1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, write to 32 * the Free Software Foundation, 59 Temple Place - Suite 330, 33 * Boston, MA 02111-1307, USA. 34 * 35 * Please send any bug reports or fixes you make to the 36 * email address(es): 37 * lksctp developers <lksctp-developers@lists.sourceforge.net> 38 * 39 * Or submit a bug report through the following website: 40 * http://www.sf.net/projects/lksctp 41 * 42 * Written or modified by: 43 * La Monte H.P. Yarroll <piggy@acm.org> 44 * Narasimha Budihal <narsi@refcode.org> 45 * Karl Knutson <karl@athena.chicago.il.us> 46 * Jon Grimm <jgrimm@us.ibm.com> 47 * Xingang Guo <xingang.guo@intel.com> 48 * Daisy Chang <daisyc@us.ibm.com> 49 * Sridhar Samudrala <samudrala@us.ibm.com> 50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 51 * Ardelle Fan <ardelle.fan@intel.com> 52 * Ryan Layer <rmlayer@us.ibm.com> 53 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 54 * Kevin Gao <kevin.gao@intel.com> 55 * 56 * Any bugs reported given to us we will try to fix... any fixes shared will 57 * be incorporated into the next SCTP release. 58 */ 59 60 #include <linux/types.h> 61 #include <linux/kernel.h> 62 #include <linux/wait.h> 63 #include <linux/time.h> 64 #include <linux/ip.h> 65 #include <linux/capability.h> 66 #include <linux/fcntl.h> 67 #include <linux/poll.h> 68 #include <linux/init.h> 69 #include <linux/crypto.h> 70 71 #include <net/ip.h> 72 #include <net/icmp.h> 73 #include <net/route.h> 74 #include <net/ipv6.h> 75 #include <net/inet_common.h> 76 77 #include <linux/socket.h> /* for sa_family_t */ 78 #include <net/sock.h> 79 #include <net/sctp/sctp.h> 80 #include <net/sctp/sm.h> 81 82 /* WARNING: Please do not remove the SCTP_STATIC attribute to 83 * any of the functions below as they are used to export functions 84 * used by a project regression testsuite. 85 */ 86 87 /* Forward declarations for internal helper functions. */ 88 static int sctp_writeable(struct sock *sk); 89 static void sctp_wfree(struct sk_buff *skb); 90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 91 size_t msg_len); 92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p); 93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 94 static int sctp_wait_for_accept(struct sock *sk, long timeo); 95 static void sctp_wait_for_close(struct sock *sk, long timeo); 96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 97 union sctp_addr *addr, int len); 98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 102 static int sctp_send_asconf(struct sctp_association *asoc, 103 struct sctp_chunk *chunk); 104 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 105 static int sctp_autobind(struct sock *sk); 106 static void sctp_sock_migrate(struct sock *, struct sock *, 107 struct sctp_association *, sctp_socket_type_t); 108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG; 109 110 extern struct kmem_cache *sctp_bucket_cachep; 111 extern int sysctl_sctp_mem[3]; 112 extern int sysctl_sctp_rmem[3]; 113 extern int sysctl_sctp_wmem[3]; 114 115 static int sctp_memory_pressure; 116 static atomic_t sctp_memory_allocated; 117 static atomic_t sctp_sockets_allocated; 118 119 static void sctp_enter_memory_pressure(void) 120 { 121 sctp_memory_pressure = 1; 122 } 123 124 125 /* Get the sndbuf space available at the time on the association. */ 126 static inline int sctp_wspace(struct sctp_association *asoc) 127 { 128 int amt; 129 130 if (asoc->ep->sndbuf_policy) 131 amt = asoc->sndbuf_used; 132 else 133 amt = atomic_read(&asoc->base.sk->sk_wmem_alloc); 134 135 if (amt >= asoc->base.sk->sk_sndbuf) { 136 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 137 amt = 0; 138 else { 139 amt = sk_stream_wspace(asoc->base.sk); 140 if (amt < 0) 141 amt = 0; 142 } 143 } else { 144 amt = asoc->base.sk->sk_sndbuf - amt; 145 } 146 return amt; 147 } 148 149 /* Increment the used sndbuf space count of the corresponding association by 150 * the size of the outgoing data chunk. 151 * Also, set the skb destructor for sndbuf accounting later. 152 * 153 * Since it is always 1-1 between chunk and skb, and also a new skb is always 154 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 155 * destructor in the data chunk skb for the purpose of the sndbuf space 156 * tracking. 157 */ 158 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 159 { 160 struct sctp_association *asoc = chunk->asoc; 161 struct sock *sk = asoc->base.sk; 162 163 /* The sndbuf space is tracked per association. */ 164 sctp_association_hold(asoc); 165 166 skb_set_owner_w(chunk->skb, sk); 167 168 chunk->skb->destructor = sctp_wfree; 169 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 170 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 171 172 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 173 sizeof(struct sk_buff) + 174 sizeof(struct sctp_chunk); 175 176 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 177 sk->sk_wmem_queued += chunk->skb->truesize; 178 sk_mem_charge(sk, chunk->skb->truesize); 179 } 180 181 /* Verify that this is a valid address. */ 182 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 183 int len) 184 { 185 struct sctp_af *af; 186 187 /* Verify basic sockaddr. */ 188 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 189 if (!af) 190 return -EINVAL; 191 192 /* Is this a valid SCTP address? */ 193 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 194 return -EINVAL; 195 196 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 197 return -EINVAL; 198 199 return 0; 200 } 201 202 /* Look up the association by its id. If this is not a UDP-style 203 * socket, the ID field is always ignored. 204 */ 205 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 206 { 207 struct sctp_association *asoc = NULL; 208 209 /* If this is not a UDP-style socket, assoc id should be ignored. */ 210 if (!sctp_style(sk, UDP)) { 211 /* Return NULL if the socket state is not ESTABLISHED. It 212 * could be a TCP-style listening socket or a socket which 213 * hasn't yet called connect() to establish an association. 214 */ 215 if (!sctp_sstate(sk, ESTABLISHED)) 216 return NULL; 217 218 /* Get the first and the only association from the list. */ 219 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 220 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 221 struct sctp_association, asocs); 222 return asoc; 223 } 224 225 /* Otherwise this is a UDP-style socket. */ 226 if (!id || (id == (sctp_assoc_t)-1)) 227 return NULL; 228 229 spin_lock_bh(&sctp_assocs_id_lock); 230 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 231 spin_unlock_bh(&sctp_assocs_id_lock); 232 233 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 234 return NULL; 235 236 return asoc; 237 } 238 239 /* Look up the transport from an address and an assoc id. If both address and 240 * id are specified, the associations matching the address and the id should be 241 * the same. 242 */ 243 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 244 struct sockaddr_storage *addr, 245 sctp_assoc_t id) 246 { 247 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 248 struct sctp_transport *transport; 249 union sctp_addr *laddr = (union sctp_addr *)addr; 250 251 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 252 laddr, 253 &transport); 254 255 if (!addr_asoc) 256 return NULL; 257 258 id_asoc = sctp_id2assoc(sk, id); 259 if (id_asoc && (id_asoc != addr_asoc)) 260 return NULL; 261 262 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 263 (union sctp_addr *)addr); 264 265 return transport; 266 } 267 268 /* API 3.1.2 bind() - UDP Style Syntax 269 * The syntax of bind() is, 270 * 271 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 272 * 273 * sd - the socket descriptor returned by socket(). 274 * addr - the address structure (struct sockaddr_in or struct 275 * sockaddr_in6 [RFC 2553]), 276 * addr_len - the size of the address structure. 277 */ 278 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 279 { 280 int retval = 0; 281 282 sctp_lock_sock(sk); 283 284 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n", 285 sk, addr, addr_len); 286 287 /* Disallow binding twice. */ 288 if (!sctp_sk(sk)->ep->base.bind_addr.port) 289 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 290 addr_len); 291 else 292 retval = -EINVAL; 293 294 sctp_release_sock(sk); 295 296 return retval; 297 } 298 299 static long sctp_get_port_local(struct sock *, union sctp_addr *); 300 301 /* Verify this is a valid sockaddr. */ 302 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 303 union sctp_addr *addr, int len) 304 { 305 struct sctp_af *af; 306 307 /* Check minimum size. */ 308 if (len < sizeof (struct sockaddr)) 309 return NULL; 310 311 /* Does this PF support this AF? */ 312 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 313 return NULL; 314 315 /* If we get this far, af is valid. */ 316 af = sctp_get_af_specific(addr->sa.sa_family); 317 318 if (len < af->sockaddr_len) 319 return NULL; 320 321 return af; 322 } 323 324 /* Bind a local address either to an endpoint or to an association. */ 325 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 326 { 327 struct sctp_sock *sp = sctp_sk(sk); 328 struct sctp_endpoint *ep = sp->ep; 329 struct sctp_bind_addr *bp = &ep->base.bind_addr; 330 struct sctp_af *af; 331 unsigned short snum; 332 int ret = 0; 333 334 /* Common sockaddr verification. */ 335 af = sctp_sockaddr_af(sp, addr, len); 336 if (!af) { 337 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n", 338 sk, addr, len); 339 return -EINVAL; 340 } 341 342 snum = ntohs(addr->v4.sin_port); 343 344 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ", 345 ", port: %d, new port: %d, len: %d)\n", 346 sk, 347 addr, 348 bp->port, snum, 349 len); 350 351 /* PF specific bind() address verification. */ 352 if (!sp->pf->bind_verify(sp, addr)) 353 return -EADDRNOTAVAIL; 354 355 /* We must either be unbound, or bind to the same port. 356 * It's OK to allow 0 ports if we are already bound. 357 * We'll just inhert an already bound port in this case 358 */ 359 if (bp->port) { 360 if (!snum) 361 snum = bp->port; 362 else if (snum != bp->port) { 363 SCTP_DEBUG_PRINTK("sctp_do_bind:" 364 " New port %d does not match existing port " 365 "%d.\n", snum, bp->port); 366 return -EINVAL; 367 } 368 } 369 370 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 371 return -EACCES; 372 373 /* Make sure we are allowed to bind here. 374 * The function sctp_get_port_local() does duplicate address 375 * detection. 376 */ 377 addr->v4.sin_port = htons(snum); 378 if ((ret = sctp_get_port_local(sk, addr))) { 379 if (ret == (long) sk) { 380 /* This endpoint has a conflicting address. */ 381 return -EINVAL; 382 } else { 383 return -EADDRINUSE; 384 } 385 } 386 387 /* Refresh ephemeral port. */ 388 if (!bp->port) 389 bp->port = inet_sk(sk)->num; 390 391 /* Add the address to the bind address list. 392 * Use GFP_ATOMIC since BHs will be disabled. 393 */ 394 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC); 395 396 /* Copy back into socket for getsockname() use. */ 397 if (!ret) { 398 inet_sk(sk)->sport = htons(inet_sk(sk)->num); 399 af->to_sk_saddr(addr, sk); 400 } 401 402 return ret; 403 } 404 405 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 406 * 407 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 408 * at any one time. If a sender, after sending an ASCONF chunk, decides 409 * it needs to transfer another ASCONF Chunk, it MUST wait until the 410 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 411 * subsequent ASCONF. Note this restriction binds each side, so at any 412 * time two ASCONF may be in-transit on any given association (one sent 413 * from each endpoint). 414 */ 415 static int sctp_send_asconf(struct sctp_association *asoc, 416 struct sctp_chunk *chunk) 417 { 418 int retval = 0; 419 420 /* If there is an outstanding ASCONF chunk, queue it for later 421 * transmission. 422 */ 423 if (asoc->addip_last_asconf) { 424 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 425 goto out; 426 } 427 428 /* Hold the chunk until an ASCONF_ACK is received. */ 429 sctp_chunk_hold(chunk); 430 retval = sctp_primitive_ASCONF(asoc, chunk); 431 if (retval) 432 sctp_chunk_free(chunk); 433 else 434 asoc->addip_last_asconf = chunk; 435 436 out: 437 return retval; 438 } 439 440 /* Add a list of addresses as bind addresses to local endpoint or 441 * association. 442 * 443 * Basically run through each address specified in the addrs/addrcnt 444 * array/length pair, determine if it is IPv6 or IPv4 and call 445 * sctp_do_bind() on it. 446 * 447 * If any of them fails, then the operation will be reversed and the 448 * ones that were added will be removed. 449 * 450 * Only sctp_setsockopt_bindx() is supposed to call this function. 451 */ 452 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 453 { 454 int cnt; 455 int retval = 0; 456 void *addr_buf; 457 struct sockaddr *sa_addr; 458 struct sctp_af *af; 459 460 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n", 461 sk, addrs, addrcnt); 462 463 addr_buf = addrs; 464 for (cnt = 0; cnt < addrcnt; cnt++) { 465 /* The list may contain either IPv4 or IPv6 address; 466 * determine the address length for walking thru the list. 467 */ 468 sa_addr = (struct sockaddr *)addr_buf; 469 af = sctp_get_af_specific(sa_addr->sa_family); 470 if (!af) { 471 retval = -EINVAL; 472 goto err_bindx_add; 473 } 474 475 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 476 af->sockaddr_len); 477 478 addr_buf += af->sockaddr_len; 479 480 err_bindx_add: 481 if (retval < 0) { 482 /* Failed. Cleanup the ones that have been added */ 483 if (cnt > 0) 484 sctp_bindx_rem(sk, addrs, cnt); 485 return retval; 486 } 487 } 488 489 return retval; 490 } 491 492 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 493 * associations that are part of the endpoint indicating that a list of local 494 * addresses are added to the endpoint. 495 * 496 * If any of the addresses is already in the bind address list of the 497 * association, we do not send the chunk for that association. But it will not 498 * affect other associations. 499 * 500 * Only sctp_setsockopt_bindx() is supposed to call this function. 501 */ 502 static int sctp_send_asconf_add_ip(struct sock *sk, 503 struct sockaddr *addrs, 504 int addrcnt) 505 { 506 struct sctp_sock *sp; 507 struct sctp_endpoint *ep; 508 struct sctp_association *asoc; 509 struct sctp_bind_addr *bp; 510 struct sctp_chunk *chunk; 511 struct sctp_sockaddr_entry *laddr; 512 union sctp_addr *addr; 513 union sctp_addr saveaddr; 514 void *addr_buf; 515 struct sctp_af *af; 516 struct list_head *pos; 517 struct list_head *p; 518 int i; 519 int retval = 0; 520 521 if (!sctp_addip_enable) 522 return retval; 523 524 sp = sctp_sk(sk); 525 ep = sp->ep; 526 527 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 528 __FUNCTION__, sk, addrs, addrcnt); 529 530 list_for_each(pos, &ep->asocs) { 531 asoc = list_entry(pos, struct sctp_association, asocs); 532 533 if (!asoc->peer.asconf_capable) 534 continue; 535 536 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 537 continue; 538 539 if (!sctp_state(asoc, ESTABLISHED)) 540 continue; 541 542 /* Check if any address in the packed array of addresses is 543 * in the bind address list of the association. If so, 544 * do not send the asconf chunk to its peer, but continue with 545 * other associations. 546 */ 547 addr_buf = addrs; 548 for (i = 0; i < addrcnt; i++) { 549 addr = (union sctp_addr *)addr_buf; 550 af = sctp_get_af_specific(addr->v4.sin_family); 551 if (!af) { 552 retval = -EINVAL; 553 goto out; 554 } 555 556 if (sctp_assoc_lookup_laddr(asoc, addr)) 557 break; 558 559 addr_buf += af->sockaddr_len; 560 } 561 if (i < addrcnt) 562 continue; 563 564 /* Use the first valid address in bind addr list of 565 * association as Address Parameter of ASCONF CHUNK. 566 */ 567 bp = &asoc->base.bind_addr; 568 p = bp->address_list.next; 569 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 570 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 571 addrcnt, SCTP_PARAM_ADD_IP); 572 if (!chunk) { 573 retval = -ENOMEM; 574 goto out; 575 } 576 577 retval = sctp_send_asconf(asoc, chunk); 578 if (retval) 579 goto out; 580 581 /* Add the new addresses to the bind address list with 582 * use_as_src set to 0. 583 */ 584 addr_buf = addrs; 585 for (i = 0; i < addrcnt; i++) { 586 addr = (union sctp_addr *)addr_buf; 587 af = sctp_get_af_specific(addr->v4.sin_family); 588 memcpy(&saveaddr, addr, af->sockaddr_len); 589 retval = sctp_add_bind_addr(bp, &saveaddr, 590 SCTP_ADDR_NEW, GFP_ATOMIC); 591 addr_buf += af->sockaddr_len; 592 } 593 } 594 595 out: 596 return retval; 597 } 598 599 /* Remove a list of addresses from bind addresses list. Do not remove the 600 * last address. 601 * 602 * Basically run through each address specified in the addrs/addrcnt 603 * array/length pair, determine if it is IPv6 or IPv4 and call 604 * sctp_del_bind() on it. 605 * 606 * If any of them fails, then the operation will be reversed and the 607 * ones that were removed will be added back. 608 * 609 * At least one address has to be left; if only one address is 610 * available, the operation will return -EBUSY. 611 * 612 * Only sctp_setsockopt_bindx() is supposed to call this function. 613 */ 614 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 615 { 616 struct sctp_sock *sp = sctp_sk(sk); 617 struct sctp_endpoint *ep = sp->ep; 618 int cnt; 619 struct sctp_bind_addr *bp = &ep->base.bind_addr; 620 int retval = 0; 621 void *addr_buf; 622 union sctp_addr *sa_addr; 623 struct sctp_af *af; 624 625 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n", 626 sk, addrs, addrcnt); 627 628 addr_buf = addrs; 629 for (cnt = 0; cnt < addrcnt; cnt++) { 630 /* If the bind address list is empty or if there is only one 631 * bind address, there is nothing more to be removed (we need 632 * at least one address here). 633 */ 634 if (list_empty(&bp->address_list) || 635 (sctp_list_single_entry(&bp->address_list))) { 636 retval = -EBUSY; 637 goto err_bindx_rem; 638 } 639 640 sa_addr = (union sctp_addr *)addr_buf; 641 af = sctp_get_af_specific(sa_addr->sa.sa_family); 642 if (!af) { 643 retval = -EINVAL; 644 goto err_bindx_rem; 645 } 646 647 if (!af->addr_valid(sa_addr, sp, NULL)) { 648 retval = -EADDRNOTAVAIL; 649 goto err_bindx_rem; 650 } 651 652 if (sa_addr->v4.sin_port != htons(bp->port)) { 653 retval = -EINVAL; 654 goto err_bindx_rem; 655 } 656 657 /* FIXME - There is probably a need to check if sk->sk_saddr and 658 * sk->sk_rcv_addr are currently set to one of the addresses to 659 * be removed. This is something which needs to be looked into 660 * when we are fixing the outstanding issues with multi-homing 661 * socket routing and failover schemes. Refer to comments in 662 * sctp_do_bind(). -daisy 663 */ 664 retval = sctp_del_bind_addr(bp, sa_addr); 665 666 addr_buf += af->sockaddr_len; 667 err_bindx_rem: 668 if (retval < 0) { 669 /* Failed. Add the ones that has been removed back */ 670 if (cnt > 0) 671 sctp_bindx_add(sk, addrs, cnt); 672 return retval; 673 } 674 } 675 676 return retval; 677 } 678 679 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 680 * the associations that are part of the endpoint indicating that a list of 681 * local addresses are removed from the endpoint. 682 * 683 * If any of the addresses is already in the bind address list of the 684 * association, we do not send the chunk for that association. But it will not 685 * affect other associations. 686 * 687 * Only sctp_setsockopt_bindx() is supposed to call this function. 688 */ 689 static int sctp_send_asconf_del_ip(struct sock *sk, 690 struct sockaddr *addrs, 691 int addrcnt) 692 { 693 struct sctp_sock *sp; 694 struct sctp_endpoint *ep; 695 struct sctp_association *asoc; 696 struct sctp_transport *transport; 697 struct sctp_bind_addr *bp; 698 struct sctp_chunk *chunk; 699 union sctp_addr *laddr; 700 void *addr_buf; 701 struct sctp_af *af; 702 struct list_head *pos, *pos1; 703 struct sctp_sockaddr_entry *saddr; 704 int i; 705 int retval = 0; 706 707 if (!sctp_addip_enable) 708 return retval; 709 710 sp = sctp_sk(sk); 711 ep = sp->ep; 712 713 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 714 __FUNCTION__, sk, addrs, addrcnt); 715 716 list_for_each(pos, &ep->asocs) { 717 asoc = list_entry(pos, struct sctp_association, asocs); 718 719 if (!asoc->peer.asconf_capable) 720 continue; 721 722 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 723 continue; 724 725 if (!sctp_state(asoc, ESTABLISHED)) 726 continue; 727 728 /* Check if any address in the packed array of addresses is 729 * not present in the bind address list of the association. 730 * If so, do not send the asconf chunk to its peer, but 731 * continue with other associations. 732 */ 733 addr_buf = addrs; 734 for (i = 0; i < addrcnt; i++) { 735 laddr = (union sctp_addr *)addr_buf; 736 af = sctp_get_af_specific(laddr->v4.sin_family); 737 if (!af) { 738 retval = -EINVAL; 739 goto out; 740 } 741 742 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 743 break; 744 745 addr_buf += af->sockaddr_len; 746 } 747 if (i < addrcnt) 748 continue; 749 750 /* Find one address in the association's bind address list 751 * that is not in the packed array of addresses. This is to 752 * make sure that we do not delete all the addresses in the 753 * association. 754 */ 755 bp = &asoc->base.bind_addr; 756 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 757 addrcnt, sp); 758 if (!laddr) 759 continue; 760 761 /* We do not need RCU protection throughout this loop 762 * because this is done under a socket lock from the 763 * setsockopt call. 764 */ 765 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 766 SCTP_PARAM_DEL_IP); 767 if (!chunk) { 768 retval = -ENOMEM; 769 goto out; 770 } 771 772 /* Reset use_as_src flag for the addresses in the bind address 773 * list that are to be deleted. 774 */ 775 addr_buf = addrs; 776 for (i = 0; i < addrcnt; i++) { 777 laddr = (union sctp_addr *)addr_buf; 778 af = sctp_get_af_specific(laddr->v4.sin_family); 779 list_for_each_entry(saddr, &bp->address_list, list) { 780 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 781 saddr->state = SCTP_ADDR_DEL; 782 } 783 addr_buf += af->sockaddr_len; 784 } 785 786 /* Update the route and saddr entries for all the transports 787 * as some of the addresses in the bind address list are 788 * about to be deleted and cannot be used as source addresses. 789 */ 790 list_for_each(pos1, &asoc->peer.transport_addr_list) { 791 transport = list_entry(pos1, struct sctp_transport, 792 transports); 793 dst_release(transport->dst); 794 sctp_transport_route(transport, NULL, 795 sctp_sk(asoc->base.sk)); 796 } 797 798 retval = sctp_send_asconf(asoc, chunk); 799 } 800 out: 801 return retval; 802 } 803 804 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 805 * 806 * API 8.1 807 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 808 * int flags); 809 * 810 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 811 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 812 * or IPv6 addresses. 813 * 814 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 815 * Section 3.1.2 for this usage. 816 * 817 * addrs is a pointer to an array of one or more socket addresses. Each 818 * address is contained in its appropriate structure (i.e. struct 819 * sockaddr_in or struct sockaddr_in6) the family of the address type 820 * must be used to distinguish the address length (note that this 821 * representation is termed a "packed array" of addresses). The caller 822 * specifies the number of addresses in the array with addrcnt. 823 * 824 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 825 * -1, and sets errno to the appropriate error code. 826 * 827 * For SCTP, the port given in each socket address must be the same, or 828 * sctp_bindx() will fail, setting errno to EINVAL. 829 * 830 * The flags parameter is formed from the bitwise OR of zero or more of 831 * the following currently defined flags: 832 * 833 * SCTP_BINDX_ADD_ADDR 834 * 835 * SCTP_BINDX_REM_ADDR 836 * 837 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 838 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 839 * addresses from the association. The two flags are mutually exclusive; 840 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 841 * not remove all addresses from an association; sctp_bindx() will 842 * reject such an attempt with EINVAL. 843 * 844 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 845 * additional addresses with an endpoint after calling bind(). Or use 846 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 847 * socket is associated with so that no new association accepted will be 848 * associated with those addresses. If the endpoint supports dynamic 849 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 850 * endpoint to send the appropriate message to the peer to change the 851 * peers address lists. 