xref: /linux/net/sctp/socket.c (revision d8327c784b51b57dac2c26cfad87dce0d68dfd98)
1 /* SCTP kernel reference Implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel reference Implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * The SCTP reference implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * The SCTP reference implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, write to
32  * the Free Software Foundation, 59 Temple Place - Suite 330,
33  * Boston, MA 02111-1307, USA.
34  *
35  * Please send any bug reports or fixes you make to the
36  * email address(es):
37  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
38  *
39  * Or submit a bug report through the following website:
40  *    http://www.sf.net/projects/lksctp
41  *
42  * Written or modified by:
43  *    La Monte H.P. Yarroll <piggy@acm.org>
44  *    Narasimha Budihal     <narsi@refcode.org>
45  *    Karl Knutson          <karl@athena.chicago.il.us>
46  *    Jon Grimm             <jgrimm@us.ibm.com>
47  *    Xingang Guo           <xingang.guo@intel.com>
48  *    Daisy Chang           <daisyc@us.ibm.com>
49  *    Sridhar Samudrala     <samudrala@us.ibm.com>
50  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
51  *    Ardelle Fan	    <ardelle.fan@intel.com>
52  *    Ryan Layer	    <rmlayer@us.ibm.com>
53  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
54  *    Kevin Gao             <kevin.gao@intel.com>
55  *
56  * Any bugs reported given to us we will try to fix... any fixes shared will
57  * be incorporated into the next SCTP release.
58  */
59 
60 #include <linux/config.h>
61 #include <linux/types.h>
62 #include <linux/kernel.h>
63 #include <linux/wait.h>
64 #include <linux/time.h>
65 #include <linux/ip.h>
66 #include <linux/capability.h>
67 #include <linux/fcntl.h>
68 #include <linux/poll.h>
69 #include <linux/init.h>
70 #include <linux/crypto.h>
71 
72 #include <net/ip.h>
73 #include <net/icmp.h>
74 #include <net/route.h>
75 #include <net/ipv6.h>
76 #include <net/inet_common.h>
77 
78 #include <linux/socket.h> /* for sa_family_t */
79 #include <net/sock.h>
80 #include <net/sctp/sctp.h>
81 #include <net/sctp/sm.h>
82 
83 /* WARNING:  Please do not remove the SCTP_STATIC attribute to
84  * any of the functions below as they are used to export functions
85  * used by a project regression testsuite.
86  */
87 
88 /* Forward declarations for internal helper functions. */
89 static int sctp_writeable(struct sock *sk);
90 static void sctp_wfree(struct sk_buff *skb);
91 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
92 				size_t msg_len);
93 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
94 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
95 static int sctp_wait_for_accept(struct sock *sk, long timeo);
96 static void sctp_wait_for_close(struct sock *sk, long timeo);
97 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
98 					union sctp_addr *addr, int len);
99 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
100 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
102 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
103 static int sctp_send_asconf(struct sctp_association *asoc,
104 			    struct sctp_chunk *chunk);
105 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
106 static int sctp_autobind(struct sock *sk);
107 static void sctp_sock_migrate(struct sock *, struct sock *,
108 			      struct sctp_association *, sctp_socket_type_t);
109 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
110 
111 extern kmem_cache_t *sctp_bucket_cachep;
112 
113 /* Get the sndbuf space available at the time on the association.  */
114 static inline int sctp_wspace(struct sctp_association *asoc)
115 {
116 	struct sock *sk = asoc->base.sk;
117 	int amt = 0;
118 
119 	if (asoc->ep->sndbuf_policy) {
120 		/* make sure that no association uses more than sk_sndbuf */
121 		amt = sk->sk_sndbuf - asoc->sndbuf_used;
122 	} else {
123 		/* do socket level accounting */
124 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
125 	}
126 
127 	if (amt < 0)
128 		amt = 0;
129 
130 	return amt;
131 }
132 
133 /* Increment the used sndbuf space count of the corresponding association by
134  * the size of the outgoing data chunk.
135  * Also, set the skb destructor for sndbuf accounting later.
136  *
137  * Since it is always 1-1 between chunk and skb, and also a new skb is always
138  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
139  * destructor in the data chunk skb for the purpose of the sndbuf space
140  * tracking.
141  */
142 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
143 {
144 	struct sctp_association *asoc = chunk->asoc;
145 	struct sock *sk = asoc->base.sk;
146 
147 	/* The sndbuf space is tracked per association.  */
148 	sctp_association_hold(asoc);
149 
150 	skb_set_owner_w(chunk->skb, sk);
151 
152 	chunk->skb->destructor = sctp_wfree;
153 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
154 	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
155 
156 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
157 				sizeof(struct sk_buff) +
158 				sizeof(struct sctp_chunk);
159 
160 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
161 }
162 
163 /* Verify that this is a valid address. */
164 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
165 				   int len)
166 {
167 	struct sctp_af *af;
168 
169 	/* Verify basic sockaddr. */
170 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
171 	if (!af)
172 		return -EINVAL;
173 
174 	/* Is this a valid SCTP address?  */
175 	if (!af->addr_valid(addr, sctp_sk(sk)))
176 		return -EINVAL;
177 
178 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
179 		return -EINVAL;
180 
181 	return 0;
182 }
183 
184 /* Look up the association by its id.  If this is not a UDP-style
185  * socket, the ID field is always ignored.
186  */
187 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
188 {
189 	struct sctp_association *asoc = NULL;
190 
191 	/* If this is not a UDP-style socket, assoc id should be ignored. */
192 	if (!sctp_style(sk, UDP)) {
193 		/* Return NULL if the socket state is not ESTABLISHED. It
194 		 * could be a TCP-style listening socket or a socket which
195 		 * hasn't yet called connect() to establish an association.
196 		 */
197 		if (!sctp_sstate(sk, ESTABLISHED))
198 			return NULL;
199 
200 		/* Get the first and the only association from the list. */
201 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
202 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
203 					  struct sctp_association, asocs);
204 		return asoc;
205 	}
206 
207 	/* Otherwise this is a UDP-style socket. */
208 	if (!id || (id == (sctp_assoc_t)-1))
209 		return NULL;
210 
211 	spin_lock_bh(&sctp_assocs_id_lock);
212 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
213 	spin_unlock_bh(&sctp_assocs_id_lock);
214 
215 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
216 		return NULL;
217 
218 	return asoc;
219 }
220 
221 /* Look up the transport from an address and an assoc id. If both address and
222  * id are specified, the associations matching the address and the id should be
223  * the same.
224  */
225 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
226 					      struct sockaddr_storage *addr,
227 					      sctp_assoc_t id)
228 {
229 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
230 	struct sctp_transport *transport;
231 	union sctp_addr *laddr = (union sctp_addr *)addr;
232 
233 	laddr->v4.sin_port = ntohs(laddr->v4.sin_port);
234 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
235 					       (union sctp_addr *)addr,
236 					       &transport);
237 	laddr->v4.sin_port = htons(laddr->v4.sin_port);
238 
239 	if (!addr_asoc)
240 		return NULL;
241 
242 	id_asoc = sctp_id2assoc(sk, id);
243 	if (id_asoc && (id_asoc != addr_asoc))
244 		return NULL;
245 
246 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
247 						(union sctp_addr *)addr);
248 
249 	return transport;
250 }
251 
252 /* API 3.1.2 bind() - UDP Style Syntax
253  * The syntax of bind() is,
254  *
255  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
256  *
257  *   sd      - the socket descriptor returned by socket().
258  *   addr    - the address structure (struct sockaddr_in or struct
259  *             sockaddr_in6 [RFC 2553]),
260  *   addr_len - the size of the address structure.
261  */
262 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
263 {
264 	int retval = 0;
265 
266 	sctp_lock_sock(sk);
267 
268 	SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
269 			  sk, addr, addr_len);
270 
271 	/* Disallow binding twice. */
272 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
273 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
274 				      addr_len);
275 	else
276 		retval = -EINVAL;
277 
278 	sctp_release_sock(sk);
279 
280 	return retval;
281 }
282 
283 static long sctp_get_port_local(struct sock *, union sctp_addr *);
284 
285 /* Verify this is a valid sockaddr. */
286 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
287 					union sctp_addr *addr, int len)
288 {
289 	struct sctp_af *af;
290 
291 	/* Check minimum size.  */
292 	if (len < sizeof (struct sockaddr))
293 		return NULL;
294 
295 	/* Does this PF support this AF? */
296 	if (!opt->pf->af_supported(addr->sa.sa_family, opt))
297 		return NULL;
298 
299 	/* If we get this far, af is valid. */
300 	af = sctp_get_af_specific(addr->sa.sa_family);
301 
302 	if (len < af->sockaddr_len)
303 		return NULL;
304 
305 	return af;
306 }
307 
308 /* Bind a local address either to an endpoint or to an association.  */
309 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
310 {
311 	struct sctp_sock *sp = sctp_sk(sk);
312 	struct sctp_endpoint *ep = sp->ep;
313 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
314 	struct sctp_af *af;
315 	unsigned short snum;
316 	int ret = 0;
317 
318 	/* Common sockaddr verification. */
319 	af = sctp_sockaddr_af(sp, addr, len);
320 	if (!af) {
321 		SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
322 				  sk, addr, len);
323 		return -EINVAL;
324 	}
325 
326 	snum = ntohs(addr->v4.sin_port);
327 
328 	SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
329 				 ", port: %d, new port: %d, len: %d)\n",
330 				 sk,
331 				 addr,
332 				 bp->port, snum,
333 				 len);
334 
335 	/* PF specific bind() address verification. */
336 	if (!sp->pf->bind_verify(sp, addr))
337 		return -EADDRNOTAVAIL;
338 
339 	/* We must either be unbound, or bind to the same port.  */
340 	if (bp->port && (snum != bp->port)) {
341 		SCTP_DEBUG_PRINTK("sctp_do_bind:"
342 				  " New port %d does not match existing port "
343 				  "%d.\n", snum, bp->port);
344 		return -EINVAL;
345 	}
346 
347 	if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
348 		return -EACCES;
349 
350 	/* Make sure we are allowed to bind here.
351 	 * The function sctp_get_port_local() does duplicate address
352 	 * detection.
353 	 */
354 	if ((ret = sctp_get_port_local(sk, addr))) {
355 		if (ret == (long) sk) {
356 			/* This endpoint has a conflicting address. */
357 			return -EINVAL;
358 		} else {
359 			return -EADDRINUSE;
360 		}
361 	}
362 
363 	/* Refresh ephemeral port.  */
364 	if (!bp->port)
365 		bp->port = inet_sk(sk)->num;
366 
367 	/* Add the address to the bind address list.  */
368 	sctp_local_bh_disable();
369 	sctp_write_lock(&ep->base.addr_lock);
370 
371 	/* Use GFP_ATOMIC since BHs are disabled.  */
372 	addr->v4.sin_port = ntohs(addr->v4.sin_port);
373 	ret = sctp_add_bind_addr(bp, addr, GFP_ATOMIC);
374 	addr->v4.sin_port = htons(addr->v4.sin_port);
375 	sctp_write_unlock(&ep->base.addr_lock);
376 	sctp_local_bh_enable();
377 
378 	/* Copy back into socket for getsockname() use. */
379 	if (!ret) {
380 		inet_sk(sk)->sport = htons(inet_sk(sk)->num);
381 		af->to_sk_saddr(addr, sk);
382 	}
383 
384 	return ret;
385 }
386 
387  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
388  *
389  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
390  * at any one time.  If a sender, after sending an ASCONF chunk, decides
391  * it needs to transfer another ASCONF Chunk, it MUST wait until the
392  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
393  * subsequent ASCONF. Note this restriction binds each side, so at any
394  * time two ASCONF may be in-transit on any given association (one sent
395  * from each endpoint).
396  */
397 static int sctp_send_asconf(struct sctp_association *asoc,
398 			    struct sctp_chunk *chunk)
399 {
400 	int		retval = 0;
401 
402 	/* If there is an outstanding ASCONF chunk, queue it for later
403 	 * transmission.
404 	 */
405 	if (asoc->addip_last_asconf) {
406 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
407 		goto out;
408 	}
409 
410 	/* Hold the chunk until an ASCONF_ACK is received. */
411 	sctp_chunk_hold(chunk);
412 	retval = sctp_primitive_ASCONF(asoc, chunk);
413 	if (retval)
414 		sctp_chunk_free(chunk);
415 	else
416 		asoc->addip_last_asconf = chunk;
417 
418 out:
419 	return retval;
420 }
421 
422 /* Add a list of addresses as bind addresses to local endpoint or
423  * association.
424  *
425  * Basically run through each address specified in the addrs/addrcnt
426  * array/length pair, determine if it is IPv6 or IPv4 and call
427  * sctp_do_bind() on it.
428  *
429  * If any of them fails, then the operation will be reversed and the
430  * ones that were added will be removed.
431  *
432  * Only sctp_setsockopt_bindx() is supposed to call this function.
433  */
434 int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
435 {
436 	int cnt;
437 	int retval = 0;
438 	void *addr_buf;
439 	struct sockaddr *sa_addr;
440 	struct sctp_af *af;
441 
442 	SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
443 			  sk, addrs, addrcnt);
444 
445 	addr_buf = addrs;
446 	for (cnt = 0; cnt < addrcnt; cnt++) {
447 		/* The list may contain either IPv4 or IPv6 address;
448 		 * determine the address length for walking thru the list.
449 		 */
450 		sa_addr = (struct sockaddr *)addr_buf;
451 		af = sctp_get_af_specific(sa_addr->sa_family);
452 		if (!af) {
453 			retval = -EINVAL;
454 			goto err_bindx_add;
455 		}
456 
457 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
458 				      af->sockaddr_len);
459 
460 		addr_buf += af->sockaddr_len;
461 
462 err_bindx_add:
463 		if (retval < 0) {
464 			/* Failed. Cleanup the ones that have been added */
465 			if (cnt > 0)
466 				sctp_bindx_rem(sk, addrs, cnt);
467 			return retval;
468 		}
469 	}
470 
471 	return retval;
472 }
473 
474 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
475  * associations that are part of the endpoint indicating that a list of local
476  * addresses are added to the endpoint.
477  *
478  * If any of the addresses is already in the bind address list of the
479  * association, we do not send the chunk for that association.  But it will not
480  * affect other associations.
481  *
482  * Only sctp_setsockopt_bindx() is supposed to call this function.
483  */
484 static int sctp_send_asconf_add_ip(struct sock		*sk,
485 				   struct sockaddr	*addrs,
486 				   int 			addrcnt)
487 {
488 	struct sctp_sock		*sp;
489 	struct sctp_endpoint		*ep;
490 	struct sctp_association		*asoc;
491 	struct sctp_bind_addr		*bp;
492 	struct sctp_chunk		*chunk;
493 	struct sctp_sockaddr_entry	*laddr;
494 	union sctp_addr			*addr;
495 	void				*addr_buf;
496 	struct sctp_af			*af;
497 	struct list_head		*pos;
498 	struct list_head		*p;
499 	int 				i;
500 	int 				retval = 0;
501 
502 	if (!sctp_addip_enable)
503 		return retval;
504 
505 	sp = sctp_sk(sk);
506 	ep = sp->ep;
507 
508 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
509 			  __FUNCTION__, sk, addrs, addrcnt);
510 
511 	list_for_each(pos, &ep->asocs) {
512 		asoc = list_entry(pos, struct sctp_association, asocs);
513 
514 		if (!asoc->peer.asconf_capable)
515 			continue;
516 
517 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
518 			continue;
519 
520 		if (!sctp_state(asoc, ESTABLISHED))
521 			continue;
522 
523 		/* Check if any address in the packed array of addresses is
524 	         * in the bind address list of the association. If so,
525 		 * do not send the asconf chunk to its peer, but continue with
526 		 * other associations.
527 		 */
528 		addr_buf = addrs;
529 		for (i = 0; i < addrcnt; i++) {
530 			addr = (union sctp_addr *)addr_buf;
531 			af = sctp_get_af_specific(addr->v4.sin_family);
532 			if (!af) {
533 				retval = -EINVAL;
534 				goto out;
535 			}
536 
537 			if (sctp_assoc_lookup_laddr(asoc, addr))
538 				break;
539 
540 			addr_buf += af->sockaddr_len;
541 		}
542 		if (i < addrcnt)
543 			continue;
544 
545 		/* Use the first address in bind addr list of association as
546 		 * Address Parameter of ASCONF CHUNK.
547 		 */
548 		sctp_read_lock(&asoc->base.addr_lock);
549 		bp = &asoc->base.bind_addr;
550 		p = bp->address_list.next;
551 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
552 		sctp_read_unlock(&asoc->base.addr_lock);
553 
554 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
555 						   addrcnt, SCTP_PARAM_ADD_IP);
556 		if (!chunk) {
557 			retval = -ENOMEM;
558 			goto out;
559 		}
560 
561 		retval = sctp_send_asconf(asoc, chunk);
562 
563 		/* FIXME: After sending the add address ASCONF chunk, we
564 		 * cannot append the address to the association's binding
565 		 * address list, because the new address may be used as the
566 		 * source of a message sent to the peer before the ASCONF
567 		 * chunk is received by the peer.  So we should wait until
568 		 * ASCONF_ACK is received.
569 		 */
570 	}
571 
572 out:
573 	return retval;
574 }
575 
576 /* Remove a list of addresses from bind addresses list.  Do not remove the
577  * last address.
578  *
579  * Basically run through each address specified in the addrs/addrcnt
580  * array/length pair, determine if it is IPv6 or IPv4 and call
581  * sctp_del_bind() on it.
582  *
583  * If any of them fails, then the operation will be reversed and the
584  * ones that were removed will be added back.
585  *
586  * At least one address has to be left; if only one address is
587  * available, the operation will return -EBUSY.
588  *
589  * Only sctp_setsockopt_bindx() is supposed to call this function.
590  */
591 int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
592 {
593 	struct sctp_sock *sp = sctp_sk(sk);
594 	struct sctp_endpoint *ep = sp->ep;
595 	int cnt;
596 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
597 	int retval = 0;
598 	union sctp_addr saveaddr;
599 	void *addr_buf;
600 	struct sockaddr *sa_addr;
601 	struct sctp_af *af;
602 
603 	SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
604 			  sk, addrs, addrcnt);
605 
606 	addr_buf = addrs;
607 	for (cnt = 0; cnt < addrcnt; cnt++) {
608 		/* If the bind address list is empty or if there is only one
609 		 * bind address, there is nothing more to be removed (we need
610 		 * at least one address here).
611 		 */
612 		if (list_empty(&bp->address_list) ||
613 		    (sctp_list_single_entry(&bp->address_list))) {
614 			retval = -EBUSY;
615 			goto err_bindx_rem;
616 		}
617 
618 		/* The list may contain either IPv4 or IPv6 address;
619 		 * determine the address length to copy the address to
620 		 * saveaddr.
621 		 */
622 		sa_addr = (struct sockaddr *)addr_buf;
623 		af = sctp_get_af_specific(sa_addr->sa_family);
624 		if (!af) {
625 			retval = -EINVAL;
626 			goto err_bindx_rem;
627 		}
628 		memcpy(&saveaddr, sa_addr, af->sockaddr_len);
629 		saveaddr.v4.sin_port = ntohs(saveaddr.v4.sin_port);
630 		if (saveaddr.v4.sin_port != bp->port) {
631 			retval = -EINVAL;
632 			goto err_bindx_rem;
633 		}
634 
635 		/* FIXME - There is probably a need to check if sk->sk_saddr and
636 		 * sk->sk_rcv_addr are currently set to one of the addresses to
637 		 * be removed. This is something which needs to be looked into
638 		 * when we are fixing the outstanding issues with multi-homing
639 		 * socket routing and failover schemes. Refer to comments in
640 		 * sctp_do_bind(). -daisy
641 		 */
642 		sctp_local_bh_disable();
643 		sctp_write_lock(&ep->base.addr_lock);
644 
645 		retval = sctp_del_bind_addr(bp, &saveaddr);
646 
647 		sctp_write_unlock(&ep->base.addr_lock);
648 		sctp_local_bh_enable();
649 
650 		addr_buf += af->sockaddr_len;
651 err_bindx_rem:
652 		if (retval < 0) {
653 			/* Failed. Add the ones that has been removed back */
654 			if (cnt > 0)
655 				sctp_bindx_add(sk, addrs, cnt);
656 			return retval;
657 		}
658 	}
659 
660 	return retval;
661 }
662 
663 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
664  * the associations that are part of the endpoint indicating that a list of
665  * local addresses are removed from the endpoint.
666  *
667  * If any of the addresses is already in the bind address list of the
668  * association, we do not send the chunk for that association.  But it will not
669  * affect other associations.
670  *
671  * Only sctp_setsockopt_bindx() is supposed to call this function.
672  */
673 static int sctp_send_asconf_del_ip(struct sock		*sk,
674 				   struct sockaddr	*addrs,
675 				   int			addrcnt)
676 {
677 	struct sctp_sock	*sp;
678 	struct sctp_endpoint	*ep;
679 	struct sctp_association	*asoc;
680 	struct sctp_bind_addr	*bp;
681 	struct sctp_chunk	*chunk;
682 	union sctp_addr		*laddr;
683 	void			*addr_buf;
684 	struct sctp_af		*af;
685 	struct list_head	*pos;
686 	int 			i;
687 	int 			retval = 0;
688 
689 	if (!sctp_addip_enable)
690 		return retval;
691 
692 	sp = sctp_sk(sk);
693 	ep = sp->ep;
694 
695 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
696 			  __FUNCTION__, sk, addrs, addrcnt);
697 
698 	list_for_each(pos, &ep->asocs) {
699 		asoc = list_entry(pos, struct sctp_association, asocs);
700 
701 		if (!asoc->peer.asconf_capable)
702 			continue;
703 
704 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
705 			continue;
706 
707 		if (!sctp_state(asoc, ESTABLISHED))
708 			continue;
709 
710 		/* Check if any address in the packed array of addresses is
711 	         * not present in the bind address list of the association.
712 		 * If so, do not send the asconf chunk to its peer, but
713 		 * continue with other associations.
714 		 */
715 		addr_buf = addrs;
716 		for (i = 0; i < addrcnt; i++) {
717 			laddr = (union sctp_addr *)addr_buf;
718 			af = sctp_get_af_specific(laddr->v4.sin_family);
719 			if (!af) {
720 				retval = -EINVAL;
721 				goto out;
722 			}
723 
724 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
725 				break;
726 
727 			addr_buf += af->sockaddr_len;
728 		}
729 		if (i < addrcnt)
730 			continue;
731 
732 		/* Find one address in the association's bind address list
733 		 * that is not in the packed array of addresses. This is to
734 		 * make sure that we do not delete all the addresses in the
735 		 * association.
736 		 */
737 		sctp_read_lock(&asoc->base.addr_lock);
738 		bp = &asoc->base.bind_addr;
739 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
740 					       addrcnt, sp);
741 		sctp_read_unlock(&asoc->base.addr_lock);
742 		if (!laddr)
743 			continue;
744 
745 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
746 						   SCTP_PARAM_DEL_IP);
747 		if (!chunk) {
748 			retval = -ENOMEM;
749 			goto out;
750 		}
751 
752 		retval = sctp_send_asconf(asoc, chunk);
753 
754 		/* FIXME: After sending the delete address ASCONF chunk, we
755 		 * cannot remove the addresses from the association's bind
756 		 * address list, because there maybe some packet send to
757 		 * the delete addresses, so we should wait until ASCONF_ACK
758 		 * packet is received.
