoc) { 2525 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2526 transports) { 2527 if (params.sack_delay) { 2528 trans->sackdelay = 2529 msecs_to_jiffies(params.sack_delay); 2530 trans->param_flags = 2531 (trans->param_flags & ~SPP_SACKDELAY) | 2532 SPP_SACKDELAY_ENABLE; 2533 } 2534 if (params.sack_freq == 1) { 2535 trans->param_flags = 2536 (trans->param_flags & ~SPP_SACKDELAY) | 2537 SPP_SACKDELAY_DISABLE; 2538 } else if (params.sack_freq > 1) { 2539 trans->sackfreq = params.sack_freq; 2540 trans->param_flags = 2541 (trans->param_flags & ~SPP_SACKDELAY) | 2542 SPP_SACKDELAY_ENABLE; 2543 } 2544 } 2545 } 2546 2547 return 0; 2548 } 2549 2550 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2551 * 2552 * Applications can specify protocol parameters for the default association 2553 * initialization. The option name argument to setsockopt() and getsockopt() 2554 * is SCTP_INITMSG. 2555 * 2556 * Setting initialization parameters is effective only on an unconnected 2557 * socket (for UDP-style sockets only future associations are effected 2558 * by the change). With TCP-style sockets, this option is inherited by 2559 * sockets derived from a listener socket. 2560 */ 2561 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2562 { 2563 struct sctp_initmsg sinit; 2564 struct sctp_sock *sp = sctp_sk(sk); 2565 2566 if (optlen != sizeof(struct sctp_initmsg)) 2567 return -EINVAL; 2568 if (copy_from_user(&sinit, optval, optlen)) 2569 return -EFAULT; 2570 2571 if (sinit.sinit_num_ostreams) 2572 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2573 if (sinit.sinit_max_instreams) 2574 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2575 if (sinit.sinit_max_attempts) 2576 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2577 if (sinit.sinit_max_init_timeo) 2578 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2579 2580 return 0; 2581 } 2582 2583 /* 2584 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2585 * 2586 * Applications that wish to use the sendto() system call may wish to 2587 * specify a default set of parameters that would normally be supplied 2588 * through the inclusion of ancillary data. This socket option allows 2589 * such an application to set the default sctp_sndrcvinfo structure. 2590 * The application that wishes to use this socket option simply passes 2591 * in to this call the sctp_sndrcvinfo structure defined in Section 2592 * 5.2.2) The input parameters accepted by this call include 2593 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2594 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2595 * to this call if the caller is using the UDP model. 2596 */ 2597 static int sctp_setsockopt_default_send_param(struct sock *sk, 2598 char __user *optval, 2599 unsigned int optlen) 2600 { 2601 struct sctp_sndrcvinfo info; 2602 struct sctp_association *asoc; 2603 struct sctp_sock *sp = sctp_sk(sk); 2604 2605 if (optlen != sizeof(struct sctp_sndrcvinfo)) 2606 return -EINVAL; 2607 if (copy_from_user(&info, optval, optlen)) 2608 return -EFAULT; 2609 2610 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2611 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2612 return -EINVAL; 2613 2614 if (asoc) { 2615 asoc->default_stream = info.sinfo_stream; 2616 asoc->default_flags = info.sinfo_flags; 2617 asoc->default_ppid = info.sinfo_ppid; 2618 asoc->default_context = info.sinfo_context; 2619 asoc->default_timetolive = info.sinfo_timetolive; 2620 } else { 2621 sp->default_stream = info.sinfo_stream; 2622 sp->default_flags = info.sinfo_flags; 2623 sp->default_ppid = info.sinfo_ppid; 2624 sp->default_context = info.sinfo_context; 2625 sp->default_timetolive = info.sinfo_timetolive; 2626 } 2627 2628 return 0; 2629 } 2630 2631 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2632 * 2633 * Requests that the local SCTP stack use the enclosed peer address as 2634 * the association primary. The enclosed address must be one of the 2635 * association peer's addresses. 2636 */ 2637 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2638 unsigned int optlen) 2639 { 2640 struct sctp_prim prim; 2641 struct sctp_transport *trans; 2642 2643 if (optlen != sizeof(struct sctp_prim)) 2644 return -EINVAL; 2645 2646 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2647 return -EFAULT; 2648 2649 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2650 if (!trans) 2651 return -EINVAL; 2652 2653 sctp_assoc_set_primary(trans->asoc, trans); 2654 2655 return 0; 2656 } 2657 2658 /* 2659 * 7.1.5 SCTP_NODELAY 2660 * 2661 * Turn on/off any Nagle-like algorithm. This means that packets are 2662 * generally sent as soon as possible and no unnecessary delays are 2663 * introduced, at the cost of more packets in the network. Expects an 2664 * integer boolean flag. 2665 */ 2666 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2667 unsigned int optlen) 2668 { 2669 int val; 2670 2671 if (optlen < sizeof(int)) 2672 return -EINVAL; 2673 if (get_user(val, (int __user *)optval)) 2674 return -EFAULT; 2675 2676 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2677 return 0; 2678 } 2679 2680 /* 2681 * 2682 * 7.1.1 SCTP_RTOINFO 2683 * 2684 * The protocol parameters used to initialize and bound retransmission 2685 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2686 * and modify these parameters. 2687 * All parameters are time values, in milliseconds. A value of 0, when 2688 * modifying the parameters, indicates that the current value should not 2689 * be changed. 2690 * 2691 */ 2692 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 2693 { 2694 struct sctp_rtoinfo rtoinfo; 2695 struct sctp_association *asoc; 2696 2697 if (optlen != sizeof (struct sctp_rtoinfo)) 2698 return -EINVAL; 2699 2700 if (copy_from_user(&rtoinfo, optval, optlen)) 2701 return -EFAULT; 2702 2703 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2704 2705 /* Set the values to the specific association */ 2706 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2707 return -EINVAL; 2708 2709 if (asoc) { 2710 if (rtoinfo.srto_initial != 0) 2711 asoc->rto_initial = 2712 msecs_to_jiffies(rtoinfo.srto_initial); 2713 if (rtoinfo.srto_max != 0) 2714 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max); 2715 if (rtoinfo.srto_min != 0) 2716 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min); 2717 } else { 2718 /* If there is no association or the association-id = 0 2719 * set the values to the endpoint. 2720 */ 2721 struct sctp_sock *sp = sctp_sk(sk); 2722 2723 if (rtoinfo.srto_initial != 0) 2724 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2725 if (rtoinfo.srto_max != 0) 2726 sp->rtoinfo.srto_max = rtoinfo.srto_max; 2727 if (rtoinfo.srto_min != 0) 2728 sp->rtoinfo.srto_min = rtoinfo.srto_min; 2729 } 2730 2731 return 0; 2732 } 2733 2734 /* 2735 * 2736 * 7.1.2 SCTP_ASSOCINFO 2737 * 2738 * This option is used to tune the maximum retransmission attempts 2739 * of the association. 2740 * Returns an error if the new association retransmission value is 2741 * greater than the sum of the retransmission value of the peer. 2742 * See [SCTP] for more information. 2743 * 2744 */ 2745 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 2746 { 2747 2748 struct sctp_assocparams assocparams; 2749 struct sctp_association *asoc; 2750 2751 if (optlen != sizeof(struct sctp_assocparams)) 2752 return -EINVAL; 2753 if (copy_from_user(&assocparams, optval, optlen)) 2754 return -EFAULT; 2755 2756 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2757 2758 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2759 return -EINVAL; 2760 2761 /* Set the values to the specific association */ 2762 if (asoc) { 2763 if (assocparams.sasoc_asocmaxrxt != 0) { 2764 __u32 path_sum = 0; 2765 int paths = 0; 2766 struct sctp_transport *peer_addr; 2767 2768 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 2769 transports) { 2770 path_sum += peer_addr->pathmaxrxt; 2771 paths++; 2772 } 2773 2774 /* Only validate asocmaxrxt if we have more than 2775 * one path/transport. We do this because path 2776 * retransmissions are only counted when we have more 2777 * then one path. 2778 */ 2779 if (paths > 1 && 2780 assocparams.sasoc_asocmaxrxt > path_sum) 2781 return -EINVAL; 2782 2783 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 2784 } 2785 2786 if (assocparams.sasoc_cookie_life != 0) { 2787 asoc->cookie_life.tv_sec = 2788 assocparams.sasoc_cookie_life / 1000; 2789 asoc->cookie_life.tv_usec = 2790 (assocparams.sasoc_cookie_life % 1000) 2791 * 1000; 2792 } 2793 } else { 2794 /* Set the values to the endpoint */ 2795 struct sctp_sock *sp = sctp_sk(sk); 2796 2797 if (assocparams.sasoc_asocmaxrxt != 0) 2798 sp->assocparams.sasoc_asocmaxrxt = 2799 assocparams.sasoc_asocmaxrxt; 2800 if (assocparams.sasoc_cookie_life != 0) 2801 sp->assocparams.sasoc_cookie_life = 2802 assocparams.sasoc_cookie_life; 2803 } 2804 return 0; 2805 } 2806 2807 /* 2808 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 2809 * 2810 * This socket option is a boolean flag which turns on or off mapped V4 2811 * addresses. If this option is turned on and the socket is type 2812 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 2813 * If this option is turned off, then no mapping will be done of V4 2814 * addresses and a user will receive both PF_INET6 and PF_INET type 2815 * addresses on the socket. 2816 */ 2817 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 2818 { 2819 int val; 2820 struct sctp_sock *sp = sctp_sk(sk); 2821 2822 if (optlen < sizeof(int)) 2823 return -EINVAL; 2824 if (get_user(val, (int __user *)optval)) 2825 return -EFAULT; 2826 if (val) 2827 sp->v4mapped = 1; 2828 else 2829 sp->v4mapped = 0; 2830 2831 return 0; 2832 } 2833 2834 /* 2835 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 2836 * This option will get or set the maximum size to put in any outgoing 2837 * SCTP DATA chunk. If a message is larger than this size it will be 2838 * fragmented by SCTP into the specified size. Note that the underlying 2839 * SCTP implementation may fragment into smaller sized chunks when the 2840 * PMTU of the underlying association is smaller than the value set by 2841 * the user. The default value for this option is '0' which indicates 2842 * the user is NOT limiting fragmentation and only the PMTU will effect 2843 * SCTP's choice of DATA chunk size. Note also that values set larger 2844 * than the maximum size of an IP datagram will effectively let SCTP 2845 * control fragmentation (i.e. the same as setting this option to 0). 2846 * 2847 * The following structure is used to access and modify this parameter: 2848 * 2849 * struct sctp_assoc_value { 2850 * sctp_assoc_t assoc_id; 2851 * uint32_t assoc_value; 2852 * }; 2853 * 2854 * assoc_id: This parameter is ignored for one-to-one style sockets. 2855 * For one-to-many style sockets this parameter indicates which 2856 * association the user is performing an action upon. Note that if 2857 * this field's value is zero then the endpoints default value is 2858 * changed (effecting future associations only). 2859 * assoc_value: This parameter specifies the maximum size in bytes. 2860 */ 2861 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 2862 { 2863 struct sctp_assoc_value params; 2864 struct sctp_association *asoc; 2865 struct sctp_sock *sp = sctp_sk(sk); 2866 int val; 2867 2868 if (optlen == sizeof(int)) { 2869 printk(KERN_WARNING 2870 "SCTP: Use of int in maxseg socket option deprecated\n"); 2871 printk(KERN_WARNING 2872 "SCTP: Use struct sctp_assoc_value instead\n"); 2873 if (copy_from_user(&val, optval, optlen)) 2874 return -EFAULT; 2875 params.assoc_id = 0; 2876 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2877 if (copy_from_user(¶ms, optval, optlen)) 2878 return -EFAULT; 2879 val = params.assoc_value; 2880 } else 2881 return -EINVAL; 2882 2883 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 2884 return -EINVAL; 2885 2886 asoc = sctp_id2assoc(sk, params.assoc_id); 2887 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 2888 return -EINVAL; 2889 2890 if (asoc) { 2891 if (val == 0) { 2892 val = asoc->pathmtu; 2893 val -= sp->pf->af->net_header_len; 2894 val -= sizeof(struct sctphdr) + 2895 sizeof(struct sctp_data_chunk); 2896 } 2897 asoc->user_frag = val; 2898 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 2899 } else { 2900 sp->user_frag = val; 2901 } 2902 2903 return 0; 2904 } 2905 2906 2907 /* 2908 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 2909 * 2910 * Requests that the peer mark the enclosed address as the association 2911 * primary. The enclosed address must be one of the association's 2912 * locally bound addresses. The following structure is used to make a 2913 * set primary request: 2914 */ 2915 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 2916 unsigned int optlen) 2917 { 2918 struct sctp_sock *sp; 2919 struct sctp_endpoint *ep; 2920 struct sctp_association *asoc = NULL; 2921 struct sctp_setpeerprim prim; 2922 struct sctp_chunk *chunk; 2923 int err; 2924 2925 sp = sctp_sk(sk); 2926 ep = sp->ep; 2927 2928 if (!sctp_addip_enable) 2929 return -EPERM; 2930 2931 if (optlen != sizeof(struct sctp_setpeerprim)) 2932 return -EINVAL; 2933 2934 if (copy_from_user(&prim, optval, optlen)) 2935 return -EFAULT; 2936 2937 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 2938 if (!asoc) 2939 return -EINVAL; 2940 2941 if (!asoc->peer.asconf_capable) 2942 return -EPERM; 2943 2944 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 2945 return -EPERM; 2946 2947 if (!sctp_state(asoc, ESTABLISHED)) 2948 return -ENOTCONN; 2949 2950 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 2951 return -EADDRNOTAVAIL; 2952 2953 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 2954 chunk = sctp_make_asconf_set_prim(asoc, 2955 (union sctp_addr *)&prim.sspp_addr); 2956 if (!chunk) 2957 return -ENOMEM; 2958 2959 err = sctp_send_asconf(asoc, chunk); 2960 2961 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n"); 2962 2963 return err; 2964 } 2965 2966 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 2967 unsigned int optlen) 2968 { 2969 struct sctp_setadaptation adaptation; 2970 2971 if (optlen != sizeof(struct sctp_setadaptation)) 2972 return -EINVAL; 2973 if (copy_from_user(&adaptation, optval, optlen)) 2974 return -EFAULT; 2975 2976 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 2977 2978 return 0; 2979 } 2980 2981 /* 2982 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 2983 * 2984 * The context field in the sctp_sndrcvinfo structure is normally only 2985 * used when a failed message is retrieved holding the value that was 2986 * sent down on the actual send call. This option allows the setting of 2987 * a default context on an association basis that will be received on 2988 * reading messages from the peer. This is especially helpful in the 2989 * one-2-many model for an application to keep some reference to an 2990 * internal state machine that is processing messages on the 2991 * association. Note that the setting of this value only effects 2992 * received messages from the peer and does not effect the value that is 2993 * saved with outbound messages. 2994 */ 2995 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 2996 unsigned int optlen) 2997 { 2998 struct sctp_assoc_value params; 2999 struct sctp_sock *sp; 3000 struct sctp_association *asoc; 3001 3002 if (optlen != sizeof(struct sctp_assoc_value)) 3003 return -EINVAL; 3004 if (copy_from_user(¶ms, optval, optlen)) 3005 return -EFAULT; 3006 3007 sp = sctp_sk(sk); 3008 3009 if (params.assoc_id != 0) { 3010 asoc = sctp_id2assoc(sk, params.assoc_id); 3011 if (!asoc) 3012 return -EINVAL; 3013 asoc->default_rcv_context = params.assoc_value; 3014 } else { 3015 sp->default_rcv_context = params.assoc_value; 3016 } 3017 3018 return 0; 3019 } 3020 3021 /* 3022 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3023 * 3024 * This options will at a minimum specify if the implementation is doing 3025 * fragmented interleave. Fragmented interleave, for a one to many 3026 * socket, is when subsequent calls to receive a message may return 3027 * parts of messages from different associations. Some implementations 3028 * may allow you to turn this value on or off. If so, when turned off, 3029 * no fragment interleave will occur (which will cause a head of line 3030 * blocking amongst multiple associations sharing the same one to many 3031 * socket). When this option is turned on, then each receive call may 3032 * come from a different association (thus the user must receive data 3033 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3034 * association each receive belongs to. 3035 * 3036 * This option takes a boolean value. A non-zero value indicates that 3037 * fragmented interleave is on. A value of zero indicates that 3038 * fragmented interleave is off. 3039 * 3040 * Note that it is important that an implementation that allows this 3041 * option to be turned on, have it off by default. Otherwise an unaware 3042 * application using the one to many model may become confused and act 3043 * incorrectly. 