xref: /linux/net/sctp/socket.c (revision b886d83c5b621abc84ff9616f14c529be3f6b147)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3  * (C) Copyright IBM Corp. 2001, 2004
4  * Copyright (c) 1999-2000 Cisco, Inc.
5  * Copyright (c) 1999-2001 Motorola, Inc.
6  * Copyright (c) 2001-2003 Intel Corp.
7  * Copyright (c) 2001-2002 Nokia, Inc.
8  * Copyright (c) 2001 La Monte H.P. Yarroll
9  *
10  * This file is part of the SCTP kernel implementation
11  *
12  * These functions interface with the sockets layer to implement the
13  * SCTP Extensions for the Sockets API.
14  *
15  * Note that the descriptions from the specification are USER level
16  * functions--this file is the functions which populate the struct proto
17  * for SCTP which is the BOTTOM of the sockets interface.
18  *
19  * Please send any bug reports or fixes you make to the
20  * email address(es):
21  *    lksctp developers <linux-sctp@vger.kernel.org>
22  *
23  * Written or modified by:
24  *    La Monte H.P. Yarroll <piggy@acm.org>
25  *    Narasimha Budihal     <narsi@refcode.org>
26  *    Karl Knutson          <karl@athena.chicago.il.us>
27  *    Jon Grimm             <jgrimm@us.ibm.com>
28  *    Xingang Guo           <xingang.guo@intel.com>
29  *    Daisy Chang           <daisyc@us.ibm.com>
30  *    Sridhar Samudrala     <samudrala@us.ibm.com>
31  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
32  *    Ardelle Fan	    <ardelle.fan@intel.com>
33  *    Ryan Layer	    <rmlayer@us.ibm.com>
34  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
35  *    Kevin Gao             <kevin.gao@intel.com>
36  */
37 
38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
39 
40 #include <crypto/hash.h>
41 #include <linux/types.h>
42 #include <linux/kernel.h>
43 #include <linux/wait.h>
44 #include <linux/time.h>
45 #include <linux/sched/signal.h>
46 #include <linux/ip.h>
47 #include <linux/capability.h>
48 #include <linux/fcntl.h>
49 #include <linux/poll.h>
50 #include <linux/init.h>
51 #include <linux/slab.h>
52 #include <linux/file.h>
53 #include <linux/compat.h>
54 #include <linux/rhashtable.h>
55 
56 #include <net/ip.h>
57 #include <net/icmp.h>
58 #include <net/route.h>
59 #include <net/ipv6.h>
60 #include <net/inet_common.h>
61 #include <net/busy_poll.h>
62 
63 #include <linux/socket.h> /* for sa_family_t */
64 #include <linux/export.h>
65 #include <net/sock.h>
66 #include <net/sctp/sctp.h>
67 #include <net/sctp/sm.h>
68 #include <net/sctp/stream_sched.h>
69 
70 /* Forward declarations for internal helper functions. */
71 static bool sctp_writeable(struct sock *sk);
72 static void sctp_wfree(struct sk_buff *skb);
73 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
74 				size_t msg_len);
75 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
76 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
77 static int sctp_wait_for_accept(struct sock *sk, long timeo);
78 static void sctp_wait_for_close(struct sock *sk, long timeo);
79 static void sctp_destruct_sock(struct sock *sk);
80 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
81 					union sctp_addr *addr, int len);
82 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
83 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
84 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
85 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
86 static int sctp_send_asconf(struct sctp_association *asoc,
87 			    struct sctp_chunk *chunk);
88 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
89 static int sctp_autobind(struct sock *sk);
90 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
91 			     struct sctp_association *assoc,
92 			     enum sctp_socket_type type);
93 
94 static unsigned long sctp_memory_pressure;
95 static atomic_long_t sctp_memory_allocated;
96 struct percpu_counter sctp_sockets_allocated;
97 
98 static void sctp_enter_memory_pressure(struct sock *sk)
99 {
100 	sctp_memory_pressure = 1;
101 }
102 
103 
104 /* Get the sndbuf space available at the time on the association.  */
105 static inline int sctp_wspace(struct sctp_association *asoc)
106 {
107 	struct sock *sk = asoc->base.sk;
108 
109 	return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used
110 				       : sk_stream_wspace(sk);
111 }
112 
113 /* Increment the used sndbuf space count of the corresponding association by
114  * the size of the outgoing data chunk.
115  * Also, set the skb destructor for sndbuf accounting later.
116  *
117  * Since it is always 1-1 between chunk and skb, and also a new skb is always
118  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
119  * destructor in the data chunk skb for the purpose of the sndbuf space
120  * tracking.
121  */
122 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
123 {
124 	struct sctp_association *asoc = chunk->asoc;
125 	struct sock *sk = asoc->base.sk;
126 
127 	/* The sndbuf space is tracked per association.  */
128 	sctp_association_hold(asoc);
129 
130 	if (chunk->shkey)
131 		sctp_auth_shkey_hold(chunk->shkey);
132 
133 	skb_set_owner_w(chunk->skb, sk);
134 
135 	chunk->skb->destructor = sctp_wfree;
136 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
137 	skb_shinfo(chunk->skb)->destructor_arg = chunk;
138 
139 	refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
140 	asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk);
141 	sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk);
142 	sk_mem_charge(sk, chunk->skb->truesize);
143 }
144 
145 static void sctp_clear_owner_w(struct sctp_chunk *chunk)
146 {
147 	skb_orphan(chunk->skb);
148 }
149 
150 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
151 				       void (*cb)(struct sctp_chunk *))
152 
153 {
154 	struct sctp_outq *q = &asoc->outqueue;
155 	struct sctp_transport *t;
156 	struct sctp_chunk *chunk;
157 
158 	list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
159 		list_for_each_entry(chunk, &t->transmitted, transmitted_list)
160 			cb(chunk);
161 
162 	list_for_each_entry(chunk, &q->retransmit, transmitted_list)
163 		cb(chunk);
164 
165 	list_for_each_entry(chunk, &q->sacked, transmitted_list)
166 		cb(chunk);
167 
168 	list_for_each_entry(chunk, &q->abandoned, transmitted_list)
169 		cb(chunk);
170 
171 	list_for_each_entry(chunk, &q->out_chunk_list, list)
172 		cb(chunk);
173 }
174 
175 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
176 				 void (*cb)(struct sk_buff *, struct sock *))
177 
178 {
179 	struct sk_buff *skb, *tmp;
180 
181 	sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
182 		cb(skb, sk);
183 
184 	sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
185 		cb(skb, sk);
186 
187 	sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
188 		cb(skb, sk);
189 }
190 
191 /* Verify that this is a valid address. */
192 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
193 				   int len)
194 {
195 	struct sctp_af *af;
196 
197 	/* Verify basic sockaddr. */
198 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
199 	if (!af)
200 		return -EINVAL;
201 
202 	/* Is this a valid SCTP address?  */
203 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
204 		return -EINVAL;
205 
206 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
207 		return -EINVAL;
208 
209 	return 0;
210 }
211 
212 /* Look up the association by its id.  If this is not a UDP-style
213  * socket, the ID field is always ignored.
214  */
215 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
216 {
217 	struct sctp_association *asoc = NULL;
218 
219 	/* If this is not a UDP-style socket, assoc id should be ignored. */
220 	if (!sctp_style(sk, UDP)) {
221 		/* Return NULL if the socket state is not ESTABLISHED. It
222 		 * could be a TCP-style listening socket or a socket which
223 		 * hasn't yet called connect() to establish an association.
224 		 */
225 		if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
226 			return NULL;
227 
228 		/* Get the first and the only association from the list. */
229 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
230 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
231 					  struct sctp_association, asocs);
232 		return asoc;
233 	}
234 
235 	/* Otherwise this is a UDP-style socket. */
236 	if (id <= SCTP_ALL_ASSOC)
237 		return NULL;
238 
239 	spin_lock_bh(&sctp_assocs_id_lock);
240 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
241 	if (asoc && (asoc->base.sk != sk || asoc->base.dead))
242 		asoc = NULL;
243 	spin_unlock_bh(&sctp_assocs_id_lock);
244 
245 	return asoc;
246 }
247 
248 /* Look up the transport from an address and an assoc id. If both address and
249  * id are specified, the associations matching the address and the id should be
250  * the same.
251  */
252 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
253 					      struct sockaddr_storage *addr,
254 					      sctp_assoc_t id)
255 {
256 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
257 	struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
258 	union sctp_addr *laddr = (union sctp_addr *)addr;
259 	struct sctp_transport *transport;
260 
261 	if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
262 		return NULL;
263 
264 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
265 					       laddr,
266 					       &transport);
267 
268 	if (!addr_asoc)
269 		return NULL;
270 
271 	id_asoc = sctp_id2assoc(sk, id);
272 	if (id_asoc && (id_asoc != addr_asoc))
273 		return NULL;
274 
275 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
276 						(union sctp_addr *)addr);
277 
278 	return transport;
279 }
280 
281 /* API 3.1.2 bind() - UDP Style Syntax
282  * The syntax of bind() is,
283  *
284  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
285  *
286  *   sd      - the socket descriptor returned by socket().
287  *   addr    - the address structure (struct sockaddr_in or struct
288  *             sockaddr_in6 [RFC 2553]),
289  *   addr_len - the size of the address structure.
290  */
291 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
292 {
293 	int retval = 0;
294 
295 	lock_sock(sk);
296 
297 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
298 		 addr, addr_len);
299 
300 	/* Disallow binding twice. */
301 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
302 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
303 				      addr_len);
304 	else
305 		retval = -EINVAL;
306 
307 	release_sock(sk);
308 
309 	return retval;
310 }
311 
312 static long sctp_get_port_local(struct sock *, union sctp_addr *);
313 
314 /* Verify this is a valid sockaddr. */
315 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
316 					union sctp_addr *addr, int len)
317 {
318 	struct sctp_af *af;
319 
320 	/* Check minimum size.  */
321 	if (len < sizeof (struct sockaddr))
322 		return NULL;
323 
324 	if (!opt->pf->af_supported(addr->sa.sa_family, opt))
325 		return NULL;
326 
327 	if (addr->sa.sa_family == AF_INET6) {
328 		if (len < SIN6_LEN_RFC2133)
329 			return NULL;
330 		/* V4 mapped address are really of AF_INET family */
331 		if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
332 		    !opt->pf->af_supported(AF_INET, opt))
333 			return NULL;
334 	}
335 
336 	/* If we get this far, af is valid. */
337 	af = sctp_get_af_specific(addr->sa.sa_family);
338 
339 	if (len < af->sockaddr_len)
340 		return NULL;
341 
342 	return af;
343 }
344 
345 /* Bind a local address either to an endpoint or to an association.  */
346 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
347 {
348 	struct net *net = sock_net(sk);
349 	struct sctp_sock *sp = sctp_sk(sk);
350 	struct sctp_endpoint *ep = sp->ep;
351 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
352 	struct sctp_af *af;
353 	unsigned short snum;
354 	int ret = 0;
355 
356 	/* Common sockaddr verification. */
357 	af = sctp_sockaddr_af(sp, addr, len);
358 	if (!af) {
359 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
360 			 __func__, sk, addr, len);
361 		return -EINVAL;
362 	}
363 
364 	snum = ntohs(addr->v4.sin_port);
365 
366 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
367 		 __func__, sk, &addr->sa, bp->port, snum, len);
368 
369 	/* PF specific bind() address verification. */
370 	if (!sp->pf->bind_verify(sp, addr))
371 		return -EADDRNOTAVAIL;
372 
373 	/* We must either be unbound, or bind to the same port.
374 	 * It's OK to allow 0 ports if we are already bound.
375 	 * We'll just inhert an already bound port in this case
376 	 */
377 	if (bp->port) {
378 		if (!snum)
379 			snum = bp->port;
380 		else if (snum != bp->port) {
381 			pr_debug("%s: new port %d doesn't match existing port "
382 				 "%d\n", __func__, snum, bp->port);
383 			return -EINVAL;
384 		}
385 	}
386 
387 	if (snum && snum < inet_prot_sock(net) &&
388 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
389 		return -EACCES;
390 
391 	/* See if the address matches any of the addresses we may have
392 	 * already bound before checking against other endpoints.
393 	 */
394 	if (sctp_bind_addr_match(bp, addr, sp))
395 		return -EINVAL;
396 
397 	/* Make sure we are allowed to bind here.
398 	 * The function sctp_get_port_local() does duplicate address
399 	 * detection.
400 	 */
401 	addr->v4.sin_port = htons(snum);
402 	if ((ret = sctp_get_port_local(sk, addr))) {
403 		return -EADDRINUSE;
404 	}
405 
406 	/* Refresh ephemeral port.  */
407 	if (!bp->port)
408 		bp->port = inet_sk(sk)->inet_num;
409 
410 	/* Add the address to the bind address list.
411 	 * Use GFP_ATOMIC since BHs will be disabled.
412 	 */
413 	ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
414 				 SCTP_ADDR_SRC, GFP_ATOMIC);
415 
416 	/* Copy back into socket for getsockname() use. */
417 	if (!ret) {
418 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
419 		sp->pf->to_sk_saddr(addr, sk);
420 	}
421 
422 	return ret;
423 }
424 
425  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
426  *
427  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
428  * at any one time.  If a sender, after sending an ASCONF chunk, decides
429  * it needs to transfer another ASCONF Chunk, it MUST wait until the
430  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
431  * subsequent ASCONF. Note this restriction binds each side, so at any
432  * time two ASCONF may be in-transit on any given association (one sent
433  * from each endpoint).
434  */
435 static int sctp_send_asconf(struct sctp_association *asoc,
436 			    struct sctp_chunk *chunk)
437 {
438 	struct net 	*net = sock_net(asoc->base.sk);
439 	int		retval = 0;
440 
441 	/* If there is an outstanding ASCONF chunk, queue it for later
442 	 * transmission.
443 	 */
444 	if (asoc->addip_last_asconf) {
445 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
446 		goto out;
447 	}
448 
449 	/* Hold the chunk until an ASCONF_ACK is received. */
450 	sctp_chunk_hold(chunk);
451 	retval = sctp_primitive_ASCONF(net, asoc, chunk);
452 	if (retval)
453 		sctp_chunk_free(chunk);
454 	else
455 		asoc->addip_last_asconf = chunk;
456 
457 out:
458 	return retval;
459 }
460 
461 /* Add a list of addresses as bind addresses to local endpoint or
462  * association.
463  *
464  * Basically run through each address specified in the addrs/addrcnt
465  * array/length pair, determine if it is IPv6 or IPv4 and call
466  * sctp_do_bind() on it.
467  *
468  * If any of them fails, then the operation will be reversed and the
469  * ones that were added will be removed.
470  *
471  * Only sctp_setsockopt_bindx() is supposed to call this function.
472  */
473 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
474 {
475 	int cnt;
476 	int retval = 0;
477 	void *addr_buf;
478 	struct sockaddr *sa_addr;
479 	struct sctp_af *af;
480 
481 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
482 		 addrs, addrcnt);
483 
484 	addr_buf = addrs;
485 	for (cnt = 0; cnt < addrcnt; cnt++) {
486 		/* The list may contain either IPv4 or IPv6 address;
487 		 * determine the address length for walking thru the list.
488 		 */
489 		sa_addr = addr_buf;
490 		af = sctp_get_af_specific(sa_addr->sa_family);
491 		if (!af) {
492 			retval = -EINVAL;
493 			goto err_bindx_add;
494 		}
495 
496 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
497 				      af->sockaddr_len);
498 
499 		addr_buf += af->sockaddr_len;
500 
501 err_bindx_add:
502 		if (retval < 0) {
503 			/* Failed. Cleanup the ones that have been added */
504 			if (cnt > 0)
505 				sctp_bindx_rem(sk, addrs, cnt);
506 			return retval;
507 		}
508 	}
509 
510 	return retval;
511 }
512 
513 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
514  * associations that are part of the endpoint indicating that a list of local
515  * addresses are added to the endpoint.
516  *
517  * If any of the addresses is already in the bind address list of the
518  * association, we do not send the chunk for that association.  But it will not
519  * affect other associations.
520  *
521  * Only sctp_setsockopt_bindx() is supposed to call this function.
522  */
523 static int sctp_send_asconf_add_ip(struct sock		*sk,
524 				   struct sockaddr	*addrs,
525 				   int 			addrcnt)
526 {
527 	struct net *net = sock_net(sk);
528 	struct sctp_sock		*sp;
529 	struct sctp_endpoint		*ep;
530 	struct sctp_association		*asoc;
531 	struct sctp_bind_addr		*bp;
532 	struct sctp_chunk		*chunk;
533 	struct sctp_sockaddr_entry	*laddr;
534 	union sctp_addr			*addr;
535 	union sctp_addr			saveaddr;
536 	void				*addr_buf;
537 	struct sctp_af			*af;
538 	struct list_head		*p;
539 	int 				i;
540 	int 				retval = 0;
541 
542 	if (!net->sctp.addip_enable)
543 		return retval;
544 
545 	sp = sctp_sk(sk);
546 	ep = sp->ep;
547 
548 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
549 		 __func__, sk, addrs, addrcnt);
550 
551 	list_for_each_entry(asoc, &ep->asocs, asocs) {
552 		if (!asoc->peer.asconf_capable)
553 			continue;
554 
555 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
556 			continue;
557 
558 		if (!sctp_state(asoc, ESTABLISHED))
559 			continue;
560 
561 		/* Check if any address in the packed array of addresses is
562 		 * in the bind address list of the association. If so,
563 		 * do not send the asconf chunk to its peer, but continue with
564 		 * other associations.
565 		 */
566 		addr_buf = addrs;
567 		for (i = 0; i < addrcnt; i++) {
568 			addr = addr_buf;
569 			af = sctp_get_af_specific(addr->v4.sin_family);
570 			if (!af) {
571 				retval = -EINVAL;
572 				goto out;
573 			}
574 
575 			if (sctp_assoc_lookup_laddr(asoc, addr))
576 				break;
577 
578 			addr_buf += af->sockaddr_len;
579 		}
580 		if (i < addrcnt)
581 			continue;
582 
583 		/* Use the first valid address in bind addr list of
584 		 * association as Address Parameter of ASCONF CHUNK.
585 		 */
586 		bp = &asoc->base.bind_addr;
587 		p = bp->address_list.next;
588 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
589 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
590 						   addrcnt, SCTP_PARAM_ADD_IP);
591 		if (!chunk) {
592 			retval = -ENOMEM;
593 			goto out;
594 		}
595 
596 		/* Add the new addresses to the bind address list with
597 		 * use_as_src set to 0.
598 		 */
599 		addr_buf = addrs;
600 		for (i = 0; i < addrcnt; i++) {
601 			addr = addr_buf;
602 			af = sctp_get_af_specific(addr->v4.sin_family);
603 			memcpy(&saveaddr, addr, af->sockaddr_len);
604 			retval = sctp_add_bind_addr(bp, &saveaddr,
605 						    sizeof(saveaddr),
606 						    SCTP_ADDR_NEW, GFP_ATOMIC);
607 			addr_buf += af->sockaddr_len;
608 		}
609 		if (asoc->src_out_of_asoc_ok) {
610 			struct sctp_transport *trans;
611 
612 			list_for_each_entry(trans,
613 			    &asoc->peer.transport_addr_list, transports) {
614 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
615 				    2*asoc->pathmtu, 4380));
616 				trans->ssthresh = asoc->peer.i.a_rwnd;
617 				trans->rto = asoc->rto_initial;
618 				sctp_max_rto(asoc, trans);
619 				trans->rtt = trans->srtt = trans->rttvar = 0;
620 				/* Clear the source and route cache */
621 				sctp_transport_route(trans, NULL,
622 						     sctp_sk(asoc->base.sk));
623 			}
624 		}
625 		retval = sctp_send_asconf(asoc, chunk);
626 	}
627 
628 out:
629 	return retval;
630 }
631 
632 /* Remove a list of addresses from bind addresses list.  Do not remove the
633  * last address.
634  *
635  * Basically run through each address specified in the addrs/addrcnt
636  * array/length pair, determine if it is IPv6 or IPv4 and call
637  * sctp_del_bind() on it.
638  *
639  * If any of them fails, then the operation will be reversed and the
640  * ones that were removed will be added back.
641  *
642  * At least one address has to be left; if only one address is
643  * available, the operation will return -EBUSY.
644  *
645  * Only sctp_setsockopt_bindx() is supposed to call this function.
646  */
647 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
648 {
649 	struct sctp_sock *sp = sctp_sk(sk);
650 	struct sctp_endpoint *ep = sp->ep;
651 	int cnt;
652 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
653 	int retval = 0;
654 	void *addr_buf;
655 	union sctp_addr *sa_addr;
656 	struct sctp_af *af;
657 
658 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
659 		 __func__, sk, addrs, addrcnt);
660 
661 	addr_buf = addrs;
662 	for (cnt = 0; cnt < addrcnt; cnt++) {
663 		/* If the bind address list is empty or if there is only one
664 		 * bind address, there is nothing more to be removed (we need
665 		 * at least one address here).
666 		 */
667 		if (list_empty(&bp->address_list) ||
668 		    (sctp_list_single_entry(&bp->address_list))) {
669 			retval = -EBUSY;
670 			goto err_bindx_rem;
671 		}
672 
673 		sa_addr = addr_buf;
674 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
675 		if (!af) {
676 			retval = -EINVAL;
677 			goto err_bindx_rem;
678 		}
679 
680 		if (!af->addr_valid(sa_addr, sp, NULL)) {
681 			retval = -EADDRNOTAVAIL;
682 			goto err_bindx_rem;
683 		}
684 
685 		if (sa_addr->v4.sin_port &&
686 		    sa_addr->v4.sin_port != htons(bp->port)) {
687 			retval = -EINVAL;
688 			goto err_bindx_rem;
689 		}
690 
691 		if (!sa_addr->v4.sin_port)
692 			sa_addr->v4.sin_port = htons(bp->port);
693 
694 		/* FIXME - There is probably a need to check if sk->sk_saddr and
695 		 * sk->sk_rcv_addr are currently set to one of the addresses to
696 		 * be removed. This is something which needs to be looked into
697 		 * when we are fixing the outstanding issues with multi-homing
698 		 * socket routing and failover schemes. Refer to comments in
699 		 * sctp_do_bind(). -daisy
700 		 */
701 		retval = sctp_del_bind_addr(bp, sa_addr);
702 
703 		addr_buf += af->sockaddr_len;
704 err_bindx_rem:
705 		if (retval < 0) {
706 			/* Failed. Add the ones that has been removed back */
707 			if (cnt > 0)
708 				sctp_bindx_add(sk, addrs, cnt);
709 			return retval;
710 		}
711 	}
712 
713 	return retval;
714 }
715 
716 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
717  * the associations that are part of the endpoint indicating that a list of
718  * local addresses are removed from the endpoint.
719  *
720  * If any of the addresses is already in the bind address list of the
721  * association, we do not send the chunk for that association.  But it will not
722  * affect other associations.
723  *
724  * Only sctp_setsockopt_bindx() is supposed to call this function.
725  */
726 static int sctp_send_asconf_del_ip(struct sock		*sk,
727 				   struct sockaddr	*addrs,
728 				   int			addrcnt)
729 {
730 	struct net *net = sock_net(sk);
731 	struct sctp_sock	*sp;
732 	struct sctp_endpoint	*ep;
733 	struct sctp_association	*asoc;
734 	struct sctp_transport	*transport;
735 	struct sctp_bind_addr	*bp;
736 	struct sctp_chunk	*chunk;
737 	union sctp_addr		*laddr;
738 	void			*addr_buf;
739 	struct sctp_af		*af;
740 	struct sctp_sockaddr_entry *saddr;
741 	int 			i;
742 	int 			retval = 0;
743 	int			stored = 0;
744 
745 	chunk = NULL;
746 	if (!net->sctp.addip_enable)
747 		return retval;
748 
749 	sp = sctp_sk(sk);
750 	ep = sp->ep;
751 
752 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
753 		 __func__, sk, addrs, addrcnt);
754 
755 	list_for_each_entry(asoc, &ep->asocs, asocs) {
756 
757 		if (!asoc->peer.asconf_capable)
758 			continue;
759 
760 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
761 			continue;
762 
763 		if (!sctp_state(asoc, ESTABLISHED))
764 			continue;
765 
766 		/* Check if any address in the packed array of addresses is
767 		 * not present in the bind address list of the association.
768 		 * If so, do not send the asconf chunk to its peer, but
769 		 * continue with other associations.
770 		 */
771 		addr_buf = addrs;
772 		for (i = 0; i < addrcnt; i++) {
773 			laddr = addr_buf;
774 			af = sctp_get_af_specific(laddr->v4.sin_family);
775 			if (!af) {
776 				retval = -EINVAL;
777 				goto out;
778 			}
779 
780 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
781 				break;
782 
783 			addr_buf += af->sockaddr_len;
784 		}
785 		if (i < addrcnt)
786 			continue;
787 
788 		/* Find one address in the association's bind address list
789 		 * that is not in the packed array of addresses. This is to
790 		 * make sure that we do not delete all the addresses in the
791 		 * association.
792 		 */
793 		bp = &asoc->base.bind_addr;
794 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
795 					       addrcnt, sp);
796 		if ((laddr == NULL) && (addrcnt == 1)) {
797 			if (asoc->asconf_addr_del_pending)
798 				continue;
799 			asoc->asconf_addr_del_pending =
800 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
801 			if (asoc->asconf_addr_del_pending == NULL) {
802 				retval = -ENOMEM;
803 				goto out;
804 			}
805 			asoc->asconf_addr_del_pending->sa.sa_family =
806 				    addrs->sa_family;
807 			asoc->asconf_addr_del_pending->v4.sin_port =
808 				    htons(bp->port);
809 			if (addrs->sa_family == AF_INET) {
810 				struct sockaddr_in *sin;
811 
812 				sin = (struct sockaddr_in *)addrs;
813 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
814 			} else if (addrs->sa_family == AF_INET6) {
815 				struct sockaddr_in6 *sin6;
816 
817 				sin6 = (struct sockaddr_in6 *)addrs;
818 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
819 			}
820 
821 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
822 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
823 				 asoc->asconf_addr_del_pending);
824 
825 			asoc->src_out_of_asoc_ok = 1;
826 			stored = 1;
827 			goto skip_mkasconf;
828 		}
829 
830 		if (laddr == NULL)
831 			return -EINVAL;
832 
833 		/* We do not need RCU protection throughout this loop
834 		 * because this is done under a socket lock from the
835 		 * setsockopt call.
836 		 */
837 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
838 						   SCTP_PARAM_DEL_IP);
839 		if (!chunk) {
840 			retval = -ENOMEM;
841 			goto out;
842 		}
843 
844 skip_mkasconf:
845 		/* Reset use_as_src flag for the addresses in the bind address
846 		 * list that are to be deleted.
847 		 */
848 		addr_buf = addrs;
849 		for (i = 0; i < addrcnt; i++) {
850 			laddr = addr_buf;
851 			af = sctp_get_af_specific(laddr->v4.sin_family);
852 			list_for_each_entry(saddr, &bp->address_list, list) {
853 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
854 					saddr->state = SCTP_ADDR_DEL;
855 			}
856 			addr_buf += af->sockaddr_len;
857 		}
858 
859 		/* Update the route and saddr entries for all the transports
860 		 * as some of the addresses in the bind address list are
861 		 * about to be deleted and cannot be used as source addresses.
862 		 */
863 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
864 					transports) {
865 			sctp_transport_route(transport, NULL,
866 					     sctp_sk(asoc->base.sk));
867 		}
868 
869 		if (stored)
870 			/* We don't need to transmit ASCONF */
871 			continue;
872 		retval = sctp_send_asconf(asoc, chunk);
873 	}
874 out:
875 	return retval;
876 }
877 
878 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
879 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
880 {
881 	struct sock *sk = sctp_opt2sk(sp);
882 	union sctp_addr *addr;
883 	struct sctp_af *af;
884 
885 	/* It is safe to write port space in caller. */
886 	addr = &addrw->a;
887 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
888 	af = sctp_get_af_specific(addr->sa.sa_family);
889 	if (!af)
890 		return -EINVAL;
891 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
892 		return -EINVAL;
893 
894 	if (addrw->state == SCTP_ADDR_NEW)
895 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
896 	else
897 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
898 }
899 
900 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
901  *
902  * API 8.1
903  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
904  *                int flags);
905  *
906  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
907  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
908  * or IPv6 addresses.
909  *
910  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
911  * Section 3.1.2 for this usage.
912  *
913  * addrs is a pointer to an array of one or more socket addresses. Each
914  * address is contained in its appropriate structure (i.e. struct
915  * sockaddr_in or struct sockaddr_in6) the family of the address type
916  * must be used to distinguish the address length (note that this
917  * representation is termed a "packed array" of addresses). The caller
918  * specifies the number of addresses in the array with addrcnt.
919  *
920  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
921  * -1, and sets errno to the appropriate error code.
922  *
923  * For SCTP, the port given in each socket address must be the same, or
924  * sctp_bindx() will fail, setting errno to EINVAL.
925  *
926  * The flags parameter is formed from the bitwise OR of zero or more of
927  * the following currently defined flags:
928  *
929  * SCTP_BINDX_ADD_ADDR
930  *
931  * SCTP_BINDX_REM_ADDR
932  *
933  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
934  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
935  * addresses from the association. The two flags are mutually exclusive;
936  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
937  * not remove all addresses from an association; sctp_bindx() will
938  * reject such an attempt with EINVAL.
939  *
940  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
941  * additional addresses with an endpoint after calling bind().  Or use
942  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
943  * socket is associated with so that no new association accepted will be
944  * associated with those addresses. If the endpoint supports dynamic
945  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
946  * endpoint to send the appropriate message to the peer to change the
947  * peers address lists.
948  *
949  * Adding and removing addresses from a connected association is
950  * optional functionality. Implementations that do not support this
951  * functionality should return EOPNOTSUPP.
952  *
953  * Basically do nothing but copying the addresses from user to kernel
954  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
955  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
956  * from userspace.
957  *
958  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
959  * it.
960  *
961  * sk        The sk of the socket
962  * addrs     The pointer to the addresses in user land
963  * addrssize Size of the addrs buffer
964  * op        Operation to perform (add or remove, see the flags of
965  *           sctp_bindx)
966  *
967  * Returns 0 if ok, <0 errno code on error.
968  */
969 static int sctp_setsockopt_bindx(struct sock *sk,
970 				 struct sockaddr __user *addrs,
971 				 int addrs_size, int op)
972 {
973 	struct sockaddr *kaddrs;
974 	int err;
975 	int addrcnt = 0;
976 	int walk_size = 0;
977 	struct sockaddr *sa_addr;
978 	void *addr_buf;
979 	struct sctp_af *af;
980 
981 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
982 		 __func__, sk, addrs, addrs_size, op);
983 
984 	if (unlikely(addrs_size <= 0))
985 		return -EINVAL;
986 
987 	kaddrs = memdup_user(addrs, addrs_size);
988 	if (unlikely(IS_ERR(kaddrs)))
989 		return PTR_ERR(kaddrs);
990 
991 	/* Walk through the addrs buffer and count the number of addresses. */
992 	addr_buf = kaddrs;
993 	while (walk_size < addrs_size) {
994 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
995 			kfree(kaddrs);
996 			return -EINVAL;
997 		}
998 
999 		sa_addr = addr_buf;
1000 		af = sctp_get_af_specific(sa_addr->sa_family);
1001 
1002 		/* If the address family is not supported or if this address
1003 		 * causes the address buffer to overflow return EINVAL.
1004 		 */
1005 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1006 			kfree(kaddrs);
1007 			return -EINVAL;
1008 		}
1009 		addrcnt++;
1010 		addr_buf += af->sockaddr_len;
1011 		walk_size += af->sockaddr_len;
1012 	}
1013 
1014 	/* Do the work. */
1015 	switch (op) {
1016 	case SCTP_BINDX_ADD_ADDR:
1017 		/* Allow security module to validate bindx addresses. */
1018 		err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
1019 						 (struct sockaddr *)kaddrs,
1020 						 addrs_size);
1021 		if (err)
1022 			goto out;
1023 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1024 		if (err)
1025 			goto out;
1026 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1027 		break;
1028 
1029 	case SCTP_BINDX_REM_ADDR:
1030 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1031 		if (err)
1032 			goto out;
1033 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1034 		break;
1035 
1036 	default:
1037 		err = -EINVAL;
1038 		break;
1039 	}
1040 
1041 out:
1042 	kfree(kaddrs);
1043 
1044 	return err;
1045 }
1046 
1047 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1048  *
1049  * Common routine for handling connect() and sctp_connectx().
1050  * Connect will come in with just a single address.
1051  */
1052 static int __sctp_connect(struct sock *sk,
1053 			  struct sockaddr *kaddrs,
1054 			  int addrs_size, int flags,
1055 			  sctp_assoc_t *assoc_id)
1056 {
1057 	struct net *net = sock_net(sk);
1058 	struct sctp_sock *sp;
1059 	struct sctp_endpoint *ep;
1060 	struct sctp_association *asoc = NULL;
1061 	struct sctp_association *asoc2;
1062 	struct sctp_transport *transport;
1063 	union sctp_addr to;
1064 	enum sctp_scope scope;
1065 	long timeo;
1066 	int err = 0;
1067 	int addrcnt = 0;
1068 	int walk_size = 0;
1069 	union sctp_addr *sa_addr = NULL;
1070 	void *addr_buf;
1071 	unsigned short port;
1072 
1073 	sp = sctp_sk(sk);
1074 	ep = sp->ep;
1075 
1076 	/* connect() cannot be done on a socket that is already in ESTABLISHED
1077 	 * state - UDP-style peeled off socket or a TCP-style socket that
1078 	 * is already connected.
1079 	 * It cannot be done even on a TCP-style listening socket.
1080 	 */
1081 	if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1082 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1083 		err = -EISCONN;
1084 		goto out_free;
1085 	}
1086 
1087 	/* Walk through the addrs buffer and count the number of addresses. */
1088 	addr_buf = kaddrs;
1089 	while (walk_size < addrs_size) {
1090 		struct sctp_af *af;
1091 
1092 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1093 			err = -EINVAL;
1094 			goto out_free;
1095 		}
1096 
1097 		sa_addr = addr_buf;
1098 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1099 
1100 		/* If the address family is not supported or if this address
1101 		 * causes the address buffer to overflow return EINVAL.
1102 		 */
1103 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1104 			err = -EINVAL;
1105 			goto out_free;
1106 		}
1107 
1108 		port = ntohs(sa_addr->v4.sin_port);
1109 
1110 		/* Save current address so we can work with it */
1111 		memcpy(&to, sa_addr, af->sockaddr_len);
1112 
1113 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1114 		if (err)
1115 			goto out_free;
1116 
1117 		/* Make sure the destination port is correctly set
1118 		 * in all addresses.
1119 		 */
1120 		if (asoc && asoc->peer.port && asoc->peer.port != port) {
1121 			err = -EINVAL;
1122 			goto out_free;
1123 		}
1124 
1125 		/* Check if there already is a matching association on the
1126 		 * endpoint (other than the one created here).
1127 		 */
1128 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1129 		if (asoc2 && asoc2 != asoc) {
1130 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1131 				err = -EISCONN;
1132 			else
1133 				err = -EALREADY;
1134 			goto out_free;
1135 		}
1136 
1137 		/* If we could not find a matching association on the endpoint,
1138 		 * make sure that there is no peeled-off association matching
1139 		 * the peer address even on another socket.
1140 		 */
1141 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1142 			err = -EADDRNOTAVAIL;
1143 			goto out_free;
1144 		}
1145 
1146 		if (!asoc) {
1147 			/* If a bind() or sctp_bindx() is not called prior to
1148 			 * an sctp_connectx() call, the system picks an
1149 			 * ephemeral port and will choose an address set
1150 			 * equivalent to binding with a wildcard address.
1151 			 */
1152 			if (!ep->base.bind_addr.port) {
1153 				if (sctp_autobind(sk)) {
1154 					err = -EAGAIN;
1155 					goto out_free;
1156 				}
1157 			} else {
1158 				/*
1159 				 * If an unprivileged user inherits a 1-many
1160 				 * style socket with open associations on a
1161 				 * privileged port, it MAY be permitted to
1162 				 * accept new associations, but it SHOULD NOT
1163 				 * be permitted to open new associations.
1164 				 */
1165 				if (ep->base.bind_addr.port <
1166 				    inet_prot_sock(net) &&
1167 				    !ns_capable(net->user_ns,
1168 				    CAP_NET_BIND_SERVICE)) {
1169 					err = -EACCES;
1170 					goto out_free;
1171 				}
1172 			}
1173 
1174 			scope = sctp_scope(&to);
1175 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1176 			if (!asoc) {
1177 				err = -ENOMEM;
1178 				goto out_free;
1179 			}
1180 
1181 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1182 							      GFP_KERNEL);
1183 			if (err < 0) {
1184 				goto out_free;
1185 			}
1186 
1187 		}
1188 
1189 		/* Prime the peer's transport structures.  */
1190 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1191 						SCTP_UNKNOWN);
1192 		if (!transport) {
1193 			err = -ENOMEM;
1194 			goto out_free;
1195 		}
1196 
1197 		addrcnt++;
1198 		addr_buf += af->sockaddr_len;
1199 		walk_size += af->sockaddr_len;
1200 	}
1201 
1202 	/* In case the user of sctp_connectx() wants an association
1203 	 * id back, assign one now.
1204 	 */
1205 	if (assoc_id) {
1206 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1207 		if (err < 0)
1208 			goto out_free;
1209 	}
1210 
1211 	err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1212 	if (err < 0) {
1213 		goto out_free;
1214 	}
1215 
1216 	/* Initialize sk's dport and daddr for getpeername() */
1217 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1218 	sp->pf->to_sk_daddr(sa_addr, sk);
1219 	sk->sk_err = 0;
1220 
1221 	timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1222 
1223 	if (assoc_id)
1224 		*assoc_id = asoc->assoc_id;
1225 
1226 	err = sctp_wait_for_connect(asoc, &timeo);
1227 	/* Note: the asoc may be freed after the return of
1228 	 * sctp_wait_for_connect.
1229 	 */
1230 
1231 	/* Don't free association on exit. */
1232 	asoc = NULL;
1233 
1234 out_free:
1235 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1236 		 __func__, asoc, kaddrs, err);
1237 
1238 	if (asoc) {
1239 		/* sctp_primitive_ASSOCIATE may have added this association
1240 		 * To the hash table, try to unhash it, just in case, its a noop
1241 		 * if it wasn't hashed so we're safe
1242 		 */
1243 		sctp_association_free(asoc);
1244 	}
1245 	return err;
1246 }
1247 
1248 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1249  *
1250  * API 8.9
1251  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1252  * 			sctp_assoc_t *asoc);
1253  *
1254  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1255  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1256  * or IPv6 addresses.