759 		 */
760 	}
761 out:
762 	return retval;
763 }
764 
765 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
766  *
767  * API 8.1
768  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
769  *                int flags);
770  *
771  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
772  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
773  * or IPv6 addresses.
774  *
775  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
776  * Section 3.1.2 for this usage.
777  *
778  * addrs is a pointer to an array of one or more socket addresses. Each
779  * address is contained in its appropriate structure (i.e. struct
780  * sockaddr_in or struct sockaddr_in6) the family of the address type
781  * must be used to distengish the address length (note that this
782  * representation is termed a "packed array" of addresses). The caller
783  * specifies the number of addresses in the array with addrcnt.
784  *
785  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
786  * -1, and sets errno to the appropriate error code.
787  *
788  * For SCTP, the port given in each socket address must be the same, or
789  * sctp_bindx() will fail, setting errno to EINVAL.
790  *
791  * The flags parameter is formed from the bitwise OR of zero or more of
792  * the following currently defined flags:
793  *
794  * SCTP_BINDX_ADD_ADDR
795  *
796  * SCTP_BINDX_REM_ADDR
797  *
798  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
799  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
800  * addresses from the association. The two flags are mutually exclusive;
801  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
802  * not remove all addresses from an association; sctp_bindx() will
803  * reject such an attempt with EINVAL.
804  *
805  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
806  * additional addresses with an endpoint after calling bind().  Or use
807  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
808  * socket is associated with so that no new association accepted will be
809  * associated with those addresses. If the endpoint supports dynamic
810  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
811  * endpoint to send the appropriate message to the peer to change the
812  * peers address lists.
813  *
814  * Adding and removing addresses from a connected association is
815  * optional functionality. Implementations that do not support this
816  * functionality should return EOPNOTSUPP.
817  *
818  * Basically do nothing but copying the addresses from user to kernel
819  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
820  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
821  * from userspace.
822  *
823  * We don't use copy_from_user() for optimization: we first do the
824  * sanity checks (buffer size -fast- and access check-healthy
825  * pointer); if all of those succeed, then we can alloc the memory
826  * (expensive operation) needed to copy the data to kernel. Then we do
827  * the copying without checking the user space area
828  * (__copy_from_user()).
829  *
830  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
831  * it.
832  *
833  * sk        The sk of the socket
834  * addrs     The pointer to the addresses in user land
835  * addrssize Size of the addrs buffer
836  * op        Operation to perform (add or remove, see the flags of
837  *           sctp_bindx)
838  *
839  * Returns 0 if ok, <0 errno code on error.
840  */
841 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
842 				      struct sockaddr __user *addrs,
843 				      int addrs_size, int op)
844 {
845 	struct sockaddr *kaddrs;
846 	int err;
847 	int addrcnt = 0;
848 	int walk_size = 0;
849 	struct sockaddr *sa_addr;
850 	void *addr_buf;
851 	struct sctp_af *af;
852 
853 	SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
854 			  " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
855 
856 	if (unlikely(addrs_size <= 0))
857 		return -EINVAL;
858 
859 	/* Check the user passed a healthy pointer.  */
860 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
861 		return -EFAULT;
862 
863 	/* Alloc space for the address array in kernel memory.  */
864 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
865 	if (unlikely(!kaddrs))
866 		return -ENOMEM;
867 
868 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
869 		kfree(kaddrs);
870 		return -EFAULT;
871 	}
872 
873 	/* Walk through the addrs buffer and count the number of addresses. */
874 	addr_buf = kaddrs;
875 	while (walk_size < addrs_size) {
876 		sa_addr = (struct sockaddr *)addr_buf;
877 		af = sctp_get_af_specific(sa_addr->sa_family);
878 
879 		/* If the address family is not supported or if this address
880 		 * causes the address buffer to overflow return EINVAL.
881 		 */
882 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
883 			kfree(kaddrs);
884 			return -EINVAL;
885 		}
886 		addrcnt++;
887 		addr_buf += af->sockaddr_len;
888 		walk_size += af->sockaddr_len;
889 	}
890 
891 	/* Do the work. */
892 	switch (op) {
893 	case SCTP_BINDX_ADD_ADDR:
894 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
895 		if (err)
896 			goto out;
897 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
898 		break;
899 
900 	case SCTP_BINDX_REM_ADDR:
901 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
902 		if (err)
903 			goto out;
904 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
905 		break;
906 
907 	default:
908 		err = -EINVAL;
909 		break;
910         };
911 
912 out:
913 	kfree(kaddrs);
914 
915 	return err;
916 }
917 
918 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
919  *
920  * Common routine for handling connect() and sctp_connectx().
921  * Connect will come in with just a single address.
922  */
923 static int __sctp_connect(struct sock* sk,
924 			  struct sockaddr *kaddrs,
925 			  int addrs_size)
926 {
927 	struct sctp_sock *sp;
928 	struct sctp_endpoint *ep;
929 	struct sctp_association *asoc = NULL;
930 	struct sctp_association *asoc2;
931 	struct sctp_transport *transport;
932 	union sctp_addr to;
933 	struct sctp_af *af;
934 	sctp_scope_t scope;
935 	long timeo;
936 	int err = 0;
937 	int addrcnt = 0;
938 	int walk_size = 0;
939 	struct sockaddr *sa_addr;
940 	void *addr_buf;
941 
942 	sp = sctp_sk(sk);
943 	ep = sp->ep;
944 
945 	/* connect() cannot be done on a socket that is already in ESTABLISHED
946 	 * state - UDP-style peeled off socket or a TCP-style socket that
947 	 * is already connected.
948 	 * It cannot be done even on a TCP-style listening socket.
949 	 */
950 	if (sctp_sstate(sk, ESTABLISHED) ||
951 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
952 		err = -EISCONN;
953 		goto out_free;
954 	}
955 
956 	/* Walk through the addrs buffer and count the number of addresses. */
957 	addr_buf = kaddrs;
958 	while (walk_size < addrs_size) {
959 		sa_addr = (struct sockaddr *)addr_buf;
960 		af = sctp_get_af_specific(sa_addr->sa_family);
961 
962 		/* If the address family is not supported or if this address
963 		 * causes the address buffer to overflow return EINVAL.
964 		 */
965 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
966 			err = -EINVAL;
967 			goto out_free;
968 		}
969 
970 		err = sctp_verify_addr(sk, (union sctp_addr *)sa_addr,
971 				       af->sockaddr_len);
972 		if (err)
973 			goto out_free;
974 
975 		memcpy(&to, sa_addr, af->sockaddr_len);
976 		to.v4.sin_port = ntohs(to.v4.sin_port);
977 
978 		/* Check if there already is a matching association on the
979 		 * endpoint (other than the one created here).
980 		 */
981 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
982 		if (asoc2 && asoc2 != asoc) {
983 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
984 				err = -EISCONN;
985 			else
986 				err = -EALREADY;
987 			goto out_free;
988 		}
989 
990 		/* If we could not find a matching association on the endpoint,
991 		 * make sure that there is no peeled-off association matching
992 		 * the peer address even on another socket.
993 		 */
994 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
995 			err = -EADDRNOTAVAIL;
996 			goto out_free;
997 		}
998 
999 		if (!asoc) {
1000 			/* If a bind() or sctp_bindx() is not called prior to
1001 			 * an sctp_connectx() call, the system picks an
1002 			 * ephemeral port and will choose an address set
1003 			 * equivalent to binding with a wildcard address.
1004 			 */
1005 			if (!ep->base.bind_addr.port) {
1006 				if (sctp_autobind(sk)) {
1007 					err = -EAGAIN;
1008 					goto out_free;
1009 				}
1010 			} else {
1011 				/*
1012 				 * If an unprivileged user inherits a 1-many
1013 				 * style socket with open associations on a
1014 				 * privileged port, it MAY be permitted to
1015 				 * accept new associations, but it SHOULD NOT
1016 				 * be permitted to open new associations.
1017 				 */
1018 				if (ep->base.bind_addr.port < PROT_SOCK &&
1019 				    !capable(CAP_NET_BIND_SERVICE)) {
1020 					err = -EACCES;
1021 					goto out_free;
1022 				}
1023 			}
1024 
1025 			scope = sctp_scope(&to);
1026 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1027 			if (!asoc) {
1028 				err = -ENOMEM;
1029 				goto out_free;
1030 			}
1031 		}
1032 
1033 		/* Prime the peer's transport structures.  */
1034 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1035 						SCTP_UNKNOWN);
1036 		if (!transport) {
1037 			err = -ENOMEM;
1038 			goto out_free;
1039 		}
1040 
1041 		addrcnt++;
1042 		addr_buf += af->sockaddr_len;
1043 		walk_size += af->sockaddr_len;
1044 	}
1045 
1046 	err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1047 	if (err < 0) {
1048 		goto out_free;
1049 	}
1050 
1051 	err = sctp_primitive_ASSOCIATE(asoc, NULL);
1052 	if (err < 0) {
1053 		goto out_free;
1054 	}
1055 
1056 	/* Initialize sk's dport and daddr for getpeername() */
1057 	inet_sk(sk)->dport = htons(asoc->peer.port);
1058 	af = sctp_get_af_specific(to.sa.sa_family);
1059 	af->to_sk_daddr(&to, sk);
1060 
1061 	timeo = sock_sndtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK);
1062 	err = sctp_wait_for_connect(asoc, &timeo);
1063 
1064 	/* Don't free association on exit. */
1065 	asoc = NULL;
1066 
1067 out_free:
1068 
1069 	SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1070 		          " kaddrs: %p err: %d\n",
1071 	                  asoc, kaddrs, err);
1072 	if (asoc)
1073 		sctp_association_free(asoc);
1074 	return err;
1075 }
1076 
1077 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1078  *
1079  * API 8.9
1080  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt);
1081  *
1082  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1083  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1084  * or IPv6 addresses.
1085  *
1086  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1087  * Section 3.1.2 for this usage.
1088  *
1089  * addrs is a pointer to an array of one or more socket addresses. Each
1090  * address is contained in its appropriate structure (i.e. struct
1091  * sockaddr_in or struct sockaddr_in6) the family of the address type
1092  * must be used to distengish the address length (note that this
1093  * representation is termed a "packed array" of addresses). The caller
1094  * specifies the number of addresses in the array with addrcnt.
1095  *
1096  * On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns
1097  * -1, and sets errno to the appropriate error code.
1098  *
1099  * For SCTP, the port given in each socket address must be the same, or
1100  * sctp_connectx() will fail, setting errno to EINVAL.
1101  *
1102  * An application can use sctp_connectx to initiate an association with
1103  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1104  * allows a caller to specify multiple addresses at which a peer can be
1105  * reached.  The way the SCTP stack uses the list of addresses to set up
1106  * the association is implementation dependant.  This function only
1107  * specifies that the stack will try to make use of all the addresses in
1108  * the list when needed.
1109  *
1110  * Note that the list of addresses passed in is only used for setting up
1111  * the association.  It does not necessarily equal the set of addresses
1112  * the peer uses for the resulting association.  If the caller wants to
1113  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1114  * retrieve them after the association has been set up.
1115  *
1116  * Basically do nothing but copying the addresses from user to kernel
1117  * land and invoking either sctp_connectx(). This is used for tunneling
1118  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1119  *
1120  * We don't use copy_from_user() for optimization: we first do the
1121  * sanity checks (buffer size -fast- and access check-healthy
1122  * pointer); if all of those succeed, then we can alloc the memory
1123  * (expensive operation) needed to copy the data to kernel. Then we do
1124  * the copying without checking the user space area
1125  * (__copy_from_user()).
1126  *
1127  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1128  * it.
1129  *
1130  * sk        The sk of the socket
1131  * addrs     The pointer to the addresses in user land
1132  * addrssize Size of the addrs buffer
1133  *
1134  * Returns 0 if ok, <0 errno code on error.
1135  */
1136 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1137 				      struct sockaddr __user *addrs,
1138 				      int addrs_size)
1139 {
1140 	int err = 0;
1141 	struct sockaddr *kaddrs;
1142 
1143 	SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1144 			  __FUNCTION__, sk, addrs, addrs_size);
1145 
1146 	if (unlikely(addrs_size <= 0))
1147 		return -EINVAL;
1148 
1149 	/* Check the user passed a healthy pointer.  */
1150 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1151 		return -EFAULT;
1152 
1153 	/* Alloc space for the address array in kernel memory.  */
1154 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1155 	if (unlikely(!kaddrs))
1156 		return -ENOMEM;
1157 
1158 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1159 		err = -EFAULT;
1160 	} else {
1161 		err = __sctp_connect(sk, kaddrs, addrs_size);
1162 	}
1163 
1164 	kfree(kaddrs);
1165 	return err;
1166 }
1167 
1168 /* API 3.1.4 close() - UDP Style Syntax
1169  * Applications use close() to perform graceful shutdown (as described in
1170  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1171  * by a UDP-style socket.
1172  *
1173  * The syntax is
1174  *
1175  *   ret = close(int sd);
1176  *
1177  *   sd      - the socket descriptor of the associations to be closed.
1178  *
1179  * To gracefully shutdown a specific association represented by the
1180  * UDP-style socket, an application should use the sendmsg() call,
1181  * passing no user data, but including the appropriate flag in the
1182  * ancillary data (see Section xxxx).
1183  *
1184  * If sd in the close() call is a branched-off socket representing only
1185  * one association, the shutdown is performed on that association only.
1186  *
1187  * 4.1.6 close() - TCP Style Syntax
1188  *
1189  * Applications use close() to gracefully close down an association.
1190  *
1191  * The syntax is:
1192  *
1193  *    int close(int sd);
1194  *
1195  *      sd      - the socket descriptor of the association to be closed.
1196  *
1197  * After an application calls close() on a socket descriptor, no further
1198  * socket operations will succeed on that descriptor.
1199  *
1200  * API 7.1.4 SO_LINGER
1201  *
1202  * An application using the TCP-style socket can use this option to
1203  * perform the SCTP ABORT primitive.  The linger option structure is:
1204  *
1205  *  struct  linger {
1206  *     int     l_onoff;                // option on/off
1207  *     int     l_linger;               // linger time
1208  * };
1209  *
1210  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1211  * to 0, calling close() is the same as the ABORT primitive.  If the
1212  * value is set to a negative value, the setsockopt() call will return
1213  * an error.  If the value is set to a positive value linger_time, the
1214  * close() can be blocked for at most linger_time ms.  If the graceful
1215  * shutdown phase does not finish during this period, close() will
1216  * return but the graceful shutdown phase continues in the system.
1217  */
1218 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1219 {
1220 	struct sctp_endpoint *ep;
1221 	struct sctp_association *asoc;
1222 	struct list_head *pos, *temp;
1223 
1224 	SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1225 
1226 	sctp_lock_sock(sk);
1227 	sk->sk_shutdown = SHUTDOWN_MASK;
1228 
1229 	ep = sctp_sk(sk)->ep;
1230 
1231 	/* Walk all associations on a socket, not on an endpoint.  */
1232 	list_for_each_safe(pos, temp, &ep->asocs) {
1233 		asoc = list_entry(pos, struct sctp_association, asocs);
1234 
1235 		if (sctp_style(sk, TCP)) {
1236 			/* A closed association can still be in the list if
1237 			 * it belongs to a TCP-style listening socket that is
1238 			 * not yet accepted. If so, free it. If not, send an
1239 			 * ABORT or SHUTDOWN based on the linger options.
1240 			 */
1241 			if (sctp_state(asoc, CLOSED)) {
1242 				sctp_unhash_established(asoc);
1243 				sctp_association_free(asoc);
1244 
1245 			} else if (sock_flag(sk, SOCK_LINGER) &&
1246 				   !sk->sk_lingertime)
1247 				sctp_primitive_ABORT(asoc, NULL);
1248 			else
1249 				sctp_primitive_SHUTDOWN(asoc, NULL);
1250 		} else
1251 			sctp_primitive_SHUTDOWN(asoc, NULL);
1252 	}
1253 
1254 	/* Clean up any skbs sitting on the receive queue.  */
1255 	sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1256 	sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1257 
1258 	/* On a TCP-style socket, block for at most linger_time if set. */
1259 	if (sctp_style(sk, TCP) && timeout)
1260 		sctp_wait_for_close(sk, timeout);
1261 
1262 	/* This will run the backlog queue.  */
1263 	sctp_release_sock(sk);
1264 
1265 	/* Supposedly, no process has access to the socket, but
1266 	 * the net layers still may.
1267 	 */
1268 	sctp_local_bh_disable();
1269 	sctp_bh_lock_sock(sk);
1270 
1271 	/* Hold the sock, since sk_common_release() will put sock_put()
1272 	 * and we have just a little more cleanup.
1273 	 */
1274 	sock_hold(sk);
1275 	sk_common_release(sk);
1276 
1277 	sctp_bh_unlock_sock(sk);
1278 	sctp_local_bh_enable();
1279 
1280 	sock_put(sk);
1281 
1282 	SCTP_DBG_OBJCNT_DEC(sock);
1283 }
1284 
1285 /* Handle EPIPE error. */
1286 static int sctp_error(struct sock *sk, int flags, int err)
1287 {
1288 	if (err == -EPIPE)
1289 		err = sock_error(sk) ? : -EPIPE;
1290 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1291 		send_sig(SIGPIPE, current, 0);
1292 	return err;
1293 }
1294 
1295 /* API 3.1.3 sendmsg() - UDP Style Syntax
1296  *
1297  * An application uses sendmsg() and recvmsg() calls to transmit data to
1298  * and receive data from its peer.
1299  *
1300  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1301  *                  int flags);
1302  *
1303  *  socket  - the socket descriptor of the endpoint.
1304  *  message - pointer to the msghdr structure which contains a single
1305  *            user message and possibly some ancillary data.
1306  *
1307  *            See Section 5 for complete description of the data
1308  *            structures.
1309  *
1310  *  flags   - flags sent or received with the user message, see Section
1311  *            5 for complete description of the flags.
1312  *
1313  * Note:  This function could use a rewrite especially when explicit
1314  * connect support comes in.
1315  */
1316 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1317 
1318 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1319 
1320 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1321 			     struct msghdr *msg, size_t msg_len)
1322 {
1323 	struct sctp_sock *sp;
1324 	struct sctp_endpoint *ep;
1325 	struct sctp_association *new_asoc=NULL, *asoc=NULL;
1326 	struct sctp_transport *transport, *chunk_tp;
1327 	struct sctp_chunk *chunk;
1328 	union sctp_addr to;
1329 	struct sockaddr *msg_name = NULL;
1330 	struct sctp_sndrcvinfo default_sinfo = { 0 };
1331 	struct sctp_sndrcvinfo *sinfo;
1332 	struct sctp_initmsg *sinit;
1333 	sctp_assoc_t associd = 0;
1334 	sctp_cmsgs_t cmsgs = { NULL };
1335 	int err;
1336 	sctp_scope_t scope;
1337 	long timeo;
1338 	__u16 sinfo_flags = 0;
1339 	struct sctp_datamsg *datamsg;
1340 	struct list_head *pos;
1341 	int msg_flags = msg->msg_flags;
1342 
1343 	SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1344 			  sk, msg, msg_len);
1345 
1346 	err = 0;
1347 	sp = sctp_sk(sk);
1348 	ep = sp->ep;
1349 
1350 	SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1351 
1352 	/* We cannot send a message over a TCP-style listening socket. */
1353 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1354 		err = -EPIPE;
1355 		goto out_nounlock;
1356 	}
1357 
1358 	/* Parse out the SCTP CMSGs.  */
1359 	err = sctp_msghdr_parse(msg, &cmsgs);
1360 
1361 	if (err) {
1362 		SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1363 		goto out_nounlock;
1364 	}
1365 
1366 	/* Fetch the destination address for this packet.  This
1367 	 * address only selects the association--it is not necessarily
1368 	 * the address we will send to.
1369 	 * For a peeled-off socket, msg_name is ignored.
1370 	 */
1371 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1372 		int msg_namelen = msg->msg_namelen;
1373 
1374 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1375 				       msg_namelen);
1376 		if (err)
1377 			return err;
1378 
1379 		if (msg_namelen > sizeof(to))
1380 			msg_namelen = sizeof(to);
1381 		memcpy(&to, msg->msg_name, msg_namelen);
1382 		SCTP_DEBUG_PRINTK("Just memcpy'd. msg_name is "
1383 				  "0x%x:%u.\n",
1384 				  to.v4.sin_addr.s_addr, to.v4.sin_port);
1385 
1386 		to.v4.sin_port = ntohs(to.v4.sin_port);
1387 		msg_name = msg->msg_name;
1388 	}
1389 
1390 	sinfo = cmsgs.info;
1391 	sinit = cmsgs.init;
1392 
1393 	/* Did the user specify SNDRCVINFO?  */
1394 	if (sinfo) {
1395 		sinfo_flags = sinfo->sinfo_flags;
1396 		associd = sinfo->sinfo_assoc_id;
1397 	}
1398 
1399 	SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1400 			  msg_len, sinfo_flags);
1401 
1402 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1403 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1404 		err = -EINVAL;
1405 		goto out_nounlock;
1406 	}
1407 
1408 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1409 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1410 	 * If SCTP_ABORT is set, the message length could be non zero with
1411 	 * the msg_iov set to the user abort reason.
1412  	 */
1413 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1414 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1415 		err = -EINVAL;
1416 		goto out_nounlock;
1417 	}
1418 
1419 	/* If SCTP_ADDR_OVER is set, there must be an address
1420 	 * specified in msg_name.
1421 	 */
1422 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1423 		err = -EINVAL;
1424 		goto out_nounlock;
1425 	}
1426 
1427 	transport = NULL;
1428 
1429 	SCTP_DEBUG_PRINTK("About to look up association.\n");
1430 
1431 	sctp_lock_sock(sk);
1432 
1433 	/* If a msg_name has been specified, assume this is to be used.  */
1434 	if (msg_name) {
1435 		/* Look for a matching association on the endpoint. */
1436 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1437 		if (!asoc) {
1438 			/* If we could not find a matching association on the
1439 			 * endpoint, make sure that it is not a TCP-style
1440 			 * socket that already has an association or there is
1441 			 * no peeled-off association on another socket.
1442 			 */
1443 			if ((sctp_style(sk, TCP) &&
1444 			     sctp_sstate(sk, ESTABLISHED)) ||
1445 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1446 				err = -EADDRNOTAVAIL;
1447 				goto out_unlock;
1448 			}
1449 		}
1450 	} else {
1451 		asoc = sctp_id2assoc(sk, associd);
1452 		if (!asoc) {
1453 			err = -EPIPE;
1454 			goto out_unlock;
1455 		}
1456 	}
1457 
1458 	if (asoc) {
1459 		SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1460 
1461 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1462 		 * socket that has an association in CLOSED state. This can
1463 		 * happen when an accepted socket has an association that is
1464 		 * already CLOSED.
1465 		 */
1466 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1467 			err = -EPIPE;
1468 			goto out_unlock;
1469 		}
1470 
1471 		if (sinfo_flags & SCTP_EOF) {
1472 			SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1473 					  asoc);
1474 			sctp_primitive_SHUTDOWN(asoc, NULL);
1475 			err = 0;
1476 			goto out_unlock;
1477 		}
1478 		if (sinfo_flags & SCTP_ABORT) {
1479 			SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1480 			sctp_primitive_ABORT(asoc, msg);
1481 			err = 0;
1482 			goto out_unlock;
1483 		}
1484 	}
1485 
1486 	/* Do we need to create the association?  */
1487 	if (!asoc) {
1488 		SCTP_DEBUG_PRINTK("There is no association yet.\n");
1489 
1490 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1491 			err = -EINVAL;
1492 			goto out_unlock;
1493 		}
1494 
1495 		/* Check for invalid stream against the stream counts,
1496 		 * either the default or the user specified stream counts.