3044 */ 3045 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3046 char __user *optval, 3047 unsigned int optlen) 3048 { 3049 int val; 3050 3051 if (optlen != sizeof(int)) 3052 return -EINVAL; 3053 if (get_user(val, (int __user *)optval)) 3054 return -EFAULT; 3055 3056 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 3057 3058 return 0; 3059 } 3060 3061 /* 3062 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3063 * (SCTP_PARTIAL_DELIVERY_POINT) 3064 * 3065 * This option will set or get the SCTP partial delivery point. This 3066 * point is the size of a message where the partial delivery API will be 3067 * invoked to help free up rwnd space for the peer. Setting this to a 3068 * lower value will cause partial deliveries to happen more often. The 3069 * calls argument is an integer that sets or gets the partial delivery 3070 * point. Note also that the call will fail if the user attempts to set 3071 * this value larger than the socket receive buffer size. 3072 * 3073 * Note that any single message having a length smaller than or equal to 3074 * the SCTP partial delivery point will be delivered in one single read 3075 * call as long as the user provided buffer is large enough to hold the 3076 * message. 3077 */ 3078 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3079 char __user *optval, 3080 unsigned int optlen) 3081 { 3082 u32 val; 3083 3084 if (optlen != sizeof(u32)) 3085 return -EINVAL; 3086 if (get_user(val, (int __user *)optval)) 3087 return -EFAULT; 3088 3089 /* Note: We double the receive buffer from what the user sets 3090 * it to be, also initial rwnd is based on rcvbuf/2. 3091 */ 3092 if (val > (sk->sk_rcvbuf >> 1)) 3093 return -EINVAL; 3094 3095 sctp_sk(sk)->pd_point = val; 3096 3097 return 0; /* is this the right error code? */ 3098 } 3099 3100 /* 3101 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3102 * 3103 * This option will allow a user to change the maximum burst of packets 3104 * that can be emitted by this association. Note that the default value 3105 * is 4, and some implementations may restrict this setting so that it 3106 * can only be lowered. 3107 * 3108 * NOTE: This text doesn't seem right. Do this on a socket basis with 3109 * future associations inheriting the socket value. 3110 */ 3111 static int sctp_setsockopt_maxburst(struct sock *sk, 3112 char __user *optval, 3113 unsigned int optlen) 3114 { 3115 struct sctp_assoc_value params; 3116 struct sctp_sock *sp; 3117 struct sctp_association *asoc; 3118 int val; 3119 int assoc_id = 0; 3120 3121 if (optlen == sizeof(int)) { 3122 printk(KERN_WARNING 3123 "SCTP: Use of int in max_burst socket option deprecated\n"); 3124 printk(KERN_WARNING 3125 "SCTP: Use struct sctp_assoc_value instead\n"); 3126 if (copy_from_user(&val, optval, optlen)) 3127 return -EFAULT; 3128 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3129 if (copy_from_user(¶ms, optval, optlen)) 3130 return -EFAULT; 3131 val = params.assoc_value; 3132 assoc_id = params.assoc_id; 3133 } else 3134 return -EINVAL; 3135 3136 sp = sctp_sk(sk); 3137 3138 if (assoc_id != 0) { 3139 asoc = sctp_id2assoc(sk, assoc_id); 3140 if (!asoc) 3141 return -EINVAL; 3142 asoc->max_burst = val; 3143 } else 3144 sp->max_burst = val; 3145 3146 return 0; 3147 } 3148 3149 /* 3150 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3151 * 3152 * This set option adds a chunk type that the user is requesting to be 3153 * received only in an authenticated way. Changes to the list of chunks 3154 * will only effect future associations on the socket. 3155 */ 3156 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3157 char __user *optval, 3158 unsigned int optlen) 3159 { 3160 struct sctp_authchunk val; 3161 3162 if (!sctp_auth_enable) 3163 return -EACCES; 3164 3165 if (optlen != sizeof(struct sctp_authchunk)) 3166 return -EINVAL; 3167 if (copy_from_user(&val, optval, optlen)) 3168 return -EFAULT; 3169 3170 switch (val.sauth_chunk) { 3171 case SCTP_CID_INIT: 3172 case SCTP_CID_INIT_ACK: 3173 case SCTP_CID_SHUTDOWN_COMPLETE: 3174 case SCTP_CID_AUTH: 3175 return -EINVAL; 3176 } 3177 3178 /* add this chunk id to the endpoint */ 3179 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk); 3180 } 3181 3182 /* 3183 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3184 * 3185 * This option gets or sets the list of HMAC algorithms that the local 3186 * endpoint requires the peer to use. 3187 */ 3188 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3189 char __user *optval, 3190 unsigned int optlen) 3191 { 3192 struct sctp_hmacalgo *hmacs; 3193 u32 idents; 3194 int err; 3195 3196 if (!sctp_auth_enable) 3197 return -EACCES; 3198 3199 if (optlen < sizeof(struct sctp_hmacalgo)) 3200 return -EINVAL; 3201 3202 hmacs = kmalloc(optlen, GFP_KERNEL); 3203 if (!hmacs) 3204 return -ENOMEM; 3205 3206 if (copy_from_user(hmacs, optval, optlen)) { 3207 err = -EFAULT; 3208 goto out; 3209 } 3210 3211 idents = hmacs->shmac_num_idents; 3212 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3213 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3214 err = -EINVAL; 3215 goto out; 3216 } 3217 3218 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs); 3219 out: 3220 kfree(hmacs); 3221 return err; 3222 } 3223 3224 /* 3225 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3226 * 3227 * This option will set a shared secret key which is used to build an 3228 * association shared key. 3229 */ 3230 static int sctp_setsockopt_auth_key(struct sock *sk, 3231 char __user *optval, 3232 unsigned int optlen) 3233 { 3234 struct sctp_authkey *authkey; 3235 struct sctp_association *asoc; 3236 int ret; 3237 3238 if (!sctp_auth_enable) 3239 return -EACCES; 3240 3241 if (optlen <= sizeof(struct sctp_authkey)) 3242 return -EINVAL; 3243 3244 authkey = kmalloc(optlen, GFP_KERNEL); 3245 if (!authkey) 3246 return -ENOMEM; 3247 3248 if (copy_from_user(authkey, optval, optlen)) { 3249 ret = -EFAULT; 3250 goto out; 3251 } 3252 3253 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3254 ret = -EINVAL; 3255 goto out; 3256 } 3257 3258 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3259 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3260 ret = -EINVAL; 3261 goto out; 3262 } 3263 3264 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey); 3265 out: 3266 kfree(authkey); 3267 return ret; 3268 } 3269 3270 /* 3271 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3272 * 3273 * This option will get or set the active shared key to be used to build 3274 * the association shared key. 3275 */ 3276 static int sctp_setsockopt_active_key(struct sock *sk, 3277 char __user *optval, 3278 unsigned int optlen) 3279 { 3280 struct sctp_authkeyid val; 3281 struct sctp_association *asoc; 3282 3283 if (!sctp_auth_enable) 3284 return -EACCES; 3285 3286 if (optlen != sizeof(struct sctp_authkeyid)) 3287 return -EINVAL; 3288 if (copy_from_user(&val, optval, optlen)) 3289 return -EFAULT; 3290 3291 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3292 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3293 return -EINVAL; 3294 3295 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc, 3296 val.scact_keynumber); 3297 } 3298 3299 /* 3300 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3301 * 3302 * This set option will delete a shared secret key from use. 3303 */ 3304 static int sctp_setsockopt_del_key(struct sock *sk, 3305 char __user *optval, 3306 unsigned int optlen) 3307 { 3308 struct sctp_authkeyid val; 3309 struct sctp_association *asoc; 3310 3311 if (!sctp_auth_enable) 3312 return -EACCES; 3313 3314 if (optlen != sizeof(struct sctp_authkeyid)) 3315 return -EINVAL; 3316 if (copy_from_user(&val, optval, optlen)) 3317 return -EFAULT; 3318 3319 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3320 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3321 return -EINVAL; 3322 3323 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc, 3324 val.scact_keynumber); 3325 3326 } 3327 3328 3329 /* API 6.2 setsockopt(), getsockopt() 3330 * 3331 * Applications use setsockopt() and getsockopt() to set or retrieve 3332 * socket options. Socket options are used to change the default 3333 * behavior of sockets calls. They are described in Section 7. 3334 * 3335 * The syntax is: 3336 * 3337 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3338 * int __user *optlen); 3339 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3340 * int optlen); 3341 * 3342 * sd - the socket descript. 3343 * level - set to IPPROTO_SCTP for all SCTP options. 3344 * optname - the option name. 3345 * optval - the buffer to store the value of the option. 3346 * optlen - the size of the buffer. 3347 */ 3348 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname, 3349 char __user *optval, unsigned int optlen) 3350 { 3351 int retval = 0; 3352 3353 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n", 3354 sk, optname); 3355 3356 /* I can hardly begin to describe how wrong this is. This is 3357 * so broken as to be worse than useless. The API draft 3358 * REALLY is NOT helpful here... I am not convinced that the 3359 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3360 * are at all well-founded. 3361 */ 3362 if (level != SOL_SCTP) { 3363 struct sctp_af *af = sctp_sk(sk)->pf->af; 3364 retval = af->setsockopt(sk, level, optname, optval, optlen); 3365 goto out_nounlock; 3366 } 3367 3368 sctp_lock_sock(sk); 3369 3370 switch (optname) { 3371 case SCTP_SOCKOPT_BINDX_ADD: 3372 /* 'optlen' is the size of the addresses buffer. */ 3373 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3374 optlen, SCTP_BINDX_ADD_ADDR); 3375 break; 3376 3377 case SCTP_SOCKOPT_BINDX_REM: 3378 /* 'optlen' is the size of the addresses buffer. */ 3379 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3380 optlen, SCTP_BINDX_REM_ADDR); 3381 break; 3382 3383 case SCTP_SOCKOPT_CONNECTX_OLD: 3384 /* 'optlen' is the size of the addresses buffer. */ 3385 retval = sctp_setsockopt_connectx_old(sk, 3386 (struct sockaddr __user *)optval, 3387 optlen); 3388 break; 3389 3390 case SCTP_SOCKOPT_CONNECTX: 3391 /* 'optlen' is the size of the addresses buffer. */ 3392 retval = sctp_setsockopt_connectx(sk, 3393 (struct sockaddr __user *)optval, 3394 optlen); 3395 break; 3396 3397 case SCTP_DISABLE_FRAGMENTS: 3398 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3399 break; 3400 3401 case SCTP_EVENTS: 3402 retval = sctp_setsockopt_events(sk, optval, optlen); 3403 break; 3404 3405 case SCTP_AUTOCLOSE: 3406 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3407 break; 3408 3409 case SCTP_PEER_ADDR_PARAMS: 3410 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3411 break; 3412 3413 case SCTP_DELAYED_ACK: 3414 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 3415 break; 3416 case SCTP_PARTIAL_DELIVERY_POINT: 3417 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3418 break; 3419 3420 case SCTP_INITMSG: 3421 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3422 break; 3423 case SCTP_DEFAULT_SEND_PARAM: 3424 retval = sctp_setsockopt_default_send_param(sk, optval, 3425 optlen); 3426 break; 3427 case SCTP_PRIMARY_ADDR: 3428 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3429 break; 3430 case SCTP_SET_PEER_PRIMARY_ADDR: 3431 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3432 break; 3433 case SCTP_NODELAY: 3434 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3435 break; 3436 case SCTP_RTOINFO: 3437 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3438 break; 3439 case SCTP_ASSOCINFO: 3440 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3441 break; 3442 case SCTP_I_WANT_MAPPED_V4_ADDR: 3443 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3444 break; 3445 case SCTP_MAXSEG: 3446 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3447 break; 3448 case SCTP_ADAPTATION_LAYER: 3449 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3450 break; 3451 case SCTP_CONTEXT: 3452 retval = sctp_setsockopt_context(sk, optval, optlen); 3453 break; 3454 case SCTP_FRAGMENT_INTERLEAVE: 3455 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 3456 break; 3457 case SCTP_MAX_BURST: 3458 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 3459 break; 3460 case SCTP_AUTH_CHUNK: 3461 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 3462 break; 3463 case SCTP_HMAC_IDENT: 3464 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 3465 break; 3466 case SCTP_AUTH_KEY: 3467 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 3468 break; 3469 case SCTP_AUTH_ACTIVE_KEY: 3470 retval = sctp_setsockopt_active_key(sk, optval, optlen); 3471 break; 3472 case SCTP_AUTH_DELETE_KEY: 3473 retval = sctp_setsockopt_del_key(sk, optval, optlen); 3474 break; 3475 default: 3476 retval = -ENOPROTOOPT; 3477 break; 3478 } 3479 3480 sctp_release_sock(sk); 3481 3482 out_nounlock: 3483 return retval; 3484 } 3485 3486 /* API 3.1.6 connect() - UDP Style Syntax 3487 * 3488 * An application may use the connect() call in the UDP model to initiate an 3489 * association without sending data. 3490 * 3491 * The syntax is: 3492 * 3493 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 3494 * 3495 * sd: the socket descriptor to have a new association added to. 3496 * 3497 * nam: the address structure (either struct sockaddr_in or struct 3498 * sockaddr_in6 defined in RFC2553 [7]). 3499 * 3500 * len: the size of the address. 3501 */ 3502 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr, 3503 int addr_len) 3504 { 3505 int err = 0; 3506 struct sctp_af *af; 3507 3508 sctp_lock_sock(sk); 3509 3510 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n", 3511 __func__, sk, addr, addr_len); 3512 3513 /* Validate addr_len before calling common connect/connectx routine. */ 3514 af = sctp_get_af_specific(addr->sa_family); 3515 if (!af || addr_len < af->sockaddr_len) { 3516 err = -EINVAL; 3517 } else { 3518 /* Pass correct addr len to common routine (so it knows there 3519 * is only one address being passed. 3520 */ 3521 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 3522 } 3523 3524 sctp_release_sock(sk); 3525 return err; 3526 } 3527 3528 /* FIXME: Write comments. */ 3529 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags) 3530 { 3531 return -EOPNOTSUPP; /* STUB */ 3532 } 3533 3534 /* 4.1.4 accept() - TCP Style Syntax 3535 * 3536 * Applications use accept() call to remove an established SCTP 3537 * association from the accept queue of the endpoint. A new socket 3538 * descriptor will be returned from accept() to represent the newly 3539 * formed association. 3540 */ 3541 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err) 3542 { 3543 struct sctp_sock *sp; 3544 struct sctp_endpoint *ep; 3545 struct sock *newsk = NULL; 3546 struct sctp_association *asoc; 3547 long timeo; 3548 int error = 0; 3549 3550 sctp_lock_sock(sk); 3551 3552 sp = sctp_sk(sk); 3553 ep = sp->ep; 3554 3555 if (!sctp_style(sk, TCP)) { 3556 error = -EOPNOTSUPP; 3557 goto out; 3558 } 3559 3560 if (!sctp_sstate(sk, LISTENING)) { 3561 error = -EINVAL; 3562 goto out; 3563 } 3564 3565 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 3566 3567 error = sctp_wait_for_accept(sk, timeo); 3568 if (error) 3569 goto out; 3570 3571 /* We treat the list of associations on the endpoint as the accept 3572 * queue and pick the first association on the list. 3573 */ 3574 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 3575 3576 newsk = sp->pf->create_accept_sk(sk, asoc); 3577 if (!newsk) { 3578 error = -ENOMEM; 3579 goto out; 3580 } 3581 3582 /* Populate the fields of the newsk from the oldsk and migrate the 3583 * asoc to the newsk. 3584 */ 3585 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 3586 3587 out: 3588 sctp_release_sock(sk); 3589 *err = error; 3590 return newsk; 3591 } 3592 3593 /* The SCTP ioctl handler. */ 3594 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3595 { 3596 return -ENOIOCTLCMD; 3597 } 3598 3599 /* This is the function which gets called during socket creation to 3600 * initialized the SCTP-specific portion of the sock. 3601 * The sock structure should already be zero-filled memory. 