xref: /linux/net/sctp/socket.c (revision a5d9265e017f081f0dc133c0e2f45103d027b874)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, see
32  * <http://www.gnu.org/licenses/>.
33  *
34  * Please send any bug reports or fixes you make to the
35  * email address(es):
36  *    lksctp developers <linux-sctp@vger.kernel.org>
37  *
38  * Written or modified by:
39  *    La Monte H.P. Yarroll <piggy@acm.org>
40  *    Narasimha Budihal     <narsi@refcode.org>
41  *    Karl Knutson          <karl@athena.chicago.il.us>
42  *    Jon Grimm             <jgrimm@us.ibm.com>
43  *    Xingang Guo           <xingang.guo@intel.com>
44  *    Daisy Chang           <daisyc@us.ibm.com>
45  *    Sridhar Samudrala     <samudrala@us.ibm.com>
46  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
47  *    Ardelle Fan	    <ardelle.fan@intel.com>
48  *    Ryan Layer	    <rmlayer@us.ibm.com>
49  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
50  *    Kevin Gao             <kevin.gao@intel.com>
51  */
52 
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54 
55 #include <crypto/hash.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/wait.h>
59 #include <linux/time.h>
60 #include <linux/sched/signal.h>
61 #include <linux/ip.h>
62 #include <linux/capability.h>
63 #include <linux/fcntl.h>
64 #include <linux/poll.h>
65 #include <linux/init.h>
66 #include <linux/slab.h>
67 #include <linux/file.h>
68 #include <linux/compat.h>
69 #include <linux/rhashtable.h>
70 
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
76 #include <net/busy_poll.h>
77 
78 #include <linux/socket.h> /* for sa_family_t */
79 #include <linux/export.h>
80 #include <net/sock.h>
81 #include <net/sctp/sctp.h>
82 #include <net/sctp/sm.h>
83 #include <net/sctp/stream_sched.h>
84 
85 /* Forward declarations for internal helper functions. */
86 static bool sctp_writeable(struct sock *sk);
87 static void sctp_wfree(struct sk_buff *skb);
88 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
89 				size_t msg_len);
90 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
91 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
92 static int sctp_wait_for_accept(struct sock *sk, long timeo);
93 static void sctp_wait_for_close(struct sock *sk, long timeo);
94 static void sctp_destruct_sock(struct sock *sk);
95 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
96 					union sctp_addr *addr, int len);
97 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
98 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
99 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf(struct sctp_association *asoc,
102 			    struct sctp_chunk *chunk);
103 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
104 static int sctp_autobind(struct sock *sk);
105 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
106 			      struct sctp_association *assoc,
107 			      enum sctp_socket_type type);
108 
109 static unsigned long sctp_memory_pressure;
110 static atomic_long_t sctp_memory_allocated;
111 struct percpu_counter sctp_sockets_allocated;
112 
113 static void sctp_enter_memory_pressure(struct sock *sk)
114 {
115 	sctp_memory_pressure = 1;
116 }
117 
118 
119 /* Get the sndbuf space available at the time on the association.  */
120 static inline int sctp_wspace(struct sctp_association *asoc)
121 {
122 	struct sock *sk = asoc->base.sk;
123 
124 	return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used
125 				       : sk_stream_wspace(sk);
126 }
127 
128 /* Increment the used sndbuf space count of the corresponding association by
129  * the size of the outgoing data chunk.
130  * Also, set the skb destructor for sndbuf accounting later.
131  *
132  * Since it is always 1-1 between chunk and skb, and also a new skb is always
133  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
134  * destructor in the data chunk skb for the purpose of the sndbuf space
135  * tracking.
136  */
137 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
138 {
139 	struct sctp_association *asoc = chunk->asoc;
140 	struct sock *sk = asoc->base.sk;
141 
142 	/* The sndbuf space is tracked per association.  */
143 	sctp_association_hold(asoc);
144 
145 	if (chunk->shkey)
146 		sctp_auth_shkey_hold(chunk->shkey);
147 
148 	skb_set_owner_w(chunk->skb, sk);
149 
150 	chunk->skb->destructor = sctp_wfree;
151 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
152 	skb_shinfo(chunk->skb)->destructor_arg = chunk;
153 
154 	refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
155 	asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk);
156 	sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk);
157 	sk_mem_charge(sk, chunk->skb->truesize);
158 }
159 
160 static void sctp_clear_owner_w(struct sctp_chunk *chunk)
161 {
162 	skb_orphan(chunk->skb);
163 }
164 
165 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
166 				       void (*cb)(struct sctp_chunk *))
167 
168 {
169 	struct sctp_outq *q = &asoc->outqueue;
170 	struct sctp_transport *t;
171 	struct sctp_chunk *chunk;
172 
173 	list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
174 		list_for_each_entry(chunk, &t->transmitted, transmitted_list)
175 			cb(chunk);
176 
177 	list_for_each_entry(chunk, &q->retransmit, transmitted_list)
178 		cb(chunk);
179 
180 	list_for_each_entry(chunk, &q->sacked, transmitted_list)
181 		cb(chunk);
182 
183 	list_for_each_entry(chunk, &q->abandoned, transmitted_list)
184 		cb(chunk);
185 
186 	list_for_each_entry(chunk, &q->out_chunk_list, list)
187 		cb(chunk);
188 }
189 
190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
191 				 void (*cb)(struct sk_buff *, struct sock *))
192 
193 {
194 	struct sk_buff *skb, *tmp;
195 
196 	sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
197 		cb(skb, sk);
198 
199 	sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
200 		cb(skb, sk);
201 
202 	sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
203 		cb(skb, sk);
204 }
205 
206 /* Verify that this is a valid address. */
207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
208 				   int len)
209 {
210 	struct sctp_af *af;
211 
212 	/* Verify basic sockaddr. */
213 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
214 	if (!af)
215 		return -EINVAL;
216 
217 	/* Is this a valid SCTP address?  */
218 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
219 		return -EINVAL;
220 
221 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
222 		return -EINVAL;
223 
224 	return 0;
225 }
226 
227 /* Look up the association by its id.  If this is not a UDP-style
228  * socket, the ID field is always ignored.
229  */
230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
231 {
232 	struct sctp_association *asoc = NULL;
233 
234 	/* If this is not a UDP-style socket, assoc id should be ignored. */
235 	if (!sctp_style(sk, UDP)) {
236 		/* Return NULL if the socket state is not ESTABLISHED. It
237 		 * could be a TCP-style listening socket or a socket which
238 		 * hasn't yet called connect() to establish an association.
239 		 */
240 		if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
241 			return NULL;
242 
243 		/* Get the first and the only association from the list. */
244 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
245 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
246 					  struct sctp_association, asocs);
247 		return asoc;
248 	}
249 
250 	/* Otherwise this is a UDP-style socket. */
251 	if (id <= SCTP_ALL_ASSOC)
252 		return NULL;
253 
254 	spin_lock_bh(&sctp_assocs_id_lock);
255 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
256 	if (asoc && (asoc->base.sk != sk || asoc->base.dead))
257 		asoc = NULL;
258 	spin_unlock_bh(&sctp_assocs_id_lock);
259 
260 	return asoc;
261 }
262 
263 /* Look up the transport from an address and an assoc id. If both address and
264  * id are specified, the associations matching the address and the id should be
265  * the same.
266  */
267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
268 					      struct sockaddr_storage *addr,
269 					      sctp_assoc_t id)
270 {
271 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
272 	struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
273 	union sctp_addr *laddr = (union sctp_addr *)addr;
274 	struct sctp_transport *transport;
275 
276 	if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
277 		return NULL;
278 
279 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
280 					       laddr,
281 					       &transport);
282 
283 	if (!addr_asoc)
284 		return NULL;
285 
286 	id_asoc = sctp_id2assoc(sk, id);
287 	if (id_asoc && (id_asoc != addr_asoc))
288 		return NULL;
289 
290 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
291 						(union sctp_addr *)addr);
292 
293 	return transport;
294 }
295 
296 /* API 3.1.2 bind() - UDP Style Syntax
297  * The syntax of bind() is,
298  *
299  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
300  *
301  *   sd      - the socket descriptor returned by socket().
302  *   addr    - the address structure (struct sockaddr_in or struct
303  *             sockaddr_in6 [RFC 2553]),
304  *   addr_len - the size of the address structure.
305  */
306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
307 {
308 	int retval = 0;
309 
310 	lock_sock(sk);
311 
312 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
313 		 addr, addr_len);
314 
315 	/* Disallow binding twice. */
316 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
317 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
318 				      addr_len);
319 	else
320 		retval = -EINVAL;
321 
322 	release_sock(sk);
323 
324 	return retval;
325 }
326 
327 static long sctp_get_port_local(struct sock *, union sctp_addr *);
328 
329 /* Verify this is a valid sockaddr. */
330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
331 					union sctp_addr *addr, int len)
332 {
333 	struct sctp_af *af;
334 
335 	/* Check minimum size.  */
336 	if (len < sizeof (struct sockaddr))
337 		return NULL;
338 
339 	if (!opt->pf->af_supported(addr->sa.sa_family, opt))
340 		return NULL;
341 
342 	if (addr->sa.sa_family == AF_INET6) {
343 		if (len < SIN6_LEN_RFC2133)
344 			return NULL;
345 		/* V4 mapped address are really of AF_INET family */
346 		if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
347 		    !opt->pf->af_supported(AF_INET, opt))
348 			return NULL;
349 	}
350 
351 	/* If we get this far, af is valid. */
352 	af = sctp_get_af_specific(addr->sa.sa_family);
353 
354 	if (len < af->sockaddr_len)
355 		return NULL;
356 
357 	return af;
358 }
359 
360 /* Bind a local address either to an endpoint or to an association.  */
361 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
362 {
363 	struct net *net = sock_net(sk);
364 	struct sctp_sock *sp = sctp_sk(sk);
365 	struct sctp_endpoint *ep = sp->ep;
366 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
367 	struct sctp_af *af;
368 	unsigned short snum;
369 	int ret = 0;
370 
371 	/* Common sockaddr verification. */
372 	af = sctp_sockaddr_af(sp, addr, len);
373 	if (!af) {
374 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
375 			 __func__, sk, addr, len);
376 		return -EINVAL;
377 	}
378 
379 	snum = ntohs(addr->v4.sin_port);
380 
381 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
382 		 __func__, sk, &addr->sa, bp->port, snum, len);
383 
384 	/* PF specific bind() address verification. */
385 	if (!sp->pf->bind_verify(sp, addr))
386 		return -EADDRNOTAVAIL;
387 
388 	/* We must either be unbound, or bind to the same port.
389 	 * It's OK to allow 0 ports if we are already bound.
390 	 * We'll just inhert an already bound port in this case
391 	 */
392 	if (bp->port) {
393 		if (!snum)
394 			snum = bp->port;
395 		else if (snum != bp->port) {
396 			pr_debug("%s: new port %d doesn't match existing port "
397 				 "%d\n", __func__, snum, bp->port);
398 			return -EINVAL;
399 		}
400 	}
401 
402 	if (snum && snum < inet_prot_sock(net) &&
403 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
404 		return -EACCES;
405 
406 	/* See if the address matches any of the addresses we may have
407 	 * already bound before checking against other endpoints.
408 	 */
409 	if (sctp_bind_addr_match(bp, addr, sp))
410 		return -EINVAL;
411 
412 	/* Make sure we are allowed to bind here.
413 	 * The function sctp_get_port_local() does duplicate address
414 	 * detection.
415 	 */
416 	addr->v4.sin_port = htons(snum);
417 	if ((ret = sctp_get_port_local(sk, addr))) {
418 		return -EADDRINUSE;
419 	}
420 
421 	/* Refresh ephemeral port.  */
422 	if (!bp->port)
423 		bp->port = inet_sk(sk)->inet_num;
424 
425 	/* Add the address to the bind address list.
426 	 * Use GFP_ATOMIC since BHs will be disabled.
427 	 */
428 	ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
429 				 SCTP_ADDR_SRC, GFP_ATOMIC);
430 
431 	/* Copy back into socket for getsockname() use. */
432 	if (!ret) {
433 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
434 		sp->pf->to_sk_saddr(addr, sk);
435 	}
436 
437 	return ret;
438 }
439 
440  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
441  *
442  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
443  * at any one time.  If a sender, after sending an ASCONF chunk, decides
444  * it needs to transfer another ASCONF Chunk, it MUST wait until the
445  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
446  * subsequent ASCONF. Note this restriction binds each side, so at any
447  * time two ASCONF may be in-transit on any given association (one sent
448  * from each endpoint).
449  */
450 static int sctp_send_asconf(struct sctp_association *asoc,
451 			    struct sctp_chunk *chunk)
452 {
453 	struct net 	*net = sock_net(asoc->base.sk);
454 	int		retval = 0;
455 
456 	/* If there is an outstanding ASCONF chunk, queue it for later
457 	 * transmission.
458 	 */
459 	if (asoc->addip_last_asconf) {
460 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
461 		goto out;
462 	}
463 
464 	/* Hold the chunk until an ASCONF_ACK is received. */
465 	sctp_chunk_hold(chunk);
466 	retval = sctp_primitive_ASCONF(net, asoc, chunk);
467 	if (retval)
468 		sctp_chunk_free(chunk);
469 	else
470 		asoc->addip_last_asconf = chunk;
471 
472 out:
473 	return retval;
474 }
475 
476 /* Add a list of addresses as bind addresses to local endpoint or
477  * association.
478  *
479  * Basically run through each address specified in the addrs/addrcnt
480  * array/length pair, determine if it is IPv6 or IPv4 and call
481  * sctp_do_bind() on it.
482  *
483  * If any of them fails, then the operation will be reversed and the
484  * ones that were added will be removed.
485  *
486  * Only sctp_setsockopt_bindx() is supposed to call this function.
487  */
488 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
489 {
490 	int cnt;
491 	int retval = 0;
492 	void *addr_buf;
493 	struct sockaddr *sa_addr;
494 	struct sctp_af *af;
495 
496 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
497 		 addrs, addrcnt);
498 
499 	addr_buf = addrs;
500 	for (cnt = 0; cnt < addrcnt; cnt++) {
501 		/* The list may contain either IPv4 or IPv6 address;
502 		 * determine the address length for walking thru the list.
503 		 */
504 		sa_addr = addr_buf;
505 		af = sctp_get_af_specific(sa_addr->sa_family);
506 		if (!af) {
507 			retval = -EINVAL;
508 			goto err_bindx_add;
509 		}
510 
511 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
512 				      af->sockaddr_len);
513 
514 		addr_buf += af->sockaddr_len;
515 
516 err_bindx_add:
517 		if (retval < 0) {
518 			/* Failed. Cleanup the ones that have been added */
519 			if (cnt > 0)
520 				sctp_bindx_rem(sk, addrs, cnt);
521 			return retval;
522 		}
523 	}
524 
525 	return retval;
526 }
527 
528 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
529  * associations that are part of the endpoint indicating that a list of local
530  * addresses are added to the endpoint.
531  *
532  * If any of the addresses is already in the bind address list of the
533  * association, we do not send the chunk for that association.  But it will not
534  * affect other associations.
535  *
536  * Only sctp_setsockopt_bindx() is supposed to call this function.
537  */
538 static int sctp_send_asconf_add_ip(struct sock		*sk,
539 				   struct sockaddr	*addrs,
540 				   int 			addrcnt)
541 {
542 	struct net *net = sock_net(sk);
543 	struct sctp_sock		*sp;
544 	struct sctp_endpoint		*ep;
545 	struct sctp_association		*asoc;
546 	struct sctp_bind_addr		*bp;
547 	struct sctp_chunk		*chunk;
548 	struct sctp_sockaddr_entry	*laddr;
549 	union sctp_addr			*addr;
550 	union sctp_addr			saveaddr;
551 	void				*addr_buf;
552 	struct sctp_af			*af;
553 	struct list_head		*p;
554 	int 				i;
555 	int 				retval = 0;
556 
557 	if (!net->sctp.addip_enable)
558 		return retval;
559 
560 	sp = sctp_sk(sk);
561 	ep = sp->ep;
562 
563 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
564 		 __func__, sk, addrs, addrcnt);
565 
566 	list_for_each_entry(asoc, &ep->asocs, asocs) {
567 		if (!asoc->peer.asconf_capable)
568 			continue;
569 
570 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
571 			continue;
572 
573 		if (!sctp_state(asoc, ESTABLISHED))
574 			continue;
575 
576 		/* Check if any address in the packed array of addresses is
577 		 * in the bind address list of the association. If so,
578 		 * do not send the asconf chunk to its peer, but continue with
579 		 * other associations.
580 		 */
581 		addr_buf = addrs;
582 		for (i = 0; i < addrcnt; i++) {
583 			addr = addr_buf;
584 			af = sctp_get_af_specific(addr->v4.sin_family);
585 			if (!af) {
586 				retval = -EINVAL;
587 				goto out;
588 			}
589 
590 			if (sctp_assoc_lookup_laddr(asoc, addr))
591 				break;
592 
593 			addr_buf += af->sockaddr_len;
594 		}
595 		if (i < addrcnt)
596 			continue;
597 
598 		/* Use the first valid address in bind addr list of
599 		 * association as Address Parameter of ASCONF CHUNK.
600 		 */
601 		bp = &asoc->base.bind_addr;
602 		p = bp->address_list.next;
603 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
604 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
605 						   addrcnt, SCTP_PARAM_ADD_IP);
606 		if (!chunk) {
607 			retval = -ENOMEM;
608 			goto out;
609 		}
610 
611 		/* Add the new addresses to the bind address list with
612 		 * use_as_src set to 0.
613 		 */
614 		addr_buf = addrs;
615 		for (i = 0; i < addrcnt; i++) {
616 			addr = addr_buf;
617 			af = sctp_get_af_specific(addr->v4.sin_family);
618 			memcpy(&saveaddr, addr, af->sockaddr_len);
619 			retval = sctp_add_bind_addr(bp, &saveaddr,
620 						    sizeof(saveaddr),
621 						    SCTP_ADDR_NEW, GFP_ATOMIC);
622 			addr_buf += af->sockaddr_len;
623 		}
624 		if (asoc->src_out_of_asoc_ok) {
625 			struct sctp_transport *trans;
626 
627 			list_for_each_entry(trans,
628 			    &asoc->peer.transport_addr_list, transports) {
629 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
630 				    2*asoc->pathmtu, 4380));
631 				trans->ssthresh = asoc->peer.i.a_rwnd;
632 				trans->rto = asoc->rto_initial;
633 				sctp_max_rto(asoc, trans);
634 				trans->rtt = trans->srtt = trans->rttvar = 0;
635 				/* Clear the source and route cache */
636 				sctp_transport_route(trans, NULL,
637 						     sctp_sk(asoc->base.sk));
638 			}
639 		}
640 		retval = sctp_send_asconf(asoc, chunk);
641 	}
642 
643 out:
644 	return retval;
645 }
646 
647 /* Remove a list of addresses from bind addresses list.  Do not remove the
648  * last address.
649  *
650  * Basically run through each address specified in the addrs/addrcnt
651  * array/length pair, determine if it is IPv6 or IPv4 and call
652  * sctp_del_bind() on it.
653  *
654  * If any of them fails, then the operation will be reversed and the
655  * ones that were removed will be added back.
656  *
657  * At least one address has to be left; if only one address is
658  * available, the operation will return -EBUSY.
659  *
660  * Only sctp_setsockopt_bindx() is supposed to call this function.
661  */
662 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
663 {
664 	struct sctp_sock *sp = sctp_sk(sk);
665 	struct sctp_endpoint *ep = sp->ep;
666 	int cnt;
667 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
668 	int retval = 0;
669 	void *addr_buf;
670 	union sctp_addr *sa_addr;
671 	struct sctp_af *af;
672 
673 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
674 		 __func__, sk, addrs, addrcnt);
675 
676 	addr_buf = addrs;
677 	for (cnt = 0; cnt < addrcnt; cnt++) {
678 		/* If the bind address list is empty or if there is only one
679 		 * bind address, there is nothing more to be removed (we need
680 		 * at least one address here).
681 		 */
682 		if (list_empty(&bp->address_list) ||
683 		    (sctp_list_single_entry(&bp->address_list))) {
684 			retval = -EBUSY;
685 			goto err_bindx_rem;
686 		}
687 
688 		sa_addr = addr_buf;
689 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
690 		if (!af) {
691 			retval = -EINVAL;
692 			goto err_bindx_rem;
693 		}
694 
695 		if (!af->addr_valid(sa_addr, sp, NULL)) {
696 			retval = -EADDRNOTAVAIL;
697 			goto err_bindx_rem;
698 		}
699 
700 		if (sa_addr->v4.sin_port &&
701 		    sa_addr->v4.sin_port != htons(bp->port)) {
702 			retval = -EINVAL;
703 			goto err_bindx_rem;
704 		}
705 
706 		if (!sa_addr->v4.sin_port)
707 			sa_addr->v4.sin_port = htons(bp->port);
708 
709 		/* FIXME - There is probably a need to check if sk->sk_saddr and
710 		 * sk->sk_rcv_addr are currently set to one of the addresses to
711 		 * be removed. This is something which needs to be looked into
712 		 * when we are fixing the outstanding issues with multi-homing
713 		 * socket routing and failover schemes. Refer to comments in
714 		 * sctp_do_bind(). -daisy
715 		 */
716 		retval = sctp_del_bind_addr(bp, sa_addr);
717 
718 		addr_buf += af->sockaddr_len;
719 err_bindx_rem:
720 		if (retval < 0) {
721 			/* Failed. Add the ones that has been removed back */
722 			if (cnt > 0)
723 				sctp_bindx_add(sk, addrs, cnt);
724 			return retval;
725 		}
726 	}
727 
728 	return retval;
729 }
730 
731 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
732  * the associations that are part of the endpoint indicating that a list of
733  * local addresses are removed from the endpoint.
734  *
735  * If any of the addresses is already in the bind address list of the
736  * association, we do not send the chunk for that association.  But it will not
737  * affect other associations.
738  *
739  * Only sctp_setsockopt_bindx() is supposed to call this function.
740  */
741 static int sctp_send_asconf_del_ip(struct sock		*sk,
742 				   struct sockaddr	*addrs,
743 				   int			addrcnt)
744 {
745 	struct net *net = sock_net(sk);
746 	struct sctp_sock	*sp;
747 	struct sctp_endpoint	*ep;
748 	struct sctp_association	*asoc;
749 	struct sctp_transport	*transport;
750 	struct sctp_bind_addr	*bp;
751 	struct sctp_chunk	*chunk;
752 	union sctp_addr		*laddr;
753 	void			*addr_buf;
754 	struct sctp_af		*af;
755 	struct sctp_sockaddr_entry *saddr;
756 	int 			i;
757 	int 			retval = 0;
758 	int			stored = 0;
759 
760 	chunk = NULL;
761 	if (!net->sctp.addip_enable)
762 		return retval;
763 
764 	sp = sctp_sk(sk);
765 	ep = sp->ep;
766 
767 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
768 		 __func__, sk, addrs, addrcnt);
769 
770 	list_for_each_entry(asoc, &ep->asocs, asocs) {
771 
772 		if (!asoc->peer.asconf_capable)
773 			continue;
774 
775 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
776 			continue;
777 
778 		if (!sctp_state(asoc, ESTABLISHED))
779 			continue;
780 
781 		/* Check if any address in the packed array of addresses is
782 		 * not present in the bind address list of the association.
783 		 * If so, do not send the asconf chunk to its peer, but
784 		 * continue with other associations.
785 		 */
786 		addr_buf = addrs;
787 		for (i = 0; i < addrcnt; i++) {
788 			laddr = addr_buf;
789 			af = sctp_get_af_specific(laddr->v4.sin_family);
790 			if (!af) {
791 				retval = -EINVAL;
792 				goto out;
793 			}
794 
795 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
796 				break;
797 
798 			addr_buf += af->sockaddr_len;
799 		}
800 		if (i < addrcnt)
801 			continue;
802 
803 		/* Find one address in the association's bind address list
804 		 * that is not in the packed array of addresses. This is to
805 		 * make sure that we do not delete all the addresses in the
806 		 * association.
807 		 */
808 		bp = &asoc->base.bind_addr;
809 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
810 					       addrcnt, sp);
811 		if ((laddr == NULL) && (addrcnt == 1)) {
812 			if (asoc->asconf_addr_del_pending)
813 				continue;
814 			asoc->asconf_addr_del_pending =
815 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
816 			if (asoc->asconf_addr_del_pending == NULL) {
817 				retval = -ENOMEM;
818 				goto out;
819 			}
820 			asoc->asconf_addr_del_pending->sa.sa_family =
821 				    addrs->sa_family;
822 			asoc->asconf_addr_del_pending->v4.sin_port =
823 				    htons(bp->port);
824 			if (addrs->sa_family == AF_INET) {
825 				struct sockaddr_in *sin;
826 
827 				sin = (struct sockaddr_in *)addrs;
828 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
829 			} else if (addrs->sa_family == AF_INET6) {
830 				struct sockaddr_in6 *sin6;
831 
832 				sin6 = (struct sockaddr_in6 *)addrs;
833 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
834 			}
835 
836 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
837 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
838 				 asoc->asconf_addr_del_pending);
839 
840 			asoc->src_out_of_asoc_ok = 1;
841 			stored = 1;
842 			goto skip_mkasconf;
843 		}
844 
845 		if (laddr == NULL)
846 			return -EINVAL;
847 
848 		/* We do not need RCU protection throughout this loop
849 		 * because this is done under a socket lock from the
850 		 * setsockopt call.
851 		 */
852 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
853 						   SCTP_PARAM_DEL_IP);
854 		if (!chunk) {
855 			retval = -ENOMEM;
856 			goto out;
857 		}
858 
859 skip_mkasconf:
860 		/* Reset use_as_src flag for the addresses in the bind address
861 		 * list that are to be deleted.
862 		 */
863 		addr_buf = addrs;
864 		for (i = 0; i < addrcnt; i++) {
865 			laddr = addr_buf;
866 			af = sctp_get_af_specific(laddr->v4.sin_family);
867 			list_for_each_entry(saddr, &bp->address_list, list) {
868 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
869 					saddr->state = SCTP_ADDR_DEL;
870 			}
871 			addr_buf += af->sockaddr_len;
872 		}
873 
874 		/* Update the route and saddr entries for all the transports
875 		 * as some of the addresses in the bind address list are
876 		 * about to be deleted and cannot be used as source addresses.
877 		 */
878 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
879 					transports) {
880 			sctp_transport_route(transport, NULL,
881 					     sctp_sk(asoc->base.sk));
882 		}
883 
884 		if (stored)
885 			/* We don't need to transmit ASCONF */
886 			continue;
887 		retval = sctp_send_asconf(asoc, chunk);
888 	}
889 out:
890 	return retval;
891 }
892 
893 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
894 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
895 {
896 	struct sock *sk = sctp_opt2sk(sp);
897 	union sctp_addr *addr;
898 	struct sctp_af *af;
899 
900 	/* It is safe to write port space in caller. */
901 	addr = &addrw->a;
902 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
903 	af = sctp_get_af_specific(addr->sa.sa_family);
904 	if (!af)
905 		return -EINVAL;
906 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
907 		return -EINVAL;
908 
909 	if (addrw->state == SCTP_ADDR_NEW)
910 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
911 	else
912 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
913 }
914 
915 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
916  *
917  * API 8.1
918  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
919  *                int flags);
920  *
921  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
922  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
923  * or IPv6 addresses.
924  *
925  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
926  * Section 3.1.2 for this usage.
927  *
928  * addrs is a pointer to an array of one or more socket addresses. Each
929  * address is contained in its appropriate structure (i.e. struct
930  * sockaddr_in or struct sockaddr_in6) the family of the address type
931  * must be used to distinguish the address length (note that this
932  * representation is termed a "packed array" of addresses). The caller
933  * specifies the number of addresses in the array with addrcnt.
934  *
935  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
936  * -1, and sets errno to the appropriate error code.
937  *
938  * For SCTP, the port given in each socket address must be the same, or
939  * sctp_bindx() will fail, setting errno to EINVAL.
940  *
941  * The flags parameter is formed from the bitwise OR of zero or more of
942  * the following currently defined flags:
943  *
944  * SCTP_BINDX_ADD_ADDR
945  *
946  * SCTP_BINDX_REM_ADDR
947  *
948  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
949  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
950  * addresses from the association. The two flags are mutually exclusive;
951  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
952  * not remove all addresses from an association; sctp_bindx() will
953  * reject such an attempt with EINVAL.
954  *
955  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
956  * additional addresses with an endpoint after calling bind().  Or use
957  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
958  * socket is associated with so that no new association accepted will be
959  * associated with those addresses. If the endpoint supports dynamic
960  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
961  * endpoint to send the appropriate message to the peer to change the
962  * peers address lists.
963  *
964  * Adding and removing addresses from a connected association is
965  * optional functionality. Implementations that do not support this
966  * functionality should return EOPNOTSUPP.
967  *
968  * Basically do nothing but copying the addresses from user to kernel
969  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
970  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
971  * from userspace.
972  *
973  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
974  * it.
975  *
976  * sk        The sk of the socket
977  * addrs     The pointer to the addresses in user land
978  * addrssize Size of the addrs buffer
979  * op        Operation to perform (add or remove, see the flags of
980  *           sctp_bindx)
981  *
982  * Returns 0 if ok, <0 errno code on error.
983  */
984 static int sctp_setsockopt_bindx(struct sock *sk,
985 				 struct sockaddr __user *addrs,
986 				 int addrs_size, int op)
987 {
988 	struct sockaddr *kaddrs;
989 	int err;
990 	int addrcnt = 0;
991 	int walk_size = 0;
992 	struct sockaddr *sa_addr;
993 	void *addr_buf;
994 	struct sctp_af *af;
995 
996 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
997 		 __func__, sk, addrs, addrs_size, op);
998 
999 	if (unlikely(addrs_size <= 0))
1000 		return -EINVAL;
1001 
1002 	kaddrs = vmemdup_user(addrs, addrs_size);
1003 	if (unlikely(IS_ERR(kaddrs)))
1004 		return PTR_ERR(kaddrs);
1005 
1006 	/* Walk through the addrs buffer and count the number of addresses. */
1007 	addr_buf = kaddrs;
1008 	while (walk_size < addrs_size) {
1009 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1010 			kvfree(kaddrs);
1011 			return -EINVAL;
1012 		}
1013 
1014 		sa_addr = addr_buf;
1015 		af = sctp_get_af_specific(sa_addr->sa_family);
1016 
1017 		/* If the address family is not supported or if this address
1018 		 * causes the address buffer to overflow return EINVAL.
1019 		 */
1020 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1021 			kvfree(kaddrs);
1022 			return -EINVAL;
1023 		}
1024 		addrcnt++;
1025 		addr_buf += af->sockaddr_len;
1026 		walk_size += af->sockaddr_len;
1027 	}
1028 
1029 	/* Do the work. */
1030 	switch (op) {
1031 	case SCTP_BINDX_ADD_ADDR:
1032 		/* Allow security module to validate bindx addresses. */
1033 		err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
1034 						 (struct sockaddr *)kaddrs,
1035 						 addrs_size);
1036 		if (err)
1037 			goto out;
1038 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1039 		if (err)
1040 			goto out;
1041 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1042 		break;
1043 
1044 	case SCTP_BINDX_REM_ADDR:
1045 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1046 		if (err)
1047 			goto out;
1048 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1049 		break;
1050 
1051 	default:
1052 		err = -EINVAL;
1053 		break;
1054 	}
1055 
1056 out:
1057 	kvfree(kaddrs);
1058 
1059 	return err;
1060 }
1061 
1062 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1063  *
1064  * Common routine for handling connect() and sctp_connectx().
1065  * Connect will come in with just a single address.
1066  */
1067 static int __sctp_connect(struct sock *sk,
1068 			  struct sockaddr *kaddrs,
1069 			  int addrs_size, int flags,
1070 			  sctp_assoc_t *assoc_id)
1071 {
1072 	struct net *net = sock_net(sk);
1073 	struct sctp_sock *sp;
1074 	struct sctp_endpoint *ep;
1075 	struct sctp_association *asoc = NULL;
1076 	struct sctp_association *asoc2;
1077 	struct sctp_transport *transport;
1078 	union sctp_addr to;
1079 	enum sctp_scope scope;
1080 	long timeo;
1081 	int err = 0;
1082 	int addrcnt = 0;
1083 	int walk_size = 0;
1084 	union sctp_addr *sa_addr = NULL;
1085 	void *addr_buf;
1086 	unsigned short port;
1087 
1088 	sp = sctp_sk(sk);
1089 	ep = sp->ep;
1090 
1091 	/* connect() cannot be done on a socket that is already in ESTABLISHED
1092 	 * state - UDP-style peeled off socket or a TCP-style socket that
1093 	 * is already connected.
1094 	 * It cannot be done even on a TCP-style listening socket.
1095 	 */
1096 	if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1097 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1098 		err = -EISCONN;
1099 		goto out_free;
1100 	}
1101 
1102 	/* Walk through the addrs buffer and count the number of addresses. */
1103 	addr_buf = kaddrs;
1104 	while (walk_size < addrs_size) {
1105 		struct sctp_af *af;
1106 
1107 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1108 			err = -EINVAL;
1109 			goto out_free;
1110 		}
1111 
1112 		sa_addr = addr_buf;
1113 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1114 
1115 		/* If the address family is not supported or if this address
1116 		 * causes the address buffer to overflow return EINVAL.
1117 		 */
1118 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1119 			err = -EINVAL;
1120 			goto out_free;
1121 		}
1122 
1123 		port = ntohs(sa_addr->v4.sin_port);
1124 
1125 		/* Save current address so we can work with it */
1126 		memcpy(&to, sa_addr, af->sockaddr_len);
1127 
1128 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1129 		if (err)
1130 			goto out_free;
1131 
1132 		/* Make sure the destination port is correctly set
1133 		 * in all addresses.
1134 		 */
1135 		if (asoc && asoc->peer.port && asoc->peer.port != port) {
1136 			err = -EINVAL;
1137 			goto out_free;
1138 		}
1139 
1140 		/* Check if there already is a matching association on the
1141 		 * endpoint (other than the one created here).
1142 		 */
1143 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1144 		if (asoc2 && asoc2 != asoc) {
1145 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1146 				err = -EISCONN;
1147 			else
1148 				err = -EALREADY;
1149 			goto out_free;
1150 		}
1151 
1152 		/* If we could not find a matching association on the endpoint,
1153 		 * make sure that there is no peeled-off association matching
1154 		 * the peer address even on another socket.
1155 		 */
1156 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1157 			err = -EADDRNOTAVAIL;
1158 			goto out_free;
1159 		}
1160 
1161 		if (!asoc) {
1162 			/* If a bind() or sctp_bindx() is not called prior to
1163 			 * an sctp_connectx() call, the system picks an
1164 			 * ephemeral port and will choose an address set
1165 			 * equivalent to binding with a wildcard address.
1166 			 */
1167 			if (!ep->base.bind_addr.port) {
1168 				if (sctp_autobind(sk)) {
1169 					err = -EAGAIN;
1170 					goto out_free;
1171 				}
1172 			} else {
1173 				/*
1174 				 * If an unprivileged user inherits a 1-many
1175 				 * style socket with open associations on a
1176 				 * privileged port, it MAY be permitted to
1177 				 * accept new associations, but it SHOULD NOT
1178 				 * be permitted to open new associations.
1179 				 */
1180 				if (ep->base.bind_addr.port <
1181 				    inet_prot_sock(net) &&
1182 				    !ns_capable(net->user_ns,
1183 				    CAP_NET_BIND_SERVICE)) {
1184 					err = -EACCES;
1185 					goto out_free;
1186 				}
1187 			}
1188 
1189 			scope = sctp_scope(&to);
1190 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1191 			if (!asoc) {
1192 				err = -ENOMEM;
1193 				goto out_free;
1194 			}
1195 
1196 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1197 							      GFP_KERNEL);
1198 			if (err < 0) {
1199 				goto out_free;
1200 			}
1201 
1202 		}
1203 
1204 		/* Prime the peer's transport structures.  */
1205 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1206 						SCTP_UNKNOWN);
1207 		if (!transport) {
1208 			err = -ENOMEM;
1209 			goto out_free;
1210 		}
1211 
1212 		addrcnt++;
1213 		addr_buf += af->sockaddr_len;
1214 		walk_size += af->sockaddr_len;
1215 	}
1216 
1217 	/* In case the user of sctp_connectx() wants an association
1218 	 * id back, assign one now.
1219 	 */
1220 	if (assoc_id) {
1221 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1222 		if (err < 0)
1223 			goto out_free;
1224 	}
1225 
1226 	err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1227 	if (err < 0) {
1228 		goto out_free;
1229 	}
1230 
1231 	/* Initialize sk's dport and daddr for getpeername() */
1232 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1233 	sp->pf->to_sk_daddr(sa_addr, sk);
1234 	sk->sk_err = 0;
1235 
1236 	timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1237 
1238 	if (assoc_id)
1239 		*assoc_id = asoc->assoc_id;
1240 
1241 	err = sctp_wait_for_connect(asoc, &timeo);
1242 	/* Note: the asoc may be freed after the return of
1243 	 * sctp_wait_for_connect.
1244 	 */
1245 
1246 	/* Don't free association on exit. */
1247 	asoc = NULL;
1248 
1249 out_free:
1250 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1251 		 __func__, asoc, kaddrs, err);
1252 
1253 	if (asoc) {
1254 		/* sctp_primitive_ASSOCIATE may have added this association
1255 		 * To the hash table, try to unhash it, just in case, its a noop
1256 		 * if it wasn't hashed so we're safe
1257 		 */
1258 		sctp_association_free(asoc);
1259 	}
1260 	return err;
1261 }
1262 
1263 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1264  *
1265  * API 8.9
1266  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1267  * 			sctp_assoc_t *asoc);
1268  *
1269  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1270  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1271  * or IPv6 addresses.
1272  *
1273  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1274  * Section 3.1.2 for this usage.
1275  *
1276  * addrs is a pointer to an array of one or more socket addresses. Each
1277  * address is contained in its appropriate structure (i.e. struct
1278  * sockaddr_in or struct sockaddr_in6) the family of the address type
1279  * must be used to distengish the address length (note that this
1280  * representation is termed a "packed array" of addresses). The caller
1281  * specifies the number of addresses in the array with addrcnt.