1497 		 */
1498 		if (sinfo) {
1499 			if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1500 				/* Check against the defaults. */
1501 				if (sinfo->sinfo_stream >=
1502 				    sp->initmsg.sinit_num_ostreams) {
1503 					err = -EINVAL;
1504 					goto out_unlock;
1505 				}
1506 			} else {
1507 				/* Check against the requested.  */
1508 				if (sinfo->sinfo_stream >=
1509 				    sinit->sinit_num_ostreams) {
1510 					err = -EINVAL;
1511 					goto out_unlock;
1512 				}
1513 			}
1514 		}
1515 
1516 		/*
1517 		 * API 3.1.2 bind() - UDP Style Syntax
1518 		 * If a bind() or sctp_bindx() is not called prior to a
1519 		 * sendmsg() call that initiates a new association, the
1520 		 * system picks an ephemeral port and will choose an address
1521 		 * set equivalent to binding with a wildcard address.
1522 		 */
1523 		if (!ep->base.bind_addr.port) {
1524 			if (sctp_autobind(sk)) {
1525 				err = -EAGAIN;
1526 				goto out_unlock;
1527 			}
1528 		} else {
1529 			/*
1530 			 * If an unprivileged user inherits a one-to-many
1531 			 * style socket with open associations on a privileged
1532 			 * port, it MAY be permitted to accept new associations,
1533 			 * but it SHOULD NOT be permitted to open new
1534 			 * associations.
1535 			 */
1536 			if (ep->base.bind_addr.port < PROT_SOCK &&
1537 			    !capable(CAP_NET_BIND_SERVICE)) {
1538 				err = -EACCES;
1539 				goto out_unlock;
1540 			}
1541 		}
1542 
1543 		scope = sctp_scope(&to);
1544 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1545 		if (!new_asoc) {
1546 			err = -ENOMEM;
1547 			goto out_unlock;
1548 		}
1549 		asoc = new_asoc;
1550 
1551 		/* If the SCTP_INIT ancillary data is specified, set all
1552 		 * the association init values accordingly.
1553 		 */
1554 		if (sinit) {
1555 			if (sinit->sinit_num_ostreams) {
1556 				asoc->c.sinit_num_ostreams =
1557 					sinit->sinit_num_ostreams;
1558 			}
1559 			if (sinit->sinit_max_instreams) {
1560 				asoc->c.sinit_max_instreams =
1561 					sinit->sinit_max_instreams;
1562 			}
1563 			if (sinit->sinit_max_attempts) {
1564 				asoc->max_init_attempts
1565 					= sinit->sinit_max_attempts;
1566 			}
1567 			if (sinit->sinit_max_init_timeo) {
1568 				asoc->max_init_timeo =
1569 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1570 			}
1571 		}
1572 
1573 		/* Prime the peer's transport structures.  */
1574 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1575 		if (!transport) {
1576 			err = -ENOMEM;
1577 			goto out_free;
1578 		}
1579 		err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1580 		if (err < 0) {
1581 			err = -ENOMEM;
1582 			goto out_free;
1583 		}
1584 	}
1585 
1586 	/* ASSERT: we have a valid association at this point.  */
1587 	SCTP_DEBUG_PRINTK("We have a valid association.\n");
1588 
1589 	if (!sinfo) {
1590 		/* If the user didn't specify SNDRCVINFO, make up one with
1591 		 * some defaults.
1592 		 */
1593 		default_sinfo.sinfo_stream = asoc->default_stream;
1594 		default_sinfo.sinfo_flags = asoc->default_flags;
1595 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1596 		default_sinfo.sinfo_context = asoc->default_context;
1597 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1598 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1599 		sinfo = &default_sinfo;
1600 	}
1601 
1602 	/* API 7.1.7, the sndbuf size per association bounds the
1603 	 * maximum size of data that can be sent in a single send call.
1604 	 */
1605 	if (msg_len > sk->sk_sndbuf) {
1606 		err = -EMSGSIZE;
1607 		goto out_free;
1608 	}
1609 
1610 	/* If fragmentation is disabled and the message length exceeds the
1611 	 * association fragmentation point, return EMSGSIZE.  The I-D
1612 	 * does not specify what this error is, but this looks like
1613 	 * a great fit.
1614 	 */
1615 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1616 		err = -EMSGSIZE;
1617 		goto out_free;
1618 	}
1619 
1620 	if (sinfo) {
1621 		/* Check for invalid stream. */
1622 		if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1623 			err = -EINVAL;
1624 			goto out_free;
1625 		}
1626 	}
1627 
1628 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1629 	if (!sctp_wspace(asoc)) {
1630 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1631 		if (err)
1632 			goto out_free;
1633 	}
1634 
1635 	/* If an address is passed with the sendto/sendmsg call, it is used
1636 	 * to override the primary destination address in the TCP model, or
1637 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1638 	 */
1639 	if ((sctp_style(sk, TCP) && msg_name) ||
1640 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1641 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1642 		if (!chunk_tp) {
1643 			err = -EINVAL;
1644 			goto out_free;
1645 		}
1646 	} else
1647 		chunk_tp = NULL;
1648 
1649 	/* Auto-connect, if we aren't connected already. */
1650 	if (sctp_state(asoc, CLOSED)) {
1651 		err = sctp_primitive_ASSOCIATE(asoc, NULL);
1652 		if (err < 0)
1653 			goto out_free;
1654 		SCTP_DEBUG_PRINTK("We associated primitively.\n");
1655 	}
1656 
1657 	/* Break the message into multiple chunks of maximum size. */
1658 	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1659 	if (!datamsg) {
1660 		err = -ENOMEM;
1661 		goto out_free;
1662 	}
1663 
1664 	/* Now send the (possibly) fragmented message. */
1665 	list_for_each(pos, &datamsg->chunks) {
1666 		chunk = list_entry(pos, struct sctp_chunk, frag_list);
1667 		sctp_datamsg_track(chunk);
1668 
1669 		/* Do accounting for the write space.  */
1670 		sctp_set_owner_w(chunk);
1671 
1672 		chunk->transport = chunk_tp;
1673 
1674 		/* Send it to the lower layers.  Note:  all chunks
1675 		 * must either fail or succeed.   The lower layer
1676 		 * works that way today.  Keep it that way or this
1677 		 * breaks.
1678 		 */
1679 		err = sctp_primitive_SEND(asoc, chunk);
1680 		/* Did the lower layer accept the chunk? */
1681 		if (err)
1682 			sctp_chunk_free(chunk);
1683 		SCTP_DEBUG_PRINTK("We sent primitively.\n");
1684 	}
1685 
1686 	sctp_datamsg_free(datamsg);
1687 	if (err)
1688 		goto out_free;
1689 	else
1690 		err = msg_len;
1691 
1692 	/* If we are already past ASSOCIATE, the lower
1693 	 * layers are responsible for association cleanup.
1694 	 */
1695 	goto out_unlock;
1696 
1697 out_free:
1698 	if (new_asoc)
1699 		sctp_association_free(asoc);
1700 out_unlock:
1701 	sctp_release_sock(sk);
1702 
1703 out_nounlock:
1704 	return sctp_error(sk, msg_flags, err);
1705 
1706 #if 0
1707 do_sock_err:
1708 	if (msg_len)
1709 		err = msg_len;
1710 	else
1711 		err = sock_error(sk);
1712 	goto out;
1713 
1714 do_interrupted:
1715 	if (msg_len)
1716 		err = msg_len;
1717 	goto out;
1718 #endif /* 0 */
1719 }
1720 
1721 /* This is an extended version of skb_pull() that removes the data from the
1722  * start of a skb even when data is spread across the list of skb's in the
1723  * frag_list. len specifies the total amount of data that needs to be removed.
1724  * when 'len' bytes could be removed from the skb, it returns 0.
1725  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
1726  * could not be removed.
1727  */
1728 static int sctp_skb_pull(struct sk_buff *skb, int len)
1729 {
1730 	struct sk_buff *list;
1731 	int skb_len = skb_headlen(skb);
1732 	int rlen;
1733 
1734 	if (len <= skb_len) {
1735 		__skb_pull(skb, len);
1736 		return 0;
1737 	}
1738 	len -= skb_len;
1739 	__skb_pull(skb, skb_len);
1740 
1741 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next) {
1742 		rlen = sctp_skb_pull(list, len);
1743 		skb->len -= (len-rlen);
1744 		skb->data_len -= (len-rlen);
1745 
1746 		if (!rlen)
1747 			return 0;
1748 
1749 		len = rlen;
1750 	}
1751 
1752 	return len;
1753 }
1754 
1755 /* API 3.1.3  recvmsg() - UDP Style Syntax
1756  *
1757  *  ssize_t recvmsg(int socket, struct msghdr *message,
1758  *                    int flags);
1759  *
1760  *  socket  - the socket descriptor of the endpoint.
1761  *  message - pointer to the msghdr structure which contains a single
1762  *            user message and possibly some ancillary data.
1763  *
1764  *            See Section 5 for complete description of the data
1765  *            structures.
1766  *
1767  *  flags   - flags sent or received with the user message, see Section
1768  *            5 for complete description of the flags.
1769  */
1770 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1771 
1772 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1773 			     struct msghdr *msg, size_t len, int noblock,
1774 			     int flags, int *addr_len)
1775 {
1776 	struct sctp_ulpevent *event = NULL;
1777 	struct sctp_sock *sp = sctp_sk(sk);
1778 	struct sk_buff *skb;
1779 	int copied;
1780 	int err = 0;
1781 	int skb_len;
1782 
1783 	SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1784 			  "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1785 			  "len", len, "knoblauch", noblock,
1786 			  "flags", flags, "addr_len", addr_len);
1787 
1788 	sctp_lock_sock(sk);
1789 
1790 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1791 		err = -ENOTCONN;
1792 		goto out;
1793 	}
1794 
1795 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1796 	if (!skb)
1797 		goto out;
1798 
1799 	/* Get the total length of the skb including any skb's in the
1800 	 * frag_list.
1801 	 */
1802 	skb_len = skb->len;
1803 
1804 	copied = skb_len;
1805 	if (copied > len)
1806 		copied = len;
1807 
1808 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1809 
1810 	event = sctp_skb2event(skb);
1811 
1812 	if (err)
1813 		goto out_free;
1814 
1815 	sock_recv_timestamp(msg, sk, skb);
1816 	if (sctp_ulpevent_is_notification(event)) {
1817 		msg->msg_flags |= MSG_NOTIFICATION;
1818 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
1819 	} else {
1820 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1821 	}
1822 
1823 	/* Check if we allow SCTP_SNDRCVINFO. */
1824 	if (sp->subscribe.sctp_data_io_event)
1825 		sctp_ulpevent_read_sndrcvinfo(event, msg);
1826 #if 0
1827 	/* FIXME: we should be calling IP/IPv6 layers.  */
1828 	if (sk->sk_protinfo.af_inet.cmsg_flags)
1829 		ip_cmsg_recv(msg, skb);
1830 #endif
1831 
1832 	err = copied;
1833 
1834 	/* If skb's length exceeds the user's buffer, update the skb and
1835 	 * push it back to the receive_queue so that the next call to
1836 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
1837 	 */
1838 	if (skb_len > copied) {
1839 		msg->msg_flags &= ~MSG_EOR;
1840 		if (flags & MSG_PEEK)
1841 			goto out_free;
1842 		sctp_skb_pull(skb, copied);
1843 		skb_queue_head(&sk->sk_receive_queue, skb);
1844 
1845 		/* When only partial message is copied to the user, increase
1846 		 * rwnd by that amount. If all the data in the skb is read,
1847 		 * rwnd is updated when the event is freed.
1848 		 */
1849 		sctp_assoc_rwnd_increase(event->asoc, copied);
1850 		goto out;
1851 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
1852 		   (event->msg_flags & MSG_EOR))
1853 		msg->msg_flags |= MSG_EOR;
1854 	else
1855 		msg->msg_flags &= ~MSG_EOR;
1856 
1857 out_free:
1858 	if (flags & MSG_PEEK) {
1859 		/* Release the skb reference acquired after peeking the skb in
1860 		 * sctp_skb_recv_datagram().
1861 		 */
1862 		kfree_skb(skb);
1863 	} else {
1864 		/* Free the event which includes releasing the reference to
1865 		 * the owner of the skb, freeing the skb and updating the
1866 		 * rwnd.
1867 		 */
1868 		sctp_ulpevent_free(event);
1869 	}
1870 out:
1871 	sctp_release_sock(sk);
1872 	return err;
1873 }
1874 
1875 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
1876  *
1877  * This option is a on/off flag.  If enabled no SCTP message
1878  * fragmentation will be performed.  Instead if a message being sent
1879  * exceeds the current PMTU size, the message will NOT be sent and
1880  * instead a error will be indicated to the user.
1881  */
1882 static int sctp_setsockopt_disable_fragments(struct sock *sk,
1883 					    char __user *optval, int optlen)
1884 {
1885 	int val;
1886 
1887 	if (optlen < sizeof(int))
1888 		return -EINVAL;
1889 
1890 	if (get_user(val, (int __user *)optval))
1891 		return -EFAULT;
1892 
1893 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
1894 
1895 	return 0;
1896 }
1897 
1898 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
1899 					int optlen)
1900 {
1901 	if (optlen != sizeof(struct sctp_event_subscribe))
1902 		return -EINVAL;
1903 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
1904 		return -EFAULT;
1905 	return 0;
1906 }
1907 
1908 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
1909  *
1910  * This socket option is applicable to the UDP-style socket only.  When
1911  * set it will cause associations that are idle for more than the
1912  * specified number of seconds to automatically close.  An association
1913  * being idle is defined an association that has NOT sent or received
1914  * user data.  The special value of '0' indicates that no automatic
1915  * close of any associations should be performed.  The option expects an
1916  * integer defining the number of seconds of idle time before an
1917  * association is closed.
1918  */
1919 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
1920 					    int optlen)
1921 {
1922 	struct sctp_sock *sp = sctp_sk(sk);
1923 
1924 	/* Applicable to UDP-style socket only */
1925 	if (sctp_style(sk, TCP))
1926 		return -EOPNOTSUPP;
1927 	if (optlen != sizeof(int))
1928 		return -EINVAL;
1929 	if (copy_from_user(&sp->autoclose, optval, optlen))
1930 		return -EFAULT;
1931 
1932 	return 0;
1933 }
1934 
1935 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
1936  *
1937  * Applications can enable or disable heartbeats for any peer address of
1938  * an association, modify an address's heartbeat interval, force a
1939  * heartbeat to be sent immediately, and adjust the address's maximum
1940  * number of retransmissions sent before an address is considered
1941  * unreachable.  The following structure is used to access and modify an
1942  * address's parameters:
1943  *
1944  *  struct sctp_paddrparams {
1945  *     sctp_assoc_t            spp_assoc_id;
1946  *     struct sockaddr_storage spp_address;
1947  *     uint32_t                spp_hbinterval;
1948  *     uint16_t                spp_pathmaxrxt;
1949  *     uint32_t                spp_pathmtu;
1950  *     uint32_t                spp_sackdelay;
1951  *     uint32_t                spp_flags;
1952  * };
1953  *
1954  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
1955  *                     application, and identifies the association for
1956  *                     this query.
1957  *   spp_address     - This specifies which address is of interest.
1958  *   spp_hbinterval  - This contains the value of the heartbeat interval,
1959  *                     in milliseconds.  If a  value of zero
1960  *                     is present in this field then no changes are to
1961  *                     be made to this parameter.
1962  *   spp_pathmaxrxt  - This contains the maximum number of
1963  *                     retransmissions before this address shall be
1964  *                     considered unreachable. If a  value of zero
1965  *                     is present in this field then no changes are to
1966  *                     be made to this parameter.
1967  *   spp_pathmtu     - When Path MTU discovery is disabled the value
1968  *                     specified here will be the "fixed" path mtu.
1969  *                     Note that if the spp_address field is empty
1970  *                     then all associations on this address will
1971  *                     have this fixed path mtu set upon them.
1972  *
1973  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
1974  *                     the number of milliseconds that sacks will be delayed
1975  *                     for. This value will apply to all addresses of an
1976  *                     association if the spp_address field is empty. Note
1977  *                     also, that if delayed sack is enabled and this
1978  *                     value is set to 0, no change is made to the last
1979  *                     recorded delayed sack timer value.
1980  *
1981  *   spp_flags       - These flags are used to control various features
1982  *                     on an association. The flag field may contain
1983  *                     zero or more of the following options.
1984  *
1985  *                     SPP_HB_ENABLE  - Enable heartbeats on the
1986  *                     specified address. Note that if the address
1987  *                     field is empty all addresses for the association
1988  *                     have heartbeats enabled upon them.
1989  *
1990  *                     SPP_HB_DISABLE - Disable heartbeats on the
1991  *                     speicifed address. Note that if the address
1992  *                     field is empty all addresses for the association
1993  *                     will have their heartbeats disabled. Note also
1994  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
1995  *                     mutually exclusive, only one of these two should
1996  *                     be specified. Enabling both fields will have
1997  *                     undetermined results.
1998  *
1999  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2000  *                     to be made immediately.
2001  *
2002  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2003  *                     discovery upon the specified address. Note that
2004  *                     if the address feild is empty then all addresses
2005  *                     on the association are effected.
2006  *
2007  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2008  *                     discovery upon the specified address. Note that
2009  *                     if the address feild is empty then all addresses
2010  *                     on the association are effected. Not also that
2011  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2012  *                     exclusive. Enabling both will have undetermined
2013  *                     results.
2014  *
2015  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2016  *                     on delayed sack. The time specified in spp_sackdelay
2017  *                     is used to specify the sack delay for this address. Note
2018  *                     that if spp_address is empty then all addresses will
2019  *                     enable delayed sack and take on the sack delay
2020  *                     value specified in spp_sackdelay.
2021  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2022  *                     off delayed sack. If the spp_address field is blank then
2023  *                     delayed sack is disabled for the entire association. Note
2024  *                     also that this field is mutually exclusive to
2025  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2026  *                     results.
2027  */
2028 int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2029 				struct sctp_transport   *trans,
2030 				struct sctp_association *asoc,
2031 				struct sctp_sock        *sp,
2032 				int                      hb_change,
2033 				int                      pmtud_change,
2034 				int                      sackdelay_change)
2035 {
2036 	int error;
2037 
2038 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2039 		error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2040 		if (error)
2041 			return error;
2042 	}
2043 
2044 	if (params->spp_hbinterval) {
2045 		if (trans) {
2046 			trans->hbinterval = msecs_to_jiffies(params->spp_hbinterval);
2047 		} else if (asoc) {
2048 			asoc->hbinterval = msecs_to_jiffies(params->spp_hbinterval);
2049 		} else {
2050 			sp->hbinterval = params->spp_hbinterval;
2051 		}
2052 	}
2053 
2054 	if (hb_change) {
2055 		if (trans) {
2056 			trans->param_flags =
2057 				(trans->param_flags & ~SPP_HB) | hb_change;
2058 		} else if (asoc) {
2059 			asoc->param_flags =
2060 				(asoc->param_flags & ~SPP_HB) | hb_change;
2061 		} else {
2062 			sp->param_flags =
2063 				(sp->param_flags & ~SPP_HB) | hb_change;
2064 		}
2065 	}
2066 
2067 	if (params->spp_pathmtu) {
2068 		if (trans) {
2069 			trans->pathmtu = params->spp_pathmtu;
2070 			sctp_assoc_sync_pmtu(asoc);
2071 		} else if (asoc) {
2072 			asoc->pathmtu = params->spp_pathmtu;
2073 			sctp_frag_point(sp, params->spp_pathmtu);
2074 		} else {
2075 			sp->pathmtu = params->spp_pathmtu;
2076 		}
2077 	}
2078 
2079 	if (pmtud_change) {
2080 		if (trans) {
2081 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2082 				(params->spp_flags & SPP_PMTUD_ENABLE);
2083 			trans->param_flags =
2084 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2085 			if (update) {
2086 				sctp_transport_pmtu(trans);
2087 				sctp_assoc_sync_pmtu(asoc);
2088 			}
2089 		} else if (asoc) {
2090 			asoc->param_flags =
2091 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2092 		} else {
2093 			sp->param_flags =
2094 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2095 		}
2096 	}
2097 
2098 	if (params->spp_sackdelay) {
2099 		if (trans) {
2100 			trans->sackdelay =
2101 				msecs_to_jiffies(params->spp_sackdelay);
2102 		} else if (asoc) {
2103 			asoc->sackdelay =
2104 				msecs_to_jiffies(params->spp_sackdelay);
2105 		} else {
2106 			sp->sackdelay = params->spp_sackdelay;
2107 		}
2108 	}
2109 
2110 	if (sackdelay_change) {
2111 		if (trans) {
2112 			trans->param_flags =
2113 				(trans->param_flags & ~SPP_SACKDELAY) |
2114 				sackdelay_change;
2115 		} else if (asoc) {
2116 			asoc->param_flags =
2117 				(asoc->param_flags & ~SPP_SACKDELAY) |
2118 				sackdelay_change;
2119 		} else {
2120 			sp->param_flags =
2121 				(sp->param_flags & ~SPP_SACKDELAY) |
2122 				sackdelay_change;
2123 		}
2124 	}
2125 
2126 	if (params->spp_pathmaxrxt) {
2127 		if (trans) {
2128 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2129 		} else if (asoc) {
2130 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2131 		} else {
2132 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2133 		}
2134 	}
2135 
2136 	return 0;
2137 }
2138 
2139 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2140 					    char __user *optval, int optlen)
2141 {
2142 	struct sctp_paddrparams  params;
2143 	struct sctp_transport   *trans = NULL;
2144 	struct sctp_association *asoc = NULL;
2145 	struct sctp_sock        *sp = sctp_sk(sk);
2146 	int error;
2147 	int hb_change, pmtud_change, sackdelay_change;
2148 
2149 	if (optlen != sizeof(struct sctp_paddrparams))
2150 		return - EINVAL;
2151 
2152 	if (copy_from_user(&params, optval, optlen))
2153 		return -EFAULT;
2154 
2155 	/* Validate flags and value parameters. */
2156 	hb_change        = params.spp_flags & SPP_HB;
2157 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2158 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2159 
2160 	if (hb_change        == SPP_HB ||
2161 	    pmtud_change     == SPP_PMTUD ||
2162 	    sackdelay_change == SPP_SACKDELAY ||
2163 	    params.spp_sackdelay > 500 ||
2164 	    (params.spp_pathmtu
2165 	    && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2166 		return -EINVAL;
2167 
2168 	/* If an address other than INADDR_ANY is specified, and
2169 	 * no transport is found, then the request is invalid.
2170 	 */
2171 	if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
2172 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2173 					       params.spp_assoc_id);
2174 		if (!trans)
2175 			return -EINVAL;
2176 	}
2177 
2178 	/* Get association, if assoc_id != 0 and the socket is a one
2179 	 * to many style socket, and an association was not found, then
2180 	 * the id was invalid.
2181 	 */
2182 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2183 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2184 		return -EINVAL;
2185 
2186 	/* Heartbeat demand can only be sent on a transport or
2187 	 * association, but not a socket.
2188 	 */
2189 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2190 		return -EINVAL;
2191 
2192 	/* Process parameters. */
2193 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2194 					    hb_change, pmtud_change,
2195 					    sackdelay_change);
2196 
2197 	if (error)
2198 		return error;
2199 
2200 	/* If changes are for association, also apply parameters to each
2201 	 * transport.
