1 /* SCTP kernel reference Implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel reference Implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * The SCTP reference implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * The SCTP reference implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, write to 32 * the Free Software Foundation, 59 Temple Place - Suite 330, 33 * Boston, MA 02111-1307, USA. 34 * 35 * Please send any bug reports or fixes you make to the 36 * email address(es): 37 * lksctp developers <lksctp-developers@lists.sourceforge.net> 38 * 39 * Or submit a bug report through the following website: 40 * http://www.sf.net/projects/lksctp 41 * 42 * Written or modified by: 43 * La Monte H.P. Yarroll <piggy@acm.org> 44 * Narasimha Budihal <narsi@refcode.org> 45 * Karl Knutson <karl@athena.chicago.il.us> 46 * Jon Grimm <jgrimm@us.ibm.com> 47 * Xingang Guo <xingang.guo@intel.com> 48 * Daisy Chang <daisyc@us.ibm.com> 49 * Sridhar Samudrala <samudrala@us.ibm.com> 50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 51 * Ardelle Fan <ardelle.fan@intel.com> 52 * Ryan Layer <rmlayer@us.ibm.com> 53 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 54 * Kevin Gao <kevin.gao@intel.com> 55 * 56 * Any bugs reported given to us we will try to fix... any fixes shared will 57 * be incorporated into the next SCTP release. 58 */ 59 60 #include <linux/config.h> 61 #include <linux/types.h> 62 #include <linux/kernel.h> 63 #include <linux/wait.h> 64 #include <linux/time.h> 65 #include <linux/ip.h> 66 #include <linux/capability.h> 67 #include <linux/fcntl.h> 68 #include <linux/poll.h> 69 #include <linux/init.h> 70 #include <linux/crypto.h> 71 72 #include <net/ip.h> 73 #include <net/icmp.h> 74 #include <net/route.h> 75 #include <net/ipv6.h> 76 #include <net/inet_common.h> 77 78 #include <linux/socket.h> /* for sa_family_t */ 79 #include <net/sock.h> 80 #include <net/sctp/sctp.h> 81 #include <net/sctp/sm.h> 82 83 /* WARNING: Please do not remove the SCTP_STATIC attribute to 84 * any of the functions below as they are used to export functions 85 * used by a project regression testsuite. 86 */ 87 88 /* Forward declarations for internal helper functions. */ 89 static int sctp_writeable(struct sock *sk); 90 static void sctp_wfree(struct sk_buff *skb); 91 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 92 size_t msg_len); 93 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p); 94 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 95 static int sctp_wait_for_accept(struct sock *sk, long timeo); 96 static void sctp_wait_for_close(struct sock *sk, long timeo); 97 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 98 union sctp_addr *addr, int len); 99 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 100 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 101 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 102 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 103 static int sctp_send_asconf(struct sctp_association *asoc, 104 struct sctp_chunk *chunk); 105 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 106 static int sctp_autobind(struct sock *sk); 107 static void sctp_sock_migrate(struct sock *, struct sock *, 108 struct sctp_association *, sctp_socket_type_t); 109 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG; 110 111 extern kmem_cache_t *sctp_bucket_cachep; 112 113 /* Get the sndbuf space available at the time on the association. */ 114 static inline int sctp_wspace(struct sctp_association *asoc) 115 { 116 struct sock *sk = asoc->base.sk; 117 int amt = 0; 118 119 if (asoc->ep->sndbuf_policy) { 120 /* make sure that no association uses more than sk_sndbuf */ 121 amt = sk->sk_sndbuf - asoc->sndbuf_used; 122 } else { 123 /* do socket level accounting */ 124 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 125 } 126 127 if (amt < 0) 128 amt = 0; 129 130 return amt; 131 } 132 133 /* Increment the used sndbuf space count of the corresponding association by 134 * the size of the outgoing data chunk. 135 * Also, set the skb destructor for sndbuf accounting later. 136 * 137 * Since it is always 1-1 between chunk and skb, and also a new skb is always 138 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 139 * destructor in the data chunk skb for the purpose of the sndbuf space 140 * tracking. 141 */ 142 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 143 { 144 struct sctp_association *asoc = chunk->asoc; 145 struct sock *sk = asoc->base.sk; 146 147 /* The sndbuf space is tracked per association. */ 148 sctp_association_hold(asoc); 149 150 skb_set_owner_w(chunk->skb, sk); 151 152 chunk->skb->destructor = sctp_wfree; 153 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 154 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 155 156 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 157 sizeof(struct sk_buff) + 158 sizeof(struct sctp_chunk); 159 160 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 161 } 162 163 /* Verify that this is a valid address. */ 164 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 165 int len) 166 { 167 struct sctp_af *af; 168 169 /* Verify basic sockaddr. */ 170 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 171 if (!af) 172 return -EINVAL; 173 174 /* Is this a valid SCTP address? */ 175 if (!af->addr_valid(addr, sctp_sk(sk))) 176 return -EINVAL; 177 178 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 179 return -EINVAL; 180 181 return 0; 182 } 183 184 /* Look up the association by its id. If this is not a UDP-style 185 * socket, the ID field is always ignored. 186 */ 187 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 188 { 189 struct sctp_association *asoc = NULL; 190 191 /* If this is not a UDP-style socket, assoc id should be ignored. */ 192 if (!sctp_style(sk, UDP)) { 193 /* Return NULL if the socket state is not ESTABLISHED. It 194 * could be a TCP-style listening socket or a socket which 195 * hasn't yet called connect() to establish an association. 196 */ 197 if (!sctp_sstate(sk, ESTABLISHED)) 198 return NULL; 199 200 /* Get the first and the only association from the list. */ 201 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 202 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 203 struct sctp_association, asocs); 204 return asoc; 205 } 206 207 /* Otherwise this is a UDP-style socket. */ 208 if (!id || (id == (sctp_assoc_t)-1)) 209 return NULL; 210 211 spin_lock_bh(&sctp_assocs_id_lock); 212 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 213 spin_unlock_bh(&sctp_assocs_id_lock); 214 215 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 216 return NULL; 217 218 return asoc; 219 } 220 221 /* Look up the transport from an address and an assoc id. If both address and 222 * id are specified, the associations matching the address and the id should be 223 * the same. 224 */ 225 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 226 struct sockaddr_storage *addr, 227 sctp_assoc_t id) 228 { 229 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 230 struct sctp_transport *transport; 231 union sctp_addr *laddr = (union sctp_addr *)addr; 232 233 laddr->v4.sin_port = ntohs(laddr->v4.sin_port); 234 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 235 (union sctp_addr *)addr, 236 &transport); 237 laddr->v4.sin_port = htons(laddr->v4.sin_port); 238 239 if (!addr_asoc) 240 return NULL; 241 242 id_asoc = sctp_id2assoc(sk, id); 243 if (id_asoc && (id_asoc != addr_asoc)) 244 return NULL; 245 246 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 247 (union sctp_addr *)addr); 248 249 return transport; 250 } 251 252 /* API 3.1.2 bind() - UDP Style Syntax 253 * The syntax of bind() is, 254 * 255 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 256 * 257 * sd - the socket descriptor returned by socket(). 258 * addr - the address structure (struct sockaddr_in or struct 259 * sockaddr_in6 [RFC 2553]), 260 * addr_len - the size of the address structure. 261 */ 262 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 263 { 264 int retval = 0; 265 266 sctp_lock_sock(sk); 267 268 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n", 269 sk, addr, addr_len); 270 271 /* Disallow binding twice. */ 272 if (!sctp_sk(sk)->ep->base.bind_addr.port) 273 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 274 addr_len); 275 else 276 retval = -EINVAL; 277 278 sctp_release_sock(sk); 279 280 return retval; 281 } 282 283 static long sctp_get_port_local(struct sock *, union sctp_addr *); 284 285 /* Verify this is a valid sockaddr. */ 286 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 287 union sctp_addr *addr, int len) 288 { 289 struct sctp_af *af; 290 291 /* Check minimum size. */ 292 if (len < sizeof (struct sockaddr)) 293 return NULL; 294 295 /* Does this PF support this AF? */ 296 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 297 return NULL; 298 299 /* If we get this far, af is valid. */ 300 af = sctp_get_af_specific(addr->sa.sa_family); 301 302 if (len < af->sockaddr_len) 303 return NULL; 304 305 return af; 306 } 307 308 /* Bind a local address either to an endpoint or to an association. */ 309 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 310 { 311 struct sctp_sock *sp = sctp_sk(sk); 312 struct sctp_endpoint *ep = sp->ep; 313 struct sctp_bind_addr *bp = &ep->base.bind_addr; 314 struct sctp_af *af; 315 unsigned short snum; 316 int ret = 0; 317 318 /* Common sockaddr verification. */ 319 af = sctp_sockaddr_af(sp, addr, len); 320 if (!af) { 321 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n", 322 sk, addr, len); 323 return -EINVAL; 324 } 325 326 snum = ntohs(addr->v4.sin_port); 327 328 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ", 329 ", port: %d, new port: %d, len: %d)\n", 330 sk, 331 addr, 332 bp->port, snum, 333 len); 334 335 /* PF specific bind() address verification. */ 336 if (!sp->pf->bind_verify(sp, addr)) 337 return -EADDRNOTAVAIL; 338 339 /* We must either be unbound, or bind to the same port. */ 340 if (bp->port && (snum != bp->port)) { 341 SCTP_DEBUG_PRINTK("sctp_do_bind:" 342 " New port %d does not match existing port " 343 "%d.\n", snum, bp->port); 344 return -EINVAL; 345 } 346 347 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 348 return -EACCES; 349 350 /* Make sure we are allowed to bind here. 351 * The function sctp_get_port_local() does duplicate address 352 * detection. 353 */ 354 if ((ret = sctp_get_port_local(sk, addr))) { 355 if (ret == (long) sk) { 356 /* This endpoint has a conflicting address. */ 357 return -EINVAL; 358 } else { 359 return -EADDRINUSE; 360 } 361 } 362 363 /* Refresh ephemeral port. */ 364 if (!bp->port) 365 bp->port = inet_sk(sk)->num; 366 367 /* Add the address to the bind address list. */ 368 sctp_local_bh_disable(); 369 sctp_write_lock(&ep->base.addr_lock); 370 371 /* Use GFP_ATOMIC since BHs are disabled. */ 372 addr->v4.sin_port = ntohs(addr->v4.sin_port); 373 ret = sctp_add_bind_addr(bp, addr, GFP_ATOMIC); 374 addr->v4.sin_port = htons(addr->v4.sin_port); 375 sctp_write_unlock(&ep->base.addr_lock); 376 sctp_local_bh_enable(); 377 378 /* Copy back into socket for getsockname() use. */ 379 if (!ret) { 380 inet_sk(sk)->sport = htons(inet_sk(sk)->num); 381 af->to_sk_saddr(addr, sk); 382 } 383 384 return ret; 385 } 386 387 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 388 * 389 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 390 * at any one time. If a sender, after sending an ASCONF chunk, decides 391 * it needs to transfer another ASCONF Chunk, it MUST wait until the 392 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 393 * subsequent ASCONF. Note this restriction binds each side, so at any 394 * time two ASCONF may be in-transit on any given association (one sent 395 * from each endpoint). 396 */ 397 static int sctp_send_asconf(struct sctp_association *asoc, 398 struct sctp_chunk *chunk) 399 { 400 int retval = 0; 401 402 /* If there is an outstanding ASCONF chunk, queue it for later 403 * transmission. 404 */ 405 if (asoc->addip_last_asconf) { 406 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 407 goto out; 408 } 409 410 /* Hold the chunk until an ASCONF_ACK is received. */ 411 sctp_chunk_hold(chunk); 412 retval = sctp_primitive_ASCONF(asoc, chunk); 413 if (retval) 414 sctp_chunk_free(chunk); 415 else 416 asoc->addip_last_asconf = chunk; 417 418 out: 419 return retval; 420 } 421 422 /* Add a list of addresses as bind addresses to local endpoint or 423 * association. 424 * 425 * Basically run through each address specified in the addrs/addrcnt 426 * array/length pair, determine if it is IPv6 or IPv4 and call 427 * sctp_do_bind() on it. 428 * 429 * If any of them fails, then the operation will be reversed and the 430 * ones that were added will be removed. 431 * 432 * Only sctp_setsockopt_bindx() is supposed to call this function. 433 */ 434 int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 435 { 436 int cnt; 437 int retval = 0; 438 void *addr_buf; 439 struct sockaddr *sa_addr; 440 struct sctp_af *af; 441 442 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n", 443 sk, addrs, addrcnt); 444 445 addr_buf = addrs; 446 for (cnt = 0; cnt < addrcnt; cnt++) { 447 /* The list may contain either IPv4 or IPv6 address; 448 * determine the address length for walking thru the list. 449 */ 450 sa_addr = (struct sockaddr *)addr_buf; 451 af = sctp_get_af_specific(sa_addr->sa_family); 452 if (!af) { 453 retval = -EINVAL; 454 goto err_bindx_add; 455 } 456 457 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 458 af->sockaddr_len); 459 460 addr_buf += af->sockaddr_len; 461 462 err_bindx_add: 463 if (retval < 0) { 464 /* Failed. Cleanup the ones that have been added */ 465 if (cnt > 0) 466 sctp_bindx_rem(sk, addrs, cnt); 467 return retval; 468 } 469 } 470 471 return retval; 472 } 473 474 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 475 * associations that are part of the endpoint indicating that a list of local 476 * addresses are added to the endpoint. 477 * 478 * If any of the addresses is already in the bind address list of the 479 * association, we do not send the chunk for that association. But it will not 480 * affect other associations. 481 * 482 * Only sctp_setsockopt_bindx() is supposed to call this function. 483 */ 484 static int sctp_send_asconf_add_ip(struct sock *sk, 485 struct sockaddr *addrs, 486 int addrcnt) 487 { 488 struct sctp_sock *sp; 489 struct sctp_endpoint *ep; 490 struct sctp_association *asoc; 491 struct sctp_bind_addr *bp; 492 struct sctp_chunk *chunk; 493 struct sctp_sockaddr_entry *laddr; 494 union sctp_addr *addr; 495 void *addr_buf; 496 struct sctp_af *af; 497 struct list_head *pos; 498 struct list_head *p; 499 int i; 500 int retval = 0; 501 502 if (!sctp_addip_enable) 503 return retval; 504 505 sp = sctp_sk(sk); 506 ep = sp->ep; 507 508 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 509 __FUNCTION__, sk, addrs, addrcnt); 510 511 list_for_each(pos, &ep->asocs) { 512 asoc = list_entry(pos, struct sctp_association, asocs); 513 514 if (!asoc->peer.asconf_capable) 515 continue; 516 517 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 518 continue; 519 520 if (!sctp_state(asoc, ESTABLISHED)) 521 continue; 522 523 /* Check if any address in the packed array of addresses is 524 * in the bind address list of the association. If so, 525 * do not send the asconf chunk to its peer, but continue with 526 * other associations. 527 */ 528 addr_buf = addrs; 529 for (i = 0; i < addrcnt; i++) { 530 addr = (union sctp_addr *)addr_buf; 531 af = sctp_get_af_specific(addr->v4.sin_family); 532 if (!af) { 533 retval = -EINVAL; 534 goto out; 535 } 536 537 if (sctp_assoc_lookup_laddr(asoc, addr)) 538 break; 539 540 addr_buf += af->sockaddr_len; 541 } 542 if (i < addrcnt) 543 continue; 544 545 /* Use the first address in bind addr list of association as 546 * Address Parameter of ASCONF CHUNK. 547 */ 548 sctp_read_lock(&asoc->base.addr_lock); 549 bp = &asoc->base.bind_addr; 550 p = bp->address_list.next; 551 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 552 sctp_read_unlock(&asoc->base.addr_lock); 553 554 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 555 addrcnt, SCTP_PARAM_ADD_IP); 556 if (!chunk) { 557 retval = -ENOMEM; 558 goto out; 559 } 560 561 retval = sctp_send_asconf(asoc, chunk); 562 563 /* FIXME: After sending the add address ASCONF chunk, we 564 * cannot append the address to the association's binding 565 * address list, because the new address may be used as the 566 * source of a message sent to the peer before the ASCONF 567 * chunk is received by the peer. So we should wait until 568 * ASCONF_ACK is received. 569 */ 570 } 571 572 out: 573 return retval; 574 } 575 576 /* Remove a list of addresses from bind addresses list. Do not remove the 577 * last address. 578 * 579 * Basically run through each address specified in the addrs/addrcnt 580 * array/length pair, determine if it is IPv6 or IPv4 and call 581 * sctp_del_bind() on it. 582 * 583 * If any of them fails, then the operation will be reversed and the 584 * ones that were removed will be added back. 585 * 586 * At least one address has to be left; if only one address is 587 * available, the operation will return -EBUSY. 588 * 589 * Only sctp_setsockopt_bindx() is supposed to call this function. 590 */ 591 int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 592 { 593 struct sctp_sock *sp = sctp_sk(sk); 594 struct sctp_endpoint *ep = sp->ep; 595 int cnt; 596 struct sctp_bind_addr *bp = &ep->base.bind_addr; 597 int retval = 0; 598 union sctp_addr saveaddr; 599 void *addr_buf; 600 struct sockaddr *sa_addr; 601 struct sctp_af *af; 602 603 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n", 604 sk, addrs, addrcnt); 605 606 addr_buf = addrs; 607 for (cnt = 0; cnt < addrcnt; cnt++) { 608 /* If the bind address list is empty or if there is only one 609 * bind address, there is nothing more to be removed (we need 610 * at least one address here). 611 */ 612 if (list_empty(&bp->address_list) || 613 (sctp_list_single_entry(&bp->address_list))) { 614 retval = -EBUSY; 615 goto err_bindx_rem; 616 } 617 618 /* The list may contain either IPv4 or IPv6 address; 619 * determine the address length to copy the address to 620 * saveaddr. 621 */ 622 sa_addr = (struct sockaddr *)addr_buf; 623 af = sctp_get_af_specific(sa_addr->sa_family); 624 if (!af) { 625 retval = -EINVAL; 626 goto err_bindx_rem; 627 } 628 memcpy(&saveaddr, sa_addr, af->sockaddr_len); 629 saveaddr.v4.sin_port = ntohs(saveaddr.v4.sin_port); 630 if (saveaddr.v4.sin_port != bp->port) { 631 retval = -EINVAL; 632 goto err_bindx_rem; 633 } 634 635 /* FIXME - There is probably a need to check if sk->sk_saddr and 636 * sk->sk_rcv_addr are currently set to one of the addresses to 637 * be removed. This is something which needs to be looked into 638 * when we are fixing the outstanding issues with multi-homing 639 * socket routing and failover schemes. Refer to comments in 640 * sctp_do_bind(). -daisy 641 */ 642 sctp_local_bh_disable(); 643 sctp_write_lock(&ep->base.addr_lock); 644 645 retval = sctp_del_bind_addr(bp, &saveaddr); 646 647 sctp_write_unlock(&ep->base.addr_lock); 648 sctp_local_bh_enable(); 649 650 addr_buf += af->sockaddr_len; 651 err_bindx_rem: 652 if (retval < 0) { 653 /* Failed. Add the ones that has been removed back */ 654 if (cnt > 0) 655 sctp_bindx_add(sk, addrs, cnt); 656 return retval; 657 } 658 } 659 660 return retval; 661 } 662 663 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 664 * the associations that are part of the endpoint indicating that a list of 665 * local addresses are removed from the endpoint. 666 * 667 * If any of the addresses is already in the bind address list of the 668 * association, we do not send the chunk for that association. But it will not 669 * affect other associations. 670 * 671 * Only sctp_setsockopt_bindx() is supposed to call this function. 672 */ 673 static int sctp_send_asconf_del_ip(struct sock *sk, 674 struct sockaddr *addrs, 675 int addrcnt) 676 { 677 struct sctp_sock *sp; 678 struct sctp_endpoint *ep; 679 struct sctp_association *asoc; 680 struct sctp_bind_addr *bp; 681 struct sctp_chunk *chunk; 682 union sctp_addr *laddr; 683 void *addr_buf; 684 struct sctp_af *af; 685 struct list_head *pos; 686 int i; 687 int retval = 0; 688 689 if (!sctp_addip_enable) 690 return retval; 691 692 sp = sctp_sk(sk); 693 ep = sp->ep; 694 695 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 696 __FUNCTION__, sk, addrs, addrcnt); 697 698 list_for_each(pos, &ep->asocs) { 699 asoc = list_entry(pos, struct sctp_association, asocs); 700 701 if (!asoc->peer.asconf_capable) 702 continue; 703 704 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 705 continue; 706 707 if (!sctp_state(asoc, ESTABLISHED)) 708 continue; 709 710 /* Check if any address in the packed array of addresses is 711 * not present in the bind address list of the association. 712 * If so, do not send the asconf chunk to its peer, but 713 * continue with other associations. 714 */ 715 addr_buf = addrs; 716 for (i = 0; i < addrcnt; i++) { 717 laddr = (union sctp_addr *)addr_buf; 718 af = sctp_get_af_specific(laddr->v4.sin_family); 719 if (!af) { 720 retval = -EINVAL; 721 goto out; 722 } 723 724 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 725 break; 726 727 addr_buf += af->sockaddr_len; 728 } 729 if (i < addrcnt) 730 continue; 731 732 /* Find one address in the association's bind address list 733 * that is not in the packed array of addresses. This is to 734 * make sure that we do not delete all the addresses in the 735 * association. 