xref: /linux/net/sctp/socket.c (revision bf74b964775009071cf12f9d59d4dd5e388fbe0b)
1 /* SCTP kernel reference Implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel reference Implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * The SCTP reference implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * The SCTP reference implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, write to
32  * the Free Software Foundation, 59 Temple Place - Suite 330,
33  * Boston, MA 02111-1307, USA.
34  *
35  * Please send any bug reports or fixes you make to the
36  * email address(es):
37  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
38  *
39  * Or submit a bug report through the following website:
40  *    http://www.sf.net/projects/lksctp
41  *
42  * Written or modified by:
43  *    La Monte H.P. Yarroll <piggy@acm.org>
44  *    Narasimha Budihal     <narsi@refcode.org>
45  *    Karl Knutson          <karl@athena.chicago.il.us>
46  *    Jon Grimm             <jgrimm@us.ibm.com>
47  *    Xingang Guo           <xingang.guo@intel.com>
48  *    Daisy Chang           <daisyc@us.ibm.com>
49  *    Sridhar Samudrala     <samudrala@us.ibm.com>
50  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
51  *    Ardelle Fan	    <ardelle.fan@intel.com>
52  *    Ryan Layer	    <rmlayer@us.ibm.com>
53  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
54  *    Kevin Gao             <kevin.gao@intel.com>
55  *
56  * Any bugs reported given to us we will try to fix... any fixes shared will
57  * be incorporated into the next SCTP release.
58  */
59 
60 #include <linux/types.h>
61 #include <linux/kernel.h>
62 #include <linux/wait.h>
63 #include <linux/time.h>
64 #include <linux/ip.h>
65 #include <linux/capability.h>
66 #include <linux/fcntl.h>
67 #include <linux/poll.h>
68 #include <linux/init.h>
69 #include <linux/crypto.h>
70 
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
76 
77 #include <linux/socket.h> /* for sa_family_t */
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81 
82 /* WARNING:  Please do not remove the SCTP_STATIC attribute to
83  * any of the functions below as they are used to export functions
84  * used by a project regression testsuite.
85  */
86 
87 /* Forward declarations for internal helper functions. */
88 static int sctp_writeable(struct sock *sk);
89 static void sctp_wfree(struct sk_buff *skb);
90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
91 				size_t msg_len);
92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
94 static int sctp_wait_for_accept(struct sock *sk, long timeo);
95 static void sctp_wait_for_close(struct sock *sk, long timeo);
96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
97 					union sctp_addr *addr, int len);
98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
102 static int sctp_send_asconf(struct sctp_association *asoc,
103 			    struct sctp_chunk *chunk);
104 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
105 static int sctp_autobind(struct sock *sk);
106 static void sctp_sock_migrate(struct sock *, struct sock *,
107 			      struct sctp_association *, sctp_socket_type_t);
108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
109 
110 extern struct kmem_cache *sctp_bucket_cachep;
111 
112 /* Get the sndbuf space available at the time on the association.  */
113 static inline int sctp_wspace(struct sctp_association *asoc)
114 {
115 	struct sock *sk = asoc->base.sk;
116 	int amt = 0;
117 
118 	if (asoc->ep->sndbuf_policy) {
119 		/* make sure that no association uses more than sk_sndbuf */
120 		amt = sk->sk_sndbuf - asoc->sndbuf_used;
121 	} else {
122 		/* do socket level accounting */
123 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
124 	}
125 
126 	if (amt < 0)
127 		amt = 0;
128 
129 	return amt;
130 }
131 
132 /* Increment the used sndbuf space count of the corresponding association by
133  * the size of the outgoing data chunk.
134  * Also, set the skb destructor for sndbuf accounting later.
135  *
136  * Since it is always 1-1 between chunk and skb, and also a new skb is always
137  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
138  * destructor in the data chunk skb for the purpose of the sndbuf space
139  * tracking.
140  */
141 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
142 {
143 	struct sctp_association *asoc = chunk->asoc;
144 	struct sock *sk = asoc->base.sk;
145 
146 	/* The sndbuf space is tracked per association.  */
147 	sctp_association_hold(asoc);
148 
149 	skb_set_owner_w(chunk->skb, sk);
150 
151 	chunk->skb->destructor = sctp_wfree;
152 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
153 	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
154 
155 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
156 				sizeof(struct sk_buff) +
157 				sizeof(struct sctp_chunk);
158 
159 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
160 }
161 
162 /* Verify that this is a valid address. */
163 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
164 				   int len)
165 {
166 	struct sctp_af *af;
167 
168 	/* Verify basic sockaddr. */
169 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
170 	if (!af)
171 		return -EINVAL;
172 
173 	/* Is this a valid SCTP address?  */
174 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
175 		return -EINVAL;
176 
177 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
178 		return -EINVAL;
179 
180 	return 0;
181 }
182 
183 /* Look up the association by its id.  If this is not a UDP-style
184  * socket, the ID field is always ignored.
185  */
186 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
187 {
188 	struct sctp_association *asoc = NULL;
189 
190 	/* If this is not a UDP-style socket, assoc id should be ignored. */
191 	if (!sctp_style(sk, UDP)) {
192 		/* Return NULL if the socket state is not ESTABLISHED. It
193 		 * could be a TCP-style listening socket or a socket which
194 		 * hasn't yet called connect() to establish an association.
195 		 */
196 		if (!sctp_sstate(sk, ESTABLISHED))
197 			return NULL;
198 
199 		/* Get the first and the only association from the list. */
200 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
201 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
202 					  struct sctp_association, asocs);
203 		return asoc;
204 	}
205 
206 	/* Otherwise this is a UDP-style socket. */
207 	if (!id || (id == (sctp_assoc_t)-1))
208 		return NULL;
209 
210 	spin_lock_bh(&sctp_assocs_id_lock);
211 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
212 	spin_unlock_bh(&sctp_assocs_id_lock);
213 
214 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
215 		return NULL;
216 
217 	return asoc;
218 }
219 
220 /* Look up the transport from an address and an assoc id. If both address and
221  * id are specified, the associations matching the address and the id should be
222  * the same.
223  */
224 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
225 					      struct sockaddr_storage *addr,
226 					      sctp_assoc_t id)
227 {
228 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
229 	struct sctp_transport *transport;
230 	union sctp_addr *laddr = (union sctp_addr *)addr;
231 
232 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
233 					       laddr,
234 					       &transport);
235 
236 	if (!addr_asoc)
237 		return NULL;
238 
239 	id_asoc = sctp_id2assoc(sk, id);
240 	if (id_asoc && (id_asoc != addr_asoc))
241 		return NULL;
242 
243 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
244 						(union sctp_addr *)addr);
245 
246 	return transport;
247 }
248 
249 /* API 3.1.2 bind() - UDP Style Syntax
250  * The syntax of bind() is,
251  *
252  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
253  *
254  *   sd      - the socket descriptor returned by socket().
255  *   addr    - the address structure (struct sockaddr_in or struct
256  *             sockaddr_in6 [RFC 2553]),
257  *   addr_len - the size of the address structure.
258  */
259 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
260 {
261 	int retval = 0;
262 
263 	sctp_lock_sock(sk);
264 
265 	SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
266 			  sk, addr, addr_len);
267 
268 	/* Disallow binding twice. */
269 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
270 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
271 				      addr_len);
272 	else
273 		retval = -EINVAL;
274 
275 	sctp_release_sock(sk);
276 
277 	return retval;
278 }
279 
280 static long sctp_get_port_local(struct sock *, union sctp_addr *);
281 
282 /* Verify this is a valid sockaddr. */
283 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
284 					union sctp_addr *addr, int len)
285 {
286 	struct sctp_af *af;
287 
288 	/* Check minimum size.  */
289 	if (len < sizeof (struct sockaddr))
290 		return NULL;
291 
292 	/* Does this PF support this AF? */
293 	if (!opt->pf->af_supported(addr->sa.sa_family, opt))
294 		return NULL;
295 
296 	/* If we get this far, af is valid. */
297 	af = sctp_get_af_specific(addr->sa.sa_family);
298 
299 	if (len < af->sockaddr_len)
300 		return NULL;
301 
302 	return af;
303 }
304 
305 /* Bind a local address either to an endpoint or to an association.  */
306 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
307 {
308 	struct sctp_sock *sp = sctp_sk(sk);
309 	struct sctp_endpoint *ep = sp->ep;
310 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
311 	struct sctp_af *af;
312 	unsigned short snum;
313 	int ret = 0;
314 
315 	/* Common sockaddr verification. */
316 	af = sctp_sockaddr_af(sp, addr, len);
317 	if (!af) {
318 		SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
319 				  sk, addr, len);
320 		return -EINVAL;
321 	}
322 
323 	snum = ntohs(addr->v4.sin_port);
324 
325 	SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
326 				 ", port: %d, new port: %d, len: %d)\n",
327 				 sk,
328 				 addr,
329 				 bp->port, snum,
330 				 len);
331 
332 	/* PF specific bind() address verification. */
333 	if (!sp->pf->bind_verify(sp, addr))
334 		return -EADDRNOTAVAIL;
335 
336 	/* We must either be unbound, or bind to the same port.
337 	 * It's OK to allow 0 ports if we are already bound.
338 	 * We'll just inhert an already bound port in this case
339 	 */
340 	if (bp->port) {
341 		if (!snum)
342 			snum = bp->port;
343 		else if (snum != bp->port) {
344 			SCTP_DEBUG_PRINTK("sctp_do_bind:"
345 				  " New port %d does not match existing port "
346 				  "%d.\n", snum, bp->port);
347 			return -EINVAL;
348 		}
349 	}
350 
351 	if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
352 		return -EACCES;
353 
354 	/* Make sure we are allowed to bind here.
355 	 * The function sctp_get_port_local() does duplicate address
356 	 * detection.
357 	 */
358 	if ((ret = sctp_get_port_local(sk, addr))) {
359 		if (ret == (long) sk) {
360 			/* This endpoint has a conflicting address. */
361 			return -EINVAL;
362 		} else {
363 			return -EADDRINUSE;
364 		}
365 	}
366 
367 	/* Refresh ephemeral port.  */
368 	if (!bp->port)
369 		bp->port = inet_sk(sk)->num;
370 
371 	/* Add the address to the bind address list.  */
372 	sctp_local_bh_disable();
373 	sctp_write_lock(&ep->base.addr_lock);
374 
375 	/* Use GFP_ATOMIC since BHs are disabled.  */
376 	ret = sctp_add_bind_addr(bp, addr, 1, GFP_ATOMIC);
377 	sctp_write_unlock(&ep->base.addr_lock);
378 	sctp_local_bh_enable();
379 
380 	/* Copy back into socket for getsockname() use. */
381 	if (!ret) {
382 		inet_sk(sk)->sport = htons(inet_sk(sk)->num);
383 		af->to_sk_saddr(addr, sk);
384 	}
385 
386 	return ret;
387 }
388 
389  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
390  *
391  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
392  * at any one time.  If a sender, after sending an ASCONF chunk, decides
393  * it needs to transfer another ASCONF Chunk, it MUST wait until the
394  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
395  * subsequent ASCONF. Note this restriction binds each side, so at any
396  * time two ASCONF may be in-transit on any given association (one sent
397  * from each endpoint).
398  */
399 static int sctp_send_asconf(struct sctp_association *asoc,
400 			    struct sctp_chunk *chunk)
401 {
402 	int		retval = 0;
403 
404 	/* If there is an outstanding ASCONF chunk, queue it for later
405 	 * transmission.
406 	 */
407 	if (asoc->addip_last_asconf) {
408 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
409 		goto out;
410 	}
411 
412 	/* Hold the chunk until an ASCONF_ACK is received. */
413 	sctp_chunk_hold(chunk);
414 	retval = sctp_primitive_ASCONF(asoc, chunk);
415 	if (retval)
416 		sctp_chunk_free(chunk);
417 	else
418 		asoc->addip_last_asconf = chunk;
419 
420 out:
421 	return retval;
422 }
423 
424 /* Add a list of addresses as bind addresses to local endpoint or
425  * association.
426  *
427  * Basically run through each address specified in the addrs/addrcnt
428  * array/length pair, determine if it is IPv6 or IPv4 and call
429  * sctp_do_bind() on it.
430  *
431  * If any of them fails, then the operation will be reversed and the
432  * ones that were added will be removed.
433  *
434  * Only sctp_setsockopt_bindx() is supposed to call this function.
435  */
436 int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
437 {
438 	int cnt;
439 	int retval = 0;
440 	void *addr_buf;
441 	struct sockaddr *sa_addr;
442 	struct sctp_af *af;
443 
444 	SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
445 			  sk, addrs, addrcnt);
446 
447 	addr_buf = addrs;
448 	for (cnt = 0; cnt < addrcnt; cnt++) {
449 		/* The list may contain either IPv4 or IPv6 address;
450 		 * determine the address length for walking thru the list.
451 		 */
452 		sa_addr = (struct sockaddr *)addr_buf;
453 		af = sctp_get_af_specific(sa_addr->sa_family);
454 		if (!af) {
455 			retval = -EINVAL;
456 			goto err_bindx_add;
457 		}
458 
459 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
460 				      af->sockaddr_len);
461 
462 		addr_buf += af->sockaddr_len;
463 
464 err_bindx_add:
465 		if (retval < 0) {
466 			/* Failed. Cleanup the ones that have been added */
467 			if (cnt > 0)
468 				sctp_bindx_rem(sk, addrs, cnt);
469 			return retval;
470 		}
471 	}
472 
473 	return retval;
474 }
475 
476 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
477  * associations that are part of the endpoint indicating that a list of local
478  * addresses are added to the endpoint.
479  *
480  * If any of the addresses is already in the bind address list of the
481  * association, we do not send the chunk for that association.  But it will not
482  * affect other associations.
483  *
484  * Only sctp_setsockopt_bindx() is supposed to call this function.
485  */
486 static int sctp_send_asconf_add_ip(struct sock		*sk,
487 				   struct sockaddr	*addrs,
488 				   int 			addrcnt)
489 {
490 	struct sctp_sock		*sp;
491 	struct sctp_endpoint		*ep;
492 	struct sctp_association		*asoc;
493 	struct sctp_bind_addr		*bp;
494 	struct sctp_chunk		*chunk;
495 	struct sctp_sockaddr_entry	*laddr;
496 	union sctp_addr			*addr;
497 	union sctp_addr			saveaddr;
498 	void				*addr_buf;
499 	struct sctp_af			*af;
500 	struct list_head		*pos;
501 	struct list_head		*p;
502 	int 				i;
503 	int 				retval = 0;
504 
505 	if (!sctp_addip_enable)
506 		return retval;
507 
508 	sp = sctp_sk(sk);
509 	ep = sp->ep;
510 
511 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
512 			  __FUNCTION__, sk, addrs, addrcnt);
513 
514 	list_for_each(pos, &ep->asocs) {
515 		asoc = list_entry(pos, struct sctp_association, asocs);
516 
517 		if (!asoc->peer.asconf_capable)
518 			continue;
519 
520 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
521 			continue;
522 
523 		if (!sctp_state(asoc, ESTABLISHED))
524 			continue;
525 
526 		/* Check if any address in the packed array of addresses is
527 		 * in the bind address list of the association. If so,
528 		 * do not send the asconf chunk to its peer, but continue with
529 		 * other associations.
530 		 */
531 		addr_buf = addrs;
532 		for (i = 0; i < addrcnt; i++) {
533 			addr = (union sctp_addr *)addr_buf;
534 			af = sctp_get_af_specific(addr->v4.sin_family);
535 			if (!af) {
536 				retval = -EINVAL;
537 				goto out;
538 			}
539 
540 			if (sctp_assoc_lookup_laddr(asoc, addr))
541 				break;
542 
543 			addr_buf += af->sockaddr_len;
544 		}
545 		if (i < addrcnt)
546 			continue;
547 
548 		/* Use the first address in bind addr list of association as
549 		 * Address Parameter of ASCONF CHUNK.
550 		 */
551 		sctp_read_lock(&asoc->base.addr_lock);
552 		bp = &asoc->base.bind_addr;
553 		p = bp->address_list.next;
554 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
555 		sctp_read_unlock(&asoc->base.addr_lock);
556 
557 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
558 						   addrcnt, SCTP_PARAM_ADD_IP);
559 		if (!chunk) {
560 			retval = -ENOMEM;
561 			goto out;
562 		}
563 
564 		retval = sctp_send_asconf(asoc, chunk);
565 		if (retval)
566 			goto out;
567 
568 		/* Add the new addresses to the bind address list with
569 		 * use_as_src set to 0.
570 		 */
571 		sctp_local_bh_disable();
572 		sctp_write_lock(&asoc->base.addr_lock);
573 		addr_buf = addrs;
574 		for (i = 0; i < addrcnt; i++) {
575 			addr = (union sctp_addr *)addr_buf;
576 			af = sctp_get_af_specific(addr->v4.sin_family);
577 			memcpy(&saveaddr, addr, af->sockaddr_len);
578 			retval = sctp_add_bind_addr(bp, &saveaddr, 0,
579 						    GFP_ATOMIC);
580 			addr_buf += af->sockaddr_len;
581 		}
582 		sctp_write_unlock(&asoc->base.addr_lock);
583 		sctp_local_bh_enable();
584 	}
585 
586 out:
587 	return retval;
588 }
589 
590 /* Remove a list of addresses from bind addresses list.  Do not remove the
591  * last address.
592  *
593  * Basically run through each address specified in the addrs/addrcnt
594  * array/length pair, determine if it is IPv6 or IPv4 and call
595  * sctp_del_bind() on it.
596  *
597  * If any of them fails, then the operation will be reversed and the
598  * ones that were removed will be added back.
599  *
600  * At least one address has to be left; if only one address is
601  * available, the operation will return -EBUSY.
602  *
603  * Only sctp_setsockopt_bindx() is supposed to call this function.
604  */
605 int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
606 {
607 	struct sctp_sock *sp = sctp_sk(sk);
608 	struct sctp_endpoint *ep = sp->ep;
609 	int cnt;
610 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
611 	int retval = 0;
612 	void *addr_buf;
613 	union sctp_addr *sa_addr;
614 	struct sctp_af *af;
615 
616 	SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
617 			  sk, addrs, addrcnt);
618 
619 	addr_buf = addrs;
620 	for (cnt = 0; cnt < addrcnt; cnt++) {
621 		/* If the bind address list is empty or if there is only one
622 		 * bind address, there is nothing more to be removed (we need
623 		 * at least one address here).
624 		 */
625 		if (list_empty(&bp->address_list) ||
626 		    (sctp_list_single_entry(&bp->address_list))) {
627 			retval = -EBUSY;
628 			goto err_bindx_rem;
629 		}
630 
631 		sa_addr = (union sctp_addr *)addr_buf;
632 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
633 		if (!af) {
634 			retval = -EINVAL;
635 			goto err_bindx_rem;
636 		}
637 
638 		if (!af->addr_valid(sa_addr, sp, NULL)) {
639 			retval = -EADDRNOTAVAIL;
640 			goto err_bindx_rem;
641 		}
642 
643 		if (sa_addr->v4.sin_port != htons(bp->port)) {
644 			retval = -EINVAL;
645 			goto err_bindx_rem;
646 		}
647 
648 		/* FIXME - There is probably a need to check if sk->sk_saddr and
649 		 * sk->sk_rcv_addr are currently set to one of the addresses to
650 		 * be removed. This is something which needs to be looked into
651 		 * when we are fixing the outstanding issues with multi-homing
652 		 * socket routing and failover schemes. Refer to comments in
653 		 * sctp_do_bind(). -daisy
654 		 */
655 		sctp_local_bh_disable();
656 		sctp_write_lock(&ep->base.addr_lock);
657 
658 		retval = sctp_del_bind_addr(bp, sa_addr);
659 
660 		sctp_write_unlock(&ep->base.addr_lock);
661 		sctp_local_bh_enable();
662 
663 		addr_buf += af->sockaddr_len;
664 err_bindx_rem:
665 		if (retval < 0) {
666 			/* Failed. Add the ones that has been removed back */
667 			if (cnt > 0)
668 				sctp_bindx_add(sk, addrs, cnt);
669 			return retval;
670 		}
671 	}
672 
673 	return retval;
674 }
675 
676 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
677  * the associations that are part of the endpoint indicating that a list of
678  * local addresses are removed from the endpoint.
679  *
680  * If any of the addresses is already in the bind address list of the
681  * association, we do not send the chunk for that association.  But it will not
682  * affect other associations.
683  *
684  * Only sctp_setsockopt_bindx() is supposed to call this function.
685  */
686 static int sctp_send_asconf_del_ip(struct sock		*sk,
687 				   struct sockaddr	*addrs,
688 				   int			addrcnt)
689 {
690 	struct sctp_sock	*sp;
691 	struct sctp_endpoint	*ep;
692 	struct sctp_association	*asoc;
693 	struct sctp_transport	*transport;
694 	struct sctp_bind_addr	*bp;
695 	struct sctp_chunk	*chunk;
696 	union sctp_addr		*laddr;
697 	void			*addr_buf;
698 	struct sctp_af		*af;
699 	struct list_head	*pos, *pos1;
700 	struct sctp_sockaddr_entry *saddr;
701 	int 			i;
702 	int 			retval = 0;
703 
704 	if (!sctp_addip_enable)
705 		return retval;
706 
707 	sp = sctp_sk(sk);
708 	ep = sp->ep;
709 
710 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
711 			  __FUNCTION__, sk, addrs, addrcnt);
712 
713 	list_for_each(pos, &ep->asocs) {
714 		asoc = list_entry(pos, struct sctp_association, asocs);
715 
716 		if (!asoc->peer.asconf_capable)
717 			continue;
718 
719 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
720 			continue;
721 
722 		if (!sctp_state(asoc, ESTABLISHED))
723 			continue;
724 
725 		/* Check if any address in the packed array of addresses is
726 		 * not present in the bind address list of the association.
727 		 * If so, do not send the asconf chunk to its peer, but
728 		 * continue with other associations.
729 		 */
730 		addr_buf = addrs;
731 		for (i = 0; i < addrcnt; i++) {
732 			laddr = (union sctp_addr *)addr_buf;
733 			af = sctp_get_af_specific(laddr->v4.sin_family);
734 			if (!af) {
735 				retval = -EINVAL;
736 				goto out;
737 			}
738 
739 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
740 				break;
741 
742 			addr_buf += af->sockaddr_len;
743 		}
744 		if (i < addrcnt)
745 			continue;
746 
747 		/* Find one address in the association's bind address list
748 		 * that is not in the packed array of addresses. This is to
749 		 * make sure that we do not delete all the addresses in the
750 		 * association.
751 		 */
752 		sctp_read_lock(&asoc->base.addr_lock);
753 		bp = &asoc->base.bind_addr;
754 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
755 					       addrcnt, sp);
756 		sctp_read_unlock(&asoc->base.addr_lock);
757 		if (!laddr)
758 			continue;
759 
760 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
761 						   SCTP_PARAM_DEL_IP);
762 		if (!chunk) {
763 			retval = -ENOMEM;
764 			goto out;
765 		}
766 
767 		/* Reset use_as_src flag for the addresses in the bind address
768 		 * list that are to be deleted.
769 		 */
770 		sctp_local_bh_disable();
771 		sctp_write_lock(&asoc->base.addr_lock);
772 		addr_buf = addrs;
773 		for (i = 0; i < addrcnt; i++) {
774 			laddr = (union sctp_addr *)addr_buf;
775 			af = sctp_get_af_specific(laddr->v4.sin_family);
776 			list_for_each(pos1, &bp->address_list) {
777 				saddr = list_entry(pos1,
778 						   struct sctp_sockaddr_entry,
779 						   list);
780 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
781 					saddr->use_as_src = 0;
782 			}
783 			addr_buf += af->sockaddr_len;
784 		}
785 		sctp_write_unlock(&asoc->base.addr_lock);
786 		sctp_local_bh_enable();
787 
788 		/* Update the route and saddr entries for all the transports
789 		 * as some of the addresses in the bind address list are
790 		 * about to be deleted and cannot be used as source addresses.
791 		 */
792 		list_for_each(pos1, &asoc->peer.transport_addr_list) {
793 			transport = list_entry(pos1, struct sctp_transport,
794 					       transports);
795 			dst_release(transport->dst);
796 			sctp_transport_route(transport, NULL,
797 					     sctp_sk(asoc->base.sk));
798 		}
799 
800 		retval = sctp_send_asconf(asoc, chunk);
801 	}
802 out:
803 	return retval;
804 }
805 
806 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
807  *
808  * API 8.1
809  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
810  *                int flags);
811  *
812  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
813  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
814  * or IPv6 addresses.
815  *
816  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
817  * Section 3.1.2 for this usage.
818  *
819  * addrs is a pointer to an array of one or more socket addresses. Each
820  * address is contained in its appropriate structure (i.e. struct
821  * sockaddr_in or struct sockaddr_in6) the family of the address type
822  * must be used to distinguish the address length (note that this
823  * representation is termed a "packed array" of addresses). The caller
824  * specifies the number of addresses in the array with addrcnt.
825  *
826  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
827  * -1, and sets errno to the appropriate error code.
828  *
829  * For SCTP, the port given in each socket address must be the same, or
830  * sctp_bindx() will fail, setting errno to EINVAL.
