xref: /linux/net/sctp/socket.c (revision c4ee0af3fa0dc65f690fc908f02b8355f9576ea0)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, write to
32  * the Free Software Foundation, 59 Temple Place - Suite 330,
33  * Boston, MA 02111-1307, USA.
34  *
35  * Please send any bug reports or fixes you make to the
36  * email address(es):
37  *    lksctp developers <linux-sctp@vger.kernel.org>
38  *
39  * Written or modified by:
40  *    La Monte H.P. Yarroll <piggy@acm.org>
41  *    Narasimha Budihal     <narsi@refcode.org>
42  *    Karl Knutson          <karl@athena.chicago.il.us>
43  *    Jon Grimm             <jgrimm@us.ibm.com>
44  *    Xingang Guo           <xingang.guo@intel.com>
45  *    Daisy Chang           <daisyc@us.ibm.com>
46  *    Sridhar Samudrala     <samudrala@us.ibm.com>
47  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
48  *    Ardelle Fan	    <ardelle.fan@intel.com>
49  *    Ryan Layer	    <rmlayer@us.ibm.com>
50  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
51  *    Kevin Gao             <kevin.gao@intel.com>
52  */
53 
54 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
55 
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/wait.h>
59 #include <linux/time.h>
60 #include <linux/ip.h>
61 #include <linux/capability.h>
62 #include <linux/fcntl.h>
63 #include <linux/poll.h>
64 #include <linux/init.h>
65 #include <linux/crypto.h>
66 #include <linux/slab.h>
67 #include <linux/file.h>
68 
69 #include <net/ip.h>
70 #include <net/icmp.h>
71 #include <net/route.h>
72 #include <net/ipv6.h>
73 #include <net/inet_common.h>
74 
75 #include <linux/socket.h> /* for sa_family_t */
76 #include <linux/export.h>
77 #include <net/sock.h>
78 #include <net/sctp/sctp.h>
79 #include <net/sctp/sm.h>
80 
81 /* Forward declarations for internal helper functions. */
82 static int sctp_writeable(struct sock *sk);
83 static void sctp_wfree(struct sk_buff *skb);
84 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
85 				size_t msg_len);
86 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
87 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
88 static int sctp_wait_for_accept(struct sock *sk, long timeo);
89 static void sctp_wait_for_close(struct sock *sk, long timeo);
90 static void sctp_destruct_sock(struct sock *sk);
91 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
92 					union sctp_addr *addr, int len);
93 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
94 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
95 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
96 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
97 static int sctp_send_asconf(struct sctp_association *asoc,
98 			    struct sctp_chunk *chunk);
99 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
100 static int sctp_autobind(struct sock *sk);
101 static void sctp_sock_migrate(struct sock *, struct sock *,
102 			      struct sctp_association *, sctp_socket_type_t);
103 
104 extern struct kmem_cache *sctp_bucket_cachep;
105 extern long sysctl_sctp_mem[3];
106 extern int sysctl_sctp_rmem[3];
107 extern int sysctl_sctp_wmem[3];
108 
109 static int sctp_memory_pressure;
110 static atomic_long_t sctp_memory_allocated;
111 struct percpu_counter sctp_sockets_allocated;
112 
113 static void sctp_enter_memory_pressure(struct sock *sk)
114 {
115 	sctp_memory_pressure = 1;
116 }
117 
118 
119 /* Get the sndbuf space available at the time on the association.  */
120 static inline int sctp_wspace(struct sctp_association *asoc)
121 {
122 	int amt;
123 
124 	if (asoc->ep->sndbuf_policy)
125 		amt = asoc->sndbuf_used;
126 	else
127 		amt = sk_wmem_alloc_get(asoc->base.sk);
128 
129 	if (amt >= asoc->base.sk->sk_sndbuf) {
130 		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
131 			amt = 0;
132 		else {
133 			amt = sk_stream_wspace(asoc->base.sk);
134 			if (amt < 0)
135 				amt = 0;
136 		}
137 	} else {
138 		amt = asoc->base.sk->sk_sndbuf - amt;
139 	}
140 	return amt;
141 }
142 
143 /* Increment the used sndbuf space count of the corresponding association by
144  * the size of the outgoing data chunk.
145  * Also, set the skb destructor for sndbuf accounting later.
146  *
147  * Since it is always 1-1 between chunk and skb, and also a new skb is always
148  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
149  * destructor in the data chunk skb for the purpose of the sndbuf space
150  * tracking.
151  */
152 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
153 {
154 	struct sctp_association *asoc = chunk->asoc;
155 	struct sock *sk = asoc->base.sk;
156 
157 	/* The sndbuf space is tracked per association.  */
158 	sctp_association_hold(asoc);
159 
160 	skb_set_owner_w(chunk->skb, sk);
161 
162 	chunk->skb->destructor = sctp_wfree;
163 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
164 	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
165 
166 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
167 				sizeof(struct sk_buff) +
168 				sizeof(struct sctp_chunk);
169 
170 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
171 	sk->sk_wmem_queued += chunk->skb->truesize;
172 	sk_mem_charge(sk, chunk->skb->truesize);
173 }
174 
175 /* Verify that this is a valid address. */
176 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
177 				   int len)
178 {
179 	struct sctp_af *af;
180 
181 	/* Verify basic sockaddr. */
182 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
183 	if (!af)
184 		return -EINVAL;
185 
186 	/* Is this a valid SCTP address?  */
187 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
188 		return -EINVAL;
189 
190 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
191 		return -EINVAL;
192 
193 	return 0;
194 }
195 
196 /* Look up the association by its id.  If this is not a UDP-style
197  * socket, the ID field is always ignored.
198  */
199 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
200 {
201 	struct sctp_association *asoc = NULL;
202 
203 	/* If this is not a UDP-style socket, assoc id should be ignored. */
204 	if (!sctp_style(sk, UDP)) {
205 		/* Return NULL if the socket state is not ESTABLISHED. It
206 		 * could be a TCP-style listening socket or a socket which
207 		 * hasn't yet called connect() to establish an association.
208 		 */
209 		if (!sctp_sstate(sk, ESTABLISHED))
210 			return NULL;
211 
212 		/* Get the first and the only association from the list. */
213 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
214 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
215 					  struct sctp_association, asocs);
216 		return asoc;
217 	}
218 
219 	/* Otherwise this is a UDP-style socket. */
220 	if (!id || (id == (sctp_assoc_t)-1))
221 		return NULL;
222 
223 	spin_lock_bh(&sctp_assocs_id_lock);
224 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
225 	spin_unlock_bh(&sctp_assocs_id_lock);
226 
227 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
228 		return NULL;
229 
230 	return asoc;
231 }
232 
233 /* Look up the transport from an address and an assoc id. If both address and
234  * id are specified, the associations matching the address and the id should be
235  * the same.
236  */
237 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
238 					      struct sockaddr_storage *addr,
239 					      sctp_assoc_t id)
240 {
241 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
242 	struct sctp_transport *transport;
243 	union sctp_addr *laddr = (union sctp_addr *)addr;
244 
245 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
246 					       laddr,
247 					       &transport);
248 
249 	if (!addr_asoc)
250 		return NULL;
251 
252 	id_asoc = sctp_id2assoc(sk, id);
253 	if (id_asoc && (id_asoc != addr_asoc))
254 		return NULL;
255 
256 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
257 						(union sctp_addr *)addr);
258 
259 	return transport;
260 }
261 
262 /* API 3.1.2 bind() - UDP Style Syntax
263  * The syntax of bind() is,
264  *
265  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
266  *
267  *   sd      - the socket descriptor returned by socket().
268  *   addr    - the address structure (struct sockaddr_in or struct
269  *             sockaddr_in6 [RFC 2553]),
270  *   addr_len - the size of the address structure.
271  */
272 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
273 {
274 	int retval = 0;
275 
276 	sctp_lock_sock(sk);
277 
278 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
279 		 addr, addr_len);
280 
281 	/* Disallow binding twice. */
282 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
283 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
284 				      addr_len);
285 	else
286 		retval = -EINVAL;
287 
288 	sctp_release_sock(sk);
289 
290 	return retval;
291 }
292 
293 static long sctp_get_port_local(struct sock *, union sctp_addr *);
294 
295 /* Verify this is a valid sockaddr. */
296 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
297 					union sctp_addr *addr, int len)
298 {
299 	struct sctp_af *af;
300 
301 	/* Check minimum size.  */
302 	if (len < sizeof (struct sockaddr))
303 		return NULL;
304 
305 	/* V4 mapped address are really of AF_INET family */
306 	if (addr->sa.sa_family == AF_INET6 &&
307 	    ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
308 		if (!opt->pf->af_supported(AF_INET, opt))
309 			return NULL;
310 	} else {
311 		/* Does this PF support this AF? */
312 		if (!opt->pf->af_supported(addr->sa.sa_family, opt))
313 			return NULL;
314 	}
315 
316 	/* If we get this far, af is valid. */
317 	af = sctp_get_af_specific(addr->sa.sa_family);
318 
319 	if (len < af->sockaddr_len)
320 		return NULL;
321 
322 	return af;
323 }
324 
325 /* Bind a local address either to an endpoint or to an association.  */
326 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
327 {
328 	struct net *net = sock_net(sk);
329 	struct sctp_sock *sp = sctp_sk(sk);
330 	struct sctp_endpoint *ep = sp->ep;
331 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
332 	struct sctp_af *af;
333 	unsigned short snum;
334 	int ret = 0;
335 
336 	/* Common sockaddr verification. */
337 	af = sctp_sockaddr_af(sp, addr, len);
338 	if (!af) {
339 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
340 			 __func__, sk, addr, len);
341 		return -EINVAL;
342 	}
343 
344 	snum = ntohs(addr->v4.sin_port);
345 
346 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
347 		 __func__, sk, &addr->sa, bp->port, snum, len);
348 
349 	/* PF specific bind() address verification. */
350 	if (!sp->pf->bind_verify(sp, addr))
351 		return -EADDRNOTAVAIL;
352 
353 	/* We must either be unbound, or bind to the same port.
354 	 * It's OK to allow 0 ports if we are already bound.
355 	 * We'll just inhert an already bound port in this case
356 	 */
357 	if (bp->port) {
358 		if (!snum)
359 			snum = bp->port;
360 		else if (snum != bp->port) {
361 			pr_debug("%s: new port %d doesn't match existing port "
362 				 "%d\n", __func__, snum, bp->port);
363 			return -EINVAL;
364 		}
365 	}
366 
367 	if (snum && snum < PROT_SOCK &&
368 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
369 		return -EACCES;
370 
371 	/* See if the address matches any of the addresses we may have
372 	 * already bound before checking against other endpoints.
373 	 */
374 	if (sctp_bind_addr_match(bp, addr, sp))
375 		return -EINVAL;
376 
377 	/* Make sure we are allowed to bind here.
378 	 * The function sctp_get_port_local() does duplicate address
379 	 * detection.
380 	 */
381 	addr->v4.sin_port = htons(snum);
382 	if ((ret = sctp_get_port_local(sk, addr))) {
383 		return -EADDRINUSE;
384 	}
385 
386 	/* Refresh ephemeral port.  */
387 	if (!bp->port)
388 		bp->port = inet_sk(sk)->inet_num;
389 
390 	/* Add the address to the bind address list.
391 	 * Use GFP_ATOMIC since BHs will be disabled.
392 	 */
393 	ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
394 
395 	/* Copy back into socket for getsockname() use. */
396 	if (!ret) {
397 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
398 		af->to_sk_saddr(addr, sk);
399 	}
400 
401 	return ret;
402 }
403 
404  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
405  *
406  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
407  * at any one time.  If a sender, after sending an ASCONF chunk, decides
408  * it needs to transfer another ASCONF Chunk, it MUST wait until the
409  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
410  * subsequent ASCONF. Note this restriction binds each side, so at any
411  * time two ASCONF may be in-transit on any given association (one sent
412  * from each endpoint).
413  */
414 static int sctp_send_asconf(struct sctp_association *asoc,
415 			    struct sctp_chunk *chunk)
416 {
417 	struct net 	*net = sock_net(asoc->base.sk);
418 	int		retval = 0;
419 
420 	/* If there is an outstanding ASCONF chunk, queue it for later
421 	 * transmission.
422 	 */
423 	if (asoc->addip_last_asconf) {
424 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
425 		goto out;
426 	}
427 
428 	/* Hold the chunk until an ASCONF_ACK is received. */
429 	sctp_chunk_hold(chunk);
430 	retval = sctp_primitive_ASCONF(net, asoc, chunk);
431 	if (retval)
432 		sctp_chunk_free(chunk);
433 	else
434 		asoc->addip_last_asconf = chunk;
435 
436 out:
437 	return retval;
438 }
439 
440 /* Add a list of addresses as bind addresses to local endpoint or
441  * association.
442  *
443  * Basically run through each address specified in the addrs/addrcnt
444  * array/length pair, determine if it is IPv6 or IPv4 and call
445  * sctp_do_bind() on it.
446  *
447  * If any of them fails, then the operation will be reversed and the
448  * ones that were added will be removed.
449  *
450  * Only sctp_setsockopt_bindx() is supposed to call this function.
451  */
452 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
453 {
454 	int cnt;
455 	int retval = 0;
456 	void *addr_buf;
457 	struct sockaddr *sa_addr;
458 	struct sctp_af *af;
459 
460 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
461 		 addrs, addrcnt);
462 
463 	addr_buf = addrs;
464 	for (cnt = 0; cnt < addrcnt; cnt++) {
465 		/* The list may contain either IPv4 or IPv6 address;
466 		 * determine the address length for walking thru the list.
467 		 */
468 		sa_addr = addr_buf;
469 		af = sctp_get_af_specific(sa_addr->sa_family);
470 		if (!af) {
471 			retval = -EINVAL;
472 			goto err_bindx_add;
473 		}
474 
475 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
476 				      af->sockaddr_len);
477 
478 		addr_buf += af->sockaddr_len;
479 
480 err_bindx_add:
481 		if (retval < 0) {
482 			/* Failed. Cleanup the ones that have been added */
483 			if (cnt > 0)
484 				sctp_bindx_rem(sk, addrs, cnt);
485 			return retval;
486 		}
487 	}
488 
489 	return retval;
490 }
491 
492 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
493  * associations that are part of the endpoint indicating that a list of local
494  * addresses are added to the endpoint.
495  *
496  * If any of the addresses is already in the bind address list of the
497  * association, we do not send the chunk for that association.  But it will not
498  * affect other associations.
499  *
500  * Only sctp_setsockopt_bindx() is supposed to call this function.
501  */
502 static int sctp_send_asconf_add_ip(struct sock		*sk,
503 				   struct sockaddr	*addrs,
504 				   int 			addrcnt)
505 {
506 	struct net *net = sock_net(sk);
507 	struct sctp_sock		*sp;
508 	struct sctp_endpoint		*ep;
509 	struct sctp_association		*asoc;
510 	struct sctp_bind_addr		*bp;
511 	struct sctp_chunk		*chunk;
512 	struct sctp_sockaddr_entry	*laddr;
513 	union sctp_addr			*addr;
514 	union sctp_addr			saveaddr;
515 	void				*addr_buf;
516 	struct sctp_af			*af;
517 	struct list_head		*p;
518 	int 				i;
519 	int 				retval = 0;
520 
521 	if (!net->sctp.addip_enable)
522 		return retval;
523 
524 	sp = sctp_sk(sk);
525 	ep = sp->ep;
526 
527 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
528 		 __func__, sk, addrs, addrcnt);
529 
530 	list_for_each_entry(asoc, &ep->asocs, asocs) {
531 		if (!asoc->peer.asconf_capable)
532 			continue;
533 
534 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
535 			continue;
536 
537 		if (!sctp_state(asoc, ESTABLISHED))
538 			continue;
539 
540 		/* Check if any address in the packed array of addresses is
541 		 * in the bind address list of the association. If so,
542 		 * do not send the asconf chunk to its peer, but continue with
543 		 * other associations.
544 		 */
545 		addr_buf = addrs;
546 		for (i = 0; i < addrcnt; i++) {
547 			addr = addr_buf;
548 			af = sctp_get_af_specific(addr->v4.sin_family);
549 			if (!af) {
550 				retval = -EINVAL;
551 				goto out;
552 			}
553 
554 			if (sctp_assoc_lookup_laddr(asoc, addr))
555 				break;
556 
557 			addr_buf += af->sockaddr_len;
558 		}
559 		if (i < addrcnt)
560 			continue;
561 
562 		/* Use the first valid address in bind addr list of
563 		 * association as Address Parameter of ASCONF CHUNK.
564 		 */
565 		bp = &asoc->base.bind_addr;
566 		p = bp->address_list.next;
567 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
568 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
569 						   addrcnt, SCTP_PARAM_ADD_IP);
570 		if (!chunk) {
571 			retval = -ENOMEM;
572 			goto out;
573 		}
574 
575 		/* Add the new addresses to the bind address list with
576 		 * use_as_src set to 0.
577 		 */
578 		addr_buf = addrs;
579 		for (i = 0; i < addrcnt; i++) {
580 			addr = addr_buf;
581 			af = sctp_get_af_specific(addr->v4.sin_family);
582 			memcpy(&saveaddr, addr, af->sockaddr_len);
583 			retval = sctp_add_bind_addr(bp, &saveaddr,
584 						    SCTP_ADDR_NEW, GFP_ATOMIC);
585 			addr_buf += af->sockaddr_len;
586 		}
587 		if (asoc->src_out_of_asoc_ok) {
588 			struct sctp_transport *trans;
589 
590 			list_for_each_entry(trans,
591 			    &asoc->peer.transport_addr_list, transports) {
592 				/* Clear the source and route cache */
593 				dst_release(trans->dst);
594 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
595 				    2*asoc->pathmtu, 4380));
596 				trans->ssthresh = asoc->peer.i.a_rwnd;
597 				trans->rto = asoc->rto_initial;
598 				sctp_max_rto(asoc, trans);
599 				trans->rtt = trans->srtt = trans->rttvar = 0;
600 				sctp_transport_route(trans, NULL,
601 				    sctp_sk(asoc->base.sk));
602 			}
603 		}
604 		retval = sctp_send_asconf(asoc, chunk);
605 	}
606 
607 out:
608 	return retval;
609 }
610 
611 /* Remove a list of addresses from bind addresses list.  Do not remove the
612  * last address.
613  *
614  * Basically run through each address specified in the addrs/addrcnt
615  * array/length pair, determine if it is IPv6 or IPv4 and call
616  * sctp_del_bind() on it.
617  *
618  * If any of them fails, then the operation will be reversed and the
619  * ones that were removed will be added back.
620  *
621  * At least one address has to be left; if only one address is
622  * available, the operation will return -EBUSY.
623  *
624  * Only sctp_setsockopt_bindx() is supposed to call this function.
625  */
626 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
627 {
628 	struct sctp_sock *sp = sctp_sk(sk);
629 	struct sctp_endpoint *ep = sp->ep;
630 	int cnt;
631 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
632 	int retval = 0;
633 	void *addr_buf;
634 	union sctp_addr *sa_addr;
635 	struct sctp_af *af;
636 
637 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
638 		 __func__, sk, addrs, addrcnt);
639 
640 	addr_buf = addrs;
641 	for (cnt = 0; cnt < addrcnt; cnt++) {
642 		/* If the bind address list is empty or if there is only one
643 		 * bind address, there is nothing more to be removed (we need
644 		 * at least one address here).
645 		 */
646 		if (list_empty(&bp->address_list) ||
647 		    (sctp_list_single_entry(&bp->address_list))) {
648 			retval = -EBUSY;
649 			goto err_bindx_rem;
650 		}
651 
652 		sa_addr = addr_buf;
653 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
654 		if (!af) {
655 			retval = -EINVAL;
656 			goto err_bindx_rem;
657 		}
658 
659 		if (!af->addr_valid(sa_addr, sp, NULL)) {
660 			retval = -EADDRNOTAVAIL;
661 			goto err_bindx_rem;
662 		}
663 
664 		if (sa_addr->v4.sin_port &&
665 		    sa_addr->v4.sin_port != htons(bp->port)) {
666 			retval = -EINVAL;
667 			goto err_bindx_rem;
668 		}
669 
670 		if (!sa_addr->v4.sin_port)
671 			sa_addr->v4.sin_port = htons(bp->port);
672 
673 		/* FIXME - There is probably a need to check if sk->sk_saddr and
674 		 * sk->sk_rcv_addr are currently set to one of the addresses to
675 		 * be removed. This is something which needs to be looked into
676 		 * when we are fixing the outstanding issues with multi-homing
677 		 * socket routing and failover schemes. Refer to comments in
678 		 * sctp_do_bind(). -daisy
679 		 */
680 		retval = sctp_del_bind_addr(bp, sa_addr);
681 
682 		addr_buf += af->sockaddr_len;
683 err_bindx_rem:
684 		if (retval < 0) {
685 			/* Failed. Add the ones that has been removed back */
686 			if (cnt > 0)
687 				sctp_bindx_add(sk, addrs, cnt);
688 			return retval;
689 		}
690 	}
691 
692 	return retval;
693 }
694 
695 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
696  * the associations that are part of the endpoint indicating that a list of
697  * local addresses are removed from the endpoint.
698  *
699  * If any of the addresses is already in the bind address list of the
700  * association, we do not send the chunk for that association.  But it will not
701  * affect other associations.
702  *
703  * Only sctp_setsockopt_bindx() is supposed to call this function.
704  */
705 static int sctp_send_asconf_del_ip(struct sock		*sk,
706 				   struct sockaddr	*addrs,
707 				   int			addrcnt)
708 {
709 	struct net *net = sock_net(sk);
710 	struct sctp_sock	*sp;
711 	struct sctp_endpoint	*ep;
712 	struct sctp_association	*asoc;
713 	struct sctp_transport	*transport;
714 	struct sctp_bind_addr	*bp;
715 	struct sctp_chunk	*chunk;
716 	union sctp_addr		*laddr;
717 	void			*addr_buf;
718 	struct sctp_af		*af;
719 	struct sctp_sockaddr_entry *saddr;
720 	int 			i;
721 	int 			retval = 0;
722 	int			stored = 0;
723 
724 	chunk = NULL;
725 	if (!net->sctp.addip_enable)
726 		return retval;
727 
728 	sp = sctp_sk(sk);
729 	ep = sp->ep;
730 
731 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
732 		 __func__, sk, addrs, addrcnt);
733 
734 	list_for_each_entry(asoc, &ep->asocs, asocs) {
735 
736 		if (!asoc->peer.asconf_capable)
737 			continue;
738 
739 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
740 			continue;
741 
742 		if (!sctp_state(asoc, ESTABLISHED))
743 			continue;
744 
745 		/* Check if any address in the packed array of addresses is
746 		 * not present in the bind address list of the association.
747 		 * If so, do not send the asconf chunk to its peer, but
748 		 * continue with other associations.
749 		 */
750 		addr_buf = addrs;
751 		for (i = 0; i < addrcnt; i++) {
752 			laddr = addr_buf;
753 			af = sctp_get_af_specific(laddr->v4.sin_family);
754 			if (!af) {
755 				retval = -EINVAL;
756 				goto out;
757 			}
758 
759 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
760 				break;
761 
762 			addr_buf += af->sockaddr_len;
763 		}
764 		if (i < addrcnt)
765 			continue;
766 
767 		/* Find one address in the association's bind address list
768 		 * that is not in the packed array of addresses. This is to
769 		 * make sure that we do not delete all the addresses in the
770 		 * association.
771 		 */
772 		bp = &asoc->base.bind_addr;
773 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
774 					       addrcnt, sp);
775 		if ((laddr == NULL) && (addrcnt == 1)) {
776 			if (asoc->asconf_addr_del_pending)
777 				continue;
778 			asoc->asconf_addr_del_pending =
779 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
780 			if (asoc->asconf_addr_del_pending == NULL) {
781 				retval = -ENOMEM;
782 				goto out;
783 			}
784 			asoc->asconf_addr_del_pending->sa.sa_family =
785 				    addrs->sa_family;
786 			asoc->asconf_addr_del_pending->v4.sin_port =
787 				    htons(bp->port);
788 			if (addrs->sa_family == AF_INET) {
789 				struct sockaddr_in *sin;
790 
791 				sin = (struct sockaddr_in *)addrs;
792 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
793 			} else if (addrs->sa_family == AF_INET6) {
794 				struct sockaddr_in6 *sin6;
795 
796 				sin6 = (struct sockaddr_in6 *)addrs;
797 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
798 			}
799 
800 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
801 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
802 				 asoc->asconf_addr_del_pending);
803 
804 			asoc->src_out_of_asoc_ok = 1;
805 			stored = 1;
806 			goto skip_mkasconf;
807 		}
808 
809 		if (laddr == NULL)
810 			return -EINVAL;
811 
812 		/* We do not need RCU protection throughout this loop
813 		 * because this is done under a socket lock from the
814 		 * setsockopt call.
815 		 */
816 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
817 						   SCTP_PARAM_DEL_IP);
818 		if (!chunk) {
819 			retval = -ENOMEM;
820 			goto out;
821 		}
822 
823 skip_mkasconf:
824 		/* Reset use_as_src flag for the addresses in the bind address
825 		 * list that are to be deleted.
826 		 */
827 		addr_buf = addrs;
828 		for (i = 0; i < addrcnt; i++) {
829 			laddr = addr_buf;
830 			af = sctp_get_af_specific(laddr->v4.sin_family);
831 			list_for_each_entry(saddr, &bp->address_list, list) {
832 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
833 					saddr->state = SCTP_ADDR_DEL;
834 			}
835 			addr_buf += af->sockaddr_len;
836 		}
837 
838 		/* Update the route and saddr entries for all the transports
839 		 * as some of the addresses in the bind address list are
840 		 * about to be deleted and cannot be used as source addresses.
841 		 */
842 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
843 					transports) {
844 			dst_release(transport->dst);
845 			sctp_transport_route(transport, NULL,
846 					     sctp_sk(asoc->base.sk));
847 		}
848 
849 		if (stored)
850 			/* We don't need to transmit ASCONF */
851 			continue;
852 		retval = sctp_send_asconf(asoc, chunk);
853 	}
854 out:
855 	return retval;
856 }
857 
858 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
859 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
860 {
861 	struct sock *sk = sctp_opt2sk(sp);
862 	union sctp_addr *addr;
863 	struct sctp_af *af;
864 
865 	/* It is safe to write port space in caller. */
866 	addr = &addrw->a;
867 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
868 	af = sctp_get_af_specific(addr->sa.sa_family);
869 	if (!af)
870 		return -EINVAL;
871 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
872 		return -EINVAL;
873 
874 	if (addrw->state == SCTP_ADDR_NEW)
875 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
876 	else
877 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
878 }
879 
880 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
881  *
882  * API 8.1
883  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
884  *                int flags);
885  *
886  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
887  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
888  * or IPv6 addresses.
889  *
890  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
891  * Section 3.1.2 for this usage.
892  *
893  * addrs is a pointer to an array of one or more socket addresses. Each
894  * address is contained in its appropriate structure (i.e. struct
895  * sockaddr_in or struct sockaddr_in6) the family of the address type
896  * must be used to distinguish the address length (note that this
897  * representation is termed a "packed array" of addresses). The caller
898  * specifies the number of addresses in the array with addrcnt.
899  *
900  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
901  * -1, and sets errno to the appropriate error code.
902  *
903  * For SCTP, the port given in each socket address must be the same, or
904  * sctp_bindx() will fail, setting errno to EINVAL.
905  *
906  * The flags parameter is formed from the bitwise OR of zero or more of
907  * the following currently defined flags:
908  *
909  * SCTP_BINDX_ADD_ADDR
910  *
911  * SCTP_BINDX_REM_ADDR
912  *
913  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
914  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
915  * addresses from the association. The two flags are mutually exclusive;
916  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
917  * not remove all addresses from an association; sctp_bindx() will
918  * reject such an attempt with EINVAL.
919  *
920  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
921  * additional addresses with an endpoint after calling bind().  Or use
922  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
923  * socket is associated with so that no new association accepted will be
924  * associated with those addresses. If the endpoint supports dynamic
925  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
926  * endpoint to send the appropriate message to the peer to change the
927  * peers address lists.
928  *
929  * Adding and removing addresses from a connected association is
930  * optional functionality. Implementations that do not support this
931  * functionality should return EOPNOTSUPP.
932  *
933  * Basically do nothing but copying the addresses from user to kernel
934  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
935  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
936  * from userspace.