2202 	 */
2203 	if (!trans && asoc) {
2204 		struct list_head *pos;
2205 
2206 		list_for_each(pos, &asoc->peer.transport_addr_list) {
2207 			trans = list_entry(pos, struct sctp_transport,
2208 					   transports);
2209 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2210 						    hb_change, pmtud_change,
2211 						    sackdelay_change);
2212 		}
2213 	}
2214 
2215 	return 0;
2216 }
2217 
2218 /* 7.1.24. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
2219  *
2220  *   This options will get or set the delayed ack timer.  The time is set
2221  *   in milliseconds.  If the assoc_id is 0, then this sets or gets the
2222  *   endpoints default delayed ack timer value.  If the assoc_id field is
2223  *   non-zero, then the set or get effects the specified association.
2224  *
2225  *   struct sctp_assoc_value {
2226  *       sctp_assoc_t            assoc_id;
2227  *       uint32_t                assoc_value;
2228  *   };
2229  *
2230  *     assoc_id    - This parameter, indicates which association the
2231  *                   user is preforming an action upon. Note that if
2232  *                   this field's value is zero then the endpoints
2233  *                   default value is changed (effecting future
2234  *                   associations only).
2235  *
2236  *     assoc_value - This parameter contains the number of milliseconds
2237  *                   that the user is requesting the delayed ACK timer
2238  *                   be set to. Note that this value is defined in
2239  *                   the standard to be between 200 and 500 milliseconds.
2240  *
2241  *                   Note: a value of zero will leave the value alone,
2242  *                   but disable SACK delay. A non-zero value will also
2243  *                   enable SACK delay.
2244  */
2245 
2246 static int sctp_setsockopt_delayed_ack_time(struct sock *sk,
2247 					    char __user *optval, int optlen)
2248 {
2249 	struct sctp_assoc_value  params;
2250 	struct sctp_transport   *trans = NULL;
2251 	struct sctp_association *asoc = NULL;
2252 	struct sctp_sock        *sp = sctp_sk(sk);
2253 
2254 	if (optlen != sizeof(struct sctp_assoc_value))
2255 		return - EINVAL;
2256 
2257 	if (copy_from_user(&params, optval, optlen))
2258 		return -EFAULT;
2259 
2260 	/* Validate value parameter. */
2261 	if (params.assoc_value > 500)
2262 		return -EINVAL;
2263 
2264 	/* Get association, if assoc_id != 0 and the socket is a one
2265 	 * to many style socket, and an association was not found, then
2266 	 * the id was invalid.
2267  	 */
2268 	asoc = sctp_id2assoc(sk, params.assoc_id);
2269 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
2270 		return -EINVAL;
2271 
2272 	if (params.assoc_value) {
2273 		if (asoc) {
2274 			asoc->sackdelay =
2275 				msecs_to_jiffies(params.assoc_value);
2276 			asoc->param_flags =
2277 				(asoc->param_flags & ~SPP_SACKDELAY) |
2278 				SPP_SACKDELAY_ENABLE;
2279 		} else {
2280 			sp->sackdelay = params.assoc_value;
2281 			sp->param_flags =
2282 				(sp->param_flags & ~SPP_SACKDELAY) |
2283 				SPP_SACKDELAY_ENABLE;
2284 		}
2285 	} else {
2286 		if (asoc) {
2287 			asoc->param_flags =
2288 				(asoc->param_flags & ~SPP_SACKDELAY) |
2289 				SPP_SACKDELAY_DISABLE;
2290 		} else {
2291 			sp->param_flags =
2292 				(sp->param_flags & ~SPP_SACKDELAY) |
2293 				SPP_SACKDELAY_DISABLE;
2294 		}
2295 	}
2296 
2297 	/* If change is for association, also apply to each transport. */
2298 	if (asoc) {
2299 		struct list_head *pos;
2300 
2301 		list_for_each(pos, &asoc->peer.transport_addr_list) {
2302 			trans = list_entry(pos, struct sctp_transport,
2303 					   transports);
2304 			if (params.assoc_value) {
2305 				trans->sackdelay =
2306 					msecs_to_jiffies(params.assoc_value);
2307 				trans->param_flags =
2308 					(trans->param_flags & ~SPP_SACKDELAY) |
2309 					SPP_SACKDELAY_ENABLE;
2310 			} else {
2311 				trans->param_flags =
2312 					(trans->param_flags & ~SPP_SACKDELAY) |
2313 					SPP_SACKDELAY_DISABLE;
2314 			}
2315 		}
2316 	}
2317 
2318 	return 0;
2319 }
2320 
2321 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2322  *
2323  * Applications can specify protocol parameters for the default association
2324  * initialization.  The option name argument to setsockopt() and getsockopt()
2325  * is SCTP_INITMSG.
2326  *
2327  * Setting initialization parameters is effective only on an unconnected
2328  * socket (for UDP-style sockets only future associations are effected
2329  * by the change).  With TCP-style sockets, this option is inherited by
2330  * sockets derived from a listener socket.
2331  */
2332 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen)
2333 {
2334 	struct sctp_initmsg sinit;
2335 	struct sctp_sock *sp = sctp_sk(sk);
2336 
2337 	if (optlen != sizeof(struct sctp_initmsg))
2338 		return -EINVAL;
2339 	if (copy_from_user(&sinit, optval, optlen))
2340 		return -EFAULT;
2341 
2342 	if (sinit.sinit_num_ostreams)
2343 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2344 	if (sinit.sinit_max_instreams)
2345 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2346 	if (sinit.sinit_max_attempts)
2347 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2348 	if (sinit.sinit_max_init_timeo)
2349 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2350 
2351 	return 0;
2352 }
2353 
2354 /*
2355  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2356  *
2357  *   Applications that wish to use the sendto() system call may wish to
2358  *   specify a default set of parameters that would normally be supplied
2359  *   through the inclusion of ancillary data.  This socket option allows
2360  *   such an application to set the default sctp_sndrcvinfo structure.
2361  *   The application that wishes to use this socket option simply passes
2362  *   in to this call the sctp_sndrcvinfo structure defined in Section
2363  *   5.2.2) The input parameters accepted by this call include
2364  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2365  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2366  *   to this call if the caller is using the UDP model.
2367  */
2368 static int sctp_setsockopt_default_send_param(struct sock *sk,
2369 						char __user *optval, int optlen)
2370 {
2371 	struct sctp_sndrcvinfo info;
2372 	struct sctp_association *asoc;
2373 	struct sctp_sock *sp = sctp_sk(sk);
2374 
2375 	if (optlen != sizeof(struct sctp_sndrcvinfo))
2376 		return -EINVAL;
2377 	if (copy_from_user(&info, optval, optlen))
2378 		return -EFAULT;
2379 
2380 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2381 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2382 		return -EINVAL;
2383 
2384 	if (asoc) {
2385 		asoc->default_stream = info.sinfo_stream;
2386 		asoc->default_flags = info.sinfo_flags;
2387 		asoc->default_ppid = info.sinfo_ppid;
2388 		asoc->default_context = info.sinfo_context;
2389 		asoc->default_timetolive = info.sinfo_timetolive;
2390 	} else {
2391 		sp->default_stream = info.sinfo_stream;
2392 		sp->default_flags = info.sinfo_flags;
2393 		sp->default_ppid = info.sinfo_ppid;
2394 		sp->default_context = info.sinfo_context;
2395 		sp->default_timetolive = info.sinfo_timetolive;
2396 	}
2397 
2398 	return 0;
2399 }
2400 
2401 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2402  *
2403  * Requests that the local SCTP stack use the enclosed peer address as
2404  * the association primary.  The enclosed address must be one of the
2405  * association peer's addresses.
2406  */
2407 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2408 					int optlen)
2409 {
2410 	struct sctp_prim prim;
2411 	struct sctp_transport *trans;
2412 
2413 	if (optlen != sizeof(struct sctp_prim))
2414 		return -EINVAL;
2415 
2416 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2417 		return -EFAULT;
2418 
2419 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2420 	if (!trans)
2421 		return -EINVAL;
2422 
2423 	sctp_assoc_set_primary(trans->asoc, trans);
2424 
2425 	return 0;
2426 }
2427 
2428 /*
2429  * 7.1.5 SCTP_NODELAY
2430  *
2431  * Turn on/off any Nagle-like algorithm.  This means that packets are
2432  * generally sent as soon as possible and no unnecessary delays are
2433  * introduced, at the cost of more packets in the network.  Expects an
2434  *  integer boolean flag.
2435  */
2436 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2437 					int optlen)
2438 {
2439 	int val;
2440 
2441 	if (optlen < sizeof(int))
2442 		return -EINVAL;
2443 	if (get_user(val, (int __user *)optval))
2444 		return -EFAULT;
2445 
2446 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2447 	return 0;
2448 }
2449 
2450 /*
2451  *
2452  * 7.1.1 SCTP_RTOINFO
2453  *
2454  * The protocol parameters used to initialize and bound retransmission
2455  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2456  * and modify these parameters.
2457  * All parameters are time values, in milliseconds.  A value of 0, when
2458  * modifying the parameters, indicates that the current value should not
2459  * be changed.
2460  *
2461  */
2462 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) {
2463 	struct sctp_rtoinfo rtoinfo;
2464 	struct sctp_association *asoc;
2465 
2466 	if (optlen != sizeof (struct sctp_rtoinfo))
2467 		return -EINVAL;
2468 
2469 	if (copy_from_user(&rtoinfo, optval, optlen))
2470 		return -EFAULT;
2471 
2472 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2473 
2474 	/* Set the values to the specific association */
2475 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2476 		return -EINVAL;
2477 
2478 	if (asoc) {
2479 		if (rtoinfo.srto_initial != 0)
2480 			asoc->rto_initial =
2481 				msecs_to_jiffies(rtoinfo.srto_initial);
2482 		if (rtoinfo.srto_max != 0)
2483 			asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2484 		if (rtoinfo.srto_min != 0)
2485 			asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2486 	} else {
2487 		/* If there is no association or the association-id = 0
2488 		 * set the values to the endpoint.
2489 		 */
2490 		struct sctp_sock *sp = sctp_sk(sk);
2491 
2492 		if (rtoinfo.srto_initial != 0)
2493 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2494 		if (rtoinfo.srto_max != 0)
2495 			sp->rtoinfo.srto_max = rtoinfo.srto_max;
2496 		if (rtoinfo.srto_min != 0)
2497 			sp->rtoinfo.srto_min = rtoinfo.srto_min;
2498 	}
2499 
2500 	return 0;
2501 }
2502 
2503 /*
2504  *
2505  * 7.1.2 SCTP_ASSOCINFO
2506  *
2507  * This option is used to tune the the maximum retransmission attempts
2508  * of the association.
2509  * Returns an error if the new association retransmission value is
2510  * greater than the sum of the retransmission value  of the peer.
2511  * See [SCTP] for more information.
2512  *
2513  */
2514 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen)
2515 {
2516 
2517 	struct sctp_assocparams assocparams;
2518 	struct sctp_association *asoc;
2519 
2520 	if (optlen != sizeof(struct sctp_assocparams))
2521 		return -EINVAL;
2522 	if (copy_from_user(&assocparams, optval, optlen))
2523 		return -EFAULT;
2524 
2525 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2526 
2527 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2528 		return -EINVAL;
2529 
2530 	/* Set the values to the specific association */
2531 	if (asoc) {
2532 		if (assocparams.sasoc_asocmaxrxt != 0)
2533 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2534 		if (assocparams.sasoc_cookie_life != 0) {
2535 			asoc->cookie_life.tv_sec =
2536 					assocparams.sasoc_cookie_life / 1000;
2537 			asoc->cookie_life.tv_usec =
2538 					(assocparams.sasoc_cookie_life % 1000)
2539 					* 1000;
2540 		}
2541 	} else {
2542 		/* Set the values to the endpoint */
2543 		struct sctp_sock *sp = sctp_sk(sk);
2544 
2545 		if (assocparams.sasoc_asocmaxrxt != 0)
2546 			sp->assocparams.sasoc_asocmaxrxt =
2547 						assocparams.sasoc_asocmaxrxt;
2548 		if (assocparams.sasoc_cookie_life != 0)
2549 			sp->assocparams.sasoc_cookie_life =
2550 						assocparams.sasoc_cookie_life;
2551 	}
2552 	return 0;
2553 }
2554 
2555 /*
2556  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2557  *
2558  * This socket option is a boolean flag which turns on or off mapped V4
2559  * addresses.  If this option is turned on and the socket is type
2560  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2561  * If this option is turned off, then no mapping will be done of V4
2562  * addresses and a user will receive both PF_INET6 and PF_INET type
2563  * addresses on the socket.
2564  */
2565 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen)
2566 {
2567 	int val;
2568 	struct sctp_sock *sp = sctp_sk(sk);
2569 
2570 	if (optlen < sizeof(int))
2571 		return -EINVAL;
2572 	if (get_user(val, (int __user *)optval))
2573 		return -EFAULT;
2574 	if (val)
2575 		sp->v4mapped = 1;
2576 	else
2577 		sp->v4mapped = 0;
2578 
2579 	return 0;
2580 }
2581 
2582 /*
2583  * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
2584  *
2585  * This socket option specifies the maximum size to put in any outgoing
2586  * SCTP chunk.  If a message is larger than this size it will be
2587  * fragmented by SCTP into the specified size.  Note that the underlying
2588  * SCTP implementation may fragment into smaller sized chunks when the
2589  * PMTU of the underlying association is smaller than the value set by
2590  * the user.
2591  */
2592 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen)
2593 {
2594 	struct sctp_association *asoc;
2595 	struct list_head *pos;
2596 	struct sctp_sock *sp = sctp_sk(sk);
2597 	int val;
2598 
2599 	if (optlen < sizeof(int))
2600 		return -EINVAL;
2601 	if (get_user(val, (int __user *)optval))
2602 		return -EFAULT;
2603 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2604 		return -EINVAL;
2605 	sp->user_frag = val;
2606 
2607 	/* Update the frag_point of the existing associations. */
2608 	list_for_each(pos, &(sp->ep->asocs)) {
2609 		asoc = list_entry(pos, struct sctp_association, asocs);
2610 		asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu);
2611 	}
2612 
2613 	return 0;
2614 }
2615 
2616 
2617 /*
2618  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2619  *
2620  *   Requests that the peer mark the enclosed address as the association
2621  *   primary. The enclosed address must be one of the association's
2622  *   locally bound addresses. The following structure is used to make a
2623  *   set primary request:
2624  */
2625 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2626 					     int optlen)
2627 {
2628 	struct sctp_sock	*sp;
2629 	struct sctp_endpoint	*ep;
2630 	struct sctp_association	*asoc = NULL;
2631 	struct sctp_setpeerprim	prim;
2632 	struct sctp_chunk	*chunk;
2633 	int 			err;
2634 
2635 	sp = sctp_sk(sk);
2636 	ep = sp->ep;
2637 
2638 	if (!sctp_addip_enable)
2639 		return -EPERM;
2640 
2641 	if (optlen != sizeof(struct sctp_setpeerprim))
2642 		return -EINVAL;
2643 
2644 	if (copy_from_user(&prim, optval, optlen))
2645 		return -EFAULT;
2646 
2647 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2648 	if (!asoc)
2649 		return -EINVAL;
2650 
2651 	if (!asoc->peer.asconf_capable)
2652 		return -EPERM;
2653 
2654 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2655 		return -EPERM;
2656 
2657 	if (!sctp_state(asoc, ESTABLISHED))
2658 		return -ENOTCONN;
2659 
2660 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2661 		return -EADDRNOTAVAIL;
2662 
2663 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
2664 	chunk = sctp_make_asconf_set_prim(asoc,
2665 					  (union sctp_addr *)&prim.sspp_addr);
2666 	if (!chunk)
2667 		return -ENOMEM;
2668 
2669 	err = sctp_send_asconf(asoc, chunk);
2670 
2671 	SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2672 
2673 	return err;
2674 }
2675 
2676 static int sctp_setsockopt_adaption_layer(struct sock *sk, char __user *optval,
2677 					  int optlen)
2678 {
2679 	struct sctp_setadaption adaption;
2680 
2681 	if (optlen != sizeof(struct sctp_setadaption))
2682 		return -EINVAL;
2683 	if (copy_from_user(&adaption, optval, optlen))
2684 		return -EFAULT;
2685 
2686 	sctp_sk(sk)->adaption_ind = adaption.ssb_adaption_ind;
2687 
2688 	return 0;
2689 }
2690 
2691 /* API 6.2 setsockopt(), getsockopt()
2692  *
2693  * Applications use setsockopt() and getsockopt() to set or retrieve
2694  * socket options.  Socket options are used to change the default
2695  * behavior of sockets calls.  They are described in Section 7.
2696  *
2697  * The syntax is:
2698  *
2699  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
2700  *                    int __user *optlen);
2701  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
2702  *                    int optlen);
2703  *
2704  *   sd      - the socket descript.
2705  *   level   - set to IPPROTO_SCTP for all SCTP options.
2706  *   optname - the option name.
2707  *   optval  - the buffer to store the value of the option.
2708  *   optlen  - the size of the buffer.
2709  */
2710 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
2711 				char __user *optval, int optlen)
2712 {
2713 	int retval = 0;
2714 
2715 	SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
2716 			  sk, optname);
2717 
2718 	/* I can hardly begin to describe how wrong this is.  This is
2719 	 * so broken as to be worse than useless.  The API draft
2720 	 * REALLY is NOT helpful here...  I am not convinced that the
2721 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
2722 	 * are at all well-founded.
2723 	 */
2724 	if (level != SOL_SCTP) {
2725 		struct sctp_af *af = sctp_sk(sk)->pf->af;
2726 		retval = af->setsockopt(sk, level, optname, optval, optlen);
2727 		goto out_nounlock;
2728 	}
2729 
2730 	sctp_lock_sock(sk);
2731 
2732 	switch (optname) {
2733 	case SCTP_SOCKOPT_BINDX_ADD:
2734 		/* 'optlen' is the size of the addresses buffer. */
2735 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2736 					       optlen, SCTP_BINDX_ADD_ADDR);
2737 		break;
2738 
2739 	case SCTP_SOCKOPT_BINDX_REM:
2740 		/* 'optlen' is the size of the addresses buffer. */
2741 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2742 					       optlen, SCTP_BINDX_REM_ADDR);
2743 		break;
2744 
2745 	case SCTP_SOCKOPT_CONNECTX:
2746 		/* 'optlen' is the size of the addresses buffer. */
2747 		retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval,
2748 					       optlen);
2749 		break;
2750 
2751 	case SCTP_DISABLE_FRAGMENTS:
2752 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
2753 		break;
2754 
2755 	case SCTP_EVENTS:
2756 		retval = sctp_setsockopt_events(sk, optval, optlen);
2757 		break;
2758 
2759 	case SCTP_AUTOCLOSE:
2760 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
2761 		break;
2762 
2763 	case SCTP_PEER_ADDR_PARAMS:
2764 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
2765 		break;
2766 
2767 	case SCTP_DELAYED_ACK_TIME:
2768 		retval = sctp_setsockopt_delayed_ack_time(sk, optval, optlen);
2769 		break;
2770 
2771 	case SCTP_INITMSG:
2772 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
2773 		break;
2774 	case SCTP_DEFAULT_SEND_PARAM:
2775 		retval = sctp_setsockopt_default_send_param(sk, optval,
2776 							    optlen);
2777 		break;
2778 	case SCTP_PRIMARY_ADDR:
2779 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
2780 		break;
2781 	case SCTP_SET_PEER_PRIMARY_ADDR:
2782 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
2783 		break;
2784 	case SCTP_NODELAY:
2785 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
2786 		break;
2787 	case SCTP_RTOINFO:
2788 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
2789 		break;
2790 	case SCTP_ASSOCINFO:
2791 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
2792 		break;
2793 	case SCTP_I_WANT_MAPPED_V4_ADDR:
2794 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
2795 		break;
2796 	case SCTP_MAXSEG:
2797 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
2798 		break;
2799 	case SCTP_ADAPTION_LAYER:
2800 		retval = sctp_setsockopt_adaption_layer(sk, optval, optlen);
2801 		break;
2802 
2803 	default:
2804 		retval = -ENOPROTOOPT;
2805 		break;
2806 	};
2807 
2808 	sctp_release_sock(sk);
2809 
2810 out_nounlock:
2811 	return retval;
2812 }
2813 
2814 /* API 3.1.6 connect() - UDP Style Syntax
2815  *
2816  * An application may use the connect() call in the UDP model to initiate an
2817  * association without sending data.
2818  *
2819  * The syntax is:
2820  *
2821  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
2822  *
2823  * sd: the socket descriptor to have a new association added to.
2824  *
2825  * nam: the address structure (either struct sockaddr_in or struct
2826  *    sockaddr_in6 defined in RFC2553 [7]).
2827  *
2828  * len: the size of the address.
2829  */
2830 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
2831 			     int addr_len)
2832 {
2833 	int err = 0;
2834 	struct sctp_af *af;
2835 
2836 	sctp_lock_sock(sk);
2837 
2838 	SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
2839 			  __FUNCTION__, sk, addr, addr_len);
2840 
2841 	/* Validate addr_len before calling common connect/connectx routine. */
2842 	af = sctp_get_af_specific(addr->sa_family);
2843 	if (!af || addr_len < af->sockaddr_len) {
2844 		err = -EINVAL;
2845 	} else {
2846 		/* Pass correct addr len to common routine (so it knows there
2847 		 * is only one address being passed.
2848 		 */
2849 		err = __sctp_connect(sk, addr, af->sockaddr_len);
2850 	}
2851 
2852 	sctp_release_sock(sk);
2853 	return err;
2854 }
2855 
2856 /* FIXME: Write comments. */
2857 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
2858 {
2859 	return -EOPNOTSUPP; /* STUB */
2860 }
2861 
2862 /* 4.1.4 accept() - TCP Style Syntax
2863  *
2864  * Applications use accept() call to remove an established SCTP
2865  * association from the accept queue of the endpoint.  A new socket
2866  * descriptor will be returned from accept() to represent the newly
2867  * formed association.
2868  */
2869 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
2870 {
2871 	struct sctp_sock *sp;
2872 	struct sctp_endpoint *ep;
2873 	struct sock *newsk = NULL;
2874 	struct sctp_association *asoc;
2875 	long timeo;
2876 	int error = 0;
2877 
2878 	sctp_lock_sock(sk);
2879 
2880 	sp = sctp_sk(sk);
2881 	ep = sp->ep;
2882 
2883 	if (!sctp_style(sk, TCP)) {
2884 		error = -EOPNOTSUPP;
2885 		goto out;
2886 	}
2887 
2888 	if (!sctp_sstate(sk, LISTENING)) {
2889 		error = -EINVAL;
2890 		goto out;
2891 	}
2892 
2893 	timeo = sock_rcvtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK);
2894 
2895 	error = sctp_wait_for_accept(sk, timeo);
2896 	if (error)
2897 		goto out;
2898 
2899 	/* We treat the list of associations on the endpoint as the accept
2900 	 * queue and pick the first association on the list.
2901 	 */
2902 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
2903 
2904 	newsk = sp->pf->create_accept_sk(sk, asoc);
2905 	if (!newsk) {
2906 		error = -ENOMEM;
2907 		goto out;
2908 	}
2909 
2910 	/* Populate the fields of the newsk from the oldsk and migrate the
2911 	 * asoc to the newsk.