852 * 853 * Adding and removing addresses from a connected association is 854 * optional functionality. Implementations that do not support this 855 * functionality should return EOPNOTSUPP. 856 * 857 * Basically do nothing but copying the addresses from user to kernel 858 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 859 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 860 * from userspace. 861 * 862 * We don't use copy_from_user() for optimization: we first do the 863 * sanity checks (buffer size -fast- and access check-healthy 864 * pointer); if all of those succeed, then we can alloc the memory 865 * (expensive operation) needed to copy the data to kernel. Then we do 866 * the copying without checking the user space area 867 * (__copy_from_user()). 868 * 869 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 870 * it. 871 * 872 * sk The sk of the socket 873 * addrs The pointer to the addresses in user land 874 * addrssize Size of the addrs buffer 875 * op Operation to perform (add or remove, see the flags of 876 * sctp_bindx) 877 * 878 * Returns 0 if ok, <0 errno code on error. 879 */ 880 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk, 881 struct sockaddr __user *addrs, 882 int addrs_size, int op) 883 { 884 struct sockaddr *kaddrs; 885 int err; 886 int addrcnt = 0; 887 int walk_size = 0; 888 struct sockaddr *sa_addr; 889 void *addr_buf; 890 struct sctp_af *af; 891 892 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p" 893 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op); 894 895 if (unlikely(addrs_size <= 0)) 896 return -EINVAL; 897 898 /* Check the user passed a healthy pointer. */ 899 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 900 return -EFAULT; 901 902 /* Alloc space for the address array in kernel memory. */ 903 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 904 if (unlikely(!kaddrs)) 905 return -ENOMEM; 906 907 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 908 kfree(kaddrs); 909 return -EFAULT; 910 } 911 912 /* Walk through the addrs buffer and count the number of addresses. */ 913 addr_buf = kaddrs; 914 while (walk_size < addrs_size) { 915 sa_addr = (struct sockaddr *)addr_buf; 916 af = sctp_get_af_specific(sa_addr->sa_family); 917 918 /* If the address family is not supported or if this address 919 * causes the address buffer to overflow return EINVAL. 920 */ 921 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 922 kfree(kaddrs); 923 return -EINVAL; 924 } 925 addrcnt++; 926 addr_buf += af->sockaddr_len; 927 walk_size += af->sockaddr_len; 928 } 929 930 /* Do the work. */ 931 switch (op) { 932 case SCTP_BINDX_ADD_ADDR: 933 err = sctp_bindx_add(sk, kaddrs, addrcnt); 934 if (err) 935 goto out; 936 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 937 break; 938 939 case SCTP_BINDX_REM_ADDR: 940 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 941 if (err) 942 goto out; 943 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 944 break; 945 946 default: 947 err = -EINVAL; 948 break; 949 } 950 951 out: 952 kfree(kaddrs); 953 954 return err; 955 } 956 957 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 958 * 959 * Common routine for handling connect() and sctp_connectx(). 960 * Connect will come in with just a single address. 961 */ 962 static int __sctp_connect(struct sock* sk, 963 struct sockaddr *kaddrs, 964 int addrs_size) 965 { 966 struct sctp_sock *sp; 967 struct sctp_endpoint *ep; 968 struct sctp_association *asoc = NULL; 969 struct sctp_association *asoc2; 970 struct sctp_transport *transport; 971 union sctp_addr to; 972 struct sctp_af *af; 973 sctp_scope_t scope; 974 long timeo; 975 int err = 0; 976 int addrcnt = 0; 977 int walk_size = 0; 978 union sctp_addr *sa_addr = NULL; 979 void *addr_buf; 980 unsigned short port; 981 unsigned int f_flags = 0; 982 983 sp = sctp_sk(sk); 984 ep = sp->ep; 985 986 /* connect() cannot be done on a socket that is already in ESTABLISHED 987 * state - UDP-style peeled off socket or a TCP-style socket that 988 * is already connected. 989 * It cannot be done even on a TCP-style listening socket. 990 */ 991 if (sctp_sstate(sk, ESTABLISHED) || 992 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 993 err = -EISCONN; 994 goto out_free; 995 } 996 997 /* Walk through the addrs buffer and count the number of addresses. */ 998 addr_buf = kaddrs; 999 while (walk_size < addrs_size) { 1000 sa_addr = (union sctp_addr *)addr_buf; 1001 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1002 port = ntohs(sa_addr->v4.sin_port); 1003 1004 /* If the address family is not supported or if this address 1005 * causes the address buffer to overflow return EINVAL. 1006 */ 1007 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1008 err = -EINVAL; 1009 goto out_free; 1010 } 1011 1012 /* Save current address so we can work with it */ 1013 memcpy(&to, sa_addr, af->sockaddr_len); 1014 1015 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1016 if (err) 1017 goto out_free; 1018 1019 /* Make sure the destination port is correctly set 1020 * in all addresses. 1021 */ 1022 if (asoc && asoc->peer.port && asoc->peer.port != port) 1023 goto out_free; 1024 1025 1026 /* Check if there already is a matching association on the 1027 * endpoint (other than the one created here). 1028 */ 1029 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1030 if (asoc2 && asoc2 != asoc) { 1031 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1032 err = -EISCONN; 1033 else 1034 err = -EALREADY; 1035 goto out_free; 1036 } 1037 1038 /* If we could not find a matching association on the endpoint, 1039 * make sure that there is no peeled-off association matching 1040 * the peer address even on another socket. 1041 */ 1042 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1043 err = -EADDRNOTAVAIL; 1044 goto out_free; 1045 } 1046 1047 if (!asoc) { 1048 /* If a bind() or sctp_bindx() is not called prior to 1049 * an sctp_connectx() call, the system picks an 1050 * ephemeral port and will choose an address set 1051 * equivalent to binding with a wildcard address. 1052 */ 1053 if (!ep->base.bind_addr.port) { 1054 if (sctp_autobind(sk)) { 1055 err = -EAGAIN; 1056 goto out_free; 1057 } 1058 } else { 1059 /* 1060 * If an unprivileged user inherits a 1-many 1061 * style socket with open associations on a 1062 * privileged port, it MAY be permitted to 1063 * accept new associations, but it SHOULD NOT 1064 * be permitted to open new associations. 1065 */ 1066 if (ep->base.bind_addr.port < PROT_SOCK && 1067 !capable(CAP_NET_BIND_SERVICE)) { 1068 err = -EACCES; 1069 goto out_free; 1070 } 1071 } 1072 1073 scope = sctp_scope(&to); 1074 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1075 if (!asoc) { 1076 err = -ENOMEM; 1077 goto out_free; 1078 } 1079 } 1080 1081 /* Prime the peer's transport structures. */ 1082 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1083 SCTP_UNKNOWN); 1084 if (!transport) { 1085 err = -ENOMEM; 1086 goto out_free; 1087 } 1088 1089 addrcnt++; 1090 addr_buf += af->sockaddr_len; 1091 walk_size += af->sockaddr_len; 1092 } 1093 1094 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1095 if (err < 0) { 1096 goto out_free; 1097 } 1098 1099 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1100 if (err < 0) { 1101 goto out_free; 1102 } 1103 1104 /* Initialize sk's dport and daddr for getpeername() */ 1105 inet_sk(sk)->dport = htons(asoc->peer.port); 1106 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1107 af->to_sk_daddr(sa_addr, sk); 1108 sk->sk_err = 0; 1109 1110 /* in-kernel sockets don't generally have a file allocated to them 1111 * if all they do is call sock_create_kern(). 1112 */ 1113 if (sk->sk_socket->file) 1114 f_flags = sk->sk_socket->file->f_flags; 1115 1116 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1117 1118 err = sctp_wait_for_connect(asoc, &timeo); 1119 1120 /* Don't free association on exit. */ 1121 asoc = NULL; 1122 1123 out_free: 1124 1125 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p" 1126 " kaddrs: %p err: %d\n", 1127 asoc, kaddrs, err); 1128 if (asoc) 1129 sctp_association_free(asoc); 1130 return err; 1131 } 1132 1133 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1134 * 1135 * API 8.9 1136 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt); 1137 * 1138 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1139 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1140 * or IPv6 addresses. 1141 * 1142 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1143 * Section 3.1.2 for this usage. 1144 * 1145 * addrs is a pointer to an array of one or more socket addresses. Each 1146 * address is contained in its appropriate structure (i.e. struct 1147 * sockaddr_in or struct sockaddr_in6) the family of the address type 1148 * must be used to distengish the address length (note that this 1149 * representation is termed a "packed array" of addresses). The caller 1150 * specifies the number of addresses in the array with addrcnt. 1151 * 1152 * On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns 1153 * -1, and sets errno to the appropriate error code. 1154 * 1155 * For SCTP, the port given in each socket address must be the same, or 1156 * sctp_connectx() will fail, setting errno to EINVAL. 1157 * 1158 * An application can use sctp_connectx to initiate an association with 1159 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1160 * allows a caller to specify multiple addresses at which a peer can be 1161 * reached. The way the SCTP stack uses the list of addresses to set up 1162 * the association is implementation dependant. This function only 1163 * specifies that the stack will try to make use of all the addresses in 1164 * the list when needed. 1165 * 1166 * Note that the list of addresses passed in is only used for setting up 1167 * the association. It does not necessarily equal the set of addresses 1168 * the peer uses for the resulting association. If the caller wants to 1169 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1170 * retrieve them after the association has been set up. 1171 * 1172 * Basically do nothing but copying the addresses from user to kernel 1173 * land and invoking either sctp_connectx(). This is used for tunneling 1174 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1175 * 1176 * We don't use copy_from_user() for optimization: we first do the 1177 * sanity checks (buffer size -fast- and access check-healthy 1178 * pointer); if all of those succeed, then we can alloc the memory 1179 * (expensive operation) needed to copy the data to kernel. Then we do 1180 * the copying without checking the user space area 1181 * (__copy_from_user()). 1182 * 1183 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1184 * it. 1185 * 1186 * sk The sk of the socket 1187 * addrs The pointer to the addresses in user land 1188 * addrssize Size of the addrs buffer 1189 * 1190 * Returns 0 if ok, <0 errno code on error. 1191 */ 1192 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk, 1193 struct sockaddr __user *addrs, 1194 int addrs_size) 1195 { 1196 int err = 0; 1197 struct sockaddr *kaddrs; 1198 1199 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n", 1200 __FUNCTION__, sk, addrs, addrs_size); 1201 1202 if (unlikely(addrs_size <= 0)) 1203 return -EINVAL; 1204 1205 /* Check the user passed a healthy pointer. */ 1206 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1207 return -EFAULT; 1208 1209 /* Alloc space for the address array in kernel memory. */ 1210 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 1211 if (unlikely(!kaddrs)) 1212 return -ENOMEM; 1213 1214 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1215 err = -EFAULT; 1216 } else { 1217 err = __sctp_connect(sk, kaddrs, addrs_size); 1218 } 1219 1220 kfree(kaddrs); 1221 return err; 1222 } 1223 1224 /* API 3.1.4 close() - UDP Style Syntax 1225 * Applications use close() to perform graceful shutdown (as described in 1226 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1227 * by a UDP-style socket. 1228 * 1229 * The syntax is 1230 * 1231 * ret = close(int sd); 1232 * 1233 * sd - the socket descriptor of the associations to be closed. 1234 * 1235 * To gracefully shutdown a specific association represented by the 1236 * UDP-style socket, an application should use the sendmsg() call, 1237 * passing no user data, but including the appropriate flag in the 1238 * ancillary data (see Section xxxx). 1239 * 1240 * If sd in the close() call is a branched-off socket representing only 1241 * one association, the shutdown is performed on that association only. 1242 * 1243 * 4.1.6 close() - TCP Style Syntax 1244 * 1245 * Applications use close() to gracefully close down an association. 1246 * 1247 * The syntax is: 1248 * 1249 * int close(int sd); 1250 * 1251 * sd - the socket descriptor of the association to be closed. 1252 * 1253 * After an application calls close() on a socket descriptor, no further 1254 * socket operations will succeed on that descriptor. 1255 * 1256 * API 7.1.4 SO_LINGER 1257 * 1258 * An application using the TCP-style socket can use this option to 1259 * perform the SCTP ABORT primitive. The linger option structure is: 1260 * 1261 * struct linger { 1262 * int l_onoff; // option on/off 1263 * int l_linger; // linger time 1264 * }; 1265 * 1266 * To enable the option, set l_onoff to 1. If the l_linger value is set 1267 * to 0, calling close() is the same as the ABORT primitive. If the 1268 * value is set to a negative value, the setsockopt() call will return 1269 * an error. If the value is set to a positive value linger_time, the 1270 * close() can be blocked for at most linger_time ms. If the graceful 1271 * shutdown phase does not finish during this period, close() will 1272 * return but the graceful shutdown phase continues in the system. 1273 */ 1274 SCTP_STATIC void sctp_close(struct sock *sk, long timeout) 1275 { 1276 struct sctp_endpoint *ep; 1277 struct sctp_association *asoc; 1278 struct list_head *pos, *temp; 1279 1280 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout); 1281 1282 sctp_lock_sock(sk); 1283 sk->sk_shutdown = SHUTDOWN_MASK; 1284 1285 ep = sctp_sk(sk)->ep; 1286 1287 /* Walk all associations on an endpoint. */ 1288 list_for_each_safe(pos, temp, &ep->asocs) { 1289 asoc = list_entry(pos, struct sctp_association, asocs); 1290 1291 if (sctp_style(sk, TCP)) { 1292 /* A closed association can still be in the list if 1293 * it belongs to a TCP-style listening socket that is 1294 * not yet accepted. If so, free it. If not, send an 1295 * ABORT or SHUTDOWN based on the linger options. 1296 */ 1297 if (sctp_state(asoc, CLOSED)) { 1298 sctp_unhash_established(asoc); 1299 sctp_association_free(asoc); 1300 continue; 1301 } 1302 } 1303 1304 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 1305 struct sctp_chunk *chunk; 1306 1307 chunk = sctp_make_abort_user(asoc, NULL, 0); 1308 if (chunk) 1309 sctp_primitive_ABORT(asoc, chunk); 1310 } else 1311 sctp_primitive_SHUTDOWN(asoc, NULL); 1312 } 1313 1314 /* Clean up any skbs sitting on the receive queue. */ 1315 sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1316 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1317 1318 /* On a TCP-style socket, block for at most linger_time if set. */ 1319 if (sctp_style(sk, TCP) && timeout) 1320 sctp_wait_for_close(sk, timeout); 1321 1322 /* This will run the backlog queue. */ 1323 sctp_release_sock(sk); 1324 1325 /* Supposedly, no process has access to the socket, but 1326 * the net layers still may. 1327 */ 1328 sctp_local_bh_disable(); 1329 sctp_bh_lock_sock(sk); 1330 1331 /* Hold the sock, since sk_common_release() will put sock_put() 1332 * and we have just a little more cleanup. 1333 */ 1334 sock_hold(sk); 1335 sk_common_release(sk); 1336 1337 sctp_bh_unlock_sock(sk); 1338 sctp_local_bh_enable(); 1339 1340 sock_put(sk); 1341 1342 SCTP_DBG_OBJCNT_DEC(sock); 1343 } 1344 1345 /* Handle EPIPE error. */ 1346 static int sctp_error(struct sock *sk, int flags, int err) 1347 { 1348 if (err == -EPIPE) 1349 err = sock_error(sk) ? : -EPIPE; 1350 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1351 send_sig(SIGPIPE, current, 0); 1352 return err; 1353 } 1354 1355 /* API 3.1.3 sendmsg() - UDP Style Syntax 1356 * 1357 * An application uses sendmsg() and recvmsg() calls to transmit data to 1358 * and receive data from its peer. 1359 * 1360 * ssize_t sendmsg(int socket, const struct msghdr *message, 1361 * int flags); 1362 * 1363 * socket - the socket descriptor of the endpoint. 1364 * message - pointer to the msghdr structure which contains a single 1365 * user message and possibly some ancillary data. 1366 * 1367 * See Section 5 for complete description of the data 1368 * structures. 1369 * 1370 * flags - flags sent or received with the user message, see Section 1371 * 5 for complete description of the flags. 1372 * 1373 * Note: This function could use a rewrite especially when explicit 1374 * connect support comes in. 1375 */ 1376 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1377 1378 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1379 1380 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1381 struct msghdr *msg, size_t msg_len) 1382 { 1383 struct sctp_sock *sp; 1384 struct sctp_endpoint *ep; 1385 struct sctp_association *new_asoc=NULL, *asoc=NULL; 1386 struct sctp_transport *transport, *chunk_tp; 1387 struct sctp_chunk *chunk; 1388 union sctp_addr to; 1389 struct sockaddr *msg_name = NULL; 1390 struct sctp_sndrcvinfo default_sinfo = { 0 }; 1391 struct sctp_sndrcvinfo *sinfo; 1392 struct sctp_initmsg *sinit; 1393 sctp_assoc_t associd = 0; 1394 sctp_cmsgs_t cmsgs = { NULL }; 1395 int err; 1396 sctp_scope_t scope; 1397 long timeo; 1398 __u16 sinfo_flags = 0; 1399 struct sctp_datamsg *datamsg; 1400 struct list_head *pos; 1401 int msg_flags = msg->msg_flags; 1402 1403 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n", 1404 sk, msg, msg_len); 1405 1406 err = 0; 1407 sp = sctp_sk(sk); 1408 ep = sp->ep; 1409 1410 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep); 1411 1412 /* We cannot send a message over a TCP-style listening socket. */ 1413 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1414 err = -EPIPE; 1415 goto out_nounlock; 1416 } 1417 1418 /* Parse out the SCTP CMSGs. */ 1419 err = sctp_msghdr_parse(msg, &cmsgs); 1420 1421 if (err) { 1422 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err); 1423 goto out_nounlock; 1424 } 1425 1426 /* Fetch the destination address for this packet. This 1427 * address only selects the association--it is not necessarily 1428 * the address we will send to. 1429 * For a peeled-off socket, msg_name is ignored. 1430 */ 1431 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1432 int msg_namelen = msg->msg_namelen; 1433 1434 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1435 msg_namelen); 1436 if (err) 1437 return err; 1438 1439 if (msg_namelen > sizeof(to)) 1440 msg_namelen = sizeof(to); 1441 memcpy(&to, msg->msg_name, msg_namelen); 1442 msg_name = msg->msg_name; 1443 } 1444 1445 sinfo = cmsgs.info; 1446 sinit = cmsgs.init; 1447 1448 /* Did the user specify SNDRCVINFO? */ 1449 if (sinfo) { 1450 sinfo_flags = sinfo->sinfo_flags; 1451 associd = sinfo->sinfo_assoc_id; 1452 } 1453 1454 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n", 1455 msg_len, sinfo_flags); 1456 1457 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1458 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1459 err = -EINVAL; 1460 goto out_nounlock; 1461 } 1462 1463 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1464 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1465 * If SCTP_ABORT is set, the message length could be non zero with 1466 * the msg_iov set to the user abort reason. 1467 */ 1468 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1469 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1470 err = -EINVAL; 1471 goto out_nounlock; 1472 } 1473 1474 /* If SCTP_ADDR_OVER is set, there must be an address 1475 * specified in msg_name. 1476 */ 1477 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1478 err = -EINVAL; 1479 goto out_nounlock; 1480 } 1481 1482 transport = NULL; 1483 1484 SCTP_DEBUG_PRINTK("About to look up association.\n"); 1485 1486 sctp_lock_sock(sk); 1487 1488 /* If a msg_name has been specified, assume this is to be used. */ 1489 if (msg_name) { 1490 /* Look for a matching association on the endpoint. */ 1491 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1492 if (!asoc) { 1493 /* If we could not find a matching association on the 1494 * endpoint, make sure that it is not a TCP-style 1495 * socket that already has an association or there is 1496 * no peeled-off association on another socket. 1497 */ 1498 if ((sctp_style(sk, TCP) && 1499 sctp_sstate(sk, ESTABLISHED)) || 1500 sctp_endpoint_is_peeled_off(ep, &to)) { 1501 err = -EADDRNOTAVAIL; 1502 goto out_unlock; 1503 } 1504 } 1505 } else { 1506 asoc = sctp_id2assoc(sk, associd); 1507 if (!asoc) { 1508 err = -EPIPE; 1509 goto out_unlock; 1510 } 1511 } 1512 1513 if (asoc) { 1514 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc); 1515 1516 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1517 * socket that has an association in CLOSED state. This can 1518 * happen when an accepted socket has an association that is 1519 * already CLOSED. 1520 */ 1521 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1522 err = -EPIPE; 1523 goto out_unlock; 1524 } 1525 1526 if (sinfo_flags & SCTP_EOF) { 1527 SCTP_DEBUG_PRINTK("Shutting down association: %p\n", 1528 asoc); 1529 sctp_primitive_SHUTDOWN(asoc, NULL); 1530 err = 0; 1531 goto out_unlock; 1532 } 1533 if (sinfo_flags & SCTP_ABORT) { 1534 1535 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1536 if (!chunk) { 1537 err = -ENOMEM; 1538 goto out_unlock; 1539 } 1540 1541 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc); 1542 sctp_primitive_ABORT(asoc, chunk); 1543 err = 0; 1544 goto out_unlock; 1545 } 1546 } 1547 1548 /* Do we need to create the association? */ 1549 if (!asoc) { 1550 SCTP_DEBUG_PRINTK("There is no association yet.\n"); 1551 1552 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1553 err = -EINVAL; 1554 goto out_unlock; 1555 } 1556 1557 /* Check for invalid stream against the stream counts, 1558 * either the default or the user specified stream counts. 1559 */ 1560 if (sinfo) { 1561 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) { 1562 /* Check against the defaults. */ 1563 if (sinfo->sinfo_stream >= 1564 sp->initmsg.sinit_num_ostreams) { 1565 err = -EINVAL; 1566 goto out_unlock; 1567 } 1568 } else { 1569 /* Check against the requested. */ 1570 if (sinfo->sinfo_stream >= 1571 sinit->sinit_num_ostreams) { 1572 err = -EINVAL; 1573 goto out_unlock; 1574 } 1575 } 1576 } 1577 1578 /* 1579 * API 3.1.2 bind() - UDP Style Syntax 1580 * If a bind() or sctp_bindx() is not called prior to a 1581 * sendmsg() call that initiates a new association, the 1582 * system picks an ephemeral port and will choose an address 1583 * set equivalent to binding with a wildcard address. 1584 */ 1585 if (!ep->base.bind_addr.port) { 1586 if (sctp_autobind(sk)) { 1587 err = -EAGAIN; 1588 goto out_unlock; 1589 } 1590 } else { 1591 /* 1592 * If an unprivileged user inherits a one-to-many 1593 * style socket with open associations on a privileged 1594 * port, it MAY be permitted to accept new associations, 1595 * but it SHOULD NOT be permitted to open new 1596 * associations. 1597 */ 1598 if (ep->base.bind_addr.port < PROT_SOCK && 1599 !capable(CAP_NET_BIND_SERVICE)) { 1600 err = -EACCES; 1601 goto out_unlock; 1602 } 1603 } 1604 1605 scope = sctp_scope(&to); 1606 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1607 if (!new_asoc) { 1608 err = -ENOMEM; 1609 goto out_unlock; 1610 } 1611 asoc = new_asoc; 1612 1613 /* If the SCTP_INIT ancillary data is specified, set all 1614 * the association init values accordingly. 1615 */ 1616 if (sinit) { 1617 if (sinit->sinit_num_ostreams) { 1618 asoc->c.sinit_num_ostreams = 1619 sinit->sinit_num_ostreams; 1620 } 1621 if (sinit->sinit_max_instreams) { 1622 asoc->c.sinit_max_instreams = 1623 sinit->sinit_max_instreams; 1624 } 1625 if (sinit->sinit_max_attempts) { 1626 asoc->max_init_attempts 1627 = sinit->sinit_max_attempts; 1628 } 1629 if (sinit->sinit_max_init_timeo) { 1630 asoc->max_init_timeo = 1631 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1632 } 1633 } 1634 1635 /* Prime the peer's transport structures. */ 1636 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1637 if (!transport) { 1638 err = -ENOMEM; 1639 goto out_free; 1640 } 1641 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1642 if (err < 0) { 1643 err = -ENOMEM; 1644 goto out_free; 1645 } 1646 } 1647 1648 /* ASSERT: we have a valid association at this point. */ 1649 SCTP_DEBUG_PRINTK("We have a valid association.