3602 */ 3603 SCTP_STATIC int sctp_init_sock(struct sock *sk) 3604 { 3605 struct sctp_endpoint *ep; 3606 struct sctp_sock *sp; 3607 3608 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk); 3609 3610 sp = sctp_sk(sk); 3611 3612 /* Initialize the SCTP per socket area. */ 3613 switch (sk->sk_type) { 3614 case SOCK_SEQPACKET: 3615 sp->type = SCTP_SOCKET_UDP; 3616 break; 3617 case SOCK_STREAM: 3618 sp->type = SCTP_SOCKET_TCP; 3619 break; 3620 default: 3621 return -ESOCKTNOSUPPORT; 3622 } 3623 3624 /* Initialize default send parameters. These parameters can be 3625 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 3626 */ 3627 sp->default_stream = 0; 3628 sp->default_ppid = 0; 3629 sp->default_flags = 0; 3630 sp->default_context = 0; 3631 sp->default_timetolive = 0; 3632 3633 sp->default_rcv_context = 0; 3634 sp->max_burst = sctp_max_burst; 3635 3636 /* Initialize default setup parameters. These parameters 3637 * can be modified with the SCTP_INITMSG socket option or 3638 * overridden by the SCTP_INIT CMSG. 3639 */ 3640 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 3641 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 3642 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init; 3643 sp->initmsg.sinit_max_init_timeo = sctp_rto_max; 3644 3645 /* Initialize default RTO related parameters. These parameters can 3646 * be modified for with the SCTP_RTOINFO socket option. 3647 */ 3648 sp->rtoinfo.srto_initial = sctp_rto_initial; 3649 sp->rtoinfo.srto_max = sctp_rto_max; 3650 sp->rtoinfo.srto_min = sctp_rto_min; 3651 3652 /* Initialize default association related parameters. These parameters 3653 * can be modified with the SCTP_ASSOCINFO socket option. 3654 */ 3655 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association; 3656 sp->assocparams.sasoc_number_peer_destinations = 0; 3657 sp->assocparams.sasoc_peer_rwnd = 0; 3658 sp->assocparams.sasoc_local_rwnd = 0; 3659 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life; 3660 3661 /* Initialize default event subscriptions. By default, all the 3662 * options are off. 3663 */ 3664 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 3665 3666 /* Default Peer Address Parameters. These defaults can 3667 * be modified via SCTP_PEER_ADDR_PARAMS 3668 */ 3669 sp->hbinterval = sctp_hb_interval; 3670 sp->pathmaxrxt = sctp_max_retrans_path; 3671 sp->pathmtu = 0; // allow default discovery 3672 sp->sackdelay = sctp_sack_timeout; 3673 sp->sackfreq = 2; 3674 sp->param_flags = SPP_HB_ENABLE | 3675 SPP_PMTUD_ENABLE | 3676 SPP_SACKDELAY_ENABLE; 3677 3678 /* If enabled no SCTP message fragmentation will be performed. 3679 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 3680 */ 3681 sp->disable_fragments = 0; 3682 3683 /* Enable Nagle algorithm by default. */ 3684 sp->nodelay = 0; 3685 3686 /* Enable by default. */ 3687 sp->v4mapped = 1; 3688 3689 /* Auto-close idle associations after the configured 3690 * number of seconds. A value of 0 disables this 3691 * feature. Configure through the SCTP_AUTOCLOSE socket option, 3692 * for UDP-style sockets only. 3693 */ 3694 sp->autoclose = 0; 3695 3696 /* User specified fragmentation limit. */ 3697 sp->user_frag = 0; 3698 3699 sp->adaptation_ind = 0; 3700 3701 sp->pf = sctp_get_pf_specific(sk->sk_family); 3702 3703 /* Control variables for partial data delivery. */ 3704 atomic_set(&sp->pd_mode, 0); 3705 skb_queue_head_init(&sp->pd_lobby); 3706 sp->frag_interleave = 0; 3707 3708 /* Create a per socket endpoint structure. Even if we 3709 * change the data structure relationships, this may still 3710 * be useful for storing pre-connect address information. 3711 */ 3712 ep = sctp_endpoint_new(sk, GFP_KERNEL); 3713 if (!ep) 3714 return -ENOMEM; 3715 3716 sp->ep = ep; 3717 sp->hmac = NULL; 3718 3719 SCTP_DBG_OBJCNT_INC(sock); 3720 percpu_counter_inc(&sctp_sockets_allocated); 3721 3722 local_bh_disable(); 3723 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3724 local_bh_enable(); 3725 3726 return 0; 3727 } 3728 3729 /* Cleanup any SCTP per socket resources. */ 3730 SCTP_STATIC void sctp_destroy_sock(struct sock *sk) 3731 { 3732 struct sctp_endpoint *ep; 3733 3734 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk); 3735 3736 /* Release our hold on the endpoint. */ 3737 ep = sctp_sk(sk)->ep; 3738 sctp_endpoint_free(ep); 3739 percpu_counter_dec(&sctp_sockets_allocated); 3740 local_bh_disable(); 3741 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3742 local_bh_enable(); 3743 } 3744 3745 /* API 4.1.7 shutdown() - TCP Style Syntax 3746 * int shutdown(int socket, int how); 3747 * 3748 * sd - the socket descriptor of the association to be closed. 3749 * how - Specifies the type of shutdown. The values are 3750 * as follows: 3751 * SHUT_RD 3752 * Disables further receive operations. No SCTP 3753 * protocol action is taken. 3754 * SHUT_WR 3755 * Disables further send operations, and initiates 3756 * the SCTP shutdown sequence. 3757 * SHUT_RDWR 3758 * Disables further send and receive operations 3759 * and initiates the SCTP shutdown sequence. 3760 */ 3761 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how) 3762 { 3763 struct sctp_endpoint *ep; 3764 struct sctp_association *asoc; 3765 3766 if (!sctp_style(sk, TCP)) 3767 return; 3768 3769 if (how & SEND_SHUTDOWN) { 3770 ep = sctp_sk(sk)->ep; 3771 if (!list_empty(&ep->asocs)) { 3772 asoc = list_entry(ep->asocs.next, 3773 struct sctp_association, asocs); 3774 sctp_primitive_SHUTDOWN(asoc, NULL); 3775 } 3776 } 3777 } 3778 3779 /* 7.2.1 Association Status (SCTP_STATUS) 3780 3781 * Applications can retrieve current status information about an 3782 * association, including association state, peer receiver window size, 3783 * number of unacked data chunks, and number of data chunks pending 3784 * receipt. This information is read-only. 3785 */ 3786 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 3787 char __user *optval, 3788 int __user *optlen) 3789 { 3790 struct sctp_status status; 3791 struct sctp_association *asoc = NULL; 3792 struct sctp_transport *transport; 3793 sctp_assoc_t associd; 3794 int retval = 0; 3795 3796 if (len < sizeof(status)) { 3797 retval = -EINVAL; 3798 goto out; 3799 } 3800 3801 len = sizeof(status); 3802 if (copy_from_user(&status, optval, len)) { 3803 retval = -EFAULT; 3804 goto out; 3805 } 3806 3807 associd = status.sstat_assoc_id; 3808 asoc = sctp_id2assoc(sk, associd); 3809 if (!asoc) { 3810 retval = -EINVAL; 3811 goto out; 3812 } 3813 3814 transport = asoc->peer.primary_path; 3815 3816 status.sstat_assoc_id = sctp_assoc2id(asoc); 3817 status.sstat_state = asoc->state; 3818 status.sstat_rwnd = asoc->peer.rwnd; 3819 status.sstat_unackdata = asoc->unack_data; 3820 3821 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 3822 status.sstat_instrms = asoc->c.sinit_max_instreams; 3823 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 3824 status.sstat_fragmentation_point = asoc->frag_point; 3825 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3826 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 3827 transport->af_specific->sockaddr_len); 3828 /* Map ipv4 address into v4-mapped-on-v6 address. */ 3829 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 3830 (union sctp_addr *)&status.sstat_primary.spinfo_address); 3831 status.sstat_primary.spinfo_state = transport->state; 3832 status.sstat_primary.spinfo_cwnd = transport->cwnd; 3833 status.sstat_primary.spinfo_srtt = transport->srtt; 3834 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 3835 status.sstat_primary.spinfo_mtu = transport->pathmtu; 3836 3837 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 3838 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 3839 3840 if (put_user(len, optlen)) { 3841 retval = -EFAULT; 3842 goto out; 3843 } 3844 3845 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n", 3846 len, status.sstat_state, status.sstat_rwnd, 3847 status.sstat_assoc_id); 3848 3849 if (copy_to_user(optval, &status, len)) { 3850 retval = -EFAULT; 3851 goto out; 3852 } 3853 3854 out: 3855 return (retval); 3856 } 3857 3858 3859 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 3860 * 3861 * Applications can retrieve information about a specific peer address 3862 * of an association, including its reachability state, congestion 3863 * window, and retransmission timer values. This information is 3864 * read-only. 3865 */ 3866 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 3867 char __user *optval, 3868 int __user *optlen) 3869 { 3870 struct sctp_paddrinfo pinfo; 3871 struct sctp_transport *transport; 3872 int retval = 0; 3873 3874 if (len < sizeof(pinfo)) { 3875 retval = -EINVAL; 3876 goto out; 3877 } 3878 3879 len = sizeof(pinfo); 3880 if (copy_from_user(&pinfo, optval, len)) { 3881 retval = -EFAULT; 3882 goto out; 3883 } 3884 3885 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 3886 pinfo.spinfo_assoc_id); 3887 if (!transport) 3888 return -EINVAL; 3889 3890 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3891 pinfo.spinfo_state = transport->state; 3892 pinfo.spinfo_cwnd = transport->cwnd; 3893 pinfo.spinfo_srtt = transport->srtt; 3894 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 3895 pinfo.spinfo_mtu = transport->pathmtu; 3896 3897 if (pinfo.spinfo_state == SCTP_UNKNOWN) 3898 pinfo.spinfo_state = SCTP_ACTIVE; 3899 3900 if (put_user(len, optlen)) { 3901 retval = -EFAULT; 3902 goto out; 3903 } 3904 3905 if (copy_to_user(optval, &pinfo, len)) { 3906 retval = -EFAULT; 3907 goto out; 3908 } 3909 3910 out: 3911 return (retval); 3912 } 3913 3914 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 3915 * 3916 * This option is a on/off flag. If enabled no SCTP message 3917 * fragmentation will be performed. Instead if a message being sent 3918 * exceeds the current PMTU size, the message will NOT be sent and 3919 * instead a error will be indicated to the user. 3920 */ 3921 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 3922 char __user *optval, int __user *optlen) 3923 { 3924 int val; 3925 3926 if (len < sizeof(int)) 3927 return -EINVAL; 3928 3929 len = sizeof(int); 3930 val = (sctp_sk(sk)->disable_fragments == 1); 3931 if (put_user(len, optlen)) 3932 return -EFAULT; 3933 if (copy_to_user(optval, &val, len)) 3934 return -EFAULT; 3935 return 0; 3936 } 3937 3938 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 3939 * 3940 * This socket option is used to specify various notifications and 3941 * ancillary data the user wishes to receive. 3942 */ 3943 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 3944 int __user *optlen) 3945 { 3946 if (len < sizeof(struct sctp_event_subscribe)) 3947 return -EINVAL; 3948 len = sizeof(struct sctp_event_subscribe); 3949 if (put_user(len, optlen)) 3950 return -EFAULT; 3951 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 3952 return -EFAULT; 3953 return 0; 3954 } 3955 3956 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 3957 * 3958 * This socket option is applicable to the UDP-style socket only. When 3959 * set it will cause associations that are idle for more than the 3960 * specified number of seconds to automatically close. An association 3961 * being idle is defined an association that has NOT sent or received 3962 * user data. The special value of '0' indicates that no automatic 3963 * close of any associations should be performed. The option expects an 3964 * integer defining the number of seconds of idle time before an 3965 * association is closed. 3966 */ 3967 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 3968 { 3969 /* Applicable to UDP-style socket only */ 3970 if (sctp_style(sk, TCP)) 3971 return -EOPNOTSUPP; 3972 if (len < sizeof(int)) 3973 return -EINVAL; 3974 len = sizeof(int); 3975 if (put_user(len, optlen)) 3976 return -EFAULT; 3977 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 3978 return -EFAULT; 3979 return 0; 3980 } 3981 3982 /* Helper routine to branch off an association to a new socket. */ 3983 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc, 3984 struct socket **sockp) 3985 { 3986 struct sock *sk = asoc->base.sk; 3987 struct socket *sock; 3988 struct sctp_af *af; 3989 int err = 0; 3990 3991 /* An association cannot be branched off from an already peeled-off 3992 * socket, nor is this supported for tcp style sockets. 3993 */ 3994 if (!sctp_style(sk, UDP)) 3995 return -EINVAL; 3996 3997 /* Create a new socket. */ 3998 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 3999 if (err < 0) 4000 return err; 4001 4002 sctp_copy_sock(sock->sk, sk, asoc); 4003 4004 /* Make peeled-off sockets more like 1-1 accepted sockets. 4005 * Set the daddr and initialize id to something more random 4006 */ 4007 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family); 4008 af->to_sk_daddr(&asoc->peer.primary_addr, sk); 4009 4010 /* Populate the fields of the newsk from the oldsk and migrate the 4011 * asoc to the newsk. 4012 */ 4013 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 4014 4015 *sockp = sock; 4016 4017 return err; 4018 } 4019 4020 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 4021 { 4022 sctp_peeloff_arg_t peeloff; 4023 struct socket *newsock; 4024 int retval = 0; 4025 struct sctp_association *asoc; 4026 4027 if (len < sizeof(sctp_peeloff_arg_t)) 4028 return -EINVAL; 4029 len = sizeof(sctp_peeloff_arg_t); 4030 if (copy_from_user(&peeloff, optval, len)) 4031 return -EFAULT; 4032 4033 asoc = sctp_id2assoc(sk, peeloff.associd); 4034 if (!asoc) { 4035 retval = -EINVAL; 4036 goto out; 4037 } 4038 4039 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __func__, sk, asoc); 4040 4041 retval = sctp_do_peeloff(asoc, &newsock); 4042 if (retval < 0) 4043 goto out; 4044 4045 /* Map the socket to an unused fd that can be returned to the user. */ 4046 retval = sock_map_fd(newsock, 0); 4047 if (retval < 0) { 4048 sock_release(newsock); 4049 goto out; 4050 } 4051 4052 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n", 4053 __func__, sk, asoc, newsock->sk, retval); 4054 4055 /* Return the fd mapped to the new socket. */ 4056 peeloff.sd = retval; 4057 if (put_user(len, optlen)) 4058 return -EFAULT; 4059 if (copy_to_user(optval, &peeloff, len)) 4060 retval = -EFAULT; 4061 4062 out: 4063 return retval; 4064 } 4065 4066 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 4067 * 4068 * Applications can enable or disable heartbeats for any peer address of 4069 * an association, modify an address's heartbeat interval, force a 4070 * heartbeat to be sent immediately, and adjust the address's maximum 4071 * number of retransmissions sent before an address is considered 4072 * unreachable. The following structure is used to access and modify an 4073 * address's parameters: 4074 * 4075 * struct sctp_paddrparams { 4076 * sctp_assoc_t spp_assoc_id; 4077 * struct sockaddr_storage spp_address; 4078 * uint32_t spp_hbinterval; 4079 * uint16_t spp_pathmaxrxt; 4080 * uint32_t spp_pathmtu; 4081 * uint32_t spp_sackdelay; 4082 * uint32_t spp_flags; 4083 * }; 4084 * 4085 * spp_assoc_id - (one-to-many style socket) This is filled in the 4086 * application, and identifies the association for 4087 * this query. 4088 * spp_address - This specifies which address is of interest. 4089 * spp_hbinterval - This contains the value of the heartbeat interval, 4090 * in milliseconds. If a value of zero 4091 * is present in this field then no changes are to 4092 * be made to this parameter. 4093 * spp_pathmaxrxt - This contains the maximum number of 4094 * retransmissions before this address shall be 4095 * considered unreachable. If a value of zero 4096 * is present in this field then no changes are to 4097 * be made to this parameter. 4098 * spp_pathmtu - When Path MTU discovery is disabled the value 4099 * specified here will be the "fixed" path mtu. 4100 * Note that if the spp_address field is empty 4101 * then all associations on this address will 4102 * have this fixed path mtu set upon them. 4103 * 4104 * spp_sackdelay - When delayed sack is enabled, this value specifies 4105 * the number of milliseconds that sacks will be delayed 4106 * for. This value will apply to all addresses of an 4107 * association if the spp_address field is empty. Note 4108 * also, that if delayed sack is enabled and this 4109 * value is set to 0, no change is made to the last 4110 * recorded delayed sack timer value. 4111 * 4112 * spp_flags - These flags are used to control various features 4113 * on an association. The flag field may contain 4114 * zero or more of the following options. 4115 * 4116 * SPP_HB_ENABLE - Enable heartbeats on the 4117 * specified address. Note that if the address 4118 * field is empty all addresses for the association 4119 * have heartbeats enabled upon them. 4120 * 4121 * SPP_HB_DISABLE - Disable heartbeats on the 4122 * speicifed address. Note that if the address 4123 * field is empty all addresses for the association 4124 * will have their heartbeats disabled. Note also 4125 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 4126 * mutually exclusive, only one of these two should 4127 * be specified. Enabling both fields will have 4128 * undetermined results. 4129 * 4130 * SPP_HB_DEMAND - Request a user initiated heartbeat 4131 * to be made immediately. 