xref: /linux/net/sctp/socket.c (revision baf69e275317602bb1f2c87e40d1e03c90b31e38)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, write to
32  * the Free Software Foundation, 59 Temple Place - Suite 330,
33  * Boston, MA 02111-1307, USA.
34  *
35  * Please send any bug reports or fixes you make to the
36  * email address(es):
37  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
38  *
39  * Or submit a bug report through the following website:
40  *    http://www.sf.net/projects/lksctp
41  *
42  * Written or modified by:
43  *    La Monte H.P. Yarroll <piggy@acm.org>
44  *    Narasimha Budihal     <narsi@refcode.org>
45  *    Karl Knutson          <karl@athena.chicago.il.us>
46  *    Jon Grimm             <jgrimm@us.ibm.com>
47  *    Xingang Guo           <xingang.guo@intel.com>
48  *    Daisy Chang           <daisyc@us.ibm.com>
49  *    Sridhar Samudrala     <samudrala@us.ibm.com>
50  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
51  *    Ardelle Fan	    <ardelle.fan@intel.com>
52  *    Ryan Layer	    <rmlayer@us.ibm.com>
53  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
54  *    Kevin Gao             <kevin.gao@intel.com>
55  *
56  * Any bugs reported given to us we will try to fix... any fixes shared will
57  * be incorporated into the next SCTP release.
58  */
59 
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61 
62 #include <linux/types.h>
63 #include <linux/kernel.h>
64 #include <linux/wait.h>
65 #include <linux/time.h>
66 #include <linux/ip.h>
67 #include <linux/capability.h>
68 #include <linux/fcntl.h>
69 #include <linux/poll.h>
70 #include <linux/init.h>
71 #include <linux/crypto.h>
72 #include <linux/slab.h>
73 
74 #include <net/ip.h>
75 #include <net/icmp.h>
76 #include <net/route.h>
77 #include <net/ipv6.h>
78 #include <net/inet_common.h>
79 
80 #include <linux/socket.h> /* for sa_family_t */
81 #include <linux/export.h>
82 #include <net/sock.h>
83 #include <net/sctp/sctp.h>
84 #include <net/sctp/sm.h>
85 
86 /* WARNING:  Please do not remove the SCTP_STATIC attribute to
87  * any of the functions below as they are used to export functions
88  * used by a project regression testsuite.
89  */
90 
91 /* Forward declarations for internal helper functions. */
92 static int sctp_writeable(struct sock *sk);
93 static void sctp_wfree(struct sk_buff *skb);
94 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
95 				size_t msg_len);
96 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
97 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
98 static int sctp_wait_for_accept(struct sock *sk, long timeo);
99 static void sctp_wait_for_close(struct sock *sk, long timeo);
100 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
101 					union sctp_addr *addr, int len);
102 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
103 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
104 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
105 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
106 static int sctp_send_asconf(struct sctp_association *asoc,
107 			    struct sctp_chunk *chunk);
108 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
109 static int sctp_autobind(struct sock *sk);
110 static void sctp_sock_migrate(struct sock *, struct sock *,
111 			      struct sctp_association *, sctp_socket_type_t);
112 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
113 
114 extern struct kmem_cache *sctp_bucket_cachep;
115 extern long sysctl_sctp_mem[3];
116 extern int sysctl_sctp_rmem[3];
117 extern int sysctl_sctp_wmem[3];
118 
119 static int sctp_memory_pressure;
120 static atomic_long_t sctp_memory_allocated;
121 struct percpu_counter sctp_sockets_allocated;
122 
123 static void sctp_enter_memory_pressure(struct sock *sk)
124 {
125 	sctp_memory_pressure = 1;
126 }
127 
128 
129 /* Get the sndbuf space available at the time on the association.  */
130 static inline int sctp_wspace(struct sctp_association *asoc)
131 {
132 	int amt;
133 
134 	if (asoc->ep->sndbuf_policy)
135 		amt = asoc->sndbuf_used;
136 	else
137 		amt = sk_wmem_alloc_get(asoc->base.sk);
138 
139 	if (amt >= asoc->base.sk->sk_sndbuf) {
140 		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
141 			amt = 0;
142 		else {
143 			amt = sk_stream_wspace(asoc->base.sk);
144 			if (amt < 0)
145 				amt = 0;
146 		}
147 	} else {
148 		amt = asoc->base.sk->sk_sndbuf - amt;
149 	}
150 	return amt;
151 }
152 
153 /* Increment the used sndbuf space count of the corresponding association by
154  * the size of the outgoing data chunk.
155  * Also, set the skb destructor for sndbuf accounting later.
156  *
157  * Since it is always 1-1 between chunk and skb, and also a new skb is always
158  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
159  * destructor in the data chunk skb for the purpose of the sndbuf space
160  * tracking.
161  */
162 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
163 {
164 	struct sctp_association *asoc = chunk->asoc;
165 	struct sock *sk = asoc->base.sk;
166 
167 	/* The sndbuf space is tracked per association.  */
168 	sctp_association_hold(asoc);
169 
170 	skb_set_owner_w(chunk->skb, sk);
171 
172 	chunk->skb->destructor = sctp_wfree;
173 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
174 	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
175 
176 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
177 				sizeof(struct sk_buff) +
178 				sizeof(struct sctp_chunk);
179 
180 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
181 	sk->sk_wmem_queued += chunk->skb->truesize;
182 	sk_mem_charge(sk, chunk->skb->truesize);
183 }
184 
185 /* Verify that this is a valid address. */
186 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
187 				   int len)
188 {
189 	struct sctp_af *af;
190 
191 	/* Verify basic sockaddr. */
192 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
193 	if (!af)
194 		return -EINVAL;
195 
196 	/* Is this a valid SCTP address?  */
197 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
198 		return -EINVAL;
199 
200 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
201 		return -EINVAL;
202 
203 	return 0;
204 }
205 
206 /* Look up the association by its id.  If this is not a UDP-style
207  * socket, the ID field is always ignored.
208  */
209 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
210 {
211 	struct sctp_association *asoc = NULL;
212 
213 	/* If this is not a UDP-style socket, assoc id should be ignored. */
214 	if (!sctp_style(sk, UDP)) {
215 		/* Return NULL if the socket state is not ESTABLISHED. It
216 		 * could be a TCP-style listening socket or a socket which
217 		 * hasn't yet called connect() to establish an association.
218 		 */
219 		if (!sctp_sstate(sk, ESTABLISHED))
220 			return NULL;
221 
222 		/* Get the first and the only association from the list. */
223 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
224 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
225 					  struct sctp_association, asocs);
226 		return asoc;
227 	}
228 
229 	/* Otherwise this is a UDP-style socket. */
230 	if (!id || (id == (sctp_assoc_t)-1))
231 		return NULL;
232 
233 	spin_lock_bh(&sctp_assocs_id_lock);
234 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
235 	spin_unlock_bh(&sctp_assocs_id_lock);
236 
237 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
238 		return NULL;
239 
240 	return asoc;
241 }
242 
243 /* Look up the transport from an address and an assoc id. If both address and
244  * id are specified, the associations matching the address and the id should be
245  * the same.
246  */
247 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
248 					      struct sockaddr_storage *addr,
249 					      sctp_assoc_t id)
250 {
251 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
252 	struct sctp_transport *transport;
253 	union sctp_addr *laddr = (union sctp_addr *)addr;
254 
255 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
256 					       laddr,
257 					       &transport);
258 
259 	if (!addr_asoc)
260 		return NULL;
261 
262 	id_asoc = sctp_id2assoc(sk, id);
263 	if (id_asoc && (id_asoc != addr_asoc))
264 		return NULL;
265 
266 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
267 						(union sctp_addr *)addr);
268 
269 	return transport;
270 }
271 
272 /* API 3.1.2 bind() - UDP Style Syntax
273  * The syntax of bind() is,
274  *
275  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
276  *
277  *   sd      - the socket descriptor returned by socket().
278  *   addr    - the address structure (struct sockaddr_in or struct
279  *             sockaddr_in6 [RFC 2553]),
280  *   addr_len - the size of the address structure.
281  */
282 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
283 {
284 	int retval = 0;
285 
286 	sctp_lock_sock(sk);
287 
288 	SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
289 			  sk, addr, addr_len);
290 
291 	/* Disallow binding twice. */
292 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
293 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
294 				      addr_len);
295 	else
296 		retval = -EINVAL;
297 
298 	sctp_release_sock(sk);
299 
300 	return retval;
301 }
302 
303 static long sctp_get_port_local(struct sock *, union sctp_addr *);
304 
305 /* Verify this is a valid sockaddr. */
306 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
307 					union sctp_addr *addr, int len)
308 {
309 	struct sctp_af *af;
310 
311 	/* Check minimum size.  */
312 	if (len < sizeof (struct sockaddr))
313 		return NULL;
314 
315 	/* V4 mapped address are really of AF_INET family */
316 	if (addr->sa.sa_family == AF_INET6 &&
317 	    ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
318 		if (!opt->pf->af_supported(AF_INET, opt))
319 			return NULL;
320 	} else {
321 		/* Does this PF support this AF? */
322 		if (!opt->pf->af_supported(addr->sa.sa_family, opt))
323 			return NULL;
324 	}
325 
326 	/* If we get this far, af is valid. */
327 	af = sctp_get_af_specific(addr->sa.sa_family);
328 
329 	if (len < af->sockaddr_len)
330 		return NULL;
331 
332 	return af;
333 }
334 
335 /* Bind a local address either to an endpoint or to an association.  */
336 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
337 {
338 	struct sctp_sock *sp = sctp_sk(sk);
339 	struct sctp_endpoint *ep = sp->ep;
340 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
341 	struct sctp_af *af;
342 	unsigned short snum;
343 	int ret = 0;
344 
345 	/* Common sockaddr verification. */
346 	af = sctp_sockaddr_af(sp, addr, len);
347 	if (!af) {
348 		SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
349 				  sk, addr, len);
350 		return -EINVAL;
351 	}
352 
353 	snum = ntohs(addr->v4.sin_port);
354 
355 	SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
356 				 ", port: %d, new port: %d, len: %d)\n",
357 				 sk,
358 				 addr,
359 				 bp->port, snum,
360 				 len);
361 
362 	/* PF specific bind() address verification. */
363 	if (!sp->pf->bind_verify(sp, addr))
364 		return -EADDRNOTAVAIL;
365 
366 	/* We must either be unbound, or bind to the same port.
367 	 * It's OK to allow 0 ports if we are already bound.
368 	 * We'll just inhert an already bound port in this case
369 	 */
370 	if (bp->port) {
371 		if (!snum)
372 			snum = bp->port;
373 		else if (snum != bp->port) {
374 			SCTP_DEBUG_PRINTK("sctp_do_bind:"
375 				  " New port %d does not match existing port "
376 				  "%d.\n", snum, bp->port);
377 			return -EINVAL;
378 		}
379 	}
380 
381 	if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
382 		return -EACCES;
383 
384 	/* See if the address matches any of the addresses we may have
385 	 * already bound before checking against other endpoints.
386 	 */
387 	if (sctp_bind_addr_match(bp, addr, sp))
388 		return -EINVAL;
389 
390 	/* Make sure we are allowed to bind here.
391 	 * The function sctp_get_port_local() does duplicate address
392 	 * detection.
393 	 */
394 	addr->v4.sin_port = htons(snum);
395 	if ((ret = sctp_get_port_local(sk, addr))) {
396 		return -EADDRINUSE;
397 	}
398 
399 	/* Refresh ephemeral port.  */
400 	if (!bp->port)
401 		bp->port = inet_sk(sk)->inet_num;
402 
403 	/* Add the address to the bind address list.
404 	 * Use GFP_ATOMIC since BHs will be disabled.
405 	 */
406 	ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
407 
408 	/* Copy back into socket for getsockname() use. */
409 	if (!ret) {
410 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
411 		af->to_sk_saddr(addr, sk);
412 	}
413 
414 	return ret;
415 }
416 
417  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
418  *
419  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
420  * at any one time.  If a sender, after sending an ASCONF chunk, decides
421  * it needs to transfer another ASCONF Chunk, it MUST wait until the
422  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
423  * subsequent ASCONF. Note this restriction binds each side, so at any
424  * time two ASCONF may be in-transit on any given association (one sent
425  * from each endpoint).
426  */
427 static int sctp_send_asconf(struct sctp_association *asoc,
428 			    struct sctp_chunk *chunk)
429 {
430 	int		retval = 0;
431 
432 	/* If there is an outstanding ASCONF chunk, queue it for later
433 	 * transmission.
434 	 */
435 	if (asoc->addip_last_asconf) {
436 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
437 		goto out;
438 	}
439 
440 	/* Hold the chunk until an ASCONF_ACK is received. */
441 	sctp_chunk_hold(chunk);
442 	retval = sctp_primitive_ASCONF(asoc, chunk);
443 	if (retval)
444 		sctp_chunk_free(chunk);
445 	else
446 		asoc->addip_last_asconf = chunk;
447 
448 out:
449 	return retval;
450 }
451 
452 /* Add a list of addresses as bind addresses to local endpoint or
453  * association.
454  *
455  * Basically run through each address specified in the addrs/addrcnt
456  * array/length pair, determine if it is IPv6 or IPv4 and call
457  * sctp_do_bind() on it.
458  *
459  * If any of them fails, then the operation will be reversed and the
460  * ones that were added will be removed.
461  *
462  * Only sctp_setsockopt_bindx() is supposed to call this function.
463  */
464 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
465 {
466 	int cnt;
467 	int retval = 0;
468 	void *addr_buf;
469 	struct sockaddr *sa_addr;
470 	struct sctp_af *af;
471 
472 	SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
473 			  sk, addrs, addrcnt);
474 
475 	addr_buf = addrs;
476 	for (cnt = 0; cnt < addrcnt; cnt++) {
477 		/* The list may contain either IPv4 or IPv6 address;
478 		 * determine the address length for walking thru the list.
479 		 */
480 		sa_addr = addr_buf;
481 		af = sctp_get_af_specific(sa_addr->sa_family);
482 		if (!af) {
483 			retval = -EINVAL;
484 			goto err_bindx_add;
485 		}
486 
487 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
488 				      af->sockaddr_len);
489 
490 		addr_buf += af->sockaddr_len;
491 
492 err_bindx_add:
493 		if (retval < 0) {
494 			/* Failed. Cleanup the ones that have been added */
495 			if (cnt > 0)
496 				sctp_bindx_rem(sk, addrs, cnt);
497 			return retval;
498 		}
499 	}
500 
501 	return retval;
502 }
503 
504 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
505  * associations that are part of the endpoint indicating that a list of local
506  * addresses are added to the endpoint.
507  *
508  * If any of the addresses is already in the bind address list of the
509  * association, we do not send the chunk for that association.  But it will not
510  * affect other associations.
511  *
512  * Only sctp_setsockopt_bindx() is supposed to call this function.
513  */
514 static int sctp_send_asconf_add_ip(struct sock		*sk,
515 				   struct sockaddr	*addrs,
516 				   int 			addrcnt)
517 {
518 	struct sctp_sock		*sp;
519 	struct sctp_endpoint		*ep;
520 	struct sctp_association		*asoc;
521 	struct sctp_bind_addr		*bp;
522 	struct sctp_chunk		*chunk;
523 	struct sctp_sockaddr_entry	*laddr;
524 	union sctp_addr			*addr;
525 	union sctp_addr			saveaddr;
526 	void				*addr_buf;
527 	struct sctp_af			*af;
528 	struct list_head		*p;
529 	int 				i;
530 	int 				retval = 0;
531 
532 	if (!sctp_addip_enable)
533 		return retval;
534 
535 	sp = sctp_sk(sk);
536 	ep = sp->ep;
537 
538 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
539 			  __func__, sk, addrs, addrcnt);
540 
541 	list_for_each_entry(asoc, &ep->asocs, asocs) {
542 
543 		if (!asoc->peer.asconf_capable)
544 			continue;
545 
546 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
547 			continue;
548 
549 		if (!sctp_state(asoc, ESTABLISHED))
550 			continue;
551 
552 		/* Check if any address in the packed array of addresses is
553 		 * in the bind address list of the association. If so,
554 		 * do not send the asconf chunk to its peer, but continue with
555 		 * other associations.
556 		 */
557 		addr_buf = addrs;
558 		for (i = 0; i < addrcnt; i++) {
559 			addr = addr_buf;
560 			af = sctp_get_af_specific(addr->v4.sin_family);
561 			if (!af) {
562 				retval = -EINVAL;
563 				goto out;
564 			}
565 
566 			if (sctp_assoc_lookup_laddr(asoc, addr))
567 				break;
568 
569 			addr_buf += af->sockaddr_len;
570 		}
571 		if (i < addrcnt)
572 			continue;
573 
574 		/* Use the first valid address in bind addr list of
575 		 * association as Address Parameter of ASCONF CHUNK.
576 		 */
577 		bp = &asoc->base.bind_addr;
578 		p = bp->address_list.next;
579 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
580 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
581 						   addrcnt, SCTP_PARAM_ADD_IP);
582 		if (!chunk) {
583 			retval = -ENOMEM;
584 			goto out;
585 		}
586 
587 		/* Add the new addresses to the bind address list with
588 		 * use_as_src set to 0.
589 		 */
590 		addr_buf = addrs;
591 		for (i = 0; i < addrcnt; i++) {
592 			addr = addr_buf;
593 			af = sctp_get_af_specific(addr->v4.sin_family);
594 			memcpy(&saveaddr, addr, af->sockaddr_len);
595 			retval = sctp_add_bind_addr(bp, &saveaddr,
596 						    SCTP_ADDR_NEW, GFP_ATOMIC);
597 			addr_buf += af->sockaddr_len;
598 		}
599 		if (asoc->src_out_of_asoc_ok) {
600 			struct sctp_transport *trans;
601 
602 			list_for_each_entry(trans,
603 			    &asoc->peer.transport_addr_list, transports) {
604 				/* Clear the source and route cache */
605 				dst_release(trans->dst);
606 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
607 				    2*asoc->pathmtu, 4380));
608 				trans->ssthresh = asoc->peer.i.a_rwnd;
609 				trans->rto = asoc->rto_initial;
610 				trans->rtt = trans->srtt = trans->rttvar = 0;
611 				sctp_transport_route(trans, NULL,
612 				    sctp_sk(asoc->base.sk));
613 			}
614 		}
615 		retval = sctp_send_asconf(asoc, chunk);
616 	}
617 
618 out:
619 	return retval;
620 }
621 
622 /* Remove a list of addresses from bind addresses list.  Do not remove the
623  * last address.
624  *
625  * Basically run through each address specified in the addrs/addrcnt
626  * array/length pair, determine if it is IPv6 or IPv4 and call
627  * sctp_del_bind() on it.
628  *
629  * If any of them fails, then the operation will be reversed and the
630  * ones that were removed will be added back.
631  *
632  * At least one address has to be left; if only one address is
633  * available, the operation will return -EBUSY.
634  *
635  * Only sctp_setsockopt_bindx() is supposed to call this function.
636  */
637 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
638 {
639 	struct sctp_sock *sp = sctp_sk(sk);
640 	struct sctp_endpoint *ep = sp->ep;
641 	int cnt;
642 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
643 	int retval = 0;
644 	void *addr_buf;
645 	union sctp_addr *sa_addr;
646 	struct sctp_af *af;
647 
648 	SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
649 			  sk, addrs, addrcnt);
650 
651 	addr_buf = addrs;
652 	for (cnt = 0; cnt < addrcnt; cnt++) {
653 		/* If the bind address list is empty or if there is only one
654 		 * bind address, there is nothing more to be removed (we need
655 		 * at least one address here).
656 		 */
657 		if (list_empty(&bp->address_list) ||
658 		    (sctp_list_single_entry(&bp->address_list))) {
659 			retval = -EBUSY;
660 			goto err_bindx_rem;
661 		}
662 
663 		sa_addr = addr_buf;
664 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
665 		if (!af) {
666 			retval = -EINVAL;
667 			goto err_bindx_rem;
668 		}
669 
670 		if (!af->addr_valid(sa_addr, sp, NULL)) {
671 			retval = -EADDRNOTAVAIL;
672 			goto err_bindx_rem;
673 		}
674 
675 		if (sa_addr->v4.sin_port &&
676 		    sa_addr->v4.sin_port != htons(bp->port)) {
677 			retval = -EINVAL;
678 			goto err_bindx_rem;
679 		}
680 
681 		if (!sa_addr->v4.sin_port)
682 			sa_addr->v4.sin_port = htons(bp->port);
683 
684 		/* FIXME - There is probably a need to check if sk->sk_saddr and
685 		 * sk->sk_rcv_addr are currently set to one of the addresses to
686 		 * be removed. This is something which needs to be looked into
687 		 * when we are fixing the outstanding issues with multi-homing
688 		 * socket routing and failover schemes. Refer to comments in
689 		 * sctp_do_bind(). -daisy
690 		 */
691 		retval = sctp_del_bind_addr(bp, sa_addr);
692 
693 		addr_buf += af->sockaddr_len;
694 err_bindx_rem:
695 		if (retval < 0) {
696 			/* Failed. Add the ones that has been removed back */
697 			if (cnt > 0)
698 				sctp_bindx_add(sk, addrs, cnt);
699 			return retval;
700 		}
701 	}
702 
703 	return retval;
704 }
705 
706 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
707  * the associations that are part of the endpoint indicating that a list of
708  * local addresses are removed from the endpoint.
709  *
710  * If any of the addresses is already in the bind address list of the
711  * association, we do not send the chunk for that association.  But it will not
712  * affect other associations.
713  *
714  * Only sctp_setsockopt_bindx() is supposed to call this function.
715  */
716 static int sctp_send_asconf_del_ip(struct sock		*sk,
717 				   struct sockaddr	*addrs,
718 				   int			addrcnt)
719 {
720 	struct sctp_sock	*sp;
721 	struct sctp_endpoint	*ep;
722 	struct sctp_association	*asoc;
723 	struct sctp_transport	*transport;
724 	struct sctp_bind_addr	*bp;
725 	struct sctp_chunk	*chunk;
726 	union sctp_addr		*laddr;
727 	void			*addr_buf;
728 	struct sctp_af		*af;
729 	struct sctp_sockaddr_entry *saddr;
730 	int 			i;
731 	int 			retval = 0;
732 	int			stored = 0;
733 
734 	chunk = NULL;
735 	if (!sctp_addip_enable)
736 		return retval;
737 
738 	sp = sctp_sk(sk);
739 	ep = sp->ep;
740 
741 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
742 			  __func__, sk, addrs, addrcnt);
743 
744 	list_for_each_entry(asoc, &ep->asocs, asocs) {
745 
746 		if (!asoc->peer.asconf_capable)
747 			continue;
748 
749 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
750 			continue;
751 
752 		if (!sctp_state(asoc, ESTABLISHED))
753 			continue;
754 
755 		/* Check if any address in the packed array of addresses is
756 		 * not present in the bind address list of the association.
757 		 * If so, do not send the asconf chunk to its peer, but
758 		 * continue with other associations.
759 		 */
760 		addr_buf = addrs;
761 		for (i = 0; i < addrcnt; i++) {
762 			laddr = addr_buf;
763 			af = sctp_get_af_specific(laddr->v4.sin_family);
764 			if (!af) {
765 				retval = -EINVAL;
766 				goto out;
767 			}
768 
769 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
770 				break;
771 
772 			addr_buf += af->sockaddr_len;
773 		}
774 		if (i < addrcnt)
775 			continue;
776 
777 		/* Find one address in the association's bind address list
778 		 * that is not in the packed array of addresses. This is to
779 		 * make sure that we do not delete all the addresses in the
780 		 * association.
781 		 */
782 		bp = &asoc->base.bind_addr;
783 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
784 					       addrcnt, sp);
785 		if ((laddr == NULL) && (addrcnt == 1)) {
786 			if (asoc->asconf_addr_del_pending)
787 				continue;
788 			asoc->asconf_addr_del_pending =
789 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
790 			if (asoc->asconf_addr_del_pending == NULL) {
791 				retval = -ENOMEM;
792 				goto out;
793 			}
794 			asoc->asconf_addr_del_pending->sa.sa_family =
795 				    addrs->sa_family;
796 			asoc->asconf_addr_del_pending->v4.sin_port =
797 				    htons(bp->port);
798 			if (addrs->sa_family == AF_INET) {
799 				struct sockaddr_in *sin;
800 
801 				sin = (struct sockaddr_in *)addrs;
802 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
803 			} else if (addrs->sa_family == AF_INET6) {
804 				struct sockaddr_in6 *sin6;
805 
806 				sin6 = (struct sockaddr_in6 *)addrs;
807 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
808 			}
809 			SCTP_DEBUG_PRINTK_IPADDR("send_asconf_del_ip: keep the last address asoc: %p ",
810 			    " at %p\n", asoc, asoc->asconf_addr_del_pending,
811 			    asoc->asconf_addr_del_pending);
812 			asoc->src_out_of_asoc_ok = 1;
813 			stored = 1;
814 			goto skip_mkasconf;
815 		}
816 
817 		/* We do not need RCU protection throughout this loop
818 		 * because this is done under a socket lock from the
819 		 * setsockopt call.
820 		 */
821 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
822 						   SCTP_PARAM_DEL_IP);
823 		if (!chunk) {
824 			retval = -ENOMEM;
825 			goto out;
826 		}
827 
828 skip_mkasconf:
829 		/* Reset use_as_src flag for the addresses in the bind address
830 		 * list that are to be deleted.
831 		 */
832 		addr_buf = addrs;
833 		for (i = 0; i < addrcnt; i++) {
834 			laddr = addr_buf;
835 			af = sctp_get_af_specific(laddr->v4.sin_family);
836 			list_for_each_entry(saddr, &bp->address_list, list) {
837 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
838 					saddr->state = SCTP_ADDR_DEL;
839 			}
840 			addr_buf += af->sockaddr_len;
841 		}
842 
843 		/* Update the route and saddr entries for all the transports
844 		 * as some of the addresses in the bind address list are
845 		 * about to be deleted and cannot be used as source addresses.
846 		 */
847 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
848 					transports) {
849 			dst_release(transport->dst);
850 			sctp_transport_route(transport, NULL,
851 					     sctp_sk(asoc->base.sk));
852 		}
853 
854 		if (stored)
855 			/* We don't need to transmit ASCONF */
856 			continue;
857 		retval = sctp_send_asconf(asoc, chunk);
858 	}
859 out:
860 	return retval;
861 }
862 
863 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
864 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
865 {
866 	struct sock *sk = sctp_opt2sk(sp);
867 	union sctp_addr *addr;
868 	struct sctp_af *af;
869 
870 	/* It is safe to write port space in caller. */
871 	addr = &addrw->a;
872 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
873 	af = sctp_get_af_specific(addr->sa.sa_family);
874 	if (!af)
875 		return -EINVAL;
876 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
877 		return -EINVAL;
878 
879 	if (addrw->state == SCTP_ADDR_NEW)
880 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
881 	else
882 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
883 }
884 
885 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
886  *
887  * API 8.1
888  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
889  *                int flags);
890  *
891  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
892  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
893  * or IPv6 addresses.
894  *
895  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
896  * Section 3.1.2 for this usage.
897  *
898  * addrs is a pointer to an array of one or more socket addresses. Each
899  * address is contained in its appropriate structure (i.e. struct
900  * sockaddr_in or struct sockaddr_in6) the family of the address type
901  * must be used to distinguish the address length (note that this
902  * representation is termed a "packed array" of addresses). The caller
903  * specifies the number of addresses in the array with addrcnt.
904  *
905  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
906  * -1, and sets errno to the appropriate error code.