2912 	 */
2913 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
2914 
2915 out:
2916 	sctp_release_sock(sk);
2917  	*err = error;
2918 	return newsk;
2919 }
2920 
2921 /* The SCTP ioctl handler. */
2922 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
2923 {
2924 	return -ENOIOCTLCMD;
2925 }
2926 
2927 /* This is the function which gets called during socket creation to
2928  * initialized the SCTP-specific portion of the sock.
2929  * The sock structure should already be zero-filled memory.
2930  */
2931 SCTP_STATIC int sctp_init_sock(struct sock *sk)
2932 {
2933 	struct sctp_endpoint *ep;
2934 	struct sctp_sock *sp;
2935 
2936 	SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
2937 
2938 	sp = sctp_sk(sk);
2939 
2940 	/* Initialize the SCTP per socket area.  */
2941 	switch (sk->sk_type) {
2942 	case SOCK_SEQPACKET:
2943 		sp->type = SCTP_SOCKET_UDP;
2944 		break;
2945 	case SOCK_STREAM:
2946 		sp->type = SCTP_SOCKET_TCP;
2947 		break;
2948 	default:
2949 		return -ESOCKTNOSUPPORT;
2950 	}
2951 
2952 	/* Initialize default send parameters. These parameters can be
2953 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
2954 	 */
2955 	sp->default_stream = 0;
2956 	sp->default_ppid = 0;
2957 	sp->default_flags = 0;
2958 	sp->default_context = 0;
2959 	sp->default_timetolive = 0;
2960 
2961 	/* Initialize default setup parameters. These parameters
2962 	 * can be modified with the SCTP_INITMSG socket option or
2963 	 * overridden by the SCTP_INIT CMSG.
2964 	 */
2965 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
2966 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
2967 	sp->initmsg.sinit_max_attempts   = sctp_max_retrans_init;
2968 	sp->initmsg.sinit_max_init_timeo = jiffies_to_msecs(sctp_rto_max);
2969 
2970 	/* Initialize default RTO related parameters.  These parameters can
2971 	 * be modified for with the SCTP_RTOINFO socket option.
2972 	 */
2973 	sp->rtoinfo.srto_initial = jiffies_to_msecs(sctp_rto_initial);
2974 	sp->rtoinfo.srto_max     = jiffies_to_msecs(sctp_rto_max);
2975 	sp->rtoinfo.srto_min     = jiffies_to_msecs(sctp_rto_min);
2976 
2977 	/* Initialize default association related parameters. These parameters
2978 	 * can be modified with the SCTP_ASSOCINFO socket option.
2979 	 */
2980 	sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
2981 	sp->assocparams.sasoc_number_peer_destinations = 0;
2982 	sp->assocparams.sasoc_peer_rwnd = 0;
2983 	sp->assocparams.sasoc_local_rwnd = 0;
2984 	sp->assocparams.sasoc_cookie_life =
2985 		jiffies_to_msecs(sctp_valid_cookie_life);
2986 
2987 	/* Initialize default event subscriptions. By default, all the
2988 	 * options are off.
2989 	 */
2990 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
2991 
2992 	/* Default Peer Address Parameters.  These defaults can
2993 	 * be modified via SCTP_PEER_ADDR_PARAMS
2994 	 */
2995 	sp->hbinterval  = jiffies_to_msecs(sctp_hb_interval);
2996 	sp->pathmaxrxt  = sctp_max_retrans_path;
2997 	sp->pathmtu     = 0; // allow default discovery
2998 	sp->sackdelay   = jiffies_to_msecs(sctp_sack_timeout);
2999 	sp->param_flags = SPP_HB_ENABLE |
3000 	                  SPP_PMTUD_ENABLE |
3001 	                  SPP_SACKDELAY_ENABLE;
3002 
3003 	/* If enabled no SCTP message fragmentation will be performed.
3004 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3005 	 */
3006 	sp->disable_fragments = 0;
3007 
3008 	/* Turn on/off any Nagle-like algorithm.  */
3009 	sp->nodelay           = 1;
3010 
3011 	/* Enable by default. */
3012 	sp->v4mapped          = 1;
3013 
3014 	/* Auto-close idle associations after the configured
3015 	 * number of seconds.  A value of 0 disables this
3016 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
3017 	 * for UDP-style sockets only.
3018 	 */
3019 	sp->autoclose         = 0;
3020 
3021 	/* User specified fragmentation limit. */
3022 	sp->user_frag         = 0;
3023 
3024 	sp->adaption_ind = 0;
3025 
3026 	sp->pf = sctp_get_pf_specific(sk->sk_family);
3027 
3028 	/* Control variables for partial data delivery. */
3029 	sp->pd_mode           = 0;
3030 	skb_queue_head_init(&sp->pd_lobby);
3031 
3032 	/* Create a per socket endpoint structure.  Even if we
3033 	 * change the data structure relationships, this may still
3034 	 * be useful for storing pre-connect address information.
3035 	 */
3036 	ep = sctp_endpoint_new(sk, GFP_KERNEL);
3037 	if (!ep)
3038 		return -ENOMEM;
3039 
3040 	sp->ep = ep;
3041 	sp->hmac = NULL;
3042 
3043 	SCTP_DBG_OBJCNT_INC(sock);
3044 	return 0;
3045 }
3046 
3047 /* Cleanup any SCTP per socket resources.  */
3048 SCTP_STATIC int sctp_destroy_sock(struct sock *sk)
3049 {
3050 	struct sctp_endpoint *ep;
3051 
3052 	SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3053 
3054 	/* Release our hold on the endpoint. */
3055 	ep = sctp_sk(sk)->ep;
3056 	sctp_endpoint_free(ep);
3057 
3058 	return 0;
3059 }
3060 
3061 /* API 4.1.7 shutdown() - TCP Style Syntax
3062  *     int shutdown(int socket, int how);
3063  *
3064  *     sd      - the socket descriptor of the association to be closed.
3065  *     how     - Specifies the type of shutdown.  The  values  are
3066  *               as follows:
3067  *               SHUT_RD
3068  *                     Disables further receive operations. No SCTP
3069  *                     protocol action is taken.
3070  *               SHUT_WR
3071  *                     Disables further send operations, and initiates
3072  *                     the SCTP shutdown sequence.
3073  *               SHUT_RDWR
3074  *                     Disables further send  and  receive  operations
3075  *                     and initiates the SCTP shutdown sequence.
3076  */
3077 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3078 {
3079 	struct sctp_endpoint *ep;
3080 	struct sctp_association *asoc;
3081 
3082 	if (!sctp_style(sk, TCP))
3083 		return;
3084 
3085 	if (how & SEND_SHUTDOWN) {
3086 		ep = sctp_sk(sk)->ep;
3087 		if (!list_empty(&ep->asocs)) {
3088 			asoc = list_entry(ep->asocs.next,
3089 					  struct sctp_association, asocs);
3090 			sctp_primitive_SHUTDOWN(asoc, NULL);
3091 		}
3092 	}
3093 }
3094 
3095 /* 7.2.1 Association Status (SCTP_STATUS)
3096 
3097  * Applications can retrieve current status information about an
3098  * association, including association state, peer receiver window size,
3099  * number of unacked data chunks, and number of data chunks pending
3100  * receipt.  This information is read-only.
3101  */
3102 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3103 				       char __user *optval,
3104 				       int __user *optlen)
3105 {
3106 	struct sctp_status status;
3107 	struct sctp_association *asoc = NULL;
3108 	struct sctp_transport *transport;
3109 	sctp_assoc_t associd;
3110 	int retval = 0;
3111 
3112 	if (len != sizeof(status)) {
3113 		retval = -EINVAL;
3114 		goto out;
3115 	}
3116 
3117 	if (copy_from_user(&status, optval, sizeof(status))) {
3118 		retval = -EFAULT;
3119 		goto out;
3120 	}
3121 
3122 	associd = status.sstat_assoc_id;
3123 	asoc = sctp_id2assoc(sk, associd);
3124 	if (!asoc) {
3125 		retval = -EINVAL;
3126 		goto out;
3127 	}
3128 
3129 	transport = asoc->peer.primary_path;
3130 
3131 	status.sstat_assoc_id = sctp_assoc2id(asoc);
3132 	status.sstat_state = asoc->state;
3133 	status.sstat_rwnd =  asoc->peer.rwnd;
3134 	status.sstat_unackdata = asoc->unack_data;
3135 
3136 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
3137 	status.sstat_instrms = asoc->c.sinit_max_instreams;
3138 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
3139 	status.sstat_fragmentation_point = asoc->frag_point;
3140 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3141 	memcpy(&status.sstat_primary.spinfo_address,
3142 	       &(transport->ipaddr), sizeof(union sctp_addr));
3143 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
3144 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3145 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
3146 	status.sstat_primary.spinfo_state = transport->state;
3147 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
3148 	status.sstat_primary.spinfo_srtt = transport->srtt;
3149 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
3150 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
3151 
3152 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
3153 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
3154 
3155 	if (put_user(len, optlen)) {
3156 		retval = -EFAULT;
3157 		goto out;
3158 	}
3159 
3160 	SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
3161 			  len, status.sstat_state, status.sstat_rwnd,
3162 			  status.sstat_assoc_id);
3163 
3164 	if (copy_to_user(optval, &status, len)) {
3165 		retval = -EFAULT;
3166 		goto out;
3167 	}
3168 
3169 out:
3170 	return (retval);
3171 }
3172 
3173 
3174 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
3175  *
3176  * Applications can retrieve information about a specific peer address
3177  * of an association, including its reachability state, congestion
3178  * window, and retransmission timer values.  This information is
3179  * read-only.
3180  */
3181 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
3182 					  char __user *optval,
3183 					  int __user *optlen)
3184 {
3185 	struct sctp_paddrinfo pinfo;
3186 	struct sctp_transport *transport;
3187 	int retval = 0;
3188 
3189 	if (len != sizeof(pinfo)) {
3190 		retval = -EINVAL;
3191 		goto out;
3192 	}
3193 
3194 	if (copy_from_user(&pinfo, optval, sizeof(pinfo))) {
3195 		retval = -EFAULT;
3196 		goto out;
3197 	}
3198 
3199 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
3200 					   pinfo.spinfo_assoc_id);
3201 	if (!transport)
3202 		return -EINVAL;
3203 
3204 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3205 	pinfo.spinfo_state = transport->state;
3206 	pinfo.spinfo_cwnd = transport->cwnd;
3207 	pinfo.spinfo_srtt = transport->srtt;
3208 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
3209 	pinfo.spinfo_mtu = transport->pathmtu;
3210 
3211 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
3212 		pinfo.spinfo_state = SCTP_ACTIVE;
3213 
3214 	if (put_user(len, optlen)) {
3215 		retval = -EFAULT;
3216 		goto out;
3217 	}
3218 
3219 	if (copy_to_user(optval, &pinfo, len)) {
3220 		retval = -EFAULT;
3221 		goto out;
3222 	}
3223 
3224 out:
3225 	return (retval);
3226 }
3227 
3228 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
3229  *
3230  * This option is a on/off flag.  If enabled no SCTP message
3231  * fragmentation will be performed.  Instead if a message being sent
3232  * exceeds the current PMTU size, the message will NOT be sent and
3233  * instead a error will be indicated to the user.
3234  */
3235 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
3236 					char __user *optval, int __user *optlen)
3237 {
3238 	int val;
3239 
3240 	if (len < sizeof(int))
3241 		return -EINVAL;
3242 
3243 	len = sizeof(int);
3244 	val = (sctp_sk(sk)->disable_fragments == 1);
3245 	if (put_user(len, optlen))
3246 		return -EFAULT;
3247 	if (copy_to_user(optval, &val, len))
3248 		return -EFAULT;
3249 	return 0;
3250 }
3251 
3252 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
3253  *
3254  * This socket option is used to specify various notifications and
3255  * ancillary data the user wishes to receive.
3256  */
3257 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
3258 				  int __user *optlen)
3259 {
3260 	if (len != sizeof(struct sctp_event_subscribe))
3261 		return -EINVAL;
3262 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
3263 		return -EFAULT;
3264 	return 0;
3265 }
3266 
3267 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
3268  *
3269  * This socket option is applicable to the UDP-style socket only.  When
3270  * set it will cause associations that are idle for more than the
3271  * specified number of seconds to automatically close.  An association
3272  * being idle is defined an association that has NOT sent or received
3273  * user data.  The special value of '0' indicates that no automatic
3274  * close of any associations should be performed.  The option expects an
3275  * integer defining the number of seconds of idle time before an
3276  * association is closed.
3277  */
3278 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
3279 {
3280 	/* Applicable to UDP-style socket only */
3281 	if (sctp_style(sk, TCP))
3282 		return -EOPNOTSUPP;
3283 	if (len != sizeof(int))
3284 		return -EINVAL;
3285 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, len))
3286 		return -EFAULT;
3287 	return 0;
3288 }
3289 
3290 /* Helper routine to branch off an association to a new socket.  */
3291 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
3292 				struct socket **sockp)
3293 {
3294 	struct sock *sk = asoc->base.sk;
3295 	struct socket *sock;
3296 	int err = 0;
3297 
3298 	/* An association cannot be branched off from an already peeled-off
3299 	 * socket, nor is this supported for tcp style sockets.
3300 	 */
3301 	if (!sctp_style(sk, UDP))
3302 		return -EINVAL;
3303 
3304 	/* Create a new socket.  */
3305 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
3306 	if (err < 0)
3307 		return err;
3308 
3309 	/* Populate the fields of the newsk from the oldsk and migrate the
3310 	 * asoc to the newsk.
3311 	 */
3312 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
3313 	*sockp = sock;
3314 
3315 	return err;
3316 }
3317 
3318 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
3319 {
3320 	sctp_peeloff_arg_t peeloff;
3321 	struct socket *newsock;
3322 	int retval = 0;
3323 	struct sctp_association *asoc;
3324 
3325 	if (len != sizeof(sctp_peeloff_arg_t))
3326 		return -EINVAL;
3327 	if (copy_from_user(&peeloff, optval, len))
3328 		return -EFAULT;
3329 
3330 	asoc = sctp_id2assoc(sk, peeloff.associd);
3331 	if (!asoc) {
3332 		retval = -EINVAL;
3333 		goto out;
3334 	}
3335 
3336 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc);
3337 
3338 	retval = sctp_do_peeloff(asoc, &newsock);
3339 	if (retval < 0)
3340 		goto out;
3341 
3342 	/* Map the socket to an unused fd that can be returned to the user.  */
3343 	retval = sock_map_fd(newsock);
3344 	if (retval < 0) {
3345 		sock_release(newsock);
3346 		goto out;
3347 	}
3348 
3349 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
3350 			  __FUNCTION__, sk, asoc, newsock->sk, retval);
3351 
3352 	/* Return the fd mapped to the new socket.  */
3353 	peeloff.sd = retval;
3354 	if (copy_to_user(optval, &peeloff, len))
3355 		retval = -EFAULT;
3356 
3357 out:
3358 	return retval;
3359 }
3360 
3361 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
3362  *
3363  * Applications can enable or disable heartbeats for any peer address of
3364  * an association, modify an address's heartbeat interval, force a
3365  * heartbeat to be sent immediately, and adjust the address's maximum
3366  * number of retransmissions sent before an address is considered
3367  * unreachable.  The following structure is used to access and modify an
3368  * address's parameters:
3369  *
3370  *  struct sctp_paddrparams {
3371  *     sctp_assoc_t            spp_assoc_id;
3372  *     struct sockaddr_storage spp_address;
3373  *     uint32_t                spp_hbinterval;
3374  *     uint16_t                spp_pathmaxrxt;
3375  *     uint32_t                spp_pathmtu;
3376  *     uint32_t                spp_sackdelay;
3377  *     uint32_t                spp_flags;
3378  * };
3379  *
3380  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
3381  *                     application, and identifies the association for
3382  *                     this query.
3383  *   spp_address     - This specifies which address is of interest.
3384  *   spp_hbinterval  - This contains the value of the heartbeat interval,
3385  *                     in milliseconds.  If a  value of zero
3386  *                     is present in this field then no changes are to
3387  *                     be made to this parameter.
3388  *   spp_pathmaxrxt  - This contains the maximum number of
3389  *                     retransmissions before this address shall be
3390  *                     considered unreachable. If a  value of zero
3391  *                     is present in this field then no changes are to
3392  *                     be made to this parameter.
3393  *   spp_pathmtu     - When Path MTU discovery is disabled the value
3394  *                     specified here will be the "fixed" path mtu.
3395  *                     Note that if the spp_address field is empty
3396  *                     then all associations on this address will
3397  *                     have this fixed path mtu set upon them.
3398  *
3399  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
3400  *                     the number of milliseconds that sacks will be delayed
3401  *                     for. This value will apply to all addresses of an
3402  *                     association if the spp_address field is empty. Note
3403  *                     also, that if delayed sack is enabled and this
3404  *                     value is set to 0, no change is made to the last
3405  *                     recorded delayed sack timer value.
3406  *
3407  *   spp_flags       - These flags are used to control various features
3408  *                     on an association. The flag field may contain
3409  *                     zero or more of the following options.
3410  *
3411  *                     SPP_HB_ENABLE  - Enable heartbeats on the
3412  *                     specified address. Note that if the address
3413  *                     field is empty all addresses for the association
3414  *                     have heartbeats enabled upon them.
3415  *
3416  *                     SPP_HB_DISABLE - Disable heartbeats on the
3417  *                     speicifed address. Note that if the address
3418  *                     field is empty all addresses for the association
3419  *                     will have their heartbeats disabled. Note also
3420  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
3421  *                     mutually exclusive, only one of these two should
3422  *                     be specified. Enabling both fields will have
3423  *                     undetermined results.
3424  *
3425  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
3426  *                     to be made immediately.
3427  *
3428  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
3429  *                     discovery upon the specified address. Note that
3430  *                     if the address feild is empty then all addresses
3431  *                     on the association are effected.
3432  *
3433  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
3434  *                     discovery upon the specified address. Note that
3435  *                     if the address feild is empty then all addresses
3436  *                     on the association are effected. Not also that
3437  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
3438  *                     exclusive. Enabling both will have undetermined
3439  *                     results.
3440  *
3441  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
3442  *                     on delayed sack. The time specified in spp_sackdelay
3443  *                     is used to specify the sack delay for this address. Note
3444  *                     that if spp_address is empty then all addresses will
3445  *                     enable delayed sack and take on the sack delay
3446  *                     value specified in spp_sackdelay.
3447  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
3448  *                     off delayed sack. If the spp_address field is blank then
3449  *                     delayed sack is disabled for the entire association. Note
3450  *                     also that this field is mutually exclusive to
3451  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
3452  *                     results.
3453  */
3454 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
3455 					    char __user *optval, int __user *optlen)
3456 {
3457 	struct sctp_paddrparams  params;
3458 	struct sctp_transport   *trans = NULL;
3459 	struct sctp_association *asoc = NULL;
3460 	struct sctp_sock        *sp = sctp_sk(sk);
3461 
3462 	if (len != sizeof(struct sctp_paddrparams))
3463 		return -EINVAL;
3464 
3465 	if (copy_from_user(&params, optval, len))
3466 		return -EFAULT;
3467 
3468 	/* If an address other than INADDR_ANY is specified, and
3469 	 * no transport is found, then the request is invalid.
3470 	 */
3471 	if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
3472 		trans = sctp_addr_id2transport(sk, &params.spp_address,
3473 					       params.spp_assoc_id);
3474 		if (!trans) {
3475 			SCTP_DEBUG_PRINTK("Failed no transport\n");
3476 			return -EINVAL;
3477 		}
3478 	}
3479 
3480 	/* Get association, if assoc_id != 0 and the socket is a one
3481 	 * to many style socket, and an association was not found, then
3482 	 * the id was invalid.
3483 	 */
3484 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
3485 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
3486 		SCTP_DEBUG_PRINTK("Failed no association\n");
3487 		return -EINVAL;
3488 	}
3489 
3490 	if (trans) {
3491 		/* Fetch transport values. */
3492 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
3493 		params.spp_pathmtu    = trans->pathmtu;
3494 		params.spp_pathmaxrxt = trans->pathmaxrxt;
3495 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
3496 
3497 		/*draft-11 doesn't say what to return in spp_flags*/
3498 		params.spp_flags      = trans->param_flags;
3499 	} else if (asoc) {
3500 		/* Fetch association values. */
3501 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
3502 		params.spp_pathmtu    = asoc->pathmtu;
3503 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
3504 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
3505 
3506 		/*draft-11 doesn't say what to return in spp_flags*/
3507 		params.spp_flags      = asoc->param_flags;
3508 	} else {
3509 		/* Fetch socket values. */
3510 		params.spp_hbinterval = sp->hbinterval;
3511 		params.spp_pathmtu    = sp->pathmtu;
3512 		params.spp_sackdelay  = sp->sackdelay;
3513 		params.spp_pathmaxrxt = sp->pathmaxrxt;
3514 
3515 		/*draft-11 doesn't say what to return in spp_flags*/
3516 		params.spp_flags      = sp->param_flags;
3517 	}
3518 
3519 	if (copy_to_user(optval, &params, len))
3520 		return -EFAULT;
3521 
3522 	if (put_user(len, optlen))
3523 		return -EFAULT;
3524 
3525 	return 0;
3526 }
3527 
3528 /* 7.1.24. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
3529  *
3530  *   This options will get or set the delayed ack timer.  The time is set
3531  *   in milliseconds.  If the assoc_id is 0, then this sets or gets the
3532  *   endpoints default delayed ack timer value.  If the assoc_id field is
3533  *   non-zero, then the set or get effects the specified association.
3534  *
3535  *   struct sctp_assoc_value {
3536  *       sctp_assoc_t            assoc_id;
3537  *       uint32_t                assoc_value;
3538  *   };
3539  *
3540  *     assoc_id    - This parameter, indicates which association the
3541  *                   user is preforming an action upon. Note that if
3542  *                   this field's value is zero then the endpoints
3543  *                   default value is changed (effecting future
3544  *                   associations only).
3545  *
3546  *     assoc_value - This parameter contains the number of milliseconds
3547  *                   that the user is requesting the delayed ACK timer
3548  *                   be set to. Note that this value is defined in
3549  *                   the standard to be between 200 and 500 milliseconds.
3550  *
3551  *                   Note: a value of zero will leave the value alone,
3552  *                   but disable SACK delay. A non-zero value will also
3553  *                   enable SACK delay.
3554  */
3555 static int sctp_getsockopt_delayed_ack_time(struct sock *sk, int len,
3556 					    char __user *optval,
3557 					    int __user *optlen)
3558 {
3559 	struct sctp_assoc_value  params;
3560 	struct sctp_association *asoc = NULL;
3561 	struct sctp_sock        *sp = sctp_sk(sk);
3562 
3563 	if (len != sizeof(struct sctp_assoc_value))
3564 		return - EINVAL;
3565 
3566 	if (copy_from_user(&params, optval, len))
3567 		return -EFAULT;
3568 
3569 	/* Get association, if assoc_id != 0 and the socket is a one
3570 	 * to many style socket, and an association was not found, then
3571 	 * the id was invalid.
3572  	 */
3573 	asoc = sctp_id2assoc(sk, params.assoc_id);
3574 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3575 		return -EINVAL;
3576 
3577 	if (asoc) {
3578 		/* Fetch association values. */
3579 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE)
3580 			params.assoc_value = jiffies_to_msecs(
3581 				asoc->sackdelay);
3582 		else
3583 			params.assoc_value = 0;
3584 	} else {
3585 		/* Fetch socket values. */
3586 		if (sp->param_flags & SPP_SACKDELAY_ENABLE)
3587 			params.assoc_value  = sp->sackdelay;
3588 		else
3589 			params.assoc_value  = 0;
3590 	}
3591 
3592 	if (copy_to_user(optval, &params, len))
3593 		return -EFAULT;
3594 
3595 	if (put_user(len, optlen))
3596 		return -EFAULT;
3597 
3598 	return 0;
3599 }
3600 
3601 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
3602  *
3603  * Applications can specify protocol parameters for the default association
3604  * initialization.  The option name argument to setsockopt() and getsockopt()
3605  * is SCTP_INITMSG.