1257  *
1258  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1259  * Section 3.1.2 for this usage.
1260  *
1261  * addrs is a pointer to an array of one or more socket addresses. Each
1262  * address is contained in its appropriate structure (i.e. struct
1263  * sockaddr_in or struct sockaddr_in6) the family of the address type
1264  * must be used to distengish the address length (note that this
1265  * representation is termed a "packed array" of addresses). The caller
1266  * specifies the number of addresses in the array with addrcnt.
1267  *
1268  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1269  * the association id of the new association.  On failure, sctp_connectx()
1270  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1271  * is not touched by the kernel.
1272  *
1273  * For SCTP, the port given in each socket address must be the same, or
1274  * sctp_connectx() will fail, setting errno to EINVAL.
1275  *
1276  * An application can use sctp_connectx to initiate an association with
1277  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1278  * allows a caller to specify multiple addresses at which a peer can be
1279  * reached.  The way the SCTP stack uses the list of addresses to set up
1280  * the association is implementation dependent.  This function only
1281  * specifies that the stack will try to make use of all the addresses in
1282  * the list when needed.
1283  *
1284  * Note that the list of addresses passed in is only used for setting up
1285  * the association.  It does not necessarily equal the set of addresses
1286  * the peer uses for the resulting association.  If the caller wants to
1287  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1288  * retrieve them after the association has been set up.
1289  *
1290  * Basically do nothing but copying the addresses from user to kernel
1291  * land and invoking either sctp_connectx(). This is used for tunneling
1292  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1293  *
1294  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1295  * it.
1296  *
1297  * sk        The sk of the socket
1298  * addrs     The pointer to the addresses in user land
1299  * addrssize Size of the addrs buffer
1300  *
1301  * Returns >=0 if ok, <0 errno code on error.
1302  */
1303 static int __sctp_setsockopt_connectx(struct sock *sk,
1304 				      struct sockaddr __user *addrs,
1305 				      int addrs_size,
1306 				      sctp_assoc_t *assoc_id)
1307 {
1308 	struct sockaddr *kaddrs;
1309 	int err = 0, flags = 0;
1310 
1311 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1312 		 __func__, sk, addrs, addrs_size);
1313 
1314 	if (unlikely(addrs_size <= 0))
1315 		return -EINVAL;
1316 
1317 	kaddrs = memdup_user(addrs, addrs_size);
1318 	if (unlikely(IS_ERR(kaddrs)))
1319 		return PTR_ERR(kaddrs);
1320 
1321 	/* Allow security module to validate connectx addresses. */
1322 	err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
1323 					 (struct sockaddr *)kaddrs,
1324 					  addrs_size);
1325 	if (err)
1326 		goto out_free;
1327 
1328 	/* in-kernel sockets don't generally have a file allocated to them
1329 	 * if all they do is call sock_create_kern().
1330 	 */
1331 	if (sk->sk_socket->file)
1332 		flags = sk->sk_socket->file->f_flags;
1333 
1334 	err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
1335 
1336 out_free:
1337 	kfree(kaddrs);
1338 
1339 	return err;
1340 }
1341 
1342 /*
1343  * This is an older interface.  It's kept for backward compatibility
1344  * to the option that doesn't provide association id.
1345  */
1346 static int sctp_setsockopt_connectx_old(struct sock *sk,
1347 					struct sockaddr __user *addrs,
1348 					int addrs_size)
1349 {
1350 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1351 }
1352 
1353 /*
1354  * New interface for the API.  The since the API is done with a socket
1355  * option, to make it simple we feed back the association id is as a return
1356  * indication to the call.  Error is always negative and association id is
1357  * always positive.
1358  */
1359 static int sctp_setsockopt_connectx(struct sock *sk,
1360 				    struct sockaddr __user *addrs,
1361 				    int addrs_size)
1362 {
1363 	sctp_assoc_t assoc_id = 0;
1364 	int err = 0;
1365 
1366 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1367 
1368 	if (err)
1369 		return err;
1370 	else
1371 		return assoc_id;
1372 }
1373 
1374 /*
1375  * New (hopefully final) interface for the API.
1376  * We use the sctp_getaddrs_old structure so that use-space library
1377  * can avoid any unnecessary allocations. The only different part
1378  * is that we store the actual length of the address buffer into the
1379  * addrs_num structure member. That way we can re-use the existing
1380  * code.
1381  */
1382 #ifdef CONFIG_COMPAT
1383 struct compat_sctp_getaddrs_old {
1384 	sctp_assoc_t	assoc_id;
1385 	s32		addr_num;
1386 	compat_uptr_t	addrs;		/* struct sockaddr * */
1387 };
1388 #endif
1389 
1390 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1391 				     char __user *optval,
1392 				     int __user *optlen)
1393 {
1394 	struct sctp_getaddrs_old param;
1395 	sctp_assoc_t assoc_id = 0;
1396 	int err = 0;
1397 
1398 #ifdef CONFIG_COMPAT
1399 	if (in_compat_syscall()) {
1400 		struct compat_sctp_getaddrs_old param32;
1401 
1402 		if (len < sizeof(param32))
1403 			return -EINVAL;
1404 		if (copy_from_user(&param32, optval, sizeof(param32)))
1405 			return -EFAULT;
1406 
1407 		param.assoc_id = param32.assoc_id;
1408 		param.addr_num = param32.addr_num;
1409 		param.addrs = compat_ptr(param32.addrs);
1410 	} else
1411 #endif
1412 	{
1413 		if (len < sizeof(param))
1414 			return -EINVAL;
1415 		if (copy_from_user(&param, optval, sizeof(param)))
1416 			return -EFAULT;
1417 	}
1418 
1419 	err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1420 					 param.addrs, param.addr_num,
1421 					 &assoc_id);
1422 	if (err == 0 || err == -EINPROGRESS) {
1423 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1424 			return -EFAULT;
1425 		if (put_user(sizeof(assoc_id), optlen))
1426 			return -EFAULT;
1427 	}
1428 
1429 	return err;
1430 }
1431 
1432 /* API 3.1.4 close() - UDP Style Syntax
1433  * Applications use close() to perform graceful shutdown (as described in
1434  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1435  * by a UDP-style socket.
1436  *
1437  * The syntax is
1438  *
1439  *   ret = close(int sd);
1440  *
1441  *   sd      - the socket descriptor of the associations to be closed.
1442  *
1443  * To gracefully shutdown a specific association represented by the
1444  * UDP-style socket, an application should use the sendmsg() call,
1445  * passing no user data, but including the appropriate flag in the
1446  * ancillary data (see Section xxxx).
1447  *
1448  * If sd in the close() call is a branched-off socket representing only
1449  * one association, the shutdown is performed on that association only.
1450  *
1451  * 4.1.6 close() - TCP Style Syntax
1452  *
1453  * Applications use close() to gracefully close down an association.
1454  *
1455  * The syntax is:
1456  *
1457  *    int close(int sd);
1458  *
1459  *      sd      - the socket descriptor of the association to be closed.
1460  *
1461  * After an application calls close() on a socket descriptor, no further
1462  * socket operations will succeed on that descriptor.
1463  *
1464  * API 7.1.4 SO_LINGER
1465  *
1466  * An application using the TCP-style socket can use this option to
1467  * perform the SCTP ABORT primitive.  The linger option structure is:
1468  *
1469  *  struct  linger {
1470  *     int     l_onoff;                // option on/off
1471  *     int     l_linger;               // linger time
1472  * };
1473  *
1474  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1475  * to 0, calling close() is the same as the ABORT primitive.  If the
1476  * value is set to a negative value, the setsockopt() call will return
1477  * an error.  If the value is set to a positive value linger_time, the
1478  * close() can be blocked for at most linger_time ms.  If the graceful
1479  * shutdown phase does not finish during this period, close() will
1480  * return but the graceful shutdown phase continues in the system.
1481  */
1482 static void sctp_close(struct sock *sk, long timeout)
1483 {
1484 	struct net *net = sock_net(sk);
1485 	struct sctp_endpoint *ep;
1486 	struct sctp_association *asoc;
1487 	struct list_head *pos, *temp;
1488 	unsigned int data_was_unread;
1489 
1490 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1491 
1492 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1493 	sk->sk_shutdown = SHUTDOWN_MASK;
1494 	inet_sk_set_state(sk, SCTP_SS_CLOSING);
1495 
1496 	ep = sctp_sk(sk)->ep;
1497 
1498 	/* Clean up any skbs sitting on the receive queue.  */
1499 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1500 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1501 
1502 	/* Walk all associations on an endpoint.  */
1503 	list_for_each_safe(pos, temp, &ep->asocs) {
1504 		asoc = list_entry(pos, struct sctp_association, asocs);
1505 
1506 		if (sctp_style(sk, TCP)) {
1507 			/* A closed association can still be in the list if
1508 			 * it belongs to a TCP-style listening socket that is
1509 			 * not yet accepted. If so, free it. If not, send an
1510 			 * ABORT or SHUTDOWN based on the linger options.
1511 			 */
1512 			if (sctp_state(asoc, CLOSED)) {
1513 				sctp_association_free(asoc);
1514 				continue;
1515 			}
1516 		}
1517 
1518 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1519 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1520 		    !skb_queue_empty(&asoc->ulpq.reasm_uo) ||
1521 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1522 			struct sctp_chunk *chunk;
1523 
1524 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1525 			sctp_primitive_ABORT(net, asoc, chunk);
1526 		} else
1527 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1528 	}
1529 
1530 	/* On a TCP-style socket, block for at most linger_time if set. */
1531 	if (sctp_style(sk, TCP) && timeout)
1532 		sctp_wait_for_close(sk, timeout);
1533 
1534 	/* This will run the backlog queue.  */
1535 	release_sock(sk);
1536 
1537 	/* Supposedly, no process has access to the socket, but
1538 	 * the net layers still may.
1539 	 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1540 	 * held and that should be grabbed before socket lock.
1541 	 */
1542 	spin_lock_bh(&net->sctp.addr_wq_lock);
1543 	bh_lock_sock_nested(sk);
1544 
1545 	/* Hold the sock, since sk_common_release() will put sock_put()
1546 	 * and we have just a little more cleanup.
1547 	 */
1548 	sock_hold(sk);
1549 	sk_common_release(sk);
1550 
1551 	bh_unlock_sock(sk);
1552 	spin_unlock_bh(&net->sctp.addr_wq_lock);
1553 
1554 	sock_put(sk);
1555 
1556 	SCTP_DBG_OBJCNT_DEC(sock);
1557 }
1558 
1559 /* Handle EPIPE error. */
1560 static int sctp_error(struct sock *sk, int flags, int err)
1561 {
1562 	if (err == -EPIPE)
1563 		err = sock_error(sk) ? : -EPIPE;
1564 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1565 		send_sig(SIGPIPE, current, 0);
1566 	return err;
1567 }
1568 
1569 /* API 3.1.3 sendmsg() - UDP Style Syntax
1570  *
1571  * An application uses sendmsg() and recvmsg() calls to transmit data to
1572  * and receive data from its peer.
1573  *
1574  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1575  *                  int flags);
1576  *
1577  *  socket  - the socket descriptor of the endpoint.
1578  *  message - pointer to the msghdr structure which contains a single
1579  *            user message and possibly some ancillary data.
1580  *
1581  *            See Section 5 for complete description of the data
1582  *            structures.
1583  *
1584  *  flags   - flags sent or received with the user message, see Section
1585  *            5 for complete description of the flags.
1586  *
1587  * Note:  This function could use a rewrite especially when explicit
1588  * connect support comes in.
1589  */
1590 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1591 
1592 static int sctp_msghdr_parse(const struct msghdr *msg,
1593 			     struct sctp_cmsgs *cmsgs);
1594 
1595 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
1596 			      struct sctp_sndrcvinfo *srinfo,
1597 			      const struct msghdr *msg, size_t msg_len)
1598 {
1599 	__u16 sflags;
1600 	int err;
1601 
1602 	if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
1603 		return -EPIPE;
1604 
1605 	if (msg_len > sk->sk_sndbuf)
1606 		return -EMSGSIZE;
1607 
1608 	memset(cmsgs, 0, sizeof(*cmsgs));
1609 	err = sctp_msghdr_parse(msg, cmsgs);
1610 	if (err) {
1611 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1612 		return err;
1613 	}
1614 
1615 	memset(srinfo, 0, sizeof(*srinfo));
1616 	if (cmsgs->srinfo) {
1617 		srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
1618 		srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
1619 		srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
1620 		srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
1621 		srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
1622 		srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
1623 	}
1624 
1625 	if (cmsgs->sinfo) {
1626 		srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
1627 		srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
1628 		srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
1629 		srinfo->sinfo_context = cmsgs->sinfo->snd_context;
1630 		srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
1631 	}
1632 
1633 	if (cmsgs->prinfo) {
1634 		srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
1635 		SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
1636 				   cmsgs->prinfo->pr_policy);
1637 	}
1638 
1639 	sflags = srinfo->sinfo_flags;
1640 	if (!sflags && msg_len)
1641 		return 0;
1642 
1643 	if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
1644 		return -EINVAL;
1645 
1646 	if (((sflags & SCTP_EOF) && msg_len > 0) ||
1647 	    (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
1648 		return -EINVAL;
1649 
1650 	if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
1651 		return -EINVAL;
1652 
1653 	return 0;
1654 }
1655 
1656 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
1657 				 struct sctp_cmsgs *cmsgs,
1658 				 union sctp_addr *daddr,
1659 				 struct sctp_transport **tp)
1660 {
1661 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1662 	struct net *net = sock_net(sk);
1663 	struct sctp_association *asoc;
1664 	enum sctp_scope scope;
1665 	struct cmsghdr *cmsg;
1666 	__be32 flowinfo = 0;
1667 	struct sctp_af *af;
1668 	int err;
1669 
1670 	*tp = NULL;
1671 
1672 	if (sflags & (SCTP_EOF | SCTP_ABORT))
1673 		return -EINVAL;
1674 
1675 	if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
1676 				    sctp_sstate(sk, CLOSING)))
1677 		return -EADDRNOTAVAIL;
1678 
1679 	if (sctp_endpoint_is_peeled_off(ep, daddr))
1680 		return -EADDRNOTAVAIL;
1681 
1682 	if (!ep->base.bind_addr.port) {
1683 		if (sctp_autobind(sk))
1684 			return -EAGAIN;
1685 	} else {
1686 		if (ep->base.bind_addr.port < inet_prot_sock(net) &&
1687 		    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
1688 			return -EACCES;
1689 	}
1690 
1691 	scope = sctp_scope(daddr);
1692 
1693 	/* Label connection socket for first association 1-to-many
1694 	 * style for client sequence socket()->sendmsg(). This
1695 	 * needs to be done before sctp_assoc_add_peer() as that will
1696 	 * set up the initial packet that needs to account for any
1697 	 * security ip options (CIPSO/CALIPSO) added to the packet.
1698 	 */
1699 	af = sctp_get_af_specific(daddr->sa.sa_family);
1700 	if (!af)
1701 		return -EINVAL;
1702 	err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
1703 					 (struct sockaddr *)daddr,
1704 					 af->sockaddr_len);
1705 	if (err < 0)
1706 		return err;
1707 
1708 	asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1709 	if (!asoc)
1710 		return -ENOMEM;
1711 
1712 	if (sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL) < 0) {
1713 		err = -ENOMEM;
1714 		goto free;
1715 	}
1716 
1717 	if (cmsgs->init) {
1718 		struct sctp_initmsg *init = cmsgs->init;
1719 
1720 		if (init->sinit_num_ostreams) {
1721 			__u16 outcnt = init->sinit_num_ostreams;
1722 
1723 			asoc->c.sinit_num_ostreams = outcnt;
1724 			/* outcnt has been changed, need to re-init stream */
1725 			err = sctp_stream_init(&asoc->stream, outcnt, 0,
1726 					       GFP_KERNEL);
1727 			if (err)
1728 				goto free;
1729 		}
1730 
1731 		if (init->sinit_max_instreams)
1732 			asoc->c.sinit_max_instreams = init->sinit_max_instreams;
1733 
1734 		if (init->sinit_max_attempts)
1735 			asoc->max_init_attempts = init->sinit_max_attempts;
1736 
1737 		if (init->sinit_max_init_timeo)
1738 			asoc->max_init_timeo =
1739 				msecs_to_jiffies(init->sinit_max_init_timeo);
1740 	}
1741 
1742 	*tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1743 	if (!*tp) {
1744 		err = -ENOMEM;
1745 		goto free;
1746 	}
1747 
1748 	if (!cmsgs->addrs_msg)
1749 		return 0;
1750 
1751 	if (daddr->sa.sa_family == AF_INET6)
1752 		flowinfo = daddr->v6.sin6_flowinfo;
1753 
1754 	/* sendv addr list parse */
1755 	for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
1756 		struct sctp_transport *transport;
1757 		struct sctp_association *old;
1758 		union sctp_addr _daddr;
1759 		int dlen;
1760 
1761 		if (cmsg->cmsg_level != IPPROTO_SCTP ||
1762 		    (cmsg->cmsg_type != SCTP_DSTADDRV4 &&
1763 		     cmsg->cmsg_type != SCTP_DSTADDRV6))
1764 			continue;
1765 
1766 		daddr = &_daddr;
1767 		memset(daddr, 0, sizeof(*daddr));
1768 		dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
1769 		if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
1770 			if (dlen < sizeof(struct in_addr)) {
1771 				err = -EINVAL;
1772 				goto free;
1773 			}
1774 
1775 			dlen = sizeof(struct in_addr);
1776 			daddr->v4.sin_family = AF_INET;
1777 			daddr->v4.sin_port = htons(asoc->peer.port);
1778 			memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
1779 		} else {
1780 			if (dlen < sizeof(struct in6_addr)) {
1781 				err = -EINVAL;
1782 				goto free;
1783 			}
1784 
1785 			dlen = sizeof(struct in6_addr);
1786 			daddr->v6.sin6_flowinfo = flowinfo;
1787 			daddr->v6.sin6_family = AF_INET6;
1788 			daddr->v6.sin6_port = htons(asoc->peer.port);
1789 			memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
1790 		}
1791 		err = sctp_verify_addr(sk, daddr, sizeof(*daddr));
1792 		if (err)
1793 			goto free;
1794 
1795 		old = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1796 		if (old && old != asoc) {
1797 			if (old->state >= SCTP_STATE_ESTABLISHED)
1798 				err = -EISCONN;
1799 			else
1800 				err = -EALREADY;
1801 			goto free;
1802 		}
1803 
1804 		if (sctp_endpoint_is_peeled_off(ep, daddr)) {
1805 			err = -EADDRNOTAVAIL;
1806 			goto free;
1807 		}
1808 
1809 		transport = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL,
1810 						SCTP_UNKNOWN);
1811 		if (!transport) {
1812 			err = -ENOMEM;
1813 			goto free;
1814 		}
1815 	}
1816 
1817 	return 0;
1818 
1819 free:
1820 	sctp_association_free(asoc);
1821 	return err;
1822 }
1823 
1824 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
1825 				     __u16 sflags, struct msghdr *msg,
1826 				     size_t msg_len)
1827 {
1828 	struct sock *sk = asoc->base.sk;
1829 	struct net *net = sock_net(sk);
1830 
1831 	if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
1832 		return -EPIPE;
1833 
1834 	if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
1835 	    !sctp_state(asoc, ESTABLISHED))
1836 		return 0;
1837 
1838 	if (sflags & SCTP_EOF) {
1839 		pr_debug("%s: shutting down association:%p\n", __func__, asoc);
1840 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
1841 
1842 		return 0;
1843 	}
1844 
1845 	if (sflags & SCTP_ABORT) {
1846 		struct sctp_chunk *chunk;
1847 
1848 		chunk = sctp_make_abort_user(asoc, msg, msg_len);
1849 		if (!chunk)
1850 			return -ENOMEM;
1851 
1852 		pr_debug("%s: aborting association:%p\n", __func__, asoc);
1853 		sctp_primitive_ABORT(net, asoc, chunk);
1854 		iov_iter_revert(&msg->msg_iter, msg_len);
1855 
1856 		return 0;
1857 	}
1858 
1859 	return 1;
1860 }
1861 
1862 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
1863 				struct msghdr *msg, size_t msg_len,
1864 				struct sctp_transport *transport,
1865 				struct sctp_sndrcvinfo *sinfo)
1866 {
1867 	struct sock *sk = asoc->base.sk;
1868 	struct sctp_sock *sp = sctp_sk(sk);
1869 	struct net *net = sock_net(sk);
1870 	struct sctp_datamsg *datamsg;
1871 	bool wait_connect = false;
1872 	struct sctp_chunk *chunk;
1873 	long timeo;
1874 	int err;
1875 
1876 	if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1877 		err = -EINVAL;
1878 		goto err;
1879 	}
1880 
1881 	if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) {
1882 		err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
1883 		if (err)
1884 			goto err;
1885 	}
1886 
1887 	if (sp->disable_fragments && msg_len > asoc->frag_point) {
1888 		err = -EMSGSIZE;
1889 		goto err;
1890 	}
1891 
1892 	if (asoc->pmtu_pending) {
1893 		if (sp->param_flags & SPP_PMTUD_ENABLE)
1894 			sctp_assoc_sync_pmtu(asoc);
1895 		asoc->pmtu_pending = 0;
1896 	}
1897 
1898 	if (sctp_wspace(asoc) < (int)msg_len)
1899 		sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1900 
1901 	if (sk_under_memory_pressure(sk))
1902 		sk_mem_reclaim(sk);
1903 
1904 	if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) {
1905 		timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1906 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1907 		if (err)
1908 			goto err;
1909 	}
1910 
1911 	if (sctp_state(asoc, CLOSED)) {
1912 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1913 		if (err)
1914 			goto err;
1915 
1916 		if (sp->strm_interleave) {
1917 			timeo = sock_sndtimeo(sk, 0);
1918 			err = sctp_wait_for_connect(asoc, &timeo);
1919 			if (err) {
1920 				err = -ESRCH;
1921 				goto err;
1922 			}
1923 		} else {
1924 			wait_connect = true;
1925 		}
1926 
1927 		pr_debug("%s: we associated primitively\n", __func__);
1928 	}
1929 
1930 	datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1931 	if (IS_ERR(datamsg)) {
1932 		err = PTR_ERR(datamsg);
1933 		goto err;
1934 	}
1935 
1936 	asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
1937 
1938 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1939 		sctp_chunk_hold(chunk);
1940 		sctp_set_owner_w(chunk);
1941 		chunk->transport = transport;
1942 	}
1943 
1944 	err = sctp_primitive_SEND(net, asoc, datamsg);
1945 	if (err) {
1946 		sctp_datamsg_free(datamsg);
1947 		goto err;
1948 	}
1949 
1950 	pr_debug("%s: we sent primitively\n", __func__);
1951 
1952 	sctp_datamsg_put(datamsg);
1953 
1954 	if (unlikely(wait_connect)) {
1955 		timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1956 		sctp_wait_for_connect(asoc, &timeo);
1957 	}
1958 
1959 	err = msg_len;
1960 
1961 err:
1962 	return err;
1963 }
1964 
1965 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
1966 					       const struct msghdr *msg,
1967 					       struct sctp_cmsgs *cmsgs)
1968 {
1969 	union sctp_addr *daddr = NULL;
1970 	int err;
1971 
1972 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1973 		int len = msg->msg_namelen;
1974 
1975 		if (len > sizeof(*daddr))
1976 			len = sizeof(*daddr);
1977 
1978 		daddr = (union sctp_addr *)msg->msg_name;
1979 
1980 		err = sctp_verify_addr(sk, daddr, len);
1981 		if (err)
1982 			return ERR_PTR(err);
1983 	}
1984 
1985 	return daddr;
1986 }
1987 
1988 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
1989 				      struct sctp_sndrcvinfo *sinfo,
1990 				      struct sctp_cmsgs *cmsgs)
1991 {
1992 	if (!cmsgs->srinfo && !cmsgs->sinfo) {
1993 		sinfo->sinfo_stream = asoc->default_stream;
1994 		sinfo->sinfo_ppid = asoc->default_ppid;
1995 		sinfo->sinfo_context = asoc->default_context;
1996 		sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
1997 
1998 		if (!cmsgs->prinfo)
1999 			sinfo->sinfo_flags = asoc->default_flags;
2000 	}
2001 
2002 	if (!cmsgs->srinfo && !cmsgs->prinfo)
2003 		sinfo->sinfo_timetolive = asoc->default_timetolive;
2004 
2005 	if (cmsgs->authinfo) {
2006 		/* Reuse sinfo_tsn to indicate that authinfo was set and
2007 		 * sinfo_ssn to save the keyid on tx path.
2008 		 */
2009 		sinfo->sinfo_tsn = 1;
2010 		sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
2011 	}
2012 }
2013 
2014 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
2015 {
2016 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
2017 	struct sctp_transport *transport = NULL;
2018 	struct sctp_sndrcvinfo _sinfo, *sinfo;
2019 	struct sctp_association *asoc, *tmp;
2020 	struct sctp_cmsgs cmsgs;
2021 	union sctp_addr *daddr;
2022 	bool new = false;
2023 	__u16 sflags;
2024 	int err;
2025 
2026 	/* Parse and get snd_info */
2027 	err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len);
2028 	if (err)
2029 		goto out;
2030 
2031 	sinfo  = &_sinfo;
2032 	sflags = sinfo->sinfo_flags;
2033 
2034 	/* Get daddr from msg */
2035 	daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs);
2036 	if (IS_ERR(daddr)) {
2037 		err = PTR_ERR(daddr);
2038 		goto out;
2039 	}
2040 
2041 	lock_sock(sk);
2042 
2043 	/* SCTP_SENDALL process */
2044 	if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
2045 		list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) {
2046 			err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
2047 							msg_len);
2048 			if (err == 0)
2049 				continue;
2050 			if (err < 0)
2051 				goto out_unlock;
2052 
2053 			sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2054 
2055 			err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
2056 						   NULL, sinfo);
2057 			if (err < 0)
2058 				goto out_unlock;
2059 
2060 			iov_iter_revert(&msg->msg_iter, err);
2061 		}
2062 
2063 		goto out_unlock;
2064 	}
2065 
2066 	/* Get and check or create asoc */
2067 	if (daddr) {
2068 		asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
2069 		if (asoc) {
2070 			err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
2071 							msg_len);
2072 			if (err <= 0)
2073 				goto out_unlock;
2074 		} else {
2075 			err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr,
2076 						    &transport);
2077 			if (err)
2078 				goto out_unlock;
2079 
2080 			asoc = transport->asoc;
2081 			new = true;
2082 		}
2083 
2084 		if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
2085 			transport = NULL;
2086 	} else {
2087 		asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id);
2088 		if (!asoc) {
2089 			err = -EPIPE;
2090 			goto out_unlock;
2091 		}
2092 
2093 		err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
2094 		if (err <= 0)
2095 			goto out_unlock;
2096 	}
2097 
2098 	/* Update snd_info with the asoc */
2099 	sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2100 
2101 	/* Send msg to the asoc */
2102 	err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
2103 	if (err < 0 && err != -ESRCH && new)
2104 		sctp_association_free(asoc);
2105 
2106 out_unlock:
2107 	release_sock(sk);
2108 out:
2109 	return sctp_error(sk, msg->msg_flags, err);
2110 }
2111 
2112 /* This is an extended version of skb_pull() that removes the data from the
2113  * start of a skb even when data is spread across the list of skb's in the
2114  * frag_list. len specifies the total amount of data that needs to be removed.
2115  * when 'len' bytes could be removed from the skb, it returns 0.
2116  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
2117  * could not be removed.
2118  */
2119 static int sctp_skb_pull(struct sk_buff *skb, int len)
2120 {
2121 	struct sk_buff *list;
2122 	int skb_len = skb_headlen(skb);
2123 	int rlen;
2124 
2125 	if (len <= skb_len) {
2126 		__skb_pull(skb, len);
2127 		return 0;
2128 	}
2129 	len -= skb_len;
2130 	__skb_pull(skb, skb_len);
2131 
2132 	skb_walk_frags(skb, list) {
2133 		rlen = sctp_skb_pull(list, len);
2134 		skb->len -= (len-rlen);
2135 		skb->data_len -= (len-rlen);
2136 
2137 		if (!rlen)
2138 			return 0;
2139 
2140 		len = rlen;
2141 	}
2142 
2143 	return len;
2144 }
2145 
2146 /* API 3.1.3  recvmsg() - UDP Style Syntax
2147  *
2148  *  ssize_t recvmsg(int socket, struct msghdr *message,
2149  *                    int flags);
2150  *
2151  *  socket  - the socket descriptor of the endpoint.
2152  *  message - pointer to the msghdr structure which contains a single
2153  *            user message and possibly some ancillary data.
2154  *
2155  *            See Section 5 for complete description of the data
2156  *            structures.
2157  *
2158  *  flags   - flags sent or received with the user message, see Section
2159  *            5 for complete description of the flags.
2160  */
2161 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2162 			int noblock, int flags, int *addr_len)
2163 {
2164 	struct sctp_ulpevent *event = NULL;
2165 	struct sctp_sock *sp = sctp_sk(sk);
2166 	struct sk_buff *skb, *head_skb;
2167 	int copied;
2168 	int err = 0;
2169 	int skb_len;
2170 
2171 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2172 		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2173 		 addr_len);
2174 
2175 	lock_sock(sk);
2176 
2177 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2178 	    !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2179 		err = -ENOTCONN;
2180 		goto out;
2181 	}
2182 
2183 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2184 	if (!skb)
2185 		goto out;
2186 
2187 	/* Get the total length of the skb including any skb's in the
2188 	 * frag_list.
2189 	 */
2190 	skb_len = skb->len;
2191 
2192 	copied = skb_len;
2193 	if (copied > len)
2194 		copied = len;
2195 
2196 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2197 
2198 	event = sctp_skb2event(skb);
2199 
2200 	if (err)
2201 		goto out_free;
2202 
2203 	if (event->chunk && event->chunk->head_skb)
2204 		head_skb = event->chunk->head_skb;
2205 	else
2206 		head_skb = skb;
2207 	sock_recv_ts_and_drops(msg, sk, head_skb);
2208 	if (sctp_ulpevent_is_notification(event)) {
2209 		msg->msg_flags |= MSG_NOTIFICATION;
2210 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2211 	} else {
2212 		sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2213 	}
2214 
2215 	/* Check if we allow SCTP_NXTINFO. */
2216 	if (sp->recvnxtinfo)
2217 		sctp_ulpevent_read_nxtinfo(event, msg, sk);
2218 	/* Check if we allow SCTP_RCVINFO. */
2219 	if (sp->recvrcvinfo)
2220 		sctp_ulpevent_read_rcvinfo(event, msg);
2221 	/* Check if we allow SCTP_SNDRCVINFO. */
2222 	if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT))
2223 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2224 
2225 	err = copied;
2226 
2227 	/* If skb's length exceeds the user's buffer, update the skb and
2228 	 * push it back to the receive_queue so that the next call to
2229 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2230 	 */
2231 	if (skb_len > copied) {
2232 		msg->msg_flags &= ~MSG_EOR;
2233 		if (flags & MSG_PEEK)
2234 			goto out_free;
2235 		sctp_skb_pull(skb, copied);
2236 		skb_queue_head(&sk->sk_receive_queue, skb);
2237 
2238 		/* When only partial message is copied to the user, increase
2239 		 * rwnd by that amount. If all the data in the skb is read,
2240 		 * rwnd is updated when the event is freed.
2241 		 */
2242 		if (!sctp_ulpevent_is_notification(event))
2243 			sctp_assoc_rwnd_increase(event->asoc, copied);
2244 		goto out;
2245 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2246 		   (event->msg_flags & MSG_EOR))
2247 		msg->msg_flags |= MSG_EOR;
2248 	else
2249 		msg->msg_flags &= ~MSG_EOR;
2250 
2251 out_free:
2252 	if (flags & MSG_PEEK) {
2253 		/* Release the skb reference acquired after peeking the skb in
2254 		 * sctp_skb_recv_datagram().
2255 		 */
2256 		kfree_skb(skb);
2257 	} else {
2258 		/* Free the event which includes releasing the reference to
2259 		 * the owner of the skb, freeing the skb and updating the
2260 		 * rwnd.
2261 		 */
2262 		sctp_ulpevent_free(event);
2263 	}
2264 out:
2265 	release_sock(sk);
2266 	return err;
2267 }
2268 
2269 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2270  *
2271  * This option is a on/off flag.  If enabled no SCTP message
2272  * fragmentation will be performed.  Instead if a message being sent
2273  * exceeds the current PMTU size, the message will NOT be sent and
2274  * instead a error will be indicated to the user.
2275  */
2276 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2277 					     char __user *optval,
2278 					     unsigned int optlen)
2279 {
2280 	int val;
2281 
2282 	if (optlen < sizeof(int))
2283 		return -EINVAL;
2284 
2285 	if (get_user(val, (int __user *)optval))
2286 		return -EFAULT;
2287 
2288 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2289 
2290 	return 0;
2291 }
2292 
2293 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2294 				  unsigned int optlen)
2295 {
2296 	struct sctp_event_subscribe subscribe;
2297 	__u8 *sn_type = (__u8 *)&subscribe;
2298 	struct sctp_sock *sp = sctp_sk(sk);
2299 	struct sctp_association *asoc;
2300 	int i;
2301 
2302 	if (optlen > sizeof(struct sctp_event_subscribe))
2303 		return -EINVAL;
2304 
2305 	if (copy_from_user(&subscribe, optval, optlen))
2306 		return -EFAULT;
2307 
2308 	for (i = 0; i < optlen; i++)
2309 		sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i,
2310 				       sn_type[i]);
2311 
2312 	list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2313 		asoc->subscribe = sctp_sk(sk)->subscribe;
2314 
2315 	/* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2316 	 * if there is no data to be sent or retransmit, the stack will
2317 	 * immediately send up this notification.
2318 	 */
2319 	if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) {
2320 		struct sctp_ulpevent *event;
2321 
2322 		asoc = sctp_id2assoc(sk, 0);
2323 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2324 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2325 					GFP_USER | __GFP_NOWARN);
2326 			if (!event)
2327 				return -ENOMEM;
2328 
2329 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
2330 		}
2331 	}
2332 
2333 	return 0;
2334 }
2335 
2336 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2337  *
2338  * This socket option is applicable to the UDP-style socket only.  When
2339  * set it will cause associations that are idle for more than the
2340  * specified number of seconds to automatically close.  An association
2341  * being idle is defined an association that has NOT sent or received
2342  * user data.  The special value of '0' indicates that no automatic
2343  * close of any associations should be performed.  The option expects an
2344  * integer defining the number of seconds of idle time before an
2345  * association is closed.
2346  */
2347 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2348 				     unsigned int optlen)
2349 {
2350 	struct sctp_sock *sp = sctp_sk(sk);
2351 	struct net *net = sock_net(sk);
2352 
2353 	/* Applicable to UDP-style socket only */
2354 	if (sctp_style(sk, TCP))
2355 		return -EOPNOTSUPP;
2356 	if (optlen != sizeof(int))
2357 		return -EINVAL;
2358 	if (copy_from_user(&sp->autoclose, optval, optlen))
2359 		return -EFAULT;
2360 
2361 	if (sp->autoclose > net->sctp.max_autoclose)
2362 		sp->autoclose = net->sctp.max_autoclose;
2363 
2364 	return 0;
2365 }
2366 
2367 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2368  *
2369  * Applications can enable or disable heartbeats for any peer address of
2370  * an association, modify an address's heartbeat interval, force a
2371  * heartbeat to be sent immediately, and adjust the address's maximum
2372  * number of retransmissions sent before an address is considered
2373  * unreachable.  The following structure is used to access and modify an
2374  * address's parameters:
2375  *
2376  *  struct sctp_paddrparams {
2377  *     sctp_assoc_t            spp_assoc_id;
2378  *     struct sockaddr_storage spp_address;
2379  *     uint32_t                spp_hbinterval;
2380  *     uint16_t                spp_pathmaxrxt;
2381  *     uint32_t                spp_pathmtu;
2382  *     uint32_t                spp_sackdelay;
2383  *     uint32_t                spp_flags;
2384  *     uint32_t                spp_ipv6_flowlabel;
2385  *     uint8_t                 spp_dscp;
2386  * };
2387  *
2388  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2389  *                     application, and identifies the association for
2390  *                     this query.
2391  *   spp_address     - This specifies which address is of interest.
2392  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2393  *                     in milliseconds.  If a  value of zero
2394  *                     is present in this field then no changes are to
2395  *                     be made to this parameter.
2396  *   spp_pathmaxrxt  - This contains the maximum number of
2397  *                     retransmissions before this address shall be
2398  *                     considered unreachable. If a  value of zero
2399  *                     is present in this field then no changes are to
2400  *                     be made to this parameter.
2401  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2402  *                     specified here will be the "fixed" path mtu.
2403  *                     Note that if the spp_address field is empty
2404  *                     then all associations on this address will
2405  *                     have this fixed path mtu set upon them.
2406  *
2407  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2408  *                     the number of milliseconds that sacks will be delayed
2409  *                     for. This value will apply to all addresses of an
2410  *                     association if the spp_address field is empty. Note
2411  *                     also, that if delayed sack is enabled and this
2412  *                     value is set to 0, no change is made to the last
2413  *                     recorded delayed sack timer value.
2414  *
2415  *   spp_flags       - These flags are used to control various features
2416  *                     on an association. The flag field may contain
2417  *                     zero or more of the following options.
2418  *
2419  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2420  *                     specified address. Note that if the address
2421  *                     field is empty all addresses for the association
2422  *                     have heartbeats enabled upon them.
2423  *
2424  *                     SPP_HB_DISABLE - Disable heartbeats on the
2425  *                     speicifed address. Note that if the address
2426  *                     field is empty all addresses for the association
2427  *                     will have their heartbeats disabled. Note also
2428  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2429  *                     mutually exclusive, only one of these two should
2430  *                     be specified. Enabling both fields will have
2431  *                     undetermined results.
2432  *
2433  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2434  *                     to be made immediately.
2435  *
2436  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2437  *                     heartbeat delayis to be set to the value of 0
2438  *                     milliseconds.
2439  *
2440  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2441  *                     discovery upon the specified address. Note that
2442  *                     if the address feild is empty then all addresses
2443  *                     on the association are effected.