831  *
832  * The flags parameter is formed from the bitwise OR of zero or more of
833  * the following currently defined flags:
834  *
835  * SCTP_BINDX_ADD_ADDR
836  *
837  * SCTP_BINDX_REM_ADDR
838  *
839  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
840  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
841  * addresses from the association. The two flags are mutually exclusive;
842  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
843  * not remove all addresses from an association; sctp_bindx() will
844  * reject such an attempt with EINVAL.
845  *
846  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
847  * additional addresses with an endpoint after calling bind().  Or use
848  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
849  * socket is associated with so that no new association accepted will be
850  * associated with those addresses. If the endpoint supports dynamic
851  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
852  * endpoint to send the appropriate message to the peer to change the
853  * peers address lists.
854  *
855  * Adding and removing addresses from a connected association is
856  * optional functionality. Implementations that do not support this
857  * functionality should return EOPNOTSUPP.
858  *
859  * Basically do nothing but copying the addresses from user to kernel
860  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
861  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
862  * from userspace.
863  *
864  * We don't use copy_from_user() for optimization: we first do the
865  * sanity checks (buffer size -fast- and access check-healthy
866  * pointer); if all of those succeed, then we can alloc the memory
867  * (expensive operation) needed to copy the data to kernel. Then we do
868  * the copying without checking the user space area
869  * (__copy_from_user()).
870  *
871  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
872  * it.
873  *
874  * sk        The sk of the socket
875  * addrs     The pointer to the addresses in user land
876  * addrssize Size of the addrs buffer
877  * op        Operation to perform (add or remove, see the flags of
878  *           sctp_bindx)
879  *
880  * Returns 0 if ok, <0 errno code on error.
881  */
882 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
883 				      struct sockaddr __user *addrs,
884 				      int addrs_size, int op)
885 {
886 	struct sockaddr *kaddrs;
887 	int err;
888 	int addrcnt = 0;
889 	int walk_size = 0;
890 	struct sockaddr *sa_addr;
891 	void *addr_buf;
892 	struct sctp_af *af;
893 
894 	SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
895 			  " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
896 
897 	if (unlikely(addrs_size <= 0))
898 		return -EINVAL;
899 
900 	/* Check the user passed a healthy pointer.  */
901 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
902 		return -EFAULT;
903 
904 	/* Alloc space for the address array in kernel memory.  */
905 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
906 	if (unlikely(!kaddrs))
907 		return -ENOMEM;
908 
909 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
910 		kfree(kaddrs);
911 		return -EFAULT;
912 	}
913 
914 	/* Walk through the addrs buffer and count the number of addresses. */
915 	addr_buf = kaddrs;
916 	while (walk_size < addrs_size) {
917 		sa_addr = (struct sockaddr *)addr_buf;
918 		af = sctp_get_af_specific(sa_addr->sa_family);
919 
920 		/* If the address family is not supported or if this address
921 		 * causes the address buffer to overflow return EINVAL.
922 		 */
923 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
924 			kfree(kaddrs);
925 			return -EINVAL;
926 		}
927 		addrcnt++;
928 		addr_buf += af->sockaddr_len;
929 		walk_size += af->sockaddr_len;
930 	}
931 
932 	/* Do the work. */
933 	switch (op) {
934 	case SCTP_BINDX_ADD_ADDR:
935 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
936 		if (err)
937 			goto out;
938 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
939 		break;
940 
941 	case SCTP_BINDX_REM_ADDR:
942 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
943 		if (err)
944 			goto out;
945 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
946 		break;
947 
948 	default:
949 		err = -EINVAL;
950 		break;
951 	}
952 
953 out:
954 	kfree(kaddrs);
955 
956 	return err;
957 }
958 
959 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
960  *
961  * Common routine for handling connect() and sctp_connectx().
962  * Connect will come in with just a single address.
963  */
964 static int __sctp_connect(struct sock* sk,
965 			  struct sockaddr *kaddrs,
966 			  int addrs_size)
967 {
968 	struct sctp_sock *sp;
969 	struct sctp_endpoint *ep;
970 	struct sctp_association *asoc = NULL;
971 	struct sctp_association *asoc2;
972 	struct sctp_transport *transport;
973 	union sctp_addr to;
974 	struct sctp_af *af;
975 	sctp_scope_t scope;
976 	long timeo;
977 	int err = 0;
978 	int addrcnt = 0;
979 	int walk_size = 0;
980 	union sctp_addr *sa_addr;
981 	void *addr_buf;
982 	unsigned short port;
983 	unsigned int f_flags = 0;
984 
985 	sp = sctp_sk(sk);
986 	ep = sp->ep;
987 
988 	/* connect() cannot be done on a socket that is already in ESTABLISHED
989 	 * state - UDP-style peeled off socket or a TCP-style socket that
990 	 * is already connected.
991 	 * It cannot be done even on a TCP-style listening socket.
992 	 */
993 	if (sctp_sstate(sk, ESTABLISHED) ||
994 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
995 		err = -EISCONN;
996 		goto out_free;
997 	}
998 
999 	/* Walk through the addrs buffer and count the number of addresses. */
1000 	addr_buf = kaddrs;
1001 	while (walk_size < addrs_size) {
1002 		sa_addr = (union sctp_addr *)addr_buf;
1003 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1004 		port = ntohs(sa_addr->v4.sin_port);
1005 
1006 		/* If the address family is not supported or if this address
1007 		 * causes the address buffer to overflow return EINVAL.
1008 		 */
1009 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1010 			err = -EINVAL;
1011 			goto out_free;
1012 		}
1013 
1014 		err = sctp_verify_addr(sk, sa_addr, af->sockaddr_len);
1015 		if (err)
1016 			goto out_free;
1017 
1018 		/* Make sure the destination port is correctly set
1019 		 * in all addresses.
1020 		 */
1021 		if (asoc && asoc->peer.port && asoc->peer.port != port)
1022 			goto out_free;
1023 
1024 		memcpy(&to, sa_addr, af->sockaddr_len);
1025 
1026 		/* Check if there already is a matching association on the
1027 		 * endpoint (other than the one created here).
1028 		 */
1029 		asoc2 = sctp_endpoint_lookup_assoc(ep, sa_addr, &transport);
1030 		if (asoc2 && asoc2 != asoc) {
1031 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1032 				err = -EISCONN;
1033 			else
1034 				err = -EALREADY;
1035 			goto out_free;
1036 		}
1037 
1038 		/* If we could not find a matching association on the endpoint,
1039 		 * make sure that there is no peeled-off association matching
1040 		 * the peer address even on another socket.
1041 		 */
1042 		if (sctp_endpoint_is_peeled_off(ep, sa_addr)) {
1043 			err = -EADDRNOTAVAIL;
1044 			goto out_free;
1045 		}
1046 
1047 		if (!asoc) {
1048 			/* If a bind() or sctp_bindx() is not called prior to
1049 			 * an sctp_connectx() call, the system picks an
1050 			 * ephemeral port and will choose an address set
1051 			 * equivalent to binding with a wildcard address.
1052 			 */
1053 			if (!ep->base.bind_addr.port) {
1054 				if (sctp_autobind(sk)) {
1055 					err = -EAGAIN;
1056 					goto out_free;
1057 				}
1058 			} else {
1059 				/*
1060 				 * If an unprivileged user inherits a 1-many
1061 				 * style socket with open associations on a
1062 				 * privileged port, it MAY be permitted to
1063 				 * accept new associations, but it SHOULD NOT
1064 				 * be permitted to open new associations.
1065 				 */
1066 				if (ep->base.bind_addr.port < PROT_SOCK &&
1067 				    !capable(CAP_NET_BIND_SERVICE)) {
1068 					err = -EACCES;
1069 					goto out_free;
1070 				}
1071 			}
1072 
1073 			scope = sctp_scope(sa_addr);
1074 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1075 			if (!asoc) {
1076 				err = -ENOMEM;
1077 				goto out_free;
1078 			}
1079 		}
1080 
1081 		/* Prime the peer's transport structures.  */
1082 		transport = sctp_assoc_add_peer(asoc, sa_addr, GFP_KERNEL,
1083 						SCTP_UNKNOWN);
1084 		if (!transport) {
1085 			err = -ENOMEM;
1086 			goto out_free;
1087 		}
1088 
1089 		addrcnt++;
1090 		addr_buf += af->sockaddr_len;
1091 		walk_size += af->sockaddr_len;
1092 	}
1093 
1094 	err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1095 	if (err < 0) {
1096 		goto out_free;
1097 	}
1098 
1099 	err = sctp_primitive_ASSOCIATE(asoc, NULL);
1100 	if (err < 0) {
1101 		goto out_free;
1102 	}
1103 
1104 	/* Initialize sk's dport and daddr for getpeername() */
1105 	inet_sk(sk)->dport = htons(asoc->peer.port);
1106 	af = sctp_get_af_specific(to.sa.sa_family);
1107 	af->to_sk_daddr(&to, sk);
1108 	sk->sk_err = 0;
1109 
1110 	/* in-kernel sockets don't generally have a file allocated to them
1111 	 * if all they do is call sock_create_kern().
1112 	 */
1113 	if (sk->sk_socket->file)
1114 		f_flags = sk->sk_socket->file->f_flags;
1115 
1116 	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1117 
1118 	err = sctp_wait_for_connect(asoc, &timeo);
1119 
1120 	/* Don't free association on exit. */
1121 	asoc = NULL;
1122 
1123 out_free:
1124 
1125 	SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1126 			  " kaddrs: %p err: %d\n",
1127 			  asoc, kaddrs, err);
1128 	if (asoc)
1129 		sctp_association_free(asoc);
1130 	return err;
1131 }
1132 
1133 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1134  *
1135  * API 8.9
1136  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt);
1137  *
1138  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1139  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1140  * or IPv6 addresses.
1141  *
1142  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1143  * Section 3.1.2 for this usage.
1144  *
1145  * addrs is a pointer to an array of one or more socket addresses. Each
1146  * address is contained in its appropriate structure (i.e. struct
1147  * sockaddr_in or struct sockaddr_in6) the family of the address type
1148  * must be used to distengish the address length (note that this
1149  * representation is termed a "packed array" of addresses). The caller
1150  * specifies the number of addresses in the array with addrcnt.
1151  *
1152  * On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns
1153  * -1, and sets errno to the appropriate error code.
1154  *
1155  * For SCTP, the port given in each socket address must be the same, or
1156  * sctp_connectx() will fail, setting errno to EINVAL.
1157  *
1158  * An application can use sctp_connectx to initiate an association with
1159  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1160  * allows a caller to specify multiple addresses at which a peer can be
1161  * reached.  The way the SCTP stack uses the list of addresses to set up
1162  * the association is implementation dependant.  This function only
1163  * specifies that the stack will try to make use of all the addresses in
1164  * the list when needed.
1165  *
1166  * Note that the list of addresses passed in is only used for setting up
1167  * the association.  It does not necessarily equal the set of addresses
1168  * the peer uses for the resulting association.  If the caller wants to
1169  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1170  * retrieve them after the association has been set up.
1171  *
1172  * Basically do nothing but copying the addresses from user to kernel
1173  * land and invoking either sctp_connectx(). This is used for tunneling
1174  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1175  *
1176  * We don't use copy_from_user() for optimization: we first do the
1177  * sanity checks (buffer size -fast- and access check-healthy
1178  * pointer); if all of those succeed, then we can alloc the memory
1179  * (expensive operation) needed to copy the data to kernel. Then we do
1180  * the copying without checking the user space area
1181  * (__copy_from_user()).
1182  *
1183  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1184  * it.
1185  *
1186  * sk        The sk of the socket
1187  * addrs     The pointer to the addresses in user land
1188  * addrssize Size of the addrs buffer
1189  *
1190  * Returns 0 if ok, <0 errno code on error.
1191  */
1192 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1193 				      struct sockaddr __user *addrs,
1194 				      int addrs_size)
1195 {
1196 	int err = 0;
1197 	struct sockaddr *kaddrs;
1198 
1199 	SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1200 			  __FUNCTION__, sk, addrs, addrs_size);
1201 
1202 	if (unlikely(addrs_size <= 0))
1203 		return -EINVAL;
1204 
1205 	/* Check the user passed a healthy pointer.  */
1206 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1207 		return -EFAULT;
1208 
1209 	/* Alloc space for the address array in kernel memory.  */
1210 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1211 	if (unlikely(!kaddrs))
1212 		return -ENOMEM;
1213 
1214 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1215 		err = -EFAULT;
1216 	} else {
1217 		err = __sctp_connect(sk, kaddrs, addrs_size);
1218 	}
1219 
1220 	kfree(kaddrs);
1221 	return err;
1222 }
1223 
1224 /* API 3.1.4 close() - UDP Style Syntax
1225  * Applications use close() to perform graceful shutdown (as described in
1226  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1227  * by a UDP-style socket.
1228  *
1229  * The syntax is
1230  *
1231  *   ret = close(int sd);
1232  *
1233  *   sd      - the socket descriptor of the associations to be closed.
1234  *
1235  * To gracefully shutdown a specific association represented by the
1236  * UDP-style socket, an application should use the sendmsg() call,
1237  * passing no user data, but including the appropriate flag in the
1238  * ancillary data (see Section xxxx).
1239  *
1240  * If sd in the close() call is a branched-off socket representing only
1241  * one association, the shutdown is performed on that association only.
1242  *
1243  * 4.1.6 close() - TCP Style Syntax
1244  *
1245  * Applications use close() to gracefully close down an association.
1246  *
1247  * The syntax is:
1248  *
1249  *    int close(int sd);
1250  *
1251  *      sd      - the socket descriptor of the association to be closed.
1252  *
1253  * After an application calls close() on a socket descriptor, no further
1254  * socket operations will succeed on that descriptor.
1255  *
1256  * API 7.1.4 SO_LINGER
1257  *
1258  * An application using the TCP-style socket can use this option to
1259  * perform the SCTP ABORT primitive.  The linger option structure is:
1260  *
1261  *  struct  linger {
1262  *     int     l_onoff;                // option on/off
1263  *     int     l_linger;               // linger time
1264  * };
1265  *
1266  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1267  * to 0, calling close() is the same as the ABORT primitive.  If the
1268  * value is set to a negative value, the setsockopt() call will return
1269  * an error.  If the value is set to a positive value linger_time, the
1270  * close() can be blocked for at most linger_time ms.  If the graceful
1271  * shutdown phase does not finish during this period, close() will
1272  * return but the graceful shutdown phase continues in the system.
1273  */
1274 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1275 {
1276 	struct sctp_endpoint *ep;
1277 	struct sctp_association *asoc;
1278 	struct list_head *pos, *temp;
1279 
1280 	SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1281 
1282 	sctp_lock_sock(sk);
1283 	sk->sk_shutdown = SHUTDOWN_MASK;
1284 
1285 	ep = sctp_sk(sk)->ep;
1286 
1287 	/* Walk all associations on an endpoint.  */
1288 	list_for_each_safe(pos, temp, &ep->asocs) {
1289 		asoc = list_entry(pos, struct sctp_association, asocs);
1290 
1291 		if (sctp_style(sk, TCP)) {
1292 			/* A closed association can still be in the list if
1293 			 * it belongs to a TCP-style listening socket that is
1294 			 * not yet accepted. If so, free it. If not, send an
1295 			 * ABORT or SHUTDOWN based on the linger options.
1296 			 */
1297 			if (sctp_state(asoc, CLOSED)) {
1298 				sctp_unhash_established(asoc);
1299 				sctp_association_free(asoc);
1300 				continue;
1301 			}
1302 		}
1303 
1304 		if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1305 			struct sctp_chunk *chunk;
1306 
1307 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1308 			if (chunk)
1309 				sctp_primitive_ABORT(asoc, chunk);
1310 		} else
1311 			sctp_primitive_SHUTDOWN(asoc, NULL);
1312 	}
1313 
1314 	/* Clean up any skbs sitting on the receive queue.  */
1315 	sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1316 	sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1317 
1318 	/* On a TCP-style socket, block for at most linger_time if set. */
1319 	if (sctp_style(sk, TCP) && timeout)
1320 		sctp_wait_for_close(sk, timeout);
1321 
1322 	/* This will run the backlog queue.  */
1323 	sctp_release_sock(sk);
1324 
1325 	/* Supposedly, no process has access to the socket, but
1326 	 * the net layers still may.
1327 	 */
1328 	sctp_local_bh_disable();
1329 	sctp_bh_lock_sock(sk);
1330 
1331 	/* Hold the sock, since sk_common_release() will put sock_put()
1332 	 * and we have just a little more cleanup.
1333 	 */
1334 	sock_hold(sk);
1335 	sk_common_release(sk);
1336 
1337 	sctp_bh_unlock_sock(sk);
1338 	sctp_local_bh_enable();
1339 
1340 	sock_put(sk);
1341 
1342 	SCTP_DBG_OBJCNT_DEC(sock);
1343 }
1344 
1345 /* Handle EPIPE error. */
1346 static int sctp_error(struct sock *sk, int flags, int err)
1347 {
1348 	if (err == -EPIPE)
1349 		err = sock_error(sk) ? : -EPIPE;
1350 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1351 		send_sig(SIGPIPE, current, 0);
1352 	return err;
1353 }
1354 
1355 /* API 3.1.3 sendmsg() - UDP Style Syntax
1356  *
1357  * An application uses sendmsg() and recvmsg() calls to transmit data to
1358  * and receive data from its peer.
1359  *
1360  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1361  *                  int flags);
1362  *
1363  *  socket  - the socket descriptor of the endpoint.
1364  *  message - pointer to the msghdr structure which contains a single
1365  *            user message and possibly some ancillary data.
1366  *
1367  *            See Section 5 for complete description of the data
1368  *            structures.
1369  *
1370  *  flags   - flags sent or received with the user message, see Section
1371  *            5 for complete description of the flags.
1372  *
1373  * Note:  This function could use a rewrite especially when explicit
1374  * connect support comes in.
1375  */
1376 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1377 
1378 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1379 
1380 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1381 			     struct msghdr *msg, size_t msg_len)
1382 {
1383 	struct sctp_sock *sp;
1384 	struct sctp_endpoint *ep;
1385 	struct sctp_association *new_asoc=NULL, *asoc=NULL;
1386 	struct sctp_transport *transport, *chunk_tp;
1387 	struct sctp_chunk *chunk;
1388 	union sctp_addr to;
1389 	struct sockaddr *msg_name = NULL;
1390 	struct sctp_sndrcvinfo default_sinfo = { 0 };
1391 	struct sctp_sndrcvinfo *sinfo;
1392 	struct sctp_initmsg *sinit;
1393 	sctp_assoc_t associd = 0;
1394 	sctp_cmsgs_t cmsgs = { NULL };
1395 	int err;
1396 	sctp_scope_t scope;
1397 	long timeo;
1398 	__u16 sinfo_flags = 0;
1399 	struct sctp_datamsg *datamsg;
1400 	struct list_head *pos;
1401 	int msg_flags = msg->msg_flags;
1402 
1403 	SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1404 			  sk, msg, msg_len);
1405 
1406 	err = 0;
1407 	sp = sctp_sk(sk);
1408 	ep = sp->ep;
1409 
1410 	SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1411 
1412 	/* We cannot send a message over a TCP-style listening socket. */
1413 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1414 		err = -EPIPE;
1415 		goto out_nounlock;
1416 	}
1417 
1418 	/* Parse out the SCTP CMSGs.  */
1419 	err = sctp_msghdr_parse(msg, &cmsgs);
1420 
1421 	if (err) {
1422 		SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1423 		goto out_nounlock;
1424 	}
1425 
1426 	/* Fetch the destination address for this packet.  This
1427 	 * address only selects the association--it is not necessarily
1428 	 * the address we will send to.
1429 	 * For a peeled-off socket, msg_name is ignored.
1430 	 */
1431 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1432 		int msg_namelen = msg->msg_namelen;
1433 
1434 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1435 				       msg_namelen);
1436 		if (err)
1437 			return err;
1438 
1439 		if (msg_namelen > sizeof(to))
1440 			msg_namelen = sizeof(to);
1441 		memcpy(&to, msg->msg_name, msg_namelen);
1442 		msg_name = msg->msg_name;
1443 	}
1444 
1445 	sinfo = cmsgs.info;
1446 	sinit = cmsgs.init;
1447 
1448 	/* Did the user specify SNDRCVINFO?  */
1449 	if (sinfo) {
1450 		sinfo_flags = sinfo->sinfo_flags;
1451 		associd = sinfo->sinfo_assoc_id;
1452 	}
1453 
1454 	SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1455 			  msg_len, sinfo_flags);
1456 
1457 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1458 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1459 		err = -EINVAL;
1460 		goto out_nounlock;
1461 	}
1462 
1463 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1464 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1465 	 * If SCTP_ABORT is set, the message length could be non zero with
1466 	 * the msg_iov set to the user abort reason.
1467 	 */
1468 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1469 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1470 		err = -EINVAL;
1471 		goto out_nounlock;
1472 	}
1473 
1474 	/* If SCTP_ADDR_OVER is set, there must be an address
1475 	 * specified in msg_name.
1476 	 */
1477 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1478 		err = -EINVAL;
1479 		goto out_nounlock;
1480 	}
1481 
1482 	transport = NULL;
1483 
1484 	SCTP_DEBUG_PRINTK("About to look up association.\n");
1485 
1486 	sctp_lock_sock(sk);
1487 
1488 	/* If a msg_name has been specified, assume this is to be used.  */
1489 	if (msg_name) {
1490 		/* Look for a matching association on the endpoint. */
1491 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1492 		if (!asoc) {
1493 			/* If we could not find a matching association on the
1494 			 * endpoint, make sure that it is not a TCP-style
1495 			 * socket that already has an association or there is
1496 			 * no peeled-off association on another socket.
1497 			 */
1498 			if ((sctp_style(sk, TCP) &&
1499 			     sctp_sstate(sk, ESTABLISHED)) ||
1500 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1501 				err = -EADDRNOTAVAIL;
1502 				goto out_unlock;
1503 			}
1504 		}
1505 	} else {
1506 		asoc = sctp_id2assoc(sk, associd);
1507 		if (!asoc) {
1508 			err = -EPIPE;
1509 			goto out_unlock;
1510 		}
1511 	}
1512 
1513 	if (asoc) {
1514 		SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1515 
1516 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1517 		 * socket that has an association in CLOSED state. This can
1518 		 * happen when an accepted socket has an association that is
1519 		 * already CLOSED.
1520 		 */
1521 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1522 			err = -EPIPE;
1523 			goto out_unlock;
1524 		}
1525 
1526 		if (sinfo_flags & SCTP_EOF) {
1527 			SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1528 					  asoc);
1529 			sctp_primitive_SHUTDOWN(asoc, NULL);
1530 			err = 0;
1531 			goto out_unlock;
1532 		}
1533 		if (sinfo_flags & SCTP_ABORT) {
1534 			struct sctp_chunk *chunk;
1535 
1536 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1537 			if (!chunk) {
1538 				err = -ENOMEM;
1539 				goto out_unlock;
1540 			}
1541 
1542 			SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1543 			sctp_primitive_ABORT(asoc, chunk);
1544 			err = 0;
1545 			goto out_unlock;
1546 		}
1547 	}
1548 
1549 	/* Do we need to create the association?  */
1550 	if (!asoc) {
1551 		SCTP_DEBUG_PRINTK("There is no association yet.\n");
1552 
1553 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1554 			err = -EINVAL;
1555 			goto out_unlock;
1556 		}
1557 
1558 		/* Check for invalid stream against the stream counts,
1559 		 * either the default or the user specified stream counts.
1560 		 */
1561 		if (sinfo) {
1562 			if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1563 				/* Check against the defaults. */
1564 				if (sinfo->sinfo_stream >=
1565 				    sp->initmsg.sinit_num_ostreams) {
1566 					err = -EINVAL;
1567 					goto out_unlock;
1568 				}
1569 			} else {
1570 				/* Check against the requested.  */
1571 				if (sinfo->sinfo_stream >=
1572 				    sinit->sinit_num_ostreams) {
1573 					err = -EINVAL;
1574 					goto out_unlock;
1575 				}
1576 			}
1577 		}
1578 
1579 		/*
1580 		 * API 3.1.2 bind() - UDP Style Syntax
1581 		 * If a bind() or sctp_bindx() is not called prior to a
1582 		 * sendmsg() call that initiates a new association, the
1583 		 * system picks an ephemeral port and will choose an address
1584 		 * set equivalent to binding with a wildcard address.
1585 		 */
1586 		if (!ep->base.bind_addr.port) {
1587 			if (sctp_autobind(sk)) {
1588 				err = -EAGAIN;
1589 				goto out_unlock;
1590 			}
1591 		} else {
1592 			/*
1593 			 * If an unprivileged user inherits a one-to-many
1594 			 * style socket with open associations on a privileged
1595 			 * port, it MAY be permitted to accept new associations,
1596 			 * but it SHOULD NOT be permitted to open new
1597 			 * associations.
1598 			 */
1599 			if (ep->base.bind_addr.port < PROT_SOCK &&
1600 			    !capable(CAP_NET_BIND_SERVICE)) {
1601 				err = -EACCES;
1602 				goto out_unlock;
1603 			}
1604 		}
1605 
1606 		scope = sctp_scope(&to);
1607 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1608 		if (!new_asoc) {
1609 			err = -ENOMEM;
1610 			goto out_unlock;
1611 		}
1612 		asoc = new_asoc;
1613 
1614 		/* If the SCTP_INIT ancillary data is specified, set all
1615 		 * the association init values accordingly.
