xref: /linux/net/sctp/socket.c (revision ae77cbc1e7b90473a2b0963bce0e1eb163873214)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, write to
32  * the Free Software Foundation, 59 Temple Place - Suite 330,
33  * Boston, MA 02111-1307, USA.
34  *
35  * Please send any bug reports or fixes you make to the
36  * email address(es):
37  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
38  *
39  * Or submit a bug report through the following website:
40  *    http://www.sf.net/projects/lksctp
41  *
42  * Written or modified by:
43  *    La Monte H.P. Yarroll <piggy@acm.org>
44  *    Narasimha Budihal     <narsi@refcode.org>
45  *    Karl Knutson          <karl@athena.chicago.il.us>
46  *    Jon Grimm             <jgrimm@us.ibm.com>
47  *    Xingang Guo           <xingang.guo@intel.com>
48  *    Daisy Chang           <daisyc@us.ibm.com>
49  *    Sridhar Samudrala     <samudrala@us.ibm.com>
50  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
51  *    Ardelle Fan	    <ardelle.fan@intel.com>
52  *    Ryan Layer	    <rmlayer@us.ibm.com>
53  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
54  *    Kevin Gao             <kevin.gao@intel.com>
55  *
56  * Any bugs reported given to us we will try to fix... any fixes shared will
57  * be incorporated into the next SCTP release.
58  */
59 
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61 
62 #include <linux/types.h>
63 #include <linux/kernel.h>
64 #include <linux/wait.h>
65 #include <linux/time.h>
66 #include <linux/ip.h>
67 #include <linux/capability.h>
68 #include <linux/fcntl.h>
69 #include <linux/poll.h>
70 #include <linux/init.h>
71 #include <linux/crypto.h>
72 #include <linux/slab.h>
73 #include <linux/file.h>
74 
75 #include <net/ip.h>
76 #include <net/icmp.h>
77 #include <net/route.h>
78 #include <net/ipv6.h>
79 #include <net/inet_common.h>
80 
81 #include <linux/socket.h> /* for sa_family_t */
82 #include <linux/export.h>
83 #include <net/sock.h>
84 #include <net/sctp/sctp.h>
85 #include <net/sctp/sm.h>
86 
87 /* Forward declarations for internal helper functions. */
88 static int sctp_writeable(struct sock *sk);
89 static void sctp_wfree(struct sk_buff *skb);
90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
91 				size_t msg_len);
92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
94 static int sctp_wait_for_accept(struct sock *sk, long timeo);
95 static void sctp_wait_for_close(struct sock *sk, long timeo);
96 static void sctp_destruct_sock(struct sock *sk);
97 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
98 					union sctp_addr *addr, int len);
99 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
100 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
102 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
103 static int sctp_send_asconf(struct sctp_association *asoc,
104 			    struct sctp_chunk *chunk);
105 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
106 static int sctp_autobind(struct sock *sk);
107 static void sctp_sock_migrate(struct sock *, struct sock *,
108 			      struct sctp_association *, sctp_socket_type_t);
109 
110 extern struct kmem_cache *sctp_bucket_cachep;
111 extern long sysctl_sctp_mem[3];
112 extern int sysctl_sctp_rmem[3];
113 extern int sysctl_sctp_wmem[3];
114 
115 static int sctp_memory_pressure;
116 static atomic_long_t sctp_memory_allocated;
117 struct percpu_counter sctp_sockets_allocated;
118 
119 static void sctp_enter_memory_pressure(struct sock *sk)
120 {
121 	sctp_memory_pressure = 1;
122 }
123 
124 
125 /* Get the sndbuf space available at the time on the association.  */
126 static inline int sctp_wspace(struct sctp_association *asoc)
127 {
128 	int amt;
129 
130 	if (asoc->ep->sndbuf_policy)
131 		amt = asoc->sndbuf_used;
132 	else
133 		amt = sk_wmem_alloc_get(asoc->base.sk);
134 
135 	if (amt >= asoc->base.sk->sk_sndbuf) {
136 		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
137 			amt = 0;
138 		else {
139 			amt = sk_stream_wspace(asoc->base.sk);
140 			if (amt < 0)
141 				amt = 0;
142 		}
143 	} else {
144 		amt = asoc->base.sk->sk_sndbuf - amt;
145 	}
146 	return amt;
147 }
148 
149 /* Increment the used sndbuf space count of the corresponding association by
150  * the size of the outgoing data chunk.
151  * Also, set the skb destructor for sndbuf accounting later.
152  *
153  * Since it is always 1-1 between chunk and skb, and also a new skb is always
154  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
155  * destructor in the data chunk skb for the purpose of the sndbuf space
156  * tracking.
157  */
158 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
159 {
160 	struct sctp_association *asoc = chunk->asoc;
161 	struct sock *sk = asoc->base.sk;
162 
163 	/* The sndbuf space is tracked per association.  */
164 	sctp_association_hold(asoc);
165 
166 	skb_set_owner_w(chunk->skb, sk);
167 
168 	chunk->skb->destructor = sctp_wfree;
169 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
170 	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
171 
172 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
173 				sizeof(struct sk_buff) +
174 				sizeof(struct sctp_chunk);
175 
176 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
177 	sk->sk_wmem_queued += chunk->skb->truesize;
178 	sk_mem_charge(sk, chunk->skb->truesize);
179 }
180 
181 /* Verify that this is a valid address. */
182 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
183 				   int len)
184 {
185 	struct sctp_af *af;
186 
187 	/* Verify basic sockaddr. */
188 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
189 	if (!af)
190 		return -EINVAL;
191 
192 	/* Is this a valid SCTP address?  */
193 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
194 		return -EINVAL;
195 
196 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
197 		return -EINVAL;
198 
199 	return 0;
200 }
201 
202 /* Look up the association by its id.  If this is not a UDP-style
203  * socket, the ID field is always ignored.
204  */
205 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
206 {
207 	struct sctp_association *asoc = NULL;
208 
209 	/* If this is not a UDP-style socket, assoc id should be ignored. */
210 	if (!sctp_style(sk, UDP)) {
211 		/* Return NULL if the socket state is not ESTABLISHED. It
212 		 * could be a TCP-style listening socket or a socket which
213 		 * hasn't yet called connect() to establish an association.
214 		 */
215 		if (!sctp_sstate(sk, ESTABLISHED))
216 			return NULL;
217 
218 		/* Get the first and the only association from the list. */
219 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
220 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
221 					  struct sctp_association, asocs);
222 		return asoc;
223 	}
224 
225 	/* Otherwise this is a UDP-style socket. */
226 	if (!id || (id == (sctp_assoc_t)-1))
227 		return NULL;
228 
229 	spin_lock_bh(&sctp_assocs_id_lock);
230 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
231 	spin_unlock_bh(&sctp_assocs_id_lock);
232 
233 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
234 		return NULL;
235 
236 	return asoc;
237 }
238 
239 /* Look up the transport from an address and an assoc id. If both address and
240  * id are specified, the associations matching the address and the id should be
241  * the same.
242  */
243 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
244 					      struct sockaddr_storage *addr,
245 					      sctp_assoc_t id)
246 {
247 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
248 	struct sctp_transport *transport;
249 	union sctp_addr *laddr = (union sctp_addr *)addr;
250 
251 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
252 					       laddr,
253 					       &transport);
254 
255 	if (!addr_asoc)
256 		return NULL;
257 
258 	id_asoc = sctp_id2assoc(sk, id);
259 	if (id_asoc && (id_asoc != addr_asoc))
260 		return NULL;
261 
262 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
263 						(union sctp_addr *)addr);
264 
265 	return transport;
266 }
267 
268 /* API 3.1.2 bind() - UDP Style Syntax
269  * The syntax of bind() is,
270  *
271  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
272  *
273  *   sd      - the socket descriptor returned by socket().
274  *   addr    - the address structure (struct sockaddr_in or struct
275  *             sockaddr_in6 [RFC 2553]),
276  *   addr_len - the size of the address structure.
277  */
278 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
279 {
280 	int retval = 0;
281 
282 	sctp_lock_sock(sk);
283 
284 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
285 		 addr, addr_len);
286 
287 	/* Disallow binding twice. */
288 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
289 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
290 				      addr_len);
291 	else
292 		retval = -EINVAL;
293 
294 	sctp_release_sock(sk);
295 
296 	return retval;
297 }
298 
299 static long sctp_get_port_local(struct sock *, union sctp_addr *);
300 
301 /* Verify this is a valid sockaddr. */
302 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
303 					union sctp_addr *addr, int len)
304 {
305 	struct sctp_af *af;
306 
307 	/* Check minimum size.  */
308 	if (len < sizeof (struct sockaddr))
309 		return NULL;
310 
311 	/* V4 mapped address are really of AF_INET family */
312 	if (addr->sa.sa_family == AF_INET6 &&
313 	    ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
314 		if (!opt->pf->af_supported(AF_INET, opt))
315 			return NULL;
316 	} else {
317 		/* Does this PF support this AF? */
318 		if (!opt->pf->af_supported(addr->sa.sa_family, opt))
319 			return NULL;
320 	}
321 
322 	/* If we get this far, af is valid. */
323 	af = sctp_get_af_specific(addr->sa.sa_family);
324 
325 	if (len < af->sockaddr_len)
326 		return NULL;
327 
328 	return af;
329 }
330 
331 /* Bind a local address either to an endpoint or to an association.  */
332 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
333 {
334 	struct net *net = sock_net(sk);
335 	struct sctp_sock *sp = sctp_sk(sk);
336 	struct sctp_endpoint *ep = sp->ep;
337 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
338 	struct sctp_af *af;
339 	unsigned short snum;
340 	int ret = 0;
341 
342 	/* Common sockaddr verification. */
343 	af = sctp_sockaddr_af(sp, addr, len);
344 	if (!af) {
345 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
346 			 __func__, sk, addr, len);
347 		return -EINVAL;
348 	}
349 
350 	snum = ntohs(addr->v4.sin_port);
351 
352 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
353 		 __func__, sk, &addr->sa, bp->port, snum, len);
354 
355 	/* PF specific bind() address verification. */
356 	if (!sp->pf->bind_verify(sp, addr))
357 		return -EADDRNOTAVAIL;
358 
359 	/* We must either be unbound, or bind to the same port.
360 	 * It's OK to allow 0 ports if we are already bound.
361 	 * We'll just inhert an already bound port in this case
362 	 */
363 	if (bp->port) {
364 		if (!snum)
365 			snum = bp->port;
366 		else if (snum != bp->port) {
367 			pr_debug("%s: new port %d doesn't match existing port "
368 				 "%d\n", __func__, snum, bp->port);
369 			return -EINVAL;
370 		}
371 	}
372 
373 	if (snum && snum < PROT_SOCK &&
374 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
375 		return -EACCES;
376 
377 	/* See if the address matches any of the addresses we may have
378 	 * already bound before checking against other endpoints.
379 	 */
380 	if (sctp_bind_addr_match(bp, addr, sp))
381 		return -EINVAL;
382 
383 	/* Make sure we are allowed to bind here.
384 	 * The function sctp_get_port_local() does duplicate address
385 	 * detection.
386 	 */
387 	addr->v4.sin_port = htons(snum);
388 	if ((ret = sctp_get_port_local(sk, addr))) {
389 		return -EADDRINUSE;
390 	}
391 
392 	/* Refresh ephemeral port.  */
393 	if (!bp->port)
394 		bp->port = inet_sk(sk)->inet_num;
395 
396 	/* Add the address to the bind address list.
397 	 * Use GFP_ATOMIC since BHs will be disabled.
398 	 */
399 	ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
400 
401 	/* Copy back into socket for getsockname() use. */
402 	if (!ret) {
403 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
404 		af->to_sk_saddr(addr, sk);
405 	}
406 
407 	return ret;
408 }
409 
410  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
411  *
412  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
413  * at any one time.  If a sender, after sending an ASCONF chunk, decides
414  * it needs to transfer another ASCONF Chunk, it MUST wait until the
415  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
416  * subsequent ASCONF. Note this restriction binds each side, so at any
417  * time two ASCONF may be in-transit on any given association (one sent
418  * from each endpoint).
419  */
420 static int sctp_send_asconf(struct sctp_association *asoc,
421 			    struct sctp_chunk *chunk)
422 {
423 	struct net 	*net = sock_net(asoc->base.sk);
424 	int		retval = 0;
425 
426 	/* If there is an outstanding ASCONF chunk, queue it for later
427 	 * transmission.
428 	 */
429 	if (asoc->addip_last_asconf) {
430 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
431 		goto out;
432 	}
433 
434 	/* Hold the chunk until an ASCONF_ACK is received. */
435 	sctp_chunk_hold(chunk);
436 	retval = sctp_primitive_ASCONF(net, asoc, chunk);
437 	if (retval)
438 		sctp_chunk_free(chunk);
439 	else
440 		asoc->addip_last_asconf = chunk;
441 
442 out:
443 	return retval;
444 }
445 
446 /* Add a list of addresses as bind addresses to local endpoint or
447  * association.
448  *
449  * Basically run through each address specified in the addrs/addrcnt
450  * array/length pair, determine if it is IPv6 or IPv4 and call
451  * sctp_do_bind() on it.
452  *
453  * If any of them fails, then the operation will be reversed and the
454  * ones that were added will be removed.
455  *
456  * Only sctp_setsockopt_bindx() is supposed to call this function.
457  */
458 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
459 {
460 	int cnt;
461 	int retval = 0;
462 	void *addr_buf;
463 	struct sockaddr *sa_addr;
464 	struct sctp_af *af;
465 
466 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
467 		 addrs, addrcnt);
468 
469 	addr_buf = addrs;
470 	for (cnt = 0; cnt < addrcnt; cnt++) {
471 		/* The list may contain either IPv4 or IPv6 address;
472 		 * determine the address length for walking thru the list.
473 		 */
474 		sa_addr = addr_buf;
475 		af = sctp_get_af_specific(sa_addr->sa_family);
476 		if (!af) {
477 			retval = -EINVAL;
478 			goto err_bindx_add;
479 		}
480 
481 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
482 				      af->sockaddr_len);
483 
484 		addr_buf += af->sockaddr_len;
485 
486 err_bindx_add:
487 		if (retval < 0) {
488 			/* Failed. Cleanup the ones that have been added */
489 			if (cnt > 0)
490 				sctp_bindx_rem(sk, addrs, cnt);
491 			return retval;
492 		}
493 	}
494 
495 	return retval;
496 }
497 
498 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
499  * associations that are part of the endpoint indicating that a list of local
500  * addresses are added to the endpoint.
501  *
502  * If any of the addresses is already in the bind address list of the
503  * association, we do not send the chunk for that association.  But it will not
504  * affect other associations.
505  *
506  * Only sctp_setsockopt_bindx() is supposed to call this function.
507  */
508 static int sctp_send_asconf_add_ip(struct sock		*sk,
509 				   struct sockaddr	*addrs,
510 				   int 			addrcnt)
511 {
512 	struct net *net = sock_net(sk);
513 	struct sctp_sock		*sp;
514 	struct sctp_endpoint		*ep;
515 	struct sctp_association		*asoc;
516 	struct sctp_bind_addr		*bp;
517 	struct sctp_chunk		*chunk;
518 	struct sctp_sockaddr_entry	*laddr;
519 	union sctp_addr			*addr;
520 	union sctp_addr			saveaddr;
521 	void				*addr_buf;
522 	struct sctp_af			*af;
523 	struct list_head		*p;
524 	int 				i;
525 	int 				retval = 0;
526 
527 	if (!net->sctp.addip_enable)
528 		return retval;
529 
530 	sp = sctp_sk(sk);
531 	ep = sp->ep;
532 
533 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
534 		 __func__, sk, addrs, addrcnt);
535 
536 	list_for_each_entry(asoc, &ep->asocs, asocs) {
537 		if (!asoc->peer.asconf_capable)
538 			continue;
539 
540 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
541 			continue;
542 
543 		if (!sctp_state(asoc, ESTABLISHED))
544 			continue;
545 
546 		/* Check if any address in the packed array of addresses is
547 		 * in the bind address list of the association. If so,
548 		 * do not send the asconf chunk to its peer, but continue with
549 		 * other associations.
550 		 */
551 		addr_buf = addrs;
552 		for (i = 0; i < addrcnt; i++) {
553 			addr = addr_buf;
554 			af = sctp_get_af_specific(addr->v4.sin_family);
555 			if (!af) {
556 				retval = -EINVAL;
557 				goto out;
558 			}
559 
560 			if (sctp_assoc_lookup_laddr(asoc, addr))
561 				break;
562 
563 			addr_buf += af->sockaddr_len;
564 		}
565 		if (i < addrcnt)
566 			continue;
567 
568 		/* Use the first valid address in bind addr list of
569 		 * association as Address Parameter of ASCONF CHUNK.
570 		 */
571 		bp = &asoc->base.bind_addr;
572 		p = bp->address_list.next;
573 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
574 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
575 						   addrcnt, SCTP_PARAM_ADD_IP);
576 		if (!chunk) {
577 			retval = -ENOMEM;
578 			goto out;
579 		}
580 
581 		/* Add the new addresses to the bind address list with
582 		 * use_as_src set to 0.
583 		 */
584 		addr_buf = addrs;
585 		for (i = 0; i < addrcnt; i++) {
586 			addr = addr_buf;
587 			af = sctp_get_af_specific(addr->v4.sin_family);
588 			memcpy(&saveaddr, addr, af->sockaddr_len);
589 			retval = sctp_add_bind_addr(bp, &saveaddr,
590 						    SCTP_ADDR_NEW, GFP_ATOMIC);
591 			addr_buf += af->sockaddr_len;
592 		}
593 		if (asoc->src_out_of_asoc_ok) {
594 			struct sctp_transport *trans;
595 
596 			list_for_each_entry(trans,
597 			    &asoc->peer.transport_addr_list, transports) {
598 				/* Clear the source and route cache */
599 				dst_release(trans->dst);
600 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
601 				    2*asoc->pathmtu, 4380));
602 				trans->ssthresh = asoc->peer.i.a_rwnd;
603 				trans->rto = asoc->rto_initial;
604 				sctp_max_rto(asoc, trans);
605 				trans->rtt = trans->srtt = trans->rttvar = 0;
606 				sctp_transport_route(trans, NULL,
607 				    sctp_sk(asoc->base.sk));
608 			}
609 		}
610 		retval = sctp_send_asconf(asoc, chunk);
611 	}
612 
613 out:
614 	return retval;
615 }
616 
617 /* Remove a list of addresses from bind addresses list.  Do not remove the
618  * last address.
619  *
620  * Basically run through each address specified in the addrs/addrcnt
621  * array/length pair, determine if it is IPv6 or IPv4 and call
622  * sctp_del_bind() on it.
623  *
624  * If any of them fails, then the operation will be reversed and the
625  * ones that were removed will be added back.
626  *
627  * At least one address has to be left; if only one address is
628  * available, the operation will return -EBUSY.
629  *
630  * Only sctp_setsockopt_bindx() is supposed to call this function.
631  */
632 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
633 {
634 	struct sctp_sock *sp = sctp_sk(sk);
635 	struct sctp_endpoint *ep = sp->ep;
636 	int cnt;
637 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
638 	int retval = 0;
639 	void *addr_buf;
640 	union sctp_addr *sa_addr;
641 	struct sctp_af *af;
642 
643 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
644 		 __func__, sk, addrs, addrcnt);
645 
646 	addr_buf = addrs;
647 	for (cnt = 0; cnt < addrcnt; cnt++) {
648 		/* If the bind address list is empty or if there is only one
649 		 * bind address, there is nothing more to be removed (we need
650 		 * at least one address here).
651 		 */
652 		if (list_empty(&bp->address_list) ||
653 		    (sctp_list_single_entry(&bp->address_list))) {
654 			retval = -EBUSY;
655 			goto err_bindx_rem;
656 		}
657 
658 		sa_addr = addr_buf;
659 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
660 		if (!af) {
661 			retval = -EINVAL;
662 			goto err_bindx_rem;
663 		}
664 
665 		if (!af->addr_valid(sa_addr, sp, NULL)) {
666 			retval = -EADDRNOTAVAIL;
667 			goto err_bindx_rem;
668 		}
669 
670 		if (sa_addr->v4.sin_port &&
671 		    sa_addr->v4.sin_port != htons(bp->port)) {
672 			retval = -EINVAL;
673 			goto err_bindx_rem;
674 		}
675 
676 		if (!sa_addr->v4.sin_port)
677 			sa_addr->v4.sin_port = htons(bp->port);
678 
679 		/* FIXME - There is probably a need to check if sk->sk_saddr and
680 		 * sk->sk_rcv_addr are currently set to one of the addresses to
681 		 * be removed. This is something which needs to be looked into
682 		 * when we are fixing the outstanding issues with multi-homing
683 		 * socket routing and failover schemes. Refer to comments in
684 		 * sctp_do_bind(). -daisy
685 		 */
686 		retval = sctp_del_bind_addr(bp, sa_addr);
687 
688 		addr_buf += af->sockaddr_len;
689 err_bindx_rem:
690 		if (retval < 0) {
691 			/* Failed. Add the ones that has been removed back */
692 			if (cnt > 0)
693 				sctp_bindx_add(sk, addrs, cnt);
694 			return retval;
695 		}
696 	}
697 
698 	return retval;
699 }
700 
701 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
702  * the associations that are part of the endpoint indicating that a list of
703  * local addresses are removed from the endpoint.
704  *
705  * If any of the addresses is already in the bind address list of the
706  * association, we do not send the chunk for that association.  But it will not
707  * affect other associations.
708  *
709  * Only sctp_setsockopt_bindx() is supposed to call this function.
710  */
711 static int sctp_send_asconf_del_ip(struct sock		*sk,
712 				   struct sockaddr	*addrs,
713 				   int			addrcnt)
714 {
715 	struct net *net = sock_net(sk);
716 	struct sctp_sock	*sp;
717 	struct sctp_endpoint	*ep;
718 	struct sctp_association	*asoc;
719 	struct sctp_transport	*transport;
720 	struct sctp_bind_addr	*bp;
721 	struct sctp_chunk	*chunk;
722 	union sctp_addr		*laddr;
723 	void			*addr_buf;
724 	struct sctp_af		*af;
725 	struct sctp_sockaddr_entry *saddr;
726 	int 			i;
727 	int 			retval = 0;
728 	int			stored = 0;
729 
730 	chunk = NULL;
731 	if (!net->sctp.addip_enable)
732 		return retval;
733 
734 	sp = sctp_sk(sk);
735 	ep = sp->ep;
736 
737 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
738 		 __func__, sk, addrs, addrcnt);
739 
740 	list_for_each_entry(asoc, &ep->asocs, asocs) {
741 
742 		if (!asoc->peer.asconf_capable)
743 			continue;
744 
745 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
746 			continue;
747 
748 		if (!sctp_state(asoc, ESTABLISHED))
749 			continue;
750 
751 		/* Check if any address in the packed array of addresses is
752 		 * not present in the bind address list of the association.
753 		 * If so, do not send the asconf chunk to its peer, but
754 		 * continue with other associations.
755 		 */
756 		addr_buf = addrs;
757 		for (i = 0; i < addrcnt; i++) {
758 			laddr = addr_buf;
759 			af = sctp_get_af_specific(laddr->v4.sin_family);
760 			if (!af) {
761 				retval = -EINVAL;
762 				goto out;
763 			}
764 
765 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
766 				break;
767 
768 			addr_buf += af->sockaddr_len;
769 		}
770 		if (i < addrcnt)
771 			continue;
772 
773 		/* Find one address in the association's bind address list
774 		 * that is not in the packed array of addresses. This is to
775 		 * make sure that we do not delete all the addresses in the
776 		 * association.
777 		 */
778 		bp = &asoc->base.bind_addr;
779 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
780 					       addrcnt, sp);
781 		if ((laddr == NULL) && (addrcnt == 1)) {
782 			if (asoc->asconf_addr_del_pending)
783 				continue;
784 			asoc->asconf_addr_del_pending =
785 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
786 			if (asoc->asconf_addr_del_pending == NULL) {
787 				retval = -ENOMEM;
788 				goto out;
789 			}
790 			asoc->asconf_addr_del_pending->sa.sa_family =
791 				    addrs->sa_family;
792 			asoc->asconf_addr_del_pending->v4.sin_port =
793 				    htons(bp->port);
794 			if (addrs->sa_family == AF_INET) {
795 				struct sockaddr_in *sin;
796 
797 				sin = (struct sockaddr_in *)addrs;
798 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
799 			} else if (addrs->sa_family == AF_INET6) {
800 				struct sockaddr_in6 *sin6;
801 
802 				sin6 = (struct sockaddr_in6 *)addrs;
803 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
804 			}
805 
806 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
807 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
808 				 asoc->asconf_addr_del_pending);
809 
810 			asoc->src_out_of_asoc_ok = 1;
811 			stored = 1;
812 			goto skip_mkasconf;
813 		}
814 
815 		/* We do not need RCU protection throughout this loop
816 		 * because this is done under a socket lock from the
817 		 * setsockopt call.
818 		 */
819 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
820 						   SCTP_PARAM_DEL_IP);
821 		if (!chunk) {
822 			retval = -ENOMEM;
823 			goto out;
824 		}
825 
826 skip_mkasconf:
827 		/* Reset use_as_src flag for the addresses in the bind address
828 		 * list that are to be deleted.
829 		 */
830 		addr_buf = addrs;
831 		for (i = 0; i < addrcnt; i++) {
832 			laddr = addr_buf;
833 			af = sctp_get_af_specific(laddr->v4.sin_family);
834 			list_for_each_entry(saddr, &bp->address_list, list) {
835 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
836 					saddr->state = SCTP_ADDR_DEL;
837 			}
838 			addr_buf += af->sockaddr_len;
839 		}
840 
841 		/* Update the route and saddr entries for all the transports
842 		 * as some of the addresses in the bind address list are
843 		 * about to be deleted and cannot be used as source addresses.
844 		 */
845 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
846 					transports) {
847 			dst_release(transport->dst);
848 			sctp_transport_route(transport, NULL,
849 					     sctp_sk(asoc->base.sk));
850 		}
851 
852 		if (stored)
853 			/* We don't need to transmit ASCONF */
854 			continue;
855 		retval = sctp_send_asconf(asoc, chunk);
856 	}
857 out:
858 	return retval;
859 }
860 
861 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
862 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
863 {
864 	struct sock *sk = sctp_opt2sk(sp);
865 	union sctp_addr *addr;
866 	struct sctp_af *af;
867 
868 	/* It is safe to write port space in caller. */
869 	addr = &addrw->a;
870 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
871 	af = sctp_get_af_specific(addr->sa.sa_family);
872 	if (!af)
873 		return -EINVAL;
874 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
875 		return -EINVAL;
876 
877 	if (addrw->state == SCTP_ADDR_NEW)
878 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
879 	else
880 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
881 }
882 
883 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
884  *
885  * API 8.1
886  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
887  *                int flags);
888  *
889  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
890  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
891  * or IPv6 addresses.
892  *
893  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
894  * Section 3.1.2 for this usage.
895  *
896  * addrs is a pointer to an array of one or more socket addresses. Each
897  * address is contained in its appropriate structure (i.e. struct
898  * sockaddr_in or struct sockaddr_in6) the family of the address type
899  * must be used to distinguish the address length (note that this
900  * representation is termed a "packed array" of addresses). The caller
901  * specifies the number of addresses in the array with addrcnt.
902  *
903  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
904  * -1, and sets errno to the appropriate error code.
905  *
906  * For SCTP, the port given in each socket address must be the same, or
907  * sctp_bindx() will fail, setting errno to EINVAL.
908  *
909  * The flags parameter is formed from the bitwise OR of zero or more of
910  * the following currently defined flags:
911  *
912  * SCTP_BINDX_ADD_ADDR
913  *
914  * SCTP_BINDX_REM_ADDR
915  *
916  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
917  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
918  * addresses from the association. The two flags are mutually exclusive;
919  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
920  * not remove all addresses from an association; sctp_bindx() will
921  * reject such an attempt with EINVAL.
922  *
923  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
924  * additional addresses with an endpoint after calling bind().  Or use
925  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
926  * socket is associated with so that no new association accepted will be
927  * associated with those addresses. If the endpoint supports dynamic
928  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
929  * endpoint to send the appropriate message to the peer to change the
930  * peers address lists.