2444  *
2445  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2446  *                     discovery upon the specified address. Note that
2447  *                     if the address feild is empty then all addresses
2448  *                     on the association are effected. Not also that
2449  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2450  *                     exclusive. Enabling both will have undetermined
2451  *                     results.
2452  *
2453  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2454  *                     on delayed sack. The time specified in spp_sackdelay
2455  *                     is used to specify the sack delay for this address. Note
2456  *                     that if spp_address is empty then all addresses will
2457  *                     enable delayed sack and take on the sack delay
2458  *                     value specified in spp_sackdelay.
2459  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2460  *                     off delayed sack. If the spp_address field is blank then
2461  *                     delayed sack is disabled for the entire association. Note
2462  *                     also that this field is mutually exclusive to
2463  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2464  *                     results.
2465  *
2466  *                     SPP_IPV6_FLOWLABEL:  Setting this flag enables the
2467  *                     setting of the IPV6 flow label value.  The value is
2468  *                     contained in the spp_ipv6_flowlabel field.
2469  *                     Upon retrieval, this flag will be set to indicate that
2470  *                     the spp_ipv6_flowlabel field has a valid value returned.
2471  *                     If a specific destination address is set (in the
2472  *                     spp_address field), then the value returned is that of
2473  *                     the address.  If just an association is specified (and
2474  *                     no address), then the association's default flow label
2475  *                     is returned.  If neither an association nor a destination
2476  *                     is specified, then the socket's default flow label is
2477  *                     returned.  For non-IPv6 sockets, this flag will be left
2478  *                     cleared.
2479  *
2480  *                     SPP_DSCP:  Setting this flag enables the setting of the
2481  *                     Differentiated Services Code Point (DSCP) value
2482  *                     associated with either the association or a specific
2483  *                     address.  The value is obtained in the spp_dscp field.
2484  *                     Upon retrieval, this flag will be set to indicate that
2485  *                     the spp_dscp field has a valid value returned.  If a
2486  *                     specific destination address is set when called (in the
2487  *                     spp_address field), then that specific destination
2488  *                     address's DSCP value is returned.  If just an association
2489  *                     is specified, then the association's default DSCP is
2490  *                     returned.  If neither an association nor a destination is
2491  *                     specified, then the socket's default DSCP is returned.
2492  *
2493  *   spp_ipv6_flowlabel
2494  *                   - This field is used in conjunction with the
2495  *                     SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
2496  *                     The 20 least significant bits are used for the flow
2497  *                     label.  This setting has precedence over any IPv6-layer
2498  *                     setting.
2499  *
2500  *   spp_dscp        - This field is used in conjunction with the SPP_DSCP flag
2501  *                     and contains the DSCP.  The 6 most significant bits are
2502  *                     used for the DSCP.  This setting has precedence over any
2503  *                     IPv4- or IPv6- layer setting.
2504  */
2505 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2506 				       struct sctp_transport   *trans,
2507 				       struct sctp_association *asoc,
2508 				       struct sctp_sock        *sp,
2509 				       int                      hb_change,
2510 				       int                      pmtud_change,
2511 				       int                      sackdelay_change)
2512 {
2513 	int error;
2514 
2515 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2516 		struct net *net = sock_net(trans->asoc->base.sk);
2517 
2518 		error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2519 		if (error)
2520 			return error;
2521 	}
2522 
2523 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2524 	 * this field is ignored.  Note also that a value of zero indicates
2525 	 * the current setting should be left unchanged.
2526 	 */
2527 	if (params->spp_flags & SPP_HB_ENABLE) {
2528 
2529 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2530 		 * set.  This lets us use 0 value when this flag
2531 		 * is set.
2532 		 */
2533 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2534 			params->spp_hbinterval = 0;
2535 
2536 		if (params->spp_hbinterval ||
2537 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2538 			if (trans) {
2539 				trans->hbinterval =
2540 				    msecs_to_jiffies(params->spp_hbinterval);
2541 			} else if (asoc) {
2542 				asoc->hbinterval =
2543 				    msecs_to_jiffies(params->spp_hbinterval);
2544 			} else {
2545 				sp->hbinterval = params->spp_hbinterval;
2546 			}
2547 		}
2548 	}
2549 
2550 	if (hb_change) {
2551 		if (trans) {
2552 			trans->param_flags =
2553 				(trans->param_flags & ~SPP_HB) | hb_change;
2554 		} else if (asoc) {
2555 			asoc->param_flags =
2556 				(asoc->param_flags & ~SPP_HB) | hb_change;
2557 		} else {
2558 			sp->param_flags =
2559 				(sp->param_flags & ~SPP_HB) | hb_change;
2560 		}
2561 	}
2562 
2563 	/* When Path MTU discovery is disabled the value specified here will
2564 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2565 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2566 	 * effect).
2567 	 */
2568 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2569 		if (trans) {
2570 			trans->pathmtu = params->spp_pathmtu;
2571 			sctp_assoc_sync_pmtu(asoc);
2572 		} else if (asoc) {
2573 			sctp_assoc_set_pmtu(asoc, params->spp_pathmtu);
2574 		} else {
2575 			sp->pathmtu = params->spp_pathmtu;
2576 		}
2577 	}
2578 
2579 	if (pmtud_change) {
2580 		if (trans) {
2581 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2582 				(params->spp_flags & SPP_PMTUD_ENABLE);
2583 			trans->param_flags =
2584 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2585 			if (update) {
2586 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2587 				sctp_assoc_sync_pmtu(asoc);
2588 			}
2589 		} else if (asoc) {
2590 			asoc->param_flags =
2591 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2592 		} else {
2593 			sp->param_flags =
2594 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2595 		}
2596 	}
2597 
2598 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2599 	 * value of this field is ignored.  Note also that a value of zero
2600 	 * indicates the current setting should be left unchanged.
2601 	 */
2602 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2603 		if (trans) {
2604 			trans->sackdelay =
2605 				msecs_to_jiffies(params->spp_sackdelay);
2606 		} else if (asoc) {
2607 			asoc->sackdelay =
2608 				msecs_to_jiffies(params->spp_sackdelay);
2609 		} else {
2610 			sp->sackdelay = params->spp_sackdelay;
2611 		}
2612 	}
2613 
2614 	if (sackdelay_change) {
2615 		if (trans) {
2616 			trans->param_flags =
2617 				(trans->param_flags & ~SPP_SACKDELAY) |
2618 				sackdelay_change;
2619 		} else if (asoc) {
2620 			asoc->param_flags =
2621 				(asoc->param_flags & ~SPP_SACKDELAY) |
2622 				sackdelay_change;
2623 		} else {
2624 			sp->param_flags =
2625 				(sp->param_flags & ~SPP_SACKDELAY) |
2626 				sackdelay_change;
2627 		}
2628 	}
2629 
2630 	/* Note that a value of zero indicates the current setting should be
2631 	   left unchanged.
2632 	 */
2633 	if (params->spp_pathmaxrxt) {
2634 		if (trans) {
2635 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2636 		} else if (asoc) {
2637 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2638 		} else {
2639 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2640 		}
2641 	}
2642 
2643 	if (params->spp_flags & SPP_IPV6_FLOWLABEL) {
2644 		if (trans) {
2645 			if (trans->ipaddr.sa.sa_family == AF_INET6) {
2646 				trans->flowlabel = params->spp_ipv6_flowlabel &
2647 						   SCTP_FLOWLABEL_VAL_MASK;
2648 				trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2649 			}
2650 		} else if (asoc) {
2651 			struct sctp_transport *t;
2652 
2653 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
2654 					    transports) {
2655 				if (t->ipaddr.sa.sa_family != AF_INET6)
2656 					continue;
2657 				t->flowlabel = params->spp_ipv6_flowlabel &
2658 					       SCTP_FLOWLABEL_VAL_MASK;
2659 				t->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2660 			}
2661 			asoc->flowlabel = params->spp_ipv6_flowlabel &
2662 					  SCTP_FLOWLABEL_VAL_MASK;
2663 			asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2664 		} else if (sctp_opt2sk(sp)->sk_family == AF_INET6) {
2665 			sp->flowlabel = params->spp_ipv6_flowlabel &
2666 					SCTP_FLOWLABEL_VAL_MASK;
2667 			sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2668 		}
2669 	}
2670 
2671 	if (params->spp_flags & SPP_DSCP) {
2672 		if (trans) {
2673 			trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2674 			trans->dscp |= SCTP_DSCP_SET_MASK;
2675 		} else if (asoc) {
2676 			struct sctp_transport *t;
2677 
2678 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
2679 					    transports) {
2680 				t->dscp = params->spp_dscp &
2681 					  SCTP_DSCP_VAL_MASK;
2682 				t->dscp |= SCTP_DSCP_SET_MASK;
2683 			}
2684 			asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2685 			asoc->dscp |= SCTP_DSCP_SET_MASK;
2686 		} else {
2687 			sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2688 			sp->dscp |= SCTP_DSCP_SET_MASK;
2689 		}
2690 	}
2691 
2692 	return 0;
2693 }
2694 
2695 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2696 					    char __user *optval,
2697 					    unsigned int optlen)
2698 {
2699 	struct sctp_paddrparams  params;
2700 	struct sctp_transport   *trans = NULL;
2701 	struct sctp_association *asoc = NULL;
2702 	struct sctp_sock        *sp = sctp_sk(sk);
2703 	int error;
2704 	int hb_change, pmtud_change, sackdelay_change;
2705 
2706 	if (optlen == sizeof(params)) {
2707 		if (copy_from_user(&params, optval, optlen))
2708 			return -EFAULT;
2709 	} else if (optlen == ALIGN(offsetof(struct sctp_paddrparams,
2710 					    spp_ipv6_flowlabel), 4)) {
2711 		if (copy_from_user(&params, optval, optlen))
2712 			return -EFAULT;
2713 		if (params.spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL))
2714 			return -EINVAL;
2715 	} else {
2716 		return -EINVAL;
2717 	}
2718 
2719 	/* Validate flags and value parameters. */
2720 	hb_change        = params.spp_flags & SPP_HB;
2721 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2722 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2723 
2724 	if (hb_change        == SPP_HB ||
2725 	    pmtud_change     == SPP_PMTUD ||
2726 	    sackdelay_change == SPP_SACKDELAY ||
2727 	    params.spp_sackdelay > 500 ||
2728 	    (params.spp_pathmtu &&
2729 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2730 		return -EINVAL;
2731 
2732 	/* If an address other than INADDR_ANY is specified, and
2733 	 * no transport is found, then the request is invalid.
2734 	 */
2735 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2736 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2737 					       params.spp_assoc_id);
2738 		if (!trans)
2739 			return -EINVAL;
2740 	}
2741 
2742 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
2743 	 * socket is a one to many style socket, and an association
2744 	 * was not found, then the id was invalid.
2745 	 */
2746 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2747 	if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
2748 	    sctp_style(sk, UDP))
2749 		return -EINVAL;
2750 
2751 	/* Heartbeat demand can only be sent on a transport or
2752 	 * association, but not a socket.
2753 	 */
2754 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2755 		return -EINVAL;
2756 
2757 	/* Process parameters. */
2758 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2759 					    hb_change, pmtud_change,
2760 					    sackdelay_change);
2761 
2762 	if (error)
2763 		return error;
2764 
2765 	/* If changes are for association, also apply parameters to each
2766 	 * transport.
2767 	 */
2768 	if (!trans && asoc) {
2769 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2770 				transports) {
2771 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2772 						    hb_change, pmtud_change,
2773 						    sackdelay_change);
2774 		}
2775 	}
2776 
2777 	return 0;
2778 }
2779 
2780 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2781 {
2782 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2783 }
2784 
2785 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2786 {
2787 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2788 }
2789 
2790 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params,
2791 					struct sctp_association *asoc)
2792 {
2793 	struct sctp_transport *trans;
2794 
2795 	if (params->sack_delay) {
2796 		asoc->sackdelay = msecs_to_jiffies(params->sack_delay);
2797 		asoc->param_flags =
2798 			sctp_spp_sackdelay_enable(asoc->param_flags);
2799 	}
2800 	if (params->sack_freq == 1) {
2801 		asoc->param_flags =
2802 			sctp_spp_sackdelay_disable(asoc->param_flags);
2803 	} else if (params->sack_freq > 1) {
2804 		asoc->sackfreq = params->sack_freq;
2805 		asoc->param_flags =
2806 			sctp_spp_sackdelay_enable(asoc->param_flags);
2807 	}
2808 
2809 	list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2810 			    transports) {
2811 		if (params->sack_delay) {
2812 			trans->sackdelay = msecs_to_jiffies(params->sack_delay);
2813 			trans->param_flags =
2814 				sctp_spp_sackdelay_enable(trans->param_flags);
2815 		}
2816 		if (params->sack_freq == 1) {
2817 			trans->param_flags =
2818 				sctp_spp_sackdelay_disable(trans->param_flags);
2819 		} else if (params->sack_freq > 1) {
2820 			trans->sackfreq = params->sack_freq;
2821 			trans->param_flags =
2822 				sctp_spp_sackdelay_enable(trans->param_flags);
2823 		}
2824 	}
2825 }
2826 
2827 /*
2828  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2829  *
2830  * This option will effect the way delayed acks are performed.  This
2831  * option allows you to get or set the delayed ack time, in
2832  * milliseconds.  It also allows changing the delayed ack frequency.
2833  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2834  * the assoc_id is 0, then this sets or gets the endpoints default
2835  * values.  If the assoc_id field is non-zero, then the set or get
2836  * effects the specified association for the one to many model (the
2837  * assoc_id field is ignored by the one to one model).  Note that if
2838  * sack_delay or sack_freq are 0 when setting this option, then the
2839  * current values will remain unchanged.
2840  *
2841  * struct sctp_sack_info {
2842  *     sctp_assoc_t            sack_assoc_id;
2843  *     uint32_t                sack_delay;
2844  *     uint32_t                sack_freq;
2845  * };
2846  *
2847  * sack_assoc_id -  This parameter, indicates which association the user
2848  *    is performing an action upon.  Note that if this field's value is
2849  *    zero then the endpoints default value is changed (effecting future
2850  *    associations only).
2851  *
2852  * sack_delay -  This parameter contains the number of milliseconds that
2853  *    the user is requesting the delayed ACK timer be set to.  Note that
2854  *    this value is defined in the standard to be between 200 and 500
2855  *    milliseconds.
2856  *
2857  * sack_freq -  This parameter contains the number of packets that must
2858  *    be received before a sack is sent without waiting for the delay
2859  *    timer to expire.  The default value for this is 2, setting this
2860  *    value to 1 will disable the delayed sack algorithm.
2861  */
2862 
2863 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2864 				       char __user *optval, unsigned int optlen)
2865 {
2866 	struct sctp_sock *sp = sctp_sk(sk);
2867 	struct sctp_association *asoc;
2868 	struct sctp_sack_info params;
2869 
2870 	if (optlen == sizeof(struct sctp_sack_info)) {
2871 		if (copy_from_user(&params, optval, optlen))
2872 			return -EFAULT;
2873 
2874 		if (params.sack_delay == 0 && params.sack_freq == 0)
2875 			return 0;
2876 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2877 		pr_warn_ratelimited(DEPRECATED
2878 				    "%s (pid %d) "
2879 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2880 				    "Use struct sctp_sack_info instead\n",
2881 				    current->comm, task_pid_nr(current));
2882 		if (copy_from_user(&params, optval, optlen))
2883 			return -EFAULT;
2884 
2885 		if (params.sack_delay == 0)
2886 			params.sack_freq = 1;
2887 		else
2888 			params.sack_freq = 0;
2889 	} else
2890 		return -EINVAL;
2891 
2892 	/* Validate value parameter. */
2893 	if (params.sack_delay > 500)
2894 		return -EINVAL;
2895 
2896 	/* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
2897 	 * socket is a one to many style socket, and an association
2898 	 * was not found, then the id was invalid.
2899 	 */
2900 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2901 	if (!asoc && params.sack_assoc_id > SCTP_ALL_ASSOC &&
2902 	    sctp_style(sk, UDP))
2903 		return -EINVAL;
2904 
2905 	if (asoc) {
2906 		sctp_apply_asoc_delayed_ack(&params, asoc);
2907 
2908 		return 0;
2909 	}
2910 
2911 	if (sctp_style(sk, TCP))
2912 		params.sack_assoc_id = SCTP_FUTURE_ASSOC;
2913 
2914 	if (params.sack_assoc_id == SCTP_FUTURE_ASSOC ||
2915 	    params.sack_assoc_id == SCTP_ALL_ASSOC) {
2916 		if (params.sack_delay) {
2917 			sp->sackdelay = params.sack_delay;
2918 			sp->param_flags =
2919 				sctp_spp_sackdelay_enable(sp->param_flags);
2920 		}
2921 		if (params.sack_freq == 1) {
2922 			sp->param_flags =
2923 				sctp_spp_sackdelay_disable(sp->param_flags);
2924 		} else if (params.sack_freq > 1) {
2925 			sp->sackfreq = params.sack_freq;
2926 			sp->param_flags =
2927 				sctp_spp_sackdelay_enable(sp->param_flags);
2928 		}
2929 	}
2930 
2931 	if (params.sack_assoc_id == SCTP_CURRENT_ASSOC ||
2932 	    params.sack_assoc_id == SCTP_ALL_ASSOC)
2933 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2934 			sctp_apply_asoc_delayed_ack(&params, asoc);
2935 
2936 	return 0;
2937 }
2938 
2939 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2940  *
2941  * Applications can specify protocol parameters for the default association
2942  * initialization.  The option name argument to setsockopt() and getsockopt()
2943  * is SCTP_INITMSG.
2944  *
2945  * Setting initialization parameters is effective only on an unconnected
2946  * socket (for UDP-style sockets only future associations are effected
2947  * by the change).  With TCP-style sockets, this option is inherited by
2948  * sockets derived from a listener socket.
2949  */
2950 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2951 {
2952 	struct sctp_initmsg sinit;
2953 	struct sctp_sock *sp = sctp_sk(sk);
2954 
2955 	if (optlen != sizeof(struct sctp_initmsg))
2956 		return -EINVAL;
2957 	if (copy_from_user(&sinit, optval, optlen))
2958 		return -EFAULT;
2959 
2960 	if (sinit.sinit_num_ostreams)
2961 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2962 	if (sinit.sinit_max_instreams)
2963 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2964 	if (sinit.sinit_max_attempts)
2965 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2966 	if (sinit.sinit_max_init_timeo)
2967 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2968 
2969 	return 0;
2970 }
2971 
2972 /*
2973  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2974  *
2975  *   Applications that wish to use the sendto() system call may wish to
2976  *   specify a default set of parameters that would normally be supplied
2977  *   through the inclusion of ancillary data.  This socket option allows
2978  *   such an application to set the default sctp_sndrcvinfo structure.
2979  *   The application that wishes to use this socket option simply passes
2980  *   in to this call the sctp_sndrcvinfo structure defined in Section
2981  *   5.2.2) The input parameters accepted by this call include
2982  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2983  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2984  *   to this call if the caller is using the UDP model.
2985  */
2986 static int sctp_setsockopt_default_send_param(struct sock *sk,
2987 					      char __user *optval,
2988 					      unsigned int optlen)
2989 {
2990 	struct sctp_sock *sp = sctp_sk(sk);
2991 	struct sctp_association *asoc;
2992 	struct sctp_sndrcvinfo info;
2993 
2994 	if (optlen != sizeof(info))
2995 		return -EINVAL;
2996 	if (copy_from_user(&info, optval, optlen))
2997 		return -EFAULT;
2998 	if (info.sinfo_flags &
2999 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
3000 	      SCTP_ABORT | SCTP_EOF))
3001 		return -EINVAL;
3002 
3003 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
3004 	if (!asoc && info.sinfo_assoc_id > SCTP_ALL_ASSOC &&
3005 	    sctp_style(sk, UDP))
3006 		return -EINVAL;
3007 
3008 	if (asoc) {
3009 		asoc->default_stream = info.sinfo_stream;
3010 		asoc->default_flags = info.sinfo_flags;
3011 		asoc->default_ppid = info.sinfo_ppid;
3012 		asoc->default_context = info.sinfo_context;
3013 		asoc->default_timetolive = info.sinfo_timetolive;
3014 
3015 		return 0;
3016 	}
3017 
3018 	if (sctp_style(sk, TCP))
3019 		info.sinfo_assoc_id = SCTP_FUTURE_ASSOC;
3020 
3021 	if (info.sinfo_assoc_id == SCTP_FUTURE_ASSOC ||
3022 	    info.sinfo_assoc_id == SCTP_ALL_ASSOC) {
3023 		sp->default_stream = info.sinfo_stream;
3024 		sp->default_flags = info.sinfo_flags;
3025 		sp->default_ppid = info.sinfo_ppid;
3026 		sp->default_context = info.sinfo_context;
3027 		sp->default_timetolive = info.sinfo_timetolive;
3028 	}
3029 
3030 	if (info.sinfo_assoc_id == SCTP_CURRENT_ASSOC ||
3031 	    info.sinfo_assoc_id == SCTP_ALL_ASSOC) {
3032 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
3033 			asoc->default_stream = info.sinfo_stream;
3034 			asoc->default_flags = info.sinfo_flags;
3035 			asoc->default_ppid = info.sinfo_ppid;
3036 			asoc->default_context = info.sinfo_context;
3037 			asoc->default_timetolive = info.sinfo_timetolive;
3038 		}
3039 	}
3040 
3041 	return 0;
3042 }
3043 
3044 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
3045  * (SCTP_DEFAULT_SNDINFO)
3046  */
3047 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
3048 					   char __user *optval,
3049 					   unsigned int optlen)
3050 {
3051 	struct sctp_sock *sp = sctp_sk(sk);
3052 	struct sctp_association *asoc;
3053 	struct sctp_sndinfo info;
3054 
3055 	if (optlen != sizeof(info))
3056 		return -EINVAL;
3057 	if (copy_from_user(&info, optval, optlen))
3058 		return -EFAULT;
3059 	if (info.snd_flags &
3060 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
3061 	      SCTP_ABORT | SCTP_EOF))
3062 		return -EINVAL;
3063 
3064 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
3065 	if (!asoc && info.snd_assoc_id > SCTP_ALL_ASSOC &&
3066 	    sctp_style(sk, UDP))
3067 		return -EINVAL;
3068 
3069 	if (asoc) {
3070 		asoc->default_stream = info.snd_sid;
3071 		asoc->default_flags = info.snd_flags;
3072 		asoc->default_ppid = info.snd_ppid;
3073 		asoc->default_context = info.snd_context;
3074 
3075 		return 0;
3076 	}
3077 
3078 	if (sctp_style(sk, TCP))
3079 		info.snd_assoc_id = SCTP_FUTURE_ASSOC;
3080 
3081 	if (info.snd_assoc_id == SCTP_FUTURE_ASSOC ||
3082 	    info.snd_assoc_id == SCTP_ALL_ASSOC) {
3083 		sp->default_stream = info.snd_sid;
3084 		sp->default_flags = info.snd_flags;
3085 		sp->default_ppid = info.snd_ppid;
3086 		sp->default_context = info.snd_context;
3087 	}
3088 
3089 	if (info.snd_assoc_id == SCTP_CURRENT_ASSOC ||
3090 	    info.snd_assoc_id == SCTP_ALL_ASSOC) {
3091 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
3092 			asoc->default_stream = info.snd_sid;
3093 			asoc->default_flags = info.snd_flags;
3094 			asoc->default_ppid = info.snd_ppid;
3095 			asoc->default_context = info.snd_context;
3096 		}
3097 	}
3098 
3099 	return 0;
3100 }
3101 
3102 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
3103  *
3104  * Requests that the local SCTP stack use the enclosed peer address as
3105  * the association primary.  The enclosed address must be one of the
3106  * association peer's addresses.
3107  */
3108 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
3109 					unsigned int optlen)
3110 {
3111 	struct sctp_prim prim;
3112 	struct sctp_transport *trans;
3113 	struct sctp_af *af;
3114 	int err;
3115 
3116 	if (optlen != sizeof(struct sctp_prim))
3117 		return -EINVAL;
3118 
3119 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
3120 		return -EFAULT;
3121 
3122 	/* Allow security module to validate address but need address len. */
3123 	af = sctp_get_af_specific(prim.ssp_addr.ss_family);
3124 	if (!af)
3125 		return -EINVAL;
3126 
3127 	err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
3128 					 (struct sockaddr *)&prim.ssp_addr,
3129 					 af->sockaddr_len);
3130 	if (err)
3131 		return err;
3132 
3133 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
3134 	if (!trans)
3135 		return -EINVAL;
3136 
3137 	sctp_assoc_set_primary(trans->asoc, trans);
3138 
3139 	return 0;
3140 }
3141 
3142 /*
3143  * 7.1.5 SCTP_NODELAY
3144  *
3145  * Turn on/off any Nagle-like algorithm.  This means that packets are
3146  * generally sent as soon as possible and no unnecessary delays are
3147  * introduced, at the cost of more packets in the network.  Expects an
3148  *  integer boolean flag.
3149  */
3150 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
3151 				   unsigned int optlen)
3152 {
3153 	int val;
3154 
3155 	if (optlen < sizeof(int))
3156 		return -EINVAL;
3157 	if (get_user(val, (int __user *)optval))
3158 		return -EFAULT;
3159 
3160 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
3161 	return 0;
3162 }
3163 
3164 /*
3165  *
3166  * 7.1.1 SCTP_RTOINFO
3167  *
3168  * The protocol parameters used to initialize and bound retransmission
3169  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3170  * and modify these parameters.
3171  * All parameters are time values, in milliseconds.  A value of 0, when
3172  * modifying the parameters, indicates that the current value should not
3173  * be changed.
3174  *
3175  */
3176 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
3177 {
3178 	struct sctp_rtoinfo rtoinfo;
3179 	struct sctp_association *asoc;
3180 	unsigned long rto_min, rto_max;
3181 	struct sctp_sock *sp = sctp_sk(sk);
3182 
3183 	if (optlen != sizeof (struct sctp_rtoinfo))
3184 		return -EINVAL;
3185 
3186 	if (copy_from_user(&rtoinfo, optval, optlen))
3187 		return -EFAULT;
3188 
3189 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
3190 
3191 	/* Set the values to the specific association */
3192 	if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
3193 	    sctp_style(sk, UDP))
3194 		return -EINVAL;
3195 
3196 	rto_max = rtoinfo.srto_max;
3197 	rto_min = rtoinfo.srto_min;
3198 
3199 	if (rto_max)
3200 		rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
3201 	else
3202 		rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
3203 
3204 	if (rto_min)
3205 		rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
3206 	else
3207 		rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
3208 
3209 	if (rto_min > rto_max)
3210 		return -EINVAL;
3211 
3212 	if (asoc) {
3213 		if (rtoinfo.srto_initial != 0)
3214 			asoc->rto_initial =
3215 				msecs_to_jiffies(rtoinfo.srto_initial);
3216 		asoc->rto_max = rto_max;
3217 		asoc->rto_min = rto_min;
3218 	} else {
3219 		/* If there is no association or the association-id = 0
3220 		 * set the values to the endpoint.
3221 		 */
3222 		if (rtoinfo.srto_initial != 0)
3223 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
3224 		sp->rtoinfo.srto_max = rto_max;
3225 		sp->rtoinfo.srto_min = rto_min;
3226 	}
3227 
3228 	return 0;
3229 }
3230 
3231 /*
3232  *
3233  * 7.1.2 SCTP_ASSOCINFO
3234  *
3235  * This option is used to tune the maximum retransmission attempts
3236  * of the association.
3237  * Returns an error if the new association retransmission value is
3238  * greater than the sum of the retransmission value  of the peer.
3239  * See [SCTP] for more information.
3240  *
3241  */
3242 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
3243 {
3244 
3245 	struct sctp_assocparams assocparams;
3246 	struct sctp_association *asoc;
3247 
3248 	if (optlen != sizeof(struct sctp_assocparams))
3249 		return -EINVAL;
3250 	if (copy_from_user(&assocparams, optval, optlen))
3251 		return -EFAULT;
3252 
3253 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
3254 
3255 	if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
3256 	    sctp_style(sk, UDP))
3257 		return -EINVAL;
3258 
3259 	/* Set the values to the specific association */
3260 	if (asoc) {
3261 		if (assocparams.sasoc_asocmaxrxt != 0) {
3262 			__u32 path_sum = 0;
3263 			int   paths = 0;
3264 			struct sctp_transport *peer_addr;
3265 
3266 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3267 					transports) {
3268 				path_sum += peer_addr->pathmaxrxt;
3269 				paths++;
3270 			}
3271 
3272 			/* Only validate asocmaxrxt if we have more than
3273 			 * one path/transport.  We do this because path
3274 			 * retransmissions are only counted when we have more
3275 			 * then one path.
3276 			 */
3277 			if (paths > 1 &&
3278 			    assocparams.sasoc_asocmaxrxt > path_sum)
3279 				return -EINVAL;
3280 
3281 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3282 		}
3283 
3284 		if (assocparams.sasoc_cookie_life != 0)
3285 			asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3286 	} else {
3287 		/* Set the values to the endpoint */
3288 		struct sctp_sock *sp = sctp_sk(sk);
3289 
3290 		if (assocparams.sasoc_asocmaxrxt != 0)
3291 			sp->assocparams.sasoc_asocmaxrxt =
3292 						assocparams.sasoc_asocmaxrxt;
3293 		if (assocparams.sasoc_cookie_life != 0)
3294 			sp->assocparams.sasoc_cookie_life =
3295 						assocparams.sasoc_cookie_life;
3296 	}
3297 	return 0;
3298 }
3299 
3300 /*
3301  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3302  *
3303  * This socket option is a boolean flag which turns on or off mapped V4
3304  * addresses.  If this option is turned on and the socket is type
3305  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3306  * If this option is turned off, then no mapping will be done of V4
3307  * addresses and a user will receive both PF_INET6 and PF_INET type
3308  * addresses on the socket.
3309  */
3310 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3311 {
3312 	int val;
3313 	struct sctp_sock *sp = sctp_sk(sk);
3314 
3315 	if (optlen < sizeof(int))
3316 		return -EINVAL;
3317 	if (get_user(val, (int __user *)optval))
3318 		return -EFAULT;
3319 	if (val)
3320 		sp->v4mapped = 1;
3321 	else
3322 		sp->v4mapped = 0;
3323 
3324 	return 0;
3325 }
3326 
3327 /*
3328  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3329  * This option will get or set the maximum size to put in any outgoing
3330  * SCTP DATA chunk.  If a message is larger than this size it will be
3331  * fragmented by SCTP into the specified size.  Note that the underlying
3332  * SCTP implementation may fragment into smaller sized chunks when the
3333  * PMTU of the underlying association is smaller than the value set by
3334  * the user.  The default value for this option is '0' which indicates
3335  * the user is NOT limiting fragmentation and only the PMTU will effect
3336  * SCTP's choice of DATA chunk size.  Note also that values set larger
3337  * than the maximum size of an IP datagram will effectively let SCTP
3338  * control fragmentation (i.e. the same as setting this option to 0).
3339  *
3340  * The following structure is used to access and modify this parameter:
3341  *
3342  * struct sctp_assoc_value {
3343  *   sctp_assoc_t assoc_id;
3344  *   uint32_t assoc_value;
3345  * };
3346  *
3347  * assoc_id:  This parameter is ignored for one-to-one style sockets.
3348  *    For one-to-many style sockets this parameter indicates which
3349  *    association the user is performing an action upon.  Note that if
3350  *    this field's value is zero then the endpoints default value is
3351  *    changed (effecting future associations only).
3352  * assoc_value:  This parameter specifies the maximum size in bytes.
3353  */
3354 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3355 {
3356 	struct sctp_sock *sp = sctp_sk(sk);
3357 	struct sctp_assoc_value params;
3358 	struct sctp_association *asoc;
3359 	int val;
3360 
3361 	if (optlen == sizeof(int)) {
3362 		pr_warn_ratelimited(DEPRECATED
3363 				    "%s (pid %d) "
3364 				    "Use of int in maxseg socket option.\n"
3365 				    "Use struct sctp_assoc_value instead\n",
3366 				    current->comm, task_pid_nr(current));
3367 		if (copy_from_user(&val, optval, optlen))
3368 			return -EFAULT;
3369 		params.assoc_id = SCTP_FUTURE_ASSOC;
3370 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3371 		if (copy_from_user(&params, optval, optlen))
3372 			return -EFAULT;
3373 		val = params.assoc_value;
3374 	} else {
3375 		return -EINVAL;
3376 	}
3377 
3378 	asoc = sctp_id2assoc(sk, params.assoc_id);
3379 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
3380 	    sctp_style(sk, UDP))
3381 		return -EINVAL;
3382 
3383 	if (val) {
3384 		int min_len, max_len;
3385 		__u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) :
3386 				 sizeof(struct sctp_data_chunk);
3387 
3388 		min_len = sctp_min_frag_point(sp, datasize);
3389 		max_len = SCTP_MAX_CHUNK_LEN - datasize;
3390 
3391 		if (val < min_len || val > max_len)
3392 			return -EINVAL;
3393 	}
3394 
3395 	if (asoc) {
3396 		asoc->user_frag = val;
3397 		sctp_assoc_update_frag_point(asoc);
3398 	} else {
3399 		sp->user_frag = val;
3400 	}
3401 
3402 	return 0;
3403 }
3404 
3405 
3406 /*
3407  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3408  *
3409  *   Requests that the peer mark the enclosed address as the association
3410  *   primary. The enclosed address must be one of the association's
3411  *   locally bound addresses. The following structure is used to make a
3412  *   set primary request:
3413  */
3414 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3415 					     unsigned int optlen)
3416 {
3417 	struct net *net = sock_net(sk);
3418 	struct sctp_sock	*sp;
3419 	struct sctp_association	*asoc = NULL;
3420 	struct sctp_setpeerprim	prim;
3421 	struct sctp_chunk	*chunk;
3422 	struct sctp_af		*af;
3423 	int 			err;
3424 
3425 	sp = sctp_sk(sk);
3426 
3427 	if (!net->sctp.addip_enable)
3428 		return -EPERM;
3429 
3430 	if (optlen != sizeof(struct sctp_setpeerprim))
3431 		return -EINVAL;
3432 
3433 	if (copy_from_user(&prim, optval, optlen))
3434 		return -EFAULT;
3435 
3436 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3437 	if (!asoc)
3438 		return -EINVAL;
3439 
3440 	if (!asoc->peer.asconf_capable)
3441 		return -EPERM;
3442 
3443 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3444 		return -EPERM;
3445 
3446 	if (!sctp_state(asoc, ESTABLISHED))
3447 		return -ENOTCONN;
3448 
3449 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3450 	if (!af)
3451 		return -EINVAL;
3452 
3453 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3454 		return -EADDRNOTAVAIL;
3455 
3456 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3457 		return -EADDRNOTAVAIL;
3458 
3459 	/* Allow security module to validate address. */
3460 	err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR,
3461 					 (struct sockaddr *)&prim.sspp_addr,
3462 					 af->sockaddr_len);
3463 	if (err)
3464 		return err;
3465 
3466 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3467 	chunk = sctp_make_asconf_set_prim(asoc,
3468 					  (union sctp_addr *)&prim.sspp_addr);
3469 	if (!chunk)
3470 		return -ENOMEM;
3471 
3472 	err = sctp_send_asconf(asoc, chunk);
3473 
3474 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3475 
3476 	return err;
3477 }
3478 
3479 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3480 					    unsigned int optlen)
3481 {
3482 	struct sctp_setadaptation adaptation;
3483 
3484 	if (optlen != sizeof(struct sctp_setadaptation))
3485 		return -EINVAL;
3486 	if (copy_from_user(&adaptation, optval, optlen))
3487 		return -EFAULT;
3488 
3489 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3490 
3491 	return 0;
3492 }
3493 
3494 /*
3495  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3496  *
3497  * The context field in the sctp_sndrcvinfo structure is normally only
3498  * used when a failed message is retrieved holding the value that was
3499  * sent down on the actual send call.  This option allows the setting of
3500  * a default context on an association basis that will be received on
3501  * reading messages from the peer.  This is especially helpful in the
3502  * one-2-many model for an application to keep some reference to an
3503  * internal state machine that is processing messages on the
3504  * association.  Note that the setting of this value only effects
3505  * received messages from the peer and does not effect the value that is
3506  * saved with outbound messages.
3507  */
3508 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3509 				   unsigned int optlen)
3510 {
3511 	struct sctp_sock *sp = sctp_sk(sk);
3512 	struct sctp_assoc_value params;
3513 	struct sctp_association *asoc;
3514 
3515 	if (optlen != sizeof(struct sctp_assoc_value))
3516 		return -EINVAL;
3517 	if (copy_from_user(&params, optval, optlen))
3518 		return -EFAULT;
3519 
3520 	asoc = sctp_id2assoc(sk, params.assoc_id);
3521 	if (!asoc && params.assoc_id > SCTP_ALL_ASSOC &&
3522 	    sctp_style(sk, UDP))
3523 		return -EINVAL;
3524 
3525 	if (asoc) {
3526 		asoc->default_rcv_context = params.assoc_value;
3527 
3528 		return 0;
3529 	}
3530 
3531 	if (sctp_style(sk, TCP))
3532 		params.assoc_id = SCTP_FUTURE_ASSOC;
3533 
3534 	if (params.assoc_id == SCTP_FUTURE_ASSOC ||
3535 	    params.assoc_id == SCTP_ALL_ASSOC)
3536 		sp->default_rcv_context = params.assoc_value;
3537 
3538 	if (params.assoc_id == SCTP_CURRENT_ASSOC ||
3539 	    params.assoc_id == SCTP_ALL_ASSOC)
3540 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3541 			asoc->default_rcv_context = params.assoc_value;
3542 
3543 	return 0;
3544 }
3545 
3546 /*
3547  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3548  *
3549  * This options will at a minimum specify if the implementation is doing
3550  * fragmented interleave.  Fragmented interleave, for a one to many
3551  * socket, is when subsequent calls to receive a message may return
3552  * parts of messages from different associations.  Some implementations
3553  * may allow you to turn this value on or off.  If so, when turned off,
3554  * no fragment interleave will occur (which will cause a head of line
3555  * blocking amongst multiple associations sharing the same one to many
3556  * socket).  When this option is turned on, then each receive call may
3557  * come from a different association (thus the user must receive data
3558  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3559  * association each receive belongs to.
3560  *
3561  * This option takes a boolean value.  A non-zero value indicates that
3562  * fragmented interleave is on.  A value of zero indicates that
3563  * fragmented interleave is off.
3564  *
3565  * Note that it is important that an implementation that allows this
3566  * option to be turned on, have it off by default.  Otherwise an unaware
3567  * application using the one to many model may become confused and act
3568  * incorrectly.