1282  *
1283  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1284  * the association id of the new association.  On failure, sctp_connectx()
1285  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1286  * is not touched by the kernel.
1287  *
1288  * For SCTP, the port given in each socket address must be the same, or
1289  * sctp_connectx() will fail, setting errno to EINVAL.
1290  *
1291  * An application can use sctp_connectx to initiate an association with
1292  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1293  * allows a caller to specify multiple addresses at which a peer can be
1294  * reached.  The way the SCTP stack uses the list of addresses to set up
1295  * the association is implementation dependent.  This function only
1296  * specifies that the stack will try to make use of all the addresses in
1297  * the list when needed.
1298  *
1299  * Note that the list of addresses passed in is only used for setting up
1300  * the association.  It does not necessarily equal the set of addresses
1301  * the peer uses for the resulting association.  If the caller wants to
1302  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1303  * retrieve them after the association has been set up.
1304  *
1305  * Basically do nothing but copying the addresses from user to kernel
1306  * land and invoking either sctp_connectx(). This is used for tunneling
1307  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1308  *
1309  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1310  * it.
1311  *
1312  * sk        The sk of the socket
1313  * addrs     The pointer to the addresses in user land
1314  * addrssize Size of the addrs buffer
1315  *
1316  * Returns >=0 if ok, <0 errno code on error.
1317  */
1318 static int __sctp_setsockopt_connectx(struct sock *sk,
1319 				      struct sockaddr __user *addrs,
1320 				      int addrs_size,
1321 				      sctp_assoc_t *assoc_id)
1322 {
1323 	struct sockaddr *kaddrs;
1324 	int err = 0, flags = 0;
1325 
1326 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1327 		 __func__, sk, addrs, addrs_size);
1328 
1329 	if (unlikely(addrs_size <= 0))
1330 		return -EINVAL;
1331 
1332 	kaddrs = vmemdup_user(addrs, addrs_size);
1333 	if (unlikely(IS_ERR(kaddrs)))
1334 		return PTR_ERR(kaddrs);
1335 
1336 	/* Allow security module to validate connectx addresses. */
1337 	err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
1338 					 (struct sockaddr *)kaddrs,
1339 					  addrs_size);
1340 	if (err)
1341 		goto out_free;
1342 
1343 	/* in-kernel sockets don't generally have a file allocated to them
1344 	 * if all they do is call sock_create_kern().
1345 	 */
1346 	if (sk->sk_socket->file)
1347 		flags = sk->sk_socket->file->f_flags;
1348 
1349 	err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
1350 
1351 out_free:
1352 	kvfree(kaddrs);
1353 
1354 	return err;
1355 }
1356 
1357 /*
1358  * This is an older interface.  It's kept for backward compatibility
1359  * to the option that doesn't provide association id.
1360  */
1361 static int sctp_setsockopt_connectx_old(struct sock *sk,
1362 					struct sockaddr __user *addrs,
1363 					int addrs_size)
1364 {
1365 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1366 }
1367 
1368 /*
1369  * New interface for the API.  The since the API is done with a socket
1370  * option, to make it simple we feed back the association id is as a return
1371  * indication to the call.  Error is always negative and association id is
1372  * always positive.
1373  */
1374 static int sctp_setsockopt_connectx(struct sock *sk,
1375 				    struct sockaddr __user *addrs,
1376 				    int addrs_size)
1377 {
1378 	sctp_assoc_t assoc_id = 0;
1379 	int err = 0;
1380 
1381 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1382 
1383 	if (err)
1384 		return err;
1385 	else
1386 		return assoc_id;
1387 }
1388 
1389 /*
1390  * New (hopefully final) interface for the API.
1391  * We use the sctp_getaddrs_old structure so that use-space library
1392  * can avoid any unnecessary allocations. The only different part
1393  * is that we store the actual length of the address buffer into the
1394  * addrs_num structure member. That way we can re-use the existing
1395  * code.
1396  */
1397 #ifdef CONFIG_COMPAT
1398 struct compat_sctp_getaddrs_old {
1399 	sctp_assoc_t	assoc_id;
1400 	s32		addr_num;
1401 	compat_uptr_t	addrs;		/* struct sockaddr * */
1402 };
1403 #endif
1404 
1405 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1406 				     char __user *optval,
1407 				     int __user *optlen)
1408 {
1409 	struct sctp_getaddrs_old param;
1410 	sctp_assoc_t assoc_id = 0;
1411 	int err = 0;
1412 
1413 #ifdef CONFIG_COMPAT
1414 	if (in_compat_syscall()) {
1415 		struct compat_sctp_getaddrs_old param32;
1416 
1417 		if (len < sizeof(param32))
1418 			return -EINVAL;
1419 		if (copy_from_user(&param32, optval, sizeof(param32)))
1420 			return -EFAULT;
1421 
1422 		param.assoc_id = param32.assoc_id;
1423 		param.addr_num = param32.addr_num;
1424 		param.addrs = compat_ptr(param32.addrs);
1425 	} else
1426 #endif
1427 	{
1428 		if (len < sizeof(param))
1429 			return -EINVAL;
1430 		if (copy_from_user(&param, optval, sizeof(param)))
1431 			return -EFAULT;
1432 	}
1433 
1434 	err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1435 					 param.addrs, param.addr_num,
1436 					 &assoc_id);
1437 	if (err == 0 || err == -EINPROGRESS) {
1438 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1439 			return -EFAULT;
1440 		if (put_user(sizeof(assoc_id), optlen))
1441 			return -EFAULT;
1442 	}
1443 
1444 	return err;
1445 }
1446 
1447 /* API 3.1.4 close() - UDP Style Syntax
1448  * Applications use close() to perform graceful shutdown (as described in
1449  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1450  * by a UDP-style socket.
1451  *
1452  * The syntax is
1453  *
1454  *   ret = close(int sd);
1455  *
1456  *   sd      - the socket descriptor of the associations to be closed.
1457  *
1458  * To gracefully shutdown a specific association represented by the
1459  * UDP-style socket, an application should use the sendmsg() call,
1460  * passing no user data, but including the appropriate flag in the
1461  * ancillary data (see Section xxxx).
1462  *
1463  * If sd in the close() call is a branched-off socket representing only
1464  * one association, the shutdown is performed on that association only.
1465  *
1466  * 4.1.6 close() - TCP Style Syntax
1467  *
1468  * Applications use close() to gracefully close down an association.
1469  *
1470  * The syntax is:
1471  *
1472  *    int close(int sd);
1473  *
1474  *      sd      - the socket descriptor of the association to be closed.
1475  *
1476  * After an application calls close() on a socket descriptor, no further
1477  * socket operations will succeed on that descriptor.
1478  *
1479  * API 7.1.4 SO_LINGER
1480  *
1481  * An application using the TCP-style socket can use this option to
1482  * perform the SCTP ABORT primitive.  The linger option structure is:
1483  *
1484  *  struct  linger {
1485  *     int     l_onoff;                // option on/off
1486  *     int     l_linger;               // linger time
1487  * };
1488  *
1489  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1490  * to 0, calling close() is the same as the ABORT primitive.  If the
1491  * value is set to a negative value, the setsockopt() call will return
1492  * an error.  If the value is set to a positive value linger_time, the
1493  * close() can be blocked for at most linger_time ms.  If the graceful
1494  * shutdown phase does not finish during this period, close() will
1495  * return but the graceful shutdown phase continues in the system.
1496  */
1497 static void sctp_close(struct sock *sk, long timeout)
1498 {
1499 	struct net *net = sock_net(sk);
1500 	struct sctp_endpoint *ep;
1501 	struct sctp_association *asoc;
1502 	struct list_head *pos, *temp;
1503 	unsigned int data_was_unread;
1504 
1505 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1506 
1507 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1508 	sk->sk_shutdown = SHUTDOWN_MASK;
1509 	inet_sk_set_state(sk, SCTP_SS_CLOSING);
1510 
1511 	ep = sctp_sk(sk)->ep;
1512 
1513 	/* Clean up any skbs sitting on the receive queue.  */
1514 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1515 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1516 
1517 	/* Walk all associations on an endpoint.  */
1518 	list_for_each_safe(pos, temp, &ep->asocs) {
1519 		asoc = list_entry(pos, struct sctp_association, asocs);
1520 
1521 		if (sctp_style(sk, TCP)) {
1522 			/* A closed association can still be in the list if
1523 			 * it belongs to a TCP-style listening socket that is
1524 			 * not yet accepted. If so, free it. If not, send an
1525 			 * ABORT or SHUTDOWN based on the linger options.
1526 			 */
1527 			if (sctp_state(asoc, CLOSED)) {
1528 				sctp_association_free(asoc);
1529 				continue;
1530 			}
1531 		}
1532 
1533 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1534 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1535 		    !skb_queue_empty(&asoc->ulpq.reasm_uo) ||
1536 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1537 			struct sctp_chunk *chunk;
1538 
1539 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1540 			sctp_primitive_ABORT(net, asoc, chunk);
1541 		} else
1542 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1543 	}
1544 
1545 	/* On a TCP-style socket, block for at most linger_time if set. */
1546 	if (sctp_style(sk, TCP) && timeout)
1547 		sctp_wait_for_close(sk, timeout);
1548 
1549 	/* This will run the backlog queue.  */
1550 	release_sock(sk);
1551 
1552 	/* Supposedly, no process has access to the socket, but
1553 	 * the net layers still may.
1554 	 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1555 	 * held and that should be grabbed before socket lock.
1556 	 */
1557 	spin_lock_bh(&net->sctp.addr_wq_lock);
1558 	bh_lock_sock_nested(sk);
1559 
1560 	/* Hold the sock, since sk_common_release() will put sock_put()
1561 	 * and we have just a little more cleanup.
1562 	 */
1563 	sock_hold(sk);
1564 	sk_common_release(sk);
1565 
1566 	bh_unlock_sock(sk);
1567 	spin_unlock_bh(&net->sctp.addr_wq_lock);
1568 
1569 	sock_put(sk);
1570 
1571 	SCTP_DBG_OBJCNT_DEC(sock);
1572 }
1573 
1574 /* Handle EPIPE error. */
1575 static int sctp_error(struct sock *sk, int flags, int err)
1576 {
1577 	if (err == -EPIPE)
1578 		err = sock_error(sk) ? : -EPIPE;
1579 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1580 		send_sig(SIGPIPE, current, 0);
1581 	return err;
1582 }
1583 
1584 /* API 3.1.3 sendmsg() - UDP Style Syntax
1585  *
1586  * An application uses sendmsg() and recvmsg() calls to transmit data to
1587  * and receive data from its peer.
1588  *
1589  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1590  *                  int flags);
1591  *
1592  *  socket  - the socket descriptor of the endpoint.
1593  *  message - pointer to the msghdr structure which contains a single
1594  *            user message and possibly some ancillary data.
1595  *
1596  *            See Section 5 for complete description of the data
1597  *            structures.
1598  *
1599  *  flags   - flags sent or received with the user message, see Section
1600  *            5 for complete description of the flags.
1601  *
1602  * Note:  This function could use a rewrite especially when explicit
1603  * connect support comes in.
1604  */
1605 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1606 
1607 static int sctp_msghdr_parse(const struct msghdr *msg,
1608 			     struct sctp_cmsgs *cmsgs);
1609 
1610 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
1611 			      struct sctp_sndrcvinfo *srinfo,
1612 			      const struct msghdr *msg, size_t msg_len)
1613 {
1614 	__u16 sflags;
1615 	int err;
1616 
1617 	if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
1618 		return -EPIPE;
1619 
1620 	if (msg_len > sk->sk_sndbuf)
1621 		return -EMSGSIZE;
1622 
1623 	memset(cmsgs, 0, sizeof(*cmsgs));
1624 	err = sctp_msghdr_parse(msg, cmsgs);
1625 	if (err) {
1626 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1627 		return err;
1628 	}
1629 
1630 	memset(srinfo, 0, sizeof(*srinfo));
1631 	if (cmsgs->srinfo) {
1632 		srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
1633 		srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
1634 		srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
1635 		srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
1636 		srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
1637 		srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
1638 	}
1639 
1640 	if (cmsgs->sinfo) {
1641 		srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
1642 		srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
1643 		srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
1644 		srinfo->sinfo_context = cmsgs->sinfo->snd_context;
1645 		srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
1646 	}
1647 
1648 	if (cmsgs->prinfo) {
1649 		srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
1650 		SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
1651 				   cmsgs->prinfo->pr_policy);
1652 	}
1653 
1654 	sflags = srinfo->sinfo_flags;
1655 	if (!sflags && msg_len)
1656 		return 0;
1657 
1658 	if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
1659 		return -EINVAL;
1660 
1661 	if (((sflags & SCTP_EOF) && msg_len > 0) ||
1662 	    (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
1663 		return -EINVAL;
1664 
1665 	if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
1666 		return -EINVAL;
1667 
1668 	return 0;
1669 }
1670 
1671 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
1672 				 struct sctp_cmsgs *cmsgs,
1673 				 union sctp_addr *daddr,
1674 				 struct sctp_transport **tp)
1675 {
1676 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1677 	struct net *net = sock_net(sk);
1678 	struct sctp_association *asoc;
1679 	enum sctp_scope scope;
1680 	struct cmsghdr *cmsg;
1681 	__be32 flowinfo = 0;
1682 	struct sctp_af *af;
1683 	int err;
1684 
1685 	*tp = NULL;
1686 
1687 	if (sflags & (SCTP_EOF | SCTP_ABORT))
1688 		return -EINVAL;
1689 
1690 	if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
1691 				    sctp_sstate(sk, CLOSING)))
1692 		return -EADDRNOTAVAIL;
1693 
1694 	if (sctp_endpoint_is_peeled_off(ep, daddr))
1695 		return -EADDRNOTAVAIL;
1696 
1697 	if (!ep->base.bind_addr.port) {
1698 		if (sctp_autobind(sk))
1699 			return -EAGAIN;
1700 	} else {
1701 		if (ep->base.bind_addr.port < inet_prot_sock(net) &&
1702 		    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
1703 			return -EACCES;
1704 	}
1705 
1706 	scope = sctp_scope(daddr);
1707 
1708 	/* Label connection socket for first association 1-to-many
1709 	 * style for client sequence socket()->sendmsg(). This
1710 	 * needs to be done before sctp_assoc_add_peer() as that will
1711 	 * set up the initial packet that needs to account for any
1712 	 * security ip options (CIPSO/CALIPSO) added to the packet.
1713 	 */
1714 	af = sctp_get_af_specific(daddr->sa.sa_family);
1715 	if (!af)
1716 		return -EINVAL;
1717 	err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
1718 					 (struct sockaddr *)daddr,
1719 					 af->sockaddr_len);
1720 	if (err < 0)
1721 		return err;
1722 
1723 	asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1724 	if (!asoc)
1725 		return -ENOMEM;
1726 
1727 	if (sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL) < 0) {
1728 		err = -ENOMEM;
1729 		goto free;
1730 	}
1731 
1732 	if (cmsgs->init) {
1733 		struct sctp_initmsg *init = cmsgs->init;
1734 
1735 		if (init->sinit_num_ostreams) {
1736 			__u16 outcnt = init->sinit_num_ostreams;
1737 
1738 			asoc->c.sinit_num_ostreams = outcnt;
1739 			/* outcnt has been changed, need to re-init stream */
1740 			err = sctp_stream_init(&asoc->stream, outcnt, 0,
1741 					       GFP_KERNEL);
1742 			if (err)
1743 				goto free;
1744 		}
1745 
1746 		if (init->sinit_max_instreams)
1747 			asoc->c.sinit_max_instreams = init->sinit_max_instreams;
1748 
1749 		if (init->sinit_max_attempts)
1750 			asoc->max_init_attempts = init->sinit_max_attempts;
1751 
1752 		if (init->sinit_max_init_timeo)
1753 			asoc->max_init_timeo =
1754 				msecs_to_jiffies(init->sinit_max_init_timeo);
1755 	}
1756 
1757 	*tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1758 	if (!*tp) {
1759 		err = -ENOMEM;
1760 		goto free;
1761 	}
1762 
1763 	if (!cmsgs->addrs_msg)
1764 		return 0;
1765 
1766 	if (daddr->sa.sa_family == AF_INET6)
1767 		flowinfo = daddr->v6.sin6_flowinfo;
1768 
1769 	/* sendv addr list parse */
1770 	for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
1771 		struct sctp_transport *transport;
1772 		struct sctp_association *old;
1773 		union sctp_addr _daddr;
1774 		int dlen;
1775 
1776 		if (cmsg->cmsg_level != IPPROTO_SCTP ||
1777 		    (cmsg->cmsg_type != SCTP_DSTADDRV4 &&
1778 		     cmsg->cmsg_type != SCTP_DSTADDRV6))
1779 			continue;
1780 
1781 		daddr = &_daddr;
1782 		memset(daddr, 0, sizeof(*daddr));
1783 		dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
1784 		if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
1785 			if (dlen < sizeof(struct in_addr)) {
1786 				err = -EINVAL;
1787 				goto free;
1788 			}
1789 
1790 			dlen = sizeof(struct in_addr);
1791 			daddr->v4.sin_family = AF_INET;
1792 			daddr->v4.sin_port = htons(asoc->peer.port);
1793 			memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
1794 		} else {
1795 			if (dlen < sizeof(struct in6_addr)) {
1796 				err = -EINVAL;
1797 				goto free;
1798 			}
1799 
1800 			dlen = sizeof(struct in6_addr);
1801 			daddr->v6.sin6_flowinfo = flowinfo;
1802 			daddr->v6.sin6_family = AF_INET6;
1803 			daddr->v6.sin6_port = htons(asoc->peer.port);
1804 			memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
1805 		}
1806 		err = sctp_verify_addr(sk, daddr, sizeof(*daddr));
1807 		if (err)
1808 			goto free;
1809 
1810 		old = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1811 		if (old && old != asoc) {
1812 			if (old->state >= SCTP_STATE_ESTABLISHED)
1813 				err = -EISCONN;
1814 			else
1815 				err = -EALREADY;
1816 			goto free;
1817 		}
1818 
1819 		if (sctp_endpoint_is_peeled_off(ep, daddr)) {
1820 			err = -EADDRNOTAVAIL;
1821 			goto free;
1822 		}
1823 
1824 		transport = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL,
1825 						SCTP_UNKNOWN);
1826 		if (!transport) {
1827 			err = -ENOMEM;
1828 			goto free;
1829 		}
1830 	}
1831 
1832 	return 0;
1833 
1834 free:
1835 	sctp_association_free(asoc);
1836 	return err;
1837 }
1838 
1839 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
1840 				     __u16 sflags, struct msghdr *msg,
1841 				     size_t msg_len)
1842 {
1843 	struct sock *sk = asoc->base.sk;
1844 	struct net *net = sock_net(sk);
1845 
1846 	if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
1847 		return -EPIPE;
1848 
1849 	if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
1850 	    !sctp_state(asoc, ESTABLISHED))
1851 		return 0;
1852 
1853 	if (sflags & SCTP_EOF) {
1854 		pr_debug("%s: shutting down association:%p\n", __func__, asoc);
1855 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
1856 
1857 		return 0;
1858 	}
1859 
1860 	if (sflags & SCTP_ABORT) {
1861 		struct sctp_chunk *chunk;
1862 
1863 		chunk = sctp_make_abort_user(asoc, msg, msg_len);
1864 		if (!chunk)
1865 			return -ENOMEM;
1866 
1867 		pr_debug("%s: aborting association:%p\n", __func__, asoc);
1868 		sctp_primitive_ABORT(net, asoc, chunk);
1869 
1870 		return 0;
1871 	}
1872 
1873 	return 1;
1874 }
1875 
1876 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
1877 				struct msghdr *msg, size_t msg_len,
1878 				struct sctp_transport *transport,
1879 				struct sctp_sndrcvinfo *sinfo)
1880 {
1881 	struct sock *sk = asoc->base.sk;
1882 	struct sctp_sock *sp = sctp_sk(sk);
1883 	struct net *net = sock_net(sk);
1884 	struct sctp_datamsg *datamsg;
1885 	bool wait_connect = false;
1886 	struct sctp_chunk *chunk;
1887 	long timeo;
1888 	int err;
1889 
1890 	if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1891 		err = -EINVAL;
1892 		goto err;
1893 	}
1894 
1895 	if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) {
1896 		err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
1897 		if (err)
1898 			goto err;
1899 	}
1900 
1901 	if (sp->disable_fragments && msg_len > asoc->frag_point) {
1902 		err = -EMSGSIZE;
1903 		goto err;
1904 	}
1905 
1906 	if (asoc->pmtu_pending) {
1907 		if (sp->param_flags & SPP_PMTUD_ENABLE)
1908 			sctp_assoc_sync_pmtu(asoc);
1909 		asoc->pmtu_pending = 0;
1910 	}
1911 
1912 	if (sctp_wspace(asoc) < (int)msg_len)
1913 		sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1914 
1915 	if (sctp_wspace(asoc) <= 0) {
1916 		timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1917 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1918 		if (err)
1919 			goto err;
1920 	}
1921 
1922 	if (sctp_state(asoc, CLOSED)) {
1923 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1924 		if (err)
1925 			goto err;
1926 
1927 		if (sp->strm_interleave) {
1928 			timeo = sock_sndtimeo(sk, 0);
1929 			err = sctp_wait_for_connect(asoc, &timeo);
1930 			if (err) {
1931 				err = -ESRCH;
1932 				goto err;
1933 			}
1934 		} else {
1935 			wait_connect = true;
1936 		}
1937 
1938 		pr_debug("%s: we associated primitively\n", __func__);
1939 	}
1940 
1941 	datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1942 	if (IS_ERR(datamsg)) {
1943 		err = PTR_ERR(datamsg);
1944 		goto err;
1945 	}
1946 
1947 	asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
1948 
1949 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1950 		sctp_chunk_hold(chunk);
1951 		sctp_set_owner_w(chunk);
1952 		chunk->transport = transport;
1953 	}
1954 
1955 	err = sctp_primitive_SEND(net, asoc, datamsg);
1956 	if (err) {
1957 		sctp_datamsg_free(datamsg);
1958 		goto err;
1959 	}
1960 
1961 	pr_debug("%s: we sent primitively\n", __func__);
1962 
1963 	sctp_datamsg_put(datamsg);
1964 
1965 	if (unlikely(wait_connect)) {
1966 		timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1967 		sctp_wait_for_connect(asoc, &timeo);
1968 	}
1969 
1970 	err = msg_len;
1971 
1972 err:
1973 	return err;
1974 }
1975 
1976 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
1977 					       const struct msghdr *msg,
1978 					       struct sctp_cmsgs *cmsgs)
1979 {
1980 	union sctp_addr *daddr = NULL;
1981 	int err;
1982 
1983 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1984 		int len = msg->msg_namelen;
1985 
1986 		if (len > sizeof(*daddr))
1987 			len = sizeof(*daddr);
1988 
1989 		daddr = (union sctp_addr *)msg->msg_name;
1990 
1991 		err = sctp_verify_addr(sk, daddr, len);
1992 		if (err)
1993 			return ERR_PTR(err);
1994 	}
1995 
1996 	return daddr;
1997 }
1998 
1999 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
2000 				      struct sctp_sndrcvinfo *sinfo,
2001 				      struct sctp_cmsgs *cmsgs)
2002 {
2003 	if (!cmsgs->srinfo && !cmsgs->sinfo) {
2004 		sinfo->sinfo_stream = asoc->default_stream;
2005 		sinfo->sinfo_ppid = asoc->default_ppid;
2006 		sinfo->sinfo_context = asoc->default_context;
2007 		sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
2008 
2009 		if (!cmsgs->prinfo)
2010 			sinfo->sinfo_flags = asoc->default_flags;
2011 	}
2012 
2013 	if (!cmsgs->srinfo && !cmsgs->prinfo)
2014 		sinfo->sinfo_timetolive = asoc->default_timetolive;
2015 
2016 	if (cmsgs->authinfo) {
2017 		/* Reuse sinfo_tsn to indicate that authinfo was set and
2018 		 * sinfo_ssn to save the keyid on tx path.
2019 		 */
2020 		sinfo->sinfo_tsn = 1;
2021 		sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
2022 	}
2023 }
2024 
2025 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
2026 {
2027 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
2028 	struct sctp_transport *transport = NULL;
2029 	struct sctp_sndrcvinfo _sinfo, *sinfo;
2030 	struct sctp_association *asoc, *tmp;
2031 	struct sctp_cmsgs cmsgs;
2032 	union sctp_addr *daddr;
2033 	bool new = false;
2034 	__u16 sflags;
2035 	int err;
2036 
2037 	/* Parse and get snd_info */
2038 	err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len);
2039 	if (err)
2040 		goto out;
2041 
2042 	sinfo  = &_sinfo;
2043 	sflags = sinfo->sinfo_flags;
2044 
2045 	/* Get daddr from msg */
2046 	daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs);
2047 	if (IS_ERR(daddr)) {
2048 		err = PTR_ERR(daddr);
2049 		goto out;
2050 	}
2051 
2052 	lock_sock(sk);
2053 
2054 	/* SCTP_SENDALL process */
2055 	if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
2056 		list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) {
2057 			err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
2058 							msg_len);
2059 			if (err == 0)
2060 				continue;
2061 			if (err < 0)
2062 				goto out_unlock;
2063 
2064 			sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2065 
2066 			err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
2067 						   NULL, sinfo);
2068 			if (err < 0)
2069 				goto out_unlock;
2070 
2071 			iov_iter_revert(&msg->msg_iter, err);
2072 		}
2073 
2074 		goto out_unlock;
2075 	}
2076 
2077 	/* Get and check or create asoc */
2078 	if (daddr) {
2079 		asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
2080 		if (asoc) {
2081 			err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
2082 							msg_len);
2083 			if (err <= 0)
2084 				goto out_unlock;
2085 		} else {
2086 			err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr,
2087 						    &transport);
2088 			if (err)
2089 				goto out_unlock;
2090 
2091 			asoc = transport->asoc;
2092 			new = true;
2093 		}
2094 
2095 		if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
2096 			transport = NULL;
2097 	} else {
2098 		asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id);
2099 		if (!asoc) {
2100 			err = -EPIPE;
2101 			goto out_unlock;
2102 		}
2103 
2104 		err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
2105 		if (err <= 0)
2106 			goto out_unlock;
2107 	}
2108 
2109 	/* Update snd_info with the asoc */
2110 	sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2111 
2112 	/* Send msg to the asoc */
2113 	err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
2114 	if (err < 0 && err != -ESRCH && new)
2115 		sctp_association_free(asoc);
2116 
2117 out_unlock:
2118 	release_sock(sk);
2119 out:
2120 	return sctp_error(sk, msg->msg_flags, err);
2121 }
2122 
2123 /* This is an extended version of skb_pull() that removes the data from the
2124  * start of a skb even when data is spread across the list of skb's in the
2125  * frag_list. len specifies the total amount of data that needs to be removed.
2126  * when 'len' bytes could be removed from the skb, it returns 0.
2127  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
2128  * could not be removed.
2129  */
2130 static int sctp_skb_pull(struct sk_buff *skb, int len)
2131 {
2132 	struct sk_buff *list;
2133 	int skb_len = skb_headlen(skb);
2134 	int rlen;
2135 
2136 	if (len <= skb_len) {
2137 		__skb_pull(skb, len);
2138 		return 0;
2139 	}
2140 	len -= skb_len;
2141 	__skb_pull(skb, skb_len);
2142 
2143 	skb_walk_frags(skb, list) {
2144 		rlen = sctp_skb_pull(list, len);
2145 		skb->len -= (len-rlen);
2146 		skb->data_len -= (len-rlen);
2147 
2148 		if (!rlen)
2149 			return 0;
2150 
2151 		len = rlen;
2152 	}
2153 
2154 	return len;
2155 }
2156 
2157 /* API 3.1.3  recvmsg() - UDP Style Syntax
2158  *
2159  *  ssize_t recvmsg(int socket, struct msghdr *message,
2160  *                    int flags);
2161  *
2162  *  socket  - the socket descriptor of the endpoint.
2163  *  message - pointer to the msghdr structure which contains a single
2164  *            user message and possibly some ancillary data.
2165  *
2166  *            See Section 5 for complete description of the data
2167  *            structures.
2168  *
2169  *  flags   - flags sent or received with the user message, see Section
2170  *            5 for complete description of the flags.
2171  */
2172 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2173 			int noblock, int flags, int *addr_len)
2174 {
2175 	struct sctp_ulpevent *event = NULL;
2176 	struct sctp_sock *sp = sctp_sk(sk);
2177 	struct sk_buff *skb, *head_skb;
2178 	int copied;
2179 	int err = 0;
2180 	int skb_len;
2181 
2182 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2183 		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2184 		 addr_len);
2185 
2186 	lock_sock(sk);
2187 
2188 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2189 	    !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2190 		err = -ENOTCONN;
2191 		goto out;
2192 	}
2193 
2194 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2195 	if (!skb)
2196 		goto out;
2197 
2198 	/* Get the total length of the skb including any skb's in the
2199 	 * frag_list.
2200 	 */
2201 	skb_len = skb->len;
2202 
2203 	copied = skb_len;
2204 	if (copied > len)
2205 		copied = len;
2206 
2207 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2208 
2209 	event = sctp_skb2event(skb);
2210 
2211 	if (err)
2212 		goto out_free;
2213 
2214 	if (event->chunk && event->chunk->head_skb)
2215 		head_skb = event->chunk->head_skb;
2216 	else
2217 		head_skb = skb;
2218 	sock_recv_ts_and_drops(msg, sk, head_skb);
2219 	if (sctp_ulpevent_is_notification(event)) {
2220 		msg->msg_flags |= MSG_NOTIFICATION;
2221 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2222 	} else {
2223 		sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2224 	}
2225 
2226 	/* Check if we allow SCTP_NXTINFO. */
2227 	if (sp->recvnxtinfo)
2228 		sctp_ulpevent_read_nxtinfo(event, msg, sk);
2229 	/* Check if we allow SCTP_RCVINFO. */
2230 	if (sp->recvrcvinfo)
2231 		sctp_ulpevent_read_rcvinfo(event, msg);
2232 	/* Check if we allow SCTP_SNDRCVINFO. */
2233 	if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT))
2234 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2235 
2236 	err = copied;
2237 
2238 	/* If skb's length exceeds the user's buffer, update the skb and
2239 	 * push it back to the receive_queue so that the next call to
2240 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2241 	 */
2242 	if (skb_len > copied) {
2243 		msg->msg_flags &= ~MSG_EOR;
2244 		if (flags & MSG_PEEK)
2245 			goto out_free;
2246 		sctp_skb_pull(skb, copied);
2247 		skb_queue_head(&sk->sk_receive_queue, skb);
2248 
2249 		/* When only partial message is copied to the user, increase
2250 		 * rwnd by that amount. If all the data in the skb is read,
2251 		 * rwnd is updated when the event is freed.
2252 		 */
2253 		if (!sctp_ulpevent_is_notification(event))
2254 			sctp_assoc_rwnd_increase(event->asoc, copied);
2255 		goto out;
2256 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2257 		   (event->msg_flags & MSG_EOR))
2258 		msg->msg_flags |= MSG_EOR;
2259 	else
2260 		msg->msg_flags &= ~MSG_EOR;
2261 
2262 out_free:
2263 	if (flags & MSG_PEEK) {
2264 		/* Release the skb reference acquired after peeking the skb in
2265 		 * sctp_skb_recv_datagram().
2266 		 */
2267 		kfree_skb(skb);
2268 	} else {
2269 		/* Free the event which includes releasing the reference to
2270 		 * the owner of the skb, freeing the skb and updating the
2271 		 * rwnd.
2272 		 */
2273 		sctp_ulpevent_free(event);
2274 	}
2275 out:
2276 	release_sock(sk);
2277 	return err;
2278 }
2279 
2280 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2281  *
2282  * This option is a on/off flag.  If enabled no SCTP message
2283  * fragmentation will be performed.  Instead if a message being sent
2284  * exceeds the current PMTU size, the message will NOT be sent and
2285  * instead a error will be indicated to the user.
2286  */
2287 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2288 					     char __user *optval,
2289 					     unsigned int optlen)
2290 {
2291 	int val;
2292 
2293 	if (optlen < sizeof(int))
2294 		return -EINVAL;
2295 
2296 	if (get_user(val, (int __user *)optval))
2297 		return -EFAULT;
2298 
2299 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2300 
2301 	return 0;
2302 }
2303 
2304 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2305 				  unsigned int optlen)
2306 {
2307 	struct sctp_event_subscribe subscribe;
2308 	__u8 *sn_type = (__u8 *)&subscribe;
2309 	struct sctp_sock *sp = sctp_sk(sk);
2310 	struct sctp_association *asoc;
2311 	int i;
2312 
2313 	if (optlen > sizeof(struct sctp_event_subscribe))
2314 		return -EINVAL;
2315 
2316 	if (copy_from_user(&subscribe, optval, optlen))
2317 		return -EFAULT;
2318 
2319 	for (i = 0; i < optlen; i++)
2320 		sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i,
2321 				       sn_type[i]);
2322 
2323 	list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2324 		asoc->subscribe = sctp_sk(sk)->subscribe;
2325 
2326 	/* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2327 	 * if there is no data to be sent or retransmit, the stack will
2328 	 * immediately send up this notification.
2329 	 */
2330 	if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) {
2331 		struct sctp_ulpevent *event;
2332 
2333 		asoc = sctp_id2assoc(sk, 0);
2334 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2335 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2336 					GFP_USER | __GFP_NOWARN);
2337 			if (!event)
2338 				return -ENOMEM;
2339 
2340 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
2341 		}
2342 	}
2343 
2344 	return 0;
2345 }
2346 
2347 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2348  *
2349  * This socket option is applicable to the UDP-style socket only.  When
2350  * set it will cause associations that are idle for more than the
2351  * specified number of seconds to automatically close.  An association
2352  * being idle is defined an association that has NOT sent or received
2353  * user data.  The special value of '0' indicates that no automatic
2354  * close of any associations should be performed.  The option expects an
2355  * integer defining the number of seconds of idle time before an
2356  * association is closed.
2357  */
2358 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2359 				     unsigned int optlen)
2360 {
2361 	struct sctp_sock *sp = sctp_sk(sk);
2362 	struct net *net = sock_net(sk);
2363 
2364 	/* Applicable to UDP-style socket only */
2365 	if (sctp_style(sk, TCP))
2366 		return -EOPNOTSUPP;
2367 	if (optlen != sizeof(int))
2368 		return -EINVAL;
2369 	if (copy_from_user(&sp->autoclose, optval, optlen))
2370 		return -EFAULT;
2371 
2372 	if (sp->autoclose > net->sctp.max_autoclose)
2373 		sp->autoclose = net->sctp.max_autoclose;
2374 
2375 	return 0;
2376 }
2377 
2378 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2379  *
2380  * Applications can enable or disable heartbeats for any peer address of
2381  * an association, modify an address's heartbeat interval, force a
2382  * heartbeat to be sent immediately, and adjust the address's maximum
2383  * number of retransmissions sent before an address is considered
2384  * unreachable.  The following structure is used to access and modify an
2385  * address's parameters:
2386  *
2387  *  struct sctp_paddrparams {
2388  *     sctp_assoc_t            spp_assoc_id;
2389  *     struct sockaddr_storage spp_address;
2390  *     uint32_t                spp_hbinterval;
2391  *     uint16_t                spp_pathmaxrxt;
2392  *     uint32_t                spp_pathmtu;
2393  *     uint32_t                spp_sackdelay;
2394  *     uint32_t                spp_flags;
2395  *     uint32_t                spp_ipv6_flowlabel;
2396  *     uint8_t                 spp_dscp;
2397  * };
2398  *
2399  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2400  *                     application, and identifies the association for
2401  *                     this query.
2402  *   spp_address     - This specifies which address is of interest.
2403  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2404  *                     in milliseconds.  If a  value of zero
2405  *                     is present in this field then no changes are to
2406  *                     be made to this parameter.
2407  *   spp_pathmaxrxt  - This contains the maximum number of
2408  *                     retransmissions before this address shall be
2409  *                     considered unreachable. If a  value of zero
2410  *                     is present in this field then no changes are to
2411  *                     be made to this parameter.
2412  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2413  *                     specified here will be the "fixed" path mtu.
2414  *                     Note that if the spp_address field is empty
2415  *                     then all associations on this address will
2416  *                     have this fixed path mtu set upon them.
2417  *
2418  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2419  *                     the number of milliseconds that sacks will be delayed
2420  *                     for. This value will apply to all addresses of an
2421  *                     association if the spp_address field is empty. Note
2422  *                     also, that if delayed sack is enabled and this
2423  *                     value is set to 0, no change is made to the last
2424  *                     recorded delayed sack timer value.
2425  *
2426  *   spp_flags       - These flags are used to control various features
2427  *                     on an association. The flag field may contain
2428  *                     zero or more of the following options.
2429  *
2430  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2431  *                     specified address. Note that if the address
2432  *                     field is empty all addresses for the association
2433  *                     have heartbeats enabled upon them.
2434  *
2435  *                     SPP_HB_DISABLE - Disable heartbeats on the
2436  *                     speicifed address. Note that if the address
2437  *                     field is empty all addresses for the association
2438  *                     will have their heartbeats disabled. Note also
2439  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2440  *                     mutually exclusive, only one of these two should
2441  *                     be specified. Enabling both fields will have
2442  *                     undetermined results.
2443  *
2444  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2445  *                     to be made immediately.
2446  *
2447  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2448  *                     heartbeat delayis to be set to the value of 0
2449  *                     milliseconds.
2450  *
2451  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2452  *                     discovery upon the specified address. Note that
2453  *                     if the address feild is empty then all addresses
2454  *                     on the association are effected.
2455  *
2456  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2457  *                     discovery upon the specified address. Note that
2458  *                     if the address feild is empty then all addresses
2459  *                     on the association are effected. Not also that
2460  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2461  *                     exclusive. Enabling both will have undetermined
2462  *                     results.