907  *
908  * For SCTP, the port given in each socket address must be the same, or
909  * sctp_bindx() will fail, setting errno to EINVAL.
910  *
911  * The flags parameter is formed from the bitwise OR of zero or more of
912  * the following currently defined flags:
913  *
914  * SCTP_BINDX_ADD_ADDR
915  *
916  * SCTP_BINDX_REM_ADDR
917  *
918  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
919  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
920  * addresses from the association. The two flags are mutually exclusive;
921  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
922  * not remove all addresses from an association; sctp_bindx() will
923  * reject such an attempt with EINVAL.
924  *
925  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
926  * additional addresses with an endpoint after calling bind().  Or use
927  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
928  * socket is associated with so that no new association accepted will be
929  * associated with those addresses. If the endpoint supports dynamic
930  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
931  * endpoint to send the appropriate message to the peer to change the
932  * peers address lists.
933  *
934  * Adding and removing addresses from a connected association is
935  * optional functionality. Implementations that do not support this
936  * functionality should return EOPNOTSUPP.
937  *
938  * Basically do nothing but copying the addresses from user to kernel
939  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
940  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
941  * from userspace.
942  *
943  * We don't use copy_from_user() for optimization: we first do the
944  * sanity checks (buffer size -fast- and access check-healthy
945  * pointer); if all of those succeed, then we can alloc the memory
946  * (expensive operation) needed to copy the data to kernel. Then we do
947  * the copying without checking the user space area
948  * (__copy_from_user()).
949  *
950  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
951  * it.
952  *
953  * sk        The sk of the socket
954  * addrs     The pointer to the addresses in user land
955  * addrssize Size of the addrs buffer
956  * op        Operation to perform (add or remove, see the flags of
957  *           sctp_bindx)
958  *
959  * Returns 0 if ok, <0 errno code on error.
960  */
961 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
962 				      struct sockaddr __user *addrs,
963 				      int addrs_size, int op)
964 {
965 	struct sockaddr *kaddrs;
966 	int err;
967 	int addrcnt = 0;
968 	int walk_size = 0;
969 	struct sockaddr *sa_addr;
970 	void *addr_buf;
971 	struct sctp_af *af;
972 
973 	SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
974 			  " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
975 
976 	if (unlikely(addrs_size <= 0))
977 		return -EINVAL;
978 
979 	/* Check the user passed a healthy pointer.  */
980 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
981 		return -EFAULT;
982 
983 	/* Alloc space for the address array in kernel memory.  */
984 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
985 	if (unlikely(!kaddrs))
986 		return -ENOMEM;
987 
988 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
989 		kfree(kaddrs);
990 		return -EFAULT;
991 	}
992 
993 	/* Walk through the addrs buffer and count the number of addresses. */
994 	addr_buf = kaddrs;
995 	while (walk_size < addrs_size) {
996 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
997 			kfree(kaddrs);
998 			return -EINVAL;
999 		}
1000 
1001 		sa_addr = addr_buf;
1002 		af = sctp_get_af_specific(sa_addr->sa_family);
1003 
1004 		/* If the address family is not supported or if this address
1005 		 * causes the address buffer to overflow return EINVAL.
1006 		 */
1007 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1008 			kfree(kaddrs);
1009 			return -EINVAL;
1010 		}
1011 		addrcnt++;
1012 		addr_buf += af->sockaddr_len;
1013 		walk_size += af->sockaddr_len;
1014 	}
1015 
1016 	/* Do the work. */
1017 	switch (op) {
1018 	case SCTP_BINDX_ADD_ADDR:
1019 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1020 		if (err)
1021 			goto out;
1022 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1023 		break;
1024 
1025 	case SCTP_BINDX_REM_ADDR:
1026 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1027 		if (err)
1028 			goto out;
1029 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1030 		break;
1031 
1032 	default:
1033 		err = -EINVAL;
1034 		break;
1035 	}
1036 
1037 out:
1038 	kfree(kaddrs);
1039 
1040 	return err;
1041 }
1042 
1043 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1044  *
1045  * Common routine for handling connect() and sctp_connectx().
1046  * Connect will come in with just a single address.
1047  */
1048 static int __sctp_connect(struct sock* sk,
1049 			  struct sockaddr *kaddrs,
1050 			  int addrs_size,
1051 			  sctp_assoc_t *assoc_id)
1052 {
1053 	struct sctp_sock *sp;
1054 	struct sctp_endpoint *ep;
1055 	struct sctp_association *asoc = NULL;
1056 	struct sctp_association *asoc2;
1057 	struct sctp_transport *transport;
1058 	union sctp_addr to;
1059 	struct sctp_af *af;
1060 	sctp_scope_t scope;
1061 	long timeo;
1062 	int err = 0;
1063 	int addrcnt = 0;
1064 	int walk_size = 0;
1065 	union sctp_addr *sa_addr = NULL;
1066 	void *addr_buf;
1067 	unsigned short port;
1068 	unsigned int f_flags = 0;
1069 
1070 	sp = sctp_sk(sk);
1071 	ep = sp->ep;
1072 
1073 	/* connect() cannot be done on a socket that is already in ESTABLISHED
1074 	 * state - UDP-style peeled off socket or a TCP-style socket that
1075 	 * is already connected.
1076 	 * It cannot be done even on a TCP-style listening socket.
1077 	 */
1078 	if (sctp_sstate(sk, ESTABLISHED) ||
1079 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1080 		err = -EISCONN;
1081 		goto out_free;
1082 	}
1083 
1084 	/* Walk through the addrs buffer and count the number of addresses. */
1085 	addr_buf = kaddrs;
1086 	while (walk_size < addrs_size) {
1087 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1088 			err = -EINVAL;
1089 			goto out_free;
1090 		}
1091 
1092 		sa_addr = addr_buf;
1093 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1094 
1095 		/* If the address family is not supported or if this address
1096 		 * causes the address buffer to overflow return EINVAL.
1097 		 */
1098 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1099 			err = -EINVAL;
1100 			goto out_free;
1101 		}
1102 
1103 		port = ntohs(sa_addr->v4.sin_port);
1104 
1105 		/* Save current address so we can work with it */
1106 		memcpy(&to, sa_addr, af->sockaddr_len);
1107 
1108 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1109 		if (err)
1110 			goto out_free;
1111 
1112 		/* Make sure the destination port is correctly set
1113 		 * in all addresses.
1114 		 */
1115 		if (asoc && asoc->peer.port && asoc->peer.port != port)
1116 			goto out_free;
1117 
1118 
1119 		/* Check if there already is a matching association on the
1120 		 * endpoint (other than the one created here).
1121 		 */
1122 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1123 		if (asoc2 && asoc2 != asoc) {
1124 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1125 				err = -EISCONN;
1126 			else
1127 				err = -EALREADY;
1128 			goto out_free;
1129 		}
1130 
1131 		/* If we could not find a matching association on the endpoint,
1132 		 * make sure that there is no peeled-off association matching
1133 		 * the peer address even on another socket.
1134 		 */
1135 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1136 			err = -EADDRNOTAVAIL;
1137 			goto out_free;
1138 		}
1139 
1140 		if (!asoc) {
1141 			/* If a bind() or sctp_bindx() is not called prior to
1142 			 * an sctp_connectx() call, the system picks an
1143 			 * ephemeral port and will choose an address set
1144 			 * equivalent to binding with a wildcard address.
1145 			 */
1146 			if (!ep->base.bind_addr.port) {
1147 				if (sctp_autobind(sk)) {
1148 					err = -EAGAIN;
1149 					goto out_free;
1150 				}
1151 			} else {
1152 				/*
1153 				 * If an unprivileged user inherits a 1-many
1154 				 * style socket with open associations on a
1155 				 * privileged port, it MAY be permitted to
1156 				 * accept new associations, but it SHOULD NOT
1157 				 * be permitted to open new associations.
1158 				 */
1159 				if (ep->base.bind_addr.port < PROT_SOCK &&
1160 				    !capable(CAP_NET_BIND_SERVICE)) {
1161 					err = -EACCES;
1162 					goto out_free;
1163 				}
1164 			}
1165 
1166 			scope = sctp_scope(&to);
1167 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1168 			if (!asoc) {
1169 				err = -ENOMEM;
1170 				goto out_free;
1171 			}
1172 
1173 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1174 							      GFP_KERNEL);
1175 			if (err < 0) {
1176 				goto out_free;
1177 			}
1178 
1179 		}
1180 
1181 		/* Prime the peer's transport structures.  */
1182 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1183 						SCTP_UNKNOWN);
1184 		if (!transport) {
1185 			err = -ENOMEM;
1186 			goto out_free;
1187 		}
1188 
1189 		addrcnt++;
1190 		addr_buf += af->sockaddr_len;
1191 		walk_size += af->sockaddr_len;
1192 	}
1193 
1194 	/* In case the user of sctp_connectx() wants an association
1195 	 * id back, assign one now.
1196 	 */
1197 	if (assoc_id) {
1198 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1199 		if (err < 0)
1200 			goto out_free;
1201 	}
1202 
1203 	err = sctp_primitive_ASSOCIATE(asoc, NULL);
1204 	if (err < 0) {
1205 		goto out_free;
1206 	}
1207 
1208 	/* Initialize sk's dport and daddr for getpeername() */
1209 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1210 	af = sctp_get_af_specific(sa_addr->sa.sa_family);
1211 	af->to_sk_daddr(sa_addr, sk);
1212 	sk->sk_err = 0;
1213 
1214 	/* in-kernel sockets don't generally have a file allocated to them
1215 	 * if all they do is call sock_create_kern().
1216 	 */
1217 	if (sk->sk_socket->file)
1218 		f_flags = sk->sk_socket->file->f_flags;
1219 
1220 	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1221 
1222 	err = sctp_wait_for_connect(asoc, &timeo);
1223 	if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1224 		*assoc_id = asoc->assoc_id;
1225 
1226 	/* Don't free association on exit. */
1227 	asoc = NULL;
1228 
1229 out_free:
1230 
1231 	SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1232 			  " kaddrs: %p err: %d\n",
1233 			  asoc, kaddrs, err);
1234 	if (asoc) {
1235 		/* sctp_primitive_ASSOCIATE may have added this association
1236 		 * To the hash table, try to unhash it, just in case, its a noop
1237 		 * if it wasn't hashed so we're safe
1238 		 */
1239 		sctp_unhash_established(asoc);
1240 		sctp_association_free(asoc);
1241 	}
1242 	return err;
1243 }
1244 
1245 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1246  *
1247  * API 8.9
1248  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1249  * 			sctp_assoc_t *asoc);
1250  *
1251  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1252  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1253  * or IPv6 addresses.
1254  *
1255  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1256  * Section 3.1.2 for this usage.
1257  *
1258  * addrs is a pointer to an array of one or more socket addresses. Each
1259  * address is contained in its appropriate structure (i.e. struct
1260  * sockaddr_in or struct sockaddr_in6) the family of the address type
1261  * must be used to distengish the address length (note that this
1262  * representation is termed a "packed array" of addresses). The caller
1263  * specifies the number of addresses in the array with addrcnt.
1264  *
1265  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1266  * the association id of the new association.  On failure, sctp_connectx()
1267  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1268  * is not touched by the kernel.
1269  *
1270  * For SCTP, the port given in each socket address must be the same, or
1271  * sctp_connectx() will fail, setting errno to EINVAL.
1272  *
1273  * An application can use sctp_connectx to initiate an association with
1274  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1275  * allows a caller to specify multiple addresses at which a peer can be
1276  * reached.  The way the SCTP stack uses the list of addresses to set up
1277  * the association is implementation dependent.  This function only
1278  * specifies that the stack will try to make use of all the addresses in
1279  * the list when needed.
1280  *
1281  * Note that the list of addresses passed in is only used for setting up
1282  * the association.  It does not necessarily equal the set of addresses
1283  * the peer uses for the resulting association.  If the caller wants to
1284  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1285  * retrieve them after the association has been set up.
1286  *
1287  * Basically do nothing but copying the addresses from user to kernel
1288  * land and invoking either sctp_connectx(). This is used for tunneling
1289  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1290  *
1291  * We don't use copy_from_user() for optimization: we first do the
1292  * sanity checks (buffer size -fast- and access check-healthy
1293  * pointer); if all of those succeed, then we can alloc the memory
1294  * (expensive operation) needed to copy the data to kernel. Then we do
1295  * the copying without checking the user space area
1296  * (__copy_from_user()).
1297  *
1298  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1299  * it.
1300  *
1301  * sk        The sk of the socket
1302  * addrs     The pointer to the addresses in user land
1303  * addrssize Size of the addrs buffer
1304  *
1305  * Returns >=0 if ok, <0 errno code on error.
1306  */
1307 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk,
1308 				      struct sockaddr __user *addrs,
1309 				      int addrs_size,
1310 				      sctp_assoc_t *assoc_id)
1311 {
1312 	int err = 0;
1313 	struct sockaddr *kaddrs;
1314 
1315 	SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1316 			  __func__, sk, addrs, addrs_size);
1317 
1318 	if (unlikely(addrs_size <= 0))
1319 		return -EINVAL;
1320 
1321 	/* Check the user passed a healthy pointer.  */
1322 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1323 		return -EFAULT;
1324 
1325 	/* Alloc space for the address array in kernel memory.  */
1326 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1327 	if (unlikely(!kaddrs))
1328 		return -ENOMEM;
1329 
1330 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1331 		err = -EFAULT;
1332 	} else {
1333 		err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1334 	}
1335 
1336 	kfree(kaddrs);
1337 
1338 	return err;
1339 }
1340 
1341 /*
1342  * This is an older interface.  It's kept for backward compatibility
1343  * to the option that doesn't provide association id.
1344  */
1345 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk,
1346 				      struct sockaddr __user *addrs,
1347 				      int addrs_size)
1348 {
1349 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1350 }
1351 
1352 /*
1353  * New interface for the API.  The since the API is done with a socket
1354  * option, to make it simple we feed back the association id is as a return
1355  * indication to the call.  Error is always negative and association id is
1356  * always positive.
1357  */
1358 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1359 				      struct sockaddr __user *addrs,
1360 				      int addrs_size)
1361 {
1362 	sctp_assoc_t assoc_id = 0;
1363 	int err = 0;
1364 
1365 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1366 
1367 	if (err)
1368 		return err;
1369 	else
1370 		return assoc_id;
1371 }
1372 
1373 /*
1374  * New (hopefully final) interface for the API.
1375  * We use the sctp_getaddrs_old structure so that use-space library
1376  * can avoid any unnecessary allocations.   The only defferent part
1377  * is that we store the actual length of the address buffer into the
1378  * addrs_num structure member.  That way we can re-use the existing
1379  * code.
1380  */
1381 SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len,
1382 					char __user *optval,
1383 					int __user *optlen)
1384 {
1385 	struct sctp_getaddrs_old param;
1386 	sctp_assoc_t assoc_id = 0;
1387 	int err = 0;
1388 
1389 	if (len < sizeof(param))
1390 		return -EINVAL;
1391 
1392 	if (copy_from_user(&param, optval, sizeof(param)))
1393 		return -EFAULT;
1394 
1395 	err = __sctp_setsockopt_connectx(sk,
1396 			(struct sockaddr __user *)param.addrs,
1397 			param.addr_num, &assoc_id);
1398 
1399 	if (err == 0 || err == -EINPROGRESS) {
1400 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1401 			return -EFAULT;
1402 		if (put_user(sizeof(assoc_id), optlen))
1403 			return -EFAULT;
1404 	}
1405 
1406 	return err;
1407 }
1408 
1409 /* API 3.1.4 close() - UDP Style Syntax
1410  * Applications use close() to perform graceful shutdown (as described in
1411  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1412  * by a UDP-style socket.
1413  *
1414  * The syntax is
1415  *
1416  *   ret = close(int sd);
1417  *
1418  *   sd      - the socket descriptor of the associations to be closed.
1419  *
1420  * To gracefully shutdown a specific association represented by the
1421  * UDP-style socket, an application should use the sendmsg() call,
1422  * passing no user data, but including the appropriate flag in the
1423  * ancillary data (see Section xxxx).
1424  *
1425  * If sd in the close() call is a branched-off socket representing only
1426  * one association, the shutdown is performed on that association only.
1427  *
1428  * 4.1.6 close() - TCP Style Syntax
1429  *
1430  * Applications use close() to gracefully close down an association.
1431  *
1432  * The syntax is:
1433  *
1434  *    int close(int sd);
1435  *
1436  *      sd      - the socket descriptor of the association to be closed.
1437  *
1438  * After an application calls close() on a socket descriptor, no further
1439  * socket operations will succeed on that descriptor.
1440  *
1441  * API 7.1.4 SO_LINGER
1442  *
1443  * An application using the TCP-style socket can use this option to
1444  * perform the SCTP ABORT primitive.  The linger option structure is:
1445  *
1446  *  struct  linger {
1447  *     int     l_onoff;                // option on/off
1448  *     int     l_linger;               // linger time
1449  * };
1450  *
1451  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1452  * to 0, calling close() is the same as the ABORT primitive.  If the
1453  * value is set to a negative value, the setsockopt() call will return
1454  * an error.  If the value is set to a positive value linger_time, the
1455  * close() can be blocked for at most linger_time ms.  If the graceful
1456  * shutdown phase does not finish during this period, close() will
1457  * return but the graceful shutdown phase continues in the system.
1458  */
1459 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1460 {
1461 	struct sctp_endpoint *ep;
1462 	struct sctp_association *asoc;
1463 	struct list_head *pos, *temp;
1464 	unsigned int data_was_unread;
1465 
1466 	SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1467 
1468 	sctp_lock_sock(sk);
1469 	sk->sk_shutdown = SHUTDOWN_MASK;
1470 	sk->sk_state = SCTP_SS_CLOSING;
1471 
1472 	ep = sctp_sk(sk)->ep;
1473 
1474 	/* Clean up any skbs sitting on the receive queue.  */
1475 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1476 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1477 
1478 	/* Walk all associations on an endpoint.  */
1479 	list_for_each_safe(pos, temp, &ep->asocs) {
1480 		asoc = list_entry(pos, struct sctp_association, asocs);
1481 
1482 		if (sctp_style(sk, TCP)) {
1483 			/* A closed association can still be in the list if
1484 			 * it belongs to a TCP-style listening socket that is
1485 			 * not yet accepted. If so, free it. If not, send an
1486 			 * ABORT or SHUTDOWN based on the linger options.
1487 			 */
1488 			if (sctp_state(asoc, CLOSED)) {
1489 				sctp_unhash_established(asoc);
1490 				sctp_association_free(asoc);
1491 				continue;
1492 			}
1493 		}
1494 
1495 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1496 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1497 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1498 			struct sctp_chunk *chunk;
1499 
1500 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1501 			if (chunk)
1502 				sctp_primitive_ABORT(asoc, chunk);
1503 		} else
1504 			sctp_primitive_SHUTDOWN(asoc, NULL);
1505 	}
1506 
1507 	/* On a TCP-style socket, block for at most linger_time if set. */
1508 	if (sctp_style(sk, TCP) && timeout)
1509 		sctp_wait_for_close(sk, timeout);
1510 
1511 	/* This will run the backlog queue.  */
1512 	sctp_release_sock(sk);
1513 
1514 	/* Supposedly, no process has access to the socket, but
1515 	 * the net layers still may.
1516 	 */
1517 	sctp_local_bh_disable();
1518 	sctp_bh_lock_sock(sk);
1519 
1520 	/* Hold the sock, since sk_common_release() will put sock_put()
1521 	 * and we have just a little more cleanup.
1522 	 */
1523 	sock_hold(sk);
1524 	sk_common_release(sk);
1525 
1526 	sctp_bh_unlock_sock(sk);
1527 	sctp_local_bh_enable();
1528 
1529 	sock_put(sk);
1530 
1531 	SCTP_DBG_OBJCNT_DEC(sock);
1532 }
1533 
1534 /* Handle EPIPE error. */
1535 static int sctp_error(struct sock *sk, int flags, int err)
1536 {
1537 	if (err == -EPIPE)
1538 		err = sock_error(sk) ? : -EPIPE;
1539 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1540 		send_sig(SIGPIPE, current, 0);
1541 	return err;
1542 }
1543 
1544 /* API 3.1.3 sendmsg() - UDP Style Syntax
1545  *
1546  * An application uses sendmsg() and recvmsg() calls to transmit data to
1547  * and receive data from its peer.
1548  *
1549  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1550  *                  int flags);
1551  *
1552  *  socket  - the socket descriptor of the endpoint.
1553  *  message - pointer to the msghdr structure which contains a single
1554  *            user message and possibly some ancillary data.
1555  *
1556  *            See Section 5 for complete description of the data
1557  *            structures.
1558  *
1559  *  flags   - flags sent or received with the user message, see Section
1560  *            5 for complete description of the flags.
1561  *
1562  * Note:  This function could use a rewrite especially when explicit
1563  * connect support comes in.
1564  */
1565 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1566 
1567 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1568 
1569 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1570 			     struct msghdr *msg, size_t msg_len)
1571 {
1572 	struct sctp_sock *sp;
1573 	struct sctp_endpoint *ep;
1574 	struct sctp_association *new_asoc=NULL, *asoc=NULL;
1575 	struct sctp_transport *transport, *chunk_tp;
1576 	struct sctp_chunk *chunk;
1577 	union sctp_addr to;
1578 	struct sockaddr *msg_name = NULL;
1579 	struct sctp_sndrcvinfo default_sinfo;
1580 	struct sctp_sndrcvinfo *sinfo;
1581 	struct sctp_initmsg *sinit;
1582 	sctp_assoc_t associd = 0;
1583 	sctp_cmsgs_t cmsgs = { NULL };
1584 	int err;
1585 	sctp_scope_t scope;
1586 	long timeo;
1587 	__u16 sinfo_flags = 0;
1588 	struct sctp_datamsg *datamsg;
1589 	int msg_flags = msg->msg_flags;
1590 
1591 	SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1592 			  sk, msg, msg_len);
1593 
1594 	err = 0;
1595 	sp = sctp_sk(sk);
1596 	ep = sp->ep;
1597 
1598 	SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1599 
1600 	/* We cannot send a message over a TCP-style listening socket. */
1601 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1602 		err = -EPIPE;
1603 		goto out_nounlock;
1604 	}
1605 
1606 	/* Parse out the SCTP CMSGs.  */
1607 	err = sctp_msghdr_parse(msg, &cmsgs);
1608 
1609 	if (err) {
1610 		SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1611 		goto out_nounlock;
1612 	}
1613 
1614 	/* Fetch the destination address for this packet.  This
1615 	 * address only selects the association--it is not necessarily
1616 	 * the address we will send to.
1617 	 * For a peeled-off socket, msg_name is ignored.
1618 	 */
1619 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1620 		int msg_namelen = msg->msg_namelen;
1621 
1622 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1623 				       msg_namelen);
1624 		if (err)
1625 			return err;
1626 
1627 		if (msg_namelen > sizeof(to))
1628 			msg_namelen = sizeof(to);
1629 		memcpy(&to, msg->msg_name, msg_namelen);
1630 		msg_name = msg->msg_name;
1631 	}
1632 
1633 	sinfo = cmsgs.info;
1634 	sinit = cmsgs.init;
1635 
1636 	/* Did the user specify SNDRCVINFO?  */
1637 	if (sinfo) {
1638 		sinfo_flags = sinfo->sinfo_flags;
1639 		associd = sinfo->sinfo_assoc_id;
1640 	}
1641 
1642 	SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1643 			  msg_len, sinfo_flags);
1644 
1645 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1646 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1647 		err = -EINVAL;
1648 		goto out_nounlock;
1649 	}
1650 
1651 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1652 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1653 	 * If SCTP_ABORT is set, the message length could be non zero with
1654 	 * the msg_iov set to the user abort reason.
1655 	 */
1656 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1657 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1658 		err = -EINVAL;
1659 		goto out_nounlock;
1660 	}
1661 
1662 	/* If SCTP_ADDR_OVER is set, there must be an address
1663 	 * specified in msg_name.
1664 	 */
1665 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1666 		err = -EINVAL;
1667 		goto out_nounlock;
1668 	}
1669 
1670 	transport = NULL;
1671 
1672 	SCTP_DEBUG_PRINTK("About to look up association.\n");
1673 
1674 	sctp_lock_sock(sk);
1675 
1676 	/* If a msg_name has been specified, assume this is to be used.  */
1677 	if (msg_name) {
1678 		/* Look for a matching association on the endpoint. */
1679 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1680 		if (!asoc) {
1681 			/* If we could not find a matching association on the
1682 			 * endpoint, make sure that it is not a TCP-style
1683 			 * socket that already has an association or there is
1684 			 * no peeled-off association on another socket.
1685 			 */
1686 			if ((sctp_style(sk, TCP) &&
1687 			     sctp_sstate(sk, ESTABLISHED)) ||
1688 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1689 				err = -EADDRNOTAVAIL;
1690 				goto out_unlock;
1691 			}
1692 		}
1693 	} else {
1694 		asoc = sctp_id2assoc(sk, associd);
1695 		if (!asoc) {
1696 			err = -EPIPE;
1697 			goto out_unlock;
1698 		}
1699 	}
1700 
1701 	if (asoc) {
1702 		SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1703 
1704 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1705 		 * socket that has an association in CLOSED state. This can
1706 		 * happen when an accepted socket has an association that is
1707 		 * already CLOSED.
1708 		 */
1709 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1710 			err = -EPIPE;
1711 			goto out_unlock;
1712 		}
1713 
1714 		if (sinfo_flags & SCTP_EOF) {
1715 			SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1716 					  asoc);
1717 			sctp_primitive_SHUTDOWN(asoc, NULL);
1718 			err = 0;
1719 			goto out_unlock;
1720 		}
1721 		if (sinfo_flags & SCTP_ABORT) {
1722 
1723 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1724 			if (!chunk) {
1725 				err = -ENOMEM;
1726 				goto out_unlock;
1727 			}
1728 
1729 			SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1730 			sctp_primitive_ABORT(asoc, chunk);
1731 			err = 0;
1732 			goto out_unlock;
1733 		}
1734 	}
1735 
1736 	/* Do we need to create the association?  */
1737 	if (!asoc) {
1738 		SCTP_DEBUG_PRINTK("There is no association yet.\n");
1739 
1740 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1741 			err = -EINVAL;
1742 			goto out_unlock;
1743 		}
1744 
1745 		/* Check for invalid stream against the stream counts,
1746 		 * either the default or the user specified stream counts.
1747 		 */
1748 		if (sinfo) {
1749 			if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1750 				/* Check against the defaults. */
1751 				if (sinfo->sinfo_stream >=
1752 				    sp->initmsg.sinit_num_ostreams) {
1753 					err = -EINVAL;
1754 					goto out_unlock;
1755 				}
1756 			} else {
1757 				/* Check against the requested.  */
1758 				if (sinfo->sinfo_stream >=
1759 				    sinit->sinit_num_ostreams) {
1760 					err = -EINVAL;
1761 					goto out_unlock;
1762 				}
1763 			}
1764 		}
1765 
1766 		/*
1767 		 * API 3.1.2 bind() - UDP Style Syntax
1768 		 * If a bind() or sctp_bindx() is not called prior to a
1769 		 * sendmsg() call that initiates a new association, the
1770 		 * system picks an ephemeral port and will choose an address
1771 		 * set equivalent to binding with a wildcard address.
1772 		 */
1773 		if (!ep->base.bind_addr.port) {
1774 			if (sctp_autobind(sk)) {
1775 				err = -EAGAIN;
1776 				goto out_unlock;
1777 			}
1778 		} else {
1779 			/*
1780 			 * If an unprivileged user inherits a one-to-many
1781 			 * style socket with open associations on a privileged
1782 			 * port, it MAY be permitted to accept new associations,
1783 			 * but it SHOULD NOT be permitted to open new
1784 			 * associations.