3606  *
3607  * Setting initialization parameters is effective only on an unconnected
3608  * socket (for UDP-style sockets only future associations are effected
3609  * by the change).  With TCP-style sockets, this option is inherited by
3610  * sockets derived from a listener socket.
3611  */
3612 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
3613 {
3614 	if (len != sizeof(struct sctp_initmsg))
3615 		return -EINVAL;
3616 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
3617 		return -EFAULT;
3618 	return 0;
3619 }
3620 
3621 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len,
3622 					      char __user *optval,
3623 					      int __user *optlen)
3624 {
3625 	sctp_assoc_t id;
3626 	struct sctp_association *asoc;
3627 	struct list_head *pos;
3628 	int cnt = 0;
3629 
3630 	if (len != sizeof(sctp_assoc_t))
3631 		return -EINVAL;
3632 
3633 	if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
3634 		return -EFAULT;
3635 
3636 	/* For UDP-style sockets, id specifies the association to query.  */
3637 	asoc = sctp_id2assoc(sk, id);
3638 	if (!asoc)
3639 		return -EINVAL;
3640 
3641 	list_for_each(pos, &asoc->peer.transport_addr_list) {
3642 		cnt ++;
3643 	}
3644 
3645 	return cnt;
3646 }
3647 
3648 /*
3649  * Old API for getting list of peer addresses. Does not work for 32-bit
3650  * programs running on a 64-bit kernel
3651  */
3652 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len,
3653 					  char __user *optval,
3654 					  int __user *optlen)
3655 {
3656 	struct sctp_association *asoc;
3657 	struct list_head *pos;
3658 	int cnt = 0;
3659 	struct sctp_getaddrs_old getaddrs;
3660 	struct sctp_transport *from;
3661 	void __user *to;
3662 	union sctp_addr temp;
3663 	struct sctp_sock *sp = sctp_sk(sk);
3664 	int addrlen;
3665 
3666 	if (len != sizeof(struct sctp_getaddrs_old))
3667 		return -EINVAL;
3668 
3669 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old)))
3670 		return -EFAULT;
3671 
3672 	if (getaddrs.addr_num <= 0) return -EINVAL;
3673 
3674 	/* For UDP-style sockets, id specifies the association to query.  */
3675 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3676 	if (!asoc)
3677 		return -EINVAL;
3678 
3679 	to = (void __user *)getaddrs.addrs;
3680 	list_for_each(pos, &asoc->peer.transport_addr_list) {
3681 		from = list_entry(pos, struct sctp_transport, transports);
3682 		memcpy(&temp, &from->ipaddr, sizeof(temp));
3683 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3684 		addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
3685 		temp.v4.sin_port = htons(temp.v4.sin_port);
3686 		if (copy_to_user(to, &temp, addrlen))
3687 			return -EFAULT;
3688 		to += addrlen ;
3689 		cnt ++;
3690 		if (cnt >= getaddrs.addr_num) break;
3691 	}
3692 	getaddrs.addr_num = cnt;
3693 	if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old)))
3694 		return -EFAULT;
3695 
3696 	return 0;
3697 }
3698 
3699 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
3700 				      char __user *optval, int __user *optlen)
3701 {
3702 	struct sctp_association *asoc;
3703 	struct list_head *pos;
3704 	int cnt = 0;
3705 	struct sctp_getaddrs getaddrs;
3706 	struct sctp_transport *from;
3707 	void __user *to;
3708 	union sctp_addr temp;
3709 	struct sctp_sock *sp = sctp_sk(sk);
3710 	int addrlen;
3711 	size_t space_left;
3712 	int bytes_copied;
3713 
3714 	if (len < sizeof(struct sctp_getaddrs))
3715 		return -EINVAL;
3716 
3717 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
3718 		return -EFAULT;
3719 
3720 	/* For UDP-style sockets, id specifies the association to query.  */
3721 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3722 	if (!asoc)
3723 		return -EINVAL;
3724 
3725 	to = optval + offsetof(struct sctp_getaddrs,addrs);
3726 	space_left = len - sizeof(struct sctp_getaddrs) -
3727 			offsetof(struct sctp_getaddrs,addrs);
3728 
3729 	list_for_each(pos, &asoc->peer.transport_addr_list) {
3730 		from = list_entry(pos, struct sctp_transport, transports);
3731 		memcpy(&temp, &from->ipaddr, sizeof(temp));
3732 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3733 		addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
3734 		if(space_left < addrlen)
3735 			return -ENOMEM;
3736 		temp.v4.sin_port = htons(temp.v4.sin_port);
3737 		if (copy_to_user(to, &temp, addrlen))
3738 			return -EFAULT;
3739 		to += addrlen;
3740 		cnt++;
3741 		space_left -= addrlen;
3742 	}
3743 
3744 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
3745 		return -EFAULT;
3746 	bytes_copied = ((char __user *)to) - optval;
3747 	if (put_user(bytes_copied, optlen))
3748 		return -EFAULT;
3749 
3750 	return 0;
3751 }
3752 
3753 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len,
3754 					       char __user *optval,
3755 					       int __user *optlen)
3756 {
3757 	sctp_assoc_t id;
3758 	struct sctp_bind_addr *bp;
3759 	struct sctp_association *asoc;
3760 	struct list_head *pos;
3761 	struct sctp_sockaddr_entry *addr;
3762 	rwlock_t *addr_lock;
3763 	unsigned long flags;
3764 	int cnt = 0;
3765 
3766 	if (len != sizeof(sctp_assoc_t))
3767 		return -EINVAL;
3768 
3769 	if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
3770 		return -EFAULT;
3771 
3772 	/*
3773 	 *  For UDP-style sockets, id specifies the association to query.
3774 	 *  If the id field is set to the value '0' then the locally bound
3775 	 *  addresses are returned without regard to any particular
3776 	 *  association.
3777 	 */
3778 	if (0 == id) {
3779 		bp = &sctp_sk(sk)->ep->base.bind_addr;
3780 		addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
3781 	} else {
3782 		asoc = sctp_id2assoc(sk, id);
3783 		if (!asoc)
3784 			return -EINVAL;
3785 		bp = &asoc->base.bind_addr;
3786 		addr_lock = &asoc->base.addr_lock;
3787 	}
3788 
3789 	sctp_read_lock(addr_lock);
3790 
3791 	/* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
3792 	 * addresses from the global local address list.
3793 	 */
3794 	if (sctp_list_single_entry(&bp->address_list)) {
3795 		addr = list_entry(bp->address_list.next,
3796 				  struct sctp_sockaddr_entry, list);
3797 		if (sctp_is_any(&addr->a)) {
3798 			sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3799 			list_for_each(pos, &sctp_local_addr_list) {
3800 				addr = list_entry(pos,
3801 						  struct sctp_sockaddr_entry,
3802 						  list);
3803 				if ((PF_INET == sk->sk_family) &&
3804 				    (AF_INET6 == addr->a.sa.sa_family))
3805 					continue;
3806 				cnt++;
3807 			}
3808 			sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3809 						    flags);
3810 		} else {
3811 			cnt = 1;
3812 		}
3813 		goto done;
3814 	}
3815 
3816 	list_for_each(pos, &bp->address_list) {
3817 		cnt ++;
3818 	}
3819 
3820 done:
3821 	sctp_read_unlock(addr_lock);
3822 	return cnt;
3823 }
3824 
3825 /* Helper function that copies local addresses to user and returns the number
3826  * of addresses copied.
3827  */
3828 static int sctp_copy_laddrs_to_user_old(struct sock *sk, __u16 port, int max_addrs,
3829 					void __user *to)
3830 {
3831 	struct list_head *pos;
3832 	struct sctp_sockaddr_entry *addr;
3833 	unsigned long flags;
3834 	union sctp_addr temp;
3835 	int cnt = 0;
3836 	int addrlen;
3837 
3838 	sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3839 	list_for_each(pos, &sctp_local_addr_list) {
3840 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3841 		if ((PF_INET == sk->sk_family) &&
3842 		    (AF_INET6 == addr->a.sa.sa_family))
3843 			continue;
3844 		memcpy(&temp, &addr->a, sizeof(temp));
3845 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3846 								&temp);
3847 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3848 		temp.v4.sin_port = htons(port);
3849 		if (copy_to_user(to, &temp, addrlen)) {
3850 			sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3851 						    flags);
3852 			return -EFAULT;
3853 		}
3854 		to += addrlen;
3855 		cnt ++;
3856 		if (cnt >= max_addrs) break;
3857 	}
3858 	sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags);
3859 
3860 	return cnt;
3861 }
3862 
3863 static int sctp_copy_laddrs_to_user(struct sock *sk, __u16 port,
3864 				    void __user **to, size_t space_left)
3865 {
3866 	struct list_head *pos;
3867 	struct sctp_sockaddr_entry *addr;
3868 	unsigned long flags;
3869 	union sctp_addr temp;
3870 	int cnt = 0;
3871 	int addrlen;
3872 
3873 	sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3874 	list_for_each(pos, &sctp_local_addr_list) {
3875 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3876 		if ((PF_INET == sk->sk_family) &&
3877 		    (AF_INET6 == addr->a.sa.sa_family))
3878 			continue;
3879 		memcpy(&temp, &addr->a, sizeof(temp));
3880 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3881 								&temp);
3882 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3883 		if(space_left<addrlen)
3884 			return -ENOMEM;
3885 		temp.v4.sin_port = htons(port);
3886 		if (copy_to_user(*to, &temp, addrlen)) {
3887 			sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3888 						    flags);
3889 			return -EFAULT;
3890 		}
3891 		*to += addrlen;
3892 		cnt ++;
3893 		space_left -= addrlen;
3894 	}
3895 	sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags);
3896 
3897 	return cnt;
3898 }
3899 
3900 /* Old API for getting list of local addresses. Does not work for 32-bit
3901  * programs running on a 64-bit kernel
3902  */
3903 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len,
3904 					   char __user *optval, int __user *optlen)
3905 {
3906 	struct sctp_bind_addr *bp;
3907 	struct sctp_association *asoc;
3908 	struct list_head *pos;
3909 	int cnt = 0;
3910 	struct sctp_getaddrs_old getaddrs;
3911 	struct sctp_sockaddr_entry *addr;
3912 	void __user *to;
3913 	union sctp_addr temp;
3914 	struct sctp_sock *sp = sctp_sk(sk);
3915 	int addrlen;
3916 	rwlock_t *addr_lock;
3917 	int err = 0;
3918 
3919 	if (len != sizeof(struct sctp_getaddrs_old))
3920 		return -EINVAL;
3921 
3922 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old)))
3923 		return -EFAULT;
3924 
3925 	if (getaddrs.addr_num <= 0) return -EINVAL;
3926 	/*
3927 	 *  For UDP-style sockets, id specifies the association to query.
3928 	 *  If the id field is set to the value '0' then the locally bound
3929 	 *  addresses are returned without regard to any particular
3930 	 *  association.
3931 	 */
3932 	if (0 == getaddrs.assoc_id) {
3933 		bp = &sctp_sk(sk)->ep->base.bind_addr;
3934 		addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
3935 	} else {
3936 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3937 		if (!asoc)
3938 			return -EINVAL;
3939 		bp = &asoc->base.bind_addr;
3940 		addr_lock = &asoc->base.addr_lock;
3941 	}
3942 
3943 	to = getaddrs.addrs;
3944 
3945 	sctp_read_lock(addr_lock);
3946 
3947 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
3948 	 * addresses from the global local address list.
3949 	 */
3950 	if (sctp_list_single_entry(&bp->address_list)) {
3951 		addr = list_entry(bp->address_list.next,
3952 				  struct sctp_sockaddr_entry, list);
3953 		if (sctp_is_any(&addr->a)) {
3954 			cnt = sctp_copy_laddrs_to_user_old(sk, bp->port,
3955 							   getaddrs.addr_num,
3956 							   to);
3957 			if (cnt < 0) {
3958 				err = cnt;
3959 				goto unlock;
3960 			}
3961 			goto copy_getaddrs;
3962 		}
3963 	}
3964 
3965 	list_for_each(pos, &bp->address_list) {
3966 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3967 		memcpy(&temp, &addr->a, sizeof(temp));
3968 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3969 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3970 		temp.v4.sin_port = htons(temp.v4.sin_port);
3971 		if (copy_to_user(to, &temp, addrlen)) {
3972 			err = -EFAULT;
3973 			goto unlock;
3974 		}
3975 		to += addrlen;
3976 		cnt ++;
3977 		if (cnt >= getaddrs.addr_num) break;
3978 	}
3979 
3980 copy_getaddrs:
3981 	getaddrs.addr_num = cnt;
3982 	if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old)))
3983 		err = -EFAULT;
3984 
3985 unlock:
3986 	sctp_read_unlock(addr_lock);
3987 	return err;
3988 }
3989 
3990 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
3991 				       char __user *optval, int __user *optlen)
3992 {
3993 	struct sctp_bind_addr *bp;
3994 	struct sctp_association *asoc;
3995 	struct list_head *pos;
3996 	int cnt = 0;
3997 	struct sctp_getaddrs getaddrs;
3998 	struct sctp_sockaddr_entry *addr;
3999 	void __user *to;
4000 	union sctp_addr temp;
4001 	struct sctp_sock *sp = sctp_sk(sk);
4002 	int addrlen;
4003 	rwlock_t *addr_lock;
4004 	int err = 0;
4005 	size_t space_left;
4006 	int bytes_copied;
4007 
4008 	if (len <= sizeof(struct sctp_getaddrs))
4009 		return -EINVAL;
4010 
4011 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4012 		return -EFAULT;
4013 
4014 	/*
4015 	 *  For UDP-style sockets, id specifies the association to query.
4016 	 *  If the id field is set to the value '0' then the locally bound
4017 	 *  addresses are returned without regard to any particular
4018 	 *  association.
4019 	 */
4020 	if (0 == getaddrs.assoc_id) {
4021 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4022 		addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
4023 	} else {
4024 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4025 		if (!asoc)
4026 			return -EINVAL;
4027 		bp = &asoc->base.bind_addr;
4028 		addr_lock = &asoc->base.addr_lock;
4029 	}
4030 
4031 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4032 	space_left = len - sizeof(struct sctp_getaddrs) -
4033 			 offsetof(struct sctp_getaddrs,addrs);
4034 
4035 	sctp_read_lock(addr_lock);
4036 
4037 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4038 	 * addresses from the global local address list.
4039 	 */
4040 	if (sctp_list_single_entry(&bp->address_list)) {
4041 		addr = list_entry(bp->address_list.next,
4042 				  struct sctp_sockaddr_entry, list);
4043 		if (sctp_is_any(&addr->a)) {
4044 			cnt = sctp_copy_laddrs_to_user(sk, bp->port,
4045 						       &to, space_left);
4046 			if (cnt < 0) {
4047 				err = cnt;
4048 				goto unlock;
4049 			}
4050 			goto copy_getaddrs;
4051 		}
4052 	}
4053 
4054 	list_for_each(pos, &bp->address_list) {
4055 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
4056 		memcpy(&temp, &addr->a, sizeof(temp));
4057 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4058 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4059 		if(space_left < addrlen)
4060 			return -ENOMEM; /*fixme: right error?*/
4061 		temp.v4.sin_port = htons(temp.v4.sin_port);
4062 		if (copy_to_user(to, &temp, addrlen)) {
4063 			err = -EFAULT;
4064 			goto unlock;
4065 		}
4066 		to += addrlen;
4067 		cnt ++;
4068 		space_left -= addrlen;
4069 	}
4070 
4071 copy_getaddrs:
4072 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4073 		return -EFAULT;
4074 	bytes_copied = ((char __user *)to) - optval;
4075 	if (put_user(bytes_copied, optlen))
4076 		return -EFAULT;
4077 
4078 unlock:
4079 	sctp_read_unlock(addr_lock);
4080 	return err;
4081 }
4082 
4083 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4084  *
4085  * Requests that the local SCTP stack use the enclosed peer address as
4086  * the association primary.  The enclosed address must be one of the
4087  * association peer's addresses.
4088  */
4089 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4090 					char __user *optval, int __user *optlen)
4091 {
4092 	struct sctp_prim prim;
4093 	struct sctp_association *asoc;
4094 	struct sctp_sock *sp = sctp_sk(sk);
4095 
4096 	if (len != sizeof(struct sctp_prim))
4097 		return -EINVAL;
4098 
4099 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
4100 		return -EFAULT;
4101 
4102 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4103 	if (!asoc)
4104 		return -EINVAL;
4105 
4106 	if (!asoc->peer.primary_path)
4107 		return -ENOTCONN;
4108 
4109 	asoc->peer.primary_path->ipaddr.v4.sin_port =
4110 		htons(asoc->peer.primary_path->ipaddr.v4.sin_port);
4111 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4112 	       sizeof(union sctp_addr));
4113 	asoc->peer.primary_path->ipaddr.v4.sin_port =
4114 		ntohs(asoc->peer.primary_path->ipaddr.v4.sin_port);
4115 
4116 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4117 			(union sctp_addr *)&prim.ssp_addr);
4118 
4119 	if (copy_to_user(optval, &prim, sizeof(struct sctp_prim)))
4120 		return -EFAULT;
4121 
4122 	return 0;
4123 }
4124 
4125 /*
4126  * 7.1.11  Set Adaption Layer Indicator (SCTP_ADAPTION_LAYER)
4127  *
4128  * Requests that the local endpoint set the specified Adaption Layer
4129  * Indication parameter for all future INIT and INIT-ACK exchanges.
4130  */
4131 static int sctp_getsockopt_adaption_layer(struct sock *sk, int len,
4132 				  char __user *optval, int __user *optlen)
4133 {
4134 	struct sctp_setadaption adaption;
4135 
4136 	if (len != sizeof(struct sctp_setadaption))
4137 		return -EINVAL;
4138 
4139 	adaption.ssb_adaption_ind = sctp_sk(sk)->adaption_ind;
4140 	if (copy_to_user(optval, &adaption, len))
4141 		return -EFAULT;
4142 
4143 	return 0;
4144 }
4145 
4146 /*
4147  *
4148  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4149  *
4150  *   Applications that wish to use the sendto() system call may wish to
4151  *   specify a default set of parameters that would normally be supplied
4152  *   through the inclusion of ancillary data.  This socket option allows
4153  *   such an application to set the default sctp_sndrcvinfo structure.
4154 
4155 
4156  *   The application that wishes to use this socket option simply passes
4157  *   in to this call the sctp_sndrcvinfo structure defined in Section
4158  *   5.2.2) The input parameters accepted by this call include
4159  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4160  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
4161  *   to this call if the caller is using the UDP model.
4162  *
4163  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
4164  */
4165 static int sctp_getsockopt_default_send_param(struct sock *sk,
4166 					int len, char __user *optval,
4167 					int __user *optlen)
4168 {
4169 	struct sctp_sndrcvinfo info;
4170 	struct sctp_association *asoc;
4171 	struct sctp_sock *sp = sctp_sk(sk);
4172 
4173 	if (len != sizeof(struct sctp_sndrcvinfo))
4174 		return -EINVAL;
4175 	if (copy_from_user(&info, optval, sizeof(struct sctp_sndrcvinfo)))
4176 		return -EFAULT;
4177 
4178 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4179 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4180 		return -EINVAL;
4181 
4182 	if (asoc) {
4183 		info.sinfo_stream = asoc->default_stream;
4184 		info.sinfo_flags = asoc->default_flags;
4185 		info.sinfo_ppid = asoc->default_ppid;
4186 		info.sinfo_context = asoc->default_context;
4187 		info.sinfo_timetolive = asoc->default_timetolive;
4188 	} else {
4189 		info.sinfo_stream = sp->default_stream;
4190 		info.sinfo_flags = sp->default_flags;
4191 		info.sinfo_ppid = sp->default_ppid;
4192 		info.sinfo_context = sp->default_context;
4193 		info.sinfo_timetolive = sp->default_timetolive;
4194 	}
4195 
4196 	if (copy_to_user(optval, &info, sizeof(struct sctp_sndrcvinfo)))
4197 		return -EFAULT;
4198 
4199 	return 0;
4200 }
4201 
4202 /*
4203  *
4204  * 7.1.5 SCTP_NODELAY
4205  *
4206  * Turn on/off any Nagle-like algorithm.  This means that packets are
4207  * generally sent as soon as possible and no unnecessary delays are
4208  * introduced, at the cost of more packets in the network.  Expects an
4209  * integer boolean flag.
4210  */
4211 
4212 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4213 				   char __user *optval, int __user *optlen)
4214 {
4215 	int val;
4216 
4217 	if (len < sizeof(int))
4218 		return -EINVAL;
4219 
4220 	len = sizeof(int);
4221 	val = (sctp_sk(sk)->nodelay == 1);
4222 	if (put_user(len, optlen))
4223 		return -EFAULT;
4224 	if (copy_to_user(optval, &val, len))
4225 		return -EFAULT;
4226 	return 0;
4227 }
4228 
4229 /*
4230  *
4231  * 7.1.1 SCTP_RTOINFO
4232  *
4233  * The protocol parameters used to initialize and bound retransmission
4234  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4235  * and modify these parameters.
4236  * All parameters are time values, in milliseconds.  A value of 0, when
4237  * modifying the parameters, indicates that the current value should not
4238  * be changed.
4239  *
4240  */
4241 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4242 				char __user *optval,
4243 				int __user *optlen) {
4244 	struct sctp_rtoinfo rtoinfo;
4245 	struct sctp_association *asoc;
4246 
4247 	if (len != sizeof (struct sctp_rtoinfo))
4248 		return -EINVAL;
4249 
4250 	if (copy_from_user(&rtoinfo, optval, sizeof (struct sctp_rtoinfo)))
4251 		return -EFAULT;
4252 
4253 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4254 
4255 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4256 		return -EINVAL;
4257 
4258 	/* Values corresponding to the specific association. */
4259 	if (asoc) {
4260 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4261 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4262 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4263 	} else {
4264 		/* Values corresponding to the endpoint. */
4265 		struct sctp_sock *sp = sctp_sk(sk);
4266 
4267 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4268 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
4269 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
4270 	}
4271 
4272 	if (put_user(len, optlen))
4273 		return -EFAULT;
4274 
4275 	if (copy_to_user(optval, &rtoinfo, len))
4276 		return -EFAULT;
4277 
4278 	return 0;
4279 }
4280 
4281 /*
4282  *
4283  * 7.1.2 SCTP_ASSOCINFO
4284  *
4285  * This option is used to tune the the maximum retransmission attempts
4286  * of the association.
4287  * Returns an error if the new association retransmission value is
4288  * greater than the sum of the retransmission value  of the peer.
4289  * See [SCTP] for more information.