931  *
932  * Adding and removing addresses from a connected association is
933  * optional functionality. Implementations that do not support this
934  * functionality should return EOPNOTSUPP.
935  *
936  * Basically do nothing but copying the addresses from user to kernel
937  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
938  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
939  * from userspace.
940  *
941  * We don't use copy_from_user() for optimization: we first do the
942  * sanity checks (buffer size -fast- and access check-healthy
943  * pointer); if all of those succeed, then we can alloc the memory
944  * (expensive operation) needed to copy the data to kernel. Then we do
945  * the copying without checking the user space area
946  * (__copy_from_user()).
947  *
948  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
949  * it.
950  *
951  * sk        The sk of the socket
952  * addrs     The pointer to the addresses in user land
953  * addrssize Size of the addrs buffer
954  * op        Operation to perform (add or remove, see the flags of
955  *           sctp_bindx)
956  *
957  * Returns 0 if ok, <0 errno code on error.
958  */
959 static int sctp_setsockopt_bindx(struct sock* sk,
960 				 struct sockaddr __user *addrs,
961 				 int addrs_size, int op)
962 {
963 	struct sockaddr *kaddrs;
964 	int err;
965 	int addrcnt = 0;
966 	int walk_size = 0;
967 	struct sockaddr *sa_addr;
968 	void *addr_buf;
969 	struct sctp_af *af;
970 
971 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
972 		 __func__, sk, addrs, addrs_size, op);
973 
974 	if (unlikely(addrs_size <= 0))
975 		return -EINVAL;
976 
977 	/* Check the user passed a healthy pointer.  */
978 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
979 		return -EFAULT;
980 
981 	/* Alloc space for the address array in kernel memory.  */
982 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
983 	if (unlikely(!kaddrs))
984 		return -ENOMEM;
985 
986 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
987 		kfree(kaddrs);
988 		return -EFAULT;
989 	}
990 
991 	/* Walk through the addrs buffer and count the number of addresses. */
992 	addr_buf = kaddrs;
993 	while (walk_size < addrs_size) {
994 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
995 			kfree(kaddrs);
996 			return -EINVAL;
997 		}
998 
999 		sa_addr = addr_buf;
1000 		af = sctp_get_af_specific(sa_addr->sa_family);
1001 
1002 		/* If the address family is not supported or if this address
1003 		 * causes the address buffer to overflow return EINVAL.
1004 		 */
1005 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1006 			kfree(kaddrs);
1007 			return -EINVAL;
1008 		}
1009 		addrcnt++;
1010 		addr_buf += af->sockaddr_len;
1011 		walk_size += af->sockaddr_len;
1012 	}
1013 
1014 	/* Do the work. */
1015 	switch (op) {
1016 	case SCTP_BINDX_ADD_ADDR:
1017 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1018 		if (err)
1019 			goto out;
1020 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1021 		break;
1022 
1023 	case SCTP_BINDX_REM_ADDR:
1024 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1025 		if (err)
1026 			goto out;
1027 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1028 		break;
1029 
1030 	default:
1031 		err = -EINVAL;
1032 		break;
1033 	}
1034 
1035 out:
1036 	kfree(kaddrs);
1037 
1038 	return err;
1039 }
1040 
1041 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1042  *
1043  * Common routine for handling connect() and sctp_connectx().
1044  * Connect will come in with just a single address.
1045  */
1046 static int __sctp_connect(struct sock* sk,
1047 			  struct sockaddr *kaddrs,
1048 			  int addrs_size,
1049 			  sctp_assoc_t *assoc_id)
1050 {
1051 	struct net *net = sock_net(sk);
1052 	struct sctp_sock *sp;
1053 	struct sctp_endpoint *ep;
1054 	struct sctp_association *asoc = NULL;
1055 	struct sctp_association *asoc2;
1056 	struct sctp_transport *transport;
1057 	union sctp_addr to;
1058 	struct sctp_af *af;
1059 	sctp_scope_t scope;
1060 	long timeo;
1061 	int err = 0;
1062 	int addrcnt = 0;
1063 	int walk_size = 0;
1064 	union sctp_addr *sa_addr = NULL;
1065 	void *addr_buf;
1066 	unsigned short port;
1067 	unsigned int f_flags = 0;
1068 
1069 	sp = sctp_sk(sk);
1070 	ep = sp->ep;
1071 
1072 	/* connect() cannot be done on a socket that is already in ESTABLISHED
1073 	 * state - UDP-style peeled off socket or a TCP-style socket that
1074 	 * is already connected.
1075 	 * It cannot be done even on a TCP-style listening socket.
1076 	 */
1077 	if (sctp_sstate(sk, ESTABLISHED) ||
1078 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1079 		err = -EISCONN;
1080 		goto out_free;
1081 	}
1082 
1083 	/* Walk through the addrs buffer and count the number of addresses. */
1084 	addr_buf = kaddrs;
1085 	while (walk_size < addrs_size) {
1086 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1087 			err = -EINVAL;
1088 			goto out_free;
1089 		}
1090 
1091 		sa_addr = addr_buf;
1092 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1093 
1094 		/* If the address family is not supported or if this address
1095 		 * causes the address buffer to overflow return EINVAL.
1096 		 */
1097 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1098 			err = -EINVAL;
1099 			goto out_free;
1100 		}
1101 
1102 		port = ntohs(sa_addr->v4.sin_port);
1103 
1104 		/* Save current address so we can work with it */
1105 		memcpy(&to, sa_addr, af->sockaddr_len);
1106 
1107 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1108 		if (err)
1109 			goto out_free;
1110 
1111 		/* Make sure the destination port is correctly set
1112 		 * in all addresses.
1113 		 */
1114 		if (asoc && asoc->peer.port && asoc->peer.port != port) {
1115 			err = -EINVAL;
1116 			goto out_free;
1117 		}
1118 
1119 		/* Check if there already is a matching association on the
1120 		 * endpoint (other than the one created here).
1121 		 */
1122 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1123 		if (asoc2 && asoc2 != asoc) {
1124 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1125 				err = -EISCONN;
1126 			else
1127 				err = -EALREADY;
1128 			goto out_free;
1129 		}
1130 
1131 		/* If we could not find a matching association on the endpoint,
1132 		 * make sure that there is no peeled-off association matching
1133 		 * the peer address even on another socket.
1134 		 */
1135 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1136 			err = -EADDRNOTAVAIL;
1137 			goto out_free;
1138 		}
1139 
1140 		if (!asoc) {
1141 			/* If a bind() or sctp_bindx() is not called prior to
1142 			 * an sctp_connectx() call, the system picks an
1143 			 * ephemeral port and will choose an address set
1144 			 * equivalent to binding with a wildcard address.
1145 			 */
1146 			if (!ep->base.bind_addr.port) {
1147 				if (sctp_autobind(sk)) {
1148 					err = -EAGAIN;
1149 					goto out_free;
1150 				}
1151 			} else {
1152 				/*
1153 				 * If an unprivileged user inherits a 1-many
1154 				 * style socket with open associations on a
1155 				 * privileged port, it MAY be permitted to
1156 				 * accept new associations, but it SHOULD NOT
1157 				 * be permitted to open new associations.
1158 				 */
1159 				if (ep->base.bind_addr.port < PROT_SOCK &&
1160 				    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1161 					err = -EACCES;
1162 					goto out_free;
1163 				}
1164 			}
1165 
1166 			scope = sctp_scope(&to);
1167 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1168 			if (!asoc) {
1169 				err = -ENOMEM;
1170 				goto out_free;
1171 			}
1172 
1173 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1174 							      GFP_KERNEL);
1175 			if (err < 0) {
1176 				goto out_free;
1177 			}
1178 
1179 		}
1180 
1181 		/* Prime the peer's transport structures.  */
1182 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1183 						SCTP_UNKNOWN);
1184 		if (!transport) {
1185 			err = -ENOMEM;
1186 			goto out_free;
1187 		}
1188 
1189 		addrcnt++;
1190 		addr_buf += af->sockaddr_len;
1191 		walk_size += af->sockaddr_len;
1192 	}
1193 
1194 	/* In case the user of sctp_connectx() wants an association
1195 	 * id back, assign one now.
1196 	 */
1197 	if (assoc_id) {
1198 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1199 		if (err < 0)
1200 			goto out_free;
1201 	}
1202 
1203 	err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1204 	if (err < 0) {
1205 		goto out_free;
1206 	}
1207 
1208 	/* Initialize sk's dport and daddr for getpeername() */
1209 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1210 	af = sctp_get_af_specific(sa_addr->sa.sa_family);
1211 	af->to_sk_daddr(sa_addr, sk);
1212 	sk->sk_err = 0;
1213 
1214 	/* in-kernel sockets don't generally have a file allocated to them
1215 	 * if all they do is call sock_create_kern().
1216 	 */
1217 	if (sk->sk_socket->file)
1218 		f_flags = sk->sk_socket->file->f_flags;
1219 
1220 	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1221 
1222 	err = sctp_wait_for_connect(asoc, &timeo);
1223 	if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1224 		*assoc_id = asoc->assoc_id;
1225 
1226 	/* Don't free association on exit. */
1227 	asoc = NULL;
1228 
1229 out_free:
1230 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1231 		 __func__, asoc, kaddrs, err);
1232 
1233 	if (asoc) {
1234 		/* sctp_primitive_ASSOCIATE may have added this association
1235 		 * To the hash table, try to unhash it, just in case, its a noop
1236 		 * if it wasn't hashed so we're safe
1237 		 */
1238 		sctp_unhash_established(asoc);
1239 		sctp_association_free(asoc);
1240 	}
1241 	return err;
1242 }
1243 
1244 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1245  *
1246  * API 8.9
1247  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1248  * 			sctp_assoc_t *asoc);
1249  *
1250  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1251  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1252  * or IPv6 addresses.
1253  *
1254  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1255  * Section 3.1.2 for this usage.
1256  *
1257  * addrs is a pointer to an array of one or more socket addresses. Each
1258  * address is contained in its appropriate structure (i.e. struct
1259  * sockaddr_in or struct sockaddr_in6) the family of the address type
1260  * must be used to distengish the address length (note that this
1261  * representation is termed a "packed array" of addresses). The caller
1262  * specifies the number of addresses in the array with addrcnt.
1263  *
1264  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1265  * the association id of the new association.  On failure, sctp_connectx()
1266  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1267  * is not touched by the kernel.
1268  *
1269  * For SCTP, the port given in each socket address must be the same, or
1270  * sctp_connectx() will fail, setting errno to EINVAL.
1271  *
1272  * An application can use sctp_connectx to initiate an association with
1273  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1274  * allows a caller to specify multiple addresses at which a peer can be
1275  * reached.  The way the SCTP stack uses the list of addresses to set up
1276  * the association is implementation dependent.  This function only
1277  * specifies that the stack will try to make use of all the addresses in
1278  * the list when needed.
1279  *
1280  * Note that the list of addresses passed in is only used for setting up
1281  * the association.  It does not necessarily equal the set of addresses
1282  * the peer uses for the resulting association.  If the caller wants to
1283  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1284  * retrieve them after the association has been set up.
1285  *
1286  * Basically do nothing but copying the addresses from user to kernel
1287  * land and invoking either sctp_connectx(). This is used for tunneling
1288  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1289  *
1290  * We don't use copy_from_user() for optimization: we first do the
1291  * sanity checks (buffer size -fast- and access check-healthy
1292  * pointer); if all of those succeed, then we can alloc the memory
1293  * (expensive operation) needed to copy the data to kernel. Then we do
1294  * the copying without checking the user space area
1295  * (__copy_from_user()).
1296  *
1297  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1298  * it.
1299  *
1300  * sk        The sk of the socket
1301  * addrs     The pointer to the addresses in user land
1302  * addrssize Size of the addrs buffer
1303  *
1304  * Returns >=0 if ok, <0 errno code on error.
1305  */
1306 static int __sctp_setsockopt_connectx(struct sock* sk,
1307 				      struct sockaddr __user *addrs,
1308 				      int addrs_size,
1309 				      sctp_assoc_t *assoc_id)
1310 {
1311 	int err = 0;
1312 	struct sockaddr *kaddrs;
1313 
1314 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1315 		 __func__, sk, addrs, addrs_size);
1316 
1317 	if (unlikely(addrs_size <= 0))
1318 		return -EINVAL;
1319 
1320 	/* Check the user passed a healthy pointer.  */
1321 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1322 		return -EFAULT;
1323 
1324 	/* Alloc space for the address array in kernel memory.  */
1325 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1326 	if (unlikely(!kaddrs))
1327 		return -ENOMEM;
1328 
1329 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1330 		err = -EFAULT;
1331 	} else {
1332 		err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1333 	}
1334 
1335 	kfree(kaddrs);
1336 
1337 	return err;
1338 }
1339 
1340 /*
1341  * This is an older interface.  It's kept for backward compatibility
1342  * to the option that doesn't provide association id.
1343  */
1344 static int sctp_setsockopt_connectx_old(struct sock* sk,
1345 					struct sockaddr __user *addrs,
1346 					int addrs_size)
1347 {
1348 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1349 }
1350 
1351 /*
1352  * New interface for the API.  The since the API is done with a socket
1353  * option, to make it simple we feed back the association id is as a return
1354  * indication to the call.  Error is always negative and association id is
1355  * always positive.
1356  */
1357 static int sctp_setsockopt_connectx(struct sock* sk,
1358 				    struct sockaddr __user *addrs,
1359 				    int addrs_size)
1360 {
1361 	sctp_assoc_t assoc_id = 0;
1362 	int err = 0;
1363 
1364 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1365 
1366 	if (err)
1367 		return err;
1368 	else
1369 		return assoc_id;
1370 }
1371 
1372 /*
1373  * New (hopefully final) interface for the API.
1374  * We use the sctp_getaddrs_old structure so that use-space library
1375  * can avoid any unnecessary allocations.   The only defferent part
1376  * is that we store the actual length of the address buffer into the
1377  * addrs_num structure member.  That way we can re-use the existing
1378  * code.
1379  */
1380 static int sctp_getsockopt_connectx3(struct sock* sk, int len,
1381 				     char __user *optval,
1382 				     int __user *optlen)
1383 {
1384 	struct sctp_getaddrs_old param;
1385 	sctp_assoc_t assoc_id = 0;
1386 	int err = 0;
1387 
1388 	if (len < sizeof(param))
1389 		return -EINVAL;
1390 
1391 	if (copy_from_user(&param, optval, sizeof(param)))
1392 		return -EFAULT;
1393 
1394 	err = __sctp_setsockopt_connectx(sk,
1395 			(struct sockaddr __user *)param.addrs,
1396 			param.addr_num, &assoc_id);
1397 
1398 	if (err == 0 || err == -EINPROGRESS) {
1399 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1400 			return -EFAULT;
1401 		if (put_user(sizeof(assoc_id), optlen))
1402 			return -EFAULT;
1403 	}
1404 
1405 	return err;
1406 }
1407 
1408 /* API 3.1.4 close() - UDP Style Syntax
1409  * Applications use close() to perform graceful shutdown (as described in
1410  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1411  * by a UDP-style socket.
1412  *
1413  * The syntax is
1414  *
1415  *   ret = close(int sd);
1416  *
1417  *   sd      - the socket descriptor of the associations to be closed.
1418  *
1419  * To gracefully shutdown a specific association represented by the
1420  * UDP-style socket, an application should use the sendmsg() call,
1421  * passing no user data, but including the appropriate flag in the
1422  * ancillary data (see Section xxxx).
1423  *
1424  * If sd in the close() call is a branched-off socket representing only
1425  * one association, the shutdown is performed on that association only.
1426  *
1427  * 4.1.6 close() - TCP Style Syntax
1428  *
1429  * Applications use close() to gracefully close down an association.
1430  *
1431  * The syntax is:
1432  *
1433  *    int close(int sd);
1434  *
1435  *      sd      - the socket descriptor of the association to be closed.
1436  *
1437  * After an application calls close() on a socket descriptor, no further
1438  * socket operations will succeed on that descriptor.
1439  *
1440  * API 7.1.4 SO_LINGER
1441  *
1442  * An application using the TCP-style socket can use this option to
1443  * perform the SCTP ABORT primitive.  The linger option structure is:
1444  *
1445  *  struct  linger {
1446  *     int     l_onoff;                // option on/off
1447  *     int     l_linger;               // linger time
1448  * };
1449  *
1450  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1451  * to 0, calling close() is the same as the ABORT primitive.  If the
1452  * value is set to a negative value, the setsockopt() call will return
1453  * an error.  If the value is set to a positive value linger_time, the
1454  * close() can be blocked for at most linger_time ms.  If the graceful
1455  * shutdown phase does not finish during this period, close() will
1456  * return but the graceful shutdown phase continues in the system.
1457  */
1458 static void sctp_close(struct sock *sk, long timeout)
1459 {
1460 	struct net *net = sock_net(sk);
1461 	struct sctp_endpoint *ep;
1462 	struct sctp_association *asoc;
1463 	struct list_head *pos, *temp;
1464 	unsigned int data_was_unread;
1465 
1466 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1467 
1468 	sctp_lock_sock(sk);
1469 	sk->sk_shutdown = SHUTDOWN_MASK;
1470 	sk->sk_state = SCTP_SS_CLOSING;
1471 
1472 	ep = sctp_sk(sk)->ep;
1473 
1474 	/* Clean up any skbs sitting on the receive queue.  */
1475 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1476 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1477 
1478 	/* Walk all associations on an endpoint.  */
1479 	list_for_each_safe(pos, temp, &ep->asocs) {
1480 		asoc = list_entry(pos, struct sctp_association, asocs);
1481 
1482 		if (sctp_style(sk, TCP)) {
1483 			/* A closed association can still be in the list if
1484 			 * it belongs to a TCP-style listening socket that is
1485 			 * not yet accepted. If so, free it. If not, send an
1486 			 * ABORT or SHUTDOWN based on the linger options.
1487 			 */
1488 			if (sctp_state(asoc, CLOSED)) {
1489 				sctp_unhash_established(asoc);
1490 				sctp_association_free(asoc);
1491 				continue;
1492 			}
1493 		}
1494 
1495 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1496 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1497 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1498 			struct sctp_chunk *chunk;
1499 
1500 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1501 			if (chunk)
1502 				sctp_primitive_ABORT(net, asoc, chunk);
1503 		} else
1504 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1505 	}
1506 
1507 	/* On a TCP-style socket, block for at most linger_time if set. */
1508 	if (sctp_style(sk, TCP) && timeout)
1509 		sctp_wait_for_close(sk, timeout);
1510 
1511 	/* This will run the backlog queue.  */
1512 	sctp_release_sock(sk);
1513 
1514 	/* Supposedly, no process has access to the socket, but
1515 	 * the net layers still may.
1516 	 */
1517 	sctp_local_bh_disable();
1518 	sctp_bh_lock_sock(sk);
1519 
1520 	/* Hold the sock, since sk_common_release() will put sock_put()
1521 	 * and we have just a little more cleanup.
1522 	 */
1523 	sock_hold(sk);
1524 	sk_common_release(sk);
1525 
1526 	sctp_bh_unlock_sock(sk);
1527 	sctp_local_bh_enable();
1528 
1529 	sock_put(sk);
1530 
1531 	SCTP_DBG_OBJCNT_DEC(sock);
1532 }
1533 
1534 /* Handle EPIPE error. */
1535 static int sctp_error(struct sock *sk, int flags, int err)
1536 {
1537 	if (err == -EPIPE)
1538 		err = sock_error(sk) ? : -EPIPE;
1539 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1540 		send_sig(SIGPIPE, current, 0);
1541 	return err;
1542 }
1543 
1544 /* API 3.1.3 sendmsg() - UDP Style Syntax
1545  *
1546  * An application uses sendmsg() and recvmsg() calls to transmit data to
1547  * and receive data from its peer.
1548  *
1549  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1550  *                  int flags);
1551  *
1552  *  socket  - the socket descriptor of the endpoint.
1553  *  message - pointer to the msghdr structure which contains a single
1554  *            user message and possibly some ancillary data.
1555  *
1556  *            See Section 5 for complete description of the data
1557  *            structures.
1558  *
1559  *  flags   - flags sent or received with the user message, see Section
1560  *            5 for complete description of the flags.
1561  *
1562  * Note:  This function could use a rewrite especially when explicit
1563  * connect support comes in.
1564  */
1565 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1566 
1567 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1568 
1569 static int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1570 			struct msghdr *msg, size_t msg_len)
1571 {
1572 	struct net *net = sock_net(sk);
1573 	struct sctp_sock *sp;
1574 	struct sctp_endpoint *ep;
1575 	struct sctp_association *new_asoc=NULL, *asoc=NULL;
1576 	struct sctp_transport *transport, *chunk_tp;
1577 	struct sctp_chunk *chunk;
1578 	union sctp_addr to;
1579 	struct sockaddr *msg_name = NULL;
1580 	struct sctp_sndrcvinfo default_sinfo;
1581 	struct sctp_sndrcvinfo *sinfo;
1582 	struct sctp_initmsg *sinit;
1583 	sctp_assoc_t associd = 0;
1584 	sctp_cmsgs_t cmsgs = { NULL };
1585 	int err;
1586 	sctp_scope_t scope;
1587 	long timeo;
1588 	__u16 sinfo_flags = 0;
1589 	struct sctp_datamsg *datamsg;
1590 	int msg_flags = msg->msg_flags;
1591 
1592 	err = 0;
1593 	sp = sctp_sk(sk);
1594 	ep = sp->ep;
1595 
1596 	pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1597 		 msg, msg_len, ep);
1598 
1599 	/* We cannot send a message over a TCP-style listening socket. */
1600 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1601 		err = -EPIPE;
1602 		goto out_nounlock;
1603 	}
1604 
1605 	/* Parse out the SCTP CMSGs.  */
1606 	err = sctp_msghdr_parse(msg, &cmsgs);
1607 	if (err) {
1608 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1609 		goto out_nounlock;
1610 	}
1611 
1612 	/* Fetch the destination address for this packet.  This
1613 	 * address only selects the association--it is not necessarily
1614 	 * the address we will send to.
1615 	 * For a peeled-off socket, msg_name is ignored.
1616 	 */
1617 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1618 		int msg_namelen = msg->msg_namelen;
1619 
1620 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1621 				       msg_namelen);
1622 		if (err)
1623 			return err;
1624 
1625 		if (msg_namelen > sizeof(to))
1626 			msg_namelen = sizeof(to);
1627 		memcpy(&to, msg->msg_name, msg_namelen);
1628 		msg_name = msg->msg_name;
1629 	}
1630 
1631 	sinfo = cmsgs.info;
1632 	sinit = cmsgs.init;
1633 
1634 	/* Did the user specify SNDRCVINFO?  */
1635 	if (sinfo) {
1636 		sinfo_flags = sinfo->sinfo_flags;
1637 		associd = sinfo->sinfo_assoc_id;
1638 	}
1639 
1640 	pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1641 		 msg_len, sinfo_flags);
1642 
1643 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1644 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1645 		err = -EINVAL;
1646 		goto out_nounlock;
1647 	}
1648 
1649 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1650 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1651 	 * If SCTP_ABORT is set, the message length could be non zero with
1652 	 * the msg_iov set to the user abort reason.
1653 	 */
1654 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1655 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1656 		err = -EINVAL;
1657 		goto out_nounlock;
1658 	}
1659 
1660 	/* If SCTP_ADDR_OVER is set, there must be an address
1661 	 * specified in msg_name.
1662 	 */
1663 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1664 		err = -EINVAL;
1665 		goto out_nounlock;
1666 	}
1667 
1668 	transport = NULL;
1669 
1670 	pr_debug("%s: about to look up association\n", __func__);
1671 
1672 	sctp_lock_sock(sk);
1673 
1674 	/* If a msg_name has been specified, assume this is to be used.  */
1675 	if (msg_name) {
1676 		/* Look for a matching association on the endpoint. */
1677 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1678 		if (!asoc) {
1679 			/* If we could not find a matching association on the
1680 			 * endpoint, make sure that it is not a TCP-style
1681 			 * socket that already has an association or there is
1682 			 * no peeled-off association on another socket.
1683 			 */
1684 			if ((sctp_style(sk, TCP) &&
1685 			     sctp_sstate(sk, ESTABLISHED)) ||
1686 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1687 				err = -EADDRNOTAVAIL;
1688 				goto out_unlock;
1689 			}
1690 		}
1691 	} else {
1692 		asoc = sctp_id2assoc(sk, associd);
1693 		if (!asoc) {
1694 			err = -EPIPE;
1695 			goto out_unlock;
1696 		}
1697 	}
1698 
1699 	if (asoc) {
1700 		pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1701 
1702 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1703 		 * socket that has an association in CLOSED state. This can
1704 		 * happen when an accepted socket has an association that is
1705 		 * already CLOSED.
1706 		 */
1707 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1708 			err = -EPIPE;
1709 			goto out_unlock;
1710 		}
1711 
1712 		if (sinfo_flags & SCTP_EOF) {
1713 			pr_debug("%s: shutting down association:%p\n",
1714 				 __func__, asoc);
1715 
1716 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1717 			err = 0;
1718 			goto out_unlock;
1719 		}
1720 		if (sinfo_flags & SCTP_ABORT) {
1721 
1722 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1723 			if (!chunk) {
1724 				err = -ENOMEM;
1725 				goto out_unlock;
1726 			}
1727 
1728 			pr_debug("%s: aborting association:%p\n",
1729 				 __func__, asoc);
1730 
1731 			sctp_primitive_ABORT(net, asoc, chunk);
1732 			err = 0;
1733 			goto out_unlock;
1734 		}
1735 	}
1736 
1737 	/* Do we need to create the association?  */
1738 	if (!asoc) {
1739 		pr_debug("%s: there is no association yet\n", __func__);
1740 
1741 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1742 			err = -EINVAL;
1743 			goto out_unlock;
1744 		}
1745 
1746 		/* Check for invalid stream against the stream counts,
1747 		 * either the default or the user specified stream counts.
1748 		 */
1749 		if (sinfo) {
1750 			if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1751 				/* Check against the defaults. */
1752 				if (sinfo->sinfo_stream >=
1753 				    sp->initmsg.sinit_num_ostreams) {
1754 					err = -EINVAL;
1755 					goto out_unlock;
1756 				}
1757 			} else {
1758 				/* Check against the requested.  */
1759 				if (sinfo->sinfo_stream >=
1760 				    sinit->sinit_num_ostreams) {
1761 					err = -EINVAL;
1762 					goto out_unlock;
1763 				}
1764 			}
1765 		}
1766 
1767 		/*
1768 		 * API 3.1.2 bind() - UDP Style Syntax
1769 		 * If a bind() or sctp_bindx() is not called prior to a
1770 		 * sendmsg() call that initiates a new association, the
1771 		 * system picks an ephemeral port and will choose an address
1772 		 * set equivalent to binding with a wildcard address.
1773 		 */
1774 		if (!ep->base.bind_addr.port) {
1775 			if (sctp_autobind(sk)) {
1776 				err = -EAGAIN;
1777 				goto out_unlock;
1778 			}
1779 		} else {
1780 			/*
1781 			 * If an unprivileged user inherits a one-to-many
1782 			 * style socket with open associations on a privileged
1783 			 * port, it MAY be permitted to accept new associations,
1784 			 * but it SHOULD NOT be permitted to open new
1785 			 * associations.
1786 			 */
1787 			if (ep->base.bind_addr.port < PROT_SOCK &&
1788 			    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1789 				err = -EACCES;
1790 				goto out_unlock;
1791 			}
1792 		}
1793 
1794 		scope = sctp_scope(&to);
1795 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1796 		if (!new_asoc) {
1797 			err = -ENOMEM;
1798 			goto out_unlock;
1799 		}
1800 		asoc = new_asoc;
1801 		err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1802 		if (err < 0) {
1803 			err = -ENOMEM;
1804 			goto out_free;
1805 		}
1806 
1807 		/* If the SCTP_INIT ancillary data is specified, set all
1808 		 * the association init values accordingly.