1785 			 */
1786 			if (ep->base.bind_addr.port < PROT_SOCK &&
1787 			    !capable(CAP_NET_BIND_SERVICE)) {
1788 				err = -EACCES;
1789 				goto out_unlock;
1790 			}
1791 		}
1792 
1793 		scope = sctp_scope(&to);
1794 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1795 		if (!new_asoc) {
1796 			err = -ENOMEM;
1797 			goto out_unlock;
1798 		}
1799 		asoc = new_asoc;
1800 		err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1801 		if (err < 0) {
1802 			err = -ENOMEM;
1803 			goto out_free;
1804 		}
1805 
1806 		/* If the SCTP_INIT ancillary data is specified, set all
1807 		 * the association init values accordingly.
1808 		 */
1809 		if (sinit) {
1810 			if (sinit->sinit_num_ostreams) {
1811 				asoc->c.sinit_num_ostreams =
1812 					sinit->sinit_num_ostreams;
1813 			}
1814 			if (sinit->sinit_max_instreams) {
1815 				asoc->c.sinit_max_instreams =
1816 					sinit->sinit_max_instreams;
1817 			}
1818 			if (sinit->sinit_max_attempts) {
1819 				asoc->max_init_attempts
1820 					= sinit->sinit_max_attempts;
1821 			}
1822 			if (sinit->sinit_max_init_timeo) {
1823 				asoc->max_init_timeo =
1824 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1825 			}
1826 		}
1827 
1828 		/* Prime the peer's transport structures.  */
1829 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1830 		if (!transport) {
1831 			err = -ENOMEM;
1832 			goto out_free;
1833 		}
1834 	}
1835 
1836 	/* ASSERT: we have a valid association at this point.  */
1837 	SCTP_DEBUG_PRINTK("We have a valid association.\n");
1838 
1839 	if (!sinfo) {
1840 		/* If the user didn't specify SNDRCVINFO, make up one with
1841 		 * some defaults.
1842 		 */
1843 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1844 		default_sinfo.sinfo_stream = asoc->default_stream;
1845 		default_sinfo.sinfo_flags = asoc->default_flags;
1846 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1847 		default_sinfo.sinfo_context = asoc->default_context;
1848 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1849 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1850 		sinfo = &default_sinfo;
1851 	}
1852 
1853 	/* API 7.1.7, the sndbuf size per association bounds the
1854 	 * maximum size of data that can be sent in a single send call.
1855 	 */
1856 	if (msg_len > sk->sk_sndbuf) {
1857 		err = -EMSGSIZE;
1858 		goto out_free;
1859 	}
1860 
1861 	if (asoc->pmtu_pending)
1862 		sctp_assoc_pending_pmtu(asoc);
1863 
1864 	/* If fragmentation is disabled and the message length exceeds the
1865 	 * association fragmentation point, return EMSGSIZE.  The I-D
1866 	 * does not specify what this error is, but this looks like
1867 	 * a great fit.
1868 	 */
1869 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1870 		err = -EMSGSIZE;
1871 		goto out_free;
1872 	}
1873 
1874 	/* Check for invalid stream. */
1875 	if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1876 		err = -EINVAL;
1877 		goto out_free;
1878 	}
1879 
1880 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1881 	if (!sctp_wspace(asoc)) {
1882 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1883 		if (err)
1884 			goto out_free;
1885 	}
1886 
1887 	/* If an address is passed with the sendto/sendmsg call, it is used
1888 	 * to override the primary destination address in the TCP model, or
1889 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1890 	 */
1891 	if ((sctp_style(sk, TCP) && msg_name) ||
1892 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1893 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1894 		if (!chunk_tp) {
1895 			err = -EINVAL;
1896 			goto out_free;
1897 		}
1898 	} else
1899 		chunk_tp = NULL;
1900 
1901 	/* Auto-connect, if we aren't connected already. */
1902 	if (sctp_state(asoc, CLOSED)) {
1903 		err = sctp_primitive_ASSOCIATE(asoc, NULL);
1904 		if (err < 0)
1905 			goto out_free;
1906 		SCTP_DEBUG_PRINTK("We associated primitively.\n");
1907 	}
1908 
1909 	/* Break the message into multiple chunks of maximum size. */
1910 	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1911 	if (!datamsg) {
1912 		err = -ENOMEM;
1913 		goto out_free;
1914 	}
1915 
1916 	/* Now send the (possibly) fragmented message. */
1917 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1918 		sctp_chunk_hold(chunk);
1919 
1920 		/* Do accounting for the write space.  */
1921 		sctp_set_owner_w(chunk);
1922 
1923 		chunk->transport = chunk_tp;
1924 	}
1925 
1926 	/* Send it to the lower layers.  Note:  all chunks
1927 	 * must either fail or succeed.   The lower layer
1928 	 * works that way today.  Keep it that way or this
1929 	 * breaks.
1930 	 */
1931 	err = sctp_primitive_SEND(asoc, datamsg);
1932 	/* Did the lower layer accept the chunk? */
1933 	if (err)
1934 		sctp_datamsg_free(datamsg);
1935 	else
1936 		sctp_datamsg_put(datamsg);
1937 
1938 	SCTP_DEBUG_PRINTK("We sent primitively.\n");
1939 
1940 	if (err)
1941 		goto out_free;
1942 	else
1943 		err = msg_len;
1944 
1945 	/* If we are already past ASSOCIATE, the lower
1946 	 * layers are responsible for association cleanup.
1947 	 */
1948 	goto out_unlock;
1949 
1950 out_free:
1951 	if (new_asoc) {
1952 		sctp_unhash_established(asoc);
1953 		sctp_association_free(asoc);
1954 	}
1955 out_unlock:
1956 	sctp_release_sock(sk);
1957 
1958 out_nounlock:
1959 	return sctp_error(sk, msg_flags, err);
1960 
1961 #if 0
1962 do_sock_err:
1963 	if (msg_len)
1964 		err = msg_len;
1965 	else
1966 		err = sock_error(sk);
1967 	goto out;
1968 
1969 do_interrupted:
1970 	if (msg_len)
1971 		err = msg_len;
1972 	goto out;
1973 #endif /* 0 */
1974 }
1975 
1976 /* This is an extended version of skb_pull() that removes the data from the
1977  * start of a skb even when data is spread across the list of skb's in the
1978  * frag_list. len specifies the total amount of data that needs to be removed.
1979  * when 'len' bytes could be removed from the skb, it returns 0.
1980  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
1981  * could not be removed.
1982  */
1983 static int sctp_skb_pull(struct sk_buff *skb, int len)
1984 {
1985 	struct sk_buff *list;
1986 	int skb_len = skb_headlen(skb);
1987 	int rlen;
1988 
1989 	if (len <= skb_len) {
1990 		__skb_pull(skb, len);
1991 		return 0;
1992 	}
1993 	len -= skb_len;
1994 	__skb_pull(skb, skb_len);
1995 
1996 	skb_walk_frags(skb, list) {
1997 		rlen = sctp_skb_pull(list, len);
1998 		skb->len -= (len-rlen);
1999 		skb->data_len -= (len-rlen);
2000 
2001 		if (!rlen)
2002 			return 0;
2003 
2004 		len = rlen;
2005 	}
2006 
2007 	return len;
2008 }
2009 
2010 /* API 3.1.3  recvmsg() - UDP Style Syntax
2011  *
2012  *  ssize_t recvmsg(int socket, struct msghdr *message,
2013  *                    int flags);
2014  *
2015  *  socket  - the socket descriptor of the endpoint.
2016  *  message - pointer to the msghdr structure which contains a single
2017  *            user message and possibly some ancillary data.
2018  *
2019  *            See Section 5 for complete description of the data
2020  *            structures.
2021  *
2022  *  flags   - flags sent or received with the user message, see Section
2023  *            5 for complete description of the flags.
2024  */
2025 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
2026 
2027 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
2028 			     struct msghdr *msg, size_t len, int noblock,
2029 			     int flags, int *addr_len)
2030 {
2031 	struct sctp_ulpevent *event = NULL;
2032 	struct sctp_sock *sp = sctp_sk(sk);
2033 	struct sk_buff *skb;
2034 	int copied;
2035 	int err = 0;
2036 	int skb_len;
2037 
2038 	SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
2039 			  "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
2040 			  "len", len, "knoblauch", noblock,
2041 			  "flags", flags, "addr_len", addr_len);
2042 
2043 	sctp_lock_sock(sk);
2044 
2045 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2046 		err = -ENOTCONN;
2047 		goto out;
2048 	}
2049 
2050 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2051 	if (!skb)
2052 		goto out;
2053 
2054 	/* Get the total length of the skb including any skb's in the
2055 	 * frag_list.
2056 	 */
2057 	skb_len = skb->len;
2058 
2059 	copied = skb_len;
2060 	if (copied > len)
2061 		copied = len;
2062 
2063 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2064 
2065 	event = sctp_skb2event(skb);
2066 
2067 	if (err)
2068 		goto out_free;
2069 
2070 	sock_recv_ts_and_drops(msg, sk, skb);
2071 	if (sctp_ulpevent_is_notification(event)) {
2072 		msg->msg_flags |= MSG_NOTIFICATION;
2073 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2074 	} else {
2075 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2076 	}
2077 
2078 	/* Check if we allow SCTP_SNDRCVINFO. */
2079 	if (sp->subscribe.sctp_data_io_event)
2080 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2081 #if 0
2082 	/* FIXME: we should be calling IP/IPv6 layers.  */
2083 	if (sk->sk_protinfo.af_inet.cmsg_flags)
2084 		ip_cmsg_recv(msg, skb);
2085 #endif
2086 
2087 	err = copied;
2088 
2089 	/* If skb's length exceeds the user's buffer, update the skb and
2090 	 * push it back to the receive_queue so that the next call to
2091 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2092 	 */
2093 	if (skb_len > copied) {
2094 		msg->msg_flags &= ~MSG_EOR;
2095 		if (flags & MSG_PEEK)
2096 			goto out_free;
2097 		sctp_skb_pull(skb, copied);
2098 		skb_queue_head(&sk->sk_receive_queue, skb);
2099 
2100 		/* When only partial message is copied to the user, increase
2101 		 * rwnd by that amount. If all the data in the skb is read,
2102 		 * rwnd is updated when the event is freed.
2103 		 */
2104 		if (!sctp_ulpevent_is_notification(event))
2105 			sctp_assoc_rwnd_increase(event->asoc, copied);
2106 		goto out;
2107 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2108 		   (event->msg_flags & MSG_EOR))
2109 		msg->msg_flags |= MSG_EOR;
2110 	else
2111 		msg->msg_flags &= ~MSG_EOR;
2112 
2113 out_free:
2114 	if (flags & MSG_PEEK) {
2115 		/* Release the skb reference acquired after peeking the skb in
2116 		 * sctp_skb_recv_datagram().
2117 		 */
2118 		kfree_skb(skb);
2119 	} else {
2120 		/* Free the event which includes releasing the reference to
2121 		 * the owner of the skb, freeing the skb and updating the
2122 		 * rwnd.
2123 		 */
2124 		sctp_ulpevent_free(event);
2125 	}
2126 out:
2127 	sctp_release_sock(sk);
2128 	return err;
2129 }
2130 
2131 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2132  *
2133  * This option is a on/off flag.  If enabled no SCTP message
2134  * fragmentation will be performed.  Instead if a message being sent
2135  * exceeds the current PMTU size, the message will NOT be sent and
2136  * instead a error will be indicated to the user.
2137  */
2138 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2139 					     char __user *optval,
2140 					     unsigned int optlen)
2141 {
2142 	int val;
2143 
2144 	if (optlen < sizeof(int))
2145 		return -EINVAL;
2146 
2147 	if (get_user(val, (int __user *)optval))
2148 		return -EFAULT;
2149 
2150 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2151 
2152 	return 0;
2153 }
2154 
2155 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2156 				  unsigned int optlen)
2157 {
2158 	struct sctp_association *asoc;
2159 	struct sctp_ulpevent *event;
2160 
2161 	if (optlen > sizeof(struct sctp_event_subscribe))
2162 		return -EINVAL;
2163 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2164 		return -EFAULT;
2165 
2166 	/*
2167 	 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2168 	 * if there is no data to be sent or retransmit, the stack will
2169 	 * immediately send up this notification.
2170 	 */
2171 	if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2172 				       &sctp_sk(sk)->subscribe)) {
2173 		asoc = sctp_id2assoc(sk, 0);
2174 
2175 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2176 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2177 					GFP_ATOMIC);
2178 			if (!event)
2179 				return -ENOMEM;
2180 
2181 			sctp_ulpq_tail_event(&asoc->ulpq, event);
2182 		}
2183 	}
2184 
2185 	return 0;
2186 }
2187 
2188 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2189  *
2190  * This socket option is applicable to the UDP-style socket only.  When
2191  * set it will cause associations that are idle for more than the
2192  * specified number of seconds to automatically close.  An association
2193  * being idle is defined an association that has NOT sent or received
2194  * user data.  The special value of '0' indicates that no automatic
2195  * close of any associations should be performed.  The option expects an
2196  * integer defining the number of seconds of idle time before an
2197  * association is closed.
2198  */
2199 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2200 				     unsigned int optlen)
2201 {
2202 	struct sctp_sock *sp = sctp_sk(sk);
2203 
2204 	/* Applicable to UDP-style socket only */
2205 	if (sctp_style(sk, TCP))
2206 		return -EOPNOTSUPP;
2207 	if (optlen != sizeof(int))
2208 		return -EINVAL;
2209 	if (copy_from_user(&sp->autoclose, optval, optlen))
2210 		return -EFAULT;
2211 
2212 	return 0;
2213 }
2214 
2215 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2216  *
2217  * Applications can enable or disable heartbeats for any peer address of
2218  * an association, modify an address's heartbeat interval, force a
2219  * heartbeat to be sent immediately, and adjust the address's maximum
2220  * number of retransmissions sent before an address is considered
2221  * unreachable.  The following structure is used to access and modify an
2222  * address's parameters:
2223  *
2224  *  struct sctp_paddrparams {
2225  *     sctp_assoc_t            spp_assoc_id;
2226  *     struct sockaddr_storage spp_address;
2227  *     uint32_t                spp_hbinterval;
2228  *     uint16_t                spp_pathmaxrxt;
2229  *     uint32_t                spp_pathmtu;
2230  *     uint32_t                spp_sackdelay;
2231  *     uint32_t                spp_flags;
2232  * };
2233  *
2234  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2235  *                     application, and identifies the association for
2236  *                     this query.
2237  *   spp_address     - This specifies which address is of interest.
2238  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2239  *                     in milliseconds.  If a  value of zero
2240  *                     is present in this field then no changes are to
2241  *                     be made to this parameter.
2242  *   spp_pathmaxrxt  - This contains the maximum number of
2243  *                     retransmissions before this address shall be
2244  *                     considered unreachable. If a  value of zero
2245  *                     is present in this field then no changes are to
2246  *                     be made to this parameter.
2247  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2248  *                     specified here will be the "fixed" path mtu.
2249  *                     Note that if the spp_address field is empty
2250  *                     then all associations on this address will
2251  *                     have this fixed path mtu set upon them.
2252  *
2253  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2254  *                     the number of milliseconds that sacks will be delayed
2255  *                     for. This value will apply to all addresses of an
2256  *                     association if the spp_address field is empty. Note
2257  *                     also, that if delayed sack is enabled and this
2258  *                     value is set to 0, no change is made to the last
2259  *                     recorded delayed sack timer value.
2260  *
2261  *   spp_flags       - These flags are used to control various features
2262  *                     on an association. The flag field may contain
2263  *                     zero or more of the following options.
2264  *
2265  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2266  *                     specified address. Note that if the address
2267  *                     field is empty all addresses for the association
2268  *                     have heartbeats enabled upon them.
2269  *
2270  *                     SPP_HB_DISABLE - Disable heartbeats on the
2271  *                     speicifed address. Note that if the address
2272  *                     field is empty all addresses for the association
2273  *                     will have their heartbeats disabled. Note also
2274  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2275  *                     mutually exclusive, only one of these two should
2276  *                     be specified. Enabling both fields will have
2277  *                     undetermined results.
2278  *
2279  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2280  *                     to be made immediately.
2281  *
2282  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2283  *                     heartbeat delayis to be set to the value of 0
2284  *                     milliseconds.
2285  *
2286  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2287  *                     discovery upon the specified address. Note that
2288  *                     if the address feild is empty then all addresses
2289  *                     on the association are effected.
2290  *
2291  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2292  *                     discovery upon the specified address. Note that
2293  *                     if the address feild is empty then all addresses
2294  *                     on the association are effected. Not also that
2295  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2296  *                     exclusive. Enabling both will have undetermined
2297  *                     results.
2298  *
2299  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2300  *                     on delayed sack. The time specified in spp_sackdelay
2301  *                     is used to specify the sack delay for this address. Note
2302  *                     that if spp_address is empty then all addresses will
2303  *                     enable delayed sack and take on the sack delay
2304  *                     value specified in spp_sackdelay.
2305  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2306  *                     off delayed sack. If the spp_address field is blank then
2307  *                     delayed sack is disabled for the entire association. Note
2308  *                     also that this field is mutually exclusive to
2309  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2310  *                     results.
2311  */
2312 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2313 				       struct sctp_transport   *trans,
2314 				       struct sctp_association *asoc,
2315 				       struct sctp_sock        *sp,
2316 				       int                      hb_change,
2317 				       int                      pmtud_change,
2318 				       int                      sackdelay_change)
2319 {
2320 	int error;
2321 
2322 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2323 		error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2324 		if (error)
2325 			return error;
2326 	}
2327 
2328 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2329 	 * this field is ignored.  Note also that a value of zero indicates
2330 	 * the current setting should be left unchanged.
2331 	 */
2332 	if (params->spp_flags & SPP_HB_ENABLE) {
2333 
2334 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2335 		 * set.  This lets us use 0 value when this flag
2336 		 * is set.
2337 		 */
2338 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2339 			params->spp_hbinterval = 0;
2340 
2341 		if (params->spp_hbinterval ||
2342 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2343 			if (trans) {
2344 				trans->hbinterval =
2345 				    msecs_to_jiffies(params->spp_hbinterval);
2346 			} else if (asoc) {
2347 				asoc->hbinterval =
2348 				    msecs_to_jiffies(params->spp_hbinterval);
2349 			} else {
2350 				sp->hbinterval = params->spp_hbinterval;
2351 			}
2352 		}
2353 	}
2354 
2355 	if (hb_change) {
2356 		if (trans) {
2357 			trans->param_flags =
2358 				(trans->param_flags & ~SPP_HB) | hb_change;
2359 		} else if (asoc) {
2360 			asoc->param_flags =
2361 				(asoc->param_flags & ~SPP_HB) | hb_change;
2362 		} else {
2363 			sp->param_flags =
2364 				(sp->param_flags & ~SPP_HB) | hb_change;
2365 		}
2366 	}
2367 
2368 	/* When Path MTU discovery is disabled the value specified here will
2369 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2370 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2371 	 * effect).
2372 	 */
2373 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2374 		if (trans) {
2375 			trans->pathmtu = params->spp_pathmtu;
2376 			sctp_assoc_sync_pmtu(asoc);
2377 		} else if (asoc) {
2378 			asoc->pathmtu = params->spp_pathmtu;
2379 			sctp_frag_point(asoc, params->spp_pathmtu);
2380 		} else {
2381 			sp->pathmtu = params->spp_pathmtu;
2382 		}
2383 	}
2384 
2385 	if (pmtud_change) {
2386 		if (trans) {
2387 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2388 				(params->spp_flags & SPP_PMTUD_ENABLE);
2389 			trans->param_flags =
2390 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2391 			if (update) {
2392 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2393 				sctp_assoc_sync_pmtu(asoc);
2394 			}
2395 		} else if (asoc) {
2396 			asoc->param_flags =
2397 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2398 		} else {
2399 			sp->param_flags =
2400 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2401 		}
2402 	}
2403 
2404 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2405 	 * value of this field is ignored.  Note also that a value of zero
2406 	 * indicates the current setting should be left unchanged.
2407 	 */
2408 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2409 		if (trans) {
2410 			trans->sackdelay =
2411 				msecs_to_jiffies(params->spp_sackdelay);
2412 		} else if (asoc) {
2413 			asoc->sackdelay =
2414 				msecs_to_jiffies(params->spp_sackdelay);
2415 		} else {
2416 			sp->sackdelay = params->spp_sackdelay;
2417 		}
2418 	}
2419 
2420 	if (sackdelay_change) {
2421 		if (trans) {
2422 			trans->param_flags =
2423 				(trans->param_flags & ~SPP_SACKDELAY) |
2424 				sackdelay_change;
2425 		} else if (asoc) {
2426 			asoc->param_flags =
2427 				(asoc->param_flags & ~SPP_SACKDELAY) |
2428 				sackdelay_change;
2429 		} else {
2430 			sp->param_flags =
2431 				(sp->param_flags & ~SPP_SACKDELAY) |
2432 				sackdelay_change;
2433 		}
2434 	}
2435 
2436 	/* Note that a value of zero indicates the current setting should be
2437 	   left unchanged.
2438 	 */
2439 	if (params->spp_pathmaxrxt) {
2440 		if (trans) {
2441 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2442 		} else if (asoc) {
2443 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2444 		} else {
2445 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2446 		}
2447 	}
2448 
2449 	return 0;
2450 }
2451 
2452 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2453 					    char __user *optval,
2454 					    unsigned int optlen)
2455 {
2456 	struct sctp_paddrparams  params;
2457 	struct sctp_transport   *trans = NULL;
2458 	struct sctp_association *asoc = NULL;
2459 	struct sctp_sock        *sp = sctp_sk(sk);
2460 	int error;
2461 	int hb_change, pmtud_change, sackdelay_change;
2462 
2463 	if (optlen != sizeof(struct sctp_paddrparams))
2464 		return - EINVAL;
2465 
2466 	if (copy_from_user(&params, optval, optlen))
2467 		return -EFAULT;
2468 
2469 	/* Validate flags and value parameters. */
2470 	hb_change        = params.spp_flags & SPP_HB;
2471 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2472 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2473 
2474 	if (hb_change        == SPP_HB ||
2475 	    pmtud_change     == SPP_PMTUD ||
2476 	    sackdelay_change == SPP_SACKDELAY ||
2477 	    params.spp_sackdelay > 500 ||
2478 	    (params.spp_pathmtu &&
2479 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2480 		return -EINVAL;
2481 
2482 	/* If an address other than INADDR_ANY is specified, and
2483 	 * no transport is found, then the request is invalid.
2484 	 */
2485 	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
2486 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2487 					       params.spp_assoc_id);
2488 		if (!trans)
2489 			return -EINVAL;
2490 	}
2491 
2492 	/* Get association, if assoc_id != 0 and the socket is a one
2493 	 * to many style socket, and an association was not found, then
2494 	 * the id was invalid.
2495 	 */
2496 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2497 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2498 		return -EINVAL;
2499 
2500 	/* Heartbeat demand can only be sent on a transport or
2501 	 * association, but not a socket.
2502 	 */
2503 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2504 		return -EINVAL;
2505 
2506 	/* Process parameters. */
2507 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2508 					    hb_change, pmtud_change,
2509 					    sackdelay_change);
2510 
2511 	if (error)
2512 		return error;
2513 
2514 	/* If changes are for association, also apply parameters to each
2515 	 * transport.
2516 	 */
2517 	if (!trans && asoc) {
2518 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2519 				transports) {
2520 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2521 						    hb_change, pmtud_change,
2522 						    sackdelay_change);
2523 		}
2524 	}
2525 
2526 	return 0;
2527 }
2528 
2529 /*
2530  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2531  *
2532  * This option will effect the way delayed acks are performed.  This
2533  * option allows you to get or set the delayed ack time, in
2534  * milliseconds.  It also allows changing the delayed ack frequency.
2535  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2536  * the assoc_id is 0, then this sets or gets the endpoints default
2537  * values.  If the assoc_id field is non-zero, then the set or get
2538  * effects the specified association for the one to many model (the
2539  * assoc_id field is ignored by the one to one model).  Note that if
2540  * sack_delay or sack_freq are 0 when setting this option, then the
2541  * current values will remain unchanged.
2542  *
2543  * struct sctp_sack_info {
2544  *     sctp_assoc_t            sack_assoc_id;
2545  *     uint32_t                sack_delay;
2546  *     uint32_t                sack_freq;
2547  * };
2548  *
2549  * sack_assoc_id -  This parameter, indicates which association the user
2550  *    is performing an action upon.  Note that if this field's value is
2551  *    zero then the endpoints default value is changed (effecting future
2552  *    associations only).
2553  *
2554  * sack_delay -  This parameter contains the number of milliseconds that
2555  *    the user is requesting the delayed ACK timer be set to.  Note that
2556  *    this value is defined in the standard to be between 200 and 500
2557  *    milliseconds.
2558  *
2559  * sack_freq -  This parameter contains the number of packets that must
2560  *    be received before a sack is sent without waiting for the delay
2561  *    timer to expire.  The default value for this is 2, setting this
2562  *    value to 1 will disable the delayed sack algorithm.
2563  */
2564 
2565 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2566 				       char __user *optval, unsigned int optlen)
2567 {
2568 	struct sctp_sack_info    params;
2569 	struct sctp_transport   *trans = NULL;
2570 	struct sctp_association *asoc = NULL;
2571 	struct sctp_sock        *sp = sctp_sk(sk);
2572 
2573 	if (optlen == sizeof(struct sctp_sack_info)) {
2574 		if (copy_from_user(&params, optval, optlen))
2575 			return -EFAULT;
2576 
2577 		if (params.sack_delay == 0 && params.sack_freq == 0)
2578 			return 0;
2579 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2580 		pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
2581 		pr_warn("Use struct sctp_sack_info instead\n");
2582 		if (copy_from_user(&params, optval, optlen))
2583 			return -EFAULT;
2584 
2585 		if (params.sack_delay == 0)
2586 			params.sack_freq = 1;
2587 		else
2588 			params.sack_freq = 0;
2589 	} else
2590 		return - EINVAL;
2591 
2592 	/* Validate value parameter. */
2593 	if (params.sack_delay > 500)
2594 		return -EINVAL;
2595 
2596 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2597 	 * to many style socket, and an association was not found, then
2598 	 * the id was invalid.