4290  *
4291  */
4292 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4293 				     char __user *optval,
4294 				     int __user *optlen)
4295 {
4296 
4297 	struct sctp_assocparams assocparams;
4298 	struct sctp_association *asoc;
4299 	struct list_head *pos;
4300 	int cnt = 0;
4301 
4302 	if (len != sizeof (struct sctp_assocparams))
4303 		return -EINVAL;
4304 
4305 	if (copy_from_user(&assocparams, optval,
4306 			sizeof (struct sctp_assocparams)))
4307 		return -EFAULT;
4308 
4309 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4310 
4311 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4312 		return -EINVAL;
4313 
4314 	/* Values correspoinding to the specific association */
4315 	if (asoc) {
4316 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4317 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4318 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4319 		assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4320 						* 1000) +
4321 						(asoc->cookie_life.tv_usec
4322 						/ 1000);
4323 
4324 		list_for_each(pos, &asoc->peer.transport_addr_list) {
4325 			cnt ++;
4326 		}
4327 
4328 		assocparams.sasoc_number_peer_destinations = cnt;
4329 	} else {
4330 		/* Values corresponding to the endpoint */
4331 		struct sctp_sock *sp = sctp_sk(sk);
4332 
4333 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
4334 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
4335 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
4336 		assocparams.sasoc_cookie_life =
4337 					sp->assocparams.sasoc_cookie_life;
4338 		assocparams.sasoc_number_peer_destinations =
4339 					sp->assocparams.
4340 					sasoc_number_peer_destinations;
4341 	}
4342 
4343 	if (put_user(len, optlen))
4344 		return -EFAULT;
4345 
4346 	if (copy_to_user(optval, &assocparams, len))
4347 		return -EFAULT;
4348 
4349 	return 0;
4350 }
4351 
4352 /*
4353  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
4354  *
4355  * This socket option is a boolean flag which turns on or off mapped V4
4356  * addresses.  If this option is turned on and the socket is type
4357  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
4358  * If this option is turned off, then no mapping will be done of V4
4359  * addresses and a user will receive both PF_INET6 and PF_INET type
4360  * addresses on the socket.
4361  */
4362 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
4363 				    char __user *optval, int __user *optlen)
4364 {
4365 	int val;
4366 	struct sctp_sock *sp = sctp_sk(sk);
4367 
4368 	if (len < sizeof(int))
4369 		return -EINVAL;
4370 
4371 	len = sizeof(int);
4372 	val = sp->v4mapped;
4373 	if (put_user(len, optlen))
4374 		return -EFAULT;
4375 	if (copy_to_user(optval, &val, len))
4376 		return -EFAULT;
4377 
4378 	return 0;
4379 }
4380 
4381 /*
4382  * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
4383  *
4384  * This socket option specifies the maximum size to put in any outgoing
4385  * SCTP chunk.  If a message is larger than this size it will be
4386  * fragmented by SCTP into the specified size.  Note that the underlying
4387  * SCTP implementation may fragment into smaller sized chunks when the
4388  * PMTU of the underlying association is smaller than the value set by
4389  * the user.
4390  */
4391 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
4392 				  char __user *optval, int __user *optlen)
4393 {
4394 	int val;
4395 
4396 	if (len < sizeof(int))
4397 		return -EINVAL;
4398 
4399 	len = sizeof(int);
4400 
4401 	val = sctp_sk(sk)->user_frag;
4402 	if (put_user(len, optlen))
4403 		return -EFAULT;
4404 	if (copy_to_user(optval, &val, len))
4405 		return -EFAULT;
4406 
4407 	return 0;
4408 }
4409 
4410 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
4411 				char __user *optval, int __user *optlen)
4412 {
4413 	int retval = 0;
4414 	int len;
4415 
4416 	SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
4417 			  sk, optname);
4418 
4419 	/* I can hardly begin to describe how wrong this is.  This is
4420 	 * so broken as to be worse than useless.  The API draft
4421 	 * REALLY is NOT helpful here...  I am not convinced that the
4422 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
4423 	 * are at all well-founded.
4424 	 */
4425 	if (level != SOL_SCTP) {
4426 		struct sctp_af *af = sctp_sk(sk)->pf->af;
4427 
4428 		retval = af->getsockopt(sk, level, optname, optval, optlen);
4429 		return retval;
4430 	}
4431 
4432 	if (get_user(len, optlen))
4433 		return -EFAULT;
4434 
4435 	sctp_lock_sock(sk);
4436 
4437 	switch (optname) {
4438 	case SCTP_STATUS:
4439 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
4440 		break;
4441 	case SCTP_DISABLE_FRAGMENTS:
4442 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
4443 							   optlen);
4444 		break;
4445 	case SCTP_EVENTS:
4446 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
4447 		break;
4448 	case SCTP_AUTOCLOSE:
4449 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
4450 		break;
4451 	case SCTP_SOCKOPT_PEELOFF:
4452 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
4453 		break;
4454 	case SCTP_PEER_ADDR_PARAMS:
4455 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
4456 							  optlen);
4457 		break;
4458 	case SCTP_DELAYED_ACK_TIME:
4459 		retval = sctp_getsockopt_delayed_ack_time(sk, len, optval,
4460 							  optlen);
4461 		break;
4462 	case SCTP_INITMSG:
4463 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
4464 		break;
4465 	case SCTP_GET_PEER_ADDRS_NUM_OLD:
4466 		retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval,
4467 							    optlen);
4468 		break;
4469 	case SCTP_GET_LOCAL_ADDRS_NUM_OLD:
4470 		retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval,
4471 							     optlen);
4472 		break;
4473 	case SCTP_GET_PEER_ADDRS_OLD:
4474 		retval = sctp_getsockopt_peer_addrs_old(sk, len, optval,
4475 							optlen);
4476 		break;
4477 	case SCTP_GET_LOCAL_ADDRS_OLD:
4478 		retval = sctp_getsockopt_local_addrs_old(sk, len, optval,
4479 							 optlen);
4480 		break;
4481 	case SCTP_GET_PEER_ADDRS:
4482 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
4483 						    optlen);
4484 		break;
4485 	case SCTP_GET_LOCAL_ADDRS:
4486 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
4487 						     optlen);
4488 		break;
4489 	case SCTP_DEFAULT_SEND_PARAM:
4490 		retval = sctp_getsockopt_default_send_param(sk, len,
4491 							    optval, optlen);
4492 		break;
4493 	case SCTP_PRIMARY_ADDR:
4494 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
4495 		break;
4496 	case SCTP_NODELAY:
4497 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
4498 		break;
4499 	case SCTP_RTOINFO:
4500 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
4501 		break;
4502 	case SCTP_ASSOCINFO:
4503 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
4504 		break;
4505 	case SCTP_I_WANT_MAPPED_V4_ADDR:
4506 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
4507 		break;
4508 	case SCTP_MAXSEG:
4509 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
4510 		break;
4511 	case SCTP_GET_PEER_ADDR_INFO:
4512 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
4513 							optlen);
4514 		break;
4515 	case SCTP_ADAPTION_LAYER:
4516 		retval = sctp_getsockopt_adaption_layer(sk, len, optval,
4517 							optlen);
4518 		break;
4519 	default:
4520 		retval = -ENOPROTOOPT;
4521 		break;
4522 	};
4523 
4524 	sctp_release_sock(sk);
4525 	return retval;
4526 }
4527 
4528 static void sctp_hash(struct sock *sk)
4529 {
4530 	/* STUB */
4531 }
4532 
4533 static void sctp_unhash(struct sock *sk)
4534 {
4535 	/* STUB */
4536 }
4537 
4538 /* Check if port is acceptable.  Possibly find first available port.
4539  *
4540  * The port hash table (contained in the 'global' SCTP protocol storage
4541  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
4542  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
4543  * list (the list number is the port number hashed out, so as you
4544  * would expect from a hash function, all the ports in a given list have
4545  * such a number that hashes out to the same list number; you were
4546  * expecting that, right?); so each list has a set of ports, with a
4547  * link to the socket (struct sock) that uses it, the port number and
4548  * a fastreuse flag (FIXME: NPI ipg).
4549  */
4550 static struct sctp_bind_bucket *sctp_bucket_create(
4551 	struct sctp_bind_hashbucket *head, unsigned short snum);
4552 
4553 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
4554 {
4555 	struct sctp_bind_hashbucket *head; /* hash list */
4556 	struct sctp_bind_bucket *pp; /* hash list port iterator */
4557 	unsigned short snum;
4558 	int ret;
4559 
4560 	/* NOTE:  Remember to put this back to net order. */
4561 	addr->v4.sin_port = ntohs(addr->v4.sin_port);
4562 	snum = addr->v4.sin_port;
4563 
4564 	SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
4565 	sctp_local_bh_disable();
4566 
4567 	if (snum == 0) {
4568 		/* Search for an available port.
4569 		 *
4570 		 * 'sctp_port_rover' was the last port assigned, so
4571 		 * we start to search from 'sctp_port_rover +
4572 		 * 1'. What we do is first check if port 'rover' is
4573 		 * already in the hash table; if not, we use that; if
4574 		 * it is, we try next.
4575 		 */
4576 		int low = sysctl_local_port_range[0];
4577 		int high = sysctl_local_port_range[1];
4578 		int remaining = (high - low) + 1;
4579 		int rover;
4580 		int index;
4581 
4582 		sctp_spin_lock(&sctp_port_alloc_lock);
4583 		rover = sctp_port_rover;
4584 		do {
4585 			rover++;
4586 			if ((rover < low) || (rover > high))
4587 				rover = low;
4588 			index = sctp_phashfn(rover);
4589 			head = &sctp_port_hashtable[index];
4590 			sctp_spin_lock(&head->lock);
4591 			for (pp = head->chain; pp; pp = pp->next)
4592 				if (pp->port == rover)
4593 					goto next;
4594 			break;
4595 		next:
4596 			sctp_spin_unlock(&head->lock);
4597 		} while (--remaining > 0);
4598 		sctp_port_rover = rover;
4599 		sctp_spin_unlock(&sctp_port_alloc_lock);
4600 
4601 		/* Exhausted local port range during search? */
4602 		ret = 1;
4603 		if (remaining <= 0)
4604 			goto fail;
4605 
4606 		/* OK, here is the one we will use.  HEAD (the port
4607 		 * hash table list entry) is non-NULL and we hold it's
4608 		 * mutex.
4609 		 */
4610 		snum = rover;
4611 	} else {
4612 		/* We are given an specific port number; we verify
4613 		 * that it is not being used. If it is used, we will
4614 		 * exahust the search in the hash list corresponding
4615 		 * to the port number (snum) - we detect that with the
4616 		 * port iterator, pp being NULL.
4617 		 */
4618 		head = &sctp_port_hashtable[sctp_phashfn(snum)];
4619 		sctp_spin_lock(&head->lock);
4620 		for (pp = head->chain; pp; pp = pp->next) {
4621 			if (pp->port == snum)
4622 				goto pp_found;
4623 		}
4624 	}
4625 	pp = NULL;
4626 	goto pp_not_found;
4627 pp_found:
4628 	if (!hlist_empty(&pp->owner)) {
4629 		/* We had a port hash table hit - there is an
4630 		 * available port (pp != NULL) and it is being
4631 		 * used by other socket (pp->owner not empty); that other
4632 		 * socket is going to be sk2.
4633 		 */
4634 		int reuse = sk->sk_reuse;
4635 		struct sock *sk2;
4636 		struct hlist_node *node;
4637 
4638 		SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
4639 		if (pp->fastreuse && sk->sk_reuse)
4640 			goto success;
4641 
4642 		/* Run through the list of sockets bound to the port
4643 		 * (pp->port) [via the pointers bind_next and
4644 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
4645 		 * we get the endpoint they describe and run through
4646 		 * the endpoint's list of IP (v4 or v6) addresses,
4647 		 * comparing each of the addresses with the address of
4648 		 * the socket sk. If we find a match, then that means
4649 		 * that this port/socket (sk) combination are already
4650 		 * in an endpoint.
4651 		 */
4652 		sk_for_each_bound(sk2, node, &pp->owner) {
4653 			struct sctp_endpoint *ep2;
4654 			ep2 = sctp_sk(sk2)->ep;
4655 
4656 			if (reuse && sk2->sk_reuse)
4657 				continue;
4658 
4659 			if (sctp_bind_addr_match(&ep2->base.bind_addr, addr,
4660 						 sctp_sk(sk))) {
4661 				ret = (long)sk2;
4662 				goto fail_unlock;
4663 			}
4664 		}
4665 		SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
4666 	}
4667 pp_not_found:
4668 	/* If there was a hash table miss, create a new port.  */
4669 	ret = 1;
4670 	if (!pp && !(pp = sctp_bucket_create(head, snum)))
4671 		goto fail_unlock;
4672 
4673 	/* In either case (hit or miss), make sure fastreuse is 1 only
4674 	 * if sk->sk_reuse is too (that is, if the caller requested
4675 	 * SO_REUSEADDR on this socket -sk-).
4676 	 */
4677 	if (hlist_empty(&pp->owner))
4678 		pp->fastreuse = sk->sk_reuse ? 1 : 0;
4679 	else if (pp->fastreuse && !sk->sk_reuse)
4680 		pp->fastreuse = 0;
4681 
4682 	/* We are set, so fill up all the data in the hash table
4683 	 * entry, tie the socket list information with the rest of the
4684 	 * sockets FIXME: Blurry, NPI (ipg).
4685 	 */
4686 success:
4687 	inet_sk(sk)->num = snum;
4688 	if (!sctp_sk(sk)->bind_hash) {
4689 		sk_add_bind_node(sk, &pp->owner);
4690 		sctp_sk(sk)->bind_hash = pp;
4691 	}
4692 	ret = 0;
4693 
4694 fail_unlock:
4695 	sctp_spin_unlock(&head->lock);
4696 
4697 fail:
4698 	sctp_local_bh_enable();
4699 	addr->v4.sin_port = htons(addr->v4.sin_port);
4700 	return ret;
4701 }
4702 
4703 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
4704  * port is requested.
4705  */
4706 static int sctp_get_port(struct sock *sk, unsigned short snum)
4707 {
4708 	long ret;
4709 	union sctp_addr addr;
4710 	struct sctp_af *af = sctp_sk(sk)->pf->af;
4711 
4712 	/* Set up a dummy address struct from the sk. */
4713 	af->from_sk(&addr, sk);
4714 	addr.v4.sin_port = htons(snum);
4715 
4716 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
4717 	ret = sctp_get_port_local(sk, &addr);
4718 
4719 	return (ret ? 1 : 0);
4720 }
4721 
4722 /*
4723  * 3.1.3 listen() - UDP Style Syntax
4724  *
4725  *   By default, new associations are not accepted for UDP style sockets.
4726  *   An application uses listen() to mark a socket as being able to
4727  *   accept new associations.
4728  */
4729 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog)
4730 {
4731 	struct sctp_sock *sp = sctp_sk(sk);
4732 	struct sctp_endpoint *ep = sp->ep;
4733 
4734 	/* Only UDP style sockets that are not peeled off are allowed to
4735 	 * listen().
4736 	 */
4737 	if (!sctp_style(sk, UDP))
4738 		return -EINVAL;
4739 
4740 	/* If backlog is zero, disable listening. */
4741 	if (!backlog) {
4742 		if (sctp_sstate(sk, CLOSED))
4743 			return 0;
4744 
4745 		sctp_unhash_endpoint(ep);
4746 		sk->sk_state = SCTP_SS_CLOSED;
4747 	}
4748 
4749 	/* Return if we are already listening. */
4750 	if (sctp_sstate(sk, LISTENING))
4751 		return 0;
4752 
4753 	/*
4754 	 * If a bind() or sctp_bindx() is not called prior to a listen()
4755 	 * call that allows new associations to be accepted, the system
4756 	 * picks an ephemeral port and will choose an address set equivalent
4757 	 * to binding with a wildcard address.
4758 	 *
4759 	 * This is not currently spelled out in the SCTP sockets
4760 	 * extensions draft, but follows the practice as seen in TCP
4761 	 * sockets.
4762 	 */
4763 	if (!ep->base.bind_addr.port) {
4764 		if (sctp_autobind(sk))
4765 			return -EAGAIN;
4766 	}
4767 	sk->sk_state = SCTP_SS_LISTENING;
4768 	sctp_hash_endpoint(ep);
4769 	return 0;
4770 }
4771 
4772 /*
4773  * 4.1.3 listen() - TCP Style Syntax
4774  *
4775  *   Applications uses listen() to ready the SCTP endpoint for accepting
4776  *   inbound associations.
4777  */
4778 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog)
4779 {
4780 	struct sctp_sock *sp = sctp_sk(sk);
4781 	struct sctp_endpoint *ep = sp->ep;
4782 
4783 	/* If backlog is zero, disable listening. */
4784 	if (!backlog) {
4785 		if (sctp_sstate(sk, CLOSED))
4786 			return 0;
4787 
4788 		sctp_unhash_endpoint(ep);
4789 		sk->sk_state = SCTP_SS_CLOSED;
4790 	}
4791 
4792 	if (sctp_sstate(sk, LISTENING))
4793 		return 0;
4794 
4795 	/*
4796 	 * If a bind() or sctp_bindx() is not called prior to a listen()
4797 	 * call that allows new associations to be accepted, the system
4798 	 * picks an ephemeral port and will choose an address set equivalent
4799 	 * to binding with a wildcard address.
4800 	 *
4801 	 * This is not currently spelled out in the SCTP sockets
4802 	 * extensions draft, but follows the practice as seen in TCP
4803 	 * sockets.
4804 	 */
4805 	if (!ep->base.bind_addr.port) {
4806 		if (sctp_autobind(sk))
4807 			return -EAGAIN;
4808 	}
4809 	sk->sk_state = SCTP_SS_LISTENING;
4810 	sk->sk_max_ack_backlog = backlog;
4811 	sctp_hash_endpoint(ep);
4812 	return 0;
4813 }
4814 
4815 /*
4816  *  Move a socket to LISTENING state.
4817  */
4818 int sctp_inet_listen(struct socket *sock, int backlog)
4819 {
4820 	struct sock *sk = sock->sk;
4821 	struct crypto_tfm *tfm=NULL;
4822 	int err = -EINVAL;
4823 
4824 	if (unlikely(backlog < 0))
4825 		goto out;
4826 
4827 	sctp_lock_sock(sk);
4828 
4829 	if (sock->state != SS_UNCONNECTED)
4830 		goto out;
4831 
4832 	/* Allocate HMAC for generating cookie. */
4833 	if (sctp_hmac_alg) {
4834 		tfm = sctp_crypto_alloc_tfm(sctp_hmac_alg, 0);
4835 		if (!tfm) {
4836 			err = -ENOSYS;
4837 			goto out;
4838 		}
4839 	}
4840 
4841 	switch (sock->type) {
4842 	case SOCK_SEQPACKET:
4843 		err = sctp_seqpacket_listen(sk, backlog);
4844 		break;
4845 	case SOCK_STREAM:
4846 		err = sctp_stream_listen(sk, backlog);
4847 		break;
4848 	default:
4849 		break;
4850 	};
4851 	if (err)
4852 		goto cleanup;
4853 
4854 	/* Store away the transform reference. */
4855 	sctp_sk(sk)->hmac = tfm;
4856 out:
4857 	sctp_release_sock(sk);
4858 	return err;
4859 cleanup:
4860 	sctp_crypto_free_tfm(tfm);
4861 	goto out;
4862 }
4863 
4864 /*
4865  * This function is done by modeling the current datagram_poll() and the
4866  * tcp_poll().  Note that, based on these implementations, we don't
4867  * lock the socket in this function, even though it seems that,
4868  * ideally, locking or some other mechanisms can be used to ensure
4869  * the integrity of the counters (sndbuf and wmem_alloc) used
4870  * in this place.  We assume that we don't need locks either until proven
4871  * otherwise.
4872  *
4873  * Another thing to note is that we include the Async I/O support
4874  * here, again, by modeling the current TCP/UDP code.  We don't have
4875  * a good way to test with it yet.
4876  */
4877 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
4878 {
4879 	struct sock *sk = sock->sk;
4880 	struct sctp_sock *sp = sctp_sk(sk);
4881 	unsigned int mask;
4882 
4883 	poll_wait(file, sk->sk_sleep, wait);
4884 
4885 	/* A TCP-style listening socket becomes readable when the accept queue
4886 	 * is not empty.
4887 	 */
4888 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4889 		return (!list_empty(&sp->ep->asocs)) ?
4890 		       	(POLLIN | POLLRDNORM) : 0;
4891 
4892 	mask = 0;
4893 
4894 	/* Is there any exceptional events?  */
4895 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
4896 		mask |= POLLERR;
4897 	if (sk->sk_shutdown == SHUTDOWN_MASK)
4898 		mask |= POLLHUP;
4899 
4900 	/* Is it readable?  Reconsider this code with TCP-style support.  */
4901 	if (!skb_queue_empty(&sk->sk_receive_queue) ||
4902 	    (sk->sk_shutdown & RCV_SHUTDOWN))
4903 		mask |= POLLIN | POLLRDNORM;
4904 
4905 	/* The association is either gone or not ready.  */
4906 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
4907 		return mask;
4908 
4909 	/* Is it writable?  */
4910 	if (sctp_writeable(sk)) {
4911 		mask |= POLLOUT | POLLWRNORM;
4912 	} else {
4913 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
4914 		/*
4915 		 * Since the socket is not locked, the buffer
4916 		 * might be made available after the writeable check and
4917 		 * before the bit is set.  This could cause a lost I/O
4918 		 * signal.  tcp_poll() has a race breaker for this race
4919 		 * condition.  Based on their implementation, we put
4920 		 * in the following code to cover it as well.
4921 		 */
4922 		if (sctp_writeable(sk))
4923 			mask |= POLLOUT | POLLWRNORM;
4924 	}
4925 	return mask;
4926 }
4927 
4928 /********************************************************************
4929  * 2nd Level Abstractions
4930  ********************************************************************/
4931 
4932 static struct sctp_bind_bucket *sctp_bucket_create(
4933 	struct sctp_bind_hashbucket *head, unsigned short snum)
4934 {
4935 	struct sctp_bind_bucket *pp;
4936 
4937 	pp = kmem_cache_alloc(sctp_bucket_cachep, SLAB_ATOMIC);
4938 	SCTP_DBG_OBJCNT_INC(bind_bucket);
4939 	if (pp) {
4940 		pp->port = snum;
4941 		pp->fastreuse = 0;
4942 		INIT_HLIST_HEAD(&pp->owner);
4943 		if ((pp->next = head->chain) != NULL)
4944 			pp->next->pprev = &pp->next;
4945 		head->chain = pp;
4946 		pp->pprev = &head->chain;
4947 	}
4948 	return pp;
4949 }
4950 
4951 /* Caller must hold hashbucket lock for this tb with local BH disabled */
4952 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
4953 {
4954 	if (hlist_empty(&pp->owner)) {
4955 		if (pp->next)
4956 			pp->next->pprev = pp->pprev;
4957 		*(pp->pprev) = pp->next;
4958 		kmem_cache_free(sctp_bucket_cachep, pp);
4959 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
4960 	}
4961 }
4962 
4963 /* Release this socket's reference to a local port.  */
4964 static inline void __sctp_put_port(struct sock *sk)
4965 {
4966 	struct sctp_bind_hashbucket *head =
4967 		&sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)];
4968 	struct sctp_bind_bucket *pp;
4969 
4970 	sctp_spin_lock(&head->lock);
4971 	pp = sctp_sk(sk)->bind_hash;
4972 	__sk_del_bind_node(sk);
4973 	sctp_sk(sk)->bind_hash = NULL;
4974 	inet_sk(sk)->num = 0;
4975 	sctp_bucket_destroy(pp);
4976 	sctp_spin_unlock(&head->lock);
4977 }
4978 
4979 void sctp_put_port(struct sock *sk)
4980 {
4981 	sctp_local_bh_disable();
4982 	__sctp_put_port(sk);
4983 	sctp_local_bh_enable();
4984 }
4985 
4986 /*
4987  * The system picks an ephemeral port and choose an address set equivalent
4988  * to binding with a wildcard address.