4132 * 4133 * SPP_PMTUD_ENABLE - This field will enable PMTU 4134 * discovery upon the specified address. Note that 4135 * if the address feild is empty then all addresses 4136 * on the association are effected. 4137 * 4138 * SPP_PMTUD_DISABLE - This field will disable PMTU 4139 * discovery upon the specified address. Note that 4140 * if the address feild is empty then all addresses 4141 * on the association are effected. Not also that 4142 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 4143 * exclusive. Enabling both will have undetermined 4144 * results. 4145 * 4146 * SPP_SACKDELAY_ENABLE - Setting this flag turns 4147 * on delayed sack. The time specified in spp_sackdelay 4148 * is used to specify the sack delay for this address. Note 4149 * that if spp_address is empty then all addresses will 4150 * enable delayed sack and take on the sack delay 4151 * value specified in spp_sackdelay. 4152 * SPP_SACKDELAY_DISABLE - Setting this flag turns 4153 * off delayed sack. If the spp_address field is blank then 4154 * delayed sack is disabled for the entire association. Note 4155 * also that this field is mutually exclusive to 4156 * SPP_SACKDELAY_ENABLE, setting both will have undefined 4157 * results. 4158 */ 4159 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 4160 char __user *optval, int __user *optlen) 4161 { 4162 struct sctp_paddrparams params; 4163 struct sctp_transport *trans = NULL; 4164 struct sctp_association *asoc = NULL; 4165 struct sctp_sock *sp = sctp_sk(sk); 4166 4167 if (len < sizeof(struct sctp_paddrparams)) 4168 return -EINVAL; 4169 len = sizeof(struct sctp_paddrparams); 4170 if (copy_from_user(¶ms, optval, len)) 4171 return -EFAULT; 4172 4173 /* If an address other than INADDR_ANY is specified, and 4174 * no transport is found, then the request is invalid. 4175 */ 4176 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) { 4177 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 4178 params.spp_assoc_id); 4179 if (!trans) { 4180 SCTP_DEBUG_PRINTK("Failed no transport\n"); 4181 return -EINVAL; 4182 } 4183 } 4184 4185 /* Get association, if assoc_id != 0 and the socket is a one 4186 * to many style socket, and an association was not found, then 4187 * the id was invalid. 4188 */ 4189 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 4190 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 4191 SCTP_DEBUG_PRINTK("Failed no association\n"); 4192 return -EINVAL; 4193 } 4194 4195 if (trans) { 4196 /* Fetch transport values. */ 4197 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 4198 params.spp_pathmtu = trans->pathmtu; 4199 params.spp_pathmaxrxt = trans->pathmaxrxt; 4200 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 4201 4202 /*draft-11 doesn't say what to return in spp_flags*/ 4203 params.spp_flags = trans->param_flags; 4204 } else if (asoc) { 4205 /* Fetch association values. */ 4206 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 4207 params.spp_pathmtu = asoc->pathmtu; 4208 params.spp_pathmaxrxt = asoc->pathmaxrxt; 4209 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 4210 4211 /*draft-11 doesn't say what to return in spp_flags*/ 4212 params.spp_flags = asoc->param_flags; 4213 } else { 4214 /* Fetch socket values. */ 4215 params.spp_hbinterval = sp->hbinterval; 4216 params.spp_pathmtu = sp->pathmtu; 4217 params.spp_sackdelay = sp->sackdelay; 4218 params.spp_pathmaxrxt = sp->pathmaxrxt; 4219 4220 /*draft-11 doesn't say what to return in spp_flags*/ 4221 params.spp_flags = sp->param_flags; 4222 } 4223 4224 if (copy_to_user(optval, ¶ms, len)) 4225 return -EFAULT; 4226 4227 if (put_user(len, optlen)) 4228 return -EFAULT; 4229 4230 return 0; 4231 } 4232 4233 /* 4234 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 4235 * 4236 * This option will effect the way delayed acks are performed. This 4237 * option allows you to get or set the delayed ack time, in 4238 * milliseconds. It also allows changing the delayed ack frequency. 4239 * Changing the frequency to 1 disables the delayed sack algorithm. If 4240 * the assoc_id is 0, then this sets or gets the endpoints default 4241 * values. If the assoc_id field is non-zero, then the set or get 4242 * effects the specified association for the one to many model (the 4243 * assoc_id field is ignored by the one to one model). Note that if 4244 * sack_delay or sack_freq are 0 when setting this option, then the 4245 * current values will remain unchanged. 4246 * 4247 * struct sctp_sack_info { 4248 * sctp_assoc_t sack_assoc_id; 4249 * uint32_t sack_delay; 4250 * uint32_t sack_freq; 4251 * }; 4252 * 4253 * sack_assoc_id - This parameter, indicates which association the user 4254 * is performing an action upon. Note that if this field's value is 4255 * zero then the endpoints default value is changed (effecting future 4256 * associations only). 4257 * 4258 * sack_delay - This parameter contains the number of milliseconds that 4259 * the user is requesting the delayed ACK timer be set to. Note that 4260 * this value is defined in the standard to be between 200 and 500 4261 * milliseconds. 4262 * 4263 * sack_freq - This parameter contains the number of packets that must 4264 * be received before a sack is sent without waiting for the delay 4265 * timer to expire. The default value for this is 2, setting this 4266 * value to 1 will disable the delayed sack algorithm. 4267 */ 4268 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 4269 char __user *optval, 4270 int __user *optlen) 4271 { 4272 struct sctp_sack_info params; 4273 struct sctp_association *asoc = NULL; 4274 struct sctp_sock *sp = sctp_sk(sk); 4275 4276 if (len >= sizeof(struct sctp_sack_info)) { 4277 len = sizeof(struct sctp_sack_info); 4278 4279 if (copy_from_user(¶ms, optval, len)) 4280 return -EFAULT; 4281 } else if (len == sizeof(struct sctp_assoc_value)) { 4282 printk(KERN_WARNING "SCTP: Use of struct sctp_assoc_value " 4283 "in delayed_ack socket option deprecated\n"); 4284 printk(KERN_WARNING "SCTP: Use struct sctp_sack_info instead\n"); 4285 if (copy_from_user(¶ms, optval, len)) 4286 return -EFAULT; 4287 } else 4288 return - EINVAL; 4289 4290 /* Get association, if sack_assoc_id != 0 and the socket is a one 4291 * to many style socket, and an association was not found, then 4292 * the id was invalid. 4293 */ 4294 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 4295 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 4296 return -EINVAL; 4297 4298 if (asoc) { 4299 /* Fetch association values. */ 4300 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 4301 params.sack_delay = jiffies_to_msecs( 4302 asoc->sackdelay); 4303 params.sack_freq = asoc->sackfreq; 4304 4305 } else { 4306 params.sack_delay = 0; 4307 params.sack_freq = 1; 4308 } 4309 } else { 4310 /* Fetch socket values. */ 4311 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 4312 params.sack_delay = sp->sackdelay; 4313 params.sack_freq = sp->sackfreq; 4314 } else { 4315 params.sack_delay = 0; 4316 params.sack_freq = 1; 4317 } 4318 } 4319 4320 if (copy_to_user(optval, ¶ms, len)) 4321 return -EFAULT; 4322 4323 if (put_user(len, optlen)) 4324 return -EFAULT; 4325 4326 return 0; 4327 } 4328 4329 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 4330 * 4331 * Applications can specify protocol parameters for the default association 4332 * initialization. The option name argument to setsockopt() and getsockopt() 4333 * is SCTP_INITMSG. 4334 * 4335 * Setting initialization parameters is effective only on an unconnected 4336 * socket (for UDP-style sockets only future associations are effected 4337 * by the change). With TCP-style sockets, this option is inherited by 4338 * sockets derived from a listener socket. 4339 */ 4340 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 4341 { 4342 if (len < sizeof(struct sctp_initmsg)) 4343 return -EINVAL; 4344 len = sizeof(struct sctp_initmsg); 4345 if (put_user(len, optlen)) 4346 return -EFAULT; 4347 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 4348 return -EFAULT; 4349 return 0; 4350 } 4351 4352 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len, 4353 char __user *optval, 4354 int __user *optlen) 4355 { 4356 sctp_assoc_t id; 4357 struct sctp_association *asoc; 4358 struct list_head *pos; 4359 int cnt = 0; 4360 4361 if (len < sizeof(sctp_assoc_t)) 4362 return -EINVAL; 4363 4364 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 4365 return -EFAULT; 4366 4367 printk(KERN_WARNING "SCTP: Use of SCTP_GET_PEER_ADDRS_NUM_OLD " 4368 "socket option deprecated\n"); 4369 /* For UDP-style sockets, id specifies the association to query. */ 4370 asoc = sctp_id2assoc(sk, id); 4371 if (!asoc) 4372 return -EINVAL; 4373 4374 list_for_each(pos, &asoc->peer.transport_addr_list) { 4375 cnt ++; 4376 } 4377 4378 return cnt; 4379 } 4380 4381 /* 4382 * Old API for getting list of peer addresses. Does not work for 32-bit 4383 * programs running on a 64-bit kernel 4384 */ 4385 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len, 4386 char __user *optval, 4387 int __user *optlen) 4388 { 4389 struct sctp_association *asoc; 4390 int cnt = 0; 4391 struct sctp_getaddrs_old getaddrs; 4392 struct sctp_transport *from; 4393 void __user *to; 4394 union sctp_addr temp; 4395 struct sctp_sock *sp = sctp_sk(sk); 4396 int addrlen; 4397 4398 if (len < sizeof(struct sctp_getaddrs_old)) 4399 return -EINVAL; 4400 4401 len = sizeof(struct sctp_getaddrs_old); 4402 4403 if (copy_from_user(&getaddrs, optval, len)) 4404 return -EFAULT; 4405 4406 if (getaddrs.addr_num <= 0) return -EINVAL; 4407 4408 printk(KERN_WARNING "SCTP: Use of SCTP_GET_PEER_ADDRS_OLD " 4409 "socket option deprecated\n"); 4410 4411 /* For UDP-style sockets, id specifies the association to query. */ 4412 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4413 if (!asoc) 4414 return -EINVAL; 4415 4416 to = (void __user *)getaddrs.addrs; 4417 list_for_each_entry(from, &asoc->peer.transport_addr_list, 4418 transports) { 4419 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4420 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4421 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 4422 if (copy_to_user(to, &temp, addrlen)) 4423 return -EFAULT; 4424 to += addrlen ; 4425 cnt ++; 4426 if (cnt >= getaddrs.addr_num) break; 4427 } 4428 getaddrs.addr_num = cnt; 4429 if (put_user(len, optlen)) 4430 return -EFAULT; 4431 if (copy_to_user(optval, &getaddrs, len)) 4432 return -EFAULT; 4433 4434 return 0; 4435 } 4436 4437 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 4438 char __user *optval, int __user *optlen) 4439 { 4440 struct sctp_association *asoc; 4441 int cnt = 0; 4442 struct sctp_getaddrs getaddrs; 4443 struct sctp_transport *from; 4444 void __user *to; 4445 union sctp_addr temp; 4446 struct sctp_sock *sp = sctp_sk(sk); 4447 int addrlen; 4448 size_t space_left; 4449 int bytes_copied; 4450 4451 if (len < sizeof(struct sctp_getaddrs)) 4452 return -EINVAL; 4453 4454 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4455 return -EFAULT; 4456 4457 /* For UDP-style sockets, id specifies the association to query. */ 4458 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4459 if (!asoc) 4460 return -EINVAL; 4461 4462 to = optval + offsetof(struct sctp_getaddrs,addrs); 4463 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4464 4465 list_for_each_entry(from, &asoc->peer.transport_addr_list, 4466 transports) { 4467 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4468 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4469 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 4470 if (space_left < addrlen) 4471 return -ENOMEM; 4472 if (copy_to_user(to, &temp, addrlen)) 4473 return -EFAULT; 4474 to += addrlen; 4475 cnt++; 4476 space_left -= addrlen; 4477 } 4478 4479 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4480 return -EFAULT; 4481 bytes_copied = ((char __user *)to) - optval; 4482 if (put_user(bytes_copied, optlen)) 4483 return -EFAULT; 4484 4485 return 0; 4486 } 4487 4488 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len, 4489 char __user *optval, 4490 int __user *optlen) 4491 { 4492 sctp_assoc_t id; 4493 struct sctp_bind_addr *bp; 4494 struct sctp_association *asoc; 4495 struct sctp_sockaddr_entry *addr; 4496 int cnt = 0; 4497 4498 if (len < sizeof(sctp_assoc_t)) 4499 return -EINVAL; 4500 4501 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 4502 return -EFAULT; 4503 4504 printk(KERN_WARNING "SCTP: Use of SCTP_GET_LOCAL_ADDRS_NUM_OLD " 4505 "socket option deprecated\n"); 4506 4507 /* 4508 * For UDP-style sockets, id specifies the association to query. 4509 * If the id field is set to the value '0' then the locally bound 4510 * addresses are returned without regard to any particular 4511 * association. 4512 */ 4513 if (0 == id) { 4514 bp = &sctp_sk(sk)->ep->base.bind_addr; 4515 } else { 4516 asoc = sctp_id2assoc(sk, id); 4517 if (!asoc) 4518 return -EINVAL; 4519 bp = &asoc->base.bind_addr; 4520 } 4521 4522 /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid 4523 * addresses from the global local address list. 4524 */ 4525 if (sctp_list_single_entry(&bp->address_list)) { 4526 addr = list_entry(bp->address_list.next, 4527 struct sctp_sockaddr_entry, list); 4528 if (sctp_is_any(sk, &addr->a)) { 4529 rcu_read_lock(); 4530 list_for_each_entry_rcu(addr, 4531 &sctp_local_addr_list, list) { 4532 if (!addr->valid) 4533 continue; 4534 4535 if ((PF_INET == sk->sk_family) && 4536 (AF_INET6 == addr->a.sa.sa_family)) 4537 continue; 4538 4539 if ((PF_INET6 == sk->sk_family) && 4540 inet_v6_ipv6only(sk) && 4541 (AF_INET == addr->a.sa.sa_family)) 4542 continue; 4543 4544 cnt++; 4545 } 4546 rcu_read_unlock(); 4547 } else { 4548 cnt = 1; 4549 } 4550 goto done; 4551 } 4552 4553 /* Protection on the bound address list is not needed, 4554 * since in the socket option context we hold the socket lock, 4555 * so there is no way that the bound address list can change. 4556 */ 4557 list_for_each_entry(addr, &bp->address_list, list) { 4558 cnt ++; 4559 } 4560 done: 4561 return cnt; 4562 } 4563 4564 /* Helper function that copies local addresses to user and returns the number 4565 * of addresses copied. 4566 */ 4567 static int sctp_copy_laddrs_old(struct sock *sk, __u16 port, 4568 int max_addrs, void *to, 4569 int *bytes_copied) 4570 { 4571 struct sctp_sockaddr_entry *addr; 4572 union sctp_addr temp; 4573 int cnt = 0; 4574 int addrlen; 4575 4576 rcu_read_lock(); 4577 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) { 4578 if (!addr->valid) 4579 continue; 4580 4581 if ((PF_INET == sk->sk_family) && 4582 (AF_INET6 == addr->a.sa.sa_family)) 4583 continue; 4584 if ((PF_INET6 == sk->sk_family) && 4585 inet_v6_ipv6only(sk) && 4586 (AF_INET == addr->a.sa.sa_family)) 4587 continue; 4588 memcpy(&temp, &addr->a, sizeof(temp)); 4589 if (!temp.v4.sin_port) 4590 temp.v4.sin_port = htons(port); 4591 4592 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4593 &temp); 4594 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4595 memcpy(to, &temp, addrlen); 4596 4597 to += addrlen; 4598 *bytes_copied += addrlen; 4599 cnt ++; 4600 if (cnt >= max_addrs) break; 4601 } 4602 rcu_read_unlock(); 4603 4604 return cnt; 4605 } 4606 4607 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 4608 size_t space_left, int *bytes_copied) 4609 { 4610 struct sctp_sockaddr_entry *addr; 4611 union sctp_addr temp; 4612 int cnt = 0; 4613 int addrlen; 4614 4615 rcu_read_lock(); 4616 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) { 4617 if (!addr->valid) 4618 continue; 4619 4620 if ((PF_INET == sk->sk_family) && 4621 (AF_INET6 == addr->a.sa.sa_family)) 4622 continue; 4623 if ((PF_INET6 == sk->sk_family) && 4624 inet_v6_ipv6only(sk) && 4625 (AF_INET == addr->a.sa.sa_family)) 4626 continue; 4627 memcpy(&temp, &addr->a, sizeof(temp)); 4628 if (!temp.v4.sin_port) 4629 temp.v4.sin_port = htons(port); 4630 4631 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4632 &temp); 4633 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4634 if (space_left < addrlen) { 4635 cnt = -ENOMEM; 4636 break; 4637 } 4638 memcpy(to, &temp, addrlen); 4639 4640 to += addrlen; 4641 cnt ++; 4642 space_left -= addrlen; 4643 *bytes_copied += addrlen; 4644 } 4645 rcu_read_unlock(); 4646 4647 return cnt; 4648 } 4649 4650 /* Old API for getting list of local addresses. Does not work for 32-bit 4651 * programs running on a 64-bit kernel 4652 */ 4653 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len, 4654 char __user *optval, int __user *optlen) 4655 { 4656 struct sctp_bind_addr *bp; 4657 struct sctp_association *asoc; 4658 int cnt = 0; 4659 struct sctp_getaddrs_old getaddrs; 4660 struct sctp_sockaddr_entry *addr; 4661 void __user *to; 4662 union sctp_addr temp; 4663 struct sctp_sock *sp = sctp_sk(sk); 4664 int addrlen; 4665 int err = 0; 4666 void *addrs; 4667 void *buf; 4668 int bytes_copied = 0; 4669 4670 if (len < sizeof(struct sctp_getaddrs_old)) 4671 return -EINVAL; 4672 4673 len = sizeof(struct sctp_getaddrs_old); 4674 if (copy_from_user(&getaddrs, optval, len)) 4675 return -EFAULT; 4676 4677 if (getaddrs.addr_num <= 0 || 4678 getaddrs.addr_num >= (INT_MAX / sizeof(union sctp_addr))) 4679 return -EINVAL; 4680 4681 printk(KERN_WARNING "SCTP: Use of SCTP_GET_LOCAL_ADDRS_OLD " 4682 "socket option deprecated\n"); 4683 4684 /* 4685 * For UDP-style sockets, id specifies the association to query. 