1 /* SCTP kernel reference Implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel reference Implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * The SCTP reference implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * The SCTP reference implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, write to 32 * the Free Software Foundation, 59 Temple Place - Suite 330, 33 * Boston, MA 02111-1307, USA. 34 * 35 * Please send any bug reports or fixes you make to the 36 * email address(es): 37 * lksctp developers <lksctp-developers@lists.sourceforge.net> 38 * 39 * Or submit a bug report through the following website: 40 * http://www.sf.net/projects/lksctp 41 * 42 * Written or modified by: 43 * La Monte H.P. Yarroll <piggy@acm.org> 44 * Narasimha Budihal <narsi@refcode.org> 45 * Karl Knutson <karl@athena.chicago.il.us> 46 * Jon Grimm <jgrimm@us.ibm.com> 47 * Xingang Guo <xingang.guo@intel.com> 48 * Daisy Chang <daisyc@us.ibm.com> 49 * Sridhar Samudrala <samudrala@us.ibm.com> 50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 51 * Ardelle Fan <ardelle.fan@intel.com> 52 * Ryan Layer <rmlayer@us.ibm.com> 53 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 54 * Kevin Gao <kevin.gao@intel.com> 55 * 56 * Any bugs reported given to us we will try to fix... any fixes shared will 57 * be incorporated into the next SCTP release. 58 */ 59 60 #include <linux/types.h> 61 #include <linux/kernel.h> 62 #include <linux/wait.h> 63 #include <linux/time.h> 64 #include <linux/ip.h> 65 #include <linux/capability.h> 66 #include <linux/fcntl.h> 67 #include <linux/poll.h> 68 #include <linux/init.h> 69 #include <linux/crypto.h> 70 71 #include <net/ip.h> 72 #include <net/icmp.h> 73 #include <net/route.h> 74 #include <net/ipv6.h> 75 #include <net/inet_common.h> 76 77 #include <linux/socket.h> /* for sa_family_t */ 78 #include <net/sock.h> 79 #include <net/sctp/sctp.h> 80 #include <net/sctp/sm.h> 81 82 /* WARNING: Please do not remove the SCTP_STATIC attribute to 83 * any of the functions below as they are used to export functions 84 * used by a project regression testsuite. 85 */ 86 87 /* Forward declarations for internal helper functions. */ 88 static int sctp_writeable(struct sock *sk); 89 static void sctp_wfree(struct sk_buff *skb); 90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 91 size_t msg_len); 92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p); 93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 94 static int sctp_wait_for_accept(struct sock *sk, long timeo); 95 static void sctp_wait_for_close(struct sock *sk, long timeo); 96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 97 union sctp_addr *addr, int len); 98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 102 static int sctp_send_asconf(struct sctp_association *asoc, 103 struct sctp_chunk *chunk); 104 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 105 static int sctp_autobind(struct sock *sk); 106 static void sctp_sock_migrate(struct sock *, struct sock *, 107 struct sctp_association *, sctp_socket_type_t); 108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG; 109 110 extern struct kmem_cache *sctp_bucket_cachep; 111 112 /* Get the sndbuf space available at the time on the association. */ 113 static inline int sctp_wspace(struct sctp_association *asoc) 114 { 115 struct sock *sk = asoc->base.sk; 116 int amt = 0; 117 118 if (asoc->ep->sndbuf_policy) { 119 /* make sure that no association uses more than sk_sndbuf */ 120 amt = sk->sk_sndbuf - asoc->sndbuf_used; 121 } else { 122 /* do socket level accounting */ 123 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 124 } 125 126 if (amt < 0) 127 amt = 0; 128 129 return amt; 130 } 131 132 /* Increment the used sndbuf space count of the corresponding association by 133 * the size of the outgoing data chunk. 134 * Also, set the skb destructor for sndbuf accounting later. 135 * 136 * Since it is always 1-1 between chunk and skb, and also a new skb is always 137 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 138 * destructor in the data chunk skb for the purpose of the sndbuf space 139 * tracking. 140 */ 141 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 142 { 143 struct sctp_association *asoc = chunk->asoc; 144 struct sock *sk = asoc->base.sk; 145 146 /* The sndbuf space is tracked per association. */ 147 sctp_association_hold(asoc); 148 149 skb_set_owner_w(chunk->skb, sk); 150 151 chunk->skb->destructor = sctp_wfree; 152 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 153 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 154 155 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 156 sizeof(struct sk_buff) + 157 sizeof(struct sctp_chunk); 158 159 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 160 } 161 162 /* Verify that this is a valid address. */ 163 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 164 int len) 165 { 166 struct sctp_af *af; 167 168 /* Verify basic sockaddr. */ 169 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 170 if (!af) 171 return -EINVAL; 172 173 /* Is this a valid SCTP address? */ 174 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 175 return -EINVAL; 176 177 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 178 return -EINVAL; 179 180 return 0; 181 } 182 183 /* Look up the association by its id. If this is not a UDP-style 184 * socket, the ID field is always ignored. 185 */ 186 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 187 { 188 struct sctp_association *asoc = NULL; 189 190 /* If this is not a UDP-style socket, assoc id should be ignored. */ 191 if (!sctp_style(sk, UDP)) { 192 /* Return NULL if the socket state is not ESTABLISHED. It 193 * could be a TCP-style listening socket or a socket which 194 * hasn't yet called connect() to establish an association. 195 */ 196 if (!sctp_sstate(sk, ESTABLISHED)) 197 return NULL; 198 199 /* Get the first and the only association from the list. */ 200 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 201 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 202 struct sctp_association, asocs); 203 return asoc; 204 } 205 206 /* Otherwise this is a UDP-style socket. */ 207 if (!id || (id == (sctp_assoc_t)-1)) 208 return NULL; 209 210 spin_lock_bh(&sctp_assocs_id_lock); 211 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 212 spin_unlock_bh(&sctp_assocs_id_lock); 213 214 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 215 return NULL; 216 217 return asoc; 218 } 219 220 /* Look up the transport from an address and an assoc id. If both address and 221 * id are specified, the associations matching the address and the id should be 222 * the same. 223 */ 224 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 225 struct sockaddr_storage *addr, 226 sctp_assoc_t id) 227 { 228 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 229 struct sctp_transport *transport; 230 union sctp_addr *laddr = (union sctp_addr *)addr; 231 232 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 233 laddr, 234 &transport); 235 236 if (!addr_asoc) 237 return NULL; 238 239 id_asoc = sctp_id2assoc(sk, id); 240 if (id_asoc && (id_asoc != addr_asoc)) 241 return NULL; 242 243 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 244 (union sctp_addr *)addr); 245 246 return transport; 247 } 248 249 /* API 3.1.2 bind() - UDP Style Syntax 250 * The syntax of bind() is, 251 * 252 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 253 * 254 * sd - the socket descriptor returned by socket(). 255 * addr - the address structure (struct sockaddr_in or struct 256 * sockaddr_in6 [RFC 2553]), 257 * addr_len - the size of the address structure. 258 */ 259 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 260 { 261 int retval = 0; 262 263 sctp_lock_sock(sk); 264 265 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n", 266 sk, addr, addr_len); 267 268 /* Disallow binding twice. */ 269 if (!sctp_sk(sk)->ep->base.bind_addr.port) 270 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 271 addr_len); 272 else 273 retval = -EINVAL; 274 275 sctp_release_sock(sk); 276 277 return retval; 278 } 279 280 static long sctp_get_port_local(struct sock *, union sctp_addr *); 281 282 /* Verify this is a valid sockaddr. */ 283 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 284 union sctp_addr *addr, int len) 285 { 286 struct sctp_af *af; 287 288 /* Check minimum size. */ 289 if (len < sizeof (struct sockaddr)) 290 return NULL; 291 292 /* Does this PF support this AF? */ 293 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 294 return NULL; 295 296 /* If we get this far, af is valid. */ 297 af = sctp_get_af_specific(addr->sa.sa_family); 298 299 if (len < af->sockaddr_len) 300 return NULL; 301 302 return af; 303 } 304 305 /* Bind a local address either to an endpoint or to an association. */ 306 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 307 { 308 struct sctp_sock *sp = sctp_sk(sk); 309 struct sctp_endpoint *ep = sp->ep; 310 struct sctp_bind_addr *bp = &ep->base.bind_addr; 311 struct sctp_af *af; 312 unsigned short snum; 313 int ret = 0; 314 315 /* Common sockaddr verification. */ 316 af = sctp_sockaddr_af(sp, addr, len); 317 if (!af) { 318 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n", 319 sk, addr, len); 320 return -EINVAL; 321 } 322 323 snum = ntohs(addr->v4.sin_port); 324 325 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ", 326 ", port: %d, new port: %d, len: %d)\n", 327 sk, 328 addr, 329 bp->port, snum, 330 len); 331 332 /* PF specific bind() address verification. */ 333 if (!sp->pf->bind_verify(sp, addr)) 334 return -EADDRNOTAVAIL; 335 336 /* We must either be unbound, or bind to the same port. 337 * It's OK to allow 0 ports if we are already bound. 338 * We'll just inhert an already bound port in this case 339 */ 340 if (bp->port) { 341 if (!snum) 342 snum = bp->port; 343 else if (snum != bp->port) { 344 SCTP_DEBUG_PRINTK("sctp_do_bind:" 345 " New port %d does not match existing port " 346 "%d.\n", snum, bp->port); 347 return -EINVAL; 348 } 349 } 350 351 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 352 return -EACCES; 353 354 /* Make sure we are allowed to bind here. 355 * The function sctp_get_port_local() does duplicate address 356 * detection. 357 */ 358 if ((ret = sctp_get_port_local(sk, addr))) { 359 if (ret == (long) sk) { 360 /* This endpoint has a conflicting address. */ 361 return -EINVAL; 362 } else { 363 return -EADDRINUSE; 364 } 365 } 366 367 /* Refresh ephemeral port. */ 368 if (!bp->port) 369 bp->port = inet_sk(sk)->num; 370 371 /* Add the address to the bind address list. */ 372 sctp_local_bh_disable(); 373 sctp_write_lock(&ep->base.addr_lock); 374 375 /* Use GFP_ATOMIC since BHs are disabled. */ 376 ret = sctp_add_bind_addr(bp, addr, 1, GFP_ATOMIC); 377 sctp_write_unlock(&ep->base.addr_lock); 378 sctp_local_bh_enable(); 379 380 /* Copy back into socket for getsockname() use. */ 381 if (!ret) { 382 inet_sk(sk)->sport = htons(inet_sk(sk)->num); 383 af->to_sk_saddr(addr, sk); 384 } 385 386 return ret; 387 } 388 389 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 390 * 391 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 392 * at any one time. If a sender, after sending an ASCONF chunk, decides 393 * it needs to transfer another ASCONF Chunk, it MUST wait until the 394 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 395 * subsequent ASCONF. Note this restriction binds each side, so at any 396 * time two ASCONF may be in-transit on any given association (one sent 397 * from each endpoint). 398 */ 399 static int sctp_send_asconf(struct sctp_association *asoc, 400 struct sctp_chunk *chunk) 401 { 402 int retval = 0; 403 404 /* If there is an outstanding ASCONF chunk, queue it for later 405 * transmission. 406 */ 407 if (asoc->addip_last_asconf) { 408 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 409 goto out; 410 } 411 412 /* Hold the chunk until an ASCONF_ACK is received. */ 413 sctp_chunk_hold(chunk); 414 retval = sctp_primitive_ASCONF(asoc, chunk); 415 if (retval) 416 sctp_chunk_free(chunk); 417 else 418 asoc->addip_last_asconf = chunk; 419 420 out: 421 return retval; 422 } 423 424 /* Add a list of addresses as bind addresses to local endpoint or 425 * association. 426 * 427 * Basically run through each address specified in the addrs/addrcnt 428 * array/length pair, determine if it is IPv6 or IPv4 and call 429 * sctp_do_bind() on it. 430 * 431 * If any of them fails, then the operation will be reversed and the 432 * ones that were added will be removed. 433 * 434 * Only sctp_setsockopt_bindx() is supposed to call this function. 435 */ 436 int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 437 { 438 int cnt; 439 int retval = 0; 440 void *addr_buf; 441 struct sockaddr *sa_addr; 442 struct sctp_af *af; 443 444 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n", 445 sk, addrs, addrcnt); 446 447 addr_buf = addrs; 448 for (cnt = 0; cnt < addrcnt; cnt++) { 449 /* The list may contain either IPv4 or IPv6 address; 450 * determine the address length for walking thru the list. 451 */ 452 sa_addr = (struct sockaddr *)addr_buf; 453 af = sctp_get_af_specific(sa_addr->sa_family); 454 if (!af) { 455 retval = -EINVAL; 456 goto err_bindx_add; 457 } 458 459 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 460 af->sockaddr_len); 461 462 addr_buf += af->sockaddr_len; 463 464 err_bindx_add: 465 if (retval < 0) { 466 /* Failed. Cleanup the ones that have been added */ 467 if (cnt > 0) 468 sctp_bindx_rem(sk, addrs, cnt); 469 return retval; 470 } 471 } 472 473 return retval; 474 } 475 476 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 477 * associations that are part of the endpoint indicating that a list of local 478 * addresses are added to the endpoint. 479 * 480 * If any of the addresses is already in the bind address list of the 481 * association, we do not send the chunk for that association. But it will not 482 * affect other associations. 483 * 484 * Only sctp_setsockopt_bindx() is supposed to call this function. 485 */ 486 static int sctp_send_asconf_add_ip(struct sock *sk, 487 struct sockaddr *addrs, 488 int addrcnt) 489 { 490 struct sctp_sock *sp; 491 struct sctp_endpoint *ep; 492 struct sctp_association *asoc; 493 struct sctp_bind_addr *bp; 494 struct sctp_chunk *chunk; 495 struct sctp_sockaddr_entry *laddr; 496 union sctp_addr *addr; 497 union sctp_addr saveaddr; 498 void *addr_buf; 499 struct sctp_af *af; 500 struct list_head *pos; 501 struct list_head *p; 502 int i; 503 int retval = 0; 504 505 if (!sctp_addip_enable) 506 return retval; 507 508 sp = sctp_sk(sk); 509 ep = sp->ep; 510 511 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 512 __FUNCTION__, sk, addrs, addrcnt); 513 514 list_for_each(pos, &ep->asocs) { 515 asoc = list_entry(pos, struct sctp_association, asocs); 516 517 if (!asoc->peer.asconf_capable) 518 continue; 519 520 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 521 continue; 522 523 if (!sctp_state(asoc, ESTABLISHED)) 524 continue; 525 526 /* Check if any address in the packed array of addresses is 527 * in the bind address list of the association. If so, 528 * do not send the asconf chunk to its peer, but continue with 529 * other associations. 530 */ 531 addr_buf = addrs; 532 for (i = 0; i < addrcnt; i++) { 533 addr = (union sctp_addr *)addr_buf; 534 af = sctp_get_af_specific(addr->v4.sin_family); 535 if (!af) { 536 retval = -EINVAL; 537 goto out; 538 } 539 540 if (sctp_assoc_lookup_laddr(asoc, addr)) 541 break; 542 543 addr_buf += af->sockaddr_len; 544 } 545 if (i < addrcnt) 546 continue; 547 548 /* Use the first address in bind addr list of association as 549 * Address Parameter of ASCONF CHUNK. 550 */ 551 sctp_read_lock(&asoc->base.addr_lock); 552 bp = &asoc->base.bind_addr; 553 p = bp->address_list.next; 554 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 555 sctp_read_unlock(&asoc->base.addr_lock); 556 557 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 558 addrcnt, SCTP_PARAM_ADD_IP); 559 if (!chunk) { 560 retval = -ENOMEM; 561 goto out; 562 } 563 564 retval = sctp_send_asconf(asoc, chunk); 565 if (retval) 566 goto out; 567 568 /* Add the new addresses to the bind address list with 569 * use_as_src set to 0. 570 */ 571 sctp_local_bh_disable(); 572 sctp_write_lock(&asoc->base.addr_lock); 573 addr_buf = addrs; 574 for (i = 0; i < addrcnt; i++) { 575 addr = (union sctp_addr *)addr_buf; 576 af = sctp_get_af_specific(addr->v4.sin_family); 577 memcpy(&saveaddr, addr, af->sockaddr_len); 578 retval = sctp_add_bind_addr(bp, &saveaddr, 0, 579 GFP_ATOMIC); 580 addr_buf += af->sockaddr_len; 581 } 582 sctp_write_unlock(&asoc->base.addr_lock); 583 sctp_local_bh_enable(); 584 } 585 586 out: 587 return retval; 588 } 589 590 /* Remove a list of addresses from bind addresses list. Do not remove the 591 * last address. 592 * 593 * Basically run through each address specified in the addrs/addrcnt 594 * array/length pair, determine if it is IPv6 or IPv4 and call 595 * sctp_del_bind() on it. 596 * 597 * If any of them fails, then the operation will be reversed and the 598 * ones that were removed will be added back. 599 * 600 * At least one address has to be left; if only one address is 601 * available, the operation will return -EBUSY. 602 * 603 * Only sctp_setsockopt_bindx() is supposed to call this function. 604 */ 605 int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 606 { 607 struct sctp_sock *sp = sctp_sk(sk); 608 struct sctp_endpoint *ep = sp->ep; 609 int cnt; 610 struct sctp_bind_addr *bp = &ep->base.bind_addr; 611 int retval = 0; 612 void *addr_buf; 613 union sctp_addr *sa_addr; 614 struct sctp_af *af; 615 616 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n", 617 sk, addrs, addrcnt); 618 619 addr_buf = addrs; 620 for (cnt = 0; cnt < addrcnt; cnt++) { 621 /* If the bind address list is empty or if there is only one 622 * bind address, there is nothing more to be removed (we need 623 * at least one address here). 624 */ 625 if (list_empty(&bp->address_list) || 626 (sctp_list_single_entry(&bp->address_list))) { 627 retval = -EBUSY; 628 goto err_bindx_rem; 629 } 630 631 sa_addr = (union sctp_addr *)addr_buf; 632 af = sctp_get_af_specific(sa_addr->sa.sa_family); 633 if (!af) { 634 retval = -EINVAL; 635 goto err_bindx_rem; 636 } 637 638 if (!af->addr_valid(sa_addr, sp, NULL)) { 639 retval = -EADDRNOTAVAIL; 640 goto err_bindx_rem; 641 } 642 643 if (sa_addr->v4.sin_port != htons(bp->port)) { 644 retval = -EINVAL; 645 goto err_bindx_rem; 646 } 647 648 /* FIXME - There is probably a need to check if sk->sk_saddr and 649 * sk->sk_rcv_addr are currently set to one of the addresses to 650 * be removed. This is something which needs to be looked into 651 * when we are fixing the outstanding issues with multi-homing 652 * socket routing and failover schemes. Refer to comments in 653 * sctp_do_bind(). -daisy 654 */ 655 sctp_local_bh_disable(); 656 sctp_write_lock(&ep->base.addr_lock); 657 658 retval = sctp_del_bind_addr(bp, sa_addr); 659 660 sctp_write_unlock(&ep->base.addr_lock); 661 sctp_local_bh_enable(); 662 663 addr_buf += af->sockaddr_len; 664 err_bindx_rem: 665 if (retval < 0) { 666 /* Failed. Add the ones that has been removed back */ 667 if (cnt > 0) 668 sctp_bindx_add(sk, addrs, cnt); 669 return retval; 670 } 671 } 672 673 return retval; 674 } 675 676 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 677 * the associations that are part of the endpoint indicating that a list of 678 * local addresses are removed from the endpoint. 679 * 680 * If any of the addresses is already in the bind address list of the 681 * association, we do not send the chunk for that association. But it will not 682 * affect other associations. 683 * 684 * Only sctp_setsockopt_bindx() is supposed to call this function. 685 */ 686 static int sctp_send_asconf_del_ip(struct sock *sk, 687 struct sockaddr *addrs, 688 int addrcnt) 689 { 690 struct sctp_sock *sp; 691 struct sctp_endpoint *ep; 692 struct sctp_association *asoc; 693 struct sctp_transport *transport; 694 struct sctp_bind_addr *bp; 695 struct sctp_chunk *chunk; 696 union sctp_addr *laddr; 697 void *addr_buf; 698 struct sctp_af *af; 699 struct list_head *pos, *pos1; 700 struct sctp_sockaddr_entry *saddr; 701 int i; 702 int retval = 0; 703 704 if (!sctp_addip_enable) 705 return retval; 706 707 sp = sctp_sk(sk); 708 ep = sp->ep; 709 710 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 711 __FUNCTION__, sk, addrs, addrcnt); 712 713 list_for_each(pos, &ep->asocs) { 714 asoc = list_entry(pos, struct sctp_association, asocs); 715 716 if (!asoc->peer.asconf_capable) 717 continue; 718 719 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 720 continue; 721 722 if (!sctp_state(asoc, ESTABLISHED)) 723 continue; 724 725 /* Check if any address in the packed array of addresses is 726 * not present in the bind address list of the association. 727 * If so, do not send the asconf chunk to its peer, but 728 * continue with other associations. 729 */ 730 addr_buf = addrs; 731 for (i = 0; i < addrcnt; i++) { 732 laddr = (union sctp_addr *)addr_buf; 733 af = sctp_get_af_specific(laddr->v4.sin_family); 734 if (!af) { 735 retval = -EINVAL; 736 goto out; 737 } 738 739 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 740 break; 741 742 addr_buf += af->sockaddr_len; 743 } 744 if (i < addrcnt) 745 continue; 746 747 /* Find one address in the association's bind address list 748 * that is not in the packed array of addresses. This is to 749 * make sure that we do not delete all the addresses in the 750 * association. 751 */ 752 sctp_read_lock(&asoc->base.addr_lock); 753 bp = &asoc->base.bind_addr; 754 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 755 addrcnt, sp); 756 sctp_read_unlock(&asoc->base.addr_lock); 757 if (!laddr) 758 continue; 759 760 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 761 SCTP_PARAM_DEL_IP); 762 if (!chunk) { 763 retval = -ENOMEM; 764 goto out; 765 } 766 767 /* Reset use_as_src flag for the addresses in the bind address 768 * list that are to be deleted. 769 */ 770 sctp_local_bh_disable(); 771 sctp_write_lock(&asoc->base.addr_lock); 772 addr_buf = addrs; 773 for (i = 0; i < addrcnt; i++) { 774 laddr = (union sctp_addr *)addr_buf; 775 af = sctp_get_af_specific(laddr->v4.sin_family); 776 list_for_each(pos1, &bp->address_list) { 777 saddr = list_entry(pos1, 778 struct sctp_sockaddr_entry, 779 list); 780 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 781 saddr->use_as_src = 0; 782 } 783 addr_buf += af->sockaddr_len; 784 } 785 sctp_write_unlock(&asoc->base.addr_lock); 786 sctp_local_bh_enable(); 787 788 /* Update the route and saddr entries for all the transports 789 * as some of the addresses in the bind address list are 790 * about to be deleted and cannot be used as source addresses. 791 */ 792 list_for_each(pos1, &asoc->peer.transport_addr_list) { 793 transport = list_entry(pos1, struct sctp_transport, 794 transports); 795 dst_release(transport->dst); 796 sctp_transport_route(transport, NULL, 797 sctp_sk(asoc->base.sk)); 798 } 799 800 retval = sctp_send_asconf(asoc, chunk); 801 } 802 out: 803 return retval; 804 } 805 806 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 807 * 808 * API 8.1 809 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 810 * int flags); 811 * 812 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 813 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 814 * or IPv6 addresses. 815 * 816 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 817 * Section 3.1.2 for this usage. 