2463  *
2464  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2465  *                     on delayed sack. The time specified in spp_sackdelay
2466  *                     is used to specify the sack delay for this address. Note
2467  *                     that if spp_address is empty then all addresses will
2468  *                     enable delayed sack and take on the sack delay
2469  *                     value specified in spp_sackdelay.
2470  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2471  *                     off delayed sack. If the spp_address field is blank then
2472  *                     delayed sack is disabled for the entire association. Note
2473  *                     also that this field is mutually exclusive to
2474  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2475  *                     results.
2476  *
2477  *                     SPP_IPV6_FLOWLABEL:  Setting this flag enables the
2478  *                     setting of the IPV6 flow label value.  The value is
2479  *                     contained in the spp_ipv6_flowlabel field.
2480  *                     Upon retrieval, this flag will be set to indicate that
2481  *                     the spp_ipv6_flowlabel field has a valid value returned.
2482  *                     If a specific destination address is set (in the
2483  *                     spp_address field), then the value returned is that of
2484  *                     the address.  If just an association is specified (and
2485  *                     no address), then the association's default flow label
2486  *                     is returned.  If neither an association nor a destination
2487  *                     is specified, then the socket's default flow label is
2488  *                     returned.  For non-IPv6 sockets, this flag will be left
2489  *                     cleared.
2490  *
2491  *                     SPP_DSCP:  Setting this flag enables the setting of the
2492  *                     Differentiated Services Code Point (DSCP) value
2493  *                     associated with either the association or a specific
2494  *                     address.  The value is obtained in the spp_dscp field.
2495  *                     Upon retrieval, this flag will be set to indicate that
2496  *                     the spp_dscp field has a valid value returned.  If a
2497  *                     specific destination address is set when called (in the
2498  *                     spp_address field), then that specific destination
2499  *                     address's DSCP value is returned.  If just an association
2500  *                     is specified, then the association's default DSCP is
2501  *                     returned.  If neither an association nor a destination is
2502  *                     specified, then the socket's default DSCP is returned.
2503  *
2504  *   spp_ipv6_flowlabel
2505  *                   - This field is used in conjunction with the
2506  *                     SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
2507  *                     The 20 least significant bits are used for the flow
2508  *                     label.  This setting has precedence over any IPv6-layer
2509  *                     setting.
2510  *
2511  *   spp_dscp        - This field is used in conjunction with the SPP_DSCP flag
2512  *                     and contains the DSCP.  The 6 most significant bits are
2513  *                     used for the DSCP.  This setting has precedence over any
2514  *                     IPv4- or IPv6- layer setting.
2515  */
2516 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2517 				       struct sctp_transport   *trans,
2518 				       struct sctp_association *asoc,
2519 				       struct sctp_sock        *sp,
2520 				       int                      hb_change,
2521 				       int                      pmtud_change,
2522 				       int                      sackdelay_change)
2523 {
2524 	int error;
2525 
2526 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2527 		struct net *net = sock_net(trans->asoc->base.sk);
2528 
2529 		error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2530 		if (error)
2531 			return error;
2532 	}
2533 
2534 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2535 	 * this field is ignored.  Note also that a value of zero indicates
2536 	 * the current setting should be left unchanged.
2537 	 */
2538 	if (params->spp_flags & SPP_HB_ENABLE) {
2539 
2540 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2541 		 * set.  This lets us use 0 value when this flag
2542 		 * is set.
2543 		 */
2544 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2545 			params->spp_hbinterval = 0;
2546 
2547 		if (params->spp_hbinterval ||
2548 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2549 			if (trans) {
2550 				trans->hbinterval =
2551 				    msecs_to_jiffies(params->spp_hbinterval);
2552 			} else if (asoc) {
2553 				asoc->hbinterval =
2554 				    msecs_to_jiffies(params->spp_hbinterval);
2555 			} else {
2556 				sp->hbinterval = params->spp_hbinterval;
2557 			}
2558 		}
2559 	}
2560 
2561 	if (hb_change) {
2562 		if (trans) {
2563 			trans->param_flags =
2564 				(trans->param_flags & ~SPP_HB) | hb_change;
2565 		} else if (asoc) {
2566 			asoc->param_flags =
2567 				(asoc->param_flags & ~SPP_HB) | hb_change;
2568 		} else {
2569 			sp->param_flags =
2570 				(sp->param_flags & ~SPP_HB) | hb_change;
2571 		}
2572 	}
2573 
2574 	/* When Path MTU discovery is disabled the value specified here will
2575 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2576 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2577 	 * effect).
2578 	 */
2579 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2580 		if (trans) {
2581 			trans->pathmtu = params->spp_pathmtu;
2582 			sctp_assoc_sync_pmtu(asoc);
2583 		} else if (asoc) {
2584 			sctp_assoc_set_pmtu(asoc, params->spp_pathmtu);
2585 		} else {
2586 			sp->pathmtu = params->spp_pathmtu;
2587 		}
2588 	}
2589 
2590 	if (pmtud_change) {
2591 		if (trans) {
2592 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2593 				(params->spp_flags & SPP_PMTUD_ENABLE);
2594 			trans->param_flags =
2595 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2596 			if (update) {
2597 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2598 				sctp_assoc_sync_pmtu(asoc);
2599 			}
2600 		} else if (asoc) {
2601 			asoc->param_flags =
2602 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2603 		} else {
2604 			sp->param_flags =
2605 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2606 		}
2607 	}
2608 
2609 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2610 	 * value of this field is ignored.  Note also that a value of zero
2611 	 * indicates the current setting should be left unchanged.
2612 	 */
2613 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2614 		if (trans) {
2615 			trans->sackdelay =
2616 				msecs_to_jiffies(params->spp_sackdelay);
2617 		} else if (asoc) {
2618 			asoc->sackdelay =
2619 				msecs_to_jiffies(params->spp_sackdelay);
2620 		} else {
2621 			sp->sackdelay = params->spp_sackdelay;
2622 		}
2623 	}
2624 
2625 	if (sackdelay_change) {
2626 		if (trans) {
2627 			trans->param_flags =
2628 				(trans->param_flags & ~SPP_SACKDELAY) |
2629 				sackdelay_change;
2630 		} else if (asoc) {
2631 			asoc->param_flags =
2632 				(asoc->param_flags & ~SPP_SACKDELAY) |
2633 				sackdelay_change;
2634 		} else {
2635 			sp->param_flags =
2636 				(sp->param_flags & ~SPP_SACKDELAY) |
2637 				sackdelay_change;
2638 		}
2639 	}
2640 
2641 	/* Note that a value of zero indicates the current setting should be
2642 	   left unchanged.
2643 	 */
2644 	if (params->spp_pathmaxrxt) {
2645 		if (trans) {
2646 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2647 		} else if (asoc) {
2648 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2649 		} else {
2650 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2651 		}
2652 	}
2653 
2654 	if (params->spp_flags & SPP_IPV6_FLOWLABEL) {
2655 		if (trans) {
2656 			if (trans->ipaddr.sa.sa_family == AF_INET6) {
2657 				trans->flowlabel = params->spp_ipv6_flowlabel &
2658 						   SCTP_FLOWLABEL_VAL_MASK;
2659 				trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2660 			}
2661 		} else if (asoc) {
2662 			struct sctp_transport *t;
2663 
2664 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
2665 					    transports) {
2666 				if (t->ipaddr.sa.sa_family != AF_INET6)
2667 					continue;
2668 				t->flowlabel = params->spp_ipv6_flowlabel &
2669 					       SCTP_FLOWLABEL_VAL_MASK;
2670 				t->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2671 			}
2672 			asoc->flowlabel = params->spp_ipv6_flowlabel &
2673 					  SCTP_FLOWLABEL_VAL_MASK;
2674 			asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2675 		} else if (sctp_opt2sk(sp)->sk_family == AF_INET6) {
2676 			sp->flowlabel = params->spp_ipv6_flowlabel &
2677 					SCTP_FLOWLABEL_VAL_MASK;
2678 			sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2679 		}
2680 	}
2681 
2682 	if (params->spp_flags & SPP_DSCP) {
2683 		if (trans) {
2684 			trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2685 			trans->dscp |= SCTP_DSCP_SET_MASK;
2686 		} else if (asoc) {
2687 			struct sctp_transport *t;
2688 
2689 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
2690 					    transports) {
2691 				t->dscp = params->spp_dscp &
2692 					  SCTP_DSCP_VAL_MASK;
2693 				t->dscp |= SCTP_DSCP_SET_MASK;
2694 			}
2695 			asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2696 			asoc->dscp |= SCTP_DSCP_SET_MASK;
2697 		} else {
2698 			sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2699 			sp->dscp |= SCTP_DSCP_SET_MASK;
2700 		}
2701 	}
2702 
2703 	return 0;
2704 }
2705 
2706 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2707 					    char __user *optval,
2708 					    unsigned int optlen)
2709 {
2710 	struct sctp_paddrparams  params;
2711 	struct sctp_transport   *trans = NULL;
2712 	struct sctp_association *asoc = NULL;
2713 	struct sctp_sock        *sp = sctp_sk(sk);
2714 	int error;
2715 	int hb_change, pmtud_change, sackdelay_change;
2716 
2717 	if (optlen == sizeof(params)) {
2718 		if (copy_from_user(&params, optval, optlen))
2719 			return -EFAULT;
2720 	} else if (optlen == ALIGN(offsetof(struct sctp_paddrparams,
2721 					    spp_ipv6_flowlabel), 4)) {
2722 		if (copy_from_user(&params, optval, optlen))
2723 			return -EFAULT;
2724 		if (params.spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL))
2725 			return -EINVAL;
2726 	} else {
2727 		return -EINVAL;
2728 	}
2729 
2730 	/* Validate flags and value parameters. */
2731 	hb_change        = params.spp_flags & SPP_HB;
2732 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2733 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2734 
2735 	if (hb_change        == SPP_HB ||
2736 	    pmtud_change     == SPP_PMTUD ||
2737 	    sackdelay_change == SPP_SACKDELAY ||
2738 	    params.spp_sackdelay > 500 ||
2739 	    (params.spp_pathmtu &&
2740 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2741 		return -EINVAL;
2742 
2743 	/* If an address other than INADDR_ANY is specified, and
2744 	 * no transport is found, then the request is invalid.
2745 	 */
2746 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2747 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2748 					       params.spp_assoc_id);
2749 		if (!trans)
2750 			return -EINVAL;
2751 	}
2752 
2753 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
2754 	 * socket is a one to many style socket, and an association
2755 	 * was not found, then the id was invalid.
2756 	 */
2757 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2758 	if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
2759 	    sctp_style(sk, UDP))
2760 		return -EINVAL;
2761 
2762 	/* Heartbeat demand can only be sent on a transport or
2763 	 * association, but not a socket.
2764 	 */
2765 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2766 		return -EINVAL;
2767 
2768 	/* Process parameters. */
2769 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2770 					    hb_change, pmtud_change,
2771 					    sackdelay_change);
2772 
2773 	if (error)
2774 		return error;
2775 
2776 	/* If changes are for association, also apply parameters to each
2777 	 * transport.
2778 	 */
2779 	if (!trans && asoc) {
2780 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2781 				transports) {
2782 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2783 						    hb_change, pmtud_change,
2784 						    sackdelay_change);
2785 		}
2786 	}
2787 
2788 	return 0;
2789 }
2790 
2791 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2792 {
2793 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2794 }
2795 
2796 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2797 {
2798 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2799 }
2800 
2801 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params,
2802 					struct sctp_association *asoc)
2803 {
2804 	struct sctp_transport *trans;
2805 
2806 	if (params->sack_delay) {
2807 		asoc->sackdelay = msecs_to_jiffies(params->sack_delay);
2808 		asoc->param_flags =
2809 			sctp_spp_sackdelay_enable(asoc->param_flags);
2810 	}
2811 	if (params->sack_freq == 1) {
2812 		asoc->param_flags =
2813 			sctp_spp_sackdelay_disable(asoc->param_flags);
2814 	} else if (params->sack_freq > 1) {
2815 		asoc->sackfreq = params->sack_freq;
2816 		asoc->param_flags =
2817 			sctp_spp_sackdelay_enable(asoc->param_flags);
2818 	}
2819 
2820 	list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2821 			    transports) {
2822 		if (params->sack_delay) {
2823 			trans->sackdelay = msecs_to_jiffies(params->sack_delay);
2824 			trans->param_flags =
2825 				sctp_spp_sackdelay_enable(trans->param_flags);
2826 		}
2827 		if (params->sack_freq == 1) {
2828 			trans->param_flags =
2829 				sctp_spp_sackdelay_disable(trans->param_flags);
2830 		} else if (params->sack_freq > 1) {
2831 			trans->sackfreq = params->sack_freq;
2832 			trans->param_flags =
2833 				sctp_spp_sackdelay_enable(trans->param_flags);
2834 		}
2835 	}
2836 }
2837 
2838 /*
2839  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2840  *
2841  * This option will effect the way delayed acks are performed.  This
2842  * option allows you to get or set the delayed ack time, in
2843  * milliseconds.  It also allows changing the delayed ack frequency.
2844  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2845  * the assoc_id is 0, then this sets or gets the endpoints default
2846  * values.  If the assoc_id field is non-zero, then the set or get
2847  * effects the specified association for the one to many model (the
2848  * assoc_id field is ignored by the one to one model).  Note that if
2849  * sack_delay or sack_freq are 0 when setting this option, then the
2850  * current values will remain unchanged.
2851  *
2852  * struct sctp_sack_info {
2853  *     sctp_assoc_t            sack_assoc_id;
2854  *     uint32_t                sack_delay;
2855  *     uint32_t                sack_freq;
2856  * };
2857  *
2858  * sack_assoc_id -  This parameter, indicates which association the user
2859  *    is performing an action upon.  Note that if this field's value is
2860  *    zero then the endpoints default value is changed (effecting future
2861  *    associations only).
2862  *
2863  * sack_delay -  This parameter contains the number of milliseconds that
2864  *    the user is requesting the delayed ACK timer be set to.  Note that
2865  *    this value is defined in the standard to be between 200 and 500
2866  *    milliseconds.
2867  *
2868  * sack_freq -  This parameter contains the number of packets that must
2869  *    be received before a sack is sent without waiting for the delay
2870  *    timer to expire.  The default value for this is 2, setting this
2871  *    value to 1 will disable the delayed sack algorithm.
2872  */
2873 
2874 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2875 				       char __user *optval, unsigned int optlen)
2876 {
2877 	struct sctp_sock *sp = sctp_sk(sk);
2878 	struct sctp_association *asoc;
2879 	struct sctp_sack_info params;
2880 
2881 	if (optlen == sizeof(struct sctp_sack_info)) {
2882 		if (copy_from_user(&params, optval, optlen))
2883 			return -EFAULT;
2884 
2885 		if (params.sack_delay == 0 && params.sack_freq == 0)
2886 			return 0;
2887 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2888 		pr_warn_ratelimited(DEPRECATED
2889 				    "%s (pid %d) "
2890 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2891 				    "Use struct sctp_sack_info instead\n",
2892 				    current->comm, task_pid_nr(current));
2893 		if (copy_from_user(&params, optval, optlen))
2894 			return -EFAULT;
2895 
2896 		if (params.sack_delay == 0)
2897 			params.sack_freq = 1;
2898 		else
2899 			params.sack_freq = 0;
2900 	} else
2901 		return -EINVAL;
2902 
2903 	/* Validate value parameter. */
2904 	if (params.sack_delay > 500)
2905 		return -EINVAL;
2906 
2907 	/* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
2908 	 * socket is a one to many style socket, and an association
2909 	 * was not found, then the id was invalid.
2910 	 */
2911 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2912 	if (!asoc && params.sack_assoc_id > SCTP_ALL_ASSOC &&
2913 	    sctp_style(sk, UDP))
2914 		return -EINVAL;
2915 
2916 	if (asoc) {
2917 		sctp_apply_asoc_delayed_ack(&params, asoc);
2918 
2919 		return 0;
2920 	}
2921 
2922 	if (params.sack_assoc_id == SCTP_FUTURE_ASSOC ||
2923 	    params.sack_assoc_id == SCTP_ALL_ASSOC) {
2924 		if (params.sack_delay) {
2925 			sp->sackdelay = params.sack_delay;
2926 			sp->param_flags =
2927 				sctp_spp_sackdelay_enable(sp->param_flags);
2928 		}
2929 		if (params.sack_freq == 1) {
2930 			sp->param_flags =
2931 				sctp_spp_sackdelay_disable(sp->param_flags);
2932 		} else if (params.sack_freq > 1) {
2933 			sp->sackfreq = params.sack_freq;
2934 			sp->param_flags =
2935 				sctp_spp_sackdelay_enable(sp->param_flags);
2936 		}
2937 	}
2938 
2939 	if (params.sack_assoc_id == SCTP_CURRENT_ASSOC ||
2940 	    params.sack_assoc_id == SCTP_ALL_ASSOC)
2941 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2942 			sctp_apply_asoc_delayed_ack(&params, asoc);
2943 
2944 	return 0;
2945 }
2946 
2947 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2948  *
2949  * Applications can specify protocol parameters for the default association
2950  * initialization.  The option name argument to setsockopt() and getsockopt()
2951  * is SCTP_INITMSG.
2952  *
2953  * Setting initialization parameters is effective only on an unconnected
2954  * socket (for UDP-style sockets only future associations are effected
2955  * by the change).  With TCP-style sockets, this option is inherited by
2956  * sockets derived from a listener socket.
2957  */
2958 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2959 {
2960 	struct sctp_initmsg sinit;
2961 	struct sctp_sock *sp = sctp_sk(sk);
2962 
2963 	if (optlen != sizeof(struct sctp_initmsg))
2964 		return -EINVAL;
2965 	if (copy_from_user(&sinit, optval, optlen))
2966 		return -EFAULT;
2967 
2968 	if (sinit.sinit_num_ostreams)
2969 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2970 	if (sinit.sinit_max_instreams)
2971 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2972 	if (sinit.sinit_max_attempts)
2973 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2974 	if (sinit.sinit_max_init_timeo)
2975 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2976 
2977 	return 0;
2978 }
2979 
2980 /*
2981  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2982  *
2983  *   Applications that wish to use the sendto() system call may wish to
2984  *   specify a default set of parameters that would normally be supplied
2985  *   through the inclusion of ancillary data.  This socket option allows
2986  *   such an application to set the default sctp_sndrcvinfo structure.
2987  *   The application that wishes to use this socket option simply passes
2988  *   in to this call the sctp_sndrcvinfo structure defined in Section
2989  *   5.2.2) The input parameters accepted by this call include
2990  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2991  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2992  *   to this call if the caller is using the UDP model.
2993  */
2994 static int sctp_setsockopt_default_send_param(struct sock *sk,
2995 					      char __user *optval,
2996 					      unsigned int optlen)
2997 {
2998 	struct sctp_sock *sp = sctp_sk(sk);
2999 	struct sctp_association *asoc;
3000 	struct sctp_sndrcvinfo info;
3001 
3002 	if (optlen != sizeof(info))
3003 		return -EINVAL;
3004 	if (copy_from_user(&info, optval, optlen))
3005 		return -EFAULT;
3006 	if (info.sinfo_flags &
3007 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
3008 	      SCTP_ABORT | SCTP_EOF))
3009 		return -EINVAL;
3010 
3011 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
3012 	if (!asoc && info.sinfo_assoc_id > SCTP_ALL_ASSOC &&
3013 	    sctp_style(sk, UDP))
3014 		return -EINVAL;
3015 
3016 	if (asoc) {
3017 		asoc->default_stream = info.sinfo_stream;
3018 		asoc->default_flags = info.sinfo_flags;
3019 		asoc->default_ppid = info.sinfo_ppid;
3020 		asoc->default_context = info.sinfo_context;
3021 		asoc->default_timetolive = info.sinfo_timetolive;
3022 
3023 		return 0;
3024 	}
3025 
3026 	if (info.sinfo_assoc_id == SCTP_FUTURE_ASSOC ||
3027 	    info.sinfo_assoc_id == SCTP_ALL_ASSOC) {
3028 		sp->default_stream = info.sinfo_stream;
3029 		sp->default_flags = info.sinfo_flags;
3030 		sp->default_ppid = info.sinfo_ppid;
3031 		sp->default_context = info.sinfo_context;
3032 		sp->default_timetolive = info.sinfo_timetolive;
3033 	}
3034 
3035 	if (info.sinfo_assoc_id == SCTP_CURRENT_ASSOC ||
3036 	    info.sinfo_assoc_id == SCTP_ALL_ASSOC) {
3037 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
3038 			asoc->default_stream = info.sinfo_stream;
3039 			asoc->default_flags = info.sinfo_flags;
3040 			asoc->default_ppid = info.sinfo_ppid;
3041 			asoc->default_context = info.sinfo_context;
3042 			asoc->default_timetolive = info.sinfo_timetolive;
3043 		}
3044 	}
3045 
3046 	return 0;
3047 }
3048 
3049 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
3050  * (SCTP_DEFAULT_SNDINFO)
3051  */
3052 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
3053 					   char __user *optval,
3054 					   unsigned int optlen)
3055 {
3056 	struct sctp_sock *sp = sctp_sk(sk);
3057 	struct sctp_association *asoc;
3058 	struct sctp_sndinfo info;
3059 
3060 	if (optlen != sizeof(info))
3061 		return -EINVAL;
3062 	if (copy_from_user(&info, optval, optlen))
3063 		return -EFAULT;
3064 	if (info.snd_flags &
3065 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
3066 	      SCTP_ABORT | SCTP_EOF))
3067 		return -EINVAL;
3068 
3069 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
3070 	if (!asoc && info.snd_assoc_id > SCTP_ALL_ASSOC &&
3071 	    sctp_style(sk, UDP))
3072 		return -EINVAL;
3073 
3074 	if (asoc) {
3075 		asoc->default_stream = info.snd_sid;
3076 		asoc->default_flags = info.snd_flags;
3077 		asoc->default_ppid = info.snd_ppid;
3078 		asoc->default_context = info.snd_context;
3079 
3080 		return 0;
3081 	}
3082 
3083 	if (info.snd_assoc_id == SCTP_FUTURE_ASSOC ||
3084 	    info.snd_assoc_id == SCTP_ALL_ASSOC) {
3085 		sp->default_stream = info.snd_sid;
3086 		sp->default_flags = info.snd_flags;
3087 		sp->default_ppid = info.snd_ppid;
3088 		sp->default_context = info.snd_context;
3089 	}
3090 
3091 	if (info.snd_assoc_id == SCTP_CURRENT_ASSOC ||
3092 	    info.snd_assoc_id == SCTP_ALL_ASSOC) {
3093 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
3094 			asoc->default_stream = info.snd_sid;
3095 			asoc->default_flags = info.snd_flags;
3096 			asoc->default_ppid = info.snd_ppid;
3097 			asoc->default_context = info.snd_context;
3098 		}
3099 	}
3100 
3101 	return 0;
3102 }
3103 
3104 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
3105  *
3106  * Requests that the local SCTP stack use the enclosed peer address as
3107  * the association primary.  The enclosed address must be one of the
3108  * association peer's addresses.
3109  */
3110 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
3111 					unsigned int optlen)
3112 {
3113 	struct sctp_prim prim;
3114 	struct sctp_transport *trans;
3115 	struct sctp_af *af;
3116 	int err;
3117 
3118 	if (optlen != sizeof(struct sctp_prim))
3119 		return -EINVAL;
3120 
3121 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
3122 		return -EFAULT;
3123 
3124 	/* Allow security module to validate address but need address len. */
3125 	af = sctp_get_af_specific(prim.ssp_addr.ss_family);
3126 	if (!af)
3127 		return -EINVAL;
3128 
3129 	err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
3130 					 (struct sockaddr *)&prim.ssp_addr,
3131 					 af->sockaddr_len);
3132 	if (err)
3133 		return err;
3134 
3135 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
3136 	if (!trans)
3137 		return -EINVAL;
3138 
3139 	sctp_assoc_set_primary(trans->asoc, trans);
3140 
3141 	return 0;
3142 }
3143 
3144 /*
3145  * 7.1.5 SCTP_NODELAY
3146  *
3147  * Turn on/off any Nagle-like algorithm.  This means that packets are
3148  * generally sent as soon as possible and no unnecessary delays are
3149  * introduced, at the cost of more packets in the network.  Expects an
3150  *  integer boolean flag.
3151  */
3152 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
3153 				   unsigned int optlen)
3154 {
3155 	int val;
3156 
3157 	if (optlen < sizeof(int))
3158 		return -EINVAL;
3159 	if (get_user(val, (int __user *)optval))
3160 		return -EFAULT;
3161 
3162 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
3163 	return 0;
3164 }
3165 
3166 /*
3167  *
3168  * 7.1.1 SCTP_RTOINFO
3169  *
3170  * The protocol parameters used to initialize and bound retransmission
3171  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3172  * and modify these parameters.
3173  * All parameters are time values, in milliseconds.  A value of 0, when
3174  * modifying the parameters, indicates that the current value should not
3175  * be changed.
3176  *
3177  */
3178 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
3179 {
3180 	struct sctp_rtoinfo rtoinfo;
3181 	struct sctp_association *asoc;
3182 	unsigned long rto_min, rto_max;
3183 	struct sctp_sock *sp = sctp_sk(sk);
3184 
3185 	if (optlen != sizeof (struct sctp_rtoinfo))
3186 		return -EINVAL;
3187 
3188 	if (copy_from_user(&rtoinfo, optval, optlen))
3189 		return -EFAULT;
3190 
3191 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
3192 
3193 	/* Set the values to the specific association */
3194 	if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
3195 	    sctp_style(sk, UDP))
3196 		return -EINVAL;
3197 
3198 	rto_max = rtoinfo.srto_max;
3199 	rto_min = rtoinfo.srto_min;
3200 
3201 	if (rto_max)
3202 		rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
3203 	else
3204 		rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
3205 
3206 	if (rto_min)
3207 		rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
3208 	else
3209 		rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
3210 
3211 	if (rto_min > rto_max)
3212 		return -EINVAL;
3213 
3214 	if (asoc) {
3215 		if (rtoinfo.srto_initial != 0)
3216 			asoc->rto_initial =
3217 				msecs_to_jiffies(rtoinfo.srto_initial);
3218 		asoc->rto_max = rto_max;
3219 		asoc->rto_min = rto_min;
3220 	} else {
3221 		/* If there is no association or the association-id = 0
3222 		 * set the values to the endpoint.
3223 		 */
3224 		if (rtoinfo.srto_initial != 0)
3225 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
3226 		sp->rtoinfo.srto_max = rto_max;
3227 		sp->rtoinfo.srto_min = rto_min;
3228 	}
3229 
3230 	return 0;
3231 }
3232 
3233 /*
3234  *
3235  * 7.1.2 SCTP_ASSOCINFO
3236  *
3237  * This option is used to tune the maximum retransmission attempts
3238  * of the association.
3239  * Returns an error if the new association retransmission value is
3240  * greater than the sum of the retransmission value  of the peer.
3241  * See [SCTP] for more information.
3242  *
3243  */
3244 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
3245 {
3246 
3247 	struct sctp_assocparams assocparams;
3248 	struct sctp_association *asoc;
3249 
3250 	if (optlen != sizeof(struct sctp_assocparams))
3251 		return -EINVAL;
3252 	if (copy_from_user(&assocparams, optval, optlen))
3253 		return -EFAULT;
3254 
3255 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
3256 
3257 	if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
3258 	    sctp_style(sk, UDP))
3259 		return -EINVAL;
3260 
3261 	/* Set the values to the specific association */
3262 	if (asoc) {
3263 		if (assocparams.sasoc_asocmaxrxt != 0) {
3264 			__u32 path_sum = 0;
3265 			int   paths = 0;
3266 			struct sctp_transport *peer_addr;
3267 
3268 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3269 					transports) {
3270 				path_sum += peer_addr->pathmaxrxt;
3271 				paths++;
3272 			}
3273 
3274 			/* Only validate asocmaxrxt if we have more than
3275 			 * one path/transport.  We do this because path
3276 			 * retransmissions are only counted when we have more
3277 			 * then one path.
3278 			 */
3279 			if (paths > 1 &&
3280 			    assocparams.sasoc_asocmaxrxt > path_sum)
3281 				return -EINVAL;
3282 
3283 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3284 		}
3285 
3286 		if (assocparams.sasoc_cookie_life != 0)
3287 			asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3288 	} else {
3289 		/* Set the values to the endpoint */
3290 		struct sctp_sock *sp = sctp_sk(sk);
3291 
3292 		if (assocparams.sasoc_asocmaxrxt != 0)
3293 			sp->assocparams.sasoc_asocmaxrxt =
3294 						assocparams.sasoc_asocmaxrxt;
3295 		if (assocparams.sasoc_cookie_life != 0)
3296 			sp->assocparams.sasoc_cookie_life =
3297 						assocparams.sasoc_cookie_life;
3298 	}
3299 	return 0;
3300 }
3301 
3302 /*
3303  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3304  *
3305  * This socket option is a boolean flag which turns on or off mapped V4
3306  * addresses.  If this option is turned on and the socket is type
3307  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3308  * If this option is turned off, then no mapping will be done of V4
3309  * addresses and a user will receive both PF_INET6 and PF_INET type
3310  * addresses on the socket.
3311  */
3312 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3313 {
3314 	int val;
3315 	struct sctp_sock *sp = sctp_sk(sk);
3316 
3317 	if (optlen < sizeof(int))
3318 		return -EINVAL;
3319 	if (get_user(val, (int __user *)optval))
3320 		return -EFAULT;
3321 	if (val)
3322 		sp->v4mapped = 1;
3323 	else
3324 		sp->v4mapped = 0;
3325 
3326 	return 0;
3327 }
3328 
3329 /*
3330  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3331  * This option will get or set the maximum size to put in any outgoing
3332  * SCTP DATA chunk.  If a message is larger than this size it will be
3333  * fragmented by SCTP into the specified size.  Note that the underlying
3334  * SCTP implementation may fragment into smaller sized chunks when the
3335  * PMTU of the underlying association is smaller than the value set by
3336  * the user.  The default value for this option is '0' which indicates
3337  * the user is NOT limiting fragmentation and only the PMTU will effect
3338  * SCTP's choice of DATA chunk size.  Note also that values set larger
3339  * than the maximum size of an IP datagram will effectively let SCTP
3340  * control fragmentation (i.e. the same as setting this option to 0).
3341  *
3342  * The following structure is used to access and modify this parameter:
3343  *
3344  * struct sctp_assoc_value {
3345  *   sctp_assoc_t assoc_id;
3346  *   uint32_t assoc_value;
3347  * };
3348  *
3349  * assoc_id:  This parameter is ignored for one-to-one style sockets.
3350  *    For one-to-many style sockets this parameter indicates which
3351  *    association the user is performing an action upon.  Note that if
3352  *    this field's value is zero then the endpoints default value is
3353  *    changed (effecting future associations only).
3354  * assoc_value:  This parameter specifies the maximum size in bytes.
3355  */
3356 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3357 {
3358 	struct sctp_sock *sp = sctp_sk(sk);
3359 	struct sctp_assoc_value params;
3360 	struct sctp_association *asoc;
3361 	int val;
3362 
3363 	if (optlen == sizeof(int)) {
3364 		pr_warn_ratelimited(DEPRECATED
3365 				    "%s (pid %d) "
3366 				    "Use of int in maxseg socket option.\n"
3367 				    "Use struct sctp_assoc_value instead\n",
3368 				    current->comm, task_pid_nr(current));
3369 		if (copy_from_user(&val, optval, optlen))
3370 			return -EFAULT;
3371 		params.assoc_id = SCTP_FUTURE_ASSOC;
3372 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3373 		if (copy_from_user(&params, optval, optlen))
3374 			return -EFAULT;
3375 		val = params.assoc_value;
3376 	} else {
3377 		return -EINVAL;
3378 	}
3379 
3380 	asoc = sctp_id2assoc(sk, params.assoc_id);
3381 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
3382 	    sctp_style(sk, UDP))
3383 		return -EINVAL;
3384 
3385 	if (val) {
3386 		int min_len, max_len;
3387 		__u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) :
3388 				 sizeof(struct sctp_data_chunk);
3389 
3390 		min_len = sctp_min_frag_point(sp, datasize);
3391 		max_len = SCTP_MAX_CHUNK_LEN - datasize;
3392 
3393 		if (val < min_len || val > max_len)
3394 			return -EINVAL;
3395 	}
3396 
3397 	if (asoc) {
3398 		asoc->user_frag = val;
3399 		sctp_assoc_update_frag_point(asoc);
3400 	} else {
3401 		sp->user_frag = val;
3402 	}
3403 
3404 	return 0;
3405 }
3406 
3407 
3408 /*
3409  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3410  *
3411  *   Requests that the peer mark the enclosed address as the association
3412  *   primary. The enclosed address must be one of the association's
3413  *   locally bound addresses. The following structure is used to make a
3414  *   set primary request:
3415  */
3416 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3417 					     unsigned int optlen)
3418 {
3419 	struct net *net = sock_net(sk);
3420 	struct sctp_sock	*sp;
3421 	struct sctp_association	*asoc = NULL;
3422 	struct sctp_setpeerprim	prim;
3423 	struct sctp_chunk	*chunk;
3424 	struct sctp_af		*af;
3425 	int 			err;
3426 
3427 	sp = sctp_sk(sk);
3428 
3429 	if (!net->sctp.addip_enable)
3430 		return -EPERM;
3431 
3432 	if (optlen != sizeof(struct sctp_setpeerprim))
3433 		return -EINVAL;
3434 
3435 	if (copy_from_user(&prim, optval, optlen))
3436 		return -EFAULT;
3437 
3438 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3439 	if (!asoc)
3440 		return -EINVAL;
3441 
3442 	if (!asoc->peer.asconf_capable)
3443 		return -EPERM;
3444 
3445 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3446 		return -EPERM;
3447 
3448 	if (!sctp_state(asoc, ESTABLISHED))
3449 		return -ENOTCONN;
3450 
3451 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3452 	if (!af)
3453 		return -EINVAL;
3454 
3455 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3456 		return -EADDRNOTAVAIL;
3457 
3458 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3459 		return -EADDRNOTAVAIL;
3460 
3461 	/* Allow security module to validate address. */
3462 	err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR,
3463 					 (struct sockaddr *)&prim.sspp_addr,
3464 					 af->sockaddr_len);
3465 	if (err)
3466 		return err;
3467 
3468 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3469 	chunk = sctp_make_asconf_set_prim(asoc,
3470 					  (union sctp_addr *)&prim.sspp_addr);
3471 	if (!chunk)
3472 		return -ENOMEM;
3473 
3474 	err = sctp_send_asconf(asoc, chunk);
3475 
3476 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3477 
3478 	return err;
3479 }
3480 
3481 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3482 					    unsigned int optlen)
3483 {
3484 	struct sctp_setadaptation adaptation;
3485 
3486 	if (optlen != sizeof(struct sctp_setadaptation))
3487 		return -EINVAL;
3488 	if (copy_from_user(&adaptation, optval, optlen))
3489 		return -EFAULT;
3490 
3491 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3492 
3493 	return 0;
3494 }
3495 
3496 /*
3497  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3498  *
3499  * The context field in the sctp_sndrcvinfo structure is normally only
3500  * used when a failed message is retrieved holding the value that was
3501  * sent down on the actual send call.  This option allows the setting of
3502  * a default context on an association basis that will be received on
3503  * reading messages from the peer.  This is especially helpful in the
3504  * one-2-many model for an application to keep some reference to an
3505  * internal state machine that is processing messages on the
3506  * association.  Note that the setting of this value only effects
3507  * received messages from the peer and does not effect the value that is
3508  * saved with outbound messages.
3509  */
3510 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3511 				   unsigned int optlen)
3512 {
3513 	struct sctp_sock *sp = sctp_sk(sk);
3514 	struct sctp_assoc_value params;
3515 	struct sctp_association *asoc;
3516 
3517 	if (optlen != sizeof(struct sctp_assoc_value))
3518 		return -EINVAL;
3519 	if (copy_from_user(&params, optval, optlen))
3520 		return -EFAULT;
3521 
3522 	asoc = sctp_id2assoc(sk, params.assoc_id);
3523 	if (!asoc && params.assoc_id > SCTP_ALL_ASSOC &&
3524 	    sctp_style(sk, UDP))
3525 		return -EINVAL;
3526 
3527 	if (asoc) {
3528 		asoc->default_rcv_context = params.assoc_value;
3529 
3530 		return 0;
3531 	}
3532 
3533 	if (params.assoc_id == SCTP_FUTURE_ASSOC ||
3534 	    params.assoc_id == SCTP_ALL_ASSOC)
3535 		sp->default_rcv_context = params.assoc_value;
3536 
3537 	if (params.assoc_id == SCTP_CURRENT_ASSOC ||
3538 	    params.assoc_id == SCTP_ALL_ASSOC)
3539 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3540 			asoc->default_rcv_context = params.assoc_value;
3541 
3542 	return 0;
3543 }
3544 
3545 /*
3546  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3547  *
3548  * This options will at a minimum specify if the implementation is doing
3549  * fragmented interleave.  Fragmented interleave, for a one to many
3550  * socket, is when subsequent calls to receive a message may return
3551  * parts of messages from different associations.  Some implementations
3552  * may allow you to turn this value on or off.  If so, when turned off,
3553  * no fragment interleave will occur (which will cause a head of line
3554  * blocking amongst multiple associations sharing the same one to many
3555  * socket).  When this option is turned on, then each receive call may
3556  * come from a different association (thus the user must receive data
3557  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3558  * association each receive belongs to.
3559  *
3560  * This option takes a boolean value.  A non-zero value indicates that
3561  * fragmented interleave is on.  A value of zero indicates that
3562  * fragmented interleave is off.
3563  *
3564  * Note that it is important that an implementation that allows this
3565  * option to be turned on, have it off by default.  Otherwise an unaware
3566  * application using the one to many model may become confused and act
3567  * incorrectly.