4686 * If the id field is set to the value '0' then the locally bound 4687 * addresses are returned without regard to any particular 4688 * association. 4689 */ 4690 if (0 == getaddrs.assoc_id) { 4691 bp = &sctp_sk(sk)->ep->base.bind_addr; 4692 } else { 4693 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4694 if (!asoc) 4695 return -EINVAL; 4696 bp = &asoc->base.bind_addr; 4697 } 4698 4699 to = getaddrs.addrs; 4700 4701 /* Allocate space for a local instance of packed array to hold all 4702 * the data. We store addresses here first and then put write them 4703 * to the user in one shot. 4704 */ 4705 addrs = kmalloc(sizeof(union sctp_addr) * getaddrs.addr_num, 4706 GFP_KERNEL); 4707 if (!addrs) 4708 return -ENOMEM; 4709 4710 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4711 * addresses from the global local address list. 4712 */ 4713 if (sctp_list_single_entry(&bp->address_list)) { 4714 addr = list_entry(bp->address_list.next, 4715 struct sctp_sockaddr_entry, list); 4716 if (sctp_is_any(sk, &addr->a)) { 4717 cnt = sctp_copy_laddrs_old(sk, bp->port, 4718 getaddrs.addr_num, 4719 addrs, &bytes_copied); 4720 goto copy_getaddrs; 4721 } 4722 } 4723 4724 buf = addrs; 4725 /* Protection on the bound address list is not needed since 4726 * in the socket option context we hold a socket lock and 4727 * thus the bound address list can't change. 4728 */ 4729 list_for_each_entry(addr, &bp->address_list, list) { 4730 memcpy(&temp, &addr->a, sizeof(temp)); 4731 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4732 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4733 memcpy(buf, &temp, addrlen); 4734 buf += addrlen; 4735 bytes_copied += addrlen; 4736 cnt ++; 4737 if (cnt >= getaddrs.addr_num) break; 4738 } 4739 4740 copy_getaddrs: 4741 /* copy the entire address list into the user provided space */ 4742 if (copy_to_user(to, addrs, bytes_copied)) { 4743 err = -EFAULT; 4744 goto error; 4745 } 4746 4747 /* copy the leading structure back to user */ 4748 getaddrs.addr_num = cnt; 4749 if (copy_to_user(optval, &getaddrs, len)) 4750 err = -EFAULT; 4751 4752 error: 4753 kfree(addrs); 4754 return err; 4755 } 4756 4757 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 4758 char __user *optval, int __user *optlen) 4759 { 4760 struct sctp_bind_addr *bp; 4761 struct sctp_association *asoc; 4762 int cnt = 0; 4763 struct sctp_getaddrs getaddrs; 4764 struct sctp_sockaddr_entry *addr; 4765 void __user *to; 4766 union sctp_addr temp; 4767 struct sctp_sock *sp = sctp_sk(sk); 4768 int addrlen; 4769 int err = 0; 4770 size_t space_left; 4771 int bytes_copied = 0; 4772 void *addrs; 4773 void *buf; 4774 4775 if (len < sizeof(struct sctp_getaddrs)) 4776 return -EINVAL; 4777 4778 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4779 return -EFAULT; 4780 4781 /* 4782 * For UDP-style sockets, id specifies the association to query. 4783 * If the id field is set to the value '0' then the locally bound 4784 * addresses are returned without regard to any particular 4785 * association. 4786 */ 4787 if (0 == getaddrs.assoc_id) { 4788 bp = &sctp_sk(sk)->ep->base.bind_addr; 4789 } else { 4790 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4791 if (!asoc) 4792 return -EINVAL; 4793 bp = &asoc->base.bind_addr; 4794 } 4795 4796 to = optval + offsetof(struct sctp_getaddrs,addrs); 4797 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4798 4799 addrs = kmalloc(space_left, GFP_KERNEL); 4800 if (!addrs) 4801 return -ENOMEM; 4802 4803 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4804 * addresses from the global local address list. 4805 */ 4806 if (sctp_list_single_entry(&bp->address_list)) { 4807 addr = list_entry(bp->address_list.next, 4808 struct sctp_sockaddr_entry, list); 4809 if (sctp_is_any(sk, &addr->a)) { 4810 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 4811 space_left, &bytes_copied); 4812 if (cnt < 0) { 4813 err = cnt; 4814 goto out; 4815 } 4816 goto copy_getaddrs; 4817 } 4818 } 4819 4820 buf = addrs; 4821 /* Protection on the bound address list is not needed since 4822 * in the socket option context we hold a socket lock and 4823 * thus the bound address list can't change. 4824 */ 4825 list_for_each_entry(addr, &bp->address_list, list) { 4826 memcpy(&temp, &addr->a, sizeof(temp)); 4827 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4828 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4829 if (space_left < addrlen) { 4830 err = -ENOMEM; /*fixme: right error?*/ 4831 goto out; 4832 } 4833 memcpy(buf, &temp, addrlen); 4834 buf += addrlen; 4835 bytes_copied += addrlen; 4836 cnt ++; 4837 space_left -= addrlen; 4838 } 4839 4840 copy_getaddrs: 4841 if (copy_to_user(to, addrs, bytes_copied)) { 4842 err = -EFAULT; 4843 goto out; 4844 } 4845 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 4846 err = -EFAULT; 4847 goto out; 4848 } 4849 if (put_user(bytes_copied, optlen)) 4850 err = -EFAULT; 4851 out: 4852 kfree(addrs); 4853 return err; 4854 } 4855 4856 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 4857 * 4858 * Requests that the local SCTP stack use the enclosed peer address as 4859 * the association primary. The enclosed address must be one of the 4860 * association peer's addresses. 4861 */ 4862 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 4863 char __user *optval, int __user *optlen) 4864 { 4865 struct sctp_prim prim; 4866 struct sctp_association *asoc; 4867 struct sctp_sock *sp = sctp_sk(sk); 4868 4869 if (len < sizeof(struct sctp_prim)) 4870 return -EINVAL; 4871 4872 len = sizeof(struct sctp_prim); 4873 4874 if (copy_from_user(&prim, optval, len)) 4875 return -EFAULT; 4876 4877 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 4878 if (!asoc) 4879 return -EINVAL; 4880 4881 if (!asoc->peer.primary_path) 4882 return -ENOTCONN; 4883 4884 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 4885 asoc->peer.primary_path->af_specific->sockaddr_len); 4886 4887 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, 4888 (union sctp_addr *)&prim.ssp_addr); 4889 4890 if (put_user(len, optlen)) 4891 return -EFAULT; 4892 if (copy_to_user(optval, &prim, len)) 4893 return -EFAULT; 4894 4895 return 0; 4896 } 4897 4898 /* 4899 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 4900 * 4901 * Requests that the local endpoint set the specified Adaptation Layer 4902 * Indication parameter for all future INIT and INIT-ACK exchanges. 4903 */ 4904 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 4905 char __user *optval, int __user *optlen) 4906 { 4907 struct sctp_setadaptation adaptation; 4908 4909 if (len < sizeof(struct sctp_setadaptation)) 4910 return -EINVAL; 4911 4912 len = sizeof(struct sctp_setadaptation); 4913 4914 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 4915 4916 if (put_user(len, optlen)) 4917 return -EFAULT; 4918 if (copy_to_user(optval, &adaptation, len)) 4919 return -EFAULT; 4920 4921 return 0; 4922 } 4923 4924 /* 4925 * 4926 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 4927 * 4928 * Applications that wish to use the sendto() system call may wish to 4929 * specify a default set of parameters that would normally be supplied 4930 * through the inclusion of ancillary data. This socket option allows 4931 * such an application to set the default sctp_sndrcvinfo structure. 4932 4933 4934 * The application that wishes to use this socket option simply passes 4935 * in to this call the sctp_sndrcvinfo structure defined in Section 4936 * 5.2.2) The input parameters accepted by this call include 4937 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 4938 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 4939 * to this call if the caller is using the UDP model. 4940 * 4941 * For getsockopt, it get the default sctp_sndrcvinfo structure. 4942 */ 4943 static int sctp_getsockopt_default_send_param(struct sock *sk, 4944 int len, char __user *optval, 4945 int __user *optlen) 4946 { 4947 struct sctp_sndrcvinfo info; 4948 struct sctp_association *asoc; 4949 struct sctp_sock *sp = sctp_sk(sk); 4950 4951 if (len < sizeof(struct sctp_sndrcvinfo)) 4952 return -EINVAL; 4953 4954 len = sizeof(struct sctp_sndrcvinfo); 4955 4956 if (copy_from_user(&info, optval, len)) 4957 return -EFAULT; 4958 4959 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 4960 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 4961 return -EINVAL; 4962 4963 if (asoc) { 4964 info.sinfo_stream = asoc->default_stream; 4965 info.sinfo_flags = asoc->default_flags; 4966 info.sinfo_ppid = asoc->default_ppid; 4967 info.sinfo_context = asoc->default_context; 4968 info.sinfo_timetolive = asoc->default_timetolive; 4969 } else { 4970 info.sinfo_stream = sp->default_stream; 4971 info.sinfo_flags = sp->default_flags; 4972 info.sinfo_ppid = sp->default_ppid; 4973 info.sinfo_context = sp->default_context; 4974 info.sinfo_timetolive = sp->default_timetolive; 4975 } 4976 4977 if (put_user(len, optlen)) 4978 return -EFAULT; 4979 if (copy_to_user(optval, &info, len)) 4980 return -EFAULT; 4981 4982 return 0; 4983 } 4984 4985 /* 4986 * 4987 * 7.1.5 SCTP_NODELAY 4988 * 4989 * Turn on/off any Nagle-like algorithm. This means that packets are 4990 * generally sent as soon as possible and no unnecessary delays are 4991 * introduced, at the cost of more packets in the network. Expects an 4992 * integer boolean flag. 4993 */ 4994 4995 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 4996 char __user *optval, int __user *optlen) 4997 { 4998 int val; 4999 5000 if (len < sizeof(int)) 5001 return -EINVAL; 5002 5003 len = sizeof(int); 5004 val = (sctp_sk(sk)->nodelay == 1); 5005 if (put_user(len, optlen)) 5006 return -EFAULT; 5007 if (copy_to_user(optval, &val, len)) 5008 return -EFAULT; 5009 return 0; 5010 } 5011 5012 /* 5013 * 5014 * 7.1.1 SCTP_RTOINFO 5015 * 5016 * The protocol parameters used to initialize and bound retransmission 5017 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 5018 * and modify these parameters. 5019 * All parameters are time values, in milliseconds. A value of 0, when 5020 * modifying the parameters, indicates that the current value should not 5021 * be changed. 5022 * 5023 */ 5024 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 5025 char __user *optval, 5026 int __user *optlen) { 5027 struct sctp_rtoinfo rtoinfo; 5028 struct sctp_association *asoc; 5029 5030 if (len < sizeof (struct sctp_rtoinfo)) 5031 return -EINVAL; 5032 5033 len = sizeof(struct sctp_rtoinfo); 5034 5035 if (copy_from_user(&rtoinfo, optval, len)) 5036 return -EFAULT; 5037 5038 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 5039 5040 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 5041 return -EINVAL; 5042 5043 /* Values corresponding to the specific association. */ 5044 if (asoc) { 5045 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 5046 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 5047 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 5048 } else { 5049 /* Values corresponding to the endpoint. */ 5050 struct sctp_sock *sp = sctp_sk(sk); 5051 5052 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 5053 rtoinfo.srto_max = sp->rtoinfo.srto_max; 5054 rtoinfo.srto_min = sp->rtoinfo.srto_min; 5055 } 5056 5057 if (put_user(len, optlen)) 5058 return -EFAULT; 5059 5060 if (copy_to_user(optval, &rtoinfo, len)) 5061 return -EFAULT; 5062 5063 return 0; 5064 } 5065 5066 /* 5067 * 5068 * 7.1.2 SCTP_ASSOCINFO 5069 * 5070 * This option is used to tune the maximum retransmission attempts 5071 * of the association. 5072 * Returns an error if the new association retransmission value is 5073 * greater than the sum of the retransmission value of the peer. 5074 * See [SCTP] for more information. 5075 * 5076 */ 5077 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 5078 char __user *optval, 5079 int __user *optlen) 5080 { 5081 5082 struct sctp_assocparams assocparams; 5083 struct sctp_association *asoc; 5084 struct list_head *pos; 5085 int cnt = 0; 5086 5087 if (len < sizeof (struct sctp_assocparams)) 5088 return -EINVAL; 5089 5090 len = sizeof(struct sctp_assocparams); 5091 5092 if (copy_from_user(&assocparams, optval, len)) 5093 return -EFAULT; 5094 5095 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 5096 5097 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 5098 return -EINVAL; 5099 5100 /* Values correspoinding to the specific association */ 5101 if (asoc) { 5102 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 5103 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 5104 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 5105 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec 5106 * 1000) + 5107 (asoc->cookie_life.tv_usec 5108 / 1000); 5109 5110 list_for_each(pos, &asoc->peer.transport_addr_list) { 5111 cnt ++; 5112 } 5113 5114 assocparams.sasoc_number_peer_destinations = cnt; 5115 } else { 5116 /* Values corresponding to the endpoint */ 5117 struct sctp_sock *sp = sctp_sk(sk); 5118 5119 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 5120 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 5121 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 5122 assocparams.sasoc_cookie_life = 5123 sp->assocparams.sasoc_cookie_life; 5124 assocparams.sasoc_number_peer_destinations = 5125 sp->assocparams. 5126 sasoc_number_peer_destinations; 5127 } 5128 5129 if (put_user(len, optlen)) 5130 return -EFAULT; 5131 5132 if (copy_to_user(optval, &assocparams, len)) 5133 return -EFAULT; 5134 5135 return 0; 5136 } 5137 5138 /* 5139 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 5140 * 5141 * This socket option is a boolean flag which turns on or off mapped V4 5142 * addresses. If this option is turned on and the socket is type 5143 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 5144 * If this option is turned off, then no mapping will be done of V4 5145 * addresses and a user will receive both PF_INET6 and PF_INET type 5146 * addresses on the socket. 5147 */ 5148 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 5149 char __user *optval, int __user *optlen) 5150 { 5151 int val; 5152 struct sctp_sock *sp = sctp_sk(sk); 5153 5154 if (len < sizeof(int)) 5155 return -EINVAL; 5156 5157 len = sizeof(int); 5158 val = sp->v4mapped; 5159 if (put_user(len, optlen)) 5160 return -EFAULT; 5161 if (copy_to_user(optval, &val, len)) 5162 return -EFAULT; 5163 5164 return 0; 5165 } 5166 5167 /* 5168 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 5169 * (chapter and verse is quoted at sctp_setsockopt_context()) 5170 */ 5171 static int sctp_getsockopt_context(struct sock *sk, int len, 5172 char __user *optval, int __user *optlen) 5173 { 5174 struct sctp_assoc_value params; 5175 struct sctp_sock *sp; 5176 struct sctp_association *asoc; 5177 5178 if (len < sizeof(struct sctp_assoc_value)) 5179 return -EINVAL; 5180 5181 len = sizeof(struct sctp_assoc_value); 5182 5183 if (copy_from_user(¶ms, optval, len)) 5184 return -EFAULT; 5185 5186 sp = sctp_sk(sk); 5187 5188 if (params.assoc_id != 0) { 5189 asoc = sctp_id2assoc(sk, params.assoc_id); 5190 if (!asoc) 5191 return -EINVAL; 5192 params.assoc_value = asoc->default_rcv_context; 5193 } else { 5194 params.assoc_value = sp->default_rcv_context; 5195 } 5196 5197 if (put_user(len, optlen)) 5198 return -EFAULT; 5199 if (copy_to_user(optval, ¶ms, len)) 5200 return -EFAULT; 5201 5202 return 0; 5203 } 5204 5205 /* 5206 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 5207 * This option will get or set the maximum size to put in any outgoing 5208 * SCTP DATA chunk. If a message is larger than this size it will be 5209 * fragmented by SCTP into the specified size. Note that the underlying 5210 * SCTP implementation may fragment into smaller sized chunks when the 5211 * PMTU of the underlying association is smaller than the value set by 5212 * the user. The default value for this option is '0' which indicates 5213 * the user is NOT limiting fragmentation and only the PMTU will effect 5214 * SCTP's choice of DATA chunk size. Note also that values set larger 5215 * than the maximum size of an IP datagram will effectively let SCTP 5216 * control fragmentation (i.e. the same as setting this option to 0). 