1809 		 */
1810 		if (sinit) {
1811 			if (sinit->sinit_num_ostreams) {
1812 				asoc->c.sinit_num_ostreams =
1813 					sinit->sinit_num_ostreams;
1814 			}
1815 			if (sinit->sinit_max_instreams) {
1816 				asoc->c.sinit_max_instreams =
1817 					sinit->sinit_max_instreams;
1818 			}
1819 			if (sinit->sinit_max_attempts) {
1820 				asoc->max_init_attempts
1821 					= sinit->sinit_max_attempts;
1822 			}
1823 			if (sinit->sinit_max_init_timeo) {
1824 				asoc->max_init_timeo =
1825 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1826 			}
1827 		}
1828 
1829 		/* Prime the peer's transport structures.  */
1830 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1831 		if (!transport) {
1832 			err = -ENOMEM;
1833 			goto out_free;
1834 		}
1835 	}
1836 
1837 	/* ASSERT: we have a valid association at this point.  */
1838 	pr_debug("%s: we have a valid association\n", __func__);
1839 
1840 	if (!sinfo) {
1841 		/* If the user didn't specify SNDRCVINFO, make up one with
1842 		 * some defaults.
1843 		 */
1844 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1845 		default_sinfo.sinfo_stream = asoc->default_stream;
1846 		default_sinfo.sinfo_flags = asoc->default_flags;
1847 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1848 		default_sinfo.sinfo_context = asoc->default_context;
1849 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1850 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1851 		sinfo = &default_sinfo;
1852 	}
1853 
1854 	/* API 7.1.7, the sndbuf size per association bounds the
1855 	 * maximum size of data that can be sent in a single send call.
1856 	 */
1857 	if (msg_len > sk->sk_sndbuf) {
1858 		err = -EMSGSIZE;
1859 		goto out_free;
1860 	}
1861 
1862 	if (asoc->pmtu_pending)
1863 		sctp_assoc_pending_pmtu(sk, asoc);
1864 
1865 	/* If fragmentation is disabled and the message length exceeds the
1866 	 * association fragmentation point, return EMSGSIZE.  The I-D
1867 	 * does not specify what this error is, but this looks like
1868 	 * a great fit.
1869 	 */
1870 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1871 		err = -EMSGSIZE;
1872 		goto out_free;
1873 	}
1874 
1875 	/* Check for invalid stream. */
1876 	if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1877 		err = -EINVAL;
1878 		goto out_free;
1879 	}
1880 
1881 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1882 	if (!sctp_wspace(asoc)) {
1883 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1884 		if (err)
1885 			goto out_free;
1886 	}
1887 
1888 	/* If an address is passed with the sendto/sendmsg call, it is used
1889 	 * to override the primary destination address in the TCP model, or
1890 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1891 	 */
1892 	if ((sctp_style(sk, TCP) && msg_name) ||
1893 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1894 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1895 		if (!chunk_tp) {
1896 			err = -EINVAL;
1897 			goto out_free;
1898 		}
1899 	} else
1900 		chunk_tp = NULL;
1901 
1902 	/* Auto-connect, if we aren't connected already. */
1903 	if (sctp_state(asoc, CLOSED)) {
1904 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1905 		if (err < 0)
1906 			goto out_free;
1907 
1908 		pr_debug("%s: we associated primitively\n", __func__);
1909 	}
1910 
1911 	/* Break the message into multiple chunks of maximum size. */
1912 	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1913 	if (IS_ERR(datamsg)) {
1914 		err = PTR_ERR(datamsg);
1915 		goto out_free;
1916 	}
1917 
1918 	/* Now send the (possibly) fragmented message. */
1919 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1920 		sctp_chunk_hold(chunk);
1921 
1922 		/* Do accounting for the write space.  */
1923 		sctp_set_owner_w(chunk);
1924 
1925 		chunk->transport = chunk_tp;
1926 	}
1927 
1928 	/* Send it to the lower layers.  Note:  all chunks
1929 	 * must either fail or succeed.   The lower layer
1930 	 * works that way today.  Keep it that way or this
1931 	 * breaks.
1932 	 */
1933 	err = sctp_primitive_SEND(net, asoc, datamsg);
1934 	/* Did the lower layer accept the chunk? */
1935 	if (err) {
1936 		sctp_datamsg_free(datamsg);
1937 		goto out_free;
1938 	}
1939 
1940 	pr_debug("%s: we sent primitively\n", __func__);
1941 
1942 	sctp_datamsg_put(datamsg);
1943 	err = msg_len;
1944 
1945 	/* If we are already past ASSOCIATE, the lower
1946 	 * layers are responsible for association cleanup.
1947 	 */
1948 	goto out_unlock;
1949 
1950 out_free:
1951 	if (new_asoc) {
1952 		sctp_unhash_established(asoc);
1953 		sctp_association_free(asoc);
1954 	}
1955 out_unlock:
1956 	sctp_release_sock(sk);
1957 
1958 out_nounlock:
1959 	return sctp_error(sk, msg_flags, err);
1960 
1961 #if 0
1962 do_sock_err:
1963 	if (msg_len)
1964 		err = msg_len;
1965 	else
1966 		err = sock_error(sk);
1967 	goto out;
1968 
1969 do_interrupted:
1970 	if (msg_len)
1971 		err = msg_len;
1972 	goto out;
1973 #endif /* 0 */
1974 }
1975 
1976 /* This is an extended version of skb_pull() that removes the data from the
1977  * start of a skb even when data is spread across the list of skb's in the
1978  * frag_list. len specifies the total amount of data that needs to be removed.
1979  * when 'len' bytes could be removed from the skb, it returns 0.
1980  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
1981  * could not be removed.
1982  */
1983 static int sctp_skb_pull(struct sk_buff *skb, int len)
1984 {
1985 	struct sk_buff *list;
1986 	int skb_len = skb_headlen(skb);
1987 	int rlen;
1988 
1989 	if (len <= skb_len) {
1990 		__skb_pull(skb, len);
1991 		return 0;
1992 	}
1993 	len -= skb_len;
1994 	__skb_pull(skb, skb_len);
1995 
1996 	skb_walk_frags(skb, list) {
1997 		rlen = sctp_skb_pull(list, len);
1998 		skb->len -= (len-rlen);
1999 		skb->data_len -= (len-rlen);
2000 
2001 		if (!rlen)
2002 			return 0;
2003 
2004 		len = rlen;
2005 	}
2006 
2007 	return len;
2008 }
2009 
2010 /* API 3.1.3  recvmsg() - UDP Style Syntax
2011  *
2012  *  ssize_t recvmsg(int socket, struct msghdr *message,
2013  *                    int flags);
2014  *
2015  *  socket  - the socket descriptor of the endpoint.
2016  *  message - pointer to the msghdr structure which contains a single
2017  *            user message and possibly some ancillary data.
2018  *
2019  *            See Section 5 for complete description of the data
2020  *            structures.
2021  *
2022  *  flags   - flags sent or received with the user message, see Section
2023  *            5 for complete description of the flags.
2024  */
2025 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
2026 
2027 static int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
2028 			struct msghdr *msg, size_t len, int noblock,
2029 			int flags, int *addr_len)
2030 {
2031 	struct sctp_ulpevent *event = NULL;
2032 	struct sctp_sock *sp = sctp_sk(sk);
2033 	struct sk_buff *skb;
2034 	int copied;
2035 	int err = 0;
2036 	int skb_len;
2037 
2038 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2039 		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2040 		 addr_len);
2041 
2042 	sctp_lock_sock(sk);
2043 
2044 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2045 		err = -ENOTCONN;
2046 		goto out;
2047 	}
2048 
2049 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2050 	if (!skb)
2051 		goto out;
2052 
2053 	/* Get the total length of the skb including any skb's in the
2054 	 * frag_list.
2055 	 */
2056 	skb_len = skb->len;
2057 
2058 	copied = skb_len;
2059 	if (copied > len)
2060 		copied = len;
2061 
2062 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2063 
2064 	event = sctp_skb2event(skb);
2065 
2066 	if (err)
2067 		goto out_free;
2068 
2069 	sock_recv_ts_and_drops(msg, sk, skb);
2070 	if (sctp_ulpevent_is_notification(event)) {
2071 		msg->msg_flags |= MSG_NOTIFICATION;
2072 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2073 	} else {
2074 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2075 	}
2076 
2077 	/* Check if we allow SCTP_SNDRCVINFO. */
2078 	if (sp->subscribe.sctp_data_io_event)
2079 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2080 #if 0
2081 	/* FIXME: we should be calling IP/IPv6 layers.  */
2082 	if (sk->sk_protinfo.af_inet.cmsg_flags)
2083 		ip_cmsg_recv(msg, skb);
2084 #endif
2085 
2086 	err = copied;
2087 
2088 	/* If skb's length exceeds the user's buffer, update the skb and
2089 	 * push it back to the receive_queue so that the next call to
2090 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2091 	 */
2092 	if (skb_len > copied) {
2093 		msg->msg_flags &= ~MSG_EOR;
2094 		if (flags & MSG_PEEK)
2095 			goto out_free;
2096 		sctp_skb_pull(skb, copied);
2097 		skb_queue_head(&sk->sk_receive_queue, skb);
2098 
2099 		/* When only partial message is copied to the user, increase
2100 		 * rwnd by that amount. If all the data in the skb is read,
2101 		 * rwnd is updated when the event is freed.
2102 		 */
2103 		if (!sctp_ulpevent_is_notification(event))
2104 			sctp_assoc_rwnd_increase(event->asoc, copied);
2105 		goto out;
2106 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2107 		   (event->msg_flags & MSG_EOR))
2108 		msg->msg_flags |= MSG_EOR;
2109 	else
2110 		msg->msg_flags &= ~MSG_EOR;
2111 
2112 out_free:
2113 	if (flags & MSG_PEEK) {
2114 		/* Release the skb reference acquired after peeking the skb in
2115 		 * sctp_skb_recv_datagram().
2116 		 */
2117 		kfree_skb(skb);
2118 	} else {
2119 		/* Free the event which includes releasing the reference to
2120 		 * the owner of the skb, freeing the skb and updating the
2121 		 * rwnd.
2122 		 */
2123 		sctp_ulpevent_free(event);
2124 	}
2125 out:
2126 	sctp_release_sock(sk);
2127 	return err;
2128 }
2129 
2130 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2131  *
2132  * This option is a on/off flag.  If enabled no SCTP message
2133  * fragmentation will be performed.  Instead if a message being sent
2134  * exceeds the current PMTU size, the message will NOT be sent and
2135  * instead a error will be indicated to the user.
2136  */
2137 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2138 					     char __user *optval,
2139 					     unsigned int optlen)
2140 {
2141 	int val;
2142 
2143 	if (optlen < sizeof(int))
2144 		return -EINVAL;
2145 
2146 	if (get_user(val, (int __user *)optval))
2147 		return -EFAULT;
2148 
2149 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2150 
2151 	return 0;
2152 }
2153 
2154 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2155 				  unsigned int optlen)
2156 {
2157 	struct sctp_association *asoc;
2158 	struct sctp_ulpevent *event;
2159 
2160 	if (optlen > sizeof(struct sctp_event_subscribe))
2161 		return -EINVAL;
2162 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2163 		return -EFAULT;
2164 
2165 	/*
2166 	 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2167 	 * if there is no data to be sent or retransmit, the stack will
2168 	 * immediately send up this notification.
2169 	 */
2170 	if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2171 				       &sctp_sk(sk)->subscribe)) {
2172 		asoc = sctp_id2assoc(sk, 0);
2173 
2174 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2175 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2176 					GFP_ATOMIC);
2177 			if (!event)
2178 				return -ENOMEM;
2179 
2180 			sctp_ulpq_tail_event(&asoc->ulpq, event);
2181 		}
2182 	}
2183 
2184 	return 0;
2185 }
2186 
2187 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2188  *
2189  * This socket option is applicable to the UDP-style socket only.  When
2190  * set it will cause associations that are idle for more than the
2191  * specified number of seconds to automatically close.  An association
2192  * being idle is defined an association that has NOT sent or received
2193  * user data.  The special value of '0' indicates that no automatic
2194  * close of any associations should be performed.  The option expects an
2195  * integer defining the number of seconds of idle time before an
2196  * association is closed.
2197  */
2198 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2199 				     unsigned int optlen)
2200 {
2201 	struct sctp_sock *sp = sctp_sk(sk);
2202 
2203 	/* Applicable to UDP-style socket only */
2204 	if (sctp_style(sk, TCP))
2205 		return -EOPNOTSUPP;
2206 	if (optlen != sizeof(int))
2207 		return -EINVAL;
2208 	if (copy_from_user(&sp->autoclose, optval, optlen))
2209 		return -EFAULT;
2210 
2211 	return 0;
2212 }
2213 
2214 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2215  *
2216  * Applications can enable or disable heartbeats for any peer address of
2217  * an association, modify an address's heartbeat interval, force a
2218  * heartbeat to be sent immediately, and adjust the address's maximum
2219  * number of retransmissions sent before an address is considered
2220  * unreachable.  The following structure is used to access and modify an
2221  * address's parameters:
2222  *
2223  *  struct sctp_paddrparams {
2224  *     sctp_assoc_t            spp_assoc_id;
2225  *     struct sockaddr_storage spp_address;
2226  *     uint32_t                spp_hbinterval;
2227  *     uint16_t                spp_pathmaxrxt;
2228  *     uint32_t                spp_pathmtu;
2229  *     uint32_t                spp_sackdelay;
2230  *     uint32_t                spp_flags;
2231  * };
2232  *
2233  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2234  *                     application, and identifies the association for
2235  *                     this query.
2236  *   spp_address     - This specifies which address is of interest.
2237  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2238  *                     in milliseconds.  If a  value of zero
2239  *                     is present in this field then no changes are to
2240  *                     be made to this parameter.
2241  *   spp_pathmaxrxt  - This contains the maximum number of
2242  *                     retransmissions before this address shall be
2243  *                     considered unreachable. If a  value of zero
2244  *                     is present in this field then no changes are to
2245  *                     be made to this parameter.
2246  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2247  *                     specified here will be the "fixed" path mtu.
2248  *                     Note that if the spp_address field is empty
2249  *                     then all associations on this address will
2250  *                     have this fixed path mtu set upon them.
2251  *
2252  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2253  *                     the number of milliseconds that sacks will be delayed
2254  *                     for. This value will apply to all addresses of an
2255  *                     association if the spp_address field is empty. Note
2256  *                     also, that if delayed sack is enabled and this
2257  *                     value is set to 0, no change is made to the last
2258  *                     recorded delayed sack timer value.
2259  *
2260  *   spp_flags       - These flags are used to control various features
2261  *                     on an association. The flag field may contain
2262  *                     zero or more of the following options.
2263  *
2264  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2265  *                     specified address. Note that if the address
2266  *                     field is empty all addresses for the association
2267  *                     have heartbeats enabled upon them.
2268  *
2269  *                     SPP_HB_DISABLE - Disable heartbeats on the
2270  *                     speicifed address. Note that if the address
2271  *                     field is empty all addresses for the association
2272  *                     will have their heartbeats disabled. Note also
2273  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2274  *                     mutually exclusive, only one of these two should
2275  *                     be specified. Enabling both fields will have
2276  *                     undetermined results.
2277  *
2278  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2279  *                     to be made immediately.
2280  *
2281  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2282  *                     heartbeat delayis to be set to the value of 0
2283  *                     milliseconds.
2284  *
2285  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2286  *                     discovery upon the specified address. Note that
2287  *                     if the address feild is empty then all addresses
2288  *                     on the association are effected.
2289  *
2290  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2291  *                     discovery upon the specified address. Note that
2292  *                     if the address feild is empty then all addresses
2293  *                     on the association are effected. Not also that
2294  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2295  *                     exclusive. Enabling both will have undetermined
2296  *                     results.
2297  *
2298  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2299  *                     on delayed sack. The time specified in spp_sackdelay
2300  *                     is used to specify the sack delay for this address. Note
2301  *                     that if spp_address is empty then all addresses will
2302  *                     enable delayed sack and take on the sack delay
2303  *                     value specified in spp_sackdelay.
2304  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2305  *                     off delayed sack. If the spp_address field is blank then
2306  *                     delayed sack is disabled for the entire association. Note
2307  *                     also that this field is mutually exclusive to
2308  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2309  *                     results.
2310  */
2311 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2312 				       struct sctp_transport   *trans,
2313 				       struct sctp_association *asoc,
2314 				       struct sctp_sock        *sp,
2315 				       int                      hb_change,
2316 				       int                      pmtud_change,
2317 				       int                      sackdelay_change)
2318 {
2319 	int error;
2320 
2321 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2322 		struct net *net = sock_net(trans->asoc->base.sk);
2323 
2324 		error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2325 		if (error)
2326 			return error;
2327 	}
2328 
2329 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2330 	 * this field is ignored.  Note also that a value of zero indicates
2331 	 * the current setting should be left unchanged.
2332 	 */
2333 	if (params->spp_flags & SPP_HB_ENABLE) {
2334 
2335 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2336 		 * set.  This lets us use 0 value when this flag
2337 		 * is set.
2338 		 */
2339 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2340 			params->spp_hbinterval = 0;
2341 
2342 		if (params->spp_hbinterval ||
2343 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2344 			if (trans) {
2345 				trans->hbinterval =
2346 				    msecs_to_jiffies(params->spp_hbinterval);
2347 			} else if (asoc) {
2348 				asoc->hbinterval =
2349 				    msecs_to_jiffies(params->spp_hbinterval);
2350 			} else {
2351 				sp->hbinterval = params->spp_hbinterval;
2352 			}
2353 		}
2354 	}
2355 
2356 	if (hb_change) {
2357 		if (trans) {
2358 			trans->param_flags =
2359 				(trans->param_flags & ~SPP_HB) | hb_change;
2360 		} else if (asoc) {
2361 			asoc->param_flags =
2362 				(asoc->param_flags & ~SPP_HB) | hb_change;
2363 		} else {
2364 			sp->param_flags =
2365 				(sp->param_flags & ~SPP_HB) | hb_change;
2366 		}
2367 	}
2368 
2369 	/* When Path MTU discovery is disabled the value specified here will
2370 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2371 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2372 	 * effect).
2373 	 */
2374 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2375 		if (trans) {
2376 			trans->pathmtu = params->spp_pathmtu;
2377 			sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2378 		} else if (asoc) {
2379 			asoc->pathmtu = params->spp_pathmtu;
2380 			sctp_frag_point(asoc, params->spp_pathmtu);
2381 		} else {
2382 			sp->pathmtu = params->spp_pathmtu;
2383 		}
2384 	}
2385 
2386 	if (pmtud_change) {
2387 		if (trans) {
2388 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2389 				(params->spp_flags & SPP_PMTUD_ENABLE);
2390 			trans->param_flags =
2391 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2392 			if (update) {
2393 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2394 				sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2395 			}
2396 		} else if (asoc) {
2397 			asoc->param_flags =
2398 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2399 		} else {
2400 			sp->param_flags =
2401 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2402 		}
2403 	}
2404 
2405 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2406 	 * value of this field is ignored.  Note also that a value of zero
2407 	 * indicates the current setting should be left unchanged.
2408 	 */
2409 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2410 		if (trans) {
2411 			trans->sackdelay =
2412 				msecs_to_jiffies(params->spp_sackdelay);
2413 		} else if (asoc) {
2414 			asoc->sackdelay =
2415 				msecs_to_jiffies(params->spp_sackdelay);
2416 		} else {
2417 			sp->sackdelay = params->spp_sackdelay;
2418 		}
2419 	}
2420 
2421 	if (sackdelay_change) {
2422 		if (trans) {
2423 			trans->param_flags =
2424 				(trans->param_flags & ~SPP_SACKDELAY) |
2425 				sackdelay_change;
2426 		} else if (asoc) {
2427 			asoc->param_flags =
2428 				(asoc->param_flags & ~SPP_SACKDELAY) |
2429 				sackdelay_change;
2430 		} else {
2431 			sp->param_flags =
2432 				(sp->param_flags & ~SPP_SACKDELAY) |
2433 				sackdelay_change;
2434 		}
2435 	}
2436 
2437 	/* Note that a value of zero indicates the current setting should be
2438 	   left unchanged.
2439 	 */
2440 	if (params->spp_pathmaxrxt) {
2441 		if (trans) {
2442 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2443 		} else if (asoc) {
2444 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2445 		} else {
2446 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2447 		}
2448 	}
2449 
2450 	return 0;
2451 }
2452 
2453 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2454 					    char __user *optval,
2455 					    unsigned int optlen)
2456 {
2457 	struct sctp_paddrparams  params;
2458 	struct sctp_transport   *trans = NULL;
2459 	struct sctp_association *asoc = NULL;
2460 	struct sctp_sock        *sp = sctp_sk(sk);
2461 	int error;
2462 	int hb_change, pmtud_change, sackdelay_change;
2463 
2464 	if (optlen != sizeof(struct sctp_paddrparams))
2465 		return - EINVAL;
2466 
2467 	if (copy_from_user(&params, optval, optlen))
2468 		return -EFAULT;
2469 
2470 	/* Validate flags and value parameters. */
2471 	hb_change        = params.spp_flags & SPP_HB;
2472 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2473 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2474 
2475 	if (hb_change        == SPP_HB ||
2476 	    pmtud_change     == SPP_PMTUD ||
2477 	    sackdelay_change == SPP_SACKDELAY ||
2478 	    params.spp_sackdelay > 500 ||
2479 	    (params.spp_pathmtu &&
2480 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2481 		return -EINVAL;
2482 
2483 	/* If an address other than INADDR_ANY is specified, and
2484 	 * no transport is found, then the request is invalid.
2485 	 */
2486 	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
2487 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2488 					       params.spp_assoc_id);
2489 		if (!trans)
2490 			return -EINVAL;
2491 	}
2492 
2493 	/* Get association, if assoc_id != 0 and the socket is a one
2494 	 * to many style socket, and an association was not found, then
2495 	 * the id was invalid.
2496 	 */
2497 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2498 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2499 		return -EINVAL;
2500 
2501 	/* Heartbeat demand can only be sent on a transport or
2502 	 * association, but not a socket.
2503 	 */
2504 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2505 		return -EINVAL;
2506 
2507 	/* Process parameters. */
2508 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2509 					    hb_change, pmtud_change,
2510 					    sackdelay_change);
2511 
2512 	if (error)
2513 		return error;
2514 
2515 	/* If changes are for association, also apply parameters to each
2516 	 * transport.
2517 	 */
2518 	if (!trans && asoc) {
2519 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2520 				transports) {
2521 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2522 						    hb_change, pmtud_change,
2523 						    sackdelay_change);
2524 		}
2525 	}
2526 
2527 	return 0;
2528 }
2529 
2530 /*
2531  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2532  *
2533  * This option will effect the way delayed acks are performed.  This
2534  * option allows you to get or set the delayed ack time, in
2535  * milliseconds.  It also allows changing the delayed ack frequency.
2536  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2537  * the assoc_id is 0, then this sets or gets the endpoints default
2538  * values.  If the assoc_id field is non-zero, then the set or get
2539  * effects the specified association for the one to many model (the
2540  * assoc_id field is ignored by the one to one model).  Note that if
2541  * sack_delay or sack_freq are 0 when setting this option, then the
2542  * current values will remain unchanged.
2543  *
2544  * struct sctp_sack_info {
2545  *     sctp_assoc_t            sack_assoc_id;
2546  *     uint32_t                sack_delay;
2547  *     uint32_t                sack_freq;
2548  * };
2549  *
2550  * sack_assoc_id -  This parameter, indicates which association the user
2551  *    is performing an action upon.  Note that if this field's value is
2552  *    zero then the endpoints default value is changed (effecting future
2553  *    associations only).
2554  *
2555  * sack_delay -  This parameter contains the number of milliseconds that
2556  *    the user is requesting the delayed ACK timer be set to.  Note that
2557  *    this value is defined in the standard to be between 200 and 500
2558  *    milliseconds.
2559  *
2560  * sack_freq -  This parameter contains the number of packets that must
2561  *    be received before a sack is sent without waiting for the delay
2562  *    timer to expire.  The default value for this is 2, setting this
2563  *    value to 1 will disable the delayed sack algorithm.
2564  */
2565 
2566 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2567 				       char __user *optval, unsigned int optlen)
2568 {
2569 	struct sctp_sack_info    params;
2570 	struct sctp_transport   *trans = NULL;
2571 	struct sctp_association *asoc = NULL;
2572 	struct sctp_sock        *sp = sctp_sk(sk);
2573 
2574 	if (optlen == sizeof(struct sctp_sack_info)) {
2575 		if (copy_from_user(&params, optval, optlen))
2576 			return -EFAULT;
2577 
2578 		if (params.sack_delay == 0 && params.sack_freq == 0)
2579 			return 0;
2580 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2581 		pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
2582 		pr_warn("Use struct sctp_sack_info instead\n");
2583 		if (copy_from_user(&params, optval, optlen))
2584 			return -EFAULT;
2585 
2586 		if (params.sack_delay == 0)
2587 			params.sack_freq = 1;
2588 		else
2589 			params.sack_freq = 0;
2590 	} else
2591 		return - EINVAL;
2592 
2593 	/* Validate value parameter. */
2594 	if (params.sack_delay > 500)
2595 		return -EINVAL;
2596 
2597 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2598 	 * to many style socket, and an association was not found, then
2599 	 * the id was invalid.
2600 	 */
2601 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2602 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2603 		return -EINVAL;
2604 
2605 	if (params.sack_delay) {
2606 		if (asoc) {
2607 			asoc->sackdelay =
2608 				msecs_to_jiffies(params.sack_delay);
2609 			asoc->param_flags =
2610 				(asoc->param_flags & ~SPP_SACKDELAY) |
2611 				SPP_SACKDELAY_ENABLE;
2612 		} else {
2613 			sp->sackdelay = params.sack_delay;
2614 			sp->param_flags =
2615 				(sp->param_flags & ~SPP_SACKDELAY) |
2616 				SPP_SACKDELAY_ENABLE;
2617 		}
2618 	}
2619 
2620 	if (params.sack_freq == 1) {
2621 		if (asoc) {
2622 			asoc->param_flags =
2623 				(asoc->param_flags & ~SPP_SACKDELAY) |
2624 				SPP_SACKDELAY_DISABLE;
2625 		} else {
2626 			sp->param_flags =
2627 				(sp->param_flags & ~SPP_SACKDELAY) |
2628 				SPP_SACKDELAY_DISABLE;
2629 		}
2630 	} else if (params.sack_freq > 1) {
2631 		if (asoc) {
2632 			asoc->sackfreq = params.sack_freq;
2633 			asoc->param_flags =
2634 				(asoc->param_flags & ~SPP_SACKDELAY) |
2635 				SPP_SACKDELAY_ENABLE;
2636 		} else {
2637 			sp->sackfreq = params.sack_freq;
2638 			sp->param_flags =
2639 				(sp->param_flags & ~SPP_SACKDELAY) |
2640 				SPP_SACKDELAY_ENABLE;
2641 		}
2642 	}
2643 
2644 	/* If change is for association, also apply to each transport. */
2645 	if (asoc) {
2646 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2647 				transports) {
2648 			if (params.sack_delay) {
2649 				trans->sackdelay =
2650 					msecs_to_jiffies(params.sack_delay);
2651 				trans->param_flags =
2652 					(trans->param_flags & ~SPP_SACKDELAY) |
2653 					SPP_SACKDELAY_ENABLE;
2654 			}
2655 			if (params.sack_freq == 1) {
2656 				trans->param_flags =
2657 					(trans->param_flags & ~SPP_SACKDELAY) |
2658 					SPP_SACKDELAY_DISABLE;
2659 			} else if (params.sack_freq > 1) {
2660 				trans->sackfreq = params.sack_freq;
2661 				trans->param_flags =
2662 					(trans->param_flags & ~SPP_SACKDELAY) |
2663 					SPP_SACKDELAY_ENABLE;
2664 			}
2665 		}
2666 	}
2667 
2668 	return 0;
2669 }
2670 
2671 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2672  *
2673  * Applications can specify protocol parameters for the default association
2674  * initialization.  The option name argument to setsockopt() and getsockopt()
2675  * is SCTP_INITMSG.
2676  *
2677  * Setting initialization parameters is effective only on an unconnected
2678  * socket (for UDP-style sockets only future associations are effected
2679  * by the change).  With TCP-style sockets, this option is inherited by
2680  * sockets derived from a listener socket.