937  *
938  * We don't use copy_from_user() for optimization: we first do the
939  * sanity checks (buffer size -fast- and access check-healthy
940  * pointer); if all of those succeed, then we can alloc the memory
941  * (expensive operation) needed to copy the data to kernel. Then we do
942  * the copying without checking the user space area
943  * (__copy_from_user()).
944  *
945  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
946  * it.
947  *
948  * sk        The sk of the socket
949  * addrs     The pointer to the addresses in user land
950  * addrssize Size of the addrs buffer
951  * op        Operation to perform (add or remove, see the flags of
952  *           sctp_bindx)
953  *
954  * Returns 0 if ok, <0 errno code on error.
955  */
956 static int sctp_setsockopt_bindx(struct sock* sk,
957 				 struct sockaddr __user *addrs,
958 				 int addrs_size, int op)
959 {
960 	struct sockaddr *kaddrs;
961 	int err;
962 	int addrcnt = 0;
963 	int walk_size = 0;
964 	struct sockaddr *sa_addr;
965 	void *addr_buf;
966 	struct sctp_af *af;
967 
968 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
969 		 __func__, sk, addrs, addrs_size, op);
970 
971 	if (unlikely(addrs_size <= 0))
972 		return -EINVAL;
973 
974 	/* Check the user passed a healthy pointer.  */
975 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
976 		return -EFAULT;
977 
978 	/* Alloc space for the address array in kernel memory.  */
979 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
980 	if (unlikely(!kaddrs))
981 		return -ENOMEM;
982 
983 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
984 		kfree(kaddrs);
985 		return -EFAULT;
986 	}
987 
988 	/* Walk through the addrs buffer and count the number of addresses. */
989 	addr_buf = kaddrs;
990 	while (walk_size < addrs_size) {
991 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
992 			kfree(kaddrs);
993 			return -EINVAL;
994 		}
995 
996 		sa_addr = addr_buf;
997 		af = sctp_get_af_specific(sa_addr->sa_family);
998 
999 		/* If the address family is not supported or if this address
1000 		 * causes the address buffer to overflow return EINVAL.
1001 		 */
1002 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1003 			kfree(kaddrs);
1004 			return -EINVAL;
1005 		}
1006 		addrcnt++;
1007 		addr_buf += af->sockaddr_len;
1008 		walk_size += af->sockaddr_len;
1009 	}
1010 
1011 	/* Do the work. */
1012 	switch (op) {
1013 	case SCTP_BINDX_ADD_ADDR:
1014 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1015 		if (err)
1016 			goto out;
1017 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1018 		break;
1019 
1020 	case SCTP_BINDX_REM_ADDR:
1021 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1022 		if (err)
1023 			goto out;
1024 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1025 		break;
1026 
1027 	default:
1028 		err = -EINVAL;
1029 		break;
1030 	}
1031 
1032 out:
1033 	kfree(kaddrs);
1034 
1035 	return err;
1036 }
1037 
1038 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1039  *
1040  * Common routine for handling connect() and sctp_connectx().
1041  * Connect will come in with just a single address.
1042  */
1043 static int __sctp_connect(struct sock* sk,
1044 			  struct sockaddr *kaddrs,
1045 			  int addrs_size,
1046 			  sctp_assoc_t *assoc_id)
1047 {
1048 	struct net *net = sock_net(sk);
1049 	struct sctp_sock *sp;
1050 	struct sctp_endpoint *ep;
1051 	struct sctp_association *asoc = NULL;
1052 	struct sctp_association *asoc2;
1053 	struct sctp_transport *transport;
1054 	union sctp_addr to;
1055 	struct sctp_af *af;
1056 	sctp_scope_t scope;
1057 	long timeo;
1058 	int err = 0;
1059 	int addrcnt = 0;
1060 	int walk_size = 0;
1061 	union sctp_addr *sa_addr = NULL;
1062 	void *addr_buf;
1063 	unsigned short port;
1064 	unsigned int f_flags = 0;
1065 
1066 	sp = sctp_sk(sk);
1067 	ep = sp->ep;
1068 
1069 	/* connect() cannot be done on a socket that is already in ESTABLISHED
1070 	 * state - UDP-style peeled off socket or a TCP-style socket that
1071 	 * is already connected.
1072 	 * It cannot be done even on a TCP-style listening socket.
1073 	 */
1074 	if (sctp_sstate(sk, ESTABLISHED) ||
1075 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1076 		err = -EISCONN;
1077 		goto out_free;
1078 	}
1079 
1080 	/* Walk through the addrs buffer and count the number of addresses. */
1081 	addr_buf = kaddrs;
1082 	while (walk_size < addrs_size) {
1083 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1084 			err = -EINVAL;
1085 			goto out_free;
1086 		}
1087 
1088 		sa_addr = addr_buf;
1089 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1090 
1091 		/* If the address family is not supported or if this address
1092 		 * causes the address buffer to overflow return EINVAL.
1093 		 */
1094 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1095 			err = -EINVAL;
1096 			goto out_free;
1097 		}
1098 
1099 		port = ntohs(sa_addr->v4.sin_port);
1100 
1101 		/* Save current address so we can work with it */
1102 		memcpy(&to, sa_addr, af->sockaddr_len);
1103 
1104 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1105 		if (err)
1106 			goto out_free;
1107 
1108 		/* Make sure the destination port is correctly set
1109 		 * in all addresses.
1110 		 */
1111 		if (asoc && asoc->peer.port && asoc->peer.port != port) {
1112 			err = -EINVAL;
1113 			goto out_free;
1114 		}
1115 
1116 		/* Check if there already is a matching association on the
1117 		 * endpoint (other than the one created here).
1118 		 */
1119 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1120 		if (asoc2 && asoc2 != asoc) {
1121 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1122 				err = -EISCONN;
1123 			else
1124 				err = -EALREADY;
1125 			goto out_free;
1126 		}
1127 
1128 		/* If we could not find a matching association on the endpoint,
1129 		 * make sure that there is no peeled-off association matching
1130 		 * the peer address even on another socket.
1131 		 */
1132 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1133 			err = -EADDRNOTAVAIL;
1134 			goto out_free;
1135 		}
1136 
1137 		if (!asoc) {
1138 			/* If a bind() or sctp_bindx() is not called prior to
1139 			 * an sctp_connectx() call, the system picks an
1140 			 * ephemeral port and will choose an address set
1141 			 * equivalent to binding with a wildcard address.
1142 			 */
1143 			if (!ep->base.bind_addr.port) {
1144 				if (sctp_autobind(sk)) {
1145 					err = -EAGAIN;
1146 					goto out_free;
1147 				}
1148 			} else {
1149 				/*
1150 				 * If an unprivileged user inherits a 1-many
1151 				 * style socket with open associations on a
1152 				 * privileged port, it MAY be permitted to
1153 				 * accept new associations, but it SHOULD NOT
1154 				 * be permitted to open new associations.
1155 				 */
1156 				if (ep->base.bind_addr.port < PROT_SOCK &&
1157 				    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1158 					err = -EACCES;
1159 					goto out_free;
1160 				}
1161 			}
1162 
1163 			scope = sctp_scope(&to);
1164 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1165 			if (!asoc) {
1166 				err = -ENOMEM;
1167 				goto out_free;
1168 			}
1169 
1170 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1171 							      GFP_KERNEL);
1172 			if (err < 0) {
1173 				goto out_free;
1174 			}
1175 
1176 		}
1177 
1178 		/* Prime the peer's transport structures.  */
1179 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1180 						SCTP_UNKNOWN);
1181 		if (!transport) {
1182 			err = -ENOMEM;
1183 			goto out_free;
1184 		}
1185 
1186 		addrcnt++;
1187 		addr_buf += af->sockaddr_len;
1188 		walk_size += af->sockaddr_len;
1189 	}
1190 
1191 	/* In case the user of sctp_connectx() wants an association
1192 	 * id back, assign one now.
1193 	 */
1194 	if (assoc_id) {
1195 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1196 		if (err < 0)
1197 			goto out_free;
1198 	}
1199 
1200 	err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1201 	if (err < 0) {
1202 		goto out_free;
1203 	}
1204 
1205 	/* Initialize sk's dport and daddr for getpeername() */
1206 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1207 	af = sctp_get_af_specific(sa_addr->sa.sa_family);
1208 	af->to_sk_daddr(sa_addr, sk);
1209 	sk->sk_err = 0;
1210 
1211 	/* in-kernel sockets don't generally have a file allocated to them
1212 	 * if all they do is call sock_create_kern().
1213 	 */
1214 	if (sk->sk_socket->file)
1215 		f_flags = sk->sk_socket->file->f_flags;
1216 
1217 	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1218 
1219 	err = sctp_wait_for_connect(asoc, &timeo);
1220 	if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1221 		*assoc_id = asoc->assoc_id;
1222 
1223 	/* Don't free association on exit. */
1224 	asoc = NULL;
1225 
1226 out_free:
1227 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1228 		 __func__, asoc, kaddrs, err);
1229 
1230 	if (asoc) {
1231 		/* sctp_primitive_ASSOCIATE may have added this association
1232 		 * To the hash table, try to unhash it, just in case, its a noop
1233 		 * if it wasn't hashed so we're safe
1234 		 */
1235 		sctp_unhash_established(asoc);
1236 		sctp_association_free(asoc);
1237 	}
1238 	return err;
1239 }
1240 
1241 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1242  *
1243  * API 8.9
1244  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1245  * 			sctp_assoc_t *asoc);
1246  *
1247  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1248  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1249  * or IPv6 addresses.
1250  *
1251  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1252  * Section 3.1.2 for this usage.
1253  *
1254  * addrs is a pointer to an array of one or more socket addresses. Each
1255  * address is contained in its appropriate structure (i.e. struct
1256  * sockaddr_in or struct sockaddr_in6) the family of the address type
1257  * must be used to distengish the address length (note that this
1258  * representation is termed a "packed array" of addresses). The caller
1259  * specifies the number of addresses in the array with addrcnt.
1260  *
1261  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1262  * the association id of the new association.  On failure, sctp_connectx()
1263  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1264  * is not touched by the kernel.
1265  *
1266  * For SCTP, the port given in each socket address must be the same, or
1267  * sctp_connectx() will fail, setting errno to EINVAL.
1268  *
1269  * An application can use sctp_connectx to initiate an association with
1270  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1271  * allows a caller to specify multiple addresses at which a peer can be
1272  * reached.  The way the SCTP stack uses the list of addresses to set up
1273  * the association is implementation dependent.  This function only
1274  * specifies that the stack will try to make use of all the addresses in
1275  * the list when needed.
1276  *
1277  * Note that the list of addresses passed in is only used for setting up
1278  * the association.  It does not necessarily equal the set of addresses
1279  * the peer uses for the resulting association.  If the caller wants to
1280  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1281  * retrieve them after the association has been set up.
1282  *
1283  * Basically do nothing but copying the addresses from user to kernel
1284  * land and invoking either sctp_connectx(). This is used for tunneling
1285  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1286  *
1287  * We don't use copy_from_user() for optimization: we first do the
1288  * sanity checks (buffer size -fast- and access check-healthy
1289  * pointer); if all of those succeed, then we can alloc the memory
1290  * (expensive operation) needed to copy the data to kernel. Then we do
1291  * the copying without checking the user space area
1292  * (__copy_from_user()).
1293  *
1294  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1295  * it.
1296  *
1297  * sk        The sk of the socket
1298  * addrs     The pointer to the addresses in user land
1299  * addrssize Size of the addrs buffer
1300  *
1301  * Returns >=0 if ok, <0 errno code on error.
1302  */
1303 static int __sctp_setsockopt_connectx(struct sock* sk,
1304 				      struct sockaddr __user *addrs,
1305 				      int addrs_size,
1306 				      sctp_assoc_t *assoc_id)
1307 {
1308 	int err = 0;
1309 	struct sockaddr *kaddrs;
1310 
1311 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1312 		 __func__, sk, addrs, addrs_size);
1313 
1314 	if (unlikely(addrs_size <= 0))
1315 		return -EINVAL;
1316 
1317 	/* Check the user passed a healthy pointer.  */
1318 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1319 		return -EFAULT;
1320 
1321 	/* Alloc space for the address array in kernel memory.  */
1322 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1323 	if (unlikely(!kaddrs))
1324 		return -ENOMEM;
1325 
1326 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1327 		err = -EFAULT;
1328 	} else {
1329 		err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1330 	}
1331 
1332 	kfree(kaddrs);
1333 
1334 	return err;
1335 }
1336 
1337 /*
1338  * This is an older interface.  It's kept for backward compatibility
1339  * to the option that doesn't provide association id.
1340  */
1341 static int sctp_setsockopt_connectx_old(struct sock* sk,
1342 					struct sockaddr __user *addrs,
1343 					int addrs_size)
1344 {
1345 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1346 }
1347 
1348 /*
1349  * New interface for the API.  The since the API is done with a socket
1350  * option, to make it simple we feed back the association id is as a return
1351  * indication to the call.  Error is always negative and association id is
1352  * always positive.
1353  */
1354 static int sctp_setsockopt_connectx(struct sock* sk,
1355 				    struct sockaddr __user *addrs,
1356 				    int addrs_size)
1357 {
1358 	sctp_assoc_t assoc_id = 0;
1359 	int err = 0;
1360 
1361 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1362 
1363 	if (err)
1364 		return err;
1365 	else
1366 		return assoc_id;
1367 }
1368 
1369 /*
1370  * New (hopefully final) interface for the API.
1371  * We use the sctp_getaddrs_old structure so that use-space library
1372  * can avoid any unnecessary allocations.   The only defferent part
1373  * is that we store the actual length of the address buffer into the
1374  * addrs_num structure member.  That way we can re-use the existing
1375  * code.
1376  */
1377 static int sctp_getsockopt_connectx3(struct sock* sk, int len,
1378 				     char __user *optval,
1379 				     int __user *optlen)
1380 {
1381 	struct sctp_getaddrs_old param;
1382 	sctp_assoc_t assoc_id = 0;
1383 	int err = 0;
1384 
1385 	if (len < sizeof(param))
1386 		return -EINVAL;
1387 
1388 	if (copy_from_user(&param, optval, sizeof(param)))
1389 		return -EFAULT;
1390 
1391 	err = __sctp_setsockopt_connectx(sk,
1392 			(struct sockaddr __user *)param.addrs,
1393 			param.addr_num, &assoc_id);
1394 
1395 	if (err == 0 || err == -EINPROGRESS) {
1396 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1397 			return -EFAULT;
1398 		if (put_user(sizeof(assoc_id), optlen))
1399 			return -EFAULT;
1400 	}
1401 
1402 	return err;
1403 }
1404 
1405 /* API 3.1.4 close() - UDP Style Syntax
1406  * Applications use close() to perform graceful shutdown (as described in
1407  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1408  * by a UDP-style socket.
1409  *
1410  * The syntax is
1411  *
1412  *   ret = close(int sd);
1413  *
1414  *   sd      - the socket descriptor of the associations to be closed.
1415  *
1416  * To gracefully shutdown a specific association represented by the
1417  * UDP-style socket, an application should use the sendmsg() call,
1418  * passing no user data, but including the appropriate flag in the
1419  * ancillary data (see Section xxxx).
1420  *
1421  * If sd in the close() call is a branched-off socket representing only
1422  * one association, the shutdown is performed on that association only.
1423  *
1424  * 4.1.6 close() - TCP Style Syntax
1425  *
1426  * Applications use close() to gracefully close down an association.
1427  *
1428  * The syntax is:
1429  *
1430  *    int close(int sd);
1431  *
1432  *      sd      - the socket descriptor of the association to be closed.
1433  *
1434  * After an application calls close() on a socket descriptor, no further
1435  * socket operations will succeed on that descriptor.
1436  *
1437  * API 7.1.4 SO_LINGER
1438  *
1439  * An application using the TCP-style socket can use this option to
1440  * perform the SCTP ABORT primitive.  The linger option structure is:
1441  *
1442  *  struct  linger {
1443  *     int     l_onoff;                // option on/off
1444  *     int     l_linger;               // linger time
1445  * };
1446  *
1447  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1448  * to 0, calling close() is the same as the ABORT primitive.  If the
1449  * value is set to a negative value, the setsockopt() call will return
1450  * an error.  If the value is set to a positive value linger_time, the
1451  * close() can be blocked for at most linger_time ms.  If the graceful
1452  * shutdown phase does not finish during this period, close() will
1453  * return but the graceful shutdown phase continues in the system.
1454  */
1455 static void sctp_close(struct sock *sk, long timeout)
1456 {
1457 	struct net *net = sock_net(sk);
1458 	struct sctp_endpoint *ep;
1459 	struct sctp_association *asoc;
1460 	struct list_head *pos, *temp;
1461 	unsigned int data_was_unread;
1462 
1463 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1464 
1465 	sctp_lock_sock(sk);
1466 	sk->sk_shutdown = SHUTDOWN_MASK;
1467 	sk->sk_state = SCTP_SS_CLOSING;
1468 
1469 	ep = sctp_sk(sk)->ep;
1470 
1471 	/* Clean up any skbs sitting on the receive queue.  */
1472 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1473 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1474 
1475 	/* Walk all associations on an endpoint.  */
1476 	list_for_each_safe(pos, temp, &ep->asocs) {
1477 		asoc = list_entry(pos, struct sctp_association, asocs);
1478 
1479 		if (sctp_style(sk, TCP)) {
1480 			/* A closed association can still be in the list if
1481 			 * it belongs to a TCP-style listening socket that is
1482 			 * not yet accepted. If so, free it. If not, send an
1483 			 * ABORT or SHUTDOWN based on the linger options.
1484 			 */
1485 			if (sctp_state(asoc, CLOSED)) {
1486 				sctp_unhash_established(asoc);
1487 				sctp_association_free(asoc);
1488 				continue;
1489 			}
1490 		}
1491 
1492 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1493 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1494 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1495 			struct sctp_chunk *chunk;
1496 
1497 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1498 			if (chunk)
1499 				sctp_primitive_ABORT(net, asoc, chunk);
1500 		} else
1501 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1502 	}
1503 
1504 	/* On a TCP-style socket, block for at most linger_time if set. */
1505 	if (sctp_style(sk, TCP) && timeout)
1506 		sctp_wait_for_close(sk, timeout);
1507 
1508 	/* This will run the backlog queue.  */
1509 	sctp_release_sock(sk);
1510 
1511 	/* Supposedly, no process has access to the socket, but
1512 	 * the net layers still may.
1513 	 */
1514 	sctp_local_bh_disable();
1515 	sctp_bh_lock_sock(sk);
1516 
1517 	/* Hold the sock, since sk_common_release() will put sock_put()
1518 	 * and we have just a little more cleanup.
1519 	 */
1520 	sock_hold(sk);
1521 	sk_common_release(sk);
1522 
1523 	sctp_bh_unlock_sock(sk);
1524 	sctp_local_bh_enable();
1525 
1526 	sock_put(sk);
1527 
1528 	SCTP_DBG_OBJCNT_DEC(sock);
1529 }
1530 
1531 /* Handle EPIPE error. */
1532 static int sctp_error(struct sock *sk, int flags, int err)
1533 {
1534 	if (err == -EPIPE)
1535 		err = sock_error(sk) ? : -EPIPE;
1536 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1537 		send_sig(SIGPIPE, current, 0);
1538 	return err;
1539 }
1540 
1541 /* API 3.1.3 sendmsg() - UDP Style Syntax
1542  *
1543  * An application uses sendmsg() and recvmsg() calls to transmit data to
1544  * and receive data from its peer.
1545  *
1546  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1547  *                  int flags);
1548  *
1549  *  socket  - the socket descriptor of the endpoint.
1550  *  message - pointer to the msghdr structure which contains a single
1551  *            user message and possibly some ancillary data.
1552  *
1553  *            See Section 5 for complete description of the data
1554  *            structures.
1555  *
1556  *  flags   - flags sent or received with the user message, see Section
1557  *            5 for complete description of the flags.
1558  *
1559  * Note:  This function could use a rewrite especially when explicit
1560  * connect support comes in.
1561  */
1562 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1563 
1564 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1565 
1566 static int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1567 			struct msghdr *msg, size_t msg_len)
1568 {
1569 	struct net *net = sock_net(sk);
1570 	struct sctp_sock *sp;
1571 	struct sctp_endpoint *ep;
1572 	struct sctp_association *new_asoc=NULL, *asoc=NULL;
1573 	struct sctp_transport *transport, *chunk_tp;
1574 	struct sctp_chunk *chunk;
1575 	union sctp_addr to;
1576 	struct sockaddr *msg_name = NULL;
1577 	struct sctp_sndrcvinfo default_sinfo;
1578 	struct sctp_sndrcvinfo *sinfo;
1579 	struct sctp_initmsg *sinit;
1580 	sctp_assoc_t associd = 0;
1581 	sctp_cmsgs_t cmsgs = { NULL };
1582 	int err;
1583 	sctp_scope_t scope;
1584 	long timeo;
1585 	__u16 sinfo_flags = 0;
1586 	struct sctp_datamsg *datamsg;
1587 	int msg_flags = msg->msg_flags;
1588 
1589 	err = 0;
1590 	sp = sctp_sk(sk);
1591 	ep = sp->ep;
1592 
1593 	pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1594 		 msg, msg_len, ep);
1595 
1596 	/* We cannot send a message over a TCP-style listening socket. */
1597 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1598 		err = -EPIPE;
1599 		goto out_nounlock;
1600 	}
1601 
1602 	/* Parse out the SCTP CMSGs.  */
1603 	err = sctp_msghdr_parse(msg, &cmsgs);
1604 	if (err) {
1605 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1606 		goto out_nounlock;
1607 	}
1608 
1609 	/* Fetch the destination address for this packet.  This
1610 	 * address only selects the association--it is not necessarily
1611 	 * the address we will send to.
1612 	 * For a peeled-off socket, msg_name is ignored.
1613 	 */
1614 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1615 		int msg_namelen = msg->msg_namelen;
1616 
1617 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1618 				       msg_namelen);
1619 		if (err)
1620 			return err;
1621 
1622 		if (msg_namelen > sizeof(to))
1623 			msg_namelen = sizeof(to);
1624 		memcpy(&to, msg->msg_name, msg_namelen);
1625 		msg_name = msg->msg_name;
1626 	}
1627 
1628 	sinfo = cmsgs.info;
1629 	sinit = cmsgs.init;
1630 
1631 	/* Did the user specify SNDRCVINFO?  */
1632 	if (sinfo) {
1633 		sinfo_flags = sinfo->sinfo_flags;
1634 		associd = sinfo->sinfo_assoc_id;
1635 	}
1636 
1637 	pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1638 		 msg_len, sinfo_flags);
1639 
1640 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1641 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1642 		err = -EINVAL;
1643 		goto out_nounlock;
1644 	}
1645 
1646 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1647 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1648 	 * If SCTP_ABORT is set, the message length could be non zero with
1649 	 * the msg_iov set to the user abort reason.
1650 	 */
1651 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1652 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1653 		err = -EINVAL;
1654 		goto out_nounlock;
1655 	}
1656 
1657 	/* If SCTP_ADDR_OVER is set, there must be an address
1658 	 * specified in msg_name.
1659 	 */
1660 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1661 		err = -EINVAL;
1662 		goto out_nounlock;
1663 	}
1664 
1665 	transport = NULL;
1666 
1667 	pr_debug("%s: about to look up association\n", __func__);
1668 
1669 	sctp_lock_sock(sk);
1670 
1671 	/* If a msg_name has been specified, assume this is to be used.  */
1672 	if (msg_name) {
1673 		/* Look for a matching association on the endpoint. */
1674 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1675 		if (!asoc) {
1676 			/* If we could not find a matching association on the
1677 			 * endpoint, make sure that it is not a TCP-style
1678 			 * socket that already has an association or there is
1679 			 * no peeled-off association on another socket.
1680 			 */
1681 			if ((sctp_style(sk, TCP) &&
1682 			     sctp_sstate(sk, ESTABLISHED)) ||
1683 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1684 				err = -EADDRNOTAVAIL;
1685 				goto out_unlock;
1686 			}
1687 		}
1688 	} else {
1689 		asoc = sctp_id2assoc(sk, associd);
1690 		if (!asoc) {
1691 			err = -EPIPE;
1692 			goto out_unlock;
1693 		}
1694 	}
1695 
1696 	if (asoc) {
1697 		pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1698 
1699 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1700 		 * socket that has an association in CLOSED state. This can
1701 		 * happen when an accepted socket has an association that is
1702 		 * already CLOSED.
1703 		 */
1704 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1705 			err = -EPIPE;
1706 			goto out_unlock;
1707 		}
1708 
1709 		if (sinfo_flags & SCTP_EOF) {
1710 			pr_debug("%s: shutting down association:%p\n",
1711 				 __func__, asoc);
1712 
1713 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1714 			err = 0;
1715 			goto out_unlock;
1716 		}
1717 		if (sinfo_flags & SCTP_ABORT) {
1718 
1719 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1720 			if (!chunk) {
1721 				err = -ENOMEM;
1722 				goto out_unlock;
1723 			}
1724 
1725 			pr_debug("%s: aborting association:%p\n",
1726 				 __func__, asoc);
1727 
1728 			sctp_primitive_ABORT(net, asoc, chunk);
1729 			err = 0;
1730 			goto out_unlock;
1731 		}
1732 	}
1733 
1734 	/* Do we need to create the association?  */
1735 	if (!asoc) {
1736 		pr_debug("%s: there is no association yet\n", __func__);
1737 
1738 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1739 			err = -EINVAL;
1740 			goto out_unlock;
1741 		}
1742 
1743 		/* Check for invalid stream against the stream counts,
1744 		 * either the default or the user specified stream counts.
1745 		 */
1746 		if (sinfo) {
1747 			if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1748 				/* Check against the defaults. */
1749 				if (sinfo->sinfo_stream >=
1750 				    sp->initmsg.sinit_num_ostreams) {
1751 					err = -EINVAL;
1752 					goto out_unlock;
1753 				}
1754 			} else {
1755 				/* Check against the requested.  */
1756 				if (sinfo->sinfo_stream >=
1757 				    sinit->sinit_num_ostreams) {
1758 					err = -EINVAL;
1759 					goto out_unlock;
1760 				}
1761 			}
1762 		}
1763 
1764 		/*
1765 		 * API 3.1.2 bind() - UDP Style Syntax
1766 		 * If a bind() or sctp_bindx() is not called prior to a
1767 		 * sendmsg() call that initiates a new association, the
1768 		 * system picks an ephemeral port and will choose an address
1769 		 * set equivalent to binding with a wildcard address.
1770 		 */
1771 		if (!ep->base.bind_addr.port) {
1772 			if (sctp_autobind(sk)) {
1773 				err = -EAGAIN;
1774 				goto out_unlock;
1775 			}
1776 		} else {
1777 			/*
1778 			 * If an unprivileged user inherits a one-to-many
1779 			 * style socket with open associations on a privileged
1780 			 * port, it MAY be permitted to accept new associations,
1781 			 * but it SHOULD NOT be permitted to open new
1782 			 * associations.
1783 			 */
1784 			if (ep->base.bind_addr.port < PROT_SOCK &&
1785 			    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1786 				err = -EACCES;
1787 				goto out_unlock;
1788 			}
1789 		}
1790 
1791 		scope = sctp_scope(&to);
1792 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1793 		if (!new_asoc) {
1794 			err = -ENOMEM;
1795 			goto out_unlock;
1796 		}
1797 		asoc = new_asoc;
1798 		err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1799 		if (err < 0) {
1800 			err = -ENOMEM;
1801 			goto out_free;
1802 		}
1803 
1804 		/* If the SCTP_INIT ancillary data is specified, set all
1805 		 * the association init values accordingly.
1806 		 */
1807 		if (sinit) {
1808 			if (sinit->sinit_num_ostreams) {
1809 				asoc->c.sinit_num_ostreams =
1810 					sinit->sinit_num_ostreams;
1811 			}
1812 			if (sinit->sinit_max_instreams) {
1813 				asoc->c.sinit_max_instreams =
1814 					sinit->sinit_max_instreams;
1815 			}
1816 			if (sinit->sinit_max_attempts) {
1817 				asoc->max_init_attempts
1818 					= sinit->sinit_max_attempts;
1819 			}
1820 			if (sinit->sinit_max_init_timeo) {
1821 				asoc->max_init_timeo =
1822 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1823 			}
1824 		}
1825 
1826 		/* Prime the peer's transport structures.  */
1827 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1828 		if (!transport) {
1829 			err = -ENOMEM;
1830 			goto out_free;
1831 		}
1832 	}
1833 
1834 	/* ASSERT: we have a valid association at this point.  */
1835 	pr_debug("%s: we have a valid association\n", __func__);
1836 
1837 	if (!sinfo) {
1838 		/* If the user didn't specify SNDRCVINFO, make up one with
1839 		 * some defaults.
