1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, write to 32 * the Free Software Foundation, 59 Temple Place - Suite 330, 33 * Boston, MA 02111-1307, USA. 34 * 35 * Please send any bug reports or fixes you make to the 36 * email address(es): 37 * lksctp developers <lksctp-developers@lists.sourceforge.net> 38 * 39 * Or submit a bug report through the following website: 40 * http://www.sf.net/projects/lksctp 41 * 42 * Written or modified by: 43 * La Monte H.P. Yarroll <piggy@acm.org> 44 * Narasimha Budihal <narsi@refcode.org> 45 * Karl Knutson <karl@athena.chicago.il.us> 46 * Jon Grimm <jgrimm@us.ibm.com> 47 * Xingang Guo <xingang.guo@intel.com> 48 * Daisy Chang <daisyc@us.ibm.com> 49 * Sridhar Samudrala <samudrala@us.ibm.com> 50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 51 * Ardelle Fan <ardelle.fan@intel.com> 52 * Ryan Layer <rmlayer@us.ibm.com> 53 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 54 * Kevin Gao <kevin.gao@intel.com> 55 * 56 * Any bugs reported given to us we will try to fix... any fixes shared will 57 * be incorporated into the next SCTP release. 58 */ 59 60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 61 62 #include <linux/types.h> 63 #include <linux/kernel.h> 64 #include <linux/wait.h> 65 #include <linux/time.h> 66 #include <linux/ip.h> 67 #include <linux/capability.h> 68 #include <linux/fcntl.h> 69 #include <linux/poll.h> 70 #include <linux/init.h> 71 #include <linux/crypto.h> 72 #include <linux/slab.h> 73 74 #include <net/ip.h> 75 #include <net/icmp.h> 76 #include <net/route.h> 77 #include <net/ipv6.h> 78 #include <net/inet_common.h> 79 80 #include <linux/socket.h> /* for sa_family_t */ 81 #include <linux/export.h> 82 #include <net/sock.h> 83 #include <net/sctp/sctp.h> 84 #include <net/sctp/sm.h> 85 86 /* WARNING: Please do not remove the SCTP_STATIC attribute to 87 * any of the functions below as they are used to export functions 88 * used by a project regression testsuite. 89 */ 90 91 /* Forward declarations for internal helper functions. */ 92 static int sctp_writeable(struct sock *sk); 93 static void sctp_wfree(struct sk_buff *skb); 94 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 95 size_t msg_len); 96 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p); 97 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 98 static int sctp_wait_for_accept(struct sock *sk, long timeo); 99 static void sctp_wait_for_close(struct sock *sk, long timeo); 100 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 101 union sctp_addr *addr, int len); 102 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 103 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 104 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 105 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 106 static int sctp_send_asconf(struct sctp_association *asoc, 107 struct sctp_chunk *chunk); 108 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 109 static int sctp_autobind(struct sock *sk); 110 static void sctp_sock_migrate(struct sock *, struct sock *, 111 struct sctp_association *, sctp_socket_type_t); 112 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG; 113 114 extern struct kmem_cache *sctp_bucket_cachep; 115 extern long sysctl_sctp_mem[3]; 116 extern int sysctl_sctp_rmem[3]; 117 extern int sysctl_sctp_wmem[3]; 118 119 static int sctp_memory_pressure; 120 static atomic_long_t sctp_memory_allocated; 121 struct percpu_counter sctp_sockets_allocated; 122 123 static void sctp_enter_memory_pressure(struct sock *sk) 124 { 125 sctp_memory_pressure = 1; 126 } 127 128 129 /* Get the sndbuf space available at the time on the association. */ 130 static inline int sctp_wspace(struct sctp_association *asoc) 131 { 132 int amt; 133 134 if (asoc->ep->sndbuf_policy) 135 amt = asoc->sndbuf_used; 136 else 137 amt = sk_wmem_alloc_get(asoc->base.sk); 138 139 if (amt >= asoc->base.sk->sk_sndbuf) { 140 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 141 amt = 0; 142 else { 143 amt = sk_stream_wspace(asoc->base.sk); 144 if (amt < 0) 145 amt = 0; 146 } 147 } else { 148 amt = asoc->base.sk->sk_sndbuf - amt; 149 } 150 return amt; 151 } 152 153 /* Increment the used sndbuf space count of the corresponding association by 154 * the size of the outgoing data chunk. 155 * Also, set the skb destructor for sndbuf accounting later. 156 * 157 * Since it is always 1-1 between chunk and skb, and also a new skb is always 158 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 159 * destructor in the data chunk skb for the purpose of the sndbuf space 160 * tracking. 161 */ 162 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 163 { 164 struct sctp_association *asoc = chunk->asoc; 165 struct sock *sk = asoc->base.sk; 166 167 /* The sndbuf space is tracked per association. */ 168 sctp_association_hold(asoc); 169 170 skb_set_owner_w(chunk->skb, sk); 171 172 chunk->skb->destructor = sctp_wfree; 173 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 174 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 175 176 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 177 sizeof(struct sk_buff) + 178 sizeof(struct sctp_chunk); 179 180 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 181 sk->sk_wmem_queued += chunk->skb->truesize; 182 sk_mem_charge(sk, chunk->skb->truesize); 183 } 184 185 /* Verify that this is a valid address. */ 186 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 187 int len) 188 { 189 struct sctp_af *af; 190 191 /* Verify basic sockaddr. */ 192 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 193 if (!af) 194 return -EINVAL; 195 196 /* Is this a valid SCTP address? */ 197 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 198 return -EINVAL; 199 200 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 201 return -EINVAL; 202 203 return 0; 204 } 205 206 /* Look up the association by its id. If this is not a UDP-style 207 * socket, the ID field is always ignored. 208 */ 209 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 210 { 211 struct sctp_association *asoc = NULL; 212 213 /* If this is not a UDP-style socket, assoc id should be ignored. */ 214 if (!sctp_style(sk, UDP)) { 215 /* Return NULL if the socket state is not ESTABLISHED. It 216 * could be a TCP-style listening socket or a socket which 217 * hasn't yet called connect() to establish an association. 218 */ 219 if (!sctp_sstate(sk, ESTABLISHED)) 220 return NULL; 221 222 /* Get the first and the only association from the list. */ 223 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 224 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 225 struct sctp_association, asocs); 226 return asoc; 227 } 228 229 /* Otherwise this is a UDP-style socket. */ 230 if (!id || (id == (sctp_assoc_t)-1)) 231 return NULL; 232 233 spin_lock_bh(&sctp_assocs_id_lock); 234 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 235 spin_unlock_bh(&sctp_assocs_id_lock); 236 237 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 238 return NULL; 239 240 return asoc; 241 } 242 243 /* Look up the transport from an address and an assoc id. If both address and 244 * id are specified, the associations matching the address and the id should be 245 * the same. 246 */ 247 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 248 struct sockaddr_storage *addr, 249 sctp_assoc_t id) 250 { 251 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 252 struct sctp_transport *transport; 253 union sctp_addr *laddr = (union sctp_addr *)addr; 254 255 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 256 laddr, 257 &transport); 258 259 if (!addr_asoc) 260 return NULL; 261 262 id_asoc = sctp_id2assoc(sk, id); 263 if (id_asoc && (id_asoc != addr_asoc)) 264 return NULL; 265 266 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 267 (union sctp_addr *)addr); 268 269 return transport; 270 } 271 272 /* API 3.1.2 bind() - UDP Style Syntax 273 * The syntax of bind() is, 274 * 275 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 276 * 277 * sd - the socket descriptor returned by socket(). 278 * addr - the address structure (struct sockaddr_in or struct 279 * sockaddr_in6 [RFC 2553]), 280 * addr_len - the size of the address structure. 281 */ 282 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 283 { 284 int retval = 0; 285 286 sctp_lock_sock(sk); 287 288 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n", 289 sk, addr, addr_len); 290 291 /* Disallow binding twice. */ 292 if (!sctp_sk(sk)->ep->base.bind_addr.port) 293 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 294 addr_len); 295 else 296 retval = -EINVAL; 297 298 sctp_release_sock(sk); 299 300 return retval; 301 } 302 303 static long sctp_get_port_local(struct sock *, union sctp_addr *); 304 305 /* Verify this is a valid sockaddr. */ 306 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 307 union sctp_addr *addr, int len) 308 { 309 struct sctp_af *af; 310 311 /* Check minimum size. */ 312 if (len < sizeof (struct sockaddr)) 313 return NULL; 314 315 /* V4 mapped address are really of AF_INET family */ 316 if (addr->sa.sa_family == AF_INET6 && 317 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { 318 if (!opt->pf->af_supported(AF_INET, opt)) 319 return NULL; 320 } else { 321 /* Does this PF support this AF? */ 322 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 323 return NULL; 324 } 325 326 /* If we get this far, af is valid. */ 327 af = sctp_get_af_specific(addr->sa.sa_family); 328 329 if (len < af->sockaddr_len) 330 return NULL; 331 332 return af; 333 } 334 335 /* Bind a local address either to an endpoint or to an association. */ 336 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 337 { 338 struct sctp_sock *sp = sctp_sk(sk); 339 struct sctp_endpoint *ep = sp->ep; 340 struct sctp_bind_addr *bp = &ep->base.bind_addr; 341 struct sctp_af *af; 342 unsigned short snum; 343 int ret = 0; 344 345 /* Common sockaddr verification. */ 346 af = sctp_sockaddr_af(sp, addr, len); 347 if (!af) { 348 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n", 349 sk, addr, len); 350 return -EINVAL; 351 } 352 353 snum = ntohs(addr->v4.sin_port); 354 355 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ", 356 ", port: %d, new port: %d, len: %d)\n", 357 sk, 358 addr, 359 bp->port, snum, 360 len); 361 362 /* PF specific bind() address verification. */ 363 if (!sp->pf->bind_verify(sp, addr)) 364 return -EADDRNOTAVAIL; 365 366 /* We must either be unbound, or bind to the same port. 367 * It's OK to allow 0 ports if we are already bound. 368 * We'll just inhert an already bound port in this case 369 */ 370 if (bp->port) { 371 if (!snum) 372 snum = bp->port; 373 else if (snum != bp->port) { 374 SCTP_DEBUG_PRINTK("sctp_do_bind:" 375 " New port %d does not match existing port " 376 "%d.\n", snum, bp->port); 377 return -EINVAL; 378 } 379 } 380 381 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 382 return -EACCES; 383 384 /* See if the address matches any of the addresses we may have 385 * already bound before checking against other endpoints. 386 */ 387 if (sctp_bind_addr_match(bp, addr, sp)) 388 return -EINVAL; 389 390 /* Make sure we are allowed to bind here. 391 * The function sctp_get_port_local() does duplicate address 392 * detection. 393 */ 394 addr->v4.sin_port = htons(snum); 395 if ((ret = sctp_get_port_local(sk, addr))) { 396 return -EADDRINUSE; 397 } 398 399 /* Refresh ephemeral port. */ 400 if (!bp->port) 401 bp->port = inet_sk(sk)->inet_num; 402 403 /* Add the address to the bind address list. 404 * Use GFP_ATOMIC since BHs will be disabled. 405 */ 406 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC); 407 408 /* Copy back into socket for getsockname() use. */ 409 if (!ret) { 410 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 411 af->to_sk_saddr(addr, sk); 412 } 413 414 return ret; 415 } 416 417 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 418 * 419 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 420 * at any one time. If a sender, after sending an ASCONF chunk, decides 421 * it needs to transfer another ASCONF Chunk, it MUST wait until the 422 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 423 * subsequent ASCONF. Note this restriction binds each side, so at any 424 * time two ASCONF may be in-transit on any given association (one sent 425 * from each endpoint). 426 */ 427 static int sctp_send_asconf(struct sctp_association *asoc, 428 struct sctp_chunk *chunk) 429 { 430 int retval = 0; 431 432 /* If there is an outstanding ASCONF chunk, queue it for later 433 * transmission. 434 */ 435 if (asoc->addip_last_asconf) { 436 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 437 goto out; 438 } 439 440 /* Hold the chunk until an ASCONF_ACK is received. */ 441 sctp_chunk_hold(chunk); 442 retval = sctp_primitive_ASCONF(asoc, chunk); 443 if (retval) 444 sctp_chunk_free(chunk); 445 else 446 asoc->addip_last_asconf = chunk; 447 448 out: 449 return retval; 450 } 451 452 /* Add a list of addresses as bind addresses to local endpoint or 453 * association. 454 * 455 * Basically run through each address specified in the addrs/addrcnt 456 * array/length pair, determine if it is IPv6 or IPv4 and call 457 * sctp_do_bind() on it. 458 * 459 * If any of them fails, then the operation will be reversed and the 460 * ones that were added will be removed. 461 * 462 * Only sctp_setsockopt_bindx() is supposed to call this function. 463 */ 464 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 465 { 466 int cnt; 467 int retval = 0; 468 void *addr_buf; 469 struct sockaddr *sa_addr; 470 struct sctp_af *af; 471 472 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n", 473 sk, addrs, addrcnt); 474 475 addr_buf = addrs; 476 for (cnt = 0; cnt < addrcnt; cnt++) { 477 /* The list may contain either IPv4 or IPv6 address; 478 * determine the address length for walking thru the list. 479 */ 480 sa_addr = addr_buf; 481 af = sctp_get_af_specific(sa_addr->sa_family); 482 if (!af) { 483 retval = -EINVAL; 484 goto err_bindx_add; 485 } 486 487 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 488 af->sockaddr_len); 489 490 addr_buf += af->sockaddr_len; 491 492 err_bindx_add: 493 if (retval < 0) { 494 /* Failed. Cleanup the ones that have been added */ 495 if (cnt > 0) 496 sctp_bindx_rem(sk, addrs, cnt); 497 return retval; 498 } 499 } 500 501 return retval; 502 } 503 504 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 505 * associations that are part of the endpoint indicating that a list of local 506 * addresses are added to the endpoint. 507 * 508 * If any of the addresses is already in the bind address list of the 509 * association, we do not send the chunk for that association. But it will not 510 * affect other associations. 511 * 512 * Only sctp_setsockopt_bindx() is supposed to call this function. 513 */ 514 static int sctp_send_asconf_add_ip(struct sock *sk, 515 struct sockaddr *addrs, 516 int addrcnt) 517 { 518 struct sctp_sock *sp; 519 struct sctp_endpoint *ep; 520 struct sctp_association *asoc; 521 struct sctp_bind_addr *bp; 522 struct sctp_chunk *chunk; 523 struct sctp_sockaddr_entry *laddr; 524 union sctp_addr *addr; 525 union sctp_addr saveaddr; 526 void *addr_buf; 527 struct sctp_af *af; 528 struct list_head *p; 529 int i; 530 int retval = 0; 531 532 if (!sctp_addip_enable) 533 return retval; 534 535 sp = sctp_sk(sk); 536 ep = sp->ep; 537 538 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 539 __func__, sk, addrs, addrcnt); 540 541 list_for_each_entry(asoc, &ep->asocs, asocs) { 542 543 if (!asoc->peer.asconf_capable) 544 continue; 545 546 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 547 continue; 548 549 if (!sctp_state(asoc, ESTABLISHED)) 550 continue; 551 552 /* Check if any address in the packed array of addresses is 553 * in the bind address list of the association. If so, 554 * do not send the asconf chunk to its peer, but continue with 555 * other associations. 556 */ 557 addr_buf = addrs; 558 for (i = 0; i < addrcnt; i++) { 559 addr = addr_buf; 560 af = sctp_get_af_specific(addr->v4.sin_family); 561 if (!af) { 562 retval = -EINVAL; 563 goto out; 564 } 565 566 if (sctp_assoc_lookup_laddr(asoc, addr)) 567 break; 568 569 addr_buf += af->sockaddr_len; 570 } 571 if (i < addrcnt) 572 continue; 573 574 /* Use the first valid address in bind addr list of 575 * association as Address Parameter of ASCONF CHUNK. 576 */ 577 bp = &asoc->base.bind_addr; 578 p = bp->address_list.next; 579 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 580 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 581 addrcnt, SCTP_PARAM_ADD_IP); 582 if (!chunk) { 583 retval = -ENOMEM; 584 goto out; 585 } 586 587 /* Add the new addresses to the bind address list with 588 * use_as_src set to 0. 589 */ 590 addr_buf = addrs; 591 for (i = 0; i < addrcnt; i++) { 592 addr = addr_buf; 593 af = sctp_get_af_specific(addr->v4.sin_family); 594 memcpy(&saveaddr, addr, af->sockaddr_len); 595 retval = sctp_add_bind_addr(bp, &saveaddr, 596 SCTP_ADDR_NEW, GFP_ATOMIC); 597 addr_buf += af->sockaddr_len; 598 } 599 if (asoc->src_out_of_asoc_ok) { 600 struct sctp_transport *trans; 601 602 list_for_each_entry(trans, 603 &asoc->peer.transport_addr_list, transports) { 604 /* Clear the source and route cache */ 605 dst_release(trans->dst); 606 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 607 2*asoc->pathmtu, 4380)); 608 trans->ssthresh = asoc->peer.i.a_rwnd; 609 trans->rto = asoc->rto_initial; 610 trans->rtt = trans->srtt = trans->rttvar = 0; 611 sctp_transport_route(trans, NULL, 612 sctp_sk(asoc->base.sk)); 613 } 614 } 615 retval = sctp_send_asconf(asoc, chunk); 616 } 617 618 out: 619 return retval; 620 } 621 622 /* Remove a list of addresses from bind addresses list. Do not remove the 623 * last address. 624 * 625 * Basically run through each address specified in the addrs/addrcnt 626 * array/length pair, determine if it is IPv6 or IPv4 and call 627 * sctp_del_bind() on it. 628 * 629 * If any of them fails, then the operation will be reversed and the 630 * ones that were removed will be added back. 631 * 632 * At least one address has to be left; if only one address is 633 * available, the operation will return -EBUSY. 634 * 635 * Only sctp_setsockopt_bindx() is supposed to call this function. 636 */ 637 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 638 { 639 struct sctp_sock *sp = sctp_sk(sk); 640 struct sctp_endpoint *ep = sp->ep; 641 int cnt; 642 struct sctp_bind_addr *bp = &ep->base.bind_addr; 643 int retval = 0; 644 void *addr_buf; 645 union sctp_addr *sa_addr; 646 struct sctp_af *af; 647 648 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n", 649 sk, addrs, addrcnt); 650 651 addr_buf = addrs; 652 for (cnt = 0; cnt < addrcnt; cnt++) { 653 /* If the bind address list is empty or if there is only one 654 * bind address, there is nothing more to be removed (we need 655 * at least one address here). 656 */ 657 if (list_empty(&bp->address_list) || 658 (sctp_list_single_entry(&bp->address_list))) { 659 retval = -EBUSY; 660 goto err_bindx_rem; 661 } 662 663 sa_addr = addr_buf; 664 af = sctp_get_af_specific(sa_addr->sa.sa_family); 665 if (!af) { 666 retval = -EINVAL; 667 goto err_bindx_rem; 668 } 669 670 if (!af->addr_valid(sa_addr, sp, NULL)) { 671 retval = -EADDRNOTAVAIL; 672 goto err_bindx_rem; 673 } 674 675 if (sa_addr->v4.sin_port && 676 sa_addr->v4.sin_port != htons(bp->port)) { 677 retval = -EINVAL; 678 goto err_bindx_rem; 679 } 680 681 if (!sa_addr->v4.sin_port) 682 sa_addr->v4.sin_port = htons(bp->port); 683 684 /* FIXME - There is probably a need to check if sk->sk_saddr and 685 * sk->sk_rcv_addr are currently set to one of the addresses to 686 * be removed. This is something which needs to be looked into 687 * when we are fixing the outstanding issues with multi-homing 688 * socket routing and failover schemes. Refer to comments in 689 * sctp_do_bind(). -daisy 690 */ 691 retval = sctp_del_bind_addr(bp, sa_addr); 692 693 addr_buf += af->sockaddr_len; 694 err_bindx_rem: 695 if (retval < 0) { 696 /* Failed. Add the ones that has been removed back */ 697 if (cnt > 0) 698 sctp_bindx_add(sk, addrs, cnt); 699 return retval; 700 } 701 } 702 703 return retval; 704 } 705 706 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 707 * the associations that are part of the endpoint indicating that a list of 708 * local addresses are removed from the endpoint. 709 * 710 * If any of the addresses is already in the bind address list of the 711 * association, we do not send the chunk for that association. But it will not 712 * affect other associations. 713 * 714 * Only sctp_setsockopt_bindx() is supposed to call this function. 715 */ 716 static int sctp_send_asconf_del_ip(struct sock *sk, 717 struct sockaddr *addrs, 718 int addrcnt) 719 { 720 struct sctp_sock *sp; 721 struct sctp_endpoint *ep; 722 struct sctp_association *asoc; 723 struct sctp_transport *transport; 724 struct sctp_bind_addr *bp; 725 struct sctp_chunk *chunk; 726 union sctp_addr *laddr; 727 void *addr_buf; 728 struct sctp_af *af; 729 struct sctp_sockaddr_entry *saddr; 730 int i; 731 int retval = 0; 732 int stored = 0; 733 734 chunk = NULL; 735 if (!sctp_addip_enable) 736 return retval; 737 738 sp = sctp_sk(sk); 739 ep = sp->ep; 740 741 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 742 __func__, sk, addrs, addrcnt); 743 744 list_for_each_entry(asoc, &ep->asocs, asocs) { 745 746 if (!asoc->peer.asconf_capable) 747 continue; 748 749 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 750 continue; 751 752 if (!sctp_state(asoc, ESTABLISHED)) 753 continue; 754 755 /* Check if any address in the packed array of addresses is 756 * not present in the bind address list of the association. 757 * If so, do not send the asconf chunk to its peer, but 758 * continue with other associations. 759 */ 760 addr_buf = addrs; 761 for (i = 0; i < addrcnt; i++) { 762 laddr = addr_buf; 763 af = sctp_get_af_specific(laddr->v4.sin_family); 764 if (!af) { 765 retval = -EINVAL; 766 goto out; 767 } 768 769 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 770 break; 771 772 addr_buf += af->sockaddr_len; 773 } 774 if (i < addrcnt) 775 continue; 776 777 /* Find one address in the association's bind address list 778 * that is not in the packed array of addresses. This is to 779 * make sure that we do not delete all the addresses in the 780 * association. 781 */ 782 bp = &asoc->base.bind_addr; 783 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 784 addrcnt, sp); 785 if ((laddr == NULL) && (addrcnt == 1)) { 786 if (asoc->asconf_addr_del_pending) 787 continue; 788 asoc->asconf_addr_del_pending = 789 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 790 if (asoc->asconf_addr_del_pending == NULL) { 791 retval = -ENOMEM; 792 goto out; 793 } 794 asoc->asconf_addr_del_pending->sa.sa_family = 795 addrs->sa_family; 796 asoc->asconf_addr_del_pending->v4.sin_port = 797 htons(bp->port); 798 if (addrs->sa_family == AF_INET) { 799 struct sockaddr_in *sin; 800 801 sin = (struct sockaddr_in *)addrs; 802 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 803 } else if (addrs->sa_family == AF_INET6) { 804 struct sockaddr_in6 *sin6; 805 806 sin6 = (struct sockaddr_in6 *)addrs; 807 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 808 } 809 SCTP_DEBUG_PRINTK_IPADDR("send_asconf_del_ip: keep the last address asoc: %p ", 810 " at %p\n", asoc, asoc->asconf_addr_del_pending, 811 asoc->asconf_addr_del_pending); 812 asoc->src_out_of_asoc_ok = 1; 813 stored = 1; 814 goto skip_mkasconf; 815 } 816 817 /* We do not need RCU protection throughout this loop 818 * because this is done under a socket lock from the 819 * setsockopt call. 820 */ 821 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 822 SCTP_PARAM_DEL_IP); 823 if (!chunk) { 824 retval = -ENOMEM; 825 goto out; 826 } 827 828 skip_mkasconf: 829 /* Reset use_as_src flag for the addresses in the bind address 830 * list that are to be deleted. 831 */ 832 addr_buf = addrs; 833 for (i = 0; i < addrcnt; i++) { 834 laddr = addr_buf; 835 af = sctp_get_af_specific(laddr->v4.sin_family); 836 list_for_each_entry(saddr, &bp->address_list, list) { 837 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 838 saddr->state = SCTP_ADDR_DEL; 839 } 840 addr_buf += af->sockaddr_len; 841 } 842 843 /* Update the route and saddr entries for all the transports 844 * as some of the addresses in the bind address list are 845 * about to be deleted and cannot be used as source addresses. 846 */ 847 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 848 transports) { 849 dst_release(transport->dst); 850 sctp_transport_route(transport, NULL, 851 sctp_sk(asoc->base.sk)); 852 } 853 854 if (stored) 855 /* We don't need to transmit ASCONF */ 856 continue; 857 retval = sctp_send_asconf(asoc, chunk); 858 } 859 out: 860 return retval; 861 } 862 863 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 864 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 865 { 866 struct sock *sk = sctp_opt2sk(sp); 867 union sctp_addr *addr; 868 struct sctp_af *af; 869 870 /* It is safe to write port space in caller. */ 871 addr = &addrw->a; 872 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 873 af = sctp_get_af_specific(addr->sa.sa_family); 874 if (!af) 875 return -EINVAL; 876 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 877 return -EINVAL; 878 879 if (addrw->state == SCTP_ADDR_NEW) 880 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 881 else 882 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 883 } 884 885 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 886 * 887 * API 8.1 888 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 889 * int flags); 890 * 891 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 892 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 893 * or IPv6 addresses. 894 * 895 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 896 * Section 3.1.2 for this usage. 897 * 898 * addrs is a pointer to an array of one or more socket addresses. Each 899 * address is contained in its appropriate structure (i.e. struct 900 * sockaddr_in or struct sockaddr_in6) the family of the address type 901 * must be used to distinguish the address length (note that this 902 * representation is termed a "packed array" of addresses). The caller 903 * specifies the number of addresses in the array with addrcnt. 