1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * (C) Copyright IBM Corp. 2001, 2004 4 * Copyright (c) 1999-2000 Cisco, Inc. 5 * Copyright (c) 1999-2001 Motorola, Inc. 6 * Copyright (c) 2001-2003 Intel Corp. 7 * Copyright (c) 2001-2002 Nokia, Inc. 8 * Copyright (c) 2001 La Monte H.P. Yarroll 9 * 10 * This file is part of the SCTP kernel implementation 11 * 12 * These functions interface with the sockets layer to implement the 13 * SCTP Extensions for the Sockets API. 14 * 15 * Note that the descriptions from the specification are USER level 16 * functions--this file is the functions which populate the struct proto 17 * for SCTP which is the BOTTOM of the sockets interface. 18 * 19 * Please send any bug reports or fixes you make to the 20 * email address(es): 21 * lksctp developers <linux-sctp@vger.kernel.org> 22 * 23 * Written or modified by: 24 * La Monte H.P. Yarroll <piggy@acm.org> 25 * Narasimha Budihal <narsi@refcode.org> 26 * Karl Knutson <karl@athena.chicago.il.us> 27 * Jon Grimm <jgrimm@us.ibm.com> 28 * Xingang Guo <xingang.guo@intel.com> 29 * Daisy Chang <daisyc@us.ibm.com> 30 * Sridhar Samudrala <samudrala@us.ibm.com> 31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 32 * Ardelle Fan <ardelle.fan@intel.com> 33 * Ryan Layer <rmlayer@us.ibm.com> 34 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 35 * Kevin Gao <kevin.gao@intel.com> 36 */ 37 38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 39 40 #include <linux/types.h> 41 #include <linux/kernel.h> 42 #include <linux/wait.h> 43 #include <linux/time.h> 44 #include <linux/sched/signal.h> 45 #include <linux/ip.h> 46 #include <linux/capability.h> 47 #include <linux/fcntl.h> 48 #include <linux/poll.h> 49 #include <linux/init.h> 50 #include <linux/slab.h> 51 #include <linux/file.h> 52 #include <linux/compat.h> 53 #include <linux/rhashtable.h> 54 55 #include <net/ip.h> 56 #include <net/icmp.h> 57 #include <net/route.h> 58 #include <net/ipv6.h> 59 #include <net/inet_common.h> 60 #include <net/busy_poll.h> 61 #include <trace/events/sock.h> 62 63 #include <linux/socket.h> /* for sa_family_t */ 64 #include <linux/export.h> 65 #include <net/sock.h> 66 #include <net/sctp/sctp.h> 67 #include <net/sctp/sm.h> 68 #include <net/sctp/stream_sched.h> 69 #include <net/rps.h> 70 71 /* Forward declarations for internal helper functions. */ 72 static bool sctp_writeable(const struct sock *sk); 73 static void sctp_wfree(struct sk_buff *skb); 74 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, 75 struct sctp_transport *transport, 76 long *timeo_p, size_t msg_len); 77 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 78 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 79 static int sctp_wait_for_accept(struct sock *sk, long timeo); 80 static void sctp_wait_for_close(struct sock *sk, long timeo); 81 static void sctp_destruct_sock(struct sock *sk); 82 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 83 union sctp_addr *addr, int len); 84 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 85 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 86 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 87 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 88 static int sctp_send_asconf(struct sctp_association *asoc, 89 struct sctp_chunk *chunk); 90 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 91 static int sctp_autobind(struct sock *sk); 92 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 93 struct sctp_association *assoc, 94 enum sctp_socket_type type); 95 96 static unsigned long sctp_memory_pressure; 97 static atomic_long_t sctp_memory_allocated; 98 static DEFINE_PER_CPU(int, sctp_memory_per_cpu_fw_alloc); 99 struct percpu_counter sctp_sockets_allocated; 100 101 static void sctp_enter_memory_pressure(struct sock *sk) 102 { 103 WRITE_ONCE(sctp_memory_pressure, 1); 104 } 105 106 107 /* Get the sndbuf space available at the time on the association. */ 108 static inline int sctp_wspace(struct sctp_association *asoc) 109 { 110 struct sock *sk = asoc->base.sk; 111 112 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used 113 : sk_stream_wspace(sk); 114 } 115 116 /* Increment the used sndbuf space count of the corresponding association by 117 * the size of the outgoing data chunk. 118 * Also, set the skb destructor for sndbuf accounting later. 119 * 120 * Since it is always 1-1 between chunk and skb, and also a new skb is always 121 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 122 * destructor in the data chunk skb for the purpose of the sndbuf space 123 * tracking. 124 */ 125 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 126 { 127 struct sctp_association *asoc = chunk->asoc; 128 struct sock *sk = asoc->base.sk; 129 130 /* The sndbuf space is tracked per association. */ 131 sctp_association_hold(asoc); 132 133 if (chunk->shkey) 134 sctp_auth_shkey_hold(chunk->shkey); 135 136 skb_set_owner_w(chunk->skb, sk); 137 138 chunk->skb->destructor = sctp_wfree; 139 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 140 skb_shinfo(chunk->skb)->destructor_arg = chunk; 141 142 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 143 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); 144 sk_wmem_queued_add(sk, chunk->skb->truesize + sizeof(struct sctp_chunk)); 145 sk_mem_charge(sk, chunk->skb->truesize); 146 } 147 148 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 149 { 150 skb_orphan(chunk->skb); 151 } 152 153 #define traverse_and_process() \ 154 do { \ 155 msg = chunk->msg; \ 156 if (msg == prev_msg) \ 157 continue; \ 158 list_for_each_entry(c, &msg->chunks, frag_list) { \ 159 if ((clear && asoc->base.sk == c->skb->sk) || \ 160 (!clear && asoc->base.sk != c->skb->sk)) \ 161 cb(c); \ 162 } \ 163 prev_msg = msg; \ 164 } while (0) 165 166 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 167 bool clear, 168 void (*cb)(struct sctp_chunk *)) 169 170 { 171 struct sctp_datamsg *msg, *prev_msg = NULL; 172 struct sctp_outq *q = &asoc->outqueue; 173 struct sctp_chunk *chunk, *c; 174 struct sctp_transport *t; 175 176 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 177 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 178 traverse_and_process(); 179 180 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 181 traverse_and_process(); 182 183 list_for_each_entry(chunk, &q->sacked, transmitted_list) 184 traverse_and_process(); 185 186 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 187 traverse_and_process(); 188 189 list_for_each_entry(chunk, &q->out_chunk_list, list) 190 traverse_and_process(); 191 } 192 193 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 194 void (*cb)(struct sk_buff *, struct sock *)) 195 196 { 197 struct sk_buff *skb, *tmp; 198 199 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 200 cb(skb, sk); 201 202 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 203 cb(skb, sk); 204 205 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 206 cb(skb, sk); 207 } 208 209 /* Verify that this is a valid address. */ 210 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 211 int len) 212 { 213 struct sctp_af *af; 214 215 /* Verify basic sockaddr. */ 216 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 217 if (!af) 218 return -EINVAL; 219 220 /* Is this a valid SCTP address? */ 221 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 222 return -EINVAL; 223 224 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 225 return -EINVAL; 226 227 return 0; 228 } 229 230 /* Look up the association by its id. If this is not a UDP-style 231 * socket, the ID field is always ignored. 232 */ 233 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 234 { 235 struct sctp_association *asoc = NULL; 236 237 /* If this is not a UDP-style socket, assoc id should be ignored. */ 238 if (!sctp_style(sk, UDP)) { 239 /* Return NULL if the socket state is not ESTABLISHED. It 240 * could be a TCP-style listening socket or a socket which 241 * hasn't yet called connect() to establish an association. 242 */ 243 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 244 return NULL; 245 246 /* Get the first and the only association from the list. */ 247 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 248 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 249 struct sctp_association, asocs); 250 return asoc; 251 } 252 253 /* Otherwise this is a UDP-style socket. */ 254 if (id <= SCTP_ALL_ASSOC) 255 return NULL; 256 257 spin_lock_bh(&sctp_assocs_id_lock); 258 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 259 if (asoc && (asoc->base.sk != sk || asoc->base.dead)) 260 asoc = NULL; 261 spin_unlock_bh(&sctp_assocs_id_lock); 262 263 return asoc; 264 } 265 266 /* Look up the transport from an address and an assoc id. If both address and 267 * id are specified, the associations matching the address and the id should be 268 * the same. 269 */ 270 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 271 struct sockaddr_storage *addr, 272 sctp_assoc_t id) 273 { 274 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 275 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 276 union sctp_addr *laddr = (union sctp_addr *)addr; 277 struct sctp_transport *transport; 278 279 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 280 return NULL; 281 282 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 283 laddr, 284 &transport); 285 286 if (!addr_asoc) 287 return NULL; 288 289 id_asoc = sctp_id2assoc(sk, id); 290 if (id_asoc && (id_asoc != addr_asoc)) 291 return NULL; 292 293 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 294 (union sctp_addr *)addr); 295 296 return transport; 297 } 298 299 /* API 3.1.2 bind() - UDP Style Syntax 300 * The syntax of bind() is, 301 * 302 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 303 * 304 * sd - the socket descriptor returned by socket(). 305 * addr - the address structure (struct sockaddr_in or struct 306 * sockaddr_in6 [RFC 2553]), 307 * addr_len - the size of the address structure. 308 */ 309 static int sctp_bind(struct sock *sk, struct sockaddr_unsized *addr, 310 int addr_len) 311 { 312 int retval = 0; 313 314 lock_sock(sk); 315 316 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 317 addr, addr_len); 318 319 /* Disallow binding twice. */ 320 if (!sctp_sk(sk)->ep->base.bind_addr.port) 321 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 322 addr_len); 323 else 324 retval = -EINVAL; 325 326 release_sock(sk); 327 328 return retval; 329 } 330 331 static int sctp_get_port_local(struct sock *, union sctp_addr *); 332 333 /* Verify this is a valid sockaddr. */ 334 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 335 union sctp_addr *addr, int len) 336 { 337 struct sctp_af *af; 338 339 /* Check minimum size. */ 340 if (len < sizeof (struct sockaddr)) 341 return NULL; 342 343 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 344 return NULL; 345 346 if (addr->sa.sa_family == AF_INET6) { 347 if (len < SIN6_LEN_RFC2133) 348 return NULL; 349 /* V4 mapped address are really of AF_INET family */ 350 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 351 !opt->pf->af_supported(AF_INET, opt)) 352 return NULL; 353 } 354 355 /* If we get this far, af is valid. */ 356 af = sctp_get_af_specific(addr->sa.sa_family); 357 358 if (len < af->sockaddr_len) 359 return NULL; 360 361 return af; 362 } 363 364 static void sctp_auto_asconf_init(struct sctp_sock *sp) 365 { 366 struct net *net = sock_net(&sp->inet.sk); 367 368 if (net->sctp.default_auto_asconf) { 369 spin_lock_bh(&net->sctp.addr_wq_lock); 370 list_add_tail(&sp->auto_asconf_list, &net->sctp.auto_asconf_splist); 371 spin_unlock_bh(&net->sctp.addr_wq_lock); 372 sp->do_auto_asconf = 1; 373 } 374 } 375 376 /* Bind a local address either to an endpoint or to an association. */ 377 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 378 { 379 struct net *net = sock_net(sk); 380 struct sctp_sock *sp = sctp_sk(sk); 381 struct sctp_endpoint *ep = sp->ep; 382 struct sctp_bind_addr *bp = &ep->base.bind_addr; 383 struct sctp_af *af; 384 unsigned short snum; 385 int ret = 0; 386 387 /* Common sockaddr verification. */ 388 af = sctp_sockaddr_af(sp, addr, len); 389 if (!af) { 390 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 391 __func__, sk, addr, len); 392 return -EINVAL; 393 } 394 395 snum = ntohs(addr->v4.sin_port); 396 397 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 398 __func__, sk, &addr->sa, bp->port, snum, len); 399 400 /* PF specific bind() address verification. */ 401 if (!sp->pf->bind_verify(sp, addr)) 402 return -EADDRNOTAVAIL; 403 404 /* We must either be unbound, or bind to the same port. 405 * It's OK to allow 0 ports if we are already bound. 406 * We'll just inhert an already bound port in this case 407 */ 408 if (bp->port) { 409 if (!snum) 410 snum = bp->port; 411 else if (snum != bp->port) { 412 pr_debug("%s: new port %d doesn't match existing port " 413 "%d\n", __func__, snum, bp->port); 414 return -EINVAL; 415 } 416 } 417 418 if (snum && inet_port_requires_bind_service(net, snum) && 419 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 420 return -EACCES; 421 422 /* See if the address matches any of the addresses we may have 423 * already bound before checking against other endpoints. 424 */ 425 if (sctp_bind_addr_match(bp, addr, sp)) 426 return -EINVAL; 427 428 /* Make sure we are allowed to bind here. 429 * The function sctp_get_port_local() does duplicate address 430 * detection. 431 */ 432 addr->v4.sin_port = htons(snum); 433 if (sctp_get_port_local(sk, addr)) 434 return -EADDRINUSE; 435 436 /* Refresh ephemeral port. */ 437 if (!bp->port) { 438 bp->port = inet_sk(sk)->inet_num; 439 sctp_auto_asconf_init(sp); 440 } 441 442 /* Add the address to the bind address list. 443 * Use GFP_ATOMIC since BHs will be disabled. 444 */ 445 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 446 SCTP_ADDR_SRC, GFP_ATOMIC); 447 448 if (ret) { 449 sctp_put_port(sk); 450 return ret; 451 } 452 /* Copy back into socket for getsockname() use. */ 453 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 454 sp->pf->to_sk_saddr(addr, sk); 455 456 return ret; 457 } 458 459 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 460 * 461 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 462 * at any one time. If a sender, after sending an ASCONF chunk, decides 463 * it needs to transfer another ASCONF Chunk, it MUST wait until the 464 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 465 * subsequent ASCONF. Note this restriction binds each side, so at any 466 * time two ASCONF may be in-transit on any given association (one sent 467 * from each endpoint). 468 */ 469 static int sctp_send_asconf(struct sctp_association *asoc, 470 struct sctp_chunk *chunk) 471 { 472 int retval = 0; 473 474 /* If there is an outstanding ASCONF chunk, queue it for later 475 * transmission. 476 */ 477 if (asoc->addip_last_asconf) { 478 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 479 goto out; 480 } 481 482 /* Hold the chunk until an ASCONF_ACK is received. */ 483 sctp_chunk_hold(chunk); 484 retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk); 485 if (retval) 486 sctp_chunk_free(chunk); 487 else 488 asoc->addip_last_asconf = chunk; 489 490 out: 491 return retval; 492 } 493 494 /* Add a list of addresses as bind addresses to local endpoint or 495 * association. 496 * 497 * Basically run through each address specified in the addrs/addrcnt 498 * array/length pair, determine if it is IPv6 or IPv4 and call 499 * sctp_do_bind() on it. 500 * 501 * If any of them fails, then the operation will be reversed and the 502 * ones that were added will be removed. 503 * 504 * Only sctp_setsockopt_bindx() is supposed to call this function. 505 */ 506 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 507 { 508 int cnt; 509 int retval = 0; 510 void *addr_buf; 511 struct sockaddr *sa_addr; 512 struct sctp_af *af; 513 514 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 515 addrs, addrcnt); 516 517 addr_buf = addrs; 518 for (cnt = 0; cnt < addrcnt; cnt++) { 519 /* The list may contain either IPv4 or IPv6 address; 520 * determine the address length for walking thru the list. 521 */ 522 sa_addr = addr_buf; 523 af = sctp_get_af_specific(sa_addr->sa_family); 524 if (!af) { 525 retval = -EINVAL; 526 goto err_bindx_add; 527 } 528 529 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 530 af->sockaddr_len); 531 532 addr_buf += af->sockaddr_len; 533 534 err_bindx_add: 535 if (retval < 0) { 536 /* Failed. Cleanup the ones that have been added */ 537 if (cnt > 0) 538 sctp_bindx_rem(sk, addrs, cnt); 539 return retval; 540 } 541 } 542 543 return retval; 544 } 545 546 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 547 * associations that are part of the endpoint indicating that a list of local 548 * addresses are added to the endpoint. 549 * 550 * If any of the addresses is already in the bind address list of the 551 * association, we do not send the chunk for that association. But it will not 552 * affect other associations. 553 * 554 * Only sctp_setsockopt_bindx() is supposed to call this function. 555 */ 556 static int sctp_send_asconf_add_ip(struct sock *sk, 557 struct sockaddr *addrs, 558 int addrcnt) 559 { 560 struct sctp_sock *sp; 561 struct sctp_endpoint *ep; 562 struct sctp_association *asoc; 563 struct sctp_bind_addr *bp; 564 struct sctp_chunk *chunk; 565 struct sctp_sockaddr_entry *laddr; 566 union sctp_addr *addr; 567 union sctp_addr saveaddr; 568 void *addr_buf; 569 struct sctp_af *af; 570 struct list_head *p; 571 int i; 572 int retval = 0; 573 574 sp = sctp_sk(sk); 575 ep = sp->ep; 576 577 if (!ep->asconf_enable) 578 return retval; 579 580 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 581 __func__, sk, addrs, addrcnt); 582 583 list_for_each_entry(asoc, &ep->asocs, asocs) { 584 if (!asoc->peer.asconf_capable) 585 continue; 586 587 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 588 continue; 589 590 if (!sctp_state(asoc, ESTABLISHED)) 591 continue; 592 593 /* Check if any address in the packed array of addresses is 594 * in the bind address list of the association. If so, 595 * do not send the asconf chunk to its peer, but continue with 596 * other associations. 597 */ 598 addr_buf = addrs; 599 for (i = 0; i < addrcnt; i++) { 600 addr = addr_buf; 601 af = sctp_get_af_specific(addr->v4.sin_family); 602 if (!af) { 603 retval = -EINVAL; 604 goto out; 605 } 606 607 if (sctp_assoc_lookup_laddr(asoc, addr)) 608 break; 609 610 addr_buf += af->sockaddr_len; 611 } 612 if (i < addrcnt) 613 continue; 614 615 /* Use the first valid address in bind addr list of 616 * association as Address Parameter of ASCONF CHUNK. 617 */ 618 bp = &asoc->base.bind_addr; 619 p = bp->address_list.next; 620 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 621 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 622 addrcnt, SCTP_PARAM_ADD_IP); 623 if (!chunk) { 624 retval = -ENOMEM; 625 goto out; 626 } 627 628 /* Add the new addresses to the bind address list with 629 * use_as_src set to 0. 630 */ 631 addr_buf = addrs; 632 for (i = 0; i < addrcnt; i++) { 633 addr = addr_buf; 634 af = sctp_get_af_specific(addr->v4.sin_family); 635 memcpy(&saveaddr, addr, af->sockaddr_len); 636 retval = sctp_add_bind_addr(bp, &saveaddr, 637 sizeof(saveaddr), 638 SCTP_ADDR_NEW, GFP_ATOMIC); 639 addr_buf += af->sockaddr_len; 640 } 641 if (asoc->src_out_of_asoc_ok) { 642 struct sctp_transport *trans; 643 644 list_for_each_entry(trans, 645 &asoc->peer.transport_addr_list, transports) { 646 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 647 2*asoc->pathmtu, 4380)); 648 trans->ssthresh = asoc->peer.i.a_rwnd; 649 trans->rto = asoc->rto_initial; 650 sctp_max_rto(asoc, trans); 651 trans->rtt = trans->srtt = trans->rttvar = 0; 652 /* Clear the source and route cache */ 653 sctp_transport_route(trans, NULL, 654 sctp_sk(asoc->base.sk)); 655 } 656 } 657 retval = sctp_send_asconf(asoc, chunk); 658 } 659 660 out: 661 return retval; 662 } 663 664 /* Remove a list of addresses from bind addresses list. Do not remove the 665 * last address. 666 * 667 * Basically run through each address specified in the addrs/addrcnt 668 * array/length pair, determine if it is IPv6 or IPv4 and call 669 * sctp_del_bind() on it. 670 * 671 * If any of them fails, then the operation will be reversed and the 672 * ones that were removed will be added back. 673 * 674 * At least one address has to be left; if only one address is 675 * available, the operation will return -EBUSY. 676 * 677 * Only sctp_setsockopt_bindx() is supposed to call this function. 678 */ 679 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 680 { 681 struct sctp_sock *sp = sctp_sk(sk); 682 struct sctp_endpoint *ep = sp->ep; 683 int cnt; 684 struct sctp_bind_addr *bp = &ep->base.bind_addr; 685 int retval = 0; 686 void *addr_buf; 687 union sctp_addr *sa_addr; 688 struct sctp_af *af; 689 690 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 691 __func__, sk, addrs, addrcnt); 692 693 addr_buf = addrs; 694 for (cnt = 0; cnt < addrcnt; cnt++) { 695 /* If the bind address list is empty or if there is only one 696 * bind address, there is nothing more to be removed (we need 697 * at least one address here). 698 */ 699 if (list_empty(&bp->address_list) || 700 (sctp_list_single_entry(&bp->address_list))) { 701 retval = -EBUSY; 702 goto err_bindx_rem; 703 } 704 705 sa_addr = addr_buf; 706 af = sctp_get_af_specific(sa_addr->sa.sa_family); 707 if (!af) { 708 retval = -EINVAL; 709 goto err_bindx_rem; 710 } 711 712 if (!af->addr_valid(sa_addr, sp, NULL)) { 713 retval = -EADDRNOTAVAIL; 714 goto err_bindx_rem; 715 } 716 717 if (sa_addr->v4.sin_port && 718 sa_addr->v4.sin_port != htons(bp->port)) { 719 retval = -EINVAL; 720 goto err_bindx_rem; 721 } 722 723 if (!sa_addr->v4.sin_port) 724 sa_addr->v4.sin_port = htons(bp->port); 725 726 /* FIXME - There is probably a need to check if sk->sk_saddr and 727 * sk->sk_rcv_addr are currently set to one of the addresses to 728 * be removed. This is something which needs to be looked into 729 * when we are fixing the outstanding issues with multi-homing 730 * socket routing and failover schemes. Refer to comments in 731 * sctp_do_bind(). -daisy 732 */ 733 retval = sctp_del_bind_addr(bp, sa_addr); 734 735 addr_buf += af->sockaddr_len; 736 err_bindx_rem: 737 if (retval < 0) { 738 /* Failed. Add the ones that has been removed back */ 739 if (cnt > 0) 740 sctp_bindx_add(sk, addrs, cnt); 741 return retval; 742 } 743 } 744 745 return retval; 746 } 747 748 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 749 * the associations that are part of the endpoint indicating that a list of 750 * local addresses are removed from the endpoint. 751 * 752 * If any of the addresses is already in the bind address list of the 753 * association, we do not send the chunk for that association. But it will not 754 * affect other associations. 755 * 756 * Only sctp_setsockopt_bindx() is supposed to call this function. 757 */ 758 static int sctp_send_asconf_del_ip(struct sock *sk, 759 struct sockaddr *addrs, 760 int addrcnt) 761 { 762 struct sctp_sock *sp; 763 struct sctp_endpoint *ep; 764 struct sctp_association *asoc; 765 struct sctp_transport *transport; 766 struct sctp_bind_addr *bp; 767 struct sctp_chunk *chunk; 768 union sctp_addr *laddr; 769 void *addr_buf; 770 struct sctp_af *af; 771 struct sctp_sockaddr_entry *saddr; 772 int i; 773 int retval = 0; 774 int stored = 0; 775 776 chunk = NULL; 777 sp = sctp_sk(sk); 778 ep = sp->ep; 779 780 if (!ep->asconf_enable) 781 return retval; 782 783 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 784 __func__, sk, addrs, addrcnt); 785 786 list_for_each_entry(asoc, &ep->asocs, asocs) { 787 788 if (!asoc->peer.asconf_capable) 789 continue; 790 791 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 792 continue; 793 794 if (!sctp_state(asoc, ESTABLISHED)) 795 continue; 796 797 /* Check if any address in the packed array of addresses is 798 * not present in the bind address list of the association. 799 * If so, do not send the asconf chunk to its peer, but 800 * continue with other associations. 801 */ 802 addr_buf = addrs; 803 for (i = 0; i < addrcnt; i++) { 804 laddr = addr_buf; 805 af = sctp_get_af_specific(laddr->v4.sin_family); 806 if (!af) { 807 retval = -EINVAL; 808 goto out; 809 } 810 811 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 812 break; 813 814 addr_buf += af->sockaddr_len; 815 } 816 if (i < addrcnt) 817 continue; 818 819 /* Find one address in the association's bind address list 820 * that is not in the packed array of addresses. This is to 821 * make sure that we do not delete all the addresses in the 822 * association. 823 */ 824 bp = &asoc->base.bind_addr; 825 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 826 addrcnt, sp); 827 if ((laddr == NULL) && (addrcnt == 1)) { 828 if (asoc->asconf_addr_del_pending) 829 continue; 830 asoc->asconf_addr_del_pending = 831 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 832 if (asoc->asconf_addr_del_pending == NULL) { 833 retval = -ENOMEM; 834 goto out; 835 } 836 asoc->asconf_addr_del_pending->sa.sa_family = 837 addrs->sa_family; 838 asoc->asconf_addr_del_pending->v4.sin_port = 839 htons(bp->port); 840 if (addrs->sa_family == AF_INET) { 841 struct sockaddr_in *sin; 842 843 sin = (struct sockaddr_in *)addrs; 844 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 845 } else if (addrs->sa_family == AF_INET6) { 846 struct sockaddr_in6 *sin6; 847 848 sin6 = (struct sockaddr_in6 *)addrs; 849 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 850 } 851 852 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 853 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 854 asoc->asconf_addr_del_pending); 855 856 asoc->src_out_of_asoc_ok = 1; 857 stored = 1; 858 goto skip_mkasconf; 859 } 860 861 if (laddr == NULL) 862 return -EINVAL; 863 864 /* We do not need RCU protection throughout this loop 865 * because this is done under a socket lock from the 866 * setsockopt call. 867 */ 868 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 869 SCTP_PARAM_DEL_IP); 870 if (!chunk) { 871 retval = -ENOMEM; 872 goto out; 873 } 874 875 skip_mkasconf: 876 /* Reset use_as_src flag for the addresses in the bind address 877 * list that are to be deleted. 878 */ 879 addr_buf = addrs; 880 for (i = 0; i < addrcnt; i++) { 881 laddr = addr_buf; 882 af = sctp_get_af_specific(laddr->v4.sin_family); 883 list_for_each_entry(saddr, &bp->address_list, list) { 884 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 885 saddr->state = SCTP_ADDR_DEL; 886 } 887 addr_buf += af->sockaddr_len; 888 } 889 890 /* Update the route and saddr entries for all the transports 891 * as some of the addresses in the bind address list are 892 * about to be deleted and cannot be used as source addresses. 893 */ 894 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 895 transports) { 896 sctp_transport_route(transport, NULL, 897 sctp_sk(asoc->base.sk)); 898 } 899 900 if (stored) 901 /* We don't need to transmit ASCONF */ 902 continue; 903 retval = sctp_send_asconf(asoc, chunk); 904 } 905 out: 906 return retval; 907 } 908 909 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 910 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 911 { 912 struct sock *sk = sctp_opt2sk(sp); 913 union sctp_addr *addr; 914 struct sctp_af *af; 915 916 /* It is safe to write port space in caller. */ 917 addr = &addrw->a; 918 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 919 af = sctp_get_af_specific(addr->sa.sa_family); 920 if (!af) 921 return -EINVAL; 922 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 923 return -EINVAL; 924 925 if (addrw->state == SCTP_ADDR_NEW) 926 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 927 else 928 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 929 } 930 931 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 932 * 933 * API 8.1 934 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 935 * int flags); 936 * 937 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 938 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 939 * or IPv6 addresses. 940 * 941 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 942 * Section 3.1.2 for this usage. 943 * 944 * addrs is a pointer to an array of one or more socket addresses. Each 945 * address is contained in its appropriate structure (i.e. struct 946 * sockaddr_in or struct sockaddr_in6) the family of the address type 947 * must be used to distinguish the address length (note that this 948 * representation is termed a "packed array" of addresses). The caller 949 * specifies the number of addresses in the array with addrcnt. 950 * 951 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 952 * -1, and sets errno to the appropriate error code. 953 * 954 * For SCTP, the port given in each socket address must be the same, or 955 * sctp_bindx() will fail, setting errno to EINVAL. 956 * 957 * The flags parameter is formed from the bitwise OR of zero or more of 958 * the following currently defined flags: 959 * 960 * SCTP_BINDX_ADD_ADDR 961 * 962 * SCTP_BINDX_REM_ADDR 963 * 964 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 965 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 966 * addresses from the association. The two flags are mutually exclusive; 967 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 968 * not remove all addresses from an association; sctp_bindx() will 969 * reject such an attempt with EINVAL. 970 * 971 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 972 * additional addresses with an endpoint after calling bind(). Or use 973 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 974 * socket is associated with so that no new association accepted will be 975 * associated with those addresses. If the endpoint supports dynamic 976 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 977 * endpoint to send the appropriate message to the peer to change the 978 * peers address lists. 979 * 980 * Adding and removing addresses from a connected association is 981 * optional functionality. Implementations that do not support this 982 * functionality should return EOPNOTSUPP. 983 * 984 * Basically do nothing but copying the addresses from user to kernel 985 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 986 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 987 * from userspace. 988 * 989 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 990 * it. 991 * 992 * sk The sk of the socket 993 * addrs The pointer to the addresses 994 * addrssize Size of the addrs buffer 995 * op Operation to perform (add or remove, see the flags of 996 * sctp_bindx) 997 * 998 * Returns 0 if ok, <0 errno code on error. 999 */ 1000 static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs, 1001 int addrs_size, int op) 1002 { 1003 int err; 1004 int addrcnt = 0; 1005 int walk_size = 0; 1006 struct sockaddr *sa_addr; 1007 void *addr_buf = addrs; 1008 struct sctp_af *af; 1009 1010 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 1011 __func__, sk, addr_buf, addrs_size, op); 1012 1013 if (unlikely(addrs_size <= 0)) 1014 return -EINVAL; 1015 1016 /* Walk through the addrs buffer and count the number of addresses. */ 1017 while (walk_size < addrs_size) { 1018 if (walk_size + sizeof(sa_family_t) > addrs_size) 1019 return -EINVAL; 1020 1021 sa_addr = addr_buf; 1022 af = sctp_get_af_specific(sa_addr->sa_family); 1023 1024 /* If the address family is not supported or if this address 1025 * causes the address buffer to overflow return EINVAL. 1026 */ 1027 if (!af || (walk_size + af->sockaddr_len) > addrs_size) 1028 return -EINVAL; 1029 addrcnt++; 1030 addr_buf += af->sockaddr_len; 1031 walk_size += af->sockaddr_len; 1032 } 1033 1034 /* Do the work. */ 1035 switch (op) { 1036 case SCTP_BINDX_ADD_ADDR: 1037 /* Allow security module to validate bindx addresses. */ 1038 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1039 addrs, addrs_size); 1040 if (err) 1041 return err; 1042 err = sctp_bindx_add(sk, addrs, addrcnt); 1043 if (err) 1044 return err; 1045 return sctp_send_asconf_add_ip(sk, addrs, addrcnt); 1046 case SCTP_BINDX_REM_ADDR: 1047 err = sctp_bindx_rem(sk, addrs, addrcnt); 1048 if (err) 1049 return err; 1050 return sctp_send_asconf_del_ip(sk, addrs, addrcnt); 1051 1052 default: 1053 return -EINVAL; 1054 } 1055 } 1056 1057 static int sctp_bind_add(struct sock *sk, struct sockaddr_unsized *addrs, 1058 int addrlen) 1059 { 1060 int err; 1061 1062 lock_sock(sk); 1063 err = sctp_setsockopt_bindx(sk, (struct sockaddr *)addrs, addrlen, SCTP_BINDX_ADD_ADDR); 1064 release_sock(sk); 1065 return err; 1066 } 1067 1068 static int sctp_connect_new_asoc(struct sctp_endpoint *ep, 1069 const union sctp_addr *daddr, 1070 const struct sctp_initmsg *init, 1071 struct sctp_transport **tp) 1072 { 1073 struct sctp_association *asoc; 1074 struct sock *sk = ep->base.sk; 1075 struct net *net = sock_net(sk); 1076 enum sctp_scope scope; 1077 int err; 1078 1079 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1080 return -EADDRNOTAVAIL; 1081 1082 if (!ep->base.bind_addr.port) { 1083 if (sctp_autobind(sk)) 1084 return -EAGAIN; 1085 } else { 1086 if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) && 1087 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1088 return -EACCES; 1089 } 1090 1091 scope = sctp_scope(daddr); 1092 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1093 if (!asoc) 1094 return -ENOMEM; 1095 1096 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1097 if (err < 0) 1098 goto free; 1099 1100 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1101 if (!*tp) { 1102 err = -ENOMEM; 1103 goto free; 1104 } 1105 1106 if (!init) 1107 return 0; 1108 1109 if (init->sinit_num_ostreams) { 1110 __u16 outcnt = init->sinit_num_ostreams; 1111 1112 asoc->c.sinit_num_ostreams = outcnt; 1113 /* outcnt has been changed, need to re-init stream */ 1114 err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL); 1115 if (err) 1116 goto free; 1117 } 1118 1119 if (init->sinit_max_instreams) 1120 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1121 1122 if (init->sinit_max_attempts) 1123 asoc->max_init_attempts = init->sinit_max_attempts; 1124 1125 if (init->sinit_max_init_timeo) 1126 asoc->max_init_timeo = 1127 msecs_to_jiffies(init->sinit_max_init_timeo); 1128 1129 return 0; 1130 free: 1131 sctp_association_free(asoc); 1132 return err; 1133 } 1134 1135 static int sctp_connect_add_peer(struct sctp_association *asoc, 1136 union sctp_addr *daddr, int addr_len) 1137 { 1138 struct sctp_endpoint *ep = asoc->ep; 1139 struct sctp_association *old; 1140 struct sctp_transport *t; 1141 int err; 1142 1143 err = sctp_verify_addr(ep->base.sk, daddr, addr_len); 1144 if (err) 1145 return err; 1146 1147 old = sctp_endpoint_lookup_assoc(ep, daddr, &t); 1148 if (old && old != asoc) 1149 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1150 : -EALREADY; 1151 1152 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1153 return -EADDRNOTAVAIL; 1154 1155 t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1156 if (!t) 1157 return -ENOMEM; 1158 1159 return 0; 1160 } 1161 1162 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1163 * 1164 * Common routine for handling connect() and sctp_connectx(). 1165 * Connect will come in with just a single address. 