3569  */
3570 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3571 					       char __user *optval,
3572 					       unsigned int optlen)
3573 {
3574 	int val;
3575 
3576 	if (optlen != sizeof(int))
3577 		return -EINVAL;
3578 	if (get_user(val, (int __user *)optval))
3579 		return -EFAULT;
3580 
3581 	sctp_sk(sk)->frag_interleave = !!val;
3582 
3583 	if (!sctp_sk(sk)->frag_interleave)
3584 		sctp_sk(sk)->strm_interleave = 0;
3585 
3586 	return 0;
3587 }
3588 
3589 /*
3590  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3591  *       (SCTP_PARTIAL_DELIVERY_POINT)
3592  *
3593  * This option will set or get the SCTP partial delivery point.  This
3594  * point is the size of a message where the partial delivery API will be
3595  * invoked to help free up rwnd space for the peer.  Setting this to a
3596  * lower value will cause partial deliveries to happen more often.  The
3597  * calls argument is an integer that sets or gets the partial delivery
3598  * point.  Note also that the call will fail if the user attempts to set
3599  * this value larger than the socket receive buffer size.
3600  *
3601  * Note that any single message having a length smaller than or equal to
3602  * the SCTP partial delivery point will be delivered in one single read
3603  * call as long as the user provided buffer is large enough to hold the
3604  * message.
3605  */
3606 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3607 						  char __user *optval,
3608 						  unsigned int optlen)
3609 {
3610 	u32 val;
3611 
3612 	if (optlen != sizeof(u32))
3613 		return -EINVAL;
3614 	if (get_user(val, (int __user *)optval))
3615 		return -EFAULT;
3616 
3617 	/* Note: We double the receive buffer from what the user sets
3618 	 * it to be, also initial rwnd is based on rcvbuf/2.
3619 	 */
3620 	if (val > (sk->sk_rcvbuf >> 1))
3621 		return -EINVAL;
3622 
3623 	sctp_sk(sk)->pd_point = val;
3624 
3625 	return 0; /* is this the right error code? */
3626 }
3627 
3628 /*
3629  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3630  *
3631  * This option will allow a user to change the maximum burst of packets
3632  * that can be emitted by this association.  Note that the default value
3633  * is 4, and some implementations may restrict this setting so that it
3634  * can only be lowered.
3635  *
3636  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3637  * future associations inheriting the socket value.
3638  */
3639 static int sctp_setsockopt_maxburst(struct sock *sk,
3640 				    char __user *optval,
3641 				    unsigned int optlen)
3642 {
3643 	struct sctp_sock *sp = sctp_sk(sk);
3644 	struct sctp_assoc_value params;
3645 	struct sctp_association *asoc;
3646 
3647 	if (optlen == sizeof(int)) {
3648 		pr_warn_ratelimited(DEPRECATED
3649 				    "%s (pid %d) "
3650 				    "Use of int in max_burst socket option deprecated.\n"
3651 				    "Use struct sctp_assoc_value instead\n",
3652 				    current->comm, task_pid_nr(current));
3653 		if (copy_from_user(&params.assoc_value, optval, optlen))
3654 			return -EFAULT;
3655 		params.assoc_id = SCTP_FUTURE_ASSOC;
3656 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3657 		if (copy_from_user(&params, optval, optlen))
3658 			return -EFAULT;
3659 	} else
3660 		return -EINVAL;
3661 
3662 	asoc = sctp_id2assoc(sk, params.assoc_id);
3663 	if (!asoc && params.assoc_id > SCTP_ALL_ASSOC &&
3664 	    sctp_style(sk, UDP))
3665 		return -EINVAL;
3666 
3667 	if (asoc) {
3668 		asoc->max_burst = params.assoc_value;
3669 
3670 		return 0;
3671 	}
3672 
3673 	if (sctp_style(sk, TCP))
3674 		params.assoc_id = SCTP_FUTURE_ASSOC;
3675 
3676 	if (params.assoc_id == SCTP_FUTURE_ASSOC ||
3677 	    params.assoc_id == SCTP_ALL_ASSOC)
3678 		sp->max_burst = params.assoc_value;
3679 
3680 	if (params.assoc_id == SCTP_CURRENT_ASSOC ||
3681 	    params.assoc_id == SCTP_ALL_ASSOC)
3682 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3683 			asoc->max_burst = params.assoc_value;
3684 
3685 	return 0;
3686 }
3687 
3688 /*
3689  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3690  *
3691  * This set option adds a chunk type that the user is requesting to be
3692  * received only in an authenticated way.  Changes to the list of chunks
3693  * will only effect future associations on the socket.
3694  */
3695 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3696 				      char __user *optval,
3697 				      unsigned int optlen)
3698 {
3699 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3700 	struct sctp_authchunk val;
3701 
3702 	if (!ep->auth_enable)
3703 		return -EACCES;
3704 
3705 	if (optlen != sizeof(struct sctp_authchunk))
3706 		return -EINVAL;
3707 	if (copy_from_user(&val, optval, optlen))
3708 		return -EFAULT;
3709 
3710 	switch (val.sauth_chunk) {
3711 	case SCTP_CID_INIT:
3712 	case SCTP_CID_INIT_ACK:
3713 	case SCTP_CID_SHUTDOWN_COMPLETE:
3714 	case SCTP_CID_AUTH:
3715 		return -EINVAL;
3716 	}
3717 
3718 	/* add this chunk id to the endpoint */
3719 	return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3720 }
3721 
3722 /*
3723  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3724  *
3725  * This option gets or sets the list of HMAC algorithms that the local
3726  * endpoint requires the peer to use.
3727  */
3728 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3729 				      char __user *optval,
3730 				      unsigned int optlen)
3731 {
3732 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3733 	struct sctp_hmacalgo *hmacs;
3734 	u32 idents;
3735 	int err;
3736 
3737 	if (!ep->auth_enable)
3738 		return -EACCES;
3739 
3740 	if (optlen < sizeof(struct sctp_hmacalgo))
3741 		return -EINVAL;
3742 	optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
3743 					     SCTP_AUTH_NUM_HMACS * sizeof(u16));
3744 
3745 	hmacs = memdup_user(optval, optlen);
3746 	if (IS_ERR(hmacs))
3747 		return PTR_ERR(hmacs);
3748 
3749 	idents = hmacs->shmac_num_idents;
3750 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3751 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3752 		err = -EINVAL;
3753 		goto out;
3754 	}
3755 
3756 	err = sctp_auth_ep_set_hmacs(ep, hmacs);
3757 out:
3758 	kfree(hmacs);
3759 	return err;
3760 }
3761 
3762 /*
3763  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3764  *
3765  * This option will set a shared secret key which is used to build an
3766  * association shared key.
3767  */
3768 static int sctp_setsockopt_auth_key(struct sock *sk,
3769 				    char __user *optval,
3770 				    unsigned int optlen)
3771 {
3772 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3773 	struct sctp_authkey *authkey;
3774 	struct sctp_association *asoc;
3775 	int ret = -EINVAL;
3776 
3777 	if (!ep->auth_enable)
3778 		return -EACCES;
3779 
3780 	if (optlen <= sizeof(struct sctp_authkey))
3781 		return -EINVAL;
3782 	/* authkey->sca_keylength is u16, so optlen can't be bigger than
3783 	 * this.
3784 	 */
3785 	optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey));
3786 
3787 	authkey = memdup_user(optval, optlen);
3788 	if (IS_ERR(authkey))
3789 		return PTR_ERR(authkey);
3790 
3791 	if (authkey->sca_keylength > optlen - sizeof(*authkey))
3792 		goto out;
3793 
3794 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3795 	if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC &&
3796 	    sctp_style(sk, UDP))
3797 		goto out;
3798 
3799 	if (asoc) {
3800 		ret = sctp_auth_set_key(ep, asoc, authkey);
3801 		goto out;
3802 	}
3803 
3804 	if (sctp_style(sk, TCP))
3805 		authkey->sca_assoc_id = SCTP_FUTURE_ASSOC;
3806 
3807 	if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC ||
3808 	    authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3809 		ret = sctp_auth_set_key(ep, asoc, authkey);
3810 		if (ret)
3811 			goto out;
3812 	}
3813 
3814 	ret = 0;
3815 
3816 	if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC ||
3817 	    authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3818 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3819 			int res = sctp_auth_set_key(ep, asoc, authkey);
3820 
3821 			if (res && !ret)
3822 				ret = res;
3823 		}
3824 	}
3825 
3826 out:
3827 	kzfree(authkey);
3828 	return ret;
3829 }
3830 
3831 /*
3832  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3833  *
3834  * This option will get or set the active shared key to be used to build
3835  * the association shared key.
3836  */
3837 static int sctp_setsockopt_active_key(struct sock *sk,
3838 				      char __user *optval,
3839 				      unsigned int optlen)
3840 {
3841 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3842 	struct sctp_association *asoc;
3843 	struct sctp_authkeyid val;
3844 	int ret = 0;
3845 
3846 	if (!ep->auth_enable)
3847 		return -EACCES;
3848 
3849 	if (optlen != sizeof(struct sctp_authkeyid))
3850 		return -EINVAL;
3851 	if (copy_from_user(&val, optval, optlen))
3852 		return -EFAULT;
3853 
3854 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3855 	if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC &&
3856 	    sctp_style(sk, UDP))
3857 		return -EINVAL;
3858 
3859 	if (asoc)
3860 		return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3861 
3862 	if (sctp_style(sk, TCP))
3863 		val.scact_assoc_id = SCTP_FUTURE_ASSOC;
3864 
3865 	if (val.scact_assoc_id == SCTP_FUTURE_ASSOC ||
3866 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3867 		ret = sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3868 		if (ret)
3869 			return ret;
3870 	}
3871 
3872 	if (val.scact_assoc_id == SCTP_CURRENT_ASSOC ||
3873 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3874 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3875 			int res = sctp_auth_set_active_key(ep, asoc,
3876 							   val.scact_keynumber);
3877 
3878 			if (res && !ret)
3879 				ret = res;
3880 		}
3881 	}
3882 
3883 	return ret;
3884 }
3885 
3886 /*
3887  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3888  *
3889  * This set option will delete a shared secret key from use.
3890  */
3891 static int sctp_setsockopt_del_key(struct sock *sk,
3892 				   char __user *optval,
3893 				   unsigned int optlen)
3894 {
3895 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3896 	struct sctp_association *asoc;
3897 	struct sctp_authkeyid val;
3898 	int ret = 0;
3899 
3900 	if (!ep->auth_enable)
3901 		return -EACCES;
3902 
3903 	if (optlen != sizeof(struct sctp_authkeyid))
3904 		return -EINVAL;
3905 	if (copy_from_user(&val, optval, optlen))
3906 		return -EFAULT;
3907 
3908 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3909 	if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC &&
3910 	    sctp_style(sk, UDP))
3911 		return -EINVAL;
3912 
3913 	if (asoc)
3914 		return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3915 
3916 	if (sctp_style(sk, TCP))
3917 		val.scact_assoc_id = SCTP_FUTURE_ASSOC;
3918 
3919 	if (val.scact_assoc_id == SCTP_FUTURE_ASSOC ||
3920 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3921 		ret = sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3922 		if (ret)
3923 			return ret;
3924 	}
3925 
3926 	if (val.scact_assoc_id == SCTP_CURRENT_ASSOC ||
3927 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3928 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3929 			int res = sctp_auth_del_key_id(ep, asoc,
3930 						       val.scact_keynumber);
3931 
3932 			if (res && !ret)
3933 				ret = res;
3934 		}
3935 	}
3936 
3937 	return ret;
3938 }
3939 
3940 /*
3941  * 8.3.4  Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)
3942  *
3943  * This set option will deactivate a shared secret key.
3944  */
3945 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval,
3946 					  unsigned int optlen)
3947 {
3948 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3949 	struct sctp_association *asoc;
3950 	struct sctp_authkeyid val;
3951 	int ret = 0;
3952 
3953 	if (!ep->auth_enable)
3954 		return -EACCES;
3955 
3956 	if (optlen != sizeof(struct sctp_authkeyid))
3957 		return -EINVAL;
3958 	if (copy_from_user(&val, optval, optlen))
3959 		return -EFAULT;
3960 
3961 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3962 	if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC &&
3963 	    sctp_style(sk, UDP))
3964 		return -EINVAL;
3965 
3966 	if (asoc)
3967 		return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber);
3968 
3969 	if (sctp_style(sk, TCP))
3970 		val.scact_assoc_id = SCTP_FUTURE_ASSOC;
3971 
3972 	if (val.scact_assoc_id == SCTP_FUTURE_ASSOC ||
3973 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3974 		ret = sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber);
3975 		if (ret)
3976 			return ret;
3977 	}
3978 
3979 	if (val.scact_assoc_id == SCTP_CURRENT_ASSOC ||
3980 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3981 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3982 			int res = sctp_auth_deact_key_id(ep, asoc,
3983 							 val.scact_keynumber);
3984 
3985 			if (res && !ret)
3986 				ret = res;
3987 		}
3988 	}
3989 
3990 	return ret;
3991 }
3992 
3993 /*
3994  * 8.1.23 SCTP_AUTO_ASCONF
3995  *
3996  * This option will enable or disable the use of the automatic generation of
3997  * ASCONF chunks to add and delete addresses to an existing association.  Note
3998  * that this option has two caveats namely: a) it only affects sockets that
3999  * are bound to all addresses available to the SCTP stack, and b) the system
4000  * administrator may have an overriding control that turns the ASCONF feature
4001  * off no matter what setting the socket option may have.
4002  * This option expects an integer boolean flag, where a non-zero value turns on
4003  * the option, and a zero value turns off the option.
4004  * Note. In this implementation, socket operation overrides default parameter
4005  * being set by sysctl as well as FreeBSD implementation
4006  */
4007 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
4008 					unsigned int optlen)
4009 {
4010 	int val;
4011 	struct sctp_sock *sp = sctp_sk(sk);
4012 
4013 	if (optlen < sizeof(int))
4014 		return -EINVAL;
4015 	if (get_user(val, (int __user *)optval))
4016 		return -EFAULT;
4017 	if (!sctp_is_ep_boundall(sk) && val)
4018 		return -EINVAL;
4019 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
4020 		return 0;
4021 
4022 	spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
4023 	if (val == 0 && sp->do_auto_asconf) {
4024 		list_del(&sp->auto_asconf_list);
4025 		sp->do_auto_asconf = 0;
4026 	} else if (val && !sp->do_auto_asconf) {
4027 		list_add_tail(&sp->auto_asconf_list,
4028 		    &sock_net(sk)->sctp.auto_asconf_splist);
4029 		sp->do_auto_asconf = 1;
4030 	}
4031 	spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
4032 	return 0;
4033 }
4034 
4035 /*
4036  * SCTP_PEER_ADDR_THLDS
4037  *
4038  * This option allows us to alter the partially failed threshold for one or all
4039  * transports in an association.  See Section 6.1 of:
4040  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
4041  */
4042 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
4043 					    char __user *optval,
4044 					    unsigned int optlen)
4045 {
4046 	struct sctp_paddrthlds val;
4047 	struct sctp_transport *trans;
4048 	struct sctp_association *asoc;
4049 
4050 	if (optlen < sizeof(struct sctp_paddrthlds))
4051 		return -EINVAL;
4052 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
4053 			   sizeof(struct sctp_paddrthlds)))
4054 		return -EFAULT;
4055 
4056 	if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
4057 		trans = sctp_addr_id2transport(sk, &val.spt_address,
4058 					       val.spt_assoc_id);
4059 		if (!trans)
4060 			return -ENOENT;
4061 
4062 		if (val.spt_pathmaxrxt)
4063 			trans->pathmaxrxt = val.spt_pathmaxrxt;
4064 		trans->pf_retrans = val.spt_pathpfthld;
4065 
4066 		return 0;
4067 	}
4068 
4069 	asoc = sctp_id2assoc(sk, val.spt_assoc_id);
4070 	if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC &&
4071 	    sctp_style(sk, UDP))
4072 		return -EINVAL;
4073 
4074 	if (asoc) {
4075 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
4076 				    transports) {
4077 			if (val.spt_pathmaxrxt)
4078 				trans->pathmaxrxt = val.spt_pathmaxrxt;
4079 			trans->pf_retrans = val.spt_pathpfthld;
4080 		}
4081 
4082 		if (val.spt_pathmaxrxt)
4083 			asoc->pathmaxrxt = val.spt_pathmaxrxt;
4084 		asoc->pf_retrans = val.spt_pathpfthld;
4085 	} else {
4086 		struct sctp_sock *sp = sctp_sk(sk);
4087 
4088 		if (val.spt_pathmaxrxt)
4089 			sp->pathmaxrxt = val.spt_pathmaxrxt;
4090 		sp->pf_retrans = val.spt_pathpfthld;
4091 	}
4092 
4093 	return 0;
4094 }
4095 
4096 static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
4097 				       char __user *optval,
4098 				       unsigned int optlen)
4099 {
4100 	int val;
4101 
4102 	if (optlen < sizeof(int))
4103 		return -EINVAL;
4104 	if (get_user(val, (int __user *) optval))
4105 		return -EFAULT;
4106 
4107 	sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
4108 
4109 	return 0;
4110 }
4111 
4112 static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
4113 				       char __user *optval,
4114 				       unsigned int optlen)
4115 {
4116 	int val;
4117 
4118 	if (optlen < sizeof(int))
4119 		return -EINVAL;
4120 	if (get_user(val, (int __user *) optval))
4121 		return -EFAULT;
4122 
4123 	sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
4124 
4125 	return 0;
4126 }
4127 
4128 static int sctp_setsockopt_pr_supported(struct sock *sk,
4129 					char __user *optval,
4130 					unsigned int optlen)
4131 {
4132 	struct sctp_assoc_value params;
4133 	struct sctp_association *asoc;
4134 
4135 	if (optlen != sizeof(params))
4136 		return -EINVAL;
4137 
4138 	if (copy_from_user(&params, optval, optlen))
4139 		return -EFAULT;
4140 
4141 	asoc = sctp_id2assoc(sk, params.assoc_id);
4142 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
4143 	    sctp_style(sk, UDP))
4144 		return -EINVAL;
4145 
4146 	sctp_sk(sk)->ep->prsctp_enable = !!params.assoc_value;
4147 
4148 	return 0;
4149 }
4150 
4151 static int sctp_setsockopt_default_prinfo(struct sock *sk,
4152 					  char __user *optval,
4153 					  unsigned int optlen)
4154 {
4155 	struct sctp_sock *sp = sctp_sk(sk);
4156 	struct sctp_default_prinfo info;
4157 	struct sctp_association *asoc;
4158 	int retval = -EINVAL;
4159 
4160 	if (optlen != sizeof(info))
4161 		goto out;
4162 
4163 	if (copy_from_user(&info, optval, sizeof(info))) {
4164 		retval = -EFAULT;
4165 		goto out;
4166 	}
4167 
4168 	if (info.pr_policy & ~SCTP_PR_SCTP_MASK)
4169 		goto out;
4170 
4171 	if (info.pr_policy == SCTP_PR_SCTP_NONE)
4172 		info.pr_value = 0;
4173 
4174 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
4175 	if (!asoc && info.pr_assoc_id > SCTP_ALL_ASSOC &&
4176 	    sctp_style(sk, UDP))
4177 		goto out;
4178 
4179 	retval = 0;
4180 
4181 	if (asoc) {
4182 		SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
4183 		asoc->default_timetolive = info.pr_value;
4184 		goto out;
4185 	}
4186 
4187 	if (sctp_style(sk, TCP))
4188 		info.pr_assoc_id = SCTP_FUTURE_ASSOC;
4189 
4190 	if (info.pr_assoc_id == SCTP_FUTURE_ASSOC ||
4191 	    info.pr_assoc_id == SCTP_ALL_ASSOC) {
4192 		SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy);
4193 		sp->default_timetolive = info.pr_value;
4194 	}
4195 
4196 	if (info.pr_assoc_id == SCTP_CURRENT_ASSOC ||
4197 	    info.pr_assoc_id == SCTP_ALL_ASSOC) {
4198 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4199 			SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
4200 			asoc->default_timetolive = info.pr_value;
4201 		}
4202 	}
4203 
4204 out:
4205 	return retval;
4206 }
4207 
4208 static int sctp_setsockopt_reconfig_supported(struct sock *sk,
4209 					      char __user *optval,
4210 					      unsigned int optlen)
4211 {
4212 	struct sctp_assoc_value params;
4213 	struct sctp_association *asoc;
4214 	int retval = -EINVAL;
4215 
4216 	if (optlen != sizeof(params))
4217 		goto out;
4218 
4219 	if (copy_from_user(&params, optval, optlen)) {
4220 		retval = -EFAULT;
4221 		goto out;
4222 	}
4223 
4224 	asoc = sctp_id2assoc(sk, params.assoc_id);
4225 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
4226 	    sctp_style(sk, UDP))
4227 		goto out;
4228 
4229 	if (asoc)
4230 		asoc->reconf_enable = !!params.assoc_value;
4231 	else
4232 		sctp_sk(sk)->ep->reconf_enable = !!params.assoc_value;
4233 
4234 	retval = 0;
4235 
4236 out:
4237 	return retval;
4238 }
4239 
4240 static int sctp_setsockopt_enable_strreset(struct sock *sk,
4241 					   char __user *optval,
4242 					   unsigned int optlen)
4243 {
4244 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
4245 	struct sctp_assoc_value params;
4246 	struct sctp_association *asoc;
4247 	int retval = -EINVAL;
4248 
4249 	if (optlen != sizeof(params))
4250 		goto out;
4251 
4252 	if (copy_from_user(&params, optval, optlen)) {
4253 		retval = -EFAULT;
4254 		goto out;
4255 	}
4256 
4257 	if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
4258 		goto out;
4259 
4260 	asoc = sctp_id2assoc(sk, params.assoc_id);
4261 	if (!asoc && params.assoc_id > SCTP_ALL_ASSOC &&
4262 	    sctp_style(sk, UDP))
4263 		goto out;
4264 
4265 	retval = 0;
4266 
4267 	if (asoc) {
4268 		asoc->strreset_enable = params.assoc_value;
4269 		goto out;
4270 	}
4271 
4272 	if (sctp_style(sk, TCP))
4273 		params.assoc_id = SCTP_FUTURE_ASSOC;
4274 
4275 	if (params.assoc_id == SCTP_FUTURE_ASSOC ||
4276 	    params.assoc_id == SCTP_ALL_ASSOC)
4277 		ep->strreset_enable = params.assoc_value;
4278 
4279 	if (params.assoc_id == SCTP_CURRENT_ASSOC ||
4280 	    params.assoc_id == SCTP_ALL_ASSOC)
4281 		list_for_each_entry(asoc, &ep->asocs, asocs)
4282 			asoc->strreset_enable = params.assoc_value;
4283 
4284 out:
4285 	return retval;
4286 }
4287 
4288 static int sctp_setsockopt_reset_streams(struct sock *sk,
4289 					 char __user *optval,
4290 					 unsigned int optlen)
4291 {
4292 	struct sctp_reset_streams *params;
4293 	struct sctp_association *asoc;
4294 	int retval = -EINVAL;
4295 
4296 	if (optlen < sizeof(*params))
4297 		return -EINVAL;
4298 	/* srs_number_streams is u16, so optlen can't be bigger than this. */
4299 	optlen = min_t(unsigned int, optlen, USHRT_MAX +
4300 					     sizeof(__u16) * sizeof(*params));
4301 
4302 	params = memdup_user(optval, optlen);
4303 	if (IS_ERR(params))
4304 		return PTR_ERR(params);
4305 
4306 	if (params->srs_number_streams * sizeof(__u16) >
4307 	    optlen - sizeof(*params))
4308 		goto out;
4309 
4310 	asoc = sctp_id2assoc(sk, params->srs_assoc_id);
4311 	if (!asoc)
4312 		goto out;
4313 
4314 	retval = sctp_send_reset_streams(asoc, params);
4315 
4316 out:
4317 	kfree(params);
4318 	return retval;
4319 }
4320 
4321 static int sctp_setsockopt_reset_assoc(struct sock *sk,
4322 				       char __user *optval,
4323 				       unsigned int optlen)
4324 {
4325 	struct sctp_association *asoc;
4326 	sctp_assoc_t associd;
4327 	int retval = -EINVAL;
4328 
4329 	if (optlen != sizeof(associd))
4330 		goto out;
4331 
4332 	if (copy_from_user(&associd, optval, optlen)) {
4333 		retval = -EFAULT;
4334 		goto out;
4335 	}
4336 
4337 	asoc = sctp_id2assoc(sk, associd);
4338 	if (!asoc)
4339 		goto out;
4340 
4341 	retval = sctp_send_reset_assoc(asoc);
4342 
4343 out:
4344 	return retval;
4345 }
4346 
4347 static int sctp_setsockopt_add_streams(struct sock *sk,
4348 				       char __user *optval,
4349 				       unsigned int optlen)
4350 {
4351 	struct sctp_association *asoc;
4352 	struct sctp_add_streams params;
4353 	int retval = -EINVAL;
4354 
4355 	if (optlen != sizeof(params))
4356 		goto out;
4357 
4358 	if (copy_from_user(&params, optval, optlen)) {
4359 		retval = -EFAULT;
4360 		goto out;
4361 	}
4362 
4363 	asoc = sctp_id2assoc(sk, params.sas_assoc_id);
4364 	if (!asoc)
4365 		goto out;
4366 
4367 	retval = sctp_send_add_streams(asoc, &params);
4368 
4369 out:
4370 	return retval;
4371 }
4372 
4373 static int sctp_setsockopt_scheduler(struct sock *sk,
4374 				     char __user *optval,
4375 				     unsigned int optlen)
4376 {
4377 	struct sctp_sock *sp = sctp_sk(sk);
4378 	struct sctp_association *asoc;
4379 	struct sctp_assoc_value params;
4380 	int retval = 0;
4381 
4382 	if (optlen < sizeof(params))
4383 		return -EINVAL;
4384 
4385 	optlen = sizeof(params);
4386 	if (copy_from_user(&params, optval, optlen))
4387 		return -EFAULT;
4388 
4389 	if (params.assoc_value > SCTP_SS_MAX)
4390 		return -EINVAL;
4391 
4392 	asoc = sctp_id2assoc(sk, params.assoc_id);
4393 	if (!asoc && params.assoc_id > SCTP_ALL_ASSOC &&
4394 	    sctp_style(sk, UDP))
4395 		return -EINVAL;
4396 
4397 	if (asoc)
4398 		return sctp_sched_set_sched(asoc, params.assoc_value);
4399 
4400 	if (sctp_style(sk, TCP))
4401 		params.assoc_id = SCTP_FUTURE_ASSOC;
4402 
4403 	if (params.assoc_id == SCTP_FUTURE_ASSOC ||
4404 	    params.assoc_id == SCTP_ALL_ASSOC)
4405 		sp->default_ss = params.assoc_value;
4406 
4407 	if (params.assoc_id == SCTP_CURRENT_ASSOC ||
4408 	    params.assoc_id == SCTP_ALL_ASSOC) {
4409 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4410 			int ret = sctp_sched_set_sched(asoc,
4411 						       params.assoc_value);
4412 
4413 			if (ret && !retval)
4414 				retval = ret;
4415 		}
4416 	}
4417 
4418 	return retval;
4419 }
4420 
4421 static int sctp_setsockopt_scheduler_value(struct sock *sk,
4422 					   char __user *optval,
4423 					   unsigned int optlen)
4424 {
4425 	struct sctp_stream_value params;
4426 	struct sctp_association *asoc;
4427 	int retval = -EINVAL;
4428 
4429 	if (optlen < sizeof(params))
4430 		goto out;
4431 
4432 	optlen = sizeof(params);
4433 	if (copy_from_user(&params, optval, optlen)) {
4434 		retval = -EFAULT;
4435 		goto out;
4436 	}
4437 
4438 	asoc = sctp_id2assoc(sk, params.assoc_id);
4439 	if (!asoc && params.assoc_id != SCTP_CURRENT_ASSOC &&
4440 	    sctp_style(sk, UDP))
4441 		goto out;
4442 
4443 	if (asoc) {
4444 		retval = sctp_sched_set_value(asoc, params.stream_id,
4445 					      params.stream_value, GFP_KERNEL);
4446 		goto out;
4447 	}
4448 
4449 	retval = 0;
4450 
4451 	list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) {
4452 		int ret = sctp_sched_set_value(asoc, params.stream_id,
4453 					       params.stream_value, GFP_KERNEL);
4454 		if (ret && !retval) /* try to return the 1st error. */
4455 			retval = ret;
4456 	}
4457 
4458 out:
4459 	return retval;
4460 }
4461 
4462 static int sctp_setsockopt_interleaving_supported(struct sock *sk,
4463 						  char __user *optval,
4464 						  unsigned int optlen)
4465 {
4466 	struct sctp_sock *sp = sctp_sk(sk);
4467 	struct sctp_assoc_value params;
4468 	struct sctp_association *asoc;
4469 	int retval = -EINVAL;
4470 
4471 	if (optlen < sizeof(params))
4472 		goto out;
4473 
4474 	optlen = sizeof(params);
4475 	if (copy_from_user(&params, optval, optlen)) {
4476 		retval = -EFAULT;
4477 		goto out;
4478 	}
4479 
4480 	asoc = sctp_id2assoc(sk, params.assoc_id);
4481 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
4482 	    sctp_style(sk, UDP))
4483 		goto out;
4484 
4485 	if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) {
4486 		retval = -EPERM;
4487 		goto out;
4488 	}
4489 
4490 	sp->strm_interleave = !!params.assoc_value;
4491 
4492 	retval = 0;
4493 
4494 out:
4495 	return retval;
4496 }
4497 
4498 static int sctp_setsockopt_reuse_port(struct sock *sk, char __user *optval,
4499 				      unsigned int optlen)
4500 {
4501 	int val;
4502 
4503 	if (!sctp_style(sk, TCP))
4504 		return -EOPNOTSUPP;
4505 
4506 	if (sctp_sk(sk)->ep->base.bind_addr.port)
4507 		return -EFAULT;
4508 
4509 	if (optlen < sizeof(int))
4510 		return -EINVAL;
4511 
4512 	if (get_user(val, (int __user *)optval))
4513 		return -EFAULT;
4514 
4515 	sctp_sk(sk)->reuse = !!val;
4516 
4517 	return 0;
4518 }
4519 
4520 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param,
4521 					struct sctp_association *asoc)
4522 {
4523 	struct sctp_ulpevent *event;
4524 
4525 	sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on);
4526 
4527 	if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) {
4528 		if (sctp_outq_is_empty(&asoc->outqueue)) {
4529 			event = sctp_ulpevent_make_sender_dry_event(asoc,
4530 					GFP_USER | __GFP_NOWARN);
4531 			if (!event)
4532 				return -ENOMEM;
4533 
4534 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
4535 		}
4536 	}
4537 
4538 	return 0;
4539 }
4540 
4541 static int sctp_setsockopt_event(struct sock *sk, char __user *optval,
4542 				 unsigned int optlen)
4543 {
4544 	struct sctp_sock *sp = sctp_sk(sk);
4545 	struct sctp_association *asoc;
4546 	struct sctp_event param;
4547 	int retval = 0;
4548 
4549 	if (optlen < sizeof(param))
4550 		return -EINVAL;
4551 
4552 	optlen = sizeof(param);
4553 	if (copy_from_user(&param, optval, optlen))
4554 		return -EFAULT;
4555 
4556 	if (param.se_type < SCTP_SN_TYPE_BASE ||
4557 	    param.se_type > SCTP_SN_TYPE_MAX)
4558 		return -EINVAL;
4559 
4560 	asoc = sctp_id2assoc(sk, param.se_assoc_id);
4561 	if (!asoc && param.se_assoc_id > SCTP_ALL_ASSOC &&
4562 	    sctp_style(sk, UDP))
4563 		return -EINVAL;
4564 
4565 	if (asoc)
4566 		return sctp_assoc_ulpevent_type_set(&param, asoc);
4567 
4568 	if (sctp_style(sk, TCP))
4569 		param.se_assoc_id = SCTP_FUTURE_ASSOC;
4570 
4571 	if (param.se_assoc_id == SCTP_FUTURE_ASSOC ||
4572 	    param.se_assoc_id == SCTP_ALL_ASSOC)
4573 		sctp_ulpevent_type_set(&sp->subscribe,
4574 				       param.se_type, param.se_on);
4575 
4576 	if (param.se_assoc_id == SCTP_CURRENT_ASSOC ||
4577 	    param.se_assoc_id == SCTP_ALL_ASSOC) {
4578 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4579 			int ret = sctp_assoc_ulpevent_type_set(&param, asoc);
4580 
4581 			if (ret && !retval)
4582 				retval = ret;
4583 		}
4584 	}
4585 
4586 	return retval;
4587 }
4588 
4589 /* API 6.2 setsockopt(), getsockopt()
4590  *
4591  * Applications use setsockopt() and getsockopt() to set or retrieve
4592  * socket options.  Socket options are used to change the default
4593  * behavior of sockets calls.  They are described in Section 7.
4594  *
4595  * The syntax is:
4596  *
4597  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
4598  *                    int __user *optlen);
4599  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
4600  *                    int optlen);
4601  *
4602  *   sd      - the socket descript.
4603  *   level   - set to IPPROTO_SCTP for all SCTP options.
4604  *   optname - the option name.
4605  *   optval  - the buffer to store the value of the option.
4606  *   optlen  - the size of the buffer.
4607  */
4608 static int sctp_setsockopt(struct sock *sk, int level, int optname,
4609 			   char __user *optval, unsigned int optlen)
4610 {
4611 	int retval = 0;
4612 
4613 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
4614 
4615 	/* I can hardly begin to describe how wrong this is.  This is
4616 	 * so broken as to be worse than useless.  The API draft
4617 	 * REALLY is NOT helpful here...  I am not convinced that the
4618 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
4619 	 * are at all well-founded.
4620 	 */
4621 	if (level != SOL_SCTP) {
4622 		struct sctp_af *af = sctp_sk(sk)->pf->af;
4623 		retval = af->setsockopt(sk, level, optname, optval, optlen);
4624 		goto out_nounlock;
4625 	}
4626 
4627 	lock_sock(sk);
4628 
4629 	switch (optname) {
4630 	case SCTP_SOCKOPT_BINDX_ADD:
4631 		/* 'optlen' is the size of the addresses buffer. */
4632 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
4633 					       optlen, SCTP_BINDX_ADD_ADDR);
4634 		break;
4635 
4636 	case SCTP_SOCKOPT_BINDX_REM:
4637 		/* 'optlen' is the size of the addresses buffer. */
4638 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
4639 					       optlen, SCTP_BINDX_REM_ADDR);
4640 		break;
4641 
4642 	case SCTP_SOCKOPT_CONNECTX_OLD:
4643 		/* 'optlen' is the size of the addresses buffer. */
4644 		retval = sctp_setsockopt_connectx_old(sk,
4645 					    (struct sockaddr __user *)optval,
4646 					    optlen);
4647 		break;
4648 
4649 	case SCTP_SOCKOPT_CONNECTX:
4650 		/* 'optlen' is the size of the addresses buffer. */
4651 		retval = sctp_setsockopt_connectx(sk,
4652 					    (struct sockaddr __user *)optval,
4653 					    optlen);
4654 		break;
4655 
4656 	case SCTP_DISABLE_FRAGMENTS:
4657 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
4658 		break;
4659 
4660 	case SCTP_EVENTS:
4661 		retval = sctp_setsockopt_events(sk, optval, optlen);
4662 		break;
4663 
4664 	case SCTP_AUTOCLOSE:
4665 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
4666 		break;
4667 
4668 	case SCTP_PEER_ADDR_PARAMS:
4669 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
4670 		break;
4671 
4672 	case SCTP_DELAYED_SACK:
4673 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
4674 		break;
4675 	case SCTP_PARTIAL_DELIVERY_POINT:
4676 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
4677 		break;
4678 
4679 	case SCTP_INITMSG:
4680 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
4681 		break;
4682 	case SCTP_DEFAULT_SEND_PARAM:
4683 		retval = sctp_setsockopt_default_send_param(sk, optval,
4684 							    optlen);
4685 		break;
4686 	case SCTP_DEFAULT_SNDINFO:
4687 		retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
4688 		break;
4689 	case SCTP_PRIMARY_ADDR:
4690 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
4691 		break;
4692 	case SCTP_SET_PEER_PRIMARY_ADDR:
4693 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
4694 		break;
4695 	case SCTP_NODELAY:
4696 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
4697 		break;
4698 	case SCTP_RTOINFO:
4699 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
4700 		break;
4701 	case SCTP_ASSOCINFO:
4702 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
4703 		break;
4704 	case SCTP_I_WANT_MAPPED_V4_ADDR:
4705 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
4706 		break;
4707 	case SCTP_MAXSEG:
4708 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
4709 		break;
4710 	case SCTP_ADAPTATION_LAYER:
4711 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
4712 		break;
4713 	case SCTP_CONTEXT:
4714 		retval = sctp_setsockopt_context(sk, optval, optlen);
4715 		break;
4716 	case SCTP_FRAGMENT_INTERLEAVE:
4717 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
4718 		break;
4719 	case SCTP_MAX_BURST:
4720 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
4721 		break;
4722 	case SCTP_AUTH_CHUNK:
4723 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
4724 		break;
4725 	case SCTP_HMAC_IDENT:
4726 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
4727 		break;
4728 	case SCTP_AUTH_KEY:
4729 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
4730 		break;
4731 	case SCTP_AUTH_ACTIVE_KEY:
4732 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
4733 		break;
4734 	case SCTP_AUTH_DELETE_KEY:
4735 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
4736 		break;
4737 	case SCTP_AUTH_DEACTIVATE_KEY:
4738 		retval = sctp_setsockopt_deactivate_key(sk, optval, optlen);
4739 		break;
4740 	case SCTP_AUTO_ASCONF:
4741 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
4742 		break;
4743 	case SCTP_PEER_ADDR_THLDS:
4744 		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
4745 		break;
4746 	case SCTP_RECVRCVINFO:
4747 		retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
4748 		break;
4749 	case SCTP_RECVNXTINFO:
4750 		retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
4751 		break;
4752 	case SCTP_PR_SUPPORTED:
4753 		retval = sctp_setsockopt_pr_supported(sk, optval, optlen);
4754 		break;
4755 	case SCTP_DEFAULT_PRINFO:
4756 		retval = sctp_setsockopt_default_prinfo(sk, optval, optlen);
4757 		break;
4758 	case SCTP_RECONFIG_SUPPORTED:
4759 		retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen);
4760 		break;
4761 	case SCTP_ENABLE_STREAM_RESET:
4762 		retval = sctp_setsockopt_enable_strreset(sk, optval, optlen);
4763 		break;
4764 	case SCTP_RESET_STREAMS:
4765 		retval = sctp_setsockopt_reset_streams(sk, optval, optlen);
4766 		break;
4767 	case SCTP_RESET_ASSOC:
4768 		retval = sctp_setsockopt_reset_assoc(sk, optval, optlen);
4769 		break;
4770 	case SCTP_ADD_STREAMS:
4771 		retval = sctp_setsockopt_add_streams(sk, optval, optlen);
4772 		break;
4773 	case SCTP_STREAM_SCHEDULER:
4774 		retval = sctp_setsockopt_scheduler(sk, optval, optlen);
4775 		break;
4776 	case SCTP_STREAM_SCHEDULER_VALUE:
4777 		retval = sctp_setsockopt_scheduler_value(sk, optval, optlen);
4778 		break;
4779 	case SCTP_INTERLEAVING_SUPPORTED:
4780 		retval = sctp_setsockopt_interleaving_supported(sk, optval,
4781 								optlen);
4782 		break;
4783 	case SCTP_REUSE_PORT:
4784 		retval = sctp_setsockopt_reuse_port(sk, optval, optlen);
4785 		break;
4786 	case SCTP_EVENT:
4787 		retval = sctp_setsockopt_event(sk, optval, optlen);
4788 		break;
4789 	default:
4790 		retval = -ENOPROTOOPT;
4791 		break;
4792 	}
4793 
4794 	release_sock(sk);
4795 
4796 out_nounlock:
4797 	return retval;
4798 }
4799 
4800 /* API 3.1.6 connect() - UDP Style Syntax
4801  *
4802  * An application may use the connect() call in the UDP model to initiate an
4803  * association without sending data.