904 * 905 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 906 * -1, and sets errno to the appropriate error code. 907 * 908 * For SCTP, the port given in each socket address must be the same, or 909 * sctp_bindx() will fail, setting errno to EINVAL. 910 * 911 * The flags parameter is formed from the bitwise OR of zero or more of 912 * the following currently defined flags: 913 * 914 * SCTP_BINDX_ADD_ADDR 915 * 916 * SCTP_BINDX_REM_ADDR 917 * 918 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 919 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 920 * addresses from the association. The two flags are mutually exclusive; 921 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 922 * not remove all addresses from an association; sctp_bindx() will 923 * reject such an attempt with EINVAL. 924 * 925 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 926 * additional addresses with an endpoint after calling bind(). Or use 927 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 928 * socket is associated with so that no new association accepted will be 929 * associated with those addresses. If the endpoint supports dynamic 930 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 931 * endpoint to send the appropriate message to the peer to change the 932 * peers address lists. 933 * 934 * Adding and removing addresses from a connected association is 935 * optional functionality. Implementations that do not support this 936 * functionality should return EOPNOTSUPP. 937 * 938 * Basically do nothing but copying the addresses from user to kernel 939 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 940 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 941 * from userspace. 942 * 943 * We don't use copy_from_user() for optimization: we first do the 944 * sanity checks (buffer size -fast- and access check-healthy 945 * pointer); if all of those succeed, then we can alloc the memory 946 * (expensive operation) needed to copy the data to kernel. Then we do 947 * the copying without checking the user space area 948 * (__copy_from_user()). 949 * 950 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 951 * it. 952 * 953 * sk The sk of the socket 954 * addrs The pointer to the addresses in user land 955 * addrssize Size of the addrs buffer 956 * op Operation to perform (add or remove, see the flags of 957 * sctp_bindx) 958 * 959 * Returns 0 if ok, <0 errno code on error. 960 */ 961 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk, 962 struct sockaddr __user *addrs, 963 int addrs_size, int op) 964 { 965 struct sockaddr *kaddrs; 966 int err; 967 int addrcnt = 0; 968 int walk_size = 0; 969 struct sockaddr *sa_addr; 970 void *addr_buf; 971 struct sctp_af *af; 972 973 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p" 974 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op); 975 976 if (unlikely(addrs_size <= 0)) 977 return -EINVAL; 978 979 /* Check the user passed a healthy pointer. */ 980 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 981 return -EFAULT; 982 983 /* Alloc space for the address array in kernel memory. */ 984 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 985 if (unlikely(!kaddrs)) 986 return -ENOMEM; 987 988 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 989 kfree(kaddrs); 990 return -EFAULT; 991 } 992 993 /* Walk through the addrs buffer and count the number of addresses. */ 994 addr_buf = kaddrs; 995 while (walk_size < addrs_size) { 996 if (walk_size + sizeof(sa_family_t) > addrs_size) { 997 kfree(kaddrs); 998 return -EINVAL; 999 } 1000 1001 sa_addr = addr_buf; 1002 af = sctp_get_af_specific(sa_addr->sa_family); 1003 1004 /* If the address family is not supported or if this address 1005 * causes the address buffer to overflow return EINVAL. 1006 */ 1007 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1008 kfree(kaddrs); 1009 return -EINVAL; 1010 } 1011 addrcnt++; 1012 addr_buf += af->sockaddr_len; 1013 walk_size += af->sockaddr_len; 1014 } 1015 1016 /* Do the work. */ 1017 switch (op) { 1018 case SCTP_BINDX_ADD_ADDR: 1019 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1020 if (err) 1021 goto out; 1022 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1023 break; 1024 1025 case SCTP_BINDX_REM_ADDR: 1026 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1027 if (err) 1028 goto out; 1029 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1030 break; 1031 1032 default: 1033 err = -EINVAL; 1034 break; 1035 } 1036 1037 out: 1038 kfree(kaddrs); 1039 1040 return err; 1041 } 1042 1043 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1044 * 1045 * Common routine for handling connect() and sctp_connectx(). 1046 * Connect will come in with just a single address. 1047 */ 1048 static int __sctp_connect(struct sock* sk, 1049 struct sockaddr *kaddrs, 1050 int addrs_size, 1051 sctp_assoc_t *assoc_id) 1052 { 1053 struct sctp_sock *sp; 1054 struct sctp_endpoint *ep; 1055 struct sctp_association *asoc = NULL; 1056 struct sctp_association *asoc2; 1057 struct sctp_transport *transport; 1058 union sctp_addr to; 1059 struct sctp_af *af; 1060 sctp_scope_t scope; 1061 long timeo; 1062 int err = 0; 1063 int addrcnt = 0; 1064 int walk_size = 0; 1065 union sctp_addr *sa_addr = NULL; 1066 void *addr_buf; 1067 unsigned short port; 1068 unsigned int f_flags = 0; 1069 1070 sp = sctp_sk(sk); 1071 ep = sp->ep; 1072 1073 /* connect() cannot be done on a socket that is already in ESTABLISHED 1074 * state - UDP-style peeled off socket or a TCP-style socket that 1075 * is already connected. 1076 * It cannot be done even on a TCP-style listening socket. 1077 */ 1078 if (sctp_sstate(sk, ESTABLISHED) || 1079 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1080 err = -EISCONN; 1081 goto out_free; 1082 } 1083 1084 /* Walk through the addrs buffer and count the number of addresses. */ 1085 addr_buf = kaddrs; 1086 while (walk_size < addrs_size) { 1087 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1088 err = -EINVAL; 1089 goto out_free; 1090 } 1091 1092 sa_addr = addr_buf; 1093 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1094 1095 /* If the address family is not supported or if this address 1096 * causes the address buffer to overflow return EINVAL. 1097 */ 1098 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1099 err = -EINVAL; 1100 goto out_free; 1101 } 1102 1103 port = ntohs(sa_addr->v4.sin_port); 1104 1105 /* Save current address so we can work with it */ 1106 memcpy(&to, sa_addr, af->sockaddr_len); 1107 1108 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1109 if (err) 1110 goto out_free; 1111 1112 /* Make sure the destination port is correctly set 1113 * in all addresses. 1114 */ 1115 if (asoc && asoc->peer.port && asoc->peer.port != port) 1116 goto out_free; 1117 1118 1119 /* Check if there already is a matching association on the 1120 * endpoint (other than the one created here). 1121 */ 1122 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1123 if (asoc2 && asoc2 != asoc) { 1124 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1125 err = -EISCONN; 1126 else 1127 err = -EALREADY; 1128 goto out_free; 1129 } 1130 1131 /* If we could not find a matching association on the endpoint, 1132 * make sure that there is no peeled-off association matching 1133 * the peer address even on another socket. 1134 */ 1135 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1136 err = -EADDRNOTAVAIL; 1137 goto out_free; 1138 } 1139 1140 if (!asoc) { 1141 /* If a bind() or sctp_bindx() is not called prior to 1142 * an sctp_connectx() call, the system picks an 1143 * ephemeral port and will choose an address set 1144 * equivalent to binding with a wildcard address. 1145 */ 1146 if (!ep->base.bind_addr.port) { 1147 if (sctp_autobind(sk)) { 1148 err = -EAGAIN; 1149 goto out_free; 1150 } 1151 } else { 1152 /* 1153 * If an unprivileged user inherits a 1-many 1154 * style socket with open associations on a 1155 * privileged port, it MAY be permitted to 1156 * accept new associations, but it SHOULD NOT 1157 * be permitted to open new associations. 1158 */ 1159 if (ep->base.bind_addr.port < PROT_SOCK && 1160 !capable(CAP_NET_BIND_SERVICE)) { 1161 err = -EACCES; 1162 goto out_free; 1163 } 1164 } 1165 1166 scope = sctp_scope(&to); 1167 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1168 if (!asoc) { 1169 err = -ENOMEM; 1170 goto out_free; 1171 } 1172 1173 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1174 GFP_KERNEL); 1175 if (err < 0) { 1176 goto out_free; 1177 } 1178 1179 } 1180 1181 /* Prime the peer's transport structures. */ 1182 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1183 SCTP_UNKNOWN); 1184 if (!transport) { 1185 err = -ENOMEM; 1186 goto out_free; 1187 } 1188 1189 addrcnt++; 1190 addr_buf += af->sockaddr_len; 1191 walk_size += af->sockaddr_len; 1192 } 1193 1194 /* In case the user of sctp_connectx() wants an association 1195 * id back, assign one now. 1196 */ 1197 if (assoc_id) { 1198 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1199 if (err < 0) 1200 goto out_free; 1201 } 1202 1203 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1204 if (err < 0) { 1205 goto out_free; 1206 } 1207 1208 /* Initialize sk's dport and daddr for getpeername() */ 1209 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1210 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1211 af->to_sk_daddr(sa_addr, sk); 1212 sk->sk_err = 0; 1213 1214 /* in-kernel sockets don't generally have a file allocated to them 1215 * if all they do is call sock_create_kern(). 1216 */ 1217 if (sk->sk_socket->file) 1218 f_flags = sk->sk_socket->file->f_flags; 1219 1220 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1221 1222 err = sctp_wait_for_connect(asoc, &timeo); 1223 if ((err == 0 || err == -EINPROGRESS) && assoc_id) 1224 *assoc_id = asoc->assoc_id; 1225 1226 /* Don't free association on exit. */ 1227 asoc = NULL; 1228 1229 out_free: 1230 1231 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p" 1232 " kaddrs: %p err: %d\n", 1233 asoc, kaddrs, err); 1234 if (asoc) 1235 sctp_association_free(asoc); 1236 return err; 1237 } 1238 1239 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1240 * 1241 * API 8.9 1242 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1243 * sctp_assoc_t *asoc); 1244 * 1245 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1246 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1247 * or IPv6 addresses. 1248 * 1249 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1250 * Section 3.1.2 for this usage. 1251 * 1252 * addrs is a pointer to an array of one or more socket addresses. Each 1253 * address is contained in its appropriate structure (i.e. struct 1254 * sockaddr_in or struct sockaddr_in6) the family of the address type 1255 * must be used to distengish the address length (note that this 1256 * representation is termed a "packed array" of addresses). The caller 1257 * specifies the number of addresses in the array with addrcnt. 1258 * 1259 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1260 * the association id of the new association. On failure, sctp_connectx() 1261 * returns -1, and sets errno to the appropriate error code. The assoc_id 1262 * is not touched by the kernel. 1263 * 1264 * For SCTP, the port given in each socket address must be the same, or 1265 * sctp_connectx() will fail, setting errno to EINVAL. 1266 * 1267 * An application can use sctp_connectx to initiate an association with 1268 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1269 * allows a caller to specify multiple addresses at which a peer can be 1270 * reached. The way the SCTP stack uses the list of addresses to set up 1271 * the association is implementation dependent. This function only 1272 * specifies that the stack will try to make use of all the addresses in 1273 * the list when needed. 1274 * 1275 * Note that the list of addresses passed in is only used for setting up 1276 * the association. It does not necessarily equal the set of addresses 1277 * the peer uses for the resulting association. If the caller wants to 1278 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1279 * retrieve them after the association has been set up. 1280 * 1281 * Basically do nothing but copying the addresses from user to kernel 1282 * land and invoking either sctp_connectx(). This is used for tunneling 1283 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1284 * 1285 * We don't use copy_from_user() for optimization: we first do the 1286 * sanity checks (buffer size -fast- and access check-healthy 1287 * pointer); if all of those succeed, then we can alloc the memory 1288 * (expensive operation) needed to copy the data to kernel. Then we do 1289 * the copying without checking the user space area 1290 * (__copy_from_user()). 1291 * 1292 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1293 * it. 1294 * 1295 * sk The sk of the socket 1296 * addrs The pointer to the addresses in user land 1297 * addrssize Size of the addrs buffer 1298 * 1299 * Returns >=0 if ok, <0 errno code on error. 1300 */ 1301 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk, 1302 struct sockaddr __user *addrs, 1303 int addrs_size, 1304 sctp_assoc_t *assoc_id) 1305 { 1306 int err = 0; 1307 struct sockaddr *kaddrs; 1308 1309 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n", 1310 __func__, sk, addrs, addrs_size); 1311 1312 if (unlikely(addrs_size <= 0)) 1313 return -EINVAL; 1314 1315 /* Check the user passed a healthy pointer. */ 1316 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1317 return -EFAULT; 1318 1319 /* Alloc space for the address array in kernel memory. */ 1320 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 1321 if (unlikely(!kaddrs)) 1322 return -ENOMEM; 1323 1324 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1325 err = -EFAULT; 1326 } else { 1327 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1328 } 1329 1330 kfree(kaddrs); 1331 1332 return err; 1333 } 1334 1335 /* 1336 * This is an older interface. It's kept for backward compatibility 1337 * to the option that doesn't provide association id. 1338 */ 1339 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk, 1340 struct sockaddr __user *addrs, 1341 int addrs_size) 1342 { 1343 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1344 } 1345 1346 /* 1347 * New interface for the API. The since the API is done with a socket 1348 * option, to make it simple we feed back the association id is as a return 1349 * indication to the call. Error is always negative and association id is 1350 * always positive. 1351 */ 1352 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk, 1353 struct sockaddr __user *addrs, 1354 int addrs_size) 1355 { 1356 sctp_assoc_t assoc_id = 0; 1357 int err = 0; 1358 1359 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1360 1361 if (err) 1362 return err; 1363 else 1364 return assoc_id; 1365 } 1366 1367 /* 1368 * New (hopefully final) interface for the API. 1369 * We use the sctp_getaddrs_old structure so that use-space library 1370 * can avoid any unnecessary allocations. The only defferent part 1371 * is that we store the actual length of the address buffer into the 1372 * addrs_num structure member. That way we can re-use the existing 1373 * code. 1374 */ 1375 SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len, 1376 char __user *optval, 1377 int __user *optlen) 1378 { 1379 struct sctp_getaddrs_old param; 1380 sctp_assoc_t assoc_id = 0; 1381 int err = 0; 1382 1383 if (len < sizeof(param)) 1384 return -EINVAL; 1385 1386 if (copy_from_user(¶m, optval, sizeof(param))) 1387 return -EFAULT; 1388 1389 err = __sctp_setsockopt_connectx(sk, 1390 (struct sockaddr __user *)param.addrs, 1391 param.addr_num, &assoc_id); 1392 1393 if (err == 0 || err == -EINPROGRESS) { 1394 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1395 return -EFAULT; 1396 if (put_user(sizeof(assoc_id), optlen)) 1397 return -EFAULT; 1398 } 1399 1400 return err; 1401 } 1402 1403 /* API 3.1.4 close() - UDP Style Syntax 1404 * Applications use close() to perform graceful shutdown (as described in 1405 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1406 * by a UDP-style socket. 1407 * 1408 * The syntax is 1409 * 1410 * ret = close(int sd); 1411 * 1412 * sd - the socket descriptor of the associations to be closed. 1413 * 1414 * To gracefully shutdown a specific association represented by the 1415 * UDP-style socket, an application should use the sendmsg() call, 1416 * passing no user data, but including the appropriate flag in the 1417 * ancillary data (see Section xxxx). 1418 * 1419 * If sd in the close() call is a branched-off socket representing only 1420 * one association, the shutdown is performed on that association only. 1421 * 1422 * 4.1.6 close() - TCP Style Syntax 1423 * 1424 * Applications use close() to gracefully close down an association. 1425 * 1426 * The syntax is: 1427 * 1428 * int close(int sd); 1429 * 1430 * sd - the socket descriptor of the association to be closed. 1431 * 1432 * After an application calls close() on a socket descriptor, no further 1433 * socket operations will succeed on that descriptor. 1434 * 1435 * API 7.1.4 SO_LINGER 1436 * 1437 * An application using the TCP-style socket can use this option to 1438 * perform the SCTP ABORT primitive. The linger option structure is: 1439 * 1440 * struct linger { 1441 * int l_onoff; // option on/off 1442 * int l_linger; // linger time 1443 * }; 1444 * 1445 * To enable the option, set l_onoff to 1. If the l_linger value is set 1446 * to 0, calling close() is the same as the ABORT primitive. If the 1447 * value is set to a negative value, the setsockopt() call will return 1448 * an error. If the value is set to a positive value linger_time, the 1449 * close() can be blocked for at most linger_time ms. If the graceful 1450 * shutdown phase does not finish during this period, close() will 1451 * return but the graceful shutdown phase continues in the system. 1452 */ 1453 SCTP_STATIC void sctp_close(struct sock *sk, long timeout) 1454 { 1455 struct sctp_endpoint *ep; 1456 struct sctp_association *asoc; 1457 struct list_head *pos, *temp; 1458 unsigned int data_was_unread; 1459 1460 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout); 1461 1462 sctp_lock_sock(sk); 1463 sk->sk_shutdown = SHUTDOWN_MASK; 1464 sk->sk_state = SCTP_SS_CLOSING; 1465 1466 ep = sctp_sk(sk)->ep; 1467 1468 /* Clean up any skbs sitting on the receive queue. */ 1469 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1470 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1471 1472 /* Walk all associations on an endpoint. */ 1473 list_for_each_safe(pos, temp, &ep->asocs) { 1474 asoc = list_entry(pos, struct sctp_association, asocs); 1475 1476 if (sctp_style(sk, TCP)) { 1477 /* A closed association can still be in the list if 1478 * it belongs to a TCP-style listening socket that is 1479 * not yet accepted. If so, free it. If not, send an 1480 * ABORT or SHUTDOWN based on the linger options. 1481 */ 1482 if (sctp_state(asoc, CLOSED)) { 1483 sctp_unhash_established(asoc); 1484 sctp_association_free(asoc); 1485 continue; 1486 } 1487 } 1488 1489 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1490 !skb_queue_empty(&asoc->ulpq.reasm) || 1491 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1492 struct sctp_chunk *chunk; 1493 1494 chunk = sctp_make_abort_user(asoc, NULL, 0); 1495 if (chunk) 1496 sctp_primitive_ABORT(asoc, chunk); 1497 } else 1498 sctp_primitive_SHUTDOWN(asoc, NULL); 1499 } 1500 1501 /* On a TCP-style socket, block for at most linger_time if set. */ 1502 if (sctp_style(sk, TCP) && timeout) 1503 sctp_wait_for_close(sk, timeout); 1504 1505 /* This will run the backlog queue. */ 1506 sctp_release_sock(sk); 1507 1508 /* Supposedly, no process has access to the socket, but 1509 * the net layers still may. 1510 */ 1511 sctp_local_bh_disable(); 1512 sctp_bh_lock_sock(sk); 1513 1514 /* Hold the sock, since sk_common_release() will put sock_put() 1515 * and we have just a little more cleanup. 1516 */ 1517 sock_hold(sk); 1518 sk_common_release(sk); 1519 1520 sctp_bh_unlock_sock(sk); 1521 sctp_local_bh_enable(); 1522 1523 sock_put(sk); 1524 1525 SCTP_DBG_OBJCNT_DEC(sock); 1526 } 1527 1528 /* Handle EPIPE error. */ 1529 static int sctp_error(struct sock *sk, int flags, int err) 1530 { 1531 if (err == -EPIPE) 1532 err = sock_error(sk) ? : -EPIPE; 1533 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1534 send_sig(SIGPIPE, current, 0); 1535 return err; 1536 } 1537 1538 /* API 3.1.3 sendmsg() - UDP Style Syntax 1539 * 1540 * An application uses sendmsg() and recvmsg() calls to transmit data to 1541 * and receive data from its peer. 1542 * 1543 * ssize_t sendmsg(int socket, const struct msghdr *message, 1544 * int flags); 1545 * 1546 * socket - the socket descriptor of the endpoint. 1547 * message - pointer to the msghdr structure which contains a single 1548 * user message and possibly some ancillary data. 1549 * 1550 * See Section 5 for complete description of the data 1551 * structures. 1552 * 1553 * flags - flags sent or received with the user message, see Section 1554 * 5 for complete description of the flags. 1555 * 1556 * Note: This function could use a rewrite especially when explicit 1557 * connect support comes in. 1558 */ 1559 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1560 1561 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1562 1563 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1564 struct msghdr *msg, size_t msg_len) 1565 { 1566 struct sctp_sock *sp; 1567 struct sctp_endpoint *ep; 1568 struct sctp_association *new_asoc=NULL, *asoc=NULL; 1569 struct sctp_transport *transport, *chunk_tp; 1570 struct sctp_chunk *chunk; 1571 union sctp_addr to; 1572 struct sockaddr *msg_name = NULL; 1573 struct sctp_sndrcvinfo default_sinfo; 1574 struct sctp_sndrcvinfo *sinfo; 1575 struct sctp_initmsg *sinit; 1576 sctp_assoc_t associd = 0; 1577 sctp_cmsgs_t cmsgs = { NULL }; 1578 int err; 1579 sctp_scope_t scope; 1580 long timeo; 1581 __u16 sinfo_flags = 0; 1582 struct sctp_datamsg *datamsg; 1583 int msg_flags = msg->msg_flags; 1584 1585 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n", 1586 sk, msg, msg_len); 1587 1588 err = 0; 1589 sp = sctp_sk(sk); 1590 ep = sp->ep; 1591 1592 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep); 1593 1594 /* We cannot send a message over a TCP-style listening socket. */ 1595 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1596 err = -EPIPE; 1597 goto out_nounlock; 1598 } 1599 1600 /* Parse out the SCTP CMSGs. */ 1601 err = sctp_msghdr_parse(msg, &cmsgs); 1602 1603 if (err) { 1604 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err); 1605 goto out_nounlock; 1606 } 1607 1608 /* Fetch the destination address for this packet. This 1609 * address only selects the association--it is not necessarily 1610 * the address we will send to. 1611 * For a peeled-off socket, msg_name is ignored. 1612 */ 1613 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1614 int msg_namelen = msg->msg_namelen; 1615 1616 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1617 msg_namelen); 1618 if (err) 1619 return err; 1620 1621 if (msg_namelen > sizeof(to)) 1622 msg_namelen = sizeof(to); 1623 memcpy(&to, msg->msg_name, msg_namelen); 1624 msg_name = msg->msg_name; 1625 } 1626 1627 sinfo = cmsgs.info; 1628 sinit = cmsgs.init; 1629 1630 /* Did the user specify SNDRCVINFO? */ 1631 if (sinfo) { 1632 sinfo_flags = sinfo->sinfo_flags; 1633 associd = sinfo->sinfo_assoc_id; 1634 } 1635 1636 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n", 1637 msg_len, sinfo_flags); 1638 1639 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1640 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1641 err = -EINVAL; 1642 goto out_nounlock; 1643 } 1644 1645 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1646 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1647 * If SCTP_ABORT is set, the message length could be non zero with 1648 * the msg_iov set to the user abort reason. 1649 */ 1650 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1651 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1652 err = -EINVAL; 1653 goto out_nounlock; 1654 } 1655 1656 /* If SCTP_ADDR_OVER is set, there must be an address 1657 * specified in msg_name. 1658 */ 1659 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1660 err = -EINVAL; 1661 goto out_nounlock; 1662 } 1663 1664 transport = NULL; 1665 1666 SCTP_DEBUG_PRINTK("About to look up association.\n"); 1667 1668 sctp_lock_sock(sk); 1669 1670 /* If a msg_name has been specified, assume this is to be used. */ 1671 if (msg_name) { 1672 /* Look for a matching association on the endpoint. */ 1673 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1674 if (!asoc) { 1675 /* If we could not find a matching association on the 1676 * endpoint, make sure that it is not a TCP-style 1677 * socket that already has an association or there is 1678 * no peeled-off association on another socket. 1679 */ 1680 if ((sctp_style(sk, TCP) && 1681 sctp_sstate(sk, ESTABLISHED)) || 1682 sctp_endpoint_is_peeled_off(ep, &to)) { 1683 err = -EADDRNOTAVAIL; 1684 goto out_unlock; 1685 } 1686 } 1687 } else { 1688 asoc = sctp_id2assoc(sk, associd); 1689 if (!asoc) { 1690 err = -EPIPE; 1691 goto out_unlock; 1692 } 1693 } 1694 1695 if (asoc) { 1696 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc); 1697 1698 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1699 * socket that has an association in CLOSED state. This can 1700 * happen when an accepted socket has an association that is 1701 * already CLOSED. 1702 */ 1703 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1704 err = -EPIPE; 1705 goto out_unlock; 1706 } 1707 1708 if (sinfo_flags & SCTP_EOF) { 1709 SCTP_DEBUG_PRINTK("Shutting down association: %p\n", 1710 asoc); 1711 sctp_primitive_SHUTDOWN(asoc, NULL); 1712 err = 0; 1713 goto out_unlock; 1714 } 1715 if (sinfo_flags & SCTP_ABORT) { 1716 1717 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1718 if (!chunk) { 1719 err = -ENOMEM; 1720 goto out_unlock; 1721 } 1722 1723 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc); 1724 sctp_primitive_ABORT(asoc, chunk); 1725 err = 0; 1726 goto out_unlock; 1727 } 1728 } 1729 1730 /* Do we need to create the association? */ 1731 if (!asoc) { 1732 SCTP_DEBUG_PRINTK("There is no association yet.