1840 		 */
1841 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1842 		default_sinfo.sinfo_stream = asoc->default_stream;
1843 		default_sinfo.sinfo_flags = asoc->default_flags;
1844 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1845 		default_sinfo.sinfo_context = asoc->default_context;
1846 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1847 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1848 		sinfo = &default_sinfo;
1849 	}
1850 
1851 	/* API 7.1.7, the sndbuf size per association bounds the
1852 	 * maximum size of data that can be sent in a single send call.
1853 	 */
1854 	if (msg_len > sk->sk_sndbuf) {
1855 		err = -EMSGSIZE;
1856 		goto out_free;
1857 	}
1858 
1859 	if (asoc->pmtu_pending)
1860 		sctp_assoc_pending_pmtu(sk, asoc);
1861 
1862 	/* If fragmentation is disabled and the message length exceeds the
1863 	 * association fragmentation point, return EMSGSIZE.  The I-D
1864 	 * does not specify what this error is, but this looks like
1865 	 * a great fit.
1866 	 */
1867 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1868 		err = -EMSGSIZE;
1869 		goto out_free;
1870 	}
1871 
1872 	/* Check for invalid stream. */
1873 	if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1874 		err = -EINVAL;
1875 		goto out_free;
1876 	}
1877 
1878 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1879 	if (!sctp_wspace(asoc)) {
1880 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1881 		if (err)
1882 			goto out_free;
1883 	}
1884 
1885 	/* If an address is passed with the sendto/sendmsg call, it is used
1886 	 * to override the primary destination address in the TCP model, or
1887 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1888 	 */
1889 	if ((sctp_style(sk, TCP) && msg_name) ||
1890 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1891 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1892 		if (!chunk_tp) {
1893 			err = -EINVAL;
1894 			goto out_free;
1895 		}
1896 	} else
1897 		chunk_tp = NULL;
1898 
1899 	/* Auto-connect, if we aren't connected already. */
1900 	if (sctp_state(asoc, CLOSED)) {
1901 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1902 		if (err < 0)
1903 			goto out_free;
1904 
1905 		pr_debug("%s: we associated primitively\n", __func__);
1906 	}
1907 
1908 	/* Break the message into multiple chunks of maximum size. */
1909 	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1910 	if (IS_ERR(datamsg)) {
1911 		err = PTR_ERR(datamsg);
1912 		goto out_free;
1913 	}
1914 
1915 	/* Now send the (possibly) fragmented message. */
1916 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1917 		sctp_chunk_hold(chunk);
1918 
1919 		/* Do accounting for the write space.  */
1920 		sctp_set_owner_w(chunk);
1921 
1922 		chunk->transport = chunk_tp;
1923 	}
1924 
1925 	/* Send it to the lower layers.  Note:  all chunks
1926 	 * must either fail or succeed.   The lower layer
1927 	 * works that way today.  Keep it that way or this
1928 	 * breaks.
1929 	 */
1930 	err = sctp_primitive_SEND(net, asoc, datamsg);
1931 	/* Did the lower layer accept the chunk? */
1932 	if (err) {
1933 		sctp_datamsg_free(datamsg);
1934 		goto out_free;
1935 	}
1936 
1937 	pr_debug("%s: we sent primitively\n", __func__);
1938 
1939 	sctp_datamsg_put(datamsg);
1940 	err = msg_len;
1941 
1942 	/* If we are already past ASSOCIATE, the lower
1943 	 * layers are responsible for association cleanup.
1944 	 */
1945 	goto out_unlock;
1946 
1947 out_free:
1948 	if (new_asoc) {
1949 		sctp_unhash_established(asoc);
1950 		sctp_association_free(asoc);
1951 	}
1952 out_unlock:
1953 	sctp_release_sock(sk);
1954 
1955 out_nounlock:
1956 	return sctp_error(sk, msg_flags, err);
1957 
1958 #if 0
1959 do_sock_err:
1960 	if (msg_len)
1961 		err = msg_len;
1962 	else
1963 		err = sock_error(sk);
1964 	goto out;
1965 
1966 do_interrupted:
1967 	if (msg_len)
1968 		err = msg_len;
1969 	goto out;
1970 #endif /* 0 */
1971 }
1972 
1973 /* This is an extended version of skb_pull() that removes the data from the
1974  * start of a skb even when data is spread across the list of skb's in the
1975  * frag_list. len specifies the total amount of data that needs to be removed.
1976  * when 'len' bytes could be removed from the skb, it returns 0.
1977  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
1978  * could not be removed.
1979  */
1980 static int sctp_skb_pull(struct sk_buff *skb, int len)
1981 {
1982 	struct sk_buff *list;
1983 	int skb_len = skb_headlen(skb);
1984 	int rlen;
1985 
1986 	if (len <= skb_len) {
1987 		__skb_pull(skb, len);
1988 		return 0;
1989 	}
1990 	len -= skb_len;
1991 	__skb_pull(skb, skb_len);
1992 
1993 	skb_walk_frags(skb, list) {
1994 		rlen = sctp_skb_pull(list, len);
1995 		skb->len -= (len-rlen);
1996 		skb->data_len -= (len-rlen);
1997 
1998 		if (!rlen)
1999 			return 0;
2000 
2001 		len = rlen;
2002 	}
2003 
2004 	return len;
2005 }
2006 
2007 /* API 3.1.3  recvmsg() - UDP Style Syntax
2008  *
2009  *  ssize_t recvmsg(int socket, struct msghdr *message,
2010  *                    int flags);
2011  *
2012  *  socket  - the socket descriptor of the endpoint.
2013  *  message - pointer to the msghdr structure which contains a single
2014  *            user message and possibly some ancillary data.
2015  *
2016  *            See Section 5 for complete description of the data
2017  *            structures.
2018  *
2019  *  flags   - flags sent or received with the user message, see Section
2020  *            5 for complete description of the flags.
2021  */
2022 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
2023 
2024 static int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
2025 			struct msghdr *msg, size_t len, int noblock,
2026 			int flags, int *addr_len)
2027 {
2028 	struct sctp_ulpevent *event = NULL;
2029 	struct sctp_sock *sp = sctp_sk(sk);
2030 	struct sk_buff *skb;
2031 	int copied;
2032 	int err = 0;
2033 	int skb_len;
2034 
2035 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2036 		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2037 		 addr_len);
2038 
2039 	sctp_lock_sock(sk);
2040 
2041 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2042 		err = -ENOTCONN;
2043 		goto out;
2044 	}
2045 
2046 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2047 	if (!skb)
2048 		goto out;
2049 
2050 	/* Get the total length of the skb including any skb's in the
2051 	 * frag_list.
2052 	 */
2053 	skb_len = skb->len;
2054 
2055 	copied = skb_len;
2056 	if (copied > len)
2057 		copied = len;
2058 
2059 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2060 
2061 	event = sctp_skb2event(skb);
2062 
2063 	if (err)
2064 		goto out_free;
2065 
2066 	sock_recv_ts_and_drops(msg, sk, skb);
2067 	if (sctp_ulpevent_is_notification(event)) {
2068 		msg->msg_flags |= MSG_NOTIFICATION;
2069 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2070 	} else {
2071 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2072 	}
2073 
2074 	/* Check if we allow SCTP_SNDRCVINFO. */
2075 	if (sp->subscribe.sctp_data_io_event)
2076 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2077 #if 0
2078 	/* FIXME: we should be calling IP/IPv6 layers.  */
2079 	if (sk->sk_protinfo.af_inet.cmsg_flags)
2080 		ip_cmsg_recv(msg, skb);
2081 #endif
2082 
2083 	err = copied;
2084 
2085 	/* If skb's length exceeds the user's buffer, update the skb and
2086 	 * push it back to the receive_queue so that the next call to
2087 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2088 	 */
2089 	if (skb_len > copied) {
2090 		msg->msg_flags &= ~MSG_EOR;
2091 		if (flags & MSG_PEEK)
2092 			goto out_free;
2093 		sctp_skb_pull(skb, copied);
2094 		skb_queue_head(&sk->sk_receive_queue, skb);
2095 
2096 		/* When only partial message is copied to the user, increase
2097 		 * rwnd by that amount. If all the data in the skb is read,
2098 		 * rwnd is updated when the event is freed.
2099 		 */
2100 		if (!sctp_ulpevent_is_notification(event))
2101 			sctp_assoc_rwnd_increase(event->asoc, copied);
2102 		goto out;
2103 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2104 		   (event->msg_flags & MSG_EOR))
2105 		msg->msg_flags |= MSG_EOR;
2106 	else
2107 		msg->msg_flags &= ~MSG_EOR;
2108 
2109 out_free:
2110 	if (flags & MSG_PEEK) {
2111 		/* Release the skb reference acquired after peeking the skb in
2112 		 * sctp_skb_recv_datagram().
2113 		 */
2114 		kfree_skb(skb);
2115 	} else {
2116 		/* Free the event which includes releasing the reference to
2117 		 * the owner of the skb, freeing the skb and updating the
2118 		 * rwnd.
2119 		 */
2120 		sctp_ulpevent_free(event);
2121 	}
2122 out:
2123 	sctp_release_sock(sk);
2124 	return err;
2125 }
2126 
2127 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2128  *
2129  * This option is a on/off flag.  If enabled no SCTP message
2130  * fragmentation will be performed.  Instead if a message being sent
2131  * exceeds the current PMTU size, the message will NOT be sent and
2132  * instead a error will be indicated to the user.
2133  */
2134 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2135 					     char __user *optval,
2136 					     unsigned int optlen)
2137 {
2138 	int val;
2139 
2140 	if (optlen < sizeof(int))
2141 		return -EINVAL;
2142 
2143 	if (get_user(val, (int __user *)optval))
2144 		return -EFAULT;
2145 
2146 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2147 
2148 	return 0;
2149 }
2150 
2151 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2152 				  unsigned int optlen)
2153 {
2154 	struct sctp_association *asoc;
2155 	struct sctp_ulpevent *event;
2156 
2157 	if (optlen > sizeof(struct sctp_event_subscribe))
2158 		return -EINVAL;
2159 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2160 		return -EFAULT;
2161 
2162 	/*
2163 	 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2164 	 * if there is no data to be sent or retransmit, the stack will
2165 	 * immediately send up this notification.
2166 	 */
2167 	if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2168 				       &sctp_sk(sk)->subscribe)) {
2169 		asoc = sctp_id2assoc(sk, 0);
2170 
2171 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2172 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2173 					GFP_ATOMIC);
2174 			if (!event)
2175 				return -ENOMEM;
2176 
2177 			sctp_ulpq_tail_event(&asoc->ulpq, event);
2178 		}
2179 	}
2180 
2181 	return 0;
2182 }
2183 
2184 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2185  *
2186  * This socket option is applicable to the UDP-style socket only.  When
2187  * set it will cause associations that are idle for more than the
2188  * specified number of seconds to automatically close.  An association
2189  * being idle is defined an association that has NOT sent or received
2190  * user data.  The special value of '0' indicates that no automatic
2191  * close of any associations should be performed.  The option expects an
2192  * integer defining the number of seconds of idle time before an
2193  * association is closed.
2194  */
2195 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2196 				     unsigned int optlen)
2197 {
2198 	struct sctp_sock *sp = sctp_sk(sk);
2199 	struct net *net = sock_net(sk);
2200 
2201 	/* Applicable to UDP-style socket only */
2202 	if (sctp_style(sk, TCP))
2203 		return -EOPNOTSUPP;
2204 	if (optlen != sizeof(int))
2205 		return -EINVAL;
2206 	if (copy_from_user(&sp->autoclose, optval, optlen))
2207 		return -EFAULT;
2208 
2209 	if (sp->autoclose > net->sctp.max_autoclose)
2210 		sp->autoclose = net->sctp.max_autoclose;
2211 
2212 	return 0;
2213 }
2214 
2215 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2216  *
2217  * Applications can enable or disable heartbeats for any peer address of
2218  * an association, modify an address's heartbeat interval, force a
2219  * heartbeat to be sent immediately, and adjust the address's maximum
2220  * number of retransmissions sent before an address is considered
2221  * unreachable.  The following structure is used to access and modify an
2222  * address's parameters:
2223  *
2224  *  struct sctp_paddrparams {
2225  *     sctp_assoc_t            spp_assoc_id;
2226  *     struct sockaddr_storage spp_address;
2227  *     uint32_t                spp_hbinterval;
2228  *     uint16_t                spp_pathmaxrxt;
2229  *     uint32_t                spp_pathmtu;
2230  *     uint32_t                spp_sackdelay;
2231  *     uint32_t                spp_flags;
2232  * };
2233  *
2234  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2235  *                     application, and identifies the association for
2236  *                     this query.
2237  *   spp_address     - This specifies which address is of interest.
2238  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2239  *                     in milliseconds.  If a  value of zero
2240  *                     is present in this field then no changes are to
2241  *                     be made to this parameter.
2242  *   spp_pathmaxrxt  - This contains the maximum number of
2243  *                     retransmissions before this address shall be
2244  *                     considered unreachable. If a  value of zero
2245  *                     is present in this field then no changes are to
2246  *                     be made to this parameter.
2247  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2248  *                     specified here will be the "fixed" path mtu.
2249  *                     Note that if the spp_address field is empty
2250  *                     then all associations on this address will
2251  *                     have this fixed path mtu set upon them.
2252  *
2253  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2254  *                     the number of milliseconds that sacks will be delayed
2255  *                     for. This value will apply to all addresses of an
2256  *                     association if the spp_address field is empty. Note
2257  *                     also, that if delayed sack is enabled and this
2258  *                     value is set to 0, no change is made to the last
2259  *                     recorded delayed sack timer value.
2260  *
2261  *   spp_flags       - These flags are used to control various features
2262  *                     on an association. The flag field may contain
2263  *                     zero or more of the following options.
2264  *
2265  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2266  *                     specified address. Note that if the address
2267  *                     field is empty all addresses for the association
2268  *                     have heartbeats enabled upon them.
2269  *
2270  *                     SPP_HB_DISABLE - Disable heartbeats on the
2271  *                     speicifed address. Note that if the address
2272  *                     field is empty all addresses for the association
2273  *                     will have their heartbeats disabled. Note also
2274  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2275  *                     mutually exclusive, only one of these two should
2276  *                     be specified. Enabling both fields will have
2277  *                     undetermined results.
2278  *
2279  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2280  *                     to be made immediately.
2281  *
2282  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2283  *                     heartbeat delayis to be set to the value of 0
2284  *                     milliseconds.
2285  *
2286  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2287  *                     discovery upon the specified address. Note that
2288  *                     if the address feild is empty then all addresses
2289  *                     on the association are effected.
2290  *
2291  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2292  *                     discovery upon the specified address. Note that
2293  *                     if the address feild is empty then all addresses
2294  *                     on the association are effected. Not also that
2295  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2296  *                     exclusive. Enabling both will have undetermined
2297  *                     results.
2298  *
2299  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2300  *                     on delayed sack. The time specified in spp_sackdelay
2301  *                     is used to specify the sack delay for this address. Note
2302  *                     that if spp_address is empty then all addresses will
2303  *                     enable delayed sack and take on the sack delay
2304  *                     value specified in spp_sackdelay.
2305  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2306  *                     off delayed sack. If the spp_address field is blank then
2307  *                     delayed sack is disabled for the entire association. Note
2308  *                     also that this field is mutually exclusive to
2309  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2310  *                     results.
2311  */
2312 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2313 				       struct sctp_transport   *trans,
2314 				       struct sctp_association *asoc,
2315 				       struct sctp_sock        *sp,
2316 				       int                      hb_change,
2317 				       int                      pmtud_change,
2318 				       int                      sackdelay_change)
2319 {
2320 	int error;
2321 
2322 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2323 		struct net *net = sock_net(trans->asoc->base.sk);
2324 
2325 		error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2326 		if (error)
2327 			return error;
2328 	}
2329 
2330 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2331 	 * this field is ignored.  Note also that a value of zero indicates
2332 	 * the current setting should be left unchanged.
2333 	 */
2334 	if (params->spp_flags & SPP_HB_ENABLE) {
2335 
2336 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2337 		 * set.  This lets us use 0 value when this flag
2338 		 * is set.
2339 		 */
2340 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2341 			params->spp_hbinterval = 0;
2342 
2343 		if (params->spp_hbinterval ||
2344 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2345 			if (trans) {
2346 				trans->hbinterval =
2347 				    msecs_to_jiffies(params->spp_hbinterval);
2348 			} else if (asoc) {
2349 				asoc->hbinterval =
2350 				    msecs_to_jiffies(params->spp_hbinterval);
2351 			} else {
2352 				sp->hbinterval = params->spp_hbinterval;
2353 			}
2354 		}
2355 	}
2356 
2357 	if (hb_change) {
2358 		if (trans) {
2359 			trans->param_flags =
2360 				(trans->param_flags & ~SPP_HB) | hb_change;
2361 		} else if (asoc) {
2362 			asoc->param_flags =
2363 				(asoc->param_flags & ~SPP_HB) | hb_change;
2364 		} else {
2365 			sp->param_flags =
2366 				(sp->param_flags & ~SPP_HB) | hb_change;
2367 		}
2368 	}
2369 
2370 	/* When Path MTU discovery is disabled the value specified here will
2371 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2372 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2373 	 * effect).
2374 	 */
2375 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2376 		if (trans) {
2377 			trans->pathmtu = params->spp_pathmtu;
2378 			sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2379 		} else if (asoc) {
2380 			asoc->pathmtu = params->spp_pathmtu;
2381 			sctp_frag_point(asoc, params->spp_pathmtu);
2382 		} else {
2383 			sp->pathmtu = params->spp_pathmtu;
2384 		}
2385 	}
2386 
2387 	if (pmtud_change) {
2388 		if (trans) {
2389 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2390 				(params->spp_flags & SPP_PMTUD_ENABLE);
2391 			trans->param_flags =
2392 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2393 			if (update) {
2394 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2395 				sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2396 			}
2397 		} else if (asoc) {
2398 			asoc->param_flags =
2399 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2400 		} else {
2401 			sp->param_flags =
2402 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2403 		}
2404 	}
2405 
2406 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2407 	 * value of this field is ignored.  Note also that a value of zero
2408 	 * indicates the current setting should be left unchanged.
2409 	 */
2410 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2411 		if (trans) {
2412 			trans->sackdelay =
2413 				msecs_to_jiffies(params->spp_sackdelay);
2414 		} else if (asoc) {
2415 			asoc->sackdelay =
2416 				msecs_to_jiffies(params->spp_sackdelay);
2417 		} else {
2418 			sp->sackdelay = params->spp_sackdelay;
2419 		}
2420 	}
2421 
2422 	if (sackdelay_change) {
2423 		if (trans) {
2424 			trans->param_flags =
2425 				(trans->param_flags & ~SPP_SACKDELAY) |
2426 				sackdelay_change;
2427 		} else if (asoc) {
2428 			asoc->param_flags =
2429 				(asoc->param_flags & ~SPP_SACKDELAY) |
2430 				sackdelay_change;
2431 		} else {
2432 			sp->param_flags =
2433 				(sp->param_flags & ~SPP_SACKDELAY) |
2434 				sackdelay_change;
2435 		}
2436 	}
2437 
2438 	/* Note that a value of zero indicates the current setting should be
2439 	   left unchanged.
2440 	 */
2441 	if (params->spp_pathmaxrxt) {
2442 		if (trans) {
2443 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2444 		} else if (asoc) {
2445 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2446 		} else {
2447 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2448 		}
2449 	}
2450 
2451 	return 0;
2452 }
2453 
2454 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2455 					    char __user *optval,
2456 					    unsigned int optlen)
2457 {
2458 	struct sctp_paddrparams  params;
2459 	struct sctp_transport   *trans = NULL;
2460 	struct sctp_association *asoc = NULL;
2461 	struct sctp_sock        *sp = sctp_sk(sk);
2462 	int error;
2463 	int hb_change, pmtud_change, sackdelay_change;
2464 
2465 	if (optlen != sizeof(struct sctp_paddrparams))
2466 		return - EINVAL;
2467 
2468 	if (copy_from_user(&params, optval, optlen))
2469 		return -EFAULT;
2470 
2471 	/* Validate flags and value parameters. */
2472 	hb_change        = params.spp_flags & SPP_HB;
2473 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2474 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2475 
2476 	if (hb_change        == SPP_HB ||
2477 	    pmtud_change     == SPP_PMTUD ||
2478 	    sackdelay_change == SPP_SACKDELAY ||
2479 	    params.spp_sackdelay > 500 ||
2480 	    (params.spp_pathmtu &&
2481 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2482 		return -EINVAL;
2483 
2484 	/* If an address other than INADDR_ANY is specified, and
2485 	 * no transport is found, then the request is invalid.
2486 	 */
2487 	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
2488 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2489 					       params.spp_assoc_id);
2490 		if (!trans)
2491 			return -EINVAL;
2492 	}
2493 
2494 	/* Get association, if assoc_id != 0 and the socket is a one
2495 	 * to many style socket, and an association was not found, then
2496 	 * the id was invalid.
2497 	 */
2498 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2499 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2500 		return -EINVAL;
2501 
2502 	/* Heartbeat demand can only be sent on a transport or
2503 	 * association, but not a socket.
2504 	 */
2505 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2506 		return -EINVAL;
2507 
2508 	/* Process parameters. */
2509 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2510 					    hb_change, pmtud_change,
2511 					    sackdelay_change);
2512 
2513 	if (error)
2514 		return error;
2515 
2516 	/* If changes are for association, also apply parameters to each
2517 	 * transport.
2518 	 */
2519 	if (!trans && asoc) {
2520 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2521 				transports) {
2522 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2523 						    hb_change, pmtud_change,
2524 						    sackdelay_change);
2525 		}
2526 	}
2527 
2528 	return 0;
2529 }
2530 
2531 /*
2532  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2533  *
2534  * This option will effect the way delayed acks are performed.  This
2535  * option allows you to get or set the delayed ack time, in
2536  * milliseconds.  It also allows changing the delayed ack frequency.
2537  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2538  * the assoc_id is 0, then this sets or gets the endpoints default
2539  * values.  If the assoc_id field is non-zero, then the set or get
2540  * effects the specified association for the one to many model (the
2541  * assoc_id field is ignored by the one to one model).  Note that if
2542  * sack_delay or sack_freq are 0 when setting this option, then the
2543  * current values will remain unchanged.
2544  *
2545  * struct sctp_sack_info {
2546  *     sctp_assoc_t            sack_assoc_id;
2547  *     uint32_t                sack_delay;
2548  *     uint32_t                sack_freq;
2549  * };
2550  *
2551  * sack_assoc_id -  This parameter, indicates which association the user
2552  *    is performing an action upon.  Note that if this field's value is
2553  *    zero then the endpoints default value is changed (effecting future
2554  *    associations only).
2555  *
2556  * sack_delay -  This parameter contains the number of milliseconds that
2557  *    the user is requesting the delayed ACK timer be set to.  Note that
2558  *    this value is defined in the standard to be between 200 and 500
2559  *    milliseconds.
2560  *
2561  * sack_freq -  This parameter contains the number of packets that must
2562  *    be received before a sack is sent without waiting for the delay
2563  *    timer to expire.  The default value for this is 2, setting this
2564  *    value to 1 will disable the delayed sack algorithm.
2565  */
2566 
2567 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2568 				       char __user *optval, unsigned int optlen)
2569 {
2570 	struct sctp_sack_info    params;
2571 	struct sctp_transport   *trans = NULL;
2572 	struct sctp_association *asoc = NULL;
2573 	struct sctp_sock        *sp = sctp_sk(sk);
2574 
2575 	if (optlen == sizeof(struct sctp_sack_info)) {
2576 		if (copy_from_user(&params, optval, optlen))
2577 			return -EFAULT;
2578 
2579 		if (params.sack_delay == 0 && params.sack_freq == 0)
2580 			return 0;
2581 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2582 		pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
2583 		pr_warn("Use struct sctp_sack_info instead\n");
2584 		if (copy_from_user(&params, optval, optlen))
2585 			return -EFAULT;
2586 
2587 		if (params.sack_delay == 0)
2588 			params.sack_freq = 1;
2589 		else
2590 			params.sack_freq = 0;
2591 	} else
2592 		return - EINVAL;
2593 
2594 	/* Validate value parameter. */
2595 	if (params.sack_delay > 500)
2596 		return -EINVAL;
2597 
2598 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2599 	 * to many style socket, and an association was not found, then
2600 	 * the id was invalid.
2601 	 */
2602 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2603 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2604 		return -EINVAL;
2605 
2606 	if (params.sack_delay) {
2607 		if (asoc) {
2608 			asoc->sackdelay =
2609 				msecs_to_jiffies(params.sack_delay);
2610 			asoc->param_flags =
2611 				(asoc->param_flags & ~SPP_SACKDELAY) |
2612 				SPP_SACKDELAY_ENABLE;
2613 		} else {
2614 			sp->sackdelay = params.sack_delay;
2615 			sp->param_flags =
2616 				(sp->param_flags & ~SPP_SACKDELAY) |
2617 				SPP_SACKDELAY_ENABLE;
2618 		}
2619 	}
2620 
2621 	if (params.sack_freq == 1) {
2622 		if (asoc) {
2623 			asoc->param_flags =
2624 				(asoc->param_flags & ~SPP_SACKDELAY) |
2625 				SPP_SACKDELAY_DISABLE;
2626 		} else {
2627 			sp->param_flags =
2628 				(sp->param_flags & ~SPP_SACKDELAY) |
2629 				SPP_SACKDELAY_DISABLE;
2630 		}
2631 	} else if (params.sack_freq > 1) {
2632 		if (asoc) {
2633 			asoc->sackfreq = params.sack_freq;
2634 			asoc->param_flags =
2635 				(asoc->param_flags & ~SPP_SACKDELAY) |
2636 				SPP_SACKDELAY_ENABLE;
2637 		} else {
2638 			sp->sackfreq = params.sack_freq;
2639 			sp->param_flags =
2640 				(sp->param_flags & ~SPP_SACKDELAY) |
2641 				SPP_SACKDELAY_ENABLE;
2642 		}
2643 	}
2644 
2645 	/* If change is for association, also apply to each transport. */
2646 	if (asoc) {
2647 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2648 				transports) {
2649 			if (params.sack_delay) {
2650 				trans->sackdelay =
2651 					msecs_to_jiffies(params.sack_delay);
2652 				trans->param_flags =
2653 					(trans->param_flags & ~SPP_SACKDELAY) |
2654 					SPP_SACKDELAY_ENABLE;
2655 			}
2656 			if (params.sack_freq == 1) {
2657 				trans->param_flags =
2658 					(trans->param_flags & ~SPP_SACKDELAY) |
2659 					SPP_SACKDELAY_DISABLE;
2660 			} else if (params.sack_freq > 1) {
2661 				trans->sackfreq = params.sack_freq;
2662 				trans->param_flags =
2663 					(trans->param_flags & ~SPP_SACKDELAY) |
2664 					SPP_SACKDELAY_ENABLE;
2665 			}
2666 		}
2667 	}
2668 
2669 	return 0;
2670 }
2671 
2672 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2673  *
2674  * Applications can specify protocol parameters for the default association
2675  * initialization.  The option name argument to setsockopt() and getsockopt()
2676  * is SCTP_INITMSG.
2677  *
2678  * Setting initialization parameters is effective only on an unconnected
2679  * socket (for UDP-style sockets only future associations are effected
2680  * by the change).  With TCP-style sockets, this option is inherited by
2681  * sockets derived from a listener socket.
2682  */
2683 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2684 {
2685 	struct sctp_initmsg sinit;
2686 	struct sctp_sock *sp = sctp_sk(sk);
2687 
2688 	if (optlen != sizeof(struct sctp_initmsg))
2689 		return -EINVAL;
2690 	if (copy_from_user(&sinit, optval, optlen))
2691 		return -EFAULT;
2692 
2693 	if (sinit.sinit_num_ostreams)
2694 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2695 	if (sinit.sinit_max_instreams)
2696 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2697 	if (sinit.sinit_max_attempts)
2698 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2699 	if (sinit.sinit_max_init_timeo)
2700 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2701 
2702 	return 0;
2703 }
2704 
2705 /*
2706  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2707  *
2708  *   Applications that wish to use the sendto() system call may wish to
2709  *   specify a default set of parameters that would normally be supplied
2710  *   through the inclusion of ancillary data.  This socket option allows
2711  *   such an application to set the default sctp_sndrcvinfo structure.