818 * 819 * addrs is a pointer to an array of one or more socket addresses. Each 820 * address is contained in its appropriate structure (i.e. struct 821 * sockaddr_in or struct sockaddr_in6) the family of the address type 822 * must be used to distinguish the address length (note that this 823 * representation is termed a "packed array" of addresses). The caller 824 * specifies the number of addresses in the array with addrcnt. 825 * 826 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 827 * -1, and sets errno to the appropriate error code. 828 * 829 * For SCTP, the port given in each socket address must be the same, or 830 * sctp_bindx() will fail, setting errno to EINVAL. 831 * 832 * The flags parameter is formed from the bitwise OR of zero or more of 833 * the following currently defined flags: 834 * 835 * SCTP_BINDX_ADD_ADDR 836 * 837 * SCTP_BINDX_REM_ADDR 838 * 839 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 840 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 841 * addresses from the association. The two flags are mutually exclusive; 842 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 843 * not remove all addresses from an association; sctp_bindx() will 844 * reject such an attempt with EINVAL. 845 * 846 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 847 * additional addresses with an endpoint after calling bind(). Or use 848 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 849 * socket is associated with so that no new association accepted will be 850 * associated with those addresses. If the endpoint supports dynamic 851 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 852 * endpoint to send the appropriate message to the peer to change the 853 * peers address lists. 854 * 855 * Adding and removing addresses from a connected association is 856 * optional functionality. Implementations that do not support this 857 * functionality should return EOPNOTSUPP. 858 * 859 * Basically do nothing but copying the addresses from user to kernel 860 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 861 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 862 * from userspace. 863 * 864 * We don't use copy_from_user() for optimization: we first do the 865 * sanity checks (buffer size -fast- and access check-healthy 866 * pointer); if all of those succeed, then we can alloc the memory 867 * (expensive operation) needed to copy the data to kernel. Then we do 868 * the copying without checking the user space area 869 * (__copy_from_user()). 870 * 871 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 872 * it. 873 * 874 * sk The sk of the socket 875 * addrs The pointer to the addresses in user land 876 * addrssize Size of the addrs buffer 877 * op Operation to perform (add or remove, see the flags of 878 * sctp_bindx) 879 * 880 * Returns 0 if ok, <0 errno code on error. 881 */ 882 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk, 883 struct sockaddr __user *addrs, 884 int addrs_size, int op) 885 { 886 struct sockaddr *kaddrs; 887 int err; 888 int addrcnt = 0; 889 int walk_size = 0; 890 struct sockaddr *sa_addr; 891 void *addr_buf; 892 struct sctp_af *af; 893 894 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p" 895 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op); 896 897 if (unlikely(addrs_size <= 0)) 898 return -EINVAL; 899 900 /* Check the user passed a healthy pointer. */ 901 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 902 return -EFAULT; 903 904 /* Alloc space for the address array in kernel memory. */ 905 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 906 if (unlikely(!kaddrs)) 907 return -ENOMEM; 908 909 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 910 kfree(kaddrs); 911 return -EFAULT; 912 } 913 914 /* Walk through the addrs buffer and count the number of addresses. */ 915 addr_buf = kaddrs; 916 while (walk_size < addrs_size) { 917 sa_addr = (struct sockaddr *)addr_buf; 918 af = sctp_get_af_specific(sa_addr->sa_family); 919 920 /* If the address family is not supported or if this address 921 * causes the address buffer to overflow return EINVAL. 922 */ 923 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 924 kfree(kaddrs); 925 return -EINVAL; 926 } 927 addrcnt++; 928 addr_buf += af->sockaddr_len; 929 walk_size += af->sockaddr_len; 930 } 931 932 /* Do the work. */ 933 switch (op) { 934 case SCTP_BINDX_ADD_ADDR: 935 err = sctp_bindx_add(sk, kaddrs, addrcnt); 936 if (err) 937 goto out; 938 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 939 break; 940 941 case SCTP_BINDX_REM_ADDR: 942 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 943 if (err) 944 goto out; 945 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 946 break; 947 948 default: 949 err = -EINVAL; 950 break; 951 } 952 953 out: 954 kfree(kaddrs); 955 956 return err; 957 } 958 959 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 960 * 961 * Common routine for handling connect() and sctp_connectx(). 962 * Connect will come in with just a single address. 963 */ 964 static int __sctp_connect(struct sock* sk, 965 struct sockaddr *kaddrs, 966 int addrs_size) 967 { 968 struct sctp_sock *sp; 969 struct sctp_endpoint *ep; 970 struct sctp_association *asoc = NULL; 971 struct sctp_association *asoc2; 972 struct sctp_transport *transport; 973 union sctp_addr to; 974 struct sctp_af *af; 975 sctp_scope_t scope; 976 long timeo; 977 int err = 0; 978 int addrcnt = 0; 979 int walk_size = 0; 980 union sctp_addr *sa_addr; 981 void *addr_buf; 982 unsigned short port; 983 unsigned int f_flags = 0; 984 985 sp = sctp_sk(sk); 986 ep = sp->ep; 987 988 /* connect() cannot be done on a socket that is already in ESTABLISHED 989 * state - UDP-style peeled off socket or a TCP-style socket that 990 * is already connected. 991 * It cannot be done even on a TCP-style listening socket. 992 */ 993 if (sctp_sstate(sk, ESTABLISHED) || 994 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 995 err = -EISCONN; 996 goto out_free; 997 } 998 999 /* Walk through the addrs buffer and count the number of addresses. */ 1000 addr_buf = kaddrs; 1001 while (walk_size < addrs_size) { 1002 sa_addr = (union sctp_addr *)addr_buf; 1003 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1004 port = ntohs(sa_addr->v4.sin_port); 1005 1006 /* If the address family is not supported or if this address 1007 * causes the address buffer to overflow return EINVAL. 1008 */ 1009 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1010 err = -EINVAL; 1011 goto out_free; 1012 } 1013 1014 err = sctp_verify_addr(sk, sa_addr, af->sockaddr_len); 1015 if (err) 1016 goto out_free; 1017 1018 /* Make sure the destination port is correctly set 1019 * in all addresses. 1020 */ 1021 if (asoc && asoc->peer.port && asoc->peer.port != port) 1022 goto out_free; 1023 1024 memcpy(&to, sa_addr, af->sockaddr_len); 1025 1026 /* Check if there already is a matching association on the 1027 * endpoint (other than the one created here). 1028 */ 1029 asoc2 = sctp_endpoint_lookup_assoc(ep, sa_addr, &transport); 1030 if (asoc2 && asoc2 != asoc) { 1031 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1032 err = -EISCONN; 1033 else 1034 err = -EALREADY; 1035 goto out_free; 1036 } 1037 1038 /* If we could not find a matching association on the endpoint, 1039 * make sure that there is no peeled-off association matching 1040 * the peer address even on another socket. 1041 */ 1042 if (sctp_endpoint_is_peeled_off(ep, sa_addr)) { 1043 err = -EADDRNOTAVAIL; 1044 goto out_free; 1045 } 1046 1047 if (!asoc) { 1048 /* If a bind() or sctp_bindx() is not called prior to 1049 * an sctp_connectx() call, the system picks an 1050 * ephemeral port and will choose an address set 1051 * equivalent to binding with a wildcard address. 1052 */ 1053 if (!ep->base.bind_addr.port) { 1054 if (sctp_autobind(sk)) { 1055 err = -EAGAIN; 1056 goto out_free; 1057 } 1058 } else { 1059 /* 1060 * If an unprivileged user inherits a 1-many 1061 * style socket with open associations on a 1062 * privileged port, it MAY be permitted to 1063 * accept new associations, but it SHOULD NOT 1064 * be permitted to open new associations. 1065 */ 1066 if (ep->base.bind_addr.port < PROT_SOCK && 1067 !capable(CAP_NET_BIND_SERVICE)) { 1068 err = -EACCES; 1069 goto out_free; 1070 } 1071 } 1072 1073 scope = sctp_scope(sa_addr); 1074 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1075 if (!asoc) { 1076 err = -ENOMEM; 1077 goto out_free; 1078 } 1079 } 1080 1081 /* Prime the peer's transport structures. */ 1082 transport = sctp_assoc_add_peer(asoc, sa_addr, GFP_KERNEL, 1083 SCTP_UNKNOWN); 1084 if (!transport) { 1085 err = -ENOMEM; 1086 goto out_free; 1087 } 1088 1089 addrcnt++; 1090 addr_buf += af->sockaddr_len; 1091 walk_size += af->sockaddr_len; 1092 } 1093 1094 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1095 if (err < 0) { 1096 goto out_free; 1097 } 1098 1099 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1100 if (err < 0) { 1101 goto out_free; 1102 } 1103 1104 /* Initialize sk's dport and daddr for getpeername() */ 1105 inet_sk(sk)->dport = htons(asoc->peer.port); 1106 af = sctp_get_af_specific(to.sa.sa_family); 1107 af->to_sk_daddr(&to, sk); 1108 sk->sk_err = 0; 1109 1110 /* in-kernel sockets don't generally have a file allocated to them 1111 * if all they do is call sock_create_kern(). 1112 */ 1113 if (sk->sk_socket->file) 1114 f_flags = sk->sk_socket->file->f_flags; 1115 1116 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1117 1118 err = sctp_wait_for_connect(asoc, &timeo); 1119 1120 /* Don't free association on exit. */ 1121 asoc = NULL; 1122 1123 out_free: 1124 1125 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p" 1126 " kaddrs: %p err: %d\n", 1127 asoc, kaddrs, err); 1128 if (asoc) 1129 sctp_association_free(asoc); 1130 return err; 1131 } 1132 1133 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1134 * 1135 * API 8.9 1136 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt); 1137 * 1138 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1139 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1140 * or IPv6 addresses. 1141 * 1142 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1143 * Section 3.1.2 for this usage. 1144 * 1145 * addrs is a pointer to an array of one or more socket addresses. Each 1146 * address is contained in its appropriate structure (i.e. struct 1147 * sockaddr_in or struct sockaddr_in6) the family of the address type 1148 * must be used to distengish the address length (note that this 1149 * representation is termed a "packed array" of addresses). The caller 1150 * specifies the number of addresses in the array with addrcnt. 1151 * 1152 * On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns 1153 * -1, and sets errno to the appropriate error code. 1154 * 1155 * For SCTP, the port given in each socket address must be the same, or 1156 * sctp_connectx() will fail, setting errno to EINVAL. 1157 * 1158 * An application can use sctp_connectx to initiate an association with 1159 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1160 * allows a caller to specify multiple addresses at which a peer can be 1161 * reached. The way the SCTP stack uses the list of addresses to set up 1162 * the association is implementation dependant. This function only 1163 * specifies that the stack will try to make use of all the addresses in 1164 * the list when needed. 1165 * 1166 * Note that the list of addresses passed in is only used for setting up 1167 * the association. It does not necessarily equal the set of addresses 1168 * the peer uses for the resulting association. If the caller wants to 1169 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1170 * retrieve them after the association has been set up. 1171 * 1172 * Basically do nothing but copying the addresses from user to kernel 1173 * land and invoking either sctp_connectx(). This is used for tunneling 1174 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1175 * 1176 * We don't use copy_from_user() for optimization: we first do the 1177 * sanity checks (buffer size -fast- and access check-healthy 1178 * pointer); if all of those succeed, then we can alloc the memory 1179 * (expensive operation) needed to copy the data to kernel. Then we do 1180 * the copying without checking the user space area 1181 * (__copy_from_user()). 1182 * 1183 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1184 * it. 1185 * 1186 * sk The sk of the socket 1187 * addrs The pointer to the addresses in user land 1188 * addrssize Size of the addrs buffer 1189 * 1190 * Returns 0 if ok, <0 errno code on error. 1191 */ 1192 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk, 1193 struct sockaddr __user *addrs, 1194 int addrs_size) 1195 { 1196 int err = 0; 1197 struct sockaddr *kaddrs; 1198 1199 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n", 1200 __FUNCTION__, sk, addrs, addrs_size); 1201 1202 if (unlikely(addrs_size <= 0)) 1203 return -EINVAL; 1204 1205 /* Check the user passed a healthy pointer. */ 1206 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1207 return -EFAULT; 1208 1209 /* Alloc space for the address array in kernel memory. */ 1210 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 1211 if (unlikely(!kaddrs)) 1212 return -ENOMEM; 1213 1214 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1215 err = -EFAULT; 1216 } else { 1217 err = __sctp_connect(sk, kaddrs, addrs_size); 1218 } 1219 1220 kfree(kaddrs); 1221 return err; 1222 } 1223 1224 /* API 3.1.4 close() - UDP Style Syntax 1225 * Applications use close() to perform graceful shutdown (as described in 1226 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1227 * by a UDP-style socket. 1228 * 1229 * The syntax is 1230 * 1231 * ret = close(int sd); 1232 * 1233 * sd - the socket descriptor of the associations to be closed. 1234 * 1235 * To gracefully shutdown a specific association represented by the 1236 * UDP-style socket, an application should use the sendmsg() call, 1237 * passing no user data, but including the appropriate flag in the 1238 * ancillary data (see Section xxxx). 1239 * 1240 * If sd in the close() call is a branched-off socket representing only 1241 * one association, the shutdown is performed on that association only. 1242 * 1243 * 4.1.6 close() - TCP Style Syntax 1244 * 1245 * Applications use close() to gracefully close down an association. 1246 * 1247 * The syntax is: 1248 * 1249 * int close(int sd); 1250 * 1251 * sd - the socket descriptor of the association to be closed. 1252 * 1253 * After an application calls close() on a socket descriptor, no further 1254 * socket operations will succeed on that descriptor. 1255 * 1256 * API 7.1.4 SO_LINGER 1257 * 1258 * An application using the TCP-style socket can use this option to 1259 * perform the SCTP ABORT primitive. The linger option structure is: 1260 * 1261 * struct linger { 1262 * int l_onoff; // option on/off 1263 * int l_linger; // linger time 1264 * }; 1265 * 1266 * To enable the option, set l_onoff to 1. If the l_linger value is set 1267 * to 0, calling close() is the same as the ABORT primitive. If the 1268 * value is set to a negative value, the setsockopt() call will return 1269 * an error. If the value is set to a positive value linger_time, the 1270 * close() can be blocked for at most linger_time ms. If the graceful 1271 * shutdown phase does not finish during this period, close() will 1272 * return but the graceful shutdown phase continues in the system. 1273 */ 1274 SCTP_STATIC void sctp_close(struct sock *sk, long timeout) 1275 { 1276 struct sctp_endpoint *ep; 1277 struct sctp_association *asoc; 1278 struct list_head *pos, *temp; 1279 1280 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout); 1281 1282 sctp_lock_sock(sk); 1283 sk->sk_shutdown = SHUTDOWN_MASK; 1284 1285 ep = sctp_sk(sk)->ep; 1286 1287 /* Walk all associations on an endpoint. */ 1288 list_for_each_safe(pos, temp, &ep->asocs) { 1289 asoc = list_entry(pos, struct sctp_association, asocs); 1290 1291 if (sctp_style(sk, TCP)) { 1292 /* A closed association can still be in the list if 1293 * it belongs to a TCP-style listening socket that is 1294 * not yet accepted. If so, free it. If not, send an 1295 * ABORT or SHUTDOWN based on the linger options. 1296 */ 1297 if (sctp_state(asoc, CLOSED)) { 1298 sctp_unhash_established(asoc); 1299 sctp_association_free(asoc); 1300 continue; 1301 } 1302 } 1303 1304 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 1305 struct sctp_chunk *chunk; 1306 1307 chunk = sctp_make_abort_user(asoc, NULL, 0); 1308 if (chunk) 1309 sctp_primitive_ABORT(asoc, chunk); 1310 } else 1311 sctp_primitive_SHUTDOWN(asoc, NULL); 1312 } 1313 1314 /* Clean up any skbs sitting on the receive queue. */ 1315 sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1316 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1317 1318 /* On a TCP-style socket, block for at most linger_time if set. */ 1319 if (sctp_style(sk, TCP) && timeout) 1320 sctp_wait_for_close(sk, timeout); 1321 1322 /* This will run the backlog queue. */ 1323 sctp_release_sock(sk); 1324 1325 /* Supposedly, no process has access to the socket, but 1326 * the net layers still may. 1327 */ 1328 sctp_local_bh_disable(); 1329 sctp_bh_lock_sock(sk); 1330 1331 /* Hold the sock, since sk_common_release() will put sock_put() 1332 * and we have just a little more cleanup. 1333 */ 1334 sock_hold(sk); 1335 sk_common_release(sk); 1336 1337 sctp_bh_unlock_sock(sk); 1338 sctp_local_bh_enable(); 1339 1340 sock_put(sk); 1341 1342 SCTP_DBG_OBJCNT_DEC(sock); 1343 } 1344 1345 /* Handle EPIPE error. */ 1346 static int sctp_error(struct sock *sk, int flags, int err) 1347 { 1348 if (err == -EPIPE) 1349 err = sock_error(sk) ? : -EPIPE; 1350 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1351 send_sig(SIGPIPE, current, 0); 1352 return err; 1353 } 1354 1355 /* API 3.1.3 sendmsg() - UDP Style Syntax 1356 * 1357 * An application uses sendmsg() and recvmsg() calls to transmit data to 1358 * and receive data from its peer. 1359 * 1360 * ssize_t sendmsg(int socket, const struct msghdr *message, 1361 * int flags); 1362 * 1363 * socket - the socket descriptor of the endpoint. 1364 * message - pointer to the msghdr structure which contains a single 1365 * user message and possibly some ancillary data. 1366 * 1367 * See Section 5 for complete description of the data 1368 * structures. 1369 * 1370 * flags - flags sent or received with the user message, see Section 1371 * 5 for complete description of the flags. 1372 * 1373 * Note: This function could use a rewrite especially when explicit 1374 * connect support comes in. 1375 */ 1376 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1377 1378 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1379 1380 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1381 struct msghdr *msg, size_t msg_len) 1382 { 1383 struct sctp_sock *sp; 1384 struct sctp_endpoint *ep; 1385 struct sctp_association *new_asoc=NULL, *asoc=NULL; 1386 struct sctp_transport *transport, *chunk_tp; 1387 struct sctp_chunk *chunk; 1388 union sctp_addr to; 1389 struct sockaddr *msg_name = NULL; 1390 struct sctp_sndrcvinfo default_sinfo = { 0 }; 1391 struct sctp_sndrcvinfo *sinfo; 1392 struct sctp_initmsg *sinit; 1393 sctp_assoc_t associd = 0; 1394 sctp_cmsgs_t cmsgs = { NULL }; 1395 int err; 1396 sctp_scope_t scope; 1397 long timeo; 1398 __u16 sinfo_flags = 0; 1399 struct sctp_datamsg *datamsg; 1400 struct list_head *pos; 1401 int msg_flags = msg->msg_flags; 1402 1403 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n", 1404 sk, msg, msg_len); 1405 1406 err = 0; 1407 sp = sctp_sk(sk); 1408 ep = sp->ep; 1409 1410 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep); 1411 1412 /* We cannot send a message over a TCP-style listening socket. */ 1413 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1414 err = -EPIPE; 1415 goto out_nounlock; 1416 } 1417 1418 /* Parse out the SCTP CMSGs. */ 1419 err = sctp_msghdr_parse(msg, &cmsgs); 1420 1421 if (err) { 1422 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err); 1423 goto out_nounlock; 1424 } 1425 1426 /* Fetch the destination address for this packet. This 1427 * address only selects the association--it is not necessarily 1428 * the address we will send to. 1429 * For a peeled-off socket, msg_name is ignored. 1430 */ 1431 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1432 int msg_namelen = msg->msg_namelen; 1433 1434 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1435 msg_namelen); 1436 if (err) 1437 return err; 1438 1439 if (msg_namelen > sizeof(to)) 1440 msg_namelen = sizeof(to); 1441 memcpy(&to, msg->msg_name, msg_namelen); 1442 msg_name = msg->msg_name; 1443 } 1444 1445 sinfo = cmsgs.info; 1446 sinit = cmsgs.init; 1447 1448 /* Did the user specify SNDRCVINFO? */ 1449 if (sinfo) { 1450 sinfo_flags = sinfo->sinfo_flags; 1451 associd = sinfo->sinfo_assoc_id; 1452 } 1453 1454 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n", 1455 msg_len, sinfo_flags); 1456 1457 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1458 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1459 err = -EINVAL; 1460 goto out_nounlock; 1461 } 1462 1463 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1464 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1465 * If SCTP_ABORT is set, the message length could be non zero with 1466 * the msg_iov set to the user abort reason. 1467 */ 1468 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1469 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1470 err = -EINVAL; 1471 goto out_nounlock; 1472 } 1473 1474 /* If SCTP_ADDR_OVER is set, there must be an address 1475 * specified in msg_name. 1476 */ 1477 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1478 err = -EINVAL; 1479 goto out_nounlock; 1480 } 1481 1482 transport = NULL; 1483 1484 SCTP_DEBUG_PRINTK("About to look up association.\n"); 1485 1486 sctp_lock_sock(sk); 1487 1488 /* If a msg_name has been specified, assume this is to be used. */ 1489 if (msg_name) { 1490 /* Look for a matching association on the endpoint. */ 1491 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1492 if (!asoc) { 1493 /* If we could not find a matching association on the 1494 * endpoint, make sure that it is not a TCP-style 1495 * socket that already has an association or there is 1496 * no peeled-off association on another socket. 1497 */ 1498 if ((sctp_style(sk, TCP) && 1499 sctp_sstate(sk, ESTABLISHED)) || 1500 sctp_endpoint_is_peeled_off(ep, &to)) { 1501 err = -EADDRNOTAVAIL; 1502 goto out_unlock; 1503 } 1504 } 1505 } else { 1506 asoc = sctp_id2assoc(sk, associd); 1507 if (!asoc) { 1508 err = -EPIPE; 1509 goto out_unlock; 1510 } 1511 } 1512 1513 if (asoc) { 1514 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc); 1515 1516 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1517 * socket that has an association in CLOSED state. This can 1518 * happen when an accepted socket has an association that is 1519 * already CLOSED. 1520 */ 1521 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1522 err = -EPIPE; 1523 goto out_unlock; 1524 } 1525 1526 if (sinfo_flags & SCTP_EOF) { 1527 SCTP_DEBUG_PRINTK("Shutting down association: %p\n", 1528 asoc); 1529 sctp_primitive_SHUTDOWN(asoc, NULL); 1530 err = 0; 1531 goto out_unlock; 1532 } 1533 if (sinfo_flags & SCTP_ABORT) { 1534 struct sctp_chunk *chunk; 1535 1536 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1537 if (!chunk) { 1538 err = -ENOMEM; 1539 goto out_unlock; 1540 } 1541 1542 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc); 1543 sctp_primitive_ABORT(asoc, chunk); 1544 err = 0; 1545 goto out_unlock; 1546 } 1547 } 1548 1549 /* Do we need to create the association? */ 1550 if (!asoc) { 1551 SCTP_DEBUG_PRINTK("There is no association yet.