1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, see 32 * <http://www.gnu.org/licenses/>. 33 * 34 * Please send any bug reports or fixes you make to the 35 * email address(es): 36 * lksctp developers <linux-sctp@vger.kernel.org> 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Narasimha Budihal <narsi@refcode.org> 41 * Karl Knutson <karl@athena.chicago.il.us> 42 * Jon Grimm <jgrimm@us.ibm.com> 43 * Xingang Guo <xingang.guo@intel.com> 44 * Daisy Chang <daisyc@us.ibm.com> 45 * Sridhar Samudrala <samudrala@us.ibm.com> 46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 47 * Ardelle Fan <ardelle.fan@intel.com> 48 * Ryan Layer <rmlayer@us.ibm.com> 49 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 50 * Kevin Gao <kevin.gao@intel.com> 51 */ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <crypto/hash.h> 56 #include <linux/types.h> 57 #include <linux/kernel.h> 58 #include <linux/wait.h> 59 #include <linux/time.h> 60 #include <linux/sched/signal.h> 61 #include <linux/ip.h> 62 #include <linux/capability.h> 63 #include <linux/fcntl.h> 64 #include <linux/poll.h> 65 #include <linux/init.h> 66 #include <linux/slab.h> 67 #include <linux/file.h> 68 #include <linux/compat.h> 69 70 #include <net/ip.h> 71 #include <net/icmp.h> 72 #include <net/route.h> 73 #include <net/ipv6.h> 74 #include <net/inet_common.h> 75 #include <net/busy_poll.h> 76 77 #include <linux/socket.h> /* for sa_family_t */ 78 #include <linux/export.h> 79 #include <net/sock.h> 80 #include <net/sctp/sctp.h> 81 #include <net/sctp/sm.h> 82 83 /* Forward declarations for internal helper functions. */ 84 static int sctp_writeable(struct sock *sk); 85 static void sctp_wfree(struct sk_buff *skb); 86 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 87 size_t msg_len); 88 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 89 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 90 static int sctp_wait_for_accept(struct sock *sk, long timeo); 91 static void sctp_wait_for_close(struct sock *sk, long timeo); 92 static void sctp_destruct_sock(struct sock *sk); 93 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 94 union sctp_addr *addr, int len); 95 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 96 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 97 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 98 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 99 static int sctp_send_asconf(struct sctp_association *asoc, 100 struct sctp_chunk *chunk); 101 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 102 static int sctp_autobind(struct sock *sk); 103 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 104 struct sctp_association *assoc, 105 enum sctp_socket_type type); 106 107 static unsigned long sctp_memory_pressure; 108 static atomic_long_t sctp_memory_allocated; 109 struct percpu_counter sctp_sockets_allocated; 110 111 static void sctp_enter_memory_pressure(struct sock *sk) 112 { 113 sctp_memory_pressure = 1; 114 } 115 116 117 /* Get the sndbuf space available at the time on the association. */ 118 static inline int sctp_wspace(struct sctp_association *asoc) 119 { 120 int amt; 121 122 if (asoc->ep->sndbuf_policy) 123 amt = asoc->sndbuf_used; 124 else 125 amt = sk_wmem_alloc_get(asoc->base.sk); 126 127 if (amt >= asoc->base.sk->sk_sndbuf) { 128 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 129 amt = 0; 130 else { 131 amt = sk_stream_wspace(asoc->base.sk); 132 if (amt < 0) 133 amt = 0; 134 } 135 } else { 136 amt = asoc->base.sk->sk_sndbuf - amt; 137 } 138 return amt; 139 } 140 141 /* Increment the used sndbuf space count of the corresponding association by 142 * the size of the outgoing data chunk. 143 * Also, set the skb destructor for sndbuf accounting later. 144 * 145 * Since it is always 1-1 between chunk and skb, and also a new skb is always 146 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 147 * destructor in the data chunk skb for the purpose of the sndbuf space 148 * tracking. 149 */ 150 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 151 { 152 struct sctp_association *asoc = chunk->asoc; 153 struct sock *sk = asoc->base.sk; 154 155 /* The sndbuf space is tracked per association. */ 156 sctp_association_hold(asoc); 157 158 skb_set_owner_w(chunk->skb, sk); 159 160 chunk->skb->destructor = sctp_wfree; 161 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 162 skb_shinfo(chunk->skb)->destructor_arg = chunk; 163 164 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 165 sizeof(struct sk_buff) + 166 sizeof(struct sctp_chunk); 167 168 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 169 sk->sk_wmem_queued += chunk->skb->truesize; 170 sk_mem_charge(sk, chunk->skb->truesize); 171 } 172 173 /* Verify that this is a valid address. */ 174 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 175 int len) 176 { 177 struct sctp_af *af; 178 179 /* Verify basic sockaddr. */ 180 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 181 if (!af) 182 return -EINVAL; 183 184 /* Is this a valid SCTP address? */ 185 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 186 return -EINVAL; 187 188 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 189 return -EINVAL; 190 191 return 0; 192 } 193 194 /* Look up the association by its id. If this is not a UDP-style 195 * socket, the ID field is always ignored. 196 */ 197 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 198 { 199 struct sctp_association *asoc = NULL; 200 201 /* If this is not a UDP-style socket, assoc id should be ignored. */ 202 if (!sctp_style(sk, UDP)) { 203 /* Return NULL if the socket state is not ESTABLISHED. It 204 * could be a TCP-style listening socket or a socket which 205 * hasn't yet called connect() to establish an association. 206 */ 207 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 208 return NULL; 209 210 /* Get the first and the only association from the list. */ 211 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 212 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 213 struct sctp_association, asocs); 214 return asoc; 215 } 216 217 /* Otherwise this is a UDP-style socket. */ 218 if (!id || (id == (sctp_assoc_t)-1)) 219 return NULL; 220 221 spin_lock_bh(&sctp_assocs_id_lock); 222 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 223 spin_unlock_bh(&sctp_assocs_id_lock); 224 225 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 226 return NULL; 227 228 return asoc; 229 } 230 231 /* Look up the transport from an address and an assoc id. If both address and 232 * id are specified, the associations matching the address and the id should be 233 * the same. 234 */ 235 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 236 struct sockaddr_storage *addr, 237 sctp_assoc_t id) 238 { 239 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 240 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 241 union sctp_addr *laddr = (union sctp_addr *)addr; 242 struct sctp_transport *transport; 243 244 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 245 return NULL; 246 247 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 248 laddr, 249 &transport); 250 251 if (!addr_asoc) 252 return NULL; 253 254 id_asoc = sctp_id2assoc(sk, id); 255 if (id_asoc && (id_asoc != addr_asoc)) 256 return NULL; 257 258 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 259 (union sctp_addr *)addr); 260 261 return transport; 262 } 263 264 /* API 3.1.2 bind() - UDP Style Syntax 265 * The syntax of bind() is, 266 * 267 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 268 * 269 * sd - the socket descriptor returned by socket(). 270 * addr - the address structure (struct sockaddr_in or struct 271 * sockaddr_in6 [RFC 2553]), 272 * addr_len - the size of the address structure. 273 */ 274 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 275 { 276 int retval = 0; 277 278 lock_sock(sk); 279 280 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 281 addr, addr_len); 282 283 /* Disallow binding twice. */ 284 if (!sctp_sk(sk)->ep->base.bind_addr.port) 285 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 286 addr_len); 287 else 288 retval = -EINVAL; 289 290 release_sock(sk); 291 292 return retval; 293 } 294 295 static long sctp_get_port_local(struct sock *, union sctp_addr *); 296 297 /* Verify this is a valid sockaddr. */ 298 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 299 union sctp_addr *addr, int len) 300 { 301 struct sctp_af *af; 302 303 /* Check minimum size. */ 304 if (len < sizeof (struct sockaddr)) 305 return NULL; 306 307 /* V4 mapped address are really of AF_INET family */ 308 if (addr->sa.sa_family == AF_INET6 && 309 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { 310 if (!opt->pf->af_supported(AF_INET, opt)) 311 return NULL; 312 } else { 313 /* Does this PF support this AF? */ 314 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 315 return NULL; 316 } 317 318 /* If we get this far, af is valid. */ 319 af = sctp_get_af_specific(addr->sa.sa_family); 320 321 if (len < af->sockaddr_len) 322 return NULL; 323 324 return af; 325 } 326 327 /* Bind a local address either to an endpoint or to an association. */ 328 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 329 { 330 struct net *net = sock_net(sk); 331 struct sctp_sock *sp = sctp_sk(sk); 332 struct sctp_endpoint *ep = sp->ep; 333 struct sctp_bind_addr *bp = &ep->base.bind_addr; 334 struct sctp_af *af; 335 unsigned short snum; 336 int ret = 0; 337 338 /* Common sockaddr verification. */ 339 af = sctp_sockaddr_af(sp, addr, len); 340 if (!af) { 341 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 342 __func__, sk, addr, len); 343 return -EINVAL; 344 } 345 346 snum = ntohs(addr->v4.sin_port); 347 348 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 349 __func__, sk, &addr->sa, bp->port, snum, len); 350 351 /* PF specific bind() address verification. */ 352 if (!sp->pf->bind_verify(sp, addr)) 353 return -EADDRNOTAVAIL; 354 355 /* We must either be unbound, or bind to the same port. 356 * It's OK to allow 0 ports if we are already bound. 357 * We'll just inhert an already bound port in this case 358 */ 359 if (bp->port) { 360 if (!snum) 361 snum = bp->port; 362 else if (snum != bp->port) { 363 pr_debug("%s: new port %d doesn't match existing port " 364 "%d\n", __func__, snum, bp->port); 365 return -EINVAL; 366 } 367 } 368 369 if (snum && snum < inet_prot_sock(net) && 370 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 371 return -EACCES; 372 373 /* See if the address matches any of the addresses we may have 374 * already bound before checking against other endpoints. 375 */ 376 if (sctp_bind_addr_match(bp, addr, sp)) 377 return -EINVAL; 378 379 /* Make sure we are allowed to bind here. 380 * The function sctp_get_port_local() does duplicate address 381 * detection. 382 */ 383 addr->v4.sin_port = htons(snum); 384 if ((ret = sctp_get_port_local(sk, addr))) { 385 return -EADDRINUSE; 386 } 387 388 /* Refresh ephemeral port. */ 389 if (!bp->port) 390 bp->port = inet_sk(sk)->inet_num; 391 392 /* Add the address to the bind address list. 393 * Use GFP_ATOMIC since BHs will be disabled. 394 */ 395 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 396 SCTP_ADDR_SRC, GFP_ATOMIC); 397 398 /* Copy back into socket for getsockname() use. */ 399 if (!ret) { 400 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 401 sp->pf->to_sk_saddr(addr, sk); 402 } 403 404 return ret; 405 } 406 407 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 408 * 409 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 410 * at any one time. If a sender, after sending an ASCONF chunk, decides 411 * it needs to transfer another ASCONF Chunk, it MUST wait until the 412 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 413 * subsequent ASCONF. Note this restriction binds each side, so at any 414 * time two ASCONF may be in-transit on any given association (one sent 415 * from each endpoint). 416 */ 417 static int sctp_send_asconf(struct sctp_association *asoc, 418 struct sctp_chunk *chunk) 419 { 420 struct net *net = sock_net(asoc->base.sk); 421 int retval = 0; 422 423 /* If there is an outstanding ASCONF chunk, queue it for later 424 * transmission. 425 */ 426 if (asoc->addip_last_asconf) { 427 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 428 goto out; 429 } 430 431 /* Hold the chunk until an ASCONF_ACK is received. */ 432 sctp_chunk_hold(chunk); 433 retval = sctp_primitive_ASCONF(net, asoc, chunk); 434 if (retval) 435 sctp_chunk_free(chunk); 436 else 437 asoc->addip_last_asconf = chunk; 438 439 out: 440 return retval; 441 } 442 443 /* Add a list of addresses as bind addresses to local endpoint or 444 * association. 445 * 446 * Basically run through each address specified in the addrs/addrcnt 447 * array/length pair, determine if it is IPv6 or IPv4 and call 448 * sctp_do_bind() on it. 449 * 450 * If any of them fails, then the operation will be reversed and the 451 * ones that were added will be removed. 452 * 453 * Only sctp_setsockopt_bindx() is supposed to call this function. 454 */ 455 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 456 { 457 int cnt; 458 int retval = 0; 459 void *addr_buf; 460 struct sockaddr *sa_addr; 461 struct sctp_af *af; 462 463 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 464 addrs, addrcnt); 465 466 addr_buf = addrs; 467 for (cnt = 0; cnt < addrcnt; cnt++) { 468 /* The list may contain either IPv4 or IPv6 address; 469 * determine the address length for walking thru the list. 470 */ 471 sa_addr = addr_buf; 472 af = sctp_get_af_specific(sa_addr->sa_family); 473 if (!af) { 474 retval = -EINVAL; 475 goto err_bindx_add; 476 } 477 478 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 479 af->sockaddr_len); 480 481 addr_buf += af->sockaddr_len; 482 483 err_bindx_add: 484 if (retval < 0) { 485 /* Failed. Cleanup the ones that have been added */ 486 if (cnt > 0) 487 sctp_bindx_rem(sk, addrs, cnt); 488 return retval; 489 } 490 } 491 492 return retval; 493 } 494 495 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 496 * associations that are part of the endpoint indicating that a list of local 497 * addresses are added to the endpoint. 498 * 499 * If any of the addresses is already in the bind address list of the 500 * association, we do not send the chunk for that association. But it will not 501 * affect other associations. 502 * 503 * Only sctp_setsockopt_bindx() is supposed to call this function. 504 */ 505 static int sctp_send_asconf_add_ip(struct sock *sk, 506 struct sockaddr *addrs, 507 int addrcnt) 508 { 509 struct net *net = sock_net(sk); 510 struct sctp_sock *sp; 511 struct sctp_endpoint *ep; 512 struct sctp_association *asoc; 513 struct sctp_bind_addr *bp; 514 struct sctp_chunk *chunk; 515 struct sctp_sockaddr_entry *laddr; 516 union sctp_addr *addr; 517 union sctp_addr saveaddr; 518 void *addr_buf; 519 struct sctp_af *af; 520 struct list_head *p; 521 int i; 522 int retval = 0; 523 524 if (!net->sctp.addip_enable) 525 return retval; 526 527 sp = sctp_sk(sk); 528 ep = sp->ep; 529 530 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 531 __func__, sk, addrs, addrcnt); 532 533 list_for_each_entry(asoc, &ep->asocs, asocs) { 534 if (!asoc->peer.asconf_capable) 535 continue; 536 537 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 538 continue; 539 540 if (!sctp_state(asoc, ESTABLISHED)) 541 continue; 542 543 /* Check if any address in the packed array of addresses is 544 * in the bind address list of the association. If so, 545 * do not send the asconf chunk to its peer, but continue with 546 * other associations. 547 */ 548 addr_buf = addrs; 549 for (i = 0; i < addrcnt; i++) { 550 addr = addr_buf; 551 af = sctp_get_af_specific(addr->v4.sin_family); 552 if (!af) { 553 retval = -EINVAL; 554 goto out; 555 } 556 557 if (sctp_assoc_lookup_laddr(asoc, addr)) 558 break; 559 560 addr_buf += af->sockaddr_len; 561 } 562 if (i < addrcnt) 563 continue; 564 565 /* Use the first valid address in bind addr list of 566 * association as Address Parameter of ASCONF CHUNK. 567 */ 568 bp = &asoc->base.bind_addr; 569 p = bp->address_list.next; 570 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 571 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 572 addrcnt, SCTP_PARAM_ADD_IP); 573 if (!chunk) { 574 retval = -ENOMEM; 575 goto out; 576 } 577 578 /* Add the new addresses to the bind address list with 579 * use_as_src set to 0. 580 */ 581 addr_buf = addrs; 582 for (i = 0; i < addrcnt; i++) { 583 addr = addr_buf; 584 af = sctp_get_af_specific(addr->v4.sin_family); 585 memcpy(&saveaddr, addr, af->sockaddr_len); 586 retval = sctp_add_bind_addr(bp, &saveaddr, 587 sizeof(saveaddr), 588 SCTP_ADDR_NEW, GFP_ATOMIC); 589 addr_buf += af->sockaddr_len; 590 } 591 if (asoc->src_out_of_asoc_ok) { 592 struct sctp_transport *trans; 593 594 list_for_each_entry(trans, 595 &asoc->peer.transport_addr_list, transports) { 596 /* Clear the source and route cache */ 597 sctp_transport_dst_release(trans); 598 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 599 2*asoc->pathmtu, 4380)); 600 trans->ssthresh = asoc->peer.i.a_rwnd; 601 trans->rto = asoc->rto_initial; 602 sctp_max_rto(asoc, trans); 603 trans->rtt = trans->srtt = trans->rttvar = 0; 604 sctp_transport_route(trans, NULL, 605 sctp_sk(asoc->base.sk)); 606 } 607 } 608 retval = sctp_send_asconf(asoc, chunk); 609 } 610 611 out: 612 return retval; 613 } 614 615 /* Remove a list of addresses from bind addresses list. Do not remove the 616 * last address. 617 * 618 * Basically run through each address specified in the addrs/addrcnt 619 * array/length pair, determine if it is IPv6 or IPv4 and call 620 * sctp_del_bind() on it. 621 * 622 * If any of them fails, then the operation will be reversed and the 623 * ones that were removed will be added back. 624 * 625 * At least one address has to be left; if only one address is 626 * available, the operation will return -EBUSY. 627 * 628 * Only sctp_setsockopt_bindx() is supposed to call this function. 629 */ 630 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 631 { 632 struct sctp_sock *sp = sctp_sk(sk); 633 struct sctp_endpoint *ep = sp->ep; 634 int cnt; 635 struct sctp_bind_addr *bp = &ep->base.bind_addr; 636 int retval = 0; 637 void *addr_buf; 638 union sctp_addr *sa_addr; 639 struct sctp_af *af; 640 641 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 642 __func__, sk, addrs, addrcnt); 643 644 addr_buf = addrs; 645 for (cnt = 0; cnt < addrcnt; cnt++) { 646 /* If the bind address list is empty or if there is only one 647 * bind address, there is nothing more to be removed (we need 648 * at least one address here). 649 */ 650 if (list_empty(&bp->address_list) || 651 (sctp_list_single_entry(&bp->address_list))) { 652 retval = -EBUSY; 653 goto err_bindx_rem; 654 } 655 656 sa_addr = addr_buf; 657 af = sctp_get_af_specific(sa_addr->sa.sa_family); 658 if (!af) { 659 retval = -EINVAL; 660 goto err_bindx_rem; 661 } 662 663 if (!af->addr_valid(sa_addr, sp, NULL)) { 664 retval = -EADDRNOTAVAIL; 665 goto err_bindx_rem; 666 } 667 668 if (sa_addr->v4.sin_port && 669 sa_addr->v4.sin_port != htons(bp->port)) { 670 retval = -EINVAL; 671 goto err_bindx_rem; 672 } 673 674 if (!sa_addr->v4.sin_port) 675 sa_addr->v4.sin_port = htons(bp->port); 676 677 /* FIXME - There is probably a need to check if sk->sk_saddr and 678 * sk->sk_rcv_addr are currently set to one of the addresses to 679 * be removed. This is something which needs to be looked into 680 * when we are fixing the outstanding issues with multi-homing 681 * socket routing and failover schemes. Refer to comments in 682 * sctp_do_bind(). -daisy 683 */ 684 retval = sctp_del_bind_addr(bp, sa_addr); 685 686 addr_buf += af->sockaddr_len; 687 err_bindx_rem: 688 if (retval < 0) { 689 /* Failed. Add the ones that has been removed back */ 690 if (cnt > 0) 691 sctp_bindx_add(sk, addrs, cnt); 692 return retval; 693 } 694 } 695 696 return retval; 697 } 698 699 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 700 * the associations that are part of the endpoint indicating that a list of 701 * local addresses are removed from the endpoint. 702 * 703 * If any of the addresses is already in the bind address list of the 704 * association, we do not send the chunk for that association. But it will not 705 * affect other associations. 706 * 707 * Only sctp_setsockopt_bindx() is supposed to call this function. 708 */ 709 static int sctp_send_asconf_del_ip(struct sock *sk, 710 struct sockaddr *addrs, 711 int addrcnt) 712 { 713 struct net *net = sock_net(sk); 714 struct sctp_sock *sp; 715 struct sctp_endpoint *ep; 716 struct sctp_association *asoc; 717 struct sctp_transport *transport; 718 struct sctp_bind_addr *bp; 719 struct sctp_chunk *chunk; 720 union sctp_addr *laddr; 721 void *addr_buf; 722 struct sctp_af *af; 723 struct sctp_sockaddr_entry *saddr; 724 int i; 725 int retval = 0; 726 int stored = 0; 727 728 chunk = NULL; 729 if (!net->sctp.addip_enable) 730 return retval; 731 732 sp = sctp_sk(sk); 733 ep = sp->ep; 734 735 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 736 __func__, sk, addrs, addrcnt); 737 738 list_for_each_entry(asoc, &ep->asocs, asocs) { 739 740 if (!asoc->peer.asconf_capable) 741 continue; 742 743 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 744 continue; 745 746 if (!sctp_state(asoc, ESTABLISHED)) 747 continue; 748 749 /* Check if any address in the packed array of addresses is 750 * not present in the bind address list of the association. 751 * If so, do not send the asconf chunk to its peer, but 752 * continue with other associations. 753 */ 754 addr_buf = addrs; 755 for (i = 0; i < addrcnt; i++) { 756 laddr = addr_buf; 757 af = sctp_get_af_specific(laddr->v4.sin_family); 758 if (!af) { 759 retval = -EINVAL; 760 goto out; 761 } 762 763 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 764 break; 765 766 addr_buf += af->sockaddr_len; 767 } 768 if (i < addrcnt) 769 continue; 770 771 /* Find one address in the association's bind address list 772 * that is not in the packed array of addresses. This is to 773 * make sure that we do not delete all the addresses in the 774 * association. 775 */ 776 bp = &asoc->base.bind_addr; 777 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 778 addrcnt, sp); 779 if ((laddr == NULL) && (addrcnt == 1)) { 780 if (asoc->asconf_addr_del_pending) 781 continue; 782 asoc->asconf_addr_del_pending = 783 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 784 if (asoc->asconf_addr_del_pending == NULL) { 785 retval = -ENOMEM; 786 goto out; 787 } 788 asoc->asconf_addr_del_pending->sa.sa_family = 789 addrs->sa_family; 790 asoc->asconf_addr_del_pending->v4.sin_port = 791 htons(bp->port); 792 if (addrs->sa_family == AF_INET) { 793 struct sockaddr_in *sin; 794 795 sin = (struct sockaddr_in *)addrs; 796 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 797 } else if (addrs->sa_family == AF_INET6) { 798 struct sockaddr_in6 *sin6; 799 800 sin6 = (struct sockaddr_in6 *)addrs; 801 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 802 } 803 804 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 805 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 806 asoc->asconf_addr_del_pending); 807 808 asoc->src_out_of_asoc_ok = 1; 809 stored = 1; 810 goto skip_mkasconf; 811 } 812 813 if (laddr == NULL) 814 return -EINVAL; 815 816 /* We do not need RCU protection throughout this loop 817 * because this is done under a socket lock from the 818 * setsockopt call. 819 */ 820 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 821 SCTP_PARAM_DEL_IP); 822 if (!chunk) { 823 retval = -ENOMEM; 824 goto out; 825 } 826 827 skip_mkasconf: 828 /* Reset use_as_src flag for the addresses in the bind address 829 * list that are to be deleted. 830 */ 831 addr_buf = addrs; 832 for (i = 0; i < addrcnt; i++) { 833 laddr = addr_buf; 834 af = sctp_get_af_specific(laddr->v4.sin_family); 835 list_for_each_entry(saddr, &bp->address_list, list) { 836 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 837 saddr->state = SCTP_ADDR_DEL; 838 } 839 addr_buf += af->sockaddr_len; 840 } 841 842 /* Update the route and saddr entries for all the transports 843 * as some of the addresses in the bind address list are 844 * about to be deleted and cannot be used as source addresses. 845 */ 846 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 847 transports) { 848 sctp_transport_dst_release(transport); 849 sctp_transport_route(transport, NULL, 850 sctp_sk(asoc->base.sk)); 851 } 852 853 if (stored) 854 /* We don't need to transmit ASCONF */ 855 continue; 856 retval = sctp_send_asconf(asoc, chunk); 857 } 858 out: 859 return retval; 860 } 861 862 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 863 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 864 { 865 struct sock *sk = sctp_opt2sk(sp); 866 union sctp_addr *addr; 867 struct sctp_af *af; 868 869 /* It is safe to write port space in caller. */ 870 addr = &addrw->a; 871 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 872 af = sctp_get_af_specific(addr->sa.sa_family); 873 if (!af) 874 return -EINVAL; 875 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 876 return -EINVAL; 877 878 if (addrw->state == SCTP_ADDR_NEW) 879 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 880 else 881 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 882 } 883 884 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 885 * 886 * API 8.1 887 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 888 * int flags); 889 * 890 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 891 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 892 * or IPv6 addresses. 893 * 894 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 895 * Section 3.1.2 for this usage. 896 * 897 * addrs is a pointer to an array of one or more socket addresses. Each 898 * address is contained in its appropriate structure (i.e. struct 899 * sockaddr_in or struct sockaddr_in6) the family of the address type 900 * must be used to distinguish the address length (note that this 901 * representation is termed a "packed array" of addresses). The caller 902 * specifies the number of addresses in the array with addrcnt. 903 * 904 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 905 * -1, and sets errno to the appropriate error code. 906 * 907 * For SCTP, the port given in each socket address must be the same, or 908 * sctp_bindx() will fail, setting errno to EINVAL. 909 * 910 * The flags parameter is formed from the bitwise OR of zero or more of 911 * the following currently defined flags: 912 * 913 * SCTP_BINDX_ADD_ADDR 914 * 915 * SCTP_BINDX_REM_ADDR 916 * 917 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 918 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 919 * addresses from the association. The two flags are mutually exclusive; 920 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 921 * not remove all addresses from an association; sctp_bindx() will 922 * reject such an attempt with EINVAL. 923 * 924 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 925 * additional addresses with an endpoint after calling bind(). Or use 926 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 927 * socket is associated with so that no new association accepted will be 928 * associated with those addresses. If the endpoint supports dynamic 929 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 930 * endpoint to send the appropriate message to the peer to change the 931 * peers address lists. 932 * 933 * Adding and removing addresses from a connected association is 934 * optional functionality. Implementations that do not support this 935 * functionality should return EOPNOTSUPP. 936 * 937 * Basically do nothing but copying the addresses from user to kernel 938 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 939 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 940 * from userspace. 941 * 942 * We don't use copy_from_user() for optimization: we first do the 943 * sanity checks (buffer size -fast- and access check-healthy 944 * pointer); if all of those succeed, then we can alloc the memory 945 * (expensive operation) needed to copy the data to kernel. Then we do 946 * the copying without checking the user space area 947 * (__copy_from_user()). 948 * 949 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 950 * it. 951 * 952 * sk The sk of the socket 953 * addrs The pointer to the addresses in user land 954 * addrssize Size of the addrs buffer 955 * op Operation to perform (add or remove, see the flags of 956 * sctp_bindx) 957 * 958 * Returns 0 if ok, <0 errno code on error. 959 */ 960 static int sctp_setsockopt_bindx(struct sock *sk, 961 struct sockaddr __user *addrs, 962 int addrs_size, int op) 963 { 964 struct sockaddr *kaddrs; 965 int err; 966 int addrcnt = 0; 967 int walk_size = 0; 968 struct sockaddr *sa_addr; 969 void *addr_buf; 970 struct sctp_af *af; 971 972 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 973 __func__, sk, addrs, addrs_size, op); 974 975 if (unlikely(addrs_size <= 0)) 976 return -EINVAL; 977 978 /* Check the user passed a healthy pointer. */ 979 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 980 return -EFAULT; 981 982 /* Alloc space for the address array in kernel memory. */ 983 kaddrs = kmalloc(addrs_size, GFP_USER | __GFP_NOWARN); 984 if (unlikely(!kaddrs)) 985 return -ENOMEM; 986 987 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 988 kfree(kaddrs); 989 return -EFAULT; 990 } 991 992 /* Walk through the addrs buffer and count the number of addresses. */ 993 addr_buf = kaddrs; 994 while (walk_size < addrs_size) { 995 if (walk_size + sizeof(sa_family_t) > addrs_size) { 996 kfree(kaddrs); 997 return -EINVAL; 998 } 999 1000 sa_addr = addr_buf; 1001 af = sctp_get_af_specific(sa_addr->sa_family); 1002 1003 /* If the address family is not supported or if this address 1004 * causes the address buffer to overflow return EINVAL. 1005 */ 1006 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1007 kfree(kaddrs); 1008 return -EINVAL; 1009 } 1010 addrcnt++; 1011 addr_buf += af->sockaddr_len; 1012 walk_size += af->sockaddr_len; 1013 } 1014 1015 /* Do the work. */ 1016 switch (op) { 1017 case SCTP_BINDX_ADD_ADDR: 1018 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1019 if (err) 1020 goto out; 1021 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1022 break; 1023 1024 case SCTP_BINDX_REM_ADDR: 1025 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1026 if (err) 1027 goto out; 1028 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1029 break; 1030 1031 default: 1032 err = -EINVAL; 1033 break; 1034 } 1035 1036 out: 1037 kfree(kaddrs); 1038 1039 return err; 1040 } 1041 1042 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1043 * 1044 * Common routine for handling connect() and sctp_connectx(). 1045 * Connect will come in with just a single address. 