736 */ 737 sctp_read_lock(&asoc->base.addr_lock); 738 bp = &asoc->base.bind_addr; 739 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 740 addrcnt, sp); 741 sctp_read_unlock(&asoc->base.addr_lock); 742 if (!laddr) 743 continue; 744 745 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 746 SCTP_PARAM_DEL_IP); 747 if (!chunk) { 748 retval = -ENOMEM; 749 goto out; 750 } 751 752 retval = sctp_send_asconf(asoc, chunk); 753 754 /* FIXME: After sending the delete address ASCONF chunk, we 755 * cannot remove the addresses from the association's bind 756 * address list, because there maybe some packet send to 757 * the delete addresses, so we should wait until ASCONF_ACK 758 * packet is received. 759 */ 760 } 761 out: 762 return retval; 763 } 764 765 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 766 * 767 * API 8.1 768 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 769 * int flags); 770 * 771 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 772 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 773 * or IPv6 addresses. 774 * 775 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 776 * Section 3.1.2 for this usage. 777 * 778 * addrs is a pointer to an array of one or more socket addresses. Each 779 * address is contained in its appropriate structure (i.e. struct 780 * sockaddr_in or struct sockaddr_in6) the family of the address type 781 * must be used to distengish the address length (note that this 782 * representation is termed a "packed array" of addresses). The caller 783 * specifies the number of addresses in the array with addrcnt. 784 * 785 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 786 * -1, and sets errno to the appropriate error code. 787 * 788 * For SCTP, the port given in each socket address must be the same, or 789 * sctp_bindx() will fail, setting errno to EINVAL. 790 * 791 * The flags parameter is formed from the bitwise OR of zero or more of 792 * the following currently defined flags: 793 * 794 * SCTP_BINDX_ADD_ADDR 795 * 796 * SCTP_BINDX_REM_ADDR 797 * 798 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 799 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 800 * addresses from the association. The two flags are mutually exclusive; 801 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 802 * not remove all addresses from an association; sctp_bindx() will 803 * reject such an attempt with EINVAL. 804 * 805 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 806 * additional addresses with an endpoint after calling bind(). Or use 807 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 808 * socket is associated with so that no new association accepted will be 809 * associated with those addresses. If the endpoint supports dynamic 810 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 811 * endpoint to send the appropriate message to the peer to change the 812 * peers address lists. 813 * 814 * Adding and removing addresses from a connected association is 815 * optional functionality. Implementations that do not support this 816 * functionality should return EOPNOTSUPP. 817 * 818 * Basically do nothing but copying the addresses from user to kernel 819 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 820 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 821 * from userspace. 822 * 823 * We don't use copy_from_user() for optimization: we first do the 824 * sanity checks (buffer size -fast- and access check-healthy 825 * pointer); if all of those succeed, then we can alloc the memory 826 * (expensive operation) needed to copy the data to kernel. Then we do 827 * the copying without checking the user space area 828 * (__copy_from_user()). 829 * 830 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 831 * it. 832 * 833 * sk The sk of the socket 834 * addrs The pointer to the addresses in user land 835 * addrssize Size of the addrs buffer 836 * op Operation to perform (add or remove, see the flags of 837 * sctp_bindx) 838 * 839 * Returns 0 if ok, <0 errno code on error. 840 */ 841 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk, 842 struct sockaddr __user *addrs, 843 int addrs_size, int op) 844 { 845 struct sockaddr *kaddrs; 846 int err; 847 int addrcnt = 0; 848 int walk_size = 0; 849 struct sockaddr *sa_addr; 850 void *addr_buf; 851 struct sctp_af *af; 852 853 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p" 854 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op); 855 856 if (unlikely(addrs_size <= 0)) 857 return -EINVAL; 858 859 /* Check the user passed a healthy pointer. */ 860 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 861 return -EFAULT; 862 863 /* Alloc space for the address array in kernel memory. */ 864 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 865 if (unlikely(!kaddrs)) 866 return -ENOMEM; 867 868 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 869 kfree(kaddrs); 870 return -EFAULT; 871 } 872 873 /* Walk through the addrs buffer and count the number of addresses. */ 874 addr_buf = kaddrs; 875 while (walk_size < addrs_size) { 876 sa_addr = (struct sockaddr *)addr_buf; 877 af = sctp_get_af_specific(sa_addr->sa_family); 878 879 /* If the address family is not supported or if this address 880 * causes the address buffer to overflow return EINVAL. 881 */ 882 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 883 kfree(kaddrs); 884 return -EINVAL; 885 } 886 addrcnt++; 887 addr_buf += af->sockaddr_len; 888 walk_size += af->sockaddr_len; 889 } 890 891 /* Do the work. */ 892 switch (op) { 893 case SCTP_BINDX_ADD_ADDR: 894 err = sctp_bindx_add(sk, kaddrs, addrcnt); 895 if (err) 896 goto out; 897 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 898 break; 899 900 case SCTP_BINDX_REM_ADDR: 901 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 902 if (err) 903 goto out; 904 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 905 break; 906 907 default: 908 err = -EINVAL; 909 break; 910 }; 911 912 out: 913 kfree(kaddrs); 914 915 return err; 916 } 917 918 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 919 * 920 * Common routine for handling connect() and sctp_connectx(). 921 * Connect will come in with just a single address. 922 */ 923 static int __sctp_connect(struct sock* sk, 924 struct sockaddr *kaddrs, 925 int addrs_size) 926 { 927 struct sctp_sock *sp; 928 struct sctp_endpoint *ep; 929 struct sctp_association *asoc = NULL; 930 struct sctp_association *asoc2; 931 struct sctp_transport *transport; 932 union sctp_addr to; 933 struct sctp_af *af; 934 sctp_scope_t scope; 935 long timeo; 936 int err = 0; 937 int addrcnt = 0; 938 int walk_size = 0; 939 struct sockaddr *sa_addr; 940 void *addr_buf; 941 942 sp = sctp_sk(sk); 943 ep = sp->ep; 944 945 /* connect() cannot be done on a socket that is already in ESTABLISHED 946 * state - UDP-style peeled off socket or a TCP-style socket that 947 * is already connected. 948 * It cannot be done even on a TCP-style listening socket. 949 */ 950 if (sctp_sstate(sk, ESTABLISHED) || 951 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 952 err = -EISCONN; 953 goto out_free; 954 } 955 956 /* Walk through the addrs buffer and count the number of addresses. */ 957 addr_buf = kaddrs; 958 while (walk_size < addrs_size) { 959 sa_addr = (struct sockaddr *)addr_buf; 960 af = sctp_get_af_specific(sa_addr->sa_family); 961 962 /* If the address family is not supported or if this address 963 * causes the address buffer to overflow return EINVAL. 964 */ 965 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 966 err = -EINVAL; 967 goto out_free; 968 } 969 970 err = sctp_verify_addr(sk, (union sctp_addr *)sa_addr, 971 af->sockaddr_len); 972 if (err) 973 goto out_free; 974 975 memcpy(&to, sa_addr, af->sockaddr_len); 976 to.v4.sin_port = ntohs(to.v4.sin_port); 977 978 /* Check if there already is a matching association on the 979 * endpoint (other than the one created here). 980 */ 981 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 982 if (asoc2 && asoc2 != asoc) { 983 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 984 err = -EISCONN; 985 else 986 err = -EALREADY; 987 goto out_free; 988 } 989 990 /* If we could not find a matching association on the endpoint, 991 * make sure that there is no peeled-off association matching 992 * the peer address even on another socket. 993 */ 994 if (sctp_endpoint_is_peeled_off(ep, &to)) { 995 err = -EADDRNOTAVAIL; 996 goto out_free; 997 } 998 999 if (!asoc) { 1000 /* If a bind() or sctp_bindx() is not called prior to 1001 * an sctp_connectx() call, the system picks an 1002 * ephemeral port and will choose an address set 1003 * equivalent to binding with a wildcard address. 1004 */ 1005 if (!ep->base.bind_addr.port) { 1006 if (sctp_autobind(sk)) { 1007 err = -EAGAIN; 1008 goto out_free; 1009 } 1010 } else { 1011 /* 1012 * If an unprivileged user inherits a 1-many 1013 * style socket with open associations on a 1014 * privileged port, it MAY be permitted to 1015 * accept new associations, but it SHOULD NOT 1016 * be permitted to open new associations. 1017 */ 1018 if (ep->base.bind_addr.port < PROT_SOCK && 1019 !capable(CAP_NET_BIND_SERVICE)) { 1020 err = -EACCES; 1021 goto out_free; 1022 } 1023 } 1024 1025 scope = sctp_scope(&to); 1026 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1027 if (!asoc) { 1028 err = -ENOMEM; 1029 goto out_free; 1030 } 1031 } 1032 1033 /* Prime the peer's transport structures. */ 1034 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1035 SCTP_UNKNOWN); 1036 if (!transport) { 1037 err = -ENOMEM; 1038 goto out_free; 1039 } 1040 1041 addrcnt++; 1042 addr_buf += af->sockaddr_len; 1043 walk_size += af->sockaddr_len; 1044 } 1045 1046 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1047 if (err < 0) { 1048 goto out_free; 1049 } 1050 1051 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1052 if (err < 0) { 1053 goto out_free; 1054 } 1055 1056 /* Initialize sk's dport and daddr for getpeername() */ 1057 inet_sk(sk)->dport = htons(asoc->peer.port); 1058 af = sctp_get_af_specific(to.sa.sa_family); 1059 af->to_sk_daddr(&to, sk); 1060 1061 timeo = sock_sndtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK); 1062 err = sctp_wait_for_connect(asoc, &timeo); 1063 1064 /* Don't free association on exit. */ 1065 asoc = NULL; 1066 1067 out_free: 1068 1069 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p" 1070 " kaddrs: %p err: %d\n", 1071 asoc, kaddrs, err); 1072 if (asoc) 1073 sctp_association_free(asoc); 1074 return err; 1075 } 1076 1077 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1078 * 1079 * API 8.9 1080 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt); 1081 * 1082 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1083 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1084 * or IPv6 addresses. 1085 * 1086 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1087 * Section 3.1.2 for this usage. 1088 * 1089 * addrs is a pointer to an array of one or more socket addresses. Each 1090 * address is contained in its appropriate structure (i.e. struct 1091 * sockaddr_in or struct sockaddr_in6) the family of the address type 1092 * must be used to distengish the address length (note that this 1093 * representation is termed a "packed array" of addresses). The caller 1094 * specifies the number of addresses in the array with addrcnt. 1095 * 1096 * On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns 1097 * -1, and sets errno to the appropriate error code. 1098 * 1099 * For SCTP, the port given in each socket address must be the same, or 1100 * sctp_connectx() will fail, setting errno to EINVAL. 1101 * 1102 * An application can use sctp_connectx to initiate an association with 1103 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1104 * allows a caller to specify multiple addresses at which a peer can be 1105 * reached. The way the SCTP stack uses the list of addresses to set up 1106 * the association is implementation dependant. This function only 1107 * specifies that the stack will try to make use of all the addresses in 1108 * the list when needed. 1109 * 1110 * Note that the list of addresses passed in is only used for setting up 1111 * the association. It does not necessarily equal the set of addresses 1112 * the peer uses for the resulting association. If the caller wants to 1113 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1114 * retrieve them after the association has been set up. 1115 * 1116 * Basically do nothing but copying the addresses from user to kernel 1117 * land and invoking either sctp_connectx(). This is used for tunneling 1118 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1119 * 1120 * We don't use copy_from_user() for optimization: we first do the 1121 * sanity checks (buffer size -fast- and access check-healthy 1122 * pointer); if all of those succeed, then we can alloc the memory 1123 * (expensive operation) needed to copy the data to kernel. Then we do 1124 * the copying without checking the user space area 1125 * (__copy_from_user()). 1126 * 1127 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1128 * it. 1129 * 1130 * sk The sk of the socket 1131 * addrs The pointer to the addresses in user land 1132 * addrssize Size of the addrs buffer 1133 * 1134 * Returns 0 if ok, <0 errno code on error. 1135 */ 1136 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk, 1137 struct sockaddr __user *addrs, 1138 int addrs_size) 1139 { 1140 int err = 0; 1141 struct sockaddr *kaddrs; 1142 1143 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n", 1144 __FUNCTION__, sk, addrs, addrs_size); 1145 1146 if (unlikely(addrs_size <= 0)) 1147 return -EINVAL; 1148 1149 /* Check the user passed a healthy pointer. */ 1150 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1151 return -EFAULT; 1152 1153 /* Alloc space for the address array in kernel memory. */ 1154 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 1155 if (unlikely(!kaddrs)) 1156 return -ENOMEM; 1157 1158 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1159 err = -EFAULT; 1160 } else { 1161 err = __sctp_connect(sk, kaddrs, addrs_size); 1162 } 1163 1164 kfree(kaddrs); 1165 return err; 1166 } 1167 1168 /* API 3.1.4 close() - UDP Style Syntax 1169 * Applications use close() to perform graceful shutdown (as described in 1170 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1171 * by a UDP-style socket. 1172 * 1173 * The syntax is 1174 * 1175 * ret = close(int sd); 1176 * 1177 * sd - the socket descriptor of the associations to be closed. 1178 * 1179 * To gracefully shutdown a specific association represented by the 1180 * UDP-style socket, an application should use the sendmsg() call, 1181 * passing no user data, but including the appropriate flag in the 1182 * ancillary data (see Section xxxx). 1183 * 1184 * If sd in the close() call is a branched-off socket representing only 1185 * one association, the shutdown is performed on that association only. 1186 * 1187 * 4.1.6 close() - TCP Style Syntax 1188 * 1189 * Applications use close() to gracefully close down an association. 1190 * 1191 * The syntax is: 1192 * 1193 * int close(int sd); 1194 * 1195 * sd - the socket descriptor of the association to be closed. 1196 * 1197 * After an application calls close() on a socket descriptor, no further 1198 * socket operations will succeed on that descriptor. 1199 * 1200 * API 7.1.4 SO_LINGER 1201 * 1202 * An application using the TCP-style socket can use this option to 1203 * perform the SCTP ABORT primitive. The linger option structure is: 1204 * 1205 * struct linger { 1206 * int l_onoff; // option on/off 1207 * int l_linger; // linger time 1208 * }; 1209 * 1210 * To enable the option, set l_onoff to 1. If the l_linger value is set 1211 * to 0, calling close() is the same as the ABORT primitive. If the 1212 * value is set to a negative value, the setsockopt() call will return 1213 * an error. If the value is set to a positive value linger_time, the 1214 * close() can be blocked for at most linger_time ms. If the graceful 1215 * shutdown phase does not finish during this period, close() will 1216 * return but the graceful shutdown phase continues in the system. 1217 */ 1218 SCTP_STATIC void sctp_close(struct sock *sk, long timeout) 1219 { 1220 struct sctp_endpoint *ep; 1221 struct sctp_association *asoc; 1222 struct list_head *pos, *temp; 1223 1224 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout); 1225 1226 sctp_lock_sock(sk); 1227 sk->sk_shutdown = SHUTDOWN_MASK; 1228 1229 ep = sctp_sk(sk)->ep; 1230 1231 /* Walk all associations on a socket, not on an endpoint. */ 1232 list_for_each_safe(pos, temp, &ep->asocs) { 1233 asoc = list_entry(pos, struct sctp_association, asocs); 1234 1235 if (sctp_style(sk, TCP)) { 1236 /* A closed association can still be in the list if 1237 * it belongs to a TCP-style listening socket that is 1238 * not yet accepted. If so, free it. If not, send an 1239 * ABORT or SHUTDOWN based on the linger options. 1240 */ 1241 if (sctp_state(asoc, CLOSED)) { 1242 sctp_unhash_established(asoc); 1243 sctp_association_free(asoc); 1244 1245 } else if (sock_flag(sk, SOCK_LINGER) && 1246 !sk->sk_lingertime) 1247 sctp_primitive_ABORT(asoc, NULL); 1248 else 1249 sctp_primitive_SHUTDOWN(asoc, NULL); 1250 } else 1251 sctp_primitive_SHUTDOWN(asoc, NULL); 1252 } 1253 1254 /* Clean up any skbs sitting on the receive queue. */ 1255 sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1256 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1257 1258 /* On a TCP-style socket, block for at most linger_time if set. */ 1259 if (sctp_style(sk, TCP) && timeout) 1260 sctp_wait_for_close(sk, timeout); 1261 1262 /* This will run the backlog queue. */ 1263 sctp_release_sock(sk); 1264 1265 /* Supposedly, no process has access to the socket, but 1266 * the net layers still may. 1267 */ 1268 sctp_local_bh_disable(); 1269 sctp_bh_lock_sock(sk); 1270 1271 /* Hold the sock, since sk_common_release() will put sock_put() 1272 * and we have just a little more cleanup. 1273 */ 1274 sock_hold(sk); 1275 sk_common_release(sk); 1276 1277 sctp_bh_unlock_sock(sk); 1278 sctp_local_bh_enable(); 1279 1280 sock_put(sk); 1281 1282 SCTP_DBG_OBJCNT_DEC(sock); 1283 } 1284 1285 /* Handle EPIPE error. */ 1286 static int sctp_error(struct sock *sk, int flags, int err) 1287 { 1288 if (err == -EPIPE) 1289 err = sock_error(sk) ? : -EPIPE; 1290 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1291 send_sig(SIGPIPE, current, 0); 1292 return err; 1293 } 1294 1295 /* API 3.1.3 sendmsg() - UDP Style Syntax 1296 * 1297 * An application uses sendmsg() and recvmsg() calls to transmit data to 1298 * and receive data from its peer. 1299 * 1300 * ssize_t sendmsg(int socket, const struct msghdr *message, 1301 * int flags); 1302 * 1303 * socket - the socket descriptor of the endpoint. 1304 * message - pointer to the msghdr structure which contains a single 1305 * user message and possibly some ancillary data. 1306 * 1307 * See Section 5 for complete description of the data 1308 * structures. 1309 * 1310 * flags - flags sent or received with the user message, see Section 1311 * 5 for complete description of the flags. 1312 * 1313 * Note: This function could use a rewrite especially when explicit 1314 * connect support comes in. 1315 */ 1316 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1317 1318 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1319 1320 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1321 struct msghdr *msg, size_t msg_len) 1322 { 1323 struct sctp_sock *sp; 1324 struct sctp_endpoint *ep; 1325 struct sctp_association *new_asoc=NULL, *asoc=NULL; 1326 struct sctp_transport *transport, *chunk_tp; 1327 struct sctp_chunk *chunk; 1328 union sctp_addr to; 1329 struct sockaddr *msg_name = NULL; 1330 struct sctp_sndrcvinfo default_sinfo = { 0 }; 1331 struct sctp_sndrcvinfo *sinfo; 1332 struct sctp_initmsg *sinit; 1333 sctp_assoc_t associd = 0; 1334 sctp_cmsgs_t cmsgs = { NULL }; 1335 int err; 1336 sctp_scope_t scope; 1337 long timeo; 1338 __u16 sinfo_flags = 0; 1339 struct sctp_datamsg *datamsg; 1340 struct list_head *pos; 1341 int msg_flags = msg->msg_flags; 1342 1343 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n", 1344 sk, msg, msg_len); 1345 1346 err = 0; 1347 sp = sctp_sk(sk); 1348 ep = sp->ep; 1349 1350 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep); 1351 1352 /* We cannot send a message over a TCP-style listening socket. */ 1353 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1354 err = -EPIPE; 1355 goto out_nounlock; 1356 } 1357 1358 /* Parse out the SCTP CMSGs. */ 1359 err = sctp_msghdr_parse(msg, &cmsgs); 1360 1361 if (err) { 1362 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err); 1363 goto out_nounlock; 1364 } 1365 1366 /* Fetch the destination address for this packet. This 1367 * address only selects the association--it is not necessarily 1368 * the address we will send to. 1369 * For a peeled-off socket, msg_name is ignored. 1370 */ 1371 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1372 int msg_namelen = msg->msg_namelen; 1373 1374 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1375 msg_namelen); 1376 if (err) 1377 return err; 1378 1379 if (msg_namelen > sizeof(to)) 1380 msg_namelen = sizeof(to); 1381 memcpy(&to, msg->msg_name, msg_namelen); 1382 SCTP_DEBUG_PRINTK("Just memcpy'd. msg_name is " 1383 "0x%x:%u.\n", 1384 to.v4.sin_addr.s_addr, to.v4.sin_port); 1385 1386 to.v4.sin_port = ntohs(to.v4.sin_port); 1387 msg_name = msg->msg_name; 1388 } 1389 1390 sinfo = cmsgs.info; 1391 sinit = cmsgs.init; 1392 1393 /* Did the user specify SNDRCVINFO? */ 1394 if (sinfo) { 1395 sinfo_flags = sinfo->sinfo_flags; 1396 associd = sinfo->sinfo_assoc_id; 1397 } 1398 1399 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n", 1400 msg_len, sinfo_flags); 1401 1402 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1403 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1404 err = -EINVAL; 1405 goto out_nounlock; 1406 } 1407 1408 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1409 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1410 * If SCTP_ABORT is set, the message length could be non zero with 1411 * the msg_iov set to the user abort reason. 