1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * (C) Copyright IBM Corp. 2001, 2004 4 * Copyright (c) 1999-2000 Cisco, Inc. 5 * Copyright (c) 1999-2001 Motorola, Inc. 6 * Copyright (c) 2001-2003 Intel Corp. 7 * Copyright (c) 2001-2002 Nokia, Inc. 8 * Copyright (c) 2001 La Monte H.P. Yarroll 9 * 10 * This file is part of the SCTP kernel implementation 11 * 12 * These functions interface with the sockets layer to implement the 13 * SCTP Extensions for the Sockets API. 14 * 15 * Note that the descriptions from the specification are USER level 16 * functions--this file is the functions which populate the struct proto 17 * for SCTP which is the BOTTOM of the sockets interface. 18 * 19 * Please send any bug reports or fixes you make to the 20 * email address(es): 21 * lksctp developers <linux-sctp@vger.kernel.org> 22 * 23 * Written or modified by: 24 * La Monte H.P. Yarroll <piggy@acm.org> 25 * Narasimha Budihal <narsi@refcode.org> 26 * Karl Knutson <karl@athena.chicago.il.us> 27 * Jon Grimm <jgrimm@us.ibm.com> 28 * Xingang Guo <xingang.guo@intel.com> 29 * Daisy Chang <daisyc@us.ibm.com> 30 * Sridhar Samudrala <samudrala@us.ibm.com> 31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 32 * Ardelle Fan <ardelle.fan@intel.com> 33 * Ryan Layer <rmlayer@us.ibm.com> 34 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 35 * Kevin Gao <kevin.gao@intel.com> 36 */ 37 38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 39 40 #include <crypto/hash.h> 41 #include <linux/types.h> 42 #include <linux/kernel.h> 43 #include <linux/wait.h> 44 #include <linux/time.h> 45 #include <linux/sched/signal.h> 46 #include <linux/ip.h> 47 #include <linux/capability.h> 48 #include <linux/fcntl.h> 49 #include <linux/poll.h> 50 #include <linux/init.h> 51 #include <linux/slab.h> 52 #include <linux/file.h> 53 #include <linux/compat.h> 54 #include <linux/rhashtable.h> 55 56 #include <net/ip.h> 57 #include <net/icmp.h> 58 #include <net/route.h> 59 #include <net/ipv6.h> 60 #include <net/inet_common.h> 61 #include <net/busy_poll.h> 62 63 #include <linux/socket.h> /* for sa_family_t */ 64 #include <linux/export.h> 65 #include <net/sock.h> 66 #include <net/sctp/sctp.h> 67 #include <net/sctp/sm.h> 68 #include <net/sctp/stream_sched.h> 69 70 /* Forward declarations for internal helper functions. */ 71 static bool sctp_writeable(struct sock *sk); 72 static void sctp_wfree(struct sk_buff *skb); 73 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 74 size_t msg_len); 75 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 76 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 77 static int sctp_wait_for_accept(struct sock *sk, long timeo); 78 static void sctp_wait_for_close(struct sock *sk, long timeo); 79 static void sctp_destruct_sock(struct sock *sk); 80 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 81 union sctp_addr *addr, int len); 82 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 83 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 84 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 85 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 86 static int sctp_send_asconf(struct sctp_association *asoc, 87 struct sctp_chunk *chunk); 88 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 89 static int sctp_autobind(struct sock *sk); 90 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 91 struct sctp_association *assoc, 92 enum sctp_socket_type type); 93 94 static unsigned long sctp_memory_pressure; 95 static atomic_long_t sctp_memory_allocated; 96 struct percpu_counter sctp_sockets_allocated; 97 98 static void sctp_enter_memory_pressure(struct sock *sk) 99 { 100 sctp_memory_pressure = 1; 101 } 102 103 104 /* Get the sndbuf space available at the time on the association. */ 105 static inline int sctp_wspace(struct sctp_association *asoc) 106 { 107 struct sock *sk = asoc->base.sk; 108 109 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used 110 : sk_stream_wspace(sk); 111 } 112 113 /* Increment the used sndbuf space count of the corresponding association by 114 * the size of the outgoing data chunk. 115 * Also, set the skb destructor for sndbuf accounting later. 116 * 117 * Since it is always 1-1 between chunk and skb, and also a new skb is always 118 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 119 * destructor in the data chunk skb for the purpose of the sndbuf space 120 * tracking. 121 */ 122 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 123 { 124 struct sctp_association *asoc = chunk->asoc; 125 struct sock *sk = asoc->base.sk; 126 127 /* The sndbuf space is tracked per association. */ 128 sctp_association_hold(asoc); 129 130 if (chunk->shkey) 131 sctp_auth_shkey_hold(chunk->shkey); 132 133 skb_set_owner_w(chunk->skb, sk); 134 135 chunk->skb->destructor = sctp_wfree; 136 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 137 skb_shinfo(chunk->skb)->destructor_arg = chunk; 138 139 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 140 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); 141 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk); 142 sk_mem_charge(sk, chunk->skb->truesize); 143 } 144 145 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 146 { 147 skb_orphan(chunk->skb); 148 } 149 150 #define traverse_and_process() \ 151 do { \ 152 msg = chunk->msg; \ 153 if (msg == prev_msg) \ 154 continue; \ 155 list_for_each_entry(c, &msg->chunks, frag_list) { \ 156 if ((clear && asoc->base.sk == c->skb->sk) || \ 157 (!clear && asoc->base.sk != c->skb->sk)) \ 158 cb(c); \ 159 } \ 160 prev_msg = msg; \ 161 } while (0) 162 163 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 164 bool clear, 165 void (*cb)(struct sctp_chunk *)) 166 167 { 168 struct sctp_datamsg *msg, *prev_msg = NULL; 169 struct sctp_outq *q = &asoc->outqueue; 170 struct sctp_chunk *chunk, *c; 171 struct sctp_transport *t; 172 173 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 174 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 175 traverse_and_process(); 176 177 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 178 traverse_and_process(); 179 180 list_for_each_entry(chunk, &q->sacked, transmitted_list) 181 traverse_and_process(); 182 183 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 184 traverse_and_process(); 185 186 list_for_each_entry(chunk, &q->out_chunk_list, list) 187 traverse_and_process(); 188 } 189 190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 191 void (*cb)(struct sk_buff *, struct sock *)) 192 193 { 194 struct sk_buff *skb, *tmp; 195 196 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 197 cb(skb, sk); 198 199 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 200 cb(skb, sk); 201 202 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 203 cb(skb, sk); 204 } 205 206 /* Verify that this is a valid address. */ 207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 208 int len) 209 { 210 struct sctp_af *af; 211 212 /* Verify basic sockaddr. */ 213 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 214 if (!af) 215 return -EINVAL; 216 217 /* Is this a valid SCTP address? */ 218 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 219 return -EINVAL; 220 221 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 222 return -EINVAL; 223 224 return 0; 225 } 226 227 /* Look up the association by its id. If this is not a UDP-style 228 * socket, the ID field is always ignored. 229 */ 230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 231 { 232 struct sctp_association *asoc = NULL; 233 234 /* If this is not a UDP-style socket, assoc id should be ignored. */ 235 if (!sctp_style(sk, UDP)) { 236 /* Return NULL if the socket state is not ESTABLISHED. It 237 * could be a TCP-style listening socket or a socket which 238 * hasn't yet called connect() to establish an association. 239 */ 240 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 241 return NULL; 242 243 /* Get the first and the only association from the list. */ 244 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 245 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 246 struct sctp_association, asocs); 247 return asoc; 248 } 249 250 /* Otherwise this is a UDP-style socket. */ 251 if (id <= SCTP_ALL_ASSOC) 252 return NULL; 253 254 spin_lock_bh(&sctp_assocs_id_lock); 255 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 256 if (asoc && (asoc->base.sk != sk || asoc->base.dead)) 257 asoc = NULL; 258 spin_unlock_bh(&sctp_assocs_id_lock); 259 260 return asoc; 261 } 262 263 /* Look up the transport from an address and an assoc id. If both address and 264 * id are specified, the associations matching the address and the id should be 265 * the same. 266 */ 267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 268 struct sockaddr_storage *addr, 269 sctp_assoc_t id) 270 { 271 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 272 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 273 union sctp_addr *laddr = (union sctp_addr *)addr; 274 struct sctp_transport *transport; 275 276 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 277 return NULL; 278 279 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 280 laddr, 281 &transport); 282 283 if (!addr_asoc) 284 return NULL; 285 286 id_asoc = sctp_id2assoc(sk, id); 287 if (id_asoc && (id_asoc != addr_asoc)) 288 return NULL; 289 290 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 291 (union sctp_addr *)addr); 292 293 return transport; 294 } 295 296 /* API 3.1.2 bind() - UDP Style Syntax 297 * The syntax of bind() is, 298 * 299 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 300 * 301 * sd - the socket descriptor returned by socket(). 302 * addr - the address structure (struct sockaddr_in or struct 303 * sockaddr_in6 [RFC 2553]), 304 * addr_len - the size of the address structure. 305 */ 306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 307 { 308 int retval = 0; 309 310 lock_sock(sk); 311 312 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 313 addr, addr_len); 314 315 /* Disallow binding twice. */ 316 if (!sctp_sk(sk)->ep->base.bind_addr.port) 317 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 318 addr_len); 319 else 320 retval = -EINVAL; 321 322 release_sock(sk); 323 324 return retval; 325 } 326 327 static int sctp_get_port_local(struct sock *, union sctp_addr *); 328 329 /* Verify this is a valid sockaddr. */ 330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 331 union sctp_addr *addr, int len) 332 { 333 struct sctp_af *af; 334 335 /* Check minimum size. */ 336 if (len < sizeof (struct sockaddr)) 337 return NULL; 338 339 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 340 return NULL; 341 342 if (addr->sa.sa_family == AF_INET6) { 343 if (len < SIN6_LEN_RFC2133) 344 return NULL; 345 /* V4 mapped address are really of AF_INET family */ 346 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 347 !opt->pf->af_supported(AF_INET, opt)) 348 return NULL; 349 } 350 351 /* If we get this far, af is valid. */ 352 af = sctp_get_af_specific(addr->sa.sa_family); 353 354 if (len < af->sockaddr_len) 355 return NULL; 356 357 return af; 358 } 359 360 static void sctp_auto_asconf_init(struct sctp_sock *sp) 361 { 362 struct net *net = sock_net(&sp->inet.sk); 363 364 if (net->sctp.default_auto_asconf) { 365 spin_lock(&net->sctp.addr_wq_lock); 366 list_add_tail(&sp->auto_asconf_list, &net->sctp.auto_asconf_splist); 367 spin_unlock(&net->sctp.addr_wq_lock); 368 sp->do_auto_asconf = 1; 369 } 370 } 371 372 /* Bind a local address either to an endpoint or to an association. */ 373 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 374 { 375 struct net *net = sock_net(sk); 376 struct sctp_sock *sp = sctp_sk(sk); 377 struct sctp_endpoint *ep = sp->ep; 378 struct sctp_bind_addr *bp = &ep->base.bind_addr; 379 struct sctp_af *af; 380 unsigned short snum; 381 int ret = 0; 382 383 /* Common sockaddr verification. */ 384 af = sctp_sockaddr_af(sp, addr, len); 385 if (!af) { 386 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 387 __func__, sk, addr, len); 388 return -EINVAL; 389 } 390 391 snum = ntohs(addr->v4.sin_port); 392 393 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 394 __func__, sk, &addr->sa, bp->port, snum, len); 395 396 /* PF specific bind() address verification. */ 397 if (!sp->pf->bind_verify(sp, addr)) 398 return -EADDRNOTAVAIL; 399 400 /* We must either be unbound, or bind to the same port. 401 * It's OK to allow 0 ports if we are already bound. 402 * We'll just inhert an already bound port in this case 403 */ 404 if (bp->port) { 405 if (!snum) 406 snum = bp->port; 407 else if (snum != bp->port) { 408 pr_debug("%s: new port %d doesn't match existing port " 409 "%d\n", __func__, snum, bp->port); 410 return -EINVAL; 411 } 412 } 413 414 if (snum && inet_port_requires_bind_service(net, snum) && 415 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 416 return -EACCES; 417 418 /* See if the address matches any of the addresses we may have 419 * already bound before checking against other endpoints. 420 */ 421 if (sctp_bind_addr_match(bp, addr, sp)) 422 return -EINVAL; 423 424 /* Make sure we are allowed to bind here. 425 * The function sctp_get_port_local() does duplicate address 426 * detection. 427 */ 428 addr->v4.sin_port = htons(snum); 429 if (sctp_get_port_local(sk, addr)) 430 return -EADDRINUSE; 431 432 /* Refresh ephemeral port. */ 433 if (!bp->port) { 434 bp->port = inet_sk(sk)->inet_num; 435 sctp_auto_asconf_init(sp); 436 } 437 438 /* Add the address to the bind address list. 439 * Use GFP_ATOMIC since BHs will be disabled. 440 */ 441 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 442 SCTP_ADDR_SRC, GFP_ATOMIC); 443 444 if (ret) { 445 sctp_put_port(sk); 446 return ret; 447 } 448 /* Copy back into socket for getsockname() use. */ 449 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 450 sp->pf->to_sk_saddr(addr, sk); 451 452 return ret; 453 } 454 455 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 456 * 457 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 458 * at any one time. If a sender, after sending an ASCONF chunk, decides 459 * it needs to transfer another ASCONF Chunk, it MUST wait until the 460 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 461 * subsequent ASCONF. Note this restriction binds each side, so at any 462 * time two ASCONF may be in-transit on any given association (one sent 463 * from each endpoint). 464 */ 465 static int sctp_send_asconf(struct sctp_association *asoc, 466 struct sctp_chunk *chunk) 467 { 468 int retval = 0; 469 470 /* If there is an outstanding ASCONF chunk, queue it for later 471 * transmission. 472 */ 473 if (asoc->addip_last_asconf) { 474 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 475 goto out; 476 } 477 478 /* Hold the chunk until an ASCONF_ACK is received. */ 479 sctp_chunk_hold(chunk); 480 retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk); 481 if (retval) 482 sctp_chunk_free(chunk); 483 else 484 asoc->addip_last_asconf = chunk; 485 486 out: 487 return retval; 488 } 489 490 /* Add a list of addresses as bind addresses to local endpoint or 491 * association. 492 * 493 * Basically run through each address specified in the addrs/addrcnt 494 * array/length pair, determine if it is IPv6 or IPv4 and call 495 * sctp_do_bind() on it. 496 * 497 * If any of them fails, then the operation will be reversed and the 498 * ones that were added will be removed. 499 * 500 * Only sctp_setsockopt_bindx() is supposed to call this function. 501 */ 502 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 503 { 504 int cnt; 505 int retval = 0; 506 void *addr_buf; 507 struct sockaddr *sa_addr; 508 struct sctp_af *af; 509 510 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 511 addrs, addrcnt); 512 513 addr_buf = addrs; 514 for (cnt = 0; cnt < addrcnt; cnt++) { 515 /* The list may contain either IPv4 or IPv6 address; 516 * determine the address length for walking thru the list. 517 */ 518 sa_addr = addr_buf; 519 af = sctp_get_af_specific(sa_addr->sa_family); 520 if (!af) { 521 retval = -EINVAL; 522 goto err_bindx_add; 523 } 524 525 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 526 af->sockaddr_len); 527 528 addr_buf += af->sockaddr_len; 529 530 err_bindx_add: 531 if (retval < 0) { 532 /* Failed. Cleanup the ones that have been added */ 533 if (cnt > 0) 534 sctp_bindx_rem(sk, addrs, cnt); 535 return retval; 536 } 537 } 538 539 return retval; 540 } 541 542 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 543 * associations that are part of the endpoint indicating that a list of local 544 * addresses are added to the endpoint. 545 * 546 * If any of the addresses is already in the bind address list of the 547 * association, we do not send the chunk for that association. But it will not 548 * affect other associations. 549 * 550 * Only sctp_setsockopt_bindx() is supposed to call this function. 551 */ 552 static int sctp_send_asconf_add_ip(struct sock *sk, 553 struct sockaddr *addrs, 554 int addrcnt) 555 { 556 struct sctp_sock *sp; 557 struct sctp_endpoint *ep; 558 struct sctp_association *asoc; 559 struct sctp_bind_addr *bp; 560 struct sctp_chunk *chunk; 561 struct sctp_sockaddr_entry *laddr; 562 union sctp_addr *addr; 563 union sctp_addr saveaddr; 564 void *addr_buf; 565 struct sctp_af *af; 566 struct list_head *p; 567 int i; 568 int retval = 0; 569 570 sp = sctp_sk(sk); 571 ep = sp->ep; 572 573 if (!ep->asconf_enable) 574 return retval; 575 576 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 577 __func__, sk, addrs, addrcnt); 578 579 list_for_each_entry(asoc, &ep->asocs, asocs) { 580 if (!asoc->peer.asconf_capable) 581 continue; 582 583 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 584 continue; 585 586 if (!sctp_state(asoc, ESTABLISHED)) 587 continue; 588 589 /* Check if any address in the packed array of addresses is 590 * in the bind address list of the association. If so, 591 * do not send the asconf chunk to its peer, but continue with 592 * other associations. 593 */ 594 addr_buf = addrs; 595 for (i = 0; i < addrcnt; i++) { 596 addr = addr_buf; 597 af = sctp_get_af_specific(addr->v4.sin_family); 598 if (!af) { 599 retval = -EINVAL; 600 goto out; 601 } 602 603 if (sctp_assoc_lookup_laddr(asoc, addr)) 604 break; 605 606 addr_buf += af->sockaddr_len; 607 } 608 if (i < addrcnt) 609 continue; 610 611 /* Use the first valid address in bind addr list of 612 * association as Address Parameter of ASCONF CHUNK. 613 */ 614 bp = &asoc->base.bind_addr; 615 p = bp->address_list.next; 616 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 617 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 618 addrcnt, SCTP_PARAM_ADD_IP); 619 if (!chunk) { 620 retval = -ENOMEM; 621 goto out; 622 } 623 624 /* Add the new addresses to the bind address list with 625 * use_as_src set to 0. 626 */ 627 addr_buf = addrs; 628 for (i = 0; i < addrcnt; i++) { 629 addr = addr_buf; 630 af = sctp_get_af_specific(addr->v4.sin_family); 631 memcpy(&saveaddr, addr, af->sockaddr_len); 632 retval = sctp_add_bind_addr(bp, &saveaddr, 633 sizeof(saveaddr), 634 SCTP_ADDR_NEW, GFP_ATOMIC); 635 addr_buf += af->sockaddr_len; 636 } 637 if (asoc->src_out_of_asoc_ok) { 638 struct sctp_transport *trans; 639 640 list_for_each_entry(trans, 641 &asoc->peer.transport_addr_list, transports) { 642 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 643 2*asoc->pathmtu, 4380)); 644 trans->ssthresh = asoc->peer.i.a_rwnd; 645 trans->rto = asoc->rto_initial; 646 sctp_max_rto(asoc, trans); 647 trans->rtt = trans->srtt = trans->rttvar = 0; 648 /* Clear the source and route cache */ 649 sctp_transport_route(trans, NULL, 650 sctp_sk(asoc->base.sk)); 651 } 652 } 653 retval = sctp_send_asconf(asoc, chunk); 654 } 655 656 out: 657 return retval; 658 } 659 660 /* Remove a list of addresses from bind addresses list. Do not remove the 661 * last address. 662 * 663 * Basically run through each address specified in the addrs/addrcnt 664 * array/length pair, determine if it is IPv6 or IPv4 and call 665 * sctp_del_bind() on it. 666 * 667 * If any of them fails, then the operation will be reversed and the 668 * ones that were removed will be added back. 669 * 670 * At least one address has to be left; if only one address is 671 * available, the operation will return -EBUSY. 672 * 673 * Only sctp_setsockopt_bindx() is supposed to call this function. 674 */ 675 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 676 { 677 struct sctp_sock *sp = sctp_sk(sk); 678 struct sctp_endpoint *ep = sp->ep; 679 int cnt; 680 struct sctp_bind_addr *bp = &ep->base.bind_addr; 681 int retval = 0; 682 void *addr_buf; 683 union sctp_addr *sa_addr; 684 struct sctp_af *af; 685 686 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 687 __func__, sk, addrs, addrcnt); 688 689 addr_buf = addrs; 690 for (cnt = 0; cnt < addrcnt; cnt++) { 691 /* If the bind address list is empty or if there is only one 692 * bind address, there is nothing more to be removed (we need 693 * at least one address here). 694 */ 695 if (list_empty(&bp->address_list) || 696 (sctp_list_single_entry(&bp->address_list))) { 697 retval = -EBUSY; 698 goto err_bindx_rem; 699 } 700 701 sa_addr = addr_buf; 702 af = sctp_get_af_specific(sa_addr->sa.sa_family); 703 if (!af) { 704 retval = -EINVAL; 705 goto err_bindx_rem; 706 } 707 708 if (!af->addr_valid(sa_addr, sp, NULL)) { 709 retval = -EADDRNOTAVAIL; 710 goto err_bindx_rem; 711 } 712 713 if (sa_addr->v4.sin_port && 714 sa_addr->v4.sin_port != htons(bp->port)) { 715 retval = -EINVAL; 716 goto err_bindx_rem; 717 } 718 719 if (!sa_addr->v4.sin_port) 720 sa_addr->v4.sin_port = htons(bp->port); 721 722 /* FIXME - There is probably a need to check if sk->sk_saddr and 723 * sk->sk_rcv_addr are currently set to one of the addresses to 724 * be removed. This is something which needs to be looked into 725 * when we are fixing the outstanding issues with multi-homing 726 * socket routing and failover schemes. Refer to comments in 727 * sctp_do_bind(). -daisy 728 */ 729 retval = sctp_del_bind_addr(bp, sa_addr); 730 731 addr_buf += af->sockaddr_len; 732 err_bindx_rem: 733 if (retval < 0) { 734 /* Failed. Add the ones that has been removed back */ 735 if (cnt > 0) 736 sctp_bindx_add(sk, addrs, cnt); 737 return retval; 738 } 739 } 740 741 return retval; 742 } 743 744 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 745 * the associations that are part of the endpoint indicating that a list of 746 * local addresses are removed from the endpoint. 747 * 748 * If any of the addresses is already in the bind address list of the 749 * association, we do not send the chunk for that association. But it will not 750 * affect other associations. 751 * 752 * Only sctp_setsockopt_bindx() is supposed to call this function. 753 */ 754 static int sctp_send_asconf_del_ip(struct sock *sk, 755 struct sockaddr *addrs, 756 int addrcnt) 757 { 758 struct sctp_sock *sp; 759 struct sctp_endpoint *ep; 760 struct sctp_association *asoc; 761 struct sctp_transport *transport; 762 struct sctp_bind_addr *bp; 763 struct sctp_chunk *chunk; 764 union sctp_addr *laddr; 765 void *addr_buf; 766 struct sctp_af *af; 767 struct sctp_sockaddr_entry *saddr; 768 int i; 769 int retval = 0; 770 int stored = 0; 771 772 chunk = NULL; 773 sp = sctp_sk(sk); 774 ep = sp->ep; 775 776 if (!ep->asconf_enable) 777 return retval; 778 779 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 780 __func__, sk, addrs, addrcnt); 781 782 list_for_each_entry(asoc, &ep->asocs, asocs) { 783 784 if (!asoc->peer.asconf_capable) 785 continue; 786 787 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 788 continue; 789 790 if (!sctp_state(asoc, ESTABLISHED)) 791 continue; 792 793 /* Check if any address in the packed array of addresses is 794 * not present in the bind address list of the association. 795 * If so, do not send the asconf chunk to its peer, but 796 * continue with other associations. 797 */ 798 addr_buf = addrs; 799 for (i = 0; i < addrcnt; i++) { 800 laddr = addr_buf; 801 af = sctp_get_af_specific(laddr->v4.sin_family); 802 if (!af) { 803 retval = -EINVAL; 804 goto out; 805 } 806 807 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 808 break; 809 810 addr_buf += af->sockaddr_len; 811 } 812 if (i < addrcnt) 813 continue; 814 815 /* Find one address in the association's bind address list 816 * that is not in the packed array of addresses. This is to 817 * make sure that we do not delete all the addresses in the 818 * association. 819 */ 820 bp = &asoc->base.bind_addr; 821 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 822 addrcnt, sp); 823 if ((laddr == NULL) && (addrcnt == 1)) { 824 if (asoc->asconf_addr_del_pending) 825 continue; 826 asoc->asconf_addr_del_pending = 827 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 828 if (asoc->asconf_addr_del_pending == NULL) { 829 retval = -ENOMEM; 830 goto out; 831 } 832 asoc->asconf_addr_del_pending->sa.sa_family = 833 addrs->sa_family; 834 asoc->asconf_addr_del_pending->v4.sin_port = 835 htons(bp->port); 836 if (addrs->sa_family == AF_INET) { 837 struct sockaddr_in *sin; 838 839 sin = (struct sockaddr_in *)addrs; 840 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 841 } else if (addrs->sa_family == AF_INET6) { 842 struct sockaddr_in6 *sin6; 843 844 sin6 = (struct sockaddr_in6 *)addrs; 845 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 846 } 847 848 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 849 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 850 asoc->asconf_addr_del_pending); 851 852 asoc->src_out_of_asoc_ok = 1; 853 stored = 1; 854 goto skip_mkasconf; 855 } 856 857 if (laddr == NULL) 858 return -EINVAL; 859 860 /* We do not need RCU protection throughout this loop 861 * because this is done under a socket lock from the 862 * setsockopt call. 863 */ 864 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 865 SCTP_PARAM_DEL_IP); 866 if (!chunk) { 867 retval = -ENOMEM; 868 goto out; 869 } 870 871 skip_mkasconf: 872 /* Reset use_as_src flag for the addresses in the bind address 873 * list that are to be deleted. 874 */ 875 addr_buf = addrs; 876 for (i = 0; i < addrcnt; i++) { 877 laddr = addr_buf; 878 af = sctp_get_af_specific(laddr->v4.sin_family); 879 list_for_each_entry(saddr, &bp->address_list, list) { 880 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 881 saddr->state = SCTP_ADDR_DEL; 882 } 883 addr_buf += af->sockaddr_len; 884 } 885 886 /* Update the route and saddr entries for all the transports 887 * as some of the addresses in the bind address list are 888 * about to be deleted and cannot be used as source addresses. 889 */ 890 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 891 transports) { 892 sctp_transport_route(transport, NULL, 893 sctp_sk(asoc->base.sk)); 894 } 895 896 if (stored) 897 /* We don't need to transmit ASCONF */ 898 continue; 899 retval = sctp_send_asconf(asoc, chunk); 900 } 901 out: 902 return retval; 903 } 904 905 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 906 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 907 { 908 struct sock *sk = sctp_opt2sk(sp); 909 union sctp_addr *addr; 910 struct sctp_af *af; 911 912 /* It is safe to write port space in caller. */ 913 addr = &addrw->a; 914 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 915 af = sctp_get_af_specific(addr->sa.sa_family); 916 if (!af) 917 return -EINVAL; 918 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 919 return -EINVAL; 920 921 if (addrw->state == SCTP_ADDR_NEW) 922 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 923 else 924 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 925 } 926 927 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 928 * 929 * API 8.1 930 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 931 * int flags); 932 * 933 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 934 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 935 * or IPv6 addresses. 936 * 937 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 938 * Section 3.1.2 for this usage. 939 * 940 * addrs is a pointer to an array of one or more socket addresses. Each 941 * address is contained in its appropriate structure (i.e. struct 942 * sockaddr_in or struct sockaddr_in6) the family of the address type 943 * must be used to distinguish the address length (note that this 944 * representation is termed a "packed array" of addresses). The caller 945 * specifies the number of addresses in the array with addrcnt. 946 * 947 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 948 * -1, and sets errno to the appropriate error code. 949 * 950 * For SCTP, the port given in each socket address must be the same, or 951 * sctp_bindx() will fail, setting errno to EINVAL. 952 * 953 * The flags parameter is formed from the bitwise OR of zero or more of 954 * the following currently defined flags: 955 * 956 * SCTP_BINDX_ADD_ADDR 957 * 958 * SCTP_BINDX_REM_ADDR 959 * 960 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 961 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 962 * addresses from the association. The two flags are mutually exclusive; 963 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 964 * not remove all addresses from an association; sctp_bindx() will 965 * reject such an attempt with EINVAL. 966 * 967 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 968 * additional addresses with an endpoint after calling bind(). Or use 969 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 970 * socket is associated with so that no new association accepted will be 971 * associated with those addresses. If the endpoint supports dynamic 972 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 973 * endpoint to send the appropriate message to the peer to change the 974 * peers address lists. 975 * 976 * Adding and removing addresses from a connected association is 977 * optional functionality. Implementations that do not support this 978 * functionality should return EOPNOTSUPP. 979 * 980 * Basically do nothing but copying the addresses from user to kernel 981 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 982 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 983 * from userspace. 984 * 985 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 986 * it. 987 * 988 * sk The sk of the socket 989 * addrs The pointer to the addresses 990 * addrssize Size of the addrs buffer 991 * op Operation to perform (add or remove, see the flags of 992 * sctp_bindx) 993 * 994 * Returns 0 if ok, <0 errno code on error. 995 */ 996 static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs, 997 int addrs_size, int op) 998 { 999 int err; 1000 int addrcnt = 0; 1001 int walk_size = 0; 1002 struct sockaddr *sa_addr; 1003 void *addr_buf = addrs; 1004 struct sctp_af *af; 1005 1006 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 1007 __func__, sk, addr_buf, addrs_size, op); 1008 1009 if (unlikely(addrs_size <= 0)) 1010 return -EINVAL; 1011 1012 /* Walk through the addrs buffer and count the number of addresses. */ 1013 while (walk_size < addrs_size) { 1014 if (walk_size + sizeof(sa_family_t) > addrs_size) 1015 return -EINVAL; 1016 1017 sa_addr = addr_buf; 1018 af = sctp_get_af_specific(sa_addr->sa_family); 1019 1020 /* If the address family is not supported or if this address 1021 * causes the address buffer to overflow return EINVAL. 1022 */ 1023 if (!af || (walk_size + af->sockaddr_len) > addrs_size) 1024 return -EINVAL; 1025 addrcnt++; 1026 addr_buf += af->sockaddr_len; 1027 walk_size += af->sockaddr_len; 1028 } 1029 1030 /* Do the work. */ 1031 switch (op) { 1032 case SCTP_BINDX_ADD_ADDR: 1033 /* Allow security module to validate bindx addresses. */ 1034 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1035 addrs, addrs_size); 1036 if (err) 1037 return err; 1038 err = sctp_bindx_add(sk, addrs, addrcnt); 1039 if (err) 1040 return err; 1041 return sctp_send_asconf_add_ip(sk, addrs, addrcnt); 1042 case SCTP_BINDX_REM_ADDR: 1043 err = sctp_bindx_rem(sk, addrs, addrcnt); 1044 if (err) 1045 return err; 1046 return sctp_send_asconf_del_ip(sk, addrs, addrcnt); 1047 1048 default: 1049 return -EINVAL; 1050 } 1051 } 1052 1053 static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs, 1054 int addrlen) 1055 { 1056 int err; 1057 1058 lock_sock(sk); 1059 err = sctp_setsockopt_bindx(sk, addrs, addrlen, SCTP_BINDX_ADD_ADDR); 1060 release_sock(sk); 1061 return err; 1062 } 1063 1064 static int sctp_connect_new_asoc(struct sctp_endpoint *ep, 1065 const union sctp_addr *daddr, 1066 const struct sctp_initmsg *init, 1067 struct sctp_transport **tp) 1068 { 1069 struct sctp_association *asoc; 1070 struct sock *sk = ep->base.sk; 1071 struct net *net = sock_net(sk); 1072 enum sctp_scope scope; 1073 int err; 1074 1075 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1076 return -EADDRNOTAVAIL; 1077 1078 if (!ep->base.bind_addr.port) { 1079 if (sctp_autobind(sk)) 1080 return -EAGAIN; 1081 } else { 1082 if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) && 1083 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1084 return -EACCES; 1085 } 1086 1087 scope = sctp_scope(daddr); 1088 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1089 if (!asoc) 1090 return -ENOMEM; 1091 1092 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1093 if (err < 0) 1094 goto free; 1095 1096 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1097 if (!*tp) { 1098 err = -ENOMEM; 1099 goto free; 1100 } 1101 1102 if (!init) 1103 return 0; 1104 1105 if (init->sinit_num_ostreams) { 1106 __u16 outcnt = init->sinit_num_ostreams; 1107 1108 asoc->c.sinit_num_ostreams = outcnt; 1109 /* outcnt has been changed, need to re-init stream */ 1110 err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL); 1111 if (err) 1112 goto free; 1113 } 1114 1115 if (init->sinit_max_instreams) 1116 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1117 1118 if (init->sinit_max_attempts) 1119 asoc->max_init_attempts = init->sinit_max_attempts; 1120 1121 if (init->sinit_max_init_timeo) 1122 asoc->max_init_timeo = 1123 msecs_to_jiffies(init->sinit_max_init_timeo); 1124 1125 return 0; 1126 free: 1127 sctp_association_free(asoc); 1128 return err; 1129 } 1130 1131 static int sctp_connect_add_peer(struct sctp_association *asoc, 1132 union sctp_addr *daddr, int addr_len) 1133 { 1134 struct sctp_endpoint *ep = asoc->ep; 1135 struct sctp_association *old; 1136 struct sctp_transport *t; 1137 int err; 1138 1139 err = sctp_verify_addr(ep->base.sk, daddr, addr_len); 1140 if (err) 1141 return err; 1142 1143 old = sctp_endpoint_lookup_assoc(ep, daddr, &t); 1144 if (old && old != asoc) 1145 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1146 : -EALREADY; 1147 1148 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1149 return -EADDRNOTAVAIL; 1150 1151 t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1152 if (!t) 1153 return -ENOMEM; 1154 1155 return 0; 1156 } 1157 1158 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1159 * 1160 * Common routine for handling connect() and sctp_connectx(). 1161 * Connect will come in with just a single address. 1162 */ 1163 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs, 1164 int addrs_size, int flags, sctp_assoc_t *assoc_id) 1165 { 1166 struct sctp_sock *sp = sctp_sk(sk); 1167 struct sctp_endpoint *ep = sp->ep; 1168 struct sctp_transport *transport; 1169 struct sctp_association *asoc; 1170 void *addr_buf = kaddrs; 1171 union sctp_addr *daddr; 1172 struct sctp_af *af; 1173 int walk_size, err; 1174 long timeo; 1175 1176 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1177 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) 1178 return -EISCONN; 1179 1180 daddr = addr_buf; 1181 af = sctp_get_af_specific(daddr->sa.sa_family); 1182 if (!af || af->sockaddr_len > addrs_size) 1183 return -EINVAL; 1184 1185 err = sctp_verify_addr(sk, daddr, af->sockaddr_len); 1186 if (err) 1187 return err; 1188 1189 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1190 if (asoc) 1191 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1192 : -EALREADY; 1193 1194 err = sctp_connect_new_asoc(ep, daddr, NULL, &transport); 1195 if (err) 1196 return err; 1197 asoc = transport->asoc; 1198 1199 addr_buf += af->sockaddr_len; 1200 walk_size = af->sockaddr_len; 1201 while (walk_size < addrs_size) { 1202 err = -EINVAL; 1203 if (walk_size + sizeof(sa_family_t) > addrs_size) 1204 goto out_free; 1205 1206 daddr = addr_buf; 1207 af = sctp_get_af_specific(daddr->sa.sa_family); 1208 if (!af || af->sockaddr_len + walk_size > addrs_size) 1209 goto out_free; 1210 1211 if (asoc->peer.port != ntohs(daddr->v4.sin_port)) 1212 goto out_free; 1213 1214 err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len); 1215 if (err) 1216 goto out_free; 1217 1218 addr_buf += af->sockaddr_len; 1219 walk_size += af->sockaddr_len; 1220 } 1221 1222 /* In case the user of sctp_connectx() wants an association 1223 * id back, assign one now. 1224 */ 1225 if (assoc_id) { 1226 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1227 if (err < 0) 1228 goto out_free; 1229 } 1230 1231 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL); 1232 if (err < 0) 1233 goto out_free; 1234 1235 /* Initialize sk's dport and daddr for getpeername() */ 1236 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1237 sp->pf->to_sk_daddr(daddr, sk); 1238 sk->sk_err = 0; 1239 1240 if (assoc_id) 1241 *assoc_id = asoc->assoc_id; 1242 1243 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1244 return sctp_wait_for_connect(asoc, &timeo); 1245 1246 out_free: 1247 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1248 __func__, asoc, kaddrs, err); 1249 sctp_association_free(asoc); 1250 return err; 1251 } 1252 1253 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1254 * 1255 * API 8.9 1256 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1257 * sctp_assoc_t *asoc); 1258 * 1259 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1260 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1261 * or IPv6 addresses. 