1046 */ 1047 static int __sctp_connect(struct sock *sk, 1048 struct sockaddr *kaddrs, 1049 int addrs_size, 1050 sctp_assoc_t *assoc_id) 1051 { 1052 struct net *net = sock_net(sk); 1053 struct sctp_sock *sp; 1054 struct sctp_endpoint *ep; 1055 struct sctp_association *asoc = NULL; 1056 struct sctp_association *asoc2; 1057 struct sctp_transport *transport; 1058 union sctp_addr to; 1059 enum sctp_scope scope; 1060 long timeo; 1061 int err = 0; 1062 int addrcnt = 0; 1063 int walk_size = 0; 1064 union sctp_addr *sa_addr = NULL; 1065 void *addr_buf; 1066 unsigned short port; 1067 unsigned int f_flags = 0; 1068 1069 sp = sctp_sk(sk); 1070 ep = sp->ep; 1071 1072 /* connect() cannot be done on a socket that is already in ESTABLISHED 1073 * state - UDP-style peeled off socket or a TCP-style socket that 1074 * is already connected. 1075 * It cannot be done even on a TCP-style listening socket. 1076 */ 1077 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1078 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1079 err = -EISCONN; 1080 goto out_free; 1081 } 1082 1083 /* Walk through the addrs buffer and count the number of addresses. */ 1084 addr_buf = kaddrs; 1085 while (walk_size < addrs_size) { 1086 struct sctp_af *af; 1087 1088 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1089 err = -EINVAL; 1090 goto out_free; 1091 } 1092 1093 sa_addr = addr_buf; 1094 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1095 1096 /* If the address family is not supported or if this address 1097 * causes the address buffer to overflow return EINVAL. 1098 */ 1099 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1100 err = -EINVAL; 1101 goto out_free; 1102 } 1103 1104 port = ntohs(sa_addr->v4.sin_port); 1105 1106 /* Save current address so we can work with it */ 1107 memcpy(&to, sa_addr, af->sockaddr_len); 1108 1109 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1110 if (err) 1111 goto out_free; 1112 1113 /* Make sure the destination port is correctly set 1114 * in all addresses. 1115 */ 1116 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1117 err = -EINVAL; 1118 goto out_free; 1119 } 1120 1121 /* Check if there already is a matching association on the 1122 * endpoint (other than the one created here). 1123 */ 1124 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1125 if (asoc2 && asoc2 != asoc) { 1126 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1127 err = -EISCONN; 1128 else 1129 err = -EALREADY; 1130 goto out_free; 1131 } 1132 1133 /* If we could not find a matching association on the endpoint, 1134 * make sure that there is no peeled-off association matching 1135 * the peer address even on another socket. 1136 */ 1137 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1138 err = -EADDRNOTAVAIL; 1139 goto out_free; 1140 } 1141 1142 if (!asoc) { 1143 /* If a bind() or sctp_bindx() is not called prior to 1144 * an sctp_connectx() call, the system picks an 1145 * ephemeral port and will choose an address set 1146 * equivalent to binding with a wildcard address. 1147 */ 1148 if (!ep->base.bind_addr.port) { 1149 if (sctp_autobind(sk)) { 1150 err = -EAGAIN; 1151 goto out_free; 1152 } 1153 } else { 1154 /* 1155 * If an unprivileged user inherits a 1-many 1156 * style socket with open associations on a 1157 * privileged port, it MAY be permitted to 1158 * accept new associations, but it SHOULD NOT 1159 * be permitted to open new associations. 1160 */ 1161 if (ep->base.bind_addr.port < 1162 inet_prot_sock(net) && 1163 !ns_capable(net->user_ns, 1164 CAP_NET_BIND_SERVICE)) { 1165 err = -EACCES; 1166 goto out_free; 1167 } 1168 } 1169 1170 scope = sctp_scope(&to); 1171 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1172 if (!asoc) { 1173 err = -ENOMEM; 1174 goto out_free; 1175 } 1176 1177 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1178 GFP_KERNEL); 1179 if (err < 0) { 1180 goto out_free; 1181 } 1182 1183 } 1184 1185 /* Prime the peer's transport structures. */ 1186 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1187 SCTP_UNKNOWN); 1188 if (!transport) { 1189 err = -ENOMEM; 1190 goto out_free; 1191 } 1192 1193 addrcnt++; 1194 addr_buf += af->sockaddr_len; 1195 walk_size += af->sockaddr_len; 1196 } 1197 1198 /* In case the user of sctp_connectx() wants an association 1199 * id back, assign one now. 1200 */ 1201 if (assoc_id) { 1202 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1203 if (err < 0) 1204 goto out_free; 1205 } 1206 1207 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1208 if (err < 0) { 1209 goto out_free; 1210 } 1211 1212 /* Initialize sk's dport and daddr for getpeername() */ 1213 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1214 sp->pf->to_sk_daddr(sa_addr, sk); 1215 sk->sk_err = 0; 1216 1217 /* in-kernel sockets don't generally have a file allocated to them 1218 * if all they do is call sock_create_kern(). 1219 */ 1220 if (sk->sk_socket->file) 1221 f_flags = sk->sk_socket->file->f_flags; 1222 1223 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1224 1225 if (assoc_id) 1226 *assoc_id = asoc->assoc_id; 1227 err = sctp_wait_for_connect(asoc, &timeo); 1228 /* Note: the asoc may be freed after the return of 1229 * sctp_wait_for_connect. 1230 */ 1231 1232 /* Don't free association on exit. */ 1233 asoc = NULL; 1234 1235 out_free: 1236 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1237 __func__, asoc, kaddrs, err); 1238 1239 if (asoc) { 1240 /* sctp_primitive_ASSOCIATE may have added this association 1241 * To the hash table, try to unhash it, just in case, its a noop 1242 * if it wasn't hashed so we're safe 1243 */ 1244 sctp_association_free(asoc); 1245 } 1246 return err; 1247 } 1248 1249 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1250 * 1251 * API 8.9 1252 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1253 * sctp_assoc_t *asoc); 1254 * 1255 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1256 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1257 * or IPv6 addresses. 1258 * 1259 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1260 * Section 3.1.2 for this usage. 1261 * 1262 * addrs is a pointer to an array of one or more socket addresses. Each 1263 * address is contained in its appropriate structure (i.e. struct 1264 * sockaddr_in or struct sockaddr_in6) the family of the address type 1265 * must be used to distengish the address length (note that this 1266 * representation is termed a "packed array" of addresses). The caller 1267 * specifies the number of addresses in the array with addrcnt. 1268 * 1269 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1270 * the association id of the new association. On failure, sctp_connectx() 1271 * returns -1, and sets errno to the appropriate error code. The assoc_id 1272 * is not touched by the kernel. 1273 * 1274 * For SCTP, the port given in each socket address must be the same, or 1275 * sctp_connectx() will fail, setting errno to EINVAL. 1276 * 1277 * An application can use sctp_connectx to initiate an association with 1278 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1279 * allows a caller to specify multiple addresses at which a peer can be 1280 * reached. The way the SCTP stack uses the list of addresses to set up 1281 * the association is implementation dependent. This function only 1282 * specifies that the stack will try to make use of all the addresses in 1283 * the list when needed. 1284 * 1285 * Note that the list of addresses passed in is only used for setting up 1286 * the association. It does not necessarily equal the set of addresses 1287 * the peer uses for the resulting association. If the caller wants to 1288 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1289 * retrieve them after the association has been set up. 1290 * 1291 * Basically do nothing but copying the addresses from user to kernel 1292 * land and invoking either sctp_connectx(). This is used for tunneling 1293 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1294 * 1295 * We don't use copy_from_user() for optimization: we first do the 1296 * sanity checks (buffer size -fast- and access check-healthy 1297 * pointer); if all of those succeed, then we can alloc the memory 1298 * (expensive operation) needed to copy the data to kernel. Then we do 1299 * the copying without checking the user space area 1300 * (__copy_from_user()). 1301 * 1302 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1303 * it. 1304 * 1305 * sk The sk of the socket 1306 * addrs The pointer to the addresses in user land 1307 * addrssize Size of the addrs buffer 1308 * 1309 * Returns >=0 if ok, <0 errno code on error. 1310 */ 1311 static int __sctp_setsockopt_connectx(struct sock *sk, 1312 struct sockaddr __user *addrs, 1313 int addrs_size, 1314 sctp_assoc_t *assoc_id) 1315 { 1316 struct sockaddr *kaddrs; 1317 gfp_t gfp = GFP_KERNEL; 1318 int err = 0; 1319 1320 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1321 __func__, sk, addrs, addrs_size); 1322 1323 if (unlikely(addrs_size <= 0)) 1324 return -EINVAL; 1325 1326 /* Check the user passed a healthy pointer. */ 1327 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1328 return -EFAULT; 1329 1330 /* Alloc space for the address array in kernel memory. */ 1331 if (sk->sk_socket->file) 1332 gfp = GFP_USER | __GFP_NOWARN; 1333 kaddrs = kmalloc(addrs_size, gfp); 1334 if (unlikely(!kaddrs)) 1335 return -ENOMEM; 1336 1337 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1338 err = -EFAULT; 1339 } else { 1340 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1341 } 1342 1343 kfree(kaddrs); 1344 1345 return err; 1346 } 1347 1348 /* 1349 * This is an older interface. It's kept for backward compatibility 1350 * to the option that doesn't provide association id. 1351 */ 1352 static int sctp_setsockopt_connectx_old(struct sock *sk, 1353 struct sockaddr __user *addrs, 1354 int addrs_size) 1355 { 1356 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1357 } 1358 1359 /* 1360 * New interface for the API. The since the API is done with a socket 1361 * option, to make it simple we feed back the association id is as a return 1362 * indication to the call. Error is always negative and association id is 1363 * always positive. 1364 */ 1365 static int sctp_setsockopt_connectx(struct sock *sk, 1366 struct sockaddr __user *addrs, 1367 int addrs_size) 1368 { 1369 sctp_assoc_t assoc_id = 0; 1370 int err = 0; 1371 1372 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1373 1374 if (err) 1375 return err; 1376 else 1377 return assoc_id; 1378 } 1379 1380 /* 1381 * New (hopefully final) interface for the API. 1382 * We use the sctp_getaddrs_old structure so that use-space library 1383 * can avoid any unnecessary allocations. The only different part 1384 * is that we store the actual length of the address buffer into the 1385 * addrs_num structure member. That way we can re-use the existing 1386 * code. 1387 */ 1388 #ifdef CONFIG_COMPAT 1389 struct compat_sctp_getaddrs_old { 1390 sctp_assoc_t assoc_id; 1391 s32 addr_num; 1392 compat_uptr_t addrs; /* struct sockaddr * */ 1393 }; 1394 #endif 1395 1396 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1397 char __user *optval, 1398 int __user *optlen) 1399 { 1400 struct sctp_getaddrs_old param; 1401 sctp_assoc_t assoc_id = 0; 1402 int err = 0; 1403 1404 #ifdef CONFIG_COMPAT 1405 if (in_compat_syscall()) { 1406 struct compat_sctp_getaddrs_old param32; 1407 1408 if (len < sizeof(param32)) 1409 return -EINVAL; 1410 if (copy_from_user(¶m32, optval, sizeof(param32))) 1411 return -EFAULT; 1412 1413 param.assoc_id = param32.assoc_id; 1414 param.addr_num = param32.addr_num; 1415 param.addrs = compat_ptr(param32.addrs); 1416 } else 1417 #endif 1418 { 1419 if (len < sizeof(param)) 1420 return -EINVAL; 1421 if (copy_from_user(¶m, optval, sizeof(param))) 1422 return -EFAULT; 1423 } 1424 1425 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1426 param.addrs, param.addr_num, 1427 &assoc_id); 1428 if (err == 0 || err == -EINPROGRESS) { 1429 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1430 return -EFAULT; 1431 if (put_user(sizeof(assoc_id), optlen)) 1432 return -EFAULT; 1433 } 1434 1435 return err; 1436 } 1437 1438 /* API 3.1.4 close() - UDP Style Syntax 1439 * Applications use close() to perform graceful shutdown (as described in 1440 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1441 * by a UDP-style socket. 1442 * 1443 * The syntax is 1444 * 1445 * ret = close(int sd); 1446 * 1447 * sd - the socket descriptor of the associations to be closed. 1448 * 1449 * To gracefully shutdown a specific association represented by the 1450 * UDP-style socket, an application should use the sendmsg() call, 1451 * passing no user data, but including the appropriate flag in the 1452 * ancillary data (see Section xxxx). 1453 * 1454 * If sd in the close() call is a branched-off socket representing only 1455 * one association, the shutdown is performed on that association only. 1456 * 1457 * 4.1.6 close() - TCP Style Syntax 1458 * 1459 * Applications use close() to gracefully close down an association. 1460 * 1461 * The syntax is: 1462 * 1463 * int close(int sd); 1464 * 1465 * sd - the socket descriptor of the association to be closed. 1466 * 1467 * After an application calls close() on a socket descriptor, no further 1468 * socket operations will succeed on that descriptor. 1469 * 1470 * API 7.1.4 SO_LINGER 1471 * 1472 * An application using the TCP-style socket can use this option to 1473 * perform the SCTP ABORT primitive. The linger option structure is: 1474 * 1475 * struct linger { 1476 * int l_onoff; // option on/off 1477 * int l_linger; // linger time 1478 * }; 1479 * 1480 * To enable the option, set l_onoff to 1. If the l_linger value is set 1481 * to 0, calling close() is the same as the ABORT primitive. If the 1482 * value is set to a negative value, the setsockopt() call will return 1483 * an error. If the value is set to a positive value linger_time, the 1484 * close() can be blocked for at most linger_time ms. If the graceful 1485 * shutdown phase does not finish during this period, close() will 1486 * return but the graceful shutdown phase continues in the system. 1487 */ 1488 static void sctp_close(struct sock *sk, long timeout) 1489 { 1490 struct net *net = sock_net(sk); 1491 struct sctp_endpoint *ep; 1492 struct sctp_association *asoc; 1493 struct list_head *pos, *temp; 1494 unsigned int data_was_unread; 1495 1496 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1497 1498 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1499 sk->sk_shutdown = SHUTDOWN_MASK; 1500 sk->sk_state = SCTP_SS_CLOSING; 1501 1502 ep = sctp_sk(sk)->ep; 1503 1504 /* Clean up any skbs sitting on the receive queue. */ 1505 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1506 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1507 1508 /* Walk all associations on an endpoint. */ 1509 list_for_each_safe(pos, temp, &ep->asocs) { 1510 asoc = list_entry(pos, struct sctp_association, asocs); 1511 1512 if (sctp_style(sk, TCP)) { 1513 /* A closed association can still be in the list if 1514 * it belongs to a TCP-style listening socket that is 1515 * not yet accepted. If so, free it. If not, send an 1516 * ABORT or SHUTDOWN based on the linger options. 1517 */ 1518 if (sctp_state(asoc, CLOSED)) { 1519 sctp_association_free(asoc); 1520 continue; 1521 } 1522 } 1523 1524 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1525 !skb_queue_empty(&asoc->ulpq.reasm) || 1526 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1527 struct sctp_chunk *chunk; 1528 1529 chunk = sctp_make_abort_user(asoc, NULL, 0); 1530 sctp_primitive_ABORT(net, asoc, chunk); 1531 } else 1532 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1533 } 1534 1535 /* On a TCP-style socket, block for at most linger_time if set. */ 1536 if (sctp_style(sk, TCP) && timeout) 1537 sctp_wait_for_close(sk, timeout); 1538 1539 /* This will run the backlog queue. */ 1540 release_sock(sk); 1541 1542 /* Supposedly, no process has access to the socket, but 1543 * the net layers still may. 1544 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1545 * held and that should be grabbed before socket lock. 1546 */ 1547 spin_lock_bh(&net->sctp.addr_wq_lock); 1548 bh_lock_sock_nested(sk); 1549 1550 /* Hold the sock, since sk_common_release() will put sock_put() 1551 * and we have just a little more cleanup. 1552 */ 1553 sock_hold(sk); 1554 sk_common_release(sk); 1555 1556 bh_unlock_sock(sk); 1557 spin_unlock_bh(&net->sctp.addr_wq_lock); 1558 1559 sock_put(sk); 1560 1561 SCTP_DBG_OBJCNT_DEC(sock); 1562 } 1563 1564 /* Handle EPIPE error. */ 1565 static int sctp_error(struct sock *sk, int flags, int err) 1566 { 1567 if (err == -EPIPE) 1568 err = sock_error(sk) ? : -EPIPE; 1569 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1570 send_sig(SIGPIPE, current, 0); 1571 return err; 1572 } 1573 1574 /* API 3.1.3 sendmsg() - UDP Style Syntax 1575 * 1576 * An application uses sendmsg() and recvmsg() calls to transmit data to 1577 * and receive data from its peer. 1578 * 1579 * ssize_t sendmsg(int socket, const struct msghdr *message, 1580 * int flags); 1581 * 1582 * socket - the socket descriptor of the endpoint. 1583 * message - pointer to the msghdr structure which contains a single 1584 * user message and possibly some ancillary data. 1585 * 1586 * See Section 5 for complete description of the data 1587 * structures. 1588 * 1589 * flags - flags sent or received with the user message, see Section 1590 * 5 for complete description of the flags. 1591 * 1592 * Note: This function could use a rewrite especially when explicit 1593 * connect support comes in. 1594 */ 1595 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1596 1597 static int sctp_msghdr_parse(const struct msghdr *msg, 1598 struct sctp_cmsgs *cmsgs); 1599 1600 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1601 { 1602 struct net *net = sock_net(sk); 1603 struct sctp_sock *sp; 1604 struct sctp_endpoint *ep; 1605 struct sctp_association *new_asoc = NULL, *asoc = NULL; 1606 struct sctp_transport *transport, *chunk_tp; 1607 struct sctp_chunk *chunk; 1608 union sctp_addr to; 1609 struct sockaddr *msg_name = NULL; 1610 struct sctp_sndrcvinfo default_sinfo; 1611 struct sctp_sndrcvinfo *sinfo; 1612 struct sctp_initmsg *sinit; 1613 sctp_assoc_t associd = 0; 1614 struct sctp_cmsgs cmsgs = { NULL }; 1615 enum sctp_scope scope; 1616 bool fill_sinfo_ttl = false, wait_connect = false; 1617 struct sctp_datamsg *datamsg; 1618 int msg_flags = msg->msg_flags; 1619 __u16 sinfo_flags = 0; 1620 long timeo; 1621 int err; 1622 1623 err = 0; 1624 sp = sctp_sk(sk); 1625 ep = sp->ep; 1626 1627 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk, 1628 msg, msg_len, ep); 1629 1630 /* We cannot send a message over a TCP-style listening socket. */ 1631 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1632 err = -EPIPE; 1633 goto out_nounlock; 1634 } 1635 1636 /* Parse out the SCTP CMSGs. */ 1637 err = sctp_msghdr_parse(msg, &cmsgs); 1638 if (err) { 1639 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1640 goto out_nounlock; 1641 } 1642 1643 /* Fetch the destination address for this packet. This 1644 * address only selects the association--it is not necessarily 1645 * the address we will send to. 1646 * For a peeled-off socket, msg_name is ignored. 1647 */ 1648 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1649 int msg_namelen = msg->msg_namelen; 1650 1651 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1652 msg_namelen); 1653 if (err) 1654 return err; 1655 1656 if (msg_namelen > sizeof(to)) 1657 msg_namelen = sizeof(to); 1658 memcpy(&to, msg->msg_name, msg_namelen); 1659 msg_name = msg->msg_name; 1660 } 1661 1662 sinit = cmsgs.init; 1663 if (cmsgs.sinfo != NULL) { 1664 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1665 default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid; 1666 default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags; 1667 default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid; 1668 default_sinfo.sinfo_context = cmsgs.sinfo->snd_context; 1669 default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id; 1670 1671 sinfo = &default_sinfo; 1672 fill_sinfo_ttl = true; 1673 } else { 1674 sinfo = cmsgs.srinfo; 1675 } 1676 /* Did the user specify SNDINFO/SNDRCVINFO? */ 1677 if (sinfo) { 1678 sinfo_flags = sinfo->sinfo_flags; 1679 associd = sinfo->sinfo_assoc_id; 1680 } 1681 1682 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__, 1683 msg_len, sinfo_flags); 1684 1685 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1686 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1687 err = -EINVAL; 1688 goto out_nounlock; 1689 } 1690 1691 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1692 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1693 * If SCTP_ABORT is set, the message length could be non zero with 1694 * the msg_iov set to the user abort reason. 1695 */ 1696 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1697 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1698 err = -EINVAL; 1699 goto out_nounlock; 1700 } 1701 1702 /* If SCTP_ADDR_OVER is set, there must be an address 1703 * specified in msg_name. 1704 */ 1705 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1706 err = -EINVAL; 1707 goto out_nounlock; 1708 } 1709 1710 transport = NULL; 1711 1712 pr_debug("%s: about to look up association\n", __func__); 1713 1714 lock_sock(sk); 1715 1716 /* If a msg_name has been specified, assume this is to be used. */ 1717 if (msg_name) { 1718 /* Look for a matching association on the endpoint. */ 1719 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1720 1721 /* If we could not find a matching association on the 1722 * endpoint, make sure that it is not a TCP-style 1723 * socket that already has an association or there is 1724 * no peeled-off association on another socket. 1725 */ 1726 if (!asoc && 1727 ((sctp_style(sk, TCP) && 1728 (sctp_sstate(sk, ESTABLISHED) || 1729 sctp_sstate(sk, CLOSING))) || 1730 sctp_endpoint_is_peeled_off(ep, &to))) { 1731 err = -EADDRNOTAVAIL; 1732 goto out_unlock; 1733 } 1734 } else { 1735 asoc = sctp_id2assoc(sk, associd); 1736 if (!asoc) { 1737 err = -EPIPE; 1738 goto out_unlock; 1739 } 1740 } 1741 1742 if (asoc) { 1743 pr_debug("%s: just looked up association:%p\n", __func__, asoc); 1744 1745 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1746 * socket that has an association in CLOSED state. This can 1747 * happen when an accepted socket has an association that is 1748 * already CLOSED. 1749 */ 1750 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1751 err = -EPIPE; 1752 goto out_unlock; 1753 } 1754 1755 if (sinfo_flags & SCTP_EOF) { 1756 pr_debug("%s: shutting down association:%p\n", 1757 __func__, asoc); 1758 1759 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1760 err = 0; 1761 goto out_unlock; 1762 } 1763 if (sinfo_flags & SCTP_ABORT) { 1764 1765 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1766 if (!chunk) { 1767 err = -ENOMEM; 1768 goto out_unlock; 1769 } 1770 1771 pr_debug("%s: aborting association:%p\n", 1772 __func__, asoc); 1773 1774 sctp_primitive_ABORT(net, asoc, chunk); 1775 err = 0; 1776 goto out_unlock; 1777 } 1778 } 1779 1780 /* Do we need to create the association? */ 1781 if (!asoc) { 1782 pr_debug("%s: there is no association yet\n", __func__); 1783 1784 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1785 err = -EINVAL; 1786 goto out_unlock; 1787 } 1788 1789 /* Check for invalid stream against the stream counts, 1790 * either the default or the user specified stream counts. 1791 */ 1792 if (sinfo) { 1793 if (!sinit || !sinit->sinit_num_ostreams) { 1794 /* Check against the defaults. */ 1795 if (sinfo->sinfo_stream >= 1796 sp->initmsg.sinit_num_ostreams) { 1797 err = -EINVAL; 1798 goto out_unlock; 1799 } 1800 } else { 1801 /* Check against the requested. */ 1802 if (sinfo->sinfo_stream >= 1803 sinit->sinit_num_ostreams) { 1804 err = -EINVAL; 1805 goto out_unlock; 1806 } 1807 } 1808 } 1809 1810 /* 1811 * API 3.1.2 bind() - UDP Style Syntax 1812 * If a bind() or sctp_bindx() is not called prior to a 1813 * sendmsg() call that initiates a new association, the 1814 * system picks an ephemeral port and will choose an address 1815 * set equivalent to binding with a wildcard address. 1816 */ 1817 if (!ep->base.bind_addr.port) { 1818 if (sctp_autobind(sk)) { 1819 err = -EAGAIN; 1820 goto out_unlock; 1821 } 1822 } else { 1823 /* 1824 * If an unprivileged user inherits a one-to-many 1825 * style socket with open associations on a privileged 1826 * port, it MAY be permitted to accept new associations, 1827 * but it SHOULD NOT be permitted to open new 1828 * associations. 1829 */ 1830 if (ep->base.bind_addr.port < inet_prot_sock(net) && 1831 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) { 1832 err = -EACCES; 1833 goto out_unlock; 1834 } 1835 } 1836 1837 scope = sctp_scope(&to); 1838 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1839 if (!new_asoc) { 1840 err = -ENOMEM; 1841 goto out_unlock; 1842 } 1843 asoc = new_asoc; 1844 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1845 if (err < 0) { 1846 err = -ENOMEM; 1847 goto out_free; 1848 } 1849 1850 /* If the SCTP_INIT ancillary data is specified, set all 1851 * the association init values accordingly. 1852 */ 1853 if (sinit) { 1854 if (sinit->sinit_num_ostreams) { 1855 asoc->c.sinit_num_ostreams = 1856 sinit->sinit_num_ostreams; 1857 } 1858 if (sinit->sinit_max_instreams) { 1859 asoc->c.sinit_max_instreams = 1860 sinit->sinit_max_instreams; 1861 } 1862 if (sinit->sinit_max_attempts) { 1863 asoc->max_init_attempts 1864 = sinit->sinit_max_attempts; 1865 } 1866 if (sinit->sinit_max_init_timeo) { 1867 asoc->max_init_timeo = 1868 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1869 } 1870 } 1871 1872 /* Prime the peer's transport structures. */ 1873 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1874 if (!transport) { 1875 err = -ENOMEM; 1876 goto out_free; 1877 } 1878 } 1879 1880 /* ASSERT: we have a valid association at this point. */ 1881 pr_debug("%s: we have a valid association\n", __func__); 1882 1883 if (!sinfo) { 1884 /* If the user didn't specify SNDINFO/SNDRCVINFO, make up 1885 * one with some defaults. 1886 */ 1887 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1888 default_sinfo.sinfo_stream = asoc->default_stream; 1889 default_sinfo.sinfo_flags = asoc->default_flags; 1890 default_sinfo.sinfo_ppid = asoc->default_ppid; 1891 default_sinfo.sinfo_context = asoc->default_context; 1892 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1893 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1894 1895 sinfo = &default_sinfo; 1896 } else if (fill_sinfo_ttl) { 1897 /* In case SNDINFO was specified, we still need to fill 1898 * it with a default ttl from the assoc here. 1899 */ 1900 sinfo->sinfo_timetolive = asoc->default_timetolive; 1901 } 1902 1903 /* API 7.1.7, the sndbuf size per association bounds the 1904 * maximum size of data that can be sent in a single send call. 1905 */ 1906 if (msg_len > sk->sk_sndbuf) { 1907 err = -EMSGSIZE; 1908 goto out_free; 1909 } 1910 1911 if (asoc->pmtu_pending) 1912 sctp_assoc_pending_pmtu(asoc); 1913 1914 /* If fragmentation is disabled and the message length exceeds the 1915 * association fragmentation point, return EMSGSIZE. The I-D 1916 * does not specify what this error is, but this looks like 1917 * a great fit. 1918 */ 1919 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1920 err = -EMSGSIZE; 1921 goto out_free; 1922 } 1923 1924 /* Check for invalid stream. */ 1925 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1926 err = -EINVAL; 1927 goto out_free; 1928 } 1929 1930 if (sctp_wspace(asoc) < msg_len) 1931 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1932 1933 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1934 if (!sctp_wspace(asoc)) { 1935 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1936 if (err) 1937 goto out_free; 1938 } 1939 1940 /* If an address is passed with the sendto/sendmsg call, it is used 1941 * to override the primary destination address in the TCP model, or 1942 * when SCTP_ADDR_OVER flag is set in the UDP model. 1943 */ 1944 if ((sctp_style(sk, TCP) && msg_name) || 1945 (sinfo_flags & SCTP_ADDR_OVER)) { 1946 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1947 if (!chunk_tp) { 1948 err = -EINVAL; 1949 goto out_free; 1950 } 1951 } else 1952 chunk_tp = NULL; 1953 1954 /* Auto-connect, if we aren't connected already. */ 1955 if (sctp_state(asoc, CLOSED)) { 1956 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1957 if (err < 0) 1958 goto out_free; 1959 1960 wait_connect = true; 1961 pr_debug("%s: we associated primitively\n", __func__); 1962 } 1963 1964 /* Break the message into multiple chunks of maximum size. */ 1965 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1966 if (IS_ERR(datamsg)) { 1967 err = PTR_ERR(datamsg); 1968 goto out_free; 1969 } 1970 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1971 1972 /* Now send the (possibly) fragmented message. */ 1973 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1974 sctp_chunk_hold(chunk); 1975 1976 /* Do accounting for the write space. */ 1977 sctp_set_owner_w(chunk); 1978 1979 chunk->transport = chunk_tp; 1980 } 1981 1982 /* Send it to the lower layers. Note: all chunks 1983 * must either fail or succeed. The lower layer 1984 * works that way today. Keep it that way or this 1985 * breaks. 1986 */ 1987 err = sctp_primitive_SEND(net, asoc, datamsg); 1988 /* Did the lower layer accept the chunk? */ 1989 if (err) { 1990 sctp_datamsg_free(datamsg); 1991 goto out_free; 1992 } 1993 1994 pr_debug("%s: we sent primitively\n", __func__); 1995 1996 sctp_datamsg_put(datamsg); 1997 err = msg_len; 1998 1999 if (unlikely(wait_connect)) { 2000 timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT); 2001 sctp_wait_for_connect(asoc, &timeo); 2002 } 2003 2004 /* If we are already past ASSOCIATE, the lower 2005 * layers are responsible for association cleanup. 2006 */ 2007 goto out_unlock; 2008 2009 out_free: 2010 if (new_asoc) 2011 sctp_association_free(asoc); 2012 out_unlock: 2013 release_sock(sk); 2014 2015 out_nounlock: 2016 return sctp_error(sk, msg_flags, err); 2017 2018 #if 0 2019 do_sock_err: 2020 if (msg_len) 2021 err = msg_len; 2022 else 2023 err = sock_error(sk); 2024 goto out; 2025 2026 do_interrupted: 2027 if (msg_len) 2028 err = msg_len; 2029 goto out; 2030 #endif /* 0 */ 2031 } 2032 2033 /* This is an extended version of skb_pull() that removes the data from the 2034 * start of a skb even when data is spread across the list of skb's in the 2035 * frag_list. len specifies the total amount of data that needs to be removed. 2036 * when 'len' bytes could be removed from the skb, it returns 0. 2037 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2038 * could not be removed. 2039 */ 2040 static int sctp_skb_pull(struct sk_buff *skb, int len) 2041 { 2042 struct sk_buff *list; 2043 int skb_len = skb_headlen(skb); 2044 int rlen; 2045 2046 if (len <= skb_len) { 2047 __skb_pull(skb, len); 2048 return 0; 2049 } 2050 len -= skb_len; 2051 __skb_pull(skb, skb_len); 2052 2053 skb_walk_frags(skb, list) { 2054 rlen = sctp_skb_pull(list, len); 2055 skb->len -= (len-rlen); 2056 skb->data_len -= (len-rlen); 2057 2058 if (!rlen) 2059 return 0; 2060 2061 len = rlen; 2062 } 2063 2064 return len; 2065 } 2066 2067 /* API 3.1.3 recvmsg() - UDP Style Syntax 2068 * 2069 * ssize_t recvmsg(int socket, struct msghdr *message, 2070 * int flags); 2071 * 2072 * socket - the socket descriptor of the endpoint. 