1616 		 */
1617 		if (sinit) {
1618 			if (sinit->sinit_num_ostreams) {
1619 				asoc->c.sinit_num_ostreams =
1620 					sinit->sinit_num_ostreams;
1621 			}
1622 			if (sinit->sinit_max_instreams) {
1623 				asoc->c.sinit_max_instreams =
1624 					sinit->sinit_max_instreams;
1625 			}
1626 			if (sinit->sinit_max_attempts) {
1627 				asoc->max_init_attempts
1628 					= sinit->sinit_max_attempts;
1629 			}
1630 			if (sinit->sinit_max_init_timeo) {
1631 				asoc->max_init_timeo =
1632 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1633 			}
1634 		}
1635 
1636 		/* Prime the peer's transport structures.  */
1637 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1638 		if (!transport) {
1639 			err = -ENOMEM;
1640 			goto out_free;
1641 		}
1642 		err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1643 		if (err < 0) {
1644 			err = -ENOMEM;
1645 			goto out_free;
1646 		}
1647 	}
1648 
1649 	/* ASSERT: we have a valid association at this point.  */
1650 	SCTP_DEBUG_PRINTK("We have a valid association.\n");
1651 
1652 	if (!sinfo) {
1653 		/* If the user didn't specify SNDRCVINFO, make up one with
1654 		 * some defaults.
1655 		 */
1656 		default_sinfo.sinfo_stream = asoc->default_stream;
1657 		default_sinfo.sinfo_flags = asoc->default_flags;
1658 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1659 		default_sinfo.sinfo_context = asoc->default_context;
1660 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1661 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1662 		sinfo = &default_sinfo;
1663 	}
1664 
1665 	/* API 7.1.7, the sndbuf size per association bounds the
1666 	 * maximum size of data that can be sent in a single send call.
1667 	 */
1668 	if (msg_len > sk->sk_sndbuf) {
1669 		err = -EMSGSIZE;
1670 		goto out_free;
1671 	}
1672 
1673 	if (asoc->pmtu_pending)
1674 		sctp_assoc_pending_pmtu(asoc);
1675 
1676 	/* If fragmentation is disabled and the message length exceeds the
1677 	 * association fragmentation point, return EMSGSIZE.  The I-D
1678 	 * does not specify what this error is, but this looks like
1679 	 * a great fit.
1680 	 */
1681 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1682 		err = -EMSGSIZE;
1683 		goto out_free;
1684 	}
1685 
1686 	if (sinfo) {
1687 		/* Check for invalid stream. */
1688 		if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1689 			err = -EINVAL;
1690 			goto out_free;
1691 		}
1692 	}
1693 
1694 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1695 	if (!sctp_wspace(asoc)) {
1696 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1697 		if (err)
1698 			goto out_free;
1699 	}
1700 
1701 	/* If an address is passed with the sendto/sendmsg call, it is used
1702 	 * to override the primary destination address in the TCP model, or
1703 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1704 	 */
1705 	if ((sctp_style(sk, TCP) && msg_name) ||
1706 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1707 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1708 		if (!chunk_tp) {
1709 			err = -EINVAL;
1710 			goto out_free;
1711 		}
1712 	} else
1713 		chunk_tp = NULL;
1714 
1715 	/* Auto-connect, if we aren't connected already. */
1716 	if (sctp_state(asoc, CLOSED)) {
1717 		err = sctp_primitive_ASSOCIATE(asoc, NULL);
1718 		if (err < 0)
1719 			goto out_free;
1720 		SCTP_DEBUG_PRINTK("We associated primitively.\n");
1721 	}
1722 
1723 	/* Break the message into multiple chunks of maximum size. */
1724 	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1725 	if (!datamsg) {
1726 		err = -ENOMEM;
1727 		goto out_free;
1728 	}
1729 
1730 	/* Now send the (possibly) fragmented message. */
1731 	list_for_each(pos, &datamsg->chunks) {
1732 		chunk = list_entry(pos, struct sctp_chunk, frag_list);
1733 		sctp_datamsg_track(chunk);
1734 
1735 		/* Do accounting for the write space.  */
1736 		sctp_set_owner_w(chunk);
1737 
1738 		chunk->transport = chunk_tp;
1739 
1740 		/* Send it to the lower layers.  Note:  all chunks
1741 		 * must either fail or succeed.   The lower layer
1742 		 * works that way today.  Keep it that way or this
1743 		 * breaks.
1744 		 */
1745 		err = sctp_primitive_SEND(asoc, chunk);
1746 		/* Did the lower layer accept the chunk? */
1747 		if (err)
1748 			sctp_chunk_free(chunk);
1749 		SCTP_DEBUG_PRINTK("We sent primitively.\n");
1750 	}
1751 
1752 	sctp_datamsg_free(datamsg);
1753 	if (err)
1754 		goto out_free;
1755 	else
1756 		err = msg_len;
1757 
1758 	/* If we are already past ASSOCIATE, the lower
1759 	 * layers are responsible for association cleanup.
1760 	 */
1761 	goto out_unlock;
1762 
1763 out_free:
1764 	if (new_asoc)
1765 		sctp_association_free(asoc);
1766 out_unlock:
1767 	sctp_release_sock(sk);
1768 
1769 out_nounlock:
1770 	return sctp_error(sk, msg_flags, err);
1771 
1772 #if 0
1773 do_sock_err:
1774 	if (msg_len)
1775 		err = msg_len;
1776 	else
1777 		err = sock_error(sk);
1778 	goto out;
1779 
1780 do_interrupted:
1781 	if (msg_len)
1782 		err = msg_len;
1783 	goto out;
1784 #endif /* 0 */
1785 }
1786 
1787 /* This is an extended version of skb_pull() that removes the data from the
1788  * start of a skb even when data is spread across the list of skb's in the
1789  * frag_list. len specifies the total amount of data that needs to be removed.
1790  * when 'len' bytes could be removed from the skb, it returns 0.
1791  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
1792  * could not be removed.
1793  */
1794 static int sctp_skb_pull(struct sk_buff *skb, int len)
1795 {
1796 	struct sk_buff *list;
1797 	int skb_len = skb_headlen(skb);
1798 	int rlen;
1799 
1800 	if (len <= skb_len) {
1801 		__skb_pull(skb, len);
1802 		return 0;
1803 	}
1804 	len -= skb_len;
1805 	__skb_pull(skb, skb_len);
1806 
1807 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next) {
1808 		rlen = sctp_skb_pull(list, len);
1809 		skb->len -= (len-rlen);
1810 		skb->data_len -= (len-rlen);
1811 
1812 		if (!rlen)
1813 			return 0;
1814 
1815 		len = rlen;
1816 	}
1817 
1818 	return len;
1819 }
1820 
1821 /* API 3.1.3  recvmsg() - UDP Style Syntax
1822  *
1823  *  ssize_t recvmsg(int socket, struct msghdr *message,
1824  *                    int flags);
1825  *
1826  *  socket  - the socket descriptor of the endpoint.
1827  *  message - pointer to the msghdr structure which contains a single
1828  *            user message and possibly some ancillary data.
1829  *
1830  *            See Section 5 for complete description of the data
1831  *            structures.
1832  *
1833  *  flags   - flags sent or received with the user message, see Section
1834  *            5 for complete description of the flags.
1835  */
1836 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1837 
1838 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1839 			     struct msghdr *msg, size_t len, int noblock,
1840 			     int flags, int *addr_len)
1841 {
1842 	struct sctp_ulpevent *event = NULL;
1843 	struct sctp_sock *sp = sctp_sk(sk);
1844 	struct sk_buff *skb;
1845 	int copied;
1846 	int err = 0;
1847 	int skb_len;
1848 
1849 	SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1850 			  "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1851 			  "len", len, "knoblauch", noblock,
1852 			  "flags", flags, "addr_len", addr_len);
1853 
1854 	sctp_lock_sock(sk);
1855 
1856 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1857 		err = -ENOTCONN;
1858 		goto out;
1859 	}
1860 
1861 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1862 	if (!skb)
1863 		goto out;
1864 
1865 	/* Get the total length of the skb including any skb's in the
1866 	 * frag_list.
1867 	 */
1868 	skb_len = skb->len;
1869 
1870 	copied = skb_len;
1871 	if (copied > len)
1872 		copied = len;
1873 
1874 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1875 
1876 	event = sctp_skb2event(skb);
1877 
1878 	if (err)
1879 		goto out_free;
1880 
1881 	sock_recv_timestamp(msg, sk, skb);
1882 	if (sctp_ulpevent_is_notification(event)) {
1883 		msg->msg_flags |= MSG_NOTIFICATION;
1884 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
1885 	} else {
1886 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1887 	}
1888 
1889 	/* Check if we allow SCTP_SNDRCVINFO. */
1890 	if (sp->subscribe.sctp_data_io_event)
1891 		sctp_ulpevent_read_sndrcvinfo(event, msg);
1892 #if 0
1893 	/* FIXME: we should be calling IP/IPv6 layers.  */
1894 	if (sk->sk_protinfo.af_inet.cmsg_flags)
1895 		ip_cmsg_recv(msg, skb);
1896 #endif
1897 
1898 	err = copied;
1899 
1900 	/* If skb's length exceeds the user's buffer, update the skb and
1901 	 * push it back to the receive_queue so that the next call to
1902 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
1903 	 */
1904 	if (skb_len > copied) {
1905 		msg->msg_flags &= ~MSG_EOR;
1906 		if (flags & MSG_PEEK)
1907 			goto out_free;
1908 		sctp_skb_pull(skb, copied);
1909 		skb_queue_head(&sk->sk_receive_queue, skb);
1910 
1911 		/* When only partial message is copied to the user, increase
1912 		 * rwnd by that amount. If all the data in the skb is read,
1913 		 * rwnd is updated when the event is freed.
1914 		 */
1915 		sctp_assoc_rwnd_increase(event->asoc, copied);
1916 		goto out;
1917 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
1918 		   (event->msg_flags & MSG_EOR))
1919 		msg->msg_flags |= MSG_EOR;
1920 	else
1921 		msg->msg_flags &= ~MSG_EOR;
1922 
1923 out_free:
1924 	if (flags & MSG_PEEK) {
1925 		/* Release the skb reference acquired after peeking the skb in
1926 		 * sctp_skb_recv_datagram().
1927 		 */
1928 		kfree_skb(skb);
1929 	} else {
1930 		/* Free the event which includes releasing the reference to
1931 		 * the owner of the skb, freeing the skb and updating the
1932 		 * rwnd.
1933 		 */
1934 		sctp_ulpevent_free(event);
1935 	}
1936 out:
1937 	sctp_release_sock(sk);
1938 	return err;
1939 }
1940 
1941 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
1942  *
1943  * This option is a on/off flag.  If enabled no SCTP message
1944  * fragmentation will be performed.  Instead if a message being sent
1945  * exceeds the current PMTU size, the message will NOT be sent and
1946  * instead a error will be indicated to the user.
1947  */
1948 static int sctp_setsockopt_disable_fragments(struct sock *sk,
1949 					    char __user *optval, int optlen)
1950 {
1951 	int val;
1952 
1953 	if (optlen < sizeof(int))
1954 		return -EINVAL;
1955 
1956 	if (get_user(val, (int __user *)optval))
1957 		return -EFAULT;
1958 
1959 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
1960 
1961 	return 0;
1962 }
1963 
1964 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
1965 					int optlen)
1966 {
1967 	if (optlen != sizeof(struct sctp_event_subscribe))
1968 		return -EINVAL;
1969 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
1970 		return -EFAULT;
1971 	return 0;
1972 }
1973 
1974 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
1975  *
1976  * This socket option is applicable to the UDP-style socket only.  When
1977  * set it will cause associations that are idle for more than the
1978  * specified number of seconds to automatically close.  An association
1979  * being idle is defined an association that has NOT sent or received
1980  * user data.  The special value of '0' indicates that no automatic
1981  * close of any associations should be performed.  The option expects an
1982  * integer defining the number of seconds of idle time before an
1983  * association is closed.
1984  */
1985 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
1986 					    int optlen)
1987 {
1988 	struct sctp_sock *sp = sctp_sk(sk);
1989 
1990 	/* Applicable to UDP-style socket only */
1991 	if (sctp_style(sk, TCP))
1992 		return -EOPNOTSUPP;
1993 	if (optlen != sizeof(int))
1994 		return -EINVAL;
1995 	if (copy_from_user(&sp->autoclose, optval, optlen))
1996 		return -EFAULT;
1997 
1998 	return 0;
1999 }
2000 
2001 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2002  *
2003  * Applications can enable or disable heartbeats for any peer address of
2004  * an association, modify an address's heartbeat interval, force a
2005  * heartbeat to be sent immediately, and adjust the address's maximum
2006  * number of retransmissions sent before an address is considered
2007  * unreachable.  The following structure is used to access and modify an
2008  * address's parameters:
2009  *
2010  *  struct sctp_paddrparams {
2011  *     sctp_assoc_t            spp_assoc_id;
2012  *     struct sockaddr_storage spp_address;
2013  *     uint32_t                spp_hbinterval;
2014  *     uint16_t                spp_pathmaxrxt;
2015  *     uint32_t                spp_pathmtu;
2016  *     uint32_t                spp_sackdelay;
2017  *     uint32_t                spp_flags;
2018  * };
2019  *
2020  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2021  *                     application, and identifies the association for
2022  *                     this query.
2023  *   spp_address     - This specifies which address is of interest.
2024  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2025  *                     in milliseconds.  If a  value of zero
2026  *                     is present in this field then no changes are to
2027  *                     be made to this parameter.
2028  *   spp_pathmaxrxt  - This contains the maximum number of
2029  *                     retransmissions before this address shall be
2030  *                     considered unreachable. If a  value of zero
2031  *                     is present in this field then no changes are to
2032  *                     be made to this parameter.
2033  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2034  *                     specified here will be the "fixed" path mtu.
2035  *                     Note that if the spp_address field is empty
2036  *                     then all associations on this address will
2037  *                     have this fixed path mtu set upon them.
2038  *
2039  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2040  *                     the number of milliseconds that sacks will be delayed
2041  *                     for. This value will apply to all addresses of an
2042  *                     association if the spp_address field is empty. Note
2043  *                     also, that if delayed sack is enabled and this
2044  *                     value is set to 0, no change is made to the last
2045  *                     recorded delayed sack timer value.
2046  *
2047  *   spp_flags       - These flags are used to control various features
2048  *                     on an association. The flag field may contain
2049  *                     zero or more of the following options.
2050  *
2051  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2052  *                     specified address. Note that if the address
2053  *                     field is empty all addresses for the association
2054  *                     have heartbeats enabled upon them.
2055  *
2056  *                     SPP_HB_DISABLE - Disable heartbeats on the
2057  *                     speicifed address. Note that if the address
2058  *                     field is empty all addresses for the association
2059  *                     will have their heartbeats disabled. Note also
2060  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2061  *                     mutually exclusive, only one of these two should
2062  *                     be specified. Enabling both fields will have
2063  *                     undetermined results.
2064  *
2065  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2066  *                     to be made immediately.
2067  *
2068  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2069  *                     heartbeat delayis to be set to the value of 0
2070  *                     milliseconds.
2071  *
2072  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2073  *                     discovery upon the specified address. Note that
2074  *                     if the address feild is empty then all addresses
2075  *                     on the association are effected.
2076  *
2077  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2078  *                     discovery upon the specified address. Note that
2079  *                     if the address feild is empty then all addresses
2080  *                     on the association are effected. Not also that
2081  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2082  *                     exclusive. Enabling both will have undetermined
2083  *                     results.
2084  *
2085  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2086  *                     on delayed sack. The time specified in spp_sackdelay
2087  *                     is used to specify the sack delay for this address. Note
2088  *                     that if spp_address is empty then all addresses will
2089  *                     enable delayed sack and take on the sack delay
2090  *                     value specified in spp_sackdelay.
2091  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2092  *                     off delayed sack. If the spp_address field is blank then
2093  *                     delayed sack is disabled for the entire association. Note
2094  *                     also that this field is mutually exclusive to
2095  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2096  *                     results.
2097  */
2098 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2099 				       struct sctp_transport   *trans,
2100 				       struct sctp_association *asoc,
2101 				       struct sctp_sock        *sp,
2102 				       int                      hb_change,
2103 				       int                      pmtud_change,
2104 				       int                      sackdelay_change)
2105 {
2106 	int error;
2107 
2108 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2109 		error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2110 		if (error)
2111 			return error;
2112 	}
2113 
2114 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2115 	 * this field is ignored.  Note also that a value of zero indicates
2116 	 * the current setting should be left unchanged.
2117 	 */
2118 	if (params->spp_flags & SPP_HB_ENABLE) {
2119 
2120 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2121 		 * set.  This lets us use 0 value when this flag
2122 		 * is set.
2123 		 */
2124 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2125 			params->spp_hbinterval = 0;
2126 
2127 		if (params->spp_hbinterval ||
2128 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2129 			if (trans) {
2130 				trans->hbinterval =
2131 				    msecs_to_jiffies(params->spp_hbinterval);
2132 			} else if (asoc) {
2133 				asoc->hbinterval =
2134 				    msecs_to_jiffies(params->spp_hbinterval);
2135 			} else {
2136 				sp->hbinterval = params->spp_hbinterval;
2137 			}
2138 		}
2139 	}
2140 
2141 	if (hb_change) {
2142 		if (trans) {
2143 			trans->param_flags =
2144 				(trans->param_flags & ~SPP_HB) | hb_change;
2145 		} else if (asoc) {
2146 			asoc->param_flags =
2147 				(asoc->param_flags & ~SPP_HB) | hb_change;
2148 		} else {
2149 			sp->param_flags =
2150 				(sp->param_flags & ~SPP_HB) | hb_change;
2151 		}
2152 	}
2153 
2154 	/* When Path MTU discovery is disabled the value specified here will
2155 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2156 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2157 	 * effect).
2158 	 */
2159 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2160 		if (trans) {
2161 			trans->pathmtu = params->spp_pathmtu;
2162 			sctp_assoc_sync_pmtu(asoc);
2163 		} else if (asoc) {
2164 			asoc->pathmtu = params->spp_pathmtu;
2165 			sctp_frag_point(sp, params->spp_pathmtu);
2166 		} else {
2167 			sp->pathmtu = params->spp_pathmtu;
2168 		}
2169 	}
2170 
2171 	if (pmtud_change) {
2172 		if (trans) {
2173 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2174 				(params->spp_flags & SPP_PMTUD_ENABLE);
2175 			trans->param_flags =
2176 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2177 			if (update) {
2178 				sctp_transport_pmtu(trans);
2179 				sctp_assoc_sync_pmtu(asoc);
2180 			}
2181 		} else if (asoc) {
2182 			asoc->param_flags =
2183 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2184 		} else {
2185 			sp->param_flags =
2186 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2187 		}
2188 	}
2189 
2190 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2191 	 * value of this field is ignored.  Note also that a value of zero
2192 	 * indicates the current setting should be left unchanged.
2193 	 */
2194 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2195 		if (trans) {
2196 			trans->sackdelay =
2197 				msecs_to_jiffies(params->spp_sackdelay);
2198 		} else if (asoc) {
2199 			asoc->sackdelay =
2200 				msecs_to_jiffies(params->spp_sackdelay);
2201 		} else {
2202 			sp->sackdelay = params->spp_sackdelay;
2203 		}
2204 	}
2205 
2206 	if (sackdelay_change) {
2207 		if (trans) {
2208 			trans->param_flags =
2209 				(trans->param_flags & ~SPP_SACKDELAY) |
2210 				sackdelay_change;
2211 		} else if (asoc) {
2212 			asoc->param_flags =
2213 				(asoc->param_flags & ~SPP_SACKDELAY) |
2214 				sackdelay_change;
2215 		} else {
2216 			sp->param_flags =
2217 				(sp->param_flags & ~SPP_SACKDELAY) |
2218 				sackdelay_change;
2219 		}
2220 	}
2221 
2222 	/* Note that unless the spp_flag is set to SPP_PMTUD_ENABLE the value
2223 	 * of this field is ignored.  Note also that a value of zero
2224 	 * indicates the current setting should be left unchanged.
2225 	 */
2226 	if ((params->spp_flags & SPP_PMTUD_ENABLE) && params->spp_pathmaxrxt) {
2227 		if (trans) {
2228 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2229 		} else if (asoc) {
2230 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2231 		} else {
2232 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2233 		}
2234 	}
2235 
2236 	return 0;
2237 }
2238 
2239 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2240 					    char __user *optval, int optlen)
2241 {
2242 	struct sctp_paddrparams  params;
2243 	struct sctp_transport   *trans = NULL;
2244 	struct sctp_association *asoc = NULL;
2245 	struct sctp_sock        *sp = sctp_sk(sk);
2246 	int error;
2247 	int hb_change, pmtud_change, sackdelay_change;
2248 
2249 	if (optlen != sizeof(struct sctp_paddrparams))
2250 		return - EINVAL;
2251 
2252 	if (copy_from_user(&params, optval, optlen))
2253 		return -EFAULT;
2254 
2255 	/* Validate flags and value parameters. */
2256 	hb_change        = params.spp_flags & SPP_HB;
2257 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2258 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2259 
2260 	if (hb_change        == SPP_HB ||
2261 	    pmtud_change     == SPP_PMTUD ||
2262 	    sackdelay_change == SPP_SACKDELAY ||
2263 	    params.spp_sackdelay > 500 ||
2264 	    (params.spp_pathmtu
2265 	    && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2266 		return -EINVAL;
2267 
2268 	/* If an address other than INADDR_ANY is specified, and
2269 	 * no transport is found, then the request is invalid.
2270 	 */
2271 	if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
2272 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2273 					       params.spp_assoc_id);
2274 		if (!trans)
2275 			return -EINVAL;
2276 	}
2277 
2278 	/* Get association, if assoc_id != 0 and the socket is a one
2279 	 * to many style socket, and an association was not found, then
2280 	 * the id was invalid.
2281 	 */
2282 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2283 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2284 		return -EINVAL;
2285 
2286 	/* Heartbeat demand can only be sent on a transport or
2287 	 * association, but not a socket.
2288 	 */
2289 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2290 		return -EINVAL;
2291 
2292 	/* Process parameters. */
2293 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2294 					    hb_change, pmtud_change,
2295 					    sackdelay_change);
2296 
2297 	if (error)
2298 		return error;
2299 
2300 	/* If changes are for association, also apply parameters to each
2301 	 * transport.
2302 	 */
2303 	if (!trans && asoc) {
2304 		struct list_head *pos;
2305 
2306 		list_for_each(pos, &asoc->peer.transport_addr_list) {
2307 			trans = list_entry(pos, struct sctp_transport,
2308 					   transports);
2309 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2310 						    hb_change, pmtud_change,
2311 						    sackdelay_change);
2312 		}
2313 	}
2314 
2315 	return 0;
2316 }
2317 
2318 /* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
2319  *
2320  *   This options will get or set the delayed ack timer.  The time is set
2321  *   in milliseconds.  If the assoc_id is 0, then this sets or gets the
2322  *   endpoints default delayed ack timer value.  If the assoc_id field is
2323  *   non-zero, then the set or get effects the specified association.
2324  *
2325  *   struct sctp_assoc_value {
2326  *       sctp_assoc_t            assoc_id;
2327  *       uint32_t                assoc_value;
2328  *   };
2329  *
2330  *     assoc_id    - This parameter, indicates which association the
2331  *                   user is preforming an action upon. Note that if
2332  *                   this field's value is zero then the endpoints
2333  *                   default value is changed (effecting future
2334  *                   associations only).
2335  *
2336  *     assoc_value - This parameter contains the number of milliseconds
2337  *                   that the user is requesting the delayed ACK timer
2338  *                   be set to. Note that this value is defined in
2339  *                   the standard to be between 200 and 500 milliseconds.
2340  *
2341  *                   Note: a value of zero will leave the value alone,
2342  *                   but disable SACK delay. A non-zero value will also
2343  *                   enable SACK delay.
2344  */
2345 
2346 static int sctp_setsockopt_delayed_ack_time(struct sock *sk,
2347 					    char __user *optval, int optlen)
2348 {
2349 	struct sctp_assoc_value  params;
2350 	struct sctp_transport   *trans = NULL;
2351 	struct sctp_association *asoc = NULL;
2352 	struct sctp_sock        *sp = sctp_sk(sk);
2353 
2354 	if (optlen != sizeof(struct sctp_assoc_value))
2355 		return - EINVAL;
2356 
2357 	if (copy_from_user(&params, optval, optlen))
2358 		return -EFAULT;
2359 
2360 	/* Validate value parameter. */
2361 	if (params.assoc_value > 500)
2362 		return -EINVAL;
2363 
2364 	/* Get association, if assoc_id != 0 and the socket is a one
2365 	 * to many style socket, and an association was not found, then
2366 	 * the id was invalid.
