1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, see 32 * <http://www.gnu.org/licenses/>. 33 * 34 * Please send any bug reports or fixes you make to the 35 * email address(es): 36 * lksctp developers <linux-sctp@vger.kernel.org> 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Narasimha Budihal <narsi@refcode.org> 41 * Karl Knutson <karl@athena.chicago.il.us> 42 * Jon Grimm <jgrimm@us.ibm.com> 43 * Xingang Guo <xingang.guo@intel.com> 44 * Daisy Chang <daisyc@us.ibm.com> 45 * Sridhar Samudrala <samudrala@us.ibm.com> 46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 47 * Ardelle Fan <ardelle.fan@intel.com> 48 * Ryan Layer <rmlayer@us.ibm.com> 49 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 50 * Kevin Gao <kevin.gao@intel.com> 51 */ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <crypto/hash.h> 56 #include <linux/types.h> 57 #include <linux/kernel.h> 58 #include <linux/wait.h> 59 #include <linux/time.h> 60 #include <linux/sched/signal.h> 61 #include <linux/ip.h> 62 #include <linux/capability.h> 63 #include <linux/fcntl.h> 64 #include <linux/poll.h> 65 #include <linux/init.h> 66 #include <linux/slab.h> 67 #include <linux/file.h> 68 #include <linux/compat.h> 69 #include <linux/rhashtable.h> 70 71 #include <net/ip.h> 72 #include <net/icmp.h> 73 #include <net/route.h> 74 #include <net/ipv6.h> 75 #include <net/inet_common.h> 76 #include <net/busy_poll.h> 77 78 #include <linux/socket.h> /* for sa_family_t */ 79 #include <linux/export.h> 80 #include <net/sock.h> 81 #include <net/sctp/sctp.h> 82 #include <net/sctp/sm.h> 83 #include <net/sctp/stream_sched.h> 84 85 /* Forward declarations for internal helper functions. */ 86 static bool sctp_writeable(struct sock *sk); 87 static void sctp_wfree(struct sk_buff *skb); 88 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 89 size_t msg_len); 90 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 91 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 92 static int sctp_wait_for_accept(struct sock *sk, long timeo); 93 static void sctp_wait_for_close(struct sock *sk, long timeo); 94 static void sctp_destruct_sock(struct sock *sk); 95 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 96 union sctp_addr *addr, int len); 97 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 98 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 99 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 100 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 101 static int sctp_send_asconf(struct sctp_association *asoc, 102 struct sctp_chunk *chunk); 103 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 104 static int sctp_autobind(struct sock *sk); 105 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 106 struct sctp_association *assoc, 107 enum sctp_socket_type type); 108 109 static unsigned long sctp_memory_pressure; 110 static atomic_long_t sctp_memory_allocated; 111 struct percpu_counter sctp_sockets_allocated; 112 113 static void sctp_enter_memory_pressure(struct sock *sk) 114 { 115 sctp_memory_pressure = 1; 116 } 117 118 119 /* Get the sndbuf space available at the time on the association. */ 120 static inline int sctp_wspace(struct sctp_association *asoc) 121 { 122 struct sock *sk = asoc->base.sk; 123 124 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used 125 : sk_stream_wspace(sk); 126 } 127 128 /* Increment the used sndbuf space count of the corresponding association by 129 * the size of the outgoing data chunk. 130 * Also, set the skb destructor for sndbuf accounting later. 131 * 132 * Since it is always 1-1 between chunk and skb, and also a new skb is always 133 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 134 * destructor in the data chunk skb for the purpose of the sndbuf space 135 * tracking. 136 */ 137 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 138 { 139 struct sctp_association *asoc = chunk->asoc; 140 struct sock *sk = asoc->base.sk; 141 142 /* The sndbuf space is tracked per association. */ 143 sctp_association_hold(asoc); 144 145 if (chunk->shkey) 146 sctp_auth_shkey_hold(chunk->shkey); 147 148 skb_set_owner_w(chunk->skb, sk); 149 150 chunk->skb->destructor = sctp_wfree; 151 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 152 skb_shinfo(chunk->skb)->destructor_arg = chunk; 153 154 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 155 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); 156 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk); 157 sk_mem_charge(sk, chunk->skb->truesize); 158 } 159 160 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 161 { 162 skb_orphan(chunk->skb); 163 } 164 165 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 166 void (*cb)(struct sctp_chunk *)) 167 168 { 169 struct sctp_outq *q = &asoc->outqueue; 170 struct sctp_transport *t; 171 struct sctp_chunk *chunk; 172 173 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 174 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 175 cb(chunk); 176 177 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 178 cb(chunk); 179 180 list_for_each_entry(chunk, &q->sacked, transmitted_list) 181 cb(chunk); 182 183 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 184 cb(chunk); 185 186 list_for_each_entry(chunk, &q->out_chunk_list, list) 187 cb(chunk); 188 } 189 190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 191 void (*cb)(struct sk_buff *, struct sock *)) 192 193 { 194 struct sk_buff *skb, *tmp; 195 196 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 197 cb(skb, sk); 198 199 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 200 cb(skb, sk); 201 202 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 203 cb(skb, sk); 204 } 205 206 /* Verify that this is a valid address. */ 207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 208 int len) 209 { 210 struct sctp_af *af; 211 212 /* Verify basic sockaddr. */ 213 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 214 if (!af) 215 return -EINVAL; 216 217 /* Is this a valid SCTP address? */ 218 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 219 return -EINVAL; 220 221 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 222 return -EINVAL; 223 224 return 0; 225 } 226 227 /* Look up the association by its id. If this is not a UDP-style 228 * socket, the ID field is always ignored. 229 */ 230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 231 { 232 struct sctp_association *asoc = NULL; 233 234 /* If this is not a UDP-style socket, assoc id should be ignored. */ 235 if (!sctp_style(sk, UDP)) { 236 /* Return NULL if the socket state is not ESTABLISHED. It 237 * could be a TCP-style listening socket or a socket which 238 * hasn't yet called connect() to establish an association. 239 */ 240 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 241 return NULL; 242 243 /* Get the first and the only association from the list. */ 244 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 245 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 246 struct sctp_association, asocs); 247 return asoc; 248 } 249 250 /* Otherwise this is a UDP-style socket. */ 251 if (id <= SCTP_ALL_ASSOC) 252 return NULL; 253 254 spin_lock_bh(&sctp_assocs_id_lock); 255 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 256 if (asoc && (asoc->base.sk != sk || asoc->base.dead)) 257 asoc = NULL; 258 spin_unlock_bh(&sctp_assocs_id_lock); 259 260 return asoc; 261 } 262 263 /* Look up the transport from an address and an assoc id. If both address and 264 * id are specified, the associations matching the address and the id should be 265 * the same. 266 */ 267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 268 struct sockaddr_storage *addr, 269 sctp_assoc_t id) 270 { 271 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 272 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 273 union sctp_addr *laddr = (union sctp_addr *)addr; 274 struct sctp_transport *transport; 275 276 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 277 return NULL; 278 279 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 280 laddr, 281 &transport); 282 283 if (!addr_asoc) 284 return NULL; 285 286 id_asoc = sctp_id2assoc(sk, id); 287 if (id_asoc && (id_asoc != addr_asoc)) 288 return NULL; 289 290 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 291 (union sctp_addr *)addr); 292 293 return transport; 294 } 295 296 /* API 3.1.2 bind() - UDP Style Syntax 297 * The syntax of bind() is, 298 * 299 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 300 * 301 * sd - the socket descriptor returned by socket(). 302 * addr - the address structure (struct sockaddr_in or struct 303 * sockaddr_in6 [RFC 2553]), 304 * addr_len - the size of the address structure. 305 */ 306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 307 { 308 int retval = 0; 309 310 lock_sock(sk); 311 312 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 313 addr, addr_len); 314 315 /* Disallow binding twice. */ 316 if (!sctp_sk(sk)->ep->base.bind_addr.port) 317 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 318 addr_len); 319 else 320 retval = -EINVAL; 321 322 release_sock(sk); 323 324 return retval; 325 } 326 327 static long sctp_get_port_local(struct sock *, union sctp_addr *); 328 329 /* Verify this is a valid sockaddr. */ 330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 331 union sctp_addr *addr, int len) 332 { 333 struct sctp_af *af; 334 335 /* Check minimum size. */ 336 if (len < sizeof (struct sockaddr)) 337 return NULL; 338 339 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 340 return NULL; 341 342 if (addr->sa.sa_family == AF_INET6) { 343 if (len < SIN6_LEN_RFC2133) 344 return NULL; 345 /* V4 mapped address are really of AF_INET family */ 346 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 347 !opt->pf->af_supported(AF_INET, opt)) 348 return NULL; 349 } 350 351 /* If we get this far, af is valid. */ 352 af = sctp_get_af_specific(addr->sa.sa_family); 353 354 if (len < af->sockaddr_len) 355 return NULL; 356 357 return af; 358 } 359 360 /* Bind a local address either to an endpoint or to an association. */ 361 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 362 { 363 struct net *net = sock_net(sk); 364 struct sctp_sock *sp = sctp_sk(sk); 365 struct sctp_endpoint *ep = sp->ep; 366 struct sctp_bind_addr *bp = &ep->base.bind_addr; 367 struct sctp_af *af; 368 unsigned short snum; 369 int ret = 0; 370 371 /* Common sockaddr verification. */ 372 af = sctp_sockaddr_af(sp, addr, len); 373 if (!af) { 374 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 375 __func__, sk, addr, len); 376 return -EINVAL; 377 } 378 379 snum = ntohs(addr->v4.sin_port); 380 381 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 382 __func__, sk, &addr->sa, bp->port, snum, len); 383 384 /* PF specific bind() address verification. */ 385 if (!sp->pf->bind_verify(sp, addr)) 386 return -EADDRNOTAVAIL; 387 388 /* We must either be unbound, or bind to the same port. 389 * It's OK to allow 0 ports if we are already bound. 390 * We'll just inhert an already bound port in this case 391 */ 392 if (bp->port) { 393 if (!snum) 394 snum = bp->port; 395 else if (snum != bp->port) { 396 pr_debug("%s: new port %d doesn't match existing port " 397 "%d\n", __func__, snum, bp->port); 398 return -EINVAL; 399 } 400 } 401 402 if (snum && snum < inet_prot_sock(net) && 403 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 404 return -EACCES; 405 406 /* See if the address matches any of the addresses we may have 407 * already bound before checking against other endpoints. 408 */ 409 if (sctp_bind_addr_match(bp, addr, sp)) 410 return -EINVAL; 411 412 /* Make sure we are allowed to bind here. 413 * The function sctp_get_port_local() does duplicate address 414 * detection. 415 */ 416 addr->v4.sin_port = htons(snum); 417 if ((ret = sctp_get_port_local(sk, addr))) { 418 return -EADDRINUSE; 419 } 420 421 /* Refresh ephemeral port. */ 422 if (!bp->port) 423 bp->port = inet_sk(sk)->inet_num; 424 425 /* Add the address to the bind address list. 426 * Use GFP_ATOMIC since BHs will be disabled. 427 */ 428 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 429 SCTP_ADDR_SRC, GFP_ATOMIC); 430 431 /* Copy back into socket for getsockname() use. */ 432 if (!ret) { 433 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 434 sp->pf->to_sk_saddr(addr, sk); 435 } 436 437 return ret; 438 } 439 440 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 441 * 442 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 443 * at any one time. If a sender, after sending an ASCONF chunk, decides 444 * it needs to transfer another ASCONF Chunk, it MUST wait until the 445 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 446 * subsequent ASCONF. Note this restriction binds each side, so at any 447 * time two ASCONF may be in-transit on any given association (one sent 448 * from each endpoint). 449 */ 450 static int sctp_send_asconf(struct sctp_association *asoc, 451 struct sctp_chunk *chunk) 452 { 453 struct net *net = sock_net(asoc->base.sk); 454 int retval = 0; 455 456 /* If there is an outstanding ASCONF chunk, queue it for later 457 * transmission. 458 */ 459 if (asoc->addip_last_asconf) { 460 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 461 goto out; 462 } 463 464 /* Hold the chunk until an ASCONF_ACK is received. */ 465 sctp_chunk_hold(chunk); 466 retval = sctp_primitive_ASCONF(net, asoc, chunk); 467 if (retval) 468 sctp_chunk_free(chunk); 469 else 470 asoc->addip_last_asconf = chunk; 471 472 out: 473 return retval; 474 } 475 476 /* Add a list of addresses as bind addresses to local endpoint or 477 * association. 478 * 479 * Basically run through each address specified in the addrs/addrcnt 480 * array/length pair, determine if it is IPv6 or IPv4 and call 481 * sctp_do_bind() on it. 482 * 483 * If any of them fails, then the operation will be reversed and the 484 * ones that were added will be removed. 485 * 486 * Only sctp_setsockopt_bindx() is supposed to call this function. 487 */ 488 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 489 { 490 int cnt; 491 int retval = 0; 492 void *addr_buf; 493 struct sockaddr *sa_addr; 494 struct sctp_af *af; 495 496 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 497 addrs, addrcnt); 498 499 addr_buf = addrs; 500 for (cnt = 0; cnt < addrcnt; cnt++) { 501 /* The list may contain either IPv4 or IPv6 address; 502 * determine the address length for walking thru the list. 503 */ 504 sa_addr = addr_buf; 505 af = sctp_get_af_specific(sa_addr->sa_family); 506 if (!af) { 507 retval = -EINVAL; 508 goto err_bindx_add; 509 } 510 511 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 512 af->sockaddr_len); 513 514 addr_buf += af->sockaddr_len; 515 516 err_bindx_add: 517 if (retval < 0) { 518 /* Failed. Cleanup the ones that have been added */ 519 if (cnt > 0) 520 sctp_bindx_rem(sk, addrs, cnt); 521 return retval; 522 } 523 } 524 525 return retval; 526 } 527 528 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 529 * associations that are part of the endpoint indicating that a list of local 530 * addresses are added to the endpoint. 531 * 532 * If any of the addresses is already in the bind address list of the 533 * association, we do not send the chunk for that association. But it will not 534 * affect other associations. 535 * 536 * Only sctp_setsockopt_bindx() is supposed to call this function. 537 */ 538 static int sctp_send_asconf_add_ip(struct sock *sk, 539 struct sockaddr *addrs, 540 int addrcnt) 541 { 542 struct net *net = sock_net(sk); 543 struct sctp_sock *sp; 544 struct sctp_endpoint *ep; 545 struct sctp_association *asoc; 546 struct sctp_bind_addr *bp; 547 struct sctp_chunk *chunk; 548 struct sctp_sockaddr_entry *laddr; 549 union sctp_addr *addr; 550 union sctp_addr saveaddr; 551 void *addr_buf; 552 struct sctp_af *af; 553 struct list_head *p; 554 int i; 555 int retval = 0; 556 557 if (!net->sctp.addip_enable) 558 return retval; 559 560 sp = sctp_sk(sk); 561 ep = sp->ep; 562 563 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 564 __func__, sk, addrs, addrcnt); 565 566 list_for_each_entry(asoc, &ep->asocs, asocs) { 567 if (!asoc->peer.asconf_capable) 568 continue; 569 570 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 571 continue; 572 573 if (!sctp_state(asoc, ESTABLISHED)) 574 continue; 575 576 /* Check if any address in the packed array of addresses is 577 * in the bind address list of the association. If so, 578 * do not send the asconf chunk to its peer, but continue with 579 * other associations. 580 */ 581 addr_buf = addrs; 582 for (i = 0; i < addrcnt; i++) { 583 addr = addr_buf; 584 af = sctp_get_af_specific(addr->v4.sin_family); 585 if (!af) { 586 retval = -EINVAL; 587 goto out; 588 } 589 590 if (sctp_assoc_lookup_laddr(asoc, addr)) 591 break; 592 593 addr_buf += af->sockaddr_len; 594 } 595 if (i < addrcnt) 596 continue; 597 598 /* Use the first valid address in bind addr list of 599 * association as Address Parameter of ASCONF CHUNK. 600 */ 601 bp = &asoc->base.bind_addr; 602 p = bp->address_list.next; 603 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 604 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 605 addrcnt, SCTP_PARAM_ADD_IP); 606 if (!chunk) { 607 retval = -ENOMEM; 608 goto out; 609 } 610 611 /* Add the new addresses to the bind address list with 612 * use_as_src set to 0. 613 */ 614 addr_buf = addrs; 615 for (i = 0; i < addrcnt; i++) { 616 addr = addr_buf; 617 af = sctp_get_af_specific(addr->v4.sin_family); 618 memcpy(&saveaddr, addr, af->sockaddr_len); 619 retval = sctp_add_bind_addr(bp, &saveaddr, 620 sizeof(saveaddr), 621 SCTP_ADDR_NEW, GFP_ATOMIC); 622 addr_buf += af->sockaddr_len; 623 } 624 if (asoc->src_out_of_asoc_ok) { 625 struct sctp_transport *trans; 626 627 list_for_each_entry(trans, 628 &asoc->peer.transport_addr_list, transports) { 629 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 630 2*asoc->pathmtu, 4380)); 631 trans->ssthresh = asoc->peer.i.a_rwnd; 632 trans->rto = asoc->rto_initial; 633 sctp_max_rto(asoc, trans); 634 trans->rtt = trans->srtt = trans->rttvar = 0; 635 /* Clear the source and route cache */ 636 sctp_transport_route(trans, NULL, 637 sctp_sk(asoc->base.sk)); 638 } 639 } 640 retval = sctp_send_asconf(asoc, chunk); 641 } 642 643 out: 644 return retval; 645 } 646 647 /* Remove a list of addresses from bind addresses list. Do not remove the 648 * last address. 649 * 650 * Basically run through each address specified in the addrs/addrcnt 651 * array/length pair, determine if it is IPv6 or IPv4 and call 652 * sctp_del_bind() on it. 653 * 654 * If any of them fails, then the operation will be reversed and the 655 * ones that were removed will be added back. 656 * 657 * At least one address has to be left; if only one address is 658 * available, the operation will return -EBUSY. 659 * 660 * Only sctp_setsockopt_bindx() is supposed to call this function. 661 */ 662 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 663 { 664 struct sctp_sock *sp = sctp_sk(sk); 665 struct sctp_endpoint *ep = sp->ep; 666 int cnt; 667 struct sctp_bind_addr *bp = &ep->base.bind_addr; 668 int retval = 0; 669 void *addr_buf; 670 union sctp_addr *sa_addr; 671 struct sctp_af *af; 672 673 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 674 __func__, sk, addrs, addrcnt); 675 676 addr_buf = addrs; 677 for (cnt = 0; cnt < addrcnt; cnt++) { 678 /* If the bind address list is empty or if there is only one 679 * bind address, there is nothing more to be removed (we need 680 * at least one address here). 681 */ 682 if (list_empty(&bp->address_list) || 683 (sctp_list_single_entry(&bp->address_list))) { 684 retval = -EBUSY; 685 goto err_bindx_rem; 686 } 687 688 sa_addr = addr_buf; 689 af = sctp_get_af_specific(sa_addr->sa.sa_family); 690 if (!af) { 691 retval = -EINVAL; 692 goto err_bindx_rem; 693 } 694 695 if (!af->addr_valid(sa_addr, sp, NULL)) { 696 retval = -EADDRNOTAVAIL; 697 goto err_bindx_rem; 698 } 699 700 if (sa_addr->v4.sin_port && 701 sa_addr->v4.sin_port != htons(bp->port)) { 702 retval = -EINVAL; 703 goto err_bindx_rem; 704 } 705 706 if (!sa_addr->v4.sin_port) 707 sa_addr->v4.sin_port = htons(bp->port); 708 709 /* FIXME - There is probably a need to check if sk->sk_saddr and 710 * sk->sk_rcv_addr are currently set to one of the addresses to 711 * be removed. This is something which needs to be looked into 712 * when we are fixing the outstanding issues with multi-homing 713 * socket routing and failover schemes. Refer to comments in 714 * sctp_do_bind(). -daisy 715 */ 716 retval = sctp_del_bind_addr(bp, sa_addr); 717 718 addr_buf += af->sockaddr_len; 719 err_bindx_rem: 720 if (retval < 0) { 721 /* Failed. Add the ones that has been removed back */ 722 if (cnt > 0) 723 sctp_bindx_add(sk, addrs, cnt); 724 return retval; 725 } 726 } 727 728 return retval; 729 } 730 731 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 732 * the associations that are part of the endpoint indicating that a list of 733 * local addresses are removed from the endpoint. 734 * 735 * If any of the addresses is already in the bind address list of the 736 * association, we do not send the chunk for that association. But it will not 737 * affect other associations. 738 * 739 * Only sctp_setsockopt_bindx() is supposed to call this function. 740 */ 741 static int sctp_send_asconf_del_ip(struct sock *sk, 742 struct sockaddr *addrs, 743 int addrcnt) 744 { 745 struct net *net = sock_net(sk); 746 struct sctp_sock *sp; 747 struct sctp_endpoint *ep; 748 struct sctp_association *asoc; 749 struct sctp_transport *transport; 750 struct sctp_bind_addr *bp; 751 struct sctp_chunk *chunk; 752 union sctp_addr *laddr; 753 void *addr_buf; 754 struct sctp_af *af; 755 struct sctp_sockaddr_entry *saddr; 756 int i; 757 int retval = 0; 758 int stored = 0; 759 760 chunk = NULL; 761 if (!net->sctp.addip_enable) 762 return retval; 763 764 sp = sctp_sk(sk); 765 ep = sp->ep; 766 767 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 768 __func__, sk, addrs, addrcnt); 769 770 list_for_each_entry(asoc, &ep->asocs, asocs) { 771 772 if (!asoc->peer.asconf_capable) 773 continue; 774 775 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 776 continue; 777 778 if (!sctp_state(asoc, ESTABLISHED)) 779 continue; 780 781 /* Check if any address in the packed array of addresses is 782 * not present in the bind address list of the association. 783 * If so, do not send the asconf chunk to its peer, but 784 * continue with other associations. 785 */ 786 addr_buf = addrs; 787 for (i = 0; i < addrcnt; i++) { 788 laddr = addr_buf; 789 af = sctp_get_af_specific(laddr->v4.sin_family); 790 if (!af) { 791 retval = -EINVAL; 792 goto out; 793 } 794 795 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 796 break; 797 798 addr_buf += af->sockaddr_len; 799 } 800 if (i < addrcnt) 801 continue; 802 803 /* Find one address in the association's bind address list 804 * that is not in the packed array of addresses. This is to 805 * make sure that we do not delete all the addresses in the 806 * association. 807 */ 808 bp = &asoc->base.bind_addr; 809 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 810 addrcnt, sp); 811 if ((laddr == NULL) && (addrcnt == 1)) { 812 if (asoc->asconf_addr_del_pending) 813 continue; 814 asoc->asconf_addr_del_pending = 815 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 816 if (asoc->asconf_addr_del_pending == NULL) { 817 retval = -ENOMEM; 818 goto out; 819 } 820 asoc->asconf_addr_del_pending->sa.sa_family = 821 addrs->sa_family; 822 asoc->asconf_addr_del_pending->v4.sin_port = 823 htons(bp->port); 824 if (addrs->sa_family == AF_INET) { 825 struct sockaddr_in *sin; 826 827 sin = (struct sockaddr_in *)addrs; 828 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 829 } else if (addrs->sa_family == AF_INET6) { 830 struct sockaddr_in6 *sin6; 831 832 sin6 = (struct sockaddr_in6 *)addrs; 833 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 834 } 835 836 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 837 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 838 asoc->asconf_addr_del_pending); 839 840 asoc->src_out_of_asoc_ok = 1; 841 stored = 1; 842 goto skip_mkasconf; 843 } 844 845 if (laddr == NULL) 846 return -EINVAL; 847 848 /* We do not need RCU protection throughout this loop 849 * because this is done under a socket lock from the 850 * setsockopt call. 851 */ 852 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 853 SCTP_PARAM_DEL_IP); 854 if (!chunk) { 855 retval = -ENOMEM; 856 goto out; 857 } 858 859 skip_mkasconf: 860 /* Reset use_as_src flag for the addresses in the bind address 861 * list that are to be deleted. 862 */ 863 addr_buf = addrs; 864 for (i = 0; i < addrcnt; i++) { 865 laddr = addr_buf; 866 af = sctp_get_af_specific(laddr->v4.sin_family); 867 list_for_each_entry(saddr, &bp->address_list, list) { 868 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 869 saddr->state = SCTP_ADDR_DEL; 870 } 871 addr_buf += af->sockaddr_len; 872 } 873 874 /* Update the route and saddr entries for all the transports 875 * as some of the addresses in the bind address list are 876 * about to be deleted and cannot be used as source addresses. 877 */ 878 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 879 transports) { 880 sctp_transport_route(transport, NULL, 881 sctp_sk(asoc->base.sk)); 882 } 883 884 if (stored) 885 /* We don't need to transmit ASCONF */ 886 continue; 887 retval = sctp_send_asconf(asoc, chunk); 888 } 889 out: 890 return retval; 891 } 892 893 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 894 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 895 { 896 struct sock *sk = sctp_opt2sk(sp); 897 union sctp_addr *addr; 898 struct sctp_af *af; 899 900 /* It is safe to write port space in caller. */ 901 addr = &addrw->a; 902 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 903 af = sctp_get_af_specific(addr->sa.sa_family); 904 if (!af) 905 return -EINVAL; 906 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 907 return -EINVAL; 908 909 if (addrw->state == SCTP_ADDR_NEW) 910 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 911 else 912 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 913 } 914 915 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 916 * 917 * API 8.1 918 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 919 * int flags); 920 * 921 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 922 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 923 * or IPv6 addresses. 924 * 925 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 926 * Section 3.1.2 for this usage. 927 * 928 * addrs is a pointer to an array of one or more socket addresses. Each 929 * address is contained in its appropriate structure (i.e. struct 930 * sockaddr_in or struct sockaddr_in6) the family of the address type 931 * must be used to distinguish the address length (note that this 932 * representation is termed a "packed array" of addresses). The caller 933 * specifies the number of addresses in the array with addrcnt. 934 * 935 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 936 * -1, and sets errno to the appropriate error code. 937 * 938 * For SCTP, the port given in each socket address must be the same, or 939 * sctp_bindx() will fail, setting errno to EINVAL. 940 * 941 * The flags parameter is formed from the bitwise OR of zero or more of 942 * the following currently defined flags: 943 * 944 * SCTP_BINDX_ADD_ADDR 945 * 946 * SCTP_BINDX_REM_ADDR 947 * 948 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 949 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 950 * addresses from the association. The two flags are mutually exclusive; 951 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 952 * not remove all addresses from an association; sctp_bindx() will 953 * reject such an attempt with EINVAL. 954 * 955 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 956 * additional addresses with an endpoint after calling bind(). Or use 957 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 958 * socket is associated with so that no new association accepted will be 959 * associated with those addresses. If the endpoint supports dynamic 960 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 961 * endpoint to send the appropriate message to the peer to change the 962 * peers address lists. 963 * 964 * Adding and removing addresses from a connected association is 965 * optional functionality. Implementations that do not support this 966 * functionality should return EOPNOTSUPP. 967 * 968 * Basically do nothing but copying the addresses from user to kernel 969 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 970 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 971 * from userspace. 972 * 973 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 974 * it. 975 * 976 * sk The sk of the socket 977 * addrs The pointer to the addresses in user land 978 * addrssize Size of the addrs buffer 979 * op Operation to perform (add or remove, see the flags of 980 * sctp_bindx) 981 * 982 * Returns 0 if ok, <0 errno code on error. 983 */ 984 static int sctp_setsockopt_bindx(struct sock *sk, 985 struct sockaddr __user *addrs, 986 int addrs_size, int op) 987 { 988 struct sockaddr *kaddrs; 989 int err; 990 int addrcnt = 0; 991 int walk_size = 0; 992 struct sockaddr *sa_addr; 993 void *addr_buf; 994 struct sctp_af *af; 995 996 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 997 __func__, sk, addrs, addrs_size, op); 998 999 if (unlikely(addrs_size <= 0)) 1000 return -EINVAL; 1001 1002 kaddrs = vmemdup_user(addrs, addrs_size); 1003 if (unlikely(IS_ERR(kaddrs))) 1004 return PTR_ERR(kaddrs); 1005 1006 /* Walk through the addrs buffer and count the number of addresses. */ 1007 addr_buf = kaddrs; 1008 while (walk_size < addrs_size) { 1009 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1010 kvfree(kaddrs); 1011 return -EINVAL; 1012 } 1013 1014 sa_addr = addr_buf; 1015 af = sctp_get_af_specific(sa_addr->sa_family); 1016 1017 /* If the address family is not supported or if this address 1018 * causes the address buffer to overflow return EINVAL. 1019 */ 1020 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1021 kvfree(kaddrs); 1022 return -EINVAL; 1023 } 1024 addrcnt++; 1025 addr_buf += af->sockaddr_len; 1026 walk_size += af->sockaddr_len; 1027 } 1028 1029 /* Do the work. */ 1030 switch (op) { 1031 case SCTP_BINDX_ADD_ADDR: 1032 /* Allow security module to validate bindx addresses. */ 1033 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1034 (struct sockaddr *)kaddrs, 1035 addrs_size); 1036 if (err) 1037 goto out; 1038 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1039 if (err) 1040 goto out; 1041 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1042 break; 1043 1044 case SCTP_BINDX_REM_ADDR: 1045 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1046 if (err) 1047 goto out; 1048 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1049 break; 1050 1051 default: 1052 err = -EINVAL; 1053 break; 1054 } 1055 1056 out: 1057 kvfree(kaddrs); 1058 1059 return err; 1060 } 1061 1062 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1063 * 1064 * Common routine for handling connect() and sctp_connectx(). 1065 * Connect will come in with just a single address. 