2073 * message - pointer to the msghdr structure which contains a single 2074 * user message and possibly some ancillary data. 2075 * 2076 * See Section 5 for complete description of the data 2077 * structures. 2078 * 2079 * flags - flags sent or received with the user message, see Section 2080 * 5 for complete description of the flags. 2081 */ 2082 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2083 int noblock, int flags, int *addr_len) 2084 { 2085 struct sctp_ulpevent *event = NULL; 2086 struct sctp_sock *sp = sctp_sk(sk); 2087 struct sk_buff *skb, *head_skb; 2088 int copied; 2089 int err = 0; 2090 int skb_len; 2091 2092 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2093 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2094 addr_len); 2095 2096 lock_sock(sk); 2097 2098 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2099 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2100 err = -ENOTCONN; 2101 goto out; 2102 } 2103 2104 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2105 if (!skb) 2106 goto out; 2107 2108 /* Get the total length of the skb including any skb's in the 2109 * frag_list. 2110 */ 2111 skb_len = skb->len; 2112 2113 copied = skb_len; 2114 if (copied > len) 2115 copied = len; 2116 2117 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2118 2119 event = sctp_skb2event(skb); 2120 2121 if (err) 2122 goto out_free; 2123 2124 if (event->chunk && event->chunk->head_skb) 2125 head_skb = event->chunk->head_skb; 2126 else 2127 head_skb = skb; 2128 sock_recv_ts_and_drops(msg, sk, head_skb); 2129 if (sctp_ulpevent_is_notification(event)) { 2130 msg->msg_flags |= MSG_NOTIFICATION; 2131 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2132 } else { 2133 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2134 } 2135 2136 /* Check if we allow SCTP_NXTINFO. */ 2137 if (sp->recvnxtinfo) 2138 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2139 /* Check if we allow SCTP_RCVINFO. */ 2140 if (sp->recvrcvinfo) 2141 sctp_ulpevent_read_rcvinfo(event, msg); 2142 /* Check if we allow SCTP_SNDRCVINFO. */ 2143 if (sp->subscribe.sctp_data_io_event) 2144 sctp_ulpevent_read_sndrcvinfo(event, msg); 2145 2146 err = copied; 2147 2148 /* If skb's length exceeds the user's buffer, update the skb and 2149 * push it back to the receive_queue so that the next call to 2150 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2151 */ 2152 if (skb_len > copied) { 2153 msg->msg_flags &= ~MSG_EOR; 2154 if (flags & MSG_PEEK) 2155 goto out_free; 2156 sctp_skb_pull(skb, copied); 2157 skb_queue_head(&sk->sk_receive_queue, skb); 2158 2159 /* When only partial message is copied to the user, increase 2160 * rwnd by that amount. If all the data in the skb is read, 2161 * rwnd is updated when the event is freed. 2162 */ 2163 if (!sctp_ulpevent_is_notification(event)) 2164 sctp_assoc_rwnd_increase(event->asoc, copied); 2165 goto out; 2166 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2167 (event->msg_flags & MSG_EOR)) 2168 msg->msg_flags |= MSG_EOR; 2169 else 2170 msg->msg_flags &= ~MSG_EOR; 2171 2172 out_free: 2173 if (flags & MSG_PEEK) { 2174 /* Release the skb reference acquired after peeking the skb in 2175 * sctp_skb_recv_datagram(). 2176 */ 2177 kfree_skb(skb); 2178 } else { 2179 /* Free the event which includes releasing the reference to 2180 * the owner of the skb, freeing the skb and updating the 2181 * rwnd. 2182 */ 2183 sctp_ulpevent_free(event); 2184 } 2185 out: 2186 release_sock(sk); 2187 return err; 2188 } 2189 2190 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2191 * 2192 * This option is a on/off flag. If enabled no SCTP message 2193 * fragmentation will be performed. Instead if a message being sent 2194 * exceeds the current PMTU size, the message will NOT be sent and 2195 * instead a error will be indicated to the user. 2196 */ 2197 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2198 char __user *optval, 2199 unsigned int optlen) 2200 { 2201 int val; 2202 2203 if (optlen < sizeof(int)) 2204 return -EINVAL; 2205 2206 if (get_user(val, (int __user *)optval)) 2207 return -EFAULT; 2208 2209 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2210 2211 return 0; 2212 } 2213 2214 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2215 unsigned int optlen) 2216 { 2217 struct sctp_association *asoc; 2218 struct sctp_ulpevent *event; 2219 2220 if (optlen > sizeof(struct sctp_event_subscribe)) 2221 return -EINVAL; 2222 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2223 return -EFAULT; 2224 2225 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2226 * if there is no data to be sent or retransmit, the stack will 2227 * immediately send up this notification. 2228 */ 2229 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, 2230 &sctp_sk(sk)->subscribe)) { 2231 asoc = sctp_id2assoc(sk, 0); 2232 2233 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2234 event = sctp_ulpevent_make_sender_dry_event(asoc, 2235 GFP_ATOMIC); 2236 if (!event) 2237 return -ENOMEM; 2238 2239 sctp_ulpq_tail_event(&asoc->ulpq, event); 2240 } 2241 } 2242 2243 return 0; 2244 } 2245 2246 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2247 * 2248 * This socket option is applicable to the UDP-style socket only. When 2249 * set it will cause associations that are idle for more than the 2250 * specified number of seconds to automatically close. An association 2251 * being idle is defined an association that has NOT sent or received 2252 * user data. The special value of '0' indicates that no automatic 2253 * close of any associations should be performed. The option expects an 2254 * integer defining the number of seconds of idle time before an 2255 * association is closed. 2256 */ 2257 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2258 unsigned int optlen) 2259 { 2260 struct sctp_sock *sp = sctp_sk(sk); 2261 struct net *net = sock_net(sk); 2262 2263 /* Applicable to UDP-style socket only */ 2264 if (sctp_style(sk, TCP)) 2265 return -EOPNOTSUPP; 2266 if (optlen != sizeof(int)) 2267 return -EINVAL; 2268 if (copy_from_user(&sp->autoclose, optval, optlen)) 2269 return -EFAULT; 2270 2271 if (sp->autoclose > net->sctp.max_autoclose) 2272 sp->autoclose = net->sctp.max_autoclose; 2273 2274 return 0; 2275 } 2276 2277 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2278 * 2279 * Applications can enable or disable heartbeats for any peer address of 2280 * an association, modify an address's heartbeat interval, force a 2281 * heartbeat to be sent immediately, and adjust the address's maximum 2282 * number of retransmissions sent before an address is considered 2283 * unreachable. The following structure is used to access and modify an 2284 * address's parameters: 2285 * 2286 * struct sctp_paddrparams { 2287 * sctp_assoc_t spp_assoc_id; 2288 * struct sockaddr_storage spp_address; 2289 * uint32_t spp_hbinterval; 2290 * uint16_t spp_pathmaxrxt; 2291 * uint32_t spp_pathmtu; 2292 * uint32_t spp_sackdelay; 2293 * uint32_t spp_flags; 2294 * }; 2295 * 2296 * spp_assoc_id - (one-to-many style socket) This is filled in the 2297 * application, and identifies the association for 2298 * this query. 2299 * spp_address - This specifies which address is of interest. 2300 * spp_hbinterval - This contains the value of the heartbeat interval, 2301 * in milliseconds. If a value of zero 2302 * is present in this field then no changes are to 2303 * be made to this parameter. 2304 * spp_pathmaxrxt - This contains the maximum number of 2305 * retransmissions before this address shall be 2306 * considered unreachable. If a value of zero 2307 * is present in this field then no changes are to 2308 * be made to this parameter. 2309 * spp_pathmtu - When Path MTU discovery is disabled the value 2310 * specified here will be the "fixed" path mtu. 2311 * Note that if the spp_address field is empty 2312 * then all associations on this address will 2313 * have this fixed path mtu set upon them. 2314 * 2315 * spp_sackdelay - When delayed sack is enabled, this value specifies 2316 * the number of milliseconds that sacks will be delayed 2317 * for. This value will apply to all addresses of an 2318 * association if the spp_address field is empty. Note 2319 * also, that if delayed sack is enabled and this 2320 * value is set to 0, no change is made to the last 2321 * recorded delayed sack timer value. 2322 * 2323 * spp_flags - These flags are used to control various features 2324 * on an association. The flag field may contain 2325 * zero or more of the following options. 2326 * 2327 * SPP_HB_ENABLE - Enable heartbeats on the 2328 * specified address. Note that if the address 2329 * field is empty all addresses for the association 2330 * have heartbeats enabled upon them. 2331 * 2332 * SPP_HB_DISABLE - Disable heartbeats on the 2333 * speicifed address. Note that if the address 2334 * field is empty all addresses for the association 2335 * will have their heartbeats disabled. Note also 2336 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2337 * mutually exclusive, only one of these two should 2338 * be specified. Enabling both fields will have 2339 * undetermined results. 2340 * 2341 * SPP_HB_DEMAND - Request a user initiated heartbeat 2342 * to be made immediately. 2343 * 2344 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2345 * heartbeat delayis to be set to the value of 0 2346 * milliseconds. 2347 * 2348 * SPP_PMTUD_ENABLE - This field will enable PMTU 2349 * discovery upon the specified address. Note that 2350 * if the address feild is empty then all addresses 2351 * on the association are effected. 2352 * 2353 * SPP_PMTUD_DISABLE - This field will disable PMTU 2354 * discovery upon the specified address. Note that 2355 * if the address feild is empty then all addresses 2356 * on the association are effected. Not also that 2357 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2358 * exclusive. Enabling both will have undetermined 2359 * results. 2360 * 2361 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2362 * on delayed sack. The time specified in spp_sackdelay 2363 * is used to specify the sack delay for this address. Note 2364 * that if spp_address is empty then all addresses will 2365 * enable delayed sack and take on the sack delay 2366 * value specified in spp_sackdelay. 2367 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2368 * off delayed sack. If the spp_address field is blank then 2369 * delayed sack is disabled for the entire association. Note 2370 * also that this field is mutually exclusive to 2371 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2372 * results. 2373 */ 2374 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2375 struct sctp_transport *trans, 2376 struct sctp_association *asoc, 2377 struct sctp_sock *sp, 2378 int hb_change, 2379 int pmtud_change, 2380 int sackdelay_change) 2381 { 2382 int error; 2383 2384 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2385 struct net *net = sock_net(trans->asoc->base.sk); 2386 2387 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2388 if (error) 2389 return error; 2390 } 2391 2392 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2393 * this field is ignored. Note also that a value of zero indicates 2394 * the current setting should be left unchanged. 2395 */ 2396 if (params->spp_flags & SPP_HB_ENABLE) { 2397 2398 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2399 * set. This lets us use 0 value when this flag 2400 * is set. 2401 */ 2402 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2403 params->spp_hbinterval = 0; 2404 2405 if (params->spp_hbinterval || 2406 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2407 if (trans) { 2408 trans->hbinterval = 2409 msecs_to_jiffies(params->spp_hbinterval); 2410 } else if (asoc) { 2411 asoc->hbinterval = 2412 msecs_to_jiffies(params->spp_hbinterval); 2413 } else { 2414 sp->hbinterval = params->spp_hbinterval; 2415 } 2416 } 2417 } 2418 2419 if (hb_change) { 2420 if (trans) { 2421 trans->param_flags = 2422 (trans->param_flags & ~SPP_HB) | hb_change; 2423 } else if (asoc) { 2424 asoc->param_flags = 2425 (asoc->param_flags & ~SPP_HB) | hb_change; 2426 } else { 2427 sp->param_flags = 2428 (sp->param_flags & ~SPP_HB) | hb_change; 2429 } 2430 } 2431 2432 /* When Path MTU discovery is disabled the value specified here will 2433 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2434 * include the flag SPP_PMTUD_DISABLE for this field to have any 2435 * effect). 2436 */ 2437 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2438 if (trans) { 2439 trans->pathmtu = params->spp_pathmtu; 2440 sctp_assoc_sync_pmtu(asoc); 2441 } else if (asoc) { 2442 asoc->pathmtu = params->spp_pathmtu; 2443 } else { 2444 sp->pathmtu = params->spp_pathmtu; 2445 } 2446 } 2447 2448 if (pmtud_change) { 2449 if (trans) { 2450 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2451 (params->spp_flags & SPP_PMTUD_ENABLE); 2452 trans->param_flags = 2453 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2454 if (update) { 2455 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2456 sctp_assoc_sync_pmtu(asoc); 2457 } 2458 } else if (asoc) { 2459 asoc->param_flags = 2460 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2461 } else { 2462 sp->param_flags = 2463 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2464 } 2465 } 2466 2467 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2468 * value of this field is ignored. Note also that a value of zero 2469 * indicates the current setting should be left unchanged. 2470 */ 2471 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2472 if (trans) { 2473 trans->sackdelay = 2474 msecs_to_jiffies(params->spp_sackdelay); 2475 } else if (asoc) { 2476 asoc->sackdelay = 2477 msecs_to_jiffies(params->spp_sackdelay); 2478 } else { 2479 sp->sackdelay = params->spp_sackdelay; 2480 } 2481 } 2482 2483 if (sackdelay_change) { 2484 if (trans) { 2485 trans->param_flags = 2486 (trans->param_flags & ~SPP_SACKDELAY) | 2487 sackdelay_change; 2488 } else if (asoc) { 2489 asoc->param_flags = 2490 (asoc->param_flags & ~SPP_SACKDELAY) | 2491 sackdelay_change; 2492 } else { 2493 sp->param_flags = 2494 (sp->param_flags & ~SPP_SACKDELAY) | 2495 sackdelay_change; 2496 } 2497 } 2498 2499 /* Note that a value of zero indicates the current setting should be 2500 left unchanged. 2501 */ 2502 if (params->spp_pathmaxrxt) { 2503 if (trans) { 2504 trans->pathmaxrxt = params->spp_pathmaxrxt; 2505 } else if (asoc) { 2506 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2507 } else { 2508 sp->pathmaxrxt = params->spp_pathmaxrxt; 2509 } 2510 } 2511 2512 return 0; 2513 } 2514 2515 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2516 char __user *optval, 2517 unsigned int optlen) 2518 { 2519 struct sctp_paddrparams params; 2520 struct sctp_transport *trans = NULL; 2521 struct sctp_association *asoc = NULL; 2522 struct sctp_sock *sp = sctp_sk(sk); 2523 int error; 2524 int hb_change, pmtud_change, sackdelay_change; 2525 2526 if (optlen != sizeof(struct sctp_paddrparams)) 2527 return -EINVAL; 2528 2529 if (copy_from_user(¶ms, optval, optlen)) 2530 return -EFAULT; 2531 2532 /* Validate flags and value parameters. */ 2533 hb_change = params.spp_flags & SPP_HB; 2534 pmtud_change = params.spp_flags & SPP_PMTUD; 2535 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2536 2537 if (hb_change == SPP_HB || 2538 pmtud_change == SPP_PMTUD || 2539 sackdelay_change == SPP_SACKDELAY || 2540 params.spp_sackdelay > 500 || 2541 (params.spp_pathmtu && 2542 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2543 return -EINVAL; 2544 2545 /* If an address other than INADDR_ANY is specified, and 2546 * no transport is found, then the request is invalid. 2547 */ 2548 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2549 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2550 params.spp_assoc_id); 2551 if (!trans) 2552 return -EINVAL; 2553 } 2554 2555 /* Get association, if assoc_id != 0 and the socket is a one 2556 * to many style socket, and an association was not found, then 2557 * the id was invalid. 2558 */ 2559 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2560 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2561 return -EINVAL; 2562 2563 /* Heartbeat demand can only be sent on a transport or 2564 * association, but not a socket. 2565 */ 2566 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2567 return -EINVAL; 2568 2569 /* Process parameters. */ 2570 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2571 hb_change, pmtud_change, 2572 sackdelay_change); 2573 2574 if (error) 2575 return error; 2576 2577 /* If changes are for association, also apply parameters to each 2578 * transport. 2579 */ 2580 if (!trans && asoc) { 2581 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2582 transports) { 2583 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2584 hb_change, pmtud_change, 2585 sackdelay_change); 2586 } 2587 } 2588 2589 return 0; 2590 } 2591 2592 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2593 { 2594 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2595 } 2596 2597 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2598 { 2599 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2600 } 2601 2602 /* 2603 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2604 * 2605 * This option will effect the way delayed acks are performed. This 2606 * option allows you to get or set the delayed ack time, in 2607 * milliseconds. It also allows changing the delayed ack frequency. 2608 * Changing the frequency to 1 disables the delayed sack algorithm. If 2609 * the assoc_id is 0, then this sets or gets the endpoints default 2610 * values. If the assoc_id field is non-zero, then the set or get 2611 * effects the specified association for the one to many model (the 2612 * assoc_id field is ignored by the one to one model). Note that if 2613 * sack_delay or sack_freq are 0 when setting this option, then the 2614 * current values will remain unchanged. 2615 * 2616 * struct sctp_sack_info { 2617 * sctp_assoc_t sack_assoc_id; 2618 * uint32_t sack_delay; 2619 * uint32_t sack_freq; 2620 * }; 2621 * 2622 * sack_assoc_id - This parameter, indicates which association the user 2623 * is performing an action upon. Note that if this field's value is 2624 * zero then the endpoints default value is changed (effecting future 2625 * associations only). 2626 * 2627 * sack_delay - This parameter contains the number of milliseconds that 2628 * the user is requesting the delayed ACK timer be set to. Note that 2629 * this value is defined in the standard to be between 200 and 500 2630 * milliseconds. 2631 * 2632 * sack_freq - This parameter contains the number of packets that must 2633 * be received before a sack is sent without waiting for the delay 2634 * timer to expire. The default value for this is 2, setting this 2635 * value to 1 will disable the delayed sack algorithm. 2636 */ 2637 2638 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2639 char __user *optval, unsigned int optlen) 2640 { 2641 struct sctp_sack_info params; 2642 struct sctp_transport *trans = NULL; 2643 struct sctp_association *asoc = NULL; 2644 struct sctp_sock *sp = sctp_sk(sk); 2645 2646 if (optlen == sizeof(struct sctp_sack_info)) { 2647 if (copy_from_user(¶ms, optval, optlen)) 2648 return -EFAULT; 2649 2650 if (params.sack_delay == 0 && params.sack_freq == 0) 2651 return 0; 2652 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2653 pr_warn_ratelimited(DEPRECATED 2654 "%s (pid %d) " 2655 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2656 "Use struct sctp_sack_info instead\n", 2657 current->comm, task_pid_nr(current)); 2658 if (copy_from_user(¶ms, optval, optlen)) 2659 return -EFAULT; 2660 2661 if (params.sack_delay == 0) 2662 params.sack_freq = 1; 2663 else 2664 params.sack_freq = 0; 2665 } else 2666 return -EINVAL; 2667 2668 /* Validate value parameter. */ 2669 if (params.sack_delay > 500) 2670 return -EINVAL; 2671 2672 /* Get association, if sack_assoc_id != 0 and the socket is a one 2673 * to many style socket, and an association was not found, then 2674 * the id was invalid. 2675 */ 2676 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2677 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2678 return -EINVAL; 2679 2680 if (params.sack_delay) { 2681 if (asoc) { 2682 asoc->sackdelay = 2683 msecs_to_jiffies(params.sack_delay); 2684 asoc->param_flags = 2685 sctp_spp_sackdelay_enable(asoc->param_flags); 2686 } else { 2687 sp->sackdelay = params.sack_delay; 2688 sp->param_flags = 2689 sctp_spp_sackdelay_enable(sp->param_flags); 2690 } 2691 } 2692 2693 if (params.sack_freq == 1) { 2694 if (asoc) { 2695 asoc->param_flags = 2696 sctp_spp_sackdelay_disable(asoc->param_flags); 2697 } else { 2698 sp->param_flags = 2699 sctp_spp_sackdelay_disable(sp->param_flags); 2700 } 2701 } else if (params.sack_freq > 1) { 2702 if (asoc) { 2703 asoc->sackfreq = params.sack_freq; 2704 asoc->param_flags = 2705 sctp_spp_sackdelay_enable(asoc->param_flags); 2706 } else { 2707 sp->sackfreq = params.sack_freq; 2708 sp->param_flags = 2709 sctp_spp_sackdelay_enable(sp->param_flags); 2710 } 2711 } 2712 2713 /* If change is for association, also apply to each transport. */ 2714 if (asoc) { 2715 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2716 transports) { 2717 if (params.sack_delay) { 2718 trans->sackdelay = 2719 msecs_to_jiffies(params.sack_delay); 2720 trans->param_flags = 2721 sctp_spp_sackdelay_enable(trans->param_flags); 2722 } 2723 if (params.sack_freq == 1) { 2724 trans->param_flags = 2725 sctp_spp_sackdelay_disable(trans->param_flags); 2726 } else if (params.sack_freq > 1) { 2727 trans->sackfreq = params.sack_freq; 2728 trans->param_flags = 2729 sctp_spp_sackdelay_enable(trans->param_flags); 2730 } 2731 } 2732 } 2733 2734 return 0; 2735 } 2736 2737 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2738 * 2739 * Applications can specify protocol parameters for the default association 2740 * initialization. The option name argument to setsockopt() and getsockopt() 2741 * is SCTP_INITMSG. 2742 * 2743 * Setting initialization parameters is effective only on an unconnected 2744 * socket (for UDP-style sockets only future associations are effected 2745 * by the change). With TCP-style sockets, this option is inherited by 2746 * sockets derived from a listener socket. 2747 */ 2748 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2749 { 2750 struct sctp_initmsg sinit; 2751 struct sctp_sock *sp = sctp_sk(sk); 2752 2753 if (optlen != sizeof(struct sctp_initmsg)) 2754 return -EINVAL; 2755 if (copy_from_user(&sinit, optval, optlen)) 2756 return -EFAULT; 2757 2758 if (sinit.sinit_num_ostreams) 2759 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2760 if (sinit.sinit_max_instreams) 2761 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2762 if (sinit.sinit_max_attempts) 2763 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2764 if (sinit.sinit_max_init_timeo) 2765 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2766 2767 return 0; 2768 } 2769 2770 /* 2771 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2772 * 2773 * Applications that wish to use the sendto() system call may wish to 2774 * specify a default set of parameters that would normally be supplied 2775 * through the inclusion of ancillary data. This socket option allows 2776 * such an application to set the default sctp_sndrcvinfo structure. 2777 * The application that wishes to use this socket option simply passes 2778 * in to this call the sctp_sndrcvinfo structure defined in Section 2779 * 5.2.2) The input parameters accepted by this call include 2780 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2781 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2782 * to this call if the caller is using the UDP model. 2783 */ 2784 static int sctp_setsockopt_default_send_param(struct sock *sk, 2785 char __user *optval, 2786 unsigned int optlen) 2787 { 2788 struct sctp_sock *sp = sctp_sk(sk); 2789 struct sctp_association *asoc; 2790 struct sctp_sndrcvinfo info; 2791 2792 if (optlen != sizeof(info)) 2793 return -EINVAL; 2794 if (copy_from_user(&info, optval, optlen)) 2795 return -EFAULT; 2796 if (info.sinfo_flags & 2797 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2798 SCTP_ABORT | SCTP_EOF)) 2799 return -EINVAL; 2800 2801 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2802 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2803 return -EINVAL; 2804 if (asoc) { 2805 asoc->default_stream = info.sinfo_stream; 2806 asoc->default_flags = info.sinfo_flags; 2807 asoc->default_ppid = info.sinfo_ppid; 2808 asoc->default_context = info.sinfo_context; 2809 asoc->default_timetolive = info.sinfo_timetolive; 2810 } else { 2811 sp->default_stream = info.sinfo_stream; 2812 sp->default_flags = info.sinfo_flags; 2813 sp->default_ppid = info.sinfo_ppid; 2814 sp->default_context = info.sinfo_context; 2815 sp->default_timetolive = info.sinfo_timetolive; 2816 } 2817 2818 return 0; 2819 } 2820 2821 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2822 * (SCTP_DEFAULT_SNDINFO) 2823 */ 2824 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2825 char __user *optval, 2826 unsigned int optlen) 2827 { 2828 struct sctp_sock *sp = sctp_sk(sk); 2829 struct sctp_association *asoc; 2830 struct sctp_sndinfo info; 2831 2832 if (optlen != sizeof(info)) 2833 return -EINVAL; 2834 if (copy_from_user(&info, optval, optlen)) 2835 return -EFAULT; 2836 if (info.snd_flags & 2837 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2838 SCTP_ABORT | SCTP_EOF)) 2839 return -EINVAL; 2840 2841 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 2842 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 2843 return -EINVAL; 2844 if (asoc) { 2845 asoc->default_stream = info.snd_sid; 2846 asoc->default_flags = info.snd_flags; 2847 asoc->default_ppid = info.snd_ppid; 2848 asoc->default_context = info.snd_context; 2849 } else { 2850 sp->default_stream = info.snd_sid; 2851 sp->default_flags = info.snd_flags; 2852 sp->default_ppid = info.snd_ppid; 2853 sp->default_context = info.snd_context; 2854 } 2855 2856 return 0; 2857 } 2858 2859 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2860 * 2861 * Requests that the local SCTP stack use the enclosed peer address as 2862 * the association primary. The enclosed address must be one of the 2863 * association peer's addresses. 2864 */ 2865 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2866 unsigned int optlen) 2867 { 2868 struct sctp_prim prim; 2869 struct sctp_transport *trans; 2870 2871 if (optlen != sizeof(struct sctp_prim)) 2872 return -EINVAL; 2873 2874 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2875 return -EFAULT; 2876 2877 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2878 if (!trans) 2879 return -EINVAL; 2880 2881 sctp_assoc_set_primary(trans->asoc, trans); 2882 2883 return 0; 2884 } 2885 2886 /* 2887 * 7.1.5 SCTP_NODELAY 2888 * 2889 * Turn on/off any Nagle-like algorithm. This means that packets are 2890 * generally sent as soon as possible and no unnecessary delays are 2891 * introduced, at the cost of more packets in the network. Expects an 2892 * integer boolean flag. 2893 */ 2894 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2895 unsigned int optlen) 2896 { 2897 int val; 2898 2899 if (optlen < sizeof(int)) 2900 return -EINVAL; 2901 if (get_user(val, (int __user *)optval)) 2902 return -EFAULT; 2903 2904 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2905 return 0; 2906 } 2907 2908 /* 2909 * 2910 * 7.1.1 SCTP_RTOINFO 2911 * 2912 * The protocol parameters used to initialize and bound retransmission 2913 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2914 * and modify these parameters. 2915 * All parameters are time values, in milliseconds. A value of 0, when 2916 * modifying the parameters, indicates that the current value should not 2917 * be changed. 2918 * 2919 */ 2920 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 2921 { 2922 struct sctp_rtoinfo rtoinfo; 2923 struct sctp_association *asoc; 2924 unsigned long rto_min, rto_max; 2925 struct sctp_sock *sp = sctp_sk(sk); 2926 2927 if (optlen != sizeof (struct sctp_rtoinfo)) 2928 return -EINVAL; 2929 2930 if (copy_from_user(&rtoinfo, optval, optlen)) 2931 return -EFAULT; 2932 2933 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2934 2935 /* Set the values to the specific association */ 2936 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2937 return -EINVAL; 2938 2939 rto_max = rtoinfo.srto_max; 2940 rto_min = rtoinfo.srto_min; 2941 2942 if (rto_max) 2943 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 2944 else 2945 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 2946 2947 if (rto_min) 2948 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 2949 else 2950 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 2951 2952 if (rto_min > rto_max) 2953 return -EINVAL; 2954 2955 if (asoc) { 2956 if (rtoinfo.srto_initial != 0) 2957 asoc->rto_initial = 2958 msecs_to_jiffies(rtoinfo.srto_initial); 2959 asoc->rto_max = rto_max; 2960 asoc->rto_min = rto_min; 2961 } else { 2962 /* If there is no association or the association-id = 0 2963 * set the values to the endpoint. 2964 */ 2965 if (rtoinfo.srto_initial != 0) 2966 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2967 sp->rtoinfo.srto_max = rto_max; 2968 sp->rtoinfo.srto_min = rto_min; 2969 } 2970 2971 return 0; 2972 } 2973 2974 /* 2975 * 2976 * 7.1.2 SCTP_ASSOCINFO 2977 * 2978 * This option is used to tune the maximum retransmission attempts 2979 * of the association. 2980 * Returns an error if the new association retransmission value is 2981 * greater than the sum of the retransmission value of the peer. 2982 * See [SCTP] for more information. 2983 * 2984 */ 2985 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 2986 { 2987 2988 struct sctp_assocparams assocparams; 2989 struct sctp_association *asoc; 2990 2991 if (optlen != sizeof(struct sctp_assocparams)) 2992 return -EINVAL; 2993 if (copy_from_user(&assocparams, optval, optlen)) 2994 return -EFAULT; 2995 2996 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2997 2998 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2999 return -EINVAL; 3000 3001 /* Set the values to the specific association */ 3002 if (asoc) { 3003 if (assocparams.sasoc_asocmaxrxt != 0) { 3004 __u32 path_sum = 0; 3005 int paths = 0; 3006 struct sctp_transport *peer_addr; 3007 3008 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3009 transports) { 3010 path_sum += peer_addr->pathmaxrxt; 3011 paths++; 3012 } 3013 3014 /* Only validate asocmaxrxt if we have more than 3015 * one path/transport. We do this because path 3016 * retransmissions are only counted when we have more 3017 * then one path. 3018 */ 3019 if (paths > 1 && 3020 assocparams.sasoc_asocmaxrxt > path_sum) 3021 return -EINVAL; 3022 3023 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3024 } 3025 3026 if (assocparams.sasoc_cookie_life != 0) 3027 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3028 } else { 3029 /* Set the values to the endpoint */ 3030 struct sctp_sock *sp = sctp_sk(sk); 3031 3032 if (assocparams.sasoc_asocmaxrxt != 0) 3033 sp->assocparams.sasoc_asocmaxrxt = 3034 assocparams.sasoc_asocmaxrxt; 3035 if (assocparams.sasoc_cookie_life != 0) 3036 sp->assocparams.sasoc_cookie_life = 3037 assocparams.sasoc_cookie_life; 3038 } 3039 return 0; 3040 } 3041 3042 /* 3043 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3044 * 3045 * This socket option is a boolean flag which turns on or off mapped V4 3046 * addresses. If this option is turned on and the socket is type 3047 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3048 * If this option is turned off, then no mapping will be done of V4 3049 * addresses and a user will receive both PF_INET6 and PF_INET type 3050 * addresses on the socket. 