2367 	 */
2368 	asoc = sctp_id2assoc(sk, params.assoc_id);
2369 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
2370 		return -EINVAL;
2371 
2372 	if (params.assoc_value) {
2373 		if (asoc) {
2374 			asoc->sackdelay =
2375 				msecs_to_jiffies(params.assoc_value);
2376 			asoc->param_flags =
2377 				(asoc->param_flags & ~SPP_SACKDELAY) |
2378 				SPP_SACKDELAY_ENABLE;
2379 		} else {
2380 			sp->sackdelay = params.assoc_value;
2381 			sp->param_flags =
2382 				(sp->param_flags & ~SPP_SACKDELAY) |
2383 				SPP_SACKDELAY_ENABLE;
2384 		}
2385 	} else {
2386 		if (asoc) {
2387 			asoc->param_flags =
2388 				(asoc->param_flags & ~SPP_SACKDELAY) |
2389 				SPP_SACKDELAY_DISABLE;
2390 		} else {
2391 			sp->param_flags =
2392 				(sp->param_flags & ~SPP_SACKDELAY) |
2393 				SPP_SACKDELAY_DISABLE;
2394 		}
2395 	}
2396 
2397 	/* If change is for association, also apply to each transport. */
2398 	if (asoc) {
2399 		struct list_head *pos;
2400 
2401 		list_for_each(pos, &asoc->peer.transport_addr_list) {
2402 			trans = list_entry(pos, struct sctp_transport,
2403 					   transports);
2404 			if (params.assoc_value) {
2405 				trans->sackdelay =
2406 					msecs_to_jiffies(params.assoc_value);
2407 				trans->param_flags =
2408 					(trans->param_flags & ~SPP_SACKDELAY) |
2409 					SPP_SACKDELAY_ENABLE;
2410 			} else {
2411 				trans->param_flags =
2412 					(trans->param_flags & ~SPP_SACKDELAY) |
2413 					SPP_SACKDELAY_DISABLE;
2414 			}
2415 		}
2416 	}
2417 
2418 	return 0;
2419 }
2420 
2421 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2422  *
2423  * Applications can specify protocol parameters for the default association
2424  * initialization.  The option name argument to setsockopt() and getsockopt()
2425  * is SCTP_INITMSG.
2426  *
2427  * Setting initialization parameters is effective only on an unconnected
2428  * socket (for UDP-style sockets only future associations are effected
2429  * by the change).  With TCP-style sockets, this option is inherited by
2430  * sockets derived from a listener socket.
2431  */
2432 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen)
2433 {
2434 	struct sctp_initmsg sinit;
2435 	struct sctp_sock *sp = sctp_sk(sk);
2436 
2437 	if (optlen != sizeof(struct sctp_initmsg))
2438 		return -EINVAL;
2439 	if (copy_from_user(&sinit, optval, optlen))
2440 		return -EFAULT;
2441 
2442 	if (sinit.sinit_num_ostreams)
2443 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2444 	if (sinit.sinit_max_instreams)
2445 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2446 	if (sinit.sinit_max_attempts)
2447 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2448 	if (sinit.sinit_max_init_timeo)
2449 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2450 
2451 	return 0;
2452 }
2453 
2454 /*
2455  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2456  *
2457  *   Applications that wish to use the sendto() system call may wish to
2458  *   specify a default set of parameters that would normally be supplied
2459  *   through the inclusion of ancillary data.  This socket option allows
2460  *   such an application to set the default sctp_sndrcvinfo structure.
2461  *   The application that wishes to use this socket option simply passes
2462  *   in to this call the sctp_sndrcvinfo structure defined in Section
2463  *   5.2.2) The input parameters accepted by this call include
2464  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2465  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2466  *   to this call if the caller is using the UDP model.
2467  */
2468 static int sctp_setsockopt_default_send_param(struct sock *sk,
2469 						char __user *optval, int optlen)
2470 {
2471 	struct sctp_sndrcvinfo info;
2472 	struct sctp_association *asoc;
2473 	struct sctp_sock *sp = sctp_sk(sk);
2474 
2475 	if (optlen != sizeof(struct sctp_sndrcvinfo))
2476 		return -EINVAL;
2477 	if (copy_from_user(&info, optval, optlen))
2478 		return -EFAULT;
2479 
2480 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2481 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2482 		return -EINVAL;
2483 
2484 	if (asoc) {
2485 		asoc->default_stream = info.sinfo_stream;
2486 		asoc->default_flags = info.sinfo_flags;
2487 		asoc->default_ppid = info.sinfo_ppid;
2488 		asoc->default_context = info.sinfo_context;
2489 		asoc->default_timetolive = info.sinfo_timetolive;
2490 	} else {
2491 		sp->default_stream = info.sinfo_stream;
2492 		sp->default_flags = info.sinfo_flags;
2493 		sp->default_ppid = info.sinfo_ppid;
2494 		sp->default_context = info.sinfo_context;
2495 		sp->default_timetolive = info.sinfo_timetolive;
2496 	}
2497 
2498 	return 0;
2499 }
2500 
2501 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2502  *
2503  * Requests that the local SCTP stack use the enclosed peer address as
2504  * the association primary.  The enclosed address must be one of the
2505  * association peer's addresses.
2506  */
2507 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2508 					int optlen)
2509 {
2510 	struct sctp_prim prim;
2511 	struct sctp_transport *trans;
2512 
2513 	if (optlen != sizeof(struct sctp_prim))
2514 		return -EINVAL;
2515 
2516 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2517 		return -EFAULT;
2518 
2519 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2520 	if (!trans)
2521 		return -EINVAL;
2522 
2523 	sctp_assoc_set_primary(trans->asoc, trans);
2524 
2525 	return 0;
2526 }
2527 
2528 /*
2529  * 7.1.5 SCTP_NODELAY
2530  *
2531  * Turn on/off any Nagle-like algorithm.  This means that packets are
2532  * generally sent as soon as possible and no unnecessary delays are
2533  * introduced, at the cost of more packets in the network.  Expects an
2534  *  integer boolean flag.
2535  */
2536 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2537 					int optlen)
2538 {
2539 	int val;
2540 
2541 	if (optlen < sizeof(int))
2542 		return -EINVAL;
2543 	if (get_user(val, (int __user *)optval))
2544 		return -EFAULT;
2545 
2546 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2547 	return 0;
2548 }
2549 
2550 /*
2551  *
2552  * 7.1.1 SCTP_RTOINFO
2553  *
2554  * The protocol parameters used to initialize and bound retransmission
2555  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2556  * and modify these parameters.
2557  * All parameters are time values, in milliseconds.  A value of 0, when
2558  * modifying the parameters, indicates that the current value should not
2559  * be changed.
2560  *
2561  */
2562 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) {
2563 	struct sctp_rtoinfo rtoinfo;
2564 	struct sctp_association *asoc;
2565 
2566 	if (optlen != sizeof (struct sctp_rtoinfo))
2567 		return -EINVAL;
2568 
2569 	if (copy_from_user(&rtoinfo, optval, optlen))
2570 		return -EFAULT;
2571 
2572 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2573 
2574 	/* Set the values to the specific association */
2575 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2576 		return -EINVAL;
2577 
2578 	if (asoc) {
2579 		if (rtoinfo.srto_initial != 0)
2580 			asoc->rto_initial =
2581 				msecs_to_jiffies(rtoinfo.srto_initial);
2582 		if (rtoinfo.srto_max != 0)
2583 			asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2584 		if (rtoinfo.srto_min != 0)
2585 			asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2586 	} else {
2587 		/* If there is no association or the association-id = 0
2588 		 * set the values to the endpoint.
2589 		 */
2590 		struct sctp_sock *sp = sctp_sk(sk);
2591 
2592 		if (rtoinfo.srto_initial != 0)
2593 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2594 		if (rtoinfo.srto_max != 0)
2595 			sp->rtoinfo.srto_max = rtoinfo.srto_max;
2596 		if (rtoinfo.srto_min != 0)
2597 			sp->rtoinfo.srto_min = rtoinfo.srto_min;
2598 	}
2599 
2600 	return 0;
2601 }
2602 
2603 /*
2604  *
2605  * 7.1.2 SCTP_ASSOCINFO
2606  *
2607  * This option is used to tune the maximum retransmission attempts
2608  * of the association.
2609  * Returns an error if the new association retransmission value is
2610  * greater than the sum of the retransmission value  of the peer.
2611  * See [SCTP] for more information.
2612  *
2613  */
2614 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen)
2615 {
2616 
2617 	struct sctp_assocparams assocparams;
2618 	struct sctp_association *asoc;
2619 
2620 	if (optlen != sizeof(struct sctp_assocparams))
2621 		return -EINVAL;
2622 	if (copy_from_user(&assocparams, optval, optlen))
2623 		return -EFAULT;
2624 
2625 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2626 
2627 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2628 		return -EINVAL;
2629 
2630 	/* Set the values to the specific association */
2631 	if (asoc) {
2632 		if (assocparams.sasoc_asocmaxrxt != 0) {
2633 			__u32 path_sum = 0;
2634 			int   paths = 0;
2635 			struct list_head *pos;
2636 			struct sctp_transport *peer_addr;
2637 
2638 			list_for_each(pos, &asoc->peer.transport_addr_list) {
2639 				peer_addr = list_entry(pos,
2640 						struct sctp_transport,
2641 						transports);
2642 				path_sum += peer_addr->pathmaxrxt;
2643 				paths++;
2644 			}
2645 
2646 			/* Only validate asocmaxrxt if we have more then
2647 			 * one path/transport.  We do this because path
2648 			 * retransmissions are only counted when we have more
2649 			 * then one path.
2650 			 */
2651 			if (paths > 1 &&
2652 			    assocparams.sasoc_asocmaxrxt > path_sum)
2653 				return -EINVAL;
2654 
2655 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2656 		}
2657 
2658 		if (assocparams.sasoc_cookie_life != 0) {
2659 			asoc->cookie_life.tv_sec =
2660 					assocparams.sasoc_cookie_life / 1000;
2661 			asoc->cookie_life.tv_usec =
2662 					(assocparams.sasoc_cookie_life % 1000)
2663 					* 1000;
2664 		}
2665 	} else {
2666 		/* Set the values to the endpoint */
2667 		struct sctp_sock *sp = sctp_sk(sk);
2668 
2669 		if (assocparams.sasoc_asocmaxrxt != 0)
2670 			sp->assocparams.sasoc_asocmaxrxt =
2671 						assocparams.sasoc_asocmaxrxt;
2672 		if (assocparams.sasoc_cookie_life != 0)
2673 			sp->assocparams.sasoc_cookie_life =
2674 						assocparams.sasoc_cookie_life;
2675 	}
2676 	return 0;
2677 }
2678 
2679 /*
2680  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2681  *
2682  * This socket option is a boolean flag which turns on or off mapped V4
2683  * addresses.  If this option is turned on and the socket is type
2684  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2685  * If this option is turned off, then no mapping will be done of V4
2686  * addresses and a user will receive both PF_INET6 and PF_INET type
2687  * addresses on the socket.
2688  */
2689 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen)
2690 {
2691 	int val;
2692 	struct sctp_sock *sp = sctp_sk(sk);
2693 
2694 	if (optlen < sizeof(int))
2695 		return -EINVAL;
2696 	if (get_user(val, (int __user *)optval))
2697 		return -EFAULT;
2698 	if (val)
2699 		sp->v4mapped = 1;
2700 	else
2701 		sp->v4mapped = 0;
2702 
2703 	return 0;
2704 }
2705 
2706 /*
2707  * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
2708  *
2709  * This socket option specifies the maximum size to put in any outgoing
2710  * SCTP chunk.  If a message is larger than this size it will be
2711  * fragmented by SCTP into the specified size.  Note that the underlying
2712  * SCTP implementation may fragment into smaller sized chunks when the
2713  * PMTU of the underlying association is smaller than the value set by
2714  * the user.
2715  */
2716 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen)
2717 {
2718 	struct sctp_association *asoc;
2719 	struct list_head *pos;
2720 	struct sctp_sock *sp = sctp_sk(sk);
2721 	int val;
2722 
2723 	if (optlen < sizeof(int))
2724 		return -EINVAL;
2725 	if (get_user(val, (int __user *)optval))
2726 		return -EFAULT;
2727 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2728 		return -EINVAL;
2729 	sp->user_frag = val;
2730 
2731 	/* Update the frag_point of the existing associations. */
2732 	list_for_each(pos, &(sp->ep->asocs)) {
2733 		asoc = list_entry(pos, struct sctp_association, asocs);
2734 		asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu);
2735 	}
2736 
2737 	return 0;
2738 }
2739 
2740 
2741 /*
2742  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2743  *
2744  *   Requests that the peer mark the enclosed address as the association
2745  *   primary. The enclosed address must be one of the association's
2746  *   locally bound addresses. The following structure is used to make a
2747  *   set primary request:
2748  */
2749 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2750 					     int optlen)
2751 {
2752 	struct sctp_sock	*sp;
2753 	struct sctp_endpoint	*ep;
2754 	struct sctp_association	*asoc = NULL;
2755 	struct sctp_setpeerprim	prim;
2756 	struct sctp_chunk	*chunk;
2757 	int 			err;
2758 
2759 	sp = sctp_sk(sk);
2760 	ep = sp->ep;
2761 
2762 	if (!sctp_addip_enable)
2763 		return -EPERM;
2764 
2765 	if (optlen != sizeof(struct sctp_setpeerprim))
2766 		return -EINVAL;
2767 
2768 	if (copy_from_user(&prim, optval, optlen))
2769 		return -EFAULT;
2770 
2771 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2772 	if (!asoc)
2773 		return -EINVAL;
2774 
2775 	if (!asoc->peer.asconf_capable)
2776 		return -EPERM;
2777 
2778 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2779 		return -EPERM;
2780 
2781 	if (!sctp_state(asoc, ESTABLISHED))
2782 		return -ENOTCONN;
2783 
2784 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2785 		return -EADDRNOTAVAIL;
2786 
2787 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
2788 	chunk = sctp_make_asconf_set_prim(asoc,
2789 					  (union sctp_addr *)&prim.sspp_addr);
2790 	if (!chunk)
2791 		return -ENOMEM;
2792 
2793 	err = sctp_send_asconf(asoc, chunk);
2794 
2795 	SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2796 
2797 	return err;
2798 }
2799 
2800 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
2801 					  int optlen)
2802 {
2803 	struct sctp_setadaptation adaptation;
2804 
2805 	if (optlen != sizeof(struct sctp_setadaptation))
2806 		return -EINVAL;
2807 	if (copy_from_user(&adaptation, optval, optlen))
2808 		return -EFAULT;
2809 
2810 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
2811 
2812 	return 0;
2813 }
2814 
2815 /*
2816  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
2817  *
2818  * The context field in the sctp_sndrcvinfo structure is normally only
2819  * used when a failed message is retrieved holding the value that was
2820  * sent down on the actual send call.  This option allows the setting of
2821  * a default context on an association basis that will be received on
2822  * reading messages from the peer.  This is especially helpful in the
2823  * one-2-many model for an application to keep some reference to an
2824  * internal state machine that is processing messages on the
2825  * association.  Note that the setting of this value only effects
2826  * received messages from the peer and does not effect the value that is
2827  * saved with outbound messages.
2828  */
2829 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
2830 				   int optlen)
2831 {
2832 	struct sctp_assoc_value params;
2833 	struct sctp_sock *sp;
2834 	struct sctp_association *asoc;
2835 
2836 	if (optlen != sizeof(struct sctp_assoc_value))
2837 		return -EINVAL;
2838 	if (copy_from_user(&params, optval, optlen))
2839 		return -EFAULT;
2840 
2841 	sp = sctp_sk(sk);
2842 
2843 	if (params.assoc_id != 0) {
2844 		asoc = sctp_id2assoc(sk, params.assoc_id);
2845 		if (!asoc)
2846 			return -EINVAL;
2847 		asoc->default_rcv_context = params.assoc_value;
2848 	} else {
2849 		sp->default_rcv_context = params.assoc_value;
2850 	}
2851 
2852 	return 0;
2853 }
2854 
2855 /*
2856  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
2857  *
2858  * This options will at a minimum specify if the implementation is doing
2859  * fragmented interleave.  Fragmented interleave, for a one to many
2860  * socket, is when subsequent calls to receive a message may return
2861  * parts of messages from different associations.  Some implementations
2862  * may allow you to turn this value on or off.  If so, when turned off,
2863  * no fragment interleave will occur (which will cause a head of line
2864  * blocking amongst multiple associations sharing the same one to many
2865  * socket).  When this option is turned on, then each receive call may
2866  * come from a different association (thus the user must receive data
2867  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
2868  * association each receive belongs to.
2869  *
2870  * This option takes a boolean value.  A non-zero value indicates that
2871  * fragmented interleave is on.  A value of zero indicates that
2872  * fragmented interleave is off.
2873  *
2874  * Note that it is important that an implementation that allows this
2875  * option to be turned on, have it off by default.  Otherwise an unaware
2876  * application using the one to many model may become confused and act
2877  * incorrectly.
2878  */
2879 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
2880 					       char __user *optval,
2881 					       int optlen)
2882 {
2883 	int val;
2884 
2885 	if (optlen != sizeof(int))
2886 		return -EINVAL;
2887 	if (get_user(val, (int __user *)optval))
2888 		return -EFAULT;
2889 
2890 	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
2891 
2892 	return 0;
2893 }
2894 
2895 /*
2896  * 7.1.25.  Set or Get the sctp partial delivery point
2897  *       (SCTP_PARTIAL_DELIVERY_POINT)
2898  * This option will set or get the SCTP partial delivery point.  This
2899  * point is the size of a message where the partial delivery API will be
2900  * invoked to help free up rwnd space for the peer.  Setting this to a
2901  * lower value will cause partial delivery's to happen more often.  The
2902  * calls argument is an integer that sets or gets the partial delivery
2903  * point.
2904  */
2905 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
2906 						  char __user *optval,
2907 						  int optlen)
2908 {
2909 	u32 val;
2910 
2911 	if (optlen != sizeof(u32))
2912 		return -EINVAL;
2913 	if (get_user(val, (int __user *)optval))
2914 		return -EFAULT;
2915 
2916 	sctp_sk(sk)->pd_point = val;
2917 
2918 	return 0; /* is this the right error code? */
2919 }
2920 
2921 /*
2922  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
2923  *
2924  * This option will allow a user to change the maximum burst of packets
2925  * that can be emitted by this association.  Note that the default value
2926  * is 4, and some implementations may restrict this setting so that it
2927  * can only be lowered.
2928  *
2929  * NOTE: This text doesn't seem right.  Do this on a socket basis with
2930  * future associations inheriting the socket value.
2931  */
2932 static int sctp_setsockopt_maxburst(struct sock *sk,
2933 				    char __user *optval,
2934 				    int optlen)
2935 {
2936 	int val;
2937 
2938 	if (optlen != sizeof(int))
2939 		return -EINVAL;
2940 	if (get_user(val, (int __user *)optval))
2941 		return -EFAULT;
2942 
2943 	if (val < 0)
2944 		return -EINVAL;
2945 
2946 	sctp_sk(sk)->max_burst = val;
2947 
2948 	return 0;
2949 }
2950 
2951 /* API 6.2 setsockopt(), getsockopt()
2952  *
2953  * Applications use setsockopt() and getsockopt() to set or retrieve
2954  * socket options.  Socket options are used to change the default
2955  * behavior of sockets calls.  They are described in Section 7.
2956  *
2957  * The syntax is:
2958  *
2959  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
2960  *                    int __user *optlen);
2961  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
2962  *                    int optlen);
2963  *
2964  *   sd      - the socket descript.
2965  *   level   - set to IPPROTO_SCTP for all SCTP options.
2966  *   optname - the option name.
2967  *   optval  - the buffer to store the value of the option.
2968  *   optlen  - the size of the buffer.
2969  */
2970 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
2971 				char __user *optval, int optlen)
2972 {
2973 	int retval = 0;
2974 
2975 	SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
2976 			  sk, optname);
2977 
2978 	/* I can hardly begin to describe how wrong this is.  This is
2979 	 * so broken as to be worse than useless.  The API draft
2980 	 * REALLY is NOT helpful here...  I am not convinced that the
2981 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
2982 	 * are at all well-founded.
2983 	 */
2984 	if (level != SOL_SCTP) {
2985 		struct sctp_af *af = sctp_sk(sk)->pf->af;
2986 		retval = af->setsockopt(sk, level, optname, optval, optlen);
2987 		goto out_nounlock;
2988 	}
2989 
2990 	sctp_lock_sock(sk);
2991 
2992 	switch (optname) {
2993 	case SCTP_SOCKOPT_BINDX_ADD:
2994 		/* 'optlen' is the size of the addresses buffer. */
2995 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2996 					       optlen, SCTP_BINDX_ADD_ADDR);
2997 		break;
2998 
2999 	case SCTP_SOCKOPT_BINDX_REM:
3000 		/* 'optlen' is the size of the addresses buffer. */
3001 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3002 					       optlen, SCTP_BINDX_REM_ADDR);
3003 		break;
3004 
3005 	case SCTP_SOCKOPT_CONNECTX:
3006 		/* 'optlen' is the size of the addresses buffer. */
3007 		retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval,
3008 					       optlen);
3009 		break;
3010 
3011 	case SCTP_DISABLE_FRAGMENTS:
3012 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3013 		break;
3014 
3015 	case SCTP_EVENTS:
3016 		retval = sctp_setsockopt_events(sk, optval, optlen);
3017 		break;
3018 
3019 	case SCTP_AUTOCLOSE:
3020 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3021 		break;
3022 
3023 	case SCTP_PEER_ADDR_PARAMS:
3024 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3025 		break;
3026 
3027 	case SCTP_DELAYED_ACK_TIME:
3028 		retval = sctp_setsockopt_delayed_ack_time(sk, optval, optlen);
3029 		break;
3030 	case SCTP_PARTIAL_DELIVERY_POINT:
3031 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3032 		break;
3033 
3034 	case SCTP_INITMSG:
3035 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3036 		break;
3037 	case SCTP_DEFAULT_SEND_PARAM:
3038 		retval = sctp_setsockopt_default_send_param(sk, optval,
3039 							    optlen);
3040 		break;
3041 	case SCTP_PRIMARY_ADDR:
3042 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3043 		break;
3044 	case SCTP_SET_PEER_PRIMARY_ADDR:
3045 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3046 		break;
3047 	case SCTP_NODELAY:
3048 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3049 		break;
3050 	case SCTP_RTOINFO:
3051 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3052 		break;
3053 	case SCTP_ASSOCINFO:
3054 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3055 		break;
3056 	case SCTP_I_WANT_MAPPED_V4_ADDR:
3057 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3058 		break;
3059 	case SCTP_MAXSEG:
3060 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3061 		break;
3062 	case SCTP_ADAPTATION_LAYER:
3063 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3064 		break;
3065 	case SCTP_CONTEXT:
3066 		retval = sctp_setsockopt_context(sk, optval, optlen);
3067 		break;
3068 	case SCTP_FRAGMENT_INTERLEAVE:
3069 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3070 		break;
3071 	case SCTP_MAX_BURST:
3072 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3073 		break;
3074 	default:
3075 		retval = -ENOPROTOOPT;
3076 		break;
3077 	}
3078 
3079 	sctp_release_sock(sk);
3080 
3081 out_nounlock:
3082 	return retval;
3083 }
3084 
3085 /* API 3.1.6 connect() - UDP Style Syntax
3086  *
3087  * An application may use the connect() call in the UDP model to initiate an
3088  * association without sending data.
3089  *
3090  * The syntax is:
3091  *
3092  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3093  *
3094  * sd: the socket descriptor to have a new association added to.
3095  *
3096  * nam: the address structure (either struct sockaddr_in or struct
3097  *    sockaddr_in6 defined in RFC2553 [7]).
3098  *
3099  * len: the size of the address.
3100  */
3101 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3102 			     int addr_len)
3103 {
3104 	int err = 0;
3105 	struct sctp_af *af;
3106 
3107 	sctp_lock_sock(sk);
3108 
3109 	SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3110 			  __FUNCTION__, sk, addr, addr_len);
3111 
3112 	/* Validate addr_len before calling common connect/connectx routine. */
3113 	af = sctp_get_af_specific(addr->sa_family);
3114 	if (!af || addr_len < af->sockaddr_len) {
3115 		err = -EINVAL;
3116 	} else {
3117 		/* Pass correct addr len to common routine (so it knows there
3118 		 * is only one address being passed.
3119 		 */
3120 		err = __sctp_connect(sk, addr, af->sockaddr_len);
3121 	}
3122 
3123 	sctp_release_sock(sk);
3124 	return err;
3125 }
3126 
3127 /* FIXME: Write comments. */
3128 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3129 {
3130 	return -EOPNOTSUPP; /* STUB */
3131 }
3132 
3133 /* 4.1.4 accept() - TCP Style Syntax
3134  *
3135  * Applications use accept() call to remove an established SCTP
3136  * association from the accept queue of the endpoint.  A new socket
3137  * descriptor will be returned from accept() to represent the newly
3138  * formed association.
3139  */
3140 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3141 {
3142 	struct sctp_sock *sp;
3143 	struct sctp_endpoint *ep;
3144 	struct sock *newsk = NULL;
3145 	struct sctp_association *asoc;
3146 	long timeo;
3147 	int error = 0;
3148 
3149 	sctp_lock_sock(sk);
3150 
3151 	sp = sctp_sk(sk);
3152 	ep = sp->ep;
3153 
3154 	if (!sctp_style(sk, TCP)) {
3155 		error = -EOPNOTSUPP;
3156 		goto out;
3157 	}
3158 
3159 	if (!sctp_sstate(sk, LISTENING)) {
3160 		error = -EINVAL;
3161 		goto out;
3162 	}
3163 
3164 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3165 
3166 	error = sctp_wait_for_accept(sk, timeo);
3167 	if (error)
3168 		goto out;
3169 
3170 	/* We treat the list of associations on the endpoint as the accept
3171 	 * queue and pick the first association on the list.