1166 */ 1167 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs, 1168 int addrs_size, int flags, sctp_assoc_t *assoc_id) 1169 { 1170 struct sctp_sock *sp = sctp_sk(sk); 1171 struct sctp_endpoint *ep = sp->ep; 1172 struct sctp_transport *transport; 1173 struct sctp_association *asoc; 1174 void *addr_buf = kaddrs; 1175 union sctp_addr *daddr; 1176 struct sctp_af *af; 1177 int walk_size, err; 1178 long timeo; 1179 1180 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1181 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) 1182 return -EISCONN; 1183 1184 daddr = addr_buf; 1185 af = sctp_get_af_specific(daddr->sa.sa_family); 1186 if (!af || af->sockaddr_len > addrs_size) 1187 return -EINVAL; 1188 1189 err = sctp_verify_addr(sk, daddr, af->sockaddr_len); 1190 if (err) 1191 return err; 1192 1193 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1194 if (asoc) 1195 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1196 : -EALREADY; 1197 1198 err = sctp_connect_new_asoc(ep, daddr, NULL, &transport); 1199 if (err) 1200 return err; 1201 asoc = transport->asoc; 1202 1203 addr_buf += af->sockaddr_len; 1204 walk_size = af->sockaddr_len; 1205 while (walk_size < addrs_size) { 1206 err = -EINVAL; 1207 if (walk_size + sizeof(sa_family_t) > addrs_size) 1208 goto out_free; 1209 1210 daddr = addr_buf; 1211 af = sctp_get_af_specific(daddr->sa.sa_family); 1212 if (!af || af->sockaddr_len + walk_size > addrs_size) 1213 goto out_free; 1214 1215 if (asoc->peer.port != ntohs(daddr->v4.sin_port)) 1216 goto out_free; 1217 1218 err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len); 1219 if (err) 1220 goto out_free; 1221 1222 addr_buf += af->sockaddr_len; 1223 walk_size += af->sockaddr_len; 1224 } 1225 1226 /* In case the user of sctp_connectx() wants an association 1227 * id back, assign one now. 1228 */ 1229 if (assoc_id) { 1230 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1231 if (err < 0) 1232 goto out_free; 1233 } 1234 1235 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL); 1236 if (err < 0) 1237 goto out_free; 1238 1239 /* Initialize sk's dport and daddr for getpeername() */ 1240 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1241 sp->pf->to_sk_daddr(daddr, sk); 1242 sk->sk_err = 0; 1243 1244 if (assoc_id) 1245 *assoc_id = asoc->assoc_id; 1246 1247 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1248 return sctp_wait_for_connect(asoc, &timeo); 1249 1250 out_free: 1251 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1252 __func__, asoc, kaddrs, err); 1253 sctp_association_free(asoc); 1254 return err; 1255 } 1256 1257 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1258 * 1259 * API 8.9 1260 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1261 * sctp_assoc_t *asoc); 1262 * 1263 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1264 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1265 * or IPv6 addresses. 1266 * 1267 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1268 * Section 3.1.2 for this usage. 1269 * 1270 * addrs is a pointer to an array of one or more socket addresses. Each 1271 * address is contained in its appropriate structure (i.e. struct 1272 * sockaddr_in or struct sockaddr_in6) the family of the address type 1273 * must be used to distengish the address length (note that this 1274 * representation is termed a "packed array" of addresses). The caller 1275 * specifies the number of addresses in the array with addrcnt. 1276 * 1277 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1278 * the association id of the new association. On failure, sctp_connectx() 1279 * returns -1, and sets errno to the appropriate error code. The assoc_id 1280 * is not touched by the kernel. 1281 * 1282 * For SCTP, the port given in each socket address must be the same, or 1283 * sctp_connectx() will fail, setting errno to EINVAL. 1284 * 1285 * An application can use sctp_connectx to initiate an association with 1286 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1287 * allows a caller to specify multiple addresses at which a peer can be 1288 * reached. The way the SCTP stack uses the list of addresses to set up 1289 * the association is implementation dependent. This function only 1290 * specifies that the stack will try to make use of all the addresses in 1291 * the list when needed. 1292 * 1293 * Note that the list of addresses passed in is only used for setting up 1294 * the association. It does not necessarily equal the set of addresses 1295 * the peer uses for the resulting association. If the caller wants to 1296 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1297 * retrieve them after the association has been set up. 1298 * 1299 * Basically do nothing but copying the addresses from user to kernel 1300 * land and invoking either sctp_connectx(). This is used for tunneling 1301 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1302 * 1303 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1304 * it. 1305 * 1306 * sk The sk of the socket 1307 * addrs The pointer to the addresses 1308 * addrssize Size of the addrs buffer 1309 * 1310 * Returns >=0 if ok, <0 errno code on error. 1311 */ 1312 static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs, 1313 int addrs_size, sctp_assoc_t *assoc_id) 1314 { 1315 int err = 0, flags = 0; 1316 1317 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1318 __func__, sk, kaddrs, addrs_size); 1319 1320 /* make sure the 1st addr's sa_family is accessible later */ 1321 if (unlikely(addrs_size < sizeof(sa_family_t))) 1322 return -EINVAL; 1323 1324 /* Allow security module to validate connectx addresses. */ 1325 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1326 (struct sockaddr *)kaddrs, 1327 addrs_size); 1328 if (err) 1329 return err; 1330 1331 /* in-kernel sockets don't generally have a file allocated to them 1332 * if all they do is call sock_create_kern(). 1333 */ 1334 if (sk->sk_socket->file) 1335 flags = sk->sk_socket->file->f_flags; 1336 1337 return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1338 } 1339 1340 /* 1341 * This is an older interface. It's kept for backward compatibility 1342 * to the option that doesn't provide association id. 1343 */ 1344 static int sctp_setsockopt_connectx_old(struct sock *sk, 1345 struct sockaddr *kaddrs, 1346 int addrs_size) 1347 { 1348 return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL); 1349 } 1350 1351 /* 1352 * New interface for the API. The since the API is done with a socket 1353 * option, to make it simple we feed back the association id is as a return 1354 * indication to the call. Error is always negative and association id is 1355 * always positive. 1356 */ 1357 static int sctp_setsockopt_connectx(struct sock *sk, 1358 struct sockaddr *kaddrs, 1359 int addrs_size) 1360 { 1361 sctp_assoc_t assoc_id = 0; 1362 int err = 0; 1363 1364 err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id); 1365 1366 if (err) 1367 return err; 1368 else 1369 return assoc_id; 1370 } 1371 1372 /* 1373 * New (hopefully final) interface for the API. 1374 * We use the sctp_getaddrs_old structure so that use-space library 1375 * can avoid any unnecessary allocations. The only different part 1376 * is that we store the actual length of the address buffer into the 1377 * addrs_num structure member. That way we can re-use the existing 1378 * code. 1379 */ 1380 #ifdef CONFIG_COMPAT 1381 struct compat_sctp_getaddrs_old { 1382 sctp_assoc_t assoc_id; 1383 s32 addr_num; 1384 compat_uptr_t addrs; /* struct sockaddr * */ 1385 }; 1386 #endif 1387 1388 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1389 char __user *optval, 1390 int __user *optlen) 1391 { 1392 struct sctp_getaddrs_old param; 1393 sctp_assoc_t assoc_id = 0; 1394 struct sockaddr *kaddrs; 1395 int err = 0; 1396 1397 #ifdef CONFIG_COMPAT 1398 if (in_compat_syscall()) { 1399 struct compat_sctp_getaddrs_old param32; 1400 1401 if (len < sizeof(param32)) 1402 return -EINVAL; 1403 if (copy_from_user(¶m32, optval, sizeof(param32))) 1404 return -EFAULT; 1405 1406 param.assoc_id = param32.assoc_id; 1407 param.addr_num = param32.addr_num; 1408 param.addrs = compat_ptr(param32.addrs); 1409 } else 1410 #endif 1411 { 1412 if (len < sizeof(param)) 1413 return -EINVAL; 1414 if (copy_from_user(¶m, optval, sizeof(param))) 1415 return -EFAULT; 1416 } 1417 1418 kaddrs = memdup_user(param.addrs, param.addr_num); 1419 if (IS_ERR(kaddrs)) 1420 return PTR_ERR(kaddrs); 1421 1422 err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id); 1423 kfree(kaddrs); 1424 if (err == 0 || err == -EINPROGRESS) { 1425 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1426 return -EFAULT; 1427 if (put_user(sizeof(assoc_id), optlen)) 1428 return -EFAULT; 1429 } 1430 1431 return err; 1432 } 1433 1434 /* API 3.1.4 close() - UDP Style Syntax 1435 * Applications use close() to perform graceful shutdown (as described in 1436 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1437 * by a UDP-style socket. 1438 * 1439 * The syntax is 1440 * 1441 * ret = close(int sd); 1442 * 1443 * sd - the socket descriptor of the associations to be closed. 1444 * 1445 * To gracefully shutdown a specific association represented by the 1446 * UDP-style socket, an application should use the sendmsg() call, 1447 * passing no user data, but including the appropriate flag in the 1448 * ancillary data (see Section xxxx). 1449 * 1450 * If sd in the close() call is a branched-off socket representing only 1451 * one association, the shutdown is performed on that association only. 1452 * 1453 * 4.1.6 close() - TCP Style Syntax 1454 * 1455 * Applications use close() to gracefully close down an association. 1456 * 1457 * The syntax is: 1458 * 1459 * int close(int sd); 1460 * 1461 * sd - the socket descriptor of the association to be closed. 1462 * 1463 * After an application calls close() on a socket descriptor, no further 1464 * socket operations will succeed on that descriptor. 1465 * 1466 * API 7.1.4 SO_LINGER 1467 * 1468 * An application using the TCP-style socket can use this option to 1469 * perform the SCTP ABORT primitive. The linger option structure is: 1470 * 1471 * struct linger { 1472 * int l_onoff; // option on/off 1473 * int l_linger; // linger time 1474 * }; 1475 * 1476 * To enable the option, set l_onoff to 1. If the l_linger value is set 1477 * to 0, calling close() is the same as the ABORT primitive. If the 1478 * value is set to a negative value, the setsockopt() call will return 1479 * an error. If the value is set to a positive value linger_time, the 1480 * close() can be blocked for at most linger_time ms. If the graceful 1481 * shutdown phase does not finish during this period, close() will 1482 * return but the graceful shutdown phase continues in the system. 1483 */ 1484 static void sctp_close(struct sock *sk, long timeout) 1485 { 1486 struct net *net = sock_net(sk); 1487 struct sctp_endpoint *ep; 1488 struct sctp_association *asoc; 1489 struct list_head *pos, *temp; 1490 unsigned int data_was_unread; 1491 1492 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1493 1494 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1495 sk->sk_shutdown = SHUTDOWN_MASK; 1496 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1497 1498 ep = sctp_sk(sk)->ep; 1499 1500 /* Clean up any skbs sitting on the receive queue. */ 1501 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1502 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1503 1504 /* Walk all associations on an endpoint. */ 1505 list_for_each_safe(pos, temp, &ep->asocs) { 1506 asoc = list_entry(pos, struct sctp_association, asocs); 1507 1508 if (sctp_style(sk, TCP)) { 1509 /* A closed association can still be in the list if 1510 * it belongs to a TCP-style listening socket that is 1511 * not yet accepted. If so, free it. If not, send an 1512 * ABORT or SHUTDOWN based on the linger options. 1513 */ 1514 if (sctp_state(asoc, CLOSED)) { 1515 sctp_association_free(asoc); 1516 continue; 1517 } 1518 } 1519 1520 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1521 !skb_queue_empty(&asoc->ulpq.reasm) || 1522 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1523 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1524 struct sctp_chunk *chunk; 1525 1526 chunk = sctp_make_abort_user(asoc, NULL, 0); 1527 sctp_primitive_ABORT(net, asoc, chunk); 1528 } else 1529 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1530 } 1531 1532 /* On a TCP-style socket, block for at most linger_time if set. */ 1533 if (sctp_style(sk, TCP) && timeout) 1534 sctp_wait_for_close(sk, timeout); 1535 1536 /* This will run the backlog queue. */ 1537 release_sock(sk); 1538 1539 /* Supposedly, no process has access to the socket, but 1540 * the net layers still may. 1541 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1542 * held and that should be grabbed before socket lock. 1543 */ 1544 spin_lock_bh(&net->sctp.addr_wq_lock); 1545 bh_lock_sock_nested(sk); 1546 1547 /* Hold the sock, since sk_common_release() will put sock_put() 1548 * and we have just a little more cleanup. 1549 */ 1550 sock_hold(sk); 1551 sk_common_release(sk); 1552 1553 bh_unlock_sock(sk); 1554 spin_unlock_bh(&net->sctp.addr_wq_lock); 1555 1556 sock_put(sk); 1557 } 1558 1559 /* Handle EPIPE error. */ 1560 static int sctp_error(struct sock *sk, int flags, int err) 1561 { 1562 if (err == -EPIPE) 1563 err = sock_error(sk) ? : -EPIPE; 1564 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1565 send_sig(SIGPIPE, current, 0); 1566 return err; 1567 } 1568 1569 /* API 3.1.3 sendmsg() - UDP Style Syntax 1570 * 1571 * An application uses sendmsg() and recvmsg() calls to transmit data to 1572 * and receive data from its peer. 1573 * 1574 * ssize_t sendmsg(int socket, const struct msghdr *message, 1575 * int flags); 1576 * 1577 * socket - the socket descriptor of the endpoint. 1578 * message - pointer to the msghdr structure which contains a single 1579 * user message and possibly some ancillary data. 1580 * 1581 * See Section 5 for complete description of the data 1582 * structures. 1583 * 1584 * flags - flags sent or received with the user message, see Section 1585 * 5 for complete description of the flags. 1586 * 1587 * Note: This function could use a rewrite especially when explicit 1588 * connect support comes in. 1589 */ 1590 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1591 1592 static int sctp_msghdr_parse(const struct msghdr *msg, 1593 struct sctp_cmsgs *cmsgs); 1594 1595 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1596 struct sctp_sndrcvinfo *srinfo, 1597 const struct msghdr *msg, size_t msg_len) 1598 { 1599 __u16 sflags; 1600 int err; 1601 1602 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1603 return -EPIPE; 1604 1605 if (msg_len > sk->sk_sndbuf) 1606 return -EMSGSIZE; 1607 1608 memset(cmsgs, 0, sizeof(*cmsgs)); 1609 err = sctp_msghdr_parse(msg, cmsgs); 1610 if (err) { 1611 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1612 return err; 1613 } 1614 1615 memset(srinfo, 0, sizeof(*srinfo)); 1616 if (cmsgs->srinfo) { 1617 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1618 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1619 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1620 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1621 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1622 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1623 } 1624 1625 if (cmsgs->sinfo) { 1626 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1627 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1628 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1629 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1630 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1631 } 1632 1633 if (cmsgs->prinfo) { 1634 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1635 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1636 cmsgs->prinfo->pr_policy); 1637 } 1638 1639 sflags = srinfo->sinfo_flags; 1640 if (!sflags && msg_len) 1641 return 0; 1642 1643 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1644 return -EINVAL; 1645 1646 if (((sflags & SCTP_EOF) && msg_len > 0) || 1647 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1648 return -EINVAL; 1649 1650 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1651 return -EINVAL; 1652 1653 return 0; 1654 } 1655 1656 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1657 struct sctp_cmsgs *cmsgs, 1658 union sctp_addr *daddr, 1659 struct sctp_transport **tp) 1660 { 1661 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1662 struct sctp_association *asoc; 1663 struct cmsghdr *cmsg; 1664 __be32 flowinfo = 0; 1665 struct sctp_af *af; 1666 int err; 1667 1668 *tp = NULL; 1669 1670 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1671 return -EINVAL; 1672 1673 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1674 sctp_sstate(sk, CLOSING))) 1675 return -EADDRNOTAVAIL; 1676 1677 /* Label connection socket for first association 1-to-many 1678 * style for client sequence socket()->sendmsg(). This 1679 * needs to be done before sctp_assoc_add_peer() as that will 1680 * set up the initial packet that needs to account for any 1681 * security ip options (CIPSO/CALIPSO) added to the packet. 1682 */ 1683 af = sctp_get_af_specific(daddr->sa.sa_family); 1684 if (!af) 1685 return -EINVAL; 1686 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1687 (struct sockaddr *)daddr, 1688 af->sockaddr_len); 1689 if (err < 0) 1690 return err; 1691 1692 err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp); 1693 if (err) 1694 return err; 1695 asoc = (*tp)->asoc; 1696 1697 if (!cmsgs->addrs_msg) 1698 return 0; 1699 1700 if (daddr->sa.sa_family == AF_INET6) 1701 flowinfo = daddr->v6.sin6_flowinfo; 1702 1703 /* sendv addr list parse */ 1704 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1705 union sctp_addr _daddr; 1706 int dlen; 1707 1708 if (cmsg->cmsg_level != IPPROTO_SCTP || 1709 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1710 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1711 continue; 1712 1713 daddr = &_daddr; 1714 memset(daddr, 0, sizeof(*daddr)); 1715 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1716 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1717 if (dlen < sizeof(struct in_addr)) { 1718 err = -EINVAL; 1719 goto free; 1720 } 1721 1722 dlen = sizeof(struct in_addr); 1723 daddr->v4.sin_family = AF_INET; 1724 daddr->v4.sin_port = htons(asoc->peer.port); 1725 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1726 } else { 1727 if (dlen < sizeof(struct in6_addr)) { 1728 err = -EINVAL; 1729 goto free; 1730 } 1731 1732 dlen = sizeof(struct in6_addr); 1733 daddr->v6.sin6_flowinfo = flowinfo; 1734 daddr->v6.sin6_family = AF_INET6; 1735 daddr->v6.sin6_port = htons(asoc->peer.port); 1736 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1737 } 1738 1739 err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr)); 1740 if (err) 1741 goto free; 1742 } 1743 1744 return 0; 1745 1746 free: 1747 sctp_association_free(asoc); 1748 return err; 1749 } 1750 1751 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1752 __u16 sflags, struct msghdr *msg, 1753 size_t msg_len) 1754 { 1755 struct sock *sk = asoc->base.sk; 1756 struct net *net = sock_net(sk); 1757 1758 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1759 return -EPIPE; 1760 1761 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1762 !sctp_state(asoc, ESTABLISHED)) 1763 return 0; 1764 1765 if (sflags & SCTP_EOF) { 1766 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1767 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1768 1769 return 0; 1770 } 1771 1772 if (sflags & SCTP_ABORT) { 1773 struct sctp_chunk *chunk; 1774 1775 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1776 if (!chunk) 1777 return -ENOMEM; 1778 1779 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1780 sctp_primitive_ABORT(net, asoc, chunk); 1781 iov_iter_revert(&msg->msg_iter, msg_len); 1782 1783 return 0; 1784 } 1785 1786 return 1; 1787 } 1788 1789 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1790 struct msghdr *msg, size_t msg_len, 1791 struct sctp_transport *transport, 1792 struct sctp_sndrcvinfo *sinfo) 1793 { 1794 struct sock *sk = asoc->base.sk; 1795 struct sctp_sock *sp = sctp_sk(sk); 1796 struct net *net = sock_net(sk); 1797 struct sctp_datamsg *datamsg; 1798 bool wait_connect = false; 1799 struct sctp_chunk *chunk; 1800 long timeo; 1801 int err; 1802 1803 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1804 err = -EINVAL; 1805 goto err; 1806 } 1807 1808 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { 1809 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1810 if (err) 1811 goto err; 1812 } 1813 1814 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1815 err = -EMSGSIZE; 1816 goto err; 1817 } 1818 1819 if (asoc->pmtu_pending) { 1820 if (sp->param_flags & SPP_PMTUD_ENABLE) 1821 sctp_assoc_sync_pmtu(asoc); 1822 asoc->pmtu_pending = 0; 1823 } 1824 1825 if (sctp_wspace(asoc) < (int)msg_len) 1826 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1827 1828 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) { 1829 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1830 err = sctp_wait_for_sndbuf(asoc, transport, &timeo, msg_len); 1831 if (err) 1832 goto err; 1833 if (unlikely(sinfo->sinfo_stream >= asoc->stream.outcnt)) { 1834 err = -EINVAL; 1835 goto err; 1836 } 1837 } 1838 1839 if (sctp_state(asoc, CLOSED)) { 1840 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1841 if (err) 1842 goto err; 1843 1844 if (asoc->ep->intl_enable) { 1845 timeo = sock_sndtimeo(sk, 0); 1846 err = sctp_wait_for_connect(asoc, &timeo); 1847 if (err) { 1848 err = -ESRCH; 1849 goto err; 1850 } 1851 } else { 1852 wait_connect = true; 1853 } 1854 1855 pr_debug("%s: we associated primitively\n", __func__); 1856 } 1857 1858 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1859 if (IS_ERR(datamsg)) { 1860 err = PTR_ERR(datamsg); 1861 goto err; 1862 } 1863 1864 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1865 1866 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1867 sctp_chunk_hold(chunk); 1868 sctp_set_owner_w(chunk); 1869 chunk->transport = transport; 1870 } 1871 1872 err = sctp_primitive_SEND(net, asoc, datamsg); 1873 if (err) { 1874 sctp_datamsg_free(datamsg); 1875 goto err; 1876 } 1877 1878 pr_debug("%s: we sent primitively\n", __func__); 1879 1880 sctp_datamsg_put(datamsg); 1881 1882 if (unlikely(wait_connect)) { 1883 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1884 sctp_wait_for_connect(asoc, &timeo); 1885 } 1886 1887 err = msg_len; 1888 1889 err: 1890 return err; 1891 } 1892 1893 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1894 const struct msghdr *msg, 1895 struct sctp_cmsgs *cmsgs) 1896 { 1897 union sctp_addr *daddr = NULL; 1898 int err; 1899 1900 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1901 int len = msg->msg_namelen; 1902 1903 if (len > sizeof(*daddr)) 1904 len = sizeof(*daddr); 1905 1906 daddr = (union sctp_addr *)msg->msg_name; 1907 1908 err = sctp_verify_addr(sk, daddr, len); 1909 if (err) 1910 return ERR_PTR(err); 1911 } 1912 1913 return daddr; 1914 } 1915 1916 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 1917 struct sctp_sndrcvinfo *sinfo, 1918 struct sctp_cmsgs *cmsgs) 1919 { 1920 if (!cmsgs->srinfo && !cmsgs->sinfo) { 1921 sinfo->sinfo_stream = asoc->default_stream; 1922 sinfo->sinfo_ppid = asoc->default_ppid; 1923 sinfo->sinfo_context = asoc->default_context; 1924 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 1925 1926 if (!cmsgs->prinfo) 1927 sinfo->sinfo_flags = asoc->default_flags; 1928 } 1929 1930 if (!cmsgs->srinfo && !cmsgs->prinfo) 1931 sinfo->sinfo_timetolive = asoc->default_timetolive; 1932 1933 if (cmsgs->authinfo) { 1934 /* Reuse sinfo_tsn to indicate that authinfo was set and 1935 * sinfo_ssn to save the keyid on tx path. 1936 */ 1937 sinfo->sinfo_tsn = 1; 1938 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 1939 } 1940 } 1941 1942 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1943 { 1944 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1945 struct sctp_transport *transport = NULL; 1946 struct sctp_sndrcvinfo _sinfo, *sinfo; 1947 struct sctp_association *asoc, *tmp; 1948 struct sctp_cmsgs cmsgs; 1949 union sctp_addr *daddr; 1950 bool new = false; 1951 __u16 sflags; 1952 int err; 1953 1954 /* Parse and get snd_info */ 1955 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 1956 if (err) 1957 goto out; 1958 1959 sinfo = &_sinfo; 1960 sflags = sinfo->sinfo_flags; 1961 1962 /* Get daddr from msg */ 1963 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 1964 if (IS_ERR(daddr)) { 1965 err = PTR_ERR(daddr); 1966 goto out; 1967 } 1968 1969 lock_sock(sk); 1970 1971 /* SCTP_SENDALL process */ 1972 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 1973 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) { 1974 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1975 msg_len); 1976 if (err == 0) 1977 continue; 1978 if (err < 0) 1979 goto out_unlock; 1980 1981 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 1982 1983 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 1984 NULL, sinfo); 1985 if (err < 0) 1986 goto out_unlock; 1987 1988 iov_iter_revert(&msg->msg_iter, err); 1989 } 1990 1991 goto out_unlock; 1992 } 1993 1994 /* Get and check or create asoc */ 1995 if (daddr) { 1996 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1997 if (asoc) { 1998 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1999 msg_len); 2000 if (err <= 0) 2001 goto out_unlock; 2002 } else { 2003 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 2004 &transport); 2005 if (err) 2006 goto out_unlock; 2007 2008 asoc = transport->asoc; 2009 new = true; 2010 } 2011 2012 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 2013 transport = NULL; 2014 } else { 2015 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2016 if (!asoc) { 2017 err = -EPIPE; 2018 goto out_unlock; 2019 } 2020 2021 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2022 if (err <= 0) 2023 goto out_unlock; 2024 } 2025 2026 /* Update snd_info with the asoc */ 2027 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2028 2029 /* Send msg to the asoc */ 2030 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2031 if (err < 0 && err != -ESRCH && new) 2032 sctp_association_free(asoc); 2033 2034 out_unlock: 2035 release_sock(sk); 2036 out: 2037 return sctp_error(sk, msg->msg_flags, err); 2038 } 2039 2040 /* This is an extended version of skb_pull() that removes the data from the 2041 * start of a skb even when data is spread across the list of skb's in the 2042 * frag_list. len specifies the total amount of data that needs to be removed. 2043 * when 'len' bytes could be removed from the skb, it returns 0. 2044 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2045 * could not be removed. 2046 */ 2047 static int sctp_skb_pull(struct sk_buff *skb, int len) 2048 { 2049 struct sk_buff *list; 2050 int skb_len = skb_headlen(skb); 2051 int rlen; 2052 2053 if (len <= skb_len) { 2054 __skb_pull(skb, len); 2055 return 0; 2056 } 2057 len -= skb_len; 2058 __skb_pull(skb, skb_len); 2059 2060 skb_walk_frags(skb, list) { 2061 rlen = sctp_skb_pull(list, len); 2062 skb->len -= (len-rlen); 2063 skb->data_len -= (len-rlen); 2064 2065 if (!rlen) 2066 return 0; 2067 2068 len = rlen; 2069 } 2070 2071 return len; 2072 } 2073 2074 /* API 3.1.3 recvmsg() - UDP Style Syntax 2075 * 2076 * ssize_t recvmsg(int socket, struct msghdr *message, 2077 * int flags); 2078 * 2079 * socket - the socket descriptor of the endpoint. 2080 * message - pointer to the msghdr structure which contains a single 2081 * user message and possibly some ancillary data. 2082 * 2083 * See Section 5 for complete description of the data 2084 * structures. 2085 * 2086 * flags - flags sent or received with the user message, see Section 2087 * 5 for complete description of the flags. 2088 */ 2089 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2090 int flags, int *addr_len) 2091 { 2092 struct sctp_ulpevent *event = NULL; 2093 struct sctp_sock *sp = sctp_sk(sk); 2094 struct sk_buff *skb, *head_skb; 2095 int copied; 2096 int err = 0; 2097 int skb_len; 2098 2099 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, flags:0x%x, addr_len:%p)\n", 2100 __func__, sk, msg, len, flags, addr_len); 2101 2102 if (unlikely(flags & MSG_ERRQUEUE)) 2103 return inet_recv_error(sk, msg, len, addr_len); 2104 2105 if (sk_can_busy_loop(sk) && 2106 skb_queue_empty_lockless(&sk->sk_receive_queue)) 2107 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2108 2109 lock_sock(sk); 2110 2111 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2112 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2113 err = -ENOTCONN; 2114 goto out; 2115 } 2116 2117 skb = sctp_skb_recv_datagram(sk, flags, &err); 2118 if (!skb) 2119 goto out; 2120 2121 /* Get the total length of the skb including any skb's in the 2122 * frag_list. 2123 */ 2124 skb_len = skb->len; 2125 2126 copied = skb_len; 2127 if (copied > len) 2128 copied = len; 2129 2130 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2131 2132 event = sctp_skb2event(skb); 2133 2134 if (err) 2135 goto out_free; 2136 2137 if (event->chunk && event->chunk->head_skb) 2138 head_skb = event->chunk->head_skb; 2139 else 2140 head_skb = skb; 2141 sock_recv_cmsgs(msg, sk, head_skb); 2142 if (sctp_ulpevent_is_notification(event)) { 2143 msg->msg_flags |= MSG_NOTIFICATION; 2144 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2145 } else { 2146 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2147 } 2148 2149 /* Check if we allow SCTP_NXTINFO. */ 2150 if (sp->recvnxtinfo) 2151 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2152 /* Check if we allow SCTP_RCVINFO. */ 2153 if (sp->recvrcvinfo) 2154 sctp_ulpevent_read_rcvinfo(event, msg); 2155 /* Check if we allow SCTP_SNDRCVINFO. */ 2156 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT)) 2157 sctp_ulpevent_read_sndrcvinfo(event, msg); 2158 2159 err = copied; 2160 2161 /* If skb's length exceeds the user's buffer, update the skb and 2162 * push it back to the receive_queue so that the next call to 2163 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2164 */ 2165 if (skb_len > copied) { 2166 msg->msg_flags &= ~MSG_EOR; 2167 if (flags & MSG_PEEK) 2168 goto out_free; 2169 sctp_skb_pull(skb, copied); 2170 skb_queue_head(&sk->sk_receive_queue, skb); 2171 2172 /* When only partial message is copied to the user, increase 2173 * rwnd by that amount. If all the data in the skb is read, 2174 * rwnd is updated when the event is freed. 2175 */ 2176 if (!sctp_ulpevent_is_notification(event)) 2177 sctp_assoc_rwnd_increase(event->asoc, copied); 2178 goto out; 2179 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2180 (event->msg_flags & MSG_EOR)) 2181 msg->msg_flags |= MSG_EOR; 2182 else 2183 msg->msg_flags &= ~MSG_EOR; 2184 2185 out_free: 2186 if (flags & MSG_PEEK) { 2187 /* Release the skb reference acquired after peeking the skb in 2188 * sctp_skb_recv_datagram(). 2189 */ 2190 kfree_skb(skb); 2191 } else { 2192 /* Free the event which includes releasing the reference to 2193 * the owner of the skb, freeing the skb and updating the 2194 * rwnd. 2195 */ 2196 sctp_ulpevent_free(event); 2197 } 2198 out: 2199 release_sock(sk); 2200 return err; 2201 } 2202 2203 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2204 * 2205 * This option is a on/off flag. If enabled no SCTP message 2206 * fragmentation will be performed. Instead if a message being sent 2207 * exceeds the current PMTU size, the message will NOT be sent and 2208 * instead a error will be indicated to the user. 2209 */ 2210 static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val, 2211 unsigned int optlen) 2212 { 2213 if (optlen < sizeof(int)) 2214 return -EINVAL; 2215 sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1; 2216 return 0; 2217 } 2218 2219 static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type, 2220 unsigned int optlen) 2221 { 2222 struct sctp_sock *sp = sctp_sk(sk); 2223 struct sctp_association *asoc; 2224 int i; 2225 2226 if (optlen > sizeof(struct sctp_event_subscribe)) 2227 return -EINVAL; 2228 2229 for (i = 0; i < optlen; i++) 2230 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i, 2231 sn_type[i]); 2232 2233 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2234 asoc->subscribe = sctp_sk(sk)->subscribe; 2235 2236 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2237 * if there is no data to be sent or retransmit, the stack will 2238 * immediately send up this notification. 2239 */ 2240 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) { 2241 struct sctp_ulpevent *event; 2242 2243 asoc = sctp_id2assoc(sk, 0); 2244 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2245 event = sctp_ulpevent_make_sender_dry_event(asoc, 2246 GFP_USER | __GFP_NOWARN); 2247 if (!event) 2248 return -ENOMEM; 2249 2250 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2251 } 2252 } 2253 2254 return 0; 2255 } 2256 2257 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2258 * 2259 * This socket option is applicable to the UDP-style socket only. When 2260 * set it will cause associations that are idle for more than the 2261 * specified number of seconds to automatically close. An association 2262 * being idle is defined an association that has NOT sent or received 2263 * user data. The special value of '0' indicates that no automatic 2264 * close of any associations should be performed. The option expects an 2265 * integer defining the number of seconds of idle time before an 2266 * association is closed. 2267 */ 2268 static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval, 2269 unsigned int optlen) 2270 { 2271 struct sctp_sock *sp = sctp_sk(sk); 2272 struct net *net = sock_net(sk); 2273 2274 /* Applicable to UDP-style socket only */ 2275 if (sctp_style(sk, TCP)) 2276 return -EOPNOTSUPP; 2277 if (optlen != sizeof(int)) 2278 return -EINVAL; 2279 2280 sp->autoclose = *optval; 2281 if (sp->autoclose > net->sctp.max_autoclose) 2282 sp->autoclose = net->sctp.max_autoclose; 2283 2284 return 0; 2285 } 2286 2287 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2288 * 2289 * Applications can enable or disable heartbeats for any peer address of 2290 * an association, modify an address's heartbeat interval, force a 2291 * heartbeat to be sent immediately, and adjust the address's maximum 2292 * number of retransmissions sent before an address is considered 2293 * unreachable. The following structure is used to access and modify an 2294 * address's parameters: 2295 * 2296 * struct sctp_paddrparams { 2297 * sctp_assoc_t spp_assoc_id; 2298 * struct sockaddr_storage spp_address; 2299 * uint32_t spp_hbinterval; 2300 * uint16_t spp_pathmaxrxt; 2301 * uint32_t spp_pathmtu; 2302 * uint32_t spp_sackdelay; 2303 * uint32_t spp_flags; 2304 * uint32_t spp_ipv6_flowlabel; 2305 * uint8_t spp_dscp; 2306 * }; 2307 * 2308 * spp_assoc_id - (one-to-many style socket) This is filled in the 2309 * application, and identifies the association for 2310 * this query. 2311 * spp_address - This specifies which address is of interest. 2312 * spp_hbinterval - This contains the value of the heartbeat interval, 2313 * in milliseconds. If a value of zero 2314 * is present in this field then no changes are to 2315 * be made to this parameter. 2316 * spp_pathmaxrxt - This contains the maximum number of 2317 * retransmissions before this address shall be 2318 * considered unreachable. If a value of zero 2319 * is present in this field then no changes are to 2320 * be made to this parameter. 2321 * spp_pathmtu - When Path MTU discovery is disabled the value 2322 * specified here will be the "fixed" path mtu. 2323 * Note that if the spp_address field is empty 2324 * then all associations on this address will 2325 * have this fixed path mtu set upon them. 2326 * 2327 * spp_sackdelay - When delayed sack is enabled, this value specifies 2328 * the number of milliseconds that sacks will be delayed 2329 * for. This value will apply to all addresses of an 2330 * association if the spp_address field is empty. Note 2331 * also, that if delayed sack is enabled and this 2332 * value is set to 0, no change is made to the last 2333 * recorded delayed sack timer value. 2334 * 2335 * spp_flags - These flags are used to control various features 2336 * on an association. The flag field may contain 2337 * zero or more of the following options. 2338 * 2339 * SPP_HB_ENABLE - Enable heartbeats on the 2340 * specified address. Note that if the address 2341 * field is empty all addresses for the association 2342 * have heartbeats enabled upon them. 2343 * 2344 * SPP_HB_DISABLE - Disable heartbeats on the 2345 * speicifed address. Note that if the address 2346 * field is empty all addresses for the association 2347 * will have their heartbeats disabled. Note also 2348 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2349 * mutually exclusive, only one of these two should 2350 * be specified. Enabling both fields will have 2351 * undetermined results. 2352 * 2353 * SPP_HB_DEMAND - Request a user initiated heartbeat 2354 * to be made immediately. 2355 * 2356 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2357 * heartbeat delayis to be set to the value of 0 2358 * milliseconds. 2359 * 2360 * SPP_PMTUD_ENABLE - This field will enable PMTU 2361 * discovery upon the specified address. Note that 2362 * if the address feild is empty then all addresses 2363 * on the association are effected. 2364 * 2365 * SPP_PMTUD_DISABLE - This field will disable PMTU 2366 * discovery upon the specified address. Note that 2367 * if the address feild is empty then all addresses 2368 * on the association are effected. Not also that 2369 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2370 * exclusive. Enabling both will have undetermined 2371 * results. 