\n"); 1552 1553 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1554 err = -EINVAL; 1555 goto out_unlock; 1556 } 1557 1558 /* Check for invalid stream against the stream counts, 1559 * either the default or the user specified stream counts. 1560 */ 1561 if (sinfo) { 1562 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) { 1563 /* Check against the defaults. */ 1564 if (sinfo->sinfo_stream >= 1565 sp->initmsg.sinit_num_ostreams) { 1566 err = -EINVAL; 1567 goto out_unlock; 1568 } 1569 } else { 1570 /* Check against the requested. */ 1571 if (sinfo->sinfo_stream >= 1572 sinit->sinit_num_ostreams) { 1573 err = -EINVAL; 1574 goto out_unlock; 1575 } 1576 } 1577 } 1578 1579 /* 1580 * API 3.1.2 bind() - UDP Style Syntax 1581 * If a bind() or sctp_bindx() is not called prior to a 1582 * sendmsg() call that initiates a new association, the 1583 * system picks an ephemeral port and will choose an address 1584 * set equivalent to binding with a wildcard address. 1585 */ 1586 if (!ep->base.bind_addr.port) { 1587 if (sctp_autobind(sk)) { 1588 err = -EAGAIN; 1589 goto out_unlock; 1590 } 1591 } else { 1592 /* 1593 * If an unprivileged user inherits a one-to-many 1594 * style socket with open associations on a privileged 1595 * port, it MAY be permitted to accept new associations, 1596 * but it SHOULD NOT be permitted to open new 1597 * associations. 1598 */ 1599 if (ep->base.bind_addr.port < PROT_SOCK && 1600 !capable(CAP_NET_BIND_SERVICE)) { 1601 err = -EACCES; 1602 goto out_unlock; 1603 } 1604 } 1605 1606 scope = sctp_scope(&to); 1607 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1608 if (!new_asoc) { 1609 err = -ENOMEM; 1610 goto out_unlock; 1611 } 1612 asoc = new_asoc; 1613 1614 /* If the SCTP_INIT ancillary data is specified, set all 1615 * the association init values accordingly. 1616 */ 1617 if (sinit) { 1618 if (sinit->sinit_num_ostreams) { 1619 asoc->c.sinit_num_ostreams = 1620 sinit->sinit_num_ostreams; 1621 } 1622 if (sinit->sinit_max_instreams) { 1623 asoc->c.sinit_max_instreams = 1624 sinit->sinit_max_instreams; 1625 } 1626 if (sinit->sinit_max_attempts) { 1627 asoc->max_init_attempts 1628 = sinit->sinit_max_attempts; 1629 } 1630 if (sinit->sinit_max_init_timeo) { 1631 asoc->max_init_timeo = 1632 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1633 } 1634 } 1635 1636 /* Prime the peer's transport structures. */ 1637 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1638 if (!transport) { 1639 err = -ENOMEM; 1640 goto out_free; 1641 } 1642 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1643 if (err < 0) { 1644 err = -ENOMEM; 1645 goto out_free; 1646 } 1647 } 1648 1649 /* ASSERT: we have a valid association at this point. */ 1650 SCTP_DEBUG_PRINTK("We have a valid association.\n"); 1651 1652 if (!sinfo) { 1653 /* If the user didn't specify SNDRCVINFO, make up one with 1654 * some defaults. 1655 */ 1656 default_sinfo.sinfo_stream = asoc->default_stream; 1657 default_sinfo.sinfo_flags = asoc->default_flags; 1658 default_sinfo.sinfo_ppid = asoc->default_ppid; 1659 default_sinfo.sinfo_context = asoc->default_context; 1660 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1661 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1662 sinfo = &default_sinfo; 1663 } 1664 1665 /* API 7.1.7, the sndbuf size per association bounds the 1666 * maximum size of data that can be sent in a single send call. 1667 */ 1668 if (msg_len > sk->sk_sndbuf) { 1669 err = -EMSGSIZE; 1670 goto out_free; 1671 } 1672 1673 if (asoc->pmtu_pending) 1674 sctp_assoc_pending_pmtu(asoc); 1675 1676 /* If fragmentation is disabled and the message length exceeds the 1677 * association fragmentation point, return EMSGSIZE. The I-D 1678 * does not specify what this error is, but this looks like 1679 * a great fit. 1680 */ 1681 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1682 err = -EMSGSIZE; 1683 goto out_free; 1684 } 1685 1686 if (sinfo) { 1687 /* Check for invalid stream. */ 1688 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1689 err = -EINVAL; 1690 goto out_free; 1691 } 1692 } 1693 1694 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1695 if (!sctp_wspace(asoc)) { 1696 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1697 if (err) 1698 goto out_free; 1699 } 1700 1701 /* If an address is passed with the sendto/sendmsg call, it is used 1702 * to override the primary destination address in the TCP model, or 1703 * when SCTP_ADDR_OVER flag is set in the UDP model. 1704 */ 1705 if ((sctp_style(sk, TCP) && msg_name) || 1706 (sinfo_flags & SCTP_ADDR_OVER)) { 1707 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1708 if (!chunk_tp) { 1709 err = -EINVAL; 1710 goto out_free; 1711 } 1712 } else 1713 chunk_tp = NULL; 1714 1715 /* Auto-connect, if we aren't connected already. */ 1716 if (sctp_state(asoc, CLOSED)) { 1717 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1718 if (err < 0) 1719 goto out_free; 1720 SCTP_DEBUG_PRINTK("We associated primitively.\n"); 1721 } 1722 1723 /* Break the message into multiple chunks of maximum size. */ 1724 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1725 if (!datamsg) { 1726 err = -ENOMEM; 1727 goto out_free; 1728 } 1729 1730 /* Now send the (possibly) fragmented message. */ 1731 list_for_each(pos, &datamsg->chunks) { 1732 chunk = list_entry(pos, struct sctp_chunk, frag_list); 1733 sctp_datamsg_track(chunk); 1734 1735 /* Do accounting for the write space. */ 1736 sctp_set_owner_w(chunk); 1737 1738 chunk->transport = chunk_tp; 1739 1740 /* Send it to the lower layers. Note: all chunks 1741 * must either fail or succeed. The lower layer 1742 * works that way today. Keep it that way or this 1743 * breaks. 1744 */ 1745 err = sctp_primitive_SEND(asoc, chunk); 1746 /* Did the lower layer accept the chunk? */ 1747 if (err) 1748 sctp_chunk_free(chunk); 1749 SCTP_DEBUG_PRINTK("We sent primitively.\n"); 1750 } 1751 1752 sctp_datamsg_free(datamsg); 1753 if (err) 1754 goto out_free; 1755 else 1756 err = msg_len; 1757 1758 /* If we are already past ASSOCIATE, the lower 1759 * layers are responsible for association cleanup. 1760 */ 1761 goto out_unlock; 1762 1763 out_free: 1764 if (new_asoc) 1765 sctp_association_free(asoc); 1766 out_unlock: 1767 sctp_release_sock(sk); 1768 1769 out_nounlock: 1770 return sctp_error(sk, msg_flags, err); 1771 1772 #if 0 1773 do_sock_err: 1774 if (msg_len) 1775 err = msg_len; 1776 else 1777 err = sock_error(sk); 1778 goto out; 1779 1780 do_interrupted: 1781 if (msg_len) 1782 err = msg_len; 1783 goto out; 1784 #endif /* 0 */ 1785 } 1786 1787 /* This is an extended version of skb_pull() that removes the data from the 1788 * start of a skb even when data is spread across the list of skb's in the 1789 * frag_list. len specifies the total amount of data that needs to be removed. 1790 * when 'len' bytes could be removed from the skb, it returns 0. 1791 * If 'len' exceeds the total skb length, it returns the no. of bytes that 1792 * could not be removed. 1793 */ 1794 static int sctp_skb_pull(struct sk_buff *skb, int len) 1795 { 1796 struct sk_buff *list; 1797 int skb_len = skb_headlen(skb); 1798 int rlen; 1799 1800 if (len <= skb_len) { 1801 __skb_pull(skb, len); 1802 return 0; 1803 } 1804 len -= skb_len; 1805 __skb_pull(skb, skb_len); 1806 1807 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) { 1808 rlen = sctp_skb_pull(list, len); 1809 skb->len -= (len-rlen); 1810 skb->data_len -= (len-rlen); 1811 1812 if (!rlen) 1813 return 0; 1814 1815 len = rlen; 1816 } 1817 1818 return len; 1819 } 1820 1821 /* API 3.1.3 recvmsg() - UDP Style Syntax 1822 * 1823 * ssize_t recvmsg(int socket, struct msghdr *message, 1824 * int flags); 1825 * 1826 * socket - the socket descriptor of the endpoint. 1827 * message - pointer to the msghdr structure which contains a single 1828 * user message and possibly some ancillary data. 1829 * 1830 * See Section 5 for complete description of the data 1831 * structures. 1832 * 1833 * flags - flags sent or received with the user message, see Section 1834 * 5 for complete description of the flags. 1835 */ 1836 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); 1837 1838 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 1839 struct msghdr *msg, size_t len, int noblock, 1840 int flags, int *addr_len) 1841 { 1842 struct sctp_ulpevent *event = NULL; 1843 struct sctp_sock *sp = sctp_sk(sk); 1844 struct sk_buff *skb; 1845 int copied; 1846 int err = 0; 1847 int skb_len; 1848 1849 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: " 1850 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg, 1851 "len", len, "knoblauch", noblock, 1852 "flags", flags, "addr_len", addr_len); 1853 1854 sctp_lock_sock(sk); 1855 1856 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 1857 err = -ENOTCONN; 1858 goto out; 1859 } 1860 1861 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 1862 if (!skb) 1863 goto out; 1864 1865 /* Get the total length of the skb including any skb's in the 1866 * frag_list. 1867 */ 1868 skb_len = skb->len; 1869 1870 copied = skb_len; 1871 if (copied > len) 1872 copied = len; 1873 1874 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 1875 1876 event = sctp_skb2event(skb); 1877 1878 if (err) 1879 goto out_free; 1880 1881 sock_recv_timestamp(msg, sk, skb); 1882 if (sctp_ulpevent_is_notification(event)) { 1883 msg->msg_flags |= MSG_NOTIFICATION; 1884 sp->pf->event_msgname(event, msg->msg_name, addr_len); 1885 } else { 1886 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 1887 } 1888 1889 /* Check if we allow SCTP_SNDRCVINFO. */ 1890 if (sp->subscribe.sctp_data_io_event) 1891 sctp_ulpevent_read_sndrcvinfo(event, msg); 1892 #if 0 1893 /* FIXME: we should be calling IP/IPv6 layers. */ 1894 if (sk->sk_protinfo.af_inet.cmsg_flags) 1895 ip_cmsg_recv(msg, skb); 1896 #endif 1897 1898 err = copied; 1899 1900 /* If skb's length exceeds the user's buffer, update the skb and 1901 * push it back to the receive_queue so that the next call to 1902 * recvmsg() will return the remaining data. Don't set MSG_EOR. 1903 */ 1904 if (skb_len > copied) { 1905 msg->msg_flags &= ~MSG_EOR; 1906 if (flags & MSG_PEEK) 1907 goto out_free; 1908 sctp_skb_pull(skb, copied); 1909 skb_queue_head(&sk->sk_receive_queue, skb); 1910 1911 /* When only partial message is copied to the user, increase 1912 * rwnd by that amount. If all the data in the skb is read, 1913 * rwnd is updated when the event is freed. 1914 */ 1915 sctp_assoc_rwnd_increase(event->asoc, copied); 1916 goto out; 1917 } else if ((event->msg_flags & MSG_NOTIFICATION) || 1918 (event->msg_flags & MSG_EOR)) 1919 msg->msg_flags |= MSG_EOR; 1920 else 1921 msg->msg_flags &= ~MSG_EOR; 1922 1923 out_free: 1924 if (flags & MSG_PEEK) { 1925 /* Release the skb reference acquired after peeking the skb in 1926 * sctp_skb_recv_datagram(). 1927 */ 1928 kfree_skb(skb); 1929 } else { 1930 /* Free the event which includes releasing the reference to 1931 * the owner of the skb, freeing the skb and updating the 1932 * rwnd. 1933 */ 1934 sctp_ulpevent_free(event); 1935 } 1936 out: 1937 sctp_release_sock(sk); 1938 return err; 1939 } 1940 1941 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 1942 * 1943 * This option is a on/off flag. If enabled no SCTP message 1944 * fragmentation will be performed. Instead if a message being sent 1945 * exceeds the current PMTU size, the message will NOT be sent and 1946 * instead a error will be indicated to the user. 1947 */ 1948 static int sctp_setsockopt_disable_fragments(struct sock *sk, 1949 char __user *optval, int optlen) 1950 { 1951 int val; 1952 1953 if (optlen < sizeof(int)) 1954 return -EINVAL; 1955 1956 if (get_user(val, (int __user *)optval)) 1957 return -EFAULT; 1958 1959 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 1960 1961 return 0; 1962 } 1963 1964 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 1965 int optlen) 1966 { 1967 if (optlen != sizeof(struct sctp_event_subscribe)) 1968 return -EINVAL; 1969 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 1970 return -EFAULT; 1971 return 0; 1972 } 1973 1974 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 1975 * 1976 * This socket option is applicable to the UDP-style socket only. When 1977 * set it will cause associations that are idle for more than the 1978 * specified number of seconds to automatically close. An association 1979 * being idle is defined an association that has NOT sent or received 1980 * user data. The special value of '0' indicates that no automatic 1981 * close of any associations should be performed. The option expects an 1982 * integer defining the number of seconds of idle time before an 1983 * association is closed. 1984 */ 1985 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 1986 int optlen) 1987 { 1988 struct sctp_sock *sp = sctp_sk(sk); 1989 1990 /* Applicable to UDP-style socket only */ 1991 if (sctp_style(sk, TCP)) 1992 return -EOPNOTSUPP; 1993 if (optlen != sizeof(int)) 1994 return -EINVAL; 1995 if (copy_from_user(&sp->autoclose, optval, optlen)) 1996 return -EFAULT; 1997 1998 return 0; 1999 } 2000 2001 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2002 * 2003 * Applications can enable or disable heartbeats for any peer address of 2004 * an association, modify an address's heartbeat interval, force a 2005 * heartbeat to be sent immediately, and adjust the address's maximum 2006 * number of retransmissions sent before an address is considered 2007 * unreachable. The following structure is used to access and modify an 2008 * address's parameters: 2009 * 2010 * struct sctp_paddrparams { 2011 * sctp_assoc_t spp_assoc_id; 2012 * struct sockaddr_storage spp_address; 2013 * uint32_t spp_hbinterval; 2014 * uint16_t spp_pathmaxrxt; 2015 * uint32_t spp_pathmtu; 2016 * uint32_t spp_sackdelay; 2017 * uint32_t spp_flags; 2018 * }; 2019 * 2020 * spp_assoc_id - (one-to-many style socket) This is filled in the 2021 * application, and identifies the association for 2022 * this query. 2023 * spp_address - This specifies which address is of interest. 2024 * spp_hbinterval - This contains the value of the heartbeat interval, 2025 * in milliseconds. If a value of zero 2026 * is present in this field then no changes are to 2027 * be made to this parameter. 2028 * spp_pathmaxrxt - This contains the maximum number of 2029 * retransmissions before this address shall be 2030 * considered unreachable. If a value of zero 2031 * is present in this field then no changes are to 2032 * be made to this parameter. 2033 * spp_pathmtu - When Path MTU discovery is disabled the value 2034 * specified here will be the "fixed" path mtu. 2035 * Note that if the spp_address field is empty 2036 * then all associations on this address will 2037 * have this fixed path mtu set upon them. 2038 * 2039 * spp_sackdelay - When delayed sack is enabled, this value specifies 2040 * the number of milliseconds that sacks will be delayed 2041 * for. This value will apply to all addresses of an 2042 * association if the spp_address field is empty. Note 2043 * also, that if delayed sack is enabled and this 2044 * value is set to 0, no change is made to the last 2045 * recorded delayed sack timer value. 2046 * 2047 * spp_flags - These flags are used to control various features 2048 * on an association. The flag field may contain 2049 * zero or more of the following options. 2050 * 2051 * SPP_HB_ENABLE - Enable heartbeats on the 2052 * specified address. Note that if the address 2053 * field is empty all addresses for the association 2054 * have heartbeats enabled upon them. 2055 * 2056 * SPP_HB_DISABLE - Disable heartbeats on the 2057 * speicifed address. Note that if the address 2058 * field is empty all addresses for the association 2059 * will have their heartbeats disabled. Note also 2060 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2061 * mutually exclusive, only one of these two should 2062 * be specified. Enabling both fields will have 2063 * undetermined results. 2064 * 2065 * SPP_HB_DEMAND - Request a user initiated heartbeat 2066 * to be made immediately. 2067 * 2068 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2069 * heartbeat delayis to be set to the value of 0 2070 * milliseconds. 2071 * 2072 * SPP_PMTUD_ENABLE - This field will enable PMTU 2073 * discovery upon the specified address. Note that 2074 * if the address feild is empty then all addresses 2075 * on the association are effected. 2076 * 2077 * SPP_PMTUD_DISABLE - This field will disable PMTU 2078 * discovery upon the specified address. Note that 2079 * if the address feild is empty then all addresses 2080 * on the association are effected. Not also that 2081 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2082 * exclusive. Enabling both will have undetermined 2083 * results. 2084 * 2085 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2086 * on delayed sack. The time specified in spp_sackdelay 2087 * is used to specify the sack delay for this address. Note 2088 * that if spp_address is empty then all addresses will 2089 * enable delayed sack and take on the sack delay 2090 * value specified in spp_sackdelay. 2091 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2092 * off delayed sack. If the spp_address field is blank then 2093 * delayed sack is disabled for the entire association. Note 2094 * also that this field is mutually exclusive to 2095 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2096 * results. 2097 */ 2098 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2099 struct sctp_transport *trans, 2100 struct sctp_association *asoc, 2101 struct sctp_sock *sp, 2102 int hb_change, 2103 int pmtud_change, 2104 int sackdelay_change) 2105 { 2106 int error; 2107 2108 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2109 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans); 2110 if (error) 2111 return error; 2112 } 2113 2114 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2115 * this field is ignored. Note also that a value of zero indicates 2116 * the current setting should be left unchanged. 2117 */ 2118 if (params->spp_flags & SPP_HB_ENABLE) { 2119 2120 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2121 * set. This lets us use 0 value when this flag 2122 * is set. 2123 */ 2124 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2125 params->spp_hbinterval = 0; 2126 2127 if (params->spp_hbinterval || 2128 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2129 if (trans) { 2130 trans->hbinterval = 2131 msecs_to_jiffies(params->spp_hbinterval); 2132 } else if (asoc) { 2133 asoc->hbinterval = 2134 msecs_to_jiffies(params->spp_hbinterval); 2135 } else { 2136 sp->hbinterval = params->spp_hbinterval; 2137 } 2138 } 2139 } 2140 2141 if (hb_change) { 2142 if (trans) { 2143 trans->param_flags = 2144 (trans->param_flags & ~SPP_HB) | hb_change; 2145 } else if (asoc) { 2146 asoc->param_flags = 2147 (asoc->param_flags & ~SPP_HB) | hb_change; 2148 } else { 2149 sp->param_flags = 2150 (sp->param_flags & ~SPP_HB) | hb_change; 2151 } 2152 } 2153 2154 /* When Path MTU discovery is disabled the value specified here will 2155 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2156 * include the flag SPP_PMTUD_DISABLE for this field to have any 2157 * effect). 2158 */ 2159 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2160 if (trans) { 2161 trans->pathmtu = params->spp_pathmtu; 2162 sctp_assoc_sync_pmtu(asoc); 2163 } else if (asoc) { 2164 asoc->pathmtu = params->spp_pathmtu; 2165 sctp_frag_point(sp, params->spp_pathmtu); 2166 } else { 2167 sp->pathmtu = params->spp_pathmtu; 2168 } 2169 } 2170 2171 if (pmtud_change) { 2172 if (trans) { 2173 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2174 (params->spp_flags & SPP_PMTUD_ENABLE); 2175 trans->param_flags = 2176 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2177 if (update) { 2178 sctp_transport_pmtu(trans); 2179 sctp_assoc_sync_pmtu(asoc); 2180 } 2181 } else if (asoc) { 2182 asoc->param_flags = 2183 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2184 } else { 2185 sp->param_flags = 2186 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2187 } 2188 } 2189 2190 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2191 * value of this field is ignored. Note also that a value of zero 2192 * indicates the current setting should be left unchanged. 2193 */ 2194 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2195 if (trans) { 2196 trans->sackdelay = 2197 msecs_to_jiffies(params->spp_sackdelay); 2198 } else if (asoc) { 2199 asoc->sackdelay = 2200 msecs_to_jiffies(params->spp_sackdelay); 2201 } else { 2202 sp->sackdelay = params->spp_sackdelay; 2203 } 2204 } 2205 2206 if (sackdelay_change) { 2207 if (trans) { 2208 trans->param_flags = 2209 (trans->param_flags & ~SPP_SACKDELAY) | 2210 sackdelay_change; 2211 } else if (asoc) { 2212 asoc->param_flags = 2213 (asoc->param_flags & ~SPP_SACKDELAY) | 2214 sackdelay_change; 2215 } else { 2216 sp->param_flags = 2217 (sp->param_flags & ~SPP_SACKDELAY) | 2218 sackdelay_change; 2219 } 2220 } 2221 2222 /* Note that unless the spp_flag is set to SPP_PMTUD_ENABLE the value 2223 * of this field is ignored. Note also that a value of zero 2224 * indicates the current setting should be left unchanged. 2225 */ 2226 if ((params->spp_flags & SPP_PMTUD_ENABLE) && params->spp_pathmaxrxt) { 2227 if (trans) { 2228 trans->pathmaxrxt = params->spp_pathmaxrxt; 2229 } else if (asoc) { 2230 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2231 } else { 2232 sp->pathmaxrxt = params->spp_pathmaxrxt; 2233 } 2234 } 2235 2236 return 0; 2237 } 2238 2239 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2240 char __user *optval, int optlen) 2241 { 2242 struct sctp_paddrparams params; 2243 struct sctp_transport *trans = NULL; 2244 struct sctp_association *asoc = NULL; 2245 struct sctp_sock *sp = sctp_sk(sk); 2246 int error; 2247 int hb_change, pmtud_change, sackdelay_change; 2248 2249 if (optlen != sizeof(struct sctp_paddrparams)) 2250 return - EINVAL; 2251 2252 if (copy_from_user(¶ms, optval, optlen)) 2253 return -EFAULT; 2254 2255 /* Validate flags and value parameters. */ 2256 hb_change = params.spp_flags & SPP_HB; 2257 pmtud_change = params.spp_flags & SPP_PMTUD; 2258 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2259 2260 if (hb_change == SPP_HB || 2261 pmtud_change == SPP_PMTUD || 2262 sackdelay_change == SPP_SACKDELAY || 2263 params.spp_sackdelay > 500 || 2264 (params.spp_pathmtu 2265 && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2266 return -EINVAL; 2267 2268 /* If an address other than INADDR_ANY is specified, and 2269 * no transport is found, then the request is invalid. 2270 */ 2271 if (!sctp_is_any(( union sctp_addr *)¶ms.spp_address)) { 2272 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2273 params.spp_assoc_id); 2274 if (!trans) 2275 return -EINVAL; 2276 } 2277 2278 /* Get association, if assoc_id != 0 and the socket is a one 2279 * to many style socket, and an association was not found, then 2280 * the id was invalid. 2281 */ 2282 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2283 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2284 return -EINVAL; 2285 2286 /* Heartbeat demand can only be sent on a transport or 2287 * association, but not a socket. 2288 */ 2289 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2290 return -EINVAL; 2291 2292 /* Process parameters. */ 2293 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2294 hb_change, pmtud_change, 2295 sackdelay_change); 2296 2297 if (error) 2298 return error; 2299 2300 /* If changes are for association, also apply parameters to each 2301 * transport. 