3568  */
3569 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3570 					       char __user *optval,
3571 					       unsigned int optlen)
3572 {
3573 	int val;
3574 
3575 	if (optlen != sizeof(int))
3576 		return -EINVAL;
3577 	if (get_user(val, (int __user *)optval))
3578 		return -EFAULT;
3579 
3580 	sctp_sk(sk)->frag_interleave = !!val;
3581 
3582 	if (!sctp_sk(sk)->frag_interleave)
3583 		sctp_sk(sk)->strm_interleave = 0;
3584 
3585 	return 0;
3586 }
3587 
3588 /*
3589  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3590  *       (SCTP_PARTIAL_DELIVERY_POINT)
3591  *
3592  * This option will set or get the SCTP partial delivery point.  This
3593  * point is the size of a message where the partial delivery API will be
3594  * invoked to help free up rwnd space for the peer.  Setting this to a
3595  * lower value will cause partial deliveries to happen more often.  The
3596  * calls argument is an integer that sets or gets the partial delivery
3597  * point.  Note also that the call will fail if the user attempts to set
3598  * this value larger than the socket receive buffer size.
3599  *
3600  * Note that any single message having a length smaller than or equal to
3601  * the SCTP partial delivery point will be delivered in one single read
3602  * call as long as the user provided buffer is large enough to hold the
3603  * message.
3604  */
3605 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3606 						  char __user *optval,
3607 						  unsigned int optlen)
3608 {
3609 	u32 val;
3610 
3611 	if (optlen != sizeof(u32))
3612 		return -EINVAL;
3613 	if (get_user(val, (int __user *)optval))
3614 		return -EFAULT;
3615 
3616 	/* Note: We double the receive buffer from what the user sets
3617 	 * it to be, also initial rwnd is based on rcvbuf/2.
3618 	 */
3619 	if (val > (sk->sk_rcvbuf >> 1))
3620 		return -EINVAL;
3621 
3622 	sctp_sk(sk)->pd_point = val;
3623 
3624 	return 0; /* is this the right error code? */
3625 }
3626 
3627 /*
3628  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3629  *
3630  * This option will allow a user to change the maximum burst of packets
3631  * that can be emitted by this association.  Note that the default value
3632  * is 4, and some implementations may restrict this setting so that it
3633  * can only be lowered.
3634  *
3635  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3636  * future associations inheriting the socket value.
3637  */
3638 static int sctp_setsockopt_maxburst(struct sock *sk,
3639 				    char __user *optval,
3640 				    unsigned int optlen)
3641 {
3642 	struct sctp_sock *sp = sctp_sk(sk);
3643 	struct sctp_assoc_value params;
3644 	struct sctp_association *asoc;
3645 
3646 	if (optlen == sizeof(int)) {
3647 		pr_warn_ratelimited(DEPRECATED
3648 				    "%s (pid %d) "
3649 				    "Use of int in max_burst socket option deprecated.\n"
3650 				    "Use struct sctp_assoc_value instead\n",
3651 				    current->comm, task_pid_nr(current));
3652 		if (copy_from_user(&params.assoc_value, optval, optlen))
3653 			return -EFAULT;
3654 		params.assoc_id = SCTP_FUTURE_ASSOC;
3655 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3656 		if (copy_from_user(&params, optval, optlen))
3657 			return -EFAULT;
3658 	} else
3659 		return -EINVAL;
3660 
3661 	asoc = sctp_id2assoc(sk, params.assoc_id);
3662 	if (!asoc && params.assoc_id > SCTP_ALL_ASSOC &&
3663 	    sctp_style(sk, UDP))
3664 		return -EINVAL;
3665 
3666 	if (asoc) {
3667 		asoc->max_burst = params.assoc_value;
3668 
3669 		return 0;
3670 	}
3671 
3672 	if (params.assoc_id == SCTP_FUTURE_ASSOC ||
3673 	    params.assoc_id == SCTP_ALL_ASSOC)
3674 		sp->max_burst = params.assoc_value;
3675 
3676 	if (params.assoc_id == SCTP_CURRENT_ASSOC ||
3677 	    params.assoc_id == SCTP_ALL_ASSOC)
3678 		list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3679 			asoc->max_burst = params.assoc_value;
3680 
3681 	return 0;
3682 }
3683 
3684 /*
3685  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3686  *
3687  * This set option adds a chunk type that the user is requesting to be
3688  * received only in an authenticated way.  Changes to the list of chunks
3689  * will only effect future associations on the socket.
3690  */
3691 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3692 				      char __user *optval,
3693 				      unsigned int optlen)
3694 {
3695 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3696 	struct sctp_authchunk val;
3697 
3698 	if (!ep->auth_enable)
3699 		return -EACCES;
3700 
3701 	if (optlen != sizeof(struct sctp_authchunk))
3702 		return -EINVAL;
3703 	if (copy_from_user(&val, optval, optlen))
3704 		return -EFAULT;
3705 
3706 	switch (val.sauth_chunk) {
3707 	case SCTP_CID_INIT:
3708 	case SCTP_CID_INIT_ACK:
3709 	case SCTP_CID_SHUTDOWN_COMPLETE:
3710 	case SCTP_CID_AUTH:
3711 		return -EINVAL;
3712 	}
3713 
3714 	/* add this chunk id to the endpoint */
3715 	return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3716 }
3717 
3718 /*
3719  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3720  *
3721  * This option gets or sets the list of HMAC algorithms that the local
3722  * endpoint requires the peer to use.
3723  */
3724 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3725 				      char __user *optval,
3726 				      unsigned int optlen)
3727 {
3728 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3729 	struct sctp_hmacalgo *hmacs;
3730 	u32 idents;
3731 	int err;
3732 
3733 	if (!ep->auth_enable)
3734 		return -EACCES;
3735 
3736 	if (optlen < sizeof(struct sctp_hmacalgo))
3737 		return -EINVAL;
3738 	optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
3739 					     SCTP_AUTH_NUM_HMACS * sizeof(u16));
3740 
3741 	hmacs = memdup_user(optval, optlen);
3742 	if (IS_ERR(hmacs))
3743 		return PTR_ERR(hmacs);
3744 
3745 	idents = hmacs->shmac_num_idents;
3746 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3747 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3748 		err = -EINVAL;
3749 		goto out;
3750 	}
3751 
3752 	err = sctp_auth_ep_set_hmacs(ep, hmacs);
3753 out:
3754 	kfree(hmacs);
3755 	return err;
3756 }
3757 
3758 /*
3759  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3760  *
3761  * This option will set a shared secret key which is used to build an
3762  * association shared key.
3763  */
3764 static int sctp_setsockopt_auth_key(struct sock *sk,
3765 				    char __user *optval,
3766 				    unsigned int optlen)
3767 {
3768 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3769 	struct sctp_authkey *authkey;
3770 	struct sctp_association *asoc;
3771 	int ret = -EINVAL;
3772 
3773 	if (!ep->auth_enable)
3774 		return -EACCES;
3775 
3776 	if (optlen <= sizeof(struct sctp_authkey))
3777 		return -EINVAL;
3778 	/* authkey->sca_keylength is u16, so optlen can't be bigger than
3779 	 * this.
3780 	 */
3781 	optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey));
3782 
3783 	authkey = memdup_user(optval, optlen);
3784 	if (IS_ERR(authkey))
3785 		return PTR_ERR(authkey);
3786 
3787 	if (authkey->sca_keylength > optlen - sizeof(*authkey))
3788 		goto out;
3789 
3790 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3791 	if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC &&
3792 	    sctp_style(sk, UDP))
3793 		goto out;
3794 
3795 	if (asoc) {
3796 		ret = sctp_auth_set_key(ep, asoc, authkey);
3797 		goto out;
3798 	}
3799 
3800 	if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC ||
3801 	    authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3802 		ret = sctp_auth_set_key(ep, asoc, authkey);
3803 		if (ret)
3804 			goto out;
3805 	}
3806 
3807 	ret = 0;
3808 
3809 	if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC ||
3810 	    authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3811 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3812 			int res = sctp_auth_set_key(ep, asoc, authkey);
3813 
3814 			if (res && !ret)
3815 				ret = res;
3816 		}
3817 	}
3818 
3819 out:
3820 	kzfree(authkey);
3821 	return ret;
3822 }
3823 
3824 /*
3825  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3826  *
3827  * This option will get or set the active shared key to be used to build
3828  * the association shared key.
3829  */
3830 static int sctp_setsockopt_active_key(struct sock *sk,
3831 				      char __user *optval,
3832 				      unsigned int optlen)
3833 {
3834 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3835 	struct sctp_association *asoc;
3836 	struct sctp_authkeyid val;
3837 	int ret = 0;
3838 
3839 	if (!ep->auth_enable)
3840 		return -EACCES;
3841 
3842 	if (optlen != sizeof(struct sctp_authkeyid))
3843 		return -EINVAL;
3844 	if (copy_from_user(&val, optval, optlen))
3845 		return -EFAULT;
3846 
3847 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3848 	if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC &&
3849 	    sctp_style(sk, UDP))
3850 		return -EINVAL;
3851 
3852 	if (asoc)
3853 		return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3854 
3855 	if (val.scact_assoc_id == SCTP_FUTURE_ASSOC ||
3856 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3857 		ret = sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3858 		if (ret)
3859 			return ret;
3860 	}
3861 
3862 	if (val.scact_assoc_id == SCTP_CURRENT_ASSOC ||
3863 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3864 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3865 			int res = sctp_auth_set_active_key(ep, asoc,
3866 							   val.scact_keynumber);
3867 
3868 			if (res && !ret)
3869 				ret = res;
3870 		}
3871 	}
3872 
3873 	return ret;
3874 }
3875 
3876 /*
3877  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3878  *
3879  * This set option will delete a shared secret key from use.
3880  */
3881 static int sctp_setsockopt_del_key(struct sock *sk,
3882 				   char __user *optval,
3883 				   unsigned int optlen)
3884 {
3885 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3886 	struct sctp_association *asoc;
3887 	struct sctp_authkeyid val;
3888 	int ret = 0;
3889 
3890 	if (!ep->auth_enable)
3891 		return -EACCES;
3892 
3893 	if (optlen != sizeof(struct sctp_authkeyid))
3894 		return -EINVAL;
3895 	if (copy_from_user(&val, optval, optlen))
3896 		return -EFAULT;
3897 
3898 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3899 	if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC &&
3900 	    sctp_style(sk, UDP))
3901 		return -EINVAL;
3902 
3903 	if (asoc)
3904 		return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3905 
3906 	if (val.scact_assoc_id == SCTP_FUTURE_ASSOC ||
3907 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3908 		ret = sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3909 		if (ret)
3910 			return ret;
3911 	}
3912 
3913 	if (val.scact_assoc_id == SCTP_CURRENT_ASSOC ||
3914 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3915 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3916 			int res = sctp_auth_del_key_id(ep, asoc,
3917 						       val.scact_keynumber);
3918 
3919 			if (res && !ret)
3920 				ret = res;
3921 		}
3922 	}
3923 
3924 	return ret;
3925 }
3926 
3927 /*
3928  * 8.3.4  Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)
3929  *
3930  * This set option will deactivate a shared secret key.
3931  */
3932 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval,
3933 					  unsigned int optlen)
3934 {
3935 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3936 	struct sctp_association *asoc;
3937 	struct sctp_authkeyid val;
3938 	int ret = 0;
3939 
3940 	if (!ep->auth_enable)
3941 		return -EACCES;
3942 
3943 	if (optlen != sizeof(struct sctp_authkeyid))
3944 		return -EINVAL;
3945 	if (copy_from_user(&val, optval, optlen))
3946 		return -EFAULT;
3947 
3948 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3949 	if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC &&
3950 	    sctp_style(sk, UDP))
3951 		return -EINVAL;
3952 
3953 	if (asoc)
3954 		return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber);
3955 
3956 	if (val.scact_assoc_id == SCTP_FUTURE_ASSOC ||
3957 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3958 		ret = sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber);
3959 		if (ret)
3960 			return ret;
3961 	}
3962 
3963 	if (val.scact_assoc_id == SCTP_CURRENT_ASSOC ||
3964 	    val.scact_assoc_id == SCTP_ALL_ASSOC) {
3965 		list_for_each_entry(asoc, &ep->asocs, asocs) {
3966 			int res = sctp_auth_deact_key_id(ep, asoc,
3967 							 val.scact_keynumber);
3968 
3969 			if (res && !ret)
3970 				ret = res;
3971 		}
3972 	}
3973 
3974 	return ret;
3975 }
3976 
3977 /*
3978  * 8.1.23 SCTP_AUTO_ASCONF
3979  *
3980  * This option will enable or disable the use of the automatic generation of
3981  * ASCONF chunks to add and delete addresses to an existing association.  Note
3982  * that this option has two caveats namely: a) it only affects sockets that
3983  * are bound to all addresses available to the SCTP stack, and b) the system
3984  * administrator may have an overriding control that turns the ASCONF feature
3985  * off no matter what setting the socket option may have.
3986  * This option expects an integer boolean flag, where a non-zero value turns on
3987  * the option, and a zero value turns off the option.
3988  * Note. In this implementation, socket operation overrides default parameter
3989  * being set by sysctl as well as FreeBSD implementation
3990  */
3991 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3992 					unsigned int optlen)
3993 {
3994 	int val;
3995 	struct sctp_sock *sp = sctp_sk(sk);
3996 
3997 	if (optlen < sizeof(int))
3998 		return -EINVAL;
3999 	if (get_user(val, (int __user *)optval))
4000 		return -EFAULT;
4001 	if (!sctp_is_ep_boundall(sk) && val)
4002 		return -EINVAL;
4003 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
4004 		return 0;
4005 
4006 	spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
4007 	if (val == 0 && sp->do_auto_asconf) {
4008 		list_del(&sp->auto_asconf_list);
4009 		sp->do_auto_asconf = 0;
4010 	} else if (val && !sp->do_auto_asconf) {
4011 		list_add_tail(&sp->auto_asconf_list,
4012 		    &sock_net(sk)->sctp.auto_asconf_splist);
4013 		sp->do_auto_asconf = 1;
4014 	}
4015 	spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
4016 	return 0;
4017 }
4018 
4019 /*
4020  * SCTP_PEER_ADDR_THLDS
4021  *
4022  * This option allows us to alter the partially failed threshold for one or all
4023  * transports in an association.  See Section 6.1 of:
4024  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
4025  */
4026 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
4027 					    char __user *optval,
4028 					    unsigned int optlen)
4029 {
4030 	struct sctp_paddrthlds val;
4031 	struct sctp_transport *trans;
4032 	struct sctp_association *asoc;
4033 
4034 	if (optlen < sizeof(struct sctp_paddrthlds))
4035 		return -EINVAL;
4036 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
4037 			   sizeof(struct sctp_paddrthlds)))
4038 		return -EFAULT;
4039 
4040 	if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
4041 		trans = sctp_addr_id2transport(sk, &val.spt_address,
4042 					       val.spt_assoc_id);
4043 		if (!trans)
4044 			return -ENOENT;
4045 
4046 		if (val.spt_pathmaxrxt)
4047 			trans->pathmaxrxt = val.spt_pathmaxrxt;
4048 		trans->pf_retrans = val.spt_pathpfthld;
4049 
4050 		return 0;
4051 	}
4052 
4053 	asoc = sctp_id2assoc(sk, val.spt_assoc_id);
4054 	if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC &&
4055 	    sctp_style(sk, UDP))
4056 		return -EINVAL;
4057 
4058 	if (asoc) {
4059 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
4060 				    transports) {
4061 			if (val.spt_pathmaxrxt)
4062 				trans->pathmaxrxt = val.spt_pathmaxrxt;
4063 			trans->pf_retrans = val.spt_pathpfthld;
4064 		}
4065 
4066 		if (val.spt_pathmaxrxt)
4067 			asoc->pathmaxrxt = val.spt_pathmaxrxt;
4068 		asoc->pf_retrans = val.spt_pathpfthld;
4069 	} else {
4070 		struct sctp_sock *sp = sctp_sk(sk);
4071 
4072 		if (val.spt_pathmaxrxt)
4073 			sp->pathmaxrxt = val.spt_pathmaxrxt;
4074 		sp->pf_retrans = val.spt_pathpfthld;
4075 	}
4076 
4077 	return 0;
4078 }
4079 
4080 static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
4081 				       char __user *optval,
4082 				       unsigned int optlen)
4083 {
4084 	int val;
4085 
4086 	if (optlen < sizeof(int))
4087 		return -EINVAL;
4088 	if (get_user(val, (int __user *) optval))
4089 		return -EFAULT;
4090 
4091 	sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
4092 
4093 	return 0;
4094 }
4095 
4096 static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
4097 				       char __user *optval,
4098 				       unsigned int optlen)
4099 {
4100 	int val;
4101 
4102 	if (optlen < sizeof(int))
4103 		return -EINVAL;
4104 	if (get_user(val, (int __user *) optval))
4105 		return -EFAULT;
4106 
4107 	sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
4108 
4109 	return 0;
4110 }
4111 
4112 static int sctp_setsockopt_pr_supported(struct sock *sk,
4113 					char __user *optval,
4114 					unsigned int optlen)
4115 {
4116 	struct sctp_assoc_value params;
4117 	struct sctp_association *asoc;
4118 
4119 	if (optlen != sizeof(params))
4120 		return -EINVAL;
4121 
4122 	if (copy_from_user(&params, optval, optlen))
4123 		return -EFAULT;
4124 
4125 	asoc = sctp_id2assoc(sk, params.assoc_id);
4126 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
4127 	    sctp_style(sk, UDP))
4128 		return -EINVAL;
4129 
4130 	sctp_sk(sk)->ep->prsctp_enable = !!params.assoc_value;
4131 
4132 	return 0;
4133 }
4134 
4135 static int sctp_setsockopt_default_prinfo(struct sock *sk,
4136 					  char __user *optval,
4137 					  unsigned int optlen)
4138 {
4139 	struct sctp_sock *sp = sctp_sk(sk);
4140 	struct sctp_default_prinfo info;
4141 	struct sctp_association *asoc;
4142 	int retval = -EINVAL;
4143 
4144 	if (optlen != sizeof(info))
4145 		goto out;
4146 
4147 	if (copy_from_user(&info, optval, sizeof(info))) {
4148 		retval = -EFAULT;
4149 		goto out;
4150 	}
4151 
4152 	if (info.pr_policy & ~SCTP_PR_SCTP_MASK)
4153 		goto out;
4154 
4155 	if (info.pr_policy == SCTP_PR_SCTP_NONE)
4156 		info.pr_value = 0;
4157 
4158 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
4159 	if (!asoc && info.pr_assoc_id > SCTP_ALL_ASSOC &&
4160 	    sctp_style(sk, UDP))
4161 		goto out;
4162 
4163 	retval = 0;
4164 
4165 	if (asoc) {
4166 		SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
4167 		asoc->default_timetolive = info.pr_value;
4168 		goto out;
4169 	}
4170 
4171 	if (info.pr_assoc_id == SCTP_FUTURE_ASSOC ||
4172 	    info.pr_assoc_id == SCTP_ALL_ASSOC) {
4173 		SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy);
4174 		sp->default_timetolive = info.pr_value;
4175 	}
4176 
4177 	if (info.pr_assoc_id == SCTP_CURRENT_ASSOC ||
4178 	    info.pr_assoc_id == SCTP_ALL_ASSOC) {
4179 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4180 			SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
4181 			asoc->default_timetolive = info.pr_value;
4182 		}
4183 	}
4184 
4185 out:
4186 	return retval;
4187 }
4188 
4189 static int sctp_setsockopt_reconfig_supported(struct sock *sk,
4190 					      char __user *optval,
4191 					      unsigned int optlen)
4192 {
4193 	struct sctp_assoc_value params;
4194 	struct sctp_association *asoc;
4195 	int retval = -EINVAL;
4196 
4197 	if (optlen != sizeof(params))
4198 		goto out;
4199 
4200 	if (copy_from_user(&params, optval, optlen)) {
4201 		retval = -EFAULT;
4202 		goto out;
4203 	}
4204 
4205 	asoc = sctp_id2assoc(sk, params.assoc_id);
4206 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
4207 	    sctp_style(sk, UDP))
4208 		goto out;
4209 
4210 	if (asoc)
4211 		asoc->reconf_enable = !!params.assoc_value;
4212 	else
4213 		sctp_sk(sk)->ep->reconf_enable = !!params.assoc_value;
4214 
4215 	retval = 0;
4216 
4217 out:
4218 	return retval;
4219 }
4220 
4221 static int sctp_setsockopt_enable_strreset(struct sock *sk,
4222 					   char __user *optval,
4223 					   unsigned int optlen)
4224 {
4225 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
4226 	struct sctp_assoc_value params;
4227 	struct sctp_association *asoc;
4228 	int retval = -EINVAL;
4229 
4230 	if (optlen != sizeof(params))
4231 		goto out;
4232 
4233 	if (copy_from_user(&params, optval, optlen)) {
4234 		retval = -EFAULT;
4235 		goto out;
4236 	}
4237 
4238 	if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
4239 		goto out;
4240 
4241 	asoc = sctp_id2assoc(sk, params.assoc_id);
4242 	if (!asoc && params.assoc_id > SCTP_ALL_ASSOC &&
4243 	    sctp_style(sk, UDP))
4244 		goto out;
4245 
4246 	retval = 0;
4247 
4248 	if (asoc) {
4249 		asoc->strreset_enable = params.assoc_value;
4250 		goto out;
4251 	}
4252 
4253 	if (params.assoc_id == SCTP_FUTURE_ASSOC ||
4254 	    params.assoc_id == SCTP_ALL_ASSOC)
4255 		ep->strreset_enable = params.assoc_value;
4256 
4257 	if (params.assoc_id == SCTP_CURRENT_ASSOC ||
4258 	    params.assoc_id == SCTP_ALL_ASSOC)
4259 		list_for_each_entry(asoc, &ep->asocs, asocs)
4260 			asoc->strreset_enable = params.assoc_value;
4261 
4262 out:
4263 	return retval;
4264 }
4265 
4266 static int sctp_setsockopt_reset_streams(struct sock *sk,
4267 					 char __user *optval,
4268 					 unsigned int optlen)
4269 {
4270 	struct sctp_reset_streams *params;
4271 	struct sctp_association *asoc;
4272 	int retval = -EINVAL;
4273 
4274 	if (optlen < sizeof(*params))
4275 		return -EINVAL;
4276 	/* srs_number_streams is u16, so optlen can't be bigger than this. */
4277 	optlen = min_t(unsigned int, optlen, USHRT_MAX +
4278 					     sizeof(__u16) * sizeof(*params));
4279 
4280 	params = memdup_user(optval, optlen);
4281 	if (IS_ERR(params))
4282 		return PTR_ERR(params);
4283 
4284 	if (params->srs_number_streams * sizeof(__u16) >
4285 	    optlen - sizeof(*params))
4286 		goto out;
4287 
4288 	asoc = sctp_id2assoc(sk, params->srs_assoc_id);
4289 	if (!asoc)
4290 		goto out;
4291 
4292 	retval = sctp_send_reset_streams(asoc, params);
4293 
4294 out:
4295 	kfree(params);
4296 	return retval;
4297 }
4298 
4299 static int sctp_setsockopt_reset_assoc(struct sock *sk,
4300 				       char __user *optval,
4301 				       unsigned int optlen)
4302 {
4303 	struct sctp_association *asoc;
4304 	sctp_assoc_t associd;
4305 	int retval = -EINVAL;
4306 
4307 	if (optlen != sizeof(associd))
4308 		goto out;
4309 
4310 	if (copy_from_user(&associd, optval, optlen)) {
4311 		retval = -EFAULT;
4312 		goto out;
4313 	}
4314 
4315 	asoc = sctp_id2assoc(sk, associd);
4316 	if (!asoc)
4317 		goto out;
4318 
4319 	retval = sctp_send_reset_assoc(asoc);
4320 
4321 out:
4322 	return retval;
4323 }
4324 
4325 static int sctp_setsockopt_add_streams(struct sock *sk,
4326 				       char __user *optval,
4327 				       unsigned int optlen)
4328 {
4329 	struct sctp_association *asoc;
4330 	struct sctp_add_streams params;
4331 	int retval = -EINVAL;
4332 
4333 	if (optlen != sizeof(params))
4334 		goto out;
4335 
4336 	if (copy_from_user(&params, optval, optlen)) {
4337 		retval = -EFAULT;
4338 		goto out;
4339 	}
4340 
4341 	asoc = sctp_id2assoc(sk, params.sas_assoc_id);
4342 	if (!asoc)
4343 		goto out;
4344 
4345 	retval = sctp_send_add_streams(asoc, &params);
4346 
4347 out:
4348 	return retval;
4349 }
4350 
4351 static int sctp_setsockopt_scheduler(struct sock *sk,
4352 				     char __user *optval,
4353 				     unsigned int optlen)
4354 {
4355 	struct sctp_sock *sp = sctp_sk(sk);
4356 	struct sctp_association *asoc;
4357 	struct sctp_assoc_value params;
4358 	int retval = 0;
4359 
4360 	if (optlen < sizeof(params))
4361 		return -EINVAL;
4362 
4363 	optlen = sizeof(params);
4364 	if (copy_from_user(&params, optval, optlen))
4365 		return -EFAULT;
4366 
4367 	if (params.assoc_value > SCTP_SS_MAX)
4368 		return -EINVAL;
4369 
4370 	asoc = sctp_id2assoc(sk, params.assoc_id);
4371 	if (!asoc && params.assoc_id > SCTP_ALL_ASSOC &&
4372 	    sctp_style(sk, UDP))
4373 		return -EINVAL;
4374 
4375 	if (asoc)
4376 		return sctp_sched_set_sched(asoc, params.assoc_value);
4377 
4378 	if (params.assoc_id == SCTP_FUTURE_ASSOC ||
4379 	    params.assoc_id == SCTP_ALL_ASSOC)
4380 		sp->default_ss = params.assoc_value;
4381 
4382 	if (params.assoc_id == SCTP_CURRENT_ASSOC ||
4383 	    params.assoc_id == SCTP_ALL_ASSOC) {
4384 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4385 			int ret = sctp_sched_set_sched(asoc,
4386 						       params.assoc_value);
4387 
4388 			if (ret && !retval)
4389 				retval = ret;
4390 		}
4391 	}
4392 
4393 	return retval;
4394 }
4395 
4396 static int sctp_setsockopt_scheduler_value(struct sock *sk,
4397 					   char __user *optval,
4398 					   unsigned int optlen)
4399 {
4400 	struct sctp_stream_value params;
4401 	struct sctp_association *asoc;
4402 	int retval = -EINVAL;
4403 
4404 	if (optlen < sizeof(params))
4405 		goto out;
4406 
4407 	optlen = sizeof(params);
4408 	if (copy_from_user(&params, optval, optlen)) {
4409 		retval = -EFAULT;
4410 		goto out;
4411 	}
4412 
4413 	asoc = sctp_id2assoc(sk, params.assoc_id);
4414 	if (!asoc && params.assoc_id != SCTP_CURRENT_ASSOC &&
4415 	    sctp_style(sk, UDP))
4416 		goto out;
4417 
4418 	if (asoc) {
4419 		retval = sctp_sched_set_value(asoc, params.stream_id,
4420 					      params.stream_value, GFP_KERNEL);
4421 		goto out;
4422 	}
4423 
4424 	retval = 0;
4425 
4426 	list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) {
4427 		int ret = sctp_sched_set_value(asoc, params.stream_id,
4428 					       params.stream_value, GFP_KERNEL);
4429 		if (ret && !retval) /* try to return the 1st error. */
4430 			retval = ret;
4431 	}
4432 
4433 out:
4434 	return retval;
4435 }
4436 
4437 static int sctp_setsockopt_interleaving_supported(struct sock *sk,
4438 						  char __user *optval,
4439 						  unsigned int optlen)
4440 {
4441 	struct sctp_sock *sp = sctp_sk(sk);
4442 	struct sctp_assoc_value params;
4443 	struct sctp_association *asoc;
4444 	int retval = -EINVAL;
4445 
4446 	if (optlen < sizeof(params))
4447 		goto out;
4448 
4449 	optlen = sizeof(params);
4450 	if (copy_from_user(&params, optval, optlen)) {
4451 		retval = -EFAULT;
4452 		goto out;
4453 	}
4454 
4455 	asoc = sctp_id2assoc(sk, params.assoc_id);
4456 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
4457 	    sctp_style(sk, UDP))
4458 		goto out;
4459 
4460 	if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) {
4461 		retval = -EPERM;
4462 		goto out;
4463 	}
4464 
4465 	sp->strm_interleave = !!params.assoc_value;
4466 
4467 	retval = 0;
4468 
4469 out:
4470 	return retval;
4471 }
4472 
4473 static int sctp_setsockopt_reuse_port(struct sock *sk, char __user *optval,
4474 				      unsigned int optlen)
4475 {
4476 	int val;
4477 
4478 	if (!sctp_style(sk, TCP))
4479 		return -EOPNOTSUPP;
4480 
4481 	if (sctp_sk(sk)->ep->base.bind_addr.port)
4482 		return -EFAULT;
4483 
4484 	if (optlen < sizeof(int))
4485 		return -EINVAL;
4486 
4487 	if (get_user(val, (int __user *)optval))
4488 		return -EFAULT;
4489 
4490 	sctp_sk(sk)->reuse = !!val;
4491 
4492 	return 0;
4493 }
4494 
4495 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param,
4496 					struct sctp_association *asoc)
4497 {
4498 	struct sctp_ulpevent *event;
4499 
4500 	sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on);
4501 
4502 	if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) {
4503 		if (sctp_outq_is_empty(&asoc->outqueue)) {
4504 			event = sctp_ulpevent_make_sender_dry_event(asoc,
4505 					GFP_USER | __GFP_NOWARN);
4506 			if (!event)
4507 				return -ENOMEM;
4508 
4509 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
4510 		}
4511 	}
4512 
4513 	return 0;
4514 }
4515 
4516 static int sctp_setsockopt_event(struct sock *sk, char __user *optval,
4517 				 unsigned int optlen)
4518 {
4519 	struct sctp_sock *sp = sctp_sk(sk);
4520 	struct sctp_association *asoc;
4521 	struct sctp_event param;
4522 	int retval = 0;
4523 
4524 	if (optlen < sizeof(param))
4525 		return -EINVAL;
4526 
4527 	optlen = sizeof(param);
4528 	if (copy_from_user(&param, optval, optlen))
4529 		return -EFAULT;
4530 
4531 	if (param.se_type < SCTP_SN_TYPE_BASE ||
4532 	    param.se_type > SCTP_SN_TYPE_MAX)
4533 		return -EINVAL;
4534 
4535 	asoc = sctp_id2assoc(sk, param.se_assoc_id);
4536 	if (!asoc && param.se_assoc_id > SCTP_ALL_ASSOC &&
4537 	    sctp_style(sk, UDP))
4538 		return -EINVAL;
4539 
4540 	if (asoc)
4541 		return sctp_assoc_ulpevent_type_set(&param, asoc);
4542 
4543 	if (param.se_assoc_id == SCTP_FUTURE_ASSOC ||
4544 	    param.se_assoc_id == SCTP_ALL_ASSOC)
4545 		sctp_ulpevent_type_set(&sp->subscribe,
4546 				       param.se_type, param.se_on);
4547 
4548 	if (param.se_assoc_id == SCTP_CURRENT_ASSOC ||
4549 	    param.se_assoc_id == SCTP_ALL_ASSOC) {
4550 		list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4551 			int ret = sctp_assoc_ulpevent_type_set(&param, asoc);
4552 
4553 			if (ret && !retval)
4554 				retval = ret;
4555 		}
4556 	}
4557 
4558 	return retval;
4559 }
4560 
4561 /* API 6.2 setsockopt(), getsockopt()
4562  *
4563  * Applications use setsockopt() and getsockopt() to set or retrieve
4564  * socket options.  Socket options are used to change the default
4565  * behavior of sockets calls.  They are described in Section 7.
4566  *
4567  * The syntax is:
4568  *
4569  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
4570  *                    int __user *optlen);
4571  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
4572  *                    int optlen);
4573  *
4574  *   sd      - the socket descript.
4575  *   level   - set to IPPROTO_SCTP for all SCTP options.
4576  *   optname - the option name.
4577  *   optval  - the buffer to store the value of the option.
4578  *   optlen  - the size of the buffer.
4579  */
4580 static int sctp_setsockopt(struct sock *sk, int level, int optname,
4581 			   char __user *optval, unsigned int optlen)
4582 {
4583 	int retval = 0;
4584 
4585 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
4586 
4587 	/* I can hardly begin to describe how wrong this is.  This is
4588 	 * so broken as to be worse than useless.  The API draft
4589 	 * REALLY is NOT helpful here...  I am not convinced that the
4590 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
4591 	 * are at all well-founded.
4592 	 */
4593 	if (level != SOL_SCTP) {
4594 		struct sctp_af *af = sctp_sk(sk)->pf->af;
4595 		retval = af->setsockopt(sk, level, optname, optval, optlen);
4596 		goto out_nounlock;
4597 	}
4598 
4599 	lock_sock(sk);
4600 
4601 	switch (optname) {
4602 	case SCTP_SOCKOPT_BINDX_ADD:
4603 		/* 'optlen' is the size of the addresses buffer. */
4604 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
4605 					       optlen, SCTP_BINDX_ADD_ADDR);
4606 		break;
4607 
4608 	case SCTP_SOCKOPT_BINDX_REM:
4609 		/* 'optlen' is the size of the addresses buffer. */
4610 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
4611 					       optlen, SCTP_BINDX_REM_ADDR);
4612 		break;
4613 
4614 	case SCTP_SOCKOPT_CONNECTX_OLD:
4615 		/* 'optlen' is the size of the addresses buffer. */
4616 		retval = sctp_setsockopt_connectx_old(sk,
4617 					    (struct sockaddr __user *)optval,
4618 					    optlen);
4619 		break;
4620 
4621 	case SCTP_SOCKOPT_CONNECTX:
4622 		/* 'optlen' is the size of the addresses buffer. */
4623 		retval = sctp_setsockopt_connectx(sk,
4624 					    (struct sockaddr __user *)optval,
4625 					    optlen);
4626 		break;
4627 
4628 	case SCTP_DISABLE_FRAGMENTS:
4629 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
4630 		break;
4631 
4632 	case SCTP_EVENTS:
4633 		retval = sctp_setsockopt_events(sk, optval, optlen);
4634 		break;
4635 
4636 	case SCTP_AUTOCLOSE:
4637 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
4638 		break;
4639 
4640 	case SCTP_PEER_ADDR_PARAMS:
4641 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
4642 		break;
4643 
4644 	case SCTP_DELAYED_SACK:
4645 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
4646 		break;
4647 	case SCTP_PARTIAL_DELIVERY_POINT:
4648 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
4649 		break;
4650 
4651 	case SCTP_INITMSG:
4652 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
4653 		break;
4654 	case SCTP_DEFAULT_SEND_PARAM:
4655 		retval = sctp_setsockopt_default_send_param(sk, optval,
4656 							    optlen);
4657 		break;
4658 	case SCTP_DEFAULT_SNDINFO:
4659 		retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
4660 		break;
4661 	case SCTP_PRIMARY_ADDR:
4662 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
4663 		break;
4664 	case SCTP_SET_PEER_PRIMARY_ADDR:
4665 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
4666 		break;
4667 	case SCTP_NODELAY:
4668 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
4669 		break;
4670 	case SCTP_RTOINFO:
4671 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
4672 		break;
4673 	case SCTP_ASSOCINFO:
4674 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
4675 		break;
4676 	case SCTP_I_WANT_MAPPED_V4_ADDR:
4677 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
4678 		break;
4679 	case SCTP_MAXSEG:
4680 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
4681 		break;
4682 	case SCTP_ADAPTATION_LAYER:
4683 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
4684 		break;
4685 	case SCTP_CONTEXT:
4686 		retval = sctp_setsockopt_context(sk, optval, optlen);
4687 		break;
4688 	case SCTP_FRAGMENT_INTERLEAVE:
4689 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
4690 		break;
4691 	case SCTP_MAX_BURST:
4692 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
4693 		break;
4694 	case SCTP_AUTH_CHUNK:
4695 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
4696 		break;
4697 	case SCTP_HMAC_IDENT:
4698 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
4699 		break;
4700 	case SCTP_AUTH_KEY:
4701 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
4702 		break;
4703 	case SCTP_AUTH_ACTIVE_KEY:
4704 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
4705 		break;
4706 	case SCTP_AUTH_DELETE_KEY:
4707 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
4708 		break;
4709 	case SCTP_AUTH_DEACTIVATE_KEY:
4710 		retval = sctp_setsockopt_deactivate_key(sk, optval, optlen);
4711 		break;
4712 	case SCTP_AUTO_ASCONF:
4713 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
4714 		break;
4715 	case SCTP_PEER_ADDR_THLDS:
4716 		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
4717 		break;
4718 	case SCTP_RECVRCVINFO:
4719 		retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
4720 		break;
4721 	case SCTP_RECVNXTINFO:
4722 		retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
4723 		break;
4724 	case SCTP_PR_SUPPORTED:
4725 		retval = sctp_setsockopt_pr_supported(sk, optval, optlen);
4726 		break;
4727 	case SCTP_DEFAULT_PRINFO:
4728 		retval = sctp_setsockopt_default_prinfo(sk, optval, optlen);
4729 		break;
4730 	case SCTP_RECONFIG_SUPPORTED:
4731 		retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen);
4732 		break;
4733 	case SCTP_ENABLE_STREAM_RESET:
4734 		retval = sctp_setsockopt_enable_strreset(sk, optval, optlen);
4735 		break;
4736 	case SCTP_RESET_STREAMS:
4737 		retval = sctp_setsockopt_reset_streams(sk, optval, optlen);
4738 		break;
4739 	case SCTP_RESET_ASSOC:
4740 		retval = sctp_setsockopt_reset_assoc(sk, optval, optlen);
4741 		break;
4742 	case SCTP_ADD_STREAMS:
4743 		retval = sctp_setsockopt_add_streams(sk, optval, optlen);
4744 		break;
4745 	case SCTP_STREAM_SCHEDULER:
4746 		retval = sctp_setsockopt_scheduler(sk, optval, optlen);
4747 		break;
4748 	case SCTP_STREAM_SCHEDULER_VALUE:
4749 		retval = sctp_setsockopt_scheduler_value(sk, optval, optlen);
4750 		break;
4751 	case SCTP_INTERLEAVING_SUPPORTED:
4752 		retval = sctp_setsockopt_interleaving_supported(sk, optval,
4753 								optlen);
4754 		break;
4755 	case SCTP_REUSE_PORT:
4756 		retval = sctp_setsockopt_reuse_port(sk, optval, optlen);
4757 		break;
4758 	case SCTP_EVENT:
4759 		retval = sctp_setsockopt_event(sk, optval, optlen);
4760 		break;
4761 	default:
4762 		retval = -ENOPROTOOPT;
4763 		break;
4764 	}
4765 
4766 	release_sock(sk);
4767 
4768 out_nounlock:
4769 	return retval;
4770 }
4771 
4772 /* API 3.1.6 connect() - UDP Style Syntax
4773  *
4774  * An application may use the connect() call in the UDP model to initiate an
4775  * association without sending data.