1412 */ 1413 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1414 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1415 err = -EINVAL; 1416 goto out_nounlock; 1417 } 1418 1419 /* If SCTP_ADDR_OVER is set, there must be an address 1420 * specified in msg_name. 1421 */ 1422 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1423 err = -EINVAL; 1424 goto out_nounlock; 1425 } 1426 1427 transport = NULL; 1428 1429 SCTP_DEBUG_PRINTK("About to look up association.\n"); 1430 1431 sctp_lock_sock(sk); 1432 1433 /* If a msg_name has been specified, assume this is to be used. */ 1434 if (msg_name) { 1435 /* Look for a matching association on the endpoint. */ 1436 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1437 if (!asoc) { 1438 /* If we could not find a matching association on the 1439 * endpoint, make sure that it is not a TCP-style 1440 * socket that already has an association or there is 1441 * no peeled-off association on another socket. 1442 */ 1443 if ((sctp_style(sk, TCP) && 1444 sctp_sstate(sk, ESTABLISHED)) || 1445 sctp_endpoint_is_peeled_off(ep, &to)) { 1446 err = -EADDRNOTAVAIL; 1447 goto out_unlock; 1448 } 1449 } 1450 } else { 1451 asoc = sctp_id2assoc(sk, associd); 1452 if (!asoc) { 1453 err = -EPIPE; 1454 goto out_unlock; 1455 } 1456 } 1457 1458 if (asoc) { 1459 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc); 1460 1461 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1462 * socket that has an association in CLOSED state. This can 1463 * happen when an accepted socket has an association that is 1464 * already CLOSED. 1465 */ 1466 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1467 err = -EPIPE; 1468 goto out_unlock; 1469 } 1470 1471 if (sinfo_flags & SCTP_EOF) { 1472 SCTP_DEBUG_PRINTK("Shutting down association: %p\n", 1473 asoc); 1474 sctp_primitive_SHUTDOWN(asoc, NULL); 1475 err = 0; 1476 goto out_unlock; 1477 } 1478 if (sinfo_flags & SCTP_ABORT) { 1479 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc); 1480 sctp_primitive_ABORT(asoc, msg); 1481 err = 0; 1482 goto out_unlock; 1483 } 1484 } 1485 1486 /* Do we need to create the association? */ 1487 if (!asoc) { 1488 SCTP_DEBUG_PRINTK("There is no association yet.\n"); 1489 1490 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1491 err = -EINVAL; 1492 goto out_unlock; 1493 } 1494 1495 /* Check for invalid stream against the stream counts, 1496 * either the default or the user specified stream counts. 1497 */ 1498 if (sinfo) { 1499 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) { 1500 /* Check against the defaults. */ 1501 if (sinfo->sinfo_stream >= 1502 sp->initmsg.sinit_num_ostreams) { 1503 err = -EINVAL; 1504 goto out_unlock; 1505 } 1506 } else { 1507 /* Check against the requested. */ 1508 if (sinfo->sinfo_stream >= 1509 sinit->sinit_num_ostreams) { 1510 err = -EINVAL; 1511 goto out_unlock; 1512 } 1513 } 1514 } 1515 1516 /* 1517 * API 3.1.2 bind() - UDP Style Syntax 1518 * If a bind() or sctp_bindx() is not called prior to a 1519 * sendmsg() call that initiates a new association, the 1520 * system picks an ephemeral port and will choose an address 1521 * set equivalent to binding with a wildcard address. 1522 */ 1523 if (!ep->base.bind_addr.port) { 1524 if (sctp_autobind(sk)) { 1525 err = -EAGAIN; 1526 goto out_unlock; 1527 } 1528 } else { 1529 /* 1530 * If an unprivileged user inherits a one-to-many 1531 * style socket with open associations on a privileged 1532 * port, it MAY be permitted to accept new associations, 1533 * but it SHOULD NOT be permitted to open new 1534 * associations. 1535 */ 1536 if (ep->base.bind_addr.port < PROT_SOCK && 1537 !capable(CAP_NET_BIND_SERVICE)) { 1538 err = -EACCES; 1539 goto out_unlock; 1540 } 1541 } 1542 1543 scope = sctp_scope(&to); 1544 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1545 if (!new_asoc) { 1546 err = -ENOMEM; 1547 goto out_unlock; 1548 } 1549 asoc = new_asoc; 1550 1551 /* If the SCTP_INIT ancillary data is specified, set all 1552 * the association init values accordingly. 1553 */ 1554 if (sinit) { 1555 if (sinit->sinit_num_ostreams) { 1556 asoc->c.sinit_num_ostreams = 1557 sinit->sinit_num_ostreams; 1558 } 1559 if (sinit->sinit_max_instreams) { 1560 asoc->c.sinit_max_instreams = 1561 sinit->sinit_max_instreams; 1562 } 1563 if (sinit->sinit_max_attempts) { 1564 asoc->max_init_attempts 1565 = sinit->sinit_max_attempts; 1566 } 1567 if (sinit->sinit_max_init_timeo) { 1568 asoc->max_init_timeo = 1569 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1570 } 1571 } 1572 1573 /* Prime the peer's transport structures. */ 1574 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1575 if (!transport) { 1576 err = -ENOMEM; 1577 goto out_free; 1578 } 1579 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1580 if (err < 0) { 1581 err = -ENOMEM; 1582 goto out_free; 1583 } 1584 } 1585 1586 /* ASSERT: we have a valid association at this point. */ 1587 SCTP_DEBUG_PRINTK("We have a valid association.\n"); 1588 1589 if (!sinfo) { 1590 /* If the user didn't specify SNDRCVINFO, make up one with 1591 * some defaults. 1592 */ 1593 default_sinfo.sinfo_stream = asoc->default_stream; 1594 default_sinfo.sinfo_flags = asoc->default_flags; 1595 default_sinfo.sinfo_ppid = asoc->default_ppid; 1596 default_sinfo.sinfo_context = asoc->default_context; 1597 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1598 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1599 sinfo = &default_sinfo; 1600 } 1601 1602 /* API 7.1.7, the sndbuf size per association bounds the 1603 * maximum size of data that can be sent in a single send call. 1604 */ 1605 if (msg_len > sk->sk_sndbuf) { 1606 err = -EMSGSIZE; 1607 goto out_free; 1608 } 1609 1610 /* If fragmentation is disabled and the message length exceeds the 1611 * association fragmentation point, return EMSGSIZE. The I-D 1612 * does not specify what this error is, but this looks like 1613 * a great fit. 1614 */ 1615 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1616 err = -EMSGSIZE; 1617 goto out_free; 1618 } 1619 1620 if (sinfo) { 1621 /* Check for invalid stream. */ 1622 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1623 err = -EINVAL; 1624 goto out_free; 1625 } 1626 } 1627 1628 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1629 if (!sctp_wspace(asoc)) { 1630 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1631 if (err) 1632 goto out_free; 1633 } 1634 1635 /* If an address is passed with the sendto/sendmsg call, it is used 1636 * to override the primary destination address in the TCP model, or 1637 * when SCTP_ADDR_OVER flag is set in the UDP model. 1638 */ 1639 if ((sctp_style(sk, TCP) && msg_name) || 1640 (sinfo_flags & SCTP_ADDR_OVER)) { 1641 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1642 if (!chunk_tp) { 1643 err = -EINVAL; 1644 goto out_free; 1645 } 1646 } else 1647 chunk_tp = NULL; 1648 1649 /* Auto-connect, if we aren't connected already. */ 1650 if (sctp_state(asoc, CLOSED)) { 1651 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1652 if (err < 0) 1653 goto out_free; 1654 SCTP_DEBUG_PRINTK("We associated primitively.\n"); 1655 } 1656 1657 /* Break the message into multiple chunks of maximum size. */ 1658 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1659 if (!datamsg) { 1660 err = -ENOMEM; 1661 goto out_free; 1662 } 1663 1664 /* Now send the (possibly) fragmented message. */ 1665 list_for_each(pos, &datamsg->chunks) { 1666 chunk = list_entry(pos, struct sctp_chunk, frag_list); 1667 sctp_datamsg_track(chunk); 1668 1669 /* Do accounting for the write space. */ 1670 sctp_set_owner_w(chunk); 1671 1672 chunk->transport = chunk_tp; 1673 1674 /* Send it to the lower layers. Note: all chunks 1675 * must either fail or succeed. The lower layer 1676 * works that way today. Keep it that way or this 1677 * breaks. 1678 */ 1679 err = sctp_primitive_SEND(asoc, chunk); 1680 /* Did the lower layer accept the chunk? */ 1681 if (err) 1682 sctp_chunk_free(chunk); 1683 SCTP_DEBUG_PRINTK("We sent primitively.\n"); 1684 } 1685 1686 sctp_datamsg_free(datamsg); 1687 if (err) 1688 goto out_free; 1689 else 1690 err = msg_len; 1691 1692 /* If we are already past ASSOCIATE, the lower 1693 * layers are responsible for association cleanup. 1694 */ 1695 goto out_unlock; 1696 1697 out_free: 1698 if (new_asoc) 1699 sctp_association_free(asoc); 1700 out_unlock: 1701 sctp_release_sock(sk); 1702 1703 out_nounlock: 1704 return sctp_error(sk, msg_flags, err); 1705 1706 #if 0 1707 do_sock_err: 1708 if (msg_len) 1709 err = msg_len; 1710 else 1711 err = sock_error(sk); 1712 goto out; 1713 1714 do_interrupted: 1715 if (msg_len) 1716 err = msg_len; 1717 goto out; 1718 #endif /* 0 */ 1719 } 1720 1721 /* This is an extended version of skb_pull() that removes the data from the 1722 * start of a skb even when data is spread across the list of skb's in the 1723 * frag_list. len specifies the total amount of data that needs to be removed. 1724 * when 'len' bytes could be removed from the skb, it returns 0. 1725 * If 'len' exceeds the total skb length, it returns the no. of bytes that 1726 * could not be removed. 1727 */ 1728 static int sctp_skb_pull(struct sk_buff *skb, int len) 1729 { 1730 struct sk_buff *list; 1731 int skb_len = skb_headlen(skb); 1732 int rlen; 1733 1734 if (len <= skb_len) { 1735 __skb_pull(skb, len); 1736 return 0; 1737 } 1738 len -= skb_len; 1739 __skb_pull(skb, skb_len); 1740 1741 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) { 1742 rlen = sctp_skb_pull(list, len); 1743 skb->len -= (len-rlen); 1744 skb->data_len -= (len-rlen); 1745 1746 if (!rlen) 1747 return 0; 1748 1749 len = rlen; 1750 } 1751 1752 return len; 1753 } 1754 1755 /* API 3.1.3 recvmsg() - UDP Style Syntax 1756 * 1757 * ssize_t recvmsg(int socket, struct msghdr *message, 1758 * int flags); 1759 * 1760 * socket - the socket descriptor of the endpoint. 1761 * message - pointer to the msghdr structure which contains a single 1762 * user message and possibly some ancillary data. 1763 * 1764 * See Section 5 for complete description of the data 1765 * structures. 1766 * 1767 * flags - flags sent or received with the user message, see Section 1768 * 5 for complete description of the flags. 1769 */ 1770 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); 1771 1772 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 1773 struct msghdr *msg, size_t len, int noblock, 1774 int flags, int *addr_len) 1775 { 1776 struct sctp_ulpevent *event = NULL; 1777 struct sctp_sock *sp = sctp_sk(sk); 1778 struct sk_buff *skb; 1779 int copied; 1780 int err = 0; 1781 int skb_len; 1782 1783 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: " 1784 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg, 1785 "len", len, "knoblauch", noblock, 1786 "flags", flags, "addr_len", addr_len); 1787 1788 sctp_lock_sock(sk); 1789 1790 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 1791 err = -ENOTCONN; 1792 goto out; 1793 } 1794 1795 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 1796 if (!skb) 1797 goto out; 1798 1799 /* Get the total length of the skb including any skb's in the 1800 * frag_list. 1801 */ 1802 skb_len = skb->len; 1803 1804 copied = skb_len; 1805 if (copied > len) 1806 copied = len; 1807 1808 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 1809 1810 event = sctp_skb2event(skb); 1811 1812 if (err) 1813 goto out_free; 1814 1815 sock_recv_timestamp(msg, sk, skb); 1816 if (sctp_ulpevent_is_notification(event)) { 1817 msg->msg_flags |= MSG_NOTIFICATION; 1818 sp->pf->event_msgname(event, msg->msg_name, addr_len); 1819 } else { 1820 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 1821 } 1822 1823 /* Check if we allow SCTP_SNDRCVINFO. */ 1824 if (sp->subscribe.sctp_data_io_event) 1825 sctp_ulpevent_read_sndrcvinfo(event, msg); 1826 #if 0 1827 /* FIXME: we should be calling IP/IPv6 layers. */ 1828 if (sk->sk_protinfo.af_inet.cmsg_flags) 1829 ip_cmsg_recv(msg, skb); 1830 #endif 1831 1832 err = copied; 1833 1834 /* If skb's length exceeds the user's buffer, update the skb and 1835 * push it back to the receive_queue so that the next call to 1836 * recvmsg() will return the remaining data. Don't set MSG_EOR. 1837 */ 1838 if (skb_len > copied) { 1839 msg->msg_flags &= ~MSG_EOR; 1840 if (flags & MSG_PEEK) 1841 goto out_free; 1842 sctp_skb_pull(skb, copied); 1843 skb_queue_head(&sk->sk_receive_queue, skb); 1844 1845 /* When only partial message is copied to the user, increase 1846 * rwnd by that amount. If all the data in the skb is read, 1847 * rwnd is updated when the event is freed. 1848 */ 1849 sctp_assoc_rwnd_increase(event->asoc, copied); 1850 goto out; 1851 } else if ((event->msg_flags & MSG_NOTIFICATION) || 1852 (event->msg_flags & MSG_EOR)) 1853 msg->msg_flags |= MSG_EOR; 1854 else 1855 msg->msg_flags &= ~MSG_EOR; 1856 1857 out_free: 1858 if (flags & MSG_PEEK) { 1859 /* Release the skb reference acquired after peeking the skb in 1860 * sctp_skb_recv_datagram(). 1861 */ 1862 kfree_skb(skb); 1863 } else { 1864 /* Free the event which includes releasing the reference to 1865 * the owner of the skb, freeing the skb and updating the 1866 * rwnd. 1867 */ 1868 sctp_ulpevent_free(event); 1869 } 1870 out: 1871 sctp_release_sock(sk); 1872 return err; 1873 } 1874 1875 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 1876 * 1877 * This option is a on/off flag. If enabled no SCTP message 1878 * fragmentation will be performed. Instead if a message being sent 1879 * exceeds the current PMTU size, the message will NOT be sent and 1880 * instead a error will be indicated to the user. 1881 */ 1882 static int sctp_setsockopt_disable_fragments(struct sock *sk, 1883 char __user *optval, int optlen) 1884 { 1885 int val; 1886 1887 if (optlen < sizeof(int)) 1888 return -EINVAL; 1889 1890 if (get_user(val, (int __user *)optval)) 1891 return -EFAULT; 1892 1893 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 1894 1895 return 0; 1896 } 1897 1898 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 1899 int optlen) 1900 { 1901 if (optlen != sizeof(struct sctp_event_subscribe)) 1902 return -EINVAL; 1903 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 1904 return -EFAULT; 1905 return 0; 1906 } 1907 1908 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 1909 * 1910 * This socket option is applicable to the UDP-style socket only. When 1911 * set it will cause associations that are idle for more than the 1912 * specified number of seconds to automatically close. An association 1913 * being idle is defined an association that has NOT sent or received 1914 * user data. The special value of '0' indicates that no automatic 1915 * close of any associations should be performed. The option expects an 1916 * integer defining the number of seconds of idle time before an 1917 * association is closed. 1918 */ 1919 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 1920 int optlen) 1921 { 1922 struct sctp_sock *sp = sctp_sk(sk); 1923 1924 /* Applicable to UDP-style socket only */ 1925 if (sctp_style(sk, TCP)) 1926 return -EOPNOTSUPP; 1927 if (optlen != sizeof(int)) 1928 return -EINVAL; 1929 if (copy_from_user(&sp->autoclose, optval, optlen)) 1930 return -EFAULT; 1931 1932 return 0; 1933 } 1934 1935 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 1936 * 1937 * Applications can enable or disable heartbeats for any peer address of 1938 * an association, modify an address's heartbeat interval, force a 1939 * heartbeat to be sent immediately, and adjust the address's maximum 1940 * number of retransmissions sent before an address is considered 1941 * unreachable. The following structure is used to access and modify an 1942 * address's parameters: 1943 * 1944 * struct sctp_paddrparams { 1945 * sctp_assoc_t spp_assoc_id; 1946 * struct sockaddr_storage spp_address; 1947 * uint32_t spp_hbinterval; 1948 * uint16_t spp_pathmaxrxt; 1949 * uint32_t spp_pathmtu; 1950 * uint32_t spp_sackdelay; 1951 * uint32_t spp_flags; 1952 * }; 1953 * 1954 * spp_assoc_id - (one-to-many style socket) This is filled in the 1955 * application, and identifies the association for 1956 * this query. 1957 * spp_address - This specifies which address is of interest. 1958 * spp_hbinterval - This contains the value of the heartbeat interval, 1959 * in milliseconds. If a value of zero 1960 * is present in this field then no changes are to 1961 * be made to this parameter. 1962 * spp_pathmaxrxt - This contains the maximum number of 1963 * retransmissions before this address shall be 1964 * considered unreachable. If a value of zero 1965 * is present in this field then no changes are to 1966 * be made to this parameter. 1967 * spp_pathmtu - When Path MTU discovery is disabled the value 1968 * specified here will be the "fixed" path mtu. 1969 * Note that if the spp_address field is empty 1970 * then all associations on this address will 1971 * have this fixed path mtu set upon them. 1972 * 1973 * spp_sackdelay - When delayed sack is enabled, this value specifies 1974 * the number of milliseconds that sacks will be delayed 1975 * for. This value will apply to all addresses of an 1976 * association if the spp_address field is empty. Note 1977 * also, that if delayed sack is enabled and this 1978 * value is set to 0, no change is made to the last 1979 * recorded delayed sack timer value. 1980 * 1981 * spp_flags - These flags are used to control various features 1982 * on an association. The flag field may contain 1983 * zero or more of the following options. 1984 * 1985 * SPP_HB_ENABLE - Enable heartbeats on the 1986 * specified address. Note that if the address 1987 * field is empty all addresses for the association 1988 * have heartbeats enabled upon them. 1989 * 1990 * SPP_HB_DISABLE - Disable heartbeats on the 1991 * speicifed address. Note that if the address 1992 * field is empty all addresses for the association 1993 * will have their heartbeats disabled. Note also 1994 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 1995 * mutually exclusive, only one of these two should 1996 * be specified. Enabling both fields will have 1997 * undetermined results. 1998 * 1999 * SPP_HB_DEMAND - Request a user initiated heartbeat 2000 * to be made immediately. 2001 * 2002 * SPP_PMTUD_ENABLE - This field will enable PMTU 2003 * discovery upon the specified address. Note that 2004 * if the address feild is empty then all addresses 2005 * on the association are effected. 2006 * 2007 * SPP_PMTUD_DISABLE - This field will disable PMTU 2008 * discovery upon the specified address. Note that 2009 * if the address feild is empty then all addresses 2010 * on the association are effected. Not also that 2011 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2012 * exclusive. Enabling both will have undetermined 2013 * results. 2014 * 2015 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2016 * on delayed sack. The time specified in spp_sackdelay 2017 * is used to specify the sack delay for this address. Note 2018 * that if spp_address is empty then all addresses will 2019 * enable delayed sack and take on the sack delay 2020 * value specified in spp_sackdelay. 2021 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2022 * off delayed sack. If the spp_address field is blank then 2023 * delayed sack is disabled for the entire association. Note 2024 * also that this field is mutually exclusive to 2025 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2026 * results. 2027 */ 2028 int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2029 struct sctp_transport *trans, 2030 struct sctp_association *asoc, 2031 struct sctp_sock *sp, 2032 int hb_change, 2033 int pmtud_change, 2034 int sackdelay_change) 2035 { 2036 int error; 2037 2038 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2039 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans); 2040 if (error) 2041 return error; 2042 } 2043 2044 if (params->spp_hbinterval) { 2045 if (trans) { 2046 trans->hbinterval = msecs_to_jiffies(params->spp_hbinterval); 2047 } else if (asoc) { 2048 asoc->hbinterval = msecs_to_jiffies(params->spp_hbinterval); 2049 } else { 2050 sp->hbinterval = params->spp_hbinterval; 2051 } 2052 } 2053 2054 if (hb_change) { 2055 if (trans) { 2056 trans->param_flags = 2057 (trans->param_flags & ~SPP_HB) | hb_change; 2058 } else if (asoc) { 2059 asoc->param_flags = 2060 (asoc->param_flags & ~SPP_HB) | hb_change; 2061 } else { 2062 sp->param_flags = 2063 (sp->param_flags & ~SPP_HB) | hb_change; 2064 } 2065 } 2066 2067 if (params->spp_pathmtu) { 2068 if (trans) { 2069 trans->pathmtu = params->spp_pathmtu; 2070 sctp_assoc_sync_pmtu(asoc); 2071 } else if (asoc) { 2072 asoc->pathmtu = params->spp_pathmtu; 2073 sctp_frag_point(sp, params->spp_pathmtu); 2074 } else { 2075 sp->pathmtu = params->spp_pathmtu; 2076 } 2077 } 2078 2079 if (pmtud_change) { 2080 if (trans) { 2081 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2082 (params->spp_flags & SPP_PMTUD_ENABLE); 2083 trans->param_flags = 2084 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2085 if (update) { 2086 sctp_transport_pmtu(trans); 2087 sctp_assoc_sync_pmtu(asoc); 2088 } 2089 } else if (asoc) { 2090 asoc->param_flags = 2091 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2092 } else { 2093 sp->param_flags = 2094 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2095 } 2096 } 2097 2098 if (params->spp_sackdelay) { 2099 if (trans) { 2100 trans->sackdelay = 2101 msecs_to_jiffies(params->spp_sackdelay); 2102 } else if (asoc) { 2103 asoc->sackdelay = 2104 msecs_to_jiffies(params->spp_sackdelay); 2105 } else { 2106 sp->sackdelay = params->spp_sackdelay; 2107 } 2108 } 2109 2110 if (sackdelay_change) { 2111 if (trans) { 2112 trans->param_flags = 2113 (trans->param_flags & ~SPP_SACKDELAY) | 2114 sackdelay_change; 2115 } else if (asoc) { 2116 asoc->param_flags = 2117 (asoc->param_flags & ~SPP_SACKDELAY) | 2118 sackdelay_change; 2119 } else { 2120 sp->param_flags = 2121 (sp->param_flags & ~SPP_SACKDELAY) | 2122 sackdelay_change; 2123 } 2124 } 2125 2126 if (params->spp_pathmaxrxt) { 2127 if (trans) { 2128 trans->pathmaxrxt = params->spp_pathmaxrxt; 2129 } else if (asoc) { 2130 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2131 } else { 2132 sp->pathmaxrxt = params->spp_pathmaxrxt; 2133 } 2134 } 2135 2136 return 0; 2137 } 2138 2139 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2140 char __user *optval, int optlen) 2141 { 2142 struct sctp_paddrparams params; 2143 struct sctp_transport *trans = NULL; 2144 struct sctp_association *asoc = NULL; 2145 struct sctp_sock *sp = sctp_sk(sk); 2146 int error; 2147 int hb_change, pmtud_change, sackdelay_change; 2148 2149 if (optlen != sizeof(struct sctp_paddrparams)) 2150 return - EINVAL; 2151 2152 if (copy_from_user(¶ms, optval, optlen)) 2153 return -EFAULT; 2154 2155 /* Validate flags and value parameters. */ 2156 hb_change = params.spp_flags & SPP_HB; 2157 pmtud_change = params.spp_flags & SPP_PMTUD; 2158 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2159 2160 if (hb_change == SPP_HB || 2161 pmtud_change == SPP_PMTUD || 2162 sackdelay_change == SPP_SACKDELAY || 2163 params.spp_sackdelay > 500 || 2164 (params.spp_pathmtu 2165 && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2166 return -EINVAL; 2167 2168 /* If an address other than INADDR_ANY is specified, and 2169 * no transport is found, then the request is invalid. 