3172 	 */
3173 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3174 
3175 	newsk = sp->pf->create_accept_sk(sk, asoc);
3176 	if (!newsk) {
3177 		error = -ENOMEM;
3178 		goto out;
3179 	}
3180 
3181 	/* Populate the fields of the newsk from the oldsk and migrate the
3182 	 * asoc to the newsk.
3183 	 */
3184 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3185 
3186 out:
3187 	sctp_release_sock(sk);
3188 	*err = error;
3189 	return newsk;
3190 }
3191 
3192 /* The SCTP ioctl handler. */
3193 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3194 {
3195 	return -ENOIOCTLCMD;
3196 }
3197 
3198 /* This is the function which gets called during socket creation to
3199  * initialized the SCTP-specific portion of the sock.
3200  * The sock structure should already be zero-filled memory.
3201  */
3202 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3203 {
3204 	struct sctp_endpoint *ep;
3205 	struct sctp_sock *sp;
3206 
3207 	SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3208 
3209 	sp = sctp_sk(sk);
3210 
3211 	/* Initialize the SCTP per socket area.  */
3212 	switch (sk->sk_type) {
3213 	case SOCK_SEQPACKET:
3214 		sp->type = SCTP_SOCKET_UDP;
3215 		break;
3216 	case SOCK_STREAM:
3217 		sp->type = SCTP_SOCKET_TCP;
3218 		break;
3219 	default:
3220 		return -ESOCKTNOSUPPORT;
3221 	}
3222 
3223 	/* Initialize default send parameters. These parameters can be
3224 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3225 	 */
3226 	sp->default_stream = 0;
3227 	sp->default_ppid = 0;
3228 	sp->default_flags = 0;
3229 	sp->default_context = 0;
3230 	sp->default_timetolive = 0;
3231 
3232 	sp->default_rcv_context = 0;
3233 	sp->max_burst = sctp_max_burst;
3234 
3235 	/* Initialize default setup parameters. These parameters
3236 	 * can be modified with the SCTP_INITMSG socket option or
3237 	 * overridden by the SCTP_INIT CMSG.
3238 	 */
3239 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
3240 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
3241 	sp->initmsg.sinit_max_attempts   = sctp_max_retrans_init;
3242 	sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3243 
3244 	/* Initialize default RTO related parameters.  These parameters can
3245 	 * be modified for with the SCTP_RTOINFO socket option.
3246 	 */
3247 	sp->rtoinfo.srto_initial = sctp_rto_initial;
3248 	sp->rtoinfo.srto_max     = sctp_rto_max;
3249 	sp->rtoinfo.srto_min     = sctp_rto_min;
3250 
3251 	/* Initialize default association related parameters. These parameters
3252 	 * can be modified with the SCTP_ASSOCINFO socket option.
3253 	 */
3254 	sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3255 	sp->assocparams.sasoc_number_peer_destinations = 0;
3256 	sp->assocparams.sasoc_peer_rwnd = 0;
3257 	sp->assocparams.sasoc_local_rwnd = 0;
3258 	sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3259 
3260 	/* Initialize default event subscriptions. By default, all the
3261 	 * options are off.
3262 	 */
3263 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3264 
3265 	/* Default Peer Address Parameters.  These defaults can
3266 	 * be modified via SCTP_PEER_ADDR_PARAMS
3267 	 */
3268 	sp->hbinterval  = sctp_hb_interval;
3269 	sp->pathmaxrxt  = sctp_max_retrans_path;
3270 	sp->pathmtu     = 0; // allow default discovery
3271 	sp->sackdelay   = sctp_sack_timeout;
3272 	sp->param_flags = SPP_HB_ENABLE |
3273 			  SPP_PMTUD_ENABLE |
3274 			  SPP_SACKDELAY_ENABLE;
3275 
3276 	/* If enabled no SCTP message fragmentation will be performed.
3277 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3278 	 */
3279 	sp->disable_fragments = 0;
3280 
3281 	/* Enable Nagle algorithm by default.  */
3282 	sp->nodelay           = 0;
3283 
3284 	/* Enable by default. */
3285 	sp->v4mapped          = 1;
3286 
3287 	/* Auto-close idle associations after the configured
3288 	 * number of seconds.  A value of 0 disables this
3289 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
3290 	 * for UDP-style sockets only.
3291 	 */
3292 	sp->autoclose         = 0;
3293 
3294 	/* User specified fragmentation limit. */
3295 	sp->user_frag         = 0;
3296 
3297 	sp->adaptation_ind = 0;
3298 
3299 	sp->pf = sctp_get_pf_specific(sk->sk_family);
3300 
3301 	/* Control variables for partial data delivery. */
3302 	atomic_set(&sp->pd_mode, 0);
3303 	skb_queue_head_init(&sp->pd_lobby);
3304 	sp->frag_interleave = 0;
3305 
3306 	/* Create a per socket endpoint structure.  Even if we
3307 	 * change the data structure relationships, this may still
3308 	 * be useful for storing pre-connect address information.
3309 	 */
3310 	ep = sctp_endpoint_new(sk, GFP_KERNEL);
3311 	if (!ep)
3312 		return -ENOMEM;
3313 
3314 	sp->ep = ep;
3315 	sp->hmac = NULL;
3316 
3317 	SCTP_DBG_OBJCNT_INC(sock);
3318 	return 0;
3319 }
3320 
3321 /* Cleanup any SCTP per socket resources.  */
3322 SCTP_STATIC int sctp_destroy_sock(struct sock *sk)
3323 {
3324 	struct sctp_endpoint *ep;
3325 
3326 	SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3327 
3328 	/* Release our hold on the endpoint. */
3329 	ep = sctp_sk(sk)->ep;
3330 	sctp_endpoint_free(ep);
3331 
3332 	return 0;
3333 }
3334 
3335 /* API 4.1.7 shutdown() - TCP Style Syntax
3336  *     int shutdown(int socket, int how);
3337  *
3338  *     sd      - the socket descriptor of the association to be closed.
3339  *     how     - Specifies the type of shutdown.  The  values  are
3340  *               as follows:
3341  *               SHUT_RD
3342  *                     Disables further receive operations. No SCTP
3343  *                     protocol action is taken.
3344  *               SHUT_WR
3345  *                     Disables further send operations, and initiates
3346  *                     the SCTP shutdown sequence.
3347  *               SHUT_RDWR
3348  *                     Disables further send  and  receive  operations
3349  *                     and initiates the SCTP shutdown sequence.
3350  */
3351 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3352 {
3353 	struct sctp_endpoint *ep;
3354 	struct sctp_association *asoc;
3355 
3356 	if (!sctp_style(sk, TCP))
3357 		return;
3358 
3359 	if (how & SEND_SHUTDOWN) {
3360 		ep = sctp_sk(sk)->ep;
3361 		if (!list_empty(&ep->asocs)) {
3362 			asoc = list_entry(ep->asocs.next,
3363 					  struct sctp_association, asocs);
3364 			sctp_primitive_SHUTDOWN(asoc, NULL);
3365 		}
3366 	}
3367 }
3368 
3369 /* 7.2.1 Association Status (SCTP_STATUS)
3370 
3371  * Applications can retrieve current status information about an
3372  * association, including association state, peer receiver window size,
3373  * number of unacked data chunks, and number of data chunks pending
3374  * receipt.  This information is read-only.
3375  */
3376 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3377 				       char __user *optval,
3378 				       int __user *optlen)
3379 {
3380 	struct sctp_status status;
3381 	struct sctp_association *asoc = NULL;
3382 	struct sctp_transport *transport;
3383 	sctp_assoc_t associd;
3384 	int retval = 0;
3385 
3386 	if (len < sizeof(status)) {
3387 		retval = -EINVAL;
3388 		goto out;
3389 	}
3390 
3391 	len = sizeof(status);
3392 	if (copy_from_user(&status, optval, len)) {
3393 		retval = -EFAULT;
3394 		goto out;
3395 	}
3396 
3397 	associd = status.sstat_assoc_id;
3398 	asoc = sctp_id2assoc(sk, associd);
3399 	if (!asoc) {
3400 		retval = -EINVAL;
3401 		goto out;
3402 	}
3403 
3404 	transport = asoc->peer.primary_path;
3405 
3406 	status.sstat_assoc_id = sctp_assoc2id(asoc);
3407 	status.sstat_state = asoc->state;
3408 	status.sstat_rwnd =  asoc->peer.rwnd;
3409 	status.sstat_unackdata = asoc->unack_data;
3410 
3411 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
3412 	status.sstat_instrms = asoc->c.sinit_max_instreams;
3413 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
3414 	status.sstat_fragmentation_point = asoc->frag_point;
3415 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3416 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
3417 			transport->af_specific->sockaddr_len);
3418 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
3419 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3420 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
3421 	status.sstat_primary.spinfo_state = transport->state;
3422 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
3423 	status.sstat_primary.spinfo_srtt = transport->srtt;
3424 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
3425 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
3426 
3427 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
3428 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
3429 
3430 	if (put_user(len, optlen)) {
3431 		retval = -EFAULT;
3432 		goto out;
3433 	}
3434 
3435 	SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
3436 			  len, status.sstat_state, status.sstat_rwnd,
3437 			  status.sstat_assoc_id);
3438 
3439 	if (copy_to_user(optval, &status, len)) {
3440 		retval = -EFAULT;
3441 		goto out;
3442 	}
3443 
3444 out:
3445 	return (retval);
3446 }
3447 
3448 
3449 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
3450  *
3451  * Applications can retrieve information about a specific peer address
3452  * of an association, including its reachability state, congestion
3453  * window, and retransmission timer values.  This information is
3454  * read-only.
3455  */
3456 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
3457 					  char __user *optval,
3458 					  int __user *optlen)
3459 {
3460 	struct sctp_paddrinfo pinfo;
3461 	struct sctp_transport *transport;
3462 	int retval = 0;
3463 
3464 	if (len < sizeof(pinfo)) {
3465 		retval = -EINVAL;
3466 		goto out;
3467 	}
3468 
3469 	len = sizeof(pinfo);
3470 	if (copy_from_user(&pinfo, optval, len)) {
3471 		retval = -EFAULT;
3472 		goto out;
3473 	}
3474 
3475 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
3476 					   pinfo.spinfo_assoc_id);
3477 	if (!transport)
3478 		return -EINVAL;
3479 
3480 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3481 	pinfo.spinfo_state = transport->state;
3482 	pinfo.spinfo_cwnd = transport->cwnd;
3483 	pinfo.spinfo_srtt = transport->srtt;
3484 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
3485 	pinfo.spinfo_mtu = transport->pathmtu;
3486 
3487 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
3488 		pinfo.spinfo_state = SCTP_ACTIVE;
3489 
3490 	if (put_user(len, optlen)) {
3491 		retval = -EFAULT;
3492 		goto out;
3493 	}
3494 
3495 	if (copy_to_user(optval, &pinfo, len)) {
3496 		retval = -EFAULT;
3497 		goto out;
3498 	}
3499 
3500 out:
3501 	return (retval);
3502 }
3503 
3504 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
3505  *
3506  * This option is a on/off flag.  If enabled no SCTP message
3507  * fragmentation will be performed.  Instead if a message being sent
3508  * exceeds the current PMTU size, the message will NOT be sent and
3509  * instead a error will be indicated to the user.
3510  */
3511 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
3512 					char __user *optval, int __user *optlen)
3513 {
3514 	int val;
3515 
3516 	if (len < sizeof(int))
3517 		return -EINVAL;
3518 
3519 	len = sizeof(int);
3520 	val = (sctp_sk(sk)->disable_fragments == 1);
3521 	if (put_user(len, optlen))
3522 		return -EFAULT;
3523 	if (copy_to_user(optval, &val, len))
3524 		return -EFAULT;
3525 	return 0;
3526 }
3527 
3528 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
3529  *
3530  * This socket option is used to specify various notifications and
3531  * ancillary data the user wishes to receive.
3532  */
3533 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
3534 				  int __user *optlen)
3535 {
3536 	if (len < sizeof(struct sctp_event_subscribe))
3537 		return -EINVAL;
3538 	len = sizeof(struct sctp_event_subscribe);
3539 	if (put_user(len, optlen))
3540 		return -EFAULT;
3541 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
3542 		return -EFAULT;
3543 	return 0;
3544 }
3545 
3546 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
3547  *
3548  * This socket option is applicable to the UDP-style socket only.  When
3549  * set it will cause associations that are idle for more than the
3550  * specified number of seconds to automatically close.  An association
3551  * being idle is defined an association that has NOT sent or received
3552  * user data.  The special value of '0' indicates that no automatic
3553  * close of any associations should be performed.  The option expects an
3554  * integer defining the number of seconds of idle time before an
3555  * association is closed.
3556  */
3557 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
3558 {
3559 	/* Applicable to UDP-style socket only */
3560 	if (sctp_style(sk, TCP))
3561 		return -EOPNOTSUPP;
3562 	if (len < sizeof(int))
3563 		return -EINVAL;
3564 	len = sizeof(int);
3565 	if (put_user(len, optlen))
3566 		return -EFAULT;
3567 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
3568 		return -EFAULT;
3569 	return 0;
3570 }
3571 
3572 /* Helper routine to branch off an association to a new socket.  */
3573 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
3574 				struct socket **sockp)
3575 {
3576 	struct sock *sk = asoc->base.sk;
3577 	struct socket *sock;
3578 	struct inet_sock *inetsk;
3579 	struct sctp_af *af;
3580 	int err = 0;
3581 
3582 	/* An association cannot be branched off from an already peeled-off
3583 	 * socket, nor is this supported for tcp style sockets.
3584 	 */
3585 	if (!sctp_style(sk, UDP))
3586 		return -EINVAL;
3587 
3588 	/* Create a new socket.  */
3589 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
3590 	if (err < 0)
3591 		return err;
3592 
3593 	/* Populate the fields of the newsk from the oldsk and migrate the
3594 	 * asoc to the newsk.
3595 	 */
3596 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
3597 
3598 	/* Make peeled-off sockets more like 1-1 accepted sockets.
3599 	 * Set the daddr and initialize id to something more random
3600 	 */
3601 	af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
3602 	af->to_sk_daddr(&asoc->peer.primary_addr, sk);
3603 	inetsk = inet_sk(sock->sk);
3604 	inetsk->id = asoc->next_tsn ^ jiffies;
3605 
3606 	*sockp = sock;
3607 
3608 	return err;
3609 }
3610 
3611 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
3612 {
3613 	sctp_peeloff_arg_t peeloff;
3614 	struct socket *newsock;
3615 	int retval = 0;
3616 	struct sctp_association *asoc;
3617 
3618 	if (len < sizeof(sctp_peeloff_arg_t))
3619 		return -EINVAL;
3620 	len = sizeof(sctp_peeloff_arg_t);
3621 	if (copy_from_user(&peeloff, optval, len))
3622 		return -EFAULT;
3623 
3624 	asoc = sctp_id2assoc(sk, peeloff.associd);
3625 	if (!asoc) {
3626 		retval = -EINVAL;
3627 		goto out;
3628 	}
3629 
3630 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc);
3631 
3632 	retval = sctp_do_peeloff(asoc, &newsock);
3633 	if (retval < 0)
3634 		goto out;
3635 
3636 	/* Map the socket to an unused fd that can be returned to the user.  */
3637 	retval = sock_map_fd(newsock);
3638 	if (retval < 0) {
3639 		sock_release(newsock);
3640 		goto out;
3641 	}
3642 
3643 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
3644 			  __FUNCTION__, sk, asoc, newsock->sk, retval);
3645 
3646 	/* Return the fd mapped to the new socket.  */
3647 	peeloff.sd = retval;
3648 	if (put_user(len, optlen))
3649 		return -EFAULT;
3650 	if (copy_to_user(optval, &peeloff, len))
3651 		retval = -EFAULT;
3652 
3653 out:
3654 	return retval;
3655 }
3656 
3657 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
3658  *
3659  * Applications can enable or disable heartbeats for any peer address of
3660  * an association, modify an address's heartbeat interval, force a
3661  * heartbeat to be sent immediately, and adjust the address's maximum
3662  * number of retransmissions sent before an address is considered
3663  * unreachable.  The following structure is used to access and modify an
3664  * address's parameters:
3665  *
3666  *  struct sctp_paddrparams {
3667  *     sctp_assoc_t            spp_assoc_id;
3668  *     struct sockaddr_storage spp_address;
3669  *     uint32_t                spp_hbinterval;
3670  *     uint16_t                spp_pathmaxrxt;
3671  *     uint32_t                spp_pathmtu;
3672  *     uint32_t                spp_sackdelay;
3673  *     uint32_t                spp_flags;
3674  * };
3675  *
3676  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
3677  *                     application, and identifies the association for
3678  *                     this query.
3679  *   spp_address     - This specifies which address is of interest.
3680  *   spp_hbinterval  - This contains the value of the heartbeat interval,
3681  *                     in milliseconds.  If a  value of zero
3682  *                     is present in this field then no changes are to
3683  *                     be made to this parameter.
3684  *   spp_pathmaxrxt  - This contains the maximum number of
3685  *                     retransmissions before this address shall be
3686  *                     considered unreachable. If a  value of zero
3687  *                     is present in this field then no changes are to
3688  *                     be made to this parameter.
3689  *   spp_pathmtu     - When Path MTU discovery is disabled the value
3690  *                     specified here will be the "fixed" path mtu.
3691  *                     Note that if the spp_address field is empty
3692  *                     then all associations on this address will
3693  *                     have this fixed path mtu set upon them.
3694  *
3695  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
3696  *                     the number of milliseconds that sacks will be delayed
3697  *                     for. This value will apply to all addresses of an
3698  *                     association if the spp_address field is empty. Note
3699  *                     also, that if delayed sack is enabled and this
3700  *                     value is set to 0, no change is made to the last
3701  *                     recorded delayed sack timer value.
3702  *
3703  *   spp_flags       - These flags are used to control various features
3704  *                     on an association. The flag field may contain
3705  *                     zero or more of the following options.
3706  *
3707  *                     SPP_HB_ENABLE  - Enable heartbeats on the
3708  *                     specified address. Note that if the address
3709  *                     field is empty all addresses for the association
3710  *                     have heartbeats enabled upon them.
3711  *
3712  *                     SPP_HB_DISABLE - Disable heartbeats on the
3713  *                     speicifed address. Note that if the address
3714  *                     field is empty all addresses for the association
3715  *                     will have their heartbeats disabled. Note also
3716  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
3717  *                     mutually exclusive, only one of these two should
3718  *                     be specified. Enabling both fields will have
3719  *                     undetermined results.
3720  *
3721  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
3722  *                     to be made immediately.
3723  *
3724  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
3725  *                     discovery upon the specified address. Note that
3726  *                     if the address feild is empty then all addresses
3727  *                     on the association are effected.
3728  *
3729  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
3730  *                     discovery upon the specified address. Note that
3731  *                     if the address feild is empty then all addresses
3732  *                     on the association are effected. Not also that
3733  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
3734  *                     exclusive. Enabling both will have undetermined
3735  *                     results.
3736  *
3737  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
3738  *                     on delayed sack. The time specified in spp_sackdelay
3739  *                     is used to specify the sack delay for this address. Note
3740  *                     that if spp_address is empty then all addresses will
3741  *                     enable delayed sack and take on the sack delay
3742  *                     value specified in spp_sackdelay.
3743  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
3744  *                     off delayed sack. If the spp_address field is blank then
3745  *                     delayed sack is disabled for the entire association. Note
3746  *                     also that this field is mutually exclusive to
3747  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
3748  *                     results.
3749  */
3750 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
3751 					    char __user *optval, int __user *optlen)
3752 {
3753 	struct sctp_paddrparams  params;
3754 	struct sctp_transport   *trans = NULL;
3755 	struct sctp_association *asoc = NULL;
3756 	struct sctp_sock        *sp = sctp_sk(sk);
3757 
3758 	if (len < sizeof(struct sctp_paddrparams))
3759 		return -EINVAL;
3760 	len = sizeof(struct sctp_paddrparams);
3761 	if (copy_from_user(&params, optval, len))
3762 		return -EFAULT;
3763 
3764 	/* If an address other than INADDR_ANY is specified, and
3765 	 * no transport is found, then the request is invalid.
3766 	 */
3767 	if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
3768 		trans = sctp_addr_id2transport(sk, &params.spp_address,
3769 					       params.spp_assoc_id);
3770 		if (!trans) {
3771 			SCTP_DEBUG_PRINTK("Failed no transport\n");
3772 			return -EINVAL;
3773 		}
3774 	}
3775 
3776 	/* Get association, if assoc_id != 0 and the socket is a one
3777 	 * to many style socket, and an association was not found, then
3778 	 * the id was invalid.
3779 	 */
3780 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
3781 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
3782 		SCTP_DEBUG_PRINTK("Failed no association\n");
3783 		return -EINVAL;
3784 	}
3785 
3786 	if (trans) {
3787 		/* Fetch transport values. */
3788 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
3789 		params.spp_pathmtu    = trans->pathmtu;
3790 		params.spp_pathmaxrxt = trans->pathmaxrxt;
3791 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
3792 
3793 		/*draft-11 doesn't say what to return in spp_flags*/
3794 		params.spp_flags      = trans->param_flags;
3795 	} else if (asoc) {
3796 		/* Fetch association values. */
3797 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
3798 		params.spp_pathmtu    = asoc->pathmtu;
3799 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
3800 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
3801 
3802 		/*draft-11 doesn't say what to return in spp_flags*/
3803 		params.spp_flags      = asoc->param_flags;
3804 	} else {
3805 		/* Fetch socket values. */
3806 		params.spp_hbinterval = sp->hbinterval;
3807 		params.spp_pathmtu    = sp->pathmtu;
3808 		params.spp_sackdelay  = sp->sackdelay;
3809 		params.spp_pathmaxrxt = sp->pathmaxrxt;
3810 
3811 		/*draft-11 doesn't say what to return in spp_flags*/
3812 		params.spp_flags      = sp->param_flags;
3813 	}
3814 
3815 	if (copy_to_user(optval, &params, len))
3816 		return -EFAULT;
3817 
3818 	if (put_user(len, optlen))
3819 		return -EFAULT;
3820 
3821 	return 0;
3822 }
3823 
3824 /* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
3825  *
3826  *   This options will get or set the delayed ack timer.  The time is set
3827  *   in milliseconds.  If the assoc_id is 0, then this sets or gets the
3828  *   endpoints default delayed ack timer value.  If the assoc_id field is
3829  *   non-zero, then the set or get effects the specified association.
3830  *
3831  *   struct sctp_assoc_value {
3832  *       sctp_assoc_t            assoc_id;
3833  *       uint32_t                assoc_value;
3834  *   };
3835  *
3836  *     assoc_id    - This parameter, indicates which association the
3837  *                   user is preforming an action upon. Note that if
3838  *                   this field's value is zero then the endpoints
3839  *                   default value is changed (effecting future
3840  *                   associations only).
3841  *
3842  *     assoc_value - This parameter contains the number of milliseconds
3843  *                   that the user is requesting the delayed ACK timer
3844  *                   be set to. Note that this value is defined in
3845  *                   the standard to be between 200 and 500 milliseconds.
3846  *
3847  *                   Note: a value of zero will leave the value alone,
3848  *                   but disable SACK delay. A non-zero value will also
3849  *                   enable SACK delay.
3850  */
3851 static int sctp_getsockopt_delayed_ack_time(struct sock *sk, int len,
3852 					    char __user *optval,
3853 					    int __user *optlen)
3854 {
3855 	struct sctp_assoc_value  params;
3856 	struct sctp_association *asoc = NULL;
3857 	struct sctp_sock        *sp = sctp_sk(sk);
3858 
3859 	if (len < sizeof(struct sctp_assoc_value))
3860 		return - EINVAL;
3861 
3862 	len = sizeof(struct sctp_assoc_value);
3863 
3864 	if (copy_from_user(&params, optval, len))
3865 		return -EFAULT;
3866 
3867 	/* Get association, if assoc_id != 0 and the socket is a one
3868 	 * to many style socket, and an association was not found, then
3869 	 * the id was invalid.
3870 	 */
3871 	asoc = sctp_id2assoc(sk, params.assoc_id);
3872 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3873 		return -EINVAL;
3874 
3875 	if (asoc) {
3876 		/* Fetch association values. */
3877 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE)
3878 			params.assoc_value = jiffies_to_msecs(
3879 				asoc->sackdelay);
3880 		else
3881 			params.assoc_value = 0;
3882 	} else {
3883 		/* Fetch socket values. */
3884 		if (sp->param_flags & SPP_SACKDELAY_ENABLE)
3885 			params.assoc_value  = sp->sackdelay;
3886 		else
3887 			params.assoc_value  = 0;
3888 	}
3889 
3890 	if (copy_to_user(optval, &params, len))
3891 		return -EFAULT;
3892 
3893 	if (put_user(len, optlen))
3894 		return -EFAULT;
3895 
3896 	return 0;
3897 }
3898 
3899 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
3900  *
3901  * Applications can specify protocol parameters for the default association
3902  * initialization.  The option name argument to setsockopt() and getsockopt()
3903  * is SCTP_INITMSG.