1066 */ 1067 static int __sctp_connect(struct sock *sk, 1068 struct sockaddr *kaddrs, 1069 int addrs_size, int flags, 1070 sctp_assoc_t *assoc_id) 1071 { 1072 struct net *net = sock_net(sk); 1073 struct sctp_sock *sp; 1074 struct sctp_endpoint *ep; 1075 struct sctp_association *asoc = NULL; 1076 struct sctp_association *asoc2; 1077 struct sctp_transport *transport; 1078 union sctp_addr to; 1079 enum sctp_scope scope; 1080 long timeo; 1081 int err = 0; 1082 int addrcnt = 0; 1083 int walk_size = 0; 1084 union sctp_addr *sa_addr = NULL; 1085 void *addr_buf; 1086 unsigned short port; 1087 1088 sp = sctp_sk(sk); 1089 ep = sp->ep; 1090 1091 /* connect() cannot be done on a socket that is already in ESTABLISHED 1092 * state - UDP-style peeled off socket or a TCP-style socket that 1093 * is already connected. 1094 * It cannot be done even on a TCP-style listening socket. 1095 */ 1096 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1097 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1098 err = -EISCONN; 1099 goto out_free; 1100 } 1101 1102 /* Walk through the addrs buffer and count the number of addresses. */ 1103 addr_buf = kaddrs; 1104 while (walk_size < addrs_size) { 1105 struct sctp_af *af; 1106 1107 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1108 err = -EINVAL; 1109 goto out_free; 1110 } 1111 1112 sa_addr = addr_buf; 1113 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1114 1115 /* If the address family is not supported or if this address 1116 * causes the address buffer to overflow return EINVAL. 1117 */ 1118 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1119 err = -EINVAL; 1120 goto out_free; 1121 } 1122 1123 port = ntohs(sa_addr->v4.sin_port); 1124 1125 /* Save current address so we can work with it */ 1126 memcpy(&to, sa_addr, af->sockaddr_len); 1127 1128 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1129 if (err) 1130 goto out_free; 1131 1132 /* Make sure the destination port is correctly set 1133 * in all addresses. 1134 */ 1135 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1136 err = -EINVAL; 1137 goto out_free; 1138 } 1139 1140 /* Check if there already is a matching association on the 1141 * endpoint (other than the one created here). 1142 */ 1143 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1144 if (asoc2 && asoc2 != asoc) { 1145 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1146 err = -EISCONN; 1147 else 1148 err = -EALREADY; 1149 goto out_free; 1150 } 1151 1152 /* If we could not find a matching association on the endpoint, 1153 * make sure that there is no peeled-off association matching 1154 * the peer address even on another socket. 1155 */ 1156 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1157 err = -EADDRNOTAVAIL; 1158 goto out_free; 1159 } 1160 1161 if (!asoc) { 1162 /* If a bind() or sctp_bindx() is not called prior to 1163 * an sctp_connectx() call, the system picks an 1164 * ephemeral port and will choose an address set 1165 * equivalent to binding with a wildcard address. 1166 */ 1167 if (!ep->base.bind_addr.port) { 1168 if (sctp_autobind(sk)) { 1169 err = -EAGAIN; 1170 goto out_free; 1171 } 1172 } else { 1173 /* 1174 * If an unprivileged user inherits a 1-many 1175 * style socket with open associations on a 1176 * privileged port, it MAY be permitted to 1177 * accept new associations, but it SHOULD NOT 1178 * be permitted to open new associations. 1179 */ 1180 if (ep->base.bind_addr.port < 1181 inet_prot_sock(net) && 1182 !ns_capable(net->user_ns, 1183 CAP_NET_BIND_SERVICE)) { 1184 err = -EACCES; 1185 goto out_free; 1186 } 1187 } 1188 1189 scope = sctp_scope(&to); 1190 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1191 if (!asoc) { 1192 err = -ENOMEM; 1193 goto out_free; 1194 } 1195 1196 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1197 GFP_KERNEL); 1198 if (err < 0) { 1199 goto out_free; 1200 } 1201 1202 } 1203 1204 /* Prime the peer's transport structures. */ 1205 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1206 SCTP_UNKNOWN); 1207 if (!transport) { 1208 err = -ENOMEM; 1209 goto out_free; 1210 } 1211 1212 addrcnt++; 1213 addr_buf += af->sockaddr_len; 1214 walk_size += af->sockaddr_len; 1215 } 1216 1217 /* In case the user of sctp_connectx() wants an association 1218 * id back, assign one now. 1219 */ 1220 if (assoc_id) { 1221 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1222 if (err < 0) 1223 goto out_free; 1224 } 1225 1226 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1227 if (err < 0) { 1228 goto out_free; 1229 } 1230 1231 /* Initialize sk's dport and daddr for getpeername() */ 1232 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1233 sp->pf->to_sk_daddr(sa_addr, sk); 1234 sk->sk_err = 0; 1235 1236 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1237 1238 if (assoc_id) 1239 *assoc_id = asoc->assoc_id; 1240 1241 err = sctp_wait_for_connect(asoc, &timeo); 1242 /* Note: the asoc may be freed after the return of 1243 * sctp_wait_for_connect. 1244 */ 1245 1246 /* Don't free association on exit. */ 1247 asoc = NULL; 1248 1249 out_free: 1250 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1251 __func__, asoc, kaddrs, err); 1252 1253 if (asoc) { 1254 /* sctp_primitive_ASSOCIATE may have added this association 1255 * To the hash table, try to unhash it, just in case, its a noop 1256 * if it wasn't hashed so we're safe 1257 */ 1258 sctp_association_free(asoc); 1259 } 1260 return err; 1261 } 1262 1263 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1264 * 1265 * API 8.9 1266 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1267 * sctp_assoc_t *asoc); 1268 * 1269 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1270 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1271 * or IPv6 addresses. 1272 * 1273 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1274 * Section 3.1.2 for this usage. 1275 * 1276 * addrs is a pointer to an array of one or more socket addresses. Each 1277 * address is contained in its appropriate structure (i.e. struct 1278 * sockaddr_in or struct sockaddr_in6) the family of the address type 1279 * must be used to distengish the address length (note that this 1280 * representation is termed a "packed array" of addresses). The caller 1281 * specifies the number of addresses in the array with addrcnt. 1282 * 1283 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1284 * the association id of the new association. On failure, sctp_connectx() 1285 * returns -1, and sets errno to the appropriate error code. The assoc_id 1286 * is not touched by the kernel. 1287 * 1288 * For SCTP, the port given in each socket address must be the same, or 1289 * sctp_connectx() will fail, setting errno to EINVAL. 1290 * 1291 * An application can use sctp_connectx to initiate an association with 1292 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1293 * allows a caller to specify multiple addresses at which a peer can be 1294 * reached. The way the SCTP stack uses the list of addresses to set up 1295 * the association is implementation dependent. This function only 1296 * specifies that the stack will try to make use of all the addresses in 1297 * the list when needed. 1298 * 1299 * Note that the list of addresses passed in is only used for setting up 1300 * the association. It does not necessarily equal the set of addresses 1301 * the peer uses for the resulting association. If the caller wants to 1302 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1303 * retrieve them after the association has been set up. 1304 * 1305 * Basically do nothing but copying the addresses from user to kernel 1306 * land and invoking either sctp_connectx(). This is used for tunneling 1307 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1308 * 1309 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1310 * it. 1311 * 1312 * sk The sk of the socket 1313 * addrs The pointer to the addresses in user land 1314 * addrssize Size of the addrs buffer 1315 * 1316 * Returns >=0 if ok, <0 errno code on error. 1317 */ 1318 static int __sctp_setsockopt_connectx(struct sock *sk, 1319 struct sockaddr __user *addrs, 1320 int addrs_size, 1321 sctp_assoc_t *assoc_id) 1322 { 1323 struct sockaddr *kaddrs; 1324 int err = 0, flags = 0; 1325 1326 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1327 __func__, sk, addrs, addrs_size); 1328 1329 if (unlikely(addrs_size <= 0)) 1330 return -EINVAL; 1331 1332 kaddrs = vmemdup_user(addrs, addrs_size); 1333 if (unlikely(IS_ERR(kaddrs))) 1334 return PTR_ERR(kaddrs); 1335 1336 /* Allow security module to validate connectx addresses. */ 1337 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1338 (struct sockaddr *)kaddrs, 1339 addrs_size); 1340 if (err) 1341 goto out_free; 1342 1343 /* in-kernel sockets don't generally have a file allocated to them 1344 * if all they do is call sock_create_kern(). 1345 */ 1346 if (sk->sk_socket->file) 1347 flags = sk->sk_socket->file->f_flags; 1348 1349 err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1350 1351 out_free: 1352 kvfree(kaddrs); 1353 1354 return err; 1355 } 1356 1357 /* 1358 * This is an older interface. It's kept for backward compatibility 1359 * to the option that doesn't provide association id. 1360 */ 1361 static int sctp_setsockopt_connectx_old(struct sock *sk, 1362 struct sockaddr __user *addrs, 1363 int addrs_size) 1364 { 1365 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1366 } 1367 1368 /* 1369 * New interface for the API. The since the API is done with a socket 1370 * option, to make it simple we feed back the association id is as a return 1371 * indication to the call. Error is always negative and association id is 1372 * always positive. 1373 */ 1374 static int sctp_setsockopt_connectx(struct sock *sk, 1375 struct sockaddr __user *addrs, 1376 int addrs_size) 1377 { 1378 sctp_assoc_t assoc_id = 0; 1379 int err = 0; 1380 1381 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1382 1383 if (err) 1384 return err; 1385 else 1386 return assoc_id; 1387 } 1388 1389 /* 1390 * New (hopefully final) interface for the API. 1391 * We use the sctp_getaddrs_old structure so that use-space library 1392 * can avoid any unnecessary allocations. The only different part 1393 * is that we store the actual length of the address buffer into the 1394 * addrs_num structure member. That way we can re-use the existing 1395 * code. 1396 */ 1397 #ifdef CONFIG_COMPAT 1398 struct compat_sctp_getaddrs_old { 1399 sctp_assoc_t assoc_id; 1400 s32 addr_num; 1401 compat_uptr_t addrs; /* struct sockaddr * */ 1402 }; 1403 #endif 1404 1405 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1406 char __user *optval, 1407 int __user *optlen) 1408 { 1409 struct sctp_getaddrs_old param; 1410 sctp_assoc_t assoc_id = 0; 1411 int err = 0; 1412 1413 #ifdef CONFIG_COMPAT 1414 if (in_compat_syscall()) { 1415 struct compat_sctp_getaddrs_old param32; 1416 1417 if (len < sizeof(param32)) 1418 return -EINVAL; 1419 if (copy_from_user(¶m32, optval, sizeof(param32))) 1420 return -EFAULT; 1421 1422 param.assoc_id = param32.assoc_id; 1423 param.addr_num = param32.addr_num; 1424 param.addrs = compat_ptr(param32.addrs); 1425 } else 1426 #endif 1427 { 1428 if (len < sizeof(param)) 1429 return -EINVAL; 1430 if (copy_from_user(¶m, optval, sizeof(param))) 1431 return -EFAULT; 1432 } 1433 1434 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1435 param.addrs, param.addr_num, 1436 &assoc_id); 1437 if (err == 0 || err == -EINPROGRESS) { 1438 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1439 return -EFAULT; 1440 if (put_user(sizeof(assoc_id), optlen)) 1441 return -EFAULT; 1442 } 1443 1444 return err; 1445 } 1446 1447 /* API 3.1.4 close() - UDP Style Syntax 1448 * Applications use close() to perform graceful shutdown (as described in 1449 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1450 * by a UDP-style socket. 1451 * 1452 * The syntax is 1453 * 1454 * ret = close(int sd); 1455 * 1456 * sd - the socket descriptor of the associations to be closed. 1457 * 1458 * To gracefully shutdown a specific association represented by the 1459 * UDP-style socket, an application should use the sendmsg() call, 1460 * passing no user data, but including the appropriate flag in the 1461 * ancillary data (see Section xxxx). 1462 * 1463 * If sd in the close() call is a branched-off socket representing only 1464 * one association, the shutdown is performed on that association only. 1465 * 1466 * 4.1.6 close() - TCP Style Syntax 1467 * 1468 * Applications use close() to gracefully close down an association. 1469 * 1470 * The syntax is: 1471 * 1472 * int close(int sd); 1473 * 1474 * sd - the socket descriptor of the association to be closed. 1475 * 1476 * After an application calls close() on a socket descriptor, no further 1477 * socket operations will succeed on that descriptor. 1478 * 1479 * API 7.1.4 SO_LINGER 1480 * 1481 * An application using the TCP-style socket can use this option to 1482 * perform the SCTP ABORT primitive. The linger option structure is: 1483 * 1484 * struct linger { 1485 * int l_onoff; // option on/off 1486 * int l_linger; // linger time 1487 * }; 1488 * 1489 * To enable the option, set l_onoff to 1. If the l_linger value is set 1490 * to 0, calling close() is the same as the ABORT primitive. If the 1491 * value is set to a negative value, the setsockopt() call will return 1492 * an error. If the value is set to a positive value linger_time, the 1493 * close() can be blocked for at most linger_time ms. If the graceful 1494 * shutdown phase does not finish during this period, close() will 1495 * return but the graceful shutdown phase continues in the system. 1496 */ 1497 static void sctp_close(struct sock *sk, long timeout) 1498 { 1499 struct net *net = sock_net(sk); 1500 struct sctp_endpoint *ep; 1501 struct sctp_association *asoc; 1502 struct list_head *pos, *temp; 1503 unsigned int data_was_unread; 1504 1505 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1506 1507 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1508 sk->sk_shutdown = SHUTDOWN_MASK; 1509 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1510 1511 ep = sctp_sk(sk)->ep; 1512 1513 /* Clean up any skbs sitting on the receive queue. */ 1514 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1515 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1516 1517 /* Walk all associations on an endpoint. */ 1518 list_for_each_safe(pos, temp, &ep->asocs) { 1519 asoc = list_entry(pos, struct sctp_association, asocs); 1520 1521 if (sctp_style(sk, TCP)) { 1522 /* A closed association can still be in the list if 1523 * it belongs to a TCP-style listening socket that is 1524 * not yet accepted. If so, free it. If not, send an 1525 * ABORT or SHUTDOWN based on the linger options. 1526 */ 1527 if (sctp_state(asoc, CLOSED)) { 1528 sctp_association_free(asoc); 1529 continue; 1530 } 1531 } 1532 1533 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1534 !skb_queue_empty(&asoc->ulpq.reasm) || 1535 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1536 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1537 struct sctp_chunk *chunk; 1538 1539 chunk = sctp_make_abort_user(asoc, NULL, 0); 1540 sctp_primitive_ABORT(net, asoc, chunk); 1541 } else 1542 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1543 } 1544 1545 /* On a TCP-style socket, block for at most linger_time if set. */ 1546 if (sctp_style(sk, TCP) && timeout) 1547 sctp_wait_for_close(sk, timeout); 1548 1549 /* This will run the backlog queue. */ 1550 release_sock(sk); 1551 1552 /* Supposedly, no process has access to the socket, but 1553 * the net layers still may. 1554 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1555 * held and that should be grabbed before socket lock. 1556 */ 1557 spin_lock_bh(&net->sctp.addr_wq_lock); 1558 bh_lock_sock_nested(sk); 1559 1560 /* Hold the sock, since sk_common_release() will put sock_put() 1561 * and we have just a little more cleanup. 1562 */ 1563 sock_hold(sk); 1564 sk_common_release(sk); 1565 1566 bh_unlock_sock(sk); 1567 spin_unlock_bh(&net->sctp.addr_wq_lock); 1568 1569 sock_put(sk); 1570 1571 SCTP_DBG_OBJCNT_DEC(sock); 1572 } 1573 1574 /* Handle EPIPE error. */ 1575 static int sctp_error(struct sock *sk, int flags, int err) 1576 { 1577 if (err == -EPIPE) 1578 err = sock_error(sk) ? : -EPIPE; 1579 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1580 send_sig(SIGPIPE, current, 0); 1581 return err; 1582 } 1583 1584 /* API 3.1.3 sendmsg() - UDP Style Syntax 1585 * 1586 * An application uses sendmsg() and recvmsg() calls to transmit data to 1587 * and receive data from its peer. 1588 * 1589 * ssize_t sendmsg(int socket, const struct msghdr *message, 1590 * int flags); 1591 * 1592 * socket - the socket descriptor of the endpoint. 1593 * message - pointer to the msghdr structure which contains a single 1594 * user message and possibly some ancillary data. 1595 * 1596 * See Section 5 for complete description of the data 1597 * structures. 1598 * 1599 * flags - flags sent or received with the user message, see Section 1600 * 5 for complete description of the flags. 1601 * 1602 * Note: This function could use a rewrite especially when explicit 1603 * connect support comes in. 1604 */ 1605 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1606 1607 static int sctp_msghdr_parse(const struct msghdr *msg, 1608 struct sctp_cmsgs *cmsgs); 1609 1610 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1611 struct sctp_sndrcvinfo *srinfo, 1612 const struct msghdr *msg, size_t msg_len) 1613 { 1614 __u16 sflags; 1615 int err; 1616 1617 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1618 return -EPIPE; 1619 1620 if (msg_len > sk->sk_sndbuf) 1621 return -EMSGSIZE; 1622 1623 memset(cmsgs, 0, sizeof(*cmsgs)); 1624 err = sctp_msghdr_parse(msg, cmsgs); 1625 if (err) { 1626 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1627 return err; 1628 } 1629 1630 memset(srinfo, 0, sizeof(*srinfo)); 1631 if (cmsgs->srinfo) { 1632 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1633 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1634 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1635 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1636 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1637 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1638 } 1639 1640 if (cmsgs->sinfo) { 1641 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1642 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1643 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1644 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1645 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1646 } 1647 1648 if (cmsgs->prinfo) { 1649 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1650 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1651 cmsgs->prinfo->pr_policy); 1652 } 1653 1654 sflags = srinfo->sinfo_flags; 1655 if (!sflags && msg_len) 1656 return 0; 1657 1658 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1659 return -EINVAL; 1660 1661 if (((sflags & SCTP_EOF) && msg_len > 0) || 1662 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1663 return -EINVAL; 1664 1665 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1666 return -EINVAL; 1667 1668 return 0; 1669 } 1670 1671 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1672 struct sctp_cmsgs *cmsgs, 1673 union sctp_addr *daddr, 1674 struct sctp_transport **tp) 1675 { 1676 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1677 struct net *net = sock_net(sk); 1678 struct sctp_association *asoc; 1679 enum sctp_scope scope; 1680 struct cmsghdr *cmsg; 1681 __be32 flowinfo = 0; 1682 struct sctp_af *af; 1683 int err; 1684 1685 *tp = NULL; 1686 1687 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1688 return -EINVAL; 1689 1690 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1691 sctp_sstate(sk, CLOSING))) 1692 return -EADDRNOTAVAIL; 1693 1694 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1695 return -EADDRNOTAVAIL; 1696 1697 if (!ep->base.bind_addr.port) { 1698 if (sctp_autobind(sk)) 1699 return -EAGAIN; 1700 } else { 1701 if (ep->base.bind_addr.port < inet_prot_sock(net) && 1702 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1703 return -EACCES; 1704 } 1705 1706 scope = sctp_scope(daddr); 1707 1708 /* Label connection socket for first association 1-to-many 1709 * style for client sequence socket()->sendmsg(). This 1710 * needs to be done before sctp_assoc_add_peer() as that will 1711 * set up the initial packet that needs to account for any 1712 * security ip options (CIPSO/CALIPSO) added to the packet. 1713 */ 1714 af = sctp_get_af_specific(daddr->sa.sa_family); 1715 if (!af) 1716 return -EINVAL; 1717 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1718 (struct sockaddr *)daddr, 1719 af->sockaddr_len); 1720 if (err < 0) 1721 return err; 1722 1723 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1724 if (!asoc) 1725 return -ENOMEM; 1726 1727 if (sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL) < 0) { 1728 err = -ENOMEM; 1729 goto free; 1730 } 1731 1732 if (cmsgs->init) { 1733 struct sctp_initmsg *init = cmsgs->init; 1734 1735 if (init->sinit_num_ostreams) { 1736 __u16 outcnt = init->sinit_num_ostreams; 1737 1738 asoc->c.sinit_num_ostreams = outcnt; 1739 /* outcnt has been changed, need to re-init stream */ 1740 err = sctp_stream_init(&asoc->stream, outcnt, 0, 1741 GFP_KERNEL); 1742 if (err) 1743 goto free; 1744 } 1745 1746 if (init->sinit_max_instreams) 1747 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1748 1749 if (init->sinit_max_attempts) 1750 asoc->max_init_attempts = init->sinit_max_attempts; 1751 1752 if (init->sinit_max_init_timeo) 1753 asoc->max_init_timeo = 1754 msecs_to_jiffies(init->sinit_max_init_timeo); 1755 } 1756 1757 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1758 if (!*tp) { 1759 err = -ENOMEM; 1760 goto free; 1761 } 1762 1763 if (!cmsgs->addrs_msg) 1764 return 0; 1765 1766 if (daddr->sa.sa_family == AF_INET6) 1767 flowinfo = daddr->v6.sin6_flowinfo; 1768 1769 /* sendv addr list parse */ 1770 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1771 struct sctp_transport *transport; 1772 struct sctp_association *old; 1773 union sctp_addr _daddr; 1774 int dlen; 1775 1776 if (cmsg->cmsg_level != IPPROTO_SCTP || 1777 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1778 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1779 continue; 1780 1781 daddr = &_daddr; 1782 memset(daddr, 0, sizeof(*daddr)); 1783 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1784 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1785 if (dlen < sizeof(struct in_addr)) { 1786 err = -EINVAL; 1787 goto free; 1788 } 1789 1790 dlen = sizeof(struct in_addr); 1791 daddr->v4.sin_family = AF_INET; 1792 daddr->v4.sin_port = htons(asoc->peer.port); 1793 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1794 } else { 1795 if (dlen < sizeof(struct in6_addr)) { 1796 err = -EINVAL; 1797 goto free; 1798 } 1799 1800 dlen = sizeof(struct in6_addr); 1801 daddr->v6.sin6_flowinfo = flowinfo; 1802 daddr->v6.sin6_family = AF_INET6; 1803 daddr->v6.sin6_port = htons(asoc->peer.port); 1804 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1805 } 1806 err = sctp_verify_addr(sk, daddr, sizeof(*daddr)); 1807 if (err) 1808 goto free; 1809 1810 old = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1811 if (old && old != asoc) { 1812 if (old->state >= SCTP_STATE_ESTABLISHED) 1813 err = -EISCONN; 1814 else 1815 err = -EALREADY; 1816 goto free; 1817 } 1818 1819 if (sctp_endpoint_is_peeled_off(ep, daddr)) { 1820 err = -EADDRNOTAVAIL; 1821 goto free; 1822 } 1823 1824 transport = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, 1825 SCTP_UNKNOWN); 1826 if (!transport) { 1827 err = -ENOMEM; 1828 goto free; 1829 } 1830 } 1831 1832 return 0; 1833 1834 free: 1835 sctp_association_free(asoc); 1836 return err; 1837 } 1838 1839 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1840 __u16 sflags, struct msghdr *msg, 1841 size_t msg_len) 1842 { 1843 struct sock *sk = asoc->base.sk; 1844 struct net *net = sock_net(sk); 1845 1846 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1847 return -EPIPE; 1848 1849 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1850 !sctp_state(asoc, ESTABLISHED)) 1851 return 0; 1852 1853 if (sflags & SCTP_EOF) { 1854 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1855 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1856 1857 return 0; 1858 } 1859 1860 if (sflags & SCTP_ABORT) { 1861 struct sctp_chunk *chunk; 1862 1863 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1864 if (!chunk) 1865 return -ENOMEM; 1866 1867 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1868 sctp_primitive_ABORT(net, asoc, chunk); 1869 1870 return 0; 1871 } 1872 1873 return 1; 1874 } 1875 1876 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1877 struct msghdr *msg, size_t msg_len, 1878 struct sctp_transport *transport, 1879 struct sctp_sndrcvinfo *sinfo) 1880 { 1881 struct sock *sk = asoc->base.sk; 1882 struct sctp_sock *sp = sctp_sk(sk); 1883 struct net *net = sock_net(sk); 1884 struct sctp_datamsg *datamsg; 1885 bool wait_connect = false; 1886 struct sctp_chunk *chunk; 1887 long timeo; 1888 int err; 1889 1890 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1891 err = -EINVAL; 1892 goto err; 1893 } 1894 1895 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { 1896 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1897 if (err) 1898 goto err; 1899 } 1900 1901 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1902 err = -EMSGSIZE; 1903 goto err; 1904 } 1905 1906 if (asoc->pmtu_pending) { 1907 if (sp->param_flags & SPP_PMTUD_ENABLE) 1908 sctp_assoc_sync_pmtu(asoc); 1909 asoc->pmtu_pending = 0; 1910 } 1911 1912 if (sctp_wspace(asoc) < (int)msg_len) 1913 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1914 1915 if (sctp_wspace(asoc) <= 0) { 1916 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1917 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1918 if (err) 1919 goto err; 1920 } 1921 1922 if (sctp_state(asoc, CLOSED)) { 1923 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1924 if (err) 1925 goto err; 1926 1927 if (sp->strm_interleave) { 1928 timeo = sock_sndtimeo(sk, 0); 1929 err = sctp_wait_for_connect(asoc, &timeo); 1930 if (err) { 1931 err = -ESRCH; 1932 goto err; 1933 } 1934 } else { 1935 wait_connect = true; 1936 } 1937 1938 pr_debug("%s: we associated primitively\n", __func__); 1939 } 1940 1941 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1942 if (IS_ERR(datamsg)) { 1943 err = PTR_ERR(datamsg); 1944 goto err; 1945 } 1946 1947 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1948 1949 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1950 sctp_chunk_hold(chunk); 1951 sctp_set_owner_w(chunk); 1952 chunk->transport = transport; 1953 } 1954 1955 err = sctp_primitive_SEND(net, asoc, datamsg); 1956 if (err) { 1957 sctp_datamsg_free(datamsg); 1958 goto err; 1959 } 1960 1961 pr_debug("%s: we sent primitively\n", __func__); 1962 1963 sctp_datamsg_put(datamsg); 1964 1965 if (unlikely(wait_connect)) { 1966 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1967 sctp_wait_for_connect(asoc, &timeo); 1968 } 1969 1970 err = msg_len; 1971 1972 err: 1973 return err; 1974 } 1975 1976 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1977 const struct msghdr *msg, 1978 struct sctp_cmsgs *cmsgs) 1979 { 1980 union sctp_addr *daddr = NULL; 1981 int err; 1982 1983 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1984 int len = msg->msg_namelen; 1985 1986 if (len > sizeof(*daddr)) 1987 len = sizeof(*daddr); 1988 1989 daddr = (union sctp_addr *)msg->msg_name; 1990 1991 err = sctp_verify_addr(sk, daddr, len); 1992 if (err) 1993 return ERR_PTR(err); 1994 } 1995 1996 return daddr; 1997 } 1998 1999 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 2000 struct sctp_sndrcvinfo *sinfo, 2001 struct sctp_cmsgs *cmsgs) 2002 { 2003 if (!cmsgs->srinfo && !cmsgs->sinfo) { 2004 sinfo->sinfo_stream = asoc->default_stream; 2005 sinfo->sinfo_ppid = asoc->default_ppid; 2006 sinfo->sinfo_context = asoc->default_context; 2007 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 2008 2009 if (!cmsgs->prinfo) 2010 sinfo->sinfo_flags = asoc->default_flags; 2011 } 2012 2013 if (!cmsgs->srinfo && !cmsgs->prinfo) 2014 sinfo->sinfo_timetolive = asoc->default_timetolive; 2015 2016 if (cmsgs->authinfo) { 2017 /* Reuse sinfo_tsn to indicate that authinfo was set and 2018 * sinfo_ssn to save the keyid on tx path. 2019 */ 2020 sinfo->sinfo_tsn = 1; 2021 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 2022 } 2023 } 2024 2025 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 2026 { 2027 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 2028 struct sctp_transport *transport = NULL; 2029 struct sctp_sndrcvinfo _sinfo, *sinfo; 2030 struct sctp_association *asoc, *tmp; 2031 struct sctp_cmsgs cmsgs; 2032 union sctp_addr *daddr; 2033 bool new = false; 2034 __u16 sflags; 2035 int err; 2036 2037 /* Parse and get snd_info */ 2038 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 2039 if (err) 2040 goto out; 2041 2042 sinfo = &_sinfo; 2043 sflags = sinfo->sinfo_flags; 2044 2045 /* Get daddr from msg */ 2046 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 2047 if (IS_ERR(daddr)) { 2048 err = PTR_ERR(daddr); 2049 goto out; 2050 } 2051 2052 lock_sock(sk); 2053 2054 /* SCTP_SENDALL process */ 2055 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 2056 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) { 2057 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2058 msg_len); 2059 if (err == 0) 2060 continue; 2061 if (err < 0) 2062 goto out_unlock; 2063 2064 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2065 2066 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 2067 NULL, sinfo); 2068 if (err < 0) 2069 goto out_unlock; 2070 2071 iov_iter_revert(&msg->msg_iter, err); 2072 } 2073 2074 goto out_unlock; 2075 } 2076 2077 /* Get and check or create asoc */ 2078 if (daddr) { 2079 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 2080 if (asoc) { 2081 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2082 msg_len); 2083 if (err <= 0) 2084 goto out_unlock; 2085 } else { 2086 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 2087 &transport); 2088 if (err) 2089 goto out_unlock; 2090 2091 asoc = transport->asoc; 2092 new = true; 2093 } 2094 2095 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 2096 transport = NULL; 2097 } else { 2098 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2099 if (!asoc) { 2100 err = -EPIPE; 2101 goto out_unlock; 2102 } 2103 2104 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2105 if (err <= 0) 2106 goto out_unlock; 2107 } 2108 2109 /* Update snd_info with the asoc */ 2110 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2111 2112 /* Send msg to the asoc */ 2113 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2114 if (err < 0 && err != -ESRCH && new) 2115 sctp_association_free(asoc); 2116 2117 out_unlock: 2118 release_sock(sk); 2119 out: 2120 return sctp_error(sk, msg->msg_flags, err); 2121 } 2122 2123 /* This is an extended version of skb_pull() that removes the data from the 2124 * start of a skb even when data is spread across the list of skb's in the 2125 * frag_list. len specifies the total amount of data that needs to be removed. 2126 * when 'len' bytes could be removed from the skb, it returns 0. 2127 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2128 * could not be removed. 