3051 */ 3052 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3053 { 3054 int val; 3055 struct sctp_sock *sp = sctp_sk(sk); 3056 3057 if (optlen < sizeof(int)) 3058 return -EINVAL; 3059 if (get_user(val, (int __user *)optval)) 3060 return -EFAULT; 3061 if (val) 3062 sp->v4mapped = 1; 3063 else 3064 sp->v4mapped = 0; 3065 3066 return 0; 3067 } 3068 3069 /* 3070 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3071 * This option will get or set the maximum size to put in any outgoing 3072 * SCTP DATA chunk. If a message is larger than this size it will be 3073 * fragmented by SCTP into the specified size. Note that the underlying 3074 * SCTP implementation may fragment into smaller sized chunks when the 3075 * PMTU of the underlying association is smaller than the value set by 3076 * the user. The default value for this option is '0' which indicates 3077 * the user is NOT limiting fragmentation and only the PMTU will effect 3078 * SCTP's choice of DATA chunk size. Note also that values set larger 3079 * than the maximum size of an IP datagram will effectively let SCTP 3080 * control fragmentation (i.e. the same as setting this option to 0). 3081 * 3082 * The following structure is used to access and modify this parameter: 3083 * 3084 * struct sctp_assoc_value { 3085 * sctp_assoc_t assoc_id; 3086 * uint32_t assoc_value; 3087 * }; 3088 * 3089 * assoc_id: This parameter is ignored for one-to-one style sockets. 3090 * For one-to-many style sockets this parameter indicates which 3091 * association the user is performing an action upon. Note that if 3092 * this field's value is zero then the endpoints default value is 3093 * changed (effecting future associations only). 3094 * assoc_value: This parameter specifies the maximum size in bytes. 3095 */ 3096 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3097 { 3098 struct sctp_assoc_value params; 3099 struct sctp_association *asoc; 3100 struct sctp_sock *sp = sctp_sk(sk); 3101 int val; 3102 3103 if (optlen == sizeof(int)) { 3104 pr_warn_ratelimited(DEPRECATED 3105 "%s (pid %d) " 3106 "Use of int in maxseg socket option.\n" 3107 "Use struct sctp_assoc_value instead\n", 3108 current->comm, task_pid_nr(current)); 3109 if (copy_from_user(&val, optval, optlen)) 3110 return -EFAULT; 3111 params.assoc_id = 0; 3112 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3113 if (copy_from_user(¶ms, optval, optlen)) 3114 return -EFAULT; 3115 val = params.assoc_value; 3116 } else 3117 return -EINVAL; 3118 3119 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 3120 return -EINVAL; 3121 3122 asoc = sctp_id2assoc(sk, params.assoc_id); 3123 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 3124 return -EINVAL; 3125 3126 if (asoc) { 3127 if (val == 0) { 3128 val = asoc->pathmtu; 3129 val -= sp->pf->af->net_header_len; 3130 val -= sizeof(struct sctphdr) + 3131 sizeof(struct sctp_data_chunk); 3132 } 3133 asoc->user_frag = val; 3134 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 3135 } else { 3136 sp->user_frag = val; 3137 } 3138 3139 return 0; 3140 } 3141 3142 3143 /* 3144 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3145 * 3146 * Requests that the peer mark the enclosed address as the association 3147 * primary. The enclosed address must be one of the association's 3148 * locally bound addresses. The following structure is used to make a 3149 * set primary request: 3150 */ 3151 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3152 unsigned int optlen) 3153 { 3154 struct net *net = sock_net(sk); 3155 struct sctp_sock *sp; 3156 struct sctp_association *asoc = NULL; 3157 struct sctp_setpeerprim prim; 3158 struct sctp_chunk *chunk; 3159 struct sctp_af *af; 3160 int err; 3161 3162 sp = sctp_sk(sk); 3163 3164 if (!net->sctp.addip_enable) 3165 return -EPERM; 3166 3167 if (optlen != sizeof(struct sctp_setpeerprim)) 3168 return -EINVAL; 3169 3170 if (copy_from_user(&prim, optval, optlen)) 3171 return -EFAULT; 3172 3173 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3174 if (!asoc) 3175 return -EINVAL; 3176 3177 if (!asoc->peer.asconf_capable) 3178 return -EPERM; 3179 3180 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3181 return -EPERM; 3182 3183 if (!sctp_state(asoc, ESTABLISHED)) 3184 return -ENOTCONN; 3185 3186 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3187 if (!af) 3188 return -EINVAL; 3189 3190 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3191 return -EADDRNOTAVAIL; 3192 3193 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3194 return -EADDRNOTAVAIL; 3195 3196 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3197 chunk = sctp_make_asconf_set_prim(asoc, 3198 (union sctp_addr *)&prim.sspp_addr); 3199 if (!chunk) 3200 return -ENOMEM; 3201 3202 err = sctp_send_asconf(asoc, chunk); 3203 3204 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3205 3206 return err; 3207 } 3208 3209 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3210 unsigned int optlen) 3211 { 3212 struct sctp_setadaptation adaptation; 3213 3214 if (optlen != sizeof(struct sctp_setadaptation)) 3215 return -EINVAL; 3216 if (copy_from_user(&adaptation, optval, optlen)) 3217 return -EFAULT; 3218 3219 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3220 3221 return 0; 3222 } 3223 3224 /* 3225 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3226 * 3227 * The context field in the sctp_sndrcvinfo structure is normally only 3228 * used when a failed message is retrieved holding the value that was 3229 * sent down on the actual send call. This option allows the setting of 3230 * a default context on an association basis that will be received on 3231 * reading messages from the peer. This is especially helpful in the 3232 * one-2-many model for an application to keep some reference to an 3233 * internal state machine that is processing messages on the 3234 * association. Note that the setting of this value only effects 3235 * received messages from the peer and does not effect the value that is 3236 * saved with outbound messages. 3237 */ 3238 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3239 unsigned int optlen) 3240 { 3241 struct sctp_assoc_value params; 3242 struct sctp_sock *sp; 3243 struct sctp_association *asoc; 3244 3245 if (optlen != sizeof(struct sctp_assoc_value)) 3246 return -EINVAL; 3247 if (copy_from_user(¶ms, optval, optlen)) 3248 return -EFAULT; 3249 3250 sp = sctp_sk(sk); 3251 3252 if (params.assoc_id != 0) { 3253 asoc = sctp_id2assoc(sk, params.assoc_id); 3254 if (!asoc) 3255 return -EINVAL; 3256 asoc->default_rcv_context = params.assoc_value; 3257 } else { 3258 sp->default_rcv_context = params.assoc_value; 3259 } 3260 3261 return 0; 3262 } 3263 3264 /* 3265 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3266 * 3267 * This options will at a minimum specify if the implementation is doing 3268 * fragmented interleave. Fragmented interleave, for a one to many 3269 * socket, is when subsequent calls to receive a message may return 3270 * parts of messages from different associations. Some implementations 3271 * may allow you to turn this value on or off. If so, when turned off, 3272 * no fragment interleave will occur (which will cause a head of line 3273 * blocking amongst multiple associations sharing the same one to many 3274 * socket). When this option is turned on, then each receive call may 3275 * come from a different association (thus the user must receive data 3276 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3277 * association each receive belongs to. 3278 * 3279 * This option takes a boolean value. A non-zero value indicates that 3280 * fragmented interleave is on. A value of zero indicates that 3281 * fragmented interleave is off. 3282 * 3283 * Note that it is important that an implementation that allows this 3284 * option to be turned on, have it off by default. Otherwise an unaware 3285 * application using the one to many model may become confused and act 3286 * incorrectly. 3287 */ 3288 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3289 char __user *optval, 3290 unsigned int optlen) 3291 { 3292 int val; 3293 3294 if (optlen != sizeof(int)) 3295 return -EINVAL; 3296 if (get_user(val, (int __user *)optval)) 3297 return -EFAULT; 3298 3299 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 3300 3301 return 0; 3302 } 3303 3304 /* 3305 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3306 * (SCTP_PARTIAL_DELIVERY_POINT) 3307 * 3308 * This option will set or get the SCTP partial delivery point. This 3309 * point is the size of a message where the partial delivery API will be 3310 * invoked to help free up rwnd space for the peer. Setting this to a 3311 * lower value will cause partial deliveries to happen more often. The 3312 * calls argument is an integer that sets or gets the partial delivery 3313 * point. Note also that the call will fail if the user attempts to set 3314 * this value larger than the socket receive buffer size. 3315 * 3316 * Note that any single message having a length smaller than or equal to 3317 * the SCTP partial delivery point will be delivered in one single read 3318 * call as long as the user provided buffer is large enough to hold the 3319 * message. 3320 */ 3321 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3322 char __user *optval, 3323 unsigned int optlen) 3324 { 3325 u32 val; 3326 3327 if (optlen != sizeof(u32)) 3328 return -EINVAL; 3329 if (get_user(val, (int __user *)optval)) 3330 return -EFAULT; 3331 3332 /* Note: We double the receive buffer from what the user sets 3333 * it to be, also initial rwnd is based on rcvbuf/2. 3334 */ 3335 if (val > (sk->sk_rcvbuf >> 1)) 3336 return -EINVAL; 3337 3338 sctp_sk(sk)->pd_point = val; 3339 3340 return 0; /* is this the right error code? */ 3341 } 3342 3343 /* 3344 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3345 * 3346 * This option will allow a user to change the maximum burst of packets 3347 * that can be emitted by this association. Note that the default value 3348 * is 4, and some implementations may restrict this setting so that it 3349 * can only be lowered. 3350 * 3351 * NOTE: This text doesn't seem right. Do this on a socket basis with 3352 * future associations inheriting the socket value. 3353 */ 3354 static int sctp_setsockopt_maxburst(struct sock *sk, 3355 char __user *optval, 3356 unsigned int optlen) 3357 { 3358 struct sctp_assoc_value params; 3359 struct sctp_sock *sp; 3360 struct sctp_association *asoc; 3361 int val; 3362 int assoc_id = 0; 3363 3364 if (optlen == sizeof(int)) { 3365 pr_warn_ratelimited(DEPRECATED 3366 "%s (pid %d) " 3367 "Use of int in max_burst socket option deprecated.\n" 3368 "Use struct sctp_assoc_value instead\n", 3369 current->comm, task_pid_nr(current)); 3370 if (copy_from_user(&val, optval, optlen)) 3371 return -EFAULT; 3372 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3373 if (copy_from_user(¶ms, optval, optlen)) 3374 return -EFAULT; 3375 val = params.assoc_value; 3376 assoc_id = params.assoc_id; 3377 } else 3378 return -EINVAL; 3379 3380 sp = sctp_sk(sk); 3381 3382 if (assoc_id != 0) { 3383 asoc = sctp_id2assoc(sk, assoc_id); 3384 if (!asoc) 3385 return -EINVAL; 3386 asoc->max_burst = val; 3387 } else 3388 sp->max_burst = val; 3389 3390 return 0; 3391 } 3392 3393 /* 3394 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3395 * 3396 * This set option adds a chunk type that the user is requesting to be 3397 * received only in an authenticated way. Changes to the list of chunks 3398 * will only effect future associations on the socket. 3399 */ 3400 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3401 char __user *optval, 3402 unsigned int optlen) 3403 { 3404 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3405 struct sctp_authchunk val; 3406 3407 if (!ep->auth_enable) 3408 return -EACCES; 3409 3410 if (optlen != sizeof(struct sctp_authchunk)) 3411 return -EINVAL; 3412 if (copy_from_user(&val, optval, optlen)) 3413 return -EFAULT; 3414 3415 switch (val.sauth_chunk) { 3416 case SCTP_CID_INIT: 3417 case SCTP_CID_INIT_ACK: 3418 case SCTP_CID_SHUTDOWN_COMPLETE: 3419 case SCTP_CID_AUTH: 3420 return -EINVAL; 3421 } 3422 3423 /* add this chunk id to the endpoint */ 3424 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3425 } 3426 3427 /* 3428 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3429 * 3430 * This option gets or sets the list of HMAC algorithms that the local 3431 * endpoint requires the peer to use. 3432 */ 3433 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3434 char __user *optval, 3435 unsigned int optlen) 3436 { 3437 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3438 struct sctp_hmacalgo *hmacs; 3439 u32 idents; 3440 int err; 3441 3442 if (!ep->auth_enable) 3443 return -EACCES; 3444 3445 if (optlen < sizeof(struct sctp_hmacalgo)) 3446 return -EINVAL; 3447 3448 hmacs = memdup_user(optval, optlen); 3449 if (IS_ERR(hmacs)) 3450 return PTR_ERR(hmacs); 3451 3452 idents = hmacs->shmac_num_idents; 3453 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3454 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3455 err = -EINVAL; 3456 goto out; 3457 } 3458 3459 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3460 out: 3461 kfree(hmacs); 3462 return err; 3463 } 3464 3465 /* 3466 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3467 * 3468 * This option will set a shared secret key which is used to build an 3469 * association shared key. 3470 */ 3471 static int sctp_setsockopt_auth_key(struct sock *sk, 3472 char __user *optval, 3473 unsigned int optlen) 3474 { 3475 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3476 struct sctp_authkey *authkey; 3477 struct sctp_association *asoc; 3478 int ret; 3479 3480 if (!ep->auth_enable) 3481 return -EACCES; 3482 3483 if (optlen <= sizeof(struct sctp_authkey)) 3484 return -EINVAL; 3485 3486 authkey = memdup_user(optval, optlen); 3487 if (IS_ERR(authkey)) 3488 return PTR_ERR(authkey); 3489 3490 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3491 ret = -EINVAL; 3492 goto out; 3493 } 3494 3495 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3496 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3497 ret = -EINVAL; 3498 goto out; 3499 } 3500 3501 ret = sctp_auth_set_key(ep, asoc, authkey); 3502 out: 3503 kzfree(authkey); 3504 return ret; 3505 } 3506 3507 /* 3508 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3509 * 3510 * This option will get or set the active shared key to be used to build 3511 * the association shared key. 3512 */ 3513 static int sctp_setsockopt_active_key(struct sock *sk, 3514 char __user *optval, 3515 unsigned int optlen) 3516 { 3517 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3518 struct sctp_authkeyid val; 3519 struct sctp_association *asoc; 3520 3521 if (!ep->auth_enable) 3522 return -EACCES; 3523 3524 if (optlen != sizeof(struct sctp_authkeyid)) 3525 return -EINVAL; 3526 if (copy_from_user(&val, optval, optlen)) 3527 return -EFAULT; 3528 3529 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3530 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3531 return -EINVAL; 3532 3533 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3534 } 3535 3536 /* 3537 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3538 * 3539 * This set option will delete a shared secret key from use. 3540 */ 3541 static int sctp_setsockopt_del_key(struct sock *sk, 3542 char __user *optval, 3543 unsigned int optlen) 3544 { 3545 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3546 struct sctp_authkeyid val; 3547 struct sctp_association *asoc; 3548 3549 if (!ep->auth_enable) 3550 return -EACCES; 3551 3552 if (optlen != sizeof(struct sctp_authkeyid)) 3553 return -EINVAL; 3554 if (copy_from_user(&val, optval, optlen)) 3555 return -EFAULT; 3556 3557 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3558 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3559 return -EINVAL; 3560 3561 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3562 3563 } 3564 3565 /* 3566 * 8.1.23 SCTP_AUTO_ASCONF 3567 * 3568 * This option will enable or disable the use of the automatic generation of 3569 * ASCONF chunks to add and delete addresses to an existing association. Note 3570 * that this option has two caveats namely: a) it only affects sockets that 3571 * are bound to all addresses available to the SCTP stack, and b) the system 3572 * administrator may have an overriding control that turns the ASCONF feature 3573 * off no matter what setting the socket option may have. 3574 * This option expects an integer boolean flag, where a non-zero value turns on 3575 * the option, and a zero value turns off the option. 3576 * Note. In this implementation, socket operation overrides default parameter 3577 * being set by sysctl as well as FreeBSD implementation 3578 */ 3579 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3580 unsigned int optlen) 3581 { 3582 int val; 3583 struct sctp_sock *sp = sctp_sk(sk); 3584 3585 if (optlen < sizeof(int)) 3586 return -EINVAL; 3587 if (get_user(val, (int __user *)optval)) 3588 return -EFAULT; 3589 if (!sctp_is_ep_boundall(sk) && val) 3590 return -EINVAL; 3591 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3592 return 0; 3593 3594 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3595 if (val == 0 && sp->do_auto_asconf) { 3596 list_del(&sp->auto_asconf_list); 3597 sp->do_auto_asconf = 0; 3598 } else if (val && !sp->do_auto_asconf) { 3599 list_add_tail(&sp->auto_asconf_list, 3600 &sock_net(sk)->sctp.auto_asconf_splist); 3601 sp->do_auto_asconf = 1; 3602 } 3603 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3604 return 0; 3605 } 3606 3607 /* 3608 * SCTP_PEER_ADDR_THLDS 3609 * 3610 * This option allows us to alter the partially failed threshold for one or all 3611 * transports in an association. See Section 6.1 of: 3612 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3613 */ 3614 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3615 char __user *optval, 3616 unsigned int optlen) 3617 { 3618 struct sctp_paddrthlds val; 3619 struct sctp_transport *trans; 3620 struct sctp_association *asoc; 3621 3622 if (optlen < sizeof(struct sctp_paddrthlds)) 3623 return -EINVAL; 3624 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 3625 sizeof(struct sctp_paddrthlds))) 3626 return -EFAULT; 3627 3628 3629 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3630 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3631 if (!asoc) 3632 return -ENOENT; 3633 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3634 transports) { 3635 if (val.spt_pathmaxrxt) 3636 trans->pathmaxrxt = val.spt_pathmaxrxt; 3637 trans->pf_retrans = val.spt_pathpfthld; 3638 } 3639 3640 if (val.spt_pathmaxrxt) 3641 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3642 asoc->pf_retrans = val.spt_pathpfthld; 3643 } else { 3644 trans = sctp_addr_id2transport(sk, &val.spt_address, 3645 val.spt_assoc_id); 3646 if (!trans) 3647 return -ENOENT; 3648 3649 if (val.spt_pathmaxrxt) 3650 trans->pathmaxrxt = val.spt_pathmaxrxt; 3651 trans->pf_retrans = val.spt_pathpfthld; 3652 } 3653 3654 return 0; 3655 } 3656 3657 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 3658 char __user *optval, 3659 unsigned int optlen) 3660 { 3661 int val; 3662 3663 if (optlen < sizeof(int)) 3664 return -EINVAL; 3665 if (get_user(val, (int __user *) optval)) 3666 return -EFAULT; 3667 3668 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 3669 3670 return 0; 3671 } 3672 3673 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 3674 char __user *optval, 3675 unsigned int optlen) 3676 { 3677 int val; 3678 3679 if (optlen < sizeof(int)) 3680 return -EINVAL; 3681 if (get_user(val, (int __user *) optval)) 3682 return -EFAULT; 3683 3684 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 3685 3686 return 0; 3687 } 3688 3689 static int sctp_setsockopt_pr_supported(struct sock *sk, 3690 char __user *optval, 3691 unsigned int optlen) 3692 { 3693 struct sctp_assoc_value params; 3694 struct sctp_association *asoc; 3695 int retval = -EINVAL; 3696 3697 if (optlen != sizeof(params)) 3698 goto out; 3699 3700 if (copy_from_user(¶ms, optval, optlen)) { 3701 retval = -EFAULT; 3702 goto out; 3703 } 3704 3705 asoc = sctp_id2assoc(sk, params.assoc_id); 3706 if (asoc) { 3707 asoc->prsctp_enable = !!params.assoc_value; 3708 } else if (!params.assoc_id) { 3709 struct sctp_sock *sp = sctp_sk(sk); 3710 3711 sp->ep->prsctp_enable = !!params.assoc_value; 3712 } else { 3713 goto out; 3714 } 3715 3716 retval = 0; 3717 3718 out: 3719 return retval; 3720 } 3721 3722 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3723 char __user *optval, 3724 unsigned int optlen) 3725 { 3726 struct sctp_default_prinfo info; 3727 struct sctp_association *asoc; 3728 int retval = -EINVAL; 3729 3730 if (optlen != sizeof(info)) 3731 goto out; 3732 3733 if (copy_from_user(&info, optval, sizeof(info))) { 3734 retval = -EFAULT; 3735 goto out; 3736 } 3737 3738 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 3739 goto out; 3740 3741 if (info.pr_policy == SCTP_PR_SCTP_NONE) 3742 info.pr_value = 0; 3743 3744 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 3745 if (asoc) { 3746 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 3747 asoc->default_timetolive = info.pr_value; 3748 } else if (!info.pr_assoc_id) { 3749 struct sctp_sock *sp = sctp_sk(sk); 3750 3751 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 3752 sp->default_timetolive = info.pr_value; 3753 } else { 3754 goto out; 3755 } 3756 3757 retval = 0; 3758 3759 out: 3760 return retval; 3761 } 3762 3763 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 3764 char __user *optval, 3765 unsigned int optlen) 3766 { 3767 struct sctp_assoc_value params; 3768 struct sctp_association *asoc; 3769 int retval = -EINVAL; 3770 3771 if (optlen != sizeof(params)) 3772 goto out; 3773 3774 if (copy_from_user(¶ms, optval, optlen)) { 3775 retval = -EFAULT; 3776 goto out; 3777 } 3778 3779 asoc = sctp_id2assoc(sk, params.assoc_id); 3780 if (asoc) { 3781 asoc->reconf_enable = !!params.assoc_value; 3782 } else if (!params.assoc_id) { 3783 struct sctp_sock *sp = sctp_sk(sk); 3784 3785 sp->ep->reconf_enable = !!params.assoc_value; 3786 } else { 3787 goto out; 3788 } 3789 3790 retval = 0; 3791 3792 out: 3793 return retval; 3794 } 3795 3796 static int sctp_setsockopt_enable_strreset(struct sock *sk, 3797 char __user *optval, 3798 unsigned int optlen) 3799 { 3800 struct sctp_assoc_value params; 3801 struct sctp_association *asoc; 3802 int retval = -EINVAL; 3803 3804 if (optlen != sizeof(params)) 3805 goto out; 3806 3807 if (copy_from_user(¶ms, optval, optlen)) { 3808 retval = -EFAULT; 3809 goto out; 3810 } 3811 3812 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 3813 goto out; 3814 3815 asoc = sctp_id2assoc(sk, params.assoc_id); 3816 if (asoc) { 3817 asoc->strreset_enable = params.assoc_value; 3818 } else if (!params.assoc_id) { 3819 struct sctp_sock *sp = sctp_sk(sk); 3820 3821 sp->ep->strreset_enable = params.assoc_value; 3822 } else { 3823 goto out; 3824 } 3825 3826 retval = 0; 3827 3828 out: 3829 return retval; 3830 } 3831 3832 static int sctp_setsockopt_reset_streams(struct sock *sk, 3833 char __user *optval, 3834 unsigned int optlen) 3835 { 3836 struct sctp_reset_streams *params; 3837 struct sctp_association *asoc; 3838 int retval = -EINVAL; 3839 3840 if (optlen < sizeof(struct sctp_reset_streams)) 3841 return -EINVAL; 3842 3843 params = memdup_user(optval, optlen); 3844 if (IS_ERR(params)) 3845 return PTR_ERR(params); 3846 3847 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 3848 if (!asoc) 3849 goto out; 3850 3851 retval = sctp_send_reset_streams(asoc, params); 3852 3853 out: 3854 kfree(params); 3855 return retval; 3856 } 3857 3858 static int sctp_setsockopt_reset_assoc(struct sock *sk, 3859 char __user *optval, 3860 unsigned int optlen) 3861 { 3862 struct sctp_association *asoc; 3863 sctp_assoc_t associd; 3864 int retval = -EINVAL; 3865 3866 if (optlen != sizeof(associd)) 3867 goto out; 3868 3869 if (copy_from_user(&associd, optval, optlen)) { 3870 retval = -EFAULT; 3871 goto out; 3872 } 3873 3874 asoc = sctp_id2assoc(sk, associd); 3875 if (!asoc) 3876 goto out; 3877 3878 retval = sctp_send_reset_assoc(asoc); 3879 3880 out: 3881 return retval; 3882 } 3883 3884 static int sctp_setsockopt_add_streams(struct sock *sk, 3885 char __user *optval, 3886 unsigned int optlen) 3887 { 3888 struct sctp_association *asoc; 3889 struct sctp_add_streams params; 3890 int retval = -EINVAL; 3891 3892 if (optlen != sizeof(params)) 3893 goto out; 3894 3895 if (copy_from_user(¶ms, optval, optlen)) { 3896 retval = -EFAULT; 3897 goto out; 3898 } 3899 3900 asoc = sctp_id2assoc(sk, params.sas_assoc_id); 3901 if (!asoc) 3902 goto out; 3903 3904 retval = sctp_send_add_streams(asoc, ¶ms); 3905 3906 out: 3907 return retval; 3908 } 3909 3910 /* API 6.2 setsockopt(), getsockopt() 3911 * 3912 * Applications use setsockopt() and getsockopt() to set or retrieve 3913 * socket options. Socket options are used to change the default 3914 * behavior of sockets calls. They are described in Section 7. 3915 * 3916 * The syntax is: 3917 * 3918 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3919 * int __user *optlen); 3920 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3921 * int optlen); 3922 * 3923 * sd - the socket descript. 3924 * level - set to IPPROTO_SCTP for all SCTP options. 3925 * optname - the option name. 3926 * optval - the buffer to store the value of the option. 3927 * optlen - the size of the buffer. 3928 */ 3929 static int sctp_setsockopt(struct sock *sk, int level, int optname, 3930 char __user *optval, unsigned int optlen) 3931 { 3932 int retval = 0; 3933 3934 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 3935 3936 /* I can hardly begin to describe how wrong this is. This is 3937 * so broken as to be worse than useless. The API draft 3938 * REALLY is NOT helpful here... I am not convinced that the 3939 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3940 * are at all well-founded. 3941 */ 3942 if (level != SOL_SCTP) { 3943 struct sctp_af *af = sctp_sk(sk)->pf->af; 3944 retval = af->setsockopt(sk, level, optname, optval, optlen); 3945 goto out_nounlock; 3946 } 3947 3948 lock_sock(sk); 3949 3950 switch (optname) { 3951 case SCTP_SOCKOPT_BINDX_ADD: 3952 /* 'optlen' is the size of the addresses buffer. */ 3953 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3954 optlen, SCTP_BINDX_ADD_ADDR); 3955 break; 3956 3957 case SCTP_SOCKOPT_BINDX_REM: 3958 /* 'optlen' is the size of the addresses buffer. */ 3959 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3960 optlen, SCTP_BINDX_REM_ADDR); 3961 break; 3962 3963 case SCTP_SOCKOPT_CONNECTX_OLD: 3964 /* 'optlen' is the size of the addresses buffer. */ 3965 retval = sctp_setsockopt_connectx_old(sk, 3966 (struct sockaddr __user *)optval, 3967 optlen); 3968 break; 3969 3970 case SCTP_SOCKOPT_CONNECTX: 3971 /* 'optlen' is the size of the addresses buffer. */ 3972 retval = sctp_setsockopt_connectx(sk, 3973 (struct sockaddr __user *)optval, 3974 optlen); 3975 break; 3976 3977 case SCTP_DISABLE_FRAGMENTS: 3978 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3979 break; 3980 3981 case SCTP_EVENTS: 3982 retval = sctp_setsockopt_events(sk, optval, optlen); 3983 break; 3984 3985 case SCTP_AUTOCLOSE: 3986 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3987 break; 3988 3989 case SCTP_PEER_ADDR_PARAMS: 3990 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3991 break; 3992 3993 case SCTP_DELAYED_SACK: 3994 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 3995 break; 3996 case SCTP_PARTIAL_DELIVERY_POINT: 3997 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3998 break; 3999 4000 case SCTP_INITMSG: 4001 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 4002 break; 4003 case SCTP_DEFAULT_SEND_PARAM: 4004 retval = sctp_setsockopt_default_send_param(sk, optval, 4005 optlen); 4006 break; 4007 case SCTP_DEFAULT_SNDINFO: 4008 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 4009 break; 4010 case SCTP_PRIMARY_ADDR: 4011 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 4012 break; 4013 case SCTP_SET_PEER_PRIMARY_ADDR: 4014 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 4015 break; 4016 case SCTP_NODELAY: 4017 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 4018 break; 4019 case SCTP_RTOINFO: 4020 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 4021 break; 4022 case SCTP_ASSOCINFO: 4023 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 4024 break; 4025 case SCTP_I_WANT_MAPPED_V4_ADDR: 4026 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 4027 break; 4028 case SCTP_MAXSEG: 4029 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 4030 break; 4031 case SCTP_ADAPTATION_LAYER: 4032 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 4033 break; 4034 case SCTP_CONTEXT: 4035 retval = sctp_setsockopt_context(sk, optval, optlen); 4036 break; 4037 case SCTP_FRAGMENT_INTERLEAVE: 4038 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 4039 break; 4040 case SCTP_MAX_BURST: 4041 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 4042 break; 4043 case SCTP_AUTH_CHUNK: 4044 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 4045 break; 4046 case SCTP_HMAC_IDENT: 4047 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 4048 break; 4049 case SCTP_AUTH_KEY: 4050 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 4051 break; 4052 case SCTP_AUTH_ACTIVE_KEY: 4053 retval = sctp_setsockopt_active_key(sk, optval, optlen); 4054 break; 4055 case SCTP_AUTH_DELETE_KEY: 4056 retval = sctp_setsockopt_del_key(sk, optval, optlen); 4057 break; 4058 case SCTP_AUTO_ASCONF: 4059 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 4060 break; 4061 case SCTP_PEER_ADDR_THLDS: 4062 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 4063 break; 4064 case SCTP_RECVRCVINFO: 4065 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 4066 break; 4067 case SCTP_RECVNXTINFO: 4068 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 4069 break; 4070 case SCTP_PR_SUPPORTED: 4071 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 4072 break; 4073 case SCTP_DEFAULT_PRINFO: 4074 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 4075 break; 4076 case SCTP_RECONFIG_SUPPORTED: 4077 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen); 4078 break; 4079 case SCTP_ENABLE_STREAM_RESET: 4080 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen); 4081 break; 4082 case SCTP_RESET_STREAMS: 4083 retval = sctp_setsockopt_reset_streams(sk, optval, optlen); 4084 break; 4085 case SCTP_RESET_ASSOC: 4086 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen); 4087 break; 4088 case SCTP_ADD_STREAMS: 4089 retval = sctp_setsockopt_add_streams(sk, optval, optlen); 4090 break; 4091 default: 4092 retval = -ENOPROTOOPT; 4093 break; 4094 } 4095 4096 release_sock(sk); 4097 4098 out_nounlock: 4099 return retval; 4100 } 4101 4102 /* API 3.1.6 connect() - UDP Style Syntax 4103 * 4104 * An application may use the connect() call in the UDP model to initiate an 4105 * association without sending data. 4106 * 4107 * The syntax is: 4108 * 4109 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4110 * 4111 * sd: the socket descriptor to have a new association added to. 4112 * 4113 * nam: the address structure (either struct sockaddr_in or struct 4114 * sockaddr_in6 defined in RFC2553 [7]). 