2302 */ 2303 if (!trans && asoc) { 2304 struct list_head *pos; 2305 2306 list_for_each(pos, &asoc->peer.transport_addr_list) { 2307 trans = list_entry(pos, struct sctp_transport, 2308 transports); 2309 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2310 hb_change, pmtud_change, 2311 sackdelay_change); 2312 } 2313 } 2314 2315 return 0; 2316 } 2317 2318 /* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME) 2319 * 2320 * This options will get or set the delayed ack timer. The time is set 2321 * in milliseconds. If the assoc_id is 0, then this sets or gets the 2322 * endpoints default delayed ack timer value. If the assoc_id field is 2323 * non-zero, then the set or get effects the specified association. 2324 * 2325 * struct sctp_assoc_value { 2326 * sctp_assoc_t assoc_id; 2327 * uint32_t assoc_value; 2328 * }; 2329 * 2330 * assoc_id - This parameter, indicates which association the 2331 * user is preforming an action upon. Note that if 2332 * this field's value is zero then the endpoints 2333 * default value is changed (effecting future 2334 * associations only). 2335 * 2336 * assoc_value - This parameter contains the number of milliseconds 2337 * that the user is requesting the delayed ACK timer 2338 * be set to. Note that this value is defined in 2339 * the standard to be between 200 and 500 milliseconds. 2340 * 2341 * Note: a value of zero will leave the value alone, 2342 * but disable SACK delay. A non-zero value will also 2343 * enable SACK delay. 2344 */ 2345 2346 static int sctp_setsockopt_delayed_ack_time(struct sock *sk, 2347 char __user *optval, int optlen) 2348 { 2349 struct sctp_assoc_value params; 2350 struct sctp_transport *trans = NULL; 2351 struct sctp_association *asoc = NULL; 2352 struct sctp_sock *sp = sctp_sk(sk); 2353 2354 if (optlen != sizeof(struct sctp_assoc_value)) 2355 return - EINVAL; 2356 2357 if (copy_from_user(¶ms, optval, optlen)) 2358 return -EFAULT; 2359 2360 /* Validate value parameter. */ 2361 if (params.assoc_value > 500) 2362 return -EINVAL; 2363 2364 /* Get association, if assoc_id != 0 and the socket is a one 2365 * to many style socket, and an association was not found, then 2366 * the id was invalid. 2367 */ 2368 asoc = sctp_id2assoc(sk, params.assoc_id); 2369 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 2370 return -EINVAL; 2371 2372 if (params.assoc_value) { 2373 if (asoc) { 2374 asoc->sackdelay = 2375 msecs_to_jiffies(params.assoc_value); 2376 asoc->param_flags = 2377 (asoc->param_flags & ~SPP_SACKDELAY) | 2378 SPP_SACKDELAY_ENABLE; 2379 } else { 2380 sp->sackdelay = params.assoc_value; 2381 sp->param_flags = 2382 (sp->param_flags & ~SPP_SACKDELAY) | 2383 SPP_SACKDELAY_ENABLE; 2384 } 2385 } else { 2386 if (asoc) { 2387 asoc->param_flags = 2388 (asoc->param_flags & ~SPP_SACKDELAY) | 2389 SPP_SACKDELAY_DISABLE; 2390 } else { 2391 sp->param_flags = 2392 (sp->param_flags & ~SPP_SACKDELAY) | 2393 SPP_SACKDELAY_DISABLE; 2394 } 2395 } 2396 2397 /* If change is for association, also apply to each transport. */ 2398 if (asoc) { 2399 struct list_head *pos; 2400 2401 list_for_each(pos, &asoc->peer.transport_addr_list) { 2402 trans = list_entry(pos, struct sctp_transport, 2403 transports); 2404 if (params.assoc_value) { 2405 trans->sackdelay = 2406 msecs_to_jiffies(params.assoc_value); 2407 trans->param_flags = 2408 (trans->param_flags & ~SPP_SACKDELAY) | 2409 SPP_SACKDELAY_ENABLE; 2410 } else { 2411 trans->param_flags = 2412 (trans->param_flags & ~SPP_SACKDELAY) | 2413 SPP_SACKDELAY_DISABLE; 2414 } 2415 } 2416 } 2417 2418 return 0; 2419 } 2420 2421 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2422 * 2423 * Applications can specify protocol parameters for the default association 2424 * initialization. The option name argument to setsockopt() and getsockopt() 2425 * is SCTP_INITMSG. 2426 * 2427 * Setting initialization parameters is effective only on an unconnected 2428 * socket (for UDP-style sockets only future associations are effected 2429 * by the change). With TCP-style sockets, this option is inherited by 2430 * sockets derived from a listener socket. 2431 */ 2432 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen) 2433 { 2434 struct sctp_initmsg sinit; 2435 struct sctp_sock *sp = sctp_sk(sk); 2436 2437 if (optlen != sizeof(struct sctp_initmsg)) 2438 return -EINVAL; 2439 if (copy_from_user(&sinit, optval, optlen)) 2440 return -EFAULT; 2441 2442 if (sinit.sinit_num_ostreams) 2443 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2444 if (sinit.sinit_max_instreams) 2445 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2446 if (sinit.sinit_max_attempts) 2447 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2448 if (sinit.sinit_max_init_timeo) 2449 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2450 2451 return 0; 2452 } 2453 2454 /* 2455 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2456 * 2457 * Applications that wish to use the sendto() system call may wish to 2458 * specify a default set of parameters that would normally be supplied 2459 * through the inclusion of ancillary data. This socket option allows 2460 * such an application to set the default sctp_sndrcvinfo structure. 2461 * The application that wishes to use this socket option simply passes 2462 * in to this call the sctp_sndrcvinfo structure defined in Section 2463 * 5.2.2) The input parameters accepted by this call include 2464 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2465 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2466 * to this call if the caller is using the UDP model. 2467 */ 2468 static int sctp_setsockopt_default_send_param(struct sock *sk, 2469 char __user *optval, int optlen) 2470 { 2471 struct sctp_sndrcvinfo info; 2472 struct sctp_association *asoc; 2473 struct sctp_sock *sp = sctp_sk(sk); 2474 2475 if (optlen != sizeof(struct sctp_sndrcvinfo)) 2476 return -EINVAL; 2477 if (copy_from_user(&info, optval, optlen)) 2478 return -EFAULT; 2479 2480 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2481 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2482 return -EINVAL; 2483 2484 if (asoc) { 2485 asoc->default_stream = info.sinfo_stream; 2486 asoc->default_flags = info.sinfo_flags; 2487 asoc->default_ppid = info.sinfo_ppid; 2488 asoc->default_context = info.sinfo_context; 2489 asoc->default_timetolive = info.sinfo_timetolive; 2490 } else { 2491 sp->default_stream = info.sinfo_stream; 2492 sp->default_flags = info.sinfo_flags; 2493 sp->default_ppid = info.sinfo_ppid; 2494 sp->default_context = info.sinfo_context; 2495 sp->default_timetolive = info.sinfo_timetolive; 2496 } 2497 2498 return 0; 2499 } 2500 2501 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2502 * 2503 * Requests that the local SCTP stack use the enclosed peer address as 2504 * the association primary. The enclosed address must be one of the 2505 * association peer's addresses. 2506 */ 2507 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2508 int optlen) 2509 { 2510 struct sctp_prim prim; 2511 struct sctp_transport *trans; 2512 2513 if (optlen != sizeof(struct sctp_prim)) 2514 return -EINVAL; 2515 2516 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2517 return -EFAULT; 2518 2519 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2520 if (!trans) 2521 return -EINVAL; 2522 2523 sctp_assoc_set_primary(trans->asoc, trans); 2524 2525 return 0; 2526 } 2527 2528 /* 2529 * 7.1.5 SCTP_NODELAY 2530 * 2531 * Turn on/off any Nagle-like algorithm. This means that packets are 2532 * generally sent as soon as possible and no unnecessary delays are 2533 * introduced, at the cost of more packets in the network. Expects an 2534 * integer boolean flag. 2535 */ 2536 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2537 int optlen) 2538 { 2539 int val; 2540 2541 if (optlen < sizeof(int)) 2542 return -EINVAL; 2543 if (get_user(val, (int __user *)optval)) 2544 return -EFAULT; 2545 2546 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2547 return 0; 2548 } 2549 2550 /* 2551 * 2552 * 7.1.1 SCTP_RTOINFO 2553 * 2554 * The protocol parameters used to initialize and bound retransmission 2555 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2556 * and modify these parameters. 2557 * All parameters are time values, in milliseconds. A value of 0, when 2558 * modifying the parameters, indicates that the current value should not 2559 * be changed. 2560 * 2561 */ 2562 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) { 2563 struct sctp_rtoinfo rtoinfo; 2564 struct sctp_association *asoc; 2565 2566 if (optlen != sizeof (struct sctp_rtoinfo)) 2567 return -EINVAL; 2568 2569 if (copy_from_user(&rtoinfo, optval, optlen)) 2570 return -EFAULT; 2571 2572 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2573 2574 /* Set the values to the specific association */ 2575 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2576 return -EINVAL; 2577 2578 if (asoc) { 2579 if (rtoinfo.srto_initial != 0) 2580 asoc->rto_initial = 2581 msecs_to_jiffies(rtoinfo.srto_initial); 2582 if (rtoinfo.srto_max != 0) 2583 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max); 2584 if (rtoinfo.srto_min != 0) 2585 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min); 2586 } else { 2587 /* If there is no association or the association-id = 0 2588 * set the values to the endpoint. 2589 */ 2590 struct sctp_sock *sp = sctp_sk(sk); 2591 2592 if (rtoinfo.srto_initial != 0) 2593 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2594 if (rtoinfo.srto_max != 0) 2595 sp->rtoinfo.srto_max = rtoinfo.srto_max; 2596 if (rtoinfo.srto_min != 0) 2597 sp->rtoinfo.srto_min = rtoinfo.srto_min; 2598 } 2599 2600 return 0; 2601 } 2602 2603 /* 2604 * 2605 * 7.1.2 SCTP_ASSOCINFO 2606 * 2607 * This option is used to tune the maximum retransmission attempts 2608 * of the association. 2609 * Returns an error if the new association retransmission value is 2610 * greater than the sum of the retransmission value of the peer. 2611 * See [SCTP] for more information. 2612 * 2613 */ 2614 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen) 2615 { 2616 2617 struct sctp_assocparams assocparams; 2618 struct sctp_association *asoc; 2619 2620 if (optlen != sizeof(struct sctp_assocparams)) 2621 return -EINVAL; 2622 if (copy_from_user(&assocparams, optval, optlen)) 2623 return -EFAULT; 2624 2625 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2626 2627 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2628 return -EINVAL; 2629 2630 /* Set the values to the specific association */ 2631 if (asoc) { 2632 if (assocparams.sasoc_asocmaxrxt != 0) { 2633 __u32 path_sum = 0; 2634 int paths = 0; 2635 struct list_head *pos; 2636 struct sctp_transport *peer_addr; 2637 2638 list_for_each(pos, &asoc->peer.transport_addr_list) { 2639 peer_addr = list_entry(pos, 2640 struct sctp_transport, 2641 transports); 2642 path_sum += peer_addr->pathmaxrxt; 2643 paths++; 2644 } 2645 2646 /* Only validate asocmaxrxt if we have more then 2647 * one path/transport. We do this because path 2648 * retransmissions are only counted when we have more 2649 * then one path. 2650 */ 2651 if (paths > 1 && 2652 assocparams.sasoc_asocmaxrxt > path_sum) 2653 return -EINVAL; 2654 2655 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 2656 } 2657 2658 if (assocparams.sasoc_cookie_life != 0) { 2659 asoc->cookie_life.tv_sec = 2660 assocparams.sasoc_cookie_life / 1000; 2661 asoc->cookie_life.tv_usec = 2662 (assocparams.sasoc_cookie_life % 1000) 2663 * 1000; 2664 } 2665 } else { 2666 /* Set the values to the endpoint */ 2667 struct sctp_sock *sp = sctp_sk(sk); 2668 2669 if (assocparams.sasoc_asocmaxrxt != 0) 2670 sp->assocparams.sasoc_asocmaxrxt = 2671 assocparams.sasoc_asocmaxrxt; 2672 if (assocparams.sasoc_cookie_life != 0) 2673 sp->assocparams.sasoc_cookie_life = 2674 assocparams.sasoc_cookie_life; 2675 } 2676 return 0; 2677 } 2678 2679 /* 2680 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 2681 * 2682 * This socket option is a boolean flag which turns on or off mapped V4 2683 * addresses. If this option is turned on and the socket is type 2684 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 2685 * If this option is turned off, then no mapping will be done of V4 2686 * addresses and a user will receive both PF_INET6 and PF_INET type 2687 * addresses on the socket. 2688 */ 2689 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen) 2690 { 2691 int val; 2692 struct sctp_sock *sp = sctp_sk(sk); 2693 2694 if (optlen < sizeof(int)) 2695 return -EINVAL; 2696 if (get_user(val, (int __user *)optval)) 2697 return -EFAULT; 2698 if (val) 2699 sp->v4mapped = 1; 2700 else 2701 sp->v4mapped = 0; 2702 2703 return 0; 2704 } 2705 2706 /* 2707 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG) 2708 * 2709 * This socket option specifies the maximum size to put in any outgoing 2710 * SCTP chunk. If a message is larger than this size it will be 2711 * fragmented by SCTP into the specified size. Note that the underlying 2712 * SCTP implementation may fragment into smaller sized chunks when the 2713 * PMTU of the underlying association is smaller than the value set by 2714 * the user. 2715 */ 2716 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen) 2717 { 2718 struct sctp_association *asoc; 2719 struct list_head *pos; 2720 struct sctp_sock *sp = sctp_sk(sk); 2721 int val; 2722 2723 if (optlen < sizeof(int)) 2724 return -EINVAL; 2725 if (get_user(val, (int __user *)optval)) 2726 return -EFAULT; 2727 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 2728 return -EINVAL; 2729 sp->user_frag = val; 2730 2731 /* Update the frag_point of the existing associations. */ 2732 list_for_each(pos, &(sp->ep->asocs)) { 2733 asoc = list_entry(pos, struct sctp_association, asocs); 2734 asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu); 2735 } 2736 2737 return 0; 2738 } 2739 2740 2741 /* 2742 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 2743 * 2744 * Requests that the peer mark the enclosed address as the association 2745 * primary. The enclosed address must be one of the association's 2746 * locally bound addresses. The following structure is used to make a 2747 * set primary request: 2748 */ 2749 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 2750 int optlen) 2751 { 2752 struct sctp_sock *sp; 2753 struct sctp_endpoint *ep; 2754 struct sctp_association *asoc = NULL; 2755 struct sctp_setpeerprim prim; 2756 struct sctp_chunk *chunk; 2757 int err; 2758 2759 sp = sctp_sk(sk); 2760 ep = sp->ep; 2761 2762 if (!sctp_addip_enable) 2763 return -EPERM; 2764 2765 if (optlen != sizeof(struct sctp_setpeerprim)) 2766 return -EINVAL; 2767 2768 if (copy_from_user(&prim, optval, optlen)) 2769 return -EFAULT; 2770 2771 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 2772 if (!asoc) 2773 return -EINVAL; 2774 2775 if (!asoc->peer.asconf_capable) 2776 return -EPERM; 2777 2778 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 2779 return -EPERM; 2780 2781 if (!sctp_state(asoc, ESTABLISHED)) 2782 return -ENOTCONN; 2783 2784 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 2785 return -EADDRNOTAVAIL; 2786 2787 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 2788 chunk = sctp_make_asconf_set_prim(asoc, 2789 (union sctp_addr *)&prim.sspp_addr); 2790 if (!chunk) 2791 return -ENOMEM; 2792 2793 err = sctp_send_asconf(asoc, chunk); 2794 2795 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n"); 2796 2797 return err; 2798 } 2799 2800 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 2801 int optlen) 2802 { 2803 struct sctp_setadaptation adaptation; 2804 2805 if (optlen != sizeof(struct sctp_setadaptation)) 2806 return -EINVAL; 2807 if (copy_from_user(&adaptation, optval, optlen)) 2808 return -EFAULT; 2809 2810 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 2811 2812 return 0; 2813 } 2814 2815 /* 2816 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 2817 * 2818 * The context field in the sctp_sndrcvinfo structure is normally only 2819 * used when a failed message is retrieved holding the value that was 2820 * sent down on the actual send call. This option allows the setting of 2821 * a default context on an association basis that will be received on 2822 * reading messages from the peer. This is especially helpful in the 2823 * one-2-many model for an application to keep some reference to an 2824 * internal state machine that is processing messages on the 2825 * association. Note that the setting of this value only effects 2826 * received messages from the peer and does not effect the value that is 2827 * saved with outbound messages. 2828 */ 2829 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 2830 int optlen) 2831 { 2832 struct sctp_assoc_value params; 2833 struct sctp_sock *sp; 2834 struct sctp_association *asoc; 2835 2836 if (optlen != sizeof(struct sctp_assoc_value)) 2837 return -EINVAL; 2838 if (copy_from_user(¶ms, optval, optlen)) 2839 return -EFAULT; 2840 2841 sp = sctp_sk(sk); 2842 2843 if (params.assoc_id != 0) { 2844 asoc = sctp_id2assoc(sk, params.assoc_id); 2845 if (!asoc) 2846 return -EINVAL; 2847 asoc->default_rcv_context = params.assoc_value; 2848 } else { 2849 sp->default_rcv_context = params.assoc_value; 2850 } 2851 2852 return 0; 2853 } 2854 2855 /* 2856 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 2857 * 2858 * This options will at a minimum specify if the implementation is doing 2859 * fragmented interleave. Fragmented interleave, for a one to many 2860 * socket, is when subsequent calls to receive a message may return 2861 * parts of messages from different associations. Some implementations 2862 * may allow you to turn this value on or off. If so, when turned off, 2863 * no fragment interleave will occur (which will cause a head of line 2864 * blocking amongst multiple associations sharing the same one to many 2865 * socket). When this option is turned on, then each receive call may 2866 * come from a different association (thus the user must receive data 2867 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 2868 * association each receive belongs to. 2869 * 2870 * This option takes a boolean value. A non-zero value indicates that 2871 * fragmented interleave is on. A value of zero indicates that 2872 * fragmented interleave is off. 2873 * 2874 * Note that it is important that an implementation that allows this 2875 * option to be turned on, have it off by default. Otherwise an unaware 2876 * application using the one to many model may become confused and act 2877 * incorrectly. 2878 */ 2879 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 2880 char __user *optval, 2881 int optlen) 2882 { 2883 int val; 2884 2885 if (optlen != sizeof(int)) 2886 return -EINVAL; 2887 if (get_user(val, (int __user *)optval)) 2888 return -EFAULT; 2889 2890 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 2891 2892 return 0; 2893 } 2894 2895 /* 2896 * 7.1.25. Set or Get the sctp partial delivery point 2897 * (SCTP_PARTIAL_DELIVERY_POINT) 2898 * This option will set or get the SCTP partial delivery point. This 2899 * point is the size of a message where the partial delivery API will be 2900 * invoked to help free up rwnd space for the peer. Setting this to a 2901 * lower value will cause partial delivery's to happen more often. The 2902 * calls argument is an integer that sets or gets the partial delivery 2903 * point. 2904 */ 2905 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 2906 char __user *optval, 2907 int optlen) 2908 { 2909 u32 val; 2910 2911 if (optlen != sizeof(u32)) 2912 return -EINVAL; 2913 if (get_user(val, (int __user *)optval)) 2914 return -EFAULT; 2915 2916 sctp_sk(sk)->pd_point = val; 2917 2918 return 0; /* is this the right error code? */ 2919 } 2920 2921 /* 2922 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 2923 * 2924 * This option will allow a user to change the maximum burst of packets 2925 * that can be emitted by this association. Note that the default value 2926 * is 4, and some implementations may restrict this setting so that it 2927 * can only be lowered. 2928 * 2929 * NOTE: This text doesn't seem right. Do this on a socket basis with 2930 * future associations inheriting the socket value. 2931 */ 2932 static int sctp_setsockopt_maxburst(struct sock *sk, 2933 char __user *optval, 2934 int optlen) 2935 { 2936 int val; 2937 2938 if (optlen != sizeof(int)) 2939 return -EINVAL; 2940 if (get_user(val, (int __user *)optval)) 2941 return -EFAULT; 2942 2943 if (val < 0) 2944 return -EINVAL; 2945 2946 sctp_sk(sk)->max_burst = val; 2947 2948 return 0; 2949 } 2950 2951 /* API 6.2 setsockopt(), getsockopt() 2952 * 2953 * Applications use setsockopt() and getsockopt() to set or retrieve 2954 * socket options. Socket options are used to change the default 2955 * behavior of sockets calls. They are described in Section 7. 2956 * 2957 * The syntax is: 2958 * 2959 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 2960 * int __user *optlen); 2961 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 2962 * int optlen); 2963 * 2964 * sd - the socket descript. 2965 * level - set to IPPROTO_SCTP for all SCTP options. 2966 * optname - the option name. 2967 * optval - the buffer to store the value of the option. 2968 * optlen - the size of the buffer. 2969 */ 2970 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname, 2971 char __user *optval, int optlen) 2972 { 2973 int retval = 0; 2974 2975 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n", 2976 sk, optname); 2977 2978 /* I can hardly begin to describe how wrong this is. This is 2979 * so broken as to be worse than useless. The API draft 2980 * REALLY is NOT helpful here... I am not convinced that the 2981 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 2982 * are at all well-founded. 2983 */ 2984 if (level != SOL_SCTP) { 2985 struct sctp_af *af = sctp_sk(sk)->pf->af; 2986 retval = af->setsockopt(sk, level, optname, optval, optlen); 2987 goto out_nounlock; 2988 } 2989 2990 sctp_lock_sock(sk); 2991 2992 switch (optname) { 2993 case SCTP_SOCKOPT_BINDX_ADD: 2994 /* 'optlen' is the size of the addresses buffer. */ 2995 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 2996 optlen, SCTP_BINDX_ADD_ADDR); 2997 break; 2998 2999 case SCTP_SOCKOPT_BINDX_REM: 3000 /* 'optlen' is the size of the addresses buffer. */ 3001 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3002 optlen, SCTP_BINDX_REM_ADDR); 3003 break; 3004 3005 case SCTP_SOCKOPT_CONNECTX: 3006 /* 'optlen' is the size of the addresses buffer. */ 3007 retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval, 3008 optlen); 3009 break; 3010 3011 case SCTP_DISABLE_FRAGMENTS: 3012 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3013 break; 3014 3015 case SCTP_EVENTS: 3016 retval = sctp_setsockopt_events(sk, optval, optlen); 3017 break; 3018 3019 case SCTP_AUTOCLOSE: 3020 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3021 break; 3022 3023 case SCTP_PEER_ADDR_PARAMS: 3024 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3025 break; 3026 3027 case SCTP_DELAYED_ACK_TIME: 3028 retval = sctp_setsockopt_delayed_ack_time(sk, optval, optlen); 3029 break; 3030 case SCTP_PARTIAL_DELIVERY_POINT: 3031 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3032 break; 3033 3034 case SCTP_INITMSG: 3035 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3036 break; 3037 case SCTP_DEFAULT_SEND_PARAM: 3038 retval = sctp_setsockopt_default_send_param(sk, optval, 3039 optlen); 3040 break; 3041 case SCTP_PRIMARY_ADDR: 3042 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3043 break; 3044 case SCTP_SET_PEER_PRIMARY_ADDR: 3045 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3046 break; 3047 case SCTP_NODELAY: 3048 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3049 break; 3050 case SCTP_RTOINFO: 3051 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3052 break; 3053 case SCTP_ASSOCINFO: 3054 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3055 break; 3056 case SCTP_I_WANT_MAPPED_V4_ADDR: 3057 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3058 break; 3059 case SCTP_MAXSEG: 3060 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3061 break; 3062 case SCTP_ADAPTATION_LAYER: 3063 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3064 break; 3065 case SCTP_CONTEXT: 3066 retval = sctp_setsockopt_context(sk, optval, optlen); 3067 break; 3068 case SCTP_FRAGMENT_INTERLEAVE: 3069 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 3070 break; 3071 case SCTP_MAX_BURST: 3072 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 3073 break; 3074 default: 3075 retval = -ENOPROTOOPT; 3076 break; 3077 } 3078 3079 sctp_release_sock(sk); 3080 3081 out_nounlock: 3082 return retval; 3083 } 3084 3085 /* API 3.1.6 connect() - UDP Style Syntax 3086 * 3087 * An application may use the connect() call in the UDP model to initiate an 3088 * association without sending data. 3089 * 3090 * The syntax is: 3091 * 3092 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 3093 * 3094 * sd: the socket descriptor to have a new association added to. 3095 * 3096 * nam: the address structure (either struct sockaddr_in or struct 3097 * sockaddr_in6 defined in RFC2553 [7]). 