1262 * 1263 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1264 * Section 3.1.2 for this usage. 1265 * 1266 * addrs is a pointer to an array of one or more socket addresses. Each 1267 * address is contained in its appropriate structure (i.e. struct 1268 * sockaddr_in or struct sockaddr_in6) the family of the address type 1269 * must be used to distengish the address length (note that this 1270 * representation is termed a "packed array" of addresses). The caller 1271 * specifies the number of addresses in the array with addrcnt. 1272 * 1273 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1274 * the association id of the new association. On failure, sctp_connectx() 1275 * returns -1, and sets errno to the appropriate error code. The assoc_id 1276 * is not touched by the kernel. 1277 * 1278 * For SCTP, the port given in each socket address must be the same, or 1279 * sctp_connectx() will fail, setting errno to EINVAL. 1280 * 1281 * An application can use sctp_connectx to initiate an association with 1282 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1283 * allows a caller to specify multiple addresses at which a peer can be 1284 * reached. The way the SCTP stack uses the list of addresses to set up 1285 * the association is implementation dependent. This function only 1286 * specifies that the stack will try to make use of all the addresses in 1287 * the list when needed. 1288 * 1289 * Note that the list of addresses passed in is only used for setting up 1290 * the association. It does not necessarily equal the set of addresses 1291 * the peer uses for the resulting association. If the caller wants to 1292 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1293 * retrieve them after the association has been set up. 1294 * 1295 * Basically do nothing but copying the addresses from user to kernel 1296 * land and invoking either sctp_connectx(). This is used for tunneling 1297 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1298 * 1299 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1300 * it. 1301 * 1302 * sk The sk of the socket 1303 * addrs The pointer to the addresses 1304 * addrssize Size of the addrs buffer 1305 * 1306 * Returns >=0 if ok, <0 errno code on error. 1307 */ 1308 static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs, 1309 int addrs_size, sctp_assoc_t *assoc_id) 1310 { 1311 int err = 0, flags = 0; 1312 1313 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1314 __func__, sk, kaddrs, addrs_size); 1315 1316 /* make sure the 1st addr's sa_family is accessible later */ 1317 if (unlikely(addrs_size < sizeof(sa_family_t))) 1318 return -EINVAL; 1319 1320 /* Allow security module to validate connectx addresses. */ 1321 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1322 (struct sockaddr *)kaddrs, 1323 addrs_size); 1324 if (err) 1325 return err; 1326 1327 /* in-kernel sockets don't generally have a file allocated to them 1328 * if all they do is call sock_create_kern(). 1329 */ 1330 if (sk->sk_socket->file) 1331 flags = sk->sk_socket->file->f_flags; 1332 1333 return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1334 } 1335 1336 /* 1337 * This is an older interface. It's kept for backward compatibility 1338 * to the option that doesn't provide association id. 1339 */ 1340 static int sctp_setsockopt_connectx_old(struct sock *sk, 1341 struct sockaddr *kaddrs, 1342 int addrs_size) 1343 { 1344 return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL); 1345 } 1346 1347 /* 1348 * New interface for the API. The since the API is done with a socket 1349 * option, to make it simple we feed back the association id is as a return 1350 * indication to the call. Error is always negative and association id is 1351 * always positive. 1352 */ 1353 static int sctp_setsockopt_connectx(struct sock *sk, 1354 struct sockaddr *kaddrs, 1355 int addrs_size) 1356 { 1357 sctp_assoc_t assoc_id = 0; 1358 int err = 0; 1359 1360 err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id); 1361 1362 if (err) 1363 return err; 1364 else 1365 return assoc_id; 1366 } 1367 1368 /* 1369 * New (hopefully final) interface for the API. 1370 * We use the sctp_getaddrs_old structure so that use-space library 1371 * can avoid any unnecessary allocations. The only different part 1372 * is that we store the actual length of the address buffer into the 1373 * addrs_num structure member. That way we can re-use the existing 1374 * code. 1375 */ 1376 #ifdef CONFIG_COMPAT 1377 struct compat_sctp_getaddrs_old { 1378 sctp_assoc_t assoc_id; 1379 s32 addr_num; 1380 compat_uptr_t addrs; /* struct sockaddr * */ 1381 }; 1382 #endif 1383 1384 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1385 char __user *optval, 1386 int __user *optlen) 1387 { 1388 struct sctp_getaddrs_old param; 1389 sctp_assoc_t assoc_id = 0; 1390 struct sockaddr *kaddrs; 1391 int err = 0; 1392 1393 #ifdef CONFIG_COMPAT 1394 if (in_compat_syscall()) { 1395 struct compat_sctp_getaddrs_old param32; 1396 1397 if (len < sizeof(param32)) 1398 return -EINVAL; 1399 if (copy_from_user(¶m32, optval, sizeof(param32))) 1400 return -EFAULT; 1401 1402 param.assoc_id = param32.assoc_id; 1403 param.addr_num = param32.addr_num; 1404 param.addrs = compat_ptr(param32.addrs); 1405 } else 1406 #endif 1407 { 1408 if (len < sizeof(param)) 1409 return -EINVAL; 1410 if (copy_from_user(¶m, optval, sizeof(param))) 1411 return -EFAULT; 1412 } 1413 1414 kaddrs = memdup_user(param.addrs, param.addr_num); 1415 if (IS_ERR(kaddrs)) 1416 return PTR_ERR(kaddrs); 1417 1418 err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id); 1419 kfree(kaddrs); 1420 if (err == 0 || err == -EINPROGRESS) { 1421 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1422 return -EFAULT; 1423 if (put_user(sizeof(assoc_id), optlen)) 1424 return -EFAULT; 1425 } 1426 1427 return err; 1428 } 1429 1430 /* API 3.1.4 close() - UDP Style Syntax 1431 * Applications use close() to perform graceful shutdown (as described in 1432 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1433 * by a UDP-style socket. 1434 * 1435 * The syntax is 1436 * 1437 * ret = close(int sd); 1438 * 1439 * sd - the socket descriptor of the associations to be closed. 1440 * 1441 * To gracefully shutdown a specific association represented by the 1442 * UDP-style socket, an application should use the sendmsg() call, 1443 * passing no user data, but including the appropriate flag in the 1444 * ancillary data (see Section xxxx). 1445 * 1446 * If sd in the close() call is a branched-off socket representing only 1447 * one association, the shutdown is performed on that association only. 1448 * 1449 * 4.1.6 close() - TCP Style Syntax 1450 * 1451 * Applications use close() to gracefully close down an association. 1452 * 1453 * The syntax is: 1454 * 1455 * int close(int sd); 1456 * 1457 * sd - the socket descriptor of the association to be closed. 1458 * 1459 * After an application calls close() on a socket descriptor, no further 1460 * socket operations will succeed on that descriptor. 1461 * 1462 * API 7.1.4 SO_LINGER 1463 * 1464 * An application using the TCP-style socket can use this option to 1465 * perform the SCTP ABORT primitive. The linger option structure is: 1466 * 1467 * struct linger { 1468 * int l_onoff; // option on/off 1469 * int l_linger; // linger time 1470 * }; 1471 * 1472 * To enable the option, set l_onoff to 1. If the l_linger value is set 1473 * to 0, calling close() is the same as the ABORT primitive. If the 1474 * value is set to a negative value, the setsockopt() call will return 1475 * an error. If the value is set to a positive value linger_time, the 1476 * close() can be blocked for at most linger_time ms. If the graceful 1477 * shutdown phase does not finish during this period, close() will 1478 * return but the graceful shutdown phase continues in the system. 1479 */ 1480 static void sctp_close(struct sock *sk, long timeout) 1481 { 1482 struct net *net = sock_net(sk); 1483 struct sctp_endpoint *ep; 1484 struct sctp_association *asoc; 1485 struct list_head *pos, *temp; 1486 unsigned int data_was_unread; 1487 1488 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1489 1490 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1491 sk->sk_shutdown = SHUTDOWN_MASK; 1492 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1493 1494 ep = sctp_sk(sk)->ep; 1495 1496 /* Clean up any skbs sitting on the receive queue. */ 1497 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1498 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1499 1500 /* Walk all associations on an endpoint. */ 1501 list_for_each_safe(pos, temp, &ep->asocs) { 1502 asoc = list_entry(pos, struct sctp_association, asocs); 1503 1504 if (sctp_style(sk, TCP)) { 1505 /* A closed association can still be in the list if 1506 * it belongs to a TCP-style listening socket that is 1507 * not yet accepted. If so, free it. If not, send an 1508 * ABORT or SHUTDOWN based on the linger options. 1509 */ 1510 if (sctp_state(asoc, CLOSED)) { 1511 sctp_association_free(asoc); 1512 continue; 1513 } 1514 } 1515 1516 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1517 !skb_queue_empty(&asoc->ulpq.reasm) || 1518 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1519 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1520 struct sctp_chunk *chunk; 1521 1522 chunk = sctp_make_abort_user(asoc, NULL, 0); 1523 sctp_primitive_ABORT(net, asoc, chunk); 1524 } else 1525 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1526 } 1527 1528 /* On a TCP-style socket, block for at most linger_time if set. */ 1529 if (sctp_style(sk, TCP) && timeout) 1530 sctp_wait_for_close(sk, timeout); 1531 1532 /* This will run the backlog queue. */ 1533 release_sock(sk); 1534 1535 /* Supposedly, no process has access to the socket, but 1536 * the net layers still may. 1537 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1538 * held and that should be grabbed before socket lock. 1539 */ 1540 spin_lock_bh(&net->sctp.addr_wq_lock); 1541 bh_lock_sock_nested(sk); 1542 1543 /* Hold the sock, since sk_common_release() will put sock_put() 1544 * and we have just a little more cleanup. 1545 */ 1546 sock_hold(sk); 1547 sk_common_release(sk); 1548 1549 bh_unlock_sock(sk); 1550 spin_unlock_bh(&net->sctp.addr_wq_lock); 1551 1552 sock_put(sk); 1553 1554 SCTP_DBG_OBJCNT_DEC(sock); 1555 } 1556 1557 /* Handle EPIPE error. */ 1558 static int sctp_error(struct sock *sk, int flags, int err) 1559 { 1560 if (err == -EPIPE) 1561 err = sock_error(sk) ? : -EPIPE; 1562 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1563 send_sig(SIGPIPE, current, 0); 1564 return err; 1565 } 1566 1567 /* API 3.1.3 sendmsg() - UDP Style Syntax 1568 * 1569 * An application uses sendmsg() and recvmsg() calls to transmit data to 1570 * and receive data from its peer. 1571 * 1572 * ssize_t sendmsg(int socket, const struct msghdr *message, 1573 * int flags); 1574 * 1575 * socket - the socket descriptor of the endpoint. 1576 * message - pointer to the msghdr structure which contains a single 1577 * user message and possibly some ancillary data. 1578 * 1579 * See Section 5 for complete description of the data 1580 * structures. 1581 * 1582 * flags - flags sent or received with the user message, see Section 1583 * 5 for complete description of the flags. 1584 * 1585 * Note: This function could use a rewrite especially when explicit 1586 * connect support comes in. 1587 */ 1588 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1589 1590 static int sctp_msghdr_parse(const struct msghdr *msg, 1591 struct sctp_cmsgs *cmsgs); 1592 1593 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1594 struct sctp_sndrcvinfo *srinfo, 1595 const struct msghdr *msg, size_t msg_len) 1596 { 1597 __u16 sflags; 1598 int err; 1599 1600 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1601 return -EPIPE; 1602 1603 if (msg_len > sk->sk_sndbuf) 1604 return -EMSGSIZE; 1605 1606 memset(cmsgs, 0, sizeof(*cmsgs)); 1607 err = sctp_msghdr_parse(msg, cmsgs); 1608 if (err) { 1609 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1610 return err; 1611 } 1612 1613 memset(srinfo, 0, sizeof(*srinfo)); 1614 if (cmsgs->srinfo) { 1615 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1616 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1617 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1618 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1619 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1620 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1621 } 1622 1623 if (cmsgs->sinfo) { 1624 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1625 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1626 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1627 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1628 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1629 } 1630 1631 if (cmsgs->prinfo) { 1632 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1633 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1634 cmsgs->prinfo->pr_policy); 1635 } 1636 1637 sflags = srinfo->sinfo_flags; 1638 if (!sflags && msg_len) 1639 return 0; 1640 1641 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1642 return -EINVAL; 1643 1644 if (((sflags & SCTP_EOF) && msg_len > 0) || 1645 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1646 return -EINVAL; 1647 1648 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1649 return -EINVAL; 1650 1651 return 0; 1652 } 1653 1654 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1655 struct sctp_cmsgs *cmsgs, 1656 union sctp_addr *daddr, 1657 struct sctp_transport **tp) 1658 { 1659 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1660 struct sctp_association *asoc; 1661 struct cmsghdr *cmsg; 1662 __be32 flowinfo = 0; 1663 struct sctp_af *af; 1664 int err; 1665 1666 *tp = NULL; 1667 1668 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1669 return -EINVAL; 1670 1671 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1672 sctp_sstate(sk, CLOSING))) 1673 return -EADDRNOTAVAIL; 1674 1675 /* Label connection socket for first association 1-to-many 1676 * style for client sequence socket()->sendmsg(). This 1677 * needs to be done before sctp_assoc_add_peer() as that will 1678 * set up the initial packet that needs to account for any 1679 * security ip options (CIPSO/CALIPSO) added to the packet. 1680 */ 1681 af = sctp_get_af_specific(daddr->sa.sa_family); 1682 if (!af) 1683 return -EINVAL; 1684 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1685 (struct sockaddr *)daddr, 1686 af->sockaddr_len); 1687 if (err < 0) 1688 return err; 1689 1690 err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp); 1691 if (err) 1692 return err; 1693 asoc = (*tp)->asoc; 1694 1695 if (!cmsgs->addrs_msg) 1696 return 0; 1697 1698 if (daddr->sa.sa_family == AF_INET6) 1699 flowinfo = daddr->v6.sin6_flowinfo; 1700 1701 /* sendv addr list parse */ 1702 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1703 union sctp_addr _daddr; 1704 int dlen; 1705 1706 if (cmsg->cmsg_level != IPPROTO_SCTP || 1707 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1708 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1709 continue; 1710 1711 daddr = &_daddr; 1712 memset(daddr, 0, sizeof(*daddr)); 1713 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1714 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1715 if (dlen < sizeof(struct in_addr)) { 1716 err = -EINVAL; 1717 goto free; 1718 } 1719 1720 dlen = sizeof(struct in_addr); 1721 daddr->v4.sin_family = AF_INET; 1722 daddr->v4.sin_port = htons(asoc->peer.port); 1723 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1724 } else { 1725 if (dlen < sizeof(struct in6_addr)) { 1726 err = -EINVAL; 1727 goto free; 1728 } 1729 1730 dlen = sizeof(struct in6_addr); 1731 daddr->v6.sin6_flowinfo = flowinfo; 1732 daddr->v6.sin6_family = AF_INET6; 1733 daddr->v6.sin6_port = htons(asoc->peer.port); 1734 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1735 } 1736 1737 err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr)); 1738 if (err) 1739 goto free; 1740 } 1741 1742 return 0; 1743 1744 free: 1745 sctp_association_free(asoc); 1746 return err; 1747 } 1748 1749 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1750 __u16 sflags, struct msghdr *msg, 1751 size_t msg_len) 1752 { 1753 struct sock *sk = asoc->base.sk; 1754 struct net *net = sock_net(sk); 1755 1756 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1757 return -EPIPE; 1758 1759 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1760 !sctp_state(asoc, ESTABLISHED)) 1761 return 0; 1762 1763 if (sflags & SCTP_EOF) { 1764 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1765 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1766 1767 return 0; 1768 } 1769 1770 if (sflags & SCTP_ABORT) { 1771 struct sctp_chunk *chunk; 1772 1773 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1774 if (!chunk) 1775 return -ENOMEM; 1776 1777 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1778 sctp_primitive_ABORT(net, asoc, chunk); 1779 iov_iter_revert(&msg->msg_iter, msg_len); 1780 1781 return 0; 1782 } 1783 1784 return 1; 1785 } 1786 1787 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1788 struct msghdr *msg, size_t msg_len, 1789 struct sctp_transport *transport, 1790 struct sctp_sndrcvinfo *sinfo) 1791 { 1792 struct sock *sk = asoc->base.sk; 1793 struct sctp_sock *sp = sctp_sk(sk); 1794 struct net *net = sock_net(sk); 1795 struct sctp_datamsg *datamsg; 1796 bool wait_connect = false; 1797 struct sctp_chunk *chunk; 1798 long timeo; 1799 int err; 1800 1801 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1802 err = -EINVAL; 1803 goto err; 1804 } 1805 1806 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { 1807 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1808 if (err) 1809 goto err; 1810 } 1811 1812 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1813 err = -EMSGSIZE; 1814 goto err; 1815 } 1816 1817 if (asoc->pmtu_pending) { 1818 if (sp->param_flags & SPP_PMTUD_ENABLE) 1819 sctp_assoc_sync_pmtu(asoc); 1820 asoc->pmtu_pending = 0; 1821 } 1822 1823 if (sctp_wspace(asoc) < (int)msg_len) 1824 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1825 1826 if (sk_under_memory_pressure(sk)) 1827 sk_mem_reclaim(sk); 1828 1829 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) { 1830 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1831 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1832 if (err) 1833 goto err; 1834 } 1835 1836 if (sctp_state(asoc, CLOSED)) { 1837 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1838 if (err) 1839 goto err; 1840 1841 if (asoc->ep->intl_enable) { 1842 timeo = sock_sndtimeo(sk, 0); 1843 err = sctp_wait_for_connect(asoc, &timeo); 1844 if (err) { 1845 err = -ESRCH; 1846 goto err; 1847 } 1848 } else { 1849 wait_connect = true; 1850 } 1851 1852 pr_debug("%s: we associated primitively\n", __func__); 1853 } 1854 1855 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1856 if (IS_ERR(datamsg)) { 1857 err = PTR_ERR(datamsg); 1858 goto err; 1859 } 1860 1861 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1862 1863 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1864 sctp_chunk_hold(chunk); 1865 sctp_set_owner_w(chunk); 1866 chunk->transport = transport; 1867 } 1868 1869 err = sctp_primitive_SEND(net, asoc, datamsg); 1870 if (err) { 1871 sctp_datamsg_free(datamsg); 1872 goto err; 1873 } 1874 1875 pr_debug("%s: we sent primitively\n", __func__); 1876 1877 sctp_datamsg_put(datamsg); 1878 1879 if (unlikely(wait_connect)) { 1880 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1881 sctp_wait_for_connect(asoc, &timeo); 1882 } 1883 1884 err = msg_len; 1885 1886 err: 1887 return err; 1888 } 1889 1890 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1891 const struct msghdr *msg, 1892 struct sctp_cmsgs *cmsgs) 1893 { 1894 union sctp_addr *daddr = NULL; 1895 int err; 1896 1897 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1898 int len = msg->msg_namelen; 1899 1900 if (len > sizeof(*daddr)) 1901 len = sizeof(*daddr); 1902 1903 daddr = (union sctp_addr *)msg->msg_name; 1904 1905 err = sctp_verify_addr(sk, daddr, len); 1906 if (err) 1907 return ERR_PTR(err); 1908 } 1909 1910 return daddr; 1911 } 1912 1913 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 1914 struct sctp_sndrcvinfo *sinfo, 1915 struct sctp_cmsgs *cmsgs) 1916 { 1917 if (!cmsgs->srinfo && !cmsgs->sinfo) { 1918 sinfo->sinfo_stream = asoc->default_stream; 1919 sinfo->sinfo_ppid = asoc->default_ppid; 1920 sinfo->sinfo_context = asoc->default_context; 1921 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 1922 1923 if (!cmsgs->prinfo) 1924 sinfo->sinfo_flags = asoc->default_flags; 1925 } 1926 1927 if (!cmsgs->srinfo && !cmsgs->prinfo) 1928 sinfo->sinfo_timetolive = asoc->default_timetolive; 1929 1930 if (cmsgs->authinfo) { 1931 /* Reuse sinfo_tsn to indicate that authinfo was set and 1932 * sinfo_ssn to save the keyid on tx path. 1933 */ 1934 sinfo->sinfo_tsn = 1; 1935 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 1936 } 1937 } 1938 1939 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1940 { 1941 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1942 struct sctp_transport *transport = NULL; 1943 struct sctp_sndrcvinfo _sinfo, *sinfo; 1944 struct sctp_association *asoc, *tmp; 1945 struct sctp_cmsgs cmsgs; 1946 union sctp_addr *daddr; 1947 bool new = false; 1948 __u16 sflags; 1949 int err; 1950 1951 /* Parse and get snd_info */ 1952 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 1953 if (err) 1954 goto out; 1955 1956 sinfo = &_sinfo; 1957 sflags = sinfo->sinfo_flags; 1958 1959 /* Get daddr from msg */ 1960 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 1961 if (IS_ERR(daddr)) { 1962 err = PTR_ERR(daddr); 1963 goto out; 1964 } 1965 1966 lock_sock(sk); 1967 1968 /* SCTP_SENDALL process */ 1969 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 1970 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) { 1971 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1972 msg_len); 1973 if (err == 0) 1974 continue; 1975 if (err < 0) 1976 goto out_unlock; 1977 1978 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 1979 1980 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 1981 NULL, sinfo); 1982 if (err < 0) 1983 goto out_unlock; 1984 1985 iov_iter_revert(&msg->msg_iter, err); 1986 } 1987 1988 goto out_unlock; 1989 } 1990 1991 /* Get and check or create asoc */ 1992 if (daddr) { 1993 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1994 if (asoc) { 1995 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1996 msg_len); 1997 if (err <= 0) 1998 goto out_unlock; 1999 } else { 2000 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 2001 &transport); 2002 if (err) 2003 goto out_unlock; 2004 2005 asoc = transport->asoc; 2006 new = true; 2007 } 2008 2009 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 2010 transport = NULL; 2011 } else { 2012 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2013 if (!asoc) { 2014 err = -EPIPE; 2015 goto out_unlock; 2016 } 2017 2018 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2019 if (err <= 0) 2020 goto out_unlock; 2021 } 2022 2023 /* Update snd_info with the asoc */ 2024 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2025 2026 /* Send msg to the asoc */ 2027 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2028 if (err < 0 && err != -ESRCH && new) 2029 sctp_association_free(asoc); 2030 2031 out_unlock: 2032 release_sock(sk); 2033 out: 2034 return sctp_error(sk, msg->msg_flags, err); 2035 } 2036 2037 /* This is an extended version of skb_pull() that removes the data from the 2038 * start of a skb even when data is spread across the list of skb's in the 2039 * frag_list. len specifies the total amount of data that needs to be removed. 2040 * when 'len' bytes could be removed from the skb, it returns 0. 2041 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2042 * could not be removed. 2043 */ 2044 static int sctp_skb_pull(struct sk_buff *skb, int len) 2045 { 2046 struct sk_buff *list; 2047 int skb_len = skb_headlen(skb); 2048 int rlen; 2049 2050 if (len <= skb_len) { 2051 __skb_pull(skb, len); 2052 return 0; 2053 } 2054 len -= skb_len; 2055 __skb_pull(skb, skb_len); 2056 2057 skb_walk_frags(skb, list) { 2058 rlen = sctp_skb_pull(list, len); 2059 skb->len -= (len-rlen); 2060 skb->data_len -= (len-rlen); 2061 2062 if (!rlen) 2063 return 0; 2064 2065 len = rlen; 2066 } 2067 2068 return len; 2069 } 2070 2071 /* API 3.1.3 recvmsg() - UDP Style Syntax 2072 * 2073 * ssize_t recvmsg(int socket, struct msghdr *message, 2074 * int flags); 2075 * 2076 * socket - the socket descriptor of the endpoint. 2077 * message - pointer to the msghdr structure which contains a single 2078 * user message and possibly some ancillary data. 2079 * 2080 * See Section 5 for complete description of the data 2081 * structures. 2082 * 2083 * flags - flags sent or received with the user message, see Section 2084 * 5 for complete description of the flags. 2085 */ 2086 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2087 int noblock, int flags, int *addr_len) 2088 { 2089 struct sctp_ulpevent *event = NULL; 2090 struct sctp_sock *sp = sctp_sk(sk); 2091 struct sk_buff *skb, *head_skb; 2092 int copied; 2093 int err = 0; 2094 int skb_len; 2095 2096 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2097 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2098 addr_len); 2099 2100 lock_sock(sk); 2101 2102 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2103 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2104 err = -ENOTCONN; 2105 goto out; 2106 } 2107 2108 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2109 if (!skb) 2110 goto out; 2111 2112 /* Get the total length of the skb including any skb's in the 2113 * frag_list. 2114 */ 2115 skb_len = skb->len; 2116 2117 copied = skb_len; 2118 if (copied > len) 2119 copied = len; 2120 2121 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2122 2123 event = sctp_skb2event(skb); 2124 2125 if (err) 2126 goto out_free; 2127 2128 if (event->chunk && event->chunk->head_skb) 2129 head_skb = event->chunk->head_skb; 2130 else 2131 head_skb = skb; 2132 sock_recv_ts_and_drops(msg, sk, head_skb); 2133 if (sctp_ulpevent_is_notification(event)) { 2134 msg->msg_flags |= MSG_NOTIFICATION; 2135 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2136 } else { 2137 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2138 } 2139 2140 /* Check if we allow SCTP_NXTINFO. */ 2141 if (sp->recvnxtinfo) 2142 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2143 /* Check if we allow SCTP_RCVINFO. */ 2144 if (sp->recvrcvinfo) 2145 sctp_ulpevent_read_rcvinfo(event, msg); 2146 /* Check if we allow SCTP_SNDRCVINFO. */ 2147 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT)) 2148 sctp_ulpevent_read_sndrcvinfo(event, msg); 2149 2150 err = copied; 2151 2152 /* If skb's length exceeds the user's buffer, update the skb and 2153 * push it back to the receive_queue so that the next call to 2154 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2155 */ 2156 if (skb_len > copied) { 2157 msg->msg_flags &= ~MSG_EOR; 2158 if (flags & MSG_PEEK) 2159 goto out_free; 2160 sctp_skb_pull(skb, copied); 2161 skb_queue_head(&sk->sk_receive_queue, skb); 2162 2163 /* When only partial message is copied to the user, increase 2164 * rwnd by that amount. If all the data in the skb is read, 2165 * rwnd is updated when the event is freed. 2166 */ 2167 if (!sctp_ulpevent_is_notification(event)) 2168 sctp_assoc_rwnd_increase(event->asoc, copied); 2169 goto out; 2170 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2171 (event->msg_flags & MSG_EOR)) 2172 msg->msg_flags |= MSG_EOR; 2173 else 2174 msg->msg_flags &= ~MSG_EOR; 2175 2176 out_free: 2177 if (flags & MSG_PEEK) { 2178 /* Release the skb reference acquired after peeking the skb in 2179 * sctp_skb_recv_datagram(). 2180 */ 2181 kfree_skb(skb); 2182 } else { 2183 /* Free the event which includes releasing the reference to 2184 * the owner of the skb, freeing the skb and updating the 2185 * rwnd. 2186 */ 2187 sctp_ulpevent_free(event); 2188 } 2189 out: 2190 release_sock(sk); 2191 return err; 2192 } 2193 2194 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2195 * 2196 * This option is a on/off flag. If enabled no SCTP message 2197 * fragmentation will be performed. Instead if a message being sent 2198 * exceeds the current PMTU size, the message will NOT be sent and 2199 * instead a error will be indicated to the user. 2200 */ 2201 static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val, 2202 unsigned int optlen) 2203 { 2204 if (optlen < sizeof(int)) 2205 return -EINVAL; 2206 sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1; 2207 return 0; 2208 } 2209 2210 static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type, 2211 unsigned int optlen) 2212 { 2213 struct sctp_sock *sp = sctp_sk(sk); 2214 struct sctp_association *asoc; 2215 int i; 2216 2217 if (optlen > sizeof(struct sctp_event_subscribe)) 2218 return -EINVAL; 2219 2220 for (i = 0; i < optlen; i++) 2221 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i, 2222 sn_type[i]); 2223 2224 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2225 asoc->subscribe = sctp_sk(sk)->subscribe; 2226 2227 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2228 * if there is no data to be sent or retransmit, the stack will 2229 * immediately send up this notification. 2230 */ 2231 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) { 2232 struct sctp_ulpevent *event; 2233 2234 asoc = sctp_id2assoc(sk, 0); 2235 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2236 event = sctp_ulpevent_make_sender_dry_event(asoc, 2237 GFP_USER | __GFP_NOWARN); 2238 if (!event) 2239 return -ENOMEM; 2240 2241 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2242 } 2243 } 2244 2245 return 0; 2246 } 2247 2248 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2249 * 2250 * This socket option is applicable to the UDP-style socket only. When 2251 * set it will cause associations that are idle for more than the 2252 * specified number of seconds to automatically close. An association 2253 * being idle is defined an association that has NOT sent or received 2254 * user data. The special value of '0' indicates that no automatic 2255 * close of any associations should be performed. The option expects an 2256 * integer defining the number of seconds of idle time before an 2257 * association is closed. 2258 */ 2259 static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval, 2260 unsigned int optlen) 2261 { 2262 struct sctp_sock *sp = sctp_sk(sk); 2263 struct net *net = sock_net(sk); 2264 2265 /* Applicable to UDP-style socket only */ 2266 if (sctp_style(sk, TCP)) 2267 return -EOPNOTSUPP; 2268 if (optlen != sizeof(int)) 2269 return -EINVAL; 2270 2271 sp->autoclose = *optval; 2272 if (sp->autoclose > net->sctp.max_autoclose) 2273 sp->autoclose = net->sctp.max_autoclose; 2274 2275 return 0; 2276 } 2277 2278 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2279 * 2280 * Applications can enable or disable heartbeats for any peer address of 2281 * an association, modify an address's heartbeat interval, force a 2282 * heartbeat to be sent immediately, and adjust the address's maximum 2283 * number of retransmissions sent before an address is considered 2284 * unreachable. The following structure is used to access and modify an 2285 * address's parameters: 2286 * 2287 * struct sctp_paddrparams { 2288 * sctp_assoc_t spp_assoc_id; 2289 * struct sockaddr_storage spp_address; 2290 * uint32_t spp_hbinterval; 2291 * uint16_t spp_pathmaxrxt; 2292 * uint32_t spp_pathmtu; 2293 * uint32_t spp_sackdelay; 2294 * uint32_t spp_flags; 2295 * uint32_t spp_ipv6_flowlabel; 2296 * uint8_t spp_dscp; 2297 * }; 2298 * 2299 * spp_assoc_id - (one-to-many style socket) This is filled in the 2300 * application, and identifies the association for 2301 * this query. 2302 * spp_address - This specifies which address is of interest. 2303 * spp_hbinterval - This contains the value of the heartbeat interval, 2304 * in milliseconds. If a value of zero 2305 * is present in this field then no changes are to 2306 * be made to this parameter. 2307 * spp_pathmaxrxt - This contains the maximum number of 2308 * retransmissions before this address shall be 2309 * considered unreachable. If a value of zero 2310 * is present in this field then no changes are to 2311 * be made to this parameter. 2312 * spp_pathmtu - When Path MTU discovery is disabled the value 2313 * specified here will be the "fixed" path mtu. 2314 * Note that if the spp_address field is empty 2315 * then all associations on this address will 2316 * have this fixed path mtu set upon them. 2317 * 2318 * spp_sackdelay - When delayed sack is enabled, this value specifies 2319 * the number of milliseconds that sacks will be delayed 2320 * for. This value will apply to all addresses of an 2321 * association if the spp_address field is empty. Note 2322 * also, that if delayed sack is enabled and this 2323 * value is set to 0, no change is made to the last 2324 * recorded delayed sack timer value. 2325 * 2326 * spp_flags - These flags are used to control various features 2327 * on an association. The flag field may contain 2328 * zero or more of the following options. 2329 * 2330 * SPP_HB_ENABLE - Enable heartbeats on the 2331 * specified address. Note that if the address 2332 * field is empty all addresses for the association 2333 * have heartbeats enabled upon them. 2334 * 2335 * SPP_HB_DISABLE - Disable heartbeats on the 2336 * speicifed address. Note that if the address 2337 * field is empty all addresses for the association 2338 * will have their heartbeats disabled. Note also 2339 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2340 * mutually exclusive, only one of these two should 2341 * be specified. Enabling both fields will have 2342 * undetermined results. 2343 * 2344 * SPP_HB_DEMAND - Request a user initiated heartbeat 2345 * to be made immediately. 2346 * 2347 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2348 * heartbeat delayis to be set to the value of 0 2349 * milliseconds. 2350 * 2351 * SPP_PMTUD_ENABLE - This field will enable PMTU 2352 * discovery upon the specified address. Note that 2353 * if the address feild is empty then all addresses 2354 * on the association are effected. 2355 * 2356 * SPP_PMTUD_DISABLE - This field will disable PMTU 2357 * discovery upon the specified address. Note that 2358 * if the address feild is empty then all addresses 2359 * on the association are effected. Not also that 2360 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2361 * exclusive. Enabling both will have undetermined 2362 * results. 2363 * 2364 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2365 * on delayed sack. The time specified in spp_sackdelay 2366 * is used to specify the sack delay for this address. Note 2367 * that if spp_address is empty then all addresses will 2368 * enable delayed sack and take on the sack delay 2369 * value specified in spp_sackdelay. 