2681  */
2682 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2683 {
2684 	struct sctp_initmsg sinit;
2685 	struct sctp_sock *sp = sctp_sk(sk);
2686 
2687 	if (optlen != sizeof(struct sctp_initmsg))
2688 		return -EINVAL;
2689 	if (copy_from_user(&sinit, optval, optlen))
2690 		return -EFAULT;
2691 
2692 	if (sinit.sinit_num_ostreams)
2693 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2694 	if (sinit.sinit_max_instreams)
2695 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2696 	if (sinit.sinit_max_attempts)
2697 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2698 	if (sinit.sinit_max_init_timeo)
2699 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2700 
2701 	return 0;
2702 }
2703 
2704 /*
2705  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2706  *
2707  *   Applications that wish to use the sendto() system call may wish to
2708  *   specify a default set of parameters that would normally be supplied
2709  *   through the inclusion of ancillary data.  This socket option allows
2710  *   such an application to set the default sctp_sndrcvinfo structure.
2711  *   The application that wishes to use this socket option simply passes
2712  *   in to this call the sctp_sndrcvinfo structure defined in Section
2713  *   5.2.2) The input parameters accepted by this call include
2714  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2715  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2716  *   to this call if the caller is using the UDP model.
2717  */
2718 static int sctp_setsockopt_default_send_param(struct sock *sk,
2719 					      char __user *optval,
2720 					      unsigned int optlen)
2721 {
2722 	struct sctp_sndrcvinfo info;
2723 	struct sctp_association *asoc;
2724 	struct sctp_sock *sp = sctp_sk(sk);
2725 
2726 	if (optlen != sizeof(struct sctp_sndrcvinfo))
2727 		return -EINVAL;
2728 	if (copy_from_user(&info, optval, optlen))
2729 		return -EFAULT;
2730 
2731 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2732 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2733 		return -EINVAL;
2734 
2735 	if (asoc) {
2736 		asoc->default_stream = info.sinfo_stream;
2737 		asoc->default_flags = info.sinfo_flags;
2738 		asoc->default_ppid = info.sinfo_ppid;
2739 		asoc->default_context = info.sinfo_context;
2740 		asoc->default_timetolive = info.sinfo_timetolive;
2741 	} else {
2742 		sp->default_stream = info.sinfo_stream;
2743 		sp->default_flags = info.sinfo_flags;
2744 		sp->default_ppid = info.sinfo_ppid;
2745 		sp->default_context = info.sinfo_context;
2746 		sp->default_timetolive = info.sinfo_timetolive;
2747 	}
2748 
2749 	return 0;
2750 }
2751 
2752 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2753  *
2754  * Requests that the local SCTP stack use the enclosed peer address as
2755  * the association primary.  The enclosed address must be one of the
2756  * association peer's addresses.
2757  */
2758 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2759 					unsigned int optlen)
2760 {
2761 	struct sctp_prim prim;
2762 	struct sctp_transport *trans;
2763 
2764 	if (optlen != sizeof(struct sctp_prim))
2765 		return -EINVAL;
2766 
2767 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2768 		return -EFAULT;
2769 
2770 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2771 	if (!trans)
2772 		return -EINVAL;
2773 
2774 	sctp_assoc_set_primary(trans->asoc, trans);
2775 
2776 	return 0;
2777 }
2778 
2779 /*
2780  * 7.1.5 SCTP_NODELAY
2781  *
2782  * Turn on/off any Nagle-like algorithm.  This means that packets are
2783  * generally sent as soon as possible and no unnecessary delays are
2784  * introduced, at the cost of more packets in the network.  Expects an
2785  *  integer boolean flag.
2786  */
2787 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2788 				   unsigned int optlen)
2789 {
2790 	int val;
2791 
2792 	if (optlen < sizeof(int))
2793 		return -EINVAL;
2794 	if (get_user(val, (int __user *)optval))
2795 		return -EFAULT;
2796 
2797 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2798 	return 0;
2799 }
2800 
2801 /*
2802  *
2803  * 7.1.1 SCTP_RTOINFO
2804  *
2805  * The protocol parameters used to initialize and bound retransmission
2806  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2807  * and modify these parameters.
2808  * All parameters are time values, in milliseconds.  A value of 0, when
2809  * modifying the parameters, indicates that the current value should not
2810  * be changed.
2811  *
2812  */
2813 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2814 {
2815 	struct sctp_rtoinfo rtoinfo;
2816 	struct sctp_association *asoc;
2817 
2818 	if (optlen != sizeof (struct sctp_rtoinfo))
2819 		return -EINVAL;
2820 
2821 	if (copy_from_user(&rtoinfo, optval, optlen))
2822 		return -EFAULT;
2823 
2824 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2825 
2826 	/* Set the values to the specific association */
2827 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2828 		return -EINVAL;
2829 
2830 	if (asoc) {
2831 		if (rtoinfo.srto_initial != 0)
2832 			asoc->rto_initial =
2833 				msecs_to_jiffies(rtoinfo.srto_initial);
2834 		if (rtoinfo.srto_max != 0)
2835 			asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2836 		if (rtoinfo.srto_min != 0)
2837 			asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2838 	} else {
2839 		/* If there is no association or the association-id = 0
2840 		 * set the values to the endpoint.
2841 		 */
2842 		struct sctp_sock *sp = sctp_sk(sk);
2843 
2844 		if (rtoinfo.srto_initial != 0)
2845 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2846 		if (rtoinfo.srto_max != 0)
2847 			sp->rtoinfo.srto_max = rtoinfo.srto_max;
2848 		if (rtoinfo.srto_min != 0)
2849 			sp->rtoinfo.srto_min = rtoinfo.srto_min;
2850 	}
2851 
2852 	return 0;
2853 }
2854 
2855 /*
2856  *
2857  * 7.1.2 SCTP_ASSOCINFO
2858  *
2859  * This option is used to tune the maximum retransmission attempts
2860  * of the association.
2861  * Returns an error if the new association retransmission value is
2862  * greater than the sum of the retransmission value  of the peer.
2863  * See [SCTP] for more information.
2864  *
2865  */
2866 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2867 {
2868 
2869 	struct sctp_assocparams assocparams;
2870 	struct sctp_association *asoc;
2871 
2872 	if (optlen != sizeof(struct sctp_assocparams))
2873 		return -EINVAL;
2874 	if (copy_from_user(&assocparams, optval, optlen))
2875 		return -EFAULT;
2876 
2877 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2878 
2879 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2880 		return -EINVAL;
2881 
2882 	/* Set the values to the specific association */
2883 	if (asoc) {
2884 		if (assocparams.sasoc_asocmaxrxt != 0) {
2885 			__u32 path_sum = 0;
2886 			int   paths = 0;
2887 			struct sctp_transport *peer_addr;
2888 
2889 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2890 					transports) {
2891 				path_sum += peer_addr->pathmaxrxt;
2892 				paths++;
2893 			}
2894 
2895 			/* Only validate asocmaxrxt if we have more than
2896 			 * one path/transport.  We do this because path
2897 			 * retransmissions are only counted when we have more
2898 			 * then one path.
2899 			 */
2900 			if (paths > 1 &&
2901 			    assocparams.sasoc_asocmaxrxt > path_sum)
2902 				return -EINVAL;
2903 
2904 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2905 		}
2906 
2907 		if (assocparams.sasoc_cookie_life != 0)
2908 			asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
2909 	} else {
2910 		/* Set the values to the endpoint */
2911 		struct sctp_sock *sp = sctp_sk(sk);
2912 
2913 		if (assocparams.sasoc_asocmaxrxt != 0)
2914 			sp->assocparams.sasoc_asocmaxrxt =
2915 						assocparams.sasoc_asocmaxrxt;
2916 		if (assocparams.sasoc_cookie_life != 0)
2917 			sp->assocparams.sasoc_cookie_life =
2918 						assocparams.sasoc_cookie_life;
2919 	}
2920 	return 0;
2921 }
2922 
2923 /*
2924  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2925  *
2926  * This socket option is a boolean flag which turns on or off mapped V4
2927  * addresses.  If this option is turned on and the socket is type
2928  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2929  * If this option is turned off, then no mapping will be done of V4
2930  * addresses and a user will receive both PF_INET6 and PF_INET type
2931  * addresses on the socket.
2932  */
2933 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
2934 {
2935 	int val;
2936 	struct sctp_sock *sp = sctp_sk(sk);
2937 
2938 	if (optlen < sizeof(int))
2939 		return -EINVAL;
2940 	if (get_user(val, (int __user *)optval))
2941 		return -EFAULT;
2942 	if (val)
2943 		sp->v4mapped = 1;
2944 	else
2945 		sp->v4mapped = 0;
2946 
2947 	return 0;
2948 }
2949 
2950 /*
2951  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
2952  * This option will get or set the maximum size to put in any outgoing
2953  * SCTP DATA chunk.  If a message is larger than this size it will be
2954  * fragmented by SCTP into the specified size.  Note that the underlying
2955  * SCTP implementation may fragment into smaller sized chunks when the
2956  * PMTU of the underlying association is smaller than the value set by
2957  * the user.  The default value for this option is '0' which indicates
2958  * the user is NOT limiting fragmentation and only the PMTU will effect
2959  * SCTP's choice of DATA chunk size.  Note also that values set larger
2960  * than the maximum size of an IP datagram will effectively let SCTP
2961  * control fragmentation (i.e. the same as setting this option to 0).
2962  *
2963  * The following structure is used to access and modify this parameter:
2964  *
2965  * struct sctp_assoc_value {
2966  *   sctp_assoc_t assoc_id;
2967  *   uint32_t assoc_value;
2968  * };
2969  *
2970  * assoc_id:  This parameter is ignored for one-to-one style sockets.
2971  *    For one-to-many style sockets this parameter indicates which
2972  *    association the user is performing an action upon.  Note that if
2973  *    this field's value is zero then the endpoints default value is
2974  *    changed (effecting future associations only).
2975  * assoc_value:  This parameter specifies the maximum size in bytes.
2976  */
2977 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
2978 {
2979 	struct sctp_assoc_value params;
2980 	struct sctp_association *asoc;
2981 	struct sctp_sock *sp = sctp_sk(sk);
2982 	int val;
2983 
2984 	if (optlen == sizeof(int)) {
2985 		pr_warn("Use of int in maxseg socket option deprecated\n");
2986 		pr_warn("Use struct sctp_assoc_value instead\n");
2987 		if (copy_from_user(&val, optval, optlen))
2988 			return -EFAULT;
2989 		params.assoc_id = 0;
2990 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2991 		if (copy_from_user(&params, optval, optlen))
2992 			return -EFAULT;
2993 		val = params.assoc_value;
2994 	} else
2995 		return -EINVAL;
2996 
2997 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2998 		return -EINVAL;
2999 
3000 	asoc = sctp_id2assoc(sk, params.assoc_id);
3001 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3002 		return -EINVAL;
3003 
3004 	if (asoc) {
3005 		if (val == 0) {
3006 			val = asoc->pathmtu;
3007 			val -= sp->pf->af->net_header_len;
3008 			val -= sizeof(struct sctphdr) +
3009 					sizeof(struct sctp_data_chunk);
3010 		}
3011 		asoc->user_frag = val;
3012 		asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3013 	} else {
3014 		sp->user_frag = val;
3015 	}
3016 
3017 	return 0;
3018 }
3019 
3020 
3021 /*
3022  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3023  *
3024  *   Requests that the peer mark the enclosed address as the association
3025  *   primary. The enclosed address must be one of the association's
3026  *   locally bound addresses. The following structure is used to make a
3027  *   set primary request:
3028  */
3029 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3030 					     unsigned int optlen)
3031 {
3032 	struct net *net = sock_net(sk);
3033 	struct sctp_sock	*sp;
3034 	struct sctp_association	*asoc = NULL;
3035 	struct sctp_setpeerprim	prim;
3036 	struct sctp_chunk	*chunk;
3037 	struct sctp_af		*af;
3038 	int 			err;
3039 
3040 	sp = sctp_sk(sk);
3041 
3042 	if (!net->sctp.addip_enable)
3043 		return -EPERM;
3044 
3045 	if (optlen != sizeof(struct sctp_setpeerprim))
3046 		return -EINVAL;
3047 
3048 	if (copy_from_user(&prim, optval, optlen))
3049 		return -EFAULT;
3050 
3051 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3052 	if (!asoc)
3053 		return -EINVAL;
3054 
3055 	if (!asoc->peer.asconf_capable)
3056 		return -EPERM;
3057 
3058 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3059 		return -EPERM;
3060 
3061 	if (!sctp_state(asoc, ESTABLISHED))
3062 		return -ENOTCONN;
3063 
3064 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3065 	if (!af)
3066 		return -EINVAL;
3067 
3068 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3069 		return -EADDRNOTAVAIL;
3070 
3071 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3072 		return -EADDRNOTAVAIL;
3073 
3074 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3075 	chunk = sctp_make_asconf_set_prim(asoc,
3076 					  (union sctp_addr *)&prim.sspp_addr);
3077 	if (!chunk)
3078 		return -ENOMEM;
3079 
3080 	err = sctp_send_asconf(asoc, chunk);
3081 
3082 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3083 
3084 	return err;
3085 }
3086 
3087 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3088 					    unsigned int optlen)
3089 {
3090 	struct sctp_setadaptation adaptation;
3091 
3092 	if (optlen != sizeof(struct sctp_setadaptation))
3093 		return -EINVAL;
3094 	if (copy_from_user(&adaptation, optval, optlen))
3095 		return -EFAULT;
3096 
3097 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3098 
3099 	return 0;
3100 }
3101 
3102 /*
3103  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3104  *
3105  * The context field in the sctp_sndrcvinfo structure is normally only
3106  * used when a failed message is retrieved holding the value that was
3107  * sent down on the actual send call.  This option allows the setting of
3108  * a default context on an association basis that will be received on
3109  * reading messages from the peer.  This is especially helpful in the
3110  * one-2-many model for an application to keep some reference to an
3111  * internal state machine that is processing messages on the
3112  * association.  Note that the setting of this value only effects
3113  * received messages from the peer and does not effect the value that is
3114  * saved with outbound messages.
3115  */
3116 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3117 				   unsigned int optlen)
3118 {
3119 	struct sctp_assoc_value params;
3120 	struct sctp_sock *sp;
3121 	struct sctp_association *asoc;
3122 
3123 	if (optlen != sizeof(struct sctp_assoc_value))
3124 		return -EINVAL;
3125 	if (copy_from_user(&params, optval, optlen))
3126 		return -EFAULT;
3127 
3128 	sp = sctp_sk(sk);
3129 
3130 	if (params.assoc_id != 0) {
3131 		asoc = sctp_id2assoc(sk, params.assoc_id);
3132 		if (!asoc)
3133 			return -EINVAL;
3134 		asoc->default_rcv_context = params.assoc_value;
3135 	} else {
3136 		sp->default_rcv_context = params.assoc_value;
3137 	}
3138 
3139 	return 0;
3140 }
3141 
3142 /*
3143  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3144  *
3145  * This options will at a minimum specify if the implementation is doing
3146  * fragmented interleave.  Fragmented interleave, for a one to many
3147  * socket, is when subsequent calls to receive a message may return
3148  * parts of messages from different associations.  Some implementations
3149  * may allow you to turn this value on or off.  If so, when turned off,
3150  * no fragment interleave will occur (which will cause a head of line
3151  * blocking amongst multiple associations sharing the same one to many
3152  * socket).  When this option is turned on, then each receive call may
3153  * come from a different association (thus the user must receive data
3154  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3155  * association each receive belongs to.
3156  *
3157  * This option takes a boolean value.  A non-zero value indicates that
3158  * fragmented interleave is on.  A value of zero indicates that
3159  * fragmented interleave is off.
3160  *
3161  * Note that it is important that an implementation that allows this
3162  * option to be turned on, have it off by default.  Otherwise an unaware
3163  * application using the one to many model may become confused and act
3164  * incorrectly.
3165  */
3166 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3167 					       char __user *optval,
3168 					       unsigned int optlen)
3169 {
3170 	int val;
3171 
3172 	if (optlen != sizeof(int))
3173 		return -EINVAL;
3174 	if (get_user(val, (int __user *)optval))
3175 		return -EFAULT;
3176 
3177 	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3178 
3179 	return 0;
3180 }
3181 
3182 /*
3183  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3184  *       (SCTP_PARTIAL_DELIVERY_POINT)
3185  *
3186  * This option will set or get the SCTP partial delivery point.  This
3187  * point is the size of a message where the partial delivery API will be
3188  * invoked to help free up rwnd space for the peer.  Setting this to a
3189  * lower value will cause partial deliveries to happen more often.  The
3190  * calls argument is an integer that sets or gets the partial delivery
3191  * point.  Note also that the call will fail if the user attempts to set
3192  * this value larger than the socket receive buffer size.
3193  *
3194  * Note that any single message having a length smaller than or equal to
3195  * the SCTP partial delivery point will be delivered in one single read
3196  * call as long as the user provided buffer is large enough to hold the
3197  * message.
3198  */
3199 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3200 						  char __user *optval,
3201 						  unsigned int optlen)
3202 {
3203 	u32 val;
3204 
3205 	if (optlen != sizeof(u32))
3206 		return -EINVAL;
3207 	if (get_user(val, (int __user *)optval))
3208 		return -EFAULT;
3209 
3210 	/* Note: We double the receive buffer from what the user sets
3211 	 * it to be, also initial rwnd is based on rcvbuf/2.
3212 	 */
3213 	if (val > (sk->sk_rcvbuf >> 1))
3214 		return -EINVAL;
3215 
3216 	sctp_sk(sk)->pd_point = val;
3217 
3218 	return 0; /* is this the right error code? */
3219 }
3220 
3221 /*
3222  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3223  *
3224  * This option will allow a user to change the maximum burst of packets
3225  * that can be emitted by this association.  Note that the default value
3226  * is 4, and some implementations may restrict this setting so that it
3227  * can only be lowered.
3228  *
3229  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3230  * future associations inheriting the socket value.
3231  */
3232 static int sctp_setsockopt_maxburst(struct sock *sk,
3233 				    char __user *optval,
3234 				    unsigned int optlen)
3235 {
3236 	struct sctp_assoc_value params;
3237 	struct sctp_sock *sp;
3238 	struct sctp_association *asoc;
3239 	int val;
3240 	int assoc_id = 0;
3241 
3242 	if (optlen == sizeof(int)) {
3243 		pr_warn("Use of int in max_burst socket option deprecated\n");
3244 		pr_warn("Use struct sctp_assoc_value instead\n");
3245 		if (copy_from_user(&val, optval, optlen))
3246 			return -EFAULT;
3247 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3248 		if (copy_from_user(&params, optval, optlen))
3249 			return -EFAULT;
3250 		val = params.assoc_value;
3251 		assoc_id = params.assoc_id;
3252 	} else
3253 		return -EINVAL;
3254 
3255 	sp = sctp_sk(sk);
3256 
3257 	if (assoc_id != 0) {
3258 		asoc = sctp_id2assoc(sk, assoc_id);
3259 		if (!asoc)
3260 			return -EINVAL;
3261 		asoc->max_burst = val;
3262 	} else
3263 		sp->max_burst = val;
3264 
3265 	return 0;
3266 }
3267 
3268 /*
3269  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3270  *
3271  * This set option adds a chunk type that the user is requesting to be
3272  * received only in an authenticated way.  Changes to the list of chunks
3273  * will only effect future associations on the socket.
3274  */
3275 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3276 				      char __user *optval,
3277 				      unsigned int optlen)
3278 {
3279 	struct net *net = sock_net(sk);
3280 	struct sctp_authchunk val;
3281 
3282 	if (!net->sctp.auth_enable)
3283 		return -EACCES;
3284 
3285 	if (optlen != sizeof(struct sctp_authchunk))
3286 		return -EINVAL;
3287 	if (copy_from_user(&val, optval, optlen))
3288 		return -EFAULT;
3289 
3290 	switch (val.sauth_chunk) {
3291 	case SCTP_CID_INIT:
3292 	case SCTP_CID_INIT_ACK:
3293 	case SCTP_CID_SHUTDOWN_COMPLETE:
3294 	case SCTP_CID_AUTH:
3295 		return -EINVAL;
3296 	}
3297 
3298 	/* add this chunk id to the endpoint */
3299 	return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3300 }
3301 
3302 /*
3303  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3304  *
3305  * This option gets or sets the list of HMAC algorithms that the local
3306  * endpoint requires the peer to use.
3307  */
3308 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3309 				      char __user *optval,
3310 				      unsigned int optlen)
3311 {
3312 	struct net *net = sock_net(sk);
3313 	struct sctp_hmacalgo *hmacs;
3314 	u32 idents;
3315 	int err;
3316 
3317 	if (!net->sctp.auth_enable)
3318 		return -EACCES;
3319 
3320 	if (optlen < sizeof(struct sctp_hmacalgo))
3321 		return -EINVAL;
3322 
3323 	hmacs= memdup_user(optval, optlen);
3324 	if (IS_ERR(hmacs))
3325 		return PTR_ERR(hmacs);
3326 
3327 	idents = hmacs->shmac_num_idents;
3328 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3329 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3330 		err = -EINVAL;
3331 		goto out;
3332 	}
3333 
3334 	err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3335 out:
3336 	kfree(hmacs);
3337 	return err;
3338 }
3339 
3340 /*
3341  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3342  *
3343  * This option will set a shared secret key which is used to build an
3344  * association shared key.
3345  */
3346 static int sctp_setsockopt_auth_key(struct sock *sk,
3347 				    char __user *optval,
3348 				    unsigned int optlen)
3349 {
3350 	struct net *net = sock_net(sk);
3351 	struct sctp_authkey *authkey;
3352 	struct sctp_association *asoc;
3353 	int ret;
3354 
3355 	if (!net->sctp.auth_enable)
3356 		return -EACCES;
3357 
3358 	if (optlen <= sizeof(struct sctp_authkey))
3359 		return -EINVAL;
3360 
3361 	authkey= memdup_user(optval, optlen);
3362 	if (IS_ERR(authkey))
3363 		return PTR_ERR(authkey);
3364 
3365 	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3366 		ret = -EINVAL;
3367 		goto out;
3368 	}
3369 
3370 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3371 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3372 		ret = -EINVAL;
3373 		goto out;
3374 	}
3375 
3376 	ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3377 out:
3378 	kzfree(authkey);
3379 	return ret;
3380 }
3381 
3382 /*
3383  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3384  *
3385  * This option will get or set the active shared key to be used to build
3386  * the association shared key.
3387  */
3388 static int sctp_setsockopt_active_key(struct sock *sk,
3389 				      char __user *optval,
3390 				      unsigned int optlen)
3391 {
3392 	struct net *net = sock_net(sk);
3393 	struct sctp_authkeyid val;
3394 	struct sctp_association *asoc;
3395 
3396 	if (!net->sctp.auth_enable)
3397 		return -EACCES;
3398 
3399 	if (optlen != sizeof(struct sctp_authkeyid))
3400 		return -EINVAL;
3401 	if (copy_from_user(&val, optval, optlen))
3402 		return -EFAULT;
3403 
3404 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3405 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3406 		return -EINVAL;
3407 
3408 	return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3409 					val.scact_keynumber);
3410 }
3411 
3412 /*
3413  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3414  *
3415  * This set option will delete a shared secret key from use.
3416  */
3417 static int sctp_setsockopt_del_key(struct sock *sk,
3418 				   char __user *optval,
3419 				   unsigned int optlen)
3420 {
3421 	struct net *net = sock_net(sk);
3422 	struct sctp_authkeyid val;
3423 	struct sctp_association *asoc;
3424 
3425 	if (!net->sctp.auth_enable)
3426 		return -EACCES;
3427 
3428 	if (optlen != sizeof(struct sctp_authkeyid))
3429 		return -EINVAL;
3430 	if (copy_from_user(&val, optval, optlen))
3431 		return -EFAULT;
3432 
3433 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3434 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3435 		return -EINVAL;
3436 
3437 	return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3438 				    val.scact_keynumber);
3439 
3440 }
3441 
3442 /*
3443  * 8.1.23 SCTP_AUTO_ASCONF
3444  *
3445  * This option will enable or disable the use of the automatic generation of
3446  * ASCONF chunks to add and delete addresses to an existing association.  Note
3447  * that this option has two caveats namely: a) it only affects sockets that
3448  * are bound to all addresses available to the SCTP stack, and b) the system
3449  * administrator may have an overriding control that turns the ASCONF feature
3450  * off no matter what setting the socket option may have.
3451  * This option expects an integer boolean flag, where a non-zero value turns on
3452  * the option, and a zero value turns off the option.
3453  * Note. In this implementation, socket operation overrides default parameter
3454  * being set by sysctl as well as FreeBSD implementation
3455  */
3456 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3457 					unsigned int optlen)
3458 {
3459 	int val;
3460 	struct sctp_sock *sp = sctp_sk(sk);
3461 
3462 	if (optlen < sizeof(int))
3463 		return -EINVAL;
3464 	if (get_user(val, (int __user *)optval))
3465 		return -EFAULT;
3466 	if (!sctp_is_ep_boundall(sk) && val)
3467 		return -EINVAL;
3468 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3469 		return 0;
3470 
3471 	if (val == 0 && sp->do_auto_asconf) {
3472 		list_del(&sp->auto_asconf_list);
3473 		sp->do_auto_asconf = 0;
3474 	} else if (val && !sp->do_auto_asconf) {
3475 		list_add_tail(&sp->auto_asconf_list,
3476 		    &sock_net(sk)->sctp.auto_asconf_splist);
3477 		sp->do_auto_asconf = 1;
3478 	}
3479 	return 0;
3480 }
3481 
3482 
3483 /*
3484  * SCTP_PEER_ADDR_THLDS
3485  *
3486  * This option allows us to alter the partially failed threshold for one or all
3487  * transports in an association.  See Section 6.1 of:
3488  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3489  */
3490 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3491 					    char __user *optval,
3492 					    unsigned int optlen)
3493 {
3494 	struct sctp_paddrthlds val;
3495 	struct sctp_transport *trans;
3496 	struct sctp_association *asoc;
3497 
3498 	if (optlen < sizeof(struct sctp_paddrthlds))
3499 		return -EINVAL;
3500 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3501 			   sizeof(struct sctp_paddrthlds)))
3502 		return -EFAULT;
3503 
3504 
3505 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3506 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3507 		if (!asoc)
3508 			return -ENOENT;
3509 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3510 				    transports) {
3511 			if (val.spt_pathmaxrxt)
3512 				trans->pathmaxrxt = val.spt_pathmaxrxt;
3513 			trans->pf_retrans = val.spt_pathpfthld;
3514 		}
3515 
3516 		if (val.spt_pathmaxrxt)
3517 			asoc->pathmaxrxt = val.spt_pathmaxrxt;
3518 		asoc->pf_retrans = val.spt_pathpfthld;
3519 	} else {
3520 		trans = sctp_addr_id2transport(sk, &val.spt_address,
3521 					       val.spt_assoc_id);
3522 		if (!trans)
3523 			return -ENOENT;
3524 
3525 		if (val.spt_pathmaxrxt)
3526 			trans->pathmaxrxt = val.spt_pathmaxrxt;
3527 		trans->pf_retrans = val.spt_pathpfthld;
3528 	}
3529 
3530 	return 0;
3531 }
3532 
3533 /* API 6.2 setsockopt(), getsockopt()
3534  *
3535  * Applications use setsockopt() and getsockopt() to set or retrieve
3536  * socket options.  Socket options are used to change the default
3537  * behavior of sockets calls.  They are described in Section 7.
3538  *
3539  * The syntax is:
3540  *
3541  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
3542  *                    int __user *optlen);
3543  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3544  *                    int optlen);
3545  *
3546  *   sd      - the socket descript.
3547  *   level   - set to IPPROTO_SCTP for all SCTP options.
3548  *   optname - the option name.
3549  *   optval  - the buffer to store the value of the option.
3550  *   optlen  - the size of the buffer.
3551  */
3552 static int sctp_setsockopt(struct sock *sk, int level, int optname,
3553 			   char __user *optval, unsigned int optlen)
3554 {
3555 	int retval = 0;
3556 
3557 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
3558 
3559 	/* I can hardly begin to describe how wrong this is.  This is
3560 	 * so broken as to be worse than useless.  The API draft
3561 	 * REALLY is NOT helpful here...  I am not convinced that the
3562 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3563 	 * are at all well-founded.