5217 * 5218 * The following structure is used to access and modify this parameter: 5219 * 5220 * struct sctp_assoc_value { 5221 * sctp_assoc_t assoc_id; 5222 * uint32_t assoc_value; 5223 * }; 5224 * 5225 * assoc_id: This parameter is ignored for one-to-one style sockets. 5226 * For one-to-many style sockets this parameter indicates which 5227 * association the user is performing an action upon. Note that if 5228 * this field's value is zero then the endpoints default value is 5229 * changed (effecting future associations only). 5230 * assoc_value: This parameter specifies the maximum size in bytes. 5231 */ 5232 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 5233 char __user *optval, int __user *optlen) 5234 { 5235 struct sctp_assoc_value params; 5236 struct sctp_association *asoc; 5237 5238 if (len == sizeof(int)) { 5239 printk(KERN_WARNING 5240 "SCTP: Use of int in maxseg socket option deprecated\n"); 5241 printk(KERN_WARNING 5242 "SCTP: Use struct sctp_assoc_value instead\n"); 5243 params.assoc_id = 0; 5244 } else if (len >= sizeof(struct sctp_assoc_value)) { 5245 len = sizeof(struct sctp_assoc_value); 5246 if (copy_from_user(¶ms, optval, sizeof(params))) 5247 return -EFAULT; 5248 } else 5249 return -EINVAL; 5250 5251 asoc = sctp_id2assoc(sk, params.assoc_id); 5252 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 5253 return -EINVAL; 5254 5255 if (asoc) 5256 params.assoc_value = asoc->frag_point; 5257 else 5258 params.assoc_value = sctp_sk(sk)->user_frag; 5259 5260 if (put_user(len, optlen)) 5261 return -EFAULT; 5262 if (len == sizeof(int)) { 5263 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5264 return -EFAULT; 5265 } else { 5266 if (copy_to_user(optval, ¶ms, len)) 5267 return -EFAULT; 5268 } 5269 5270 return 0; 5271 } 5272 5273 /* 5274 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 5275 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 5276 */ 5277 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 5278 char __user *optval, int __user *optlen) 5279 { 5280 int val; 5281 5282 if (len < sizeof(int)) 5283 return -EINVAL; 5284 5285 len = sizeof(int); 5286 5287 val = sctp_sk(sk)->frag_interleave; 5288 if (put_user(len, optlen)) 5289 return -EFAULT; 5290 if (copy_to_user(optval, &val, len)) 5291 return -EFAULT; 5292 5293 return 0; 5294 } 5295 5296 /* 5297 * 7.1.25. Set or Get the sctp partial delivery point 5298 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 5299 */ 5300 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 5301 char __user *optval, 5302 int __user *optlen) 5303 { 5304 u32 val; 5305 5306 if (len < sizeof(u32)) 5307 return -EINVAL; 5308 5309 len = sizeof(u32); 5310 5311 val = sctp_sk(sk)->pd_point; 5312 if (put_user(len, optlen)) 5313 return -EFAULT; 5314 if (copy_to_user(optval, &val, len)) 5315 return -EFAULT; 5316 5317 return -ENOTSUPP; 5318 } 5319 5320 /* 5321 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 5322 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 5323 */ 5324 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 5325 char __user *optval, 5326 int __user *optlen) 5327 { 5328 struct sctp_assoc_value params; 5329 struct sctp_sock *sp; 5330 struct sctp_association *asoc; 5331 5332 if (len == sizeof(int)) { 5333 printk(KERN_WARNING 5334 "SCTP: Use of int in max_burst socket option deprecated\n"); 5335 printk(KERN_WARNING 5336 "SCTP: Use struct sctp_assoc_value instead\n"); 5337 params.assoc_id = 0; 5338 } else if (len >= sizeof(struct sctp_assoc_value)) { 5339 len = sizeof(struct sctp_assoc_value); 5340 if (copy_from_user(¶ms, optval, len)) 5341 return -EFAULT; 5342 } else 5343 return -EINVAL; 5344 5345 sp = sctp_sk(sk); 5346 5347 if (params.assoc_id != 0) { 5348 asoc = sctp_id2assoc(sk, params.assoc_id); 5349 if (!asoc) 5350 return -EINVAL; 5351 params.assoc_value = asoc->max_burst; 5352 } else 5353 params.assoc_value = sp->max_burst; 5354 5355 if (len == sizeof(int)) { 5356 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5357 return -EFAULT; 5358 } else { 5359 if (copy_to_user(optval, ¶ms, len)) 5360 return -EFAULT; 5361 } 5362 5363 return 0; 5364 5365 } 5366 5367 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 5368 char __user *optval, int __user *optlen) 5369 { 5370 struct sctp_hmacalgo __user *p = (void __user *)optval; 5371 struct sctp_hmac_algo_param *hmacs; 5372 __u16 data_len = 0; 5373 u32 num_idents; 5374 5375 if (!sctp_auth_enable) 5376 return -EACCES; 5377 5378 hmacs = sctp_sk(sk)->ep->auth_hmacs_list; 5379 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t); 5380 5381 if (len < sizeof(struct sctp_hmacalgo) + data_len) 5382 return -EINVAL; 5383 5384 len = sizeof(struct sctp_hmacalgo) + data_len; 5385 num_idents = data_len / sizeof(u16); 5386 5387 if (put_user(len, optlen)) 5388 return -EFAULT; 5389 if (put_user(num_idents, &p->shmac_num_idents)) 5390 return -EFAULT; 5391 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len)) 5392 return -EFAULT; 5393 return 0; 5394 } 5395 5396 static int sctp_getsockopt_active_key(struct sock *sk, int len, 5397 char __user *optval, int __user *optlen) 5398 { 5399 struct sctp_authkeyid val; 5400 struct sctp_association *asoc; 5401 5402 if (!sctp_auth_enable) 5403 return -EACCES; 5404 5405 if (len < sizeof(struct sctp_authkeyid)) 5406 return -EINVAL; 5407 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 5408 return -EFAULT; 5409 5410 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 5411 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 5412 return -EINVAL; 5413 5414 if (asoc) 5415 val.scact_keynumber = asoc->active_key_id; 5416 else 5417 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id; 5418 5419 len = sizeof(struct sctp_authkeyid); 5420 if (put_user(len, optlen)) 5421 return -EFAULT; 5422 if (copy_to_user(optval, &val, len)) 5423 return -EFAULT; 5424 5425 return 0; 5426 } 5427 5428 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 5429 char __user *optval, int __user *optlen) 5430 { 5431 struct sctp_authchunks __user *p = (void __user *)optval; 5432 struct sctp_authchunks val; 5433 struct sctp_association *asoc; 5434 struct sctp_chunks_param *ch; 5435 u32 num_chunks = 0; 5436 char __user *to; 5437 5438 if (!sctp_auth_enable) 5439 return -EACCES; 5440 5441 if (len < sizeof(struct sctp_authchunks)) 5442 return -EINVAL; 5443 5444 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5445 return -EFAULT; 5446 5447 to = p->gauth_chunks; 5448 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5449 if (!asoc) 5450 return -EINVAL; 5451 5452 ch = asoc->peer.peer_chunks; 5453 if (!ch) 5454 goto num; 5455 5456 /* See if the user provided enough room for all the data */ 5457 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5458 if (len < num_chunks) 5459 return -EINVAL; 5460 5461 if (copy_to_user(to, ch->chunks, num_chunks)) 5462 return -EFAULT; 5463 num: 5464 len = sizeof(struct sctp_authchunks) + num_chunks; 5465 if (put_user(len, optlen)) return -EFAULT; 5466 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5467 return -EFAULT; 5468 return 0; 5469 } 5470 5471 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 5472 char __user *optval, int __user *optlen) 5473 { 5474 struct sctp_authchunks __user *p = (void __user *)optval; 5475 struct sctp_authchunks val; 5476 struct sctp_association *asoc; 5477 struct sctp_chunks_param *ch; 5478 u32 num_chunks = 0; 5479 char __user *to; 5480 5481 if (!sctp_auth_enable) 5482 return -EACCES; 5483 5484 if (len < sizeof(struct sctp_authchunks)) 5485 return -EINVAL; 5486 5487 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5488 return -EFAULT; 5489 5490 to = p->gauth_chunks; 5491 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5492 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 5493 return -EINVAL; 5494 5495 if (asoc) 5496 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks; 5497 else 5498 ch = sctp_sk(sk)->ep->auth_chunk_list; 5499 5500 if (!ch) 5501 goto num; 5502 5503 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5504 if (len < sizeof(struct sctp_authchunks) + num_chunks) 5505 return -EINVAL; 5506 5507 if (copy_to_user(to, ch->chunks, num_chunks)) 5508 return -EFAULT; 5509 num: 5510 len = sizeof(struct sctp_authchunks) + num_chunks; 5511 if (put_user(len, optlen)) 5512 return -EFAULT; 5513 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5514 return -EFAULT; 5515 5516 return 0; 5517 } 5518 5519 /* 5520 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 5521 * This option gets the current number of associations that are attached 5522 * to a one-to-many style socket. The option value is an uint32_t. 5523 */ 5524 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 5525 char __user *optval, int __user *optlen) 5526 { 5527 struct sctp_sock *sp = sctp_sk(sk); 5528 struct sctp_association *asoc; 5529 u32 val = 0; 5530 5531 if (sctp_style(sk, TCP)) 5532 return -EOPNOTSUPP; 5533 5534 if (len < sizeof(u32)) 5535 return -EINVAL; 5536 5537 len = sizeof(u32); 5538 5539 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5540 val++; 5541 } 5542 5543 if (put_user(len, optlen)) 5544 return -EFAULT; 5545 if (copy_to_user(optval, &val, len)) 5546 return -EFAULT; 5547 5548 return 0; 5549 } 5550 5551 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname, 5552 char __user *optval, int __user *optlen) 5553 { 5554 int retval = 0; 5555 int len; 5556 5557 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n", 5558 sk, optname); 5559 5560 /* I can hardly begin to describe how wrong this is. This is 5561 * so broken as to be worse than useless. The API draft 5562 * REALLY is NOT helpful here... I am not convinced that the 5563 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 5564 * are at all well-founded. 5565 */ 5566 if (level != SOL_SCTP) { 5567 struct sctp_af *af = sctp_sk(sk)->pf->af; 5568 5569 retval = af->getsockopt(sk, level, optname, optval, optlen); 5570 return retval; 5571 } 5572 5573 if (get_user(len, optlen)) 5574 return -EFAULT; 5575 5576 sctp_lock_sock(sk); 5577 5578 switch (optname) { 5579 case SCTP_STATUS: 5580 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 5581 break; 5582 case SCTP_DISABLE_FRAGMENTS: 5583 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 5584 optlen); 5585 break; 5586 case SCTP_EVENTS: 5587 retval = sctp_getsockopt_events(sk, len, optval, optlen); 5588 break; 5589 case SCTP_AUTOCLOSE: 5590 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 5591 break; 5592 case SCTP_SOCKOPT_PEELOFF: 5593 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 5594 break; 5595 case SCTP_PEER_ADDR_PARAMS: 5596 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 5597 optlen); 5598 break; 5599 case SCTP_DELAYED_ACK: 5600 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 5601 optlen); 5602 break; 5603 case SCTP_INITMSG: 5604 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 5605 break; 5606 case SCTP_GET_PEER_ADDRS_NUM_OLD: 5607 retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval, 5608 optlen); 5609 break; 5610 case SCTP_GET_LOCAL_ADDRS_NUM_OLD: 5611 retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval, 5612 optlen); 5613 break; 5614 case SCTP_GET_PEER_ADDRS_OLD: 5615 retval = sctp_getsockopt_peer_addrs_old(sk, len, optval, 5616 optlen); 5617 break; 5618 case SCTP_GET_LOCAL_ADDRS_OLD: 5619 retval = sctp_getsockopt_local_addrs_old(sk, len, optval, 5620 optlen); 5621 break; 5622 case SCTP_GET_PEER_ADDRS: 5623 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 5624 optlen); 5625 break; 5626 case SCTP_GET_LOCAL_ADDRS: 5627 retval = sctp_getsockopt_local_addrs(sk, len, optval, 5628 optlen); 5629 break; 5630 case SCTP_SOCKOPT_CONNECTX3: 5631 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 5632 break; 5633 case SCTP_DEFAULT_SEND_PARAM: 5634 retval = sctp_getsockopt_default_send_param(sk, len, 5635 optval, optlen); 5636 break; 5637 case SCTP_PRIMARY_ADDR: 5638 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 5639 break; 5640 case SCTP_NODELAY: 5641 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 5642 break; 5643 case SCTP_RTOINFO: 5644 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 5645 break; 5646 case SCTP_ASSOCINFO: 5647 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 5648 break; 5649 case SCTP_I_WANT_MAPPED_V4_ADDR: 5650 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 5651 break; 5652 case SCTP_MAXSEG: 5653 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 5654 break; 5655 case SCTP_GET_PEER_ADDR_INFO: 5656 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 5657 optlen); 5658 break; 5659 case SCTP_ADAPTATION_LAYER: 5660 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 5661 optlen); 5662 break; 5663 case SCTP_CONTEXT: 5664 retval = sctp_getsockopt_context(sk, len, optval, optlen); 5665 break; 5666 case SCTP_FRAGMENT_INTERLEAVE: 5667 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 5668 optlen); 5669 break; 5670 case SCTP_PARTIAL_DELIVERY_POINT: 5671 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 5672 optlen); 5673 break; 5674 case SCTP_MAX_BURST: 5675 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 5676 break; 5677 case SCTP_AUTH_KEY: 5678 case SCTP_AUTH_CHUNK: 5679 case SCTP_AUTH_DELETE_KEY: 5680 retval = -EOPNOTSUPP; 5681 break; 5682 case SCTP_HMAC_IDENT: 5683 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 5684 break; 5685 case SCTP_AUTH_ACTIVE_KEY: 5686 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 5687 break; 5688 case SCTP_PEER_AUTH_CHUNKS: 5689 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 5690 optlen); 5691 break; 5692 case SCTP_LOCAL_AUTH_CHUNKS: 5693 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 5694 optlen); 5695 break; 5696 case SCTP_GET_ASSOC_NUMBER: 5697 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 5698 break; 5699 default: 5700 retval = -ENOPROTOOPT; 5701 break; 5702 } 5703 5704 sctp_release_sock(sk); 5705 return retval; 5706 } 5707 5708 static void sctp_hash(struct sock *sk) 5709 { 5710 /* STUB */ 5711 } 5712 5713 static void sctp_unhash(struct sock *sk) 5714 { 5715 /* STUB */ 5716 } 5717 5718 /* Check if port is acceptable. Possibly find first available port. 5719 * 5720 * The port hash table (contained in the 'global' SCTP protocol storage 5721 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 5722 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 5723 * list (the list number is the port number hashed out, so as you 5724 * would expect from a hash function, all the ports in a given list have 5725 * such a number that hashes out to the same list number; you were 5726 * expecting that, right?); so each list has a set of ports, with a 5727 * link to the socket (struct sock) that uses it, the port number and 5728 * a fastreuse flag (FIXME: NPI ipg). 5729 */ 5730 static struct sctp_bind_bucket *sctp_bucket_create( 5731 struct sctp_bind_hashbucket *head, unsigned short snum); 5732 5733 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 5734 { 5735 struct sctp_bind_hashbucket *head; /* hash list */ 5736 struct sctp_bind_bucket *pp; /* hash list port iterator */ 5737 struct hlist_node *node; 5738 unsigned short snum; 5739 int ret; 5740 5741 snum = ntohs(addr->v4.sin_port); 5742 5743 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum); 5744 sctp_local_bh_disable(); 5745 5746 if (snum == 0) { 5747 /* Search for an available port. */ 5748 int low, high, remaining, index; 5749 unsigned int rover; 5750 5751 inet_get_local_port_range(&low, &high); 5752 remaining = (high - low) + 1; 5753 rover = net_random() % remaining + low; 5754 5755 do { 5756 rover++; 5757 if ((rover < low) || (rover > high)) 5758 rover = low; 5759 index = sctp_phashfn(rover); 5760 head = &sctp_port_hashtable[index]; 5761 sctp_spin_lock(&head->lock); 5762 sctp_for_each_hentry(pp, node, &head->chain) 5763 if (pp->port == rover) 5764 goto next; 5765 break; 5766 next: 5767 sctp_spin_unlock(&head->lock); 5768 } while (--remaining > 0); 5769 5770 /* Exhausted local port range during search? */ 5771 ret = 1; 5772 if (remaining <= 0) 5773 goto fail; 5774 5775 /* OK, here is the one we will use. HEAD (the port 5776 * hash table list entry) is non-NULL and we hold it's 5777 * mutex. 5778 */ 5779 snum = rover; 5780 } else { 5781 /* We are given an specific port number; we verify 5782 * that it is not being used. If it is used, we will 5783 * exahust the search in the hash list corresponding 5784 * to the port number (snum) - we detect that with the 5785 * port iterator, pp being NULL. 5786 */ 5787 head = &sctp_port_hashtable[sctp_phashfn(snum)]; 5788 sctp_spin_lock(&head->lock); 5789 sctp_for_each_hentry(pp, node, &head->chain) { 5790 if (pp->port == snum) 5791 goto pp_found; 5792 } 5793 } 5794 pp = NULL; 5795 goto pp_not_found; 5796 pp_found: 5797 if (!hlist_empty(&pp->owner)) { 5798 /* We had a port hash table hit - there is an 5799 * available port (pp != NULL) and it is being 5800 * used by other socket (pp->owner not empty); that other 5801 * socket is going to be sk2. 