2170 */ 2171 if (!sctp_is_any(( union sctp_addr *)¶ms.spp_address)) { 2172 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2173 params.spp_assoc_id); 2174 if (!trans) 2175 return -EINVAL; 2176 } 2177 2178 /* Get association, if assoc_id != 0 and the socket is a one 2179 * to many style socket, and an association was not found, then 2180 * the id was invalid. 2181 */ 2182 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2183 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2184 return -EINVAL; 2185 2186 /* Heartbeat demand can only be sent on a transport or 2187 * association, but not a socket. 2188 */ 2189 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2190 return -EINVAL; 2191 2192 /* Process parameters. */ 2193 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2194 hb_change, pmtud_change, 2195 sackdelay_change); 2196 2197 if (error) 2198 return error; 2199 2200 /* If changes are for association, also apply parameters to each 2201 * transport. 2202 */ 2203 if (!trans && asoc) { 2204 struct list_head *pos; 2205 2206 list_for_each(pos, &asoc->peer.transport_addr_list) { 2207 trans = list_entry(pos, struct sctp_transport, 2208 transports); 2209 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2210 hb_change, pmtud_change, 2211 sackdelay_change); 2212 } 2213 } 2214 2215 return 0; 2216 } 2217 2218 /* 7.1.24. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME) 2219 * 2220 * This options will get or set the delayed ack timer. The time is set 2221 * in milliseconds. If the assoc_id is 0, then this sets or gets the 2222 * endpoints default delayed ack timer value. If the assoc_id field is 2223 * non-zero, then the set or get effects the specified association. 2224 * 2225 * struct sctp_assoc_value { 2226 * sctp_assoc_t assoc_id; 2227 * uint32_t assoc_value; 2228 * }; 2229 * 2230 * assoc_id - This parameter, indicates which association the 2231 * user is preforming an action upon. Note that if 2232 * this field's value is zero then the endpoints 2233 * default value is changed (effecting future 2234 * associations only). 2235 * 2236 * assoc_value - This parameter contains the number of milliseconds 2237 * that the user is requesting the delayed ACK timer 2238 * be set to. Note that this value is defined in 2239 * the standard to be between 200 and 500 milliseconds. 2240 * 2241 * Note: a value of zero will leave the value alone, 2242 * but disable SACK delay. A non-zero value will also 2243 * enable SACK delay. 2244 */ 2245 2246 static int sctp_setsockopt_delayed_ack_time(struct sock *sk, 2247 char __user *optval, int optlen) 2248 { 2249 struct sctp_assoc_value params; 2250 struct sctp_transport *trans = NULL; 2251 struct sctp_association *asoc = NULL; 2252 struct sctp_sock *sp = sctp_sk(sk); 2253 2254 if (optlen != sizeof(struct sctp_assoc_value)) 2255 return - EINVAL; 2256 2257 if (copy_from_user(¶ms, optval, optlen)) 2258 return -EFAULT; 2259 2260 /* Validate value parameter. */ 2261 if (params.assoc_value > 500) 2262 return -EINVAL; 2263 2264 /* Get association, if assoc_id != 0 and the socket is a one 2265 * to many style socket, and an association was not found, then 2266 * the id was invalid. 2267 */ 2268 asoc = sctp_id2assoc(sk, params.assoc_id); 2269 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 2270 return -EINVAL; 2271 2272 if (params.assoc_value) { 2273 if (asoc) { 2274 asoc->sackdelay = 2275 msecs_to_jiffies(params.assoc_value); 2276 asoc->param_flags = 2277 (asoc->param_flags & ~SPP_SACKDELAY) | 2278 SPP_SACKDELAY_ENABLE; 2279 } else { 2280 sp->sackdelay = params.assoc_value; 2281 sp->param_flags = 2282 (sp->param_flags & ~SPP_SACKDELAY) | 2283 SPP_SACKDELAY_ENABLE; 2284 } 2285 } else { 2286 if (asoc) { 2287 asoc->param_flags = 2288 (asoc->param_flags & ~SPP_SACKDELAY) | 2289 SPP_SACKDELAY_DISABLE; 2290 } else { 2291 sp->param_flags = 2292 (sp->param_flags & ~SPP_SACKDELAY) | 2293 SPP_SACKDELAY_DISABLE; 2294 } 2295 } 2296 2297 /* If change is for association, also apply to each transport. */ 2298 if (asoc) { 2299 struct list_head *pos; 2300 2301 list_for_each(pos, &asoc->peer.transport_addr_list) { 2302 trans = list_entry(pos, struct sctp_transport, 2303 transports); 2304 if (params.assoc_value) { 2305 trans->sackdelay = 2306 msecs_to_jiffies(params.assoc_value); 2307 trans->param_flags = 2308 (trans->param_flags & ~SPP_SACKDELAY) | 2309 SPP_SACKDELAY_ENABLE; 2310 } else { 2311 trans->param_flags = 2312 (trans->param_flags & ~SPP_SACKDELAY) | 2313 SPP_SACKDELAY_DISABLE; 2314 } 2315 } 2316 } 2317 2318 return 0; 2319 } 2320 2321 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2322 * 2323 * Applications can specify protocol parameters for the default association 2324 * initialization. The option name argument to setsockopt() and getsockopt() 2325 * is SCTP_INITMSG. 2326 * 2327 * Setting initialization parameters is effective only on an unconnected 2328 * socket (for UDP-style sockets only future associations are effected 2329 * by the change). With TCP-style sockets, this option is inherited by 2330 * sockets derived from a listener socket. 2331 */ 2332 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen) 2333 { 2334 struct sctp_initmsg sinit; 2335 struct sctp_sock *sp = sctp_sk(sk); 2336 2337 if (optlen != sizeof(struct sctp_initmsg)) 2338 return -EINVAL; 2339 if (copy_from_user(&sinit, optval, optlen)) 2340 return -EFAULT; 2341 2342 if (sinit.sinit_num_ostreams) 2343 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2344 if (sinit.sinit_max_instreams) 2345 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2346 if (sinit.sinit_max_attempts) 2347 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2348 if (sinit.sinit_max_init_timeo) 2349 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2350 2351 return 0; 2352 } 2353 2354 /* 2355 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2356 * 2357 * Applications that wish to use the sendto() system call may wish to 2358 * specify a default set of parameters that would normally be supplied 2359 * through the inclusion of ancillary data. This socket option allows 2360 * such an application to set the default sctp_sndrcvinfo structure. 2361 * The application that wishes to use this socket option simply passes 2362 * in to this call the sctp_sndrcvinfo structure defined in Section 2363 * 5.2.2) The input parameters accepted by this call include 2364 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2365 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2366 * to this call if the caller is using the UDP model. 2367 */ 2368 static int sctp_setsockopt_default_send_param(struct sock *sk, 2369 char __user *optval, int optlen) 2370 { 2371 struct sctp_sndrcvinfo info; 2372 struct sctp_association *asoc; 2373 struct sctp_sock *sp = sctp_sk(sk); 2374 2375 if (optlen != sizeof(struct sctp_sndrcvinfo)) 2376 return -EINVAL; 2377 if (copy_from_user(&info, optval, optlen)) 2378 return -EFAULT; 2379 2380 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2381 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2382 return -EINVAL; 2383 2384 if (asoc) { 2385 asoc->default_stream = info.sinfo_stream; 2386 asoc->default_flags = info.sinfo_flags; 2387 asoc->default_ppid = info.sinfo_ppid; 2388 asoc->default_context = info.sinfo_context; 2389 asoc->default_timetolive = info.sinfo_timetolive; 2390 } else { 2391 sp->default_stream = info.sinfo_stream; 2392 sp->default_flags = info.sinfo_flags; 2393 sp->default_ppid = info.sinfo_ppid; 2394 sp->default_context = info.sinfo_context; 2395 sp->default_timetolive = info.sinfo_timetolive; 2396 } 2397 2398 return 0; 2399 } 2400 2401 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2402 * 2403 * Requests that the local SCTP stack use the enclosed peer address as 2404 * the association primary. The enclosed address must be one of the 2405 * association peer's addresses. 2406 */ 2407 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2408 int optlen) 2409 { 2410 struct sctp_prim prim; 2411 struct sctp_transport *trans; 2412 2413 if (optlen != sizeof(struct sctp_prim)) 2414 return -EINVAL; 2415 2416 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2417 return -EFAULT; 2418 2419 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2420 if (!trans) 2421 return -EINVAL; 2422 2423 sctp_assoc_set_primary(trans->asoc, trans); 2424 2425 return 0; 2426 } 2427 2428 /* 2429 * 7.1.5 SCTP_NODELAY 2430 * 2431 * Turn on/off any Nagle-like algorithm. This means that packets are 2432 * generally sent as soon as possible and no unnecessary delays are 2433 * introduced, at the cost of more packets in the network. Expects an 2434 * integer boolean flag. 2435 */ 2436 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2437 int optlen) 2438 { 2439 int val; 2440 2441 if (optlen < sizeof(int)) 2442 return -EINVAL; 2443 if (get_user(val, (int __user *)optval)) 2444 return -EFAULT; 2445 2446 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2447 return 0; 2448 } 2449 2450 /* 2451 * 2452 * 7.1.1 SCTP_RTOINFO 2453 * 2454 * The protocol parameters used to initialize and bound retransmission 2455 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2456 * and modify these parameters. 2457 * All parameters are time values, in milliseconds. A value of 0, when 2458 * modifying the parameters, indicates that the current value should not 2459 * be changed. 2460 * 2461 */ 2462 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) { 2463 struct sctp_rtoinfo rtoinfo; 2464 struct sctp_association *asoc; 2465 2466 if (optlen != sizeof (struct sctp_rtoinfo)) 2467 return -EINVAL; 2468 2469 if (copy_from_user(&rtoinfo, optval, optlen)) 2470 return -EFAULT; 2471 2472 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2473 2474 /* Set the values to the specific association */ 2475 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2476 return -EINVAL; 2477 2478 if (asoc) { 2479 if (rtoinfo.srto_initial != 0) 2480 asoc->rto_initial = 2481 msecs_to_jiffies(rtoinfo.srto_initial); 2482 if (rtoinfo.srto_max != 0) 2483 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max); 2484 if (rtoinfo.srto_min != 0) 2485 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min); 2486 } else { 2487 /* If there is no association or the association-id = 0 2488 * set the values to the endpoint. 2489 */ 2490 struct sctp_sock *sp = sctp_sk(sk); 2491 2492 if (rtoinfo.srto_initial != 0) 2493 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2494 if (rtoinfo.srto_max != 0) 2495 sp->rtoinfo.srto_max = rtoinfo.srto_max; 2496 if (rtoinfo.srto_min != 0) 2497 sp->rtoinfo.srto_min = rtoinfo.srto_min; 2498 } 2499 2500 return 0; 2501 } 2502 2503 /* 2504 * 2505 * 7.1.2 SCTP_ASSOCINFO 2506 * 2507 * This option is used to tune the the maximum retransmission attempts 2508 * of the association. 2509 * Returns an error if the new association retransmission value is 2510 * greater than the sum of the retransmission value of the peer. 2511 * See [SCTP] for more information. 2512 * 2513 */ 2514 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen) 2515 { 2516 2517 struct sctp_assocparams assocparams; 2518 struct sctp_association *asoc; 2519 2520 if (optlen != sizeof(struct sctp_assocparams)) 2521 return -EINVAL; 2522 if (copy_from_user(&assocparams, optval, optlen)) 2523 return -EFAULT; 2524 2525 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2526 2527 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2528 return -EINVAL; 2529 2530 /* Set the values to the specific association */ 2531 if (asoc) { 2532 if (assocparams.sasoc_asocmaxrxt != 0) 2533 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 2534 if (assocparams.sasoc_cookie_life != 0) { 2535 asoc->cookie_life.tv_sec = 2536 assocparams.sasoc_cookie_life / 1000; 2537 asoc->cookie_life.tv_usec = 2538 (assocparams.sasoc_cookie_life % 1000) 2539 * 1000; 2540 } 2541 } else { 2542 /* Set the values to the endpoint */ 2543 struct sctp_sock *sp = sctp_sk(sk); 2544 2545 if (assocparams.sasoc_asocmaxrxt != 0) 2546 sp->assocparams.sasoc_asocmaxrxt = 2547 assocparams.sasoc_asocmaxrxt; 2548 if (assocparams.sasoc_cookie_life != 0) 2549 sp->assocparams.sasoc_cookie_life = 2550 assocparams.sasoc_cookie_life; 2551 } 2552 return 0; 2553 } 2554 2555 /* 2556 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 2557 * 2558 * This socket option is a boolean flag which turns on or off mapped V4 2559 * addresses. If this option is turned on and the socket is type 2560 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 2561 * If this option is turned off, then no mapping will be done of V4 2562 * addresses and a user will receive both PF_INET6 and PF_INET type 2563 * addresses on the socket. 2564 */ 2565 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen) 2566 { 2567 int val; 2568 struct sctp_sock *sp = sctp_sk(sk); 2569 2570 if (optlen < sizeof(int)) 2571 return -EINVAL; 2572 if (get_user(val, (int __user *)optval)) 2573 return -EFAULT; 2574 if (val) 2575 sp->v4mapped = 1; 2576 else 2577 sp->v4mapped = 0; 2578 2579 return 0; 2580 } 2581 2582 /* 2583 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG) 2584 * 2585 * This socket option specifies the maximum size to put in any outgoing 2586 * SCTP chunk. If a message is larger than this size it will be 2587 * fragmented by SCTP into the specified size. Note that the underlying 2588 * SCTP implementation may fragment into smaller sized chunks when the 2589 * PMTU of the underlying association is smaller than the value set by 2590 * the user. 2591 */ 2592 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen) 2593 { 2594 struct sctp_association *asoc; 2595 struct list_head *pos; 2596 struct sctp_sock *sp = sctp_sk(sk); 2597 int val; 2598 2599 if (optlen < sizeof(int)) 2600 return -EINVAL; 2601 if (get_user(val, (int __user *)optval)) 2602 return -EFAULT; 2603 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 2604 return -EINVAL; 2605 sp->user_frag = val; 2606 2607 /* Update the frag_point of the existing associations. */ 2608 list_for_each(pos, &(sp->ep->asocs)) { 2609 asoc = list_entry(pos, struct sctp_association, asocs); 2610 asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu); 2611 } 2612 2613 return 0; 2614 } 2615 2616 2617 /* 2618 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 2619 * 2620 * Requests that the peer mark the enclosed address as the association 2621 * primary. The enclosed address must be one of the association's 2622 * locally bound addresses. The following structure is used to make a 2623 * set primary request: 2624 */ 2625 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 2626 int optlen) 2627 { 2628 struct sctp_sock *sp; 2629 struct sctp_endpoint *ep; 2630 struct sctp_association *asoc = NULL; 2631 struct sctp_setpeerprim prim; 2632 struct sctp_chunk *chunk; 2633 int err; 2634 2635 sp = sctp_sk(sk); 2636 ep = sp->ep; 2637 2638 if (!sctp_addip_enable) 2639 return -EPERM; 2640 2641 if (optlen != sizeof(struct sctp_setpeerprim)) 2642 return -EINVAL; 2643 2644 if (copy_from_user(&prim, optval, optlen)) 2645 return -EFAULT; 2646 2647 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 2648 if (!asoc) 2649 return -EINVAL; 2650 2651 if (!asoc->peer.asconf_capable) 2652 return -EPERM; 2653 2654 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 2655 return -EPERM; 2656 2657 if (!sctp_state(asoc, ESTABLISHED)) 2658 return -ENOTCONN; 2659 2660 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 2661 return -EADDRNOTAVAIL; 2662 2663 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 2664 chunk = sctp_make_asconf_set_prim(asoc, 2665 (union sctp_addr *)&prim.sspp_addr); 2666 if (!chunk) 2667 return -ENOMEM; 2668 2669 err = sctp_send_asconf(asoc, chunk); 2670 2671 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n"); 2672 2673 return err; 2674 } 2675 2676 static int sctp_setsockopt_adaption_layer(struct sock *sk, char __user *optval, 2677 int optlen) 2678 { 2679 struct sctp_setadaption adaption; 2680 2681 if (optlen != sizeof(struct sctp_setadaption)) 2682 return -EINVAL; 2683 if (copy_from_user(&adaption, optval, optlen)) 2684 return -EFAULT; 2685 2686 sctp_sk(sk)->adaption_ind = adaption.ssb_adaption_ind; 2687 2688 return 0; 2689 } 2690 2691 /* API 6.2 setsockopt(), getsockopt() 2692 * 2693 * Applications use setsockopt() and getsockopt() to set or retrieve 2694 * socket options. Socket options are used to change the default 2695 * behavior of sockets calls. They are described in Section 7. 2696 * 2697 * The syntax is: 2698 * 2699 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 2700 * int __user *optlen); 2701 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 2702 * int optlen); 2703 * 2704 * sd - the socket descript. 2705 * level - set to IPPROTO_SCTP for all SCTP options. 2706 * optname - the option name. 2707 * optval - the buffer to store the value of the option. 2708 * optlen - the size of the buffer. 2709 */ 2710 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname, 2711 char __user *optval, int optlen) 2712 { 2713 int retval = 0; 2714 2715 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n", 2716 sk, optname); 2717 2718 /* I can hardly begin to describe how wrong this is. This is 2719 * so broken as to be worse than useless. The API draft 2720 * REALLY is NOT helpful here... I am not convinced that the 2721 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 2722 * are at all well-founded. 2723 */ 2724 if (level != SOL_SCTP) { 2725 struct sctp_af *af = sctp_sk(sk)->pf->af; 2726 retval = af->setsockopt(sk, level, optname, optval, optlen); 2727 goto out_nounlock; 2728 } 2729 2730 sctp_lock_sock(sk); 2731 2732 switch (optname) { 2733 case SCTP_SOCKOPT_BINDX_ADD: 2734 /* 'optlen' is the size of the addresses buffer. */ 2735 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 2736 optlen, SCTP_BINDX_ADD_ADDR); 2737 break; 2738 2739 case SCTP_SOCKOPT_BINDX_REM: 2740 /* 'optlen' is the size of the addresses buffer. */ 2741 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 2742 optlen, SCTP_BINDX_REM_ADDR); 2743 break; 2744 2745 case SCTP_SOCKOPT_CONNECTX: 2746 /* 'optlen' is the size of the addresses buffer. */ 2747 retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval, 2748 optlen); 2749 break; 2750 2751 case SCTP_DISABLE_FRAGMENTS: 2752 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 2753 break; 2754 2755 case SCTP_EVENTS: 2756 retval = sctp_setsockopt_events(sk, optval, optlen); 2757 break; 2758 2759 case SCTP_AUTOCLOSE: 2760 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 2761 break; 2762 2763 case SCTP_PEER_ADDR_PARAMS: 2764 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 2765 break; 2766 2767 case SCTP_DELAYED_ACK_TIME: 2768 retval = sctp_setsockopt_delayed_ack_time(sk, optval, optlen); 2769 break; 2770 2771 case SCTP_INITMSG: 2772 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 2773 break; 2774 case SCTP_DEFAULT_SEND_PARAM: 2775 retval = sctp_setsockopt_default_send_param(sk, optval, 2776 optlen); 2777 break; 2778 case SCTP_PRIMARY_ADDR: 2779 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 2780 break; 2781 case SCTP_SET_PEER_PRIMARY_ADDR: 2782 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 2783 break; 2784 case SCTP_NODELAY: 2785 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 2786 break; 2787 case SCTP_RTOINFO: 2788 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 2789 break; 2790 case SCTP_ASSOCINFO: 2791 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 2792 break; 2793 case SCTP_I_WANT_MAPPED_V4_ADDR: 2794 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 2795 break; 2796 case SCTP_MAXSEG: 2797 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 2798 break; 2799 case SCTP_ADAPTION_LAYER: 2800 retval = sctp_setsockopt_adaption_layer(sk, optval, optlen); 2801 break; 2802 2803 default: 2804 retval = -ENOPROTOOPT; 2805 break; 2806 }; 2807 2808 sctp_release_sock(sk); 2809 2810 out_nounlock: 2811 return retval; 2812 } 2813 2814 /* API 3.1.6 connect() - UDP Style Syntax 2815 * 2816 * An application may use the connect() call in the UDP model to initiate an 2817 * association without sending data. 2818 * 2819 * The syntax is: 2820 * 2821 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 2822 * 2823 * sd: the socket descriptor to have a new association added to. 2824 * 2825 * nam: the address structure (either struct sockaddr_in or struct 2826 * sockaddr_in6 defined in RFC2553 [7]). 