2599 	 */
2600 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2601 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2602 		return -EINVAL;
2603 
2604 	if (params.sack_delay) {
2605 		if (asoc) {
2606 			asoc->sackdelay =
2607 				msecs_to_jiffies(params.sack_delay);
2608 			asoc->param_flags =
2609 				(asoc->param_flags & ~SPP_SACKDELAY) |
2610 				SPP_SACKDELAY_ENABLE;
2611 		} else {
2612 			sp->sackdelay = params.sack_delay;
2613 			sp->param_flags =
2614 				(sp->param_flags & ~SPP_SACKDELAY) |
2615 				SPP_SACKDELAY_ENABLE;
2616 		}
2617 	}
2618 
2619 	if (params.sack_freq == 1) {
2620 		if (asoc) {
2621 			asoc->param_flags =
2622 				(asoc->param_flags & ~SPP_SACKDELAY) |
2623 				SPP_SACKDELAY_DISABLE;
2624 		} else {
2625 			sp->param_flags =
2626 				(sp->param_flags & ~SPP_SACKDELAY) |
2627 				SPP_SACKDELAY_DISABLE;
2628 		}
2629 	} else if (params.sack_freq > 1) {
2630 		if (asoc) {
2631 			asoc->sackfreq = params.sack_freq;
2632 			asoc->param_flags =
2633 				(asoc->param_flags & ~SPP_SACKDELAY) |
2634 				SPP_SACKDELAY_ENABLE;
2635 		} else {
2636 			sp->sackfreq = params.sack_freq;
2637 			sp->param_flags =
2638 				(sp->param_flags & ~SPP_SACKDELAY) |
2639 				SPP_SACKDELAY_ENABLE;
2640 		}
2641 	}
2642 
2643 	/* If change is for association, also apply to each transport. */
2644 	if (asoc) {
2645 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2646 				transports) {
2647 			if (params.sack_delay) {
2648 				trans->sackdelay =
2649 					msecs_to_jiffies(params.sack_delay);
2650 				trans->param_flags =
2651 					(trans->param_flags & ~SPP_SACKDELAY) |
2652 					SPP_SACKDELAY_ENABLE;
2653 			}
2654 			if (params.sack_freq == 1) {
2655 				trans->param_flags =
2656 					(trans->param_flags & ~SPP_SACKDELAY) |
2657 					SPP_SACKDELAY_DISABLE;
2658 			} else if (params.sack_freq > 1) {
2659 				trans->sackfreq = params.sack_freq;
2660 				trans->param_flags =
2661 					(trans->param_flags & ~SPP_SACKDELAY) |
2662 					SPP_SACKDELAY_ENABLE;
2663 			}
2664 		}
2665 	}
2666 
2667 	return 0;
2668 }
2669 
2670 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2671  *
2672  * Applications can specify protocol parameters for the default association
2673  * initialization.  The option name argument to setsockopt() and getsockopt()
2674  * is SCTP_INITMSG.
2675  *
2676  * Setting initialization parameters is effective only on an unconnected
2677  * socket (for UDP-style sockets only future associations are effected
2678  * by the change).  With TCP-style sockets, this option is inherited by
2679  * sockets derived from a listener socket.
2680  */
2681 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2682 {
2683 	struct sctp_initmsg sinit;
2684 	struct sctp_sock *sp = sctp_sk(sk);
2685 
2686 	if (optlen != sizeof(struct sctp_initmsg))
2687 		return -EINVAL;
2688 	if (copy_from_user(&sinit, optval, optlen))
2689 		return -EFAULT;
2690 
2691 	if (sinit.sinit_num_ostreams)
2692 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2693 	if (sinit.sinit_max_instreams)
2694 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2695 	if (sinit.sinit_max_attempts)
2696 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2697 	if (sinit.sinit_max_init_timeo)
2698 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2699 
2700 	return 0;
2701 }
2702 
2703 /*
2704  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2705  *
2706  *   Applications that wish to use the sendto() system call may wish to
2707  *   specify a default set of parameters that would normally be supplied
2708  *   through the inclusion of ancillary data.  This socket option allows
2709  *   such an application to set the default sctp_sndrcvinfo structure.
2710  *   The application that wishes to use this socket option simply passes
2711  *   in to this call the sctp_sndrcvinfo structure defined in Section
2712  *   5.2.2) The input parameters accepted by this call include
2713  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2714  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2715  *   to this call if the caller is using the UDP model.
2716  */
2717 static int sctp_setsockopt_default_send_param(struct sock *sk,
2718 					      char __user *optval,
2719 					      unsigned int optlen)
2720 {
2721 	struct sctp_sndrcvinfo info;
2722 	struct sctp_association *asoc;
2723 	struct sctp_sock *sp = sctp_sk(sk);
2724 
2725 	if (optlen != sizeof(struct sctp_sndrcvinfo))
2726 		return -EINVAL;
2727 	if (copy_from_user(&info, optval, optlen))
2728 		return -EFAULT;
2729 
2730 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2731 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2732 		return -EINVAL;
2733 
2734 	if (asoc) {
2735 		asoc->default_stream = info.sinfo_stream;
2736 		asoc->default_flags = info.sinfo_flags;
2737 		asoc->default_ppid = info.sinfo_ppid;
2738 		asoc->default_context = info.sinfo_context;
2739 		asoc->default_timetolive = info.sinfo_timetolive;
2740 	} else {
2741 		sp->default_stream = info.sinfo_stream;
2742 		sp->default_flags = info.sinfo_flags;
2743 		sp->default_ppid = info.sinfo_ppid;
2744 		sp->default_context = info.sinfo_context;
2745 		sp->default_timetolive = info.sinfo_timetolive;
2746 	}
2747 
2748 	return 0;
2749 }
2750 
2751 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2752  *
2753  * Requests that the local SCTP stack use the enclosed peer address as
2754  * the association primary.  The enclosed address must be one of the
2755  * association peer's addresses.
2756  */
2757 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2758 					unsigned int optlen)
2759 {
2760 	struct sctp_prim prim;
2761 	struct sctp_transport *trans;
2762 
2763 	if (optlen != sizeof(struct sctp_prim))
2764 		return -EINVAL;
2765 
2766 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2767 		return -EFAULT;
2768 
2769 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2770 	if (!trans)
2771 		return -EINVAL;
2772 
2773 	sctp_assoc_set_primary(trans->asoc, trans);
2774 
2775 	return 0;
2776 }
2777 
2778 /*
2779  * 7.1.5 SCTP_NODELAY
2780  *
2781  * Turn on/off any Nagle-like algorithm.  This means that packets are
2782  * generally sent as soon as possible and no unnecessary delays are
2783  * introduced, at the cost of more packets in the network.  Expects an
2784  *  integer boolean flag.
2785  */
2786 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2787 				   unsigned int optlen)
2788 {
2789 	int val;
2790 
2791 	if (optlen < sizeof(int))
2792 		return -EINVAL;
2793 	if (get_user(val, (int __user *)optval))
2794 		return -EFAULT;
2795 
2796 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2797 	return 0;
2798 }
2799 
2800 /*
2801  *
2802  * 7.1.1 SCTP_RTOINFO
2803  *
2804  * The protocol parameters used to initialize and bound retransmission
2805  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2806  * and modify these parameters.
2807  * All parameters are time values, in milliseconds.  A value of 0, when
2808  * modifying the parameters, indicates that the current value should not
2809  * be changed.
2810  *
2811  */
2812 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2813 {
2814 	struct sctp_rtoinfo rtoinfo;
2815 	struct sctp_association *asoc;
2816 
2817 	if (optlen != sizeof (struct sctp_rtoinfo))
2818 		return -EINVAL;
2819 
2820 	if (copy_from_user(&rtoinfo, optval, optlen))
2821 		return -EFAULT;
2822 
2823 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2824 
2825 	/* Set the values to the specific association */
2826 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2827 		return -EINVAL;
2828 
2829 	if (asoc) {
2830 		if (rtoinfo.srto_initial != 0)
2831 			asoc->rto_initial =
2832 				msecs_to_jiffies(rtoinfo.srto_initial);
2833 		if (rtoinfo.srto_max != 0)
2834 			asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2835 		if (rtoinfo.srto_min != 0)
2836 			asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2837 	} else {
2838 		/* If there is no association or the association-id = 0
2839 		 * set the values to the endpoint.
2840 		 */
2841 		struct sctp_sock *sp = sctp_sk(sk);
2842 
2843 		if (rtoinfo.srto_initial != 0)
2844 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2845 		if (rtoinfo.srto_max != 0)
2846 			sp->rtoinfo.srto_max = rtoinfo.srto_max;
2847 		if (rtoinfo.srto_min != 0)
2848 			sp->rtoinfo.srto_min = rtoinfo.srto_min;
2849 	}
2850 
2851 	return 0;
2852 }
2853 
2854 /*
2855  *
2856  * 7.1.2 SCTP_ASSOCINFO
2857  *
2858  * This option is used to tune the maximum retransmission attempts
2859  * of the association.
2860  * Returns an error if the new association retransmission value is
2861  * greater than the sum of the retransmission value  of the peer.
2862  * See [SCTP] for more information.
2863  *
2864  */
2865 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2866 {
2867 
2868 	struct sctp_assocparams assocparams;
2869 	struct sctp_association *asoc;
2870 
2871 	if (optlen != sizeof(struct sctp_assocparams))
2872 		return -EINVAL;
2873 	if (copy_from_user(&assocparams, optval, optlen))
2874 		return -EFAULT;
2875 
2876 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2877 
2878 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2879 		return -EINVAL;
2880 
2881 	/* Set the values to the specific association */
2882 	if (asoc) {
2883 		if (assocparams.sasoc_asocmaxrxt != 0) {
2884 			__u32 path_sum = 0;
2885 			int   paths = 0;
2886 			struct sctp_transport *peer_addr;
2887 
2888 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2889 					transports) {
2890 				path_sum += peer_addr->pathmaxrxt;
2891 				paths++;
2892 			}
2893 
2894 			/* Only validate asocmaxrxt if we have more than
2895 			 * one path/transport.  We do this because path
2896 			 * retransmissions are only counted when we have more
2897 			 * then one path.
2898 			 */
2899 			if (paths > 1 &&
2900 			    assocparams.sasoc_asocmaxrxt > path_sum)
2901 				return -EINVAL;
2902 
2903 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2904 		}
2905 
2906 		if (assocparams.sasoc_cookie_life != 0) {
2907 			asoc->cookie_life.tv_sec =
2908 					assocparams.sasoc_cookie_life / 1000;
2909 			asoc->cookie_life.tv_usec =
2910 					(assocparams.sasoc_cookie_life % 1000)
2911 					* 1000;
2912 		}
2913 	} else {
2914 		/* Set the values to the endpoint */
2915 		struct sctp_sock *sp = sctp_sk(sk);
2916 
2917 		if (assocparams.sasoc_asocmaxrxt != 0)
2918 			sp->assocparams.sasoc_asocmaxrxt =
2919 						assocparams.sasoc_asocmaxrxt;
2920 		if (assocparams.sasoc_cookie_life != 0)
2921 			sp->assocparams.sasoc_cookie_life =
2922 						assocparams.sasoc_cookie_life;
2923 	}
2924 	return 0;
2925 }
2926 
2927 /*
2928  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2929  *
2930  * This socket option is a boolean flag which turns on or off mapped V4
2931  * addresses.  If this option is turned on and the socket is type
2932  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2933  * If this option is turned off, then no mapping will be done of V4
2934  * addresses and a user will receive both PF_INET6 and PF_INET type
2935  * addresses on the socket.
2936  */
2937 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
2938 {
2939 	int val;
2940 	struct sctp_sock *sp = sctp_sk(sk);
2941 
2942 	if (optlen < sizeof(int))
2943 		return -EINVAL;
2944 	if (get_user(val, (int __user *)optval))
2945 		return -EFAULT;
2946 	if (val)
2947 		sp->v4mapped = 1;
2948 	else
2949 		sp->v4mapped = 0;
2950 
2951 	return 0;
2952 }
2953 
2954 /*
2955  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
2956  * This option will get or set the maximum size to put in any outgoing
2957  * SCTP DATA chunk.  If a message is larger than this size it will be
2958  * fragmented by SCTP into the specified size.  Note that the underlying
2959  * SCTP implementation may fragment into smaller sized chunks when the
2960  * PMTU of the underlying association is smaller than the value set by
2961  * the user.  The default value for this option is '0' which indicates
2962  * the user is NOT limiting fragmentation and only the PMTU will effect
2963  * SCTP's choice of DATA chunk size.  Note also that values set larger
2964  * than the maximum size of an IP datagram will effectively let SCTP
2965  * control fragmentation (i.e. the same as setting this option to 0).
2966  *
2967  * The following structure is used to access and modify this parameter:
2968  *
2969  * struct sctp_assoc_value {
2970  *   sctp_assoc_t assoc_id;
2971  *   uint32_t assoc_value;
2972  * };
2973  *
2974  * assoc_id:  This parameter is ignored for one-to-one style sockets.
2975  *    For one-to-many style sockets this parameter indicates which
2976  *    association the user is performing an action upon.  Note that if
2977  *    this field's value is zero then the endpoints default value is
2978  *    changed (effecting future associations only).
2979  * assoc_value:  This parameter specifies the maximum size in bytes.
2980  */
2981 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
2982 {
2983 	struct sctp_assoc_value params;
2984 	struct sctp_association *asoc;
2985 	struct sctp_sock *sp = sctp_sk(sk);
2986 	int val;
2987 
2988 	if (optlen == sizeof(int)) {
2989 		pr_warn("Use of int in maxseg socket option deprecated\n");
2990 		pr_warn("Use struct sctp_assoc_value instead\n");
2991 		if (copy_from_user(&val, optval, optlen))
2992 			return -EFAULT;
2993 		params.assoc_id = 0;
2994 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2995 		if (copy_from_user(&params, optval, optlen))
2996 			return -EFAULT;
2997 		val = params.assoc_value;
2998 	} else
2999 		return -EINVAL;
3000 
3001 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3002 		return -EINVAL;
3003 
3004 	asoc = sctp_id2assoc(sk, params.assoc_id);
3005 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3006 		return -EINVAL;
3007 
3008 	if (asoc) {
3009 		if (val == 0) {
3010 			val = asoc->pathmtu;
3011 			val -= sp->pf->af->net_header_len;
3012 			val -= sizeof(struct sctphdr) +
3013 					sizeof(struct sctp_data_chunk);
3014 		}
3015 		asoc->user_frag = val;
3016 		asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3017 	} else {
3018 		sp->user_frag = val;
3019 	}
3020 
3021 	return 0;
3022 }
3023 
3024 
3025 /*
3026  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3027  *
3028  *   Requests that the peer mark the enclosed address as the association
3029  *   primary. The enclosed address must be one of the association's
3030  *   locally bound addresses. The following structure is used to make a
3031  *   set primary request:
3032  */
3033 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3034 					     unsigned int optlen)
3035 {
3036 	struct sctp_sock	*sp;
3037 	struct sctp_association	*asoc = NULL;
3038 	struct sctp_setpeerprim	prim;
3039 	struct sctp_chunk	*chunk;
3040 	struct sctp_af		*af;
3041 	int 			err;
3042 
3043 	sp = sctp_sk(sk);
3044 
3045 	if (!sctp_addip_enable)
3046 		return -EPERM;
3047 
3048 	if (optlen != sizeof(struct sctp_setpeerprim))
3049 		return -EINVAL;
3050 
3051 	if (copy_from_user(&prim, optval, optlen))
3052 		return -EFAULT;
3053 
3054 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3055 	if (!asoc)
3056 		return -EINVAL;
3057 
3058 	if (!asoc->peer.asconf_capable)
3059 		return -EPERM;
3060 
3061 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3062 		return -EPERM;
3063 
3064 	if (!sctp_state(asoc, ESTABLISHED))
3065 		return -ENOTCONN;
3066 
3067 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3068 	if (!af)
3069 		return -EINVAL;
3070 
3071 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3072 		return -EADDRNOTAVAIL;
3073 
3074 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3075 		return -EADDRNOTAVAIL;
3076 
3077 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3078 	chunk = sctp_make_asconf_set_prim(asoc,
3079 					  (union sctp_addr *)&prim.sspp_addr);
3080 	if (!chunk)
3081 		return -ENOMEM;
3082 
3083 	err = sctp_send_asconf(asoc, chunk);
3084 
3085 	SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
3086 
3087 	return err;
3088 }
3089 
3090 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3091 					    unsigned int optlen)
3092 {
3093 	struct sctp_setadaptation adaptation;
3094 
3095 	if (optlen != sizeof(struct sctp_setadaptation))
3096 		return -EINVAL;
3097 	if (copy_from_user(&adaptation, optval, optlen))
3098 		return -EFAULT;
3099 
3100 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3101 
3102 	return 0;
3103 }
3104 
3105 /*
3106  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3107  *
3108  * The context field in the sctp_sndrcvinfo structure is normally only
3109  * used when a failed message is retrieved holding the value that was
3110  * sent down on the actual send call.  This option allows the setting of
3111  * a default context on an association basis that will be received on
3112  * reading messages from the peer.  This is especially helpful in the
3113  * one-2-many model for an application to keep some reference to an
3114  * internal state machine that is processing messages on the
3115  * association.  Note that the setting of this value only effects
3116  * received messages from the peer and does not effect the value that is
3117  * saved with outbound messages.
3118  */
3119 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3120 				   unsigned int optlen)
3121 {
3122 	struct sctp_assoc_value params;
3123 	struct sctp_sock *sp;
3124 	struct sctp_association *asoc;
3125 
3126 	if (optlen != sizeof(struct sctp_assoc_value))
3127 		return -EINVAL;
3128 	if (copy_from_user(&params, optval, optlen))
3129 		return -EFAULT;
3130 
3131 	sp = sctp_sk(sk);
3132 
3133 	if (params.assoc_id != 0) {
3134 		asoc = sctp_id2assoc(sk, params.assoc_id);
3135 		if (!asoc)
3136 			return -EINVAL;
3137 		asoc->default_rcv_context = params.assoc_value;
3138 	} else {
3139 		sp->default_rcv_context = params.assoc_value;
3140 	}
3141 
3142 	return 0;
3143 }
3144 
3145 /*
3146  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3147  *
3148  * This options will at a minimum specify if the implementation is doing
3149  * fragmented interleave.  Fragmented interleave, for a one to many
3150  * socket, is when subsequent calls to receive a message may return
3151  * parts of messages from different associations.  Some implementations
3152  * may allow you to turn this value on or off.  If so, when turned off,
3153  * no fragment interleave will occur (which will cause a head of line
3154  * blocking amongst multiple associations sharing the same one to many
3155  * socket).  When this option is turned on, then each receive call may
3156  * come from a different association (thus the user must receive data
3157  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3158  * association each receive belongs to.
3159  *
3160  * This option takes a boolean value.  A non-zero value indicates that
3161  * fragmented interleave is on.  A value of zero indicates that
3162  * fragmented interleave is off.
3163  *
3164  * Note that it is important that an implementation that allows this
3165  * option to be turned on, have it off by default.  Otherwise an unaware
3166  * application using the one to many model may become confused and act
3167  * incorrectly.
3168  */
3169 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3170 					       char __user *optval,
3171 					       unsigned int optlen)
3172 {
3173 	int val;
3174 
3175 	if (optlen != sizeof(int))
3176 		return -EINVAL;
3177 	if (get_user(val, (int __user *)optval))
3178 		return -EFAULT;
3179 
3180 	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3181 
3182 	return 0;
3183 }
3184 
3185 /*
3186  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3187  *       (SCTP_PARTIAL_DELIVERY_POINT)
3188  *
3189  * This option will set or get the SCTP partial delivery point.  This
3190  * point is the size of a message where the partial delivery API will be
3191  * invoked to help free up rwnd space for the peer.  Setting this to a
3192  * lower value will cause partial deliveries to happen more often.  The
3193  * calls argument is an integer that sets or gets the partial delivery
3194  * point.  Note also that the call will fail if the user attempts to set
3195  * this value larger than the socket receive buffer size.
3196  *
3197  * Note that any single message having a length smaller than or equal to
3198  * the SCTP partial delivery point will be delivered in one single read
3199  * call as long as the user provided buffer is large enough to hold the
3200  * message.
3201  */
3202 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3203 						  char __user *optval,
3204 						  unsigned int optlen)
3205 {
3206 	u32 val;
3207 
3208 	if (optlen != sizeof(u32))
3209 		return -EINVAL;
3210 	if (get_user(val, (int __user *)optval))
3211 		return -EFAULT;
3212 
3213 	/* Note: We double the receive buffer from what the user sets
3214 	 * it to be, also initial rwnd is based on rcvbuf/2.
3215 	 */
3216 	if (val > (sk->sk_rcvbuf >> 1))
3217 		return -EINVAL;
3218 
3219 	sctp_sk(sk)->pd_point = val;
3220 
3221 	return 0; /* is this the right error code? */
3222 }
3223 
3224 /*
3225  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3226  *
3227  * This option will allow a user to change the maximum burst of packets
3228  * that can be emitted by this association.  Note that the default value
3229  * is 4, and some implementations may restrict this setting so that it
3230  * can only be lowered.
3231  *
3232  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3233  * future associations inheriting the socket value.
3234  */
3235 static int sctp_setsockopt_maxburst(struct sock *sk,
3236 				    char __user *optval,
3237 				    unsigned int optlen)
3238 {
3239 	struct sctp_assoc_value params;
3240 	struct sctp_sock *sp;
3241 	struct sctp_association *asoc;
3242 	int val;
3243 	int assoc_id = 0;
3244 
3245 	if (optlen == sizeof(int)) {
3246 		pr_warn("Use of int in max_burst socket option deprecated\n");
3247 		pr_warn("Use struct sctp_assoc_value instead\n");
3248 		if (copy_from_user(&val, optval, optlen))
3249 			return -EFAULT;
3250 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3251 		if (copy_from_user(&params, optval, optlen))
3252 			return -EFAULT;
3253 		val = params.assoc_value;
3254 		assoc_id = params.assoc_id;
3255 	} else
3256 		return -EINVAL;
3257 
3258 	sp = sctp_sk(sk);
3259 
3260 	if (assoc_id != 0) {
3261 		asoc = sctp_id2assoc(sk, assoc_id);
3262 		if (!asoc)
3263 			return -EINVAL;
3264 		asoc->max_burst = val;
3265 	} else
3266 		sp->max_burst = val;
3267 
3268 	return 0;
3269 }
3270 
3271 /*
3272  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3273  *
3274  * This set option adds a chunk type that the user is requesting to be
3275  * received only in an authenticated way.  Changes to the list of chunks
3276  * will only effect future associations on the socket.
3277  */
3278 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3279 				      char __user *optval,
3280 				      unsigned int optlen)
3281 {
3282 	struct sctp_authchunk val;
3283 
3284 	if (!sctp_auth_enable)
3285 		return -EACCES;
3286 
3287 	if (optlen != sizeof(struct sctp_authchunk))
3288 		return -EINVAL;
3289 	if (copy_from_user(&val, optval, optlen))
3290 		return -EFAULT;
3291 
3292 	switch (val.sauth_chunk) {
3293 	case SCTP_CID_INIT:
3294 	case SCTP_CID_INIT_ACK:
3295 	case SCTP_CID_SHUTDOWN_COMPLETE:
3296 	case SCTP_CID_AUTH:
3297 		return -EINVAL;
3298 	}
3299 
3300 	/* add this chunk id to the endpoint */
3301 	return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3302 }
3303 
3304 /*
3305  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3306  *
3307  * This option gets or sets the list of HMAC algorithms that the local
3308  * endpoint requires the peer to use.
3309  */
3310 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3311 				      char __user *optval,
3312 				      unsigned int optlen)
3313 {
3314 	struct sctp_hmacalgo *hmacs;
3315 	u32 idents;
3316 	int err;
3317 
3318 	if (!sctp_auth_enable)
3319 		return -EACCES;
3320 
3321 	if (optlen < sizeof(struct sctp_hmacalgo))
3322 		return -EINVAL;
3323 
3324 	hmacs= memdup_user(optval, optlen);
3325 	if (IS_ERR(hmacs))
3326 		return PTR_ERR(hmacs);
3327 
3328 	idents = hmacs->shmac_num_idents;
3329 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3330 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3331 		err = -EINVAL;
3332 		goto out;
3333 	}
3334 
3335 	err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3336 out:
3337 	kfree(hmacs);
3338 	return err;
3339 }
3340 
3341 /*
3342  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3343  *
3344  * This option will set a shared secret key which is used to build an
3345  * association shared key.
3346  */
3347 static int sctp_setsockopt_auth_key(struct sock *sk,
3348 				    char __user *optval,
3349 				    unsigned int optlen)
3350 {
3351 	struct sctp_authkey *authkey;
3352 	struct sctp_association *asoc;
3353 	int ret;
3354 
3355 	if (!sctp_auth_enable)
3356 		return -EACCES;
3357 
3358 	if (optlen <= sizeof(struct sctp_authkey))
3359 		return -EINVAL;
3360 
3361 	authkey= memdup_user(optval, optlen);
3362 	if (IS_ERR(authkey))
3363 		return PTR_ERR(authkey);
3364 
3365 	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3366 		ret = -EINVAL;
3367 		goto out;
3368 	}
3369 
3370 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3371 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3372 		ret = -EINVAL;
3373 		goto out;
3374 	}
3375 
3376 	ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3377 out:
3378 	kfree(authkey);
3379 	return ret;
3380 }
3381 
3382 /*
3383  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3384  *
3385  * This option will get or set the active shared key to be used to build
3386  * the association shared key.
3387  */
3388 static int sctp_setsockopt_active_key(struct sock *sk,
3389 				      char __user *optval,
3390 				      unsigned int optlen)
3391 {
3392 	struct sctp_authkeyid val;
3393 	struct sctp_association *asoc;
3394 
3395 	if (!sctp_auth_enable)
3396 		return -EACCES;
3397 
3398 	if (optlen != sizeof(struct sctp_authkeyid))
3399 		return -EINVAL;
3400 	if (copy_from_user(&val, optval, optlen))
3401 		return -EFAULT;
3402 
3403 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3404 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3405 		return -EINVAL;
3406 
3407 	return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3408 					val.scact_keynumber);
3409 }
3410 
3411 /*
3412  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3413  *
3414  * This set option will delete a shared secret key from use.
3415  */
3416 static int sctp_setsockopt_del_key(struct sock *sk,
3417 				   char __user *optval,
3418 				   unsigned int optlen)
3419 {
3420 	struct sctp_authkeyid val;
3421 	struct sctp_association *asoc;
3422 
3423 	if (!sctp_auth_enable)
3424 		return -EACCES;
3425 
3426 	if (optlen != sizeof(struct sctp_authkeyid))
3427 		return -EINVAL;
3428 	if (copy_from_user(&val, optval, optlen))
3429 		return -EFAULT;
3430 
3431 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3432 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3433 		return -EINVAL;
3434 
3435 	return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3436 				    val.scact_keynumber);
3437 
3438 }
3439 
3440 /*
3441  * 8.1.23 SCTP_AUTO_ASCONF
3442  *
3443  * This option will enable or disable the use of the automatic generation of
3444  * ASCONF chunks to add and delete addresses to an existing association.  Note
3445  * that this option has two caveats namely: a) it only affects sockets that
3446  * are bound to all addresses available to the SCTP stack, and b) the system
3447  * administrator may have an overriding control that turns the ASCONF feature
3448  * off no matter what setting the socket option may have.
3449  * This option expects an integer boolean flag, where a non-zero value turns on
3450  * the option, and a zero value turns off the option.
3451  * Note. In this implementation, socket operation overrides default parameter
3452  * being set by sysctl as well as FreeBSD implementation
3453  */
3454 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3455 					unsigned int optlen)
3456 {
3457 	int val;
3458 	struct sctp_sock *sp = sctp_sk(sk);
3459 
3460 	if (optlen < sizeof(int))
3461 		return -EINVAL;
3462 	if (get_user(val, (int __user *)optval))
3463 		return -EFAULT;
3464 	if (!sctp_is_ep_boundall(sk) && val)
3465 		return -EINVAL;
3466 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3467 		return 0;
3468 
3469 	if (val == 0 && sp->do_auto_asconf) {
3470 		list_del(&sp->auto_asconf_list);
3471 		sp->do_auto_asconf = 0;
3472 	} else if (val && !sp->do_auto_asconf) {
3473 		list_add_tail(&sp->auto_asconf_list,
3474 		    &sctp_auto_asconf_splist);
3475 		sp->do_auto_asconf = 1;
3476 	}
3477 	return 0;
3478 }
3479 
3480 
3481 /* API 6.2 setsockopt(), getsockopt()
3482  *
3483  * Applications use setsockopt() and getsockopt() to set or retrieve
3484  * socket options.  Socket options are used to change the default
3485  * behavior of sockets calls.  They are described in Section 7.