2129 */ 2130 static int sctp_skb_pull(struct sk_buff *skb, int len) 2131 { 2132 struct sk_buff *list; 2133 int skb_len = skb_headlen(skb); 2134 int rlen; 2135 2136 if (len <= skb_len) { 2137 __skb_pull(skb, len); 2138 return 0; 2139 } 2140 len -= skb_len; 2141 __skb_pull(skb, skb_len); 2142 2143 skb_walk_frags(skb, list) { 2144 rlen = sctp_skb_pull(list, len); 2145 skb->len -= (len-rlen); 2146 skb->data_len -= (len-rlen); 2147 2148 if (!rlen) 2149 return 0; 2150 2151 len = rlen; 2152 } 2153 2154 return len; 2155 } 2156 2157 /* API 3.1.3 recvmsg() - UDP Style Syntax 2158 * 2159 * ssize_t recvmsg(int socket, struct msghdr *message, 2160 * int flags); 2161 * 2162 * socket - the socket descriptor of the endpoint. 2163 * message - pointer to the msghdr structure which contains a single 2164 * user message and possibly some ancillary data. 2165 * 2166 * See Section 5 for complete description of the data 2167 * structures. 2168 * 2169 * flags - flags sent or received with the user message, see Section 2170 * 5 for complete description of the flags. 2171 */ 2172 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2173 int noblock, int flags, int *addr_len) 2174 { 2175 struct sctp_ulpevent *event = NULL; 2176 struct sctp_sock *sp = sctp_sk(sk); 2177 struct sk_buff *skb, *head_skb; 2178 int copied; 2179 int err = 0; 2180 int skb_len; 2181 2182 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2183 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2184 addr_len); 2185 2186 lock_sock(sk); 2187 2188 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2189 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2190 err = -ENOTCONN; 2191 goto out; 2192 } 2193 2194 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2195 if (!skb) 2196 goto out; 2197 2198 /* Get the total length of the skb including any skb's in the 2199 * frag_list. 2200 */ 2201 skb_len = skb->len; 2202 2203 copied = skb_len; 2204 if (copied > len) 2205 copied = len; 2206 2207 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2208 2209 event = sctp_skb2event(skb); 2210 2211 if (err) 2212 goto out_free; 2213 2214 if (event->chunk && event->chunk->head_skb) 2215 head_skb = event->chunk->head_skb; 2216 else 2217 head_skb = skb; 2218 sock_recv_ts_and_drops(msg, sk, head_skb); 2219 if (sctp_ulpevent_is_notification(event)) { 2220 msg->msg_flags |= MSG_NOTIFICATION; 2221 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2222 } else { 2223 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2224 } 2225 2226 /* Check if we allow SCTP_NXTINFO. */ 2227 if (sp->recvnxtinfo) 2228 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2229 /* Check if we allow SCTP_RCVINFO. */ 2230 if (sp->recvrcvinfo) 2231 sctp_ulpevent_read_rcvinfo(event, msg); 2232 /* Check if we allow SCTP_SNDRCVINFO. */ 2233 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT)) 2234 sctp_ulpevent_read_sndrcvinfo(event, msg); 2235 2236 err = copied; 2237 2238 /* If skb's length exceeds the user's buffer, update the skb and 2239 * push it back to the receive_queue so that the next call to 2240 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2241 */ 2242 if (skb_len > copied) { 2243 msg->msg_flags &= ~MSG_EOR; 2244 if (flags & MSG_PEEK) 2245 goto out_free; 2246 sctp_skb_pull(skb, copied); 2247 skb_queue_head(&sk->sk_receive_queue, skb); 2248 2249 /* When only partial message is copied to the user, increase 2250 * rwnd by that amount. If all the data in the skb is read, 2251 * rwnd is updated when the event is freed. 2252 */ 2253 if (!sctp_ulpevent_is_notification(event)) 2254 sctp_assoc_rwnd_increase(event->asoc, copied); 2255 goto out; 2256 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2257 (event->msg_flags & MSG_EOR)) 2258 msg->msg_flags |= MSG_EOR; 2259 else 2260 msg->msg_flags &= ~MSG_EOR; 2261 2262 out_free: 2263 if (flags & MSG_PEEK) { 2264 /* Release the skb reference acquired after peeking the skb in 2265 * sctp_skb_recv_datagram(). 2266 */ 2267 kfree_skb(skb); 2268 } else { 2269 /* Free the event which includes releasing the reference to 2270 * the owner of the skb, freeing the skb and updating the 2271 * rwnd. 2272 */ 2273 sctp_ulpevent_free(event); 2274 } 2275 out: 2276 release_sock(sk); 2277 return err; 2278 } 2279 2280 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2281 * 2282 * This option is a on/off flag. If enabled no SCTP message 2283 * fragmentation will be performed. Instead if a message being sent 2284 * exceeds the current PMTU size, the message will NOT be sent and 2285 * instead a error will be indicated to the user. 2286 */ 2287 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2288 char __user *optval, 2289 unsigned int optlen) 2290 { 2291 int val; 2292 2293 if (optlen < sizeof(int)) 2294 return -EINVAL; 2295 2296 if (get_user(val, (int __user *)optval)) 2297 return -EFAULT; 2298 2299 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2300 2301 return 0; 2302 } 2303 2304 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2305 unsigned int optlen) 2306 { 2307 struct sctp_event_subscribe subscribe; 2308 __u8 *sn_type = (__u8 *)&subscribe; 2309 struct sctp_sock *sp = sctp_sk(sk); 2310 struct sctp_association *asoc; 2311 int i; 2312 2313 if (optlen > sizeof(struct sctp_event_subscribe)) 2314 return -EINVAL; 2315 2316 if (copy_from_user(&subscribe, optval, optlen)) 2317 return -EFAULT; 2318 2319 for (i = 0; i < optlen; i++) 2320 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i, 2321 sn_type[i]); 2322 2323 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2324 asoc->subscribe = sctp_sk(sk)->subscribe; 2325 2326 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2327 * if there is no data to be sent or retransmit, the stack will 2328 * immediately send up this notification. 2329 */ 2330 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) { 2331 struct sctp_ulpevent *event; 2332 2333 asoc = sctp_id2assoc(sk, 0); 2334 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2335 event = sctp_ulpevent_make_sender_dry_event(asoc, 2336 GFP_USER | __GFP_NOWARN); 2337 if (!event) 2338 return -ENOMEM; 2339 2340 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2341 } 2342 } 2343 2344 return 0; 2345 } 2346 2347 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2348 * 2349 * This socket option is applicable to the UDP-style socket only. When 2350 * set it will cause associations that are idle for more than the 2351 * specified number of seconds to automatically close. An association 2352 * being idle is defined an association that has NOT sent or received 2353 * user data. The special value of '0' indicates that no automatic 2354 * close of any associations should be performed. The option expects an 2355 * integer defining the number of seconds of idle time before an 2356 * association is closed. 2357 */ 2358 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2359 unsigned int optlen) 2360 { 2361 struct sctp_sock *sp = sctp_sk(sk); 2362 struct net *net = sock_net(sk); 2363 2364 /* Applicable to UDP-style socket only */ 2365 if (sctp_style(sk, TCP)) 2366 return -EOPNOTSUPP; 2367 if (optlen != sizeof(int)) 2368 return -EINVAL; 2369 if (copy_from_user(&sp->autoclose, optval, optlen)) 2370 return -EFAULT; 2371 2372 if (sp->autoclose > net->sctp.max_autoclose) 2373 sp->autoclose = net->sctp.max_autoclose; 2374 2375 return 0; 2376 } 2377 2378 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2379 * 2380 * Applications can enable or disable heartbeats for any peer address of 2381 * an association, modify an address's heartbeat interval, force a 2382 * heartbeat to be sent immediately, and adjust the address's maximum 2383 * number of retransmissions sent before an address is considered 2384 * unreachable. The following structure is used to access and modify an 2385 * address's parameters: 2386 * 2387 * struct sctp_paddrparams { 2388 * sctp_assoc_t spp_assoc_id; 2389 * struct sockaddr_storage spp_address; 2390 * uint32_t spp_hbinterval; 2391 * uint16_t spp_pathmaxrxt; 2392 * uint32_t spp_pathmtu; 2393 * uint32_t spp_sackdelay; 2394 * uint32_t spp_flags; 2395 * uint32_t spp_ipv6_flowlabel; 2396 * uint8_t spp_dscp; 2397 * }; 2398 * 2399 * spp_assoc_id - (one-to-many style socket) This is filled in the 2400 * application, and identifies the association for 2401 * this query. 2402 * spp_address - This specifies which address is of interest. 2403 * spp_hbinterval - This contains the value of the heartbeat interval, 2404 * in milliseconds. If a value of zero 2405 * is present in this field then no changes are to 2406 * be made to this parameter. 2407 * spp_pathmaxrxt - This contains the maximum number of 2408 * retransmissions before this address shall be 2409 * considered unreachable. If a value of zero 2410 * is present in this field then no changes are to 2411 * be made to this parameter. 2412 * spp_pathmtu - When Path MTU discovery is disabled the value 2413 * specified here will be the "fixed" path mtu. 2414 * Note that if the spp_address field is empty 2415 * then all associations on this address will 2416 * have this fixed path mtu set upon them. 2417 * 2418 * spp_sackdelay - When delayed sack is enabled, this value specifies 2419 * the number of milliseconds that sacks will be delayed 2420 * for. This value will apply to all addresses of an 2421 * association if the spp_address field is empty. Note 2422 * also, that if delayed sack is enabled and this 2423 * value is set to 0, no change is made to the last 2424 * recorded delayed sack timer value. 2425 * 2426 * spp_flags - These flags are used to control various features 2427 * on an association. The flag field may contain 2428 * zero or more of the following options. 2429 * 2430 * SPP_HB_ENABLE - Enable heartbeats on the 2431 * specified address. Note that if the address 2432 * field is empty all addresses for the association 2433 * have heartbeats enabled upon them. 2434 * 2435 * SPP_HB_DISABLE - Disable heartbeats on the 2436 * speicifed address. Note that if the address 2437 * field is empty all addresses for the association 2438 * will have their heartbeats disabled. Note also 2439 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2440 * mutually exclusive, only one of these two should 2441 * be specified. Enabling both fields will have 2442 * undetermined results. 2443 * 2444 * SPP_HB_DEMAND - Request a user initiated heartbeat 2445 * to be made immediately. 2446 * 2447 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2448 * heartbeat delayis to be set to the value of 0 2449 * milliseconds. 2450 * 2451 * SPP_PMTUD_ENABLE - This field will enable PMTU 2452 * discovery upon the specified address. Note that 2453 * if the address feild is empty then all addresses 2454 * on the association are effected. 2455 * 2456 * SPP_PMTUD_DISABLE - This field will disable PMTU 2457 * discovery upon the specified address. Note that 2458 * if the address feild is empty then all addresses 2459 * on the association are effected. Not also that 2460 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2461 * exclusive. Enabling both will have undetermined 2462 * results. 2463 * 2464 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2465 * on delayed sack. The time specified in spp_sackdelay 2466 * is used to specify the sack delay for this address. Note 2467 * that if spp_address is empty then all addresses will 2468 * enable delayed sack and take on the sack delay 2469 * value specified in spp_sackdelay. 2470 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2471 * off delayed sack. If the spp_address field is blank then 2472 * delayed sack is disabled for the entire association. Note 2473 * also that this field is mutually exclusive to 2474 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2475 * results. 2476 * 2477 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2478 * setting of the IPV6 flow label value. The value is 2479 * contained in the spp_ipv6_flowlabel field. 2480 * Upon retrieval, this flag will be set to indicate that 2481 * the spp_ipv6_flowlabel field has a valid value returned. 2482 * If a specific destination address is set (in the 2483 * spp_address field), then the value returned is that of 2484 * the address. If just an association is specified (and 2485 * no address), then the association's default flow label 2486 * is returned. If neither an association nor a destination 2487 * is specified, then the socket's default flow label is 2488 * returned. For non-IPv6 sockets, this flag will be left 2489 * cleared. 2490 * 2491 * SPP_DSCP: Setting this flag enables the setting of the 2492 * Differentiated Services Code Point (DSCP) value 2493 * associated with either the association or a specific 2494 * address. The value is obtained in the spp_dscp field. 2495 * Upon retrieval, this flag will be set to indicate that 2496 * the spp_dscp field has a valid value returned. If a 2497 * specific destination address is set when called (in the 2498 * spp_address field), then that specific destination 2499 * address's DSCP value is returned. If just an association 2500 * is specified, then the association's default DSCP is 2501 * returned. If neither an association nor a destination is 2502 * specified, then the socket's default DSCP is returned. 2503 * 2504 * spp_ipv6_flowlabel 2505 * - This field is used in conjunction with the 2506 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2507 * The 20 least significant bits are used for the flow 2508 * label. This setting has precedence over any IPv6-layer 2509 * setting. 2510 * 2511 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2512 * and contains the DSCP. The 6 most significant bits are 2513 * used for the DSCP. This setting has precedence over any 2514 * IPv4- or IPv6- layer setting. 2515 */ 2516 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2517 struct sctp_transport *trans, 2518 struct sctp_association *asoc, 2519 struct sctp_sock *sp, 2520 int hb_change, 2521 int pmtud_change, 2522 int sackdelay_change) 2523 { 2524 int error; 2525 2526 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2527 struct net *net = sock_net(trans->asoc->base.sk); 2528 2529 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2530 if (error) 2531 return error; 2532 } 2533 2534 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2535 * this field is ignored. Note also that a value of zero indicates 2536 * the current setting should be left unchanged. 2537 */ 2538 if (params->spp_flags & SPP_HB_ENABLE) { 2539 2540 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2541 * set. This lets us use 0 value when this flag 2542 * is set. 2543 */ 2544 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2545 params->spp_hbinterval = 0; 2546 2547 if (params->spp_hbinterval || 2548 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2549 if (trans) { 2550 trans->hbinterval = 2551 msecs_to_jiffies(params->spp_hbinterval); 2552 } else if (asoc) { 2553 asoc->hbinterval = 2554 msecs_to_jiffies(params->spp_hbinterval); 2555 } else { 2556 sp->hbinterval = params->spp_hbinterval; 2557 } 2558 } 2559 } 2560 2561 if (hb_change) { 2562 if (trans) { 2563 trans->param_flags = 2564 (trans->param_flags & ~SPP_HB) | hb_change; 2565 } else if (asoc) { 2566 asoc->param_flags = 2567 (asoc->param_flags & ~SPP_HB) | hb_change; 2568 } else { 2569 sp->param_flags = 2570 (sp->param_flags & ~SPP_HB) | hb_change; 2571 } 2572 } 2573 2574 /* When Path MTU discovery is disabled the value specified here will 2575 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2576 * include the flag SPP_PMTUD_DISABLE for this field to have any 2577 * effect). 2578 */ 2579 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2580 if (trans) { 2581 trans->pathmtu = params->spp_pathmtu; 2582 sctp_assoc_sync_pmtu(asoc); 2583 } else if (asoc) { 2584 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2585 } else { 2586 sp->pathmtu = params->spp_pathmtu; 2587 } 2588 } 2589 2590 if (pmtud_change) { 2591 if (trans) { 2592 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2593 (params->spp_flags & SPP_PMTUD_ENABLE); 2594 trans->param_flags = 2595 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2596 if (update) { 2597 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2598 sctp_assoc_sync_pmtu(asoc); 2599 } 2600 } else if (asoc) { 2601 asoc->param_flags = 2602 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2603 } else { 2604 sp->param_flags = 2605 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2606 } 2607 } 2608 2609 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2610 * value of this field is ignored. Note also that a value of zero 2611 * indicates the current setting should be left unchanged. 2612 */ 2613 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2614 if (trans) { 2615 trans->sackdelay = 2616 msecs_to_jiffies(params->spp_sackdelay); 2617 } else if (asoc) { 2618 asoc->sackdelay = 2619 msecs_to_jiffies(params->spp_sackdelay); 2620 } else { 2621 sp->sackdelay = params->spp_sackdelay; 2622 } 2623 } 2624 2625 if (sackdelay_change) { 2626 if (trans) { 2627 trans->param_flags = 2628 (trans->param_flags & ~SPP_SACKDELAY) | 2629 sackdelay_change; 2630 } else if (asoc) { 2631 asoc->param_flags = 2632 (asoc->param_flags & ~SPP_SACKDELAY) | 2633 sackdelay_change; 2634 } else { 2635 sp->param_flags = 2636 (sp->param_flags & ~SPP_SACKDELAY) | 2637 sackdelay_change; 2638 } 2639 } 2640 2641 /* Note that a value of zero indicates the current setting should be 2642 left unchanged. 2643 */ 2644 if (params->spp_pathmaxrxt) { 2645 if (trans) { 2646 trans->pathmaxrxt = params->spp_pathmaxrxt; 2647 } else if (asoc) { 2648 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2649 } else { 2650 sp->pathmaxrxt = params->spp_pathmaxrxt; 2651 } 2652 } 2653 2654 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2655 if (trans) { 2656 if (trans->ipaddr.sa.sa_family == AF_INET6) { 2657 trans->flowlabel = params->spp_ipv6_flowlabel & 2658 SCTP_FLOWLABEL_VAL_MASK; 2659 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2660 } 2661 } else if (asoc) { 2662 struct sctp_transport *t; 2663 2664 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2665 transports) { 2666 if (t->ipaddr.sa.sa_family != AF_INET6) 2667 continue; 2668 t->flowlabel = params->spp_ipv6_flowlabel & 2669 SCTP_FLOWLABEL_VAL_MASK; 2670 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2671 } 2672 asoc->flowlabel = params->spp_ipv6_flowlabel & 2673 SCTP_FLOWLABEL_VAL_MASK; 2674 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2675 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2676 sp->flowlabel = params->spp_ipv6_flowlabel & 2677 SCTP_FLOWLABEL_VAL_MASK; 2678 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2679 } 2680 } 2681 2682 if (params->spp_flags & SPP_DSCP) { 2683 if (trans) { 2684 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2685 trans->dscp |= SCTP_DSCP_SET_MASK; 2686 } else if (asoc) { 2687 struct sctp_transport *t; 2688 2689 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2690 transports) { 2691 t->dscp = params->spp_dscp & 2692 SCTP_DSCP_VAL_MASK; 2693 t->dscp |= SCTP_DSCP_SET_MASK; 2694 } 2695 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2696 asoc->dscp |= SCTP_DSCP_SET_MASK; 2697 } else { 2698 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2699 sp->dscp |= SCTP_DSCP_SET_MASK; 2700 } 2701 } 2702 2703 return 0; 2704 } 2705 2706 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2707 char __user *optval, 2708 unsigned int optlen) 2709 { 2710 struct sctp_paddrparams params; 2711 struct sctp_transport *trans = NULL; 2712 struct sctp_association *asoc = NULL; 2713 struct sctp_sock *sp = sctp_sk(sk); 2714 int error; 2715 int hb_change, pmtud_change, sackdelay_change; 2716 2717 if (optlen == sizeof(params)) { 2718 if (copy_from_user(¶ms, optval, optlen)) 2719 return -EFAULT; 2720 } else if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2721 spp_ipv6_flowlabel), 4)) { 2722 if (copy_from_user(¶ms, optval, optlen)) 2723 return -EFAULT; 2724 if (params.spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2725 return -EINVAL; 2726 } else { 2727 return -EINVAL; 2728 } 2729 2730 /* Validate flags and value parameters. */ 2731 hb_change = params.spp_flags & SPP_HB; 2732 pmtud_change = params.spp_flags & SPP_PMTUD; 2733 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2734 2735 if (hb_change == SPP_HB || 2736 pmtud_change == SPP_PMTUD || 2737 sackdelay_change == SPP_SACKDELAY || 2738 params.spp_sackdelay > 500 || 2739 (params.spp_pathmtu && 2740 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2741 return -EINVAL; 2742 2743 /* If an address other than INADDR_ANY is specified, and 2744 * no transport is found, then the request is invalid. 2745 */ 2746 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2747 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2748 params.spp_assoc_id); 2749 if (!trans) 2750 return -EINVAL; 2751 } 2752 2753 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 2754 * socket is a one to many style socket, and an association 2755 * was not found, then the id was invalid. 2756 */ 2757 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2758 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 2759 sctp_style(sk, UDP)) 2760 return -EINVAL; 2761 2762 /* Heartbeat demand can only be sent on a transport or 2763 * association, but not a socket. 2764 */ 2765 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2766 return -EINVAL; 2767 2768 /* Process parameters. */ 2769 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2770 hb_change, pmtud_change, 2771 sackdelay_change); 2772 2773 if (error) 2774 return error; 2775 2776 /* If changes are for association, also apply parameters to each 2777 * transport. 2778 */ 2779 if (!trans && asoc) { 2780 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2781 transports) { 2782 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2783 hb_change, pmtud_change, 2784 sackdelay_change); 2785 } 2786 } 2787 2788 return 0; 2789 } 2790 2791 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2792 { 2793 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2794 } 2795 2796 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2797 { 2798 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2799 } 2800 2801 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params, 2802 struct sctp_association *asoc) 2803 { 2804 struct sctp_transport *trans; 2805 2806 if (params->sack_delay) { 2807 asoc->sackdelay = msecs_to_jiffies(params->sack_delay); 2808 asoc->param_flags = 2809 sctp_spp_sackdelay_enable(asoc->param_flags); 2810 } 2811 if (params->sack_freq == 1) { 2812 asoc->param_flags = 2813 sctp_spp_sackdelay_disable(asoc->param_flags); 2814 } else if (params->sack_freq > 1) { 2815 asoc->sackfreq = params->sack_freq; 2816 asoc->param_flags = 2817 sctp_spp_sackdelay_enable(asoc->param_flags); 2818 } 2819 2820 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2821 transports) { 2822 if (params->sack_delay) { 2823 trans->sackdelay = msecs_to_jiffies(params->sack_delay); 2824 trans->param_flags = 2825 sctp_spp_sackdelay_enable(trans->param_flags); 2826 } 2827 if (params->sack_freq == 1) { 2828 trans->param_flags = 2829 sctp_spp_sackdelay_disable(trans->param_flags); 2830 } else if (params->sack_freq > 1) { 2831 trans->sackfreq = params->sack_freq; 2832 trans->param_flags = 2833 sctp_spp_sackdelay_enable(trans->param_flags); 2834 } 2835 } 2836 } 2837 2838 /* 2839 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2840 * 2841 * This option will effect the way delayed acks are performed. This 2842 * option allows you to get or set the delayed ack time, in 2843 * milliseconds. It also allows changing the delayed ack frequency. 2844 * Changing the frequency to 1 disables the delayed sack algorithm. If 2845 * the assoc_id is 0, then this sets or gets the endpoints default 2846 * values. If the assoc_id field is non-zero, then the set or get 2847 * effects the specified association for the one to many model (the 2848 * assoc_id field is ignored by the one to one model). Note that if 2849 * sack_delay or sack_freq are 0 when setting this option, then the 2850 * current values will remain unchanged. 2851 * 2852 * struct sctp_sack_info { 2853 * sctp_assoc_t sack_assoc_id; 2854 * uint32_t sack_delay; 2855 * uint32_t sack_freq; 2856 * }; 2857 * 2858 * sack_assoc_id - This parameter, indicates which association the user 2859 * is performing an action upon. Note that if this field's value is 2860 * zero then the endpoints default value is changed (effecting future 2861 * associations only). 2862 * 2863 * sack_delay - This parameter contains the number of milliseconds that 2864 * the user is requesting the delayed ACK timer be set to. Note that 2865 * this value is defined in the standard to be between 200 and 500 2866 * milliseconds. 2867 * 2868 * sack_freq - This parameter contains the number of packets that must 2869 * be received before a sack is sent without waiting for the delay 2870 * timer to expire. The default value for this is 2, setting this 2871 * value to 1 will disable the delayed sack algorithm. 2872 */ 2873 2874 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2875 char __user *optval, unsigned int optlen) 2876 { 2877 struct sctp_sock *sp = sctp_sk(sk); 2878 struct sctp_association *asoc; 2879 struct sctp_sack_info params; 2880 2881 if (optlen == sizeof(struct sctp_sack_info)) { 2882 if (copy_from_user(¶ms, optval, optlen)) 2883 return -EFAULT; 2884 2885 if (params.sack_delay == 0 && params.sack_freq == 0) 2886 return 0; 2887 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2888 pr_warn_ratelimited(DEPRECATED 2889 "%s (pid %d) " 2890 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2891 "Use struct sctp_sack_info instead\n", 2892 current->comm, task_pid_nr(current)); 2893 if (copy_from_user(¶ms, optval, optlen)) 2894 return -EFAULT; 2895 2896 if (params.sack_delay == 0) 2897 params.sack_freq = 1; 2898 else 2899 params.sack_freq = 0; 2900 } else 2901 return -EINVAL; 2902 2903 /* Validate value parameter. */ 2904 if (params.sack_delay > 500) 2905 return -EINVAL; 2906 2907 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 2908 * socket is a one to many style socket, and an association 2909 * was not found, then the id was invalid. 2910 */ 2911 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2912 if (!asoc && params.sack_assoc_id > SCTP_ALL_ASSOC && 2913 sctp_style(sk, UDP)) 2914 return -EINVAL; 2915 2916 if (asoc) { 2917 sctp_apply_asoc_delayed_ack(¶ms, asoc); 2918 2919 return 0; 2920 } 2921 2922 if (params.sack_assoc_id == SCTP_FUTURE_ASSOC || 2923 params.sack_assoc_id == SCTP_ALL_ASSOC) { 2924 if (params.sack_delay) { 2925 sp->sackdelay = params.sack_delay; 2926 sp->param_flags = 2927 sctp_spp_sackdelay_enable(sp->param_flags); 2928 } 2929 if (params.sack_freq == 1) { 2930 sp->param_flags = 2931 sctp_spp_sackdelay_disable(sp->param_flags); 2932 } else if (params.sack_freq > 1) { 2933 sp->sackfreq = params.sack_freq; 2934 sp->param_flags = 2935 sctp_spp_sackdelay_enable(sp->param_flags); 2936 } 2937 } 2938 2939 if (params.sack_assoc_id == SCTP_CURRENT_ASSOC || 2940 params.sack_assoc_id == SCTP_ALL_ASSOC) 2941 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2942 sctp_apply_asoc_delayed_ack(¶ms, asoc); 2943 2944 return 0; 2945 } 2946 2947 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2948 * 2949 * Applications can specify protocol parameters for the default association 2950 * initialization. The option name argument to setsockopt() and getsockopt() 2951 * is SCTP_INITMSG. 2952 * 2953 * Setting initialization parameters is effective only on an unconnected 2954 * socket (for UDP-style sockets only future associations are effected 2955 * by the change). With TCP-style sockets, this option is inherited by 2956 * sockets derived from a listener socket. 2957 */ 2958 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2959 { 2960 struct sctp_initmsg sinit; 2961 struct sctp_sock *sp = sctp_sk(sk); 2962 2963 if (optlen != sizeof(struct sctp_initmsg)) 2964 return -EINVAL; 2965 if (copy_from_user(&sinit, optval, optlen)) 2966 return -EFAULT; 2967 2968 if (sinit.sinit_num_ostreams) 2969 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2970 if (sinit.sinit_max_instreams) 2971 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2972 if (sinit.sinit_max_attempts) 2973 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2974 if (sinit.sinit_max_init_timeo) 2975 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2976 2977 return 0; 2978 } 2979 2980 /* 2981 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2982 * 2983 * Applications that wish to use the sendto() system call may wish to 2984 * specify a default set of parameters that would normally be supplied 2985 * through the inclusion of ancillary data. This socket option allows 2986 * such an application to set the default sctp_sndrcvinfo structure. 2987 * The application that wishes to use this socket option simply passes 2988 * in to this call the sctp_sndrcvinfo structure defined in Section 2989 * 5.2.2) The input parameters accepted by this call include 2990 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2991 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2992 * to this call if the caller is using the UDP model. 2993 */ 2994 static int sctp_setsockopt_default_send_param(struct sock *sk, 2995 char __user *optval, 2996 unsigned int optlen) 2997 { 2998 struct sctp_sock *sp = sctp_sk(sk); 2999 struct sctp_association *asoc; 3000 struct sctp_sndrcvinfo info; 3001 3002 if (optlen != sizeof(info)) 3003 return -EINVAL; 3004 if (copy_from_user(&info, optval, optlen)) 3005 return -EFAULT; 3006 if (info.sinfo_flags & 3007 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 3008 SCTP_ABORT | SCTP_EOF)) 3009 return -EINVAL; 3010 3011 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 3012 if (!asoc && info.sinfo_assoc_id > SCTP_ALL_ASSOC && 3013 sctp_style(sk, UDP)) 3014 return -EINVAL; 3015 3016 if (asoc) { 3017 asoc->default_stream = info.sinfo_stream; 3018 asoc->default_flags = info.sinfo_flags; 3019 asoc->default_ppid = info.sinfo_ppid; 3020 asoc->default_context = info.sinfo_context; 3021 asoc->default_timetolive = info.sinfo_timetolive; 3022 3023 return 0; 3024 } 3025 3026 if (info.sinfo_assoc_id == SCTP_FUTURE_ASSOC || 3027 info.sinfo_assoc_id == SCTP_ALL_ASSOC) { 3028 sp->default_stream = info.sinfo_stream; 3029 sp->default_flags = info.sinfo_flags; 3030 sp->default_ppid = info.sinfo_ppid; 3031 sp->default_context = info.sinfo_context; 3032 sp->default_timetolive = info.sinfo_timetolive; 3033 } 3034 3035 if (info.sinfo_assoc_id == SCTP_CURRENT_ASSOC || 3036 info.sinfo_assoc_id == SCTP_ALL_ASSOC) { 3037 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 3038 asoc->default_stream = info.sinfo_stream; 3039 asoc->default_flags = info.sinfo_flags; 3040 asoc->default_ppid = info.sinfo_ppid; 3041 asoc->default_context = info.sinfo_context; 3042 asoc->default_timetolive = info.sinfo_timetolive; 3043 } 3044 } 3045 3046 return 0; 3047 } 3048 3049 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 3050 * (SCTP_DEFAULT_SNDINFO) 3051 */ 3052 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 3053 char __user *optval, 3054 unsigned int optlen) 3055 { 3056 struct sctp_sock *sp = sctp_sk(sk); 3057 struct sctp_association *asoc; 3058 struct sctp_sndinfo info; 3059 3060 if (optlen != sizeof(info)) 3061 return -EINVAL; 3062 if (copy_from_user(&info, optval, optlen)) 3063 return -EFAULT; 3064 if (info.snd_flags & 3065 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 3066 SCTP_ABORT | SCTP_EOF)) 3067 return -EINVAL; 3068 3069 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 3070 if (!asoc && info.snd_assoc_id > SCTP_ALL_ASSOC && 3071 sctp_style(sk, UDP)) 3072 return -EINVAL; 3073 3074 if (asoc) { 3075 asoc->default_stream = info.snd_sid; 3076 asoc->default_flags = info.snd_flags; 3077 asoc->default_ppid = info.snd_ppid; 3078 asoc->default_context = info.snd_context; 3079 3080 return 0; 3081 } 3082 3083 if (info.snd_assoc_id == SCTP_FUTURE_ASSOC || 3084 info.snd_assoc_id == SCTP_ALL_ASSOC) { 3085 sp->default_stream = info.snd_sid; 3086 sp->default_flags = info.snd_flags; 3087 sp->default_ppid = info.snd_ppid; 3088 sp->default_context = info.snd_context; 3089 } 3090 3091 if (info.snd_assoc_id == SCTP_CURRENT_ASSOC || 3092 info.snd_assoc_id == SCTP_ALL_ASSOC) { 3093 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 3094 asoc->default_stream = info.snd_sid; 3095 asoc->default_flags = info.snd_flags; 3096 asoc->default_ppid = info.snd_ppid; 3097 asoc->default_context = info.snd_context; 3098 } 3099 } 3100 3101 return 0; 3102 } 3103 3104 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 3105 * 3106 * Requests that the local SCTP stack use the enclosed peer address as 3107 * the association primary. The enclosed address must be one of the 3108 * association peer's addresses. 