2827 * 2828 * len: the size of the address. 2829 */ 2830 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr, 2831 int addr_len) 2832 { 2833 int err = 0; 2834 struct sctp_af *af; 2835 2836 sctp_lock_sock(sk); 2837 2838 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n", 2839 __FUNCTION__, sk, addr, addr_len); 2840 2841 /* Validate addr_len before calling common connect/connectx routine. */ 2842 af = sctp_get_af_specific(addr->sa_family); 2843 if (!af || addr_len < af->sockaddr_len) { 2844 err = -EINVAL; 2845 } else { 2846 /* Pass correct addr len to common routine (so it knows there 2847 * is only one address being passed. 2848 */ 2849 err = __sctp_connect(sk, addr, af->sockaddr_len); 2850 } 2851 2852 sctp_release_sock(sk); 2853 return err; 2854 } 2855 2856 /* FIXME: Write comments. */ 2857 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags) 2858 { 2859 return -EOPNOTSUPP; /* STUB */ 2860 } 2861 2862 /* 4.1.4 accept() - TCP Style Syntax 2863 * 2864 * Applications use accept() call to remove an established SCTP 2865 * association from the accept queue of the endpoint. A new socket 2866 * descriptor will be returned from accept() to represent the newly 2867 * formed association. 2868 */ 2869 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err) 2870 { 2871 struct sctp_sock *sp; 2872 struct sctp_endpoint *ep; 2873 struct sock *newsk = NULL; 2874 struct sctp_association *asoc; 2875 long timeo; 2876 int error = 0; 2877 2878 sctp_lock_sock(sk); 2879 2880 sp = sctp_sk(sk); 2881 ep = sp->ep; 2882 2883 if (!sctp_style(sk, TCP)) { 2884 error = -EOPNOTSUPP; 2885 goto out; 2886 } 2887 2888 if (!sctp_sstate(sk, LISTENING)) { 2889 error = -EINVAL; 2890 goto out; 2891 } 2892 2893 timeo = sock_rcvtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK); 2894 2895 error = sctp_wait_for_accept(sk, timeo); 2896 if (error) 2897 goto out; 2898 2899 /* We treat the list of associations on the endpoint as the accept 2900 * queue and pick the first association on the list. 2901 */ 2902 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 2903 2904 newsk = sp->pf->create_accept_sk(sk, asoc); 2905 if (!newsk) { 2906 error = -ENOMEM; 2907 goto out; 2908 } 2909 2910 /* Populate the fields of the newsk from the oldsk and migrate the 2911 * asoc to the newsk. 2912 */ 2913 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 2914 2915 out: 2916 sctp_release_sock(sk); 2917 *err = error; 2918 return newsk; 2919 } 2920 2921 /* The SCTP ioctl handler. */ 2922 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 2923 { 2924 return -ENOIOCTLCMD; 2925 } 2926 2927 /* This is the function which gets called during socket creation to 2928 * initialized the SCTP-specific portion of the sock. 2929 * The sock structure should already be zero-filled memory. 2930 */ 2931 SCTP_STATIC int sctp_init_sock(struct sock *sk) 2932 { 2933 struct sctp_endpoint *ep; 2934 struct sctp_sock *sp; 2935 2936 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk); 2937 2938 sp = sctp_sk(sk); 2939 2940 /* Initialize the SCTP per socket area. */ 2941 switch (sk->sk_type) { 2942 case SOCK_SEQPACKET: 2943 sp->type = SCTP_SOCKET_UDP; 2944 break; 2945 case SOCK_STREAM: 2946 sp->type = SCTP_SOCKET_TCP; 2947 break; 2948 default: 2949 return -ESOCKTNOSUPPORT; 2950 } 2951 2952 /* Initialize default send parameters. These parameters can be 2953 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 2954 */ 2955 sp->default_stream = 0; 2956 sp->default_ppid = 0; 2957 sp->default_flags = 0; 2958 sp->default_context = 0; 2959 sp->default_timetolive = 0; 2960 2961 /* Initialize default setup parameters. These parameters 2962 * can be modified with the SCTP_INITMSG socket option or 2963 * overridden by the SCTP_INIT CMSG. 2964 */ 2965 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 2966 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 2967 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init; 2968 sp->initmsg.sinit_max_init_timeo = jiffies_to_msecs(sctp_rto_max); 2969 2970 /* Initialize default RTO related parameters. These parameters can 2971 * be modified for with the SCTP_RTOINFO socket option. 2972 */ 2973 sp->rtoinfo.srto_initial = jiffies_to_msecs(sctp_rto_initial); 2974 sp->rtoinfo.srto_max = jiffies_to_msecs(sctp_rto_max); 2975 sp->rtoinfo.srto_min = jiffies_to_msecs(sctp_rto_min); 2976 2977 /* Initialize default association related parameters. These parameters 2978 * can be modified with the SCTP_ASSOCINFO socket option. 2979 */ 2980 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association; 2981 sp->assocparams.sasoc_number_peer_destinations = 0; 2982 sp->assocparams.sasoc_peer_rwnd = 0; 2983 sp->assocparams.sasoc_local_rwnd = 0; 2984 sp->assocparams.sasoc_cookie_life = 2985 jiffies_to_msecs(sctp_valid_cookie_life); 2986 2987 /* Initialize default event subscriptions. By default, all the 2988 * options are off. 2989 */ 2990 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 2991 2992 /* Default Peer Address Parameters. These defaults can 2993 * be modified via SCTP_PEER_ADDR_PARAMS 2994 */ 2995 sp->hbinterval = jiffies_to_msecs(sctp_hb_interval); 2996 sp->pathmaxrxt = sctp_max_retrans_path; 2997 sp->pathmtu = 0; // allow default discovery 2998 sp->sackdelay = jiffies_to_msecs(sctp_sack_timeout); 2999 sp->param_flags = SPP_HB_ENABLE | 3000 SPP_PMTUD_ENABLE | 3001 SPP_SACKDELAY_ENABLE; 3002 3003 /* If enabled no SCTP message fragmentation will be performed. 3004 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 3005 */ 3006 sp->disable_fragments = 0; 3007 3008 /* Turn on/off any Nagle-like algorithm. */ 3009 sp->nodelay = 1; 3010 3011 /* Enable by default. */ 3012 sp->v4mapped = 1; 3013 3014 /* Auto-close idle associations after the configured 3015 * number of seconds. A value of 0 disables this 3016 * feature. Configure through the SCTP_AUTOCLOSE socket option, 3017 * for UDP-style sockets only. 3018 */ 3019 sp->autoclose = 0; 3020 3021 /* User specified fragmentation limit. */ 3022 sp->user_frag = 0; 3023 3024 sp->adaption_ind = 0; 3025 3026 sp->pf = sctp_get_pf_specific(sk->sk_family); 3027 3028 /* Control variables for partial data delivery. */ 3029 sp->pd_mode = 0; 3030 skb_queue_head_init(&sp->pd_lobby); 3031 3032 /* Create a per socket endpoint structure. Even if we 3033 * change the data structure relationships, this may still 3034 * be useful for storing pre-connect address information. 3035 */ 3036 ep = sctp_endpoint_new(sk, GFP_KERNEL); 3037 if (!ep) 3038 return -ENOMEM; 3039 3040 sp->ep = ep; 3041 sp->hmac = NULL; 3042 3043 SCTP_DBG_OBJCNT_INC(sock); 3044 return 0; 3045 } 3046 3047 /* Cleanup any SCTP per socket resources. */ 3048 SCTP_STATIC int sctp_destroy_sock(struct sock *sk) 3049 { 3050 struct sctp_endpoint *ep; 3051 3052 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk); 3053 3054 /* Release our hold on the endpoint. */ 3055 ep = sctp_sk(sk)->ep; 3056 sctp_endpoint_free(ep); 3057 3058 return 0; 3059 } 3060 3061 /* API 4.1.7 shutdown() - TCP Style Syntax 3062 * int shutdown(int socket, int how); 3063 * 3064 * sd - the socket descriptor of the association to be closed. 3065 * how - Specifies the type of shutdown. The values are 3066 * as follows: 3067 * SHUT_RD 3068 * Disables further receive operations. No SCTP 3069 * protocol action is taken. 3070 * SHUT_WR 3071 * Disables further send operations, and initiates 3072 * the SCTP shutdown sequence. 3073 * SHUT_RDWR 3074 * Disables further send and receive operations 3075 * and initiates the SCTP shutdown sequence. 3076 */ 3077 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how) 3078 { 3079 struct sctp_endpoint *ep; 3080 struct sctp_association *asoc; 3081 3082 if (!sctp_style(sk, TCP)) 3083 return; 3084 3085 if (how & SEND_SHUTDOWN) { 3086 ep = sctp_sk(sk)->ep; 3087 if (!list_empty(&ep->asocs)) { 3088 asoc = list_entry(ep->asocs.next, 3089 struct sctp_association, asocs); 3090 sctp_primitive_SHUTDOWN(asoc, NULL); 3091 } 3092 } 3093 } 3094 3095 /* 7.2.1 Association Status (SCTP_STATUS) 3096 3097 * Applications can retrieve current status information about an 3098 * association, including association state, peer receiver window size, 3099 * number of unacked data chunks, and number of data chunks pending 3100 * receipt. This information is read-only. 3101 */ 3102 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 3103 char __user *optval, 3104 int __user *optlen) 3105 { 3106 struct sctp_status status; 3107 struct sctp_association *asoc = NULL; 3108 struct sctp_transport *transport; 3109 sctp_assoc_t associd; 3110 int retval = 0; 3111 3112 if (len != sizeof(status)) { 3113 retval = -EINVAL; 3114 goto out; 3115 } 3116 3117 if (copy_from_user(&status, optval, sizeof(status))) { 3118 retval = -EFAULT; 3119 goto out; 3120 } 3121 3122 associd = status.sstat_assoc_id; 3123 asoc = sctp_id2assoc(sk, associd); 3124 if (!asoc) { 3125 retval = -EINVAL; 3126 goto out; 3127 } 3128 3129 transport = asoc->peer.primary_path; 3130 3131 status.sstat_assoc_id = sctp_assoc2id(asoc); 3132 status.sstat_state = asoc->state; 3133 status.sstat_rwnd = asoc->peer.rwnd; 3134 status.sstat_unackdata = asoc->unack_data; 3135 3136 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 3137 status.sstat_instrms = asoc->c.sinit_max_instreams; 3138 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 3139 status.sstat_fragmentation_point = asoc->frag_point; 3140 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3141 memcpy(&status.sstat_primary.spinfo_address, 3142 &(transport->ipaddr), sizeof(union sctp_addr)); 3143 /* Map ipv4 address into v4-mapped-on-v6 address. */ 3144 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 3145 (union sctp_addr *)&status.sstat_primary.spinfo_address); 3146 status.sstat_primary.spinfo_state = transport->state; 3147 status.sstat_primary.spinfo_cwnd = transport->cwnd; 3148 status.sstat_primary.spinfo_srtt = transport->srtt; 3149 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 3150 status.sstat_primary.spinfo_mtu = transport->pathmtu; 3151 3152 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 3153 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 3154 3155 if (put_user(len, optlen)) { 3156 retval = -EFAULT; 3157 goto out; 3158 } 3159 3160 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n", 3161 len, status.sstat_state, status.sstat_rwnd, 3162 status.sstat_assoc_id); 3163 3164 if (copy_to_user(optval, &status, len)) { 3165 retval = -EFAULT; 3166 goto out; 3167 } 3168 3169 out: 3170 return (retval); 3171 } 3172 3173 3174 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 3175 * 3176 * Applications can retrieve information about a specific peer address 3177 * of an association, including its reachability state, congestion 3178 * window, and retransmission timer values. This information is 3179 * read-only. 3180 */ 3181 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 3182 char __user *optval, 3183 int __user *optlen) 3184 { 3185 struct sctp_paddrinfo pinfo; 3186 struct sctp_transport *transport; 3187 int retval = 0; 3188 3189 if (len != sizeof(pinfo)) { 3190 retval = -EINVAL; 3191 goto out; 3192 } 3193 3194 if (copy_from_user(&pinfo, optval, sizeof(pinfo))) { 3195 retval = -EFAULT; 3196 goto out; 3197 } 3198 3199 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 3200 pinfo.spinfo_assoc_id); 3201 if (!transport) 3202 return -EINVAL; 3203 3204 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3205 pinfo.spinfo_state = transport->state; 3206 pinfo.spinfo_cwnd = transport->cwnd; 3207 pinfo.spinfo_srtt = transport->srtt; 3208 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 3209 pinfo.spinfo_mtu = transport->pathmtu; 3210 3211 if (pinfo.spinfo_state == SCTP_UNKNOWN) 3212 pinfo.spinfo_state = SCTP_ACTIVE; 3213 3214 if (put_user(len, optlen)) { 3215 retval = -EFAULT; 3216 goto out; 3217 } 3218 3219 if (copy_to_user(optval, &pinfo, len)) { 3220 retval = -EFAULT; 3221 goto out; 3222 } 3223 3224 out: 3225 return (retval); 3226 } 3227 3228 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 3229 * 3230 * This option is a on/off flag. If enabled no SCTP message 3231 * fragmentation will be performed. Instead if a message being sent 3232 * exceeds the current PMTU size, the message will NOT be sent and 3233 * instead a error will be indicated to the user. 3234 */ 3235 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 3236 char __user *optval, int __user *optlen) 3237 { 3238 int val; 3239 3240 if (len < sizeof(int)) 3241 return -EINVAL; 3242 3243 len = sizeof(int); 3244 val = (sctp_sk(sk)->disable_fragments == 1); 3245 if (put_user(len, optlen)) 3246 return -EFAULT; 3247 if (copy_to_user(optval, &val, len)) 3248 return -EFAULT; 3249 return 0; 3250 } 3251 3252 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 3253 * 3254 * This socket option is used to specify various notifications and 3255 * ancillary data the user wishes to receive. 3256 */ 3257 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 3258 int __user *optlen) 3259 { 3260 if (len != sizeof(struct sctp_event_subscribe)) 3261 return -EINVAL; 3262 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 3263 return -EFAULT; 3264 return 0; 3265 } 3266 3267 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 3268 * 3269 * This socket option is applicable to the UDP-style socket only. When 3270 * set it will cause associations that are idle for more than the 3271 * specified number of seconds to automatically close. An association 3272 * being idle is defined an association that has NOT sent or received 3273 * user data. The special value of '0' indicates that no automatic 3274 * close of any associations should be performed. The option expects an 3275 * integer defining the number of seconds of idle time before an 3276 * association is closed. 3277 */ 3278 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 3279 { 3280 /* Applicable to UDP-style socket only */ 3281 if (sctp_style(sk, TCP)) 3282 return -EOPNOTSUPP; 3283 if (len != sizeof(int)) 3284 return -EINVAL; 3285 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, len)) 3286 return -EFAULT; 3287 return 0; 3288 } 3289 3290 /* Helper routine to branch off an association to a new socket. */ 3291 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc, 3292 struct socket **sockp) 3293 { 3294 struct sock *sk = asoc->base.sk; 3295 struct socket *sock; 3296 int err = 0; 3297 3298 /* An association cannot be branched off from an already peeled-off 3299 * socket, nor is this supported for tcp style sockets. 3300 */ 3301 if (!sctp_style(sk, UDP)) 3302 return -EINVAL; 3303 3304 /* Create a new socket. */ 3305 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 3306 if (err < 0) 3307 return err; 3308 3309 /* Populate the fields of the newsk from the oldsk and migrate the 3310 * asoc to the newsk. 3311 */ 3312 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 3313 *sockp = sock; 3314 3315 return err; 3316 } 3317 3318 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 3319 { 3320 sctp_peeloff_arg_t peeloff; 3321 struct socket *newsock; 3322 int retval = 0; 3323 struct sctp_association *asoc; 3324 3325 if (len != sizeof(sctp_peeloff_arg_t)) 3326 return -EINVAL; 3327 if (copy_from_user(&peeloff, optval, len)) 3328 return -EFAULT; 3329 3330 asoc = sctp_id2assoc(sk, peeloff.associd); 3331 if (!asoc) { 3332 retval = -EINVAL; 3333 goto out; 3334 } 3335 3336 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc); 3337 3338 retval = sctp_do_peeloff(asoc, &newsock); 3339 if (retval < 0) 3340 goto out; 3341 3342 /* Map the socket to an unused fd that can be returned to the user. */ 3343 retval = sock_map_fd(newsock); 3344 if (retval < 0) { 3345 sock_release(newsock); 3346 goto out; 3347 } 3348 3349 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n", 3350 __FUNCTION__, sk, asoc, newsock->sk, retval); 3351 3352 /* Return the fd mapped to the new socket. */ 3353 peeloff.sd = retval; 3354 if (copy_to_user(optval, &peeloff, len)) 3355 retval = -EFAULT; 3356 3357 out: 3358 return retval; 3359 } 3360 3361 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 3362 * 3363 * Applications can enable or disable heartbeats for any peer address of 3364 * an association, modify an address's heartbeat interval, force a 3365 * heartbeat to be sent immediately, and adjust the address's maximum 3366 * number of retransmissions sent before an address is considered 3367 * unreachable. The following structure is used to access and modify an 3368 * address's parameters: 3369 * 3370 * struct sctp_paddrparams { 3371 * sctp_assoc_t spp_assoc_id; 3372 * struct sockaddr_storage spp_address; 3373 * uint32_t spp_hbinterval; 3374 * uint16_t spp_pathmaxrxt; 3375 * uint32_t spp_pathmtu; 3376 * uint32_t spp_sackdelay; 3377 * uint32_t spp_flags; 3378 * }; 3379 * 3380 * spp_assoc_id - (one-to-many style socket) This is filled in the 3381 * application, and identifies the association for 3382 * this query. 3383 * spp_address - This specifies which address is of interest. 3384 * spp_hbinterval - This contains the value of the heartbeat interval, 3385 * in milliseconds. If a value of zero 3386 * is present in this field then no changes are to 3387 * be made to this parameter. 3388 * spp_pathmaxrxt - This contains the maximum number of 3389 * retransmissions before this address shall be 3390 * considered unreachable. If a value of zero 3391 * is present in this field then no changes are to 3392 * be made to this parameter. 3393 * spp_pathmtu - When Path MTU discovery is disabled the value 3394 * specified here will be the "fixed" path mtu. 3395 * Note that if the spp_address field is empty 3396 * then all associations on this address will 3397 * have this fixed path mtu set upon them. 3398 * 3399 * spp_sackdelay - When delayed sack is enabled, this value specifies 3400 * the number of milliseconds that sacks will be delayed 3401 * for. This value will apply to all addresses of an 3402 * association if the spp_address field is empty. Note 3403 * also, that if delayed sack is enabled and this 3404 * value is set to 0, no change is made to the last 3405 * recorded delayed sack timer value. 3406 * 3407 * spp_flags - These flags are used to control various features 3408 * on an association. The flag field may contain 3409 * zero or more of the following options. 3410 * 3411 * SPP_HB_ENABLE - Enable heartbeats on the 3412 * specified address. Note that if the address 3413 * field is empty all addresses for the association 3414 * have heartbeats enabled upon them. 3415 * 3416 * SPP_HB_DISABLE - Disable heartbeats on the 3417 * speicifed address. Note that if the address 3418 * field is empty all addresses for the association 3419 * will have their heartbeats disabled. Note also 3420 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 3421 * mutually exclusive, only one of these two should 3422 * be specified. Enabling both fields will have 3423 * undetermined results. 3424 * 3425 * SPP_HB_DEMAND - Request a user initiated heartbeat 3426 * to be made immediately. 3427 * 3428 * SPP_PMTUD_ENABLE - This field will enable PMTU 3429 * discovery upon the specified address. Note that 3430 * if the address feild is empty then all addresses 3431 * on the association are effected. 3432 * 3433 * SPP_PMTUD_DISABLE - This field will disable PMTU 3434 * discovery upon the specified address. Note that 3435 * if the address feild is empty then all addresses 3436 * on the association are effected. Not also that 3437 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 3438 * exclusive. Enabling both will have undetermined 3439 * results. 3440 * 3441 * SPP_SACKDELAY_ENABLE - Setting this flag turns 3442 * on delayed sack. The time specified in spp_sackdelay 3443 * is used to specify the sack delay for this address. Note 3444 * that if spp_address is empty then all addresses will 3445 * enable delayed sack and take on the sack delay 3446 * value specified in spp_sackdelay. 3447 * SPP_SACKDELAY_DISABLE - Setting this flag turns 3448 * off delayed sack. If the spp_address field is blank then 3449 * delayed sack is disabled for the entire association. Note 3450 * also that this field is mutually exclusive to 3451 * SPP_SACKDELAY_ENABLE, setting both will have undefined 3452 * results. 3453 */ 3454 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 3455 char __user *optval, int __user *optlen) 3456 { 3457 struct sctp_paddrparams params; 3458 struct sctp_transport *trans = NULL; 3459 struct sctp_association *asoc = NULL; 3460 struct sctp_sock *sp = sctp_sk(sk); 3461 3462 if (len != sizeof(struct sctp_paddrparams)) 3463 return -EINVAL; 3464 3465 if (copy_from_user(¶ms, optval, len)) 3466 return -EFAULT; 3467 3468 /* If an address other than INADDR_ANY is specified, and 3469 * no transport is found, then the request is invalid. 3470 */ 3471 if (!sctp_is_any(( union sctp_addr *)¶ms.spp_address)) { 3472 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 3473 params.spp_assoc_id); 3474 if (!trans) { 3475 SCTP_DEBUG_PRINTK("Failed no transport\n"); 3476 return -EINVAL; 3477 } 3478 } 3479 3480 /* Get association, if assoc_id != 0 and the socket is a one 3481 * to many style socket, and an association was not found, then 3482 * the id was invalid. 