2370 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2371 * off delayed sack. If the spp_address field is blank then 2372 * delayed sack is disabled for the entire association. Note 2373 * also that this field is mutually exclusive to 2374 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2375 * results. 2376 * 2377 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2378 * setting of the IPV6 flow label value. The value is 2379 * contained in the spp_ipv6_flowlabel field. 2380 * Upon retrieval, this flag will be set to indicate that 2381 * the spp_ipv6_flowlabel field has a valid value returned. 2382 * If a specific destination address is set (in the 2383 * spp_address field), then the value returned is that of 2384 * the address. If just an association is specified (and 2385 * no address), then the association's default flow label 2386 * is returned. If neither an association nor a destination 2387 * is specified, then the socket's default flow label is 2388 * returned. For non-IPv6 sockets, this flag will be left 2389 * cleared. 2390 * 2391 * SPP_DSCP: Setting this flag enables the setting of the 2392 * Differentiated Services Code Point (DSCP) value 2393 * associated with either the association or a specific 2394 * address. The value is obtained in the spp_dscp field. 2395 * Upon retrieval, this flag will be set to indicate that 2396 * the spp_dscp field has a valid value returned. If a 2397 * specific destination address is set when called (in the 2398 * spp_address field), then that specific destination 2399 * address's DSCP value is returned. If just an association 2400 * is specified, then the association's default DSCP is 2401 * returned. If neither an association nor a destination is 2402 * specified, then the socket's default DSCP is returned. 2403 * 2404 * spp_ipv6_flowlabel 2405 * - This field is used in conjunction with the 2406 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2407 * The 20 least significant bits are used for the flow 2408 * label. This setting has precedence over any IPv6-layer 2409 * setting. 2410 * 2411 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2412 * and contains the DSCP. The 6 most significant bits are 2413 * used for the DSCP. This setting has precedence over any 2414 * IPv4- or IPv6- layer setting. 2415 */ 2416 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2417 struct sctp_transport *trans, 2418 struct sctp_association *asoc, 2419 struct sctp_sock *sp, 2420 int hb_change, 2421 int pmtud_change, 2422 int sackdelay_change) 2423 { 2424 int error; 2425 2426 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2427 error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net, 2428 trans->asoc, trans); 2429 if (error) 2430 return error; 2431 } 2432 2433 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2434 * this field is ignored. Note also that a value of zero indicates 2435 * the current setting should be left unchanged. 2436 */ 2437 if (params->spp_flags & SPP_HB_ENABLE) { 2438 2439 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2440 * set. This lets us use 0 value when this flag 2441 * is set. 2442 */ 2443 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2444 params->spp_hbinterval = 0; 2445 2446 if (params->spp_hbinterval || 2447 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2448 if (trans) { 2449 trans->hbinterval = 2450 msecs_to_jiffies(params->spp_hbinterval); 2451 } else if (asoc) { 2452 asoc->hbinterval = 2453 msecs_to_jiffies(params->spp_hbinterval); 2454 } else { 2455 sp->hbinterval = params->spp_hbinterval; 2456 } 2457 } 2458 } 2459 2460 if (hb_change) { 2461 if (trans) { 2462 trans->param_flags = 2463 (trans->param_flags & ~SPP_HB) | hb_change; 2464 } else if (asoc) { 2465 asoc->param_flags = 2466 (asoc->param_flags & ~SPP_HB) | hb_change; 2467 } else { 2468 sp->param_flags = 2469 (sp->param_flags & ~SPP_HB) | hb_change; 2470 } 2471 } 2472 2473 /* When Path MTU discovery is disabled the value specified here will 2474 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2475 * include the flag SPP_PMTUD_DISABLE for this field to have any 2476 * effect). 2477 */ 2478 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2479 if (trans) { 2480 trans->pathmtu = params->spp_pathmtu; 2481 sctp_assoc_sync_pmtu(asoc); 2482 } else if (asoc) { 2483 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2484 } else { 2485 sp->pathmtu = params->spp_pathmtu; 2486 } 2487 } 2488 2489 if (pmtud_change) { 2490 if (trans) { 2491 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2492 (params->spp_flags & SPP_PMTUD_ENABLE); 2493 trans->param_flags = 2494 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2495 if (update) { 2496 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2497 sctp_assoc_sync_pmtu(asoc); 2498 } 2499 sctp_transport_pl_reset(trans); 2500 } else if (asoc) { 2501 asoc->param_flags = 2502 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2503 } else { 2504 sp->param_flags = 2505 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2506 } 2507 } 2508 2509 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2510 * value of this field is ignored. Note also that a value of zero 2511 * indicates the current setting should be left unchanged. 2512 */ 2513 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2514 if (trans) { 2515 trans->sackdelay = 2516 msecs_to_jiffies(params->spp_sackdelay); 2517 } else if (asoc) { 2518 asoc->sackdelay = 2519 msecs_to_jiffies(params->spp_sackdelay); 2520 } else { 2521 sp->sackdelay = params->spp_sackdelay; 2522 } 2523 } 2524 2525 if (sackdelay_change) { 2526 if (trans) { 2527 trans->param_flags = 2528 (trans->param_flags & ~SPP_SACKDELAY) | 2529 sackdelay_change; 2530 } else if (asoc) { 2531 asoc->param_flags = 2532 (asoc->param_flags & ~SPP_SACKDELAY) | 2533 sackdelay_change; 2534 } else { 2535 sp->param_flags = 2536 (sp->param_flags & ~SPP_SACKDELAY) | 2537 sackdelay_change; 2538 } 2539 } 2540 2541 /* Note that a value of zero indicates the current setting should be 2542 left unchanged. 2543 */ 2544 if (params->spp_pathmaxrxt) { 2545 if (trans) { 2546 trans->pathmaxrxt = params->spp_pathmaxrxt; 2547 } else if (asoc) { 2548 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2549 } else { 2550 sp->pathmaxrxt = params->spp_pathmaxrxt; 2551 } 2552 } 2553 2554 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2555 if (trans) { 2556 if (trans->ipaddr.sa.sa_family == AF_INET6) { 2557 trans->flowlabel = params->spp_ipv6_flowlabel & 2558 SCTP_FLOWLABEL_VAL_MASK; 2559 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2560 } 2561 } else if (asoc) { 2562 struct sctp_transport *t; 2563 2564 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2565 transports) { 2566 if (t->ipaddr.sa.sa_family != AF_INET6) 2567 continue; 2568 t->flowlabel = params->spp_ipv6_flowlabel & 2569 SCTP_FLOWLABEL_VAL_MASK; 2570 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2571 } 2572 asoc->flowlabel = params->spp_ipv6_flowlabel & 2573 SCTP_FLOWLABEL_VAL_MASK; 2574 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2575 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2576 sp->flowlabel = params->spp_ipv6_flowlabel & 2577 SCTP_FLOWLABEL_VAL_MASK; 2578 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2579 } 2580 } 2581 2582 if (params->spp_flags & SPP_DSCP) { 2583 if (trans) { 2584 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2585 trans->dscp |= SCTP_DSCP_SET_MASK; 2586 } else if (asoc) { 2587 struct sctp_transport *t; 2588 2589 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2590 transports) { 2591 t->dscp = params->spp_dscp & 2592 SCTP_DSCP_VAL_MASK; 2593 t->dscp |= SCTP_DSCP_SET_MASK; 2594 } 2595 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2596 asoc->dscp |= SCTP_DSCP_SET_MASK; 2597 } else { 2598 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2599 sp->dscp |= SCTP_DSCP_SET_MASK; 2600 } 2601 } 2602 2603 return 0; 2604 } 2605 2606 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2607 struct sctp_paddrparams *params, 2608 unsigned int optlen) 2609 { 2610 struct sctp_transport *trans = NULL; 2611 struct sctp_association *asoc = NULL; 2612 struct sctp_sock *sp = sctp_sk(sk); 2613 int error; 2614 int hb_change, pmtud_change, sackdelay_change; 2615 2616 if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2617 spp_ipv6_flowlabel), 4)) { 2618 if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2619 return -EINVAL; 2620 } else if (optlen != sizeof(*params)) { 2621 return -EINVAL; 2622 } 2623 2624 /* Validate flags and value parameters. */ 2625 hb_change = params->spp_flags & SPP_HB; 2626 pmtud_change = params->spp_flags & SPP_PMTUD; 2627 sackdelay_change = params->spp_flags & SPP_SACKDELAY; 2628 2629 if (hb_change == SPP_HB || 2630 pmtud_change == SPP_PMTUD || 2631 sackdelay_change == SPP_SACKDELAY || 2632 params->spp_sackdelay > 500 || 2633 (params->spp_pathmtu && 2634 params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2635 return -EINVAL; 2636 2637 /* If an address other than INADDR_ANY is specified, and 2638 * no transport is found, then the request is invalid. 2639 */ 2640 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spp_address)) { 2641 trans = sctp_addr_id2transport(sk, ¶ms->spp_address, 2642 params->spp_assoc_id); 2643 if (!trans) 2644 return -EINVAL; 2645 } 2646 2647 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 2648 * socket is a one to many style socket, and an association 2649 * was not found, then the id was invalid. 2650 */ 2651 asoc = sctp_id2assoc(sk, params->spp_assoc_id); 2652 if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC && 2653 sctp_style(sk, UDP)) 2654 return -EINVAL; 2655 2656 /* Heartbeat demand can only be sent on a transport or 2657 * association, but not a socket. 2658 */ 2659 if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2660 return -EINVAL; 2661 2662 /* Process parameters. */ 2663 error = sctp_apply_peer_addr_params(params, trans, asoc, sp, 2664 hb_change, pmtud_change, 2665 sackdelay_change); 2666 2667 if (error) 2668 return error; 2669 2670 /* If changes are for association, also apply parameters to each 2671 * transport. 2672 */ 2673 if (!trans && asoc) { 2674 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2675 transports) { 2676 sctp_apply_peer_addr_params(params, trans, asoc, sp, 2677 hb_change, pmtud_change, 2678 sackdelay_change); 2679 } 2680 } 2681 2682 return 0; 2683 } 2684 2685 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2686 { 2687 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2688 } 2689 2690 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2691 { 2692 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2693 } 2694 2695 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params, 2696 struct sctp_association *asoc) 2697 { 2698 struct sctp_transport *trans; 2699 2700 if (params->sack_delay) { 2701 asoc->sackdelay = msecs_to_jiffies(params->sack_delay); 2702 asoc->param_flags = 2703 sctp_spp_sackdelay_enable(asoc->param_flags); 2704 } 2705 if (params->sack_freq == 1) { 2706 asoc->param_flags = 2707 sctp_spp_sackdelay_disable(asoc->param_flags); 2708 } else if (params->sack_freq > 1) { 2709 asoc->sackfreq = params->sack_freq; 2710 asoc->param_flags = 2711 sctp_spp_sackdelay_enable(asoc->param_flags); 2712 } 2713 2714 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2715 transports) { 2716 if (params->sack_delay) { 2717 trans->sackdelay = msecs_to_jiffies(params->sack_delay); 2718 trans->param_flags = 2719 sctp_spp_sackdelay_enable(trans->param_flags); 2720 } 2721 if (params->sack_freq == 1) { 2722 trans->param_flags = 2723 sctp_spp_sackdelay_disable(trans->param_flags); 2724 } else if (params->sack_freq > 1) { 2725 trans->sackfreq = params->sack_freq; 2726 trans->param_flags = 2727 sctp_spp_sackdelay_enable(trans->param_flags); 2728 } 2729 } 2730 } 2731 2732 /* 2733 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2734 * 2735 * This option will effect the way delayed acks are performed. This 2736 * option allows you to get or set the delayed ack time, in 2737 * milliseconds. It also allows changing the delayed ack frequency. 2738 * Changing the frequency to 1 disables the delayed sack algorithm. If 2739 * the assoc_id is 0, then this sets or gets the endpoints default 2740 * values. If the assoc_id field is non-zero, then the set or get 2741 * effects the specified association for the one to many model (the 2742 * assoc_id field is ignored by the one to one model). Note that if 2743 * sack_delay or sack_freq are 0 when setting this option, then the 2744 * current values will remain unchanged. 2745 * 2746 * struct sctp_sack_info { 2747 * sctp_assoc_t sack_assoc_id; 2748 * uint32_t sack_delay; 2749 * uint32_t sack_freq; 2750 * }; 2751 * 2752 * sack_assoc_id - This parameter, indicates which association the user 2753 * is performing an action upon. Note that if this field's value is 2754 * zero then the endpoints default value is changed (effecting future 2755 * associations only). 2756 * 2757 * sack_delay - This parameter contains the number of milliseconds that 2758 * the user is requesting the delayed ACK timer be set to. Note that 2759 * this value is defined in the standard to be between 200 and 500 2760 * milliseconds. 2761 * 2762 * sack_freq - This parameter contains the number of packets that must 2763 * be received before a sack is sent without waiting for the delay 2764 * timer to expire. The default value for this is 2, setting this 2765 * value to 1 will disable the delayed sack algorithm. 2766 */ 2767 static int __sctp_setsockopt_delayed_ack(struct sock *sk, 2768 struct sctp_sack_info *params) 2769 { 2770 struct sctp_sock *sp = sctp_sk(sk); 2771 struct sctp_association *asoc; 2772 2773 /* Validate value parameter. */ 2774 if (params->sack_delay > 500) 2775 return -EINVAL; 2776 2777 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 2778 * socket is a one to many style socket, and an association 2779 * was not found, then the id was invalid. 2780 */ 2781 asoc = sctp_id2assoc(sk, params->sack_assoc_id); 2782 if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC && 2783 sctp_style(sk, UDP)) 2784 return -EINVAL; 2785 2786 if (asoc) { 2787 sctp_apply_asoc_delayed_ack(params, asoc); 2788 2789 return 0; 2790 } 2791 2792 if (sctp_style(sk, TCP)) 2793 params->sack_assoc_id = SCTP_FUTURE_ASSOC; 2794 2795 if (params->sack_assoc_id == SCTP_FUTURE_ASSOC || 2796 params->sack_assoc_id == SCTP_ALL_ASSOC) { 2797 if (params->sack_delay) { 2798 sp->sackdelay = params->sack_delay; 2799 sp->param_flags = 2800 sctp_spp_sackdelay_enable(sp->param_flags); 2801 } 2802 if (params->sack_freq == 1) { 2803 sp->param_flags = 2804 sctp_spp_sackdelay_disable(sp->param_flags); 2805 } else if (params->sack_freq > 1) { 2806 sp->sackfreq = params->sack_freq; 2807 sp->param_flags = 2808 sctp_spp_sackdelay_enable(sp->param_flags); 2809 } 2810 } 2811 2812 if (params->sack_assoc_id == SCTP_CURRENT_ASSOC || 2813 params->sack_assoc_id == SCTP_ALL_ASSOC) 2814 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2815 sctp_apply_asoc_delayed_ack(params, asoc); 2816 2817 return 0; 2818 } 2819 2820 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2821 struct sctp_sack_info *params, 2822 unsigned int optlen) 2823 { 2824 if (optlen == sizeof(struct sctp_assoc_value)) { 2825 struct sctp_assoc_value *v = (struct sctp_assoc_value *)params; 2826 struct sctp_sack_info p; 2827 2828 pr_warn_ratelimited(DEPRECATED 2829 "%s (pid %d) " 2830 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2831 "Use struct sctp_sack_info instead\n", 2832 current->comm, task_pid_nr(current)); 2833 2834 p.sack_assoc_id = v->assoc_id; 2835 p.sack_delay = v->assoc_value; 2836 p.sack_freq = v->assoc_value ? 0 : 1; 2837 return __sctp_setsockopt_delayed_ack(sk, &p); 2838 } 2839 2840 if (optlen != sizeof(struct sctp_sack_info)) 2841 return -EINVAL; 2842 if (params->sack_delay == 0 && params->sack_freq == 0) 2843 return 0; 2844 return __sctp_setsockopt_delayed_ack(sk, params); 2845 } 2846 2847 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2848 * 2849 * Applications can specify protocol parameters for the default association 2850 * initialization. The option name argument to setsockopt() and getsockopt() 2851 * is SCTP_INITMSG. 2852 * 2853 * Setting initialization parameters is effective only on an unconnected 2854 * socket (for UDP-style sockets only future associations are effected 2855 * by the change). With TCP-style sockets, this option is inherited by 2856 * sockets derived from a listener socket. 2857 */ 2858 static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit, 2859 unsigned int optlen) 2860 { 2861 struct sctp_sock *sp = sctp_sk(sk); 2862 2863 if (optlen != sizeof(struct sctp_initmsg)) 2864 return -EINVAL; 2865 2866 if (sinit->sinit_num_ostreams) 2867 sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams; 2868 if (sinit->sinit_max_instreams) 2869 sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams; 2870 if (sinit->sinit_max_attempts) 2871 sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts; 2872 if (sinit->sinit_max_init_timeo) 2873 sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo; 2874 2875 return 0; 2876 } 2877 2878 /* 2879 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2880 * 2881 * Applications that wish to use the sendto() system call may wish to 2882 * specify a default set of parameters that would normally be supplied 2883 * through the inclusion of ancillary data. This socket option allows 2884 * such an application to set the default sctp_sndrcvinfo structure. 2885 * The application that wishes to use this socket option simply passes 2886 * in to this call the sctp_sndrcvinfo structure defined in Section 2887 * 5.2.2) The input parameters accepted by this call include 2888 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2889 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2890 * to this call if the caller is using the UDP model. 2891 */ 2892 static int sctp_setsockopt_default_send_param(struct sock *sk, 2893 struct sctp_sndrcvinfo *info, 2894 unsigned int optlen) 2895 { 2896 struct sctp_sock *sp = sctp_sk(sk); 2897 struct sctp_association *asoc; 2898 2899 if (optlen != sizeof(*info)) 2900 return -EINVAL; 2901 if (info->sinfo_flags & 2902 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2903 SCTP_ABORT | SCTP_EOF)) 2904 return -EINVAL; 2905 2906 asoc = sctp_id2assoc(sk, info->sinfo_assoc_id); 2907 if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC && 2908 sctp_style(sk, UDP)) 2909 return -EINVAL; 2910 2911 if (asoc) { 2912 asoc->default_stream = info->sinfo_stream; 2913 asoc->default_flags = info->sinfo_flags; 2914 asoc->default_ppid = info->sinfo_ppid; 2915 asoc->default_context = info->sinfo_context; 2916 asoc->default_timetolive = info->sinfo_timetolive; 2917 2918 return 0; 2919 } 2920 2921 if (sctp_style(sk, TCP)) 2922 info->sinfo_assoc_id = SCTP_FUTURE_ASSOC; 2923 2924 if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC || 2925 info->sinfo_assoc_id == SCTP_ALL_ASSOC) { 2926 sp->default_stream = info->sinfo_stream; 2927 sp->default_flags = info->sinfo_flags; 2928 sp->default_ppid = info->sinfo_ppid; 2929 sp->default_context = info->sinfo_context; 2930 sp->default_timetolive = info->sinfo_timetolive; 2931 } 2932 2933 if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC || 2934 info->sinfo_assoc_id == SCTP_ALL_ASSOC) { 2935 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 2936 asoc->default_stream = info->sinfo_stream; 2937 asoc->default_flags = info->sinfo_flags; 2938 asoc->default_ppid = info->sinfo_ppid; 2939 asoc->default_context = info->sinfo_context; 2940 asoc->default_timetolive = info->sinfo_timetolive; 2941 } 2942 } 2943 2944 return 0; 2945 } 2946 2947 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2948 * (SCTP_DEFAULT_SNDINFO) 2949 */ 2950 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2951 struct sctp_sndinfo *info, 2952 unsigned int optlen) 2953 { 2954 struct sctp_sock *sp = sctp_sk(sk); 2955 struct sctp_association *asoc; 2956 2957 if (optlen != sizeof(*info)) 2958 return -EINVAL; 2959 if (info->snd_flags & 2960 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2961 SCTP_ABORT | SCTP_EOF)) 2962 return -EINVAL; 2963 2964 asoc = sctp_id2assoc(sk, info->snd_assoc_id); 2965 if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC && 2966 sctp_style(sk, UDP)) 2967 return -EINVAL; 2968 2969 if (asoc) { 2970 asoc->default_stream = info->snd_sid; 2971 asoc->default_flags = info->snd_flags; 2972 asoc->default_ppid = info->snd_ppid; 2973 asoc->default_context = info->snd_context; 2974 2975 return 0; 2976 } 2977 2978 if (sctp_style(sk, TCP)) 2979 info->snd_assoc_id = SCTP_FUTURE_ASSOC; 2980 2981 if (info->snd_assoc_id == SCTP_FUTURE_ASSOC || 2982 info->snd_assoc_id == SCTP_ALL_ASSOC) { 2983 sp->default_stream = info->snd_sid; 2984 sp->default_flags = info->snd_flags; 2985 sp->default_ppid = info->snd_ppid; 2986 sp->default_context = info->snd_context; 2987 } 2988 2989 if (info->snd_assoc_id == SCTP_CURRENT_ASSOC || 2990 info->snd_assoc_id == SCTP_ALL_ASSOC) { 2991 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 2992 asoc->default_stream = info->snd_sid; 2993 asoc->default_flags = info->snd_flags; 2994 asoc->default_ppid = info->snd_ppid; 2995 asoc->default_context = info->snd_context; 2996 } 2997 } 2998 2999 return 0; 3000 } 3001 3002 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 3003 * 3004 * Requests that the local SCTP stack use the enclosed peer address as 3005 * the association primary. The enclosed address must be one of the 3006 * association peer's addresses. 3007 */ 3008 static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim, 3009 unsigned int optlen) 3010 { 3011 struct sctp_transport *trans; 3012 struct sctp_af *af; 3013 int err; 3014 3015 if (optlen != sizeof(struct sctp_prim)) 3016 return -EINVAL; 3017 3018 /* Allow security module to validate address but need address len. */ 3019 af = sctp_get_af_specific(prim->ssp_addr.ss_family); 3020 if (!af) 3021 return -EINVAL; 3022 3023 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3024 (struct sockaddr *)&prim->ssp_addr, 3025 af->sockaddr_len); 3026 if (err) 3027 return err; 3028 3029 trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id); 3030 if (!trans) 3031 return -EINVAL; 3032 3033 sctp_assoc_set_primary(trans->asoc, trans); 3034 3035 return 0; 3036 } 3037 3038 /* 3039 * 7.1.5 SCTP_NODELAY 3040 * 3041 * Turn on/off any Nagle-like algorithm. This means that packets are 3042 * generally sent as soon as possible and no unnecessary delays are 3043 * introduced, at the cost of more packets in the network. Expects an 3044 * integer boolean flag. 3045 */ 3046 static int sctp_setsockopt_nodelay(struct sock *sk, int *val, 3047 unsigned int optlen) 3048 { 3049 if (optlen < sizeof(int)) 3050 return -EINVAL; 3051 sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1; 3052 return 0; 3053 } 3054 3055 /* 3056 * 3057 * 7.1.1 SCTP_RTOINFO 3058 * 3059 * The protocol parameters used to initialize and bound retransmission 3060 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3061 * and modify these parameters. 3062 * All parameters are time values, in milliseconds. A value of 0, when 3063 * modifying the parameters, indicates that the current value should not 3064 * be changed. 3065 * 3066 */ 3067 static int sctp_setsockopt_rtoinfo(struct sock *sk, 3068 struct sctp_rtoinfo *rtoinfo, 3069 unsigned int optlen) 3070 { 3071 struct sctp_association *asoc; 3072 unsigned long rto_min, rto_max; 3073 struct sctp_sock *sp = sctp_sk(sk); 3074 3075 if (optlen != sizeof (struct sctp_rtoinfo)) 3076 return -EINVAL; 3077 3078 asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id); 3079 3080 /* Set the values to the specific association */ 3081 if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC && 3082 sctp_style(sk, UDP)) 3083 return -EINVAL; 3084 3085 rto_max = rtoinfo->srto_max; 3086 rto_min = rtoinfo->srto_min; 3087 3088 if (rto_max) 3089 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3090 else 3091 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3092 3093 if (rto_min) 3094 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3095 else 3096 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3097 3098 if (rto_min > rto_max) 3099 return -EINVAL; 3100 3101 if (asoc) { 3102 if (rtoinfo->srto_initial != 0) 3103 asoc->rto_initial = 3104 msecs_to_jiffies(rtoinfo->srto_initial); 3105 asoc->rto_max = rto_max; 3106 asoc->rto_min = rto_min; 3107 } else { 3108 /* If there is no association or the association-id = 0 3109 * set the values to the endpoint. 3110 */ 3111 if (rtoinfo->srto_initial != 0) 3112 sp->rtoinfo.srto_initial = rtoinfo->srto_initial; 3113 sp->rtoinfo.srto_max = rto_max; 3114 sp->rtoinfo.srto_min = rto_min; 3115 } 3116 3117 return 0; 3118 } 3119 3120 /* 3121 * 3122 * 7.1.2 SCTP_ASSOCINFO 3123 * 3124 * This option is used to tune the maximum retransmission attempts 3125 * of the association. 3126 * Returns an error if the new association retransmission value is 3127 * greater than the sum of the retransmission value of the peer. 3128 * See [SCTP] for more information. 3129 * 3130 */ 3131 static int sctp_setsockopt_associnfo(struct sock *sk, 3132 struct sctp_assocparams *assocparams, 3133 unsigned int optlen) 3134 { 3135 3136 struct sctp_association *asoc; 3137 3138 if (optlen != sizeof(struct sctp_assocparams)) 3139 return -EINVAL; 3140 3141 asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id); 3142 3143 if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC && 3144 sctp_style(sk, UDP)) 3145 return -EINVAL; 3146 3147 /* Set the values to the specific association */ 3148 if (asoc) { 3149 if (assocparams->sasoc_asocmaxrxt != 0) { 3150 __u32 path_sum = 0; 3151 int paths = 0; 3152 struct sctp_transport *peer_addr; 3153 3154 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3155 transports) { 3156 path_sum += peer_addr->pathmaxrxt; 3157 paths++; 3158 } 3159 3160 /* Only validate asocmaxrxt if we have more than 3161 * one path/transport. We do this because path 3162 * retransmissions are only counted when we have more 3163 * then one path. 3164 */ 3165 if (paths > 1 && 3166 assocparams->sasoc_asocmaxrxt > path_sum) 3167 return -EINVAL; 3168 3169 asoc->max_retrans = assocparams->sasoc_asocmaxrxt; 3170 } 3171 3172 if (assocparams->sasoc_cookie_life != 0) 3173 asoc->cookie_life = 3174 ms_to_ktime(assocparams->sasoc_cookie_life); 3175 } else { 3176 /* Set the values to the endpoint */ 3177 struct sctp_sock *sp = sctp_sk(sk); 3178 3179 if (assocparams->sasoc_asocmaxrxt != 0) 3180 sp->assocparams.sasoc_asocmaxrxt = 3181 assocparams->sasoc_asocmaxrxt; 3182 if (assocparams->sasoc_cookie_life != 0) 3183 sp->assocparams.sasoc_cookie_life = 3184 assocparams->sasoc_cookie_life; 3185 } 3186 return 0; 3187 } 3188 3189 /* 3190 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3191 * 3192 * This socket option is a boolean flag which turns on or off mapped V4 3193 * addresses. If this option is turned on and the socket is type 3194 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3195 * If this option is turned off, then no mapping will be done of V4 3196 * addresses and a user will receive both PF_INET6 and PF_INET type 3197 * addresses on the socket. 3198 */ 3199 static int sctp_setsockopt_mappedv4(struct sock *sk, int *val, 3200 unsigned int optlen) 3201 { 3202 struct sctp_sock *sp = sctp_sk(sk); 3203 3204 if (optlen < sizeof(int)) 3205 return -EINVAL; 3206 if (*val) 3207 sp->v4mapped = 1; 3208 else 3209 sp->v4mapped = 0; 3210 3211 return 0; 3212 } 3213 3214 /* 3215 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3216 * This option will get or set the maximum size to put in any outgoing 3217 * SCTP DATA chunk. If a message is larger than this size it will be 3218 * fragmented by SCTP into the specified size. Note that the underlying 3219 * SCTP implementation may fragment into smaller sized chunks when the 3220 * PMTU of the underlying association is smaller than the value set by 3221 * the user. The default value for this option is '0' which indicates 3222 * the user is NOT limiting fragmentation and only the PMTU will effect 3223 * SCTP's choice of DATA chunk size. Note also that values set larger 3224 * than the maximum size of an IP datagram will effectively let SCTP 3225 * control fragmentation (i.e. the same as setting this option to 0). 3226 * 3227 * The following structure is used to access and modify this parameter: 3228 * 3229 * struct sctp_assoc_value { 3230 * sctp_assoc_t assoc_id; 3231 * uint32_t assoc_value; 3232 * }; 3233 * 3234 * assoc_id: This parameter is ignored for one-to-one style sockets. 3235 * For one-to-many style sockets this parameter indicates which 3236 * association the user is performing an action upon. Note that if 3237 * this field's value is zero then the endpoints default value is 3238 * changed (effecting future associations only). 3239 * assoc_value: This parameter specifies the maximum size in bytes. 3240 */ 3241 static int sctp_setsockopt_maxseg(struct sock *sk, 3242 struct sctp_assoc_value *params, 3243 unsigned int optlen) 3244 { 3245 struct sctp_sock *sp = sctp_sk(sk); 3246 struct sctp_association *asoc; 3247 sctp_assoc_t assoc_id; 3248 int val; 3249 3250 if (optlen == sizeof(int)) { 3251 pr_warn_ratelimited(DEPRECATED 3252 "%s (pid %d) " 3253 "Use of int in maxseg socket option.\n" 3254 "Use struct sctp_assoc_value instead\n", 3255 current->comm, task_pid_nr(current)); 3256 assoc_id = SCTP_FUTURE_ASSOC; 3257 val = *(int *)params; 3258 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3259 assoc_id = params->assoc_id; 3260 val = params->assoc_value; 3261 } else { 3262 return -EINVAL; 3263 } 3264 3265 asoc = sctp_id2assoc(sk, assoc_id); 3266 if (!asoc && assoc_id != SCTP_FUTURE_ASSOC && 3267 sctp_style(sk, UDP)) 3268 return -EINVAL; 3269 3270 if (val) { 3271 int min_len, max_len; 3272 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3273 sizeof(struct sctp_data_chunk); 3274 3275 min_len = sctp_min_frag_point(sp, datasize); 3276 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3277 3278 if (val < min_len || val > max_len) 3279 return -EINVAL; 3280 } 3281 3282 if (asoc) { 3283 asoc->user_frag = val; 3284 sctp_assoc_update_frag_point(asoc); 3285 } else { 3286 sp->user_frag = val; 3287 } 3288 3289 return 0; 3290 } 3291 3292 3293 /* 3294 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3295 * 3296 * Requests that the peer mark the enclosed address as the association 3297 * primary. The enclosed address must be one of the association's 3298 * locally bound addresses. The following structure is used to make a 3299 * set primary request: 3300 */ 3301 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, 3302 struct sctp_setpeerprim *prim, 3303 unsigned int optlen) 3304 { 3305 struct sctp_sock *sp; 3306 struct sctp_association *asoc = NULL; 3307 struct sctp_chunk *chunk; 3308 struct sctp_af *af; 3309 int err; 3310 3311 sp = sctp_sk(sk); 3312 3313 if (!sp->ep->asconf_enable) 3314 return -EPERM; 3315 3316 if (optlen != sizeof(struct sctp_setpeerprim)) 3317 return -EINVAL; 3318 3319 asoc = sctp_id2assoc(sk, prim->sspp_assoc_id); 3320 if (!asoc) 3321 return -EINVAL; 3322 3323 if (!asoc->peer.asconf_capable) 3324 return -EPERM; 3325 3326 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3327 return -EPERM; 3328 3329 if (!sctp_state(asoc, ESTABLISHED)) 3330 return -ENOTCONN; 3331 3332 af = sctp_get_af_specific(prim->sspp_addr.ss_family); 3333 if (!af) 3334 return -EINVAL; 3335 3336 if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL)) 3337 return -EADDRNOTAVAIL; 3338 3339 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr)) 3340 return -EADDRNOTAVAIL; 3341 3342 /* Allow security module to validate address. */ 3343 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3344 (struct sockaddr *)&prim->sspp_addr, 3345 af->sockaddr_len); 3346 if (err) 3347 return err; 3348 3349 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3350 chunk = sctp_make_asconf_set_prim(asoc, 3351 (union sctp_addr *)&prim->sspp_addr); 3352 if (!chunk) 3353 return -ENOMEM; 3354 3355 err = sctp_send_asconf(asoc, chunk); 3356 3357 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3358 3359 return err; 3360 } 3361 3362 static int sctp_setsockopt_adaptation_layer(struct sock *sk, 3363 struct sctp_setadaptation *adapt, 3364 unsigned int optlen) 3365 { 3366 if (optlen != sizeof(struct sctp_setadaptation)) 3367 return -EINVAL; 3368 3369 sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind; 3370 3371 return 0; 3372 } 3373 3374 /* 3375 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3376 * 3377 * The context field in the sctp_sndrcvinfo structure is normally only 3378 * used when a failed message is retrieved holding the value that was 3379 * sent down on the actual send call. This option allows the setting of 3380 * a default context on an association basis that will be received on 3381 * reading messages from the peer. This is especially helpful in the 3382 * one-2-many model for an application to keep some reference to an 3383 * internal state machine that is processing messages on the 3384 * association. Note that the setting of this value only effects 3385 * received messages from the peer and does not effect the value that is 3386 * saved with outbound messages. 3387 */ 3388 static int sctp_setsockopt_context(struct sock *sk, 3389 struct sctp_assoc_value *params, 3390 unsigned int optlen) 3391 { 3392 struct sctp_sock *sp = sctp_sk(sk); 3393 struct sctp_association *asoc; 3394 3395 if (optlen != sizeof(struct sctp_assoc_value)) 3396 return -EINVAL; 3397 3398 asoc = sctp_id2assoc(sk, params->assoc_id); 3399 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 3400 sctp_style(sk, UDP)) 3401 return -EINVAL; 3402 3403 if (asoc) { 3404 asoc->default_rcv_context = params->assoc_value; 3405 3406 return 0; 3407 } 3408 3409 if (sctp_style(sk, TCP)) 3410 params->assoc_id = SCTP_FUTURE_ASSOC; 3411 3412 if (params->assoc_id == SCTP_FUTURE_ASSOC || 3413 params->assoc_id == SCTP_ALL_ASSOC) 3414 sp->default_rcv_context = params->assoc_value; 3415 3416 if (params->assoc_id == SCTP_CURRENT_ASSOC || 3417 params->assoc_id == SCTP_ALL_ASSOC) 3418 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3419 asoc->default_rcv_context = params->assoc_value; 3420 3421 return 0; 3422 } 3423 3424 /* 3425 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3426 * 3427 * This options will at a minimum specify if the implementation is doing 3428 * fragmented interleave. Fragmented interleave, for a one to many 3429 * socket, is when subsequent calls to receive a message may return 3430 * parts of messages from different associations. Some implementations 3431 * may allow you to turn this value on or off. If so, when turned off, 3432 * no fragment interleave will occur (which will cause a head of line 3433 * blocking amongst multiple associations sharing the same one to many 3434 * socket). When this option is turned on, then each receive call may 3435 * come from a different association (thus the user must receive data 3436 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3437 * association each receive belongs to. 3438 * 3439 * This option takes a boolean value. A non-zero value indicates that 3440 * fragmented interleave is on. A value of zero indicates that 3441 * fragmented interleave is off. 3442 * 3443 * Note that it is important that an implementation that allows this 3444 * option to be turned on, have it off by default. Otherwise an unaware 3445 * application using the one to many model may become confused and act 3446 * incorrectly. 3447 */ 3448 static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val, 3449 unsigned int optlen) 3450 { 3451 if (optlen != sizeof(int)) 3452 return -EINVAL; 3453 3454 sctp_sk(sk)->frag_interleave = !!*val; 3455 3456 if (!sctp_sk(sk)->frag_interleave) 3457 sctp_sk(sk)->ep->intl_enable = 0; 3458 3459 return 0; 3460 } 3461 3462 /* 3463 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3464 * (SCTP_PARTIAL_DELIVERY_POINT) 3465 * 3466 * This option will set or get the SCTP partial delivery point. This 3467 * point is the size of a message where the partial delivery API will be 3468 * invoked to help free up rwnd space for the peer. Setting this to a 3469 * lower value will cause partial deliveries to happen more often. The 3470 * calls argument is an integer that sets or gets the partial delivery 3471 * point. Note also that the call will fail if the user attempts to set 3472 * this value larger than the socket receive buffer size. 3473 * 3474 * Note that any single message having a length smaller than or equal to 3475 * the SCTP partial delivery point will be delivered in one single read 3476 * call as long as the user provided buffer is large enough to hold the 3477 * message. 