3486  *
3487  * The syntax is:
3488  *
3489  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
3490  *                    int __user *optlen);
3491  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3492  *                    int optlen);
3493  *
3494  *   sd      - the socket descript.
3495  *   level   - set to IPPROTO_SCTP for all SCTP options.
3496  *   optname - the option name.
3497  *   optval  - the buffer to store the value of the option.
3498  *   optlen  - the size of the buffer.
3499  */
3500 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
3501 				char __user *optval, unsigned int optlen)
3502 {
3503 	int retval = 0;
3504 
3505 	SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
3506 			  sk, optname);
3507 
3508 	/* I can hardly begin to describe how wrong this is.  This is
3509 	 * so broken as to be worse than useless.  The API draft
3510 	 * REALLY is NOT helpful here...  I am not convinced that the
3511 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3512 	 * are at all well-founded.
3513 	 */
3514 	if (level != SOL_SCTP) {
3515 		struct sctp_af *af = sctp_sk(sk)->pf->af;
3516 		retval = af->setsockopt(sk, level, optname, optval, optlen);
3517 		goto out_nounlock;
3518 	}
3519 
3520 	sctp_lock_sock(sk);
3521 
3522 	switch (optname) {
3523 	case SCTP_SOCKOPT_BINDX_ADD:
3524 		/* 'optlen' is the size of the addresses buffer. */
3525 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3526 					       optlen, SCTP_BINDX_ADD_ADDR);
3527 		break;
3528 
3529 	case SCTP_SOCKOPT_BINDX_REM:
3530 		/* 'optlen' is the size of the addresses buffer. */
3531 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3532 					       optlen, SCTP_BINDX_REM_ADDR);
3533 		break;
3534 
3535 	case SCTP_SOCKOPT_CONNECTX_OLD:
3536 		/* 'optlen' is the size of the addresses buffer. */
3537 		retval = sctp_setsockopt_connectx_old(sk,
3538 					    (struct sockaddr __user *)optval,
3539 					    optlen);
3540 		break;
3541 
3542 	case SCTP_SOCKOPT_CONNECTX:
3543 		/* 'optlen' is the size of the addresses buffer. */
3544 		retval = sctp_setsockopt_connectx(sk,
3545 					    (struct sockaddr __user *)optval,
3546 					    optlen);
3547 		break;
3548 
3549 	case SCTP_DISABLE_FRAGMENTS:
3550 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3551 		break;
3552 
3553 	case SCTP_EVENTS:
3554 		retval = sctp_setsockopt_events(sk, optval, optlen);
3555 		break;
3556 
3557 	case SCTP_AUTOCLOSE:
3558 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3559 		break;
3560 
3561 	case SCTP_PEER_ADDR_PARAMS:
3562 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3563 		break;
3564 
3565 	case SCTP_DELAYED_SACK:
3566 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3567 		break;
3568 	case SCTP_PARTIAL_DELIVERY_POINT:
3569 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3570 		break;
3571 
3572 	case SCTP_INITMSG:
3573 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3574 		break;
3575 	case SCTP_DEFAULT_SEND_PARAM:
3576 		retval = sctp_setsockopt_default_send_param(sk, optval,
3577 							    optlen);
3578 		break;
3579 	case SCTP_PRIMARY_ADDR:
3580 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3581 		break;
3582 	case SCTP_SET_PEER_PRIMARY_ADDR:
3583 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3584 		break;
3585 	case SCTP_NODELAY:
3586 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3587 		break;
3588 	case SCTP_RTOINFO:
3589 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3590 		break;
3591 	case SCTP_ASSOCINFO:
3592 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3593 		break;
3594 	case SCTP_I_WANT_MAPPED_V4_ADDR:
3595 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3596 		break;
3597 	case SCTP_MAXSEG:
3598 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3599 		break;
3600 	case SCTP_ADAPTATION_LAYER:
3601 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3602 		break;
3603 	case SCTP_CONTEXT:
3604 		retval = sctp_setsockopt_context(sk, optval, optlen);
3605 		break;
3606 	case SCTP_FRAGMENT_INTERLEAVE:
3607 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3608 		break;
3609 	case SCTP_MAX_BURST:
3610 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3611 		break;
3612 	case SCTP_AUTH_CHUNK:
3613 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3614 		break;
3615 	case SCTP_HMAC_IDENT:
3616 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3617 		break;
3618 	case SCTP_AUTH_KEY:
3619 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3620 		break;
3621 	case SCTP_AUTH_ACTIVE_KEY:
3622 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
3623 		break;
3624 	case SCTP_AUTH_DELETE_KEY:
3625 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
3626 		break;
3627 	case SCTP_AUTO_ASCONF:
3628 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3629 		break;
3630 	default:
3631 		retval = -ENOPROTOOPT;
3632 		break;
3633 	}
3634 
3635 	sctp_release_sock(sk);
3636 
3637 out_nounlock:
3638 	return retval;
3639 }
3640 
3641 /* API 3.1.6 connect() - UDP Style Syntax
3642  *
3643  * An application may use the connect() call in the UDP model to initiate an
3644  * association without sending data.
3645  *
3646  * The syntax is:
3647  *
3648  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3649  *
3650  * sd: the socket descriptor to have a new association added to.
3651  *
3652  * nam: the address structure (either struct sockaddr_in or struct
3653  *    sockaddr_in6 defined in RFC2553 [7]).
3654  *
3655  * len: the size of the address.
3656  */
3657 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3658 			     int addr_len)
3659 {
3660 	int err = 0;
3661 	struct sctp_af *af;
3662 
3663 	sctp_lock_sock(sk);
3664 
3665 	SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3666 			  __func__, sk, addr, addr_len);
3667 
3668 	/* Validate addr_len before calling common connect/connectx routine. */
3669 	af = sctp_get_af_specific(addr->sa_family);
3670 	if (!af || addr_len < af->sockaddr_len) {
3671 		err = -EINVAL;
3672 	} else {
3673 		/* Pass correct addr len to common routine (so it knows there
3674 		 * is only one address being passed.
3675 		 */
3676 		err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3677 	}
3678 
3679 	sctp_release_sock(sk);
3680 	return err;
3681 }
3682 
3683 /* FIXME: Write comments. */
3684 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3685 {
3686 	return -EOPNOTSUPP; /* STUB */
3687 }
3688 
3689 /* 4.1.4 accept() - TCP Style Syntax
3690  *
3691  * Applications use accept() call to remove an established SCTP
3692  * association from the accept queue of the endpoint.  A new socket
3693  * descriptor will be returned from accept() to represent the newly
3694  * formed association.
3695  */
3696 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3697 {
3698 	struct sctp_sock *sp;
3699 	struct sctp_endpoint *ep;
3700 	struct sock *newsk = NULL;
3701 	struct sctp_association *asoc;
3702 	long timeo;
3703 	int error = 0;
3704 
3705 	sctp_lock_sock(sk);
3706 
3707 	sp = sctp_sk(sk);
3708 	ep = sp->ep;
3709 
3710 	if (!sctp_style(sk, TCP)) {
3711 		error = -EOPNOTSUPP;
3712 		goto out;
3713 	}
3714 
3715 	if (!sctp_sstate(sk, LISTENING)) {
3716 		error = -EINVAL;
3717 		goto out;
3718 	}
3719 
3720 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3721 
3722 	error = sctp_wait_for_accept(sk, timeo);
3723 	if (error)
3724 		goto out;
3725 
3726 	/* We treat the list of associations on the endpoint as the accept
3727 	 * queue and pick the first association on the list.
3728 	 */
3729 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3730 
3731 	newsk = sp->pf->create_accept_sk(sk, asoc);
3732 	if (!newsk) {
3733 		error = -ENOMEM;
3734 		goto out;
3735 	}
3736 
3737 	/* Populate the fields of the newsk from the oldsk and migrate the
3738 	 * asoc to the newsk.
3739 	 */
3740 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3741 
3742 out:
3743 	sctp_release_sock(sk);
3744 	*err = error;
3745 	return newsk;
3746 }
3747 
3748 /* The SCTP ioctl handler. */
3749 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3750 {
3751 	int rc = -ENOTCONN;
3752 
3753 	sctp_lock_sock(sk);
3754 
3755 	/*
3756 	 * SEQPACKET-style sockets in LISTENING state are valid, for
3757 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
3758 	 */
3759 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3760 		goto out;
3761 
3762 	switch (cmd) {
3763 	case SIOCINQ: {
3764 		struct sk_buff *skb;
3765 		unsigned int amount = 0;
3766 
3767 		skb = skb_peek(&sk->sk_receive_queue);
3768 		if (skb != NULL) {
3769 			/*
3770 			 * We will only return the amount of this packet since
3771 			 * that is all that will be read.
3772 			 */
3773 			amount = skb->len;
3774 		}
3775 		rc = put_user(amount, (int __user *)arg);
3776 		break;
3777 	}
3778 	default:
3779 		rc = -ENOIOCTLCMD;
3780 		break;
3781 	}
3782 out:
3783 	sctp_release_sock(sk);
3784 	return rc;
3785 }
3786 
3787 /* This is the function which gets called during socket creation to
3788  * initialized the SCTP-specific portion of the sock.
3789  * The sock structure should already be zero-filled memory.
3790  */
3791 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3792 {
3793 	struct sctp_endpoint *ep;
3794 	struct sctp_sock *sp;
3795 
3796 	SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3797 
3798 	sp = sctp_sk(sk);
3799 
3800 	/* Initialize the SCTP per socket area.  */
3801 	switch (sk->sk_type) {
3802 	case SOCK_SEQPACKET:
3803 		sp->type = SCTP_SOCKET_UDP;
3804 		break;
3805 	case SOCK_STREAM:
3806 		sp->type = SCTP_SOCKET_TCP;
3807 		break;
3808 	default:
3809 		return -ESOCKTNOSUPPORT;
3810 	}
3811 
3812 	/* Initialize default send parameters. These parameters can be
3813 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3814 	 */
3815 	sp->default_stream = 0;
3816 	sp->default_ppid = 0;
3817 	sp->default_flags = 0;
3818 	sp->default_context = 0;
3819 	sp->default_timetolive = 0;
3820 
3821 	sp->default_rcv_context = 0;
3822 	sp->max_burst = sctp_max_burst;
3823 
3824 	/* Initialize default setup parameters. These parameters
3825 	 * can be modified with the SCTP_INITMSG socket option or
3826 	 * overridden by the SCTP_INIT CMSG.
3827 	 */
3828 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
3829 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
3830 	sp->initmsg.sinit_max_attempts   = sctp_max_retrans_init;
3831 	sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3832 
3833 	/* Initialize default RTO related parameters.  These parameters can
3834 	 * be modified for with the SCTP_RTOINFO socket option.
3835 	 */
3836 	sp->rtoinfo.srto_initial = sctp_rto_initial;
3837 	sp->rtoinfo.srto_max     = sctp_rto_max;
3838 	sp->rtoinfo.srto_min     = sctp_rto_min;
3839 
3840 	/* Initialize default association related parameters. These parameters
3841 	 * can be modified with the SCTP_ASSOCINFO socket option.
3842 	 */
3843 	sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3844 	sp->assocparams.sasoc_number_peer_destinations = 0;
3845 	sp->assocparams.sasoc_peer_rwnd = 0;
3846 	sp->assocparams.sasoc_local_rwnd = 0;
3847 	sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3848 
3849 	/* Initialize default event subscriptions. By default, all the
3850 	 * options are off.
3851 	 */
3852 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3853 
3854 	/* Default Peer Address Parameters.  These defaults can
3855 	 * be modified via SCTP_PEER_ADDR_PARAMS
3856 	 */
3857 	sp->hbinterval  = sctp_hb_interval;
3858 	sp->pathmaxrxt  = sctp_max_retrans_path;
3859 	sp->pathmtu     = 0; // allow default discovery
3860 	sp->sackdelay   = sctp_sack_timeout;
3861 	sp->sackfreq	= 2;
3862 	sp->param_flags = SPP_HB_ENABLE |
3863 			  SPP_PMTUD_ENABLE |
3864 			  SPP_SACKDELAY_ENABLE;
3865 
3866 	/* If enabled no SCTP message fragmentation will be performed.
3867 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3868 	 */
3869 	sp->disable_fragments = 0;
3870 
3871 	/* Enable Nagle algorithm by default.  */
3872 	sp->nodelay           = 0;
3873 
3874 	/* Enable by default. */
3875 	sp->v4mapped          = 1;
3876 
3877 	/* Auto-close idle associations after the configured
3878 	 * number of seconds.  A value of 0 disables this
3879 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
3880 	 * for UDP-style sockets only.
3881 	 */
3882 	sp->autoclose         = 0;
3883 
3884 	/* User specified fragmentation limit. */
3885 	sp->user_frag         = 0;
3886 
3887 	sp->adaptation_ind = 0;
3888 
3889 	sp->pf = sctp_get_pf_specific(sk->sk_family);
3890 
3891 	/* Control variables for partial data delivery. */
3892 	atomic_set(&sp->pd_mode, 0);
3893 	skb_queue_head_init(&sp->pd_lobby);
3894 	sp->frag_interleave = 0;
3895 
3896 	/* Create a per socket endpoint structure.  Even if we
3897 	 * change the data structure relationships, this may still
3898 	 * be useful for storing pre-connect address information.
3899 	 */
3900 	ep = sctp_endpoint_new(sk, GFP_KERNEL);
3901 	if (!ep)
3902 		return -ENOMEM;
3903 
3904 	sp->ep = ep;
3905 	sp->hmac = NULL;
3906 
3907 	SCTP_DBG_OBJCNT_INC(sock);
3908 
3909 	local_bh_disable();
3910 	percpu_counter_inc(&sctp_sockets_allocated);
3911 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3912 	if (sctp_default_auto_asconf) {
3913 		list_add_tail(&sp->auto_asconf_list,
3914 		    &sctp_auto_asconf_splist);
3915 		sp->do_auto_asconf = 1;
3916 	} else
3917 		sp->do_auto_asconf = 0;
3918 	local_bh_enable();
3919 
3920 	return 0;
3921 }
3922 
3923 /* Cleanup any SCTP per socket resources.  */
3924 SCTP_STATIC void sctp_destroy_sock(struct sock *sk)
3925 {
3926 	struct sctp_sock *sp;
3927 
3928 	SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3929 
3930 	/* Release our hold on the endpoint. */
3931 	sp = sctp_sk(sk);
3932 	if (sp->do_auto_asconf) {
3933 		sp->do_auto_asconf = 0;
3934 		list_del(&sp->auto_asconf_list);
3935 	}
3936 	sctp_endpoint_free(sp->ep);
3937 	local_bh_disable();
3938 	percpu_counter_dec(&sctp_sockets_allocated);
3939 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3940 	local_bh_enable();
3941 }
3942 
3943 /* API 4.1.7 shutdown() - TCP Style Syntax
3944  *     int shutdown(int socket, int how);
3945  *
3946  *     sd      - the socket descriptor of the association to be closed.
3947  *     how     - Specifies the type of shutdown.  The  values  are
3948  *               as follows:
3949  *               SHUT_RD
3950  *                     Disables further receive operations. No SCTP
3951  *                     protocol action is taken.
3952  *               SHUT_WR
3953  *                     Disables further send operations, and initiates
3954  *                     the SCTP shutdown sequence.
3955  *               SHUT_RDWR
3956  *                     Disables further send  and  receive  operations
3957  *                     and initiates the SCTP shutdown sequence.
3958  */
3959 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3960 {
3961 	struct sctp_endpoint *ep;
3962 	struct sctp_association *asoc;
3963 
3964 	if (!sctp_style(sk, TCP))
3965 		return;
3966 
3967 	if (how & SEND_SHUTDOWN) {
3968 		ep = sctp_sk(sk)->ep;
3969 		if (!list_empty(&ep->asocs)) {
3970 			asoc = list_entry(ep->asocs.next,
3971 					  struct sctp_association, asocs);
3972 			sctp_primitive_SHUTDOWN(asoc, NULL);
3973 		}
3974 	}
3975 }
3976 
3977 /* 7.2.1 Association Status (SCTP_STATUS)
3978 
3979  * Applications can retrieve current status information about an
3980  * association, including association state, peer receiver window size,
3981  * number of unacked data chunks, and number of data chunks pending
3982  * receipt.  This information is read-only.
3983  */
3984 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3985 				       char __user *optval,
3986 				       int __user *optlen)
3987 {
3988 	struct sctp_status status;
3989 	struct sctp_association *asoc = NULL;
3990 	struct sctp_transport *transport;
3991 	sctp_assoc_t associd;
3992 	int retval = 0;
3993 
3994 	if (len < sizeof(status)) {
3995 		retval = -EINVAL;
3996 		goto out;
3997 	}
3998 
3999 	len = sizeof(status);
4000 	if (copy_from_user(&status, optval, len)) {
4001 		retval = -EFAULT;
4002 		goto out;
4003 	}
4004 
4005 	associd = status.sstat_assoc_id;
4006 	asoc = sctp_id2assoc(sk, associd);
4007 	if (!asoc) {
4008 		retval = -EINVAL;
4009 		goto out;
4010 	}
4011 
4012 	transport = asoc->peer.primary_path;
4013 
4014 	status.sstat_assoc_id = sctp_assoc2id(asoc);
4015 	status.sstat_state = asoc->state;
4016 	status.sstat_rwnd =  asoc->peer.rwnd;
4017 	status.sstat_unackdata = asoc->unack_data;
4018 
4019 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4020 	status.sstat_instrms = asoc->c.sinit_max_instreams;
4021 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4022 	status.sstat_fragmentation_point = asoc->frag_point;
4023 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4024 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4025 			transport->af_specific->sockaddr_len);
4026 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
4027 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4028 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
4029 	status.sstat_primary.spinfo_state = transport->state;
4030 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
4031 	status.sstat_primary.spinfo_srtt = transport->srtt;
4032 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4033 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
4034 
4035 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4036 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4037 
4038 	if (put_user(len, optlen)) {
4039 		retval = -EFAULT;
4040 		goto out;
4041 	}
4042 
4043 	SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
4044 			  len, status.sstat_state, status.sstat_rwnd,
4045 			  status.sstat_assoc_id);
4046 
4047 	if (copy_to_user(optval, &status, len)) {
4048 		retval = -EFAULT;
4049 		goto out;
4050 	}
4051 
4052 out:
4053 	return retval;
4054 }
4055 
4056 
4057 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4058  *
4059  * Applications can retrieve information about a specific peer address
4060  * of an association, including its reachability state, congestion
4061  * window, and retransmission timer values.  This information is
4062  * read-only.
4063  */
4064 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4065 					  char __user *optval,
4066 					  int __user *optlen)
4067 {
4068 	struct sctp_paddrinfo pinfo;
4069 	struct sctp_transport *transport;
4070 	int retval = 0;
4071 
4072 	if (len < sizeof(pinfo)) {
4073 		retval = -EINVAL;
4074 		goto out;
4075 	}
4076 
4077 	len = sizeof(pinfo);
4078 	if (copy_from_user(&pinfo, optval, len)) {
4079 		retval = -EFAULT;
4080 		goto out;
4081 	}
4082 
4083 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4084 					   pinfo.spinfo_assoc_id);
4085 	if (!transport)
4086 		return -EINVAL;
4087 
4088 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4089 	pinfo.spinfo_state = transport->state;
4090 	pinfo.spinfo_cwnd = transport->cwnd;
4091 	pinfo.spinfo_srtt = transport->srtt;
4092 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4093 	pinfo.spinfo_mtu = transport->pathmtu;
4094 
4095 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
4096 		pinfo.spinfo_state = SCTP_ACTIVE;
4097 
4098 	if (put_user(len, optlen)) {
4099 		retval = -EFAULT;
4100 		goto out;
4101 	}
4102 
4103 	if (copy_to_user(optval, &pinfo, len)) {
4104 		retval = -EFAULT;
4105 		goto out;
4106 	}
4107 
4108 out:
4109 	return retval;
4110 }
4111 
4112 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4113  *
4114  * This option is a on/off flag.  If enabled no SCTP message
4115  * fragmentation will be performed.  Instead if a message being sent
4116  * exceeds the current PMTU size, the message will NOT be sent and
4117  * instead a error will be indicated to the user.
4118  */
4119 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4120 					char __user *optval, int __user *optlen)
4121 {
4122 	int val;
4123 
4124 	if (len < sizeof(int))
4125 		return -EINVAL;
4126 
4127 	len = sizeof(int);
4128 	val = (sctp_sk(sk)->disable_fragments == 1);
4129 	if (put_user(len, optlen))
4130 		return -EFAULT;
4131 	if (copy_to_user(optval, &val, len))
4132 		return -EFAULT;
4133 	return 0;
4134 }
4135 
4136 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4137  *
4138  * This socket option is used to specify various notifications and
4139  * ancillary data the user wishes to receive.
4140  */
4141 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4142 				  int __user *optlen)
4143 {
4144 	if (len <= 0)
4145 		return -EINVAL;
4146 	if (len > sizeof(struct sctp_event_subscribe))
4147 		len = sizeof(struct sctp_event_subscribe);
4148 	if (put_user(len, optlen))
4149 		return -EFAULT;
4150 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4151 		return -EFAULT;
4152 	return 0;
4153 }
4154 
4155 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4156  *
4157  * This socket option is applicable to the UDP-style socket only.  When
4158  * set it will cause associations that are idle for more than the
4159  * specified number of seconds to automatically close.  An association
4160  * being idle is defined an association that has NOT sent or received
4161  * user data.  The special value of '0' indicates that no automatic
4162  * close of any associations should be performed.  The option expects an
4163  * integer defining the number of seconds of idle time before an
4164  * association is closed.
4165  */
4166 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4167 {
4168 	/* Applicable to UDP-style socket only */
4169 	if (sctp_style(sk, TCP))
4170 		return -EOPNOTSUPP;
4171 	if (len < sizeof(int))
4172 		return -EINVAL;
4173 	len = sizeof(int);
4174 	if (put_user(len, optlen))
4175 		return -EFAULT;
4176 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4177 		return -EFAULT;
4178 	return 0;
4179 }
4180 
4181 /* Helper routine to branch off an association to a new socket.  */
4182 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4183 {
4184 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
4185 	struct socket *sock;
4186 	struct sctp_af *af;
4187 	int err = 0;
4188 
4189 	if (!asoc)
4190 		return -EINVAL;
4191 
4192 	/* An association cannot be branched off from an already peeled-off
4193 	 * socket, nor is this supported for tcp style sockets.
4194 	 */
4195 	if (!sctp_style(sk, UDP))
4196 		return -EINVAL;
4197 
4198 	/* Create a new socket.  */
4199 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4200 	if (err < 0)
4201 		return err;
4202 
4203 	sctp_copy_sock(sock->sk, sk, asoc);
4204 
4205 	/* Make peeled-off sockets more like 1-1 accepted sockets.
4206 	 * Set the daddr and initialize id to something more random
4207 	 */
4208 	af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
4209 	af->to_sk_daddr(&asoc->peer.primary_addr, sk);
4210 
4211 	/* Populate the fields of the newsk from the oldsk and migrate the
4212 	 * asoc to the newsk.
4213 	 */
4214 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4215 
4216 	*sockp = sock;
4217 
4218 	return err;
4219 }
4220 EXPORT_SYMBOL(sctp_do_peeloff);
4221 
4222 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4223 {
4224 	sctp_peeloff_arg_t peeloff;
4225 	struct socket *newsock;
4226 	int retval = 0;
4227 
4228 	if (len < sizeof(sctp_peeloff_arg_t))
4229 		return -EINVAL;
4230 	len = sizeof(sctp_peeloff_arg_t);
4231 	if (copy_from_user(&peeloff, optval, len))
4232 		return -EFAULT;
4233 
4234 	retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4235 	if (retval < 0)
4236 		goto out;
4237 
4238 	/* Map the socket to an unused fd that can be returned to the user.  */
4239 	retval = sock_map_fd(newsock, 0);
4240 	if (retval < 0) {
4241 		sock_release(newsock);
4242 		goto out;
4243 	}
4244 
4245 	SCTP_DEBUG_PRINTK("%s: sk: %p newsk: %p sd: %d\n",
4246 			  __func__, sk, newsock->sk, retval);
4247 
4248 	/* Return the fd mapped to the new socket.  */
4249 	peeloff.sd = retval;
4250 	if (put_user(len, optlen))
4251 		return -EFAULT;
4252 	if (copy_to_user(optval, &peeloff, len))
4253 		retval = -EFAULT;
4254 
4255 out:
4256 	return retval;
4257 }
4258 
4259 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4260  *
4261  * Applications can enable or disable heartbeats for any peer address of
4262  * an association, modify an address's heartbeat interval, force a
4263  * heartbeat to be sent immediately, and adjust the address's maximum
4264  * number of retransmissions sent before an address is considered
4265  * unreachable.  The following structure is used to access and modify an
4266  * address's parameters:
4267  *
4268  *  struct sctp_paddrparams {
4269  *     sctp_assoc_t            spp_assoc_id;
4270  *     struct sockaddr_storage spp_address;
4271  *     uint32_t                spp_hbinterval;
4272  *     uint16_t                spp_pathmaxrxt;
4273  *     uint32_t                spp_pathmtu;
4274  *     uint32_t                spp_sackdelay;
4275  *     uint32_t                spp_flags;
4276  * };
4277  *
4278  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
4279  *                     application, and identifies the association for
4280  *                     this query.
4281  *   spp_address     - This specifies which address is of interest.
4282  *   spp_hbinterval  - This contains the value of the heartbeat interval,
4283  *                     in milliseconds.  If a  value of zero
4284  *                     is present in this field then no changes are to
4285  *                     be made to this parameter.
4286  *   spp_pathmaxrxt  - This contains the maximum number of
4287  *                     retransmissions before this address shall be
4288  *                     considered unreachable. If a  value of zero
4289  *                     is present in this field then no changes are to
4290  *                     be made to this parameter.
4291  *   spp_pathmtu     - When Path MTU discovery is disabled the value
4292  *                     specified here will be the "fixed" path mtu.
4293  *                     Note that if the spp_address field is empty
4294  *                     then all associations on this address will
4295  *                     have this fixed path mtu set upon them.
4296  *
4297  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
4298  *                     the number of milliseconds that sacks will be delayed
4299  *                     for. This value will apply to all addresses of an
4300  *                     association if the spp_address field is empty. Note
4301  *                     also, that if delayed sack is enabled and this
4302  *                     value is set to 0, no change is made to the last
4303  *                     recorded delayed sack timer value.
4304  *
4305  *   spp_flags       - These flags are used to control various features
4306  *                     on an association. The flag field may contain
4307  *                     zero or more of the following options.
4308  *
4309  *                     SPP_HB_ENABLE  - Enable heartbeats on the
4310  *                     specified address. Note that if the address
4311  *                     field is empty all addresses for the association
4312  *                     have heartbeats enabled upon them.
4313  *
4314  *                     SPP_HB_DISABLE - Disable heartbeats on the
4315  *                     speicifed address. Note that if the address
4316  *                     field is empty all addresses for the association
4317  *                     will have their heartbeats disabled. Note also
4318  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
4319  *                     mutually exclusive, only one of these two should
4320  *                     be specified. Enabling both fields will have
4321  *                     undetermined results.
4322  *
4323  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
4324  *                     to be made immediately.
4325  *
4326  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
4327  *                     discovery upon the specified address. Note that
4328  *                     if the address feild is empty then all addresses
4329  *                     on the association are effected.