4115 * 4116 * len: the size of the address. 4117 */ 4118 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4119 int addr_len) 4120 { 4121 int err = 0; 4122 struct sctp_af *af; 4123 4124 lock_sock(sk); 4125 4126 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4127 addr, addr_len); 4128 4129 /* Validate addr_len before calling common connect/connectx routine. */ 4130 af = sctp_get_af_specific(addr->sa_family); 4131 if (!af || addr_len < af->sockaddr_len) { 4132 err = -EINVAL; 4133 } else { 4134 /* Pass correct addr len to common routine (so it knows there 4135 * is only one address being passed. 4136 */ 4137 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 4138 } 4139 4140 release_sock(sk); 4141 return err; 4142 } 4143 4144 /* FIXME: Write comments. */ 4145 static int sctp_disconnect(struct sock *sk, int flags) 4146 { 4147 return -EOPNOTSUPP; /* STUB */ 4148 } 4149 4150 /* 4.1.4 accept() - TCP Style Syntax 4151 * 4152 * Applications use accept() call to remove an established SCTP 4153 * association from the accept queue of the endpoint. A new socket 4154 * descriptor will be returned from accept() to represent the newly 4155 * formed association. 4156 */ 4157 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4158 { 4159 struct sctp_sock *sp; 4160 struct sctp_endpoint *ep; 4161 struct sock *newsk = NULL; 4162 struct sctp_association *asoc; 4163 long timeo; 4164 int error = 0; 4165 4166 lock_sock(sk); 4167 4168 sp = sctp_sk(sk); 4169 ep = sp->ep; 4170 4171 if (!sctp_style(sk, TCP)) { 4172 error = -EOPNOTSUPP; 4173 goto out; 4174 } 4175 4176 if (!sctp_sstate(sk, LISTENING)) { 4177 error = -EINVAL; 4178 goto out; 4179 } 4180 4181 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4182 4183 error = sctp_wait_for_accept(sk, timeo); 4184 if (error) 4185 goto out; 4186 4187 /* We treat the list of associations on the endpoint as the accept 4188 * queue and pick the first association on the list. 4189 */ 4190 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4191 4192 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4193 if (!newsk) { 4194 error = -ENOMEM; 4195 goto out; 4196 } 4197 4198 /* Populate the fields of the newsk from the oldsk and migrate the 4199 * asoc to the newsk. 4200 */ 4201 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4202 4203 out: 4204 release_sock(sk); 4205 *err = error; 4206 return newsk; 4207 } 4208 4209 /* The SCTP ioctl handler. */ 4210 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4211 { 4212 int rc = -ENOTCONN; 4213 4214 lock_sock(sk); 4215 4216 /* 4217 * SEQPACKET-style sockets in LISTENING state are valid, for 4218 * SCTP, so only discard TCP-style sockets in LISTENING state. 4219 */ 4220 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4221 goto out; 4222 4223 switch (cmd) { 4224 case SIOCINQ: { 4225 struct sk_buff *skb; 4226 unsigned int amount = 0; 4227 4228 skb = skb_peek(&sk->sk_receive_queue); 4229 if (skb != NULL) { 4230 /* 4231 * We will only return the amount of this packet since 4232 * that is all that will be read. 4233 */ 4234 amount = skb->len; 4235 } 4236 rc = put_user(amount, (int __user *)arg); 4237 break; 4238 } 4239 default: 4240 rc = -ENOIOCTLCMD; 4241 break; 4242 } 4243 out: 4244 release_sock(sk); 4245 return rc; 4246 } 4247 4248 /* This is the function which gets called during socket creation to 4249 * initialized the SCTP-specific portion of the sock. 4250 * The sock structure should already be zero-filled memory. 4251 */ 4252 static int sctp_init_sock(struct sock *sk) 4253 { 4254 struct net *net = sock_net(sk); 4255 struct sctp_sock *sp; 4256 4257 pr_debug("%s: sk:%p\n", __func__, sk); 4258 4259 sp = sctp_sk(sk); 4260 4261 /* Initialize the SCTP per socket area. */ 4262 switch (sk->sk_type) { 4263 case SOCK_SEQPACKET: 4264 sp->type = SCTP_SOCKET_UDP; 4265 break; 4266 case SOCK_STREAM: 4267 sp->type = SCTP_SOCKET_TCP; 4268 break; 4269 default: 4270 return -ESOCKTNOSUPPORT; 4271 } 4272 4273 sk->sk_gso_type = SKB_GSO_SCTP; 4274 4275 /* Initialize default send parameters. These parameters can be 4276 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4277 */ 4278 sp->default_stream = 0; 4279 sp->default_ppid = 0; 4280 sp->default_flags = 0; 4281 sp->default_context = 0; 4282 sp->default_timetolive = 0; 4283 4284 sp->default_rcv_context = 0; 4285 sp->max_burst = net->sctp.max_burst; 4286 4287 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4288 4289 /* Initialize default setup parameters. These parameters 4290 * can be modified with the SCTP_INITMSG socket option or 4291 * overridden by the SCTP_INIT CMSG. 4292 */ 4293 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4294 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4295 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4296 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4297 4298 /* Initialize default RTO related parameters. These parameters can 4299 * be modified for with the SCTP_RTOINFO socket option. 4300 */ 4301 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4302 sp->rtoinfo.srto_max = net->sctp.rto_max; 4303 sp->rtoinfo.srto_min = net->sctp.rto_min; 4304 4305 /* Initialize default association related parameters. These parameters 4306 * can be modified with the SCTP_ASSOCINFO socket option. 4307 */ 4308 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4309 sp->assocparams.sasoc_number_peer_destinations = 0; 4310 sp->assocparams.sasoc_peer_rwnd = 0; 4311 sp->assocparams.sasoc_local_rwnd = 0; 4312 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 4313 4314 /* Initialize default event subscriptions. By default, all the 4315 * options are off. 4316 */ 4317 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 4318 4319 /* Default Peer Address Parameters. These defaults can 4320 * be modified via SCTP_PEER_ADDR_PARAMS 4321 */ 4322 sp->hbinterval = net->sctp.hb_interval; 4323 sp->pathmaxrxt = net->sctp.max_retrans_path; 4324 sp->pathmtu = 0; /* allow default discovery */ 4325 sp->sackdelay = net->sctp.sack_timeout; 4326 sp->sackfreq = 2; 4327 sp->param_flags = SPP_HB_ENABLE | 4328 SPP_PMTUD_ENABLE | 4329 SPP_SACKDELAY_ENABLE; 4330 4331 /* If enabled no SCTP message fragmentation will be performed. 4332 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 4333 */ 4334 sp->disable_fragments = 0; 4335 4336 /* Enable Nagle algorithm by default. */ 4337 sp->nodelay = 0; 4338 4339 sp->recvrcvinfo = 0; 4340 sp->recvnxtinfo = 0; 4341 4342 /* Enable by default. */ 4343 sp->v4mapped = 1; 4344 4345 /* Auto-close idle associations after the configured 4346 * number of seconds. A value of 0 disables this 4347 * feature. Configure through the SCTP_AUTOCLOSE socket option, 4348 * for UDP-style sockets only. 4349 */ 4350 sp->autoclose = 0; 4351 4352 /* User specified fragmentation limit. */ 4353 sp->user_frag = 0; 4354 4355 sp->adaptation_ind = 0; 4356 4357 sp->pf = sctp_get_pf_specific(sk->sk_family); 4358 4359 /* Control variables for partial data delivery. */ 4360 atomic_set(&sp->pd_mode, 0); 4361 skb_queue_head_init(&sp->pd_lobby); 4362 sp->frag_interleave = 0; 4363 4364 /* Create a per socket endpoint structure. Even if we 4365 * change the data structure relationships, this may still 4366 * be useful for storing pre-connect address information. 4367 */ 4368 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 4369 if (!sp->ep) 4370 return -ENOMEM; 4371 4372 sp->hmac = NULL; 4373 4374 sk->sk_destruct = sctp_destruct_sock; 4375 4376 SCTP_DBG_OBJCNT_INC(sock); 4377 4378 local_bh_disable(); 4379 percpu_counter_inc(&sctp_sockets_allocated); 4380 sock_prot_inuse_add(net, sk->sk_prot, 1); 4381 4382 /* Nothing can fail after this block, otherwise 4383 * sctp_destroy_sock() will be called without addr_wq_lock held 4384 */ 4385 if (net->sctp.default_auto_asconf) { 4386 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 4387 list_add_tail(&sp->auto_asconf_list, 4388 &net->sctp.auto_asconf_splist); 4389 sp->do_auto_asconf = 1; 4390 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 4391 } else { 4392 sp->do_auto_asconf = 0; 4393 } 4394 4395 local_bh_enable(); 4396 4397 return 0; 4398 } 4399 4400 /* Cleanup any SCTP per socket resources. Must be called with 4401 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 4402 */ 4403 static void sctp_destroy_sock(struct sock *sk) 4404 { 4405 struct sctp_sock *sp; 4406 4407 pr_debug("%s: sk:%p\n", __func__, sk); 4408 4409 /* Release our hold on the endpoint. */ 4410 sp = sctp_sk(sk); 4411 /* This could happen during socket init, thus we bail out 4412 * early, since the rest of the below is not setup either. 4413 */ 4414 if (sp->ep == NULL) 4415 return; 4416 4417 if (sp->do_auto_asconf) { 4418 sp->do_auto_asconf = 0; 4419 list_del(&sp->auto_asconf_list); 4420 } 4421 sctp_endpoint_free(sp->ep); 4422 local_bh_disable(); 4423 percpu_counter_dec(&sctp_sockets_allocated); 4424 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 4425 local_bh_enable(); 4426 } 4427 4428 /* Triggered when there are no references on the socket anymore */ 4429 static void sctp_destruct_sock(struct sock *sk) 4430 { 4431 struct sctp_sock *sp = sctp_sk(sk); 4432 4433 /* Free up the HMAC transform. */ 4434 crypto_free_shash(sp->hmac); 4435 4436 inet_sock_destruct(sk); 4437 } 4438 4439 /* API 4.1.7 shutdown() - TCP Style Syntax 4440 * int shutdown(int socket, int how); 4441 * 4442 * sd - the socket descriptor of the association to be closed. 4443 * how - Specifies the type of shutdown. The values are 4444 * as follows: 4445 * SHUT_RD 4446 * Disables further receive operations. No SCTP 4447 * protocol action is taken. 4448 * SHUT_WR 4449 * Disables further send operations, and initiates 4450 * the SCTP shutdown sequence. 4451 * SHUT_RDWR 4452 * Disables further send and receive operations 4453 * and initiates the SCTP shutdown sequence. 4454 */ 4455 static void sctp_shutdown(struct sock *sk, int how) 4456 { 4457 struct net *net = sock_net(sk); 4458 struct sctp_endpoint *ep; 4459 4460 if (!sctp_style(sk, TCP)) 4461 return; 4462 4463 ep = sctp_sk(sk)->ep; 4464 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 4465 struct sctp_association *asoc; 4466 4467 sk->sk_state = SCTP_SS_CLOSING; 4468 asoc = list_entry(ep->asocs.next, 4469 struct sctp_association, asocs); 4470 sctp_primitive_SHUTDOWN(net, asoc, NULL); 4471 } 4472 } 4473 4474 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 4475 struct sctp_info *info) 4476 { 4477 struct sctp_transport *prim; 4478 struct list_head *pos; 4479 int mask; 4480 4481 memset(info, 0, sizeof(*info)); 4482 if (!asoc) { 4483 struct sctp_sock *sp = sctp_sk(sk); 4484 4485 info->sctpi_s_autoclose = sp->autoclose; 4486 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 4487 info->sctpi_s_pd_point = sp->pd_point; 4488 info->sctpi_s_nodelay = sp->nodelay; 4489 info->sctpi_s_disable_fragments = sp->disable_fragments; 4490 info->sctpi_s_v4mapped = sp->v4mapped; 4491 info->sctpi_s_frag_interleave = sp->frag_interleave; 4492 info->sctpi_s_type = sp->type; 4493 4494 return 0; 4495 } 4496 4497 info->sctpi_tag = asoc->c.my_vtag; 4498 info->sctpi_state = asoc->state; 4499 info->sctpi_rwnd = asoc->a_rwnd; 4500 info->sctpi_unackdata = asoc->unack_data; 4501 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4502 info->sctpi_instrms = asoc->stream.incnt; 4503 info->sctpi_outstrms = asoc->stream.outcnt; 4504 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 4505 info->sctpi_inqueue++; 4506 list_for_each(pos, &asoc->outqueue.out_chunk_list) 4507 info->sctpi_outqueue++; 4508 info->sctpi_overall_error = asoc->overall_error_count; 4509 info->sctpi_max_burst = asoc->max_burst; 4510 info->sctpi_maxseg = asoc->frag_point; 4511 info->sctpi_peer_rwnd = asoc->peer.rwnd; 4512 info->sctpi_peer_tag = asoc->c.peer_vtag; 4513 4514 mask = asoc->peer.ecn_capable << 1; 4515 mask = (mask | asoc->peer.ipv4_address) << 1; 4516 mask = (mask | asoc->peer.ipv6_address) << 1; 4517 mask = (mask | asoc->peer.hostname_address) << 1; 4518 mask = (mask | asoc->peer.asconf_capable) << 1; 4519 mask = (mask | asoc->peer.prsctp_capable) << 1; 4520 mask = (mask | asoc->peer.auth_capable); 4521 info->sctpi_peer_capable = mask; 4522 mask = asoc->peer.sack_needed << 1; 4523 mask = (mask | asoc->peer.sack_generation) << 1; 4524 mask = (mask | asoc->peer.zero_window_announced); 4525 info->sctpi_peer_sack = mask; 4526 4527 info->sctpi_isacks = asoc->stats.isacks; 4528 info->sctpi_osacks = asoc->stats.osacks; 4529 info->sctpi_opackets = asoc->stats.opackets; 4530 info->sctpi_ipackets = asoc->stats.ipackets; 4531 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 4532 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 4533 info->sctpi_idupchunks = asoc->stats.idupchunks; 4534 info->sctpi_gapcnt = asoc->stats.gapcnt; 4535 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 4536 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 4537 info->sctpi_oodchunks = asoc->stats.oodchunks; 4538 info->sctpi_iodchunks = asoc->stats.iodchunks; 4539 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 4540 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 4541 4542 prim = asoc->peer.primary_path; 4543 memcpy(&info->sctpi_p_address, &prim->ipaddr, 4544 sizeof(struct sockaddr_storage)); 4545 info->sctpi_p_state = prim->state; 4546 info->sctpi_p_cwnd = prim->cwnd; 4547 info->sctpi_p_srtt = prim->srtt; 4548 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 4549 info->sctpi_p_hbinterval = prim->hbinterval; 4550 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 4551 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 4552 info->sctpi_p_ssthresh = prim->ssthresh; 4553 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 4554 info->sctpi_p_flight_size = prim->flight_size; 4555 info->sctpi_p_error = prim->error_count; 4556 4557 return 0; 4558 } 4559 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 4560 4561 /* use callback to avoid exporting the core structure */ 4562 int sctp_transport_walk_start(struct rhashtable_iter *iter) 4563 { 4564 int err; 4565 4566 rhltable_walk_enter(&sctp_transport_hashtable, iter); 4567 4568 err = rhashtable_walk_start(iter); 4569 if (err && err != -EAGAIN) { 4570 rhashtable_walk_stop(iter); 4571 rhashtable_walk_exit(iter); 4572 return err; 4573 } 4574 4575 return 0; 4576 } 4577 4578 void sctp_transport_walk_stop(struct rhashtable_iter *iter) 4579 { 4580 rhashtable_walk_stop(iter); 4581 rhashtable_walk_exit(iter); 4582 } 4583 4584 struct sctp_transport *sctp_transport_get_next(struct net *net, 4585 struct rhashtable_iter *iter) 4586 { 4587 struct sctp_transport *t; 4588 4589 t = rhashtable_walk_next(iter); 4590 for (; t; t = rhashtable_walk_next(iter)) { 4591 if (IS_ERR(t)) { 4592 if (PTR_ERR(t) == -EAGAIN) 4593 continue; 4594 break; 4595 } 4596 4597 if (net_eq(sock_net(t->asoc->base.sk), net) && 4598 t->asoc->peer.primary_path == t) 4599 break; 4600 } 4601 4602 return t; 4603 } 4604 4605 struct sctp_transport *sctp_transport_get_idx(struct net *net, 4606 struct rhashtable_iter *iter, 4607 int pos) 4608 { 4609 void *obj = SEQ_START_TOKEN; 4610 4611 while (pos && (obj = sctp_transport_get_next(net, iter)) && 4612 !IS_ERR(obj)) 4613 pos--; 4614 4615 return obj; 4616 } 4617 4618 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 4619 void *p) { 4620 int err = 0; 4621 int hash = 0; 4622 struct sctp_ep_common *epb; 4623 struct sctp_hashbucket *head; 4624 4625 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 4626 hash++, head++) { 4627 read_lock_bh(&head->lock); 4628 sctp_for_each_hentry(epb, &head->chain) { 4629 err = cb(sctp_ep(epb), p); 4630 if (err) 4631 break; 4632 } 4633 read_unlock_bh(&head->lock); 4634 } 4635 4636 return err; 4637 } 4638 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 4639 4640 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 4641 struct net *net, 4642 const union sctp_addr *laddr, 4643 const union sctp_addr *paddr, void *p) 4644 { 4645 struct sctp_transport *transport; 4646 int err; 4647 4648 rcu_read_lock(); 4649 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 4650 rcu_read_unlock(); 4651 if (!transport) 4652 return -ENOENT; 4653 4654 err = cb(transport, p); 4655 sctp_transport_put(transport); 4656 4657 return err; 4658 } 4659 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 4660 4661 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 4662 struct net *net, int pos, void *p) { 4663 struct rhashtable_iter hti; 4664 void *obj; 4665 int err; 4666 4667 err = sctp_transport_walk_start(&hti); 4668 if (err) 4669 return err; 4670 4671 obj = sctp_transport_get_idx(net, &hti, pos + 1); 4672 for (; !IS_ERR_OR_NULL(obj); obj = sctp_transport_get_next(net, &hti)) { 4673 struct sctp_transport *transport = obj; 4674 4675 if (!sctp_transport_hold(transport)) 4676 continue; 4677 err = cb(transport, p); 4678 sctp_transport_put(transport); 4679 if (err) 4680 break; 4681 } 4682 sctp_transport_walk_stop(&hti); 4683 4684 return err; 4685 } 4686 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 4687 4688 /* 7.2.1 Association Status (SCTP_STATUS) 4689 4690 * Applications can retrieve current status information about an 4691 * association, including association state, peer receiver window size, 4692 * number of unacked data chunks, and number of data chunks pending 4693 * receipt. This information is read-only. 4694 */ 4695 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 4696 char __user *optval, 4697 int __user *optlen) 4698 { 4699 struct sctp_status status; 4700 struct sctp_association *asoc = NULL; 4701 struct sctp_transport *transport; 4702 sctp_assoc_t associd; 4703 int retval = 0; 4704 4705 if (len < sizeof(status)) { 4706 retval = -EINVAL; 4707 goto out; 4708 } 4709 4710 len = sizeof(status); 4711 if (copy_from_user(&status, optval, len)) { 4712 retval = -EFAULT; 4713 goto out; 4714 } 4715 4716 associd = status.sstat_assoc_id; 4717 asoc = sctp_id2assoc(sk, associd); 4718 if (!asoc) { 4719 retval = -EINVAL; 4720 goto out; 4721 } 4722 4723 transport = asoc->peer.primary_path; 4724 4725 status.sstat_assoc_id = sctp_assoc2id(asoc); 4726 status.sstat_state = sctp_assoc_to_state(asoc); 4727 status.sstat_rwnd = asoc->peer.rwnd; 4728 status.sstat_unackdata = asoc->unack_data; 4729 4730 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4731 status.sstat_instrms = asoc->stream.incnt; 4732 status.sstat_outstrms = asoc->stream.outcnt; 4733 status.sstat_fragmentation_point = asoc->frag_point; 4734 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4735 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 4736 transport->af_specific->sockaddr_len); 4737 /* Map ipv4 address into v4-mapped-on-v6 address. */ 4738 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 4739 (union sctp_addr *)&status.sstat_primary.spinfo_address); 4740 status.sstat_primary.spinfo_state = transport->state; 4741 status.sstat_primary.spinfo_cwnd = transport->cwnd; 4742 status.sstat_primary.spinfo_srtt = transport->srtt; 4743 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 4744 status.sstat_primary.spinfo_mtu = transport->pathmtu; 4745 4746 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 4747 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 4748 4749 if (put_user(len, optlen)) { 4750 retval = -EFAULT; 4751 goto out; 4752 } 4753 4754 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 4755 __func__, len, status.sstat_state, status.sstat_rwnd, 4756 status.sstat_assoc_id); 4757 4758 if (copy_to_user(optval, &status, len)) { 4759 retval = -EFAULT; 4760 goto out; 4761 } 4762 4763 out: 4764 return retval; 4765 } 4766 4767 4768 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 4769 * 4770 * Applications can retrieve information about a specific peer address 4771 * of an association, including its reachability state, congestion 4772 * window, and retransmission timer values. This information is 4773 * read-only. 4774 */ 4775 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 4776 char __user *optval, 4777 int __user *optlen) 4778 { 4779 struct sctp_paddrinfo pinfo; 4780 struct sctp_transport *transport; 4781 int retval = 0; 4782 4783 if (len < sizeof(pinfo)) { 4784 retval = -EINVAL; 4785 goto out; 4786 } 4787 4788 len = sizeof(pinfo); 4789 if (copy_from_user(&pinfo, optval, len)) { 4790 retval = -EFAULT; 4791 goto out; 4792 } 4793 4794 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 4795 pinfo.spinfo_assoc_id); 4796 if (!transport) 4797 return -EINVAL; 4798 4799 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4800 pinfo.spinfo_state = transport->state; 4801 pinfo.spinfo_cwnd = transport->cwnd; 4802 pinfo.spinfo_srtt = transport->srtt; 4803 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 4804 pinfo.spinfo_mtu = transport->pathmtu; 4805 4806 if (pinfo.spinfo_state == SCTP_UNKNOWN) 4807 pinfo.spinfo_state = SCTP_ACTIVE; 4808 4809 if (put_user(len, optlen)) { 4810 retval = -EFAULT; 4811 goto out; 4812 } 4813 4814 if (copy_to_user(optval, &pinfo, len)) { 4815 retval = -EFAULT; 4816 goto out; 4817 } 4818 4819 out: 4820 return retval; 4821 } 4822 4823 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 4824 * 4825 * This option is a on/off flag. If enabled no SCTP message 4826 * fragmentation will be performed. Instead if a message being sent 4827 * exceeds the current PMTU size, the message will NOT be sent and 4828 * instead a error will be indicated to the user. 4829 */ 4830 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 4831 char __user *optval, int __user *optlen) 4832 { 4833 int val; 4834 4835 if (len < sizeof(int)) 4836 return -EINVAL; 4837 4838 len = sizeof(int); 4839 val = (sctp_sk(sk)->disable_fragments == 1); 4840 if (put_user(len, optlen)) 4841 return -EFAULT; 4842 if (copy_to_user(optval, &val, len)) 4843 return -EFAULT; 4844 return 0; 4845 } 4846 4847 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 4848 * 4849 * This socket option is used to specify various notifications and 4850 * ancillary data the user wishes to receive. 4851 */ 4852 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 4853 int __user *optlen) 4854 { 4855 if (len == 0) 4856 return -EINVAL; 4857 if (len > sizeof(struct sctp_event_subscribe)) 4858 len = sizeof(struct sctp_event_subscribe); 4859 if (put_user(len, optlen)) 4860 return -EFAULT; 4861 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 4862 return -EFAULT; 4863 return 0; 4864 } 4865 4866 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 4867 * 4868 * This socket option is applicable to the UDP-style socket only. When 4869 * set it will cause associations that are idle for more than the 4870 * specified number of seconds to automatically close. An association 4871 * being idle is defined an association that has NOT sent or received 4872 * user data. The special value of '0' indicates that no automatic 4873 * close of any associations should be performed. The option expects an 4874 * integer defining the number of seconds of idle time before an 4875 * association is closed. 4876 */ 4877 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 4878 { 4879 /* Applicable to UDP-style socket only */ 4880 if (sctp_style(sk, TCP)) 4881 return -EOPNOTSUPP; 4882 if (len < sizeof(int)) 4883 return -EINVAL; 4884 len = sizeof(int); 4885 if (put_user(len, optlen)) 4886 return -EFAULT; 4887 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 4888 return -EFAULT; 4889 return 0; 4890 } 4891 4892 /* Helper routine to branch off an association to a new socket. */ 4893 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 4894 { 4895 struct sctp_association *asoc = sctp_id2assoc(sk, id); 4896 struct sctp_sock *sp = sctp_sk(sk); 4897 struct socket *sock; 4898 int err = 0; 4899 4900 if (!asoc) 4901 return -EINVAL; 4902 4903 /* If there is a thread waiting on more sndbuf space for 4904 * sending on this asoc, it cannot be peeled. 4905 */ 4906 if (waitqueue_active(&asoc->wait)) 4907 return -EBUSY; 4908 4909 /* An association cannot be branched off from an already peeled-off 4910 * socket, nor is this supported for tcp style sockets. 4911 */ 4912 if (!sctp_style(sk, UDP)) 4913 return -EINVAL; 4914 4915 /* Create a new socket. */ 4916 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 4917 if (err < 0) 4918 return err; 4919 4920 sctp_copy_sock(sock->sk, sk, asoc); 4921 4922 /* Make peeled-off sockets more like 1-1 accepted sockets. 4923 * Set the daddr and initialize id to something more random 4924 */ 4925 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 4926 4927 /* Populate the fields of the newsk from the oldsk and migrate the 4928 * asoc to the newsk. 4929 */ 4930 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 4931 4932 *sockp = sock; 4933 4934 return err; 4935 } 4936 EXPORT_SYMBOL(sctp_do_peeloff); 4937 4938 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 4939 struct file **newfile, unsigned flags) 4940 { 4941 struct socket *newsock; 4942 int retval; 4943 4944 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 4945 if (retval < 0) 4946 goto out; 4947 4948 /* Map the socket to an unused fd that can be returned to the user. */ 4949 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 4950 if (retval < 0) { 4951 sock_release(newsock); 4952 goto out; 4953 } 4954 4955 *newfile = sock_alloc_file(newsock, 0, NULL); 4956 if (IS_ERR(*newfile)) { 4957 put_unused_fd(retval); 4958 sock_release(newsock); 4959 retval = PTR_ERR(*newfile); 4960 *newfile = NULL; 4961 return retval; 4962 } 4963 4964 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 4965 retval); 4966 4967 peeloff->sd = retval; 4968 4969 if (flags & SOCK_NONBLOCK) 4970 (*newfile)->f_flags |= O_NONBLOCK; 4971 out: 4972 return retval; 4973 } 4974 4975 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 4976 { 4977 sctp_peeloff_arg_t peeloff; 4978 struct file *newfile = NULL; 4979 int retval = 0; 4980 4981 if (len < sizeof(sctp_peeloff_arg_t)) 4982 return -EINVAL; 4983 len = sizeof(sctp_peeloff_arg_t); 4984 if (copy_from_user(&peeloff, optval, len)) 4985 return -EFAULT; 4986 4987 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 4988 if (retval < 0) 4989 goto out; 4990 4991 /* Return the fd mapped to the new socket. */ 4992 if (put_user(len, optlen)) { 4993 fput(newfile); 4994 put_unused_fd(retval); 4995 return -EFAULT; 4996 } 4997 4998 if (copy_to_user(optval, &peeloff, len)) { 4999 fput(newfile); 5000 put_unused_fd(retval); 5001 return -EFAULT; 5002 } 5003 fd_install(retval, newfile); 5004 out: 5005 return retval; 5006 } 5007 5008 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5009 char __user *optval, int __user *optlen) 5010 { 5011 sctp_peeloff_flags_arg_t peeloff; 5012 struct file *newfile = NULL; 5013 int retval = 0; 5014 5015 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5016 return -EINVAL; 5017 len = sizeof(sctp_peeloff_flags_arg_t); 5018 if (copy_from_user(&peeloff, optval, len)) 5019 return -EFAULT; 5020 5021 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5022 &newfile, peeloff.flags); 5023 if (retval < 0) 5024 goto out; 5025 5026 /* Return the fd mapped to the new socket. */ 5027 if (put_user(len, optlen)) { 5028 fput(newfile); 5029 put_unused_fd(retval); 5030 return -EFAULT; 5031 } 5032 5033 if (copy_to_user(optval, &peeloff, len)) { 5034 fput(newfile); 5035 put_unused_fd(retval); 5036 return -EFAULT; 5037 } 5038 fd_install(retval, newfile); 5039 out: 5040 return retval; 5041 } 5042 5043 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5044 * 5045 * Applications can enable or disable heartbeats for any peer address of 5046 * an association, modify an address's heartbeat interval, force a 5047 * heartbeat to be sent immediately, and adjust the address's maximum 5048 * number of retransmissions sent before an address is considered 5049 * unreachable. The following structure is used to access and modify an 5050 * address's parameters: 5051 * 5052 * struct sctp_paddrparams { 5053 * sctp_assoc_t spp_assoc_id; 5054 * struct sockaddr_storage spp_address; 5055 * uint32_t spp_hbinterval; 5056 * uint16_t spp_pathmaxrxt; 5057 * uint32_t spp_pathmtu; 5058 * uint32_t spp_sackdelay; 5059 * uint32_t spp_flags; 5060 * }; 5061 * 5062 * spp_assoc_id - (one-to-many style socket) This is filled in the 5063 * application, and identifies the association for 5064 * this query. 5065 * spp_address - This specifies which address is of interest. 5066 * spp_hbinterval - This contains the value of the heartbeat interval, 5067 * in milliseconds. If a value of zero 5068 * is present in this field then no changes are to 5069 * be made to this parameter. 5070 * spp_pathmaxrxt - This contains the maximum number of 5071 * retransmissions before this address shall be 5072 * considered unreachable. If a value of zero 5073 * is present in this field then no changes are to 5074 * be made to this parameter. 5075 * spp_pathmtu - When Path MTU discovery is disabled the value 5076 * specified here will be the "fixed" path mtu. 5077 * Note that if the spp_address field is empty 5078 * then all associations on this address will 5079 * have this fixed path mtu set upon them. 5080 * 5081 * spp_sackdelay - When delayed sack is enabled, this value specifies 5082 * the number of milliseconds that sacks will be delayed 5083 * for. This value will apply to all addresses of an 5084 * association if the spp_address field is empty. Note 5085 * also, that if delayed sack is enabled and this 5086 * value is set to 0, no change is made to the last 5087 * recorded delayed sack timer value. 5088 * 5089 * spp_flags - These flags are used to control various features 5090 * on an association. The flag field may contain 5091 * zero or more of the following options. 5092 * 5093 * SPP_HB_ENABLE - Enable heartbeats on the 5094 * specified address. Note that if the address 5095 * field is empty all addresses for the association 5096 * have heartbeats enabled upon them. 5097 * 5098 * SPP_HB_DISABLE - Disable heartbeats on the 5099 * speicifed address. Note that if the address 5100 * field is empty all addresses for the association 5101 * will have their heartbeats disabled. Note also 5102 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5103 * mutually exclusive, only one of these two should 5104 * be specified. Enabling both fields will have 5105 * undetermined results. 