4804  *
4805  * The syntax is:
4806  *
4807  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4808  *
4809  * sd: the socket descriptor to have a new association added to.
4810  *
4811  * nam: the address structure (either struct sockaddr_in or struct
4812  *    sockaddr_in6 defined in RFC2553 [7]).
4813  *
4814  * len: the size of the address.
4815  */
4816 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4817 			int addr_len, int flags)
4818 {
4819 	struct inet_sock *inet = inet_sk(sk);
4820 	struct sctp_af *af;
4821 	int err = 0;
4822 
4823 	lock_sock(sk);
4824 
4825 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4826 		 addr, addr_len);
4827 
4828 	/* We may need to bind the socket. */
4829 	if (!inet->inet_num) {
4830 		if (sk->sk_prot->get_port(sk, 0)) {
4831 			release_sock(sk);
4832 			return -EAGAIN;
4833 		}
4834 		inet->inet_sport = htons(inet->inet_num);
4835 	}
4836 
4837 	/* Validate addr_len before calling common connect/connectx routine. */
4838 	af = addr_len < offsetofend(struct sockaddr, sa_family) ? NULL :
4839 		sctp_get_af_specific(addr->sa_family);
4840 	if (!af || addr_len < af->sockaddr_len) {
4841 		err = -EINVAL;
4842 	} else {
4843 		/* Pass correct addr len to common routine (so it knows there
4844 		 * is only one address being passed.
4845 		 */
4846 		err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
4847 	}
4848 
4849 	release_sock(sk);
4850 	return err;
4851 }
4852 
4853 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
4854 		      int addr_len, int flags)
4855 {
4856 	if (addr_len < sizeof(uaddr->sa_family))
4857 		return -EINVAL;
4858 
4859 	if (uaddr->sa_family == AF_UNSPEC)
4860 		return -EOPNOTSUPP;
4861 
4862 	return sctp_connect(sock->sk, uaddr, addr_len, flags);
4863 }
4864 
4865 /* FIXME: Write comments. */
4866 static int sctp_disconnect(struct sock *sk, int flags)
4867 {
4868 	return -EOPNOTSUPP; /* STUB */
4869 }
4870 
4871 /* 4.1.4 accept() - TCP Style Syntax
4872  *
4873  * Applications use accept() call to remove an established SCTP
4874  * association from the accept queue of the endpoint.  A new socket
4875  * descriptor will be returned from accept() to represent the newly
4876  * formed association.
4877  */
4878 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4879 {
4880 	struct sctp_sock *sp;
4881 	struct sctp_endpoint *ep;
4882 	struct sock *newsk = NULL;
4883 	struct sctp_association *asoc;
4884 	long timeo;
4885 	int error = 0;
4886 
4887 	lock_sock(sk);
4888 
4889 	sp = sctp_sk(sk);
4890 	ep = sp->ep;
4891 
4892 	if (!sctp_style(sk, TCP)) {
4893 		error = -EOPNOTSUPP;
4894 		goto out;
4895 	}
4896 
4897 	if (!sctp_sstate(sk, LISTENING)) {
4898 		error = -EINVAL;
4899 		goto out;
4900 	}
4901 
4902 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4903 
4904 	error = sctp_wait_for_accept(sk, timeo);
4905 	if (error)
4906 		goto out;
4907 
4908 	/* We treat the list of associations on the endpoint as the accept
4909 	 * queue and pick the first association on the list.
4910 	 */
4911 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4912 
4913 	newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4914 	if (!newsk) {
4915 		error = -ENOMEM;
4916 		goto out;
4917 	}
4918 
4919 	/* Populate the fields of the newsk from the oldsk and migrate the
4920 	 * asoc to the newsk.
4921 	 */
4922 	error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4923 	if (error) {
4924 		sk_common_release(newsk);
4925 		newsk = NULL;
4926 	}
4927 
4928 out:
4929 	release_sock(sk);
4930 	*err = error;
4931 	return newsk;
4932 }
4933 
4934 /* The SCTP ioctl handler. */
4935 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4936 {
4937 	int rc = -ENOTCONN;
4938 
4939 	lock_sock(sk);
4940 
4941 	/*
4942 	 * SEQPACKET-style sockets in LISTENING state are valid, for
4943 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
4944 	 */
4945 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4946 		goto out;
4947 
4948 	switch (cmd) {
4949 	case SIOCINQ: {
4950 		struct sk_buff *skb;
4951 		unsigned int amount = 0;
4952 
4953 		skb = skb_peek(&sk->sk_receive_queue);
4954 		if (skb != NULL) {
4955 			/*
4956 			 * We will only return the amount of this packet since
4957 			 * that is all that will be read.
4958 			 */
4959 			amount = skb->len;
4960 		}
4961 		rc = put_user(amount, (int __user *)arg);
4962 		break;
4963 	}
4964 	default:
4965 		rc = -ENOIOCTLCMD;
4966 		break;
4967 	}
4968 out:
4969 	release_sock(sk);
4970 	return rc;
4971 }
4972 
4973 /* This is the function which gets called during socket creation to
4974  * initialized the SCTP-specific portion of the sock.
4975  * The sock structure should already be zero-filled memory.
4976  */
4977 static int sctp_init_sock(struct sock *sk)
4978 {
4979 	struct net *net = sock_net(sk);
4980 	struct sctp_sock *sp;
4981 
4982 	pr_debug("%s: sk:%p\n", __func__, sk);
4983 
4984 	sp = sctp_sk(sk);
4985 
4986 	/* Initialize the SCTP per socket area.  */
4987 	switch (sk->sk_type) {
4988 	case SOCK_SEQPACKET:
4989 		sp->type = SCTP_SOCKET_UDP;
4990 		break;
4991 	case SOCK_STREAM:
4992 		sp->type = SCTP_SOCKET_TCP;
4993 		break;
4994 	default:
4995 		return -ESOCKTNOSUPPORT;
4996 	}
4997 
4998 	sk->sk_gso_type = SKB_GSO_SCTP;
4999 
5000 	/* Initialize default send parameters. These parameters can be
5001 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
5002 	 */
5003 	sp->default_stream = 0;
5004 	sp->default_ppid = 0;
5005 	sp->default_flags = 0;
5006 	sp->default_context = 0;
5007 	sp->default_timetolive = 0;
5008 
5009 	sp->default_rcv_context = 0;
5010 	sp->max_burst = net->sctp.max_burst;
5011 
5012 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
5013 
5014 	/* Initialize default setup parameters. These parameters
5015 	 * can be modified with the SCTP_INITMSG socket option or
5016 	 * overridden by the SCTP_INIT CMSG.
5017 	 */
5018 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
5019 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
5020 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
5021 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
5022 
5023 	/* Initialize default RTO related parameters.  These parameters can
5024 	 * be modified for with the SCTP_RTOINFO socket option.
5025 	 */
5026 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
5027 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
5028 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
5029 
5030 	/* Initialize default association related parameters. These parameters
5031 	 * can be modified with the SCTP_ASSOCINFO socket option.
5032 	 */
5033 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
5034 	sp->assocparams.sasoc_number_peer_destinations = 0;
5035 	sp->assocparams.sasoc_peer_rwnd = 0;
5036 	sp->assocparams.sasoc_local_rwnd = 0;
5037 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
5038 
5039 	/* Initialize default event subscriptions. By default, all the
5040 	 * options are off.
5041 	 */
5042 	sp->subscribe = 0;
5043 
5044 	/* Default Peer Address Parameters.  These defaults can
5045 	 * be modified via SCTP_PEER_ADDR_PARAMS
5046 	 */
5047 	sp->hbinterval  = net->sctp.hb_interval;
5048 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
5049 	sp->pf_retrans  = net->sctp.pf_retrans;
5050 	sp->pathmtu     = 0; /* allow default discovery */
5051 	sp->sackdelay   = net->sctp.sack_timeout;
5052 	sp->sackfreq	= 2;
5053 	sp->param_flags = SPP_HB_ENABLE |
5054 			  SPP_PMTUD_ENABLE |
5055 			  SPP_SACKDELAY_ENABLE;
5056 	sp->default_ss = SCTP_SS_DEFAULT;
5057 
5058 	/* If enabled no SCTP message fragmentation will be performed.
5059 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
5060 	 */
5061 	sp->disable_fragments = 0;
5062 
5063 	/* Enable Nagle algorithm by default.  */
5064 	sp->nodelay           = 0;
5065 
5066 	sp->recvrcvinfo = 0;
5067 	sp->recvnxtinfo = 0;
5068 
5069 	/* Enable by default. */
5070 	sp->v4mapped          = 1;
5071 
5072 	/* Auto-close idle associations after the configured
5073 	 * number of seconds.  A value of 0 disables this
5074 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
5075 	 * for UDP-style sockets only.
5076 	 */
5077 	sp->autoclose         = 0;
5078 
5079 	/* User specified fragmentation limit. */
5080 	sp->user_frag         = 0;
5081 
5082 	sp->adaptation_ind = 0;
5083 
5084 	sp->pf = sctp_get_pf_specific(sk->sk_family);
5085 
5086 	/* Control variables for partial data delivery. */
5087 	atomic_set(&sp->pd_mode, 0);
5088 	skb_queue_head_init(&sp->pd_lobby);
5089 	sp->frag_interleave = 0;
5090 
5091 	/* Create a per socket endpoint structure.  Even if we
5092 	 * change the data structure relationships, this may still
5093 	 * be useful for storing pre-connect address information.
5094 	 */
5095 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
5096 	if (!sp->ep)
5097 		return -ENOMEM;
5098 
5099 	sp->hmac = NULL;
5100 
5101 	sk->sk_destruct = sctp_destruct_sock;
5102 
5103 	SCTP_DBG_OBJCNT_INC(sock);
5104 
5105 	local_bh_disable();
5106 	sk_sockets_allocated_inc(sk);
5107 	sock_prot_inuse_add(net, sk->sk_prot, 1);
5108 
5109 	/* Nothing can fail after this block, otherwise
5110 	 * sctp_destroy_sock() will be called without addr_wq_lock held
5111 	 */
5112 	if (net->sctp.default_auto_asconf) {
5113 		spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
5114 		list_add_tail(&sp->auto_asconf_list,
5115 		    &net->sctp.auto_asconf_splist);
5116 		sp->do_auto_asconf = 1;
5117 		spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
5118 	} else {
5119 		sp->do_auto_asconf = 0;
5120 	}
5121 
5122 	local_bh_enable();
5123 
5124 	return 0;
5125 }
5126 
5127 /* Cleanup any SCTP per socket resources. Must be called with
5128  * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
5129  */
5130 static void sctp_destroy_sock(struct sock *sk)
5131 {
5132 	struct sctp_sock *sp;
5133 
5134 	pr_debug("%s: sk:%p\n", __func__, sk);
5135 
5136 	/* Release our hold on the endpoint. */
5137 	sp = sctp_sk(sk);
5138 	/* This could happen during socket init, thus we bail out
5139 	 * early, since the rest of the below is not setup either.
5140 	 */
5141 	if (sp->ep == NULL)
5142 		return;
5143 
5144 	if (sp->do_auto_asconf) {
5145 		sp->do_auto_asconf = 0;
5146 		list_del(&sp->auto_asconf_list);
5147 	}
5148 	sctp_endpoint_free(sp->ep);
5149 	local_bh_disable();
5150 	sk_sockets_allocated_dec(sk);
5151 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
5152 	local_bh_enable();
5153 }
5154 
5155 /* Triggered when there are no references on the socket anymore */
5156 static void sctp_destruct_sock(struct sock *sk)
5157 {
5158 	struct sctp_sock *sp = sctp_sk(sk);
5159 
5160 	/* Free up the HMAC transform. */
5161 	crypto_free_shash(sp->hmac);
5162 
5163 	inet_sock_destruct(sk);
5164 }
5165 
5166 /* API 4.1.7 shutdown() - TCP Style Syntax
5167  *     int shutdown(int socket, int how);
5168  *
5169  *     sd      - the socket descriptor of the association to be closed.
5170  *     how     - Specifies the type of shutdown.  The  values  are
5171  *               as follows:
5172  *               SHUT_RD
5173  *                     Disables further receive operations. No SCTP
5174  *                     protocol action is taken.
5175  *               SHUT_WR
5176  *                     Disables further send operations, and initiates
5177  *                     the SCTP shutdown sequence.
5178  *               SHUT_RDWR
5179  *                     Disables further send  and  receive  operations
5180  *                     and initiates the SCTP shutdown sequence.
5181  */
5182 static void sctp_shutdown(struct sock *sk, int how)
5183 {
5184 	struct net *net = sock_net(sk);
5185 	struct sctp_endpoint *ep;
5186 
5187 	if (!sctp_style(sk, TCP))
5188 		return;
5189 
5190 	ep = sctp_sk(sk)->ep;
5191 	if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
5192 		struct sctp_association *asoc;
5193 
5194 		inet_sk_set_state(sk, SCTP_SS_CLOSING);
5195 		asoc = list_entry(ep->asocs.next,
5196 				  struct sctp_association, asocs);
5197 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
5198 	}
5199 }
5200 
5201 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
5202 		       struct sctp_info *info)
5203 {
5204 	struct sctp_transport *prim;
5205 	struct list_head *pos;
5206 	int mask;
5207 
5208 	memset(info, 0, sizeof(*info));
5209 	if (!asoc) {
5210 		struct sctp_sock *sp = sctp_sk(sk);
5211 
5212 		info->sctpi_s_autoclose = sp->autoclose;
5213 		info->sctpi_s_adaptation_ind = sp->adaptation_ind;
5214 		info->sctpi_s_pd_point = sp->pd_point;
5215 		info->sctpi_s_nodelay = sp->nodelay;
5216 		info->sctpi_s_disable_fragments = sp->disable_fragments;
5217 		info->sctpi_s_v4mapped = sp->v4mapped;
5218 		info->sctpi_s_frag_interleave = sp->frag_interleave;
5219 		info->sctpi_s_type = sp->type;
5220 
5221 		return 0;
5222 	}
5223 
5224 	info->sctpi_tag = asoc->c.my_vtag;
5225 	info->sctpi_state = asoc->state;
5226 	info->sctpi_rwnd = asoc->a_rwnd;
5227 	info->sctpi_unackdata = asoc->unack_data;
5228 	info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5229 	info->sctpi_instrms = asoc->stream.incnt;
5230 	info->sctpi_outstrms = asoc->stream.outcnt;
5231 	list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
5232 		info->sctpi_inqueue++;
5233 	list_for_each(pos, &asoc->outqueue.out_chunk_list)
5234 		info->sctpi_outqueue++;
5235 	info->sctpi_overall_error = asoc->overall_error_count;
5236 	info->sctpi_max_burst = asoc->max_burst;
5237 	info->sctpi_maxseg = asoc->frag_point;
5238 	info->sctpi_peer_rwnd = asoc->peer.rwnd;
5239 	info->sctpi_peer_tag = asoc->c.peer_vtag;
5240 
5241 	mask = asoc->peer.ecn_capable << 1;
5242 	mask = (mask | asoc->peer.ipv4_address) << 1;
5243 	mask = (mask | asoc->peer.ipv6_address) << 1;
5244 	mask = (mask | asoc->peer.hostname_address) << 1;
5245 	mask = (mask | asoc->peer.asconf_capable) << 1;
5246 	mask = (mask | asoc->peer.prsctp_capable) << 1;
5247 	mask = (mask | asoc->peer.auth_capable);
5248 	info->sctpi_peer_capable = mask;
5249 	mask = asoc->peer.sack_needed << 1;
5250 	mask = (mask | asoc->peer.sack_generation) << 1;
5251 	mask = (mask | asoc->peer.zero_window_announced);
5252 	info->sctpi_peer_sack = mask;
5253 
5254 	info->sctpi_isacks = asoc->stats.isacks;
5255 	info->sctpi_osacks = asoc->stats.osacks;
5256 	info->sctpi_opackets = asoc->stats.opackets;
5257 	info->sctpi_ipackets = asoc->stats.ipackets;
5258 	info->sctpi_rtxchunks = asoc->stats.rtxchunks;
5259 	info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
5260 	info->sctpi_idupchunks = asoc->stats.idupchunks;
5261 	info->sctpi_gapcnt = asoc->stats.gapcnt;
5262 	info->sctpi_ouodchunks = asoc->stats.ouodchunks;
5263 	info->sctpi_iuodchunks = asoc->stats.iuodchunks;
5264 	info->sctpi_oodchunks = asoc->stats.oodchunks;
5265 	info->sctpi_iodchunks = asoc->stats.iodchunks;
5266 	info->sctpi_octrlchunks = asoc->stats.octrlchunks;
5267 	info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
5268 
5269 	prim = asoc->peer.primary_path;
5270 	memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
5271 	info->sctpi_p_state = prim->state;
5272 	info->sctpi_p_cwnd = prim->cwnd;
5273 	info->sctpi_p_srtt = prim->srtt;
5274 	info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
5275 	info->sctpi_p_hbinterval = prim->hbinterval;
5276 	info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
5277 	info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
5278 	info->sctpi_p_ssthresh = prim->ssthresh;
5279 	info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
5280 	info->sctpi_p_flight_size = prim->flight_size;
5281 	info->sctpi_p_error = prim->error_count;
5282 
5283 	return 0;
5284 }
5285 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
5286 
5287 /* use callback to avoid exporting the core structure */
5288 void sctp_transport_walk_start(struct rhashtable_iter *iter)
5289 {
5290 	rhltable_walk_enter(&sctp_transport_hashtable, iter);
5291 
5292 	rhashtable_walk_start(iter);
5293 }
5294 
5295 void sctp_transport_walk_stop(struct rhashtable_iter *iter)
5296 {
5297 	rhashtable_walk_stop(iter);
5298 	rhashtable_walk_exit(iter);
5299 }
5300 
5301 struct sctp_transport *sctp_transport_get_next(struct net *net,
5302 					       struct rhashtable_iter *iter)
5303 {
5304 	struct sctp_transport *t;
5305 
5306 	t = rhashtable_walk_next(iter);
5307 	for (; t; t = rhashtable_walk_next(iter)) {
5308 		if (IS_ERR(t)) {
5309 			if (PTR_ERR(t) == -EAGAIN)
5310 				continue;
5311 			break;
5312 		}
5313 
5314 		if (!sctp_transport_hold(t))
5315 			continue;
5316 
5317 		if (net_eq(sock_net(t->asoc->base.sk), net) &&
5318 		    t->asoc->peer.primary_path == t)
5319 			break;
5320 
5321 		sctp_transport_put(t);
5322 	}
5323 
5324 	return t;
5325 }
5326 
5327 struct sctp_transport *sctp_transport_get_idx(struct net *net,
5328 					      struct rhashtable_iter *iter,
5329 					      int pos)
5330 {
5331 	struct sctp_transport *t;
5332 
5333 	if (!pos)
5334 		return SEQ_START_TOKEN;
5335 
5336 	while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) {
5337 		if (!--pos)
5338 			break;
5339 		sctp_transport_put(t);
5340 	}
5341 
5342 	return t;
5343 }
5344 
5345 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
5346 			   void *p) {
5347 	int err = 0;
5348 	int hash = 0;
5349 	struct sctp_ep_common *epb;
5350 	struct sctp_hashbucket *head;
5351 
5352 	for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
5353 	     hash++, head++) {
5354 		read_lock_bh(&head->lock);
5355 		sctp_for_each_hentry(epb, &head->chain) {
5356 			err = cb(sctp_ep(epb), p);
5357 			if (err)
5358 				break;
5359 		}
5360 		read_unlock_bh(&head->lock);
5361 	}
5362 
5363 	return err;
5364 }
5365 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
5366 
5367 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
5368 				  struct net *net,
5369 				  const union sctp_addr *laddr,
5370 				  const union sctp_addr *paddr, void *p)
5371 {
5372 	struct sctp_transport *transport;
5373 	int err;
5374 
5375 	rcu_read_lock();
5376 	transport = sctp_addrs_lookup_transport(net, laddr, paddr);
5377 	rcu_read_unlock();
5378 	if (!transport)
5379 		return -ENOENT;
5380 
5381 	err = cb(transport, p);
5382 	sctp_transport_put(transport);
5383 
5384 	return err;
5385 }
5386 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
5387 
5388 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
5389 			    int (*cb_done)(struct sctp_transport *, void *),
5390 			    struct net *net, int *pos, void *p) {
5391 	struct rhashtable_iter hti;
5392 	struct sctp_transport *tsp;
5393 	int ret;
5394 
5395 again:
5396 	ret = 0;
5397 	sctp_transport_walk_start(&hti);
5398 
5399 	tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
5400 	for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
5401 		ret = cb(tsp, p);
5402 		if (ret)
5403 			break;
5404 		(*pos)++;
5405 		sctp_transport_put(tsp);
5406 	}
5407 	sctp_transport_walk_stop(&hti);
5408 
5409 	if (ret) {
5410 		if (cb_done && !cb_done(tsp, p)) {
5411 			(*pos)++;
5412 			sctp_transport_put(tsp);
5413 			goto again;
5414 		}
5415 		sctp_transport_put(tsp);
5416 	}
5417 
5418 	return ret;
5419 }
5420 EXPORT_SYMBOL_GPL(sctp_for_each_transport);
5421 
5422 /* 7.2.1 Association Status (SCTP_STATUS)
5423 
5424  * Applications can retrieve current status information about an
5425  * association, including association state, peer receiver window size,
5426  * number of unacked data chunks, and number of data chunks pending
5427  * receipt.  This information is read-only.
5428  */
5429 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
5430 				       char __user *optval,
5431 				       int __user *optlen)
5432 {
5433 	struct sctp_status status;
5434 	struct sctp_association *asoc = NULL;
5435 	struct sctp_transport *transport;
5436 	sctp_assoc_t associd;
5437 	int retval = 0;
5438 
5439 	if (len < sizeof(status)) {
5440 		retval = -EINVAL;
5441 		goto out;
5442 	}
5443 
5444 	len = sizeof(status);
5445 	if (copy_from_user(&status, optval, len)) {
5446 		retval = -EFAULT;
5447 		goto out;
5448 	}
5449 
5450 	associd = status.sstat_assoc_id;
5451 	asoc = sctp_id2assoc(sk, associd);
5452 	if (!asoc) {
5453 		retval = -EINVAL;
5454 		goto out;
5455 	}
5456 
5457 	transport = asoc->peer.primary_path;
5458 
5459 	status.sstat_assoc_id = sctp_assoc2id(asoc);
5460 	status.sstat_state = sctp_assoc_to_state(asoc);
5461 	status.sstat_rwnd =  asoc->peer.rwnd;
5462 	status.sstat_unackdata = asoc->unack_data;
5463 
5464 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5465 	status.sstat_instrms = asoc->stream.incnt;
5466 	status.sstat_outstrms = asoc->stream.outcnt;
5467 	status.sstat_fragmentation_point = asoc->frag_point;
5468 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5469 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
5470 			transport->af_specific->sockaddr_len);
5471 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
5472 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
5473 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
5474 	status.sstat_primary.spinfo_state = transport->state;
5475 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
5476 	status.sstat_primary.spinfo_srtt = transport->srtt;
5477 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
5478 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
5479 
5480 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
5481 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
5482 
5483 	if (put_user(len, optlen)) {
5484 		retval = -EFAULT;
5485 		goto out;
5486 	}
5487 
5488 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
5489 		 __func__, len, status.sstat_state, status.sstat_rwnd,
5490 		 status.sstat_assoc_id);
5491 
5492 	if (copy_to_user(optval, &status, len)) {
5493 		retval = -EFAULT;
5494 		goto out;
5495 	}
5496 
5497 out:
5498 	return retval;
5499 }
5500 
5501 
5502 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
5503  *
5504  * Applications can retrieve information about a specific peer address
5505  * of an association, including its reachability state, congestion
5506  * window, and retransmission timer values.  This information is
5507  * read-only.
5508  */
5509 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
5510 					  char __user *optval,
5511 					  int __user *optlen)
5512 {
5513 	struct sctp_paddrinfo pinfo;
5514 	struct sctp_transport *transport;
5515 	int retval = 0;
5516 
5517 	if (len < sizeof(pinfo)) {
5518 		retval = -EINVAL;
5519 		goto out;
5520 	}
5521 
5522 	len = sizeof(pinfo);
5523 	if (copy_from_user(&pinfo, optval, len)) {
5524 		retval = -EFAULT;
5525 		goto out;
5526 	}
5527 
5528 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
5529 					   pinfo.spinfo_assoc_id);
5530 	if (!transport)
5531 		return -EINVAL;
5532 
5533 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5534 	pinfo.spinfo_state = transport->state;
5535 	pinfo.spinfo_cwnd = transport->cwnd;
5536 	pinfo.spinfo_srtt = transport->srtt;
5537 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
5538 	pinfo.spinfo_mtu = transport->pathmtu;
5539 
5540 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
5541 		pinfo.spinfo_state = SCTP_ACTIVE;
5542 
5543 	if (put_user(len, optlen)) {
5544 		retval = -EFAULT;
5545 		goto out;
5546 	}
5547 
5548 	if (copy_to_user(optval, &pinfo, len)) {
5549 		retval = -EFAULT;
5550 		goto out;
5551 	}
5552 
5553 out:
5554 	return retval;
5555 }
5556 
5557 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
5558  *
5559  * This option is a on/off flag.  If enabled no SCTP message
5560  * fragmentation will be performed.  Instead if a message being sent
5561  * exceeds the current PMTU size, the message will NOT be sent and
5562  * instead a error will be indicated to the user.
5563  */
5564 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
5565 					char __user *optval, int __user *optlen)
5566 {
5567 	int val;
5568 
5569 	if (len < sizeof(int))
5570 		return -EINVAL;
5571 
5572 	len = sizeof(int);
5573 	val = (sctp_sk(sk)->disable_fragments == 1);
5574 	if (put_user(len, optlen))
5575 		return -EFAULT;
5576 	if (copy_to_user(optval, &val, len))
5577 		return -EFAULT;
5578 	return 0;
5579 }
5580 
5581 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
5582  *
5583  * This socket option is used to specify various notifications and
5584  * ancillary data the user wishes to receive.
5585  */
5586 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
5587 				  int __user *optlen)
5588 {
5589 	struct sctp_event_subscribe subscribe;
5590 	__u8 *sn_type = (__u8 *)&subscribe;
5591 	int i;
5592 
5593 	if (len == 0)
5594 		return -EINVAL;
5595 	if (len > sizeof(struct sctp_event_subscribe))
5596 		len = sizeof(struct sctp_event_subscribe);
5597 	if (put_user(len, optlen))
5598 		return -EFAULT;
5599 
5600 	for (i = 0; i < len; i++)
5601 		sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe,
5602 							SCTP_SN_TYPE_BASE + i);
5603 
5604 	if (copy_to_user(optval, &subscribe, len))
5605 		return -EFAULT;
5606 
5607 	return 0;
5608 }
5609 
5610 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
5611  *
5612  * This socket option is applicable to the UDP-style socket only.  When
5613  * set it will cause associations that are idle for more than the
5614  * specified number of seconds to automatically close.  An association
5615  * being idle is defined an association that has NOT sent or received
5616  * user data.  The special value of '0' indicates that no automatic
5617  * close of any associations should be performed.  The option expects an
5618  * integer defining the number of seconds of idle time before an
5619  * association is closed.
5620  */
5621 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
5622 {
5623 	/* Applicable to UDP-style socket only */
5624 	if (sctp_style(sk, TCP))
5625 		return -EOPNOTSUPP;
5626 	if (len < sizeof(int))
5627 		return -EINVAL;
5628 	len = sizeof(int);
5629 	if (put_user(len, optlen))
5630 		return -EFAULT;
5631 	if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval))
5632 		return -EFAULT;
5633 	return 0;
5634 }
5635 
5636 /* Helper routine to branch off an association to a new socket.  */
5637 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
5638 {
5639 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
5640 	struct sctp_sock *sp = sctp_sk(sk);
5641 	struct socket *sock;
5642 	int err = 0;
5643 
5644 	/* Do not peel off from one netns to another one. */
5645 	if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
5646 		return -EINVAL;
5647 
5648 	if (!asoc)
5649 		return -EINVAL;
5650 
5651 	/* An association cannot be branched off from an already peeled-off
5652 	 * socket, nor is this supported for tcp style sockets.
5653 	 */
5654 	if (!sctp_style(sk, UDP))
5655 		return -EINVAL;
5656 
5657 	/* Create a new socket.  */
5658 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
5659 	if (err < 0)
5660 		return err;
5661 
5662 	sctp_copy_sock(sock->sk, sk, asoc);
5663 
5664 	/* Make peeled-off sockets more like 1-1 accepted sockets.
5665 	 * Set the daddr and initialize id to something more random and also
5666 	 * copy over any ip options.
5667 	 */
5668 	sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
5669 	sp->pf->copy_ip_options(sk, sock->sk);
5670 
5671 	/* Populate the fields of the newsk from the oldsk and migrate the
5672 	 * asoc to the newsk.
5673 	 */
5674 	err = sctp_sock_migrate(sk, sock->sk, asoc,
5675 				SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5676 	if (err) {
5677 		sock_release(sock);
5678 		sock = NULL;
5679 	}
5680 
5681 	*sockp = sock;
5682 
5683 	return err;
5684 }
5685 EXPORT_SYMBOL(sctp_do_peeloff);
5686 
5687 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5688 					  struct file **newfile, unsigned flags)
5689 {
5690 	struct socket *newsock;
5691 	int retval;
5692 
5693 	retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5694 	if (retval < 0)
5695 		goto out;
5696 
5697 	/* Map the socket to an unused fd that can be returned to the user.  */
5698 	retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
5699 	if (retval < 0) {
5700 		sock_release(newsock);
5701 		goto out;
5702 	}
5703 
5704 	*newfile = sock_alloc_file(newsock, 0, NULL);
5705 	if (IS_ERR(*newfile)) {
5706 		put_unused_fd(retval);
5707 		retval = PTR_ERR(*newfile);
5708 		*newfile = NULL;
5709 		return retval;
5710 	}
5711 
5712 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5713 		 retval);
5714 
5715 	peeloff->sd = retval;
5716 
5717 	if (flags & SOCK_NONBLOCK)
5718 		(*newfile)->f_flags |= O_NONBLOCK;
5719 out:
5720 	return retval;
5721 }
5722 
5723 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5724 {
5725 	sctp_peeloff_arg_t peeloff;
5726 	struct file *newfile = NULL;
5727 	int retval = 0;
5728 
5729 	if (len < sizeof(sctp_peeloff_arg_t))
5730 		return -EINVAL;
5731 	len = sizeof(sctp_peeloff_arg_t);
5732 	if (copy_from_user(&peeloff, optval, len))
5733 		return -EFAULT;
5734 
5735 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5736 	if (retval < 0)
5737 		goto out;
5738 
5739 	/* Return the fd mapped to the new socket.  */
5740 	if (put_user(len, optlen)) {
5741 		fput(newfile);
5742 		put_unused_fd(retval);
5743 		return -EFAULT;
5744 	}
5745 
5746 	if (copy_to_user(optval, &peeloff, len)) {
5747 		fput(newfile);
5748 		put_unused_fd(retval);
5749 		return -EFAULT;
5750 	}
5751 	fd_install(retval, newfile);
5752 out:
5753 	return retval;
5754 }
5755 
5756 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5757 					 char __user *optval, int __user *optlen)
5758 {
5759 	sctp_peeloff_flags_arg_t peeloff;
5760 	struct file *newfile = NULL;
5761 	int retval = 0;
5762 
5763 	if (len < sizeof(sctp_peeloff_flags_arg_t))
5764 		return -EINVAL;
5765 	len = sizeof(sctp_peeloff_flags_arg_t);
5766 	if (copy_from_user(&peeloff, optval, len))
5767 		return -EFAULT;
5768 
5769 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5770 						&newfile, peeloff.flags);
5771 	if (retval < 0)
5772 		goto out;
5773 
5774 	/* Return the fd mapped to the new socket.  */
5775 	if (put_user(len, optlen)) {
5776 		fput(newfile);
5777 		put_unused_fd(retval);
5778 		return -EFAULT;
5779 	}
5780 
5781 	if (copy_to_user(optval, &peeloff, len)) {
5782 		fput(newfile);
5783 		put_unused_fd(retval);
5784 		return -EFAULT;
5785 	}
5786 	fd_install(retval, newfile);
5787 out:
5788 	return retval;
5789 }
5790 
5791 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5792  *
5793  * Applications can enable or disable heartbeats for any peer address of
5794  * an association, modify an address's heartbeat interval, force a
5795  * heartbeat to be sent immediately, and adjust the address's maximum
5796  * number of retransmissions sent before an address is considered
5797  * unreachable.  The following structure is used to access and modify an
5798  * address's parameters:
5799  *
5800  *  struct sctp_paddrparams {
5801  *     sctp_assoc_t            spp_assoc_id;
5802  *     struct sockaddr_storage spp_address;
5803  *     uint32_t                spp_hbinterval;
5804  *     uint16_t                spp_pathmaxrxt;
5805  *     uint32_t                spp_pathmtu;
5806  *     uint32_t                spp_sackdelay;
5807  *     uint32_t                spp_flags;
5808  * };
5809  *
5810  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
5811  *                     application, and identifies the association for
5812  *                     this query.
5813  *   spp_address     - This specifies which address is of interest.
5814  *   spp_hbinterval  - This contains the value of the heartbeat interval,
5815  *                     in milliseconds.  If a  value of zero
5816  *                     is present in this field then no changes are to
5817  *                     be made to this parameter.
5818  *   spp_pathmaxrxt  - This contains the maximum number of
5819  *                     retransmissions before this address shall be
5820  *                     considered unreachable. If a  value of zero
5821  *                     is present in this field then no changes are to
5822  *                     be made to this parameter.
5823  *   spp_pathmtu     - When Path MTU discovery is disabled the value
5824  *                     specified here will be the "fixed" path mtu.
5825  *                     Note that if the spp_address field is empty
5826  *                     then all associations on this address will
5827  *                     have this fixed path mtu set upon them.
5828  *
5829  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
5830  *                     the number of milliseconds that sacks will be delayed
5831  *                     for. This value will apply to all addresses of an
5832  *                     association if the spp_address field is empty. Note
5833  *                     also, that if delayed sack is enabled and this
5834  *                     value is set to 0, no change is made to the last
5835  *                     recorded delayed sack timer value.
5836  *
5837  *   spp_flags       - These flags are used to control various features
5838  *                     on an association. The flag field may contain
5839  *                     zero or more of the following options.
5840  *
5841  *                     SPP_HB_ENABLE  - Enable heartbeats on the
5842  *                     specified address. Note that if the address
5843  *                     field is empty all addresses for the association
5844  *                     have heartbeats enabled upon them.
5845  *
5846  *                     SPP_HB_DISABLE - Disable heartbeats on the
5847  *                     speicifed address. Note that if the address
5848  *                     field is empty all addresses for the association
5849  *                     will have their heartbeats disabled. Note also
5850  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
5851  *                     mutually exclusive, only one of these two should
5852  *                     be specified. Enabling both fields will have
5853  *                     undetermined results.
5854  *
5855  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
5856  *                     to be made immediately.
5857  *
5858  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
5859  *                     discovery upon the specified address. Note that
5860  *                     if the address feild is empty then all addresses
5861  *                     on the association are effected.
5862  *
5863  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
5864  *                     discovery upon the specified address. Note that
5865  *                     if the address feild is empty then all addresses
5866  *                     on the association are effected. Not also that
5867  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5868  *                     exclusive. Enabling both will have undetermined
5869  *                     results.
5870  *
5871  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
5872  *                     on delayed sack. The time specified in spp_sackdelay
5873  *                     is used to specify the sack delay for this address. Note
5874  *                     that if spp_address is empty then all addresses will
5875  *                     enable delayed sack and take on the sack delay
5876  *                     value specified in spp_sackdelay.
5877  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
5878  *                     off delayed sack. If the spp_address field is blank then
5879  *                     delayed sack is disabled for the entire association. Note
5880  *                     also that this field is mutually exclusive to
5881  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
5882  *                     results.
5883  *
5884  *                     SPP_IPV6_FLOWLABEL:  Setting this flag enables the
5885  *                     setting of the IPV6 flow label value.  The value is
5886  *                     contained in the spp_ipv6_flowlabel field.
5887  *                     Upon retrieval, this flag will be set to indicate that
5888  *                     the spp_ipv6_flowlabel field has a valid value returned.
5889  *                     If a specific destination address is set (in the
5890  *                     spp_address field), then the value returned is that of
5891  *                     the address.  If just an association is specified (and
5892  *                     no address), then the association's default flow label
5893  *                     is returned.  If neither an association nor a destination
5894  *                     is specified, then the socket's default flow label is
5895  *                     returned.  For non-IPv6 sockets, this flag will be left
5896  *                     cleared.