4776  *
4777  * The syntax is:
4778  *
4779  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4780  *
4781  * sd: the socket descriptor to have a new association added to.
4782  *
4783  * nam: the address structure (either struct sockaddr_in or struct
4784  *    sockaddr_in6 defined in RFC2553 [7]).
4785  *
4786  * len: the size of the address.
4787  */
4788 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4789 			int addr_len, int flags)
4790 {
4791 	struct inet_sock *inet = inet_sk(sk);
4792 	struct sctp_af *af;
4793 	int err = 0;
4794 
4795 	lock_sock(sk);
4796 
4797 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4798 		 addr, addr_len);
4799 
4800 	/* We may need to bind the socket. */
4801 	if (!inet->inet_num) {
4802 		if (sk->sk_prot->get_port(sk, 0)) {
4803 			release_sock(sk);
4804 			return -EAGAIN;
4805 		}
4806 		inet->inet_sport = htons(inet->inet_num);
4807 	}
4808 
4809 	/* Validate addr_len before calling common connect/connectx routine. */
4810 	af = sctp_get_af_specific(addr->sa_family);
4811 	if (!af || addr_len < af->sockaddr_len) {
4812 		err = -EINVAL;
4813 	} else {
4814 		/* Pass correct addr len to common routine (so it knows there
4815 		 * is only one address being passed.
4816 		 */
4817 		err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
4818 	}
4819 
4820 	release_sock(sk);
4821 	return err;
4822 }
4823 
4824 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
4825 		      int addr_len, int flags)
4826 {
4827 	if (addr_len < sizeof(uaddr->sa_family))
4828 		return -EINVAL;
4829 
4830 	if (uaddr->sa_family == AF_UNSPEC)
4831 		return -EOPNOTSUPP;
4832 
4833 	return sctp_connect(sock->sk, uaddr, addr_len, flags);
4834 }
4835 
4836 /* FIXME: Write comments. */
4837 static int sctp_disconnect(struct sock *sk, int flags)
4838 {
4839 	return -EOPNOTSUPP; /* STUB */
4840 }
4841 
4842 /* 4.1.4 accept() - TCP Style Syntax
4843  *
4844  * Applications use accept() call to remove an established SCTP
4845  * association from the accept queue of the endpoint.  A new socket
4846  * descriptor will be returned from accept() to represent the newly
4847  * formed association.
4848  */
4849 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4850 {
4851 	struct sctp_sock *sp;
4852 	struct sctp_endpoint *ep;
4853 	struct sock *newsk = NULL;
4854 	struct sctp_association *asoc;
4855 	long timeo;
4856 	int error = 0;
4857 
4858 	lock_sock(sk);
4859 
4860 	sp = sctp_sk(sk);
4861 	ep = sp->ep;
4862 
4863 	if (!sctp_style(sk, TCP)) {
4864 		error = -EOPNOTSUPP;
4865 		goto out;
4866 	}
4867 
4868 	if (!sctp_sstate(sk, LISTENING)) {
4869 		error = -EINVAL;
4870 		goto out;
4871 	}
4872 
4873 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4874 
4875 	error = sctp_wait_for_accept(sk, timeo);
4876 	if (error)
4877 		goto out;
4878 
4879 	/* We treat the list of associations on the endpoint as the accept
4880 	 * queue and pick the first association on the list.
4881 	 */
4882 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4883 
4884 	newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4885 	if (!newsk) {
4886 		error = -ENOMEM;
4887 		goto out;
4888 	}
4889 
4890 	/* Populate the fields of the newsk from the oldsk and migrate the
4891 	 * asoc to the newsk.
4892 	 */
4893 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4894 
4895 out:
4896 	release_sock(sk);
4897 	*err = error;
4898 	return newsk;
4899 }
4900 
4901 /* The SCTP ioctl handler. */
4902 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4903 {
4904 	int rc = -ENOTCONN;
4905 
4906 	lock_sock(sk);
4907 
4908 	/*
4909 	 * SEQPACKET-style sockets in LISTENING state are valid, for
4910 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
4911 	 */
4912 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4913 		goto out;
4914 
4915 	switch (cmd) {
4916 	case SIOCINQ: {
4917 		struct sk_buff *skb;
4918 		unsigned int amount = 0;
4919 
4920 		skb = skb_peek(&sk->sk_receive_queue);
4921 		if (skb != NULL) {
4922 			/*
4923 			 * We will only return the amount of this packet since
4924 			 * that is all that will be read.
4925 			 */
4926 			amount = skb->len;
4927 		}
4928 		rc = put_user(amount, (int __user *)arg);
4929 		break;
4930 	}
4931 	default:
4932 		rc = -ENOIOCTLCMD;
4933 		break;
4934 	}
4935 out:
4936 	release_sock(sk);
4937 	return rc;
4938 }
4939 
4940 /* This is the function which gets called during socket creation to
4941  * initialized the SCTP-specific portion of the sock.
4942  * The sock structure should already be zero-filled memory.
4943  */
4944 static int sctp_init_sock(struct sock *sk)
4945 {
4946 	struct net *net = sock_net(sk);
4947 	struct sctp_sock *sp;
4948 
4949 	pr_debug("%s: sk:%p\n", __func__, sk);
4950 
4951 	sp = sctp_sk(sk);
4952 
4953 	/* Initialize the SCTP per socket area.  */
4954 	switch (sk->sk_type) {
4955 	case SOCK_SEQPACKET:
4956 		sp->type = SCTP_SOCKET_UDP;
4957 		break;
4958 	case SOCK_STREAM:
4959 		sp->type = SCTP_SOCKET_TCP;
4960 		break;
4961 	default:
4962 		return -ESOCKTNOSUPPORT;
4963 	}
4964 
4965 	sk->sk_gso_type = SKB_GSO_SCTP;
4966 
4967 	/* Initialize default send parameters. These parameters can be
4968 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4969 	 */
4970 	sp->default_stream = 0;
4971 	sp->default_ppid = 0;
4972 	sp->default_flags = 0;
4973 	sp->default_context = 0;
4974 	sp->default_timetolive = 0;
4975 
4976 	sp->default_rcv_context = 0;
4977 	sp->max_burst = net->sctp.max_burst;
4978 
4979 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4980 
4981 	/* Initialize default setup parameters. These parameters
4982 	 * can be modified with the SCTP_INITMSG socket option or
4983 	 * overridden by the SCTP_INIT CMSG.
4984 	 */
4985 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
4986 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
4987 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
4988 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4989 
4990 	/* Initialize default RTO related parameters.  These parameters can
4991 	 * be modified for with the SCTP_RTOINFO socket option.
4992 	 */
4993 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4994 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
4995 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
4996 
4997 	/* Initialize default association related parameters. These parameters
4998 	 * can be modified with the SCTP_ASSOCINFO socket option.
4999 	 */
5000 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
5001 	sp->assocparams.sasoc_number_peer_destinations = 0;
5002 	sp->assocparams.sasoc_peer_rwnd = 0;
5003 	sp->assocparams.sasoc_local_rwnd = 0;
5004 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
5005 
5006 	/* Initialize default event subscriptions. By default, all the
5007 	 * options are off.
5008 	 */
5009 	sp->subscribe = 0;
5010 
5011 	/* Default Peer Address Parameters.  These defaults can
5012 	 * be modified via SCTP_PEER_ADDR_PARAMS
5013 	 */
5014 	sp->hbinterval  = net->sctp.hb_interval;
5015 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
5016 	sp->pf_retrans  = net->sctp.pf_retrans;
5017 	sp->pathmtu     = 0; /* allow default discovery */
5018 	sp->sackdelay   = net->sctp.sack_timeout;
5019 	sp->sackfreq	= 2;
5020 	sp->param_flags = SPP_HB_ENABLE |
5021 			  SPP_PMTUD_ENABLE |
5022 			  SPP_SACKDELAY_ENABLE;
5023 	sp->default_ss = SCTP_SS_DEFAULT;
5024 
5025 	/* If enabled no SCTP message fragmentation will be performed.
5026 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
5027 	 */
5028 	sp->disable_fragments = 0;
5029 
5030 	/* Enable Nagle algorithm by default.  */
5031 	sp->nodelay           = 0;
5032 
5033 	sp->recvrcvinfo = 0;
5034 	sp->recvnxtinfo = 0;
5035 
5036 	/* Enable by default. */
5037 	sp->v4mapped          = 1;
5038 
5039 	/* Auto-close idle associations after the configured
5040 	 * number of seconds.  A value of 0 disables this
5041 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
5042 	 * for UDP-style sockets only.
5043 	 */
5044 	sp->autoclose         = 0;
5045 
5046 	/* User specified fragmentation limit. */
5047 	sp->user_frag         = 0;
5048 
5049 	sp->adaptation_ind = 0;
5050 
5051 	sp->pf = sctp_get_pf_specific(sk->sk_family);
5052 
5053 	/* Control variables for partial data delivery. */
5054 	atomic_set(&sp->pd_mode, 0);
5055 	skb_queue_head_init(&sp->pd_lobby);
5056 	sp->frag_interleave = 0;
5057 
5058 	/* Create a per socket endpoint structure.  Even if we
5059 	 * change the data structure relationships, this may still
5060 	 * be useful for storing pre-connect address information.
5061 	 */
5062 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
5063 	if (!sp->ep)
5064 		return -ENOMEM;
5065 
5066 	sp->hmac = NULL;
5067 
5068 	sk->sk_destruct = sctp_destruct_sock;
5069 
5070 	SCTP_DBG_OBJCNT_INC(sock);
5071 
5072 	local_bh_disable();
5073 	sk_sockets_allocated_inc(sk);
5074 	sock_prot_inuse_add(net, sk->sk_prot, 1);
5075 
5076 	/* Nothing can fail after this block, otherwise
5077 	 * sctp_destroy_sock() will be called without addr_wq_lock held
5078 	 */
5079 	if (net->sctp.default_auto_asconf) {
5080 		spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
5081 		list_add_tail(&sp->auto_asconf_list,
5082 		    &net->sctp.auto_asconf_splist);
5083 		sp->do_auto_asconf = 1;
5084 		spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
5085 	} else {
5086 		sp->do_auto_asconf = 0;
5087 	}
5088 
5089 	local_bh_enable();
5090 
5091 	return 0;
5092 }
5093 
5094 /* Cleanup any SCTP per socket resources. Must be called with
5095  * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
5096  */
5097 static void sctp_destroy_sock(struct sock *sk)
5098 {
5099 	struct sctp_sock *sp;
5100 
5101 	pr_debug("%s: sk:%p\n", __func__, sk);
5102 
5103 	/* Release our hold on the endpoint. */
5104 	sp = sctp_sk(sk);
5105 	/* This could happen during socket init, thus we bail out
5106 	 * early, since the rest of the below is not setup either.
5107 	 */
5108 	if (sp->ep == NULL)
5109 		return;
5110 
5111 	if (sp->do_auto_asconf) {
5112 		sp->do_auto_asconf = 0;
5113 		list_del(&sp->auto_asconf_list);
5114 	}
5115 	sctp_endpoint_free(sp->ep);
5116 	local_bh_disable();
5117 	sk_sockets_allocated_dec(sk);
5118 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
5119 	local_bh_enable();
5120 }
5121 
5122 /* Triggered when there are no references on the socket anymore */
5123 static void sctp_destruct_sock(struct sock *sk)
5124 {
5125 	struct sctp_sock *sp = sctp_sk(sk);
5126 
5127 	/* Free up the HMAC transform. */
5128 	crypto_free_shash(sp->hmac);
5129 
5130 	inet_sock_destruct(sk);
5131 }
5132 
5133 /* API 4.1.7 shutdown() - TCP Style Syntax
5134  *     int shutdown(int socket, int how);
5135  *
5136  *     sd      - the socket descriptor of the association to be closed.
5137  *     how     - Specifies the type of shutdown.  The  values  are
5138  *               as follows:
5139  *               SHUT_RD
5140  *                     Disables further receive operations. No SCTP
5141  *                     protocol action is taken.
5142  *               SHUT_WR
5143  *                     Disables further send operations, and initiates
5144  *                     the SCTP shutdown sequence.
5145  *               SHUT_RDWR
5146  *                     Disables further send  and  receive  operations
5147  *                     and initiates the SCTP shutdown sequence.
5148  */
5149 static void sctp_shutdown(struct sock *sk, int how)
5150 {
5151 	struct net *net = sock_net(sk);
5152 	struct sctp_endpoint *ep;
5153 
5154 	if (!sctp_style(sk, TCP))
5155 		return;
5156 
5157 	ep = sctp_sk(sk)->ep;
5158 	if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
5159 		struct sctp_association *asoc;
5160 
5161 		inet_sk_set_state(sk, SCTP_SS_CLOSING);
5162 		asoc = list_entry(ep->asocs.next,
5163 				  struct sctp_association, asocs);
5164 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
5165 	}
5166 }
5167 
5168 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
5169 		       struct sctp_info *info)
5170 {
5171 	struct sctp_transport *prim;
5172 	struct list_head *pos;
5173 	int mask;
5174 
5175 	memset(info, 0, sizeof(*info));
5176 	if (!asoc) {
5177 		struct sctp_sock *sp = sctp_sk(sk);
5178 
5179 		info->sctpi_s_autoclose = sp->autoclose;
5180 		info->sctpi_s_adaptation_ind = sp->adaptation_ind;
5181 		info->sctpi_s_pd_point = sp->pd_point;
5182 		info->sctpi_s_nodelay = sp->nodelay;
5183 		info->sctpi_s_disable_fragments = sp->disable_fragments;
5184 		info->sctpi_s_v4mapped = sp->v4mapped;
5185 		info->sctpi_s_frag_interleave = sp->frag_interleave;
5186 		info->sctpi_s_type = sp->type;
5187 
5188 		return 0;
5189 	}
5190 
5191 	info->sctpi_tag = asoc->c.my_vtag;
5192 	info->sctpi_state = asoc->state;
5193 	info->sctpi_rwnd = asoc->a_rwnd;
5194 	info->sctpi_unackdata = asoc->unack_data;
5195 	info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5196 	info->sctpi_instrms = asoc->stream.incnt;
5197 	info->sctpi_outstrms = asoc->stream.outcnt;
5198 	list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
5199 		info->sctpi_inqueue++;
5200 	list_for_each(pos, &asoc->outqueue.out_chunk_list)
5201 		info->sctpi_outqueue++;
5202 	info->sctpi_overall_error = asoc->overall_error_count;
5203 	info->sctpi_max_burst = asoc->max_burst;
5204 	info->sctpi_maxseg = asoc->frag_point;
5205 	info->sctpi_peer_rwnd = asoc->peer.rwnd;
5206 	info->sctpi_peer_tag = asoc->c.peer_vtag;
5207 
5208 	mask = asoc->peer.ecn_capable << 1;
5209 	mask = (mask | asoc->peer.ipv4_address) << 1;
5210 	mask = (mask | asoc->peer.ipv6_address) << 1;
5211 	mask = (mask | asoc->peer.hostname_address) << 1;
5212 	mask = (mask | asoc->peer.asconf_capable) << 1;
5213 	mask = (mask | asoc->peer.prsctp_capable) << 1;
5214 	mask = (mask | asoc->peer.auth_capable);
5215 	info->sctpi_peer_capable = mask;
5216 	mask = asoc->peer.sack_needed << 1;
5217 	mask = (mask | asoc->peer.sack_generation) << 1;
5218 	mask = (mask | asoc->peer.zero_window_announced);
5219 	info->sctpi_peer_sack = mask;
5220 
5221 	info->sctpi_isacks = asoc->stats.isacks;
5222 	info->sctpi_osacks = asoc->stats.osacks;
5223 	info->sctpi_opackets = asoc->stats.opackets;
5224 	info->sctpi_ipackets = asoc->stats.ipackets;
5225 	info->sctpi_rtxchunks = asoc->stats.rtxchunks;
5226 	info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
5227 	info->sctpi_idupchunks = asoc->stats.idupchunks;
5228 	info->sctpi_gapcnt = asoc->stats.gapcnt;
5229 	info->sctpi_ouodchunks = asoc->stats.ouodchunks;
5230 	info->sctpi_iuodchunks = asoc->stats.iuodchunks;
5231 	info->sctpi_oodchunks = asoc->stats.oodchunks;
5232 	info->sctpi_iodchunks = asoc->stats.iodchunks;
5233 	info->sctpi_octrlchunks = asoc->stats.octrlchunks;
5234 	info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
5235 
5236 	prim = asoc->peer.primary_path;
5237 	memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
5238 	info->sctpi_p_state = prim->state;
5239 	info->sctpi_p_cwnd = prim->cwnd;
5240 	info->sctpi_p_srtt = prim->srtt;
5241 	info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
5242 	info->sctpi_p_hbinterval = prim->hbinterval;
5243 	info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
5244 	info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
5245 	info->sctpi_p_ssthresh = prim->ssthresh;
5246 	info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
5247 	info->sctpi_p_flight_size = prim->flight_size;
5248 	info->sctpi_p_error = prim->error_count;
5249 
5250 	return 0;
5251 }
5252 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
5253 
5254 /* use callback to avoid exporting the core structure */
5255 void sctp_transport_walk_start(struct rhashtable_iter *iter)
5256 {
5257 	rhltable_walk_enter(&sctp_transport_hashtable, iter);
5258 
5259 	rhashtable_walk_start(iter);
5260 }
5261 
5262 void sctp_transport_walk_stop(struct rhashtable_iter *iter)
5263 {
5264 	rhashtable_walk_stop(iter);
5265 	rhashtable_walk_exit(iter);
5266 }
5267 
5268 struct sctp_transport *sctp_transport_get_next(struct net *net,
5269 					       struct rhashtable_iter *iter)
5270 {
5271 	struct sctp_transport *t;
5272 
5273 	t = rhashtable_walk_next(iter);
5274 	for (; t; t = rhashtable_walk_next(iter)) {
5275 		if (IS_ERR(t)) {
5276 			if (PTR_ERR(t) == -EAGAIN)
5277 				continue;
5278 			break;
5279 		}
5280 
5281 		if (!sctp_transport_hold(t))
5282 			continue;
5283 
5284 		if (net_eq(sock_net(t->asoc->base.sk), net) &&
5285 		    t->asoc->peer.primary_path == t)
5286 			break;
5287 
5288 		sctp_transport_put(t);
5289 	}
5290 
5291 	return t;
5292 }
5293 
5294 struct sctp_transport *sctp_transport_get_idx(struct net *net,
5295 					      struct rhashtable_iter *iter,
5296 					      int pos)
5297 {
5298 	struct sctp_transport *t;
5299 
5300 	if (!pos)
5301 		return SEQ_START_TOKEN;
5302 
5303 	while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) {
5304 		if (!--pos)
5305 			break;
5306 		sctp_transport_put(t);
5307 	}
5308 
5309 	return t;
5310 }
5311 
5312 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
5313 			   void *p) {
5314 	int err = 0;
5315 	int hash = 0;
5316 	struct sctp_ep_common *epb;
5317 	struct sctp_hashbucket *head;
5318 
5319 	for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
5320 	     hash++, head++) {
5321 		read_lock_bh(&head->lock);
5322 		sctp_for_each_hentry(epb, &head->chain) {
5323 			err = cb(sctp_ep(epb), p);
5324 			if (err)
5325 				break;
5326 		}
5327 		read_unlock_bh(&head->lock);
5328 	}
5329 
5330 	return err;
5331 }
5332 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
5333 
5334 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
5335 				  struct net *net,
5336 				  const union sctp_addr *laddr,
5337 				  const union sctp_addr *paddr, void *p)
5338 {
5339 	struct sctp_transport *transport;
5340 	int err;
5341 
5342 	rcu_read_lock();
5343 	transport = sctp_addrs_lookup_transport(net, laddr, paddr);
5344 	rcu_read_unlock();
5345 	if (!transport)
5346 		return -ENOENT;
5347 
5348 	err = cb(transport, p);
5349 	sctp_transport_put(transport);
5350 
5351 	return err;
5352 }
5353 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
5354 
5355 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
5356 			    int (*cb_done)(struct sctp_transport *, void *),
5357 			    struct net *net, int *pos, void *p) {
5358 	struct rhashtable_iter hti;
5359 	struct sctp_transport *tsp;
5360 	int ret;
5361 
5362 again:
5363 	ret = 0;
5364 	sctp_transport_walk_start(&hti);
5365 
5366 	tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
5367 	for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
5368 		ret = cb(tsp, p);
5369 		if (ret)
5370 			break;
5371 		(*pos)++;
5372 		sctp_transport_put(tsp);
5373 	}
5374 	sctp_transport_walk_stop(&hti);
5375 
5376 	if (ret) {
5377 		if (cb_done && !cb_done(tsp, p)) {
5378 			(*pos)++;
5379 			sctp_transport_put(tsp);
5380 			goto again;
5381 		}
5382 		sctp_transport_put(tsp);
5383 	}
5384 
5385 	return ret;
5386 }
5387 EXPORT_SYMBOL_GPL(sctp_for_each_transport);
5388 
5389 /* 7.2.1 Association Status (SCTP_STATUS)
5390 
5391  * Applications can retrieve current status information about an
5392  * association, including association state, peer receiver window size,
5393  * number of unacked data chunks, and number of data chunks pending
5394  * receipt.  This information is read-only.
5395  */
5396 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
5397 				       char __user *optval,
5398 				       int __user *optlen)
5399 {
5400 	struct sctp_status status;
5401 	struct sctp_association *asoc = NULL;
5402 	struct sctp_transport *transport;
5403 	sctp_assoc_t associd;
5404 	int retval = 0;
5405 
5406 	if (len < sizeof(status)) {
5407 		retval = -EINVAL;
5408 		goto out;
5409 	}
5410 
5411 	len = sizeof(status);
5412 	if (copy_from_user(&status, optval, len)) {
5413 		retval = -EFAULT;
5414 		goto out;
5415 	}
5416 
5417 	associd = status.sstat_assoc_id;
5418 	asoc = sctp_id2assoc(sk, associd);
5419 	if (!asoc) {
5420 		retval = -EINVAL;
5421 		goto out;
5422 	}
5423 
5424 	transport = asoc->peer.primary_path;
5425 
5426 	status.sstat_assoc_id = sctp_assoc2id(asoc);
5427 	status.sstat_state = sctp_assoc_to_state(asoc);
5428 	status.sstat_rwnd =  asoc->peer.rwnd;
5429 	status.sstat_unackdata = asoc->unack_data;
5430 
5431 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5432 	status.sstat_instrms = asoc->stream.incnt;
5433 	status.sstat_outstrms = asoc->stream.outcnt;
5434 	status.sstat_fragmentation_point = asoc->frag_point;
5435 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5436 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
5437 			transport->af_specific->sockaddr_len);
5438 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
5439 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
5440 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
5441 	status.sstat_primary.spinfo_state = transport->state;
5442 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
5443 	status.sstat_primary.spinfo_srtt = transport->srtt;
5444 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
5445 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
5446 
5447 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
5448 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
5449 
5450 	if (put_user(len, optlen)) {
5451 		retval = -EFAULT;
5452 		goto out;
5453 	}
5454 
5455 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
5456 		 __func__, len, status.sstat_state, status.sstat_rwnd,
5457 		 status.sstat_assoc_id);
5458 
5459 	if (copy_to_user(optval, &status, len)) {
5460 		retval = -EFAULT;
5461 		goto out;
5462 	}
5463 
5464 out:
5465 	return retval;
5466 }
5467 
5468 
5469 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
5470  *
5471  * Applications can retrieve information about a specific peer address
5472  * of an association, including its reachability state, congestion
5473  * window, and retransmission timer values.  This information is
5474  * read-only.
5475  */
5476 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
5477 					  char __user *optval,
5478 					  int __user *optlen)
5479 {
5480 	struct sctp_paddrinfo pinfo;
5481 	struct sctp_transport *transport;
5482 	int retval = 0;
5483 
5484 	if (len < sizeof(pinfo)) {
5485 		retval = -EINVAL;
5486 		goto out;
5487 	}
5488 
5489 	len = sizeof(pinfo);
5490 	if (copy_from_user(&pinfo, optval, len)) {
5491 		retval = -EFAULT;
5492 		goto out;
5493 	}
5494 
5495 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
5496 					   pinfo.spinfo_assoc_id);
5497 	if (!transport)
5498 		return -EINVAL;
5499 
5500 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5501 	pinfo.spinfo_state = transport->state;
5502 	pinfo.spinfo_cwnd = transport->cwnd;
5503 	pinfo.spinfo_srtt = transport->srtt;
5504 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
5505 	pinfo.spinfo_mtu = transport->pathmtu;
5506 
5507 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
5508 		pinfo.spinfo_state = SCTP_ACTIVE;
5509 
5510 	if (put_user(len, optlen)) {
5511 		retval = -EFAULT;
5512 		goto out;
5513 	}
5514 
5515 	if (copy_to_user(optval, &pinfo, len)) {
5516 		retval = -EFAULT;
5517 		goto out;
5518 	}
5519 
5520 out:
5521 	return retval;
5522 }
5523 
5524 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
5525  *
5526  * This option is a on/off flag.  If enabled no SCTP message
5527  * fragmentation will be performed.  Instead if a message being sent
5528  * exceeds the current PMTU size, the message will NOT be sent and
5529  * instead a error will be indicated to the user.
5530  */
5531 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
5532 					char __user *optval, int __user *optlen)
5533 {
5534 	int val;
5535 
5536 	if (len < sizeof(int))
5537 		return -EINVAL;
5538 
5539 	len = sizeof(int);
5540 	val = (sctp_sk(sk)->disable_fragments == 1);
5541 	if (put_user(len, optlen))
5542 		return -EFAULT;
5543 	if (copy_to_user(optval, &val, len))
5544 		return -EFAULT;
5545 	return 0;
5546 }
5547 
5548 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
5549  *
5550  * This socket option is used to specify various notifications and
5551  * ancillary data the user wishes to receive.
5552  */
5553 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
5554 				  int __user *optlen)
5555 {
5556 	struct sctp_event_subscribe subscribe;
5557 	__u8 *sn_type = (__u8 *)&subscribe;
5558 	int i;
5559 
5560 	if (len == 0)
5561 		return -EINVAL;
5562 	if (len > sizeof(struct sctp_event_subscribe))
5563 		len = sizeof(struct sctp_event_subscribe);
5564 	if (put_user(len, optlen))
5565 		return -EFAULT;
5566 
5567 	for (i = 0; i < len; i++)
5568 		sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe,
5569 							SCTP_SN_TYPE_BASE + i);
5570 
5571 	if (copy_to_user(optval, &subscribe, len))
5572 		return -EFAULT;
5573 
5574 	return 0;
5575 }
5576 
5577 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
5578  *
5579  * This socket option is applicable to the UDP-style socket only.  When
5580  * set it will cause associations that are idle for more than the
5581  * specified number of seconds to automatically close.  An association
5582  * being idle is defined an association that has NOT sent or received
5583  * user data.  The special value of '0' indicates that no automatic
5584  * close of any associations should be performed.  The option expects an
5585  * integer defining the number of seconds of idle time before an
5586  * association is closed.
5587  */
5588 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
5589 {
5590 	/* Applicable to UDP-style socket only */
5591 	if (sctp_style(sk, TCP))
5592 		return -EOPNOTSUPP;
5593 	if (len < sizeof(int))
5594 		return -EINVAL;
5595 	len = sizeof(int);
5596 	if (put_user(len, optlen))
5597 		return -EFAULT;
5598 	if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval))
5599 		return -EFAULT;
5600 	return 0;
5601 }
5602 
5603 /* Helper routine to branch off an association to a new socket.  */
5604 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
5605 {
5606 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
5607 	struct sctp_sock *sp = sctp_sk(sk);
5608 	struct socket *sock;
5609 	int err = 0;
5610 
5611 	/* Do not peel off from one netns to another one. */
5612 	if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
5613 		return -EINVAL;
5614 
5615 	if (!asoc)
5616 		return -EINVAL;
5617 
5618 	/* An association cannot be branched off from an already peeled-off
5619 	 * socket, nor is this supported for tcp style sockets.
5620 	 */
5621 	if (!sctp_style(sk, UDP))
5622 		return -EINVAL;
5623 
5624 	/* Create a new socket.  */
5625 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
5626 	if (err < 0)
5627 		return err;
5628 
5629 	sctp_copy_sock(sock->sk, sk, asoc);
5630 
5631 	/* Make peeled-off sockets more like 1-1 accepted sockets.
5632 	 * Set the daddr and initialize id to something more random and also
5633 	 * copy over any ip options.
5634 	 */
5635 	sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
5636 	sp->pf->copy_ip_options(sk, sock->sk);
5637 
5638 	/* Populate the fields of the newsk from the oldsk and migrate the
5639 	 * asoc to the newsk.
5640 	 */
5641 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5642 
5643 	*sockp = sock;
5644 
5645 	return err;
5646 }
5647 EXPORT_SYMBOL(sctp_do_peeloff);
5648 
5649 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5650 					  struct file **newfile, unsigned flags)
5651 {
5652 	struct socket *newsock;
5653 	int retval;
5654 
5655 	retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5656 	if (retval < 0)
5657 		goto out;
5658 
5659 	/* Map the socket to an unused fd that can be returned to the user.  */
5660 	retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
5661 	if (retval < 0) {
5662 		sock_release(newsock);
5663 		goto out;
5664 	}
5665 
5666 	*newfile = sock_alloc_file(newsock, 0, NULL);
5667 	if (IS_ERR(*newfile)) {
5668 		put_unused_fd(retval);
5669 		retval = PTR_ERR(*newfile);
5670 		*newfile = NULL;
5671 		return retval;
5672 	}
5673 
5674 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5675 		 retval);
5676 
5677 	peeloff->sd = retval;
5678 
5679 	if (flags & SOCK_NONBLOCK)
5680 		(*newfile)->f_flags |= O_NONBLOCK;
5681 out:
5682 	return retval;
5683 }
5684 
5685 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5686 {
5687 	sctp_peeloff_arg_t peeloff;
5688 	struct file *newfile = NULL;
5689 	int retval = 0;
5690 
5691 	if (len < sizeof(sctp_peeloff_arg_t))
5692 		return -EINVAL;
5693 	len = sizeof(sctp_peeloff_arg_t);
5694 	if (copy_from_user(&peeloff, optval, len))
5695 		return -EFAULT;
5696 
5697 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5698 	if (retval < 0)
5699 		goto out;
5700 
5701 	/* Return the fd mapped to the new socket.  */
5702 	if (put_user(len, optlen)) {
5703 		fput(newfile);
5704 		put_unused_fd(retval);
5705 		return -EFAULT;
5706 	}
5707 
5708 	if (copy_to_user(optval, &peeloff, len)) {
5709 		fput(newfile);
5710 		put_unused_fd(retval);
5711 		return -EFAULT;
5712 	}
5713 	fd_install(retval, newfile);
5714 out:
5715 	return retval;
5716 }
5717 
5718 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5719 					 char __user *optval, int __user *optlen)
5720 {
5721 	sctp_peeloff_flags_arg_t peeloff;
5722 	struct file *newfile = NULL;
5723 	int retval = 0;
5724 
5725 	if (len < sizeof(sctp_peeloff_flags_arg_t))
5726 		return -EINVAL;
5727 	len = sizeof(sctp_peeloff_flags_arg_t);
5728 	if (copy_from_user(&peeloff, optval, len))
5729 		return -EFAULT;
5730 
5731 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5732 						&newfile, peeloff.flags);
5733 	if (retval < 0)
5734 		goto out;
5735 
5736 	/* Return the fd mapped to the new socket.  */
5737 	if (put_user(len, optlen)) {
5738 		fput(newfile);
5739 		put_unused_fd(retval);
5740 		return -EFAULT;
5741 	}
5742 
5743 	if (copy_to_user(optval, &peeloff, len)) {
5744 		fput(newfile);
5745 		put_unused_fd(retval);
5746 		return -EFAULT;
5747 	}
5748 	fd_install(retval, newfile);
5749 out:
5750 	return retval;
5751 }
5752 
5753 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5754  *
5755  * Applications can enable or disable heartbeats for any peer address of
5756  * an association, modify an address's heartbeat interval, force a
5757  * heartbeat to be sent immediately, and adjust the address's maximum
5758  * number of retransmissions sent before an address is considered
5759  * unreachable.  The following structure is used to access and modify an
5760  * address's parameters:
5761  *
5762  *  struct sctp_paddrparams {
5763  *     sctp_assoc_t            spp_assoc_id;
5764  *     struct sockaddr_storage spp_address;
5765  *     uint32_t                spp_hbinterval;
5766  *     uint16_t                spp_pathmaxrxt;
5767  *     uint32_t                spp_pathmtu;
5768  *     uint32_t                spp_sackdelay;
5769  *     uint32_t                spp_flags;
5770  * };
5771  *
5772  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
5773  *                     application, and identifies the association for
5774  *                     this query.
5775  *   spp_address     - This specifies which address is of interest.
5776  *   spp_hbinterval  - This contains the value of the heartbeat interval,
5777  *                     in milliseconds.  If a  value of zero
5778  *                     is present in this field then no changes are to
5779  *                     be made to this parameter.
5780  *   spp_pathmaxrxt  - This contains the maximum number of
5781  *                     retransmissions before this address shall be
5782  *                     considered unreachable. If a  value of zero
5783  *                     is present in this field then no changes are to
5784  *                     be made to this parameter.
5785  *   spp_pathmtu     - When Path MTU discovery is disabled the value
5786  *                     specified here will be the "fixed" path mtu.
5787  *                     Note that if the spp_address field is empty
5788  *                     then all associations on this address will
5789  *                     have this fixed path mtu set upon them.
5790  *
5791  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
5792  *                     the number of milliseconds that sacks will be delayed
5793  *                     for. This value will apply to all addresses of an
5794  *                     association if the spp_address field is empty. Note
5795  *                     also, that if delayed sack is enabled and this
5796  *                     value is set to 0, no change is made to the last
5797  *                     recorded delayed sack timer value.
5798  *
5799  *   spp_flags       - These flags are used to control various features
5800  *                     on an association. The flag field may contain
5801  *                     zero or more of the following options.
5802  *
5803  *                     SPP_HB_ENABLE  - Enable heartbeats on the
5804  *                     specified address. Note that if the address
5805  *                     field is empty all addresses for the association
5806  *                     have heartbeats enabled upon them.
5807  *
5808  *                     SPP_HB_DISABLE - Disable heartbeats on the
5809  *                     speicifed address. Note that if the address
5810  *                     field is empty all addresses for the association
5811  *                     will have their heartbeats disabled. Note also
5812  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
5813  *                     mutually exclusive, only one of these two should
5814  *                     be specified. Enabling both fields will have
5815  *                     undetermined results.
5816  *
5817  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
5818  *                     to be made immediately.
5819  *
5820  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
5821  *                     discovery upon the specified address. Note that
5822  *                     if the address feild is empty then all addresses
5823  *                     on the association are effected.
5824  *
5825  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
5826  *                     discovery upon the specified address. Note that
5827  *                     if the address feild is empty then all addresses
5828  *                     on the association are effected. Not also that
5829  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5830  *                     exclusive. Enabling both will have undetermined
5831  *                     results.
5832  *
5833  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
5834  *                     on delayed sack. The time specified in spp_sackdelay
5835  *                     is used to specify the sack delay for this address. Note
5836  *                     that if spp_address is empty then all addresses will
5837  *                     enable delayed sack and take on the sack delay
5838  *                     value specified in spp_sackdelay.
5839  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
5840  *                     off delayed sack. If the spp_address field is blank then
5841  *                     delayed sack is disabled for the entire association. Note
5842  *                     also that this field is mutually exclusive to
5843  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
5844  *                     results.
5845  *
5846  *                     SPP_IPV6_FLOWLABEL:  Setting this flag enables the
5847  *                     setting of the IPV6 flow label value.  The value is
5848  *                     contained in the spp_ipv6_flowlabel field.
5849  *                     Upon retrieval, this flag will be set to indicate that
5850  *                     the spp_ipv6_flowlabel field has a valid value returned.
5851  *                     If a specific destination address is set (in the
5852  *                     spp_address field), then the value returned is that of
5853  *                     the address.  If just an association is specified (and
5854  *                     no address), then the association's default flow label
5855  *                     is returned.  If neither an association nor a destination
5856  *                     is specified, then the socket's default flow label is
5857  *                     returned.  For non-IPv6 sockets, this flag will be left
5858  *                     cleared.
5859  *
5860  *                     SPP_DSCP:  Setting this flag enables the setting of the
5861  *                     Differentiated Services Code Point (DSCP) value
5862  *                     associated with either the association or a specific
5863  *                     address.  The value is obtained in the spp_dscp field.
5864  *                     Upon retrieval, this flag will be set to indicate that
5865  *                     the spp_dscp field has a valid value returned.  If a
5866  *                     specific destination address is set when called (in the
5867  *                     spp_address field), then that specific destination
5868  *                     address's DSCP value is returned.  If just an association
5869  *                     is specified, then the association's default DSCP is
5870  *                     returned.  If neither an association nor a destination is
5871  *                     specified, then the socket's default DSCP is returned.
5872  *
5873  *   spp_ipv6_flowlabel
5874  *                   - This field is used in conjunction with the
5875  *                     SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
5876  *                     The 20 least significant bits are used for the flow
5877  *                     label.  This setting has precedence over any IPv6-layer
5878  *                     setting.