2712  *   The application that wishes to use this socket option simply passes
2713  *   in to this call the sctp_sndrcvinfo structure defined in Section
2714  *   5.2.2) The input parameters accepted by this call include
2715  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2716  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2717  *   to this call if the caller is using the UDP model.
2718  */
2719 static int sctp_setsockopt_default_send_param(struct sock *sk,
2720 					      char __user *optval,
2721 					      unsigned int optlen)
2722 {
2723 	struct sctp_sndrcvinfo info;
2724 	struct sctp_association *asoc;
2725 	struct sctp_sock *sp = sctp_sk(sk);
2726 
2727 	if (optlen != sizeof(struct sctp_sndrcvinfo))
2728 		return -EINVAL;
2729 	if (copy_from_user(&info, optval, optlen))
2730 		return -EFAULT;
2731 
2732 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2733 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2734 		return -EINVAL;
2735 
2736 	if (asoc) {
2737 		asoc->default_stream = info.sinfo_stream;
2738 		asoc->default_flags = info.sinfo_flags;
2739 		asoc->default_ppid = info.sinfo_ppid;
2740 		asoc->default_context = info.sinfo_context;
2741 		asoc->default_timetolive = info.sinfo_timetolive;
2742 	} else {
2743 		sp->default_stream = info.sinfo_stream;
2744 		sp->default_flags = info.sinfo_flags;
2745 		sp->default_ppid = info.sinfo_ppid;
2746 		sp->default_context = info.sinfo_context;
2747 		sp->default_timetolive = info.sinfo_timetolive;
2748 	}
2749 
2750 	return 0;
2751 }
2752 
2753 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2754  *
2755  * Requests that the local SCTP stack use the enclosed peer address as
2756  * the association primary.  The enclosed address must be one of the
2757  * association peer's addresses.
2758  */
2759 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2760 					unsigned int optlen)
2761 {
2762 	struct sctp_prim prim;
2763 	struct sctp_transport *trans;
2764 
2765 	if (optlen != sizeof(struct sctp_prim))
2766 		return -EINVAL;
2767 
2768 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2769 		return -EFAULT;
2770 
2771 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2772 	if (!trans)
2773 		return -EINVAL;
2774 
2775 	sctp_assoc_set_primary(trans->asoc, trans);
2776 
2777 	return 0;
2778 }
2779 
2780 /*
2781  * 7.1.5 SCTP_NODELAY
2782  *
2783  * Turn on/off any Nagle-like algorithm.  This means that packets are
2784  * generally sent as soon as possible and no unnecessary delays are
2785  * introduced, at the cost of more packets in the network.  Expects an
2786  *  integer boolean flag.
2787  */
2788 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2789 				   unsigned int optlen)
2790 {
2791 	int val;
2792 
2793 	if (optlen < sizeof(int))
2794 		return -EINVAL;
2795 	if (get_user(val, (int __user *)optval))
2796 		return -EFAULT;
2797 
2798 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2799 	return 0;
2800 }
2801 
2802 /*
2803  *
2804  * 7.1.1 SCTP_RTOINFO
2805  *
2806  * The protocol parameters used to initialize and bound retransmission
2807  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2808  * and modify these parameters.
2809  * All parameters are time values, in milliseconds.  A value of 0, when
2810  * modifying the parameters, indicates that the current value should not
2811  * be changed.
2812  *
2813  */
2814 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2815 {
2816 	struct sctp_rtoinfo rtoinfo;
2817 	struct sctp_association *asoc;
2818 	unsigned long rto_min, rto_max;
2819 	struct sctp_sock *sp = sctp_sk(sk);
2820 
2821 	if (optlen != sizeof (struct sctp_rtoinfo))
2822 		return -EINVAL;
2823 
2824 	if (copy_from_user(&rtoinfo, optval, optlen))
2825 		return -EFAULT;
2826 
2827 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2828 
2829 	/* Set the values to the specific association */
2830 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2831 		return -EINVAL;
2832 
2833 	rto_max = rtoinfo.srto_max;
2834 	rto_min = rtoinfo.srto_min;
2835 
2836 	if (rto_max)
2837 		rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
2838 	else
2839 		rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
2840 
2841 	if (rto_min)
2842 		rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
2843 	else
2844 		rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
2845 
2846 	if (rto_min > rto_max)
2847 		return -EINVAL;
2848 
2849 	if (asoc) {
2850 		if (rtoinfo.srto_initial != 0)
2851 			asoc->rto_initial =
2852 				msecs_to_jiffies(rtoinfo.srto_initial);
2853 		asoc->rto_max = rto_max;
2854 		asoc->rto_min = rto_min;
2855 	} else {
2856 		/* If there is no association or the association-id = 0
2857 		 * set the values to the endpoint.
2858 		 */
2859 		if (rtoinfo.srto_initial != 0)
2860 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2861 		sp->rtoinfo.srto_max = rto_max;
2862 		sp->rtoinfo.srto_min = rto_min;
2863 	}
2864 
2865 	return 0;
2866 }
2867 
2868 /*
2869  *
2870  * 7.1.2 SCTP_ASSOCINFO
2871  *
2872  * This option is used to tune the maximum retransmission attempts
2873  * of the association.
2874  * Returns an error if the new association retransmission value is
2875  * greater than the sum of the retransmission value  of the peer.
2876  * See [SCTP] for more information.
2877  *
2878  */
2879 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2880 {
2881 
2882 	struct sctp_assocparams assocparams;
2883 	struct sctp_association *asoc;
2884 
2885 	if (optlen != sizeof(struct sctp_assocparams))
2886 		return -EINVAL;
2887 	if (copy_from_user(&assocparams, optval, optlen))
2888 		return -EFAULT;
2889 
2890 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2891 
2892 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2893 		return -EINVAL;
2894 
2895 	/* Set the values to the specific association */
2896 	if (asoc) {
2897 		if (assocparams.sasoc_asocmaxrxt != 0) {
2898 			__u32 path_sum = 0;
2899 			int   paths = 0;
2900 			struct sctp_transport *peer_addr;
2901 
2902 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2903 					transports) {
2904 				path_sum += peer_addr->pathmaxrxt;
2905 				paths++;
2906 			}
2907 
2908 			/* Only validate asocmaxrxt if we have more than
2909 			 * one path/transport.  We do this because path
2910 			 * retransmissions are only counted when we have more
2911 			 * then one path.
2912 			 */
2913 			if (paths > 1 &&
2914 			    assocparams.sasoc_asocmaxrxt > path_sum)
2915 				return -EINVAL;
2916 
2917 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2918 		}
2919 
2920 		if (assocparams.sasoc_cookie_life != 0)
2921 			asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
2922 	} else {
2923 		/* Set the values to the endpoint */
2924 		struct sctp_sock *sp = sctp_sk(sk);
2925 
2926 		if (assocparams.sasoc_asocmaxrxt != 0)
2927 			sp->assocparams.sasoc_asocmaxrxt =
2928 						assocparams.sasoc_asocmaxrxt;
2929 		if (assocparams.sasoc_cookie_life != 0)
2930 			sp->assocparams.sasoc_cookie_life =
2931 						assocparams.sasoc_cookie_life;
2932 	}
2933 	return 0;
2934 }
2935 
2936 /*
2937  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2938  *
2939  * This socket option is a boolean flag which turns on or off mapped V4
2940  * addresses.  If this option is turned on and the socket is type
2941  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2942  * If this option is turned off, then no mapping will be done of V4
2943  * addresses and a user will receive both PF_INET6 and PF_INET type
2944  * addresses on the socket.
2945  */
2946 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
2947 {
2948 	int val;
2949 	struct sctp_sock *sp = sctp_sk(sk);
2950 
2951 	if (optlen < sizeof(int))
2952 		return -EINVAL;
2953 	if (get_user(val, (int __user *)optval))
2954 		return -EFAULT;
2955 	if (val)
2956 		sp->v4mapped = 1;
2957 	else
2958 		sp->v4mapped = 0;
2959 
2960 	return 0;
2961 }
2962 
2963 /*
2964  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
2965  * This option will get or set the maximum size to put in any outgoing
2966  * SCTP DATA chunk.  If a message is larger than this size it will be
2967  * fragmented by SCTP into the specified size.  Note that the underlying
2968  * SCTP implementation may fragment into smaller sized chunks when the
2969  * PMTU of the underlying association is smaller than the value set by
2970  * the user.  The default value for this option is '0' which indicates
2971  * the user is NOT limiting fragmentation and only the PMTU will effect
2972  * SCTP's choice of DATA chunk size.  Note also that values set larger
2973  * than the maximum size of an IP datagram will effectively let SCTP
2974  * control fragmentation (i.e. the same as setting this option to 0).
2975  *
2976  * The following structure is used to access and modify this parameter:
2977  *
2978  * struct sctp_assoc_value {
2979  *   sctp_assoc_t assoc_id;
2980  *   uint32_t assoc_value;
2981  * };
2982  *
2983  * assoc_id:  This parameter is ignored for one-to-one style sockets.
2984  *    For one-to-many style sockets this parameter indicates which
2985  *    association the user is performing an action upon.  Note that if
2986  *    this field's value is zero then the endpoints default value is
2987  *    changed (effecting future associations only).
2988  * assoc_value:  This parameter specifies the maximum size in bytes.
2989  */
2990 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
2991 {
2992 	struct sctp_assoc_value params;
2993 	struct sctp_association *asoc;
2994 	struct sctp_sock *sp = sctp_sk(sk);
2995 	int val;
2996 
2997 	if (optlen == sizeof(int)) {
2998 		pr_warn("Use of int in maxseg socket option deprecated\n");
2999 		pr_warn("Use struct sctp_assoc_value instead\n");
3000 		if (copy_from_user(&val, optval, optlen))
3001 			return -EFAULT;
3002 		params.assoc_id = 0;
3003 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3004 		if (copy_from_user(&params, optval, optlen))
3005 			return -EFAULT;
3006 		val = params.assoc_value;
3007 	} else
3008 		return -EINVAL;
3009 
3010 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3011 		return -EINVAL;
3012 
3013 	asoc = sctp_id2assoc(sk, params.assoc_id);
3014 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3015 		return -EINVAL;
3016 
3017 	if (asoc) {
3018 		if (val == 0) {
3019 			val = asoc->pathmtu;
3020 			val -= sp->pf->af->net_header_len;
3021 			val -= sizeof(struct sctphdr) +
3022 					sizeof(struct sctp_data_chunk);
3023 		}
3024 		asoc->user_frag = val;
3025 		asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3026 	} else {
3027 		sp->user_frag = val;
3028 	}
3029 
3030 	return 0;
3031 }
3032 
3033 
3034 /*
3035  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3036  *
3037  *   Requests that the peer mark the enclosed address as the association
3038  *   primary. The enclosed address must be one of the association's
3039  *   locally bound addresses. The following structure is used to make a
3040  *   set primary request:
3041  */
3042 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3043 					     unsigned int optlen)
3044 {
3045 	struct net *net = sock_net(sk);
3046 	struct sctp_sock	*sp;
3047 	struct sctp_association	*asoc = NULL;
3048 	struct sctp_setpeerprim	prim;
3049 	struct sctp_chunk	*chunk;
3050 	struct sctp_af		*af;
3051 	int 			err;
3052 
3053 	sp = sctp_sk(sk);
3054 
3055 	if (!net->sctp.addip_enable)
3056 		return -EPERM;
3057 
3058 	if (optlen != sizeof(struct sctp_setpeerprim))
3059 		return -EINVAL;
3060 
3061 	if (copy_from_user(&prim, optval, optlen))
3062 		return -EFAULT;
3063 
3064 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3065 	if (!asoc)
3066 		return -EINVAL;
3067 
3068 	if (!asoc->peer.asconf_capable)
3069 		return -EPERM;
3070 
3071 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3072 		return -EPERM;
3073 
3074 	if (!sctp_state(asoc, ESTABLISHED))
3075 		return -ENOTCONN;
3076 
3077 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3078 	if (!af)
3079 		return -EINVAL;
3080 
3081 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3082 		return -EADDRNOTAVAIL;
3083 
3084 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3085 		return -EADDRNOTAVAIL;
3086 
3087 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3088 	chunk = sctp_make_asconf_set_prim(asoc,
3089 					  (union sctp_addr *)&prim.sspp_addr);
3090 	if (!chunk)
3091 		return -ENOMEM;
3092 
3093 	err = sctp_send_asconf(asoc, chunk);
3094 
3095 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3096 
3097 	return err;
3098 }
3099 
3100 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3101 					    unsigned int optlen)
3102 {
3103 	struct sctp_setadaptation adaptation;
3104 
3105 	if (optlen != sizeof(struct sctp_setadaptation))
3106 		return -EINVAL;
3107 	if (copy_from_user(&adaptation, optval, optlen))
3108 		return -EFAULT;
3109 
3110 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3111 
3112 	return 0;
3113 }
3114 
3115 /*
3116  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3117  *
3118  * The context field in the sctp_sndrcvinfo structure is normally only
3119  * used when a failed message is retrieved holding the value that was
3120  * sent down on the actual send call.  This option allows the setting of
3121  * a default context on an association basis that will be received on
3122  * reading messages from the peer.  This is especially helpful in the
3123  * one-2-many model for an application to keep some reference to an
3124  * internal state machine that is processing messages on the
3125  * association.  Note that the setting of this value only effects
3126  * received messages from the peer and does not effect the value that is
3127  * saved with outbound messages.
3128  */
3129 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3130 				   unsigned int optlen)
3131 {
3132 	struct sctp_assoc_value params;
3133 	struct sctp_sock *sp;
3134 	struct sctp_association *asoc;
3135 
3136 	if (optlen != sizeof(struct sctp_assoc_value))
3137 		return -EINVAL;
3138 	if (copy_from_user(&params, optval, optlen))
3139 		return -EFAULT;
3140 
3141 	sp = sctp_sk(sk);
3142 
3143 	if (params.assoc_id != 0) {
3144 		asoc = sctp_id2assoc(sk, params.assoc_id);
3145 		if (!asoc)
3146 			return -EINVAL;
3147 		asoc->default_rcv_context = params.assoc_value;
3148 	} else {
3149 		sp->default_rcv_context = params.assoc_value;
3150 	}
3151 
3152 	return 0;
3153 }
3154 
3155 /*
3156  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3157  *
3158  * This options will at a minimum specify if the implementation is doing
3159  * fragmented interleave.  Fragmented interleave, for a one to many
3160  * socket, is when subsequent calls to receive a message may return
3161  * parts of messages from different associations.  Some implementations
3162  * may allow you to turn this value on or off.  If so, when turned off,
3163  * no fragment interleave will occur (which will cause a head of line
3164  * blocking amongst multiple associations sharing the same one to many
3165  * socket).  When this option is turned on, then each receive call may
3166  * come from a different association (thus the user must receive data
3167  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3168  * association each receive belongs to.
3169  *
3170  * This option takes a boolean value.  A non-zero value indicates that
3171  * fragmented interleave is on.  A value of zero indicates that
3172  * fragmented interleave is off.
3173  *
3174  * Note that it is important that an implementation that allows this
3175  * option to be turned on, have it off by default.  Otherwise an unaware
3176  * application using the one to many model may become confused and act
3177  * incorrectly.
3178  */
3179 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3180 					       char __user *optval,
3181 					       unsigned int optlen)
3182 {
3183 	int val;
3184 
3185 	if (optlen != sizeof(int))
3186 		return -EINVAL;
3187 	if (get_user(val, (int __user *)optval))
3188 		return -EFAULT;
3189 
3190 	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3191 
3192 	return 0;
3193 }
3194 
3195 /*
3196  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3197  *       (SCTP_PARTIAL_DELIVERY_POINT)
3198  *
3199  * This option will set or get the SCTP partial delivery point.  This
3200  * point is the size of a message where the partial delivery API will be
3201  * invoked to help free up rwnd space for the peer.  Setting this to a
3202  * lower value will cause partial deliveries to happen more often.  The
3203  * calls argument is an integer that sets or gets the partial delivery
3204  * point.  Note also that the call will fail if the user attempts to set
3205  * this value larger than the socket receive buffer size.
3206  *
3207  * Note that any single message having a length smaller than or equal to
3208  * the SCTP partial delivery point will be delivered in one single read
3209  * call as long as the user provided buffer is large enough to hold the
3210  * message.
3211  */
3212 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3213 						  char __user *optval,
3214 						  unsigned int optlen)
3215 {
3216 	u32 val;
3217 
3218 	if (optlen != sizeof(u32))
3219 		return -EINVAL;
3220 	if (get_user(val, (int __user *)optval))
3221 		return -EFAULT;
3222 
3223 	/* Note: We double the receive buffer from what the user sets
3224 	 * it to be, also initial rwnd is based on rcvbuf/2.
3225 	 */
3226 	if (val > (sk->sk_rcvbuf >> 1))
3227 		return -EINVAL;
3228 
3229 	sctp_sk(sk)->pd_point = val;
3230 
3231 	return 0; /* is this the right error code? */
3232 }
3233 
3234 /*
3235  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3236  *
3237  * This option will allow a user to change the maximum burst of packets
3238  * that can be emitted by this association.  Note that the default value
3239  * is 4, and some implementations may restrict this setting so that it
3240  * can only be lowered.
3241  *
3242  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3243  * future associations inheriting the socket value.
3244  */
3245 static int sctp_setsockopt_maxburst(struct sock *sk,
3246 				    char __user *optval,
3247 				    unsigned int optlen)
3248 {
3249 	struct sctp_assoc_value params;
3250 	struct sctp_sock *sp;
3251 	struct sctp_association *asoc;
3252 	int val;
3253 	int assoc_id = 0;
3254 
3255 	if (optlen == sizeof(int)) {
3256 		pr_warn("Use of int in max_burst socket option deprecated\n");
3257 		pr_warn("Use struct sctp_assoc_value instead\n");
3258 		if (copy_from_user(&val, optval, optlen))
3259 			return -EFAULT;
3260 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3261 		if (copy_from_user(&params, optval, optlen))
3262 			return -EFAULT;
3263 		val = params.assoc_value;
3264 		assoc_id = params.assoc_id;
3265 	} else
3266 		return -EINVAL;
3267 
3268 	sp = sctp_sk(sk);
3269 
3270 	if (assoc_id != 0) {
3271 		asoc = sctp_id2assoc(sk, assoc_id);
3272 		if (!asoc)
3273 			return -EINVAL;
3274 		asoc->max_burst = val;
3275 	} else
3276 		sp->max_burst = val;
3277 
3278 	return 0;
3279 }
3280 
3281 /*
3282  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3283  *
3284  * This set option adds a chunk type that the user is requesting to be
3285  * received only in an authenticated way.  Changes to the list of chunks
3286  * will only effect future associations on the socket.
3287  */
3288 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3289 				      char __user *optval,
3290 				      unsigned int optlen)
3291 {
3292 	struct net *net = sock_net(sk);
3293 	struct sctp_authchunk val;
3294 
3295 	if (!net->sctp.auth_enable)
3296 		return -EACCES;
3297 
3298 	if (optlen != sizeof(struct sctp_authchunk))
3299 		return -EINVAL;
3300 	if (copy_from_user(&val, optval, optlen))
3301 		return -EFAULT;
3302 
3303 	switch (val.sauth_chunk) {
3304 	case SCTP_CID_INIT:
3305 	case SCTP_CID_INIT_ACK:
3306 	case SCTP_CID_SHUTDOWN_COMPLETE:
3307 	case SCTP_CID_AUTH:
3308 		return -EINVAL;
3309 	}
3310 
3311 	/* add this chunk id to the endpoint */
3312 	return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3313 }
3314 
3315 /*
3316  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3317  *
3318  * This option gets or sets the list of HMAC algorithms that the local
3319  * endpoint requires the peer to use.
3320  */
3321 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3322 				      char __user *optval,
3323 				      unsigned int optlen)
3324 {
3325 	struct net *net = sock_net(sk);
3326 	struct sctp_hmacalgo *hmacs;
3327 	u32 idents;
3328 	int err;
3329 
3330 	if (!net->sctp.auth_enable)
3331 		return -EACCES;
3332 
3333 	if (optlen < sizeof(struct sctp_hmacalgo))
3334 		return -EINVAL;
3335 
3336 	hmacs= memdup_user(optval, optlen);
3337 	if (IS_ERR(hmacs))
3338 		return PTR_ERR(hmacs);
3339 
3340 	idents = hmacs->shmac_num_idents;
3341 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3342 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3343 		err = -EINVAL;
3344 		goto out;
3345 	}
3346 
3347 	err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3348 out:
3349 	kfree(hmacs);
3350 	return err;
3351 }
3352 
3353 /*
3354  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3355  *
3356  * This option will set a shared secret key which is used to build an
3357  * association shared key.
3358  */
3359 static int sctp_setsockopt_auth_key(struct sock *sk,
3360 				    char __user *optval,
3361 				    unsigned int optlen)
3362 {
3363 	struct net *net = sock_net(sk);
3364 	struct sctp_authkey *authkey;
3365 	struct sctp_association *asoc;
3366 	int ret;
3367 
3368 	if (!net->sctp.auth_enable)
3369 		return -EACCES;
3370 
3371 	if (optlen <= sizeof(struct sctp_authkey))
3372 		return -EINVAL;
3373 
3374 	authkey= memdup_user(optval, optlen);
3375 	if (IS_ERR(authkey))
3376 		return PTR_ERR(authkey);
3377 
3378 	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3379 		ret = -EINVAL;
3380 		goto out;
3381 	}
3382 
3383 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3384 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3385 		ret = -EINVAL;
3386 		goto out;
3387 	}
3388 
3389 	ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3390 out:
3391 	kzfree(authkey);
3392 	return ret;
3393 }
3394 
3395 /*
3396  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3397  *
3398  * This option will get or set the active shared key to be used to build
3399  * the association shared key.
3400  */
3401 static int sctp_setsockopt_active_key(struct sock *sk,
3402 				      char __user *optval,
3403 				      unsigned int optlen)
3404 {
3405 	struct net *net = sock_net(sk);
3406 	struct sctp_authkeyid val;
3407 	struct sctp_association *asoc;
3408 
3409 	if (!net->sctp.auth_enable)
3410 		return -EACCES;
3411 
3412 	if (optlen != sizeof(struct sctp_authkeyid))
3413 		return -EINVAL;
3414 	if (copy_from_user(&val, optval, optlen))
3415 		return -EFAULT;
3416 
3417 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3418 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3419 		return -EINVAL;
3420 
3421 	return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3422 					val.scact_keynumber);
3423 }
3424 
3425 /*
3426  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3427  *
3428  * This set option will delete a shared secret key from use.
3429  */
3430 static int sctp_setsockopt_del_key(struct sock *sk,
3431 				   char __user *optval,
3432 				   unsigned int optlen)
3433 {
3434 	struct net *net = sock_net(sk);
3435 	struct sctp_authkeyid val;
3436 	struct sctp_association *asoc;
3437 
3438 	if (!net->sctp.auth_enable)
3439 		return -EACCES;
3440 
3441 	if (optlen != sizeof(struct sctp_authkeyid))
3442 		return -EINVAL;
3443 	if (copy_from_user(&val, optval, optlen))
3444 		return -EFAULT;
3445 
3446 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3447 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3448 		return -EINVAL;
3449 
3450 	return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3451 				    val.scact_keynumber);
3452 
3453 }
3454 
3455 /*
3456  * 8.1.23 SCTP_AUTO_ASCONF
3457  *
3458  * This option will enable or disable the use of the automatic generation of
3459  * ASCONF chunks to add and delete addresses to an existing association.  Note
3460  * that this option has two caveats namely: a) it only affects sockets that
3461  * are bound to all addresses available to the SCTP stack, and b) the system
3462  * administrator may have an overriding control that turns the ASCONF feature
3463  * off no matter what setting the socket option may have.
3464  * This option expects an integer boolean flag, where a non-zero value turns on
3465  * the option, and a zero value turns off the option.
3466  * Note. In this implementation, socket operation overrides default parameter
3467  * being set by sysctl as well as FreeBSD implementation
3468  */
3469 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3470 					unsigned int optlen)
3471 {
3472 	int val;
3473 	struct sctp_sock *sp = sctp_sk(sk);
3474 
3475 	if (optlen < sizeof(int))
3476 		return -EINVAL;
3477 	if (get_user(val, (int __user *)optval))
3478 		return -EFAULT;
3479 	if (!sctp_is_ep_boundall(sk) && val)
3480 		return -EINVAL;
3481 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3482 		return 0;
3483 
3484 	if (val == 0 && sp->do_auto_asconf) {
3485 		list_del(&sp->auto_asconf_list);
3486 		sp->do_auto_asconf = 0;
3487 	} else if (val && !sp->do_auto_asconf) {
3488 		list_add_tail(&sp->auto_asconf_list,
3489 		    &sock_net(sk)->sctp.auto_asconf_splist);
3490 		sp->do_auto_asconf = 1;
3491 	}
3492 	return 0;
3493 }
3494 
3495 
3496 /*
3497  * SCTP_PEER_ADDR_THLDS
3498  *
3499  * This option allows us to alter the partially failed threshold for one or all
3500  * transports in an association.  See Section 6.1 of:
3501  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3502  */
3503 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3504 					    char __user *optval,
3505 					    unsigned int optlen)
3506 {
3507 	struct sctp_paddrthlds val;
3508 	struct sctp_transport *trans;
3509 	struct sctp_association *asoc;
3510 
3511 	if (optlen < sizeof(struct sctp_paddrthlds))
3512 		return -EINVAL;
3513 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3514 			   sizeof(struct sctp_paddrthlds)))
3515 		return -EFAULT;
3516 
3517 
3518 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3519 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3520 		if (!asoc)
3521 			return -ENOENT;
3522 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3523 				    transports) {
3524 			if (val.spt_pathmaxrxt)
3525 				trans->pathmaxrxt = val.spt_pathmaxrxt;
3526 			trans->pf_retrans = val.spt_pathpfthld;
3527 		}
3528 
3529 		if (val.spt_pathmaxrxt)
3530 			asoc->pathmaxrxt = val.spt_pathmaxrxt;
3531 		asoc->pf_retrans = val.spt_pathpfthld;
3532 	} else {
3533 		trans = sctp_addr_id2transport(sk, &val.spt_address,
3534 					       val.spt_assoc_id);
3535 		if (!trans)
3536 			return -ENOENT;
3537 
3538 		if (val.spt_pathmaxrxt)
3539 			trans->pathmaxrxt = val.spt_pathmaxrxt;
3540 		trans->pf_retrans = val.spt_pathpfthld;
3541 	}
3542 
3543 	return 0;
3544 }
3545 
3546 /* API 6.2 setsockopt(), getsockopt()
3547  *
3548  * Applications use setsockopt() and getsockopt() to set or retrieve
3549  * socket options.  Socket options are used to change the default
3550  * behavior of sockets calls.  They are described in Section 7.
3551  *
3552  * The syntax is:
3553  *
3554  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
3555  *                    int __user *optlen);
3556  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3557  *                    int optlen);
3558  *
3559  *   sd      - the socket descript.
3560  *   level   - set to IPPROTO_SCTP for all SCTP options.
3561  *   optname - the option name.
3562  *   optval  - the buffer to store the value of the option.
3563  *   optlen  - the size of the buffer.
3564  */
3565 static int sctp_setsockopt(struct sock *sk, int level, int optname,
3566 			   char __user *optval, unsigned int optlen)
3567 {
3568 	int retval = 0;
3569 
3570 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
3571 
3572 	/* I can hardly begin to describe how wrong this is.  This is
3573 	 * so broken as to be worse than useless.  The API draft
3574 	 * REALLY is NOT helpful here...  I am not convinced that the
3575 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3576 	 * are at all well-founded.