4330  *
4331  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
4332  *                     discovery upon the specified address. Note that
4333  *                     if the address feild is empty then all addresses
4334  *                     on the association are effected. Not also that
4335  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4336  *                     exclusive. Enabling both will have undetermined
4337  *                     results.
4338  *
4339  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
4340  *                     on delayed sack. The time specified in spp_sackdelay
4341  *                     is used to specify the sack delay for this address. Note
4342  *                     that if spp_address is empty then all addresses will
4343  *                     enable delayed sack and take on the sack delay
4344  *                     value specified in spp_sackdelay.
4345  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
4346  *                     off delayed sack. If the spp_address field is blank then
4347  *                     delayed sack is disabled for the entire association. Note
4348  *                     also that this field is mutually exclusive to
4349  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
4350  *                     results.
4351  */
4352 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4353 					    char __user *optval, int __user *optlen)
4354 {
4355 	struct sctp_paddrparams  params;
4356 	struct sctp_transport   *trans = NULL;
4357 	struct sctp_association *asoc = NULL;
4358 	struct sctp_sock        *sp = sctp_sk(sk);
4359 
4360 	if (len < sizeof(struct sctp_paddrparams))
4361 		return -EINVAL;
4362 	len = sizeof(struct sctp_paddrparams);
4363 	if (copy_from_user(&params, optval, len))
4364 		return -EFAULT;
4365 
4366 	/* If an address other than INADDR_ANY is specified, and
4367 	 * no transport is found, then the request is invalid.
4368 	 */
4369 	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
4370 		trans = sctp_addr_id2transport(sk, &params.spp_address,
4371 					       params.spp_assoc_id);
4372 		if (!trans) {
4373 			SCTP_DEBUG_PRINTK("Failed no transport\n");
4374 			return -EINVAL;
4375 		}
4376 	}
4377 
4378 	/* Get association, if assoc_id != 0 and the socket is a one
4379 	 * to many style socket, and an association was not found, then
4380 	 * the id was invalid.
4381 	 */
4382 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4383 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4384 		SCTP_DEBUG_PRINTK("Failed no association\n");
4385 		return -EINVAL;
4386 	}
4387 
4388 	if (trans) {
4389 		/* Fetch transport values. */
4390 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4391 		params.spp_pathmtu    = trans->pathmtu;
4392 		params.spp_pathmaxrxt = trans->pathmaxrxt;
4393 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
4394 
4395 		/*draft-11 doesn't say what to return in spp_flags*/
4396 		params.spp_flags      = trans->param_flags;
4397 	} else if (asoc) {
4398 		/* Fetch association values. */
4399 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4400 		params.spp_pathmtu    = asoc->pathmtu;
4401 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
4402 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
4403 
4404 		/*draft-11 doesn't say what to return in spp_flags*/
4405 		params.spp_flags      = asoc->param_flags;
4406 	} else {
4407 		/* Fetch socket values. */
4408 		params.spp_hbinterval = sp->hbinterval;
4409 		params.spp_pathmtu    = sp->pathmtu;
4410 		params.spp_sackdelay  = sp->sackdelay;
4411 		params.spp_pathmaxrxt = sp->pathmaxrxt;
4412 
4413 		/*draft-11 doesn't say what to return in spp_flags*/
4414 		params.spp_flags      = sp->param_flags;
4415 	}
4416 
4417 	if (copy_to_user(optval, &params, len))
4418 		return -EFAULT;
4419 
4420 	if (put_user(len, optlen))
4421 		return -EFAULT;
4422 
4423 	return 0;
4424 }
4425 
4426 /*
4427  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
4428  *
4429  * This option will effect the way delayed acks are performed.  This
4430  * option allows you to get or set the delayed ack time, in
4431  * milliseconds.  It also allows changing the delayed ack frequency.
4432  * Changing the frequency to 1 disables the delayed sack algorithm.  If
4433  * the assoc_id is 0, then this sets or gets the endpoints default
4434  * values.  If the assoc_id field is non-zero, then the set or get
4435  * effects the specified association for the one to many model (the
4436  * assoc_id field is ignored by the one to one model).  Note that if
4437  * sack_delay or sack_freq are 0 when setting this option, then the
4438  * current values will remain unchanged.
4439  *
4440  * struct sctp_sack_info {
4441  *     sctp_assoc_t            sack_assoc_id;
4442  *     uint32_t                sack_delay;
4443  *     uint32_t                sack_freq;
4444  * };
4445  *
4446  * sack_assoc_id -  This parameter, indicates which association the user
4447  *    is performing an action upon.  Note that if this field's value is
4448  *    zero then the endpoints default value is changed (effecting future
4449  *    associations only).
4450  *
4451  * sack_delay -  This parameter contains the number of milliseconds that
4452  *    the user is requesting the delayed ACK timer be set to.  Note that
4453  *    this value is defined in the standard to be between 200 and 500
4454  *    milliseconds.
4455  *
4456  * sack_freq -  This parameter contains the number of packets that must
4457  *    be received before a sack is sent without waiting for the delay
4458  *    timer to expire.  The default value for this is 2, setting this
4459  *    value to 1 will disable the delayed sack algorithm.
4460  */
4461 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4462 					    char __user *optval,
4463 					    int __user *optlen)
4464 {
4465 	struct sctp_sack_info    params;
4466 	struct sctp_association *asoc = NULL;
4467 	struct sctp_sock        *sp = sctp_sk(sk);
4468 
4469 	if (len >= sizeof(struct sctp_sack_info)) {
4470 		len = sizeof(struct sctp_sack_info);
4471 
4472 		if (copy_from_user(&params, optval, len))
4473 			return -EFAULT;
4474 	} else if (len == sizeof(struct sctp_assoc_value)) {
4475 		pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
4476 		pr_warn("Use struct sctp_sack_info instead\n");
4477 		if (copy_from_user(&params, optval, len))
4478 			return -EFAULT;
4479 	} else
4480 		return - EINVAL;
4481 
4482 	/* Get association, if sack_assoc_id != 0 and the socket is a one
4483 	 * to many style socket, and an association was not found, then
4484 	 * the id was invalid.
4485 	 */
4486 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4487 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4488 		return -EINVAL;
4489 
4490 	if (asoc) {
4491 		/* Fetch association values. */
4492 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4493 			params.sack_delay = jiffies_to_msecs(
4494 				asoc->sackdelay);
4495 			params.sack_freq = asoc->sackfreq;
4496 
4497 		} else {
4498 			params.sack_delay = 0;
4499 			params.sack_freq = 1;
4500 		}
4501 	} else {
4502 		/* Fetch socket values. */
4503 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4504 			params.sack_delay  = sp->sackdelay;
4505 			params.sack_freq = sp->sackfreq;
4506 		} else {
4507 			params.sack_delay  = 0;
4508 			params.sack_freq = 1;
4509 		}
4510 	}
4511 
4512 	if (copy_to_user(optval, &params, len))
4513 		return -EFAULT;
4514 
4515 	if (put_user(len, optlen))
4516 		return -EFAULT;
4517 
4518 	return 0;
4519 }
4520 
4521 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4522  *
4523  * Applications can specify protocol parameters for the default association
4524  * initialization.  The option name argument to setsockopt() and getsockopt()
4525  * is SCTP_INITMSG.
4526  *
4527  * Setting initialization parameters is effective only on an unconnected
4528  * socket (for UDP-style sockets only future associations are effected
4529  * by the change).  With TCP-style sockets, this option is inherited by
4530  * sockets derived from a listener socket.
4531  */
4532 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4533 {
4534 	if (len < sizeof(struct sctp_initmsg))
4535 		return -EINVAL;
4536 	len = sizeof(struct sctp_initmsg);
4537 	if (put_user(len, optlen))
4538 		return -EFAULT;
4539 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4540 		return -EFAULT;
4541 	return 0;
4542 }
4543 
4544 
4545 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4546 				      char __user *optval, int __user *optlen)
4547 {
4548 	struct sctp_association *asoc;
4549 	int cnt = 0;
4550 	struct sctp_getaddrs getaddrs;
4551 	struct sctp_transport *from;
4552 	void __user *to;
4553 	union sctp_addr temp;
4554 	struct sctp_sock *sp = sctp_sk(sk);
4555 	int addrlen;
4556 	size_t space_left;
4557 	int bytes_copied;
4558 
4559 	if (len < sizeof(struct sctp_getaddrs))
4560 		return -EINVAL;
4561 
4562 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4563 		return -EFAULT;
4564 
4565 	/* For UDP-style sockets, id specifies the association to query.  */
4566 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4567 	if (!asoc)
4568 		return -EINVAL;
4569 
4570 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4571 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4572 
4573 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4574 				transports) {
4575 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4576 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4577 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4578 		if (space_left < addrlen)
4579 			return -ENOMEM;
4580 		if (copy_to_user(to, &temp, addrlen))
4581 			return -EFAULT;
4582 		to += addrlen;
4583 		cnt++;
4584 		space_left -= addrlen;
4585 	}
4586 
4587 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4588 		return -EFAULT;
4589 	bytes_copied = ((char __user *)to) - optval;
4590 	if (put_user(bytes_copied, optlen))
4591 		return -EFAULT;
4592 
4593 	return 0;
4594 }
4595 
4596 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4597 			    size_t space_left, int *bytes_copied)
4598 {
4599 	struct sctp_sockaddr_entry *addr;
4600 	union sctp_addr temp;
4601 	int cnt = 0;
4602 	int addrlen;
4603 
4604 	rcu_read_lock();
4605 	list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4606 		if (!addr->valid)
4607 			continue;
4608 
4609 		if ((PF_INET == sk->sk_family) &&
4610 		    (AF_INET6 == addr->a.sa.sa_family))
4611 			continue;
4612 		if ((PF_INET6 == sk->sk_family) &&
4613 		    inet_v6_ipv6only(sk) &&
4614 		    (AF_INET == addr->a.sa.sa_family))
4615 			continue;
4616 		memcpy(&temp, &addr->a, sizeof(temp));
4617 		if (!temp.v4.sin_port)
4618 			temp.v4.sin_port = htons(port);
4619 
4620 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4621 								&temp);
4622 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4623 		if (space_left < addrlen) {
4624 			cnt =  -ENOMEM;
4625 			break;
4626 		}
4627 		memcpy(to, &temp, addrlen);
4628 
4629 		to += addrlen;
4630 		cnt ++;
4631 		space_left -= addrlen;
4632 		*bytes_copied += addrlen;
4633 	}
4634 	rcu_read_unlock();
4635 
4636 	return cnt;
4637 }
4638 
4639 
4640 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4641 				       char __user *optval, int __user *optlen)
4642 {
4643 	struct sctp_bind_addr *bp;
4644 	struct sctp_association *asoc;
4645 	int cnt = 0;
4646 	struct sctp_getaddrs getaddrs;
4647 	struct sctp_sockaddr_entry *addr;
4648 	void __user *to;
4649 	union sctp_addr temp;
4650 	struct sctp_sock *sp = sctp_sk(sk);
4651 	int addrlen;
4652 	int err = 0;
4653 	size_t space_left;
4654 	int bytes_copied = 0;
4655 	void *addrs;
4656 	void *buf;
4657 
4658 	if (len < sizeof(struct sctp_getaddrs))
4659 		return -EINVAL;
4660 
4661 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4662 		return -EFAULT;
4663 
4664 	/*
4665 	 *  For UDP-style sockets, id specifies the association to query.
4666 	 *  If the id field is set to the value '0' then the locally bound
4667 	 *  addresses are returned without regard to any particular
4668 	 *  association.
4669 	 */
4670 	if (0 == getaddrs.assoc_id) {
4671 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4672 	} else {
4673 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4674 		if (!asoc)
4675 			return -EINVAL;
4676 		bp = &asoc->base.bind_addr;
4677 	}
4678 
4679 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4680 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4681 
4682 	addrs = kmalloc(space_left, GFP_KERNEL);
4683 	if (!addrs)
4684 		return -ENOMEM;
4685 
4686 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4687 	 * addresses from the global local address list.
4688 	 */
4689 	if (sctp_list_single_entry(&bp->address_list)) {
4690 		addr = list_entry(bp->address_list.next,
4691 				  struct sctp_sockaddr_entry, list);
4692 		if (sctp_is_any(sk, &addr->a)) {
4693 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4694 						space_left, &bytes_copied);
4695 			if (cnt < 0) {
4696 				err = cnt;
4697 				goto out;
4698 			}
4699 			goto copy_getaddrs;
4700 		}
4701 	}
4702 
4703 	buf = addrs;
4704 	/* Protection on the bound address list is not needed since
4705 	 * in the socket option context we hold a socket lock and
4706 	 * thus the bound address list can't change.
4707 	 */
4708 	list_for_each_entry(addr, &bp->address_list, list) {
4709 		memcpy(&temp, &addr->a, sizeof(temp));
4710 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4711 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4712 		if (space_left < addrlen) {
4713 			err =  -ENOMEM; /*fixme: right error?*/
4714 			goto out;
4715 		}
4716 		memcpy(buf, &temp, addrlen);
4717 		buf += addrlen;
4718 		bytes_copied += addrlen;
4719 		cnt ++;
4720 		space_left -= addrlen;
4721 	}
4722 
4723 copy_getaddrs:
4724 	if (copy_to_user(to, addrs, bytes_copied)) {
4725 		err = -EFAULT;
4726 		goto out;
4727 	}
4728 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4729 		err = -EFAULT;
4730 		goto out;
4731 	}
4732 	if (put_user(bytes_copied, optlen))
4733 		err = -EFAULT;
4734 out:
4735 	kfree(addrs);
4736 	return err;
4737 }
4738 
4739 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4740  *
4741  * Requests that the local SCTP stack use the enclosed peer address as
4742  * the association primary.  The enclosed address must be one of the
4743  * association peer's addresses.
4744  */
4745 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4746 					char __user *optval, int __user *optlen)
4747 {
4748 	struct sctp_prim prim;
4749 	struct sctp_association *asoc;
4750 	struct sctp_sock *sp = sctp_sk(sk);
4751 
4752 	if (len < sizeof(struct sctp_prim))
4753 		return -EINVAL;
4754 
4755 	len = sizeof(struct sctp_prim);
4756 
4757 	if (copy_from_user(&prim, optval, len))
4758 		return -EFAULT;
4759 
4760 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4761 	if (!asoc)
4762 		return -EINVAL;
4763 
4764 	if (!asoc->peer.primary_path)
4765 		return -ENOTCONN;
4766 
4767 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4768 		asoc->peer.primary_path->af_specific->sockaddr_len);
4769 
4770 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4771 			(union sctp_addr *)&prim.ssp_addr);
4772 
4773 	if (put_user(len, optlen))
4774 		return -EFAULT;
4775 	if (copy_to_user(optval, &prim, len))
4776 		return -EFAULT;
4777 
4778 	return 0;
4779 }
4780 
4781 /*
4782  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4783  *
4784  * Requests that the local endpoint set the specified Adaptation Layer
4785  * Indication parameter for all future INIT and INIT-ACK exchanges.
4786  */
4787 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4788 				  char __user *optval, int __user *optlen)
4789 {
4790 	struct sctp_setadaptation adaptation;
4791 
4792 	if (len < sizeof(struct sctp_setadaptation))
4793 		return -EINVAL;
4794 
4795 	len = sizeof(struct sctp_setadaptation);
4796 
4797 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4798 
4799 	if (put_user(len, optlen))
4800 		return -EFAULT;
4801 	if (copy_to_user(optval, &adaptation, len))
4802 		return -EFAULT;
4803 
4804 	return 0;
4805 }
4806 
4807 /*
4808  *
4809  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4810  *
4811  *   Applications that wish to use the sendto() system call may wish to
4812  *   specify a default set of parameters that would normally be supplied
4813  *   through the inclusion of ancillary data.  This socket option allows
4814  *   such an application to set the default sctp_sndrcvinfo structure.
4815 
4816 
4817  *   The application that wishes to use this socket option simply passes
4818  *   in to this call the sctp_sndrcvinfo structure defined in Section
4819  *   5.2.2) The input parameters accepted by this call include
4820  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4821  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
4822  *   to this call if the caller is using the UDP model.
4823  *
4824  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
4825  */
4826 static int sctp_getsockopt_default_send_param(struct sock *sk,
4827 					int len, char __user *optval,
4828 					int __user *optlen)
4829 {
4830 	struct sctp_sndrcvinfo info;
4831 	struct sctp_association *asoc;
4832 	struct sctp_sock *sp = sctp_sk(sk);
4833 
4834 	if (len < sizeof(struct sctp_sndrcvinfo))
4835 		return -EINVAL;
4836 
4837 	len = sizeof(struct sctp_sndrcvinfo);
4838 
4839 	if (copy_from_user(&info, optval, len))
4840 		return -EFAULT;
4841 
4842 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4843 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4844 		return -EINVAL;
4845 
4846 	if (asoc) {
4847 		info.sinfo_stream = asoc->default_stream;
4848 		info.sinfo_flags = asoc->default_flags;
4849 		info.sinfo_ppid = asoc->default_ppid;
4850 		info.sinfo_context = asoc->default_context;
4851 		info.sinfo_timetolive = asoc->default_timetolive;
4852 	} else {
4853 		info.sinfo_stream = sp->default_stream;
4854 		info.sinfo_flags = sp->default_flags;
4855 		info.sinfo_ppid = sp->default_ppid;
4856 		info.sinfo_context = sp->default_context;
4857 		info.sinfo_timetolive = sp->default_timetolive;
4858 	}
4859 
4860 	if (put_user(len, optlen))
4861 		return -EFAULT;
4862 	if (copy_to_user(optval, &info, len))
4863 		return -EFAULT;
4864 
4865 	return 0;
4866 }
4867 
4868 /*
4869  *
4870  * 7.1.5 SCTP_NODELAY
4871  *
4872  * Turn on/off any Nagle-like algorithm.  This means that packets are
4873  * generally sent as soon as possible and no unnecessary delays are
4874  * introduced, at the cost of more packets in the network.  Expects an
4875  * integer boolean flag.
4876  */
4877 
4878 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4879 				   char __user *optval, int __user *optlen)
4880 {
4881 	int val;
4882 
4883 	if (len < sizeof(int))
4884 		return -EINVAL;
4885 
4886 	len = sizeof(int);
4887 	val = (sctp_sk(sk)->nodelay == 1);
4888 	if (put_user(len, optlen))
4889 		return -EFAULT;
4890 	if (copy_to_user(optval, &val, len))
4891 		return -EFAULT;
4892 	return 0;
4893 }
4894 
4895 /*
4896  *
4897  * 7.1.1 SCTP_RTOINFO
4898  *
4899  * The protocol parameters used to initialize and bound retransmission
4900  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4901  * and modify these parameters.
4902  * All parameters are time values, in milliseconds.  A value of 0, when
4903  * modifying the parameters, indicates that the current value should not
4904  * be changed.
4905  *
4906  */
4907 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4908 				char __user *optval,
4909 				int __user *optlen) {
4910 	struct sctp_rtoinfo rtoinfo;
4911 	struct sctp_association *asoc;
4912 
4913 	if (len < sizeof (struct sctp_rtoinfo))
4914 		return -EINVAL;
4915 
4916 	len = sizeof(struct sctp_rtoinfo);
4917 
4918 	if (copy_from_user(&rtoinfo, optval, len))
4919 		return -EFAULT;
4920 
4921 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4922 
4923 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4924 		return -EINVAL;
4925 
4926 	/* Values corresponding to the specific association. */
4927 	if (asoc) {
4928 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4929 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4930 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4931 	} else {
4932 		/* Values corresponding to the endpoint. */
4933 		struct sctp_sock *sp = sctp_sk(sk);
4934 
4935 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4936 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
4937 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
4938 	}
4939 
4940 	if (put_user(len, optlen))
4941 		return -EFAULT;
4942 
4943 	if (copy_to_user(optval, &rtoinfo, len))
4944 		return -EFAULT;
4945 
4946 	return 0;
4947 }
4948 
4949 /*
4950  *
4951  * 7.1.2 SCTP_ASSOCINFO
4952  *
4953  * This option is used to tune the maximum retransmission attempts
4954  * of the association.
4955  * Returns an error if the new association retransmission value is
4956  * greater than the sum of the retransmission value  of the peer.
4957  * See [SCTP] for more information.
4958  *
4959  */
4960 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4961 				     char __user *optval,
4962 				     int __user *optlen)
4963 {
4964 
4965 	struct sctp_assocparams assocparams;
4966 	struct sctp_association *asoc;
4967 	struct list_head *pos;
4968 	int cnt = 0;
4969 
4970 	if (len < sizeof (struct sctp_assocparams))
4971 		return -EINVAL;
4972 
4973 	len = sizeof(struct sctp_assocparams);
4974 
4975 	if (copy_from_user(&assocparams, optval, len))
4976 		return -EFAULT;
4977 
4978 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4979 
4980 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4981 		return -EINVAL;
4982 
4983 	/* Values correspoinding to the specific association */
4984 	if (asoc) {
4985 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4986 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4987 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4988 		assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4989 						* 1000) +
4990 						(asoc->cookie_life.tv_usec
4991 						/ 1000);
4992 
4993 		list_for_each(pos, &asoc->peer.transport_addr_list) {
4994 			cnt ++;
4995 		}
4996 
4997 		assocparams.sasoc_number_peer_destinations = cnt;
4998 	} else {
4999 		/* Values corresponding to the endpoint */
5000 		struct sctp_sock *sp = sctp_sk(sk);
5001 
5002 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5003 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5004 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5005 		assocparams.sasoc_cookie_life =
5006 					sp->assocparams.sasoc_cookie_life;
5007 		assocparams.sasoc_number_peer_destinations =
5008 					sp->assocparams.
5009 					sasoc_number_peer_destinations;
5010 	}
5011 
5012 	if (put_user(len, optlen))
5013 		return -EFAULT;
5014 
5015 	if (copy_to_user(optval, &assocparams, len))
5016 		return -EFAULT;
5017 
5018 	return 0;
5019 }
5020 
5021 /*
5022  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5023  *
5024  * This socket option is a boolean flag which turns on or off mapped V4
5025  * addresses.  If this option is turned on and the socket is type
5026  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5027  * If this option is turned off, then no mapping will be done of V4
5028  * addresses and a user will receive both PF_INET6 and PF_INET type
5029  * addresses on the socket.
5030  */
5031 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5032 				    char __user *optval, int __user *optlen)
5033 {
5034 	int val;
5035 	struct sctp_sock *sp = sctp_sk(sk);
5036 
5037 	if (len < sizeof(int))
5038 		return -EINVAL;
5039 
5040 	len = sizeof(int);
5041 	val = sp->v4mapped;
5042 	if (put_user(len, optlen))
5043 		return -EFAULT;
5044 	if (copy_to_user(optval, &val, len))
5045 		return -EFAULT;
5046 
5047 	return 0;
5048 }
5049 
5050 /*
5051  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
5052  * (chapter and verse is quoted at sctp_setsockopt_context())
5053  */
5054 static int sctp_getsockopt_context(struct sock *sk, int len,
5055 				   char __user *optval, int __user *optlen)
5056 {
5057 	struct sctp_assoc_value params;
5058 	struct sctp_sock *sp;
5059 	struct sctp_association *asoc;
5060 
5061 	if (len < sizeof(struct sctp_assoc_value))
5062 		return -EINVAL;
5063 
5064 	len = sizeof(struct sctp_assoc_value);
5065 
5066 	if (copy_from_user(&params, optval, len))
5067 		return -EFAULT;
5068 
5069 	sp = sctp_sk(sk);
5070 
5071 	if (params.assoc_id != 0) {
5072 		asoc = sctp_id2assoc(sk, params.assoc_id);
5073 		if (!asoc)
5074 			return -EINVAL;
5075 		params.assoc_value = asoc->default_rcv_context;
5076 	} else {
5077 		params.assoc_value = sp->default_rcv_context;
5078 	}
5079 
5080 	if (put_user(len, optlen))
5081 		return -EFAULT;
5082 	if (copy_to_user(optval, &params, len))
5083 		return -EFAULT;
5084 
5085 	return 0;
5086 }
5087 
5088 /*
5089  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5090  * This option will get or set the maximum size to put in any outgoing
5091  * SCTP DATA chunk.  If a message is larger than this size it will be
5092  * fragmented by SCTP into the specified size.  Note that the underlying
5093  * SCTP implementation may fragment into smaller sized chunks when the
5094  * PMTU of the underlying association is smaller than the value set by
5095  * the user.  The default value for this option is '0' which indicates
5096  * the user is NOT limiting fragmentation and only the PMTU will effect
5097  * SCTP's choice of DATA chunk size.  Note also that values set larger
5098  * than the maximum size of an IP datagram will effectively let SCTP
5099  * control fragmentation (i.e. the same as setting this option to 0).
5100  *
5101  * The following structure is used to access and modify this parameter:
5102  *
5103  * struct sctp_assoc_value {
5104  *   sctp_assoc_t assoc_id;
5105  *   uint32_t assoc_value;
5106  * };
5107  *
5108  * assoc_id:  This parameter is ignored for one-to-one style sockets.
5109  *    For one-to-many style sockets this parameter indicates which
5110  *    association the user is performing an action upon.  Note that if
5111  *    this field's value is zero then the endpoints default value is
5112  *    changed (effecting future associations only).
5113  * assoc_value:  This parameter specifies the maximum size in bytes.