2372 * 2373 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2374 * on delayed sack. The time specified in spp_sackdelay 2375 * is used to specify the sack delay for this address. Note 2376 * that if spp_address is empty then all addresses will 2377 * enable delayed sack and take on the sack delay 2378 * value specified in spp_sackdelay. 2379 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2380 * off delayed sack. If the spp_address field is blank then 2381 * delayed sack is disabled for the entire association. Note 2382 * also that this field is mutually exclusive to 2383 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2384 * results. 2385 * 2386 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2387 * setting of the IPV6 flow label value. The value is 2388 * contained in the spp_ipv6_flowlabel field. 2389 * Upon retrieval, this flag will be set to indicate that 2390 * the spp_ipv6_flowlabel field has a valid value returned. 2391 * If a specific destination address is set (in the 2392 * spp_address field), then the value returned is that of 2393 * the address. If just an association is specified (and 2394 * no address), then the association's default flow label 2395 * is returned. If neither an association nor a destination 2396 * is specified, then the socket's default flow label is 2397 * returned. For non-IPv6 sockets, this flag will be left 2398 * cleared. 2399 * 2400 * SPP_DSCP: Setting this flag enables the setting of the 2401 * Differentiated Services Code Point (DSCP) value 2402 * associated with either the association or a specific 2403 * address. The value is obtained in the spp_dscp field. 2404 * Upon retrieval, this flag will be set to indicate that 2405 * the spp_dscp field has a valid value returned. If a 2406 * specific destination address is set when called (in the 2407 * spp_address field), then that specific destination 2408 * address's DSCP value is returned. If just an association 2409 * is specified, then the association's default DSCP is 2410 * returned. If neither an association nor a destination is 2411 * specified, then the socket's default DSCP is returned. 2412 * 2413 * spp_ipv6_flowlabel 2414 * - This field is used in conjunction with the 2415 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2416 * The 20 least significant bits are used for the flow 2417 * label. This setting has precedence over any IPv6-layer 2418 * setting. 2419 * 2420 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2421 * and contains the DSCP. The 6 most significant bits are 2422 * used for the DSCP. This setting has precedence over any 2423 * IPv4- or IPv6- layer setting. 2424 */ 2425 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2426 struct sctp_transport *trans, 2427 struct sctp_association *asoc, 2428 struct sctp_sock *sp, 2429 int hb_change, 2430 int pmtud_change, 2431 int sackdelay_change) 2432 { 2433 int error; 2434 2435 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2436 error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net, 2437 trans->asoc, trans); 2438 if (error) 2439 return error; 2440 } 2441 2442 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2443 * this field is ignored. Note also that a value of zero indicates 2444 * the current setting should be left unchanged. 2445 */ 2446 if (params->spp_flags & SPP_HB_ENABLE) { 2447 2448 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2449 * set. This lets us use 0 value when this flag 2450 * is set. 2451 */ 2452 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2453 params->spp_hbinterval = 0; 2454 2455 if (params->spp_hbinterval || 2456 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2457 if (trans) { 2458 trans->hbinterval = 2459 msecs_to_jiffies(params->spp_hbinterval); 2460 sctp_transport_reset_hb_timer(trans); 2461 } else if (asoc) { 2462 asoc->hbinterval = 2463 msecs_to_jiffies(params->spp_hbinterval); 2464 } else { 2465 sp->hbinterval = params->spp_hbinterval; 2466 } 2467 } 2468 } 2469 2470 if (hb_change) { 2471 if (trans) { 2472 trans->param_flags = 2473 (trans->param_flags & ~SPP_HB) | hb_change; 2474 } else if (asoc) { 2475 asoc->param_flags = 2476 (asoc->param_flags & ~SPP_HB) | hb_change; 2477 } else { 2478 sp->param_flags = 2479 (sp->param_flags & ~SPP_HB) | hb_change; 2480 } 2481 } 2482 2483 /* When Path MTU discovery is disabled the value specified here will 2484 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2485 * include the flag SPP_PMTUD_DISABLE for this field to have any 2486 * effect). 2487 */ 2488 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2489 if (trans) { 2490 trans->pathmtu = params->spp_pathmtu; 2491 sctp_assoc_sync_pmtu(asoc); 2492 } else if (asoc) { 2493 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2494 } else { 2495 sp->pathmtu = params->spp_pathmtu; 2496 } 2497 } 2498 2499 if (pmtud_change) { 2500 if (trans) { 2501 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2502 (params->spp_flags & SPP_PMTUD_ENABLE); 2503 trans->param_flags = 2504 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2505 if (update) { 2506 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2507 sctp_assoc_sync_pmtu(asoc); 2508 } 2509 sctp_transport_pl_reset(trans); 2510 } else if (asoc) { 2511 asoc->param_flags = 2512 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2513 } else { 2514 sp->param_flags = 2515 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2516 } 2517 } 2518 2519 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2520 * value of this field is ignored. Note also that a value of zero 2521 * indicates the current setting should be left unchanged. 2522 */ 2523 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2524 if (trans) { 2525 trans->sackdelay = 2526 msecs_to_jiffies(params->spp_sackdelay); 2527 } else if (asoc) { 2528 asoc->sackdelay = 2529 msecs_to_jiffies(params->spp_sackdelay); 2530 } else { 2531 sp->sackdelay = params->spp_sackdelay; 2532 } 2533 } 2534 2535 if (sackdelay_change) { 2536 if (trans) { 2537 trans->param_flags = 2538 (trans->param_flags & ~SPP_SACKDELAY) | 2539 sackdelay_change; 2540 } else if (asoc) { 2541 asoc->param_flags = 2542 (asoc->param_flags & ~SPP_SACKDELAY) | 2543 sackdelay_change; 2544 } else { 2545 sp->param_flags = 2546 (sp->param_flags & ~SPP_SACKDELAY) | 2547 sackdelay_change; 2548 } 2549 } 2550 2551 /* Note that a value of zero indicates the current setting should be 2552 left unchanged. 2553 */ 2554 if (params->spp_pathmaxrxt) { 2555 if (trans) { 2556 trans->pathmaxrxt = params->spp_pathmaxrxt; 2557 } else if (asoc) { 2558 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2559 } else { 2560 sp->pathmaxrxt = params->spp_pathmaxrxt; 2561 } 2562 } 2563 2564 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2565 if (trans) { 2566 if (trans->ipaddr.sa.sa_family == AF_INET6) { 2567 trans->flowlabel = params->spp_ipv6_flowlabel & 2568 SCTP_FLOWLABEL_VAL_MASK; 2569 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2570 } 2571 } else if (asoc) { 2572 struct sctp_transport *t; 2573 2574 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2575 transports) { 2576 if (t->ipaddr.sa.sa_family != AF_INET6) 2577 continue; 2578 t->flowlabel = params->spp_ipv6_flowlabel & 2579 SCTP_FLOWLABEL_VAL_MASK; 2580 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2581 } 2582 asoc->flowlabel = params->spp_ipv6_flowlabel & 2583 SCTP_FLOWLABEL_VAL_MASK; 2584 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2585 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2586 sp->flowlabel = params->spp_ipv6_flowlabel & 2587 SCTP_FLOWLABEL_VAL_MASK; 2588 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2589 } 2590 } 2591 2592 if (params->spp_flags & SPP_DSCP) { 2593 if (trans) { 2594 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2595 trans->dscp |= SCTP_DSCP_SET_MASK; 2596 } else if (asoc) { 2597 struct sctp_transport *t; 2598 2599 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2600 transports) { 2601 t->dscp = params->spp_dscp & 2602 SCTP_DSCP_VAL_MASK; 2603 t->dscp |= SCTP_DSCP_SET_MASK; 2604 } 2605 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2606 asoc->dscp |= SCTP_DSCP_SET_MASK; 2607 } else { 2608 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2609 sp->dscp |= SCTP_DSCP_SET_MASK; 2610 } 2611 } 2612 2613 return 0; 2614 } 2615 2616 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2617 struct sctp_paddrparams *params, 2618 unsigned int optlen) 2619 { 2620 struct sctp_transport *trans = NULL; 2621 struct sctp_association *asoc = NULL; 2622 struct sctp_sock *sp = sctp_sk(sk); 2623 int error; 2624 int hb_change, pmtud_change, sackdelay_change; 2625 2626 if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2627 spp_ipv6_flowlabel), 4)) { 2628 if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2629 return -EINVAL; 2630 } else if (optlen != sizeof(*params)) { 2631 return -EINVAL; 2632 } 2633 2634 /* Validate flags and value parameters. */ 2635 hb_change = params->spp_flags & SPP_HB; 2636 pmtud_change = params->spp_flags & SPP_PMTUD; 2637 sackdelay_change = params->spp_flags & SPP_SACKDELAY; 2638 2639 if (hb_change == SPP_HB || 2640 pmtud_change == SPP_PMTUD || 2641 sackdelay_change == SPP_SACKDELAY || 2642 params->spp_sackdelay > 500 || 2643 (params->spp_pathmtu && 2644 params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2645 return -EINVAL; 2646 2647 /* If an address other than INADDR_ANY is specified, and 2648 * no transport is found, then the request is invalid. 2649 */ 2650 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spp_address)) { 2651 trans = sctp_addr_id2transport(sk, ¶ms->spp_address, 2652 params->spp_assoc_id); 2653 if (!trans) 2654 return -EINVAL; 2655 } 2656 2657 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 2658 * socket is a one to many style socket, and an association 2659 * was not found, then the id was invalid. 2660 */ 2661 asoc = sctp_id2assoc(sk, params->spp_assoc_id); 2662 if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC && 2663 sctp_style(sk, UDP)) 2664 return -EINVAL; 2665 2666 /* Heartbeat demand can only be sent on a transport or 2667 * association, but not a socket. 2668 */ 2669 if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2670 return -EINVAL; 2671 2672 /* Process parameters. */ 2673 error = sctp_apply_peer_addr_params(params, trans, asoc, sp, 2674 hb_change, pmtud_change, 2675 sackdelay_change); 2676 2677 if (error) 2678 return error; 2679 2680 /* If changes are for association, also apply parameters to each 2681 * transport. 2682 */ 2683 if (!trans && asoc) { 2684 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2685 transports) { 2686 sctp_apply_peer_addr_params(params, trans, asoc, sp, 2687 hb_change, pmtud_change, 2688 sackdelay_change); 2689 } 2690 } 2691 2692 return 0; 2693 } 2694 2695 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2696 { 2697 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2698 } 2699 2700 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2701 { 2702 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2703 } 2704 2705 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params, 2706 struct sctp_association *asoc) 2707 { 2708 struct sctp_transport *trans; 2709 2710 if (params->sack_delay) { 2711 asoc->sackdelay = msecs_to_jiffies(params->sack_delay); 2712 asoc->param_flags = 2713 sctp_spp_sackdelay_enable(asoc->param_flags); 2714 } 2715 if (params->sack_freq == 1) { 2716 asoc->param_flags = 2717 sctp_spp_sackdelay_disable(asoc->param_flags); 2718 } else if (params->sack_freq > 1) { 2719 asoc->sackfreq = params->sack_freq; 2720 asoc->param_flags = 2721 sctp_spp_sackdelay_enable(asoc->param_flags); 2722 } 2723 2724 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2725 transports) { 2726 if (params->sack_delay) { 2727 trans->sackdelay = msecs_to_jiffies(params->sack_delay); 2728 trans->param_flags = 2729 sctp_spp_sackdelay_enable(trans->param_flags); 2730 } 2731 if (params->sack_freq == 1) { 2732 trans->param_flags = 2733 sctp_spp_sackdelay_disable(trans->param_flags); 2734 } else if (params->sack_freq > 1) { 2735 trans->sackfreq = params->sack_freq; 2736 trans->param_flags = 2737 sctp_spp_sackdelay_enable(trans->param_flags); 2738 } 2739 } 2740 } 2741 2742 /* 2743 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2744 * 2745 * This option will effect the way delayed acks are performed. This 2746 * option allows you to get or set the delayed ack time, in 2747 * milliseconds. It also allows changing the delayed ack frequency. 2748 * Changing the frequency to 1 disables the delayed sack algorithm. If 2749 * the assoc_id is 0, then this sets or gets the endpoints default 2750 * values. If the assoc_id field is non-zero, then the set or get 2751 * effects the specified association for the one to many model (the 2752 * assoc_id field is ignored by the one to one model). Note that if 2753 * sack_delay or sack_freq are 0 when setting this option, then the 2754 * current values will remain unchanged. 2755 * 2756 * struct sctp_sack_info { 2757 * sctp_assoc_t sack_assoc_id; 2758 * uint32_t sack_delay; 2759 * uint32_t sack_freq; 2760 * }; 2761 * 2762 * sack_assoc_id - This parameter, indicates which association the user 2763 * is performing an action upon. Note that if this field's value is 2764 * zero then the endpoints default value is changed (effecting future 2765 * associations only). 2766 * 2767 * sack_delay - This parameter contains the number of milliseconds that 2768 * the user is requesting the delayed ACK timer be set to. Note that 2769 * this value is defined in the standard to be between 200 and 500 2770 * milliseconds. 2771 * 2772 * sack_freq - This parameter contains the number of packets that must 2773 * be received before a sack is sent without waiting for the delay 2774 * timer to expire. The default value for this is 2, setting this 2775 * value to 1 will disable the delayed sack algorithm. 2776 */ 2777 static int __sctp_setsockopt_delayed_ack(struct sock *sk, 2778 struct sctp_sack_info *params) 2779 { 2780 struct sctp_sock *sp = sctp_sk(sk); 2781 struct sctp_association *asoc; 2782 2783 /* Validate value parameter. */ 2784 if (params->sack_delay > 500) 2785 return -EINVAL; 2786 2787 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 2788 * socket is a one to many style socket, and an association 2789 * was not found, then the id was invalid. 2790 */ 2791 asoc = sctp_id2assoc(sk, params->sack_assoc_id); 2792 if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC && 2793 sctp_style(sk, UDP)) 2794 return -EINVAL; 2795 2796 if (asoc) { 2797 sctp_apply_asoc_delayed_ack(params, asoc); 2798 2799 return 0; 2800 } 2801 2802 if (sctp_style(sk, TCP)) 2803 params->sack_assoc_id = SCTP_FUTURE_ASSOC; 2804 2805 if (params->sack_assoc_id == SCTP_FUTURE_ASSOC || 2806 params->sack_assoc_id == SCTP_ALL_ASSOC) { 2807 if (params->sack_delay) { 2808 sp->sackdelay = params->sack_delay; 2809 sp->param_flags = 2810 sctp_spp_sackdelay_enable(sp->param_flags); 2811 } 2812 if (params->sack_freq == 1) { 2813 sp->param_flags = 2814 sctp_spp_sackdelay_disable(sp->param_flags); 2815 } else if (params->sack_freq > 1) { 2816 sp->sackfreq = params->sack_freq; 2817 sp->param_flags = 2818 sctp_spp_sackdelay_enable(sp->param_flags); 2819 } 2820 } 2821 2822 if (params->sack_assoc_id == SCTP_CURRENT_ASSOC || 2823 params->sack_assoc_id == SCTP_ALL_ASSOC) 2824 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2825 sctp_apply_asoc_delayed_ack(params, asoc); 2826 2827 return 0; 2828 } 2829 2830 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2831 struct sctp_sack_info *params, 2832 unsigned int optlen) 2833 { 2834 if (optlen == sizeof(struct sctp_assoc_value)) { 2835 struct sctp_assoc_value *v = (struct sctp_assoc_value *)params; 2836 struct sctp_sack_info p; 2837 2838 pr_warn_ratelimited(DEPRECATED 2839 "%s (pid %d) " 2840 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2841 "Use struct sctp_sack_info instead\n", 2842 current->comm, task_pid_nr(current)); 2843 2844 p.sack_assoc_id = v->assoc_id; 2845 p.sack_delay = v->assoc_value; 2846 p.sack_freq = v->assoc_value ? 0 : 1; 2847 return __sctp_setsockopt_delayed_ack(sk, &p); 2848 } 2849 2850 if (optlen != sizeof(struct sctp_sack_info)) 2851 return -EINVAL; 2852 if (params->sack_delay == 0 && params->sack_freq == 0) 2853 return 0; 2854 return __sctp_setsockopt_delayed_ack(sk, params); 2855 } 2856 2857 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2858 * 2859 * Applications can specify protocol parameters for the default association 2860 * initialization. The option name argument to setsockopt() and getsockopt() 2861 * is SCTP_INITMSG. 2862 * 2863 * Setting initialization parameters is effective only on an unconnected 2864 * socket (for UDP-style sockets only future associations are effected 2865 * by the change). With TCP-style sockets, this option is inherited by 2866 * sockets derived from a listener socket. 2867 */ 2868 static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit, 2869 unsigned int optlen) 2870 { 2871 struct sctp_sock *sp = sctp_sk(sk); 2872 2873 if (optlen != sizeof(struct sctp_initmsg)) 2874 return -EINVAL; 2875 2876 if (sinit->sinit_num_ostreams) 2877 sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams; 2878 if (sinit->sinit_max_instreams) 2879 sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams; 2880 if (sinit->sinit_max_attempts) 2881 sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts; 2882 if (sinit->sinit_max_init_timeo) 2883 sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo; 2884 2885 return 0; 2886 } 2887 2888 /* 2889 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2890 * 2891 * Applications that wish to use the sendto() system call may wish to 2892 * specify a default set of parameters that would normally be supplied 2893 * through the inclusion of ancillary data. This socket option allows 2894 * such an application to set the default sctp_sndrcvinfo structure. 2895 * The application that wishes to use this socket option simply passes 2896 * in to this call the sctp_sndrcvinfo structure defined in Section 2897 * 5.2.2) The input parameters accepted by this call include 2898 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2899 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2900 * to this call if the caller is using the UDP model. 2901 */ 2902 static int sctp_setsockopt_default_send_param(struct sock *sk, 2903 struct sctp_sndrcvinfo *info, 2904 unsigned int optlen) 2905 { 2906 struct sctp_sock *sp = sctp_sk(sk); 2907 struct sctp_association *asoc; 2908 2909 if (optlen != sizeof(*info)) 2910 return -EINVAL; 2911 if (info->sinfo_flags & 2912 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2913 SCTP_ABORT | SCTP_EOF)) 2914 return -EINVAL; 2915 2916 asoc = sctp_id2assoc(sk, info->sinfo_assoc_id); 2917 if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC && 2918 sctp_style(sk, UDP)) 2919 return -EINVAL; 2920 2921 if (asoc) { 2922 asoc->default_stream = info->sinfo_stream; 2923 asoc->default_flags = info->sinfo_flags; 2924 asoc->default_ppid = info->sinfo_ppid; 2925 asoc->default_context = info->sinfo_context; 2926 asoc->default_timetolive = info->sinfo_timetolive; 2927 2928 return 0; 2929 } 2930 2931 if (sctp_style(sk, TCP)) 2932 info->sinfo_assoc_id = SCTP_FUTURE_ASSOC; 2933 2934 if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC || 2935 info->sinfo_assoc_id == SCTP_ALL_ASSOC) { 2936 sp->default_stream = info->sinfo_stream; 2937 sp->default_flags = info->sinfo_flags; 2938 sp->default_ppid = info->sinfo_ppid; 2939 sp->default_context = info->sinfo_context; 2940 sp->default_timetolive = info->sinfo_timetolive; 2941 } 2942 2943 if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC || 2944 info->sinfo_assoc_id == SCTP_ALL_ASSOC) { 2945 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 2946 asoc->default_stream = info->sinfo_stream; 2947 asoc->default_flags = info->sinfo_flags; 2948 asoc->default_ppid = info->sinfo_ppid; 2949 asoc->default_context = info->sinfo_context; 2950 asoc->default_timetolive = info->sinfo_timetolive; 2951 } 2952 } 2953 2954 return 0; 2955 } 2956 2957 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2958 * (SCTP_DEFAULT_SNDINFO) 2959 */ 2960 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2961 struct sctp_sndinfo *info, 2962 unsigned int optlen) 2963 { 2964 struct sctp_sock *sp = sctp_sk(sk); 2965 struct sctp_association *asoc; 2966 2967 if (optlen != sizeof(*info)) 2968 return -EINVAL; 2969 if (info->snd_flags & 2970 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2971 SCTP_ABORT | SCTP_EOF)) 2972 return -EINVAL; 2973 2974 asoc = sctp_id2assoc(sk, info->snd_assoc_id); 2975 if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC && 2976 sctp_style(sk, UDP)) 2977 return -EINVAL; 2978 2979 if (asoc) { 2980 asoc->default_stream = info->snd_sid; 2981 asoc->default_flags = info->snd_flags; 2982 asoc->default_ppid = info->snd_ppid; 2983 asoc->default_context = info->snd_context; 2984 2985 return 0; 2986 } 2987 2988 if (sctp_style(sk, TCP)) 2989 info->snd_assoc_id = SCTP_FUTURE_ASSOC; 2990 2991 if (info->snd_assoc_id == SCTP_FUTURE_ASSOC || 2992 info->snd_assoc_id == SCTP_ALL_ASSOC) { 2993 sp->default_stream = info->snd_sid; 2994 sp->default_flags = info->snd_flags; 2995 sp->default_ppid = info->snd_ppid; 2996 sp->default_context = info->snd_context; 2997 } 2998 2999 if (info->snd_assoc_id == SCTP_CURRENT_ASSOC || 3000 info->snd_assoc_id == SCTP_ALL_ASSOC) { 3001 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 3002 asoc->default_stream = info->snd_sid; 3003 asoc->default_flags = info->snd_flags; 3004 asoc->default_ppid = info->snd_ppid; 3005 asoc->default_context = info->snd_context; 3006 } 3007 } 3008 3009 return 0; 3010 } 3011 3012 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 3013 * 3014 * Requests that the local SCTP stack use the enclosed peer address as 3015 * the association primary. The enclosed address must be one of the 3016 * association peer's addresses. 3017 */ 3018 static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim, 3019 unsigned int optlen) 3020 { 3021 struct sctp_transport *trans; 3022 struct sctp_af *af; 3023 int err; 3024 3025 if (optlen != sizeof(struct sctp_prim)) 3026 return -EINVAL; 3027 3028 /* Allow security module to validate address but need address len. */ 3029 af = sctp_get_af_specific(prim->ssp_addr.ss_family); 3030 if (!af) 3031 return -EINVAL; 3032 3033 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3034 (struct sockaddr *)&prim->ssp_addr, 3035 af->sockaddr_len); 3036 if (err) 3037 return err; 3038 3039 trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id); 3040 if (!trans) 3041 return -EINVAL; 3042 3043 sctp_assoc_set_primary(trans->asoc, trans); 3044 3045 return 0; 3046 } 3047 3048 /* 3049 * 7.1.5 SCTP_NODELAY 3050 * 3051 * Turn on/off any Nagle-like algorithm. This means that packets are 3052 * generally sent as soon as possible and no unnecessary delays are 3053 * introduced, at the cost of more packets in the network. Expects an 3054 * integer boolean flag. 3055 */ 3056 static int sctp_setsockopt_nodelay(struct sock *sk, int *val, 3057 unsigned int optlen) 3058 { 3059 if (optlen < sizeof(int)) 3060 return -EINVAL; 3061 sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1; 3062 return 0; 3063 } 3064 3065 /* 3066 * 3067 * 7.1.1 SCTP_RTOINFO 3068 * 3069 * The protocol parameters used to initialize and bound retransmission 3070 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3071 * and modify these parameters. 3072 * All parameters are time values, in milliseconds. A value of 0, when 3073 * modifying the parameters, indicates that the current value should not 3074 * be changed. 3075 * 3076 */ 3077 static int sctp_setsockopt_rtoinfo(struct sock *sk, 3078 struct sctp_rtoinfo *rtoinfo, 3079 unsigned int optlen) 3080 { 3081 struct sctp_association *asoc; 3082 unsigned long rto_min, rto_max; 3083 struct sctp_sock *sp = sctp_sk(sk); 3084 3085 if (optlen != sizeof (struct sctp_rtoinfo)) 3086 return -EINVAL; 3087 3088 asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id); 3089 3090 /* Set the values to the specific association */ 3091 if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC && 3092 sctp_style(sk, UDP)) 3093 return -EINVAL; 3094 3095 rto_max = rtoinfo->srto_max; 3096 rto_min = rtoinfo->srto_min; 3097 3098 if (rto_max) 3099 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3100 else 3101 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3102 3103 if (rto_min) 3104 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3105 else 3106 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3107 3108 if (rto_min > rto_max) 3109 return -EINVAL; 3110 3111 if (asoc) { 3112 if (rtoinfo->srto_initial != 0) 3113 asoc->rto_initial = 3114 msecs_to_jiffies(rtoinfo->srto_initial); 3115 asoc->rto_max = rto_max; 3116 asoc->rto_min = rto_min; 3117 } else { 3118 /* If there is no association or the association-id = 0 3119 * set the values to the endpoint. 3120 */ 3121 if (rtoinfo->srto_initial != 0) 3122 sp->rtoinfo.srto_initial = rtoinfo->srto_initial; 3123 sp->rtoinfo.srto_max = rto_max; 3124 sp->rtoinfo.srto_min = rto_min; 3125 } 3126 3127 return 0; 3128 } 3129 3130 /* 3131 * 3132 * 7.1.2 SCTP_ASSOCINFO 3133 * 3134 * This option is used to tune the maximum retransmission attempts 3135 * of the association. 3136 * Returns an error if the new association retransmission value is 3137 * greater than the sum of the retransmission value of the peer. 3138 * See [SCTP] for more information. 3139 * 3140 */ 3141 static int sctp_setsockopt_associnfo(struct sock *sk, 3142 struct sctp_assocparams *assocparams, 3143 unsigned int optlen) 3144 { 3145 3146 struct sctp_association *asoc; 3147 3148 if (optlen != sizeof(struct sctp_assocparams)) 3149 return -EINVAL; 3150 3151 asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id); 3152 3153 if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC && 3154 sctp_style(sk, UDP)) 3155 return -EINVAL; 3156 3157 /* Set the values to the specific association */ 3158 if (asoc) { 3159 if (assocparams->sasoc_asocmaxrxt != 0) { 3160 __u32 path_sum = 0; 3161 int paths = 0; 3162 struct sctp_transport *peer_addr; 3163 3164 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3165 transports) { 3166 path_sum += peer_addr->pathmaxrxt; 3167 paths++; 3168 } 3169 3170 /* Only validate asocmaxrxt if we have more than 3171 * one path/transport. We do this because path 3172 * retransmissions are only counted when we have more 3173 * then one path. 3174 */ 3175 if (paths > 1 && 3176 assocparams->sasoc_asocmaxrxt > path_sum) 3177 return -EINVAL; 3178 3179 asoc->max_retrans = assocparams->sasoc_asocmaxrxt; 3180 } 3181 3182 if (assocparams->sasoc_cookie_life != 0) 3183 asoc->cookie_life = 3184 ms_to_ktime(assocparams->sasoc_cookie_life); 3185 } else { 3186 /* Set the values to the endpoint */ 3187 struct sctp_sock *sp = sctp_sk(sk); 3188 3189 if (assocparams->sasoc_asocmaxrxt != 0) 3190 sp->assocparams.sasoc_asocmaxrxt = 3191 assocparams->sasoc_asocmaxrxt; 3192 if (assocparams->sasoc_cookie_life != 0) 3193 sp->assocparams.sasoc_cookie_life = 3194 assocparams->sasoc_cookie_life; 3195 } 3196 return 0; 3197 } 3198 3199 /* 3200 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3201 * 3202 * This socket option is a boolean flag which turns on or off mapped V4 3203 * addresses. If this option is turned on and the socket is type 3204 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3205 * If this option is turned off, then no mapping will be done of V4 3206 * addresses and a user will receive both PF_INET6 and PF_INET type 3207 * addresses on the socket. 3208 */ 3209 static int sctp_setsockopt_mappedv4(struct sock *sk, int *val, 3210 unsigned int optlen) 3211 { 3212 struct sctp_sock *sp = sctp_sk(sk); 3213 3214 if (optlen < sizeof(int)) 3215 return -EINVAL; 3216 if (*val) 3217 sp->v4mapped = 1; 3218 else 3219 sp->v4mapped = 0; 3220 3221 return 0; 3222 } 3223 3224 /* 3225 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3226 * This option will get or set the maximum size to put in any outgoing 3227 * SCTP DATA chunk. If a message is larger than this size it will be 3228 * fragmented by SCTP into the specified size. Note that the underlying 3229 * SCTP implementation may fragment into smaller sized chunks when the 3230 * PMTU of the underlying association is smaller than the value set by 3231 * the user. The default value for this option is '0' which indicates 3232 * the user is NOT limiting fragmentation and only the PMTU will effect 3233 * SCTP's choice of DATA chunk size. Note also that values set larger 3234 * than the maximum size of an IP datagram will effectively let SCTP 3235 * control fragmentation (i.e. the same as setting this option to 0). 3236 * 3237 * The following structure is used to access and modify this parameter: 3238 * 3239 * struct sctp_assoc_value { 3240 * sctp_assoc_t assoc_id; 3241 * uint32_t assoc_value; 3242 * }; 3243 * 3244 * assoc_id: This parameter is ignored for one-to-one style sockets. 3245 * For one-to-many style sockets this parameter indicates which 3246 * association the user is performing an action upon. Note that if 3247 * this field's value is zero then the endpoints default value is 3248 * changed (effecting future associations only). 3249 * assoc_value: This parameter specifies the maximum size in bytes. 3250 */ 3251 static int sctp_setsockopt_maxseg(struct sock *sk, 3252 struct sctp_assoc_value *params, 3253 unsigned int optlen) 3254 { 3255 struct sctp_sock *sp = sctp_sk(sk); 3256 struct sctp_association *asoc; 3257 sctp_assoc_t assoc_id; 3258 int val; 3259 3260 if (optlen == sizeof(int)) { 3261 pr_warn_ratelimited(DEPRECATED 3262 "%s (pid %d) " 3263 "Use of int in maxseg socket option.\n" 3264 "Use struct sctp_assoc_value instead\n", 3265 current->comm, task_pid_nr(current)); 3266 assoc_id = SCTP_FUTURE_ASSOC; 3267 val = *(int *)params; 3268 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3269 assoc_id = params->assoc_id; 3270 val = params->assoc_value; 3271 } else { 3272 return -EINVAL; 3273 } 3274 3275 asoc = sctp_id2assoc(sk, assoc_id); 3276 if (!asoc && assoc_id != SCTP_FUTURE_ASSOC && 3277 sctp_style(sk, UDP)) 3278 return -EINVAL; 3279 3280 if (val) { 3281 int min_len, max_len; 3282 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3283 sizeof(struct sctp_data_chunk); 3284 3285 min_len = sctp_min_frag_point(sp, datasize); 3286 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3287 3288 if (val < min_len || val > max_len) 3289 return -EINVAL; 3290 } 3291 3292 if (asoc) { 3293 asoc->user_frag = val; 3294 sctp_assoc_update_frag_point(asoc); 3295 } else { 3296 sp->user_frag = val; 3297 } 3298 3299 return 0; 3300 } 3301 3302 3303 /* 3304 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3305 * 3306 * Requests that the peer mark the enclosed address as the association 3307 * primary. The enclosed address must be one of the association's 3308 * locally bound addresses. The following structure is used to make a 3309 * set primary request: 3310 */ 3311 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, 3312 struct sctp_setpeerprim *prim, 3313 unsigned int optlen) 3314 { 3315 struct sctp_sock *sp; 3316 struct sctp_association *asoc = NULL; 3317 struct sctp_chunk *chunk; 3318 struct sctp_af *af; 3319 int err; 3320 3321 sp = sctp_sk(sk); 3322 3323 if (!sp->ep->asconf_enable) 3324 return -EPERM; 3325 3326 if (optlen != sizeof(struct sctp_setpeerprim)) 3327 return -EINVAL; 3328 3329 asoc = sctp_id2assoc(sk, prim->sspp_assoc_id); 3330 if (!asoc) 3331 return -EINVAL; 3332 3333 if (!asoc->peer.asconf_capable) 3334 return -EPERM; 3335 3336 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3337 return -EPERM; 3338 3339 if (!sctp_state(asoc, ESTABLISHED)) 3340 return -ENOTCONN; 3341 3342 af = sctp_get_af_specific(prim->sspp_addr.ss_family); 3343 if (!af) 3344 return -EINVAL; 3345 3346 if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL)) 3347 return -EADDRNOTAVAIL; 3348 3349 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr)) 3350 return -EADDRNOTAVAIL; 3351 3352 /* Allow security module to validate address. */ 3353 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3354 (struct sockaddr *)&prim->sspp_addr, 3355 af->sockaddr_len); 3356 if (err) 3357 return err; 3358 3359 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3360 chunk = sctp_make_asconf_set_prim(asoc, 3361 (union sctp_addr *)&prim->sspp_addr); 3362 if (!chunk) 3363 return -ENOMEM; 3364 3365 err = sctp_send_asconf(asoc, chunk); 3366 3367 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3368 3369 return err; 3370 } 3371 3372 static int sctp_setsockopt_adaptation_layer(struct sock *sk, 3373 struct sctp_setadaptation *adapt, 3374 unsigned int optlen) 3375 { 3376 if (optlen != sizeof(struct sctp_setadaptation)) 3377 return -EINVAL; 3378 3379 sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind; 3380 3381 return 0; 3382 } 3383 3384 /* 3385 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3386 * 3387 * The context field in the sctp_sndrcvinfo structure is normally only 3388 * used when a failed message is retrieved holding the value that was 3389 * sent down on the actual send call. This option allows the setting of 3390 * a default context on an association basis that will be received on 3391 * reading messages from the peer. This is especially helpful in the 3392 * one-2-many model for an application to keep some reference to an 3393 * internal state machine that is processing messages on the 3394 * association. Note that the setting of this value only effects 3395 * received messages from the peer and does not effect the value that is 3396 * saved with outbound messages. 3397 */ 3398 static int sctp_setsockopt_context(struct sock *sk, 3399 struct sctp_assoc_value *params, 3400 unsigned int optlen) 3401 { 3402 struct sctp_sock *sp = sctp_sk(sk); 3403 struct sctp_association *asoc; 3404 3405 if (optlen != sizeof(struct sctp_assoc_value)) 3406 return -EINVAL; 3407 3408 asoc = sctp_id2assoc(sk, params->assoc_id); 3409 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 3410 sctp_style(sk, UDP)) 3411 return -EINVAL; 3412 3413 if (asoc) { 3414 asoc->default_rcv_context = params->assoc_value; 3415 3416 return 0; 3417 } 3418 3419 if (sctp_style(sk, TCP)) 3420 params->assoc_id = SCTP_FUTURE_ASSOC; 3421 3422 if (params->assoc_id == SCTP_FUTURE_ASSOC || 3423 params->assoc_id == SCTP_ALL_ASSOC) 3424 sp->default_rcv_context = params->assoc_value; 3425 3426 if (params->assoc_id == SCTP_CURRENT_ASSOC || 3427 params->assoc_id == SCTP_ALL_ASSOC) 3428 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3429 asoc->default_rcv_context = params->assoc_value; 3430 3431 return 0; 3432 } 3433 3434 /* 3435 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3436 * 3437 * This options will at a minimum specify if the implementation is doing 3438 * fragmented interleave. Fragmented interleave, for a one to many 3439 * socket, is when subsequent calls to receive a message may return 3440 * parts of messages from different associations. Some implementations 3441 * may allow you to turn this value on or off. If so, when turned off, 3442 * no fragment interleave will occur (which will cause a head of line 3443 * blocking amongst multiple associations sharing the same one to many 3444 * socket). When this option is turned on, then each receive call may 3445 * come from a different association (thus the user must receive data 3446 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3447 * association each receive belongs to. 3448 * 3449 * This option takes a boolean value. A non-zero value indicates that 3450 * fragmented interleave is on. A value of zero indicates that 3451 * fragmented interleave is off. 3452 * 3453 * Note that it is important that an implementation that allows this 3454 * option to be turned on, have it off by default. Otherwise an unaware 3455 * application using the one to many model may become confused and act 3456 * incorrectly. 3457 */ 3458 static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val, 3459 unsigned int optlen) 3460 { 3461 if (optlen != sizeof(int)) 3462 return -EINVAL; 3463 3464 sctp_sk(sk)->frag_interleave = !!