3577 	 */
3578 	if (level != SOL_SCTP) {
3579 		struct sctp_af *af = sctp_sk(sk)->pf->af;
3580 		retval = af->setsockopt(sk, level, optname, optval, optlen);
3581 		goto out_nounlock;
3582 	}
3583 
3584 	sctp_lock_sock(sk);
3585 
3586 	switch (optname) {
3587 	case SCTP_SOCKOPT_BINDX_ADD:
3588 		/* 'optlen' is the size of the addresses buffer. */
3589 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3590 					       optlen, SCTP_BINDX_ADD_ADDR);
3591 		break;
3592 
3593 	case SCTP_SOCKOPT_BINDX_REM:
3594 		/* 'optlen' is the size of the addresses buffer. */
3595 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3596 					       optlen, SCTP_BINDX_REM_ADDR);
3597 		break;
3598 
3599 	case SCTP_SOCKOPT_CONNECTX_OLD:
3600 		/* 'optlen' is the size of the addresses buffer. */
3601 		retval = sctp_setsockopt_connectx_old(sk,
3602 					    (struct sockaddr __user *)optval,
3603 					    optlen);
3604 		break;
3605 
3606 	case SCTP_SOCKOPT_CONNECTX:
3607 		/* 'optlen' is the size of the addresses buffer. */
3608 		retval = sctp_setsockopt_connectx(sk,
3609 					    (struct sockaddr __user *)optval,
3610 					    optlen);
3611 		break;
3612 
3613 	case SCTP_DISABLE_FRAGMENTS:
3614 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3615 		break;
3616 
3617 	case SCTP_EVENTS:
3618 		retval = sctp_setsockopt_events(sk, optval, optlen);
3619 		break;
3620 
3621 	case SCTP_AUTOCLOSE:
3622 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3623 		break;
3624 
3625 	case SCTP_PEER_ADDR_PARAMS:
3626 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3627 		break;
3628 
3629 	case SCTP_DELAYED_SACK:
3630 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3631 		break;
3632 	case SCTP_PARTIAL_DELIVERY_POINT:
3633 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3634 		break;
3635 
3636 	case SCTP_INITMSG:
3637 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3638 		break;
3639 	case SCTP_DEFAULT_SEND_PARAM:
3640 		retval = sctp_setsockopt_default_send_param(sk, optval,
3641 							    optlen);
3642 		break;
3643 	case SCTP_PRIMARY_ADDR:
3644 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3645 		break;
3646 	case SCTP_SET_PEER_PRIMARY_ADDR:
3647 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3648 		break;
3649 	case SCTP_NODELAY:
3650 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3651 		break;
3652 	case SCTP_RTOINFO:
3653 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3654 		break;
3655 	case SCTP_ASSOCINFO:
3656 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3657 		break;
3658 	case SCTP_I_WANT_MAPPED_V4_ADDR:
3659 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3660 		break;
3661 	case SCTP_MAXSEG:
3662 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3663 		break;
3664 	case SCTP_ADAPTATION_LAYER:
3665 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3666 		break;
3667 	case SCTP_CONTEXT:
3668 		retval = sctp_setsockopt_context(sk, optval, optlen);
3669 		break;
3670 	case SCTP_FRAGMENT_INTERLEAVE:
3671 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3672 		break;
3673 	case SCTP_MAX_BURST:
3674 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3675 		break;
3676 	case SCTP_AUTH_CHUNK:
3677 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3678 		break;
3679 	case SCTP_HMAC_IDENT:
3680 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3681 		break;
3682 	case SCTP_AUTH_KEY:
3683 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3684 		break;
3685 	case SCTP_AUTH_ACTIVE_KEY:
3686 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
3687 		break;
3688 	case SCTP_AUTH_DELETE_KEY:
3689 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
3690 		break;
3691 	case SCTP_AUTO_ASCONF:
3692 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3693 		break;
3694 	case SCTP_PEER_ADDR_THLDS:
3695 		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3696 		break;
3697 	default:
3698 		retval = -ENOPROTOOPT;
3699 		break;
3700 	}
3701 
3702 	sctp_release_sock(sk);
3703 
3704 out_nounlock:
3705 	return retval;
3706 }
3707 
3708 /* API 3.1.6 connect() - UDP Style Syntax
3709  *
3710  * An application may use the connect() call in the UDP model to initiate an
3711  * association without sending data.
3712  *
3713  * The syntax is:
3714  *
3715  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3716  *
3717  * sd: the socket descriptor to have a new association added to.
3718  *
3719  * nam: the address structure (either struct sockaddr_in or struct
3720  *    sockaddr_in6 defined in RFC2553 [7]).
3721  *
3722  * len: the size of the address.
3723  */
3724 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
3725 			int addr_len)
3726 {
3727 	int err = 0;
3728 	struct sctp_af *af;
3729 
3730 	sctp_lock_sock(sk);
3731 
3732 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
3733 		 addr, addr_len);
3734 
3735 	/* Validate addr_len before calling common connect/connectx routine. */
3736 	af = sctp_get_af_specific(addr->sa_family);
3737 	if (!af || addr_len < af->sockaddr_len) {
3738 		err = -EINVAL;
3739 	} else {
3740 		/* Pass correct addr len to common routine (so it knows there
3741 		 * is only one address being passed.
3742 		 */
3743 		err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3744 	}
3745 
3746 	sctp_release_sock(sk);
3747 	return err;
3748 }
3749 
3750 /* FIXME: Write comments. */
3751 static int sctp_disconnect(struct sock *sk, int flags)
3752 {
3753 	return -EOPNOTSUPP; /* STUB */
3754 }
3755 
3756 /* 4.1.4 accept() - TCP Style Syntax
3757  *
3758  * Applications use accept() call to remove an established SCTP
3759  * association from the accept queue of the endpoint.  A new socket
3760  * descriptor will be returned from accept() to represent the newly
3761  * formed association.
3762  */
3763 static struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3764 {
3765 	struct sctp_sock *sp;
3766 	struct sctp_endpoint *ep;
3767 	struct sock *newsk = NULL;
3768 	struct sctp_association *asoc;
3769 	long timeo;
3770 	int error = 0;
3771 
3772 	sctp_lock_sock(sk);
3773 
3774 	sp = sctp_sk(sk);
3775 	ep = sp->ep;
3776 
3777 	if (!sctp_style(sk, TCP)) {
3778 		error = -EOPNOTSUPP;
3779 		goto out;
3780 	}
3781 
3782 	if (!sctp_sstate(sk, LISTENING)) {
3783 		error = -EINVAL;
3784 		goto out;
3785 	}
3786 
3787 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3788 
3789 	error = sctp_wait_for_accept(sk, timeo);
3790 	if (error)
3791 		goto out;
3792 
3793 	/* We treat the list of associations on the endpoint as the accept
3794 	 * queue and pick the first association on the list.
3795 	 */
3796 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3797 
3798 	newsk = sp->pf->create_accept_sk(sk, asoc);
3799 	if (!newsk) {
3800 		error = -ENOMEM;
3801 		goto out;
3802 	}
3803 
3804 	/* Populate the fields of the newsk from the oldsk and migrate the
3805 	 * asoc to the newsk.
3806 	 */
3807 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3808 
3809 out:
3810 	sctp_release_sock(sk);
3811 	*err = error;
3812 	return newsk;
3813 }
3814 
3815 /* The SCTP ioctl handler. */
3816 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3817 {
3818 	int rc = -ENOTCONN;
3819 
3820 	sctp_lock_sock(sk);
3821 
3822 	/*
3823 	 * SEQPACKET-style sockets in LISTENING state are valid, for
3824 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
3825 	 */
3826 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3827 		goto out;
3828 
3829 	switch (cmd) {
3830 	case SIOCINQ: {
3831 		struct sk_buff *skb;
3832 		unsigned int amount = 0;
3833 
3834 		skb = skb_peek(&sk->sk_receive_queue);
3835 		if (skb != NULL) {
3836 			/*
3837 			 * We will only return the amount of this packet since
3838 			 * that is all that will be read.
3839 			 */
3840 			amount = skb->len;
3841 		}
3842 		rc = put_user(amount, (int __user *)arg);
3843 		break;
3844 	}
3845 	default:
3846 		rc = -ENOIOCTLCMD;
3847 		break;
3848 	}
3849 out:
3850 	sctp_release_sock(sk);
3851 	return rc;
3852 }
3853 
3854 /* This is the function which gets called during socket creation to
3855  * initialized the SCTP-specific portion of the sock.
3856  * The sock structure should already be zero-filled memory.
3857  */
3858 static int sctp_init_sock(struct sock *sk)
3859 {
3860 	struct net *net = sock_net(sk);
3861 	struct sctp_sock *sp;
3862 
3863 	pr_debug("%s: sk:%p\n", __func__, sk);
3864 
3865 	sp = sctp_sk(sk);
3866 
3867 	/* Initialize the SCTP per socket area.  */
3868 	switch (sk->sk_type) {
3869 	case SOCK_SEQPACKET:
3870 		sp->type = SCTP_SOCKET_UDP;
3871 		break;
3872 	case SOCK_STREAM:
3873 		sp->type = SCTP_SOCKET_TCP;
3874 		break;
3875 	default:
3876 		return -ESOCKTNOSUPPORT;
3877 	}
3878 
3879 	/* Initialize default send parameters. These parameters can be
3880 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3881 	 */
3882 	sp->default_stream = 0;
3883 	sp->default_ppid = 0;
3884 	sp->default_flags = 0;
3885 	sp->default_context = 0;
3886 	sp->default_timetolive = 0;
3887 
3888 	sp->default_rcv_context = 0;
3889 	sp->max_burst = net->sctp.max_burst;
3890 
3891 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
3892 
3893 	/* Initialize default setup parameters. These parameters
3894 	 * can be modified with the SCTP_INITMSG socket option or
3895 	 * overridden by the SCTP_INIT CMSG.
3896 	 */
3897 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
3898 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
3899 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
3900 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
3901 
3902 	/* Initialize default RTO related parameters.  These parameters can
3903 	 * be modified for with the SCTP_RTOINFO socket option.
3904 	 */
3905 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
3906 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
3907 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
3908 
3909 	/* Initialize default association related parameters. These parameters
3910 	 * can be modified with the SCTP_ASSOCINFO socket option.
3911 	 */
3912 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
3913 	sp->assocparams.sasoc_number_peer_destinations = 0;
3914 	sp->assocparams.sasoc_peer_rwnd = 0;
3915 	sp->assocparams.sasoc_local_rwnd = 0;
3916 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
3917 
3918 	/* Initialize default event subscriptions. By default, all the
3919 	 * options are off.
3920 	 */
3921 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3922 
3923 	/* Default Peer Address Parameters.  These defaults can
3924 	 * be modified via SCTP_PEER_ADDR_PARAMS
3925 	 */
3926 	sp->hbinterval  = net->sctp.hb_interval;
3927 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
3928 	sp->pathmtu     = 0; // allow default discovery
3929 	sp->sackdelay   = net->sctp.sack_timeout;
3930 	sp->sackfreq	= 2;
3931 	sp->param_flags = SPP_HB_ENABLE |
3932 			  SPP_PMTUD_ENABLE |
3933 			  SPP_SACKDELAY_ENABLE;
3934 
3935 	/* If enabled no SCTP message fragmentation will be performed.
3936 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3937 	 */
3938 	sp->disable_fragments = 0;
3939 
3940 	/* Enable Nagle algorithm by default.  */
3941 	sp->nodelay           = 0;
3942 
3943 	/* Enable by default. */
3944 	sp->v4mapped          = 1;
3945 
3946 	/* Auto-close idle associations after the configured
3947 	 * number of seconds.  A value of 0 disables this
3948 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
3949 	 * for UDP-style sockets only.
3950 	 */
3951 	sp->autoclose         = 0;
3952 
3953 	/* User specified fragmentation limit. */
3954 	sp->user_frag         = 0;
3955 
3956 	sp->adaptation_ind = 0;
3957 
3958 	sp->pf = sctp_get_pf_specific(sk->sk_family);
3959 
3960 	/* Control variables for partial data delivery. */
3961 	atomic_set(&sp->pd_mode, 0);
3962 	skb_queue_head_init(&sp->pd_lobby);
3963 	sp->frag_interleave = 0;
3964 
3965 	/* Create a per socket endpoint structure.  Even if we
3966 	 * change the data structure relationships, this may still
3967 	 * be useful for storing pre-connect address information.
3968 	 */
3969 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
3970 	if (!sp->ep)
3971 		return -ENOMEM;
3972 
3973 	sp->hmac = NULL;
3974 
3975 	sk->sk_destruct = sctp_destruct_sock;
3976 
3977 	SCTP_DBG_OBJCNT_INC(sock);
3978 
3979 	local_bh_disable();
3980 	percpu_counter_inc(&sctp_sockets_allocated);
3981 	sock_prot_inuse_add(net, sk->sk_prot, 1);
3982 	if (net->sctp.default_auto_asconf) {
3983 		list_add_tail(&sp->auto_asconf_list,
3984 		    &net->sctp.auto_asconf_splist);
3985 		sp->do_auto_asconf = 1;
3986 	} else
3987 		sp->do_auto_asconf = 0;
3988 	local_bh_enable();
3989 
3990 	return 0;
3991 }
3992 
3993 /* Cleanup any SCTP per socket resources.  */
3994 static void sctp_destroy_sock(struct sock *sk)
3995 {
3996 	struct sctp_sock *sp;
3997 
3998 	pr_debug("%s: sk:%p\n", __func__, sk);
3999 
4000 	/* Release our hold on the endpoint. */
4001 	sp = sctp_sk(sk);
4002 	/* This could happen during socket init, thus we bail out
4003 	 * early, since the rest of the below is not setup either.
4004 	 */
4005 	if (sp->ep == NULL)
4006 		return;
4007 
4008 	if (sp->do_auto_asconf) {
4009 		sp->do_auto_asconf = 0;
4010 		list_del(&sp->auto_asconf_list);
4011 	}
4012 	sctp_endpoint_free(sp->ep);
4013 	local_bh_disable();
4014 	percpu_counter_dec(&sctp_sockets_allocated);
4015 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4016 	local_bh_enable();
4017 }
4018 
4019 /* Triggered when there are no references on the socket anymore */
4020 static void sctp_destruct_sock(struct sock *sk)
4021 {
4022 	struct sctp_sock *sp = sctp_sk(sk);
4023 
4024 	/* Free up the HMAC transform. */
4025 	crypto_free_hash(sp->hmac);
4026 
4027 	inet_sock_destruct(sk);
4028 }
4029 
4030 /* API 4.1.7 shutdown() - TCP Style Syntax
4031  *     int shutdown(int socket, int how);
4032  *
4033  *     sd      - the socket descriptor of the association to be closed.
4034  *     how     - Specifies the type of shutdown.  The  values  are
4035  *               as follows:
4036  *               SHUT_RD
4037  *                     Disables further receive operations. No SCTP
4038  *                     protocol action is taken.
4039  *               SHUT_WR
4040  *                     Disables further send operations, and initiates
4041  *                     the SCTP shutdown sequence.
4042  *               SHUT_RDWR
4043  *                     Disables further send  and  receive  operations
4044  *                     and initiates the SCTP shutdown sequence.
4045  */
4046 static void sctp_shutdown(struct sock *sk, int how)
4047 {
4048 	struct net *net = sock_net(sk);
4049 	struct sctp_endpoint *ep;
4050 	struct sctp_association *asoc;
4051 
4052 	if (!sctp_style(sk, TCP))
4053 		return;
4054 
4055 	if (how & SEND_SHUTDOWN) {
4056 		ep = sctp_sk(sk)->ep;
4057 		if (!list_empty(&ep->asocs)) {
4058 			asoc = list_entry(ep->asocs.next,
4059 					  struct sctp_association, asocs);
4060 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
4061 		}
4062 	}
4063 }
4064 
4065 /* 7.2.1 Association Status (SCTP_STATUS)
4066 
4067  * Applications can retrieve current status information about an
4068  * association, including association state, peer receiver window size,
4069  * number of unacked data chunks, and number of data chunks pending
4070  * receipt.  This information is read-only.
4071  */
4072 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4073 				       char __user *optval,
4074 				       int __user *optlen)
4075 {
4076 	struct sctp_status status;
4077 	struct sctp_association *asoc = NULL;
4078 	struct sctp_transport *transport;
4079 	sctp_assoc_t associd;
4080 	int retval = 0;
4081 
4082 	if (len < sizeof(status)) {
4083 		retval = -EINVAL;
4084 		goto out;
4085 	}
4086 
4087 	len = sizeof(status);
4088 	if (copy_from_user(&status, optval, len)) {
4089 		retval = -EFAULT;
4090 		goto out;
4091 	}
4092 
4093 	associd = status.sstat_assoc_id;
4094 	asoc = sctp_id2assoc(sk, associd);
4095 	if (!asoc) {
4096 		retval = -EINVAL;
4097 		goto out;
4098 	}
4099 
4100 	transport = asoc->peer.primary_path;
4101 
4102 	status.sstat_assoc_id = sctp_assoc2id(asoc);
4103 	status.sstat_state = asoc->state;
4104 	status.sstat_rwnd =  asoc->peer.rwnd;
4105 	status.sstat_unackdata = asoc->unack_data;
4106 
4107 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4108 	status.sstat_instrms = asoc->c.sinit_max_instreams;
4109 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4110 	status.sstat_fragmentation_point = asoc->frag_point;
4111 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4112 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4113 			transport->af_specific->sockaddr_len);
4114 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
4115 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4116 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
4117 	status.sstat_primary.spinfo_state = transport->state;
4118 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
4119 	status.sstat_primary.spinfo_srtt = transport->srtt;
4120 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4121 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
4122 
4123 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4124 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4125 
4126 	if (put_user(len, optlen)) {
4127 		retval = -EFAULT;
4128 		goto out;
4129 	}
4130 
4131 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4132 		 __func__, len, status.sstat_state, status.sstat_rwnd,
4133 		 status.sstat_assoc_id);
4134 
4135 	if (copy_to_user(optval, &status, len)) {
4136 		retval = -EFAULT;
4137 		goto out;
4138 	}
4139 
4140 out:
4141 	return retval;
4142 }
4143 
4144 
4145 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4146  *
4147  * Applications can retrieve information about a specific peer address
4148  * of an association, including its reachability state, congestion
4149  * window, and retransmission timer values.  This information is
4150  * read-only.
4151  */
4152 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4153 					  char __user *optval,
4154 					  int __user *optlen)
4155 {
4156 	struct sctp_paddrinfo pinfo;
4157 	struct sctp_transport *transport;
4158 	int retval = 0;
4159 
4160 	if (len < sizeof(pinfo)) {
4161 		retval = -EINVAL;
4162 		goto out;
4163 	}
4164 
4165 	len = sizeof(pinfo);
4166 	if (copy_from_user(&pinfo, optval, len)) {
4167 		retval = -EFAULT;
4168 		goto out;
4169 	}
4170 
4171 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4172 					   pinfo.spinfo_assoc_id);
4173 	if (!transport)
4174 		return -EINVAL;
4175 
4176 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4177 	pinfo.spinfo_state = transport->state;
4178 	pinfo.spinfo_cwnd = transport->cwnd;
4179 	pinfo.spinfo_srtt = transport->srtt;
4180 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4181 	pinfo.spinfo_mtu = transport->pathmtu;
4182 
4183 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
4184 		pinfo.spinfo_state = SCTP_ACTIVE;
4185 
4186 	if (put_user(len, optlen)) {
4187 		retval = -EFAULT;
4188 		goto out;
4189 	}
4190 
4191 	if (copy_to_user(optval, &pinfo, len)) {
4192 		retval = -EFAULT;
4193 		goto out;
4194 	}
4195 
4196 out:
4197 	return retval;
4198 }
4199 
4200 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4201  *
4202  * This option is a on/off flag.  If enabled no SCTP message
4203  * fragmentation will be performed.  Instead if a message being sent
4204  * exceeds the current PMTU size, the message will NOT be sent and
4205  * instead a error will be indicated to the user.
4206  */
4207 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4208 					char __user *optval, int __user *optlen)
4209 {
4210 	int val;
4211 
4212 	if (len < sizeof(int))
4213 		return -EINVAL;
4214 
4215 	len = sizeof(int);
4216 	val = (sctp_sk(sk)->disable_fragments == 1);
4217 	if (put_user(len, optlen))
4218 		return -EFAULT;
4219 	if (copy_to_user(optval, &val, len))
4220 		return -EFAULT;
4221 	return 0;
4222 }
4223 
4224 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4225  *
4226  * This socket option is used to specify various notifications and
4227  * ancillary data the user wishes to receive.
4228  */
4229 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4230 				  int __user *optlen)
4231 {
4232 	if (len <= 0)
4233 		return -EINVAL;
4234 	if (len > sizeof(struct sctp_event_subscribe))
4235 		len = sizeof(struct sctp_event_subscribe);
4236 	if (put_user(len, optlen))
4237 		return -EFAULT;
4238 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4239 		return -EFAULT;
4240 	return 0;
4241 }
4242 
4243 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4244  *
4245  * This socket option is applicable to the UDP-style socket only.  When
4246  * set it will cause associations that are idle for more than the
4247  * specified number of seconds to automatically close.  An association
4248  * being idle is defined an association that has NOT sent or received
4249  * user data.  The special value of '0' indicates that no automatic
4250  * close of any associations should be performed.  The option expects an
4251  * integer defining the number of seconds of idle time before an
4252  * association is closed.
4253  */
4254 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4255 {
4256 	/* Applicable to UDP-style socket only */
4257 	if (sctp_style(sk, TCP))
4258 		return -EOPNOTSUPP;
4259 	if (len < sizeof(int))
4260 		return -EINVAL;
4261 	len = sizeof(int);
4262 	if (put_user(len, optlen))
4263 		return -EFAULT;
4264 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4265 		return -EFAULT;
4266 	return 0;
4267 }
4268 
4269 /* Helper routine to branch off an association to a new socket.  */
4270 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4271 {
4272 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
4273 	struct socket *sock;
4274 	struct sctp_af *af;
4275 	int err = 0;
4276 
4277 	if (!asoc)
4278 		return -EINVAL;
4279 
4280 	/* An association cannot be branched off from an already peeled-off
4281 	 * socket, nor is this supported for tcp style sockets.
4282 	 */
4283 	if (!sctp_style(sk, UDP))
4284 		return -EINVAL;
4285 
4286 	/* Create a new socket.  */
4287 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4288 	if (err < 0)
4289 		return err;
4290 
4291 	sctp_copy_sock(sock->sk, sk, asoc);
4292 
4293 	/* Make peeled-off sockets more like 1-1 accepted sockets.
4294 	 * Set the daddr and initialize id to something more random
4295 	 */
4296 	af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
4297 	af->to_sk_daddr(&asoc->peer.primary_addr, sk);
4298 
4299 	/* Populate the fields of the newsk from the oldsk and migrate the
4300 	 * asoc to the newsk.
4301 	 */
4302 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4303 
4304 	*sockp = sock;
4305 
4306 	return err;
4307 }
4308 EXPORT_SYMBOL(sctp_do_peeloff);
4309 
4310 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4311 {
4312 	sctp_peeloff_arg_t peeloff;
4313 	struct socket *newsock;
4314 	struct file *newfile;
4315 	int retval = 0;
4316 
4317 	if (len < sizeof(sctp_peeloff_arg_t))
4318 		return -EINVAL;
4319 	len = sizeof(sctp_peeloff_arg_t);
4320 	if (copy_from_user(&peeloff, optval, len))
4321 		return -EFAULT;
4322 
4323 	retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4324 	if (retval < 0)
4325 		goto out;
4326 
4327 	/* Map the socket to an unused fd that can be returned to the user.  */
4328 	retval = get_unused_fd_flags(0);
4329 	if (retval < 0) {
4330 		sock_release(newsock);
4331 		goto out;
4332 	}
4333 
4334 	newfile = sock_alloc_file(newsock, 0, NULL);
4335 	if (unlikely(IS_ERR(newfile))) {
4336 		put_unused_fd(retval);
4337 		sock_release(newsock);
4338 		return PTR_ERR(newfile);
4339 	}
4340 
4341 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
4342 		 retval);
4343 
4344 	/* Return the fd mapped to the new socket.  */
4345 	if (put_user(len, optlen)) {
4346 		fput(newfile);
4347 		put_unused_fd(retval);
4348 		return -EFAULT;
4349 	}
4350 	peeloff.sd = retval;
4351 	if (copy_to_user(optval, &peeloff, len)) {
4352 		fput(newfile);
4353 		put_unused_fd(retval);
4354 		return -EFAULT;
4355 	}
4356 	fd_install(retval, newfile);
4357 out:
4358 	return retval;
4359 }
4360 
4361 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4362  *
4363  * Applications can enable or disable heartbeats for any peer address of
4364  * an association, modify an address's heartbeat interval, force a
4365  * heartbeat to be sent immediately, and adjust the address's maximum
4366  * number of retransmissions sent before an address is considered
4367  * unreachable.  The following structure is used to access and modify an
4368  * address's parameters:
4369  *
4370  *  struct sctp_paddrparams {
4371  *     sctp_assoc_t            spp_assoc_id;
4372  *     struct sockaddr_storage spp_address;
4373  *     uint32_t                spp_hbinterval;
4374  *     uint16_t                spp_pathmaxrxt;
4375  *     uint32_t                spp_pathmtu;
4376  *     uint32_t                spp_sackdelay;
4377  *     uint32_t                spp_flags;
4378  * };
4379  *
4380  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
4381  *                     application, and identifies the association for
4382  *                     this query.
4383  *   spp_address     - This specifies which address is of interest.
4384  *   spp_hbinterval  - This contains the value of the heartbeat interval,
4385  *                     in milliseconds.  If a  value of zero
4386  *                     is present in this field then no changes are to
4387  *                     be made to this parameter.
4388  *   spp_pathmaxrxt  - This contains the maximum number of
4389  *                     retransmissions before this address shall be
4390  *                     considered unreachable. If a  value of zero
4391  *                     is present in this field then no changes are to
4392  *                     be made to this parameter.
4393  *   spp_pathmtu     - When Path MTU discovery is disabled the value
4394  *                     specified here will be the "fixed" path mtu.
4395  *                     Note that if the spp_address field is empty
4396  *                     then all associations on this address will
4397  *                     have this fixed path mtu set upon them.
4398  *
4399  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
4400  *                     the number of milliseconds that sacks will be delayed
4401  *                     for. This value will apply to all addresses of an
4402  *                     association if the spp_address field is empty. Note
4403  *                     also, that if delayed sack is enabled and this
4404  *                     value is set to 0, no change is made to the last
4405  *                     recorded delayed sack timer value.
4406  *
4407  *   spp_flags       - These flags are used to control various features
4408  *                     on an association. The flag field may contain
4409  *                     zero or more of the following options.
4410  *
4411  *                     SPP_HB_ENABLE  - Enable heartbeats on the
4412  *                     specified address. Note that if the address
4413  *                     field is empty all addresses for the association
4414  *                     have heartbeats enabled upon them.
4415  *
4416  *                     SPP_HB_DISABLE - Disable heartbeats on the
4417  *                     speicifed address. Note that if the address
4418  *                     field is empty all addresses for the association
4419  *                     will have their heartbeats disabled. Note also
4420  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
4421  *                     mutually exclusive, only one of these two should
4422  *                     be specified. Enabling both fields will have
4423  *                     undetermined results.
4424  *
4425  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
4426  *                     to be made immediately.
4427  *
4428  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
4429  *                     discovery upon the specified address. Note that
4430  *                     if the address feild is empty then all addresses
4431  *                     on the association are effected.
4432  *
4433  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
4434  *                     discovery upon the specified address. Note that
4435  *                     if the address feild is empty then all addresses
4436  *                     on the association are effected. Not also that
4437  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4438  *                     exclusive. Enabling both will have undetermined
4439  *                     results.
4440  *
4441  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
4442  *                     on delayed sack. The time specified in spp_sackdelay
4443  *                     is used to specify the sack delay for this address. Note
4444  *                     that if spp_address is empty then all addresses will
4445  *                     enable delayed sack and take on the sack delay
4446  *                     value specified in spp_sackdelay.
4447  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
4448  *                     off delayed sack. If the spp_address field is blank then
4449  *                     delayed sack is disabled for the entire association. Note
4450  *                     also that this field is mutually exclusive to
4451  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
4452  *                     results.