3904  *
3905  * Setting initialization parameters is effective only on an unconnected
3906  * socket (for UDP-style sockets only future associations are effected
3907  * by the change).  With TCP-style sockets, this option is inherited by
3908  * sockets derived from a listener socket.
3909  */
3910 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
3911 {
3912 	if (len < sizeof(struct sctp_initmsg))
3913 		return -EINVAL;
3914 	len = sizeof(struct sctp_initmsg);
3915 	if (put_user(len, optlen))
3916 		return -EFAULT;
3917 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
3918 		return -EFAULT;
3919 	return 0;
3920 }
3921 
3922 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len,
3923 					      char __user *optval,
3924 					      int __user *optlen)
3925 {
3926 	sctp_assoc_t id;
3927 	struct sctp_association *asoc;
3928 	struct list_head *pos;
3929 	int cnt = 0;
3930 
3931 	if (len < sizeof(sctp_assoc_t))
3932 		return -EINVAL;
3933 
3934 	if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
3935 		return -EFAULT;
3936 
3937 	/* For UDP-style sockets, id specifies the association to query.  */
3938 	asoc = sctp_id2assoc(sk, id);
3939 	if (!asoc)
3940 		return -EINVAL;
3941 
3942 	list_for_each(pos, &asoc->peer.transport_addr_list) {
3943 		cnt ++;
3944 	}
3945 
3946 	return cnt;
3947 }
3948 
3949 /*
3950  * Old API for getting list of peer addresses. Does not work for 32-bit
3951  * programs running on a 64-bit kernel
3952  */
3953 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len,
3954 					  char __user *optval,
3955 					  int __user *optlen)
3956 {
3957 	struct sctp_association *asoc;
3958 	struct list_head *pos;
3959 	int cnt = 0;
3960 	struct sctp_getaddrs_old getaddrs;
3961 	struct sctp_transport *from;
3962 	void __user *to;
3963 	union sctp_addr temp;
3964 	struct sctp_sock *sp = sctp_sk(sk);
3965 	int addrlen;
3966 
3967 	if (len < sizeof(struct sctp_getaddrs_old))
3968 		return -EINVAL;
3969 
3970 	len = sizeof(struct sctp_getaddrs_old);
3971 
3972 	if (copy_from_user(&getaddrs, optval, len))
3973 		return -EFAULT;
3974 
3975 	if (getaddrs.addr_num <= 0) return -EINVAL;
3976 
3977 	/* For UDP-style sockets, id specifies the association to query.  */
3978 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3979 	if (!asoc)
3980 		return -EINVAL;
3981 
3982 	to = (void __user *)getaddrs.addrs;
3983 	list_for_each(pos, &asoc->peer.transport_addr_list) {
3984 		from = list_entry(pos, struct sctp_transport, transports);
3985 		memcpy(&temp, &from->ipaddr, sizeof(temp));
3986 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3987 		addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
3988 		if (copy_to_user(to, &temp, addrlen))
3989 			return -EFAULT;
3990 		to += addrlen ;
3991 		cnt ++;
3992 		if (cnt >= getaddrs.addr_num) break;
3993 	}
3994 	getaddrs.addr_num = cnt;
3995 	if (put_user(len, optlen))
3996 		return -EFAULT;
3997 	if (copy_to_user(optval, &getaddrs, len))
3998 		return -EFAULT;
3999 
4000 	return 0;
4001 }
4002 
4003 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4004 				      char __user *optval, int __user *optlen)
4005 {
4006 	struct sctp_association *asoc;
4007 	struct list_head *pos;
4008 	int cnt = 0;
4009 	struct sctp_getaddrs getaddrs;
4010 	struct sctp_transport *from;
4011 	void __user *to;
4012 	union sctp_addr temp;
4013 	struct sctp_sock *sp = sctp_sk(sk);
4014 	int addrlen;
4015 	size_t space_left;
4016 	int bytes_copied;
4017 
4018 	if (len < sizeof(struct sctp_getaddrs))
4019 		return -EINVAL;
4020 
4021 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4022 		return -EFAULT;
4023 
4024 	/* For UDP-style sockets, id specifies the association to query.  */
4025 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4026 	if (!asoc)
4027 		return -EINVAL;
4028 
4029 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4030 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4031 
4032 	list_for_each(pos, &asoc->peer.transport_addr_list) {
4033 		from = list_entry(pos, struct sctp_transport, transports);
4034 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4035 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4036 		addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
4037 		if (space_left < addrlen)
4038 			return -ENOMEM;
4039 		if (copy_to_user(to, &temp, addrlen))
4040 			return -EFAULT;
4041 		to += addrlen;
4042 		cnt++;
4043 		space_left -= addrlen;
4044 	}
4045 
4046 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4047 		return -EFAULT;
4048 	bytes_copied = ((char __user *)to) - optval;
4049 	if (put_user(bytes_copied, optlen))
4050 		return -EFAULT;
4051 
4052 	return 0;
4053 }
4054 
4055 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len,
4056 					       char __user *optval,
4057 					       int __user *optlen)
4058 {
4059 	sctp_assoc_t id;
4060 	struct sctp_bind_addr *bp;
4061 	struct sctp_association *asoc;
4062 	struct list_head *pos, *temp;
4063 	struct sctp_sockaddr_entry *addr;
4064 	rwlock_t *addr_lock;
4065 	int cnt = 0;
4066 
4067 	if (len < sizeof(sctp_assoc_t))
4068 		return -EINVAL;
4069 
4070 	if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
4071 		return -EFAULT;
4072 
4073 	/*
4074 	 *  For UDP-style sockets, id specifies the association to query.
4075 	 *  If the id field is set to the value '0' then the locally bound
4076 	 *  addresses are returned without regard to any particular
4077 	 *  association.
4078 	 */
4079 	if (0 == id) {
4080 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4081 		addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
4082 	} else {
4083 		asoc = sctp_id2assoc(sk, id);
4084 		if (!asoc)
4085 			return -EINVAL;
4086 		bp = &asoc->base.bind_addr;
4087 		addr_lock = &asoc->base.addr_lock;
4088 	}
4089 
4090 	sctp_read_lock(addr_lock);
4091 
4092 	/* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
4093 	 * addresses from the global local address list.
4094 	 */
4095 	if (sctp_list_single_entry(&bp->address_list)) {
4096 		addr = list_entry(bp->address_list.next,
4097 				  struct sctp_sockaddr_entry, list);
4098 		if (sctp_is_any(&addr->a)) {
4099 			list_for_each_safe(pos, temp, &sctp_local_addr_list) {
4100 				addr = list_entry(pos,
4101 						  struct sctp_sockaddr_entry,
4102 						  list);
4103 				if ((PF_INET == sk->sk_family) &&
4104 				    (AF_INET6 == addr->a.sa.sa_family))
4105 					continue;
4106 				cnt++;
4107 			}
4108 		} else {
4109 			cnt = 1;
4110 		}
4111 		goto done;
4112 	}
4113 
4114 	list_for_each(pos, &bp->address_list) {
4115 		cnt ++;
4116 	}
4117 
4118 done:
4119 	sctp_read_unlock(addr_lock);
4120 	return cnt;
4121 }
4122 
4123 /* Helper function that copies local addresses to user and returns the number
4124  * of addresses copied.
4125  */
4126 static int sctp_copy_laddrs_old(struct sock *sk, __u16 port,
4127 					int max_addrs, void *to,
4128 					int *bytes_copied)
4129 {
4130 	struct list_head *pos, *next;
4131 	struct sctp_sockaddr_entry *addr;
4132 	union sctp_addr temp;
4133 	int cnt = 0;
4134 	int addrlen;
4135 
4136 	list_for_each_safe(pos, next, &sctp_local_addr_list) {
4137 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
4138 		if ((PF_INET == sk->sk_family) &&
4139 		    (AF_INET6 == addr->a.sa.sa_family))
4140 			continue;
4141 		memcpy(&temp, &addr->a, sizeof(temp));
4142 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4143 								&temp);
4144 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4145 		memcpy(to, &temp, addrlen);
4146 
4147 		to += addrlen;
4148 		*bytes_copied += addrlen;
4149 		cnt ++;
4150 		if (cnt >= max_addrs) break;
4151 	}
4152 
4153 	return cnt;
4154 }
4155 
4156 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4157 			    size_t space_left, int *bytes_copied)
4158 {
4159 	struct list_head *pos, *next;
4160 	struct sctp_sockaddr_entry *addr;
4161 	union sctp_addr temp;
4162 	int cnt = 0;
4163 	int addrlen;
4164 
4165 	list_for_each_safe(pos, next, &sctp_local_addr_list) {
4166 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
4167 		if ((PF_INET == sk->sk_family) &&
4168 		    (AF_INET6 == addr->a.sa.sa_family))
4169 			continue;
4170 		memcpy(&temp, &addr->a, sizeof(temp));
4171 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4172 								&temp);
4173 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4174 		if (space_left < addrlen)
4175 			return -ENOMEM;
4176 		memcpy(to, &temp, addrlen);
4177 
4178 		to += addrlen;
4179 		cnt ++;
4180 		space_left -= addrlen;
4181 		*bytes_copied += addrlen;
4182 	}
4183 
4184 	return cnt;
4185 }
4186 
4187 /* Old API for getting list of local addresses. Does not work for 32-bit
4188  * programs running on a 64-bit kernel
4189  */
4190 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len,
4191 					   char __user *optval, int __user *optlen)
4192 {
4193 	struct sctp_bind_addr *bp;
4194 	struct sctp_association *asoc;
4195 	struct list_head *pos;
4196 	int cnt = 0;
4197 	struct sctp_getaddrs_old getaddrs;
4198 	struct sctp_sockaddr_entry *addr;
4199 	void __user *to;
4200 	union sctp_addr temp;
4201 	struct sctp_sock *sp = sctp_sk(sk);
4202 	int addrlen;
4203 	rwlock_t *addr_lock;
4204 	int err = 0;
4205 	void *addrs;
4206 	void *buf;
4207 	int bytes_copied = 0;
4208 
4209 	if (len < sizeof(struct sctp_getaddrs_old))
4210 		return -EINVAL;
4211 
4212 	len = sizeof(struct sctp_getaddrs_old);
4213 	if (copy_from_user(&getaddrs, optval, len))
4214 		return -EFAULT;
4215 
4216 	if (getaddrs.addr_num <= 0) return -EINVAL;
4217 	/*
4218 	 *  For UDP-style sockets, id specifies the association to query.
4219 	 *  If the id field is set to the value '0' then the locally bound
4220 	 *  addresses are returned without regard to any particular
4221 	 *  association.
4222 	 */
4223 	if (0 == getaddrs.assoc_id) {
4224 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4225 		addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
4226 	} else {
4227 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4228 		if (!asoc)
4229 			return -EINVAL;
4230 		bp = &asoc->base.bind_addr;
4231 		addr_lock = &asoc->base.addr_lock;
4232 	}
4233 
4234 	to = getaddrs.addrs;
4235 
4236 	/* Allocate space for a local instance of packed array to hold all
4237 	 * the data.  We store addresses here first and then put write them
4238 	 * to the user in one shot.
4239 	 */
4240 	addrs = kmalloc(sizeof(union sctp_addr) * getaddrs.addr_num,
4241 			GFP_KERNEL);
4242 	if (!addrs)
4243 		return -ENOMEM;
4244 
4245 	sctp_read_lock(addr_lock);
4246 
4247 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4248 	 * addresses from the global local address list.
4249 	 */
4250 	if (sctp_list_single_entry(&bp->address_list)) {
4251 		addr = list_entry(bp->address_list.next,
4252 				  struct sctp_sockaddr_entry, list);
4253 		if (sctp_is_any(&addr->a)) {
4254 			cnt = sctp_copy_laddrs_old(sk, bp->port,
4255 						   getaddrs.addr_num,
4256 						   addrs, &bytes_copied);
4257 			goto copy_getaddrs;
4258 		}
4259 	}
4260 
4261 	buf = addrs;
4262 	list_for_each(pos, &bp->address_list) {
4263 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
4264 		memcpy(&temp, &addr->a, sizeof(temp));
4265 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4266 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4267 		memcpy(buf, &temp, addrlen);
4268 		buf += addrlen;
4269 		bytes_copied += addrlen;
4270 		cnt ++;
4271 		if (cnt >= getaddrs.addr_num) break;
4272 	}
4273 
4274 copy_getaddrs:
4275 	sctp_read_unlock(addr_lock);
4276 
4277 	/* copy the entire address list into the user provided space */
4278 	if (copy_to_user(to, addrs, bytes_copied)) {
4279 		err = -EFAULT;
4280 		goto error;
4281 	}
4282 
4283 	/* copy the leading structure back to user */
4284 	getaddrs.addr_num = cnt;
4285 	if (copy_to_user(optval, &getaddrs, len))
4286 		err = -EFAULT;
4287 
4288 error:
4289 	kfree(addrs);
4290 	return err;
4291 }
4292 
4293 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4294 				       char __user *optval, int __user *optlen)
4295 {
4296 	struct sctp_bind_addr *bp;
4297 	struct sctp_association *asoc;
4298 	struct list_head *pos;
4299 	int cnt = 0;
4300 	struct sctp_getaddrs getaddrs;
4301 	struct sctp_sockaddr_entry *addr;
4302 	void __user *to;
4303 	union sctp_addr temp;
4304 	struct sctp_sock *sp = sctp_sk(sk);
4305 	int addrlen;
4306 	rwlock_t *addr_lock;
4307 	int err = 0;
4308 	size_t space_left;
4309 	int bytes_copied = 0;
4310 	void *addrs;
4311 	void *buf;
4312 
4313 	if (len < sizeof(struct sctp_getaddrs))
4314 		return -EINVAL;
4315 
4316 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4317 		return -EFAULT;
4318 
4319 	/*
4320 	 *  For UDP-style sockets, id specifies the association to query.
4321 	 *  If the id field is set to the value '0' then the locally bound
4322 	 *  addresses are returned without regard to any particular
4323 	 *  association.
4324 	 */
4325 	if (0 == getaddrs.assoc_id) {
4326 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4327 		addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
4328 	} else {
4329 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4330 		if (!asoc)
4331 			return -EINVAL;
4332 		bp = &asoc->base.bind_addr;
4333 		addr_lock = &asoc->base.addr_lock;
4334 	}
4335 
4336 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4337 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4338 
4339 	addrs = kmalloc(space_left, GFP_KERNEL);
4340 	if (!addrs)
4341 		return -ENOMEM;
4342 
4343 	sctp_read_lock(addr_lock);
4344 
4345 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4346 	 * addresses from the global local address list.
4347 	 */
4348 	if (sctp_list_single_entry(&bp->address_list)) {
4349 		addr = list_entry(bp->address_list.next,
4350 				  struct sctp_sockaddr_entry, list);
4351 		if (sctp_is_any(&addr->a)) {
4352 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4353 						space_left, &bytes_copied);
4354 			if (cnt < 0) {
4355 				err = cnt;
4356 				goto error;
4357 			}
4358 			goto copy_getaddrs;
4359 		}
4360 	}
4361 
4362 	buf = addrs;
4363 	list_for_each(pos, &bp->address_list) {
4364 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
4365 		memcpy(&temp, &addr->a, sizeof(temp));
4366 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4367 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4368 		if (space_left < addrlen) {
4369 			err =  -ENOMEM; /*fixme: right error?*/
4370 			goto error;
4371 		}
4372 		memcpy(buf, &temp, addrlen);
4373 		buf += addrlen;
4374 		bytes_copied += addrlen;
4375 		cnt ++;
4376 		space_left -= addrlen;
4377 	}
4378 
4379 copy_getaddrs:
4380 	sctp_read_unlock(addr_lock);
4381 
4382 	if (copy_to_user(to, addrs, bytes_copied)) {
4383 		err = -EFAULT;
4384 		goto error;
4385 	}
4386 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4387 		err = -EFAULT;
4388 		goto error;
4389 	}
4390 	if (put_user(bytes_copied, optlen))
4391 		err = -EFAULT;
4392 error:
4393 	kfree(addrs);
4394 	return err;
4395 }
4396 
4397 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4398  *
4399  * Requests that the local SCTP stack use the enclosed peer address as
4400  * the association primary.  The enclosed address must be one of the
4401  * association peer's addresses.
4402  */
4403 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4404 					char __user *optval, int __user *optlen)
4405 {
4406 	struct sctp_prim prim;
4407 	struct sctp_association *asoc;
4408 	struct sctp_sock *sp = sctp_sk(sk);
4409 
4410 	if (len < sizeof(struct sctp_prim))
4411 		return -EINVAL;
4412 
4413 	len = sizeof(struct sctp_prim);
4414 
4415 	if (copy_from_user(&prim, optval, len))
4416 		return -EFAULT;
4417 
4418 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4419 	if (!asoc)
4420 		return -EINVAL;
4421 
4422 	if (!asoc->peer.primary_path)
4423 		return -ENOTCONN;
4424 
4425 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4426 		asoc->peer.primary_path->af_specific->sockaddr_len);
4427 
4428 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4429 			(union sctp_addr *)&prim.ssp_addr);
4430 
4431 	if (put_user(len, optlen))
4432 		return -EFAULT;
4433 	if (copy_to_user(optval, &prim, len))
4434 		return -EFAULT;
4435 
4436 	return 0;
4437 }
4438 
4439 /*
4440  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4441  *
4442  * Requests that the local endpoint set the specified Adaptation Layer
4443  * Indication parameter for all future INIT and INIT-ACK exchanges.
4444  */
4445 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4446 				  char __user *optval, int __user *optlen)
4447 {
4448 	struct sctp_setadaptation adaptation;
4449 
4450 	if (len < sizeof(struct sctp_setadaptation))
4451 		return -EINVAL;
4452 
4453 	len = sizeof(struct sctp_setadaptation);
4454 
4455 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4456 
4457 	if (put_user(len, optlen))
4458 		return -EFAULT;
4459 	if (copy_to_user(optval, &adaptation, len))
4460 		return -EFAULT;
4461 
4462 	return 0;
4463 }
4464 
4465 /*
4466  *
4467  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4468  *
4469  *   Applications that wish to use the sendto() system call may wish to
4470  *   specify a default set of parameters that would normally be supplied
4471  *   through the inclusion of ancillary data.  This socket option allows
4472  *   such an application to set the default sctp_sndrcvinfo structure.
4473 
4474 
4475  *   The application that wishes to use this socket option simply passes
4476  *   in to this call the sctp_sndrcvinfo structure defined in Section
4477  *   5.2.2) The input parameters accepted by this call include
4478  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4479  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
4480  *   to this call if the caller is using the UDP model.
4481  *
4482  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
4483  */
4484 static int sctp_getsockopt_default_send_param(struct sock *sk,
4485 					int len, char __user *optval,
4486 					int __user *optlen)
4487 {
4488 	struct sctp_sndrcvinfo info;
4489 	struct sctp_association *asoc;
4490 	struct sctp_sock *sp = sctp_sk(sk);
4491 
4492 	if (len < sizeof(struct sctp_sndrcvinfo))
4493 		return -EINVAL;
4494 
4495 	len = sizeof(struct sctp_sndrcvinfo);
4496 
4497 	if (copy_from_user(&info, optval, len))
4498 		return -EFAULT;
4499 
4500 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4501 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4502 		return -EINVAL;
4503 
4504 	if (asoc) {
4505 		info.sinfo_stream = asoc->default_stream;
4506 		info.sinfo_flags = asoc->default_flags;
4507 		info.sinfo_ppid = asoc->default_ppid;
4508 		info.sinfo_context = asoc->default_context;
4509 		info.sinfo_timetolive = asoc->default_timetolive;
4510 	} else {
4511 		info.sinfo_stream = sp->default_stream;
4512 		info.sinfo_flags = sp->default_flags;
4513 		info.sinfo_ppid = sp->default_ppid;
4514 		info.sinfo_context = sp->default_context;
4515 		info.sinfo_timetolive = sp->default_timetolive;
4516 	}
4517 
4518 	if (put_user(len, optlen))
4519 		return -EFAULT;
4520 	if (copy_to_user(optval, &info, len))
4521 		return -EFAULT;
4522 
4523 	return 0;
4524 }
4525 
4526 /*
4527  *
4528  * 7.1.5 SCTP_NODELAY
4529  *
4530  * Turn on/off any Nagle-like algorithm.  This means that packets are
4531  * generally sent as soon as possible and no unnecessary delays are
4532  * introduced, at the cost of more packets in the network.  Expects an
4533  * integer boolean flag.
4534  */
4535 
4536 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4537 				   char __user *optval, int __user *optlen)
4538 {
4539 	int val;
4540 
4541 	if (len < sizeof(int))
4542 		return -EINVAL;
4543 
4544 	len = sizeof(int);
4545 	val = (sctp_sk(sk)->nodelay == 1);
4546 	if (put_user(len, optlen))
4547 		return -EFAULT;
4548 	if (copy_to_user(optval, &val, len))
4549 		return -EFAULT;
4550 	return 0;
4551 }
4552 
4553 /*
4554  *
4555  * 7.1.1 SCTP_RTOINFO
4556  *
4557  * The protocol parameters used to initialize and bound retransmission
4558  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4559  * and modify these parameters.
4560  * All parameters are time values, in milliseconds.  A value of 0, when
4561  * modifying the parameters, indicates that the current value should not
4562  * be changed.
4563  *
4564  */
4565 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4566 				char __user *optval,
4567 				int __user *optlen) {
4568 	struct sctp_rtoinfo rtoinfo;
4569 	struct sctp_association *asoc;
4570 
4571 	if (len < sizeof (struct sctp_rtoinfo))
4572 		return -EINVAL;
4573 
4574 	len = sizeof(struct sctp_rtoinfo);
4575 
4576 	if (copy_from_user(&rtoinfo, optval, len))
4577 		return -EFAULT;
4578 
4579 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4580 
4581 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4582 		return -EINVAL;
4583 
4584 	/* Values corresponding to the specific association. */
4585 	if (asoc) {
4586 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4587 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4588 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4589 	} else {
4590 		/* Values corresponding to the endpoint. */
4591 		struct sctp_sock *sp = sctp_sk(sk);
4592 
4593 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4594 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
4595 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
4596 	}
4597 
4598 	if (put_user(len, optlen))
4599 		return -EFAULT;
4600 
4601 	if (copy_to_user(optval, &rtoinfo, len))
4602 		return -EFAULT;
4603 
4604 	return 0;
4605 }
4606 
4607 /*
4608  *
4609  * 7.1.2 SCTP_ASSOCINFO
4610  *
4611  * This option is used to tune the maximum retransmission attempts
4612  * of the association.
4613  * Returns an error if the new association retransmission value is
4614  * greater than the sum of the retransmission value  of the peer.
4615  * See [SCTP] for more information.
4616  *
4617  */
4618 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4619 				     char __user *optval,
4620 				     int __user *optlen)
4621 {
4622 
4623 	struct sctp_assocparams assocparams;
4624 	struct sctp_association *asoc;
4625 	struct list_head *pos;
4626 	int cnt = 0;
4627 
4628 	if (len < sizeof (struct sctp_assocparams))
4629 		return -EINVAL;
4630 
4631 	len = sizeof(struct sctp_assocparams);
4632 
4633 	if (copy_from_user(&assocparams, optval, len))
4634 		return -EFAULT;
4635 
4636 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4637 
4638 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4639 		return -EINVAL;
4640 
4641 	/* Values correspoinding to the specific association */
4642 	if (asoc) {
4643 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4644 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4645 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4646 		assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4647 						* 1000) +
4648 						(asoc->cookie_life.tv_usec
4649 						/ 1000);
4650 
4651 		list_for_each(pos, &asoc->peer.transport_addr_list) {
4652 			cnt ++;
4653 		}
4654 
4655 		assocparams.sasoc_number_peer_destinations = cnt;
4656 	} else {
4657 		/* Values corresponding to the endpoint */
4658 		struct sctp_sock *sp = sctp_sk(sk);
4659 
4660 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
4661 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
4662 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
4663 		assocparams.sasoc_cookie_life =
4664 					sp->assocparams.sasoc_cookie_life;
4665 		assocparams.sasoc_number_peer_destinations =
4666 					sp->assocparams.
4667 					sasoc_number_peer_destinations;
4668 	}
4669 
4670 	if (put_user(len, optlen))
4671 		return -EFAULT;
4672 
4673 	if (copy_to_user(optval, &assocparams, len))
4674 		return -EFAULT;
4675 
4676 	return 0;
4677 }
4678 
4679 /*
4680  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
4681  *
4682  * This socket option is a boolean flag which turns on or off mapped V4
4683  * addresses.  If this option is turned on and the socket is type
4684  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
4685  * If this option is turned off, then no mapping will be done of V4
4686  * addresses and a user will receive both PF_INET6 and PF_INET type
4687  * addresses on the socket.