5114  */
5115 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5116 				  char __user *optval, int __user *optlen)
5117 {
5118 	struct sctp_assoc_value params;
5119 	struct sctp_association *asoc;
5120 
5121 	if (len == sizeof(int)) {
5122 		pr_warn("Use of int in maxseg socket option deprecated\n");
5123 		pr_warn("Use struct sctp_assoc_value instead\n");
5124 		params.assoc_id = 0;
5125 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5126 		len = sizeof(struct sctp_assoc_value);
5127 		if (copy_from_user(&params, optval, sizeof(params)))
5128 			return -EFAULT;
5129 	} else
5130 		return -EINVAL;
5131 
5132 	asoc = sctp_id2assoc(sk, params.assoc_id);
5133 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5134 		return -EINVAL;
5135 
5136 	if (asoc)
5137 		params.assoc_value = asoc->frag_point;
5138 	else
5139 		params.assoc_value = sctp_sk(sk)->user_frag;
5140 
5141 	if (put_user(len, optlen))
5142 		return -EFAULT;
5143 	if (len == sizeof(int)) {
5144 		if (copy_to_user(optval, &params.assoc_value, len))
5145 			return -EFAULT;
5146 	} else {
5147 		if (copy_to_user(optval, &params, len))
5148 			return -EFAULT;
5149 	}
5150 
5151 	return 0;
5152 }
5153 
5154 /*
5155  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5156  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5157  */
5158 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5159 					       char __user *optval, int __user *optlen)
5160 {
5161 	int val;
5162 
5163 	if (len < sizeof(int))
5164 		return -EINVAL;
5165 
5166 	len = sizeof(int);
5167 
5168 	val = sctp_sk(sk)->frag_interleave;
5169 	if (put_user(len, optlen))
5170 		return -EFAULT;
5171 	if (copy_to_user(optval, &val, len))
5172 		return -EFAULT;
5173 
5174 	return 0;
5175 }
5176 
5177 /*
5178  * 7.1.25.  Set or Get the sctp partial delivery point
5179  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5180  */
5181 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5182 						  char __user *optval,
5183 						  int __user *optlen)
5184 {
5185 	u32 val;
5186 
5187 	if (len < sizeof(u32))
5188 		return -EINVAL;
5189 
5190 	len = sizeof(u32);
5191 
5192 	val = sctp_sk(sk)->pd_point;
5193 	if (put_user(len, optlen))
5194 		return -EFAULT;
5195 	if (copy_to_user(optval, &val, len))
5196 		return -EFAULT;
5197 
5198 	return 0;
5199 }
5200 
5201 /*
5202  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
5203  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5204  */
5205 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5206 				    char __user *optval,
5207 				    int __user *optlen)
5208 {
5209 	struct sctp_assoc_value params;
5210 	struct sctp_sock *sp;
5211 	struct sctp_association *asoc;
5212 
5213 	if (len == sizeof(int)) {
5214 		pr_warn("Use of int in max_burst socket option deprecated\n");
5215 		pr_warn("Use struct sctp_assoc_value instead\n");
5216 		params.assoc_id = 0;
5217 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5218 		len = sizeof(struct sctp_assoc_value);
5219 		if (copy_from_user(&params, optval, len))
5220 			return -EFAULT;
5221 	} else
5222 		return -EINVAL;
5223 
5224 	sp = sctp_sk(sk);
5225 
5226 	if (params.assoc_id != 0) {
5227 		asoc = sctp_id2assoc(sk, params.assoc_id);
5228 		if (!asoc)
5229 			return -EINVAL;
5230 		params.assoc_value = asoc->max_burst;
5231 	} else
5232 		params.assoc_value = sp->max_burst;
5233 
5234 	if (len == sizeof(int)) {
5235 		if (copy_to_user(optval, &params.assoc_value, len))
5236 			return -EFAULT;
5237 	} else {
5238 		if (copy_to_user(optval, &params, len))
5239 			return -EFAULT;
5240 	}
5241 
5242 	return 0;
5243 
5244 }
5245 
5246 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5247 				    char __user *optval, int __user *optlen)
5248 {
5249 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
5250 	struct sctp_hmac_algo_param *hmacs;
5251 	__u16 data_len = 0;
5252 	u32 num_idents;
5253 
5254 	if (!sctp_auth_enable)
5255 		return -EACCES;
5256 
5257 	hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5258 	data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5259 
5260 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
5261 		return -EINVAL;
5262 
5263 	len = sizeof(struct sctp_hmacalgo) + data_len;
5264 	num_idents = data_len / sizeof(u16);
5265 
5266 	if (put_user(len, optlen))
5267 		return -EFAULT;
5268 	if (put_user(num_idents, &p->shmac_num_idents))
5269 		return -EFAULT;
5270 	if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5271 		return -EFAULT;
5272 	return 0;
5273 }
5274 
5275 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5276 				    char __user *optval, int __user *optlen)
5277 {
5278 	struct sctp_authkeyid val;
5279 	struct sctp_association *asoc;
5280 
5281 	if (!sctp_auth_enable)
5282 		return -EACCES;
5283 
5284 	if (len < sizeof(struct sctp_authkeyid))
5285 		return -EINVAL;
5286 	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5287 		return -EFAULT;
5288 
5289 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5290 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5291 		return -EINVAL;
5292 
5293 	if (asoc)
5294 		val.scact_keynumber = asoc->active_key_id;
5295 	else
5296 		val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5297 
5298 	len = sizeof(struct sctp_authkeyid);
5299 	if (put_user(len, optlen))
5300 		return -EFAULT;
5301 	if (copy_to_user(optval, &val, len))
5302 		return -EFAULT;
5303 
5304 	return 0;
5305 }
5306 
5307 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5308 				    char __user *optval, int __user *optlen)
5309 {
5310 	struct sctp_authchunks __user *p = (void __user *)optval;
5311 	struct sctp_authchunks val;
5312 	struct sctp_association *asoc;
5313 	struct sctp_chunks_param *ch;
5314 	u32    num_chunks = 0;
5315 	char __user *to;
5316 
5317 	if (!sctp_auth_enable)
5318 		return -EACCES;
5319 
5320 	if (len < sizeof(struct sctp_authchunks))
5321 		return -EINVAL;
5322 
5323 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5324 		return -EFAULT;
5325 
5326 	to = p->gauth_chunks;
5327 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5328 	if (!asoc)
5329 		return -EINVAL;
5330 
5331 	ch = asoc->peer.peer_chunks;
5332 	if (!ch)
5333 		goto num;
5334 
5335 	/* See if the user provided enough room for all the data */
5336 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5337 	if (len < num_chunks)
5338 		return -EINVAL;
5339 
5340 	if (copy_to_user(to, ch->chunks, num_chunks))
5341 		return -EFAULT;
5342 num:
5343 	len = sizeof(struct sctp_authchunks) + num_chunks;
5344 	if (put_user(len, optlen)) return -EFAULT;
5345 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5346 		return -EFAULT;
5347 	return 0;
5348 }
5349 
5350 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5351 				    char __user *optval, int __user *optlen)
5352 {
5353 	struct sctp_authchunks __user *p = (void __user *)optval;
5354 	struct sctp_authchunks val;
5355 	struct sctp_association *asoc;
5356 	struct sctp_chunks_param *ch;
5357 	u32    num_chunks = 0;
5358 	char __user *to;
5359 
5360 	if (!sctp_auth_enable)
5361 		return -EACCES;
5362 
5363 	if (len < sizeof(struct sctp_authchunks))
5364 		return -EINVAL;
5365 
5366 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5367 		return -EFAULT;
5368 
5369 	to = p->gauth_chunks;
5370 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5371 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5372 		return -EINVAL;
5373 
5374 	if (asoc)
5375 		ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5376 	else
5377 		ch = sctp_sk(sk)->ep->auth_chunk_list;
5378 
5379 	if (!ch)
5380 		goto num;
5381 
5382 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5383 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
5384 		return -EINVAL;
5385 
5386 	if (copy_to_user(to, ch->chunks, num_chunks))
5387 		return -EFAULT;
5388 num:
5389 	len = sizeof(struct sctp_authchunks) + num_chunks;
5390 	if (put_user(len, optlen))
5391 		return -EFAULT;
5392 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5393 		return -EFAULT;
5394 
5395 	return 0;
5396 }
5397 
5398 /*
5399  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5400  * This option gets the current number of associations that are attached
5401  * to a one-to-many style socket.  The option value is an uint32_t.
5402  */
5403 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5404 				    char __user *optval, int __user *optlen)
5405 {
5406 	struct sctp_sock *sp = sctp_sk(sk);
5407 	struct sctp_association *asoc;
5408 	u32 val = 0;
5409 
5410 	if (sctp_style(sk, TCP))
5411 		return -EOPNOTSUPP;
5412 
5413 	if (len < sizeof(u32))
5414 		return -EINVAL;
5415 
5416 	len = sizeof(u32);
5417 
5418 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5419 		val++;
5420 	}
5421 
5422 	if (put_user(len, optlen))
5423 		return -EFAULT;
5424 	if (copy_to_user(optval, &val, len))
5425 		return -EFAULT;
5426 
5427 	return 0;
5428 }
5429 
5430 /*
5431  * 8.1.23 SCTP_AUTO_ASCONF
5432  * See the corresponding setsockopt entry as description
5433  */
5434 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5435 				   char __user *optval, int __user *optlen)
5436 {
5437 	int val = 0;
5438 
5439 	if (len < sizeof(int))
5440 		return -EINVAL;
5441 
5442 	len = sizeof(int);
5443 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5444 		val = 1;
5445 	if (put_user(len, optlen))
5446 		return -EFAULT;
5447 	if (copy_to_user(optval, &val, len))
5448 		return -EFAULT;
5449 	return 0;
5450 }
5451 
5452 /*
5453  * 8.2.6. Get the Current Identifiers of Associations
5454  *        (SCTP_GET_ASSOC_ID_LIST)
5455  *
5456  * This option gets the current list of SCTP association identifiers of
5457  * the SCTP associations handled by a one-to-many style socket.
5458  */
5459 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5460 				    char __user *optval, int __user *optlen)
5461 {
5462 	struct sctp_sock *sp = sctp_sk(sk);
5463 	struct sctp_association *asoc;
5464 	struct sctp_assoc_ids *ids;
5465 	u32 num = 0;
5466 
5467 	if (sctp_style(sk, TCP))
5468 		return -EOPNOTSUPP;
5469 
5470 	if (len < sizeof(struct sctp_assoc_ids))
5471 		return -EINVAL;
5472 
5473 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5474 		num++;
5475 	}
5476 
5477 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5478 		return -EINVAL;
5479 
5480 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5481 
5482 	ids = kmalloc(len, GFP_KERNEL);
5483 	if (unlikely(!ids))
5484 		return -ENOMEM;
5485 
5486 	ids->gaids_number_of_ids = num;
5487 	num = 0;
5488 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5489 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
5490 	}
5491 
5492 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5493 		kfree(ids);
5494 		return -EFAULT;
5495 	}
5496 
5497 	kfree(ids);
5498 	return 0;
5499 }
5500 
5501 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
5502 				char __user *optval, int __user *optlen)
5503 {
5504 	int retval = 0;
5505 	int len;
5506 
5507 	SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
5508 			  sk, optname);
5509 
5510 	/* I can hardly begin to describe how wrong this is.  This is
5511 	 * so broken as to be worse than useless.  The API draft
5512 	 * REALLY is NOT helpful here...  I am not convinced that the
5513 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5514 	 * are at all well-founded.
5515 	 */
5516 	if (level != SOL_SCTP) {
5517 		struct sctp_af *af = sctp_sk(sk)->pf->af;
5518 
5519 		retval = af->getsockopt(sk, level, optname, optval, optlen);
5520 		return retval;
5521 	}
5522 
5523 	if (get_user(len, optlen))
5524 		return -EFAULT;
5525 
5526 	sctp_lock_sock(sk);
5527 
5528 	switch (optname) {
5529 	case SCTP_STATUS:
5530 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5531 		break;
5532 	case SCTP_DISABLE_FRAGMENTS:
5533 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5534 							   optlen);
5535 		break;
5536 	case SCTP_EVENTS:
5537 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
5538 		break;
5539 	case SCTP_AUTOCLOSE:
5540 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5541 		break;
5542 	case SCTP_SOCKOPT_PEELOFF:
5543 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5544 		break;
5545 	case SCTP_PEER_ADDR_PARAMS:
5546 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5547 							  optlen);
5548 		break;
5549 	case SCTP_DELAYED_SACK:
5550 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5551 							  optlen);
5552 		break;
5553 	case SCTP_INITMSG:
5554 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5555 		break;
5556 	case SCTP_GET_PEER_ADDRS:
5557 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5558 						    optlen);
5559 		break;
5560 	case SCTP_GET_LOCAL_ADDRS:
5561 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
5562 						     optlen);
5563 		break;
5564 	case SCTP_SOCKOPT_CONNECTX3:
5565 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
5566 		break;
5567 	case SCTP_DEFAULT_SEND_PARAM:
5568 		retval = sctp_getsockopt_default_send_param(sk, len,
5569 							    optval, optlen);
5570 		break;
5571 	case SCTP_PRIMARY_ADDR:
5572 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5573 		break;
5574 	case SCTP_NODELAY:
5575 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5576 		break;
5577 	case SCTP_RTOINFO:
5578 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5579 		break;
5580 	case SCTP_ASSOCINFO:
5581 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5582 		break;
5583 	case SCTP_I_WANT_MAPPED_V4_ADDR:
5584 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5585 		break;
5586 	case SCTP_MAXSEG:
5587 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5588 		break;
5589 	case SCTP_GET_PEER_ADDR_INFO:
5590 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5591 							optlen);
5592 		break;
5593 	case SCTP_ADAPTATION_LAYER:
5594 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5595 							optlen);
5596 		break;
5597 	case SCTP_CONTEXT:
5598 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
5599 		break;
5600 	case SCTP_FRAGMENT_INTERLEAVE:
5601 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5602 							     optlen);
5603 		break;
5604 	case SCTP_PARTIAL_DELIVERY_POINT:
5605 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5606 								optlen);
5607 		break;
5608 	case SCTP_MAX_BURST:
5609 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5610 		break;
5611 	case SCTP_AUTH_KEY:
5612 	case SCTP_AUTH_CHUNK:
5613 	case SCTP_AUTH_DELETE_KEY:
5614 		retval = -EOPNOTSUPP;
5615 		break;
5616 	case SCTP_HMAC_IDENT:
5617 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5618 		break;
5619 	case SCTP_AUTH_ACTIVE_KEY:
5620 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5621 		break;
5622 	case SCTP_PEER_AUTH_CHUNKS:
5623 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5624 							optlen);
5625 		break;
5626 	case SCTP_LOCAL_AUTH_CHUNKS:
5627 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5628 							optlen);
5629 		break;
5630 	case SCTP_GET_ASSOC_NUMBER:
5631 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
5632 		break;
5633 	case SCTP_GET_ASSOC_ID_LIST:
5634 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
5635 		break;
5636 	case SCTP_AUTO_ASCONF:
5637 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
5638 		break;
5639 	default:
5640 		retval = -ENOPROTOOPT;
5641 		break;
5642 	}
5643 
5644 	sctp_release_sock(sk);
5645 	return retval;
5646 }
5647 
5648 static void sctp_hash(struct sock *sk)
5649 {
5650 	/* STUB */
5651 }
5652 
5653 static void sctp_unhash(struct sock *sk)
5654 {
5655 	/* STUB */
5656 }
5657 
5658 /* Check if port is acceptable.  Possibly find first available port.
5659  *
5660  * The port hash table (contained in the 'global' SCTP protocol storage
5661  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5662  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5663  * list (the list number is the port number hashed out, so as you
5664  * would expect from a hash function, all the ports in a given list have
5665  * such a number that hashes out to the same list number; you were
5666  * expecting that, right?); so each list has a set of ports, with a
5667  * link to the socket (struct sock) that uses it, the port number and
5668  * a fastreuse flag (FIXME: NPI ipg).
5669  */
5670 static struct sctp_bind_bucket *sctp_bucket_create(
5671 	struct sctp_bind_hashbucket *head, unsigned short snum);
5672 
5673 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5674 {
5675 	struct sctp_bind_hashbucket *head; /* hash list */
5676 	struct sctp_bind_bucket *pp; /* hash list port iterator */
5677 	struct hlist_node *node;
5678 	unsigned short snum;
5679 	int ret;
5680 
5681 	snum = ntohs(addr->v4.sin_port);
5682 
5683 	SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5684 	sctp_local_bh_disable();
5685 
5686 	if (snum == 0) {
5687 		/* Search for an available port. */
5688 		int low, high, remaining, index;
5689 		unsigned int rover;
5690 
5691 		inet_get_local_port_range(&low, &high);
5692 		remaining = (high - low) + 1;
5693 		rover = net_random() % remaining + low;
5694 
5695 		do {
5696 			rover++;
5697 			if ((rover < low) || (rover > high))
5698 				rover = low;
5699 			if (inet_is_reserved_local_port(rover))
5700 				continue;
5701 			index = sctp_phashfn(rover);
5702 			head = &sctp_port_hashtable[index];
5703 			sctp_spin_lock(&head->lock);
5704 			sctp_for_each_hentry(pp, node, &head->chain)
5705 				if (pp->port == rover)
5706 					goto next;
5707 			break;
5708 		next:
5709 			sctp_spin_unlock(&head->lock);
5710 		} while (--remaining > 0);
5711 
5712 		/* Exhausted local port range during search? */
5713 		ret = 1;
5714 		if (remaining <= 0)
5715 			goto fail;
5716 
5717 		/* OK, here is the one we will use.  HEAD (the port
5718 		 * hash table list entry) is non-NULL and we hold it's
5719 		 * mutex.
5720 		 */
5721 		snum = rover;
5722 	} else {
5723 		/* We are given an specific port number; we verify
5724 		 * that it is not being used. If it is used, we will
5725 		 * exahust the search in the hash list corresponding
5726 		 * to the port number (snum) - we detect that with the
5727 		 * port iterator, pp being NULL.
5728 		 */
5729 		head = &sctp_port_hashtable[sctp_phashfn(snum)];
5730 		sctp_spin_lock(&head->lock);
5731 		sctp_for_each_hentry(pp, node, &head->chain) {
5732 			if (pp->port == snum)
5733 				goto pp_found;
5734 		}
5735 	}
5736 	pp = NULL;
5737 	goto pp_not_found;
5738 pp_found:
5739 	if (!hlist_empty(&pp->owner)) {
5740 		/* We had a port hash table hit - there is an
5741 		 * available port (pp != NULL) and it is being
5742 		 * used by other socket (pp->owner not empty); that other
5743 		 * socket is going to be sk2.
5744 		 */
5745 		int reuse = sk->sk_reuse;
5746 		struct sock *sk2;
5747 
5748 		SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5749 		if (pp->fastreuse && sk->sk_reuse &&
5750 			sk->sk_state != SCTP_SS_LISTENING)
5751 			goto success;
5752 
5753 		/* Run through the list of sockets bound to the port
5754 		 * (pp->port) [via the pointers bind_next and
5755 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5756 		 * we get the endpoint they describe and run through
5757 		 * the endpoint's list of IP (v4 or v6) addresses,
5758 		 * comparing each of the addresses with the address of
5759 		 * the socket sk. If we find a match, then that means
5760 		 * that this port/socket (sk) combination are already
5761 		 * in an endpoint.
5762 		 */
5763 		sk_for_each_bound(sk2, node, &pp->owner) {
5764 			struct sctp_endpoint *ep2;
5765 			ep2 = sctp_sk(sk2)->ep;
5766 
5767 			if (sk == sk2 ||
5768 			    (reuse && sk2->sk_reuse &&
5769 			     sk2->sk_state != SCTP_SS_LISTENING))
5770 				continue;
5771 
5772 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
5773 						 sctp_sk(sk2), sctp_sk(sk))) {
5774 				ret = (long)sk2;
5775 				goto fail_unlock;
5776 			}
5777 		}
5778 		SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5779 	}
5780 pp_not_found:
5781 	/* If there was a hash table miss, create a new port.  */
5782 	ret = 1;
5783 	if (!pp && !(pp = sctp_bucket_create(head, snum)))
5784 		goto fail_unlock;
5785 
5786 	/* In either case (hit or miss), make sure fastreuse is 1 only
5787 	 * if sk->sk_reuse is too (that is, if the caller requested
5788 	 * SO_REUSEADDR on this socket -sk-).
5789 	 */
5790 	if (hlist_empty(&pp->owner)) {
5791 		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5792 			pp->fastreuse = 1;
5793 		else
5794 			pp->fastreuse = 0;
5795 	} else if (pp->fastreuse &&
5796 		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
5797 		pp->fastreuse = 0;
5798 
5799 	/* We are set, so fill up all the data in the hash table
5800 	 * entry, tie the socket list information with the rest of the
5801 	 * sockets FIXME: Blurry, NPI (ipg).
5802 	 */
5803 success:
5804 	if (!sctp_sk(sk)->bind_hash) {
5805 		inet_sk(sk)->inet_num = snum;
5806 		sk_add_bind_node(sk, &pp->owner);
5807 		sctp_sk(sk)->bind_hash = pp;
5808 	}
5809 	ret = 0;
5810 
5811 fail_unlock:
5812 	sctp_spin_unlock(&head->lock);
5813 
5814 fail:
5815 	sctp_local_bh_enable();
5816 	return ret;
5817 }
5818 
5819 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
5820  * port is requested.
5821  */
5822 static int sctp_get_port(struct sock *sk, unsigned short snum)
5823 {
5824 	long ret;
5825 	union sctp_addr addr;
5826 	struct sctp_af *af = sctp_sk(sk)->pf->af;
5827 
5828 	/* Set up a dummy address struct from the sk. */
5829 	af->from_sk(&addr, sk);
5830 	addr.v4.sin_port = htons(snum);
5831 
5832 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
5833 	ret = sctp_get_port_local(sk, &addr);
5834 
5835 	return ret ? 1 : 0;
5836 }
5837 
5838 /*
5839  *  Move a socket to LISTENING state.
5840  */
5841 SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog)
5842 {
5843 	struct sctp_sock *sp = sctp_sk(sk);
5844 	struct sctp_endpoint *ep = sp->ep;
5845 	struct crypto_hash *tfm = NULL;
5846 
5847 	/* Allocate HMAC for generating cookie. */
5848 	if (!sctp_sk(sk)->hmac && sctp_hmac_alg) {
5849 		tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
5850 		if (IS_ERR(tfm)) {
5851 			net_info_ratelimited("failed to load transform for %s: %ld\n",
5852 					     sctp_hmac_alg, PTR_ERR(tfm));
5853 			return -ENOSYS;
5854 		}
5855 		sctp_sk(sk)->hmac = tfm;
5856 	}
5857 
5858 	/*
5859 	 * If a bind() or sctp_bindx() is not called prior to a listen()
5860 	 * call that allows new associations to be accepted, the system
5861 	 * picks an ephemeral port and will choose an address set equivalent
5862 	 * to binding with a wildcard address.
5863 	 *
5864 	 * This is not currently spelled out in the SCTP sockets
5865 	 * extensions draft, but follows the practice as seen in TCP
5866 	 * sockets.
5867 	 *
5868 	 */
5869 	sk->sk_state = SCTP_SS_LISTENING;
5870 	if (!ep->base.bind_addr.port) {
5871 		if (sctp_autobind(sk))
5872 			return -EAGAIN;
5873 	} else {
5874 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
5875 			sk->sk_state = SCTP_SS_CLOSED;
5876 			return -EADDRINUSE;
5877 		}
5878 	}
5879 
5880 	sk->sk_max_ack_backlog = backlog;
5881 	sctp_hash_endpoint(ep);
5882 	return 0;
5883 }
5884 
5885 /*
5886  * 4.1.3 / 5.1.3 listen()
5887  *
5888  *   By default, new associations are not accepted for UDP style sockets.
5889  *   An application uses listen() to mark a socket as being able to
5890  *   accept new associations.
5891  *
5892  *   On TCP style sockets, applications use listen() to ready the SCTP
5893  *   endpoint for accepting inbound associations.
5894  *
5895  *   On both types of endpoints a backlog of '0' disables listening.
5896  *
5897  *  Move a socket to LISTENING state.
5898  */
5899 int sctp_inet_listen(struct socket *sock, int backlog)
5900 {
5901 	struct sock *sk = sock->sk;
5902 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5903 	int err = -EINVAL;
5904 
5905 	if (unlikely(backlog < 0))
5906 		return err;
5907 
5908 	sctp_lock_sock(sk);
5909 
5910 	/* Peeled-off sockets are not allowed to listen().  */
5911 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
5912 		goto out;
5913 
5914 	if (sock->state != SS_UNCONNECTED)
5915 		goto out;
5916 
5917 	/* If backlog is zero, disable listening. */
5918 	if (!backlog) {
5919 		if (sctp_sstate(sk, CLOSED))
5920 			goto out;
5921 
5922 		err = 0;
5923 		sctp_unhash_endpoint(ep);
5924 		sk->sk_state = SCTP_SS_CLOSED;
5925 		if (sk->sk_reuse)
5926 			sctp_sk(sk)->bind_hash->fastreuse = 1;
5927 		goto out;
5928 	}
5929 
5930 	/* If we are already listening, just update the backlog */
5931 	if (sctp_sstate(sk, LISTENING))
5932 		sk->sk_max_ack_backlog = backlog;
5933 	else {
5934 		err = sctp_listen_start(sk, backlog);
5935 		if (err)
5936 			goto out;
5937 	}
5938 
5939 	err = 0;
5940 out:
5941 	sctp_release_sock(sk);
5942 	return err;
5943 }
5944 
5945 /*
5946  * This function is done by modeling the current datagram_poll() and the
5947  * tcp_poll().  Note that, based on these implementations, we don't
5948  * lock the socket in this function, even though it seems that,
5949  * ideally, locking or some other mechanisms can be used to ensure
5950  * the integrity of the counters (sndbuf and wmem_alloc) used
5951  * in this place.  We assume that we don't need locks either until proven
5952  * otherwise.
5953  *
5954  * Another thing to note is that we include the Async I/O support
5955  * here, again, by modeling the current TCP/UDP code.  We don't have
5956  * a good way to test with it yet.
5957  */
5958 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
5959 {
5960 	struct sock *sk = sock->sk;
5961 	struct sctp_sock *sp = sctp_sk(sk);
5962 	unsigned int mask;
5963 
5964 	poll_wait(file, sk_sleep(sk), wait);
5965 
5966 	/* A TCP-style listening socket becomes readable when the accept queue
5967 	 * is not empty.
5968 	 */
5969 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
5970 		return (!list_empty(&sp->ep->asocs)) ?
5971 			(POLLIN | POLLRDNORM) : 0;
5972 
5973 	mask = 0;
5974 
5975 	/* Is there any exceptional events?  */
5976 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
5977 		mask |= POLLERR;
5978 	if (sk->sk_shutdown & RCV_SHUTDOWN)
5979 		mask |= POLLRDHUP | POLLIN | POLLRDNORM;
5980 	if (sk->sk_shutdown == SHUTDOWN_MASK)
5981 		mask |= POLLHUP;
5982 
5983 	/* Is it readable?  Reconsider this code with TCP-style support.  */
5984 	if (!skb_queue_empty(&sk->sk_receive_queue))
5985 		mask |= POLLIN | POLLRDNORM;
5986 
5987 	/* The association is either gone or not ready.  */
5988 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
5989 		return mask;
5990 
5991 	/* Is it writable?  */
5992 	if (sctp_writeable(sk)) {
5993 		mask |= POLLOUT | POLLWRNORM;
5994 	} else {
5995 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
5996 		/*
5997 		 * Since the socket is not locked, the buffer
5998 		 * might be made available after the writeable check and
5999 		 * before the bit is set.  This could cause a lost I/O
6000 		 * signal.  tcp_poll() has a race breaker for this race
6001 		 * condition.  Based on their implementation, we put
6002 		 * in the following code to cover it as well.
6003 		 */
6004 		if (sctp_writeable(sk))
6005 			mask |= POLLOUT | POLLWRNORM;
6006 	}
6007 	return mask;
6008 }
6009 
6010 /********************************************************************
6011  * 2nd Level Abstractions
6012  ********************************************************************/
6013 
6014 static struct sctp_bind_bucket *sctp_bucket_create(
6015 	struct sctp_bind_hashbucket *head, unsigned short snum)
6016 {
6017 	struct sctp_bind_bucket *pp;
6018 
6019 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6020 	if (pp) {
6021 		SCTP_DBG_OBJCNT_INC(bind_bucket);
6022 		pp->port = snum;
6023 		pp->fastreuse = 0;
6024 		INIT_HLIST_HEAD(&pp->owner);
6025 		hlist_add_head(&pp->node, &head->chain);
6026 	}
6027 	return pp;
6028 }
6029 
6030 /* Caller must hold hashbucket lock for this tb with local BH disabled */
6031 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6032 {
6033 	if (pp && hlist_empty(&pp->owner)) {
6034 		__hlist_del(&pp->node);
6035 		kmem_cache_free(sctp_bucket_cachep, pp);
6036 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
6037 	}
6038 }
6039 
6040 /* Release this socket's reference to a local port.  */
6041 static inline void __sctp_put_port(struct sock *sk)
6042 {
6043 	struct sctp_bind_hashbucket *head =
6044 		&sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->inet_num)];
6045 	struct sctp_bind_bucket *pp;
6046 
6047 	sctp_spin_lock(&head->lock);
6048 	pp = sctp_sk(sk)->bind_hash;
6049 	__sk_del_bind_node(sk);
6050 	sctp_sk(sk)->bind_hash = NULL;
6051 	inet_sk(sk)->inet_num = 0;
6052 	sctp_bucket_destroy(pp);
6053 	sctp_spin_unlock(&head->lock);
6054 }
6055 
6056 void sctp_put_port(struct sock *sk)
6057 {
6058 	sctp_local_bh_disable();
6059 	__sctp_put_port(sk);
6060 	sctp_local_bh_enable();
6061 }
6062 
6063 /*
6064  * The system picks an ephemeral port and choose an address set equivalent
6065  * to binding with a wildcard address.