4453  */
4454 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4455 					    char __user *optval, int __user *optlen)
4456 {
4457 	struct sctp_paddrparams  params;
4458 	struct sctp_transport   *trans = NULL;
4459 	struct sctp_association *asoc = NULL;
4460 	struct sctp_sock        *sp = sctp_sk(sk);
4461 
4462 	if (len < sizeof(struct sctp_paddrparams))
4463 		return -EINVAL;
4464 	len = sizeof(struct sctp_paddrparams);
4465 	if (copy_from_user(&params, optval, len))
4466 		return -EFAULT;
4467 
4468 	/* If an address other than INADDR_ANY is specified, and
4469 	 * no transport is found, then the request is invalid.
4470 	 */
4471 	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
4472 		trans = sctp_addr_id2transport(sk, &params.spp_address,
4473 					       params.spp_assoc_id);
4474 		if (!trans) {
4475 			pr_debug("%s: failed no transport\n", __func__);
4476 			return -EINVAL;
4477 		}
4478 	}
4479 
4480 	/* Get association, if assoc_id != 0 and the socket is a one
4481 	 * to many style socket, and an association was not found, then
4482 	 * the id was invalid.
4483 	 */
4484 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4485 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4486 		pr_debug("%s: failed no association\n", __func__);
4487 		return -EINVAL;
4488 	}
4489 
4490 	if (trans) {
4491 		/* Fetch transport values. */
4492 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4493 		params.spp_pathmtu    = trans->pathmtu;
4494 		params.spp_pathmaxrxt = trans->pathmaxrxt;
4495 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
4496 
4497 		/*draft-11 doesn't say what to return in spp_flags*/
4498 		params.spp_flags      = trans->param_flags;
4499 	} else if (asoc) {
4500 		/* Fetch association values. */
4501 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4502 		params.spp_pathmtu    = asoc->pathmtu;
4503 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
4504 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
4505 
4506 		/*draft-11 doesn't say what to return in spp_flags*/
4507 		params.spp_flags      = asoc->param_flags;
4508 	} else {
4509 		/* Fetch socket values. */
4510 		params.spp_hbinterval = sp->hbinterval;
4511 		params.spp_pathmtu    = sp->pathmtu;
4512 		params.spp_sackdelay  = sp->sackdelay;
4513 		params.spp_pathmaxrxt = sp->pathmaxrxt;
4514 
4515 		/*draft-11 doesn't say what to return in spp_flags*/
4516 		params.spp_flags      = sp->param_flags;
4517 	}
4518 
4519 	if (copy_to_user(optval, &params, len))
4520 		return -EFAULT;
4521 
4522 	if (put_user(len, optlen))
4523 		return -EFAULT;
4524 
4525 	return 0;
4526 }
4527 
4528 /*
4529  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
4530  *
4531  * This option will effect the way delayed acks are performed.  This
4532  * option allows you to get or set the delayed ack time, in
4533  * milliseconds.  It also allows changing the delayed ack frequency.
4534  * Changing the frequency to 1 disables the delayed sack algorithm.  If
4535  * the assoc_id is 0, then this sets or gets the endpoints default
4536  * values.  If the assoc_id field is non-zero, then the set or get
4537  * effects the specified association for the one to many model (the
4538  * assoc_id field is ignored by the one to one model).  Note that if
4539  * sack_delay or sack_freq are 0 when setting this option, then the
4540  * current values will remain unchanged.
4541  *
4542  * struct sctp_sack_info {
4543  *     sctp_assoc_t            sack_assoc_id;
4544  *     uint32_t                sack_delay;
4545  *     uint32_t                sack_freq;
4546  * };
4547  *
4548  * sack_assoc_id -  This parameter, indicates which association the user
4549  *    is performing an action upon.  Note that if this field's value is
4550  *    zero then the endpoints default value is changed (effecting future
4551  *    associations only).
4552  *
4553  * sack_delay -  This parameter contains the number of milliseconds that
4554  *    the user is requesting the delayed ACK timer be set to.  Note that
4555  *    this value is defined in the standard to be between 200 and 500
4556  *    milliseconds.
4557  *
4558  * sack_freq -  This parameter contains the number of packets that must
4559  *    be received before a sack is sent without waiting for the delay
4560  *    timer to expire.  The default value for this is 2, setting this
4561  *    value to 1 will disable the delayed sack algorithm.
4562  */
4563 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4564 					    char __user *optval,
4565 					    int __user *optlen)
4566 {
4567 	struct sctp_sack_info    params;
4568 	struct sctp_association *asoc = NULL;
4569 	struct sctp_sock        *sp = sctp_sk(sk);
4570 
4571 	if (len >= sizeof(struct sctp_sack_info)) {
4572 		len = sizeof(struct sctp_sack_info);
4573 
4574 		if (copy_from_user(&params, optval, len))
4575 			return -EFAULT;
4576 	} else if (len == sizeof(struct sctp_assoc_value)) {
4577 		pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
4578 		pr_warn("Use struct sctp_sack_info instead\n");
4579 		if (copy_from_user(&params, optval, len))
4580 			return -EFAULT;
4581 	} else
4582 		return - EINVAL;
4583 
4584 	/* Get association, if sack_assoc_id != 0 and the socket is a one
4585 	 * to many style socket, and an association was not found, then
4586 	 * the id was invalid.
4587 	 */
4588 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4589 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4590 		return -EINVAL;
4591 
4592 	if (asoc) {
4593 		/* Fetch association values. */
4594 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4595 			params.sack_delay = jiffies_to_msecs(
4596 				asoc->sackdelay);
4597 			params.sack_freq = asoc->sackfreq;
4598 
4599 		} else {
4600 			params.sack_delay = 0;
4601 			params.sack_freq = 1;
4602 		}
4603 	} else {
4604 		/* Fetch socket values. */
4605 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4606 			params.sack_delay  = sp->sackdelay;
4607 			params.sack_freq = sp->sackfreq;
4608 		} else {
4609 			params.sack_delay  = 0;
4610 			params.sack_freq = 1;
4611 		}
4612 	}
4613 
4614 	if (copy_to_user(optval, &params, len))
4615 		return -EFAULT;
4616 
4617 	if (put_user(len, optlen))
4618 		return -EFAULT;
4619 
4620 	return 0;
4621 }
4622 
4623 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4624  *
4625  * Applications can specify protocol parameters for the default association
4626  * initialization.  The option name argument to setsockopt() and getsockopt()
4627  * is SCTP_INITMSG.
4628  *
4629  * Setting initialization parameters is effective only on an unconnected
4630  * socket (for UDP-style sockets only future associations are effected
4631  * by the change).  With TCP-style sockets, this option is inherited by
4632  * sockets derived from a listener socket.
4633  */
4634 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4635 {
4636 	if (len < sizeof(struct sctp_initmsg))
4637 		return -EINVAL;
4638 	len = sizeof(struct sctp_initmsg);
4639 	if (put_user(len, optlen))
4640 		return -EFAULT;
4641 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4642 		return -EFAULT;
4643 	return 0;
4644 }
4645 
4646 
4647 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4648 				      char __user *optval, int __user *optlen)
4649 {
4650 	struct sctp_association *asoc;
4651 	int cnt = 0;
4652 	struct sctp_getaddrs getaddrs;
4653 	struct sctp_transport *from;
4654 	void __user *to;
4655 	union sctp_addr temp;
4656 	struct sctp_sock *sp = sctp_sk(sk);
4657 	int addrlen;
4658 	size_t space_left;
4659 	int bytes_copied;
4660 
4661 	if (len < sizeof(struct sctp_getaddrs))
4662 		return -EINVAL;
4663 
4664 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4665 		return -EFAULT;
4666 
4667 	/* For UDP-style sockets, id specifies the association to query.  */
4668 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4669 	if (!asoc)
4670 		return -EINVAL;
4671 
4672 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4673 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4674 
4675 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4676 				transports) {
4677 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4678 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4679 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4680 		if (space_left < addrlen)
4681 			return -ENOMEM;
4682 		if (copy_to_user(to, &temp, addrlen))
4683 			return -EFAULT;
4684 		to += addrlen;
4685 		cnt++;
4686 		space_left -= addrlen;
4687 	}
4688 
4689 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4690 		return -EFAULT;
4691 	bytes_copied = ((char __user *)to) - optval;
4692 	if (put_user(bytes_copied, optlen))
4693 		return -EFAULT;
4694 
4695 	return 0;
4696 }
4697 
4698 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4699 			    size_t space_left, int *bytes_copied)
4700 {
4701 	struct sctp_sockaddr_entry *addr;
4702 	union sctp_addr temp;
4703 	int cnt = 0;
4704 	int addrlen;
4705 	struct net *net = sock_net(sk);
4706 
4707 	rcu_read_lock();
4708 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
4709 		if (!addr->valid)
4710 			continue;
4711 
4712 		if ((PF_INET == sk->sk_family) &&
4713 		    (AF_INET6 == addr->a.sa.sa_family))
4714 			continue;
4715 		if ((PF_INET6 == sk->sk_family) &&
4716 		    inet_v6_ipv6only(sk) &&
4717 		    (AF_INET == addr->a.sa.sa_family))
4718 			continue;
4719 		memcpy(&temp, &addr->a, sizeof(temp));
4720 		if (!temp.v4.sin_port)
4721 			temp.v4.sin_port = htons(port);
4722 
4723 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4724 								&temp);
4725 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4726 		if (space_left < addrlen) {
4727 			cnt =  -ENOMEM;
4728 			break;
4729 		}
4730 		memcpy(to, &temp, addrlen);
4731 
4732 		to += addrlen;
4733 		cnt ++;
4734 		space_left -= addrlen;
4735 		*bytes_copied += addrlen;
4736 	}
4737 	rcu_read_unlock();
4738 
4739 	return cnt;
4740 }
4741 
4742 
4743 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4744 				       char __user *optval, int __user *optlen)
4745 {
4746 	struct sctp_bind_addr *bp;
4747 	struct sctp_association *asoc;
4748 	int cnt = 0;
4749 	struct sctp_getaddrs getaddrs;
4750 	struct sctp_sockaddr_entry *addr;
4751 	void __user *to;
4752 	union sctp_addr temp;
4753 	struct sctp_sock *sp = sctp_sk(sk);
4754 	int addrlen;
4755 	int err = 0;
4756 	size_t space_left;
4757 	int bytes_copied = 0;
4758 	void *addrs;
4759 	void *buf;
4760 
4761 	if (len < sizeof(struct sctp_getaddrs))
4762 		return -EINVAL;
4763 
4764 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4765 		return -EFAULT;
4766 
4767 	/*
4768 	 *  For UDP-style sockets, id specifies the association to query.
4769 	 *  If the id field is set to the value '0' then the locally bound
4770 	 *  addresses are returned without regard to any particular
4771 	 *  association.
4772 	 */
4773 	if (0 == getaddrs.assoc_id) {
4774 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4775 	} else {
4776 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4777 		if (!asoc)
4778 			return -EINVAL;
4779 		bp = &asoc->base.bind_addr;
4780 	}
4781 
4782 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4783 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4784 
4785 	addrs = kmalloc(space_left, GFP_KERNEL);
4786 	if (!addrs)
4787 		return -ENOMEM;
4788 
4789 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4790 	 * addresses from the global local address list.
4791 	 */
4792 	if (sctp_list_single_entry(&bp->address_list)) {
4793 		addr = list_entry(bp->address_list.next,
4794 				  struct sctp_sockaddr_entry, list);
4795 		if (sctp_is_any(sk, &addr->a)) {
4796 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4797 						space_left, &bytes_copied);
4798 			if (cnt < 0) {
4799 				err = cnt;
4800 				goto out;
4801 			}
4802 			goto copy_getaddrs;
4803 		}
4804 	}
4805 
4806 	buf = addrs;
4807 	/* Protection on the bound address list is not needed since
4808 	 * in the socket option context we hold a socket lock and
4809 	 * thus the bound address list can't change.
4810 	 */
4811 	list_for_each_entry(addr, &bp->address_list, list) {
4812 		memcpy(&temp, &addr->a, sizeof(temp));
4813 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4814 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4815 		if (space_left < addrlen) {
4816 			err =  -ENOMEM; /*fixme: right error?*/
4817 			goto out;
4818 		}
4819 		memcpy(buf, &temp, addrlen);
4820 		buf += addrlen;
4821 		bytes_copied += addrlen;
4822 		cnt ++;
4823 		space_left -= addrlen;
4824 	}
4825 
4826 copy_getaddrs:
4827 	if (copy_to_user(to, addrs, bytes_copied)) {
4828 		err = -EFAULT;
4829 		goto out;
4830 	}
4831 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4832 		err = -EFAULT;
4833 		goto out;
4834 	}
4835 	if (put_user(bytes_copied, optlen))
4836 		err = -EFAULT;
4837 out:
4838 	kfree(addrs);
4839 	return err;
4840 }
4841 
4842 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4843  *
4844  * Requests that the local SCTP stack use the enclosed peer address as
4845  * the association primary.  The enclosed address must be one of the
4846  * association peer's addresses.
4847  */
4848 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4849 					char __user *optval, int __user *optlen)
4850 {
4851 	struct sctp_prim prim;
4852 	struct sctp_association *asoc;
4853 	struct sctp_sock *sp = sctp_sk(sk);
4854 
4855 	if (len < sizeof(struct sctp_prim))
4856 		return -EINVAL;
4857 
4858 	len = sizeof(struct sctp_prim);
4859 
4860 	if (copy_from_user(&prim, optval, len))
4861 		return -EFAULT;
4862 
4863 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4864 	if (!asoc)
4865 		return -EINVAL;
4866 
4867 	if (!asoc->peer.primary_path)
4868 		return -ENOTCONN;
4869 
4870 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4871 		asoc->peer.primary_path->af_specific->sockaddr_len);
4872 
4873 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4874 			(union sctp_addr *)&prim.ssp_addr);
4875 
4876 	if (put_user(len, optlen))
4877 		return -EFAULT;
4878 	if (copy_to_user(optval, &prim, len))
4879 		return -EFAULT;
4880 
4881 	return 0;
4882 }
4883 
4884 /*
4885  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4886  *
4887  * Requests that the local endpoint set the specified Adaptation Layer
4888  * Indication parameter for all future INIT and INIT-ACK exchanges.
4889  */
4890 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4891 				  char __user *optval, int __user *optlen)
4892 {
4893 	struct sctp_setadaptation adaptation;
4894 
4895 	if (len < sizeof(struct sctp_setadaptation))
4896 		return -EINVAL;
4897 
4898 	len = sizeof(struct sctp_setadaptation);
4899 
4900 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4901 
4902 	if (put_user(len, optlen))
4903 		return -EFAULT;
4904 	if (copy_to_user(optval, &adaptation, len))
4905 		return -EFAULT;
4906 
4907 	return 0;
4908 }
4909 
4910 /*
4911  *
4912  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4913  *
4914  *   Applications that wish to use the sendto() system call may wish to
4915  *   specify a default set of parameters that would normally be supplied
4916  *   through the inclusion of ancillary data.  This socket option allows
4917  *   such an application to set the default sctp_sndrcvinfo structure.
4918 
4919 
4920  *   The application that wishes to use this socket option simply passes
4921  *   in to this call the sctp_sndrcvinfo structure defined in Section
4922  *   5.2.2) The input parameters accepted by this call include
4923  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4924  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
4925  *   to this call if the caller is using the UDP model.
4926  *
4927  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
4928  */
4929 static int sctp_getsockopt_default_send_param(struct sock *sk,
4930 					int len, char __user *optval,
4931 					int __user *optlen)
4932 {
4933 	struct sctp_sndrcvinfo info;
4934 	struct sctp_association *asoc;
4935 	struct sctp_sock *sp = sctp_sk(sk);
4936 
4937 	if (len < sizeof(struct sctp_sndrcvinfo))
4938 		return -EINVAL;
4939 
4940 	len = sizeof(struct sctp_sndrcvinfo);
4941 
4942 	if (copy_from_user(&info, optval, len))
4943 		return -EFAULT;
4944 
4945 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4946 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4947 		return -EINVAL;
4948 
4949 	if (asoc) {
4950 		info.sinfo_stream = asoc->default_stream;
4951 		info.sinfo_flags = asoc->default_flags;
4952 		info.sinfo_ppid = asoc->default_ppid;
4953 		info.sinfo_context = asoc->default_context;
4954 		info.sinfo_timetolive = asoc->default_timetolive;
4955 	} else {
4956 		info.sinfo_stream = sp->default_stream;
4957 		info.sinfo_flags = sp->default_flags;
4958 		info.sinfo_ppid = sp->default_ppid;
4959 		info.sinfo_context = sp->default_context;
4960 		info.sinfo_timetolive = sp->default_timetolive;
4961 	}
4962 
4963 	if (put_user(len, optlen))
4964 		return -EFAULT;
4965 	if (copy_to_user(optval, &info, len))
4966 		return -EFAULT;
4967 
4968 	return 0;
4969 }
4970 
4971 /*
4972  *
4973  * 7.1.5 SCTP_NODELAY
4974  *
4975  * Turn on/off any Nagle-like algorithm.  This means that packets are
4976  * generally sent as soon as possible and no unnecessary delays are
4977  * introduced, at the cost of more packets in the network.  Expects an
4978  * integer boolean flag.
4979  */
4980 
4981 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4982 				   char __user *optval, int __user *optlen)
4983 {
4984 	int val;
4985 
4986 	if (len < sizeof(int))
4987 		return -EINVAL;
4988 
4989 	len = sizeof(int);
4990 	val = (sctp_sk(sk)->nodelay == 1);
4991 	if (put_user(len, optlen))
4992 		return -EFAULT;
4993 	if (copy_to_user(optval, &val, len))
4994 		return -EFAULT;
4995 	return 0;
4996 }
4997 
4998 /*
4999  *
5000  * 7.1.1 SCTP_RTOINFO
5001  *
5002  * The protocol parameters used to initialize and bound retransmission
5003  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5004  * and modify these parameters.
5005  * All parameters are time values, in milliseconds.  A value of 0, when
5006  * modifying the parameters, indicates that the current value should not
5007  * be changed.
5008  *
5009  */
5010 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5011 				char __user *optval,
5012 				int __user *optlen) {
5013 	struct sctp_rtoinfo rtoinfo;
5014 	struct sctp_association *asoc;
5015 
5016 	if (len < sizeof (struct sctp_rtoinfo))
5017 		return -EINVAL;
5018 
5019 	len = sizeof(struct sctp_rtoinfo);
5020 
5021 	if (copy_from_user(&rtoinfo, optval, len))
5022 		return -EFAULT;
5023 
5024 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5025 
5026 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5027 		return -EINVAL;
5028 
5029 	/* Values corresponding to the specific association. */
5030 	if (asoc) {
5031 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5032 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5033 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5034 	} else {
5035 		/* Values corresponding to the endpoint. */
5036 		struct sctp_sock *sp = sctp_sk(sk);
5037 
5038 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5039 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
5040 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
5041 	}
5042 
5043 	if (put_user(len, optlen))
5044 		return -EFAULT;
5045 
5046 	if (copy_to_user(optval, &rtoinfo, len))
5047 		return -EFAULT;
5048 
5049 	return 0;
5050 }
5051 
5052 /*
5053  *
5054  * 7.1.2 SCTP_ASSOCINFO
5055  *
5056  * This option is used to tune the maximum retransmission attempts
5057  * of the association.
5058  * Returns an error if the new association retransmission value is
5059  * greater than the sum of the retransmission value  of the peer.
5060  * See [SCTP] for more information.
5061  *
5062  */
5063 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5064 				     char __user *optval,
5065 				     int __user *optlen)
5066 {
5067 
5068 	struct sctp_assocparams assocparams;
5069 	struct sctp_association *asoc;
5070 	struct list_head *pos;
5071 	int cnt = 0;
5072 
5073 	if (len < sizeof (struct sctp_assocparams))
5074 		return -EINVAL;
5075 
5076 	len = sizeof(struct sctp_assocparams);
5077 
5078 	if (copy_from_user(&assocparams, optval, len))
5079 		return -EFAULT;
5080 
5081 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5082 
5083 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5084 		return -EINVAL;
5085 
5086 	/* Values correspoinding to the specific association */
5087 	if (asoc) {
5088 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5089 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5090 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5091 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5092 
5093 		list_for_each(pos, &asoc->peer.transport_addr_list) {
5094 			cnt ++;
5095 		}
5096 
5097 		assocparams.sasoc_number_peer_destinations = cnt;
5098 	} else {
5099 		/* Values corresponding to the endpoint */
5100 		struct sctp_sock *sp = sctp_sk(sk);
5101 
5102 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5103 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5104 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5105 		assocparams.sasoc_cookie_life =
5106 					sp->assocparams.sasoc_cookie_life;
5107 		assocparams.sasoc_number_peer_destinations =
5108 					sp->assocparams.
5109 					sasoc_number_peer_destinations;
5110 	}
5111 
5112 	if (put_user(len, optlen))
5113 		return -EFAULT;
5114 
5115 	if (copy_to_user(optval, &assocparams, len))
5116 		return -EFAULT;
5117 
5118 	return 0;
5119 }
5120 
5121 /*
5122  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5123  *
5124  * This socket option is a boolean flag which turns on or off mapped V4
5125  * addresses.  If this option is turned on and the socket is type
5126  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5127  * If this option is turned off, then no mapping will be done of V4
5128  * addresses and a user will receive both PF_INET6 and PF_INET type
5129  * addresses on the socket.
5130  */
5131 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5132 				    char __user *optval, int __user *optlen)
5133 {
5134 	int val;
5135 	struct sctp_sock *sp = sctp_sk(sk);
5136 
5137 	if (len < sizeof(int))
5138 		return -EINVAL;
5139 
5140 	len = sizeof(int);
5141 	val = sp->v4mapped;
5142 	if (put_user(len, optlen))
5143 		return -EFAULT;
5144 	if (copy_to_user(optval, &val, len))
5145 		return -EFAULT;
5146 
5147 	return 0;
5148 }
5149 
5150 /*
5151  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
5152  * (chapter and verse is quoted at sctp_setsockopt_context())
5153  */
5154 static int sctp_getsockopt_context(struct sock *sk, int len,
5155 				   char __user *optval, int __user *optlen)
5156 {
5157 	struct sctp_assoc_value params;
5158 	struct sctp_sock *sp;
5159 	struct sctp_association *asoc;
5160 
5161 	if (len < sizeof(struct sctp_assoc_value))
5162 		return -EINVAL;
5163 
5164 	len = sizeof(struct sctp_assoc_value);
5165 
5166 	if (copy_from_user(&params, optval, len))
5167 		return -EFAULT;
5168 
5169 	sp = sctp_sk(sk);
5170 
5171 	if (params.assoc_id != 0) {
5172 		asoc = sctp_id2assoc(sk, params.assoc_id);
5173 		if (!asoc)
5174 			return -EINVAL;
5175 		params.assoc_value = asoc->default_rcv_context;
5176 	} else {
5177 		params.assoc_value = sp->default_rcv_context;
5178 	}
5179 
5180 	if (put_user(len, optlen))
5181 		return -EFAULT;
5182 	if (copy_to_user(optval, &params, len))
5183 		return -EFAULT;
5184 
5185 	return 0;
5186 }
5187 
5188 /*
5189  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5190  * This option will get or set the maximum size to put in any outgoing
5191  * SCTP DATA chunk.  If a message is larger than this size it will be
5192  * fragmented by SCTP into the specified size.  Note that the underlying
5193  * SCTP implementation may fragment into smaller sized chunks when the
5194  * PMTU of the underlying association is smaller than the value set by
5195  * the user.  The default value for this option is '0' which indicates
5196  * the user is NOT limiting fragmentation and only the PMTU will effect
5197  * SCTP's choice of DATA chunk size.  Note also that values set larger
5198  * than the maximum size of an IP datagram will effectively let SCTP
5199  * control fragmentation (i.e. the same as setting this option to 0).
5200  *
5201  * The following structure is used to access and modify this parameter:
5202  *
5203  * struct sctp_assoc_value {
5204  *   sctp_assoc_t assoc_id;
5205  *   uint32_t assoc_value;
5206  * };
5207  *
5208  * assoc_id:  This parameter is ignored for one-to-one style sockets.
5209  *    For one-to-many style sockets this parameter indicates which
5210  *    association the user is performing an action upon.  Note that if
5211  *    this field's value is zero then the endpoints default value is
5212  *    changed (effecting future associations only).
5213  * assoc_value:  This parameter specifies the maximum size in bytes.
5214  */
5215 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5216 				  char __user *optval, int __user *optlen)
5217 {
5218 	struct sctp_assoc_value params;
5219 	struct sctp_association *asoc;
5220 
5221 	if (len == sizeof(int)) {
5222 		pr_warn("Use of int in maxseg socket option deprecated\n");
5223 		pr_warn("Use struct sctp_assoc_value instead\n");
5224 		params.assoc_id = 0;
5225 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5226 		len = sizeof(struct sctp_assoc_value);
5227 		if (copy_from_user(&params, optval, sizeof(params)))
5228 			return -EFAULT;
5229 	} else
5230 		return -EINVAL;
5231 
5232 	asoc = sctp_id2assoc(sk, params.assoc_id);
5233 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5234 		return -EINVAL;
5235 
5236 	if (asoc)
5237 		params.assoc_value = asoc->frag_point;
5238 	else
5239 		params.assoc_value = sctp_sk(sk)->user_frag;
5240 
5241 	if (put_user(len, optlen))
5242 		return -EFAULT;
5243 	if (len == sizeof(int)) {
5244 		if (copy_to_user(optval, &params.assoc_value, len))
5245 			return -EFAULT;
5246 	} else {
5247 		if (copy_to_user(optval, &params, len))
5248 			return -EFAULT;
5249 	}
5250 
5251 	return 0;
5252 }
5253 
5254 /*
5255  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5256  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5257  */
5258 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5259 					       char __user *optval, int __user *optlen)
5260 {
5261 	int val;
5262 
5263 	if (len < sizeof(int))
5264 		return -EINVAL;
5265 
5266 	len = sizeof(int);
5267 
5268 	val = sctp_sk(sk)->frag_interleave;
5269 	if (put_user(len, optlen))
5270 		return -EFAULT;
5271 	if (copy_to_user(optval, &val, len))
5272 		return -EFAULT;
5273 
5274 	return 0;
5275 }
5276 
5277 /*
5278  * 7.1.25.  Set or Get the sctp partial delivery point
5279  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5280  */
5281 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5282 						  char __user *optval,
5283 						  int __user *optlen)
5284 {
5285 	u32 val;
5286 
5287 	if (len < sizeof(u32))
5288 		return -EINVAL;
5289 
5290 	len = sizeof(u32);
5291 
5292 	val = sctp_sk(sk)->pd_point;
5293 	if (put_user(len, optlen))
5294 		return -EFAULT;
5295 	if (copy_to_user(optval, &val, len))
5296 		return -EFAULT;
5297 
5298 	return 0;
5299 }
5300 
5301 /*
5302  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
5303  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5304  */
5305 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5306 				    char __user *optval,
5307 				    int __user *optlen)
5308 {
5309 	struct sctp_assoc_value params;
5310 	struct sctp_sock *sp;
5311 	struct sctp_association *asoc;
5312 
5313 	if (len == sizeof(int)) {
5314 		pr_warn("Use of int in max_burst socket option deprecated\n");
5315 		pr_warn("Use struct sctp_assoc_value instead\n");
5316 		params.assoc_id = 0;
5317 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5318 		len = sizeof(struct sctp_assoc_value);
5319 		if (copy_from_user(&params, optval, len))
5320 			return -EFAULT;
5321 	} else
5322 		return -EINVAL;
5323 
5324 	sp = sctp_sk(sk);
5325 
5326 	if (params.assoc_id != 0) {
5327 		asoc = sctp_id2assoc(sk, params.assoc_id);
5328 		if (!asoc)
5329 			return -EINVAL;
5330 		params.assoc_value = asoc->max_burst;
5331 	} else
5332 		params.assoc_value = sp->max_burst;
5333 
5334 	if (len == sizeof(int)) {
5335 		if (copy_to_user(optval, &params.assoc_value, len))
5336 			return -EFAULT;
5337 	} else {
5338 		if (copy_to_user(optval, &params, len))
5339 			return -EFAULT;
5340 	}
5341 
5342 	return 0;
5343 
5344 }
5345 
5346 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5347 				    char __user *optval, int __user *optlen)
5348 {
5349 	struct net *net = sock_net(sk);
5350 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
5351 	struct sctp_hmac_algo_param *hmacs;
5352 	__u16 data_len = 0;
5353 	u32 num_idents;
5354 
5355 	if (!net->sctp.auth_enable)
5356 		return -EACCES;
5357 
5358 	hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5359 	data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5360 
5361 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
5362 		return -EINVAL;
5363 
5364 	len = sizeof(struct sctp_hmacalgo) + data_len;
5365 	num_idents = data_len / sizeof(u16);
5366 
5367 	if (put_user(len, optlen))
5368 		return -EFAULT;
5369 	if (put_user(num_idents, &p->shmac_num_idents))
5370 		return -EFAULT;
5371 	if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5372 		return -EFAULT;
5373 	return 0;
5374 }
5375 
5376 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5377 				    char __user *optval, int __user *optlen)
5378 {
5379 	struct net *net = sock_net(sk);
5380 	struct sctp_authkeyid val;
5381 	struct sctp_association *asoc;
5382 
5383 	if (!net->sctp.auth_enable)
5384 		return -EACCES;
5385 
5386 	if (len < sizeof(struct sctp_authkeyid))
5387 		return -EINVAL;
5388 	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5389 		return -EFAULT;
5390 
5391 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5392 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5393 		return -EINVAL;
5394 
5395 	if (asoc)
5396 		val.scact_keynumber = asoc->active_key_id;
5397 	else
5398 		val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5399 
5400 	len = sizeof(struct sctp_authkeyid);
5401 	if (put_user(len, optlen))
5402 		return -EFAULT;
5403 	if (copy_to_user(optval, &val, len))
5404 		return -EFAULT;
5405 
5406 	return 0;
5407 }
5408 
5409 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5410 				    char __user *optval, int __user *optlen)
5411 {
5412 	struct net *net = sock_net(sk);
5413 	struct sctp_authchunks __user *p = (void __user *)optval;
5414 	struct sctp_authchunks val;
5415 	struct sctp_association *asoc;
5416 	struct sctp_chunks_param *ch;
5417 	u32    num_chunks = 0;
5418 	char __user *to;
5419 
5420 	if (!net->sctp.auth_enable)
5421 		return -EACCES;
5422 
5423 	if (len < sizeof(struct sctp_authchunks))
5424 		return -EINVAL;
5425 
5426 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5427 		return -EFAULT;
5428 
5429 	to = p->gauth_chunks;
5430 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5431 	if (!asoc)
5432 		return -EINVAL;
5433 
5434 	ch = asoc->peer.peer_chunks;
5435 	if (!ch)
5436 		goto num;
5437 
5438 	/* See if the user provided enough room for all the data */
5439 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5440 	if (len < num_chunks)
5441 		return -EINVAL;
5442 
5443 	if (copy_to_user(to, ch->chunks, num_chunks))
5444 		return -EFAULT;
5445 num:
5446 	len = sizeof(struct sctp_authchunks) + num_chunks;
5447 	if (put_user(len, optlen)) return -EFAULT;
5448 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5449 		return -EFAULT;
5450 	return 0;
5451 }
5452 
5453 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5454 				    char __user *optval, int __user *optlen)
5455 {
5456 	struct net *net = sock_net(sk);
5457 	struct sctp_authchunks __user *p = (void __user *)optval;
5458 	struct sctp_authchunks val;
5459 	struct sctp_association *asoc;
5460 	struct sctp_chunks_param *ch;
5461 	u32    num_chunks = 0;
5462 	char __user *to;
5463 
5464 	if (!net->sctp.auth_enable)
5465 		return -EACCES;
5466 
5467 	if (len < sizeof(struct sctp_authchunks))
5468 		return -EINVAL;
5469 
5470 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5471 		return -EFAULT;
5472 
5473 	to = p->gauth_chunks;
5474 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5475 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5476 		return -EINVAL;
5477 
5478 	if (asoc)
5479 		ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5480 	else
5481 		ch = sctp_sk(sk)->ep->auth_chunk_list;
5482 
5483 	if (!ch)
5484 		goto num;
5485 
5486 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5487 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
5488 		return -EINVAL;
5489 
5490 	if (copy_to_user(to, ch->chunks, num_chunks))
5491 		return -EFAULT;
5492 num:
5493 	len = sizeof(struct sctp_authchunks) + num_chunks;
5494 	if (put_user(len, optlen))
5495 		return -EFAULT;
5496 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5497 		return -EFAULT;
5498 
5499 	return 0;
5500 }
5501 
5502 /*
5503  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5504  * This option gets the current number of associations that are attached
5505  * to a one-to-many style socket.  The option value is an uint32_t.