3109 */ 3110 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 3111 unsigned int optlen) 3112 { 3113 struct sctp_prim prim; 3114 struct sctp_transport *trans; 3115 struct sctp_af *af; 3116 int err; 3117 3118 if (optlen != sizeof(struct sctp_prim)) 3119 return -EINVAL; 3120 3121 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 3122 return -EFAULT; 3123 3124 /* Allow security module to validate address but need address len. */ 3125 af = sctp_get_af_specific(prim.ssp_addr.ss_family); 3126 if (!af) 3127 return -EINVAL; 3128 3129 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3130 (struct sockaddr *)&prim.ssp_addr, 3131 af->sockaddr_len); 3132 if (err) 3133 return err; 3134 3135 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 3136 if (!trans) 3137 return -EINVAL; 3138 3139 sctp_assoc_set_primary(trans->asoc, trans); 3140 3141 return 0; 3142 } 3143 3144 /* 3145 * 7.1.5 SCTP_NODELAY 3146 * 3147 * Turn on/off any Nagle-like algorithm. This means that packets are 3148 * generally sent as soon as possible and no unnecessary delays are 3149 * introduced, at the cost of more packets in the network. Expects an 3150 * integer boolean flag. 3151 */ 3152 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 3153 unsigned int optlen) 3154 { 3155 int val; 3156 3157 if (optlen < sizeof(int)) 3158 return -EINVAL; 3159 if (get_user(val, (int __user *)optval)) 3160 return -EFAULT; 3161 3162 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 3163 return 0; 3164 } 3165 3166 /* 3167 * 3168 * 7.1.1 SCTP_RTOINFO 3169 * 3170 * The protocol parameters used to initialize and bound retransmission 3171 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3172 * and modify these parameters. 3173 * All parameters are time values, in milliseconds. A value of 0, when 3174 * modifying the parameters, indicates that the current value should not 3175 * be changed. 3176 * 3177 */ 3178 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 3179 { 3180 struct sctp_rtoinfo rtoinfo; 3181 struct sctp_association *asoc; 3182 unsigned long rto_min, rto_max; 3183 struct sctp_sock *sp = sctp_sk(sk); 3184 3185 if (optlen != sizeof (struct sctp_rtoinfo)) 3186 return -EINVAL; 3187 3188 if (copy_from_user(&rtoinfo, optval, optlen)) 3189 return -EFAULT; 3190 3191 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 3192 3193 /* Set the values to the specific association */ 3194 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 3195 sctp_style(sk, UDP)) 3196 return -EINVAL; 3197 3198 rto_max = rtoinfo.srto_max; 3199 rto_min = rtoinfo.srto_min; 3200 3201 if (rto_max) 3202 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3203 else 3204 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3205 3206 if (rto_min) 3207 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3208 else 3209 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3210 3211 if (rto_min > rto_max) 3212 return -EINVAL; 3213 3214 if (asoc) { 3215 if (rtoinfo.srto_initial != 0) 3216 asoc->rto_initial = 3217 msecs_to_jiffies(rtoinfo.srto_initial); 3218 asoc->rto_max = rto_max; 3219 asoc->rto_min = rto_min; 3220 } else { 3221 /* If there is no association or the association-id = 0 3222 * set the values to the endpoint. 3223 */ 3224 if (rtoinfo.srto_initial != 0) 3225 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 3226 sp->rtoinfo.srto_max = rto_max; 3227 sp->rtoinfo.srto_min = rto_min; 3228 } 3229 3230 return 0; 3231 } 3232 3233 /* 3234 * 3235 * 7.1.2 SCTP_ASSOCINFO 3236 * 3237 * This option is used to tune the maximum retransmission attempts 3238 * of the association. 3239 * Returns an error if the new association retransmission value is 3240 * greater than the sum of the retransmission value of the peer. 3241 * See [SCTP] for more information. 3242 * 3243 */ 3244 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 3245 { 3246 3247 struct sctp_assocparams assocparams; 3248 struct sctp_association *asoc; 3249 3250 if (optlen != sizeof(struct sctp_assocparams)) 3251 return -EINVAL; 3252 if (copy_from_user(&assocparams, optval, optlen)) 3253 return -EFAULT; 3254 3255 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 3256 3257 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 3258 sctp_style(sk, UDP)) 3259 return -EINVAL; 3260 3261 /* Set the values to the specific association */ 3262 if (asoc) { 3263 if (assocparams.sasoc_asocmaxrxt != 0) { 3264 __u32 path_sum = 0; 3265 int paths = 0; 3266 struct sctp_transport *peer_addr; 3267 3268 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3269 transports) { 3270 path_sum += peer_addr->pathmaxrxt; 3271 paths++; 3272 } 3273 3274 /* Only validate asocmaxrxt if we have more than 3275 * one path/transport. We do this because path 3276 * retransmissions are only counted when we have more 3277 * then one path. 3278 */ 3279 if (paths > 1 && 3280 assocparams.sasoc_asocmaxrxt > path_sum) 3281 return -EINVAL; 3282 3283 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3284 } 3285 3286 if (assocparams.sasoc_cookie_life != 0) 3287 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3288 } else { 3289 /* Set the values to the endpoint */ 3290 struct sctp_sock *sp = sctp_sk(sk); 3291 3292 if (assocparams.sasoc_asocmaxrxt != 0) 3293 sp->assocparams.sasoc_asocmaxrxt = 3294 assocparams.sasoc_asocmaxrxt; 3295 if (assocparams.sasoc_cookie_life != 0) 3296 sp->assocparams.sasoc_cookie_life = 3297 assocparams.sasoc_cookie_life; 3298 } 3299 return 0; 3300 } 3301 3302 /* 3303 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3304 * 3305 * This socket option is a boolean flag which turns on or off mapped V4 3306 * addresses. If this option is turned on and the socket is type 3307 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3308 * If this option is turned off, then no mapping will be done of V4 3309 * addresses and a user will receive both PF_INET6 and PF_INET type 3310 * addresses on the socket. 3311 */ 3312 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3313 { 3314 int val; 3315 struct sctp_sock *sp = sctp_sk(sk); 3316 3317 if (optlen < sizeof(int)) 3318 return -EINVAL; 3319 if (get_user(val, (int __user *)optval)) 3320 return -EFAULT; 3321 if (val) 3322 sp->v4mapped = 1; 3323 else 3324 sp->v4mapped = 0; 3325 3326 return 0; 3327 } 3328 3329 /* 3330 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3331 * This option will get or set the maximum size to put in any outgoing 3332 * SCTP DATA chunk. If a message is larger than this size it will be 3333 * fragmented by SCTP into the specified size. Note that the underlying 3334 * SCTP implementation may fragment into smaller sized chunks when the 3335 * PMTU of the underlying association is smaller than the value set by 3336 * the user. The default value for this option is '0' which indicates 3337 * the user is NOT limiting fragmentation and only the PMTU will effect 3338 * SCTP's choice of DATA chunk size. Note also that values set larger 3339 * than the maximum size of an IP datagram will effectively let SCTP 3340 * control fragmentation (i.e. the same as setting this option to 0). 3341 * 3342 * The following structure is used to access and modify this parameter: 3343 * 3344 * struct sctp_assoc_value { 3345 * sctp_assoc_t assoc_id; 3346 * uint32_t assoc_value; 3347 * }; 3348 * 3349 * assoc_id: This parameter is ignored for one-to-one style sockets. 3350 * For one-to-many style sockets this parameter indicates which 3351 * association the user is performing an action upon. Note that if 3352 * this field's value is zero then the endpoints default value is 3353 * changed (effecting future associations only). 3354 * assoc_value: This parameter specifies the maximum size in bytes. 3355 */ 3356 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3357 { 3358 struct sctp_sock *sp = sctp_sk(sk); 3359 struct sctp_assoc_value params; 3360 struct sctp_association *asoc; 3361 int val; 3362 3363 if (optlen == sizeof(int)) { 3364 pr_warn_ratelimited(DEPRECATED 3365 "%s (pid %d) " 3366 "Use of int in maxseg socket option.\n" 3367 "Use struct sctp_assoc_value instead\n", 3368 current->comm, task_pid_nr(current)); 3369 if (copy_from_user(&val, optval, optlen)) 3370 return -EFAULT; 3371 params.assoc_id = SCTP_FUTURE_ASSOC; 3372 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3373 if (copy_from_user(¶ms, optval, optlen)) 3374 return -EFAULT; 3375 val = params.assoc_value; 3376 } else { 3377 return -EINVAL; 3378 } 3379 3380 asoc = sctp_id2assoc(sk, params.assoc_id); 3381 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 3382 sctp_style(sk, UDP)) 3383 return -EINVAL; 3384 3385 if (val) { 3386 int min_len, max_len; 3387 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3388 sizeof(struct sctp_data_chunk); 3389 3390 min_len = sctp_min_frag_point(sp, datasize); 3391 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3392 3393 if (val < min_len || val > max_len) 3394 return -EINVAL; 3395 } 3396 3397 if (asoc) { 3398 asoc->user_frag = val; 3399 sctp_assoc_update_frag_point(asoc); 3400 } else { 3401 sp->user_frag = val; 3402 } 3403 3404 return 0; 3405 } 3406 3407 3408 /* 3409 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3410 * 3411 * Requests that the peer mark the enclosed address as the association 3412 * primary. The enclosed address must be one of the association's 3413 * locally bound addresses. The following structure is used to make a 3414 * set primary request: 3415 */ 3416 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3417 unsigned int optlen) 3418 { 3419 struct net *net = sock_net(sk); 3420 struct sctp_sock *sp; 3421 struct sctp_association *asoc = NULL; 3422 struct sctp_setpeerprim prim; 3423 struct sctp_chunk *chunk; 3424 struct sctp_af *af; 3425 int err; 3426 3427 sp = sctp_sk(sk); 3428 3429 if (!net->sctp.addip_enable) 3430 return -EPERM; 3431 3432 if (optlen != sizeof(struct sctp_setpeerprim)) 3433 return -EINVAL; 3434 3435 if (copy_from_user(&prim, optval, optlen)) 3436 return -EFAULT; 3437 3438 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3439 if (!asoc) 3440 return -EINVAL; 3441 3442 if (!asoc->peer.asconf_capable) 3443 return -EPERM; 3444 3445 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3446 return -EPERM; 3447 3448 if (!sctp_state(asoc, ESTABLISHED)) 3449 return -ENOTCONN; 3450 3451 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3452 if (!af) 3453 return -EINVAL; 3454 3455 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3456 return -EADDRNOTAVAIL; 3457 3458 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3459 return -EADDRNOTAVAIL; 3460 3461 /* Allow security module to validate address. */ 3462 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3463 (struct sockaddr *)&prim.sspp_addr, 3464 af->sockaddr_len); 3465 if (err) 3466 return err; 3467 3468 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3469 chunk = sctp_make_asconf_set_prim(asoc, 3470 (union sctp_addr *)&prim.sspp_addr); 3471 if (!chunk) 3472 return -ENOMEM; 3473 3474 err = sctp_send_asconf(asoc, chunk); 3475 3476 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3477 3478 return err; 3479 } 3480 3481 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3482 unsigned int optlen) 3483 { 3484 struct sctp_setadaptation adaptation; 3485 3486 if (optlen != sizeof(struct sctp_setadaptation)) 3487 return -EINVAL; 3488 if (copy_from_user(&adaptation, optval, optlen)) 3489 return -EFAULT; 3490 3491 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3492 3493 return 0; 3494 } 3495 3496 /* 3497 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3498 * 3499 * The context field in the sctp_sndrcvinfo structure is normally only 3500 * used when a failed message is retrieved holding the value that was 3501 * sent down on the actual send call. This option allows the setting of 3502 * a default context on an association basis that will be received on 3503 * reading messages from the peer. This is especially helpful in the 3504 * one-2-many model for an application to keep some reference to an 3505 * internal state machine that is processing messages on the 3506 * association. Note that the setting of this value only effects 3507 * received messages from the peer and does not effect the value that is 3508 * saved with outbound messages. 3509 */ 3510 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3511 unsigned int optlen) 3512 { 3513 struct sctp_sock *sp = sctp_sk(sk); 3514 struct sctp_assoc_value params; 3515 struct sctp_association *asoc; 3516 3517 if (optlen != sizeof(struct sctp_assoc_value)) 3518 return -EINVAL; 3519 if (copy_from_user(¶ms, optval, optlen)) 3520 return -EFAULT; 3521 3522 asoc = sctp_id2assoc(sk, params.assoc_id); 3523 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 3524 sctp_style(sk, UDP)) 3525 return -EINVAL; 3526 3527 if (asoc) { 3528 asoc->default_rcv_context = params.assoc_value; 3529 3530 return 0; 3531 } 3532 3533 if (params.assoc_id == SCTP_FUTURE_ASSOC || 3534 params.assoc_id == SCTP_ALL_ASSOC) 3535 sp->default_rcv_context = params.assoc_value; 3536 3537 if (params.assoc_id == SCTP_CURRENT_ASSOC || 3538 params.assoc_id == SCTP_ALL_ASSOC) 3539 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3540 asoc->default_rcv_context = params.assoc_value; 3541 3542 return 0; 3543 } 3544 3545 /* 3546 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3547 * 3548 * This options will at a minimum specify if the implementation is doing 3549 * fragmented interleave. Fragmented interleave, for a one to many 3550 * socket, is when subsequent calls to receive a message may return 3551 * parts of messages from different associations. Some implementations 3552 * may allow you to turn this value on or off. If so, when turned off, 3553 * no fragment interleave will occur (which will cause a head of line 3554 * blocking amongst multiple associations sharing the same one to many 3555 * socket). When this option is turned on, then each receive call may 3556 * come from a different association (thus the user must receive data 3557 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3558 * association each receive belongs to. 3559 * 3560 * This option takes a boolean value. A non-zero value indicates that 3561 * fragmented interleave is on. A value of zero indicates that 3562 * fragmented interleave is off. 3563 * 3564 * Note that it is important that an implementation that allows this 3565 * option to be turned on, have it off by default. Otherwise an unaware 3566 * application using the one to many model may become confused and act 3567 * incorrectly. 3568 */ 3569 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3570 char __user *optval, 3571 unsigned int optlen) 3572 { 3573 int val; 3574 3575 if (optlen != sizeof(int)) 3576 return -EINVAL; 3577 if (get_user(val, (int __user *)optval)) 3578 return -EFAULT; 3579 3580 sctp_sk(sk)->frag_interleave = !!val; 3581 3582 if (!sctp_sk(sk)->frag_interleave) 3583 sctp_sk(sk)->strm_interleave = 0; 3584 3585 return 0; 3586 } 3587 3588 /* 3589 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3590 * (SCTP_PARTIAL_DELIVERY_POINT) 3591 * 3592 * This option will set or get the SCTP partial delivery point. This 3593 * point is the size of a message where the partial delivery API will be 3594 * invoked to help free up rwnd space for the peer. Setting this to a 3595 * lower value will cause partial deliveries to happen more often. The 3596 * calls argument is an integer that sets or gets the partial delivery 3597 * point. Note also that the call will fail if the user attempts to set 3598 * this value larger than the socket receive buffer size. 3599 * 3600 * Note that any single message having a length smaller than or equal to 3601 * the SCTP partial delivery point will be delivered in one single read 3602 * call as long as the user provided buffer is large enough to hold the 3603 * message. 3604 */ 3605 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3606 char __user *optval, 3607 unsigned int optlen) 3608 { 3609 u32 val; 3610 3611 if (optlen != sizeof(u32)) 3612 return -EINVAL; 3613 if (get_user(val, (int __user *)optval)) 3614 return -EFAULT; 3615 3616 /* Note: We double the receive buffer from what the user sets 3617 * it to be, also initial rwnd is based on rcvbuf/2. 3618 */ 3619 if (val > (sk->sk_rcvbuf >> 1)) 3620 return -EINVAL; 3621 3622 sctp_sk(sk)->pd_point = val; 3623 3624 return 0; /* is this the right error code? */ 3625 } 3626 3627 /* 3628 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3629 * 3630 * This option will allow a user to change the maximum burst of packets 3631 * that can be emitted by this association. Note that the default value 3632 * is 4, and some implementations may restrict this setting so that it 3633 * can only be lowered. 3634 * 3635 * NOTE: This text doesn't seem right. Do this on a socket basis with 3636 * future associations inheriting the socket value. 3637 */ 3638 static int sctp_setsockopt_maxburst(struct sock *sk, 3639 char __user *optval, 3640 unsigned int optlen) 3641 { 3642 struct sctp_sock *sp = sctp_sk(sk); 3643 struct sctp_assoc_value params; 3644 struct sctp_association *asoc; 3645 3646 if (optlen == sizeof(int)) { 3647 pr_warn_ratelimited(DEPRECATED 3648 "%s (pid %d) " 3649 "Use of int in max_burst socket option deprecated.\n" 3650 "Use struct sctp_assoc_value instead\n", 3651 current->comm, task_pid_nr(current)); 3652 if (copy_from_user(¶ms.assoc_value, optval, optlen)) 3653 return -EFAULT; 3654 params.assoc_id = SCTP_FUTURE_ASSOC; 3655 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3656 if (copy_from_user(¶ms, optval, optlen)) 3657 return -EFAULT; 3658 } else 3659 return -EINVAL; 3660 3661 asoc = sctp_id2assoc(sk, params.assoc_id); 3662 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 3663 sctp_style(sk, UDP)) 3664 return -EINVAL; 3665 3666 if (asoc) { 3667 asoc->max_burst = params.assoc_value; 3668 3669 return 0; 3670 } 3671 3672 if (params.assoc_id == SCTP_FUTURE_ASSOC || 3673 params.assoc_id == SCTP_ALL_ASSOC) 3674 sp->max_burst = params.assoc_value; 3675 3676 if (params.assoc_id == SCTP_CURRENT_ASSOC || 3677 params.assoc_id == SCTP_ALL_ASSOC) 3678 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3679 asoc->max_burst = params.assoc_value; 3680 3681 return 0; 3682 } 3683 3684 /* 3685 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3686 * 3687 * This set option adds a chunk type that the user is requesting to be 3688 * received only in an authenticated way. Changes to the list of chunks 3689 * will only effect future associations on the socket. 3690 */ 3691 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3692 char __user *optval, 3693 unsigned int optlen) 3694 { 3695 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3696 struct sctp_authchunk val; 3697 3698 if (!ep->auth_enable) 3699 return -EACCES; 3700 3701 if (optlen != sizeof(struct sctp_authchunk)) 3702 return -EINVAL; 3703 if (copy_from_user(&val, optval, optlen)) 3704 return -EFAULT; 3705 3706 switch (val.sauth_chunk) { 3707 case SCTP_CID_INIT: 3708 case SCTP_CID_INIT_ACK: 3709 case SCTP_CID_SHUTDOWN_COMPLETE: 3710 case SCTP_CID_AUTH: 3711 return -EINVAL; 3712 } 3713 3714 /* add this chunk id to the endpoint */ 3715 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3716 } 3717 3718 /* 3719 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3720 * 3721 * This option gets or sets the list of HMAC algorithms that the local 3722 * endpoint requires the peer to use. 3723 */ 3724 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3725 char __user *optval, 3726 unsigned int optlen) 3727 { 3728 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3729 struct sctp_hmacalgo *hmacs; 3730 u32 idents; 3731 int err; 3732 3733 if (!ep->auth_enable) 3734 return -EACCES; 3735 3736 if (optlen < sizeof(struct sctp_hmacalgo)) 3737 return -EINVAL; 3738 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3739 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3740 3741 hmacs = memdup_user(optval, optlen); 3742 if (IS_ERR(hmacs)) 3743 return PTR_ERR(hmacs); 3744 3745 idents = hmacs->shmac_num_idents; 3746 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3747 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3748 err = -EINVAL; 3749 goto out; 3750 } 3751 3752 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3753 out: 3754 kfree(hmacs); 3755 return err; 3756 } 3757 3758 /* 3759 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3760 * 3761 * This option will set a shared secret key which is used to build an 3762 * association shared key. 3763 */ 3764 static int sctp_setsockopt_auth_key(struct sock *sk, 3765 char __user *optval, 3766 unsigned int optlen) 3767 { 3768 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3769 struct sctp_authkey *authkey; 3770 struct sctp_association *asoc; 3771 int ret = -EINVAL; 3772 3773 if (!ep->auth_enable) 3774 return -EACCES; 3775 3776 if (optlen <= sizeof(struct sctp_authkey)) 3777 return -EINVAL; 3778 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3779 * this. 3780 */ 3781 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey)); 3782 3783 authkey = memdup_user(optval, optlen); 3784 if (IS_ERR(authkey)) 3785 return PTR_ERR(authkey); 3786 3787 if (authkey->sca_keylength > optlen - sizeof(*authkey)) 3788 goto out; 3789 3790 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3791 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC && 3792 sctp_style(sk, UDP)) 3793 goto out; 3794 3795 if (asoc) { 3796 ret = sctp_auth_set_key(ep, asoc, authkey); 3797 goto out; 3798 } 3799 3800 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC || 3801 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3802 ret = sctp_auth_set_key(ep, asoc, authkey); 3803 if (ret) 3804 goto out; 3805 } 3806 3807 ret = 0; 3808 3809 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC || 3810 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3811 list_for_each_entry(asoc, &ep->asocs, asocs) { 3812 int res = sctp_auth_set_key(ep, asoc, authkey); 3813 3814 if (res && !ret) 3815 ret = res; 3816 } 3817 } 3818 3819 out: 3820 kzfree(authkey); 3821 return ret; 3822 } 3823 3824 /* 3825 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3826 * 3827 * This option will get or set the active shared key to be used to build 3828 * the association shared key. 3829 */ 3830 static int sctp_setsockopt_active_key(struct sock *sk, 3831 char __user *optval, 3832 unsigned int optlen) 3833 { 3834 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3835 struct sctp_association *asoc; 3836 struct sctp_authkeyid val; 3837 int ret = 0; 3838 3839 if (!ep->auth_enable) 3840 return -EACCES; 3841 3842 if (optlen != sizeof(struct sctp_authkeyid)) 3843 return -EINVAL; 3844 if (copy_from_user(&val, optval, optlen)) 3845 return -EFAULT; 3846 3847 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3848 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3849 sctp_style(sk, UDP)) 3850 return -EINVAL; 3851 3852 if (asoc) 3853 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3854 3855 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3856 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3857 ret = sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3858 if (ret) 3859 return ret; 3860 } 3861 3862 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3863 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3864 list_for_each_entry(asoc, &ep->asocs, asocs) { 3865 int res = sctp_auth_set_active_key(ep, asoc, 3866 val.scact_keynumber); 3867 3868 if (res && !ret) 3869 ret = res; 3870 } 3871 } 3872 3873 return ret; 3874 } 3875 3876 /* 3877 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3878 * 3879 * This set option will delete a shared secret key from use. 3880 */ 3881 static int sctp_setsockopt_del_key(struct sock *sk, 3882 char __user *optval, 3883 unsigned int optlen) 3884 { 3885 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3886 struct sctp_association *asoc; 3887 struct sctp_authkeyid val; 3888 int ret = 0; 3889 3890 if (!ep->auth_enable) 3891 return -EACCES; 3892 3893 if (optlen != sizeof(struct sctp_authkeyid)) 3894 return -EINVAL; 3895 if (copy_from_user(&val, optval, optlen)) 3896 return -EFAULT; 3897 3898 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3899 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3900 sctp_style(sk, UDP)) 3901 return -EINVAL; 3902 3903 if (asoc) 3904 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3905 3906 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3907 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3908 ret = sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3909 if (ret) 3910 return ret; 3911 } 3912 3913 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3914 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3915 list_for_each_entry(asoc, &ep->asocs, asocs) { 3916 int res = sctp_auth_del_key_id(ep, asoc, 3917 val.scact_keynumber); 3918 3919 if (res && !ret) 3920 ret = res; 3921 } 3922 } 3923 3924 return ret; 3925 } 3926 3927 /* 3928 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3929 * 3930 * This set option will deactivate a shared secret key. 3931 */ 3932 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval, 3933 unsigned int optlen) 3934 { 3935 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3936 struct sctp_association *asoc; 3937 struct sctp_authkeyid val; 3938 int ret = 0; 3939 3940 if (!ep->auth_enable) 3941 return -EACCES; 3942 3943 if (optlen != sizeof(struct sctp_authkeyid)) 3944 return -EINVAL; 3945 if (copy_from_user(&val, optval, optlen)) 3946 return -EFAULT; 3947 3948 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3949 if (!asoc && val.scact_assoc_id > SCTP_ALL_ASSOC && 3950 sctp_style(sk, UDP)) 3951 return -EINVAL; 3952 3953 if (asoc) 3954 return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3955 3956 if (val.scact_assoc_id == SCTP_FUTURE_ASSOC || 3957 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3958 ret = sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3959 if (ret) 3960 return ret; 3961 } 3962 3963 if (val.scact_assoc_id == SCTP_CURRENT_ASSOC || 3964 val.scact_assoc_id == SCTP_ALL_ASSOC) { 3965 list_for_each_entry(asoc, &ep->asocs, asocs) { 3966 int res = sctp_auth_deact_key_id(ep, asoc, 3967 val.scact_keynumber); 3968 3969 if (res && !ret) 3970 ret = res; 3971 } 3972 } 3973 3974 return ret; 3975 } 3976 3977 /* 3978 * 8.1.23 SCTP_AUTO_ASCONF 3979 * 3980 * This option will enable or disable the use of the automatic generation of 3981 * ASCONF chunks to add and delete addresses to an existing association. Note 3982 * that this option has two caveats namely: a) it only affects sockets that 3983 * are bound to all addresses available to the SCTP stack, and b) the system 3984 * administrator may have an overriding control that turns the ASCONF feature 3985 * off no matter what setting the socket option may have. 3986 * This option expects an integer boolean flag, where a non-zero value turns on 3987 * the option, and a zero value turns off the option. 