*val; 3465 3466 if (!sctp_sk(sk)->frag_interleave) 3467 sctp_sk(sk)->ep->intl_enable = 0; 3468 3469 return 0; 3470 } 3471 3472 /* 3473 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3474 * (SCTP_PARTIAL_DELIVERY_POINT) 3475 * 3476 * This option will set or get the SCTP partial delivery point. This 3477 * point is the size of a message where the partial delivery API will be 3478 * invoked to help free up rwnd space for the peer. Setting this to a 3479 * lower value will cause partial deliveries to happen more often. The 3480 * calls argument is an integer that sets or gets the partial delivery 3481 * point. Note also that the call will fail if the user attempts to set 3482 * this value larger than the socket receive buffer size. 3483 * 3484 * Note that any single message having a length smaller than or equal to 3485 * the SCTP partial delivery point will be delivered in one single read 3486 * call as long as the user provided buffer is large enough to hold the 3487 * message. 3488 */ 3489 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val, 3490 unsigned int optlen) 3491 { 3492 if (optlen != sizeof(u32)) 3493 return -EINVAL; 3494 3495 /* Note: We double the receive buffer from what the user sets 3496 * it to be, also initial rwnd is based on rcvbuf/2. 3497 */ 3498 if (*val > (sk->sk_rcvbuf >> 1)) 3499 return -EINVAL; 3500 3501 sctp_sk(sk)->pd_point = *val; 3502 3503 return 0; /* is this the right error code? */ 3504 } 3505 3506 /* 3507 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3508 * 3509 * This option will allow a user to change the maximum burst of packets 3510 * that can be emitted by this association. Note that the default value 3511 * is 4, and some implementations may restrict this setting so that it 3512 * can only be lowered. 3513 * 3514 * NOTE: This text doesn't seem right. Do this on a socket basis with 3515 * future associations inheriting the socket value. 3516 */ 3517 static int sctp_setsockopt_maxburst(struct sock *sk, 3518 struct sctp_assoc_value *params, 3519 unsigned int optlen) 3520 { 3521 struct sctp_sock *sp = sctp_sk(sk); 3522 struct sctp_association *asoc; 3523 sctp_assoc_t assoc_id; 3524 u32 assoc_value; 3525 3526 if (optlen == sizeof(int)) { 3527 pr_warn_ratelimited(DEPRECATED 3528 "%s (pid %d) " 3529 "Use of int in max_burst socket option deprecated.\n" 3530 "Use struct sctp_assoc_value instead\n", 3531 current->comm, task_pid_nr(current)); 3532 assoc_id = SCTP_FUTURE_ASSOC; 3533 assoc_value = *((int *)params); 3534 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3535 assoc_id = params->assoc_id; 3536 assoc_value = params->assoc_value; 3537 } else 3538 return -EINVAL; 3539 3540 asoc = sctp_id2assoc(sk, assoc_id); 3541 if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) 3542 return -EINVAL; 3543 3544 if (asoc) { 3545 asoc->max_burst = assoc_value; 3546 3547 return 0; 3548 } 3549 3550 if (sctp_style(sk, TCP)) 3551 assoc_id = SCTP_FUTURE_ASSOC; 3552 3553 if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC) 3554 sp->max_burst = assoc_value; 3555 3556 if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC) 3557 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3558 asoc->max_burst = assoc_value; 3559 3560 return 0; 3561 } 3562 3563 /* 3564 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3565 * 3566 * This set option adds a chunk type that the user is requesting to be 3567 * received only in an authenticated way. Changes to the list of chunks 3568 * will only effect future associations on the socket. 3569 */ 3570 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3571 struct sctp_authchunk *val, 3572 unsigned int optlen) 3573 { 3574 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3575 3576 if (!ep->auth_enable) 3577 return -EACCES; 3578 3579 if (optlen != sizeof(struct sctp_authchunk)) 3580 return -EINVAL; 3581 3582 switch (val->sauth_chunk) { 3583 case SCTP_CID_INIT: 3584 case SCTP_CID_INIT_ACK: 3585 case SCTP_CID_SHUTDOWN_COMPLETE: 3586 case SCTP_CID_AUTH: 3587 return -EINVAL; 3588 } 3589 3590 /* add this chunk id to the endpoint */ 3591 return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk); 3592 } 3593 3594 /* 3595 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3596 * 3597 * This option gets or sets the list of HMAC algorithms that the local 3598 * endpoint requires the peer to use. 3599 */ 3600 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3601 struct sctp_hmacalgo *hmacs, 3602 unsigned int optlen) 3603 { 3604 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3605 u32 idents; 3606 3607 if (!ep->auth_enable) 3608 return -EACCES; 3609 3610 if (optlen < sizeof(struct sctp_hmacalgo)) 3611 return -EINVAL; 3612 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3613 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3614 3615 idents = hmacs->shmac_num_idents; 3616 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3617 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) 3618 return -EINVAL; 3619 3620 return sctp_auth_ep_set_hmacs(ep, hmacs); 3621 } 3622 3623 /* 3624 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3625 * 3626 * This option will set a shared secret key which is used to build an 3627 * association shared key. 3628 */ 3629 static int sctp_setsockopt_auth_key(struct sock *sk, 3630 struct sctp_authkey *authkey, 3631 unsigned int optlen) 3632 { 3633 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3634 struct sctp_association *asoc; 3635 int ret = -EINVAL; 3636 3637 if (optlen <= sizeof(struct sctp_authkey)) 3638 return -EINVAL; 3639 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3640 * this. 3641 */ 3642 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey)); 3643 3644 if (authkey->sca_keylength > optlen - sizeof(*authkey)) 3645 goto out; 3646 3647 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3648 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC && 3649 sctp_style(sk, UDP)) 3650 goto out; 3651 3652 if (asoc) { 3653 ret = sctp_auth_set_key(ep, asoc, authkey); 3654 goto out; 3655 } 3656 3657 if (sctp_style(sk, TCP)) 3658 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC; 3659 3660 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC || 3661 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3662 ret = sctp_auth_set_key(ep, asoc, authkey); 3663 if (ret) 3664 goto out; 3665 } 3666 3667 ret = 0; 3668 3669 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC || 3670 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3671 list_for_each_entry(asoc, &ep->asocs, asocs) { 3672 int res = sctp_auth_set_key(ep, asoc, authkey); 3673 3674 if (res && !ret) 3675 ret = res; 3676 } 3677 } 3678 3679 out: 3680 memzero_explicit(authkey, optlen); 3681 return ret; 3682 } 3683 3684 /* 3685 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3686 * 3687 * This option will get or set the active shared key to be used to build 3688 * the association shared key. 3689 */ 3690 static int sctp_setsockopt_active_key(struct sock *sk, 3691 struct sctp_authkeyid *val, 3692 unsigned int optlen) 3693 { 3694 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3695 struct sctp_association *asoc; 3696 int ret = 0; 3697 3698 if (optlen != sizeof(struct sctp_authkeyid)) 3699 return -EINVAL; 3700 3701 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3702 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3703 sctp_style(sk, UDP)) 3704 return -EINVAL; 3705 3706 if (asoc) 3707 return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); 3708 3709 if (sctp_style(sk, TCP)) 3710 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3711 3712 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3713 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3714 ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); 3715 if (ret) 3716 return ret; 3717 } 3718 3719 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3720 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3721 list_for_each_entry(asoc, &ep->asocs, asocs) { 3722 int res = sctp_auth_set_active_key(ep, asoc, 3723 val->scact_keynumber); 3724 3725 if (res && !ret) 3726 ret = res; 3727 } 3728 } 3729 3730 return ret; 3731 } 3732 3733 /* 3734 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3735 * 3736 * This set option will delete a shared secret key from use. 3737 */ 3738 static int sctp_setsockopt_del_key(struct sock *sk, 3739 struct sctp_authkeyid *val, 3740 unsigned int optlen) 3741 { 3742 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3743 struct sctp_association *asoc; 3744 int ret = 0; 3745 3746 if (optlen != sizeof(struct sctp_authkeyid)) 3747 return -EINVAL; 3748 3749 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3750 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3751 sctp_style(sk, UDP)) 3752 return -EINVAL; 3753 3754 if (asoc) 3755 return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); 3756 3757 if (sctp_style(sk, TCP)) 3758 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3759 3760 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3761 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3762 ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); 3763 if (ret) 3764 return ret; 3765 } 3766 3767 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3768 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3769 list_for_each_entry(asoc, &ep->asocs, asocs) { 3770 int res = sctp_auth_del_key_id(ep, asoc, 3771 val->scact_keynumber); 3772 3773 if (res && !ret) 3774 ret = res; 3775 } 3776 } 3777 3778 return ret; 3779 } 3780 3781 /* 3782 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3783 * 3784 * This set option will deactivate a shared secret key. 3785 */ 3786 static int sctp_setsockopt_deactivate_key(struct sock *sk, 3787 struct sctp_authkeyid *val, 3788 unsigned int optlen) 3789 { 3790 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3791 struct sctp_association *asoc; 3792 int ret = 0; 3793 3794 if (optlen != sizeof(struct sctp_authkeyid)) 3795 return -EINVAL; 3796 3797 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3798 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3799 sctp_style(sk, UDP)) 3800 return -EINVAL; 3801 3802 if (asoc) 3803 return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); 3804 3805 if (sctp_style(sk, TCP)) 3806 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3807 3808 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3809 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3810 ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); 3811 if (ret) 3812 return ret; 3813 } 3814 3815 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3816 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3817 list_for_each_entry(asoc, &ep->asocs, asocs) { 3818 int res = sctp_auth_deact_key_id(ep, asoc, 3819 val->scact_keynumber); 3820 3821 if (res && !ret) 3822 ret = res; 3823 } 3824 } 3825 3826 return ret; 3827 } 3828 3829 /* 3830 * 8.1.23 SCTP_AUTO_ASCONF 3831 * 3832 * This option will enable or disable the use of the automatic generation of 3833 * ASCONF chunks to add and delete addresses to an existing association. Note 3834 * that this option has two caveats namely: a) it only affects sockets that 3835 * are bound to all addresses available to the SCTP stack, and b) the system 3836 * administrator may have an overriding control that turns the ASCONF feature 3837 * off no matter what setting the socket option may have. 3838 * This option expects an integer boolean flag, where a non-zero value turns on 3839 * the option, and a zero value turns off the option. 3840 * Note. In this implementation, socket operation overrides default parameter 3841 * being set by sysctl as well as FreeBSD implementation 3842 */ 3843 static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val, 3844 unsigned int optlen) 3845 { 3846 struct sctp_sock *sp = sctp_sk(sk); 3847 3848 if (optlen < sizeof(int)) 3849 return -EINVAL; 3850 if (!sctp_is_ep_boundall(sk) && *val) 3851 return -EINVAL; 3852 if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf)) 3853 return 0; 3854 3855 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3856 if (*val == 0 && sp->do_auto_asconf) { 3857 list_del(&sp->auto_asconf_list); 3858 sp->do_auto_asconf = 0; 3859 } else if (*val && !sp->do_auto_asconf) { 3860 list_add_tail(&sp->auto_asconf_list, 3861 &sock_net(sk)->sctp.auto_asconf_splist); 3862 sp->do_auto_asconf = 1; 3863 } 3864 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3865 return 0; 3866 } 3867 3868 /* 3869 * SCTP_PEER_ADDR_THLDS 3870 * 3871 * This option allows us to alter the partially failed threshold for one or all 3872 * transports in an association. See Section 6.1 of: 3873 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3874 */ 3875 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3876 struct sctp_paddrthlds_v2 *val, 3877 unsigned int optlen, bool v2) 3878 { 3879 struct sctp_transport *trans; 3880 struct sctp_association *asoc; 3881 int len; 3882 3883 len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds); 3884 if (optlen < len) 3885 return -EINVAL; 3886 3887 if (v2 && val->spt_pathpfthld > val->spt_pathcpthld) 3888 return -EINVAL; 3889 3890 if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) { 3891 trans = sctp_addr_id2transport(sk, &val->spt_address, 3892 val->spt_assoc_id); 3893 if (!trans) 3894 return -ENOENT; 3895 3896 if (val->spt_pathmaxrxt) 3897 trans->pathmaxrxt = val->spt_pathmaxrxt; 3898 if (v2) 3899 trans->ps_retrans = val->spt_pathcpthld; 3900 trans->pf_retrans = val->spt_pathpfthld; 3901 3902 return 0; 3903 } 3904 3905 asoc = sctp_id2assoc(sk, val->spt_assoc_id); 3906 if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC && 3907 sctp_style(sk, UDP)) 3908 return -EINVAL; 3909 3910 if (asoc) { 3911 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3912 transports) { 3913 if (val->spt_pathmaxrxt) 3914 trans->pathmaxrxt = val->spt_pathmaxrxt; 3915 if (v2) 3916 trans->ps_retrans = val->spt_pathcpthld; 3917 trans->pf_retrans = val->spt_pathpfthld; 3918 } 3919 3920 if (val->spt_pathmaxrxt) 3921 asoc->pathmaxrxt = val->spt_pathmaxrxt; 3922 if (v2) 3923 asoc->ps_retrans = val->spt_pathcpthld; 3924 asoc->pf_retrans = val->spt_pathpfthld; 3925 } else { 3926 struct sctp_sock *sp = sctp_sk(sk); 3927 3928 if (val->spt_pathmaxrxt) 3929 sp->pathmaxrxt = val->spt_pathmaxrxt; 3930 if (v2) 3931 sp->ps_retrans = val->spt_pathcpthld; 3932 sp->pf_retrans = val->spt_pathpfthld; 3933 } 3934 3935 return 0; 3936 } 3937 3938 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val, 3939 unsigned int optlen) 3940 { 3941 if (optlen < sizeof(int)) 3942 return -EINVAL; 3943 3944 sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1; 3945 3946 return 0; 3947 } 3948 3949 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val, 3950 unsigned int optlen) 3951 { 3952 if (optlen < sizeof(int)) 3953 return -EINVAL; 3954 3955 sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1; 3956 3957 return 0; 3958 } 3959 3960 static int sctp_setsockopt_pr_supported(struct sock *sk, 3961 struct sctp_assoc_value *params, 3962 unsigned int optlen) 3963 { 3964 struct sctp_association *asoc; 3965 3966 if (optlen != sizeof(*params)) 3967 return -EINVAL; 3968 3969 asoc = sctp_id2assoc(sk, params->assoc_id); 3970 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 3971 sctp_style(sk, UDP)) 3972 return -EINVAL; 3973 3974 sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value; 3975 3976 return 0; 3977 } 3978 3979 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3980 struct sctp_default_prinfo *info, 3981 unsigned int optlen) 3982 { 3983 struct sctp_sock *sp = sctp_sk(sk); 3984 struct sctp_association *asoc; 3985 int retval = -EINVAL; 3986 3987 if (optlen != sizeof(*info)) 3988 goto out; 3989 3990 if (info->pr_policy & ~SCTP_PR_SCTP_MASK) 3991 goto out; 3992 3993 if (info->pr_policy == SCTP_PR_SCTP_NONE) 3994 info->pr_value = 0; 3995 3996 asoc = sctp_id2assoc(sk, info->pr_assoc_id); 3997 if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC && 3998 sctp_style(sk, UDP)) 3999 goto out; 4000 4001 retval = 0; 4002 4003 if (asoc) { 4004 SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy); 4005 asoc->default_timetolive = info->pr_value; 4006 goto out; 4007 } 4008 4009 if (sctp_style(sk, TCP)) 4010 info->pr_assoc_id = SCTP_FUTURE_ASSOC; 4011 4012 if (info->pr_assoc_id == SCTP_FUTURE_ASSOC || 4013 info->pr_assoc_id == SCTP_ALL_ASSOC) { 4014 SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy); 4015 sp->default_timetolive = info->pr_value; 4016 } 4017 4018 if (info->pr_assoc_id == SCTP_CURRENT_ASSOC || 4019 info->pr_assoc_id == SCTP_ALL_ASSOC) { 4020 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4021 SCTP_PR_SET_POLICY(asoc->default_flags, 4022 info->pr_policy); 4023 asoc->default_timetolive = info->pr_value; 4024 } 4025 } 4026 4027 out: 4028 return retval; 4029 } 4030 4031 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 4032 struct sctp_assoc_value *params, 4033 unsigned int optlen) 4034 { 4035 struct sctp_association *asoc; 4036 int retval = -EINVAL; 4037 4038 if (optlen != sizeof(*params)) 4039 goto out; 4040 4041 asoc = sctp_id2assoc(sk, params->assoc_id); 4042 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4043 sctp_style(sk, UDP)) 4044 goto out; 4045 4046 sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value; 4047 4048 retval = 0; 4049 4050 out: 4051 return retval; 4052 } 4053 4054 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4055 struct sctp_assoc_value *params, 4056 unsigned int optlen) 4057 { 4058 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 4059 struct sctp_association *asoc; 4060 int retval = -EINVAL; 4061 4062 if (optlen != sizeof(*params)) 4063 goto out; 4064 4065 if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4066 goto out; 4067 4068 asoc = sctp_id2assoc(sk, params->assoc_id); 4069 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 4070 sctp_style(sk, UDP)) 4071 goto out; 4072 4073 retval = 0; 4074 4075 if (asoc) { 4076 asoc->strreset_enable = params->assoc_value; 4077 goto out; 4078 } 4079 4080 if (sctp_style(sk, TCP)) 4081 params->assoc_id = SCTP_FUTURE_ASSOC; 4082 4083 if (params->assoc_id == SCTP_FUTURE_ASSOC || 4084 params->assoc_id == SCTP_ALL_ASSOC) 4085 ep->strreset_enable = params->assoc_value; 4086 4087 if (params->assoc_id == SCTP_CURRENT_ASSOC || 4088 params->assoc_id == SCTP_ALL_ASSOC) 4089 list_for_each_entry(asoc, &ep->asocs, asocs) 4090 asoc->strreset_enable = params->assoc_value; 4091 4092 out: 4093 return retval; 4094 } 4095 4096 static int sctp_setsockopt_reset_streams(struct sock *sk, 4097 struct sctp_reset_streams *params, 4098 unsigned int optlen) 4099 { 4100 struct sctp_association *asoc; 4101 4102 if (optlen < sizeof(*params)) 4103 return -EINVAL; 4104 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4105 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4106 sizeof(__u16) * sizeof(*params)); 4107 4108 if (params->srs_number_streams * sizeof(__u16) > 4109 optlen - sizeof(*params)) 4110 return -EINVAL; 4111 4112 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4113 if (!asoc) 4114 return -EINVAL; 4115 4116 return sctp_send_reset_streams(asoc, params); 4117 } 4118 4119 static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd, 4120 unsigned int optlen) 4121 { 4122 struct sctp_association *asoc; 4123 4124 if (optlen != sizeof(*associd)) 4125 return -EINVAL; 4126 4127 asoc = sctp_id2assoc(sk, *associd); 4128 if (!asoc) 4129 return -EINVAL; 4130 4131 return sctp_send_reset_assoc(asoc); 4132 } 4133 4134 static int sctp_setsockopt_add_streams(struct sock *sk, 4135 struct sctp_add_streams *params, 4136 unsigned int optlen) 4137 { 4138 struct sctp_association *asoc; 4139 4140 if (optlen != sizeof(*params)) 4141 return -EINVAL; 4142 4143 asoc = sctp_id2assoc(sk, params->sas_assoc_id); 4144 if (!asoc) 4145 return -EINVAL; 4146 4147 return sctp_send_add_streams(asoc, params); 4148 } 4149 4150 static int sctp_setsockopt_scheduler(struct sock *sk, 4151 struct sctp_assoc_value *params, 4152 unsigned int optlen) 4153 { 4154 struct sctp_sock *sp = sctp_sk(sk); 4155 struct sctp_association *asoc; 4156 int retval = 0; 4157 4158 if (optlen < sizeof(*params)) 4159 return -EINVAL; 4160 4161 if (params->assoc_value > SCTP_SS_MAX) 4162 return -EINVAL; 4163 4164 asoc = sctp_id2assoc(sk, params->assoc_id); 4165 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 4166 sctp_style(sk, UDP)) 4167 return -EINVAL; 4168 4169 if (asoc) 4170 return sctp_sched_set_sched(asoc, params->assoc_value); 4171 4172 if (sctp_style(sk, TCP)) 4173 params->assoc_id = SCTP_FUTURE_ASSOC; 4174 4175 if (params->assoc_id == SCTP_FUTURE_ASSOC || 4176 params->assoc_id == SCTP_ALL_ASSOC) 4177 sp->default_ss = params->assoc_value; 4178 4179 if (params->assoc_id == SCTP_CURRENT_ASSOC || 4180 params->assoc_id == SCTP_ALL_ASSOC) { 4181 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4182 int ret = sctp_sched_set_sched(asoc, 4183 params->assoc_value); 4184 4185 if (ret && !retval) 4186 retval = ret; 4187 } 4188 } 4189 4190 return retval; 4191 } 4192 4193 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4194 struct sctp_stream_value *params, 4195 unsigned int optlen) 4196 { 4197 struct sctp_association *asoc; 4198 int retval = -EINVAL; 4199 4200 if (optlen < sizeof(*params)) 4201 goto out; 4202 4203 asoc = sctp_id2assoc(sk, params->assoc_id); 4204 if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC && 4205 sctp_style(sk, UDP)) 4206 goto out; 4207 4208 if (asoc) { 4209 retval = sctp_sched_set_value(asoc, params->stream_id, 4210 params->stream_value, GFP_KERNEL); 4211 goto out; 4212 } 4213 4214 retval = 0; 4215 4216 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) { 4217 int ret = sctp_sched_set_value(asoc, params->stream_id, 4218 params->stream_value, 4219 GFP_KERNEL); 4220 if (ret && !retval) /* try to return the 1st error. */ 4221 retval = ret; 4222 } 4223 4224 out: 4225 return retval; 4226 } 4227 4228 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4229 struct sctp_assoc_value *p, 4230 unsigned int optlen) 4231 { 4232 struct sctp_sock *sp = sctp_sk(sk); 4233 struct sctp_association *asoc; 4234 4235 if (optlen < sizeof(*p)) 4236 return -EINVAL; 4237 4238 asoc = sctp_id2assoc(sk, p->assoc_id); 4239 if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) 4240 return -EINVAL; 4241 4242 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) { 4243 return -EPERM; 4244 } 4245 4246 sp->ep->intl_enable = !!p->assoc_value; 4247 return 0; 4248 } 4249 4250 static int sctp_setsockopt_reuse_port(struct sock *sk, int *val, 4251 unsigned int optlen) 4252 { 4253 if (!sctp_style(sk, TCP)) 4254 return -EOPNOTSUPP; 4255 4256 if (sctp_sk(sk)->ep->base.bind_addr.port) 4257 return -EFAULT; 4258 4259 if (optlen < sizeof(int)) 4260 return -EINVAL; 4261 4262 sctp_sk(sk)->reuse = !!*val; 4263 4264 return 0; 4265 } 4266 4267 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param, 4268 struct sctp_association *asoc) 4269 { 4270 struct sctp_ulpevent *event; 4271 4272 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on); 4273 4274 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) { 4275 if (sctp_outq_is_empty(&asoc->outqueue)) { 4276 event = sctp_ulpevent_make_sender_dry_event(asoc, 4277 GFP_USER | __GFP_NOWARN); 4278 if (!event) 4279 return -ENOMEM; 4280 4281 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 4282 } 4283 } 4284 4285 return 0; 4286 } 4287 4288 static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param, 4289 unsigned int optlen) 4290 { 4291 struct sctp_sock *sp = sctp_sk(sk); 4292 struct sctp_association *asoc; 4293 int retval = 0; 4294 4295 if (optlen < sizeof(*param)) 4296 return -EINVAL; 4297 4298 if (param->se_type < SCTP_SN_TYPE_BASE || 4299 param->se_type > SCTP_SN_TYPE_MAX) 4300 return -EINVAL; 4301 4302 asoc = sctp_id2assoc(sk, param->se_assoc_id); 4303 if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC && 4304 sctp_style(sk, UDP)) 4305 return -EINVAL; 4306 4307 if (asoc) 4308 return sctp_assoc_ulpevent_type_set(param, asoc); 4309 4310 if (sctp_style(sk, TCP)) 4311 param->se_assoc_id = SCTP_FUTURE_ASSOC; 4312 4313 if (param->se_assoc_id == SCTP_FUTURE_ASSOC || 4314 param->se_assoc_id == SCTP_ALL_ASSOC) 4315 sctp_ulpevent_type_set(&sp->subscribe, 4316 param->se_type, param->se_on); 4317 4318 if (param->se_assoc_id == SCTP_CURRENT_ASSOC || 4319 param->se_assoc_id == SCTP_ALL_ASSOC) { 4320 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4321 int ret = sctp_assoc_ulpevent_type_set(param, asoc); 4322 4323 if (ret && !retval) 4324 retval = ret; 4325 } 4326 } 4327 4328 return retval; 4329 } 4330 4331 static int sctp_setsockopt_asconf_supported(struct sock *sk, 4332 struct sctp_assoc_value *params, 4333 unsigned int optlen) 4334 { 4335 struct sctp_association *asoc; 4336 struct sctp_endpoint *ep; 4337 int retval = -EINVAL; 4338 4339 if (optlen != sizeof(*params)) 4340 goto out; 4341 4342 asoc = sctp_id2assoc(sk, params->assoc_id); 4343 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4344 sctp_style(sk, UDP)) 4345 goto out; 4346 4347 ep = sctp_sk(sk)->ep; 4348 ep->asconf_enable = !!params->assoc_value; 4349 4350 if (ep->asconf_enable && ep->auth_enable) { 4351 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4352 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4353 } 4354 4355 retval = 0; 4356 4357 out: 4358 return retval; 4359 } 4360 4361 static int sctp_setsockopt_auth_supported(struct sock *sk, 4362 struct sctp_assoc_value *params, 4363 unsigned int optlen) 4364 { 4365 struct sctp_association *asoc; 4366 struct sctp_endpoint *ep; 4367 int retval = -EINVAL; 4368 4369 if (optlen != sizeof(*params)) 4370 goto out; 4371 4372 asoc = sctp_id2assoc(sk, params->assoc_id); 4373 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4374 sctp_style(sk, UDP)) 4375 goto out; 4376 4377 ep = sctp_sk(sk)->ep; 4378 if (params->assoc_value) { 4379 retval = sctp_auth_init(ep, GFP_KERNEL); 4380 if (retval) 4381 goto out; 4382 if (ep->asconf_enable) { 4383 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4384 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4385 } 4386 } 4387 4388 ep->auth_enable = !!params->assoc_value; 4389 retval = 0; 4390 4391 out: 4392 return retval; 4393 } 4394 4395 static int sctp_setsockopt_ecn_supported(struct sock *sk, 4396 struct sctp_assoc_value *params, 4397 unsigned int optlen) 4398 { 4399 struct sctp_association *asoc; 4400 int retval = -EINVAL; 4401 4402 if (optlen != sizeof(*params)) 4403 goto out; 4404 4405 asoc = sctp_id2assoc(sk, params->assoc_id); 4406 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4407 sctp_style(sk, UDP)) 4408 goto out; 4409 4410 sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value; 4411 retval = 0; 4412 4413 out: 4414 return retval; 4415 } 4416 4417 static int sctp_setsockopt_pf_expose(struct sock *sk, 4418 struct sctp_assoc_value *params, 4419 unsigned int optlen) 4420 { 4421 struct sctp_association *asoc; 4422 int retval = -EINVAL; 4423 4424 if (optlen != sizeof(*params)) 4425 goto out; 4426 4427 if (params->assoc_value > SCTP_PF_EXPOSE_MAX) 4428 goto out; 4429 4430 asoc = sctp_id2assoc(sk, params->assoc_id); 4431 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4432 sctp_style(sk, UDP)) 4433 goto out; 4434 4435 if (asoc) 4436 asoc->pf_expose = params->assoc_value; 4437 else 4438 sctp_sk(sk)->pf_expose = params->assoc_value; 4439 retval = 0; 4440 4441 out: 4442 return retval; 4443 } 4444 4445 static int sctp_setsockopt_encap_port(struct sock *sk, 4446 struct sctp_udpencaps *encap, 4447 unsigned int optlen) 4448 { 4449 struct sctp_association *asoc; 4450 struct sctp_transport *t; 4451 __be16 encap_port; 4452 4453 if (optlen != sizeof(*encap)) 4454 return -EINVAL; 4455 4456 /* If an address other than INADDR_ANY is specified, and 4457 * no transport is found, then the request is invalid. 4458 */ 4459 encap_port = (__force __be16)encap->sue_port; 4460 if (!sctp_is_any(sk, (union sctp_addr *)&encap->sue_address)) { 4461 t = sctp_addr_id2transport(sk, &encap->sue_address, 4462 encap->sue_assoc_id); 4463 if (!t) 4464 return -EINVAL; 4465 4466 t->encap_port = encap_port; 4467 return 0; 4468 } 4469 4470 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 4471 * socket is a one to many style socket, and an association 4472 * was not found, then the id was invalid. 4473 */ 4474 asoc = sctp_id2assoc(sk, encap->sue_assoc_id); 4475 if (!asoc && encap->sue_assoc_id != SCTP_FUTURE_ASSOC && 4476 sctp_style(sk, UDP)) 4477 return -EINVAL; 4478 4479 /* If changes are for association, also apply encap_port to 4480 * each transport. 4481 */ 4482 if (asoc) { 4483 list_for_each_entry(t, &asoc->peer.transport_addr_list, 4484 transports) 4485 t->encap_port = encap_port; 4486 4487 asoc->encap_port = encap_port; 4488 return 0; 4489 } 4490 4491 sctp_sk(sk)->encap_port = encap_port; 4492 return 0; 4493 } 4494 4495 static int sctp_setsockopt_probe_interval(struct sock *sk, 4496 struct sctp_probeinterval *params, 4497 unsigned int optlen) 4498 { 4499 struct sctp_association *asoc; 4500 struct sctp_transport *t; 4501 __u32 probe_interval; 4502 4503 if (optlen != sizeof(*params)) 4504 return -EINVAL; 4505 4506 probe_interval = params->spi_interval; 4507 if (probe_interval && probe_interval < SCTP_PROBE_TIMER_MIN) 4508 return -EINVAL; 4509 4510 /* If an address other than INADDR_ANY is specified, and 4511 * no transport is found, then the request is invalid. 4512 */ 4513 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spi_address)) { 4514 t = sctp_addr_id2transport(sk, ¶ms->spi_address, 4515 params->spi_assoc_id); 4516 if (!t) 4517 return -EINVAL; 4518 4519 t->probe_interval = msecs_to_jiffies(probe_interval); 4520 sctp_transport_pl_reset(t); 4521 return 0; 4522 } 4523 4524 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 4525 * socket is a one to many style socket, and an association 4526 * was not found, then the id was invalid. 4527 */ 4528 asoc = sctp_id2assoc(sk, params->spi_assoc_id); 4529 if (!asoc && params->spi_assoc_id != SCTP_FUTURE_ASSOC && 4530 sctp_style(sk, UDP)) 4531 return -EINVAL; 4532 4533 /* If changes are for association, also apply probe_interval to 4534 * each transport. 4535 */ 4536 if (asoc) { 4537 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) { 4538 t->probe_interval = msecs_to_jiffies(probe_interval); 4539 sctp_transport_pl_reset(t); 4540 } 4541 4542 asoc->probe_interval = msecs_to_jiffies(probe_interval); 4543 return 0; 4544 } 4545 4546 sctp_sk(sk)->probe_interval = probe_interval; 4547 return 0; 4548 } 4549 4550 /* API 6.2 setsockopt(), getsockopt() 4551 * 4552 * Applications use setsockopt() and getsockopt() to set or retrieve 4553 * socket options. Socket options are used to change the default 4554 * behavior of sockets calls. They are described in Section 7. 4555 * 4556 * The syntax is: 4557 * 4558 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4559 * int __user *optlen); 4560 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4561 * int optlen); 4562 * 4563 * sd - the socket descript. 4564 * level - set to IPPROTO_SCTP for all SCTP options. 4565 * optname - the option name. 4566 * optval - the buffer to store the value of the option. 4567 * optlen - the size of the buffer. 4568 */ 4569 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4570 sockptr_t optval, unsigned int optlen) 4571 { 4572 void *kopt = NULL; 4573 int retval = 0; 4574 4575 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4576 4577 /* I can hardly begin to describe how wrong this is. This is 4578 * so broken as to be worse than useless. The API draft 4579 * REALLY is NOT helpful here... I am not convinced that the 4580 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4581 * are at all well-founded. 4582 */ 4583 if (level != SOL_SCTP) { 4584 struct sctp_af *af = sctp_sk(sk)->pf->af; 4585 4586 return af->setsockopt(sk, level, optname, optval, optlen); 4587 } 4588 4589 if (optlen > 0) { 4590 /* Trim it to the biggest size sctp sockopt may need if necessary */ 4591 optlen = min_t(unsigned int, optlen, 4592 PAGE_ALIGN(USHRT_MAX + 4593 sizeof(__u16) * sizeof(struct sctp_reset_streams))); 4594 kopt = memdup_sockptr(optval, optlen); 4595 if (IS_ERR(kopt)) 4596 return PTR_ERR(kopt); 4597 } 4598 4599 lock_sock(sk); 4600 4601 switch (optname) { 4602 case SCTP_SOCKOPT_BINDX_ADD: 4603 /* 'optlen' is the size of the addresses buffer. */ 4604 retval = sctp_setsockopt_bindx(sk, kopt, optlen, 4605 SCTP_BINDX_ADD_ADDR); 4606 break; 4607 4608 case SCTP_SOCKOPT_BINDX_REM: 4609 /* 'optlen' is the size of the addresses buffer. */ 4610 retval = sctp_setsockopt_bindx(sk, kopt, optlen, 4611 SCTP_BINDX_REM_ADDR); 4612 break; 4613 4614 case SCTP_SOCKOPT_CONNECTX_OLD: 4615 /* 'optlen' is the size of the addresses buffer. */ 4616 retval = sctp_setsockopt_connectx_old(sk, kopt, optlen); 4617 break; 4618 4619 case SCTP_SOCKOPT_CONNECTX: 4620 /* 'optlen' is the size of the addresses buffer. */ 4621 retval = sctp_setsockopt_connectx(sk, kopt, optlen); 4622 break; 4623 4624 case SCTP_DISABLE_FRAGMENTS: 4625 retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen); 4626 break; 4627 4628 case SCTP_EVENTS: 4629 retval = sctp_setsockopt_events(sk, kopt, optlen); 4630 break; 4631 4632 case SCTP_AUTOCLOSE: 4633 retval = sctp_setsockopt_autoclose(sk, kopt, optlen); 4634 break; 4635 4636 case SCTP_PEER_ADDR_PARAMS: 4637 retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen); 4638 break; 4639 4640 case SCTP_DELAYED_SACK: 4641 retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen); 4642 break; 4643 case SCTP_PARTIAL_DELIVERY_POINT: 4644 retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen); 4645 break; 4646 4647 case SCTP_INITMSG: 4648 retval = sctp_setsockopt_initmsg(sk, kopt, optlen); 4649 break; 4650 case SCTP_DEFAULT_SEND_PARAM: 4651 retval = sctp_setsockopt_default_send_param(sk, kopt, optlen); 4652 break; 4653 case SCTP_DEFAULT_SNDINFO: 4654 retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen); 4655 break; 4656 case SCTP_PRIMARY_ADDR: 4657 retval = sctp_setsockopt_primary_addr(sk, kopt, optlen); 4658 break; 4659 case SCTP_SET_PEER_PRIMARY_ADDR: 4660 retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen); 4661 break; 4662 case SCTP_NODELAY: 4663 retval = sctp_setsockopt_nodelay(sk, kopt, optlen); 4664 break; 4665 case SCTP_RTOINFO: 4666 retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen); 4667 break; 4668 case SCTP_ASSOCINFO: 4669 retval = sctp_setsockopt_associnfo(sk, kopt, optlen); 4670 break; 4671 case SCTP_I_WANT_MAPPED_V4_ADDR: 4672 retval = sctp_setsockopt_mappedv4(sk, kopt, optlen); 4673 break; 4674 case SCTP_MAXSEG: 4675 retval = sctp_setsockopt_maxseg(sk, kopt, optlen); 4676 break; 4677 case SCTP_ADAPTATION_LAYER: 4678 retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen); 4679 break; 4680 case SCTP_CONTEXT: 4681 retval = sctp_setsockopt_context(sk, kopt, optlen); 4682 break; 4683 case SCTP_FRAGMENT_INTERLEAVE: 4684 retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen); 4685 break; 4686 case SCTP_MAX_BURST: 4687 retval = sctp_setsockopt_maxburst(sk, kopt, optlen); 4688 break; 4689 case SCTP_AUTH_CHUNK: 4690 retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen); 4691 break; 4692 case SCTP_HMAC_IDENT: 4693 retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen); 4694 break; 4695 case SCTP_AUTH_KEY: 4696 retval = sctp_setsockopt_auth_key(sk, kopt, optlen); 4697 break; 4698 case SCTP_AUTH_ACTIVE_KEY: 4699 retval = sctp_setsockopt_active_key(sk, kopt, optlen); 4700 break; 4701 case SCTP_AUTH_DELETE_KEY: 4702 retval = sctp_setsockopt_del_key(sk, kopt, optlen); 4703 break; 4704 case SCTP_AUTH_DEACTIVATE_KEY: 4705 retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen); 4706 break; 4707 case SCTP_AUTO_ASCONF: 4708 retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen); 4709 break; 4710 case SCTP_PEER_ADDR_THLDS: 4711 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen, 4712 false); 4713 break; 4714 case SCTP_PEER_ADDR_THLDS_V2: 4715 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen, 4716 true); 4717 break; 4718 case SCTP_RECVRCVINFO: 4719 retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen); 4720 break; 4721 case SCTP_RECVNXTINFO: 4722 retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen); 4723 break; 4724 case SCTP_PR_SUPPORTED: 4725 retval = sctp_setsockopt_pr_supported(sk, kopt, optlen); 4726 break; 4727 case SCTP_DEFAULT_PRINFO: 4728 retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen); 4729 break; 4730 case SCTP_RECONFIG_SUPPORTED: 4731 retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen); 4732 break; 4733 case SCTP_ENABLE_STREAM_RESET: 4734 retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen); 4735 break; 4736 case SCTP_RESET_STREAMS: 4737 retval = sctp_setsockopt_reset_streams(sk, kopt, optlen); 4738 break; 4739 case SCTP_RESET_ASSOC: 4740 retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen); 4741 break; 4742 case SCTP_ADD_STREAMS: 4743 retval = sctp_setsockopt_add_streams(sk, kopt, optlen); 4744 break; 4745 case SCTP_STREAM_SCHEDULER: 4746 retval = sctp_setsockopt_scheduler(sk, kopt, optlen); 4747 break; 4748 case SCTP_STREAM_SCHEDULER_VALUE: 4749 retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen); 4750 break; 4751 case SCTP_INTERLEAVING_SUPPORTED: 4752 retval = sctp_setsockopt_interleaving_supported(sk, kopt, 4753 optlen); 4754 break; 4755 case SCTP_REUSE_PORT: 4756 retval = sctp_setsockopt_reuse_port(sk, kopt, optlen); 4757 break; 4758 case SCTP_EVENT: 4759 retval = sctp_setsockopt_event(sk, kopt, optlen); 4760 break; 4761 case SCTP_ASCONF_SUPPORTED: 4762 retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen); 4763 break; 4764 case SCTP_AUTH_SUPPORTED: 4765 retval = sctp_setsockopt_auth_supported(sk, kopt, optlen); 4766 break; 4767 case SCTP_ECN_SUPPORTED: 4768 retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen); 4769 break; 4770 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 4771 retval = sctp_setsockopt_pf_expose(sk, kopt, optlen); 4772 break; 4773 case SCTP_REMOTE_UDP_ENCAPS_PORT: 4774 retval = sctp_setsockopt_encap_port(sk, kopt, optlen); 4775 break; 4776 case SCTP_PLPMTUD_PROBE_INTERVAL: 4777 retval = sctp_setsockopt_probe_interval(sk, kopt, optlen); 4778 break; 4779 default: 4780 retval = -ENOPROTOOPT; 4781 break; 4782 } 4783 4784 release_sock(sk); 4785 kfree(kopt); 4786 return retval; 4787 } 4788 4789 /* API 3.1.6 connect() - UDP Style Syntax 4790 * 4791 * An application may use the connect() call in the UDP model to initiate an 4792 * association without sending data. 4793 * 4794 * The syntax is: 4795 * 4796 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4797 * 4798 * sd: the socket descriptor to have a new association added to. 4799 * 4800 * nam: the address structure (either struct sockaddr_in or struct 4801 * sockaddr_in6 defined in RFC2553 [7]). 