\n"); 1733 1734 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1735 err = -EINVAL; 1736 goto out_unlock; 1737 } 1738 1739 /* Check for invalid stream against the stream counts, 1740 * either the default or the user specified stream counts. 1741 */ 1742 if (sinfo) { 1743 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) { 1744 /* Check against the defaults. */ 1745 if (sinfo->sinfo_stream >= 1746 sp->initmsg.sinit_num_ostreams) { 1747 err = -EINVAL; 1748 goto out_unlock; 1749 } 1750 } else { 1751 /* Check against the requested. */ 1752 if (sinfo->sinfo_stream >= 1753 sinit->sinit_num_ostreams) { 1754 err = -EINVAL; 1755 goto out_unlock; 1756 } 1757 } 1758 } 1759 1760 /* 1761 * API 3.1.2 bind() - UDP Style Syntax 1762 * If a bind() or sctp_bindx() is not called prior to a 1763 * sendmsg() call that initiates a new association, the 1764 * system picks an ephemeral port and will choose an address 1765 * set equivalent to binding with a wildcard address. 1766 */ 1767 if (!ep->base.bind_addr.port) { 1768 if (sctp_autobind(sk)) { 1769 err = -EAGAIN; 1770 goto out_unlock; 1771 } 1772 } else { 1773 /* 1774 * If an unprivileged user inherits a one-to-many 1775 * style socket with open associations on a privileged 1776 * port, it MAY be permitted to accept new associations, 1777 * but it SHOULD NOT be permitted to open new 1778 * associations. 1779 */ 1780 if (ep->base.bind_addr.port < PROT_SOCK && 1781 !capable(CAP_NET_BIND_SERVICE)) { 1782 err = -EACCES; 1783 goto out_unlock; 1784 } 1785 } 1786 1787 scope = sctp_scope(&to); 1788 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1789 if (!new_asoc) { 1790 err = -ENOMEM; 1791 goto out_unlock; 1792 } 1793 asoc = new_asoc; 1794 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1795 if (err < 0) { 1796 err = -ENOMEM; 1797 goto out_free; 1798 } 1799 1800 /* If the SCTP_INIT ancillary data is specified, set all 1801 * the association init values accordingly. 1802 */ 1803 if (sinit) { 1804 if (sinit->sinit_num_ostreams) { 1805 asoc->c.sinit_num_ostreams = 1806 sinit->sinit_num_ostreams; 1807 } 1808 if (sinit->sinit_max_instreams) { 1809 asoc->c.sinit_max_instreams = 1810 sinit->sinit_max_instreams; 1811 } 1812 if (sinit->sinit_max_attempts) { 1813 asoc->max_init_attempts 1814 = sinit->sinit_max_attempts; 1815 } 1816 if (sinit->sinit_max_init_timeo) { 1817 asoc->max_init_timeo = 1818 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1819 } 1820 } 1821 1822 /* Prime the peer's transport structures. */ 1823 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1824 if (!transport) { 1825 err = -ENOMEM; 1826 goto out_free; 1827 } 1828 } 1829 1830 /* ASSERT: we have a valid association at this point. */ 1831 SCTP_DEBUG_PRINTK("We have a valid association.\n"); 1832 1833 if (!sinfo) { 1834 /* If the user didn't specify SNDRCVINFO, make up one with 1835 * some defaults. 1836 */ 1837 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1838 default_sinfo.sinfo_stream = asoc->default_stream; 1839 default_sinfo.sinfo_flags = asoc->default_flags; 1840 default_sinfo.sinfo_ppid = asoc->default_ppid; 1841 default_sinfo.sinfo_context = asoc->default_context; 1842 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1843 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1844 sinfo = &default_sinfo; 1845 } 1846 1847 /* API 7.1.7, the sndbuf size per association bounds the 1848 * maximum size of data that can be sent in a single send call. 1849 */ 1850 if (msg_len > sk->sk_sndbuf) { 1851 err = -EMSGSIZE; 1852 goto out_free; 1853 } 1854 1855 if (asoc->pmtu_pending) 1856 sctp_assoc_pending_pmtu(asoc); 1857 1858 /* If fragmentation is disabled and the message length exceeds the 1859 * association fragmentation point, return EMSGSIZE. The I-D 1860 * does not specify what this error is, but this looks like 1861 * a great fit. 1862 */ 1863 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1864 err = -EMSGSIZE; 1865 goto out_free; 1866 } 1867 1868 /* Check for invalid stream. */ 1869 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1870 err = -EINVAL; 1871 goto out_free; 1872 } 1873 1874 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1875 if (!sctp_wspace(asoc)) { 1876 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1877 if (err) 1878 goto out_free; 1879 } 1880 1881 /* If an address is passed with the sendto/sendmsg call, it is used 1882 * to override the primary destination address in the TCP model, or 1883 * when SCTP_ADDR_OVER flag is set in the UDP model. 1884 */ 1885 if ((sctp_style(sk, TCP) && msg_name) || 1886 (sinfo_flags & SCTP_ADDR_OVER)) { 1887 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1888 if (!chunk_tp) { 1889 err = -EINVAL; 1890 goto out_free; 1891 } 1892 } else 1893 chunk_tp = NULL; 1894 1895 /* Auto-connect, if we aren't connected already. */ 1896 if (sctp_state(asoc, CLOSED)) { 1897 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1898 if (err < 0) 1899 goto out_free; 1900 SCTP_DEBUG_PRINTK("We associated primitively.\n"); 1901 } 1902 1903 /* Break the message into multiple chunks of maximum size. */ 1904 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1905 if (!datamsg) { 1906 err = -ENOMEM; 1907 goto out_free; 1908 } 1909 1910 /* Now send the (possibly) fragmented message. */ 1911 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1912 sctp_chunk_hold(chunk); 1913 1914 /* Do accounting for the write space. */ 1915 sctp_set_owner_w(chunk); 1916 1917 chunk->transport = chunk_tp; 1918 } 1919 1920 /* Send it to the lower layers. Note: all chunks 1921 * must either fail or succeed. The lower layer 1922 * works that way today. Keep it that way or this 1923 * breaks. 1924 */ 1925 err = sctp_primitive_SEND(asoc, datamsg); 1926 /* Did the lower layer accept the chunk? */ 1927 if (err) 1928 sctp_datamsg_free(datamsg); 1929 else 1930 sctp_datamsg_put(datamsg); 1931 1932 SCTP_DEBUG_PRINTK("We sent primitively.\n"); 1933 1934 if (err) 1935 goto out_free; 1936 else 1937 err = msg_len; 1938 1939 /* If we are already past ASSOCIATE, the lower 1940 * layers are responsible for association cleanup. 1941 */ 1942 goto out_unlock; 1943 1944 out_free: 1945 if (new_asoc) 1946 sctp_association_free(asoc); 1947 out_unlock: 1948 sctp_release_sock(sk); 1949 1950 out_nounlock: 1951 return sctp_error(sk, msg_flags, err); 1952 1953 #if 0 1954 do_sock_err: 1955 if (msg_len) 1956 err = msg_len; 1957 else 1958 err = sock_error(sk); 1959 goto out; 1960 1961 do_interrupted: 1962 if (msg_len) 1963 err = msg_len; 1964 goto out; 1965 #endif /* 0 */ 1966 } 1967 1968 /* This is an extended version of skb_pull() that removes the data from the 1969 * start of a skb even when data is spread across the list of skb's in the 1970 * frag_list. len specifies the total amount of data that needs to be removed. 1971 * when 'len' bytes could be removed from the skb, it returns 0. 1972 * If 'len' exceeds the total skb length, it returns the no. of bytes that 1973 * could not be removed. 1974 */ 1975 static int sctp_skb_pull(struct sk_buff *skb, int len) 1976 { 1977 struct sk_buff *list; 1978 int skb_len = skb_headlen(skb); 1979 int rlen; 1980 1981 if (len <= skb_len) { 1982 __skb_pull(skb, len); 1983 return 0; 1984 } 1985 len -= skb_len; 1986 __skb_pull(skb, skb_len); 1987 1988 skb_walk_frags(skb, list) { 1989 rlen = sctp_skb_pull(list, len); 1990 skb->len -= (len-rlen); 1991 skb->data_len -= (len-rlen); 1992 1993 if (!rlen) 1994 return 0; 1995 1996 len = rlen; 1997 } 1998 1999 return len; 2000 } 2001 2002 /* API 3.1.3 recvmsg() - UDP Style Syntax 2003 * 2004 * ssize_t recvmsg(int socket, struct msghdr *message, 2005 * int flags); 2006 * 2007 * socket - the socket descriptor of the endpoint. 2008 * message - pointer to the msghdr structure which contains a single 2009 * user message and possibly some ancillary data. 2010 * 2011 * See Section 5 for complete description of the data 2012 * structures. 2013 * 2014 * flags - flags sent or received with the user message, see Section 2015 * 5 for complete description of the flags. 2016 */ 2017 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); 2018 2019 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 2020 struct msghdr *msg, size_t len, int noblock, 2021 int flags, int *addr_len) 2022 { 2023 struct sctp_ulpevent *event = NULL; 2024 struct sctp_sock *sp = sctp_sk(sk); 2025 struct sk_buff *skb; 2026 int copied; 2027 int err = 0; 2028 int skb_len; 2029 2030 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: " 2031 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg, 2032 "len", len, "knoblauch", noblock, 2033 "flags", flags, "addr_len", addr_len); 2034 2035 sctp_lock_sock(sk); 2036 2037 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 2038 err = -ENOTCONN; 2039 goto out; 2040 } 2041 2042 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2043 if (!skb) 2044 goto out; 2045 2046 /* Get the total length of the skb including any skb's in the 2047 * frag_list. 2048 */ 2049 skb_len = skb->len; 2050 2051 copied = skb_len; 2052 if (copied > len) 2053 copied = len; 2054 2055 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 2056 2057 event = sctp_skb2event(skb); 2058 2059 if (err) 2060 goto out_free; 2061 2062 sock_recv_ts_and_drops(msg, sk, skb); 2063 if (sctp_ulpevent_is_notification(event)) { 2064 msg->msg_flags |= MSG_NOTIFICATION; 2065 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2066 } else { 2067 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 2068 } 2069 2070 /* Check if we allow SCTP_SNDRCVINFO. */ 2071 if (sp->subscribe.sctp_data_io_event) 2072 sctp_ulpevent_read_sndrcvinfo(event, msg); 2073 #if 0 2074 /* FIXME: we should be calling IP/IPv6 layers. */ 2075 if (sk->sk_protinfo.af_inet.cmsg_flags) 2076 ip_cmsg_recv(msg, skb); 2077 #endif 2078 2079 err = copied; 2080 2081 /* If skb's length exceeds the user's buffer, update the skb and 2082 * push it back to the receive_queue so that the next call to 2083 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2084 */ 2085 if (skb_len > copied) { 2086 msg->msg_flags &= ~MSG_EOR; 2087 if (flags & MSG_PEEK) 2088 goto out_free; 2089 sctp_skb_pull(skb, copied); 2090 skb_queue_head(&sk->sk_receive_queue, skb); 2091 2092 /* When only partial message is copied to the user, increase 2093 * rwnd by that amount. If all the data in the skb is read, 2094 * rwnd is updated when the event is freed. 2095 */ 2096 if (!sctp_ulpevent_is_notification(event)) 2097 sctp_assoc_rwnd_increase(event->asoc, copied); 2098 goto out; 2099 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2100 (event->msg_flags & MSG_EOR)) 2101 msg->msg_flags |= MSG_EOR; 2102 else 2103 msg->msg_flags &= ~MSG_EOR; 2104 2105 out_free: 2106 if (flags & MSG_PEEK) { 2107 /* Release the skb reference acquired after peeking the skb in 2108 * sctp_skb_recv_datagram(). 2109 */ 2110 kfree_skb(skb); 2111 } else { 2112 /* Free the event which includes releasing the reference to 2113 * the owner of the skb, freeing the skb and updating the 2114 * rwnd. 2115 */ 2116 sctp_ulpevent_free(event); 2117 } 2118 out: 2119 sctp_release_sock(sk); 2120 return err; 2121 } 2122 2123 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2124 * 2125 * This option is a on/off flag. If enabled no SCTP message 2126 * fragmentation will be performed. Instead if a message being sent 2127 * exceeds the current PMTU size, the message will NOT be sent and 2128 * instead a error will be indicated to the user. 2129 */ 2130 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2131 char __user *optval, 2132 unsigned int optlen) 2133 { 2134 int val; 2135 2136 if (optlen < sizeof(int)) 2137 return -EINVAL; 2138 2139 if (get_user(val, (int __user *)optval)) 2140 return -EFAULT; 2141 2142 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2143 2144 return 0; 2145 } 2146 2147 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2148 unsigned int optlen) 2149 { 2150 struct sctp_association *asoc; 2151 struct sctp_ulpevent *event; 2152 2153 if (optlen > sizeof(struct sctp_event_subscribe)) 2154 return -EINVAL; 2155 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2156 return -EFAULT; 2157 2158 /* 2159 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2160 * if there is no data to be sent or retransmit, the stack will 2161 * immediately send up this notification. 2162 */ 2163 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, 2164 &sctp_sk(sk)->subscribe)) { 2165 asoc = sctp_id2assoc(sk, 0); 2166 2167 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2168 event = sctp_ulpevent_make_sender_dry_event(asoc, 2169 GFP_ATOMIC); 2170 if (!event) 2171 return -ENOMEM; 2172 2173 sctp_ulpq_tail_event(&asoc->ulpq, event); 2174 } 2175 } 2176 2177 return 0; 2178 } 2179 2180 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2181 * 2182 * This socket option is applicable to the UDP-style socket only. When 2183 * set it will cause associations that are idle for more than the 2184 * specified number of seconds to automatically close. An association 2185 * being idle is defined an association that has NOT sent or received 2186 * user data. The special value of '0' indicates that no automatic 2187 * close of any associations should be performed. The option expects an 2188 * integer defining the number of seconds of idle time before an 2189 * association is closed. 2190 */ 2191 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2192 unsigned int optlen) 2193 { 2194 struct sctp_sock *sp = sctp_sk(sk); 2195 2196 /* Applicable to UDP-style socket only */ 2197 if (sctp_style(sk, TCP)) 2198 return -EOPNOTSUPP; 2199 if (optlen != sizeof(int)) 2200 return -EINVAL; 2201 if (copy_from_user(&sp->autoclose, optval, optlen)) 2202 return -EFAULT; 2203 2204 return 0; 2205 } 2206 2207 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2208 * 2209 * Applications can enable or disable heartbeats for any peer address of 2210 * an association, modify an address's heartbeat interval, force a 2211 * heartbeat to be sent immediately, and adjust the address's maximum 2212 * number of retransmissions sent before an address is considered 2213 * unreachable. The following structure is used to access and modify an 2214 * address's parameters: 2215 * 2216 * struct sctp_paddrparams { 2217 * sctp_assoc_t spp_assoc_id; 2218 * struct sockaddr_storage spp_address; 2219 * uint32_t spp_hbinterval; 2220 * uint16_t spp_pathmaxrxt; 2221 * uint32_t spp_pathmtu; 2222 * uint32_t spp_sackdelay; 2223 * uint32_t spp_flags; 2224 * }; 2225 * 2226 * spp_assoc_id - (one-to-many style socket) This is filled in the 2227 * application, and identifies the association for 2228 * this query. 2229 * spp_address - This specifies which address is of interest. 2230 * spp_hbinterval - This contains the value of the heartbeat interval, 2231 * in milliseconds. If a value of zero 2232 * is present in this field then no changes are to 2233 * be made to this parameter. 2234 * spp_pathmaxrxt - This contains the maximum number of 2235 * retransmissions before this address shall be 2236 * considered unreachable. If a value of zero 2237 * is present in this field then no changes are to 2238 * be made to this parameter. 2239 * spp_pathmtu - When Path MTU discovery is disabled the value 2240 * specified here will be the "fixed" path mtu. 2241 * Note that if the spp_address field is empty 2242 * then all associations on this address will 2243 * have this fixed path mtu set upon them. 2244 * 2245 * spp_sackdelay - When delayed sack is enabled, this value specifies 2246 * the number of milliseconds that sacks will be delayed 2247 * for. This value will apply to all addresses of an 2248 * association if the spp_address field is empty. Note 2249 * also, that if delayed sack is enabled and this 2250 * value is set to 0, no change is made to the last 2251 * recorded delayed sack timer value. 2252 * 2253 * spp_flags - These flags are used to control various features 2254 * on an association. The flag field may contain 2255 * zero or more of the following options. 2256 * 2257 * SPP_HB_ENABLE - Enable heartbeats on the 2258 * specified address. Note that if the address 2259 * field is empty all addresses for the association 2260 * have heartbeats enabled upon them. 2261 * 2262 * SPP_HB_DISABLE - Disable heartbeats on the 2263 * speicifed address. Note that if the address 2264 * field is empty all addresses for the association 2265 * will have their heartbeats disabled. Note also 2266 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2267 * mutually exclusive, only one of these two should 2268 * be specified. Enabling both fields will have 2269 * undetermined results. 2270 * 2271 * SPP_HB_DEMAND - Request a user initiated heartbeat 2272 * to be made immediately. 2273 * 2274 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2275 * heartbeat delayis to be set to the value of 0 2276 * milliseconds. 2277 * 2278 * SPP_PMTUD_ENABLE - This field will enable PMTU 2279 * discovery upon the specified address. Note that 2280 * if the address feild is empty then all addresses 2281 * on the association are effected. 2282 * 2283 * SPP_PMTUD_DISABLE - This field will disable PMTU 2284 * discovery upon the specified address. Note that 2285 * if the address feild is empty then all addresses 2286 * on the association are effected. Not also that 2287 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2288 * exclusive. Enabling both will have undetermined 2289 * results. 2290 * 2291 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2292 * on delayed sack. The time specified in spp_sackdelay 2293 * is used to specify the sack delay for this address. Note 2294 * that if spp_address is empty then all addresses will 2295 * enable delayed sack and take on the sack delay 2296 * value specified in spp_sackdelay. 2297 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2298 * off delayed sack. If the spp_address field is blank then 2299 * delayed sack is disabled for the entire association. Note 2300 * also that this field is mutually exclusive to 2301 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2302 * results. 2303 */ 2304 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2305 struct sctp_transport *trans, 2306 struct sctp_association *asoc, 2307 struct sctp_sock *sp, 2308 int hb_change, 2309 int pmtud_change, 2310 int sackdelay_change) 2311 { 2312 int error; 2313 2314 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2315 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans); 2316 if (error) 2317 return error; 2318 } 2319 2320 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2321 * this field is ignored. Note also that a value of zero indicates 2322 * the current setting should be left unchanged. 2323 */ 2324 if (params->spp_flags & SPP_HB_ENABLE) { 2325 2326 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2327 * set. This lets us use 0 value when this flag 2328 * is set. 2329 */ 2330 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2331 params->spp_hbinterval = 0; 2332 2333 if (params->spp_hbinterval || 2334 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2335 if (trans) { 2336 trans->hbinterval = 2337 msecs_to_jiffies(params->spp_hbinterval); 2338 } else if (asoc) { 2339 asoc->hbinterval = 2340 msecs_to_jiffies(params->spp_hbinterval); 2341 } else { 2342 sp->hbinterval = params->spp_hbinterval; 2343 } 2344 } 2345 } 2346 2347 if (hb_change) { 2348 if (trans) { 2349 trans->param_flags = 2350 (trans->param_flags & ~SPP_HB) | hb_change; 2351 } else if (asoc) { 2352 asoc->param_flags = 2353 (asoc->param_flags & ~SPP_HB) | hb_change; 2354 } else { 2355 sp->param_flags = 2356 (sp->param_flags & ~SPP_HB) | hb_change; 2357 } 2358 } 2359 2360 /* When Path MTU discovery is disabled the value specified here will 2361 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2362 * include the flag SPP_PMTUD_DISABLE for this field to have any 2363 * effect). 2364 */ 2365 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2366 if (trans) { 2367 trans->pathmtu = params->spp_pathmtu; 2368 sctp_assoc_sync_pmtu(asoc); 2369 } else if (asoc) { 2370 asoc->pathmtu = params->spp_pathmtu; 2371 sctp_frag_point(asoc, params->spp_pathmtu); 2372 } else { 2373 sp->pathmtu = params->spp_pathmtu; 2374 } 2375 } 2376 2377 if (pmtud_change) { 2378 if (trans) { 2379 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2380 (params->spp_flags & SPP_PMTUD_ENABLE); 2381 trans->param_flags = 2382 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2383 if (update) { 2384 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2385 sctp_assoc_sync_pmtu(asoc); 2386 } 2387 } else if (asoc) { 2388 asoc->param_flags = 2389 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2390 } else { 2391 sp->param_flags = 2392 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2393 } 2394 } 2395 2396 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2397 * value of this field is ignored. Note also that a value of zero 2398 * indicates the current setting should be left unchanged. 2399 */ 2400 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2401 if (trans) { 2402 trans->sackdelay = 2403 msecs_to_jiffies(params->spp_sackdelay); 2404 } else if (asoc) { 2405 asoc->sackdelay = 2406 msecs_to_jiffies(params->spp_sackdelay); 2407 } else { 2408 sp->sackdelay = params->spp_sackdelay; 2409 } 2410 } 2411 2412 if (sackdelay_change) { 2413 if (trans) { 2414 trans->param_flags = 2415 (trans->param_flags & ~SPP_SACKDELAY) | 2416 sackdelay_change; 2417 } else if (asoc) { 2418 asoc->param_flags = 2419 (asoc->param_flags & ~SPP_SACKDELAY) | 2420 sackdelay_change; 2421 } else { 2422 sp->param_flags = 2423 (sp->param_flags & ~SPP_SACKDELAY) | 2424 sackdelay_change; 2425 } 2426 } 2427 2428 /* Note that a value of zero indicates the current setting should be 2429 left unchanged. 2430 */ 2431 if (params->spp_pathmaxrxt) { 2432 if (trans) { 2433 trans->pathmaxrxt = params->spp_pathmaxrxt; 2434 } else if (asoc) { 2435 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2436 } else { 2437 sp->pathmaxrxt = params->spp_pathmaxrxt; 2438 } 2439 } 2440 2441 return 0; 2442 } 2443 2444 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2445 char __user *optval, 2446 unsigned int optlen) 2447 { 2448 struct sctp_paddrparams params; 2449 struct sctp_transport *trans = NULL; 2450 struct sctp_association *asoc = NULL; 2451 struct sctp_sock *sp = sctp_sk(sk); 2452 int error; 2453 int hb_change, pmtud_change, sackdelay_change; 2454 2455 if (optlen != sizeof(struct sctp_paddrparams)) 2456 return - EINVAL; 2457 2458 if (copy_from_user(¶ms, optval, optlen)) 2459 return -EFAULT; 2460 2461 /* Validate flags and value parameters. */ 2462 hb_change = params.spp_flags & SPP_HB; 2463 pmtud_change = params.spp_flags & SPP_PMTUD; 2464 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2465 2466 if (hb_change == SPP_HB || 2467 pmtud_change == SPP_PMTUD || 2468 sackdelay_change == SPP_SACKDELAY || 2469 params.spp_sackdelay > 500 || 2470 (params.spp_pathmtu && 2471 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2472 return -EINVAL; 2473 2474 /* If an address other than INADDR_ANY is specified, and 2475 * no transport is found, then the request is invalid. 2476 */ 2477 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) { 2478 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2479 params.spp_assoc_id); 2480 if (!trans) 2481 return -EINVAL; 2482 } 2483 2484 /* Get association, if assoc_id != 0 and the socket is a one 2485 * to many style socket, and an association was not found, then 2486 * the id was invalid. 2487 */ 2488 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2489 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2490 return -EINVAL; 2491 2492 /* Heartbeat demand can only be sent on a transport or 2493 * association, but not a socket. 2494 */ 2495 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2496 return -EINVAL; 2497 2498 /* Process parameters. */ 2499 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2500 hb_change, pmtud_change, 2501 sackdelay_change); 2502 2503 if (error) 2504 return error; 2505 2506 /* If changes are for association, also apply parameters to each 2507 * transport. 2508 */ 2509 if (!trans && asoc) { 2510 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2511 transports) { 2512 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2513 hb_change, pmtud_change, 2514 sackdelay_change); 2515 } 2516 } 2517 2518 return 0; 2519 } 2520 2521 /* 2522 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2523 * 2524 * This option will effect the way delayed acks are performed. This 2525 * option allows you to get or set the delayed ack time, in 2526 * milliseconds. It also allows changing the delayed ack frequency. 2527 * Changing the frequency to 1 disables the delayed sack algorithm. If 2528 * the assoc_id is 0, then this sets or gets the endpoints default 2529 * values. If the assoc_id field is non-zero, then the set or get 2530 * effects the specified association for the one to many model (the 2531 * assoc_id field is ignored by the one to one model). Note that if 2532 * sack_delay or sack_freq are 0 when setting this option, then the 2533 * current values will remain unchanged. 2534 * 2535 * struct sctp_sack_info { 2536 * sctp_assoc_t sack_assoc_id; 2537 * uint32_t sack_delay; 2538 * uint32_t sack_freq; 2539 * }; 2540 * 2541 * sack_assoc_id - This parameter, indicates which association the user 2542 * is performing an action upon. Note that if this field's value is 2543 * zero then the endpoints default value is changed (effecting future 2544 * associations only). 2545 * 2546 * sack_delay - This parameter contains the number of milliseconds that 2547 * the user is requesting the delayed ACK timer be set to. Note that 2548 * this value is defined in the standard to be between 200 and 500 2549 * milliseconds. 2550 * 2551 * sack_freq - This parameter contains the number of packets that must 2552 * be received before a sack is sent without waiting for the delay 2553 * timer to expire. The default value for this is 2, setting this 2554 * value to 1 will disable the delayed sack algorithm. 