3098 * 3099 * len: the size of the address. 3100 */ 3101 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr, 3102 int addr_len) 3103 { 3104 int err = 0; 3105 struct sctp_af *af; 3106 3107 sctp_lock_sock(sk); 3108 3109 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n", 3110 __FUNCTION__, sk, addr, addr_len); 3111 3112 /* Validate addr_len before calling common connect/connectx routine. */ 3113 af = sctp_get_af_specific(addr->sa_family); 3114 if (!af || addr_len < af->sockaddr_len) { 3115 err = -EINVAL; 3116 } else { 3117 /* Pass correct addr len to common routine (so it knows there 3118 * is only one address being passed. 3119 */ 3120 err = __sctp_connect(sk, addr, af->sockaddr_len); 3121 } 3122 3123 sctp_release_sock(sk); 3124 return err; 3125 } 3126 3127 /* FIXME: Write comments. */ 3128 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags) 3129 { 3130 return -EOPNOTSUPP; /* STUB */ 3131 } 3132 3133 /* 4.1.4 accept() - TCP Style Syntax 3134 * 3135 * Applications use accept() call to remove an established SCTP 3136 * association from the accept queue of the endpoint. A new socket 3137 * descriptor will be returned from accept() to represent the newly 3138 * formed association. 3139 */ 3140 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err) 3141 { 3142 struct sctp_sock *sp; 3143 struct sctp_endpoint *ep; 3144 struct sock *newsk = NULL; 3145 struct sctp_association *asoc; 3146 long timeo; 3147 int error = 0; 3148 3149 sctp_lock_sock(sk); 3150 3151 sp = sctp_sk(sk); 3152 ep = sp->ep; 3153 3154 if (!sctp_style(sk, TCP)) { 3155 error = -EOPNOTSUPP; 3156 goto out; 3157 } 3158 3159 if (!sctp_sstate(sk, LISTENING)) { 3160 error = -EINVAL; 3161 goto out; 3162 } 3163 3164 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 3165 3166 error = sctp_wait_for_accept(sk, timeo); 3167 if (error) 3168 goto out; 3169 3170 /* We treat the list of associations on the endpoint as the accept 3171 * queue and pick the first association on the list. 3172 */ 3173 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 3174 3175 newsk = sp->pf->create_accept_sk(sk, asoc); 3176 if (!newsk) { 3177 error = -ENOMEM; 3178 goto out; 3179 } 3180 3181 /* Populate the fields of the newsk from the oldsk and migrate the 3182 * asoc to the newsk. 3183 */ 3184 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 3185 3186 out: 3187 sctp_release_sock(sk); 3188 *err = error; 3189 return newsk; 3190 } 3191 3192 /* The SCTP ioctl handler. */ 3193 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3194 { 3195 return -ENOIOCTLCMD; 3196 } 3197 3198 /* This is the function which gets called during socket creation to 3199 * initialized the SCTP-specific portion of the sock. 3200 * The sock structure should already be zero-filled memory. 3201 */ 3202 SCTP_STATIC int sctp_init_sock(struct sock *sk) 3203 { 3204 struct sctp_endpoint *ep; 3205 struct sctp_sock *sp; 3206 3207 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk); 3208 3209 sp = sctp_sk(sk); 3210 3211 /* Initialize the SCTP per socket area. */ 3212 switch (sk->sk_type) { 3213 case SOCK_SEQPACKET: 3214 sp->type = SCTP_SOCKET_UDP; 3215 break; 3216 case SOCK_STREAM: 3217 sp->type = SCTP_SOCKET_TCP; 3218 break; 3219 default: 3220 return -ESOCKTNOSUPPORT; 3221 } 3222 3223 /* Initialize default send parameters. These parameters can be 3224 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 3225 */ 3226 sp->default_stream = 0; 3227 sp->default_ppid = 0; 3228 sp->default_flags = 0; 3229 sp->default_context = 0; 3230 sp->default_timetolive = 0; 3231 3232 sp->default_rcv_context = 0; 3233 sp->max_burst = sctp_max_burst; 3234 3235 /* Initialize default setup parameters. These parameters 3236 * can be modified with the SCTP_INITMSG socket option or 3237 * overridden by the SCTP_INIT CMSG. 3238 */ 3239 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 3240 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 3241 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init; 3242 sp->initmsg.sinit_max_init_timeo = sctp_rto_max; 3243 3244 /* Initialize default RTO related parameters. These parameters can 3245 * be modified for with the SCTP_RTOINFO socket option. 3246 */ 3247 sp->rtoinfo.srto_initial = sctp_rto_initial; 3248 sp->rtoinfo.srto_max = sctp_rto_max; 3249 sp->rtoinfo.srto_min = sctp_rto_min; 3250 3251 /* Initialize default association related parameters. These parameters 3252 * can be modified with the SCTP_ASSOCINFO socket option. 3253 */ 3254 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association; 3255 sp->assocparams.sasoc_number_peer_destinations = 0; 3256 sp->assocparams.sasoc_peer_rwnd = 0; 3257 sp->assocparams.sasoc_local_rwnd = 0; 3258 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life; 3259 3260 /* Initialize default event subscriptions. By default, all the 3261 * options are off. 3262 */ 3263 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 3264 3265 /* Default Peer Address Parameters. These defaults can 3266 * be modified via SCTP_PEER_ADDR_PARAMS 3267 */ 3268 sp->hbinterval = sctp_hb_interval; 3269 sp->pathmaxrxt = sctp_max_retrans_path; 3270 sp->pathmtu = 0; // allow default discovery 3271 sp->sackdelay = sctp_sack_timeout; 3272 sp->param_flags = SPP_HB_ENABLE | 3273 SPP_PMTUD_ENABLE | 3274 SPP_SACKDELAY_ENABLE; 3275 3276 /* If enabled no SCTP message fragmentation will be performed. 3277 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 3278 */ 3279 sp->disable_fragments = 0; 3280 3281 /* Enable Nagle algorithm by default. */ 3282 sp->nodelay = 0; 3283 3284 /* Enable by default. */ 3285 sp->v4mapped = 1; 3286 3287 /* Auto-close idle associations after the configured 3288 * number of seconds. A value of 0 disables this 3289 * feature. Configure through the SCTP_AUTOCLOSE socket option, 3290 * for UDP-style sockets only. 3291 */ 3292 sp->autoclose = 0; 3293 3294 /* User specified fragmentation limit. */ 3295 sp->user_frag = 0; 3296 3297 sp->adaptation_ind = 0; 3298 3299 sp->pf = sctp_get_pf_specific(sk->sk_family); 3300 3301 /* Control variables for partial data delivery. */ 3302 atomic_set(&sp->pd_mode, 0); 3303 skb_queue_head_init(&sp->pd_lobby); 3304 sp->frag_interleave = 0; 3305 3306 /* Create a per socket endpoint structure. Even if we 3307 * change the data structure relationships, this may still 3308 * be useful for storing pre-connect address information. 3309 */ 3310 ep = sctp_endpoint_new(sk, GFP_KERNEL); 3311 if (!ep) 3312 return -ENOMEM; 3313 3314 sp->ep = ep; 3315 sp->hmac = NULL; 3316 3317 SCTP_DBG_OBJCNT_INC(sock); 3318 return 0; 3319 } 3320 3321 /* Cleanup any SCTP per socket resources. */ 3322 SCTP_STATIC int sctp_destroy_sock(struct sock *sk) 3323 { 3324 struct sctp_endpoint *ep; 3325 3326 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk); 3327 3328 /* Release our hold on the endpoint. */ 3329 ep = sctp_sk(sk)->ep; 3330 sctp_endpoint_free(ep); 3331 3332 return 0; 3333 } 3334 3335 /* API 4.1.7 shutdown() - TCP Style Syntax 3336 * int shutdown(int socket, int how); 3337 * 3338 * sd - the socket descriptor of the association to be closed. 3339 * how - Specifies the type of shutdown. The values are 3340 * as follows: 3341 * SHUT_RD 3342 * Disables further receive operations. No SCTP 3343 * protocol action is taken. 3344 * SHUT_WR 3345 * Disables further send operations, and initiates 3346 * the SCTP shutdown sequence. 3347 * SHUT_RDWR 3348 * Disables further send and receive operations 3349 * and initiates the SCTP shutdown sequence. 3350 */ 3351 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how) 3352 { 3353 struct sctp_endpoint *ep; 3354 struct sctp_association *asoc; 3355 3356 if (!sctp_style(sk, TCP)) 3357 return; 3358 3359 if (how & SEND_SHUTDOWN) { 3360 ep = sctp_sk(sk)->ep; 3361 if (!list_empty(&ep->asocs)) { 3362 asoc = list_entry(ep->asocs.next, 3363 struct sctp_association, asocs); 3364 sctp_primitive_SHUTDOWN(asoc, NULL); 3365 } 3366 } 3367 } 3368 3369 /* 7.2.1 Association Status (SCTP_STATUS) 3370 3371 * Applications can retrieve current status information about an 3372 * association, including association state, peer receiver window size, 3373 * number of unacked data chunks, and number of data chunks pending 3374 * receipt. This information is read-only. 3375 */ 3376 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 3377 char __user *optval, 3378 int __user *optlen) 3379 { 3380 struct sctp_status status; 3381 struct sctp_association *asoc = NULL; 3382 struct sctp_transport *transport; 3383 sctp_assoc_t associd; 3384 int retval = 0; 3385 3386 if (len < sizeof(status)) { 3387 retval = -EINVAL; 3388 goto out; 3389 } 3390 3391 len = sizeof(status); 3392 if (copy_from_user(&status, optval, len)) { 3393 retval = -EFAULT; 3394 goto out; 3395 } 3396 3397 associd = status.sstat_assoc_id; 3398 asoc = sctp_id2assoc(sk, associd); 3399 if (!asoc) { 3400 retval = -EINVAL; 3401 goto out; 3402 } 3403 3404 transport = asoc->peer.primary_path; 3405 3406 status.sstat_assoc_id = sctp_assoc2id(asoc); 3407 status.sstat_state = asoc->state; 3408 status.sstat_rwnd = asoc->peer.rwnd; 3409 status.sstat_unackdata = asoc->unack_data; 3410 3411 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 3412 status.sstat_instrms = asoc->c.sinit_max_instreams; 3413 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 3414 status.sstat_fragmentation_point = asoc->frag_point; 3415 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3416 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 3417 transport->af_specific->sockaddr_len); 3418 /* Map ipv4 address into v4-mapped-on-v6 address. */ 3419 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 3420 (union sctp_addr *)&status.sstat_primary.spinfo_address); 3421 status.sstat_primary.spinfo_state = transport->state; 3422 status.sstat_primary.spinfo_cwnd = transport->cwnd; 3423 status.sstat_primary.spinfo_srtt = transport->srtt; 3424 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 3425 status.sstat_primary.spinfo_mtu = transport->pathmtu; 3426 3427 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 3428 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 3429 3430 if (put_user(len, optlen)) { 3431 retval = -EFAULT; 3432 goto out; 3433 } 3434 3435 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n", 3436 len, status.sstat_state, status.sstat_rwnd, 3437 status.sstat_assoc_id); 3438 3439 if (copy_to_user(optval, &status, len)) { 3440 retval = -EFAULT; 3441 goto out; 3442 } 3443 3444 out: 3445 return (retval); 3446 } 3447 3448 3449 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 3450 * 3451 * Applications can retrieve information about a specific peer address 3452 * of an association, including its reachability state, congestion 3453 * window, and retransmission timer values. This information is 3454 * read-only. 3455 */ 3456 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 3457 char __user *optval, 3458 int __user *optlen) 3459 { 3460 struct sctp_paddrinfo pinfo; 3461 struct sctp_transport *transport; 3462 int retval = 0; 3463 3464 if (len < sizeof(pinfo)) { 3465 retval = -EINVAL; 3466 goto out; 3467 } 3468 3469 len = sizeof(pinfo); 3470 if (copy_from_user(&pinfo, optval, len)) { 3471 retval = -EFAULT; 3472 goto out; 3473 } 3474 3475 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 3476 pinfo.spinfo_assoc_id); 3477 if (!transport) 3478 return -EINVAL; 3479 3480 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3481 pinfo.spinfo_state = transport->state; 3482 pinfo.spinfo_cwnd = transport->cwnd; 3483 pinfo.spinfo_srtt = transport->srtt; 3484 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 3485 pinfo.spinfo_mtu = transport->pathmtu; 3486 3487 if (pinfo.spinfo_state == SCTP_UNKNOWN) 3488 pinfo.spinfo_state = SCTP_ACTIVE; 3489 3490 if (put_user(len, optlen)) { 3491 retval = -EFAULT; 3492 goto out; 3493 } 3494 3495 if (copy_to_user(optval, &pinfo, len)) { 3496 retval = -EFAULT; 3497 goto out; 3498 } 3499 3500 out: 3501 return (retval); 3502 } 3503 3504 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 3505 * 3506 * This option is a on/off flag. If enabled no SCTP message 3507 * fragmentation will be performed. Instead if a message being sent 3508 * exceeds the current PMTU size, the message will NOT be sent and 3509 * instead a error will be indicated to the user. 3510 */ 3511 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 3512 char __user *optval, int __user *optlen) 3513 { 3514 int val; 3515 3516 if (len < sizeof(int)) 3517 return -EINVAL; 3518 3519 len = sizeof(int); 3520 val = (sctp_sk(sk)->disable_fragments == 1); 3521 if (put_user(len, optlen)) 3522 return -EFAULT; 3523 if (copy_to_user(optval, &val, len)) 3524 return -EFAULT; 3525 return 0; 3526 } 3527 3528 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 3529 * 3530 * This socket option is used to specify various notifications and 3531 * ancillary data the user wishes to receive. 3532 */ 3533 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 3534 int __user *optlen) 3535 { 3536 if (len < sizeof(struct sctp_event_subscribe)) 3537 return -EINVAL; 3538 len = sizeof(struct sctp_event_subscribe); 3539 if (put_user(len, optlen)) 3540 return -EFAULT; 3541 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 3542 return -EFAULT; 3543 return 0; 3544 } 3545 3546 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 3547 * 3548 * This socket option is applicable to the UDP-style socket only. When 3549 * set it will cause associations that are idle for more than the 3550 * specified number of seconds to automatically close. An association 3551 * being idle is defined an association that has NOT sent or received 3552 * user data. The special value of '0' indicates that no automatic 3553 * close of any associations should be performed. The option expects an 3554 * integer defining the number of seconds of idle time before an 3555 * association is closed. 3556 */ 3557 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 3558 { 3559 /* Applicable to UDP-style socket only */ 3560 if (sctp_style(sk, TCP)) 3561 return -EOPNOTSUPP; 3562 if (len < sizeof(int)) 3563 return -EINVAL; 3564 len = sizeof(int); 3565 if (put_user(len, optlen)) 3566 return -EFAULT; 3567 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 3568 return -EFAULT; 3569 return 0; 3570 } 3571 3572 /* Helper routine to branch off an association to a new socket. */ 3573 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc, 3574 struct socket **sockp) 3575 { 3576 struct sock *sk = asoc->base.sk; 3577 struct socket *sock; 3578 struct inet_sock *inetsk; 3579 struct sctp_af *af; 3580 int err = 0; 3581 3582 /* An association cannot be branched off from an already peeled-off 3583 * socket, nor is this supported for tcp style sockets. 3584 */ 3585 if (!sctp_style(sk, UDP)) 3586 return -EINVAL; 3587 3588 /* Create a new socket. */ 3589 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 3590 if (err < 0) 3591 return err; 3592 3593 /* Populate the fields of the newsk from the oldsk and migrate the 3594 * asoc to the newsk. 3595 */ 3596 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 3597 3598 /* Make peeled-off sockets more like 1-1 accepted sockets. 3599 * Set the daddr and initialize id to something more random 3600 */ 3601 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family); 3602 af->to_sk_daddr(&asoc->peer.primary_addr, sk); 3603 inetsk = inet_sk(sock->sk); 3604 inetsk->id = asoc->next_tsn ^ jiffies; 3605 3606 *sockp = sock; 3607 3608 return err; 3609 } 3610 3611 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 3612 { 3613 sctp_peeloff_arg_t peeloff; 3614 struct socket *newsock; 3615 int retval = 0; 3616 struct sctp_association *asoc; 3617 3618 if (len < sizeof(sctp_peeloff_arg_t)) 3619 return -EINVAL; 3620 len = sizeof(sctp_peeloff_arg_t); 3621 if (copy_from_user(&peeloff, optval, len)) 3622 return -EFAULT; 3623 3624 asoc = sctp_id2assoc(sk, peeloff.associd); 3625 if (!asoc) { 3626 retval = -EINVAL; 3627 goto out; 3628 } 3629 3630 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc); 3631 3632 retval = sctp_do_peeloff(asoc, &newsock); 3633 if (retval < 0) 3634 goto out; 3635 3636 /* Map the socket to an unused fd that can be returned to the user. */ 3637 retval = sock_map_fd(newsock); 3638 if (retval < 0) { 3639 sock_release(newsock); 3640 goto out; 3641 } 3642 3643 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n", 3644 __FUNCTION__, sk, asoc, newsock->sk, retval); 3645 3646 /* Return the fd mapped to the new socket. */ 3647 peeloff.sd = retval; 3648 if (put_user(len, optlen)) 3649 return -EFAULT; 3650 if (copy_to_user(optval, &peeloff, len)) 3651 retval = -EFAULT; 3652 3653 out: 3654 return retval; 3655 } 3656 3657 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 3658 * 3659 * Applications can enable or disable heartbeats for any peer address of 3660 * an association, modify an address's heartbeat interval, force a 3661 * heartbeat to be sent immediately, and adjust the address's maximum 3662 * number of retransmissions sent before an address is considered 3663 * unreachable. The following structure is used to access and modify an 3664 * address's parameters: 3665 * 3666 * struct sctp_paddrparams { 3667 * sctp_assoc_t spp_assoc_id; 3668 * struct sockaddr_storage spp_address; 3669 * uint32_t spp_hbinterval; 3670 * uint16_t spp_pathmaxrxt; 3671 * uint32_t spp_pathmtu; 3672 * uint32_t spp_sackdelay; 3673 * uint32_t spp_flags; 3674 * }; 3675 * 3676 * spp_assoc_id - (one-to-many style socket) This is filled in the 3677 * application, and identifies the association for 3678 * this query. 3679 * spp_address - This specifies which address is of interest. 3680 * spp_hbinterval - This contains the value of the heartbeat interval, 3681 * in milliseconds. If a value of zero 3682 * is present in this field then no changes are to 3683 * be made to this parameter. 3684 * spp_pathmaxrxt - This contains the maximum number of 3685 * retransmissions before this address shall be 3686 * considered unreachable. If a value of zero 3687 * is present in this field then no changes are to 3688 * be made to this parameter. 3689 * spp_pathmtu - When Path MTU discovery is disabled the value 3690 * specified here will be the "fixed" path mtu. 3691 * Note that if the spp_address field is empty 3692 * then all associations on this address will 3693 * have this fixed path mtu set upon them. 3694 * 3695 * spp_sackdelay - When delayed sack is enabled, this value specifies 3696 * the number of milliseconds that sacks will be delayed 3697 * for. This value will apply to all addresses of an 3698 * association if the spp_address field is empty. Note 3699 * also, that if delayed sack is enabled and this 3700 * value is set to 0, no change is made to the last 3701 * recorded delayed sack timer value. 3702 * 3703 * spp_flags - These flags are used to control various features 3704 * on an association. The flag field may contain 3705 * zero or more of the following options. 3706 * 3707 * SPP_HB_ENABLE - Enable heartbeats on the 3708 * specified address. Note that if the address 3709 * field is empty all addresses for the association 3710 * have heartbeats enabled upon them. 3711 * 3712 * SPP_HB_DISABLE - Disable heartbeats on the 3713 * speicifed address. Note that if the address 3714 * field is empty all addresses for the association 3715 * will have their heartbeats disabled. Note also 3716 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 3717 * mutually exclusive, only one of these two should 3718 * be specified. Enabling both fields will have 3719 * undetermined results. 3720 * 3721 * SPP_HB_DEMAND - Request a user initiated heartbeat 3722 * to be made immediately. 3723 * 3724 * SPP_PMTUD_ENABLE - This field will enable PMTU 3725 * discovery upon the specified address. Note that 3726 * if the address feild is empty then all addresses 3727 * on the association are effected. 3728 * 3729 * SPP_PMTUD_DISABLE - This field will disable PMTU 3730 * discovery upon the specified address. Note that 3731 * if the address feild is empty then all addresses 3732 * on the association are effected. Not also that 3733 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 3734 * exclusive. Enabling both will have undetermined 3735 * results. 3736 * 3737 * SPP_SACKDELAY_ENABLE - Setting this flag turns 3738 * on delayed sack. The time specified in spp_sackdelay 3739 * is used to specify the sack delay for this address. Note 3740 * that if spp_address is empty then all addresses will 3741 * enable delayed sack and take on the sack delay 3742 * value specified in spp_sackdelay. 3743 * SPP_SACKDELAY_DISABLE - Setting this flag turns 3744 * off delayed sack. If the spp_address field is blank then 3745 * delayed sack is disabled for the entire association. Note 3746 * also that this field is mutually exclusive to 3747 * SPP_SACKDELAY_ENABLE, setting both will have undefined 3748 * results. 3749 */ 3750 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 3751 char __user *optval, int __user *optlen) 3752 { 3753 struct sctp_paddrparams params; 3754 struct sctp_transport *trans = NULL; 3755 struct sctp_association *asoc = NULL; 3756 struct sctp_sock *sp = sctp_sk(sk); 3757 3758 if (len < sizeof(struct sctp_paddrparams)) 3759 return -EINVAL; 3760 len = sizeof(struct sctp_paddrparams); 3761 if (copy_from_user(¶ms, optval, len)) 3762 return -EFAULT; 3763 3764 /* If an address other than INADDR_ANY is specified, and 3765 * no transport is found, then the request is invalid. 3766 */ 3767 if (!sctp_is_any(( union sctp_addr *)¶ms.spp_address)) { 3768 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 3769 params.spp_assoc_id); 3770 if (!trans) { 3771 SCTP_DEBUG_PRINTK("Failed no transport\n"); 3772 return -EINVAL; 3773 } 3774 } 3775 3776 /* Get association, if assoc_id != 0 and the socket is a one 3777 * to many style socket, and an association was not found, then 3778 * the id was invalid. 