3988 * Note. In this implementation, socket operation overrides default parameter 3989 * being set by sysctl as well as FreeBSD implementation 3990 */ 3991 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3992 unsigned int optlen) 3993 { 3994 int val; 3995 struct sctp_sock *sp = sctp_sk(sk); 3996 3997 if (optlen < sizeof(int)) 3998 return -EINVAL; 3999 if (get_user(val, (int __user *)optval)) 4000 return -EFAULT; 4001 if (!sctp_is_ep_boundall(sk) && val) 4002 return -EINVAL; 4003 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 4004 return 0; 4005 4006 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 4007 if (val == 0 && sp->do_auto_asconf) { 4008 list_del(&sp->auto_asconf_list); 4009 sp->do_auto_asconf = 0; 4010 } else if (val && !sp->do_auto_asconf) { 4011 list_add_tail(&sp->auto_asconf_list, 4012 &sock_net(sk)->sctp.auto_asconf_splist); 4013 sp->do_auto_asconf = 1; 4014 } 4015 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 4016 return 0; 4017 } 4018 4019 /* 4020 * SCTP_PEER_ADDR_THLDS 4021 * 4022 * This option allows us to alter the partially failed threshold for one or all 4023 * transports in an association. See Section 6.1 of: 4024 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 4025 */ 4026 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 4027 char __user *optval, 4028 unsigned int optlen) 4029 { 4030 struct sctp_paddrthlds val; 4031 struct sctp_transport *trans; 4032 struct sctp_association *asoc; 4033 4034 if (optlen < sizeof(struct sctp_paddrthlds)) 4035 return -EINVAL; 4036 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 4037 sizeof(struct sctp_paddrthlds))) 4038 return -EFAULT; 4039 4040 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 4041 trans = sctp_addr_id2transport(sk, &val.spt_address, 4042 val.spt_assoc_id); 4043 if (!trans) 4044 return -ENOENT; 4045 4046 if (val.spt_pathmaxrxt) 4047 trans->pathmaxrxt = val.spt_pathmaxrxt; 4048 trans->pf_retrans = val.spt_pathpfthld; 4049 4050 return 0; 4051 } 4052 4053 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 4054 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 4055 sctp_style(sk, UDP)) 4056 return -EINVAL; 4057 4058 if (asoc) { 4059 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 4060 transports) { 4061 if (val.spt_pathmaxrxt) 4062 trans->pathmaxrxt = val.spt_pathmaxrxt; 4063 trans->pf_retrans = val.spt_pathpfthld; 4064 } 4065 4066 if (val.spt_pathmaxrxt) 4067 asoc->pathmaxrxt = val.spt_pathmaxrxt; 4068 asoc->pf_retrans = val.spt_pathpfthld; 4069 } else { 4070 struct sctp_sock *sp = sctp_sk(sk); 4071 4072 if (val.spt_pathmaxrxt) 4073 sp->pathmaxrxt = val.spt_pathmaxrxt; 4074 sp->pf_retrans = val.spt_pathpfthld; 4075 } 4076 4077 return 0; 4078 } 4079 4080 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 4081 char __user *optval, 4082 unsigned int optlen) 4083 { 4084 int val; 4085 4086 if (optlen < sizeof(int)) 4087 return -EINVAL; 4088 if (get_user(val, (int __user *) optval)) 4089 return -EFAULT; 4090 4091 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 4092 4093 return 0; 4094 } 4095 4096 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 4097 char __user *optval, 4098 unsigned int optlen) 4099 { 4100 int val; 4101 4102 if (optlen < sizeof(int)) 4103 return -EINVAL; 4104 if (get_user(val, (int __user *) optval)) 4105 return -EFAULT; 4106 4107 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 4108 4109 return 0; 4110 } 4111 4112 static int sctp_setsockopt_pr_supported(struct sock *sk, 4113 char __user *optval, 4114 unsigned int optlen) 4115 { 4116 struct sctp_assoc_value params; 4117 struct sctp_association *asoc; 4118 4119 if (optlen != sizeof(params)) 4120 return -EINVAL; 4121 4122 if (copy_from_user(¶ms, optval, optlen)) 4123 return -EFAULT; 4124 4125 asoc = sctp_id2assoc(sk, params.assoc_id); 4126 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4127 sctp_style(sk, UDP)) 4128 return -EINVAL; 4129 4130 sctp_sk(sk)->ep->prsctp_enable = !!params.assoc_value; 4131 4132 return 0; 4133 } 4134 4135 static int sctp_setsockopt_default_prinfo(struct sock *sk, 4136 char __user *optval, 4137 unsigned int optlen) 4138 { 4139 struct sctp_sock *sp = sctp_sk(sk); 4140 struct sctp_default_prinfo info; 4141 struct sctp_association *asoc; 4142 int retval = -EINVAL; 4143 4144 if (optlen != sizeof(info)) 4145 goto out; 4146 4147 if (copy_from_user(&info, optval, sizeof(info))) { 4148 retval = -EFAULT; 4149 goto out; 4150 } 4151 4152 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 4153 goto out; 4154 4155 if (info.pr_policy == SCTP_PR_SCTP_NONE) 4156 info.pr_value = 0; 4157 4158 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 4159 if (!asoc && info.pr_assoc_id > SCTP_ALL_ASSOC && 4160 sctp_style(sk, UDP)) 4161 goto out; 4162 4163 retval = 0; 4164 4165 if (asoc) { 4166 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 4167 asoc->default_timetolive = info.pr_value; 4168 goto out; 4169 } 4170 4171 if (info.pr_assoc_id == SCTP_FUTURE_ASSOC || 4172 info.pr_assoc_id == SCTP_ALL_ASSOC) { 4173 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 4174 sp->default_timetolive = info.pr_value; 4175 } 4176 4177 if (info.pr_assoc_id == SCTP_CURRENT_ASSOC || 4178 info.pr_assoc_id == SCTP_ALL_ASSOC) { 4179 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4180 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 4181 asoc->default_timetolive = info.pr_value; 4182 } 4183 } 4184 4185 out: 4186 return retval; 4187 } 4188 4189 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 4190 char __user *optval, 4191 unsigned int optlen) 4192 { 4193 struct sctp_assoc_value params; 4194 struct sctp_association *asoc; 4195 int retval = -EINVAL; 4196 4197 if (optlen != sizeof(params)) 4198 goto out; 4199 4200 if (copy_from_user(¶ms, optval, optlen)) { 4201 retval = -EFAULT; 4202 goto out; 4203 } 4204 4205 asoc = sctp_id2assoc(sk, params.assoc_id); 4206 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4207 sctp_style(sk, UDP)) 4208 goto out; 4209 4210 if (asoc) 4211 asoc->reconf_enable = !!params.assoc_value; 4212 else 4213 sctp_sk(sk)->ep->reconf_enable = !!params.assoc_value; 4214 4215 retval = 0; 4216 4217 out: 4218 return retval; 4219 } 4220 4221 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4222 char __user *optval, 4223 unsigned int optlen) 4224 { 4225 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 4226 struct sctp_assoc_value params; 4227 struct sctp_association *asoc; 4228 int retval = -EINVAL; 4229 4230 if (optlen != sizeof(params)) 4231 goto out; 4232 4233 if (copy_from_user(¶ms, optval, optlen)) { 4234 retval = -EFAULT; 4235 goto out; 4236 } 4237 4238 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4239 goto out; 4240 4241 asoc = sctp_id2assoc(sk, params.assoc_id); 4242 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 4243 sctp_style(sk, UDP)) 4244 goto out; 4245 4246 retval = 0; 4247 4248 if (asoc) { 4249 asoc->strreset_enable = params.assoc_value; 4250 goto out; 4251 } 4252 4253 if (params.assoc_id == SCTP_FUTURE_ASSOC || 4254 params.assoc_id == SCTP_ALL_ASSOC) 4255 ep->strreset_enable = params.assoc_value; 4256 4257 if (params.assoc_id == SCTP_CURRENT_ASSOC || 4258 params.assoc_id == SCTP_ALL_ASSOC) 4259 list_for_each_entry(asoc, &ep->asocs, asocs) 4260 asoc->strreset_enable = params.assoc_value; 4261 4262 out: 4263 return retval; 4264 } 4265 4266 static int sctp_setsockopt_reset_streams(struct sock *sk, 4267 char __user *optval, 4268 unsigned int optlen) 4269 { 4270 struct sctp_reset_streams *params; 4271 struct sctp_association *asoc; 4272 int retval = -EINVAL; 4273 4274 if (optlen < sizeof(*params)) 4275 return -EINVAL; 4276 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4277 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4278 sizeof(__u16) * sizeof(*params)); 4279 4280 params = memdup_user(optval, optlen); 4281 if (IS_ERR(params)) 4282 return PTR_ERR(params); 4283 4284 if (params->srs_number_streams * sizeof(__u16) > 4285 optlen - sizeof(*params)) 4286 goto out; 4287 4288 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4289 if (!asoc) 4290 goto out; 4291 4292 retval = sctp_send_reset_streams(asoc, params); 4293 4294 out: 4295 kfree(params); 4296 return retval; 4297 } 4298 4299 static int sctp_setsockopt_reset_assoc(struct sock *sk, 4300 char __user *optval, 4301 unsigned int optlen) 4302 { 4303 struct sctp_association *asoc; 4304 sctp_assoc_t associd; 4305 int retval = -EINVAL; 4306 4307 if (optlen != sizeof(associd)) 4308 goto out; 4309 4310 if (copy_from_user(&associd, optval, optlen)) { 4311 retval = -EFAULT; 4312 goto out; 4313 } 4314 4315 asoc = sctp_id2assoc(sk, associd); 4316 if (!asoc) 4317 goto out; 4318 4319 retval = sctp_send_reset_assoc(asoc); 4320 4321 out: 4322 return retval; 4323 } 4324 4325 static int sctp_setsockopt_add_streams(struct sock *sk, 4326 char __user *optval, 4327 unsigned int optlen) 4328 { 4329 struct sctp_association *asoc; 4330 struct sctp_add_streams params; 4331 int retval = -EINVAL; 4332 4333 if (optlen != sizeof(params)) 4334 goto out; 4335 4336 if (copy_from_user(¶ms, optval, optlen)) { 4337 retval = -EFAULT; 4338 goto out; 4339 } 4340 4341 asoc = sctp_id2assoc(sk, params.sas_assoc_id); 4342 if (!asoc) 4343 goto out; 4344 4345 retval = sctp_send_add_streams(asoc, ¶ms); 4346 4347 out: 4348 return retval; 4349 } 4350 4351 static int sctp_setsockopt_scheduler(struct sock *sk, 4352 char __user *optval, 4353 unsigned int optlen) 4354 { 4355 struct sctp_sock *sp = sctp_sk(sk); 4356 struct sctp_association *asoc; 4357 struct sctp_assoc_value params; 4358 int retval = 0; 4359 4360 if (optlen < sizeof(params)) 4361 return -EINVAL; 4362 4363 optlen = sizeof(params); 4364 if (copy_from_user(¶ms, optval, optlen)) 4365 return -EFAULT; 4366 4367 if (params.assoc_value > SCTP_SS_MAX) 4368 return -EINVAL; 4369 4370 asoc = sctp_id2assoc(sk, params.assoc_id); 4371 if (!asoc && params.assoc_id > SCTP_ALL_ASSOC && 4372 sctp_style(sk, UDP)) 4373 return -EINVAL; 4374 4375 if (asoc) 4376 return sctp_sched_set_sched(asoc, params.assoc_value); 4377 4378 if (params.assoc_id == SCTP_FUTURE_ASSOC || 4379 params.assoc_id == SCTP_ALL_ASSOC) 4380 sp->default_ss = params.assoc_value; 4381 4382 if (params.assoc_id == SCTP_CURRENT_ASSOC || 4383 params.assoc_id == SCTP_ALL_ASSOC) { 4384 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4385 int ret = sctp_sched_set_sched(asoc, 4386 params.assoc_value); 4387 4388 if (ret && !retval) 4389 retval = ret; 4390 } 4391 } 4392 4393 return retval; 4394 } 4395 4396 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4397 char __user *optval, 4398 unsigned int optlen) 4399 { 4400 struct sctp_stream_value params; 4401 struct sctp_association *asoc; 4402 int retval = -EINVAL; 4403 4404 if (optlen < sizeof(params)) 4405 goto out; 4406 4407 optlen = sizeof(params); 4408 if (copy_from_user(¶ms, optval, optlen)) { 4409 retval = -EFAULT; 4410 goto out; 4411 } 4412 4413 asoc = sctp_id2assoc(sk, params.assoc_id); 4414 if (!asoc && params.assoc_id != SCTP_CURRENT_ASSOC && 4415 sctp_style(sk, UDP)) 4416 goto out; 4417 4418 if (asoc) { 4419 retval = sctp_sched_set_value(asoc, params.stream_id, 4420 params.stream_value, GFP_KERNEL); 4421 goto out; 4422 } 4423 4424 retval = 0; 4425 4426 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) { 4427 int ret = sctp_sched_set_value(asoc, params.stream_id, 4428 params.stream_value, GFP_KERNEL); 4429 if (ret && !retval) /* try to return the 1st error. */ 4430 retval = ret; 4431 } 4432 4433 out: 4434 return retval; 4435 } 4436 4437 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4438 char __user *optval, 4439 unsigned int optlen) 4440 { 4441 struct sctp_sock *sp = sctp_sk(sk); 4442 struct sctp_assoc_value params; 4443 struct sctp_association *asoc; 4444 int retval = -EINVAL; 4445 4446 if (optlen < sizeof(params)) 4447 goto out; 4448 4449 optlen = sizeof(params); 4450 if (copy_from_user(¶ms, optval, optlen)) { 4451 retval = -EFAULT; 4452 goto out; 4453 } 4454 4455 asoc = sctp_id2assoc(sk, params.assoc_id); 4456 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 4457 sctp_style(sk, UDP)) 4458 goto out; 4459 4460 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) { 4461 retval = -EPERM; 4462 goto out; 4463 } 4464 4465 sp->strm_interleave = !!params.assoc_value; 4466 4467 retval = 0; 4468 4469 out: 4470 return retval; 4471 } 4472 4473 static int sctp_setsockopt_reuse_port(struct sock *sk, char __user *optval, 4474 unsigned int optlen) 4475 { 4476 int val; 4477 4478 if (!sctp_style(sk, TCP)) 4479 return -EOPNOTSUPP; 4480 4481 if (sctp_sk(sk)->ep->base.bind_addr.port) 4482 return -EFAULT; 4483 4484 if (optlen < sizeof(int)) 4485 return -EINVAL; 4486 4487 if (get_user(val, (int __user *)optval)) 4488 return -EFAULT; 4489 4490 sctp_sk(sk)->reuse = !!val; 4491 4492 return 0; 4493 } 4494 4495 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param, 4496 struct sctp_association *asoc) 4497 { 4498 struct sctp_ulpevent *event; 4499 4500 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on); 4501 4502 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) { 4503 if (sctp_outq_is_empty(&asoc->outqueue)) { 4504 event = sctp_ulpevent_make_sender_dry_event(asoc, 4505 GFP_USER | __GFP_NOWARN); 4506 if (!event) 4507 return -ENOMEM; 4508 4509 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 4510 } 4511 } 4512 4513 return 0; 4514 } 4515 4516 static int sctp_setsockopt_event(struct sock *sk, char __user *optval, 4517 unsigned int optlen) 4518 { 4519 struct sctp_sock *sp = sctp_sk(sk); 4520 struct sctp_association *asoc; 4521 struct sctp_event param; 4522 int retval = 0; 4523 4524 if (optlen < sizeof(param)) 4525 return -EINVAL; 4526 4527 optlen = sizeof(param); 4528 if (copy_from_user(¶m, optval, optlen)) 4529 return -EFAULT; 4530 4531 if (param.se_type < SCTP_SN_TYPE_BASE || 4532 param.se_type > SCTP_SN_TYPE_MAX) 4533 return -EINVAL; 4534 4535 asoc = sctp_id2assoc(sk, param.se_assoc_id); 4536 if (!asoc && param.se_assoc_id > SCTP_ALL_ASSOC && 4537 sctp_style(sk, UDP)) 4538 return -EINVAL; 4539 4540 if (asoc) 4541 return sctp_assoc_ulpevent_type_set(¶m, asoc); 4542 4543 if (param.se_assoc_id == SCTP_FUTURE_ASSOC || 4544 param.se_assoc_id == SCTP_ALL_ASSOC) 4545 sctp_ulpevent_type_set(&sp->subscribe, 4546 param.se_type, param.se_on); 4547 4548 if (param.se_assoc_id == SCTP_CURRENT_ASSOC || 4549 param.se_assoc_id == SCTP_ALL_ASSOC) { 4550 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4551 int ret = sctp_assoc_ulpevent_type_set(¶m, asoc); 4552 4553 if (ret && !retval) 4554 retval = ret; 4555 } 4556 } 4557 4558 return retval; 4559 } 4560 4561 /* API 6.2 setsockopt(), getsockopt() 4562 * 4563 * Applications use setsockopt() and getsockopt() to set or retrieve 4564 * socket options. Socket options are used to change the default 4565 * behavior of sockets calls. They are described in Section 7. 4566 * 4567 * The syntax is: 4568 * 4569 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4570 * int __user *optlen); 4571 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4572 * int optlen); 4573 * 4574 * sd - the socket descript. 4575 * level - set to IPPROTO_SCTP for all SCTP options. 4576 * optname - the option name. 4577 * optval - the buffer to store the value of the option. 4578 * optlen - the size of the buffer. 4579 */ 4580 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4581 char __user *optval, unsigned int optlen) 4582 { 4583 int retval = 0; 4584 4585 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4586 4587 /* I can hardly begin to describe how wrong this is. This is 4588 * so broken as to be worse than useless. The API draft 4589 * REALLY is NOT helpful here... I am not convinced that the 4590 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4591 * are at all well-founded. 4592 */ 4593 if (level != SOL_SCTP) { 4594 struct sctp_af *af = sctp_sk(sk)->pf->af; 4595 retval = af->setsockopt(sk, level, optname, optval, optlen); 4596 goto out_nounlock; 4597 } 4598 4599 lock_sock(sk); 4600 4601 switch (optname) { 4602 case SCTP_SOCKOPT_BINDX_ADD: 4603 /* 'optlen' is the size of the addresses buffer. */ 4604 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4605 optlen, SCTP_BINDX_ADD_ADDR); 4606 break; 4607 4608 case SCTP_SOCKOPT_BINDX_REM: 4609 /* 'optlen' is the size of the addresses buffer. */ 4610 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4611 optlen, SCTP_BINDX_REM_ADDR); 4612 break; 4613 4614 case SCTP_SOCKOPT_CONNECTX_OLD: 4615 /* 'optlen' is the size of the addresses buffer. */ 4616 retval = sctp_setsockopt_connectx_old(sk, 4617 (struct sockaddr __user *)optval, 4618 optlen); 4619 break; 4620 4621 case SCTP_SOCKOPT_CONNECTX: 4622 /* 'optlen' is the size of the addresses buffer. */ 4623 retval = sctp_setsockopt_connectx(sk, 4624 (struct sockaddr __user *)optval, 4625 optlen); 4626 break; 4627 4628 case SCTP_DISABLE_FRAGMENTS: 4629 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 4630 break; 4631 4632 case SCTP_EVENTS: 4633 retval = sctp_setsockopt_events(sk, optval, optlen); 4634 break; 4635 4636 case SCTP_AUTOCLOSE: 4637 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 4638 break; 4639 4640 case SCTP_PEER_ADDR_PARAMS: 4641 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 4642 break; 4643 4644 case SCTP_DELAYED_SACK: 4645 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 4646 break; 4647 case SCTP_PARTIAL_DELIVERY_POINT: 4648 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 4649 break; 4650 4651 case SCTP_INITMSG: 4652 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 4653 break; 4654 case SCTP_DEFAULT_SEND_PARAM: 4655 retval = sctp_setsockopt_default_send_param(sk, optval, 4656 optlen); 4657 break; 4658 case SCTP_DEFAULT_SNDINFO: 4659 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 4660 break; 4661 case SCTP_PRIMARY_ADDR: 4662 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 4663 break; 4664 case SCTP_SET_PEER_PRIMARY_ADDR: 4665 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 4666 break; 4667 case SCTP_NODELAY: 4668 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 4669 break; 4670 case SCTP_RTOINFO: 4671 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 4672 break; 4673 case SCTP_ASSOCINFO: 4674 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 4675 break; 4676 case SCTP_I_WANT_MAPPED_V4_ADDR: 4677 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 4678 break; 4679 case SCTP_MAXSEG: 4680 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 4681 break; 4682 case SCTP_ADAPTATION_LAYER: 4683 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 4684 break; 4685 case SCTP_CONTEXT: 4686 retval = sctp_setsockopt_context(sk, optval, optlen); 4687 break; 4688 case SCTP_FRAGMENT_INTERLEAVE: 4689 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 4690 break; 4691 case SCTP_MAX_BURST: 4692 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 4693 break; 4694 case SCTP_AUTH_CHUNK: 4695 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 4696 break; 4697 case SCTP_HMAC_IDENT: 4698 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 4699 break; 4700 case SCTP_AUTH_KEY: 4701 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 4702 break; 4703 case SCTP_AUTH_ACTIVE_KEY: 4704 retval = sctp_setsockopt_active_key(sk, optval, optlen); 4705 break; 4706 case SCTP_AUTH_DELETE_KEY: 4707 retval = sctp_setsockopt_del_key(sk, optval, optlen); 4708 break; 4709 case SCTP_AUTH_DEACTIVATE_KEY: 4710 retval = sctp_setsockopt_deactivate_key(sk, optval, optlen); 4711 break; 4712 case SCTP_AUTO_ASCONF: 4713 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 4714 break; 4715 case SCTP_PEER_ADDR_THLDS: 4716 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 4717 break; 4718 case SCTP_RECVRCVINFO: 4719 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 4720 break; 4721 case SCTP_RECVNXTINFO: 4722 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 4723 break; 4724 case SCTP_PR_SUPPORTED: 4725 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 4726 break; 4727 case SCTP_DEFAULT_PRINFO: 4728 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 4729 break; 4730 case SCTP_RECONFIG_SUPPORTED: 4731 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen); 4732 break; 4733 case SCTP_ENABLE_STREAM_RESET: 4734 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen); 4735 break; 4736 case SCTP_RESET_STREAMS: 4737 retval = sctp_setsockopt_reset_streams(sk, optval, optlen); 4738 break; 4739 case SCTP_RESET_ASSOC: 4740 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen); 4741 break; 4742 case SCTP_ADD_STREAMS: 4743 retval = sctp_setsockopt_add_streams(sk, optval, optlen); 4744 break; 4745 case SCTP_STREAM_SCHEDULER: 4746 retval = sctp_setsockopt_scheduler(sk, optval, optlen); 4747 break; 4748 case SCTP_STREAM_SCHEDULER_VALUE: 4749 retval = sctp_setsockopt_scheduler_value(sk, optval, optlen); 4750 break; 4751 case SCTP_INTERLEAVING_SUPPORTED: 4752 retval = sctp_setsockopt_interleaving_supported(sk, optval, 4753 optlen); 4754 break; 4755 case SCTP_REUSE_PORT: 4756 retval = sctp_setsockopt_reuse_port(sk, optval, optlen); 4757 break; 4758 case SCTP_EVENT: 4759 retval = sctp_setsockopt_event(sk, optval, optlen); 4760 break; 4761 default: 4762 retval = -ENOPROTOOPT; 4763 break; 4764 } 4765 4766 release_sock(sk); 4767 4768 out_nounlock: 4769 return retval; 4770 } 4771 4772 /* API 3.1.6 connect() - UDP Style Syntax 4773 * 4774 * An application may use the connect() call in the UDP model to initiate an 4775 * association without sending data. 4776 * 4777 * The syntax is: 4778 * 4779 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4780 * 4781 * sd: the socket descriptor to have a new association added to. 4782 * 4783 * nam: the address structure (either struct sockaddr_in or struct 4784 * sockaddr_in6 defined in RFC2553 [7]). 4785 * 4786 * len: the size of the address. 4787 */ 4788 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4789 int addr_len, int flags) 4790 { 4791 struct inet_sock *inet = inet_sk(sk); 4792 struct sctp_af *af; 4793 int err = 0; 4794 4795 lock_sock(sk); 4796 4797 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4798 addr, addr_len); 4799 4800 /* We may need to bind the socket. */ 4801 if (!inet->inet_num) { 4802 if (sk->sk_prot->get_port(sk, 0)) { 4803 release_sock(sk); 4804 return -EAGAIN; 4805 } 4806 inet->inet_sport = htons(inet->inet_num); 4807 } 4808 4809 /* Validate addr_len before calling common connect/connectx routine. */ 4810 af = sctp_get_af_specific(addr->sa_family); 4811 if (!af || addr_len < af->sockaddr_len) { 4812 err = -EINVAL; 4813 } else { 4814 /* Pass correct addr len to common routine (so it knows there 4815 * is only one address being passed. 4816 */ 4817 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4818 } 4819 4820 release_sock(sk); 4821 return err; 4822 } 4823 4824 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4825 int addr_len, int flags) 4826 { 4827 if (addr_len < sizeof(uaddr->sa_family)) 4828 return -EINVAL; 4829 4830 if (uaddr->sa_family == AF_UNSPEC) 4831 return -EOPNOTSUPP; 4832 4833 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4834 } 4835 4836 /* FIXME: Write comments. */ 4837 static int sctp_disconnect(struct sock *sk, int flags) 4838 { 4839 return -EOPNOTSUPP; /* STUB */ 4840 } 4841 4842 /* 4.1.4 accept() - TCP Style Syntax 4843 * 4844 * Applications use accept() call to remove an established SCTP 4845 * association from the accept queue of the endpoint. A new socket 4846 * descriptor will be returned from accept() to represent the newly 4847 * formed association. 4848 */ 4849 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4850 { 4851 struct sctp_sock *sp; 4852 struct sctp_endpoint *ep; 4853 struct sock *newsk = NULL; 4854 struct sctp_association *asoc; 4855 long timeo; 4856 int error = 0; 4857 4858 lock_sock(sk); 4859 4860 sp = sctp_sk(sk); 4861 ep = sp->ep; 4862 4863 if (!sctp_style(sk, TCP)) { 4864 error = -EOPNOTSUPP; 4865 goto out; 4866 } 4867 4868 if (!sctp_sstate(sk, LISTENING)) { 4869 error = -EINVAL; 4870 goto out; 4871 } 4872 4873 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4874 4875 error = sctp_wait_for_accept(sk, timeo); 4876 if (error) 4877 goto out; 4878 4879 /* We treat the list of associations on the endpoint as the accept 4880 * queue and pick the first association on the list. 4881 */ 4882 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4883 4884 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4885 if (!newsk) { 4886 error = -ENOMEM; 4887 goto out; 4888 } 4889 4890 /* Populate the fields of the newsk from the oldsk and migrate the 4891 * asoc to the newsk. 4892 */ 4893 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4894 4895 out: 4896 release_sock(sk); 4897 *err = error; 4898 return newsk; 4899 } 4900 4901 /* The SCTP ioctl handler. */ 4902 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4903 { 4904 int rc = -ENOTCONN; 4905 4906 lock_sock(sk); 4907 4908 /* 4909 * SEQPACKET-style sockets in LISTENING state are valid, for 4910 * SCTP, so only discard TCP-style sockets in LISTENING state. 4911 */ 4912 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4913 goto out; 4914 4915 switch (cmd) { 4916 case SIOCINQ: { 4917 struct sk_buff *skb; 4918 unsigned int amount = 0; 4919 4920 skb = skb_peek(&sk->sk_receive_queue); 4921 if (skb != NULL) { 4922 /* 4923 * We will only return the amount of this packet since 4924 * that is all that will be read. 4925 */ 4926 amount = skb->len; 4927 } 4928 rc = put_user(amount, (int __user *)arg); 4929 break; 4930 } 4931 default: 4932 rc = -ENOIOCTLCMD; 4933 break; 4934 } 4935 out: 4936 release_sock(sk); 4937 return rc; 4938 } 4939 4940 /* This is the function which gets called during socket creation to 4941 * initialized the SCTP-specific portion of the sock. 4942 * The sock structure should already be zero-filled memory. 4943 */ 4944 static int sctp_init_sock(struct sock *sk) 4945 { 4946 struct net *net = sock_net(sk); 4947 struct sctp_sock *sp; 4948 4949 pr_debug("%s: sk:%p\n", __func__, sk); 4950 4951 sp = sctp_sk(sk); 4952 4953 /* Initialize the SCTP per socket area. */ 4954 switch (sk->sk_type) { 4955 case SOCK_SEQPACKET: 4956 sp->type = SCTP_SOCKET_UDP; 4957 break; 4958 case SOCK_STREAM: 4959 sp->type = SCTP_SOCKET_TCP; 4960 break; 4961 default: 4962 return -ESOCKTNOSUPPORT; 4963 } 4964 4965 sk->sk_gso_type = SKB_GSO_SCTP; 4966 4967 /* Initialize default send parameters. These parameters can be 4968 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4969 */ 4970 sp->default_stream = 0; 4971 sp->default_ppid = 0; 4972 sp->default_flags = 0; 4973 sp->default_context = 0; 4974 sp->default_timetolive = 0; 4975 4976 sp->default_rcv_context = 0; 4977 sp->max_burst = net->sctp.max_burst; 4978 4979 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4980 4981 /* Initialize default setup parameters. These parameters 4982 * can be modified with the SCTP_INITMSG socket option or 4983 * overridden by the SCTP_INIT CMSG. 4984 */ 4985 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4986 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4987 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4988 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4989 4990 /* Initialize default RTO related parameters. These parameters can 4991 * be modified for with the SCTP_RTOINFO socket option. 4992 */ 4993 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4994 sp->rtoinfo.srto_max = net->sctp.rto_max; 4995 sp->rtoinfo.srto_min = net->sctp.rto_min; 4996 4997 /* Initialize default association related parameters. These parameters 4998 * can be modified with the SCTP_ASSOCINFO socket option. 4999 */ 5000 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 5001 sp->assocparams.sasoc_number_peer_destinations = 0; 5002 sp->assocparams.sasoc_peer_rwnd = 0; 5003 sp->assocparams.sasoc_local_rwnd = 0; 5004 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 5005 5006 /* Initialize default event subscriptions. By default, all the 5007 * options are off. 5008 */ 5009 sp->subscribe = 0; 5010 5011 /* Default Peer Address Parameters. These defaults can 5012 * be modified via SCTP_PEER_ADDR_PARAMS 5013 */ 5014 sp->hbinterval = net->sctp.hb_interval; 5015 sp->pathmaxrxt = net->sctp.max_retrans_path; 5016 sp->pf_retrans = net->sctp.pf_retrans; 5017 sp->pathmtu = 0; /* allow default discovery */ 5018 sp->sackdelay = net->sctp.sack_timeout; 5019 sp->sackfreq = 2; 5020 sp->param_flags = SPP_HB_ENABLE | 5021 SPP_PMTUD_ENABLE | 5022 SPP_SACKDELAY_ENABLE; 5023 sp->default_ss = SCTP_SS_DEFAULT; 5024 5025 /* If enabled no SCTP message fragmentation will be performed. 5026 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 5027 */ 5028 sp->disable_fragments = 0; 5029 5030 /* Enable Nagle algorithm by default. */ 5031 sp->nodelay = 0; 5032 5033 sp->recvrcvinfo = 0; 5034 sp->recvnxtinfo = 0; 5035 5036 /* Enable by default. */ 5037 sp->v4mapped = 1; 5038 5039 /* Auto-close idle associations after the configured 5040 * number of seconds. A value of 0 disables this 5041 * feature. Configure through the SCTP_AUTOCLOSE socket option, 5042 * for UDP-style sockets only. 5043 */ 5044 sp->autoclose = 0; 5045 5046 /* User specified fragmentation limit. */ 5047 sp->user_frag = 0; 5048 5049 sp->adaptation_ind = 0; 5050 5051 sp->pf = sctp_get_pf_specific(sk->sk_family); 5052 5053 /* Control variables for partial data delivery. */ 5054 atomic_set(&sp->pd_mode, 0); 5055 skb_queue_head_init(&sp->pd_lobby); 5056 sp->frag_interleave = 0; 5057 5058 /* Create a per socket endpoint structure. Even if we 5059 * change the data structure relationships, this may still 5060 * be useful for storing pre-connect address information. 5061 */ 5062 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 5063 if (!sp->ep) 5064 return -ENOMEM; 5065 5066 sp->hmac = NULL; 5067 5068 sk->sk_destruct = sctp_destruct_sock; 5069 5070 SCTP_DBG_OBJCNT_INC(sock); 5071 5072 local_bh_disable(); 5073 sk_sockets_allocated_inc(sk); 5074 sock_prot_inuse_add(net, sk->sk_prot, 1); 5075 5076 /* Nothing can fail after this block, otherwise 5077 * sctp_destroy_sock() will be called without addr_wq_lock held 5078 */ 5079 if (net->sctp.default_auto_asconf) { 5080 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 5081 list_add_tail(&sp->auto_asconf_list, 5082 &net->sctp.auto_asconf_splist); 5083 sp->do_auto_asconf = 1; 5084 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 5085 } else { 5086 sp->do_auto_asconf = 0; 5087 } 5088 5089 local_bh_enable(); 5090 5091 return 0; 5092 } 5093 5094 /* Cleanup any SCTP per socket resources. Must be called with 5095 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 5096 */ 5097 static void sctp_destroy_sock(struct sock *sk) 5098 { 5099 struct sctp_sock *sp; 5100 5101 pr_debug("%s: sk:%p\n", __func__, sk); 5102 5103 /* Release our hold on the endpoint. */ 5104 sp = sctp_sk(sk); 5105 /* This could happen during socket init, thus we bail out 5106 * early, since the rest of the below is not setup either. 5107 */ 5108 if (sp->ep == NULL) 5109 return; 5110 5111 if (sp->do_auto_asconf) { 5112 sp->do_auto_asconf = 0; 5113 list_del(&sp->auto_asconf_list); 5114 } 5115 sctp_endpoint_free(sp->ep); 5116 local_bh_disable(); 5117 sk_sockets_allocated_dec(sk); 5118 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 5119 local_bh_enable(); 5120 } 5121 5122 /* Triggered when there are no references on the socket anymore */ 5123 static void sctp_destruct_sock(struct sock *sk) 5124 { 5125 struct sctp_sock *sp = sctp_sk(sk); 5126 5127 /* Free up the HMAC transform. */ 5128 crypto_free_shash(sp->hmac); 5129 5130 inet_sock_destruct(sk); 5131 } 5132 5133 /* API 4.1.7 shutdown() - TCP Style Syntax 5134 * int shutdown(int socket, int how); 5135 * 5136 * sd - the socket descriptor of the association to be closed. 5137 * how - Specifies the type of shutdown. The values are 5138 * as follows: 5139 * SHUT_RD 5140 * Disables further receive operations. No SCTP 5141 * protocol action is taken. 5142 * SHUT_WR 5143 * Disables further send operations, and initiates 5144 * the SCTP shutdown sequence. 5145 * SHUT_RDWR 5146 * Disables further send and receive operations 5147 * and initiates the SCTP shutdown sequence. 5148 */ 5149 static void sctp_shutdown(struct sock *sk, int how) 5150 { 5151 struct net *net = sock_net(sk); 5152 struct sctp_endpoint *ep; 5153 5154 if (!sctp_style(sk, TCP)) 5155 return; 5156 5157 ep = sctp_sk(sk)->ep; 5158 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 5159 struct sctp_association *asoc; 5160 5161 inet_sk_set_state(sk, SCTP_SS_CLOSING); 5162 asoc = list_entry(ep->asocs.next, 5163 struct sctp_association, asocs); 5164 sctp_primitive_SHUTDOWN(net, asoc, NULL); 5165 } 5166 } 5167 5168 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 5169 struct sctp_info *info) 5170 { 5171 struct sctp_transport *prim; 5172 struct list_head *pos; 5173 int mask; 5174 5175 memset(info, 0, sizeof(*info)); 5176 if (!asoc) { 5177 struct sctp_sock *sp = sctp_sk(sk); 5178 5179 info->sctpi_s_autoclose = sp->autoclose; 5180 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 5181 info->sctpi_s_pd_point = sp->pd_point; 5182 info->sctpi_s_nodelay = sp->nodelay; 5183 info->sctpi_s_disable_fragments = sp->disable_fragments; 5184 info->sctpi_s_v4mapped = sp->v4mapped; 5185 info->sctpi_s_frag_interleave = sp->frag_interleave; 5186 info->sctpi_s_type = sp->type; 5187 5188 return 0; 5189 } 5190 5191 info->sctpi_tag = asoc->c.my_vtag; 5192 info->sctpi_state = asoc->state; 5193 info->sctpi_rwnd = asoc->a_rwnd; 5194 info->sctpi_unackdata = asoc->unack_data; 5195 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5196 info->sctpi_instrms = asoc->stream.incnt; 5197 info->sctpi_outstrms = asoc->stream.outcnt; 5198 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 5199 info->sctpi_inqueue++; 5200 list_for_each(pos, &asoc->outqueue.out_chunk_list) 5201 info->sctpi_outqueue++; 5202 info->sctpi_overall_error = asoc->overall_error_count; 5203 info->sctpi_max_burst = asoc->max_burst; 5204 info->sctpi_maxseg = asoc->frag_point; 5205 info->sctpi_peer_rwnd = asoc->peer.rwnd; 5206 info->sctpi_peer_tag = asoc->c.peer_vtag; 5207 5208 mask = asoc->peer.ecn_capable << 1; 5209 mask = (mask | asoc->peer.ipv4_address) << 1; 5210 mask = (mask | asoc->peer.ipv6_address) << 1; 5211 mask = (mask | asoc->peer.hostname_address) << 1; 5212 mask = (mask | asoc->peer.asconf_capable) << 1; 5213 mask = (mask | asoc->peer.prsctp_capable) << 1; 5214 mask = (mask | asoc->peer.auth_capable); 5215 info->sctpi_peer_capable = mask; 5216 mask = asoc->peer.sack_needed << 1; 5217 mask = (mask | asoc->peer.sack_generation) << 1; 5218 mask = (mask | asoc->peer.zero_window_announced); 5219 info->sctpi_peer_sack = mask; 5220 5221 info->sctpi_isacks = asoc->stats.isacks; 5222 info->sctpi_osacks = asoc->stats.osacks; 5223 info->sctpi_opackets = asoc->stats.opackets; 5224 info->sctpi_ipackets = asoc->stats.ipackets; 5225 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 5226 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 5227 info->sctpi_idupchunks = asoc->stats.idupchunks; 5228 info->sctpi_gapcnt = asoc->stats.gapcnt; 5229 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 5230 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 5231 info->sctpi_oodchunks = asoc->stats.oodchunks; 5232 info->sctpi_iodchunks = asoc->stats.iodchunks; 5233 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 5234 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 5235 5236 prim = asoc->peer.primary_path; 5237 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 5238 info->sctpi_p_state = prim->state; 5239 info->sctpi_p_cwnd = prim->cwnd; 5240 info->sctpi_p_srtt = prim->srtt; 5241 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 5242 info->sctpi_p_hbinterval = prim->hbinterval; 5243 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 5244 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 5245 info->sctpi_p_ssthresh = prim->ssthresh; 5246 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 5247 info->sctpi_p_flight_size = prim->flight_size; 5248 info->sctpi_p_error = prim->error_count; 5249 5250 return 0; 5251 } 5252 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 5253 5254 /* use callback to avoid exporting the core structure */ 5255 void sctp_transport_walk_start(struct rhashtable_iter *iter) 5256 { 5257 rhltable_walk_enter(&sctp_transport_hashtable, iter); 5258 5259 rhashtable_walk_start(iter); 5260 } 5261 5262 void sctp_transport_walk_stop(struct rhashtable_iter *iter) 5263 { 5264 rhashtable_walk_stop(iter); 5265 rhashtable_walk_exit(iter); 5266 } 5267 5268 struct sctp_transport *sctp_transport_get_next(struct net *net, 5269 struct rhashtable_iter *iter) 5270 { 5271 struct sctp_transport *t; 5272 5273 t = rhashtable_walk_next(iter); 5274 for (; t; t = rhashtable_walk_next(iter)) { 5275 if (IS_ERR(t)) { 5276 if (PTR_ERR(t) == -EAGAIN) 5277 continue; 5278 break; 5279 } 5280 5281 if (!sctp_transport_hold(t)) 5282 continue; 5283 5284 if (net_eq(sock_net(t->asoc->base.sk), net) && 5285 t->asoc->peer.primary_path == t) 5286 break; 5287 5288 sctp_transport_put(t); 5289 } 5290 5291 return t; 5292 } 5293 5294 struct sctp_transport *sctp_transport_get_idx(struct net *net, 5295 struct rhashtable_iter *iter, 5296 int pos) 5297 { 5298 struct sctp_transport *t; 5299 5300 if (!pos) 5301 return SEQ_START_TOKEN; 5302 5303 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { 5304 if (!