5879  *
5880  *   spp_dscp        - This field is used in conjunction with the SPP_DSCP flag
5881  *                     and contains the DSCP.  The 6 most significant bits are
5882  *                     used for the DSCP.  This setting has precedence over any
5883  *                     IPv4- or IPv6- layer setting.
5884  */
5885 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5886 					    char __user *optval, int __user *optlen)
5887 {
5888 	struct sctp_paddrparams  params;
5889 	struct sctp_transport   *trans = NULL;
5890 	struct sctp_association *asoc = NULL;
5891 	struct sctp_sock        *sp = sctp_sk(sk);
5892 
5893 	if (len >= sizeof(params))
5894 		len = sizeof(params);
5895 	else if (len >= ALIGN(offsetof(struct sctp_paddrparams,
5896 				       spp_ipv6_flowlabel), 4))
5897 		len = ALIGN(offsetof(struct sctp_paddrparams,
5898 				     spp_ipv6_flowlabel), 4);
5899 	else
5900 		return -EINVAL;
5901 
5902 	if (copy_from_user(&params, optval, len))
5903 		return -EFAULT;
5904 
5905 	/* If an address other than INADDR_ANY is specified, and
5906 	 * no transport is found, then the request is invalid.
5907 	 */
5908 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
5909 		trans = sctp_addr_id2transport(sk, &params.spp_address,
5910 					       params.spp_assoc_id);
5911 		if (!trans) {
5912 			pr_debug("%s: failed no transport\n", __func__);
5913 			return -EINVAL;
5914 		}
5915 	}
5916 
5917 	/* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
5918 	 * socket is a one to many style socket, and an association
5919 	 * was not found, then the id was invalid.
5920 	 */
5921 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5922 	if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
5923 	    sctp_style(sk, UDP)) {
5924 		pr_debug("%s: failed no association\n", __func__);
5925 		return -EINVAL;
5926 	}
5927 
5928 	if (trans) {
5929 		/* Fetch transport values. */
5930 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5931 		params.spp_pathmtu    = trans->pathmtu;
5932 		params.spp_pathmaxrxt = trans->pathmaxrxt;
5933 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
5934 
5935 		/*draft-11 doesn't say what to return in spp_flags*/
5936 		params.spp_flags      = trans->param_flags;
5937 		if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5938 			params.spp_ipv6_flowlabel = trans->flowlabel &
5939 						    SCTP_FLOWLABEL_VAL_MASK;
5940 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5941 		}
5942 		if (trans->dscp & SCTP_DSCP_SET_MASK) {
5943 			params.spp_dscp	= trans->dscp & SCTP_DSCP_VAL_MASK;
5944 			params.spp_flags |= SPP_DSCP;
5945 		}
5946 	} else if (asoc) {
5947 		/* Fetch association values. */
5948 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5949 		params.spp_pathmtu    = asoc->pathmtu;
5950 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
5951 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
5952 
5953 		/*draft-11 doesn't say what to return in spp_flags*/
5954 		params.spp_flags      = asoc->param_flags;
5955 		if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5956 			params.spp_ipv6_flowlabel = asoc->flowlabel &
5957 						    SCTP_FLOWLABEL_VAL_MASK;
5958 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5959 		}
5960 		if (asoc->dscp & SCTP_DSCP_SET_MASK) {
5961 			params.spp_dscp	= asoc->dscp & SCTP_DSCP_VAL_MASK;
5962 			params.spp_flags |= SPP_DSCP;
5963 		}
5964 	} else {
5965 		/* Fetch socket values. */
5966 		params.spp_hbinterval = sp->hbinterval;
5967 		params.spp_pathmtu    = sp->pathmtu;
5968 		params.spp_sackdelay  = sp->sackdelay;
5969 		params.spp_pathmaxrxt = sp->pathmaxrxt;
5970 
5971 		/*draft-11 doesn't say what to return in spp_flags*/
5972 		params.spp_flags      = sp->param_flags;
5973 		if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5974 			params.spp_ipv6_flowlabel = sp->flowlabel &
5975 						    SCTP_FLOWLABEL_VAL_MASK;
5976 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5977 		}
5978 		if (sp->dscp & SCTP_DSCP_SET_MASK) {
5979 			params.spp_dscp	= sp->dscp & SCTP_DSCP_VAL_MASK;
5980 			params.spp_flags |= SPP_DSCP;
5981 		}
5982 	}
5983 
5984 	if (copy_to_user(optval, &params, len))
5985 		return -EFAULT;
5986 
5987 	if (put_user(len, optlen))
5988 		return -EFAULT;
5989 
5990 	return 0;
5991 }
5992 
5993 /*
5994  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
5995  *
5996  * This option will effect the way delayed acks are performed.  This
5997  * option allows you to get or set the delayed ack time, in
5998  * milliseconds.  It also allows changing the delayed ack frequency.
5999  * Changing the frequency to 1 disables the delayed sack algorithm.  If
6000  * the assoc_id is 0, then this sets or gets the endpoints default
6001  * values.  If the assoc_id field is non-zero, then the set or get
6002  * effects the specified association for the one to many model (the
6003  * assoc_id field is ignored by the one to one model).  Note that if
6004  * sack_delay or sack_freq are 0 when setting this option, then the
6005  * current values will remain unchanged.
6006  *
6007  * struct sctp_sack_info {
6008  *     sctp_assoc_t            sack_assoc_id;
6009  *     uint32_t                sack_delay;
6010  *     uint32_t                sack_freq;
6011  * };
6012  *
6013  * sack_assoc_id -  This parameter, indicates which association the user
6014  *    is performing an action upon.  Note that if this field's value is
6015  *    zero then the endpoints default value is changed (effecting future
6016  *    associations only).
6017  *
6018  * sack_delay -  This parameter contains the number of milliseconds that
6019  *    the user is requesting the delayed ACK timer be set to.  Note that
6020  *    this value is defined in the standard to be between 200 and 500
6021  *    milliseconds.
6022  *
6023  * sack_freq -  This parameter contains the number of packets that must
6024  *    be received before a sack is sent without waiting for the delay
6025  *    timer to expire.  The default value for this is 2, setting this
6026  *    value to 1 will disable the delayed sack algorithm.
6027  */
6028 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
6029 					    char __user *optval,
6030 					    int __user *optlen)
6031 {
6032 	struct sctp_sack_info    params;
6033 	struct sctp_association *asoc = NULL;
6034 	struct sctp_sock        *sp = sctp_sk(sk);
6035 
6036 	if (len >= sizeof(struct sctp_sack_info)) {
6037 		len = sizeof(struct sctp_sack_info);
6038 
6039 		if (copy_from_user(&params, optval, len))
6040 			return -EFAULT;
6041 	} else if (len == sizeof(struct sctp_assoc_value)) {
6042 		pr_warn_ratelimited(DEPRECATED
6043 				    "%s (pid %d) "
6044 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
6045 				    "Use struct sctp_sack_info instead\n",
6046 				    current->comm, task_pid_nr(current));
6047 		if (copy_from_user(&params, optval, len))
6048 			return -EFAULT;
6049 	} else
6050 		return -EINVAL;
6051 
6052 	/* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
6053 	 * socket is a one to many style socket, and an association
6054 	 * was not found, then the id was invalid.
6055 	 */
6056 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
6057 	if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC &&
6058 	    sctp_style(sk, UDP))
6059 		return -EINVAL;
6060 
6061 	if (asoc) {
6062 		/* Fetch association values. */
6063 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
6064 			params.sack_delay = jiffies_to_msecs(asoc->sackdelay);
6065 			params.sack_freq = asoc->sackfreq;
6066 
6067 		} else {
6068 			params.sack_delay = 0;
6069 			params.sack_freq = 1;
6070 		}
6071 	} else {
6072 		/* Fetch socket values. */
6073 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
6074 			params.sack_delay  = sp->sackdelay;
6075 			params.sack_freq = sp->sackfreq;
6076 		} else {
6077 			params.sack_delay  = 0;
6078 			params.sack_freq = 1;
6079 		}
6080 	}
6081 
6082 	if (copy_to_user(optval, &params, len))
6083 		return -EFAULT;
6084 
6085 	if (put_user(len, optlen))
6086 		return -EFAULT;
6087 
6088 	return 0;
6089 }
6090 
6091 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
6092  *
6093  * Applications can specify protocol parameters for the default association
6094  * initialization.  The option name argument to setsockopt() and getsockopt()
6095  * is SCTP_INITMSG.
6096  *
6097  * Setting initialization parameters is effective only on an unconnected
6098  * socket (for UDP-style sockets only future associations are effected
6099  * by the change).  With TCP-style sockets, this option is inherited by
6100  * sockets derived from a listener socket.
6101  */
6102 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
6103 {
6104 	if (len < sizeof(struct sctp_initmsg))
6105 		return -EINVAL;
6106 	len = sizeof(struct sctp_initmsg);
6107 	if (put_user(len, optlen))
6108 		return -EFAULT;
6109 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
6110 		return -EFAULT;
6111 	return 0;
6112 }
6113 
6114 
6115 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
6116 				      char __user *optval, int __user *optlen)
6117 {
6118 	struct sctp_association *asoc;
6119 	int cnt = 0;
6120 	struct sctp_getaddrs getaddrs;
6121 	struct sctp_transport *from;
6122 	void __user *to;
6123 	union sctp_addr temp;
6124 	struct sctp_sock *sp = sctp_sk(sk);
6125 	int addrlen;
6126 	size_t space_left;
6127 	int bytes_copied;
6128 
6129 	if (len < sizeof(struct sctp_getaddrs))
6130 		return -EINVAL;
6131 
6132 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6133 		return -EFAULT;
6134 
6135 	/* For UDP-style sockets, id specifies the association to query.  */
6136 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6137 	if (!asoc)
6138 		return -EINVAL;
6139 
6140 	to = optval + offsetof(struct sctp_getaddrs, addrs);
6141 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
6142 
6143 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
6144 				transports) {
6145 		memcpy(&temp, &from->ipaddr, sizeof(temp));
6146 		addrlen = sctp_get_pf_specific(sk->sk_family)
6147 			      ->addr_to_user(sp, &temp);
6148 		if (space_left < addrlen)
6149 			return -ENOMEM;
6150 		if (copy_to_user(to, &temp, addrlen))
6151 			return -EFAULT;
6152 		to += addrlen;
6153 		cnt++;
6154 		space_left -= addrlen;
6155 	}
6156 
6157 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
6158 		return -EFAULT;
6159 	bytes_copied = ((char __user *)to) - optval;
6160 	if (put_user(bytes_copied, optlen))
6161 		return -EFAULT;
6162 
6163 	return 0;
6164 }
6165 
6166 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
6167 			    size_t space_left, int *bytes_copied)
6168 {
6169 	struct sctp_sockaddr_entry *addr;
6170 	union sctp_addr temp;
6171 	int cnt = 0;
6172 	int addrlen;
6173 	struct net *net = sock_net(sk);
6174 
6175 	rcu_read_lock();
6176 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
6177 		if (!addr->valid)
6178 			continue;
6179 
6180 		if ((PF_INET == sk->sk_family) &&
6181 		    (AF_INET6 == addr->a.sa.sa_family))
6182 			continue;
6183 		if ((PF_INET6 == sk->sk_family) &&
6184 		    inet_v6_ipv6only(sk) &&
6185 		    (AF_INET == addr->a.sa.sa_family))
6186 			continue;
6187 		memcpy(&temp, &addr->a, sizeof(temp));
6188 		if (!temp.v4.sin_port)
6189 			temp.v4.sin_port = htons(port);
6190 
6191 		addrlen = sctp_get_pf_specific(sk->sk_family)
6192 			      ->addr_to_user(sctp_sk(sk), &temp);
6193 
6194 		if (space_left < addrlen) {
6195 			cnt =  -ENOMEM;
6196 			break;
6197 		}
6198 		memcpy(to, &temp, addrlen);
6199 
6200 		to += addrlen;
6201 		cnt++;
6202 		space_left -= addrlen;
6203 		*bytes_copied += addrlen;
6204 	}
6205 	rcu_read_unlock();
6206 
6207 	return cnt;
6208 }
6209 
6210 
6211 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
6212 				       char __user *optval, int __user *optlen)
6213 {
6214 	struct sctp_bind_addr *bp;
6215 	struct sctp_association *asoc;
6216 	int cnt = 0;
6217 	struct sctp_getaddrs getaddrs;
6218 	struct sctp_sockaddr_entry *addr;
6219 	void __user *to;
6220 	union sctp_addr temp;
6221 	struct sctp_sock *sp = sctp_sk(sk);
6222 	int addrlen;
6223 	int err = 0;
6224 	size_t space_left;
6225 	int bytes_copied = 0;
6226 	void *addrs;
6227 	void *buf;
6228 
6229 	if (len < sizeof(struct sctp_getaddrs))
6230 		return -EINVAL;
6231 
6232 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6233 		return -EFAULT;
6234 
6235 	/*
6236 	 *  For UDP-style sockets, id specifies the association to query.
6237 	 *  If the id field is set to the value '0' then the locally bound
6238 	 *  addresses are returned without regard to any particular
6239 	 *  association.
6240 	 */
6241 	if (0 == getaddrs.assoc_id) {
6242 		bp = &sctp_sk(sk)->ep->base.bind_addr;
6243 	} else {
6244 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6245 		if (!asoc)
6246 			return -EINVAL;
6247 		bp = &asoc->base.bind_addr;
6248 	}
6249 
6250 	to = optval + offsetof(struct sctp_getaddrs, addrs);
6251 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
6252 
6253 	addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
6254 	if (!addrs)
6255 		return -ENOMEM;
6256 
6257 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
6258 	 * addresses from the global local address list.
6259 	 */
6260 	if (sctp_list_single_entry(&bp->address_list)) {
6261 		addr = list_entry(bp->address_list.next,
6262 				  struct sctp_sockaddr_entry, list);
6263 		if (sctp_is_any(sk, &addr->a)) {
6264 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
6265 						space_left, &bytes_copied);
6266 			if (cnt < 0) {
6267 				err = cnt;
6268 				goto out;
6269 			}
6270 			goto copy_getaddrs;
6271 		}
6272 	}
6273 
6274 	buf = addrs;
6275 	/* Protection on the bound address list is not needed since
6276 	 * in the socket option context we hold a socket lock and
6277 	 * thus the bound address list can't change.
6278 	 */
6279 	list_for_each_entry(addr, &bp->address_list, list) {
6280 		memcpy(&temp, &addr->a, sizeof(temp));
6281 		addrlen = sctp_get_pf_specific(sk->sk_family)
6282 			      ->addr_to_user(sp, &temp);
6283 		if (space_left < addrlen) {
6284 			err =  -ENOMEM; /*fixme: right error?*/
6285 			goto out;
6286 		}
6287 		memcpy(buf, &temp, addrlen);
6288 		buf += addrlen;
6289 		bytes_copied += addrlen;
6290 		cnt++;
6291 		space_left -= addrlen;
6292 	}
6293 
6294 copy_getaddrs:
6295 	if (copy_to_user(to, addrs, bytes_copied)) {
6296 		err = -EFAULT;
6297 		goto out;
6298 	}
6299 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
6300 		err = -EFAULT;
6301 		goto out;
6302 	}
6303 	/* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
6304 	 * but we can't change it anymore.
6305 	 */
6306 	if (put_user(bytes_copied, optlen))
6307 		err = -EFAULT;
6308 out:
6309 	kfree(addrs);
6310 	return err;
6311 }
6312 
6313 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
6314  *
6315  * Requests that the local SCTP stack use the enclosed peer address as
6316  * the association primary.  The enclosed address must be one of the
6317  * association peer's addresses.
6318  */
6319 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
6320 					char __user *optval, int __user *optlen)
6321 {
6322 	struct sctp_prim prim;
6323 	struct sctp_association *asoc;
6324 	struct sctp_sock *sp = sctp_sk(sk);
6325 
6326 	if (len < sizeof(struct sctp_prim))
6327 		return -EINVAL;
6328 
6329 	len = sizeof(struct sctp_prim);
6330 
6331 	if (copy_from_user(&prim, optval, len))
6332 		return -EFAULT;
6333 
6334 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
6335 	if (!asoc)
6336 		return -EINVAL;
6337 
6338 	if (!asoc->peer.primary_path)
6339 		return -ENOTCONN;
6340 
6341 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
6342 		asoc->peer.primary_path->af_specific->sockaddr_len);
6343 
6344 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
6345 			(union sctp_addr *)&prim.ssp_addr);
6346 
6347 	if (put_user(len, optlen))
6348 		return -EFAULT;
6349 	if (copy_to_user(optval, &prim, len))
6350 		return -EFAULT;
6351 
6352 	return 0;
6353 }
6354 
6355 /*
6356  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
6357  *
6358  * Requests that the local endpoint set the specified Adaptation Layer
6359  * Indication parameter for all future INIT and INIT-ACK exchanges.
6360  */
6361 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
6362 				  char __user *optval, int __user *optlen)
6363 {
6364 	struct sctp_setadaptation adaptation;
6365 
6366 	if (len < sizeof(struct sctp_setadaptation))
6367 		return -EINVAL;
6368 
6369 	len = sizeof(struct sctp_setadaptation);
6370 
6371 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
6372 
6373 	if (put_user(len, optlen))
6374 		return -EFAULT;
6375 	if (copy_to_user(optval, &adaptation, len))
6376 		return -EFAULT;
6377 
6378 	return 0;
6379 }
6380 
6381 /*
6382  *
6383  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
6384  *
6385  *   Applications that wish to use the sendto() system call may wish to
6386  *   specify a default set of parameters that would normally be supplied
6387  *   through the inclusion of ancillary data.  This socket option allows
6388  *   such an application to set the default sctp_sndrcvinfo structure.
6389 
6390 
6391  *   The application that wishes to use this socket option simply passes
6392  *   in to this call the sctp_sndrcvinfo structure defined in Section
6393  *   5.2.2) The input parameters accepted by this call include
6394  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
6395  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
6396  *   to this call if the caller is using the UDP model.
6397  *
6398  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
6399  */
6400 static int sctp_getsockopt_default_send_param(struct sock *sk,
6401 					int len, char __user *optval,
6402 					int __user *optlen)
6403 {
6404 	struct sctp_sock *sp = sctp_sk(sk);
6405 	struct sctp_association *asoc;
6406 	struct sctp_sndrcvinfo info;
6407 
6408 	if (len < sizeof(info))
6409 		return -EINVAL;
6410 
6411 	len = sizeof(info);
6412 
6413 	if (copy_from_user(&info, optval, len))
6414 		return -EFAULT;
6415 
6416 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
6417 	if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC &&
6418 	    sctp_style(sk, UDP))
6419 		return -EINVAL;
6420 
6421 	if (asoc) {
6422 		info.sinfo_stream = asoc->default_stream;
6423 		info.sinfo_flags = asoc->default_flags;
6424 		info.sinfo_ppid = asoc->default_ppid;
6425 		info.sinfo_context = asoc->default_context;
6426 		info.sinfo_timetolive = asoc->default_timetolive;
6427 	} else {
6428 		info.sinfo_stream = sp->default_stream;
6429 		info.sinfo_flags = sp->default_flags;
6430 		info.sinfo_ppid = sp->default_ppid;
6431 		info.sinfo_context = sp->default_context;
6432 		info.sinfo_timetolive = sp->default_timetolive;
6433 	}
6434 
6435 	if (put_user(len, optlen))
6436 		return -EFAULT;
6437 	if (copy_to_user(optval, &info, len))
6438 		return -EFAULT;
6439 
6440 	return 0;
6441 }
6442 
6443 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
6444  * (SCTP_DEFAULT_SNDINFO)
6445  */
6446 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
6447 					   char __user *optval,
6448 					   int __user *optlen)
6449 {
6450 	struct sctp_sock *sp = sctp_sk(sk);
6451 	struct sctp_association *asoc;
6452 	struct sctp_sndinfo info;
6453 
6454 	if (len < sizeof(info))
6455 		return -EINVAL;
6456 
6457 	len = sizeof(info);
6458 
6459 	if (copy_from_user(&info, optval, len))
6460 		return -EFAULT;
6461 
6462 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
6463 	if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC &&
6464 	    sctp_style(sk, UDP))
6465 		return -EINVAL;
6466 
6467 	if (asoc) {
6468 		info.snd_sid = asoc->default_stream;
6469 		info.snd_flags = asoc->default_flags;
6470 		info.snd_ppid = asoc->default_ppid;
6471 		info.snd_context = asoc->default_context;
6472 	} else {
6473 		info.snd_sid = sp->default_stream;
6474 		info.snd_flags = sp->default_flags;
6475 		info.snd_ppid = sp->default_ppid;
6476 		info.snd_context = sp->default_context;
6477 	}
6478 
6479 	if (put_user(len, optlen))
6480 		return -EFAULT;
6481 	if (copy_to_user(optval, &info, len))
6482 		return -EFAULT;
6483 
6484 	return 0;
6485 }
6486 
6487 /*
6488  *
6489  * 7.1.5 SCTP_NODELAY
6490  *
6491  * Turn on/off any Nagle-like algorithm.  This means that packets are
6492  * generally sent as soon as possible and no unnecessary delays are
6493  * introduced, at the cost of more packets in the network.  Expects an
6494  * integer boolean flag.
6495  */
6496 
6497 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
6498 				   char __user *optval, int __user *optlen)
6499 {
6500 	int val;
6501 
6502 	if (len < sizeof(int))
6503 		return -EINVAL;
6504 
6505 	len = sizeof(int);
6506 	val = (sctp_sk(sk)->nodelay == 1);
6507 	if (put_user(len, optlen))
6508 		return -EFAULT;
6509 	if (copy_to_user(optval, &val, len))
6510 		return -EFAULT;
6511 	return 0;
6512 }
6513 
6514 /*
6515  *
6516  * 7.1.1 SCTP_RTOINFO
6517  *
6518  * The protocol parameters used to initialize and bound retransmission
6519  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
6520  * and modify these parameters.
6521  * All parameters are time values, in milliseconds.  A value of 0, when
6522  * modifying the parameters, indicates that the current value should not
6523  * be changed.
6524  *
6525  */
6526 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
6527 				char __user *optval,
6528 				int __user *optlen) {
6529 	struct sctp_rtoinfo rtoinfo;
6530 	struct sctp_association *asoc;
6531 
6532 	if (len < sizeof (struct sctp_rtoinfo))
6533 		return -EINVAL;
6534 
6535 	len = sizeof(struct sctp_rtoinfo);
6536 
6537 	if (copy_from_user(&rtoinfo, optval, len))
6538 		return -EFAULT;
6539 
6540 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
6541 
6542 	if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
6543 	    sctp_style(sk, UDP))
6544 		return -EINVAL;
6545 
6546 	/* Values corresponding to the specific association. */
6547 	if (asoc) {
6548 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
6549 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
6550 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
6551 	} else {
6552 		/* Values corresponding to the endpoint. */
6553 		struct sctp_sock *sp = sctp_sk(sk);
6554 
6555 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
6556 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
6557 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
6558 	}
6559 
6560 	if (put_user(len, optlen))
6561 		return -EFAULT;
6562 
6563 	if (copy_to_user(optval, &rtoinfo, len))
6564 		return -EFAULT;
6565 
6566 	return 0;
6567 }
6568 
6569 /*
6570  *
6571  * 7.1.2 SCTP_ASSOCINFO
6572  *
6573  * This option is used to tune the maximum retransmission attempts
6574  * of the association.
6575  * Returns an error if the new association retransmission value is
6576  * greater than the sum of the retransmission value  of the peer.
6577  * See [SCTP] for more information.
6578  *
6579  */
6580 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
6581 				     char __user *optval,
6582 				     int __user *optlen)
6583 {
6584 
6585 	struct sctp_assocparams assocparams;
6586 	struct sctp_association *asoc;
6587 	struct list_head *pos;
6588 	int cnt = 0;
6589 
6590 	if (len < sizeof (struct sctp_assocparams))
6591 		return -EINVAL;
6592 
6593 	len = sizeof(struct sctp_assocparams);
6594 
6595 	if (copy_from_user(&assocparams, optval, len))
6596 		return -EFAULT;
6597 
6598 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
6599 
6600 	if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
6601 	    sctp_style(sk, UDP))
6602 		return -EINVAL;
6603 
6604 	/* Values correspoinding to the specific association */
6605 	if (asoc) {
6606 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
6607 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
6608 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
6609 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
6610 
6611 		list_for_each(pos, &asoc->peer.transport_addr_list) {
6612 			cnt++;
6613 		}
6614 
6615 		assocparams.sasoc_number_peer_destinations = cnt;
6616 	} else {
6617 		/* Values corresponding to the endpoint */
6618 		struct sctp_sock *sp = sctp_sk(sk);
6619 
6620 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
6621 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
6622 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
6623 		assocparams.sasoc_cookie_life =
6624 					sp->assocparams.sasoc_cookie_life;
6625 		assocparams.sasoc_number_peer_destinations =
6626 					sp->assocparams.
6627 					sasoc_number_peer_destinations;
6628 	}
6629 
6630 	if (put_user(len, optlen))
6631 		return -EFAULT;
6632 
6633 	if (copy_to_user(optval, &assocparams, len))
6634 		return -EFAULT;
6635 
6636 	return 0;
6637 }
6638 
6639 /*
6640  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
6641  *
6642  * This socket option is a boolean flag which turns on or off mapped V4
6643  * addresses.  If this option is turned on and the socket is type
6644  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
6645  * If this option is turned off, then no mapping will be done of V4
6646  * addresses and a user will receive both PF_INET6 and PF_INET type
6647  * addresses on the socket.
6648  */
6649 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
6650 				    char __user *optval, int __user *optlen)
6651 {
6652 	int val;
6653 	struct sctp_sock *sp = sctp_sk(sk);
6654 
6655 	if (len < sizeof(int))
6656 		return -EINVAL;
6657 
6658 	len = sizeof(int);
6659 	val = sp->v4mapped;
6660 	if (put_user(len, optlen))
6661 		return -EFAULT;
6662 	if (copy_to_user(optval, &val, len))
6663 		return -EFAULT;
6664 
6665 	return 0;
6666 }
6667 
6668 /*
6669  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
6670  * (chapter and verse is quoted at sctp_setsockopt_context())
6671  */
6672 static int sctp_getsockopt_context(struct sock *sk, int len,
6673 				   char __user *optval, int __user *optlen)
6674 {
6675 	struct sctp_assoc_value params;
6676 	struct sctp_association *asoc;
6677 
6678 	if (len < sizeof(struct sctp_assoc_value))
6679 		return -EINVAL;
6680 
6681 	len = sizeof(struct sctp_assoc_value);
6682 
6683 	if (copy_from_user(&params, optval, len))
6684 		return -EFAULT;
6685 
6686 	asoc = sctp_id2assoc(sk, params.assoc_id);
6687 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6688 	    sctp_style(sk, UDP))
6689 		return -EINVAL;
6690 
6691 	params.assoc_value = asoc ? asoc->default_rcv_context
6692 				  : sctp_sk(sk)->default_rcv_context;
6693 
6694 	if (put_user(len, optlen))
6695 		return -EFAULT;
6696 	if (copy_to_user(optval, &params, len))
6697 		return -EFAULT;
6698 
6699 	return 0;
6700 }
6701 
6702 /*
6703  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6704  * This option will get or set the maximum size to put in any outgoing
6705  * SCTP DATA chunk.  If a message is larger than this size it will be
6706  * fragmented by SCTP into the specified size.  Note that the underlying
6707  * SCTP implementation may fragment into smaller sized chunks when the
6708  * PMTU of the underlying association is smaller than the value set by
6709  * the user.  The default value for this option is '0' which indicates
6710  * the user is NOT limiting fragmentation and only the PMTU will effect
6711  * SCTP's choice of DATA chunk size.  Note also that values set larger
6712  * than the maximum size of an IP datagram will effectively let SCTP
6713  * control fragmentation (i.e. the same as setting this option to 0).
6714  *
6715  * The following structure is used to access and modify this parameter:
6716  *
6717  * struct sctp_assoc_value {
6718  *   sctp_assoc_t assoc_id;
6719  *   uint32_t assoc_value;
6720  * };
6721  *
6722  * assoc_id:  This parameter is ignored for one-to-one style sockets.
6723  *    For one-to-many style sockets this parameter indicates which
6724  *    association the user is performing an action upon.  Note that if
6725  *    this field's value is zero then the endpoints default value is
6726  *    changed (effecting future associations only).
6727  * assoc_value:  This parameter specifies the maximum size in bytes.
6728  */
6729 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6730 				  char __user *optval, int __user *optlen)
6731 {
6732 	struct sctp_assoc_value params;
6733 	struct sctp_association *asoc;
6734 
6735 	if (len == sizeof(int)) {
6736 		pr_warn_ratelimited(DEPRECATED
6737 				    "%s (pid %d) "
6738 				    "Use of int in maxseg socket option.\n"
6739 				    "Use struct sctp_assoc_value instead\n",
6740 				    current->comm, task_pid_nr(current));
6741 		params.assoc_id = SCTP_FUTURE_ASSOC;
6742 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6743 		len = sizeof(struct sctp_assoc_value);
6744 		if (copy_from_user(&params, optval, len))
6745 			return -EFAULT;
6746 	} else
6747 		return -EINVAL;
6748 
6749 	asoc = sctp_id2assoc(sk, params.assoc_id);
6750 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6751 	    sctp_style(sk, UDP))
6752 		return -EINVAL;
6753 
6754 	if (asoc)
6755 		params.assoc_value = asoc->frag_point;
6756 	else
6757 		params.assoc_value = sctp_sk(sk)->user_frag;
6758 
6759 	if (put_user(len, optlen))
6760 		return -EFAULT;
6761 	if (len == sizeof(int)) {
6762 		if (copy_to_user(optval, &params.assoc_value, len))
6763 			return -EFAULT;
6764 	} else {
6765 		if (copy_to_user(optval, &params, len))
6766 			return -EFAULT;
6767 	}
6768 
6769 	return 0;
6770 }
6771 
6772 /*
6773  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6774  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6775  */
6776 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6777 					       char __user *optval, int __user *optlen)
6778 {
6779 	int val;
6780 
6781 	if (len < sizeof(int))
6782 		return -EINVAL;
6783 
6784 	len = sizeof(int);
6785 
6786 	val = sctp_sk(sk)->frag_interleave;
6787 	if (put_user(len, optlen))
6788 		return -EFAULT;
6789 	if (copy_to_user(optval, &val, len))
6790 		return -EFAULT;
6791 
6792 	return 0;
6793 }
6794 
6795 /*
6796  * 7.1.25.  Set or Get the sctp partial delivery point
6797  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6798  */
6799 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6800 						  char __user *optval,
6801 						  int __user *optlen)
6802 {
6803 	u32 val;
6804 
6805 	if (len < sizeof(u32))
6806 		return -EINVAL;
6807 
6808 	len = sizeof(u32);
6809 
6810 	val = sctp_sk(sk)->pd_point;
6811 	if (put_user(len, optlen))
6812 		return -EFAULT;
6813 	if (copy_to_user(optval, &val, len))
6814 		return -EFAULT;
6815 
6816 	return 0;
6817 }
6818 
6819 /*
6820  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
6821  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6822  */
6823 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6824 				    char __user *optval,
6825 				    int __user *optlen)
6826 {
6827 	struct sctp_assoc_value params;
6828 	struct sctp_association *asoc;
6829 
6830 	if (len == sizeof(int)) {
6831 		pr_warn_ratelimited(DEPRECATED
6832 				    "%s (pid %d) "
6833 				    "Use of int in max_burst socket option.\n"
6834 				    "Use struct sctp_assoc_value instead\n",
6835 				    current->comm, task_pid_nr(current));
6836 		params.assoc_id = SCTP_FUTURE_ASSOC;
6837 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6838 		len = sizeof(struct sctp_assoc_value);
6839 		if (copy_from_user(&params, optval, len))
6840 			return -EFAULT;
6841 	} else
6842 		return -EINVAL;
6843 
6844 	asoc = sctp_id2assoc(sk, params.assoc_id);
6845 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6846 	    sctp_style(sk, UDP))
6847 		return -EINVAL;
6848 
6849 	params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst;
6850 
6851 	if (len == sizeof(int)) {
6852 		if (copy_to_user(optval, &params.assoc_value, len))
6853 			return -EFAULT;
6854 	} else {
6855 		if (copy_to_user(optval, &params, len))
6856 			return -EFAULT;
6857 	}
6858 
6859 	return 0;
6860 
6861 }
6862 
6863 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6864 				    char __user *optval, int __user *optlen)
6865 {
6866 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6867 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
6868 	struct sctp_hmac_algo_param *hmacs;
6869 	__u16 data_len = 0;
6870 	u32 num_idents;
6871 	int i;
6872 
6873 	if (!ep->auth_enable)
6874 		return -EACCES;
6875 
6876 	hmacs = ep->auth_hmacs_list;
6877 	data_len = ntohs(hmacs->param_hdr.length) -
6878 		   sizeof(struct sctp_paramhdr);
6879 
6880 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
6881 		return -EINVAL;
6882 
6883 	len = sizeof(struct sctp_hmacalgo) + data_len;
6884 	num_idents = data_len / sizeof(u16);
6885 
6886 	if (put_user(len, optlen))
6887 		return -EFAULT;
6888 	if (put_user(num_idents, &p->shmac_num_idents))
6889 		return -EFAULT;
6890 	for (i = 0; i < num_idents; i++) {
6891 		__u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6892 
6893 		if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6894 			return -EFAULT;
6895 	}
6896 	return 0;
6897 }
6898 
6899 static int sctp_getsockopt_active_key(struct sock *sk, int len,
6900 				    char __user *optval, int __user *optlen)
6901 {
6902 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6903 	struct sctp_authkeyid val;
6904 	struct sctp_association *asoc;
6905 
6906 	if (!ep->auth_enable)
6907 		return -EACCES;
6908 
6909 	if (len < sizeof(struct sctp_authkeyid))
6910 		return -EINVAL;
6911 
6912 	len = sizeof(struct sctp_authkeyid);
6913 	if (copy_from_user(&val, optval, len))
6914 		return -EFAULT;
6915 
6916 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6917 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6918 		return -EINVAL;
6919 
6920 	if (asoc)
6921 		val.scact_keynumber = asoc->active_key_id;
6922 	else
6923 		val.scact_keynumber = ep->active_key_id;
6924 
6925 	if (put_user(len, optlen))
6926 		return -EFAULT;
6927 	if (copy_to_user(optval, &val, len))
6928 		return -EFAULT;
6929 
6930 	return 0;
6931 }
6932 
6933 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6934 				    char __user *optval, int __user *optlen)
6935 {
6936 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6937 	struct sctp_authchunks __user *p = (void __user *)optval;
6938 	struct sctp_authchunks val;
6939 	struct sctp_association *asoc;
6940 	struct sctp_chunks_param *ch;
6941 	u32    num_chunks = 0;
6942 	char __user *to;
6943 
6944 	if (!ep->auth_enable)
6945 		return -EACCES;
6946 
6947 	if (len < sizeof(struct sctp_authchunks))
6948 		return -EINVAL;
6949 
6950 	if (copy_from_user(&val, optval, sizeof(val)))
6951 		return -EFAULT;
6952 
6953 	to = p->gauth_chunks;
6954 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6955 	if (!asoc)
6956 		return -EINVAL;
6957 
6958 	ch = asoc->peer.peer_chunks;
6959 	if (!ch)
6960 		goto num;
6961 
6962 	/* See if the user provided enough room for all the data */
6963 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6964 	if (len < num_chunks)
6965 		return -EINVAL;
6966 
6967 	if (copy_to_user(to, ch->chunks, num_chunks))
6968 		return -EFAULT;
6969 num:
6970 	len = sizeof(struct sctp_authchunks) + num_chunks;
6971 	if (put_user(len, optlen))
6972 		return -EFAULT;
6973 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
6974 		return -EFAULT;
6975 	return 0;
6976 }
6977 
6978 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
6979 				    char __user *optval, int __user *optlen)
6980 {
6981 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6982 	struct sctp_authchunks __user *p = (void __user *)optval;
6983 	struct sctp_authchunks val;
6984 	struct sctp_association *asoc;
6985 	struct sctp_chunks_param *ch;
6986 	u32    num_chunks = 0;
6987 	char __user *to;
6988 
6989 	if (!ep->auth_enable)
6990 		return -EACCES;
6991 
6992 	if (len < sizeof(struct sctp_authchunks))
6993 		return -EINVAL;
6994 
6995 	if (copy_from_user(&val, optval, sizeof(val)))
6996 		return -EFAULT;
6997 
6998 	to = p->gauth_chunks;
6999 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
7000 	if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC &&
7001 	    sctp_style(sk, UDP))
7002 		return -EINVAL;
7003 
7004 	ch = asoc ? (struct sctp_chunks_param *)asoc->c.auth_chunks
7005 		  : ep->auth_chunk_list;
7006 	if (!ch)
7007 		goto num;
7008 
7009 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
7010 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
7011 		return -EINVAL;
7012 
7013 	if (copy_to_user(to, ch->chunks, num_chunks))
7014 		return -EFAULT;
7015 num:
7016 	len = sizeof(struct sctp_authchunks) + num_chunks;
7017 	if (put_user(len, optlen))
7018 		return -EFAULT;
7019 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
7020 		return -EFAULT;
7021 
7022 	return 0;
7023 }
7024 
7025 /*
7026  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
7027  * This option gets the current number of associations that are attached
7028  * to a one-to-many style socket.  The option value is an uint32_t.