4802 * 4803 * len: the size of the address. 4804 */ 4805 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4806 int addr_len, int flags) 4807 { 4808 struct sctp_af *af; 4809 int err = -EINVAL; 4810 4811 lock_sock(sk); 4812 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4813 addr, addr_len); 4814 4815 /* Validate addr_len before calling common connect/connectx routine. */ 4816 af = sctp_get_af_specific(addr->sa_family); 4817 if (af && addr_len >= af->sockaddr_len) 4818 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4819 4820 release_sock(sk); 4821 return err; 4822 } 4823 4824 int sctp_inet_connect(struct socket *sock, struct sockaddr_unsized *uaddr, 4825 int addr_len, int flags) 4826 { 4827 if (addr_len < sizeof(uaddr->sa_family)) 4828 return -EINVAL; 4829 4830 if (uaddr->sa_family == AF_UNSPEC) 4831 return -EOPNOTSUPP; 4832 4833 return sctp_connect(sock->sk, (struct sockaddr *)uaddr, addr_len, flags); 4834 } 4835 4836 /* Only called when shutdown a listening SCTP socket. */ 4837 static int sctp_disconnect(struct sock *sk, int flags) 4838 { 4839 if (!sctp_style(sk, TCP)) 4840 return -EOPNOTSUPP; 4841 4842 sk->sk_shutdown |= RCV_SHUTDOWN; 4843 return 0; 4844 } 4845 4846 static struct sock *sctp_clone_sock(struct sock *sk, 4847 struct sctp_association *asoc, 4848 enum sctp_socket_type type) 4849 { 4850 struct sock *newsk = sk_clone(sk, GFP_KERNEL, false); 4851 struct inet_sock *newinet; 4852 struct sctp_sock *newsp; 4853 int err = -ENOMEM; 4854 4855 if (!newsk) 4856 return ERR_PTR(err); 4857 4858 /* sk_clone() sets refcnt to 2 */ 4859 sock_put(newsk); 4860 4861 newinet = inet_sk(newsk); 4862 newsp = sctp_sk(newsk); 4863 4864 newsp->pf->to_sk_daddr(&asoc->peer.primary_addr, newsk); 4865 newinet->inet_dport = htons(asoc->peer.port); 4866 4867 newsp->pf->copy_ip_options(sk, newsk); 4868 atomic_set(&newinet->inet_id, get_random_u16()); 4869 4870 inet_set_bit(MC_LOOP, newsk); 4871 newinet->mc_ttl = 1; 4872 newinet->mc_index = 0; 4873 newinet->mc_list = NULL; 4874 4875 #if IS_ENABLED(CONFIG_IPV6) 4876 if (sk->sk_family == AF_INET6) { 4877 struct ipv6_pinfo *newnp = inet6_sk(newsk); 4878 4879 newinet->pinet6 = &((struct sctp6_sock *)newsk)->inet6; 4880 newinet->ipv6_fl_list = NULL; 4881 4882 memcpy(newnp, inet6_sk(sk), sizeof(struct ipv6_pinfo)); 4883 newnp->ipv6_mc_list = NULL; 4884 newnp->ipv6_ac_list = NULL; 4885 } 4886 #endif 4887 4888 skb_queue_head_init(&newsp->pd_lobby); 4889 4890 newsp->ep = sctp_endpoint_new(newsk, GFP_KERNEL); 4891 if (!newsp->ep) 4892 goto out_release; 4893 4894 SCTP_DBG_OBJCNT_INC(sock); 4895 sk_sockets_allocated_inc(newsk); 4896 sock_prot_inuse_add(sock_net(sk), newsk->sk_prot, 1); 4897 4898 err = sctp_sock_migrate(sk, newsk, asoc, type); 4899 if (err) 4900 goto out_release; 4901 4902 /* Set newsk security attributes from original sk and connection 4903 * security attribute from asoc. 4904 */ 4905 security_sctp_sk_clone(asoc, sk, newsk); 4906 4907 return newsk; 4908 4909 out_release: 4910 sk_common_release(newsk); 4911 return ERR_PTR(err); 4912 } 4913 4914 /* 4.1.4 accept() - TCP Style Syntax 4915 * 4916 * Applications use accept() call to remove an established SCTP 4917 * association from the accept queue of the endpoint. A new socket 4918 * descriptor will be returned from accept() to represent the newly 4919 * formed association. 4920 */ 4921 static struct sock *sctp_accept(struct sock *sk, struct proto_accept_arg *arg) 4922 { 4923 struct sctp_association *asoc; 4924 struct sock *newsk = NULL; 4925 int error = 0; 4926 long timeo; 4927 4928 lock_sock(sk); 4929 4930 if (!sctp_style(sk, TCP)) { 4931 error = -EOPNOTSUPP; 4932 goto out; 4933 } 4934 4935 if (!sctp_sstate(sk, LISTENING) || 4936 (sk->sk_shutdown & RCV_SHUTDOWN)) { 4937 error = -EINVAL; 4938 goto out; 4939 } 4940 4941 timeo = sock_rcvtimeo(sk, arg->flags & O_NONBLOCK); 4942 4943 error = sctp_wait_for_accept(sk, timeo); 4944 if (error) 4945 goto out; 4946 4947 /* We treat the list of associations on the endpoint as the accept 4948 * queue and pick the first association on the list. 4949 */ 4950 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 4951 struct sctp_association, asocs); 4952 4953 newsk = sctp_clone_sock(sk, asoc, SCTP_SOCKET_TCP); 4954 if (IS_ERR(newsk)) { 4955 error = PTR_ERR(newsk); 4956 newsk = NULL; 4957 } 4958 4959 out: 4960 release_sock(sk); 4961 arg->err = error; 4962 return newsk; 4963 } 4964 4965 /* The SCTP ioctl handler. */ 4966 static int sctp_ioctl(struct sock *sk, int cmd, int *karg) 4967 { 4968 int rc = -ENOTCONN; 4969 4970 lock_sock(sk); 4971 4972 /* 4973 * SEQPACKET-style sockets in LISTENING state are valid, for 4974 * SCTP, so only discard TCP-style sockets in LISTENING state. 4975 */ 4976 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4977 goto out; 4978 4979 switch (cmd) { 4980 case SIOCINQ: { 4981 struct sk_buff *skb; 4982 *karg = 0; 4983 4984 skb = skb_peek(&sk->sk_receive_queue); 4985 if (skb != NULL) { 4986 /* 4987 * We will only return the amount of this packet since 4988 * that is all that will be read. 4989 */ 4990 *karg = skb->len; 4991 } 4992 rc = 0; 4993 break; 4994 } 4995 default: 4996 rc = -ENOIOCTLCMD; 4997 break; 4998 } 4999 out: 5000 release_sock(sk); 5001 return rc; 5002 } 5003 5004 /* This is the function which gets called during socket creation to 5005 * initialized the SCTP-specific portion of the sock. 5006 * The sock structure should already be zero-filled memory. 5007 */ 5008 static int sctp_init_sock(struct sock *sk) 5009 { 5010 struct net *net = sock_net(sk); 5011 struct sctp_sock *sp; 5012 5013 pr_debug("%s: sk:%p\n", __func__, sk); 5014 5015 sp = sctp_sk(sk); 5016 5017 /* Initialize the SCTP per socket area. */ 5018 switch (sk->sk_type) { 5019 case SOCK_SEQPACKET: 5020 sp->type = SCTP_SOCKET_UDP; 5021 break; 5022 case SOCK_STREAM: 5023 sp->type = SCTP_SOCKET_TCP; 5024 break; 5025 default: 5026 return -ESOCKTNOSUPPORT; 5027 } 5028 5029 sk->sk_gso_type = SKB_GSO_SCTP; 5030 5031 /* Initialize default send parameters. These parameters can be 5032 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 5033 */ 5034 sp->default_stream = 0; 5035 sp->default_ppid = 0; 5036 sp->default_flags = 0; 5037 sp->default_context = 0; 5038 sp->default_timetolive = 0; 5039 5040 sp->default_rcv_context = 0; 5041 sp->max_burst = net->sctp.max_burst; 5042 5043 sp->cookie_auth_enable = net->sctp.cookie_auth_enable; 5044 5045 /* Initialize default setup parameters. These parameters 5046 * can be modified with the SCTP_INITMSG socket option or 5047 * overridden by the SCTP_INIT CMSG. 5048 */ 5049 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 5050 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 5051 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 5052 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 5053 5054 /* Initialize default RTO related parameters. These parameters can 5055 * be modified for with the SCTP_RTOINFO socket option. 5056 */ 5057 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 5058 sp->rtoinfo.srto_max = net->sctp.rto_max; 5059 sp->rtoinfo.srto_min = net->sctp.rto_min; 5060 5061 /* Initialize default association related parameters. These parameters 5062 * can be modified with the SCTP_ASSOCINFO socket option. 5063 */ 5064 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 5065 sp->assocparams.sasoc_number_peer_destinations = 0; 5066 sp->assocparams.sasoc_peer_rwnd = 0; 5067 sp->assocparams.sasoc_local_rwnd = 0; 5068 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 5069 5070 /* Initialize default event subscriptions. By default, all the 5071 * options are off. 5072 */ 5073 sp->subscribe = 0; 5074 5075 /* Default Peer Address Parameters. These defaults can 5076 * be modified via SCTP_PEER_ADDR_PARAMS 5077 */ 5078 sp->hbinterval = net->sctp.hb_interval; 5079 sp->udp_port = htons(net->sctp.udp_port); 5080 sp->encap_port = htons(net->sctp.encap_port); 5081 sp->pathmaxrxt = net->sctp.max_retrans_path; 5082 sp->pf_retrans = net->sctp.pf_retrans; 5083 sp->ps_retrans = net->sctp.ps_retrans; 5084 sp->pf_expose = net->sctp.pf_expose; 5085 sp->pathmtu = 0; /* allow default discovery */ 5086 sp->sackdelay = net->sctp.sack_timeout; 5087 sp->sackfreq = 2; 5088 sp->param_flags = SPP_HB_ENABLE | 5089 SPP_PMTUD_ENABLE | 5090 SPP_SACKDELAY_ENABLE; 5091 sp->default_ss = SCTP_SS_DEFAULT; 5092 5093 /* If enabled no SCTP message fragmentation will be performed. 5094 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 5095 */ 5096 sp->disable_fragments = 0; 5097 5098 /* Enable Nagle algorithm by default. */ 5099 sp->nodelay = 0; 5100 5101 sp->recvrcvinfo = 0; 5102 sp->recvnxtinfo = 0; 5103 5104 /* Enable by default. */ 5105 sp->v4mapped = 1; 5106 5107 /* Auto-close idle associations after the configured 5108 * number of seconds. A value of 0 disables this 5109 * feature. Configure through the SCTP_AUTOCLOSE socket option, 5110 * for UDP-style sockets only. 5111 */ 5112 sp->autoclose = 0; 5113 5114 /* User specified fragmentation limit. */ 5115 sp->user_frag = 0; 5116 5117 sp->adaptation_ind = 0; 5118 5119 sp->pf = sctp_get_pf_specific(sk->sk_family); 5120 5121 /* Control variables for partial data delivery. */ 5122 atomic_set(&sp->pd_mode, 0); 5123 skb_queue_head_init(&sp->pd_lobby); 5124 sp->frag_interleave = 0; 5125 sp->probe_interval = net->sctp.probe_interval; 5126 5127 /* Create a per socket endpoint structure. Even if we 5128 * change the data structure relationships, this may still 5129 * be useful for storing pre-connect address information. 5130 */ 5131 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 5132 if (!sp->ep) 5133 return -ENOMEM; 5134 5135 sk->sk_destruct = sctp_destruct_sock; 5136 5137 SCTP_DBG_OBJCNT_INC(sock); 5138 5139 sk_sockets_allocated_inc(sk); 5140 sock_prot_inuse_add(net, sk->sk_prot, 1); 5141 5142 return 0; 5143 } 5144 5145 /* Cleanup any SCTP per socket resources. Must be called with 5146 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 5147 */ 5148 static void sctp_destroy_sock(struct sock *sk) 5149 { 5150 struct sctp_sock *sp; 5151 5152 pr_debug("%s: sk:%p\n", __func__, sk); 5153 5154 /* Release our hold on the endpoint. */ 5155 sp = sctp_sk(sk); 5156 /* This could happen during socket init, thus we bail out 5157 * early, since the rest of the below is not setup either. 5158 */ 5159 if (sp->ep == NULL) 5160 return; 5161 5162 if (sp->do_auto_asconf) { 5163 sp->do_auto_asconf = 0; 5164 list_del(&sp->auto_asconf_list); 5165 } 5166 5167 sctp_endpoint_free(sp->ep); 5168 5169 sk_sockets_allocated_dec(sk); 5170 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 5171 SCTP_DBG_OBJCNT_DEC(sock); 5172 } 5173 5174 static void sctp_destruct_sock(struct sock *sk) 5175 { 5176 inet_sock_destruct(sk); 5177 } 5178 5179 /* API 4.1.7 shutdown() - TCP Style Syntax 5180 * int shutdown(int socket, int how); 5181 * 5182 * sd - the socket descriptor of the association to be closed. 5183 * how - Specifies the type of shutdown. The values are 5184 * as follows: 5185 * SHUT_RD 5186 * Disables further receive operations. No SCTP 5187 * protocol action is taken. 5188 * SHUT_WR 5189 * Disables further send operations, and initiates 5190 * the SCTP shutdown sequence. 5191 * SHUT_RDWR 5192 * Disables further send and receive operations 5193 * and initiates the SCTP shutdown sequence. 5194 */ 5195 static void sctp_shutdown(struct sock *sk, int how) 5196 { 5197 struct net *net = sock_net(sk); 5198 struct sctp_endpoint *ep; 5199 5200 if (!sctp_style(sk, TCP)) 5201 return; 5202 5203 ep = sctp_sk(sk)->ep; 5204 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 5205 struct sctp_association *asoc; 5206 5207 inet_sk_set_state(sk, SCTP_SS_CLOSING); 5208 asoc = list_entry(ep->asocs.next, 5209 struct sctp_association, asocs); 5210 sctp_primitive_SHUTDOWN(net, asoc, NULL); 5211 } 5212 } 5213 5214 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 5215 struct sctp_info *info) 5216 { 5217 struct sctp_transport *prim; 5218 struct list_head *pos; 5219 int mask; 5220 5221 memset(info, 0, sizeof(*info)); 5222 if (!asoc) { 5223 struct sctp_sock *sp = sctp_sk(sk); 5224 5225 info->sctpi_s_autoclose = sp->autoclose; 5226 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 5227 info->sctpi_s_pd_point = sp->pd_point; 5228 info->sctpi_s_nodelay = sp->nodelay; 5229 info->sctpi_s_disable_fragments = sp->disable_fragments; 5230 info->sctpi_s_v4mapped = sp->v4mapped; 5231 info->sctpi_s_frag_interleave = sp->frag_interleave; 5232 info->sctpi_s_type = sp->type; 5233 5234 return 0; 5235 } 5236 5237 info->sctpi_tag = asoc->c.my_vtag; 5238 info->sctpi_state = asoc->state; 5239 info->sctpi_rwnd = asoc->a_rwnd; 5240 info->sctpi_unackdata = asoc->unack_data; 5241 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5242 info->sctpi_instrms = asoc->stream.incnt; 5243 info->sctpi_outstrms = asoc->stream.outcnt; 5244 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 5245 info->sctpi_inqueue++; 5246 list_for_each(pos, &asoc->outqueue.out_chunk_list) 5247 info->sctpi_outqueue++; 5248 info->sctpi_overall_error = asoc->overall_error_count; 5249 info->sctpi_max_burst = asoc->max_burst; 5250 info->sctpi_maxseg = asoc->frag_point; 5251 info->sctpi_peer_rwnd = asoc->peer.rwnd; 5252 info->sctpi_peer_tag = asoc->c.peer_vtag; 5253 5254 mask = asoc->peer.intl_capable << 1; 5255 mask = (mask | asoc->peer.ecn_capable) << 1; 5256 mask = (mask | asoc->peer.ipv4_address) << 1; 5257 mask = (mask | asoc->peer.ipv6_address) << 1; 5258 mask = (mask | asoc->peer.reconf_capable) << 1; 5259 mask = (mask | asoc->peer.asconf_capable) << 1; 5260 mask = (mask | asoc->peer.prsctp_capable) << 1; 5261 mask = (mask | asoc->peer.auth_capable); 5262 info->sctpi_peer_capable = mask; 5263 mask = asoc->peer.sack_needed << 1; 5264 mask = (mask | asoc->peer.sack_generation) << 1; 5265 mask = (mask | asoc->peer.zero_window_announced); 5266 info->sctpi_peer_sack = mask; 5267 5268 info->sctpi_isacks = asoc->stats.isacks; 5269 info->sctpi_osacks = asoc->stats.osacks; 5270 info->sctpi_opackets = asoc->stats.opackets; 5271 info->sctpi_ipackets = asoc->stats.ipackets; 5272 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 5273 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 5274 info->sctpi_idupchunks = asoc->stats.idupchunks; 5275 info->sctpi_gapcnt = asoc->stats.gapcnt; 5276 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 5277 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 5278 info->sctpi_oodchunks = asoc->stats.oodchunks; 5279 info->sctpi_iodchunks = asoc->stats.iodchunks; 5280 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 5281 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 5282 5283 prim = asoc->peer.primary_path; 5284 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 5285 info->sctpi_p_state = prim->state; 5286 info->sctpi_p_cwnd = prim->cwnd; 5287 info->sctpi_p_srtt = prim->srtt; 5288 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 5289 info->sctpi_p_hbinterval = prim->hbinterval; 5290 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 5291 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 5292 info->sctpi_p_ssthresh = prim->ssthresh; 5293 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 5294 info->sctpi_p_flight_size = prim->flight_size; 5295 info->sctpi_p_error = prim->error_count; 5296 5297 return 0; 5298 } 5299 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 5300 5301 /* use callback to avoid exporting the core structure */ 5302 void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU) 5303 { 5304 rhltable_walk_enter(&sctp_transport_hashtable, iter); 5305 5306 rhashtable_walk_start(iter); 5307 } 5308 5309 void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU) 5310 { 5311 rhashtable_walk_stop(iter); 5312 rhashtable_walk_exit(iter); 5313 } 5314 5315 struct sctp_transport *sctp_transport_get_next(struct net *net, 5316 struct rhashtable_iter *iter) 5317 { 5318 struct sctp_transport *t; 5319 5320 t = rhashtable_walk_next(iter); 5321 for (; t; t = rhashtable_walk_next(iter)) { 5322 if (IS_ERR(t)) { 5323 if (PTR_ERR(t) == -EAGAIN) 5324 continue; 5325 break; 5326 } 5327 5328 if (!sctp_transport_hold(t)) 5329 continue; 5330 5331 if (net_eq(t->asoc->base.net, net) && 5332 t->asoc->peer.primary_path == t) 5333 break; 5334 5335 sctp_transport_put(t); 5336 } 5337 5338 return t; 5339 } 5340 5341 struct sctp_transport *sctp_transport_get_idx(struct net *net, 5342 struct rhashtable_iter *iter, 5343 int pos) 5344 { 5345 struct sctp_transport *t; 5346 5347 if (!pos) 5348 return SEQ_START_TOKEN; 5349 5350 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { 5351 if (!--pos) 5352 break; 5353 sctp_transport_put(t); 5354 } 5355 5356 return t; 5357 } 5358 5359 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5360 void *p) { 5361 int err = 0; 5362 int hash = 0; 5363 struct sctp_endpoint *ep; 5364 struct sctp_hashbucket *head; 5365 5366 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5367 hash++, head++) { 5368 read_lock_bh(&head->lock); 5369 sctp_for_each_hentry(ep, &head->chain) { 5370 err = cb(ep, p); 5371 if (err) 5372 break; 5373 } 5374 read_unlock_bh(&head->lock); 5375 } 5376 5377 return err; 5378 } 5379 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5380 5381 int sctp_transport_lookup_process(sctp_callback_t cb, struct net *net, 5382 const union sctp_addr *laddr, 5383 const union sctp_addr *paddr, void *p, int dif) 5384 { 5385 struct sctp_transport *transport; 5386 struct sctp_endpoint *ep; 5387 int err = -ENOENT; 5388 5389 rcu_read_lock(); 5390 transport = sctp_addrs_lookup_transport(net, laddr, paddr, dif, dif); 5391 if (!transport) { 5392 rcu_read_unlock(); 5393 return err; 5394 } 5395 ep = transport->asoc->ep; 5396 if (!sctp_endpoint_hold(ep)) { /* asoc can be peeled off */ 5397 sctp_transport_put(transport); 5398 rcu_read_unlock(); 5399 return err; 5400 } 5401 rcu_read_unlock(); 5402 5403 err = cb(ep, transport, p); 5404 sctp_endpoint_put(ep); 5405 sctp_transport_put(transport); 5406 return err; 5407 } 5408 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5409 5410 int sctp_transport_traverse_process(sctp_callback_t cb, sctp_callback_t cb_done, 5411 struct net *net, int *pos, void *p) 5412 { 5413 struct rhashtable_iter hti; 5414 struct sctp_transport *tsp; 5415 struct sctp_endpoint *ep; 5416 int ret; 5417 5418 again: 5419 ret = 0; 5420 sctp_transport_walk_start(&hti); 5421 5422 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5423 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5424 ep = tsp->asoc->ep; 5425 if (sctp_endpoint_hold(ep)) { /* asoc can be peeled off */ 5426 ret = cb(ep, tsp, p); 5427 if (ret) 5428 break; 5429 sctp_endpoint_put(ep); 5430 } 5431 (*pos)++; 5432 sctp_transport_put(tsp); 5433 } 5434 sctp_transport_walk_stop(&hti); 5435 5436 if (ret) { 5437 if (cb_done && !cb_done(ep, tsp, p)) { 5438 (*pos)++; 5439 sctp_endpoint_put(ep); 5440 sctp_transport_put(tsp); 5441 goto again; 5442 } 5443 sctp_endpoint_put(ep); 5444 sctp_transport_put(tsp); 5445 } 5446 5447 return ret; 5448 } 5449 EXPORT_SYMBOL_GPL(sctp_transport_traverse_process); 5450 5451 /* 7.2.1 Association Status (SCTP_STATUS) 5452 5453 * Applications can retrieve current status information about an 5454 * association, including association state, peer receiver window size, 5455 * number of unacked data chunks, and number of data chunks pending 5456 * receipt. This information is read-only. 5457 */ 5458 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5459 char __user *optval, 5460 int __user *optlen) 5461 { 5462 struct sctp_status status; 5463 struct sctp_association *asoc = NULL; 5464 struct sctp_transport *transport; 5465 sctp_assoc_t associd; 5466 int retval = 0; 5467 5468 if (len < sizeof(status)) { 5469 retval = -EINVAL; 5470 goto out; 5471 } 5472 5473 len = sizeof(status); 5474 if (copy_from_user(&status, optval, len)) { 5475 retval = -EFAULT; 5476 goto out; 5477 } 5478 5479 associd = status.sstat_assoc_id; 5480 asoc = sctp_id2assoc(sk, associd); 5481 if (!asoc) { 5482 retval = -EINVAL; 5483 goto out; 5484 } 5485 5486 transport = asoc->peer.primary_path; 5487 5488 status.sstat_assoc_id = sctp_assoc2id(asoc); 5489 status.sstat_state = sctp_assoc_to_state(asoc); 5490 status.sstat_rwnd = asoc->peer.rwnd; 5491 status.sstat_unackdata = asoc->unack_data; 5492 5493 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5494 status.sstat_instrms = asoc->stream.incnt; 5495 status.sstat_outstrms = asoc->stream.outcnt; 5496 status.sstat_fragmentation_point = asoc->frag_point; 5497 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5498 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5499 transport->af_specific->sockaddr_len); 5500 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5501 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5502 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5503 status.sstat_primary.spinfo_state = transport->state; 5504 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5505 status.sstat_primary.spinfo_srtt = transport->srtt; 5506 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5507 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5508 5509 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5510 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5511 5512 if (put_user(len, optlen)) { 5513 retval = -EFAULT; 5514 goto out; 5515 } 5516 5517 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5518 __func__, len, status.sstat_state, status.sstat_rwnd, 5519 status.sstat_assoc_id); 5520 5521 if (copy_to_user(optval, &status, len)) { 5522 retval = -EFAULT; 5523 goto out; 5524 } 5525 5526 out: 5527 return retval; 5528 } 5529 5530 5531 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5532 * 5533 * Applications can retrieve information about a specific peer address 5534 * of an association, including its reachability state, congestion 5535 * window, and retransmission timer values. This information is 5536 * read-only. 5537 */ 5538 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5539 char __user *optval, 5540 int __user *optlen) 5541 { 5542 struct sctp_paddrinfo pinfo; 5543 struct sctp_transport *transport; 5544 int retval = 0; 5545 5546 if (len < sizeof(pinfo)) { 5547 retval = -EINVAL; 5548 goto out; 5549 } 5550 5551 len = sizeof(pinfo); 5552 if (copy_from_user(&pinfo, optval, len)) { 5553 retval = -EFAULT; 5554 goto out; 5555 } 5556 5557 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5558 pinfo.spinfo_assoc_id); 5559 if (!transport) { 5560 retval = -EINVAL; 5561 goto out; 5562 } 5563 5564 if (transport->state == SCTP_PF && 5565 transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) { 5566 retval = -EACCES; 5567 goto out; 5568 } 5569 5570 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5571 pinfo.spinfo_state = transport->state; 5572 pinfo.spinfo_cwnd = transport->cwnd; 5573 pinfo.spinfo_srtt = transport->srtt; 5574 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5575 pinfo.spinfo_mtu = transport->pathmtu; 5576 5577 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5578 pinfo.spinfo_state = SCTP_ACTIVE; 5579 5580 if (put_user(len, optlen)) { 5581 retval = -EFAULT; 5582 goto out; 5583 } 5584 5585 if (copy_to_user(optval, &pinfo, len)) { 5586 retval = -EFAULT; 5587 goto out; 5588 } 5589 5590 out: 5591 return retval; 5592 } 5593 5594 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5595 * 5596 * This option is a on/off flag. If enabled no SCTP message 5597 * fragmentation will be performed. Instead if a message being sent 5598 * exceeds the current PMTU size, the message will NOT be sent and 5599 * instead a error will be indicated to the user. 5600 */ 5601 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5602 char __user *optval, int __user *optlen) 5603 { 5604 int val; 5605 5606 if (len < sizeof(int)) 5607 return -EINVAL; 5608 5609 len = sizeof(int); 5610 val = (sctp_sk(sk)->disable_fragments == 1); 5611 if (put_user(len, optlen)) 5612 return -EFAULT; 5613 if (copy_to_user(optval, &val, len)) 5614 return -EFAULT; 5615 return 0; 5616 } 5617 5618 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5619 * 5620 * This socket option is used to specify various notifications and 5621 * ancillary data the user wishes to receive. 5622 */ 5623 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5624 int __user *optlen) 5625 { 5626 struct sctp_event_subscribe subscribe; 5627 __u8 *sn_type = (__u8 *)&subscribe; 5628 int i; 5629 5630 if (len == 0) 5631 return -EINVAL; 5632 if (len > sizeof(struct sctp_event_subscribe)) 5633 len = sizeof(struct sctp_event_subscribe); 5634 if (put_user(len, optlen)) 5635 return -EFAULT; 5636 5637 for (i = 0; i < len; i++) 5638 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe, 5639 SCTP_SN_TYPE_BASE + i); 5640 5641 if (copy_to_user(optval, &subscribe, len)) 5642 return -EFAULT; 5643 5644 return 0; 5645 } 5646 5647 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5648 * 5649 * This socket option is applicable to the UDP-style socket only. When 5650 * set it will cause associations that are idle for more than the 5651 * specified number of seconds to automatically close. An association 5652 * being idle is defined an association that has NOT sent or received 5653 * user data. The special value of '0' indicates that no automatic 5654 * close of any associations should be performed. The option expects an 5655 * integer defining the number of seconds of idle time before an 5656 * association is closed. 5657 */ 5658 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5659 { 5660 /* Applicable to UDP-style socket only */ 5661 if (sctp_style(sk, TCP)) 5662 return -EOPNOTSUPP; 5663 if (len < sizeof(int)) 5664 return -EINVAL; 5665 len = sizeof(int); 5666 if (put_user(len, optlen)) 5667 return -EFAULT; 5668 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5669 return -EFAULT; 5670 return 0; 5671 } 5672 5673 /* Helper routine to branch off an association to a new socket. */ 5674 static int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, 5675 struct socket **sockp) 5676 { 5677 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5678 struct socket *sock; 5679 struct sock *newsk; 5680 int err = 0; 5681 5682 /* Do not peel off from one netns to another one. */ 5683 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5684 return -EINVAL; 5685 5686 if (!asoc) 5687 return -EINVAL; 5688 5689 /* An association cannot be branched off from an already peeled-off 5690 * socket, nor is this supported for tcp style sockets. 5691 */ 5692 if (!sctp_style(sk, UDP)) 5693 return -EINVAL; 5694 5695 err = sock_create_lite(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5696 if (err) 5697 return err; 5698 5699 newsk = sctp_clone_sock(sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5700 if (IS_ERR(newsk)) { 5701 sock_release(sock); 5702 *sockp = NULL; 5703 return PTR_ERR(newsk); 5704 } 5705 5706 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 5707 __inet_accept(sk->sk_socket, sock, newsk); 5708 release_sock(newsk); 5709 5710 sock->ops = sk->sk_socket->ops; 5711 __module_get(sock->ops->owner); 5712 5713 *sockp = sock; 5714 5715 return err; 5716 } 5717 5718 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5719 struct file **newfile, unsigned flags) 5720 { 5721 struct socket *newsock; 5722 int retval; 5723 5724 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5725 if (retval < 0) 5726 goto out; 5727 5728 /* Map the socket to an unused fd that can be returned to the user. */ 5729 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5730 if (retval < 0) { 5731 sock_release(newsock); 5732 goto out; 5733 } 5734 5735 *newfile = sock_alloc_file(newsock, 0, NULL); 5736 if (IS_ERR(*newfile)) { 5737 put_unused_fd(retval); 5738 retval = PTR_ERR(*newfile); 5739 *newfile = NULL; 5740 return retval; 5741 } 5742 5743 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5744 retval); 5745 5746 peeloff->sd = retval; 5747 5748 if (flags & SOCK_NONBLOCK) 5749 (*newfile)->f_flags |= O_NONBLOCK; 5750 out: 5751 return retval; 5752 } 5753 5754 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5755 { 5756 sctp_peeloff_arg_t peeloff; 5757 struct file *newfile = NULL; 5758 int retval = 0; 5759 5760 if (len < sizeof(sctp_peeloff_arg_t)) 5761 return -EINVAL; 5762 len = sizeof(sctp_peeloff_arg_t); 5763 if (copy_from_user(&peeloff, optval, len)) 5764 return -EFAULT; 5765 5766 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5767 if (retval < 0) 5768 goto out; 5769 5770 /* Return the fd mapped to the new socket. */ 5771 if (put_user(len, optlen)) { 5772 fput(newfile); 5773 put_unused_fd(retval); 5774 return -EFAULT; 5775 } 5776 5777 if (copy_to_user(optval, &peeloff, len)) { 5778 fput(newfile); 5779 put_unused_fd(retval); 5780 return -EFAULT; 5781 } 5782 fd_install(retval, newfile); 5783 out: 5784 return retval; 5785 } 5786 5787 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5788 char __user *optval, int __user *optlen) 5789 { 5790 sctp_peeloff_flags_arg_t peeloff; 5791 struct file *newfile = NULL; 5792 int retval = 0; 5793 5794 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5795 return -EINVAL; 5796 len = sizeof(sctp_peeloff_flags_arg_t); 5797 if (copy_from_user(&peeloff, optval, len)) 5798 return -EFAULT; 5799 5800 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5801 &newfile, peeloff.flags); 5802 if (retval < 0) 5803 goto out; 5804 5805 /* Return the fd mapped to the new socket. */ 5806 if (put_user(len, optlen)) { 5807 fput(newfile); 5808 put_unused_fd(retval); 5809 return -EFAULT; 5810 } 5811 5812 if (copy_to_user(optval, &peeloff, len)) { 5813 fput(newfile); 5814 put_unused_fd(retval); 5815 return -EFAULT; 5816 } 5817 fd_install(retval, newfile); 5818 out: 5819 return retval; 5820 } 5821 5822 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5823 * 5824 * Applications can enable or disable heartbeats for any peer address of 5825 * an association, modify an address's heartbeat interval, force a 5826 * heartbeat to be sent immediately, and adjust the address's maximum 5827 * number of retransmissions sent before an address is considered 5828 * unreachable. The following structure is used to access and modify an 5829 * address's parameters: 5830 * 5831 * struct sctp_paddrparams { 5832 * sctp_assoc_t spp_assoc_id; 5833 * struct sockaddr_storage spp_address; 5834 * uint32_t spp_hbinterval; 5835 * uint16_t spp_pathmaxrxt; 5836 * uint32_t spp_pathmtu; 5837 * uint32_t spp_sackdelay; 5838 * uint32_t spp_flags; 5839 * }; 5840 * 5841 * spp_assoc_id - (one-to-many style socket) This is filled in the 5842 * application, and identifies the association for 5843 * this query. 5844 * spp_address - This specifies which address is of interest. 5845 * spp_hbinterval - This contains the value of the heartbeat interval, 5846 * in milliseconds. If a value of zero 5847 * is present in this field then no changes are to 5848 * be made to this parameter. 5849 * spp_pathmaxrxt - This contains the maximum number of 5850 * retransmissions before this address shall be 5851 * considered unreachable. If a value of zero 5852 * is present in this field then no changes are to 5853 * be made to this parameter. 5854 * spp_pathmtu - When Path MTU discovery is disabled the value 5855 * specified here will be the "fixed" path mtu. 5856 * Note that if the spp_address field is empty 5857 * then all associations on this address will 5858 * have this fixed path mtu set upon them. 5859 * 5860 * spp_sackdelay - When delayed sack is enabled, this value specifies 5861 * the number of milliseconds that sacks will be delayed 5862 * for. This value will apply to all addresses of an 5863 * association if the spp_address field is empty. Note 5864 * also, that if delayed sack is enabled and this 5865 * value is set to 0, no change is made to the last 5866 * recorded delayed sack timer value. 5867 * 5868 * spp_flags - These flags are used to control various features 5869 * on an association. The flag field may contain 5870 * zero or more of the following options. 5871 * 5872 * SPP_HB_ENABLE - Enable heartbeats on the 5873 * specified address. Note that if the address 5874 * field is empty all addresses for the association 5875 * have heartbeats enabled upon them. 5876 * 5877 * SPP_HB_DISABLE - Disable heartbeats on the 5878 * speicifed address. Note that if the address 5879 * field is empty all addresses for the association 5880 * will have their heartbeats disabled. Note also 5881 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5882 * mutually exclusive, only one of these two should 5883 * be specified. Enabling both fields will have 5884 * undetermined results. 5885 * 5886 * SPP_HB_DEMAND - Request a user initiated heartbeat 5887 * to be made immediately. 5888 * 5889 * SPP_PMTUD_ENABLE - This field will enable PMTU 5890 * discovery upon the specified address. Note that 5891 * if the address feild is empty then all addresses 5892 * on the association are effected. 5893 * 5894 * SPP_PMTUD_DISABLE - This field will disable PMTU 5895 * discovery upon the specified address. Note that 5896 * if the address feild is empty then all addresses 5897 * on the association are effected. Not also that 5898 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5899 * exclusive. Enabling both will have undetermined 5900 * results. 5901 * 5902 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5903 * on delayed sack. The time specified in spp_sackdelay 5904 * is used to specify the sack delay for this address. Note 5905 * that if spp_address is empty then all addresses will 5906 * enable delayed sack and take on the sack delay 5907 * value specified in spp_sackdelay. 5908 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5909 * off delayed sack. If the spp_address field is blank then 5910 * delayed sack is disabled for the entire association. Note 5911 * also that this field is mutually exclusive to 5912 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5913 * results. 5914 * 5915 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5916 * setting of the IPV6 flow label value. The value is 5917 * contained in the spp_ipv6_flowlabel field. 5918 * Upon retrieval, this flag will be set to indicate that 5919 * the spp_ipv6_flowlabel field has a valid value returned. 