2555 */ 2556 2557 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2558 char __user *optval, unsigned int optlen) 2559 { 2560 struct sctp_sack_info params; 2561 struct sctp_transport *trans = NULL; 2562 struct sctp_association *asoc = NULL; 2563 struct sctp_sock *sp = sctp_sk(sk); 2564 2565 if (optlen == sizeof(struct sctp_sack_info)) { 2566 if (copy_from_user(¶ms, optval, optlen)) 2567 return -EFAULT; 2568 2569 if (params.sack_delay == 0 && params.sack_freq == 0) 2570 return 0; 2571 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2572 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n"); 2573 pr_warn("Use struct sctp_sack_info instead\n"); 2574 if (copy_from_user(¶ms, optval, optlen)) 2575 return -EFAULT; 2576 2577 if (params.sack_delay == 0) 2578 params.sack_freq = 1; 2579 else 2580 params.sack_freq = 0; 2581 } else 2582 return - EINVAL; 2583 2584 /* Validate value parameter. */ 2585 if (params.sack_delay > 500) 2586 return -EINVAL; 2587 2588 /* Get association, if sack_assoc_id != 0 and the socket is a one 2589 * to many style socket, and an association was not found, then 2590 * the id was invalid. 2591 */ 2592 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2593 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2594 return -EINVAL; 2595 2596 if (params.sack_delay) { 2597 if (asoc) { 2598 asoc->sackdelay = 2599 msecs_to_jiffies(params.sack_delay); 2600 asoc->param_flags = 2601 (asoc->param_flags & ~SPP_SACKDELAY) | 2602 SPP_SACKDELAY_ENABLE; 2603 } else { 2604 sp->sackdelay = params.sack_delay; 2605 sp->param_flags = 2606 (sp->param_flags & ~SPP_SACKDELAY) | 2607 SPP_SACKDELAY_ENABLE; 2608 } 2609 } 2610 2611 if (params.sack_freq == 1) { 2612 if (asoc) { 2613 asoc->param_flags = 2614 (asoc->param_flags & ~SPP_SACKDELAY) | 2615 SPP_SACKDELAY_DISABLE; 2616 } else { 2617 sp->param_flags = 2618 (sp->param_flags & ~SPP_SACKDELAY) | 2619 SPP_SACKDELAY_DISABLE; 2620 } 2621 } else if (params.sack_freq > 1) { 2622 if (asoc) { 2623 asoc->sackfreq = params.sack_freq; 2624 asoc->param_flags = 2625 (asoc->param_flags & ~SPP_SACKDELAY) | 2626 SPP_SACKDELAY_ENABLE; 2627 } else { 2628 sp->sackfreq = params.sack_freq; 2629 sp->param_flags = 2630 (sp->param_flags & ~SPP_SACKDELAY) | 2631 SPP_SACKDELAY_ENABLE; 2632 } 2633 } 2634 2635 /* If change is for association, also apply to each transport. */ 2636 if (asoc) { 2637 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2638 transports) { 2639 if (params.sack_delay) { 2640 trans->sackdelay = 2641 msecs_to_jiffies(params.sack_delay); 2642 trans->param_flags = 2643 (trans->param_flags & ~SPP_SACKDELAY) | 2644 SPP_SACKDELAY_ENABLE; 2645 } 2646 if (params.sack_freq == 1) { 2647 trans->param_flags = 2648 (trans->param_flags & ~SPP_SACKDELAY) | 2649 SPP_SACKDELAY_DISABLE; 2650 } else if (params.sack_freq > 1) { 2651 trans->sackfreq = params.sack_freq; 2652 trans->param_flags = 2653 (trans->param_flags & ~SPP_SACKDELAY) | 2654 SPP_SACKDELAY_ENABLE; 2655 } 2656 } 2657 } 2658 2659 return 0; 2660 } 2661 2662 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2663 * 2664 * Applications can specify protocol parameters for the default association 2665 * initialization. The option name argument to setsockopt() and getsockopt() 2666 * is SCTP_INITMSG. 2667 * 2668 * Setting initialization parameters is effective only on an unconnected 2669 * socket (for UDP-style sockets only future associations are effected 2670 * by the change). With TCP-style sockets, this option is inherited by 2671 * sockets derived from a listener socket. 2672 */ 2673 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2674 { 2675 struct sctp_initmsg sinit; 2676 struct sctp_sock *sp = sctp_sk(sk); 2677 2678 if (optlen != sizeof(struct sctp_initmsg)) 2679 return -EINVAL; 2680 if (copy_from_user(&sinit, optval, optlen)) 2681 return -EFAULT; 2682 2683 if (sinit.sinit_num_ostreams) 2684 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2685 if (sinit.sinit_max_instreams) 2686 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2687 if (sinit.sinit_max_attempts) 2688 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2689 if (sinit.sinit_max_init_timeo) 2690 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2691 2692 return 0; 2693 } 2694 2695 /* 2696 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2697 * 2698 * Applications that wish to use the sendto() system call may wish to 2699 * specify a default set of parameters that would normally be supplied 2700 * through the inclusion of ancillary data. This socket option allows 2701 * such an application to set the default sctp_sndrcvinfo structure. 2702 * The application that wishes to use this socket option simply passes 2703 * in to this call the sctp_sndrcvinfo structure defined in Section 2704 * 5.2.2) The input parameters accepted by this call include 2705 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2706 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2707 * to this call if the caller is using the UDP model. 2708 */ 2709 static int sctp_setsockopt_default_send_param(struct sock *sk, 2710 char __user *optval, 2711 unsigned int optlen) 2712 { 2713 struct sctp_sndrcvinfo info; 2714 struct sctp_association *asoc; 2715 struct sctp_sock *sp = sctp_sk(sk); 2716 2717 if (optlen != sizeof(struct sctp_sndrcvinfo)) 2718 return -EINVAL; 2719 if (copy_from_user(&info, optval, optlen)) 2720 return -EFAULT; 2721 2722 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2723 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2724 return -EINVAL; 2725 2726 if (asoc) { 2727 asoc->default_stream = info.sinfo_stream; 2728 asoc->default_flags = info.sinfo_flags; 2729 asoc->default_ppid = info.sinfo_ppid; 2730 asoc->default_context = info.sinfo_context; 2731 asoc->default_timetolive = info.sinfo_timetolive; 2732 } else { 2733 sp->default_stream = info.sinfo_stream; 2734 sp->default_flags = info.sinfo_flags; 2735 sp->default_ppid = info.sinfo_ppid; 2736 sp->default_context = info.sinfo_context; 2737 sp->default_timetolive = info.sinfo_timetolive; 2738 } 2739 2740 return 0; 2741 } 2742 2743 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2744 * 2745 * Requests that the local SCTP stack use the enclosed peer address as 2746 * the association primary. The enclosed address must be one of the 2747 * association peer's addresses. 2748 */ 2749 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2750 unsigned int optlen) 2751 { 2752 struct sctp_prim prim; 2753 struct sctp_transport *trans; 2754 2755 if (optlen != sizeof(struct sctp_prim)) 2756 return -EINVAL; 2757 2758 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2759 return -EFAULT; 2760 2761 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2762 if (!trans) 2763 return -EINVAL; 2764 2765 sctp_assoc_set_primary(trans->asoc, trans); 2766 2767 return 0; 2768 } 2769 2770 /* 2771 * 7.1.5 SCTP_NODELAY 2772 * 2773 * Turn on/off any Nagle-like algorithm. This means that packets are 2774 * generally sent as soon as possible and no unnecessary delays are 2775 * introduced, at the cost of more packets in the network. Expects an 2776 * integer boolean flag. 2777 */ 2778 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2779 unsigned int optlen) 2780 { 2781 int val; 2782 2783 if (optlen < sizeof(int)) 2784 return -EINVAL; 2785 if (get_user(val, (int __user *)optval)) 2786 return -EFAULT; 2787 2788 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2789 return 0; 2790 } 2791 2792 /* 2793 * 2794 * 7.1.1 SCTP_RTOINFO 2795 * 2796 * The protocol parameters used to initialize and bound retransmission 2797 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2798 * and modify these parameters. 2799 * All parameters are time values, in milliseconds. A value of 0, when 2800 * modifying the parameters, indicates that the current value should not 2801 * be changed. 2802 * 2803 */ 2804 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 2805 { 2806 struct sctp_rtoinfo rtoinfo; 2807 struct sctp_association *asoc; 2808 2809 if (optlen != sizeof (struct sctp_rtoinfo)) 2810 return -EINVAL; 2811 2812 if (copy_from_user(&rtoinfo, optval, optlen)) 2813 return -EFAULT; 2814 2815 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2816 2817 /* Set the values to the specific association */ 2818 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2819 return -EINVAL; 2820 2821 if (asoc) { 2822 if (rtoinfo.srto_initial != 0) 2823 asoc->rto_initial = 2824 msecs_to_jiffies(rtoinfo.srto_initial); 2825 if (rtoinfo.srto_max != 0) 2826 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max); 2827 if (rtoinfo.srto_min != 0) 2828 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min); 2829 } else { 2830 /* If there is no association or the association-id = 0 2831 * set the values to the endpoint. 2832 */ 2833 struct sctp_sock *sp = sctp_sk(sk); 2834 2835 if (rtoinfo.srto_initial != 0) 2836 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2837 if (rtoinfo.srto_max != 0) 2838 sp->rtoinfo.srto_max = rtoinfo.srto_max; 2839 if (rtoinfo.srto_min != 0) 2840 sp->rtoinfo.srto_min = rtoinfo.srto_min; 2841 } 2842 2843 return 0; 2844 } 2845 2846 /* 2847 * 2848 * 7.1.2 SCTP_ASSOCINFO 2849 * 2850 * This option is used to tune the maximum retransmission attempts 2851 * of the association. 2852 * Returns an error if the new association retransmission value is 2853 * greater than the sum of the retransmission value of the peer. 2854 * See [SCTP] for more information. 2855 * 2856 */ 2857 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 2858 { 2859 2860 struct sctp_assocparams assocparams; 2861 struct sctp_association *asoc; 2862 2863 if (optlen != sizeof(struct sctp_assocparams)) 2864 return -EINVAL; 2865 if (copy_from_user(&assocparams, optval, optlen)) 2866 return -EFAULT; 2867 2868 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2869 2870 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2871 return -EINVAL; 2872 2873 /* Set the values to the specific association */ 2874 if (asoc) { 2875 if (assocparams.sasoc_asocmaxrxt != 0) { 2876 __u32 path_sum = 0; 2877 int paths = 0; 2878 struct sctp_transport *peer_addr; 2879 2880 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 2881 transports) { 2882 path_sum += peer_addr->pathmaxrxt; 2883 paths++; 2884 } 2885 2886 /* Only validate asocmaxrxt if we have more than 2887 * one path/transport. We do this because path 2888 * retransmissions are only counted when we have more 2889 * then one path. 2890 */ 2891 if (paths > 1 && 2892 assocparams.sasoc_asocmaxrxt > path_sum) 2893 return -EINVAL; 2894 2895 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 2896 } 2897 2898 if (assocparams.sasoc_cookie_life != 0) { 2899 asoc->cookie_life.tv_sec = 2900 assocparams.sasoc_cookie_life / 1000; 2901 asoc->cookie_life.tv_usec = 2902 (assocparams.sasoc_cookie_life % 1000) 2903 * 1000; 2904 } 2905 } else { 2906 /* Set the values to the endpoint */ 2907 struct sctp_sock *sp = sctp_sk(sk); 2908 2909 if (assocparams.sasoc_asocmaxrxt != 0) 2910 sp->assocparams.sasoc_asocmaxrxt = 2911 assocparams.sasoc_asocmaxrxt; 2912 if (assocparams.sasoc_cookie_life != 0) 2913 sp->assocparams.sasoc_cookie_life = 2914 assocparams.sasoc_cookie_life; 2915 } 2916 return 0; 2917 } 2918 2919 /* 2920 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 2921 * 2922 * This socket option is a boolean flag which turns on or off mapped V4 2923 * addresses. If this option is turned on and the socket is type 2924 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 2925 * If this option is turned off, then no mapping will be done of V4 2926 * addresses and a user will receive both PF_INET6 and PF_INET type 2927 * addresses on the socket. 2928 */ 2929 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 2930 { 2931 int val; 2932 struct sctp_sock *sp = sctp_sk(sk); 2933 2934 if (optlen < sizeof(int)) 2935 return -EINVAL; 2936 if (get_user(val, (int __user *)optval)) 2937 return -EFAULT; 2938 if (val) 2939 sp->v4mapped = 1; 2940 else 2941 sp->v4mapped = 0; 2942 2943 return 0; 2944 } 2945 2946 /* 2947 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 2948 * This option will get or set the maximum size to put in any outgoing 2949 * SCTP DATA chunk. If a message is larger than this size it will be 2950 * fragmented by SCTP into the specified size. Note that the underlying 2951 * SCTP implementation may fragment into smaller sized chunks when the 2952 * PMTU of the underlying association is smaller than the value set by 2953 * the user. The default value for this option is '0' which indicates 2954 * the user is NOT limiting fragmentation and only the PMTU will effect 2955 * SCTP's choice of DATA chunk size. Note also that values set larger 2956 * than the maximum size of an IP datagram will effectively let SCTP 2957 * control fragmentation (i.e. the same as setting this option to 0). 2958 * 2959 * The following structure is used to access and modify this parameter: 2960 * 2961 * struct sctp_assoc_value { 2962 * sctp_assoc_t assoc_id; 2963 * uint32_t assoc_value; 2964 * }; 2965 * 2966 * assoc_id: This parameter is ignored for one-to-one style sockets. 2967 * For one-to-many style sockets this parameter indicates which 2968 * association the user is performing an action upon. Note that if 2969 * this field's value is zero then the endpoints default value is 2970 * changed (effecting future associations only). 2971 * assoc_value: This parameter specifies the maximum size in bytes. 2972 */ 2973 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 2974 { 2975 struct sctp_assoc_value params; 2976 struct sctp_association *asoc; 2977 struct sctp_sock *sp = sctp_sk(sk); 2978 int val; 2979 2980 if (optlen == sizeof(int)) { 2981 pr_warn("Use of int in maxseg socket option deprecated\n"); 2982 pr_warn("Use struct sctp_assoc_value instead\n"); 2983 if (copy_from_user(&val, optval, optlen)) 2984 return -EFAULT; 2985 params.assoc_id = 0; 2986 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2987 if (copy_from_user(¶ms, optval, optlen)) 2988 return -EFAULT; 2989 val = params.assoc_value; 2990 } else 2991 return -EINVAL; 2992 2993 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 2994 return -EINVAL; 2995 2996 asoc = sctp_id2assoc(sk, params.assoc_id); 2997 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 2998 return -EINVAL; 2999 3000 if (asoc) { 3001 if (val == 0) { 3002 val = asoc->pathmtu; 3003 val -= sp->pf->af->net_header_len; 3004 val -= sizeof(struct sctphdr) + 3005 sizeof(struct sctp_data_chunk); 3006 } 3007 asoc->user_frag = val; 3008 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 3009 } else { 3010 sp->user_frag = val; 3011 } 3012 3013 return 0; 3014 } 3015 3016 3017 /* 3018 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3019 * 3020 * Requests that the peer mark the enclosed address as the association 3021 * primary. The enclosed address must be one of the association's 3022 * locally bound addresses. The following structure is used to make a 3023 * set primary request: 3024 */ 3025 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3026 unsigned int optlen) 3027 { 3028 struct sctp_sock *sp; 3029 struct sctp_association *asoc = NULL; 3030 struct sctp_setpeerprim prim; 3031 struct sctp_chunk *chunk; 3032 struct sctp_af *af; 3033 int err; 3034 3035 sp = sctp_sk(sk); 3036 3037 if (!sctp_addip_enable) 3038 return -EPERM; 3039 3040 if (optlen != sizeof(struct sctp_setpeerprim)) 3041 return -EINVAL; 3042 3043 if (copy_from_user(&prim, optval, optlen)) 3044 return -EFAULT; 3045 3046 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3047 if (!asoc) 3048 return -EINVAL; 3049 3050 if (!asoc->peer.asconf_capable) 3051 return -EPERM; 3052 3053 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3054 return -EPERM; 3055 3056 if (!sctp_state(asoc, ESTABLISHED)) 3057 return -ENOTCONN; 3058 3059 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3060 if (!af) 3061 return -EINVAL; 3062 3063 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3064 return -EADDRNOTAVAIL; 3065 3066 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3067 return -EADDRNOTAVAIL; 3068 3069 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3070 chunk = sctp_make_asconf_set_prim(asoc, 3071 (union sctp_addr *)&prim.sspp_addr); 3072 if (!chunk) 3073 return -ENOMEM; 3074 3075 err = sctp_send_asconf(asoc, chunk); 3076 3077 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n"); 3078 3079 return err; 3080 } 3081 3082 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3083 unsigned int optlen) 3084 { 3085 struct sctp_setadaptation adaptation; 3086 3087 if (optlen != sizeof(struct sctp_setadaptation)) 3088 return -EINVAL; 3089 if (copy_from_user(&adaptation, optval, optlen)) 3090 return -EFAULT; 3091 3092 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3093 3094 return 0; 3095 } 3096 3097 /* 3098 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3099 * 3100 * The context field in the sctp_sndrcvinfo structure is normally only 3101 * used when a failed message is retrieved holding the value that was 3102 * sent down on the actual send call. This option allows the setting of 3103 * a default context on an association basis that will be received on 3104 * reading messages from the peer. This is especially helpful in the 3105 * one-2-many model for an application to keep some reference to an 3106 * internal state machine that is processing messages on the 3107 * association. Note that the setting of this value only effects 3108 * received messages from the peer and does not effect the value that is 3109 * saved with outbound messages. 3110 */ 3111 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3112 unsigned int optlen) 3113 { 3114 struct sctp_assoc_value params; 3115 struct sctp_sock *sp; 3116 struct sctp_association *asoc; 3117 3118 if (optlen != sizeof(struct sctp_assoc_value)) 3119 return -EINVAL; 3120 if (copy_from_user(¶ms, optval, optlen)) 3121 return -EFAULT; 3122 3123 sp = sctp_sk(sk); 3124 3125 if (params.assoc_id != 0) { 3126 asoc = sctp_id2assoc(sk, params.assoc_id); 3127 if (!asoc) 3128 return -EINVAL; 3129 asoc->default_rcv_context = params.assoc_value; 3130 } else { 3131 sp->default_rcv_context = params.assoc_value; 3132 } 3133 3134 return 0; 3135 } 3136 3137 /* 3138 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3139 * 3140 * This options will at a minimum specify if the implementation is doing 3141 * fragmented interleave. Fragmented interleave, for a one to many 3142 * socket, is when subsequent calls to receive a message may return 3143 * parts of messages from different associations. Some implementations 3144 * may allow you to turn this value on or off. If so, when turned off, 3145 * no fragment interleave will occur (which will cause a head of line 3146 * blocking amongst multiple associations sharing the same one to many 3147 * socket). When this option is turned on, then each receive call may 3148 * come from a different association (thus the user must receive data 3149 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3150 * association each receive belongs to. 3151 * 3152 * This option takes a boolean value. A non-zero value indicates that 3153 * fragmented interleave is on. A value of zero indicates that 3154 * fragmented interleave is off. 3155 * 3156 * Note that it is important that an implementation that allows this 3157 * option to be turned on, have it off by default. Otherwise an unaware 3158 * application using the one to many model may become confused and act 3159 * incorrectly. 3160 */ 3161 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3162 char __user *optval, 3163 unsigned int optlen) 3164 { 3165 int val; 3166 3167 if (optlen != sizeof(int)) 3168 return -EINVAL; 3169 if (get_user(val, (int __user *)optval)) 3170 return -EFAULT; 3171 3172 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 3173 3174 return 0; 3175 } 3176 3177 /* 3178 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3179 * (SCTP_PARTIAL_DELIVERY_POINT) 3180 * 3181 * This option will set or get the SCTP partial delivery point. This 3182 * point is the size of a message where the partial delivery API will be 3183 * invoked to help free up rwnd space for the peer. Setting this to a 3184 * lower value will cause partial deliveries to happen more often. The 3185 * calls argument is an integer that sets or gets the partial delivery 3186 * point. Note also that the call will fail if the user attempts to set 3187 * this value larger than the socket receive buffer size. 3188 * 3189 * Note that any single message having a length smaller than or equal to 3190 * the SCTP partial delivery point will be delivered in one single read 3191 * call as long as the user provided buffer is large enough to hold the 3192 * message. 3193 */ 3194 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3195 char __user *optval, 3196 unsigned int optlen) 3197 { 3198 u32 val; 3199 3200 if (optlen != sizeof(u32)) 3201 return -EINVAL; 3202 if (get_user(val, (int __user *)optval)) 3203 return -EFAULT; 3204 3205 /* Note: We double the receive buffer from what the user sets 3206 * it to be, also initial rwnd is based on rcvbuf/2. 3207 */ 3208 if (val > (sk->sk_rcvbuf >> 1)) 3209 return -EINVAL; 3210 3211 sctp_sk(sk)->pd_point = val; 3212 3213 return 0; /* is this the right error code? */ 3214 } 3215 3216 /* 3217 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3218 * 3219 * This option will allow a user to change the maximum burst of packets 3220 * that can be emitted by this association. Note that the default value 3221 * is 4, and some implementations may restrict this setting so that it 3222 * can only be lowered. 3223 * 3224 * NOTE: This text doesn't seem right. Do this on a socket basis with 3225 * future associations inheriting the socket value. 3226 */ 3227 static int sctp_setsockopt_maxburst(struct sock *sk, 3228 char __user *optval, 3229 unsigned int optlen) 3230 { 3231 struct sctp_assoc_value params; 3232 struct sctp_sock *sp; 3233 struct sctp_association *asoc; 3234 int val; 3235 int assoc_id = 0; 3236 3237 if (optlen == sizeof(int)) { 3238 pr_warn("Use of int in max_burst socket option deprecated\n"); 3239 pr_warn("Use struct sctp_assoc_value instead\n"); 3240 if (copy_from_user(&val, optval, optlen)) 3241 return -EFAULT; 3242 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3243 if (copy_from_user(¶ms, optval, optlen)) 3244 return -EFAULT; 3245 val = params.assoc_value; 3246 assoc_id = params.assoc_id; 3247 } else 3248 return -EINVAL; 3249 3250 sp = sctp_sk(sk); 3251 3252 if (assoc_id != 0) { 3253 asoc = sctp_id2assoc(sk, assoc_id); 3254 if (!asoc) 3255 return -EINVAL; 3256 asoc->max_burst = val; 3257 } else 3258 sp->max_burst = val; 3259 3260 return 0; 3261 } 3262 3263 /* 3264 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3265 * 3266 * This set option adds a chunk type that the user is requesting to be 3267 * received only in an authenticated way. Changes to the list of chunks 3268 * will only effect future associations on the socket. 3269 */ 3270 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3271 char __user *optval, 3272 unsigned int optlen) 3273 { 3274 struct sctp_authchunk val; 3275 3276 if (!sctp_auth_enable) 3277 return -EACCES; 3278 3279 if (optlen != sizeof(struct sctp_authchunk)) 3280 return -EINVAL; 3281 if (copy_from_user(&val, optval, optlen)) 3282 return -EFAULT; 3283 3284 switch (val.sauth_chunk) { 3285 case SCTP_CID_INIT: 3286 case SCTP_CID_INIT_ACK: 3287 case SCTP_CID_SHUTDOWN_COMPLETE: 3288 case SCTP_CID_AUTH: 3289 return -EINVAL; 3290 } 3291 3292 /* add this chunk id to the endpoint */ 3293 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk); 3294 } 3295 3296 /* 3297 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3298 * 3299 * This option gets or sets the list of HMAC algorithms that the local 3300 * endpoint requires the peer to use. 3301 */ 3302 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3303 char __user *optval, 3304 unsigned int optlen) 3305 { 3306 struct sctp_hmacalgo *hmacs; 3307 u32 idents; 3308 int err; 3309 3310 if (!sctp_auth_enable) 3311 return -EACCES; 3312 3313 if (optlen < sizeof(struct sctp_hmacalgo)) 3314 return -EINVAL; 3315 3316 hmacs= memdup_user(optval, optlen); 3317 if (IS_ERR(hmacs)) 3318 return PTR_ERR(hmacs); 3319 3320 idents = hmacs->shmac_num_idents; 3321 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3322 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3323 err = -EINVAL; 3324 goto out; 3325 } 3326 3327 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs); 3328 out: 3329 kfree(hmacs); 3330 return err; 3331 } 3332 3333 /* 3334 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3335 * 3336 * This option will set a shared secret key which is used to build an 3337 * association shared key. 3338 */ 3339 static int sctp_setsockopt_auth_key(struct sock *sk, 3340 char __user *optval, 3341 unsigned int optlen) 3342 { 3343 struct sctp_authkey *authkey; 3344 struct sctp_association *asoc; 3345 int ret; 3346 3347 if (!sctp_auth_enable) 3348 return -EACCES; 3349 3350 if (optlen <= sizeof(struct sctp_authkey)) 3351 return -EINVAL; 3352 3353 authkey= memdup_user(optval, optlen); 3354 if (IS_ERR(authkey)) 3355 return PTR_ERR(authkey); 3356 3357 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3358 ret = -EINVAL; 3359 goto out; 3360 } 3361 3362 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3363 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3364 ret = -EINVAL; 3365 goto out; 3366 } 3367 3368 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey); 3369 out: 3370 kfree(authkey); 3371 return ret; 3372 } 3373 3374 /* 3375 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3376 * 3377 * This option will get or set the active shared key to be used to build 3378 * the association shared key. 3379 */ 3380 static int sctp_setsockopt_active_key(struct sock *sk, 3381 char __user *optval, 3382 unsigned int optlen) 3383 { 3384 struct sctp_authkeyid val; 3385 struct sctp_association *asoc; 3386 3387 if (!sctp_auth_enable) 3388 return -EACCES; 3389 3390 if (optlen != sizeof(struct sctp_authkeyid)) 3391 return -EINVAL; 3392 if (copy_from_user(&val, optval, optlen)) 3393 return -EFAULT; 3394 3395 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3396 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3397 return -EINVAL; 3398 3399 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc, 3400 val.scact_keynumber); 3401 } 3402 3403 /* 3404 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3405 * 3406 * This set option will delete a shared secret key from use. 3407 */ 3408 static int sctp_setsockopt_del_key(struct sock *sk, 3409 char __user *optval, 3410 unsigned int optlen) 3411 { 3412 struct sctp_authkeyid val; 3413 struct sctp_association *asoc; 3414 3415 if (!sctp_auth_enable) 3416 return -EACCES; 3417 3418 if (optlen != sizeof(struct sctp_authkeyid)) 3419 return -EINVAL; 3420 if (copy_from_user(&val, optval, optlen)) 3421 return -EFAULT; 3422 3423 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3424 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3425 return -EINVAL; 3426 3427 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc, 3428 val.scact_keynumber); 3429 3430 } 3431 3432 /* 3433 * 8.1.23 SCTP_AUTO_ASCONF 3434 * 3435 * This option will enable or disable the use of the automatic generation of 3436 * ASCONF chunks to add and delete addresses to an existing association. Note 3437 * that this option has two caveats namely: a) it only affects sockets that 3438 * are bound to all addresses available to the SCTP stack, and b) the system 3439 * administrator may have an overriding control that turns the ASCONF feature 3440 * off no matter what setting the socket option may have. 3441 * This option expects an integer boolean flag, where a non-zero value turns on 3442 * the option, and a zero value turns off the option. 