5897  *
5898  *                     SPP_DSCP:  Setting this flag enables the setting of the
5899  *                     Differentiated Services Code Point (DSCP) value
5900  *                     associated with either the association or a specific
5901  *                     address.  The value is obtained in the spp_dscp field.
5902  *                     Upon retrieval, this flag will be set to indicate that
5903  *                     the spp_dscp field has a valid value returned.  If a
5904  *                     specific destination address is set when called (in the
5905  *                     spp_address field), then that specific destination
5906  *                     address's DSCP value is returned.  If just an association
5907  *                     is specified, then the association's default DSCP is
5908  *                     returned.  If neither an association nor a destination is
5909  *                     specified, then the socket's default DSCP is returned.
5910  *
5911  *   spp_ipv6_flowlabel
5912  *                   - This field is used in conjunction with the
5913  *                     SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
5914  *                     The 20 least significant bits are used for the flow
5915  *                     label.  This setting has precedence over any IPv6-layer
5916  *                     setting.
5917  *
5918  *   spp_dscp        - This field is used in conjunction with the SPP_DSCP flag
5919  *                     and contains the DSCP.  The 6 most significant bits are
5920  *                     used for the DSCP.  This setting has precedence over any
5921  *                     IPv4- or IPv6- layer setting.
5922  */
5923 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5924 					    char __user *optval, int __user *optlen)
5925 {
5926 	struct sctp_paddrparams  params;
5927 	struct sctp_transport   *trans = NULL;
5928 	struct sctp_association *asoc = NULL;
5929 	struct sctp_sock        *sp = sctp_sk(sk);
5930 
5931 	if (len >= sizeof(params))
5932 		len = sizeof(params);
5933 	else if (len >= ALIGN(offsetof(struct sctp_paddrparams,
5934 				       spp_ipv6_flowlabel), 4))
5935 		len = ALIGN(offsetof(struct sctp_paddrparams,
5936 				     spp_ipv6_flowlabel), 4);
5937 	else
5938 		return -EINVAL;
5939 
5940 	if (copy_from_user(&params, optval, len))
5941 		return -EFAULT;
5942 
5943 	/* If an address other than INADDR_ANY is specified, and
5944 	 * no transport is found, then the request is invalid.
5945 	 */
5946 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
5947 		trans = sctp_addr_id2transport(sk, &params.spp_address,
5948 					       params.spp_assoc_id);
5949 		if (!trans) {
5950 			pr_debug("%s: failed no transport\n", __func__);
5951 			return -EINVAL;
5952 		}
5953 	}
5954 
5955 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
5956 	 * socket is a one to many style socket, and an association
5957 	 * was not found, then the id was invalid.
5958 	 */
5959 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5960 	if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
5961 	    sctp_style(sk, UDP)) {
5962 		pr_debug("%s: failed no association\n", __func__);
5963 		return -EINVAL;
5964 	}
5965 
5966 	if (trans) {
5967 		/* Fetch transport values. */
5968 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5969 		params.spp_pathmtu    = trans->pathmtu;
5970 		params.spp_pathmaxrxt = trans->pathmaxrxt;
5971 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
5972 
5973 		/*draft-11 doesn't say what to return in spp_flags*/
5974 		params.spp_flags      = trans->param_flags;
5975 		if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5976 			params.spp_ipv6_flowlabel = trans->flowlabel &
5977 						    SCTP_FLOWLABEL_VAL_MASK;
5978 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5979 		}
5980 		if (trans->dscp & SCTP_DSCP_SET_MASK) {
5981 			params.spp_dscp	= trans->dscp & SCTP_DSCP_VAL_MASK;
5982 			params.spp_flags |= SPP_DSCP;
5983 		}
5984 	} else if (asoc) {
5985 		/* Fetch association values. */
5986 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5987 		params.spp_pathmtu    = asoc->pathmtu;
5988 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
5989 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
5990 
5991 		/*draft-11 doesn't say what to return in spp_flags*/
5992 		params.spp_flags      = asoc->param_flags;
5993 		if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5994 			params.spp_ipv6_flowlabel = asoc->flowlabel &
5995 						    SCTP_FLOWLABEL_VAL_MASK;
5996 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5997 		}
5998 		if (asoc->dscp & SCTP_DSCP_SET_MASK) {
5999 			params.spp_dscp	= asoc->dscp & SCTP_DSCP_VAL_MASK;
6000 			params.spp_flags |= SPP_DSCP;
6001 		}
6002 	} else {
6003 		/* Fetch socket values. */
6004 		params.spp_hbinterval = sp->hbinterval;
6005 		params.spp_pathmtu    = sp->pathmtu;
6006 		params.spp_sackdelay  = sp->sackdelay;
6007 		params.spp_pathmaxrxt = sp->pathmaxrxt;
6008 
6009 		/*draft-11 doesn't say what to return in spp_flags*/
6010 		params.spp_flags      = sp->param_flags;
6011 		if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
6012 			params.spp_ipv6_flowlabel = sp->flowlabel &
6013 						    SCTP_FLOWLABEL_VAL_MASK;
6014 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
6015 		}
6016 		if (sp->dscp & SCTP_DSCP_SET_MASK) {
6017 			params.spp_dscp	= sp->dscp & SCTP_DSCP_VAL_MASK;
6018 			params.spp_flags |= SPP_DSCP;
6019 		}
6020 	}
6021 
6022 	if (copy_to_user(optval, &params, len))
6023 		return -EFAULT;
6024 
6025 	if (put_user(len, optlen))
6026 		return -EFAULT;
6027 
6028 	return 0;
6029 }
6030 
6031 /*
6032  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
6033  *
6034  * This option will effect the way delayed acks are performed.  This
6035  * option allows you to get or set the delayed ack time, in
6036  * milliseconds.  It also allows changing the delayed ack frequency.
6037  * Changing the frequency to 1 disables the delayed sack algorithm.  If
6038  * the assoc_id is 0, then this sets or gets the endpoints default
6039  * values.  If the assoc_id field is non-zero, then the set or get
6040  * effects the specified association for the one to many model (the
6041  * assoc_id field is ignored by the one to one model).  Note that if
6042  * sack_delay or sack_freq are 0 when setting this option, then the
6043  * current values will remain unchanged.
6044  *
6045  * struct sctp_sack_info {
6046  *     sctp_assoc_t            sack_assoc_id;
6047  *     uint32_t                sack_delay;
6048  *     uint32_t                sack_freq;
6049  * };
6050  *
6051  * sack_assoc_id -  This parameter, indicates which association the user
6052  *    is performing an action upon.  Note that if this field's value is
6053  *    zero then the endpoints default value is changed (effecting future
6054  *    associations only).
6055  *
6056  * sack_delay -  This parameter contains the number of milliseconds that
6057  *    the user is requesting the delayed ACK timer be set to.  Note that
6058  *    this value is defined in the standard to be between 200 and 500
6059  *    milliseconds.
6060  *
6061  * sack_freq -  This parameter contains the number of packets that must
6062  *    be received before a sack is sent without waiting for the delay
6063  *    timer to expire.  The default value for this is 2, setting this
6064  *    value to 1 will disable the delayed sack algorithm.
6065  */
6066 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
6067 					    char __user *optval,
6068 					    int __user *optlen)
6069 {
6070 	struct sctp_sack_info    params;
6071 	struct sctp_association *asoc = NULL;
6072 	struct sctp_sock        *sp = sctp_sk(sk);
6073 
6074 	if (len >= sizeof(struct sctp_sack_info)) {
6075 		len = sizeof(struct sctp_sack_info);
6076 
6077 		if (copy_from_user(&params, optval, len))
6078 			return -EFAULT;
6079 	} else if (len == sizeof(struct sctp_assoc_value)) {
6080 		pr_warn_ratelimited(DEPRECATED
6081 				    "%s (pid %d) "
6082 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
6083 				    "Use struct sctp_sack_info instead\n",
6084 				    current->comm, task_pid_nr(current));
6085 		if (copy_from_user(&params, optval, len))
6086 			return -EFAULT;
6087 	} else
6088 		return -EINVAL;
6089 
6090 	/* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
6091 	 * socket is a one to many style socket, and an association
6092 	 * was not found, then the id was invalid.
6093 	 */
6094 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
6095 	if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC &&
6096 	    sctp_style(sk, UDP))
6097 		return -EINVAL;
6098 
6099 	if (asoc) {
6100 		/* Fetch association values. */
6101 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
6102 			params.sack_delay = jiffies_to_msecs(asoc->sackdelay);
6103 			params.sack_freq = asoc->sackfreq;
6104 
6105 		} else {
6106 			params.sack_delay = 0;
6107 			params.sack_freq = 1;
6108 		}
6109 	} else {
6110 		/* Fetch socket values. */
6111 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
6112 			params.sack_delay  = sp->sackdelay;
6113 			params.sack_freq = sp->sackfreq;
6114 		} else {
6115 			params.sack_delay  = 0;
6116 			params.sack_freq = 1;
6117 		}
6118 	}
6119 
6120 	if (copy_to_user(optval, &params, len))
6121 		return -EFAULT;
6122 
6123 	if (put_user(len, optlen))
6124 		return -EFAULT;
6125 
6126 	return 0;
6127 }
6128 
6129 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
6130  *
6131  * Applications can specify protocol parameters for the default association
6132  * initialization.  The option name argument to setsockopt() and getsockopt()
6133  * is SCTP_INITMSG.
6134  *
6135  * Setting initialization parameters is effective only on an unconnected
6136  * socket (for UDP-style sockets only future associations are effected
6137  * by the change).  With TCP-style sockets, this option is inherited by
6138  * sockets derived from a listener socket.
6139  */
6140 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
6141 {
6142 	if (len < sizeof(struct sctp_initmsg))
6143 		return -EINVAL;
6144 	len = sizeof(struct sctp_initmsg);
6145 	if (put_user(len, optlen))
6146 		return -EFAULT;
6147 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
6148 		return -EFAULT;
6149 	return 0;
6150 }
6151 
6152 
6153 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
6154 				      char __user *optval, int __user *optlen)
6155 {
6156 	struct sctp_association *asoc;
6157 	int cnt = 0;
6158 	struct sctp_getaddrs getaddrs;
6159 	struct sctp_transport *from;
6160 	void __user *to;
6161 	union sctp_addr temp;
6162 	struct sctp_sock *sp = sctp_sk(sk);
6163 	int addrlen;
6164 	size_t space_left;
6165 	int bytes_copied;
6166 
6167 	if (len < sizeof(struct sctp_getaddrs))
6168 		return -EINVAL;
6169 
6170 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6171 		return -EFAULT;
6172 
6173 	/* For UDP-style sockets, id specifies the association to query.  */
6174 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6175 	if (!asoc)
6176 		return -EINVAL;
6177 
6178 	to = optval + offsetof(struct sctp_getaddrs, addrs);
6179 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
6180 
6181 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
6182 				transports) {
6183 		memcpy(&temp, &from->ipaddr, sizeof(temp));
6184 		addrlen = sctp_get_pf_specific(sk->sk_family)
6185 			      ->addr_to_user(sp, &temp);
6186 		if (space_left < addrlen)
6187 			return -ENOMEM;
6188 		if (copy_to_user(to, &temp, addrlen))
6189 			return -EFAULT;
6190 		to += addrlen;
6191 		cnt++;
6192 		space_left -= addrlen;
6193 	}
6194 
6195 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
6196 		return -EFAULT;
6197 	bytes_copied = ((char __user *)to) - optval;
6198 	if (put_user(bytes_copied, optlen))
6199 		return -EFAULT;
6200 
6201 	return 0;
6202 }
6203 
6204 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
6205 			    size_t space_left, int *bytes_copied)
6206 {
6207 	struct sctp_sockaddr_entry *addr;
6208 	union sctp_addr temp;
6209 	int cnt = 0;
6210 	int addrlen;
6211 	struct net *net = sock_net(sk);
6212 
6213 	rcu_read_lock();
6214 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
6215 		if (!addr->valid)
6216 			continue;
6217 
6218 		if ((PF_INET == sk->sk_family) &&
6219 		    (AF_INET6 == addr->a.sa.sa_family))
6220 			continue;
6221 		if ((PF_INET6 == sk->sk_family) &&
6222 		    inet_v6_ipv6only(sk) &&
6223 		    (AF_INET == addr->a.sa.sa_family))
6224 			continue;
6225 		memcpy(&temp, &addr->a, sizeof(temp));
6226 		if (!temp.v4.sin_port)
6227 			temp.v4.sin_port = htons(port);
6228 
6229 		addrlen = sctp_get_pf_specific(sk->sk_family)
6230 			      ->addr_to_user(sctp_sk(sk), &temp);
6231 
6232 		if (space_left < addrlen) {
6233 			cnt =  -ENOMEM;
6234 			break;
6235 		}
6236 		memcpy(to, &temp, addrlen);
6237 
6238 		to += addrlen;
6239 		cnt++;
6240 		space_left -= addrlen;
6241 		*bytes_copied += addrlen;
6242 	}
6243 	rcu_read_unlock();
6244 
6245 	return cnt;
6246 }
6247 
6248 
6249 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
6250 				       char __user *optval, int __user *optlen)
6251 {
6252 	struct sctp_bind_addr *bp;
6253 	struct sctp_association *asoc;
6254 	int cnt = 0;
6255 	struct sctp_getaddrs getaddrs;
6256 	struct sctp_sockaddr_entry *addr;
6257 	void __user *to;
6258 	union sctp_addr temp;
6259 	struct sctp_sock *sp = sctp_sk(sk);
6260 	int addrlen;
6261 	int err = 0;
6262 	size_t space_left;
6263 	int bytes_copied = 0;
6264 	void *addrs;
6265 	void *buf;
6266 
6267 	if (len < sizeof(struct sctp_getaddrs))
6268 		return -EINVAL;
6269 
6270 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6271 		return -EFAULT;
6272 
6273 	/*
6274 	 *  For UDP-style sockets, id specifies the association to query.
6275 	 *  If the id field is set to the value '0' then the locally bound
6276 	 *  addresses are returned without regard to any particular
6277 	 *  association.
6278 	 */
6279 	if (0 == getaddrs.assoc_id) {
6280 		bp = &sctp_sk(sk)->ep->base.bind_addr;
6281 	} else {
6282 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6283 		if (!asoc)
6284 			return -EINVAL;
6285 		bp = &asoc->base.bind_addr;
6286 	}
6287 
6288 	to = optval + offsetof(struct sctp_getaddrs, addrs);
6289 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
6290 
6291 	addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
6292 	if (!addrs)
6293 		return -ENOMEM;
6294 
6295 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
6296 	 * addresses from the global local address list.
6297 	 */
6298 	if (sctp_list_single_entry(&bp->address_list)) {
6299 		addr = list_entry(bp->address_list.next,
6300 				  struct sctp_sockaddr_entry, list);
6301 		if (sctp_is_any(sk, &addr->a)) {
6302 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
6303 						space_left, &bytes_copied);
6304 			if (cnt < 0) {
6305 				err = cnt;
6306 				goto out;
6307 			}
6308 			goto copy_getaddrs;
6309 		}
6310 	}
6311 
6312 	buf = addrs;
6313 	/* Protection on the bound address list is not needed since
6314 	 * in the socket option context we hold a socket lock and
6315 	 * thus the bound address list can't change.
6316 	 */
6317 	list_for_each_entry(addr, &bp->address_list, list) {
6318 		memcpy(&temp, &addr->a, sizeof(temp));
6319 		addrlen = sctp_get_pf_specific(sk->sk_family)
6320 			      ->addr_to_user(sp, &temp);
6321 		if (space_left < addrlen) {
6322 			err =  -ENOMEM; /*fixme: right error?*/
6323 			goto out;
6324 		}
6325 		memcpy(buf, &temp, addrlen);
6326 		buf += addrlen;
6327 		bytes_copied += addrlen;
6328 		cnt++;
6329 		space_left -= addrlen;
6330 	}
6331 
6332 copy_getaddrs:
6333 	if (copy_to_user(to, addrs, bytes_copied)) {
6334 		err = -EFAULT;
6335 		goto out;
6336 	}
6337 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
6338 		err = -EFAULT;
6339 		goto out;
6340 	}
6341 	/* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
6342 	 * but we can't change it anymore.
6343 	 */
6344 	if (put_user(bytes_copied, optlen))
6345 		err = -EFAULT;
6346 out:
6347 	kfree(addrs);
6348 	return err;
6349 }
6350 
6351 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
6352  *
6353  * Requests that the local SCTP stack use the enclosed peer address as
6354  * the association primary.  The enclosed address must be one of the
6355  * association peer's addresses.
6356  */
6357 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
6358 					char __user *optval, int __user *optlen)
6359 {
6360 	struct sctp_prim prim;
6361 	struct sctp_association *asoc;
6362 	struct sctp_sock *sp = sctp_sk(sk);
6363 
6364 	if (len < sizeof(struct sctp_prim))
6365 		return -EINVAL;
6366 
6367 	len = sizeof(struct sctp_prim);
6368 
6369 	if (copy_from_user(&prim, optval, len))
6370 		return -EFAULT;
6371 
6372 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
6373 	if (!asoc)
6374 		return -EINVAL;
6375 
6376 	if (!asoc->peer.primary_path)
6377 		return -ENOTCONN;
6378 
6379 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
6380 		asoc->peer.primary_path->af_specific->sockaddr_len);
6381 
6382 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
6383 			(union sctp_addr *)&prim.ssp_addr);
6384 
6385 	if (put_user(len, optlen))
6386 		return -EFAULT;
6387 	if (copy_to_user(optval, &prim, len))
6388 		return -EFAULT;
6389 
6390 	return 0;
6391 }
6392 
6393 /*
6394  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
6395  *
6396  * Requests that the local endpoint set the specified Adaptation Layer
6397  * Indication parameter for all future INIT and INIT-ACK exchanges.
6398  */
6399 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
6400 				  char __user *optval, int __user *optlen)
6401 {
6402 	struct sctp_setadaptation adaptation;
6403 
6404 	if (len < sizeof(struct sctp_setadaptation))
6405 		return -EINVAL;
6406 
6407 	len = sizeof(struct sctp_setadaptation);
6408 
6409 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
6410 
6411 	if (put_user(len, optlen))
6412 		return -EFAULT;
6413 	if (copy_to_user(optval, &adaptation, len))
6414 		return -EFAULT;
6415 
6416 	return 0;
6417 }
6418 
6419 /*
6420  *
6421  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
6422  *
6423  *   Applications that wish to use the sendto() system call may wish to
6424  *   specify a default set of parameters that would normally be supplied
6425  *   through the inclusion of ancillary data.  This socket option allows
6426  *   such an application to set the default sctp_sndrcvinfo structure.
6427 
6428 
6429  *   The application that wishes to use this socket option simply passes
6430  *   in to this call the sctp_sndrcvinfo structure defined in Section
6431  *   5.2.2) The input parameters accepted by this call include
6432  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
6433  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
6434  *   to this call if the caller is using the UDP model.
6435  *
6436  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
6437  */
6438 static int sctp_getsockopt_default_send_param(struct sock *sk,
6439 					int len, char __user *optval,
6440 					int __user *optlen)
6441 {
6442 	struct sctp_sock *sp = sctp_sk(sk);
6443 	struct sctp_association *asoc;
6444 	struct sctp_sndrcvinfo info;
6445 
6446 	if (len < sizeof(info))
6447 		return -EINVAL;
6448 
6449 	len = sizeof(info);
6450 
6451 	if (copy_from_user(&info, optval, len))
6452 		return -EFAULT;
6453 
6454 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
6455 	if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC &&
6456 	    sctp_style(sk, UDP))
6457 		return -EINVAL;
6458 
6459 	if (asoc) {
6460 		info.sinfo_stream = asoc->default_stream;
6461 		info.sinfo_flags = asoc->default_flags;
6462 		info.sinfo_ppid = asoc->default_ppid;
6463 		info.sinfo_context = asoc->default_context;
6464 		info.sinfo_timetolive = asoc->default_timetolive;
6465 	} else {
6466 		info.sinfo_stream = sp->default_stream;
6467 		info.sinfo_flags = sp->default_flags;
6468 		info.sinfo_ppid = sp->default_ppid;
6469 		info.sinfo_context = sp->default_context;
6470 		info.sinfo_timetolive = sp->default_timetolive;
6471 	}
6472 
6473 	if (put_user(len, optlen))
6474 		return -EFAULT;
6475 	if (copy_to_user(optval, &info, len))
6476 		return -EFAULT;
6477 
6478 	return 0;
6479 }
6480 
6481 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
6482  * (SCTP_DEFAULT_SNDINFO)
6483  */
6484 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
6485 					   char __user *optval,
6486 					   int __user *optlen)
6487 {
6488 	struct sctp_sock *sp = sctp_sk(sk);
6489 	struct sctp_association *asoc;
6490 	struct sctp_sndinfo info;
6491 
6492 	if (len < sizeof(info))
6493 		return -EINVAL;
6494 
6495 	len = sizeof(info);
6496 
6497 	if (copy_from_user(&info, optval, len))
6498 		return -EFAULT;
6499 
6500 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
6501 	if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC &&
6502 	    sctp_style(sk, UDP))
6503 		return -EINVAL;
6504 
6505 	if (asoc) {
6506 		info.snd_sid = asoc->default_stream;
6507 		info.snd_flags = asoc->default_flags;
6508 		info.snd_ppid = asoc->default_ppid;
6509 		info.snd_context = asoc->default_context;
6510 	} else {
6511 		info.snd_sid = sp->default_stream;
6512 		info.snd_flags = sp->default_flags;
6513 		info.snd_ppid = sp->default_ppid;
6514 		info.snd_context = sp->default_context;
6515 	}
6516 
6517 	if (put_user(len, optlen))
6518 		return -EFAULT;
6519 	if (copy_to_user(optval, &info, len))
6520 		return -EFAULT;
6521 
6522 	return 0;
6523 }
6524 
6525 /*
6526  *
6527  * 7.1.5 SCTP_NODELAY
6528  *
6529  * Turn on/off any Nagle-like algorithm.  This means that packets are
6530  * generally sent as soon as possible and no unnecessary delays are
6531  * introduced, at the cost of more packets in the network.  Expects an
6532  * integer boolean flag.
6533  */
6534 
6535 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
6536 				   char __user *optval, int __user *optlen)
6537 {
6538 	int val;
6539 
6540 	if (len < sizeof(int))
6541 		return -EINVAL;
6542 
6543 	len = sizeof(int);
6544 	val = (sctp_sk(sk)->nodelay == 1);
6545 	if (put_user(len, optlen))
6546 		return -EFAULT;
6547 	if (copy_to_user(optval, &val, len))
6548 		return -EFAULT;
6549 	return 0;
6550 }
6551 
6552 /*
6553  *
6554  * 7.1.1 SCTP_RTOINFO
6555  *
6556  * The protocol parameters used to initialize and bound retransmission
6557  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
6558  * and modify these parameters.
6559  * All parameters are time values, in milliseconds.  A value of 0, when
6560  * modifying the parameters, indicates that the current value should not
6561  * be changed.
6562  *
6563  */
6564 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
6565 				char __user *optval,
6566 				int __user *optlen) {
6567 	struct sctp_rtoinfo rtoinfo;
6568 	struct sctp_association *asoc;
6569 
6570 	if (len < sizeof (struct sctp_rtoinfo))
6571 		return -EINVAL;
6572 
6573 	len = sizeof(struct sctp_rtoinfo);
6574 
6575 	if (copy_from_user(&rtoinfo, optval, len))
6576 		return -EFAULT;
6577 
6578 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
6579 
6580 	if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
6581 	    sctp_style(sk, UDP))
6582 		return -EINVAL;
6583 
6584 	/* Values corresponding to the specific association. */
6585 	if (asoc) {
6586 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
6587 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
6588 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
6589 	} else {
6590 		/* Values corresponding to the endpoint. */
6591 		struct sctp_sock *sp = sctp_sk(sk);
6592 
6593 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
6594 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
6595 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
6596 	}
6597 
6598 	if (put_user(len, optlen))
6599 		return -EFAULT;
6600 
6601 	if (copy_to_user(optval, &rtoinfo, len))
6602 		return -EFAULT;
6603 
6604 	return 0;
6605 }
6606 
6607 /*
6608  *
6609  * 7.1.2 SCTP_ASSOCINFO
6610  *
6611  * This option is used to tune the maximum retransmission attempts
6612  * of the association.
6613  * Returns an error if the new association retransmission value is
6614  * greater than the sum of the retransmission value  of the peer.
6615  * See [SCTP] for more information.
6616  *
6617  */
6618 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
6619 				     char __user *optval,
6620 				     int __user *optlen)
6621 {
6622 
6623 	struct sctp_assocparams assocparams;
6624 	struct sctp_association *asoc;
6625 	struct list_head *pos;
6626 	int cnt = 0;
6627 
6628 	if (len < sizeof (struct sctp_assocparams))
6629 		return -EINVAL;
6630 
6631 	len = sizeof(struct sctp_assocparams);
6632 
6633 	if (copy_from_user(&assocparams, optval, len))
6634 		return -EFAULT;
6635 
6636 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
6637 
6638 	if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
6639 	    sctp_style(sk, UDP))
6640 		return -EINVAL;
6641 
6642 	/* Values correspoinding to the specific association */
6643 	if (asoc) {
6644 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
6645 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
6646 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
6647 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
6648 
6649 		list_for_each(pos, &asoc->peer.transport_addr_list) {
6650 			cnt++;
6651 		}
6652 
6653 		assocparams.sasoc_number_peer_destinations = cnt;
6654 	} else {
6655 		/* Values corresponding to the endpoint */
6656 		struct sctp_sock *sp = sctp_sk(sk);
6657 
6658 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
6659 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
6660 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
6661 		assocparams.sasoc_cookie_life =
6662 					sp->assocparams.sasoc_cookie_life;
6663 		assocparams.sasoc_number_peer_destinations =
6664 					sp->assocparams.
6665 					sasoc_number_peer_destinations;
6666 	}
6667 
6668 	if (put_user(len, optlen))
6669 		return -EFAULT;
6670 
6671 	if (copy_to_user(optval, &assocparams, len))
6672 		return -EFAULT;
6673 
6674 	return 0;
6675 }
6676 
6677 /*
6678  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
6679  *
6680  * This socket option is a boolean flag which turns on or off mapped V4
6681  * addresses.  If this option is turned on and the socket is type
6682  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
6683  * If this option is turned off, then no mapping will be done of V4
6684  * addresses and a user will receive both PF_INET6 and PF_INET type
6685  * addresses on the socket.
6686  */
6687 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
6688 				    char __user *optval, int __user *optlen)
6689 {
6690 	int val;
6691 	struct sctp_sock *sp = sctp_sk(sk);
6692 
6693 	if (len < sizeof(int))
6694 		return -EINVAL;
6695 
6696 	len = sizeof(int);
6697 	val = sp->v4mapped;
6698 	if (put_user(len, optlen))
6699 		return -EFAULT;
6700 	if (copy_to_user(optval, &val, len))
6701 		return -EFAULT;
6702 
6703 	return 0;
6704 }
6705 
6706 /*
6707  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
6708  * (chapter and verse is quoted at sctp_setsockopt_context())
6709  */
6710 static int sctp_getsockopt_context(struct sock *sk, int len,
6711 				   char __user *optval, int __user *optlen)
6712 {
6713 	struct sctp_assoc_value params;
6714 	struct sctp_association *asoc;
6715 
6716 	if (len < sizeof(struct sctp_assoc_value))
6717 		return -EINVAL;
6718 
6719 	len = sizeof(struct sctp_assoc_value);
6720 
6721 	if (copy_from_user(&params, optval, len))
6722 		return -EFAULT;
6723 
6724 	asoc = sctp_id2assoc(sk, params.assoc_id);
6725 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6726 	    sctp_style(sk, UDP))
6727 		return -EINVAL;
6728 
6729 	params.assoc_value = asoc ? asoc->default_rcv_context
6730 				  : sctp_sk(sk)->default_rcv_context;
6731 
6732 	if (put_user(len, optlen))
6733 		return -EFAULT;
6734 	if (copy_to_user(optval, &params, len))
6735 		return -EFAULT;
6736 
6737 	return 0;
6738 }
6739 
6740 /*
6741  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6742  * This option will get or set the maximum size to put in any outgoing
6743  * SCTP DATA chunk.  If a message is larger than this size it will be
6744  * fragmented by SCTP into the specified size.  Note that the underlying
6745  * SCTP implementation may fragment into smaller sized chunks when the
6746  * PMTU of the underlying association is smaller than the value set by
6747  * the user.  The default value for this option is '0' which indicates
6748  * the user is NOT limiting fragmentation and only the PMTU will effect
6749  * SCTP's choice of DATA chunk size.  Note also that values set larger
6750  * than the maximum size of an IP datagram will effectively let SCTP
6751  * control fragmentation (i.e. the same as setting this option to 0).
6752  *
6753  * The following structure is used to access and modify this parameter:
6754  *
6755  * struct sctp_assoc_value {
6756  *   sctp_assoc_t assoc_id;
6757  *   uint32_t assoc_value;
6758  * };
6759  *
6760  * assoc_id:  This parameter is ignored for one-to-one style sockets.
6761  *    For one-to-many style sockets this parameter indicates which
6762  *    association the user is performing an action upon.  Note that if
6763  *    this field's value is zero then the endpoints default value is
6764  *    changed (effecting future associations only).
6765  * assoc_value:  This parameter specifies the maximum size in bytes.
6766  */
6767 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6768 				  char __user *optval, int __user *optlen)
6769 {
6770 	struct sctp_assoc_value params;
6771 	struct sctp_association *asoc;
6772 
6773 	if (len == sizeof(int)) {
6774 		pr_warn_ratelimited(DEPRECATED
6775 				    "%s (pid %d) "
6776 				    "Use of int in maxseg socket option.\n"
6777 				    "Use struct sctp_assoc_value instead\n",
6778 				    current->comm, task_pid_nr(current));
6779 		params.assoc_id = SCTP_FUTURE_ASSOC;
6780 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6781 		len = sizeof(struct sctp_assoc_value);
6782 		if (copy_from_user(&params, optval, len))
6783 			return -EFAULT;
6784 	} else
6785 		return -EINVAL;
6786 
6787 	asoc = sctp_id2assoc(sk, params.assoc_id);
6788 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6789 	    sctp_style(sk, UDP))
6790 		return -EINVAL;
6791 
6792 	if (asoc)
6793 		params.assoc_value = asoc->frag_point;
6794 	else
6795 		params.assoc_value = sctp_sk(sk)->user_frag;
6796 
6797 	if (put_user(len, optlen))
6798 		return -EFAULT;
6799 	if (len == sizeof(int)) {
6800 		if (copy_to_user(optval, &params.assoc_value, len))
6801 			return -EFAULT;
6802 	} else {
6803 		if (copy_to_user(optval, &params, len))
6804 			return -EFAULT;
6805 	}
6806 
6807 	return 0;
6808 }
6809 
6810 /*
6811  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6812  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6813  */
6814 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6815 					       char __user *optval, int __user *optlen)
6816 {
6817 	int val;
6818 
6819 	if (len < sizeof(int))
6820 		return -EINVAL;
6821 
6822 	len = sizeof(int);
6823 
6824 	val = sctp_sk(sk)->frag_interleave;
6825 	if (put_user(len, optlen))
6826 		return -EFAULT;
6827 	if (copy_to_user(optval, &val, len))
6828 		return -EFAULT;
6829 
6830 	return 0;
6831 }
6832 
6833 /*
6834  * 7.1.25.  Set or Get the sctp partial delivery point
6835  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6836  */
6837 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6838 						  char __user *optval,
6839 						  int __user *optlen)
6840 {
6841 	u32 val;
6842 
6843 	if (len < sizeof(u32))
6844 		return -EINVAL;
6845 
6846 	len = sizeof(u32);
6847 
6848 	val = sctp_sk(sk)->pd_point;
6849 	if (put_user(len, optlen))
6850 		return -EFAULT;
6851 	if (copy_to_user(optval, &val, len))
6852 		return -EFAULT;
6853 
6854 	return 0;
6855 }
6856 
6857 /*
6858  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
6859  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6860  */
6861 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6862 				    char __user *optval,
6863 				    int __user *optlen)
6864 {
6865 	struct sctp_assoc_value params;
6866 	struct sctp_association *asoc;
6867 
6868 	if (len == sizeof(int)) {
6869 		pr_warn_ratelimited(DEPRECATED
6870 				    "%s (pid %d) "
6871 				    "Use of int in max_burst socket option.\n"
6872 				    "Use struct sctp_assoc_value instead\n",
6873 				    current->comm, task_pid_nr(current));
6874 		params.assoc_id = SCTP_FUTURE_ASSOC;
6875 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6876 		len = sizeof(struct sctp_assoc_value);
6877 		if (copy_from_user(&params, optval, len))
6878 			return -EFAULT;
6879 	} else
6880 		return -EINVAL;
6881 
6882 	asoc = sctp_id2assoc(sk, params.assoc_id);
6883 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6884 	    sctp_style(sk, UDP))
6885 		return -EINVAL;
6886 
6887 	params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst;
6888 
6889 	if (len == sizeof(int)) {
6890 		if (copy_to_user(optval, &params.assoc_value, len))
6891 			return -EFAULT;
6892 	} else {
6893 		if (copy_to_user(optval, &params, len))
6894 			return -EFAULT;
6895 	}
6896 
6897 	return 0;
6898 
6899 }
6900 
6901 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6902 				    char __user *optval, int __user *optlen)
6903 {
6904 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6905 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
6906 	struct sctp_hmac_algo_param *hmacs;
6907 	__u16 data_len = 0;
6908 	u32 num_idents;
6909 	int i;
6910 
6911 	if (!ep->auth_enable)
6912 		return -EACCES;
6913 
6914 	hmacs = ep->auth_hmacs_list;
6915 	data_len = ntohs(hmacs->param_hdr.length) -
6916 		   sizeof(struct sctp_paramhdr);
6917 
6918 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
6919 		return -EINVAL;
6920 
6921 	len = sizeof(struct sctp_hmacalgo) + data_len;
6922 	num_idents = data_len / sizeof(u16);
6923 
6924 	if (put_user(len, optlen))
6925 		return -EFAULT;
6926 	if (put_user(num_idents, &p->shmac_num_idents))
6927 		return -EFAULT;
6928 	for (i = 0; i < num_idents; i++) {
6929 		__u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6930 
6931 		if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6932 			return -EFAULT;
6933 	}
6934 	return 0;
6935 }
6936 
6937 static int sctp_getsockopt_active_key(struct sock *sk, int len,
6938 				    char __user *optval, int __user *optlen)
6939 {
6940 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6941 	struct sctp_authkeyid val;
6942 	struct sctp_association *asoc;
6943 
6944 	if (!ep->auth_enable)
6945 		return -EACCES;
6946 
6947 	if (len < sizeof(struct sctp_authkeyid))
6948 		return -EINVAL;
6949 
6950 	len = sizeof(struct sctp_authkeyid);
6951 	if (copy_from_user(&val, optval, len))
6952 		return -EFAULT;
6953 
6954 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6955 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6956 		return -EINVAL;
6957 
6958 	if (asoc)
6959 		val.scact_keynumber = asoc->active_key_id;
6960 	else
6961 		val.scact_keynumber = ep->active_key_id;
6962 
6963 	if (put_user(len, optlen))
6964 		return -EFAULT;
6965 	if (copy_to_user(optval, &val, len))
6966 		return -EFAULT;
6967 
6968 	return 0;
6969 }
6970 
6971 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6972 				    char __user *optval, int __user *optlen)
6973 {
6974 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6975 	struct sctp_authchunks __user *p = (void __user *)optval;
6976 	struct sctp_authchunks val;
6977 	struct sctp_association *asoc;
6978 	struct sctp_chunks_param *ch;
6979 	u32    num_chunks = 0;
6980 	char __user *to;
6981 
6982 	if (!ep->auth_enable)
6983 		return -EACCES;
6984 
6985 	if (len < sizeof(struct sctp_authchunks))
6986 		return -EINVAL;
6987 
6988 	if (copy_from_user(&val, optval, sizeof(val)))
6989 		return -EFAULT;
6990 
6991 	to = p->gauth_chunks;
6992 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6993 	if (!asoc)
6994 		return -EINVAL;
6995 
6996 	ch = asoc->peer.peer_chunks;
6997 	if (!ch)
6998 		goto num;
6999 
7000 	/* See if the user provided enough room for all the data */
7001 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
7002 	if (len < num_chunks)
7003 		return -EINVAL;
7004 
7005 	if (copy_to_user(to, ch->chunks, num_chunks))
7006 		return -EFAULT;
7007 num:
7008 	len = sizeof(struct sctp_authchunks) + num_chunks;
7009 	if (put_user(len, optlen))
7010 		return -EFAULT;
7011 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
7012 		return -EFAULT;
7013 	return 0;
7014 }
7015 
7016 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
7017 				    char __user *optval, int __user *optlen)
7018 {
7019 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
7020 	struct sctp_authchunks __user *p = (void __user *)optval;
7021 	struct sctp_authchunks val;
7022 	struct sctp_association *asoc;
7023 	struct sctp_chunks_param *ch;
7024 	u32    num_chunks = 0;
7025 	char __user *to;
7026 
7027 	if (!ep->auth_enable)
7028 		return -EACCES;
7029 
7030 	if (len < sizeof(struct sctp_authchunks))
7031 		return -EINVAL;
7032 
7033 	if (copy_from_user(&val, optval, sizeof(val)))
7034 		return -EFAULT;
7035 
7036 	to = p->gauth_chunks;
7037 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
7038 	if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC &&
7039 	    sctp_style(sk, UDP))
7040 		return -EINVAL;
7041 
7042 	ch = asoc ? (struct sctp_chunks_param *)asoc->c.auth_chunks
7043 		  : ep->auth_chunk_list;
7044 	if (!ch)
7045 		goto num;
7046 
7047 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
7048 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
7049 		return -EINVAL;
7050 
7051 	if (copy_to_user(to, ch->chunks, num_chunks))
7052 		return -EFAULT;
7053 num:
7054 	len = sizeof(struct sctp_authchunks) + num_chunks;
7055 	if (put_user(len, optlen))
7056 		return -EFAULT;
7057 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
7058 		return -EFAULT;
7059 
7060 	return 0;
7061 }
7062 
7063 /*
7064  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
7065  * This option gets the current number of associations that are attached
7066  * to a one-to-many style socket.  The option value is an uint32_t.