3483 */ 3484 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 3485 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 3486 SCTP_DEBUG_PRINTK("Failed no association\n"); 3487 return -EINVAL; 3488 } 3489 3490 if (trans) { 3491 /* Fetch transport values. */ 3492 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 3493 params.spp_pathmtu = trans->pathmtu; 3494 params.spp_pathmaxrxt = trans->pathmaxrxt; 3495 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 3496 3497 /*draft-11 doesn't say what to return in spp_flags*/ 3498 params.spp_flags = trans->param_flags; 3499 } else if (asoc) { 3500 /* Fetch association values. */ 3501 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 3502 params.spp_pathmtu = asoc->pathmtu; 3503 params.spp_pathmaxrxt = asoc->pathmaxrxt; 3504 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 3505 3506 /*draft-11 doesn't say what to return in spp_flags*/ 3507 params.spp_flags = asoc->param_flags; 3508 } else { 3509 /* Fetch socket values. */ 3510 params.spp_hbinterval = sp->hbinterval; 3511 params.spp_pathmtu = sp->pathmtu; 3512 params.spp_sackdelay = sp->sackdelay; 3513 params.spp_pathmaxrxt = sp->pathmaxrxt; 3514 3515 /*draft-11 doesn't say what to return in spp_flags*/ 3516 params.spp_flags = sp->param_flags; 3517 } 3518 3519 if (copy_to_user(optval, ¶ms, len)) 3520 return -EFAULT; 3521 3522 if (put_user(len, optlen)) 3523 return -EFAULT; 3524 3525 return 0; 3526 } 3527 3528 /* 7.1.24. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME) 3529 * 3530 * This options will get or set the delayed ack timer. The time is set 3531 * in milliseconds. If the assoc_id is 0, then this sets or gets the 3532 * endpoints default delayed ack timer value. If the assoc_id field is 3533 * non-zero, then the set or get effects the specified association. 3534 * 3535 * struct sctp_assoc_value { 3536 * sctp_assoc_t assoc_id; 3537 * uint32_t assoc_value; 3538 * }; 3539 * 3540 * assoc_id - This parameter, indicates which association the 3541 * user is preforming an action upon. Note that if 3542 * this field's value is zero then the endpoints 3543 * default value is changed (effecting future 3544 * associations only). 3545 * 3546 * assoc_value - This parameter contains the number of milliseconds 3547 * that the user is requesting the delayed ACK timer 3548 * be set to. Note that this value is defined in 3549 * the standard to be between 200 and 500 milliseconds. 3550 * 3551 * Note: a value of zero will leave the value alone, 3552 * but disable SACK delay. A non-zero value will also 3553 * enable SACK delay. 3554 */ 3555 static int sctp_getsockopt_delayed_ack_time(struct sock *sk, int len, 3556 char __user *optval, 3557 int __user *optlen) 3558 { 3559 struct sctp_assoc_value params; 3560 struct sctp_association *asoc = NULL; 3561 struct sctp_sock *sp = sctp_sk(sk); 3562 3563 if (len != sizeof(struct sctp_assoc_value)) 3564 return - EINVAL; 3565 3566 if (copy_from_user(¶ms, optval, len)) 3567 return -EFAULT; 3568 3569 /* Get association, if assoc_id != 0 and the socket is a one 3570 * to many style socket, and an association was not found, then 3571 * the id was invalid. 3572 */ 3573 asoc = sctp_id2assoc(sk, params.assoc_id); 3574 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 3575 return -EINVAL; 3576 3577 if (asoc) { 3578 /* Fetch association values. */ 3579 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) 3580 params.assoc_value = jiffies_to_msecs( 3581 asoc->sackdelay); 3582 else 3583 params.assoc_value = 0; 3584 } else { 3585 /* Fetch socket values. */ 3586 if (sp->param_flags & SPP_SACKDELAY_ENABLE) 3587 params.assoc_value = sp->sackdelay; 3588 else 3589 params.assoc_value = 0; 3590 } 3591 3592 if (copy_to_user(optval, ¶ms, len)) 3593 return -EFAULT; 3594 3595 if (put_user(len, optlen)) 3596 return -EFAULT; 3597 3598 return 0; 3599 } 3600 3601 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 3602 * 3603 * Applications can specify protocol parameters for the default association 3604 * initialization. The option name argument to setsockopt() and getsockopt() 3605 * is SCTP_INITMSG. 3606 * 3607 * Setting initialization parameters is effective only on an unconnected 3608 * socket (for UDP-style sockets only future associations are effected 3609 * by the change). With TCP-style sockets, this option is inherited by 3610 * sockets derived from a listener socket. 3611 */ 3612 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 3613 { 3614 if (len != sizeof(struct sctp_initmsg)) 3615 return -EINVAL; 3616 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 3617 return -EFAULT; 3618 return 0; 3619 } 3620 3621 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len, 3622 char __user *optval, 3623 int __user *optlen) 3624 { 3625 sctp_assoc_t id; 3626 struct sctp_association *asoc; 3627 struct list_head *pos; 3628 int cnt = 0; 3629 3630 if (len != sizeof(sctp_assoc_t)) 3631 return -EINVAL; 3632 3633 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 3634 return -EFAULT; 3635 3636 /* For UDP-style sockets, id specifies the association to query. */ 3637 asoc = sctp_id2assoc(sk, id); 3638 if (!asoc) 3639 return -EINVAL; 3640 3641 list_for_each(pos, &asoc->peer.transport_addr_list) { 3642 cnt ++; 3643 } 3644 3645 return cnt; 3646 } 3647 3648 /* 3649 * Old API for getting list of peer addresses. Does not work for 32-bit 3650 * programs running on a 64-bit kernel 3651 */ 3652 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len, 3653 char __user *optval, 3654 int __user *optlen) 3655 { 3656 struct sctp_association *asoc; 3657 struct list_head *pos; 3658 int cnt = 0; 3659 struct sctp_getaddrs_old getaddrs; 3660 struct sctp_transport *from; 3661 void __user *to; 3662 union sctp_addr temp; 3663 struct sctp_sock *sp = sctp_sk(sk); 3664 int addrlen; 3665 3666 if (len != sizeof(struct sctp_getaddrs_old)) 3667 return -EINVAL; 3668 3669 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old))) 3670 return -EFAULT; 3671 3672 if (getaddrs.addr_num <= 0) return -EINVAL; 3673 3674 /* For UDP-style sockets, id specifies the association to query. */ 3675 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 3676 if (!asoc) 3677 return -EINVAL; 3678 3679 to = (void __user *)getaddrs.addrs; 3680 list_for_each(pos, &asoc->peer.transport_addr_list) { 3681 from = list_entry(pos, struct sctp_transport, transports); 3682 memcpy(&temp, &from->ipaddr, sizeof(temp)); 3683 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 3684 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 3685 temp.v4.sin_port = htons(temp.v4.sin_port); 3686 if (copy_to_user(to, &temp, addrlen)) 3687 return -EFAULT; 3688 to += addrlen ; 3689 cnt ++; 3690 if (cnt >= getaddrs.addr_num) break; 3691 } 3692 getaddrs.addr_num = cnt; 3693 if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old))) 3694 return -EFAULT; 3695 3696 return 0; 3697 } 3698 3699 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 3700 char __user *optval, int __user *optlen) 3701 { 3702 struct sctp_association *asoc; 3703 struct list_head *pos; 3704 int cnt = 0; 3705 struct sctp_getaddrs getaddrs; 3706 struct sctp_transport *from; 3707 void __user *to; 3708 union sctp_addr temp; 3709 struct sctp_sock *sp = sctp_sk(sk); 3710 int addrlen; 3711 size_t space_left; 3712 int bytes_copied; 3713 3714 if (len < sizeof(struct sctp_getaddrs)) 3715 return -EINVAL; 3716 3717 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 3718 return -EFAULT; 3719 3720 /* For UDP-style sockets, id specifies the association to query. */ 3721 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 3722 if (!asoc) 3723 return -EINVAL; 3724 3725 to = optval + offsetof(struct sctp_getaddrs,addrs); 3726 space_left = len - sizeof(struct sctp_getaddrs) - 3727 offsetof(struct sctp_getaddrs,addrs); 3728 3729 list_for_each(pos, &asoc->peer.transport_addr_list) { 3730 from = list_entry(pos, struct sctp_transport, transports); 3731 memcpy(&temp, &from->ipaddr, sizeof(temp)); 3732 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 3733 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 3734 if(space_left < addrlen) 3735 return -ENOMEM; 3736 temp.v4.sin_port = htons(temp.v4.sin_port); 3737 if (copy_to_user(to, &temp, addrlen)) 3738 return -EFAULT; 3739 to += addrlen; 3740 cnt++; 3741 space_left -= addrlen; 3742 } 3743 3744 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 3745 return -EFAULT; 3746 bytes_copied = ((char __user *)to) - optval; 3747 if (put_user(bytes_copied, optlen)) 3748 return -EFAULT; 3749 3750 return 0; 3751 } 3752 3753 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len, 3754 char __user *optval, 3755 int __user *optlen) 3756 { 3757 sctp_assoc_t id; 3758 struct sctp_bind_addr *bp; 3759 struct sctp_association *asoc; 3760 struct list_head *pos; 3761 struct sctp_sockaddr_entry *addr; 3762 rwlock_t *addr_lock; 3763 unsigned long flags; 3764 int cnt = 0; 3765 3766 if (len != sizeof(sctp_assoc_t)) 3767 return -EINVAL; 3768 3769 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 3770 return -EFAULT; 3771 3772 /* 3773 * For UDP-style sockets, id specifies the association to query. 3774 * If the id field is set to the value '0' then the locally bound 3775 * addresses are returned without regard to any particular 3776 * association. 3777 */ 3778 if (0 == id) { 3779 bp = &sctp_sk(sk)->ep->base.bind_addr; 3780 addr_lock = &sctp_sk(sk)->ep->base.addr_lock; 3781 } else { 3782 asoc = sctp_id2assoc(sk, id); 3783 if (!asoc) 3784 return -EINVAL; 3785 bp = &asoc->base.bind_addr; 3786 addr_lock = &asoc->base.addr_lock; 3787 } 3788 3789 sctp_read_lock(addr_lock); 3790 3791 /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid 3792 * addresses from the global local address list. 3793 */ 3794 if (sctp_list_single_entry(&bp->address_list)) { 3795 addr = list_entry(bp->address_list.next, 3796 struct sctp_sockaddr_entry, list); 3797 if (sctp_is_any(&addr->a)) { 3798 sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags); 3799 list_for_each(pos, &sctp_local_addr_list) { 3800 addr = list_entry(pos, 3801 struct sctp_sockaddr_entry, 3802 list); 3803 if ((PF_INET == sk->sk_family) && 3804 (AF_INET6 == addr->a.sa.sa_family)) 3805 continue; 3806 cnt++; 3807 } 3808 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, 3809 flags); 3810 } else { 3811 cnt = 1; 3812 } 3813 goto done; 3814 } 3815 3816 list_for_each(pos, &bp->address_list) { 3817 cnt ++; 3818 } 3819 3820 done: 3821 sctp_read_unlock(addr_lock); 3822 return cnt; 3823 } 3824 3825 /* Helper function that copies local addresses to user and returns the number 3826 * of addresses copied. 3827 */ 3828 static int sctp_copy_laddrs_to_user_old(struct sock *sk, __u16 port, int max_addrs, 3829 void __user *to) 3830 { 3831 struct list_head *pos; 3832 struct sctp_sockaddr_entry *addr; 3833 unsigned long flags; 3834 union sctp_addr temp; 3835 int cnt = 0; 3836 int addrlen; 3837 3838 sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags); 3839 list_for_each(pos, &sctp_local_addr_list) { 3840 addr = list_entry(pos, struct sctp_sockaddr_entry, list); 3841 if ((PF_INET == sk->sk_family) && 3842 (AF_INET6 == addr->a.sa.sa_family)) 3843 continue; 3844 memcpy(&temp, &addr->a, sizeof(temp)); 3845 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 3846 &temp); 3847 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 3848 temp.v4.sin_port = htons(port); 3849 if (copy_to_user(to, &temp, addrlen)) { 3850 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, 3851 flags); 3852 return -EFAULT; 3853 } 3854 to += addrlen; 3855 cnt ++; 3856 if (cnt >= max_addrs) break; 3857 } 3858 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags); 3859 3860 return cnt; 3861 } 3862 3863 static int sctp_copy_laddrs_to_user(struct sock *sk, __u16 port, 3864 void __user **to, size_t space_left) 3865 { 3866 struct list_head *pos; 3867 struct sctp_sockaddr_entry *addr; 3868 unsigned long flags; 3869 union sctp_addr temp; 3870 int cnt = 0; 3871 int addrlen; 3872 3873 sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags); 3874 list_for_each(pos, &sctp_local_addr_list) { 3875 addr = list_entry(pos, struct sctp_sockaddr_entry, list); 3876 if ((PF_INET == sk->sk_family) && 3877 (AF_INET6 == addr->a.sa.sa_family)) 3878 continue; 3879 memcpy(&temp, &addr->a, sizeof(temp)); 3880 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 3881 &temp); 3882 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 3883 if(space_left<addrlen) 3884 return -ENOMEM; 3885 temp.v4.sin_port = htons(port); 3886 if (copy_to_user(*to, &temp, addrlen)) { 3887 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, 3888 flags); 3889 return -EFAULT; 3890 } 3891 *to += addrlen; 3892 cnt ++; 3893 space_left -= addrlen; 3894 } 3895 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags); 3896 3897 return cnt; 3898 } 3899 3900 /* Old API for getting list of local addresses. Does not work for 32-bit 3901 * programs running on a 64-bit kernel 3902 */ 3903 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len, 3904 char __user *optval, int __user *optlen) 3905 { 3906 struct sctp_bind_addr *bp; 3907 struct sctp_association *asoc; 3908 struct list_head *pos; 3909 int cnt = 0; 3910 struct sctp_getaddrs_old getaddrs; 3911 struct sctp_sockaddr_entry *addr; 3912 void __user *to; 3913 union sctp_addr temp; 3914 struct sctp_sock *sp = sctp_sk(sk); 3915 int addrlen; 3916 rwlock_t *addr_lock; 3917 int err = 0; 3918 3919 if (len != sizeof(struct sctp_getaddrs_old)) 3920 return -EINVAL; 3921 3922 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old))) 3923 return -EFAULT; 3924 3925 if (getaddrs.addr_num <= 0) return -EINVAL; 3926 /* 3927 * For UDP-style sockets, id specifies the association to query. 3928 * If the id field is set to the value '0' then the locally bound 3929 * addresses are returned without regard to any particular 3930 * association. 3931 */ 3932 if (0 == getaddrs.assoc_id) { 3933 bp = &sctp_sk(sk)->ep->base.bind_addr; 3934 addr_lock = &sctp_sk(sk)->ep->base.addr_lock; 3935 } else { 3936 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 3937 if (!asoc) 3938 return -EINVAL; 3939 bp = &asoc->base.bind_addr; 3940 addr_lock = &asoc->base.addr_lock; 3941 } 3942 3943 to = getaddrs.addrs; 3944 3945 sctp_read_lock(addr_lock); 3946 3947 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 3948 * addresses from the global local address list. 3949 */ 3950 if (sctp_list_single_entry(&bp->address_list)) { 3951 addr = list_entry(bp->address_list.next, 3952 struct sctp_sockaddr_entry, list); 3953 if (sctp_is_any(&addr->a)) { 3954 cnt = sctp_copy_laddrs_to_user_old(sk, bp->port, 3955 getaddrs.addr_num, 3956 to); 3957 if (cnt < 0) { 3958 err = cnt; 3959 goto unlock; 3960 } 3961 goto copy_getaddrs; 3962 } 3963 } 3964 3965 list_for_each(pos, &bp->address_list) { 3966 addr = list_entry(pos, struct sctp_sockaddr_entry, list); 3967 memcpy(&temp, &addr->a, sizeof(temp)); 3968 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 3969 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 3970 temp.v4.sin_port = htons(temp.v4.sin_port); 3971 if (copy_to_user(to, &temp, addrlen)) { 3972 err = -EFAULT; 3973 goto unlock; 3974 } 3975 to += addrlen; 3976 cnt ++; 3977 if (cnt >= getaddrs.addr_num) break; 3978 } 3979 3980 copy_getaddrs: 3981 getaddrs.addr_num = cnt; 3982 if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old))) 3983 err = -EFAULT; 3984 3985 unlock: 3986 sctp_read_unlock(addr_lock); 3987 return err; 3988 } 3989 3990 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 3991 char __user *optval, int __user *optlen) 3992 { 3993 struct sctp_bind_addr *bp; 3994 struct sctp_association *asoc; 3995 struct list_head *pos; 3996 int cnt = 0; 3997 struct sctp_getaddrs getaddrs; 3998 struct sctp_sockaddr_entry *addr; 3999 void __user *to; 4000 union sctp_addr temp; 4001 struct sctp_sock *sp = sctp_sk(sk); 4002 int addrlen; 4003 rwlock_t *addr_lock; 4004 int err = 0; 4005 size_t space_left; 4006 int bytes_copied; 4007 4008 if (len <= sizeof(struct sctp_getaddrs)) 4009 return -EINVAL; 4010 4011 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4012 return -EFAULT; 4013 4014 /* 4015 * For UDP-style sockets, id specifies the association to query. 4016 * If the id field is set to the value '0' then the locally bound 4017 * addresses are returned without regard to any particular 4018 * association. 4019 */ 4020 if (0 == getaddrs.assoc_id) { 4021 bp = &sctp_sk(sk)->ep->base.bind_addr; 4022 addr_lock = &sctp_sk(sk)->ep->base.addr_lock; 4023 } else { 4024 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4025 if (!asoc) 4026 return -EINVAL; 4027 bp = &asoc->base.bind_addr; 4028 addr_lock = &asoc->base.addr_lock; 4029 } 4030 4031 to = optval + offsetof(struct sctp_getaddrs,addrs); 4032 space_left = len - sizeof(struct sctp_getaddrs) - 4033 offsetof(struct sctp_getaddrs,addrs); 4034 4035 sctp_read_lock(addr_lock); 4036 4037 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4038 * addresses from the global local address list. 4039 */ 4040 if (sctp_list_single_entry(&bp->address_list)) { 4041 addr = list_entry(bp->address_list.next, 4042 struct sctp_sockaddr_entry, list); 4043 if (sctp_is_any(&addr->a)) { 4044 cnt = sctp_copy_laddrs_to_user(sk, bp->port, 4045 &to, space_left); 4046 if (cnt < 0) { 4047 err = cnt; 4048 goto unlock; 4049 } 4050 goto copy_getaddrs; 4051 } 4052 } 4053 4054 list_for_each(pos, &bp->address_list) { 4055 addr = list_entry(pos, struct sctp_sockaddr_entry, list); 4056 memcpy(&temp, &addr->a, sizeof(temp)); 4057 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4058 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4059 if(space_left < addrlen) 4060 return -ENOMEM; /*fixme: right error?*/ 4061 temp.v4.sin_port = htons(temp.v4.sin_port); 4062 if (copy_to_user(to, &temp, addrlen)) { 4063 err = -EFAULT; 4064 goto unlock; 4065 } 4066 to += addrlen; 4067 cnt ++; 4068 space_left -= addrlen; 4069 } 4070 4071 copy_getaddrs: 4072 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4073 return -EFAULT; 4074 bytes_copied = ((char __user *)to) - optval; 4075 if (put_user(bytes_copied, optlen)) 4076 return -EFAULT; 4077 4078 unlock: 4079 sctp_read_unlock(addr_lock); 4080 return err; 4081 } 4082 4083 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 4084 * 4085 * Requests that the local SCTP stack use the enclosed peer address as 4086 * the association primary. The enclosed address must be one of the 4087 * association peer's addresses. 4088 */ 4089 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 4090 char __user *optval, int __user *optlen) 4091 { 4092 struct sctp_prim prim; 4093 struct sctp_association *asoc; 4094 struct sctp_sock *sp = sctp_sk(sk); 4095 4096 if (len != sizeof(struct sctp_prim)) 4097 return -EINVAL; 4098 4099 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 4100 return -EFAULT; 4101 4102 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 4103 if (!asoc) 4104 return -EINVAL; 4105 4106 if (!asoc->peer.primary_path) 4107 return -ENOTCONN; 4108 4109 asoc->peer.primary_path->ipaddr.v4.sin_port = 4110 htons(asoc->peer.primary_path->ipaddr.v4.sin_port); 4111 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 4112 sizeof(union sctp_addr)); 4113 asoc->peer.primary_path->ipaddr.v4.sin_port = 4114 ntohs(asoc->peer.primary_path->ipaddr.v4.sin_port); 4115 4116 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, 4117 (union sctp_addr *)&prim.ssp_addr); 4118 4119 if (copy_to_user(optval, &prim, sizeof(struct sctp_prim))) 4120 return -EFAULT; 4121 4122 return 0; 4123 } 4124 4125 /* 4126 * 7.1.11 Set Adaption Layer Indicator (SCTP_ADAPTION_LAYER) 4127 * 4128 * Requests that the local endpoint set the specified Adaption Layer 4129 * Indication parameter for all future INIT and INIT-ACK exchanges. 4130 */ 4131 static int sctp_getsockopt_adaption_layer(struct sock *sk, int len, 4132 char __user *optval, int __user *optlen) 4133 { 4134 struct sctp_setadaption adaption; 4135 4136 if (len != sizeof(struct sctp_setadaption)) 4137 return -EINVAL; 4138 4139 adaption.ssb_adaption_ind = sctp_sk(sk)->adaption_ind; 4140 if (copy_to_user(optval, &adaption, len)) 4141 return -EFAULT; 4142 4143 return 0; 4144 } 4145 4146 /* 4147 * 4148 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 4149 * 4150 * Applications that wish to use the sendto() system call may wish to 4151 * specify a default set of parameters that would normally be supplied 4152 * through the inclusion of ancillary data. This socket option allows 4153 * such an application to set the default sctp_sndrcvinfo structure. 4154 4155 4156 * The application that wishes to use this socket option simply passes 4157 * in to this call the sctp_sndrcvinfo structure defined in Section 4158 * 5.2.2) The input parameters accepted by this call include 4159 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 4160 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 4161 * to this call if the caller is using the UDP model. 4162 * 4163 * For getsockopt, it get the default sctp_sndrcvinfo structure. 