3443 * Note. In this implementation, socket operation overrides default parameter 3444 * being set by sysctl as well as FreeBSD implementation 3445 */ 3446 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3447 unsigned int optlen) 3448 { 3449 int val; 3450 struct sctp_sock *sp = sctp_sk(sk); 3451 3452 if (optlen < sizeof(int)) 3453 return -EINVAL; 3454 if (get_user(val, (int __user *)optval)) 3455 return -EFAULT; 3456 if (!sctp_is_ep_boundall(sk) && val) 3457 return -EINVAL; 3458 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3459 return 0; 3460 3461 if (val == 0 && sp->do_auto_asconf) { 3462 list_del(&sp->auto_asconf_list); 3463 sp->do_auto_asconf = 0; 3464 } else if (val && !sp->do_auto_asconf) { 3465 list_add_tail(&sp->auto_asconf_list, 3466 &sctp_auto_asconf_splist); 3467 sp->do_auto_asconf = 1; 3468 } 3469 return 0; 3470 } 3471 3472 3473 /* API 6.2 setsockopt(), getsockopt() 3474 * 3475 * Applications use setsockopt() and getsockopt() to set or retrieve 3476 * socket options. Socket options are used to change the default 3477 * behavior of sockets calls. They are described in Section 7. 3478 * 3479 * The syntax is: 3480 * 3481 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3482 * int __user *optlen); 3483 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3484 * int optlen); 3485 * 3486 * sd - the socket descript. 3487 * level - set to IPPROTO_SCTP for all SCTP options. 3488 * optname - the option name. 3489 * optval - the buffer to store the value of the option. 3490 * optlen - the size of the buffer. 3491 */ 3492 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname, 3493 char __user *optval, unsigned int optlen) 3494 { 3495 int retval = 0; 3496 3497 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n", 3498 sk, optname); 3499 3500 /* I can hardly begin to describe how wrong this is. This is 3501 * so broken as to be worse than useless. The API draft 3502 * REALLY is NOT helpful here... I am not convinced that the 3503 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3504 * are at all well-founded. 3505 */ 3506 if (level != SOL_SCTP) { 3507 struct sctp_af *af = sctp_sk(sk)->pf->af; 3508 retval = af->setsockopt(sk, level, optname, optval, optlen); 3509 goto out_nounlock; 3510 } 3511 3512 sctp_lock_sock(sk); 3513 3514 switch (optname) { 3515 case SCTP_SOCKOPT_BINDX_ADD: 3516 /* 'optlen' is the size of the addresses buffer. */ 3517 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3518 optlen, SCTP_BINDX_ADD_ADDR); 3519 break; 3520 3521 case SCTP_SOCKOPT_BINDX_REM: 3522 /* 'optlen' is the size of the addresses buffer. */ 3523 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3524 optlen, SCTP_BINDX_REM_ADDR); 3525 break; 3526 3527 case SCTP_SOCKOPT_CONNECTX_OLD: 3528 /* 'optlen' is the size of the addresses buffer. */ 3529 retval = sctp_setsockopt_connectx_old(sk, 3530 (struct sockaddr __user *)optval, 3531 optlen); 3532 break; 3533 3534 case SCTP_SOCKOPT_CONNECTX: 3535 /* 'optlen' is the size of the addresses buffer. */ 3536 retval = sctp_setsockopt_connectx(sk, 3537 (struct sockaddr __user *)optval, 3538 optlen); 3539 break; 3540 3541 case SCTP_DISABLE_FRAGMENTS: 3542 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3543 break; 3544 3545 case SCTP_EVENTS: 3546 retval = sctp_setsockopt_events(sk, optval, optlen); 3547 break; 3548 3549 case SCTP_AUTOCLOSE: 3550 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3551 break; 3552 3553 case SCTP_PEER_ADDR_PARAMS: 3554 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3555 break; 3556 3557 case SCTP_DELAYED_SACK: 3558 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 3559 break; 3560 case SCTP_PARTIAL_DELIVERY_POINT: 3561 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3562 break; 3563 3564 case SCTP_INITMSG: 3565 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3566 break; 3567 case SCTP_DEFAULT_SEND_PARAM: 3568 retval = sctp_setsockopt_default_send_param(sk, optval, 3569 optlen); 3570 break; 3571 case SCTP_PRIMARY_ADDR: 3572 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3573 break; 3574 case SCTP_SET_PEER_PRIMARY_ADDR: 3575 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3576 break; 3577 case SCTP_NODELAY: 3578 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3579 break; 3580 case SCTP_RTOINFO: 3581 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3582 break; 3583 case SCTP_ASSOCINFO: 3584 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3585 break; 3586 case SCTP_I_WANT_MAPPED_V4_ADDR: 3587 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3588 break; 3589 case SCTP_MAXSEG: 3590 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3591 break; 3592 case SCTP_ADAPTATION_LAYER: 3593 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3594 break; 3595 case SCTP_CONTEXT: 3596 retval = sctp_setsockopt_context(sk, optval, optlen); 3597 break; 3598 case SCTP_FRAGMENT_INTERLEAVE: 3599 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 3600 break; 3601 case SCTP_MAX_BURST: 3602 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 3603 break; 3604 case SCTP_AUTH_CHUNK: 3605 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 3606 break; 3607 case SCTP_HMAC_IDENT: 3608 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 3609 break; 3610 case SCTP_AUTH_KEY: 3611 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 3612 break; 3613 case SCTP_AUTH_ACTIVE_KEY: 3614 retval = sctp_setsockopt_active_key(sk, optval, optlen); 3615 break; 3616 case SCTP_AUTH_DELETE_KEY: 3617 retval = sctp_setsockopt_del_key(sk, optval, optlen); 3618 break; 3619 case SCTP_AUTO_ASCONF: 3620 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 3621 break; 3622 default: 3623 retval = -ENOPROTOOPT; 3624 break; 3625 } 3626 3627 sctp_release_sock(sk); 3628 3629 out_nounlock: 3630 return retval; 3631 } 3632 3633 /* API 3.1.6 connect() - UDP Style Syntax 3634 * 3635 * An application may use the connect() call in the UDP model to initiate an 3636 * association without sending data. 3637 * 3638 * The syntax is: 3639 * 3640 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 3641 * 3642 * sd: the socket descriptor to have a new association added to. 3643 * 3644 * nam: the address structure (either struct sockaddr_in or struct 3645 * sockaddr_in6 defined in RFC2553 [7]). 3646 * 3647 * len: the size of the address. 3648 */ 3649 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr, 3650 int addr_len) 3651 { 3652 int err = 0; 3653 struct sctp_af *af; 3654 3655 sctp_lock_sock(sk); 3656 3657 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n", 3658 __func__, sk, addr, addr_len); 3659 3660 /* Validate addr_len before calling common connect/connectx routine. */ 3661 af = sctp_get_af_specific(addr->sa_family); 3662 if (!af || addr_len < af->sockaddr_len) { 3663 err = -EINVAL; 3664 } else { 3665 /* Pass correct addr len to common routine (so it knows there 3666 * is only one address being passed. 3667 */ 3668 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 3669 } 3670 3671 sctp_release_sock(sk); 3672 return err; 3673 } 3674 3675 /* FIXME: Write comments. */ 3676 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags) 3677 { 3678 return -EOPNOTSUPP; /* STUB */ 3679 } 3680 3681 /* 4.1.4 accept() - TCP Style Syntax 3682 * 3683 * Applications use accept() call to remove an established SCTP 3684 * association from the accept queue of the endpoint. A new socket 3685 * descriptor will be returned from accept() to represent the newly 3686 * formed association. 3687 */ 3688 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err) 3689 { 3690 struct sctp_sock *sp; 3691 struct sctp_endpoint *ep; 3692 struct sock *newsk = NULL; 3693 struct sctp_association *asoc; 3694 long timeo; 3695 int error = 0; 3696 3697 sctp_lock_sock(sk); 3698 3699 sp = sctp_sk(sk); 3700 ep = sp->ep; 3701 3702 if (!sctp_style(sk, TCP)) { 3703 error = -EOPNOTSUPP; 3704 goto out; 3705 } 3706 3707 if (!sctp_sstate(sk, LISTENING)) { 3708 error = -EINVAL; 3709 goto out; 3710 } 3711 3712 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 3713 3714 error = sctp_wait_for_accept(sk, timeo); 3715 if (error) 3716 goto out; 3717 3718 /* We treat the list of associations on the endpoint as the accept 3719 * queue and pick the first association on the list. 3720 */ 3721 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 3722 3723 newsk = sp->pf->create_accept_sk(sk, asoc); 3724 if (!newsk) { 3725 error = -ENOMEM; 3726 goto out; 3727 } 3728 3729 /* Populate the fields of the newsk from the oldsk and migrate the 3730 * asoc to the newsk. 3731 */ 3732 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 3733 3734 out: 3735 sctp_release_sock(sk); 3736 *err = error; 3737 return newsk; 3738 } 3739 3740 /* The SCTP ioctl handler. */ 3741 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3742 { 3743 int rc = -ENOTCONN; 3744 3745 sctp_lock_sock(sk); 3746 3747 /* 3748 * SEQPACKET-style sockets in LISTENING state are valid, for 3749 * SCTP, so only discard TCP-style sockets in LISTENING state. 3750 */ 3751 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 3752 goto out; 3753 3754 switch (cmd) { 3755 case SIOCINQ: { 3756 struct sk_buff *skb; 3757 unsigned int amount = 0; 3758 3759 skb = skb_peek(&sk->sk_receive_queue); 3760 if (skb != NULL) { 3761 /* 3762 * We will only return the amount of this packet since 3763 * that is all that will be read. 3764 */ 3765 amount = skb->len; 3766 } 3767 rc = put_user(amount, (int __user *)arg); 3768 break; 3769 } 3770 default: 3771 rc = -ENOIOCTLCMD; 3772 break; 3773 } 3774 out: 3775 sctp_release_sock(sk); 3776 return rc; 3777 } 3778 3779 /* This is the function which gets called during socket creation to 3780 * initialized the SCTP-specific portion of the sock. 3781 * The sock structure should already be zero-filled memory. 3782 */ 3783 SCTP_STATIC int sctp_init_sock(struct sock *sk) 3784 { 3785 struct sctp_endpoint *ep; 3786 struct sctp_sock *sp; 3787 3788 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk); 3789 3790 sp = sctp_sk(sk); 3791 3792 /* Initialize the SCTP per socket area. */ 3793 switch (sk->sk_type) { 3794 case SOCK_SEQPACKET: 3795 sp->type = SCTP_SOCKET_UDP; 3796 break; 3797 case SOCK_STREAM: 3798 sp->type = SCTP_SOCKET_TCP; 3799 break; 3800 default: 3801 return -ESOCKTNOSUPPORT; 3802 } 3803 3804 /* Initialize default send parameters. These parameters can be 3805 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 3806 */ 3807 sp->default_stream = 0; 3808 sp->default_ppid = 0; 3809 sp->default_flags = 0; 3810 sp->default_context = 0; 3811 sp->default_timetolive = 0; 3812 3813 sp->default_rcv_context = 0; 3814 sp->max_burst = sctp_max_burst; 3815 3816 /* Initialize default setup parameters. These parameters 3817 * can be modified with the SCTP_INITMSG socket option or 3818 * overridden by the SCTP_INIT CMSG. 3819 */ 3820 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 3821 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 3822 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init; 3823 sp->initmsg.sinit_max_init_timeo = sctp_rto_max; 3824 3825 /* Initialize default RTO related parameters. These parameters can 3826 * be modified for with the SCTP_RTOINFO socket option. 3827 */ 3828 sp->rtoinfo.srto_initial = sctp_rto_initial; 3829 sp->rtoinfo.srto_max = sctp_rto_max; 3830 sp->rtoinfo.srto_min = sctp_rto_min; 3831 3832 /* Initialize default association related parameters. These parameters 3833 * can be modified with the SCTP_ASSOCINFO socket option. 3834 */ 3835 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association; 3836 sp->assocparams.sasoc_number_peer_destinations = 0; 3837 sp->assocparams.sasoc_peer_rwnd = 0; 3838 sp->assocparams.sasoc_local_rwnd = 0; 3839 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life; 3840 3841 /* Initialize default event subscriptions. By default, all the 3842 * options are off. 3843 */ 3844 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 3845 3846 /* Default Peer Address Parameters. These defaults can 3847 * be modified via SCTP_PEER_ADDR_PARAMS 3848 */ 3849 sp->hbinterval = sctp_hb_interval; 3850 sp->pathmaxrxt = sctp_max_retrans_path; 3851 sp->pathmtu = 0; // allow default discovery 3852 sp->sackdelay = sctp_sack_timeout; 3853 sp->sackfreq = 2; 3854 sp->param_flags = SPP_HB_ENABLE | 3855 SPP_PMTUD_ENABLE | 3856 SPP_SACKDELAY_ENABLE; 3857 3858 /* If enabled no SCTP message fragmentation will be performed. 3859 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 3860 */ 3861 sp->disable_fragments = 0; 3862 3863 /* Enable Nagle algorithm by default. */ 3864 sp->nodelay = 0; 3865 3866 /* Enable by default. */ 3867 sp->v4mapped = 1; 3868 3869 /* Auto-close idle associations after the configured 3870 * number of seconds. A value of 0 disables this 3871 * feature. Configure through the SCTP_AUTOCLOSE socket option, 3872 * for UDP-style sockets only. 3873 */ 3874 sp->autoclose = 0; 3875 3876 /* User specified fragmentation limit. */ 3877 sp->user_frag = 0; 3878 3879 sp->adaptation_ind = 0; 3880 3881 sp->pf = sctp_get_pf_specific(sk->sk_family); 3882 3883 /* Control variables for partial data delivery. */ 3884 atomic_set(&sp->pd_mode, 0); 3885 skb_queue_head_init(&sp->pd_lobby); 3886 sp->frag_interleave = 0; 3887 3888 /* Create a per socket endpoint structure. Even if we 3889 * change the data structure relationships, this may still 3890 * be useful for storing pre-connect address information. 3891 */ 3892 ep = sctp_endpoint_new(sk, GFP_KERNEL); 3893 if (!ep) 3894 return -ENOMEM; 3895 3896 sp->ep = ep; 3897 sp->hmac = NULL; 3898 3899 SCTP_DBG_OBJCNT_INC(sock); 3900 3901 local_bh_disable(); 3902 percpu_counter_inc(&sctp_sockets_allocated); 3903 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3904 if (sctp_default_auto_asconf) { 3905 list_add_tail(&sp->auto_asconf_list, 3906 &sctp_auto_asconf_splist); 3907 sp->do_auto_asconf = 1; 3908 } else 3909 sp->do_auto_asconf = 0; 3910 local_bh_enable(); 3911 3912 return 0; 3913 } 3914 3915 /* Cleanup any SCTP per socket resources. */ 3916 SCTP_STATIC void sctp_destroy_sock(struct sock *sk) 3917 { 3918 struct sctp_sock *sp; 3919 3920 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk); 3921 3922 /* Release our hold on the endpoint. */ 3923 sp = sctp_sk(sk); 3924 if (sp->do_auto_asconf) { 3925 sp->do_auto_asconf = 0; 3926 list_del(&sp->auto_asconf_list); 3927 } 3928 sctp_endpoint_free(sp->ep); 3929 local_bh_disable(); 3930 percpu_counter_dec(&sctp_sockets_allocated); 3931 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3932 local_bh_enable(); 3933 } 3934 3935 /* API 4.1.7 shutdown() - TCP Style Syntax 3936 * int shutdown(int socket, int how); 3937 * 3938 * sd - the socket descriptor of the association to be closed. 3939 * how - Specifies the type of shutdown. The values are 3940 * as follows: 3941 * SHUT_RD 3942 * Disables further receive operations. No SCTP 3943 * protocol action is taken. 3944 * SHUT_WR 3945 * Disables further send operations, and initiates 3946 * the SCTP shutdown sequence. 3947 * SHUT_RDWR 3948 * Disables further send and receive operations 3949 * and initiates the SCTP shutdown sequence. 3950 */ 3951 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how) 3952 { 3953 struct sctp_endpoint *ep; 3954 struct sctp_association *asoc; 3955 3956 if (!sctp_style(sk, TCP)) 3957 return; 3958 3959 if (how & SEND_SHUTDOWN) { 3960 ep = sctp_sk(sk)->ep; 3961 if (!list_empty(&ep->asocs)) { 3962 asoc = list_entry(ep->asocs.next, 3963 struct sctp_association, asocs); 3964 sctp_primitive_SHUTDOWN(asoc, NULL); 3965 } 3966 } 3967 } 3968 3969 /* 7.2.1 Association Status (SCTP_STATUS) 3970 3971 * Applications can retrieve current status information about an 3972 * association, including association state, peer receiver window size, 3973 * number of unacked data chunks, and number of data chunks pending 3974 * receipt. This information is read-only. 3975 */ 3976 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 3977 char __user *optval, 3978 int __user *optlen) 3979 { 3980 struct sctp_status status; 3981 struct sctp_association *asoc = NULL; 3982 struct sctp_transport *transport; 3983 sctp_assoc_t associd; 3984 int retval = 0; 3985 3986 if (len < sizeof(status)) { 3987 retval = -EINVAL; 3988 goto out; 3989 } 3990 3991 len = sizeof(status); 3992 if (copy_from_user(&status, optval, len)) { 3993 retval = -EFAULT; 3994 goto out; 3995 } 3996 3997 associd = status.sstat_assoc_id; 3998 asoc = sctp_id2assoc(sk, associd); 3999 if (!asoc) { 4000 retval = -EINVAL; 4001 goto out; 4002 } 4003 4004 transport = asoc->peer.primary_path; 4005 4006 status.sstat_assoc_id = sctp_assoc2id(asoc); 4007 status.sstat_state = asoc->state; 4008 status.sstat_rwnd = asoc->peer.rwnd; 4009 status.sstat_unackdata = asoc->unack_data; 4010 4011 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4012 status.sstat_instrms = asoc->c.sinit_max_instreams; 4013 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 4014 status.sstat_fragmentation_point = asoc->frag_point; 4015 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4016 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 4017 transport->af_specific->sockaddr_len); 4018 /* Map ipv4 address into v4-mapped-on-v6 address. */ 4019 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4020 (union sctp_addr *)&status.sstat_primary.spinfo_address); 4021 status.sstat_primary.spinfo_state = transport->state; 4022 status.sstat_primary.spinfo_cwnd = transport->cwnd; 4023 status.sstat_primary.spinfo_srtt = transport->srtt; 4024 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 4025 status.sstat_primary.spinfo_mtu = transport->pathmtu; 4026 4027 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 4028 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 4029 4030 if (put_user(len, optlen)) { 4031 retval = -EFAULT; 4032 goto out; 4033 } 4034 4035 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n", 4036 len, status.sstat_state, status.sstat_rwnd, 4037 status.sstat_assoc_id); 4038 4039 if (copy_to_user(optval, &status, len)) { 4040 retval = -EFAULT; 4041 goto out; 4042 } 4043 4044 out: 4045 return retval; 4046 } 4047 4048 4049 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 4050 * 4051 * Applications can retrieve information about a specific peer address 4052 * of an association, including its reachability state, congestion 4053 * window, and retransmission timer values. This information is 4054 * read-only. 4055 */ 4056 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 4057 char __user *optval, 4058 int __user *optlen) 4059 { 4060 struct sctp_paddrinfo pinfo; 4061 struct sctp_transport *transport; 4062 int retval = 0; 4063 4064 if (len < sizeof(pinfo)) { 4065 retval = -EINVAL; 4066 goto out; 4067 } 4068 4069 len = sizeof(pinfo); 4070 if (copy_from_user(&pinfo, optval, len)) { 4071 retval = -EFAULT; 4072 goto out; 4073 } 4074 4075 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 4076 pinfo.spinfo_assoc_id); 4077 if (!transport) 4078 return -EINVAL; 4079 4080 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4081 pinfo.spinfo_state = transport->state; 4082 pinfo.spinfo_cwnd = transport->cwnd; 4083 pinfo.spinfo_srtt = transport->srtt; 4084 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 4085 pinfo.spinfo_mtu = transport->pathmtu; 4086 4087 if (pinfo.spinfo_state == SCTP_UNKNOWN) 4088 pinfo.spinfo_state = SCTP_ACTIVE; 4089 4090 if (put_user(len, optlen)) { 4091 retval = -EFAULT; 4092 goto out; 4093 } 4094 4095 if (copy_to_user(optval, &pinfo, len)) { 4096 retval = -EFAULT; 4097 goto out; 4098 } 4099 4100 out: 4101 return retval; 4102 } 4103 4104 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 4105 * 4106 * This option is a on/off flag. If enabled no SCTP message 4107 * fragmentation will be performed. Instead if a message being sent 4108 * exceeds the current PMTU size, the message will NOT be sent and 4109 * instead a error will be indicated to the user. 4110 */ 4111 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 4112 char __user *optval, int __user *optlen) 4113 { 4114 int val; 4115 4116 if (len < sizeof(int)) 4117 return -EINVAL; 4118 4119 len = sizeof(int); 4120 val = (sctp_sk(sk)->disable_fragments == 1); 4121 if (put_user(len, optlen)) 4122 return -EFAULT; 4123 if (copy_to_user(optval, &val, len)) 4124 return -EFAULT; 4125 return 0; 4126 } 4127 4128 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 4129 * 4130 * This socket option is used to specify various notifications and 4131 * ancillary data the user wishes to receive. 4132 */ 4133 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 4134 int __user *optlen) 4135 { 4136 if (len < sizeof(struct sctp_event_subscribe)) 4137 return -EINVAL; 4138 len = sizeof(struct sctp_event_subscribe); 4139 if (put_user(len, optlen)) 4140 return -EFAULT; 4141 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 4142 return -EFAULT; 4143 return 0; 4144 } 4145 4146 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 4147 * 4148 * This socket option is applicable to the UDP-style socket only. When 4149 * set it will cause associations that are idle for more than the 4150 * specified number of seconds to automatically close. An association 4151 * being idle is defined an association that has NOT sent or received 4152 * user data. The special value of '0' indicates that no automatic 4153 * close of any associations should be performed. The option expects an 4154 * integer defining the number of seconds of idle time before an 4155 * association is closed. 4156 */ 4157 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 4158 { 4159 /* Applicable to UDP-style socket only */ 4160 if (sctp_style(sk, TCP)) 4161 return -EOPNOTSUPP; 4162 if (len < sizeof(int)) 4163 return -EINVAL; 4164 len = sizeof(int); 4165 if (put_user(len, optlen)) 4166 return -EFAULT; 4167 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 4168 return -EFAULT; 4169 return 0; 4170 } 4171 4172 /* Helper routine to branch off an association to a new socket. */ 4173 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc, 4174 struct socket **sockp) 4175 { 4176 struct sock *sk = asoc->base.sk; 4177 struct socket *sock; 4178 struct sctp_af *af; 4179 int err = 0; 4180 4181 /* An association cannot be branched off from an already peeled-off 4182 * socket, nor is this supported for tcp style sockets. 4183 */ 4184 if (!sctp_style(sk, UDP)) 4185 return -EINVAL; 4186 4187 /* Create a new socket. */ 4188 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 4189 if (err < 0) 4190 return err; 4191 4192 sctp_copy_sock(sock->sk, sk, asoc); 4193 4194 /* Make peeled-off sockets more like 1-1 accepted sockets. 4195 * Set the daddr and initialize id to something more random 4196 */ 4197 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family); 4198 af->to_sk_daddr(&asoc->peer.primary_addr, sk); 4199 4200 /* Populate the fields of the newsk from the oldsk and migrate the 4201 * asoc to the newsk. 4202 */ 4203 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 4204 4205 *sockp = sock; 4206 4207 return err; 4208 } 4209 4210 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 4211 { 4212 sctp_peeloff_arg_t peeloff; 4213 struct socket *newsock; 4214 int retval = 0; 4215 struct sctp_association *asoc; 4216 4217 if (len < sizeof(sctp_peeloff_arg_t)) 4218 return -EINVAL; 4219 len = sizeof(sctp_peeloff_arg_t); 4220 if (copy_from_user(&peeloff, optval, len)) 4221 return -EFAULT; 4222 4223 asoc = sctp_id2assoc(sk, peeloff.associd); 4224 if (!asoc) { 4225 retval = -EINVAL; 4226 goto out; 4227 } 4228 4229 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __func__, sk, asoc); 4230 4231 retval = sctp_do_peeloff(asoc, &newsock); 4232 if (retval < 0) 4233 goto out; 4234 4235 /* Map the socket to an unused fd that can be returned to the user. */ 4236 retval = sock_map_fd(newsock, 0); 4237 if (retval < 0) { 4238 sock_release(newsock); 4239 goto out; 4240 } 4241 4242 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n", 4243 __func__, sk, asoc, newsock->sk, retval); 4244 4245 /* Return the fd mapped to the new socket. */ 4246 peeloff.sd = retval; 4247 if (put_user(len, optlen)) 4248 return -EFAULT; 4249 if (copy_to_user(optval, &peeloff, len)) 4250 retval = -EFAULT; 4251 4252 out: 4253 return retval; 4254 } 4255 4256 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 4257 * 4258 * Applications can enable or disable heartbeats for any peer address of 4259 * an association, modify an address's heartbeat interval, force a 4260 * heartbeat to be sent immediately, and adjust the address's maximum 4261 * number of retransmissions sent before an address is considered 4262 * unreachable. The following structure is used to access and modify an 4263 * address's parameters: 4264 * 4265 * struct sctp_paddrparams { 4266 * sctp_assoc_t spp_assoc_id; 4267 * struct sockaddr_storage spp_address; 4268 * uint32_t spp_hbinterval; 4269 * uint16_t spp_pathmaxrxt; 4270 * uint32_t spp_pathmtu; 4271 * uint32_t spp_sackdelay; 4272 * uint32_t spp_flags; 4273 * }; 4274 * 4275 * spp_assoc_id - (one-to-many style socket) This is filled in the 4276 * application, and identifies the association for 4277 * this query. 