--pos) 5305 break; 5306 sctp_transport_put(t); 5307 } 5308 5309 return t; 5310 } 5311 5312 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5313 void *p) { 5314 int err = 0; 5315 int hash = 0; 5316 struct sctp_ep_common *epb; 5317 struct sctp_hashbucket *head; 5318 5319 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5320 hash++, head++) { 5321 read_lock_bh(&head->lock); 5322 sctp_for_each_hentry(epb, &head->chain) { 5323 err = cb(sctp_ep(epb), p); 5324 if (err) 5325 break; 5326 } 5327 read_unlock_bh(&head->lock); 5328 } 5329 5330 return err; 5331 } 5332 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5333 5334 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 5335 struct net *net, 5336 const union sctp_addr *laddr, 5337 const union sctp_addr *paddr, void *p) 5338 { 5339 struct sctp_transport *transport; 5340 int err; 5341 5342 rcu_read_lock(); 5343 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 5344 rcu_read_unlock(); 5345 if (!transport) 5346 return -ENOENT; 5347 5348 err = cb(transport, p); 5349 sctp_transport_put(transport); 5350 5351 return err; 5352 } 5353 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5354 5355 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 5356 int (*cb_done)(struct sctp_transport *, void *), 5357 struct net *net, int *pos, void *p) { 5358 struct rhashtable_iter hti; 5359 struct sctp_transport *tsp; 5360 int ret; 5361 5362 again: 5363 ret = 0; 5364 sctp_transport_walk_start(&hti); 5365 5366 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5367 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5368 ret = cb(tsp, p); 5369 if (ret) 5370 break; 5371 (*pos)++; 5372 sctp_transport_put(tsp); 5373 } 5374 sctp_transport_walk_stop(&hti); 5375 5376 if (ret) { 5377 if (cb_done && !cb_done(tsp, p)) { 5378 (*pos)++; 5379 sctp_transport_put(tsp); 5380 goto again; 5381 } 5382 sctp_transport_put(tsp); 5383 } 5384 5385 return ret; 5386 } 5387 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 5388 5389 /* 7.2.1 Association Status (SCTP_STATUS) 5390 5391 * Applications can retrieve current status information about an 5392 * association, including association state, peer receiver window size, 5393 * number of unacked data chunks, and number of data chunks pending 5394 * receipt. This information is read-only. 5395 */ 5396 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5397 char __user *optval, 5398 int __user *optlen) 5399 { 5400 struct sctp_status status; 5401 struct sctp_association *asoc = NULL; 5402 struct sctp_transport *transport; 5403 sctp_assoc_t associd; 5404 int retval = 0; 5405 5406 if (len < sizeof(status)) { 5407 retval = -EINVAL; 5408 goto out; 5409 } 5410 5411 len = sizeof(status); 5412 if (copy_from_user(&status, optval, len)) { 5413 retval = -EFAULT; 5414 goto out; 5415 } 5416 5417 associd = status.sstat_assoc_id; 5418 asoc = sctp_id2assoc(sk, associd); 5419 if (!asoc) { 5420 retval = -EINVAL; 5421 goto out; 5422 } 5423 5424 transport = asoc->peer.primary_path; 5425 5426 status.sstat_assoc_id = sctp_assoc2id(asoc); 5427 status.sstat_state = sctp_assoc_to_state(asoc); 5428 status.sstat_rwnd = asoc->peer.rwnd; 5429 status.sstat_unackdata = asoc->unack_data; 5430 5431 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5432 status.sstat_instrms = asoc->stream.incnt; 5433 status.sstat_outstrms = asoc->stream.outcnt; 5434 status.sstat_fragmentation_point = asoc->frag_point; 5435 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5436 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5437 transport->af_specific->sockaddr_len); 5438 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5439 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5440 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5441 status.sstat_primary.spinfo_state = transport->state; 5442 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5443 status.sstat_primary.spinfo_srtt = transport->srtt; 5444 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5445 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5446 5447 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5448 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5449 5450 if (put_user(len, optlen)) { 5451 retval = -EFAULT; 5452 goto out; 5453 } 5454 5455 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5456 __func__, len, status.sstat_state, status.sstat_rwnd, 5457 status.sstat_assoc_id); 5458 5459 if (copy_to_user(optval, &status, len)) { 5460 retval = -EFAULT; 5461 goto out; 5462 } 5463 5464 out: 5465 return retval; 5466 } 5467 5468 5469 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5470 * 5471 * Applications can retrieve information about a specific peer address 5472 * of an association, including its reachability state, congestion 5473 * window, and retransmission timer values. This information is 5474 * read-only. 5475 */ 5476 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5477 char __user *optval, 5478 int __user *optlen) 5479 { 5480 struct sctp_paddrinfo pinfo; 5481 struct sctp_transport *transport; 5482 int retval = 0; 5483 5484 if (len < sizeof(pinfo)) { 5485 retval = -EINVAL; 5486 goto out; 5487 } 5488 5489 len = sizeof(pinfo); 5490 if (copy_from_user(&pinfo, optval, len)) { 5491 retval = -EFAULT; 5492 goto out; 5493 } 5494 5495 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5496 pinfo.spinfo_assoc_id); 5497 if (!transport) 5498 return -EINVAL; 5499 5500 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5501 pinfo.spinfo_state = transport->state; 5502 pinfo.spinfo_cwnd = transport->cwnd; 5503 pinfo.spinfo_srtt = transport->srtt; 5504 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5505 pinfo.spinfo_mtu = transport->pathmtu; 5506 5507 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5508 pinfo.spinfo_state = SCTP_ACTIVE; 5509 5510 if (put_user(len, optlen)) { 5511 retval = -EFAULT; 5512 goto out; 5513 } 5514 5515 if (copy_to_user(optval, &pinfo, len)) { 5516 retval = -EFAULT; 5517 goto out; 5518 } 5519 5520 out: 5521 return retval; 5522 } 5523 5524 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5525 * 5526 * This option is a on/off flag. If enabled no SCTP message 5527 * fragmentation will be performed. Instead if a message being sent 5528 * exceeds the current PMTU size, the message will NOT be sent and 5529 * instead a error will be indicated to the user. 5530 */ 5531 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5532 char __user *optval, int __user *optlen) 5533 { 5534 int val; 5535 5536 if (len < sizeof(int)) 5537 return -EINVAL; 5538 5539 len = sizeof(int); 5540 val = (sctp_sk(sk)->disable_fragments == 1); 5541 if (put_user(len, optlen)) 5542 return -EFAULT; 5543 if (copy_to_user(optval, &val, len)) 5544 return -EFAULT; 5545 return 0; 5546 } 5547 5548 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5549 * 5550 * This socket option is used to specify various notifications and 5551 * ancillary data the user wishes to receive. 5552 */ 5553 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5554 int __user *optlen) 5555 { 5556 struct sctp_event_subscribe subscribe; 5557 __u8 *sn_type = (__u8 *)&subscribe; 5558 int i; 5559 5560 if (len == 0) 5561 return -EINVAL; 5562 if (len > sizeof(struct sctp_event_subscribe)) 5563 len = sizeof(struct sctp_event_subscribe); 5564 if (put_user(len, optlen)) 5565 return -EFAULT; 5566 5567 for (i = 0; i < len; i++) 5568 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe, 5569 SCTP_SN_TYPE_BASE + i); 5570 5571 if (copy_to_user(optval, &subscribe, len)) 5572 return -EFAULT; 5573 5574 return 0; 5575 } 5576 5577 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5578 * 5579 * This socket option is applicable to the UDP-style socket only. When 5580 * set it will cause associations that are idle for more than the 5581 * specified number of seconds to automatically close. An association 5582 * being idle is defined an association that has NOT sent or received 5583 * user data. The special value of '0' indicates that no automatic 5584 * close of any associations should be performed. The option expects an 5585 * integer defining the number of seconds of idle time before an 5586 * association is closed. 5587 */ 5588 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5589 { 5590 /* Applicable to UDP-style socket only */ 5591 if (sctp_style(sk, TCP)) 5592 return -EOPNOTSUPP; 5593 if (len < sizeof(int)) 5594 return -EINVAL; 5595 len = sizeof(int); 5596 if (put_user(len, optlen)) 5597 return -EFAULT; 5598 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5599 return -EFAULT; 5600 return 0; 5601 } 5602 5603 /* Helper routine to branch off an association to a new socket. */ 5604 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5605 { 5606 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5607 struct sctp_sock *sp = sctp_sk(sk); 5608 struct socket *sock; 5609 int err = 0; 5610 5611 /* Do not peel off from one netns to another one. */ 5612 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5613 return -EINVAL; 5614 5615 if (!asoc) 5616 return -EINVAL; 5617 5618 /* An association cannot be branched off from an already peeled-off 5619 * socket, nor is this supported for tcp style sockets. 5620 */ 5621 if (!sctp_style(sk, UDP)) 5622 return -EINVAL; 5623 5624 /* Create a new socket. */ 5625 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5626 if (err < 0) 5627 return err; 5628 5629 sctp_copy_sock(sock->sk, sk, asoc); 5630 5631 /* Make peeled-off sockets more like 1-1 accepted sockets. 5632 * Set the daddr and initialize id to something more random and also 5633 * copy over any ip options. 5634 */ 5635 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 5636 sp->pf->copy_ip_options(sk, sock->sk); 5637 5638 /* Populate the fields of the newsk from the oldsk and migrate the 5639 * asoc to the newsk. 5640 */ 5641 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5642 5643 *sockp = sock; 5644 5645 return err; 5646 } 5647 EXPORT_SYMBOL(sctp_do_peeloff); 5648 5649 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5650 struct file **newfile, unsigned flags) 5651 { 5652 struct socket *newsock; 5653 int retval; 5654 5655 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5656 if (retval < 0) 5657 goto out; 5658 5659 /* Map the socket to an unused fd that can be returned to the user. */ 5660 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5661 if (retval < 0) { 5662 sock_release(newsock); 5663 goto out; 5664 } 5665 5666 *newfile = sock_alloc_file(newsock, 0, NULL); 5667 if (IS_ERR(*newfile)) { 5668 put_unused_fd(retval); 5669 retval = PTR_ERR(*newfile); 5670 *newfile = NULL; 5671 return retval; 5672 } 5673 5674 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5675 retval); 5676 5677 peeloff->sd = retval; 5678 5679 if (flags & SOCK_NONBLOCK) 5680 (*newfile)->f_flags |= O_NONBLOCK; 5681 out: 5682 return retval; 5683 } 5684 5685 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5686 { 5687 sctp_peeloff_arg_t peeloff; 5688 struct file *newfile = NULL; 5689 int retval = 0; 5690 5691 if (len < sizeof(sctp_peeloff_arg_t)) 5692 return -EINVAL; 5693 len = sizeof(sctp_peeloff_arg_t); 5694 if (copy_from_user(&peeloff, optval, len)) 5695 return -EFAULT; 5696 5697 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5698 if (retval < 0) 5699 goto out; 5700 5701 /* Return the fd mapped to the new socket. */ 5702 if (put_user(len, optlen)) { 5703 fput(newfile); 5704 put_unused_fd(retval); 5705 return -EFAULT; 5706 } 5707 5708 if (copy_to_user(optval, &peeloff, len)) { 5709 fput(newfile); 5710 put_unused_fd(retval); 5711 return -EFAULT; 5712 } 5713 fd_install(retval, newfile); 5714 out: 5715 return retval; 5716 } 5717 5718 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5719 char __user *optval, int __user *optlen) 5720 { 5721 sctp_peeloff_flags_arg_t peeloff; 5722 struct file *newfile = NULL; 5723 int retval = 0; 5724 5725 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5726 return -EINVAL; 5727 len = sizeof(sctp_peeloff_flags_arg_t); 5728 if (copy_from_user(&peeloff, optval, len)) 5729 return -EFAULT; 5730 5731 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5732 &newfile, peeloff.flags); 5733 if (retval < 0) 5734 goto out; 5735 5736 /* Return the fd mapped to the new socket. */ 5737 if (put_user(len, optlen)) { 5738 fput(newfile); 5739 put_unused_fd(retval); 5740 return -EFAULT; 5741 } 5742 5743 if (copy_to_user(optval, &peeloff, len)) { 5744 fput(newfile); 5745 put_unused_fd(retval); 5746 return -EFAULT; 5747 } 5748 fd_install(retval, newfile); 5749 out: 5750 return retval; 5751 } 5752 5753 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5754 * 5755 * Applications can enable or disable heartbeats for any peer address of 5756 * an association, modify an address's heartbeat interval, force a 5757 * heartbeat to be sent immediately, and adjust the address's maximum 5758 * number of retransmissions sent before an address is considered 5759 * unreachable. The following structure is used to access and modify an 5760 * address's parameters: 5761 * 5762 * struct sctp_paddrparams { 5763 * sctp_assoc_t spp_assoc_id; 5764 * struct sockaddr_storage spp_address; 5765 * uint32_t spp_hbinterval; 5766 * uint16_t spp_pathmaxrxt; 5767 * uint32_t spp_pathmtu; 5768 * uint32_t spp_sackdelay; 5769 * uint32_t spp_flags; 5770 * }; 5771 * 5772 * spp_assoc_id - (one-to-many style socket) This is filled in the 5773 * application, and identifies the association for 5774 * this query. 5775 * spp_address - This specifies which address is of interest. 5776 * spp_hbinterval - This contains the value of the heartbeat interval, 5777 * in milliseconds. If a value of zero 5778 * is present in this field then no changes are to 5779 * be made to this parameter. 5780 * spp_pathmaxrxt - This contains the maximum number of 5781 * retransmissions before this address shall be 5782 * considered unreachable. If a value of zero 5783 * is present in this field then no changes are to 5784 * be made to this parameter. 5785 * spp_pathmtu - When Path MTU discovery is disabled the value 5786 * specified here will be the "fixed" path mtu. 5787 * Note that if the spp_address field is empty 5788 * then all associations on this address will 5789 * have this fixed path mtu set upon them. 5790 * 5791 * spp_sackdelay - When delayed sack is enabled, this value specifies 5792 * the number of milliseconds that sacks will be delayed 5793 * for. This value will apply to all addresses of an 5794 * association if the spp_address field is empty. Note 5795 * also, that if delayed sack is enabled and this 5796 * value is set to 0, no change is made to the last 5797 * recorded delayed sack timer value. 5798 * 5799 * spp_flags - These flags are used to control various features 5800 * on an association. The flag field may contain 5801 * zero or more of the following options. 5802 * 5803 * SPP_HB_ENABLE - Enable heartbeats on the 5804 * specified address. Note that if the address 5805 * field is empty all addresses for the association 5806 * have heartbeats enabled upon them. 5807 * 5808 * SPP_HB_DISABLE - Disable heartbeats on the 5809 * speicifed address. Note that if the address 5810 * field is empty all addresses for the association 5811 * will have their heartbeats disabled. Note also 5812 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5813 * mutually exclusive, only one of these two should 5814 * be specified. Enabling both fields will have 5815 * undetermined results. 5816 * 5817 * SPP_HB_DEMAND - Request a user initiated heartbeat 5818 * to be made immediately. 5819 * 5820 * SPP_PMTUD_ENABLE - This field will enable PMTU 5821 * discovery upon the specified address. Note that 5822 * if the address feild is empty then all addresses 5823 * on the association are effected. 5824 * 5825 * SPP_PMTUD_DISABLE - This field will disable PMTU 5826 * discovery upon the specified address. Note that 5827 * if the address feild is empty then all addresses 5828 * on the association are effected. Not also that 5829 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5830 * exclusive. Enabling both will have undetermined 5831 * results. 5832 * 5833 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5834 * on delayed sack. The time specified in spp_sackdelay 5835 * is used to specify the sack delay for this address. Note 5836 * that if spp_address is empty then all addresses will 5837 * enable delayed sack and take on the sack delay 5838 * value specified in spp_sackdelay. 5839 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5840 * off delayed sack. If the spp_address field is blank then 5841 * delayed sack is disabled for the entire association. Note 5842 * also that this field is mutually exclusive to 5843 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5844 * results. 5845 * 5846 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5847 * setting of the IPV6 flow label value. The value is 5848 * contained in the spp_ipv6_flowlabel field. 5849 * Upon retrieval, this flag will be set to indicate that 5850 * the spp_ipv6_flowlabel field has a valid value returned. 5851 * If a specific destination address is set (in the 5852 * spp_address field), then the value returned is that of 5853 * the address. If just an association is specified (and 5854 * no address), then the association's default flow label 5855 * is returned. If neither an association nor a destination 5856 * is specified, then the socket's default flow label is 5857 * returned. For non-IPv6 sockets, this flag will be left 5858 * cleared. 5859 * 5860 * SPP_DSCP: Setting this flag enables the setting of the 5861 * Differentiated Services Code Point (DSCP) value 5862 * associated with either the association or a specific 5863 * address. The value is obtained in the spp_dscp field. 5864 * Upon retrieval, this flag will be set to indicate that 5865 * the spp_dscp field has a valid value returned. If a 5866 * specific destination address is set when called (in the 5867 * spp_address field), then that specific destination 5868 * address's DSCP value is returned. If just an association 5869 * is specified, then the association's default DSCP is 5870 * returned. If neither an association nor a destination is 5871 * specified, then the socket's default DSCP is returned. 5872 * 5873 * spp_ipv6_flowlabel 5874 * - This field is used in conjunction with the 5875 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5876 * The 20 least significant bits are used for the flow 5877 * label. This setting has precedence over any IPv6-layer 5878 * setting. 5879 * 5880 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5881 * and contains the DSCP. The 6 most significant bits are 5882 * used for the DSCP. This setting has precedence over any 5883 * IPv4- or IPv6- layer setting. 5884 */ 5885 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5886 char __user *optval, int __user *optlen) 5887 { 5888 struct sctp_paddrparams params; 5889 struct sctp_transport *trans = NULL; 5890 struct sctp_association *asoc = NULL; 5891 struct sctp_sock *sp = sctp_sk(sk); 5892 5893 if (len >= sizeof(params)) 5894 len = sizeof(params); 5895 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 5896 spp_ipv6_flowlabel), 4)) 5897 len = ALIGN(offsetof(struct sctp_paddrparams, 5898 spp_ipv6_flowlabel), 4); 5899 else 5900 return -EINVAL; 5901 5902 if (copy_from_user(¶ms, optval, len)) 5903 return -EFAULT; 5904 5905 /* If an address other than INADDR_ANY is specified, and 5906 * no transport is found, then the request is invalid. 5907 */ 5908 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5909 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5910 params.spp_assoc_id); 5911 if (!trans) { 5912 pr_debug("%s: failed no transport\n", __func__); 5913 return -EINVAL; 5914 } 5915 } 5916 5917 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 5918 * socket is a one to many style socket, and an association 5919 * was not found, then the id was invalid. 5920 */ 5921 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5922 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 5923 sctp_style(sk, UDP)) { 5924 pr_debug("%s: failed no association\n", __func__); 5925 return -EINVAL; 5926 } 5927 5928 if (trans) { 5929 /* Fetch transport values. */ 5930 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5931 params.spp_pathmtu = trans->pathmtu; 5932 params.spp_pathmaxrxt = trans->pathmaxrxt; 5933 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5934 5935 /*draft-11 doesn't say what to return in spp_flags*/ 5936 params.spp_flags = trans->param_flags; 5937 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5938 params.spp_ipv6_flowlabel = trans->flowlabel & 5939 SCTP_FLOWLABEL_VAL_MASK; 5940 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5941 } 5942 if (trans->dscp & SCTP_DSCP_SET_MASK) { 5943 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 5944 params.spp_flags |= SPP_DSCP; 5945 } 5946 } else if (asoc) { 5947 /* Fetch association values. */ 5948 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5949 params.spp_pathmtu = asoc->pathmtu; 5950 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5951 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5952 5953 /*draft-11 doesn't say what to return in spp_flags*/ 5954 params.spp_flags = asoc->param_flags; 5955 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5956 params.spp_ipv6_flowlabel = asoc->flowlabel & 5957 SCTP_FLOWLABEL_VAL_MASK; 5958 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5959 } 5960 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 5961 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 5962 params.spp_flags |= SPP_DSCP; 5963 } 5964 } else { 5965 /* Fetch socket values. */ 5966 params.spp_hbinterval = sp->hbinterval; 5967 params.spp_pathmtu = sp->pathmtu; 5968 params.spp_sackdelay = sp->sackdelay; 5969 params.spp_pathmaxrxt = sp->pathmaxrxt; 5970 5971 /*draft-11 doesn't say what to return in spp_flags*/ 5972 params.spp_flags = sp->param_flags; 5973 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5974 params.spp_ipv6_flowlabel = sp->flowlabel & 5975 SCTP_FLOWLABEL_VAL_MASK; 5976 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5977 } 5978 if (sp->dscp & SCTP_DSCP_SET_MASK) { 5979 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 5980 params.spp_flags |= SPP_DSCP; 5981 } 5982 } 5983 5984 if (copy_to_user(optval, ¶ms, len)) 5985 return -EFAULT; 5986 5987 if (put_user(len, optlen)) 5988 return -EFAULT; 5989 5990 return 0; 5991 } 5992 5993 /* 5994 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 5995 * 5996 * This option will effect the way delayed acks are performed. This 5997 * option allows you to get or set the delayed ack time, in 5998 * milliseconds. It also allows changing the delayed ack frequency. 5999 * Changing the frequency to 1 disables the delayed sack algorithm. If 6000 * the assoc_id is 0, then this sets or gets the endpoints default 6001 * values. If the assoc_id field is non-zero, then the set or get 6002 * effects the specified association for the one to many model (the 6003 * assoc_id field is ignored by the one to one model). Note that if 6004 * sack_delay or sack_freq are 0 when setting this option, then the 6005 * current values will remain unchanged. 6006 * 6007 * struct sctp_sack_info { 6008 * sctp_assoc_t sack_assoc_id; 6009 * uint32_t sack_delay; 6010 * uint32_t sack_freq; 6011 * }; 6012 * 6013 * sack_assoc_id - This parameter, indicates which association the user 6014 * is performing an action upon. Note that if this field's value is 6015 * zero then the endpoints default value is changed (effecting future 6016 * associations only). 6017 * 6018 * sack_delay - This parameter contains the number of milliseconds that 6019 * the user is requesting the delayed ACK timer be set to. Note that 6020 * this value is defined in the standard to be between 200 and 500 6021 * milliseconds. 6022 * 6023 * sack_freq - This parameter contains the number of packets that must 6024 * be received before a sack is sent without waiting for the delay 6025 * timer to expire. The default value for this is 2, setting this 6026 * value to 1 will disable the delayed sack algorithm. 6027 */ 6028 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 6029 char __user *optval, 6030 int __user *optlen) 6031 { 6032 struct sctp_sack_info params; 6033 struct sctp_association *asoc = NULL; 6034 struct sctp_sock *sp = sctp_sk(sk); 6035 6036 if (len >= sizeof(struct sctp_sack_info)) { 6037 len = sizeof(struct sctp_sack_info); 6038 6039 if (copy_from_user(¶ms, optval, len)) 6040 return -EFAULT; 6041 } else if (len == sizeof(struct sctp_assoc_value)) { 6042 pr_warn_ratelimited(DEPRECATED 6043 "%s (pid %d) " 6044 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 6045 "Use struct sctp_sack_info instead\n", 6046 current->comm, task_pid_nr(current)); 6047 if (copy_from_user(¶ms, optval, len)) 6048 return -EFAULT; 6049 } else 6050 return -EINVAL; 6051 6052 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 6053 * socket is a one to many style socket, and an association 6054 * was not found, then the id was invalid. 6055 */ 6056 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 6057 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC && 6058 sctp_style(sk, UDP)) 6059 return -EINVAL; 6060 6061 if (asoc) { 6062 /* Fetch association values. */ 6063 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 6064 params.sack_delay = jiffies_to_msecs(asoc->sackdelay); 6065 params.sack_freq = asoc->sackfreq; 6066 6067 } else { 6068 params.sack_delay = 0; 6069 params.sack_freq = 1; 6070 } 6071 } else { 6072 /* Fetch socket values. */ 6073 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 6074 params.sack_delay = sp->sackdelay; 6075 params.sack_freq = sp->sackfreq; 6076 } else { 6077 params.sack_delay = 0; 6078 params.sack_freq = 1; 6079 } 6080 } 6081 6082 if (copy_to_user(optval, ¶ms, len)) 6083 return -EFAULT; 6084 6085 if (put_user(len, optlen)) 6086 return -EFAULT; 6087 6088 return 0; 6089 } 6090 6091 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 6092 * 6093 * Applications can specify protocol parameters for the default association 6094 * initialization. The option name argument to setsockopt() and getsockopt() 6095 * is SCTP_INITMSG. 6096 * 6097 * Setting initialization parameters is effective only on an unconnected 6098 * socket (for UDP-style sockets only future associations are effected 6099 * by the change). With TCP-style sockets, this option is inherited by 6100 * sockets derived from a listener socket. 6101 */ 6102 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 6103 { 6104 if (len < sizeof(struct sctp_initmsg)) 6105 return -EINVAL; 6106 len = sizeof(struct sctp_initmsg); 6107 if (put_user(len, optlen)) 6108 return -EFAULT; 6109 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 6110 return -EFAULT; 6111 return 0; 6112 } 6113 6114 6115 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 6116 char __user *optval, int __user *optlen) 6117 { 6118 struct sctp_association *asoc; 6119 int cnt = 0; 6120 struct sctp_getaddrs getaddrs; 6121 struct sctp_transport *from; 6122 void __user *to; 6123 union sctp_addr temp; 6124 struct sctp_sock *sp = sctp_sk(sk); 6125 int addrlen; 6126 size_t space_left; 6127 int bytes_copied; 6128 6129 if (len < sizeof(struct sctp_getaddrs)) 6130 return -EINVAL; 6131 6132 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6133 return -EFAULT; 6134 6135 /* For UDP-style sockets, id specifies the association to query. */ 6136 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6137 if (!asoc) 6138 return -EINVAL; 6139 6140 to = optval + offsetof(struct sctp_getaddrs, addrs); 6141 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6142 6143 list_for_each_entry(from, &asoc->peer.transport_addr_list, 6144 transports) { 6145 memcpy(&temp, &from->ipaddr, sizeof(temp)); 6146 addrlen = sctp_get_pf_specific(sk->sk_family) 6147 ->addr_to_user(sp, &temp); 6148 if (space_left < addrlen) 6149 return -ENOMEM; 6150 if (copy_to_user(to, &temp, addrlen)) 6151 return -EFAULT; 6152 to += addrlen; 6153 cnt++; 6154 space_left -= addrlen; 6155 } 6156 6157 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 6158 return -EFAULT; 6159 bytes_copied = ((char __user *)to) - optval; 6160 if (put_user(bytes_copied, optlen)) 6161 return -EFAULT; 6162 6163 return 0; 6164 } 6165 6166 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 6167 size_t space_left, int *bytes_copied) 6168 { 6169 struct sctp_sockaddr_entry *addr; 6170 union sctp_addr temp; 6171 int cnt = 0; 6172 int addrlen; 6173 struct net *net = sock_net(sk); 6174 6175 rcu_read_lock(); 6176 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 6177 if (!addr->valid) 6178 continue; 6179 6180 if ((PF_INET == sk->sk_family) && 6181 (AF_INET6 == addr->a.sa.sa_family)) 6182 continue; 6183 if ((PF_INET6 == sk->sk_family) && 6184 inet_v6_ipv6only(sk) && 6185 (AF_INET == addr->a.sa.sa_family)) 6186 continue; 6187 memcpy(&temp, &addr->a, sizeof(temp)); 6188 if (!temp.v4.sin_port) 6189 temp.v4.sin_port = htons(port); 6190 6191 addrlen = sctp_get_pf_specific(sk->sk_family) 6192 ->addr_to_user(sctp_sk(sk), &temp); 6193 6194 if (space_left < addrlen) { 6195 cnt = -ENOMEM; 6196 break; 6197 } 6198 memcpy(to, &temp, addrlen); 6199 6200 to += addrlen; 6201 cnt++; 6202 space_left -= addrlen; 6203 *bytes_copied += addrlen; 6204 } 6205 rcu_read_unlock(); 6206 6207 return cnt; 6208 } 6209 6210 6211 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 6212 char __user *optval, int __user *optlen) 6213 { 6214 struct sctp_bind_addr *bp; 6215 struct sctp_association *asoc; 6216 int cnt = 0; 6217 struct sctp_getaddrs getaddrs; 6218 struct sctp_sockaddr_entry *addr; 6219 void __user *to; 6220 union sctp_addr temp; 6221 struct sctp_sock *sp = sctp_sk(sk); 6222 int addrlen; 6223 int err = 0; 6224 size_t space_left; 6225 int bytes_copied = 0; 6226 void *addrs; 6227 void *buf; 6228 6229 if (len < sizeof(struct sctp_getaddrs)) 6230 return -EINVAL; 6231 6232 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6233 return -EFAULT; 6234 6235 /* 6236 * For UDP-style sockets, id specifies the association to query. 