3478 */ 3479 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val, 3480 unsigned int optlen) 3481 { 3482 if (optlen != sizeof(u32)) 3483 return -EINVAL; 3484 3485 /* Note: We double the receive buffer from what the user sets 3486 * it to be, also initial rwnd is based on rcvbuf/2. 3487 */ 3488 if (*val > (sk->sk_rcvbuf >> 1)) 3489 return -EINVAL; 3490 3491 sctp_sk(sk)->pd_point = *val; 3492 3493 return 0; /* is this the right error code? */ 3494 } 3495 3496 /* 3497 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3498 * 3499 * This option will allow a user to change the maximum burst of packets 3500 * that can be emitted by this association. Note that the default value 3501 * is 4, and some implementations may restrict this setting so that it 3502 * can only be lowered. 3503 * 3504 * NOTE: This text doesn't seem right. Do this on a socket basis with 3505 * future associations inheriting the socket value. 3506 */ 3507 static int sctp_setsockopt_maxburst(struct sock *sk, 3508 struct sctp_assoc_value *params, 3509 unsigned int optlen) 3510 { 3511 struct sctp_sock *sp = sctp_sk(sk); 3512 struct sctp_association *asoc; 3513 sctp_assoc_t assoc_id; 3514 u32 assoc_value; 3515 3516 if (optlen == sizeof(int)) { 3517 pr_warn_ratelimited(DEPRECATED 3518 "%s (pid %d) " 3519 "Use of int in max_burst socket option deprecated.\n" 3520 "Use struct sctp_assoc_value instead\n", 3521 current->comm, task_pid_nr(current)); 3522 assoc_id = SCTP_FUTURE_ASSOC; 3523 assoc_value = *((int *)params); 3524 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3525 assoc_id = params->assoc_id; 3526 assoc_value = params->assoc_value; 3527 } else 3528 return -EINVAL; 3529 3530 asoc = sctp_id2assoc(sk, assoc_id); 3531 if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) 3532 return -EINVAL; 3533 3534 if (asoc) { 3535 asoc->max_burst = assoc_value; 3536 3537 return 0; 3538 } 3539 3540 if (sctp_style(sk, TCP)) 3541 assoc_id = SCTP_FUTURE_ASSOC; 3542 3543 if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC) 3544 sp->max_burst = assoc_value; 3545 3546 if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC) 3547 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3548 asoc->max_burst = assoc_value; 3549 3550 return 0; 3551 } 3552 3553 /* 3554 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3555 * 3556 * This set option adds a chunk type that the user is requesting to be 3557 * received only in an authenticated way. Changes to the list of chunks 3558 * will only effect future associations on the socket. 3559 */ 3560 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3561 struct sctp_authchunk *val, 3562 unsigned int optlen) 3563 { 3564 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3565 3566 if (!ep->auth_enable) 3567 return -EACCES; 3568 3569 if (optlen != sizeof(struct sctp_authchunk)) 3570 return -EINVAL; 3571 3572 switch (val->sauth_chunk) { 3573 case SCTP_CID_INIT: 3574 case SCTP_CID_INIT_ACK: 3575 case SCTP_CID_SHUTDOWN_COMPLETE: 3576 case SCTP_CID_AUTH: 3577 return -EINVAL; 3578 } 3579 3580 /* add this chunk id to the endpoint */ 3581 return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk); 3582 } 3583 3584 /* 3585 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3586 * 3587 * This option gets or sets the list of HMAC algorithms that the local 3588 * endpoint requires the peer to use. 3589 */ 3590 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3591 struct sctp_hmacalgo *hmacs, 3592 unsigned int optlen) 3593 { 3594 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3595 u32 idents; 3596 3597 if (!ep->auth_enable) 3598 return -EACCES; 3599 3600 if (optlen < sizeof(struct sctp_hmacalgo)) 3601 return -EINVAL; 3602 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3603 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3604 3605 idents = hmacs->shmac_num_idents; 3606 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3607 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) 3608 return -EINVAL; 3609 3610 return sctp_auth_ep_set_hmacs(ep, hmacs); 3611 } 3612 3613 /* 3614 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3615 * 3616 * This option will set a shared secret key which is used to build an 3617 * association shared key. 3618 */ 3619 static int sctp_setsockopt_auth_key(struct sock *sk, 3620 struct sctp_authkey *authkey, 3621 unsigned int optlen) 3622 { 3623 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3624 struct sctp_association *asoc; 3625 int ret = -EINVAL; 3626 3627 if (optlen <= sizeof(struct sctp_authkey)) 3628 return -EINVAL; 3629 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3630 * this. 3631 */ 3632 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey)); 3633 3634 if (authkey->sca_keylength > optlen - sizeof(*authkey)) 3635 goto out; 3636 3637 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3638 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC && 3639 sctp_style(sk, UDP)) 3640 goto out; 3641 3642 if (asoc) { 3643 ret = sctp_auth_set_key(ep, asoc, authkey); 3644 goto out; 3645 } 3646 3647 if (sctp_style(sk, TCP)) 3648 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC; 3649 3650 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC || 3651 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3652 ret = sctp_auth_set_key(ep, asoc, authkey); 3653 if (ret) 3654 goto out; 3655 } 3656 3657 ret = 0; 3658 3659 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC || 3660 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3661 list_for_each_entry(asoc, &ep->asocs, asocs) { 3662 int res = sctp_auth_set_key(ep, asoc, authkey); 3663 3664 if (res && !ret) 3665 ret = res; 3666 } 3667 } 3668 3669 out: 3670 memzero_explicit(authkey, optlen); 3671 return ret; 3672 } 3673 3674 /* 3675 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3676 * 3677 * This option will get or set the active shared key to be used to build 3678 * the association shared key. 3679 */ 3680 static int sctp_setsockopt_active_key(struct sock *sk, 3681 struct sctp_authkeyid *val, 3682 unsigned int optlen) 3683 { 3684 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3685 struct sctp_association *asoc; 3686 int ret = 0; 3687 3688 if (optlen != sizeof(struct sctp_authkeyid)) 3689 return -EINVAL; 3690 3691 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3692 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3693 sctp_style(sk, UDP)) 3694 return -EINVAL; 3695 3696 if (asoc) 3697 return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); 3698 3699 if (sctp_style(sk, TCP)) 3700 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3701 3702 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3703 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3704 ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); 3705 if (ret) 3706 return ret; 3707 } 3708 3709 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3710 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3711 list_for_each_entry(asoc, &ep->asocs, asocs) { 3712 int res = sctp_auth_set_active_key(ep, asoc, 3713 val->scact_keynumber); 3714 3715 if (res && !ret) 3716 ret = res; 3717 } 3718 } 3719 3720 return ret; 3721 } 3722 3723 /* 3724 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3725 * 3726 * This set option will delete a shared secret key from use. 3727 */ 3728 static int sctp_setsockopt_del_key(struct sock *sk, 3729 struct sctp_authkeyid *val, 3730 unsigned int optlen) 3731 { 3732 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3733 struct sctp_association *asoc; 3734 int ret = 0; 3735 3736 if (optlen != sizeof(struct sctp_authkeyid)) 3737 return -EINVAL; 3738 3739 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3740 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3741 sctp_style(sk, UDP)) 3742 return -EINVAL; 3743 3744 if (asoc) 3745 return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); 3746 3747 if (sctp_style(sk, TCP)) 3748 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3749 3750 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3751 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3752 ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); 3753 if (ret) 3754 return ret; 3755 } 3756 3757 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3758 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3759 list_for_each_entry(asoc, &ep->asocs, asocs) { 3760 int res = sctp_auth_del_key_id(ep, asoc, 3761 val->scact_keynumber); 3762 3763 if (res && !ret) 3764 ret = res; 3765 } 3766 } 3767 3768 return ret; 3769 } 3770 3771 /* 3772 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3773 * 3774 * This set option will deactivate a shared secret key. 3775 */ 3776 static int sctp_setsockopt_deactivate_key(struct sock *sk, 3777 struct sctp_authkeyid *val, 3778 unsigned int optlen) 3779 { 3780 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3781 struct sctp_association *asoc; 3782 int ret = 0; 3783 3784 if (optlen != sizeof(struct sctp_authkeyid)) 3785 return -EINVAL; 3786 3787 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3788 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3789 sctp_style(sk, UDP)) 3790 return -EINVAL; 3791 3792 if (asoc) 3793 return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); 3794 3795 if (sctp_style(sk, TCP)) 3796 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3797 3798 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3799 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3800 ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); 3801 if (ret) 3802 return ret; 3803 } 3804 3805 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3806 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3807 list_for_each_entry(asoc, &ep->asocs, asocs) { 3808 int res = sctp_auth_deact_key_id(ep, asoc, 3809 val->scact_keynumber); 3810 3811 if (res && !ret) 3812 ret = res; 3813 } 3814 } 3815 3816 return ret; 3817 } 3818 3819 /* 3820 * 8.1.23 SCTP_AUTO_ASCONF 3821 * 3822 * This option will enable or disable the use of the automatic generation of 3823 * ASCONF chunks to add and delete addresses to an existing association. Note 3824 * that this option has two caveats namely: a) it only affects sockets that 3825 * are bound to all addresses available to the SCTP stack, and b) the system 3826 * administrator may have an overriding control that turns the ASCONF feature 3827 * off no matter what setting the socket option may have. 3828 * This option expects an integer boolean flag, where a non-zero value turns on 3829 * the option, and a zero value turns off the option. 3830 * Note. In this implementation, socket operation overrides default parameter 3831 * being set by sysctl as well as FreeBSD implementation 3832 */ 3833 static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val, 3834 unsigned int optlen) 3835 { 3836 struct sctp_sock *sp = sctp_sk(sk); 3837 3838 if (optlen < sizeof(int)) 3839 return -EINVAL; 3840 if (!sctp_is_ep_boundall(sk) && *val) 3841 return -EINVAL; 3842 if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf)) 3843 return 0; 3844 3845 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3846 if (*val == 0 && sp->do_auto_asconf) { 3847 list_del(&sp->auto_asconf_list); 3848 sp->do_auto_asconf = 0; 3849 } else if (*val && !sp->do_auto_asconf) { 3850 list_add_tail(&sp->auto_asconf_list, 3851 &sock_net(sk)->sctp.auto_asconf_splist); 3852 sp->do_auto_asconf = 1; 3853 } 3854 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3855 return 0; 3856 } 3857 3858 /* 3859 * SCTP_PEER_ADDR_THLDS 3860 * 3861 * This option allows us to alter the partially failed threshold for one or all 3862 * transports in an association. See Section 6.1 of: 3863 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3864 */ 3865 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3866 struct sctp_paddrthlds_v2 *val, 3867 unsigned int optlen, bool v2) 3868 { 3869 struct sctp_transport *trans; 3870 struct sctp_association *asoc; 3871 int len; 3872 3873 len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds); 3874 if (optlen < len) 3875 return -EINVAL; 3876 3877 if (v2 && val->spt_pathpfthld > val->spt_pathcpthld) 3878 return -EINVAL; 3879 3880 if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) { 3881 trans = sctp_addr_id2transport(sk, &val->spt_address, 3882 val->spt_assoc_id); 3883 if (!trans) 3884 return -ENOENT; 3885 3886 if (val->spt_pathmaxrxt) 3887 trans->pathmaxrxt = val->spt_pathmaxrxt; 3888 if (v2) 3889 trans->ps_retrans = val->spt_pathcpthld; 3890 trans->pf_retrans = val->spt_pathpfthld; 3891 3892 return 0; 3893 } 3894 3895 asoc = sctp_id2assoc(sk, val->spt_assoc_id); 3896 if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC && 3897 sctp_style(sk, UDP)) 3898 return -EINVAL; 3899 3900 if (asoc) { 3901 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3902 transports) { 3903 if (val->spt_pathmaxrxt) 3904 trans->pathmaxrxt = val->spt_pathmaxrxt; 3905 if (v2) 3906 trans->ps_retrans = val->spt_pathcpthld; 3907 trans->pf_retrans = val->spt_pathpfthld; 3908 } 3909 3910 if (val->spt_pathmaxrxt) 3911 asoc->pathmaxrxt = val->spt_pathmaxrxt; 3912 if (v2) 3913 asoc->ps_retrans = val->spt_pathcpthld; 3914 asoc->pf_retrans = val->spt_pathpfthld; 3915 } else { 3916 struct sctp_sock *sp = sctp_sk(sk); 3917 3918 if (val->spt_pathmaxrxt) 3919 sp->pathmaxrxt = val->spt_pathmaxrxt; 3920 if (v2) 3921 sp->ps_retrans = val->spt_pathcpthld; 3922 sp->pf_retrans = val->spt_pathpfthld; 3923 } 3924 3925 return 0; 3926 } 3927 3928 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val, 3929 unsigned int optlen) 3930 { 3931 if (optlen < sizeof(int)) 3932 return -EINVAL; 3933 3934 sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1; 3935 3936 return 0; 3937 } 3938 3939 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val, 3940 unsigned int optlen) 3941 { 3942 if (optlen < sizeof(int)) 3943 return -EINVAL; 3944 3945 sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1; 3946 3947 return 0; 3948 } 3949 3950 static int sctp_setsockopt_pr_supported(struct sock *sk, 3951 struct sctp_assoc_value *params, 3952 unsigned int optlen) 3953 { 3954 struct sctp_association *asoc; 3955 3956 if (optlen != sizeof(*params)) 3957 return -EINVAL; 3958 3959 asoc = sctp_id2assoc(sk, params->assoc_id); 3960 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 3961 sctp_style(sk, UDP)) 3962 return -EINVAL; 3963 3964 sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value; 3965 3966 return 0; 3967 } 3968 3969 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3970 struct sctp_default_prinfo *info, 3971 unsigned int optlen) 3972 { 3973 struct sctp_sock *sp = sctp_sk(sk); 3974 struct sctp_association *asoc; 3975 int retval = -EINVAL; 3976 3977 if (optlen != sizeof(*info)) 3978 goto out; 3979 3980 if (info->pr_policy & ~SCTP_PR_SCTP_MASK) 3981 goto out; 3982 3983 if (info->pr_policy == SCTP_PR_SCTP_NONE) 3984 info->pr_value = 0; 3985 3986 asoc = sctp_id2assoc(sk, info->pr_assoc_id); 3987 if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC && 3988 sctp_style(sk, UDP)) 3989 goto out; 3990 3991 retval = 0; 3992 3993 if (asoc) { 3994 SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy); 3995 asoc->default_timetolive = info->pr_value; 3996 goto out; 3997 } 3998 3999 if (sctp_style(sk, TCP)) 4000 info->pr_assoc_id = SCTP_FUTURE_ASSOC; 4001 4002 if (info->pr_assoc_id == SCTP_FUTURE_ASSOC || 4003 info->pr_assoc_id == SCTP_ALL_ASSOC) { 4004 SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy); 4005 sp->default_timetolive = info->pr_value; 4006 } 4007 4008 if (info->pr_assoc_id == SCTP_CURRENT_ASSOC || 4009 info->pr_assoc_id == SCTP_ALL_ASSOC) { 4010 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4011 SCTP_PR_SET_POLICY(asoc->default_flags, 4012 info->pr_policy); 4013 asoc->default_timetolive = info->pr_value; 4014 } 4015 } 4016 4017 out: 4018 return retval; 4019 } 4020 4021 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 4022 struct sctp_assoc_value *params, 4023 unsigned int optlen) 4024 { 4025 struct sctp_association *asoc; 4026 int retval = -EINVAL; 4027 4028 if (optlen != sizeof(*params)) 4029 goto out; 4030 4031 asoc = sctp_id2assoc(sk, params->assoc_id); 4032 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4033 sctp_style(sk, UDP)) 4034 goto out; 4035 4036 sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value; 4037 4038 retval = 0; 4039 4040 out: 4041 return retval; 4042 } 4043 4044 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4045 struct sctp_assoc_value *params, 4046 unsigned int optlen) 4047 { 4048 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 4049 struct sctp_association *asoc; 4050 int retval = -EINVAL; 4051 4052 if (optlen != sizeof(*params)) 4053 goto out; 4054 4055 if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4056 goto out; 4057 4058 asoc = sctp_id2assoc(sk, params->assoc_id); 4059 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 4060 sctp_style(sk, UDP)) 4061 goto out; 4062 4063 retval = 0; 4064 4065 if (asoc) { 4066 asoc->strreset_enable = params->assoc_value; 4067 goto out; 4068 } 4069 4070 if (sctp_style(sk, TCP)) 4071 params->assoc_id = SCTP_FUTURE_ASSOC; 4072 4073 if (params->assoc_id == SCTP_FUTURE_ASSOC || 4074 params->assoc_id == SCTP_ALL_ASSOC) 4075 ep->strreset_enable = params->assoc_value; 4076 4077 if (params->assoc_id == SCTP_CURRENT_ASSOC || 4078 params->assoc_id == SCTP_ALL_ASSOC) 4079 list_for_each_entry(asoc, &ep->asocs, asocs) 4080 asoc->strreset_enable = params->assoc_value; 4081 4082 out: 4083 return retval; 4084 } 4085 4086 static int sctp_setsockopt_reset_streams(struct sock *sk, 4087 struct sctp_reset_streams *params, 4088 unsigned int optlen) 4089 { 4090 struct sctp_association *asoc; 4091 4092 if (optlen < sizeof(*params)) 4093 return -EINVAL; 4094 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4095 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4096 sizeof(__u16) * sizeof(*params)); 4097 4098 if (params->srs_number_streams * sizeof(__u16) > 4099 optlen - sizeof(*params)) 4100 return -EINVAL; 4101 4102 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4103 if (!asoc) 4104 return -EINVAL; 4105 4106 return sctp_send_reset_streams(asoc, params); 4107 } 4108 4109 static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd, 4110 unsigned int optlen) 4111 { 4112 struct sctp_association *asoc; 4113 4114 if (optlen != sizeof(*associd)) 4115 return -EINVAL; 4116 4117 asoc = sctp_id2assoc(sk, *associd); 4118 if (!asoc) 4119 return -EINVAL; 4120 4121 return sctp_send_reset_assoc(asoc); 4122 } 4123 4124 static int sctp_setsockopt_add_streams(struct sock *sk, 4125 struct sctp_add_streams *params, 4126 unsigned int optlen) 4127 { 4128 struct sctp_association *asoc; 4129 4130 if (optlen != sizeof(*params)) 4131 return -EINVAL; 4132 4133 asoc = sctp_id2assoc(sk, params->sas_assoc_id); 4134 if (!asoc) 4135 return -EINVAL; 4136 4137 return sctp_send_add_streams(asoc, params); 4138 } 4139 4140 static int sctp_setsockopt_scheduler(struct sock *sk, 4141 struct sctp_assoc_value *params, 4142 unsigned int optlen) 4143 { 4144 struct sctp_sock *sp = sctp_sk(sk); 4145 struct sctp_association *asoc; 4146 int retval = 0; 4147 4148 if (optlen < sizeof(*params)) 4149 return -EINVAL; 4150 4151 if (params->assoc_value > SCTP_SS_MAX) 4152 return -EINVAL; 4153 4154 asoc = sctp_id2assoc(sk, params->assoc_id); 4155 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 4156 sctp_style(sk, UDP)) 4157 return -EINVAL; 4158 4159 if (asoc) 4160 return sctp_sched_set_sched(asoc, params->assoc_value); 4161 4162 if (sctp_style(sk, TCP)) 4163 params->assoc_id = SCTP_FUTURE_ASSOC; 4164 4165 if (params->assoc_id == SCTP_FUTURE_ASSOC || 4166 params->assoc_id == SCTP_ALL_ASSOC) 4167 sp->default_ss = params->assoc_value; 4168 4169 if (params->assoc_id == SCTP_CURRENT_ASSOC || 4170 params->assoc_id == SCTP_ALL_ASSOC) { 4171 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4172 int ret = sctp_sched_set_sched(asoc, 4173 params->assoc_value); 4174 4175 if (ret && !retval) 4176 retval = ret; 4177 } 4178 } 4179 4180 return retval; 4181 } 4182 4183 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4184 struct sctp_stream_value *params, 4185 unsigned int optlen) 4186 { 4187 struct sctp_association *asoc; 4188 int retval = -EINVAL; 4189 4190 if (optlen < sizeof(*params)) 4191 goto out; 4192 4193 asoc = sctp_id2assoc(sk, params->assoc_id); 4194 if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC && 4195 sctp_style(sk, UDP)) 4196 goto out; 4197 4198 if (asoc) { 4199 retval = sctp_sched_set_value(asoc, params->stream_id, 4200 params->stream_value, GFP_KERNEL); 4201 goto out; 4202 } 4203 4204 retval = 0; 4205 4206 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) { 4207 int ret = sctp_sched_set_value(asoc, params->stream_id, 4208 params->stream_value, 4209 GFP_KERNEL); 4210 if (ret && !retval) /* try to return the 1st error. */ 4211 retval = ret; 4212 } 4213 4214 out: 4215 return retval; 4216 } 4217 4218 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4219 struct sctp_assoc_value *p, 4220 unsigned int optlen) 4221 { 4222 struct sctp_sock *sp = sctp_sk(sk); 4223 struct sctp_association *asoc; 4224 4225 if (optlen < sizeof(*p)) 4226 return -EINVAL; 4227 4228 asoc = sctp_id2assoc(sk, p->assoc_id); 4229 if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) 4230 return -EINVAL; 4231 4232 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) { 4233 return -EPERM; 4234 } 4235 4236 sp->ep->intl_enable = !!p->assoc_value; 4237 return 0; 4238 } 4239 4240 static int sctp_setsockopt_reuse_port(struct sock *sk, int *val, 4241 unsigned int optlen) 4242 { 4243 if (!sctp_style(sk, TCP)) 4244 return -EOPNOTSUPP; 4245 4246 if (sctp_sk(sk)->ep->base.bind_addr.port) 4247 return -EFAULT; 4248 4249 if (optlen < sizeof(int)) 4250 return -EINVAL; 4251 4252 sctp_sk(sk)->reuse = !!*val; 4253 4254 return 0; 4255 } 4256 4257 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param, 4258 struct sctp_association *asoc) 4259 { 4260 struct sctp_ulpevent *event; 4261 4262 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on); 4263 4264 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) { 4265 if (sctp_outq_is_empty(&asoc->outqueue)) { 4266 event = sctp_ulpevent_make_sender_dry_event(asoc, 4267 GFP_USER | __GFP_NOWARN); 4268 if (!event) 4269 return -ENOMEM; 4270 4271 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 4272 } 4273 } 4274 4275 return 0; 4276 } 4277 4278 static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param, 4279 unsigned int optlen) 4280 { 4281 struct sctp_sock *sp = sctp_sk(sk); 4282 struct sctp_association *asoc; 4283 int retval = 0; 4284 4285 if (optlen < sizeof(*param)) 4286 return -EINVAL; 4287 4288 if (param->se_type < SCTP_SN_TYPE_BASE || 4289 param->se_type > SCTP_SN_TYPE_MAX) 4290 return -EINVAL; 4291 4292 asoc = sctp_id2assoc(sk, param->se_assoc_id); 4293 if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC && 4294 sctp_style(sk, UDP)) 4295 return -EINVAL; 4296 4297 if (asoc) 4298 return sctp_assoc_ulpevent_type_set(param, asoc); 4299 4300 if (sctp_style(sk, TCP)) 4301 param->se_assoc_id = SCTP_FUTURE_ASSOC; 4302 4303 if (param->se_assoc_id == SCTP_FUTURE_ASSOC || 4304 param->se_assoc_id == SCTP_ALL_ASSOC) 4305 sctp_ulpevent_type_set(&sp->subscribe, 4306 param->se_type, param->se_on); 4307 4308 if (param->se_assoc_id == SCTP_CURRENT_ASSOC || 4309 param->se_assoc_id == SCTP_ALL_ASSOC) { 4310 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4311 int ret = sctp_assoc_ulpevent_type_set(param, asoc); 4312 4313 if (ret && !retval) 4314 retval = ret; 4315 } 4316 } 4317 4318 return retval; 4319 } 4320 4321 static int sctp_setsockopt_asconf_supported(struct sock *sk, 4322 struct sctp_assoc_value *params, 4323 unsigned int optlen) 4324 { 4325 struct sctp_association *asoc; 4326 struct sctp_endpoint *ep; 4327 int retval = -EINVAL; 4328 4329 if (optlen != sizeof(*params)) 4330 goto out; 4331 4332 asoc = sctp_id2assoc(sk, params->assoc_id); 4333 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4334 sctp_style(sk, UDP)) 4335 goto out; 4336 4337 ep = sctp_sk(sk)->ep; 4338 ep->asconf_enable = !!params->assoc_value; 4339 4340 if (ep->asconf_enable && ep->auth_enable) { 4341 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4342 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4343 } 4344 4345 retval = 0; 4346 4347 out: 4348 return retval; 4349 } 4350 4351 static int sctp_setsockopt_auth_supported(struct sock *sk, 4352 struct sctp_assoc_value *params, 4353 unsigned int optlen) 4354 { 4355 struct sctp_association *asoc; 4356 struct sctp_endpoint *ep; 4357 int retval = -EINVAL; 4358 4359 if (optlen != sizeof(*params)) 4360 goto out; 4361 4362 asoc = sctp_id2assoc(sk, params->assoc_id); 4363 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4364 sctp_style(sk, UDP)) 4365 goto out; 4366 4367 ep = sctp_sk(sk)->ep; 4368 if (params->assoc_value) { 4369 retval = sctp_auth_init(ep, GFP_KERNEL); 4370 if (retval) 4371 goto out; 4372 if (ep->asconf_enable) { 4373 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4374 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4375 } 4376 } 4377 4378 ep->auth_enable = !!params->assoc_value; 4379 retval = 0; 4380 4381 out: 4382 return retval; 4383 } 4384 4385 static int sctp_setsockopt_ecn_supported(struct sock *sk, 4386 struct sctp_assoc_value *params, 4387 unsigned int optlen) 4388 { 4389 struct sctp_association *asoc; 4390 int retval = -EINVAL; 4391 4392 if (optlen != sizeof(*params)) 4393 goto out; 4394 4395 asoc = sctp_id2assoc(sk, params->assoc_id); 4396 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4397 sctp_style(sk, UDP)) 4398 goto out; 4399 4400 sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value; 4401 retval = 0; 4402 4403 out: 4404 return retval; 4405 } 4406 4407 static int sctp_setsockopt_pf_expose(struct sock *sk, 4408 struct sctp_assoc_value *params, 4409 unsigned int optlen) 4410 { 4411 struct sctp_association *asoc; 4412 int retval = -EINVAL; 4413 4414 if (optlen != sizeof(*params)) 4415 goto out; 4416 4417 if (params->assoc_value > SCTP_PF_EXPOSE_MAX) 4418 goto out; 4419 4420 asoc = sctp_id2assoc(sk, params->assoc_id); 4421 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4422 sctp_style(sk, UDP)) 4423 goto out; 4424 4425 if (asoc) 4426 asoc->pf_expose = params->assoc_value; 4427 else 4428 sctp_sk(sk)->pf_expose = params->assoc_value; 4429 retval = 0; 4430 4431 out: 4432 return retval; 4433 } 4434 4435 static int sctp_setsockopt_encap_port(struct sock *sk, 4436 struct sctp_udpencaps *encap, 4437 unsigned int optlen) 4438 { 4439 struct sctp_association *asoc; 4440 struct sctp_transport *t; 4441 __be16 encap_port; 4442 4443 if (optlen != sizeof(*encap)) 4444 return -EINVAL; 4445 4446 /* If an address other than INADDR_ANY is specified, and 4447 * no transport is found, then the request is invalid. 4448 */ 4449 encap_port = (__force __be16)encap->sue_port; 4450 if (!sctp_is_any(sk, (union sctp_addr *)&encap->sue_address)) { 4451 t = sctp_addr_id2transport(sk, &encap->sue_address, 4452 encap->sue_assoc_id); 4453 if (!t) 4454 return -EINVAL; 4455 4456 t->encap_port = encap_port; 4457 return 0; 4458 } 4459 4460 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 4461 * socket is a one to many style socket, and an association 4462 * was not found, then the id was invalid. 4463 */ 4464 asoc = sctp_id2assoc(sk, encap->sue_assoc_id); 4465 if (!asoc && encap->sue_assoc_id != SCTP_FUTURE_ASSOC && 4466 sctp_style(sk, UDP)) 4467 return -EINVAL; 4468 4469 /* If changes are for association, also apply encap_port to 4470 * each transport. 4471 */ 4472 if (asoc) { 4473 list_for_each_entry(t, &asoc->peer.transport_addr_list, 4474 transports) 4475 t->encap_port = encap_port; 4476 4477 asoc->encap_port = encap_port; 4478 return 0; 4479 } 4480 4481 sctp_sk(sk)->encap_port = encap_port; 4482 return 0; 4483 } 4484 4485 static int sctp_setsockopt_probe_interval(struct sock *sk, 4486 struct sctp_probeinterval *params, 4487 unsigned int optlen) 4488 { 4489 struct sctp_association *asoc; 4490 struct sctp_transport *t; 4491 __u32 probe_interval; 4492 4493 if (optlen != sizeof(*params)) 4494 return -EINVAL; 4495 4496 probe_interval = params->spi_interval; 4497 if (probe_interval && probe_interval < SCTP_PROBE_TIMER_MIN) 4498 return -EINVAL; 4499 4500 /* If an address other than INADDR_ANY is specified, and 4501 * no transport is found, then the request is invalid. 4502 */ 4503 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spi_address)) { 4504 t = sctp_addr_id2transport(sk, ¶ms->spi_address, 4505 params->spi_assoc_id); 4506 if (!t) 4507 return -EINVAL; 4508 4509 t->probe_interval = msecs_to_jiffies(probe_interval); 4510 sctp_transport_pl_reset(t); 4511 return 0; 4512 } 4513 4514 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 4515 * socket is a one to many style socket, and an association 4516 * was not found, then the id was invalid. 4517 */ 4518 asoc = sctp_id2assoc(sk, params->spi_assoc_id); 4519 if (!asoc && params->spi_assoc_id != SCTP_FUTURE_ASSOC && 4520 sctp_style(sk, UDP)) 4521 return -EINVAL; 4522 4523 /* If changes are for association, also apply probe_interval to 4524 * each transport. 4525 */ 4526 if (asoc) { 4527 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) { 4528 t->probe_interval = msecs_to_jiffies(probe_interval); 4529 sctp_transport_pl_reset(t); 4530 } 4531 4532 asoc->probe_interval = msecs_to_jiffies(probe_interval); 4533 return 0; 4534 } 4535 4536 sctp_sk(sk)->probe_interval = probe_interval; 4537 return 0; 4538 } 4539 4540 /* API 6.2 setsockopt(), getsockopt() 4541 * 4542 * Applications use setsockopt() and getsockopt() to set or retrieve 4543 * socket options. Socket options are used to change the default 4544 * behavior of sockets calls. They are described in Section 7. 4545 * 4546 * The syntax is: 4547 * 4548 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4549 * int __user *optlen); 4550 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4551 * int optlen); 4552 * 4553 * sd - the socket descript. 4554 * level - set to IPPROTO_SCTP for all SCTP options. 4555 * optname - the option name. 4556 * optval - the buffer to store the value of the option. 4557 * optlen - the size of the buffer. 4558 */ 4559 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4560 sockptr_t optval, unsigned int optlen) 4561 { 4562 void *kopt = NULL; 4563 int retval = 0; 4564 4565 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4566 4567 /* I can hardly begin to describe how wrong this is. This is 4568 * so broken as to be worse than useless. The API draft 4569 * REALLY is NOT helpful here... I am not convinced that the 4570 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4571 * are at all well-founded. 4572 */ 4573 if (level != SOL_SCTP) { 4574 struct sctp_af *af = sctp_sk(sk)->pf->af; 4575 4576 return af->setsockopt(sk, level, optname, optval, optlen); 4577 } 4578 4579 if (optlen > 0) { 4580 /* Trim it to the biggest size sctp sockopt may need if necessary */ 4581 optlen = min_t(unsigned int, optlen, 4582 PAGE_ALIGN(USHRT_MAX + 4583 sizeof(__u16) * sizeof(struct sctp_reset_streams))); 4584 kopt = memdup_sockptr(optval, optlen); 4585 if (IS_ERR(kopt)) 4586 return PTR_ERR(kopt); 4587 } 4588 4589 lock_sock(sk); 4590 4591 switch (optname) { 4592 case SCTP_SOCKOPT_BINDX_ADD: 4593 /* 'optlen' is the size of the addresses buffer. */ 4594 retval = sctp_setsockopt_bindx(sk, kopt, optlen, 4595 SCTP_BINDX_ADD_ADDR); 4596 break; 4597 4598 case SCTP_SOCKOPT_BINDX_REM: 4599 /* 'optlen' is the size of the addresses buffer. */ 4600 retval = sctp_setsockopt_bindx(sk, kopt, optlen, 4601 SCTP_BINDX_REM_ADDR); 4602 break; 4603 4604 case SCTP_SOCKOPT_CONNECTX_OLD: 4605 /* 'optlen' is the size of the addresses buffer. */ 4606 retval = sctp_setsockopt_connectx_old(sk, kopt, optlen); 4607 break; 4608 4609 case SCTP_SOCKOPT_CONNECTX: 4610 /* 'optlen' is the size of the addresses buffer. */ 4611 retval = sctp_setsockopt_connectx(sk, kopt, optlen); 4612 break; 4613 4614 case SCTP_DISABLE_FRAGMENTS: 4615 retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen); 4616 break; 4617 4618 case SCTP_EVENTS: 4619 retval = sctp_setsockopt_events(sk, kopt, optlen); 4620 break; 4621 4622 case SCTP_AUTOCLOSE: 4623 retval = sctp_setsockopt_autoclose(sk, kopt, optlen); 4624 break; 4625 4626 case SCTP_PEER_ADDR_PARAMS: 4627 retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen); 4628 break; 4629 4630 case SCTP_DELAYED_SACK: 4631 retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen); 4632 break; 4633 case SCTP_PARTIAL_DELIVERY_POINT: 4634 retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen); 4635 break; 4636 4637 case SCTP_INITMSG: 4638 retval = sctp_setsockopt_initmsg(sk, kopt, optlen); 4639 break; 4640 case SCTP_DEFAULT_SEND_PARAM: 4641 retval = sctp_setsockopt_default_send_param(sk, kopt, optlen); 4642 break; 4643 case SCTP_DEFAULT_SNDINFO: 4644 retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen); 4645 break; 4646 case SCTP_PRIMARY_ADDR: 4647 retval = sctp_setsockopt_primary_addr(sk, kopt, optlen); 4648 break; 4649 case SCTP_SET_PEER_PRIMARY_ADDR: 4650 retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen); 4651 break; 4652 case SCTP_NODELAY: 4653 retval = sctp_setsockopt_nodelay(sk, kopt, optlen); 4654 break; 4655 case SCTP_RTOINFO: 4656 retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen); 4657 break; 4658 case SCTP_ASSOCINFO: 4659 retval = sctp_setsockopt_associnfo(sk, kopt, optlen); 4660 break; 4661 case SCTP_I_WANT_MAPPED_V4_ADDR: 4662 retval = sctp_setsockopt_mappedv4(sk, kopt, optlen); 4663 break; 4664 case SCTP_MAXSEG: 4665 retval = sctp_setsockopt_maxseg(sk, kopt, optlen); 4666 break; 4667 case SCTP_ADAPTATION_LAYER: 4668 retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen); 4669 break; 4670 case SCTP_CONTEXT: 4671 retval = sctp_setsockopt_context(sk, kopt, optlen); 4672 break; 4673 case SCTP_FRAGMENT_INTERLEAVE: 4674 retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen); 4675 break; 4676 case SCTP_MAX_BURST: 4677 retval = sctp_setsockopt_maxburst(sk, kopt, optlen); 4678 break; 4679 case SCTP_AUTH_CHUNK: 4680 retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen); 4681 break; 4682 case SCTP_HMAC_IDENT: 4683 retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen); 4684 break; 4685 case SCTP_AUTH_KEY: 4686 retval = sctp_setsockopt_auth_key(sk, kopt, optlen); 4687 break; 4688 case SCTP_AUTH_ACTIVE_KEY: 4689 retval = sctp_setsockopt_active_key(sk, kopt, optlen); 4690 break; 4691 case SCTP_AUTH_DELETE_KEY: 4692 retval = sctp_setsockopt_del_key(sk, kopt, optlen); 4693 break; 4694 case SCTP_AUTH_DEACTIVATE_KEY: 4695 retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen); 4696 break; 4697 case SCTP_AUTO_ASCONF: 4698 retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen); 4699 break; 4700 case SCTP_PEER_ADDR_THLDS: 4701 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen, 4702 false); 4703 break; 4704 case SCTP_PEER_ADDR_THLDS_V2: 4705 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen, 4706 true); 4707 break; 4708 case SCTP_RECVRCVINFO: 4709 retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen); 4710 break; 4711 case SCTP_RECVNXTINFO: 4712 retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen); 4713 break; 4714 case SCTP_PR_SUPPORTED: 4715 retval = sctp_setsockopt_pr_supported(sk, kopt, optlen); 4716 break; 4717 case SCTP_DEFAULT_PRINFO: 4718 retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen); 4719 break; 4720 case SCTP_RECONFIG_SUPPORTED: 4721 retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen); 4722 break; 4723 case SCTP_ENABLE_STREAM_RESET: 4724 retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen); 4725 break; 4726 case SCTP_RESET_STREAMS: 4727 retval = sctp_setsockopt_reset_streams(sk, kopt, optlen); 4728 break; 4729 case SCTP_RESET_ASSOC: 4730 retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen); 4731 break; 4732 case SCTP_ADD_STREAMS: 4733 retval = sctp_setsockopt_add_streams(sk, kopt, optlen); 4734 break; 4735 case SCTP_STREAM_SCHEDULER: 4736 retval = sctp_setsockopt_scheduler(sk, kopt, optlen); 4737 break; 4738 case SCTP_STREAM_SCHEDULER_VALUE: 4739 retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen); 4740 break; 4741 case SCTP_INTERLEAVING_SUPPORTED: 4742 retval = sctp_setsockopt_interleaving_supported(sk, kopt, 4743 optlen); 4744 break; 4745 case SCTP_REUSE_PORT: 4746 retval = sctp_setsockopt_reuse_port(sk, kopt, optlen); 4747 break; 4748 case SCTP_EVENT: 4749 retval = sctp_setsockopt_event(sk, kopt, optlen); 4750 break; 4751 case SCTP_ASCONF_SUPPORTED: 4752 retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen); 4753 break; 4754 case SCTP_AUTH_SUPPORTED: 4755 retval = sctp_setsockopt_auth_supported(sk, kopt, optlen); 4756 break; 4757 case SCTP_ECN_SUPPORTED: 4758 retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen); 4759 break; 4760 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 4761 retval = sctp_setsockopt_pf_expose(sk, kopt, optlen); 4762 break; 4763 case SCTP_REMOTE_UDP_ENCAPS_PORT: 4764 retval = sctp_setsockopt_encap_port(sk, kopt, optlen); 4765 break; 4766 case SCTP_PLPMTUD_PROBE_INTERVAL: 4767 retval = sctp_setsockopt_probe_interval(sk, kopt, optlen); 4768 break; 4769 default: 4770 retval = -ENOPROTOOPT; 4771 break; 4772 } 4773 4774 release_sock(sk); 4775 kfree(kopt); 4776 return retval; 4777 } 4778 4779 /* API 3.1.6 connect() - UDP Style Syntax 4780 * 4781 * An application may use the connect() call in the UDP model to initiate an 4782 * association without sending data. 4783 * 4784 * The syntax is: 4785 * 4786 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4787 * 4788 * sd: the socket descriptor to have a new association added to. 4789 * 4790 * nam: the address structure (either struct sockaddr_in or struct 4791 * sockaddr_in6 defined in RFC2553 [7]). 