7067  */
7068 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
7069 				    char __user *optval, int __user *optlen)
7070 {
7071 	struct sctp_sock *sp = sctp_sk(sk);
7072 	struct sctp_association *asoc;
7073 	u32 val = 0;
7074 
7075 	if (sctp_style(sk, TCP))
7076 		return -EOPNOTSUPP;
7077 
7078 	if (len < sizeof(u32))
7079 		return -EINVAL;
7080 
7081 	len = sizeof(u32);
7082 
7083 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7084 		val++;
7085 	}
7086 
7087 	if (put_user(len, optlen))
7088 		return -EFAULT;
7089 	if (copy_to_user(optval, &val, len))
7090 		return -EFAULT;
7091 
7092 	return 0;
7093 }
7094 
7095 /*
7096  * 8.1.23 SCTP_AUTO_ASCONF
7097  * See the corresponding setsockopt entry as description
7098  */
7099 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
7100 				   char __user *optval, int __user *optlen)
7101 {
7102 	int val = 0;
7103 
7104 	if (len < sizeof(int))
7105 		return -EINVAL;
7106 
7107 	len = sizeof(int);
7108 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
7109 		val = 1;
7110 	if (put_user(len, optlen))
7111 		return -EFAULT;
7112 	if (copy_to_user(optval, &val, len))
7113 		return -EFAULT;
7114 	return 0;
7115 }
7116 
7117 /*
7118  * 8.2.6. Get the Current Identifiers of Associations
7119  *        (SCTP_GET_ASSOC_ID_LIST)
7120  *
7121  * This option gets the current list of SCTP association identifiers of
7122  * the SCTP associations handled by a one-to-many style socket.
7123  */
7124 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
7125 				    char __user *optval, int __user *optlen)
7126 {
7127 	struct sctp_sock *sp = sctp_sk(sk);
7128 	struct sctp_association *asoc;
7129 	struct sctp_assoc_ids *ids;
7130 	u32 num = 0;
7131 
7132 	if (sctp_style(sk, TCP))
7133 		return -EOPNOTSUPP;
7134 
7135 	if (len < sizeof(struct sctp_assoc_ids))
7136 		return -EINVAL;
7137 
7138 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7139 		num++;
7140 	}
7141 
7142 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
7143 		return -EINVAL;
7144 
7145 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
7146 
7147 	ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
7148 	if (unlikely(!ids))
7149 		return -ENOMEM;
7150 
7151 	ids->gaids_number_of_ids = num;
7152 	num = 0;
7153 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7154 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
7155 	}
7156 
7157 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
7158 		kfree(ids);
7159 		return -EFAULT;
7160 	}
7161 
7162 	kfree(ids);
7163 	return 0;
7164 }
7165 
7166 /*
7167  * SCTP_PEER_ADDR_THLDS
7168  *
7169  * This option allows us to fetch the partially failed threshold for one or all
7170  * transports in an association.  See Section 6.1 of:
7171  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
7172  */
7173 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
7174 					    char __user *optval,
7175 					    int len,
7176 					    int __user *optlen)
7177 {
7178 	struct sctp_paddrthlds val;
7179 	struct sctp_transport *trans;
7180 	struct sctp_association *asoc;
7181 
7182 	if (len < sizeof(struct sctp_paddrthlds))
7183 		return -EINVAL;
7184 	len = sizeof(struct sctp_paddrthlds);
7185 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
7186 		return -EFAULT;
7187 
7188 	if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
7189 		trans = sctp_addr_id2transport(sk, &val.spt_address,
7190 					       val.spt_assoc_id);
7191 		if (!trans)
7192 			return -ENOENT;
7193 
7194 		val.spt_pathmaxrxt = trans->pathmaxrxt;
7195 		val.spt_pathpfthld = trans->pf_retrans;
7196 
7197 		return 0;
7198 	}
7199 
7200 	asoc = sctp_id2assoc(sk, val.spt_assoc_id);
7201 	if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC &&
7202 	    sctp_style(sk, UDP))
7203 		return -EINVAL;
7204 
7205 	if (asoc) {
7206 		val.spt_pathpfthld = asoc->pf_retrans;
7207 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
7208 	} else {
7209 		struct sctp_sock *sp = sctp_sk(sk);
7210 
7211 		val.spt_pathpfthld = sp->pf_retrans;
7212 		val.spt_pathmaxrxt = sp->pathmaxrxt;
7213 	}
7214 
7215 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
7216 		return -EFAULT;
7217 
7218 	return 0;
7219 }
7220 
7221 /*
7222  * SCTP_GET_ASSOC_STATS
7223  *
7224  * This option retrieves local per endpoint statistics. It is modeled
7225  * after OpenSolaris' implementation
7226  */
7227 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
7228 				       char __user *optval,
7229 				       int __user *optlen)
7230 {
7231 	struct sctp_assoc_stats sas;
7232 	struct sctp_association *asoc = NULL;
7233 
7234 	/* User must provide at least the assoc id */
7235 	if (len < sizeof(sctp_assoc_t))
7236 		return -EINVAL;
7237 
7238 	/* Allow the struct to grow and fill in as much as possible */
7239 	len = min_t(size_t, len, sizeof(sas));
7240 
7241 	if (copy_from_user(&sas, optval, len))
7242 		return -EFAULT;
7243 
7244 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
7245 	if (!asoc)
7246 		return -EINVAL;
7247 
7248 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
7249 	sas.sas_gapcnt = asoc->stats.gapcnt;
7250 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
7251 	sas.sas_osacks = asoc->stats.osacks;
7252 	sas.sas_isacks = asoc->stats.isacks;
7253 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
7254 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
7255 	sas.sas_oodchunks = asoc->stats.oodchunks;
7256 	sas.sas_iodchunks = asoc->stats.iodchunks;
7257 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
7258 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
7259 	sas.sas_idupchunks = asoc->stats.idupchunks;
7260 	sas.sas_opackets = asoc->stats.opackets;
7261 	sas.sas_ipackets = asoc->stats.ipackets;
7262 
7263 	/* New high max rto observed, will return 0 if not a single
7264 	 * RTO update took place. obs_rto_ipaddr will be bogus
7265 	 * in such a case
7266 	 */
7267 	sas.sas_maxrto = asoc->stats.max_obs_rto;
7268 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
7269 		sizeof(struct sockaddr_storage));
7270 
7271 	/* Mark beginning of a new observation period */
7272 	asoc->stats.max_obs_rto = asoc->rto_min;
7273 
7274 	if (put_user(len, optlen))
7275 		return -EFAULT;
7276 
7277 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
7278 
7279 	if (copy_to_user(optval, &sas, len))
7280 		return -EFAULT;
7281 
7282 	return 0;
7283 }
7284 
7285 static int sctp_getsockopt_recvrcvinfo(struct sock *sk,	int len,
7286 				       char __user *optval,
7287 				       int __user *optlen)
7288 {
7289 	int val = 0;
7290 
7291 	if (len < sizeof(int))
7292 		return -EINVAL;
7293 
7294 	len = sizeof(int);
7295 	if (sctp_sk(sk)->recvrcvinfo)
7296 		val = 1;
7297 	if (put_user(len, optlen))
7298 		return -EFAULT;
7299 	if (copy_to_user(optval, &val, len))
7300 		return -EFAULT;
7301 
7302 	return 0;
7303 }
7304 
7305 static int sctp_getsockopt_recvnxtinfo(struct sock *sk,	int len,
7306 				       char __user *optval,
7307 				       int __user *optlen)
7308 {
7309 	int val = 0;
7310 
7311 	if (len < sizeof(int))
7312 		return -EINVAL;
7313 
7314 	len = sizeof(int);
7315 	if (sctp_sk(sk)->recvnxtinfo)
7316 		val = 1;
7317 	if (put_user(len, optlen))
7318 		return -EFAULT;
7319 	if (copy_to_user(optval, &val, len))
7320 		return -EFAULT;
7321 
7322 	return 0;
7323 }
7324 
7325 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
7326 					char __user *optval,
7327 					int __user *optlen)
7328 {
7329 	struct sctp_assoc_value params;
7330 	struct sctp_association *asoc;
7331 	int retval = -EFAULT;
7332 
7333 	if (len < sizeof(params)) {
7334 		retval = -EINVAL;
7335 		goto out;
7336 	}
7337 
7338 	len = sizeof(params);
7339 	if (copy_from_user(&params, optval, len))
7340 		goto out;
7341 
7342 	asoc = sctp_id2assoc(sk, params.assoc_id);
7343 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7344 	    sctp_style(sk, UDP)) {
7345 		retval = -EINVAL;
7346 		goto out;
7347 	}
7348 
7349 	params.assoc_value = asoc ? asoc->prsctp_enable
7350 				  : sctp_sk(sk)->ep->prsctp_enable;
7351 
7352 	if (put_user(len, optlen))
7353 		goto out;
7354 
7355 	if (copy_to_user(optval, &params, len))
7356 		goto out;
7357 
7358 	retval = 0;
7359 
7360 out:
7361 	return retval;
7362 }
7363 
7364 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
7365 					  char __user *optval,
7366 					  int __user *optlen)
7367 {
7368 	struct sctp_default_prinfo info;
7369 	struct sctp_association *asoc;
7370 	int retval = -EFAULT;
7371 
7372 	if (len < sizeof(info)) {
7373 		retval = -EINVAL;
7374 		goto out;
7375 	}
7376 
7377 	len = sizeof(info);
7378 	if (copy_from_user(&info, optval, len))
7379 		goto out;
7380 
7381 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
7382 	if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC &&
7383 	    sctp_style(sk, UDP)) {
7384 		retval = -EINVAL;
7385 		goto out;
7386 	}
7387 
7388 	if (asoc) {
7389 		info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
7390 		info.pr_value = asoc->default_timetolive;
7391 	} else {
7392 		struct sctp_sock *sp = sctp_sk(sk);
7393 
7394 		info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
7395 		info.pr_value = sp->default_timetolive;
7396 	}
7397 
7398 	if (put_user(len, optlen))
7399 		goto out;
7400 
7401 	if (copy_to_user(optval, &info, len))
7402 		goto out;
7403 
7404 	retval = 0;
7405 
7406 out:
7407 	return retval;
7408 }
7409 
7410 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
7411 					  char __user *optval,
7412 					  int __user *optlen)
7413 {
7414 	struct sctp_prstatus params;
7415 	struct sctp_association *asoc;
7416 	int policy;
7417 	int retval = -EINVAL;
7418 
7419 	if (len < sizeof(params))
7420 		goto out;
7421 
7422 	len = sizeof(params);
7423 	if (copy_from_user(&params, optval, len)) {
7424 		retval = -EFAULT;
7425 		goto out;
7426 	}
7427 
7428 	policy = params.sprstat_policy;
7429 	if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7430 	    ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7431 		goto out;
7432 
7433 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7434 	if (!asoc)
7435 		goto out;
7436 
7437 	if (policy == SCTP_PR_SCTP_ALL) {
7438 		params.sprstat_abandoned_unsent = 0;
7439 		params.sprstat_abandoned_sent = 0;
7440 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7441 			params.sprstat_abandoned_unsent +=
7442 				asoc->abandoned_unsent[policy];
7443 			params.sprstat_abandoned_sent +=
7444 				asoc->abandoned_sent[policy];
7445 		}
7446 	} else {
7447 		params.sprstat_abandoned_unsent =
7448 			asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7449 		params.sprstat_abandoned_sent =
7450 			asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
7451 	}
7452 
7453 	if (put_user(len, optlen)) {
7454 		retval = -EFAULT;
7455 		goto out;
7456 	}
7457 
7458 	if (copy_to_user(optval, &params, len)) {
7459 		retval = -EFAULT;
7460 		goto out;
7461 	}
7462 
7463 	retval = 0;
7464 
7465 out:
7466 	return retval;
7467 }
7468 
7469 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
7470 					   char __user *optval,
7471 					   int __user *optlen)
7472 {
7473 	struct sctp_stream_out_ext *streamoute;
7474 	struct sctp_association *asoc;
7475 	struct sctp_prstatus params;
7476 	int retval = -EINVAL;
7477 	int policy;
7478 
7479 	if (len < sizeof(params))
7480 		goto out;
7481 
7482 	len = sizeof(params);
7483 	if (copy_from_user(&params, optval, len)) {
7484 		retval = -EFAULT;
7485 		goto out;
7486 	}
7487 
7488 	policy = params.sprstat_policy;
7489 	if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7490 	    ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7491 		goto out;
7492 
7493 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7494 	if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
7495 		goto out;
7496 
7497 	streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext;
7498 	if (!streamoute) {
7499 		/* Not allocated yet, means all stats are 0 */
7500 		params.sprstat_abandoned_unsent = 0;
7501 		params.sprstat_abandoned_sent = 0;
7502 		retval = 0;
7503 		goto out;
7504 	}
7505 
7506 	if (policy == SCTP_PR_SCTP_ALL) {
7507 		params.sprstat_abandoned_unsent = 0;
7508 		params.sprstat_abandoned_sent = 0;
7509 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7510 			params.sprstat_abandoned_unsent +=
7511 				streamoute->abandoned_unsent[policy];
7512 			params.sprstat_abandoned_sent +=
7513 				streamoute->abandoned_sent[policy];
7514 		}
7515 	} else {
7516 		params.sprstat_abandoned_unsent =
7517 			streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7518 		params.sprstat_abandoned_sent =
7519 			streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
7520 	}
7521 
7522 	if (put_user(len, optlen) || copy_to_user(optval, &params, len)) {
7523 		retval = -EFAULT;
7524 		goto out;
7525 	}
7526 
7527 	retval = 0;
7528 
7529 out:
7530 	return retval;
7531 }
7532 
7533 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
7534 					      char __user *optval,
7535 					      int __user *optlen)
7536 {
7537 	struct sctp_assoc_value params;
7538 	struct sctp_association *asoc;
7539 	int retval = -EFAULT;
7540 
7541 	if (len < sizeof(params)) {
7542 		retval = -EINVAL;
7543 		goto out;
7544 	}
7545 
7546 	len = sizeof(params);
7547 	if (copy_from_user(&params, optval, len))
7548 		goto out;
7549 
7550 	asoc = sctp_id2assoc(sk, params.assoc_id);
7551 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7552 	    sctp_style(sk, UDP)) {
7553 		retval = -EINVAL;
7554 		goto out;
7555 	}
7556 
7557 	params.assoc_value = asoc ? asoc->reconf_enable
7558 				  : sctp_sk(sk)->ep->reconf_enable;
7559 
7560 	if (put_user(len, optlen))
7561 		goto out;
7562 
7563 	if (copy_to_user(optval, &params, len))
7564 		goto out;
7565 
7566 	retval = 0;
7567 
7568 out:
7569 	return retval;
7570 }
7571 
7572 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
7573 					   char __user *optval,
7574 					   int __user *optlen)
7575 {
7576 	struct sctp_assoc_value params;
7577 	struct sctp_association *asoc;
7578 	int retval = -EFAULT;
7579 
7580 	if (len < sizeof(params)) {
7581 		retval = -EINVAL;
7582 		goto out;
7583 	}
7584 
7585 	len = sizeof(params);
7586 	if (copy_from_user(&params, optval, len))
7587 		goto out;
7588 
7589 	asoc = sctp_id2assoc(sk, params.assoc_id);
7590 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7591 	    sctp_style(sk, UDP)) {
7592 		retval = -EINVAL;
7593 		goto out;
7594 	}
7595 
7596 	params.assoc_value = asoc ? asoc->strreset_enable
7597 				  : sctp_sk(sk)->ep->strreset_enable;
7598 
7599 	if (put_user(len, optlen))
7600 		goto out;
7601 
7602 	if (copy_to_user(optval, &params, len))
7603 		goto out;
7604 
7605 	retval = 0;
7606 
7607 out:
7608 	return retval;
7609 }
7610 
7611 static int sctp_getsockopt_scheduler(struct sock *sk, int len,
7612 				     char __user *optval,
7613 				     int __user *optlen)
7614 {
7615 	struct sctp_assoc_value params;
7616 	struct sctp_association *asoc;
7617 	int retval = -EFAULT;
7618 
7619 	if (len < sizeof(params)) {
7620 		retval = -EINVAL;
7621 		goto out;
7622 	}
7623 
7624 	len = sizeof(params);
7625 	if (copy_from_user(&params, optval, len))
7626 		goto out;
7627 
7628 	asoc = sctp_id2assoc(sk, params.assoc_id);
7629 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7630 	    sctp_style(sk, UDP)) {
7631 		retval = -EINVAL;
7632 		goto out;
7633 	}
7634 
7635 	params.assoc_value = asoc ? sctp_sched_get_sched(asoc)
7636 				  : sctp_sk(sk)->default_ss;
7637 
7638 	if (put_user(len, optlen))
7639 		goto out;
7640 
7641 	if (copy_to_user(optval, &params, len))
7642 		goto out;
7643 
7644 	retval = 0;
7645 
7646 out:
7647 	return retval;
7648 }
7649 
7650 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
7651 					   char __user *optval,
7652 					   int __user *optlen)
7653 {
7654 	struct sctp_stream_value params;
7655 	struct sctp_association *asoc;
7656 	int retval = -EFAULT;
7657 
7658 	if (len < sizeof(params)) {
7659 		retval = -EINVAL;
7660 		goto out;
7661 	}
7662 
7663 	len = sizeof(params);
7664 	if (copy_from_user(&params, optval, len))
7665 		goto out;
7666 
7667 	asoc = sctp_id2assoc(sk, params.assoc_id);
7668 	if (!asoc) {
7669 		retval = -EINVAL;
7670 		goto out;
7671 	}
7672 
7673 	retval = sctp_sched_get_value(asoc, params.stream_id,
7674 				      &params.stream_value);
7675 	if (retval)
7676 		goto out;
7677 
7678 	if (put_user(len, optlen)) {
7679 		retval = -EFAULT;
7680 		goto out;
7681 	}
7682 
7683 	if (copy_to_user(optval, &params, len)) {
7684 		retval = -EFAULT;
7685 		goto out;
7686 	}
7687 
7688 out:
7689 	return retval;
7690 }
7691 
7692 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len,
7693 						  char __user *optval,
7694 						  int __user *optlen)
7695 {
7696 	struct sctp_assoc_value params;
7697 	struct sctp_association *asoc;
7698 	int retval = -EFAULT;
7699 
7700 	if (len < sizeof(params)) {
7701 		retval = -EINVAL;
7702 		goto out;
7703 	}
7704 
7705 	len = sizeof(params);
7706 	if (copy_from_user(&params, optval, len))
7707 		goto out;
7708 
7709 	asoc = sctp_id2assoc(sk, params.assoc_id);
7710 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7711 	    sctp_style(sk, UDP)) {
7712 		retval = -EINVAL;
7713 		goto out;
7714 	}
7715 
7716 	params.assoc_value = asoc ? asoc->intl_enable
7717 				  : sctp_sk(sk)->strm_interleave;
7718 
7719 	if (put_user(len, optlen))
7720 		goto out;
7721 
7722 	if (copy_to_user(optval, &params, len))
7723 		goto out;
7724 
7725 	retval = 0;
7726 
7727 out:
7728 	return retval;
7729 }
7730 
7731 static int sctp_getsockopt_reuse_port(struct sock *sk, int len,
7732 				      char __user *optval,
7733 				      int __user *optlen)
7734 {
7735 	int val;
7736 
7737 	if (len < sizeof(int))
7738 		return -EINVAL;
7739 
7740 	len = sizeof(int);
7741 	val = sctp_sk(sk)->reuse;
7742 	if (put_user(len, optlen))
7743 		return -EFAULT;
7744 
7745 	if (copy_to_user(optval, &val, len))
7746 		return -EFAULT;
7747 
7748 	return 0;
7749 }
7750 
7751 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval,
7752 				 int __user *optlen)
7753 {
7754 	struct sctp_association *asoc;
7755 	struct sctp_event param;
7756 	__u16 subscribe;
7757 
7758 	if (len < sizeof(param))
7759 		return -EINVAL;
7760 
7761 	len = sizeof(param);
7762 	if (copy_from_user(&param, optval, len))
7763 		return -EFAULT;
7764 
7765 	if (param.se_type < SCTP_SN_TYPE_BASE ||
7766 	    param.se_type > SCTP_SN_TYPE_MAX)
7767 		return -EINVAL;
7768 
7769 	asoc = sctp_id2assoc(sk, param.se_assoc_id);
7770 	if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC &&
7771 	    sctp_style(sk, UDP))
7772 		return -EINVAL;
7773 
7774 	subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe;
7775 	param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type);
7776 
7777 	if (put_user(len, optlen))
7778 		return -EFAULT;
7779 
7780 	if (copy_to_user(optval, &param, len))
7781 		return -EFAULT;
7782 
7783 	return 0;
7784 }
7785 
7786 static int sctp_getsockopt(struct sock *sk, int level, int optname,
7787 			   char __user *optval, int __user *optlen)
7788 {
7789 	int retval = 0;
7790 	int len;
7791 
7792 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
7793 
7794 	/* I can hardly begin to describe how wrong this is.  This is
7795 	 * so broken as to be worse than useless.  The API draft
7796 	 * REALLY is NOT helpful here...  I am not convinced that the
7797 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
7798 	 * are at all well-founded.
7799 	 */
7800 	if (level != SOL_SCTP) {
7801 		struct sctp_af *af = sctp_sk(sk)->pf->af;
7802 
7803 		retval = af->getsockopt(sk, level, optname, optval, optlen);
7804 		return retval;
7805 	}
7806 
7807 	if (get_user(len, optlen))
7808 		return -EFAULT;
7809 
7810 	if (len < 0)
7811 		return -EINVAL;
7812 
7813 	lock_sock(sk);
7814 
7815 	switch (optname) {
7816 	case SCTP_STATUS:
7817 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
7818 		break;
7819 	case SCTP_DISABLE_FRAGMENTS:
7820 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
7821 							   optlen);
7822 		break;
7823 	case SCTP_EVENTS:
7824 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
7825 		break;
7826 	case SCTP_AUTOCLOSE:
7827 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
7828 		break;
7829 	case SCTP_SOCKOPT_PEELOFF:
7830 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
7831 		break;
7832 	case SCTP_SOCKOPT_PEELOFF_FLAGS:
7833 		retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
7834 		break;
7835 	case SCTP_PEER_ADDR_PARAMS:
7836 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
7837 							  optlen);
7838 		break;
7839 	case SCTP_DELAYED_SACK:
7840 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
7841 							  optlen);
7842 		break;
7843 	case SCTP_INITMSG:
7844 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
7845 		break;
7846 	case SCTP_GET_PEER_ADDRS:
7847 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
7848 						    optlen);
7849 		break;
7850 	case SCTP_GET_LOCAL_ADDRS:
7851 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
7852 						     optlen);
7853 		break;
7854 	case SCTP_SOCKOPT_CONNECTX3:
7855 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
7856 		break;
7857 	case SCTP_DEFAULT_SEND_PARAM:
7858 		retval = sctp_getsockopt_default_send_param(sk, len,
7859 							    optval, optlen);
7860 		break;
7861 	case SCTP_DEFAULT_SNDINFO:
7862 		retval = sctp_getsockopt_default_sndinfo(sk, len,
7863 							 optval, optlen);
7864 		break;
7865 	case SCTP_PRIMARY_ADDR:
7866 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
7867 		break;
7868 	case SCTP_NODELAY:
7869 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
7870 		break;
7871 	case SCTP_RTOINFO:
7872 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
7873 		break;
7874 	case SCTP_ASSOCINFO:
7875 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
7876 		break;
7877 	case SCTP_I_WANT_MAPPED_V4_ADDR:
7878 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
7879 		break;
7880 	case SCTP_MAXSEG:
7881 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
7882 		break;
7883 	case SCTP_GET_PEER_ADDR_INFO:
7884 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
7885 							optlen);
7886 		break;
7887 	case SCTP_ADAPTATION_LAYER:
7888 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
7889 							optlen);
7890 		break;
7891 	case SCTP_CONTEXT:
7892 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
7893 		break;
7894 	case SCTP_FRAGMENT_INTERLEAVE:
7895 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
7896 							     optlen);
7897 		break;
7898 	case SCTP_PARTIAL_DELIVERY_POINT:
7899 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
7900 								optlen);
7901 		break;
7902 	case SCTP_MAX_BURST:
7903 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
7904 		break;
7905 	case SCTP_AUTH_KEY:
7906 	case SCTP_AUTH_CHUNK:
7907 	case SCTP_AUTH_DELETE_KEY:
7908 	case SCTP_AUTH_DEACTIVATE_KEY:
7909 		retval = -EOPNOTSUPP;
7910 		break;
7911 	case SCTP_HMAC_IDENT:
7912 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
7913 		break;
7914 	case SCTP_AUTH_ACTIVE_KEY:
7915 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
7916 		break;
7917 	case SCTP_PEER_AUTH_CHUNKS:
7918 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
7919 							optlen);
7920 		break;
7921 	case SCTP_LOCAL_AUTH_CHUNKS:
7922 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
7923 							optlen);
7924 		break;
7925 	case SCTP_GET_ASSOC_NUMBER:
7926 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
7927 		break;
7928 	case SCTP_GET_ASSOC_ID_LIST:
7929 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
7930 		break;
7931 	case SCTP_AUTO_ASCONF:
7932 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
7933 		break;
7934 	case SCTP_PEER_ADDR_THLDS:
7935 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
7936 		break;
7937 	case SCTP_GET_ASSOC_STATS:
7938 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
7939 		break;
7940 	case SCTP_RECVRCVINFO:
7941 		retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
7942 		break;
7943 	case SCTP_RECVNXTINFO:
7944 		retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
7945 		break;
7946 	case SCTP_PR_SUPPORTED:
7947 		retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
7948 		break;
7949 	case SCTP_DEFAULT_PRINFO:
7950 		retval = sctp_getsockopt_default_prinfo(sk, len, optval,
7951 							optlen);
7952 		break;
7953 	case SCTP_PR_ASSOC_STATUS:
7954 		retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
7955 							optlen);
7956 		break;
7957 	case SCTP_PR_STREAM_STATUS:
7958 		retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
7959 							 optlen);
7960 		break;
7961 	case SCTP_RECONFIG_SUPPORTED:
7962 		retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
7963 							    optlen);
7964 		break;
7965 	case SCTP_ENABLE_STREAM_RESET:
7966 		retval = sctp_getsockopt_enable_strreset(sk, len, optval,
7967 							 optlen);
7968 		break;
7969 	case SCTP_STREAM_SCHEDULER:
7970 		retval = sctp_getsockopt_scheduler(sk, len, optval,
7971 						   optlen);
7972 		break;
7973 	case SCTP_STREAM_SCHEDULER_VALUE:
7974 		retval = sctp_getsockopt_scheduler_value(sk, len, optval,
7975 							 optlen);
7976 		break;
7977 	case SCTP_INTERLEAVING_SUPPORTED:
7978 		retval = sctp_getsockopt_interleaving_supported(sk, len, optval,
7979 								optlen);
7980 		break;
7981 	case SCTP_REUSE_PORT:
7982 		retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen);
7983 		break;
7984 	case SCTP_EVENT:
7985 		retval = sctp_getsockopt_event(sk, len, optval, optlen);
7986 		break;
7987 	default:
7988 		retval = -ENOPROTOOPT;
7989 		break;
7990 	}
7991 
7992 	release_sock(sk);
7993 	return retval;
7994 }
7995 
7996 static int sctp_hash(struct sock *sk)
7997 {
7998 	/* STUB */
7999 	return 0;
8000 }
8001 
8002 static void sctp_unhash(struct sock *sk)
8003 {
8004 	/* STUB */
8005 }
8006 
8007 /* Check if port is acceptable.  Possibly find first available port.
8008  *
8009  * The port hash table (contained in the 'global' SCTP protocol storage
8010  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
8011  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
8012  * list (the list number is the port number hashed out, so as you
8013  * would expect from a hash function, all the ports in a given list have
8014  * such a number that hashes out to the same list number; you were
8015  * expecting that, right?); so each list has a set of ports, with a
8016  * link to the socket (struct sock) that uses it, the port number and
8017  * a fastreuse flag (FIXME: NPI ipg).
8018  */
8019 static struct sctp_bind_bucket *sctp_bucket_create(
8020 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
8021 
8022 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
8023 {
8024 	struct sctp_sock *sp = sctp_sk(sk);
8025 	bool reuse = (sk->sk_reuse || sp->reuse);
8026 	struct sctp_bind_hashbucket *head; /* hash list */
8027 	kuid_t uid = sock_i_uid(sk);
8028 	struct sctp_bind_bucket *pp;
8029 	unsigned short snum;
8030 	int ret;
8031 
8032 	snum = ntohs(addr->v4.sin_port);
8033 
8034 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
8035 
8036 	local_bh_disable();
8037 
8038 	if (snum == 0) {
8039 		/* Search for an available port. */
8040 		int low, high, remaining, index;
8041 		unsigned int rover;
8042 		struct net *net = sock_net(sk);
8043 
8044 		inet_get_local_port_range(net, &low, &high);
8045 		remaining = (high - low) + 1;
8046 		rover = prandom_u32() % remaining + low;
8047 
8048 		do {
8049 			rover++;
8050 			if ((rover < low) || (rover > high))
8051 				rover = low;
8052 			if (inet_is_local_reserved_port(net, rover))
8053 				continue;
8054 			index = sctp_phashfn(sock_net(sk), rover);
8055 			head = &sctp_port_hashtable[index];
8056 			spin_lock(&head->lock);
8057 			sctp_for_each_hentry(pp, &head->chain)
8058 				if ((pp->port == rover) &&
8059 				    net_eq(sock_net(sk), pp->net))
8060 					goto next;
8061 			break;
8062 		next:
8063 			spin_unlock(&head->lock);
8064 		} while (--remaining > 0);
8065 
8066 		/* Exhausted local port range during search? */
8067 		ret = 1;
8068 		if (remaining <= 0)
8069 			goto fail;
8070 
8071 		/* OK, here is the one we will use.  HEAD (the port
8072 		 * hash table list entry) is non-NULL and we hold it's
8073 		 * mutex.
8074 		 */
8075 		snum = rover;
8076 	} else {
8077 		/* We are given an specific port number; we verify
8078 		 * that it is not being used. If it is used, we will
8079 		 * exahust the search in the hash list corresponding
8080 		 * to the port number (snum) - we detect that with the
8081 		 * port iterator, pp being NULL.
8082 		 */
8083 		head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
8084 		spin_lock(&head->lock);
8085 		sctp_for_each_hentry(pp, &head->chain) {
8086 			if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
8087 				goto pp_found;
8088 		}
8089 	}
8090 	pp = NULL;
8091 	goto pp_not_found;
8092 pp_found:
8093 	if (!hlist_empty(&pp->owner)) {
8094 		/* We had a port hash table hit - there is an
8095 		 * available port (pp != NULL) and it is being
8096 		 * used by other socket (pp->owner not empty); that other
8097 		 * socket is going to be sk2.
8098 		 */
8099 		struct sock *sk2;
8100 
8101 		pr_debug("%s: found a possible match\n", __func__);
8102 
8103 		if ((pp->fastreuse && reuse &&
8104 		     sk->sk_state != SCTP_SS_LISTENING) ||
8105 		    (pp->fastreuseport && sk->sk_reuseport &&
8106 		     uid_eq(pp->fastuid, uid)))
8107 			goto success;
8108 
8109 		/* Run through the list of sockets bound to the port
8110 		 * (pp->port) [via the pointers bind_next and
8111 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
8112 		 * we get the endpoint they describe and run through
8113 		 * the endpoint's list of IP (v4 or v6) addresses,
8114 		 * comparing each of the addresses with the address of
8115 		 * the socket sk. If we find a match, then that means
8116 		 * that this port/socket (sk) combination are already
8117 		 * in an endpoint.
8118 		 */
8119 		sk_for_each_bound(sk2, &pp->owner) {
8120 			struct sctp_sock *sp2 = sctp_sk(sk2);
8121 			struct sctp_endpoint *ep2 = sp2->ep;
8122 
8123 			if (sk == sk2 ||
8124 			    (reuse && (sk2->sk_reuse || sp2->reuse) &&
8125 			     sk2->sk_state != SCTP_SS_LISTENING) ||
8126 			    (sk->sk_reuseport && sk2->sk_reuseport &&
8127 			     uid_eq(uid, sock_i_uid(sk2))))
8128 				continue;
8129 
8130 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr,
8131 						    addr, sp2, sp)) {
8132 				ret = (long)sk2;
8133 				goto fail_unlock;
8134 			}
8135 		}
8136 
8137 		pr_debug("%s: found a match\n", __func__);
8138 	}
8139 pp_not_found:
8140 	/* If there was a hash table miss, create a new port.  */
8141 	ret = 1;
8142 	if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
8143 		goto fail_unlock;
8144 
8145 	/* In either case (hit or miss), make sure fastreuse is 1 only
8146 	 * if sk->sk_reuse is too (that is, if the caller requested
8147 	 * SO_REUSEADDR on this socket -sk-).
8148 	 */
8149 	if (hlist_empty(&pp->owner)) {
8150 		if (reuse && sk->sk_state != SCTP_SS_LISTENING)
8151 			pp->fastreuse = 1;
8152 		else
8153 			pp->fastreuse = 0;
8154 
8155 		if (sk->sk_reuseport) {
8156 			pp->fastreuseport = 1;
8157 			pp->fastuid = uid;
8158 		} else {
8159 			pp->fastreuseport = 0;
8160 		}
8161 	} else {
8162 		if (pp->fastreuse &&
8163 		    (!reuse || sk->sk_state == SCTP_SS_LISTENING))
8164 			pp->fastreuse = 0;
8165 
8166 		if (pp->fastreuseport &&
8167 		    (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid)))
8168 			pp->fastreuseport = 0;
8169 	}
8170 
8171 	/* We are set, so fill up all the data in the hash table
8172 	 * entry, tie the socket list information with the rest of the
8173 	 * sockets FIXME: Blurry, NPI (ipg).
8174 	 */
8175 success:
8176 	if (!sp->bind_hash) {
8177 		inet_sk(sk)->inet_num = snum;
8178 		sk_add_bind_node(sk, &pp->owner);
8179 		sp->bind_hash = pp;
8180 	}
8181 	ret = 0;
8182 
8183 fail_unlock:
8184 	spin_unlock(&head->lock);
8185 
8186 fail:
8187 	local_bh_enable();
8188 	return ret;
8189 }
8190 
8191 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
8192  * port is requested.
8193  */
8194 static int sctp_get_port(struct sock *sk, unsigned short snum)
8195 {
8196 	union sctp_addr addr;
8197 	struct sctp_af *af = sctp_sk(sk)->pf->af;
8198 
8199 	/* Set up a dummy address struct from the sk. */
8200 	af->from_sk(&addr, sk);
8201 	addr.v4.sin_port = htons(snum);
8202 
8203 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
8204 	return !!sctp_get_port_local(sk, &addr);
8205 }
8206 
8207 /*
8208  *  Move a socket to LISTENING state.
8209  */
8210 static int sctp_listen_start(struct sock *sk, int backlog)
8211 {
8212 	struct sctp_sock *sp = sctp_sk(sk);
8213 	struct sctp_endpoint *ep = sp->ep;
8214 	struct crypto_shash *tfm = NULL;
8215 	char alg[32];
8216 
8217 	/* Allocate HMAC for generating cookie. */
8218 	if (!sp->hmac && sp->sctp_hmac_alg) {
8219 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
8220 		tfm = crypto_alloc_shash(alg, 0, 0);
8221 		if (IS_ERR(tfm)) {
8222 			net_info_ratelimited("failed to load transform for %s: %ld\n",
8223 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
8224 			return -ENOSYS;
8225 		}
8226 		sctp_sk(sk)->hmac = tfm;
8227 	}
8228 
8229 	/*
8230 	 * If a bind() or sctp_bindx() is not called prior to a listen()
8231 	 * call that allows new associations to be accepted, the system
8232 	 * picks an ephemeral port and will choose an address set equivalent
8233 	 * to binding with a wildcard address.
8234 	 *
8235 	 * This is not currently spelled out in the SCTP sockets
8236 	 * extensions draft, but follows the practice as seen in TCP
8237 	 * sockets.
8238 	 *
8239 	 */
8240 	inet_sk_set_state(sk, SCTP_SS_LISTENING);
8241 	if (!ep->base.bind_addr.port) {
8242 		if (sctp_autobind(sk))
8243 			return -EAGAIN;
8244 	} else {
8245 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
8246 			inet_sk_set_state(sk, SCTP_SS_CLOSED);
8247 			return -EADDRINUSE;
8248 		}
8249 	}
8250 
8251 	sk->sk_max_ack_backlog = backlog;
8252 	return sctp_hash_endpoint(ep);
8253 }
8254 
8255 /*
8256  * 4.1.3 / 5.1.3 listen()
8257  *
8258  *   By default, new associations are not accepted for UDP style sockets.
8259  *   An application uses listen() to mark a socket as being able to
8260  *   accept new associations.
8261  *
8262  *   On TCP style sockets, applications use listen() to ready the SCTP
8263  *   endpoint for accepting inbound associations.
8264  *
8265  *   On both types of endpoints a backlog of '0' disables listening.
8266  *
8267  *  Move a socket to LISTENING state.
8268  */
8269 int sctp_inet_listen(struct socket *sock, int backlog)
8270 {
8271 	struct sock *sk = sock->sk;
8272 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
8273 	int err = -EINVAL;
8274 
8275 	if (unlikely(backlog < 0))
8276 		return err;
8277 
8278 	lock_sock(sk);
8279 
8280 	/* Peeled-off sockets are not allowed to listen().  */
8281 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
8282 		goto out;
8283 
8284 	if (sock->state != SS_UNCONNECTED)
8285 		goto out;
8286 
8287 	if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
8288 		goto out;
8289 
8290 	/* If backlog is zero, disable listening. */
8291 	if (!backlog) {
8292 		if (sctp_sstate(sk, CLOSED))
8293 			goto out;
8294 
8295 		err = 0;
8296 		sctp_unhash_endpoint(ep);
8297 		sk->sk_state = SCTP_SS_CLOSED;
8298 		if (sk->sk_reuse || sctp_sk(sk)->reuse)
8299 			sctp_sk(sk)->bind_hash->fastreuse = 1;
8300 		goto out;
8301 	}
8302 
8303 	/* If we are already listening, just update the backlog */
8304 	if (sctp_sstate(sk, LISTENING))
8305 		sk->sk_max_ack_backlog = backlog;
8306 	else {
8307 		err = sctp_listen_start(sk, backlog);
8308 		if (err)
8309 			goto out;
8310 	}
8311 
8312 	err = 0;
8313 out:
8314 	release_sock(sk);
8315 	return err;
8316 }
8317 
8318 /*
8319  * This function is done by modeling the current datagram_poll() and the
8320  * tcp_poll().  Note that, based on these implementations, we don't
8321  * lock the socket in this function, even though it seems that,
8322  * ideally, locking or some other mechanisms can be used to ensure
8323  * the integrity of the counters (sndbuf and wmem_alloc) used
8324  * in this place.  We assume that we don't need locks either until proven
8325  * otherwise.