5506  */
5507 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5508 				    char __user *optval, int __user *optlen)
5509 {
5510 	struct sctp_sock *sp = sctp_sk(sk);
5511 	struct sctp_association *asoc;
5512 	u32 val = 0;
5513 
5514 	if (sctp_style(sk, TCP))
5515 		return -EOPNOTSUPP;
5516 
5517 	if (len < sizeof(u32))
5518 		return -EINVAL;
5519 
5520 	len = sizeof(u32);
5521 
5522 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5523 		val++;
5524 	}
5525 
5526 	if (put_user(len, optlen))
5527 		return -EFAULT;
5528 	if (copy_to_user(optval, &val, len))
5529 		return -EFAULT;
5530 
5531 	return 0;
5532 }
5533 
5534 /*
5535  * 8.1.23 SCTP_AUTO_ASCONF
5536  * See the corresponding setsockopt entry as description
5537  */
5538 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5539 				   char __user *optval, int __user *optlen)
5540 {
5541 	int val = 0;
5542 
5543 	if (len < sizeof(int))
5544 		return -EINVAL;
5545 
5546 	len = sizeof(int);
5547 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5548 		val = 1;
5549 	if (put_user(len, optlen))
5550 		return -EFAULT;
5551 	if (copy_to_user(optval, &val, len))
5552 		return -EFAULT;
5553 	return 0;
5554 }
5555 
5556 /*
5557  * 8.2.6. Get the Current Identifiers of Associations
5558  *        (SCTP_GET_ASSOC_ID_LIST)
5559  *
5560  * This option gets the current list of SCTP association identifiers of
5561  * the SCTP associations handled by a one-to-many style socket.
5562  */
5563 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5564 				    char __user *optval, int __user *optlen)
5565 {
5566 	struct sctp_sock *sp = sctp_sk(sk);
5567 	struct sctp_association *asoc;
5568 	struct sctp_assoc_ids *ids;
5569 	u32 num = 0;
5570 
5571 	if (sctp_style(sk, TCP))
5572 		return -EOPNOTSUPP;
5573 
5574 	if (len < sizeof(struct sctp_assoc_ids))
5575 		return -EINVAL;
5576 
5577 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5578 		num++;
5579 	}
5580 
5581 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5582 		return -EINVAL;
5583 
5584 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5585 
5586 	ids = kmalloc(len, GFP_KERNEL);
5587 	if (unlikely(!ids))
5588 		return -ENOMEM;
5589 
5590 	ids->gaids_number_of_ids = num;
5591 	num = 0;
5592 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5593 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
5594 	}
5595 
5596 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5597 		kfree(ids);
5598 		return -EFAULT;
5599 	}
5600 
5601 	kfree(ids);
5602 	return 0;
5603 }
5604 
5605 /*
5606  * SCTP_PEER_ADDR_THLDS
5607  *
5608  * This option allows us to fetch the partially failed threshold for one or all
5609  * transports in an association.  See Section 6.1 of:
5610  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
5611  */
5612 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
5613 					    char __user *optval,
5614 					    int len,
5615 					    int __user *optlen)
5616 {
5617 	struct sctp_paddrthlds val;
5618 	struct sctp_transport *trans;
5619 	struct sctp_association *asoc;
5620 
5621 	if (len < sizeof(struct sctp_paddrthlds))
5622 		return -EINVAL;
5623 	len = sizeof(struct sctp_paddrthlds);
5624 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
5625 		return -EFAULT;
5626 
5627 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
5628 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
5629 		if (!asoc)
5630 			return -ENOENT;
5631 
5632 		val.spt_pathpfthld = asoc->pf_retrans;
5633 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
5634 	} else {
5635 		trans = sctp_addr_id2transport(sk, &val.spt_address,
5636 					       val.spt_assoc_id);
5637 		if (!trans)
5638 			return -ENOENT;
5639 
5640 		val.spt_pathmaxrxt = trans->pathmaxrxt;
5641 		val.spt_pathpfthld = trans->pf_retrans;
5642 	}
5643 
5644 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
5645 		return -EFAULT;
5646 
5647 	return 0;
5648 }
5649 
5650 /*
5651  * SCTP_GET_ASSOC_STATS
5652  *
5653  * This option retrieves local per endpoint statistics. It is modeled
5654  * after OpenSolaris' implementation
5655  */
5656 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
5657 				       char __user *optval,
5658 				       int __user *optlen)
5659 {
5660 	struct sctp_assoc_stats sas;
5661 	struct sctp_association *asoc = NULL;
5662 
5663 	/* User must provide at least the assoc id */
5664 	if (len < sizeof(sctp_assoc_t))
5665 		return -EINVAL;
5666 
5667 	/* Allow the struct to grow and fill in as much as possible */
5668 	len = min_t(size_t, len, sizeof(sas));
5669 
5670 	if (copy_from_user(&sas, optval, len))
5671 		return -EFAULT;
5672 
5673 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
5674 	if (!asoc)
5675 		return -EINVAL;
5676 
5677 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
5678 	sas.sas_gapcnt = asoc->stats.gapcnt;
5679 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
5680 	sas.sas_osacks = asoc->stats.osacks;
5681 	sas.sas_isacks = asoc->stats.isacks;
5682 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
5683 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
5684 	sas.sas_oodchunks = asoc->stats.oodchunks;
5685 	sas.sas_iodchunks = asoc->stats.iodchunks;
5686 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
5687 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
5688 	sas.sas_idupchunks = asoc->stats.idupchunks;
5689 	sas.sas_opackets = asoc->stats.opackets;
5690 	sas.sas_ipackets = asoc->stats.ipackets;
5691 
5692 	/* New high max rto observed, will return 0 if not a single
5693 	 * RTO update took place. obs_rto_ipaddr will be bogus
5694 	 * in such a case
5695 	 */
5696 	sas.sas_maxrto = asoc->stats.max_obs_rto;
5697 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
5698 		sizeof(struct sockaddr_storage));
5699 
5700 	/* Mark beginning of a new observation period */
5701 	asoc->stats.max_obs_rto = asoc->rto_min;
5702 
5703 	if (put_user(len, optlen))
5704 		return -EFAULT;
5705 
5706 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
5707 
5708 	if (copy_to_user(optval, &sas, len))
5709 		return -EFAULT;
5710 
5711 	return 0;
5712 }
5713 
5714 static int sctp_getsockopt(struct sock *sk, int level, int optname,
5715 			   char __user *optval, int __user *optlen)
5716 {
5717 	int retval = 0;
5718 	int len;
5719 
5720 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
5721 
5722 	/* I can hardly begin to describe how wrong this is.  This is
5723 	 * so broken as to be worse than useless.  The API draft
5724 	 * REALLY is NOT helpful here...  I am not convinced that the
5725 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5726 	 * are at all well-founded.
5727 	 */
5728 	if (level != SOL_SCTP) {
5729 		struct sctp_af *af = sctp_sk(sk)->pf->af;
5730 
5731 		retval = af->getsockopt(sk, level, optname, optval, optlen);
5732 		return retval;
5733 	}
5734 
5735 	if (get_user(len, optlen))
5736 		return -EFAULT;
5737 
5738 	sctp_lock_sock(sk);
5739 
5740 	switch (optname) {
5741 	case SCTP_STATUS:
5742 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5743 		break;
5744 	case SCTP_DISABLE_FRAGMENTS:
5745 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5746 							   optlen);
5747 		break;
5748 	case SCTP_EVENTS:
5749 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
5750 		break;
5751 	case SCTP_AUTOCLOSE:
5752 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5753 		break;
5754 	case SCTP_SOCKOPT_PEELOFF:
5755 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5756 		break;
5757 	case SCTP_PEER_ADDR_PARAMS:
5758 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5759 							  optlen);
5760 		break;
5761 	case SCTP_DELAYED_SACK:
5762 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5763 							  optlen);
5764 		break;
5765 	case SCTP_INITMSG:
5766 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5767 		break;
5768 	case SCTP_GET_PEER_ADDRS:
5769 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5770 						    optlen);
5771 		break;
5772 	case SCTP_GET_LOCAL_ADDRS:
5773 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
5774 						     optlen);
5775 		break;
5776 	case SCTP_SOCKOPT_CONNECTX3:
5777 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
5778 		break;
5779 	case SCTP_DEFAULT_SEND_PARAM:
5780 		retval = sctp_getsockopt_default_send_param(sk, len,
5781 							    optval, optlen);
5782 		break;
5783 	case SCTP_PRIMARY_ADDR:
5784 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5785 		break;
5786 	case SCTP_NODELAY:
5787 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5788 		break;
5789 	case SCTP_RTOINFO:
5790 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5791 		break;
5792 	case SCTP_ASSOCINFO:
5793 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5794 		break;
5795 	case SCTP_I_WANT_MAPPED_V4_ADDR:
5796 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5797 		break;
5798 	case SCTP_MAXSEG:
5799 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5800 		break;
5801 	case SCTP_GET_PEER_ADDR_INFO:
5802 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5803 							optlen);
5804 		break;
5805 	case SCTP_ADAPTATION_LAYER:
5806 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5807 							optlen);
5808 		break;
5809 	case SCTP_CONTEXT:
5810 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
5811 		break;
5812 	case SCTP_FRAGMENT_INTERLEAVE:
5813 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5814 							     optlen);
5815 		break;
5816 	case SCTP_PARTIAL_DELIVERY_POINT:
5817 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5818 								optlen);
5819 		break;
5820 	case SCTP_MAX_BURST:
5821 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5822 		break;
5823 	case SCTP_AUTH_KEY:
5824 	case SCTP_AUTH_CHUNK:
5825 	case SCTP_AUTH_DELETE_KEY:
5826 		retval = -EOPNOTSUPP;
5827 		break;
5828 	case SCTP_HMAC_IDENT:
5829 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5830 		break;
5831 	case SCTP_AUTH_ACTIVE_KEY:
5832 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5833 		break;
5834 	case SCTP_PEER_AUTH_CHUNKS:
5835 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5836 							optlen);
5837 		break;
5838 	case SCTP_LOCAL_AUTH_CHUNKS:
5839 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5840 							optlen);
5841 		break;
5842 	case SCTP_GET_ASSOC_NUMBER:
5843 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
5844 		break;
5845 	case SCTP_GET_ASSOC_ID_LIST:
5846 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
5847 		break;
5848 	case SCTP_AUTO_ASCONF:
5849 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
5850 		break;
5851 	case SCTP_PEER_ADDR_THLDS:
5852 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
5853 		break;
5854 	case SCTP_GET_ASSOC_STATS:
5855 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
5856 		break;
5857 	default:
5858 		retval = -ENOPROTOOPT;
5859 		break;
5860 	}
5861 
5862 	sctp_release_sock(sk);
5863 	return retval;
5864 }
5865 
5866 static void sctp_hash(struct sock *sk)
5867 {
5868 	/* STUB */
5869 }
5870 
5871 static void sctp_unhash(struct sock *sk)
5872 {
5873 	/* STUB */
5874 }
5875 
5876 /* Check if port is acceptable.  Possibly find first available port.
5877  *
5878  * The port hash table (contained in the 'global' SCTP protocol storage
5879  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5880  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5881  * list (the list number is the port number hashed out, so as you
5882  * would expect from a hash function, all the ports in a given list have
5883  * such a number that hashes out to the same list number; you were
5884  * expecting that, right?); so each list has a set of ports, with a
5885  * link to the socket (struct sock) that uses it, the port number and
5886  * a fastreuse flag (FIXME: NPI ipg).
5887  */
5888 static struct sctp_bind_bucket *sctp_bucket_create(
5889 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
5890 
5891 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5892 {
5893 	struct sctp_bind_hashbucket *head; /* hash list */
5894 	struct sctp_bind_bucket *pp;
5895 	unsigned short snum;
5896 	int ret;
5897 
5898 	snum = ntohs(addr->v4.sin_port);
5899 
5900 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
5901 
5902 	sctp_local_bh_disable();
5903 
5904 	if (snum == 0) {
5905 		/* Search for an available port. */
5906 		int low, high, remaining, index;
5907 		unsigned int rover;
5908 
5909 		inet_get_local_port_range(sock_net(sk), &low, &high);
5910 		remaining = (high - low) + 1;
5911 		rover = net_random() % remaining + low;
5912 
5913 		do {
5914 			rover++;
5915 			if ((rover < low) || (rover > high))
5916 				rover = low;
5917 			if (inet_is_reserved_local_port(rover))
5918 				continue;
5919 			index = sctp_phashfn(sock_net(sk), rover);
5920 			head = &sctp_port_hashtable[index];
5921 			sctp_spin_lock(&head->lock);
5922 			sctp_for_each_hentry(pp, &head->chain)
5923 				if ((pp->port == rover) &&
5924 				    net_eq(sock_net(sk), pp->net))
5925 					goto next;
5926 			break;
5927 		next:
5928 			sctp_spin_unlock(&head->lock);
5929 		} while (--remaining > 0);
5930 
5931 		/* Exhausted local port range during search? */
5932 		ret = 1;
5933 		if (remaining <= 0)
5934 			goto fail;
5935 
5936 		/* OK, here is the one we will use.  HEAD (the port
5937 		 * hash table list entry) is non-NULL and we hold it's
5938 		 * mutex.
5939 		 */
5940 		snum = rover;
5941 	} else {
5942 		/* We are given an specific port number; we verify
5943 		 * that it is not being used. If it is used, we will
5944 		 * exahust the search in the hash list corresponding
5945 		 * to the port number (snum) - we detect that with the
5946 		 * port iterator, pp being NULL.
5947 		 */
5948 		head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
5949 		sctp_spin_lock(&head->lock);
5950 		sctp_for_each_hentry(pp, &head->chain) {
5951 			if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
5952 				goto pp_found;
5953 		}
5954 	}
5955 	pp = NULL;
5956 	goto pp_not_found;
5957 pp_found:
5958 	if (!hlist_empty(&pp->owner)) {
5959 		/* We had a port hash table hit - there is an
5960 		 * available port (pp != NULL) and it is being
5961 		 * used by other socket (pp->owner not empty); that other
5962 		 * socket is going to be sk2.
5963 		 */
5964 		int reuse = sk->sk_reuse;
5965 		struct sock *sk2;
5966 
5967 		pr_debug("%s: found a possible match\n", __func__);
5968 
5969 		if (pp->fastreuse && sk->sk_reuse &&
5970 			sk->sk_state != SCTP_SS_LISTENING)
5971 			goto success;
5972 
5973 		/* Run through the list of sockets bound to the port
5974 		 * (pp->port) [via the pointers bind_next and
5975 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5976 		 * we get the endpoint they describe and run through
5977 		 * the endpoint's list of IP (v4 or v6) addresses,
5978 		 * comparing each of the addresses with the address of
5979 		 * the socket sk. If we find a match, then that means
5980 		 * that this port/socket (sk) combination are already
5981 		 * in an endpoint.
5982 		 */
5983 		sk_for_each_bound(sk2, &pp->owner) {
5984 			struct sctp_endpoint *ep2;
5985 			ep2 = sctp_sk(sk2)->ep;
5986 
5987 			if (sk == sk2 ||
5988 			    (reuse && sk2->sk_reuse &&
5989 			     sk2->sk_state != SCTP_SS_LISTENING))
5990 				continue;
5991 
5992 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
5993 						 sctp_sk(sk2), sctp_sk(sk))) {
5994 				ret = (long)sk2;
5995 				goto fail_unlock;
5996 			}
5997 		}
5998 
5999 		pr_debug("%s: found a match\n", __func__);
6000 	}
6001 pp_not_found:
6002 	/* If there was a hash table miss, create a new port.  */
6003 	ret = 1;
6004 	if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
6005 		goto fail_unlock;
6006 
6007 	/* In either case (hit or miss), make sure fastreuse is 1 only
6008 	 * if sk->sk_reuse is too (that is, if the caller requested
6009 	 * SO_REUSEADDR on this socket -sk-).
6010 	 */
6011 	if (hlist_empty(&pp->owner)) {
6012 		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
6013 			pp->fastreuse = 1;
6014 		else
6015 			pp->fastreuse = 0;
6016 	} else if (pp->fastreuse &&
6017 		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6018 		pp->fastreuse = 0;
6019 
6020 	/* We are set, so fill up all the data in the hash table
6021 	 * entry, tie the socket list information with the rest of the
6022 	 * sockets FIXME: Blurry, NPI (ipg).
6023 	 */
6024 success:
6025 	if (!sctp_sk(sk)->bind_hash) {
6026 		inet_sk(sk)->inet_num = snum;
6027 		sk_add_bind_node(sk, &pp->owner);
6028 		sctp_sk(sk)->bind_hash = pp;
6029 	}
6030 	ret = 0;
6031 
6032 fail_unlock:
6033 	sctp_spin_unlock(&head->lock);
6034 
6035 fail:
6036 	sctp_local_bh_enable();
6037 	return ret;
6038 }
6039 
6040 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
6041  * port is requested.
6042  */
6043 static int sctp_get_port(struct sock *sk, unsigned short snum)
6044 {
6045 	union sctp_addr addr;
6046 	struct sctp_af *af = sctp_sk(sk)->pf->af;
6047 
6048 	/* Set up a dummy address struct from the sk. */
6049 	af->from_sk(&addr, sk);
6050 	addr.v4.sin_port = htons(snum);
6051 
6052 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
6053 	return !!sctp_get_port_local(sk, &addr);
6054 }
6055 
6056 /*
6057  *  Move a socket to LISTENING state.
6058  */
6059 static int sctp_listen_start(struct sock *sk, int backlog)
6060 {
6061 	struct sctp_sock *sp = sctp_sk(sk);
6062 	struct sctp_endpoint *ep = sp->ep;
6063 	struct crypto_hash *tfm = NULL;
6064 	char alg[32];
6065 
6066 	/* Allocate HMAC for generating cookie. */
6067 	if (!sp->hmac && sp->sctp_hmac_alg) {
6068 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6069 		tfm = crypto_alloc_hash(alg, 0, CRYPTO_ALG_ASYNC);
6070 		if (IS_ERR(tfm)) {
6071 			net_info_ratelimited("failed to load transform for %s: %ld\n",
6072 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
6073 			return -ENOSYS;
6074 		}
6075 		sctp_sk(sk)->hmac = tfm;
6076 	}
6077 
6078 	/*
6079 	 * If a bind() or sctp_bindx() is not called prior to a listen()
6080 	 * call that allows new associations to be accepted, the system
6081 	 * picks an ephemeral port and will choose an address set equivalent
6082 	 * to binding with a wildcard address.
6083 	 *
6084 	 * This is not currently spelled out in the SCTP sockets
6085 	 * extensions draft, but follows the practice as seen in TCP
6086 	 * sockets.
6087 	 *
6088 	 */
6089 	sk->sk_state = SCTP_SS_LISTENING;
6090 	if (!ep->base.bind_addr.port) {
6091 		if (sctp_autobind(sk))
6092 			return -EAGAIN;
6093 	} else {
6094 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6095 			sk->sk_state = SCTP_SS_CLOSED;
6096 			return -EADDRINUSE;
6097 		}
6098 	}
6099 
6100 	sk->sk_max_ack_backlog = backlog;
6101 	sctp_hash_endpoint(ep);
6102 	return 0;
6103 }
6104 
6105 /*
6106  * 4.1.3 / 5.1.3 listen()
6107  *
6108  *   By default, new associations are not accepted for UDP style sockets.
6109  *   An application uses listen() to mark a socket as being able to
6110  *   accept new associations.
6111  *
6112  *   On TCP style sockets, applications use listen() to ready the SCTP
6113  *   endpoint for accepting inbound associations.
6114  *
6115  *   On both types of endpoints a backlog of '0' disables listening.
6116  *
6117  *  Move a socket to LISTENING state.
6118  */
6119 int sctp_inet_listen(struct socket *sock, int backlog)
6120 {
6121 	struct sock *sk = sock->sk;
6122 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6123 	int err = -EINVAL;
6124 
6125 	if (unlikely(backlog < 0))
6126 		return err;
6127 
6128 	sctp_lock_sock(sk);
6129 
6130 	/* Peeled-off sockets are not allowed to listen().  */
6131 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6132 		goto out;
6133 
6134 	if (sock->state != SS_UNCONNECTED)
6135 		goto out;
6136 
6137 	/* If backlog is zero, disable listening. */
6138 	if (!backlog) {
6139 		if (sctp_sstate(sk, CLOSED))
6140 			goto out;
6141 
6142 		err = 0;
6143 		sctp_unhash_endpoint(ep);
6144 		sk->sk_state = SCTP_SS_CLOSED;
6145 		if (sk->sk_reuse)
6146 			sctp_sk(sk)->bind_hash->fastreuse = 1;
6147 		goto out;
6148 	}
6149 
6150 	/* If we are already listening, just update the backlog */
6151 	if (sctp_sstate(sk, LISTENING))
6152 		sk->sk_max_ack_backlog = backlog;
6153 	else {
6154 		err = sctp_listen_start(sk, backlog);
6155 		if (err)
6156 			goto out;
6157 	}
6158 
6159 	err = 0;
6160 out:
6161 	sctp_release_sock(sk);
6162 	return err;
6163 }
6164 
6165 /*
6166  * This function is done by modeling the current datagram_poll() and the
6167  * tcp_poll().  Note that, based on these implementations, we don't
6168  * lock the socket in this function, even though it seems that,
6169  * ideally, locking or some other mechanisms can be used to ensure
6170  * the integrity of the counters (sndbuf and wmem_alloc) used
6171  * in this place.  We assume that we don't need locks either until proven
6172  * otherwise.
6173  *
6174  * Another thing to note is that we include the Async I/O support
6175  * here, again, by modeling the current TCP/UDP code.  We don't have
6176  * a good way to test with it yet.
6177  */
6178 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6179 {
6180 	struct sock *sk = sock->sk;
6181 	struct sctp_sock *sp = sctp_sk(sk);
6182 	unsigned int mask;
6183 
6184 	poll_wait(file, sk_sleep(sk), wait);
6185 
6186 	/* A TCP-style listening socket becomes readable when the accept queue
6187 	 * is not empty.
6188 	 */
6189 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6190 		return (!list_empty(&sp->ep->asocs)) ?
6191 			(POLLIN | POLLRDNORM) : 0;
6192 
6193 	mask = 0;
6194 
6195 	/* Is there any exceptional events?  */
6196 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6197 		mask |= POLLERR |
6198 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
6199 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6200 		mask |= POLLRDHUP | POLLIN | POLLRDNORM;
6201 	if (sk->sk_shutdown == SHUTDOWN_MASK)
6202 		mask |= POLLHUP;
6203 
6204 	/* Is it readable?  Reconsider this code with TCP-style support.  */
6205 	if (!skb_queue_empty(&sk->sk_receive_queue))
6206 		mask |= POLLIN | POLLRDNORM;
6207 
6208 	/* The association is either gone or not ready.  */
6209 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6210 		return mask;
6211 
6212 	/* Is it writable?  */
6213 	if (sctp_writeable(sk)) {
6214 		mask |= POLLOUT | POLLWRNORM;
6215 	} else {
6216 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
6217 		/*
6218 		 * Since the socket is not locked, the buffer
6219 		 * might be made available after the writeable check and
6220 		 * before the bit is set.  This could cause a lost I/O
6221 		 * signal.  tcp_poll() has a race breaker for this race
6222 		 * condition.  Based on their implementation, we put
6223 		 * in the following code to cover it as well.