4792 * 4793 * len: the size of the address. 4794 */ 4795 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4796 int addr_len, int flags) 4797 { 4798 struct sctp_af *af; 4799 int err = -EINVAL; 4800 4801 lock_sock(sk); 4802 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4803 addr, addr_len); 4804 4805 /* Validate addr_len before calling common connect/connectx routine. */ 4806 af = sctp_get_af_specific(addr->sa_family); 4807 if (af && addr_len >= af->sockaddr_len) 4808 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4809 4810 release_sock(sk); 4811 return err; 4812 } 4813 4814 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4815 int addr_len, int flags) 4816 { 4817 if (addr_len < sizeof(uaddr->sa_family)) 4818 return -EINVAL; 4819 4820 if (uaddr->sa_family == AF_UNSPEC) 4821 return -EOPNOTSUPP; 4822 4823 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4824 } 4825 4826 /* FIXME: Write comments. */ 4827 static int sctp_disconnect(struct sock *sk, int flags) 4828 { 4829 return -EOPNOTSUPP; /* STUB */ 4830 } 4831 4832 /* 4.1.4 accept() - TCP Style Syntax 4833 * 4834 * Applications use accept() call to remove an established SCTP 4835 * association from the accept queue of the endpoint. A new socket 4836 * descriptor will be returned from accept() to represent the newly 4837 * formed association. 4838 */ 4839 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4840 { 4841 struct sctp_sock *sp; 4842 struct sctp_endpoint *ep; 4843 struct sock *newsk = NULL; 4844 struct sctp_association *asoc; 4845 long timeo; 4846 int error = 0; 4847 4848 lock_sock(sk); 4849 4850 sp = sctp_sk(sk); 4851 ep = sp->ep; 4852 4853 if (!sctp_style(sk, TCP)) { 4854 error = -EOPNOTSUPP; 4855 goto out; 4856 } 4857 4858 if (!sctp_sstate(sk, LISTENING)) { 4859 error = -EINVAL; 4860 goto out; 4861 } 4862 4863 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4864 4865 error = sctp_wait_for_accept(sk, timeo); 4866 if (error) 4867 goto out; 4868 4869 /* We treat the list of associations on the endpoint as the accept 4870 * queue and pick the first association on the list. 4871 */ 4872 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4873 4874 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4875 if (!newsk) { 4876 error = -ENOMEM; 4877 goto out; 4878 } 4879 4880 /* Populate the fields of the newsk from the oldsk and migrate the 4881 * asoc to the newsk. 4882 */ 4883 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4884 if (error) { 4885 sk_common_release(newsk); 4886 newsk = NULL; 4887 } 4888 4889 out: 4890 release_sock(sk); 4891 *err = error; 4892 return newsk; 4893 } 4894 4895 /* The SCTP ioctl handler. */ 4896 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4897 { 4898 int rc = -ENOTCONN; 4899 4900 lock_sock(sk); 4901 4902 /* 4903 * SEQPACKET-style sockets in LISTENING state are valid, for 4904 * SCTP, so only discard TCP-style sockets in LISTENING state. 4905 */ 4906 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4907 goto out; 4908 4909 switch (cmd) { 4910 case SIOCINQ: { 4911 struct sk_buff *skb; 4912 unsigned int amount = 0; 4913 4914 skb = skb_peek(&sk->sk_receive_queue); 4915 if (skb != NULL) { 4916 /* 4917 * We will only return the amount of this packet since 4918 * that is all that will be read. 4919 */ 4920 amount = skb->len; 4921 } 4922 rc = put_user(amount, (int __user *)arg); 4923 break; 4924 } 4925 default: 4926 rc = -ENOIOCTLCMD; 4927 break; 4928 } 4929 out: 4930 release_sock(sk); 4931 return rc; 4932 } 4933 4934 /* This is the function which gets called during socket creation to 4935 * initialized the SCTP-specific portion of the sock. 4936 * The sock structure should already be zero-filled memory. 4937 */ 4938 static int sctp_init_sock(struct sock *sk) 4939 { 4940 struct net *net = sock_net(sk); 4941 struct sctp_sock *sp; 4942 4943 pr_debug("%s: sk:%p\n", __func__, sk); 4944 4945 sp = sctp_sk(sk); 4946 4947 /* Initialize the SCTP per socket area. */ 4948 switch (sk->sk_type) { 4949 case SOCK_SEQPACKET: 4950 sp->type = SCTP_SOCKET_UDP; 4951 break; 4952 case SOCK_STREAM: 4953 sp->type = SCTP_SOCKET_TCP; 4954 break; 4955 default: 4956 return -ESOCKTNOSUPPORT; 4957 } 4958 4959 sk->sk_gso_type = SKB_GSO_SCTP; 4960 4961 /* Initialize default send parameters. These parameters can be 4962 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4963 */ 4964 sp->default_stream = 0; 4965 sp->default_ppid = 0; 4966 sp->default_flags = 0; 4967 sp->default_context = 0; 4968 sp->default_timetolive = 0; 4969 4970 sp->default_rcv_context = 0; 4971 sp->max_burst = net->sctp.max_burst; 4972 4973 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4974 4975 /* Initialize default setup parameters. These parameters 4976 * can be modified with the SCTP_INITMSG socket option or 4977 * overridden by the SCTP_INIT CMSG. 4978 */ 4979 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4980 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4981 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4982 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4983 4984 /* Initialize default RTO related parameters. These parameters can 4985 * be modified for with the SCTP_RTOINFO socket option. 4986 */ 4987 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4988 sp->rtoinfo.srto_max = net->sctp.rto_max; 4989 sp->rtoinfo.srto_min = net->sctp.rto_min; 4990 4991 /* Initialize default association related parameters. These parameters 4992 * can be modified with the SCTP_ASSOCINFO socket option. 4993 */ 4994 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4995 sp->assocparams.sasoc_number_peer_destinations = 0; 4996 sp->assocparams.sasoc_peer_rwnd = 0; 4997 sp->assocparams.sasoc_local_rwnd = 0; 4998 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 4999 5000 /* Initialize default event subscriptions. By default, all the 5001 * options are off. 5002 */ 5003 sp->subscribe = 0; 5004 5005 /* Default Peer Address Parameters. These defaults can 5006 * be modified via SCTP_PEER_ADDR_PARAMS 5007 */ 5008 sp->hbinterval = net->sctp.hb_interval; 5009 sp->udp_port = htons(net->sctp.udp_port); 5010 sp->encap_port = htons(net->sctp.encap_port); 5011 sp->pathmaxrxt = net->sctp.max_retrans_path; 5012 sp->pf_retrans = net->sctp.pf_retrans; 5013 sp->ps_retrans = net->sctp.ps_retrans; 5014 sp->pf_expose = net->sctp.pf_expose; 5015 sp->pathmtu = 0; /* allow default discovery */ 5016 sp->sackdelay = net->sctp.sack_timeout; 5017 sp->sackfreq = 2; 5018 sp->param_flags = SPP_HB_ENABLE | 5019 SPP_PMTUD_ENABLE | 5020 SPP_SACKDELAY_ENABLE; 5021 sp->default_ss = SCTP_SS_DEFAULT; 5022 5023 /* If enabled no SCTP message fragmentation will be performed. 5024 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 5025 */ 5026 sp->disable_fragments = 0; 5027 5028 /* Enable Nagle algorithm by default. */ 5029 sp->nodelay = 0; 5030 5031 sp->recvrcvinfo = 0; 5032 sp->recvnxtinfo = 0; 5033 5034 /* Enable by default. */ 5035 sp->v4mapped = 1; 5036 5037 /* Auto-close idle associations after the configured 5038 * number of seconds. A value of 0 disables this 5039 * feature. Configure through the SCTP_AUTOCLOSE socket option, 5040 * for UDP-style sockets only. 5041 */ 5042 sp->autoclose = 0; 5043 5044 /* User specified fragmentation limit. */ 5045 sp->user_frag = 0; 5046 5047 sp->adaptation_ind = 0; 5048 5049 sp->pf = sctp_get_pf_specific(sk->sk_family); 5050 5051 /* Control variables for partial data delivery. */ 5052 atomic_set(&sp->pd_mode, 0); 5053 skb_queue_head_init(&sp->pd_lobby); 5054 sp->frag_interleave = 0; 5055 sp->probe_interval = net->sctp.probe_interval; 5056 5057 /* Create a per socket endpoint structure. Even if we 5058 * change the data structure relationships, this may still 5059 * be useful for storing pre-connect address information. 5060 */ 5061 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 5062 if (!sp->ep) 5063 return -ENOMEM; 5064 5065 sp->hmac = NULL; 5066 5067 sk->sk_destruct = sctp_destruct_sock; 5068 5069 SCTP_DBG_OBJCNT_INC(sock); 5070 5071 local_bh_disable(); 5072 sk_sockets_allocated_inc(sk); 5073 sock_prot_inuse_add(net, sk->sk_prot, 1); 5074 5075 local_bh_enable(); 5076 5077 return 0; 5078 } 5079 5080 /* Cleanup any SCTP per socket resources. Must be called with 5081 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 5082 */ 5083 static void sctp_destroy_sock(struct sock *sk) 5084 { 5085 struct sctp_sock *sp; 5086 5087 pr_debug("%s: sk:%p\n", __func__, sk); 5088 5089 /* Release our hold on the endpoint. */ 5090 sp = sctp_sk(sk); 5091 /* This could happen during socket init, thus we bail out 5092 * early, since the rest of the below is not setup either. 5093 */ 5094 if (sp->ep == NULL) 5095 return; 5096 5097 if (sp->do_auto_asconf) { 5098 sp->do_auto_asconf = 0; 5099 list_del(&sp->auto_asconf_list); 5100 } 5101 sctp_endpoint_free(sp->ep); 5102 local_bh_disable(); 5103 sk_sockets_allocated_dec(sk); 5104 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 5105 local_bh_enable(); 5106 } 5107 5108 /* Triggered when there are no references on the socket anymore */ 5109 static void sctp_destruct_sock(struct sock *sk) 5110 { 5111 struct sctp_sock *sp = sctp_sk(sk); 5112 5113 /* Free up the HMAC transform. */ 5114 crypto_free_shash(sp->hmac); 5115 5116 inet_sock_destruct(sk); 5117 } 5118 5119 /* API 4.1.7 shutdown() - TCP Style Syntax 5120 * int shutdown(int socket, int how); 5121 * 5122 * sd - the socket descriptor of the association to be closed. 5123 * how - Specifies the type of shutdown. The values are 5124 * as follows: 5125 * SHUT_RD 5126 * Disables further receive operations. No SCTP 5127 * protocol action is taken. 5128 * SHUT_WR 5129 * Disables further send operations, and initiates 5130 * the SCTP shutdown sequence. 5131 * SHUT_RDWR 5132 * Disables further send and receive operations 5133 * and initiates the SCTP shutdown sequence. 5134 */ 5135 static void sctp_shutdown(struct sock *sk, int how) 5136 { 5137 struct net *net = sock_net(sk); 5138 struct sctp_endpoint *ep; 5139 5140 if (!sctp_style(sk, TCP)) 5141 return; 5142 5143 ep = sctp_sk(sk)->ep; 5144 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 5145 struct sctp_association *asoc; 5146 5147 inet_sk_set_state(sk, SCTP_SS_CLOSING); 5148 asoc = list_entry(ep->asocs.next, 5149 struct sctp_association, asocs); 5150 sctp_primitive_SHUTDOWN(net, asoc, NULL); 5151 } 5152 } 5153 5154 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 5155 struct sctp_info *info) 5156 { 5157 struct sctp_transport *prim; 5158 struct list_head *pos; 5159 int mask; 5160 5161 memset(info, 0, sizeof(*info)); 5162 if (!asoc) { 5163 struct sctp_sock *sp = sctp_sk(sk); 5164 5165 info->sctpi_s_autoclose = sp->autoclose; 5166 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 5167 info->sctpi_s_pd_point = sp->pd_point; 5168 info->sctpi_s_nodelay = sp->nodelay; 5169 info->sctpi_s_disable_fragments = sp->disable_fragments; 5170 info->sctpi_s_v4mapped = sp->v4mapped; 5171 info->sctpi_s_frag_interleave = sp->frag_interleave; 5172 info->sctpi_s_type = sp->type; 5173 5174 return 0; 5175 } 5176 5177 info->sctpi_tag = asoc->c.my_vtag; 5178 info->sctpi_state = asoc->state; 5179 info->sctpi_rwnd = asoc->a_rwnd; 5180 info->sctpi_unackdata = asoc->unack_data; 5181 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5182 info->sctpi_instrms = asoc->stream.incnt; 5183 info->sctpi_outstrms = asoc->stream.outcnt; 5184 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 5185 info->sctpi_inqueue++; 5186 list_for_each(pos, &asoc->outqueue.out_chunk_list) 5187 info->sctpi_outqueue++; 5188 info->sctpi_overall_error = asoc->overall_error_count; 5189 info->sctpi_max_burst = asoc->max_burst; 5190 info->sctpi_maxseg = asoc->frag_point; 5191 info->sctpi_peer_rwnd = asoc->peer.rwnd; 5192 info->sctpi_peer_tag = asoc->c.peer_vtag; 5193 5194 mask = asoc->peer.ecn_capable << 1; 5195 mask = (mask | asoc->peer.ipv4_address) << 1; 5196 mask = (mask | asoc->peer.ipv6_address) << 1; 5197 mask = (mask | asoc->peer.hostname_address) << 1; 5198 mask = (mask | asoc->peer.asconf_capable) << 1; 5199 mask = (mask | asoc->peer.prsctp_capable) << 1; 5200 mask = (mask | asoc->peer.auth_capable); 5201 info->sctpi_peer_capable = mask; 5202 mask = asoc->peer.sack_needed << 1; 5203 mask = (mask | asoc->peer.sack_generation) << 1; 5204 mask = (mask | asoc->peer.zero_window_announced); 5205 info->sctpi_peer_sack = mask; 5206 5207 info->sctpi_isacks = asoc->stats.isacks; 5208 info->sctpi_osacks = asoc->stats.osacks; 5209 info->sctpi_opackets = asoc->stats.opackets; 5210 info->sctpi_ipackets = asoc->stats.ipackets; 5211 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 5212 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 5213 info->sctpi_idupchunks = asoc->stats.idupchunks; 5214 info->sctpi_gapcnt = asoc->stats.gapcnt; 5215 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 5216 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 5217 info->sctpi_oodchunks = asoc->stats.oodchunks; 5218 info->sctpi_iodchunks = asoc->stats.iodchunks; 5219 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 5220 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 5221 5222 prim = asoc->peer.primary_path; 5223 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 5224 info->sctpi_p_state = prim->state; 5225 info->sctpi_p_cwnd = prim->cwnd; 5226 info->sctpi_p_srtt = prim->srtt; 5227 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 5228 info->sctpi_p_hbinterval = prim->hbinterval; 5229 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 5230 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 5231 info->sctpi_p_ssthresh = prim->ssthresh; 5232 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 5233 info->sctpi_p_flight_size = prim->flight_size; 5234 info->sctpi_p_error = prim->error_count; 5235 5236 return 0; 5237 } 5238 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 5239 5240 /* use callback to avoid exporting the core structure */ 5241 void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU) 5242 { 5243 rhltable_walk_enter(&sctp_transport_hashtable, iter); 5244 5245 rhashtable_walk_start(iter); 5246 } 5247 5248 void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU) 5249 { 5250 rhashtable_walk_stop(iter); 5251 rhashtable_walk_exit(iter); 5252 } 5253 5254 struct sctp_transport *sctp_transport_get_next(struct net *net, 5255 struct rhashtable_iter *iter) 5256 { 5257 struct sctp_transport *t; 5258 5259 t = rhashtable_walk_next(iter); 5260 for (; t; t = rhashtable_walk_next(iter)) { 5261 if (IS_ERR(t)) { 5262 if (PTR_ERR(t) == -EAGAIN) 5263 continue; 5264 break; 5265 } 5266 5267 if (!sctp_transport_hold(t)) 5268 continue; 5269 5270 if (net_eq(t->asoc->base.net, net) && 5271 t->asoc->peer.primary_path == t) 5272 break; 5273 5274 sctp_transport_put(t); 5275 } 5276 5277 return t; 5278 } 5279 5280 struct sctp_transport *sctp_transport_get_idx(struct net *net, 5281 struct rhashtable_iter *iter, 5282 int pos) 5283 { 5284 struct sctp_transport *t; 5285 5286 if (!pos) 5287 return SEQ_START_TOKEN; 5288 5289 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { 5290 if (!--pos) 5291 break; 5292 sctp_transport_put(t); 5293 } 5294 5295 return t; 5296 } 5297 5298 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5299 void *p) { 5300 int err = 0; 5301 int hash = 0; 5302 struct sctp_ep_common *epb; 5303 struct sctp_hashbucket *head; 5304 5305 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5306 hash++, head++) { 5307 read_lock_bh(&head->lock); 5308 sctp_for_each_hentry(epb, &head->chain) { 5309 err = cb(sctp_ep(epb), p); 5310 if (err) 5311 break; 5312 } 5313 read_unlock_bh(&head->lock); 5314 } 5315 5316 return err; 5317 } 5318 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5319 5320 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 5321 struct net *net, 5322 const union sctp_addr *laddr, 5323 const union sctp_addr *paddr, void *p) 5324 { 5325 struct sctp_transport *transport; 5326 int err; 5327 5328 rcu_read_lock(); 5329 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 5330 rcu_read_unlock(); 5331 if (!transport) 5332 return -ENOENT; 5333 5334 err = cb(transport, p); 5335 sctp_transport_put(transport); 5336 5337 return err; 5338 } 5339 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5340 5341 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 5342 int (*cb_done)(struct sctp_transport *, void *), 5343 struct net *net, int *pos, void *p) { 5344 struct rhashtable_iter hti; 5345 struct sctp_transport *tsp; 5346 int ret; 5347 5348 again: 5349 ret = 0; 5350 sctp_transport_walk_start(&hti); 5351 5352 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5353 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5354 ret = cb(tsp, p); 5355 if (ret) 5356 break; 5357 (*pos)++; 5358 sctp_transport_put(tsp); 5359 } 5360 sctp_transport_walk_stop(&hti); 5361 5362 if (ret) { 5363 if (cb_done && !cb_done(tsp, p)) { 5364 (*pos)++; 5365 sctp_transport_put(tsp); 5366 goto again; 5367 } 5368 sctp_transport_put(tsp); 5369 } 5370 5371 return ret; 5372 } 5373 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 5374 5375 /* 7.2.1 Association Status (SCTP_STATUS) 5376 5377 * Applications can retrieve current status information about an 5378 * association, including association state, peer receiver window size, 5379 * number of unacked data chunks, and number of data chunks pending 5380 * receipt. This information is read-only. 5381 */ 5382 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5383 char __user *optval, 5384 int __user *optlen) 5385 { 5386 struct sctp_status status; 5387 struct sctp_association *asoc = NULL; 5388 struct sctp_transport *transport; 5389 sctp_assoc_t associd; 5390 int retval = 0; 5391 5392 if (len < sizeof(status)) { 5393 retval = -EINVAL; 5394 goto out; 5395 } 5396 5397 len = sizeof(status); 5398 if (copy_from_user(&status, optval, len)) { 5399 retval = -EFAULT; 5400 goto out; 5401 } 5402 5403 associd = status.sstat_assoc_id; 5404 asoc = sctp_id2assoc(sk, associd); 5405 if (!asoc) { 5406 retval = -EINVAL; 5407 goto out; 5408 } 5409 5410 transport = asoc->peer.primary_path; 5411 5412 status.sstat_assoc_id = sctp_assoc2id(asoc); 5413 status.sstat_state = sctp_assoc_to_state(asoc); 5414 status.sstat_rwnd = asoc->peer.rwnd; 5415 status.sstat_unackdata = asoc->unack_data; 5416 5417 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5418 status.sstat_instrms = asoc->stream.incnt; 5419 status.sstat_outstrms = asoc->stream.outcnt; 5420 status.sstat_fragmentation_point = asoc->frag_point; 5421 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5422 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5423 transport->af_specific->sockaddr_len); 5424 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5425 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5426 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5427 status.sstat_primary.spinfo_state = transport->state; 5428 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5429 status.sstat_primary.spinfo_srtt = transport->srtt; 5430 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5431 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5432 5433 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5434 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5435 5436 if (put_user(len, optlen)) { 5437 retval = -EFAULT; 5438 goto out; 5439 } 5440 5441 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5442 __func__, len, status.sstat_state, status.sstat_rwnd, 5443 status.sstat_assoc_id); 5444 5445 if (copy_to_user(optval, &status, len)) { 5446 retval = -EFAULT; 5447 goto out; 5448 } 5449 5450 out: 5451 return retval; 5452 } 5453 5454 5455 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5456 * 5457 * Applications can retrieve information about a specific peer address 5458 * of an association, including its reachability state, congestion 5459 * window, and retransmission timer values. This information is 5460 * read-only. 5461 */ 5462 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5463 char __user *optval, 5464 int __user *optlen) 5465 { 5466 struct sctp_paddrinfo pinfo; 5467 struct sctp_transport *transport; 5468 int retval = 0; 5469 5470 if (len < sizeof(pinfo)) { 5471 retval = -EINVAL; 5472 goto out; 5473 } 5474 5475 len = sizeof(pinfo); 5476 if (copy_from_user(&pinfo, optval, len)) { 5477 retval = -EFAULT; 5478 goto out; 5479 } 5480 5481 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5482 pinfo.spinfo_assoc_id); 5483 if (!transport) { 5484 retval = -EINVAL; 5485 goto out; 5486 } 5487 5488 if (transport->state == SCTP_PF && 5489 transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) { 5490 retval = -EACCES; 5491 goto out; 5492 } 5493 5494 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5495 pinfo.spinfo_state = transport->state; 5496 pinfo.spinfo_cwnd = transport->cwnd; 5497 pinfo.spinfo_srtt = transport->srtt; 5498 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5499 pinfo.spinfo_mtu = transport->pathmtu; 5500 5501 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5502 pinfo.spinfo_state = SCTP_ACTIVE; 5503 5504 if (put_user(len, optlen)) { 5505 retval = -EFAULT; 5506 goto out; 5507 } 5508 5509 if (copy_to_user(optval, &pinfo, len)) { 5510 retval = -EFAULT; 5511 goto out; 5512 } 5513 5514 out: 5515 return retval; 5516 } 5517 5518 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5519 * 5520 * This option is a on/off flag. If enabled no SCTP message 5521 * fragmentation will be performed. Instead if a message being sent 5522 * exceeds the current PMTU size, the message will NOT be sent and 5523 * instead a error will be indicated to the user. 5524 */ 5525 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5526 char __user *optval, int __user *optlen) 5527 { 5528 int val; 5529 5530 if (len < sizeof(int)) 5531 return -EINVAL; 5532 5533 len = sizeof(int); 5534 val = (sctp_sk(sk)->disable_fragments == 1); 5535 if (put_user(len, optlen)) 5536 return -EFAULT; 5537 if (copy_to_user(optval, &val, len)) 5538 return -EFAULT; 5539 return 0; 5540 } 5541 5542 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5543 * 5544 * This socket option is used to specify various notifications and 5545 * ancillary data the user wishes to receive. 5546 */ 5547 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5548 int __user *optlen) 5549 { 5550 struct sctp_event_subscribe subscribe; 5551 __u8 *sn_type = (__u8 *)&subscribe; 5552 int i; 5553 5554 if (len == 0) 5555 return -EINVAL; 5556 if (len > sizeof(struct sctp_event_subscribe)) 5557 len = sizeof(struct sctp_event_subscribe); 5558 if (put_user(len, optlen)) 5559 return -EFAULT; 5560 5561 for (i = 0; i < len; i++) 5562 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe, 5563 SCTP_SN_TYPE_BASE + i); 5564 5565 if (copy_to_user(optval, &subscribe, len)) 5566 return -EFAULT; 5567 5568 return 0; 5569 } 5570 5571 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5572 * 5573 * This socket option is applicable to the UDP-style socket only. When 5574 * set it will cause associations that are idle for more than the 5575 * specified number of seconds to automatically close. An association 5576 * being idle is defined an association that has NOT sent or received 5577 * user data. The special value of '0' indicates that no automatic 5578 * close of any associations should be performed. The option expects an 5579 * integer defining the number of seconds of idle time before an 5580 * association is closed. 5581 */ 5582 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5583 { 5584 /* Applicable to UDP-style socket only */ 5585 if (sctp_style(sk, TCP)) 5586 return -EOPNOTSUPP; 5587 if (len < sizeof(int)) 5588 return -EINVAL; 5589 len = sizeof(int); 5590 if (put_user(len, optlen)) 5591 return -EFAULT; 5592 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5593 return -EFAULT; 5594 return 0; 5595 } 5596 5597 /* Helper routine to branch off an association to a new socket. */ 5598 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5599 { 5600 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5601 struct sctp_sock *sp = sctp_sk(sk); 5602 struct socket *sock; 5603 int err = 0; 5604 5605 /* Do not peel off from one netns to another one. */ 5606 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5607 return -EINVAL; 5608 5609 if (!asoc) 5610 return -EINVAL; 5611 5612 /* An association cannot be branched off from an already peeled-off 5613 * socket, nor is this supported for tcp style sockets. 5614 */ 5615 if (!sctp_style(sk, UDP)) 5616 return -EINVAL; 5617 5618 /* Create a new socket. */ 5619 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5620 if (err < 0) 5621 return err; 5622 5623 sctp_copy_sock(sock->sk, sk, asoc); 5624 5625 /* Make peeled-off sockets more like 1-1 accepted sockets. 5626 * Set the daddr and initialize id to something more random and also 5627 * copy over any ip options. 5628 */ 5629 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 5630 sp->pf->copy_ip_options(sk, sock->sk); 5631 5632 /* Populate the fields of the newsk from the oldsk and migrate the 5633 * asoc to the newsk. 5634 */ 5635 err = sctp_sock_migrate(sk, sock->sk, asoc, 5636 SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5637 if (err) { 5638 sock_release(sock); 5639 sock = NULL; 5640 } 5641 5642 *sockp = sock; 5643 5644 return err; 5645 } 5646 EXPORT_SYMBOL(sctp_do_peeloff); 5647 5648 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5649 struct file **newfile, unsigned flags) 5650 { 5651 struct socket *newsock; 5652 int retval; 5653 5654 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5655 if (retval < 0) 5656 goto out; 5657 5658 /* Map the socket to an unused fd that can be returned to the user. */ 5659 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5660 if (retval < 0) { 5661 sock_release(newsock); 5662 goto out; 5663 } 5664 5665 *newfile = sock_alloc_file(newsock, 0, NULL); 5666 if (IS_ERR(*newfile)) { 5667 put_unused_fd(retval); 5668 retval = PTR_ERR(*newfile); 5669 *newfile = NULL; 5670 return retval; 5671 } 5672 5673 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5674 retval); 5675 5676 peeloff->sd = retval; 5677 5678 if (flags & SOCK_NONBLOCK) 5679 (*newfile)->f_flags |= O_NONBLOCK; 5680 out: 5681 return retval; 5682 } 5683 5684 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5685 { 5686 sctp_peeloff_arg_t peeloff; 5687 struct file *newfile = NULL; 5688 int retval = 0; 5689 5690 if (len < sizeof(sctp_peeloff_arg_t)) 5691 return -EINVAL; 5692 len = sizeof(sctp_peeloff_arg_t); 5693 if (copy_from_user(&peeloff, optval, len)) 5694 return -EFAULT; 5695 5696 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5697 if (retval < 0) 5698 goto out; 5699 5700 /* Return the fd mapped to the new socket. */ 5701 if (put_user(len, optlen)) { 5702 fput(newfile); 5703 put_unused_fd(retval); 5704 return -EFAULT; 5705 } 5706 5707 if (copy_to_user(optval, &peeloff, len)) { 5708 fput(newfile); 5709 put_unused_fd(retval); 5710 return -EFAULT; 5711 } 5712 fd_install(retval, newfile); 5713 out: 5714 return retval; 5715 } 5716 5717 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5718 char __user *optval, int __user *optlen) 5719 { 5720 sctp_peeloff_flags_arg_t peeloff; 5721 struct file *newfile = NULL; 5722 int retval = 0; 5723 5724 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5725 return -EINVAL; 5726 len = sizeof(sctp_peeloff_flags_arg_t); 5727 if (copy_from_user(&peeloff, optval, len)) 5728 return -EFAULT; 5729 5730 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5731 &newfile, peeloff.flags); 5732 if (retval < 0) 5733 goto out; 5734 5735 /* Return the fd mapped to the new socket. */ 5736 if (put_user(len, optlen)) { 5737 fput(newfile); 5738 put_unused_fd(retval); 5739 return -EFAULT; 5740 } 5741 5742 if (copy_to_user(optval, &peeloff, len)) { 5743 fput(newfile); 5744 put_unused_fd(retval); 5745 return -EFAULT; 5746 } 5747 fd_install(retval, newfile); 5748 out: 5749 return retval; 5750 } 5751 5752 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5753 * 5754 * Applications can enable or disable heartbeats for any peer address of 5755 * an association, modify an address's heartbeat interval, force a 5756 * heartbeat to be sent immediately, and adjust the address's maximum 5757 * number of retransmissions sent before an address is considered 5758 * unreachable. The following structure is used to access and modify an 5759 * address's parameters: 5760 * 5761 * struct sctp_paddrparams { 5762 * sctp_assoc_t spp_assoc_id; 5763 * struct sockaddr_storage spp_address; 5764 * uint32_t spp_hbinterval; 5765 * uint16_t spp_pathmaxrxt; 5766 * uint32_t spp_pathmtu; 5767 * uint32_t spp_sackdelay; 5768 * uint32_t spp_flags; 5769 * }; 5770 * 5771 * spp_assoc_id - (one-to-many style socket) This is filled in the 5772 * application, and identifies the association for 5773 * this query. 5774 * spp_address - This specifies which address is of interest. 5775 * spp_hbinterval - This contains the value of the heartbeat interval, 5776 * in milliseconds. If a value of zero 5777 * is present in this field then no changes are to 5778 * be made to this parameter. 5779 * spp_pathmaxrxt - This contains the maximum number of 5780 * retransmissions before this address shall be 5781 * considered unreachable. If a value of zero 5782 * is present in this field then no changes are to 5783 * be made to this parameter. 5784 * spp_pathmtu - When Path MTU discovery is disabled the value 5785 * specified here will be the "fixed" path mtu. 5786 * Note that if the spp_address field is empty 5787 * then all associations on this address will 5788 * have this fixed path mtu set upon them. 5789 * 5790 * spp_sackdelay - When delayed sack is enabled, this value specifies 5791 * the number of milliseconds that sacks will be delayed 5792 * for. This value will apply to all addresses of an 5793 * association if the spp_address field is empty. Note 5794 * also, that if delayed sack is enabled and this 5795 * value is set to 0, no change is made to the last 5796 * recorded delayed sack timer value. 5797 * 5798 * spp_flags - These flags are used to control various features 5799 * on an association. The flag field may contain 5800 * zero or more of the following options. 5801 * 5802 * SPP_HB_ENABLE - Enable heartbeats on the 5803 * specified address. Note that if the address 5804 * field is empty all addresses for the association 5805 * have heartbeats enabled upon them. 5806 * 5807 * SPP_HB_DISABLE - Disable heartbeats on the 5808 * speicifed address. Note that if the address 5809 * field is empty all addresses for the association 5810 * will have their heartbeats disabled. Note also 5811 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5812 * mutually exclusive, only one of these two should 5813 * be specified. Enabling both fields will have 5814 * undetermined results. 5815 * 5816 * SPP_HB_DEMAND - Request a user initiated heartbeat 5817 * to be made immediately. 5818 * 5819 * SPP_PMTUD_ENABLE - This field will enable PMTU 5820 * discovery upon the specified address. Note that 5821 * if the address feild is empty then all addresses 5822 * on the association are effected. 5823 * 5824 * SPP_PMTUD_DISABLE - This field will disable PMTU 5825 * discovery upon the specified address. Note that 5826 * if the address feild is empty then all addresses 5827 * on the association are effected. Not also that 5828 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5829 * exclusive. Enabling both will have undetermined 5830 * results. 5831 * 5832 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5833 * on delayed sack. The time specified in spp_sackdelay 5834 * is used to specify the sack delay for this address. Note 5835 * that if spp_address is empty then all addresses will 5836 * enable delayed sack and take on the sack delay 5837 * value specified in spp_sackdelay. 5838 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5839 * off delayed sack. If the spp_address field is blank then 5840 * delayed sack is disabled for the entire association. Note 5841 * also that this field is mutually exclusive to 5842 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5843 * results. 5844 * 5845 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5846 * setting of the IPV6 flow label value. The value is 5847 * contained in the spp_ipv6_flowlabel field. 5848 * Upon retrieval, this flag will be set to indicate that 5849 * the spp_ipv6_flowlabel field has a valid value returned. 5850 * If a specific destination address is set (in the 5851 * spp_address field), then the value returned is that of 5852 * the address. If just an association is specified (and 5853 * no address), then the association's default flow label 5854 * is returned. If neither an association nor a destination 5855 * is specified, then the socket's default flow label is 5856 * returned. For non-IPv6 sockets, this flag will be left 5857 * cleared. 5858 * 5859 * SPP_DSCP: Setting this flag enables the setting of the 5860 * Differentiated Services Code Point (DSCP) value 5861 * associated with either the association or a specific 5862 * address. The value is obtained in the spp_dscp field. 5863 * Upon retrieval, this flag will be set to indicate that 5864 * the spp_dscp field has a valid value returned. If a 5865 * specific destination address is set when called (in the 5866 * spp_address field), then that specific destination 5867 * address's DSCP value is returned. If just an association 5868 * is specified, then the association's default DSCP is 5869 * returned. If neither an association nor a destination is 5870 * specified, then the socket's default DSCP is returned. 5871 * 5872 * spp_ipv6_flowlabel 5873 * - This field is used in conjunction with the 5874 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5875 * The 20 least significant bits are used for the flow 5876 * label. This setting has precedence over any IPv6-layer 5877 * setting. 5878 * 5879 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5880 * and contains the DSCP. The 6 most significant bits are 5881 * used for the DSCP. This setting has precedence over any 5882 * IPv4- or IPv6- layer setting. 5883 */ 5884 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5885 char __user *optval, int __user *optlen) 5886 { 5887 struct sctp_paddrparams params; 5888 struct sctp_transport *trans = NULL; 5889 struct sctp_association *asoc = NULL; 5890 struct sctp_sock *sp = sctp_sk(sk); 5891 5892 if (len >= sizeof(params)) 5893 len = sizeof(params); 5894 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 5895 spp_ipv6_flowlabel), 4)) 5896 len = ALIGN(offsetof(struct sctp_paddrparams, 5897 spp_ipv6_flowlabel), 4); 5898 else 5899 return -EINVAL; 5900 5901 if (copy_from_user(¶ms, optval, len)) 5902 return -EFAULT; 5903 5904 /* If an address other than INADDR_ANY is specified, and 5905 * no transport is found, then the request is invalid. 