3564 	 */
3565 	if (level != SOL_SCTP) {
3566 		struct sctp_af *af = sctp_sk(sk)->pf->af;
3567 		retval = af->setsockopt(sk, level, optname, optval, optlen);
3568 		goto out_nounlock;
3569 	}
3570 
3571 	sctp_lock_sock(sk);
3572 
3573 	switch (optname) {
3574 	case SCTP_SOCKOPT_BINDX_ADD:
3575 		/* 'optlen' is the size of the addresses buffer. */
3576 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3577 					       optlen, SCTP_BINDX_ADD_ADDR);
3578 		break;
3579 
3580 	case SCTP_SOCKOPT_BINDX_REM:
3581 		/* 'optlen' is the size of the addresses buffer. */
3582 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3583 					       optlen, SCTP_BINDX_REM_ADDR);
3584 		break;
3585 
3586 	case SCTP_SOCKOPT_CONNECTX_OLD:
3587 		/* 'optlen' is the size of the addresses buffer. */
3588 		retval = sctp_setsockopt_connectx_old(sk,
3589 					    (struct sockaddr __user *)optval,
3590 					    optlen);
3591 		break;
3592 
3593 	case SCTP_SOCKOPT_CONNECTX:
3594 		/* 'optlen' is the size of the addresses buffer. */
3595 		retval = sctp_setsockopt_connectx(sk,
3596 					    (struct sockaddr __user *)optval,
3597 					    optlen);
3598 		break;
3599 
3600 	case SCTP_DISABLE_FRAGMENTS:
3601 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3602 		break;
3603 
3604 	case SCTP_EVENTS:
3605 		retval = sctp_setsockopt_events(sk, optval, optlen);
3606 		break;
3607 
3608 	case SCTP_AUTOCLOSE:
3609 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3610 		break;
3611 
3612 	case SCTP_PEER_ADDR_PARAMS:
3613 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3614 		break;
3615 
3616 	case SCTP_DELAYED_SACK:
3617 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3618 		break;
3619 	case SCTP_PARTIAL_DELIVERY_POINT:
3620 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3621 		break;
3622 
3623 	case SCTP_INITMSG:
3624 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3625 		break;
3626 	case SCTP_DEFAULT_SEND_PARAM:
3627 		retval = sctp_setsockopt_default_send_param(sk, optval,
3628 							    optlen);
3629 		break;
3630 	case SCTP_PRIMARY_ADDR:
3631 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3632 		break;
3633 	case SCTP_SET_PEER_PRIMARY_ADDR:
3634 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3635 		break;
3636 	case SCTP_NODELAY:
3637 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3638 		break;
3639 	case SCTP_RTOINFO:
3640 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3641 		break;
3642 	case SCTP_ASSOCINFO:
3643 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3644 		break;
3645 	case SCTP_I_WANT_MAPPED_V4_ADDR:
3646 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3647 		break;
3648 	case SCTP_MAXSEG:
3649 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3650 		break;
3651 	case SCTP_ADAPTATION_LAYER:
3652 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3653 		break;
3654 	case SCTP_CONTEXT:
3655 		retval = sctp_setsockopt_context(sk, optval, optlen);
3656 		break;
3657 	case SCTP_FRAGMENT_INTERLEAVE:
3658 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3659 		break;
3660 	case SCTP_MAX_BURST:
3661 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3662 		break;
3663 	case SCTP_AUTH_CHUNK:
3664 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3665 		break;
3666 	case SCTP_HMAC_IDENT:
3667 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3668 		break;
3669 	case SCTP_AUTH_KEY:
3670 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3671 		break;
3672 	case SCTP_AUTH_ACTIVE_KEY:
3673 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
3674 		break;
3675 	case SCTP_AUTH_DELETE_KEY:
3676 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
3677 		break;
3678 	case SCTP_AUTO_ASCONF:
3679 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3680 		break;
3681 	case SCTP_PEER_ADDR_THLDS:
3682 		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3683 		break;
3684 	default:
3685 		retval = -ENOPROTOOPT;
3686 		break;
3687 	}
3688 
3689 	sctp_release_sock(sk);
3690 
3691 out_nounlock:
3692 	return retval;
3693 }
3694 
3695 /* API 3.1.6 connect() - UDP Style Syntax
3696  *
3697  * An application may use the connect() call in the UDP model to initiate an
3698  * association without sending data.
3699  *
3700  * The syntax is:
3701  *
3702  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3703  *
3704  * sd: the socket descriptor to have a new association added to.
3705  *
3706  * nam: the address structure (either struct sockaddr_in or struct
3707  *    sockaddr_in6 defined in RFC2553 [7]).
3708  *
3709  * len: the size of the address.
3710  */
3711 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
3712 			int addr_len)
3713 {
3714 	int err = 0;
3715 	struct sctp_af *af;
3716 
3717 	sctp_lock_sock(sk);
3718 
3719 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
3720 		 addr, addr_len);
3721 
3722 	/* Validate addr_len before calling common connect/connectx routine. */
3723 	af = sctp_get_af_specific(addr->sa_family);
3724 	if (!af || addr_len < af->sockaddr_len) {
3725 		err = -EINVAL;
3726 	} else {
3727 		/* Pass correct addr len to common routine (so it knows there
3728 		 * is only one address being passed.
3729 		 */
3730 		err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3731 	}
3732 
3733 	sctp_release_sock(sk);
3734 	return err;
3735 }
3736 
3737 /* FIXME: Write comments. */
3738 static int sctp_disconnect(struct sock *sk, int flags)
3739 {
3740 	return -EOPNOTSUPP; /* STUB */
3741 }
3742 
3743 /* 4.1.4 accept() - TCP Style Syntax
3744  *
3745  * Applications use accept() call to remove an established SCTP
3746  * association from the accept queue of the endpoint.  A new socket
3747  * descriptor will be returned from accept() to represent the newly
3748  * formed association.
3749  */
3750 static struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3751 {
3752 	struct sctp_sock *sp;
3753 	struct sctp_endpoint *ep;
3754 	struct sock *newsk = NULL;
3755 	struct sctp_association *asoc;
3756 	long timeo;
3757 	int error = 0;
3758 
3759 	sctp_lock_sock(sk);
3760 
3761 	sp = sctp_sk(sk);
3762 	ep = sp->ep;
3763 
3764 	if (!sctp_style(sk, TCP)) {
3765 		error = -EOPNOTSUPP;
3766 		goto out;
3767 	}
3768 
3769 	if (!sctp_sstate(sk, LISTENING)) {
3770 		error = -EINVAL;
3771 		goto out;
3772 	}
3773 
3774 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3775 
3776 	error = sctp_wait_for_accept(sk, timeo);
3777 	if (error)
3778 		goto out;
3779 
3780 	/* We treat the list of associations on the endpoint as the accept
3781 	 * queue and pick the first association on the list.
3782 	 */
3783 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3784 
3785 	newsk = sp->pf->create_accept_sk(sk, asoc);
3786 	if (!newsk) {
3787 		error = -ENOMEM;
3788 		goto out;
3789 	}
3790 
3791 	/* Populate the fields of the newsk from the oldsk and migrate the
3792 	 * asoc to the newsk.
3793 	 */
3794 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3795 
3796 out:
3797 	sctp_release_sock(sk);
3798 	*err = error;
3799 	return newsk;
3800 }
3801 
3802 /* The SCTP ioctl handler. */
3803 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3804 {
3805 	int rc = -ENOTCONN;
3806 
3807 	sctp_lock_sock(sk);
3808 
3809 	/*
3810 	 * SEQPACKET-style sockets in LISTENING state are valid, for
3811 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
3812 	 */
3813 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3814 		goto out;
3815 
3816 	switch (cmd) {
3817 	case SIOCINQ: {
3818 		struct sk_buff *skb;
3819 		unsigned int amount = 0;
3820 
3821 		skb = skb_peek(&sk->sk_receive_queue);
3822 		if (skb != NULL) {
3823 			/*
3824 			 * We will only return the amount of this packet since
3825 			 * that is all that will be read.
3826 			 */
3827 			amount = skb->len;
3828 		}
3829 		rc = put_user(amount, (int __user *)arg);
3830 		break;
3831 	}
3832 	default:
3833 		rc = -ENOIOCTLCMD;
3834 		break;
3835 	}
3836 out:
3837 	sctp_release_sock(sk);
3838 	return rc;
3839 }
3840 
3841 /* This is the function which gets called during socket creation to
3842  * initialized the SCTP-specific portion of the sock.
3843  * The sock structure should already be zero-filled memory.
3844  */
3845 static int sctp_init_sock(struct sock *sk)
3846 {
3847 	struct net *net = sock_net(sk);
3848 	struct sctp_sock *sp;
3849 
3850 	pr_debug("%s: sk:%p\n", __func__, sk);
3851 
3852 	sp = sctp_sk(sk);
3853 
3854 	/* Initialize the SCTP per socket area.  */
3855 	switch (sk->sk_type) {
3856 	case SOCK_SEQPACKET:
3857 		sp->type = SCTP_SOCKET_UDP;
3858 		break;
3859 	case SOCK_STREAM:
3860 		sp->type = SCTP_SOCKET_TCP;
3861 		break;
3862 	default:
3863 		return -ESOCKTNOSUPPORT;
3864 	}
3865 
3866 	/* Initialize default send parameters. These parameters can be
3867 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3868 	 */
3869 	sp->default_stream = 0;
3870 	sp->default_ppid = 0;
3871 	sp->default_flags = 0;
3872 	sp->default_context = 0;
3873 	sp->default_timetolive = 0;
3874 
3875 	sp->default_rcv_context = 0;
3876 	sp->max_burst = net->sctp.max_burst;
3877 
3878 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
3879 
3880 	/* Initialize default setup parameters. These parameters
3881 	 * can be modified with the SCTP_INITMSG socket option or
3882 	 * overridden by the SCTP_INIT CMSG.
3883 	 */
3884 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
3885 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
3886 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
3887 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
3888 
3889 	/* Initialize default RTO related parameters.  These parameters can
3890 	 * be modified for with the SCTP_RTOINFO socket option.
3891 	 */
3892 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
3893 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
3894 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
3895 
3896 	/* Initialize default association related parameters. These parameters
3897 	 * can be modified with the SCTP_ASSOCINFO socket option.
3898 	 */
3899 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
3900 	sp->assocparams.sasoc_number_peer_destinations = 0;
3901 	sp->assocparams.sasoc_peer_rwnd = 0;
3902 	sp->assocparams.sasoc_local_rwnd = 0;
3903 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
3904 
3905 	/* Initialize default event subscriptions. By default, all the
3906 	 * options are off.
3907 	 */
3908 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3909 
3910 	/* Default Peer Address Parameters.  These defaults can
3911 	 * be modified via SCTP_PEER_ADDR_PARAMS
3912 	 */
3913 	sp->hbinterval  = net->sctp.hb_interval;
3914 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
3915 	sp->pathmtu     = 0; // allow default discovery
3916 	sp->sackdelay   = net->sctp.sack_timeout;
3917 	sp->sackfreq	= 2;
3918 	sp->param_flags = SPP_HB_ENABLE |
3919 			  SPP_PMTUD_ENABLE |
3920 			  SPP_SACKDELAY_ENABLE;
3921 
3922 	/* If enabled no SCTP message fragmentation will be performed.
3923 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3924 	 */
3925 	sp->disable_fragments = 0;
3926 
3927 	/* Enable Nagle algorithm by default.  */
3928 	sp->nodelay           = 0;
3929 
3930 	/* Enable by default. */
3931 	sp->v4mapped          = 1;
3932 
3933 	/* Auto-close idle associations after the configured
3934 	 * number of seconds.  A value of 0 disables this
3935 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
3936 	 * for UDP-style sockets only.
3937 	 */
3938 	sp->autoclose         = 0;
3939 
3940 	/* User specified fragmentation limit. */
3941 	sp->user_frag         = 0;
3942 
3943 	sp->adaptation_ind = 0;
3944 
3945 	sp->pf = sctp_get_pf_specific(sk->sk_family);
3946 
3947 	/* Control variables for partial data delivery. */
3948 	atomic_set(&sp->pd_mode, 0);
3949 	skb_queue_head_init(&sp->pd_lobby);
3950 	sp->frag_interleave = 0;
3951 
3952 	/* Create a per socket endpoint structure.  Even if we
3953 	 * change the data structure relationships, this may still
3954 	 * be useful for storing pre-connect address information.
3955 	 */
3956 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
3957 	if (!sp->ep)
3958 		return -ENOMEM;
3959 
3960 	sp->hmac = NULL;
3961 
3962 	sk->sk_destruct = sctp_destruct_sock;
3963 
3964 	SCTP_DBG_OBJCNT_INC(sock);
3965 
3966 	local_bh_disable();
3967 	percpu_counter_inc(&sctp_sockets_allocated);
3968 	sock_prot_inuse_add(net, sk->sk_prot, 1);
3969 	if (net->sctp.default_auto_asconf) {
3970 		list_add_tail(&sp->auto_asconf_list,
3971 		    &net->sctp.auto_asconf_splist);
3972 		sp->do_auto_asconf = 1;
3973 	} else
3974 		sp->do_auto_asconf = 0;
3975 	local_bh_enable();
3976 
3977 	return 0;
3978 }
3979 
3980 /* Cleanup any SCTP per socket resources.  */
3981 static void sctp_destroy_sock(struct sock *sk)
3982 {
3983 	struct sctp_sock *sp;
3984 
3985 	pr_debug("%s: sk:%p\n", __func__, sk);
3986 
3987 	/* Release our hold on the endpoint. */
3988 	sp = sctp_sk(sk);
3989 	/* This could happen during socket init, thus we bail out
3990 	 * early, since the rest of the below is not setup either.
3991 	 */
3992 	if (sp->ep == NULL)
3993 		return;
3994 
3995 	if (sp->do_auto_asconf) {
3996 		sp->do_auto_asconf = 0;
3997 		list_del(&sp->auto_asconf_list);
3998 	}
3999 	sctp_endpoint_free(sp->ep);
4000 	local_bh_disable();
4001 	percpu_counter_dec(&sctp_sockets_allocated);
4002 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4003 	local_bh_enable();
4004 }
4005 
4006 /* Triggered when there are no references on the socket anymore */
4007 static void sctp_destruct_sock(struct sock *sk)
4008 {
4009 	struct sctp_sock *sp = sctp_sk(sk);
4010 
4011 	/* Free up the HMAC transform. */
4012 	crypto_free_hash(sp->hmac);
4013 
4014 	inet_sock_destruct(sk);
4015 }
4016 
4017 /* API 4.1.7 shutdown() - TCP Style Syntax
4018  *     int shutdown(int socket, int how);
4019  *
4020  *     sd      - the socket descriptor of the association to be closed.
4021  *     how     - Specifies the type of shutdown.  The  values  are
4022  *               as follows:
4023  *               SHUT_RD
4024  *                     Disables further receive operations. No SCTP
4025  *                     protocol action is taken.
4026  *               SHUT_WR
4027  *                     Disables further send operations, and initiates
4028  *                     the SCTP shutdown sequence.
4029  *               SHUT_RDWR
4030  *                     Disables further send  and  receive  operations
4031  *                     and initiates the SCTP shutdown sequence.
4032  */
4033 static void sctp_shutdown(struct sock *sk, int how)
4034 {
4035 	struct net *net = sock_net(sk);
4036 	struct sctp_endpoint *ep;
4037 	struct sctp_association *asoc;
4038 
4039 	if (!sctp_style(sk, TCP))
4040 		return;
4041 
4042 	if (how & SEND_SHUTDOWN) {
4043 		ep = sctp_sk(sk)->ep;
4044 		if (!list_empty(&ep->asocs)) {
4045 			asoc = list_entry(ep->asocs.next,
4046 					  struct sctp_association, asocs);
4047 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
4048 		}
4049 	}
4050 }
4051 
4052 /* 7.2.1 Association Status (SCTP_STATUS)
4053 
4054  * Applications can retrieve current status information about an
4055  * association, including association state, peer receiver window size,
4056  * number of unacked data chunks, and number of data chunks pending
4057  * receipt.  This information is read-only.
4058  */
4059 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4060 				       char __user *optval,
4061 				       int __user *optlen)
4062 {
4063 	struct sctp_status status;
4064 	struct sctp_association *asoc = NULL;
4065 	struct sctp_transport *transport;
4066 	sctp_assoc_t associd;
4067 	int retval = 0;
4068 
4069 	if (len < sizeof(status)) {
4070 		retval = -EINVAL;
4071 		goto out;
4072 	}
4073 
4074 	len = sizeof(status);
4075 	if (copy_from_user(&status, optval, len)) {
4076 		retval = -EFAULT;
4077 		goto out;
4078 	}
4079 
4080 	associd = status.sstat_assoc_id;
4081 	asoc = sctp_id2assoc(sk, associd);
4082 	if (!asoc) {
4083 		retval = -EINVAL;
4084 		goto out;
4085 	}
4086 
4087 	transport = asoc->peer.primary_path;
4088 
4089 	status.sstat_assoc_id = sctp_assoc2id(asoc);
4090 	status.sstat_state = asoc->state;
4091 	status.sstat_rwnd =  asoc->peer.rwnd;
4092 	status.sstat_unackdata = asoc->unack_data;
4093 
4094 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4095 	status.sstat_instrms = asoc->c.sinit_max_instreams;
4096 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4097 	status.sstat_fragmentation_point = asoc->frag_point;
4098 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4099 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4100 			transport->af_specific->sockaddr_len);
4101 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
4102 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4103 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
4104 	status.sstat_primary.spinfo_state = transport->state;
4105 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
4106 	status.sstat_primary.spinfo_srtt = transport->srtt;
4107 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4108 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
4109 
4110 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4111 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4112 
4113 	if (put_user(len, optlen)) {
4114 		retval = -EFAULT;
4115 		goto out;
4116 	}
4117 
4118 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4119 		 __func__, len, status.sstat_state, status.sstat_rwnd,
4120 		 status.sstat_assoc_id);
4121 
4122 	if (copy_to_user(optval, &status, len)) {
4123 		retval = -EFAULT;
4124 		goto out;
4125 	}
4126 
4127 out:
4128 	return retval;
4129 }
4130 
4131 
4132 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4133  *
4134  * Applications can retrieve information about a specific peer address
4135  * of an association, including its reachability state, congestion
4136  * window, and retransmission timer values.  This information is
4137  * read-only.
4138  */
4139 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4140 					  char __user *optval,
4141 					  int __user *optlen)
4142 {
4143 	struct sctp_paddrinfo pinfo;
4144 	struct sctp_transport *transport;
4145 	int retval = 0;
4146 
4147 	if (len < sizeof(pinfo)) {
4148 		retval = -EINVAL;
4149 		goto out;
4150 	}
4151 
4152 	len = sizeof(pinfo);
4153 	if (copy_from_user(&pinfo, optval, len)) {
4154 		retval = -EFAULT;
4155 		goto out;
4156 	}
4157 
4158 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4159 					   pinfo.spinfo_assoc_id);
4160 	if (!transport)
4161 		return -EINVAL;
4162 
4163 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4164 	pinfo.spinfo_state = transport->state;
4165 	pinfo.spinfo_cwnd = transport->cwnd;
4166 	pinfo.spinfo_srtt = transport->srtt;
4167 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4168 	pinfo.spinfo_mtu = transport->pathmtu;
4169 
4170 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
4171 		pinfo.spinfo_state = SCTP_ACTIVE;
4172 
4173 	if (put_user(len, optlen)) {
4174 		retval = -EFAULT;
4175 		goto out;
4176 	}
4177 
4178 	if (copy_to_user(optval, &pinfo, len)) {
4179 		retval = -EFAULT;
4180 		goto out;
4181 	}
4182 
4183 out:
4184 	return retval;
4185 }
4186 
4187 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4188  *
4189  * This option is a on/off flag.  If enabled no SCTP message
4190  * fragmentation will be performed.  Instead if a message being sent
4191  * exceeds the current PMTU size, the message will NOT be sent and
4192  * instead a error will be indicated to the user.
4193  */
4194 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4195 					char __user *optval, int __user *optlen)
4196 {
4197 	int val;
4198 
4199 	if (len < sizeof(int))
4200 		return -EINVAL;
4201 
4202 	len = sizeof(int);
4203 	val = (sctp_sk(sk)->disable_fragments == 1);
4204 	if (put_user(len, optlen))
4205 		return -EFAULT;
4206 	if (copy_to_user(optval, &val, len))
4207 		return -EFAULT;
4208 	return 0;
4209 }
4210 
4211 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4212  *
4213  * This socket option is used to specify various notifications and
4214  * ancillary data the user wishes to receive.
4215  */
4216 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4217 				  int __user *optlen)
4218 {
4219 	if (len <= 0)
4220 		return -EINVAL;
4221 	if (len > sizeof(struct sctp_event_subscribe))
4222 		len = sizeof(struct sctp_event_subscribe);
4223 	if (put_user(len, optlen))
4224 		return -EFAULT;
4225 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4226 		return -EFAULT;
4227 	return 0;
4228 }
4229 
4230 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4231  *
4232  * This socket option is applicable to the UDP-style socket only.  When
4233  * set it will cause associations that are idle for more than the
4234  * specified number of seconds to automatically close.  An association
4235  * being idle is defined an association that has NOT sent or received
4236  * user data.  The special value of '0' indicates that no automatic
4237  * close of any associations should be performed.  The option expects an
4238  * integer defining the number of seconds of idle time before an
4239  * association is closed.
4240  */
4241 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4242 {
4243 	/* Applicable to UDP-style socket only */
4244 	if (sctp_style(sk, TCP))
4245 		return -EOPNOTSUPP;
4246 	if (len < sizeof(int))
4247 		return -EINVAL;
4248 	len = sizeof(int);
4249 	if (put_user(len, optlen))
4250 		return -EFAULT;
4251 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4252 		return -EFAULT;
4253 	return 0;
4254 }
4255 
4256 /* Helper routine to branch off an association to a new socket.  */
4257 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4258 {
4259 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
4260 	struct socket *sock;
4261 	struct sctp_af *af;
4262 	int err = 0;
4263 
4264 	if (!asoc)
4265 		return -EINVAL;
4266 
4267 	/* An association cannot be branched off from an already peeled-off
4268 	 * socket, nor is this supported for tcp style sockets.
4269 	 */
4270 	if (!sctp_style(sk, UDP))
4271 		return -EINVAL;
4272 
4273 	/* Create a new socket.  */
4274 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4275 	if (err < 0)
4276 		return err;
4277 
4278 	sctp_copy_sock(sock->sk, sk, asoc);
4279 
4280 	/* Make peeled-off sockets more like 1-1 accepted sockets.
4281 	 * Set the daddr and initialize id to something more random
4282 	 */
4283 	af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
4284 	af->to_sk_daddr(&asoc->peer.primary_addr, sk);
4285 
4286 	/* Populate the fields of the newsk from the oldsk and migrate the
4287 	 * asoc to the newsk.
4288 	 */
4289 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4290 
4291 	*sockp = sock;
4292 
4293 	return err;
4294 }
4295 EXPORT_SYMBOL(sctp_do_peeloff);
4296 
4297 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4298 {
4299 	sctp_peeloff_arg_t peeloff;
4300 	struct socket *newsock;
4301 	struct file *newfile;
4302 	int retval = 0;
4303 
4304 	if (len < sizeof(sctp_peeloff_arg_t))
4305 		return -EINVAL;
4306 	len = sizeof(sctp_peeloff_arg_t);
4307 	if (copy_from_user(&peeloff, optval, len))
4308 		return -EFAULT;
4309 
4310 	retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4311 	if (retval < 0)
4312 		goto out;
4313 
4314 	/* Map the socket to an unused fd that can be returned to the user.  */
4315 	retval = get_unused_fd_flags(0);
4316 	if (retval < 0) {
4317 		sock_release(newsock);
4318 		goto out;
4319 	}
4320 
4321 	newfile = sock_alloc_file(newsock, 0, NULL);
4322 	if (unlikely(IS_ERR(newfile))) {
4323 		put_unused_fd(retval);
4324 		sock_release(newsock);
4325 		return PTR_ERR(newfile);
4326 	}
4327 
4328 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
4329 		 retval);
4330 
4331 	/* Return the fd mapped to the new socket.  */
4332 	if (put_user(len, optlen)) {
4333 		fput(newfile);
4334 		put_unused_fd(retval);
4335 		return -EFAULT;
4336 	}
4337 	peeloff.sd = retval;
4338 	if (copy_to_user(optval, &peeloff, len)) {
4339 		fput(newfile);
4340 		put_unused_fd(retval);
4341 		return -EFAULT;
4342 	}
4343 	fd_install(retval, newfile);
4344 out:
4345 	return retval;
4346 }
4347 
4348 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4349  *
4350  * Applications can enable or disable heartbeats for any peer address of
4351  * an association, modify an address's heartbeat interval, force a
4352  * heartbeat to be sent immediately, and adjust the address's maximum
4353  * number of retransmissions sent before an address is considered
4354  * unreachable.  The following structure is used to access and modify an
4355  * address's parameters:
4356  *
4357  *  struct sctp_paddrparams {
4358  *     sctp_assoc_t            spp_assoc_id;
4359  *     struct sockaddr_storage spp_address;
4360  *     uint32_t                spp_hbinterval;
4361  *     uint16_t                spp_pathmaxrxt;
4362  *     uint32_t                spp_pathmtu;
4363  *     uint32_t                spp_sackdelay;
4364  *     uint32_t                spp_flags;
4365  * };
4366  *
4367  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
4368  *                     application, and identifies the association for
4369  *                     this query.
4370  *   spp_address     - This specifies which address is of interest.
4371  *   spp_hbinterval  - This contains the value of the heartbeat interval,
4372  *                     in milliseconds.  If a  value of zero
4373  *                     is present in this field then no changes are to
4374  *                     be made to this parameter.
4375  *   spp_pathmaxrxt  - This contains the maximum number of
4376  *                     retransmissions before this address shall be
4377  *                     considered unreachable. If a  value of zero
4378  *                     is present in this field then no changes are to
4379  *                     be made to this parameter.
4380  *   spp_pathmtu     - When Path MTU discovery is disabled the value
4381  *                     specified here will be the "fixed" path mtu.
4382  *                     Note that if the spp_address field is empty
4383  *                     then all associations on this address will
4384  *                     have this fixed path mtu set upon them.
4385  *
4386  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
4387  *                     the number of milliseconds that sacks will be delayed
4388  *                     for. This value will apply to all addresses of an
4389  *                     association if the spp_address field is empty. Note
4390  *                     also, that if delayed sack is enabled and this
4391  *                     value is set to 0, no change is made to the last
4392  *                     recorded delayed sack timer value.
4393  *
4394  *   spp_flags       - These flags are used to control various features
4395  *                     on an association. The flag field may contain
4396  *                     zero or more of the following options.
4397  *
4398  *                     SPP_HB_ENABLE  - Enable heartbeats on the
4399  *                     specified address. Note that if the address
4400  *                     field is empty all addresses for the association
4401  *                     have heartbeats enabled upon them.
4402  *
4403  *                     SPP_HB_DISABLE - Disable heartbeats on the
4404  *                     speicifed address. Note that if the address
4405  *                     field is empty all addresses for the association
4406  *                     will have their heartbeats disabled. Note also
4407  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
4408  *                     mutually exclusive, only one of these two should
4409  *                     be specified. Enabling both fields will have
4410  *                     undetermined results.
4411  *
4412  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
4413  *                     to be made immediately.
4414  *
4415  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
4416  *                     discovery upon the specified address. Note that
4417  *                     if the address feild is empty then all addresses
4418  *                     on the association are effected.
4419  *
4420  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
4421  *                     discovery upon the specified address. Note that
4422  *                     if the address feild is empty then all addresses
4423  *                     on the association are effected. Not also that
4424  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4425  *                     exclusive. Enabling both will have undetermined
4426  *                     results.
4427  *
4428  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
4429  *                     on delayed sack. The time specified in spp_sackdelay
4430  *                     is used to specify the sack delay for this address. Note
4431  *                     that if spp_address is empty then all addresses will
4432  *                     enable delayed sack and take on the sack delay
4433  *                     value specified in spp_sackdelay.
4434  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
4435  *                     off delayed sack. If the spp_address field is blank then
4436  *                     delayed sack is disabled for the entire association. Note
4437  *                     also that this field is mutually exclusive to
4438  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
4439  *                     results.
4440  */
4441 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4442 					    char __user *optval, int __user *optlen)
4443 {
4444 	struct sctp_paddrparams  params;
4445 	struct sctp_transport   *trans = NULL;
4446 	struct sctp_association *asoc = NULL;
4447 	struct sctp_sock        *sp = sctp_sk(sk);
4448 
4449 	if (len < sizeof(struct sctp_paddrparams))
4450 		return -EINVAL;
4451 	len = sizeof(struct sctp_paddrparams);
4452 	if (copy_from_user(&params, optval, len))
4453 		return -EFAULT;
4454 
4455 	/* If an address other than INADDR_ANY is specified, and
4456 	 * no transport is found, then the request is invalid.