6066  * One of those addresses will be the primary address for the association.
6067  * This automatically enables the multihoming capability of SCTP.
6068  */
6069 static int sctp_autobind(struct sock *sk)
6070 {
6071 	union sctp_addr autoaddr;
6072 	struct sctp_af *af;
6073 	__be16 port;
6074 
6075 	/* Initialize a local sockaddr structure to INADDR_ANY. */
6076 	af = sctp_sk(sk)->pf->af;
6077 
6078 	port = htons(inet_sk(sk)->inet_num);
6079 	af->inaddr_any(&autoaddr, port);
6080 
6081 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6082 }
6083 
6084 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
6085  *
6086  * From RFC 2292
6087  * 4.2 The cmsghdr Structure *
6088  *
6089  * When ancillary data is sent or received, any number of ancillary data
6090  * objects can be specified by the msg_control and msg_controllen members of
6091  * the msghdr structure, because each object is preceded by
6092  * a cmsghdr structure defining the object's length (the cmsg_len member).
6093  * Historically Berkeley-derived implementations have passed only one object
6094  * at a time, but this API allows multiple objects to be
6095  * passed in a single call to sendmsg() or recvmsg(). The following example
6096  * shows two ancillary data objects in a control buffer.
6097  *
6098  *   |<--------------------------- msg_controllen -------------------------->|
6099  *   |                                                                       |
6100  *
6101  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
6102  *
6103  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6104  *   |                                   |                                   |
6105  *
6106  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
6107  *
6108  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
6109  *   |                                |  |                                |  |
6110  *
6111  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6112  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
6113  *
6114  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
6115  *
6116  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6117  *    ^
6118  *    |
6119  *
6120  * msg_control
6121  * points here
6122  */
6123 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
6124 				  sctp_cmsgs_t *cmsgs)
6125 {
6126 	struct cmsghdr *cmsg;
6127 	struct msghdr *my_msg = (struct msghdr *)msg;
6128 
6129 	for (cmsg = CMSG_FIRSTHDR(msg);
6130 	     cmsg != NULL;
6131 	     cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
6132 		if (!CMSG_OK(my_msg, cmsg))
6133 			return -EINVAL;
6134 
6135 		/* Should we parse this header or ignore?  */
6136 		if (cmsg->cmsg_level != IPPROTO_SCTP)
6137 			continue;
6138 
6139 		/* Strictly check lengths following example in SCM code.  */
6140 		switch (cmsg->cmsg_type) {
6141 		case SCTP_INIT:
6142 			/* SCTP Socket API Extension
6143 			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
6144 			 *
6145 			 * This cmsghdr structure provides information for
6146 			 * initializing new SCTP associations with sendmsg().
6147 			 * The SCTP_INITMSG socket option uses this same data
6148 			 * structure.  This structure is not used for
6149 			 * recvmsg().
6150 			 *
6151 			 * cmsg_level    cmsg_type      cmsg_data[]
6152 			 * ------------  ------------   ----------------------
6153 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
6154 			 */
6155 			if (cmsg->cmsg_len !=
6156 			    CMSG_LEN(sizeof(struct sctp_initmsg)))
6157 				return -EINVAL;
6158 			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
6159 			break;
6160 
6161 		case SCTP_SNDRCV:
6162 			/* SCTP Socket API Extension
6163 			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6164 			 *
6165 			 * This cmsghdr structure specifies SCTP options for
6166 			 * sendmsg() and describes SCTP header information
6167 			 * about a received message through recvmsg().
6168 			 *
6169 			 * cmsg_level    cmsg_type      cmsg_data[]
6170 			 * ------------  ------------   ----------------------
6171 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
6172 			 */
6173 			if (cmsg->cmsg_len !=
6174 			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6175 				return -EINVAL;
6176 
6177 			cmsgs->info =
6178 				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6179 
6180 			/* Minimally, validate the sinfo_flags. */
6181 			if (cmsgs->info->sinfo_flags &
6182 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6183 			      SCTP_ABORT | SCTP_EOF))
6184 				return -EINVAL;
6185 			break;
6186 
6187 		default:
6188 			return -EINVAL;
6189 		}
6190 	}
6191 	return 0;
6192 }
6193 
6194 /*
6195  * Wait for a packet..
6196  * Note: This function is the same function as in core/datagram.c
6197  * with a few modifications to make lksctp work.
6198  */
6199 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
6200 {
6201 	int error;
6202 	DEFINE_WAIT(wait);
6203 
6204 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6205 
6206 	/* Socket errors? */
6207 	error = sock_error(sk);
6208 	if (error)
6209 		goto out;
6210 
6211 	if (!skb_queue_empty(&sk->sk_receive_queue))
6212 		goto ready;
6213 
6214 	/* Socket shut down?  */
6215 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6216 		goto out;
6217 
6218 	/* Sequenced packets can come disconnected.  If so we report the
6219 	 * problem.
6220 	 */
6221 	error = -ENOTCONN;
6222 
6223 	/* Is there a good reason to think that we may receive some data?  */
6224 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6225 		goto out;
6226 
6227 	/* Handle signals.  */
6228 	if (signal_pending(current))
6229 		goto interrupted;
6230 
6231 	/* Let another process have a go.  Since we are going to sleep
6232 	 * anyway.  Note: This may cause odd behaviors if the message
6233 	 * does not fit in the user's buffer, but this seems to be the
6234 	 * only way to honor MSG_DONTWAIT realistically.
6235 	 */
6236 	sctp_release_sock(sk);
6237 	*timeo_p = schedule_timeout(*timeo_p);
6238 	sctp_lock_sock(sk);
6239 
6240 ready:
6241 	finish_wait(sk_sleep(sk), &wait);
6242 	return 0;
6243 
6244 interrupted:
6245 	error = sock_intr_errno(*timeo_p);
6246 
6247 out:
6248 	finish_wait(sk_sleep(sk), &wait);
6249 	*err = error;
6250 	return error;
6251 }
6252 
6253 /* Receive a datagram.
6254  * Note: This is pretty much the same routine as in core/datagram.c
6255  * with a few changes to make lksctp work.
6256  */
6257 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6258 					      int noblock, int *err)
6259 {
6260 	int error;
6261 	struct sk_buff *skb;
6262 	long timeo;
6263 
6264 	timeo = sock_rcvtimeo(sk, noblock);
6265 
6266 	SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
6267 			  timeo, MAX_SCHEDULE_TIMEOUT);
6268 
6269 	do {
6270 		/* Again only user level code calls this function,
6271 		 * so nothing interrupt level
6272 		 * will suddenly eat the receive_queue.
6273 		 *
6274 		 *  Look at current nfs client by the way...
6275 		 *  However, this function was correct in any case. 8)
6276 		 */
6277 		if (flags & MSG_PEEK) {
6278 			spin_lock_bh(&sk->sk_receive_queue.lock);
6279 			skb = skb_peek(&sk->sk_receive_queue);
6280 			if (skb)
6281 				atomic_inc(&skb->users);
6282 			spin_unlock_bh(&sk->sk_receive_queue.lock);
6283 		} else {
6284 			skb = skb_dequeue(&sk->sk_receive_queue);
6285 		}
6286 
6287 		if (skb)
6288 			return skb;
6289 
6290 		/* Caller is allowed not to check sk->sk_err before calling. */
6291 		error = sock_error(sk);
6292 		if (error)
6293 			goto no_packet;
6294 
6295 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6296 			break;
6297 
6298 		/* User doesn't want to wait.  */
6299 		error = -EAGAIN;
6300 		if (!timeo)
6301 			goto no_packet;
6302 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6303 
6304 	return NULL;
6305 
6306 no_packet:
6307 	*err = error;
6308 	return NULL;
6309 }
6310 
6311 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
6312 static void __sctp_write_space(struct sctp_association *asoc)
6313 {
6314 	struct sock *sk = asoc->base.sk;
6315 	struct socket *sock = sk->sk_socket;
6316 
6317 	if ((sctp_wspace(asoc) > 0) && sock) {
6318 		if (waitqueue_active(&asoc->wait))
6319 			wake_up_interruptible(&asoc->wait);
6320 
6321 		if (sctp_writeable(sk)) {
6322 			wait_queue_head_t *wq = sk_sleep(sk);
6323 
6324 			if (wq && waitqueue_active(wq))
6325 				wake_up_interruptible(wq);
6326 
6327 			/* Note that we try to include the Async I/O support
6328 			 * here by modeling from the current TCP/UDP code.
6329 			 * We have not tested with it yet.
6330 			 */
6331 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6332 				sock_wake_async(sock,
6333 						SOCK_WAKE_SPACE, POLL_OUT);
6334 		}
6335 	}
6336 }
6337 
6338 /* Do accounting for the sndbuf space.
6339  * Decrement the used sndbuf space of the corresponding association by the
6340  * data size which was just transmitted(freed).
6341  */
6342 static void sctp_wfree(struct sk_buff *skb)
6343 {
6344 	struct sctp_association *asoc;
6345 	struct sctp_chunk *chunk;
6346 	struct sock *sk;
6347 
6348 	/* Get the saved chunk pointer.  */
6349 	chunk = *((struct sctp_chunk **)(skb->cb));
6350 	asoc = chunk->asoc;
6351 	sk = asoc->base.sk;
6352 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6353 				sizeof(struct sk_buff) +
6354 				sizeof(struct sctp_chunk);
6355 
6356 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6357 
6358 	/*
6359 	 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6360 	 */
6361 	sk->sk_wmem_queued   -= skb->truesize;
6362 	sk_mem_uncharge(sk, skb->truesize);
6363 
6364 	sock_wfree(skb);
6365 	__sctp_write_space(asoc);
6366 
6367 	sctp_association_put(asoc);
6368 }
6369 
6370 /* Do accounting for the receive space on the socket.
6371  * Accounting for the association is done in ulpevent.c
6372  * We set this as a destructor for the cloned data skbs so that
6373  * accounting is done at the correct time.
6374  */
6375 void sctp_sock_rfree(struct sk_buff *skb)
6376 {
6377 	struct sock *sk = skb->sk;
6378 	struct sctp_ulpevent *event = sctp_skb2event(skb);
6379 
6380 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6381 
6382 	/*
6383 	 * Mimic the behavior of sock_rfree
6384 	 */
6385 	sk_mem_uncharge(sk, event->rmem_len);
6386 }
6387 
6388 
6389 /* Helper function to wait for space in the sndbuf.  */
6390 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6391 				size_t msg_len)
6392 {
6393 	struct sock *sk = asoc->base.sk;
6394 	int err = 0;
6395 	long current_timeo = *timeo_p;
6396 	DEFINE_WAIT(wait);
6397 
6398 	SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
6399 			  asoc, (long)(*timeo_p), msg_len);
6400 
6401 	/* Increment the association's refcnt.  */
6402 	sctp_association_hold(asoc);
6403 
6404 	/* Wait on the association specific sndbuf space. */
6405 	for (;;) {
6406 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6407 					  TASK_INTERRUPTIBLE);
6408 		if (!*timeo_p)
6409 			goto do_nonblock;
6410 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6411 		    asoc->base.dead)
6412 			goto do_error;
6413 		if (signal_pending(current))
6414 			goto do_interrupted;
6415 		if (msg_len <= sctp_wspace(asoc))
6416 			break;
6417 
6418 		/* Let another process have a go.  Since we are going
6419 		 * to sleep anyway.
6420 		 */
6421 		sctp_release_sock(sk);
6422 		current_timeo = schedule_timeout(current_timeo);
6423 		BUG_ON(sk != asoc->base.sk);
6424 		sctp_lock_sock(sk);
6425 
6426 		*timeo_p = current_timeo;
6427 	}
6428 
6429 out:
6430 	finish_wait(&asoc->wait, &wait);
6431 
6432 	/* Release the association's refcnt.  */
6433 	sctp_association_put(asoc);
6434 
6435 	return err;
6436 
6437 do_error:
6438 	err = -EPIPE;
6439 	goto out;
6440 
6441 do_interrupted:
6442 	err = sock_intr_errno(*timeo_p);
6443 	goto out;
6444 
6445 do_nonblock:
6446 	err = -EAGAIN;
6447 	goto out;
6448 }
6449 
6450 void sctp_data_ready(struct sock *sk, int len)
6451 {
6452 	struct socket_wq *wq;
6453 
6454 	rcu_read_lock();
6455 	wq = rcu_dereference(sk->sk_wq);
6456 	if (wq_has_sleeper(wq))
6457 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6458 						POLLRDNORM | POLLRDBAND);
6459 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6460 	rcu_read_unlock();
6461 }
6462 
6463 /* If socket sndbuf has changed, wake up all per association waiters.  */
6464 void sctp_write_space(struct sock *sk)
6465 {
6466 	struct sctp_association *asoc;
6467 
6468 	/* Wake up the tasks in each wait queue.  */
6469 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6470 		__sctp_write_space(asoc);
6471 	}
6472 }
6473 
6474 /* Is there any sndbuf space available on the socket?
6475  *
6476  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6477  * associations on the same socket.  For a UDP-style socket with
6478  * multiple associations, it is possible for it to be "unwriteable"
6479  * prematurely.  I assume that this is acceptable because
6480  * a premature "unwriteable" is better than an accidental "writeable" which
6481  * would cause an unwanted block under certain circumstances.  For the 1-1
6482  * UDP-style sockets or TCP-style sockets, this code should work.
6483  *  - Daisy
6484  */
6485 static int sctp_writeable(struct sock *sk)
6486 {
6487 	int amt = 0;
6488 
6489 	amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
6490 	if (amt < 0)
6491 		amt = 0;
6492 	return amt;
6493 }
6494 
6495 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6496  * returns immediately with EINPROGRESS.
6497  */
6498 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6499 {
6500 	struct sock *sk = asoc->base.sk;
6501 	int err = 0;
6502 	long current_timeo = *timeo_p;
6503 	DEFINE_WAIT(wait);
6504 
6505 	SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc,
6506 			  (long)(*timeo_p));
6507 
6508 	/* Increment the association's refcnt.  */
6509 	sctp_association_hold(asoc);
6510 
6511 	for (;;) {
6512 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6513 					  TASK_INTERRUPTIBLE);
6514 		if (!*timeo_p)
6515 			goto do_nonblock;
6516 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6517 			break;
6518 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6519 		    asoc->base.dead)
6520 			goto do_error;
6521 		if (signal_pending(current))
6522 			goto do_interrupted;
6523 
6524 		if (sctp_state(asoc, ESTABLISHED))
6525 			break;
6526 
6527 		/* Let another process have a go.  Since we are going
6528 		 * to sleep anyway.
6529 		 */
6530 		sctp_release_sock(sk);
6531 		current_timeo = schedule_timeout(current_timeo);
6532 		sctp_lock_sock(sk);
6533 
6534 		*timeo_p = current_timeo;
6535 	}
6536 
6537 out:
6538 	finish_wait(&asoc->wait, &wait);
6539 
6540 	/* Release the association's refcnt.  */
6541 	sctp_association_put(asoc);
6542 
6543 	return err;
6544 
6545 do_error:
6546 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6547 		err = -ETIMEDOUT;
6548 	else
6549 		err = -ECONNREFUSED;
6550 	goto out;
6551 
6552 do_interrupted:
6553 	err = sock_intr_errno(*timeo_p);
6554 	goto out;
6555 
6556 do_nonblock:
6557 	err = -EINPROGRESS;
6558 	goto out;
6559 }
6560 
6561 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6562 {
6563 	struct sctp_endpoint *ep;
6564 	int err = 0;
6565 	DEFINE_WAIT(wait);
6566 
6567 	ep = sctp_sk(sk)->ep;
6568 
6569 
6570 	for (;;) {
6571 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
6572 					  TASK_INTERRUPTIBLE);
6573 
6574 		if (list_empty(&ep->asocs)) {
6575 			sctp_release_sock(sk);
6576 			timeo = schedule_timeout(timeo);
6577 			sctp_lock_sock(sk);
6578 		}
6579 
6580 		err = -EINVAL;
6581 		if (!sctp_sstate(sk, LISTENING))
6582 			break;
6583 
6584 		err = 0;
6585 		if (!list_empty(&ep->asocs))
6586 			break;
6587 
6588 		err = sock_intr_errno(timeo);
6589 		if (signal_pending(current))
6590 			break;
6591 
6592 		err = -EAGAIN;
6593 		if (!timeo)
6594 			break;
6595 	}
6596 
6597 	finish_wait(sk_sleep(sk), &wait);
6598 
6599 	return err;
6600 }
6601 
6602 static void sctp_wait_for_close(struct sock *sk, long timeout)
6603 {
6604 	DEFINE_WAIT(wait);
6605 
6606 	do {
6607 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6608 		if (list_empty(&sctp_sk(sk)->ep->asocs))
6609 			break;
6610 		sctp_release_sock(sk);
6611 		timeout = schedule_timeout(timeout);
6612 		sctp_lock_sock(sk);
6613 	} while (!signal_pending(current) && timeout);
6614 
6615 	finish_wait(sk_sleep(sk), &wait);
6616 }
6617 
6618 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6619 {
6620 	struct sk_buff *frag;
6621 
6622 	if (!skb->data_len)
6623 		goto done;
6624 
6625 	/* Don't forget the fragments. */
6626 	skb_walk_frags(skb, frag)
6627 		sctp_skb_set_owner_r_frag(frag, sk);
6628 
6629 done:
6630 	sctp_skb_set_owner_r(skb, sk);
6631 }
6632 
6633 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
6634 		    struct sctp_association *asoc)
6635 {
6636 	struct inet_sock *inet = inet_sk(sk);
6637 	struct inet_sock *newinet;
6638 
6639 	newsk->sk_type = sk->sk_type;
6640 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
6641 	newsk->sk_flags = sk->sk_flags;
6642 	newsk->sk_no_check = sk->sk_no_check;
6643 	newsk->sk_reuse = sk->sk_reuse;
6644 
6645 	newsk->sk_shutdown = sk->sk_shutdown;
6646 	newsk->sk_destruct = inet_sock_destruct;
6647 	newsk->sk_family = sk->sk_family;
6648 	newsk->sk_protocol = IPPROTO_SCTP;
6649 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
6650 	newsk->sk_sndbuf = sk->sk_sndbuf;
6651 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
6652 	newsk->sk_lingertime = sk->sk_lingertime;
6653 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
6654 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
6655 
6656 	newinet = inet_sk(newsk);
6657 
6658 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
6659 	 * getsockname() and getpeername()
6660 	 */
6661 	newinet->inet_sport = inet->inet_sport;
6662 	newinet->inet_saddr = inet->inet_saddr;
6663 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
6664 	newinet->inet_dport = htons(asoc->peer.port);
6665 	newinet->pmtudisc = inet->pmtudisc;
6666 	newinet->inet_id = asoc->next_tsn ^ jiffies;
6667 
6668 	newinet->uc_ttl = inet->uc_ttl;
6669 	newinet->mc_loop = 1;
6670 	newinet->mc_ttl = 1;
6671 	newinet->mc_index = 0;
6672 	newinet->mc_list = NULL;
6673 }
6674 
6675 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6676  * and its messages to the newsk.
6677  */
6678 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6679 			      struct sctp_association *assoc,
6680 			      sctp_socket_type_t type)
6681 {
6682 	struct sctp_sock *oldsp = sctp_sk(oldsk);
6683 	struct sctp_sock *newsp = sctp_sk(newsk);
6684 	struct sctp_bind_bucket *pp; /* hash list port iterator */
6685 	struct sctp_endpoint *newep = newsp->ep;
6686 	struct sk_buff *skb, *tmp;
6687 	struct sctp_ulpevent *event;
6688 	struct sctp_bind_hashbucket *head;
6689 	struct list_head tmplist;
6690 
6691 	/* Migrate socket buffer sizes and all the socket level options to the
6692 	 * new socket.
6693 	 */
6694 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
6695 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6696 	/* Brute force copy old sctp opt. */
6697 	if (oldsp->do_auto_asconf) {
6698 		memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist));
6699 		inet_sk_copy_descendant(newsk, oldsk);
6700 		memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist));
6701 	} else
6702 		inet_sk_copy_descendant(newsk, oldsk);
6703 
6704 	/* Restore the ep value that was overwritten with the above structure
6705 	 * copy.
6706 	 */
6707 	newsp->ep = newep;
6708 	newsp->hmac = NULL;
6709 
6710 	/* Hook this new socket in to the bind_hash list. */
6711 	head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->inet_num)];
6712 	sctp_local_bh_disable();
6713 	sctp_spin_lock(&head->lock);
6714 	pp = sctp_sk(oldsk)->bind_hash;
6715 	sk_add_bind_node(newsk, &pp->owner);
6716 	sctp_sk(newsk)->bind_hash = pp;
6717 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
6718 	sctp_spin_unlock(&head->lock);
6719 	sctp_local_bh_enable();
6720 
6721 	/* Copy the bind_addr list from the original endpoint to the new
6722 	 * endpoint so that we can handle restarts properly
6723 	 */
6724 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6725 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
6726 
6727 	/* Move any messages in the old socket's receive queue that are for the
6728 	 * peeled off association to the new socket's receive queue.
6729 	 */
6730 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6731 		event = sctp_skb2event(skb);
6732 		if (event->asoc == assoc) {
6733 			__skb_unlink(skb, &oldsk->sk_receive_queue);
6734 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
6735 			sctp_skb_set_owner_r_frag(skb, newsk);
6736 		}
6737 	}
6738 
6739 	/* Clean up any messages pending delivery due to partial
6740 	 * delivery.   Three cases:
6741 	 * 1) No partial deliver;  no work.
6742 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6743 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6744 	 */
6745 	skb_queue_head_init(&newsp->pd_lobby);
6746 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6747 
6748 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6749 		struct sk_buff_head *queue;
6750 
6751 		/* Decide which queue to move pd_lobby skbs to. */
6752 		if (assoc->ulpq.pd_mode) {
6753 			queue = &newsp->pd_lobby;
6754 		} else
6755 			queue = &newsk->sk_receive_queue;
6756 
6757 		/* Walk through the pd_lobby, looking for skbs that
6758 		 * need moved to the new socket.
6759 		 */
6760 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6761 			event = sctp_skb2event(skb);
6762 			if (event->asoc == assoc) {
6763 				__skb_unlink(skb, &oldsp->pd_lobby);
6764 				__skb_queue_tail(queue, skb);
6765 				sctp_skb_set_owner_r_frag(skb, newsk);
6766 			}
6767 		}
6768 
6769 		/* Clear up any skbs waiting for the partial
6770 		 * delivery to finish.
6771 		 */
6772 		if (assoc->ulpq.pd_mode)
6773 			sctp_clear_pd(oldsk, NULL);
6774 
6775 	}
6776 
6777 	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
6778 		sctp_skb_set_owner_r_frag(skb, newsk);
6779 
6780 	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
6781 		sctp_skb_set_owner_r_frag(skb, newsk);
6782 
6783 	/* Set the type of socket to indicate that it is peeled off from the
6784 	 * original UDP-style socket or created with the accept() call on a
6785 	 * TCP-style socket..
6786 	 */
6787 	newsp->type = type;
6788 
6789 	/* Mark the new socket "in-use" by the user so that any packets
6790 	 * that may arrive on the association after we've moved it are
6791 	 * queued to the backlog.  This prevents a potential race between
6792 	 * backlog processing on the old socket and new-packet processing
6793 	 * on the new socket.
6794 	 *
6795 	 * The caller has just allocated newsk so we can guarantee that other
6796 	 * paths won't try to lock it and then oldsk.
6797 	 */
6798 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
6799 	sctp_assoc_migrate(assoc, newsk);
6800 
6801 	/* If the association on the newsk is already closed before accept()
6802 	 * is called, set RCV_SHUTDOWN flag.
6803 	 */
6804 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
6805 		newsk->sk_shutdown |= RCV_SHUTDOWN;
6806 
6807 	newsk->sk_state = SCTP_SS_ESTABLISHED;
6808 	sctp_release_sock(newsk);
6809 }
6810 
6811 
6812 /* This proto struct describes the ULP interface for SCTP.  */
6813 struct proto sctp_prot = {
6814 	.name        =	"SCTP",
6815 	.owner       =	THIS_MODULE,
6816 	.close       =	sctp_close,
6817 	.connect     =	sctp_connect,
6818 	.disconnect  =	sctp_disconnect,
6819 	.accept      =	sctp_accept,
6820 	.ioctl       =	sctp_ioctl,
6821 	.init        =	sctp_init_sock,
6822 	.destroy     =	sctp_destroy_sock,
6823 	.shutdown    =	sctp_shutdown,
6824 	.setsockopt  =	sctp_setsockopt,
6825 	.getsockopt  =	sctp_getsockopt,
6826 	.sendmsg     =	sctp_sendmsg,
6827 	.recvmsg     =	sctp_recvmsg,
6828 	.bind        =	sctp_bind,
6829 	.backlog_rcv =	sctp_backlog_rcv,
6830 	.hash        =	sctp_hash,
6831 	.unhash      =	sctp_unhash,
6832 	.get_port    =	sctp_get_port,
6833 	.obj_size    =  sizeof(struct sctp_sock),
6834 	.sysctl_mem  =  sysctl_sctp_mem,
6835 	.sysctl_rmem =  sysctl_sctp_rmem,
6836 	.sysctl_wmem =  sysctl_sctp_wmem,
6837 	.memory_pressure = &sctp_memory_pressure,
6838 	.enter_memory_pressure = sctp_enter_memory_pressure,
6839 	.memory_allocated = &sctp_memory_allocated,
6840 	.sockets_allocated = &sctp_sockets_allocated,
6841 };
6842 
6843 #if IS_ENABLED(CONFIG_IPV6)
6844 
6845 struct proto sctpv6_prot = {
6846 	.name		= "SCTPv6",
6847 	.owner		= THIS_MODULE,
6848 	.close		= sctp_close,
6849 	.connect	= sctp_connect,
6850 	.disconnect	= sctp_disconnect,
6851 	.accept		= sctp_accept,
6852 	.ioctl		= sctp_ioctl,
6853 	.init		= sctp_init_sock,
6854 	.destroy	= sctp_destroy_sock,
6855 	.shutdown	= sctp_shutdown,
6856 	.setsockopt	= sctp_setsockopt,
6857 	.getsockopt	= sctp_getsockopt,
6858 	.sendmsg	= sctp_sendmsg,
6859 	.recvmsg	= sctp_recvmsg,
6860 	.bind		= sctp_bind,
6861 	.backlog_rcv	= sctp_backlog_rcv,
6862 	.hash		= sctp_hash,
6863 	.unhash		= sctp_unhash,
6864 	.get_port	= sctp_get_port,
6865 	.obj_size	= sizeof(struct sctp6_sock),
6866 	.sysctl_mem	= sysctl_sctp_mem,
6867 	.sysctl_rmem	= sysctl_sctp_rmem,
6868 	.sysctl_wmem	= sysctl_sctp_wmem,
6869 	.memory_pressure = &sctp_memory_pressure,
6870 	.enter_memory_pressure = sctp_enter_memory_pressure,
6871 	.memory_allocated = &sctp_memory_allocated,
6872 	.sockets_allocated = &sctp_sockets_allocated,
6873 };
6874 #endif /* IS_ENABLED(CONFIG_IPV6) */
6875