\n"); 1650 1651 if (!sinfo) { 1652 /* If the user didn't specify SNDRCVINFO, make up one with 1653 * some defaults. 1654 */ 1655 default_sinfo.sinfo_stream = asoc->default_stream; 1656 default_sinfo.sinfo_flags = asoc->default_flags; 1657 default_sinfo.sinfo_ppid = asoc->default_ppid; 1658 default_sinfo.sinfo_context = asoc->default_context; 1659 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1660 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1661 sinfo = &default_sinfo; 1662 } 1663 1664 /* API 7.1.7, the sndbuf size per association bounds the 1665 * maximum size of data that can be sent in a single send call. 1666 */ 1667 if (msg_len > sk->sk_sndbuf) { 1668 err = -EMSGSIZE; 1669 goto out_free; 1670 } 1671 1672 if (asoc->pmtu_pending) 1673 sctp_assoc_pending_pmtu(asoc); 1674 1675 /* If fragmentation is disabled and the message length exceeds the 1676 * association fragmentation point, return EMSGSIZE. The I-D 1677 * does not specify what this error is, but this looks like 1678 * a great fit. 1679 */ 1680 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1681 err = -EMSGSIZE; 1682 goto out_free; 1683 } 1684 1685 if (sinfo) { 1686 /* Check for invalid stream. */ 1687 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1688 err = -EINVAL; 1689 goto out_free; 1690 } 1691 } 1692 1693 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1694 if (!sctp_wspace(asoc)) { 1695 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1696 if (err) 1697 goto out_free; 1698 } 1699 1700 /* If an address is passed with the sendto/sendmsg call, it is used 1701 * to override the primary destination address in the TCP model, or 1702 * when SCTP_ADDR_OVER flag is set in the UDP model. 1703 */ 1704 if ((sctp_style(sk, TCP) && msg_name) || 1705 (sinfo_flags & SCTP_ADDR_OVER)) { 1706 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1707 if (!chunk_tp) { 1708 err = -EINVAL; 1709 goto out_free; 1710 } 1711 } else 1712 chunk_tp = NULL; 1713 1714 /* Auto-connect, if we aren't connected already. */ 1715 if (sctp_state(asoc, CLOSED)) { 1716 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1717 if (err < 0) 1718 goto out_free; 1719 SCTP_DEBUG_PRINTK("We associated primitively.\n"); 1720 } 1721 1722 /* Break the message into multiple chunks of maximum size. */ 1723 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1724 if (!datamsg) { 1725 err = -ENOMEM; 1726 goto out_free; 1727 } 1728 1729 /* Now send the (possibly) fragmented message. */ 1730 list_for_each(pos, &datamsg->chunks) { 1731 chunk = list_entry(pos, struct sctp_chunk, frag_list); 1732 sctp_datamsg_track(chunk); 1733 1734 /* Do accounting for the write space. */ 1735 sctp_set_owner_w(chunk); 1736 1737 chunk->transport = chunk_tp; 1738 1739 /* Send it to the lower layers. Note: all chunks 1740 * must either fail or succeed. The lower layer 1741 * works that way today. Keep it that way or this 1742 * breaks. 1743 */ 1744 err = sctp_primitive_SEND(asoc, chunk); 1745 /* Did the lower layer accept the chunk? */ 1746 if (err) 1747 sctp_chunk_free(chunk); 1748 SCTP_DEBUG_PRINTK("We sent primitively.\n"); 1749 } 1750 1751 sctp_datamsg_free(datamsg); 1752 if (err) 1753 goto out_free; 1754 else 1755 err = msg_len; 1756 1757 /* If we are already past ASSOCIATE, the lower 1758 * layers are responsible for association cleanup. 1759 */ 1760 goto out_unlock; 1761 1762 out_free: 1763 if (new_asoc) 1764 sctp_association_free(asoc); 1765 out_unlock: 1766 sctp_release_sock(sk); 1767 1768 out_nounlock: 1769 return sctp_error(sk, msg_flags, err); 1770 1771 #if 0 1772 do_sock_err: 1773 if (msg_len) 1774 err = msg_len; 1775 else 1776 err = sock_error(sk); 1777 goto out; 1778 1779 do_interrupted: 1780 if (msg_len) 1781 err = msg_len; 1782 goto out; 1783 #endif /* 0 */ 1784 } 1785 1786 /* This is an extended version of skb_pull() that removes the data from the 1787 * start of a skb even when data is spread across the list of skb's in the 1788 * frag_list. len specifies the total amount of data that needs to be removed. 1789 * when 'len' bytes could be removed from the skb, it returns 0. 1790 * If 'len' exceeds the total skb length, it returns the no. of bytes that 1791 * could not be removed. 1792 */ 1793 static int sctp_skb_pull(struct sk_buff *skb, int len) 1794 { 1795 struct sk_buff *list; 1796 int skb_len = skb_headlen(skb); 1797 int rlen; 1798 1799 if (len <= skb_len) { 1800 __skb_pull(skb, len); 1801 return 0; 1802 } 1803 len -= skb_len; 1804 __skb_pull(skb, skb_len); 1805 1806 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) { 1807 rlen = sctp_skb_pull(list, len); 1808 skb->len -= (len-rlen); 1809 skb->data_len -= (len-rlen); 1810 1811 if (!rlen) 1812 return 0; 1813 1814 len = rlen; 1815 } 1816 1817 return len; 1818 } 1819 1820 /* API 3.1.3 recvmsg() - UDP Style Syntax 1821 * 1822 * ssize_t recvmsg(int socket, struct msghdr *message, 1823 * int flags); 1824 * 1825 * socket - the socket descriptor of the endpoint. 1826 * message - pointer to the msghdr structure which contains a single 1827 * user message and possibly some ancillary data. 1828 * 1829 * See Section 5 for complete description of the data 1830 * structures. 1831 * 1832 * flags - flags sent or received with the user message, see Section 1833 * 5 for complete description of the flags. 1834 */ 1835 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); 1836 1837 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 1838 struct msghdr *msg, size_t len, int noblock, 1839 int flags, int *addr_len) 1840 { 1841 struct sctp_ulpevent *event = NULL; 1842 struct sctp_sock *sp = sctp_sk(sk); 1843 struct sk_buff *skb; 1844 int copied; 1845 int err = 0; 1846 int skb_len; 1847 1848 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: " 1849 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg, 1850 "len", len, "knoblauch", noblock, 1851 "flags", flags, "addr_len", addr_len); 1852 1853 sctp_lock_sock(sk); 1854 1855 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 1856 err = -ENOTCONN; 1857 goto out; 1858 } 1859 1860 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 1861 if (!skb) 1862 goto out; 1863 1864 /* Get the total length of the skb including any skb's in the 1865 * frag_list. 1866 */ 1867 skb_len = skb->len; 1868 1869 copied = skb_len; 1870 if (copied > len) 1871 copied = len; 1872 1873 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 1874 1875 event = sctp_skb2event(skb); 1876 1877 if (err) 1878 goto out_free; 1879 1880 sock_recv_timestamp(msg, sk, skb); 1881 if (sctp_ulpevent_is_notification(event)) { 1882 msg->msg_flags |= MSG_NOTIFICATION; 1883 sp->pf->event_msgname(event, msg->msg_name, addr_len); 1884 } else { 1885 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 1886 } 1887 1888 /* Check if we allow SCTP_SNDRCVINFO. */ 1889 if (sp->subscribe.sctp_data_io_event) 1890 sctp_ulpevent_read_sndrcvinfo(event, msg); 1891 #if 0 1892 /* FIXME: we should be calling IP/IPv6 layers. */ 1893 if (sk->sk_protinfo.af_inet.cmsg_flags) 1894 ip_cmsg_recv(msg, skb); 1895 #endif 1896 1897 err = copied; 1898 1899 /* If skb's length exceeds the user's buffer, update the skb and 1900 * push it back to the receive_queue so that the next call to 1901 * recvmsg() will return the remaining data. Don't set MSG_EOR. 1902 */ 1903 if (skb_len > copied) { 1904 msg->msg_flags &= ~MSG_EOR; 1905 if (flags & MSG_PEEK) 1906 goto out_free; 1907 sctp_skb_pull(skb, copied); 1908 skb_queue_head(&sk->sk_receive_queue, skb); 1909 1910 /* When only partial message is copied to the user, increase 1911 * rwnd by that amount. If all the data in the skb is read, 1912 * rwnd is updated when the event is freed. 1913 */ 1914 if (!sctp_ulpevent_is_notification(event)) 1915 sctp_assoc_rwnd_increase(event->asoc, copied); 1916 goto out; 1917 } else if ((event->msg_flags & MSG_NOTIFICATION) || 1918 (event->msg_flags & MSG_EOR)) 1919 msg->msg_flags |= MSG_EOR; 1920 else 1921 msg->msg_flags &= ~MSG_EOR; 1922 1923 out_free: 1924 if (flags & MSG_PEEK) { 1925 /* Release the skb reference acquired after peeking the skb in 1926 * sctp_skb_recv_datagram(). 1927 */ 1928 kfree_skb(skb); 1929 } else { 1930 /* Free the event which includes releasing the reference to 1931 * the owner of the skb, freeing the skb and updating the 1932 * rwnd. 1933 */ 1934 sctp_ulpevent_free(event); 1935 } 1936 out: 1937 sctp_release_sock(sk); 1938 return err; 1939 } 1940 1941 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 1942 * 1943 * This option is a on/off flag. If enabled no SCTP message 1944 * fragmentation will be performed. Instead if a message being sent 1945 * exceeds the current PMTU size, the message will NOT be sent and 1946 * instead a error will be indicated to the user. 1947 */ 1948 static int sctp_setsockopt_disable_fragments(struct sock *sk, 1949 char __user *optval, int optlen) 1950 { 1951 int val; 1952 1953 if (optlen < sizeof(int)) 1954 return -EINVAL; 1955 1956 if (get_user(val, (int __user *)optval)) 1957 return -EFAULT; 1958 1959 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 1960 1961 return 0; 1962 } 1963 1964 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 1965 int optlen) 1966 { 1967 if (optlen != sizeof(struct sctp_event_subscribe)) 1968 return -EINVAL; 1969 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 1970 return -EFAULT; 1971 return 0; 1972 } 1973 1974 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 1975 * 1976 * This socket option is applicable to the UDP-style socket only. When 1977 * set it will cause associations that are idle for more than the 1978 * specified number of seconds to automatically close. An association 1979 * being idle is defined an association that has NOT sent or received 1980 * user data. The special value of '0' indicates that no automatic 1981 * close of any associations should be performed. The option expects an 1982 * integer defining the number of seconds of idle time before an 1983 * association is closed. 1984 */ 1985 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 1986 int optlen) 1987 { 1988 struct sctp_sock *sp = sctp_sk(sk); 1989 1990 /* Applicable to UDP-style socket only */ 1991 if (sctp_style(sk, TCP)) 1992 return -EOPNOTSUPP; 1993 if (optlen != sizeof(int)) 1994 return -EINVAL; 1995 if (copy_from_user(&sp->autoclose, optval, optlen)) 1996 return -EFAULT; 1997 1998 return 0; 1999 } 2000 2001 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2002 * 2003 * Applications can enable or disable heartbeats for any peer address of 2004 * an association, modify an address's heartbeat interval, force a 2005 * heartbeat to be sent immediately, and adjust the address's maximum 2006 * number of retransmissions sent before an address is considered 2007 * unreachable. The following structure is used to access and modify an 2008 * address's parameters: 2009 * 2010 * struct sctp_paddrparams { 2011 * sctp_assoc_t spp_assoc_id; 2012 * struct sockaddr_storage spp_address; 2013 * uint32_t spp_hbinterval; 2014 * uint16_t spp_pathmaxrxt; 2015 * uint32_t spp_pathmtu; 2016 * uint32_t spp_sackdelay; 2017 * uint32_t spp_flags; 2018 * }; 2019 * 2020 * spp_assoc_id - (one-to-many style socket) This is filled in the 2021 * application, and identifies the association for 2022 * this query. 2023 * spp_address - This specifies which address is of interest. 2024 * spp_hbinterval - This contains the value of the heartbeat interval, 2025 * in milliseconds. If a value of zero 2026 * is present in this field then no changes are to 2027 * be made to this parameter. 2028 * spp_pathmaxrxt - This contains the maximum number of 2029 * retransmissions before this address shall be 2030 * considered unreachable. If a value of zero 2031 * is present in this field then no changes are to 2032 * be made to this parameter. 2033 * spp_pathmtu - When Path MTU discovery is disabled the value 2034 * specified here will be the "fixed" path mtu. 2035 * Note that if the spp_address field is empty 2036 * then all associations on this address will 2037 * have this fixed path mtu set upon them. 2038 * 2039 * spp_sackdelay - When delayed sack is enabled, this value specifies 2040 * the number of milliseconds that sacks will be delayed 2041 * for. This value will apply to all addresses of an 2042 * association if the spp_address field is empty. Note 2043 * also, that if delayed sack is enabled and this 2044 * value is set to 0, no change is made to the last 2045 * recorded delayed sack timer value. 2046 * 2047 * spp_flags - These flags are used to control various features 2048 * on an association. The flag field may contain 2049 * zero or more of the following options. 2050 * 2051 * SPP_HB_ENABLE - Enable heartbeats on the 2052 * specified address. Note that if the address 2053 * field is empty all addresses for the association 2054 * have heartbeats enabled upon them. 2055 * 2056 * SPP_HB_DISABLE - Disable heartbeats on the 2057 * speicifed address. Note that if the address 2058 * field is empty all addresses for the association 2059 * will have their heartbeats disabled. Note also 2060 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2061 * mutually exclusive, only one of these two should 2062 * be specified. Enabling both fields will have 2063 * undetermined results. 2064 * 2065 * SPP_HB_DEMAND - Request a user initiated heartbeat 2066 * to be made immediately. 2067 * 2068 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2069 * heartbeat delayis to be set to the value of 0 2070 * milliseconds. 2071 * 2072 * SPP_PMTUD_ENABLE - This field will enable PMTU 2073 * discovery upon the specified address. Note that 2074 * if the address feild is empty then all addresses 2075 * on the association are effected. 2076 * 2077 * SPP_PMTUD_DISABLE - This field will disable PMTU 2078 * discovery upon the specified address. Note that 2079 * if the address feild is empty then all addresses 2080 * on the association are effected. Not also that 2081 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2082 * exclusive. Enabling both will have undetermined 2083 * results. 2084 * 2085 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2086 * on delayed sack. The time specified in spp_sackdelay 2087 * is used to specify the sack delay for this address. Note 2088 * that if spp_address is empty then all addresses will 2089 * enable delayed sack and take on the sack delay 2090 * value specified in spp_sackdelay. 2091 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2092 * off delayed sack. If the spp_address field is blank then 2093 * delayed sack is disabled for the entire association. Note 2094 * also that this field is mutually exclusive to 2095 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2096 * results. 2097 */ 2098 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2099 struct sctp_transport *trans, 2100 struct sctp_association *asoc, 2101 struct sctp_sock *sp, 2102 int hb_change, 2103 int pmtud_change, 2104 int sackdelay_change) 2105 { 2106 int error; 2107 2108 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2109 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans); 2110 if (error) 2111 return error; 2112 } 2113 2114 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2115 * this field is ignored. Note also that a value of zero indicates 2116 * the current setting should be left unchanged. 2117 */ 2118 if (params->spp_flags & SPP_HB_ENABLE) { 2119 2120 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2121 * set. This lets us use 0 value when this flag 2122 * is set. 2123 */ 2124 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2125 params->spp_hbinterval = 0; 2126 2127 if (params->spp_hbinterval || 2128 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2129 if (trans) { 2130 trans->hbinterval = 2131 msecs_to_jiffies(params->spp_hbinterval); 2132 } else if (asoc) { 2133 asoc->hbinterval = 2134 msecs_to_jiffies(params->spp_hbinterval); 2135 } else { 2136 sp->hbinterval = params->spp_hbinterval; 2137 } 2138 } 2139 } 2140 2141 if (hb_change) { 2142 if (trans) { 2143 trans->param_flags = 2144 (trans->param_flags & ~SPP_HB) | hb_change; 2145 } else if (asoc) { 2146 asoc->param_flags = 2147 (asoc->param_flags & ~SPP_HB) | hb_change; 2148 } else { 2149 sp->param_flags = 2150 (sp->param_flags & ~SPP_HB) | hb_change; 2151 } 2152 } 2153 2154 /* When Path MTU discovery is disabled the value specified here will 2155 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2156 * include the flag SPP_PMTUD_DISABLE for this field to have any 2157 * effect). 2158 */ 2159 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2160 if (trans) { 2161 trans->pathmtu = params->spp_pathmtu; 2162 sctp_assoc_sync_pmtu(asoc); 2163 } else if (asoc) { 2164 asoc->pathmtu = params->spp_pathmtu; 2165 sctp_frag_point(sp, params->spp_pathmtu); 2166 } else { 2167 sp->pathmtu = params->spp_pathmtu; 2168 } 2169 } 2170 2171 if (pmtud_change) { 2172 if (trans) { 2173 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2174 (params->spp_flags & SPP_PMTUD_ENABLE); 2175 trans->param_flags = 2176 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2177 if (update) { 2178 sctp_transport_pmtu(trans); 2179 sctp_assoc_sync_pmtu(asoc); 2180 } 2181 } else if (asoc) { 2182 asoc->param_flags = 2183 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2184 } else { 2185 sp->param_flags = 2186 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2187 } 2188 } 2189 2190 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2191 * value of this field is ignored. Note also that a value of zero 2192 * indicates the current setting should be left unchanged. 2193 */ 2194 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2195 if (trans) { 2196 trans->sackdelay = 2197 msecs_to_jiffies(params->spp_sackdelay); 2198 } else if (asoc) { 2199 asoc->sackdelay = 2200 msecs_to_jiffies(params->spp_sackdelay); 2201 } else { 2202 sp->sackdelay = params->spp_sackdelay; 2203 } 2204 } 2205 2206 if (sackdelay_change) { 2207 if (trans) { 2208 trans->param_flags = 2209 (trans->param_flags & ~SPP_SACKDELAY) | 2210 sackdelay_change; 2211 } else if (asoc) { 2212 asoc->param_flags = 2213 (asoc->param_flags & ~SPP_SACKDELAY) | 2214 sackdelay_change; 2215 } else { 2216 sp->param_flags = 2217 (sp->param_flags & ~SPP_SACKDELAY) | 2218 sackdelay_change; 2219 } 2220 } 2221 2222 /* Note that unless the spp_flag is set to SPP_PMTUD_ENABLE the value 2223 * of this field is ignored. Note also that a value of zero 2224 * indicates the current setting should be left unchanged. 2225 */ 2226 if ((params->spp_flags & SPP_PMTUD_ENABLE) && params->spp_pathmaxrxt) { 2227 if (trans) { 2228 trans->pathmaxrxt = params->spp_pathmaxrxt; 2229 } else if (asoc) { 2230 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2231 } else { 2232 sp->pathmaxrxt = params->spp_pathmaxrxt; 2233 } 2234 } 2235 2236 return 0; 2237 } 2238 2239 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2240 char __user *optval, int optlen) 2241 { 2242 struct sctp_paddrparams params; 2243 struct sctp_transport *trans = NULL; 2244 struct sctp_association *asoc = NULL; 2245 struct sctp_sock *sp = sctp_sk(sk); 2246 int error; 2247 int hb_change, pmtud_change, sackdelay_change; 2248 2249 if (optlen != sizeof(struct sctp_paddrparams)) 2250 return - EINVAL; 2251 2252 if (copy_from_user(¶ms, optval, optlen)) 2253 return -EFAULT; 2254 2255 /* Validate flags and value parameters. */ 2256 hb_change = params.spp_flags & SPP_HB; 2257 pmtud_change = params.spp_flags & SPP_PMTUD; 2258 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2259 2260 if (hb_change == SPP_HB || 2261 pmtud_change == SPP_PMTUD || 2262 sackdelay_change == SPP_SACKDELAY || 2263 params.spp_sackdelay > 500 || 2264 (params.spp_pathmtu 2265 && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2266 return -EINVAL; 2267 2268 /* If an address other than INADDR_ANY is specified, and 2269 * no transport is found, then the request is invalid. 2270 */ 2271 if (!sctp_is_any(( union sctp_addr *)¶ms.spp_address)) { 2272 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2273 params.spp_assoc_id); 2274 if (!trans) 2275 return -EINVAL; 2276 } 2277 2278 /* Get association, if assoc_id != 0 and the socket is a one 2279 * to many style socket, and an association was not found, then 2280 * the id was invalid. 2281 */ 2282 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2283 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2284 return -EINVAL; 2285 2286 /* Heartbeat demand can only be sent on a transport or 2287 * association, but not a socket. 2288 */ 2289 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2290 return -EINVAL; 2291 2292 /* Process parameters. */ 2293 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2294 hb_change, pmtud_change, 2295 sackdelay_change); 2296 2297 if (error) 2298 return error; 2299 2300 /* If changes are for association, also apply parameters to each 2301 * transport. 2302 */ 2303 if (!trans && asoc) { 2304 struct list_head *pos; 2305 2306 list_for_each(pos, &asoc->peer.transport_addr_list) { 2307 trans = list_entry(pos, struct sctp_transport, 2308 transports); 2309 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2310 hb_change, pmtud_change, 2311 sackdelay_change); 2312 } 2313 } 2314 2315 return 0; 2316 } 2317 2318 /* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME) 2319 * 2320 * This options will get or set the delayed ack timer. The time is set 2321 * in milliseconds. If the assoc_id is 0, then this sets or gets the 2322 * endpoints default delayed ack timer value. If the assoc_id field is 2323 * non-zero, then the set or get effects the specified association. 2324 * 2325 * struct sctp_assoc_value { 2326 * sctp_assoc_t assoc_id; 2327 * uint32_t assoc_value; 2328 * }; 2329 * 2330 * assoc_id - This parameter, indicates which association the 2331 * user is preforming an action upon. Note that if 2332 * this field's value is zero then the endpoints 2333 * default value is changed (effecting future 2334 * associations only). 2335 * 2336 * assoc_value - This parameter contains the number of milliseconds 2337 * that the user is requesting the delayed ACK timer 2338 * be set to. Note that this value is defined in 2339 * the standard to be between 200 and 500 milliseconds. 2340 * 2341 * Note: a value of zero will leave the value alone, 2342 * but disable SACK delay. A non-zero value will also 2343 * enable SACK delay. 2344 */ 2345 2346 static int sctp_setsockopt_delayed_ack_time(struct sock *sk, 2347 char __user *optval, int optlen) 2348 { 2349 struct sctp_assoc_value params; 2350 struct sctp_transport *trans = NULL; 2351 struct sctp_association *asoc = NULL; 2352 struct sctp_sock *sp = sctp_sk(sk); 2353 2354 if (optlen != sizeof(struct sctp_assoc_value)) 2355 return - EINVAL; 2356 2357 if (copy_from_user(¶ms, optval, optlen)) 2358 return -EFAULT; 2359 2360 /* Validate value parameter. */ 2361 if (params.assoc_value > 500) 2362 return -EINVAL; 2363 2364 /* Get association, if assoc_id != 0 and the socket is a one 2365 * to many style socket, and an association was not found, then 2366 * the id was invalid. 2367 */ 2368 asoc = sctp_id2assoc(sk, params.assoc_id); 2369 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 2370 return -EINVAL; 2371 2372 if (params.assoc_value) { 2373 if (asoc) { 2374 asoc->sackdelay = 2375 msecs_to_jiffies(params.assoc_value); 2376 asoc->param_flags = 2377 (asoc->param_flags & ~SPP_SACKDELAY) | 2378 SPP_SACKDELAY_ENABLE; 2379 } else { 2380 sp->sackdelay = params.assoc_value; 2381 sp->param_flags = 2382 (sp->param_flags & ~SPP_SACKDELAY) | 2383 SPP_SACKDELAY_ENABLE; 2384 } 2385 } else { 2386 if (asoc) { 2387 asoc->param_flags = 2388 (asoc->param_flags & ~SPP_SACKDELAY) | 2389 SPP_SACKDELAY_DISABLE; 2390 } else { 2391 sp->param_flags = 2392 (sp->param_flags & ~SPP_SACKDELAY) | 2393 SPP_SACKDELAY_DISABLE; 2394 } 2395 } 2396 2397 /* If change is for association, also apply to each transport. */ 2398 if (asoc) { 2399 struct list_head *pos; 2400 2401 list_for_each(pos, &asoc->peer.transport_addr_list) { 2402 trans = list_entry(pos, struct sctp_transport, 2403 transports); 2404 if (params.assoc_value) { 2405 trans->sackdelay = 2406 msecs_to_jiffies(params.assoc_value); 2407 trans->param_flags = 2408 (trans->param_flags & ~SPP_SACKDELAY) | 2409 SPP_SACKDELAY_ENABLE; 2410 } else { 2411 trans->param_flags = 2412 (trans->param_flags & ~SPP_SACKDELAY) | 2413 SPP_SACKDELAY_DISABLE; 2414 } 2415 } 2416 } 2417 2418 return 0; 2419 } 2420 2421 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2422 * 2423 * Applications can specify protocol parameters for the default association 2424 * initialization. The option name argument to setsockopt() and getsockopt() 2425 * is SCTP_INITMSG. 