5920 * If a specific destination address is set (in the 5921 * spp_address field), then the value returned is that of 5922 * the address. If just an association is specified (and 5923 * no address), then the association's default flow label 5924 * is returned. If neither an association nor a destination 5925 * is specified, then the socket's default flow label is 5926 * returned. For non-IPv6 sockets, this flag will be left 5927 * cleared. 5928 * 5929 * SPP_DSCP: Setting this flag enables the setting of the 5930 * Differentiated Services Code Point (DSCP) value 5931 * associated with either the association or a specific 5932 * address. The value is obtained in the spp_dscp field. 5933 * Upon retrieval, this flag will be set to indicate that 5934 * the spp_dscp field has a valid value returned. If a 5935 * specific destination address is set when called (in the 5936 * spp_address field), then that specific destination 5937 * address's DSCP value is returned. If just an association 5938 * is specified, then the association's default DSCP is 5939 * returned. If neither an association nor a destination is 5940 * specified, then the socket's default DSCP is returned. 5941 * 5942 * spp_ipv6_flowlabel 5943 * - This field is used in conjunction with the 5944 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5945 * The 20 least significant bits are used for the flow 5946 * label. This setting has precedence over any IPv6-layer 5947 * setting. 5948 * 5949 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5950 * and contains the DSCP. The 6 most significant bits are 5951 * used for the DSCP. This setting has precedence over any 5952 * IPv4- or IPv6- layer setting. 5953 */ 5954 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5955 char __user *optval, int __user *optlen) 5956 { 5957 struct sctp_paddrparams params; 5958 struct sctp_transport *trans = NULL; 5959 struct sctp_association *asoc = NULL; 5960 struct sctp_sock *sp = sctp_sk(sk); 5961 5962 if (len >= sizeof(params)) 5963 len = sizeof(params); 5964 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 5965 spp_ipv6_flowlabel), 4)) 5966 len = ALIGN(offsetof(struct sctp_paddrparams, 5967 spp_ipv6_flowlabel), 4); 5968 else 5969 return -EINVAL; 5970 5971 if (copy_from_user(¶ms, optval, len)) 5972 return -EFAULT; 5973 5974 /* If an address other than INADDR_ANY is specified, and 5975 * no transport is found, then the request is invalid. 5976 */ 5977 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5978 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5979 params.spp_assoc_id); 5980 if (!trans) { 5981 pr_debug("%s: failed no transport\n", __func__); 5982 return -EINVAL; 5983 } 5984 } 5985 5986 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 5987 * socket is a one to many style socket, and an association 5988 * was not found, then the id was invalid. 5989 */ 5990 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5991 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 5992 sctp_style(sk, UDP)) { 5993 pr_debug("%s: failed no association\n", __func__); 5994 return -EINVAL; 5995 } 5996 5997 if (trans) { 5998 /* Fetch transport values. */ 5999 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 6000 params.spp_pathmtu = trans->pathmtu; 6001 params.spp_pathmaxrxt = trans->pathmaxrxt; 6002 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 6003 6004 /*draft-11 doesn't say what to return in spp_flags*/ 6005 params.spp_flags = trans->param_flags; 6006 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 6007 params.spp_ipv6_flowlabel = trans->flowlabel & 6008 SCTP_FLOWLABEL_VAL_MASK; 6009 params.spp_flags |= SPP_IPV6_FLOWLABEL; 6010 } 6011 if (trans->dscp & SCTP_DSCP_SET_MASK) { 6012 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 6013 params.spp_flags |= SPP_DSCP; 6014 } 6015 } else if (asoc) { 6016 /* Fetch association values. */ 6017 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 6018 params.spp_pathmtu = asoc->pathmtu; 6019 params.spp_pathmaxrxt = asoc->pathmaxrxt; 6020 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 6021 6022 /*draft-11 doesn't say what to return in spp_flags*/ 6023 params.spp_flags = asoc->param_flags; 6024 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 6025 params.spp_ipv6_flowlabel = asoc->flowlabel & 6026 SCTP_FLOWLABEL_VAL_MASK; 6027 params.spp_flags |= SPP_IPV6_FLOWLABEL; 6028 } 6029 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 6030 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 6031 params.spp_flags |= SPP_DSCP; 6032 } 6033 } else { 6034 /* Fetch socket values. */ 6035 params.spp_hbinterval = sp->hbinterval; 6036 params.spp_pathmtu = sp->pathmtu; 6037 params.spp_sackdelay = sp->sackdelay; 6038 params.spp_pathmaxrxt = sp->pathmaxrxt; 6039 6040 /*draft-11 doesn't say what to return in spp_flags*/ 6041 params.spp_flags = sp->param_flags; 6042 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 6043 params.spp_ipv6_flowlabel = sp->flowlabel & 6044 SCTP_FLOWLABEL_VAL_MASK; 6045 params.spp_flags |= SPP_IPV6_FLOWLABEL; 6046 } 6047 if (sp->dscp & SCTP_DSCP_SET_MASK) { 6048 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 6049 params.spp_flags |= SPP_DSCP; 6050 } 6051 } 6052 6053 if (copy_to_user(optval, ¶ms, len)) 6054 return -EFAULT; 6055 6056 if (put_user(len, optlen)) 6057 return -EFAULT; 6058 6059 return 0; 6060 } 6061 6062 /* 6063 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 6064 * 6065 * This option will effect the way delayed acks are performed. This 6066 * option allows you to get or set the delayed ack time, in 6067 * milliseconds. It also allows changing the delayed ack frequency. 6068 * Changing the frequency to 1 disables the delayed sack algorithm. If 6069 * the assoc_id is 0, then this sets or gets the endpoints default 6070 * values. If the assoc_id field is non-zero, then the set or get 6071 * effects the specified association for the one to many model (the 6072 * assoc_id field is ignored by the one to one model). Note that if 6073 * sack_delay or sack_freq are 0 when setting this option, then the 6074 * current values will remain unchanged. 6075 * 6076 * struct sctp_sack_info { 6077 * sctp_assoc_t sack_assoc_id; 6078 * uint32_t sack_delay; 6079 * uint32_t sack_freq; 6080 * }; 6081 * 6082 * sack_assoc_id - This parameter, indicates which association the user 6083 * is performing an action upon. Note that if this field's value is 6084 * zero then the endpoints default value is changed (effecting future 6085 * associations only). 6086 * 6087 * sack_delay - This parameter contains the number of milliseconds that 6088 * the user is requesting the delayed ACK timer be set to. Note that 6089 * this value is defined in the standard to be between 200 and 500 6090 * milliseconds. 6091 * 6092 * sack_freq - This parameter contains the number of packets that must 6093 * be received before a sack is sent without waiting for the delay 6094 * timer to expire. The default value for this is 2, setting this 6095 * value to 1 will disable the delayed sack algorithm. 6096 */ 6097 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 6098 char __user *optval, 6099 int __user *optlen) 6100 { 6101 struct sctp_sack_info params; 6102 struct sctp_association *asoc = NULL; 6103 struct sctp_sock *sp = sctp_sk(sk); 6104 6105 if (len >= sizeof(struct sctp_sack_info)) { 6106 len = sizeof(struct sctp_sack_info); 6107 6108 if (copy_from_user(¶ms, optval, len)) 6109 return -EFAULT; 6110 } else if (len == sizeof(struct sctp_assoc_value)) { 6111 pr_warn_ratelimited(DEPRECATED 6112 "%s (pid %d) " 6113 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 6114 "Use struct sctp_sack_info instead\n", 6115 current->comm, task_pid_nr(current)); 6116 if (copy_from_user(¶ms, optval, len)) 6117 return -EFAULT; 6118 } else 6119 return -EINVAL; 6120 6121 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 6122 * socket is a one to many style socket, and an association 6123 * was not found, then the id was invalid. 6124 */ 6125 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 6126 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC && 6127 sctp_style(sk, UDP)) 6128 return -EINVAL; 6129 6130 if (asoc) { 6131 /* Fetch association values. */ 6132 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 6133 params.sack_delay = jiffies_to_msecs(asoc->sackdelay); 6134 params.sack_freq = asoc->sackfreq; 6135 6136 } else { 6137 params.sack_delay = 0; 6138 params.sack_freq = 1; 6139 } 6140 } else { 6141 /* Fetch socket values. */ 6142 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 6143 params.sack_delay = sp->sackdelay; 6144 params.sack_freq = sp->sackfreq; 6145 } else { 6146 params.sack_delay = 0; 6147 params.sack_freq = 1; 6148 } 6149 } 6150 6151 if (copy_to_user(optval, ¶ms, len)) 6152 return -EFAULT; 6153 6154 if (put_user(len, optlen)) 6155 return -EFAULT; 6156 6157 return 0; 6158 } 6159 6160 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 6161 * 6162 * Applications can specify protocol parameters for the default association 6163 * initialization. The option name argument to setsockopt() and getsockopt() 6164 * is SCTP_INITMSG. 6165 * 6166 * Setting initialization parameters is effective only on an unconnected 6167 * socket (for UDP-style sockets only future associations are effected 6168 * by the change). With TCP-style sockets, this option is inherited by 6169 * sockets derived from a listener socket. 6170 */ 6171 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 6172 { 6173 if (len < sizeof(struct sctp_initmsg)) 6174 return -EINVAL; 6175 len = sizeof(struct sctp_initmsg); 6176 if (put_user(len, optlen)) 6177 return -EFAULT; 6178 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 6179 return -EFAULT; 6180 return 0; 6181 } 6182 6183 6184 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 6185 char __user *optval, int __user *optlen) 6186 { 6187 struct sctp_association *asoc; 6188 int cnt = 0; 6189 struct sctp_getaddrs getaddrs; 6190 struct sctp_transport *from; 6191 void __user *to; 6192 union sctp_addr temp; 6193 struct sctp_sock *sp = sctp_sk(sk); 6194 int addrlen; 6195 size_t space_left; 6196 int bytes_copied; 6197 6198 if (len < sizeof(struct sctp_getaddrs)) 6199 return -EINVAL; 6200 6201 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6202 return -EFAULT; 6203 6204 /* For UDP-style sockets, id specifies the association to query. */ 6205 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6206 if (!asoc) 6207 return -EINVAL; 6208 6209 to = optval + offsetof(struct sctp_getaddrs, addrs); 6210 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6211 6212 list_for_each_entry(from, &asoc->peer.transport_addr_list, 6213 transports) { 6214 memcpy(&temp, &from->ipaddr, sizeof(temp)); 6215 addrlen = sctp_get_pf_specific(sk->sk_family) 6216 ->addr_to_user(sp, &temp); 6217 if (space_left < addrlen) 6218 return -ENOMEM; 6219 if (copy_to_user(to, &temp, addrlen)) 6220 return -EFAULT; 6221 to += addrlen; 6222 cnt++; 6223 space_left -= addrlen; 6224 } 6225 6226 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 6227 return -EFAULT; 6228 bytes_copied = ((char __user *)to) - optval; 6229 if (put_user(bytes_copied, optlen)) 6230 return -EFAULT; 6231 6232 return 0; 6233 } 6234 6235 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 6236 size_t space_left, int *bytes_copied) 6237 { 6238 struct sctp_sockaddr_entry *addr; 6239 union sctp_addr temp; 6240 int cnt = 0; 6241 int addrlen; 6242 struct net *net = sock_net(sk); 6243 6244 rcu_read_lock(); 6245 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 6246 if (!addr->valid) 6247 continue; 6248 6249 if ((PF_INET == sk->sk_family) && 6250 (AF_INET6 == addr->a.sa.sa_family)) 6251 continue; 6252 if ((PF_INET6 == sk->sk_family) && 6253 inet_v6_ipv6only(sk) && 6254 (AF_INET == addr->a.sa.sa_family)) 6255 continue; 6256 memcpy(&temp, &addr->a, sizeof(temp)); 6257 if (!temp.v4.sin_port) 6258 temp.v4.sin_port = htons(port); 6259 6260 addrlen = sctp_get_pf_specific(sk->sk_family) 6261 ->addr_to_user(sctp_sk(sk), &temp); 6262 6263 if (space_left < addrlen) { 6264 cnt = -ENOMEM; 6265 break; 6266 } 6267 memcpy(to, &temp, addrlen); 6268 6269 to += addrlen; 6270 cnt++; 6271 space_left -= addrlen; 6272 *bytes_copied += addrlen; 6273 } 6274 rcu_read_unlock(); 6275 6276 return cnt; 6277 } 6278 6279 6280 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 6281 char __user *optval, int __user *optlen) 6282 { 6283 struct sctp_bind_addr *bp; 6284 struct sctp_association *asoc; 6285 int cnt = 0; 6286 struct sctp_getaddrs getaddrs; 6287 struct sctp_sockaddr_entry *addr; 6288 void __user *to; 6289 union sctp_addr temp; 6290 struct sctp_sock *sp = sctp_sk(sk); 6291 int addrlen; 6292 int err = 0; 6293 size_t space_left; 6294 int bytes_copied = 0; 6295 void *addrs; 6296 void *buf; 6297 6298 if (len < sizeof(struct sctp_getaddrs)) 6299 return -EINVAL; 6300 6301 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6302 return -EFAULT; 6303 6304 /* 6305 * For UDP-style sockets, id specifies the association to query. 6306 * If the id field is set to the value '0' then the locally bound 6307 * addresses are returned without regard to any particular 6308 * association. 6309 */ 6310 if (0 == getaddrs.assoc_id) { 6311 bp = &sctp_sk(sk)->ep->base.bind_addr; 6312 } else { 6313 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6314 if (!asoc) 6315 return -EINVAL; 6316 bp = &asoc->base.bind_addr; 6317 } 6318 6319 to = optval + offsetof(struct sctp_getaddrs, addrs); 6320 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6321 6322 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 6323 if (!addrs) 6324 return -ENOMEM; 6325 6326 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 6327 * addresses from the global local address list. 6328 */ 6329 if (sctp_list_single_entry(&bp->address_list)) { 6330 addr = list_entry(bp->address_list.next, 6331 struct sctp_sockaddr_entry, list); 6332 if (sctp_is_any(sk, &addr->a)) { 6333 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 6334 space_left, &bytes_copied); 6335 if (cnt < 0) { 6336 err = cnt; 6337 goto out; 6338 } 6339 goto copy_getaddrs; 6340 } 6341 } 6342 6343 buf = addrs; 6344 /* Protection on the bound address list is not needed since 6345 * in the socket option context we hold a socket lock and 6346 * thus the bound address list can't change. 6347 */ 6348 list_for_each_entry(addr, &bp->address_list, list) { 6349 memcpy(&temp, &addr->a, sizeof(temp)); 6350 addrlen = sctp_get_pf_specific(sk->sk_family) 6351 ->addr_to_user(sp, &temp); 6352 if (space_left < addrlen) { 6353 err = -ENOMEM; /*fixme: right error?*/ 6354 goto out; 6355 } 6356 memcpy(buf, &temp, addrlen); 6357 buf += addrlen; 6358 bytes_copied += addrlen; 6359 cnt++; 6360 space_left -= addrlen; 6361 } 6362 6363 copy_getaddrs: 6364 if (copy_to_user(to, addrs, bytes_copied)) { 6365 err = -EFAULT; 6366 goto out; 6367 } 6368 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 6369 err = -EFAULT; 6370 goto out; 6371 } 6372 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 6373 * but we can't change it anymore. 6374 */ 6375 if (put_user(bytes_copied, optlen)) 6376 err = -EFAULT; 6377 out: 6378 kfree(addrs); 6379 return err; 6380 } 6381 6382 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6383 * 6384 * Requests that the local SCTP stack use the enclosed peer address as 6385 * the association primary. The enclosed address must be one of the 6386 * association peer's addresses. 6387 */ 6388 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6389 char __user *optval, int __user *optlen) 6390 { 6391 struct sctp_prim prim; 6392 struct sctp_association *asoc; 6393 struct sctp_sock *sp = sctp_sk(sk); 6394 6395 if (len < sizeof(struct sctp_prim)) 6396 return -EINVAL; 6397 6398 len = sizeof(struct sctp_prim); 6399 6400 if (copy_from_user(&prim, optval, len)) 6401 return -EFAULT; 6402 6403 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6404 if (!asoc) 6405 return -EINVAL; 6406 6407 if (!asoc->peer.primary_path) 6408 return -ENOTCONN; 6409 6410 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6411 asoc->peer.primary_path->af_specific->sockaddr_len); 6412 6413 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6414 (union sctp_addr *)&prim.ssp_addr); 6415 6416 if (put_user(len, optlen)) 6417 return -EFAULT; 6418 if (copy_to_user(optval, &prim, len)) 6419 return -EFAULT; 6420 6421 return 0; 6422 } 6423 6424 /* 6425 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6426 * 6427 * Requests that the local endpoint set the specified Adaptation Layer 6428 * Indication parameter for all future INIT and INIT-ACK exchanges. 6429 */ 6430 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6431 char __user *optval, int __user *optlen) 6432 { 6433 struct sctp_setadaptation adaptation; 6434 6435 if (len < sizeof(struct sctp_setadaptation)) 6436 return -EINVAL; 6437 6438 len = sizeof(struct sctp_setadaptation); 6439 6440 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6441 6442 if (put_user(len, optlen)) 6443 return -EFAULT; 6444 if (copy_to_user(optval, &adaptation, len)) 6445 return -EFAULT; 6446 6447 return 0; 6448 } 6449 6450 /* 6451 * 6452 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6453 * 6454 * Applications that wish to use the sendto() system call may wish to 6455 * specify a default set of parameters that would normally be supplied 6456 * through the inclusion of ancillary data. This socket option allows 6457 * such an application to set the default sctp_sndrcvinfo structure. 6458 6459 6460 * The application that wishes to use this socket option simply passes 6461 * in to this call the sctp_sndrcvinfo structure defined in Section 6462 * 5.2.2) The input parameters accepted by this call include 6463 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6464 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6465 * to this call if the caller is using the UDP model. 6466 * 6467 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6468 */ 6469 static int sctp_getsockopt_default_send_param(struct sock *sk, 6470 int len, char __user *optval, 6471 int __user *optlen) 6472 { 6473 struct sctp_sock *sp = sctp_sk(sk); 6474 struct sctp_association *asoc; 6475 struct sctp_sndrcvinfo info; 6476 6477 if (len < sizeof(info)) 6478 return -EINVAL; 6479 6480 len = sizeof(info); 6481 6482 if (copy_from_user(&info, optval, len)) 6483 return -EFAULT; 6484 6485 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6486 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC && 6487 sctp_style(sk, UDP)) 6488 return -EINVAL; 6489 6490 if (asoc) { 6491 info.sinfo_stream = asoc->default_stream; 6492 info.sinfo_flags = asoc->default_flags; 6493 info.sinfo_ppid = asoc->default_ppid; 6494 info.sinfo_context = asoc->default_context; 6495 info.sinfo_timetolive = asoc->default_timetolive; 6496 } else { 6497 info.sinfo_stream = sp->default_stream; 6498 info.sinfo_flags = sp->default_flags; 6499 info.sinfo_ppid = sp->default_ppid; 6500 info.sinfo_context = sp->default_context; 6501 info.sinfo_timetolive = sp->default_timetolive; 6502 } 6503 6504 if (put_user(len, optlen)) 6505 return -EFAULT; 6506 if (copy_to_user(optval, &info, len)) 6507 return -EFAULT; 6508 6509 return 0; 6510 } 6511 6512 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6513 * (SCTP_DEFAULT_SNDINFO) 6514 */ 6515 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6516 char __user *optval, 6517 int __user *optlen) 6518 { 6519 struct sctp_sock *sp = sctp_sk(sk); 6520 struct sctp_association *asoc; 6521 struct sctp_sndinfo info; 6522 6523 if (len < sizeof(info)) 6524 return -EINVAL; 6525 6526 len = sizeof(info); 6527 6528 if (copy_from_user(&info, optval, len)) 6529 return -EFAULT; 6530 6531 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6532 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC && 6533 sctp_style(sk, UDP)) 6534 return -EINVAL; 6535 6536 if (asoc) { 6537 info.snd_sid = asoc->default_stream; 6538 info.snd_flags = asoc->default_flags; 6539 info.snd_ppid = asoc->default_ppid; 6540 info.snd_context = asoc->default_context; 6541 } else { 6542 info.snd_sid = sp->default_stream; 6543 info.snd_flags = sp->default_flags; 6544 info.snd_ppid = sp->default_ppid; 6545 info.snd_context = sp->default_context; 6546 } 6547 6548 if (put_user(len, optlen)) 6549 return -EFAULT; 6550 if (copy_to_user(optval, &info, len)) 6551 return -EFAULT; 6552 6553 return 0; 6554 } 6555 6556 /* 6557 * 6558 * 7.1.5 SCTP_NODELAY 6559 * 6560 * Turn on/off any Nagle-like algorithm. This means that packets are 6561 * generally sent as soon as possible and no unnecessary delays are 6562 * introduced, at the cost of more packets in the network. Expects an 6563 * integer boolean flag. 6564 */ 6565 6566 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6567 char __user *optval, int __user *optlen) 6568 { 6569 int val; 6570 6571 if (len < sizeof(int)) 6572 return -EINVAL; 6573 6574 len = sizeof(int); 6575 val = (sctp_sk(sk)->nodelay == 1); 6576 if (put_user(len, optlen)) 6577 return -EFAULT; 6578 if (copy_to_user(optval, &val, len)) 6579 return -EFAULT; 6580 return 0; 6581 } 6582 6583 /* 6584 * 6585 * 7.1.1 SCTP_RTOINFO 6586 * 6587 * The protocol parameters used to initialize and bound retransmission 6588 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6589 * and modify these parameters. 6590 * All parameters are time values, in milliseconds. A value of 0, when 6591 * modifying the parameters, indicates that the current value should not 6592 * be changed. 6593 * 6594 */ 6595 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6596 char __user *optval, 6597 int __user *optlen) { 6598 struct sctp_rtoinfo rtoinfo; 6599 struct sctp_association *asoc; 6600 6601 if (len < sizeof (struct sctp_rtoinfo)) 6602 return -EINVAL; 6603 6604 len = sizeof(struct sctp_rtoinfo); 6605 6606 if (copy_from_user(&rtoinfo, optval, len)) 6607 return -EFAULT; 6608 6609 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6610 6611 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 6612 sctp_style(sk, UDP)) 6613 return -EINVAL; 6614 6615 /* Values corresponding to the specific association. */ 6616 if (asoc) { 6617 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6618 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6619 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6620 } else { 6621 /* Values corresponding to the endpoint. */ 6622 struct sctp_sock *sp = sctp_sk(sk); 6623 6624 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6625 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6626 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6627 } 6628 6629 if (put_user(len, optlen)) 6630 return -EFAULT; 6631 6632 if (copy_to_user(optval, &rtoinfo, len)) 6633 return -EFAULT; 6634 6635 return 0; 6636 } 6637 6638 /* 6639 * 6640 * 7.1.2 SCTP_ASSOCINFO 6641 * 6642 * This option is used to tune the maximum retransmission attempts 6643 * of the association. 6644 * Returns an error if the new association retransmission value is 6645 * greater than the sum of the retransmission value of the peer. 6646 * See [SCTP] for more information. 6647 * 6648 */ 6649 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6650 char __user *optval, 6651 int __user *optlen) 6652 { 6653 6654 struct sctp_assocparams assocparams; 6655 struct sctp_association *asoc; 6656 struct list_head *pos; 6657 int cnt = 0; 6658 6659 if (len < sizeof (struct sctp_assocparams)) 6660 return -EINVAL; 6661 6662 len = sizeof(struct sctp_assocparams); 6663 6664 if (copy_from_user(&assocparams, optval, len)) 6665 return -EFAULT; 6666 6667 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6668 6669 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 6670 sctp_style(sk, UDP)) 6671 return -EINVAL; 6672 6673 /* Values correspoinding to the specific association */ 6674 if (asoc) { 6675 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6676 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6677 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6678 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6679 6680 list_for_each(pos, &asoc->peer.transport_addr_list) { 6681 cnt++; 6682 } 6683 6684 assocparams.sasoc_number_peer_destinations = cnt; 6685 } else { 6686 /* Values corresponding to the endpoint */ 6687 struct sctp_sock *sp = sctp_sk(sk); 6688 6689 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6690 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6691 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6692 assocparams.sasoc_cookie_life = 6693 sp->assocparams.sasoc_cookie_life; 6694 assocparams.sasoc_number_peer_destinations = 6695 sp->assocparams. 6696 sasoc_number_peer_destinations; 6697 } 6698 6699 if (put_user(len, optlen)) 6700 return -EFAULT; 6701 6702 if (copy_to_user(optval, &assocparams, len)) 6703 return -EFAULT; 6704 6705 return 0; 6706 } 6707 6708 /* 6709 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6710 * 6711 * This socket option is a boolean flag which turns on or off mapped V4 6712 * addresses. If this option is turned on and the socket is type 6713 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6714 * If this option is turned off, then no mapping will be done of V4 6715 * addresses and a user will receive both PF_INET6 and PF_INET type 6716 * addresses on the socket. 6717 */ 6718 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6719 char __user *optval, int __user *optlen) 6720 { 6721 int val; 6722 struct sctp_sock *sp = sctp_sk(sk); 6723 6724 if (len < sizeof(int)) 6725 return -EINVAL; 6726 6727 len = sizeof(int); 6728 val = sp->v4mapped; 6729 if (put_user(len, optlen)) 6730 return -EFAULT; 6731 if (copy_to_user(optval, &val, len)) 6732 return -EFAULT; 6733 6734 return 0; 6735 } 6736 6737 /* 6738 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6739 * (chapter and verse is quoted at sctp_setsockopt_context()) 6740 */ 6741 static int sctp_getsockopt_context(struct sock *sk, int len, 6742 char __user *optval, int __user *optlen) 6743 { 6744 struct sctp_assoc_value params; 6745 struct sctp_association *asoc; 6746 6747 if (len < sizeof(struct sctp_assoc_value)) 6748 return -EINVAL; 6749 6750 len = sizeof(struct sctp_assoc_value); 6751 6752 if (copy_from_user(¶ms, optval, len)) 6753 return -EFAULT; 6754 6755 asoc = sctp_id2assoc(sk, params.assoc_id); 6756 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6757 sctp_style(sk, UDP)) 6758 return -EINVAL; 6759 6760 params.assoc_value = asoc ? asoc->default_rcv_context 6761 : sctp_sk(sk)->default_rcv_context; 6762 6763 if (put_user(len, optlen)) 6764 return -EFAULT; 6765 if (copy_to_user(optval, ¶ms, len)) 6766 return -EFAULT; 6767 6768 return 0; 6769 } 6770 6771 /* 6772 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6773 * This option will get or set the maximum size to put in any outgoing 6774 * SCTP DATA chunk. If a message is larger than this size it will be 6775 * fragmented by SCTP into the specified size. Note that the underlying 6776 * SCTP implementation may fragment into smaller sized chunks when the 6777 * PMTU of the underlying association is smaller than the value set by 6778 * the user. The default value for this option is '0' which indicates 6779 * the user is NOT limiting fragmentation and only the PMTU will effect 6780 * SCTP's choice of DATA chunk size. Note also that values set larger 6781 * than the maximum size of an IP datagram will effectively let SCTP 6782 * control fragmentation (i.e. the same as setting this option to 0). 6783 * 6784 * The following structure is used to access and modify this parameter: 6785 * 6786 * struct sctp_assoc_value { 6787 * sctp_assoc_t assoc_id; 6788 * uint32_t assoc_value; 6789 * }; 6790 * 6791 * assoc_id: This parameter is ignored for one-to-one style sockets. 6792 * For one-to-many style sockets this parameter indicates which 6793 * association the user is performing an action upon. Note that if 6794 * this field's value is zero then the endpoints default value is 6795 * changed (effecting future associations only). 6796 * assoc_value: This parameter specifies the maximum size in bytes. 6797 */ 6798 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6799 char __user *optval, int __user *optlen) 6800 { 6801 struct sctp_assoc_value params; 6802 struct sctp_association *asoc; 6803 6804 if (len == sizeof(int)) { 6805 pr_warn_ratelimited(DEPRECATED 6806 "%s (pid %d) " 6807 "Use of int in maxseg socket option.\n" 6808 "Use struct sctp_assoc_value instead\n", 6809 current->comm, task_pid_nr(current)); 6810 params.assoc_id = SCTP_FUTURE_ASSOC; 6811 } else if (len >= sizeof(struct sctp_assoc_value)) { 6812 len = sizeof(struct sctp_assoc_value); 6813 if (copy_from_user(¶ms, optval, len)) 6814 return -EFAULT; 6815 } else 6816 return -EINVAL; 6817 6818 asoc = sctp_id2assoc(sk, params.assoc_id); 6819 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6820 sctp_style(sk, UDP)) 6821 return -EINVAL; 6822 6823 if (asoc) 6824 params.assoc_value = asoc->frag_point; 6825 else 6826 params.assoc_value = sctp_sk(sk)->user_frag; 6827 6828 if (put_user(len, optlen)) 6829 return -EFAULT; 6830 if (len == sizeof(int)) { 6831 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6832 return -EFAULT; 6833 } else { 6834 if (copy_to_user(optval, ¶ms, len)) 6835 return -EFAULT; 6836 } 6837 6838 return 0; 6839 } 6840 6841 /* 6842 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6843 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6844 */ 6845 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6846 char __user *optval, int __user *optlen) 6847 { 6848 int val; 6849 6850 if (len < sizeof(int)) 6851 return -EINVAL; 6852 6853 len = sizeof(int); 6854 6855 val = sctp_sk(sk)->frag_interleave; 6856 if (put_user(len, optlen)) 6857 return -EFAULT; 6858 if (copy_to_user(optval, &val, len)) 6859 return -EFAULT; 6860 6861 return 0; 6862 } 6863 6864 /* 6865 * 7.1.25. Set or Get the sctp partial delivery point 6866 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6867 */ 6868 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6869 char __user *optval, 6870 int __user *optlen) 6871 { 6872 u32 val; 6873 6874 if (len < sizeof(u32)) 6875 return -EINVAL; 6876 6877 len = sizeof(u32); 6878 6879 val = sctp_sk(sk)->pd_point; 6880 if (put_user(len, optlen)) 6881 return -EFAULT; 6882 if (copy_to_user(optval, &val, len)) 6883 return -EFAULT; 6884 6885 return 0; 6886 } 6887 6888 /* 6889 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6890 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6891 */ 6892 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6893 char __user *optval, 6894 int __user *optlen) 6895 { 6896 struct sctp_assoc_value params; 6897 struct sctp_association *asoc; 6898 6899 if (len == sizeof(int)) { 6900 pr_warn_ratelimited(DEPRECATED 6901 "%s (pid %d) " 6902 "Use of int in max_burst socket option.\n" 6903 "Use struct sctp_assoc_value instead\n", 6904 current->comm, task_pid_nr(current)); 6905 params.assoc_id = SCTP_FUTURE_ASSOC; 6906 } else if (len >= sizeof(struct sctp_assoc_value)) { 6907 len = sizeof(struct sctp_assoc_value); 6908 if (copy_from_user(¶ms, optval, len)) 6909 return -EFAULT; 6910 } else 6911 return -EINVAL; 6912 6913 asoc = sctp_id2assoc(sk, params.assoc_id); 6914 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6915 sctp_style(sk, UDP)) 6916 return -EINVAL; 6917 6918 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst; 6919 6920 if (len == sizeof(int)) { 6921 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6922 return -EFAULT; 6923 } else { 6924 if (copy_to_user(optval, ¶ms, len)) 6925 return -EFAULT; 6926 } 6927 6928 return 0; 6929 6930 } 6931 6932 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6933 char __user *optval, int __user *optlen) 6934 { 6935 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6936 struct sctp_hmacalgo __user *p = (void __user *)optval; 6937 struct sctp_hmac_algo_param *hmacs; 6938 __u16 data_len = 0; 6939 u32 num_idents; 6940 int i; 6941 6942 if (!ep->auth_enable) 6943 return -EACCES; 6944 6945 hmacs = ep->auth_hmacs_list; 6946 data_len = ntohs(hmacs->param_hdr.length) - 6947 sizeof(struct sctp_paramhdr); 6948 6949 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6950 return -EINVAL; 6951 6952 len = sizeof(struct sctp_hmacalgo) + data_len; 6953 num_idents = data_len / sizeof(u16); 6954 6955 if (put_user(len, optlen)) 6956 return -EFAULT; 6957 if (put_user(num_idents, &p->shmac_num_idents)) 6958 return -EFAULT; 6959 for (i = 0; i < num_idents; i++) { 6960 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6961 6962 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6963 return -EFAULT; 6964 } 6965 return 0; 6966 } 6967 6968 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6969 char __user *optval, int __user *optlen) 6970 { 6971 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6972 struct sctp_authkeyid val; 6973 struct sctp_association *asoc; 6974 6975 if (len < sizeof(struct sctp_authkeyid)) 6976 return -EINVAL; 6977 6978 len = sizeof(struct sctp_authkeyid); 6979 if (copy_from_user(&val, optval, len)) 6980 return -EFAULT; 6981 6982 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6983 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6984 return -EINVAL; 6985 6986 if (asoc) { 6987 if (!asoc->peer.auth_capable) 6988 return -EACCES; 6989 val.scact_keynumber = asoc->active_key_id; 6990 } else { 6991 if (!ep->auth_enable) 6992 return -EACCES; 6993 val.scact_keynumber = ep->active_key_id; 6994 } 6995 6996 if (put_user(len, optlen)) 6997 return -EFAULT; 6998 if (copy_to_user(optval, &val, len)) 6999 return -EFAULT; 7000 7001 return 0; 7002 } 7003 7004 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 7005 char __user *optval, int __user *optlen) 7006 { 7007 struct sctp_authchunks __user *p = (void __user *)optval; 7008 struct sctp_authchunks val; 7009 struct sctp_association *asoc; 7010 struct sctp_chunks_param *ch; 7011 u32 num_chunks = 0; 7012 char __user *to; 7013 7014 if (len < sizeof(struct sctp_authchunks)) 7015 return -EINVAL; 7016 7017 if (copy_from_user(&val, optval, sizeof(val))) 7018 return -EFAULT; 7019 7020 to = p->gauth_chunks; 7021 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 7022 if (!asoc) 7023 return -EINVAL; 7024 7025 if (!asoc->peer.auth_capable) 7026 return -EACCES; 7027 7028 ch = asoc->peer.peer_chunks; 7029 if (!ch) 7030 goto num; 7031 7032 /* See if the user provided enough room for all the data */ 7033 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7034 if (len < num_chunks) 7035 return -EINVAL; 7036 7037 if (copy_to_user(to, ch->chunks, num_chunks)) 7038 return -EFAULT; 7039 num: 7040 len = sizeof(struct sctp_authchunks) + num_chunks; 7041 if (put_user(len, optlen)) 7042 return -EFAULT; 7043 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7044 return -EFAULT; 7045 return 0; 7046 } 7047 7048 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 7049 char __user *optval, int __user *optlen) 7050 { 7051 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7052 struct sctp_authchunks __user *p = (void __user *)optval; 7053 struct sctp_authchunks val; 7054 struct sctp_association *asoc; 7055 struct sctp_chunks_param *ch; 7056 u32 num_chunks = 0; 7057 char __user *to; 7058 7059 if (len < sizeof(struct sctp_authchunks)) 7060 return -EINVAL; 7061 7062 if (copy_from_user(&val, optval, sizeof(val))) 7063 return -EFAULT; 7064 7065 to = p->gauth_chunks; 7066 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 7067 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC && 7068 sctp_style(sk, UDP)) 7069 return -EINVAL; 7070 7071 if (asoc) { 7072 if (!asoc->peer.auth_capable) 7073 return -EACCES; 7074 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 7075 } else { 7076 if (!ep->auth_enable) 7077 return -EACCES; 7078 ch = ep->auth_chunk_list; 7079 } 7080 if (!ch) 7081 goto num; 7082 7083 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7084 if (len < sizeof(struct sctp_authchunks) + num_chunks) 7085 return -EINVAL; 7086 7087 if (copy_to_user(to, ch->chunks, num_chunks)) 7088 return -EFAULT; 7089 num: 7090 len = sizeof(struct sctp_authchunks) + num_chunks; 7091 if (put_user(len, optlen)) 7092 return -EFAULT; 7093 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7094 return -EFAULT; 7095 7096 return 0; 7097 } 7098 7099 /* 7100 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 7101 * This option gets the current number of associations that are attached 7102 * to a one-to-many style socket. The option value is an uint32_t. 7103 */ 7104 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 7105 char __user *optval, int __user *optlen) 7106 { 7107 struct sctp_sock *sp = sctp_sk(sk); 7108 struct sctp_association *asoc; 7109 u32 val = 0; 7110 7111 if (sctp_style(sk, TCP)) 7112 return -EOPNOTSUPP; 7113 7114 if (len < sizeof(u32)) 7115 return -EINVAL; 7116 7117 len = sizeof(u32); 7118 7119 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7120 val++; 7121 } 7122 7123 if (put_user(len, optlen)) 7124 return -EFAULT; 7125 if (copy_to_user(optval, &val, len)) 7126 return -EFAULT; 7127 7128 return 0; 7129 } 7130 7131 /* 7132 * 8.1.23 SCTP_AUTO_ASCONF 7133 * See the corresponding setsockopt entry as description 7134 */ 7135 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 7136 char __user *optval, int __user *optlen) 7137 { 7138 int val = 0; 7139 7140 if (len < sizeof(int)) 7141 return -EINVAL; 7142 7143 len = sizeof(int); 7144 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 7145 val = 1; 7146 if (put_user(len, optlen)) 7147 return -EFAULT; 7148 if (copy_to_user(optval, &val, len)) 7149 return -EFAULT; 7150 return 0; 7151 } 7152 7153 /* 7154 * 8.2.6. Get the Current Identifiers of Associations 7155 * (SCTP_GET_ASSOC_ID_LIST) 7156 * 7157 * This option gets the current list of SCTP association identifiers of 7158 * the SCTP associations handled by a one-to-many style socket. 