3779 */ 3780 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 3781 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 3782 SCTP_DEBUG_PRINTK("Failed no association\n"); 3783 return -EINVAL; 3784 } 3785 3786 if (trans) { 3787 /* Fetch transport values. */ 3788 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 3789 params.spp_pathmtu = trans->pathmtu; 3790 params.spp_pathmaxrxt = trans->pathmaxrxt; 3791 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 3792 3793 /*draft-11 doesn't say what to return in spp_flags*/ 3794 params.spp_flags = trans->param_flags; 3795 } else if (asoc) { 3796 /* Fetch association values. */ 3797 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 3798 params.spp_pathmtu = asoc->pathmtu; 3799 params.spp_pathmaxrxt = asoc->pathmaxrxt; 3800 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 3801 3802 /*draft-11 doesn't say what to return in spp_flags*/ 3803 params.spp_flags = asoc->param_flags; 3804 } else { 3805 /* Fetch socket values. */ 3806 params.spp_hbinterval = sp->hbinterval; 3807 params.spp_pathmtu = sp->pathmtu; 3808 params.spp_sackdelay = sp->sackdelay; 3809 params.spp_pathmaxrxt = sp->pathmaxrxt; 3810 3811 /*draft-11 doesn't say what to return in spp_flags*/ 3812 params.spp_flags = sp->param_flags; 3813 } 3814 3815 if (copy_to_user(optval, ¶ms, len)) 3816 return -EFAULT; 3817 3818 if (put_user(len, optlen)) 3819 return -EFAULT; 3820 3821 return 0; 3822 } 3823 3824 /* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME) 3825 * 3826 * This options will get or set the delayed ack timer. The time is set 3827 * in milliseconds. If the assoc_id is 0, then this sets or gets the 3828 * endpoints default delayed ack timer value. If the assoc_id field is 3829 * non-zero, then the set or get effects the specified association. 3830 * 3831 * struct sctp_assoc_value { 3832 * sctp_assoc_t assoc_id; 3833 * uint32_t assoc_value; 3834 * }; 3835 * 3836 * assoc_id - This parameter, indicates which association the 3837 * user is preforming an action upon. Note that if 3838 * this field's value is zero then the endpoints 3839 * default value is changed (effecting future 3840 * associations only). 3841 * 3842 * assoc_value - This parameter contains the number of milliseconds 3843 * that the user is requesting the delayed ACK timer 3844 * be set to. Note that this value is defined in 3845 * the standard to be between 200 and 500 milliseconds. 3846 * 3847 * Note: a value of zero will leave the value alone, 3848 * but disable SACK delay. A non-zero value will also 3849 * enable SACK delay. 3850 */ 3851 static int sctp_getsockopt_delayed_ack_time(struct sock *sk, int len, 3852 char __user *optval, 3853 int __user *optlen) 3854 { 3855 struct sctp_assoc_value params; 3856 struct sctp_association *asoc = NULL; 3857 struct sctp_sock *sp = sctp_sk(sk); 3858 3859 if (len < sizeof(struct sctp_assoc_value)) 3860 return - EINVAL; 3861 3862 len = sizeof(struct sctp_assoc_value); 3863 3864 if (copy_from_user(¶ms, optval, len)) 3865 return -EFAULT; 3866 3867 /* Get association, if assoc_id != 0 and the socket is a one 3868 * to many style socket, and an association was not found, then 3869 * the id was invalid. 3870 */ 3871 asoc = sctp_id2assoc(sk, params.assoc_id); 3872 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 3873 return -EINVAL; 3874 3875 if (asoc) { 3876 /* Fetch association values. */ 3877 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) 3878 params.assoc_value = jiffies_to_msecs( 3879 asoc->sackdelay); 3880 else 3881 params.assoc_value = 0; 3882 } else { 3883 /* Fetch socket values. */ 3884 if (sp->param_flags & SPP_SACKDELAY_ENABLE) 3885 params.assoc_value = sp->sackdelay; 3886 else 3887 params.assoc_value = 0; 3888 } 3889 3890 if (copy_to_user(optval, ¶ms, len)) 3891 return -EFAULT; 3892 3893 if (put_user(len, optlen)) 3894 return -EFAULT; 3895 3896 return 0; 3897 } 3898 3899 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 3900 * 3901 * Applications can specify protocol parameters for the default association 3902 * initialization. The option name argument to setsockopt() and getsockopt() 3903 * is SCTP_INITMSG. 3904 * 3905 * Setting initialization parameters is effective only on an unconnected 3906 * socket (for UDP-style sockets only future associations are effected 3907 * by the change). With TCP-style sockets, this option is inherited by 3908 * sockets derived from a listener socket. 3909 */ 3910 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 3911 { 3912 if (len < sizeof(struct sctp_initmsg)) 3913 return -EINVAL; 3914 len = sizeof(struct sctp_initmsg); 3915 if (put_user(len, optlen)) 3916 return -EFAULT; 3917 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 3918 return -EFAULT; 3919 return 0; 3920 } 3921 3922 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len, 3923 char __user *optval, 3924 int __user *optlen) 3925 { 3926 sctp_assoc_t id; 3927 struct sctp_association *asoc; 3928 struct list_head *pos; 3929 int cnt = 0; 3930 3931 if (len < sizeof(sctp_assoc_t)) 3932 return -EINVAL; 3933 3934 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 3935 return -EFAULT; 3936 3937 /* For UDP-style sockets, id specifies the association to query. */ 3938 asoc = sctp_id2assoc(sk, id); 3939 if (!asoc) 3940 return -EINVAL; 3941 3942 list_for_each(pos, &asoc->peer.transport_addr_list) { 3943 cnt ++; 3944 } 3945 3946 return cnt; 3947 } 3948 3949 /* 3950 * Old API for getting list of peer addresses. Does not work for 32-bit 3951 * programs running on a 64-bit kernel 3952 */ 3953 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len, 3954 char __user *optval, 3955 int __user *optlen) 3956 { 3957 struct sctp_association *asoc; 3958 struct list_head *pos; 3959 int cnt = 0; 3960 struct sctp_getaddrs_old getaddrs; 3961 struct sctp_transport *from; 3962 void __user *to; 3963 union sctp_addr temp; 3964 struct sctp_sock *sp = sctp_sk(sk); 3965 int addrlen; 3966 3967 if (len < sizeof(struct sctp_getaddrs_old)) 3968 return -EINVAL; 3969 3970 len = sizeof(struct sctp_getaddrs_old); 3971 3972 if (copy_from_user(&getaddrs, optval, len)) 3973 return -EFAULT; 3974 3975 if (getaddrs.addr_num <= 0) return -EINVAL; 3976 3977 /* For UDP-style sockets, id specifies the association to query. */ 3978 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 3979 if (!asoc) 3980 return -EINVAL; 3981 3982 to = (void __user *)getaddrs.addrs; 3983 list_for_each(pos, &asoc->peer.transport_addr_list) { 3984 from = list_entry(pos, struct sctp_transport, transports); 3985 memcpy(&temp, &from->ipaddr, sizeof(temp)); 3986 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 3987 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 3988 if (copy_to_user(to, &temp, addrlen)) 3989 return -EFAULT; 3990 to += addrlen ; 3991 cnt ++; 3992 if (cnt >= getaddrs.addr_num) break; 3993 } 3994 getaddrs.addr_num = cnt; 3995 if (put_user(len, optlen)) 3996 return -EFAULT; 3997 if (copy_to_user(optval, &getaddrs, len)) 3998 return -EFAULT; 3999 4000 return 0; 4001 } 4002 4003 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 4004 char __user *optval, int __user *optlen) 4005 { 4006 struct sctp_association *asoc; 4007 struct list_head *pos; 4008 int cnt = 0; 4009 struct sctp_getaddrs getaddrs; 4010 struct sctp_transport *from; 4011 void __user *to; 4012 union sctp_addr temp; 4013 struct sctp_sock *sp = sctp_sk(sk); 4014 int addrlen; 4015 size_t space_left; 4016 int bytes_copied; 4017 4018 if (len < sizeof(struct sctp_getaddrs)) 4019 return -EINVAL; 4020 4021 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4022 return -EFAULT; 4023 4024 /* For UDP-style sockets, id specifies the association to query. */ 4025 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4026 if (!asoc) 4027 return -EINVAL; 4028 4029 to = optval + offsetof(struct sctp_getaddrs,addrs); 4030 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4031 4032 list_for_each(pos, &asoc->peer.transport_addr_list) { 4033 from = list_entry(pos, struct sctp_transport, transports); 4034 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4035 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4036 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 4037 if (space_left < addrlen) 4038 return -ENOMEM; 4039 if (copy_to_user(to, &temp, addrlen)) 4040 return -EFAULT; 4041 to += addrlen; 4042 cnt++; 4043 space_left -= addrlen; 4044 } 4045 4046 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4047 return -EFAULT; 4048 bytes_copied = ((char __user *)to) - optval; 4049 if (put_user(bytes_copied, optlen)) 4050 return -EFAULT; 4051 4052 return 0; 4053 } 4054 4055 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len, 4056 char __user *optval, 4057 int __user *optlen) 4058 { 4059 sctp_assoc_t id; 4060 struct sctp_bind_addr *bp; 4061 struct sctp_association *asoc; 4062 struct list_head *pos, *temp; 4063 struct sctp_sockaddr_entry *addr; 4064 rwlock_t *addr_lock; 4065 int cnt = 0; 4066 4067 if (len < sizeof(sctp_assoc_t)) 4068 return -EINVAL; 4069 4070 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 4071 return -EFAULT; 4072 4073 /* 4074 * For UDP-style sockets, id specifies the association to query. 4075 * If the id field is set to the value '0' then the locally bound 4076 * addresses are returned without regard to any particular 4077 * association. 4078 */ 4079 if (0 == id) { 4080 bp = &sctp_sk(sk)->ep->base.bind_addr; 4081 addr_lock = &sctp_sk(sk)->ep->base.addr_lock; 4082 } else { 4083 asoc = sctp_id2assoc(sk, id); 4084 if (!asoc) 4085 return -EINVAL; 4086 bp = &asoc->base.bind_addr; 4087 addr_lock = &asoc->base.addr_lock; 4088 } 4089 4090 sctp_read_lock(addr_lock); 4091 4092 /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid 4093 * addresses from the global local address list. 4094 */ 4095 if (sctp_list_single_entry(&bp->address_list)) { 4096 addr = list_entry(bp->address_list.next, 4097 struct sctp_sockaddr_entry, list); 4098 if (sctp_is_any(&addr->a)) { 4099 list_for_each_safe(pos, temp, &sctp_local_addr_list) { 4100 addr = list_entry(pos, 4101 struct sctp_sockaddr_entry, 4102 list); 4103 if ((PF_INET == sk->sk_family) && 4104 (AF_INET6 == addr->a.sa.sa_family)) 4105 continue; 4106 cnt++; 4107 } 4108 } else { 4109 cnt = 1; 4110 } 4111 goto done; 4112 } 4113 4114 list_for_each(pos, &bp->address_list) { 4115 cnt ++; 4116 } 4117 4118 done: 4119 sctp_read_unlock(addr_lock); 4120 return cnt; 4121 } 4122 4123 /* Helper function that copies local addresses to user and returns the number 4124 * of addresses copied. 4125 */ 4126 static int sctp_copy_laddrs_old(struct sock *sk, __u16 port, 4127 int max_addrs, void *to, 4128 int *bytes_copied) 4129 { 4130 struct list_head *pos, *next; 4131 struct sctp_sockaddr_entry *addr; 4132 union sctp_addr temp; 4133 int cnt = 0; 4134 int addrlen; 4135 4136 list_for_each_safe(pos, next, &sctp_local_addr_list) { 4137 addr = list_entry(pos, struct sctp_sockaddr_entry, list); 4138 if ((PF_INET == sk->sk_family) && 4139 (AF_INET6 == addr->a.sa.sa_family)) 4140 continue; 4141 memcpy(&temp, &addr->a, sizeof(temp)); 4142 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4143 &temp); 4144 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4145 memcpy(to, &temp, addrlen); 4146 4147 to += addrlen; 4148 *bytes_copied += addrlen; 4149 cnt ++; 4150 if (cnt >= max_addrs) break; 4151 } 4152 4153 return cnt; 4154 } 4155 4156 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 4157 size_t space_left, int *bytes_copied) 4158 { 4159 struct list_head *pos, *next; 4160 struct sctp_sockaddr_entry *addr; 4161 union sctp_addr temp; 4162 int cnt = 0; 4163 int addrlen; 4164 4165 list_for_each_safe(pos, next, &sctp_local_addr_list) { 4166 addr = list_entry(pos, struct sctp_sockaddr_entry, list); 4167 if ((PF_INET == sk->sk_family) && 4168 (AF_INET6 == addr->a.sa.sa_family)) 4169 continue; 4170 memcpy(&temp, &addr->a, sizeof(temp)); 4171 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4172 &temp); 4173 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4174 if (space_left < addrlen) 4175 return -ENOMEM; 4176 memcpy(to, &temp, addrlen); 4177 4178 to += addrlen; 4179 cnt ++; 4180 space_left -= addrlen; 4181 *bytes_copied += addrlen; 4182 } 4183 4184 return cnt; 4185 } 4186 4187 /* Old API for getting list of local addresses. Does not work for 32-bit 4188 * programs running on a 64-bit kernel 4189 */ 4190 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len, 4191 char __user *optval, int __user *optlen) 4192 { 4193 struct sctp_bind_addr *bp; 4194 struct sctp_association *asoc; 4195 struct list_head *pos; 4196 int cnt = 0; 4197 struct sctp_getaddrs_old getaddrs; 4198 struct sctp_sockaddr_entry *addr; 4199 void __user *to; 4200 union sctp_addr temp; 4201 struct sctp_sock *sp = sctp_sk(sk); 4202 int addrlen; 4203 rwlock_t *addr_lock; 4204 int err = 0; 4205 void *addrs; 4206 void *buf; 4207 int bytes_copied = 0; 4208 4209 if (len < sizeof(struct sctp_getaddrs_old)) 4210 return -EINVAL; 4211 4212 len = sizeof(struct sctp_getaddrs_old); 4213 if (copy_from_user(&getaddrs, optval, len)) 4214 return -EFAULT; 4215 4216 if (getaddrs.addr_num <= 0) return -EINVAL; 4217 /* 4218 * For UDP-style sockets, id specifies the association to query. 4219 * If the id field is set to the value '0' then the locally bound 4220 * addresses are returned without regard to any particular 4221 * association. 4222 */ 4223 if (0 == getaddrs.assoc_id) { 4224 bp = &sctp_sk(sk)->ep->base.bind_addr; 4225 addr_lock = &sctp_sk(sk)->ep->base.addr_lock; 4226 } else { 4227 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4228 if (!asoc) 4229 return -EINVAL; 4230 bp = &asoc->base.bind_addr; 4231 addr_lock = &asoc->base.addr_lock; 4232 } 4233 4234 to = getaddrs.addrs; 4235 4236 /* Allocate space for a local instance of packed array to hold all 4237 * the data. We store addresses here first and then put write them 4238 * to the user in one shot. 4239 */ 4240 addrs = kmalloc(sizeof(union sctp_addr) * getaddrs.addr_num, 4241 GFP_KERNEL); 4242 if (!addrs) 4243 return -ENOMEM; 4244 4245 sctp_read_lock(addr_lock); 4246 4247 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4248 * addresses from the global local address list. 4249 */ 4250 if (sctp_list_single_entry(&bp->address_list)) { 4251 addr = list_entry(bp->address_list.next, 4252 struct sctp_sockaddr_entry, list); 4253 if (sctp_is_any(&addr->a)) { 4254 cnt = sctp_copy_laddrs_old(sk, bp->port, 4255 getaddrs.addr_num, 4256 addrs, &bytes_copied); 4257 goto copy_getaddrs; 4258 } 4259 } 4260 4261 buf = addrs; 4262 list_for_each(pos, &bp->address_list) { 4263 addr = list_entry(pos, struct sctp_sockaddr_entry, list); 4264 memcpy(&temp, &addr->a, sizeof(temp)); 4265 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4266 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4267 memcpy(buf, &temp, addrlen); 4268 buf += addrlen; 4269 bytes_copied += addrlen; 4270 cnt ++; 4271 if (cnt >= getaddrs.addr_num) break; 4272 } 4273 4274 copy_getaddrs: 4275 sctp_read_unlock(addr_lock); 4276 4277 /* copy the entire address list into the user provided space */ 4278 if (copy_to_user(to, addrs, bytes_copied)) { 4279 err = -EFAULT; 4280 goto error; 4281 } 4282 4283 /* copy the leading structure back to user */ 4284 getaddrs.addr_num = cnt; 4285 if (copy_to_user(optval, &getaddrs, len)) 4286 err = -EFAULT; 4287 4288 error: 4289 kfree(addrs); 4290 return err; 4291 } 4292 4293 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 4294 char __user *optval, int __user *optlen) 4295 { 4296 struct sctp_bind_addr *bp; 4297 struct sctp_association *asoc; 4298 struct list_head *pos; 4299 int cnt = 0; 4300 struct sctp_getaddrs getaddrs; 4301 struct sctp_sockaddr_entry *addr; 4302 void __user *to; 4303 union sctp_addr temp; 4304 struct sctp_sock *sp = sctp_sk(sk); 4305 int addrlen; 4306 rwlock_t *addr_lock; 4307 int err = 0; 4308 size_t space_left; 4309 int bytes_copied = 0; 4310 void *addrs; 4311 void *buf; 4312 4313 if (len < sizeof(struct sctp_getaddrs)) 4314 return -EINVAL; 4315 4316 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4317 return -EFAULT; 4318 4319 /* 4320 * For UDP-style sockets, id specifies the association to query. 4321 * If the id field is set to the value '0' then the locally bound 4322 * addresses are returned without regard to any particular 4323 * association. 4324 */ 4325 if (0 == getaddrs.assoc_id) { 4326 bp = &sctp_sk(sk)->ep->base.bind_addr; 4327 addr_lock = &sctp_sk(sk)->ep->base.addr_lock; 4328 } else { 4329 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4330 if (!asoc) 4331 return -EINVAL; 4332 bp = &asoc->base.bind_addr; 4333 addr_lock = &asoc->base.addr_lock; 4334 } 4335 4336 to = optval + offsetof(struct sctp_getaddrs,addrs); 4337 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4338 4339 addrs = kmalloc(space_left, GFP_KERNEL); 4340 if (!addrs) 4341 return -ENOMEM; 4342 4343 sctp_read_lock(addr_lock); 4344 4345 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4346 * addresses from the global local address list. 4347 */ 4348 if (sctp_list_single_entry(&bp->address_list)) { 4349 addr = list_entry(bp->address_list.next, 4350 struct sctp_sockaddr_entry, list); 4351 if (sctp_is_any(&addr->a)) { 4352 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 4353 space_left, &bytes_copied); 4354 if (cnt < 0) { 4355 err = cnt; 4356 goto error; 4357 } 4358 goto copy_getaddrs; 4359 } 4360 } 4361 4362 buf = addrs; 4363 list_for_each(pos, &bp->address_list) { 4364 addr = list_entry(pos, struct sctp_sockaddr_entry, list); 4365 memcpy(&temp, &addr->a, sizeof(temp)); 4366 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4367 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4368 if (space_left < addrlen) { 4369 err = -ENOMEM; /*fixme: right error?*/ 4370 goto error; 4371 } 4372 memcpy(buf, &temp, addrlen); 4373 buf += addrlen; 4374 bytes_copied += addrlen; 4375 cnt ++; 4376 space_left -= addrlen; 4377 } 4378 4379 copy_getaddrs: 4380 sctp_read_unlock(addr_lock); 4381 4382 if (copy_to_user(to, addrs, bytes_copied)) { 4383 err = -EFAULT; 4384 goto error; 4385 } 4386 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 4387 err = -EFAULT; 4388 goto error; 4389 } 4390 if (put_user(bytes_copied, optlen)) 4391 err = -EFAULT; 4392 error: 4393 kfree(addrs); 4394 return err; 4395 } 4396 4397 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 4398 * 4399 * Requests that the local SCTP stack use the enclosed peer address as 4400 * the association primary. The enclosed address must be one of the 4401 * association peer's addresses. 4402 */ 4403 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 4404 char __user *optval, int __user *optlen) 4405 { 4406 struct sctp_prim prim; 4407 struct sctp_association *asoc; 4408 struct sctp_sock *sp = sctp_sk(sk); 4409 4410 if (len < sizeof(struct sctp_prim)) 4411 return -EINVAL; 4412 4413 len = sizeof(struct sctp_prim); 4414 4415 if (copy_from_user(&prim, optval, len)) 4416 return -EFAULT; 4417 4418 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 4419 if (!asoc) 4420 return -EINVAL; 4421 4422 if (!asoc->peer.primary_path) 4423 return -ENOTCONN; 4424 4425 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 4426 asoc->peer.primary_path->af_specific->sockaddr_len); 4427 4428 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, 4429 (union sctp_addr *)&prim.ssp_addr); 4430 4431 if (put_user(len, optlen)) 4432 return -EFAULT; 4433 if (copy_to_user(optval, &prim, len)) 4434 return -EFAULT; 4435 4436 return 0; 4437 } 4438 4439 /* 4440 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 4441 * 4442 * Requests that the local endpoint set the specified Adaptation Layer 4443 * Indication parameter for all future INIT and INIT-ACK exchanges. 4444 */ 4445 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 4446 char __user *optval, int __user *optlen) 4447 { 4448 struct sctp_setadaptation adaptation; 4449 4450 if (len < sizeof(struct sctp_setadaptation)) 4451 return -EINVAL; 4452 4453 len = sizeof(struct sctp_setadaptation); 4454 4455 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 4456 4457 if (put_user(len, optlen)) 4458 return -EFAULT; 4459 if (copy_to_user(optval, &adaptation, len)) 4460 return -EFAULT; 4461 4462 return 0; 4463 } 4464 4465 /* 4466 * 4467 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 4468 * 4469 * Applications that wish to use the sendto() system call may wish to 4470 * specify a default set of parameters that would normally be supplied 4471 * through the inclusion of ancillary data. This socket option allows 4472 * such an application to set the default sctp_sndrcvinfo structure. 4473 4474 4475 * The application that wishes to use this socket option simply passes 4476 * in to this call the sctp_sndrcvinfo structure defined in Section 4477 * 5.2.2) The input parameters accepted by this call include 4478 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 4479 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 4480 * to this call if the caller is using the UDP model. 4481 * 4482 * For getsockopt, it get the default sctp_sndrcvinfo structure. 4483 */ 4484 static int sctp_getsockopt_default_send_param(struct sock *sk, 4485 int len, char __user *optval, 4486 int __user *optlen) 4487 { 4488 struct sctp_sndrcvinfo info; 4489 struct sctp_association *asoc; 4490 struct sctp_sock *sp = sctp_sk(sk); 4491 4492 if (len < sizeof(struct sctp_sndrcvinfo)) 4493 return -EINVAL; 4494 4495 len = sizeof(struct sctp_sndrcvinfo); 4496 4497 if (copy_from_user(&info, optval, len)) 4498 return -EFAULT; 4499 4500 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 4501 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 4502 return -EINVAL; 4503 4504 if (asoc) { 4505 info.sinfo_stream = asoc->default_stream; 4506 info.sinfo_flags = asoc->default_flags; 4507 info.sinfo_ppid = asoc->default_ppid; 4508 info.sinfo_context = asoc->default_context; 4509 info.sinfo_timetolive = asoc->default_timetolive; 4510 } else { 4511 info.sinfo_stream = sp->default_stream; 4512 info.sinfo_flags = sp->default_flags; 4513 info.sinfo_ppid = sp->default_ppid; 4514 info.sinfo_context = sp->default_context; 4515 info.sinfo_timetolive = sp->default_timetolive; 4516 } 4517 4518 if (put_user(len, optlen)) 4519 return -EFAULT; 4520 if (copy_to_user(optval, &info, len)) 4521 return -EFAULT; 4522 4523 return 0; 4524 } 4525 4526 /* 4527 * 4528 * 7.1.5 SCTP_NODELAY 4529 * 4530 * Turn on/off any Nagle-like algorithm. This means that packets are 4531 * generally sent as soon as possible and no unnecessary delays are 4532 * introduced, at the cost of more packets in the network. Expects an 4533 * integer boolean flag. 4534 */ 4535 4536 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 4537 char __user *optval, int __user *optlen) 4538 { 4539 int val; 4540 4541 if (len < sizeof(int)) 4542 return -EINVAL; 4543 4544 len = sizeof(int); 4545 val = (sctp_sk(sk)->nodelay == 1); 4546 if (put_user(len, optlen)) 4547 return -EFAULT; 4548 if (copy_to_user(optval, &val, len)) 4549 return -EFAULT; 4550 return 0; 4551 } 4552 4553 /* 4554 * 4555 * 7.1.1 SCTP_RTOINFO 4556 * 4557 * The protocol parameters used to initialize and bound retransmission 4558 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 4559 * and modify these parameters. 4560 * All parameters are time values, in milliseconds. A value of 0, when 4561 * modifying the parameters, indicates that the current value should not 4562 * be changed. 