4688  */
4689 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
4690 				    char __user *optval, int __user *optlen)
4691 {
4692 	int val;
4693 	struct sctp_sock *sp = sctp_sk(sk);
4694 
4695 	if (len < sizeof(int))
4696 		return -EINVAL;
4697 
4698 	len = sizeof(int);
4699 	val = sp->v4mapped;
4700 	if (put_user(len, optlen))
4701 		return -EFAULT;
4702 	if (copy_to_user(optval, &val, len))
4703 		return -EFAULT;
4704 
4705 	return 0;
4706 }
4707 
4708 /*
4709  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
4710  * (chapter and verse is quoted at sctp_setsockopt_context())
4711  */
4712 static int sctp_getsockopt_context(struct sock *sk, int len,
4713 				   char __user *optval, int __user *optlen)
4714 {
4715 	struct sctp_assoc_value params;
4716 	struct sctp_sock *sp;
4717 	struct sctp_association *asoc;
4718 
4719 	if (len < sizeof(struct sctp_assoc_value))
4720 		return -EINVAL;
4721 
4722 	len = sizeof(struct sctp_assoc_value);
4723 
4724 	if (copy_from_user(&params, optval, len))
4725 		return -EFAULT;
4726 
4727 	sp = sctp_sk(sk);
4728 
4729 	if (params.assoc_id != 0) {
4730 		asoc = sctp_id2assoc(sk, params.assoc_id);
4731 		if (!asoc)
4732 			return -EINVAL;
4733 		params.assoc_value = asoc->default_rcv_context;
4734 	} else {
4735 		params.assoc_value = sp->default_rcv_context;
4736 	}
4737 
4738 	if (put_user(len, optlen))
4739 		return -EFAULT;
4740 	if (copy_to_user(optval, &params, len))
4741 		return -EFAULT;
4742 
4743 	return 0;
4744 }
4745 
4746 /*
4747  * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
4748  *
4749  * This socket option specifies the maximum size to put in any outgoing
4750  * SCTP chunk.  If a message is larger than this size it will be
4751  * fragmented by SCTP into the specified size.  Note that the underlying
4752  * SCTP implementation may fragment into smaller sized chunks when the
4753  * PMTU of the underlying association is smaller than the value set by
4754  * the user.
4755  */
4756 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
4757 				  char __user *optval, int __user *optlen)
4758 {
4759 	int val;
4760 
4761 	if (len < sizeof(int))
4762 		return -EINVAL;
4763 
4764 	len = sizeof(int);
4765 
4766 	val = sctp_sk(sk)->user_frag;
4767 	if (put_user(len, optlen))
4768 		return -EFAULT;
4769 	if (copy_to_user(optval, &val, len))
4770 		return -EFAULT;
4771 
4772 	return 0;
4773 }
4774 
4775 /*
4776  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
4777  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
4778  */
4779 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
4780 					       char __user *optval, int __user *optlen)
4781 {
4782 	int val;
4783 
4784 	if (len < sizeof(int))
4785 		return -EINVAL;
4786 
4787 	len = sizeof(int);
4788 
4789 	val = sctp_sk(sk)->frag_interleave;
4790 	if (put_user(len, optlen))
4791 		return -EFAULT;
4792 	if (copy_to_user(optval, &val, len))
4793 		return -EFAULT;
4794 
4795 	return 0;
4796 }
4797 
4798 /*
4799  * 7.1.25.  Set or Get the sctp partial delivery point
4800  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
4801  */
4802 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
4803 						  char __user *optval,
4804 						  int __user *optlen)
4805 {
4806         u32 val;
4807 
4808 	if (len < sizeof(u32))
4809 		return -EINVAL;
4810 
4811 	len = sizeof(u32);
4812 
4813 	val = sctp_sk(sk)->pd_point;
4814 	if (put_user(len, optlen))
4815 		return -EFAULT;
4816 	if (copy_to_user(optval, &val, len))
4817 		return -EFAULT;
4818 
4819 	return -ENOTSUPP;
4820 }
4821 
4822 /*
4823  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
4824  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
4825  */
4826 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
4827 				    char __user *optval,
4828 				    int __user *optlen)
4829 {
4830         int val;
4831 
4832 	if (len < sizeof(int))
4833 		return -EINVAL;
4834 
4835 	len = sizeof(int);
4836 
4837 	val = sctp_sk(sk)->max_burst;
4838 	if (put_user(len, optlen))
4839 		return -EFAULT;
4840 	if (copy_to_user(optval, &val, len))
4841 		return -EFAULT;
4842 
4843 	return -ENOTSUPP;
4844 }
4845 
4846 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
4847 				char __user *optval, int __user *optlen)
4848 {
4849 	int retval = 0;
4850 	int len;
4851 
4852 	SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
4853 			  sk, optname);
4854 
4855 	/* I can hardly begin to describe how wrong this is.  This is
4856 	 * so broken as to be worse than useless.  The API draft
4857 	 * REALLY is NOT helpful here...  I am not convinced that the
4858 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
4859 	 * are at all well-founded.
4860 	 */
4861 	if (level != SOL_SCTP) {
4862 		struct sctp_af *af = sctp_sk(sk)->pf->af;
4863 
4864 		retval = af->getsockopt(sk, level, optname, optval, optlen);
4865 		return retval;
4866 	}
4867 
4868 	if (get_user(len, optlen))
4869 		return -EFAULT;
4870 
4871 	sctp_lock_sock(sk);
4872 
4873 	switch (optname) {
4874 	case SCTP_STATUS:
4875 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
4876 		break;
4877 	case SCTP_DISABLE_FRAGMENTS:
4878 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
4879 							   optlen);
4880 		break;
4881 	case SCTP_EVENTS:
4882 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
4883 		break;
4884 	case SCTP_AUTOCLOSE:
4885 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
4886 		break;
4887 	case SCTP_SOCKOPT_PEELOFF:
4888 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
4889 		break;
4890 	case SCTP_PEER_ADDR_PARAMS:
4891 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
4892 							  optlen);
4893 		break;
4894 	case SCTP_DELAYED_ACK_TIME:
4895 		retval = sctp_getsockopt_delayed_ack_time(sk, len, optval,
4896 							  optlen);
4897 		break;
4898 	case SCTP_INITMSG:
4899 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
4900 		break;
4901 	case SCTP_GET_PEER_ADDRS_NUM_OLD:
4902 		retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval,
4903 							    optlen);
4904 		break;
4905 	case SCTP_GET_LOCAL_ADDRS_NUM_OLD:
4906 		retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval,
4907 							     optlen);
4908 		break;
4909 	case SCTP_GET_PEER_ADDRS_OLD:
4910 		retval = sctp_getsockopt_peer_addrs_old(sk, len, optval,
4911 							optlen);
4912 		break;
4913 	case SCTP_GET_LOCAL_ADDRS_OLD:
4914 		retval = sctp_getsockopt_local_addrs_old(sk, len, optval,
4915 							 optlen);
4916 		break;
4917 	case SCTP_GET_PEER_ADDRS:
4918 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
4919 						    optlen);
4920 		break;
4921 	case SCTP_GET_LOCAL_ADDRS:
4922 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
4923 						     optlen);
4924 		break;
4925 	case SCTP_DEFAULT_SEND_PARAM:
4926 		retval = sctp_getsockopt_default_send_param(sk, len,
4927 							    optval, optlen);
4928 		break;
4929 	case SCTP_PRIMARY_ADDR:
4930 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
4931 		break;
4932 	case SCTP_NODELAY:
4933 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
4934 		break;
4935 	case SCTP_RTOINFO:
4936 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
4937 		break;
4938 	case SCTP_ASSOCINFO:
4939 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
4940 		break;
4941 	case SCTP_I_WANT_MAPPED_V4_ADDR:
4942 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
4943 		break;
4944 	case SCTP_MAXSEG:
4945 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
4946 		break;
4947 	case SCTP_GET_PEER_ADDR_INFO:
4948 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
4949 							optlen);
4950 		break;
4951 	case SCTP_ADAPTATION_LAYER:
4952 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
4953 							optlen);
4954 		break;
4955 	case SCTP_CONTEXT:
4956 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
4957 		break;
4958 	case SCTP_FRAGMENT_INTERLEAVE:
4959 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
4960 							     optlen);
4961 		break;
4962 	case SCTP_PARTIAL_DELIVERY_POINT:
4963 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
4964 								optlen);
4965 		break;
4966 	case SCTP_MAX_BURST:
4967 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
4968 		break;
4969 	default:
4970 		retval = -ENOPROTOOPT;
4971 		break;
4972 	}
4973 
4974 	sctp_release_sock(sk);
4975 	return retval;
4976 }
4977 
4978 static void sctp_hash(struct sock *sk)
4979 {
4980 	/* STUB */
4981 }
4982 
4983 static void sctp_unhash(struct sock *sk)
4984 {
4985 	/* STUB */
4986 }
4987 
4988 /* Check if port is acceptable.  Possibly find first available port.
4989  *
4990  * The port hash table (contained in the 'global' SCTP protocol storage
4991  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
4992  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
4993  * list (the list number is the port number hashed out, so as you
4994  * would expect from a hash function, all the ports in a given list have
4995  * such a number that hashes out to the same list number; you were
4996  * expecting that, right?); so each list has a set of ports, with a
4997  * link to the socket (struct sock) that uses it, the port number and
4998  * a fastreuse flag (FIXME: NPI ipg).
4999  */
5000 static struct sctp_bind_bucket *sctp_bucket_create(
5001 	struct sctp_bind_hashbucket *head, unsigned short snum);
5002 
5003 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5004 {
5005 	struct sctp_bind_hashbucket *head; /* hash list */
5006 	struct sctp_bind_bucket *pp; /* hash list port iterator */
5007 	unsigned short snum;
5008 	int ret;
5009 
5010 	snum = ntohs(addr->v4.sin_port);
5011 
5012 	SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5013 	sctp_local_bh_disable();
5014 
5015 	if (snum == 0) {
5016 		/* Search for an available port.
5017 		 *
5018 		 * 'sctp_port_rover' was the last port assigned, so
5019 		 * we start to search from 'sctp_port_rover +
5020 		 * 1'. What we do is first check if port 'rover' is
5021 		 * already in the hash table; if not, we use that; if
5022 		 * it is, we try next.
5023 		 */
5024 		int low = sysctl_local_port_range[0];
5025 		int high = sysctl_local_port_range[1];
5026 		int remaining = (high - low) + 1;
5027 		int rover;
5028 		int index;
5029 
5030 		sctp_spin_lock(&sctp_port_alloc_lock);
5031 		rover = sctp_port_rover;
5032 		do {
5033 			rover++;
5034 			if ((rover < low) || (rover > high))
5035 				rover = low;
5036 			index = sctp_phashfn(rover);
5037 			head = &sctp_port_hashtable[index];
5038 			sctp_spin_lock(&head->lock);
5039 			for (pp = head->chain; pp; pp = pp->next)
5040 				if (pp->port == rover)
5041 					goto next;
5042 			break;
5043 		next:
5044 			sctp_spin_unlock(&head->lock);
5045 		} while (--remaining > 0);
5046 		sctp_port_rover = rover;
5047 		sctp_spin_unlock(&sctp_port_alloc_lock);
5048 
5049 		/* Exhausted local port range during search? */
5050 		ret = 1;
5051 		if (remaining <= 0)
5052 			goto fail;
5053 
5054 		/* OK, here is the one we will use.  HEAD (the port
5055 		 * hash table list entry) is non-NULL and we hold it's
5056 		 * mutex.
5057 		 */
5058 		snum = rover;
5059 	} else {
5060 		/* We are given an specific port number; we verify
5061 		 * that it is not being used. If it is used, we will
5062 		 * exahust the search in the hash list corresponding
5063 		 * to the port number (snum) - we detect that with the
5064 		 * port iterator, pp being NULL.
5065 		 */
5066 		head = &sctp_port_hashtable[sctp_phashfn(snum)];
5067 		sctp_spin_lock(&head->lock);
5068 		for (pp = head->chain; pp; pp = pp->next) {
5069 			if (pp->port == snum)
5070 				goto pp_found;
5071 		}
5072 	}
5073 	pp = NULL;
5074 	goto pp_not_found;
5075 pp_found:
5076 	if (!hlist_empty(&pp->owner)) {
5077 		/* We had a port hash table hit - there is an
5078 		 * available port (pp != NULL) and it is being
5079 		 * used by other socket (pp->owner not empty); that other
5080 		 * socket is going to be sk2.
5081 		 */
5082 		int reuse = sk->sk_reuse;
5083 		struct sock *sk2;
5084 		struct hlist_node *node;
5085 
5086 		SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5087 		if (pp->fastreuse && sk->sk_reuse &&
5088 			sk->sk_state != SCTP_SS_LISTENING)
5089 			goto success;
5090 
5091 		/* Run through the list of sockets bound to the port
5092 		 * (pp->port) [via the pointers bind_next and
5093 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5094 		 * we get the endpoint they describe and run through
5095 		 * the endpoint's list of IP (v4 or v6) addresses,
5096 		 * comparing each of the addresses with the address of
5097 		 * the socket sk. If we find a match, then that means
5098 		 * that this port/socket (sk) combination are already
5099 		 * in an endpoint.
5100 		 */
5101 		sk_for_each_bound(sk2, node, &pp->owner) {
5102 			struct sctp_endpoint *ep2;
5103 			ep2 = sctp_sk(sk2)->ep;
5104 
5105 			if (reuse && sk2->sk_reuse &&
5106 			    sk2->sk_state != SCTP_SS_LISTENING)
5107 				continue;
5108 
5109 			if (sctp_bind_addr_match(&ep2->base.bind_addr, addr,
5110 						 sctp_sk(sk))) {
5111 				ret = (long)sk2;
5112 				goto fail_unlock;
5113 			}
5114 		}
5115 		SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5116 	}
5117 pp_not_found:
5118 	/* If there was a hash table miss, create a new port.  */
5119 	ret = 1;
5120 	if (!pp && !(pp = sctp_bucket_create(head, snum)))
5121 		goto fail_unlock;
5122 
5123 	/* In either case (hit or miss), make sure fastreuse is 1 only
5124 	 * if sk->sk_reuse is too (that is, if the caller requested
5125 	 * SO_REUSEADDR on this socket -sk-).
5126 	 */
5127 	if (hlist_empty(&pp->owner)) {
5128 		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5129 			pp->fastreuse = 1;
5130 		else
5131 			pp->fastreuse = 0;
5132 	} else if (pp->fastreuse &&
5133 		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
5134 		pp->fastreuse = 0;
5135 
5136 	/* We are set, so fill up all the data in the hash table
5137 	 * entry, tie the socket list information with the rest of the
5138 	 * sockets FIXME: Blurry, NPI (ipg).
5139 	 */
5140 success:
5141 	if (!sctp_sk(sk)->bind_hash) {
5142 		inet_sk(sk)->num = snum;
5143 		sk_add_bind_node(sk, &pp->owner);
5144 		sctp_sk(sk)->bind_hash = pp;
5145 	}
5146 	ret = 0;
5147 
5148 fail_unlock:
5149 	sctp_spin_unlock(&head->lock);
5150 
5151 fail:
5152 	sctp_local_bh_enable();
5153 	return ret;
5154 }
5155 
5156 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
5157  * port is requested.
5158  */
5159 static int sctp_get_port(struct sock *sk, unsigned short snum)
5160 {
5161 	long ret;
5162 	union sctp_addr addr;
5163 	struct sctp_af *af = sctp_sk(sk)->pf->af;
5164 
5165 	/* Set up a dummy address struct from the sk. */
5166 	af->from_sk(&addr, sk);
5167 	addr.v4.sin_port = htons(snum);
5168 
5169 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
5170 	ret = sctp_get_port_local(sk, &addr);
5171 
5172 	return (ret ? 1 : 0);
5173 }
5174 
5175 /*
5176  * 3.1.3 listen() - UDP Style Syntax
5177  *
5178  *   By default, new associations are not accepted for UDP style sockets.
5179  *   An application uses listen() to mark a socket as being able to
5180  *   accept new associations.
5181  */
5182 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog)
5183 {
5184 	struct sctp_sock *sp = sctp_sk(sk);
5185 	struct sctp_endpoint *ep = sp->ep;
5186 
5187 	/* Only UDP style sockets that are not peeled off are allowed to
5188 	 * listen().
5189 	 */
5190 	if (!sctp_style(sk, UDP))
5191 		return -EINVAL;
5192 
5193 	/* If backlog is zero, disable listening. */
5194 	if (!backlog) {
5195 		if (sctp_sstate(sk, CLOSED))
5196 			return 0;
5197 
5198 		sctp_unhash_endpoint(ep);
5199 		sk->sk_state = SCTP_SS_CLOSED;
5200 	}
5201 
5202 	/* Return if we are already listening. */
5203 	if (sctp_sstate(sk, LISTENING))
5204 		return 0;
5205 
5206 	/*
5207 	 * If a bind() or sctp_bindx() is not called prior to a listen()
5208 	 * call that allows new associations to be accepted, the system
5209 	 * picks an ephemeral port and will choose an address set equivalent
5210 	 * to binding with a wildcard address.
5211 	 *
5212 	 * This is not currently spelled out in the SCTP sockets
5213 	 * extensions draft, but follows the practice as seen in TCP
5214 	 * sockets.
5215 	 *
5216 	 * Additionally, turn off fastreuse flag since we are not listening
5217 	 */
5218 	sk->sk_state = SCTP_SS_LISTENING;
5219 	if (!ep->base.bind_addr.port) {
5220 		if (sctp_autobind(sk))
5221 			return -EAGAIN;
5222 	} else
5223 		sctp_sk(sk)->bind_hash->fastreuse = 0;
5224 
5225 	sctp_hash_endpoint(ep);
5226 	return 0;
5227 }
5228 
5229 /*
5230  * 4.1.3 listen() - TCP Style Syntax
5231  *
5232  *   Applications uses listen() to ready the SCTP endpoint for accepting
5233  *   inbound associations.
5234  */
5235 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog)
5236 {
5237 	struct sctp_sock *sp = sctp_sk(sk);
5238 	struct sctp_endpoint *ep = sp->ep;
5239 
5240 	/* If backlog is zero, disable listening. */
5241 	if (!backlog) {
5242 		if (sctp_sstate(sk, CLOSED))
5243 			return 0;
5244 
5245 		sctp_unhash_endpoint(ep);
5246 		sk->sk_state = SCTP_SS_CLOSED;
5247 	}
5248 
5249 	if (sctp_sstate(sk, LISTENING))
5250 		return 0;
5251 
5252 	/*
5253 	 * If a bind() or sctp_bindx() is not called prior to a listen()
5254 	 * call that allows new associations to be accepted, the system
5255 	 * picks an ephemeral port and will choose an address set equivalent
5256 	 * to binding with a wildcard address.
5257 	 *
5258 	 * This is not currently spelled out in the SCTP sockets
5259 	 * extensions draft, but follows the practice as seen in TCP
5260 	 * sockets.
5261 	 */
5262 	sk->sk_state = SCTP_SS_LISTENING;
5263 	if (!ep->base.bind_addr.port) {
5264 		if (sctp_autobind(sk))
5265 			return -EAGAIN;
5266 	} else
5267 		sctp_sk(sk)->bind_hash->fastreuse = 0;
5268 
5269 	sk->sk_max_ack_backlog = backlog;
5270 	sctp_hash_endpoint(ep);
5271 	return 0;
5272 }
5273 
5274 /*
5275  *  Move a socket to LISTENING state.
5276  */
5277 int sctp_inet_listen(struct socket *sock, int backlog)
5278 {
5279 	struct sock *sk = sock->sk;
5280 	struct crypto_hash *tfm = NULL;
5281 	int err = -EINVAL;
5282 
5283 	if (unlikely(backlog < 0))
5284 		goto out;
5285 
5286 	sctp_lock_sock(sk);
5287 
5288 	if (sock->state != SS_UNCONNECTED)
5289 		goto out;
5290 
5291 	/* Allocate HMAC for generating cookie. */
5292 	if (sctp_hmac_alg) {
5293 		tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
5294 		if (IS_ERR(tfm)) {
5295 			if (net_ratelimit()) {
5296 				printk(KERN_INFO
5297 				       "SCTP: failed to load transform for %s: %ld\n",
5298 					sctp_hmac_alg, PTR_ERR(tfm));
5299 			}
5300 			err = -ENOSYS;
5301 			goto out;
5302 		}
5303 	}
5304 
5305 	switch (sock->type) {
5306 	case SOCK_SEQPACKET:
5307 		err = sctp_seqpacket_listen(sk, backlog);
5308 		break;
5309 	case SOCK_STREAM:
5310 		err = sctp_stream_listen(sk, backlog);
5311 		break;
5312 	default:
5313 		break;
5314 	}
5315 
5316 	if (err)
5317 		goto cleanup;
5318 
5319 	/* Store away the transform reference. */
5320 	sctp_sk(sk)->hmac = tfm;
5321 out:
5322 	sctp_release_sock(sk);
5323 	return err;
5324 cleanup:
5325 	crypto_free_hash(tfm);
5326 	goto out;
5327 }
5328 
5329 /*
5330  * This function is done by modeling the current datagram_poll() and the
5331  * tcp_poll().  Note that, based on these implementations, we don't
5332  * lock the socket in this function, even though it seems that,
5333  * ideally, locking or some other mechanisms can be used to ensure
5334  * the integrity of the counters (sndbuf and wmem_alloc) used
5335  * in this place.  We assume that we don't need locks either until proven
5336  * otherwise.
5337  *
5338  * Another thing to note is that we include the Async I/O support
5339  * here, again, by modeling the current TCP/UDP code.  We don't have
5340  * a good way to test with it yet.
5341  */
5342 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
5343 {
5344 	struct sock *sk = sock->sk;
5345 	struct sctp_sock *sp = sctp_sk(sk);
5346 	unsigned int mask;
5347 
5348 	poll_wait(file, sk->sk_sleep, wait);
5349 
5350 	/* A TCP-style listening socket becomes readable when the accept queue
5351 	 * is not empty.
5352 	 */
5353 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
5354 		return (!list_empty(&sp->ep->asocs)) ?
5355 			(POLLIN | POLLRDNORM) : 0;
5356 
5357 	mask = 0;
5358 
5359 	/* Is there any exceptional events?  */
5360 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
5361 		mask |= POLLERR;
5362 	if (sk->sk_shutdown & RCV_SHUTDOWN)
5363 		mask |= POLLRDHUP;
5364 	if (sk->sk_shutdown == SHUTDOWN_MASK)
5365 		mask |= POLLHUP;
5366 
5367 	/* Is it readable?  Reconsider this code with TCP-style support.  */
5368 	if (!skb_queue_empty(&sk->sk_receive_queue) ||
5369 	    (sk->sk_shutdown & RCV_SHUTDOWN))
5370 		mask |= POLLIN | POLLRDNORM;
5371 
5372 	/* The association is either gone or not ready.  */
5373 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
5374 		return mask;
5375 
5376 	/* Is it writable?  */
5377 	if (sctp_writeable(sk)) {
5378 		mask |= POLLOUT | POLLWRNORM;
5379 	} else {
5380 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
5381 		/*
5382 		 * Since the socket is not locked, the buffer
5383 		 * might be made available after the writeable check and
5384 		 * before the bit is set.  This could cause a lost I/O
5385 		 * signal.  tcp_poll() has a race breaker for this race
5386 		 * condition.  Based on their implementation, we put
5387 		 * in the following code to cover it as well.
5388 		 */
5389 		if (sctp_writeable(sk))
5390 			mask |= POLLOUT | POLLWRNORM;
5391 	}
5392 	return mask;
5393 }
5394 
5395 /********************************************************************
5396  * 2nd Level Abstractions
5397  ********************************************************************/
5398 
5399 static struct sctp_bind_bucket *sctp_bucket_create(
5400 	struct sctp_bind_hashbucket *head, unsigned short snum)
5401 {
5402 	struct sctp_bind_bucket *pp;
5403 
5404 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
5405 	SCTP_DBG_OBJCNT_INC(bind_bucket);
5406 	if (pp) {
5407 		pp->port = snum;
5408 		pp->fastreuse = 0;
5409 		INIT_HLIST_HEAD(&pp->owner);
5410 		if ((pp->next = head->chain) != NULL)
5411 			pp->next->pprev = &pp->next;
5412 		head->chain = pp;
5413 		pp->pprev = &head->chain;
5414 	}
5415 	return pp;
5416 }
5417 
5418 /* Caller must hold hashbucket lock for this tb with local BH disabled */
5419 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
5420 {
5421 	if (pp && hlist_empty(&pp->owner)) {
5422 		if (pp->next)
5423 			pp->next->pprev = pp->pprev;
5424 		*(pp->pprev) = pp->next;
5425 		kmem_cache_free(sctp_bucket_cachep, pp);
5426 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
5427 	}
5428 }
5429 
5430 /* Release this socket's reference to a local port.  */
5431 static inline void __sctp_put_port(struct sock *sk)
5432 {
5433 	struct sctp_bind_hashbucket *head =
5434 		&sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)];
5435 	struct sctp_bind_bucket *pp;
5436 
5437 	sctp_spin_lock(&head->lock);
5438 	pp = sctp_sk(sk)->bind_hash;
5439 	__sk_del_bind_node(sk);
5440 	sctp_sk(sk)->bind_hash = NULL;
5441 	inet_sk(sk)->num = 0;
5442 	sctp_bucket_destroy(pp);
5443 	sctp_spin_unlock(&head->lock);
5444 }
5445 
5446 void sctp_put_port(struct sock *sk)
5447 {
5448 	sctp_local_bh_disable();
5449 	__sctp_put_port(sk);
5450 	sctp_local_bh_enable();
5451 }
5452 
5453 /*
5454  * The system picks an ephemeral port and choose an address set equivalent
5455  * to binding with a wildcard address.