5106 * 5107 * SPP_HB_DEMAND - Request a user initiated heartbeat 5108 * to be made immediately. 5109 * 5110 * SPP_PMTUD_ENABLE - This field will enable PMTU 5111 * discovery upon the specified address. Note that 5112 * if the address feild is empty then all addresses 5113 * on the association are effected. 5114 * 5115 * SPP_PMTUD_DISABLE - This field will disable PMTU 5116 * discovery upon the specified address. Note that 5117 * if the address feild is empty then all addresses 5118 * on the association are effected. Not also that 5119 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5120 * exclusive. Enabling both will have undetermined 5121 * results. 5122 * 5123 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5124 * on delayed sack. The time specified in spp_sackdelay 5125 * is used to specify the sack delay for this address. Note 5126 * that if spp_address is empty then all addresses will 5127 * enable delayed sack and take on the sack delay 5128 * value specified in spp_sackdelay. 5129 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5130 * off delayed sack. If the spp_address field is blank then 5131 * delayed sack is disabled for the entire association. Note 5132 * also that this field is mutually exclusive to 5133 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5134 * results. 5135 */ 5136 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5137 char __user *optval, int __user *optlen) 5138 { 5139 struct sctp_paddrparams params; 5140 struct sctp_transport *trans = NULL; 5141 struct sctp_association *asoc = NULL; 5142 struct sctp_sock *sp = sctp_sk(sk); 5143 5144 if (len < sizeof(struct sctp_paddrparams)) 5145 return -EINVAL; 5146 len = sizeof(struct sctp_paddrparams); 5147 if (copy_from_user(¶ms, optval, len)) 5148 return -EFAULT; 5149 5150 /* If an address other than INADDR_ANY is specified, and 5151 * no transport is found, then the request is invalid. 5152 */ 5153 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5154 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5155 params.spp_assoc_id); 5156 if (!trans) { 5157 pr_debug("%s: failed no transport\n", __func__); 5158 return -EINVAL; 5159 } 5160 } 5161 5162 /* Get association, if assoc_id != 0 and the socket is a one 5163 * to many style socket, and an association was not found, then 5164 * the id was invalid. 5165 */ 5166 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5167 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 5168 pr_debug("%s: failed no association\n", __func__); 5169 return -EINVAL; 5170 } 5171 5172 if (trans) { 5173 /* Fetch transport values. */ 5174 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5175 params.spp_pathmtu = trans->pathmtu; 5176 params.spp_pathmaxrxt = trans->pathmaxrxt; 5177 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5178 5179 /*draft-11 doesn't say what to return in spp_flags*/ 5180 params.spp_flags = trans->param_flags; 5181 } else if (asoc) { 5182 /* Fetch association values. */ 5183 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5184 params.spp_pathmtu = asoc->pathmtu; 5185 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5186 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5187 5188 /*draft-11 doesn't say what to return in spp_flags*/ 5189 params.spp_flags = asoc->param_flags; 5190 } else { 5191 /* Fetch socket values. */ 5192 params.spp_hbinterval = sp->hbinterval; 5193 params.spp_pathmtu = sp->pathmtu; 5194 params.spp_sackdelay = sp->sackdelay; 5195 params.spp_pathmaxrxt = sp->pathmaxrxt; 5196 5197 /*draft-11 doesn't say what to return in spp_flags*/ 5198 params.spp_flags = sp->param_flags; 5199 } 5200 5201 if (copy_to_user(optval, ¶ms, len)) 5202 return -EFAULT; 5203 5204 if (put_user(len, optlen)) 5205 return -EFAULT; 5206 5207 return 0; 5208 } 5209 5210 /* 5211 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 5212 * 5213 * This option will effect the way delayed acks are performed. This 5214 * option allows you to get or set the delayed ack time, in 5215 * milliseconds. It also allows changing the delayed ack frequency. 5216 * Changing the frequency to 1 disables the delayed sack algorithm. If 5217 * the assoc_id is 0, then this sets or gets the endpoints default 5218 * values. If the assoc_id field is non-zero, then the set or get 5219 * effects the specified association for the one to many model (the 5220 * assoc_id field is ignored by the one to one model). Note that if 5221 * sack_delay or sack_freq are 0 when setting this option, then the 5222 * current values will remain unchanged. 5223 * 5224 * struct sctp_sack_info { 5225 * sctp_assoc_t sack_assoc_id; 5226 * uint32_t sack_delay; 5227 * uint32_t sack_freq; 5228 * }; 5229 * 5230 * sack_assoc_id - This parameter, indicates which association the user 5231 * is performing an action upon. Note that if this field's value is 5232 * zero then the endpoints default value is changed (effecting future 5233 * associations only). 5234 * 5235 * sack_delay - This parameter contains the number of milliseconds that 5236 * the user is requesting the delayed ACK timer be set to. Note that 5237 * this value is defined in the standard to be between 200 and 500 5238 * milliseconds. 5239 * 5240 * sack_freq - This parameter contains the number of packets that must 5241 * be received before a sack is sent without waiting for the delay 5242 * timer to expire. The default value for this is 2, setting this 5243 * value to 1 will disable the delayed sack algorithm. 5244 */ 5245 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 5246 char __user *optval, 5247 int __user *optlen) 5248 { 5249 struct sctp_sack_info params; 5250 struct sctp_association *asoc = NULL; 5251 struct sctp_sock *sp = sctp_sk(sk); 5252 5253 if (len >= sizeof(struct sctp_sack_info)) { 5254 len = sizeof(struct sctp_sack_info); 5255 5256 if (copy_from_user(¶ms, optval, len)) 5257 return -EFAULT; 5258 } else if (len == sizeof(struct sctp_assoc_value)) { 5259 pr_warn_ratelimited(DEPRECATED 5260 "%s (pid %d) " 5261 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 5262 "Use struct sctp_sack_info instead\n", 5263 current->comm, task_pid_nr(current)); 5264 if (copy_from_user(¶ms, optval, len)) 5265 return -EFAULT; 5266 } else 5267 return -EINVAL; 5268 5269 /* Get association, if sack_assoc_id != 0 and the socket is a one 5270 * to many style socket, and an association was not found, then 5271 * the id was invalid. 5272 */ 5273 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 5274 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 5275 return -EINVAL; 5276 5277 if (asoc) { 5278 /* Fetch association values. */ 5279 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 5280 params.sack_delay = jiffies_to_msecs( 5281 asoc->sackdelay); 5282 params.sack_freq = asoc->sackfreq; 5283 5284 } else { 5285 params.sack_delay = 0; 5286 params.sack_freq = 1; 5287 } 5288 } else { 5289 /* Fetch socket values. */ 5290 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 5291 params.sack_delay = sp->sackdelay; 5292 params.sack_freq = sp->sackfreq; 5293 } else { 5294 params.sack_delay = 0; 5295 params.sack_freq = 1; 5296 } 5297 } 5298 5299 if (copy_to_user(optval, ¶ms, len)) 5300 return -EFAULT; 5301 5302 if (put_user(len, optlen)) 5303 return -EFAULT; 5304 5305 return 0; 5306 } 5307 5308 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 5309 * 5310 * Applications can specify protocol parameters for the default association 5311 * initialization. The option name argument to setsockopt() and getsockopt() 5312 * is SCTP_INITMSG. 5313 * 5314 * Setting initialization parameters is effective only on an unconnected 5315 * socket (for UDP-style sockets only future associations are effected 5316 * by the change). With TCP-style sockets, this option is inherited by 5317 * sockets derived from a listener socket. 5318 */ 5319 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 5320 { 5321 if (len < sizeof(struct sctp_initmsg)) 5322 return -EINVAL; 5323 len = sizeof(struct sctp_initmsg); 5324 if (put_user(len, optlen)) 5325 return -EFAULT; 5326 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 5327 return -EFAULT; 5328 return 0; 5329 } 5330 5331 5332 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 5333 char __user *optval, int __user *optlen) 5334 { 5335 struct sctp_association *asoc; 5336 int cnt = 0; 5337 struct sctp_getaddrs getaddrs; 5338 struct sctp_transport *from; 5339 void __user *to; 5340 union sctp_addr temp; 5341 struct sctp_sock *sp = sctp_sk(sk); 5342 int addrlen; 5343 size_t space_left; 5344 int bytes_copied; 5345 5346 if (len < sizeof(struct sctp_getaddrs)) 5347 return -EINVAL; 5348 5349 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5350 return -EFAULT; 5351 5352 /* For UDP-style sockets, id specifies the association to query. */ 5353 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5354 if (!asoc) 5355 return -EINVAL; 5356 5357 to = optval + offsetof(struct sctp_getaddrs, addrs); 5358 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5359 5360 list_for_each_entry(from, &asoc->peer.transport_addr_list, 5361 transports) { 5362 memcpy(&temp, &from->ipaddr, sizeof(temp)); 5363 addrlen = sctp_get_pf_specific(sk->sk_family) 5364 ->addr_to_user(sp, &temp); 5365 if (space_left < addrlen) 5366 return -ENOMEM; 5367 if (copy_to_user(to, &temp, addrlen)) 5368 return -EFAULT; 5369 to += addrlen; 5370 cnt++; 5371 space_left -= addrlen; 5372 } 5373 5374 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 5375 return -EFAULT; 5376 bytes_copied = ((char __user *)to) - optval; 5377 if (put_user(bytes_copied, optlen)) 5378 return -EFAULT; 5379 5380 return 0; 5381 } 5382 5383 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 5384 size_t space_left, int *bytes_copied) 5385 { 5386 struct sctp_sockaddr_entry *addr; 5387 union sctp_addr temp; 5388 int cnt = 0; 5389 int addrlen; 5390 struct net *net = sock_net(sk); 5391 5392 rcu_read_lock(); 5393 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 5394 if (!addr->valid) 5395 continue; 5396 5397 if ((PF_INET == sk->sk_family) && 5398 (AF_INET6 == addr->a.sa.sa_family)) 5399 continue; 5400 if ((PF_INET6 == sk->sk_family) && 5401 inet_v6_ipv6only(sk) && 5402 (AF_INET == addr->a.sa.sa_family)) 5403 continue; 5404 memcpy(&temp, &addr->a, sizeof(temp)); 5405 if (!temp.v4.sin_port) 5406 temp.v4.sin_port = htons(port); 5407 5408 addrlen = sctp_get_pf_specific(sk->sk_family) 5409 ->addr_to_user(sctp_sk(sk), &temp); 5410 5411 if (space_left < addrlen) { 5412 cnt = -ENOMEM; 5413 break; 5414 } 5415 memcpy(to, &temp, addrlen); 5416 5417 to += addrlen; 5418 cnt++; 5419 space_left -= addrlen; 5420 *bytes_copied += addrlen; 5421 } 5422 rcu_read_unlock(); 5423 5424 return cnt; 5425 } 5426 5427 5428 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 5429 char __user *optval, int __user *optlen) 5430 { 5431 struct sctp_bind_addr *bp; 5432 struct sctp_association *asoc; 5433 int cnt = 0; 5434 struct sctp_getaddrs getaddrs; 5435 struct sctp_sockaddr_entry *addr; 5436 void __user *to; 5437 union sctp_addr temp; 5438 struct sctp_sock *sp = sctp_sk(sk); 5439 int addrlen; 5440 int err = 0; 5441 size_t space_left; 5442 int bytes_copied = 0; 5443 void *addrs; 5444 void *buf; 5445 5446 if (len < sizeof(struct sctp_getaddrs)) 5447 return -EINVAL; 5448 5449 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5450 return -EFAULT; 5451 5452 /* 5453 * For UDP-style sockets, id specifies the association to query. 5454 * If the id field is set to the value '0' then the locally bound 5455 * addresses are returned without regard to any particular 5456 * association. 5457 */ 5458 if (0 == getaddrs.assoc_id) { 5459 bp = &sctp_sk(sk)->ep->base.bind_addr; 5460 } else { 5461 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5462 if (!asoc) 5463 return -EINVAL; 5464 bp = &asoc->base.bind_addr; 5465 } 5466 5467 to = optval + offsetof(struct sctp_getaddrs, addrs); 5468 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5469 5470 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 5471 if (!addrs) 5472 return -ENOMEM; 5473 5474 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 5475 * addresses from the global local address list. 5476 */ 5477 if (sctp_list_single_entry(&bp->address_list)) { 5478 addr = list_entry(bp->address_list.next, 5479 struct sctp_sockaddr_entry, list); 5480 if (sctp_is_any(sk, &addr->a)) { 5481 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 5482 space_left, &bytes_copied); 5483 if (cnt < 0) { 5484 err = cnt; 5485 goto out; 5486 } 5487 goto copy_getaddrs; 5488 } 5489 } 5490 5491 buf = addrs; 5492 /* Protection on the bound address list is not needed since 5493 * in the socket option context we hold a socket lock and 5494 * thus the bound address list can't change. 5495 */ 5496 list_for_each_entry(addr, &bp->address_list, list) { 5497 memcpy(&temp, &addr->a, sizeof(temp)); 5498 addrlen = sctp_get_pf_specific(sk->sk_family) 5499 ->addr_to_user(sp, &temp); 5500 if (space_left < addrlen) { 5501 err = -ENOMEM; /*fixme: right error?*/ 5502 goto out; 5503 } 5504 memcpy(buf, &temp, addrlen); 5505 buf += addrlen; 5506 bytes_copied += addrlen; 5507 cnt++; 5508 space_left -= addrlen; 5509 } 5510 5511 copy_getaddrs: 5512 if (copy_to_user(to, addrs, bytes_copied)) { 5513 err = -EFAULT; 5514 goto out; 5515 } 5516 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 5517 err = -EFAULT; 5518 goto out; 5519 } 5520 if (put_user(bytes_copied, optlen)) 5521 err = -EFAULT; 5522 out: 5523 kfree(addrs); 5524 return err; 5525 } 5526 5527 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 5528 * 5529 * Requests that the local SCTP stack use the enclosed peer address as 5530 * the association primary. The enclosed address must be one of the 5531 * association peer's addresses. 5532 */ 5533 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 5534 char __user *optval, int __user *optlen) 5535 { 5536 struct sctp_prim prim; 5537 struct sctp_association *asoc; 5538 struct sctp_sock *sp = sctp_sk(sk); 5539 5540 if (len < sizeof(struct sctp_prim)) 5541 return -EINVAL; 5542 5543 len = sizeof(struct sctp_prim); 5544 5545 if (copy_from_user(&prim, optval, len)) 5546 return -EFAULT; 5547 5548 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 5549 if (!asoc) 5550 return -EINVAL; 5551 5552 if (!asoc->peer.primary_path) 5553 return -ENOTCONN; 5554 5555 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 5556 asoc->peer.primary_path->af_specific->sockaddr_len); 5557 5558 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 5559 (union sctp_addr *)&prim.ssp_addr); 5560 5561 if (put_user(len, optlen)) 5562 return -EFAULT; 5563 if (copy_to_user(optval, &prim, len)) 5564 return -EFAULT; 5565 5566 return 0; 5567 } 5568 5569 /* 5570 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 5571 * 5572 * Requests that the local endpoint set the specified Adaptation Layer 5573 * Indication parameter for all future INIT and INIT-ACK exchanges. 5574 */ 5575 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 5576 char __user *optval, int __user *optlen) 5577 { 5578 struct sctp_setadaptation adaptation; 5579 5580 if (len < sizeof(struct sctp_setadaptation)) 5581 return -EINVAL; 5582 5583 len = sizeof(struct sctp_setadaptation); 5584 5585 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 5586 5587 if (put_user(len, optlen)) 5588 return -EFAULT; 5589 if (copy_to_user(optval, &adaptation, len)) 5590 return -EFAULT; 5591 5592 return 0; 5593 } 5594 5595 /* 5596 * 5597 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 5598 * 5599 * Applications that wish to use the sendto() system call may wish to 5600 * specify a default set of parameters that would normally be supplied 5601 * through the inclusion of ancillary data. This socket option allows 5602 * such an application to set the default sctp_sndrcvinfo structure. 5603 5604 5605 * The application that wishes to use this socket option simply passes 5606 * in to this call the sctp_sndrcvinfo structure defined in Section 5607 * 5.2.2) The input parameters accepted by this call include 5608 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 5609 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 5610 * to this call if the caller is using the UDP model. 5611 * 5612 * For getsockopt, it get the default sctp_sndrcvinfo structure. 5613 */ 5614 static int sctp_getsockopt_default_send_param(struct sock *sk, 5615 int len, char __user *optval, 5616 int __user *optlen) 5617 { 5618 struct sctp_sock *sp = sctp_sk(sk); 5619 struct sctp_association *asoc; 5620 struct sctp_sndrcvinfo info; 5621 5622 if (len < sizeof(info)) 5623 return -EINVAL; 5624 5625 len = sizeof(info); 5626 5627 if (copy_from_user(&info, optval, len)) 5628 return -EFAULT; 5629 5630 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 5631 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 5632 return -EINVAL; 5633 if (asoc) { 5634 info.sinfo_stream = asoc->default_stream; 5635 info.sinfo_flags = asoc->default_flags; 5636 info.sinfo_ppid = asoc->default_ppid; 5637 info.sinfo_context = asoc->default_context; 5638 info.sinfo_timetolive = asoc->default_timetolive; 5639 } else { 5640 info.sinfo_stream = sp->default_stream; 5641 info.sinfo_flags = sp->default_flags; 5642 info.sinfo_ppid = sp->default_ppid; 5643 info.sinfo_context = sp->default_context; 5644 info.sinfo_timetolive = sp->default_timetolive; 5645 } 5646 5647 if (put_user(len, optlen)) 5648 return -EFAULT; 5649 if (copy_to_user(optval, &info, len)) 5650 return -EFAULT; 5651 5652 return 0; 5653 } 5654 5655 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 5656 * (SCTP_DEFAULT_SNDINFO) 5657 */ 5658 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 5659 char __user *optval, 5660 int __user *optlen) 5661 { 5662 struct sctp_sock *sp = sctp_sk(sk); 5663 struct sctp_association *asoc; 5664 struct sctp_sndinfo info; 5665 5666 if (len < sizeof(info)) 5667 return -EINVAL; 5668 5669 len = sizeof(info); 5670 5671 if (copy_from_user(&info, optval, len)) 5672 return -EFAULT; 5673 5674 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 5675 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 5676 return -EINVAL; 5677 if (asoc) { 5678 info.snd_sid = asoc->default_stream; 5679 info.snd_flags = asoc->default_flags; 5680 info.snd_ppid = asoc->default_ppid; 5681 info.snd_context = asoc->default_context; 5682 } else { 5683 info.snd_sid = sp->default_stream; 5684 info.snd_flags = sp->default_flags; 5685 info.snd_ppid = sp->default_ppid; 5686 info.snd_context = sp->default_context; 5687 } 5688 5689 if (put_user(len, optlen)) 5690 return -EFAULT; 5691 if (copy_to_user(optval, &info, len)) 5692 return -EFAULT; 5693 5694 return 0; 5695 } 5696 5697 /* 5698 * 5699 * 7.1.5 SCTP_NODELAY 5700 * 5701 * Turn on/off any Nagle-like algorithm. This means that packets are 5702 * generally sent as soon as possible and no unnecessary delays are 5703 * introduced, at the cost of more packets in the network. Expects an 5704 * integer boolean flag. 5705 */ 5706 5707 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 5708 char __user *optval, int __user *optlen) 5709 { 5710 int val; 5711 5712 if (len < sizeof(int)) 5713 return -EINVAL; 5714 5715 len = sizeof(int); 5716 val = (sctp_sk(sk)->nodelay == 1); 5717 if (put_user(len, optlen)) 5718 return -EFAULT; 5719 if (copy_to_user(optval, &val, len)) 5720 return -EFAULT; 5721 return 0; 5722 } 5723 5724 /* 5725 * 5726 * 7.1.1 SCTP_RTOINFO 5727 * 5728 * The protocol parameters used to initialize and bound retransmission 5729 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 5730 * and modify these parameters. 5731 * All parameters are time values, in milliseconds. A value of 0, when 5732 * modifying the parameters, indicates that the current value should not 5733 * be changed. 5734 * 5735 */ 5736 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 5737 char __user *optval, 5738 int __user *optlen) { 5739 struct sctp_rtoinfo rtoinfo; 5740 struct sctp_association *asoc; 5741 5742 if (len < sizeof (struct sctp_rtoinfo)) 5743 return -EINVAL; 5744 5745 len = sizeof(struct sctp_rtoinfo); 5746 5747 if (copy_from_user(&rtoinfo, optval, len)) 5748 return -EFAULT; 5749 5750 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 5751 5752 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 5753 return -EINVAL; 5754 5755 /* Values corresponding to the specific association. */ 5756 if (asoc) { 5757 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 5758 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 5759 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 5760 } else { 5761 /* Values corresponding to the endpoint. */ 5762 struct sctp_sock *sp = sctp_sk(sk); 5763 5764 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 5765 rtoinfo.srto_max = sp->rtoinfo.srto_max; 5766 rtoinfo.srto_min = sp->rtoinfo.srto_min; 5767 } 5768 5769 if (put_user(len, optlen)) 5770 return -EFAULT; 5771 5772 if (copy_to_user(optval, &rtoinfo, len)) 5773 return -EFAULT; 5774 5775 return 0; 5776 } 5777 5778 /* 5779 * 5780 * 7.1.2 SCTP_ASSOCINFO 5781 * 5782 * This option is used to tune the maximum retransmission attempts 5783 * of the association. 5784 * Returns an error if the new association retransmission value is 5785 * greater than the sum of the retransmission value of the peer. 5786 * See [SCTP] for more information. 5787 * 5788 */ 5789 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 5790 char __user *optval, 5791 int __user *optlen) 5792 { 5793 5794 struct sctp_assocparams assocparams; 5795 struct sctp_association *asoc; 5796 struct list_head *pos; 5797 int cnt = 0; 5798 5799 if (len < sizeof (struct sctp_assocparams)) 5800 return -EINVAL; 5801 5802 len = sizeof(struct sctp_assocparams); 5803 5804 if (copy_from_user(&assocparams, optval, len)) 5805 return -EFAULT; 5806 5807 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 5808 5809 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 5810 return -EINVAL; 5811 5812 /* Values correspoinding to the specific association */ 5813 if (asoc) { 5814 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 5815 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 5816 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 5817 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 5818 5819 list_for_each(pos, &asoc->peer.transport_addr_list) { 5820 cnt++; 5821 } 5822 5823 assocparams.sasoc_number_peer_destinations = cnt; 5824 } else { 5825 /* Values corresponding to the endpoint */ 5826 struct sctp_sock *sp = sctp_sk(sk); 5827 5828 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 5829 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 5830 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 5831 assocparams.sasoc_cookie_life = 5832 sp->assocparams.sasoc_cookie_life; 5833 assocparams.sasoc_number_peer_destinations = 5834 sp->assocparams. 5835 sasoc_number_peer_destinations; 5836 } 5837 5838 if (put_user(len, optlen)) 5839 return -EFAULT; 5840 5841 if (copy_to_user(optval, &assocparams, len)) 5842 return -EFAULT; 5843 5844 return 0; 5845 } 5846 5847 /* 5848 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 5849 * 5850 * This socket option is a boolean flag which turns on or off mapped V4 5851 * addresses. If this option is turned on and the socket is type 5852 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 5853 * If this option is turned off, then no mapping will be done of V4 5854 * addresses and a user will receive both PF_INET6 and PF_INET type 5855 * addresses on the socket. 5856 */ 5857 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 5858 char __user *optval, int __user *optlen) 5859 { 5860 int val; 5861 struct sctp_sock *sp = sctp_sk(sk); 5862 5863 if (len < sizeof(int)) 5864 return -EINVAL; 5865 5866 len = sizeof(int); 5867 val = sp->v4mapped; 5868 if (put_user(len, optlen)) 5869 return -EFAULT; 5870 if (copy_to_user(optval, &val, len)) 5871 return -EFAULT; 5872 5873 return 0; 5874 } 5875 5876 /* 5877 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 5878 * (chapter and verse is quoted at sctp_setsockopt_context()) 5879 */ 5880 static int sctp_getsockopt_context(struct sock *sk, int len, 5881 char __user *optval, int __user *optlen) 5882 { 5883 struct sctp_assoc_value params; 5884 struct sctp_sock *sp; 5885 struct sctp_association *asoc; 5886 5887 if (len < sizeof(struct sctp_assoc_value)) 5888 return -EINVAL; 5889 5890 len = sizeof(struct sctp_assoc_value); 5891 5892 if (copy_from_user(¶ms, optval, len)) 5893 return -EFAULT; 5894 5895 sp = sctp_sk(sk); 5896 5897 if (params.assoc_id != 0) { 5898 asoc = sctp_id2assoc(sk, params.assoc_id); 5899 if (!asoc) 5900 return -EINVAL; 5901 params.assoc_value = asoc->default_rcv_context; 5902 } else { 5903 params.assoc_value = sp->default_rcv_context; 5904 } 5905 5906 if (put_user(len, optlen)) 5907 return -EFAULT; 5908 if (copy_to_user(optval, ¶ms, len)) 5909 return -EFAULT; 5910 5911 return 0; 5912 } 5913 5914 /* 5915 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 5916 * This option will get or set the maximum size to put in any outgoing 5917 * SCTP DATA chunk. If a message is larger than this size it will be 5918 * fragmented by SCTP into the specified size. Note that the underlying 5919 * SCTP implementation may fragment into smaller sized chunks when the 5920 * PMTU of the underlying association is smaller than the value set by 5921 * the user. The default value for this option is '0' which indicates 5922 * the user is NOT limiting fragmentation and only the PMTU will effect 5923 * SCTP's choice of DATA chunk size. Note also that values set larger 5924 * than the maximum size of an IP datagram will effectively let SCTP 5925 * control fragmentation (i.e. the same as setting this option to 0). 5926 * 5927 * The following structure is used to access and modify this parameter: 5928 * 5929 * struct sctp_assoc_value { 5930 * sctp_assoc_t assoc_id; 5931 * uint32_t assoc_value; 5932 * }; 5933 * 5934 * assoc_id: This parameter is ignored for one-to-one style sockets. 5935 * For one-to-many style sockets this parameter indicates which 5936 * association the user is performing an action upon. Note that if 5937 * this field's value is zero then the endpoints default value is 5938 * changed (effecting future associations only). 5939 * assoc_value: This parameter specifies the maximum size in bytes. 5940 */ 5941 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 5942 char __user *optval, int __user *optlen) 5943 { 5944 struct sctp_assoc_value params; 5945 struct sctp_association *asoc; 5946 5947 if (len == sizeof(int)) { 5948 pr_warn_ratelimited(DEPRECATED 5949 "%s (pid %d) " 5950 "Use of int in maxseg socket option.\n" 5951 "Use struct sctp_assoc_value instead\n", 5952 current->comm, task_pid_nr(current)); 5953 params.assoc_id = 0; 5954 } else if (len >= sizeof(struct sctp_assoc_value)) { 5955 len = sizeof(struct sctp_assoc_value); 5956 if (copy_from_user(¶ms, optval, sizeof(params))) 5957 return -EFAULT; 5958 } else 5959 return -EINVAL; 5960 5961 asoc = sctp_id2assoc(sk, params.assoc_id); 5962 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 5963 return -EINVAL; 5964 5965 if (asoc) 5966 params.assoc_value = asoc->frag_point; 5967 else 5968 params.assoc_value = sctp_sk(sk)->user_frag; 5969 5970 if (put_user(len, optlen)) 5971 return -EFAULT; 5972 if (len == sizeof(int)) { 5973 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5974 return -EFAULT; 5975 } else { 5976 if (copy_to_user(optval, ¶ms, len)) 5977 return -EFAULT; 5978 } 5979 5980 return 0; 5981 } 5982 5983 /* 5984 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 5985 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 5986 */ 5987 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 5988 char __user *optval, int __user *optlen) 5989 { 5990 int val; 5991 5992 if (len < sizeof(int)) 5993 return -EINVAL; 5994 5995 len = sizeof(int); 5996 5997 val = sctp_sk(sk)->frag_interleave; 5998 if (put_user(len, optlen)) 5999 return -EFAULT; 6000 if (copy_to_user(optval, &val, len)) 6001 return -EFAULT; 6002 6003 return 0; 6004 } 6005 6006 /* 6007 * 7.1.25. Set or Get the sctp partial delivery point 6008 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6009 */ 6010 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6011 char __user *optval, 6012 int __user *optlen) 6013 { 6014 u32 val; 6015 6016 if (len < sizeof(u32)) 6017 return -EINVAL; 6018 6019 len = sizeof(u32); 6020 6021 val = sctp_sk(sk)->pd_point; 6022 if (put_user(len, optlen)) 6023 return -EFAULT; 6024 if (copy_to_user(optval, &val, len)) 6025 return -EFAULT; 6026 6027 return 0; 6028 } 6029 6030 /* 6031 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6032 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6033 */ 6034 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6035 char __user *optval, 6036 int __user *optlen) 6037 { 6038 struct sctp_assoc_value params; 6039 struct sctp_sock *sp; 6040 struct sctp_association *asoc; 6041 6042 if (len == sizeof(int)) { 6043 pr_warn_ratelimited(DEPRECATED 6044 "%s (pid %d) " 6045 "Use of int in max_burst socket option.