6224 		 */
6225 		if (sctp_writeable(sk))
6226 			mask |= POLLOUT | POLLWRNORM;
6227 	}
6228 	return mask;
6229 }
6230 
6231 /********************************************************************
6232  * 2nd Level Abstractions
6233  ********************************************************************/
6234 
6235 static struct sctp_bind_bucket *sctp_bucket_create(
6236 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
6237 {
6238 	struct sctp_bind_bucket *pp;
6239 
6240 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6241 	if (pp) {
6242 		SCTP_DBG_OBJCNT_INC(bind_bucket);
6243 		pp->port = snum;
6244 		pp->fastreuse = 0;
6245 		INIT_HLIST_HEAD(&pp->owner);
6246 		pp->net = net;
6247 		hlist_add_head(&pp->node, &head->chain);
6248 	}
6249 	return pp;
6250 }
6251 
6252 /* Caller must hold hashbucket lock for this tb with local BH disabled */
6253 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6254 {
6255 	if (pp && hlist_empty(&pp->owner)) {
6256 		__hlist_del(&pp->node);
6257 		kmem_cache_free(sctp_bucket_cachep, pp);
6258 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
6259 	}
6260 }
6261 
6262 /* Release this socket's reference to a local port.  */
6263 static inline void __sctp_put_port(struct sock *sk)
6264 {
6265 	struct sctp_bind_hashbucket *head =
6266 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
6267 						  inet_sk(sk)->inet_num)];
6268 	struct sctp_bind_bucket *pp;
6269 
6270 	sctp_spin_lock(&head->lock);
6271 	pp = sctp_sk(sk)->bind_hash;
6272 	__sk_del_bind_node(sk);
6273 	sctp_sk(sk)->bind_hash = NULL;
6274 	inet_sk(sk)->inet_num = 0;
6275 	sctp_bucket_destroy(pp);
6276 	sctp_spin_unlock(&head->lock);
6277 }
6278 
6279 void sctp_put_port(struct sock *sk)
6280 {
6281 	sctp_local_bh_disable();
6282 	__sctp_put_port(sk);
6283 	sctp_local_bh_enable();
6284 }
6285 
6286 /*
6287  * The system picks an ephemeral port and choose an address set equivalent
6288  * to binding with a wildcard address.
6289  * One of those addresses will be the primary address for the association.
6290  * This automatically enables the multihoming capability of SCTP.
6291  */
6292 static int sctp_autobind(struct sock *sk)
6293 {
6294 	union sctp_addr autoaddr;
6295 	struct sctp_af *af;
6296 	__be16 port;
6297 
6298 	/* Initialize a local sockaddr structure to INADDR_ANY. */
6299 	af = sctp_sk(sk)->pf->af;
6300 
6301 	port = htons(inet_sk(sk)->inet_num);
6302 	af->inaddr_any(&autoaddr, port);
6303 
6304 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6305 }
6306 
6307 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
6308  *
6309  * From RFC 2292
6310  * 4.2 The cmsghdr Structure *
6311  *
6312  * When ancillary data is sent or received, any number of ancillary data
6313  * objects can be specified by the msg_control and msg_controllen members of
6314  * the msghdr structure, because each object is preceded by
6315  * a cmsghdr structure defining the object's length (the cmsg_len member).
6316  * Historically Berkeley-derived implementations have passed only one object
6317  * at a time, but this API allows multiple objects to be
6318  * passed in a single call to sendmsg() or recvmsg(). The following example
6319  * shows two ancillary data objects in a control buffer.
6320  *
6321  *   |<--------------------------- msg_controllen -------------------------->|
6322  *   |                                                                       |
6323  *
6324  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
6325  *
6326  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6327  *   |                                   |                                   |
6328  *
6329  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
6330  *
6331  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
6332  *   |                                |  |                                |  |
6333  *
6334  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6335  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
6336  *
6337  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
6338  *
6339  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6340  *    ^
6341  *    |
6342  *
6343  * msg_control
6344  * points here
6345  */
6346 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs)
6347 {
6348 	struct cmsghdr *cmsg;
6349 	struct msghdr *my_msg = (struct msghdr *)msg;
6350 
6351 	for (cmsg = CMSG_FIRSTHDR(msg);
6352 	     cmsg != NULL;
6353 	     cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
6354 		if (!CMSG_OK(my_msg, cmsg))
6355 			return -EINVAL;
6356 
6357 		/* Should we parse this header or ignore?  */
6358 		if (cmsg->cmsg_level != IPPROTO_SCTP)
6359 			continue;
6360 
6361 		/* Strictly check lengths following example in SCM code.  */
6362 		switch (cmsg->cmsg_type) {
6363 		case SCTP_INIT:
6364 			/* SCTP Socket API Extension
6365 			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
6366 			 *
6367 			 * This cmsghdr structure provides information for
6368 			 * initializing new SCTP associations with sendmsg().
6369 			 * The SCTP_INITMSG socket option uses this same data
6370 			 * structure.  This structure is not used for
6371 			 * recvmsg().
6372 			 *
6373 			 * cmsg_level    cmsg_type      cmsg_data[]
6374 			 * ------------  ------------   ----------------------
6375 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
6376 			 */
6377 			if (cmsg->cmsg_len !=
6378 			    CMSG_LEN(sizeof(struct sctp_initmsg)))
6379 				return -EINVAL;
6380 			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
6381 			break;
6382 
6383 		case SCTP_SNDRCV:
6384 			/* SCTP Socket API Extension
6385 			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6386 			 *
6387 			 * This cmsghdr structure specifies SCTP options for
6388 			 * sendmsg() and describes SCTP header information
6389 			 * about a received message through recvmsg().
6390 			 *
6391 			 * cmsg_level    cmsg_type      cmsg_data[]
6392 			 * ------------  ------------   ----------------------
6393 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
6394 			 */
6395 			if (cmsg->cmsg_len !=
6396 			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6397 				return -EINVAL;
6398 
6399 			cmsgs->info =
6400 				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6401 
6402 			/* Minimally, validate the sinfo_flags. */
6403 			if (cmsgs->info->sinfo_flags &
6404 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6405 			      SCTP_ABORT | SCTP_EOF))
6406 				return -EINVAL;
6407 			break;
6408 
6409 		default:
6410 			return -EINVAL;
6411 		}
6412 	}
6413 	return 0;
6414 }
6415 
6416 /*
6417  * Wait for a packet..
6418  * Note: This function is the same function as in core/datagram.c
6419  * with a few modifications to make lksctp work.
6420  */
6421 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
6422 {
6423 	int error;
6424 	DEFINE_WAIT(wait);
6425 
6426 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6427 
6428 	/* Socket errors? */
6429 	error = sock_error(sk);
6430 	if (error)
6431 		goto out;
6432 
6433 	if (!skb_queue_empty(&sk->sk_receive_queue))
6434 		goto ready;
6435 
6436 	/* Socket shut down?  */
6437 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6438 		goto out;
6439 
6440 	/* Sequenced packets can come disconnected.  If so we report the
6441 	 * problem.
6442 	 */
6443 	error = -ENOTCONN;
6444 
6445 	/* Is there a good reason to think that we may receive some data?  */
6446 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6447 		goto out;
6448 
6449 	/* Handle signals.  */
6450 	if (signal_pending(current))
6451 		goto interrupted;
6452 
6453 	/* Let another process have a go.  Since we are going to sleep
6454 	 * anyway.  Note: This may cause odd behaviors if the message
6455 	 * does not fit in the user's buffer, but this seems to be the
6456 	 * only way to honor MSG_DONTWAIT realistically.
6457 	 */
6458 	sctp_release_sock(sk);
6459 	*timeo_p = schedule_timeout(*timeo_p);
6460 	sctp_lock_sock(sk);
6461 
6462 ready:
6463 	finish_wait(sk_sleep(sk), &wait);
6464 	return 0;
6465 
6466 interrupted:
6467 	error = sock_intr_errno(*timeo_p);
6468 
6469 out:
6470 	finish_wait(sk_sleep(sk), &wait);
6471 	*err = error;
6472 	return error;
6473 }
6474 
6475 /* Receive a datagram.
6476  * Note: This is pretty much the same routine as in core/datagram.c
6477  * with a few changes to make lksctp work.
6478  */
6479 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6480 					      int noblock, int *err)
6481 {
6482 	int error;
6483 	struct sk_buff *skb;
6484 	long timeo;
6485 
6486 	timeo = sock_rcvtimeo(sk, noblock);
6487 
6488 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
6489 		 MAX_SCHEDULE_TIMEOUT);
6490 
6491 	do {
6492 		/* Again only user level code calls this function,
6493 		 * so nothing interrupt level
6494 		 * will suddenly eat the receive_queue.
6495 		 *
6496 		 *  Look at current nfs client by the way...
6497 		 *  However, this function was correct in any case. 8)
6498 		 */
6499 		if (flags & MSG_PEEK) {
6500 			spin_lock_bh(&sk->sk_receive_queue.lock);
6501 			skb = skb_peek(&sk->sk_receive_queue);
6502 			if (skb)
6503 				atomic_inc(&skb->users);
6504 			spin_unlock_bh(&sk->sk_receive_queue.lock);
6505 		} else {
6506 			skb = skb_dequeue(&sk->sk_receive_queue);
6507 		}
6508 
6509 		if (skb)
6510 			return skb;
6511 
6512 		/* Caller is allowed not to check sk->sk_err before calling. */
6513 		error = sock_error(sk);
6514 		if (error)
6515 			goto no_packet;
6516 
6517 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6518 			break;
6519 
6520 		/* User doesn't want to wait.  */
6521 		error = -EAGAIN;
6522 		if (!timeo)
6523 			goto no_packet;
6524 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6525 
6526 	return NULL;
6527 
6528 no_packet:
6529 	*err = error;
6530 	return NULL;
6531 }
6532 
6533 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
6534 static void __sctp_write_space(struct sctp_association *asoc)
6535 {
6536 	struct sock *sk = asoc->base.sk;
6537 	struct socket *sock = sk->sk_socket;
6538 
6539 	if ((sctp_wspace(asoc) > 0) && sock) {
6540 		if (waitqueue_active(&asoc->wait))
6541 			wake_up_interruptible(&asoc->wait);
6542 
6543 		if (sctp_writeable(sk)) {
6544 			wait_queue_head_t *wq = sk_sleep(sk);
6545 
6546 			if (wq && waitqueue_active(wq))
6547 				wake_up_interruptible(wq);
6548 
6549 			/* Note that we try to include the Async I/O support
6550 			 * here by modeling from the current TCP/UDP code.
6551 			 * We have not tested with it yet.
6552 			 */
6553 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6554 				sock_wake_async(sock,
6555 						SOCK_WAKE_SPACE, POLL_OUT);
6556 		}
6557 	}
6558 }
6559 
6560 /* Do accounting for the sndbuf space.
6561  * Decrement the used sndbuf space of the corresponding association by the
6562  * data size which was just transmitted(freed).
6563  */
6564 static void sctp_wfree(struct sk_buff *skb)
6565 {
6566 	struct sctp_association *asoc;
6567 	struct sctp_chunk *chunk;
6568 	struct sock *sk;
6569 
6570 	/* Get the saved chunk pointer.  */
6571 	chunk = *((struct sctp_chunk **)(skb->cb));
6572 	asoc = chunk->asoc;
6573 	sk = asoc->base.sk;
6574 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6575 				sizeof(struct sk_buff) +
6576 				sizeof(struct sctp_chunk);
6577 
6578 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6579 
6580 	/*
6581 	 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6582 	 */
6583 	sk->sk_wmem_queued   -= skb->truesize;
6584 	sk_mem_uncharge(sk, skb->truesize);
6585 
6586 	sock_wfree(skb);
6587 	__sctp_write_space(asoc);
6588 
6589 	sctp_association_put(asoc);
6590 }
6591 
6592 /* Do accounting for the receive space on the socket.
6593  * Accounting for the association is done in ulpevent.c
6594  * We set this as a destructor for the cloned data skbs so that
6595  * accounting is done at the correct time.
6596  */
6597 void sctp_sock_rfree(struct sk_buff *skb)
6598 {
6599 	struct sock *sk = skb->sk;
6600 	struct sctp_ulpevent *event = sctp_skb2event(skb);
6601 
6602 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6603 
6604 	/*
6605 	 * Mimic the behavior of sock_rfree
6606 	 */
6607 	sk_mem_uncharge(sk, event->rmem_len);
6608 }
6609 
6610 
6611 /* Helper function to wait for space in the sndbuf.  */
6612 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6613 				size_t msg_len)
6614 {
6615 	struct sock *sk = asoc->base.sk;
6616 	int err = 0;
6617 	long current_timeo = *timeo_p;
6618 	DEFINE_WAIT(wait);
6619 
6620 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
6621 		 *timeo_p, msg_len);
6622 
6623 	/* Increment the association's refcnt.  */
6624 	sctp_association_hold(asoc);
6625 
6626 	/* Wait on the association specific sndbuf space. */
6627 	for (;;) {
6628 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6629 					  TASK_INTERRUPTIBLE);
6630 		if (!*timeo_p)
6631 			goto do_nonblock;
6632 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6633 		    asoc->base.dead)
6634 			goto do_error;
6635 		if (signal_pending(current))
6636 			goto do_interrupted;
6637 		if (msg_len <= sctp_wspace(asoc))
6638 			break;
6639 
6640 		/* Let another process have a go.  Since we are going
6641 		 * to sleep anyway.
6642 		 */
6643 		sctp_release_sock(sk);
6644 		current_timeo = schedule_timeout(current_timeo);
6645 		BUG_ON(sk != asoc->base.sk);
6646 		sctp_lock_sock(sk);
6647 
6648 		*timeo_p = current_timeo;
6649 	}
6650 
6651 out:
6652 	finish_wait(&asoc->wait, &wait);
6653 
6654 	/* Release the association's refcnt.  */
6655 	sctp_association_put(asoc);
6656 
6657 	return err;
6658 
6659 do_error:
6660 	err = -EPIPE;
6661 	goto out;
6662 
6663 do_interrupted:
6664 	err = sock_intr_errno(*timeo_p);
6665 	goto out;
6666 
6667 do_nonblock:
6668 	err = -EAGAIN;
6669 	goto out;
6670 }
6671 
6672 void sctp_data_ready(struct sock *sk, int len)
6673 {
6674 	struct socket_wq *wq;
6675 
6676 	rcu_read_lock();
6677 	wq = rcu_dereference(sk->sk_wq);
6678 	if (wq_has_sleeper(wq))
6679 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6680 						POLLRDNORM | POLLRDBAND);
6681 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6682 	rcu_read_unlock();
6683 }
6684 
6685 /* If socket sndbuf has changed, wake up all per association waiters.  */
6686 void sctp_write_space(struct sock *sk)
6687 {
6688 	struct sctp_association *asoc;
6689 
6690 	/* Wake up the tasks in each wait queue.  */
6691 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6692 		__sctp_write_space(asoc);
6693 	}
6694 }
6695 
6696 /* Is there any sndbuf space available on the socket?
6697  *
6698  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6699  * associations on the same socket.  For a UDP-style socket with
6700  * multiple associations, it is possible for it to be "unwriteable"
6701  * prematurely.  I assume that this is acceptable because
6702  * a premature "unwriteable" is better than an accidental "writeable" which
6703  * would cause an unwanted block under certain circumstances.  For the 1-1
6704  * UDP-style sockets or TCP-style sockets, this code should work.
6705  *  - Daisy
6706  */
6707 static int sctp_writeable(struct sock *sk)
6708 {
6709 	int amt = 0;
6710 
6711 	amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
6712 	if (amt < 0)
6713 		amt = 0;
6714 	return amt;
6715 }
6716 
6717 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6718  * returns immediately with EINPROGRESS.
6719  */
6720 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6721 {
6722 	struct sock *sk = asoc->base.sk;
6723 	int err = 0;
6724 	long current_timeo = *timeo_p;
6725 	DEFINE_WAIT(wait);
6726 
6727 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
6728 
6729 	/* Increment the association's refcnt.  */
6730 	sctp_association_hold(asoc);
6731 
6732 	for (;;) {
6733 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6734 					  TASK_INTERRUPTIBLE);
6735 		if (!*timeo_p)
6736 			goto do_nonblock;
6737 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6738 			break;
6739 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6740 		    asoc->base.dead)
6741 			goto do_error;
6742 		if (signal_pending(current))
6743 			goto do_interrupted;
6744 
6745 		if (sctp_state(asoc, ESTABLISHED))
6746 			break;
6747 
6748 		/* Let another process have a go.  Since we are going
6749 		 * to sleep anyway.
6750 		 */
6751 		sctp_release_sock(sk);
6752 		current_timeo = schedule_timeout(current_timeo);
6753 		sctp_lock_sock(sk);
6754 
6755 		*timeo_p = current_timeo;
6756 	}
6757 
6758 out:
6759 	finish_wait(&asoc->wait, &wait);
6760 
6761 	/* Release the association's refcnt.  */
6762 	sctp_association_put(asoc);
6763 
6764 	return err;
6765 
6766 do_error:
6767 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6768 		err = -ETIMEDOUT;
6769 	else
6770 		err = -ECONNREFUSED;
6771 	goto out;
6772 
6773 do_interrupted:
6774 	err = sock_intr_errno(*timeo_p);
6775 	goto out;
6776 
6777 do_nonblock:
6778 	err = -EINPROGRESS;
6779 	goto out;
6780 }
6781 
6782 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6783 {
6784 	struct sctp_endpoint *ep;
6785 	int err = 0;
6786 	DEFINE_WAIT(wait);
6787 
6788 	ep = sctp_sk(sk)->ep;
6789 
6790 
6791 	for (;;) {
6792 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
6793 					  TASK_INTERRUPTIBLE);
6794 
6795 		if (list_empty(&ep->asocs)) {
6796 			sctp_release_sock(sk);
6797 			timeo = schedule_timeout(timeo);
6798 			sctp_lock_sock(sk);
6799 		}
6800 
6801 		err = -EINVAL;
6802 		if (!sctp_sstate(sk, LISTENING))
6803 			break;
6804 
6805 		err = 0;
6806 		if (!list_empty(&ep->asocs))
6807 			break;
6808 
6809 		err = sock_intr_errno(timeo);
6810 		if (signal_pending(current))
6811 			break;
6812 
6813 		err = -EAGAIN;
6814 		if (!timeo)
6815 			break;
6816 	}
6817 
6818 	finish_wait(sk_sleep(sk), &wait);
6819 
6820 	return err;
6821 }
6822 
6823 static void sctp_wait_for_close(struct sock *sk, long timeout)
6824 {
6825 	DEFINE_WAIT(wait);
6826 
6827 	do {
6828 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6829 		if (list_empty(&sctp_sk(sk)->ep->asocs))
6830 			break;
6831 		sctp_release_sock(sk);
6832 		timeout = schedule_timeout(timeout);
6833 		sctp_lock_sock(sk);
6834 	} while (!signal_pending(current) && timeout);
6835 
6836 	finish_wait(sk_sleep(sk), &wait);
6837 }
6838 
6839 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6840 {
6841 	struct sk_buff *frag;
6842 
6843 	if (!skb->data_len)
6844 		goto done;
6845 
6846 	/* Don't forget the fragments. */
6847 	skb_walk_frags(skb, frag)
6848 		sctp_skb_set_owner_r_frag(frag, sk);
6849 
6850 done:
6851 	sctp_skb_set_owner_r(skb, sk);
6852 }
6853 
6854 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
6855 		    struct sctp_association *asoc)
6856 {
6857 	struct inet_sock *inet = inet_sk(sk);
6858 	struct inet_sock *newinet;
6859 
6860 	newsk->sk_type = sk->sk_type;
6861 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
6862 	newsk->sk_flags = sk->sk_flags;
6863 	newsk->sk_no_check = sk->sk_no_check;
6864 	newsk->sk_reuse = sk->sk_reuse;
6865 
6866 	newsk->sk_shutdown = sk->sk_shutdown;
6867 	newsk->sk_destruct = sctp_destruct_sock;
6868 	newsk->sk_family = sk->sk_family;
6869 	newsk->sk_protocol = IPPROTO_SCTP;
6870 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
6871 	newsk->sk_sndbuf = sk->sk_sndbuf;
6872 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
6873 	newsk->sk_lingertime = sk->sk_lingertime;
6874 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
6875 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
6876 
6877 	newinet = inet_sk(newsk);
6878 
6879 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
6880 	 * getsockname() and getpeername()
6881 	 */
6882 	newinet->inet_sport = inet->inet_sport;
6883 	newinet->inet_saddr = inet->inet_saddr;
6884 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
6885 	newinet->inet_dport = htons(asoc->peer.port);
6886 	newinet->pmtudisc = inet->pmtudisc;
6887 	newinet->inet_id = asoc->next_tsn ^ jiffies;
6888 
6889 	newinet->uc_ttl = inet->uc_ttl;
6890 	newinet->mc_loop = 1;
6891 	newinet->mc_ttl = 1;
6892 	newinet->mc_index = 0;
6893 	newinet->mc_list = NULL;
6894 }
6895 
6896 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6897  * and its messages to the newsk.
6898  */
6899 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6900 			      struct sctp_association *assoc,
6901 			      sctp_socket_type_t type)
6902 {
6903 	struct sctp_sock *oldsp = sctp_sk(oldsk);
6904 	struct sctp_sock *newsp = sctp_sk(newsk);
6905 	struct sctp_bind_bucket *pp; /* hash list port iterator */
6906 	struct sctp_endpoint *newep = newsp->ep;
6907 	struct sk_buff *skb, *tmp;
6908 	struct sctp_ulpevent *event;
6909 	struct sctp_bind_hashbucket *head;
6910 	struct list_head tmplist;
6911 
6912 	/* Migrate socket buffer sizes and all the socket level options to the
6913 	 * new socket.
6914 	 */
6915 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
6916 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6917 	/* Brute force copy old sctp opt. */
6918 	if (oldsp->do_auto_asconf) {
6919 		memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist));
6920 		inet_sk_copy_descendant(newsk, oldsk);
6921 		memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist));
6922 	} else
6923 		inet_sk_copy_descendant(newsk, oldsk);
6924 
6925 	/* Restore the ep value that was overwritten with the above structure
6926 	 * copy.
6927 	 */
6928 	newsp->ep = newep;
6929 	newsp->hmac = NULL;
6930 
6931 	/* Hook this new socket in to the bind_hash list. */
6932 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
6933 						 inet_sk(oldsk)->inet_num)];
6934 	sctp_local_bh_disable();
6935 	sctp_spin_lock(&head->lock);
6936 	pp = sctp_sk(oldsk)->bind_hash;
6937 	sk_add_bind_node(newsk, &pp->owner);
6938 	sctp_sk(newsk)->bind_hash = pp;
6939 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
6940 	sctp_spin_unlock(&head->lock);
6941 	sctp_local_bh_enable();
6942 
6943 	/* Copy the bind_addr list from the original endpoint to the new
6944 	 * endpoint so that we can handle restarts properly
6945 	 */
6946 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6947 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
6948 
6949 	/* Move any messages in the old socket's receive queue that are for the
6950 	 * peeled off association to the new socket's receive queue.
6951 	 */
6952 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6953 		event = sctp_skb2event(skb);
6954 		if (event->asoc == assoc) {
6955 			__skb_unlink(skb, &oldsk->sk_receive_queue);
6956 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
6957 			sctp_skb_set_owner_r_frag(skb, newsk);
6958 		}
6959 	}
6960 
6961 	/* Clean up any messages pending delivery due to partial
6962 	 * delivery.   Three cases:
6963 	 * 1) No partial deliver;  no work.
6964 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6965 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6966 	 */
6967 	skb_queue_head_init(&newsp->pd_lobby);
6968 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6969 
6970 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6971 		struct sk_buff_head *queue;
6972 
6973 		/* Decide which queue to move pd_lobby skbs to. */
6974 		if (assoc->ulpq.pd_mode) {
6975 			queue = &newsp->pd_lobby;
6976 		} else
6977 			queue = &newsk->sk_receive_queue;
6978 
6979 		/* Walk through the pd_lobby, looking for skbs that
6980 		 * need moved to the new socket.
6981 		 */
6982 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6983 			event = sctp_skb2event(skb);
6984 			if (event->asoc == assoc) {
6985 				__skb_unlink(skb, &oldsp->pd_lobby);
6986 				__skb_queue_tail(queue, skb);
6987 				sctp_skb_set_owner_r_frag(skb, newsk);
6988 			}
6989 		}
6990 
6991 		/* Clear up any skbs waiting for the partial
6992 		 * delivery to finish.
6993 		 */
6994 		if (assoc->ulpq.pd_mode)
6995 			sctp_clear_pd(oldsk, NULL);
6996 
6997 	}
6998 
6999 	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
7000 		sctp_skb_set_owner_r_frag(skb, newsk);
7001 
7002 	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
7003 		sctp_skb_set_owner_r_frag(skb, newsk);
7004 
7005 	/* Set the type of socket to indicate that it is peeled off from the
7006 	 * original UDP-style socket or created with the accept() call on a
7007 	 * TCP-style socket..
7008 	 */
7009 	newsp->type = type;
7010 
7011 	/* Mark the new socket "in-use" by the user so that any packets
7012 	 * that may arrive on the association after we've moved it are
7013 	 * queued to the backlog.  This prevents a potential race between
7014 	 * backlog processing on the old socket and new-packet processing
7015 	 * on the new socket.
7016 	 *
7017 	 * The caller has just allocated newsk so we can guarantee that other
7018 	 * paths won't try to lock it and then oldsk.
7019 	 */
7020 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7021 	sctp_assoc_migrate(assoc, newsk);
7022 
7023 	/* If the association on the newsk is already closed before accept()
7024 	 * is called, set RCV_SHUTDOWN flag.
7025 	 */
7026 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
7027 		newsk->sk_shutdown |= RCV_SHUTDOWN;
7028 
7029 	newsk->sk_state = SCTP_SS_ESTABLISHED;
7030 	sctp_release_sock(newsk);
7031 }
7032 
7033 
7034 /* This proto struct describes the ULP interface for SCTP.  */
7035 struct proto sctp_prot = {
7036 	.name        =	"SCTP",
7037 	.owner       =	THIS_MODULE,
7038 	.close       =	sctp_close,
7039 	.connect     =	sctp_connect,
7040 	.disconnect  =	sctp_disconnect,
7041 	.accept      =	sctp_accept,
7042 	.ioctl       =	sctp_ioctl,
7043 	.init        =	sctp_init_sock,
7044 	.destroy     =	sctp_destroy_sock,
7045 	.shutdown    =	sctp_shutdown,
7046 	.setsockopt  =	sctp_setsockopt,
7047 	.getsockopt  =	sctp_getsockopt,
7048 	.sendmsg     =	sctp_sendmsg,
7049 	.recvmsg     =	sctp_recvmsg,
7050 	.bind        =	sctp_bind,
7051 	.backlog_rcv =	sctp_backlog_rcv,
7052 	.hash        =	sctp_hash,
7053 	.unhash      =	sctp_unhash,
7054 	.get_port    =	sctp_get_port,
7055 	.obj_size    =  sizeof(struct sctp_sock),
7056 	.sysctl_mem  =  sysctl_sctp_mem,
7057 	.sysctl_rmem =  sysctl_sctp_rmem,
7058 	.sysctl_wmem =  sysctl_sctp_wmem,
7059 	.memory_pressure = &sctp_memory_pressure,
7060 	.enter_memory_pressure = sctp_enter_memory_pressure,
7061 	.memory_allocated = &sctp_memory_allocated,
7062 	.sockets_allocated = &sctp_sockets_allocated,
7063 };
7064 
7065 #if IS_ENABLED(CONFIG_IPV6)
7066 
7067 struct proto sctpv6_prot = {
7068 	.name		= "SCTPv6",
7069 	.owner		= THIS_MODULE,
7070 	.close		= sctp_close,
7071 	.connect	= sctp_connect,
7072 	.disconnect	= sctp_disconnect,
7073 	.accept		= sctp_accept,
7074 	.ioctl		= sctp_ioctl,
7075 	.init		= sctp_init_sock,
7076 	.destroy	= sctp_destroy_sock,
7077 	.shutdown	= sctp_shutdown,
7078 	.setsockopt	= sctp_setsockopt,
7079 	.getsockopt	= sctp_getsockopt,
7080 	.sendmsg	= sctp_sendmsg,
7081 	.recvmsg	= sctp_recvmsg,
7082 	.bind		= sctp_bind,
7083 	.backlog_rcv	= sctp_backlog_rcv,
7084 	.hash		= sctp_hash,
7085 	.unhash		= sctp_unhash,
7086 	.get_port	= sctp_get_port,
7087 	.obj_size	= sizeof(struct sctp6_sock),
7088 	.sysctl_mem	= sysctl_sctp_mem,
7089 	.sysctl_rmem	= sysctl_sctp_rmem,
7090 	.sysctl_wmem	= sysctl_sctp_wmem,
7091 	.memory_pressure = &sctp_memory_pressure,
7092 	.enter_memory_pressure = sctp_enter_memory_pressure,
7093 	.memory_allocated = &sctp_memory_allocated,
7094 	.sockets_allocated = &sctp_sockets_allocated,
7095 };
7096 #endif /* IS_ENABLED(CONFIG_IPV6) */
7097