4278 * spp_address - This specifies which address is of interest. 4279 * spp_hbinterval - This contains the value of the heartbeat interval, 4280 * in milliseconds. If a value of zero 4281 * is present in this field then no changes are to 4282 * be made to this parameter. 4283 * spp_pathmaxrxt - This contains the maximum number of 4284 * retransmissions before this address shall be 4285 * considered unreachable. If a value of zero 4286 * is present in this field then no changes are to 4287 * be made to this parameter. 4288 * spp_pathmtu - When Path MTU discovery is disabled the value 4289 * specified here will be the "fixed" path mtu. 4290 * Note that if the spp_address field is empty 4291 * then all associations on this address will 4292 * have this fixed path mtu set upon them. 4293 * 4294 * spp_sackdelay - When delayed sack is enabled, this value specifies 4295 * the number of milliseconds that sacks will be delayed 4296 * for. This value will apply to all addresses of an 4297 * association if the spp_address field is empty. Note 4298 * also, that if delayed sack is enabled and this 4299 * value is set to 0, no change is made to the last 4300 * recorded delayed sack timer value. 4301 * 4302 * spp_flags - These flags are used to control various features 4303 * on an association. The flag field may contain 4304 * zero or more of the following options. 4305 * 4306 * SPP_HB_ENABLE - Enable heartbeats on the 4307 * specified address. Note that if the address 4308 * field is empty all addresses for the association 4309 * have heartbeats enabled upon them. 4310 * 4311 * SPP_HB_DISABLE - Disable heartbeats on the 4312 * speicifed address. Note that if the address 4313 * field is empty all addresses for the association 4314 * will have their heartbeats disabled. Note also 4315 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 4316 * mutually exclusive, only one of these two should 4317 * be specified. Enabling both fields will have 4318 * undetermined results. 4319 * 4320 * SPP_HB_DEMAND - Request a user initiated heartbeat 4321 * to be made immediately. 4322 * 4323 * SPP_PMTUD_ENABLE - This field will enable PMTU 4324 * discovery upon the specified address. Note that 4325 * if the address feild is empty then all addresses 4326 * on the association are effected. 4327 * 4328 * SPP_PMTUD_DISABLE - This field will disable PMTU 4329 * discovery upon the specified address. Note that 4330 * if the address feild is empty then all addresses 4331 * on the association are effected. Not also that 4332 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 4333 * exclusive. Enabling both will have undetermined 4334 * results. 4335 * 4336 * SPP_SACKDELAY_ENABLE - Setting this flag turns 4337 * on delayed sack. The time specified in spp_sackdelay 4338 * is used to specify the sack delay for this address. Note 4339 * that if spp_address is empty then all addresses will 4340 * enable delayed sack and take on the sack delay 4341 * value specified in spp_sackdelay. 4342 * SPP_SACKDELAY_DISABLE - Setting this flag turns 4343 * off delayed sack. If the spp_address field is blank then 4344 * delayed sack is disabled for the entire association. Note 4345 * also that this field is mutually exclusive to 4346 * SPP_SACKDELAY_ENABLE, setting both will have undefined 4347 * results. 4348 */ 4349 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 4350 char __user *optval, int __user *optlen) 4351 { 4352 struct sctp_paddrparams params; 4353 struct sctp_transport *trans = NULL; 4354 struct sctp_association *asoc = NULL; 4355 struct sctp_sock *sp = sctp_sk(sk); 4356 4357 if (len < sizeof(struct sctp_paddrparams)) 4358 return -EINVAL; 4359 len = sizeof(struct sctp_paddrparams); 4360 if (copy_from_user(¶ms, optval, len)) 4361 return -EFAULT; 4362 4363 /* If an address other than INADDR_ANY is specified, and 4364 * no transport is found, then the request is invalid. 4365 */ 4366 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) { 4367 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 4368 params.spp_assoc_id); 4369 if (!trans) { 4370 SCTP_DEBUG_PRINTK("Failed no transport\n"); 4371 return -EINVAL; 4372 } 4373 } 4374 4375 /* Get association, if assoc_id != 0 and the socket is a one 4376 * to many style socket, and an association was not found, then 4377 * the id was invalid. 4378 */ 4379 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 4380 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 4381 SCTP_DEBUG_PRINTK("Failed no association\n"); 4382 return -EINVAL; 4383 } 4384 4385 if (trans) { 4386 /* Fetch transport values. */ 4387 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 4388 params.spp_pathmtu = trans->pathmtu; 4389 params.spp_pathmaxrxt = trans->pathmaxrxt; 4390 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 4391 4392 /*draft-11 doesn't say what to return in spp_flags*/ 4393 params.spp_flags = trans->param_flags; 4394 } else if (asoc) { 4395 /* Fetch association values. */ 4396 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 4397 params.spp_pathmtu = asoc->pathmtu; 4398 params.spp_pathmaxrxt = asoc->pathmaxrxt; 4399 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 4400 4401 /*draft-11 doesn't say what to return in spp_flags*/ 4402 params.spp_flags = asoc->param_flags; 4403 } else { 4404 /* Fetch socket values. */ 4405 params.spp_hbinterval = sp->hbinterval; 4406 params.spp_pathmtu = sp->pathmtu; 4407 params.spp_sackdelay = sp->sackdelay; 4408 params.spp_pathmaxrxt = sp->pathmaxrxt; 4409 4410 /*draft-11 doesn't say what to return in spp_flags*/ 4411 params.spp_flags = sp->param_flags; 4412 } 4413 4414 if (copy_to_user(optval, ¶ms, len)) 4415 return -EFAULT; 4416 4417 if (put_user(len, optlen)) 4418 return -EFAULT; 4419 4420 return 0; 4421 } 4422 4423 /* 4424 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 4425 * 4426 * This option will effect the way delayed acks are performed. This 4427 * option allows you to get or set the delayed ack time, in 4428 * milliseconds. It also allows changing the delayed ack frequency. 4429 * Changing the frequency to 1 disables the delayed sack algorithm. If 4430 * the assoc_id is 0, then this sets or gets the endpoints default 4431 * values. If the assoc_id field is non-zero, then the set or get 4432 * effects the specified association for the one to many model (the 4433 * assoc_id field is ignored by the one to one model). Note that if 4434 * sack_delay or sack_freq are 0 when setting this option, then the 4435 * current values will remain unchanged. 4436 * 4437 * struct sctp_sack_info { 4438 * sctp_assoc_t sack_assoc_id; 4439 * uint32_t sack_delay; 4440 * uint32_t sack_freq; 4441 * }; 4442 * 4443 * sack_assoc_id - This parameter, indicates which association the user 4444 * is performing an action upon. Note that if this field's value is 4445 * zero then the endpoints default value is changed (effecting future 4446 * associations only). 4447 * 4448 * sack_delay - This parameter contains the number of milliseconds that 4449 * the user is requesting the delayed ACK timer be set to. Note that 4450 * this value is defined in the standard to be between 200 and 500 4451 * milliseconds. 4452 * 4453 * sack_freq - This parameter contains the number of packets that must 4454 * be received before a sack is sent without waiting for the delay 4455 * timer to expire. The default value for this is 2, setting this 4456 * value to 1 will disable the delayed sack algorithm. 4457 */ 4458 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 4459 char __user *optval, 4460 int __user *optlen) 4461 { 4462 struct sctp_sack_info params; 4463 struct sctp_association *asoc = NULL; 4464 struct sctp_sock *sp = sctp_sk(sk); 4465 4466 if (len >= sizeof(struct sctp_sack_info)) { 4467 len = sizeof(struct sctp_sack_info); 4468 4469 if (copy_from_user(¶ms, optval, len)) 4470 return -EFAULT; 4471 } else if (len == sizeof(struct sctp_assoc_value)) { 4472 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n"); 4473 pr_warn("Use struct sctp_sack_info instead\n"); 4474 if (copy_from_user(¶ms, optval, len)) 4475 return -EFAULT; 4476 } else 4477 return - EINVAL; 4478 4479 /* Get association, if sack_assoc_id != 0 and the socket is a one 4480 * to many style socket, and an association was not found, then 4481 * the id was invalid. 4482 */ 4483 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 4484 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 4485 return -EINVAL; 4486 4487 if (asoc) { 4488 /* Fetch association values. */ 4489 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 4490 params.sack_delay = jiffies_to_msecs( 4491 asoc->sackdelay); 4492 params.sack_freq = asoc->sackfreq; 4493 4494 } else { 4495 params.sack_delay = 0; 4496 params.sack_freq = 1; 4497 } 4498 } else { 4499 /* Fetch socket values. */ 4500 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 4501 params.sack_delay = sp->sackdelay; 4502 params.sack_freq = sp->sackfreq; 4503 } else { 4504 params.sack_delay = 0; 4505 params.sack_freq = 1; 4506 } 4507 } 4508 4509 if (copy_to_user(optval, ¶ms, len)) 4510 return -EFAULT; 4511 4512 if (put_user(len, optlen)) 4513 return -EFAULT; 4514 4515 return 0; 4516 } 4517 4518 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 4519 * 4520 * Applications can specify protocol parameters for the default association 4521 * initialization. The option name argument to setsockopt() and getsockopt() 4522 * is SCTP_INITMSG. 4523 * 4524 * Setting initialization parameters is effective only on an unconnected 4525 * socket (for UDP-style sockets only future associations are effected 4526 * by the change). With TCP-style sockets, this option is inherited by 4527 * sockets derived from a listener socket. 4528 */ 4529 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 4530 { 4531 if (len < sizeof(struct sctp_initmsg)) 4532 return -EINVAL; 4533 len = sizeof(struct sctp_initmsg); 4534 if (put_user(len, optlen)) 4535 return -EFAULT; 4536 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 4537 return -EFAULT; 4538 return 0; 4539 } 4540 4541 4542 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 4543 char __user *optval, int __user *optlen) 4544 { 4545 struct sctp_association *asoc; 4546 int cnt = 0; 4547 struct sctp_getaddrs getaddrs; 4548 struct sctp_transport *from; 4549 void __user *to; 4550 union sctp_addr temp; 4551 struct sctp_sock *sp = sctp_sk(sk); 4552 int addrlen; 4553 size_t space_left; 4554 int bytes_copied; 4555 4556 if (len < sizeof(struct sctp_getaddrs)) 4557 return -EINVAL; 4558 4559 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4560 return -EFAULT; 4561 4562 /* For UDP-style sockets, id specifies the association to query. */ 4563 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4564 if (!asoc) 4565 return -EINVAL; 4566 4567 to = optval + offsetof(struct sctp_getaddrs,addrs); 4568 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4569 4570 list_for_each_entry(from, &asoc->peer.transport_addr_list, 4571 transports) { 4572 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4573 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4574 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4575 if (space_left < addrlen) 4576 return -ENOMEM; 4577 if (copy_to_user(to, &temp, addrlen)) 4578 return -EFAULT; 4579 to += addrlen; 4580 cnt++; 4581 space_left -= addrlen; 4582 } 4583 4584 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4585 return -EFAULT; 4586 bytes_copied = ((char __user *)to) - optval; 4587 if (put_user(bytes_copied, optlen)) 4588 return -EFAULT; 4589 4590 return 0; 4591 } 4592 4593 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 4594 size_t space_left, int *bytes_copied) 4595 { 4596 struct sctp_sockaddr_entry *addr; 4597 union sctp_addr temp; 4598 int cnt = 0; 4599 int addrlen; 4600 4601 rcu_read_lock(); 4602 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) { 4603 if (!addr->valid) 4604 continue; 4605 4606 if ((PF_INET == sk->sk_family) && 4607 (AF_INET6 == addr->a.sa.sa_family)) 4608 continue; 4609 if ((PF_INET6 == sk->sk_family) && 4610 inet_v6_ipv6only(sk) && 4611 (AF_INET == addr->a.sa.sa_family)) 4612 continue; 4613 memcpy(&temp, &addr->a, sizeof(temp)); 4614 if (!temp.v4.sin_port) 4615 temp.v4.sin_port = htons(port); 4616 4617 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4618 &temp); 4619 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4620 if (space_left < addrlen) { 4621 cnt = -ENOMEM; 4622 break; 4623 } 4624 memcpy(to, &temp, addrlen); 4625 4626 to += addrlen; 4627 cnt ++; 4628 space_left -= addrlen; 4629 *bytes_copied += addrlen; 4630 } 4631 rcu_read_unlock(); 4632 4633 return cnt; 4634 } 4635 4636 4637 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 4638 char __user *optval, int __user *optlen) 4639 { 4640 struct sctp_bind_addr *bp; 4641 struct sctp_association *asoc; 4642 int cnt = 0; 4643 struct sctp_getaddrs getaddrs; 4644 struct sctp_sockaddr_entry *addr; 4645 void __user *to; 4646 union sctp_addr temp; 4647 struct sctp_sock *sp = sctp_sk(sk); 4648 int addrlen; 4649 int err = 0; 4650 size_t space_left; 4651 int bytes_copied = 0; 4652 void *addrs; 4653 void *buf; 4654 4655 if (len < sizeof(struct sctp_getaddrs)) 4656 return -EINVAL; 4657 4658 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4659 return -EFAULT; 4660 4661 /* 4662 * For UDP-style sockets, id specifies the association to query. 4663 * If the id field is set to the value '0' then the locally bound 4664 * addresses are returned without regard to any particular 4665 * association. 4666 */ 4667 if (0 == getaddrs.assoc_id) { 4668 bp = &sctp_sk(sk)->ep->base.bind_addr; 4669 } else { 4670 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4671 if (!asoc) 4672 return -EINVAL; 4673 bp = &asoc->base.bind_addr; 4674 } 4675 4676 to = optval + offsetof(struct sctp_getaddrs,addrs); 4677 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4678 4679 addrs = kmalloc(space_left, GFP_KERNEL); 4680 if (!addrs) 4681 return -ENOMEM; 4682 4683 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4684 * addresses from the global local address list. 4685 */ 4686 if (sctp_list_single_entry(&bp->address_list)) { 4687 addr = list_entry(bp->address_list.next, 4688 struct sctp_sockaddr_entry, list); 4689 if (sctp_is_any(sk, &addr->a)) { 4690 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 4691 space_left, &bytes_copied); 4692 if (cnt < 0) { 4693 err = cnt; 4694 goto out; 4695 } 4696 goto copy_getaddrs; 4697 } 4698 } 4699 4700 buf = addrs; 4701 /* Protection on the bound address list is not needed since 4702 * in the socket option context we hold a socket lock and 4703 * thus the bound address list can't change. 4704 */ 4705 list_for_each_entry(addr, &bp->address_list, list) { 4706 memcpy(&temp, &addr->a, sizeof(temp)); 4707 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4708 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4709 if (space_left < addrlen) { 4710 err = -ENOMEM; /*fixme: right error?*/ 4711 goto out; 4712 } 4713 memcpy(buf, &temp, addrlen); 4714 buf += addrlen; 4715 bytes_copied += addrlen; 4716 cnt ++; 4717 space_left -= addrlen; 4718 } 4719 4720 copy_getaddrs: 4721 if (copy_to_user(to, addrs, bytes_copied)) { 4722 err = -EFAULT; 4723 goto out; 4724 } 4725 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 4726 err = -EFAULT; 4727 goto out; 4728 } 4729 if (put_user(bytes_copied, optlen)) 4730 err = -EFAULT; 4731 out: 4732 kfree(addrs); 4733 return err; 4734 } 4735 4736 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 4737 * 4738 * Requests that the local SCTP stack use the enclosed peer address as 4739 * the association primary. The enclosed address must be one of the 4740 * association peer's addresses. 4741 */ 4742 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 4743 char __user *optval, int __user *optlen) 4744 { 4745 struct sctp_prim prim; 4746 struct sctp_association *asoc; 4747 struct sctp_sock *sp = sctp_sk(sk); 4748 4749 if (len < sizeof(struct sctp_prim)) 4750 return -EINVAL; 4751 4752 len = sizeof(struct sctp_prim); 4753 4754 if (copy_from_user(&prim, optval, len)) 4755 return -EFAULT; 4756 4757 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 4758 if (!asoc) 4759 return -EINVAL; 4760 4761 if (!asoc->peer.primary_path) 4762 return -ENOTCONN; 4763 4764 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 4765 asoc->peer.primary_path->af_specific->sockaddr_len); 4766 4767 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, 4768 (union sctp_addr *)&prim.ssp_addr); 4769 4770 if (put_user(len, optlen)) 4771 return -EFAULT; 4772 if (copy_to_user(optval, &prim, len)) 4773 return -EFAULT; 4774 4775 return 0; 4776 } 4777 4778 /* 4779 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 4780 * 4781 * Requests that the local endpoint set the specified Adaptation Layer 4782 * Indication parameter for all future INIT and INIT-ACK exchanges. 4783 */ 4784 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 4785 char __user *optval, int __user *optlen) 4786 { 4787 struct sctp_setadaptation adaptation; 4788 4789 if (len < sizeof(struct sctp_setadaptation)) 4790 return -EINVAL; 4791 4792 len = sizeof(struct sctp_setadaptation); 4793 4794 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 4795 4796 if (put_user(len, optlen)) 4797 return -EFAULT; 4798 if (copy_to_user(optval, &adaptation, len)) 4799 return -EFAULT; 4800 4801 return 0; 4802 } 4803 4804 /* 4805 * 4806 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 4807 * 4808 * Applications that wish to use the sendto() system call may wish to 4809 * specify a default set of parameters that would normally be supplied 4810 * through the inclusion of ancillary data. This socket option allows 4811 * such an application to set the default sctp_sndrcvinfo structure. 4812 4813 4814 * The application that wishes to use this socket option simply passes 4815 * in to this call the sctp_sndrcvinfo structure defined in Section 4816 * 5.2.2) The input parameters accepted by this call include 4817 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 4818 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 4819 * to this call if the caller is using the UDP model. 4820 * 4821 * For getsockopt, it get the default sctp_sndrcvinfo structure. 4822 */ 4823 static int sctp_getsockopt_default_send_param(struct sock *sk, 4824 int len, char __user *optval, 4825 int __user *optlen) 4826 { 4827 struct sctp_sndrcvinfo info; 4828 struct sctp_association *asoc; 4829 struct sctp_sock *sp = sctp_sk(sk); 4830 4831 if (len < sizeof(struct sctp_sndrcvinfo)) 4832 return -EINVAL; 4833 4834 len = sizeof(struct sctp_sndrcvinfo); 4835 4836 if (copy_from_user(&info, optval, len)) 4837 return -EFAULT; 4838 4839 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 4840 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 4841 return -EINVAL; 4842 4843 if (asoc) { 4844 info.sinfo_stream = asoc->default_stream; 4845 info.sinfo_flags = asoc->default_flags; 4846 info.sinfo_ppid = asoc->default_ppid; 4847 info.sinfo_context = asoc->default_context; 4848 info.sinfo_timetolive = asoc->default_timetolive; 4849 } else { 4850 info.sinfo_stream = sp->default_stream; 4851 info.sinfo_flags = sp->default_flags; 4852 info.sinfo_ppid = sp->default_ppid; 4853 info.sinfo_context = sp->default_context; 4854 info.sinfo_timetolive = sp->default_timetolive; 4855 } 4856 4857 if (put_user(len, optlen)) 4858 return -EFAULT; 4859 if (copy_to_user(optval, &info, len)) 4860 return -EFAULT; 4861 4862 return 0; 4863 } 4864 4865 /* 4866 * 4867 * 7.1.5 SCTP_NODELAY 4868 * 4869 * Turn on/off any Nagle-like algorithm. This means that packets are 4870 * generally sent as soon as possible and no unnecessary delays are 4871 * introduced, at the cost of more packets in the network. Expects an 4872 * integer boolean flag. 4873 */ 4874 4875 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 4876 char __user *optval, int __user *optlen) 4877 { 4878 int val; 4879 4880 if (len < sizeof(int)) 4881 return -EINVAL; 4882 4883 len = sizeof(int); 4884 val = (sctp_sk(sk)->nodelay == 1); 4885 if (put_user(len, optlen)) 4886 return -EFAULT; 4887 if (copy_to_user(optval, &val, len)) 4888 return -EFAULT; 4889 return 0; 4890 } 4891 4892 /* 4893 * 4894 * 7.1.1 SCTP_RTOINFO 4895 * 4896 * The protocol parameters used to initialize and bound retransmission 4897 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 4898 * and modify these parameters. 4899 * All parameters are time values, in milliseconds. A value of 0, when 4900 * modifying the parameters, indicates that the current value should not 4901 * be changed. 4902 * 4903 */ 4904 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 4905 char __user *optval, 4906 int __user *optlen) { 4907 struct sctp_rtoinfo rtoinfo; 4908 struct sctp_association *asoc; 4909 4910 if (len < sizeof (struct sctp_rtoinfo)) 4911 return -EINVAL; 4912 4913 len = sizeof(struct sctp_rtoinfo); 4914 4915 if (copy_from_user(&rtoinfo, optval, len)) 4916 return -EFAULT; 4917 4918 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 4919 4920 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 4921 return -EINVAL; 4922 4923 /* Values corresponding to the specific association. */ 4924 if (asoc) { 4925 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 4926 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 4927 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 4928 } else { 4929 /* Values corresponding to the endpoint. */ 4930 struct sctp_sock *sp = sctp_sk(sk); 4931 4932 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 4933 rtoinfo.srto_max = sp->rtoinfo.srto_max; 4934 rtoinfo.srto_min = sp->rtoinfo.srto_min; 4935 } 4936 4937 if (put_user(len, optlen)) 4938 return -EFAULT; 4939 4940 if (copy_to_user(optval, &rtoinfo, len)) 4941 return -EFAULT; 4942 4943 return 0; 4944 } 4945 4946 /* 4947 * 4948 * 7.1.2 SCTP_ASSOCINFO 4949 * 4950 * This option is used to tune the maximum retransmission attempts 4951 * of the association. 4952 * Returns an error if the new association retransmission value is 4953 * greater than the sum of the retransmission value of the peer. 4954 * See [SCTP] for more information. 4955 * 4956 */ 4957 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 4958 char __user *optval, 4959 int __user *optlen) 4960 { 4961 4962 struct sctp_assocparams assocparams; 4963 struct sctp_association *asoc; 4964 struct list_head *pos; 4965 int cnt = 0; 4966 4967 if (len < sizeof (struct sctp_assocparams)) 4968 return -EINVAL; 4969 4970 len = sizeof(struct sctp_assocparams); 4971 4972 if (copy_from_user(&assocparams, optval, len)) 4973 return -EFAULT; 4974 4975 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 4976 4977 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 4978 return -EINVAL; 4979 4980 /* Values correspoinding to the specific association */ 4981 if (asoc) { 4982 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 4983 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 4984 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 4985 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec 4986 * 1000) + 4987 (asoc->cookie_life.tv_usec 4988 / 1000); 4989 4990 list_for_each(pos, &asoc->peer.transport_addr_list) { 4991 cnt ++; 4992 } 4993 4994 assocparams.sasoc_number_peer_destinations = cnt; 4995 } else { 4996 /* Values corresponding to the endpoint */ 4997 struct sctp_sock *sp = sctp_sk(sk); 4998 4999 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 5000 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 5001 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 5002 assocparams.sasoc_cookie_life = 5003 sp->assocparams.sasoc_cookie_life; 5004 assocparams.sasoc_number_peer_destinations = 5005 sp->assocparams. 5006 sasoc_number_peer_destinations; 5007 } 5008 5009 if (put_user(len, optlen)) 5010 return -EFAULT; 5011 5012 if (copy_to_user(optval, &assocparams, len)) 5013 return -EFAULT; 5014 5015 return 0; 5016 } 5017 5018 /* 5019 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 5020 * 5021 * This socket option is a boolean flag which turns on or off mapped V4 5022 * addresses. If this option is turned on and the socket is type 5023 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 5024 * If this option is turned off, then no mapping will be done of V4 5025 * addresses and a user will receive both PF_INET6 and PF_INET type 5026 * addresses on the socket. 5027 */ 5028 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 5029 char __user *optval, int __user *optlen) 5030 { 5031 int val; 5032 struct sctp_sock *sp = sctp_sk(sk); 5033 5034 if (len < sizeof(int)) 5035 return -EINVAL; 5036 5037 len = sizeof(int); 5038 val = sp->v4mapped; 5039 if (put_user(len, optlen)) 5040 return -EFAULT; 5041 if (copy_to_user(optval, &val, len)) 5042 return -EFAULT; 5043 5044 return 0; 5045 } 5046 5047 /* 5048 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 5049 * (chapter and verse is quoted at sctp_setsockopt_context()) 5050 */ 5051 static int sctp_getsockopt_context(struct sock *sk, int len, 5052 char __user *optval, int __user *optlen) 5053 { 5054 struct sctp_assoc_value params; 5055 struct sctp_sock *sp; 5056 struct sctp_association *asoc; 5057 5058 if (len < sizeof(struct sctp_assoc_value)) 5059 return -EINVAL; 5060 5061 len = sizeof(struct sctp_assoc_value); 5062 5063 if (copy_from_user(¶ms, optval, len)) 5064 return -EFAULT; 5065 5066 sp = sctp_sk(sk); 5067 5068 if (params.assoc_id != 0) { 5069 asoc = sctp_id2assoc(sk, params.assoc_id); 5070 if (!asoc) 5071 return -EINVAL; 5072 params.assoc_value = asoc->default_rcv_context; 5073 } else { 5074 params.assoc_value = sp->default_rcv_context; 5075 } 5076 5077 if (put_user(len, optlen)) 5078 return -EFAULT; 5079 if (copy_to_user(optval, ¶ms, len)) 5080 return -EFAULT; 5081 5082 return 0; 5083 } 5084 5085 /* 5086 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 5087 * This option will get or set the maximum size to put in any outgoing 5088 * SCTP DATA chunk. If a message is larger than this size it will be 5089 * fragmented by SCTP into the specified size. Note that the underlying 5090 * SCTP implementation may fragment into smaller sized chunks when the 5091 * PMTU of the underlying association is smaller than the value set by 5092 * the user. The default value for this option is '0' which indicates 5093 * the user is NOT limiting fragmentation and only the PMTU will effect 5094 * SCTP's choice of DATA chunk size. Note also that values set larger 5095 * than the maximum size of an IP datagram will effectively let SCTP 5096 * control fragmentation (i.e. the same as setting this option to 0). 