\n" 6046 "Use struct sctp_assoc_value instead\n", 6047 current->comm, task_pid_nr(current)); 6048 params.assoc_id = 0; 6049 } else if (len >= sizeof(struct sctp_assoc_value)) { 6050 len = sizeof(struct sctp_assoc_value); 6051 if (copy_from_user(¶ms, optval, len)) 6052 return -EFAULT; 6053 } else 6054 return -EINVAL; 6055 6056 sp = sctp_sk(sk); 6057 6058 if (params.assoc_id != 0) { 6059 asoc = sctp_id2assoc(sk, params.assoc_id); 6060 if (!asoc) 6061 return -EINVAL; 6062 params.assoc_value = asoc->max_burst; 6063 } else 6064 params.assoc_value = sp->max_burst; 6065 6066 if (len == sizeof(int)) { 6067 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6068 return -EFAULT; 6069 } else { 6070 if (copy_to_user(optval, ¶ms, len)) 6071 return -EFAULT; 6072 } 6073 6074 return 0; 6075 6076 } 6077 6078 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6079 char __user *optval, int __user *optlen) 6080 { 6081 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6082 struct sctp_hmacalgo __user *p = (void __user *)optval; 6083 struct sctp_hmac_algo_param *hmacs; 6084 __u16 data_len = 0; 6085 u32 num_idents; 6086 int i; 6087 6088 if (!ep->auth_enable) 6089 return -EACCES; 6090 6091 hmacs = ep->auth_hmacs_list; 6092 data_len = ntohs(hmacs->param_hdr.length) - 6093 sizeof(struct sctp_paramhdr); 6094 6095 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6096 return -EINVAL; 6097 6098 len = sizeof(struct sctp_hmacalgo) + data_len; 6099 num_idents = data_len / sizeof(u16); 6100 6101 if (put_user(len, optlen)) 6102 return -EFAULT; 6103 if (put_user(num_idents, &p->shmac_num_idents)) 6104 return -EFAULT; 6105 for (i = 0; i < num_idents; i++) { 6106 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6107 6108 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6109 return -EFAULT; 6110 } 6111 return 0; 6112 } 6113 6114 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6115 char __user *optval, int __user *optlen) 6116 { 6117 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6118 struct sctp_authkeyid val; 6119 struct sctp_association *asoc; 6120 6121 if (!ep->auth_enable) 6122 return -EACCES; 6123 6124 if (len < sizeof(struct sctp_authkeyid)) 6125 return -EINVAL; 6126 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 6127 return -EFAULT; 6128 6129 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6130 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6131 return -EINVAL; 6132 6133 if (asoc) 6134 val.scact_keynumber = asoc->active_key_id; 6135 else 6136 val.scact_keynumber = ep->active_key_id; 6137 6138 len = sizeof(struct sctp_authkeyid); 6139 if (put_user(len, optlen)) 6140 return -EFAULT; 6141 if (copy_to_user(optval, &val, len)) 6142 return -EFAULT; 6143 6144 return 0; 6145 } 6146 6147 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6148 char __user *optval, int __user *optlen) 6149 { 6150 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6151 struct sctp_authchunks __user *p = (void __user *)optval; 6152 struct sctp_authchunks val; 6153 struct sctp_association *asoc; 6154 struct sctp_chunks_param *ch; 6155 u32 num_chunks = 0; 6156 char __user *to; 6157 6158 if (!ep->auth_enable) 6159 return -EACCES; 6160 6161 if (len < sizeof(struct sctp_authchunks)) 6162 return -EINVAL; 6163 6164 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 6165 return -EFAULT; 6166 6167 to = p->gauth_chunks; 6168 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6169 if (!asoc) 6170 return -EINVAL; 6171 6172 ch = asoc->peer.peer_chunks; 6173 if (!ch) 6174 goto num; 6175 6176 /* See if the user provided enough room for all the data */ 6177 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6178 if (len < num_chunks) 6179 return -EINVAL; 6180 6181 if (copy_to_user(to, ch->chunks, num_chunks)) 6182 return -EFAULT; 6183 num: 6184 len = sizeof(struct sctp_authchunks) + num_chunks; 6185 if (put_user(len, optlen)) 6186 return -EFAULT; 6187 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6188 return -EFAULT; 6189 return 0; 6190 } 6191 6192 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 6193 char __user *optval, int __user *optlen) 6194 { 6195 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6196 struct sctp_authchunks __user *p = (void __user *)optval; 6197 struct sctp_authchunks val; 6198 struct sctp_association *asoc; 6199 struct sctp_chunks_param *ch; 6200 u32 num_chunks = 0; 6201 char __user *to; 6202 6203 if (!ep->auth_enable) 6204 return -EACCES; 6205 6206 if (len < sizeof(struct sctp_authchunks)) 6207 return -EINVAL; 6208 6209 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 6210 return -EFAULT; 6211 6212 to = p->gauth_chunks; 6213 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6214 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 6215 return -EINVAL; 6216 6217 if (asoc) 6218 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 6219 else 6220 ch = ep->auth_chunk_list; 6221 6222 if (!ch) 6223 goto num; 6224 6225 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6226 if (len < sizeof(struct sctp_authchunks) + num_chunks) 6227 return -EINVAL; 6228 6229 if (copy_to_user(to, ch->chunks, num_chunks)) 6230 return -EFAULT; 6231 num: 6232 len = sizeof(struct sctp_authchunks) + num_chunks; 6233 if (put_user(len, optlen)) 6234 return -EFAULT; 6235 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6236 return -EFAULT; 6237 6238 return 0; 6239 } 6240 6241 /* 6242 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 6243 * This option gets the current number of associations that are attached 6244 * to a one-to-many style socket. The option value is an uint32_t. 6245 */ 6246 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 6247 char __user *optval, int __user *optlen) 6248 { 6249 struct sctp_sock *sp = sctp_sk(sk); 6250 struct sctp_association *asoc; 6251 u32 val = 0; 6252 6253 if (sctp_style(sk, TCP)) 6254 return -EOPNOTSUPP; 6255 6256 if (len < sizeof(u32)) 6257 return -EINVAL; 6258 6259 len = sizeof(u32); 6260 6261 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6262 val++; 6263 } 6264 6265 if (put_user(len, optlen)) 6266 return -EFAULT; 6267 if (copy_to_user(optval, &val, len)) 6268 return -EFAULT; 6269 6270 return 0; 6271 } 6272 6273 /* 6274 * 8.1.23 SCTP_AUTO_ASCONF 6275 * See the corresponding setsockopt entry as description 6276 */ 6277 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 6278 char __user *optval, int __user *optlen) 6279 { 6280 int val = 0; 6281 6282 if (len < sizeof(int)) 6283 return -EINVAL; 6284 6285 len = sizeof(int); 6286 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 6287 val = 1; 6288 if (put_user(len, optlen)) 6289 return -EFAULT; 6290 if (copy_to_user(optval, &val, len)) 6291 return -EFAULT; 6292 return 0; 6293 } 6294 6295 /* 6296 * 8.2.6. Get the Current Identifiers of Associations 6297 * (SCTP_GET_ASSOC_ID_LIST) 6298 * 6299 * This option gets the current list of SCTP association identifiers of 6300 * the SCTP associations handled by a one-to-many style socket. 6301 */ 6302 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 6303 char __user *optval, int __user *optlen) 6304 { 6305 struct sctp_sock *sp = sctp_sk(sk); 6306 struct sctp_association *asoc; 6307 struct sctp_assoc_ids *ids; 6308 u32 num = 0; 6309 6310 if (sctp_style(sk, TCP)) 6311 return -EOPNOTSUPP; 6312 6313 if (len < sizeof(struct sctp_assoc_ids)) 6314 return -EINVAL; 6315 6316 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6317 num++; 6318 } 6319 6320 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 6321 return -EINVAL; 6322 6323 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 6324 6325 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 6326 if (unlikely(!ids)) 6327 return -ENOMEM; 6328 6329 ids->gaids_number_of_ids = num; 6330 num = 0; 6331 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6332 ids->gaids_assoc_id[num++] = asoc->assoc_id; 6333 } 6334 6335 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 6336 kfree(ids); 6337 return -EFAULT; 6338 } 6339 6340 kfree(ids); 6341 return 0; 6342 } 6343 6344 /* 6345 * SCTP_PEER_ADDR_THLDS 6346 * 6347 * This option allows us to fetch the partially failed threshold for one or all 6348 * transports in an association. See Section 6.1 of: 6349 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 6350 */ 6351 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 6352 char __user *optval, 6353 int len, 6354 int __user *optlen) 6355 { 6356 struct sctp_paddrthlds val; 6357 struct sctp_transport *trans; 6358 struct sctp_association *asoc; 6359 6360 if (len < sizeof(struct sctp_paddrthlds)) 6361 return -EINVAL; 6362 len = sizeof(struct sctp_paddrthlds); 6363 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 6364 return -EFAULT; 6365 6366 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 6367 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 6368 if (!asoc) 6369 return -ENOENT; 6370 6371 val.spt_pathpfthld = asoc->pf_retrans; 6372 val.spt_pathmaxrxt = asoc->pathmaxrxt; 6373 } else { 6374 trans = sctp_addr_id2transport(sk, &val.spt_address, 6375 val.spt_assoc_id); 6376 if (!trans) 6377 return -ENOENT; 6378 6379 val.spt_pathmaxrxt = trans->pathmaxrxt; 6380 val.spt_pathpfthld = trans->pf_retrans; 6381 } 6382 6383 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 6384 return -EFAULT; 6385 6386 return 0; 6387 } 6388 6389 /* 6390 * SCTP_GET_ASSOC_STATS 6391 * 6392 * This option retrieves local per endpoint statistics. It is modeled 6393 * after OpenSolaris' implementation 6394 */ 6395 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 6396 char __user *optval, 6397 int __user *optlen) 6398 { 6399 struct sctp_assoc_stats sas; 6400 struct sctp_association *asoc = NULL; 6401 6402 /* User must provide at least the assoc id */ 6403 if (len < sizeof(sctp_assoc_t)) 6404 return -EINVAL; 6405 6406 /* Allow the struct to grow and fill in as much as possible */ 6407 len = min_t(size_t, len, sizeof(sas)); 6408 6409 if (copy_from_user(&sas, optval, len)) 6410 return -EFAULT; 6411 6412 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 6413 if (!asoc) 6414 return -EINVAL; 6415 6416 sas.sas_rtxchunks = asoc->stats.rtxchunks; 6417 sas.sas_gapcnt = asoc->stats.gapcnt; 6418 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 6419 sas.sas_osacks = asoc->stats.osacks; 6420 sas.sas_isacks = asoc->stats.isacks; 6421 sas.sas_octrlchunks = asoc->stats.octrlchunks; 6422 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 6423 sas.sas_oodchunks = asoc->stats.oodchunks; 6424 sas.sas_iodchunks = asoc->stats.iodchunks; 6425 sas.sas_ouodchunks = asoc->stats.ouodchunks; 6426 sas.sas_iuodchunks = asoc->stats.iuodchunks; 6427 sas.sas_idupchunks = asoc->stats.idupchunks; 6428 sas.sas_opackets = asoc->stats.opackets; 6429 sas.sas_ipackets = asoc->stats.ipackets; 6430 6431 /* New high max rto observed, will return 0 if not a single 6432 * RTO update took place. obs_rto_ipaddr will be bogus 6433 * in such a case 6434 */ 6435 sas.sas_maxrto = asoc->stats.max_obs_rto; 6436 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 6437 sizeof(struct sockaddr_storage)); 6438 6439 /* Mark beginning of a new observation period */ 6440 asoc->stats.max_obs_rto = asoc->rto_min; 6441 6442 if (put_user(len, optlen)) 6443 return -EFAULT; 6444 6445 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 6446 6447 if (copy_to_user(optval, &sas, len)) 6448 return -EFAULT; 6449 6450 return 0; 6451 } 6452 6453 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 6454 char __user *optval, 6455 int __user *optlen) 6456 { 6457 int val = 0; 6458 6459 if (len < sizeof(int)) 6460 return -EINVAL; 6461 6462 len = sizeof(int); 6463 if (sctp_sk(sk)->recvrcvinfo) 6464 val = 1; 6465 if (put_user(len, optlen)) 6466 return -EFAULT; 6467 if (copy_to_user(optval, &val, len)) 6468 return -EFAULT; 6469 6470 return 0; 6471 } 6472 6473 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 6474 char __user *optval, 6475 int __user *optlen) 6476 { 6477 int val = 0; 6478 6479 if (len < sizeof(int)) 6480 return -EINVAL; 6481 6482 len = sizeof(int); 6483 if (sctp_sk(sk)->recvnxtinfo) 6484 val = 1; 6485 if (put_user(len, optlen)) 6486 return -EFAULT; 6487 if (copy_to_user(optval, &val, len)) 6488 return -EFAULT; 6489 6490 return 0; 6491 } 6492 6493 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 6494 char __user *optval, 6495 int __user *optlen) 6496 { 6497 struct sctp_assoc_value params; 6498 struct sctp_association *asoc; 6499 int retval = -EFAULT; 6500 6501 if (len < sizeof(params)) { 6502 retval = -EINVAL; 6503 goto out; 6504 } 6505 6506 len = sizeof(params); 6507 if (copy_from_user(¶ms, optval, len)) 6508 goto out; 6509 6510 asoc = sctp_id2assoc(sk, params.assoc_id); 6511 if (asoc) { 6512 params.assoc_value = asoc->prsctp_enable; 6513 } else if (!params.assoc_id) { 6514 struct sctp_sock *sp = sctp_sk(sk); 6515 6516 params.assoc_value = sp->ep->prsctp_enable; 6517 } else { 6518 retval = -EINVAL; 6519 goto out; 6520 } 6521 6522 if (put_user(len, optlen)) 6523 goto out; 6524 6525 if (copy_to_user(optval, ¶ms, len)) 6526 goto out; 6527 6528 retval = 0; 6529 6530 out: 6531 return retval; 6532 } 6533 6534 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 6535 char __user *optval, 6536 int __user *optlen) 6537 { 6538 struct sctp_default_prinfo info; 6539 struct sctp_association *asoc; 6540 int retval = -EFAULT; 6541 6542 if (len < sizeof(info)) { 6543 retval = -EINVAL; 6544 goto out; 6545 } 6546 6547 len = sizeof(info); 6548 if (copy_from_user(&info, optval, len)) 6549 goto out; 6550 6551 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 6552 if (asoc) { 6553 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 6554 info.pr_value = asoc->default_timetolive; 6555 } else if (!info.pr_assoc_id) { 6556 struct sctp_sock *sp = sctp_sk(sk); 6557 6558 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 6559 info.pr_value = sp->default_timetolive; 6560 } else { 6561 retval = -EINVAL; 6562 goto out; 6563 } 6564 6565 if (put_user(len, optlen)) 6566 goto out; 6567 6568 if (copy_to_user(optval, &info, len)) 6569 goto out; 6570 6571 retval = 0; 6572 6573 out: 6574 return retval; 6575 } 6576 6577 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 6578 char __user *optval, 6579 int __user *optlen) 6580 { 6581 struct sctp_prstatus params; 6582 struct sctp_association *asoc; 6583 int policy; 6584 int retval = -EINVAL; 6585 6586 if (len < sizeof(params)) 6587 goto out; 6588 6589 len = sizeof(params); 6590 if (copy_from_user(¶ms, optval, len)) { 6591 retval = -EFAULT; 6592 goto out; 6593 } 6594 6595 policy = params.sprstat_policy; 6596 if (policy & ~SCTP_PR_SCTP_MASK) 6597 goto out; 6598 6599 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 6600 if (!asoc) 6601 goto out; 6602 6603 if (policy == SCTP_PR_SCTP_NONE) { 6604 params.sprstat_abandoned_unsent = 0; 6605 params.sprstat_abandoned_sent = 0; 6606 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 6607 params.sprstat_abandoned_unsent += 6608 asoc->abandoned_unsent[policy]; 6609 params.sprstat_abandoned_sent += 6610 asoc->abandoned_sent[policy]; 6611 } 6612 } else { 6613 params.sprstat_abandoned_unsent = 6614 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 6615 params.sprstat_abandoned_sent = 6616 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 6617 } 6618 6619 if (put_user(len, optlen)) { 6620 retval = -EFAULT; 6621 goto out; 6622 } 6623 6624 if (copy_to_user(optval, ¶ms, len)) { 6625 retval = -EFAULT; 6626 goto out; 6627 } 6628 6629 retval = 0; 6630 6631 out: 6632 return retval; 6633 } 6634 6635 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 6636 char __user *optval, 6637 int __user *optlen) 6638 { 6639 struct sctp_stream_out *streamout; 6640 struct sctp_association *asoc; 6641 struct sctp_prstatus params; 6642 int retval = -EINVAL; 6643 int policy; 6644 6645 if (len < sizeof(params)) 6646 goto out; 6647 6648 len = sizeof(params); 6649 if (copy_from_user(¶ms, optval, len)) { 6650 retval = -EFAULT; 6651 goto out; 6652 } 6653 6654 policy = params.sprstat_policy; 6655 if (policy & ~SCTP_PR_SCTP_MASK) 6656 goto out; 6657 6658 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 6659 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 6660 goto out; 6661 6662 streamout = &asoc->stream.out[params.sprstat_sid]; 6663 if (policy == SCTP_PR_SCTP_NONE) { 6664 params.sprstat_abandoned_unsent = 0; 6665 params.sprstat_abandoned_sent = 0; 6666 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 6667 params.sprstat_abandoned_unsent += 6668 streamout->abandoned_unsent[policy]; 6669 params.sprstat_abandoned_sent += 6670 streamout->abandoned_sent[policy]; 6671 } 6672 } else { 6673 params.sprstat_abandoned_unsent = 6674 streamout->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 6675 params.sprstat_abandoned_sent = 6676 streamout->abandoned_sent[__SCTP_PR_INDEX(policy)]; 6677 } 6678 6679 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 6680 retval = -EFAULT; 6681 goto out; 6682 } 6683 6684 retval = 0; 6685 6686 out: 6687 return retval; 6688 } 6689 6690 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 6691 char __user *optval, 6692 int __user *optlen) 6693 { 6694 struct sctp_assoc_value params; 6695 struct sctp_association *asoc; 6696 int retval = -EFAULT; 6697 6698 if (len < sizeof(params)) { 6699 retval = -EINVAL; 6700 goto out; 6701 } 6702 6703 len = sizeof(params); 6704 if (copy_from_user(¶ms, optval, len)) 6705 goto out; 6706 6707 asoc = sctp_id2assoc(sk, params.assoc_id); 6708 if (asoc) { 6709 params.assoc_value = asoc->reconf_enable; 6710 } else if (!params.assoc_id) { 6711 struct sctp_sock *sp = sctp_sk(sk); 6712 6713 params.assoc_value = sp->ep->reconf_enable; 6714 } else { 6715 retval = -EINVAL; 6716 goto out; 6717 } 6718 6719 if (put_user(len, optlen)) 6720 goto out; 6721 6722 if (copy_to_user(optval, ¶ms, len)) 6723 goto out; 6724 6725 retval = 0; 6726 6727 out: 6728 return retval; 6729 } 6730 6731 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 6732 char __user *optval, 6733 int __user *optlen) 6734 { 6735 struct sctp_assoc_value params; 6736 struct sctp_association *asoc; 6737 int retval = -EFAULT; 6738 6739 if (len < sizeof(params)) { 6740 retval = -EINVAL; 6741 goto out; 6742 } 6743 6744 len = sizeof(params); 6745 if (copy_from_user(¶ms, optval, len)) 6746 goto out; 6747 6748 asoc = sctp_id2assoc(sk, params.assoc_id); 6749 if (asoc) { 6750 params.assoc_value = asoc->strreset_enable; 6751 } else if (!params.assoc_id) { 6752 struct sctp_sock *sp = sctp_sk(sk); 6753 6754 params.assoc_value = sp->ep->strreset_enable; 6755 } else { 6756 retval = -EINVAL; 6757 goto out; 6758 } 6759 6760 if (put_user(len, optlen)) 6761 goto out; 6762 6763 if (copy_to_user(optval, ¶ms, len)) 6764 goto out; 6765 6766 retval = 0; 6767 6768 out: 6769 return retval; 6770 } 6771 6772 static int sctp_getsockopt(struct sock *sk, int level, int optname, 6773 char __user *optval, int __user *optlen) 6774 { 6775 int retval = 0; 6776 int len; 6777 6778 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 6779 6780 /* I can hardly begin to describe how wrong this is. This is 6781 * so broken as to be worse than useless. The API draft 6782 * REALLY is NOT helpful here... I am not convinced that the 6783 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 6784 * are at all well-founded. 6785 */ 6786 if (level != SOL_SCTP) { 6787 struct sctp_af *af = sctp_sk(sk)->pf->af; 6788 6789 retval = af->getsockopt(sk, level, optname, optval, optlen); 6790 return retval; 6791 } 6792 6793 if (get_user(len, optlen)) 6794 return -EFAULT; 6795 6796 if (len < 0) 6797 return -EINVAL; 6798 6799 lock_sock(sk); 6800 6801 switch (optname) { 6802 case SCTP_STATUS: 6803 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 6804 break; 6805 case SCTP_DISABLE_FRAGMENTS: 6806 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 6807 optlen); 6808 break; 6809 case SCTP_EVENTS: 6810 retval = sctp_getsockopt_events(sk, len, optval, optlen); 6811 break; 6812 case SCTP_AUTOCLOSE: 6813 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 6814 break; 6815 case SCTP_SOCKOPT_PEELOFF: 6816 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 6817 break; 6818 case SCTP_SOCKOPT_PEELOFF_FLAGS: 6819 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 6820 break; 6821 case SCTP_PEER_ADDR_PARAMS: 6822 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 6823 optlen); 6824 break; 6825 case SCTP_DELAYED_SACK: 6826 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 6827 optlen); 6828 break; 6829 case SCTP_INITMSG: 6830 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 6831 break; 6832 case SCTP_GET_PEER_ADDRS: 6833 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 6834 optlen); 6835 break; 6836 case SCTP_GET_LOCAL_ADDRS: 6837 retval = sctp_getsockopt_local_addrs(sk, len, optval, 6838 optlen); 6839 break; 6840 case SCTP_SOCKOPT_CONNECTX3: 6841 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 6842 break; 6843 case SCTP_DEFAULT_SEND_PARAM: 6844 retval = sctp_getsockopt_default_send_param(sk, len, 6845 optval, optlen); 6846 break; 6847 case SCTP_DEFAULT_SNDINFO: 6848 retval = sctp_getsockopt_default_sndinfo(sk, len, 6849 optval, optlen); 6850 break; 6851 case SCTP_PRIMARY_ADDR: 6852 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 6853 break; 6854 case SCTP_NODELAY: 6855 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 6856 break; 6857 case SCTP_RTOINFO: 6858 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 6859 break; 6860 case SCTP_ASSOCINFO: 6861 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 6862 break; 6863 case SCTP_I_WANT_MAPPED_V4_ADDR: 6864 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 6865 break; 6866 case SCTP_MAXSEG: 6867 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 6868 break; 6869 case SCTP_GET_PEER_ADDR_INFO: 6870 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 6871 optlen); 6872 break; 6873 case SCTP_ADAPTATION_LAYER: 6874 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 6875 optlen); 6876 break; 6877 case SCTP_CONTEXT: 6878 retval = sctp_getsockopt_context(sk, len, optval, optlen); 6879 break; 6880 case SCTP_FRAGMENT_INTERLEAVE: 6881 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 6882 optlen); 6883 break; 6884 case SCTP_PARTIAL_DELIVERY_POINT: 6885 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 6886 optlen); 6887 break; 6888 case SCTP_MAX_BURST: 6889 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 6890 break; 6891 case SCTP_AUTH_KEY: 6892 case SCTP_AUTH_CHUNK: 6893 case SCTP_AUTH_DELETE_KEY: 6894 retval = -EOPNOTSUPP; 6895 break; 6896 case SCTP_HMAC_IDENT: 6897 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 6898 break; 6899 case SCTP_AUTH_ACTIVE_KEY: 6900 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 6901 break; 6902 case SCTP_PEER_AUTH_CHUNKS: 6903 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 6904 optlen); 6905 break; 6906 case SCTP_LOCAL_AUTH_CHUNKS: 6907 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 6908 optlen); 6909 break; 6910 case SCTP_GET_ASSOC_NUMBER: 6911 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 6912 break; 6913 case SCTP_GET_ASSOC_ID_LIST: 6914 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 6915 break; 6916 case SCTP_AUTO_ASCONF: 6917 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 6918 break; 6919 case SCTP_PEER_ADDR_THLDS: 6920 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 6921 break; 6922 case SCTP_GET_ASSOC_STATS: 6923 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 6924 break; 6925 case SCTP_RECVRCVINFO: 6926 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 6927 break; 6928 case SCTP_RECVNXTINFO: 6929 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 6930 break; 6931 case SCTP_PR_SUPPORTED: 6932 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 6933 break; 6934 case SCTP_DEFAULT_PRINFO: 6935 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 6936 optlen); 6937 break; 6938 case SCTP_PR_ASSOC_STATUS: 6939 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 6940 optlen); 6941 break; 6942 case SCTP_PR_STREAM_STATUS: 6943 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 6944 optlen); 6945 break; 6946 case SCTP_RECONFIG_SUPPORTED: 6947 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 6948 optlen); 6949 break; 6950 case SCTP_ENABLE_STREAM_RESET: 6951 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 6952 optlen); 6953 break; 6954 default: 6955 retval = -ENOPROTOOPT; 6956 break; 6957 } 6958 6959 release_sock(sk); 6960 return retval; 6961 } 6962 6963 static int sctp_hash(struct sock *sk) 6964 { 6965 /* STUB */ 6966 return 0; 6967 } 6968 6969 static void sctp_unhash(struct sock *sk) 6970 { 6971 /* STUB */ 6972 } 6973 6974 /* Check if port is acceptable. Possibly find first available port. 6975 * 6976 * The port hash table (contained in the 'global' SCTP protocol storage 6977 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 6978 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 6979 * list (the list number is the port number hashed out, so as you 6980 * would expect from a hash function, all the ports in a given list have 6981 * such a number that hashes out to the same list number; you were 6982 * expecting that, right?); so each list has a set of ports, with a 6983 * link to the socket (struct sock) that uses it, the port number and 6984 * a fastreuse flag (FIXME: NPI ipg). 6985 */ 6986 static struct sctp_bind_bucket *sctp_bucket_create( 6987 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 6988 6989 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 6990 { 6991 struct sctp_bind_hashbucket *head; /* hash list */ 6992 struct sctp_bind_bucket *pp; 6993 unsigned short snum; 6994 int ret; 6995 6996 snum = ntohs(addr->v4.sin_port); 6997 6998 pr_debug("%s: begins, snum:%d\n", __func__, snum); 6999 7000 local_bh_disable(); 7001 7002 if (snum == 0) { 7003 /* Search for an available port. */ 7004 int low, high, remaining, index; 7005 unsigned int rover; 7006 struct net *net = sock_net(sk); 7007 7008 inet_get_local_port_range(net, &low, &high); 7009 remaining = (high - low) + 1; 7010 rover = prandom_u32() % remaining + low; 7011 7012 do { 7013 rover++; 7014 if ((rover < low) || (rover > high)) 7015 rover = low; 7016 if (inet_is_local_reserved_port(net, rover)) 7017 continue; 7018 index = sctp_phashfn(sock_net(sk), rover); 7019 head = &sctp_port_hashtable[index]; 7020 spin_lock(&head->lock); 7021 sctp_for_each_hentry(pp, &head->chain) 7022 if ((pp->port == rover) && 7023 net_eq(sock_net(sk), pp->net)) 7024 goto next; 7025 break; 7026 next: 7027 spin_unlock(&head->lock); 7028 } while (--remaining > 0); 7029 7030 /* Exhausted local port range during search? */ 7031 ret = 1; 7032 if (remaining <= 0) 7033 goto fail; 7034 7035 /* OK, here is the one we will use. HEAD (the port 7036 * hash table list entry) is non-NULL and we hold it's 7037 * mutex. 7038 */ 7039 snum = rover; 7040 } else { 7041 /* We are given an specific port number; we verify 7042 * that it is not being used. If it is used, we will 7043 * exahust the search in the hash list corresponding 7044 * to the port number (snum) - we detect that with the 7045 * port iterator, pp being NULL. 7046 */ 7047 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 7048 spin_lock(&head->lock); 7049 sctp_for_each_hentry(pp, &head->chain) { 7050 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 7051 goto pp_found; 7052 } 7053 } 7054 pp = NULL; 7055 goto pp_not_found; 7056 pp_found: 7057 if (!hlist_empty(&pp->owner)) { 7058 /* We had a port hash table hit - there is an 7059 * available port (pp != NULL) and it is being 7060 * used by other socket (pp->owner not empty); that other 7061 * socket is going to be sk2. 7062 */ 7063 int reuse = sk->sk_reuse; 7064 struct sock *sk2; 7065 7066 pr_debug("%s: found a possible match\n", __func__); 7067 7068 if (pp->fastreuse && sk->sk_reuse && 7069 sk->sk_state != SCTP_SS_LISTENING) 7070 goto success; 7071 7072 /* Run through the list of sockets bound to the port 7073 * (pp->port) [via the pointers bind_next and 7074 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 7075 * we get the endpoint they describe and run through 7076 * the endpoint's list of IP (v4 or v6) addresses, 7077 * comparing each of the addresses with the address of 7078 * the socket sk. If we find a match, then that means 7079 * that this port/socket (sk) combination are already 7080 * in an endpoint. 7081 */ 7082 sk_for_each_bound(sk2, &pp->owner) { 7083 struct sctp_endpoint *ep2; 7084 ep2 = sctp_sk(sk2)->ep; 7085 7086 if (sk == sk2 || 7087 (reuse && sk2->sk_reuse && 7088 sk2->sk_state != SCTP_SS_LISTENING)) 7089 continue; 7090 7091 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 7092 sctp_sk(sk2), sctp_sk(sk))) { 7093 ret = (long)sk2; 7094 goto fail_unlock; 7095 } 7096 } 7097 7098 pr_debug("%s: found a match\n", __func__); 7099 } 7100 pp_not_found: 7101 /* If there was a hash table miss, create a new port. */ 7102 ret = 1; 7103 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 7104 goto fail_unlock; 7105 7106 /* In either case (hit or miss), make sure fastreuse is 1 only 7107 * if sk->sk_reuse is too (that is, if the caller requested 7108 * SO_REUSEADDR on this socket -sk-). 7109 */ 7110 if (hlist_empty(&pp->owner)) { 7111 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 7112 pp->fastreuse = 1; 7113 else 7114 pp->fastreuse = 0; 7115 } else if (pp->fastreuse && 7116 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 7117 pp->fastreuse = 0; 7118 7119 /* We are set, so fill up all the data in the hash table 7120 * entry, tie the socket list information with the rest of the 7121 * sockets FIXME: Blurry, NPI (ipg). 7122 */ 7123 success: 7124 if (!sctp_sk(sk)->bind_hash) { 7125 inet_sk(sk)->inet_num = snum; 7126 sk_add_bind_node(sk, &pp->owner); 7127 sctp_sk(sk)->bind_hash = pp; 7128 } 7129 ret = 0; 7130 7131 fail_unlock: 7132 spin_unlock(&head->lock); 7133 7134 fail: 7135 local_bh_enable(); 7136 return ret; 7137 } 7138 7139 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 7140 * port is requested. 7141 */ 7142 static int sctp_get_port(struct sock *sk, unsigned short snum) 7143 { 7144 union sctp_addr addr; 7145 struct sctp_af *af = sctp_sk(sk)->pf->af; 7146 7147 /* Set up a dummy address struct from the sk. */ 7148 af->from_sk(&addr, sk); 7149 addr.v4.sin_port = htons(snum); 7150 7151 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 7152 return !!sctp_get_port_local(sk, &addr); 7153 } 7154 7155 /* 7156 * Move a socket to LISTENING state. 7157 */ 7158 static int sctp_listen_start(struct sock *sk, int backlog) 7159 { 7160 struct sctp_sock *sp = sctp_sk(sk); 7161 struct sctp_endpoint *ep = sp->ep; 7162 struct crypto_shash *tfm = NULL; 7163 char alg[32]; 7164 7165 /* Allocate HMAC for generating cookie. */ 7166 if (!sp->hmac && sp->sctp_hmac_alg) { 7167 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 7168 tfm = crypto_alloc_shash(alg, 0, 0); 7169 if (IS_ERR(tfm)) { 7170 net_info_ratelimited("failed to load transform for %s: %ld\n", 7171 sp->sctp_hmac_alg, PTR_ERR(tfm)); 7172 return -ENOSYS; 7173 } 7174 sctp_sk(sk)->hmac = tfm; 7175 } 7176 7177 /* 7178 * If a bind() or sctp_bindx() is not called prior to a listen() 7179 * call that allows new associations to be accepted, the system 7180 * picks an ephemeral port and will choose an address set equivalent 7181 * to binding with a wildcard address. 7182 * 7183 * This is not currently spelled out in the SCTP sockets 7184 * extensions draft, but follows the practice as seen in TCP 7185 * sockets. 7186 * 7187 */ 7188 sk->sk_state = SCTP_SS_LISTENING; 7189 if (!ep->base.bind_addr.port) { 7190 if (sctp_autobind(sk)) 7191 return -EAGAIN; 7192 } else { 7193 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 7194 sk->sk_state = SCTP_SS_CLOSED; 7195 return -EADDRINUSE; 7196 } 7197 } 7198 7199 sk->sk_max_ack_backlog = backlog; 7200 sctp_hash_endpoint(ep); 7201 return 0; 7202 } 7203 7204 /* 7205 * 4.1.3 / 5.1.3 listen() 7206 * 7207 * By default, new associations are not accepted for UDP style sockets. 7208 * An application uses listen() to mark a socket as being able to 7209 * accept new associations. 7210 * 7211 * On TCP style sockets, applications use listen() to ready the SCTP 7212 * endpoint for accepting inbound associations. 7213 * 7214 * On both types of endpoints a backlog of '0' disables listening. 7215 * 7216 * Move a socket to LISTENING state. 