6237 * If the id field is set to the value '0' then the locally bound 6238 * addresses are returned without regard to any particular 6239 * association. 6240 */ 6241 if (0 == getaddrs.assoc_id) { 6242 bp = &sctp_sk(sk)->ep->base.bind_addr; 6243 } else { 6244 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6245 if (!asoc) 6246 return -EINVAL; 6247 bp = &asoc->base.bind_addr; 6248 } 6249 6250 to = optval + offsetof(struct sctp_getaddrs, addrs); 6251 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6252 6253 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 6254 if (!addrs) 6255 return -ENOMEM; 6256 6257 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 6258 * addresses from the global local address list. 6259 */ 6260 if (sctp_list_single_entry(&bp->address_list)) { 6261 addr = list_entry(bp->address_list.next, 6262 struct sctp_sockaddr_entry, list); 6263 if (sctp_is_any(sk, &addr->a)) { 6264 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 6265 space_left, &bytes_copied); 6266 if (cnt < 0) { 6267 err = cnt; 6268 goto out; 6269 } 6270 goto copy_getaddrs; 6271 } 6272 } 6273 6274 buf = addrs; 6275 /* Protection on the bound address list is not needed since 6276 * in the socket option context we hold a socket lock and 6277 * thus the bound address list can't change. 6278 */ 6279 list_for_each_entry(addr, &bp->address_list, list) { 6280 memcpy(&temp, &addr->a, sizeof(temp)); 6281 addrlen = sctp_get_pf_specific(sk->sk_family) 6282 ->addr_to_user(sp, &temp); 6283 if (space_left < addrlen) { 6284 err = -ENOMEM; /*fixme: right error?*/ 6285 goto out; 6286 } 6287 memcpy(buf, &temp, addrlen); 6288 buf += addrlen; 6289 bytes_copied += addrlen; 6290 cnt++; 6291 space_left -= addrlen; 6292 } 6293 6294 copy_getaddrs: 6295 if (copy_to_user(to, addrs, bytes_copied)) { 6296 err = -EFAULT; 6297 goto out; 6298 } 6299 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 6300 err = -EFAULT; 6301 goto out; 6302 } 6303 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 6304 * but we can't change it anymore. 6305 */ 6306 if (put_user(bytes_copied, optlen)) 6307 err = -EFAULT; 6308 out: 6309 kfree(addrs); 6310 return err; 6311 } 6312 6313 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6314 * 6315 * Requests that the local SCTP stack use the enclosed peer address as 6316 * the association primary. The enclosed address must be one of the 6317 * association peer's addresses. 6318 */ 6319 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6320 char __user *optval, int __user *optlen) 6321 { 6322 struct sctp_prim prim; 6323 struct sctp_association *asoc; 6324 struct sctp_sock *sp = sctp_sk(sk); 6325 6326 if (len < sizeof(struct sctp_prim)) 6327 return -EINVAL; 6328 6329 len = sizeof(struct sctp_prim); 6330 6331 if (copy_from_user(&prim, optval, len)) 6332 return -EFAULT; 6333 6334 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6335 if (!asoc) 6336 return -EINVAL; 6337 6338 if (!asoc->peer.primary_path) 6339 return -ENOTCONN; 6340 6341 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6342 asoc->peer.primary_path->af_specific->sockaddr_len); 6343 6344 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6345 (union sctp_addr *)&prim.ssp_addr); 6346 6347 if (put_user(len, optlen)) 6348 return -EFAULT; 6349 if (copy_to_user(optval, &prim, len)) 6350 return -EFAULT; 6351 6352 return 0; 6353 } 6354 6355 /* 6356 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6357 * 6358 * Requests that the local endpoint set the specified Adaptation Layer 6359 * Indication parameter for all future INIT and INIT-ACK exchanges. 6360 */ 6361 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6362 char __user *optval, int __user *optlen) 6363 { 6364 struct sctp_setadaptation adaptation; 6365 6366 if (len < sizeof(struct sctp_setadaptation)) 6367 return -EINVAL; 6368 6369 len = sizeof(struct sctp_setadaptation); 6370 6371 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6372 6373 if (put_user(len, optlen)) 6374 return -EFAULT; 6375 if (copy_to_user(optval, &adaptation, len)) 6376 return -EFAULT; 6377 6378 return 0; 6379 } 6380 6381 /* 6382 * 6383 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6384 * 6385 * Applications that wish to use the sendto() system call may wish to 6386 * specify a default set of parameters that would normally be supplied 6387 * through the inclusion of ancillary data. This socket option allows 6388 * such an application to set the default sctp_sndrcvinfo structure. 6389 6390 6391 * The application that wishes to use this socket option simply passes 6392 * in to this call the sctp_sndrcvinfo structure defined in Section 6393 * 5.2.2) The input parameters accepted by this call include 6394 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6395 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6396 * to this call if the caller is using the UDP model. 6397 * 6398 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6399 */ 6400 static int sctp_getsockopt_default_send_param(struct sock *sk, 6401 int len, char __user *optval, 6402 int __user *optlen) 6403 { 6404 struct sctp_sock *sp = sctp_sk(sk); 6405 struct sctp_association *asoc; 6406 struct sctp_sndrcvinfo info; 6407 6408 if (len < sizeof(info)) 6409 return -EINVAL; 6410 6411 len = sizeof(info); 6412 6413 if (copy_from_user(&info, optval, len)) 6414 return -EFAULT; 6415 6416 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6417 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC && 6418 sctp_style(sk, UDP)) 6419 return -EINVAL; 6420 6421 if (asoc) { 6422 info.sinfo_stream = asoc->default_stream; 6423 info.sinfo_flags = asoc->default_flags; 6424 info.sinfo_ppid = asoc->default_ppid; 6425 info.sinfo_context = asoc->default_context; 6426 info.sinfo_timetolive = asoc->default_timetolive; 6427 } else { 6428 info.sinfo_stream = sp->default_stream; 6429 info.sinfo_flags = sp->default_flags; 6430 info.sinfo_ppid = sp->default_ppid; 6431 info.sinfo_context = sp->default_context; 6432 info.sinfo_timetolive = sp->default_timetolive; 6433 } 6434 6435 if (put_user(len, optlen)) 6436 return -EFAULT; 6437 if (copy_to_user(optval, &info, len)) 6438 return -EFAULT; 6439 6440 return 0; 6441 } 6442 6443 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6444 * (SCTP_DEFAULT_SNDINFO) 6445 */ 6446 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6447 char __user *optval, 6448 int __user *optlen) 6449 { 6450 struct sctp_sock *sp = sctp_sk(sk); 6451 struct sctp_association *asoc; 6452 struct sctp_sndinfo info; 6453 6454 if (len < sizeof(info)) 6455 return -EINVAL; 6456 6457 len = sizeof(info); 6458 6459 if (copy_from_user(&info, optval, len)) 6460 return -EFAULT; 6461 6462 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6463 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC && 6464 sctp_style(sk, UDP)) 6465 return -EINVAL; 6466 6467 if (asoc) { 6468 info.snd_sid = asoc->default_stream; 6469 info.snd_flags = asoc->default_flags; 6470 info.snd_ppid = asoc->default_ppid; 6471 info.snd_context = asoc->default_context; 6472 } else { 6473 info.snd_sid = sp->default_stream; 6474 info.snd_flags = sp->default_flags; 6475 info.snd_ppid = sp->default_ppid; 6476 info.snd_context = sp->default_context; 6477 } 6478 6479 if (put_user(len, optlen)) 6480 return -EFAULT; 6481 if (copy_to_user(optval, &info, len)) 6482 return -EFAULT; 6483 6484 return 0; 6485 } 6486 6487 /* 6488 * 6489 * 7.1.5 SCTP_NODELAY 6490 * 6491 * Turn on/off any Nagle-like algorithm. This means that packets are 6492 * generally sent as soon as possible and no unnecessary delays are 6493 * introduced, at the cost of more packets in the network. Expects an 6494 * integer boolean flag. 6495 */ 6496 6497 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6498 char __user *optval, int __user *optlen) 6499 { 6500 int val; 6501 6502 if (len < sizeof(int)) 6503 return -EINVAL; 6504 6505 len = sizeof(int); 6506 val = (sctp_sk(sk)->nodelay == 1); 6507 if (put_user(len, optlen)) 6508 return -EFAULT; 6509 if (copy_to_user(optval, &val, len)) 6510 return -EFAULT; 6511 return 0; 6512 } 6513 6514 /* 6515 * 6516 * 7.1.1 SCTP_RTOINFO 6517 * 6518 * The protocol parameters used to initialize and bound retransmission 6519 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6520 * and modify these parameters. 6521 * All parameters are time values, in milliseconds. A value of 0, when 6522 * modifying the parameters, indicates that the current value should not 6523 * be changed. 6524 * 6525 */ 6526 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6527 char __user *optval, 6528 int __user *optlen) { 6529 struct sctp_rtoinfo rtoinfo; 6530 struct sctp_association *asoc; 6531 6532 if (len < sizeof (struct sctp_rtoinfo)) 6533 return -EINVAL; 6534 6535 len = sizeof(struct sctp_rtoinfo); 6536 6537 if (copy_from_user(&rtoinfo, optval, len)) 6538 return -EFAULT; 6539 6540 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6541 6542 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 6543 sctp_style(sk, UDP)) 6544 return -EINVAL; 6545 6546 /* Values corresponding to the specific association. */ 6547 if (asoc) { 6548 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6549 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6550 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6551 } else { 6552 /* Values corresponding to the endpoint. */ 6553 struct sctp_sock *sp = sctp_sk(sk); 6554 6555 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6556 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6557 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6558 } 6559 6560 if (put_user(len, optlen)) 6561 return -EFAULT; 6562 6563 if (copy_to_user(optval, &rtoinfo, len)) 6564 return -EFAULT; 6565 6566 return 0; 6567 } 6568 6569 /* 6570 * 6571 * 7.1.2 SCTP_ASSOCINFO 6572 * 6573 * This option is used to tune the maximum retransmission attempts 6574 * of the association. 6575 * Returns an error if the new association retransmission value is 6576 * greater than the sum of the retransmission value of the peer. 6577 * See [SCTP] for more information. 6578 * 6579 */ 6580 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6581 char __user *optval, 6582 int __user *optlen) 6583 { 6584 6585 struct sctp_assocparams assocparams; 6586 struct sctp_association *asoc; 6587 struct list_head *pos; 6588 int cnt = 0; 6589 6590 if (len < sizeof (struct sctp_assocparams)) 6591 return -EINVAL; 6592 6593 len = sizeof(struct sctp_assocparams); 6594 6595 if (copy_from_user(&assocparams, optval, len)) 6596 return -EFAULT; 6597 6598 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6599 6600 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 6601 sctp_style(sk, UDP)) 6602 return -EINVAL; 6603 6604 /* Values correspoinding to the specific association */ 6605 if (asoc) { 6606 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6607 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6608 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6609 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6610 6611 list_for_each(pos, &asoc->peer.transport_addr_list) { 6612 cnt++; 6613 } 6614 6615 assocparams.sasoc_number_peer_destinations = cnt; 6616 } else { 6617 /* Values corresponding to the endpoint */ 6618 struct sctp_sock *sp = sctp_sk(sk); 6619 6620 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6621 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6622 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6623 assocparams.sasoc_cookie_life = 6624 sp->assocparams.sasoc_cookie_life; 6625 assocparams.sasoc_number_peer_destinations = 6626 sp->assocparams. 6627 sasoc_number_peer_destinations; 6628 } 6629 6630 if (put_user(len, optlen)) 6631 return -EFAULT; 6632 6633 if (copy_to_user(optval, &assocparams, len)) 6634 return -EFAULT; 6635 6636 return 0; 6637 } 6638 6639 /* 6640 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6641 * 6642 * This socket option is a boolean flag which turns on or off mapped V4 6643 * addresses. If this option is turned on and the socket is type 6644 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6645 * If this option is turned off, then no mapping will be done of V4 6646 * addresses and a user will receive both PF_INET6 and PF_INET type 6647 * addresses on the socket. 6648 */ 6649 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6650 char __user *optval, int __user *optlen) 6651 { 6652 int val; 6653 struct sctp_sock *sp = sctp_sk(sk); 6654 6655 if (len < sizeof(int)) 6656 return -EINVAL; 6657 6658 len = sizeof(int); 6659 val = sp->v4mapped; 6660 if (put_user(len, optlen)) 6661 return -EFAULT; 6662 if (copy_to_user(optval, &val, len)) 6663 return -EFAULT; 6664 6665 return 0; 6666 } 6667 6668 /* 6669 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6670 * (chapter and verse is quoted at sctp_setsockopt_context()) 6671 */ 6672 static int sctp_getsockopt_context(struct sock *sk, int len, 6673 char __user *optval, int __user *optlen) 6674 { 6675 struct sctp_assoc_value params; 6676 struct sctp_association *asoc; 6677 6678 if (len < sizeof(struct sctp_assoc_value)) 6679 return -EINVAL; 6680 6681 len = sizeof(struct sctp_assoc_value); 6682 6683 if (copy_from_user(¶ms, optval, len)) 6684 return -EFAULT; 6685 6686 asoc = sctp_id2assoc(sk, params.assoc_id); 6687 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6688 sctp_style(sk, UDP)) 6689 return -EINVAL; 6690 6691 params.assoc_value = asoc ? asoc->default_rcv_context 6692 : sctp_sk(sk)->default_rcv_context; 6693 6694 if (put_user(len, optlen)) 6695 return -EFAULT; 6696 if (copy_to_user(optval, ¶ms, len)) 6697 return -EFAULT; 6698 6699 return 0; 6700 } 6701 6702 /* 6703 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6704 * This option will get or set the maximum size to put in any outgoing 6705 * SCTP DATA chunk. If a message is larger than this size it will be 6706 * fragmented by SCTP into the specified size. Note that the underlying 6707 * SCTP implementation may fragment into smaller sized chunks when the 6708 * PMTU of the underlying association is smaller than the value set by 6709 * the user. The default value for this option is '0' which indicates 6710 * the user is NOT limiting fragmentation and only the PMTU will effect 6711 * SCTP's choice of DATA chunk size. Note also that values set larger 6712 * than the maximum size of an IP datagram will effectively let SCTP 6713 * control fragmentation (i.e. the same as setting this option to 0). 6714 * 6715 * The following structure is used to access and modify this parameter: 6716 * 6717 * struct sctp_assoc_value { 6718 * sctp_assoc_t assoc_id; 6719 * uint32_t assoc_value; 6720 * }; 6721 * 6722 * assoc_id: This parameter is ignored for one-to-one style sockets. 6723 * For one-to-many style sockets this parameter indicates which 6724 * association the user is performing an action upon. Note that if 6725 * this field's value is zero then the endpoints default value is 6726 * changed (effecting future associations only). 6727 * assoc_value: This parameter specifies the maximum size in bytes. 6728 */ 6729 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6730 char __user *optval, int __user *optlen) 6731 { 6732 struct sctp_assoc_value params; 6733 struct sctp_association *asoc; 6734 6735 if (len == sizeof(int)) { 6736 pr_warn_ratelimited(DEPRECATED 6737 "%s (pid %d) " 6738 "Use of int in maxseg socket option.\n" 6739 "Use struct sctp_assoc_value instead\n", 6740 current->comm, task_pid_nr(current)); 6741 params.assoc_id = SCTP_FUTURE_ASSOC; 6742 } else if (len >= sizeof(struct sctp_assoc_value)) { 6743 len = sizeof(struct sctp_assoc_value); 6744 if (copy_from_user(¶ms, optval, len)) 6745 return -EFAULT; 6746 } else 6747 return -EINVAL; 6748 6749 asoc = sctp_id2assoc(sk, params.assoc_id); 6750 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6751 sctp_style(sk, UDP)) 6752 return -EINVAL; 6753 6754 if (asoc) 6755 params.assoc_value = asoc->frag_point; 6756 else 6757 params.assoc_value = sctp_sk(sk)->user_frag; 6758 6759 if (put_user(len, optlen)) 6760 return -EFAULT; 6761 if (len == sizeof(int)) { 6762 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6763 return -EFAULT; 6764 } else { 6765 if (copy_to_user(optval, ¶ms, len)) 6766 return -EFAULT; 6767 } 6768 6769 return 0; 6770 } 6771 6772 /* 6773 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6774 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6775 */ 6776 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6777 char __user *optval, int __user *optlen) 6778 { 6779 int val; 6780 6781 if (len < sizeof(int)) 6782 return -EINVAL; 6783 6784 len = sizeof(int); 6785 6786 val = sctp_sk(sk)->frag_interleave; 6787 if (put_user(len, optlen)) 6788 return -EFAULT; 6789 if (copy_to_user(optval, &val, len)) 6790 return -EFAULT; 6791 6792 return 0; 6793 } 6794 6795 /* 6796 * 7.1.25. Set or Get the sctp partial delivery point 6797 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6798 */ 6799 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6800 char __user *optval, 6801 int __user *optlen) 6802 { 6803 u32 val; 6804 6805 if (len < sizeof(u32)) 6806 return -EINVAL; 6807 6808 len = sizeof(u32); 6809 6810 val = sctp_sk(sk)->pd_point; 6811 if (put_user(len, optlen)) 6812 return -EFAULT; 6813 if (copy_to_user(optval, &val, len)) 6814 return -EFAULT; 6815 6816 return 0; 6817 } 6818 6819 /* 6820 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6821 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6822 */ 6823 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6824 char __user *optval, 6825 int __user *optlen) 6826 { 6827 struct sctp_assoc_value params; 6828 struct sctp_association *asoc; 6829 6830 if (len == sizeof(int)) { 6831 pr_warn_ratelimited(DEPRECATED 6832 "%s (pid %d) " 6833 "Use of int in max_burst socket option.\n" 6834 "Use struct sctp_assoc_value instead\n", 6835 current->comm, task_pid_nr(current)); 6836 params.assoc_id = SCTP_FUTURE_ASSOC; 6837 } else if (len >= sizeof(struct sctp_assoc_value)) { 6838 len = sizeof(struct sctp_assoc_value); 6839 if (copy_from_user(¶ms, optval, len)) 6840 return -EFAULT; 6841 } else 6842 return -EINVAL; 6843 6844 asoc = sctp_id2assoc(sk, params.assoc_id); 6845 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6846 sctp_style(sk, UDP)) 6847 return -EINVAL; 6848 6849 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst; 6850 6851 if (len == sizeof(int)) { 6852 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6853 return -EFAULT; 6854 } else { 6855 if (copy_to_user(optval, ¶ms, len)) 6856 return -EFAULT; 6857 } 6858 6859 return 0; 6860 6861 } 6862 6863 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6864 char __user *optval, int __user *optlen) 6865 { 6866 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6867 struct sctp_hmacalgo __user *p = (void __user *)optval; 6868 struct sctp_hmac_algo_param *hmacs; 6869 __u16 data_len = 0; 6870 u32 num_idents; 6871 int i; 6872 6873 if (!ep->auth_enable) 6874 return -EACCES; 6875 6876 hmacs = ep->auth_hmacs_list; 6877 data_len = ntohs(hmacs->param_hdr.length) - 6878 sizeof(struct sctp_paramhdr); 6879 6880 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6881 return -EINVAL; 6882 6883 len = sizeof(struct sctp_hmacalgo) + data_len; 6884 num_idents = data_len / sizeof(u16); 6885 6886 if (put_user(len, optlen)) 6887 return -EFAULT; 6888 if (put_user(num_idents, &p->shmac_num_idents)) 6889 return -EFAULT; 6890 for (i = 0; i < num_idents; i++) { 6891 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6892 6893 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6894 return -EFAULT; 6895 } 6896 return 0; 6897 } 6898 6899 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6900 char __user *optval, int __user *optlen) 6901 { 6902 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6903 struct sctp_authkeyid val; 6904 struct sctp_association *asoc; 6905 6906 if (!ep->auth_enable) 6907 return -EACCES; 6908 6909 if (len < sizeof(struct sctp_authkeyid)) 6910 return -EINVAL; 6911 6912 len = sizeof(struct sctp_authkeyid); 6913 if (copy_from_user(&val, optval, len)) 6914 return -EFAULT; 6915 6916 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6917 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6918 return -EINVAL; 6919 6920 if (asoc) 6921 val.scact_keynumber = asoc->active_key_id; 6922 else 6923 val.scact_keynumber = ep->active_key_id; 6924 6925 if (put_user(len, optlen)) 6926 return -EFAULT; 6927 if (copy_to_user(optval, &val, len)) 6928 return -EFAULT; 6929 6930 return 0; 6931 } 6932 6933 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6934 char __user *optval, int __user *optlen) 6935 { 6936 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6937 struct sctp_authchunks __user *p = (void __user *)optval; 6938 struct sctp_authchunks val; 6939 struct sctp_association *asoc; 6940 struct sctp_chunks_param *ch; 6941 u32 num_chunks = 0; 6942 char __user *to; 6943 6944 if (!ep->auth_enable) 6945 return -EACCES; 6946 6947 if (len < sizeof(struct sctp_authchunks)) 6948 return -EINVAL; 6949 6950 if (copy_from_user(&val, optval, sizeof(val))) 6951 return -EFAULT; 6952 6953 to = p->gauth_chunks; 6954 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6955 if (!asoc) 6956 return -EINVAL; 6957 6958 ch = asoc->peer.peer_chunks; 6959 if (!ch) 6960 goto num; 6961 6962 /* See if the user provided enough room for all the data */ 6963 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6964 if (len < num_chunks) 6965 return -EINVAL; 6966 6967 if (copy_to_user(to, ch->chunks, num_chunks)) 6968 return -EFAULT; 6969 num: 6970 len = sizeof(struct sctp_authchunks) + num_chunks; 6971 if (put_user(len, optlen)) 6972 return -EFAULT; 6973 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6974 return -EFAULT; 6975 return 0; 6976 } 6977 6978 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 6979 char __user *optval, int __user *optlen) 6980 { 6981 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6982 struct sctp_authchunks __user *p = (void __user *)optval; 6983 struct sctp_authchunks val; 6984 struct sctp_association *asoc; 6985 struct sctp_chunks_param *ch; 6986 u32 num_chunks = 0; 6987 char __user *to; 6988 6989 if (!ep->auth_enable) 6990 return -EACCES; 6991 6992 if (len < sizeof(struct sctp_authchunks)) 6993 return -EINVAL; 6994 6995 if (copy_from_user(&val, optval, sizeof(val))) 6996 return -EFAULT; 6997 6998 to = p->gauth_chunks; 6999 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 7000 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC && 7001 sctp_style(sk, UDP)) 7002 return -EINVAL; 7003 7004 ch = asoc ? (struct sctp_chunks_param *)asoc->c.auth_chunks 7005 : ep->auth_chunk_list; 7006 if (!ch) 7007 goto num; 7008 7009 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7010 if (len < sizeof(struct sctp_authchunks) + num_chunks) 7011 return -EINVAL; 7012 7013 if (copy_to_user(to, ch->chunks, num_chunks)) 7014 return -EFAULT; 7015 num: 7016 len = sizeof(struct sctp_authchunks) + num_chunks; 7017 if (put_user(len, optlen)) 7018 return -EFAULT; 7019 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7020 return -EFAULT; 7021 7022 return 0; 7023 } 7024 7025 /* 7026 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 7027 * This option gets the current number of associations that are attached 7028 * to a one-to-many style socket. The option value is an uint32_t. 7029 */ 7030 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 7031 char __user *optval, int __user *optlen) 7032 { 7033 struct sctp_sock *sp = sctp_sk(sk); 7034 struct sctp_association *asoc; 7035 u32 val = 0; 7036 7037 if (sctp_style(sk, TCP)) 7038 return -EOPNOTSUPP; 7039 7040 if (len < sizeof(u32)) 7041 return -EINVAL; 7042 7043 len = sizeof(u32); 7044 7045 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7046 val++; 7047 } 7048 7049 if (put_user(len, optlen)) 7050 return -EFAULT; 7051 if (copy_to_user(optval, &val, len)) 7052 return -EFAULT; 7053 7054 return 0; 7055 } 7056 7057 /* 7058 * 8.1.23 SCTP_AUTO_ASCONF 7059 * See the corresponding setsockopt entry as description 7060 */ 7061 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 7062 char __user *optval, int __user *optlen) 7063 { 7064 int val = 0; 7065 7066 if (len < sizeof(int)) 7067 return -EINVAL; 7068 7069 len = sizeof(int); 7070 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 7071 val = 1; 7072 if (put_user(len, optlen)) 7073 return -EFAULT; 7074 if (copy_to_user(optval, &val, len)) 7075 return -EFAULT; 7076 return 0; 7077 } 7078 7079 /* 7080 * 8.2.6. Get the Current Identifiers of Associations 7081 * (SCTP_GET_ASSOC_ID_LIST) 7082 * 7083 * This option gets the current list of SCTP association identifiers of 7084 * the SCTP associations handled by a one-to-many style socket. 7085 */ 7086 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 7087 char __user *optval, int __user *optlen) 7088 { 7089 struct sctp_sock *sp = sctp_sk(sk); 7090 struct sctp_association *asoc; 7091 struct sctp_assoc_ids *ids; 7092 u32 num = 0; 7093 7094 if (sctp_style(sk, TCP)) 7095 return -EOPNOTSUPP; 7096 7097 if (len < sizeof(struct sctp_assoc_ids)) 7098 return -EINVAL; 7099 7100 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7101 num++; 7102 } 7103 7104 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 7105 return -EINVAL; 7106 7107 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 7108 7109 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 7110 if (unlikely(!ids)) 7111 return -ENOMEM; 7112 7113 ids->gaids_number_of_ids = num; 7114 num = 0; 7115 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7116 ids->gaids_assoc_id[num++] = asoc->assoc_id; 7117 } 7118 7119 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 7120 kfree(ids); 7121 return -EFAULT; 7122 } 7123 7124 kfree(ids); 7125 return 0; 7126 } 7127 7128 /* 7129 * SCTP_PEER_ADDR_THLDS 7130 * 7131 * This option allows us to fetch the partially failed threshold for one or all 7132 * transports in an association. See Section 6.1 of: 7133 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 7134 */ 7135 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 7136 char __user *optval, 7137 int len, 7138 int __user *optlen) 7139 { 7140 struct sctp_paddrthlds val; 7141 struct sctp_transport *trans; 7142 struct sctp_association *asoc; 7143 7144 if (len < sizeof(struct sctp_paddrthlds)) 7145 return -EINVAL; 7146 len = sizeof(struct sctp_paddrthlds); 7147 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 7148 return -EFAULT; 7149 7150 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 7151 trans = sctp_addr_id2transport(sk, &val.spt_address, 7152 val.spt_assoc_id); 7153 if (!trans) 7154 return -ENOENT; 7155 7156 val.spt_pathmaxrxt = trans->pathmaxrxt; 7157 val.spt_pathpfthld = trans->pf_retrans; 7158 7159 return 0; 7160 } 7161 7162 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 7163 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 7164 sctp_style(sk, UDP)) 7165 return -EINVAL; 7166 7167 if (asoc) { 7168 val.spt_pathpfthld = asoc->pf_retrans; 7169 val.spt_pathmaxrxt = asoc->pathmaxrxt; 7170 } else { 7171 struct sctp_sock *sp = sctp_sk(sk); 7172 7173 val.spt_pathpfthld = sp->pf_retrans; 7174 val.spt_pathmaxrxt = sp->pathmaxrxt; 7175 } 7176 7177 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 7178 return -EFAULT; 7179 7180 return 0; 7181 } 7182 7183 /* 7184 * SCTP_GET_ASSOC_STATS 7185 * 7186 * This option retrieves local per endpoint statistics. It is modeled 7187 * after OpenSolaris' implementation 7188 */ 7189 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 7190 char __user *optval, 7191 int __user *optlen) 7192 { 7193 struct sctp_assoc_stats sas; 7194 struct sctp_association *asoc = NULL; 7195 7196 /* User must provide at least the assoc id */ 7197 if (len < sizeof(sctp_assoc_t)) 7198 return -EINVAL; 7199 7200 /* Allow the struct to grow and fill in as much as possible */ 7201 len = min_t(size_t, len, sizeof(sas)); 7202 7203 if (copy_from_user(&sas, optval, len)) 7204 return -EFAULT; 7205 7206 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 7207 if (!asoc) 7208 return -EINVAL; 7209 7210 sas.sas_rtxchunks = asoc->stats.rtxchunks; 7211 sas.sas_gapcnt = asoc->stats.gapcnt; 7212 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 7213 sas.sas_osacks = asoc->stats.osacks; 7214 sas.sas_isacks = asoc->stats.isacks; 7215 sas.sas_octrlchunks = asoc->stats.octrlchunks; 7216 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 7217 sas.sas_oodchunks = asoc->stats.oodchunks; 7218 sas.sas_iodchunks = asoc->stats.iodchunks; 7219 sas.sas_ouodchunks = asoc->stats.ouodchunks; 7220 sas.sas_iuodchunks = asoc->stats.iuodchunks; 7221 sas.sas_idupchunks = asoc->stats.idupchunks; 7222 sas.sas_opackets = asoc->stats.opackets; 7223 sas.sas_ipackets = asoc->stats.ipackets; 7224 7225 /* New high max rto observed, will return 0 if not a single 7226 * RTO update took place. obs_rto_ipaddr will be bogus 7227 * in such a case 7228 */ 7229 sas.sas_maxrto = asoc->stats.max_obs_rto; 7230 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 7231 sizeof(struct sockaddr_storage)); 7232 7233 /* Mark beginning of a new observation period */ 7234 asoc->stats.max_obs_rto = asoc->rto_min; 7235 7236 if (put_user(len, optlen)) 7237 return -EFAULT; 7238 7239 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 7240 7241 if (copy_to_user(optval, &sas, len)) 7242 return -EFAULT; 7243 7244 return 0; 7245 } 7246 7247 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 7248 char __user *optval, 7249 int __user *optlen) 7250 { 7251 int val = 0; 7252 7253 if (len < sizeof(int)) 7254 return -EINVAL; 7255 7256 len = sizeof(int); 7257 if (sctp_sk(sk)->recvrcvinfo) 7258 val = 1; 7259 if (put_user(len, optlen)) 7260 return -EFAULT; 7261 if (copy_to_user(optval, &val, len)) 7262 return -EFAULT; 7263 7264 return 0; 7265 } 7266 7267 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 7268 char __user *optval, 7269 int __user *optlen) 7270 { 7271 int val = 0; 7272 7273 if (len < sizeof(int)) 7274 return -EINVAL; 7275 7276 len = sizeof(int); 7277 if (sctp_sk(sk)->recvnxtinfo) 7278 val = 1; 7279 if (put_user(len, optlen)) 7280 return -EFAULT; 7281 if (copy_to_user(optval, &val, len)) 7282 return -EFAULT; 7283 7284 return 0; 7285 } 7286 7287 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 7288 char __user *optval, 7289 int __user *optlen) 7290 { 7291 struct sctp_assoc_value params; 7292 struct sctp_association *asoc; 7293 int retval = -EFAULT; 7294 7295 if (len < sizeof(params)) { 7296 