5802 */ 5803 int reuse = sk->sk_reuse; 5804 struct sock *sk2; 5805 struct hlist_node *node; 5806 5807 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n"); 5808 if (pp->fastreuse && sk->sk_reuse && 5809 sk->sk_state != SCTP_SS_LISTENING) 5810 goto success; 5811 5812 /* Run through the list of sockets bound to the port 5813 * (pp->port) [via the pointers bind_next and 5814 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 5815 * we get the endpoint they describe and run through 5816 * the endpoint's list of IP (v4 or v6) addresses, 5817 * comparing each of the addresses with the address of 5818 * the socket sk. If we find a match, then that means 5819 * that this port/socket (sk) combination are already 5820 * in an endpoint. 5821 */ 5822 sk_for_each_bound(sk2, node, &pp->owner) { 5823 struct sctp_endpoint *ep2; 5824 ep2 = sctp_sk(sk2)->ep; 5825 5826 if (sk == sk2 || 5827 (reuse && sk2->sk_reuse && 5828 sk2->sk_state != SCTP_SS_LISTENING)) 5829 continue; 5830 5831 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 5832 sctp_sk(sk2), sctp_sk(sk))) { 5833 ret = (long)sk2; 5834 goto fail_unlock; 5835 } 5836 } 5837 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n"); 5838 } 5839 pp_not_found: 5840 /* If there was a hash table miss, create a new port. */ 5841 ret = 1; 5842 if (!pp && !(pp = sctp_bucket_create(head, snum))) 5843 goto fail_unlock; 5844 5845 /* In either case (hit or miss), make sure fastreuse is 1 only 5846 * if sk->sk_reuse is too (that is, if the caller requested 5847 * SO_REUSEADDR on this socket -sk-). 5848 */ 5849 if (hlist_empty(&pp->owner)) { 5850 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 5851 pp->fastreuse = 1; 5852 else 5853 pp->fastreuse = 0; 5854 } else if (pp->fastreuse && 5855 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 5856 pp->fastreuse = 0; 5857 5858 /* We are set, so fill up all the data in the hash table 5859 * entry, tie the socket list information with the rest of the 5860 * sockets FIXME: Blurry, NPI (ipg). 5861 */ 5862 success: 5863 if (!sctp_sk(sk)->bind_hash) { 5864 inet_sk(sk)->num = snum; 5865 sk_add_bind_node(sk, &pp->owner); 5866 sctp_sk(sk)->bind_hash = pp; 5867 } 5868 ret = 0; 5869 5870 fail_unlock: 5871 sctp_spin_unlock(&head->lock); 5872 5873 fail: 5874 sctp_local_bh_enable(); 5875 return ret; 5876 } 5877 5878 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 5879 * port is requested. 5880 */ 5881 static int sctp_get_port(struct sock *sk, unsigned short snum) 5882 { 5883 long ret; 5884 union sctp_addr addr; 5885 struct sctp_af *af = sctp_sk(sk)->pf->af; 5886 5887 /* Set up a dummy address struct from the sk. */ 5888 af->from_sk(&addr, sk); 5889 addr.v4.sin_port = htons(snum); 5890 5891 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 5892 ret = sctp_get_port_local(sk, &addr); 5893 5894 return (ret ? 1 : 0); 5895 } 5896 5897 /* 5898 * Move a socket to LISTENING state. 5899 */ 5900 SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog) 5901 { 5902 struct sctp_sock *sp = sctp_sk(sk); 5903 struct sctp_endpoint *ep = sp->ep; 5904 struct crypto_hash *tfm = NULL; 5905 5906 /* Allocate HMAC for generating cookie. */ 5907 if (!sctp_sk(sk)->hmac && sctp_hmac_alg) { 5908 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC); 5909 if (IS_ERR(tfm)) { 5910 if (net_ratelimit()) { 5911 printk(KERN_INFO 5912 "SCTP: failed to load transform for %s: %ld\n", 5913 sctp_hmac_alg, PTR_ERR(tfm)); 5914 } 5915 return -ENOSYS; 5916 } 5917 sctp_sk(sk)->hmac = tfm; 5918 } 5919 5920 /* 5921 * If a bind() or sctp_bindx() is not called prior to a listen() 5922 * call that allows new associations to be accepted, the system 5923 * picks an ephemeral port and will choose an address set equivalent 5924 * to binding with a wildcard address. 5925 * 5926 * This is not currently spelled out in the SCTP sockets 5927 * extensions draft, but follows the practice as seen in TCP 5928 * sockets. 5929 * 5930 */ 5931 sk->sk_state = SCTP_SS_LISTENING; 5932 if (!ep->base.bind_addr.port) { 5933 if (sctp_autobind(sk)) 5934 return -EAGAIN; 5935 } else { 5936 if (sctp_get_port(sk, inet_sk(sk)->num)) { 5937 sk->sk_state = SCTP_SS_CLOSED; 5938 return -EADDRINUSE; 5939 } 5940 } 5941 5942 sk->sk_max_ack_backlog = backlog; 5943 sctp_hash_endpoint(ep); 5944 return 0; 5945 } 5946 5947 /* 5948 * 4.1.3 / 5.1.3 listen() 5949 * 5950 * By default, new associations are not accepted for UDP style sockets. 5951 * An application uses listen() to mark a socket as being able to 5952 * accept new associations. 5953 * 5954 * On TCP style sockets, applications use listen() to ready the SCTP 5955 * endpoint for accepting inbound associations. 5956 * 5957 * On both types of endpoints a backlog of '0' disables listening. 5958 * 5959 * Move a socket to LISTENING state. 5960 */ 5961 int sctp_inet_listen(struct socket *sock, int backlog) 5962 { 5963 struct sock *sk = sock->sk; 5964 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5965 int err = -EINVAL; 5966 5967 if (unlikely(backlog < 0)) 5968 return err; 5969 5970 sctp_lock_sock(sk); 5971 5972 /* Peeled-off sockets are not allowed to listen(). */ 5973 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 5974 goto out; 5975 5976 if (sock->state != SS_UNCONNECTED) 5977 goto out; 5978 5979 /* If backlog is zero, disable listening. */ 5980 if (!backlog) { 5981 if (sctp_sstate(sk, CLOSED)) 5982 goto out; 5983 5984 err = 0; 5985 sctp_unhash_endpoint(ep); 5986 sk->sk_state = SCTP_SS_CLOSED; 5987 if (sk->sk_reuse) 5988 sctp_sk(sk)->bind_hash->fastreuse = 1; 5989 goto out; 5990 } 5991 5992 /* If we are already listening, just update the backlog */ 5993 if (sctp_sstate(sk, LISTENING)) 5994 sk->sk_max_ack_backlog = backlog; 5995 else { 5996 err = sctp_listen_start(sk, backlog); 5997 if (err) 5998 goto out; 5999 } 6000 6001 err = 0; 6002 out: 6003 sctp_release_sock(sk); 6004 return err; 6005 } 6006 6007 /* 6008 * This function is done by modeling the current datagram_poll() and the 6009 * tcp_poll(). Note that, based on these implementations, we don't 6010 * lock the socket in this function, even though it seems that, 6011 * ideally, locking or some other mechanisms can be used to ensure 6012 * the integrity of the counters (sndbuf and wmem_alloc) used 6013 * in this place. We assume that we don't need locks either until proven 6014 * otherwise. 6015 * 6016 * Another thing to note is that we include the Async I/O support 6017 * here, again, by modeling the current TCP/UDP code. We don't have 6018 * a good way to test with it yet. 6019 */ 6020 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 6021 { 6022 struct sock *sk = sock->sk; 6023 struct sctp_sock *sp = sctp_sk(sk); 6024 unsigned int mask; 6025 6026 poll_wait(file, sk->sk_sleep, wait); 6027 6028 /* A TCP-style listening socket becomes readable when the accept queue 6029 * is not empty. 6030 */ 6031 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 6032 return (!list_empty(&sp->ep->asocs)) ? 6033 (POLLIN | POLLRDNORM) : 0; 6034 6035 mask = 0; 6036 6037 /* Is there any exceptional events? */ 6038 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 6039 mask |= POLLERR; 6040 if (sk->sk_shutdown & RCV_SHUTDOWN) 6041 mask |= POLLRDHUP; 6042 if (sk->sk_shutdown == SHUTDOWN_MASK) 6043 mask |= POLLHUP; 6044 6045 /* Is it readable? Reconsider this code with TCP-style support. */ 6046 if (!skb_queue_empty(&sk->sk_receive_queue) || 6047 (sk->sk_shutdown & RCV_SHUTDOWN)) 6048 mask |= POLLIN | POLLRDNORM; 6049 6050 /* The association is either gone or not ready. */ 6051 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 6052 return mask; 6053 6054 /* Is it writable? */ 6055 if (sctp_writeable(sk)) { 6056 mask |= POLLOUT | POLLWRNORM; 6057 } else { 6058 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 6059 /* 6060 * Since the socket is not locked, the buffer 6061 * might be made available after the writeable check and 6062 * before the bit is set. This could cause a lost I/O 6063 * signal. tcp_poll() has a race breaker for this race 6064 * condition. Based on their implementation, we put 6065 * in the following code to cover it as well. 6066 */ 6067 if (sctp_writeable(sk)) 6068 mask |= POLLOUT | POLLWRNORM; 6069 } 6070 return mask; 6071 } 6072 6073 /******************************************************************** 6074 * 2nd Level Abstractions 6075 ********************************************************************/ 6076 6077 static struct sctp_bind_bucket *sctp_bucket_create( 6078 struct sctp_bind_hashbucket *head, unsigned short snum) 6079 { 6080 struct sctp_bind_bucket *pp; 6081 6082 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 6083 if (pp) { 6084 SCTP_DBG_OBJCNT_INC(bind_bucket); 6085 pp->port = snum; 6086 pp->fastreuse = 0; 6087 INIT_HLIST_HEAD(&pp->owner); 6088 hlist_add_head(&pp->node, &head->chain); 6089 } 6090 return pp; 6091 } 6092 6093 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 6094 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 6095 { 6096 if (pp && hlist_empty(&pp->owner)) { 6097 __hlist_del(&pp->node); 6098 kmem_cache_free(sctp_bucket_cachep, pp); 6099 SCTP_DBG_OBJCNT_DEC(bind_bucket); 6100 } 6101 } 6102 6103 /* Release this socket's reference to a local port. */ 6104 static inline void __sctp_put_port(struct sock *sk) 6105 { 6106 struct sctp_bind_hashbucket *head = 6107 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)]; 6108 struct sctp_bind_bucket *pp; 6109 6110 sctp_spin_lock(&head->lock); 6111 pp = sctp_sk(sk)->bind_hash; 6112 __sk_del_bind_node(sk); 6113 sctp_sk(sk)->bind_hash = NULL; 6114 inet_sk(sk)->num = 0; 6115 sctp_bucket_destroy(pp); 6116 sctp_spin_unlock(&head->lock); 6117 } 6118 6119 void sctp_put_port(struct sock *sk) 6120 { 6121 sctp_local_bh_disable(); 6122 __sctp_put_port(sk); 6123 sctp_local_bh_enable(); 6124 } 6125 6126 /* 6127 * The system picks an ephemeral port and choose an address set equivalent 6128 * to binding with a wildcard address. 6129 * One of those addresses will be the primary address for the association. 6130 * This automatically enables the multihoming capability of SCTP. 6131 */ 6132 static int sctp_autobind(struct sock *sk) 6133 { 6134 union sctp_addr autoaddr; 6135 struct sctp_af *af; 6136 __be16 port; 6137 6138 /* Initialize a local sockaddr structure to INADDR_ANY. */ 6139 af = sctp_sk(sk)->pf->af; 6140 6141 port = htons(inet_sk(sk)->num); 6142 af->inaddr_any(&autoaddr, port); 6143 6144 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 6145 } 6146 6147 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 6148 * 6149 * From RFC 2292 6150 * 4.2 The cmsghdr Structure * 6151 * 6152 * When ancillary data is sent or received, any number of ancillary data 6153 * objects can be specified by the msg_control and msg_controllen members of 6154 * the msghdr structure, because each object is preceded by 6155 * a cmsghdr structure defining the object's length (the cmsg_len member). 6156 * Historically Berkeley-derived implementations have passed only one object 6157 * at a time, but this API allows multiple objects to be 6158 * passed in a single call to sendmsg() or recvmsg(). The following example 6159 * shows two ancillary data objects in a control buffer. 6160 * 6161 * |<--------------------------- msg_controllen -------------------------->| 6162 * | | 6163 * 6164 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 6165 * 6166 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 6167 * | | | 6168 * 6169 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 6170 * 6171 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 6172 * | | | | | 6173 * 6174 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6175 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 6176 * 6177 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 6178 * 6179 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6180 * ^ 6181 * | 6182 * 6183 * msg_control 6184 * points here 6185 */ 6186 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg, 6187 sctp_cmsgs_t *cmsgs) 6188 { 6189 struct cmsghdr *cmsg; 6190 struct msghdr *my_msg = (struct msghdr *)msg; 6191 6192 for (cmsg = CMSG_FIRSTHDR(msg); 6193 cmsg != NULL; 6194 cmsg = CMSG_NXTHDR(my_msg, cmsg)) { 6195 if (!CMSG_OK(my_msg, cmsg)) 6196 return -EINVAL; 6197 6198 /* Should we parse this header or ignore? */ 6199 if (cmsg->cmsg_level != IPPROTO_SCTP) 6200 continue; 6201 6202 /* Strictly check lengths following example in SCM code. */ 6203 switch (cmsg->cmsg_type) { 6204 case SCTP_INIT: 6205 /* SCTP Socket API Extension 6206 * 5.2.1 SCTP Initiation Structure (SCTP_INIT) 6207 * 6208 * This cmsghdr structure provides information for 6209 * initializing new SCTP associations with sendmsg(). 6210 * The SCTP_INITMSG socket option uses this same data 6211 * structure. This structure is not used for 6212 * recvmsg(). 6213 * 6214 * cmsg_level cmsg_type cmsg_data[] 6215 * ------------ ------------ ---------------------- 6216 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 6217 */ 6218 if (cmsg->cmsg_len != 6219 CMSG_LEN(sizeof(struct sctp_initmsg))) 6220 return -EINVAL; 6221 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); 6222 break; 6223 6224 case SCTP_SNDRCV: 6225 /* SCTP Socket API Extension 6226 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) 6227 * 6228 * This cmsghdr structure specifies SCTP options for 6229 * sendmsg() and describes SCTP header information 6230 * about a received message through recvmsg(). 6231 * 6232 * cmsg_level cmsg_type cmsg_data[] 6233 * ------------ ------------ ---------------------- 6234 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 6235 */ 6236 if (cmsg->cmsg_len != 6237 CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 6238 return -EINVAL; 6239 6240 cmsgs->info = 6241 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); 6242 6243 /* Minimally, validate the sinfo_flags. */ 6244 if (cmsgs->info->sinfo_flags & 6245 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 6246 SCTP_ABORT | SCTP_EOF)) 6247 return -EINVAL; 6248 break; 6249 6250 default: 6251 return -EINVAL; 6252 } 6253 } 6254 return 0; 6255 } 6256 6257 /* 6258 * Wait for a packet.. 6259 * Note: This function is the same function as in core/datagram.c 6260 * with a few modifications to make lksctp work. 6261 */ 6262 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p) 6263 { 6264 int error; 6265 DEFINE_WAIT(wait); 6266 6267 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 6268 6269 /* Socket errors? */ 6270 error = sock_error(sk); 6271 if (error) 6272 goto out; 6273 6274 if (!skb_queue_empty(&sk->sk_receive_queue)) 6275 goto ready; 6276 6277 /* Socket shut down? */ 6278 if (sk->sk_shutdown & RCV_SHUTDOWN) 6279 goto out; 6280 6281 /* Sequenced packets can come disconnected. If so we report the 6282 * problem. 6283 */ 6284 error = -ENOTCONN; 6285 6286 /* Is there a good reason to think that we may receive some data? */ 6287 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 6288 goto out; 6289 6290 /* Handle signals. */ 6291 if (signal_pending(current)) 6292 goto interrupted; 6293 6294 /* Let another process have a go. Since we are going to sleep 6295 * anyway. Note: This may cause odd behaviors if the message 6296 * does not fit in the user's buffer, but this seems to be the 6297 * only way to honor MSG_DONTWAIT realistically. 6298 */ 6299 sctp_release_sock(sk); 6300 *timeo_p = schedule_timeout(*timeo_p); 6301 sctp_lock_sock(sk); 6302 6303 ready: 6304 finish_wait(sk->sk_sleep, &wait); 6305 return 0; 6306 6307 interrupted: 6308 error = sock_intr_errno(*timeo_p); 6309 6310 out: 6311 finish_wait(sk->sk_sleep, &wait); 6312 *err = error; 6313 return error; 6314 } 6315 6316 /* Receive a datagram. 6317 * Note: This is pretty much the same routine as in core/datagram.c 6318 * with a few changes to make lksctp work. 6319 */ 6320 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 6321 int noblock, int *err) 6322 { 6323 int error; 6324 struct sk_buff *skb; 6325 long timeo; 6326 6327 timeo = sock_rcvtimeo(sk, noblock); 6328 6329 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n", 6330 timeo, MAX_SCHEDULE_TIMEOUT); 6331 6332 do { 6333 /* Again only user level code calls this function, 6334 * so nothing interrupt level 6335 * will suddenly eat the receive_queue. 