2426 * 2427 * Setting initialization parameters is effective only on an unconnected 2428 * socket (for UDP-style sockets only future associations are effected 2429 * by the change). With TCP-style sockets, this option is inherited by 2430 * sockets derived from a listener socket. 2431 */ 2432 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen) 2433 { 2434 struct sctp_initmsg sinit; 2435 struct sctp_sock *sp = sctp_sk(sk); 2436 2437 if (optlen != sizeof(struct sctp_initmsg)) 2438 return -EINVAL; 2439 if (copy_from_user(&sinit, optval, optlen)) 2440 return -EFAULT; 2441 2442 if (sinit.sinit_num_ostreams) 2443 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2444 if (sinit.sinit_max_instreams) 2445 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2446 if (sinit.sinit_max_attempts) 2447 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2448 if (sinit.sinit_max_init_timeo) 2449 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2450 2451 return 0; 2452 } 2453 2454 /* 2455 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2456 * 2457 * Applications that wish to use the sendto() system call may wish to 2458 * specify a default set of parameters that would normally be supplied 2459 * through the inclusion of ancillary data. This socket option allows 2460 * such an application to set the default sctp_sndrcvinfo structure. 2461 * The application that wishes to use this socket option simply passes 2462 * in to this call the sctp_sndrcvinfo structure defined in Section 2463 * 5.2.2) The input parameters accepted by this call include 2464 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2465 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2466 * to this call if the caller is using the UDP model. 2467 */ 2468 static int sctp_setsockopt_default_send_param(struct sock *sk, 2469 char __user *optval, int optlen) 2470 { 2471 struct sctp_sndrcvinfo info; 2472 struct sctp_association *asoc; 2473 struct sctp_sock *sp = sctp_sk(sk); 2474 2475 if (optlen != sizeof(struct sctp_sndrcvinfo)) 2476 return -EINVAL; 2477 if (copy_from_user(&info, optval, optlen)) 2478 return -EFAULT; 2479 2480 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2481 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2482 return -EINVAL; 2483 2484 if (asoc) { 2485 asoc->default_stream = info.sinfo_stream; 2486 asoc->default_flags = info.sinfo_flags; 2487 asoc->default_ppid = info.sinfo_ppid; 2488 asoc->default_context = info.sinfo_context; 2489 asoc->default_timetolive = info.sinfo_timetolive; 2490 } else { 2491 sp->default_stream = info.sinfo_stream; 2492 sp->default_flags = info.sinfo_flags; 2493 sp->default_ppid = info.sinfo_ppid; 2494 sp->default_context = info.sinfo_context; 2495 sp->default_timetolive = info.sinfo_timetolive; 2496 } 2497 2498 return 0; 2499 } 2500 2501 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2502 * 2503 * Requests that the local SCTP stack use the enclosed peer address as 2504 * the association primary. The enclosed address must be one of the 2505 * association peer's addresses. 2506 */ 2507 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2508 int optlen) 2509 { 2510 struct sctp_prim prim; 2511 struct sctp_transport *trans; 2512 2513 if (optlen != sizeof(struct sctp_prim)) 2514 return -EINVAL; 2515 2516 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2517 return -EFAULT; 2518 2519 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2520 if (!trans) 2521 return -EINVAL; 2522 2523 sctp_assoc_set_primary(trans->asoc, trans); 2524 2525 return 0; 2526 } 2527 2528 /* 2529 * 7.1.5 SCTP_NODELAY 2530 * 2531 * Turn on/off any Nagle-like algorithm. This means that packets are 2532 * generally sent as soon as possible and no unnecessary delays are 2533 * introduced, at the cost of more packets in the network. Expects an 2534 * integer boolean flag. 2535 */ 2536 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2537 int optlen) 2538 { 2539 int val; 2540 2541 if (optlen < sizeof(int)) 2542 return -EINVAL; 2543 if (get_user(val, (int __user *)optval)) 2544 return -EFAULT; 2545 2546 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2547 return 0; 2548 } 2549 2550 /* 2551 * 2552 * 7.1.1 SCTP_RTOINFO 2553 * 2554 * The protocol parameters used to initialize and bound retransmission 2555 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2556 * and modify these parameters. 2557 * All parameters are time values, in milliseconds. A value of 0, when 2558 * modifying the parameters, indicates that the current value should not 2559 * be changed. 2560 * 2561 */ 2562 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) { 2563 struct sctp_rtoinfo rtoinfo; 2564 struct sctp_association *asoc; 2565 2566 if (optlen != sizeof (struct sctp_rtoinfo)) 2567 return -EINVAL; 2568 2569 if (copy_from_user(&rtoinfo, optval, optlen)) 2570 return -EFAULT; 2571 2572 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2573 2574 /* Set the values to the specific association */ 2575 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2576 return -EINVAL; 2577 2578 if (asoc) { 2579 if (rtoinfo.srto_initial != 0) 2580 asoc->rto_initial = 2581 msecs_to_jiffies(rtoinfo.srto_initial); 2582 if (rtoinfo.srto_max != 0) 2583 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max); 2584 if (rtoinfo.srto_min != 0) 2585 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min); 2586 } else { 2587 /* If there is no association or the association-id = 0 2588 * set the values to the endpoint. 2589 */ 2590 struct sctp_sock *sp = sctp_sk(sk); 2591 2592 if (rtoinfo.srto_initial != 0) 2593 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2594 if (rtoinfo.srto_max != 0) 2595 sp->rtoinfo.srto_max = rtoinfo.srto_max; 2596 if (rtoinfo.srto_min != 0) 2597 sp->rtoinfo.srto_min = rtoinfo.srto_min; 2598 } 2599 2600 return 0; 2601 } 2602 2603 /* 2604 * 2605 * 7.1.2 SCTP_ASSOCINFO 2606 * 2607 * This option is used to tune the maximum retransmission attempts 2608 * of the association. 2609 * Returns an error if the new association retransmission value is 2610 * greater than the sum of the retransmission value of the peer. 2611 * See [SCTP] for more information. 2612 * 2613 */ 2614 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen) 2615 { 2616 2617 struct sctp_assocparams assocparams; 2618 struct sctp_association *asoc; 2619 2620 if (optlen != sizeof(struct sctp_assocparams)) 2621 return -EINVAL; 2622 if (copy_from_user(&assocparams, optval, optlen)) 2623 return -EFAULT; 2624 2625 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2626 2627 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2628 return -EINVAL; 2629 2630 /* Set the values to the specific association */ 2631 if (asoc) { 2632 if (assocparams.sasoc_asocmaxrxt != 0) { 2633 __u32 path_sum = 0; 2634 int paths = 0; 2635 struct list_head *pos; 2636 struct sctp_transport *peer_addr; 2637 2638 list_for_each(pos, &asoc->peer.transport_addr_list) { 2639 peer_addr = list_entry(pos, 2640 struct sctp_transport, 2641 transports); 2642 path_sum += peer_addr->pathmaxrxt; 2643 paths++; 2644 } 2645 2646 /* Only validate asocmaxrxt if we have more then 2647 * one path/transport. We do this because path 2648 * retransmissions are only counted when we have more 2649 * then one path. 2650 */ 2651 if (paths > 1 && 2652 assocparams.sasoc_asocmaxrxt > path_sum) 2653 return -EINVAL; 2654 2655 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 2656 } 2657 2658 if (assocparams.sasoc_cookie_life != 0) { 2659 asoc->cookie_life.tv_sec = 2660 assocparams.sasoc_cookie_life / 1000; 2661 asoc->cookie_life.tv_usec = 2662 (assocparams.sasoc_cookie_life % 1000) 2663 * 1000; 2664 } 2665 } else { 2666 /* Set the values to the endpoint */ 2667 struct sctp_sock *sp = sctp_sk(sk); 2668 2669 if (assocparams.sasoc_asocmaxrxt != 0) 2670 sp->assocparams.sasoc_asocmaxrxt = 2671 assocparams.sasoc_asocmaxrxt; 2672 if (assocparams.sasoc_cookie_life != 0) 2673 sp->assocparams.sasoc_cookie_life = 2674 assocparams.sasoc_cookie_life; 2675 } 2676 return 0; 2677 } 2678 2679 /* 2680 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 2681 * 2682 * This socket option is a boolean flag which turns on or off mapped V4 2683 * addresses. If this option is turned on and the socket is type 2684 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 2685 * If this option is turned off, then no mapping will be done of V4 2686 * addresses and a user will receive both PF_INET6 and PF_INET type 2687 * addresses on the socket. 2688 */ 2689 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen) 2690 { 2691 int val; 2692 struct sctp_sock *sp = sctp_sk(sk); 2693 2694 if (optlen < sizeof(int)) 2695 return -EINVAL; 2696 if (get_user(val, (int __user *)optval)) 2697 return -EFAULT; 2698 if (val) 2699 sp->v4mapped = 1; 2700 else 2701 sp->v4mapped = 0; 2702 2703 return 0; 2704 } 2705 2706 /* 2707 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG) 2708 * 2709 * This socket option specifies the maximum size to put in any outgoing 2710 * SCTP chunk. If a message is larger than this size it will be 2711 * fragmented by SCTP into the specified size. Note that the underlying 2712 * SCTP implementation may fragment into smaller sized chunks when the 2713 * PMTU of the underlying association is smaller than the value set by 2714 * the user. 2715 */ 2716 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen) 2717 { 2718 struct sctp_association *asoc; 2719 struct list_head *pos; 2720 struct sctp_sock *sp = sctp_sk(sk); 2721 int val; 2722 2723 if (optlen < sizeof(int)) 2724 return -EINVAL; 2725 if (get_user(val, (int __user *)optval)) 2726 return -EFAULT; 2727 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 2728 return -EINVAL; 2729 sp->user_frag = val; 2730 2731 /* Update the frag_point of the existing associations. */ 2732 list_for_each(pos, &(sp->ep->asocs)) { 2733 asoc = list_entry(pos, struct sctp_association, asocs); 2734 asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu); 2735 } 2736 2737 return 0; 2738 } 2739 2740 2741 /* 2742 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 2743 * 2744 * Requests that the peer mark the enclosed address as the association 2745 * primary. The enclosed address must be one of the association's 2746 * locally bound addresses. The following structure is used to make a 2747 * set primary request: 2748 */ 2749 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 2750 int optlen) 2751 { 2752 struct sctp_sock *sp; 2753 struct sctp_endpoint *ep; 2754 struct sctp_association *asoc = NULL; 2755 struct sctp_setpeerprim prim; 2756 struct sctp_chunk *chunk; 2757 int err; 2758 2759 sp = sctp_sk(sk); 2760 ep = sp->ep; 2761 2762 if (!sctp_addip_enable) 2763 return -EPERM; 2764 2765 if (optlen != sizeof(struct sctp_setpeerprim)) 2766 return -EINVAL; 2767 2768 if (copy_from_user(&prim, optval, optlen)) 2769 return -EFAULT; 2770 2771 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 2772 if (!asoc) 2773 return -EINVAL; 2774 2775 if (!asoc->peer.asconf_capable) 2776 return -EPERM; 2777 2778 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 2779 return -EPERM; 2780 2781 if (!sctp_state(asoc, ESTABLISHED)) 2782 return -ENOTCONN; 2783 2784 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 2785 return -EADDRNOTAVAIL; 2786 2787 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 2788 chunk = sctp_make_asconf_set_prim(asoc, 2789 (union sctp_addr *)&prim.sspp_addr); 2790 if (!chunk) 2791 return -ENOMEM; 2792 2793 err = sctp_send_asconf(asoc, chunk); 2794 2795 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n"); 2796 2797 return err; 2798 } 2799 2800 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 2801 int optlen) 2802 { 2803 struct sctp_setadaptation adaptation; 2804 2805 if (optlen != sizeof(struct sctp_setadaptation)) 2806 return -EINVAL; 2807 if (copy_from_user(&adaptation, optval, optlen)) 2808 return -EFAULT; 2809 2810 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 2811 2812 return 0; 2813 } 2814 2815 /* 2816 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 2817 * 2818 * The context field in the sctp_sndrcvinfo structure is normally only 2819 * used when a failed message is retrieved holding the value that was 2820 * sent down on the actual send call. This option allows the setting of 2821 * a default context on an association basis that will be received on 2822 * reading messages from the peer. This is especially helpful in the 2823 * one-2-many model for an application to keep some reference to an 2824 * internal state machine that is processing messages on the 2825 * association. Note that the setting of this value only effects 2826 * received messages from the peer and does not effect the value that is 2827 * saved with outbound messages. 2828 */ 2829 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 2830 int optlen) 2831 { 2832 struct sctp_assoc_value params; 2833 struct sctp_sock *sp; 2834 struct sctp_association *asoc; 2835 2836 if (optlen != sizeof(struct sctp_assoc_value)) 2837 return -EINVAL; 2838 if (copy_from_user(¶ms, optval, optlen)) 2839 return -EFAULT; 2840 2841 sp = sctp_sk(sk); 2842 2843 if (params.assoc_id != 0) { 2844 asoc = sctp_id2assoc(sk, params.assoc_id); 2845 if (!asoc) 2846 return -EINVAL; 2847 asoc->default_rcv_context = params.assoc_value; 2848 } else { 2849 sp->default_rcv_context = params.assoc_value; 2850 } 2851 2852 return 0; 2853 } 2854 2855 /* 2856 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 2857 * 2858 * This options will at a minimum specify if the implementation is doing 2859 * fragmented interleave. Fragmented interleave, for a one to many 2860 * socket, is when subsequent calls to receive a message may return 2861 * parts of messages from different associations. Some implementations 2862 * may allow you to turn this value on or off. If so, when turned off, 2863 * no fragment interleave will occur (which will cause a head of line 2864 * blocking amongst multiple associations sharing the same one to many 2865 * socket). When this option is turned on, then each receive call may 2866 * come from a different association (thus the user must receive data 2867 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 2868 * association each receive belongs to. 2869 * 2870 * This option takes a boolean value. A non-zero value indicates that 2871 * fragmented interleave is on. A value of zero indicates that 2872 * fragmented interleave is off. 2873 * 2874 * Note that it is important that an implementation that allows this 2875 * option to be turned on, have it off by default. Otherwise an unaware 2876 * application using the one to many model may become confused and act 2877 * incorrectly. 2878 */ 2879 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 2880 char __user *optval, 2881 int optlen) 2882 { 2883 int val; 2884 2885 if (optlen != sizeof(int)) 2886 return -EINVAL; 2887 if (get_user(val, (int __user *)optval)) 2888 return -EFAULT; 2889 2890 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 2891 2892 return 0; 2893 } 2894 2895 /* 2896 * 7.1.25. Set or Get the sctp partial delivery point 2897 * (SCTP_PARTIAL_DELIVERY_POINT) 2898 * This option will set or get the SCTP partial delivery point. This 2899 * point is the size of a message where the partial delivery API will be 2900 * invoked to help free up rwnd space for the peer. Setting this to a 2901 * lower value will cause partial delivery's to happen more often. The 2902 * calls argument is an integer that sets or gets the partial delivery 2903 * point. 2904 */ 2905 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 2906 char __user *optval, 2907 int optlen) 2908 { 2909 u32 val; 2910 2911 if (optlen != sizeof(u32)) 2912 return -EINVAL; 2913 if (get_user(val, (int __user *)optval)) 2914 return -EFAULT; 2915 2916 sctp_sk(sk)->pd_point = val; 2917 2918 return 0; /* is this the right error code? */ 2919 } 2920 2921 /* 2922 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 2923 * 2924 * This option will allow a user to change the maximum burst of packets 2925 * that can be emitted by this association. Note that the default value 2926 * is 4, and some implementations may restrict this setting so that it 2927 * can only be lowered. 2928 * 2929 * NOTE: This text doesn't seem right. Do this on a socket basis with 2930 * future associations inheriting the socket value. 2931 */ 2932 static int sctp_setsockopt_maxburst(struct sock *sk, 2933 char __user *optval, 2934 int optlen) 2935 { 2936 int val; 2937 2938 if (optlen != sizeof(int)) 2939 return -EINVAL; 2940 if (get_user(val, (int __user *)optval)) 2941 return -EFAULT; 2942 2943 if (val < 0) 2944 return -EINVAL; 2945 2946 sctp_sk(sk)->max_burst = val; 2947 2948 return 0; 2949 } 2950 2951 /* 2952 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 2953 * 2954 * This set option adds a chunk type that the user is requesting to be 2955 * received only in an authenticated way. Changes to the list of chunks 2956 * will only effect future associations on the socket. 2957 */ 2958 static int sctp_setsockopt_auth_chunk(struct sock *sk, 2959 char __user *optval, 2960 int optlen) 2961 { 2962 struct sctp_authchunk val; 2963 2964 if (optlen != sizeof(struct sctp_authchunk)) 2965 return -EINVAL; 2966 if (copy_from_user(&val, optval, optlen)) 2967 return -EFAULT; 2968 2969 switch (val.sauth_chunk) { 2970 case SCTP_CID_INIT: 2971 case SCTP_CID_INIT_ACK: 2972 case SCTP_CID_SHUTDOWN_COMPLETE: 2973 case SCTP_CID_AUTH: 2974 return -EINVAL; 2975 } 2976 2977 /* add this chunk id to the endpoint */ 2978 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk); 2979 } 2980 2981 /* 2982 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 2983 * 2984 * This option gets or sets the list of HMAC algorithms that the local 2985 * endpoint requires the peer to use. 2986 */ 2987 static int sctp_setsockopt_hmac_ident(struct sock *sk, 2988 char __user *optval, 2989 int optlen) 2990 { 2991 struct sctp_hmacalgo *hmacs; 2992 int err; 2993 2994 if (optlen < sizeof(struct sctp_hmacalgo)) 2995 return -EINVAL; 2996 2997 hmacs = kmalloc(optlen, GFP_KERNEL); 2998 if (!hmacs) 2999 return -ENOMEM; 3000 3001 if (copy_from_user(hmacs, optval, optlen)) { 3002 err = -EFAULT; 3003 goto out; 3004 } 3005 3006 if (hmacs->shmac_num_idents == 0 || 3007 hmacs->shmac_num_idents > SCTP_AUTH_NUM_HMACS) { 3008 err = -EINVAL; 3009 goto out; 3010 } 3011 3012 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs); 3013 out: 3014 kfree(hmacs); 3015 return err; 3016 } 3017 3018 /* 3019 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3020 * 3021 * This option will set a shared secret key which is used to build an 3022 * association shared key. 3023 */ 3024 static int sctp_setsockopt_auth_key(struct sock *sk, 3025 char __user *optval, 3026 int optlen) 3027 { 3028 struct sctp_authkey *authkey; 3029 struct sctp_association *asoc; 3030 int ret; 3031 3032 if (optlen <= sizeof(struct sctp_authkey)) 3033 return -EINVAL; 3034 3035 authkey = kmalloc(optlen, GFP_KERNEL); 3036 if (!authkey) 3037 return -ENOMEM; 3038 3039 if (copy_from_user(authkey, optval, optlen)) { 3040 ret = -EFAULT; 3041 goto out; 3042 } 3043 3044 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3045 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3046 ret = -EINVAL; 3047 goto out; 3048 } 3049 3050 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey); 3051 out: 3052 kfree(authkey); 3053 return ret; 3054 } 3055 3056 /* 3057 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3058 * 3059 * This option will get or set the active shared key to be used to build 3060 * the association shared key. 3061 */ 3062 static int sctp_setsockopt_active_key(struct sock *sk, 3063 char __user *optval, 3064 int optlen) 3065 { 3066 struct sctp_authkeyid val; 3067 struct sctp_association *asoc; 3068 3069 if (optlen != sizeof(struct sctp_authkeyid)) 3070 return -EINVAL; 3071 if (copy_from_user(&val, optval, optlen)) 3072 return -EFAULT; 3073 3074 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3075 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3076 return -EINVAL; 3077 3078 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc, 3079 val.scact_keynumber); 3080 } 3081 3082 /* 3083 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3084 * 3085 * This set option will delete a shared secret key from use. 3086 */ 3087 static int sctp_setsockopt_del_key(struct sock *sk, 3088 char __user *optval, 3089 int optlen) 3090 { 3091 struct sctp_authkeyid val; 3092 struct sctp_association *asoc; 3093 3094 if (optlen != sizeof(struct sctp_authkeyid)) 3095 return -EINVAL; 3096 if (copy_from_user(&val, optval, optlen)) 3097 return -EFAULT; 3098 3099 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3100 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3101 return -EINVAL; 3102 3103 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc, 3104 val.scact_keynumber); 3105 3106 } 3107 3108 3109 /* API 6.2 setsockopt(), getsockopt() 3110 * 3111 * Applications use setsockopt() and getsockopt() to set or retrieve 3112 * socket options. Socket options are used to change the default 3113 * behavior of sockets calls. They are described in Section 7. 3114 * 3115 * The syntax is: 3116 * 3117 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3118 * int __user *optlen); 3119 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3120 * int optlen); 3121 * 3122 * sd - the socket descript. 3123 * level - set to IPPROTO_SCTP for all SCTP options. 3124 * optname - the option name. 3125 * optval - the buffer to store the value of the option. 3126 * optlen - the size of the buffer. 3127 */ 3128 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname, 3129 char __user *optval, int optlen) 3130 { 3131 int retval = 0; 3132 3133 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n", 3134 sk, optname); 3135 3136 /* I can hardly begin to describe how wrong this is. This is 3137 * so broken as to be worse than useless. The API draft 3138 * REALLY is NOT helpful here... I am not convinced that the 3139 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3140 * are at all well-founded. 3141 */ 3142 if (level != SOL_SCTP) { 3143 struct sctp_af *af = sctp_sk(sk)->pf->af; 3144 retval = af->setsockopt(sk, level, optname, optval, optlen); 3145 goto out_nounlock; 3146 } 3147 3148 sctp_lock_sock(sk); 3149 3150 switch (optname) { 3151 case SCTP_SOCKOPT_BINDX_ADD: 3152 /* 'optlen' is the size of the addresses buffer. */ 3153 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3154 optlen, SCTP_BINDX_ADD_ADDR); 3155 break; 3156 3157 case SCTP_SOCKOPT_BINDX_REM: 3158 /* 'optlen' is the size of the addresses buffer. */ 3159 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3160 optlen, SCTP_BINDX_REM_ADDR); 3161 break; 3162 3163 case SCTP_SOCKOPT_CONNECTX: 3164 /* 'optlen' is the size of the addresses buffer. */ 3165 retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval, 3166 optlen); 3167 break; 3168 3169 case SCTP_DISABLE_FRAGMENTS: 3170 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3171 break; 3172 3173 case SCTP_EVENTS: 3174 retval = sctp_setsockopt_events(sk, optval, optlen); 3175 break; 3176 3177 case SCTP_AUTOCLOSE: 3178 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3179 break; 3180 3181 case SCTP_PEER_ADDR_PARAMS: 3182 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3183 break; 3184 3185 case SCTP_DELAYED_ACK_TIME: 3186 retval = sctp_setsockopt_delayed_ack_time(sk, optval, optlen); 3187 break; 3188 case SCTP_PARTIAL_DELIVERY_POINT: 3189 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3190 break; 3191 3192 case SCTP_INITMSG: 3193 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3194 break; 3195 case SCTP_DEFAULT_SEND_PARAM: 3196 retval = sctp_setsockopt_default_send_param(sk, optval, 3197 optlen); 3198 break; 3199 case SCTP_PRIMARY_ADDR: 3200 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3201 break; 3202 case SCTP_SET_PEER_PRIMARY_ADDR: 3203 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3204 break; 3205 case SCTP_NODELAY: 3206 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3207 break; 3208 case SCTP_RTOINFO: 3209 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3210 break; 3211 case SCTP_ASSOCINFO: 3212 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3213 break; 3214 case SCTP_I_WANT_MAPPED_V4_ADDR: 3215 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3216 break; 3217 case SCTP_MAXSEG: 3218 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3219 break; 3220 case SCTP_ADAPTATION_LAYER: 3221 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3222 break; 3223 case SCTP_CONTEXT: 3224 retval = sctp_setsockopt_context(sk, optval, optlen); 3225 break; 3226 case SCTP_FRAGMENT_INTERLEAVE: 3227 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 3228 break; 3229 case SCTP_MAX_BURST: 3230 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 3231 break; 3232 case SCTP_AUTH_CHUNK: 3233 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 3234 break; 3235 case SCTP_HMAC_IDENT: 3236 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 3237 break; 3238 case SCTP_AUTH_KEY: 3239 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 3240 break; 3241 case SCTP_AUTH_ACTIVE_KEY: 3242 retval = sctp_setsockopt_active_key(sk, optval, optlen); 3243 break; 3244 case SCTP_AUTH_DELETE_KEY: 3245 retval = sctp_setsockopt_del_key(sk, optval, optlen); 3246 break; 3247 default: 3248 retval = -ENOPROTOOPT; 3249 break; 3250 } 3251 3252 sctp_release_sock(sk); 3253 3254 out_nounlock: 3255 return retval; 3256 } 3257 3258 /* API 3.1.6 connect() - UDP Style Syntax 3259 * 3260 * An application may use the connect() call in the UDP model to initiate an 3261 * association without sending data. 3262 * 3263 * The syntax is: 3264 * 3265 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 3266 * 3267 * sd: the socket descriptor to have a new association added to. 3268 * 3269 * nam: the address structure (either struct sockaddr_in or struct 3270 * sockaddr_in6 defined in RFC2553 [7]). 