5097 * 5098 * The following structure is used to access and modify this parameter: 5099 * 5100 * struct sctp_assoc_value { 5101 * sctp_assoc_t assoc_id; 5102 * uint32_t assoc_value; 5103 * }; 5104 * 5105 * assoc_id: This parameter is ignored for one-to-one style sockets. 5106 * For one-to-many style sockets this parameter indicates which 5107 * association the user is performing an action upon. Note that if 5108 * this field's value is zero then the endpoints default value is 5109 * changed (effecting future associations only). 5110 * assoc_value: This parameter specifies the maximum size in bytes. 5111 */ 5112 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 5113 char __user *optval, int __user *optlen) 5114 { 5115 struct sctp_assoc_value params; 5116 struct sctp_association *asoc; 5117 5118 if (len == sizeof(int)) { 5119 pr_warn("Use of int in maxseg socket option deprecated\n"); 5120 pr_warn("Use struct sctp_assoc_value instead\n"); 5121 params.assoc_id = 0; 5122 } else if (len >= sizeof(struct sctp_assoc_value)) { 5123 len = sizeof(struct sctp_assoc_value); 5124 if (copy_from_user(¶ms, optval, sizeof(params))) 5125 return -EFAULT; 5126 } else 5127 return -EINVAL; 5128 5129 asoc = sctp_id2assoc(sk, params.assoc_id); 5130 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 5131 return -EINVAL; 5132 5133 if (asoc) 5134 params.assoc_value = asoc->frag_point; 5135 else 5136 params.assoc_value = sctp_sk(sk)->user_frag; 5137 5138 if (put_user(len, optlen)) 5139 return -EFAULT; 5140 if (len == sizeof(int)) { 5141 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5142 return -EFAULT; 5143 } else { 5144 if (copy_to_user(optval, ¶ms, len)) 5145 return -EFAULT; 5146 } 5147 5148 return 0; 5149 } 5150 5151 /* 5152 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 5153 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 5154 */ 5155 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 5156 char __user *optval, int __user *optlen) 5157 { 5158 int val; 5159 5160 if (len < sizeof(int)) 5161 return -EINVAL; 5162 5163 len = sizeof(int); 5164 5165 val = sctp_sk(sk)->frag_interleave; 5166 if (put_user(len, optlen)) 5167 return -EFAULT; 5168 if (copy_to_user(optval, &val, len)) 5169 return -EFAULT; 5170 5171 return 0; 5172 } 5173 5174 /* 5175 * 7.1.25. Set or Get the sctp partial delivery point 5176 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 5177 */ 5178 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 5179 char __user *optval, 5180 int __user *optlen) 5181 { 5182 u32 val; 5183 5184 if (len < sizeof(u32)) 5185 return -EINVAL; 5186 5187 len = sizeof(u32); 5188 5189 val = sctp_sk(sk)->pd_point; 5190 if (put_user(len, optlen)) 5191 return -EFAULT; 5192 if (copy_to_user(optval, &val, len)) 5193 return -EFAULT; 5194 5195 return 0; 5196 } 5197 5198 /* 5199 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 5200 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 5201 */ 5202 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 5203 char __user *optval, 5204 int __user *optlen) 5205 { 5206 struct sctp_assoc_value params; 5207 struct sctp_sock *sp; 5208 struct sctp_association *asoc; 5209 5210 if (len == sizeof(int)) { 5211 pr_warn("Use of int in max_burst socket option deprecated\n"); 5212 pr_warn("Use struct sctp_assoc_value instead\n"); 5213 params.assoc_id = 0; 5214 } else if (len >= sizeof(struct sctp_assoc_value)) { 5215 len = sizeof(struct sctp_assoc_value); 5216 if (copy_from_user(¶ms, optval, len)) 5217 return -EFAULT; 5218 } else 5219 return -EINVAL; 5220 5221 sp = sctp_sk(sk); 5222 5223 if (params.assoc_id != 0) { 5224 asoc = sctp_id2assoc(sk, params.assoc_id); 5225 if (!asoc) 5226 return -EINVAL; 5227 params.assoc_value = asoc->max_burst; 5228 } else 5229 params.assoc_value = sp->max_burst; 5230 5231 if (len == sizeof(int)) { 5232 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5233 return -EFAULT; 5234 } else { 5235 if (copy_to_user(optval, ¶ms, len)) 5236 return -EFAULT; 5237 } 5238 5239 return 0; 5240 5241 } 5242 5243 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 5244 char __user *optval, int __user *optlen) 5245 { 5246 struct sctp_hmacalgo __user *p = (void __user *)optval; 5247 struct sctp_hmac_algo_param *hmacs; 5248 __u16 data_len = 0; 5249 u32 num_idents; 5250 5251 if (!sctp_auth_enable) 5252 return -EACCES; 5253 5254 hmacs = sctp_sk(sk)->ep->auth_hmacs_list; 5255 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t); 5256 5257 if (len < sizeof(struct sctp_hmacalgo) + data_len) 5258 return -EINVAL; 5259 5260 len = sizeof(struct sctp_hmacalgo) + data_len; 5261 num_idents = data_len / sizeof(u16); 5262 5263 if (put_user(len, optlen)) 5264 return -EFAULT; 5265 if (put_user(num_idents, &p->shmac_num_idents)) 5266 return -EFAULT; 5267 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len)) 5268 return -EFAULT; 5269 return 0; 5270 } 5271 5272 static int sctp_getsockopt_active_key(struct sock *sk, int len, 5273 char __user *optval, int __user *optlen) 5274 { 5275 struct sctp_authkeyid val; 5276 struct sctp_association *asoc; 5277 5278 if (!sctp_auth_enable) 5279 return -EACCES; 5280 5281 if (len < sizeof(struct sctp_authkeyid)) 5282 return -EINVAL; 5283 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 5284 return -EFAULT; 5285 5286 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 5287 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 5288 return -EINVAL; 5289 5290 if (asoc) 5291 val.scact_keynumber = asoc->active_key_id; 5292 else 5293 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id; 5294 5295 len = sizeof(struct sctp_authkeyid); 5296 if (put_user(len, optlen)) 5297 return -EFAULT; 5298 if (copy_to_user(optval, &val, len)) 5299 return -EFAULT; 5300 5301 return 0; 5302 } 5303 5304 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 5305 char __user *optval, int __user *optlen) 5306 { 5307 struct sctp_authchunks __user *p = (void __user *)optval; 5308 struct sctp_authchunks val; 5309 struct sctp_association *asoc; 5310 struct sctp_chunks_param *ch; 5311 u32 num_chunks = 0; 5312 char __user *to; 5313 5314 if (!sctp_auth_enable) 5315 return -EACCES; 5316 5317 if (len < sizeof(struct sctp_authchunks)) 5318 return -EINVAL; 5319 5320 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5321 return -EFAULT; 5322 5323 to = p->gauth_chunks; 5324 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5325 if (!asoc) 5326 return -EINVAL; 5327 5328 ch = asoc->peer.peer_chunks; 5329 if (!ch) 5330 goto num; 5331 5332 /* See if the user provided enough room for all the data */ 5333 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5334 if (len < num_chunks) 5335 return -EINVAL; 5336 5337 if (copy_to_user(to, ch->chunks, num_chunks)) 5338 return -EFAULT; 5339 num: 5340 len = sizeof(struct sctp_authchunks) + num_chunks; 5341 if (put_user(len, optlen)) return -EFAULT; 5342 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5343 return -EFAULT; 5344 return 0; 5345 } 5346 5347 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 5348 char __user *optval, int __user *optlen) 5349 { 5350 struct sctp_authchunks __user *p = (void __user *)optval; 5351 struct sctp_authchunks val; 5352 struct sctp_association *asoc; 5353 struct sctp_chunks_param *ch; 5354 u32 num_chunks = 0; 5355 char __user *to; 5356 5357 if (!sctp_auth_enable) 5358 return -EACCES; 5359 5360 if (len < sizeof(struct sctp_authchunks)) 5361 return -EINVAL; 5362 5363 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5364 return -EFAULT; 5365 5366 to = p->gauth_chunks; 5367 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5368 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 5369 return -EINVAL; 5370 5371 if (asoc) 5372 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks; 5373 else 5374 ch = sctp_sk(sk)->ep->auth_chunk_list; 5375 5376 if (!ch) 5377 goto num; 5378 5379 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5380 if (len < sizeof(struct sctp_authchunks) + num_chunks) 5381 return -EINVAL; 5382 5383 if (copy_to_user(to, ch->chunks, num_chunks)) 5384 return -EFAULT; 5385 num: 5386 len = sizeof(struct sctp_authchunks) + num_chunks; 5387 if (put_user(len, optlen)) 5388 return -EFAULT; 5389 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5390 return -EFAULT; 5391 5392 return 0; 5393 } 5394 5395 /* 5396 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 5397 * This option gets the current number of associations that are attached 5398 * to a one-to-many style socket. The option value is an uint32_t. 5399 */ 5400 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 5401 char __user *optval, int __user *optlen) 5402 { 5403 struct sctp_sock *sp = sctp_sk(sk); 5404 struct sctp_association *asoc; 5405 u32 val = 0; 5406 5407 if (sctp_style(sk, TCP)) 5408 return -EOPNOTSUPP; 5409 5410 if (len < sizeof(u32)) 5411 return -EINVAL; 5412 5413 len = sizeof(u32); 5414 5415 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5416 val++; 5417 } 5418 5419 if (put_user(len, optlen)) 5420 return -EFAULT; 5421 if (copy_to_user(optval, &val, len)) 5422 return -EFAULT; 5423 5424 return 0; 5425 } 5426 5427 /* 5428 * 8.1.23 SCTP_AUTO_ASCONF 5429 * See the corresponding setsockopt entry as description 5430 */ 5431 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 5432 char __user *optval, int __user *optlen) 5433 { 5434 int val = 0; 5435 5436 if (len < sizeof(int)) 5437 return -EINVAL; 5438 5439 len = sizeof(int); 5440 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 5441 val = 1; 5442 if (put_user(len, optlen)) 5443 return -EFAULT; 5444 if (copy_to_user(optval, &val, len)) 5445 return -EFAULT; 5446 return 0; 5447 } 5448 5449 /* 5450 * 8.2.6. Get the Current Identifiers of Associations 5451 * (SCTP_GET_ASSOC_ID_LIST) 5452 * 5453 * This option gets the current list of SCTP association identifiers of 5454 * the SCTP associations handled by a one-to-many style socket. 5455 */ 5456 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 5457 char __user *optval, int __user *optlen) 5458 { 5459 struct sctp_sock *sp = sctp_sk(sk); 5460 struct sctp_association *asoc; 5461 struct sctp_assoc_ids *ids; 5462 u32 num = 0; 5463 5464 if (sctp_style(sk, TCP)) 5465 return -EOPNOTSUPP; 5466 5467 if (len < sizeof(struct sctp_assoc_ids)) 5468 return -EINVAL; 5469 5470 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5471 num++; 5472 } 5473 5474 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 5475 return -EINVAL; 5476 5477 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 5478 5479 ids = kmalloc(len, GFP_KERNEL); 5480 if (unlikely(!ids)) 5481 return -ENOMEM; 5482 5483 ids->gaids_number_of_ids = num; 5484 num = 0; 5485 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5486 ids->gaids_assoc_id[num++] = asoc->assoc_id; 5487 } 5488 5489 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 5490 kfree(ids); 5491 return -EFAULT; 5492 } 5493 5494 kfree(ids); 5495 return 0; 5496 } 5497 5498 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname, 5499 char __user *optval, int __user *optlen) 5500 { 5501 int retval = 0; 5502 int len; 5503 5504 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n", 5505 sk, optname); 5506 5507 /* I can hardly begin to describe how wrong this is. This is 5508 * so broken as to be worse than useless. The API draft 5509 * REALLY is NOT helpful here... I am not convinced that the 5510 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 5511 * are at all well-founded. 5512 */ 5513 if (level != SOL_SCTP) { 5514 struct sctp_af *af = sctp_sk(sk)->pf->af; 5515 5516 retval = af->getsockopt(sk, level, optname, optval, optlen); 5517 return retval; 5518 } 5519 5520 if (get_user(len, optlen)) 5521 return -EFAULT; 5522 5523 sctp_lock_sock(sk); 5524 5525 switch (optname) { 5526 case SCTP_STATUS: 5527 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 5528 break; 5529 case SCTP_DISABLE_FRAGMENTS: 5530 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 5531 optlen); 5532 break; 5533 case SCTP_EVENTS: 5534 retval = sctp_getsockopt_events(sk, len, optval, optlen); 5535 break; 5536 case SCTP_AUTOCLOSE: 5537 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 5538 break; 5539 case SCTP_SOCKOPT_PEELOFF: 5540 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 5541 break; 5542 case SCTP_PEER_ADDR_PARAMS: 5543 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 5544 optlen); 5545 break; 5546 case SCTP_DELAYED_SACK: 5547 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 5548 optlen); 5549 break; 5550 case SCTP_INITMSG: 5551 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 5552 break; 5553 case SCTP_GET_PEER_ADDRS: 5554 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 5555 optlen); 5556 break; 5557 case SCTP_GET_LOCAL_ADDRS: 5558 retval = sctp_getsockopt_local_addrs(sk, len, optval, 5559 optlen); 5560 break; 5561 case SCTP_SOCKOPT_CONNECTX3: 5562 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 5563 break; 5564 case SCTP_DEFAULT_SEND_PARAM: 5565 retval = sctp_getsockopt_default_send_param(sk, len, 5566 optval, optlen); 5567 break; 5568 case SCTP_PRIMARY_ADDR: 5569 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 5570 break; 5571 case SCTP_NODELAY: 5572 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 5573 break; 5574 case SCTP_RTOINFO: 5575 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 5576 break; 5577 case SCTP_ASSOCINFO: 5578 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 5579 break; 5580 case SCTP_I_WANT_MAPPED_V4_ADDR: 5581 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 5582 break; 5583 case SCTP_MAXSEG: 5584 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 5585 break; 5586 case SCTP_GET_PEER_ADDR_INFO: 5587 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 5588 optlen); 5589 break; 5590 case SCTP_ADAPTATION_LAYER: 5591 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 5592 optlen); 5593 break; 5594 case SCTP_CONTEXT: 5595 retval = sctp_getsockopt_context(sk, len, optval, optlen); 5596 break; 5597 case SCTP_FRAGMENT_INTERLEAVE: 5598 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 5599 optlen); 5600 break; 5601 case SCTP_PARTIAL_DELIVERY_POINT: 5602 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 5603 optlen); 5604 break; 5605 case SCTP_MAX_BURST: 5606 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 5607 break; 5608 case SCTP_AUTH_KEY: 5609 case SCTP_AUTH_CHUNK: 5610 case SCTP_AUTH_DELETE_KEY: 5611 retval = -EOPNOTSUPP; 5612 break; 5613 case SCTP_HMAC_IDENT: 5614 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 5615 break; 5616 case SCTP_AUTH_ACTIVE_KEY: 5617 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 5618 break; 5619 case SCTP_PEER_AUTH_CHUNKS: 5620 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 5621 optlen); 5622 break; 5623 case SCTP_LOCAL_AUTH_CHUNKS: 5624 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 5625 optlen); 5626 break; 5627 case SCTP_GET_ASSOC_NUMBER: 5628 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 5629 break; 5630 case SCTP_GET_ASSOC_ID_LIST: 5631 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 5632 break; 5633 case SCTP_AUTO_ASCONF: 5634 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 5635 break; 5636 default: 5637 retval = -ENOPROTOOPT; 5638 break; 5639 } 5640 5641 sctp_release_sock(sk); 5642 return retval; 5643 } 5644 5645 static void sctp_hash(struct sock *sk) 5646 { 5647 /* STUB */ 5648 } 5649 5650 static void sctp_unhash(struct sock *sk) 5651 { 5652 /* STUB */ 5653 } 5654 5655 /* Check if port is acceptable. Possibly find first available port. 5656 * 5657 * The port hash table (contained in the 'global' SCTP protocol storage 5658 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 5659 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 5660 * list (the list number is the port number hashed out, so as you 5661 * would expect from a hash function, all the ports in a given list have 5662 * such a number that hashes out to the same list number; you were 5663 * expecting that, right?); so each list has a set of ports, with a 5664 * link to the socket (struct sock) that uses it, the port number and 5665 * a fastreuse flag (FIXME: NPI ipg). 5666 */ 5667 static struct sctp_bind_bucket *sctp_bucket_create( 5668 struct sctp_bind_hashbucket *head, unsigned short snum); 5669 5670 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 5671 { 5672 struct sctp_bind_hashbucket *head; /* hash list */ 5673 struct sctp_bind_bucket *pp; /* hash list port iterator */ 5674 struct hlist_node *node; 5675 unsigned short snum; 5676 int ret; 5677 5678 snum = ntohs(addr->v4.sin_port); 5679 5680 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum); 5681 sctp_local_bh_disable(); 5682 5683 if (snum == 0) { 5684 /* Search for an available port. */ 5685 int low, high, remaining, index; 5686 unsigned int rover; 5687 5688 inet_get_local_port_range(&low, &high); 5689 remaining = (high - low) + 1; 5690 rover = net_random() % remaining + low; 5691 5692 do { 5693 rover++; 5694 if ((rover < low) || (rover > high)) 5695 rover = low; 5696 if (inet_is_reserved_local_port(rover)) 5697 continue; 5698 index = sctp_phashfn(rover); 5699 head = &sctp_port_hashtable[index]; 5700 sctp_spin_lock(&head->lock); 5701 sctp_for_each_hentry(pp, node, &head->chain) 5702 if (pp->port == rover) 5703 goto next; 5704 break; 5705 next: 5706 sctp_spin_unlock(&head->lock); 5707 } while (--remaining > 0); 5708 5709 /* Exhausted local port range during search? */ 5710 ret = 1; 5711 if (remaining <= 0) 5712 goto fail; 5713 5714 /* OK, here is the one we will use. HEAD (the port 5715 * hash table list entry) is non-NULL and we hold it's 5716 * mutex. 5717 */ 5718 snum = rover; 5719 } else { 5720 /* We are given an specific port number; we verify 5721 * that it is not being used. If it is used, we will 5722 * exahust the search in the hash list corresponding 5723 * to the port number (snum) - we detect that with the 5724 * port iterator, pp being NULL. 5725 */ 5726 head = &sctp_port_hashtable[sctp_phashfn(snum)]; 5727 sctp_spin_lock(&head->lock); 5728 sctp_for_each_hentry(pp, node, &head->chain) { 5729 if (pp->port == snum) 5730 goto pp_found; 5731 } 5732 } 5733 pp = NULL; 5734 goto pp_not_found; 5735 pp_found: 5736 if (!hlist_empty(&pp->owner)) { 5737 /* We had a port hash table hit - there is an 5738 * available port (pp != NULL) and it is being 5739 * used by other socket (pp->owner not empty); that other 5740 * socket is going to be sk2. 5741 */ 5742 int reuse = sk->sk_reuse; 5743 struct sock *sk2; 5744 5745 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n"); 5746 if (pp->fastreuse && sk->sk_reuse && 5747 sk->sk_state != SCTP_SS_LISTENING) 5748 goto success; 5749 5750 /* Run through the list of sockets bound to the port 5751 * (pp->port) [via the pointers bind_next and 5752 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 5753 * we get the endpoint they describe and run through 5754 * the endpoint's list of IP (v4 or v6) addresses, 5755 * comparing each of the addresses with the address of 5756 * the socket sk. If we find a match, then that means 5757 * that this port/socket (sk) combination are already 5758 * in an endpoint. 5759 */ 5760 sk_for_each_bound(sk2, node, &pp->owner) { 5761 struct sctp_endpoint *ep2; 5762 ep2 = sctp_sk(sk2)->ep; 5763 5764 if (sk == sk2 || 5765 (reuse && sk2->sk_reuse && 5766 sk2->sk_state != SCTP_SS_LISTENING)) 5767 continue; 5768 5769 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 5770 sctp_sk(sk2), sctp_sk(sk))) { 5771 ret = (long)sk2; 5772 goto fail_unlock; 5773 } 5774 } 5775 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n"); 5776 } 5777 pp_not_found: 5778 /* If there was a hash table miss, create a new port. */ 5779 ret = 1; 5780 if (!pp && !(pp = sctp_bucket_create(head, snum))) 5781 goto fail_unlock; 5782 5783 /* In either case (hit or miss), make sure fastreuse is 1 only 5784 * if sk->sk_reuse is too (that is, if the caller requested 5785 * SO_REUSEADDR on this socket -sk-). 5786 */ 5787 if (hlist_empty(&pp->owner)) { 5788 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 5789 pp->fastreuse = 1; 5790 else 5791 pp->fastreuse = 0; 5792 } else if (pp->fastreuse && 5793 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 5794 pp->fastreuse = 0; 5795 5796 /* We are set, so fill up all the data in the hash table 5797 * entry, tie the socket list information with the rest of the 5798 * sockets FIXME: Blurry, NPI (ipg). 5799 */ 5800 success: 5801 if (!sctp_sk(sk)->bind_hash) { 5802 inet_sk(sk)->inet_num = snum; 5803 sk_add_bind_node(sk, &pp->owner); 5804 sctp_sk(sk)->bind_hash = pp; 5805 } 5806 ret = 0; 5807 5808 fail_unlock: 5809 sctp_spin_unlock(&head->lock); 5810 5811 fail: 5812 sctp_local_bh_enable(); 5813 return ret; 5814 } 5815 5816 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 5817 * port is requested. 5818 */ 5819 static int sctp_get_port(struct sock *sk, unsigned short snum) 5820 { 5821 long ret; 5822 union sctp_addr addr; 5823 struct sctp_af *af = sctp_sk(sk)->pf->af; 5824 5825 /* Set up a dummy address struct from the sk. */ 5826 af->from_sk(&addr, sk); 5827 addr.v4.sin_port = htons(snum); 5828 5829 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 5830 ret = sctp_get_port_local(sk, &addr); 5831 5832 return ret ? 1 : 0; 5833 } 5834 5835 /* 5836 * Move a socket to LISTENING state. 5837 */ 5838 SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog) 5839 { 5840 struct sctp_sock *sp = sctp_sk(sk); 5841 struct sctp_endpoint *ep = sp->ep; 5842 struct crypto_hash *tfm = NULL; 5843 5844 /* Allocate HMAC for generating cookie. */ 5845 if (!sctp_sk(sk)->hmac && sctp_hmac_alg) { 5846 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC); 5847 if (IS_ERR(tfm)) { 5848 if (net_ratelimit()) { 5849 pr_info("failed to load transform for %s: %ld\n", 5850 sctp_hmac_alg, PTR_ERR(tfm)); 5851 } 5852 return -ENOSYS; 5853 } 5854 sctp_sk(sk)->hmac = tfm; 5855 } 5856 5857 /* 5858 * If a bind() or sctp_bindx() is not called prior to a listen() 5859 * call that allows new associations to be accepted, the system 5860 * picks an ephemeral port and will choose an address set equivalent 5861 * to binding with a wildcard address. 5862 * 5863 * This is not currently spelled out in the SCTP sockets 5864 * extensions draft, but follows the practice as seen in TCP 5865 * sockets. 5866 * 5867 */ 5868 sk->sk_state = SCTP_SS_LISTENING; 5869 if (!ep->base.bind_addr.port) { 5870 if (sctp_autobind(sk)) 5871 return -EAGAIN; 5872 } else { 5873 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 5874 sk->sk_state = SCTP_SS_CLOSED; 5875 return -EADDRINUSE; 5876 } 5877 } 5878 5879 sk->sk_max_ack_backlog = backlog; 5880 sctp_hash_endpoint(ep); 5881 return 0; 5882 } 5883 5884 /* 5885 * 4.1.3 / 5.1.3 listen() 5886 * 5887 * By default, new associations are not accepted for UDP style sockets. 5888 * An application uses listen() to mark a socket as being able to 5889 * accept new associations. 5890 * 5891 * On TCP style sockets, applications use listen() to ready the SCTP 5892 * endpoint for accepting inbound associations. 5893 * 5894 * On both types of endpoints a backlog of '0' disables listening. 5895 * 5896 * Move a socket to LISTENING state. 5897 */ 5898 int sctp_inet_listen(struct socket *sock, int backlog) 5899 { 5900 struct sock *sk = sock->sk; 5901 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5902 int err = -EINVAL; 5903 5904 if (unlikely(backlog < 0)) 5905 return err; 5906 5907 sctp_lock_sock(sk); 5908 5909 /* Peeled-off sockets are not allowed to listen(). */ 5910 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 5911 goto out; 5912 5913 if (sock->state != SS_UNCONNECTED) 5914 goto out; 5915 5916 /* If backlog is zero, disable listening. */ 5917 if (!backlog) { 5918 if (sctp_sstate(sk, CLOSED)) 5919 goto out; 5920 5921 err = 0; 5922 sctp_unhash_endpoint(ep); 5923 sk->sk_state = SCTP_SS_CLOSED; 5924 if (sk->sk_reuse) 5925 sctp_sk(sk)->bind_hash->fastreuse = 1; 5926 goto out; 5927 } 5928 5929 /* If we are already listening, just update the backlog */ 5930 if (sctp_sstate(sk, LISTENING)) 5931 sk->sk_max_ack_backlog = backlog; 5932 else { 5933 err = sctp_listen_start(sk, backlog); 5934 if (err) 5935 goto out; 5936 } 5937 5938 err = 0; 5939 out: 5940 sctp_release_sock(sk); 5941 return err; 5942 } 5943 5944 /* 5945 * This function is done by modeling the current datagram_poll() and the 5946 * tcp_poll(). Note that, based on these implementations, we don't 5947 * lock the socket in this function, even though it seems that, 5948 * ideally, locking or some other mechanisms can be used to ensure 5949 * the integrity of the counters (sndbuf and wmem_alloc) used 5950 * in this place. We assume that we don't need locks either until proven 5951 * otherwise. 5952 * 5953 * Another thing to note is that we include the Async I/O support 5954 * here, again, by modeling the current TCP/UDP code. We don't have 5955 * a good way to test with it yet. 5956 */ 5957 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 5958 { 5959 struct sock *sk = sock->sk; 5960 struct sctp_sock *sp = sctp_sk(sk); 5961 unsigned int mask; 5962 5963 poll_wait(file, sk_sleep(sk), wait); 5964 5965 /* A TCP-style listening socket becomes readable when the accept queue 5966 * is not empty. 5967 */ 5968 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 5969 return (!list_empty(&sp->ep->asocs)) ? 