4164 */ 4165 static int sctp_getsockopt_default_send_param(struct sock *sk, 4166 int len, char __user *optval, 4167 int __user *optlen) 4168 { 4169 struct sctp_sndrcvinfo info; 4170 struct sctp_association *asoc; 4171 struct sctp_sock *sp = sctp_sk(sk); 4172 4173 if (len != sizeof(struct sctp_sndrcvinfo)) 4174 return -EINVAL; 4175 if (copy_from_user(&info, optval, sizeof(struct sctp_sndrcvinfo))) 4176 return -EFAULT; 4177 4178 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 4179 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 4180 return -EINVAL; 4181 4182 if (asoc) { 4183 info.sinfo_stream = asoc->default_stream; 4184 info.sinfo_flags = asoc->default_flags; 4185 info.sinfo_ppid = asoc->default_ppid; 4186 info.sinfo_context = asoc->default_context; 4187 info.sinfo_timetolive = asoc->default_timetolive; 4188 } else { 4189 info.sinfo_stream = sp->default_stream; 4190 info.sinfo_flags = sp->default_flags; 4191 info.sinfo_ppid = sp->default_ppid; 4192 info.sinfo_context = sp->default_context; 4193 info.sinfo_timetolive = sp->default_timetolive; 4194 } 4195 4196 if (copy_to_user(optval, &info, sizeof(struct sctp_sndrcvinfo))) 4197 return -EFAULT; 4198 4199 return 0; 4200 } 4201 4202 /* 4203 * 4204 * 7.1.5 SCTP_NODELAY 4205 * 4206 * Turn on/off any Nagle-like algorithm. This means that packets are 4207 * generally sent as soon as possible and no unnecessary delays are 4208 * introduced, at the cost of more packets in the network. Expects an 4209 * integer boolean flag. 4210 */ 4211 4212 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 4213 char __user *optval, int __user *optlen) 4214 { 4215 int val; 4216 4217 if (len < sizeof(int)) 4218 return -EINVAL; 4219 4220 len = sizeof(int); 4221 val = (sctp_sk(sk)->nodelay == 1); 4222 if (put_user(len, optlen)) 4223 return -EFAULT; 4224 if (copy_to_user(optval, &val, len)) 4225 return -EFAULT; 4226 return 0; 4227 } 4228 4229 /* 4230 * 4231 * 7.1.1 SCTP_RTOINFO 4232 * 4233 * The protocol parameters used to initialize and bound retransmission 4234 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 4235 * and modify these parameters. 4236 * All parameters are time values, in milliseconds. A value of 0, when 4237 * modifying the parameters, indicates that the current value should not 4238 * be changed. 4239 * 4240 */ 4241 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 4242 char __user *optval, 4243 int __user *optlen) { 4244 struct sctp_rtoinfo rtoinfo; 4245 struct sctp_association *asoc; 4246 4247 if (len != sizeof (struct sctp_rtoinfo)) 4248 return -EINVAL; 4249 4250 if (copy_from_user(&rtoinfo, optval, sizeof (struct sctp_rtoinfo))) 4251 return -EFAULT; 4252 4253 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 4254 4255 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 4256 return -EINVAL; 4257 4258 /* Values corresponding to the specific association. */ 4259 if (asoc) { 4260 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 4261 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 4262 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 4263 } else { 4264 /* Values corresponding to the endpoint. */ 4265 struct sctp_sock *sp = sctp_sk(sk); 4266 4267 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 4268 rtoinfo.srto_max = sp->rtoinfo.srto_max; 4269 rtoinfo.srto_min = sp->rtoinfo.srto_min; 4270 } 4271 4272 if (put_user(len, optlen)) 4273 return -EFAULT; 4274 4275 if (copy_to_user(optval, &rtoinfo, len)) 4276 return -EFAULT; 4277 4278 return 0; 4279 } 4280 4281 /* 4282 * 4283 * 7.1.2 SCTP_ASSOCINFO 4284 * 4285 * This option is used to tune the the maximum retransmission attempts 4286 * of the association. 4287 * Returns an error if the new association retransmission value is 4288 * greater than the sum of the retransmission value of the peer. 4289 * See [SCTP] for more information. 4290 * 4291 */ 4292 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 4293 char __user *optval, 4294 int __user *optlen) 4295 { 4296 4297 struct sctp_assocparams assocparams; 4298 struct sctp_association *asoc; 4299 struct list_head *pos; 4300 int cnt = 0; 4301 4302 if (len != sizeof (struct sctp_assocparams)) 4303 return -EINVAL; 4304 4305 if (copy_from_user(&assocparams, optval, 4306 sizeof (struct sctp_assocparams))) 4307 return -EFAULT; 4308 4309 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 4310 4311 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 4312 return -EINVAL; 4313 4314 /* Values correspoinding to the specific association */ 4315 if (asoc) { 4316 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 4317 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 4318 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 4319 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec 4320 * 1000) + 4321 (asoc->cookie_life.tv_usec 4322 / 1000); 4323 4324 list_for_each(pos, &asoc->peer.transport_addr_list) { 4325 cnt ++; 4326 } 4327 4328 assocparams.sasoc_number_peer_destinations = cnt; 4329 } else { 4330 /* Values corresponding to the endpoint */ 4331 struct sctp_sock *sp = sctp_sk(sk); 4332 4333 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 4334 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 4335 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 4336 assocparams.sasoc_cookie_life = 4337 sp->assocparams.sasoc_cookie_life; 4338 assocparams.sasoc_number_peer_destinations = 4339 sp->assocparams. 4340 sasoc_number_peer_destinations; 4341 } 4342 4343 if (put_user(len, optlen)) 4344 return -EFAULT; 4345 4346 if (copy_to_user(optval, &assocparams, len)) 4347 return -EFAULT; 4348 4349 return 0; 4350 } 4351 4352 /* 4353 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 4354 * 4355 * This socket option is a boolean flag which turns on or off mapped V4 4356 * addresses. If this option is turned on and the socket is type 4357 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 4358 * If this option is turned off, then no mapping will be done of V4 4359 * addresses and a user will receive both PF_INET6 and PF_INET type 4360 * addresses on the socket. 4361 */ 4362 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 4363 char __user *optval, int __user *optlen) 4364 { 4365 int val; 4366 struct sctp_sock *sp = sctp_sk(sk); 4367 4368 if (len < sizeof(int)) 4369 return -EINVAL; 4370 4371 len = sizeof(int); 4372 val = sp->v4mapped; 4373 if (put_user(len, optlen)) 4374 return -EFAULT; 4375 if (copy_to_user(optval, &val, len)) 4376 return -EFAULT; 4377 4378 return 0; 4379 } 4380 4381 /* 4382 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG) 4383 * 4384 * This socket option specifies the maximum size to put in any outgoing 4385 * SCTP chunk. If a message is larger than this size it will be 4386 * fragmented by SCTP into the specified size. Note that the underlying 4387 * SCTP implementation may fragment into smaller sized chunks when the 4388 * PMTU of the underlying association is smaller than the value set by 4389 * the user. 4390 */ 4391 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 4392 char __user *optval, int __user *optlen) 4393 { 4394 int val; 4395 4396 if (len < sizeof(int)) 4397 return -EINVAL; 4398 4399 len = sizeof(int); 4400 4401 val = sctp_sk(sk)->user_frag; 4402 if (put_user(len, optlen)) 4403 return -EFAULT; 4404 if (copy_to_user(optval, &val, len)) 4405 return -EFAULT; 4406 4407 return 0; 4408 } 4409 4410 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname, 4411 char __user *optval, int __user *optlen) 4412 { 4413 int retval = 0; 4414 int len; 4415 4416 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n", 4417 sk, optname); 4418 4419 /* I can hardly begin to describe how wrong this is. This is 4420 * so broken as to be worse than useless. The API draft 4421 * REALLY is NOT helpful here... I am not convinced that the 4422 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 4423 * are at all well-founded. 4424 */ 4425 if (level != SOL_SCTP) { 4426 struct sctp_af *af = sctp_sk(sk)->pf->af; 4427 4428 retval = af->getsockopt(sk, level, optname, optval, optlen); 4429 return retval; 4430 } 4431 4432 if (get_user(len, optlen)) 4433 return -EFAULT; 4434 4435 sctp_lock_sock(sk); 4436 4437 switch (optname) { 4438 case SCTP_STATUS: 4439 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 4440 break; 4441 case SCTP_DISABLE_FRAGMENTS: 4442 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 4443 optlen); 4444 break; 4445 case SCTP_EVENTS: 4446 retval = sctp_getsockopt_events(sk, len, optval, optlen); 4447 break; 4448 case SCTP_AUTOCLOSE: 4449 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 4450 break; 4451 case SCTP_SOCKOPT_PEELOFF: 4452 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 4453 break; 4454 case SCTP_PEER_ADDR_PARAMS: 4455 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 4456 optlen); 4457 break; 4458 case SCTP_DELAYED_ACK_TIME: 4459 retval = sctp_getsockopt_delayed_ack_time(sk, len, optval, 4460 optlen); 4461 break; 4462 case SCTP_INITMSG: 4463 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 4464 break; 4465 case SCTP_GET_PEER_ADDRS_NUM_OLD: 4466 retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval, 4467 optlen); 4468 break; 4469 case SCTP_GET_LOCAL_ADDRS_NUM_OLD: 4470 retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval, 4471 optlen); 4472 break; 4473 case SCTP_GET_PEER_ADDRS_OLD: 4474 retval = sctp_getsockopt_peer_addrs_old(sk, len, optval, 4475 optlen); 4476 break; 4477 case SCTP_GET_LOCAL_ADDRS_OLD: 4478 retval = sctp_getsockopt_local_addrs_old(sk, len, optval, 4479 optlen); 4480 break; 4481 case SCTP_GET_PEER_ADDRS: 4482 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 4483 optlen); 4484 break; 4485 case SCTP_GET_LOCAL_ADDRS: 4486 retval = sctp_getsockopt_local_addrs(sk, len, optval, 4487 optlen); 4488 break; 4489 case SCTP_DEFAULT_SEND_PARAM: 4490 retval = sctp_getsockopt_default_send_param(sk, len, 4491 optval, optlen); 4492 break; 4493 case SCTP_PRIMARY_ADDR: 4494 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 4495 break; 4496 case SCTP_NODELAY: 4497 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 4498 break; 4499 case SCTP_RTOINFO: 4500 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 4501 break; 4502 case SCTP_ASSOCINFO: 4503 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 4504 break; 4505 case SCTP_I_WANT_MAPPED_V4_ADDR: 4506 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 4507 break; 4508 case SCTP_MAXSEG: 4509 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 4510 break; 4511 case SCTP_GET_PEER_ADDR_INFO: 4512 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 4513 optlen); 4514 break; 4515 case SCTP_ADAPTION_LAYER: 4516 retval = sctp_getsockopt_adaption_layer(sk, len, optval, 4517 optlen); 4518 break; 4519 default: 4520 retval = -ENOPROTOOPT; 4521 break; 4522 }; 4523 4524 sctp_release_sock(sk); 4525 return retval; 4526 } 4527 4528 static void sctp_hash(struct sock *sk) 4529 { 4530 /* STUB */ 4531 } 4532 4533 static void sctp_unhash(struct sock *sk) 4534 { 4535 /* STUB */ 4536 } 4537 4538 /* Check if port is acceptable. Possibly find first available port. 4539 * 4540 * The port hash table (contained in the 'global' SCTP protocol storage 4541 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 4542 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 4543 * list (the list number is the port number hashed out, so as you 4544 * would expect from a hash function, all the ports in a given list have 4545 * such a number that hashes out to the same list number; you were 4546 * expecting that, right?); so each list has a set of ports, with a 4547 * link to the socket (struct sock) that uses it, the port number and 4548 * a fastreuse flag (FIXME: NPI ipg). 4549 */ 4550 static struct sctp_bind_bucket *sctp_bucket_create( 4551 struct sctp_bind_hashbucket *head, unsigned short snum); 4552 4553 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 4554 { 4555 struct sctp_bind_hashbucket *head; /* hash list */ 4556 struct sctp_bind_bucket *pp; /* hash list port iterator */ 4557 unsigned short snum; 4558 int ret; 4559 4560 /* NOTE: Remember to put this back to net order. */ 4561 addr->v4.sin_port = ntohs(addr->v4.sin_port); 4562 snum = addr->v4.sin_port; 4563 4564 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum); 4565 sctp_local_bh_disable(); 4566 4567 if (snum == 0) { 4568 /* Search for an available port. 4569 * 4570 * 'sctp_port_rover' was the last port assigned, so 4571 * we start to search from 'sctp_port_rover + 4572 * 1'. What we do is first check if port 'rover' is 4573 * already in the hash table; if not, we use that; if 4574 * it is, we try next. 4575 */ 4576 int low = sysctl_local_port_range[0]; 4577 int high = sysctl_local_port_range[1]; 4578 int remaining = (high - low) + 1; 4579 int rover; 4580 int index; 4581 4582 sctp_spin_lock(&sctp_port_alloc_lock); 4583 rover = sctp_port_rover; 4584 do { 4585 rover++; 4586 if ((rover < low) || (rover > high)) 4587 rover = low; 4588 index = sctp_phashfn(rover); 4589 head = &sctp_port_hashtable[index]; 4590 sctp_spin_lock(&head->lock); 4591 for (pp = head->chain; pp; pp = pp->next) 4592 if (pp->port == rover) 4593 goto next; 4594 break; 4595 next: 4596 sctp_spin_unlock(&head->lock); 4597 } while (--remaining > 0); 4598 sctp_port_rover = rover; 4599 sctp_spin_unlock(&sctp_port_alloc_lock); 4600 4601 /* Exhausted local port range during search? */ 4602 ret = 1; 4603 if (remaining <= 0) 4604 goto fail; 4605 4606 /* OK, here is the one we will use. HEAD (the port 4607 * hash table list entry) is non-NULL and we hold it's 4608 * mutex. 4609 */ 4610 snum = rover; 4611 } else { 4612 /* We are given an specific port number; we verify 4613 * that it is not being used. If it is used, we will 4614 * exahust the search in the hash list corresponding 4615 * to the port number (snum) - we detect that with the 4616 * port iterator, pp being NULL. 4617 */ 4618 head = &sctp_port_hashtable[sctp_phashfn(snum)]; 4619 sctp_spin_lock(&head->lock); 4620 for (pp = head->chain; pp; pp = pp->next) { 4621 if (pp->port == snum) 4622 goto pp_found; 4623 } 4624 } 4625 pp = NULL; 4626 goto pp_not_found; 4627 pp_found: 4628 if (!hlist_empty(&pp->owner)) { 4629 /* We had a port hash table hit - there is an 4630 * available port (pp != NULL) and it is being 4631 * used by other socket (pp->owner not empty); that other 4632 * socket is going to be sk2. 4633 */ 4634 int reuse = sk->sk_reuse; 4635 struct sock *sk2; 4636 struct hlist_node *node; 4637 4638 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n"); 4639 if (pp->fastreuse && sk->sk_reuse) 4640 goto success; 4641 4642 /* Run through the list of sockets bound to the port 4643 * (pp->port) [via the pointers bind_next and 4644 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 4645 * we get the endpoint they describe and run through 4646 * the endpoint's list of IP (v4 or v6) addresses, 4647 * comparing each of the addresses with the address of 4648 * the socket sk. If we find a match, then that means 4649 * that this port/socket (sk) combination are already 4650 * in an endpoint. 4651 */ 4652 sk_for_each_bound(sk2, node, &pp->owner) { 4653 struct sctp_endpoint *ep2; 4654 ep2 = sctp_sk(sk2)->ep; 4655 4656 if (reuse && sk2->sk_reuse) 4657 continue; 4658 4659 if (sctp_bind_addr_match(&ep2->base.bind_addr, addr, 4660 sctp_sk(sk))) { 4661 ret = (long)sk2; 4662 goto fail_unlock; 4663 } 4664 } 4665 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n"); 4666 } 4667 pp_not_found: 4668 /* If there was a hash table miss, create a new port. */ 4669 ret = 1; 4670 if (!pp && !(pp = sctp_bucket_create(head, snum))) 4671 goto fail_unlock; 4672 4673 /* In either case (hit or miss), make sure fastreuse is 1 only 4674 * if sk->sk_reuse is too (that is, if the caller requested 4675 * SO_REUSEADDR on this socket -sk-). 4676 */ 4677 if (hlist_empty(&pp->owner)) 4678 pp->fastreuse = sk->sk_reuse ? 1 : 0; 4679 else if (pp->fastreuse && !sk->sk_reuse) 4680 pp->fastreuse = 0; 4681 4682 /* We are set, so fill up all the data in the hash table 4683 * entry, tie the socket list information with the rest of the 4684 * sockets FIXME: Blurry, NPI (ipg). 4685 */ 4686 success: 4687 inet_sk(sk)->num = snum; 4688 if (!sctp_sk(sk)->bind_hash) { 4689 sk_add_bind_node(sk, &pp->owner); 4690 sctp_sk(sk)->bind_hash = pp; 4691 } 4692 ret = 0; 4693 4694 fail_unlock: 4695 sctp_spin_unlock(&head->lock); 4696 4697 fail: 4698 sctp_local_bh_enable(); 4699 addr->v4.sin_port = htons(addr->v4.sin_port); 4700 return ret; 4701 } 4702 4703 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 4704 * port is requested. 4705 */ 4706 static int sctp_get_port(struct sock *sk, unsigned short snum) 4707 { 4708 long ret; 4709 union sctp_addr addr; 4710 struct sctp_af *af = sctp_sk(sk)->pf->af; 4711 4712 /* Set up a dummy address struct from the sk. */ 4713 af->from_sk(&addr, sk); 4714 addr.v4.sin_port = htons(snum); 4715 4716 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 4717 ret = sctp_get_port_local(sk, &addr); 4718 4719 return (ret ? 1 : 0); 4720 } 4721 4722 /* 4723 * 3.1.3 listen() - UDP Style Syntax 4724 * 4725 * By default, new associations are not accepted for UDP style sockets. 4726 * An application uses listen() to mark a socket as being able to 4727 * accept new associations. 4728 */ 4729 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog) 4730 { 4731 struct sctp_sock *sp = sctp_sk(sk); 4732 struct sctp_endpoint *ep = sp->ep; 4733 4734 /* Only UDP style sockets that are not peeled off are allowed to 4735 * listen(). 4736 */ 4737 if (!sctp_style(sk, UDP)) 4738 return -EINVAL; 4739 4740 /* If backlog is zero, disable listening. */ 4741 if (!backlog) { 4742 if (sctp_sstate(sk, CLOSED)) 4743 return 0; 4744 4745 sctp_unhash_endpoint(ep); 4746 sk->sk_state = SCTP_SS_CLOSED; 4747 } 4748 4749 /* Return if we are already listening. */ 4750 if (sctp_sstate(sk, LISTENING)) 4751 return 0; 4752 4753 /* 4754 * If a bind() or sctp_bindx() is not called prior to a listen() 4755 * call that allows new associations to be accepted, the system 4756 * picks an ephemeral port and will choose an address set equivalent 4757 * to binding with a wildcard address. 4758 * 4759 * This is not currently spelled out in the SCTP sockets 4760 * extensions draft, but follows the practice as seen in TCP 4761 * sockets. 4762 */ 4763 if (!ep->base.bind_addr.port) { 4764 if (sctp_autobind(sk)) 4765 return -EAGAIN; 4766 } 4767 sk->sk_state = SCTP_SS_LISTENING; 4768 sctp_hash_endpoint(ep); 4769 return 0; 4770 } 4771 4772 /* 4773 * 4.1.3 listen() - TCP Style Syntax 4774 * 4775 * Applications uses listen() to ready the SCTP endpoint for accepting 4776 * inbound associations. 4777 */ 4778 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog) 4779 { 4780 struct sctp_sock *sp = sctp_sk(sk); 4781 struct sctp_endpoint *ep = sp->ep; 4782 4783 /* If backlog is zero, disable listening. */ 4784 if (!backlog) { 4785 if (sctp_sstate(sk, CLOSED)) 4786 return 0; 4787 4788 sctp_unhash_endpoint(ep); 4789 sk->sk_state = SCTP_SS_CLOSED; 4790 } 4791 4792 if (sctp_sstate(sk, LISTENING)) 4793 return 0; 4794 4795 /* 4796 * If a bind() or sctp_bindx() is not called prior to a listen() 4797 * call that allows new associations to be accepted, the system 4798 * picks an ephemeral port and will choose an address set equivalent 4799 * to binding with a wildcard address. 4800 * 4801 * This is not currently spelled out in the SCTP sockets 4802 * extensions draft, but follows the practice as seen in TCP 4803 * sockets. 4804 */ 4805 if (!ep->base.bind_addr.port) { 4806 if (sctp_autobind(sk)) 4807 return -EAGAIN; 4808 } 4809 sk->sk_state = SCTP_SS_LISTENING; 4810 sk->sk_max_ack_backlog = backlog; 4811 sctp_hash_endpoint(ep); 4812 return 0; 4813 } 4814 4815 /* 4816 * Move a socket to LISTENING state. 4817 */ 4818 int sctp_inet_listen(struct socket *sock, int backlog) 4819 { 4820 struct sock *sk = sock->sk; 4821 struct crypto_tfm *tfm=NULL; 4822 int err = -EINVAL; 4823 4824 if (unlikely(backlog < 0)) 4825 goto out; 4826 4827 sctp_lock_sock(sk); 4828 4829 if (sock->state != SS_UNCONNECTED) 4830 goto out; 4831 4832 /* Allocate HMAC for generating cookie. */ 4833 if (sctp_hmac_alg) { 4834 tfm = sctp_crypto_alloc_tfm(sctp_hmac_alg, 0); 4835 if (!tfm) { 4836 err = -ENOSYS; 4837 goto out; 4838 } 4839 } 4840 4841 switch (sock->type) { 4842 case SOCK_SEQPACKET: 4843 err = sctp_seqpacket_listen(sk, backlog); 4844 break; 4845 case SOCK_STREAM: 4846 err = sctp_stream_listen(sk, backlog); 4847 break; 4848 default: 4849 break; 4850 }; 4851 if (err) 4852 goto cleanup; 4853 4854 /* Store away the transform reference. */ 4855 sctp_sk(sk)->hmac = tfm; 4856 out: 4857 sctp_release_sock(sk); 4858 return err; 4859 cleanup: 4860 sctp_crypto_free_tfm(tfm); 4861 goto out; 4862 } 4863 4864 /* 4865 * This function is done by modeling the current datagram_poll() and the 4866 * tcp_poll(). Note that, based on these implementations, we don't 4867 * lock the socket in this function, even though it seems that, 4868 * ideally, locking or some other mechanisms can be used to ensure 4869 * the integrity of the counters (sndbuf and wmem_alloc) used 4870 * in this place. We assume that we don't need locks either until proven 4871 * otherwise. 4872 * 4873 * Another thing to note is that we include the Async I/O support 4874 * here, again, by modeling the current TCP/UDP code. We don't have 4875 * a good way to test with it yet. 4876 */ 4877 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 4878 { 4879 struct sock *sk = sock->sk; 4880 struct sctp_sock *sp = sctp_sk(sk); 4881 unsigned int mask; 4882 4883 poll_wait(file, sk->sk_sleep, wait); 4884 4885 /* A TCP-style listening socket becomes readable when the accept queue 4886 * is not empty. 4887 */ 4888 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4889 return (!list_empty(&sp->ep->asocs)) ? 