3271 * 3272 * len: the size of the address. 3273 */ 3274 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr, 3275 int addr_len) 3276 { 3277 int err = 0; 3278 struct sctp_af *af; 3279 3280 sctp_lock_sock(sk); 3281 3282 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n", 3283 __FUNCTION__, sk, addr, addr_len); 3284 3285 /* Validate addr_len before calling common connect/connectx routine. */ 3286 af = sctp_get_af_specific(addr->sa_family); 3287 if (!af || addr_len < af->sockaddr_len) { 3288 err = -EINVAL; 3289 } else { 3290 /* Pass correct addr len to common routine (so it knows there 3291 * is only one address being passed. 3292 */ 3293 err = __sctp_connect(sk, addr, af->sockaddr_len); 3294 } 3295 3296 sctp_release_sock(sk); 3297 return err; 3298 } 3299 3300 /* FIXME: Write comments. */ 3301 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags) 3302 { 3303 return -EOPNOTSUPP; /* STUB */ 3304 } 3305 3306 /* 4.1.4 accept() - TCP Style Syntax 3307 * 3308 * Applications use accept() call to remove an established SCTP 3309 * association from the accept queue of the endpoint. A new socket 3310 * descriptor will be returned from accept() to represent the newly 3311 * formed association. 3312 */ 3313 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err) 3314 { 3315 struct sctp_sock *sp; 3316 struct sctp_endpoint *ep; 3317 struct sock *newsk = NULL; 3318 struct sctp_association *asoc; 3319 long timeo; 3320 int error = 0; 3321 3322 sctp_lock_sock(sk); 3323 3324 sp = sctp_sk(sk); 3325 ep = sp->ep; 3326 3327 if (!sctp_style(sk, TCP)) { 3328 error = -EOPNOTSUPP; 3329 goto out; 3330 } 3331 3332 if (!sctp_sstate(sk, LISTENING)) { 3333 error = -EINVAL; 3334 goto out; 3335 } 3336 3337 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 3338 3339 error = sctp_wait_for_accept(sk, timeo); 3340 if (error) 3341 goto out; 3342 3343 /* We treat the list of associations on the endpoint as the accept 3344 * queue and pick the first association on the list. 3345 */ 3346 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 3347 3348 newsk = sp->pf->create_accept_sk(sk, asoc); 3349 if (!newsk) { 3350 error = -ENOMEM; 3351 goto out; 3352 } 3353 3354 /* Populate the fields of the newsk from the oldsk and migrate the 3355 * asoc to the newsk. 3356 */ 3357 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 3358 3359 out: 3360 sctp_release_sock(sk); 3361 *err = error; 3362 return newsk; 3363 } 3364 3365 /* The SCTP ioctl handler. */ 3366 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3367 { 3368 return -ENOIOCTLCMD; 3369 } 3370 3371 /* This is the function which gets called during socket creation to 3372 * initialized the SCTP-specific portion of the sock. 3373 * The sock structure should already be zero-filled memory. 3374 */ 3375 SCTP_STATIC int sctp_init_sock(struct sock *sk) 3376 { 3377 struct sctp_endpoint *ep; 3378 struct sctp_sock *sp; 3379 3380 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk); 3381 3382 sp = sctp_sk(sk); 3383 3384 /* Initialize the SCTP per socket area. */ 3385 switch (sk->sk_type) { 3386 case SOCK_SEQPACKET: 3387 sp->type = SCTP_SOCKET_UDP; 3388 break; 3389 case SOCK_STREAM: 3390 sp->type = SCTP_SOCKET_TCP; 3391 break; 3392 default: 3393 return -ESOCKTNOSUPPORT; 3394 } 3395 3396 /* Initialize default send parameters. These parameters can be 3397 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 3398 */ 3399 sp->default_stream = 0; 3400 sp->default_ppid = 0; 3401 sp->default_flags = 0; 3402 sp->default_context = 0; 3403 sp->default_timetolive = 0; 3404 3405 sp->default_rcv_context = 0; 3406 sp->max_burst = sctp_max_burst; 3407 3408 /* Initialize default setup parameters. These parameters 3409 * can be modified with the SCTP_INITMSG socket option or 3410 * overridden by the SCTP_INIT CMSG. 3411 */ 3412 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 3413 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 3414 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init; 3415 sp->initmsg.sinit_max_init_timeo = sctp_rto_max; 3416 3417 /* Initialize default RTO related parameters. These parameters can 3418 * be modified for with the SCTP_RTOINFO socket option. 3419 */ 3420 sp->rtoinfo.srto_initial = sctp_rto_initial; 3421 sp->rtoinfo.srto_max = sctp_rto_max; 3422 sp->rtoinfo.srto_min = sctp_rto_min; 3423 3424 /* Initialize default association related parameters. These parameters 3425 * can be modified with the SCTP_ASSOCINFO socket option. 3426 */ 3427 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association; 3428 sp->assocparams.sasoc_number_peer_destinations = 0; 3429 sp->assocparams.sasoc_peer_rwnd = 0; 3430 sp->assocparams.sasoc_local_rwnd = 0; 3431 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life; 3432 3433 /* Initialize default event subscriptions. By default, all the 3434 * options are off. 3435 */ 3436 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 3437 3438 /* Default Peer Address Parameters. These defaults can 3439 * be modified via SCTP_PEER_ADDR_PARAMS 3440 */ 3441 sp->hbinterval = sctp_hb_interval; 3442 sp->pathmaxrxt = sctp_max_retrans_path; 3443 sp->pathmtu = 0; // allow default discovery 3444 sp->sackdelay = sctp_sack_timeout; 3445 sp->param_flags = SPP_HB_ENABLE | 3446 SPP_PMTUD_ENABLE | 3447 SPP_SACKDELAY_ENABLE; 3448 3449 /* If enabled no SCTP message fragmentation will be performed. 3450 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 3451 */ 3452 sp->disable_fragments = 0; 3453 3454 /* Enable Nagle algorithm by default. */ 3455 sp->nodelay = 0; 3456 3457 /* Enable by default. */ 3458 sp->v4mapped = 1; 3459 3460 /* Auto-close idle associations after the configured 3461 * number of seconds. A value of 0 disables this 3462 * feature. Configure through the SCTP_AUTOCLOSE socket option, 3463 * for UDP-style sockets only. 3464 */ 3465 sp->autoclose = 0; 3466 3467 /* User specified fragmentation limit. */ 3468 sp->user_frag = 0; 3469 3470 sp->adaptation_ind = 0; 3471 3472 sp->pf = sctp_get_pf_specific(sk->sk_family); 3473 3474 /* Control variables for partial data delivery. */ 3475 atomic_set(&sp->pd_mode, 0); 3476 skb_queue_head_init(&sp->pd_lobby); 3477 sp->frag_interleave = 0; 3478 3479 /* Create a per socket endpoint structure. Even if we 3480 * change the data structure relationships, this may still 3481 * be useful for storing pre-connect address information. 3482 */ 3483 ep = sctp_endpoint_new(sk, GFP_KERNEL); 3484 if (!ep) 3485 return -ENOMEM; 3486 3487 sp->ep = ep; 3488 sp->hmac = NULL; 3489 3490 SCTP_DBG_OBJCNT_INC(sock); 3491 atomic_inc(&sctp_sockets_allocated); 3492 return 0; 3493 } 3494 3495 /* Cleanup any SCTP per socket resources. */ 3496 SCTP_STATIC int sctp_destroy_sock(struct sock *sk) 3497 { 3498 struct sctp_endpoint *ep; 3499 3500 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk); 3501 3502 /* Release our hold on the endpoint. */ 3503 ep = sctp_sk(sk)->ep; 3504 sctp_endpoint_free(ep); 3505 atomic_dec(&sctp_sockets_allocated); 3506 return 0; 3507 } 3508 3509 /* API 4.1.7 shutdown() - TCP Style Syntax 3510 * int shutdown(int socket, int how); 3511 * 3512 * sd - the socket descriptor of the association to be closed. 3513 * how - Specifies the type of shutdown. The values are 3514 * as follows: 3515 * SHUT_RD 3516 * Disables further receive operations. No SCTP 3517 * protocol action is taken. 3518 * SHUT_WR 3519 * Disables further send operations, and initiates 3520 * the SCTP shutdown sequence. 3521 * SHUT_RDWR 3522 * Disables further send and receive operations 3523 * and initiates the SCTP shutdown sequence. 3524 */ 3525 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how) 3526 { 3527 struct sctp_endpoint *ep; 3528 struct sctp_association *asoc; 3529 3530 if (!sctp_style(sk, TCP)) 3531 return; 3532 3533 if (how & SEND_SHUTDOWN) { 3534 ep = sctp_sk(sk)->ep; 3535 if (!list_empty(&ep->asocs)) { 3536 asoc = list_entry(ep->asocs.next, 3537 struct sctp_association, asocs); 3538 sctp_primitive_SHUTDOWN(asoc, NULL); 3539 } 3540 } 3541 } 3542 3543 /* 7.2.1 Association Status (SCTP_STATUS) 3544 3545 * Applications can retrieve current status information about an 3546 * association, including association state, peer receiver window size, 3547 * number of unacked data chunks, and number of data chunks pending 3548 * receipt. This information is read-only. 3549 */ 3550 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 3551 char __user *optval, 3552 int __user *optlen) 3553 { 3554 struct sctp_status status; 3555 struct sctp_association *asoc = NULL; 3556 struct sctp_transport *transport; 3557 sctp_assoc_t associd; 3558 int retval = 0; 3559 3560 if (len < sizeof(status)) { 3561 retval = -EINVAL; 3562 goto out; 3563 } 3564 3565 len = sizeof(status); 3566 if (copy_from_user(&status, optval, len)) { 3567 retval = -EFAULT; 3568 goto out; 3569 } 3570 3571 associd = status.sstat_assoc_id; 3572 asoc = sctp_id2assoc(sk, associd); 3573 if (!asoc) { 3574 retval = -EINVAL; 3575 goto out; 3576 } 3577 3578 transport = asoc->peer.primary_path; 3579 3580 status.sstat_assoc_id = sctp_assoc2id(asoc); 3581 status.sstat_state = asoc->state; 3582 status.sstat_rwnd = asoc->peer.rwnd; 3583 status.sstat_unackdata = asoc->unack_data; 3584 3585 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 3586 status.sstat_instrms = asoc->c.sinit_max_instreams; 3587 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 3588 status.sstat_fragmentation_point = asoc->frag_point; 3589 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3590 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 3591 transport->af_specific->sockaddr_len); 3592 /* Map ipv4 address into v4-mapped-on-v6 address. */ 3593 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 3594 (union sctp_addr *)&status.sstat_primary.spinfo_address); 3595 status.sstat_primary.spinfo_state = transport->state; 3596 status.sstat_primary.spinfo_cwnd = transport->cwnd; 3597 status.sstat_primary.spinfo_srtt = transport->srtt; 3598 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 3599 status.sstat_primary.spinfo_mtu = transport->pathmtu; 3600 3601 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 3602 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 3603 3604 if (put_user(len, optlen)) { 3605 retval = -EFAULT; 3606 goto out; 3607 } 3608 3609 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n", 3610 len, status.sstat_state, status.sstat_rwnd, 3611 status.sstat_assoc_id); 3612 3613 if (copy_to_user(optval, &status, len)) { 3614 retval = -EFAULT; 3615 goto out; 3616 } 3617 3618 out: 3619 return (retval); 3620 } 3621 3622 3623 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 3624 * 3625 * Applications can retrieve information about a specific peer address 3626 * of an association, including its reachability state, congestion 3627 * window, and retransmission timer values. This information is 3628 * read-only. 3629 */ 3630 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 3631 char __user *optval, 3632 int __user *optlen) 3633 { 3634 struct sctp_paddrinfo pinfo; 3635 struct sctp_transport *transport; 3636 int retval = 0; 3637 3638 if (len < sizeof(pinfo)) { 3639 retval = -EINVAL; 3640 goto out; 3641 } 3642 3643 len = sizeof(pinfo); 3644 if (copy_from_user(&pinfo, optval, len)) { 3645 retval = -EFAULT; 3646 goto out; 3647 } 3648 3649 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 3650 pinfo.spinfo_assoc_id); 3651 if (!transport) 3652 return -EINVAL; 3653 3654 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3655 pinfo.spinfo_state = transport->state; 3656 pinfo.spinfo_cwnd = transport->cwnd; 3657 pinfo.spinfo_srtt = transport->srtt; 3658 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 3659 pinfo.spinfo_mtu = transport->pathmtu; 3660 3661 if (pinfo.spinfo_state == SCTP_UNKNOWN) 3662 pinfo.spinfo_state = SCTP_ACTIVE; 3663 3664 if (put_user(len, optlen)) { 3665 retval = -EFAULT; 3666 goto out; 3667 } 3668 3669 if (copy_to_user(optval, &pinfo, len)) { 3670 retval = -EFAULT; 3671 goto out; 3672 } 3673 3674 out: 3675 return (retval); 3676 } 3677 3678 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 3679 * 3680 * This option is a on/off flag. If enabled no SCTP message 3681 * fragmentation will be performed. Instead if a message being sent 3682 * exceeds the current PMTU size, the message will NOT be sent and 3683 * instead a error will be indicated to the user. 3684 */ 3685 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 3686 char __user *optval, int __user *optlen) 3687 { 3688 int val; 3689 3690 if (len < sizeof(int)) 3691 return -EINVAL; 3692 3693 len = sizeof(int); 3694 val = (sctp_sk(sk)->disable_fragments == 1); 3695 if (put_user(len, optlen)) 3696 return -EFAULT; 3697 if (copy_to_user(optval, &val, len)) 3698 return -EFAULT; 3699 return 0; 3700 } 3701 3702 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 3703 * 3704 * This socket option is used to specify various notifications and 3705 * ancillary data the user wishes to receive. 3706 */ 3707 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 3708 int __user *optlen) 3709 { 3710 if (len < sizeof(struct sctp_event_subscribe)) 3711 return -EINVAL; 3712 len = sizeof(struct sctp_event_subscribe); 3713 if (put_user(len, optlen)) 3714 return -EFAULT; 3715 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 3716 return -EFAULT; 3717 return 0; 3718 } 3719 3720 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 3721 * 3722 * This socket option is applicable to the UDP-style socket only. When 3723 * set it will cause associations that are idle for more than the 3724 * specified number of seconds to automatically close. An association 3725 * being idle is defined an association that has NOT sent or received 3726 * user data. The special value of '0' indicates that no automatic 3727 * close of any associations should be performed. The option expects an 3728 * integer defining the number of seconds of idle time before an 3729 * association is closed. 3730 */ 3731 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 3732 { 3733 /* Applicable to UDP-style socket only */ 3734 if (sctp_style(sk, TCP)) 3735 return -EOPNOTSUPP; 3736 if (len < sizeof(int)) 3737 return -EINVAL; 3738 len = sizeof(int); 3739 if (put_user(len, optlen)) 3740 return -EFAULT; 3741 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 3742 return -EFAULT; 3743 return 0; 3744 } 3745 3746 /* Helper routine to branch off an association to a new socket. */ 3747 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc, 3748 struct socket **sockp) 3749 { 3750 struct sock *sk = asoc->base.sk; 3751 struct socket *sock; 3752 struct inet_sock *inetsk; 3753 struct sctp_af *af; 3754 int err = 0; 3755 3756 /* An association cannot be branched off from an already peeled-off 3757 * socket, nor is this supported for tcp style sockets. 3758 */ 3759 if (!sctp_style(sk, UDP)) 3760 return -EINVAL; 3761 3762 /* Create a new socket. */ 3763 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 3764 if (err < 0) 3765 return err; 3766 3767 /* Populate the fields of the newsk from the oldsk and migrate the 3768 * asoc to the newsk. 3769 */ 3770 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 3771 3772 /* Make peeled-off sockets more like 1-1 accepted sockets. 3773 * Set the daddr and initialize id to something more random 3774 */ 3775 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family); 3776 af->to_sk_daddr(&asoc->peer.primary_addr, sk); 3777 inetsk = inet_sk(sock->sk); 3778 inetsk->id = asoc->next_tsn ^ jiffies; 3779 3780 *sockp = sock; 3781 3782 return err; 3783 } 3784 3785 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 3786 { 3787 sctp_peeloff_arg_t peeloff; 3788 struct socket *newsock; 3789 int retval = 0; 3790 struct sctp_association *asoc; 3791 3792 if (len < sizeof(sctp_peeloff_arg_t)) 3793 return -EINVAL; 3794 len = sizeof(sctp_peeloff_arg_t); 3795 if (copy_from_user(&peeloff, optval, len)) 3796 return -EFAULT; 3797 3798 asoc = sctp_id2assoc(sk, peeloff.associd); 3799 if (!asoc) { 3800 retval = -EINVAL; 3801 goto out; 3802 } 3803 3804 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc); 3805 3806 retval = sctp_do_peeloff(asoc, &newsock); 3807 if (retval < 0) 3808 goto out; 3809 3810 /* Map the socket to an unused fd that can be returned to the user. */ 3811 retval = sock_map_fd(newsock); 3812 if (retval < 0) { 3813 sock_release(newsock); 3814 goto out; 3815 } 3816 3817 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n", 3818 __FUNCTION__, sk, asoc, newsock->sk, retval); 3819 3820 /* Return the fd mapped to the new socket. */ 3821 peeloff.sd = retval; 3822 if (put_user(len, optlen)) 3823 return -EFAULT; 3824 if (copy_to_user(optval, &peeloff, len)) 3825 retval = -EFAULT; 3826 3827 out: 3828 return retval; 3829 } 3830 3831 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 3832 * 3833 * Applications can enable or disable heartbeats for any peer address of 3834 * an association, modify an address's heartbeat interval, force a 3835 * heartbeat to be sent immediately, and adjust the address's maximum 3836 * number of retransmissions sent before an address is considered 3837 * unreachable. The following structure is used to access and modify an 3838 * address's parameters: 3839 * 3840 * struct sctp_paddrparams { 3841 * sctp_assoc_t spp_assoc_id; 3842 * struct sockaddr_storage spp_address; 3843 * uint32_t spp_hbinterval; 3844 * uint16_t spp_pathmaxrxt; 3845 * uint32_t spp_pathmtu; 3846 * uint32_t spp_sackdelay; 3847 * uint32_t spp_flags; 3848 * }; 3849 * 3850 * spp_assoc_id - (one-to-many style socket) This is filled in the 3851 * application, and identifies the association for 3852 * this query. 3853 * spp_address - This specifies which address is of interest. 3854 * spp_hbinterval - This contains the value of the heartbeat interval, 3855 * in milliseconds. If a value of zero 3856 * is present in this field then no changes are to 3857 * be made to this parameter. 3858 * spp_pathmaxrxt - This contains the maximum number of 3859 * retransmissions before this address shall be 3860 * considered unreachable. If a value of zero 3861 * is present in this field then no changes are to 3862 * be made to this parameter. 3863 * spp_pathmtu - When Path MTU discovery is disabled the value 3864 * specified here will be the "fixed" path mtu. 3865 * Note that if the spp_address field is empty 3866 * then all associations on this address will 3867 * have this fixed path mtu set upon them. 3868 * 3869 * spp_sackdelay - When delayed sack is enabled, this value specifies 3870 * the number of milliseconds that sacks will be delayed 3871 * for. This value will apply to all addresses of an 3872 * association if the spp_address field is empty. Note 3873 * also, that if delayed sack is enabled and this 3874 * value is set to 0, no change is made to the last 3875 * recorded delayed sack timer value. 3876 * 3877 * spp_flags - These flags are used to control various features 3878 * on an association. The flag field may contain 3879 * zero or more of the following options. 3880 * 3881 * SPP_HB_ENABLE - Enable heartbeats on the 3882 * specified address. Note that if the address 3883 * field is empty all addresses for the association 3884 * have heartbeats enabled upon them. 3885 * 3886 * SPP_HB_DISABLE - Disable heartbeats on the 3887 * speicifed address. Note that if the address 3888 * field is empty all addresses for the association 3889 * will have their heartbeats disabled. Note also 3890 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 3891 * mutually exclusive, only one of these two should 3892 * be specified. Enabling both fields will have 3893 * undetermined results. 3894 * 3895 * SPP_HB_DEMAND - Request a user initiated heartbeat 3896 * to be made immediately. 3897 * 3898 * SPP_PMTUD_ENABLE - This field will enable PMTU 3899 * discovery upon the specified address. Note that 3900 * if the address feild is empty then all addresses 3901 * on the association are effected. 3902 * 3903 * SPP_PMTUD_DISABLE - This field will disable PMTU 3904 * discovery upon the specified address. Note that 3905 * if the address feild is empty then all addresses 3906 * on the association are effected. Not also that 3907 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 3908 * exclusive. Enabling both will have undetermined 3909 * results. 3910 * 3911 * SPP_SACKDELAY_ENABLE - Setting this flag turns 3912 * on delayed sack. The time specified in spp_sackdelay 3913 * is used to specify the sack delay for this address. Note 3914 * that if spp_address is empty then all addresses will 3915 * enable delayed sack and take on the sack delay 3916 * value specified in spp_sackdelay. 3917 * SPP_SACKDELAY_DISABLE - Setting this flag turns 3918 * off delayed sack. If the spp_address field is blank then 3919 * delayed sack is disabled for the entire association. Note 3920 * also that this field is mutually exclusive to 3921 * SPP_SACKDELAY_ENABLE, setting both will have undefined 3922 * results. 3923 */ 3924 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 3925 char __user *optval, int __user *optlen) 3926 { 3927 struct sctp_paddrparams params; 3928 struct sctp_transport *trans = NULL; 3929 struct sctp_association *asoc = NULL; 3930 struct sctp_sock *sp = sctp_sk(sk); 3931 3932 if (len < sizeof(struct sctp_paddrparams)) 3933 return -EINVAL; 3934 len = sizeof(struct sctp_paddrparams); 3935 if (copy_from_user(¶ms, optval, len)) 3936 return -EFAULT; 3937 3938 /* If an address other than INADDR_ANY is specified, and 3939 * no transport is found, then the request is invalid. 3940 */ 3941 if (!sctp_is_any(( union sctp_addr *)¶ms.spp_address)) { 3942 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 3943 params.spp_assoc_id); 3944 if (!trans) { 3945 SCTP_DEBUG_PRINTK("Failed no transport\n"); 3946 return -EINVAL; 3947 } 3948 } 3949 3950 /* Get association, if assoc_id != 0 and the socket is a one 3951 * to many style socket, and an association was not found, then 3952 * the id was invalid. 3953 */ 3954 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 3955 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 3956 SCTP_DEBUG_PRINTK("Failed no association\n"); 3957 return -EINVAL; 3958 } 3959 3960 if (trans) { 3961 /* Fetch transport values. */ 3962 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 3963 params.spp_pathmtu = trans->pathmtu; 3964 params.spp_pathmaxrxt = trans->pathmaxrxt; 3965 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 3966 3967 /*draft-11 doesn't say what to return in spp_flags*/ 3968 params.spp_flags = trans->param_flags; 3969 } else if (asoc) { 3970 /* Fetch association values. */ 3971 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 3972 params.spp_pathmtu = asoc->pathmtu; 3973 params.spp_pathmaxrxt = asoc->pathmaxrxt; 3974 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 3975 3976 /*draft-11 doesn't say what to return in spp_flags*/ 3977 params.spp_flags = asoc->param_flags; 3978 } else { 3979 /* Fetch socket values. */ 3980 params.spp_hbinterval = sp->hbinterval; 3981 params.spp_pathmtu = sp->pathmtu; 3982 params.spp_sackdelay = sp->sackdelay; 3983 params.spp_pathmaxrxt = sp->pathmaxrxt; 3984 3985 /*draft-11 doesn't say what to return in spp_flags*/ 3986 params.spp_flags = sp->param_flags; 3987 } 3988 3989 if (copy_to_user(optval, ¶ms, len)) 3990 return -EFAULT; 3991 3992 if (put_user(len, optlen)) 3993 return -EFAULT; 3994 3995 return 0; 3996 } 3997 3998 /* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME) 3999 * 4000 * This options will get or set the delayed ack timer. The time is set 4001 * in milliseconds. If the assoc_id is 0, then this sets or gets the 4002 * endpoints default delayed ack timer value. If the assoc_id field is 4003 * non-zero, then the set or get effects the specified association. 