8326  *
8327  * Another thing to note is that we include the Async I/O support
8328  * here, again, by modeling the current TCP/UDP code.  We don't have
8329  * a good way to test with it yet.
8330  */
8331 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
8332 {
8333 	struct sock *sk = sock->sk;
8334 	struct sctp_sock *sp = sctp_sk(sk);
8335 	__poll_t mask;
8336 
8337 	poll_wait(file, sk_sleep(sk), wait);
8338 
8339 	sock_rps_record_flow(sk);
8340 
8341 	/* A TCP-style listening socket becomes readable when the accept queue
8342 	 * is not empty.
8343 	 */
8344 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
8345 		return (!list_empty(&sp->ep->asocs)) ?
8346 			(EPOLLIN | EPOLLRDNORM) : 0;
8347 
8348 	mask = 0;
8349 
8350 	/* Is there any exceptional events?  */
8351 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
8352 		mask |= EPOLLERR |
8353 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
8354 	if (sk->sk_shutdown & RCV_SHUTDOWN)
8355 		mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
8356 	if (sk->sk_shutdown == SHUTDOWN_MASK)
8357 		mask |= EPOLLHUP;
8358 
8359 	/* Is it readable?  Reconsider this code with TCP-style support.  */
8360 	if (!skb_queue_empty(&sk->sk_receive_queue))
8361 		mask |= EPOLLIN | EPOLLRDNORM;
8362 
8363 	/* The association is either gone or not ready.  */
8364 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
8365 		return mask;
8366 
8367 	/* Is it writable?  */
8368 	if (sctp_writeable(sk)) {
8369 		mask |= EPOLLOUT | EPOLLWRNORM;
8370 	} else {
8371 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
8372 		/*
8373 		 * Since the socket is not locked, the buffer
8374 		 * might be made available after the writeable check and
8375 		 * before the bit is set.  This could cause a lost I/O
8376 		 * signal.  tcp_poll() has a race breaker for this race
8377 		 * condition.  Based on their implementation, we put
8378 		 * in the following code to cover it as well.
8379 		 */
8380 		if (sctp_writeable(sk))
8381 			mask |= EPOLLOUT | EPOLLWRNORM;
8382 	}
8383 	return mask;
8384 }
8385 
8386 /********************************************************************
8387  * 2nd Level Abstractions
8388  ********************************************************************/
8389 
8390 static struct sctp_bind_bucket *sctp_bucket_create(
8391 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
8392 {
8393 	struct sctp_bind_bucket *pp;
8394 
8395 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
8396 	if (pp) {
8397 		SCTP_DBG_OBJCNT_INC(bind_bucket);
8398 		pp->port = snum;
8399 		pp->fastreuse = 0;
8400 		INIT_HLIST_HEAD(&pp->owner);
8401 		pp->net = net;
8402 		hlist_add_head(&pp->node, &head->chain);
8403 	}
8404 	return pp;
8405 }
8406 
8407 /* Caller must hold hashbucket lock for this tb with local BH disabled */
8408 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
8409 {
8410 	if (pp && hlist_empty(&pp->owner)) {
8411 		__hlist_del(&pp->node);
8412 		kmem_cache_free(sctp_bucket_cachep, pp);
8413 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
8414 	}
8415 }
8416 
8417 /* Release this socket's reference to a local port.  */
8418 static inline void __sctp_put_port(struct sock *sk)
8419 {
8420 	struct sctp_bind_hashbucket *head =
8421 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
8422 						  inet_sk(sk)->inet_num)];
8423 	struct sctp_bind_bucket *pp;
8424 
8425 	spin_lock(&head->lock);
8426 	pp = sctp_sk(sk)->bind_hash;
8427 	__sk_del_bind_node(sk);
8428 	sctp_sk(sk)->bind_hash = NULL;
8429 	inet_sk(sk)->inet_num = 0;
8430 	sctp_bucket_destroy(pp);
8431 	spin_unlock(&head->lock);
8432 }
8433 
8434 void sctp_put_port(struct sock *sk)
8435 {
8436 	local_bh_disable();
8437 	__sctp_put_port(sk);
8438 	local_bh_enable();
8439 }
8440 
8441 /*
8442  * The system picks an ephemeral port and choose an address set equivalent
8443  * to binding with a wildcard address.
8444  * One of those addresses will be the primary address for the association.
8445  * This automatically enables the multihoming capability of SCTP.
8446  */
8447 static int sctp_autobind(struct sock *sk)
8448 {
8449 	union sctp_addr autoaddr;
8450 	struct sctp_af *af;
8451 	__be16 port;
8452 
8453 	/* Initialize a local sockaddr structure to INADDR_ANY. */
8454 	af = sctp_sk(sk)->pf->af;
8455 
8456 	port = htons(inet_sk(sk)->inet_num);
8457 	af->inaddr_any(&autoaddr, port);
8458 
8459 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
8460 }
8461 
8462 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
8463  *
8464  * From RFC 2292
8465  * 4.2 The cmsghdr Structure *
8466  *
8467  * When ancillary data is sent or received, any number of ancillary data
8468  * objects can be specified by the msg_control and msg_controllen members of
8469  * the msghdr structure, because each object is preceded by
8470  * a cmsghdr structure defining the object's length (the cmsg_len member).
8471  * Historically Berkeley-derived implementations have passed only one object
8472  * at a time, but this API allows multiple objects to be
8473  * passed in a single call to sendmsg() or recvmsg(). The following example
8474  * shows two ancillary data objects in a control buffer.
8475  *
8476  *   |<--------------------------- msg_controllen -------------------------->|
8477  *   |                                                                       |
8478  *
8479  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
8480  *
8481  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
8482  *   |                                   |                                   |
8483  *
8484  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
8485  *
8486  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
8487  *   |                                |  |                                |  |
8488  *
8489  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8490  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
8491  *
8492  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
8493  *
8494  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8495  *    ^
8496  *    |
8497  *
8498  * msg_control
8499  * points here
8500  */
8501 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
8502 {
8503 	struct msghdr *my_msg = (struct msghdr *)msg;
8504 	struct cmsghdr *cmsg;
8505 
8506 	for_each_cmsghdr(cmsg, my_msg) {
8507 		if (!CMSG_OK(my_msg, cmsg))
8508 			return -EINVAL;
8509 
8510 		/* Should we parse this header or ignore?  */
8511 		if (cmsg->cmsg_level != IPPROTO_SCTP)
8512 			continue;
8513 
8514 		/* Strictly check lengths following example in SCM code.  */
8515 		switch (cmsg->cmsg_type) {
8516 		case SCTP_INIT:
8517 			/* SCTP Socket API Extension
8518 			 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
8519 			 *
8520 			 * This cmsghdr structure provides information for
8521 			 * initializing new SCTP associations with sendmsg().
8522 			 * The SCTP_INITMSG socket option uses this same data
8523 			 * structure.  This structure is not used for
8524 			 * recvmsg().
8525 			 *
8526 			 * cmsg_level    cmsg_type      cmsg_data[]
8527 			 * ------------  ------------   ----------------------
8528 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
8529 			 */
8530 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
8531 				return -EINVAL;
8532 
8533 			cmsgs->init = CMSG_DATA(cmsg);
8534 			break;
8535 
8536 		case SCTP_SNDRCV:
8537 			/* SCTP Socket API Extension
8538 			 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
8539 			 *
8540 			 * This cmsghdr structure specifies SCTP options for
8541 			 * sendmsg() and describes SCTP header information
8542 			 * about a received message through recvmsg().
8543 			 *
8544 			 * cmsg_level    cmsg_type      cmsg_data[]
8545 			 * ------------  ------------   ----------------------
8546 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
8547 			 */
8548 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
8549 				return -EINVAL;
8550 
8551 			cmsgs->srinfo = CMSG_DATA(cmsg);
8552 
8553 			if (cmsgs->srinfo->sinfo_flags &
8554 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8555 			      SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8556 			      SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8557 				return -EINVAL;
8558 			break;
8559 
8560 		case SCTP_SNDINFO:
8561 			/* SCTP Socket API Extension
8562 			 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
8563 			 *
8564 			 * This cmsghdr structure specifies SCTP options for
8565 			 * sendmsg(). This structure and SCTP_RCVINFO replaces
8566 			 * SCTP_SNDRCV which has been deprecated.
8567 			 *
8568 			 * cmsg_level    cmsg_type      cmsg_data[]
8569 			 * ------------  ------------   ---------------------
8570 			 * IPPROTO_SCTP  SCTP_SNDINFO    struct sctp_sndinfo
8571 			 */
8572 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
8573 				return -EINVAL;
8574 
8575 			cmsgs->sinfo = CMSG_DATA(cmsg);
8576 
8577 			if (cmsgs->sinfo->snd_flags &
8578 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8579 			      SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8580 			      SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8581 				return -EINVAL;
8582 			break;
8583 		case SCTP_PRINFO:
8584 			/* SCTP Socket API Extension
8585 			 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO)
8586 			 *
8587 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8588 			 *
8589 			 * cmsg_level    cmsg_type      cmsg_data[]
8590 			 * ------------  ------------   ---------------------
8591 			 * IPPROTO_SCTP  SCTP_PRINFO    struct sctp_prinfo
8592 			 */
8593 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo)))
8594 				return -EINVAL;
8595 
8596 			cmsgs->prinfo = CMSG_DATA(cmsg);
8597 			if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK)
8598 				return -EINVAL;
8599 
8600 			if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE)
8601 				cmsgs->prinfo->pr_value = 0;
8602 			break;
8603 		case SCTP_AUTHINFO:
8604 			/* SCTP Socket API Extension
8605 			 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO)
8606 			 *
8607 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8608 			 *
8609 			 * cmsg_level    cmsg_type      cmsg_data[]
8610 			 * ------------  ------------   ---------------------
8611 			 * IPPROTO_SCTP  SCTP_AUTHINFO  struct sctp_authinfo
8612 			 */
8613 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo)))
8614 				return -EINVAL;
8615 
8616 			cmsgs->authinfo = CMSG_DATA(cmsg);
8617 			break;
8618 		case SCTP_DSTADDRV4:
8619 		case SCTP_DSTADDRV6:
8620 			/* SCTP Socket API Extension
8621 			 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6)
8622 			 *
8623 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8624 			 *
8625 			 * cmsg_level    cmsg_type         cmsg_data[]
8626 			 * ------------  ------------   ---------------------
8627 			 * IPPROTO_SCTP  SCTP_DSTADDRV4 struct in_addr
8628 			 * ------------  ------------   ---------------------
8629 			 * IPPROTO_SCTP  SCTP_DSTADDRV6 struct in6_addr
8630 			 */
8631 			cmsgs->addrs_msg = my_msg;
8632 			break;
8633 		default:
8634 			return -EINVAL;
8635 		}
8636 	}
8637 
8638 	return 0;
8639 }
8640 
8641 /*
8642  * Wait for a packet..
8643  * Note: This function is the same function as in core/datagram.c
8644  * with a few modifications to make lksctp work.
8645  */
8646 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
8647 {
8648 	int error;
8649 	DEFINE_WAIT(wait);
8650 
8651 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8652 
8653 	/* Socket errors? */
8654 	error = sock_error(sk);
8655 	if (error)
8656 		goto out;
8657 
8658 	if (!skb_queue_empty(&sk->sk_receive_queue))
8659 		goto ready;
8660 
8661 	/* Socket shut down?  */
8662 	if (sk->sk_shutdown & RCV_SHUTDOWN)
8663 		goto out;
8664 
8665 	/* Sequenced packets can come disconnected.  If so we report the
8666 	 * problem.
8667 	 */
8668 	error = -ENOTCONN;
8669 
8670 	/* Is there a good reason to think that we may receive some data?  */
8671 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
8672 		goto out;
8673 
8674 	/* Handle signals.  */
8675 	if (signal_pending(current))
8676 		goto interrupted;
8677 
8678 	/* Let another process have a go.  Since we are going to sleep
8679 	 * anyway.  Note: This may cause odd behaviors if the message
8680 	 * does not fit in the user's buffer, but this seems to be the
8681 	 * only way to honor MSG_DONTWAIT realistically.
8682 	 */
8683 	release_sock(sk);
8684 	*timeo_p = schedule_timeout(*timeo_p);
8685 	lock_sock(sk);
8686 
8687 ready:
8688 	finish_wait(sk_sleep(sk), &wait);
8689 	return 0;
8690 
8691 interrupted:
8692 	error = sock_intr_errno(*timeo_p);
8693 
8694 out:
8695 	finish_wait(sk_sleep(sk), &wait);
8696 	*err = error;
8697 	return error;
8698 }
8699 
8700 /* Receive a datagram.
8701  * Note: This is pretty much the same routine as in core/datagram.c
8702  * with a few changes to make lksctp work.
8703  */
8704 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
8705 				       int noblock, int *err)
8706 {
8707 	int error;
8708 	struct sk_buff *skb;
8709 	long timeo;
8710 
8711 	timeo = sock_rcvtimeo(sk, noblock);
8712 
8713 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
8714 		 MAX_SCHEDULE_TIMEOUT);
8715 
8716 	do {
8717 		/* Again only user level code calls this function,
8718 		 * so nothing interrupt level
8719 		 * will suddenly eat the receive_queue.
8720 		 *
8721 		 *  Look at current nfs client by the way...
8722 		 *  However, this function was correct in any case. 8)
8723 		 */
8724 		if (flags & MSG_PEEK) {
8725 			skb = skb_peek(&sk->sk_receive_queue);
8726 			if (skb)
8727 				refcount_inc(&skb->users);
8728 		} else {
8729 			skb = __skb_dequeue(&sk->sk_receive_queue);
8730 		}
8731 
8732 		if (skb)
8733 			return skb;
8734 
8735 		/* Caller is allowed not to check sk->sk_err before calling. */
8736 		error = sock_error(sk);
8737 		if (error)
8738 			goto no_packet;
8739 
8740 		if (sk->sk_shutdown & RCV_SHUTDOWN)
8741 			break;
8742 
8743 		if (sk_can_busy_loop(sk)) {
8744 			sk_busy_loop(sk, noblock);
8745 
8746 			if (!skb_queue_empty(&sk->sk_receive_queue))
8747 				continue;
8748 		}
8749 
8750 		/* User doesn't want to wait.  */
8751 		error = -EAGAIN;
8752 		if (!timeo)
8753 			goto no_packet;
8754 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
8755 
8756 	return NULL;
8757 
8758 no_packet:
8759 	*err = error;
8760 	return NULL;
8761 }
8762 
8763 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
8764 static void __sctp_write_space(struct sctp_association *asoc)
8765 {
8766 	struct sock *sk = asoc->base.sk;
8767 
8768 	if (sctp_wspace(asoc) <= 0)
8769 		return;
8770 
8771 	if (waitqueue_active(&asoc->wait))
8772 		wake_up_interruptible(&asoc->wait);
8773 
8774 	if (sctp_writeable(sk)) {
8775 		struct socket_wq *wq;
8776 
8777 		rcu_read_lock();
8778 		wq = rcu_dereference(sk->sk_wq);
8779 		if (wq) {
8780 			if (waitqueue_active(&wq->wait))
8781 				wake_up_interruptible(&wq->wait);
8782 
8783 			/* Note that we try to include the Async I/O support
8784 			 * here by modeling from the current TCP/UDP code.
8785 			 * We have not tested with it yet.
8786 			 */
8787 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
8788 				sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
8789 		}
8790 		rcu_read_unlock();
8791 	}
8792 }
8793 
8794 static void sctp_wake_up_waiters(struct sock *sk,
8795 				 struct sctp_association *asoc)
8796 {
8797 	struct sctp_association *tmp = asoc;
8798 
8799 	/* We do accounting for the sndbuf space per association,
8800 	 * so we only need to wake our own association.
8801 	 */
8802 	if (asoc->ep->sndbuf_policy)
8803 		return __sctp_write_space(asoc);
8804 
8805 	/* If association goes down and is just flushing its
8806 	 * outq, then just normally notify others.
8807 	 */
8808 	if (asoc->base.dead)
8809 		return sctp_write_space(sk);
8810 
8811 	/* Accounting for the sndbuf space is per socket, so we
8812 	 * need to wake up others, try to be fair and in case of
8813 	 * other associations, let them have a go first instead
8814 	 * of just doing a sctp_write_space() call.
8815 	 *
8816 	 * Note that we reach sctp_wake_up_waiters() only when
8817 	 * associations free up queued chunks, thus we are under
8818 	 * lock and the list of associations on a socket is
8819 	 * guaranteed not to change.
8820 	 */
8821 	for (tmp = list_next_entry(tmp, asocs); 1;
8822 	     tmp = list_next_entry(tmp, asocs)) {
8823 		/* Manually skip the head element. */
8824 		if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
8825 			continue;
8826 		/* Wake up association. */
8827 		__sctp_write_space(tmp);
8828 		/* We've reached the end. */
8829 		if (tmp == asoc)
8830 			break;
8831 	}
8832 }
8833 
8834 /* Do accounting for the sndbuf space.
8835  * Decrement the used sndbuf space of the corresponding association by the
8836  * data size which was just transmitted(freed).
8837  */
8838 static void sctp_wfree(struct sk_buff *skb)
8839 {
8840 	struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
8841 	struct sctp_association *asoc = chunk->asoc;
8842 	struct sock *sk = asoc->base.sk;
8843 
8844 	sk_mem_uncharge(sk, skb->truesize);
8845 	sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk);
8846 	asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk);
8847 	WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk),
8848 				      &sk->sk_wmem_alloc));
8849 
8850 	if (chunk->shkey) {
8851 		struct sctp_shared_key *shkey = chunk->shkey;
8852 
8853 		/* refcnt == 2 and !list_empty mean after this release, it's
8854 		 * not being used anywhere, and it's time to notify userland
8855 		 * that this shkey can be freed if it's been deactivated.
8856 		 */
8857 		if (shkey->deactivated && !list_empty(&shkey->key_list) &&
8858 		    refcount_read(&shkey->refcnt) == 2) {
8859 			struct sctp_ulpevent *ev;
8860 
8861 			ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id,
8862 							SCTP_AUTH_FREE_KEY,
8863 							GFP_KERNEL);
8864 			if (ev)
8865 				asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
8866 		}
8867 		sctp_auth_shkey_release(chunk->shkey);
8868 	}
8869 
8870 	sock_wfree(skb);
8871 	sctp_wake_up_waiters(sk, asoc);
8872 
8873 	sctp_association_put(asoc);
8874 }
8875 
8876 /* Do accounting for the receive space on the socket.
8877  * Accounting for the association is done in ulpevent.c
8878  * We set this as a destructor for the cloned data skbs so that
8879  * accounting is done at the correct time.
8880  */
8881 void sctp_sock_rfree(struct sk_buff *skb)
8882 {
8883 	struct sock *sk = skb->sk;
8884 	struct sctp_ulpevent *event = sctp_skb2event(skb);
8885 
8886 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
8887 
8888 	/*
8889 	 * Mimic the behavior of sock_rfree
8890 	 */
8891 	sk_mem_uncharge(sk, event->rmem_len);
8892 }
8893 
8894 
8895 /* Helper function to wait for space in the sndbuf.  */
8896 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
8897 				size_t msg_len)
8898 {
8899 	struct sock *sk = asoc->base.sk;
8900 	long current_timeo = *timeo_p;
8901 	DEFINE_WAIT(wait);
8902 	int err = 0;
8903 
8904 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
8905 		 *timeo_p, msg_len);
8906 
8907 	/* Increment the association's refcnt.  */
8908 	sctp_association_hold(asoc);
8909 
8910 	/* Wait on the association specific sndbuf space. */
8911 	for (;;) {
8912 		prepare_to_wait_exclusive(&asoc->wait, &wait,
8913 					  TASK_INTERRUPTIBLE);
8914 		if (asoc->base.dead)
8915 			goto do_dead;
8916 		if (!*timeo_p)
8917 			goto do_nonblock;
8918 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
8919 			goto do_error;
8920 		if (signal_pending(current))
8921 			goto do_interrupted;
8922 		if (sk_under_memory_pressure(sk))
8923 			sk_mem_reclaim(sk);
8924 		if ((int)msg_len <= sctp_wspace(asoc) &&
8925 		    sk_wmem_schedule(sk, msg_len))
8926 			break;
8927 
8928 		/* Let another process have a go.  Since we are going
8929 		 * to sleep anyway.
8930 		 */
8931 		release_sock(sk);
8932 		current_timeo = schedule_timeout(current_timeo);
8933 		lock_sock(sk);
8934 		if (sk != asoc->base.sk)
8935 			goto do_error;
8936 
8937 		*timeo_p = current_timeo;
8938 	}
8939 
8940 out:
8941 	finish_wait(&asoc->wait, &wait);
8942 
8943 	/* Release the association's refcnt.  */
8944 	sctp_association_put(asoc);
8945 
8946 	return err;
8947 
8948 do_dead:
8949 	err = -ESRCH;
8950 	goto out;
8951 
8952 do_error:
8953 	err = -EPIPE;
8954 	goto out;
8955 
8956 do_interrupted:
8957 	err = sock_intr_errno(*timeo_p);
8958 	goto out;
8959 
8960 do_nonblock:
8961 	err = -EAGAIN;
8962 	goto out;
8963 }
8964 
8965 void sctp_data_ready(struct sock *sk)
8966 {
8967 	struct socket_wq *wq;
8968 
8969 	rcu_read_lock();
8970 	wq = rcu_dereference(sk->sk_wq);
8971 	if (skwq_has_sleeper(wq))
8972 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN |
8973 						EPOLLRDNORM | EPOLLRDBAND);
8974 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
8975 	rcu_read_unlock();
8976 }
8977 
8978 /* If socket sndbuf has changed, wake up all per association waiters.  */
8979 void sctp_write_space(struct sock *sk)
8980 {
8981 	struct sctp_association *asoc;
8982 
8983 	/* Wake up the tasks in each wait queue.  */
8984 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
8985 		__sctp_write_space(asoc);
8986 	}
8987 }
8988 
8989 /* Is there any sndbuf space available on the socket?
8990  *
8991  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
8992  * associations on the same socket.  For a UDP-style socket with
8993  * multiple associations, it is possible for it to be "unwriteable"
8994  * prematurely.  I assume that this is acceptable because
8995  * a premature "unwriteable" is better than an accidental "writeable" which
8996  * would cause an unwanted block under certain circumstances.  For the 1-1
8997  * UDP-style sockets or TCP-style sockets, this code should work.
8998  *  - Daisy
8999  */
9000 static bool sctp_writeable(struct sock *sk)
9001 {
9002 	return sk->sk_sndbuf > sk->sk_wmem_queued;
9003 }
9004 
9005 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
9006  * returns immediately with EINPROGRESS.
9007  */
9008 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
9009 {
9010 	struct sock *sk = asoc->base.sk;
9011 	int err = 0;
9012 	long current_timeo = *timeo_p;
9013 	DEFINE_WAIT(wait);
9014 
9015 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
9016 
9017 	/* Increment the association's refcnt.  */
9018 	sctp_association_hold(asoc);
9019 
9020 	for (;;) {
9021 		prepare_to_wait_exclusive(&asoc->wait, &wait,
9022 					  TASK_INTERRUPTIBLE);
9023 		if (!*timeo_p)
9024 			goto do_nonblock;
9025 		if (sk->sk_shutdown & RCV_SHUTDOWN)
9026 			break;
9027 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
9028 		    asoc->base.dead)
9029 			goto do_error;
9030 		if (signal_pending(current))
9031 			goto do_interrupted;
9032 
9033 		if (sctp_state(asoc, ESTABLISHED))
9034 			break;
9035 
9036 		/* Let another process have a go.  Since we are going
9037 		 * to sleep anyway.
9038 		 */
9039 		release_sock(sk);
9040 		current_timeo = schedule_timeout(current_timeo);
9041 		lock_sock(sk);
9042 
9043 		*timeo_p = current_timeo;
9044 	}
9045 
9046 out:
9047 	finish_wait(&asoc->wait, &wait);
9048 
9049 	/* Release the association's refcnt.  */
9050 	sctp_association_put(asoc);
9051 
9052 	return err;
9053 
9054 do_error:
9055 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
9056 		err = -ETIMEDOUT;
9057 	else
9058 		err = -ECONNREFUSED;
9059 	goto out;
9060 
9061 do_interrupted:
9062 	err = sock_intr_errno(*timeo_p);
9063 	goto out;
9064 
9065 do_nonblock:
9066 	err = -EINPROGRESS;
9067 	goto out;
9068 }
9069 
9070 static int sctp_wait_for_accept(struct sock *sk, long timeo)
9071 {
9072 	struct sctp_endpoint *ep;
9073 	int err = 0;
9074 	DEFINE_WAIT(wait);
9075 
9076 	ep = sctp_sk(sk)->ep;
9077 
9078 
9079 	for (;;) {
9080 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
9081 					  TASK_INTERRUPTIBLE);
9082 
9083 		if (list_empty(&ep->asocs)) {
9084 			release_sock(sk);
9085 			timeo = schedule_timeout(timeo);
9086 			lock_sock(sk);
9087 		}
9088 
9089 		err = -EINVAL;
9090 		if (!sctp_sstate(sk, LISTENING))
9091 			break;
9092 
9093 		err = 0;
9094 		if (!list_empty(&ep->asocs))
9095 			break;
9096 
9097 		err = sock_intr_errno(timeo);
9098 		if (signal_pending(current))
9099 			break;
9100 
9101 		err = -EAGAIN;
9102 		if (!timeo)
9103 			break;
9104 	}
9105 
9106 	finish_wait(sk_sleep(sk), &wait);
9107 
9108 	return err;
9109 }
9110 
9111 static void sctp_wait_for_close(struct sock *sk, long timeout)
9112 {
9113 	DEFINE_WAIT(wait);
9114 
9115 	do {
9116 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
9117 		if (list_empty(&sctp_sk(sk)->ep->asocs))
9118 			break;
9119 		release_sock(sk);
9120 		timeout = schedule_timeout(timeout);
9121 		lock_sock(sk);
9122 	} while (!signal_pending(current) && timeout);
9123 
9124 	finish_wait(sk_sleep(sk), &wait);
9125 }
9126 
9127 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
9128 {
9129 	struct sk_buff *frag;
9130 
9131 	if (!skb->data_len)
9132 		goto done;
9133 
9134 	/* Don't forget the fragments. */
9135 	skb_walk_frags(skb, frag)
9136 		sctp_skb_set_owner_r_frag(frag, sk);
9137 
9138 done:
9139 	sctp_skb_set_owner_r(skb, sk);
9140 }
9141 
9142 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
9143 		    struct sctp_association *asoc)
9144 {
9145 	struct inet_sock *inet = inet_sk(sk);
9146 	struct inet_sock *newinet;
9147 	struct sctp_sock *sp = sctp_sk(sk);
9148 	struct sctp_endpoint *ep = sp->ep;
9149 
9150 	newsk->sk_type = sk->sk_type;
9151 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
9152 	newsk->sk_flags = sk->sk_flags;
9153 	newsk->sk_tsflags = sk->sk_tsflags;
9154 	newsk->sk_no_check_tx = sk->sk_no_check_tx;
9155 	newsk->sk_no_check_rx = sk->sk_no_check_rx;
9156 	newsk->sk_reuse = sk->sk_reuse;
9157 	sctp_sk(newsk)->reuse = sp->reuse;
9158 
9159 	newsk->sk_shutdown = sk->sk_shutdown;
9160 	newsk->sk_destruct = sctp_destruct_sock;
9161 	newsk->sk_family = sk->sk_family;
9162 	newsk->sk_protocol = IPPROTO_SCTP;
9163 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
9164 	newsk->sk_sndbuf = sk->sk_sndbuf;
9165 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
9166 	newsk->sk_lingertime = sk->sk_lingertime;
9167 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
9168 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
9169 	newsk->sk_rxhash = sk->sk_rxhash;
9170 
9171 	newinet = inet_sk(newsk);
9172 
9173 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
9174 	 * getsockname() and getpeername()
9175 	 */
9176 	newinet->inet_sport = inet->inet_sport;
9177 	newinet->inet_saddr = inet->inet_saddr;
9178 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
9179 	newinet->inet_dport = htons(asoc->peer.port);
9180 	newinet->pmtudisc = inet->pmtudisc;
9181 	newinet->inet_id = asoc->next_tsn ^ jiffies;
9182 
9183 	newinet->uc_ttl = inet->uc_ttl;
9184 	newinet->mc_loop = 1;
9185 	newinet->mc_ttl = 1;
9186 	newinet->mc_index = 0;
9187 	newinet->mc_list = NULL;
9188 
9189 	if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
9190 		net_enable_timestamp();
9191 
9192 	/* Set newsk security attributes from orginal sk and connection
9193 	 * security attribute from ep.
9194 	 */
9195 	security_sctp_sk_clone(ep, sk, newsk);
9196 }
9197 
9198 static inline void sctp_copy_descendant(struct sock *sk_to,
9199 					const struct sock *sk_from)
9200 {
9201 	int ancestor_size = sizeof(struct inet_sock) +
9202 			    sizeof(struct sctp_sock) -
9203 			    offsetof(struct sctp_sock, pd_lobby);
9204 
9205 	if (sk_from->sk_family == PF_INET6)
9206 		ancestor_size += sizeof(struct ipv6_pinfo);
9207 
9208 	__inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
9209 }
9210 
9211 /* Populate the fields of the newsk from the oldsk and migrate the assoc
9212  * and its messages to the newsk.
9213  */
9214 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
9215 			     struct sctp_association *assoc,
9216 			     enum sctp_socket_type type)
9217 {
9218 	struct sctp_sock *oldsp = sctp_sk(oldsk);
9219 	struct sctp_sock *newsp = sctp_sk(newsk);
9220 	struct sctp_bind_bucket *pp; /* hash list port iterator */
9221 	struct sctp_endpoint *newep = newsp->ep;
9222 	struct sk_buff *skb, *tmp;
9223 	struct sctp_ulpevent *event;
9224 	struct sctp_bind_hashbucket *head;
9225 	int err;
9226 
9227 	/* Migrate socket buffer sizes and all the socket level options to the
9228 	 * new socket.
9229 	 */
9230 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
9231 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
9232 	/* Brute force copy old sctp opt. */
9233 	sctp_copy_descendant(newsk, oldsk);
9234 
9235 	/* Restore the ep value that was overwritten with the above structure
9236 	 * copy.
9237 	 */
9238 	newsp->ep = newep;
9239 	newsp->hmac = NULL;
9240 
9241 	/* Hook this new socket in to the bind_hash list. */
9242 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
9243 						 inet_sk(oldsk)->inet_num)];
9244 	spin_lock_bh(&head->lock);
9245 	pp = sctp_sk(oldsk)->bind_hash;
9246 	sk_add_bind_node(newsk, &pp->owner);
9247 	sctp_sk(newsk)->bind_hash = pp;
9248 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
9249 	spin_unlock_bh(&head->lock);
9250 
9251 	/* Copy the bind_addr list from the original endpoint to the new
9252 	 * endpoint so that we can handle restarts properly
9253 	 */
9254 	err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
9255 				 &oldsp->ep->base.bind_addr, GFP_KERNEL);
9256 	if (err)
9257 		return err;
9258 
9259 	/* New ep's auth_hmacs should be set if old ep's is set, in case
9260 	 * that net->sctp.auth_enable has been changed to 0 by users and
9261 	 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init().
9262 	 */
9263 	if (oldsp->ep->auth_hmacs) {
9264 		err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL);
9265 		if (err)
9266 			return err;
9267 	}
9268 
9269 	/* Move any messages in the old socket's receive queue that are for the
9270 	 * peeled off association to the new socket's receive queue.
9271 	 */
9272 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
9273 		event = sctp_skb2event(skb);
9274 		if (event->asoc == assoc) {
9275 			__skb_unlink(skb, &oldsk->sk_receive_queue);
9276 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
9277 			sctp_skb_set_owner_r_frag(skb, newsk);
9278 		}
9279 	}
9280 
9281 	/* Clean up any messages pending delivery due to partial
9282 	 * delivery.   Three cases:
9283 	 * 1) No partial deliver;  no work.
9284 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
9285 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
9286 	 */
9287 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
9288 
9289 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
9290 		struct sk_buff_head *queue;
9291 
9292 		/* Decide which queue to move pd_lobby skbs to. */
9293 		if (assoc->ulpq.pd_mode) {
9294 			queue = &newsp->pd_lobby;
9295 		} else
9296 			queue = &newsk->sk_receive_queue;
9297 
9298 		/* Walk through the pd_lobby, looking for skbs that
9299 		 * need moved to the new socket.
9300 		 */
9301 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
9302 			event = sctp_skb2event(skb);
9303 			if (event->asoc == assoc) {
9304 				__skb_unlink(skb, &oldsp->pd_lobby);
9305 				__skb_queue_tail(queue, skb);
9306 				sctp_skb_set_owner_r_frag(skb, newsk);
9307 			}
9308 		}
9309 
9310 		/* Clear up any skbs waiting for the partial
9311 		 * delivery to finish.
9312 		 */
9313 		if (assoc->ulpq.pd_mode)
9314 			sctp_clear_pd(oldsk, NULL);
9315 
9316 	}
9317 
9318 	sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag);
9319 
9320 	/* Set the type of socket to indicate that it is peeled off from the
9321 	 * original UDP-style socket or created with the accept() call on a
9322 	 * TCP-style socket..
9323 	 */
9324 	newsp->type = type;
9325 
9326 	/* Mark the new socket "in-use" by the user so that any packets
9327 	 * that may arrive on the association after we've moved it are
9328 	 * queued to the backlog.  This prevents a potential race between
9329 	 * backlog processing on the old socket and new-packet processing
9330 	 * on the new socket.
9331 	 *
9332 	 * The caller has just allocated newsk so we can guarantee that other
9333 	 * paths won't try to lock it and then oldsk.
9334 	 */
9335 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
9336 	sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w);
9337 	sctp_assoc_migrate(assoc, newsk);
9338 	sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w);
9339 
9340 	/* If the association on the newsk is already closed before accept()
9341 	 * is called, set RCV_SHUTDOWN flag.
9342 	 */
9343 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
9344 		inet_sk_set_state(newsk, SCTP_SS_CLOSED);
9345 		newsk->sk_shutdown |= RCV_SHUTDOWN;
9346 	} else {
9347 		inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED);
9348 	}
9349 
9350 	release_sock(newsk);
9351 
9352 	return 0;
9353 }
9354 
9355 
9356 /* This proto struct describes the ULP interface for SCTP.  */
9357 struct proto sctp_prot = {
9358 	.name        =	"SCTP",
9359 	.owner       =	THIS_MODULE,
9360 	.close       =	sctp_close,
9361 	.disconnect  =	sctp_disconnect,
9362 	.accept      =	sctp_accept,
9363 	.ioctl       =	sctp_ioctl,
9364 	.init        =	sctp_init_sock,
9365 	.destroy     =	sctp_destroy_sock,
9366 	.shutdown    =	sctp_shutdown,
9367 	.setsockopt  =	sctp_setsockopt,
9368 	.getsockopt  =	sctp_getsockopt,
9369 	.sendmsg     =	sctp_sendmsg,
9370 	.recvmsg     =	sctp_recvmsg,
9371 	.bind        =	sctp_bind,
9372 	.backlog_rcv =	sctp_backlog_rcv,
9373 	.hash        =	sctp_hash,
9374 	.unhash      =	sctp_unhash,
9375 	.get_port    =	sctp_get_port,
9376 	.obj_size    =  sizeof(struct sctp_sock),
9377 	.useroffset  =  offsetof(struct sctp_sock, subscribe),
9378 	.usersize    =  offsetof(struct sctp_sock, initmsg) -
9379 				offsetof(struct sctp_sock, subscribe) +
9380 				sizeof_field(struct sctp_sock, initmsg),
9381 	.sysctl_mem  =  sysctl_sctp_mem,
9382 	.sysctl_rmem =  sysctl_sctp_rmem,
9383 	.sysctl_wmem =  sysctl_sctp_wmem,
9384 	.memory_pressure = &sctp_memory_pressure,
9385 	.enter_memory_pressure = sctp_enter_memory_pressure,
9386 	.memory_allocated = &sctp_memory_allocated,
9387 	.sockets_allocated = &sctp_sockets_allocated,
9388 };
9389 
9390 #if IS_ENABLED(CONFIG_IPV6)
9391 
9392 #include <net/transp_v6.h>
9393 static void sctp_v6_destroy_sock(struct sock *sk)
9394 {
9395 	sctp_destroy_sock(sk);
9396 	inet6_destroy_sock(sk);
9397 }
9398 
9399 struct proto sctpv6_prot = {
9400 	.name		= "SCTPv6",
9401 	.owner		= THIS_MODULE,
9402 	.close		= sctp_close,
9403 	.disconnect	= sctp_disconnect,
9404 	.accept		= sctp_accept,
9405 	.ioctl		= sctp_ioctl,
9406 	.init		= sctp_init_sock,
9407 	.destroy	= sctp_v6_destroy_sock,
9408 	.shutdown	= sctp_shutdown,
9409 	.setsockopt	= sctp_setsockopt,
9410 	.getsockopt	= sctp_getsockopt,
9411 	.sendmsg	= sctp_sendmsg,
9412 	.recvmsg	= sctp_recvmsg,
9413 	.bind		= sctp_bind,
9414 	.backlog_rcv	= sctp_backlog_rcv,
9415 	.hash		= sctp_hash,
9416 	.unhash		= sctp_unhash,
9417 	.get_port	= sctp_get_port,
9418 	.obj_size	= sizeof(struct sctp6_sock),
9419 	.useroffset	= offsetof(struct sctp6_sock, sctp.subscribe),
9420 	.usersize	= offsetof(struct sctp6_sock, sctp.initmsg) -
9421 				offsetof(struct sctp6_sock, sctp.subscribe) +
9422 				sizeof_field(struct sctp6_sock, sctp.initmsg),
9423 	.sysctl_mem	= sysctl_sctp_mem,
9424 	.sysctl_rmem	= sysctl_sctp_rmem,
9425 	.sysctl_wmem	= sysctl_sctp_wmem,
9426 	.memory_pressure = &sctp_memory_pressure,
9427 	.enter_memory_pressure = sctp_enter_memory_pressure,
9428 	.memory_allocated = &sctp_memory_allocated,
9429 	.sockets_allocated = &sctp_sockets_allocated,
9430 };
9431 #endif /* IS_ENABLED(CONFIG_IPV6) */
9432