4890 (POLLIN | POLLRDNORM) : 0; 4891 4892 mask = 0; 4893 4894 /* Is there any exceptional events? */ 4895 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 4896 mask |= POLLERR; 4897 if (sk->sk_shutdown == SHUTDOWN_MASK) 4898 mask |= POLLHUP; 4899 4900 /* Is it readable? Reconsider this code with TCP-style support. */ 4901 if (!skb_queue_empty(&sk->sk_receive_queue) || 4902 (sk->sk_shutdown & RCV_SHUTDOWN)) 4903 mask |= POLLIN | POLLRDNORM; 4904 4905 /* The association is either gone or not ready. */ 4906 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 4907 return mask; 4908 4909 /* Is it writable? */ 4910 if (sctp_writeable(sk)) { 4911 mask |= POLLOUT | POLLWRNORM; 4912 } else { 4913 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 4914 /* 4915 * Since the socket is not locked, the buffer 4916 * might be made available after the writeable check and 4917 * before the bit is set. This could cause a lost I/O 4918 * signal. tcp_poll() has a race breaker for this race 4919 * condition. Based on their implementation, we put 4920 * in the following code to cover it as well. 4921 */ 4922 if (sctp_writeable(sk)) 4923 mask |= POLLOUT | POLLWRNORM; 4924 } 4925 return mask; 4926 } 4927 4928 /******************************************************************** 4929 * 2nd Level Abstractions 4930 ********************************************************************/ 4931 4932 static struct sctp_bind_bucket *sctp_bucket_create( 4933 struct sctp_bind_hashbucket *head, unsigned short snum) 4934 { 4935 struct sctp_bind_bucket *pp; 4936 4937 pp = kmem_cache_alloc(sctp_bucket_cachep, SLAB_ATOMIC); 4938 SCTP_DBG_OBJCNT_INC(bind_bucket); 4939 if (pp) { 4940 pp->port = snum; 4941 pp->fastreuse = 0; 4942 INIT_HLIST_HEAD(&pp->owner); 4943 if ((pp->next = head->chain) != NULL) 4944 pp->next->pprev = &pp->next; 4945 head->chain = pp; 4946 pp->pprev = &head->chain; 4947 } 4948 return pp; 4949 } 4950 4951 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 4952 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 4953 { 4954 if (hlist_empty(&pp->owner)) { 4955 if (pp->next) 4956 pp->next->pprev = pp->pprev; 4957 *(pp->pprev) = pp->next; 4958 kmem_cache_free(sctp_bucket_cachep, pp); 4959 SCTP_DBG_OBJCNT_DEC(bind_bucket); 4960 } 4961 } 4962 4963 /* Release this socket's reference to a local port. */ 4964 static inline void __sctp_put_port(struct sock *sk) 4965 { 4966 struct sctp_bind_hashbucket *head = 4967 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)]; 4968 struct sctp_bind_bucket *pp; 4969 4970 sctp_spin_lock(&head->lock); 4971 pp = sctp_sk(sk)->bind_hash; 4972 __sk_del_bind_node(sk); 4973 sctp_sk(sk)->bind_hash = NULL; 4974 inet_sk(sk)->num = 0; 4975 sctp_bucket_destroy(pp); 4976 sctp_spin_unlock(&head->lock); 4977 } 4978 4979 void sctp_put_port(struct sock *sk) 4980 { 4981 sctp_local_bh_disable(); 4982 __sctp_put_port(sk); 4983 sctp_local_bh_enable(); 4984 } 4985 4986 /* 4987 * The system picks an ephemeral port and choose an address set equivalent 4988 * to binding with a wildcard address. 4989 * One of those addresses will be the primary address for the association. 4990 * This automatically enables the multihoming capability of SCTP. 4991 */ 4992 static int sctp_autobind(struct sock *sk) 4993 { 4994 union sctp_addr autoaddr; 4995 struct sctp_af *af; 4996 unsigned short port; 4997 4998 /* Initialize a local sockaddr structure to INADDR_ANY. */ 4999 af = sctp_sk(sk)->pf->af; 5000 5001 port = htons(inet_sk(sk)->num); 5002 af->inaddr_any(&autoaddr, port); 5003 5004 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 5005 } 5006 5007 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 5008 * 5009 * From RFC 2292 5010 * 4.2 The cmsghdr Structure * 5011 * 5012 * When ancillary data is sent or received, any number of ancillary data 5013 * objects can be specified by the msg_control and msg_controllen members of 5014 * the msghdr structure, because each object is preceded by 5015 * a cmsghdr structure defining the object's length (the cmsg_len member). 5016 * Historically Berkeley-derived implementations have passed only one object 5017 * at a time, but this API allows multiple objects to be 5018 * passed in a single call to sendmsg() or recvmsg(). The following example 5019 * shows two ancillary data objects in a control buffer. 5020 * 5021 * |<--------------------------- msg_controllen -------------------------->| 5022 * | | 5023 * 5024 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 5025 * 5026 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 5027 * | | | 5028 * 5029 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 5030 * 5031 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 5032 * | | | | | 5033 * 5034 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 5035 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 5036 * 5037 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 5038 * 5039 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 5040 * ^ 5041 * | 5042 * 5043 * msg_control 5044 * points here 5045 */ 5046 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg, 5047 sctp_cmsgs_t *cmsgs) 5048 { 5049 struct cmsghdr *cmsg; 5050 5051 for (cmsg = CMSG_FIRSTHDR(msg); 5052 cmsg != NULL; 5053 cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) { 5054 if (!CMSG_OK(msg, cmsg)) 5055 return -EINVAL; 5056 5057 /* Should we parse this header or ignore? */ 5058 if (cmsg->cmsg_level != IPPROTO_SCTP) 5059 continue; 5060 5061 /* Strictly check lengths following example in SCM code. */ 5062 switch (cmsg->cmsg_type) { 5063 case SCTP_INIT: 5064 /* SCTP Socket API Extension 5065 * 5.2.1 SCTP Initiation Structure (SCTP_INIT) 5066 * 5067 * This cmsghdr structure provides information for 5068 * initializing new SCTP associations with sendmsg(). 5069 * The SCTP_INITMSG socket option uses this same data 5070 * structure. This structure is not used for 5071 * recvmsg(). 5072 * 5073 * cmsg_level cmsg_type cmsg_data[] 5074 * ------------ ------------ ---------------------- 5075 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 5076 */ 5077 if (cmsg->cmsg_len != 5078 CMSG_LEN(sizeof(struct sctp_initmsg))) 5079 return -EINVAL; 5080 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); 5081 break; 5082 5083 case SCTP_SNDRCV: 5084 /* SCTP Socket API Extension 5085 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) 5086 * 5087 * This cmsghdr structure specifies SCTP options for 5088 * sendmsg() and describes SCTP header information 5089 * about a received message through recvmsg(). 5090 * 5091 * cmsg_level cmsg_type cmsg_data[] 5092 * ------------ ------------ ---------------------- 5093 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 5094 */ 5095 if (cmsg->cmsg_len != 5096 CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 5097 return -EINVAL; 5098 5099 cmsgs->info = 5100 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); 5101 5102 /* Minimally, validate the sinfo_flags. */ 5103 if (cmsgs->info->sinfo_flags & 5104 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 5105 SCTP_ABORT | SCTP_EOF)) 5106 return -EINVAL; 5107 break; 5108 5109 default: 5110 return -EINVAL; 5111 }; 5112 } 5113 return 0; 5114 } 5115 5116 /* 5117 * Wait for a packet.. 5118 * Note: This function is the same function as in core/datagram.c 5119 * with a few modifications to make lksctp work. 5120 */ 5121 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p) 5122 { 5123 int error; 5124 DEFINE_WAIT(wait); 5125 5126 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 5127 5128 /* Socket errors? */ 5129 error = sock_error(sk); 5130 if (error) 5131 goto out; 5132 5133 if (!skb_queue_empty(&sk->sk_receive_queue)) 5134 goto ready; 5135 5136 /* Socket shut down? */ 5137 if (sk->sk_shutdown & RCV_SHUTDOWN) 5138 goto out; 5139 5140 /* Sequenced packets can come disconnected. If so we report the 5141 * problem. 5142 */ 5143 error = -ENOTCONN; 5144 5145 /* Is there a good reason to think that we may receive some data? */ 5146 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 5147 goto out; 5148 5149 /* Handle signals. */ 5150 if (signal_pending(current)) 5151 goto interrupted; 5152 5153 /* Let another process have a go. Since we are going to sleep 5154 * anyway. Note: This may cause odd behaviors if the message 5155 * does not fit in the user's buffer, but this seems to be the 5156 * only way to honor MSG_DONTWAIT realistically. 5157 */ 5158 sctp_release_sock(sk); 5159 *timeo_p = schedule_timeout(*timeo_p); 5160 sctp_lock_sock(sk); 5161 5162 ready: 5163 finish_wait(sk->sk_sleep, &wait); 5164 return 0; 5165 5166 interrupted: 5167 error = sock_intr_errno(*timeo_p); 5168 5169 out: 5170 finish_wait(sk->sk_sleep, &wait); 5171 *err = error; 5172 return error; 5173 } 5174 5175 /* Receive a datagram. 5176 * Note: This is pretty much the same routine as in core/datagram.c 5177 * with a few changes to make lksctp work. 5178 */ 5179 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 5180 int noblock, int *err) 5181 { 5182 int error; 5183 struct sk_buff *skb; 5184 long timeo; 5185 5186 timeo = sock_rcvtimeo(sk, noblock); 5187 5188 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n", 5189 timeo, MAX_SCHEDULE_TIMEOUT); 5190 5191 do { 5192 /* Again only user level code calls this function, 5193 * so nothing interrupt level 5194 * will suddenly eat the receive_queue. 5195 * 5196 * Look at current nfs client by the way... 5197 * However, this function was corrent in any case. 8) 5198 */ 5199 if (flags & MSG_PEEK) { 5200 spin_lock_bh(&sk->sk_receive_queue.lock); 5201 skb = skb_peek(&sk->sk_receive_queue); 5202 if (skb) 5203 atomic_inc(&skb->users); 5204 spin_unlock_bh(&sk->sk_receive_queue.lock); 5205 } else { 5206 skb = skb_dequeue(&sk->sk_receive_queue); 5207 } 5208 5209 if (skb) 5210 return skb; 5211 5212 /* Caller is allowed not to check sk->sk_err before calling. */ 5213 error = sock_error(sk); 5214 if (error) 5215 goto no_packet; 5216 5217 if (sk->sk_shutdown & RCV_SHUTDOWN) 5218 break; 5219 5220 /* User doesn't want to wait. */ 5221 error = -EAGAIN; 5222 if (!timeo) 5223 goto no_packet; 5224 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 5225 5226 return NULL; 5227 5228 no_packet: 5229 *err = error; 5230 return NULL; 5231 } 5232 5233 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 5234 static void __sctp_write_space(struct sctp_association *asoc) 5235 { 5236 struct sock *sk = asoc->base.sk; 5237 struct socket *sock = sk->sk_socket; 5238 5239 if ((sctp_wspace(asoc) > 0) && sock) { 5240 if (waitqueue_active(&asoc->wait)) 5241 wake_up_interruptible(&asoc->wait); 5242 5243 if (sctp_writeable(sk)) { 5244 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 5245 wake_up_interruptible(sk->sk_sleep); 5246 5247 /* Note that we try to include the Async I/O support 5248 * here by modeling from the current TCP/UDP code. 5249 * We have not tested with it yet. 5250 */ 5251 if (sock->fasync_list && 5252 !(sk->sk_shutdown & SEND_SHUTDOWN)) 5253 sock_wake_async(sock, 2, POLL_OUT); 5254 } 5255 } 5256 } 5257 5258 /* Do accounting for the sndbuf space. 5259 * Decrement the used sndbuf space of the corresponding association by the 5260 * data size which was just transmitted(freed). 5261 */ 5262 static void sctp_wfree(struct sk_buff *skb) 5263 { 5264 struct sctp_association *asoc; 5265 struct sctp_chunk *chunk; 5266 struct sock *sk; 5267 5268 /* Get the saved chunk pointer. */ 5269 chunk = *((struct sctp_chunk **)(skb->cb)); 5270 asoc = chunk->asoc; 5271 sk = asoc->base.sk; 5272 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 5273 sizeof(struct sk_buff) + 5274 sizeof(struct sctp_chunk); 5275 5276 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 5277 5278 sock_wfree(skb); 5279 __sctp_write_space(asoc); 5280 5281 sctp_association_put(asoc); 5282 } 5283 5284 /* Helper function to wait for space in the sndbuf. */ 5285 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 5286 size_t msg_len) 5287 { 5288 struct sock *sk = asoc->base.sk; 5289 int err = 0; 5290 long current_timeo = *timeo_p; 5291 DEFINE_WAIT(wait); 5292 5293 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n", 5294 asoc, (long)(*timeo_p), msg_len); 5295 5296 /* Increment the association's refcnt. */ 5297 sctp_association_hold(asoc); 5298 5299 /* Wait on the association specific sndbuf space. */ 5300 for (;;) { 5301 prepare_to_wait_exclusive(&asoc->wait, &wait, 5302 TASK_INTERRUPTIBLE); 5303 if (!*timeo_p) 5304 goto do_nonblock; 5305 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 5306 asoc->base.dead) 5307 goto do_error; 5308 if (signal_pending(current)) 5309 goto do_interrupted; 5310 if (msg_len <= sctp_wspace(asoc)) 5311 break; 5312 5313 /* Let another process have a go. Since we are going 5314 * to sleep anyway. 5315 */ 5316 sctp_release_sock(sk); 5317 current_timeo = schedule_timeout(current_timeo); 5318 sctp_lock_sock(sk); 5319 5320 *timeo_p = current_timeo; 5321 } 5322 5323 out: 5324 finish_wait(&asoc->wait, &wait); 5325 5326 /* Release the association's refcnt. */ 5327 sctp_association_put(asoc); 5328 5329 return err; 5330 5331 do_error: 5332 err = -EPIPE; 5333 goto out; 5334 5335 do_interrupted: 5336 err = sock_intr_errno(*timeo_p); 5337 goto out; 5338 5339 do_nonblock: 5340 err = -EAGAIN; 5341 goto out; 5342 } 5343 5344 /* If socket sndbuf has changed, wake up all per association waiters. */ 5345 void sctp_write_space(struct sock *sk) 5346 { 5347 struct sctp_association *asoc; 5348 struct list_head *pos; 5349 5350 /* Wake up the tasks in each wait queue. */ 5351 list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) { 5352 asoc = list_entry(pos, struct sctp_association, asocs); 5353 __sctp_write_space(asoc); 5354 } 5355 } 5356 5357 /* Is there any sndbuf space available on the socket? 5358 * 5359 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 5360 * associations on the same socket. For a UDP-style socket with 5361 * multiple associations, it is possible for it to be "unwriteable" 5362 * prematurely. I assume that this is acceptable because 5363 * a premature "unwriteable" is better than an accidental "writeable" which 5364 * would cause an unwanted block under certain circumstances. For the 1-1 5365 * UDP-style sockets or TCP-style sockets, this code should work. 5366 * - Daisy 5367 */ 5368 static int sctp_writeable(struct sock *sk) 5369 { 5370 int amt = 0; 5371 5372 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 5373 if (amt < 0) 5374 amt = 0; 5375 return amt; 5376 } 5377 5378 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 5379 * returns immediately with EINPROGRESS. 5380 */ 5381 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 5382 { 5383 struct sock *sk = asoc->base.sk; 5384 int err = 0; 5385 long current_timeo = *timeo_p; 5386 DEFINE_WAIT(wait); 5387 5388 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc, 5389 (long)(*timeo_p)); 5390 5391 /* Increment the association's refcnt. */ 5392 sctp_association_hold(asoc); 5393 5394 for (;;) { 5395 prepare_to_wait_exclusive(&asoc->wait, &wait, 5396 TASK_INTERRUPTIBLE); 5397 if (!*timeo_p) 5398 goto do_nonblock; 5399 if (sk->sk_shutdown & RCV_SHUTDOWN) 5400 break; 5401 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 5402 asoc->base.dead) 5403 goto do_error; 5404 if (signal_pending(current)) 5405 goto do_interrupted; 5406 5407 if (sctp_state(asoc, ESTABLISHED)) 5408 break; 5409 5410 /* Let another process have a go. Since we are going 5411 * to sleep anyway. 5412 */ 5413 sctp_release_sock(sk); 5414 current_timeo = schedule_timeout(current_timeo); 5415 sctp_lock_sock(sk); 5416 5417 *timeo_p = current_timeo; 5418 } 5419 5420 out: 5421 finish_wait(&asoc->wait, &wait); 5422 5423 /* Release the association's refcnt. */ 5424 sctp_association_put(asoc); 5425 5426 return err; 5427 5428 do_error: 5429 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 5430 err = -ETIMEDOUT; 5431 else 5432 err = -ECONNREFUSED; 5433 goto out; 5434 5435 do_interrupted: 5436 err = sock_intr_errno(*timeo_p); 5437 goto out; 5438 5439 do_nonblock: 5440 err = -EINPROGRESS; 5441 goto out; 5442 } 5443 5444 static int sctp_wait_for_accept(struct sock *sk, long timeo) 5445 { 5446 struct sctp_endpoint *ep; 5447 int err = 0; 5448 DEFINE_WAIT(wait); 5449 5450 ep = sctp_sk(sk)->ep; 5451 5452 5453 for (;;) { 5454 prepare_to_wait_exclusive(sk->sk_sleep, &wait, 5455 TASK_INTERRUPTIBLE); 5456 5457 if (list_empty(&ep->asocs)) { 5458 sctp_release_sock(sk); 5459 timeo = schedule_timeout(timeo); 5460 sctp_lock_sock(sk); 5461 } 5462 5463 err = -EINVAL; 5464 if (!sctp_sstate(sk, LISTENING)) 5465 break; 5466 5467 err = 0; 5468 if (!list_empty(&ep->asocs)) 5469 break; 5470 5471 err = sock_intr_errno(timeo); 5472 if (signal_pending(current)) 5473 break; 5474 5475 err = -EAGAIN; 5476 if (!timeo) 5477 break; 5478 } 5479 5480 finish_wait(sk->sk_sleep, &wait); 5481 5482 return err; 5483 } 5484 5485 void sctp_wait_for_close(struct sock *sk, long timeout) 5486 { 5487 DEFINE_WAIT(wait); 5488 5489 do { 5490 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 5491 if (list_empty(&sctp_sk(sk)->ep->asocs)) 5492 break; 5493 sctp_release_sock(sk); 5494 timeout = schedule_timeout(timeout); 5495 sctp_lock_sock(sk); 5496 } while (!signal_pending(current) && timeout); 5497 5498 finish_wait(sk->sk_sleep, &wait); 5499 } 5500 5501 /* Populate the fields of the newsk from the oldsk and migrate the assoc 5502 * and its messages to the newsk. 5503 */ 5504 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 5505 struct sctp_association *assoc, 5506 sctp_socket_type_t type) 5507 { 5508 struct sctp_sock *oldsp = sctp_sk(oldsk); 5509 struct sctp_sock *newsp = sctp_sk(newsk); 5510 struct sctp_bind_bucket *pp; /* hash list port iterator */ 5511 struct sctp_endpoint *newep = newsp->ep; 5512 struct sk_buff *skb, *tmp; 5513 struct sctp_ulpevent *event; 5514 int flags = 0; 5515 5516 /* Migrate socket buffer sizes and all the socket level options to the 5517 * new socket. 5518 */ 5519 newsk->sk_sndbuf = oldsk->sk_sndbuf; 5520 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 5521 /* Brute force copy old sctp opt. */ 5522 inet_sk_copy_descendant(newsk, oldsk); 5523 5524 /* Restore the ep value that was overwritten with the above structure 5525 * copy. 5526 */ 5527 newsp->ep = newep; 5528 newsp->hmac = NULL; 5529 5530 /* Hook this new socket in to the bind_hash list. */ 5531 pp = sctp_sk(oldsk)->bind_hash; 5532 sk_add_bind_node(newsk, &pp->owner); 5533 sctp_sk(newsk)->bind_hash = pp; 5534 inet_sk(newsk)->num = inet_sk(oldsk)->num; 5535 5536 /* Copy the bind_addr list from the original endpoint to the new 5537 * endpoint so that we can handle restarts properly 5538 */ 5539 if (assoc->peer.ipv4_address) 5540 flags |= SCTP_ADDR4_PEERSUPP; 5541 if (assoc->peer.ipv6_address) 5542 flags |= SCTP_ADDR6_PEERSUPP; 5543 sctp_bind_addr_copy(&newsp->ep->base.bind_addr, 5544 &oldsp->ep->base.bind_addr, 5545 SCTP_SCOPE_GLOBAL, GFP_KERNEL, flags); 5546 5547 /* Move any messages in the old socket's receive queue that are for the 5548 * peeled off association to the new socket's receive queue. 5549 */ 5550 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 5551 event = sctp_skb2event(skb); 5552 if (event->asoc == assoc) { 5553 sock_rfree(skb); 5554 __skb_unlink(skb, &oldsk->sk_receive_queue); 5555 __skb_queue_tail(&newsk->sk_receive_queue, skb); 5556 skb_set_owner_r(skb, newsk); 5557 } 5558 } 5559 5560 /* Clean up any messages pending delivery due to partial 5561 * delivery. Three cases: 5562 * 1) No partial deliver; no work. 5563 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 5564 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 5565 */ 5566 skb_queue_head_init(&newsp->pd_lobby); 5567 sctp_sk(newsk)->pd_mode = assoc->ulpq.pd_mode; 5568 5569 if (sctp_sk(oldsk)->pd_mode) { 5570 struct sk_buff_head *queue; 5571 5572 /* Decide which queue to move pd_lobby skbs to. */ 5573 if (assoc->ulpq.pd_mode) { 5574 queue = &newsp->pd_lobby; 5575 } else 5576 queue = &newsk->sk_receive_queue; 5577 5578 /* Walk through the pd_lobby, looking for skbs that 5579 * need moved to the new socket. 5580 */ 5581 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 5582 event = sctp_skb2event(skb); 5583 if (event->asoc == assoc) { 5584 sock_rfree(skb); 5585 __skb_unlink(skb, &oldsp->pd_lobby); 5586 __skb_queue_tail(queue, skb); 5587 skb_set_owner_r(skb, newsk); 5588 } 5589 } 5590 5591 /* Clear up any skbs waiting for the partial 5592 * delivery to finish. 5593 */ 5594 if (assoc->ulpq.pd_mode) 5595 sctp_clear_pd(oldsk); 5596 5597 } 5598 5599 /* Set the type of socket to indicate that it is peeled off from the 5600 * original UDP-style socket or created with the accept() call on a 5601 * TCP-style socket.. 5602 */ 5603 newsp->type = type; 5604 5605 spin_lock_bh(&oldsk->sk_lock.slock); 5606 /* Migrate the backlog from oldsk to newsk. */ 5607 sctp_backlog_migrate(assoc, oldsk, newsk); 5608 /* Migrate the association to the new socket. */ 5609 sctp_assoc_migrate(assoc, newsk); 5610 spin_unlock_bh(&oldsk->sk_lock.slock); 5611 5612 /* If the association on the newsk is already closed before accept() 5613 * is called, set RCV_SHUTDOWN flag. 5614 */ 5615 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 5616 newsk->sk_shutdown |= RCV_SHUTDOWN; 5617 5618 newsk->sk_state = SCTP_SS_ESTABLISHED; 5619 } 5620 5621 /* This proto struct describes the ULP interface for SCTP. */ 5622 struct proto sctp_prot = { 5623 .name = "SCTP", 5624 .owner = THIS_MODULE, 5625 .close = sctp_close, 5626 .connect = sctp_connect, 5627 .disconnect = sctp_disconnect, 5628 .accept = sctp_accept, 5629 .ioctl = sctp_ioctl, 5630 .init = sctp_init_sock, 5631 .destroy = sctp_destroy_sock, 5632 .shutdown = sctp_shutdown, 5633 .setsockopt = sctp_setsockopt, 5634 .getsockopt = sctp_getsockopt, 5635 .sendmsg = sctp_sendmsg, 5636 .recvmsg = sctp_recvmsg, 5637 .bind = sctp_bind, 5638 .backlog_rcv = sctp_backlog_rcv, 5639 .hash = sctp_hash, 5640 .unhash = sctp_unhash, 5641 .get_port = sctp_get_port, 5642 .obj_size = sizeof(struct sctp_sock), 5643 }; 5644 5645 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5646 struct proto sctpv6_prot = { 5647 .name = "SCTPv6", 5648 .owner = THIS_MODULE, 5649 .close = sctp_close, 5650 .connect = sctp_connect, 5651 .disconnect = sctp_disconnect, 5652 .accept = sctp_accept, 5653 .ioctl = sctp_ioctl, 5654 .init = sctp_init_sock, 5655 .destroy = sctp_destroy_sock, 5656 .shutdown = sctp_shutdown, 5657 .setsockopt = sctp_setsockopt, 5658 .getsockopt = sctp_getsockopt, 5659 .sendmsg = sctp_sendmsg, 5660 .recvmsg = sctp_recvmsg, 5661 .bind = sctp_bind, 5662 .backlog_rcv = sctp_backlog_rcv, 5663 .hash = sctp_hash, 5664 .unhash = sctp_unhash, 5665 .get_port = sctp_get_port, 5666 .obj_size = sizeof(struct sctp6_sock), 5667 }; 5668 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */ 5669