4004 * 4005 * struct sctp_assoc_value { 4006 * sctp_assoc_t assoc_id; 4007 * uint32_t assoc_value; 4008 * }; 4009 * 4010 * assoc_id - This parameter, indicates which association the 4011 * user is preforming an action upon. Note that if 4012 * this field's value is zero then the endpoints 4013 * default value is changed (effecting future 4014 * associations only). 4015 * 4016 * assoc_value - This parameter contains the number of milliseconds 4017 * that the user is requesting the delayed ACK timer 4018 * be set to. Note that this value is defined in 4019 * the standard to be between 200 and 500 milliseconds. 4020 * 4021 * Note: a value of zero will leave the value alone, 4022 * but disable SACK delay. A non-zero value will also 4023 * enable SACK delay. 4024 */ 4025 static int sctp_getsockopt_delayed_ack_time(struct sock *sk, int len, 4026 char __user *optval, 4027 int __user *optlen) 4028 { 4029 struct sctp_assoc_value params; 4030 struct sctp_association *asoc = NULL; 4031 struct sctp_sock *sp = sctp_sk(sk); 4032 4033 if (len < sizeof(struct sctp_assoc_value)) 4034 return - EINVAL; 4035 4036 len = sizeof(struct sctp_assoc_value); 4037 4038 if (copy_from_user(¶ms, optval, len)) 4039 return -EFAULT; 4040 4041 /* Get association, if assoc_id != 0 and the socket is a one 4042 * to many style socket, and an association was not found, then 4043 * the id was invalid. 4044 */ 4045 asoc = sctp_id2assoc(sk, params.assoc_id); 4046 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 4047 return -EINVAL; 4048 4049 if (asoc) { 4050 /* Fetch association values. */ 4051 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) 4052 params.assoc_value = jiffies_to_msecs( 4053 asoc->sackdelay); 4054 else 4055 params.assoc_value = 0; 4056 } else { 4057 /* Fetch socket values. */ 4058 if (sp->param_flags & SPP_SACKDELAY_ENABLE) 4059 params.assoc_value = sp->sackdelay; 4060 else 4061 params.assoc_value = 0; 4062 } 4063 4064 if (copy_to_user(optval, ¶ms, len)) 4065 return -EFAULT; 4066 4067 if (put_user(len, optlen)) 4068 return -EFAULT; 4069 4070 return 0; 4071 } 4072 4073 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 4074 * 4075 * Applications can specify protocol parameters for the default association 4076 * initialization. The option name argument to setsockopt() and getsockopt() 4077 * is SCTP_INITMSG. 4078 * 4079 * Setting initialization parameters is effective only on an unconnected 4080 * socket (for UDP-style sockets only future associations are effected 4081 * by the change). With TCP-style sockets, this option is inherited by 4082 * sockets derived from a listener socket. 4083 */ 4084 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 4085 { 4086 if (len < sizeof(struct sctp_initmsg)) 4087 return -EINVAL; 4088 len = sizeof(struct sctp_initmsg); 4089 if (put_user(len, optlen)) 4090 return -EFAULT; 4091 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 4092 return -EFAULT; 4093 return 0; 4094 } 4095 4096 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len, 4097 char __user *optval, 4098 int __user *optlen) 4099 { 4100 sctp_assoc_t id; 4101 struct sctp_association *asoc; 4102 struct list_head *pos; 4103 int cnt = 0; 4104 4105 if (len < sizeof(sctp_assoc_t)) 4106 return -EINVAL; 4107 4108 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 4109 return -EFAULT; 4110 4111 /* For UDP-style sockets, id specifies the association to query. */ 4112 asoc = sctp_id2assoc(sk, id); 4113 if (!asoc) 4114 return -EINVAL; 4115 4116 list_for_each(pos, &asoc->peer.transport_addr_list) { 4117 cnt ++; 4118 } 4119 4120 return cnt; 4121 } 4122 4123 /* 4124 * Old API for getting list of peer addresses. Does not work for 32-bit 4125 * programs running on a 64-bit kernel 4126 */ 4127 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len, 4128 char __user *optval, 4129 int __user *optlen) 4130 { 4131 struct sctp_association *asoc; 4132 struct list_head *pos; 4133 int cnt = 0; 4134 struct sctp_getaddrs_old getaddrs; 4135 struct sctp_transport *from; 4136 void __user *to; 4137 union sctp_addr temp; 4138 struct sctp_sock *sp = sctp_sk(sk); 4139 int addrlen; 4140 4141 if (len < sizeof(struct sctp_getaddrs_old)) 4142 return -EINVAL; 4143 4144 len = sizeof(struct sctp_getaddrs_old); 4145 4146 if (copy_from_user(&getaddrs, optval, len)) 4147 return -EFAULT; 4148 4149 if (getaddrs.addr_num <= 0) return -EINVAL; 4150 4151 /* For UDP-style sockets, id specifies the association to query. */ 4152 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4153 if (!asoc) 4154 return -EINVAL; 4155 4156 to = (void __user *)getaddrs.addrs; 4157 list_for_each(pos, &asoc->peer.transport_addr_list) { 4158 from = list_entry(pos, struct sctp_transport, transports); 4159 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4160 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4161 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 4162 if (copy_to_user(to, &temp, addrlen)) 4163 return -EFAULT; 4164 to += addrlen ; 4165 cnt ++; 4166 if (cnt >= getaddrs.addr_num) break; 4167 } 4168 getaddrs.addr_num = cnt; 4169 if (put_user(len, optlen)) 4170 return -EFAULT; 4171 if (copy_to_user(optval, &getaddrs, len)) 4172 return -EFAULT; 4173 4174 return 0; 4175 } 4176 4177 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 4178 char __user *optval, int __user *optlen) 4179 { 4180 struct sctp_association *asoc; 4181 struct list_head *pos; 4182 int cnt = 0; 4183 struct sctp_getaddrs getaddrs; 4184 struct sctp_transport *from; 4185 void __user *to; 4186 union sctp_addr temp; 4187 struct sctp_sock *sp = sctp_sk(sk); 4188 int addrlen; 4189 size_t space_left; 4190 int bytes_copied; 4191 4192 if (len < sizeof(struct sctp_getaddrs)) 4193 return -EINVAL; 4194 4195 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4196 return -EFAULT; 4197 4198 /* For UDP-style sockets, id specifies the association to query. */ 4199 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4200 if (!asoc) 4201 return -EINVAL; 4202 4203 to = optval + offsetof(struct sctp_getaddrs,addrs); 4204 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4205 4206 list_for_each(pos, &asoc->peer.transport_addr_list) { 4207 from = list_entry(pos, struct sctp_transport, transports); 4208 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4209 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4210 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 4211 if (space_left < addrlen) 4212 return -ENOMEM; 4213 if (copy_to_user(to, &temp, addrlen)) 4214 return -EFAULT; 4215 to += addrlen; 4216 cnt++; 4217 space_left -= addrlen; 4218 } 4219 4220 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4221 return -EFAULT; 4222 bytes_copied = ((char __user *)to) - optval; 4223 if (put_user(bytes_copied, optlen)) 4224 return -EFAULT; 4225 4226 return 0; 4227 } 4228 4229 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len, 4230 char __user *optval, 4231 int __user *optlen) 4232 { 4233 sctp_assoc_t id; 4234 struct sctp_bind_addr *bp; 4235 struct sctp_association *asoc; 4236 struct sctp_sockaddr_entry *addr; 4237 int cnt = 0; 4238 4239 if (len < sizeof(sctp_assoc_t)) 4240 return -EINVAL; 4241 4242 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 4243 return -EFAULT; 4244 4245 /* 4246 * For UDP-style sockets, id specifies the association to query. 4247 * If the id field is set to the value '0' then the locally bound 4248 * addresses are returned without regard to any particular 4249 * association. 4250 */ 4251 if (0 == id) { 4252 bp = &sctp_sk(sk)->ep->base.bind_addr; 4253 } else { 4254 asoc = sctp_id2assoc(sk, id); 4255 if (!asoc) 4256 return -EINVAL; 4257 bp = &asoc->base.bind_addr; 4258 } 4259 4260 /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid 4261 * addresses from the global local address list. 4262 */ 4263 if (sctp_list_single_entry(&bp->address_list)) { 4264 addr = list_entry(bp->address_list.next, 4265 struct sctp_sockaddr_entry, list); 4266 if (sctp_is_any(&addr->a)) { 4267 rcu_read_lock(); 4268 list_for_each_entry_rcu(addr, 4269 &sctp_local_addr_list, list) { 4270 if (!addr->valid) 4271 continue; 4272 4273 if ((PF_INET == sk->sk_family) && 4274 (AF_INET6 == addr->a.sa.sa_family)) 4275 continue; 4276 4277 cnt++; 4278 } 4279 rcu_read_unlock(); 4280 } else { 4281 cnt = 1; 4282 } 4283 goto done; 4284 } 4285 4286 /* Protection on the bound address list is not needed, 4287 * since in the socket option context we hold the socket lock, 4288 * so there is no way that the bound address list can change. 4289 */ 4290 list_for_each_entry(addr, &bp->address_list, list) { 4291 cnt ++; 4292 } 4293 done: 4294 return cnt; 4295 } 4296 4297 /* Helper function that copies local addresses to user and returns the number 4298 * of addresses copied. 4299 */ 4300 static int sctp_copy_laddrs_old(struct sock *sk, __u16 port, 4301 int max_addrs, void *to, 4302 int *bytes_copied) 4303 { 4304 struct sctp_sockaddr_entry *addr; 4305 union sctp_addr temp; 4306 int cnt = 0; 4307 int addrlen; 4308 4309 rcu_read_lock(); 4310 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) { 4311 if (!addr->valid) 4312 continue; 4313 4314 if ((PF_INET == sk->sk_family) && 4315 (AF_INET6 == addr->a.sa.sa_family)) 4316 continue; 4317 memcpy(&temp, &addr->a, sizeof(temp)); 4318 if (!temp.v4.sin_port) 4319 temp.v4.sin_port = htons(port); 4320 4321 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4322 &temp); 4323 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4324 memcpy(to, &temp, addrlen); 4325 4326 to += addrlen; 4327 *bytes_copied += addrlen; 4328 cnt ++; 4329 if (cnt >= max_addrs) break; 4330 } 4331 rcu_read_unlock(); 4332 4333 return cnt; 4334 } 4335 4336 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 4337 size_t space_left, int *bytes_copied) 4338 { 4339 struct sctp_sockaddr_entry *addr; 4340 union sctp_addr temp; 4341 int cnt = 0; 4342 int addrlen; 4343 4344 rcu_read_lock(); 4345 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) { 4346 if (!addr->valid) 4347 continue; 4348 4349 if ((PF_INET == sk->sk_family) && 4350 (AF_INET6 == addr->a.sa.sa_family)) 4351 continue; 4352 memcpy(&temp, &addr->a, sizeof(temp)); 4353 if (!temp.v4.sin_port) 4354 temp.v4.sin_port = htons(port); 4355 4356 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4357 &temp); 4358 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4359 if (space_left < addrlen) { 4360 cnt = -ENOMEM; 4361 break; 4362 } 4363 memcpy(to, &temp, addrlen); 4364 4365 to += addrlen; 4366 cnt ++; 4367 space_left -= addrlen; 4368 *bytes_copied += addrlen; 4369 } 4370 rcu_read_unlock(); 4371 4372 return cnt; 4373 } 4374 4375 /* Old API for getting list of local addresses. Does not work for 32-bit 4376 * programs running on a 64-bit kernel 4377 */ 4378 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len, 4379 char __user *optval, int __user *optlen) 4380 { 4381 struct sctp_bind_addr *bp; 4382 struct sctp_association *asoc; 4383 int cnt = 0; 4384 struct sctp_getaddrs_old getaddrs; 4385 struct sctp_sockaddr_entry *addr; 4386 void __user *to; 4387 union sctp_addr temp; 4388 struct sctp_sock *sp = sctp_sk(sk); 4389 int addrlen; 4390 int err = 0; 4391 void *addrs; 4392 void *buf; 4393 int bytes_copied = 0; 4394 4395 if (len < sizeof(struct sctp_getaddrs_old)) 4396 return -EINVAL; 4397 4398 len = sizeof(struct sctp_getaddrs_old); 4399 if (copy_from_user(&getaddrs, optval, len)) 4400 return -EFAULT; 4401 4402 if (getaddrs.addr_num <= 0) return -EINVAL; 4403 /* 4404 * For UDP-style sockets, id specifies the association to query. 4405 * If the id field is set to the value '0' then the locally bound 4406 * addresses are returned without regard to any particular 4407 * association. 4408 */ 4409 if (0 == getaddrs.assoc_id) { 4410 bp = &sctp_sk(sk)->ep->base.bind_addr; 4411 } else { 4412 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4413 if (!asoc) 4414 return -EINVAL; 4415 bp = &asoc->base.bind_addr; 4416 } 4417 4418 to = getaddrs.addrs; 4419 4420 /* Allocate space for a local instance of packed array to hold all 4421 * the data. We store addresses here first and then put write them 4422 * to the user in one shot. 4423 */ 4424 addrs = kmalloc(sizeof(union sctp_addr) * getaddrs.addr_num, 4425 GFP_KERNEL); 4426 if (!addrs) 4427 return -ENOMEM; 4428 4429 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4430 * addresses from the global local address list. 4431 */ 4432 if (sctp_list_single_entry(&bp->address_list)) { 4433 addr = list_entry(bp->address_list.next, 4434 struct sctp_sockaddr_entry, list); 4435 if (sctp_is_any(&addr->a)) { 4436 cnt = sctp_copy_laddrs_old(sk, bp->port, 4437 getaddrs.addr_num, 4438 addrs, &bytes_copied); 4439 goto copy_getaddrs; 4440 } 4441 } 4442 4443 buf = addrs; 4444 /* Protection on the bound address list is not needed since 4445 * in the socket option context we hold a socket lock and 4446 * thus the bound address list can't change. 4447 */ 4448 list_for_each_entry(addr, &bp->address_list, list) { 4449 memcpy(&temp, &addr->a, sizeof(temp)); 4450 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4451 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4452 memcpy(buf, &temp, addrlen); 4453 buf += addrlen; 4454 bytes_copied += addrlen; 4455 cnt ++; 4456 if (cnt >= getaddrs.addr_num) break; 4457 } 4458 4459 copy_getaddrs: 4460 /* copy the entire address list into the user provided space */ 4461 if (copy_to_user(to, addrs, bytes_copied)) { 4462 err = -EFAULT; 4463 goto error; 4464 } 4465 4466 /* copy the leading structure back to user */ 4467 getaddrs.addr_num = cnt; 4468 if (copy_to_user(optval, &getaddrs, len)) 4469 err = -EFAULT; 4470 4471 error: 4472 kfree(addrs); 4473 return err; 4474 } 4475 4476 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 4477 char __user *optval, int __user *optlen) 4478 { 4479 struct sctp_bind_addr *bp; 4480 struct sctp_association *asoc; 4481 int cnt = 0; 4482 struct sctp_getaddrs getaddrs; 4483 struct sctp_sockaddr_entry *addr; 4484 void __user *to; 4485 union sctp_addr temp; 4486 struct sctp_sock *sp = sctp_sk(sk); 4487 int addrlen; 4488 int err = 0; 4489 size_t space_left; 4490 int bytes_copied = 0; 4491 void *addrs; 4492 void *buf; 4493 4494 if (len < sizeof(struct sctp_getaddrs)) 4495 return -EINVAL; 4496 4497 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4498 return -EFAULT; 4499 4500 /* 4501 * For UDP-style sockets, id specifies the association to query. 4502 * If the id field is set to the value '0' then the locally bound 4503 * addresses are returned without regard to any particular 4504 * association. 4505 */ 4506 if (0 == getaddrs.assoc_id) { 4507 bp = &sctp_sk(sk)->ep->base.bind_addr; 4508 } else { 4509 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4510 if (!asoc) 4511 return -EINVAL; 4512 bp = &asoc->base.bind_addr; 4513 } 4514 4515 to = optval + offsetof(struct sctp_getaddrs,addrs); 4516 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4517 4518 addrs = kmalloc(space_left, GFP_KERNEL); 4519 if (!addrs) 4520 return -ENOMEM; 4521 4522 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4523 * addresses from the global local address list. 4524 */ 4525 if (sctp_list_single_entry(&bp->address_list)) { 4526 addr = list_entry(bp->address_list.next, 4527 struct sctp_sockaddr_entry, list); 4528 if (sctp_is_any(&addr->a)) { 4529 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 4530 space_left, &bytes_copied); 4531 if (cnt < 0) { 4532 err = cnt; 4533 goto out; 4534 } 4535 goto copy_getaddrs; 4536 } 4537 } 4538 4539 buf = addrs; 4540 /* Protection on the bound address list is not needed since 4541 * in the socket option context we hold a socket lock and 4542 * thus the bound address list can't change. 4543 */ 4544 list_for_each_entry(addr, &bp->address_list, list) { 4545 memcpy(&temp, &addr->a, sizeof(temp)); 4546 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4547 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4548 if (space_left < addrlen) { 4549 err = -ENOMEM; /*fixme: right error?*/ 4550 goto out; 4551 } 4552 memcpy(buf, &temp, addrlen); 4553 buf += addrlen; 4554 bytes_copied += addrlen; 4555 cnt ++; 4556 space_left -= addrlen; 4557 } 4558 4559 copy_getaddrs: 4560 if (copy_to_user(to, addrs, bytes_copied)) { 4561 err = -EFAULT; 4562 goto out; 4563 } 4564 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 4565 err = -EFAULT; 4566 goto out; 4567 } 4568 if (put_user(bytes_copied, optlen)) 4569 err = -EFAULT; 4570 out: 4571 kfree(addrs); 4572 return err; 4573 } 4574 4575 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 4576 * 4577 * Requests that the local SCTP stack use the enclosed peer address as 4578 * the association primary. The enclosed address must be one of the 4579 * association peer's addresses. 4580 */ 4581 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 4582 char __user *optval, int __user *optlen) 4583 { 4584 struct sctp_prim prim; 4585 struct sctp_association *asoc; 4586 struct sctp_sock *sp = sctp_sk(sk); 4587 4588 if (len < sizeof(struct sctp_prim)) 4589 return -EINVAL; 4590 4591 len = sizeof(struct sctp_prim); 4592 4593 if (copy_from_user(&prim, optval, len)) 4594 return -EFAULT; 4595 4596 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 4597 if (!asoc) 4598 return -EINVAL; 4599 4600 if (!asoc->peer.primary_path) 4601 return -ENOTCONN; 4602 4603 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 4604 asoc->peer.primary_path->af_specific->sockaddr_len); 4605 4606 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, 4607 (union sctp_addr *)&prim.ssp_addr); 4608 4609 if (put_user(len, optlen)) 4610 return -EFAULT; 4611 if (copy_to_user(optval, &prim, len)) 4612 return -EFAULT; 4613 4614 return 0; 4615 } 4616 4617 /* 4618 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 4619 * 4620 * Requests that the local endpoint set the specified Adaptation Layer 4621 * Indication parameter for all future INIT and INIT-ACK exchanges. 4622 */ 4623 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 4624 char __user *optval, int __user *optlen) 4625 { 4626 struct sctp_setadaptation adaptation; 4627 4628 if (len < sizeof(struct sctp_setadaptation)) 4629 return -EINVAL; 4630 4631 len = sizeof(struct sctp_setadaptation); 4632 4633 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 4634 4635 if (put_user(len, optlen)) 4636 return -EFAULT; 4637 if (copy_to_user(optval, &adaptation, len)) 4638 return -EFAULT; 4639 4640 return 0; 4641 } 4642 4643 /* 4644 * 4645 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 4646 * 4647 * Applications that wish to use the sendto() system call may wish to 4648 * specify a default set of parameters that would normally be supplied 4649 * through the inclusion of ancillary data. This socket option allows 4650 * such an application to set the default sctp_sndrcvinfo structure. 4651 4652 4653 * The application that wishes to use this socket option simply passes 4654 * in to this call the sctp_sndrcvinfo structure defined in Section 4655 * 5.2.2) The input parameters accepted by this call include 4656 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 4657 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 4658 * to this call if the caller is using the UDP model. 4659 * 4660 * For getsockopt, it get the default sctp_sndrcvinfo structure. 4661 */ 4662 static int sctp_getsockopt_default_send_param(struct sock *sk, 4663 int len, char __user *optval, 4664 int __user *optlen) 4665 { 4666 struct sctp_sndrcvinfo info; 4667 struct sctp_association *asoc; 4668 struct sctp_sock *sp = sctp_sk(sk); 4669 4670 if (len < sizeof(struct sctp_sndrcvinfo)) 4671 return -EINVAL; 4672 4673 len = sizeof(struct sctp_sndrcvinfo); 4674 4675 if (copy_from_user(&info, optval, len)) 4676 return -EFAULT; 4677 4678 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 4679 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 4680 return -EINVAL; 4681 4682 if (asoc) { 4683 info.sinfo_stream = asoc->default_stream; 4684 info.sinfo_flags = asoc->default_flags; 4685 info.sinfo_ppid = asoc->default_ppid; 4686 info.sinfo_context = asoc->default_context; 4687 info.sinfo_timetolive = asoc->default_timetolive; 4688 } else { 4689 info.sinfo_stream = sp->default_stream; 4690 info.sinfo_flags = sp->default_flags; 4691 info.sinfo_ppid = sp->default_ppid; 4692 info.sinfo_context = sp->default_context; 4693 info.sinfo_timetolive = sp->default_timetolive; 4694 } 4695 4696 if (put_user(len, optlen)) 4697 return -EFAULT; 4698 if (copy_to_user(optval, &info, len)) 4699 return -EFAULT; 4700 4701 return 0; 4702 } 4703 4704 /* 4705 * 4706 * 7.1.5 SCTP_NODELAY 4707 * 4708 * Turn on/off any Nagle-like algorithm. This means that packets are 4709 * generally sent as soon as possible and no unnecessary delays are 4710 * introduced, at the cost of more packets in the network. Expects an 4711 * integer boolean flag. 4712 */ 4713 4714 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 4715 char __user *optval, int __user *optlen) 4716 { 4717 int val; 4718 4719 if (len < sizeof(int)) 4720 return -EINVAL; 4721 4722 len = sizeof(int); 4723 val = (sctp_sk(sk)->nodelay == 1); 4724 if (put_user(len, optlen)) 4725 return -EFAULT; 4726 if (copy_to_user(optval, &val, len)) 4727 return -EFAULT; 4728 return 0; 4729 } 4730 4731 /* 4732 * 4733 * 7.1.1 SCTP_RTOINFO 4734 * 4735 * The protocol parameters used to initialize and bound retransmission 4736 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 4737 * and modify these parameters. 4738 * All parameters are time values, in milliseconds. A value of 0, when 4739 * modifying the parameters, indicates that the current value should not 4740 * be changed. 4741 * 4742 */ 4743 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 4744 char __user *optval, 4745 int __user *optlen) { 4746 struct sctp_rtoinfo rtoinfo; 4747 struct sctp_association *asoc; 4748 4749 if (len < sizeof (struct sctp_rtoinfo)) 4750 return -EINVAL; 4751 4752 len = sizeof(struct sctp_rtoinfo); 4753 4754 if (copy_from_user(&rtoinfo, optval, len)) 4755 return -EFAULT; 4756 4757 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 4758 4759 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 4760 return -EINVAL; 4761 4762 /* Values corresponding to the specific association. */ 4763 if (asoc) { 4764 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 4765 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 4766 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 4767 } else { 4768 /* Values corresponding to the endpoint. */ 4769 struct sctp_sock *sp = sctp_sk(sk); 4770 4771 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 4772 rtoinfo.srto_max = sp->rtoinfo.srto_max; 4773 rtoinfo.srto_min = sp->rtoinfo.srto_min; 4774 } 4775 4776 if (put_user(len, optlen)) 4777 return -EFAULT; 4778 4779 if (copy_to_user(optval, &rtoinfo, len)) 4780 return -EFAULT; 4781 4782 return 0; 4783 } 4784 4785 /* 4786 * 4787 * 7.1.2 SCTP_ASSOCINFO 4788 * 4789 * This option is used to tune the maximum retransmission attempts 4790 * of the association. 4791 * Returns an error if the new association retransmission value is 4792 * greater than the sum of the retransmission value of the peer. 4793 * See [SCTP] for more information. 4794 * 4795 */ 4796 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 4797 char __user *optval, 4798 int __user *optlen) 4799 { 4800 4801 struct sctp_assocparams assocparams; 4802 struct sctp_association *asoc; 4803 struct list_head *pos; 4804 int cnt = 0; 4805 4806 if (len < sizeof (struct sctp_assocparams)) 4807 return -EINVAL; 4808 4809 len = sizeof(struct sctp_assocparams); 4810 4811 if (copy_from_user(&assocparams, optval, len)) 4812 return -EFAULT; 4813 4814 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 4815 4816 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 4817 return -EINVAL; 4818 4819 /* Values correspoinding to the specific association */ 4820 if (asoc) { 4821 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 4822 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 4823 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 4824 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec 4825 * 1000) + 4826 (asoc->cookie_life.tv_usec 4827 / 1000); 4828 4829 list_for_each(pos, &asoc->peer.transport_addr_list) { 4830 cnt ++; 4831 } 4832 4833 assocparams.sasoc_number_peer_destinations = cnt; 4834 } else { 4835 /* Values corresponding to the endpoint */ 4836 struct sctp_sock *sp = sctp_sk(sk); 4837 4838 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 4839 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 4840 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 4841 assocparams.sasoc_cookie_life = 4842 sp->assocparams.sasoc_cookie_life; 4843 assocparams.sasoc_number_peer_destinations = 4844 sp->assocparams. 