5970 (POLLIN | POLLRDNORM) : 0; 5971 5972 mask = 0; 5973 5974 /* Is there any exceptional events? */ 5975 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 5976 mask |= POLLERR; 5977 if (sk->sk_shutdown & RCV_SHUTDOWN) 5978 mask |= POLLRDHUP | POLLIN | POLLRDNORM; 5979 if (sk->sk_shutdown == SHUTDOWN_MASK) 5980 mask |= POLLHUP; 5981 5982 /* Is it readable? Reconsider this code with TCP-style support. */ 5983 if (!skb_queue_empty(&sk->sk_receive_queue)) 5984 mask |= POLLIN | POLLRDNORM; 5985 5986 /* The association is either gone or not ready. */ 5987 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 5988 return mask; 5989 5990 /* Is it writable? */ 5991 if (sctp_writeable(sk)) { 5992 mask |= POLLOUT | POLLWRNORM; 5993 } else { 5994 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 5995 /* 5996 * Since the socket is not locked, the buffer 5997 * might be made available after the writeable check and 5998 * before the bit is set. This could cause a lost I/O 5999 * signal. tcp_poll() has a race breaker for this race 6000 * condition. Based on their implementation, we put 6001 * in the following code to cover it as well. 6002 */ 6003 if (sctp_writeable(sk)) 6004 mask |= POLLOUT | POLLWRNORM; 6005 } 6006 return mask; 6007 } 6008 6009 /******************************************************************** 6010 * 2nd Level Abstractions 6011 ********************************************************************/ 6012 6013 static struct sctp_bind_bucket *sctp_bucket_create( 6014 struct sctp_bind_hashbucket *head, unsigned short snum) 6015 { 6016 struct sctp_bind_bucket *pp; 6017 6018 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 6019 if (pp) { 6020 SCTP_DBG_OBJCNT_INC(bind_bucket); 6021 pp->port = snum; 6022 pp->fastreuse = 0; 6023 INIT_HLIST_HEAD(&pp->owner); 6024 hlist_add_head(&pp->node, &head->chain); 6025 } 6026 return pp; 6027 } 6028 6029 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 6030 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 6031 { 6032 if (pp && hlist_empty(&pp->owner)) { 6033 __hlist_del(&pp->node); 6034 kmem_cache_free(sctp_bucket_cachep, pp); 6035 SCTP_DBG_OBJCNT_DEC(bind_bucket); 6036 } 6037 } 6038 6039 /* Release this socket's reference to a local port. */ 6040 static inline void __sctp_put_port(struct sock *sk) 6041 { 6042 struct sctp_bind_hashbucket *head = 6043 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->inet_num)]; 6044 struct sctp_bind_bucket *pp; 6045 6046 sctp_spin_lock(&head->lock); 6047 pp = sctp_sk(sk)->bind_hash; 6048 __sk_del_bind_node(sk); 6049 sctp_sk(sk)->bind_hash = NULL; 6050 inet_sk(sk)->inet_num = 0; 6051 sctp_bucket_destroy(pp); 6052 sctp_spin_unlock(&head->lock); 6053 } 6054 6055 void sctp_put_port(struct sock *sk) 6056 { 6057 sctp_local_bh_disable(); 6058 __sctp_put_port(sk); 6059 sctp_local_bh_enable(); 6060 } 6061 6062 /* 6063 * The system picks an ephemeral port and choose an address set equivalent 6064 * to binding with a wildcard address. 6065 * One of those addresses will be the primary address for the association. 6066 * This automatically enables the multihoming capability of SCTP. 6067 */ 6068 static int sctp_autobind(struct sock *sk) 6069 { 6070 union sctp_addr autoaddr; 6071 struct sctp_af *af; 6072 __be16 port; 6073 6074 /* Initialize a local sockaddr structure to INADDR_ANY. */ 6075 af = sctp_sk(sk)->pf->af; 6076 6077 port = htons(inet_sk(sk)->inet_num); 6078 af->inaddr_any(&autoaddr, port); 6079 6080 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 6081 } 6082 6083 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 6084 * 6085 * From RFC 2292 6086 * 4.2 The cmsghdr Structure * 6087 * 6088 * When ancillary data is sent or received, any number of ancillary data 6089 * objects can be specified by the msg_control and msg_controllen members of 6090 * the msghdr structure, because each object is preceded by 6091 * a cmsghdr structure defining the object's length (the cmsg_len member). 6092 * Historically Berkeley-derived implementations have passed only one object 6093 * at a time, but this API allows multiple objects to be 6094 * passed in a single call to sendmsg() or recvmsg(). The following example 6095 * shows two ancillary data objects in a control buffer. 6096 * 6097 * |<--------------------------- msg_controllen -------------------------->| 6098 * | | 6099 * 6100 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 6101 * 6102 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 6103 * | | | 6104 * 6105 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 6106 * 6107 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 6108 * | | | | | 6109 * 6110 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6111 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 6112 * 6113 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 6114 * 6115 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6116 * ^ 6117 * | 6118 * 6119 * msg_control 6120 * points here 6121 */ 6122 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg, 6123 sctp_cmsgs_t *cmsgs) 6124 { 6125 struct cmsghdr *cmsg; 6126 struct msghdr *my_msg = (struct msghdr *)msg; 6127 6128 for (cmsg = CMSG_FIRSTHDR(msg); 6129 cmsg != NULL; 6130 cmsg = CMSG_NXTHDR(my_msg, cmsg)) { 6131 if (!CMSG_OK(my_msg, cmsg)) 6132 return -EINVAL; 6133 6134 /* Should we parse this header or ignore? */ 6135 if (cmsg->cmsg_level != IPPROTO_SCTP) 6136 continue; 6137 6138 /* Strictly check lengths following example in SCM code. */ 6139 switch (cmsg->cmsg_type) { 6140 case SCTP_INIT: 6141 /* SCTP Socket API Extension 6142 * 5.2.1 SCTP Initiation Structure (SCTP_INIT) 6143 * 6144 * This cmsghdr structure provides information for 6145 * initializing new SCTP associations with sendmsg(). 6146 * The SCTP_INITMSG socket option uses this same data 6147 * structure. This structure is not used for 6148 * recvmsg(). 6149 * 6150 * cmsg_level cmsg_type cmsg_data[] 6151 * ------------ ------------ ---------------------- 6152 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 6153 */ 6154 if (cmsg->cmsg_len != 6155 CMSG_LEN(sizeof(struct sctp_initmsg))) 6156 return -EINVAL; 6157 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); 6158 break; 6159 6160 case SCTP_SNDRCV: 6161 /* SCTP Socket API Extension 6162 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) 6163 * 6164 * This cmsghdr structure specifies SCTP options for 6165 * sendmsg() and describes SCTP header information 6166 * about a received message through recvmsg(). 6167 * 6168 * cmsg_level cmsg_type cmsg_data[] 6169 * ------------ ------------ ---------------------- 6170 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 6171 */ 6172 if (cmsg->cmsg_len != 6173 CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 6174 return -EINVAL; 6175 6176 cmsgs->info = 6177 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); 6178 6179 /* Minimally, validate the sinfo_flags. */ 6180 if (cmsgs->info->sinfo_flags & 6181 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 6182 SCTP_ABORT | SCTP_EOF)) 6183 return -EINVAL; 6184 break; 6185 6186 default: 6187 return -EINVAL; 6188 } 6189 } 6190 return 0; 6191 } 6192 6193 /* 6194 * Wait for a packet.. 6195 * Note: This function is the same function as in core/datagram.c 6196 * with a few modifications to make lksctp work. 6197 */ 6198 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p) 6199 { 6200 int error; 6201 DEFINE_WAIT(wait); 6202 6203 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 6204 6205 /* Socket errors? */ 6206 error = sock_error(sk); 6207 if (error) 6208 goto out; 6209 6210 if (!skb_queue_empty(&sk->sk_receive_queue)) 6211 goto ready; 6212 6213 /* Socket shut down? */ 6214 if (sk->sk_shutdown & RCV_SHUTDOWN) 6215 goto out; 6216 6217 /* Sequenced packets can come disconnected. If so we report the 6218 * problem. 6219 */ 6220 error = -ENOTCONN; 6221 6222 /* Is there a good reason to think that we may receive some data? */ 6223 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 6224 goto out; 6225 6226 /* Handle signals. */ 6227 if (signal_pending(current)) 6228 goto interrupted; 6229 6230 /* Let another process have a go. Since we are going to sleep 6231 * anyway. Note: This may cause odd behaviors if the message 6232 * does not fit in the user's buffer, but this seems to be the 6233 * only way to honor MSG_DONTWAIT realistically. 6234 */ 6235 sctp_release_sock(sk); 6236 *timeo_p = schedule_timeout(*timeo_p); 6237 sctp_lock_sock(sk); 6238 6239 ready: 6240 finish_wait(sk_sleep(sk), &wait); 6241 return 0; 6242 6243 interrupted: 6244 error = sock_intr_errno(*timeo_p); 6245 6246 out: 6247 finish_wait(sk_sleep(sk), &wait); 6248 *err = error; 6249 return error; 6250 } 6251 6252 /* Receive a datagram. 6253 * Note: This is pretty much the same routine as in core/datagram.c 6254 * with a few changes to make lksctp work. 6255 */ 6256 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 6257 int noblock, int *err) 6258 { 6259 int error; 6260 struct sk_buff *skb; 6261 long timeo; 6262 6263 timeo = sock_rcvtimeo(sk, noblock); 6264 6265 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n", 6266 timeo, MAX_SCHEDULE_TIMEOUT); 6267 6268 do { 6269 /* Again only user level code calls this function, 6270 * so nothing interrupt level 6271 * will suddenly eat the receive_queue. 6272 * 6273 * Look at current nfs client by the way... 6274 * However, this function was correct in any case. 8) 6275 */ 6276 if (flags & MSG_PEEK) { 6277 spin_lock_bh(&sk->sk_receive_queue.lock); 6278 skb = skb_peek(&sk->sk_receive_queue); 6279 if (skb) 6280 atomic_inc(&skb->users); 6281 spin_unlock_bh(&sk->sk_receive_queue.lock); 6282 } else { 6283 skb = skb_dequeue(&sk->sk_receive_queue); 6284 } 6285 6286 if (skb) 6287 return skb; 6288 6289 /* Caller is allowed not to check sk->sk_err before calling. */ 6290 error = sock_error(sk); 6291 if (error) 6292 goto no_packet; 6293 6294 if (sk->sk_shutdown & RCV_SHUTDOWN) 6295 break; 6296 6297 /* User doesn't want to wait. */ 6298 error = -EAGAIN; 6299 if (!timeo) 6300 goto no_packet; 6301 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 6302 6303 return NULL; 6304 6305 no_packet: 6306 *err = error; 6307 return NULL; 6308 } 6309 6310 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 6311 static void __sctp_write_space(struct sctp_association *asoc) 6312 { 6313 struct sock *sk = asoc->base.sk; 6314 struct socket *sock = sk->sk_socket; 6315 6316 if ((sctp_wspace(asoc) > 0) && sock) { 6317 if (waitqueue_active(&asoc->wait)) 6318 wake_up_interruptible(&asoc->wait); 6319 6320 if (sctp_writeable(sk)) { 6321 wait_queue_head_t *wq = sk_sleep(sk); 6322 6323 if (wq && waitqueue_active(wq)) 6324 wake_up_interruptible(wq); 6325 6326 /* Note that we try to include the Async I/O support 6327 * here by modeling from the current TCP/UDP code. 6328 * We have not tested with it yet. 6329 */ 6330 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 6331 sock_wake_async(sock, 6332 SOCK_WAKE_SPACE, POLL_OUT); 6333 } 6334 } 6335 } 6336 6337 /* Do accounting for the sndbuf space. 6338 * Decrement the used sndbuf space of the corresponding association by the 6339 * data size which was just transmitted(freed). 6340 */ 6341 static void sctp_wfree(struct sk_buff *skb) 6342 { 6343 struct sctp_association *asoc; 6344 struct sctp_chunk *chunk; 6345 struct sock *sk; 6346 6347 /* Get the saved chunk pointer. */ 6348 chunk = *((struct sctp_chunk **)(skb->cb)); 6349 asoc = chunk->asoc; 6350 sk = asoc->base.sk; 6351 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 6352 sizeof(struct sk_buff) + 6353 sizeof(struct sctp_chunk); 6354 6355 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 6356 6357 /* 6358 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 6359 */ 6360 sk->sk_wmem_queued -= skb->truesize; 6361 sk_mem_uncharge(sk, skb->truesize); 6362 6363 sock_wfree(skb); 6364 __sctp_write_space(asoc); 6365 6366 sctp_association_put(asoc); 6367 } 6368 6369 /* Do accounting for the receive space on the socket. 6370 * Accounting for the association is done in ulpevent.c 6371 * We set this as a destructor for the cloned data skbs so that 6372 * accounting is done at the correct time. 6373 */ 6374 void sctp_sock_rfree(struct sk_buff *skb) 6375 { 6376 struct sock *sk = skb->sk; 6377 struct sctp_ulpevent *event = sctp_skb2event(skb); 6378 6379 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 6380 6381 /* 6382 * Mimic the behavior of sock_rfree 6383 */ 6384 sk_mem_uncharge(sk, event->rmem_len); 6385 } 6386 6387 6388 /* Helper function to wait for space in the sndbuf. */ 6389 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 6390 size_t msg_len) 6391 { 6392 struct sock *sk = asoc->base.sk; 6393 int err = 0; 6394 long current_timeo = *timeo_p; 6395 DEFINE_WAIT(wait); 6396 6397 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n", 6398 asoc, (long)(*timeo_p), msg_len); 6399 6400 /* Increment the association's refcnt. */ 6401 sctp_association_hold(asoc); 6402 6403 /* Wait on the association specific sndbuf space. */ 6404 for (;;) { 6405 prepare_to_wait_exclusive(&asoc->wait, &wait, 6406 TASK_INTERRUPTIBLE); 6407 if (!*timeo_p) 6408 goto do_nonblock; 6409 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6410 asoc->base.dead) 6411 goto do_error; 6412 if (signal_pending(current)) 6413 goto do_interrupted; 6414 if (msg_len <= sctp_wspace(asoc)) 6415 break; 6416 6417 /* Let another process have a go. Since we are going 6418 * to sleep anyway. 6419 */ 6420 sctp_release_sock(sk); 6421 current_timeo = schedule_timeout(current_timeo); 6422 BUG_ON(sk != asoc->base.sk); 6423 sctp_lock_sock(sk); 6424 6425 *timeo_p = current_timeo; 6426 } 6427 6428 out: 6429 finish_wait(&asoc->wait, &wait); 6430 6431 /* Release the association's refcnt. */ 6432 sctp_association_put(asoc); 6433 6434 return err; 6435 6436 do_error: 6437 err = -EPIPE; 6438 goto out; 6439 6440 do_interrupted: 6441 err = sock_intr_errno(*timeo_p); 6442 goto out; 6443 6444 do_nonblock: 6445 err = -EAGAIN; 6446 goto out; 6447 } 6448 6449 void sctp_data_ready(struct sock *sk, int len) 6450 { 6451 struct socket_wq *wq; 6452 6453 rcu_read_lock(); 6454 wq = rcu_dereference(sk->sk_wq); 6455 if (wq_has_sleeper(wq)) 6456 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | 6457 POLLRDNORM | POLLRDBAND); 6458 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 6459 rcu_read_unlock(); 6460 } 6461 6462 /* If socket sndbuf has changed, wake up all per association waiters. */ 6463 void sctp_write_space(struct sock *sk) 6464 { 6465 struct sctp_association *asoc; 6466 6467 /* Wake up the tasks in each wait queue. */ 6468 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 6469 __sctp_write_space(asoc); 6470 } 6471 } 6472 6473 /* Is there any sndbuf space available on the socket? 6474 * 6475 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 6476 * associations on the same socket. For a UDP-style socket with 6477 * multiple associations, it is possible for it to be "unwriteable" 6478 * prematurely. I assume that this is acceptable because 6479 * a premature "unwriteable" is better than an accidental "writeable" which 6480 * would cause an unwanted block under certain circumstances. For the 1-1 6481 * UDP-style sockets or TCP-style sockets, this code should work. 6482 * - Daisy 6483 */ 6484 static int sctp_writeable(struct sock *sk) 6485 { 6486 int amt = 0; 6487 6488 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 6489 if (amt < 0) 6490 amt = 0; 6491 return amt; 6492 } 6493 6494 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 6495 * returns immediately with EINPROGRESS. 6496 */ 6497 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 6498 { 6499 struct sock *sk = asoc->base.sk; 6500 int err = 0; 6501 long current_timeo = *timeo_p; 6502 DEFINE_WAIT(wait); 6503 6504 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc, 6505 (long)(*timeo_p)); 6506 6507 /* Increment the association's refcnt. */ 6508 sctp_association_hold(asoc); 6509 6510 for (;;) { 6511 prepare_to_wait_exclusive(&asoc->wait, &wait, 6512 TASK_INTERRUPTIBLE); 6513 if (!*timeo_p) 6514 goto do_nonblock; 6515 if (sk->sk_shutdown & RCV_SHUTDOWN) 6516 break; 6517 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6518 asoc->base.dead) 6519 goto do_error; 6520 if (signal_pending(current)) 6521 goto do_interrupted; 6522 6523 if (sctp_state(asoc, ESTABLISHED)) 6524 break; 6525 6526 /* Let another process have a go. Since we are going 6527 * to sleep anyway. 6528 */ 6529 sctp_release_sock(sk); 6530 current_timeo = schedule_timeout(current_timeo); 6531 sctp_lock_sock(sk); 6532 6533 *timeo_p = current_timeo; 6534 } 6535 6536 out: 6537 finish_wait(&asoc->wait, &wait); 6538 6539 /* Release the association's refcnt. */ 6540 sctp_association_put(asoc); 6541 6542 return err; 6543 6544 do_error: 6545 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 6546 err = -ETIMEDOUT; 6547 else 6548 err = -ECONNREFUSED; 6549 goto out; 6550 6551 do_interrupted: 6552 err = sock_intr_errno(*timeo_p); 6553 goto out; 6554 6555 do_nonblock: 6556 err = -EINPROGRESS; 6557 goto out; 6558 } 6559 6560 static int sctp_wait_for_accept(struct sock *sk, long timeo) 6561 { 6562 struct sctp_endpoint *ep; 6563 int err = 0; 6564 DEFINE_WAIT(wait); 6565 6566 ep = sctp_sk(sk)->ep; 6567 6568 6569 for (;;) { 6570 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 6571 TASK_INTERRUPTIBLE); 6572 6573 if (list_empty(&ep->asocs)) { 6574 sctp_release_sock(sk); 6575 timeo = schedule_timeout(timeo); 6576 sctp_lock_sock(sk); 6577 } 6578 6579 err = -EINVAL; 6580 if (!sctp_sstate(sk, LISTENING)) 6581 break; 6582 6583 err = 0; 6584 if (!list_empty(&ep->asocs)) 6585 break; 6586 6587 err = sock_intr_errno(timeo); 6588 if (signal_pending(current)) 6589 break; 6590 6591 err = -EAGAIN; 6592 if (!timeo) 6593 break; 6594 } 6595 6596 finish_wait(sk_sleep(sk), &wait); 6597 6598 return err; 6599 } 6600 6601 static void sctp_wait_for_close(struct sock *sk, long timeout) 6602 { 6603 DEFINE_WAIT(wait); 6604 6605 do { 6606 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 6607 if (list_empty(&sctp_sk(sk)->ep->asocs)) 6608 break; 6609 sctp_release_sock(sk); 6610 timeout = schedule_timeout(timeout); 6611 sctp_lock_sock(sk); 6612 } while (!signal_pending(current) && timeout); 6613 6614 finish_wait(sk_sleep(sk), &wait); 6615 } 6616 6617 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 6618 { 6619 struct sk_buff *frag; 6620 6621 if (!skb->data_len) 6622 goto done; 6623 6624 /* Don't forget the fragments. */ 6625 skb_walk_frags(skb, frag) 6626 sctp_skb_set_owner_r_frag(frag, sk); 6627 6628 done: 6629 sctp_skb_set_owner_r(skb, sk); 6630 } 6631 6632 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 6633 struct sctp_association *asoc) 6634 { 6635 struct inet_sock *inet = inet_sk(sk); 6636 struct inet_sock *newinet; 6637 6638 newsk->sk_type = sk->sk_type; 6639 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 6640 newsk->sk_flags = sk->sk_flags; 6641 newsk->sk_no_check = sk->sk_no_check; 6642 newsk->sk_reuse = sk->sk_reuse; 6643 6644 newsk->sk_shutdown = sk->sk_shutdown; 6645 newsk->sk_destruct = inet_sock_destruct; 6646 newsk->sk_family = sk->sk_family; 6647 newsk->sk_protocol = IPPROTO_SCTP; 6648 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 6649 newsk->sk_sndbuf = sk->sk_sndbuf; 6650 newsk->sk_rcvbuf = sk->sk_rcvbuf; 6651 newsk->sk_lingertime = sk->sk_lingertime; 6652 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 6653 newsk->sk_sndtimeo = sk->sk_sndtimeo; 6654 6655 newinet = inet_sk(newsk); 6656 6657 /* Initialize sk's sport, dport, rcv_saddr and daddr for 6658 * getsockname() and getpeername() 6659 */ 6660 newinet->inet_sport = inet->inet_sport; 6661 newinet->inet_saddr = inet->inet_saddr; 6662 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 6663 newinet->inet_dport = htons(asoc->peer.port); 6664 newinet->pmtudisc = inet->pmtudisc; 6665 newinet->inet_id = asoc->next_tsn ^ jiffies; 6666 6667 newinet->uc_ttl = inet->uc_ttl; 6668 newinet->mc_loop = 1; 6669 newinet->mc_ttl = 1; 6670 newinet->mc_index = 0; 6671 newinet->mc_list = NULL; 6672 } 6673 6674 /* Populate the fields of the newsk from the oldsk and migrate the assoc 6675 * and its messages to the newsk. 6676 */ 6677 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 6678 struct sctp_association *assoc, 6679 sctp_socket_type_t type) 6680 { 6681 struct sctp_sock *oldsp = sctp_sk(oldsk); 6682 struct sctp_sock *newsp = sctp_sk(newsk); 6683 struct sctp_bind_bucket *pp; /* hash list port iterator */ 6684 struct sctp_endpoint *newep = newsp->ep; 6685 struct sk_buff *skb, *tmp; 6686 struct sctp_ulpevent *event; 6687 struct sctp_bind_hashbucket *head; 6688 struct list_head tmplist; 6689 6690 /* Migrate socket buffer sizes and all the socket level options to the 6691 * new socket. 6692 */ 6693 newsk->sk_sndbuf = oldsk->sk_sndbuf; 6694 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 6695 /* Brute force copy old sctp opt. */ 6696 if (oldsp->do_auto_asconf) { 6697 memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist)); 6698 inet_sk_copy_descendant(newsk, oldsk); 6699 memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist)); 6700 } else 6701 inet_sk_copy_descendant(newsk, oldsk); 6702 6703 /* Restore the ep value that was overwritten with the above structure 6704 * copy. 6705 */ 6706 newsp->ep = newep; 6707 newsp->hmac = NULL; 6708 6709 /* Hook this new socket in to the bind_hash list. */ 6710 head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->inet_num)]; 6711 sctp_local_bh_disable(); 6712 sctp_spin_lock(&head->lock); 6713 pp = sctp_sk(oldsk)->bind_hash; 6714 sk_add_bind_node(newsk, &pp->owner); 6715 sctp_sk(newsk)->bind_hash = pp; 6716 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 6717 sctp_spin_unlock(&head->lock); 6718 sctp_local_bh_enable(); 6719 6720 /* Copy the bind_addr list from the original endpoint to the new 6721 * endpoint so that we can handle restarts properly 6722 */ 6723 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 6724 &oldsp->ep->base.bind_addr, GFP_KERNEL); 6725 6726 /* Move any messages in the old socket's receive queue that are for the 6727 * peeled off association to the new socket's receive queue. 6728 */ 6729 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 6730 event = sctp_skb2event(skb); 6731 if (event->asoc == assoc) { 6732 __skb_unlink(skb, &oldsk->sk_receive_queue); 6733 __skb_queue_tail(&newsk->sk_receive_queue, skb); 6734 sctp_skb_set_owner_r_frag(skb, newsk); 6735 } 6736 } 6737 6738 /* Clean up any messages pending delivery due to partial 6739 * delivery. Three cases: 6740 * 1) No partial deliver; no work. 6741 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 6742 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 6743 */ 6744 skb_queue_head_init(&newsp->pd_lobby); 6745 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 6746 6747 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 6748 struct sk_buff_head *queue; 6749 6750 /* Decide which queue to move pd_lobby skbs to. */ 6751 if (assoc->ulpq.pd_mode) { 6752 queue = &newsp->pd_lobby; 6753 } else 6754 queue = &newsk->sk_receive_queue; 6755 6756 /* Walk through the pd_lobby, looking for skbs that 6757 * need moved to the new socket. 6758 */ 6759 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 6760 event = sctp_skb2event(skb); 6761 if (event->asoc == assoc) { 6762 __skb_unlink(skb, &oldsp->pd_lobby); 6763 __skb_queue_tail(queue, skb); 6764 sctp_skb_set_owner_r_frag(skb, newsk); 6765 } 6766 } 6767 6768 /* Clear up any skbs waiting for the partial 6769 * delivery to finish. 6770 */ 6771 if (assoc->ulpq.pd_mode) 6772 sctp_clear_pd(oldsk, NULL); 6773 6774 } 6775 6776 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) 6777 sctp_skb_set_owner_r_frag(skb, newsk); 6778 6779 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) 6780 sctp_skb_set_owner_r_frag(skb, newsk); 6781 6782 /* Set the type of socket to indicate that it is peeled off from the 6783 * original UDP-style socket or created with the accept() call on a 6784 * TCP-style socket.. 6785 */ 6786 newsp->type = type; 6787 6788 /* Mark the new socket "in-use" by the user so that any packets 6789 * that may arrive on the association after we've moved it are 6790 * queued to the backlog. This prevents a potential race between 6791 * backlog processing on the old socket and new-packet processing 6792 * on the new socket. 6793 * 6794 * The caller has just allocated newsk so we can guarantee that other 6795 * paths won't try to lock it and then oldsk. 6796 */ 6797 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 6798 sctp_assoc_migrate(assoc, newsk); 6799 6800 /* If the association on the newsk is already closed before accept() 6801 * is called, set RCV_SHUTDOWN flag. 6802 */ 6803 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 6804 newsk->sk_shutdown |= RCV_SHUTDOWN; 6805 6806 newsk->sk_state = SCTP_SS_ESTABLISHED; 6807 sctp_release_sock(newsk); 6808 } 6809 6810 6811 /* This proto struct describes the ULP interface for SCTP. */ 6812 struct proto sctp_prot = { 6813 .name = "SCTP", 6814 .owner = THIS_MODULE, 6815 .close = sctp_close, 6816 .connect = sctp_connect, 6817 .disconnect = sctp_disconnect, 6818 .accept = sctp_accept, 6819 .ioctl = sctp_ioctl, 6820 .init = sctp_init_sock, 6821 .destroy = sctp_destroy_sock, 6822 .shutdown = sctp_shutdown, 6823 .setsockopt = sctp_setsockopt, 6824 .getsockopt = sctp_getsockopt, 6825 .sendmsg = sctp_sendmsg, 6826 .recvmsg = sctp_recvmsg, 6827 .bind = sctp_bind, 6828 .backlog_rcv = sctp_backlog_rcv, 6829 .hash = sctp_hash, 6830 .unhash = sctp_unhash, 6831 .get_port = sctp_get_port, 6832 .obj_size = sizeof(struct sctp_sock), 6833 .sysctl_mem = sysctl_sctp_mem, 6834 .sysctl_rmem = sysctl_sctp_rmem, 6835 .sysctl_wmem = sysctl_sctp_wmem, 6836 .memory_pressure = &sctp_memory_pressure, 6837 .enter_memory_pressure = sctp_enter_memory_pressure, 6838 .memory_allocated = &sctp_memory_allocated, 6839 .sockets_allocated = &sctp_sockets_allocated, 6840 }; 6841 6842 #if IS_ENABLED(CONFIG_IPV6) 6843 6844 struct proto sctpv6_prot = { 6845 .name = "SCTPv6", 6846 .owner = THIS_MODULE, 6847 .close = sctp_close, 6848 .connect = sctp_connect, 6849 .disconnect = sctp_disconnect, 6850 .accept = sctp_accept, 6851 .ioctl = sctp_ioctl, 6852 .init = sctp_init_sock, 6853 .destroy = sctp_destroy_sock, 6854 .shutdown = sctp_shutdown, 6855 .setsockopt = sctp_setsockopt, 6856 .getsockopt = sctp_getsockopt, 6857 .sendmsg = sctp_sendmsg, 6858 .recvmsg = sctp_recvmsg, 6859 .bind = sctp_bind, 6860 .backlog_rcv = sctp_backlog_rcv, 6861 .hash = sctp_hash, 6862 .unhash = sctp_unhash, 6863 .get_port = sctp_get_port, 6864 .obj_size = sizeof(struct sctp6_sock), 6865 .sysctl_mem = sysctl_sctp_mem, 6866 .sysctl_rmem = sysctl_sctp_rmem, 6867 .sysctl_wmem = sysctl_sctp_wmem, 6868 .memory_pressure = &sctp_memory_pressure, 6869 .enter_memory_pressure = sctp_enter_memory_pressure, 6870 .memory_allocated = &sctp_memory_allocated, 6871 .sockets_allocated = &sctp_sockets_allocated, 6872 }; 6873 #endif /* IS_ENABLED(CONFIG_IPV6) */ 6874