6336 * 6337 * Look at current nfs client by the way... 6338 * However, this function was corrent in any case. 8) 6339 */ 6340 if (flags & MSG_PEEK) { 6341 spin_lock_bh(&sk->sk_receive_queue.lock); 6342 skb = skb_peek(&sk->sk_receive_queue); 6343 if (skb) 6344 atomic_inc(&skb->users); 6345 spin_unlock_bh(&sk->sk_receive_queue.lock); 6346 } else { 6347 skb = skb_dequeue(&sk->sk_receive_queue); 6348 } 6349 6350 if (skb) 6351 return skb; 6352 6353 /* Caller is allowed not to check sk->sk_err before calling. */ 6354 error = sock_error(sk); 6355 if (error) 6356 goto no_packet; 6357 6358 if (sk->sk_shutdown & RCV_SHUTDOWN) 6359 break; 6360 6361 /* User doesn't want to wait. */ 6362 error = -EAGAIN; 6363 if (!timeo) 6364 goto no_packet; 6365 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 6366 6367 return NULL; 6368 6369 no_packet: 6370 *err = error; 6371 return NULL; 6372 } 6373 6374 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 6375 static void __sctp_write_space(struct sctp_association *asoc) 6376 { 6377 struct sock *sk = asoc->base.sk; 6378 struct socket *sock = sk->sk_socket; 6379 6380 if ((sctp_wspace(asoc) > 0) && sock) { 6381 if (waitqueue_active(&asoc->wait)) 6382 wake_up_interruptible(&asoc->wait); 6383 6384 if (sctp_writeable(sk)) { 6385 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 6386 wake_up_interruptible(sk->sk_sleep); 6387 6388 /* Note that we try to include the Async I/O support 6389 * here by modeling from the current TCP/UDP code. 6390 * We have not tested with it yet. 6391 */ 6392 if (sock->fasync_list && 6393 !(sk->sk_shutdown & SEND_SHUTDOWN)) 6394 sock_wake_async(sock, 6395 SOCK_WAKE_SPACE, POLL_OUT); 6396 } 6397 } 6398 } 6399 6400 /* Do accounting for the sndbuf space. 6401 * Decrement the used sndbuf space of the corresponding association by the 6402 * data size which was just transmitted(freed). 6403 */ 6404 static void sctp_wfree(struct sk_buff *skb) 6405 { 6406 struct sctp_association *asoc; 6407 struct sctp_chunk *chunk; 6408 struct sock *sk; 6409 6410 /* Get the saved chunk pointer. */ 6411 chunk = *((struct sctp_chunk **)(skb->cb)); 6412 asoc = chunk->asoc; 6413 sk = asoc->base.sk; 6414 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 6415 sizeof(struct sk_buff) + 6416 sizeof(struct sctp_chunk); 6417 6418 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 6419 6420 /* 6421 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 6422 */ 6423 sk->sk_wmem_queued -= skb->truesize; 6424 sk_mem_uncharge(sk, skb->truesize); 6425 6426 sock_wfree(skb); 6427 __sctp_write_space(asoc); 6428 6429 sctp_association_put(asoc); 6430 } 6431 6432 /* Do accounting for the receive space on the socket. 6433 * Accounting for the association is done in ulpevent.c 6434 * We set this as a destructor for the cloned data skbs so that 6435 * accounting is done at the correct time. 6436 */ 6437 void sctp_sock_rfree(struct sk_buff *skb) 6438 { 6439 struct sock *sk = skb->sk; 6440 struct sctp_ulpevent *event = sctp_skb2event(skb); 6441 6442 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 6443 6444 /* 6445 * Mimic the behavior of sock_rfree 6446 */ 6447 sk_mem_uncharge(sk, event->rmem_len); 6448 } 6449 6450 6451 /* Helper function to wait for space in the sndbuf. */ 6452 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 6453 size_t msg_len) 6454 { 6455 struct sock *sk = asoc->base.sk; 6456 int err = 0; 6457 long current_timeo = *timeo_p; 6458 DEFINE_WAIT(wait); 6459 6460 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n", 6461 asoc, (long)(*timeo_p), msg_len); 6462 6463 /* Increment the association's refcnt. */ 6464 sctp_association_hold(asoc); 6465 6466 /* Wait on the association specific sndbuf space. */ 6467 for (;;) { 6468 prepare_to_wait_exclusive(&asoc->wait, &wait, 6469 TASK_INTERRUPTIBLE); 6470 if (!*timeo_p) 6471 goto do_nonblock; 6472 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6473 asoc->base.dead) 6474 goto do_error; 6475 if (signal_pending(current)) 6476 goto do_interrupted; 6477 if (msg_len <= sctp_wspace(asoc)) 6478 break; 6479 6480 /* Let another process have a go. Since we are going 6481 * to sleep anyway. 6482 */ 6483 sctp_release_sock(sk); 6484 current_timeo = schedule_timeout(current_timeo); 6485 BUG_ON(sk != asoc->base.sk); 6486 sctp_lock_sock(sk); 6487 6488 *timeo_p = current_timeo; 6489 } 6490 6491 out: 6492 finish_wait(&asoc->wait, &wait); 6493 6494 /* Release the association's refcnt. */ 6495 sctp_association_put(asoc); 6496 6497 return err; 6498 6499 do_error: 6500 err = -EPIPE; 6501 goto out; 6502 6503 do_interrupted: 6504 err = sock_intr_errno(*timeo_p); 6505 goto out; 6506 6507 do_nonblock: 6508 err = -EAGAIN; 6509 goto out; 6510 } 6511 6512 /* If socket sndbuf has changed, wake up all per association waiters. */ 6513 void sctp_write_space(struct sock *sk) 6514 { 6515 struct sctp_association *asoc; 6516 6517 /* Wake up the tasks in each wait queue. */ 6518 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 6519 __sctp_write_space(asoc); 6520 } 6521 } 6522 6523 /* Is there any sndbuf space available on the socket? 6524 * 6525 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 6526 * associations on the same socket. For a UDP-style socket with 6527 * multiple associations, it is possible for it to be "unwriteable" 6528 * prematurely. I assume that this is acceptable because 6529 * a premature "unwriteable" is better than an accidental "writeable" which 6530 * would cause an unwanted block under certain circumstances. For the 1-1 6531 * UDP-style sockets or TCP-style sockets, this code should work. 6532 * - Daisy 6533 */ 6534 static int sctp_writeable(struct sock *sk) 6535 { 6536 int amt = 0; 6537 6538 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 6539 if (amt < 0) 6540 amt = 0; 6541 return amt; 6542 } 6543 6544 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 6545 * returns immediately with EINPROGRESS. 6546 */ 6547 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 6548 { 6549 struct sock *sk = asoc->base.sk; 6550 int err = 0; 6551 long current_timeo = *timeo_p; 6552 DEFINE_WAIT(wait); 6553 6554 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc, 6555 (long)(*timeo_p)); 6556 6557 /* Increment the association's refcnt. */ 6558 sctp_association_hold(asoc); 6559 6560 for (;;) { 6561 prepare_to_wait_exclusive(&asoc->wait, &wait, 6562 TASK_INTERRUPTIBLE); 6563 if (!*timeo_p) 6564 goto do_nonblock; 6565 if (sk->sk_shutdown & RCV_SHUTDOWN) 6566 break; 6567 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6568 asoc->base.dead) 6569 goto do_error; 6570 if (signal_pending(current)) 6571 goto do_interrupted; 6572 6573 if (sctp_state(asoc, ESTABLISHED)) 6574 break; 6575 6576 /* Let another process have a go. Since we are going 6577 * to sleep anyway. 6578 */ 6579 sctp_release_sock(sk); 6580 current_timeo = schedule_timeout(current_timeo); 6581 sctp_lock_sock(sk); 6582 6583 *timeo_p = current_timeo; 6584 } 6585 6586 out: 6587 finish_wait(&asoc->wait, &wait); 6588 6589 /* Release the association's refcnt. */ 6590 sctp_association_put(asoc); 6591 6592 return err; 6593 6594 do_error: 6595 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 6596 err = -ETIMEDOUT; 6597 else 6598 err = -ECONNREFUSED; 6599 goto out; 6600 6601 do_interrupted: 6602 err = sock_intr_errno(*timeo_p); 6603 goto out; 6604 6605 do_nonblock: 6606 err = -EINPROGRESS; 6607 goto out; 6608 } 6609 6610 static int sctp_wait_for_accept(struct sock *sk, long timeo) 6611 { 6612 struct sctp_endpoint *ep; 6613 int err = 0; 6614 DEFINE_WAIT(wait); 6615 6616 ep = sctp_sk(sk)->ep; 6617 6618 6619 for (;;) { 6620 prepare_to_wait_exclusive(sk->sk_sleep, &wait, 6621 TASK_INTERRUPTIBLE); 6622 6623 if (list_empty(&ep->asocs)) { 6624 sctp_release_sock(sk); 6625 timeo = schedule_timeout(timeo); 6626 sctp_lock_sock(sk); 6627 } 6628 6629 err = -EINVAL; 6630 if (!sctp_sstate(sk, LISTENING)) 6631 break; 6632 6633 err = 0; 6634 if (!list_empty(&ep->asocs)) 6635 break; 6636 6637 err = sock_intr_errno(timeo); 6638 if (signal_pending(current)) 6639 break; 6640 6641 err = -EAGAIN; 6642 if (!timeo) 6643 break; 6644 } 6645 6646 finish_wait(sk->sk_sleep, &wait); 6647 6648 return err; 6649 } 6650 6651 static void sctp_wait_for_close(struct sock *sk, long timeout) 6652 { 6653 DEFINE_WAIT(wait); 6654 6655 do { 6656 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 6657 if (list_empty(&sctp_sk(sk)->ep->asocs)) 6658 break; 6659 sctp_release_sock(sk); 6660 timeout = schedule_timeout(timeout); 6661 sctp_lock_sock(sk); 6662 } while (!signal_pending(current) && timeout); 6663 6664 finish_wait(sk->sk_sleep, &wait); 6665 } 6666 6667 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 6668 { 6669 struct sk_buff *frag; 6670 6671 if (!skb->data_len) 6672 goto done; 6673 6674 /* Don't forget the fragments. */ 6675 skb_walk_frags(skb, frag) 6676 sctp_skb_set_owner_r_frag(frag, sk); 6677 6678 done: 6679 sctp_skb_set_owner_r(skb, sk); 6680 } 6681 6682 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 6683 struct sctp_association *asoc) 6684 { 6685 struct inet_sock *inet = inet_sk(sk); 6686 struct inet_sock *newinet = inet_sk(newsk); 6687 6688 newsk->sk_type = sk->sk_type; 6689 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 6690 newsk->sk_flags = sk->sk_flags; 6691 newsk->sk_no_check = sk->sk_no_check; 6692 newsk->sk_reuse = sk->sk_reuse; 6693 6694 newsk->sk_shutdown = sk->sk_shutdown; 6695 newsk->sk_destruct = inet_sock_destruct; 6696 newsk->sk_family = sk->sk_family; 6697 newsk->sk_protocol = IPPROTO_SCTP; 6698 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 6699 newsk->sk_sndbuf = sk->sk_sndbuf; 6700 newsk->sk_rcvbuf = sk->sk_rcvbuf; 6701 newsk->sk_lingertime = sk->sk_lingertime; 6702 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 6703 newsk->sk_sndtimeo = sk->sk_sndtimeo; 6704 6705 newinet = inet_sk(newsk); 6706 6707 /* Initialize sk's sport, dport, rcv_saddr and daddr for 6708 * getsockname() and getpeername() 6709 */ 6710 newinet->sport = inet->sport; 6711 newinet->saddr = inet->saddr; 6712 newinet->rcv_saddr = inet->rcv_saddr; 6713 newinet->dport = htons(asoc->peer.port); 6714 newinet->pmtudisc = inet->pmtudisc; 6715 newinet->id = asoc->next_tsn ^ jiffies; 6716 6717 newinet->uc_ttl = inet->uc_ttl; 6718 newinet->mc_loop = 1; 6719 newinet->mc_ttl = 1; 6720 newinet->mc_index = 0; 6721 newinet->mc_list = NULL; 6722 } 6723 6724 /* Populate the fields of the newsk from the oldsk and migrate the assoc 6725 * and its messages to the newsk. 6726 */ 6727 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 6728 struct sctp_association *assoc, 6729 sctp_socket_type_t type) 6730 { 6731 struct sctp_sock *oldsp = sctp_sk(oldsk); 6732 struct sctp_sock *newsp = sctp_sk(newsk); 6733 struct sctp_bind_bucket *pp; /* hash list port iterator */ 6734 struct sctp_endpoint *newep = newsp->ep; 6735 struct sk_buff *skb, *tmp; 6736 struct sctp_ulpevent *event; 6737 struct sctp_bind_hashbucket *head; 6738 6739 /* Migrate socket buffer sizes and all the socket level options to the 6740 * new socket. 6741 */ 6742 newsk->sk_sndbuf = oldsk->sk_sndbuf; 6743 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 6744 /* Brute force copy old sctp opt. */ 6745 inet_sk_copy_descendant(newsk, oldsk); 6746 6747 /* Restore the ep value that was overwritten with the above structure 6748 * copy. 6749 */ 6750 newsp->ep = newep; 6751 newsp->hmac = NULL; 6752 6753 /* Hook this new socket in to the bind_hash list. */ 6754 head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->num)]; 6755 sctp_local_bh_disable(); 6756 sctp_spin_lock(&head->lock); 6757 pp = sctp_sk(oldsk)->bind_hash; 6758 sk_add_bind_node(newsk, &pp->owner); 6759 sctp_sk(newsk)->bind_hash = pp; 6760 inet_sk(newsk)->num = inet_sk(oldsk)->num; 6761 sctp_spin_unlock(&head->lock); 6762 sctp_local_bh_enable(); 6763 6764 /* Copy the bind_addr list from the original endpoint to the new 6765 * endpoint so that we can handle restarts properly 6766 */ 6767 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 6768 &oldsp->ep->base.bind_addr, GFP_KERNEL); 6769 6770 /* Move any messages in the old socket's receive queue that are for the 6771 * peeled off association to the new socket's receive queue. 6772 */ 6773 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 6774 event = sctp_skb2event(skb); 6775 if (event->asoc == assoc) { 6776 __skb_unlink(skb, &oldsk->sk_receive_queue); 6777 __skb_queue_tail(&newsk->sk_receive_queue, skb); 6778 sctp_skb_set_owner_r_frag(skb, newsk); 6779 } 6780 } 6781 6782 /* Clean up any messages pending delivery due to partial 6783 * delivery. Three cases: 6784 * 1) No partial deliver; no work. 6785 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 6786 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 6787 */ 6788 skb_queue_head_init(&newsp->pd_lobby); 6789 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 6790 6791 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 6792 struct sk_buff_head *queue; 6793 6794 /* Decide which queue to move pd_lobby skbs to. */ 6795 if (assoc->ulpq.pd_mode) { 6796 queue = &newsp->pd_lobby; 6797 } else 6798 queue = &newsk->sk_receive_queue; 6799 6800 /* Walk through the pd_lobby, looking for skbs that 6801 * need moved to the new socket. 6802 */ 6803 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 6804 event = sctp_skb2event(skb); 6805 if (event->asoc == assoc) { 6806 __skb_unlink(skb, &oldsp->pd_lobby); 6807 __skb_queue_tail(queue, skb); 6808 sctp_skb_set_owner_r_frag(skb, newsk); 6809 } 6810 } 6811 6812 /* Clear up any skbs waiting for the partial 6813 * delivery to finish. 6814 */ 6815 if (assoc->ulpq.pd_mode) 6816 sctp_clear_pd(oldsk, NULL); 6817 6818 } 6819 6820 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) 6821 sctp_skb_set_owner_r_frag(skb, newsk); 6822 6823 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) 6824 sctp_skb_set_owner_r_frag(skb, newsk); 6825 6826 /* Set the type of socket to indicate that it is peeled off from the 6827 * original UDP-style socket or created with the accept() call on a 6828 * TCP-style socket.. 6829 */ 6830 newsp->type = type; 6831 6832 /* Mark the new socket "in-use" by the user so that any packets 6833 * that may arrive on the association after we've moved it are 6834 * queued to the backlog. This prevents a potential race between 6835 * backlog processing on the old socket and new-packet processing 6836 * on the new socket. 6837 * 6838 * The caller has just allocated newsk so we can guarantee that other 6839 * paths won't try to lock it and then oldsk. 6840 */ 6841 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 6842 sctp_assoc_migrate(assoc, newsk); 6843 6844 /* If the association on the newsk is already closed before accept() 6845 * is called, set RCV_SHUTDOWN flag. 6846 */ 6847 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 6848 newsk->sk_shutdown |= RCV_SHUTDOWN; 6849 6850 newsk->sk_state = SCTP_SS_ESTABLISHED; 6851 sctp_release_sock(newsk); 6852 } 6853 6854 6855 /* This proto struct describes the ULP interface for SCTP. */ 6856 struct proto sctp_prot = { 6857 .name = "SCTP", 6858 .owner = THIS_MODULE, 6859 .close = sctp_close, 6860 .connect = sctp_connect, 6861 .disconnect = sctp_disconnect, 6862 .accept = sctp_accept, 6863 .ioctl = sctp_ioctl, 6864 .init = sctp_init_sock, 6865 .destroy = sctp_destroy_sock, 6866 .shutdown = sctp_shutdown, 6867 .setsockopt = sctp_setsockopt, 6868 .getsockopt = sctp_getsockopt, 6869 .sendmsg = sctp_sendmsg, 6870 .recvmsg = sctp_recvmsg, 6871 .bind = sctp_bind, 6872 .backlog_rcv = sctp_backlog_rcv, 6873 .hash = sctp_hash, 6874 .unhash = sctp_unhash, 6875 .get_port = sctp_get_port, 6876 .obj_size = sizeof(struct sctp_sock), 6877 .sysctl_mem = sysctl_sctp_mem, 6878 .sysctl_rmem = sysctl_sctp_rmem, 6879 .sysctl_wmem = sysctl_sctp_wmem, 6880 .memory_pressure = &sctp_memory_pressure, 6881 .enter_memory_pressure = sctp_enter_memory_pressure, 6882 .memory_allocated = &sctp_memory_allocated, 6883 .sockets_allocated = &sctp_sockets_allocated, 6884 }; 6885 6886 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 6887 6888 struct proto sctpv6_prot = { 6889 .name = "SCTPv6", 6890 .owner = THIS_MODULE, 6891 .close = sctp_close, 6892 .connect = sctp_connect, 6893 .disconnect = sctp_disconnect, 6894 .accept = sctp_accept, 6895 .ioctl = sctp_ioctl, 6896 .init = sctp_init_sock, 6897 .destroy = sctp_destroy_sock, 6898 .shutdown = sctp_shutdown, 6899 .setsockopt = sctp_setsockopt, 6900 .getsockopt = sctp_getsockopt, 6901 .sendmsg = sctp_sendmsg, 6902 .recvmsg = sctp_recvmsg, 6903 .bind = sctp_bind, 6904 .backlog_rcv = sctp_backlog_rcv, 6905 .hash = sctp_hash, 6906 .unhash = sctp_unhash, 6907 .get_port = sctp_get_port, 6908 .obj_size = sizeof(struct sctp6_sock), 6909 .sysctl_mem = sysctl_sctp_mem, 6910 .sysctl_rmem = sysctl_sctp_rmem, 6911 .sysctl_wmem = sysctl_sctp_wmem, 6912 .memory_pressure = &sctp_memory_pressure, 6913 .enter_memory_pressure = sctp_enter_memory_pressure, 6914 .memory_allocated = &sctp_memory_allocated, 6915 .sockets_allocated = &sctp_sockets_allocated, 6916 }; 6917 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */ 6918