4845 sasoc_number_peer_destinations; 4846 } 4847 4848 if (put_user(len, optlen)) 4849 return -EFAULT; 4850 4851 if (copy_to_user(optval, &assocparams, len)) 4852 return -EFAULT; 4853 4854 return 0; 4855 } 4856 4857 /* 4858 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 4859 * 4860 * This socket option is a boolean flag which turns on or off mapped V4 4861 * addresses. If this option is turned on and the socket is type 4862 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 4863 * If this option is turned off, then no mapping will be done of V4 4864 * addresses and a user will receive both PF_INET6 and PF_INET type 4865 * addresses on the socket. 4866 */ 4867 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 4868 char __user *optval, int __user *optlen) 4869 { 4870 int val; 4871 struct sctp_sock *sp = sctp_sk(sk); 4872 4873 if (len < sizeof(int)) 4874 return -EINVAL; 4875 4876 len = sizeof(int); 4877 val = sp->v4mapped; 4878 if (put_user(len, optlen)) 4879 return -EFAULT; 4880 if (copy_to_user(optval, &val, len)) 4881 return -EFAULT; 4882 4883 return 0; 4884 } 4885 4886 /* 4887 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 4888 * (chapter and verse is quoted at sctp_setsockopt_context()) 4889 */ 4890 static int sctp_getsockopt_context(struct sock *sk, int len, 4891 char __user *optval, int __user *optlen) 4892 { 4893 struct sctp_assoc_value params; 4894 struct sctp_sock *sp; 4895 struct sctp_association *asoc; 4896 4897 if (len < sizeof(struct sctp_assoc_value)) 4898 return -EINVAL; 4899 4900 len = sizeof(struct sctp_assoc_value); 4901 4902 if (copy_from_user(¶ms, optval, len)) 4903 return -EFAULT; 4904 4905 sp = sctp_sk(sk); 4906 4907 if (params.assoc_id != 0) { 4908 asoc = sctp_id2assoc(sk, params.assoc_id); 4909 if (!asoc) 4910 return -EINVAL; 4911 params.assoc_value = asoc->default_rcv_context; 4912 } else { 4913 params.assoc_value = sp->default_rcv_context; 4914 } 4915 4916 if (put_user(len, optlen)) 4917 return -EFAULT; 4918 if (copy_to_user(optval, ¶ms, len)) 4919 return -EFAULT; 4920 4921 return 0; 4922 } 4923 4924 /* 4925 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG) 4926 * 4927 * This socket option specifies the maximum size to put in any outgoing 4928 * SCTP chunk. If a message is larger than this size it will be 4929 * fragmented by SCTP into the specified size. Note that the underlying 4930 * SCTP implementation may fragment into smaller sized chunks when the 4931 * PMTU of the underlying association is smaller than the value set by 4932 * the user. 4933 */ 4934 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 4935 char __user *optval, int __user *optlen) 4936 { 4937 int val; 4938 4939 if (len < sizeof(int)) 4940 return -EINVAL; 4941 4942 len = sizeof(int); 4943 4944 val = sctp_sk(sk)->user_frag; 4945 if (put_user(len, optlen)) 4946 return -EFAULT; 4947 if (copy_to_user(optval, &val, len)) 4948 return -EFAULT; 4949 4950 return 0; 4951 } 4952 4953 /* 4954 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 4955 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 4956 */ 4957 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 4958 char __user *optval, int __user *optlen) 4959 { 4960 int val; 4961 4962 if (len < sizeof(int)) 4963 return -EINVAL; 4964 4965 len = sizeof(int); 4966 4967 val = sctp_sk(sk)->frag_interleave; 4968 if (put_user(len, optlen)) 4969 return -EFAULT; 4970 if (copy_to_user(optval, &val, len)) 4971 return -EFAULT; 4972 4973 return 0; 4974 } 4975 4976 /* 4977 * 7.1.25. Set or Get the sctp partial delivery point 4978 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 4979 */ 4980 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 4981 char __user *optval, 4982 int __user *optlen) 4983 { 4984 u32 val; 4985 4986 if (len < sizeof(u32)) 4987 return -EINVAL; 4988 4989 len = sizeof(u32); 4990 4991 val = sctp_sk(sk)->pd_point; 4992 if (put_user(len, optlen)) 4993 return -EFAULT; 4994 if (copy_to_user(optval, &val, len)) 4995 return -EFAULT; 4996 4997 return -ENOTSUPP; 4998 } 4999 5000 /* 5001 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 5002 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 5003 */ 5004 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 5005 char __user *optval, 5006 int __user *optlen) 5007 { 5008 int val; 5009 5010 if (len < sizeof(int)) 5011 return -EINVAL; 5012 5013 len = sizeof(int); 5014 5015 val = sctp_sk(sk)->max_burst; 5016 if (put_user(len, optlen)) 5017 return -EFAULT; 5018 if (copy_to_user(optval, &val, len)) 5019 return -EFAULT; 5020 5021 return -ENOTSUPP; 5022 } 5023 5024 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 5025 char __user *optval, int __user *optlen) 5026 { 5027 struct sctp_hmac_algo_param *hmacs; 5028 __u16 param_len; 5029 5030 hmacs = sctp_sk(sk)->ep->auth_hmacs_list; 5031 param_len = ntohs(hmacs->param_hdr.length); 5032 5033 if (len < param_len) 5034 return -EINVAL; 5035 if (put_user(len, optlen)) 5036 return -EFAULT; 5037 if (copy_to_user(optval, hmacs->hmac_ids, len)) 5038 return -EFAULT; 5039 5040 return 0; 5041 } 5042 5043 static int sctp_getsockopt_active_key(struct sock *sk, int len, 5044 char __user *optval, int __user *optlen) 5045 { 5046 struct sctp_authkeyid val; 5047 struct sctp_association *asoc; 5048 5049 if (len < sizeof(struct sctp_authkeyid)) 5050 return -EINVAL; 5051 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 5052 return -EFAULT; 5053 5054 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 5055 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 5056 return -EINVAL; 5057 5058 if (asoc) 5059 val.scact_keynumber = asoc->active_key_id; 5060 else 5061 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id; 5062 5063 return 0; 5064 } 5065 5066 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 5067 char __user *optval, int __user *optlen) 5068 { 5069 struct sctp_authchunks __user *p = (void __user *)optval; 5070 struct sctp_authchunks val; 5071 struct sctp_association *asoc; 5072 struct sctp_chunks_param *ch; 5073 char __user *to; 5074 5075 if (len <= sizeof(struct sctp_authchunks)) 5076 return -EINVAL; 5077 5078 if (copy_from_user(&val, p, sizeof(struct sctp_authchunks))) 5079 return -EFAULT; 5080 5081 to = p->gauth_chunks; 5082 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5083 if (!asoc) 5084 return -EINVAL; 5085 5086 ch = asoc->peer.peer_chunks; 5087 5088 /* See if the user provided enough room for all the data */ 5089 if (len < ntohs(ch->param_hdr.length)) 5090 return -EINVAL; 5091 5092 len = ntohs(ch->param_hdr.length); 5093 if (put_user(len, optlen)) 5094 return -EFAULT; 5095 if (copy_to_user(to, ch->chunks, len)) 5096 return -EFAULT; 5097 5098 return 0; 5099 } 5100 5101 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 5102 char __user *optval, int __user *optlen) 5103 { 5104 struct sctp_authchunks __user *p = (void __user *)optval; 5105 struct sctp_authchunks val; 5106 struct sctp_association *asoc; 5107 struct sctp_chunks_param *ch; 5108 char __user *to; 5109 5110 if (len <= sizeof(struct sctp_authchunks)) 5111 return -EINVAL; 5112 5113 if (copy_from_user(&val, p, sizeof(struct sctp_authchunks))) 5114 return -EFAULT; 5115 5116 to = p->gauth_chunks; 5117 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5118 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 5119 return -EINVAL; 5120 5121 if (asoc) 5122 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks; 5123 else 5124 ch = sctp_sk(sk)->ep->auth_chunk_list; 5125 5126 if (len < ntohs(ch->param_hdr.length)) 5127 return -EINVAL; 5128 5129 len = ntohs(ch->param_hdr.length); 5130 if (put_user(len, optlen)) 5131 return -EFAULT; 5132 if (copy_to_user(to, ch->chunks, len)) 5133 return -EFAULT; 5134 5135 return 0; 5136 } 5137 5138 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname, 5139 char __user *optval, int __user *optlen) 5140 { 5141 int retval = 0; 5142 int len; 5143 5144 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n", 5145 sk, optname); 5146 5147 /* I can hardly begin to describe how wrong this is. This is 5148 * so broken as to be worse than useless. The API draft 5149 * REALLY is NOT helpful here... I am not convinced that the 5150 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 5151 * are at all well-founded. 5152 */ 5153 if (level != SOL_SCTP) { 5154 struct sctp_af *af = sctp_sk(sk)->pf->af; 5155 5156 retval = af->getsockopt(sk, level, optname, optval, optlen); 5157 return retval; 5158 } 5159 5160 if (get_user(len, optlen)) 5161 return -EFAULT; 5162 5163 sctp_lock_sock(sk); 5164 5165 switch (optname) { 5166 case SCTP_STATUS: 5167 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 5168 break; 5169 case SCTP_DISABLE_FRAGMENTS: 5170 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 5171 optlen); 5172 break; 5173 case SCTP_EVENTS: 5174 retval = sctp_getsockopt_events(sk, len, optval, optlen); 5175 break; 5176 case SCTP_AUTOCLOSE: 5177 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 5178 break; 5179 case SCTP_SOCKOPT_PEELOFF: 5180 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 5181 break; 5182 case SCTP_PEER_ADDR_PARAMS: 5183 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 5184 optlen); 5185 break; 5186 case SCTP_DELAYED_ACK_TIME: 5187 retval = sctp_getsockopt_delayed_ack_time(sk, len, optval, 5188 optlen); 5189 break; 5190 case SCTP_INITMSG: 5191 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 5192 break; 5193 case SCTP_GET_PEER_ADDRS_NUM_OLD: 5194 retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval, 5195 optlen); 5196 break; 5197 case SCTP_GET_LOCAL_ADDRS_NUM_OLD: 5198 retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval, 5199 optlen); 5200 break; 5201 case SCTP_GET_PEER_ADDRS_OLD: 5202 retval = sctp_getsockopt_peer_addrs_old(sk, len, optval, 5203 optlen); 5204 break; 5205 case SCTP_GET_LOCAL_ADDRS_OLD: 5206 retval = sctp_getsockopt_local_addrs_old(sk, len, optval, 5207 optlen); 5208 break; 5209 case SCTP_GET_PEER_ADDRS: 5210 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 5211 optlen); 5212 break; 5213 case SCTP_GET_LOCAL_ADDRS: 5214 retval = sctp_getsockopt_local_addrs(sk, len, optval, 5215 optlen); 5216 break; 5217 case SCTP_DEFAULT_SEND_PARAM: 5218 retval = sctp_getsockopt_default_send_param(sk, len, 5219 optval, optlen); 5220 break; 5221 case SCTP_PRIMARY_ADDR: 5222 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 5223 break; 5224 case SCTP_NODELAY: 5225 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 5226 break; 5227 case SCTP_RTOINFO: 5228 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 5229 break; 5230 case SCTP_ASSOCINFO: 5231 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 5232 break; 5233 case SCTP_I_WANT_MAPPED_V4_ADDR: 5234 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 5235 break; 5236 case SCTP_MAXSEG: 5237 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 5238 break; 5239 case SCTP_GET_PEER_ADDR_INFO: 5240 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 5241 optlen); 5242 break; 5243 case SCTP_ADAPTATION_LAYER: 5244 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 5245 optlen); 5246 break; 5247 case SCTP_CONTEXT: 5248 retval = sctp_getsockopt_context(sk, len, optval, optlen); 5249 break; 5250 case SCTP_FRAGMENT_INTERLEAVE: 5251 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 5252 optlen); 5253 break; 5254 case SCTP_PARTIAL_DELIVERY_POINT: 5255 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 5256 optlen); 5257 break; 5258 case SCTP_MAX_BURST: 5259 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 5260 break; 5261 case SCTP_AUTH_KEY: 5262 case SCTP_AUTH_CHUNK: 5263 case SCTP_AUTH_DELETE_KEY: 5264 retval = -EOPNOTSUPP; 5265 break; 5266 case SCTP_HMAC_IDENT: 5267 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 5268 break; 5269 case SCTP_AUTH_ACTIVE_KEY: 5270 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 5271 break; 5272 case SCTP_PEER_AUTH_CHUNKS: 5273 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 5274 optlen); 5275 break; 5276 case SCTP_LOCAL_AUTH_CHUNKS: 5277 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 5278 optlen); 5279 break; 5280 default: 5281 retval = -ENOPROTOOPT; 5282 break; 5283 } 5284 5285 sctp_release_sock(sk); 5286 return retval; 5287 } 5288 5289 static void sctp_hash(struct sock *sk) 5290 { 5291 /* STUB */ 5292 } 5293 5294 static void sctp_unhash(struct sock *sk) 5295 { 5296 /* STUB */ 5297 } 5298 5299 /* Check if port is acceptable. Possibly find first available port. 5300 * 5301 * The port hash table (contained in the 'global' SCTP protocol storage 5302 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 5303 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 5304 * list (the list number is the port number hashed out, so as you 5305 * would expect from a hash function, all the ports in a given list have 5306 * such a number that hashes out to the same list number; you were 5307 * expecting that, right?); so each list has a set of ports, with a 5308 * link to the socket (struct sock) that uses it, the port number and 5309 * a fastreuse flag (FIXME: NPI ipg). 5310 */ 5311 static struct sctp_bind_bucket *sctp_bucket_create( 5312 struct sctp_bind_hashbucket *head, unsigned short snum); 5313 5314 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 5315 { 5316 struct sctp_bind_hashbucket *head; /* hash list */ 5317 struct sctp_bind_bucket *pp; /* hash list port iterator */ 5318 struct hlist_node *node; 5319 unsigned short snum; 5320 int ret; 5321 5322 snum = ntohs(addr->v4.sin_port); 5323 5324 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum); 5325 sctp_local_bh_disable(); 5326 5327 if (snum == 0) { 5328 /* Search for an available port. */ 5329 int low, high, remaining, index; 5330 unsigned int rover; 5331 5332 inet_get_local_port_range(&low, &high); 5333 remaining = (high - low) + 1; 5334 rover = net_random() % remaining + low; 5335 5336 do { 5337 rover++; 5338 if ((rover < low) || (rover > high)) 5339 rover = low; 5340 index = sctp_phashfn(rover); 5341 head = &sctp_port_hashtable[index]; 5342 sctp_spin_lock(&head->lock); 5343 sctp_for_each_hentry(pp, node, &head->chain) 5344 if (pp->port == rover) 5345 goto next; 5346 break; 5347 next: 5348 sctp_spin_unlock(&head->lock); 5349 } while (--remaining > 0); 5350 5351 /* Exhausted local port range during search? */ 5352 ret = 1; 5353 if (remaining <= 0) 5354 goto fail; 5355 5356 /* OK, here is the one we will use. HEAD (the port 5357 * hash table list entry) is non-NULL and we hold it's 5358 * mutex. 5359 */ 5360 snum = rover; 5361 } else { 5362 /* We are given an specific port number; we verify 5363 * that it is not being used. If it is used, we will 5364 * exahust the search in the hash list corresponding 5365 * to the port number (snum) - we detect that with the 5366 * port iterator, pp being NULL. 5367 */ 5368 head = &sctp_port_hashtable[sctp_phashfn(snum)]; 5369 sctp_spin_lock(&head->lock); 5370 sctp_for_each_hentry(pp, node, &head->chain) { 5371 if (pp->port == snum) 5372 goto pp_found; 5373 } 5374 } 5375 pp = NULL; 5376 goto pp_not_found; 5377 pp_found: 5378 if (!hlist_empty(&pp->owner)) { 5379 /* We had a port hash table hit - there is an 5380 * available port (pp != NULL) and it is being 5381 * used by other socket (pp->owner not empty); that other 5382 * socket is going to be sk2. 5383 */ 5384 int reuse = sk->sk_reuse; 5385 struct sock *sk2; 5386 struct hlist_node *node; 5387 5388 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n"); 5389 if (pp->fastreuse && sk->sk_reuse && 5390 sk->sk_state != SCTP_SS_LISTENING) 5391 goto success; 5392 5393 /* Run through the list of sockets bound to the port 5394 * (pp->port) [via the pointers bind_next and 5395 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 5396 * we get the endpoint they describe and run through 5397 * the endpoint's list of IP (v4 or v6) addresses, 5398 * comparing each of the addresses with the address of 5399 * the socket sk. If we find a match, then that means 5400 * that this port/socket (sk) combination are already 5401 * in an endpoint. 5402 */ 5403 sk_for_each_bound(sk2, node, &pp->owner) { 5404 struct sctp_endpoint *ep2; 5405 ep2 = sctp_sk(sk2)->ep; 5406 5407 if (reuse && sk2->sk_reuse && 5408 sk2->sk_state != SCTP_SS_LISTENING) 5409 continue; 5410 5411 if (sctp_bind_addr_match(&ep2->base.bind_addr, addr, 5412 sctp_sk(sk))) { 5413 ret = (long)sk2; 5414 goto fail_unlock; 5415 } 5416 } 5417 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n"); 5418 } 5419 pp_not_found: 5420 /* If there was a hash table miss, create a new port. */ 5421 ret = 1; 5422 if (!pp && !(pp = sctp_bucket_create(head, snum))) 5423 goto fail_unlock; 5424 5425 /* In either case (hit or miss), make sure fastreuse is 1 only 5426 * if sk->sk_reuse is too (that is, if the caller requested 5427 * SO_REUSEADDR on this socket -sk-). 5428 */ 5429 if (hlist_empty(&pp->owner)) { 5430 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 5431 pp->fastreuse = 1; 5432 else 5433 pp->fastreuse = 0; 5434 } else if (pp->fastreuse && 5435 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 5436 pp->fastreuse = 0; 5437 5438 /* We are set, so fill up all the data in the hash table 5439 * entry, tie the socket list information with the rest of the 5440 * sockets FIXME: Blurry, NPI (ipg). 5441 */ 5442 success: 5443 if (!sctp_sk(sk)->bind_hash) { 5444 inet_sk(sk)->num = snum; 5445 sk_add_bind_node(sk, &pp->owner); 5446 sctp_sk(sk)->bind_hash = pp; 5447 } 5448 ret = 0; 5449 5450 fail_unlock: 5451 sctp_spin_unlock(&head->lock); 5452 5453 fail: 5454 sctp_local_bh_enable(); 5455 return ret; 5456 } 5457 5458 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 5459 * port is requested. 5460 */ 5461 static int sctp_get_port(struct sock *sk, unsigned short snum) 5462 { 5463 long ret; 5464 union sctp_addr addr; 5465 struct sctp_af *af = sctp_sk(sk)->pf->af; 5466 5467 /* Set up a dummy address struct from the sk. */ 5468 af->from_sk(&addr, sk); 5469 addr.v4.sin_port = htons(snum); 5470 5471 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 5472 ret = sctp_get_port_local(sk, &addr); 5473 5474 return (ret ? 1 : 0); 5475 } 5476 5477 /* 5478 * 3.1.3 listen() - UDP Style Syntax 5479 * 5480 * By default, new associations are not accepted for UDP style sockets. 5481 * An application uses listen() to mark a socket as being able to 5482 * accept new associations. 5483 */ 5484 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog) 5485 { 5486 struct sctp_sock *sp = sctp_sk(sk); 5487 struct sctp_endpoint *ep = sp->ep; 5488 5489 /* Only UDP style sockets that are not peeled off are allowed to 5490 * listen(). 5491 */ 5492 if (!sctp_style(sk, UDP)) 5493 return -EINVAL; 5494 5495 /* If backlog is zero, disable listening. */ 5496 if (!backlog) { 5497 if (sctp_sstate(sk, CLOSED)) 5498 return 0; 5499 5500 sctp_unhash_endpoint(ep); 5501 sk->sk_state = SCTP_SS_CLOSED; 5502 return 0; 5503 } 5504 5505 /* Return if we are already listening. */ 5506 if (sctp_sstate(sk, LISTENING)) 5507 return 0; 5508 5509 /* 5510 * If a bind() or sctp_bindx() is not called prior to a listen() 5511 * call that allows new associations to be accepted, the system 5512 * picks an ephemeral port and will choose an address set equivalent 5513 * to binding with a wildcard address. 5514 * 5515 * This is not currently spelled out in the SCTP sockets 5516 * extensions draft, but follows the practice as seen in TCP 5517 * sockets. 5518 * 5519 * Additionally, turn off fastreuse flag since we are not listening 5520 */ 5521 sk->sk_state = SCTP_SS_LISTENING; 5522 if (!ep->base.bind_addr.port) { 5523 if (sctp_autobind(sk)) 5524 return -EAGAIN; 5525 } else 5526 sctp_sk(sk)->bind_hash->fastreuse = 0; 5527 5528 sctp_hash_endpoint(ep); 5529 return 0; 5530 } 5531 5532 /* 5533 * 4.1.3 listen() - TCP Style Syntax 5534 * 5535 * Applications uses listen() to ready the SCTP endpoint for accepting 5536 * inbound associations. 5537 */ 5538 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog) 5539 { 5540 struct sctp_sock *sp = sctp_sk(sk); 5541 struct sctp_endpoint *ep = sp->ep; 5542 5543 /* If backlog is zero, disable listening. */ 5544 if (!backlog) { 5545 if (sctp_sstate(sk, CLOSED)) 5546 return 0; 5547 5548 sctp_unhash_endpoint(ep); 5549 sk->sk_state = SCTP_SS_CLOSED; 5550 return 0; 5551 } 5552 5553 if (sctp_sstate(sk, LISTENING)) 5554 return 0; 5555 5556 /* 5557 * If a bind() or sctp_bindx() is not called prior to a listen() 5558 * call that allows new associations to be accepted, the system 5559 * picks an ephemeral port and will choose an address set equivalent 5560 * to binding with a wildcard address. 5561 * 5562 * This is not currently spelled out in the SCTP sockets 5563 * extensions draft, but follows the practice as seen in TCP 5564 * sockets. 5565 */ 5566 sk->sk_state = SCTP_SS_LISTENING; 5567 if (!ep->base.bind_addr.port) { 5568 if (sctp_autobind(sk)) 5569 return -EAGAIN; 5570 } else 5571 sctp_sk(sk)->bind_hash->fastreuse = 0; 5572 5573 sk->sk_max_ack_backlog = backlog; 5574 sctp_hash_endpoint(ep); 5575 return 0; 5576 } 5577 5578 /* 5579 * Move a socket to LISTENING state. 5580 */ 5581 int sctp_inet_listen(struct socket *sock, int backlog) 5582 { 5583 struct sock *sk = sock->sk; 5584 struct crypto_hash *tfm = NULL; 5585 int err = -EINVAL; 5586 5587 if (unlikely(backlog < 0)) 5588 goto out; 5589 5590 sctp_lock_sock(sk); 5591 5592 if (sock->state != SS_UNCONNECTED) 5593 goto out; 5594 5595 /* Allocate HMAC for generating cookie. */ 5596 if (sctp_hmac_alg) { 5597 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC); 5598 if (IS_ERR(tfm)) { 5599 if (net_ratelimit()) { 5600 printk(KERN_INFO 5601 "SCTP: failed to load transform for %s: %ld\n", 5602 sctp_hmac_alg, PTR_ERR(tfm)); 5603 } 5604 err = -ENOSYS; 5605 goto out; 5606 } 5607 } 5608 5609 switch (sock->type) { 5610 case SOCK_SEQPACKET: 5611 err = sctp_seqpacket_listen(sk, backlog); 5612 break; 5613 case SOCK_STREAM: 5614 err = sctp_stream_listen(sk, backlog); 5615 break; 5616 default: 5617 break; 5618 } 5619 5620 if (err) 5621 goto cleanup; 5622 5623 /* Store away the transform reference. */ 5624 sctp_sk(sk)->hmac = tfm; 5625 out: 5626 sctp_release_sock(sk); 5627 return err; 5628 cleanup: 5629 crypto_free_hash(tfm); 5630 goto out; 5631 } 5632 5633 /* 5634 * This function is done by modeling the current datagram_poll() and the 5635 * tcp_poll(). Note that, based on these implementations, we don't 5636 * lock the socket in this function, even though it seems that, 5637 * ideally, locking or some other mechanisms can be used to ensure 5638 * the integrity of the counters (sndbuf and wmem_alloc) used 5639 * in this place. We assume that we don't need locks either until proven 5640 * otherwise. 5641 * 5642 * Another thing to note is that we include the Async I/O support 5643 * here, again, by modeling the current TCP/UDP code. We don't have 5644 * a good way to test with it yet. 5645 */ 5646 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 5647 { 5648 struct sock *sk = sock->sk; 5649 struct sctp_sock *sp = sctp_sk(sk); 5650 unsigned int mask; 5651 5652 poll_wait(file, sk->sk_sleep, wait); 5653 5654 /* A TCP-style listening socket becomes readable when the accept queue 5655 * is not empty. 5656 */ 5657 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 5658 return (!list_empty(&sp->ep->asocs)) ? 