7159 */ 7160 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 7161 char __user *optval, int __user *optlen) 7162 { 7163 struct sctp_sock *sp = sctp_sk(sk); 7164 struct sctp_association *asoc; 7165 struct sctp_assoc_ids *ids; 7166 size_t ids_size; 7167 u32 num = 0; 7168 7169 if (sctp_style(sk, TCP)) 7170 return -EOPNOTSUPP; 7171 7172 if (len < sizeof(struct sctp_assoc_ids)) 7173 return -EINVAL; 7174 7175 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7176 num++; 7177 } 7178 7179 ids_size = struct_size(ids, gaids_assoc_id, num); 7180 if (len < ids_size) 7181 return -EINVAL; 7182 7183 len = ids_size; 7184 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 7185 if (unlikely(!ids)) 7186 return -ENOMEM; 7187 7188 ids->gaids_number_of_ids = num; 7189 num = 0; 7190 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7191 ids->gaids_assoc_id[num++] = asoc->assoc_id; 7192 } 7193 7194 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 7195 kfree(ids); 7196 return -EFAULT; 7197 } 7198 7199 kfree(ids); 7200 return 0; 7201 } 7202 7203 /* 7204 * SCTP_PEER_ADDR_THLDS 7205 * 7206 * This option allows us to fetch the partially failed threshold for one or all 7207 * transports in an association. See Section 6.1 of: 7208 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 7209 */ 7210 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 7211 char __user *optval, int len, 7212 int __user *optlen, bool v2) 7213 { 7214 struct sctp_paddrthlds_v2 val; 7215 struct sctp_transport *trans; 7216 struct sctp_association *asoc; 7217 int min; 7218 7219 min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds); 7220 if (len < min) 7221 return -EINVAL; 7222 len = min; 7223 if (copy_from_user(&val, optval, len)) 7224 return -EFAULT; 7225 7226 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 7227 trans = sctp_addr_id2transport(sk, &val.spt_address, 7228 val.spt_assoc_id); 7229 if (!trans) 7230 return -ENOENT; 7231 7232 val.spt_pathmaxrxt = trans->pathmaxrxt; 7233 val.spt_pathpfthld = trans->pf_retrans; 7234 val.spt_pathcpthld = trans->ps_retrans; 7235 7236 goto out; 7237 } 7238 7239 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 7240 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 7241 sctp_style(sk, UDP)) 7242 return -EINVAL; 7243 7244 if (asoc) { 7245 val.spt_pathpfthld = asoc->pf_retrans; 7246 val.spt_pathmaxrxt = asoc->pathmaxrxt; 7247 val.spt_pathcpthld = asoc->ps_retrans; 7248 } else { 7249 struct sctp_sock *sp = sctp_sk(sk); 7250 7251 val.spt_pathpfthld = sp->pf_retrans; 7252 val.spt_pathmaxrxt = sp->pathmaxrxt; 7253 val.spt_pathcpthld = sp->ps_retrans; 7254 } 7255 7256 out: 7257 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 7258 return -EFAULT; 7259 7260 return 0; 7261 } 7262 7263 /* 7264 * SCTP_GET_ASSOC_STATS 7265 * 7266 * This option retrieves local per endpoint statistics. It is modeled 7267 * after OpenSolaris' implementation 7268 */ 7269 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 7270 char __user *optval, 7271 int __user *optlen) 7272 { 7273 struct sctp_assoc_stats sas; 7274 struct sctp_association *asoc = NULL; 7275 7276 /* User must provide at least the assoc id */ 7277 if (len < sizeof(sctp_assoc_t)) 7278 return -EINVAL; 7279 7280 /* Allow the struct to grow and fill in as much as possible */ 7281 len = min_t(size_t, len, sizeof(sas)); 7282 7283 if (copy_from_user(&sas, optval, len)) 7284 return -EFAULT; 7285 7286 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 7287 if (!asoc) 7288 return -EINVAL; 7289 7290 sas.sas_rtxchunks = asoc->stats.rtxchunks; 7291 sas.sas_gapcnt = asoc->stats.gapcnt; 7292 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 7293 sas.sas_osacks = asoc->stats.osacks; 7294 sas.sas_isacks = asoc->stats.isacks; 7295 sas.sas_octrlchunks = asoc->stats.octrlchunks; 7296 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 7297 sas.sas_oodchunks = asoc->stats.oodchunks; 7298 sas.sas_iodchunks = asoc->stats.iodchunks; 7299 sas.sas_ouodchunks = asoc->stats.ouodchunks; 7300 sas.sas_iuodchunks = asoc->stats.iuodchunks; 7301 sas.sas_idupchunks = asoc->stats.idupchunks; 7302 sas.sas_opackets = asoc->stats.opackets; 7303 sas.sas_ipackets = asoc->stats.ipackets; 7304 7305 /* New high max rto observed, will return 0 if not a single 7306 * RTO update took place. obs_rto_ipaddr will be bogus 7307 * in such a case 7308 */ 7309 sas.sas_maxrto = asoc->stats.max_obs_rto; 7310 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 7311 sizeof(struct sockaddr_storage)); 7312 7313 /* Mark beginning of a new observation period */ 7314 asoc->stats.max_obs_rto = asoc->rto_min; 7315 7316 if (put_user(len, optlen)) 7317 return -EFAULT; 7318 7319 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 7320 7321 if (copy_to_user(optval, &sas, len)) 7322 return -EFAULT; 7323 7324 return 0; 7325 } 7326 7327 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 7328 char __user *optval, 7329 int __user *optlen) 7330 { 7331 int val = 0; 7332 7333 if (len < sizeof(int)) 7334 return -EINVAL; 7335 7336 len = sizeof(int); 7337 if (sctp_sk(sk)->recvrcvinfo) 7338 val = 1; 7339 if (put_user(len, optlen)) 7340 return -EFAULT; 7341 if (copy_to_user(optval, &val, len)) 7342 return -EFAULT; 7343 7344 return 0; 7345 } 7346 7347 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 7348 char __user *optval, 7349 int __user *optlen) 7350 { 7351 int val = 0; 7352 7353 if (len < sizeof(int)) 7354 return -EINVAL; 7355 7356 len = sizeof(int); 7357 if (sctp_sk(sk)->recvnxtinfo) 7358 val = 1; 7359 if (put_user(len, optlen)) 7360 return -EFAULT; 7361 if (copy_to_user(optval, &val, len)) 7362 return -EFAULT; 7363 7364 return 0; 7365 } 7366 7367 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 7368 char __user *optval, 7369 int __user *optlen) 7370 { 7371 struct sctp_assoc_value params; 7372 struct sctp_association *asoc; 7373 int retval = -EFAULT; 7374 7375 if (len < sizeof(params)) { 7376 retval = -EINVAL; 7377 goto out; 7378 } 7379 7380 len = sizeof(params); 7381 if (copy_from_user(¶ms, optval, len)) 7382 goto out; 7383 7384 asoc = sctp_id2assoc(sk, params.assoc_id); 7385 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7386 sctp_style(sk, UDP)) { 7387 retval = -EINVAL; 7388 goto out; 7389 } 7390 7391 params.assoc_value = asoc ? asoc->peer.prsctp_capable 7392 : sctp_sk(sk)->ep->prsctp_enable; 7393 7394 if (put_user(len, optlen)) 7395 goto out; 7396 7397 if (copy_to_user(optval, ¶ms, len)) 7398 goto out; 7399 7400 retval = 0; 7401 7402 out: 7403 return retval; 7404 } 7405 7406 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7407 char __user *optval, 7408 int __user *optlen) 7409 { 7410 struct sctp_default_prinfo info; 7411 struct sctp_association *asoc; 7412 int retval = -EFAULT; 7413 7414 if (len < sizeof(info)) { 7415 retval = -EINVAL; 7416 goto out; 7417 } 7418 7419 len = sizeof(info); 7420 if (copy_from_user(&info, optval, len)) 7421 goto out; 7422 7423 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7424 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC && 7425 sctp_style(sk, UDP)) { 7426 retval = -EINVAL; 7427 goto out; 7428 } 7429 7430 if (asoc) { 7431 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7432 info.pr_value = asoc->default_timetolive; 7433 } else { 7434 struct sctp_sock *sp = sctp_sk(sk); 7435 7436 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7437 info.pr_value = sp->default_timetolive; 7438 } 7439 7440 if (put_user(len, optlen)) 7441 goto out; 7442 7443 if (copy_to_user(optval, &info, len)) 7444 goto out; 7445 7446 retval = 0; 7447 7448 out: 7449 return retval; 7450 } 7451 7452 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7453 char __user *optval, 7454 int __user *optlen) 7455 { 7456 struct sctp_prstatus params; 7457 struct sctp_association *asoc; 7458 int policy; 7459 int retval = -EINVAL; 7460 7461 if (len < sizeof(params)) 7462 goto out; 7463 7464 len = sizeof(params); 7465 if (copy_from_user(¶ms, optval, len)) { 7466 retval = -EFAULT; 7467 goto out; 7468 } 7469 7470 policy = params.sprstat_policy; 7471 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7472 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7473 goto out; 7474 7475 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7476 if (!asoc) 7477 goto out; 7478 7479 if (policy == SCTP_PR_SCTP_ALL) { 7480 params.sprstat_abandoned_unsent = 0; 7481 params.sprstat_abandoned_sent = 0; 7482 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7483 params.sprstat_abandoned_unsent += 7484 asoc->abandoned_unsent[policy]; 7485 params.sprstat_abandoned_sent += 7486 asoc->abandoned_sent[policy]; 7487 } 7488 } else { 7489 params.sprstat_abandoned_unsent = 7490 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7491 params.sprstat_abandoned_sent = 7492 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7493 } 7494 7495 if (put_user(len, optlen)) { 7496 retval = -EFAULT; 7497 goto out; 7498 } 7499 7500 if (copy_to_user(optval, ¶ms, len)) { 7501 retval = -EFAULT; 7502 goto out; 7503 } 7504 7505 retval = 0; 7506 7507 out: 7508 return retval; 7509 } 7510 7511 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7512 char __user *optval, 7513 int __user *optlen) 7514 { 7515 struct sctp_stream_out_ext *streamoute; 7516 struct sctp_association *asoc; 7517 struct sctp_prstatus params; 7518 int retval = -EINVAL; 7519 int policy; 7520 7521 if (len < sizeof(params)) 7522 goto out; 7523 7524 len = sizeof(params); 7525 if (copy_from_user(¶ms, optval, len)) { 7526 retval = -EFAULT; 7527 goto out; 7528 } 7529 7530 policy = params.sprstat_policy; 7531 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7532 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7533 goto out; 7534 7535 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7536 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7537 goto out; 7538 7539 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; 7540 if (!streamoute) { 7541 /* Not allocated yet, means all stats are 0 */ 7542 params.sprstat_abandoned_unsent = 0; 7543 params.sprstat_abandoned_sent = 0; 7544 retval = 0; 7545 goto out; 7546 } 7547 7548 if (policy == SCTP_PR_SCTP_ALL) { 7549 params.sprstat_abandoned_unsent = 0; 7550 params.sprstat_abandoned_sent = 0; 7551 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7552 params.sprstat_abandoned_unsent += 7553 streamoute->abandoned_unsent[policy]; 7554 params.sprstat_abandoned_sent += 7555 streamoute->abandoned_sent[policy]; 7556 } 7557 } else { 7558 params.sprstat_abandoned_unsent = 7559 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7560 params.sprstat_abandoned_sent = 7561 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7562 } 7563 7564 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7565 retval = -EFAULT; 7566 goto out; 7567 } 7568 7569 retval = 0; 7570 7571 out: 7572 return retval; 7573 } 7574 7575 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7576 char __user *optval, 7577 int __user *optlen) 7578 { 7579 struct sctp_assoc_value params; 7580 struct sctp_association *asoc; 7581 int retval = -EFAULT; 7582 7583 if (len < sizeof(params)) { 7584 retval = -EINVAL; 7585 goto out; 7586 } 7587 7588 len = sizeof(params); 7589 if (copy_from_user(¶ms, optval, len)) 7590 goto out; 7591 7592 asoc = sctp_id2assoc(sk, params.assoc_id); 7593 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7594 sctp_style(sk, UDP)) { 7595 retval = -EINVAL; 7596 goto out; 7597 } 7598 7599 params.assoc_value = asoc ? asoc->peer.reconf_capable 7600 : sctp_sk(sk)->ep->reconf_enable; 7601 7602 if (put_user(len, optlen)) 7603 goto out; 7604 7605 if (copy_to_user(optval, ¶ms, len)) 7606 goto out; 7607 7608 retval = 0; 7609 7610 out: 7611 return retval; 7612 } 7613 7614 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7615 char __user *optval, 7616 int __user *optlen) 7617 { 7618 struct sctp_assoc_value params; 7619 struct sctp_association *asoc; 7620 int retval = -EFAULT; 7621 7622 if (len < sizeof(params)) { 7623 retval = -EINVAL; 7624 goto out; 7625 } 7626 7627 len = sizeof(params); 7628 if (copy_from_user(¶ms, optval, len)) 7629 goto out; 7630 7631 asoc = sctp_id2assoc(sk, params.assoc_id); 7632 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7633 sctp_style(sk, UDP)) { 7634 retval = -EINVAL; 7635 goto out; 7636 } 7637 7638 params.assoc_value = asoc ? asoc->strreset_enable 7639 : sctp_sk(sk)->ep->strreset_enable; 7640 7641 if (put_user(len, optlen)) 7642 goto out; 7643 7644 if (copy_to_user(optval, ¶ms, len)) 7645 goto out; 7646 7647 retval = 0; 7648 7649 out: 7650 return retval; 7651 } 7652 7653 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7654 char __user *optval, 7655 int __user *optlen) 7656 { 7657 struct sctp_assoc_value params; 7658 struct sctp_association *asoc; 7659 int retval = -EFAULT; 7660 7661 if (len < sizeof(params)) { 7662 retval = -EINVAL; 7663 goto out; 7664 } 7665 7666 len = sizeof(params); 7667 if (copy_from_user(¶ms, optval, len)) 7668 goto out; 7669 7670 asoc = sctp_id2assoc(sk, params.assoc_id); 7671 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7672 sctp_style(sk, UDP)) { 7673 retval = -EINVAL; 7674 goto out; 7675 } 7676 7677 params.assoc_value = asoc ? sctp_sched_get_sched(asoc) 7678 : sctp_sk(sk)->default_ss; 7679 7680 if (put_user(len, optlen)) 7681 goto out; 7682 7683 if (copy_to_user(optval, ¶ms, len)) 7684 goto out; 7685 7686 retval = 0; 7687 7688 out: 7689 return retval; 7690 } 7691 7692 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7693 char __user *optval, 7694 int __user *optlen) 7695 { 7696 struct sctp_stream_value params; 7697 struct sctp_association *asoc; 7698 int retval = -EFAULT; 7699 7700 if (len < sizeof(params)) { 7701 retval = -EINVAL; 7702 goto out; 7703 } 7704 7705 len = sizeof(params); 7706 if (copy_from_user(¶ms, optval, len)) 7707 goto out; 7708 7709 asoc = sctp_id2assoc(sk, params.assoc_id); 7710 if (!asoc) { 7711 retval = -EINVAL; 7712 goto out; 7713 } 7714 7715 retval = sctp_sched_get_value(asoc, params.stream_id, 7716 ¶ms.stream_value); 7717 if (retval) 7718 goto out; 7719 7720 if (put_user(len, optlen)) { 7721 retval = -EFAULT; 7722 goto out; 7723 } 7724 7725 if (copy_to_user(optval, ¶ms, len)) { 7726 retval = -EFAULT; 7727 goto out; 7728 } 7729 7730 out: 7731 return retval; 7732 } 7733 7734 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7735 char __user *optval, 7736 int __user *optlen) 7737 { 7738 struct sctp_assoc_value params; 7739 struct sctp_association *asoc; 7740 int retval = -EFAULT; 7741 7742 if (len < sizeof(params)) { 7743 retval = -EINVAL; 7744 goto out; 7745 } 7746 7747 len = sizeof(params); 7748 if (copy_from_user(¶ms, optval, len)) 7749 goto out; 7750 7751 asoc = sctp_id2assoc(sk, params.assoc_id); 7752 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7753 sctp_style(sk, UDP)) { 7754 retval = -EINVAL; 7755 goto out; 7756 } 7757 7758 params.assoc_value = asoc ? asoc->peer.intl_capable 7759 : sctp_sk(sk)->ep->intl_enable; 7760 7761 if (put_user(len, optlen)) 7762 goto out; 7763 7764 if (copy_to_user(optval, ¶ms, len)) 7765 goto out; 7766 7767 retval = 0; 7768 7769 out: 7770 return retval; 7771 } 7772 7773 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7774 char __user *optval, 7775 int __user *optlen) 7776 { 7777 int val; 7778 7779 if (len < sizeof(int)) 7780 return -EINVAL; 7781 7782 len = sizeof(int); 7783 val = sctp_sk(sk)->reuse; 7784 if (put_user(len, optlen)) 7785 return -EFAULT; 7786 7787 if (copy_to_user(optval, &val, len)) 7788 return -EFAULT; 7789 7790 return 0; 7791 } 7792 7793 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval, 7794 int __user *optlen) 7795 { 7796 struct sctp_association *asoc; 7797 struct sctp_event param; 7798 __u16 subscribe; 7799 7800 if (len < sizeof(param)) 7801 return -EINVAL; 7802 7803 len = sizeof(param); 7804 if (copy_from_user(¶m, optval, len)) 7805 return -EFAULT; 7806 7807 if (param.se_type < SCTP_SN_TYPE_BASE || 7808 param.se_type > SCTP_SN_TYPE_MAX) 7809 return -EINVAL; 7810 7811 asoc = sctp_id2assoc(sk, param.se_assoc_id); 7812 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC && 7813 sctp_style(sk, UDP)) 7814 return -EINVAL; 7815 7816 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe; 7817 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type); 7818 7819 if (put_user(len, optlen)) 7820 return -EFAULT; 7821 7822 if (copy_to_user(optval, ¶m, len)) 7823 return -EFAULT; 7824 7825 return 0; 7826 } 7827 7828 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len, 7829 char __user *optval, 7830 int __user *optlen) 7831 { 7832 struct sctp_assoc_value params; 7833 struct sctp_association *asoc; 7834 int retval = -EFAULT; 7835 7836 if (len < sizeof(params)) { 7837 retval = -EINVAL; 7838 goto out; 7839 } 7840 7841 len = sizeof(params); 7842 if (copy_from_user(¶ms, optval, len)) 7843 goto out; 7844 7845 asoc = sctp_id2assoc(sk, params.assoc_id); 7846 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7847 sctp_style(sk, UDP)) { 7848 retval = -EINVAL; 7849 goto out; 7850 } 7851 7852 params.assoc_value = asoc ? asoc->peer.asconf_capable 7853 : sctp_sk(sk)->ep->asconf_enable; 7854 7855 if (put_user(len, optlen)) 7856 goto out; 7857 7858 if (copy_to_user(optval, ¶ms, len)) 7859 goto out; 7860 7861 retval = 0; 7862 7863 out: 7864 return retval; 7865 } 7866 7867 static int sctp_getsockopt_auth_supported(struct sock *sk, int len, 7868 char __user *optval, 7869 int __user *optlen) 7870 { 7871 struct sctp_assoc_value params; 7872 struct sctp_association *asoc; 7873 int retval = -EFAULT; 7874 7875 if (len < sizeof(params)) { 7876 retval = -EINVAL; 7877 goto out; 7878 } 7879 7880 len = sizeof(params); 7881 if (copy_from_user(¶ms, optval, len)) 7882 goto out; 7883 7884 asoc = sctp_id2assoc(sk, params.assoc_id); 7885 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7886 sctp_style(sk, UDP)) { 7887 retval = -EINVAL; 7888 goto out; 7889 } 7890 7891 params.assoc_value = asoc ? asoc->peer.auth_capable 7892 : sctp_sk(sk)->ep->auth_enable; 7893 7894 if (put_user(len, optlen)) 7895 goto out; 7896 7897 if (copy_to_user(optval, ¶ms, len)) 7898 goto out; 7899 7900 retval = 0; 7901 7902 out: 7903 return retval; 7904 } 7905 7906 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len, 7907 char __user *optval, 7908 int __user *optlen) 7909 { 7910 struct sctp_assoc_value params; 7911 struct sctp_association *asoc; 7912 int retval = -EFAULT; 7913 7914 if (len < sizeof(params)) { 7915 retval = -EINVAL; 7916 goto out; 7917 } 7918 7919 len = sizeof(params); 7920 if (copy_from_user(¶ms, optval, len)) 7921 goto out; 7922 7923 asoc = sctp_id2assoc(sk, params.assoc_id); 7924 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7925 sctp_style(sk, UDP)) { 7926 retval = -EINVAL; 7927 goto out; 7928 } 7929 7930 params.assoc_value = asoc ? asoc->peer.ecn_capable 7931 : sctp_sk(sk)->ep->ecn_enable; 7932 7933 if (put_user(len, optlen)) 7934 goto out; 7935 7936 if (copy_to_user(optval, ¶ms, len)) 7937 goto out; 7938 7939 retval = 0; 7940 7941 out: 7942 return retval; 7943 } 7944 7945 static int sctp_getsockopt_pf_expose(struct sock *sk, int len, 7946 char __user *optval, 7947 int __user *optlen) 7948 { 7949 struct sctp_assoc_value params; 7950 struct sctp_association *asoc; 7951 int retval = -EFAULT; 7952 7953 if (len < sizeof(params)) { 7954 retval = -EINVAL; 7955 goto out; 7956 } 7957 7958 len = sizeof(params); 7959 if (copy_from_user(¶ms, optval, len)) 7960 goto out; 7961 7962 asoc = sctp_id2assoc(sk, params.assoc_id); 7963 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7964 sctp_style(sk, UDP)) { 7965 retval = -EINVAL; 7966 goto out; 7967 } 7968 7969 params.assoc_value = asoc ? asoc->pf_expose 7970 : sctp_sk(sk)->pf_expose; 7971 7972 if (put_user(len, optlen)) 7973 goto out; 7974 7975 if (copy_to_user(optval, ¶ms, len)) 7976 goto out; 7977 7978 retval = 0; 7979 7980 out: 7981 return retval; 7982 } 7983 7984 static int sctp_getsockopt_encap_port(struct sock *sk, int len, 7985 char __user *optval, int __user *optlen) 7986 { 7987 struct sctp_association *asoc; 7988 struct sctp_udpencaps encap; 7989 struct sctp_transport *t; 7990 __be16 encap_port; 7991 7992 if (len < sizeof(encap)) 7993 return -EINVAL; 7994 7995 len = sizeof(encap); 7996 if (copy_from_user(&encap, optval, len)) 7997 return -EFAULT; 7998 7999 /* If an address other than INADDR_ANY is specified, and 8000 * no transport is found, then the request is invalid. 8001 */ 8002 if (!sctp_is_any(sk, (union sctp_addr *)&encap.sue_address)) { 8003 t = sctp_addr_id2transport(sk, &encap.sue_address, 8004 encap.sue_assoc_id); 8005 if (!t) { 8006 pr_debug("%s: failed no transport\n", __func__); 8007 return -EINVAL; 8008 } 8009 8010 encap_port = t->encap_port; 8011 goto out; 8012 } 8013 8014 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 8015 * socket is a one to many style socket, and an association 8016 * was not found, then the id was invalid. 8017 */ 8018 asoc = sctp_id2assoc(sk, encap.sue_assoc_id); 8019 if (!asoc && encap.sue_assoc_id != SCTP_FUTURE_ASSOC && 8020 sctp_style(sk, UDP)) { 8021 pr_debug("%s: failed no association\n", __func__); 8022 return -EINVAL; 8023 } 8024 8025 if (asoc) { 8026 encap_port = asoc->encap_port; 8027 goto out; 8028 } 8029 8030 encap_port = sctp_sk(sk)->encap_port; 8031 8032 out: 8033 encap.sue_port = (__force uint16_t)encap_port; 8034 if (copy_to_user(optval, &encap, len)) 8035 return -EFAULT; 8036 8037 if (put_user(len, optlen)) 8038 return -EFAULT; 8039 8040 return 0; 8041 } 8042 8043 static int sctp_getsockopt_probe_interval(struct sock *sk, int len, 8044 char __user *optval, 8045 int __user *optlen) 8046 { 8047 struct sctp_probeinterval params; 8048 struct sctp_association *asoc; 8049 struct sctp_transport *t; 8050 __u32 probe_interval; 8051 8052 if (len < sizeof(params)) 8053 return -EINVAL; 8054 8055 len = sizeof(params); 8056 if (copy_from_user(¶ms, optval, len)) 8057 return -EFAULT; 8058 8059 /* If an address other than INADDR_ANY is specified, and 8060 * no transport is found, then the request is invalid. 8061 */ 8062 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spi_address)) { 8063 t = sctp_addr_id2transport(sk, ¶ms.spi_address, 8064 params.spi_assoc_id); 8065 if (!t) { 8066 pr_debug("%s: failed no transport\n", __func__); 8067 return -EINVAL; 8068 } 8069 8070 probe_interval = jiffies_to_msecs(t->probe_interval); 8071 goto out; 8072 } 8073 8074 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 8075 * socket is a one to many style socket, and an association 8076 * was not found, then the id was invalid. 8077 */ 8078 asoc = sctp_id2assoc(sk, params.spi_assoc_id); 8079 if (!asoc && params.spi_assoc_id != SCTP_FUTURE_ASSOC && 8080 sctp_style(sk, UDP)) { 8081 pr_debug("%s: failed no association\n", __func__); 8082 return -EINVAL; 8083 } 8084 8085 if (asoc) { 8086 probe_interval = jiffies_to_msecs(asoc->probe_interval); 8087 goto out; 8088 } 8089 8090 probe_interval = sctp_sk(sk)->probe_interval; 8091 8092 out: 8093 params.spi_interval = probe_interval; 8094 if (copy_to_user(optval, ¶ms, len)) 8095 return -EFAULT; 8096 8097 if (put_user(len, optlen)) 8098 return -EFAULT; 8099 8100 return 0; 8101 } 8102 8103 static int sctp_getsockopt(struct sock *sk, int level, int optname, 8104 char __user *optval, int __user *optlen) 8105 { 8106 int retval = 0; 8107 int len; 8108 8109 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 8110 8111 /* I can hardly begin to describe how wrong this is. This is 8112 * so broken as to be worse than useless. The API draft 8113 * REALLY is NOT helpful here... I am not convinced that the 8114 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 8115 * are at all well-founded. 8116 */ 8117 if (level != SOL_SCTP) { 8118 struct sctp_af *af = sctp_sk(sk)->pf->af; 8119 8120 retval = af->getsockopt(sk, level, optname, optval, optlen); 8121 return retval; 8122 } 8123 8124 if (get_user(len, optlen)) 8125 return -EFAULT; 8126 8127 if (len < 0) 8128 return -EINVAL; 8129 8130 lock_sock(sk); 8131 8132 switch (optname) { 8133 case SCTP_STATUS: 8134 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 8135 break; 8136 case SCTP_DISABLE_FRAGMENTS: 8137 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 8138 optlen); 8139 break; 8140 case SCTP_EVENTS: 8141 retval = sctp_getsockopt_events(sk, len, optval, optlen); 8142 break; 8143 case SCTP_AUTOCLOSE: 8144 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 8145 break; 8146 case SCTP_SOCKOPT_PEELOFF: 8147 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 8148 break; 8149 case SCTP_SOCKOPT_PEELOFF_FLAGS: 8150 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 8151 break; 8152 case SCTP_PEER_ADDR_PARAMS: 8153 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 8154 optlen); 8155 break; 8156 case SCTP_DELAYED_SACK: 8157 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 8158 optlen); 8159 break; 8160 case SCTP_INITMSG: 8161 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 8162 break; 8163 case SCTP_GET_PEER_ADDRS: 8164 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 8165 optlen); 8166 break; 8167 case SCTP_GET_LOCAL_ADDRS: 8168 retval = sctp_getsockopt_local_addrs(sk, len, optval, 8169 optlen); 8170 break; 8171 case SCTP_SOCKOPT_CONNECTX3: 8172 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 8173 break; 8174 case SCTP_DEFAULT_SEND_PARAM: 8175 retval = sctp_getsockopt_default_send_param(sk, len, 8176 optval, optlen); 8177 break; 8178 case SCTP_DEFAULT_SNDINFO: 8179 retval = sctp_getsockopt_default_sndinfo(sk, len, 8180 optval, optlen); 8181 break; 8182 case SCTP_PRIMARY_ADDR: 8183 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 8184 break; 8185 case SCTP_NODELAY: 8186 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 8187 break; 8188 case SCTP_RTOINFO: 8189 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 8190 break; 8191 case SCTP_ASSOCINFO: 8192 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 8193 break; 8194 case SCTP_I_WANT_MAPPED_V4_ADDR: 8195 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 8196 break; 8197 case SCTP_MAXSEG: 8198 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 8199 break; 8200 case SCTP_GET_PEER_ADDR_INFO: 8201 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 8202 optlen); 8203 break; 8204 case SCTP_ADAPTATION_LAYER: 8205 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 8206 optlen); 8207 break; 8208 case SCTP_CONTEXT: 8209 retval = sctp_getsockopt_context(sk, len, optval, optlen); 8210 break; 8211 case SCTP_FRAGMENT_INTERLEAVE: 8212 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 8213 optlen); 8214 break; 8215 case SCTP_PARTIAL_DELIVERY_POINT: 8216 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 8217 optlen); 8218 break; 8219 case SCTP_MAX_BURST: 8220 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 8221 break; 8222 case SCTP_AUTH_KEY: 8223 case SCTP_AUTH_CHUNK: 8224 case SCTP_AUTH_DELETE_KEY: 8225 case SCTP_AUTH_DEACTIVATE_KEY: 8226 retval = -EOPNOTSUPP; 8227 break; 8228 case SCTP_HMAC_IDENT: 8229 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 8230 break; 8231 case SCTP_AUTH_ACTIVE_KEY: 8232 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 8233 break; 8234 case SCTP_PEER_AUTH_CHUNKS: 8235 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 8236 optlen); 8237 break; 8238 case SCTP_LOCAL_AUTH_CHUNKS: 8239 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 8240 optlen); 8241 break; 8242 case SCTP_GET_ASSOC_NUMBER: 8243 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 8244 break; 8245 case SCTP_GET_ASSOC_ID_LIST: 8246 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 8247 break; 8248 case SCTP_AUTO_ASCONF: 8249 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 8250 break; 8251 case SCTP_PEER_ADDR_THLDS: 8252 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8253 optlen, false); 8254 break; 8255 case SCTP_PEER_ADDR_THLDS_V2: 8256 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8257 optlen, true); 8258 break; 8259 case SCTP_GET_ASSOC_STATS: 8260 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 8261 break; 8262 case SCTP_RECVRCVINFO: 8263 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 8264 break; 8265 case SCTP_RECVNXTINFO: 8266 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 8267 break; 8268 case SCTP_PR_SUPPORTED: 8269 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 8270 break; 8271 case SCTP_DEFAULT_PRINFO: 8272 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 8273 optlen); 8274 break; 8275 case SCTP_PR_ASSOC_STATUS: 8276 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 8277 optlen); 8278 break; 8279 case SCTP_PR_STREAM_STATUS: 8280 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 8281 optlen); 8282 break; 8283 case SCTP_RECONFIG_SUPPORTED: 8284 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 8285 optlen); 8286 break; 8287 case SCTP_ENABLE_STREAM_RESET: 8288 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 8289 optlen); 8290 break; 8291 case SCTP_STREAM_SCHEDULER: 8292 retval = sctp_getsockopt_scheduler(sk, len, optval, 8293 optlen); 8294 break; 8295 case SCTP_STREAM_SCHEDULER_VALUE: 8296 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 8297 optlen); 8298 break; 8299 case SCTP_INTERLEAVING_SUPPORTED: 8300 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 8301 optlen); 8302 break; 8303 case SCTP_REUSE_PORT: 8304 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 8305 break; 8306 case SCTP_EVENT: 8307 retval = sctp_getsockopt_event(sk, len, optval, optlen); 8308 break; 8309 case SCTP_ASCONF_SUPPORTED: 8310 retval = sctp_getsockopt_asconf_supported(sk, len, optval, 8311 optlen); 8312 break; 8313 case SCTP_AUTH_SUPPORTED: 8314 retval = sctp_getsockopt_auth_supported(sk, len, optval, 8315 optlen); 8316 break; 8317 case SCTP_ECN_SUPPORTED: 8318 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen); 8319 break; 8320 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 8321 retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen); 8322 break; 8323 case SCTP_REMOTE_UDP_ENCAPS_PORT: 8324 retval = sctp_getsockopt_encap_port(sk, len, optval, optlen); 8325 break; 8326 case SCTP_PLPMTUD_PROBE_INTERVAL: 8327 retval = sctp_getsockopt_probe_interval(sk, len, optval, optlen); 8328 break; 8329 default: 8330 retval = -ENOPROTOOPT; 8331 break; 8332 } 8333 8334 release_sock(sk); 8335 return retval; 8336 } 8337 8338 static bool sctp_bpf_bypass_getsockopt(int level, int optname) 8339 { 8340 if (level == SOL_SCTP) { 8341 switch (optname) { 8342 case SCTP_SOCKOPT_PEELOFF: 8343 case SCTP_SOCKOPT_PEELOFF_FLAGS: 8344 case SCTP_SOCKOPT_CONNECTX3: 8345 return true; 8346 default: 8347 return false; 8348 } 8349 } 8350 8351 return false; 8352 } 8353 8354 static int sctp_hash(struct sock *sk) 8355 { 8356 /* STUB */ 8357 return 0; 8358 } 8359 8360 static void sctp_unhash(struct sock *sk) 8361 { 8362 sock_rps_delete_flow(sk); 8363 } 8364 8365 /* Check if port is acceptable. Possibly find first available port. 8366 * 8367 * The port hash table (contained in the 'global' SCTP protocol storage 8368 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 8369 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 8370 * list (the list number is the port number hashed out, so as you 8371 * would expect from a hash function, all the ports in a given list have 8372 * such a number that hashes out to the same list number; you were 8373 * expecting that, right?); so each list has a set of ports, with a 8374 * link to the socket (struct sock) that uses it, the port number and 8375 * a fastreuse flag (FIXME: NPI ipg). 8376 */ 8377 static struct sctp_bind_bucket *sctp_bucket_create( 8378 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 8379 8380 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 8381 { 8382 struct sctp_sock *sp = sctp_sk(sk); 8383 bool reuse = (sk->sk_reuse || sp->reuse); 8384 struct sctp_bind_hashbucket *head; /* hash list */ 8385 struct net *net = sock_net(sk); 8386 struct sctp_bind_bucket *pp; 8387 kuid_t uid = sk_uid(sk); 8388 unsigned short snum; 8389 int ret; 8390 8391 snum = ntohs(addr->v4.sin_port); 8392 8393 pr_debug("%s: begins, snum:%d\n", __func__, snum); 8394 8395 if (snum == 0) { 8396 /* Search for an available port. */ 8397 int low, high, remaining, index; 8398 unsigned int rover; 8399 8400 inet_sk_get_local_port_range(sk, &low, &high); 8401 remaining = (high - low) + 1; 8402 rover = get_random_u32_below(remaining) + low; 8403 8404 do { 8405 rover++; 8406 if ((rover < low) || (rover > high)) 8407 rover = low; 8408 if (inet_is_local_reserved_port(net, rover)) 8409 continue; 8410 index = sctp_phashfn(net, rover); 8411 head = &sctp_port_hashtable[index]; 8412 spin_lock_bh(&head->lock); 8413 sctp_for_each_hentry(pp, &head->chain) 8414 if ((pp->port == rover) && 8415 net_eq(net, pp->net)) 8416 goto next; 8417 break; 8418 next: 8419 spin_unlock_bh(&head->lock); 8420 cond_resched(); 8421 } while (--remaining > 0); 8422 8423 /* Exhausted local port range during search? */ 8424 ret = 1; 8425 if (remaining <= 0) 8426 return ret; 8427 8428 /* OK, here is the one we will use. HEAD (the port 8429 * hash table list entry) is non-NULL and we hold it's 8430 * mutex. 8431 */ 8432 snum = rover; 8433 } else { 8434 /* We are given an specific port number; we verify 8435 * that it is not being used. If it is used, we will 8436 * exahust the search in the hash list corresponding 8437 * to the port number (snum) - we detect that with the 8438 * port iterator, pp being NULL. 8439 */ 8440 head = &sctp_port_hashtable[sctp_phashfn(net, snum)]; 8441 spin_lock_bh(&head->lock); 8442 sctp_for_each_hentry(pp, &head->chain) { 8443 if ((pp->port == snum) && net_eq(pp->net, net)) 8444 goto pp_found; 8445 } 8446 } 8447 pp = NULL; 8448 goto pp_not_found; 8449 pp_found: 8450 if (!hlist_empty(&pp->owner)) { 8451 /* We had a port hash table hit - there is an 8452 * available port (pp != NULL) and it is being 8453 * used by other socket (pp->owner not empty); that other 8454 * socket is going to be sk2. 8455 */ 8456 struct sock *sk2; 8457 8458 pr_debug("%s: found a possible match\n", __func__); 8459 8460 if ((pp->fastreuse && reuse && 8461 sk->sk_state != SCTP_SS_LISTENING) || 8462 (pp->fastreuseport && sk->sk_reuseport && 8463 uid_eq(pp->fastuid, uid))) 8464 goto success; 8465 8466 /* Run through the list of sockets bound to the port 8467 * (pp->port) [via the pointers bind_next and 8468 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 8469 * we get the endpoint they describe and run through 8470 * the endpoint's list of IP (v4 or v6) addresses, 8471 * comparing each of the addresses with the address of 8472 * the socket sk. If we find a match, then that means 8473 * that this port/socket (sk) combination are already 8474 * in an endpoint. 8475 */ 8476 sk_for_each_bound(sk2, &pp->owner) { 8477 int bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if); 8478 struct sctp_sock *sp2 = sctp_sk(sk2); 8479 struct sctp_endpoint *ep2 = sp2->ep; 8480 8481 if (sk == sk2 || 8482 (reuse && (sk2->sk_reuse || sp2->reuse) && 8483 sk2->sk_state != SCTP_SS_LISTENING) || 8484 (sk->sk_reuseport && sk2->sk_reuseport && 8485 uid_eq(uid, sk_uid(sk2)))) 8486 continue; 8487 8488 if ((!sk->sk_bound_dev_if || !bound_dev_if2 || 8489 sk->sk_bound_dev_if == bound_dev_if2) && 8490 sctp_bind_addr_conflict(&ep2->base.bind_addr, 8491 addr, sp2, sp)) { 8492 ret = 1; 8493 goto fail_unlock; 8494 } 8495 } 8496 8497 pr_debug("%s: found a match\n", __func__); 8498 } 8499 pp_not_found: 8500 /* If there was a hash table miss, create a new port. */ 8501 ret = 1; 8502 if (!pp && !