7217 */ 7218 int sctp_inet_listen(struct socket *sock, int backlog) 7219 { 7220 struct sock *sk = sock->sk; 7221 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7222 int err = -EINVAL; 7223 7224 if (unlikely(backlog < 0)) 7225 return err; 7226 7227 lock_sock(sk); 7228 7229 /* Peeled-off sockets are not allowed to listen(). */ 7230 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 7231 goto out; 7232 7233 if (sock->state != SS_UNCONNECTED) 7234 goto out; 7235 7236 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 7237 goto out; 7238 7239 /* If backlog is zero, disable listening. */ 7240 if (!backlog) { 7241 if (sctp_sstate(sk, CLOSED)) 7242 goto out; 7243 7244 err = 0; 7245 sctp_unhash_endpoint(ep); 7246 sk->sk_state = SCTP_SS_CLOSED; 7247 if (sk->sk_reuse) 7248 sctp_sk(sk)->bind_hash->fastreuse = 1; 7249 goto out; 7250 } 7251 7252 /* If we are already listening, just update the backlog */ 7253 if (sctp_sstate(sk, LISTENING)) 7254 sk->sk_max_ack_backlog = backlog; 7255 else { 7256 err = sctp_listen_start(sk, backlog); 7257 if (err) 7258 goto out; 7259 } 7260 7261 err = 0; 7262 out: 7263 release_sock(sk); 7264 return err; 7265 } 7266 7267 /* 7268 * This function is done by modeling the current datagram_poll() and the 7269 * tcp_poll(). Note that, based on these implementations, we don't 7270 * lock the socket in this function, even though it seems that, 7271 * ideally, locking or some other mechanisms can be used to ensure 7272 * the integrity of the counters (sndbuf and wmem_alloc) used 7273 * in this place. We assume that we don't need locks either until proven 7274 * otherwise. 7275 * 7276 * Another thing to note is that we include the Async I/O support 7277 * here, again, by modeling the current TCP/UDP code. We don't have 7278 * a good way to test with it yet. 7279 */ 7280 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 7281 { 7282 struct sock *sk = sock->sk; 7283 struct sctp_sock *sp = sctp_sk(sk); 7284 unsigned int mask; 7285 7286 poll_wait(file, sk_sleep(sk), wait); 7287 7288 sock_rps_record_flow(sk); 7289 7290 /* A TCP-style listening socket becomes readable when the accept queue 7291 * is not empty. 7292 */ 7293 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 7294 return (!list_empty(&sp->ep->asocs)) ? 7295 (POLLIN | POLLRDNORM) : 0; 7296 7297 mask = 0; 7298 7299 /* Is there any exceptional events? */ 7300 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 7301 mask |= POLLERR | 7302 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0); 7303 if (sk->sk_shutdown & RCV_SHUTDOWN) 7304 mask |= POLLRDHUP | POLLIN | POLLRDNORM; 7305 if (sk->sk_shutdown == SHUTDOWN_MASK) 7306 mask |= POLLHUP; 7307 7308 /* Is it readable? Reconsider this code with TCP-style support. */ 7309 if (!skb_queue_empty(&sk->sk_receive_queue)) 7310 mask |= POLLIN | POLLRDNORM; 7311 7312 /* The association is either gone or not ready. */ 7313 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 7314 return mask; 7315 7316 /* Is it writable? */ 7317 if (sctp_writeable(sk)) { 7318 mask |= POLLOUT | POLLWRNORM; 7319 } else { 7320 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 7321 /* 7322 * Since the socket is not locked, the buffer 7323 * might be made available after the writeable check and 7324 * before the bit is set. This could cause a lost I/O 7325 * signal. tcp_poll() has a race breaker for this race 7326 * condition. Based on their implementation, we put 7327 * in the following code to cover it as well. 7328 */ 7329 if (sctp_writeable(sk)) 7330 mask |= POLLOUT | POLLWRNORM; 7331 } 7332 return mask; 7333 } 7334 7335 /******************************************************************** 7336 * 2nd Level Abstractions 7337 ********************************************************************/ 7338 7339 static struct sctp_bind_bucket *sctp_bucket_create( 7340 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 7341 { 7342 struct sctp_bind_bucket *pp; 7343 7344 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 7345 if (pp) { 7346 SCTP_DBG_OBJCNT_INC(bind_bucket); 7347 pp->port = snum; 7348 pp->fastreuse = 0; 7349 INIT_HLIST_HEAD(&pp->owner); 7350 pp->net = net; 7351 hlist_add_head(&pp->node, &head->chain); 7352 } 7353 return pp; 7354 } 7355 7356 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 7357 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 7358 { 7359 if (pp && hlist_empty(&pp->owner)) { 7360 __hlist_del(&pp->node); 7361 kmem_cache_free(sctp_bucket_cachep, pp); 7362 SCTP_DBG_OBJCNT_DEC(bind_bucket); 7363 } 7364 } 7365 7366 /* Release this socket's reference to a local port. */ 7367 static inline void __sctp_put_port(struct sock *sk) 7368 { 7369 struct sctp_bind_hashbucket *head = 7370 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 7371 inet_sk(sk)->inet_num)]; 7372 struct sctp_bind_bucket *pp; 7373 7374 spin_lock(&head->lock); 7375 pp = sctp_sk(sk)->bind_hash; 7376 __sk_del_bind_node(sk); 7377 sctp_sk(sk)->bind_hash = NULL; 7378 inet_sk(sk)->inet_num = 0; 7379 sctp_bucket_destroy(pp); 7380 spin_unlock(&head->lock); 7381 } 7382 7383 void sctp_put_port(struct sock *sk) 7384 { 7385 local_bh_disable(); 7386 __sctp_put_port(sk); 7387 local_bh_enable(); 7388 } 7389 7390 /* 7391 * The system picks an ephemeral port and choose an address set equivalent 7392 * to binding with a wildcard address. 7393 * One of those addresses will be the primary address for the association. 7394 * This automatically enables the multihoming capability of SCTP. 7395 */ 7396 static int sctp_autobind(struct sock *sk) 7397 { 7398 union sctp_addr autoaddr; 7399 struct sctp_af *af; 7400 __be16 port; 7401 7402 /* Initialize a local sockaddr structure to INADDR_ANY. */ 7403 af = sctp_sk(sk)->pf->af; 7404 7405 port = htons(inet_sk(sk)->inet_num); 7406 af->inaddr_any(&autoaddr, port); 7407 7408 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 7409 } 7410 7411 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 7412 * 7413 * From RFC 2292 7414 * 4.2 The cmsghdr Structure * 7415 * 7416 * When ancillary data is sent or received, any number of ancillary data 7417 * objects can be specified by the msg_control and msg_controllen members of 7418 * the msghdr structure, because each object is preceded by 7419 * a cmsghdr structure defining the object's length (the cmsg_len member). 7420 * Historically Berkeley-derived implementations have passed only one object 7421 * at a time, but this API allows multiple objects to be 7422 * passed in a single call to sendmsg() or recvmsg(). The following example 7423 * shows two ancillary data objects in a control buffer. 7424 * 7425 * |<--------------------------- msg_controllen -------------------------->| 7426 * | | 7427 * 7428 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 7429 * 7430 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 7431 * | | | 7432 * 7433 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 7434 * 7435 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 7436 * | | | | | 7437 * 7438 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 7439 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 7440 * 7441 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 7442 * 7443 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 7444 * ^ 7445 * | 7446 * 7447 * msg_control 7448 * points here 7449 */ 7450 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 7451 { 7452 struct msghdr *my_msg = (struct msghdr *)msg; 7453 struct cmsghdr *cmsg; 7454 7455 for_each_cmsghdr(cmsg, my_msg) { 7456 if (!CMSG_OK(my_msg, cmsg)) 7457 return -EINVAL; 7458 7459 /* Should we parse this header or ignore? */ 7460 if (cmsg->cmsg_level != IPPROTO_SCTP) 7461 continue; 7462 7463 /* Strictly check lengths following example in SCM code. */ 7464 switch (cmsg->cmsg_type) { 7465 case SCTP_INIT: 7466 /* SCTP Socket API Extension 7467 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 7468 * 7469 * This cmsghdr structure provides information for 7470 * initializing new SCTP associations with sendmsg(). 7471 * The SCTP_INITMSG socket option uses this same data 7472 * structure. This structure is not used for 7473 * recvmsg(). 7474 * 7475 * cmsg_level cmsg_type cmsg_data[] 7476 * ------------ ------------ ---------------------- 7477 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 7478 */ 7479 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 7480 return -EINVAL; 7481 7482 cmsgs->init = CMSG_DATA(cmsg); 7483 break; 7484 7485 case SCTP_SNDRCV: 7486 /* SCTP Socket API Extension 7487 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 7488 * 7489 * This cmsghdr structure specifies SCTP options for 7490 * sendmsg() and describes SCTP header information 7491 * about a received message through recvmsg(). 7492 * 7493 * cmsg_level cmsg_type cmsg_data[] 7494 * ------------ ------------ ---------------------- 7495 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 7496 */ 7497 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 7498 return -EINVAL; 7499 7500 cmsgs->srinfo = CMSG_DATA(cmsg); 7501 7502 if (cmsgs->srinfo->sinfo_flags & 7503 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 7504 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK | 7505 SCTP_ABORT | SCTP_EOF)) 7506 return -EINVAL; 7507 break; 7508 7509 case SCTP_SNDINFO: 7510 /* SCTP Socket API Extension 7511 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 7512 * 7513 * This cmsghdr structure specifies SCTP options for 7514 * sendmsg(). This structure and SCTP_RCVINFO replaces 7515 * SCTP_SNDRCV which has been deprecated. 7516 * 7517 * cmsg_level cmsg_type cmsg_data[] 7518 * ------------ ------------ --------------------- 7519 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 7520 */ 7521 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 7522 return -EINVAL; 7523 7524 cmsgs->sinfo = CMSG_DATA(cmsg); 7525 7526 if (cmsgs->sinfo->snd_flags & 7527 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 7528 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK | 7529 SCTP_ABORT | SCTP_EOF)) 7530 return -EINVAL; 7531 break; 7532 default: 7533 return -EINVAL; 7534 } 7535 } 7536 7537 return 0; 7538 } 7539 7540 /* 7541 * Wait for a packet.. 7542 * Note: This function is the same function as in core/datagram.c 7543 * with a few modifications to make lksctp work. 7544 */ 7545 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 7546 { 7547 int error; 7548 DEFINE_WAIT(wait); 7549 7550 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 7551 7552 /* Socket errors? */ 7553 error = sock_error(sk); 7554 if (error) 7555 goto out; 7556 7557 if (!skb_queue_empty(&sk->sk_receive_queue)) 7558 goto ready; 7559 7560 /* Socket shut down? */ 7561 if (sk->sk_shutdown & RCV_SHUTDOWN) 7562 goto out; 7563 7564 /* Sequenced packets can come disconnected. If so we report the 7565 * problem. 7566 */ 7567 error = -ENOTCONN; 7568 7569 /* Is there a good reason to think that we may receive some data? */ 7570 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 7571 goto out; 7572 7573 /* Handle signals. */ 7574 if (signal_pending(current)) 7575 goto interrupted; 7576 7577 /* Let another process have a go. Since we are going to sleep 7578 * anyway. Note: This may cause odd behaviors if the message 7579 * does not fit in the user's buffer, but this seems to be the 7580 * only way to honor MSG_DONTWAIT realistically. 7581 */ 7582 release_sock(sk); 7583 *timeo_p = schedule_timeout(*timeo_p); 7584 lock_sock(sk); 7585 7586 ready: 7587 finish_wait(sk_sleep(sk), &wait); 7588 return 0; 7589 7590 interrupted: 7591 error = sock_intr_errno(*timeo_p); 7592 7593 out: 7594 finish_wait(sk_sleep(sk), &wait); 7595 *err = error; 7596 return error; 7597 } 7598 7599 /* Receive a datagram. 7600 * Note: This is pretty much the same routine as in core/datagram.c 7601 * with a few changes to make lksctp work. 7602 */ 7603 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 7604 int noblock, int *err) 7605 { 7606 int error; 7607 struct sk_buff *skb; 7608 long timeo; 7609 7610 timeo = sock_rcvtimeo(sk, noblock); 7611 7612 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 7613 MAX_SCHEDULE_TIMEOUT); 7614 7615 do { 7616 /* Again only user level code calls this function, 7617 * so nothing interrupt level 7618 * will suddenly eat the receive_queue. 7619 * 7620 * Look at current nfs client by the way... 7621 * However, this function was correct in any case. 8) 7622 */ 7623 if (flags & MSG_PEEK) { 7624 skb = skb_peek(&sk->sk_receive_queue); 7625 if (skb) 7626 refcount_inc(&skb->users); 7627 } else { 7628 skb = __skb_dequeue(&sk->sk_receive_queue); 7629 } 7630 7631 if (skb) 7632 return skb; 7633 7634 /* Caller is allowed not to check sk->sk_err before calling. */ 7635 error = sock_error(sk); 7636 if (error) 7637 goto no_packet; 7638 7639 if (sk->sk_shutdown & RCV_SHUTDOWN) 7640 break; 7641 7642 if (sk_can_busy_loop(sk)) { 7643 sk_busy_loop(sk, noblock); 7644 7645 if (!skb_queue_empty(&sk->sk_receive_queue)) 7646 continue; 7647 } 7648 7649 /* User doesn't want to wait. */ 7650 error = -EAGAIN; 7651 if (!timeo) 7652 goto no_packet; 7653 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 7654 7655 return NULL; 7656 7657 no_packet: 7658 *err = error; 7659 return NULL; 7660 } 7661 7662 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 7663 static void __sctp_write_space(struct sctp_association *asoc) 7664 { 7665 struct sock *sk = asoc->base.sk; 7666 7667 if (sctp_wspace(asoc) <= 0) 7668 return; 7669 7670 if (waitqueue_active(&asoc->wait)) 7671 wake_up_interruptible(&asoc->wait); 7672 7673 if (sctp_writeable(sk)) { 7674 struct socket_wq *wq; 7675 7676 rcu_read_lock(); 7677 wq = rcu_dereference(sk->sk_wq); 7678 if (wq) { 7679 if (waitqueue_active(&wq->wait)) 7680 wake_up_interruptible(&wq->wait); 7681 7682 /* Note that we try to include the Async I/O support 7683 * here by modeling from the current TCP/UDP code. 7684 * We have not tested with it yet. 7685 */ 7686 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 7687 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 7688 } 7689 rcu_read_unlock(); 7690 } 7691 } 7692 7693 static void sctp_wake_up_waiters(struct sock *sk, 7694 struct sctp_association *asoc) 7695 { 7696 struct sctp_association *tmp = asoc; 7697 7698 /* We do accounting for the sndbuf space per association, 7699 * so we only need to wake our own association. 7700 */ 7701 if (asoc->ep->sndbuf_policy) 7702 return __sctp_write_space(asoc); 7703 7704 /* If association goes down and is just flushing its 7705 * outq, then just normally notify others. 7706 */ 7707 if (asoc->base.dead) 7708 return sctp_write_space(sk); 7709 7710 /* Accounting for the sndbuf space is per socket, so we 7711 * need to wake up others, try to be fair and in case of 7712 * other associations, let them have a go first instead 7713 * of just doing a sctp_write_space() call. 7714 * 7715 * Note that we reach sctp_wake_up_waiters() only when 7716 * associations free up queued chunks, thus we are under 7717 * lock and the list of associations on a socket is 7718 * guaranteed not to change. 7719 */ 7720 for (tmp = list_next_entry(tmp, asocs); 1; 7721 tmp = list_next_entry(tmp, asocs)) { 7722 /* Manually skip the head element. */ 7723 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 7724 continue; 7725 /* Wake up association. */ 7726 __sctp_write_space(tmp); 7727 /* We've reached the end. */ 7728 if (tmp == asoc) 7729 break; 7730 } 7731 } 7732 7733 /* Do accounting for the sndbuf space. 7734 * Decrement the used sndbuf space of the corresponding association by the 7735 * data size which was just transmitted(freed). 7736 */ 7737 static void sctp_wfree(struct sk_buff *skb) 7738 { 7739 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 7740 struct sctp_association *asoc = chunk->asoc; 7741 struct sock *sk = asoc->base.sk; 7742 7743 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 7744 sizeof(struct sk_buff) + 7745 sizeof(struct sctp_chunk); 7746 7747 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc)); 7748 7749 /* 7750 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 7751 */ 7752 sk->sk_wmem_queued -= skb->truesize; 7753 sk_mem_uncharge(sk, skb->truesize); 7754 7755 sock_wfree(skb); 7756 sctp_wake_up_waiters(sk, asoc); 7757 7758 sctp_association_put(asoc); 7759 } 7760 7761 /* Do accounting for the receive space on the socket. 7762 * Accounting for the association is done in ulpevent.c 7763 * We set this as a destructor for the cloned data skbs so that 7764 * accounting is done at the correct time. 7765 */ 7766 void sctp_sock_rfree(struct sk_buff *skb) 7767 { 7768 struct sock *sk = skb->sk; 7769 struct sctp_ulpevent *event = sctp_skb2event(skb); 7770 7771 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 7772 7773 /* 7774 * Mimic the behavior of sock_rfree 7775 */ 7776 sk_mem_uncharge(sk, event->rmem_len); 7777 } 7778 7779 7780 /* Helper function to wait for space in the sndbuf. */ 7781 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 7782 size_t msg_len) 7783 { 7784 struct sock *sk = asoc->base.sk; 7785 int err = 0; 7786 long current_timeo = *timeo_p; 7787 DEFINE_WAIT(wait); 7788 7789 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 7790 *timeo_p, msg_len); 7791 7792 /* Increment the association's refcnt. */ 7793 sctp_association_hold(asoc); 7794 7795 /* Wait on the association specific sndbuf space. */ 7796 for (;;) { 7797 prepare_to_wait_exclusive(&asoc->wait, &wait, 7798 TASK_INTERRUPTIBLE); 7799 if (!*timeo_p) 7800 goto do_nonblock; 7801 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 7802 asoc->base.dead) 7803 goto do_error; 7804 if (signal_pending(current)) 7805 goto do_interrupted; 7806 if (msg_len <= sctp_wspace(asoc)) 7807 break; 7808 7809 /* Let another process have a go. Since we are going 7810 * to sleep anyway. 7811 */ 7812 release_sock(sk); 7813 current_timeo = schedule_timeout(current_timeo); 7814 lock_sock(sk); 7815 7816 *timeo_p = current_timeo; 7817 } 7818 7819 out: 7820 finish_wait(&asoc->wait, &wait); 7821 7822 /* Release the association's refcnt. */ 7823 sctp_association_put(asoc); 7824 7825 return err; 7826 7827 do_error: 7828 err = -EPIPE; 7829 goto out; 7830 7831 do_interrupted: 7832 err = sock_intr_errno(*timeo_p); 7833 goto out; 7834 7835 do_nonblock: 7836 err = -EAGAIN; 7837 goto out; 7838 } 7839 7840 void sctp_data_ready(struct sock *sk) 7841 { 7842 struct socket_wq *wq; 7843 7844 rcu_read_lock(); 7845 wq = rcu_dereference(sk->sk_wq); 7846 if (skwq_has_sleeper(wq)) 7847 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | 7848 POLLRDNORM | POLLRDBAND); 7849 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 7850 rcu_read_unlock(); 7851 } 7852 7853 /* If socket sndbuf has changed, wake up all per association waiters. */ 7854 void sctp_write_space(struct sock *sk) 7855 { 7856 struct sctp_association *asoc; 7857 7858 /* Wake up the tasks in each wait queue. */ 7859 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 7860 __sctp_write_space(asoc); 7861 } 7862 } 7863 7864 /* Is there any sndbuf space available on the socket? 7865 * 7866 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 7867 * associations on the same socket. For a UDP-style socket with 7868 * multiple associations, it is possible for it to be "unwriteable" 7869 * prematurely. I assume that this is acceptable because 7870 * a premature "unwriteable" is better than an accidental "writeable" which 7871 * would cause an unwanted block under certain circumstances. For the 1-1 7872 * UDP-style sockets or TCP-style sockets, this code should work. 7873 * - Daisy 7874 */ 7875 static int sctp_writeable(struct sock *sk) 7876 { 7877 int amt = 0; 7878 7879 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 7880 if (amt < 0) 7881 amt = 0; 7882 return amt; 7883 } 7884 7885 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 7886 * returns immediately with EINPROGRESS. 7887 */ 7888 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 7889 { 7890 struct sock *sk = asoc->base.sk; 7891 int err = 0; 7892 long current_timeo = *timeo_p; 7893 DEFINE_WAIT(wait); 7894 7895 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 7896 7897 /* Increment the association's refcnt. */ 7898 sctp_association_hold(asoc); 7899 7900 for (;;) { 7901 prepare_to_wait_exclusive(&asoc->wait, &wait, 7902 TASK_INTERRUPTIBLE); 7903 if (!*timeo_p) 7904 goto do_nonblock; 7905 if (sk->sk_shutdown & RCV_SHUTDOWN) 7906 break; 7907 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 7908 asoc->base.dead) 7909 goto do_error; 7910 if (signal_pending(current)) 7911 goto do_interrupted; 7912 7913 if (sctp_state(asoc, ESTABLISHED)) 7914 break; 7915 7916 /* Let another process have a go. Since we are going 7917 * to sleep anyway. 7918 */ 7919 release_sock(sk); 7920 current_timeo = schedule_timeout(current_timeo); 7921 lock_sock(sk); 7922 7923 *timeo_p = current_timeo; 7924 } 7925 7926 out: 7927 finish_wait(&asoc->wait, &wait); 7928 7929 /* Release the association's refcnt. */ 7930 sctp_association_put(asoc); 7931 7932 return err; 7933 7934 do_error: 7935 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 7936 err = -ETIMEDOUT; 7937 else 7938 err = -ECONNREFUSED; 7939 goto out; 7940 7941 do_interrupted: 7942 err = sock_intr_errno(*timeo_p); 7943 goto out; 7944 7945 do_nonblock: 7946 err = -EINPROGRESS; 7947 goto out; 7948 } 7949 7950 static int sctp_wait_for_accept(struct sock *sk, long timeo) 7951 { 7952 struct sctp_endpoint *ep; 7953 int err = 0; 7954 DEFINE_WAIT(wait); 7955 7956 ep = sctp_sk(sk)->ep; 7957 7958 7959 for (;;) { 7960 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 7961 TASK_INTERRUPTIBLE); 7962 7963 if (list_empty(&ep->asocs)) { 7964 release_sock(sk); 7965 timeo = schedule_timeout(timeo); 7966 lock_sock(sk); 7967 } 7968 7969 err = -EINVAL; 7970 if (!sctp_sstate(sk, LISTENING)) 7971 break; 7972 7973 err = 0; 7974 if (!list_empty(&ep->asocs)) 7975 break; 7976 7977 err = sock_intr_errno(timeo); 7978 if (signal_pending(current)) 7979 break; 7980 7981 err = -EAGAIN; 7982 if (!timeo) 7983 break; 7984 } 7985 7986 finish_wait(sk_sleep(sk), &wait); 7987 7988 return err; 7989 } 7990 7991 static void sctp_wait_for_close(struct sock *sk, long timeout) 7992 { 7993 DEFINE_WAIT(wait); 7994 7995 do { 7996 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 7997 if (list_empty(&sctp_sk(sk)->ep->asocs)) 7998 break; 7999 release_sock(sk); 8000 timeout = schedule_timeout(timeout); 8001 lock_sock(sk); 8002 } while (!signal_pending(current) && timeout); 8003 8004 finish_wait(sk_sleep(sk), &wait); 8005 } 8006 8007 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 8008 { 8009 struct sk_buff *frag; 8010 8011 if (!skb->data_len) 8012 goto done; 8013 8014 /* Don't forget the fragments. */ 8015 skb_walk_frags(skb, frag) 8016 sctp_skb_set_owner_r_frag(frag, sk); 8017 8018 done: 8019 sctp_skb_set_owner_r(skb, sk); 8020 } 8021 8022 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 8023 struct sctp_association *asoc) 8024 { 8025 struct inet_sock *inet = inet_sk(sk); 8026 struct inet_sock *newinet; 8027 8028 newsk->sk_type = sk->sk_type; 8029 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 8030 newsk->sk_flags = sk->sk_flags; 8031 newsk->sk_tsflags = sk->sk_tsflags; 8032 newsk->sk_no_check_tx = sk->sk_no_check_tx; 8033 newsk->sk_no_check_rx = sk->sk_no_check_rx; 8034 newsk->sk_reuse = sk->sk_reuse; 8035 8036 newsk->sk_shutdown = sk->sk_shutdown; 8037 newsk->sk_destruct = sctp_destruct_sock; 8038 newsk->sk_family = sk->sk_family; 8039 newsk->sk_protocol = IPPROTO_SCTP; 8040 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 8041 newsk->sk_sndbuf = sk->sk_sndbuf; 8042 newsk->sk_rcvbuf = sk->sk_rcvbuf; 8043 newsk->sk_lingertime = sk->sk_lingertime; 8044 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 8045 newsk->sk_sndtimeo = sk->sk_sndtimeo; 8046 newsk->sk_rxhash = sk->sk_rxhash; 8047 8048 newinet = inet_sk(newsk); 8049 8050 /* Initialize sk's sport, dport, rcv_saddr and daddr for 8051 * getsockname() and getpeername() 8052 */ 8053 newinet->inet_sport = inet->inet_sport; 8054 newinet->inet_saddr = inet->inet_saddr; 8055 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 8056 newinet->inet_dport = htons(asoc->peer.port); 8057 newinet->pmtudisc = inet->pmtudisc; 8058 newinet->inet_id = asoc->next_tsn ^ jiffies; 8059 8060 newinet->uc_ttl = inet->uc_ttl; 8061 newinet->mc_loop = 1; 8062 newinet->mc_ttl = 1; 8063 newinet->mc_index = 0; 8064 newinet->mc_list = NULL; 8065 8066 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 8067 net_enable_timestamp(); 8068 8069 security_sk_clone(sk, newsk); 8070 } 8071 8072 static inline void sctp_copy_descendant(struct sock *sk_to, 8073 const struct sock *sk_from) 8074 { 8075 int ancestor_size = sizeof(struct inet_sock) + 8076 sizeof(struct sctp_sock) - 8077 offsetof(struct sctp_sock, auto_asconf_list); 8078 8079 if (sk_from->sk_family == PF_INET6) 8080 ancestor_size += sizeof(struct ipv6_pinfo); 8081 8082 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 8083 } 8084 8085 /* Populate the fields of the newsk from the oldsk and migrate the assoc 8086 * and its messages to the newsk. 8087 */ 8088 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 8089 struct sctp_association *assoc, 8090 enum sctp_socket_type type) 8091 { 8092 struct sctp_sock *oldsp = sctp_sk(oldsk); 8093 struct sctp_sock *newsp = sctp_sk(newsk); 8094 struct sctp_bind_bucket *pp; /* hash list port iterator */ 8095 struct sctp_endpoint *newep = newsp->ep; 8096 struct sk_buff *skb, *tmp; 8097 struct sctp_ulpevent *event; 8098 struct sctp_bind_hashbucket *head; 8099 8100 /* Migrate socket buffer sizes and all the socket level options to the 8101 * new socket. 8102 */ 8103 newsk->sk_sndbuf = oldsk->sk_sndbuf; 8104 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 8105 /* Brute force copy old sctp opt. */ 8106 sctp_copy_descendant(newsk, oldsk); 8107 8108 /* Restore the ep value that was overwritten with the above structure 8109 * copy. 8110 */ 8111 newsp->ep = newep; 8112 newsp->hmac = NULL; 8113 8114 /* Hook this new socket in to the bind_hash list. */ 8115 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 8116 inet_sk(oldsk)->inet_num)]; 8117 spin_lock_bh(&head->lock); 8118 pp = sctp_sk(oldsk)->bind_hash; 8119 sk_add_bind_node(newsk, &pp->owner); 8120 sctp_sk(newsk)->bind_hash = pp; 8121 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 8122 spin_unlock_bh(&head->lock); 8123 8124 /* Copy the bind_addr list from the original endpoint to the new 8125 * endpoint so that we can handle restarts properly 8126 */ 8127 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 8128 &oldsp->ep->base.bind_addr, GFP_KERNEL); 8129 8130 /* Move any messages in the old socket's receive queue that are for the 8131 * peeled off association to the new socket's receive queue. 8132 */ 8133 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 8134 event = sctp_skb2event(skb); 8135 if (event->asoc == assoc) { 8136 __skb_unlink(skb, &oldsk->sk_receive_queue); 8137 __skb_queue_tail(&newsk->sk_receive_queue, skb); 8138 sctp_skb_set_owner_r_frag(skb, newsk); 8139 } 8140 } 8141 8142 /* Clean up any messages pending delivery due to partial 8143 * delivery. Three cases: 8144 * 1) No partial deliver; no work. 8145 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 8146 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 8147 */ 8148 skb_queue_head_init(&newsp->pd_lobby); 8149 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 8150 8151 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 8152 struct sk_buff_head *queue; 8153 8154 /* Decide which queue to move pd_lobby skbs to. */ 8155 if (assoc->ulpq.pd_mode) { 8156 queue = &newsp->pd_lobby; 8157 } else 8158 queue = &newsk->sk_receive_queue; 8159 8160 /* Walk through the pd_lobby, looking for skbs that 8161 * need moved to the new socket. 8162 */ 8163 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 8164 event = sctp_skb2event(skb); 8165 if (event->asoc == assoc) { 8166 __skb_unlink(skb, &oldsp->pd_lobby); 8167 __skb_queue_tail(queue, skb); 8168 sctp_skb_set_owner_r_frag(skb, newsk); 8169 } 8170 } 8171 8172 /* Clear up any skbs waiting for the partial 8173 * delivery to finish. 8174 */ 8175 if (assoc->ulpq.pd_mode) 8176 sctp_clear_pd(oldsk, NULL); 8177 8178 } 8179 8180 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) 8181 sctp_skb_set_owner_r_frag(skb, newsk); 8182 8183 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) 8184 sctp_skb_set_owner_r_frag(skb, newsk); 8185 8186 /* Set the type of socket to indicate that it is peeled off from the 8187 * original UDP-style socket or created with the accept() call on a 8188 * TCP-style socket.. 8189 */ 8190 newsp->type = type; 8191 8192 /* Mark the new socket "in-use" by the user so that any packets 8193 * that may arrive on the association after we've moved it are 8194 * queued to the backlog. This prevents a potential race between 8195 * backlog processing on the old socket and new-packet processing 8196 * on the new socket. 8197 * 8198 * The caller has just allocated newsk so we can guarantee that other 8199 * paths won't try to lock it and then oldsk. 8200 */ 8201 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 8202 sctp_assoc_migrate(assoc, newsk); 8203 8204 /* If the association on the newsk is already closed before accept() 8205 * is called, set RCV_SHUTDOWN flag. 8206 */ 8207 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 8208 newsk->sk_state = SCTP_SS_CLOSED; 8209 newsk->sk_shutdown |= RCV_SHUTDOWN; 8210 } else { 8211 newsk->sk_state = SCTP_SS_ESTABLISHED; 8212 } 8213 8214 release_sock(newsk); 8215 } 8216 8217 8218 /* This proto struct describes the ULP interface for SCTP. */ 8219 struct proto sctp_prot = { 8220 .name = "SCTP", 8221 .owner = THIS_MODULE, 8222 .close = sctp_close, 8223 .connect = sctp_connect, 8224 .disconnect = sctp_disconnect, 8225 .accept = sctp_accept, 8226 .ioctl = sctp_ioctl, 8227 .init = sctp_init_sock, 8228 .destroy = sctp_destroy_sock, 8229 .shutdown = sctp_shutdown, 8230 .setsockopt = sctp_setsockopt, 8231 .getsockopt = sctp_getsockopt, 8232 .sendmsg = sctp_sendmsg, 8233 .recvmsg = sctp_recvmsg, 8234 .bind = sctp_bind, 8235 .backlog_rcv = sctp_backlog_rcv, 8236 .hash = sctp_hash, 8237 .unhash = sctp_unhash, 8238 .get_port = sctp_get_port, 8239 .obj_size = sizeof(struct sctp_sock), 8240 .sysctl_mem = sysctl_sctp_mem, 8241 .sysctl_rmem = sysctl_sctp_rmem, 8242 .sysctl_wmem = sysctl_sctp_wmem, 8243 .memory_pressure = &sctp_memory_pressure, 8244 .enter_memory_pressure = sctp_enter_memory_pressure, 8245 .memory_allocated = &sctp_memory_allocated, 8246 .sockets_allocated = &sctp_sockets_allocated, 8247 }; 8248 8249 #if IS_ENABLED(CONFIG_IPV6) 8250 8251 #include <net/transp_v6.h> 8252 static void sctp_v6_destroy_sock(struct sock *sk) 8253 { 8254 sctp_destroy_sock(sk); 8255 inet6_destroy_sock(sk); 8256 } 8257 8258 struct proto sctpv6_prot = { 8259 .name = "SCTPv6", 8260 .owner = THIS_MODULE, 8261 .close = sctp_close, 8262 .connect = sctp_connect, 8263 .disconnect = sctp_disconnect, 8264 .accept = sctp_accept, 8265 .ioctl = sctp_ioctl, 8266 .init = sctp_init_sock, 8267 .destroy = sctp_v6_destroy_sock, 8268 .shutdown = sctp_shutdown, 8269 .setsockopt = sctp_setsockopt, 8270 .getsockopt = sctp_getsockopt, 8271 .sendmsg = sctp_sendmsg, 8272 .recvmsg = sctp_recvmsg, 8273 .bind = sctp_bind, 8274 .backlog_rcv = sctp_backlog_rcv, 8275 .hash = sctp_hash, 8276 .unhash = sctp_unhash, 8277 .get_port = sctp_get_port, 8278 .obj_size = sizeof(struct sctp6_sock), 8279 .sysctl_mem = sysctl_sctp_mem, 8280 .sysctl_rmem = sysctl_sctp_rmem, 8281 .sysctl_wmem = sysctl_sctp_wmem, 8282 .memory_pressure = &sctp_memory_pressure, 8283 .enter_memory_pressure = sctp_enter_memory_pressure, 8284 .memory_allocated = &sctp_memory_allocated, 8285 .sockets_allocated = &sctp_sockets_allocated, 8286 }; 8287 #endif /* IS_ENABLED(CONFIG_IPV6) */ 8288