7029  */
7030 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
7031 				    char __user *optval, int __user *optlen)
7032 {
7033 	struct sctp_sock *sp = sctp_sk(sk);
7034 	struct sctp_association *asoc;
7035 	u32 val = 0;
7036 
7037 	if (sctp_style(sk, TCP))
7038 		return -EOPNOTSUPP;
7039 
7040 	if (len < sizeof(u32))
7041 		return -EINVAL;
7042 
7043 	len = sizeof(u32);
7044 
7045 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7046 		val++;
7047 	}
7048 
7049 	if (put_user(len, optlen))
7050 		return -EFAULT;
7051 	if (copy_to_user(optval, &val, len))
7052 		return -EFAULT;
7053 
7054 	return 0;
7055 }
7056 
7057 /*
7058  * 8.1.23 SCTP_AUTO_ASCONF
7059  * See the corresponding setsockopt entry as description
7060  */
7061 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
7062 				   char __user *optval, int __user *optlen)
7063 {
7064 	int val = 0;
7065 
7066 	if (len < sizeof(int))
7067 		return -EINVAL;
7068 
7069 	len = sizeof(int);
7070 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
7071 		val = 1;
7072 	if (put_user(len, optlen))
7073 		return -EFAULT;
7074 	if (copy_to_user(optval, &val, len))
7075 		return -EFAULT;
7076 	return 0;
7077 }
7078 
7079 /*
7080  * 8.2.6. Get the Current Identifiers of Associations
7081  *        (SCTP_GET_ASSOC_ID_LIST)
7082  *
7083  * This option gets the current list of SCTP association identifiers of
7084  * the SCTP associations handled by a one-to-many style socket.
7085  */
7086 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
7087 				    char __user *optval, int __user *optlen)
7088 {
7089 	struct sctp_sock *sp = sctp_sk(sk);
7090 	struct sctp_association *asoc;
7091 	struct sctp_assoc_ids *ids;
7092 	u32 num = 0;
7093 
7094 	if (sctp_style(sk, TCP))
7095 		return -EOPNOTSUPP;
7096 
7097 	if (len < sizeof(struct sctp_assoc_ids))
7098 		return -EINVAL;
7099 
7100 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7101 		num++;
7102 	}
7103 
7104 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
7105 		return -EINVAL;
7106 
7107 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
7108 
7109 	ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
7110 	if (unlikely(!ids))
7111 		return -ENOMEM;
7112 
7113 	ids->gaids_number_of_ids = num;
7114 	num = 0;
7115 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7116 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
7117 	}
7118 
7119 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
7120 		kfree(ids);
7121 		return -EFAULT;
7122 	}
7123 
7124 	kfree(ids);
7125 	return 0;
7126 }
7127 
7128 /*
7129  * SCTP_PEER_ADDR_THLDS
7130  *
7131  * This option allows us to fetch the partially failed threshold for one or all
7132  * transports in an association.  See Section 6.1 of:
7133  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
7134  */
7135 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
7136 					    char __user *optval,
7137 					    int len,
7138 					    int __user *optlen)
7139 {
7140 	struct sctp_paddrthlds val;
7141 	struct sctp_transport *trans;
7142 	struct sctp_association *asoc;
7143 
7144 	if (len < sizeof(struct sctp_paddrthlds))
7145 		return -EINVAL;
7146 	len = sizeof(struct sctp_paddrthlds);
7147 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
7148 		return -EFAULT;
7149 
7150 	if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
7151 		trans = sctp_addr_id2transport(sk, &val.spt_address,
7152 					       val.spt_assoc_id);
7153 		if (!trans)
7154 			return -ENOENT;
7155 
7156 		val.spt_pathmaxrxt = trans->pathmaxrxt;
7157 		val.spt_pathpfthld = trans->pf_retrans;
7158 
7159 		return 0;
7160 	}
7161 
7162 	asoc = sctp_id2assoc(sk, val.spt_assoc_id);
7163 	if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC &&
7164 	    sctp_style(sk, UDP))
7165 		return -EINVAL;
7166 
7167 	if (asoc) {
7168 		val.spt_pathpfthld = asoc->pf_retrans;
7169 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
7170 	} else {
7171 		struct sctp_sock *sp = sctp_sk(sk);
7172 
7173 		val.spt_pathpfthld = sp->pf_retrans;
7174 		val.spt_pathmaxrxt = sp->pathmaxrxt;
7175 	}
7176 
7177 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
7178 		return -EFAULT;
7179 
7180 	return 0;
7181 }
7182 
7183 /*
7184  * SCTP_GET_ASSOC_STATS
7185  *
7186  * This option retrieves local per endpoint statistics. It is modeled
7187  * after OpenSolaris' implementation
7188  */
7189 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
7190 				       char __user *optval,
7191 				       int __user *optlen)
7192 {
7193 	struct sctp_assoc_stats sas;
7194 	struct sctp_association *asoc = NULL;
7195 
7196 	/* User must provide at least the assoc id */
7197 	if (len < sizeof(sctp_assoc_t))
7198 		return -EINVAL;
7199 
7200 	/* Allow the struct to grow and fill in as much as possible */
7201 	len = min_t(size_t, len, sizeof(sas));
7202 
7203 	if (copy_from_user(&sas, optval, len))
7204 		return -EFAULT;
7205 
7206 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
7207 	if (!asoc)
7208 		return -EINVAL;
7209 
7210 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
7211 	sas.sas_gapcnt = asoc->stats.gapcnt;
7212 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
7213 	sas.sas_osacks = asoc->stats.osacks;
7214 	sas.sas_isacks = asoc->stats.isacks;
7215 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
7216 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
7217 	sas.sas_oodchunks = asoc->stats.oodchunks;
7218 	sas.sas_iodchunks = asoc->stats.iodchunks;
7219 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
7220 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
7221 	sas.sas_idupchunks = asoc->stats.idupchunks;
7222 	sas.sas_opackets = asoc->stats.opackets;
7223 	sas.sas_ipackets = asoc->stats.ipackets;
7224 
7225 	/* New high max rto observed, will return 0 if not a single
7226 	 * RTO update took place. obs_rto_ipaddr will be bogus
7227 	 * in such a case
7228 	 */
7229 	sas.sas_maxrto = asoc->stats.max_obs_rto;
7230 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
7231 		sizeof(struct sockaddr_storage));
7232 
7233 	/* Mark beginning of a new observation period */
7234 	asoc->stats.max_obs_rto = asoc->rto_min;
7235 
7236 	if (put_user(len, optlen))
7237 		return -EFAULT;
7238 
7239 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
7240 
7241 	if (copy_to_user(optval, &sas, len))
7242 		return -EFAULT;
7243 
7244 	return 0;
7245 }
7246 
7247 static int sctp_getsockopt_recvrcvinfo(struct sock *sk,	int len,
7248 				       char __user *optval,
7249 				       int __user *optlen)
7250 {
7251 	int val = 0;
7252 
7253 	if (len < sizeof(int))
7254 		return -EINVAL;
7255 
7256 	len = sizeof(int);
7257 	if (sctp_sk(sk)->recvrcvinfo)
7258 		val = 1;
7259 	if (put_user(len, optlen))
7260 		return -EFAULT;
7261 	if (copy_to_user(optval, &val, len))
7262 		return -EFAULT;
7263 
7264 	return 0;
7265 }
7266 
7267 static int sctp_getsockopt_recvnxtinfo(struct sock *sk,	int len,
7268 				       char __user *optval,
7269 				       int __user *optlen)
7270 {
7271 	int val = 0;
7272 
7273 	if (len < sizeof(int))
7274 		return -EINVAL;
7275 
7276 	len = sizeof(int);
7277 	if (sctp_sk(sk)->recvnxtinfo)
7278 		val = 1;
7279 	if (put_user(len, optlen))
7280 		return -EFAULT;
7281 	if (copy_to_user(optval, &val, len))
7282 		return -EFAULT;
7283 
7284 	return 0;
7285 }
7286 
7287 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
7288 					char __user *optval,
7289 					int __user *optlen)
7290 {
7291 	struct sctp_assoc_value params;
7292 	struct sctp_association *asoc;
7293 	int retval = -EFAULT;
7294 
7295 	if (len < sizeof(params)) {
7296 		retval = -EINVAL;
7297 		goto out;
7298 	}
7299 
7300 	len = sizeof(params);
7301 	if (copy_from_user(&params, optval, len))
7302 		goto out;
7303 
7304 	asoc = sctp_id2assoc(sk, params.assoc_id);
7305 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7306 	    sctp_style(sk, UDP)) {
7307 		retval = -EINVAL;
7308 		goto out;
7309 	}
7310 
7311 	params.assoc_value = asoc ? asoc->prsctp_enable
7312 				  : sctp_sk(sk)->ep->prsctp_enable;
7313 
7314 	if (put_user(len, optlen))
7315 		goto out;
7316 
7317 	if (copy_to_user(optval, &params, len))
7318 		goto out;
7319 
7320 	retval = 0;
7321 
7322 out:
7323 	return retval;
7324 }
7325 
7326 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
7327 					  char __user *optval,
7328 					  int __user *optlen)
7329 {
7330 	struct sctp_default_prinfo info;
7331 	struct sctp_association *asoc;
7332 	int retval = -EFAULT;
7333 
7334 	if (len < sizeof(info)) {
7335 		retval = -EINVAL;
7336 		goto out;
7337 	}
7338 
7339 	len = sizeof(info);
7340 	if (copy_from_user(&info, optval, len))
7341 		goto out;
7342 
7343 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
7344 	if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC &&
7345 	    sctp_style(sk, UDP)) {
7346 		retval = -EINVAL;
7347 		goto out;
7348 	}
7349 
7350 	if (asoc) {
7351 		info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
7352 		info.pr_value = asoc->default_timetolive;
7353 	} else {
7354 		struct sctp_sock *sp = sctp_sk(sk);
7355 
7356 		info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
7357 		info.pr_value = sp->default_timetolive;
7358 	}
7359 
7360 	if (put_user(len, optlen))
7361 		goto out;
7362 
7363 	if (copy_to_user(optval, &info, len))
7364 		goto out;
7365 
7366 	retval = 0;
7367 
7368 out:
7369 	return retval;
7370 }
7371 
7372 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
7373 					  char __user *optval,
7374 					  int __user *optlen)
7375 {
7376 	struct sctp_prstatus params;
7377 	struct sctp_association *asoc;
7378 	int policy;
7379 	int retval = -EINVAL;
7380 
7381 	if (len < sizeof(params))
7382 		goto out;
7383 
7384 	len = sizeof(params);
7385 	if (copy_from_user(&params, optval, len)) {
7386 		retval = -EFAULT;
7387 		goto out;
7388 	}
7389 
7390 	policy = params.sprstat_policy;
7391 	if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7392 	    ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7393 		goto out;
7394 
7395 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7396 	if (!asoc)
7397 		goto out;
7398 
7399 	if (policy == SCTP_PR_SCTP_ALL) {
7400 		params.sprstat_abandoned_unsent = 0;
7401 		params.sprstat_abandoned_sent = 0;
7402 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7403 			params.sprstat_abandoned_unsent +=
7404 				asoc->abandoned_unsent[policy];
7405 			params.sprstat_abandoned_sent +=
7406 				asoc->abandoned_sent[policy];
7407 		}
7408 	} else {
7409 		params.sprstat_abandoned_unsent =
7410 			asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7411 		params.sprstat_abandoned_sent =
7412 			asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
7413 	}
7414 
7415 	if (put_user(len, optlen)) {
7416 		retval = -EFAULT;
7417 		goto out;
7418 	}
7419 
7420 	if (copy_to_user(optval, &params, len)) {
7421 		retval = -EFAULT;
7422 		goto out;
7423 	}
7424 
7425 	retval = 0;
7426 
7427 out:
7428 	return retval;
7429 }
7430 
7431 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
7432 					   char __user *optval,
7433 					   int __user *optlen)
7434 {
7435 	struct sctp_stream_out_ext *streamoute;
7436 	struct sctp_association *asoc;
7437 	struct sctp_prstatus params;
7438 	int retval = -EINVAL;
7439 	int policy;
7440 
7441 	if (len < sizeof(params))
7442 		goto out;
7443 
7444 	len = sizeof(params);
7445 	if (copy_from_user(&params, optval, len)) {
7446 		retval = -EFAULT;
7447 		goto out;
7448 	}
7449 
7450 	policy = params.sprstat_policy;
7451 	if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7452 	    ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7453 		goto out;
7454 
7455 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7456 	if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
7457 		goto out;
7458 
7459 	streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext;
7460 	if (!streamoute) {
7461 		/* Not allocated yet, means all stats are 0 */
7462 		params.sprstat_abandoned_unsent = 0;
7463 		params.sprstat_abandoned_sent = 0;
7464 		retval = 0;
7465 		goto out;
7466 	}
7467 
7468 	if (policy == SCTP_PR_SCTP_ALL) {
7469 		params.sprstat_abandoned_unsent = 0;
7470 		params.sprstat_abandoned_sent = 0;
7471 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7472 			params.sprstat_abandoned_unsent +=
7473 				streamoute->abandoned_unsent[policy];
7474 			params.sprstat_abandoned_sent +=
7475 				streamoute->abandoned_sent[policy];
7476 		}
7477 	} else {
7478 		params.sprstat_abandoned_unsent =
7479 			streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7480 		params.sprstat_abandoned_sent =
7481 			streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
7482 	}
7483 
7484 	if (put_user(len, optlen) || copy_to_user(optval, &params, len)) {
7485 		retval = -EFAULT;
7486 		goto out;
7487 	}
7488 
7489 	retval = 0;
7490 
7491 out:
7492 	return retval;
7493 }
7494 
7495 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
7496 					      char __user *optval,
7497 					      int __user *optlen)
7498 {
7499 	struct sctp_assoc_value params;
7500 	struct sctp_association *asoc;
7501 	int retval = -EFAULT;
7502 
7503 	if (len < sizeof(params)) {
7504 		retval = -EINVAL;
7505 		goto out;
7506 	}
7507 
7508 	len = sizeof(params);
7509 	if (copy_from_user(&params, optval, len))
7510 		goto out;
7511 
7512 	asoc = sctp_id2assoc(sk, params.assoc_id);
7513 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7514 	    sctp_style(sk, UDP)) {
7515 		retval = -EINVAL;
7516 		goto out;
7517 	}
7518 
7519 	params.assoc_value = asoc ? asoc->reconf_enable
7520 				  : sctp_sk(sk)->ep->reconf_enable;
7521 
7522 	if (put_user(len, optlen))
7523 		goto out;
7524 
7525 	if (copy_to_user(optval, &params, len))
7526 		goto out;
7527 
7528 	retval = 0;
7529 
7530 out:
7531 	return retval;
7532 }
7533 
7534 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
7535 					   char __user *optval,
7536 					   int __user *optlen)
7537 {
7538 	struct sctp_assoc_value params;
7539 	struct sctp_association *asoc;
7540 	int retval = -EFAULT;
7541 
7542 	if (len < sizeof(params)) {
7543 		retval = -EINVAL;
7544 		goto out;
7545 	}
7546 
7547 	len = sizeof(params);
7548 	if (copy_from_user(&params, optval, len))
7549 		goto out;
7550 
7551 	asoc = sctp_id2assoc(sk, params.assoc_id);
7552 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7553 	    sctp_style(sk, UDP)) {
7554 		retval = -EINVAL;
7555 		goto out;
7556 	}
7557 
7558 	params.assoc_value = asoc ? asoc->strreset_enable
7559 				  : sctp_sk(sk)->ep->strreset_enable;
7560 
7561 	if (put_user(len, optlen))
7562 		goto out;
7563 
7564 	if (copy_to_user(optval, &params, len))
7565 		goto out;
7566 
7567 	retval = 0;
7568 
7569 out:
7570 	return retval;
7571 }
7572 
7573 static int sctp_getsockopt_scheduler(struct sock *sk, int len,
7574 				     char __user *optval,
7575 				     int __user *optlen)
7576 {
7577 	struct sctp_assoc_value params;
7578 	struct sctp_association *asoc;
7579 	int retval = -EFAULT;
7580 
7581 	if (len < sizeof(params)) {
7582 		retval = -EINVAL;
7583 		goto out;
7584 	}
7585 
7586 	len = sizeof(params);
7587 	if (copy_from_user(&params, optval, len))
7588 		goto out;
7589 
7590 	asoc = sctp_id2assoc(sk, params.assoc_id);
7591 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7592 	    sctp_style(sk, UDP)) {
7593 		retval = -EINVAL;
7594 		goto out;
7595 	}
7596 
7597 	params.assoc_value = asoc ? sctp_sched_get_sched(asoc)
7598 				  : sctp_sk(sk)->default_ss;
7599 
7600 	if (put_user(len, optlen))
7601 		goto out;
7602 
7603 	if (copy_to_user(optval, &params, len))
7604 		goto out;
7605 
7606 	retval = 0;
7607 
7608 out:
7609 	return retval;
7610 }
7611 
7612 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
7613 					   char __user *optval,
7614 					   int __user *optlen)
7615 {
7616 	struct sctp_stream_value params;
7617 	struct sctp_association *asoc;
7618 	int retval = -EFAULT;
7619 
7620 	if (len < sizeof(params)) {
7621 		retval = -EINVAL;
7622 		goto out;
7623 	}
7624 
7625 	len = sizeof(params);
7626 	if (copy_from_user(&params, optval, len))
7627 		goto out;
7628 
7629 	asoc = sctp_id2assoc(sk, params.assoc_id);
7630 	if (!asoc) {
7631 		retval = -EINVAL;
7632 		goto out;
7633 	}
7634 
7635 	retval = sctp_sched_get_value(asoc, params.stream_id,
7636 				      &params.stream_value);
7637 	if (retval)
7638 		goto out;
7639 
7640 	if (put_user(len, optlen)) {
7641 		retval = -EFAULT;
7642 		goto out;
7643 	}
7644 
7645 	if (copy_to_user(optval, &params, len)) {
7646 		retval = -EFAULT;
7647 		goto out;
7648 	}
7649 
7650 out:
7651 	return retval;
7652 }
7653 
7654 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len,
7655 						  char __user *optval,
7656 						  int __user *optlen)
7657 {
7658 	struct sctp_assoc_value params;
7659 	struct sctp_association *asoc;
7660 	int retval = -EFAULT;
7661 
7662 	if (len < sizeof(params)) {
7663 		retval = -EINVAL;
7664 		goto out;
7665 	}
7666 
7667 	len = sizeof(params);
7668 	if (copy_from_user(&params, optval, len))
7669 		goto out;
7670 
7671 	asoc = sctp_id2assoc(sk, params.assoc_id);
7672 	if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7673 	    sctp_style(sk, UDP)) {
7674 		retval = -EINVAL;
7675 		goto out;
7676 	}
7677 
7678 	params.assoc_value = asoc ? asoc->intl_enable
7679 				  : sctp_sk(sk)->strm_interleave;
7680 
7681 	if (put_user(len, optlen))
7682 		goto out;
7683 
7684 	if (copy_to_user(optval, &params, len))
7685 		goto out;
7686 
7687 	retval = 0;
7688 
7689 out:
7690 	return retval;
7691 }
7692 
7693 static int sctp_getsockopt_reuse_port(struct sock *sk, int len,
7694 				      char __user *optval,
7695 				      int __user *optlen)
7696 {
7697 	int val;
7698 
7699 	if (len < sizeof(int))
7700 		return -EINVAL;
7701 
7702 	len = sizeof(int);
7703 	val = sctp_sk(sk)->reuse;
7704 	if (put_user(len, optlen))
7705 		return -EFAULT;
7706 
7707 	if (copy_to_user(optval, &val, len))
7708 		return -EFAULT;
7709 
7710 	return 0;
7711 }
7712 
7713 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval,
7714 				 int __user *optlen)
7715 {
7716 	struct sctp_association *asoc;
7717 	struct sctp_event param;
7718 	__u16 subscribe;
7719 
7720 	if (len < sizeof(param))
7721 		return -EINVAL;
7722 
7723 	len = sizeof(param);
7724 	if (copy_from_user(&param, optval, len))
7725 		return -EFAULT;
7726 
7727 	if (param.se_type < SCTP_SN_TYPE_BASE ||
7728 	    param.se_type > SCTP_SN_TYPE_MAX)
7729 		return -EINVAL;
7730 
7731 	asoc = sctp_id2assoc(sk, param.se_assoc_id);
7732 	if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC &&
7733 	    sctp_style(sk, UDP))
7734 		return -EINVAL;
7735 
7736 	subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe;
7737 	param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type);
7738 
7739 	if (put_user(len, optlen))
7740 		return -EFAULT;
7741 
7742 	if (copy_to_user(optval, &param, len))
7743 		return -EFAULT;
7744 
7745 	return 0;
7746 }
7747 
7748 static int sctp_getsockopt(struct sock *sk, int level, int optname,
7749 			   char __user *optval, int __user *optlen)
7750 {
7751 	int retval = 0;
7752 	int len;
7753 
7754 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
7755 
7756 	/* I can hardly begin to describe how wrong this is.  This is
7757 	 * so broken as to be worse than useless.  The API draft
7758 	 * REALLY is NOT helpful here...  I am not convinced that the
7759 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
7760 	 * are at all well-founded.
7761 	 */
7762 	if (level != SOL_SCTP) {
7763 		struct sctp_af *af = sctp_sk(sk)->pf->af;
7764 
7765 		retval = af->getsockopt(sk, level, optname, optval, optlen);
7766 		return retval;
7767 	}
7768 
7769 	if (get_user(len, optlen))
7770 		return -EFAULT;
7771 
7772 	if (len < 0)
7773 		return -EINVAL;
7774 
7775 	lock_sock(sk);
7776 
7777 	switch (optname) {
7778 	case SCTP_STATUS:
7779 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
7780 		break;
7781 	case SCTP_DISABLE_FRAGMENTS:
7782 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
7783 							   optlen);
7784 		break;
7785 	case SCTP_EVENTS:
7786 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
7787 		break;
7788 	case SCTP_AUTOCLOSE:
7789 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
7790 		break;
7791 	case SCTP_SOCKOPT_PEELOFF:
7792 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
7793 		break;
7794 	case SCTP_SOCKOPT_PEELOFF_FLAGS:
7795 		retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
7796 		break;
7797 	case SCTP_PEER_ADDR_PARAMS:
7798 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
7799 							  optlen);
7800 		break;
7801 	case SCTP_DELAYED_SACK:
7802 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
7803 							  optlen);
7804 		break;
7805 	case SCTP_INITMSG:
7806 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
7807 		break;
7808 	case SCTP_GET_PEER_ADDRS:
7809 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
7810 						    optlen);
7811 		break;
7812 	case SCTP_GET_LOCAL_ADDRS:
7813 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
7814 						     optlen);
7815 		break;
7816 	case SCTP_SOCKOPT_CONNECTX3:
7817 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
7818 		break;
7819 	case SCTP_DEFAULT_SEND_PARAM:
7820 		retval = sctp_getsockopt_default_send_param(sk, len,
7821 							    optval, optlen);
7822 		break;
7823 	case SCTP_DEFAULT_SNDINFO:
7824 		retval = sctp_getsockopt_default_sndinfo(sk, len,
7825 							 optval, optlen);
7826 		break;
7827 	case SCTP_PRIMARY_ADDR:
7828 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
7829 		break;
7830 	case SCTP_NODELAY:
7831 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
7832 		break;
7833 	case SCTP_RTOINFO:
7834 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
7835 		break;
7836 	case SCTP_ASSOCINFO:
7837 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
7838 		break;
7839 	case SCTP_I_WANT_MAPPED_V4_ADDR:
7840 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
7841 		break;
7842 	case SCTP_MAXSEG:
7843 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
7844 		break;
7845 	case SCTP_GET_PEER_ADDR_INFO:
7846 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
7847 							optlen);
7848 		break;
7849 	case SCTP_ADAPTATION_LAYER:
7850 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
7851 							optlen);
7852 		break;
7853 	case SCTP_CONTEXT:
7854 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
7855 		break;
7856 	case SCTP_FRAGMENT_INTERLEAVE:
7857 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
7858 							     optlen);
7859 		break;
7860 	case SCTP_PARTIAL_DELIVERY_POINT:
7861 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
7862 								optlen);
7863 		break;
7864 	case SCTP_MAX_BURST:
7865 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
7866 		break;
7867 	case SCTP_AUTH_KEY:
7868 	case SCTP_AUTH_CHUNK:
7869 	case SCTP_AUTH_DELETE_KEY:
7870 	case SCTP_AUTH_DEACTIVATE_KEY:
7871 		retval = -EOPNOTSUPP;
7872 		break;
7873 	case SCTP_HMAC_IDENT:
7874 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
7875 		break;
7876 	case SCTP_AUTH_ACTIVE_KEY:
7877 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
7878 		break;
7879 	case SCTP_PEER_AUTH_CHUNKS:
7880 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
7881 							optlen);
7882 		break;
7883 	case SCTP_LOCAL_AUTH_CHUNKS:
7884 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
7885 							optlen);
7886 		break;
7887 	case SCTP_GET_ASSOC_NUMBER:
7888 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
7889 		break;
7890 	case SCTP_GET_ASSOC_ID_LIST:
7891 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
7892 		break;
7893 	case SCTP_AUTO_ASCONF:
7894 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
7895 		break;
7896 	case SCTP_PEER_ADDR_THLDS:
7897 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
7898 		break;
7899 	case SCTP_GET_ASSOC_STATS:
7900 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
7901 		break;
7902 	case SCTP_RECVRCVINFO:
7903 		retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
7904 		break;
7905 	case SCTP_RECVNXTINFO:
7906 		retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
7907 		break;
7908 	case SCTP_PR_SUPPORTED:
7909 		retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
7910 		break;
7911 	case SCTP_DEFAULT_PRINFO:
7912 		retval = sctp_getsockopt_default_prinfo(sk, len, optval,
7913 							optlen);
7914 		break;
7915 	case SCTP_PR_ASSOC_STATUS:
7916 		retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
7917 							optlen);
7918 		break;
7919 	case SCTP_PR_STREAM_STATUS:
7920 		retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
7921 							 optlen);
7922 		break;
7923 	case SCTP_RECONFIG_SUPPORTED:
7924 		retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
7925 							    optlen);
7926 		break;
7927 	case SCTP_ENABLE_STREAM_RESET:
7928 		retval = sctp_getsockopt_enable_strreset(sk, len, optval,
7929 							 optlen);
7930 		break;
7931 	case SCTP_STREAM_SCHEDULER:
7932 		retval = sctp_getsockopt_scheduler(sk, len, optval,
7933 						   optlen);
7934 		break;
7935 	case SCTP_STREAM_SCHEDULER_VALUE:
7936 		retval = sctp_getsockopt_scheduler_value(sk, len, optval,
7937 							 optlen);
7938 		break;
7939 	case SCTP_INTERLEAVING_SUPPORTED:
7940 		retval = sctp_getsockopt_interleaving_supported(sk, len, optval,
7941 								optlen);
7942 		break;
7943 	case SCTP_REUSE_PORT:
7944 		retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen);
7945 		break;
7946 	case SCTP_EVENT:
7947 		retval = sctp_getsockopt_event(sk, len, optval, optlen);
7948 		break;
7949 	default:
7950 		retval = -ENOPROTOOPT;
7951 		break;
7952 	}
7953 
7954 	release_sock(sk);
7955 	return retval;
7956 }
7957 
7958 static int sctp_hash(struct sock *sk)
7959 {
7960 	/* STUB */
7961 	return 0;
7962 }
7963 
7964 static void sctp_unhash(struct sock *sk)
7965 {
7966 	/* STUB */
7967 }
7968 
7969 /* Check if port is acceptable.  Possibly find first available port.
7970  *
7971  * The port hash table (contained in the 'global' SCTP protocol storage
7972  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
7973  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
7974  * list (the list number is the port number hashed out, so as you
7975  * would expect from a hash function, all the ports in a given list have
7976  * such a number that hashes out to the same list number; you were
7977  * expecting that, right?); so each list has a set of ports, with a
7978  * link to the socket (struct sock) that uses it, the port number and
7979  * a fastreuse flag (FIXME: NPI ipg).
7980  */
7981 static struct sctp_bind_bucket *sctp_bucket_create(
7982 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
7983 
7984 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
7985 {
7986 	struct sctp_sock *sp = sctp_sk(sk);
7987 	bool reuse = (sk->sk_reuse || sp->reuse);
7988 	struct sctp_bind_hashbucket *head; /* hash list */
7989 	kuid_t uid = sock_i_uid(sk);
7990 	struct sctp_bind_bucket *pp;
7991 	unsigned short snum;
7992 	int ret;
7993 
7994 	snum = ntohs(addr->v4.sin_port);
7995 
7996 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
7997 
7998 	local_bh_disable();
7999 
8000 	if (snum == 0) {
8001 		/* Search for an available port. */
8002 		int low, high, remaining, index;
8003 		unsigned int rover;
8004 		struct net *net = sock_net(sk);
8005 
8006 		inet_get_local_port_range(net, &low, &high);
8007 		remaining = (high - low) + 1;
8008 		rover = prandom_u32() % remaining + low;
8009 
8010 		do {
8011 			rover++;
8012 			if ((rover < low) || (rover > high))
8013 				rover = low;
8014 			if (inet_is_local_reserved_port(net, rover))
8015 				continue;
8016 			index = sctp_phashfn(sock_net(sk), rover);
8017 			head = &sctp_port_hashtable[index];
8018 			spin_lock(&head->lock);
8019 			sctp_for_each_hentry(pp, &head->chain)
8020 				if ((pp->port == rover) &&
8021 				    net_eq(sock_net(sk), pp->net))
8022 					goto next;
8023 			break;
8024 		next:
8025 			spin_unlock(&head->lock);
8026 		} while (--remaining > 0);
8027 
8028 		/* Exhausted local port range during search? */
8029 		ret = 1;
8030 		if (remaining <= 0)
8031 			goto fail;
8032 
8033 		/* OK, here is the one we will use.  HEAD (the port
8034 		 * hash table list entry) is non-NULL and we hold it's
8035 		 * mutex.
8036 		 */
8037 		snum = rover;
8038 	} else {
8039 		/* We are given an specific port number; we verify
8040 		 * that it is not being used. If it is used, we will
8041 		 * exahust the search in the hash list corresponding
8042 		 * to the port number (snum) - we detect that with the
8043 		 * port iterator, pp being NULL.
8044 		 */
8045 		head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
8046 		spin_lock(&head->lock);
8047 		sctp_for_each_hentry(pp, &head->chain) {
8048 			if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
8049 				goto pp_found;
8050 		}
8051 	}
8052 	pp = NULL;
8053 	goto pp_not_found;
8054 pp_found:
8055 	if (!hlist_empty(&pp->owner)) {
8056 		/* We had a port hash table hit - there is an
8057 		 * available port (pp != NULL) and it is being
8058 		 * used by other socket (pp->owner not empty); that other
8059 		 * socket is going to be sk2.
8060 		 */
8061 		struct sock *sk2;
8062 
8063 		pr_debug("%s: found a possible match\n", __func__);
8064 
8065 		if ((pp->fastreuse && reuse &&
8066 		     sk->sk_state != SCTP_SS_LISTENING) ||
8067 		    (pp->fastreuseport && sk->sk_reuseport &&
8068 		     uid_eq(pp->fastuid, uid)))
8069 			goto success;
8070 
8071 		/* Run through the list of sockets bound to the port
8072 		 * (pp->port) [via the pointers bind_next and
8073 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
8074 		 * we get the endpoint they describe and run through
8075 		 * the endpoint's list of IP (v4 or v6) addresses,
8076 		 * comparing each of the addresses with the address of
8077 		 * the socket sk. If we find a match, then that means
8078 		 * that this port/socket (sk) combination are already
8079 		 * in an endpoint.
8080 		 */
8081 		sk_for_each_bound(sk2, &pp->owner) {
8082 			struct sctp_sock *sp2 = sctp_sk(sk2);
8083 			struct sctp_endpoint *ep2 = sp2->ep;
8084 
8085 			if (sk == sk2 ||
8086 			    (reuse && (sk2->sk_reuse || sp2->reuse) &&
8087 			     sk2->sk_state != SCTP_SS_LISTENING) ||
8088 			    (sk->sk_reuseport && sk2->sk_reuseport &&
8089 			     uid_eq(uid, sock_i_uid(sk2))))
8090 				continue;
8091 
8092 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr,
8093 						    addr, sp2, sp)) {
8094 				ret = (long)sk2;
8095 				goto fail_unlock;
8096 			}
8097 		}
8098 
8099 		pr_debug("%s: found a match\n", __func__);
8100 	}
8101 pp_not_found:
8102 	/* If there was a hash table miss, create a new port.  */
8103 	ret = 1;
8104 	if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
8105 		goto fail_unlock;
8106 
8107 	/* In either case (hit or miss), make sure fastreuse is 1 only
8108 	 * if sk->sk_reuse is too (that is, if the caller requested
8109 	 * SO_REUSEADDR on this socket -sk-).
8110 	 */
8111 	if (hlist_empty(&pp->owner)) {
8112 		if (reuse && sk->sk_state != SCTP_SS_LISTENING)
8113 			pp->fastreuse = 1;
8114 		else
8115 			pp->fastreuse = 0;
8116 
8117 		if (sk->sk_reuseport) {
8118 			pp->fastreuseport = 1;
8119 			pp->fastuid = uid;
8120 		} else {
8121 			pp->fastreuseport = 0;
8122 		}
8123 	} else {
8124 		if (pp->fastreuse &&
8125 		    (!reuse || sk->sk_state == SCTP_SS_LISTENING))
8126 			pp->fastreuse = 0;
8127 
8128 		if (pp->fastreuseport &&
8129 		    (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid)))
8130 			pp->fastreuseport = 0;
8131 	}
8132 
8133 	/* We are set, so fill up all the data in the hash table
8134 	 * entry, tie the socket list information with the rest of the
8135 	 * sockets FIXME: Blurry, NPI (ipg).
8136 	 */
8137 success:
8138 	if (!sp->bind_hash) {
8139 		inet_sk(sk)->inet_num = snum;
8140 		sk_add_bind_node(sk, &pp->owner);
8141 		sp->bind_hash = pp;
8142 	}
8143 	ret = 0;
8144 
8145 fail_unlock:
8146 	spin_unlock(&head->lock);
8147 
8148 fail:
8149 	local_bh_enable();
8150 	return ret;
8151 }
8152 
8153 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
8154  * port is requested.
8155  */
8156 static int sctp_get_port(struct sock *sk, unsigned short snum)
8157 {
8158 	union sctp_addr addr;
8159 	struct sctp_af *af = sctp_sk(sk)->pf->af;
8160 
8161 	/* Set up a dummy address struct from the sk. */
8162 	af->from_sk(&addr, sk);
8163 	addr.v4.sin_port = htons(snum);
8164 
8165 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
8166 	return !!sctp_get_port_local(sk, &addr);
8167 }
8168 
8169 /*
8170  *  Move a socket to LISTENING state.
8171  */
8172 static int sctp_listen_start(struct sock *sk, int backlog)
8173 {
8174 	struct sctp_sock *sp = sctp_sk(sk);
8175 	struct sctp_endpoint *ep = sp->ep;
8176 	struct crypto_shash *tfm = NULL;
8177 	char alg[32];
8178 
8179 	/* Allocate HMAC for generating cookie. */
8180 	if (!sp->hmac && sp->sctp_hmac_alg) {
8181 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
8182 		tfm = crypto_alloc_shash(alg, 0, 0);
8183 		if (IS_ERR(tfm)) {
8184 			net_info_ratelimited("failed to load transform for %s: %ld\n",
8185 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
8186 			return -ENOSYS;
8187 		}
8188 		sctp_sk(sk)->hmac = tfm;
8189 	}
8190 
8191 	/*
8192 	 * If a bind() or sctp_bindx() is not called prior to a listen()
8193 	 * call that allows new associations to be accepted, the system
8194 	 * picks an ephemeral port and will choose an address set equivalent
8195 	 * to binding with a wildcard address.
8196 	 *
8197 	 * This is not currently spelled out in the SCTP sockets
8198 	 * extensions draft, but follows the practice as seen in TCP
8199 	 * sockets.
8200 	 *
8201 	 */
8202 	inet_sk_set_state(sk, SCTP_SS_LISTENING);
8203 	if (!ep->base.bind_addr.port) {
8204 		if (sctp_autobind(sk))
8205 			return -EAGAIN;
8206 	} else {
8207 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
8208 			inet_sk_set_state(sk, SCTP_SS_CLOSED);
8209 			return -EADDRINUSE;
8210 		}
8211 	}
8212 
8213 	sk->sk_max_ack_backlog = backlog;
8214 	return sctp_hash_endpoint(ep);
8215 }
8216 
8217 /*
8218  * 4.1.3 / 5.1.3 listen()
8219  *
8220  *   By default, new associations are not accepted for UDP style sockets.
8221  *   An application uses listen() to mark a socket as being able to
8222  *   accept new associations.
8223  *
8224  *   On TCP style sockets, applications use listen() to ready the SCTP
8225  *   endpoint for accepting inbound associations.
8226  *
8227  *   On both types of endpoints a backlog of '0' disables listening.
8228  *
8229  *  Move a socket to LISTENING state.
8230  */
8231 int sctp_inet_listen(struct socket *sock, int backlog)
8232 {
8233 	struct sock *sk = sock->sk;
8234 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
8235 	int err = -EINVAL;
8236 
8237 	if (unlikely(backlog < 0))
8238 		return err;
8239 
8240 	lock_sock(sk);
8241 
8242 	/* Peeled-off sockets are not allowed to listen().  */
8243 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
8244 		goto out;
8245 
8246 	if (sock->state != SS_UNCONNECTED)
8247 		goto out;
8248 
8249 	if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
8250 		goto out;
8251 
8252 	/* If backlog is zero, disable listening. */
8253 	if (!backlog) {
8254 		if (sctp_sstate(sk, CLOSED))
8255 			goto out;
8256 
8257 		err = 0;
8258 		sctp_unhash_endpoint(ep);
8259 		sk->sk_state = SCTP_SS_CLOSED;
8260 		if (sk->sk_reuse || sctp_sk(sk)->reuse)
8261 			sctp_sk(sk)->bind_hash->fastreuse = 1;
8262 		goto out;
8263 	}
8264 
8265 	/* If we are already listening, just update the backlog */
8266 	if (sctp_sstate(sk, LISTENING))
8267 		sk->sk_max_ack_backlog = backlog;
8268 	else {
8269 		err = sctp_listen_start(sk, backlog);
8270 		if (err)
8271 			goto out;
8272 	}
8273 
8274 	err = 0;
8275 out:
8276 	release_sock(sk);
8277 	return err;
8278 }
8279 
8280 /*
8281  * This function is done by modeling the current datagram_poll() and the
8282  * tcp_poll().  Note that, based on these implementations, we don't
8283  * lock the socket in this function, even though it seems that,
8284  * ideally, locking or some other mechanisms can be used to ensure
8285  * the integrity of the counters (sndbuf and wmem_alloc) used
8286  * in this place.  We assume that we don't need locks either until proven
8287  * otherwise.