5456  * One of those addresses will be the primary address for the association.
5457  * This automatically enables the multihoming capability of SCTP.
5458  */
5459 static int sctp_autobind(struct sock *sk)
5460 {
5461 	union sctp_addr autoaddr;
5462 	struct sctp_af *af;
5463 	__be16 port;
5464 
5465 	/* Initialize a local sockaddr structure to INADDR_ANY. */
5466 	af = sctp_sk(sk)->pf->af;
5467 
5468 	port = htons(inet_sk(sk)->num);
5469 	af->inaddr_any(&autoaddr, port);
5470 
5471 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
5472 }
5473 
5474 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
5475  *
5476  * From RFC 2292
5477  * 4.2 The cmsghdr Structure *
5478  *
5479  * When ancillary data is sent or received, any number of ancillary data
5480  * objects can be specified by the msg_control and msg_controllen members of
5481  * the msghdr structure, because each object is preceded by
5482  * a cmsghdr structure defining the object's length (the cmsg_len member).
5483  * Historically Berkeley-derived implementations have passed only one object
5484  * at a time, but this API allows multiple objects to be
5485  * passed in a single call to sendmsg() or recvmsg(). The following example
5486  * shows two ancillary data objects in a control buffer.
5487  *
5488  *   |<--------------------------- msg_controllen -------------------------->|
5489  *   |                                                                       |
5490  *
5491  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
5492  *
5493  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
5494  *   |                                   |                                   |
5495  *
5496  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
5497  *
5498  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
5499  *   |                                |  |                                |  |
5500  *
5501  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5502  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
5503  *
5504  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
5505  *
5506  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5507  *    ^
5508  *    |
5509  *
5510  * msg_control
5511  * points here
5512  */
5513 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
5514 				  sctp_cmsgs_t *cmsgs)
5515 {
5516 	struct cmsghdr *cmsg;
5517 
5518 	for (cmsg = CMSG_FIRSTHDR(msg);
5519 	     cmsg != NULL;
5520 	     cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) {
5521 		if (!CMSG_OK(msg, cmsg))
5522 			return -EINVAL;
5523 
5524 		/* Should we parse this header or ignore?  */
5525 		if (cmsg->cmsg_level != IPPROTO_SCTP)
5526 			continue;
5527 
5528 		/* Strictly check lengths following example in SCM code.  */
5529 		switch (cmsg->cmsg_type) {
5530 		case SCTP_INIT:
5531 			/* SCTP Socket API Extension
5532 			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
5533 			 *
5534 			 * This cmsghdr structure provides information for
5535 			 * initializing new SCTP associations with sendmsg().
5536 			 * The SCTP_INITMSG socket option uses this same data
5537 			 * structure.  This structure is not used for
5538 			 * recvmsg().
5539 			 *
5540 			 * cmsg_level    cmsg_type      cmsg_data[]
5541 			 * ------------  ------------   ----------------------
5542 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
5543 			 */
5544 			if (cmsg->cmsg_len !=
5545 			    CMSG_LEN(sizeof(struct sctp_initmsg)))
5546 				return -EINVAL;
5547 			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
5548 			break;
5549 
5550 		case SCTP_SNDRCV:
5551 			/* SCTP Socket API Extension
5552 			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
5553 			 *
5554 			 * This cmsghdr structure specifies SCTP options for
5555 			 * sendmsg() and describes SCTP header information
5556 			 * about a received message through recvmsg().
5557 			 *
5558 			 * cmsg_level    cmsg_type      cmsg_data[]
5559 			 * ------------  ------------   ----------------------
5560 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
5561 			 */
5562 			if (cmsg->cmsg_len !=
5563 			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
5564 				return -EINVAL;
5565 
5566 			cmsgs->info =
5567 				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
5568 
5569 			/* Minimally, validate the sinfo_flags. */
5570 			if (cmsgs->info->sinfo_flags &
5571 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
5572 			      SCTP_ABORT | SCTP_EOF))
5573 				return -EINVAL;
5574 			break;
5575 
5576 		default:
5577 			return -EINVAL;
5578 		}
5579 	}
5580 	return 0;
5581 }
5582 
5583 /*
5584  * Wait for a packet..
5585  * Note: This function is the same function as in core/datagram.c
5586  * with a few modifications to make lksctp work.
5587  */
5588 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
5589 {
5590 	int error;
5591 	DEFINE_WAIT(wait);
5592 
5593 	prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5594 
5595 	/* Socket errors? */
5596 	error = sock_error(sk);
5597 	if (error)
5598 		goto out;
5599 
5600 	if (!skb_queue_empty(&sk->sk_receive_queue))
5601 		goto ready;
5602 
5603 	/* Socket shut down?  */
5604 	if (sk->sk_shutdown & RCV_SHUTDOWN)
5605 		goto out;
5606 
5607 	/* Sequenced packets can come disconnected.  If so we report the
5608 	 * problem.
5609 	 */
5610 	error = -ENOTCONN;
5611 
5612 	/* Is there a good reason to think that we may receive some data?  */
5613 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
5614 		goto out;
5615 
5616 	/* Handle signals.  */
5617 	if (signal_pending(current))
5618 		goto interrupted;
5619 
5620 	/* Let another process have a go.  Since we are going to sleep
5621 	 * anyway.  Note: This may cause odd behaviors if the message
5622 	 * does not fit in the user's buffer, but this seems to be the
5623 	 * only way to honor MSG_DONTWAIT realistically.
5624 	 */
5625 	sctp_release_sock(sk);
5626 	*timeo_p = schedule_timeout(*timeo_p);
5627 	sctp_lock_sock(sk);
5628 
5629 ready:
5630 	finish_wait(sk->sk_sleep, &wait);
5631 	return 0;
5632 
5633 interrupted:
5634 	error = sock_intr_errno(*timeo_p);
5635 
5636 out:
5637 	finish_wait(sk->sk_sleep, &wait);
5638 	*err = error;
5639 	return error;
5640 }
5641 
5642 /* Receive a datagram.
5643  * Note: This is pretty much the same routine as in core/datagram.c
5644  * with a few changes to make lksctp work.
5645  */
5646 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
5647 					      int noblock, int *err)
5648 {
5649 	int error;
5650 	struct sk_buff *skb;
5651 	long timeo;
5652 
5653 	timeo = sock_rcvtimeo(sk, noblock);
5654 
5655 	SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
5656 			  timeo, MAX_SCHEDULE_TIMEOUT);
5657 
5658 	do {
5659 		/* Again only user level code calls this function,
5660 		 * so nothing interrupt level
5661 		 * will suddenly eat the receive_queue.
5662 		 *
5663 		 *  Look at current nfs client by the way...
5664 		 *  However, this function was corrent in any case. 8)
5665 		 */
5666 		if (flags & MSG_PEEK) {
5667 			spin_lock_bh(&sk->sk_receive_queue.lock);
5668 			skb = skb_peek(&sk->sk_receive_queue);
5669 			if (skb)
5670 				atomic_inc(&skb->users);
5671 			spin_unlock_bh(&sk->sk_receive_queue.lock);
5672 		} else {
5673 			skb = skb_dequeue(&sk->sk_receive_queue);
5674 		}
5675 
5676 		if (skb)
5677 			return skb;
5678 
5679 		/* Caller is allowed not to check sk->sk_err before calling. */
5680 		error = sock_error(sk);
5681 		if (error)
5682 			goto no_packet;
5683 
5684 		if (sk->sk_shutdown & RCV_SHUTDOWN)
5685 			break;
5686 
5687 		/* User doesn't want to wait.  */
5688 		error = -EAGAIN;
5689 		if (!timeo)
5690 			goto no_packet;
5691 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
5692 
5693 	return NULL;
5694 
5695 no_packet:
5696 	*err = error;
5697 	return NULL;
5698 }
5699 
5700 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
5701 static void __sctp_write_space(struct sctp_association *asoc)
5702 {
5703 	struct sock *sk = asoc->base.sk;
5704 	struct socket *sock = sk->sk_socket;
5705 
5706 	if ((sctp_wspace(asoc) > 0) && sock) {
5707 		if (waitqueue_active(&asoc->wait))
5708 			wake_up_interruptible(&asoc->wait);
5709 
5710 		if (sctp_writeable(sk)) {
5711 			if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
5712 				wake_up_interruptible(sk->sk_sleep);
5713 
5714 			/* Note that we try to include the Async I/O support
5715 			 * here by modeling from the current TCP/UDP code.
5716 			 * We have not tested with it yet.
5717 			 */
5718 			if (sock->fasync_list &&
5719 			    !(sk->sk_shutdown & SEND_SHUTDOWN))
5720 				sock_wake_async(sock, 2, POLL_OUT);
5721 		}
5722 	}
5723 }
5724 
5725 /* Do accounting for the sndbuf space.
5726  * Decrement the used sndbuf space of the corresponding association by the
5727  * data size which was just transmitted(freed).
5728  */
5729 static void sctp_wfree(struct sk_buff *skb)
5730 {
5731 	struct sctp_association *asoc;
5732 	struct sctp_chunk *chunk;
5733 	struct sock *sk;
5734 
5735 	/* Get the saved chunk pointer.  */
5736 	chunk = *((struct sctp_chunk **)(skb->cb));
5737 	asoc = chunk->asoc;
5738 	sk = asoc->base.sk;
5739 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
5740 				sizeof(struct sk_buff) +
5741 				sizeof(struct sctp_chunk);
5742 
5743 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
5744 
5745 	sock_wfree(skb);
5746 	__sctp_write_space(asoc);
5747 
5748 	sctp_association_put(asoc);
5749 }
5750 
5751 /* Do accounting for the receive space on the socket.
5752  * Accounting for the association is done in ulpevent.c
5753  * We set this as a destructor for the cloned data skbs so that
5754  * accounting is done at the correct time.
5755  */
5756 void sctp_sock_rfree(struct sk_buff *skb)
5757 {
5758 	struct sock *sk = skb->sk;
5759 	struct sctp_ulpevent *event = sctp_skb2event(skb);
5760 
5761 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
5762 }
5763 
5764 
5765 /* Helper function to wait for space in the sndbuf.  */
5766 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
5767 				size_t msg_len)
5768 {
5769 	struct sock *sk = asoc->base.sk;
5770 	int err = 0;
5771 	long current_timeo = *timeo_p;
5772 	DEFINE_WAIT(wait);
5773 
5774 	SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
5775 			  asoc, (long)(*timeo_p), msg_len);
5776 
5777 	/* Increment the association's refcnt.  */
5778 	sctp_association_hold(asoc);
5779 
5780 	/* Wait on the association specific sndbuf space. */
5781 	for (;;) {
5782 		prepare_to_wait_exclusive(&asoc->wait, &wait,
5783 					  TASK_INTERRUPTIBLE);
5784 		if (!*timeo_p)
5785 			goto do_nonblock;
5786 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
5787 		    asoc->base.dead)
5788 			goto do_error;
5789 		if (signal_pending(current))
5790 			goto do_interrupted;
5791 		if (msg_len <= sctp_wspace(asoc))
5792 			break;
5793 
5794 		/* Let another process have a go.  Since we are going
5795 		 * to sleep anyway.
5796 		 */
5797 		sctp_release_sock(sk);
5798 		current_timeo = schedule_timeout(current_timeo);
5799 		BUG_ON(sk != asoc->base.sk);
5800 		sctp_lock_sock(sk);
5801 
5802 		*timeo_p = current_timeo;
5803 	}
5804 
5805 out:
5806 	finish_wait(&asoc->wait, &wait);
5807 
5808 	/* Release the association's refcnt.  */
5809 	sctp_association_put(asoc);
5810 
5811 	return err;
5812 
5813 do_error:
5814 	err = -EPIPE;
5815 	goto out;
5816 
5817 do_interrupted:
5818 	err = sock_intr_errno(*timeo_p);
5819 	goto out;
5820 
5821 do_nonblock:
5822 	err = -EAGAIN;
5823 	goto out;
5824 }
5825 
5826 /* If socket sndbuf has changed, wake up all per association waiters.  */
5827 void sctp_write_space(struct sock *sk)
5828 {
5829 	struct sctp_association *asoc;
5830 	struct list_head *pos;
5831 
5832 	/* Wake up the tasks in each wait queue.  */
5833 	list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) {
5834 		asoc = list_entry(pos, struct sctp_association, asocs);
5835 		__sctp_write_space(asoc);
5836 	}
5837 }
5838 
5839 /* Is there any sndbuf space available on the socket?
5840  *
5841  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
5842  * associations on the same socket.  For a UDP-style socket with
5843  * multiple associations, it is possible for it to be "unwriteable"
5844  * prematurely.  I assume that this is acceptable because
5845  * a premature "unwriteable" is better than an accidental "writeable" which
5846  * would cause an unwanted block under certain circumstances.  For the 1-1
5847  * UDP-style sockets or TCP-style sockets, this code should work.
5848  *  - Daisy
5849  */
5850 static int sctp_writeable(struct sock *sk)
5851 {
5852 	int amt = 0;
5853 
5854 	amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
5855 	if (amt < 0)
5856 		amt = 0;
5857 	return amt;
5858 }
5859 
5860 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
5861  * returns immediately with EINPROGRESS.
5862  */
5863 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
5864 {
5865 	struct sock *sk = asoc->base.sk;
5866 	int err = 0;
5867 	long current_timeo = *timeo_p;
5868 	DEFINE_WAIT(wait);
5869 
5870 	SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc,
5871 			  (long)(*timeo_p));
5872 
5873 	/* Increment the association's refcnt.  */
5874 	sctp_association_hold(asoc);
5875 
5876 	for (;;) {
5877 		prepare_to_wait_exclusive(&asoc->wait, &wait,
5878 					  TASK_INTERRUPTIBLE);
5879 		if (!*timeo_p)
5880 			goto do_nonblock;
5881 		if (sk->sk_shutdown & RCV_SHUTDOWN)
5882 			break;
5883 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
5884 		    asoc->base.dead)
5885 			goto do_error;
5886 		if (signal_pending(current))
5887 			goto do_interrupted;
5888 
5889 		if (sctp_state(asoc, ESTABLISHED))
5890 			break;
5891 
5892 		/* Let another process have a go.  Since we are going
5893 		 * to sleep anyway.
5894 		 */
5895 		sctp_release_sock(sk);
5896 		current_timeo = schedule_timeout(current_timeo);
5897 		sctp_lock_sock(sk);
5898 
5899 		*timeo_p = current_timeo;
5900 	}
5901 
5902 out:
5903 	finish_wait(&asoc->wait, &wait);
5904 
5905 	/* Release the association's refcnt.  */
5906 	sctp_association_put(asoc);
5907 
5908 	return err;
5909 
5910 do_error:
5911 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
5912 		err = -ETIMEDOUT;
5913 	else
5914 		err = -ECONNREFUSED;
5915 	goto out;
5916 
5917 do_interrupted:
5918 	err = sock_intr_errno(*timeo_p);
5919 	goto out;
5920 
5921 do_nonblock:
5922 	err = -EINPROGRESS;
5923 	goto out;
5924 }
5925 
5926 static int sctp_wait_for_accept(struct sock *sk, long timeo)
5927 {
5928 	struct sctp_endpoint *ep;
5929 	int err = 0;
5930 	DEFINE_WAIT(wait);
5931 
5932 	ep = sctp_sk(sk)->ep;
5933 
5934 
5935 	for (;;) {
5936 		prepare_to_wait_exclusive(sk->sk_sleep, &wait,
5937 					  TASK_INTERRUPTIBLE);
5938 
5939 		if (list_empty(&ep->asocs)) {
5940 			sctp_release_sock(sk);
5941 			timeo = schedule_timeout(timeo);
5942 			sctp_lock_sock(sk);
5943 		}
5944 
5945 		err = -EINVAL;
5946 		if (!sctp_sstate(sk, LISTENING))
5947 			break;
5948 
5949 		err = 0;
5950 		if (!list_empty(&ep->asocs))
5951 			break;
5952 
5953 		err = sock_intr_errno(timeo);
5954 		if (signal_pending(current))
5955 			break;
5956 
5957 		err = -EAGAIN;
5958 		if (!timeo)
5959 			break;
5960 	}
5961 
5962 	finish_wait(sk->sk_sleep, &wait);
5963 
5964 	return err;
5965 }
5966 
5967 void sctp_wait_for_close(struct sock *sk, long timeout)
5968 {
5969 	DEFINE_WAIT(wait);
5970 
5971 	do {
5972 		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5973 		if (list_empty(&sctp_sk(sk)->ep->asocs))
5974 			break;
5975 		sctp_release_sock(sk);
5976 		timeout = schedule_timeout(timeout);
5977 		sctp_lock_sock(sk);
5978 	} while (!signal_pending(current) && timeout);
5979 
5980 	finish_wait(sk->sk_sleep, &wait);
5981 }
5982 
5983 static void sctp_sock_rfree_frag(struct sk_buff *skb)
5984 {
5985 	struct sk_buff *frag;
5986 
5987 	if (!skb->data_len)
5988 		goto done;
5989 
5990 	/* Don't forget the fragments. */
5991 	for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next)
5992 		sctp_sock_rfree_frag(frag);
5993 
5994 done:
5995 	sctp_sock_rfree(skb);
5996 }
5997 
5998 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
5999 {
6000 	struct sk_buff *frag;
6001 
6002 	if (!skb->data_len)
6003 		goto done;
6004 
6005 	/* Don't forget the fragments. */
6006 	for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next)
6007 		sctp_skb_set_owner_r_frag(frag, sk);
6008 
6009 done:
6010 	sctp_skb_set_owner_r(skb, sk);
6011 }
6012 
6013 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6014  * and its messages to the newsk.
6015  */
6016 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6017 			      struct sctp_association *assoc,
6018 			      sctp_socket_type_t type)
6019 {
6020 	struct sctp_sock *oldsp = sctp_sk(oldsk);
6021 	struct sctp_sock *newsp = sctp_sk(newsk);
6022 	struct sctp_bind_bucket *pp; /* hash list port iterator */
6023 	struct sctp_endpoint *newep = newsp->ep;
6024 	struct sk_buff *skb, *tmp;
6025 	struct sctp_ulpevent *event;
6026 	int flags = 0;
6027 
6028 	/* Migrate socket buffer sizes and all the socket level options to the
6029 	 * new socket.
6030 	 */
6031 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
6032 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6033 	/* Brute force copy old sctp opt. */
6034 	inet_sk_copy_descendant(newsk, oldsk);
6035 
6036 	/* Restore the ep value that was overwritten with the above structure
6037 	 * copy.
6038 	 */
6039 	newsp->ep = newep;
6040 	newsp->hmac = NULL;
6041 
6042 	/* Hook this new socket in to the bind_hash list. */
6043 	pp = sctp_sk(oldsk)->bind_hash;
6044 	sk_add_bind_node(newsk, &pp->owner);
6045 	sctp_sk(newsk)->bind_hash = pp;
6046 	inet_sk(newsk)->num = inet_sk(oldsk)->num;
6047 
6048 	/* Copy the bind_addr list from the original endpoint to the new
6049 	 * endpoint so that we can handle restarts properly
6050 	 */
6051 	if (PF_INET6 == assoc->base.sk->sk_family)
6052 		flags = SCTP_ADDR6_ALLOWED;
6053 	if (assoc->peer.ipv4_address)
6054 		flags |= SCTP_ADDR4_PEERSUPP;
6055 	if (assoc->peer.ipv6_address)
6056 		flags |= SCTP_ADDR6_PEERSUPP;
6057 	sctp_bind_addr_copy(&newsp->ep->base.bind_addr,
6058 			     &oldsp->ep->base.bind_addr,
6059 			     SCTP_SCOPE_GLOBAL, GFP_KERNEL, flags);
6060 
6061 	/* Move any messages in the old socket's receive queue that are for the
6062 	 * peeled off association to the new socket's receive queue.
6063 	 */
6064 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6065 		event = sctp_skb2event(skb);
6066 		if (event->asoc == assoc) {
6067 			sctp_sock_rfree_frag(skb);
6068 			__skb_unlink(skb, &oldsk->sk_receive_queue);
6069 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
6070 			sctp_skb_set_owner_r_frag(skb, newsk);
6071 		}
6072 	}
6073 
6074 	/* Clean up any messages pending delivery due to partial
6075 	 * delivery.   Three cases:
6076 	 * 1) No partial deliver;  no work.
6077 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6078 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6079 	 */
6080 	skb_queue_head_init(&newsp->pd_lobby);
6081 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6082 
6083 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6084 		struct sk_buff_head *queue;
6085 
6086 		/* Decide which queue to move pd_lobby skbs to. */
6087 		if (assoc->ulpq.pd_mode) {
6088 			queue = &newsp->pd_lobby;
6089 		} else
6090 			queue = &newsk->sk_receive_queue;
6091 
6092 		/* Walk through the pd_lobby, looking for skbs that
6093 		 * need moved to the new socket.
6094 		 */
6095 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6096 			event = sctp_skb2event(skb);
6097 			if (event->asoc == assoc) {
6098 				sctp_sock_rfree_frag(skb);
6099 				__skb_unlink(skb, &oldsp->pd_lobby);
6100 				__skb_queue_tail(queue, skb);
6101 				sctp_skb_set_owner_r_frag(skb, newsk);
6102 			}
6103 		}
6104 
6105 		/* Clear up any skbs waiting for the partial
6106 		 * delivery to finish.
6107 		 */
6108 		if (assoc->ulpq.pd_mode)
6109 			sctp_clear_pd(oldsk, NULL);
6110 
6111 	}
6112 
6113 	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) {
6114 		sctp_sock_rfree_frag(skb);
6115 		sctp_skb_set_owner_r_frag(skb, newsk);
6116 	}
6117 
6118 	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) {
6119 		sctp_sock_rfree_frag(skb);
6120 		sctp_skb_set_owner_r_frag(skb, newsk);
6121 	}
6122 
6123 	/* Set the type of socket to indicate that it is peeled off from the
6124 	 * original UDP-style socket or created with the accept() call on a
6125 	 * TCP-style socket..
6126 	 */
6127 	newsp->type = type;
6128 
6129 	/* Mark the new socket "in-use" by the user so that any packets
6130 	 * that may arrive on the association after we've moved it are
6131 	 * queued to the backlog.  This prevents a potential race between
6132 	 * backlog processing on the old socket and new-packet processing
6133 	 * on the new socket.
6134 	 *
6135 	 * The caller has just allocated newsk so we can guarantee that other
6136 	 * paths won't try to lock it and then oldsk.
6137 	 */
6138 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
6139 	sctp_assoc_migrate(assoc, newsk);
6140 
6141 	/* If the association on the newsk is already closed before accept()
6142 	 * is called, set RCV_SHUTDOWN flag.
6143 	 */
6144 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
6145 		newsk->sk_shutdown |= RCV_SHUTDOWN;
6146 
6147 	newsk->sk_state = SCTP_SS_ESTABLISHED;
6148 	sctp_release_sock(newsk);
6149 }
6150 
6151 /* This proto struct describes the ULP interface for SCTP.  */
6152 struct proto sctp_prot = {
6153 	.name        =	"SCTP",
6154 	.owner       =	THIS_MODULE,
6155 	.close       =	sctp_close,
6156 	.connect     =	sctp_connect,
6157 	.disconnect  =	sctp_disconnect,
6158 	.accept      =	sctp_accept,
6159 	.ioctl       =	sctp_ioctl,
6160 	.init        =	sctp_init_sock,
6161 	.destroy     =	sctp_destroy_sock,
6162 	.shutdown    =	sctp_shutdown,
6163 	.setsockopt  =	sctp_setsockopt,
6164 	.getsockopt  =	sctp_getsockopt,
6165 	.sendmsg     =	sctp_sendmsg,
6166 	.recvmsg     =	sctp_recvmsg,
6167 	.bind        =	sctp_bind,
6168 	.backlog_rcv =	sctp_backlog_rcv,
6169 	.hash        =	sctp_hash,
6170 	.unhash      =	sctp_unhash,
6171 	.get_port    =	sctp_get_port,
6172 	.obj_size    =  sizeof(struct sctp_sock),
6173 };
6174 
6175 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6176 struct proto sctpv6_prot = {
6177 	.name		= "SCTPv6",
6178 	.owner		= THIS_MODULE,
6179 	.close		= sctp_close,
6180 	.connect	= sctp_connect,
6181 	.disconnect	= sctp_disconnect,
6182 	.accept		= sctp_accept,
6183 	.ioctl		= sctp_ioctl,
6184 	.init		= sctp_init_sock,
6185 	.destroy	= sctp_destroy_sock,
6186 	.shutdown	= sctp_shutdown,
6187 	.setsockopt	= sctp_setsockopt,
6188 	.getsockopt	= sctp_getsockopt,
6189 	.sendmsg	= sctp_sendmsg,
6190 	.recvmsg	= sctp_recvmsg,
6191 	.bind		= sctp_bind,
6192 	.backlog_rcv	= sctp_backlog_rcv,
6193 	.hash		= sctp_hash,
6194 	.unhash		= sctp_unhash,
6195 	.get_port	= sctp_get_port,
6196 	.obj_size	= sizeof(struct sctp6_sock),
6197 };
6198 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
6199