4563 * 4564 */ 4565 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 4566 char __user *optval, 4567 int __user *optlen) { 4568 struct sctp_rtoinfo rtoinfo; 4569 struct sctp_association *asoc; 4570 4571 if (len < sizeof (struct sctp_rtoinfo)) 4572 return -EINVAL; 4573 4574 len = sizeof(struct sctp_rtoinfo); 4575 4576 if (copy_from_user(&rtoinfo, optval, len)) 4577 return -EFAULT; 4578 4579 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 4580 4581 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 4582 return -EINVAL; 4583 4584 /* Values corresponding to the specific association. */ 4585 if (asoc) { 4586 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 4587 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 4588 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 4589 } else { 4590 /* Values corresponding to the endpoint. */ 4591 struct sctp_sock *sp = sctp_sk(sk); 4592 4593 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 4594 rtoinfo.srto_max = sp->rtoinfo.srto_max; 4595 rtoinfo.srto_min = sp->rtoinfo.srto_min; 4596 } 4597 4598 if (put_user(len, optlen)) 4599 return -EFAULT; 4600 4601 if (copy_to_user(optval, &rtoinfo, len)) 4602 return -EFAULT; 4603 4604 return 0; 4605 } 4606 4607 /* 4608 * 4609 * 7.1.2 SCTP_ASSOCINFO 4610 * 4611 * This option is used to tune the maximum retransmission attempts 4612 * of the association. 4613 * Returns an error if the new association retransmission value is 4614 * greater than the sum of the retransmission value of the peer. 4615 * See [SCTP] for more information. 4616 * 4617 */ 4618 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 4619 char __user *optval, 4620 int __user *optlen) 4621 { 4622 4623 struct sctp_assocparams assocparams; 4624 struct sctp_association *asoc; 4625 struct list_head *pos; 4626 int cnt = 0; 4627 4628 if (len < sizeof (struct sctp_assocparams)) 4629 return -EINVAL; 4630 4631 len = sizeof(struct sctp_assocparams); 4632 4633 if (copy_from_user(&assocparams, optval, len)) 4634 return -EFAULT; 4635 4636 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 4637 4638 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 4639 return -EINVAL; 4640 4641 /* Values correspoinding to the specific association */ 4642 if (asoc) { 4643 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 4644 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 4645 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 4646 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec 4647 * 1000) + 4648 (asoc->cookie_life.tv_usec 4649 / 1000); 4650 4651 list_for_each(pos, &asoc->peer.transport_addr_list) { 4652 cnt ++; 4653 } 4654 4655 assocparams.sasoc_number_peer_destinations = cnt; 4656 } else { 4657 /* Values corresponding to the endpoint */ 4658 struct sctp_sock *sp = sctp_sk(sk); 4659 4660 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 4661 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 4662 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 4663 assocparams.sasoc_cookie_life = 4664 sp->assocparams.sasoc_cookie_life; 4665 assocparams.sasoc_number_peer_destinations = 4666 sp->assocparams. 4667 sasoc_number_peer_destinations; 4668 } 4669 4670 if (put_user(len, optlen)) 4671 return -EFAULT; 4672 4673 if (copy_to_user(optval, &assocparams, len)) 4674 return -EFAULT; 4675 4676 return 0; 4677 } 4678 4679 /* 4680 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 4681 * 4682 * This socket option is a boolean flag which turns on or off mapped V4 4683 * addresses. If this option is turned on and the socket is type 4684 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 4685 * If this option is turned off, then no mapping will be done of V4 4686 * addresses and a user will receive both PF_INET6 and PF_INET type 4687 * addresses on the socket. 4688 */ 4689 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 4690 char __user *optval, int __user *optlen) 4691 { 4692 int val; 4693 struct sctp_sock *sp = sctp_sk(sk); 4694 4695 if (len < sizeof(int)) 4696 return -EINVAL; 4697 4698 len = sizeof(int); 4699 val = sp->v4mapped; 4700 if (put_user(len, optlen)) 4701 return -EFAULT; 4702 if (copy_to_user(optval, &val, len)) 4703 return -EFAULT; 4704 4705 return 0; 4706 } 4707 4708 /* 4709 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 4710 * (chapter and verse is quoted at sctp_setsockopt_context()) 4711 */ 4712 static int sctp_getsockopt_context(struct sock *sk, int len, 4713 char __user *optval, int __user *optlen) 4714 { 4715 struct sctp_assoc_value params; 4716 struct sctp_sock *sp; 4717 struct sctp_association *asoc; 4718 4719 if (len < sizeof(struct sctp_assoc_value)) 4720 return -EINVAL; 4721 4722 len = sizeof(struct sctp_assoc_value); 4723 4724 if (copy_from_user(¶ms, optval, len)) 4725 return -EFAULT; 4726 4727 sp = sctp_sk(sk); 4728 4729 if (params.assoc_id != 0) { 4730 asoc = sctp_id2assoc(sk, params.assoc_id); 4731 if (!asoc) 4732 return -EINVAL; 4733 params.assoc_value = asoc->default_rcv_context; 4734 } else { 4735 params.assoc_value = sp->default_rcv_context; 4736 } 4737 4738 if (put_user(len, optlen)) 4739 return -EFAULT; 4740 if (copy_to_user(optval, ¶ms, len)) 4741 return -EFAULT; 4742 4743 return 0; 4744 } 4745 4746 /* 4747 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG) 4748 * 4749 * This socket option specifies the maximum size to put in any outgoing 4750 * SCTP chunk. If a message is larger than this size it will be 4751 * fragmented by SCTP into the specified size. Note that the underlying 4752 * SCTP implementation may fragment into smaller sized chunks when the 4753 * PMTU of the underlying association is smaller than the value set by 4754 * the user. 4755 */ 4756 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 4757 char __user *optval, int __user *optlen) 4758 { 4759 int val; 4760 4761 if (len < sizeof(int)) 4762 return -EINVAL; 4763 4764 len = sizeof(int); 4765 4766 val = sctp_sk(sk)->user_frag; 4767 if (put_user(len, optlen)) 4768 return -EFAULT; 4769 if (copy_to_user(optval, &val, len)) 4770 return -EFAULT; 4771 4772 return 0; 4773 } 4774 4775 /* 4776 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 4777 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 4778 */ 4779 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 4780 char __user *optval, int __user *optlen) 4781 { 4782 int val; 4783 4784 if (len < sizeof(int)) 4785 return -EINVAL; 4786 4787 len = sizeof(int); 4788 4789 val = sctp_sk(sk)->frag_interleave; 4790 if (put_user(len, optlen)) 4791 return -EFAULT; 4792 if (copy_to_user(optval, &val, len)) 4793 return -EFAULT; 4794 4795 return 0; 4796 } 4797 4798 /* 4799 * 7.1.25. Set or Get the sctp partial delivery point 4800 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 4801 */ 4802 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 4803 char __user *optval, 4804 int __user *optlen) 4805 { 4806 u32 val; 4807 4808 if (len < sizeof(u32)) 4809 return -EINVAL; 4810 4811 len = sizeof(u32); 4812 4813 val = sctp_sk(sk)->pd_point; 4814 if (put_user(len, optlen)) 4815 return -EFAULT; 4816 if (copy_to_user(optval, &val, len)) 4817 return -EFAULT; 4818 4819 return -ENOTSUPP; 4820 } 4821 4822 /* 4823 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 4824 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 4825 */ 4826 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 4827 char __user *optval, 4828 int __user *optlen) 4829 { 4830 int val; 4831 4832 if (len < sizeof(int)) 4833 return -EINVAL; 4834 4835 len = sizeof(int); 4836 4837 val = sctp_sk(sk)->max_burst; 4838 if (put_user(len, optlen)) 4839 return -EFAULT; 4840 if (copy_to_user(optval, &val, len)) 4841 return -EFAULT; 4842 4843 return -ENOTSUPP; 4844 } 4845 4846 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname, 4847 char __user *optval, int __user *optlen) 4848 { 4849 int retval = 0; 4850 int len; 4851 4852 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n", 4853 sk, optname); 4854 4855 /* I can hardly begin to describe how wrong this is. This is 4856 * so broken as to be worse than useless. The API draft 4857 * REALLY is NOT helpful here... I am not convinced that the 4858 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 4859 * are at all well-founded. 4860 */ 4861 if (level != SOL_SCTP) { 4862 struct sctp_af *af = sctp_sk(sk)->pf->af; 4863 4864 retval = af->getsockopt(sk, level, optname, optval, optlen); 4865 return retval; 4866 } 4867 4868 if (get_user(len, optlen)) 4869 return -EFAULT; 4870 4871 sctp_lock_sock(sk); 4872 4873 switch (optname) { 4874 case SCTP_STATUS: 4875 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 4876 break; 4877 case SCTP_DISABLE_FRAGMENTS: 4878 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 4879 optlen); 4880 break; 4881 case SCTP_EVENTS: 4882 retval = sctp_getsockopt_events(sk, len, optval, optlen); 4883 break; 4884 case SCTP_AUTOCLOSE: 4885 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 4886 break; 4887 case SCTP_SOCKOPT_PEELOFF: 4888 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 4889 break; 4890 case SCTP_PEER_ADDR_PARAMS: 4891 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 4892 optlen); 4893 break; 4894 case SCTP_DELAYED_ACK_TIME: 4895 retval = sctp_getsockopt_delayed_ack_time(sk, len, optval, 4896 optlen); 4897 break; 4898 case SCTP_INITMSG: 4899 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 4900 break; 4901 case SCTP_GET_PEER_ADDRS_NUM_OLD: 4902 retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval, 4903 optlen); 4904 break; 4905 case SCTP_GET_LOCAL_ADDRS_NUM_OLD: 4906 retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval, 4907 optlen); 4908 break; 4909 case SCTP_GET_PEER_ADDRS_OLD: 4910 retval = sctp_getsockopt_peer_addrs_old(sk, len, optval, 4911 optlen); 4912 break; 4913 case SCTP_GET_LOCAL_ADDRS_OLD: 4914 retval = sctp_getsockopt_local_addrs_old(sk, len, optval, 4915 optlen); 4916 break; 4917 case SCTP_GET_PEER_ADDRS: 4918 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 4919 optlen); 4920 break; 4921 case SCTP_GET_LOCAL_ADDRS: 4922 retval = sctp_getsockopt_local_addrs(sk, len, optval, 4923 optlen); 4924 break; 4925 case SCTP_DEFAULT_SEND_PARAM: 4926 retval = sctp_getsockopt_default_send_param(sk, len, 4927 optval, optlen); 4928 break; 4929 case SCTP_PRIMARY_ADDR: 4930 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 4931 break; 4932 case SCTP_NODELAY: 4933 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 4934 break; 4935 case SCTP_RTOINFO: 4936 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 4937 break; 4938 case SCTP_ASSOCINFO: 4939 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 4940 break; 4941 case SCTP_I_WANT_MAPPED_V4_ADDR: 4942 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 4943 break; 4944 case SCTP_MAXSEG: 4945 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 4946 break; 4947 case SCTP_GET_PEER_ADDR_INFO: 4948 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 4949 optlen); 4950 break; 4951 case SCTP_ADAPTATION_LAYER: 4952 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 4953 optlen); 4954 break; 4955 case SCTP_CONTEXT: 4956 retval = sctp_getsockopt_context(sk, len, optval, optlen); 4957 break; 4958 case SCTP_FRAGMENT_INTERLEAVE: 4959 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 4960 optlen); 4961 break; 4962 case SCTP_PARTIAL_DELIVERY_POINT: 4963 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 4964 optlen); 4965 break; 4966 case SCTP_MAX_BURST: 4967 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 4968 break; 4969 default: 4970 retval = -ENOPROTOOPT; 4971 break; 4972 } 4973 4974 sctp_release_sock(sk); 4975 return retval; 4976 } 4977 4978 static void sctp_hash(struct sock *sk) 4979 { 4980 /* STUB */ 4981 } 4982 4983 static void sctp_unhash(struct sock *sk) 4984 { 4985 /* STUB */ 4986 } 4987 4988 /* Check if port is acceptable. Possibly find first available port. 4989 * 4990 * The port hash table (contained in the 'global' SCTP protocol storage 4991 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 4992 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 4993 * list (the list number is the port number hashed out, so as you 4994 * would expect from a hash function, all the ports in a given list have 4995 * such a number that hashes out to the same list number; you were 4996 * expecting that, right?); so each list has a set of ports, with a 4997 * link to the socket (struct sock) that uses it, the port number and 4998 * a fastreuse flag (FIXME: NPI ipg). 4999 */ 5000 static struct sctp_bind_bucket *sctp_bucket_create( 5001 struct sctp_bind_hashbucket *head, unsigned short snum); 5002 5003 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 5004 { 5005 struct sctp_bind_hashbucket *head; /* hash list */ 5006 struct sctp_bind_bucket *pp; /* hash list port iterator */ 5007 unsigned short snum; 5008 int ret; 5009 5010 snum = ntohs(addr->v4.sin_port); 5011 5012 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum); 5013 sctp_local_bh_disable(); 5014 5015 if (snum == 0) { 5016 /* Search for an available port. 5017 * 5018 * 'sctp_port_rover' was the last port assigned, so 5019 * we start to search from 'sctp_port_rover + 5020 * 1'. What we do is first check if port 'rover' is 5021 * already in the hash table; if not, we use that; if 5022 * it is, we try next. 5023 */ 5024 int low = sysctl_local_port_range[0]; 5025 int high = sysctl_local_port_range[1]; 5026 int remaining = (high - low) + 1; 5027 int rover; 5028 int index; 5029 5030 sctp_spin_lock(&sctp_port_alloc_lock); 5031 rover = sctp_port_rover; 5032 do { 5033 rover++; 5034 if ((rover < low) || (rover > high)) 5035 rover = low; 5036 index = sctp_phashfn(rover); 5037 head = &sctp_port_hashtable[index]; 5038 sctp_spin_lock(&head->lock); 5039 for (pp = head->chain; pp; pp = pp->next) 5040 if (pp->port == rover) 5041 goto next; 5042 break; 5043 next: 5044 sctp_spin_unlock(&head->lock); 5045 } while (--remaining > 0); 5046 sctp_port_rover = rover; 5047 sctp_spin_unlock(&sctp_port_alloc_lock); 5048 5049 /* Exhausted local port range during search? */ 5050 ret = 1; 5051 if (remaining <= 0) 5052 goto fail; 5053 5054 /* OK, here is the one we will use. HEAD (the port 5055 * hash table list entry) is non-NULL and we hold it's 5056 * mutex. 5057 */ 5058 snum = rover; 5059 } else { 5060 /* We are given an specific port number; we verify 5061 * that it is not being used. If it is used, we will 5062 * exahust the search in the hash list corresponding 5063 * to the port number (snum) - we detect that with the 5064 * port iterator, pp being NULL. 5065 */ 5066 head = &sctp_port_hashtable[sctp_phashfn(snum)]; 5067 sctp_spin_lock(&head->lock); 5068 for (pp = head->chain; pp; pp = pp->next) { 5069 if (pp->port == snum) 5070 goto pp_found; 5071 } 5072 } 5073 pp = NULL; 5074 goto pp_not_found; 5075 pp_found: 5076 if (!hlist_empty(&pp->owner)) { 5077 /* We had a port hash table hit - there is an 5078 * available port (pp != NULL) and it is being 5079 * used by other socket (pp->owner not empty); that other 5080 * socket is going to be sk2. 5081 */ 5082 int reuse = sk->sk_reuse; 5083 struct sock *sk2; 5084 struct hlist_node *node; 5085 5086 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n"); 5087 if (pp->fastreuse && sk->sk_reuse && 5088 sk->sk_state != SCTP_SS_LISTENING) 5089 goto success; 5090 5091 /* Run through the list of sockets bound to the port 5092 * (pp->port) [via the pointers bind_next and 5093 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 5094 * we get the endpoint they describe and run through 5095 * the endpoint's list of IP (v4 or v6) addresses, 5096 * comparing each of the addresses with the address of 5097 * the socket sk. If we find a match, then that means 5098 * that this port/socket (sk) combination are already 5099 * in an endpoint. 5100 */ 5101 sk_for_each_bound(sk2, node, &pp->owner) { 5102 struct sctp_endpoint *ep2; 5103 ep2 = sctp_sk(sk2)->ep; 5104 5105 if (reuse && sk2->sk_reuse && 5106 sk2->sk_state != SCTP_SS_LISTENING) 5107 continue; 5108 5109 if (sctp_bind_addr_match(&ep2->base.bind_addr, addr, 5110 sctp_sk(sk))) { 5111 ret = (long)sk2; 5112 goto fail_unlock; 5113 } 5114 } 5115 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n"); 5116 } 5117 pp_not_found: 5118 /* If there was a hash table miss, create a new port. */ 5119 ret = 1; 5120 if (!pp && !(pp = sctp_bucket_create(head, snum))) 5121 goto fail_unlock; 5122 5123 /* In either case (hit or miss), make sure fastreuse is 1 only 5124 * if sk->sk_reuse is too (that is, if the caller requested 5125 * SO_REUSEADDR on this socket -sk-). 5126 */ 5127 if (hlist_empty(&pp->owner)) { 5128 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 5129 pp->fastreuse = 1; 5130 else 5131 pp->fastreuse = 0; 5132 } else if (pp->fastreuse && 5133 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 5134 pp->fastreuse = 0; 5135 5136 /* We are set, so fill up all the data in the hash table 5137 * entry, tie the socket list information with the rest of the 5138 * sockets FIXME: Blurry, NPI (ipg). 5139 */ 5140 success: 5141 if (!sctp_sk(sk)->bind_hash) { 5142 inet_sk(sk)->num = snum; 5143 sk_add_bind_node(sk, &pp->owner); 5144 sctp_sk(sk)->bind_hash = pp; 5145 } 5146 ret = 0; 5147 5148 fail_unlock: 5149 sctp_spin_unlock(&head->lock); 5150 5151 fail: 5152 sctp_local_bh_enable(); 5153 return ret; 5154 } 5155 5156 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 5157 * port is requested. 5158 */ 5159 static int sctp_get_port(struct sock *sk, unsigned short snum) 5160 { 5161 long ret; 5162 union sctp_addr addr; 5163 struct sctp_af *af = sctp_sk(sk)->pf->af; 5164 5165 /* Set up a dummy address struct from the sk. */ 5166 af->from_sk(&addr, sk); 5167 addr.v4.sin_port = htons(snum); 5168 5169 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 5170 ret = sctp_get_port_local(sk, &addr); 5171 5172 return (ret ? 1 : 0); 5173 } 5174 5175 /* 5176 * 3.1.3 listen() - UDP Style Syntax 5177 * 5178 * By default, new associations are not accepted for UDP style sockets. 5179 * An application uses listen() to mark a socket as being able to 5180 * accept new associations. 5181 */ 5182 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog) 5183 { 5184 struct sctp_sock *sp = sctp_sk(sk); 5185 struct sctp_endpoint *ep = sp->ep; 5186 5187 /* Only UDP style sockets that are not peeled off are allowed to 5188 * listen(). 5189 */ 5190 if (!sctp_style(sk, UDP)) 5191 return -EINVAL; 5192 5193 /* If backlog is zero, disable listening. */ 5194 if (!backlog) { 5195 if (sctp_sstate(sk, CLOSED)) 5196 return 0; 5197 5198 sctp_unhash_endpoint(ep); 5199 sk->sk_state = SCTP_SS_CLOSED; 5200 } 5201 5202 /* Return if we are already listening. */ 5203 if (sctp_sstate(sk, LISTENING)) 5204 return 0; 5205 5206 /* 5207 * If a bind() or sctp_bindx() is not called prior to a listen() 5208 * call that allows new associations to be accepted, the system 5209 * picks an ephemeral port and will choose an address set equivalent 5210 * to binding with a wildcard address. 5211 * 5212 * This is not currently spelled out in the SCTP sockets 5213 * extensions draft, but follows the practice as seen in TCP 5214 * sockets. 5215 * 5216 * Additionally, turn off fastreuse flag since we are not listening 5217 */ 5218 sk->sk_state = SCTP_SS_LISTENING; 5219 if (!ep->base.bind_addr.port) { 5220 if (sctp_autobind(sk)) 5221 return -EAGAIN; 5222 } else 5223 sctp_sk(sk)->bind_hash->fastreuse = 0; 5224 5225 sctp_hash_endpoint(ep); 5226 return 0; 5227 } 5228 5229 /* 5230 * 4.1.3 listen() - TCP Style Syntax 5231 * 5232 * Applications uses listen() to ready the SCTP endpoint for accepting 5233 * inbound associations. 5234 */ 5235 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog) 5236 { 5237 struct sctp_sock *sp = sctp_sk(sk); 5238 struct sctp_endpoint *ep = sp->ep; 5239 5240 /* If backlog is zero, disable listening. */ 5241 if (!backlog) { 5242 if (sctp_sstate(sk, CLOSED)) 5243 return 0; 5244 5245 sctp_unhash_endpoint(ep); 5246 sk->sk_state = SCTP_SS_CLOSED; 5247 } 5248 5249 if (sctp_sstate(sk, LISTENING)) 5250 return 0; 5251 5252 /* 5253 * If a bind() or sctp_bindx() is not called prior to a listen() 5254 * call that allows new associations to be accepted, the system 5255 * picks an ephemeral port and will choose an address set equivalent 5256 * to binding with a wildcard address. 5257 * 5258 * This is not currently spelled out in the SCTP sockets 5259 * extensions draft, but follows the practice as seen in TCP 5260 * sockets. 5261 */ 5262 sk->sk_state = SCTP_SS_LISTENING; 5263 if (!ep->base.bind_addr.port) { 5264 if (sctp_autobind(sk)) 5265 return -EAGAIN; 5266 } else 5267 sctp_sk(sk)->bind_hash->fastreuse = 0; 5268 5269 sk->sk_max_ack_backlog = backlog; 5270 sctp_hash_endpoint(ep); 5271 return 0; 5272 } 5273 5274 /* 5275 * Move a socket to LISTENING state. 5276 */ 5277 int sctp_inet_listen(struct socket *sock, int backlog) 5278 { 5279 struct sock *sk = sock->sk; 5280 struct crypto_hash *tfm = NULL; 5281 int err = -EINVAL; 5282 5283 if (unlikely(backlog < 0)) 5284 goto out; 5285 5286 sctp_lock_sock(sk); 5287 5288 if (sock->state != SS_UNCONNECTED) 5289 goto out; 5290 5291 /* Allocate HMAC for generating cookie. */ 5292 if (sctp_hmac_alg) { 5293 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC); 5294 if (IS_ERR(tfm)) { 5295 if (net_ratelimit()) { 5296 printk(KERN_INFO 5297 "SCTP: failed to load transform for %s: %ld\n", 5298 sctp_hmac_alg, PTR_ERR(tfm)); 5299 } 5300 err = -ENOSYS; 5301 goto out; 5302 } 5303 } 5304 5305 switch (sock->type) { 5306 case SOCK_SEQPACKET: 5307 err = sctp_seqpacket_listen(sk, backlog); 5308 break; 5309 case SOCK_STREAM: 5310 err = sctp_stream_listen(sk, backlog); 5311 break; 5312 default: 5313 break; 5314 } 5315 5316 if (err) 5317 goto cleanup; 5318 5319 /* Store away the transform reference. */ 5320 sctp_sk(sk)->hmac = tfm; 5321 out: 5322 sctp_release_sock(sk); 5323 return err; 5324 cleanup: 5325 crypto_free_hash(tfm); 5326 goto out; 5327 } 5328 5329 /* 5330 * This function is done by modeling the current datagram_poll() and the 5331 * tcp_poll(). Note that, based on these implementations, we don't 5332 * lock the socket in this function, even though it seems that, 5333 * ideally, locking or some other mechanisms can be used to ensure 5334 * the integrity of the counters (sndbuf and wmem_alloc) used 5335 * in this place. We assume that we don't need locks either until proven 5336 * otherwise. 5337 * 5338 * Another thing to note is that we include the Async I/O support 5339 * here, again, by modeling the current TCP/UDP code. We don't have 5340 * a good way to test with it yet. 5341 */ 5342 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 5343 { 5344 struct sock *sk = sock->sk; 5345 struct sctp_sock *sp = sctp_sk(sk); 5346 unsigned int mask; 5347 5348 poll_wait(file, sk->sk_sleep, wait); 5349 5350 /* A TCP-style listening socket becomes readable when the accept queue 5351 * is not empty. 5352 */ 5353 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 5354 return (!list_empty(&sp->ep->asocs)) ? 