5906 */ 5907 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5908 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5909 params.spp_assoc_id); 5910 if (!trans) { 5911 pr_debug("%s: failed no transport\n", __func__); 5912 return -EINVAL; 5913 } 5914 } 5915 5916 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 5917 * socket is a one to many style socket, and an association 5918 * was not found, then the id was invalid. 5919 */ 5920 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5921 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 5922 sctp_style(sk, UDP)) { 5923 pr_debug("%s: failed no association\n", __func__); 5924 return -EINVAL; 5925 } 5926 5927 if (trans) { 5928 /* Fetch transport values. */ 5929 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5930 params.spp_pathmtu = trans->pathmtu; 5931 params.spp_pathmaxrxt = trans->pathmaxrxt; 5932 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5933 5934 /*draft-11 doesn't say what to return in spp_flags*/ 5935 params.spp_flags = trans->param_flags; 5936 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5937 params.spp_ipv6_flowlabel = trans->flowlabel & 5938 SCTP_FLOWLABEL_VAL_MASK; 5939 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5940 } 5941 if (trans->dscp & SCTP_DSCP_SET_MASK) { 5942 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 5943 params.spp_flags |= SPP_DSCP; 5944 } 5945 } else if (asoc) { 5946 /* Fetch association values. */ 5947 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5948 params.spp_pathmtu = asoc->pathmtu; 5949 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5950 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5951 5952 /*draft-11 doesn't say what to return in spp_flags*/ 5953 params.spp_flags = asoc->param_flags; 5954 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5955 params.spp_ipv6_flowlabel = asoc->flowlabel & 5956 SCTP_FLOWLABEL_VAL_MASK; 5957 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5958 } 5959 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 5960 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 5961 params.spp_flags |= SPP_DSCP; 5962 } 5963 } else { 5964 /* Fetch socket values. */ 5965 params.spp_hbinterval = sp->hbinterval; 5966 params.spp_pathmtu = sp->pathmtu; 5967 params.spp_sackdelay = sp->sackdelay; 5968 params.spp_pathmaxrxt = sp->pathmaxrxt; 5969 5970 /*draft-11 doesn't say what to return in spp_flags*/ 5971 params.spp_flags = sp->param_flags; 5972 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5973 params.spp_ipv6_flowlabel = sp->flowlabel & 5974 SCTP_FLOWLABEL_VAL_MASK; 5975 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5976 } 5977 if (sp->dscp & SCTP_DSCP_SET_MASK) { 5978 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 5979 params.spp_flags |= SPP_DSCP; 5980 } 5981 } 5982 5983 if (copy_to_user(optval, ¶ms, len)) 5984 return -EFAULT; 5985 5986 if (put_user(len, optlen)) 5987 return -EFAULT; 5988 5989 return 0; 5990 } 5991 5992 /* 5993 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 5994 * 5995 * This option will effect the way delayed acks are performed. This 5996 * option allows you to get or set the delayed ack time, in 5997 * milliseconds. It also allows changing the delayed ack frequency. 5998 * Changing the frequency to 1 disables the delayed sack algorithm. If 5999 * the assoc_id is 0, then this sets or gets the endpoints default 6000 * values. If the assoc_id field is non-zero, then the set or get 6001 * effects the specified association for the one to many model (the 6002 * assoc_id field is ignored by the one to one model). Note that if 6003 * sack_delay or sack_freq are 0 when setting this option, then the 6004 * current values will remain unchanged. 6005 * 6006 * struct sctp_sack_info { 6007 * sctp_assoc_t sack_assoc_id; 6008 * uint32_t sack_delay; 6009 * uint32_t sack_freq; 6010 * }; 6011 * 6012 * sack_assoc_id - This parameter, indicates which association the user 6013 * is performing an action upon. Note that if this field's value is 6014 * zero then the endpoints default value is changed (effecting future 6015 * associations only). 6016 * 6017 * sack_delay - This parameter contains the number of milliseconds that 6018 * the user is requesting the delayed ACK timer be set to. Note that 6019 * this value is defined in the standard to be between 200 and 500 6020 * milliseconds. 6021 * 6022 * sack_freq - This parameter contains the number of packets that must 6023 * be received before a sack is sent without waiting for the delay 6024 * timer to expire. The default value for this is 2, setting this 6025 * value to 1 will disable the delayed sack algorithm. 6026 */ 6027 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 6028 char __user *optval, 6029 int __user *optlen) 6030 { 6031 struct sctp_sack_info params; 6032 struct sctp_association *asoc = NULL; 6033 struct sctp_sock *sp = sctp_sk(sk); 6034 6035 if (len >= sizeof(struct sctp_sack_info)) { 6036 len = sizeof(struct sctp_sack_info); 6037 6038 if (copy_from_user(¶ms, optval, len)) 6039 return -EFAULT; 6040 } else if (len == sizeof(struct sctp_assoc_value)) { 6041 pr_warn_ratelimited(DEPRECATED 6042 "%s (pid %d) " 6043 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 6044 "Use struct sctp_sack_info instead\n", 6045 current->comm, task_pid_nr(current)); 6046 if (copy_from_user(¶ms, optval, len)) 6047 return -EFAULT; 6048 } else 6049 return -EINVAL; 6050 6051 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 6052 * socket is a one to many style socket, and an association 6053 * was not found, then the id was invalid. 6054 */ 6055 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 6056 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC && 6057 sctp_style(sk, UDP)) 6058 return -EINVAL; 6059 6060 if (asoc) { 6061 /* Fetch association values. */ 6062 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 6063 params.sack_delay = jiffies_to_msecs(asoc->sackdelay); 6064 params.sack_freq = asoc->sackfreq; 6065 6066 } else { 6067 params.sack_delay = 0; 6068 params.sack_freq = 1; 6069 } 6070 } else { 6071 /* Fetch socket values. */ 6072 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 6073 params.sack_delay = sp->sackdelay; 6074 params.sack_freq = sp->sackfreq; 6075 } else { 6076 params.sack_delay = 0; 6077 params.sack_freq = 1; 6078 } 6079 } 6080 6081 if (copy_to_user(optval, ¶ms, len)) 6082 return -EFAULT; 6083 6084 if (put_user(len, optlen)) 6085 return -EFAULT; 6086 6087 return 0; 6088 } 6089 6090 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 6091 * 6092 * Applications can specify protocol parameters for the default association 6093 * initialization. The option name argument to setsockopt() and getsockopt() 6094 * is SCTP_INITMSG. 6095 * 6096 * Setting initialization parameters is effective only on an unconnected 6097 * socket (for UDP-style sockets only future associations are effected 6098 * by the change). With TCP-style sockets, this option is inherited by 6099 * sockets derived from a listener socket. 6100 */ 6101 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 6102 { 6103 if (len < sizeof(struct sctp_initmsg)) 6104 return -EINVAL; 6105 len = sizeof(struct sctp_initmsg); 6106 if (put_user(len, optlen)) 6107 return -EFAULT; 6108 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 6109 return -EFAULT; 6110 return 0; 6111 } 6112 6113 6114 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 6115 char __user *optval, int __user *optlen) 6116 { 6117 struct sctp_association *asoc; 6118 int cnt = 0; 6119 struct sctp_getaddrs getaddrs; 6120 struct sctp_transport *from; 6121 void __user *to; 6122 union sctp_addr temp; 6123 struct sctp_sock *sp = sctp_sk(sk); 6124 int addrlen; 6125 size_t space_left; 6126 int bytes_copied; 6127 6128 if (len < sizeof(struct sctp_getaddrs)) 6129 return -EINVAL; 6130 6131 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6132 return -EFAULT; 6133 6134 /* For UDP-style sockets, id specifies the association to query. */ 6135 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6136 if (!asoc) 6137 return -EINVAL; 6138 6139 to = optval + offsetof(struct sctp_getaddrs, addrs); 6140 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6141 6142 list_for_each_entry(from, &asoc->peer.transport_addr_list, 6143 transports) { 6144 memcpy(&temp, &from->ipaddr, sizeof(temp)); 6145 addrlen = sctp_get_pf_specific(sk->sk_family) 6146 ->addr_to_user(sp, &temp); 6147 if (space_left < addrlen) 6148 return -ENOMEM; 6149 if (copy_to_user(to, &temp, addrlen)) 6150 return -EFAULT; 6151 to += addrlen; 6152 cnt++; 6153 space_left -= addrlen; 6154 } 6155 6156 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 6157 return -EFAULT; 6158 bytes_copied = ((char __user *)to) - optval; 6159 if (put_user(bytes_copied, optlen)) 6160 return -EFAULT; 6161 6162 return 0; 6163 } 6164 6165 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 6166 size_t space_left, int *bytes_copied) 6167 { 6168 struct sctp_sockaddr_entry *addr; 6169 union sctp_addr temp; 6170 int cnt = 0; 6171 int addrlen; 6172 struct net *net = sock_net(sk); 6173 6174 rcu_read_lock(); 6175 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 6176 if (!addr->valid) 6177 continue; 6178 6179 if ((PF_INET == sk->sk_family) && 6180 (AF_INET6 == addr->a.sa.sa_family)) 6181 continue; 6182 if ((PF_INET6 == sk->sk_family) && 6183 inet_v6_ipv6only(sk) && 6184 (AF_INET == addr->a.sa.sa_family)) 6185 continue; 6186 memcpy(&temp, &addr->a, sizeof(temp)); 6187 if (!temp.v4.sin_port) 6188 temp.v4.sin_port = htons(port); 6189 6190 addrlen = sctp_get_pf_specific(sk->sk_family) 6191 ->addr_to_user(sctp_sk(sk), &temp); 6192 6193 if (space_left < addrlen) { 6194 cnt = -ENOMEM; 6195 break; 6196 } 6197 memcpy(to, &temp, addrlen); 6198 6199 to += addrlen; 6200 cnt++; 6201 space_left -= addrlen; 6202 *bytes_copied += addrlen; 6203 } 6204 rcu_read_unlock(); 6205 6206 return cnt; 6207 } 6208 6209 6210 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 6211 char __user *optval, int __user *optlen) 6212 { 6213 struct sctp_bind_addr *bp; 6214 struct sctp_association *asoc; 6215 int cnt = 0; 6216 struct sctp_getaddrs getaddrs; 6217 struct sctp_sockaddr_entry *addr; 6218 void __user *to; 6219 union sctp_addr temp; 6220 struct sctp_sock *sp = sctp_sk(sk); 6221 int addrlen; 6222 int err = 0; 6223 size_t space_left; 6224 int bytes_copied = 0; 6225 void *addrs; 6226 void *buf; 6227 6228 if (len < sizeof(struct sctp_getaddrs)) 6229 return -EINVAL; 6230 6231 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6232 return -EFAULT; 6233 6234 /* 6235 * For UDP-style sockets, id specifies the association to query. 6236 * If the id field is set to the value '0' then the locally bound 6237 * addresses are returned without regard to any particular 6238 * association. 6239 */ 6240 if (0 == getaddrs.assoc_id) { 6241 bp = &sctp_sk(sk)->ep->base.bind_addr; 6242 } else { 6243 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6244 if (!asoc) 6245 return -EINVAL; 6246 bp = &asoc->base.bind_addr; 6247 } 6248 6249 to = optval + offsetof(struct sctp_getaddrs, addrs); 6250 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6251 6252 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 6253 if (!addrs) 6254 return -ENOMEM; 6255 6256 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 6257 * addresses from the global local address list. 6258 */ 6259 if (sctp_list_single_entry(&bp->address_list)) { 6260 addr = list_entry(bp->address_list.next, 6261 struct sctp_sockaddr_entry, list); 6262 if (sctp_is_any(sk, &addr->a)) { 6263 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 6264 space_left, &bytes_copied); 6265 if (cnt < 0) { 6266 err = cnt; 6267 goto out; 6268 } 6269 goto copy_getaddrs; 6270 } 6271 } 6272 6273 buf = addrs; 6274 /* Protection on the bound address list is not needed since 6275 * in the socket option context we hold a socket lock and 6276 * thus the bound address list can't change. 6277 */ 6278 list_for_each_entry(addr, &bp->address_list, list) { 6279 memcpy(&temp, &addr->a, sizeof(temp)); 6280 addrlen = sctp_get_pf_specific(sk->sk_family) 6281 ->addr_to_user(sp, &temp); 6282 if (space_left < addrlen) { 6283 err = -ENOMEM; /*fixme: right error?*/ 6284 goto out; 6285 } 6286 memcpy(buf, &temp, addrlen); 6287 buf += addrlen; 6288 bytes_copied += addrlen; 6289 cnt++; 6290 space_left -= addrlen; 6291 } 6292 6293 copy_getaddrs: 6294 if (copy_to_user(to, addrs, bytes_copied)) { 6295 err = -EFAULT; 6296 goto out; 6297 } 6298 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 6299 err = -EFAULT; 6300 goto out; 6301 } 6302 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 6303 * but we can't change it anymore. 6304 */ 6305 if (put_user(bytes_copied, optlen)) 6306 err = -EFAULT; 6307 out: 6308 kfree(addrs); 6309 return err; 6310 } 6311 6312 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6313 * 6314 * Requests that the local SCTP stack use the enclosed peer address as 6315 * the association primary. The enclosed address must be one of the 6316 * association peer's addresses. 6317 */ 6318 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6319 char __user *optval, int __user *optlen) 6320 { 6321 struct sctp_prim prim; 6322 struct sctp_association *asoc; 6323 struct sctp_sock *sp = sctp_sk(sk); 6324 6325 if (len < sizeof(struct sctp_prim)) 6326 return -EINVAL; 6327 6328 len = sizeof(struct sctp_prim); 6329 6330 if (copy_from_user(&prim, optval, len)) 6331 return -EFAULT; 6332 6333 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6334 if (!asoc) 6335 return -EINVAL; 6336 6337 if (!asoc->peer.primary_path) 6338 return -ENOTCONN; 6339 6340 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6341 asoc->peer.primary_path->af_specific->sockaddr_len); 6342 6343 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6344 (union sctp_addr *)&prim.ssp_addr); 6345 6346 if (put_user(len, optlen)) 6347 return -EFAULT; 6348 if (copy_to_user(optval, &prim, len)) 6349 return -EFAULT; 6350 6351 return 0; 6352 } 6353 6354 /* 6355 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6356 * 6357 * Requests that the local endpoint set the specified Adaptation Layer 6358 * Indication parameter for all future INIT and INIT-ACK exchanges. 6359 */ 6360 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6361 char __user *optval, int __user *optlen) 6362 { 6363 struct sctp_setadaptation adaptation; 6364 6365 if (len < sizeof(struct sctp_setadaptation)) 6366 return -EINVAL; 6367 6368 len = sizeof(struct sctp_setadaptation); 6369 6370 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6371 6372 if (put_user(len, optlen)) 6373 return -EFAULT; 6374 if (copy_to_user(optval, &adaptation, len)) 6375 return -EFAULT; 6376 6377 return 0; 6378 } 6379 6380 /* 6381 * 6382 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6383 * 6384 * Applications that wish to use the sendto() system call may wish to 6385 * specify a default set of parameters that would normally be supplied 6386 * through the inclusion of ancillary data. This socket option allows 6387 * such an application to set the default sctp_sndrcvinfo structure. 6388 6389 6390 * The application that wishes to use this socket option simply passes 6391 * in to this call the sctp_sndrcvinfo structure defined in Section 6392 * 5.2.2) The input parameters accepted by this call include 6393 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6394 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6395 * to this call if the caller is using the UDP model. 6396 * 6397 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6398 */ 6399 static int sctp_getsockopt_default_send_param(struct sock *sk, 6400 int len, char __user *optval, 6401 int __user *optlen) 6402 { 6403 struct sctp_sock *sp = sctp_sk(sk); 6404 struct sctp_association *asoc; 6405 struct sctp_sndrcvinfo info; 6406 6407 if (len < sizeof(info)) 6408 return -EINVAL; 6409 6410 len = sizeof(info); 6411 6412 if (copy_from_user(&info, optval, len)) 6413 return -EFAULT; 6414 6415 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6416 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC && 6417 sctp_style(sk, UDP)) 6418 return -EINVAL; 6419 6420 if (asoc) { 6421 info.sinfo_stream = asoc->default_stream; 6422 info.sinfo_flags = asoc->default_flags; 6423 info.sinfo_ppid = asoc->default_ppid; 6424 info.sinfo_context = asoc->default_context; 6425 info.sinfo_timetolive = asoc->default_timetolive; 6426 } else { 6427 info.sinfo_stream = sp->default_stream; 6428 info.sinfo_flags = sp->default_flags; 6429 info.sinfo_ppid = sp->default_ppid; 6430 info.sinfo_context = sp->default_context; 6431 info.sinfo_timetolive = sp->default_timetolive; 6432 } 6433 6434 if (put_user(len, optlen)) 6435 return -EFAULT; 6436 if (copy_to_user(optval, &info, len)) 6437 return -EFAULT; 6438 6439 return 0; 6440 } 6441 6442 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6443 * (SCTP_DEFAULT_SNDINFO) 6444 */ 6445 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6446 char __user *optval, 6447 int __user *optlen) 6448 { 6449 struct sctp_sock *sp = sctp_sk(sk); 6450 struct sctp_association *asoc; 6451 struct sctp_sndinfo info; 6452 6453 if (len < sizeof(info)) 6454 return -EINVAL; 6455 6456 len = sizeof(info); 6457 6458 if (copy_from_user(&info, optval, len)) 6459 return -EFAULT; 6460 6461 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6462 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC && 6463 sctp_style(sk, UDP)) 6464 return -EINVAL; 6465 6466 if (asoc) { 6467 info.snd_sid = asoc->default_stream; 6468 info.snd_flags = asoc->default_flags; 6469 info.snd_ppid = asoc->default_ppid; 6470 info.snd_context = asoc->default_context; 6471 } else { 6472 info.snd_sid = sp->default_stream; 6473 info.snd_flags = sp->default_flags; 6474 info.snd_ppid = sp->default_ppid; 6475 info.snd_context = sp->default_context; 6476 } 6477 6478 if (put_user(len, optlen)) 6479 return -EFAULT; 6480 if (copy_to_user(optval, &info, len)) 6481 return -EFAULT; 6482 6483 return 0; 6484 } 6485 6486 /* 6487 * 6488 * 7.1.5 SCTP_NODELAY 6489 * 6490 * Turn on/off any Nagle-like algorithm. This means that packets are 6491 * generally sent as soon as possible and no unnecessary delays are 6492 * introduced, at the cost of more packets in the network. Expects an 6493 * integer boolean flag. 6494 */ 6495 6496 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6497 char __user *optval, int __user *optlen) 6498 { 6499 int val; 6500 6501 if (len < sizeof(int)) 6502 return -EINVAL; 6503 6504 len = sizeof(int); 6505 val = (sctp_sk(sk)->nodelay == 1); 6506 if (put_user(len, optlen)) 6507 return -EFAULT; 6508 if (copy_to_user(optval, &val, len)) 6509 return -EFAULT; 6510 return 0; 6511 } 6512 6513 /* 6514 * 6515 * 7.1.1 SCTP_RTOINFO 6516 * 6517 * The protocol parameters used to initialize and bound retransmission 6518 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6519 * and modify these parameters. 6520 * All parameters are time values, in milliseconds. A value of 0, when 6521 * modifying the parameters, indicates that the current value should not 6522 * be changed. 6523 * 6524 */ 6525 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6526 char __user *optval, 6527 int __user *optlen) { 6528 struct sctp_rtoinfo rtoinfo; 6529 struct sctp_association *asoc; 6530 6531 if (len < sizeof (struct sctp_rtoinfo)) 6532 return -EINVAL; 6533 6534 len = sizeof(struct sctp_rtoinfo); 6535 6536 if (copy_from_user(&rtoinfo, optval, len)) 6537 return -EFAULT; 6538 6539 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6540 6541 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 6542 sctp_style(sk, UDP)) 6543 return -EINVAL; 6544 6545 /* Values corresponding to the specific association. */ 6546 if (asoc) { 6547 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6548 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6549 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6550 } else { 6551 /* Values corresponding to the endpoint. */ 6552 struct sctp_sock *sp = sctp_sk(sk); 6553 6554 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6555 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6556 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6557 } 6558 6559 if (put_user(len, optlen)) 6560 return -EFAULT; 6561 6562 if (copy_to_user(optval, &rtoinfo, len)) 6563 return -EFAULT; 6564 6565 return 0; 6566 } 6567 6568 /* 6569 * 6570 * 7.1.2 SCTP_ASSOCINFO 6571 * 6572 * This option is used to tune the maximum retransmission attempts 6573 * of the association. 6574 * Returns an error if the new association retransmission value is 6575 * greater than the sum of the retransmission value of the peer. 6576 * See [SCTP] for more information. 6577 * 6578 */ 6579 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6580 char __user *optval, 6581 int __user *optlen) 6582 { 6583 6584 struct sctp_assocparams assocparams; 6585 struct sctp_association *asoc; 6586 struct list_head *pos; 6587 int cnt = 0; 6588 6589 if (len < sizeof (struct sctp_assocparams)) 6590 return -EINVAL; 6591 6592 len = sizeof(struct sctp_assocparams); 6593 6594 if (copy_from_user(&assocparams, optval, len)) 6595 return -EFAULT; 6596 6597 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6598 6599 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 6600 sctp_style(sk, UDP)) 6601 return -EINVAL; 6602 6603 /* Values correspoinding to the specific association */ 6604 if (asoc) { 6605 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6606 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6607 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6608 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6609 6610 list_for_each(pos, &asoc->peer.transport_addr_list) { 6611 cnt++; 6612 } 6613 6614 assocparams.sasoc_number_peer_destinations = cnt; 6615 } else { 6616 /* Values corresponding to the endpoint */ 6617 struct sctp_sock *sp = sctp_sk(sk); 6618 6619 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6620 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6621 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6622 assocparams.sasoc_cookie_life = 6623 sp->assocparams.sasoc_cookie_life; 6624 assocparams.sasoc_number_peer_destinations = 6625 sp->assocparams. 6626 sasoc_number_peer_destinations; 6627 } 6628 6629 if (put_user(len, optlen)) 6630 return -EFAULT; 6631 6632 if (copy_to_user(optval, &assocparams, len)) 6633 return -EFAULT; 6634 6635 return 0; 6636 } 6637 6638 /* 6639 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6640 * 6641 * This socket option is a boolean flag which turns on or off mapped V4 6642 * addresses. If this option is turned on and the socket is type 6643 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6644 * If this option is turned off, then no mapping will be done of V4 6645 * addresses and a user will receive both PF_INET6 and PF_INET type 6646 * addresses on the socket. 6647 */ 6648 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6649 char __user *optval, int __user *optlen) 6650 { 6651 int val; 6652 struct sctp_sock *sp = sctp_sk(sk); 6653 6654 if (len < sizeof(int)) 6655 return -EINVAL; 6656 6657 len = sizeof(int); 6658 val = sp->v4mapped; 6659 if (put_user(len, optlen)) 6660 return -EFAULT; 6661 if (copy_to_user(optval, &val, len)) 6662 return -EFAULT; 6663 6664 return 0; 6665 } 6666 6667 /* 6668 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6669 * (chapter and verse is quoted at sctp_setsockopt_context()) 6670 */ 6671 static int sctp_getsockopt_context(struct sock *sk, int len, 6672 char __user *optval, int __user *optlen) 6673 { 6674 struct sctp_assoc_value params; 6675 struct sctp_association *asoc; 6676 6677 if (len < sizeof(struct sctp_assoc_value)) 6678 return -EINVAL; 6679 6680 len = sizeof(struct sctp_assoc_value); 6681 6682 if (copy_from_user(¶ms, optval, len)) 6683 return -EFAULT; 6684 6685 asoc = sctp_id2assoc(sk, params.assoc_id); 6686 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6687 sctp_style(sk, UDP)) 6688 return -EINVAL; 6689 6690 params.assoc_value = asoc ? asoc->default_rcv_context 6691 : sctp_sk(sk)->default_rcv_context; 6692 6693 if (put_user(len, optlen)) 6694 return -EFAULT; 6695 if (copy_to_user(optval, ¶ms, len)) 6696 return -EFAULT; 6697 6698 return 0; 6699 } 6700 6701 /* 6702 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6703 * This option will get or set the maximum size to put in any outgoing 6704 * SCTP DATA chunk. If a message is larger than this size it will be 6705 * fragmented by SCTP into the specified size. Note that the underlying 6706 * SCTP implementation may fragment into smaller sized chunks when the 6707 * PMTU of the underlying association is smaller than the value set by 6708 * the user. The default value for this option is '0' which indicates 6709 * the user is NOT limiting fragmentation and only the PMTU will effect 6710 * SCTP's choice of DATA chunk size. Note also that values set larger 6711 * than the maximum size of an IP datagram will effectively let SCTP 6712 * control fragmentation (i.e. the same as setting this option to 0). 6713 * 6714 * The following structure is used to access and modify this parameter: 6715 * 6716 * struct sctp_assoc_value { 6717 * sctp_assoc_t assoc_id; 6718 * uint32_t assoc_value; 6719 * }; 6720 * 6721 * assoc_id: This parameter is ignored for one-to-one style sockets. 6722 * For one-to-many style sockets this parameter indicates which 6723 * association the user is performing an action upon. Note that if 6724 * this field's value is zero then the endpoints default value is 6725 * changed (effecting future associations only). 6726 * assoc_value: This parameter specifies the maximum size in bytes. 6727 */ 6728 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6729 char __user *optval, int __user *optlen) 6730 { 6731 struct sctp_assoc_value params; 6732 struct sctp_association *asoc; 6733 6734 if (len == sizeof(int)) { 6735 pr_warn_ratelimited(DEPRECATED 6736 "%s (pid %d) " 6737 "Use of int in maxseg socket option.\n" 6738 "Use struct sctp_assoc_value instead\n", 6739 current->comm, task_pid_nr(current)); 6740 params.assoc_id = SCTP_FUTURE_ASSOC; 6741 } else if (len >= sizeof(struct sctp_assoc_value)) { 6742 len = sizeof(struct sctp_assoc_value); 6743 if (copy_from_user(¶ms, optval, len)) 6744 return -EFAULT; 6745 } else 6746 return -EINVAL; 6747 6748 asoc = sctp_id2assoc(sk, params.assoc_id); 6749 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6750 sctp_style(sk, UDP)) 6751 return -EINVAL; 6752 6753 if (asoc) 6754 params.assoc_value = asoc->frag_point; 6755 else 6756 params.assoc_value = sctp_sk(sk)->user_frag; 6757 6758 if (put_user(len, optlen)) 6759 return -EFAULT; 6760 if (len == sizeof(int)) { 6761 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6762 return -EFAULT; 6763 } else { 6764 if (copy_to_user(optval, ¶ms, len)) 6765 return -EFAULT; 6766 } 6767 6768 return 0; 6769 } 6770 6771 /* 6772 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6773 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6774 */ 6775 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6776 char __user *optval, int __user *optlen) 6777 { 6778 int val; 6779 6780 if (len < sizeof(int)) 6781 return -EINVAL; 6782 6783 len = sizeof(int); 6784 6785 val = sctp_sk(sk)->frag_interleave; 6786 if (put_user(len, optlen)) 6787 return -EFAULT; 6788 if (copy_to_user(optval, &val, len)) 6789 return -EFAULT; 6790 6791 return 0; 6792 } 6793 6794 /* 6795 * 7.1.25. Set or Get the sctp partial delivery point 6796 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6797 */ 6798 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6799 char __user *optval, 6800 int __user *optlen) 6801 { 6802 u32 val; 6803 6804 if (len < sizeof(u32)) 6805 return -EINVAL; 6806 6807 len = sizeof(u32); 6808 6809 val = sctp_sk(sk)->pd_point; 6810 if (put_user(len, optlen)) 6811 return -EFAULT; 6812 if (copy_to_user(optval, &val, len)) 6813 return -EFAULT; 6814 6815 return 0; 6816 } 6817 6818 /* 6819 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6820 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6821 */ 6822 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6823 char __user *optval, 6824 int __user *optlen) 6825 { 6826 struct sctp_assoc_value params; 6827 struct sctp_association *asoc; 6828 6829 if (len == sizeof(int)) { 6830 pr_warn_ratelimited(DEPRECATED 6831 "%s (pid %d) " 6832 "Use of int in max_burst socket option.\n" 6833 "Use struct sctp_assoc_value instead\n", 6834 current->comm, task_pid_nr(current)); 6835 params.assoc_id = SCTP_FUTURE_ASSOC; 6836 } else if (len >= sizeof(struct sctp_assoc_value)) { 6837 len = sizeof(struct sctp_assoc_value); 6838 if (copy_from_user(¶ms, optval, len)) 6839 return -EFAULT; 6840 } else 6841 return -EINVAL; 6842 6843 asoc = sctp_id2assoc(sk, params.assoc_id); 6844 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6845 sctp_style(sk, UDP)) 6846 return -EINVAL; 6847 6848 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst; 6849 6850 if (len == sizeof(int)) { 6851 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6852 return -EFAULT; 6853 } else { 6854 if (copy_to_user(optval, ¶ms, len)) 6855 return -EFAULT; 6856 } 6857 6858 return 0; 6859 6860 } 6861 6862 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6863 char __user *optval, int __user *optlen) 6864 { 6865 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6866 struct sctp_hmacalgo __user *p = (void __user *)optval; 6867 struct sctp_hmac_algo_param *hmacs; 6868 __u16 data_len = 0; 6869 u32 num_idents; 6870 int i; 6871 6872 if (!ep->auth_enable) 6873 return -EACCES; 6874 6875 hmacs = ep->auth_hmacs_list; 6876 data_len = ntohs(hmacs->param_hdr.length) - 6877 sizeof(struct sctp_paramhdr); 6878 6879 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6880 return -EINVAL; 6881 6882 len = sizeof(struct sctp_hmacalgo) + data_len; 6883 num_idents = data_len / sizeof(u16); 6884 6885 if (put_user(len, optlen)) 6886 return -EFAULT; 6887 if (put_user(num_idents, &p->shmac_num_idents)) 6888 return -EFAULT; 6889 for (i = 0; i < num_idents; i++) { 6890 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6891 6892 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6893 return -EFAULT; 6894 } 6895 return 0; 6896 } 6897 6898 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6899 char __user *optval, int __user *optlen) 6900 { 6901 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6902 struct sctp_authkeyid val; 6903 struct sctp_association *asoc; 6904 6905 if (len < sizeof(struct sctp_authkeyid)) 6906 return -EINVAL; 6907 6908 len = sizeof(struct sctp_authkeyid); 6909 if (copy_from_user(&val, optval, len)) 6910 return -EFAULT; 6911 6912 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6913 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6914 return -EINVAL; 6915 6916 if (asoc) { 6917 if (!asoc->peer.auth_capable) 6918 return -EACCES; 6919 val.scact_keynumber = asoc->active_key_id; 6920 } else { 6921 if (!ep->auth_enable) 6922 return -EACCES; 6923 val.scact_keynumber = ep->active_key_id; 6924 } 6925 6926 if (put_user(len, optlen)) 6927 return -EFAULT; 6928 if (copy_to_user(optval, &val, len)) 6929 return -EFAULT; 6930 6931 return 0; 6932 } 6933 6934 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6935 char __user *optval, int __user *optlen) 6936 { 6937 struct sctp_authchunks __user *p = (void __user *)optval; 6938 struct sctp_authchunks val; 6939 struct sctp_association *asoc; 6940 struct sctp_chunks_param *ch; 6941 u32 num_chunks = 0; 6942 char __user *to; 6943 6944 if (len < sizeof(struct sctp_authchunks)) 6945 return -EINVAL; 6946 6947 if (copy_from_user(&val, optval, sizeof(val))) 6948 return -EFAULT; 6949 6950 to = p->gauth_chunks; 6951 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6952 if (!asoc) 6953 return -EINVAL; 6954 6955 if (!asoc->peer.auth_capable) 6956 return -EACCES; 6957 6958 ch = asoc->peer.peer_chunks; 6959 if (!ch) 6960 goto num; 6961 6962 /* See if the user provided enough room for all the data */ 6963 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6964 if (len < num_chunks) 6965 return -EINVAL; 6966 6967 if (copy_to_user(to, ch->chunks, num_chunks)) 6968 return -EFAULT; 6969 num: 6970 len = sizeof(struct sctp_authchunks) + num_chunks; 6971 if (put_user(len, optlen)) 6972 return -EFAULT; 6973 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6974 return -EFAULT; 6975 return 0; 6976 } 6977 6978 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 6979 char __user *optval, int __user *optlen) 6980 { 6981 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6982 struct sctp_authchunks __user *p = (void __user *)optval; 6983 struct sctp_authchunks val; 6984 struct sctp_association *asoc; 6985 struct sctp_chunks_param *ch; 6986 u32 num_chunks = 0; 6987 char __user *to; 6988 6989 if (len < sizeof(struct sctp_authchunks)) 6990 return -EINVAL; 6991 6992 if (copy_from_user(&val, optval, sizeof(val))) 6993 return -EFAULT; 6994 6995 to = p->gauth_chunks; 6996 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6997 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC && 6998 sctp_style(sk, UDP)) 6999 return -EINVAL; 7000 7001 if (asoc) { 7002 if (!asoc->peer.auth_capable) 7003 return -EACCES; 7004 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 7005 } else { 7006 if (!ep->auth_enable) 7007 return -EACCES; 7008 ch = ep->auth_chunk_list; 7009 } 7010 if (!ch) 7011 goto num; 7012 7013 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7014 if (len < sizeof(struct sctp_authchunks) + num_chunks) 7015 return -EINVAL; 7016 7017 if (copy_to_user(to, ch->chunks, num_chunks)) 7018 return -EFAULT; 7019 num: 7020 len = sizeof(struct sctp_authchunks) + num_chunks; 7021 if (put_user(len, optlen)) 7022 return -EFAULT; 7023 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7024 return -EFAULT; 7025 7026 return 0; 7027 } 7028 7029 /* 7030 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 7031 * This option gets the current number of associations that are attached 7032 * to a one-to-many style socket. The option value is an uint32_t. 7033 */ 7034 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 7035 char __user *optval, int __user *optlen) 7036 { 7037 struct sctp_sock *sp = sctp_sk(sk); 7038 struct sctp_association *asoc; 7039 u32 val = 0; 7040 7041 if (sctp_style(sk, TCP)) 7042 return -EOPNOTSUPP; 7043 7044 if (len < sizeof(u32)) 7045 return -EINVAL; 7046 7047 len = sizeof(u32); 7048 7049 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7050 val++; 7051 } 7052 7053 if (put_user(len, optlen)) 7054 return -EFAULT; 7055 if (copy_to_user(optval, &val, len)) 7056 return -EFAULT; 7057 7058 return 0; 7059 } 7060 7061 /* 7062 * 8.1.23 SCTP_AUTO_ASCONF 7063 * See the corresponding setsockopt entry as description 7064 */ 7065 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 7066 char __user *optval, int __user *optlen) 7067 { 7068 int val = 0; 7069 7070 if (len < sizeof(int)) 7071 return -EINVAL; 7072 7073 len = sizeof(int); 7074 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 7075 val = 1; 7076 if (put_user(len, optlen)) 7077 return -EFAULT; 7078 if (copy_to_user(optval, &val, len)) 7079 return -EFAULT; 7080 return 0; 7081 } 7082 7083 /* 7084 * 8.2.6. Get the Current Identifiers of Associations 7085 * (SCTP_GET_ASSOC_ID_LIST) 7086 * 7087 * This option gets the current list of SCTP association identifiers of 7088 * the SCTP associations handled by a one-to-many style socket. 