4989  * One of those addresses will be the primary address for the association.
4990  * This automatically enables the multihoming capability of SCTP.
4991  */
4992 static int sctp_autobind(struct sock *sk)
4993 {
4994 	union sctp_addr autoaddr;
4995 	struct sctp_af *af;
4996 	unsigned short port;
4997 
4998 	/* Initialize a local sockaddr structure to INADDR_ANY. */
4999 	af = sctp_sk(sk)->pf->af;
5000 
5001 	port = htons(inet_sk(sk)->num);
5002 	af->inaddr_any(&autoaddr, port);
5003 
5004 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
5005 }
5006 
5007 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
5008  *
5009  * From RFC 2292
5010  * 4.2 The cmsghdr Structure *
5011  *
5012  * When ancillary data is sent or received, any number of ancillary data
5013  * objects can be specified by the msg_control and msg_controllen members of
5014  * the msghdr structure, because each object is preceded by
5015  * a cmsghdr structure defining the object's length (the cmsg_len member).
5016  * Historically Berkeley-derived implementations have passed only one object
5017  * at a time, but this API allows multiple objects to be
5018  * passed in a single call to sendmsg() or recvmsg(). The following example
5019  * shows two ancillary data objects in a control buffer.
5020  *
5021  *   |<--------------------------- msg_controllen -------------------------->|
5022  *   |                                                                       |
5023  *
5024  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
5025  *
5026  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
5027  *   |                                   |                                   |
5028  *
5029  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
5030  *
5031  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
5032  *   |                                |  |                                |  |
5033  *
5034  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5035  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
5036  *
5037  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
5038  *
5039  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5040  *    ^
5041  *    |
5042  *
5043  * msg_control
5044  * points here
5045  */
5046 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
5047 				  sctp_cmsgs_t *cmsgs)
5048 {
5049 	struct cmsghdr *cmsg;
5050 
5051 	for (cmsg = CMSG_FIRSTHDR(msg);
5052 	     cmsg != NULL;
5053 	     cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) {
5054 		if (!CMSG_OK(msg, cmsg))
5055 			return -EINVAL;
5056 
5057 		/* Should we parse this header or ignore?  */
5058 		if (cmsg->cmsg_level != IPPROTO_SCTP)
5059 			continue;
5060 
5061 		/* Strictly check lengths following example in SCM code.  */
5062 		switch (cmsg->cmsg_type) {
5063 		case SCTP_INIT:
5064 			/* SCTP Socket API Extension
5065 			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
5066 			 *
5067 			 * This cmsghdr structure provides information for
5068 			 * initializing new SCTP associations with sendmsg().
5069 			 * The SCTP_INITMSG socket option uses this same data
5070 			 * structure.  This structure is not used for
5071 			 * recvmsg().
5072 			 *
5073 			 * cmsg_level    cmsg_type      cmsg_data[]
5074 			 * ------------  ------------   ----------------------
5075 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
5076 			 */
5077 			if (cmsg->cmsg_len !=
5078 			    CMSG_LEN(sizeof(struct sctp_initmsg)))
5079 				return -EINVAL;
5080 			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
5081 			break;
5082 
5083 		case SCTP_SNDRCV:
5084 			/* SCTP Socket API Extension
5085 			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
5086 			 *
5087 			 * This cmsghdr structure specifies SCTP options for
5088 			 * sendmsg() and describes SCTP header information
5089 			 * about a received message through recvmsg().
5090 			 *
5091 			 * cmsg_level    cmsg_type      cmsg_data[]
5092 			 * ------------  ------------   ----------------------
5093 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
5094 			 */
5095 			if (cmsg->cmsg_len !=
5096 			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
5097 				return -EINVAL;
5098 
5099 			cmsgs->info =
5100 				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
5101 
5102 			/* Minimally, validate the sinfo_flags. */
5103 			if (cmsgs->info->sinfo_flags &
5104 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
5105 			      SCTP_ABORT | SCTP_EOF))
5106 				return -EINVAL;
5107 			break;
5108 
5109 		default:
5110 			return -EINVAL;
5111 		};
5112 	}
5113 	return 0;
5114 }
5115 
5116 /*
5117  * Wait for a packet..
5118  * Note: This function is the same function as in core/datagram.c
5119  * with a few modifications to make lksctp work.
5120  */
5121 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
5122 {
5123 	int error;
5124 	DEFINE_WAIT(wait);
5125 
5126 	prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5127 
5128 	/* Socket errors? */
5129 	error = sock_error(sk);
5130 	if (error)
5131 		goto out;
5132 
5133 	if (!skb_queue_empty(&sk->sk_receive_queue))
5134 		goto ready;
5135 
5136 	/* Socket shut down?  */
5137 	if (sk->sk_shutdown & RCV_SHUTDOWN)
5138 		goto out;
5139 
5140 	/* Sequenced packets can come disconnected.  If so we report the
5141 	 * problem.
5142 	 */
5143 	error = -ENOTCONN;
5144 
5145 	/* Is there a good reason to think that we may receive some data?  */
5146 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
5147 		goto out;
5148 
5149 	/* Handle signals.  */
5150 	if (signal_pending(current))
5151 		goto interrupted;
5152 
5153 	/* Let another process have a go.  Since we are going to sleep
5154 	 * anyway.  Note: This may cause odd behaviors if the message
5155 	 * does not fit in the user's buffer, but this seems to be the
5156 	 * only way to honor MSG_DONTWAIT realistically.
5157 	 */
5158 	sctp_release_sock(sk);
5159 	*timeo_p = schedule_timeout(*timeo_p);
5160 	sctp_lock_sock(sk);
5161 
5162 ready:
5163 	finish_wait(sk->sk_sleep, &wait);
5164 	return 0;
5165 
5166 interrupted:
5167 	error = sock_intr_errno(*timeo_p);
5168 
5169 out:
5170 	finish_wait(sk->sk_sleep, &wait);
5171 	*err = error;
5172 	return error;
5173 }
5174 
5175 /* Receive a datagram.
5176  * Note: This is pretty much the same routine as in core/datagram.c
5177  * with a few changes to make lksctp work.
5178  */
5179 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
5180 					      int noblock, int *err)
5181 {
5182 	int error;
5183 	struct sk_buff *skb;
5184 	long timeo;
5185 
5186 	timeo = sock_rcvtimeo(sk, noblock);
5187 
5188 	SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
5189 			  timeo, MAX_SCHEDULE_TIMEOUT);
5190 
5191 	do {
5192 		/* Again only user level code calls this function,
5193 		 * so nothing interrupt level
5194 		 * will suddenly eat the receive_queue.
5195 		 *
5196 		 *  Look at current nfs client by the way...
5197 		 *  However, this function was corrent in any case. 8)
5198 		 */
5199 		if (flags & MSG_PEEK) {
5200 			spin_lock_bh(&sk->sk_receive_queue.lock);
5201 			skb = skb_peek(&sk->sk_receive_queue);
5202 			if (skb)
5203 				atomic_inc(&skb->users);
5204 			spin_unlock_bh(&sk->sk_receive_queue.lock);
5205 		} else {
5206 			skb = skb_dequeue(&sk->sk_receive_queue);
5207 		}
5208 
5209 		if (skb)
5210 			return skb;
5211 
5212 		/* Caller is allowed not to check sk->sk_err before calling. */
5213 		error = sock_error(sk);
5214 		if (error)
5215 			goto no_packet;
5216 
5217 		if (sk->sk_shutdown & RCV_SHUTDOWN)
5218 			break;
5219 
5220 		/* User doesn't want to wait.  */
5221 		error = -EAGAIN;
5222 		if (!timeo)
5223 			goto no_packet;
5224 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
5225 
5226 	return NULL;
5227 
5228 no_packet:
5229 	*err = error;
5230 	return NULL;
5231 }
5232 
5233 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
5234 static void __sctp_write_space(struct sctp_association *asoc)
5235 {
5236 	struct sock *sk = asoc->base.sk;
5237 	struct socket *sock = sk->sk_socket;
5238 
5239 	if ((sctp_wspace(asoc) > 0) && sock) {
5240 		if (waitqueue_active(&asoc->wait))
5241 			wake_up_interruptible(&asoc->wait);
5242 
5243 		if (sctp_writeable(sk)) {
5244 			if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
5245 				wake_up_interruptible(sk->sk_sleep);
5246 
5247 			/* Note that we try to include the Async I/O support
5248 			 * here by modeling from the current TCP/UDP code.
5249 			 * We have not tested with it yet.
5250 			 */
5251 			if (sock->fasync_list &&
5252 			    !(sk->sk_shutdown & SEND_SHUTDOWN))
5253 				sock_wake_async(sock, 2, POLL_OUT);
5254 		}
5255 	}
5256 }
5257 
5258 /* Do accounting for the sndbuf space.
5259  * Decrement the used sndbuf space of the corresponding association by the
5260  * data size which was just transmitted(freed).
5261  */
5262 static void sctp_wfree(struct sk_buff *skb)
5263 {
5264 	struct sctp_association *asoc;
5265 	struct sctp_chunk *chunk;
5266 	struct sock *sk;
5267 
5268 	/* Get the saved chunk pointer.  */
5269 	chunk = *((struct sctp_chunk **)(skb->cb));
5270 	asoc = chunk->asoc;
5271 	sk = asoc->base.sk;
5272 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
5273 				sizeof(struct sk_buff) +
5274 				sizeof(struct sctp_chunk);
5275 
5276 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
5277 
5278 	sock_wfree(skb);
5279 	__sctp_write_space(asoc);
5280 
5281 	sctp_association_put(asoc);
5282 }
5283 
5284 /* Helper function to wait for space in the sndbuf.  */
5285 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
5286 				size_t msg_len)
5287 {
5288 	struct sock *sk = asoc->base.sk;
5289 	int err = 0;
5290 	long current_timeo = *timeo_p;
5291 	DEFINE_WAIT(wait);
5292 
5293 	SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
5294 	                  asoc, (long)(*timeo_p), msg_len);
5295 
5296 	/* Increment the association's refcnt.  */
5297 	sctp_association_hold(asoc);
5298 
5299 	/* Wait on the association specific sndbuf space. */
5300 	for (;;) {
5301 		prepare_to_wait_exclusive(&asoc->wait, &wait,
5302 					  TASK_INTERRUPTIBLE);
5303 		if (!*timeo_p)
5304 			goto do_nonblock;
5305 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
5306 		    asoc->base.dead)
5307 			goto do_error;
5308 		if (signal_pending(current))
5309 			goto do_interrupted;
5310 		if (msg_len <= sctp_wspace(asoc))
5311 			break;
5312 
5313 		/* Let another process have a go.  Since we are going
5314 		 * to sleep anyway.
5315 		 */
5316 		sctp_release_sock(sk);
5317 		current_timeo = schedule_timeout(current_timeo);
5318 		sctp_lock_sock(sk);
5319 
5320 		*timeo_p = current_timeo;
5321 	}
5322 
5323 out:
5324 	finish_wait(&asoc->wait, &wait);
5325 
5326 	/* Release the association's refcnt.  */
5327 	sctp_association_put(asoc);
5328 
5329 	return err;
5330 
5331 do_error:
5332 	err = -EPIPE;
5333 	goto out;
5334 
5335 do_interrupted:
5336 	err = sock_intr_errno(*timeo_p);
5337 	goto out;
5338 
5339 do_nonblock:
5340 	err = -EAGAIN;
5341 	goto out;
5342 }
5343 
5344 /* If socket sndbuf has changed, wake up all per association waiters.  */
5345 void sctp_write_space(struct sock *sk)
5346 {
5347 	struct sctp_association *asoc;
5348 	struct list_head *pos;
5349 
5350 	/* Wake up the tasks in each wait queue.  */
5351 	list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) {
5352 		asoc = list_entry(pos, struct sctp_association, asocs);
5353 		__sctp_write_space(asoc);
5354 	}
5355 }
5356 
5357 /* Is there any sndbuf space available on the socket?
5358  *
5359  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
5360  * associations on the same socket.  For a UDP-style socket with
5361  * multiple associations, it is possible for it to be "unwriteable"
5362  * prematurely.  I assume that this is acceptable because
5363  * a premature "unwriteable" is better than an accidental "writeable" which
5364  * would cause an unwanted block under certain circumstances.  For the 1-1
5365  * UDP-style sockets or TCP-style sockets, this code should work.
5366  *  - Daisy
5367  */
5368 static int sctp_writeable(struct sock *sk)
5369 {
5370 	int amt = 0;
5371 
5372 	amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
5373 	if (amt < 0)
5374 		amt = 0;
5375 	return amt;
5376 }
5377 
5378 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
5379  * returns immediately with EINPROGRESS.
5380  */
5381 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
5382 {
5383 	struct sock *sk = asoc->base.sk;
5384 	int err = 0;
5385 	long current_timeo = *timeo_p;
5386 	DEFINE_WAIT(wait);
5387 
5388 	SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc,
5389 			  (long)(*timeo_p));
5390 
5391 	/* Increment the association's refcnt.  */
5392 	sctp_association_hold(asoc);
5393 
5394 	for (;;) {
5395 		prepare_to_wait_exclusive(&asoc->wait, &wait,
5396 					  TASK_INTERRUPTIBLE);
5397 		if (!*timeo_p)
5398 			goto do_nonblock;
5399 		if (sk->sk_shutdown & RCV_SHUTDOWN)
5400 			break;
5401 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
5402 		    asoc->base.dead)
5403 			goto do_error;
5404 		if (signal_pending(current))
5405 			goto do_interrupted;
5406 
5407 		if (sctp_state(asoc, ESTABLISHED))
5408 			break;
5409 
5410 		/* Let another process have a go.  Since we are going
5411 		 * to sleep anyway.
5412 		 */
5413 		sctp_release_sock(sk);
5414 		current_timeo = schedule_timeout(current_timeo);
5415 		sctp_lock_sock(sk);
5416 
5417 		*timeo_p = current_timeo;
5418 	}
5419 
5420 out:
5421 	finish_wait(&asoc->wait, &wait);
5422 
5423 	/* Release the association's refcnt.  */
5424 	sctp_association_put(asoc);
5425 
5426 	return err;
5427 
5428 do_error:
5429 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
5430 		err = -ETIMEDOUT;
5431 	else
5432 		err = -ECONNREFUSED;
5433 	goto out;
5434 
5435 do_interrupted:
5436 	err = sock_intr_errno(*timeo_p);
5437 	goto out;
5438 
5439 do_nonblock:
5440 	err = -EINPROGRESS;
5441 	goto out;
5442 }
5443 
5444 static int sctp_wait_for_accept(struct sock *sk, long timeo)
5445 {
5446 	struct sctp_endpoint *ep;
5447 	int err = 0;
5448 	DEFINE_WAIT(wait);
5449 
5450 	ep = sctp_sk(sk)->ep;
5451 
5452 
5453 	for (;;) {
5454 		prepare_to_wait_exclusive(sk->sk_sleep, &wait,
5455 					  TASK_INTERRUPTIBLE);
5456 
5457 		if (list_empty(&ep->asocs)) {
5458 			sctp_release_sock(sk);
5459 			timeo = schedule_timeout(timeo);
5460 			sctp_lock_sock(sk);
5461 		}
5462 
5463 		err = -EINVAL;
5464 		if (!sctp_sstate(sk, LISTENING))
5465 			break;
5466 
5467 		err = 0;
5468 		if (!list_empty(&ep->asocs))
5469 			break;
5470 
5471 		err = sock_intr_errno(timeo);
5472 		if (signal_pending(current))
5473 			break;
5474 
5475 		err = -EAGAIN;
5476 		if (!timeo)
5477 			break;
5478 	}
5479 
5480 	finish_wait(sk->sk_sleep, &wait);
5481 
5482 	return err;
5483 }
5484 
5485 void sctp_wait_for_close(struct sock *sk, long timeout)
5486 {
5487 	DEFINE_WAIT(wait);
5488 
5489 	do {
5490 		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5491 		if (list_empty(&sctp_sk(sk)->ep->asocs))
5492 			break;
5493 		sctp_release_sock(sk);
5494 		timeout = schedule_timeout(timeout);
5495 		sctp_lock_sock(sk);
5496 	} while (!signal_pending(current) && timeout);
5497 
5498 	finish_wait(sk->sk_sleep, &wait);
5499 }
5500 
5501 /* Populate the fields of the newsk from the oldsk and migrate the assoc
5502  * and its messages to the newsk.
5503  */
5504 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
5505 			      struct sctp_association *assoc,
5506 			      sctp_socket_type_t type)
5507 {
5508 	struct sctp_sock *oldsp = sctp_sk(oldsk);
5509 	struct sctp_sock *newsp = sctp_sk(newsk);
5510 	struct sctp_bind_bucket *pp; /* hash list port iterator */
5511 	struct sctp_endpoint *newep = newsp->ep;
5512 	struct sk_buff *skb, *tmp;
5513 	struct sctp_ulpevent *event;
5514 	int flags = 0;
5515 
5516 	/* Migrate socket buffer sizes and all the socket level options to the
5517 	 * new socket.
5518 	 */
5519 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
5520 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
5521 	/* Brute force copy old sctp opt. */
5522 	inet_sk_copy_descendant(newsk, oldsk);
5523 
5524 	/* Restore the ep value that was overwritten with the above structure
5525 	 * copy.
5526 	 */
5527 	newsp->ep = newep;
5528 	newsp->hmac = NULL;
5529 
5530 	/* Hook this new socket in to the bind_hash list. */
5531 	pp = sctp_sk(oldsk)->bind_hash;
5532 	sk_add_bind_node(newsk, &pp->owner);
5533 	sctp_sk(newsk)->bind_hash = pp;
5534 	inet_sk(newsk)->num = inet_sk(oldsk)->num;
5535 
5536 	/* Copy the bind_addr list from the original endpoint to the new
5537 	 * endpoint so that we can handle restarts properly
5538 	 */
5539 	if (assoc->peer.ipv4_address)
5540 		flags |= SCTP_ADDR4_PEERSUPP;
5541 	if (assoc->peer.ipv6_address)
5542 		flags |= SCTP_ADDR6_PEERSUPP;
5543 	sctp_bind_addr_copy(&newsp->ep->base.bind_addr,
5544 			     &oldsp->ep->base.bind_addr,
5545 			     SCTP_SCOPE_GLOBAL, GFP_KERNEL, flags);
5546 
5547 	/* Move any messages in the old socket's receive queue that are for the
5548 	 * peeled off association to the new socket's receive queue.
5549 	 */
5550 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
5551 		event = sctp_skb2event(skb);
5552 		if (event->asoc == assoc) {
5553 			sock_rfree(skb);
5554 			__skb_unlink(skb, &oldsk->sk_receive_queue);
5555 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
5556 			skb_set_owner_r(skb, newsk);
5557 		}
5558 	}
5559 
5560 	/* Clean up any messages pending delivery due to partial
5561 	 * delivery.   Three cases:
5562 	 * 1) No partial deliver;  no work.
5563 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
5564 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
5565 	 */
5566 	skb_queue_head_init(&newsp->pd_lobby);
5567 	sctp_sk(newsk)->pd_mode = assoc->ulpq.pd_mode;
5568 
5569 	if (sctp_sk(oldsk)->pd_mode) {
5570 		struct sk_buff_head *queue;
5571 
5572 		/* Decide which queue to move pd_lobby skbs to. */
5573 		if (assoc->ulpq.pd_mode) {
5574 			queue = &newsp->pd_lobby;
5575 		} else
5576 			queue = &newsk->sk_receive_queue;
5577 
5578 		/* Walk through the pd_lobby, looking for skbs that
5579 		 * need moved to the new socket.
5580 		 */
5581 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
5582 			event = sctp_skb2event(skb);
5583 			if (event->asoc == assoc) {
5584 				sock_rfree(skb);
5585 				__skb_unlink(skb, &oldsp->pd_lobby);
5586 				__skb_queue_tail(queue, skb);
5587 				skb_set_owner_r(skb, newsk);
5588 			}
5589 		}
5590 
5591 		/* Clear up any skbs waiting for the partial
5592 		 * delivery to finish.
5593 		 */
5594 		if (assoc->ulpq.pd_mode)
5595 			sctp_clear_pd(oldsk);
5596 
5597 	}
5598 
5599 	/* Set the type of socket to indicate that it is peeled off from the
5600 	 * original UDP-style socket or created with the accept() call on a
5601 	 * TCP-style socket..
5602 	 */
5603 	newsp->type = type;
5604 
5605 	spin_lock_bh(&oldsk->sk_lock.slock);
5606 	/* Migrate the backlog from oldsk to newsk. */
5607 	sctp_backlog_migrate(assoc, oldsk, newsk);
5608 	/* Migrate the association to the new socket. */
5609 	sctp_assoc_migrate(assoc, newsk);
5610 	spin_unlock_bh(&oldsk->sk_lock.slock);
5611 
5612 	/* If the association on the newsk is already closed before accept()
5613 	 * is called, set RCV_SHUTDOWN flag.
5614 	 */
5615 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
5616 		newsk->sk_shutdown |= RCV_SHUTDOWN;
5617 
5618 	newsk->sk_state = SCTP_SS_ESTABLISHED;
5619 }
5620 
5621 /* This proto struct describes the ULP interface for SCTP.  */
5622 struct proto sctp_prot = {
5623 	.name        =	"SCTP",
5624 	.owner       =	THIS_MODULE,
5625 	.close       =	sctp_close,
5626 	.connect     =	sctp_connect,
5627 	.disconnect  =	sctp_disconnect,
5628 	.accept      =	sctp_accept,
5629 	.ioctl       =	sctp_ioctl,
5630 	.init        =	sctp_init_sock,
5631 	.destroy     =	sctp_destroy_sock,
5632 	.shutdown    =	sctp_shutdown,
5633 	.setsockopt  =	sctp_setsockopt,
5634 	.getsockopt  =	sctp_getsockopt,
5635 	.sendmsg     =	sctp_sendmsg,
5636 	.recvmsg     =	sctp_recvmsg,
5637 	.bind        =	sctp_bind,
5638 	.backlog_rcv =	sctp_backlog_rcv,
5639 	.hash        =	sctp_hash,
5640 	.unhash      =	sctp_unhash,
5641 	.get_port    =	sctp_get_port,
5642 	.obj_size    =  sizeof(struct sctp_sock),
5643 };
5644 
5645 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5646 struct proto sctpv6_prot = {
5647 	.name		= "SCTPv6",
5648 	.owner		= THIS_MODULE,
5649 	.close		= sctp_close,
5650 	.connect	= sctp_connect,
5651 	.disconnect	= sctp_disconnect,
5652 	.accept		= sctp_accept,
5653 	.ioctl		= sctp_ioctl,
5654 	.init		= sctp_init_sock,
5655 	.destroy	= sctp_destroy_sock,
5656 	.shutdown	= sctp_shutdown,
5657 	.setsockopt	= sctp_setsockopt,
5658 	.getsockopt	= sctp_getsockopt,
5659 	.sendmsg	= sctp_sendmsg,
5660 	.recvmsg	= sctp_recvmsg,
5661 	.bind		= sctp_bind,
5662 	.backlog_rcv	= sctp_backlog_rcv,
5663 	.hash		= sctp_hash,
5664 	.unhash		= sctp_unhash,
5665 	.get_port	= sctp_get_port,
5666 	.obj_size	= sizeof(struct sctp6_sock),
5667 };
5668 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
5669