5355 (POLLIN | POLLRDNORM) : 0; 5356 5357 mask = 0; 5358 5359 /* Is there any exceptional events? */ 5360 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 5361 mask |= POLLERR; 5362 if (sk->sk_shutdown & RCV_SHUTDOWN) 5363 mask |= POLLRDHUP; 5364 if (sk->sk_shutdown == SHUTDOWN_MASK) 5365 mask |= POLLHUP; 5366 5367 /* Is it readable? Reconsider this code with TCP-style support. */ 5368 if (!skb_queue_empty(&sk->sk_receive_queue) || 5369 (sk->sk_shutdown & RCV_SHUTDOWN)) 5370 mask |= POLLIN | POLLRDNORM; 5371 5372 /* The association is either gone or not ready. */ 5373 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 5374 return mask; 5375 5376 /* Is it writable? */ 5377 if (sctp_writeable(sk)) { 5378 mask |= POLLOUT | POLLWRNORM; 5379 } else { 5380 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 5381 /* 5382 * Since the socket is not locked, the buffer 5383 * might be made available after the writeable check and 5384 * before the bit is set. This could cause a lost I/O 5385 * signal. tcp_poll() has a race breaker for this race 5386 * condition. Based on their implementation, we put 5387 * in the following code to cover it as well. 5388 */ 5389 if (sctp_writeable(sk)) 5390 mask |= POLLOUT | POLLWRNORM; 5391 } 5392 return mask; 5393 } 5394 5395 /******************************************************************** 5396 * 2nd Level Abstractions 5397 ********************************************************************/ 5398 5399 static struct sctp_bind_bucket *sctp_bucket_create( 5400 struct sctp_bind_hashbucket *head, unsigned short snum) 5401 { 5402 struct sctp_bind_bucket *pp; 5403 5404 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 5405 SCTP_DBG_OBJCNT_INC(bind_bucket); 5406 if (pp) { 5407 pp->port = snum; 5408 pp->fastreuse = 0; 5409 INIT_HLIST_HEAD(&pp->owner); 5410 if ((pp->next = head->chain) != NULL) 5411 pp->next->pprev = &pp->next; 5412 head->chain = pp; 5413 pp->pprev = &head->chain; 5414 } 5415 return pp; 5416 } 5417 5418 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 5419 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 5420 { 5421 if (pp && hlist_empty(&pp->owner)) { 5422 if (pp->next) 5423 pp->next->pprev = pp->pprev; 5424 *(pp->pprev) = pp->next; 5425 kmem_cache_free(sctp_bucket_cachep, pp); 5426 SCTP_DBG_OBJCNT_DEC(bind_bucket); 5427 } 5428 } 5429 5430 /* Release this socket's reference to a local port. */ 5431 static inline void __sctp_put_port(struct sock *sk) 5432 { 5433 struct sctp_bind_hashbucket *head = 5434 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)]; 5435 struct sctp_bind_bucket *pp; 5436 5437 sctp_spin_lock(&head->lock); 5438 pp = sctp_sk(sk)->bind_hash; 5439 __sk_del_bind_node(sk); 5440 sctp_sk(sk)->bind_hash = NULL; 5441 inet_sk(sk)->num = 0; 5442 sctp_bucket_destroy(pp); 5443 sctp_spin_unlock(&head->lock); 5444 } 5445 5446 void sctp_put_port(struct sock *sk) 5447 { 5448 sctp_local_bh_disable(); 5449 __sctp_put_port(sk); 5450 sctp_local_bh_enable(); 5451 } 5452 5453 /* 5454 * The system picks an ephemeral port and choose an address set equivalent 5455 * to binding with a wildcard address. 5456 * One of those addresses will be the primary address for the association. 5457 * This automatically enables the multihoming capability of SCTP. 5458 */ 5459 static int sctp_autobind(struct sock *sk) 5460 { 5461 union sctp_addr autoaddr; 5462 struct sctp_af *af; 5463 __be16 port; 5464 5465 /* Initialize a local sockaddr structure to INADDR_ANY. */ 5466 af = sctp_sk(sk)->pf->af; 5467 5468 port = htons(inet_sk(sk)->num); 5469 af->inaddr_any(&autoaddr, port); 5470 5471 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 5472 } 5473 5474 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 5475 * 5476 * From RFC 2292 5477 * 4.2 The cmsghdr Structure * 5478 * 5479 * When ancillary data is sent or received, any number of ancillary data 5480 * objects can be specified by the msg_control and msg_controllen members of 5481 * the msghdr structure, because each object is preceded by 5482 * a cmsghdr structure defining the object's length (the cmsg_len member). 5483 * Historically Berkeley-derived implementations have passed only one object 5484 * at a time, but this API allows multiple objects to be 5485 * passed in a single call to sendmsg() or recvmsg(). The following example 5486 * shows two ancillary data objects in a control buffer. 5487 * 5488 * |<--------------------------- msg_controllen -------------------------->| 5489 * | | 5490 * 5491 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 5492 * 5493 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 5494 * | | | 5495 * 5496 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 5497 * 5498 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 5499 * | | | | | 5500 * 5501 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 5502 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 5503 * 5504 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 5505 * 5506 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 5507 * ^ 5508 * | 5509 * 5510 * msg_control 5511 * points here 5512 */ 5513 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg, 5514 sctp_cmsgs_t *cmsgs) 5515 { 5516 struct cmsghdr *cmsg; 5517 5518 for (cmsg = CMSG_FIRSTHDR(msg); 5519 cmsg != NULL; 5520 cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) { 5521 if (!CMSG_OK(msg, cmsg)) 5522 return -EINVAL; 5523 5524 /* Should we parse this header or ignore? */ 5525 if (cmsg->cmsg_level != IPPROTO_SCTP) 5526 continue; 5527 5528 /* Strictly check lengths following example in SCM code. */ 5529 switch (cmsg->cmsg_type) { 5530 case SCTP_INIT: 5531 /* SCTP Socket API Extension 5532 * 5.2.1 SCTP Initiation Structure (SCTP_INIT) 5533 * 5534 * This cmsghdr structure provides information for 5535 * initializing new SCTP associations with sendmsg(). 5536 * The SCTP_INITMSG socket option uses this same data 5537 * structure. This structure is not used for 5538 * recvmsg(). 5539 * 5540 * cmsg_level cmsg_type cmsg_data[] 5541 * ------------ ------------ ---------------------- 5542 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 5543 */ 5544 if (cmsg->cmsg_len != 5545 CMSG_LEN(sizeof(struct sctp_initmsg))) 5546 return -EINVAL; 5547 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); 5548 break; 5549 5550 case SCTP_SNDRCV: 5551 /* SCTP Socket API Extension 5552 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) 5553 * 5554 * This cmsghdr structure specifies SCTP options for 5555 * sendmsg() and describes SCTP header information 5556 * about a received message through recvmsg(). 5557 * 5558 * cmsg_level cmsg_type cmsg_data[] 5559 * ------------ ------------ ---------------------- 5560 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 5561 */ 5562 if (cmsg->cmsg_len != 5563 CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 5564 return -EINVAL; 5565 5566 cmsgs->info = 5567 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); 5568 5569 /* Minimally, validate the sinfo_flags. */ 5570 if (cmsgs->info->sinfo_flags & 5571 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 5572 SCTP_ABORT | SCTP_EOF)) 5573 return -EINVAL; 5574 break; 5575 5576 default: 5577 return -EINVAL; 5578 } 5579 } 5580 return 0; 5581 } 5582 5583 /* 5584 * Wait for a packet.. 5585 * Note: This function is the same function as in core/datagram.c 5586 * with a few modifications to make lksctp work. 5587 */ 5588 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p) 5589 { 5590 int error; 5591 DEFINE_WAIT(wait); 5592 5593 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 5594 5595 /* Socket errors? */ 5596 error = sock_error(sk); 5597 if (error) 5598 goto out; 5599 5600 if (!skb_queue_empty(&sk->sk_receive_queue)) 5601 goto ready; 5602 5603 /* Socket shut down? */ 5604 if (sk->sk_shutdown & RCV_SHUTDOWN) 5605 goto out; 5606 5607 /* Sequenced packets can come disconnected. If so we report the 5608 * problem. 5609 */ 5610 error = -ENOTCONN; 5611 5612 /* Is there a good reason to think that we may receive some data? */ 5613 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 5614 goto out; 5615 5616 /* Handle signals. */ 5617 if (signal_pending(current)) 5618 goto interrupted; 5619 5620 /* Let another process have a go. Since we are going to sleep 5621 * anyway. Note: This may cause odd behaviors if the message 5622 * does not fit in the user's buffer, but this seems to be the 5623 * only way to honor MSG_DONTWAIT realistically. 5624 */ 5625 sctp_release_sock(sk); 5626 *timeo_p = schedule_timeout(*timeo_p); 5627 sctp_lock_sock(sk); 5628 5629 ready: 5630 finish_wait(sk->sk_sleep, &wait); 5631 return 0; 5632 5633 interrupted: 5634 error = sock_intr_errno(*timeo_p); 5635 5636 out: 5637 finish_wait(sk->sk_sleep, &wait); 5638 *err = error; 5639 return error; 5640 } 5641 5642 /* Receive a datagram. 5643 * Note: This is pretty much the same routine as in core/datagram.c 5644 * with a few changes to make lksctp work. 5645 */ 5646 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 5647 int noblock, int *err) 5648 { 5649 int error; 5650 struct sk_buff *skb; 5651 long timeo; 5652 5653 timeo = sock_rcvtimeo(sk, noblock); 5654 5655 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n", 5656 timeo, MAX_SCHEDULE_TIMEOUT); 5657 5658 do { 5659 /* Again only user level code calls this function, 5660 * so nothing interrupt level 5661 * will suddenly eat the receive_queue. 5662 * 5663 * Look at current nfs client by the way... 5664 * However, this function was corrent in any case. 8) 5665 */ 5666 if (flags & MSG_PEEK) { 5667 spin_lock_bh(&sk->sk_receive_queue.lock); 5668 skb = skb_peek(&sk->sk_receive_queue); 5669 if (skb) 5670 atomic_inc(&skb->users); 5671 spin_unlock_bh(&sk->sk_receive_queue.lock); 5672 } else { 5673 skb = skb_dequeue(&sk->sk_receive_queue); 5674 } 5675 5676 if (skb) 5677 return skb; 5678 5679 /* Caller is allowed not to check sk->sk_err before calling. */ 5680 error = sock_error(sk); 5681 if (error) 5682 goto no_packet; 5683 5684 if (sk->sk_shutdown & RCV_SHUTDOWN) 5685 break; 5686 5687 /* User doesn't want to wait. */ 5688 error = -EAGAIN; 5689 if (!timeo) 5690 goto no_packet; 5691 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 5692 5693 return NULL; 5694 5695 no_packet: 5696 *err = error; 5697 return NULL; 5698 } 5699 5700 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 5701 static void __sctp_write_space(struct sctp_association *asoc) 5702 { 5703 struct sock *sk = asoc->base.sk; 5704 struct socket *sock = sk->sk_socket; 5705 5706 if ((sctp_wspace(asoc) > 0) && sock) { 5707 if (waitqueue_active(&asoc->wait)) 5708 wake_up_interruptible(&asoc->wait); 5709 5710 if (sctp_writeable(sk)) { 5711 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 5712 wake_up_interruptible(sk->sk_sleep); 5713 5714 /* Note that we try to include the Async I/O support 5715 * here by modeling from the current TCP/UDP code. 5716 * We have not tested with it yet. 5717 */ 5718 if (sock->fasync_list && 5719 !(sk->sk_shutdown & SEND_SHUTDOWN)) 5720 sock_wake_async(sock, 2, POLL_OUT); 5721 } 5722 } 5723 } 5724 5725 /* Do accounting for the sndbuf space. 5726 * Decrement the used sndbuf space of the corresponding association by the 5727 * data size which was just transmitted(freed). 5728 */ 5729 static void sctp_wfree(struct sk_buff *skb) 5730 { 5731 struct sctp_association *asoc; 5732 struct sctp_chunk *chunk; 5733 struct sock *sk; 5734 5735 /* Get the saved chunk pointer. */ 5736 chunk = *((struct sctp_chunk **)(skb->cb)); 5737 asoc = chunk->asoc; 5738 sk = asoc->base.sk; 5739 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 5740 sizeof(struct sk_buff) + 5741 sizeof(struct sctp_chunk); 5742 5743 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 5744 5745 sock_wfree(skb); 5746 __sctp_write_space(asoc); 5747 5748 sctp_association_put(asoc); 5749 } 5750 5751 /* Do accounting for the receive space on the socket. 5752 * Accounting for the association is done in ulpevent.c 5753 * We set this as a destructor for the cloned data skbs so that 5754 * accounting is done at the correct time. 5755 */ 5756 void sctp_sock_rfree(struct sk_buff *skb) 5757 { 5758 struct sock *sk = skb->sk; 5759 struct sctp_ulpevent *event = sctp_skb2event(skb); 5760 5761 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 5762 } 5763 5764 5765 /* Helper function to wait for space in the sndbuf. */ 5766 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 5767 size_t msg_len) 5768 { 5769 struct sock *sk = asoc->base.sk; 5770 int err = 0; 5771 long current_timeo = *timeo_p; 5772 DEFINE_WAIT(wait); 5773 5774 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n", 5775 asoc, (long)(*timeo_p), msg_len); 5776 5777 /* Increment the association's refcnt. */ 5778 sctp_association_hold(asoc); 5779 5780 /* Wait on the association specific sndbuf space. */ 5781 for (;;) { 5782 prepare_to_wait_exclusive(&asoc->wait, &wait, 5783 TASK_INTERRUPTIBLE); 5784 if (!*timeo_p) 5785 goto do_nonblock; 5786 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 5787 asoc->base.dead) 5788 goto do_error; 5789 if (signal_pending(current)) 5790 goto do_interrupted; 5791 if (msg_len <= sctp_wspace(asoc)) 5792 break; 5793 5794 /* Let another process have a go. Since we are going 5795 * to sleep anyway. 5796 */ 5797 sctp_release_sock(sk); 5798 current_timeo = schedule_timeout(current_timeo); 5799 BUG_ON(sk != asoc->base.sk); 5800 sctp_lock_sock(sk); 5801 5802 *timeo_p = current_timeo; 5803 } 5804 5805 out: 5806 finish_wait(&asoc->wait, &wait); 5807 5808 /* Release the association's refcnt. */ 5809 sctp_association_put(asoc); 5810 5811 return err; 5812 5813 do_error: 5814 err = -EPIPE; 5815 goto out; 5816 5817 do_interrupted: 5818 err = sock_intr_errno(*timeo_p); 5819 goto out; 5820 5821 do_nonblock: 5822 err = -EAGAIN; 5823 goto out; 5824 } 5825 5826 /* If socket sndbuf has changed, wake up all per association waiters. */ 5827 void sctp_write_space(struct sock *sk) 5828 { 5829 struct sctp_association *asoc; 5830 struct list_head *pos; 5831 5832 /* Wake up the tasks in each wait queue. */ 5833 list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) { 5834 asoc = list_entry(pos, struct sctp_association, asocs); 5835 __sctp_write_space(asoc); 5836 } 5837 } 5838 5839 /* Is there any sndbuf space available on the socket? 5840 * 5841 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 5842 * associations on the same socket. For a UDP-style socket with 5843 * multiple associations, it is possible for it to be "unwriteable" 5844 * prematurely. I assume that this is acceptable because 5845 * a premature "unwriteable" is better than an accidental "writeable" which 5846 * would cause an unwanted block under certain circumstances. For the 1-1 5847 * UDP-style sockets or TCP-style sockets, this code should work. 5848 * - Daisy 5849 */ 5850 static int sctp_writeable(struct sock *sk) 5851 { 5852 int amt = 0; 5853 5854 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 5855 if (amt < 0) 5856 amt = 0; 5857 return amt; 5858 } 5859 5860 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 5861 * returns immediately with EINPROGRESS. 5862 */ 5863 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 5864 { 5865 struct sock *sk = asoc->base.sk; 5866 int err = 0; 5867 long current_timeo = *timeo_p; 5868 DEFINE_WAIT(wait); 5869 5870 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc, 5871 (long)(*timeo_p)); 5872 5873 /* Increment the association's refcnt. */ 5874 sctp_association_hold(asoc); 5875 5876 for (;;) { 5877 prepare_to_wait_exclusive(&asoc->wait, &wait, 5878 TASK_INTERRUPTIBLE); 5879 if (!*timeo_p) 5880 goto do_nonblock; 5881 if (sk->sk_shutdown & RCV_SHUTDOWN) 5882 break; 5883 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 5884 asoc->base.dead) 5885 goto do_error; 5886 if (signal_pending(current)) 5887 goto do_interrupted; 5888 5889 if (sctp_state(asoc, ESTABLISHED)) 5890 break; 5891 5892 /* Let another process have a go. Since we are going 5893 * to sleep anyway. 5894 */ 5895 sctp_release_sock(sk); 5896 current_timeo = schedule_timeout(current_timeo); 5897 sctp_lock_sock(sk); 5898 5899 *timeo_p = current_timeo; 5900 } 5901 5902 out: 5903 finish_wait(&asoc->wait, &wait); 5904 5905 /* Release the association's refcnt. */ 5906 sctp_association_put(asoc); 5907 5908 return err; 5909 5910 do_error: 5911 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 5912 err = -ETIMEDOUT; 5913 else 5914 err = -ECONNREFUSED; 5915 goto out; 5916 5917 do_interrupted: 5918 err = sock_intr_errno(*timeo_p); 5919 goto out; 5920 5921 do_nonblock: 5922 err = -EINPROGRESS; 5923 goto out; 5924 } 5925 5926 static int sctp_wait_for_accept(struct sock *sk, long timeo) 5927 { 5928 struct sctp_endpoint *ep; 5929 int err = 0; 5930 DEFINE_WAIT(wait); 5931 5932 ep = sctp_sk(sk)->ep; 5933 5934 5935 for (;;) { 5936 prepare_to_wait_exclusive(sk->sk_sleep, &wait, 5937 TASK_INTERRUPTIBLE); 5938 5939 if (list_empty(&ep->asocs)) { 5940 sctp_release_sock(sk); 5941 timeo = schedule_timeout(timeo); 5942 sctp_lock_sock(sk); 5943 } 5944 5945 err = -EINVAL; 5946 if (!sctp_sstate(sk, LISTENING)) 5947 break; 5948 5949 err = 0; 5950 if (!list_empty(&ep->asocs)) 5951 break; 5952 5953 err = sock_intr_errno(timeo); 5954 if (signal_pending(current)) 5955 break; 5956 5957 err = -EAGAIN; 5958 if (!timeo) 5959 break; 5960 } 5961 5962 finish_wait(sk->sk_sleep, &wait); 5963 5964 return err; 5965 } 5966 5967 void sctp_wait_for_close(struct sock *sk, long timeout) 5968 { 5969 DEFINE_WAIT(wait); 5970 5971 do { 5972 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 5973 if (list_empty(&sctp_sk(sk)->ep->asocs)) 5974 break; 5975 sctp_release_sock(sk); 5976 timeout = schedule_timeout(timeout); 5977 sctp_lock_sock(sk); 5978 } while (!signal_pending(current) && timeout); 5979 5980 finish_wait(sk->sk_sleep, &wait); 5981 } 5982 5983 static void sctp_sock_rfree_frag(struct sk_buff *skb) 5984 { 5985 struct sk_buff *frag; 5986 5987 if (!skb->data_len) 5988 goto done; 5989 5990 /* Don't forget the fragments. */ 5991 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) 5992 sctp_sock_rfree_frag(frag); 5993 5994 done: 5995 sctp_sock_rfree(skb); 5996 } 5997 5998 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 5999 { 6000 struct sk_buff *frag; 6001 6002 if (!skb->data_len) 6003 goto done; 6004 6005 /* Don't forget the fragments. */ 6006 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) 6007 sctp_skb_set_owner_r_frag(frag, sk); 6008 6009 done: 6010 sctp_skb_set_owner_r(skb, sk); 6011 } 6012 6013 /* Populate the fields of the newsk from the oldsk and migrate the assoc 6014 * and its messages to the newsk. 6015 */ 6016 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 6017 struct sctp_association *assoc, 6018 sctp_socket_type_t type) 6019 { 6020 struct sctp_sock *oldsp = sctp_sk(oldsk); 6021 struct sctp_sock *newsp = sctp_sk(newsk); 6022 struct sctp_bind_bucket *pp; /* hash list port iterator */ 6023 struct sctp_endpoint *newep = newsp->ep; 6024 struct sk_buff *skb, *tmp; 6025 struct sctp_ulpevent *event; 6026 int flags = 0; 6027 6028 /* Migrate socket buffer sizes and all the socket level options to the 6029 * new socket. 6030 */ 6031 newsk->sk_sndbuf = oldsk->sk_sndbuf; 6032 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 6033 /* Brute force copy old sctp opt. */ 6034 inet_sk_copy_descendant(newsk, oldsk); 6035 6036 /* Restore the ep value that was overwritten with the above structure 6037 * copy. 6038 */ 6039 newsp->ep = newep; 6040 newsp->hmac = NULL; 6041 6042 /* Hook this new socket in to the bind_hash list. */ 6043 pp = sctp_sk(oldsk)->bind_hash; 6044 sk_add_bind_node(newsk, &pp->owner); 6045 sctp_sk(newsk)->bind_hash = pp; 6046 inet_sk(newsk)->num = inet_sk(oldsk)->num; 6047 6048 /* Copy the bind_addr list from the original endpoint to the new 6049 * endpoint so that we can handle restarts properly 6050 */ 6051 if (PF_INET6 == assoc->base.sk->sk_family) 6052 flags = SCTP_ADDR6_ALLOWED; 6053 if (assoc->peer.ipv4_address) 6054 flags |= SCTP_ADDR4_PEERSUPP; 6055 if (assoc->peer.ipv6_address) 6056 flags |= SCTP_ADDR6_PEERSUPP; 6057 sctp_bind_addr_copy(&newsp->ep->base.bind_addr, 6058 &oldsp->ep->base.bind_addr, 6059 SCTP_SCOPE_GLOBAL, GFP_KERNEL, flags); 6060 6061 /* Move any messages in the old socket's receive queue that are for the 6062 * peeled off association to the new socket's receive queue. 6063 */ 6064 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 6065 event = sctp_skb2event(skb); 6066 if (event->asoc == assoc) { 6067 sctp_sock_rfree_frag(skb); 6068 __skb_unlink(skb, &oldsk->sk_receive_queue); 6069 __skb_queue_tail(&newsk->sk_receive_queue, skb); 6070 sctp_skb_set_owner_r_frag(skb, newsk); 6071 } 6072 } 6073 6074 /* Clean up any messages pending delivery due to partial 6075 * delivery. Three cases: 6076 * 1) No partial deliver; no work. 6077 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 6078 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 6079 */ 6080 skb_queue_head_init(&newsp->pd_lobby); 6081 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 6082 6083 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 6084 struct sk_buff_head *queue; 6085 6086 /* Decide which queue to move pd_lobby skbs to. */ 6087 if (assoc->ulpq.pd_mode) { 6088 queue = &newsp->pd_lobby; 6089 } else 6090 queue = &newsk->sk_receive_queue; 6091 6092 /* Walk through the pd_lobby, looking for skbs that 6093 * need moved to the new socket. 6094 */ 6095 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 6096 event = sctp_skb2event(skb); 6097 if (event->asoc == assoc) { 6098 sctp_sock_rfree_frag(skb); 6099 __skb_unlink(skb, &oldsp->pd_lobby); 6100 __skb_queue_tail(queue, skb); 6101 sctp_skb_set_owner_r_frag(skb, newsk); 6102 } 6103 } 6104 6105 /* Clear up any skbs waiting for the partial 6106 * delivery to finish. 6107 */ 6108 if (assoc->ulpq.pd_mode) 6109 sctp_clear_pd(oldsk, NULL); 6110 6111 } 6112 6113 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) { 6114 sctp_sock_rfree_frag(skb); 6115 sctp_skb_set_owner_r_frag(skb, newsk); 6116 } 6117 6118 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) { 6119 sctp_sock_rfree_frag(skb); 6120 sctp_skb_set_owner_r_frag(skb, newsk); 6121 } 6122 6123 /* Set the type of socket to indicate that it is peeled off from the 6124 * original UDP-style socket or created with the accept() call on a 6125 * TCP-style socket.. 6126 */ 6127 newsp->type = type; 6128 6129 /* Mark the new socket "in-use" by the user so that any packets 6130 * that may arrive on the association after we've moved it are 6131 * queued to the backlog. This prevents a potential race between 6132 * backlog processing on the old socket and new-packet processing 6133 * on the new socket. 6134 * 6135 * The caller has just allocated newsk so we can guarantee that other 6136 * paths won't try to lock it and then oldsk. 6137 */ 6138 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 6139 sctp_assoc_migrate(assoc, newsk); 6140 6141 /* If the association on the newsk is already closed before accept() 6142 * is called, set RCV_SHUTDOWN flag. 6143 */ 6144 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 6145 newsk->sk_shutdown |= RCV_SHUTDOWN; 6146 6147 newsk->sk_state = SCTP_SS_ESTABLISHED; 6148 sctp_release_sock(newsk); 6149 } 6150 6151 /* This proto struct describes the ULP interface for SCTP. */ 6152 struct proto sctp_prot = { 6153 .name = "SCTP", 6154 .owner = THIS_MODULE, 6155 .close = sctp_close, 6156 .connect = sctp_connect, 6157 .disconnect = sctp_disconnect, 6158 .accept = sctp_accept, 6159 .ioctl = sctp_ioctl, 6160 .init = sctp_init_sock, 6161 .destroy = sctp_destroy_sock, 6162 .shutdown = sctp_shutdown, 6163 .setsockopt = sctp_setsockopt, 6164 .getsockopt = sctp_getsockopt, 6165 .sendmsg = sctp_sendmsg, 6166 .recvmsg = sctp_recvmsg, 6167 .bind = sctp_bind, 6168 .backlog_rcv = sctp_backlog_rcv, 6169 .hash = sctp_hash, 6170 .unhash = sctp_unhash, 6171 .get_port = sctp_get_port, 6172 .obj_size = sizeof(struct sctp_sock), 6173 }; 6174 6175 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 6176 struct proto sctpv6_prot = { 6177 .name = "SCTPv6", 6178 .owner = THIS_MODULE, 6179 .close = sctp_close, 6180 .connect = sctp_connect, 6181 .disconnect = sctp_disconnect, 6182 .accept = sctp_accept, 6183 .ioctl = sctp_ioctl, 6184 .init = sctp_init_sock, 6185 .destroy = sctp_destroy_sock, 6186 .shutdown = sctp_shutdown, 6187 .setsockopt = sctp_setsockopt, 6188 .getsockopt = sctp_getsockopt, 6189 .sendmsg = sctp_sendmsg, 6190 .recvmsg = sctp_recvmsg, 6191 .bind = sctp_bind, 6192 .backlog_rcv = sctp_backlog_rcv, 6193 .hash = sctp_hash, 6194 .unhash = sctp_unhash, 6195 .get_port = sctp_get_port, 6196 .obj_size = sizeof(struct sctp6_sock), 6197 }; 6198 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */ 6199