(pp = sctp_bucket_create(head, net, snum))) 8503 goto fail_unlock; 8504 8505 /* In either case (hit or miss), make sure fastreuse is 1 only 8506 * if sk->sk_reuse is too (that is, if the caller requested 8507 * SO_REUSEADDR on this socket -sk-). 8508 */ 8509 if (hlist_empty(&pp->owner)) { 8510 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 8511 pp->fastreuse = 1; 8512 else 8513 pp->fastreuse = 0; 8514 8515 if (sk->sk_reuseport) { 8516 pp->fastreuseport = 1; 8517 pp->fastuid = uid; 8518 } else { 8519 pp->fastreuseport = 0; 8520 } 8521 } else { 8522 if (pp->fastreuse && 8523 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 8524 pp->fastreuse = 0; 8525 8526 if (pp->fastreuseport && 8527 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid))) 8528 pp->fastreuseport = 0; 8529 } 8530 8531 /* We are set, so fill up all the data in the hash table 8532 * entry, tie the socket list information with the rest of the 8533 * sockets FIXME: Blurry, NPI (ipg). 8534 */ 8535 success: 8536 if (!sp->bind_hash) { 8537 inet_sk(sk)->inet_num = snum; 8538 sk_add_bind_node(sk, &pp->owner); 8539 sp->bind_hash = pp; 8540 } 8541 ret = 0; 8542 8543 fail_unlock: 8544 spin_unlock_bh(&head->lock); 8545 return ret; 8546 } 8547 8548 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 8549 * port is requested. 8550 */ 8551 static int sctp_get_port(struct sock *sk, unsigned short snum) 8552 { 8553 union sctp_addr addr; 8554 struct sctp_af *af = sctp_sk(sk)->pf->af; 8555 8556 /* Set up a dummy address struct from the sk. */ 8557 af->from_sk(&addr, sk); 8558 addr.v4.sin_port = htons(snum); 8559 8560 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 8561 return sctp_get_port_local(sk, &addr); 8562 } 8563 8564 /* 8565 * Move a socket to LISTENING state. 8566 */ 8567 static int sctp_listen_start(struct sock *sk, int backlog) 8568 { 8569 struct sctp_sock *sp = sctp_sk(sk); 8570 struct sctp_endpoint *ep = sp->ep; 8571 int err; 8572 8573 /* 8574 * If a bind() or sctp_bindx() is not called prior to a listen() 8575 * call that allows new associations to be accepted, the system 8576 * picks an ephemeral port and will choose an address set equivalent 8577 * to binding with a wildcard address. 8578 * 8579 * This is not currently spelled out in the SCTP sockets 8580 * extensions draft, but follows the practice as seen in TCP 8581 * sockets. 8582 * 8583 */ 8584 inet_sk_set_state(sk, SCTP_SS_LISTENING); 8585 if (!ep->base.bind_addr.port) { 8586 if (sctp_autobind(sk)) { 8587 err = -EAGAIN; 8588 goto err; 8589 } 8590 } else { 8591 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 8592 err = -EADDRINUSE; 8593 goto err; 8594 } 8595 } 8596 8597 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8598 err = sctp_hash_endpoint(ep); 8599 if (err) 8600 goto err; 8601 8602 return 0; 8603 err: 8604 inet_sk_set_state(sk, SCTP_SS_CLOSED); 8605 return err; 8606 } 8607 8608 /* 8609 * 4.1.3 / 5.1.3 listen() 8610 * 8611 * By default, new associations are not accepted for UDP style sockets. 8612 * An application uses listen() to mark a socket as being able to 8613 * accept new associations. 8614 * 8615 * On TCP style sockets, applications use listen() to ready the SCTP 8616 * endpoint for accepting inbound associations. 8617 * 8618 * On both types of endpoints a backlog of '0' disables listening. 8619 * 8620 * Move a socket to LISTENING state. 8621 */ 8622 int sctp_inet_listen(struct socket *sock, int backlog) 8623 { 8624 struct sock *sk = sock->sk; 8625 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 8626 int err = -EINVAL; 8627 8628 if (unlikely(backlog < 0)) 8629 return err; 8630 8631 lock_sock(sk); 8632 8633 /* Peeled-off sockets are not allowed to listen(). */ 8634 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 8635 goto out; 8636 8637 if (sock->state != SS_UNCONNECTED) 8638 goto out; 8639 8640 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 8641 goto out; 8642 8643 /* If backlog is zero, disable listening. */ 8644 if (!backlog) { 8645 if (sctp_sstate(sk, CLOSED)) 8646 goto out; 8647 8648 err = 0; 8649 sctp_unhash_endpoint(ep); 8650 sk->sk_state = SCTP_SS_CLOSED; 8651 if (sk->sk_reuse || sctp_sk(sk)->reuse) 8652 sctp_sk(sk)->bind_hash->fastreuse = 1; 8653 goto out; 8654 } 8655 8656 /* If we are already listening, just update the backlog */ 8657 if (sctp_sstate(sk, LISTENING)) 8658 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8659 else { 8660 err = sctp_listen_start(sk, backlog); 8661 if (err) 8662 goto out; 8663 } 8664 8665 err = 0; 8666 out: 8667 release_sock(sk); 8668 return err; 8669 } 8670 8671 /* 8672 * This function is done by modeling the current datagram_poll() and the 8673 * tcp_poll(). Note that, based on these implementations, we don't 8674 * lock the socket in this function, even though it seems that, 8675 * ideally, locking or some other mechanisms can be used to ensure 8676 * the integrity of the counters (sndbuf and wmem_alloc) used 8677 * in this place. We assume that we don't need locks either until proven 8678 * otherwise. 8679 * 8680 * Another thing to note is that we include the Async I/O support 8681 * here, again, by modeling the current TCP/UDP code. We don't have 8682 * a good way to test with it yet. 8683 */ 8684 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 8685 { 8686 struct sock *sk = sock->sk; 8687 struct sctp_sock *sp = sctp_sk(sk); 8688 __poll_t mask; 8689 8690 poll_wait(file, sk_sleep(sk), wait); 8691 8692 sock_rps_record_flow(sk); 8693 8694 /* A TCP-style listening socket becomes readable when the accept queue 8695 * is not empty. 8696 */ 8697 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 8698 return (!list_empty(&sp->ep->asocs)) ? 8699 (EPOLLIN | EPOLLRDNORM) : 0; 8700 8701 mask = 0; 8702 8703 /* Is there any exceptional events? */ 8704 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 8705 mask |= EPOLLERR | 8706 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 8707 if (sk->sk_shutdown & RCV_SHUTDOWN) 8708 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 8709 if (sk->sk_shutdown == SHUTDOWN_MASK) 8710 mask |= EPOLLHUP; 8711 8712 /* Is it readable? Reconsider this code with TCP-style support. */ 8713 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 8714 mask |= EPOLLIN | EPOLLRDNORM; 8715 8716 /* The association is either gone or not ready. */ 8717 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 8718 return mask; 8719 8720 /* Is it writable? */ 8721 if (sctp_writeable(sk)) { 8722 mask |= EPOLLOUT | EPOLLWRNORM; 8723 } else { 8724 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 8725 /* 8726 * Since the socket is not locked, the buffer 8727 * might be made available after the writeable check and 8728 * before the bit is set. This could cause a lost I/O 8729 * signal. tcp_poll() has a race breaker for this race 8730 * condition. Based on their implementation, we put 8731 * in the following code to cover it as well. 8732 */ 8733 if (sctp_writeable(sk)) 8734 mask |= EPOLLOUT | EPOLLWRNORM; 8735 } 8736 return mask; 8737 } 8738 8739 /******************************************************************** 8740 * 2nd Level Abstractions 8741 ********************************************************************/ 8742 8743 static struct sctp_bind_bucket *sctp_bucket_create( 8744 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 8745 { 8746 struct sctp_bind_bucket *pp; 8747 8748 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 8749 if (pp) { 8750 SCTP_DBG_OBJCNT_INC(bind_bucket); 8751 pp->port = snum; 8752 pp->fastreuse = 0; 8753 INIT_HLIST_HEAD(&pp->owner); 8754 pp->net = net; 8755 hlist_add_head(&pp->node, &head->chain); 8756 } 8757 return pp; 8758 } 8759 8760 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 8761 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 8762 { 8763 if (pp && hlist_empty(&pp->owner)) { 8764 __hlist_del(&pp->node); 8765 kmem_cache_free(sctp_bucket_cachep, pp); 8766 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8767 } 8768 } 8769 8770 /* Release this socket's reference to a local port. */ 8771 static inline void __sctp_put_port(struct sock *sk) 8772 { 8773 struct sctp_bind_hashbucket *head = 8774 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8775 inet_sk(sk)->inet_num)]; 8776 struct sctp_bind_bucket *pp; 8777 8778 spin_lock(&head->lock); 8779 pp = sctp_sk(sk)->bind_hash; 8780 __sk_del_bind_node(sk); 8781 sctp_sk(sk)->bind_hash = NULL; 8782 inet_sk(sk)->inet_num = 0; 8783 sctp_bucket_destroy(pp); 8784 spin_unlock(&head->lock); 8785 } 8786 8787 void sctp_put_port(struct sock *sk) 8788 { 8789 local_bh_disable(); 8790 __sctp_put_port(sk); 8791 local_bh_enable(); 8792 } 8793 8794 /* 8795 * The system picks an ephemeral port and choose an address set equivalent 8796 * to binding with a wildcard address. 8797 * One of those addresses will be the primary address for the association. 8798 * This automatically enables the multihoming capability of SCTP. 8799 */ 8800 static int sctp_autobind(struct sock *sk) 8801 { 8802 union sctp_addr autoaddr; 8803 struct sctp_af *af; 8804 __be16 port; 8805 8806 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8807 af = sctp_sk(sk)->pf->af; 8808 8809 port = htons(inet_sk(sk)->inet_num); 8810 af->inaddr_any(&autoaddr, port); 8811 8812 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8813 } 8814 8815 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8816 * 8817 * From RFC 2292 8818 * 4.2 The cmsghdr Structure * 8819 * 8820 * When ancillary data is sent or received, any number of ancillary data 8821 * objects can be specified by the msg_control and msg_controllen members of 8822 * the msghdr structure, because each object is preceded by 8823 * a cmsghdr structure defining the object's length (the cmsg_len member). 8824 * Historically Berkeley-derived implementations have passed only one object 8825 * at a time, but this API allows multiple objects to be 8826 * passed in a single call to sendmsg() or recvmsg(). The following example 8827 * shows two ancillary data objects in a control buffer. 8828 * 8829 * |<--------------------------- msg_controllen -------------------------->| 8830 * | | 8831 * 8832 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8833 * 8834 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8835 * | | | 8836 * 8837 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8838 * 8839 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8840 * | | | | | 8841 * 8842 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8843 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8844 * 8845 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8846 * 8847 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8848 * ^ 8849 * | 8850 * 8851 * msg_control 8852 * points here 8853 */ 8854 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8855 { 8856 struct msghdr *my_msg = (struct msghdr *)msg; 8857 struct cmsghdr *cmsg; 8858 8859 for_each_cmsghdr(cmsg, my_msg) { 8860 if (!CMSG_OK(my_msg, cmsg)) 8861 return -EINVAL; 8862 8863 /* Should we parse this header or ignore? */ 8864 if (cmsg->cmsg_level != IPPROTO_SCTP) 8865 continue; 8866 8867 /* Strictly check lengths following example in SCM code. */ 8868 switch (cmsg->cmsg_type) { 8869 case SCTP_INIT: 8870 /* SCTP Socket API Extension 8871 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8872 * 8873 * This cmsghdr structure provides information for 8874 * initializing new SCTP associations with sendmsg(). 8875 * The SCTP_INITMSG socket option uses this same data 8876 * structure. This structure is not used for 8877 * recvmsg(). 8878 * 8879 * cmsg_level cmsg_type cmsg_data[] 8880 * ------------ ------------ ---------------------- 8881 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8882 */ 8883 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8884 return -EINVAL; 8885 8886 cmsgs->init = CMSG_DATA(cmsg); 8887 break; 8888 8889 case SCTP_SNDRCV: 8890 /* SCTP Socket API Extension 8891 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8892 * 8893 * This cmsghdr structure specifies SCTP options for 8894 * sendmsg() and describes SCTP header information 8895 * about a received message through recvmsg(). 8896 * 8897 * cmsg_level cmsg_type cmsg_data[] 8898 * ------------ ------------ ---------------------- 8899 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8900 */ 8901 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8902 return -EINVAL; 8903 8904 cmsgs->srinfo = CMSG_DATA(cmsg); 8905 8906 if (cmsgs->srinfo->sinfo_flags & 8907 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8908 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8909 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8910 return -EINVAL; 8911 break; 8912 8913 case SCTP_SNDINFO: 8914 /* SCTP Socket API Extension 8915 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8916 * 8917 * This cmsghdr structure specifies SCTP options for 8918 * sendmsg(). This structure and SCTP_RCVINFO replaces 8919 * SCTP_SNDRCV which has been deprecated. 8920 * 8921 * cmsg_level cmsg_type cmsg_data[] 8922 * ------------ ------------ --------------------- 8923 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8924 */ 8925 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8926 return -EINVAL; 8927 8928 cmsgs->sinfo = CMSG_DATA(cmsg); 8929 8930 if (cmsgs->sinfo->snd_flags & 8931 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8932 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8933 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8934 return -EINVAL; 8935 break; 8936 case SCTP_PRINFO: 8937 /* SCTP Socket API Extension 8938 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8939 * 8940 * This cmsghdr structure specifies SCTP options for sendmsg(). 8941 * 8942 * cmsg_level cmsg_type cmsg_data[] 8943 * ------------ ------------ --------------------- 8944 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8945 */ 8946 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8947 return -EINVAL; 8948 8949 cmsgs->prinfo = CMSG_DATA(cmsg); 8950 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8951 return -EINVAL; 8952 8953 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8954 cmsgs->prinfo->pr_value = 0; 8955 break; 8956 case SCTP_AUTHINFO: 8957 /* SCTP Socket API Extension 8958 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8959 * 8960 * This cmsghdr structure specifies SCTP options for sendmsg(). 8961 * 8962 * cmsg_level cmsg_type cmsg_data[] 8963 * ------------ ------------ --------------------- 8964 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8965 */ 8966 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8967 return -EINVAL; 8968 8969 cmsgs->authinfo = CMSG_DATA(cmsg); 8970 break; 8971 case SCTP_DSTADDRV4: 8972 case SCTP_DSTADDRV6: 8973 /* SCTP Socket API Extension 8974 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8975 * 8976 * This cmsghdr structure specifies SCTP options for sendmsg(). 8977 * 8978 * cmsg_level cmsg_type cmsg_data[] 8979 * ------------ ------------ --------------------- 8980 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8981 * ------------ ------------ --------------------- 8982 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8983 */ 8984 cmsgs->addrs_msg = my_msg; 8985 break; 8986 default: 8987 return -EINVAL; 8988 } 8989 } 8990 8991 return 0; 8992 } 8993 8994 /* 8995 * Wait for a packet.. 8996 * Note: This function is the same function as in core/datagram.c 8997 * with a few modifications to make lksctp work. 8998 */ 8999 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 9000 { 9001 int error; 9002 DEFINE_WAIT(wait); 9003 9004 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 9005 9006 /* Socket errors? */ 9007 error = sock_error(sk); 9008 if (error) 9009 goto out; 9010 9011 if (!skb_queue_empty(&sk->sk_receive_queue)) 9012 goto ready; 9013 9014 /* Socket shut down? */ 9015 if (sk->sk_shutdown & RCV_SHUTDOWN) 9016 goto out; 9017 9018 /* Sequenced packets can come disconnected. If so we report the 9019 * problem. 9020 */ 9021 error = -ENOTCONN; 9022 9023 /* Is there a good reason to think that we may receive some data? */ 9024 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 9025 goto out; 9026 9027 /* Handle signals. */ 9028 if (signal_pending(current)) 9029 goto interrupted; 9030 9031 /* Let another process have a go. Since we are going to sleep 9032 * anyway. Note: This may cause odd behaviors if the message 9033 * does not fit in the user's buffer, but this seems to be the 9034 * only way to honor MSG_DONTWAIT realistically. 9035 */ 9036 release_sock(sk); 9037 *timeo_p = schedule_timeout(*timeo_p); 9038 lock_sock(sk); 9039 9040 ready: 9041 finish_wait(sk_sleep(sk), &wait); 9042 return 0; 9043 9044 interrupted: 9045 error = sock_intr_errno(*timeo_p); 9046 9047 out: 9048 finish_wait(sk_sleep(sk), &wait); 9049 *err = error; 9050 return error; 9051 } 9052 9053 /* Receive a datagram. 9054 * Note: This is pretty much the same routine as in core/datagram.c 9055 * with a few changes to make lksctp work. 9056 */ 9057 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, int *err) 9058 { 9059 int error; 9060 struct sk_buff *skb; 9061 long timeo; 9062 9063 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 9064 9065 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 9066 MAX_SCHEDULE_TIMEOUT); 9067 9068 do { 9069 /* Again only user level code calls this function, 9070 * so nothing interrupt level 9071 * will suddenly eat the receive_queue. 9072 * 9073 * Look at current nfs client by the way... 9074 * However, this function was correct in any case. 8) 9075 */ 9076 if (flags & MSG_PEEK) { 9077 skb = skb_peek(&sk->sk_receive_queue); 9078 if (skb) 9079 refcount_inc(&skb->users); 9080 } else { 9081 skb = __skb_dequeue(&sk->sk_receive_queue); 9082 } 9083 9084 if (skb) 9085 return skb; 9086 9087 /* Caller is allowed not to check sk->sk_err before calling. */ 9088 error = sock_error(sk); 9089 if (error) 9090 goto no_packet; 9091 9092 if (sk->sk_shutdown & RCV_SHUTDOWN) 9093 break; 9094 9095 9096 /* User doesn't want to wait. */ 9097 error = -EAGAIN; 9098 if (!timeo) 9099 goto no_packet; 9100 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 9101 9102 return NULL; 9103 9104 no_packet: 9105 *err = error; 9106 return NULL; 9107 } 9108 9109 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 9110 static void __sctp_write_space(struct sctp_association *asoc) 9111 { 9112 struct sock *sk = asoc->base.sk; 9113 9114 if (sctp_wspace(asoc) <= 0) 9115 return; 9116 9117 if (waitqueue_active(&asoc->wait)) 9118 wake_up_interruptible(&asoc->wait); 9119 9120 if (sctp_writeable(sk)) { 9121 struct socket_wq *wq; 9122 9123 rcu_read_lock(); 9124 wq = rcu_dereference(sk->sk_wq); 9125 if (wq) { 9126 if (waitqueue_active(&wq->wait)) 9127 wake_up_interruptible_poll(&wq->wait, EPOLLOUT | 9128 EPOLLWRNORM | EPOLLWRBAND); 9129 9130 /* Note that we try to include the Async I/O support 9131 * here by modeling from the current TCP/UDP code. 9132 * We have not tested with it yet. 9133 */ 9134 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 9135 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 9136 } 9137 rcu_read_unlock(); 9138 } 9139 } 9140 9141 static void sctp_wake_up_waiters(struct sock *sk, 9142 struct sctp_association *asoc) 9143 { 9144 struct sctp_association *tmp = asoc; 9145 9146 /* We do accounting for the sndbuf space per association, 9147 * so we only need to wake our own association. 9148 */ 9149 if (asoc->ep->sndbuf_policy) 9150 return __sctp_write_space(asoc); 9151 9152 /* If association goes down and is just flushing its 9153 * outq, then just normally notify others. 9154 */ 9155 if (asoc->base.dead) 9156 return sctp_write_space(sk); 9157 9158 /* Accounting for the sndbuf space is per socket, so we 9159 * need to wake up others, try to be fair and in case of 9160 * other associations, let them have a go first instead 9161 * of just doing a sctp_write_space() call. 9162 * 9163 * Note that we reach sctp_wake_up_waiters() only when 9164 * associations free up queued chunks, thus we are under 9165 * lock and the list of associations on a socket is 9166 * guaranteed not to change. 9167 */ 9168 for (tmp = list_next_entry(tmp, asocs); 1; 9169 tmp = list_next_entry(tmp, asocs)) { 9170 /* Manually skip the head element. */ 9171 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 9172 continue; 9173 /* Wake up association. */ 9174 __sctp_write_space(tmp); 9175 /* We've reached the end. */ 9176 if (tmp == asoc) 9177 break; 9178 } 9179 } 9180 9181 /* Do accounting for the sndbuf space. 9182 * Decrement the used sndbuf space of the corresponding association by the 9183 * data size which was just transmitted(freed). 9184 */ 9185 static void sctp_wfree(struct sk_buff *skb) 9186 { 9187 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 9188 struct sctp_association *asoc = chunk->asoc; 9189 struct sock *sk = asoc->base.sk; 9190 9191 sk_mem_uncharge(sk, skb->truesize); 9192 sk_wmem_queued_add(sk, -(skb->truesize + sizeof(struct sctp_chunk))); 9193 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); 9194 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), 9195 &sk->sk_wmem_alloc)); 9196 9197 if (chunk->shkey) { 9198 struct sctp_shared_key *shkey = chunk->shkey; 9199 9200 /* refcnt == 2 and !list_empty mean after this release, it's 9201 * not being used anywhere, and it's time to notify userland 9202 * that this shkey can be freed if it's been deactivated. 9203 */ 9204 if (shkey->deactivated && !list_empty(&shkey->key_list) && 9205 refcount_read(&shkey->refcnt) == 2) { 9206 struct sctp_ulpevent *ev; 9207 9208 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 9209 SCTP_AUTH_FREE_KEY, 9210 GFP_KERNEL); 9211 if (ev) 9212 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 9213 } 9214 sctp_auth_shkey_release(chunk->shkey); 9215 } 9216 9217 sock_wfree(skb); 9218 sctp_wake_up_waiters(sk, asoc); 9219 9220 sctp_association_put(asoc); 9221 } 9222 9223 /* Do accounting for the receive space on the socket. 9224 * Accounting for the association is done in ulpevent.c 9225 * We set this as a destructor for the cloned data skbs so that 9226 * accounting is done at the correct time. 9227 */ 9228 void sctp_sock_rfree(struct sk_buff *skb) 9229 { 9230 struct sock *sk = skb->sk; 9231 struct sctp_ulpevent *event = sctp_skb2event(skb); 9232 9233 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 9234 9235 /* 9236 * Mimic the behavior of sock_rfree 9237 */ 9238 sk_mem_uncharge(sk, event->rmem_len); 9239 } 9240 9241 9242 /* Helper function to wait for space in the sndbuf. */ 9243 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, 9244 struct sctp_transport *transport, 9245 long *timeo_p, size_t msg_len) 9246 { 9247 struct sock *sk = asoc->base.sk; 9248 long current_timeo = *timeo_p; 9249 DEFINE_WAIT(wait); 9250 int err = 0; 9251 9252 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 9253 *timeo_p, msg_len); 9254 9255 /* Increment the transport and association's refcnt. */ 9256 if (transport) 9257 sctp_transport_hold(transport); 9258 sctp_association_hold(asoc); 9259 9260 /* Wait on the association specific sndbuf space. */ 9261 for (;;) { 9262 prepare_to_wait_exclusive(&asoc->wait, &wait, 9263 TASK_INTERRUPTIBLE); 9264 if (asoc->base.dead) 9265 goto do_dead; 9266 if ((!*timeo_p) || (transport && transport->dead)) 9267 goto do_nonblock; 9268 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 9269 goto do_error; 9270 if (signal_pending(current)) 9271 goto do_interrupted; 9272 if ((int)msg_len <= sctp_wspace(asoc) && 9273 sk_wmem_schedule(sk, msg_len)) 9274 break; 9275 9276 /* Let another process have a go. Since we are going 9277 * to sleep anyway. 9278 */ 9279 release_sock(sk); 9280 current_timeo = schedule_timeout(current_timeo); 9281 lock_sock(sk); 9282 if (sk != asoc->base.sk) 9283 goto do_error; 9284 9285 *timeo_p = current_timeo; 9286 } 9287 9288 out: 9289 finish_wait(&asoc->wait, &wait); 9290 9291 /* Release the transport and association's refcnt. */ 9292 if (transport) 9293 sctp_transport_put(transport); 9294 sctp_association_put(asoc); 9295 9296 return err; 9297 9298 do_dead: 9299 err = -ESRCH; 9300 goto out; 9301 9302 do_error: 9303 err = -EPIPE; 9304 goto out; 9305 9306 do_interrupted: 9307 err = sock_intr_errno(*timeo_p); 9308 goto out; 9309 9310 do_nonblock: 9311 err = -EAGAIN; 9312 goto out; 9313 } 9314 9315 void sctp_data_ready(struct sock *sk) 9316 { 9317 struct socket_wq *wq; 9318 9319 trace_sk_data_ready(sk); 9320 9321 rcu_read_lock(); 9322 wq = rcu_dereference(sk->sk_wq); 9323 if (skwq_has_sleeper(wq)) 9324 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 9325 EPOLLRDNORM | EPOLLRDBAND); 9326 sk_wake_async_rcu(sk, SOCK_WAKE_WAITD, POLL_IN); 9327 rcu_read_unlock(); 9328 } 9329 9330 /* If socket sndbuf has changed, wake up all per association waiters. */ 9331 void sctp_write_space(struct sock *sk) 9332 { 9333 struct sctp_association *asoc; 9334 9335 /* Wake up the tasks in each wait queue. */ 9336 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 9337 __sctp_write_space(asoc); 9338 } 9339 } 9340 9341 /* Is there any sndbuf space available on the socket? 9342 * 9343 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 9344 * associations on the same socket. For a UDP-style socket with 9345 * multiple associations, it is possible for it to be "unwriteable" 9346 * prematurely. I assume that this is acceptable because 9347 * a premature "unwriteable" is better than an accidental "writeable" which 9348 * would cause an unwanted block under certain circumstances. For the 1-1 9349 * UDP-style sockets or TCP-style sockets, this code should work. 9350 * - Daisy 9351 */ 9352 static bool sctp_writeable(const struct sock *sk) 9353 { 9354 return READ_ONCE(sk->sk_sndbuf) > READ_ONCE(sk->sk_wmem_queued); 9355 } 9356 9357 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 9358 * returns immediately with EINPROGRESS. 9359 */ 9360 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 9361 { 9362 struct sock *sk = asoc->base.sk; 9363 int err = 0; 9364 long current_timeo = *timeo_p; 9365 DEFINE_WAIT(wait); 9366 9367 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 9368 9369 /* Increment the association's refcnt. */ 9370 sctp_association_hold(asoc); 9371 9372 for (;;) { 9373 prepare_to_wait_exclusive(&asoc->wait, &wait, 9374 TASK_INTERRUPTIBLE); 9375 if (!*timeo_p) 9376 goto do_nonblock; 9377 if (sk->sk_shutdown & RCV_SHUTDOWN) 9378 break; 9379 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 9380 asoc->base.dead) 9381 goto do_error; 9382 if (signal_pending(current)) 9383 goto do_interrupted; 9384 9385 if (sctp_state(asoc, ESTABLISHED)) 9386 break; 9387 9388 /* Let another process have a go. Since we are going 9389 * to sleep anyway. 9390 */ 9391 release_sock(sk); 9392 current_timeo = schedule_timeout(current_timeo); 9393 lock_sock(sk); 9394 9395 *timeo_p = current_timeo; 9396 } 9397 9398 out: 9399 finish_wait(&asoc->wait, &wait); 9400 9401 /* Release the association's refcnt. */ 9402 sctp_association_put(asoc); 9403 9404 return err; 9405 9406 do_error: 9407 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 9408 err = -ETIMEDOUT; 9409 else 9410 err = -ECONNREFUSED; 9411 goto out; 9412 9413 do_interrupted: 9414 err = sock_intr_errno(*timeo_p); 9415 goto out; 9416 9417 do_nonblock: 9418 err = -EINPROGRESS; 9419 goto out; 9420 } 9421 9422 static int sctp_wait_for_accept(struct sock *sk, long timeo) 9423 { 9424 struct sctp_endpoint *ep; 9425 int err = 0; 9426 DEFINE_WAIT(wait); 9427 9428 ep = sctp_sk(sk)->ep; 9429 9430 9431 for (;;) { 9432 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 9433 TASK_INTERRUPTIBLE); 9434 9435 if (list_empty(&ep->asocs)) { 9436 release_sock(sk); 9437 timeo = schedule_timeout(timeo); 9438 lock_sock(sk); 9439 } 9440 9441 err = -EINVAL; 9442 if (!sctp_sstate(sk, LISTENING) || 9443 (sk->sk_shutdown & RCV_SHUTDOWN)) 9444 break; 9445 9446 err = 0; 9447 if (!list_empty(&ep->asocs)) 9448 break; 9449 9450 err = sock_intr_errno(timeo); 9451 if (signal_pending(current)) 9452 break; 9453 9454 err = -EAGAIN; 9455 if (!timeo) 9456 break; 9457 } 9458 9459 finish_wait(sk_sleep(sk), &wait); 9460 9461 return err; 9462 } 9463 9464 static void sctp_wait_for_close(struct sock *sk, long timeout) 9465 { 9466 DEFINE_WAIT(wait); 9467 9468 do { 9469 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 9470 if (list_empty(&sctp_sk(sk)->ep->asocs)) 9471 break; 9472 release_sock(sk); 9473 timeout = schedule_timeout(timeout); 9474 lock_sock(sk); 9475 } while (!signal_pending(current) && timeout); 9476 9477 finish_wait(sk_sleep(sk), &wait); 9478 } 9479 9480 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 9481 { 9482 struct sk_buff *frag; 9483 9484 if (!skb->data_len) 9485 goto done; 9486 9487 /* Don't forget the fragments. */ 9488 skb_walk_frags(skb, frag) 9489 sctp_skb_set_owner_r_frag(frag, sk); 9490 9491 done: 9492 sctp_skb_set_owner_r(skb, sk); 9493 } 9494 9495 /* Populate the fields of the newsk from the oldsk and migrate the assoc 9496 * and its messages to the newsk. 9497 */ 9498 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 9499 struct sctp_association *assoc, 9500 enum sctp_socket_type type) 9501 { 9502 struct sctp_sock *oldsp = sctp_sk(oldsk); 9503 struct sctp_sock *newsp = sctp_sk(newsk); 9504 struct sctp_bind_bucket *pp; /* hash list port iterator */ 9505 struct sctp_endpoint *newep = newsp->ep; 9506 struct sk_buff *skb, *tmp; 9507 struct sctp_ulpevent *event; 9508 struct sctp_bind_hashbucket *head; 9509 int err; 9510 9511 /* Restore the ep value that was overwritten with the above structure 9512 * copy. 9513 */ 9514 newsp->ep = newep; 9515 9516 /* Hook this new socket in to the bind_hash list. */ 9517 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 9518 inet_sk(oldsk)->inet_num)]; 9519 spin_lock_bh(&head->lock); 9520 pp = sctp_sk(oldsk)->bind_hash; 9521 sk_add_bind_node(newsk, &pp->owner); 9522 sctp_sk(newsk)->bind_hash = pp; 9523 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 9524 spin_unlock_bh(&head->lock); 9525 9526 /* Copy the bind_addr list from the original endpoint to the new 9527 * endpoint so that we can handle restarts properly 9528 */ 9529 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 9530 &oldsp->ep->base.bind_addr, GFP_KERNEL); 9531 if (err) 9532 return err; 9533 9534 sctp_auto_asconf_init(newsp); 9535 9536 /* Move any messages in the old socket's receive queue that are for the 9537 * peeled off association to the new socket's receive queue. 9538 */ 9539 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 9540 event = sctp_skb2event(skb); 9541 if (event->asoc == assoc) { 9542 __skb_unlink(skb, &oldsk->sk_receive_queue); 9543 __skb_queue_tail(&newsk->sk_receive_queue, skb); 9544 sctp_skb_set_owner_r_frag(skb, newsk); 9545 } 9546 } 9547 9548 /* Clean up any messages pending delivery due to partial 9549 * delivery. Three cases: 9550 * 1) No partial deliver; no work. 9551 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 9552 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 9553 */ 9554 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 9555 9556 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 9557 struct sk_buff_head *queue; 9558 9559 /* Decide which queue to move pd_lobby skbs to. */ 9560 if (assoc->ulpq.pd_mode) { 9561 queue = &newsp->pd_lobby; 9562 } else 9563 queue = &newsk->sk_receive_queue; 9564 9565 /* Walk through the pd_lobby, looking for skbs that 9566 * need moved to the new socket. 9567 */ 9568 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 9569 event = sctp_skb2event(skb); 9570 if (event->asoc == assoc) { 9571 __skb_unlink(skb, &oldsp->pd_lobby); 9572 __skb_queue_tail(queue, skb); 9573 sctp_skb_set_owner_r_frag(skb, newsk); 9574 } 9575 } 9576 9577 /* Clear up any skbs waiting for the partial 9578 * delivery to finish. 9579 */ 9580 if (assoc->ulpq.pd_mode) 9581 sctp_clear_pd(oldsk, NULL); 9582 9583 } 9584 9585 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 9586 9587 /* Set the type of socket to indicate that it is peeled off from the 9588 * original UDP-style socket or created with the accept() call on a 9589 * TCP-style socket.. 9590 */ 9591 newsp->type = type; 9592 9593 /* Mark the new socket "in-use" by the user so that any packets 9594 * that may arrive on the association after we've moved it are 9595 * queued to the backlog. This prevents a potential race between 9596 * backlog processing on the old socket and new-packet processing 9597 * on the new socket. 9598 * 9599 * The caller has just allocated newsk so we can guarantee that other 9600 * paths won't try to lock it and then oldsk. 9601 */ 9602 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 9603 sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w); 9604 sctp_assoc_migrate(assoc, newsk); 9605 sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w); 9606 9607 /* If the association on the newsk is already closed before accept() 9608 * is called, set RCV_SHUTDOWN flag. 9609 */ 9610 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 9611 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 9612 newsk->sk_shutdown |= RCV_SHUTDOWN; 9613 } else { 9614 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 9615 } 9616 9617 release_sock(newsk); 9618 9619 return 0; 9620 } 9621 9622 9623 /* This proto struct describes the ULP interface for SCTP. */ 9624 struct proto sctp_prot = { 9625 .name = "SCTP", 9626 .owner = THIS_MODULE, 9627 .close = sctp_close, 9628 .disconnect = sctp_disconnect, 9629 .accept = sctp_accept, 9630 .ioctl = sctp_ioctl, 9631 .init = sctp_init_sock, 9632 .destroy = sctp_destroy_sock, 9633 .shutdown = sctp_shutdown, 9634 .setsockopt = sctp_setsockopt, 9635 .getsockopt = sctp_getsockopt, 9636 .bpf_bypass_getsockopt = sctp_bpf_bypass_getsockopt, 9637 .sendmsg = sctp_sendmsg, 9638 .recvmsg = sctp_recvmsg, 9639 .bind = sctp_bind, 9640 .bind_add = sctp_bind_add, 9641 .backlog_rcv = sctp_backlog_rcv, 9642 .hash = sctp_hash, 9643 .unhash = sctp_unhash, 9644 .no_autobind = true, 9645 .obj_size = sizeof(struct sctp_sock), 9646 .useroffset = offsetof(struct sctp_sock, subscribe), 9647 .usersize = offsetof(struct sctp_sock, initmsg) - 9648 offsetof(struct sctp_sock, subscribe) + 9649 sizeof_field(struct sctp_sock, initmsg), 9650 .sysctl_mem = sysctl_sctp_mem, 9651 .sysctl_rmem = sysctl_sctp_rmem, 9652 .sysctl_wmem = sysctl_sctp_wmem, 9653 .memory_pressure = &sctp_memory_pressure, 9654 .enter_memory_pressure = sctp_enter_memory_pressure, 9655 9656 .memory_allocated = &sctp_memory_allocated, 9657 .per_cpu_fw_alloc = &sctp_memory_per_cpu_fw_alloc, 9658 9659 .sockets_allocated = &sctp_sockets_allocated, 9660 }; 9661 9662 #if IS_ENABLED(CONFIG_IPV6) 9663 9664 static void sctp_v6_destruct_sock(struct sock *sk) 9665 { 9666 inet6_sock_destruct(sk); 9667 } 9668 9669 static int sctp_v6_init_sock(struct sock *sk) 9670 { 9671 int ret = sctp_init_sock(sk); 9672 9673 if (!ret) 9674 sk->sk_destruct = sctp_v6_destruct_sock; 9675 9676 return ret; 9677 } 9678 9679 struct proto sctpv6_prot = { 9680 .name = "SCTPv6", 9681 .owner = THIS_MODULE, 9682 .close = sctp_close, 9683 .disconnect = sctp_disconnect, 9684 .accept = sctp_accept, 9685 .ioctl = sctp_ioctl, 9686 .init = sctp_v6_init_sock, 9687 .destroy = sctp_destroy_sock, 9688 .shutdown = sctp_shutdown, 9689 .setsockopt = sctp_setsockopt, 9690 .getsockopt = sctp_getsockopt, 9691 .bpf_bypass_getsockopt = sctp_bpf_bypass_getsockopt, 9692 .sendmsg = sctp_sendmsg, 9693 .recvmsg = sctp_recvmsg, 9694 .bind = sctp_bind, 9695 .bind_add = sctp_bind_add, 9696 .backlog_rcv = sctp_backlog_rcv, 9697 .hash = sctp_hash, 9698 .unhash = sctp_unhash, 9699 .no_autobind = true, 9700 .obj_size = sizeof(struct sctp6_sock), 9701 .ipv6_pinfo_offset = offsetof(struct sctp6_sock, inet6), 9702 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 9703 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 9704 offsetof(struct sctp6_sock, sctp.subscribe) + 9705 sizeof_field(struct sctp6_sock, sctp.initmsg), 9706 .sysctl_mem = sysctl_sctp_mem, 9707 .sysctl_rmem = sysctl_sctp_rmem, 9708 .sysctl_wmem = sysctl_sctp_wmem, 9709 .memory_pressure = &sctp_memory_pressure, 9710 .enter_memory_pressure = sctp_enter_memory_pressure, 9711 9712 .memory_allocated = &sctp_memory_allocated, 9713 .per_cpu_fw_alloc = &sctp_memory_per_cpu_fw_alloc, 9714 9715 .sockets_allocated = &sctp_sockets_allocated, 9716 }; 9717 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9718