4457 	 */
4458 	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
4459 		trans = sctp_addr_id2transport(sk, &params.spp_address,
4460 					       params.spp_assoc_id);
4461 		if (!trans) {
4462 			pr_debug("%s: failed no transport\n", __func__);
4463 			return -EINVAL;
4464 		}
4465 	}
4466 
4467 	/* Get association, if assoc_id != 0 and the socket is a one
4468 	 * to many style socket, and an association was not found, then
4469 	 * the id was invalid.
4470 	 */
4471 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4472 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4473 		pr_debug("%s: failed no association\n", __func__);
4474 		return -EINVAL;
4475 	}
4476 
4477 	if (trans) {
4478 		/* Fetch transport values. */
4479 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4480 		params.spp_pathmtu    = trans->pathmtu;
4481 		params.spp_pathmaxrxt = trans->pathmaxrxt;
4482 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
4483 
4484 		/*draft-11 doesn't say what to return in spp_flags*/
4485 		params.spp_flags      = trans->param_flags;
4486 	} else if (asoc) {
4487 		/* Fetch association values. */
4488 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4489 		params.spp_pathmtu    = asoc->pathmtu;
4490 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
4491 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
4492 
4493 		/*draft-11 doesn't say what to return in spp_flags*/
4494 		params.spp_flags      = asoc->param_flags;
4495 	} else {
4496 		/* Fetch socket values. */
4497 		params.spp_hbinterval = sp->hbinterval;
4498 		params.spp_pathmtu    = sp->pathmtu;
4499 		params.spp_sackdelay  = sp->sackdelay;
4500 		params.spp_pathmaxrxt = sp->pathmaxrxt;
4501 
4502 		/*draft-11 doesn't say what to return in spp_flags*/
4503 		params.spp_flags      = sp->param_flags;
4504 	}
4505 
4506 	if (copy_to_user(optval, &params, len))
4507 		return -EFAULT;
4508 
4509 	if (put_user(len, optlen))
4510 		return -EFAULT;
4511 
4512 	return 0;
4513 }
4514 
4515 /*
4516  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
4517  *
4518  * This option will effect the way delayed acks are performed.  This
4519  * option allows you to get or set the delayed ack time, in
4520  * milliseconds.  It also allows changing the delayed ack frequency.
4521  * Changing the frequency to 1 disables the delayed sack algorithm.  If
4522  * the assoc_id is 0, then this sets or gets the endpoints default
4523  * values.  If the assoc_id field is non-zero, then the set or get
4524  * effects the specified association for the one to many model (the
4525  * assoc_id field is ignored by the one to one model).  Note that if
4526  * sack_delay or sack_freq are 0 when setting this option, then the
4527  * current values will remain unchanged.
4528  *
4529  * struct sctp_sack_info {
4530  *     sctp_assoc_t            sack_assoc_id;
4531  *     uint32_t                sack_delay;
4532  *     uint32_t                sack_freq;
4533  * };
4534  *
4535  * sack_assoc_id -  This parameter, indicates which association the user
4536  *    is performing an action upon.  Note that if this field's value is
4537  *    zero then the endpoints default value is changed (effecting future
4538  *    associations only).
4539  *
4540  * sack_delay -  This parameter contains the number of milliseconds that
4541  *    the user is requesting the delayed ACK timer be set to.  Note that
4542  *    this value is defined in the standard to be between 200 and 500
4543  *    milliseconds.
4544  *
4545  * sack_freq -  This parameter contains the number of packets that must
4546  *    be received before a sack is sent without waiting for the delay
4547  *    timer to expire.  The default value for this is 2, setting this
4548  *    value to 1 will disable the delayed sack algorithm.
4549  */
4550 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4551 					    char __user *optval,
4552 					    int __user *optlen)
4553 {
4554 	struct sctp_sack_info    params;
4555 	struct sctp_association *asoc = NULL;
4556 	struct sctp_sock        *sp = sctp_sk(sk);
4557 
4558 	if (len >= sizeof(struct sctp_sack_info)) {
4559 		len = sizeof(struct sctp_sack_info);
4560 
4561 		if (copy_from_user(&params, optval, len))
4562 			return -EFAULT;
4563 	} else if (len == sizeof(struct sctp_assoc_value)) {
4564 		pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
4565 		pr_warn("Use struct sctp_sack_info instead\n");
4566 		if (copy_from_user(&params, optval, len))
4567 			return -EFAULT;
4568 	} else
4569 		return - EINVAL;
4570 
4571 	/* Get association, if sack_assoc_id != 0 and the socket is a one
4572 	 * to many style socket, and an association was not found, then
4573 	 * the id was invalid.
4574 	 */
4575 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4576 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4577 		return -EINVAL;
4578 
4579 	if (asoc) {
4580 		/* Fetch association values. */
4581 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4582 			params.sack_delay = jiffies_to_msecs(
4583 				asoc->sackdelay);
4584 			params.sack_freq = asoc->sackfreq;
4585 
4586 		} else {
4587 			params.sack_delay = 0;
4588 			params.sack_freq = 1;
4589 		}
4590 	} else {
4591 		/* Fetch socket values. */
4592 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4593 			params.sack_delay  = sp->sackdelay;
4594 			params.sack_freq = sp->sackfreq;
4595 		} else {
4596 			params.sack_delay  = 0;
4597 			params.sack_freq = 1;
4598 		}
4599 	}
4600 
4601 	if (copy_to_user(optval, &params, len))
4602 		return -EFAULT;
4603 
4604 	if (put_user(len, optlen))
4605 		return -EFAULT;
4606 
4607 	return 0;
4608 }
4609 
4610 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4611  *
4612  * Applications can specify protocol parameters for the default association
4613  * initialization.  The option name argument to setsockopt() and getsockopt()
4614  * is SCTP_INITMSG.
4615  *
4616  * Setting initialization parameters is effective only on an unconnected
4617  * socket (for UDP-style sockets only future associations are effected
4618  * by the change).  With TCP-style sockets, this option is inherited by
4619  * sockets derived from a listener socket.
4620  */
4621 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4622 {
4623 	if (len < sizeof(struct sctp_initmsg))
4624 		return -EINVAL;
4625 	len = sizeof(struct sctp_initmsg);
4626 	if (put_user(len, optlen))
4627 		return -EFAULT;
4628 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4629 		return -EFAULT;
4630 	return 0;
4631 }
4632 
4633 
4634 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4635 				      char __user *optval, int __user *optlen)
4636 {
4637 	struct sctp_association *asoc;
4638 	int cnt = 0;
4639 	struct sctp_getaddrs getaddrs;
4640 	struct sctp_transport *from;
4641 	void __user *to;
4642 	union sctp_addr temp;
4643 	struct sctp_sock *sp = sctp_sk(sk);
4644 	int addrlen;
4645 	size_t space_left;
4646 	int bytes_copied;
4647 
4648 	if (len < sizeof(struct sctp_getaddrs))
4649 		return -EINVAL;
4650 
4651 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4652 		return -EFAULT;
4653 
4654 	/* For UDP-style sockets, id specifies the association to query.  */
4655 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4656 	if (!asoc)
4657 		return -EINVAL;
4658 
4659 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4660 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4661 
4662 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4663 				transports) {
4664 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4665 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4666 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4667 		if (space_left < addrlen)
4668 			return -ENOMEM;
4669 		if (copy_to_user(to, &temp, addrlen))
4670 			return -EFAULT;
4671 		to += addrlen;
4672 		cnt++;
4673 		space_left -= addrlen;
4674 	}
4675 
4676 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4677 		return -EFAULT;
4678 	bytes_copied = ((char __user *)to) - optval;
4679 	if (put_user(bytes_copied, optlen))
4680 		return -EFAULT;
4681 
4682 	return 0;
4683 }
4684 
4685 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4686 			    size_t space_left, int *bytes_copied)
4687 {
4688 	struct sctp_sockaddr_entry *addr;
4689 	union sctp_addr temp;
4690 	int cnt = 0;
4691 	int addrlen;
4692 	struct net *net = sock_net(sk);
4693 
4694 	rcu_read_lock();
4695 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
4696 		if (!addr->valid)
4697 			continue;
4698 
4699 		if ((PF_INET == sk->sk_family) &&
4700 		    (AF_INET6 == addr->a.sa.sa_family))
4701 			continue;
4702 		if ((PF_INET6 == sk->sk_family) &&
4703 		    inet_v6_ipv6only(sk) &&
4704 		    (AF_INET == addr->a.sa.sa_family))
4705 			continue;
4706 		memcpy(&temp, &addr->a, sizeof(temp));
4707 		if (!temp.v4.sin_port)
4708 			temp.v4.sin_port = htons(port);
4709 
4710 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4711 								&temp);
4712 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4713 		if (space_left < addrlen) {
4714 			cnt =  -ENOMEM;
4715 			break;
4716 		}
4717 		memcpy(to, &temp, addrlen);
4718 
4719 		to += addrlen;
4720 		cnt ++;
4721 		space_left -= addrlen;
4722 		*bytes_copied += addrlen;
4723 	}
4724 	rcu_read_unlock();
4725 
4726 	return cnt;
4727 }
4728 
4729 
4730 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4731 				       char __user *optval, int __user *optlen)
4732 {
4733 	struct sctp_bind_addr *bp;
4734 	struct sctp_association *asoc;
4735 	int cnt = 0;
4736 	struct sctp_getaddrs getaddrs;
4737 	struct sctp_sockaddr_entry *addr;
4738 	void __user *to;
4739 	union sctp_addr temp;
4740 	struct sctp_sock *sp = sctp_sk(sk);
4741 	int addrlen;
4742 	int err = 0;
4743 	size_t space_left;
4744 	int bytes_copied = 0;
4745 	void *addrs;
4746 	void *buf;
4747 
4748 	if (len < sizeof(struct sctp_getaddrs))
4749 		return -EINVAL;
4750 
4751 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4752 		return -EFAULT;
4753 
4754 	/*
4755 	 *  For UDP-style sockets, id specifies the association to query.
4756 	 *  If the id field is set to the value '0' then the locally bound
4757 	 *  addresses are returned without regard to any particular
4758 	 *  association.
4759 	 */
4760 	if (0 == getaddrs.assoc_id) {
4761 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4762 	} else {
4763 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4764 		if (!asoc)
4765 			return -EINVAL;
4766 		bp = &asoc->base.bind_addr;
4767 	}
4768 
4769 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4770 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4771 
4772 	addrs = kmalloc(space_left, GFP_KERNEL);
4773 	if (!addrs)
4774 		return -ENOMEM;
4775 
4776 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4777 	 * addresses from the global local address list.
4778 	 */
4779 	if (sctp_list_single_entry(&bp->address_list)) {
4780 		addr = list_entry(bp->address_list.next,
4781 				  struct sctp_sockaddr_entry, list);
4782 		if (sctp_is_any(sk, &addr->a)) {
4783 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4784 						space_left, &bytes_copied);
4785 			if (cnt < 0) {
4786 				err = cnt;
4787 				goto out;
4788 			}
4789 			goto copy_getaddrs;
4790 		}
4791 	}
4792 
4793 	buf = addrs;
4794 	/* Protection on the bound address list is not needed since
4795 	 * in the socket option context we hold a socket lock and
4796 	 * thus the bound address list can't change.
4797 	 */
4798 	list_for_each_entry(addr, &bp->address_list, list) {
4799 		memcpy(&temp, &addr->a, sizeof(temp));
4800 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4801 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4802 		if (space_left < addrlen) {
4803 			err =  -ENOMEM; /*fixme: right error?*/
4804 			goto out;
4805 		}
4806 		memcpy(buf, &temp, addrlen);
4807 		buf += addrlen;
4808 		bytes_copied += addrlen;
4809 		cnt ++;
4810 		space_left -= addrlen;
4811 	}
4812 
4813 copy_getaddrs:
4814 	if (copy_to_user(to, addrs, bytes_copied)) {
4815 		err = -EFAULT;
4816 		goto out;
4817 	}
4818 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4819 		err = -EFAULT;
4820 		goto out;
4821 	}
4822 	if (put_user(bytes_copied, optlen))
4823 		err = -EFAULT;
4824 out:
4825 	kfree(addrs);
4826 	return err;
4827 }
4828 
4829 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4830  *
4831  * Requests that the local SCTP stack use the enclosed peer address as
4832  * the association primary.  The enclosed address must be one of the
4833  * association peer's addresses.
4834  */
4835 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4836 					char __user *optval, int __user *optlen)
4837 {
4838 	struct sctp_prim prim;
4839 	struct sctp_association *asoc;
4840 	struct sctp_sock *sp = sctp_sk(sk);
4841 
4842 	if (len < sizeof(struct sctp_prim))
4843 		return -EINVAL;
4844 
4845 	len = sizeof(struct sctp_prim);
4846 
4847 	if (copy_from_user(&prim, optval, len))
4848 		return -EFAULT;
4849 
4850 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4851 	if (!asoc)
4852 		return -EINVAL;
4853 
4854 	if (!asoc->peer.primary_path)
4855 		return -ENOTCONN;
4856 
4857 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4858 		asoc->peer.primary_path->af_specific->sockaddr_len);
4859 
4860 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4861 			(union sctp_addr *)&prim.ssp_addr);
4862 
4863 	if (put_user(len, optlen))
4864 		return -EFAULT;
4865 	if (copy_to_user(optval, &prim, len))
4866 		return -EFAULT;
4867 
4868 	return 0;
4869 }
4870 
4871 /*
4872  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4873  *
4874  * Requests that the local endpoint set the specified Adaptation Layer
4875  * Indication parameter for all future INIT and INIT-ACK exchanges.
4876  */
4877 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4878 				  char __user *optval, int __user *optlen)
4879 {
4880 	struct sctp_setadaptation adaptation;
4881 
4882 	if (len < sizeof(struct sctp_setadaptation))
4883 		return -EINVAL;
4884 
4885 	len = sizeof(struct sctp_setadaptation);
4886 
4887 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4888 
4889 	if (put_user(len, optlen))
4890 		return -EFAULT;
4891 	if (copy_to_user(optval, &adaptation, len))
4892 		return -EFAULT;
4893 
4894 	return 0;
4895 }
4896 
4897 /*
4898  *
4899  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4900  *
4901  *   Applications that wish to use the sendto() system call may wish to
4902  *   specify a default set of parameters that would normally be supplied
4903  *   through the inclusion of ancillary data.  This socket option allows
4904  *   such an application to set the default sctp_sndrcvinfo structure.
4905 
4906 
4907  *   The application that wishes to use this socket option simply passes
4908  *   in to this call the sctp_sndrcvinfo structure defined in Section
4909  *   5.2.2) The input parameters accepted by this call include
4910  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4911  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
4912  *   to this call if the caller is using the UDP model.
4913  *
4914  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
4915  */
4916 static int sctp_getsockopt_default_send_param(struct sock *sk,
4917 					int len, char __user *optval,
4918 					int __user *optlen)
4919 {
4920 	struct sctp_sndrcvinfo info;
4921 	struct sctp_association *asoc;
4922 	struct sctp_sock *sp = sctp_sk(sk);
4923 
4924 	if (len < sizeof(struct sctp_sndrcvinfo))
4925 		return -EINVAL;
4926 
4927 	len = sizeof(struct sctp_sndrcvinfo);
4928 
4929 	if (copy_from_user(&info, optval, len))
4930 		return -EFAULT;
4931 
4932 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4933 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4934 		return -EINVAL;
4935 
4936 	if (asoc) {
4937 		info.sinfo_stream = asoc->default_stream;
4938 		info.sinfo_flags = asoc->default_flags;
4939 		info.sinfo_ppid = asoc->default_ppid;
4940 		info.sinfo_context = asoc->default_context;
4941 		info.sinfo_timetolive = asoc->default_timetolive;
4942 	} else {
4943 		info.sinfo_stream = sp->default_stream;
4944 		info.sinfo_flags = sp->default_flags;
4945 		info.sinfo_ppid = sp->default_ppid;
4946 		info.sinfo_context = sp->default_context;
4947 		info.sinfo_timetolive = sp->default_timetolive;
4948 	}
4949 
4950 	if (put_user(len, optlen))
4951 		return -EFAULT;
4952 	if (copy_to_user(optval, &info, len))
4953 		return -EFAULT;
4954 
4955 	return 0;
4956 }
4957 
4958 /*
4959  *
4960  * 7.1.5 SCTP_NODELAY
4961  *
4962  * Turn on/off any Nagle-like algorithm.  This means that packets are
4963  * generally sent as soon as possible and no unnecessary delays are
4964  * introduced, at the cost of more packets in the network.  Expects an
4965  * integer boolean flag.
4966  */
4967 
4968 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4969 				   char __user *optval, int __user *optlen)
4970 {
4971 	int val;
4972 
4973 	if (len < sizeof(int))
4974 		return -EINVAL;
4975 
4976 	len = sizeof(int);
4977 	val = (sctp_sk(sk)->nodelay == 1);
4978 	if (put_user(len, optlen))
4979 		return -EFAULT;
4980 	if (copy_to_user(optval, &val, len))
4981 		return -EFAULT;
4982 	return 0;
4983 }
4984 
4985 /*
4986  *
4987  * 7.1.1 SCTP_RTOINFO
4988  *
4989  * The protocol parameters used to initialize and bound retransmission
4990  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4991  * and modify these parameters.
4992  * All parameters are time values, in milliseconds.  A value of 0, when
4993  * modifying the parameters, indicates that the current value should not
4994  * be changed.
4995  *
4996  */
4997 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4998 				char __user *optval,
4999 				int __user *optlen) {
5000 	struct sctp_rtoinfo rtoinfo;
5001 	struct sctp_association *asoc;
5002 
5003 	if (len < sizeof (struct sctp_rtoinfo))
5004 		return -EINVAL;
5005 
5006 	len = sizeof(struct sctp_rtoinfo);
5007 
5008 	if (copy_from_user(&rtoinfo, optval, len))
5009 		return -EFAULT;
5010 
5011 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5012 
5013 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5014 		return -EINVAL;
5015 
5016 	/* Values corresponding to the specific association. */
5017 	if (asoc) {
5018 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5019 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5020 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5021 	} else {
5022 		/* Values corresponding to the endpoint. */
5023 		struct sctp_sock *sp = sctp_sk(sk);
5024 
5025 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5026 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
5027 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
5028 	}
5029 
5030 	if (put_user(len, optlen))
5031 		return -EFAULT;
5032 
5033 	if (copy_to_user(optval, &rtoinfo, len))
5034 		return -EFAULT;
5035 
5036 	return 0;
5037 }
5038 
5039 /*
5040  *
5041  * 7.1.2 SCTP_ASSOCINFO
5042  *
5043  * This option is used to tune the maximum retransmission attempts
5044  * of the association.
5045  * Returns an error if the new association retransmission value is
5046  * greater than the sum of the retransmission value  of the peer.
5047  * See [SCTP] for more information.
5048  *
5049  */
5050 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5051 				     char __user *optval,
5052 				     int __user *optlen)
5053 {
5054 
5055 	struct sctp_assocparams assocparams;
5056 	struct sctp_association *asoc;
5057 	struct list_head *pos;
5058 	int cnt = 0;
5059 
5060 	if (len < sizeof (struct sctp_assocparams))
5061 		return -EINVAL;
5062 
5063 	len = sizeof(struct sctp_assocparams);
5064 
5065 	if (copy_from_user(&assocparams, optval, len))
5066 		return -EFAULT;
5067 
5068 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5069 
5070 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5071 		return -EINVAL;
5072 
5073 	/* Values correspoinding to the specific association */
5074 	if (asoc) {
5075 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5076 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5077 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5078 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5079 
5080 		list_for_each(pos, &asoc->peer.transport_addr_list) {
5081 			cnt ++;
5082 		}
5083 
5084 		assocparams.sasoc_number_peer_destinations = cnt;
5085 	} else {
5086 		/* Values corresponding to the endpoint */
5087 		struct sctp_sock *sp = sctp_sk(sk);
5088 
5089 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5090 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5091 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5092 		assocparams.sasoc_cookie_life =
5093 					sp->assocparams.sasoc_cookie_life;
5094 		assocparams.sasoc_number_peer_destinations =
5095 					sp->assocparams.
5096 					sasoc_number_peer_destinations;
5097 	}
5098 
5099 	if (put_user(len, optlen))
5100 		return -EFAULT;
5101 
5102 	if (copy_to_user(optval, &assocparams, len))
5103 		return -EFAULT;
5104 
5105 	return 0;
5106 }
5107 
5108 /*
5109  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5110  *
5111  * This socket option is a boolean flag which turns on or off mapped V4
5112  * addresses.  If this option is turned on and the socket is type
5113  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5114  * If this option is turned off, then no mapping will be done of V4
5115  * addresses and a user will receive both PF_INET6 and PF_INET type
5116  * addresses on the socket.
5117  */
5118 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5119 				    char __user *optval, int __user *optlen)
5120 {
5121 	int val;
5122 	struct sctp_sock *sp = sctp_sk(sk);
5123 
5124 	if (len < sizeof(int))
5125 		return -EINVAL;
5126 
5127 	len = sizeof(int);
5128 	val = sp->v4mapped;
5129 	if (put_user(len, optlen))
5130 		return -EFAULT;
5131 	if (copy_to_user(optval, &val, len))
5132 		return -EFAULT;
5133 
5134 	return 0;
5135 }
5136 
5137 /*
5138  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
5139  * (chapter and verse is quoted at sctp_setsockopt_context())
5140  */
5141 static int sctp_getsockopt_context(struct sock *sk, int len,
5142 				   char __user *optval, int __user *optlen)
5143 {
5144 	struct sctp_assoc_value params;
5145 	struct sctp_sock *sp;
5146 	struct sctp_association *asoc;
5147 
5148 	if (len < sizeof(struct sctp_assoc_value))
5149 		return -EINVAL;
5150 
5151 	len = sizeof(struct sctp_assoc_value);
5152 
5153 	if (copy_from_user(&params, optval, len))
5154 		return -EFAULT;
5155 
5156 	sp = sctp_sk(sk);
5157 
5158 	if (params.assoc_id != 0) {
5159 		asoc = sctp_id2assoc(sk, params.assoc_id);
5160 		if (!asoc)
5161 			return -EINVAL;
5162 		params.assoc_value = asoc->default_rcv_context;
5163 	} else {
5164 		params.assoc_value = sp->default_rcv_context;
5165 	}
5166 
5167 	if (put_user(len, optlen))
5168 		return -EFAULT;
5169 	if (copy_to_user(optval, &params, len))
5170 		return -EFAULT;
5171 
5172 	return 0;
5173 }
5174 
5175 /*
5176  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5177  * This option will get or set the maximum size to put in any outgoing
5178  * SCTP DATA chunk.  If a message is larger than this size it will be
5179  * fragmented by SCTP into the specified size.  Note that the underlying
5180  * SCTP implementation may fragment into smaller sized chunks when the
5181  * PMTU of the underlying association is smaller than the value set by
5182  * the user.  The default value for this option is '0' which indicates
5183  * the user is NOT limiting fragmentation and only the PMTU will effect
5184  * SCTP's choice of DATA chunk size.  Note also that values set larger
5185  * than the maximum size of an IP datagram will effectively let SCTP
5186  * control fragmentation (i.e. the same as setting this option to 0).
5187  *
5188  * The following structure is used to access and modify this parameter:
5189  *
5190  * struct sctp_assoc_value {
5191  *   sctp_assoc_t assoc_id;
5192  *   uint32_t assoc_value;
5193  * };
5194  *
5195  * assoc_id:  This parameter is ignored for one-to-one style sockets.
5196  *    For one-to-many style sockets this parameter indicates which
5197  *    association the user is performing an action upon.  Note that if
5198  *    this field's value is zero then the endpoints default value is
5199  *    changed (effecting future associations only).
5200  * assoc_value:  This parameter specifies the maximum size in bytes.
5201  */
5202 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5203 				  char __user *optval, int __user *optlen)
5204 {
5205 	struct sctp_assoc_value params;
5206 	struct sctp_association *asoc;
5207 
5208 	if (len == sizeof(int)) {
5209 		pr_warn("Use of int in maxseg socket option deprecated\n");
5210 		pr_warn("Use struct sctp_assoc_value instead\n");
5211 		params.assoc_id = 0;
5212 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5213 		len = sizeof(struct sctp_assoc_value);
5214 		if (copy_from_user(&params, optval, sizeof(params)))
5215 			return -EFAULT;
5216 	} else
5217 		return -EINVAL;
5218 
5219 	asoc = sctp_id2assoc(sk, params.assoc_id);
5220 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5221 		return -EINVAL;
5222 
5223 	if (asoc)
5224 		params.assoc_value = asoc->frag_point;
5225 	else
5226 		params.assoc_value = sctp_sk(sk)->user_frag;
5227 
5228 	if (put_user(len, optlen))
5229 		return -EFAULT;
5230 	if (len == sizeof(int)) {
5231 		if (copy_to_user(optval, &params.assoc_value, len))
5232 			return -EFAULT;
5233 	} else {
5234 		if (copy_to_user(optval, &params, len))
5235 			return -EFAULT;
5236 	}
5237 
5238 	return 0;
5239 }
5240 
5241 /*
5242  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5243  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5244  */
5245 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5246 					       char __user *optval, int __user *optlen)
5247 {
5248 	int val;
5249 
5250 	if (len < sizeof(int))
5251 		return -EINVAL;
5252 
5253 	len = sizeof(int);
5254 
5255 	val = sctp_sk(sk)->frag_interleave;
5256 	if (put_user(len, optlen))
5257 		return -EFAULT;
5258 	if (copy_to_user(optval, &val, len))
5259 		return -EFAULT;
5260 
5261 	return 0;
5262 }
5263 
5264 /*
5265  * 7.1.25.  Set or Get the sctp partial delivery point
5266  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5267  */
5268 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5269 						  char __user *optval,
5270 						  int __user *optlen)
5271 {
5272 	u32 val;
5273 
5274 	if (len < sizeof(u32))
5275 		return -EINVAL;
5276 
5277 	len = sizeof(u32);
5278 
5279 	val = sctp_sk(sk)->pd_point;
5280 	if (put_user(len, optlen))
5281 		return -EFAULT;
5282 	if (copy_to_user(optval, &val, len))
5283 		return -EFAULT;
5284 
5285 	return 0;
5286 }
5287 
5288 /*
5289  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
5290  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5291  */
5292 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5293 				    char __user *optval,
5294 				    int __user *optlen)
5295 {
5296 	struct sctp_assoc_value params;
5297 	struct sctp_sock *sp;
5298 	struct sctp_association *asoc;
5299 
5300 	if (len == sizeof(int)) {
5301 		pr_warn("Use of int in max_burst socket option deprecated\n");
5302 		pr_warn("Use struct sctp_assoc_value instead\n");
5303 		params.assoc_id = 0;
5304 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5305 		len = sizeof(struct sctp_assoc_value);
5306 		if (copy_from_user(&params, optval, len))
5307 			return -EFAULT;
5308 	} else
5309 		return -EINVAL;
5310 
5311 	sp = sctp_sk(sk);
5312 
5313 	if (params.assoc_id != 0) {
5314 		asoc = sctp_id2assoc(sk, params.assoc_id);
5315 		if (!asoc)
5316 			return -EINVAL;
5317 		params.assoc_value = asoc->max_burst;
5318 	} else
5319 		params.assoc_value = sp->max_burst;
5320 
5321 	if (len == sizeof(int)) {
5322 		if (copy_to_user(optval, &params.assoc_value, len))
5323 			return -EFAULT;
5324 	} else {
5325 		if (copy_to_user(optval, &params, len))
5326 			return -EFAULT;
5327 	}
5328 
5329 	return 0;
5330 
5331 }
5332 
5333 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5334 				    char __user *optval, int __user *optlen)
5335 {
5336 	struct net *net = sock_net(sk);
5337 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
5338 	struct sctp_hmac_algo_param *hmacs;
5339 	__u16 data_len = 0;
5340 	u32 num_idents;
5341 
5342 	if (!net->sctp.auth_enable)
5343 		return -EACCES;
5344 
5345 	hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5346 	data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5347 
5348 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
5349 		return -EINVAL;
5350 
5351 	len = sizeof(struct sctp_hmacalgo) + data_len;
5352 	num_idents = data_len / sizeof(u16);
5353 
5354 	if (put_user(len, optlen))
5355 		return -EFAULT;
5356 	if (put_user(num_idents, &p->shmac_num_idents))
5357 		return -EFAULT;
5358 	if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5359 		return -EFAULT;
5360 	return 0;
5361 }
5362 
5363 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5364 				    char __user *optval, int __user *optlen)
5365 {
5366 	struct net *net = sock_net(sk);
5367 	struct sctp_authkeyid val;
5368 	struct sctp_association *asoc;
5369 
5370 	if (!net->sctp.auth_enable)
5371 		return -EACCES;
5372 
5373 	if (len < sizeof(struct sctp_authkeyid))
5374 		return -EINVAL;
5375 	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5376 		return -EFAULT;
5377 
5378 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5379 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5380 		return -EINVAL;
5381 
5382 	if (asoc)
5383 		val.scact_keynumber = asoc->active_key_id;
5384 	else
5385 		val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5386 
5387 	len = sizeof(struct sctp_authkeyid);
5388 	if (put_user(len, optlen))
5389 		return -EFAULT;
5390 	if (copy_to_user(optval, &val, len))
5391 		return -EFAULT;
5392 
5393 	return 0;
5394 }
5395 
5396 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5397 				    char __user *optval, int __user *optlen)
5398 {
5399 	struct net *net = sock_net(sk);
5400 	struct sctp_authchunks __user *p = (void __user *)optval;
5401 	struct sctp_authchunks val;
5402 	struct sctp_association *asoc;
5403 	struct sctp_chunks_param *ch;
5404 	u32    num_chunks = 0;
5405 	char __user *to;
5406 
5407 	if (!net->sctp.auth_enable)
5408 		return -EACCES;
5409 
5410 	if (len < sizeof(struct sctp_authchunks))
5411 		return -EINVAL;
5412 
5413 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5414 		return -EFAULT;
5415 
5416 	to = p->gauth_chunks;
5417 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5418 	if (!asoc)
5419 		return -EINVAL;
5420 
5421 	ch = asoc->peer.peer_chunks;
5422 	if (!ch)
5423 		goto num;
5424 
5425 	/* See if the user provided enough room for all the data */
5426 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5427 	if (len < num_chunks)
5428 		return -EINVAL;
5429 
5430 	if (copy_to_user(to, ch->chunks, num_chunks))
5431 		return -EFAULT;
5432 num:
5433 	len = sizeof(struct sctp_authchunks) + num_chunks;
5434 	if (put_user(len, optlen)) return -EFAULT;
5435 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5436 		return -EFAULT;
5437 	return 0;
5438 }
5439 
5440 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5441 				    char __user *optval, int __user *optlen)
5442 {
5443 	struct net *net = sock_net(sk);
5444 	struct sctp_authchunks __user *p = (void __user *)optval;
5445 	struct sctp_authchunks val;
5446 	struct sctp_association *asoc;
5447 	struct sctp_chunks_param *ch;
5448 	u32    num_chunks = 0;
5449 	char __user *to;
5450 
5451 	if (!net->sctp.auth_enable)
5452 		return -EACCES;
5453 
5454 	if (len < sizeof(struct sctp_authchunks))
5455 		return -EINVAL;
5456 
5457 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5458 		return -EFAULT;
5459 
5460 	to = p->gauth_chunks;
5461 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5462 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5463 		return -EINVAL;
5464 
5465 	if (asoc)
5466 		ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5467 	else
5468 		ch = sctp_sk(sk)->ep->auth_chunk_list;
5469 
5470 	if (!ch)
5471 		goto num;
5472 
5473 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5474 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
5475 		return -EINVAL;
5476 
5477 	if (copy_to_user(to, ch->chunks, num_chunks))
5478 		return -EFAULT;
5479 num:
5480 	len = sizeof(struct sctp_authchunks) + num_chunks;
5481 	if (put_user(len, optlen))
5482 		return -EFAULT;
5483 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5484 		return -EFAULT;
5485 
5486 	return 0;
5487 }
5488 
5489 /*
5490  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5491  * This option gets the current number of associations that are attached
5492  * to a one-to-many style socket.  The option value is an uint32_t.