8288  *
8289  * Another thing to note is that we include the Async I/O support
8290  * here, again, by modeling the current TCP/UDP code.  We don't have
8291  * a good way to test with it yet.
8292  */
8293 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
8294 {
8295 	struct sock *sk = sock->sk;
8296 	struct sctp_sock *sp = sctp_sk(sk);
8297 	__poll_t mask;
8298 
8299 	poll_wait(file, sk_sleep(sk), wait);
8300 
8301 	sock_rps_record_flow(sk);
8302 
8303 	/* A TCP-style listening socket becomes readable when the accept queue
8304 	 * is not empty.
8305 	 */
8306 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
8307 		return (!list_empty(&sp->ep->asocs)) ?
8308 			(EPOLLIN | EPOLLRDNORM) : 0;
8309 
8310 	mask = 0;
8311 
8312 	/* Is there any exceptional events?  */
8313 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
8314 		mask |= EPOLLERR |
8315 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
8316 	if (sk->sk_shutdown & RCV_SHUTDOWN)
8317 		mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
8318 	if (sk->sk_shutdown == SHUTDOWN_MASK)
8319 		mask |= EPOLLHUP;
8320 
8321 	/* Is it readable?  Reconsider this code with TCP-style support.  */
8322 	if (!skb_queue_empty(&sk->sk_receive_queue))
8323 		mask |= EPOLLIN | EPOLLRDNORM;
8324 
8325 	/* The association is either gone or not ready.  */
8326 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
8327 		return mask;
8328 
8329 	/* Is it writable?  */
8330 	if (sctp_writeable(sk)) {
8331 		mask |= EPOLLOUT | EPOLLWRNORM;
8332 	} else {
8333 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
8334 		/*
8335 		 * Since the socket is not locked, the buffer
8336 		 * might be made available after the writeable check and
8337 		 * before the bit is set.  This could cause a lost I/O
8338 		 * signal.  tcp_poll() has a race breaker for this race
8339 		 * condition.  Based on their implementation, we put
8340 		 * in the following code to cover it as well.
8341 		 */
8342 		if (sctp_writeable(sk))
8343 			mask |= EPOLLOUT | EPOLLWRNORM;
8344 	}
8345 	return mask;
8346 }
8347 
8348 /********************************************************************
8349  * 2nd Level Abstractions
8350  ********************************************************************/
8351 
8352 static struct sctp_bind_bucket *sctp_bucket_create(
8353 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
8354 {
8355 	struct sctp_bind_bucket *pp;
8356 
8357 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
8358 	if (pp) {
8359 		SCTP_DBG_OBJCNT_INC(bind_bucket);
8360 		pp->port = snum;
8361 		pp->fastreuse = 0;
8362 		INIT_HLIST_HEAD(&pp->owner);
8363 		pp->net = net;
8364 		hlist_add_head(&pp->node, &head->chain);
8365 	}
8366 	return pp;
8367 }
8368 
8369 /* Caller must hold hashbucket lock for this tb with local BH disabled */
8370 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
8371 {
8372 	if (pp && hlist_empty(&pp->owner)) {
8373 		__hlist_del(&pp->node);
8374 		kmem_cache_free(sctp_bucket_cachep, pp);
8375 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
8376 	}
8377 }
8378 
8379 /* Release this socket's reference to a local port.  */
8380 static inline void __sctp_put_port(struct sock *sk)
8381 {
8382 	struct sctp_bind_hashbucket *head =
8383 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
8384 						  inet_sk(sk)->inet_num)];
8385 	struct sctp_bind_bucket *pp;
8386 
8387 	spin_lock(&head->lock);
8388 	pp = sctp_sk(sk)->bind_hash;
8389 	__sk_del_bind_node(sk);
8390 	sctp_sk(sk)->bind_hash = NULL;
8391 	inet_sk(sk)->inet_num = 0;
8392 	sctp_bucket_destroy(pp);
8393 	spin_unlock(&head->lock);
8394 }
8395 
8396 void sctp_put_port(struct sock *sk)
8397 {
8398 	local_bh_disable();
8399 	__sctp_put_port(sk);
8400 	local_bh_enable();
8401 }
8402 
8403 /*
8404  * The system picks an ephemeral port and choose an address set equivalent
8405  * to binding with a wildcard address.
8406  * One of those addresses will be the primary address for the association.
8407  * This automatically enables the multihoming capability of SCTP.
8408  */
8409 static int sctp_autobind(struct sock *sk)
8410 {
8411 	union sctp_addr autoaddr;
8412 	struct sctp_af *af;
8413 	__be16 port;
8414 
8415 	/* Initialize a local sockaddr structure to INADDR_ANY. */
8416 	af = sctp_sk(sk)->pf->af;
8417 
8418 	port = htons(inet_sk(sk)->inet_num);
8419 	af->inaddr_any(&autoaddr, port);
8420 
8421 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
8422 }
8423 
8424 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
8425  *
8426  * From RFC 2292
8427  * 4.2 The cmsghdr Structure *
8428  *
8429  * When ancillary data is sent or received, any number of ancillary data
8430  * objects can be specified by the msg_control and msg_controllen members of
8431  * the msghdr structure, because each object is preceded by
8432  * a cmsghdr structure defining the object's length (the cmsg_len member).
8433  * Historically Berkeley-derived implementations have passed only one object
8434  * at a time, but this API allows multiple objects to be
8435  * passed in a single call to sendmsg() or recvmsg(). The following example
8436  * shows two ancillary data objects in a control buffer.
8437  *
8438  *   |<--------------------------- msg_controllen -------------------------->|
8439  *   |                                                                       |
8440  *
8441  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
8442  *
8443  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
8444  *   |                                   |                                   |
8445  *
8446  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
8447  *
8448  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
8449  *   |                                |  |                                |  |
8450  *
8451  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8452  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
8453  *
8454  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
8455  *
8456  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8457  *    ^
8458  *    |
8459  *
8460  * msg_control
8461  * points here
8462  */
8463 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
8464 {
8465 	struct msghdr *my_msg = (struct msghdr *)msg;
8466 	struct cmsghdr *cmsg;
8467 
8468 	for_each_cmsghdr(cmsg, my_msg) {
8469 		if (!CMSG_OK(my_msg, cmsg))
8470 			return -EINVAL;
8471 
8472 		/* Should we parse this header or ignore?  */
8473 		if (cmsg->cmsg_level != IPPROTO_SCTP)
8474 			continue;
8475 
8476 		/* Strictly check lengths following example in SCM code.  */
8477 		switch (cmsg->cmsg_type) {
8478 		case SCTP_INIT:
8479 			/* SCTP Socket API Extension
8480 			 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
8481 			 *
8482 			 * This cmsghdr structure provides information for
8483 			 * initializing new SCTP associations with sendmsg().
8484 			 * The SCTP_INITMSG socket option uses this same data
8485 			 * structure.  This structure is not used for
8486 			 * recvmsg().
8487 			 *
8488 			 * cmsg_level    cmsg_type      cmsg_data[]
8489 			 * ------------  ------------   ----------------------
8490 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
8491 			 */
8492 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
8493 				return -EINVAL;
8494 
8495 			cmsgs->init = CMSG_DATA(cmsg);
8496 			break;
8497 
8498 		case SCTP_SNDRCV:
8499 			/* SCTP Socket API Extension
8500 			 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
8501 			 *
8502 			 * This cmsghdr structure specifies SCTP options for
8503 			 * sendmsg() and describes SCTP header information
8504 			 * about a received message through recvmsg().
8505 			 *
8506 			 * cmsg_level    cmsg_type      cmsg_data[]
8507 			 * ------------  ------------   ----------------------
8508 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
8509 			 */
8510 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
8511 				return -EINVAL;
8512 
8513 			cmsgs->srinfo = CMSG_DATA(cmsg);
8514 
8515 			if (cmsgs->srinfo->sinfo_flags &
8516 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8517 			      SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8518 			      SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8519 				return -EINVAL;
8520 			break;
8521 
8522 		case SCTP_SNDINFO:
8523 			/* SCTP Socket API Extension
8524 			 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
8525 			 *
8526 			 * This cmsghdr structure specifies SCTP options for
8527 			 * sendmsg(). This structure and SCTP_RCVINFO replaces
8528 			 * SCTP_SNDRCV which has been deprecated.
8529 			 *
8530 			 * cmsg_level    cmsg_type      cmsg_data[]
8531 			 * ------------  ------------   ---------------------
8532 			 * IPPROTO_SCTP  SCTP_SNDINFO    struct sctp_sndinfo
8533 			 */
8534 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
8535 				return -EINVAL;
8536 
8537 			cmsgs->sinfo = CMSG_DATA(cmsg);
8538 
8539 			if (cmsgs->sinfo->snd_flags &
8540 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8541 			      SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8542 			      SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8543 				return -EINVAL;
8544 			break;
8545 		case SCTP_PRINFO:
8546 			/* SCTP Socket API Extension
8547 			 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO)
8548 			 *
8549 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8550 			 *
8551 			 * cmsg_level    cmsg_type      cmsg_data[]
8552 			 * ------------  ------------   ---------------------
8553 			 * IPPROTO_SCTP  SCTP_PRINFO    struct sctp_prinfo
8554 			 */
8555 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo)))
8556 				return -EINVAL;
8557 
8558 			cmsgs->prinfo = CMSG_DATA(cmsg);
8559 			if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK)
8560 				return -EINVAL;
8561 
8562 			if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE)
8563 				cmsgs->prinfo->pr_value = 0;
8564 			break;
8565 		case SCTP_AUTHINFO:
8566 			/* SCTP Socket API Extension
8567 			 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO)
8568 			 *
8569 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8570 			 *
8571 			 * cmsg_level    cmsg_type      cmsg_data[]
8572 			 * ------------  ------------   ---------------------
8573 			 * IPPROTO_SCTP  SCTP_AUTHINFO  struct sctp_authinfo
8574 			 */
8575 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo)))
8576 				return -EINVAL;
8577 
8578 			cmsgs->authinfo = CMSG_DATA(cmsg);
8579 			break;
8580 		case SCTP_DSTADDRV4:
8581 		case SCTP_DSTADDRV6:
8582 			/* SCTP Socket API Extension
8583 			 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6)
8584 			 *
8585 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8586 			 *
8587 			 * cmsg_level    cmsg_type         cmsg_data[]
8588 			 * ------------  ------------   ---------------------
8589 			 * IPPROTO_SCTP  SCTP_DSTADDRV4 struct in_addr
8590 			 * ------------  ------------   ---------------------
8591 			 * IPPROTO_SCTP  SCTP_DSTADDRV6 struct in6_addr
8592 			 */
8593 			cmsgs->addrs_msg = my_msg;
8594 			break;
8595 		default:
8596 			return -EINVAL;
8597 		}
8598 	}
8599 
8600 	return 0;
8601 }
8602 
8603 /*
8604  * Wait for a packet..
8605  * Note: This function is the same function as in core/datagram.c
8606  * with a few modifications to make lksctp work.
8607  */
8608 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
8609 {
8610 	int error;
8611 	DEFINE_WAIT(wait);
8612 
8613 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8614 
8615 	/* Socket errors? */
8616 	error = sock_error(sk);
8617 	if (error)
8618 		goto out;
8619 
8620 	if (!skb_queue_empty(&sk->sk_receive_queue))
8621 		goto ready;
8622 
8623 	/* Socket shut down?  */
8624 	if (sk->sk_shutdown & RCV_SHUTDOWN)
8625 		goto out;
8626 
8627 	/* Sequenced packets can come disconnected.  If so we report the
8628 	 * problem.
8629 	 */
8630 	error = -ENOTCONN;
8631 
8632 	/* Is there a good reason to think that we may receive some data?  */
8633 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
8634 		goto out;
8635 
8636 	/* Handle signals.  */
8637 	if (signal_pending(current))
8638 		goto interrupted;
8639 
8640 	/* Let another process have a go.  Since we are going to sleep
8641 	 * anyway.  Note: This may cause odd behaviors if the message
8642 	 * does not fit in the user's buffer, but this seems to be the
8643 	 * only way to honor MSG_DONTWAIT realistically.
8644 	 */
8645 	release_sock(sk);
8646 	*timeo_p = schedule_timeout(*timeo_p);
8647 	lock_sock(sk);
8648 
8649 ready:
8650 	finish_wait(sk_sleep(sk), &wait);
8651 	return 0;
8652 
8653 interrupted:
8654 	error = sock_intr_errno(*timeo_p);
8655 
8656 out:
8657 	finish_wait(sk_sleep(sk), &wait);
8658 	*err = error;
8659 	return error;
8660 }
8661 
8662 /* Receive a datagram.
8663  * Note: This is pretty much the same routine as in core/datagram.c
8664  * with a few changes to make lksctp work.
8665  */
8666 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
8667 				       int noblock, int *err)
8668 {
8669 	int error;
8670 	struct sk_buff *skb;
8671 	long timeo;
8672 
8673 	timeo = sock_rcvtimeo(sk, noblock);
8674 
8675 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
8676 		 MAX_SCHEDULE_TIMEOUT);
8677 
8678 	do {
8679 		/* Again only user level code calls this function,
8680 		 * so nothing interrupt level
8681 		 * will suddenly eat the receive_queue.
8682 		 *
8683 		 *  Look at current nfs client by the way...
8684 		 *  However, this function was correct in any case. 8)
8685 		 */
8686 		if (flags & MSG_PEEK) {
8687 			skb = skb_peek(&sk->sk_receive_queue);
8688 			if (skb)
8689 				refcount_inc(&skb->users);
8690 		} else {
8691 			skb = __skb_dequeue(&sk->sk_receive_queue);
8692 		}
8693 
8694 		if (skb)
8695 			return skb;
8696 
8697 		/* Caller is allowed not to check sk->sk_err before calling. */
8698 		error = sock_error(sk);
8699 		if (error)
8700 			goto no_packet;
8701 
8702 		if (sk->sk_shutdown & RCV_SHUTDOWN)
8703 			break;
8704 
8705 		if (sk_can_busy_loop(sk)) {
8706 			sk_busy_loop(sk, noblock);
8707 
8708 			if (!skb_queue_empty(&sk->sk_receive_queue))
8709 				continue;
8710 		}
8711 
8712 		/* User doesn't want to wait.  */
8713 		error = -EAGAIN;
8714 		if (!timeo)
8715 			goto no_packet;
8716 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
8717 
8718 	return NULL;
8719 
8720 no_packet:
8721 	*err = error;
8722 	return NULL;
8723 }
8724 
8725 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
8726 static void __sctp_write_space(struct sctp_association *asoc)
8727 {
8728 	struct sock *sk = asoc->base.sk;
8729 
8730 	if (sctp_wspace(asoc) <= 0)
8731 		return;
8732 
8733 	if (waitqueue_active(&asoc->wait))
8734 		wake_up_interruptible(&asoc->wait);
8735 
8736 	if (sctp_writeable(sk)) {
8737 		struct socket_wq *wq;
8738 
8739 		rcu_read_lock();
8740 		wq = rcu_dereference(sk->sk_wq);
8741 		if (wq) {
8742 			if (waitqueue_active(&wq->wait))
8743 				wake_up_interruptible(&wq->wait);
8744 
8745 			/* Note that we try to include the Async I/O support
8746 			 * here by modeling from the current TCP/UDP code.
8747 			 * We have not tested with it yet.
8748 			 */
8749 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
8750 				sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
8751 		}
8752 		rcu_read_unlock();
8753 	}
8754 }
8755 
8756 static void sctp_wake_up_waiters(struct sock *sk,
8757 				 struct sctp_association *asoc)
8758 {
8759 	struct sctp_association *tmp = asoc;
8760 
8761 	/* We do accounting for the sndbuf space per association,
8762 	 * so we only need to wake our own association.
8763 	 */
8764 	if (asoc->ep->sndbuf_policy)
8765 		return __sctp_write_space(asoc);
8766 
8767 	/* If association goes down and is just flushing its
8768 	 * outq, then just normally notify others.
8769 	 */
8770 	if (asoc->base.dead)
8771 		return sctp_write_space(sk);
8772 
8773 	/* Accounting for the sndbuf space is per socket, so we
8774 	 * need to wake up others, try to be fair and in case of
8775 	 * other associations, let them have a go first instead
8776 	 * of just doing a sctp_write_space() call.
8777 	 *
8778 	 * Note that we reach sctp_wake_up_waiters() only when
8779 	 * associations free up queued chunks, thus we are under
8780 	 * lock and the list of associations on a socket is
8781 	 * guaranteed not to change.
8782 	 */
8783 	for (tmp = list_next_entry(tmp, asocs); 1;
8784 	     tmp = list_next_entry(tmp, asocs)) {
8785 		/* Manually skip the head element. */
8786 		if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
8787 			continue;
8788 		/* Wake up association. */
8789 		__sctp_write_space(tmp);
8790 		/* We've reached the end. */
8791 		if (tmp == asoc)
8792 			break;
8793 	}
8794 }
8795 
8796 /* Do accounting for the sndbuf space.
8797  * Decrement the used sndbuf space of the corresponding association by the
8798  * data size which was just transmitted(freed).
8799  */
8800 static void sctp_wfree(struct sk_buff *skb)
8801 {
8802 	struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
8803 	struct sctp_association *asoc = chunk->asoc;
8804 	struct sock *sk = asoc->base.sk;
8805 
8806 	sk_mem_uncharge(sk, skb->truesize);
8807 	sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk);
8808 	asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk);
8809 	WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk),
8810 				      &sk->sk_wmem_alloc));
8811 
8812 	if (chunk->shkey) {
8813 		struct sctp_shared_key *shkey = chunk->shkey;
8814 
8815 		/* refcnt == 2 and !list_empty mean after this release, it's
8816 		 * not being used anywhere, and it's time to notify userland
8817 		 * that this shkey can be freed if it's been deactivated.
8818 		 */
8819 		if (shkey->deactivated && !list_empty(&shkey->key_list) &&
8820 		    refcount_read(&shkey->refcnt) == 2) {
8821 			struct sctp_ulpevent *ev;
8822 
8823 			ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id,
8824 							SCTP_AUTH_FREE_KEY,
8825 							GFP_KERNEL);
8826 			if (ev)
8827 				asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
8828 		}
8829 		sctp_auth_shkey_release(chunk->shkey);
8830 	}
8831 
8832 	sock_wfree(skb);
8833 	sctp_wake_up_waiters(sk, asoc);
8834 
8835 	sctp_association_put(asoc);
8836 }
8837 
8838 /* Do accounting for the receive space on the socket.
8839  * Accounting for the association is done in ulpevent.c
8840  * We set this as a destructor for the cloned data skbs so that
8841  * accounting is done at the correct time.
8842  */
8843 void sctp_sock_rfree(struct sk_buff *skb)
8844 {
8845 	struct sock *sk = skb->sk;
8846 	struct sctp_ulpevent *event = sctp_skb2event(skb);
8847 
8848 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
8849 
8850 	/*
8851 	 * Mimic the behavior of sock_rfree
8852 	 */
8853 	sk_mem_uncharge(sk, event->rmem_len);
8854 }
8855 
8856 
8857 /* Helper function to wait for space in the sndbuf.  */
8858 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
8859 				size_t msg_len)
8860 {
8861 	struct sock *sk = asoc->base.sk;
8862 	long current_timeo = *timeo_p;
8863 	DEFINE_WAIT(wait);
8864 	int err = 0;
8865 
8866 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
8867 		 *timeo_p, msg_len);
8868 
8869 	/* Increment the association's refcnt.  */
8870 	sctp_association_hold(asoc);
8871 
8872 	/* Wait on the association specific sndbuf space. */
8873 	for (;;) {
8874 		prepare_to_wait_exclusive(&asoc->wait, &wait,
8875 					  TASK_INTERRUPTIBLE);
8876 		if (asoc->base.dead)
8877 			goto do_dead;
8878 		if (!*timeo_p)
8879 			goto do_nonblock;
8880 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
8881 			goto do_error;
8882 		if (signal_pending(current))
8883 			goto do_interrupted;
8884 		if ((int)msg_len <= sctp_wspace(asoc))
8885 			break;
8886 
8887 		/* Let another process have a go.  Since we are going
8888 		 * to sleep anyway.
8889 		 */
8890 		release_sock(sk);
8891 		current_timeo = schedule_timeout(current_timeo);
8892 		lock_sock(sk);
8893 		if (sk != asoc->base.sk)
8894 			goto do_error;
8895 
8896 		*timeo_p = current_timeo;
8897 	}
8898 
8899 out:
8900 	finish_wait(&asoc->wait, &wait);
8901 
8902 	/* Release the association's refcnt.  */
8903 	sctp_association_put(asoc);
8904 
8905 	return err;
8906 
8907 do_dead:
8908 	err = -ESRCH;
8909 	goto out;
8910 
8911 do_error:
8912 	err = -EPIPE;
8913 	goto out;
8914 
8915 do_interrupted:
8916 	err = sock_intr_errno(*timeo_p);
8917 	goto out;
8918 
8919 do_nonblock:
8920 	err = -EAGAIN;
8921 	goto out;
8922 }
8923 
8924 void sctp_data_ready(struct sock *sk)
8925 {
8926 	struct socket_wq *wq;
8927 
8928 	rcu_read_lock();
8929 	wq = rcu_dereference(sk->sk_wq);
8930 	if (skwq_has_sleeper(wq))
8931 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN |
8932 						EPOLLRDNORM | EPOLLRDBAND);
8933 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
8934 	rcu_read_unlock();
8935 }
8936 
8937 /* If socket sndbuf has changed, wake up all per association waiters.  */
8938 void sctp_write_space(struct sock *sk)
8939 {
8940 	struct sctp_association *asoc;
8941 
8942 	/* Wake up the tasks in each wait queue.  */
8943 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
8944 		__sctp_write_space(asoc);
8945 	}
8946 }
8947 
8948 /* Is there any sndbuf space available on the socket?
8949  *
8950  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
8951  * associations on the same socket.  For a UDP-style socket with
8952  * multiple associations, it is possible for it to be "unwriteable"
8953  * prematurely.  I assume that this is acceptable because
8954  * a premature "unwriteable" is better than an accidental "writeable" which
8955  * would cause an unwanted block under certain circumstances.  For the 1-1
8956  * UDP-style sockets or TCP-style sockets, this code should work.
8957  *  - Daisy
8958  */
8959 static bool sctp_writeable(struct sock *sk)
8960 {
8961 	return sk->sk_sndbuf > sk->sk_wmem_queued;
8962 }
8963 
8964 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
8965  * returns immediately with EINPROGRESS.
8966  */
8967 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
8968 {
8969 	struct sock *sk = asoc->base.sk;
8970 	int err = 0;
8971 	long current_timeo = *timeo_p;
8972 	DEFINE_WAIT(wait);
8973 
8974 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
8975 
8976 	/* Increment the association's refcnt.  */
8977 	sctp_association_hold(asoc);
8978 
8979 	for (;;) {
8980 		prepare_to_wait_exclusive(&asoc->wait, &wait,
8981 					  TASK_INTERRUPTIBLE);
8982 		if (!*timeo_p)
8983 			goto do_nonblock;
8984 		if (sk->sk_shutdown & RCV_SHUTDOWN)
8985 			break;
8986 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
8987 		    asoc->base.dead)
8988 			goto do_error;
8989 		if (signal_pending(current))
8990 			goto do_interrupted;
8991 
8992 		if (sctp_state(asoc, ESTABLISHED))
8993 			break;
8994 
8995 		/* Let another process have a go.  Since we are going
8996 		 * to sleep anyway.
8997 		 */
8998 		release_sock(sk);
8999 		current_timeo = schedule_timeout(current_timeo);
9000 		lock_sock(sk);
9001 
9002 		*timeo_p = current_timeo;
9003 	}
9004 
9005 out:
9006 	finish_wait(&asoc->wait, &wait);
9007 
9008 	/* Release the association's refcnt.  */
9009 	sctp_association_put(asoc);
9010 
9011 	return err;
9012 
9013 do_error:
9014 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
9015 		err = -ETIMEDOUT;
9016 	else
9017 		err = -ECONNREFUSED;
9018 	goto out;
9019 
9020 do_interrupted:
9021 	err = sock_intr_errno(*timeo_p);
9022 	goto out;
9023 
9024 do_nonblock:
9025 	err = -EINPROGRESS;
9026 	goto out;
9027 }
9028 
9029 static int sctp_wait_for_accept(struct sock *sk, long timeo)
9030 {
9031 	struct sctp_endpoint *ep;
9032 	int err = 0;
9033 	DEFINE_WAIT(wait);
9034 
9035 	ep = sctp_sk(sk)->ep;
9036 
9037 
9038 	for (;;) {
9039 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
9040 					  TASK_INTERRUPTIBLE);
9041 
9042 		if (list_empty(&ep->asocs)) {
9043 			release_sock(sk);
9044 			timeo = schedule_timeout(timeo);
9045 			lock_sock(sk);
9046 		}
9047 
9048 		err = -EINVAL;
9049 		if (!sctp_sstate(sk, LISTENING))
9050 			break;
9051 
9052 		err = 0;
9053 		if (!list_empty(&ep->asocs))
9054 			break;
9055 
9056 		err = sock_intr_errno(timeo);
9057 		if (signal_pending(current))
9058 			break;
9059 
9060 		err = -EAGAIN;
9061 		if (!timeo)
9062 			break;
9063 	}
9064 
9065 	finish_wait(sk_sleep(sk), &wait);
9066 
9067 	return err;
9068 }
9069 
9070 static void sctp_wait_for_close(struct sock *sk, long timeout)
9071 {
9072 	DEFINE_WAIT(wait);
9073 
9074 	do {
9075 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
9076 		if (list_empty(&sctp_sk(sk)->ep->asocs))
9077 			break;
9078 		release_sock(sk);
9079 		timeout = schedule_timeout(timeout);
9080 		lock_sock(sk);
9081 	} while (!signal_pending(current) && timeout);
9082 
9083 	finish_wait(sk_sleep(sk), &wait);
9084 }
9085 
9086 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
9087 {
9088 	struct sk_buff *frag;
9089 
9090 	if (!skb->data_len)
9091 		goto done;
9092 
9093 	/* Don't forget the fragments. */
9094 	skb_walk_frags(skb, frag)
9095 		sctp_skb_set_owner_r_frag(frag, sk);
9096 
9097 done:
9098 	sctp_skb_set_owner_r(skb, sk);
9099 }
9100 
9101 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
9102 		    struct sctp_association *asoc)
9103 {
9104 	struct inet_sock *inet = inet_sk(sk);
9105 	struct inet_sock *newinet;
9106 	struct sctp_sock *sp = sctp_sk(sk);
9107 	struct sctp_endpoint *ep = sp->ep;
9108 
9109 	newsk->sk_type = sk->sk_type;
9110 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
9111 	newsk->sk_flags = sk->sk_flags;
9112 	newsk->sk_tsflags = sk->sk_tsflags;
9113 	newsk->sk_no_check_tx = sk->sk_no_check_tx;
9114 	newsk->sk_no_check_rx = sk->sk_no_check_rx;
9115 	newsk->sk_reuse = sk->sk_reuse;
9116 	sctp_sk(newsk)->reuse = sp->reuse;
9117 
9118 	newsk->sk_shutdown = sk->sk_shutdown;
9119 	newsk->sk_destruct = sctp_destruct_sock;
9120 	newsk->sk_family = sk->sk_family;
9121 	newsk->sk_protocol = IPPROTO_SCTP;
9122 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
9123 	newsk->sk_sndbuf = sk->sk_sndbuf;
9124 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
9125 	newsk->sk_lingertime = sk->sk_lingertime;
9126 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
9127 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
9128 	newsk->sk_rxhash = sk->sk_rxhash;
9129 
9130 	newinet = inet_sk(newsk);
9131 
9132 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
9133 	 * getsockname() and getpeername()
9134 	 */
9135 	newinet->inet_sport = inet->inet_sport;
9136 	newinet->inet_saddr = inet->inet_saddr;
9137 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
9138 	newinet->inet_dport = htons(asoc->peer.port);
9139 	newinet->pmtudisc = inet->pmtudisc;
9140 	newinet->inet_id = asoc->next_tsn ^ jiffies;
9141 
9142 	newinet->uc_ttl = inet->uc_ttl;
9143 	newinet->mc_loop = 1;
9144 	newinet->mc_ttl = 1;
9145 	newinet->mc_index = 0;
9146 	newinet->mc_list = NULL;
9147 
9148 	if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
9149 		net_enable_timestamp();
9150 
9151 	/* Set newsk security attributes from orginal sk and connection
9152 	 * security attribute from ep.
9153 	 */
9154 	security_sctp_sk_clone(ep, sk, newsk);
9155 }
9156 
9157 static inline void sctp_copy_descendant(struct sock *sk_to,
9158 					const struct sock *sk_from)
9159 {
9160 	int ancestor_size = sizeof(struct inet_sock) +
9161 			    sizeof(struct sctp_sock) -
9162 			    offsetof(struct sctp_sock, auto_asconf_list);
9163 
9164 	if (sk_from->sk_family == PF_INET6)
9165 		ancestor_size += sizeof(struct ipv6_pinfo);
9166 
9167 	__inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
9168 }
9169 
9170 /* Populate the fields of the newsk from the oldsk and migrate the assoc
9171  * and its messages to the newsk.
9172  */
9173 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
9174 			      struct sctp_association *assoc,
9175 			      enum sctp_socket_type type)
9176 {
9177 	struct sctp_sock *oldsp = sctp_sk(oldsk);
9178 	struct sctp_sock *newsp = sctp_sk(newsk);
9179 	struct sctp_bind_bucket *pp; /* hash list port iterator */
9180 	struct sctp_endpoint *newep = newsp->ep;
9181 	struct sk_buff *skb, *tmp;
9182 	struct sctp_ulpevent *event;
9183 	struct sctp_bind_hashbucket *head;
9184 
9185 	/* Migrate socket buffer sizes and all the socket level options to the
9186 	 * new socket.
9187 	 */
9188 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
9189 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
9190 	/* Brute force copy old sctp opt. */
9191 	sctp_copy_descendant(newsk, oldsk);
9192 
9193 	/* Restore the ep value that was overwritten with the above structure
9194 	 * copy.
9195 	 */
9196 	newsp->ep = newep;
9197 	newsp->hmac = NULL;
9198 
9199 	/* Hook this new socket in to the bind_hash list. */
9200 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
9201 						 inet_sk(oldsk)->inet_num)];
9202 	spin_lock_bh(&head->lock);
9203 	pp = sctp_sk(oldsk)->bind_hash;
9204 	sk_add_bind_node(newsk, &pp->owner);
9205 	sctp_sk(newsk)->bind_hash = pp;
9206 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
9207 	spin_unlock_bh(&head->lock);
9208 
9209 	/* Copy the bind_addr list from the original endpoint to the new
9210 	 * endpoint so that we can handle restarts properly
9211 	 */
9212 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
9213 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
9214 
9215 	/* Move any messages in the old socket's receive queue that are for the
9216 	 * peeled off association to the new socket's receive queue.
9217 	 */
9218 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
9219 		event = sctp_skb2event(skb);
9220 		if (event->asoc == assoc) {
9221 			__skb_unlink(skb, &oldsk->sk_receive_queue);
9222 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
9223 			sctp_skb_set_owner_r_frag(skb, newsk);
9224 		}
9225 	}
9226 
9227 	/* Clean up any messages pending delivery due to partial
9228 	 * delivery.   Three cases:
9229 	 * 1) No partial deliver;  no work.
9230 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
9231 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
9232 	 */
9233 	skb_queue_head_init(&newsp->pd_lobby);
9234 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
9235 
9236 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
9237 		struct sk_buff_head *queue;
9238 
9239 		/* Decide which queue to move pd_lobby skbs to. */
9240 		if (assoc->ulpq.pd_mode) {
9241 			queue = &newsp->pd_lobby;
9242 		} else
9243 			queue = &newsk->sk_receive_queue;
9244 
9245 		/* Walk through the pd_lobby, looking for skbs that
9246 		 * need moved to the new socket.
9247 		 */
9248 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
9249 			event = sctp_skb2event(skb);
9250 			if (event->asoc == assoc) {
9251 				__skb_unlink(skb, &oldsp->pd_lobby);
9252 				__skb_queue_tail(queue, skb);
9253 				sctp_skb_set_owner_r_frag(skb, newsk);
9254 			}
9255 		}
9256 
9257 		/* Clear up any skbs waiting for the partial
9258 		 * delivery to finish.
9259 		 */
9260 		if (assoc->ulpq.pd_mode)
9261 			sctp_clear_pd(oldsk, NULL);
9262 
9263 	}
9264 
9265 	sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag);
9266 
9267 	/* Set the type of socket to indicate that it is peeled off from the
9268 	 * original UDP-style socket or created with the accept() call on a
9269 	 * TCP-style socket..
9270 	 */
9271 	newsp->type = type;
9272 
9273 	/* Mark the new socket "in-use" by the user so that any packets
9274 	 * that may arrive on the association after we've moved it are
9275 	 * queued to the backlog.  This prevents a potential race between
9276 	 * backlog processing on the old socket and new-packet processing
9277 	 * on the new socket.
9278 	 *
9279 	 * The caller has just allocated newsk so we can guarantee that other
9280 	 * paths won't try to lock it and then oldsk.
9281 	 */
9282 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
9283 	sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w);
9284 	sctp_assoc_migrate(assoc, newsk);
9285 	sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w);
9286 
9287 	/* If the association on the newsk is already closed before accept()
9288 	 * is called, set RCV_SHUTDOWN flag.
9289 	 */
9290 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
9291 		inet_sk_set_state(newsk, SCTP_SS_CLOSED);
9292 		newsk->sk_shutdown |= RCV_SHUTDOWN;
9293 	} else {
9294 		inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED);
9295 	}
9296 
9297 	release_sock(newsk);
9298 }
9299 
9300 
9301 /* This proto struct describes the ULP interface for SCTP.  */
9302 struct proto sctp_prot = {
9303 	.name        =	"SCTP",
9304 	.owner       =	THIS_MODULE,
9305 	.close       =	sctp_close,
9306 	.disconnect  =	sctp_disconnect,
9307 	.accept      =	sctp_accept,
9308 	.ioctl       =	sctp_ioctl,
9309 	.init        =	sctp_init_sock,
9310 	.destroy     =	sctp_destroy_sock,
9311 	.shutdown    =	sctp_shutdown,
9312 	.setsockopt  =	sctp_setsockopt,
9313 	.getsockopt  =	sctp_getsockopt,
9314 	.sendmsg     =	sctp_sendmsg,
9315 	.recvmsg     =	sctp_recvmsg,
9316 	.bind        =	sctp_bind,
9317 	.backlog_rcv =	sctp_backlog_rcv,
9318 	.hash        =	sctp_hash,
9319 	.unhash      =	sctp_unhash,
9320 	.get_port    =	sctp_get_port,
9321 	.obj_size    =  sizeof(struct sctp_sock),
9322 	.useroffset  =  offsetof(struct sctp_sock, subscribe),
9323 	.usersize    =  offsetof(struct sctp_sock, initmsg) -
9324 				offsetof(struct sctp_sock, subscribe) +
9325 				sizeof_field(struct sctp_sock, initmsg),
9326 	.sysctl_mem  =  sysctl_sctp_mem,
9327 	.sysctl_rmem =  sysctl_sctp_rmem,
9328 	.sysctl_wmem =  sysctl_sctp_wmem,
9329 	.memory_pressure = &sctp_memory_pressure,
9330 	.enter_memory_pressure = sctp_enter_memory_pressure,
9331 	.memory_allocated = &sctp_memory_allocated,
9332 	.sockets_allocated = &sctp_sockets_allocated,
9333 };
9334 
9335 #if IS_ENABLED(CONFIG_IPV6)
9336 
9337 #include <net/transp_v6.h>
9338 static void sctp_v6_destroy_sock(struct sock *sk)
9339 {
9340 	sctp_destroy_sock(sk);
9341 	inet6_destroy_sock(sk);
9342 }
9343 
9344 struct proto sctpv6_prot = {
9345 	.name		= "SCTPv6",
9346 	.owner		= THIS_MODULE,
9347 	.close		= sctp_close,
9348 	.disconnect	= sctp_disconnect,
9349 	.accept		= sctp_accept,
9350 	.ioctl		= sctp_ioctl,
9351 	.init		= sctp_init_sock,
9352 	.destroy	= sctp_v6_destroy_sock,
9353 	.shutdown	= sctp_shutdown,
9354 	.setsockopt	= sctp_setsockopt,
9355 	.getsockopt	= sctp_getsockopt,
9356 	.sendmsg	= sctp_sendmsg,
9357 	.recvmsg	= sctp_recvmsg,
9358 	.bind		= sctp_bind,
9359 	.backlog_rcv	= sctp_backlog_rcv,
9360 	.hash		= sctp_hash,
9361 	.unhash		= sctp_unhash,
9362 	.get_port	= sctp_get_port,
9363 	.obj_size	= sizeof(struct sctp6_sock),
9364 	.useroffset	= offsetof(struct sctp6_sock, sctp.subscribe),
9365 	.usersize	= offsetof(struct sctp6_sock, sctp.initmsg) -
9366 				offsetof(struct sctp6_sock, sctp.subscribe) +
9367 				sizeof_field(struct sctp6_sock, sctp.initmsg),
9368 	.sysctl_mem	= sysctl_sctp_mem,
9369 	.sysctl_rmem	= sysctl_sctp_rmem,
9370 	.sysctl_wmem	= sysctl_sctp_wmem,
9371 	.memory_pressure = &sctp_memory_pressure,
9372 	.enter_memory_pressure = sctp_enter_memory_pressure,
9373 	.memory_allocated = &sctp_memory_allocated,
9374 	.sockets_allocated = &sctp_sockets_allocated,
9375 };
9376 #endif /* IS_ENABLED(CONFIG_IPV6) */
9377