7089 */ 7090 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 7091 char __user *optval, int __user *optlen) 7092 { 7093 struct sctp_sock *sp = sctp_sk(sk); 7094 struct sctp_association *asoc; 7095 struct sctp_assoc_ids *ids; 7096 u32 num = 0; 7097 7098 if (sctp_style(sk, TCP)) 7099 return -EOPNOTSUPP; 7100 7101 if (len < sizeof(struct sctp_assoc_ids)) 7102 return -EINVAL; 7103 7104 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7105 num++; 7106 } 7107 7108 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 7109 return -EINVAL; 7110 7111 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 7112 7113 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 7114 if (unlikely(!ids)) 7115 return -ENOMEM; 7116 7117 ids->gaids_number_of_ids = num; 7118 num = 0; 7119 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7120 ids->gaids_assoc_id[num++] = asoc->assoc_id; 7121 } 7122 7123 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 7124 kfree(ids); 7125 return -EFAULT; 7126 } 7127 7128 kfree(ids); 7129 return 0; 7130 } 7131 7132 /* 7133 * SCTP_PEER_ADDR_THLDS 7134 * 7135 * This option allows us to fetch the partially failed threshold for one or all 7136 * transports in an association. See Section 6.1 of: 7137 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 7138 */ 7139 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 7140 char __user *optval, int len, 7141 int __user *optlen, bool v2) 7142 { 7143 struct sctp_paddrthlds_v2 val; 7144 struct sctp_transport *trans; 7145 struct sctp_association *asoc; 7146 int min; 7147 7148 min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds); 7149 if (len < min) 7150 return -EINVAL; 7151 len = min; 7152 if (copy_from_user(&val, optval, len)) 7153 return -EFAULT; 7154 7155 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 7156 trans = sctp_addr_id2transport(sk, &val.spt_address, 7157 val.spt_assoc_id); 7158 if (!trans) 7159 return -ENOENT; 7160 7161 val.spt_pathmaxrxt = trans->pathmaxrxt; 7162 val.spt_pathpfthld = trans->pf_retrans; 7163 val.spt_pathcpthld = trans->ps_retrans; 7164 7165 goto out; 7166 } 7167 7168 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 7169 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 7170 sctp_style(sk, UDP)) 7171 return -EINVAL; 7172 7173 if (asoc) { 7174 val.spt_pathpfthld = asoc->pf_retrans; 7175 val.spt_pathmaxrxt = asoc->pathmaxrxt; 7176 val.spt_pathcpthld = asoc->ps_retrans; 7177 } else { 7178 struct sctp_sock *sp = sctp_sk(sk); 7179 7180 val.spt_pathpfthld = sp->pf_retrans; 7181 val.spt_pathmaxrxt = sp->pathmaxrxt; 7182 val.spt_pathcpthld = sp->ps_retrans; 7183 } 7184 7185 out: 7186 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 7187 return -EFAULT; 7188 7189 return 0; 7190 } 7191 7192 /* 7193 * SCTP_GET_ASSOC_STATS 7194 * 7195 * This option retrieves local per endpoint statistics. It is modeled 7196 * after OpenSolaris' implementation 7197 */ 7198 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 7199 char __user *optval, 7200 int __user *optlen) 7201 { 7202 struct sctp_assoc_stats sas; 7203 struct sctp_association *asoc = NULL; 7204 7205 /* User must provide at least the assoc id */ 7206 if (len < sizeof(sctp_assoc_t)) 7207 return -EINVAL; 7208 7209 /* Allow the struct to grow and fill in as much as possible */ 7210 len = min_t(size_t, len, sizeof(sas)); 7211 7212 if (copy_from_user(&sas, optval, len)) 7213 return -EFAULT; 7214 7215 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 7216 if (!asoc) 7217 return -EINVAL; 7218 7219 sas.sas_rtxchunks = asoc->stats.rtxchunks; 7220 sas.sas_gapcnt = asoc->stats.gapcnt; 7221 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 7222 sas.sas_osacks = asoc->stats.osacks; 7223 sas.sas_isacks = asoc->stats.isacks; 7224 sas.sas_octrlchunks = asoc->stats.octrlchunks; 7225 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 7226 sas.sas_oodchunks = asoc->stats.oodchunks; 7227 sas.sas_iodchunks = asoc->stats.iodchunks; 7228 sas.sas_ouodchunks = asoc->stats.ouodchunks; 7229 sas.sas_iuodchunks = asoc->stats.iuodchunks; 7230 sas.sas_idupchunks = asoc->stats.idupchunks; 7231 sas.sas_opackets = asoc->stats.opackets; 7232 sas.sas_ipackets = asoc->stats.ipackets; 7233 7234 /* New high max rto observed, will return 0 if not a single 7235 * RTO update took place. obs_rto_ipaddr will be bogus 7236 * in such a case 7237 */ 7238 sas.sas_maxrto = asoc->stats.max_obs_rto; 7239 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 7240 sizeof(struct sockaddr_storage)); 7241 7242 /* Mark beginning of a new observation period */ 7243 asoc->stats.max_obs_rto = asoc->rto_min; 7244 7245 if (put_user(len, optlen)) 7246 return -EFAULT; 7247 7248 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 7249 7250 if (copy_to_user(optval, &sas, len)) 7251 return -EFAULT; 7252 7253 return 0; 7254 } 7255 7256 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 7257 char __user *optval, 7258 int __user *optlen) 7259 { 7260 int val = 0; 7261 7262 if (len < sizeof(int)) 7263 return -EINVAL; 7264 7265 len = sizeof(int); 7266 if (sctp_sk(sk)->recvrcvinfo) 7267 val = 1; 7268 if (put_user(len, optlen)) 7269 return -EFAULT; 7270 if (copy_to_user(optval, &val, len)) 7271 return -EFAULT; 7272 7273 return 0; 7274 } 7275 7276 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 7277 char __user *optval, 7278 int __user *optlen) 7279 { 7280 int val = 0; 7281 7282 if (len < sizeof(int)) 7283 return -EINVAL; 7284 7285 len = sizeof(int); 7286 if (sctp_sk(sk)->recvnxtinfo) 7287 val = 1; 7288 if (put_user(len, optlen)) 7289 return -EFAULT; 7290 if (copy_to_user(optval, &val, len)) 7291 return -EFAULT; 7292 7293 return 0; 7294 } 7295 7296 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 7297 char __user *optval, 7298 int __user *optlen) 7299 { 7300 struct sctp_assoc_value params; 7301 struct sctp_association *asoc; 7302 int retval = -EFAULT; 7303 7304 if (len < sizeof(params)) { 7305 retval = -EINVAL; 7306 goto out; 7307 } 7308 7309 len = sizeof(params); 7310 if (copy_from_user(¶ms, optval, len)) 7311 goto out; 7312 7313 asoc = sctp_id2assoc(sk, params.assoc_id); 7314 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7315 sctp_style(sk, UDP)) { 7316 retval = -EINVAL; 7317 goto out; 7318 } 7319 7320 params.assoc_value = asoc ? asoc->peer.prsctp_capable 7321 : sctp_sk(sk)->ep->prsctp_enable; 7322 7323 if (put_user(len, optlen)) 7324 goto out; 7325 7326 if (copy_to_user(optval, ¶ms, len)) 7327 goto out; 7328 7329 retval = 0; 7330 7331 out: 7332 return retval; 7333 } 7334 7335 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7336 char __user *optval, 7337 int __user *optlen) 7338 { 7339 struct sctp_default_prinfo info; 7340 struct sctp_association *asoc; 7341 int retval = -EFAULT; 7342 7343 if (len < sizeof(info)) { 7344 retval = -EINVAL; 7345 goto out; 7346 } 7347 7348 len = sizeof(info); 7349 if (copy_from_user(&info, optval, len)) 7350 goto out; 7351 7352 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7353 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC && 7354 sctp_style(sk, UDP)) { 7355 retval = -EINVAL; 7356 goto out; 7357 } 7358 7359 if (asoc) { 7360 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7361 info.pr_value = asoc->default_timetolive; 7362 } else { 7363 struct sctp_sock *sp = sctp_sk(sk); 7364 7365 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7366 info.pr_value = sp->default_timetolive; 7367 } 7368 7369 if (put_user(len, optlen)) 7370 goto out; 7371 7372 if (copy_to_user(optval, &info, len)) 7373 goto out; 7374 7375 retval = 0; 7376 7377 out: 7378 return retval; 7379 } 7380 7381 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7382 char __user *optval, 7383 int __user *optlen) 7384 { 7385 struct sctp_prstatus params; 7386 struct sctp_association *asoc; 7387 int policy; 7388 int retval = -EINVAL; 7389 7390 if (len < sizeof(params)) 7391 goto out; 7392 7393 len = sizeof(params); 7394 if (copy_from_user(¶ms, optval, len)) { 7395 retval = -EFAULT; 7396 goto out; 7397 } 7398 7399 policy = params.sprstat_policy; 7400 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7401 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7402 goto out; 7403 7404 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7405 if (!asoc) 7406 goto out; 7407 7408 if (policy == SCTP_PR_SCTP_ALL) { 7409 params.sprstat_abandoned_unsent = 0; 7410 params.sprstat_abandoned_sent = 0; 7411 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7412 params.sprstat_abandoned_unsent += 7413 asoc->abandoned_unsent[policy]; 7414 params.sprstat_abandoned_sent += 7415 asoc->abandoned_sent[policy]; 7416 } 7417 } else { 7418 params.sprstat_abandoned_unsent = 7419 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7420 params.sprstat_abandoned_sent = 7421 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7422 } 7423 7424 if (put_user(len, optlen)) { 7425 retval = -EFAULT; 7426 goto out; 7427 } 7428 7429 if (copy_to_user(optval, ¶ms, len)) { 7430 retval = -EFAULT; 7431 goto out; 7432 } 7433 7434 retval = 0; 7435 7436 out: 7437 return retval; 7438 } 7439 7440 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7441 char __user *optval, 7442 int __user *optlen) 7443 { 7444 struct sctp_stream_out_ext *streamoute; 7445 struct sctp_association *asoc; 7446 struct sctp_prstatus params; 7447 int retval = -EINVAL; 7448 int policy; 7449 7450 if (len < sizeof(params)) 7451 goto out; 7452 7453 len = sizeof(params); 7454 if (copy_from_user(¶ms, optval, len)) { 7455 retval = -EFAULT; 7456 goto out; 7457 } 7458 7459 policy = params.sprstat_policy; 7460 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7461 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7462 goto out; 7463 7464 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7465 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7466 goto out; 7467 7468 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; 7469 if (!streamoute) { 7470 /* Not allocated yet, means all stats are 0 */ 7471 params.sprstat_abandoned_unsent = 0; 7472 params.sprstat_abandoned_sent = 0; 7473 retval = 0; 7474 goto out; 7475 } 7476 7477 if (policy == SCTP_PR_SCTP_ALL) { 7478 params.sprstat_abandoned_unsent = 0; 7479 params.sprstat_abandoned_sent = 0; 7480 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7481 params.sprstat_abandoned_unsent += 7482 streamoute->abandoned_unsent[policy]; 7483 params.sprstat_abandoned_sent += 7484 streamoute->abandoned_sent[policy]; 7485 } 7486 } else { 7487 params.sprstat_abandoned_unsent = 7488 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7489 params.sprstat_abandoned_sent = 7490 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7491 } 7492 7493 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7494 retval = -EFAULT; 7495 goto out; 7496 } 7497 7498 retval = 0; 7499 7500 out: 7501 return retval; 7502 } 7503 7504 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7505 char __user *optval, 7506 int __user *optlen) 7507 { 7508 struct sctp_assoc_value params; 7509 struct sctp_association *asoc; 7510 int retval = -EFAULT; 7511 7512 if (len < sizeof(params)) { 7513 retval = -EINVAL; 7514 goto out; 7515 } 7516 7517 len = sizeof(params); 7518 if (copy_from_user(¶ms, optval, len)) 7519 goto out; 7520 7521 asoc = sctp_id2assoc(sk, params.assoc_id); 7522 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7523 sctp_style(sk, UDP)) { 7524 retval = -EINVAL; 7525 goto out; 7526 } 7527 7528 params.assoc_value = asoc ? asoc->peer.reconf_capable 7529 : sctp_sk(sk)->ep->reconf_enable; 7530 7531 if (put_user(len, optlen)) 7532 goto out; 7533 7534 if (copy_to_user(optval, ¶ms, len)) 7535 goto out; 7536 7537 retval = 0; 7538 7539 out: 7540 return retval; 7541 } 7542 7543 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7544 char __user *optval, 7545 int __user *optlen) 7546 { 7547 struct sctp_assoc_value params; 7548 struct sctp_association *asoc; 7549 int retval = -EFAULT; 7550 7551 if (len < sizeof(params)) { 7552 retval = -EINVAL; 7553 goto out; 7554 } 7555 7556 len = sizeof(params); 7557 if (copy_from_user(¶ms, optval, len)) 7558 goto out; 7559 7560 asoc = sctp_id2assoc(sk, params.assoc_id); 7561 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7562 sctp_style(sk, UDP)) { 7563 retval = -EINVAL; 7564 goto out; 7565 } 7566 7567 params.assoc_value = asoc ? asoc->strreset_enable 7568 : sctp_sk(sk)->ep->strreset_enable; 7569 7570 if (put_user(len, optlen)) 7571 goto out; 7572 7573 if (copy_to_user(optval, ¶ms, len)) 7574 goto out; 7575 7576 retval = 0; 7577 7578 out: 7579 return retval; 7580 } 7581 7582 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7583 char __user *optval, 7584 int __user *optlen) 7585 { 7586 struct sctp_assoc_value params; 7587 struct sctp_association *asoc; 7588 int retval = -EFAULT; 7589 7590 if (len < sizeof(params)) { 7591 retval = -EINVAL; 7592 goto out; 7593 } 7594 7595 len = sizeof(params); 7596 if (copy_from_user(¶ms, optval, len)) 7597 goto out; 7598 7599 asoc = sctp_id2assoc(sk, params.assoc_id); 7600 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7601 sctp_style(sk, UDP)) { 7602 retval = -EINVAL; 7603 goto out; 7604 } 7605 7606 params.assoc_value = asoc ? sctp_sched_get_sched(asoc) 7607 : sctp_sk(sk)->default_ss; 7608 7609 if (put_user(len, optlen)) 7610 goto out; 7611 7612 if (copy_to_user(optval, ¶ms, len)) 7613 goto out; 7614 7615 retval = 0; 7616 7617 out: 7618 return retval; 7619 } 7620 7621 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7622 char __user *optval, 7623 int __user *optlen) 7624 { 7625 struct sctp_stream_value params; 7626 struct sctp_association *asoc; 7627 int retval = -EFAULT; 7628 7629 if (len < sizeof(params)) { 7630 retval = -EINVAL; 7631 goto out; 7632 } 7633 7634 len = sizeof(params); 7635 if (copy_from_user(¶ms, optval, len)) 7636 goto out; 7637 7638 asoc = sctp_id2assoc(sk, params.assoc_id); 7639 if (!asoc) { 7640 retval = -EINVAL; 7641 goto out; 7642 } 7643 7644 retval = sctp_sched_get_value(asoc, params.stream_id, 7645 ¶ms.stream_value); 7646 if (retval) 7647 goto out; 7648 7649 if (put_user(len, optlen)) { 7650 retval = -EFAULT; 7651 goto out; 7652 } 7653 7654 if (copy_to_user(optval, ¶ms, len)) { 7655 retval = -EFAULT; 7656 goto out; 7657 } 7658 7659 out: 7660 return retval; 7661 } 7662 7663 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7664 char __user *optval, 7665 int __user *optlen) 7666 { 7667 struct sctp_assoc_value params; 7668 struct sctp_association *asoc; 7669 int retval = -EFAULT; 7670 7671 if (len < sizeof(params)) { 7672 retval = -EINVAL; 7673 goto out; 7674 } 7675 7676 len = sizeof(params); 7677 if (copy_from_user(¶ms, optval, len)) 7678 goto out; 7679 7680 asoc = sctp_id2assoc(sk, params.assoc_id); 7681 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7682 sctp_style(sk, UDP)) { 7683 retval = -EINVAL; 7684 goto out; 7685 } 7686 7687 params.assoc_value = asoc ? asoc->peer.intl_capable 7688 : sctp_sk(sk)->ep->intl_enable; 7689 7690 if (put_user(len, optlen)) 7691 goto out; 7692 7693 if (copy_to_user(optval, ¶ms, len)) 7694 goto out; 7695 7696 retval = 0; 7697 7698 out: 7699 return retval; 7700 } 7701 7702 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7703 char __user *optval, 7704 int __user *optlen) 7705 { 7706 int val; 7707 7708 if (len < sizeof(int)) 7709 return -EINVAL; 7710 7711 len = sizeof(int); 7712 val = sctp_sk(sk)->reuse; 7713 if (put_user(len, optlen)) 7714 return -EFAULT; 7715 7716 if (copy_to_user(optval, &val, len)) 7717 return -EFAULT; 7718 7719 return 0; 7720 } 7721 7722 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval, 7723 int __user *optlen) 7724 { 7725 struct sctp_association *asoc; 7726 struct sctp_event param; 7727 __u16 subscribe; 7728 7729 if (len < sizeof(param)) 7730 return -EINVAL; 7731 7732 len = sizeof(param); 7733 if (copy_from_user(¶m, optval, len)) 7734 return -EFAULT; 7735 7736 if (param.se_type < SCTP_SN_TYPE_BASE || 7737 param.se_type > SCTP_SN_TYPE_MAX) 7738 return -EINVAL; 7739 7740 asoc = sctp_id2assoc(sk, param.se_assoc_id); 7741 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC && 7742 sctp_style(sk, UDP)) 7743 return -EINVAL; 7744 7745 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe; 7746 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type); 7747 7748 if (put_user(len, optlen)) 7749 return -EFAULT; 7750 7751 if (copy_to_user(optval, ¶m, len)) 7752 return -EFAULT; 7753 7754 return 0; 7755 } 7756 7757 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len, 7758 char __user *optval, 7759 int __user *optlen) 7760 { 7761 struct sctp_assoc_value params; 7762 struct sctp_association *asoc; 7763 int retval = -EFAULT; 7764 7765 if (len < sizeof(params)) { 7766 retval = -EINVAL; 7767 goto out; 7768 } 7769 7770 len = sizeof(params); 7771 if (copy_from_user(¶ms, optval, len)) 7772 goto out; 7773 7774 asoc = sctp_id2assoc(sk, params.assoc_id); 7775 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7776 sctp_style(sk, UDP)) { 7777 retval = -EINVAL; 7778 goto out; 7779 } 7780 7781 params.assoc_value = asoc ? asoc->peer.asconf_capable 7782 : sctp_sk(sk)->ep->asconf_enable; 7783 7784 if (put_user(len, optlen)) 7785 goto out; 7786 7787 if (copy_to_user(optval, ¶ms, len)) 7788 goto out; 7789 7790 retval = 0; 7791 7792 out: 7793 return retval; 7794 } 7795 7796 static int sctp_getsockopt_auth_supported(struct sock *sk, int len, 7797 char __user *optval, 7798 int __user *optlen) 7799 { 7800 struct sctp_assoc_value params; 7801 struct sctp_association *asoc; 7802 int retval = -EFAULT; 7803 7804 if (len < sizeof(params)) { 7805 retval = -EINVAL; 7806 goto out; 7807 } 7808 7809 len = sizeof(params); 7810 if (copy_from_user(¶ms, optval, len)) 7811 goto out; 7812 7813 asoc = sctp_id2assoc(sk, params.assoc_id); 7814 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7815 sctp_style(sk, UDP)) { 7816 retval = -EINVAL; 7817 goto out; 7818 } 7819 7820 params.assoc_value = asoc ? asoc->peer.auth_capable 7821 : sctp_sk(sk)->ep->auth_enable; 7822 7823 if (put_user(len, optlen)) 7824 goto out; 7825 7826 if (copy_to_user(optval, ¶ms, len)) 7827 goto out; 7828 7829 retval = 0; 7830 7831 out: 7832 return retval; 7833 } 7834 7835 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len, 7836 char __user *optval, 7837 int __user *optlen) 7838 { 7839 struct sctp_assoc_value params; 7840 struct sctp_association *asoc; 7841 int retval = -EFAULT; 7842 7843 if (len < sizeof(params)) { 7844 retval = -EINVAL; 7845 goto out; 7846 } 7847 7848 len = sizeof(params); 7849 if (copy_from_user(¶ms, optval, len)) 7850 goto out; 7851 7852 asoc = sctp_id2assoc(sk, params.assoc_id); 7853 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7854 sctp_style(sk, UDP)) { 7855 retval = -EINVAL; 7856 goto out; 7857 } 7858 7859 params.assoc_value = asoc ? asoc->peer.ecn_capable 7860 : sctp_sk(sk)->ep->ecn_enable; 7861 7862 if (put_user(len, optlen)) 7863 goto out; 7864 7865 if (copy_to_user(optval, ¶ms, len)) 7866 goto out; 7867 7868 retval = 0; 7869 7870 out: 7871 return retval; 7872 } 7873 7874 static int sctp_getsockopt_pf_expose(struct sock *sk, int len, 7875 char __user *optval, 7876 int __user *optlen) 7877 { 7878 struct sctp_assoc_value params; 7879 struct sctp_association *asoc; 7880 int retval = -EFAULT; 7881 7882 if (len < sizeof(params)) { 7883 retval = -EINVAL; 7884 goto out; 7885 } 7886 7887 len = sizeof(params); 7888 if (copy_from_user(¶ms, optval, len)) 7889 goto out; 7890 7891 asoc = sctp_id2assoc(sk, params.assoc_id); 7892 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7893 sctp_style(sk, UDP)) { 7894 retval = -EINVAL; 7895 goto out; 7896 } 7897 7898 params.assoc_value = asoc ? asoc->pf_expose 7899 : sctp_sk(sk)->pf_expose; 7900 7901 if (put_user(len, optlen)) 7902 goto out; 7903 7904 if (copy_to_user(optval, ¶ms, len)) 7905 goto out; 7906 7907 retval = 0; 7908 7909 out: 7910 return retval; 7911 } 7912 7913 static int sctp_getsockopt_encap_port(struct sock *sk, int len, 7914 char __user *optval, int __user *optlen) 7915 { 7916 struct sctp_association *asoc; 7917 struct sctp_udpencaps encap; 7918 struct sctp_transport *t; 7919 __be16 encap_port; 7920 7921 if (len < sizeof(encap)) 7922 return -EINVAL; 7923 7924 len = sizeof(encap); 7925 if (copy_from_user(&encap, optval, len)) 7926 return -EFAULT; 7927 7928 /* If an address other than INADDR_ANY is specified, and 7929 * no transport is found, then the request is invalid. 7930 */ 7931 if (!sctp_is_any(sk, (union sctp_addr *)&encap.sue_address)) { 7932 t = sctp_addr_id2transport(sk, &encap.sue_address, 7933 encap.sue_assoc_id); 7934 if (!t) { 7935 pr_debug("%s: failed no transport\n", __func__); 7936 return -EINVAL; 7937 } 7938 7939 encap_port = t->encap_port; 7940 goto out; 7941 } 7942 7943 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 7944 * socket is a one to many style socket, and an association 7945 * was not found, then the id was invalid. 7946 */ 7947 asoc = sctp_id2assoc(sk, encap.sue_assoc_id); 7948 if (!asoc && encap.sue_assoc_id != SCTP_FUTURE_ASSOC && 7949 sctp_style(sk, UDP)) { 7950 pr_debug("%s: failed no association\n", __func__); 7951 return -EINVAL; 7952 } 7953 7954 if (asoc) { 7955 encap_port = asoc->encap_port; 7956 goto out; 7957 } 7958 7959 encap_port = sctp_sk(sk)->encap_port; 7960 7961 out: 7962 encap.sue_port = (__force uint16_t)encap_port; 7963 if (copy_to_user(optval, &encap, len)) 7964 return -EFAULT; 7965 7966 if (put_user(len, optlen)) 7967 return -EFAULT; 7968 7969 return 0; 7970 } 7971 7972 static int sctp_getsockopt_probe_interval(struct sock *sk, int len, 7973 char __user *optval, 7974 int __user *optlen) 7975 { 7976 struct sctp_probeinterval params; 7977 struct sctp_association *asoc; 7978 struct sctp_transport *t; 7979 __u32 probe_interval; 7980 7981 if (len < sizeof(params)) 7982 return -EINVAL; 7983 7984 len = sizeof(params); 7985 if (copy_from_user(¶ms, optval, len)) 7986 return -EFAULT; 7987 7988 /* If an address other than INADDR_ANY is specified, and 7989 * no transport is found, then the request is invalid. 7990 */ 7991 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spi_address)) { 7992 t = sctp_addr_id2transport(sk, ¶ms.spi_address, 7993 params.spi_assoc_id); 7994 if (!t) { 7995 pr_debug("%s: failed no transport\n", __func__); 7996 return -EINVAL; 7997 } 7998 7999 probe_interval = jiffies_to_msecs(t->probe_interval); 8000 goto out; 8001 } 8002 8003 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 8004 * socket is a one to many style socket, and an association 8005 * was not found, then the id was invalid. 8006 */ 8007 asoc = sctp_id2assoc(sk, params.spi_assoc_id); 8008 if (!asoc && params.spi_assoc_id != SCTP_FUTURE_ASSOC && 8009 sctp_style(sk, UDP)) { 8010 pr_debug("%s: failed no association\n", __func__); 8011 return -EINVAL; 8012 } 8013 8014 if (asoc) { 8015 probe_interval = jiffies_to_msecs(asoc->probe_interval); 8016 goto out; 8017 } 8018 8019 probe_interval = sctp_sk(sk)->probe_interval; 8020 8021 out: 8022 params.spi_interval = probe_interval; 8023 if (copy_to_user(optval, ¶ms, len)) 8024 return -EFAULT; 8025 8026 if (put_user(len, optlen)) 8027 return -EFAULT; 8028 8029 return 0; 8030 } 8031 8032 static int sctp_getsockopt(struct sock *sk, int level, int optname, 8033 char __user *optval, int __user *optlen) 8034 { 8035 int retval = 0; 8036 int len; 8037 8038 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 8039 8040 /* I can hardly begin to describe how wrong this is. This is 8041 * so broken as to be worse than useless. The API draft 8042 * REALLY is NOT helpful here... I am not convinced that the 8043 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 8044 * are at all well-founded. 8045 */ 8046 if (level != SOL_SCTP) { 8047 struct sctp_af *af = sctp_sk(sk)->pf->af; 8048 8049 retval = af->getsockopt(sk, level, optname, optval, optlen); 8050 return retval; 8051 } 8052 8053 if (get_user(len, optlen)) 8054 return -EFAULT; 8055 8056 if (len < 0) 8057 return -EINVAL; 8058 8059 lock_sock(sk); 8060 8061 switch (optname) { 8062 case SCTP_STATUS: 8063 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 8064 break; 8065 case SCTP_DISABLE_FRAGMENTS: 8066 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 8067 optlen); 8068 break; 8069 case SCTP_EVENTS: 8070 retval = sctp_getsockopt_events(sk, len, optval, optlen); 8071 break; 8072 case SCTP_AUTOCLOSE: 8073 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 8074 break; 8075 case SCTP_SOCKOPT_PEELOFF: 8076 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 8077 break; 8078 case SCTP_SOCKOPT_PEELOFF_FLAGS: 8079 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 8080 break; 8081 case SCTP_PEER_ADDR_PARAMS: 8082 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 8083 optlen); 8084 break; 8085 case SCTP_DELAYED_SACK: 8086 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 8087 optlen); 8088 break; 8089 case SCTP_INITMSG: 8090 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 8091 break; 8092 case SCTP_GET_PEER_ADDRS: 8093 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 8094 optlen); 8095 break; 8096 case SCTP_GET_LOCAL_ADDRS: 8097 retval = sctp_getsockopt_local_addrs(sk, len, optval, 8098 optlen); 8099 break; 8100 case SCTP_SOCKOPT_CONNECTX3: 8101 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 8102 break; 8103 case SCTP_DEFAULT_SEND_PARAM: 8104 retval = sctp_getsockopt_default_send_param(sk, len, 8105 optval, optlen); 8106 break; 8107 case SCTP_DEFAULT_SNDINFO: 8108 retval = sctp_getsockopt_default_sndinfo(sk, len, 8109 optval, optlen); 8110 break; 8111 case SCTP_PRIMARY_ADDR: 8112 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 8113 break; 8114 case SCTP_NODELAY: 8115 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 8116 break; 8117 case SCTP_RTOINFO: 8118 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 8119 break; 8120 case SCTP_ASSOCINFO: 8121 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 8122 break; 8123 case SCTP_I_WANT_MAPPED_V4_ADDR: 8124 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 8125 break; 8126 case SCTP_MAXSEG: 8127 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 8128 break; 8129 case SCTP_GET_PEER_ADDR_INFO: 8130 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 8131 optlen); 8132 break; 8133 case SCTP_ADAPTATION_LAYER: 8134 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 8135 optlen); 8136 break; 8137 case SCTP_CONTEXT: 8138 retval = sctp_getsockopt_context(sk, len, optval, optlen); 8139 break; 8140 case SCTP_FRAGMENT_INTERLEAVE: 8141 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 8142 optlen); 8143 break; 8144 case SCTP_PARTIAL_DELIVERY_POINT: 8145 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 8146 optlen); 8147 break; 8148 case SCTP_MAX_BURST: 8149 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 8150 break; 8151 case SCTP_AUTH_KEY: 8152 case SCTP_AUTH_CHUNK: 8153 case SCTP_AUTH_DELETE_KEY: 8154 case SCTP_AUTH_DEACTIVATE_KEY: 8155 retval = -EOPNOTSUPP; 8156 break; 8157 case SCTP_HMAC_IDENT: 8158 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 8159 break; 8160 case SCTP_AUTH_ACTIVE_KEY: 8161 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 8162 break; 8163 case SCTP_PEER_AUTH_CHUNKS: 8164 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 8165 optlen); 8166 break; 8167 case SCTP_LOCAL_AUTH_CHUNKS: 8168 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 8169 optlen); 8170 break; 8171 case SCTP_GET_ASSOC_NUMBER: 8172 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 8173 break; 8174 case SCTP_GET_ASSOC_ID_LIST: 8175 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 8176 break; 8177 case SCTP_AUTO_ASCONF: 8178 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 8179 break; 8180 case SCTP_PEER_ADDR_THLDS: 8181 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8182 optlen, false); 8183 break; 8184 case SCTP_PEER_ADDR_THLDS_V2: 8185 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8186 optlen, true); 8187 break; 8188 case SCTP_GET_ASSOC_STATS: 8189 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 8190 break; 8191 case SCTP_RECVRCVINFO: 8192 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 8193 break; 8194 case SCTP_RECVNXTINFO: 8195 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 8196 break; 8197 case SCTP_PR_SUPPORTED: 8198 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 8199 break; 8200 case SCTP_DEFAULT_PRINFO: 8201 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 8202 optlen); 8203 break; 8204 case SCTP_PR_ASSOC_STATUS: 8205 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 8206 optlen); 8207 break; 8208 case SCTP_PR_STREAM_STATUS: 8209 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 8210 optlen); 8211 break; 8212 case SCTP_RECONFIG_SUPPORTED: 8213 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 8214 optlen); 8215 break; 8216 case SCTP_ENABLE_STREAM_RESET: 8217 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 8218 optlen); 8219 break; 8220 case SCTP_STREAM_SCHEDULER: 8221 retval = sctp_getsockopt_scheduler(sk, len, optval, 8222 optlen); 8223 break; 8224 case SCTP_STREAM_SCHEDULER_VALUE: 8225 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 8226 optlen); 8227 break; 8228 case SCTP_INTERLEAVING_SUPPORTED: 8229 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 8230 optlen); 8231 break; 8232 case SCTP_REUSE_PORT: 8233 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 8234 break; 8235 case SCTP_EVENT: 8236 retval = sctp_getsockopt_event(sk, len, optval, optlen); 8237 break; 8238 case SCTP_ASCONF_SUPPORTED: 8239 retval = sctp_getsockopt_asconf_supported(sk, len, optval, 8240 optlen); 8241 break; 8242 case SCTP_AUTH_SUPPORTED: 8243 retval = sctp_getsockopt_auth_supported(sk, len, optval, 8244 optlen); 8245 break; 8246 case SCTP_ECN_SUPPORTED: 8247 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen); 8248 break; 8249 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 8250 retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen); 8251 break; 8252 case SCTP_REMOTE_UDP_ENCAPS_PORT: 8253 retval = sctp_getsockopt_encap_port(sk, len, optval, optlen); 8254 break; 8255 case SCTP_PLPMTUD_PROBE_INTERVAL: 8256 retval = sctp_getsockopt_probe_interval(sk, len, optval, optlen); 8257 break; 8258 default: 8259 retval = -ENOPROTOOPT; 8260 break; 8261 } 8262 8263 release_sock(sk); 8264 return retval; 8265 } 8266 8267 static int sctp_hash(struct sock *sk) 8268 { 8269 /* STUB */ 8270 return 0; 8271 } 8272 8273 static void sctp_unhash(struct sock *sk) 8274 { 8275 /* STUB */ 8276 } 8277 8278 /* Check if port is acceptable. Possibly find first available port. 8279 * 8280 * The port hash table (contained in the 'global' SCTP protocol storage 8281 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 8282 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 8283 * list (the list number is the port number hashed out, so as you 8284 * would expect from a hash function, all the ports in a given list have 8285 * such a number that hashes out to the same list number; you were 8286 * expecting that, right?); so each list has a set of ports, with a 8287 * link to the socket (struct sock) that uses it, the port number and 8288 * a fastreuse flag (FIXME: NPI ipg). 8289 */ 8290 static struct sctp_bind_bucket *sctp_bucket_create( 8291 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 8292 8293 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 8294 { 8295 struct sctp_sock *sp = sctp_sk(sk); 8296 bool reuse = (sk->sk_reuse || sp->reuse); 8297 struct sctp_bind_hashbucket *head; /* hash list */ 8298 struct net *net = sock_net(sk); 8299 kuid_t uid = sock_i_uid(sk); 8300 struct sctp_bind_bucket *pp; 8301 unsigned short snum; 8302 int ret; 8303 8304 snum = ntohs(addr->v4.sin_port); 8305 8306 pr_debug("%s: begins, snum:%d\n", __func__, snum); 8307 8308 if (snum == 0) { 8309 /* Search for an available port. */ 8310 int low, high, remaining, index; 8311 unsigned int rover; 8312 8313 inet_get_local_port_range(net, &low, &high); 8314 remaining = (high - low) + 1; 8315 rover = prandom_u32() % remaining + low; 8316 8317 do { 8318 rover++; 8319 if ((rover < low) || (rover > high)) 8320 rover = low; 8321 if (inet_is_local_reserved_port(net, rover)) 8322 continue; 8323 index = sctp_phashfn(net, rover); 8324 head = &sctp_port_hashtable[index]; 8325 spin_lock_bh(&head->lock); 8326 sctp_for_each_hentry(pp, &head->chain) 8327 if ((pp->port == rover) && 8328 net_eq(net, pp->net)) 8329 goto next; 8330 break; 8331 next: 8332 spin_unlock_bh(&head->lock); 8333 cond_resched(); 8334 } while (--remaining > 0); 8335 8336 /* Exhausted local port range during search? */ 8337 ret = 1; 8338 if (remaining <= 0) 8339 return ret; 8340 8341 /* OK, here is the one we will use. HEAD (the port 8342 * hash table list entry) is non-NULL and we hold it's 8343 * mutex. 8344 */ 8345 snum = rover; 8346 } else { 8347 /* We are given an specific port number; we verify 8348 * that it is not being used. If it is used, we will 8349 * exahust the search in the hash list corresponding 8350 * to the port number (snum) - we detect that with the 8351 * port iterator, pp being NULL. 8352 */ 8353 head = &sctp_port_hashtable[sctp_phashfn(net, snum)]; 8354 spin_lock_bh(&head->lock); 8355 sctp_for_each_hentry(pp, &head->chain) { 8356 if ((pp->port == snum) && net_eq(pp->net, net)) 8357 goto pp_found; 8358 } 8359 } 8360 pp = NULL; 8361 goto pp_not_found; 8362 pp_found: 8363 if (!hlist_empty(&pp->owner)) { 8364 /* We had a port hash table hit - there is an 8365 * available port (pp != NULL) and it is being 8366 * used by other socket (pp->owner not empty); that other 8367 * socket is going to be sk2. 8368 */ 8369 struct sock *sk2; 8370 8371 pr_debug("%s: found a possible match\n", __func__); 8372 8373 if ((pp->fastreuse && reuse && 8374 sk->sk_state != SCTP_SS_LISTENING) || 8375 (pp->fastreuseport && sk->sk_reuseport && 8376 uid_eq(pp->fastuid, uid))) 8377 goto success; 8378 8379 /* Run through the list of sockets bound to the port 8380 * (pp->port) [via the pointers bind_next and 8381 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 8382 * we get the endpoint they describe and run through 8383 * the endpoint's list of IP (v4 or v6) addresses, 8384 * comparing each of the addresses with the address of 8385 * the socket sk. If we find a match, then that means 8386 * that this port/socket (sk) combination are already 8387 * in an endpoint. 8388 */ 8389 sk_for_each_bound(sk2, &pp->owner) { 8390 struct sctp_sock *sp2 = sctp_sk(sk2); 8391 struct sctp_endpoint *ep2 = sp2->ep; 8392 8393 if (sk == sk2 || 8394 (reuse && (sk2->sk_reuse || sp2->reuse) && 8395 sk2->sk_state != SCTP_SS_LISTENING) || 8396 (sk->sk_reuseport && sk2->sk_reuseport && 8397 uid_eq(uid, sock_i_uid(sk2)))) 8398 continue; 8399 8400 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, 8401 addr, sp2, sp)) { 8402 ret = 1; 8403 goto fail_unlock; 8404 } 8405 } 8406 8407 pr_debug("%s: found a match\n", __func__); 8408 } 8409 pp_not_found: 8410 /* If there was a hash table miss, create a new port. */ 8411 ret = 1; 8412 if (!pp && !(pp = sctp_bucket_create(head, net, snum))) 8413 goto fail_unlock; 8414 8415 /* In either case (hit or miss), make sure fastreuse is 1 only 8416 * if sk->sk_reuse is too (that is, if the caller requested 8417 * SO_REUSEADDR on this socket -sk-). 8418 */ 8419 if (hlist_empty(&pp->owner)) { 8420 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 8421 pp->fastreuse = 1; 8422 else 8423 pp->fastreuse = 0; 8424 8425 if (sk->sk_reuseport) { 8426 pp->fastreuseport = 1; 8427 pp->fastuid = uid; 8428 } else { 8429 pp->fastreuseport = 0; 8430 } 8431 } else { 8432 if (pp->fastreuse && 8433 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 8434 pp->fastreuse = 0; 8435 8436 if (pp->fastreuseport && 8437 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid))) 8438 pp->fastreuseport = 0; 8439 } 8440 8441 /* We are set, so fill up all the data in the hash table 8442 * entry, tie the socket list information with the rest of the 8443 * sockets FIXME: Blurry, NPI (ipg). 8444 */ 8445 success: 8446 if (!sp->bind_hash) { 8447 inet_sk(sk)->inet_num = snum; 8448 sk_add_bind_node(sk, &pp->owner); 8449 sp->bind_hash = pp; 8450 } 8451 ret = 0; 8452 8453 fail_unlock: 8454 spin_unlock_bh(&head->lock); 8455 return ret; 8456 } 8457 8458 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 8459 * port is requested. 8460 */ 8461 static int sctp_get_port(struct sock *sk, unsigned short snum) 8462 { 8463 union sctp_addr addr; 8464 struct sctp_af *af = sctp_sk(sk)->pf->af; 8465 8466 /* Set up a dummy address struct from the sk. */ 8467 af->from_sk(&addr, sk); 8468 addr.v4.sin_port = htons(snum); 8469 8470 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 8471 return sctp_get_port_local(sk, &addr); 8472 } 8473 8474 /* 8475 * Move a socket to LISTENING state. 8476 */ 8477 static int sctp_listen_start(struct sock *sk, int backlog) 8478 { 8479 struct sctp_sock *sp = sctp_sk(sk); 8480 struct sctp_endpoint *ep = sp->ep; 8481 struct crypto_shash *tfm = NULL; 8482 char alg[32]; 8483 8484 /* Allocate HMAC for generating cookie. */ 8485 if (!sp->hmac && sp->sctp_hmac_alg) { 8486 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 8487 tfm = crypto_alloc_shash(alg, 0, 0); 8488 if (IS_ERR(tfm)) { 8489 net_info_ratelimited("failed to load transform for %s: %ld\n", 8490 sp->sctp_hmac_alg, PTR_ERR(tfm)); 8491 return -ENOSYS; 8492 } 8493 sctp_sk(sk)->hmac = tfm; 8494 } 8495 8496 /* 8497 * If a bind() or sctp_bindx() is not called prior to a listen() 8498 * call that allows new associations to be accepted, the system 8499 * picks an ephemeral port and will choose an address set equivalent 8500 * to binding with a wildcard address. 