5493  */
5494 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5495 				    char __user *optval, int __user *optlen)
5496 {
5497 	struct sctp_sock *sp = sctp_sk(sk);
5498 	struct sctp_association *asoc;
5499 	u32 val = 0;
5500 
5501 	if (sctp_style(sk, TCP))
5502 		return -EOPNOTSUPP;
5503 
5504 	if (len < sizeof(u32))
5505 		return -EINVAL;
5506 
5507 	len = sizeof(u32);
5508 
5509 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5510 		val++;
5511 	}
5512 
5513 	if (put_user(len, optlen))
5514 		return -EFAULT;
5515 	if (copy_to_user(optval, &val, len))
5516 		return -EFAULT;
5517 
5518 	return 0;
5519 }
5520 
5521 /*
5522  * 8.1.23 SCTP_AUTO_ASCONF
5523  * See the corresponding setsockopt entry as description
5524  */
5525 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5526 				   char __user *optval, int __user *optlen)
5527 {
5528 	int val = 0;
5529 
5530 	if (len < sizeof(int))
5531 		return -EINVAL;
5532 
5533 	len = sizeof(int);
5534 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5535 		val = 1;
5536 	if (put_user(len, optlen))
5537 		return -EFAULT;
5538 	if (copy_to_user(optval, &val, len))
5539 		return -EFAULT;
5540 	return 0;
5541 }
5542 
5543 /*
5544  * 8.2.6. Get the Current Identifiers of Associations
5545  *        (SCTP_GET_ASSOC_ID_LIST)
5546  *
5547  * This option gets the current list of SCTP association identifiers of
5548  * the SCTP associations handled by a one-to-many style socket.
5549  */
5550 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5551 				    char __user *optval, int __user *optlen)
5552 {
5553 	struct sctp_sock *sp = sctp_sk(sk);
5554 	struct sctp_association *asoc;
5555 	struct sctp_assoc_ids *ids;
5556 	u32 num = 0;
5557 
5558 	if (sctp_style(sk, TCP))
5559 		return -EOPNOTSUPP;
5560 
5561 	if (len < sizeof(struct sctp_assoc_ids))
5562 		return -EINVAL;
5563 
5564 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5565 		num++;
5566 	}
5567 
5568 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5569 		return -EINVAL;
5570 
5571 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5572 
5573 	ids = kmalloc(len, GFP_KERNEL);
5574 	if (unlikely(!ids))
5575 		return -ENOMEM;
5576 
5577 	ids->gaids_number_of_ids = num;
5578 	num = 0;
5579 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5580 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
5581 	}
5582 
5583 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5584 		kfree(ids);
5585 		return -EFAULT;
5586 	}
5587 
5588 	kfree(ids);
5589 	return 0;
5590 }
5591 
5592 /*
5593  * SCTP_PEER_ADDR_THLDS
5594  *
5595  * This option allows us to fetch the partially failed threshold for one or all
5596  * transports in an association.  See Section 6.1 of:
5597  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
5598  */
5599 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
5600 					    char __user *optval,
5601 					    int len,
5602 					    int __user *optlen)
5603 {
5604 	struct sctp_paddrthlds val;
5605 	struct sctp_transport *trans;
5606 	struct sctp_association *asoc;
5607 
5608 	if (len < sizeof(struct sctp_paddrthlds))
5609 		return -EINVAL;
5610 	len = sizeof(struct sctp_paddrthlds);
5611 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
5612 		return -EFAULT;
5613 
5614 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
5615 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
5616 		if (!asoc)
5617 			return -ENOENT;
5618 
5619 		val.spt_pathpfthld = asoc->pf_retrans;
5620 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
5621 	} else {
5622 		trans = sctp_addr_id2transport(sk, &val.spt_address,
5623 					       val.spt_assoc_id);
5624 		if (!trans)
5625 			return -ENOENT;
5626 
5627 		val.spt_pathmaxrxt = trans->pathmaxrxt;
5628 		val.spt_pathpfthld = trans->pf_retrans;
5629 	}
5630 
5631 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
5632 		return -EFAULT;
5633 
5634 	return 0;
5635 }
5636 
5637 /*
5638  * SCTP_GET_ASSOC_STATS
5639  *
5640  * This option retrieves local per endpoint statistics. It is modeled
5641  * after OpenSolaris' implementation
5642  */
5643 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
5644 				       char __user *optval,
5645 				       int __user *optlen)
5646 {
5647 	struct sctp_assoc_stats sas;
5648 	struct sctp_association *asoc = NULL;
5649 
5650 	/* User must provide at least the assoc id */
5651 	if (len < sizeof(sctp_assoc_t))
5652 		return -EINVAL;
5653 
5654 	/* Allow the struct to grow and fill in as much as possible */
5655 	len = min_t(size_t, len, sizeof(sas));
5656 
5657 	if (copy_from_user(&sas, optval, len))
5658 		return -EFAULT;
5659 
5660 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
5661 	if (!asoc)
5662 		return -EINVAL;
5663 
5664 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
5665 	sas.sas_gapcnt = asoc->stats.gapcnt;
5666 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
5667 	sas.sas_osacks = asoc->stats.osacks;
5668 	sas.sas_isacks = asoc->stats.isacks;
5669 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
5670 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
5671 	sas.sas_oodchunks = asoc->stats.oodchunks;
5672 	sas.sas_iodchunks = asoc->stats.iodchunks;
5673 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
5674 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
5675 	sas.sas_idupchunks = asoc->stats.idupchunks;
5676 	sas.sas_opackets = asoc->stats.opackets;
5677 	sas.sas_ipackets = asoc->stats.ipackets;
5678 
5679 	/* New high max rto observed, will return 0 if not a single
5680 	 * RTO update took place. obs_rto_ipaddr will be bogus
5681 	 * in such a case
5682 	 */
5683 	sas.sas_maxrto = asoc->stats.max_obs_rto;
5684 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
5685 		sizeof(struct sockaddr_storage));
5686 
5687 	/* Mark beginning of a new observation period */
5688 	asoc->stats.max_obs_rto = asoc->rto_min;
5689 
5690 	if (put_user(len, optlen))
5691 		return -EFAULT;
5692 
5693 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
5694 
5695 	if (copy_to_user(optval, &sas, len))
5696 		return -EFAULT;
5697 
5698 	return 0;
5699 }
5700 
5701 static int sctp_getsockopt(struct sock *sk, int level, int optname,
5702 			   char __user *optval, int __user *optlen)
5703 {
5704 	int retval = 0;
5705 	int len;
5706 
5707 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
5708 
5709 	/* I can hardly begin to describe how wrong this is.  This is
5710 	 * so broken as to be worse than useless.  The API draft
5711 	 * REALLY is NOT helpful here...  I am not convinced that the
5712 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5713 	 * are at all well-founded.
5714 	 */
5715 	if (level != SOL_SCTP) {
5716 		struct sctp_af *af = sctp_sk(sk)->pf->af;
5717 
5718 		retval = af->getsockopt(sk, level, optname, optval, optlen);
5719 		return retval;
5720 	}
5721 
5722 	if (get_user(len, optlen))
5723 		return -EFAULT;
5724 
5725 	sctp_lock_sock(sk);
5726 
5727 	switch (optname) {
5728 	case SCTP_STATUS:
5729 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5730 		break;
5731 	case SCTP_DISABLE_FRAGMENTS:
5732 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5733 							   optlen);
5734 		break;
5735 	case SCTP_EVENTS:
5736 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
5737 		break;
5738 	case SCTP_AUTOCLOSE:
5739 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5740 		break;
5741 	case SCTP_SOCKOPT_PEELOFF:
5742 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5743 		break;
5744 	case SCTP_PEER_ADDR_PARAMS:
5745 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5746 							  optlen);
5747 		break;
5748 	case SCTP_DELAYED_SACK:
5749 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5750 							  optlen);
5751 		break;
5752 	case SCTP_INITMSG:
5753 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5754 		break;
5755 	case SCTP_GET_PEER_ADDRS:
5756 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5757 						    optlen);
5758 		break;
5759 	case SCTP_GET_LOCAL_ADDRS:
5760 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
5761 						     optlen);
5762 		break;
5763 	case SCTP_SOCKOPT_CONNECTX3:
5764 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
5765 		break;
5766 	case SCTP_DEFAULT_SEND_PARAM:
5767 		retval = sctp_getsockopt_default_send_param(sk, len,
5768 							    optval, optlen);
5769 		break;
5770 	case SCTP_PRIMARY_ADDR:
5771 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5772 		break;
5773 	case SCTP_NODELAY:
5774 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5775 		break;
5776 	case SCTP_RTOINFO:
5777 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5778 		break;
5779 	case SCTP_ASSOCINFO:
5780 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5781 		break;
5782 	case SCTP_I_WANT_MAPPED_V4_ADDR:
5783 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5784 		break;
5785 	case SCTP_MAXSEG:
5786 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5787 		break;
5788 	case SCTP_GET_PEER_ADDR_INFO:
5789 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5790 							optlen);
5791 		break;
5792 	case SCTP_ADAPTATION_LAYER:
5793 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5794 							optlen);
5795 		break;
5796 	case SCTP_CONTEXT:
5797 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
5798 		break;
5799 	case SCTP_FRAGMENT_INTERLEAVE:
5800 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5801 							     optlen);
5802 		break;
5803 	case SCTP_PARTIAL_DELIVERY_POINT:
5804 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5805 								optlen);
5806 		break;
5807 	case SCTP_MAX_BURST:
5808 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5809 		break;
5810 	case SCTP_AUTH_KEY:
5811 	case SCTP_AUTH_CHUNK:
5812 	case SCTP_AUTH_DELETE_KEY:
5813 		retval = -EOPNOTSUPP;
5814 		break;
5815 	case SCTP_HMAC_IDENT:
5816 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5817 		break;
5818 	case SCTP_AUTH_ACTIVE_KEY:
5819 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5820 		break;
5821 	case SCTP_PEER_AUTH_CHUNKS:
5822 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5823 							optlen);
5824 		break;
5825 	case SCTP_LOCAL_AUTH_CHUNKS:
5826 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5827 							optlen);
5828 		break;
5829 	case SCTP_GET_ASSOC_NUMBER:
5830 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
5831 		break;
5832 	case SCTP_GET_ASSOC_ID_LIST:
5833 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
5834 		break;
5835 	case SCTP_AUTO_ASCONF:
5836 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
5837 		break;
5838 	case SCTP_PEER_ADDR_THLDS:
5839 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
5840 		break;
5841 	case SCTP_GET_ASSOC_STATS:
5842 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
5843 		break;
5844 	default:
5845 		retval = -ENOPROTOOPT;
5846 		break;
5847 	}
5848 
5849 	sctp_release_sock(sk);
5850 	return retval;
5851 }
5852 
5853 static void sctp_hash(struct sock *sk)
5854 {
5855 	/* STUB */
5856 }
5857 
5858 static void sctp_unhash(struct sock *sk)
5859 {
5860 	/* STUB */
5861 }
5862 
5863 /* Check if port is acceptable.  Possibly find first available port.
5864  *
5865  * The port hash table (contained in the 'global' SCTP protocol storage
5866  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5867  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5868  * list (the list number is the port number hashed out, so as you
5869  * would expect from a hash function, all the ports in a given list have
5870  * such a number that hashes out to the same list number; you were
5871  * expecting that, right?); so each list has a set of ports, with a
5872  * link to the socket (struct sock) that uses it, the port number and
5873  * a fastreuse flag (FIXME: NPI ipg).
5874  */
5875 static struct sctp_bind_bucket *sctp_bucket_create(
5876 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
5877 
5878 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5879 {
5880 	struct sctp_bind_hashbucket *head; /* hash list */
5881 	struct sctp_bind_bucket *pp;
5882 	unsigned short snum;
5883 	int ret;
5884 
5885 	snum = ntohs(addr->v4.sin_port);
5886 
5887 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
5888 
5889 	sctp_local_bh_disable();
5890 
5891 	if (snum == 0) {
5892 		/* Search for an available port. */
5893 		int low, high, remaining, index;
5894 		unsigned int rover;
5895 
5896 		inet_get_local_port_range(&low, &high);
5897 		remaining = (high - low) + 1;
5898 		rover = net_random() % remaining + low;
5899 
5900 		do {
5901 			rover++;
5902 			if ((rover < low) || (rover > high))
5903 				rover = low;
5904 			if (inet_is_reserved_local_port(rover))
5905 				continue;
5906 			index = sctp_phashfn(sock_net(sk), rover);
5907 			head = &sctp_port_hashtable[index];
5908 			sctp_spin_lock(&head->lock);
5909 			sctp_for_each_hentry(pp, &head->chain)
5910 				if ((pp->port == rover) &&
5911 				    net_eq(sock_net(sk), pp->net))
5912 					goto next;
5913 			break;
5914 		next:
5915 			sctp_spin_unlock(&head->lock);
5916 		} while (--remaining > 0);
5917 
5918 		/* Exhausted local port range during search? */
5919 		ret = 1;
5920 		if (remaining <= 0)
5921 			goto fail;
5922 
5923 		/* OK, here is the one we will use.  HEAD (the port
5924 		 * hash table list entry) is non-NULL and we hold it's
5925 		 * mutex.
5926 		 */
5927 		snum = rover;
5928 	} else {
5929 		/* We are given an specific port number; we verify
5930 		 * that it is not being used. If it is used, we will
5931 		 * exahust the search in the hash list corresponding
5932 		 * to the port number (snum) - we detect that with the
5933 		 * port iterator, pp being NULL.
5934 		 */
5935 		head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
5936 		sctp_spin_lock(&head->lock);
5937 		sctp_for_each_hentry(pp, &head->chain) {
5938 			if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
5939 				goto pp_found;
5940 		}
5941 	}
5942 	pp = NULL;
5943 	goto pp_not_found;
5944 pp_found:
5945 	if (!hlist_empty(&pp->owner)) {
5946 		/* We had a port hash table hit - there is an
5947 		 * available port (pp != NULL) and it is being
5948 		 * used by other socket (pp->owner not empty); that other
5949 		 * socket is going to be sk2.
5950 		 */
5951 		int reuse = sk->sk_reuse;
5952 		struct sock *sk2;
5953 
5954 		pr_debug("%s: found a possible match\n", __func__);
5955 
5956 		if (pp->fastreuse && sk->sk_reuse &&
5957 			sk->sk_state != SCTP_SS_LISTENING)
5958 			goto success;
5959 
5960 		/* Run through the list of sockets bound to the port
5961 		 * (pp->port) [via the pointers bind_next and
5962 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5963 		 * we get the endpoint they describe and run through
5964 		 * the endpoint's list of IP (v4 or v6) addresses,
5965 		 * comparing each of the addresses with the address of
5966 		 * the socket sk. If we find a match, then that means
5967 		 * that this port/socket (sk) combination are already
5968 		 * in an endpoint.
5969 		 */
5970 		sk_for_each_bound(sk2, &pp->owner) {
5971 			struct sctp_endpoint *ep2;
5972 			ep2 = sctp_sk(sk2)->ep;
5973 
5974 			if (sk == sk2 ||
5975 			    (reuse && sk2->sk_reuse &&
5976 			     sk2->sk_state != SCTP_SS_LISTENING))
5977 				continue;
5978 
5979 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
5980 						 sctp_sk(sk2), sctp_sk(sk))) {
5981 				ret = (long)sk2;
5982 				goto fail_unlock;
5983 			}
5984 		}
5985 
5986 		pr_debug("%s: found a match\n", __func__);
5987 	}
5988 pp_not_found:
5989 	/* If there was a hash table miss, create a new port.  */
5990 	ret = 1;
5991 	if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
5992 		goto fail_unlock;
5993 
5994 	/* In either case (hit or miss), make sure fastreuse is 1 only
5995 	 * if sk->sk_reuse is too (that is, if the caller requested
5996 	 * SO_REUSEADDR on this socket -sk-).
5997 	 */
5998 	if (hlist_empty(&pp->owner)) {
5999 		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
6000 			pp->fastreuse = 1;
6001 		else
6002 			pp->fastreuse = 0;
6003 	} else if (pp->fastreuse &&
6004 		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6005 		pp->fastreuse = 0;
6006 
6007 	/* We are set, so fill up all the data in the hash table
6008 	 * entry, tie the socket list information with the rest of the
6009 	 * sockets FIXME: Blurry, NPI (ipg).
6010 	 */
6011 success:
6012 	if (!sctp_sk(sk)->bind_hash) {
6013 		inet_sk(sk)->inet_num = snum;
6014 		sk_add_bind_node(sk, &pp->owner);
6015 		sctp_sk(sk)->bind_hash = pp;
6016 	}
6017 	ret = 0;
6018 
6019 fail_unlock:
6020 	sctp_spin_unlock(&head->lock);
6021 
6022 fail:
6023 	sctp_local_bh_enable();
6024 	return ret;
6025 }
6026 
6027 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
6028  * port is requested.
6029  */
6030 static int sctp_get_port(struct sock *sk, unsigned short snum)
6031 {
6032 	union sctp_addr addr;
6033 	struct sctp_af *af = sctp_sk(sk)->pf->af;
6034 
6035 	/* Set up a dummy address struct from the sk. */
6036 	af->from_sk(&addr, sk);
6037 	addr.v4.sin_port = htons(snum);
6038 
6039 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
6040 	return !!sctp_get_port_local(sk, &addr);
6041 }
6042 
6043 /*
6044  *  Move a socket to LISTENING state.
6045  */
6046 static int sctp_listen_start(struct sock *sk, int backlog)
6047 {
6048 	struct sctp_sock *sp = sctp_sk(sk);
6049 	struct sctp_endpoint *ep = sp->ep;
6050 	struct crypto_hash *tfm = NULL;
6051 	char alg[32];
6052 
6053 	/* Allocate HMAC for generating cookie. */
6054 	if (!sp->hmac && sp->sctp_hmac_alg) {
6055 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6056 		tfm = crypto_alloc_hash(alg, 0, CRYPTO_ALG_ASYNC);
6057 		if (IS_ERR(tfm)) {
6058 			net_info_ratelimited("failed to load transform for %s: %ld\n",
6059 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
6060 			return -ENOSYS;
6061 		}
6062 		sctp_sk(sk)->hmac = tfm;
6063 	}
6064 
6065 	/*
6066 	 * If a bind() or sctp_bindx() is not called prior to a listen()
6067 	 * call that allows new associations to be accepted, the system
6068 	 * picks an ephemeral port and will choose an address set equivalent
6069 	 * to binding with a wildcard address.
6070 	 *
6071 	 * This is not currently spelled out in the SCTP sockets
6072 	 * extensions draft, but follows the practice as seen in TCP
6073 	 * sockets.
6074 	 *
6075 	 */
6076 	sk->sk_state = SCTP_SS_LISTENING;
6077 	if (!ep->base.bind_addr.port) {
6078 		if (sctp_autobind(sk))
6079 			return -EAGAIN;
6080 	} else {
6081 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6082 			sk->sk_state = SCTP_SS_CLOSED;
6083 			return -EADDRINUSE;
6084 		}
6085 	}
6086 
6087 	sk->sk_max_ack_backlog = backlog;
6088 	sctp_hash_endpoint(ep);
6089 	return 0;
6090 }
6091 
6092 /*
6093  * 4.1.3 / 5.1.3 listen()
6094  *
6095  *   By default, new associations are not accepted for UDP style sockets.
6096  *   An application uses listen() to mark a socket as being able to
6097  *   accept new associations.
6098  *
6099  *   On TCP style sockets, applications use listen() to ready the SCTP
6100  *   endpoint for accepting inbound associations.
6101  *
6102  *   On both types of endpoints a backlog of '0' disables listening.
6103  *
6104  *  Move a socket to LISTENING state.
6105  */
6106 int sctp_inet_listen(struct socket *sock, int backlog)
6107 {
6108 	struct sock *sk = sock->sk;
6109 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6110 	int err = -EINVAL;
6111 
6112 	if (unlikely(backlog < 0))
6113 		return err;
6114 
6115 	sctp_lock_sock(sk);
6116 
6117 	/* Peeled-off sockets are not allowed to listen().  */
6118 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6119 		goto out;
6120 
6121 	if (sock->state != SS_UNCONNECTED)
6122 		goto out;
6123 
6124 	/* If backlog is zero, disable listening. */
6125 	if (!backlog) {
6126 		if (sctp_sstate(sk, CLOSED))
6127 			goto out;
6128 
6129 		err = 0;
6130 		sctp_unhash_endpoint(ep);
6131 		sk->sk_state = SCTP_SS_CLOSED;
6132 		if (sk->sk_reuse)
6133 			sctp_sk(sk)->bind_hash->fastreuse = 1;
6134 		goto out;
6135 	}
6136 
6137 	/* If we are already listening, just update the backlog */
6138 	if (sctp_sstate(sk, LISTENING))
6139 		sk->sk_max_ack_backlog = backlog;
6140 	else {
6141 		err = sctp_listen_start(sk, backlog);
6142 		if (err)
6143 			goto out;
6144 	}
6145 
6146 	err = 0;
6147 out:
6148 	sctp_release_sock(sk);
6149 	return err;
6150 }
6151 
6152 /*
6153  * This function is done by modeling the current datagram_poll() and the
6154  * tcp_poll().  Note that, based on these implementations, we don't
6155  * lock the socket in this function, even though it seems that,
6156  * ideally, locking or some other mechanisms can be used to ensure
6157  * the integrity of the counters (sndbuf and wmem_alloc) used
6158  * in this place.  We assume that we don't need locks either until proven
6159  * otherwise.
6160  *
6161  * Another thing to note is that we include the Async I/O support
6162  * here, again, by modeling the current TCP/UDP code.  We don't have
6163  * a good way to test with it yet.
6164  */
6165 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6166 {
6167 	struct sock *sk = sock->sk;
6168 	struct sctp_sock *sp = sctp_sk(sk);
6169 	unsigned int mask;
6170 
6171 	poll_wait(file, sk_sleep(sk), wait);
6172 
6173 	/* A TCP-style listening socket becomes readable when the accept queue
6174 	 * is not empty.
6175 	 */
6176 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6177 		return (!list_empty(&sp->ep->asocs)) ?
6178 			(POLLIN | POLLRDNORM) : 0;
6179 
6180 	mask = 0;
6181 
6182 	/* Is there any exceptional events?  */
6183 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6184 		mask |= POLLERR |
6185 			sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0;
6186 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6187 		mask |= POLLRDHUP | POLLIN | POLLRDNORM;
6188 	if (sk->sk_shutdown == SHUTDOWN_MASK)
6189 		mask |= POLLHUP;
6190 
6191 	/* Is it readable?  Reconsider this code with TCP-style support.  */
6192 	if (!skb_queue_empty(&sk->sk_receive_queue))
6193 		mask |= POLLIN | POLLRDNORM;
6194 
6195 	/* The association is either gone or not ready.  */
6196 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6197 		return mask;
6198 
6199 	/* Is it writable?  */
6200 	if (sctp_writeable(sk)) {
6201 		mask |= POLLOUT | POLLWRNORM;
6202 	} else {
6203 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
6204 		/*
6205 		 * Since the socket is not locked, the buffer
6206 		 * might be made available after the writeable check and
6207 		 * before the bit is set.  This could cause a lost I/O
6208 		 * signal.  tcp_poll() has a race breaker for this race
6209 		 * condition.  Based on their implementation, we put
6210 		 * in the following code to cover it as well.