5659 (POLLIN | POLLRDNORM) : 0; 5660 5661 mask = 0; 5662 5663 /* Is there any exceptional events? */ 5664 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 5665 mask |= POLLERR; 5666 if (sk->sk_shutdown & RCV_SHUTDOWN) 5667 mask |= POLLRDHUP; 5668 if (sk->sk_shutdown == SHUTDOWN_MASK) 5669 mask |= POLLHUP; 5670 5671 /* Is it readable? Reconsider this code with TCP-style support. */ 5672 if (!skb_queue_empty(&sk->sk_receive_queue) || 5673 (sk->sk_shutdown & RCV_SHUTDOWN)) 5674 mask |= POLLIN | POLLRDNORM; 5675 5676 /* The association is either gone or not ready. */ 5677 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 5678 return mask; 5679 5680 /* Is it writable? */ 5681 if (sctp_writeable(sk)) { 5682 mask |= POLLOUT | POLLWRNORM; 5683 } else { 5684 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 5685 /* 5686 * Since the socket is not locked, the buffer 5687 * might be made available after the writeable check and 5688 * before the bit is set. This could cause a lost I/O 5689 * signal. tcp_poll() has a race breaker for this race 5690 * condition. Based on their implementation, we put 5691 * in the following code to cover it as well. 5692 */ 5693 if (sctp_writeable(sk)) 5694 mask |= POLLOUT | POLLWRNORM; 5695 } 5696 return mask; 5697 } 5698 5699 /******************************************************************** 5700 * 2nd Level Abstractions 5701 ********************************************************************/ 5702 5703 static struct sctp_bind_bucket *sctp_bucket_create( 5704 struct sctp_bind_hashbucket *head, unsigned short snum) 5705 { 5706 struct sctp_bind_bucket *pp; 5707 5708 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 5709 SCTP_DBG_OBJCNT_INC(bind_bucket); 5710 if (pp) { 5711 pp->port = snum; 5712 pp->fastreuse = 0; 5713 INIT_HLIST_HEAD(&pp->owner); 5714 hlist_add_head(&pp->node, &head->chain); 5715 } 5716 return pp; 5717 } 5718 5719 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 5720 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 5721 { 5722 if (pp && hlist_empty(&pp->owner)) { 5723 __hlist_del(&pp->node); 5724 kmem_cache_free(sctp_bucket_cachep, pp); 5725 SCTP_DBG_OBJCNT_DEC(bind_bucket); 5726 } 5727 } 5728 5729 /* Release this socket's reference to a local port. */ 5730 static inline void __sctp_put_port(struct sock *sk) 5731 { 5732 struct sctp_bind_hashbucket *head = 5733 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)]; 5734 struct sctp_bind_bucket *pp; 5735 5736 sctp_spin_lock(&head->lock); 5737 pp = sctp_sk(sk)->bind_hash; 5738 __sk_del_bind_node(sk); 5739 sctp_sk(sk)->bind_hash = NULL; 5740 inet_sk(sk)->num = 0; 5741 sctp_bucket_destroy(pp); 5742 sctp_spin_unlock(&head->lock); 5743 } 5744 5745 void sctp_put_port(struct sock *sk) 5746 { 5747 sctp_local_bh_disable(); 5748 __sctp_put_port(sk); 5749 sctp_local_bh_enable(); 5750 } 5751 5752 /* 5753 * The system picks an ephemeral port and choose an address set equivalent 5754 * to binding with a wildcard address. 5755 * One of those addresses will be the primary address for the association. 5756 * This automatically enables the multihoming capability of SCTP. 5757 */ 5758 static int sctp_autobind(struct sock *sk) 5759 { 5760 union sctp_addr autoaddr; 5761 struct sctp_af *af; 5762 __be16 port; 5763 5764 /* Initialize a local sockaddr structure to INADDR_ANY. */ 5765 af = sctp_sk(sk)->pf->af; 5766 5767 port = htons(inet_sk(sk)->num); 5768 af->inaddr_any(&autoaddr, port); 5769 5770 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 5771 } 5772 5773 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 5774 * 5775 * From RFC 2292 5776 * 4.2 The cmsghdr Structure * 5777 * 5778 * When ancillary data is sent or received, any number of ancillary data 5779 * objects can be specified by the msg_control and msg_controllen members of 5780 * the msghdr structure, because each object is preceded by 5781 * a cmsghdr structure defining the object's length (the cmsg_len member). 5782 * Historically Berkeley-derived implementations have passed only one object 5783 * at a time, but this API allows multiple objects to be 5784 * passed in a single call to sendmsg() or recvmsg(). The following example 5785 * shows two ancillary data objects in a control buffer. 5786 * 5787 * |<--------------------------- msg_controllen -------------------------->| 5788 * | | 5789 * 5790 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 5791 * 5792 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 5793 * | | | 5794 * 5795 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 5796 * 5797 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 5798 * | | | | | 5799 * 5800 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 5801 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 5802 * 5803 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 5804 * 5805 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 5806 * ^ 5807 * | 5808 * 5809 * msg_control 5810 * points here 5811 */ 5812 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg, 5813 sctp_cmsgs_t *cmsgs) 5814 { 5815 struct cmsghdr *cmsg; 5816 5817 for (cmsg = CMSG_FIRSTHDR(msg); 5818 cmsg != NULL; 5819 cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) { 5820 if (!CMSG_OK(msg, cmsg)) 5821 return -EINVAL; 5822 5823 /* Should we parse this header or ignore? */ 5824 if (cmsg->cmsg_level != IPPROTO_SCTP) 5825 continue; 5826 5827 /* Strictly check lengths following example in SCM code. */ 5828 switch (cmsg->cmsg_type) { 5829 case SCTP_INIT: 5830 /* SCTP Socket API Extension 5831 * 5.2.1 SCTP Initiation Structure (SCTP_INIT) 5832 * 5833 * This cmsghdr structure provides information for 5834 * initializing new SCTP associations with sendmsg(). 5835 * The SCTP_INITMSG socket option uses this same data 5836 * structure. This structure is not used for 5837 * recvmsg(). 5838 * 5839 * cmsg_level cmsg_type cmsg_data[] 5840 * ------------ ------------ ---------------------- 5841 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 5842 */ 5843 if (cmsg->cmsg_len != 5844 CMSG_LEN(sizeof(struct sctp_initmsg))) 5845 return -EINVAL; 5846 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); 5847 break; 5848 5849 case SCTP_SNDRCV: 5850 /* SCTP Socket API Extension 5851 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) 5852 * 5853 * This cmsghdr structure specifies SCTP options for 5854 * sendmsg() and describes SCTP header information 5855 * about a received message through recvmsg(). 5856 * 5857 * cmsg_level cmsg_type cmsg_data[] 5858 * ------------ ------------ ---------------------- 5859 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 5860 */ 5861 if (cmsg->cmsg_len != 5862 CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 5863 return -EINVAL; 5864 5865 cmsgs->info = 5866 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); 5867 5868 /* Minimally, validate the sinfo_flags. */ 5869 if (cmsgs->info->sinfo_flags & 5870 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 5871 SCTP_ABORT | SCTP_EOF)) 5872 return -EINVAL; 5873 break; 5874 5875 default: 5876 return -EINVAL; 5877 } 5878 } 5879 return 0; 5880 } 5881 5882 /* 5883 * Wait for a packet.. 5884 * Note: This function is the same function as in core/datagram.c 5885 * with a few modifications to make lksctp work. 5886 */ 5887 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p) 5888 { 5889 int error; 5890 DEFINE_WAIT(wait); 5891 5892 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 5893 5894 /* Socket errors? */ 5895 error = sock_error(sk); 5896 if (error) 5897 goto out; 5898 5899 if (!skb_queue_empty(&sk->sk_receive_queue)) 5900 goto ready; 5901 5902 /* Socket shut down? */ 5903 if (sk->sk_shutdown & RCV_SHUTDOWN) 5904 goto out; 5905 5906 /* Sequenced packets can come disconnected. If so we report the 5907 * problem. 5908 */ 5909 error = -ENOTCONN; 5910 5911 /* Is there a good reason to think that we may receive some data? */ 5912 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 5913 goto out; 5914 5915 /* Handle signals. */ 5916 if (signal_pending(current)) 5917 goto interrupted; 5918 5919 /* Let another process have a go. Since we are going to sleep 5920 * anyway. Note: This may cause odd behaviors if the message 5921 * does not fit in the user's buffer, but this seems to be the 5922 * only way to honor MSG_DONTWAIT realistically. 5923 */ 5924 sctp_release_sock(sk); 5925 *timeo_p = schedule_timeout(*timeo_p); 5926 sctp_lock_sock(sk); 5927 5928 ready: 5929 finish_wait(sk->sk_sleep, &wait); 5930 return 0; 5931 5932 interrupted: 5933 error = sock_intr_errno(*timeo_p); 5934 5935 out: 5936 finish_wait(sk->sk_sleep, &wait); 5937 *err = error; 5938 return error; 5939 } 5940 5941 /* Receive a datagram. 5942 * Note: This is pretty much the same routine as in core/datagram.c 5943 * with a few changes to make lksctp work. 5944 */ 5945 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 5946 int noblock, int *err) 5947 { 5948 int error; 5949 struct sk_buff *skb; 5950 long timeo; 5951 5952 timeo = sock_rcvtimeo(sk, noblock); 5953 5954 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n", 5955 timeo, MAX_SCHEDULE_TIMEOUT); 5956 5957 do { 5958 /* Again only user level code calls this function, 5959 * so nothing interrupt level 5960 * will suddenly eat the receive_queue. 5961 * 5962 * Look at current nfs client by the way... 5963 * However, this function was corrent in any case. 8) 5964 */ 5965 if (flags & MSG_PEEK) { 5966 spin_lock_bh(&sk->sk_receive_queue.lock); 5967 skb = skb_peek(&sk->sk_receive_queue); 5968 if (skb) 5969 atomic_inc(&skb->users); 5970 spin_unlock_bh(&sk->sk_receive_queue.lock); 5971 } else { 5972 skb = skb_dequeue(&sk->sk_receive_queue); 5973 } 5974 5975 if (skb) 5976 return skb; 5977 5978 /* Caller is allowed not to check sk->sk_err before calling. */ 5979 error = sock_error(sk); 5980 if (error) 5981 goto no_packet; 5982 5983 if (sk->sk_shutdown & RCV_SHUTDOWN) 5984 break; 5985 5986 /* User doesn't want to wait. */ 5987 error = -EAGAIN; 5988 if (!timeo) 5989 goto no_packet; 5990 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 5991 5992 return NULL; 5993 5994 no_packet: 5995 *err = error; 5996 return NULL; 5997 } 5998 5999 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 6000 static void __sctp_write_space(struct sctp_association *asoc) 6001 { 6002 struct sock *sk = asoc->base.sk; 6003 struct socket *sock = sk->sk_socket; 6004 6005 if ((sctp_wspace(asoc) > 0) && sock) { 6006 if (waitqueue_active(&asoc->wait)) 6007 wake_up_interruptible(&asoc->wait); 6008 6009 if (sctp_writeable(sk)) { 6010 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 6011 wake_up_interruptible(sk->sk_sleep); 6012 6013 /* Note that we try to include the Async I/O support 6014 * here by modeling from the current TCP/UDP code. 6015 * We have not tested with it yet. 6016 */ 6017 if (sock->fasync_list && 6018 !(sk->sk_shutdown & SEND_SHUTDOWN)) 6019 sock_wake_async(sock, 6020 SOCK_WAKE_SPACE, POLL_OUT); 6021 } 6022 } 6023 } 6024 6025 /* Do accounting for the sndbuf space. 6026 * Decrement the used sndbuf space of the corresponding association by the 6027 * data size which was just transmitted(freed). 6028 */ 6029 static void sctp_wfree(struct sk_buff *skb) 6030 { 6031 struct sctp_association *asoc; 6032 struct sctp_chunk *chunk; 6033 struct sock *sk; 6034 6035 /* Get the saved chunk pointer. */ 6036 chunk = *((struct sctp_chunk **)(skb->cb)); 6037 asoc = chunk->asoc; 6038 sk = asoc->base.sk; 6039 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 6040 sizeof(struct sk_buff) + 6041 sizeof(struct sctp_chunk); 6042 6043 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 6044 6045 /* 6046 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 6047 */ 6048 sk->sk_wmem_queued -= skb->truesize; 6049 sk_mem_uncharge(sk, skb->truesize); 6050 6051 sock_wfree(skb); 6052 __sctp_write_space(asoc); 6053 6054 sctp_association_put(asoc); 6055 } 6056 6057 /* Do accounting for the receive space on the socket. 6058 * Accounting for the association is done in ulpevent.c 6059 * We set this as a destructor for the cloned data skbs so that 6060 * accounting is done at the correct time. 6061 */ 6062 void sctp_sock_rfree(struct sk_buff *skb) 6063 { 6064 struct sock *sk = skb->sk; 6065 struct sctp_ulpevent *event = sctp_skb2event(skb); 6066 6067 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 6068 6069 /* 6070 * Mimic the behavior of sock_rfree 6071 */ 6072 sk_mem_uncharge(sk, event->rmem_len); 6073 } 6074 6075 6076 /* Helper function to wait for space in the sndbuf. */ 6077 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 6078 size_t msg_len) 6079 { 6080 struct sock *sk = asoc->base.sk; 6081 int err = 0; 6082 long current_timeo = *timeo_p; 6083 DEFINE_WAIT(wait); 6084 6085 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n", 6086 asoc, (long)(*timeo_p), msg_len); 6087 6088 /* Increment the association's refcnt. */ 6089 sctp_association_hold(asoc); 6090 6091 /* Wait on the association specific sndbuf space. */ 6092 for (;;) { 6093 prepare_to_wait_exclusive(&asoc->wait, &wait, 6094 TASK_INTERRUPTIBLE); 6095 if (!*timeo_p) 6096 goto do_nonblock; 6097 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6098 asoc->base.dead) 6099 goto do_error; 6100 if (signal_pending(current)) 6101 goto do_interrupted; 6102 if (msg_len <= sctp_wspace(asoc)) 6103 break; 6104 6105 /* Let another process have a go. Since we are going 6106 * to sleep anyway. 6107 */ 6108 sctp_release_sock(sk); 6109 current_timeo = schedule_timeout(current_timeo); 6110 BUG_ON(sk != asoc->base.sk); 6111 sctp_lock_sock(sk); 6112 6113 *timeo_p = current_timeo; 6114 } 6115 6116 out: 6117 finish_wait(&asoc->wait, &wait); 6118 6119 /* Release the association's refcnt. */ 6120 sctp_association_put(asoc); 6121 6122 return err; 6123 6124 do_error: 6125 err = -EPIPE; 6126 goto out; 6127 6128 do_interrupted: 6129 err = sock_intr_errno(*timeo_p); 6130 goto out; 6131 6132 do_nonblock: 6133 err = -EAGAIN; 6134 goto out; 6135 } 6136 6137 /* If socket sndbuf has changed, wake up all per association waiters. */ 6138 void sctp_write_space(struct sock *sk) 6139 { 6140 struct sctp_association *asoc; 6141 struct list_head *pos; 6142 6143 /* Wake up the tasks in each wait queue. */ 6144 list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) { 6145 asoc = list_entry(pos, struct sctp_association, asocs); 6146 __sctp_write_space(asoc); 6147 } 6148 } 6149 6150 /* Is there any sndbuf space available on the socket? 6151 * 6152 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 6153 * associations on the same socket. For a UDP-style socket with 6154 * multiple associations, it is possible for it to be "unwriteable" 6155 * prematurely. I assume that this is acceptable because 6156 * a premature "unwriteable" is better than an accidental "writeable" which 6157 * would cause an unwanted block under certain circumstances. For the 1-1 6158 * UDP-style sockets or TCP-style sockets, this code should work. 6159 * - Daisy 6160 */ 6161 static int sctp_writeable(struct sock *sk) 6162 { 6163 int amt = 0; 6164 6165 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 6166 if (amt < 0) 6167 amt = 0; 6168 return amt; 6169 } 6170 6171 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 6172 * returns immediately with EINPROGRESS. 6173 */ 6174 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 6175 { 6176 struct sock *sk = asoc->base.sk; 6177 int err = 0; 6178 long current_timeo = *timeo_p; 6179 DEFINE_WAIT(wait); 6180 6181 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc, 6182 (long)(*timeo_p)); 6183 6184 /* Increment the association's refcnt. */ 6185 sctp_association_hold(asoc); 6186 6187 for (;;) { 6188 prepare_to_wait_exclusive(&asoc->wait, &wait, 6189 TASK_INTERRUPTIBLE); 6190 if (!*timeo_p) 6191 goto do_nonblock; 6192 if (sk->sk_shutdown & RCV_SHUTDOWN) 6193 break; 6194 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6195 asoc->base.dead) 6196 goto do_error; 6197 if (signal_pending(current)) 6198 goto do_interrupted; 6199 6200 if (sctp_state(asoc, ESTABLISHED)) 6201 break; 6202 6203 /* Let another process have a go. Since we are going 6204 * to sleep anyway. 6205 */ 6206 sctp_release_sock(sk); 6207 current_timeo = schedule_timeout(current_timeo); 6208 sctp_lock_sock(sk); 6209 6210 *timeo_p = current_timeo; 6211 } 6212 6213 out: 6214 finish_wait(&asoc->wait, &wait); 6215 6216 /* Release the association's refcnt. */ 6217 sctp_association_put(asoc); 6218 6219 return err; 6220 6221 do_error: 6222 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 6223 err = -ETIMEDOUT; 6224 else 6225 err = -ECONNREFUSED; 6226 goto out; 6227 6228 do_interrupted: 6229 err = sock_intr_errno(*timeo_p); 6230 goto out; 6231 6232 do_nonblock: 6233 err = -EINPROGRESS; 6234 goto out; 6235 } 6236 6237 static int sctp_wait_for_accept(struct sock *sk, long timeo) 6238 { 6239 struct sctp_endpoint *ep; 6240 int err = 0; 6241 DEFINE_WAIT(wait); 6242 6243 ep = sctp_sk(sk)->ep; 6244 6245 6246 for (;;) { 6247 prepare_to_wait_exclusive(sk->sk_sleep, &wait, 6248 TASK_INTERRUPTIBLE); 6249 6250 if (list_empty(&ep->asocs)) { 6251 sctp_release_sock(sk); 6252 timeo = schedule_timeout(timeo); 6253 sctp_lock_sock(sk); 6254 } 6255 6256 err = -EINVAL; 6257 if (!sctp_sstate(sk, LISTENING)) 6258 break; 6259 6260 err = 0; 6261 if (!list_empty(&ep->asocs)) 6262 break; 6263 6264 err = sock_intr_errno(timeo); 6265 if (signal_pending(current)) 6266 break; 6267 6268 err = -EAGAIN; 6269 if (!timeo) 6270 break; 6271 } 6272 6273 finish_wait(sk->sk_sleep, &wait); 6274 6275 return err; 6276 } 6277 6278 static void sctp_wait_for_close(struct sock *sk, long timeout) 6279 { 6280 DEFINE_WAIT(wait); 6281 6282 do { 6283 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 6284 if (list_empty(&sctp_sk(sk)->ep->asocs)) 6285 break; 6286 sctp_release_sock(sk); 6287 timeout = schedule_timeout(timeout); 6288 sctp_lock_sock(sk); 6289 } while (!signal_pending(current) && timeout); 6290 6291 finish_wait(sk->sk_sleep, &wait); 6292 } 6293 6294 static void sctp_sock_rfree_frag(struct sk_buff *skb) 6295 { 6296 struct sk_buff *frag; 6297 6298 if (!skb->data_len) 6299 goto done; 6300 6301 /* Don't forget the fragments. */ 6302 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) 6303 sctp_sock_rfree_frag(frag); 6304 6305 done: 6306 sctp_sock_rfree(skb); 6307 } 6308 6309 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 6310 { 6311 struct sk_buff *frag; 6312 6313 if (!skb->data_len) 6314 goto done; 6315 6316 /* Don't forget the fragments. */ 6317 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) 6318 sctp_skb_set_owner_r_frag(frag, sk); 6319 6320 done: 6321 sctp_skb_set_owner_r(skb, sk); 6322 } 6323 6324 /* Populate the fields of the newsk from the oldsk and migrate the assoc 6325 * and its messages to the newsk. 6326 */ 6327 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 6328 struct sctp_association *assoc, 6329 sctp_socket_type_t type) 6330 { 6331 struct sctp_sock *oldsp = sctp_sk(oldsk); 6332 struct sctp_sock *newsp = sctp_sk(newsk); 6333 struct sctp_bind_bucket *pp; /* hash list port iterator */ 6334 struct sctp_endpoint *newep = newsp->ep; 6335 struct sk_buff *skb, *tmp; 6336 struct sctp_ulpevent *event; 6337 struct sctp_bind_hashbucket *head; 6338 6339 /* Migrate socket buffer sizes and all the socket level options to the 6340 * new socket. 6341 */ 6342 newsk->sk_sndbuf = oldsk->sk_sndbuf; 6343 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 6344 /* Brute force copy old sctp opt. */ 6345 inet_sk_copy_descendant(newsk, oldsk); 6346 6347 /* Restore the ep value that was overwritten with the above structure 6348 * copy. 6349 */ 6350 newsp->ep = newep; 6351 newsp->hmac = NULL; 6352 6353 /* Hook this new socket in to the bind_hash list. */ 6354 head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->num)]; 6355 sctp_local_bh_disable(); 6356 sctp_spin_lock(&head->lock); 6357 pp = sctp_sk(oldsk)->bind_hash; 6358 sk_add_bind_node(newsk, &pp->owner); 6359 sctp_sk(newsk)->bind_hash = pp; 6360 inet_sk(newsk)->num = inet_sk(oldsk)->num; 6361 sctp_spin_unlock(&head->lock); 6362 sctp_local_bh_enable(); 6363 6364 /* Copy the bind_addr list from the original endpoint to the new 6365 * endpoint so that we can handle restarts properly 6366 */ 6367 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 6368 &oldsp->ep->base.bind_addr, GFP_KERNEL); 6369 6370 /* Move any messages in the old socket's receive queue that are for the 6371 * peeled off association to the new socket's receive queue. 6372 */ 6373 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 6374 event = sctp_skb2event(skb); 6375 if (event->asoc == assoc) { 6376 sctp_sock_rfree_frag(skb); 6377 __skb_unlink(skb, &oldsk->sk_receive_queue); 6378 __skb_queue_tail(&newsk->sk_receive_queue, skb); 6379 sctp_skb_set_owner_r_frag(skb, newsk); 6380 } 6381 } 6382 6383 /* Clean up any messages pending delivery due to partial 6384 * delivery. Three cases: 6385 * 1) No partial deliver; no work. 6386 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 6387 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 6388 */ 6389 skb_queue_head_init(&newsp->pd_lobby); 6390 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 6391 6392 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 6393 struct sk_buff_head *queue; 6394 6395 /* Decide which queue to move pd_lobby skbs to. */ 6396 if (assoc->ulpq.pd_mode) { 6397 queue = &newsp->pd_lobby; 6398 } else 6399 queue = &newsk->sk_receive_queue; 6400 6401 /* Walk through the pd_lobby, looking for skbs that 6402 * need moved to the new socket. 6403 */ 6404 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 6405 event = sctp_skb2event(skb); 6406 if (event->asoc == assoc) { 6407 sctp_sock_rfree_frag(skb); 6408 __skb_unlink(skb, &oldsp->pd_lobby); 6409 __skb_queue_tail(queue, skb); 6410 sctp_skb_set_owner_r_frag(skb, newsk); 6411 } 6412 } 6413 6414 /* Clear up any skbs waiting for the partial 6415 * delivery to finish. 6416 */ 6417 if (assoc->ulpq.pd_mode) 6418 sctp_clear_pd(oldsk, NULL); 6419 6420 } 6421 6422 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) { 6423 sctp_sock_rfree_frag(skb); 6424 sctp_skb_set_owner_r_frag(skb, newsk); 6425 } 6426 6427 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) { 6428 sctp_sock_rfree_frag(skb); 6429 sctp_skb_set_owner_r_frag(skb, newsk); 6430 } 6431 6432 /* Set the type of socket to indicate that it is peeled off from the 6433 * original UDP-style socket or created with the accept() call on a 6434 * TCP-style socket.. 6435 */ 6436 newsp->type = type; 6437 6438 /* Mark the new socket "in-use" by the user so that any packets 6439 * that may arrive on the association after we've moved it are 6440 * queued to the backlog. This prevents a potential race between 6441 * backlog processing on the old socket and new-packet processing 6442 * on the new socket. 6443 * 6444 * The caller has just allocated newsk so we can guarantee that other 6445 * paths won't try to lock it and then oldsk. 6446 */ 6447 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 6448 sctp_assoc_migrate(assoc, newsk); 6449 6450 /* If the association on the newsk is already closed before accept() 6451 * is called, set RCV_SHUTDOWN flag. 6452 */ 6453 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 6454 newsk->sk_shutdown |= RCV_SHUTDOWN; 6455 6456 newsk->sk_state = SCTP_SS_ESTABLISHED; 6457 sctp_release_sock(newsk); 6458 } 6459 6460 6461 DEFINE_PROTO_INUSE(sctp) 6462 6463 /* This proto struct describes the ULP interface for SCTP. */ 6464 struct proto sctp_prot = { 6465 .name = "SCTP", 6466 .owner = THIS_MODULE, 6467 .close = sctp_close, 6468 .connect = sctp_connect, 6469 .disconnect = sctp_disconnect, 6470 .accept = sctp_accept, 6471 .ioctl = sctp_ioctl, 6472 .init = sctp_init_sock, 6473 .destroy = sctp_destroy_sock, 6474 .shutdown = sctp_shutdown, 6475 .setsockopt = sctp_setsockopt, 6476 .getsockopt = sctp_getsockopt, 6477 .sendmsg = sctp_sendmsg, 6478 .recvmsg = sctp_recvmsg, 6479 .bind = sctp_bind, 6480 .backlog_rcv = sctp_backlog_rcv, 6481 .hash = sctp_hash, 6482 .unhash = sctp_unhash, 6483 .get_port = sctp_get_port, 6484 .obj_size = sizeof(struct sctp_sock), 6485 .sysctl_mem = sysctl_sctp_mem, 6486 .sysctl_rmem = sysctl_sctp_rmem, 6487 .sysctl_wmem = sysctl_sctp_wmem, 6488 .memory_pressure = &sctp_memory_pressure, 6489 .enter_memory_pressure = sctp_enter_memory_pressure, 6490 .memory_allocated = &sctp_memory_allocated, 6491 .sockets_allocated = &sctp_sockets_allocated, 6492 REF_PROTO_INUSE(sctp) 6493 }; 6494 6495 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 6496 DEFINE_PROTO_INUSE(sctpv6) 6497 6498 struct proto sctpv6_prot = { 6499 .name = "SCTPv6", 6500 .owner = THIS_MODULE, 6501 .close = sctp_close, 6502 .connect = sctp_connect, 6503 .disconnect = sctp_disconnect, 6504 .accept = sctp_accept, 6505 .ioctl = sctp_ioctl, 6506 .init = sctp_init_sock, 6507 .destroy = sctp_destroy_sock, 6508 .shutdown = sctp_shutdown, 6509 .setsockopt = sctp_setsockopt, 6510 .getsockopt = sctp_getsockopt, 6511 .sendmsg = sctp_sendmsg, 6512 .recvmsg = sctp_recvmsg, 6513 .bind = sctp_bind, 6514 .backlog_rcv = sctp_backlog_rcv, 6515 .hash = sctp_hash, 6516 .unhash = sctp_unhash, 6517 .get_port = sctp_get_port, 6518 .obj_size = sizeof(struct sctp6_sock), 6519 .sysctl_mem = sysctl_sctp_mem, 6520 .sysctl_rmem = sysctl_sctp_rmem, 6521 .sysctl_wmem = sysctl_sctp_wmem, 6522 .memory_pressure = &sctp_memory_pressure, 6523 .enter_memory_pressure = sctp_enter_memory_pressure, 6524 .memory_allocated = &sctp_memory_allocated, 6525 .sockets_allocated = &sctp_sockets_allocated, 6526 REF_PROTO_INUSE(sctpv6) 6527 }; 6528 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */ 6529