8501 * 8502 * This is not currently spelled out in the SCTP sockets 8503 * extensions draft, but follows the practice as seen in TCP 8504 * sockets. 8505 * 8506 */ 8507 inet_sk_set_state(sk, SCTP_SS_LISTENING); 8508 if (!ep->base.bind_addr.port) { 8509 if (sctp_autobind(sk)) 8510 return -EAGAIN; 8511 } else { 8512 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 8513 inet_sk_set_state(sk, SCTP_SS_CLOSED); 8514 return -EADDRINUSE; 8515 } 8516 } 8517 8518 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8519 return sctp_hash_endpoint(ep); 8520 } 8521 8522 /* 8523 * 4.1.3 / 5.1.3 listen() 8524 * 8525 * By default, new associations are not accepted for UDP style sockets. 8526 * An application uses listen() to mark a socket as being able to 8527 * accept new associations. 8528 * 8529 * On TCP style sockets, applications use listen() to ready the SCTP 8530 * endpoint for accepting inbound associations. 8531 * 8532 * On both types of endpoints a backlog of '0' disables listening. 8533 * 8534 * Move a socket to LISTENING state. 8535 */ 8536 int sctp_inet_listen(struct socket *sock, int backlog) 8537 { 8538 struct sock *sk = sock->sk; 8539 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 8540 int err = -EINVAL; 8541 8542 if (unlikely(backlog < 0)) 8543 return err; 8544 8545 lock_sock(sk); 8546 8547 /* Peeled-off sockets are not allowed to listen(). */ 8548 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 8549 goto out; 8550 8551 if (sock->state != SS_UNCONNECTED) 8552 goto out; 8553 8554 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 8555 goto out; 8556 8557 /* If backlog is zero, disable listening. */ 8558 if (!backlog) { 8559 if (sctp_sstate(sk, CLOSED)) 8560 goto out; 8561 8562 err = 0; 8563 sctp_unhash_endpoint(ep); 8564 sk->sk_state = SCTP_SS_CLOSED; 8565 if (sk->sk_reuse || sctp_sk(sk)->reuse) 8566 sctp_sk(sk)->bind_hash->fastreuse = 1; 8567 goto out; 8568 } 8569 8570 /* If we are already listening, just update the backlog */ 8571 if (sctp_sstate(sk, LISTENING)) 8572 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8573 else { 8574 err = sctp_listen_start(sk, backlog); 8575 if (err) 8576 goto out; 8577 } 8578 8579 err = 0; 8580 out: 8581 release_sock(sk); 8582 return err; 8583 } 8584 8585 /* 8586 * This function is done by modeling the current datagram_poll() and the 8587 * tcp_poll(). Note that, based on these implementations, we don't 8588 * lock the socket in this function, even though it seems that, 8589 * ideally, locking or some other mechanisms can be used to ensure 8590 * the integrity of the counters (sndbuf and wmem_alloc) used 8591 * in this place. We assume that we don't need locks either until proven 8592 * otherwise. 8593 * 8594 * Another thing to note is that we include the Async I/O support 8595 * here, again, by modeling the current TCP/UDP code. We don't have 8596 * a good way to test with it yet. 8597 */ 8598 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 8599 { 8600 struct sock *sk = sock->sk; 8601 struct sctp_sock *sp = sctp_sk(sk); 8602 __poll_t mask; 8603 8604 poll_wait(file, sk_sleep(sk), wait); 8605 8606 sock_rps_record_flow(sk); 8607 8608 /* A TCP-style listening socket becomes readable when the accept queue 8609 * is not empty. 8610 */ 8611 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 8612 return (!list_empty(&sp->ep->asocs)) ? 8613 (EPOLLIN | EPOLLRDNORM) : 0; 8614 8615 mask = 0; 8616 8617 /* Is there any exceptional events? */ 8618 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 8619 mask |= EPOLLERR | 8620 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 8621 if (sk->sk_shutdown & RCV_SHUTDOWN) 8622 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 8623 if (sk->sk_shutdown == SHUTDOWN_MASK) 8624 mask |= EPOLLHUP; 8625 8626 /* Is it readable? Reconsider this code with TCP-style support. */ 8627 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 8628 mask |= EPOLLIN | EPOLLRDNORM; 8629 8630 /* The association is either gone or not ready. */ 8631 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 8632 return mask; 8633 8634 /* Is it writable? */ 8635 if (sctp_writeable(sk)) { 8636 mask |= EPOLLOUT | EPOLLWRNORM; 8637 } else { 8638 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 8639 /* 8640 * Since the socket is not locked, the buffer 8641 * might be made available after the writeable check and 8642 * before the bit is set. This could cause a lost I/O 8643 * signal. tcp_poll() has a race breaker for this race 8644 * condition. Based on their implementation, we put 8645 * in the following code to cover it as well. 8646 */ 8647 if (sctp_writeable(sk)) 8648 mask |= EPOLLOUT | EPOLLWRNORM; 8649 } 8650 return mask; 8651 } 8652 8653 /******************************************************************** 8654 * 2nd Level Abstractions 8655 ********************************************************************/ 8656 8657 static struct sctp_bind_bucket *sctp_bucket_create( 8658 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 8659 { 8660 struct sctp_bind_bucket *pp; 8661 8662 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 8663 if (pp) { 8664 SCTP_DBG_OBJCNT_INC(bind_bucket); 8665 pp->port = snum; 8666 pp->fastreuse = 0; 8667 INIT_HLIST_HEAD(&pp->owner); 8668 pp->net = net; 8669 hlist_add_head(&pp->node, &head->chain); 8670 } 8671 return pp; 8672 } 8673 8674 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 8675 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 8676 { 8677 if (pp && hlist_empty(&pp->owner)) { 8678 __hlist_del(&pp->node); 8679 kmem_cache_free(sctp_bucket_cachep, pp); 8680 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8681 } 8682 } 8683 8684 /* Release this socket's reference to a local port. */ 8685 static inline void __sctp_put_port(struct sock *sk) 8686 { 8687 struct sctp_bind_hashbucket *head = 8688 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8689 inet_sk(sk)->inet_num)]; 8690 struct sctp_bind_bucket *pp; 8691 8692 spin_lock(&head->lock); 8693 pp = sctp_sk(sk)->bind_hash; 8694 __sk_del_bind_node(sk); 8695 sctp_sk(sk)->bind_hash = NULL; 8696 inet_sk(sk)->inet_num = 0; 8697 sctp_bucket_destroy(pp); 8698 spin_unlock(&head->lock); 8699 } 8700 8701 void sctp_put_port(struct sock *sk) 8702 { 8703 local_bh_disable(); 8704 __sctp_put_port(sk); 8705 local_bh_enable(); 8706 } 8707 8708 /* 8709 * The system picks an ephemeral port and choose an address set equivalent 8710 * to binding with a wildcard address. 8711 * One of those addresses will be the primary address for the association. 8712 * This automatically enables the multihoming capability of SCTP. 8713 */ 8714 static int sctp_autobind(struct sock *sk) 8715 { 8716 union sctp_addr autoaddr; 8717 struct sctp_af *af; 8718 __be16 port; 8719 8720 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8721 af = sctp_sk(sk)->pf->af; 8722 8723 port = htons(inet_sk(sk)->inet_num); 8724 af->inaddr_any(&autoaddr, port); 8725 8726 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8727 } 8728 8729 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8730 * 8731 * From RFC 2292 8732 * 4.2 The cmsghdr Structure * 8733 * 8734 * When ancillary data is sent or received, any number of ancillary data 8735 * objects can be specified by the msg_control and msg_controllen members of 8736 * the msghdr structure, because each object is preceded by 8737 * a cmsghdr structure defining the object's length (the cmsg_len member). 8738 * Historically Berkeley-derived implementations have passed only one object 8739 * at a time, but this API allows multiple objects to be 8740 * passed in a single call to sendmsg() or recvmsg(). The following example 8741 * shows two ancillary data objects in a control buffer. 8742 * 8743 * |<--------------------------- msg_controllen -------------------------->| 8744 * | | 8745 * 8746 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8747 * 8748 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8749 * | | | 8750 * 8751 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8752 * 8753 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8754 * | | | | | 8755 * 8756 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8757 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8758 * 8759 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8760 * 8761 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8762 * ^ 8763 * | 8764 * 8765 * msg_control 8766 * points here 8767 */ 8768 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8769 { 8770 struct msghdr *my_msg = (struct msghdr *)msg; 8771 struct cmsghdr *cmsg; 8772 8773 for_each_cmsghdr(cmsg, my_msg) { 8774 if (!CMSG_OK(my_msg, cmsg)) 8775 return -EINVAL; 8776 8777 /* Should we parse this header or ignore? */ 8778 if (cmsg->cmsg_level != IPPROTO_SCTP) 8779 continue; 8780 8781 /* Strictly check lengths following example in SCM code. */ 8782 switch (cmsg->cmsg_type) { 8783 case SCTP_INIT: 8784 /* SCTP Socket API Extension 8785 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8786 * 8787 * This cmsghdr structure provides information for 8788 * initializing new SCTP associations with sendmsg(). 8789 * The SCTP_INITMSG socket option uses this same data 8790 * structure. This structure is not used for 8791 * recvmsg(). 8792 * 8793 * cmsg_level cmsg_type cmsg_data[] 8794 * ------------ ------------ ---------------------- 8795 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8796 */ 8797 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8798 return -EINVAL; 8799 8800 cmsgs->init = CMSG_DATA(cmsg); 8801 break; 8802 8803 case SCTP_SNDRCV: 8804 /* SCTP Socket API Extension 8805 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8806 * 8807 * This cmsghdr structure specifies SCTP options for 8808 * sendmsg() and describes SCTP header information 8809 * about a received message through recvmsg(). 8810 * 8811 * cmsg_level cmsg_type cmsg_data[] 8812 * ------------ ------------ ---------------------- 8813 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8814 */ 8815 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8816 return -EINVAL; 8817 8818 cmsgs->srinfo = CMSG_DATA(cmsg); 8819 8820 if (cmsgs->srinfo->sinfo_flags & 8821 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8822 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8823 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8824 return -EINVAL; 8825 break; 8826 8827 case SCTP_SNDINFO: 8828 /* SCTP Socket API Extension 8829 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8830 * 8831 * This cmsghdr structure specifies SCTP options for 8832 * sendmsg(). This structure and SCTP_RCVINFO replaces 8833 * SCTP_SNDRCV which has been deprecated. 8834 * 8835 * cmsg_level cmsg_type cmsg_data[] 8836 * ------------ ------------ --------------------- 8837 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8838 */ 8839 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8840 return -EINVAL; 8841 8842 cmsgs->sinfo = CMSG_DATA(cmsg); 8843 8844 if (cmsgs->sinfo->snd_flags & 8845 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8846 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8847 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8848 return -EINVAL; 8849 break; 8850 case SCTP_PRINFO: 8851 /* SCTP Socket API Extension 8852 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8853 * 8854 * This cmsghdr structure specifies SCTP options for sendmsg(). 8855 * 8856 * cmsg_level cmsg_type cmsg_data[] 8857 * ------------ ------------ --------------------- 8858 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8859 */ 8860 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8861 return -EINVAL; 8862 8863 cmsgs->prinfo = CMSG_DATA(cmsg); 8864 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8865 return -EINVAL; 8866 8867 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8868 cmsgs->prinfo->pr_value = 0; 8869 break; 8870 case SCTP_AUTHINFO: 8871 /* SCTP Socket API Extension 8872 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8873 * 8874 * This cmsghdr structure specifies SCTP options for sendmsg(). 8875 * 8876 * cmsg_level cmsg_type cmsg_data[] 8877 * ------------ ------------ --------------------- 8878 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8879 */ 8880 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8881 return -EINVAL; 8882 8883 cmsgs->authinfo = CMSG_DATA(cmsg); 8884 break; 8885 case SCTP_DSTADDRV4: 8886 case SCTP_DSTADDRV6: 8887 /* SCTP Socket API Extension 8888 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8889 * 8890 * This cmsghdr structure specifies SCTP options for sendmsg(). 8891 * 8892 * cmsg_level cmsg_type cmsg_data[] 8893 * ------------ ------------ --------------------- 8894 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8895 * ------------ ------------ --------------------- 8896 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8897 */ 8898 cmsgs->addrs_msg = my_msg; 8899 break; 8900 default: 8901 return -EINVAL; 8902 } 8903 } 8904 8905 return 0; 8906 } 8907 8908 /* 8909 * Wait for a packet.. 8910 * Note: This function is the same function as in core/datagram.c 8911 * with a few modifications to make lksctp work. 8912 */ 8913 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8914 { 8915 int error; 8916 DEFINE_WAIT(wait); 8917 8918 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8919 8920 /* Socket errors? */ 8921 error = sock_error(sk); 8922 if (error) 8923 goto out; 8924 8925 if (!skb_queue_empty(&sk->sk_receive_queue)) 8926 goto ready; 8927 8928 /* Socket shut down? */ 8929 if (sk->sk_shutdown & RCV_SHUTDOWN) 8930 goto out; 8931 8932 /* Sequenced packets can come disconnected. If so we report the 8933 * problem. 8934 */ 8935 error = -ENOTCONN; 8936 8937 /* Is there a good reason to think that we may receive some data? */ 8938 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8939 goto out; 8940 8941 /* Handle signals. */ 8942 if (signal_pending(current)) 8943 goto interrupted; 8944 8945 /* Let another process have a go. Since we are going to sleep 8946 * anyway. Note: This may cause odd behaviors if the message 8947 * does not fit in the user's buffer, but this seems to be the 8948 * only way to honor MSG_DONTWAIT realistically. 8949 */ 8950 release_sock(sk); 8951 *timeo_p = schedule_timeout(*timeo_p); 8952 lock_sock(sk); 8953 8954 ready: 8955 finish_wait(sk_sleep(sk), &wait); 8956 return 0; 8957 8958 interrupted: 8959 error = sock_intr_errno(*timeo_p); 8960 8961 out: 8962 finish_wait(sk_sleep(sk), &wait); 8963 *err = error; 8964 return error; 8965 } 8966 8967 /* Receive a datagram. 8968 * Note: This is pretty much the same routine as in core/datagram.c 8969 * with a few changes to make lksctp work. 8970 */ 8971 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 8972 int noblock, int *err) 8973 { 8974 int error; 8975 struct sk_buff *skb; 8976 long timeo; 8977 8978 timeo = sock_rcvtimeo(sk, noblock); 8979 8980 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 8981 MAX_SCHEDULE_TIMEOUT); 8982 8983 do { 8984 /* Again only user level code calls this function, 8985 * so nothing interrupt level 8986 * will suddenly eat the receive_queue. 8987 * 8988 * Look at current nfs client by the way... 8989 * However, this function was correct in any case. 8) 8990 */ 8991 if (flags & MSG_PEEK) { 8992 skb = skb_peek(&sk->sk_receive_queue); 8993 if (skb) 8994 refcount_inc(&skb->users); 8995 } else { 8996 skb = __skb_dequeue(&sk->sk_receive_queue); 8997 } 8998 8999 if (skb) 9000 return skb; 9001 9002 /* Caller is allowed not to check sk->sk_err before calling. */ 9003 error = sock_error(sk); 9004 if (error) 9005 goto no_packet; 9006 9007 if (sk->sk_shutdown & RCV_SHUTDOWN) 9008 break; 9009 9010 if (sk_can_busy_loop(sk)) { 9011 sk_busy_loop(sk, noblock); 9012 9013 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 9014 continue; 9015 } 9016 9017 /* User doesn't want to wait. */ 9018 error = -EAGAIN; 9019 if (!timeo) 9020 goto no_packet; 9021 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 9022 9023 return NULL; 9024 9025 no_packet: 9026 *err = error; 9027 return NULL; 9028 } 9029 9030 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 9031 static void __sctp_write_space(struct sctp_association *asoc) 9032 { 9033 struct sock *sk = asoc->base.sk; 9034 9035 if (sctp_wspace(asoc) <= 0) 9036 return; 9037 9038 if (waitqueue_active(&asoc->wait)) 9039 wake_up_interruptible(&asoc->wait); 9040 9041 if (sctp_writeable(sk)) { 9042 struct socket_wq *wq; 9043 9044 rcu_read_lock(); 9045 wq = rcu_dereference(sk->sk_wq); 9046 if (wq) { 9047 if (waitqueue_active(&wq->wait)) 9048 wake_up_interruptible(&wq->wait); 9049 9050 /* Note that we try to include the Async I/O support 9051 * here by modeling from the current TCP/UDP code. 9052 * We have not tested with it yet. 9053 */ 9054 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 9055 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 9056 } 9057 rcu_read_unlock(); 9058 } 9059 } 9060 9061 static void sctp_wake_up_waiters(struct sock *sk, 9062 struct sctp_association *asoc) 9063 { 9064 struct sctp_association *tmp = asoc; 9065 9066 /* We do accounting for the sndbuf space per association, 9067 * so we only need to wake our own association. 9068 */ 9069 if (asoc->ep->sndbuf_policy) 9070 return __sctp_write_space(asoc); 9071 9072 /* If association goes down and is just flushing its 9073 * outq, then just normally notify others. 9074 */ 9075 if (asoc->base.dead) 9076 return sctp_write_space(sk); 9077 9078 /* Accounting for the sndbuf space is per socket, so we 9079 * need to wake up others, try to be fair and in case of 9080 * other associations, let them have a go first instead 9081 * of just doing a sctp_write_space() call. 9082 * 9083 * Note that we reach sctp_wake_up_waiters() only when 9084 * associations free up queued chunks, thus we are under 9085 * lock and the list of associations on a socket is 9086 * guaranteed not to change. 9087 */ 9088 for (tmp = list_next_entry(tmp, asocs); 1; 9089 tmp = list_next_entry(tmp, asocs)) { 9090 /* Manually skip the head element. */ 9091 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 9092 continue; 9093 /* Wake up association. */ 9094 __sctp_write_space(tmp); 9095 /* We've reached the end. */ 9096 if (tmp == asoc) 9097 break; 9098 } 9099 } 9100 9101 /* Do accounting for the sndbuf space. 9102 * Decrement the used sndbuf space of the corresponding association by the 9103 * data size which was just transmitted(freed). 9104 */ 9105 static void sctp_wfree(struct sk_buff *skb) 9106 { 9107 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 9108 struct sctp_association *asoc = chunk->asoc; 9109 struct sock *sk = asoc->base.sk; 9110 9111 sk_mem_uncharge(sk, skb->truesize); 9112 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk); 9113 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); 9114 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), 9115 &sk->sk_wmem_alloc)); 9116 9117 if (chunk->shkey) { 9118 struct sctp_shared_key *shkey = chunk->shkey; 9119 9120 /* refcnt == 2 and !list_empty mean after this release, it's 9121 * not being used anywhere, and it's time to notify userland 9122 * that this shkey can be freed if it's been deactivated. 9123 */ 9124 if (shkey->deactivated && !list_empty(&shkey->key_list) && 9125 refcount_read(&shkey->refcnt) == 2) { 9126 struct sctp_ulpevent *ev; 9127 9128 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 9129 SCTP_AUTH_FREE_KEY, 9130 GFP_KERNEL); 9131 if (ev) 9132 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 9133 } 9134 sctp_auth_shkey_release(chunk->shkey); 9135 } 9136 9137 sock_wfree(skb); 9138 sctp_wake_up_waiters(sk, asoc); 9139 9140 sctp_association_put(asoc); 9141 } 9142 9143 /* Do accounting for the receive space on the socket. 9144 * Accounting for the association is done in ulpevent.c 9145 * We set this as a destructor for the cloned data skbs so that 9146 * accounting is done at the correct time. 9147 */ 9148 void sctp_sock_rfree(struct sk_buff *skb) 9149 { 9150 struct sock *sk = skb->sk; 9151 struct sctp_ulpevent *event = sctp_skb2event(skb); 9152 9153 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 9154 9155 /* 9156 * Mimic the behavior of sock_rfree 9157 */ 9158 sk_mem_uncharge(sk, event->rmem_len); 9159 } 9160 9161 9162 /* Helper function to wait for space in the sndbuf. */ 9163 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 9164 size_t msg_len) 9165 { 9166 struct sock *sk = asoc->base.sk; 9167 long current_timeo = *timeo_p; 9168 DEFINE_WAIT(wait); 9169 int err = 0; 9170 9171 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 9172 *timeo_p, msg_len); 9173 9174 /* Increment the association's refcnt. */ 9175 sctp_association_hold(asoc); 9176 9177 /* Wait on the association specific sndbuf space. */ 9178 for (;;) { 9179 prepare_to_wait_exclusive(&asoc->wait, &wait, 9180 TASK_INTERRUPTIBLE); 9181 if (asoc->base.dead) 9182 goto do_dead; 9183 if (!*timeo_p) 9184 goto do_nonblock; 9185 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 9186 goto do_error; 9187 if (signal_pending(current)) 9188 goto do_interrupted; 9189 if (sk_under_memory_pressure(sk)) 9190 sk_mem_reclaim(sk); 9191 if ((int)msg_len <= sctp_wspace(asoc) && 9192 sk_wmem_schedule(sk, msg_len)) 9193 break; 9194 9195 /* Let another process have a go. Since we are going 9196 * to sleep anyway. 9197 */ 9198 release_sock(sk); 9199 current_timeo = schedule_timeout(current_timeo); 9200 lock_sock(sk); 9201 if (sk != asoc->base.sk) 9202 goto do_error; 9203 9204 *timeo_p = current_timeo; 9205 } 9206 9207 out: 9208 finish_wait(&asoc->wait, &wait); 9209 9210 /* Release the association's refcnt. */ 9211 sctp_association_put(asoc); 9212 9213 return err; 9214 9215 do_dead: 9216 err = -ESRCH; 9217 goto out; 9218 9219 do_error: 9220 err = -EPIPE; 9221 goto out; 9222 9223 do_interrupted: 9224 err = sock_intr_errno(*timeo_p); 9225 goto out; 9226 9227 do_nonblock: 9228 err = -EAGAIN; 9229 goto out; 9230 } 9231 9232 void sctp_data_ready(struct sock *sk) 9233 { 9234 struct socket_wq *wq; 9235 9236 rcu_read_lock(); 9237 wq = rcu_dereference(sk->sk_wq); 9238 if (skwq_has_sleeper(wq)) 9239 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 9240 EPOLLRDNORM | EPOLLRDBAND); 9241 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 9242 rcu_read_unlock(); 9243 } 9244 9245 /* If socket sndbuf has changed, wake up all per association waiters. */ 9246 void sctp_write_space(struct sock *sk) 9247 { 9248 struct sctp_association *asoc; 9249 9250 /* Wake up the tasks in each wait queue. */ 9251 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 9252 __sctp_write_space(asoc); 9253 } 9254 } 9255 9256 /* Is there any sndbuf space available on the socket? 9257 * 9258 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 9259 * associations on the same socket. For a UDP-style socket with 9260 * multiple associations, it is possible for it to be "unwriteable" 9261 * prematurely. I assume that this is acceptable because 9262 * a premature "unwriteable" is better than an accidental "writeable" which 9263 * would cause an unwanted block under certain circumstances. For the 1-1 9264 * UDP-style sockets or TCP-style sockets, this code should work. 9265 * - Daisy 9266 */ 9267 static bool sctp_writeable(struct sock *sk) 9268 { 9269 return sk->sk_sndbuf > sk->sk_wmem_queued; 9270 } 9271 9272 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 9273 * returns immediately with EINPROGRESS. 9274 */ 9275 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 9276 { 9277 struct sock *sk = asoc->base.sk; 9278 int err = 0; 9279 long current_timeo = *timeo_p; 9280 DEFINE_WAIT(wait); 9281 9282 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 9283 9284 /* Increment the association's refcnt. */ 9285 sctp_association_hold(asoc); 9286 9287 for (;;) { 9288 prepare_to_wait_exclusive(&asoc->wait, &wait, 9289 TASK_INTERRUPTIBLE); 9290 if (!*timeo_p) 9291 goto do_nonblock; 9292 if (sk->sk_shutdown & RCV_SHUTDOWN) 9293 break; 9294 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 9295 asoc->base.dead) 9296 goto do_error; 9297 if (signal_pending(current)) 9298 goto do_interrupted; 9299 9300 if (sctp_state(asoc, ESTABLISHED)) 9301 break; 9302 9303 /* Let another process have a go. Since we are going 9304 * to sleep anyway. 9305 */ 9306 release_sock(sk); 9307 current_timeo = schedule_timeout(current_timeo); 9308 lock_sock(sk); 9309 9310 *timeo_p = current_timeo; 9311 } 9312 9313 out: 9314 finish_wait(&asoc->wait, &wait); 9315 9316 /* Release the association's refcnt. */ 9317 sctp_association_put(asoc); 9318 9319 return err; 9320 9321 do_error: 9322 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 9323 err = -ETIMEDOUT; 9324 else 9325 err = -ECONNREFUSED; 9326 goto out; 9327 9328 do_interrupted: 9329 err = sock_intr_errno(*timeo_p); 9330 goto out; 9331 9332 do_nonblock: 9333 err = -EINPROGRESS; 9334 goto out; 9335 } 9336 9337 static int sctp_wait_for_accept(struct sock *sk, long timeo) 9338 { 9339 struct sctp_endpoint *ep; 9340 int err = 0; 9341 DEFINE_WAIT(wait); 9342 9343 ep = sctp_sk(sk)->ep; 9344 9345 9346 for (;;) { 9347 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 9348 TASK_INTERRUPTIBLE); 9349 9350 if (list_empty(&ep->asocs)) { 9351 release_sock(sk); 9352 timeo = schedule_timeout(timeo); 9353 lock_sock(sk); 9354 } 9355 9356 err = -EINVAL; 9357 if (!sctp_sstate(sk, LISTENING)) 9358 break; 9359 9360 err = 0; 9361 if (!list_empty(&ep->asocs)) 9362 break; 9363 9364 err = sock_intr_errno(timeo); 9365 if (signal_pending(current)) 9366 break; 9367 9368 err = -EAGAIN; 9369 if (!timeo) 9370 break; 9371 } 9372 9373 finish_wait(sk_sleep(sk), &wait); 9374 9375 return err; 9376 } 9377 9378 static void sctp_wait_for_close(struct sock *sk, long timeout) 9379 { 9380 DEFINE_WAIT(wait); 9381 9382 do { 9383 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 9384 if (list_empty(&sctp_sk(sk)->ep->asocs)) 9385 break; 9386 release_sock(sk); 9387 timeout = schedule_timeout(timeout); 9388 lock_sock(sk); 9389 } while (!signal_pending(current) && timeout); 9390 9391 finish_wait(sk_sleep(sk), &wait); 9392 } 9393 9394 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 9395 { 9396 struct sk_buff *frag; 9397 9398 if (!skb->data_len) 9399 goto done; 9400 9401 /* Don't forget the fragments. */ 9402 skb_walk_frags(skb, frag) 9403 sctp_skb_set_owner_r_frag(frag, sk); 9404 9405 done: 9406 sctp_skb_set_owner_r(skb, sk); 9407 } 9408 9409 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 9410 struct sctp_association *asoc) 9411 { 9412 struct inet_sock *inet = inet_sk(sk); 9413 struct inet_sock *newinet; 9414 struct sctp_sock *sp = sctp_sk(sk); 9415 struct sctp_endpoint *ep = sp->ep; 9416 9417 newsk->sk_type = sk->sk_type; 9418 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 9419 newsk->sk_flags = sk->sk_flags; 9420 newsk->sk_tsflags = sk->sk_tsflags; 9421 newsk->sk_no_check_tx = sk->sk_no_check_tx; 9422 newsk->sk_no_check_rx = sk->sk_no_check_rx; 9423 newsk->sk_reuse = sk->sk_reuse; 9424 sctp_sk(newsk)->reuse = sp->reuse; 9425 9426 newsk->sk_shutdown = sk->sk_shutdown; 9427 newsk->sk_destruct = sctp_destruct_sock; 9428 newsk->sk_family = sk->sk_family; 9429 newsk->sk_protocol = IPPROTO_SCTP; 9430 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 9431 newsk->sk_sndbuf = sk->sk_sndbuf; 9432 newsk->sk_rcvbuf = sk->sk_rcvbuf; 9433 newsk->sk_lingertime = sk->sk_lingertime; 9434 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 9435 newsk->sk_sndtimeo = sk->sk_sndtimeo; 9436 newsk->sk_rxhash = sk->sk_rxhash; 9437 9438 newinet = inet_sk(newsk); 9439 9440 /* Initialize sk's sport, dport, rcv_saddr and daddr for 9441 * getsockname() and getpeername() 9442 */ 9443 newinet->inet_sport = inet->inet_sport; 9444 newinet->inet_saddr = inet->inet_saddr; 9445 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 9446 newinet->inet_dport = htons(asoc->peer.port); 9447 newinet->pmtudisc = inet->pmtudisc; 9448 newinet->inet_id = prandom_u32(); 9449 9450 newinet->uc_ttl = inet->uc_ttl; 9451 newinet->mc_loop = 1; 9452 newinet->mc_ttl = 1; 9453 newinet->mc_index = 0; 9454 newinet->mc_list = NULL; 9455 9456 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 9457 net_enable_timestamp(); 9458 9459 /* Set newsk security attributes from original sk and connection 9460 * security attribute from ep. 9461 */ 9462 security_sctp_sk_clone(ep, sk, newsk); 9463 } 9464 9465 static inline void sctp_copy_descendant(struct sock *sk_to, 9466 const struct sock *sk_from) 9467 { 9468 size_t ancestor_size = sizeof(struct inet_sock); 9469 9470 ancestor_size += sk_from->sk_prot->obj_size; 9471 ancestor_size -= offsetof(struct sctp_sock, pd_lobby); 9472 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 9473 } 9474 9475 /* Populate the fields of the newsk from the oldsk and migrate the assoc 9476 * and its messages to the newsk. 9477 */ 9478 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 9479 struct sctp_association *assoc, 9480 enum sctp_socket_type type) 9481 { 9482 struct sctp_sock *oldsp = sctp_sk(oldsk); 9483 struct sctp_sock *newsp = sctp_sk(newsk); 9484 struct sctp_bind_bucket *pp; /* hash list port iterator */ 9485 struct sctp_endpoint *newep = newsp->ep; 9486 struct sk_buff *skb, *tmp; 9487 struct sctp_ulpevent *event; 9488 struct sctp_bind_hashbucket *head; 9489 int err; 9490 9491 /* Migrate socket buffer sizes and all the socket level options to the 9492 * new socket. 9493 */ 9494 newsk->sk_sndbuf = oldsk->sk_sndbuf; 9495 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 9496 /* Brute force copy old sctp opt. */ 9497 sctp_copy_descendant(newsk, oldsk); 9498 9499 /* Restore the ep value that was overwritten with the above structure 9500 * copy. 9501 */ 9502 newsp->ep = newep; 9503 newsp->hmac = NULL; 9504 9505 /* Hook this new socket in to the bind_hash list. */ 9506 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 9507 inet_sk(oldsk)->inet_num)]; 9508 spin_lock_bh(&head->lock); 9509 pp = sctp_sk(oldsk)->bind_hash; 9510 sk_add_bind_node(newsk, &pp->owner); 9511 sctp_sk(newsk)->bind_hash = pp; 9512 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 9513 spin_unlock_bh(&head->lock); 9514 9515 /* Copy the bind_addr list from the original endpoint to the new 9516 * endpoint so that we can handle restarts properly 9517 */ 9518 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 9519 &oldsp->ep->base.bind_addr, GFP_KERNEL); 9520 if (err) 9521 return err; 9522 9523 /* New ep's auth_hmacs should be set if old ep's is set, in case 9524 * that net->sctp.auth_enable has been changed to 0 by users and 9525 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init(). 9526 */ 9527 if (oldsp->ep->auth_hmacs) { 9528 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL); 9529 if (err) 9530 return err; 9531 } 9532 9533 sctp_auto_asconf_init(newsp); 9534 9535 /* Move any messages in the old socket's receive queue that are for the 9536 * peeled off association to the new socket's receive queue. 9537 */ 9538 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 9539 event = sctp_skb2event(skb); 9540 if (event->asoc == assoc) { 9541 __skb_unlink(skb, &oldsk->sk_receive_queue); 9542 __skb_queue_tail(&newsk->sk_receive_queue, skb); 9543 sctp_skb_set_owner_r_frag(skb, newsk); 9544 } 9545 } 9546 9547 /* Clean up any messages pending delivery due to partial 9548 * delivery. Three cases: 9549 * 1) No partial deliver; no work. 9550 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 9551 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 9552 */ 9553 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 9554 9555 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 9556 struct sk_buff_head *queue; 9557 9558 /* Decide which queue to move pd_lobby skbs to. */ 9559 if (assoc->ulpq.pd_mode) { 9560 queue = &newsp->pd_lobby; 9561 } else 9562 queue = &newsk->sk_receive_queue; 9563 9564 /* Walk through the pd_lobby, looking for skbs that 9565 * need moved to the new socket. 9566 */ 9567 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 9568 event = sctp_skb2event(skb); 9569 if (event->asoc == assoc) { 9570 __skb_unlink(skb, &oldsp->pd_lobby); 9571 __skb_queue_tail(queue, skb); 9572 sctp_skb_set_owner_r_frag(skb, newsk); 9573 } 9574 } 9575 9576 /* Clear up any skbs waiting for the partial 9577 * delivery to finish. 9578 */ 9579 if (assoc->ulpq.pd_mode) 9580 sctp_clear_pd(oldsk, NULL); 9581 9582 } 9583 9584 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 9585 9586 /* Set the type of socket to indicate that it is peeled off from the 9587 * original UDP-style socket or created with the accept() call on a 9588 * TCP-style socket.. 9589 */ 9590 newsp->type = type; 9591 9592 /* Mark the new socket "in-use" by the user so that any packets 9593 * that may arrive on the association after we've moved it are 9594 * queued to the backlog. This prevents a potential race between 9595 * backlog processing on the old socket and new-packet processing 9596 * on the new socket. 9597 * 9598 * The caller has just allocated newsk so we can guarantee that other 9599 * paths won't try to lock it and then oldsk. 9600 */ 9601 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 9602 sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w); 9603 sctp_assoc_migrate(assoc, newsk); 9604 sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w); 9605 9606 /* If the association on the newsk is already closed before accept() 9607 * is called, set RCV_SHUTDOWN flag. 9608 */ 9609 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 9610 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 9611 newsk->sk_shutdown |= RCV_SHUTDOWN; 9612 } else { 9613 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 9614 } 9615 9616 release_sock(newsk); 9617 9618 return 0; 9619 } 9620 9621 9622 /* This proto struct describes the ULP interface for SCTP. */ 9623 struct proto sctp_prot = { 9624 .name = "SCTP", 9625 .owner = THIS_MODULE, 9626 .close = sctp_close, 9627 .disconnect = sctp_disconnect, 9628 .accept = sctp_accept, 9629 .ioctl = sctp_ioctl, 9630 .init = sctp_init_sock, 9631 .destroy = sctp_destroy_sock, 9632 .shutdown = sctp_shutdown, 9633 .setsockopt = sctp_setsockopt, 9634 .getsockopt = sctp_getsockopt, 9635 .sendmsg = sctp_sendmsg, 9636 .recvmsg = sctp_recvmsg, 9637 .bind = sctp_bind, 9638 .bind_add = sctp_bind_add, 9639 .backlog_rcv = sctp_backlog_rcv, 9640 .hash = sctp_hash, 9641 .unhash = sctp_unhash, 9642 .no_autobind = true, 9643 .obj_size = sizeof(struct sctp_sock), 9644 .useroffset = offsetof(struct sctp_sock, subscribe), 9645 .usersize = offsetof(struct sctp_sock, initmsg) - 9646 offsetof(struct sctp_sock, subscribe) + 9647 sizeof_field(struct sctp_sock, initmsg), 9648 .sysctl_mem = sysctl_sctp_mem, 9649 .sysctl_rmem = sysctl_sctp_rmem, 9650 .sysctl_wmem = sysctl_sctp_wmem, 9651 .memory_pressure = &sctp_memory_pressure, 9652 .enter_memory_pressure = sctp_enter_memory_pressure, 9653 .memory_allocated = &sctp_memory_allocated, 9654 .sockets_allocated = &sctp_sockets_allocated, 9655 }; 9656 9657 #if IS_ENABLED(CONFIG_IPV6) 9658 9659 #include <net/transp_v6.h> 9660 static void sctp_v6_destroy_sock(struct sock *sk) 9661 { 9662 sctp_destroy_sock(sk); 9663 inet6_destroy_sock(sk); 9664 } 9665 9666 struct proto sctpv6_prot = { 9667 .name = "SCTPv6", 9668 .owner = THIS_MODULE, 9669 .close = sctp_close, 9670 .disconnect = sctp_disconnect, 9671 .accept = sctp_accept, 9672 .ioctl = sctp_ioctl, 9673 .init = sctp_init_sock, 9674 .destroy = sctp_v6_destroy_sock, 9675 .shutdown = sctp_shutdown, 9676 .setsockopt = sctp_setsockopt, 9677 .getsockopt = sctp_getsockopt, 9678 .sendmsg = sctp_sendmsg, 9679 .recvmsg = sctp_recvmsg, 9680 .bind = sctp_bind, 9681 .bind_add = sctp_bind_add, 9682 .backlog_rcv = sctp_backlog_rcv, 9683 .hash = sctp_hash, 9684 .unhash = sctp_unhash, 9685 .no_autobind = true, 9686 .obj_size = sizeof(struct sctp6_sock), 9687 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 9688 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 9689 offsetof(struct sctp6_sock, sctp.subscribe) + 9690 sizeof_field(struct sctp6_sock, sctp.initmsg), 9691 .sysctl_mem = sysctl_sctp_mem, 9692 .sysctl_rmem = sysctl_sctp_rmem, 9693 .sysctl_wmem = sysctl_sctp_wmem, 9694 .memory_pressure = &sctp_memory_pressure, 9695 .enter_memory_pressure = sctp_enter_memory_pressure, 9696 .memory_allocated = &sctp_memory_allocated, 9697 .sockets_allocated = &sctp_sockets_allocated, 9698 }; 9699 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9700