6211 		 */
6212 		if (sctp_writeable(sk))
6213 			mask |= POLLOUT | POLLWRNORM;
6214 	}
6215 	return mask;
6216 }
6217 
6218 /********************************************************************
6219  * 2nd Level Abstractions
6220  ********************************************************************/
6221 
6222 static struct sctp_bind_bucket *sctp_bucket_create(
6223 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
6224 {
6225 	struct sctp_bind_bucket *pp;
6226 
6227 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6228 	if (pp) {
6229 		SCTP_DBG_OBJCNT_INC(bind_bucket);
6230 		pp->port = snum;
6231 		pp->fastreuse = 0;
6232 		INIT_HLIST_HEAD(&pp->owner);
6233 		pp->net = net;
6234 		hlist_add_head(&pp->node, &head->chain);
6235 	}
6236 	return pp;
6237 }
6238 
6239 /* Caller must hold hashbucket lock for this tb with local BH disabled */
6240 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6241 {
6242 	if (pp && hlist_empty(&pp->owner)) {
6243 		__hlist_del(&pp->node);
6244 		kmem_cache_free(sctp_bucket_cachep, pp);
6245 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
6246 	}
6247 }
6248 
6249 /* Release this socket's reference to a local port.  */
6250 static inline void __sctp_put_port(struct sock *sk)
6251 {
6252 	struct sctp_bind_hashbucket *head =
6253 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
6254 						  inet_sk(sk)->inet_num)];
6255 	struct sctp_bind_bucket *pp;
6256 
6257 	sctp_spin_lock(&head->lock);
6258 	pp = sctp_sk(sk)->bind_hash;
6259 	__sk_del_bind_node(sk);
6260 	sctp_sk(sk)->bind_hash = NULL;
6261 	inet_sk(sk)->inet_num = 0;
6262 	sctp_bucket_destroy(pp);
6263 	sctp_spin_unlock(&head->lock);
6264 }
6265 
6266 void sctp_put_port(struct sock *sk)
6267 {
6268 	sctp_local_bh_disable();
6269 	__sctp_put_port(sk);
6270 	sctp_local_bh_enable();
6271 }
6272 
6273 /*
6274  * The system picks an ephemeral port and choose an address set equivalent
6275  * to binding with a wildcard address.
6276  * One of those addresses will be the primary address for the association.
6277  * This automatically enables the multihoming capability of SCTP.
6278  */
6279 static int sctp_autobind(struct sock *sk)
6280 {
6281 	union sctp_addr autoaddr;
6282 	struct sctp_af *af;
6283 	__be16 port;
6284 
6285 	/* Initialize a local sockaddr structure to INADDR_ANY. */
6286 	af = sctp_sk(sk)->pf->af;
6287 
6288 	port = htons(inet_sk(sk)->inet_num);
6289 	af->inaddr_any(&autoaddr, port);
6290 
6291 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6292 }
6293 
6294 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
6295  *
6296  * From RFC 2292
6297  * 4.2 The cmsghdr Structure *
6298  *
6299  * When ancillary data is sent or received, any number of ancillary data
6300  * objects can be specified by the msg_control and msg_controllen members of
6301  * the msghdr structure, because each object is preceded by
6302  * a cmsghdr structure defining the object's length (the cmsg_len member).
6303  * Historically Berkeley-derived implementations have passed only one object
6304  * at a time, but this API allows multiple objects to be
6305  * passed in a single call to sendmsg() or recvmsg(). The following example
6306  * shows two ancillary data objects in a control buffer.
6307  *
6308  *   |<--------------------------- msg_controllen -------------------------->|
6309  *   |                                                                       |
6310  *
6311  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
6312  *
6313  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6314  *   |                                   |                                   |
6315  *
6316  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
6317  *
6318  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
6319  *   |                                |  |                                |  |
6320  *
6321  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6322  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
6323  *
6324  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
6325  *
6326  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6327  *    ^
6328  *    |
6329  *
6330  * msg_control
6331  * points here
6332  */
6333 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs)
6334 {
6335 	struct cmsghdr *cmsg;
6336 	struct msghdr *my_msg = (struct msghdr *)msg;
6337 
6338 	for (cmsg = CMSG_FIRSTHDR(msg);
6339 	     cmsg != NULL;
6340 	     cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
6341 		if (!CMSG_OK(my_msg, cmsg))
6342 			return -EINVAL;
6343 
6344 		/* Should we parse this header or ignore?  */
6345 		if (cmsg->cmsg_level != IPPROTO_SCTP)
6346 			continue;
6347 
6348 		/* Strictly check lengths following example in SCM code.  */
6349 		switch (cmsg->cmsg_type) {
6350 		case SCTP_INIT:
6351 			/* SCTP Socket API Extension
6352 			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
6353 			 *
6354 			 * This cmsghdr structure provides information for
6355 			 * initializing new SCTP associations with sendmsg().
6356 			 * The SCTP_INITMSG socket option uses this same data
6357 			 * structure.  This structure is not used for
6358 			 * recvmsg().
6359 			 *
6360 			 * cmsg_level    cmsg_type      cmsg_data[]
6361 			 * ------------  ------------   ----------------------
6362 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
6363 			 */
6364 			if (cmsg->cmsg_len !=
6365 			    CMSG_LEN(sizeof(struct sctp_initmsg)))
6366 				return -EINVAL;
6367 			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
6368 			break;
6369 
6370 		case SCTP_SNDRCV:
6371 			/* SCTP Socket API Extension
6372 			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6373 			 *
6374 			 * This cmsghdr structure specifies SCTP options for
6375 			 * sendmsg() and describes SCTP header information
6376 			 * about a received message through recvmsg().
6377 			 *
6378 			 * cmsg_level    cmsg_type      cmsg_data[]
6379 			 * ------------  ------------   ----------------------
6380 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
6381 			 */
6382 			if (cmsg->cmsg_len !=
6383 			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6384 				return -EINVAL;
6385 
6386 			cmsgs->info =
6387 				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6388 
6389 			/* Minimally, validate the sinfo_flags. */
6390 			if (cmsgs->info->sinfo_flags &
6391 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6392 			      SCTP_ABORT | SCTP_EOF))
6393 				return -EINVAL;
6394 			break;
6395 
6396 		default:
6397 			return -EINVAL;
6398 		}
6399 	}
6400 	return 0;
6401 }
6402 
6403 /*
6404  * Wait for a packet..
6405  * Note: This function is the same function as in core/datagram.c
6406  * with a few modifications to make lksctp work.
6407  */
6408 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
6409 {
6410 	int error;
6411 	DEFINE_WAIT(wait);
6412 
6413 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6414 
6415 	/* Socket errors? */
6416 	error = sock_error(sk);
6417 	if (error)
6418 		goto out;
6419 
6420 	if (!skb_queue_empty(&sk->sk_receive_queue))
6421 		goto ready;
6422 
6423 	/* Socket shut down?  */
6424 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6425 		goto out;
6426 
6427 	/* Sequenced packets can come disconnected.  If so we report the
6428 	 * problem.
6429 	 */
6430 	error = -ENOTCONN;
6431 
6432 	/* Is there a good reason to think that we may receive some data?  */
6433 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6434 		goto out;
6435 
6436 	/* Handle signals.  */
6437 	if (signal_pending(current))
6438 		goto interrupted;
6439 
6440 	/* Let another process have a go.  Since we are going to sleep
6441 	 * anyway.  Note: This may cause odd behaviors if the message
6442 	 * does not fit in the user's buffer, but this seems to be the
6443 	 * only way to honor MSG_DONTWAIT realistically.
6444 	 */
6445 	sctp_release_sock(sk);
6446 	*timeo_p = schedule_timeout(*timeo_p);
6447 	sctp_lock_sock(sk);
6448 
6449 ready:
6450 	finish_wait(sk_sleep(sk), &wait);
6451 	return 0;
6452 
6453 interrupted:
6454 	error = sock_intr_errno(*timeo_p);
6455 
6456 out:
6457 	finish_wait(sk_sleep(sk), &wait);
6458 	*err = error;
6459 	return error;
6460 }
6461 
6462 /* Receive a datagram.
6463  * Note: This is pretty much the same routine as in core/datagram.c
6464  * with a few changes to make lksctp work.
6465  */
6466 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6467 					      int noblock, int *err)
6468 {
6469 	int error;
6470 	struct sk_buff *skb;
6471 	long timeo;
6472 
6473 	timeo = sock_rcvtimeo(sk, noblock);
6474 
6475 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
6476 		 MAX_SCHEDULE_TIMEOUT);
6477 
6478 	do {
6479 		/* Again only user level code calls this function,
6480 		 * so nothing interrupt level
6481 		 * will suddenly eat the receive_queue.
6482 		 *
6483 		 *  Look at current nfs client by the way...
6484 		 *  However, this function was correct in any case. 8)
6485 		 */
6486 		if (flags & MSG_PEEK) {
6487 			spin_lock_bh(&sk->sk_receive_queue.lock);
6488 			skb = skb_peek(&sk->sk_receive_queue);
6489 			if (skb)
6490 				atomic_inc(&skb->users);
6491 			spin_unlock_bh(&sk->sk_receive_queue.lock);
6492 		} else {
6493 			skb = skb_dequeue(&sk->sk_receive_queue);
6494 		}
6495 
6496 		if (skb)
6497 			return skb;
6498 
6499 		/* Caller is allowed not to check sk->sk_err before calling. */
6500 		error = sock_error(sk);
6501 		if (error)
6502 			goto no_packet;
6503 
6504 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6505 			break;
6506 
6507 		/* User doesn't want to wait.  */
6508 		error = -EAGAIN;
6509 		if (!timeo)
6510 			goto no_packet;
6511 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6512 
6513 	return NULL;
6514 
6515 no_packet:
6516 	*err = error;
6517 	return NULL;
6518 }
6519 
6520 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
6521 static void __sctp_write_space(struct sctp_association *asoc)
6522 {
6523 	struct sock *sk = asoc->base.sk;
6524 	struct socket *sock = sk->sk_socket;
6525 
6526 	if ((sctp_wspace(asoc) > 0) && sock) {
6527 		if (waitqueue_active(&asoc->wait))
6528 			wake_up_interruptible(&asoc->wait);
6529 
6530 		if (sctp_writeable(sk)) {
6531 			wait_queue_head_t *wq = sk_sleep(sk);
6532 
6533 			if (wq && waitqueue_active(wq))
6534 				wake_up_interruptible(wq);
6535 
6536 			/* Note that we try to include the Async I/O support
6537 			 * here by modeling from the current TCP/UDP code.
6538 			 * We have not tested with it yet.
6539 			 */
6540 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6541 				sock_wake_async(sock,
6542 						SOCK_WAKE_SPACE, POLL_OUT);
6543 		}
6544 	}
6545 }
6546 
6547 /* Do accounting for the sndbuf space.
6548  * Decrement the used sndbuf space of the corresponding association by the
6549  * data size which was just transmitted(freed).
6550  */
6551 static void sctp_wfree(struct sk_buff *skb)
6552 {
6553 	struct sctp_association *asoc;
6554 	struct sctp_chunk *chunk;
6555 	struct sock *sk;
6556 
6557 	/* Get the saved chunk pointer.  */
6558 	chunk = *((struct sctp_chunk **)(skb->cb));
6559 	asoc = chunk->asoc;
6560 	sk = asoc->base.sk;
6561 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6562 				sizeof(struct sk_buff) +
6563 				sizeof(struct sctp_chunk);
6564 
6565 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6566 
6567 	/*
6568 	 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6569 	 */
6570 	sk->sk_wmem_queued   -= skb->truesize;
6571 	sk_mem_uncharge(sk, skb->truesize);
6572 
6573 	sock_wfree(skb);
6574 	__sctp_write_space(asoc);
6575 
6576 	sctp_association_put(asoc);
6577 }
6578 
6579 /* Do accounting for the receive space on the socket.
6580  * Accounting for the association is done in ulpevent.c
6581  * We set this as a destructor for the cloned data skbs so that
6582  * accounting is done at the correct time.
6583  */
6584 void sctp_sock_rfree(struct sk_buff *skb)
6585 {
6586 	struct sock *sk = skb->sk;
6587 	struct sctp_ulpevent *event = sctp_skb2event(skb);
6588 
6589 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6590 
6591 	/*
6592 	 * Mimic the behavior of sock_rfree
6593 	 */
6594 	sk_mem_uncharge(sk, event->rmem_len);
6595 }
6596 
6597 
6598 /* Helper function to wait for space in the sndbuf.  */
6599 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6600 				size_t msg_len)
6601 {
6602 	struct sock *sk = asoc->base.sk;
6603 	int err = 0;
6604 	long current_timeo = *timeo_p;
6605 	DEFINE_WAIT(wait);
6606 
6607 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
6608 		 *timeo_p, msg_len);
6609 
6610 	/* Increment the association's refcnt.  */
6611 	sctp_association_hold(asoc);
6612 
6613 	/* Wait on the association specific sndbuf space. */
6614 	for (;;) {
6615 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6616 					  TASK_INTERRUPTIBLE);
6617 		if (!*timeo_p)
6618 			goto do_nonblock;
6619 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6620 		    asoc->base.dead)
6621 			goto do_error;
6622 		if (signal_pending(current))
6623 			goto do_interrupted;
6624 		if (msg_len <= sctp_wspace(asoc))
6625 			break;
6626 
6627 		/* Let another process have a go.  Since we are going
6628 		 * to sleep anyway.
6629 		 */
6630 		sctp_release_sock(sk);
6631 		current_timeo = schedule_timeout(current_timeo);
6632 		BUG_ON(sk != asoc->base.sk);
6633 		sctp_lock_sock(sk);
6634 
6635 		*timeo_p = current_timeo;
6636 	}
6637 
6638 out:
6639 	finish_wait(&asoc->wait, &wait);
6640 
6641 	/* Release the association's refcnt.  */
6642 	sctp_association_put(asoc);
6643 
6644 	return err;
6645 
6646 do_error:
6647 	err = -EPIPE;
6648 	goto out;
6649 
6650 do_interrupted:
6651 	err = sock_intr_errno(*timeo_p);
6652 	goto out;
6653 
6654 do_nonblock:
6655 	err = -EAGAIN;
6656 	goto out;
6657 }
6658 
6659 void sctp_data_ready(struct sock *sk, int len)
6660 {
6661 	struct socket_wq *wq;
6662 
6663 	rcu_read_lock();
6664 	wq = rcu_dereference(sk->sk_wq);
6665 	if (wq_has_sleeper(wq))
6666 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6667 						POLLRDNORM | POLLRDBAND);
6668 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6669 	rcu_read_unlock();
6670 }
6671 
6672 /* If socket sndbuf has changed, wake up all per association waiters.  */
6673 void sctp_write_space(struct sock *sk)
6674 {
6675 	struct sctp_association *asoc;
6676 
6677 	/* Wake up the tasks in each wait queue.  */
6678 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6679 		__sctp_write_space(asoc);
6680 	}
6681 }
6682 
6683 /* Is there any sndbuf space available on the socket?
6684  *
6685  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6686  * associations on the same socket.  For a UDP-style socket with
6687  * multiple associations, it is possible for it to be "unwriteable"
6688  * prematurely.  I assume that this is acceptable because
6689  * a premature "unwriteable" is better than an accidental "writeable" which
6690  * would cause an unwanted block under certain circumstances.  For the 1-1
6691  * UDP-style sockets or TCP-style sockets, this code should work.
6692  *  - Daisy
6693  */
6694 static int sctp_writeable(struct sock *sk)
6695 {
6696 	int amt = 0;
6697 
6698 	amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
6699 	if (amt < 0)
6700 		amt = 0;
6701 	return amt;
6702 }
6703 
6704 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6705  * returns immediately with EINPROGRESS.
6706  */
6707 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6708 {
6709 	struct sock *sk = asoc->base.sk;
6710 	int err = 0;
6711 	long current_timeo = *timeo_p;
6712 	DEFINE_WAIT(wait);
6713 
6714 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
6715 
6716 	/* Increment the association's refcnt.  */
6717 	sctp_association_hold(asoc);
6718 
6719 	for (;;) {
6720 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6721 					  TASK_INTERRUPTIBLE);
6722 		if (!*timeo_p)
6723 			goto do_nonblock;
6724 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6725 			break;
6726 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6727 		    asoc->base.dead)
6728 			goto do_error;
6729 		if (signal_pending(current))
6730 			goto do_interrupted;
6731 
6732 		if (sctp_state(asoc, ESTABLISHED))
6733 			break;
6734 
6735 		/* Let another process have a go.  Since we are going
6736 		 * to sleep anyway.
6737 		 */
6738 		sctp_release_sock(sk);
6739 		current_timeo = schedule_timeout(current_timeo);
6740 		sctp_lock_sock(sk);
6741 
6742 		*timeo_p = current_timeo;
6743 	}
6744 
6745 out:
6746 	finish_wait(&asoc->wait, &wait);
6747 
6748 	/* Release the association's refcnt.  */
6749 	sctp_association_put(asoc);
6750 
6751 	return err;
6752 
6753 do_error:
6754 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6755 		err = -ETIMEDOUT;
6756 	else
6757 		err = -ECONNREFUSED;
6758 	goto out;
6759 
6760 do_interrupted:
6761 	err = sock_intr_errno(*timeo_p);
6762 	goto out;
6763 
6764 do_nonblock:
6765 	err = -EINPROGRESS;
6766 	goto out;
6767 }
6768 
6769 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6770 {
6771 	struct sctp_endpoint *ep;
6772 	int err = 0;
6773 	DEFINE_WAIT(wait);
6774 
6775 	ep = sctp_sk(sk)->ep;
6776 
6777 
6778 	for (;;) {
6779 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
6780 					  TASK_INTERRUPTIBLE);
6781 
6782 		if (list_empty(&ep->asocs)) {
6783 			sctp_release_sock(sk);
6784 			timeo = schedule_timeout(timeo);
6785 			sctp_lock_sock(sk);
6786 		}
6787 
6788 		err = -EINVAL;
6789 		if (!sctp_sstate(sk, LISTENING))
6790 			break;
6791 
6792 		err = 0;
6793 		if (!list_empty(&ep->asocs))
6794 			break;
6795 
6796 		err = sock_intr_errno(timeo);
6797 		if (signal_pending(current))
6798 			break;
6799 
6800 		err = -EAGAIN;
6801 		if (!timeo)
6802 			break;
6803 	}
6804 
6805 	finish_wait(sk_sleep(sk), &wait);
6806 
6807 	return err;
6808 }
6809 
6810 static void sctp_wait_for_close(struct sock *sk, long timeout)
6811 {
6812 	DEFINE_WAIT(wait);
6813 
6814 	do {
6815 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6816 		if (list_empty(&sctp_sk(sk)->ep->asocs))
6817 			break;
6818 		sctp_release_sock(sk);
6819 		timeout = schedule_timeout(timeout);
6820 		sctp_lock_sock(sk);
6821 	} while (!signal_pending(current) && timeout);
6822 
6823 	finish_wait(sk_sleep(sk), &wait);
6824 }
6825 
6826 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6827 {
6828 	struct sk_buff *frag;
6829 
6830 	if (!skb->data_len)
6831 		goto done;
6832 
6833 	/* Don't forget the fragments. */
6834 	skb_walk_frags(skb, frag)
6835 		sctp_skb_set_owner_r_frag(frag, sk);
6836 
6837 done:
6838 	sctp_skb_set_owner_r(skb, sk);
6839 }
6840 
6841 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
6842 		    struct sctp_association *asoc)
6843 {
6844 	struct inet_sock *inet = inet_sk(sk);
6845 	struct inet_sock *newinet;
6846 
6847 	newsk->sk_type = sk->sk_type;
6848 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
6849 	newsk->sk_flags = sk->sk_flags;
6850 	newsk->sk_no_check = sk->sk_no_check;
6851 	newsk->sk_reuse = sk->sk_reuse;
6852 
6853 	newsk->sk_shutdown = sk->sk_shutdown;
6854 	newsk->sk_destruct = sctp_destruct_sock;
6855 	newsk->sk_family = sk->sk_family;
6856 	newsk->sk_protocol = IPPROTO_SCTP;
6857 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
6858 	newsk->sk_sndbuf = sk->sk_sndbuf;
6859 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
6860 	newsk->sk_lingertime = sk->sk_lingertime;
6861 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
6862 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
6863 
6864 	newinet = inet_sk(newsk);
6865 
6866 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
6867 	 * getsockname() and getpeername()
6868 	 */
6869 	newinet->inet_sport = inet->inet_sport;
6870 	newinet->inet_saddr = inet->inet_saddr;
6871 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
6872 	newinet->inet_dport = htons(asoc->peer.port);
6873 	newinet->pmtudisc = inet->pmtudisc;
6874 	newinet->inet_id = asoc->next_tsn ^ jiffies;
6875 
6876 	newinet->uc_ttl = inet->uc_ttl;
6877 	newinet->mc_loop = 1;
6878 	newinet->mc_ttl = 1;
6879 	newinet->mc_index = 0;
6880 	newinet->mc_list = NULL;
6881 }
6882 
6883 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6884  * and its messages to the newsk.
6885  */
6886 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6887 			      struct sctp_association *assoc,
6888 			      sctp_socket_type_t type)
6889 {
6890 	struct sctp_sock *oldsp = sctp_sk(oldsk);
6891 	struct sctp_sock *newsp = sctp_sk(newsk);
6892 	struct sctp_bind_bucket *pp; /* hash list port iterator */
6893 	struct sctp_endpoint *newep = newsp->ep;
6894 	struct sk_buff *skb, *tmp;
6895 	struct sctp_ulpevent *event;
6896 	struct sctp_bind_hashbucket *head;
6897 	struct list_head tmplist;
6898 
6899 	/* Migrate socket buffer sizes and all the socket level options to the
6900 	 * new socket.
6901 	 */
6902 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
6903 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6904 	/* Brute force copy old sctp opt. */
6905 	if (oldsp->do_auto_asconf) {
6906 		memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist));
6907 		inet_sk_copy_descendant(newsk, oldsk);
6908 		memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist));
6909 	} else
6910 		inet_sk_copy_descendant(newsk, oldsk);
6911 
6912 	/* Restore the ep value that was overwritten with the above structure
6913 	 * copy.
6914 	 */
6915 	newsp->ep = newep;
6916 	newsp->hmac = NULL;
6917 
6918 	/* Hook this new socket in to the bind_hash list. */
6919 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
6920 						 inet_sk(oldsk)->inet_num)];
6921 	sctp_local_bh_disable();
6922 	sctp_spin_lock(&head->lock);
6923 	pp = sctp_sk(oldsk)->bind_hash;
6924 	sk_add_bind_node(newsk, &pp->owner);
6925 	sctp_sk(newsk)->bind_hash = pp;
6926 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
6927 	sctp_spin_unlock(&head->lock);
6928 	sctp_local_bh_enable();
6929 
6930 	/* Copy the bind_addr list from the original endpoint to the new
6931 	 * endpoint so that we can handle restarts properly
6932 	 */
6933 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6934 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
6935 
6936 	/* Move any messages in the old socket's receive queue that are for the
6937 	 * peeled off association to the new socket's receive queue.
6938 	 */
6939 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6940 		event = sctp_skb2event(skb);
6941 		if (event->asoc == assoc) {
6942 			__skb_unlink(skb, &oldsk->sk_receive_queue);
6943 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
6944 			sctp_skb_set_owner_r_frag(skb, newsk);
6945 		}
6946 	}
6947 
6948 	/* Clean up any messages pending delivery due to partial
6949 	 * delivery.   Three cases:
6950 	 * 1) No partial deliver;  no work.
6951 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6952 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6953 	 */
6954 	skb_queue_head_init(&newsp->pd_lobby);
6955 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6956 
6957 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6958 		struct sk_buff_head *queue;
6959 
6960 		/* Decide which queue to move pd_lobby skbs to. */
6961 		if (assoc->ulpq.pd_mode) {
6962 			queue = &newsp->pd_lobby;
6963 		} else
6964 			queue = &newsk->sk_receive_queue;
6965 
6966 		/* Walk through the pd_lobby, looking for skbs that
6967 		 * need moved to the new socket.
6968 		 */
6969 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6970 			event = sctp_skb2event(skb);
6971 			if (event->asoc == assoc) {
6972 				__skb_unlink(skb, &oldsp->pd_lobby);
6973 				__skb_queue_tail(queue, skb);
6974 				sctp_skb_set_owner_r_frag(skb, newsk);
6975 			}
6976 		}
6977 
6978 		/* Clear up any skbs waiting for the partial
6979 		 * delivery to finish.
6980 		 */
6981 		if (assoc->ulpq.pd_mode)
6982 			sctp_clear_pd(oldsk, NULL);
6983 
6984 	}
6985 
6986 	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
6987 		sctp_skb_set_owner_r_frag(skb, newsk);
6988 
6989 	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
6990 		sctp_skb_set_owner_r_frag(skb, newsk);
6991 
6992 	/* Set the type of socket to indicate that it is peeled off from the
6993 	 * original UDP-style socket or created with the accept() call on a
6994 	 * TCP-style socket..
6995 	 */
6996 	newsp->type = type;
6997 
6998 	/* Mark the new socket "in-use" by the user so that any packets
6999 	 * that may arrive on the association after we've moved it are
7000 	 * queued to the backlog.  This prevents a potential race between
7001 	 * backlog processing on the old socket and new-packet processing
7002 	 * on the new socket.
7003 	 *
7004 	 * The caller has just allocated newsk so we can guarantee that other
7005 	 * paths won't try to lock it and then oldsk.
7006 	 */
7007 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7008 	sctp_assoc_migrate(assoc, newsk);
7009 
7010 	/* If the association on the newsk is already closed before accept()
7011 	 * is called, set RCV_SHUTDOWN flag.
7012 	 */
7013 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
7014 		newsk->sk_shutdown |= RCV_SHUTDOWN;
7015 
7016 	newsk->sk_state = SCTP_SS_ESTABLISHED;
7017 	sctp_release_sock(newsk);
7018 }
7019 
7020 
7021 /* This proto struct describes the ULP interface for SCTP.  */
7022 struct proto sctp_prot = {
7023 	.name        =	"SCTP",
7024 	.owner       =	THIS_MODULE,
7025 	.close       =	sctp_close,
7026 	.connect     =	sctp_connect,
7027 	.disconnect  =	sctp_disconnect,
7028 	.accept      =	sctp_accept,
7029 	.ioctl       =	sctp_ioctl,
7030 	.init        =	sctp_init_sock,
7031 	.destroy     =	sctp_destroy_sock,
7032 	.shutdown    =	sctp_shutdown,
7033 	.setsockopt  =	sctp_setsockopt,
7034 	.getsockopt  =	sctp_getsockopt,
7035 	.sendmsg     =	sctp_sendmsg,
7036 	.recvmsg     =	sctp_recvmsg,
7037 	.bind        =	sctp_bind,
7038 	.backlog_rcv =	sctp_backlog_rcv,
7039 	.hash        =	sctp_hash,
7040 	.unhash      =	sctp_unhash,
7041 	.get_port    =	sctp_get_port,
7042 	.obj_size    =  sizeof(struct sctp_sock),
7043 	.sysctl_mem  =  sysctl_sctp_mem,
7044 	.sysctl_rmem =  sysctl_sctp_rmem,
7045 	.sysctl_wmem =  sysctl_sctp_wmem,
7046 	.memory_pressure = &sctp_memory_pressure,
7047 	.enter_memory_pressure = sctp_enter_memory_pressure,
7048 	.memory_allocated = &sctp_memory_allocated,
7049 	.sockets_allocated = &sctp_sockets_allocated,
7050 };
7051 
7052 #if IS_ENABLED(CONFIG_IPV6)
7053 
7054 struct proto sctpv6_prot = {
7055 	.name		= "SCTPv6",
7056 	.owner		= THIS_MODULE,
7057 	.close		= sctp_close,
7058 	.connect	= sctp_connect,
7059 	.disconnect	= sctp_disconnect,
7060 	.accept		= sctp_accept,
7061 	.ioctl		= sctp_ioctl,
7062 	.init		= sctp_init_sock,
7063 	.destroy	= sctp_destroy_sock,
7064 	.shutdown	= sctp_shutdown,
7065 	.setsockopt	= sctp_setsockopt,
7066 	.getsockopt	= sctp_getsockopt,
7067 	.sendmsg	= sctp_sendmsg,
7068 	.recvmsg	= sctp_recvmsg,
7069 	.bind		= sctp_bind,
7070 	.backlog_rcv	= sctp_backlog_rcv,
7071 	.hash		= sctp_hash,
7072 	.unhash		= sctp_unhash,
7073 	.get_port	= sctp_get_port,
7074 	.obj_size	= sizeof(struct sctp6_sock),
7075 	.sysctl_mem	= sysctl_sctp_mem,
7076 	.sysctl_rmem	= sysctl_sctp_rmem,
7077 	.sysctl_wmem	= sysctl_sctp_wmem,
7078 	.memory_pressure = &sctp_memory_pressure,
7079 	.enter_memory_pressure = sctp_enter_memory_pressure,
7080 	.memory_allocated = &sctp_memory_allocated,
7081 	.sockets_allocated = &sctp_sockets_allocated,
7082 };
7083 #endif /* IS_ENABLED(CONFIG_IPV6) */
7084