retval = -EINVAL; 7297 goto out; 7298 } 7299 7300 len = sizeof(params); 7301 if (copy_from_user(¶ms, optval, len)) 7302 goto out; 7303 7304 asoc = sctp_id2assoc(sk, params.assoc_id); 7305 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7306 sctp_style(sk, UDP)) { 7307 retval = -EINVAL; 7308 goto out; 7309 } 7310 7311 params.assoc_value = asoc ? asoc->prsctp_enable 7312 : sctp_sk(sk)->ep->prsctp_enable; 7313 7314 if (put_user(len, optlen)) 7315 goto out; 7316 7317 if (copy_to_user(optval, ¶ms, len)) 7318 goto out; 7319 7320 retval = 0; 7321 7322 out: 7323 return retval; 7324 } 7325 7326 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7327 char __user *optval, 7328 int __user *optlen) 7329 { 7330 struct sctp_default_prinfo info; 7331 struct sctp_association *asoc; 7332 int retval = -EFAULT; 7333 7334 if (len < sizeof(info)) { 7335 retval = -EINVAL; 7336 goto out; 7337 } 7338 7339 len = sizeof(info); 7340 if (copy_from_user(&info, optval, len)) 7341 goto out; 7342 7343 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7344 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC && 7345 sctp_style(sk, UDP)) { 7346 retval = -EINVAL; 7347 goto out; 7348 } 7349 7350 if (asoc) { 7351 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7352 info.pr_value = asoc->default_timetolive; 7353 } else { 7354 struct sctp_sock *sp = sctp_sk(sk); 7355 7356 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7357 info.pr_value = sp->default_timetolive; 7358 } 7359 7360 if (put_user(len, optlen)) 7361 goto out; 7362 7363 if (copy_to_user(optval, &info, len)) 7364 goto out; 7365 7366 retval = 0; 7367 7368 out: 7369 return retval; 7370 } 7371 7372 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7373 char __user *optval, 7374 int __user *optlen) 7375 { 7376 struct sctp_prstatus params; 7377 struct sctp_association *asoc; 7378 int policy; 7379 int retval = -EINVAL; 7380 7381 if (len < sizeof(params)) 7382 goto out; 7383 7384 len = sizeof(params); 7385 if (copy_from_user(¶ms, optval, len)) { 7386 retval = -EFAULT; 7387 goto out; 7388 } 7389 7390 policy = params.sprstat_policy; 7391 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7392 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7393 goto out; 7394 7395 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7396 if (!asoc) 7397 goto out; 7398 7399 if (policy == SCTP_PR_SCTP_ALL) { 7400 params.sprstat_abandoned_unsent = 0; 7401 params.sprstat_abandoned_sent = 0; 7402 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7403 params.sprstat_abandoned_unsent += 7404 asoc->abandoned_unsent[policy]; 7405 params.sprstat_abandoned_sent += 7406 asoc->abandoned_sent[policy]; 7407 } 7408 } else { 7409 params.sprstat_abandoned_unsent = 7410 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7411 params.sprstat_abandoned_sent = 7412 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7413 } 7414 7415 if (put_user(len, optlen)) { 7416 retval = -EFAULT; 7417 goto out; 7418 } 7419 7420 if (copy_to_user(optval, ¶ms, len)) { 7421 retval = -EFAULT; 7422 goto out; 7423 } 7424 7425 retval = 0; 7426 7427 out: 7428 return retval; 7429 } 7430 7431 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7432 char __user *optval, 7433 int __user *optlen) 7434 { 7435 struct sctp_stream_out_ext *streamoute; 7436 struct sctp_association *asoc; 7437 struct sctp_prstatus params; 7438 int retval = -EINVAL; 7439 int policy; 7440 7441 if (len < sizeof(params)) 7442 goto out; 7443 7444 len = sizeof(params); 7445 if (copy_from_user(¶ms, optval, len)) { 7446 retval = -EFAULT; 7447 goto out; 7448 } 7449 7450 policy = params.sprstat_policy; 7451 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7452 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7453 goto out; 7454 7455 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7456 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7457 goto out; 7458 7459 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; 7460 if (!streamoute) { 7461 /* Not allocated yet, means all stats are 0 */ 7462 params.sprstat_abandoned_unsent = 0; 7463 params.sprstat_abandoned_sent = 0; 7464 retval = 0; 7465 goto out; 7466 } 7467 7468 if (policy == SCTP_PR_SCTP_ALL) { 7469 params.sprstat_abandoned_unsent = 0; 7470 params.sprstat_abandoned_sent = 0; 7471 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7472 params.sprstat_abandoned_unsent += 7473 streamoute->abandoned_unsent[policy]; 7474 params.sprstat_abandoned_sent += 7475 streamoute->abandoned_sent[policy]; 7476 } 7477 } else { 7478 params.sprstat_abandoned_unsent = 7479 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7480 params.sprstat_abandoned_sent = 7481 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7482 } 7483 7484 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7485 retval = -EFAULT; 7486 goto out; 7487 } 7488 7489 retval = 0; 7490 7491 out: 7492 return retval; 7493 } 7494 7495 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7496 char __user *optval, 7497 int __user *optlen) 7498 { 7499 struct sctp_assoc_value params; 7500 struct sctp_association *asoc; 7501 int retval = -EFAULT; 7502 7503 if (len < sizeof(params)) { 7504 retval = -EINVAL; 7505 goto out; 7506 } 7507 7508 len = sizeof(params); 7509 if (copy_from_user(¶ms, optval, len)) 7510 goto out; 7511 7512 asoc = sctp_id2assoc(sk, params.assoc_id); 7513 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7514 sctp_style(sk, UDP)) { 7515 retval = -EINVAL; 7516 goto out; 7517 } 7518 7519 params.assoc_value = asoc ? asoc->reconf_enable 7520 : sctp_sk(sk)->ep->reconf_enable; 7521 7522 if (put_user(len, optlen)) 7523 goto out; 7524 7525 if (copy_to_user(optval, ¶ms, len)) 7526 goto out; 7527 7528 retval = 0; 7529 7530 out: 7531 return retval; 7532 } 7533 7534 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7535 char __user *optval, 7536 int __user *optlen) 7537 { 7538 struct sctp_assoc_value params; 7539 struct sctp_association *asoc; 7540 int retval = -EFAULT; 7541 7542 if (len < sizeof(params)) { 7543 retval = -EINVAL; 7544 goto out; 7545 } 7546 7547 len = sizeof(params); 7548 if (copy_from_user(¶ms, optval, len)) 7549 goto out; 7550 7551 asoc = sctp_id2assoc(sk, params.assoc_id); 7552 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7553 sctp_style(sk, UDP)) { 7554 retval = -EINVAL; 7555 goto out; 7556 } 7557 7558 params.assoc_value = asoc ? asoc->strreset_enable 7559 : sctp_sk(sk)->ep->strreset_enable; 7560 7561 if (put_user(len, optlen)) 7562 goto out; 7563 7564 if (copy_to_user(optval, ¶ms, len)) 7565 goto out; 7566 7567 retval = 0; 7568 7569 out: 7570 return retval; 7571 } 7572 7573 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7574 char __user *optval, 7575 int __user *optlen) 7576 { 7577 struct sctp_assoc_value params; 7578 struct sctp_association *asoc; 7579 int retval = -EFAULT; 7580 7581 if (len < sizeof(params)) { 7582 retval = -EINVAL; 7583 goto out; 7584 } 7585 7586 len = sizeof(params); 7587 if (copy_from_user(¶ms, optval, len)) 7588 goto out; 7589 7590 asoc = sctp_id2assoc(sk, params.assoc_id); 7591 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7592 sctp_style(sk, UDP)) { 7593 retval = -EINVAL; 7594 goto out; 7595 } 7596 7597 params.assoc_value = asoc ? sctp_sched_get_sched(asoc) 7598 : sctp_sk(sk)->default_ss; 7599 7600 if (put_user(len, optlen)) 7601 goto out; 7602 7603 if (copy_to_user(optval, ¶ms, len)) 7604 goto out; 7605 7606 retval = 0; 7607 7608 out: 7609 return retval; 7610 } 7611 7612 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7613 char __user *optval, 7614 int __user *optlen) 7615 { 7616 struct sctp_stream_value params; 7617 struct sctp_association *asoc; 7618 int retval = -EFAULT; 7619 7620 if (len < sizeof(params)) { 7621 retval = -EINVAL; 7622 goto out; 7623 } 7624 7625 len = sizeof(params); 7626 if (copy_from_user(¶ms, optval, len)) 7627 goto out; 7628 7629 asoc = sctp_id2assoc(sk, params.assoc_id); 7630 if (!asoc) { 7631 retval = -EINVAL; 7632 goto out; 7633 } 7634 7635 retval = sctp_sched_get_value(asoc, params.stream_id, 7636 ¶ms.stream_value); 7637 if (retval) 7638 goto out; 7639 7640 if (put_user(len, optlen)) { 7641 retval = -EFAULT; 7642 goto out; 7643 } 7644 7645 if (copy_to_user(optval, ¶ms, len)) { 7646 retval = -EFAULT; 7647 goto out; 7648 } 7649 7650 out: 7651 return retval; 7652 } 7653 7654 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7655 char __user *optval, 7656 int __user *optlen) 7657 { 7658 struct sctp_assoc_value params; 7659 struct sctp_association *asoc; 7660 int retval = -EFAULT; 7661 7662 if (len < sizeof(params)) { 7663 retval = -EINVAL; 7664 goto out; 7665 } 7666 7667 len = sizeof(params); 7668 if (copy_from_user(¶ms, optval, len)) 7669 goto out; 7670 7671 asoc = sctp_id2assoc(sk, params.assoc_id); 7672 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7673 sctp_style(sk, UDP)) { 7674 retval = -EINVAL; 7675 goto out; 7676 } 7677 7678 params.assoc_value = asoc ? asoc->intl_enable 7679 : sctp_sk(sk)->strm_interleave; 7680 7681 if (put_user(len, optlen)) 7682 goto out; 7683 7684 if (copy_to_user(optval, ¶ms, len)) 7685 goto out; 7686 7687 retval = 0; 7688 7689 out: 7690 return retval; 7691 } 7692 7693 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7694 char __user *optval, 7695 int __user *optlen) 7696 { 7697 int val; 7698 7699 if (len < sizeof(int)) 7700 return -EINVAL; 7701 7702 len = sizeof(int); 7703 val = sctp_sk(sk)->reuse; 7704 if (put_user(len, optlen)) 7705 return -EFAULT; 7706 7707 if (copy_to_user(optval, &val, len)) 7708 return -EFAULT; 7709 7710 return 0; 7711 } 7712 7713 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval, 7714 int __user *optlen) 7715 { 7716 struct sctp_association *asoc; 7717 struct sctp_event param; 7718 __u16 subscribe; 7719 7720 if (len < sizeof(param)) 7721 return -EINVAL; 7722 7723 len = sizeof(param); 7724 if (copy_from_user(¶m, optval, len)) 7725 return -EFAULT; 7726 7727 if (param.se_type < SCTP_SN_TYPE_BASE || 7728 param.se_type > SCTP_SN_TYPE_MAX) 7729 return -EINVAL; 7730 7731 asoc = sctp_id2assoc(sk, param.se_assoc_id); 7732 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC && 7733 sctp_style(sk, UDP)) 7734 return -EINVAL; 7735 7736 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe; 7737 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type); 7738 7739 if (put_user(len, optlen)) 7740 return -EFAULT; 7741 7742 if (copy_to_user(optval, ¶m, len)) 7743 return -EFAULT; 7744 7745 return 0; 7746 } 7747 7748 static int sctp_getsockopt(struct sock *sk, int level, int optname, 7749 char __user *optval, int __user *optlen) 7750 { 7751 int retval = 0; 7752 int len; 7753 7754 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 7755 7756 /* I can hardly begin to describe how wrong this is. This is 7757 * so broken as to be worse than useless. The API draft 7758 * REALLY is NOT helpful here... I am not convinced that the 7759 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 7760 * are at all well-founded. 7761 */ 7762 if (level != SOL_SCTP) { 7763 struct sctp_af *af = sctp_sk(sk)->pf->af; 7764 7765 retval = af->getsockopt(sk, level, optname, optval, optlen); 7766 return retval; 7767 } 7768 7769 if (get_user(len, optlen)) 7770 return -EFAULT; 7771 7772 if (len < 0) 7773 return -EINVAL; 7774 7775 lock_sock(sk); 7776 7777 switch (optname) { 7778 case SCTP_STATUS: 7779 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 7780 break; 7781 case SCTP_DISABLE_FRAGMENTS: 7782 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 7783 optlen); 7784 break; 7785 case SCTP_EVENTS: 7786 retval = sctp_getsockopt_events(sk, len, optval, optlen); 7787 break; 7788 case SCTP_AUTOCLOSE: 7789 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 7790 break; 7791 case SCTP_SOCKOPT_PEELOFF: 7792 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 7793 break; 7794 case SCTP_SOCKOPT_PEELOFF_FLAGS: 7795 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 7796 break; 7797 case SCTP_PEER_ADDR_PARAMS: 7798 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 7799 optlen); 7800 break; 7801 case SCTP_DELAYED_SACK: 7802 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 7803 optlen); 7804 break; 7805 case SCTP_INITMSG: 7806 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 7807 break; 7808 case SCTP_GET_PEER_ADDRS: 7809 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 7810 optlen); 7811 break; 7812 case SCTP_GET_LOCAL_ADDRS: 7813 retval = sctp_getsockopt_local_addrs(sk, len, optval, 7814 optlen); 7815 break; 7816 case SCTP_SOCKOPT_CONNECTX3: 7817 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 7818 break; 7819 case SCTP_DEFAULT_SEND_PARAM: 7820 retval = sctp_getsockopt_default_send_param(sk, len, 7821 optval, optlen); 7822 break; 7823 case SCTP_DEFAULT_SNDINFO: 7824 retval = sctp_getsockopt_default_sndinfo(sk, len, 7825 optval, optlen); 7826 break; 7827 case SCTP_PRIMARY_ADDR: 7828 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 7829 break; 7830 case SCTP_NODELAY: 7831 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 7832 break; 7833 case SCTP_RTOINFO: 7834 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 7835 break; 7836 case SCTP_ASSOCINFO: 7837 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 7838 break; 7839 case SCTP_I_WANT_MAPPED_V4_ADDR: 7840 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 7841 break; 7842 case SCTP_MAXSEG: 7843 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 7844 break; 7845 case SCTP_GET_PEER_ADDR_INFO: 7846 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 7847 optlen); 7848 break; 7849 case SCTP_ADAPTATION_LAYER: 7850 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 7851 optlen); 7852 break; 7853 case SCTP_CONTEXT: 7854 retval = sctp_getsockopt_context(sk, len, optval, optlen); 7855 break; 7856 case SCTP_FRAGMENT_INTERLEAVE: 7857 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 7858 optlen); 7859 break; 7860 case SCTP_PARTIAL_DELIVERY_POINT: 7861 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 7862 optlen); 7863 break; 7864 case SCTP_MAX_BURST: 7865 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 7866 break; 7867 case SCTP_AUTH_KEY: 7868 case SCTP_AUTH_CHUNK: 7869 case SCTP_AUTH_DELETE_KEY: 7870 case SCTP_AUTH_DEACTIVATE_KEY: 7871 retval = -EOPNOTSUPP; 7872 break; 7873 case SCTP_HMAC_IDENT: 7874 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 7875 break; 7876 case SCTP_AUTH_ACTIVE_KEY: 7877 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 7878 break; 7879 case SCTP_PEER_AUTH_CHUNKS: 7880 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 7881 optlen); 7882 break; 7883 case SCTP_LOCAL_AUTH_CHUNKS: 7884 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 7885 optlen); 7886 break; 7887 case SCTP_GET_ASSOC_NUMBER: 7888 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 7889 break; 7890 case SCTP_GET_ASSOC_ID_LIST: 7891 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 7892 break; 7893 case SCTP_AUTO_ASCONF: 7894 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 7895 break; 7896 case SCTP_PEER_ADDR_THLDS: 7897 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 7898 break; 7899 case SCTP_GET_ASSOC_STATS: 7900 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 7901 break; 7902 case SCTP_RECVRCVINFO: 7903 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 7904 break; 7905 case SCTP_RECVNXTINFO: 7906 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 7907 break; 7908 case SCTP_PR_SUPPORTED: 7909 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 7910 break; 7911 case SCTP_DEFAULT_PRINFO: 7912 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 7913 optlen); 7914 break; 7915 case SCTP_PR_ASSOC_STATUS: 7916 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 7917 optlen); 7918 break; 7919 case SCTP_PR_STREAM_STATUS: 7920 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 7921 optlen); 7922 break; 7923 case SCTP_RECONFIG_SUPPORTED: 7924 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 7925 optlen); 7926 break; 7927 case SCTP_ENABLE_STREAM_RESET: 7928 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 7929 optlen); 7930 break; 7931 case SCTP_STREAM_SCHEDULER: 7932 retval = sctp_getsockopt_scheduler(sk, len, optval, 7933 optlen); 7934 break; 7935 case SCTP_STREAM_SCHEDULER_VALUE: 7936 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 7937 optlen); 7938 break; 7939 case SCTP_INTERLEAVING_SUPPORTED: 7940 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 7941 optlen); 7942 break; 7943 case SCTP_REUSE_PORT: 7944 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 7945 break; 7946 case SCTP_EVENT: 7947 retval = sctp_getsockopt_event(sk, len, optval, optlen); 7948 break; 7949 default: 7950 retval = -ENOPROTOOPT; 7951 break; 7952 } 7953 7954 release_sock(sk); 7955 return retval; 7956 } 7957 7958 static int sctp_hash(struct sock *sk) 7959 { 7960 /* STUB */ 7961 return 0; 7962 } 7963 7964 static void sctp_unhash(struct sock *sk) 7965 { 7966 /* STUB */ 7967 } 7968 7969 /* Check if port is acceptable. Possibly find first available port. 7970 * 7971 * The port hash table (contained in the 'global' SCTP protocol storage 7972 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 7973 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 7974 * list (the list number is the port number hashed out, so as you 7975 * would expect from a hash function, all the ports in a given list have 7976 * such a number that hashes out to the same list number; you were 7977 * expecting that, right?); so each list has a set of ports, with a 7978 * link to the socket (struct sock) that uses it, the port number and 7979 * a fastreuse flag (FIXME: NPI ipg). 7980 */ 7981 static struct sctp_bind_bucket *sctp_bucket_create( 7982 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 7983 7984 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 7985 { 7986 struct sctp_sock *sp = sctp_sk(sk); 7987 bool reuse = (sk->sk_reuse || sp->reuse); 7988 struct sctp_bind_hashbucket *head; /* hash list */ 7989 kuid_t uid = sock_i_uid(sk); 7990 struct sctp_bind_bucket *pp; 7991 unsigned short snum; 7992 int ret; 7993 7994 snum = ntohs(addr->v4.sin_port); 7995 7996 pr_debug("%s: begins, snum:%d\n", __func__, snum); 7997 7998 local_bh_disable(); 7999 8000 if (snum == 0) { 8001 /* Search for an available port. */ 8002 int low, high, remaining, index; 8003 unsigned int rover; 8004 struct net *net = sock_net(sk); 8005 8006 inet_get_local_port_range(net, &low, &high); 8007 remaining = (high - low) + 1; 8008 rover = prandom_u32() % remaining + low; 8009 8010 do { 8011 rover++; 8012 if ((rover < low) || (rover > high)) 8013 rover = low; 8014 if (inet_is_local_reserved_port(net, rover)) 8015 continue; 8016 index = sctp_phashfn(sock_net(sk), rover); 8017 head = &sctp_port_hashtable[index]; 8018 spin_lock(&head->lock); 8019 sctp_for_each_hentry(pp, &head->chain) 8020 if ((pp->port == rover) && 8021 net_eq(sock_net(sk), pp->net)) 8022 goto next; 8023 break; 8024 next: 8025 spin_unlock(&head->lock); 8026 } while (--remaining > 0); 8027 8028 /* Exhausted local port range during search? */ 8029 ret = 1; 8030 if (remaining <= 0) 8031 goto fail; 8032 8033 /* OK, here is the one we will use. HEAD (the port 8034 * hash table list entry) is non-NULL and we hold it's 8035 * mutex. 8036 */ 8037 snum = rover; 8038 } else { 8039 /* We are given an specific port number; we verify 8040 * that it is not being used. If it is used, we will 8041 * exahust the search in the hash list corresponding 8042 * to the port number (snum) - we detect that with the 8043 * port iterator, pp being NULL. 8044 */ 8045 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 8046 spin_lock(&head->lock); 8047 sctp_for_each_hentry(pp, &head->chain) { 8048 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 8049 goto pp_found; 8050 } 8051 } 8052 pp = NULL; 8053 goto pp_not_found; 8054 pp_found: 8055 if (!hlist_empty(&pp->owner)) { 8056 /* We had a port hash table hit - there is an 8057 * available port (pp != NULL) and it is being 8058 * used by other socket (pp->owner not empty); that other 8059 * socket is going to be sk2. 8060 */ 8061 struct sock *sk2; 8062 8063 pr_debug("%s: found a possible match\n", __func__); 8064 8065 if ((pp->fastreuse && reuse && 8066 sk->sk_state != SCTP_SS_LISTENING) || 8067 (pp->fastreuseport && sk->sk_reuseport && 8068 uid_eq(pp->fastuid, uid))) 8069 goto success; 8070 8071 /* Run through the list of sockets bound to the port 8072 * (pp->port) [via the pointers bind_next and 8073 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 8074 * we get the endpoint they describe and run through 8075 * the endpoint's list of IP (v4 or v6) addresses, 8076 * comparing each of the addresses with the address of 8077 * the socket sk. If we find a match, then that means 8078 * that this port/socket (sk) combination are already 8079 * in an endpoint. 8080 */ 8081 sk_for_each_bound(sk2, &pp->owner) { 8082 struct sctp_sock *sp2 = sctp_sk(sk2); 8083 struct sctp_endpoint *ep2 = sp2->ep; 8084 8085 if (sk == sk2 || 8086 (reuse && (sk2->sk_reuse || sp2->reuse) && 8087 sk2->sk_state != SCTP_SS_LISTENING) || 8088 (sk->sk_reuseport && sk2->sk_reuseport && 8089 uid_eq(uid, sock_i_uid(sk2)))) 8090 continue; 8091 8092 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, 8093 addr, sp2, sp)) { 8094 ret = (long)sk2; 8095 goto fail_unlock; 8096 } 8097 } 8098 8099 pr_debug("%s: found a match\n", __func__); 8100 } 8101 pp_not_found: 8102 /* If there was a hash table miss, create a new port. */ 8103 ret = 1; 8104 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 8105 goto fail_unlock; 8106 8107 /* In either case (hit or miss), make sure fastreuse is 1 only 8108 * if sk->sk_reuse is too (that is, if the caller requested 8109 * SO_REUSEADDR on this socket -sk-). 8110 */ 8111 if (hlist_empty(&pp->owner)) { 8112 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 8113 pp->fastreuse = 1; 8114 else 8115 pp->fastreuse = 0; 8116 8117 if (sk->sk_reuseport) { 8118 pp->fastreuseport = 1; 8119 pp->fastuid = uid; 8120 } else { 8121 pp->fastreuseport = 0; 8122 } 8123 } else { 8124 if (pp->fastreuse && 8125 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 8126 pp->fastreuse = 0; 8127 8128 if (pp->fastreuseport && 8129 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid))) 8130 pp->fastreuseport = 0; 8131 } 8132 8133 /* We are set, so fill up all the data in the hash table 8134 * entry, tie the socket list information with the rest of the 8135 * sockets FIXME: Blurry, NPI (ipg). 8136 */ 8137 success: 8138 if (!sp->bind_hash) { 8139 inet_sk(sk)->inet_num = snum; 8140 sk_add_bind_node(sk, &pp->owner); 8141 sp->bind_hash = pp; 8142 } 8143 ret = 0; 8144 8145 fail_unlock: 8146 spin_unlock(&head->lock); 8147 8148 fail: 8149 local_bh_enable(); 8150 return ret; 8151 } 8152 8153 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 8154 * port is requested. 8155 */ 8156 static int sctp_get_port(struct sock *sk, unsigned short snum) 8157 { 8158 union sctp_addr addr; 8159 struct sctp_af *af = sctp_sk(sk)->pf->af; 8160 8161 /* Set up a dummy address struct from the sk. */ 8162 af->from_sk(&addr, sk); 8163 addr.v4.sin_port = htons(snum); 8164 8165 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 8166 return !!sctp_get_port_local(sk, &addr); 8167 } 8168 8169 /* 8170 * Move a socket to LISTENING state. 8171 */ 8172 static int sctp_listen_start(struct sock *sk, int backlog) 8173 { 8174 struct sctp_sock *sp = sctp_sk(sk); 8175 struct sctp_endpoint *ep = sp->ep; 8176 struct crypto_shash *tfm = NULL; 8177 char alg[32]; 8178 8179 /* Allocate HMAC for generating cookie. */ 8180 if (!sp->hmac && sp->sctp_hmac_alg) { 8181 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 8182 tfm = crypto_alloc_shash(alg, 0, 0); 8183 if (IS_ERR(tfm)) { 8184 net_info_ratelimited("failed to load transform for %s: %ld\n", 8185 sp->sctp_hmac_alg, PTR_ERR(tfm)); 8186 return -ENOSYS; 8187 } 8188 sctp_sk(sk)->hmac = tfm; 8189 } 8190 8191 /* 8192 * If a bind() or sctp_bindx() is not called prior to a listen() 8193 * call that allows new associations to be accepted, the system 8194 * picks an ephemeral port and will choose an address set equivalent 8195 * to binding with a wildcard address. 8196 * 8197 * This is not currently spelled out in the SCTP sockets 8198 * extensions draft, but follows the practice as seen in TCP 8199 * sockets. 8200 * 8201 */ 8202 inet_sk_set_state(sk, SCTP_SS_LISTENING); 8203 if (!ep->base.bind_addr.port) { 8204 if (sctp_autobind(sk)) 8205 return -EAGAIN; 8206 } else { 8207 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 8208 inet_sk_set_state(sk, SCTP_SS_CLOSED); 8209 return -EADDRINUSE; 8210 } 8211 } 8212 8213 sk->sk_max_ack_backlog = backlog; 8214 return sctp_hash_endpoint(ep); 8215 } 8216 8217 /* 8218 * 4.1.3 / 5.1.3 listen() 8219 * 8220 * By default, new associations are not accepted for UDP style sockets. 8221 * An application uses listen() to mark a socket as being able to 8222 * accept new associations. 8223 * 8224 * On TCP style sockets, applications use listen() to ready the SCTP 8225 * endpoint for accepting inbound associations. 8226 * 8227 * On both types of endpoints a backlog of '0' disables listening. 8228 * 8229 * Move a socket to LISTENING state. 8230 */ 8231 int sctp_inet_listen(struct socket *sock, int backlog) 8232 { 8233 struct sock *sk = sock->sk; 8234 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 8235 int err = -EINVAL; 8236 8237 if (unlikely(backlog < 0)) 8238 return err; 8239 8240 lock_sock(sk); 8241 8242 /* Peeled-off sockets are not allowed to listen(). */ 8243 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 8244 goto out; 8245 8246 if (sock->state != SS_UNCONNECTED) 8247 goto out; 8248 8249 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 8250 goto out; 8251 8252 /* If backlog is zero, disable listening. */ 8253 if (!backlog) { 8254 if (sctp_sstate(sk, CLOSED)) 8255 goto out; 8256 8257 err = 0; 8258 sctp_unhash_endpoint(ep); 8259 sk->sk_state = SCTP_SS_CLOSED; 8260 if (sk->sk_reuse || sctp_sk(sk)->reuse) 8261 sctp_sk(sk)->bind_hash->fastreuse = 1; 8262 goto out; 8263 } 8264 8265 /* If we are already listening, just update the backlog */ 8266 if (sctp_sstate(sk, LISTENING)) 8267 sk->sk_max_ack_backlog = backlog; 8268 else { 8269 err = sctp_listen_start(sk, backlog); 8270 if (err) 8271 goto out; 8272 } 8273 8274 err = 0; 8275 out: 8276 release_sock(sk); 8277 return err; 8278 } 8279 8280 /* 8281 * This function is done by modeling the current datagram_poll() and the 8282 * tcp_poll(). Note that, based on these implementations, we don't 8283 * lock the socket in this function, even though it seems that, 8284 * ideally, locking or some other mechanisms can be used to ensure 8285 * the integrity of the counters (sndbuf and wmem_alloc) used 8286 * in this place. We assume that we don't need locks either until proven 8287 * otherwise. 8288 * 8289 * Another thing to note is that we include the Async I/O support 8290 * here, again, by modeling the current TCP/UDP code. We don't have 8291 * a good way to test with it yet. 8292 */ 8293 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 8294 { 8295 struct sock *sk = sock->sk; 8296 struct sctp_sock *sp = sctp_sk(sk); 8297 __poll_t mask; 8298 8299 poll_wait(file, sk_sleep(sk), wait); 8300 8301 sock_rps_record_flow(sk); 8302 8303 /* A TCP-style listening socket becomes readable when the accept queue 8304 * is not empty. 8305 */ 8306 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 8307 return (!list_empty(&sp->ep->asocs)) ? 8308 (EPOLLIN | EPOLLRDNORM) : 0; 8309 8310 mask = 0; 8311 8312 /* Is there any exceptional events? */ 8313 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 8314 mask |= EPOLLERR | 8315 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 8316 if (sk->sk_shutdown & RCV_SHUTDOWN) 8317 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 8318 if (sk->sk_shutdown == SHUTDOWN_MASK) 8319 mask |= EPOLLHUP; 8320 8321 /* Is it readable? Reconsider this code with TCP-style support. */ 8322 if (!skb_queue_empty(&sk->sk_receive_queue)) 8323 mask |= EPOLLIN | EPOLLRDNORM; 8324 8325 /* The association is either gone or not ready. */ 8326 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 8327 return mask; 8328 8329 /* Is it writable? */ 8330 if (sctp_writeable(sk)) { 8331 mask |= EPOLLOUT | EPOLLWRNORM; 8332 } else { 8333 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 8334 /* 8335 * Since the socket is not locked, the buffer 8336 * might be made available after the writeable check and 8337 * before the bit is set. This could cause a lost I/O 8338 * signal. tcp_poll() has a race breaker for this race 8339 * condition. Based on their implementation, we put 8340 * in the following code to cover it as well. 8341 */ 8342 if (sctp_writeable(sk)) 8343 mask |= EPOLLOUT | EPOLLWRNORM; 8344 } 8345 return mask; 8346 } 8347 8348 /******************************************************************** 8349 * 2nd Level Abstractions 8350 ********************************************************************/ 8351 8352 static struct sctp_bind_bucket *sctp_bucket_create( 8353 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 8354 { 8355 struct sctp_bind_bucket *pp; 8356 8357 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 8358 if (pp) { 8359 SCTP_DBG_OBJCNT_INC(bind_bucket); 8360 pp->port = snum; 8361 pp->fastreuse = 0; 8362 INIT_HLIST_HEAD(&pp->owner); 8363 pp->net = net; 8364 hlist_add_head(&pp->node, &head->chain); 8365 } 8366 return pp; 8367 } 8368 8369 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 8370 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 8371 { 8372 if (pp && hlist_empty(&pp->owner)) { 8373 __hlist_del(&pp->node); 8374 kmem_cache_free(sctp_bucket_cachep, pp); 8375 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8376 } 8377 } 8378 8379 /* Release this socket's reference to a local port. */ 8380 static inline void __sctp_put_port(struct sock *sk) 8381 { 8382 struct sctp_bind_hashbucket *head = 8383 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8384 inet_sk(sk)->inet_num)]; 8385 struct sctp_bind_bucket *pp; 8386 8387 spin_lock(&head->lock); 8388 pp = sctp_sk(sk)->bind_hash; 8389 __sk_del_bind_node(sk); 8390 sctp_sk(sk)->bind_hash = NULL; 8391 inet_sk(sk)->inet_num = 0; 8392 sctp_bucket_destroy(pp); 8393 spin_unlock(&head->lock); 8394 } 8395 8396 void sctp_put_port(struct sock *sk) 8397 { 8398 local_bh_disable(); 8399 __sctp_put_port(sk); 8400 local_bh_enable(); 8401 } 8402 8403 /* 8404 * The system picks an ephemeral port and choose an address set equivalent 8405 * to binding with a wildcard address. 8406 * One of those addresses will be the primary address for the association. 8407 * This automatically enables the multihoming capability of SCTP. 8408 */ 8409 static int sctp_autobind(struct sock *sk) 8410 { 8411 union sctp_addr autoaddr; 8412 struct sctp_af *af; 8413 __be16 port; 8414 8415 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8416 af = sctp_sk(sk)->pf->af; 8417 8418 port = htons(inet_sk(sk)->inet_num); 8419 af->inaddr_any(&autoaddr, port); 8420 8421 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8422 } 8423 8424 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8425 * 8426 * From RFC 2292 8427 * 4.2 The cmsghdr Structure * 8428 * 8429 * When ancillary data is sent or received, any number of ancillary data 8430 * objects can be specified by the msg_control and msg_controllen members of 8431 * the msghdr structure, because each object is preceded by 8432 * a cmsghdr structure defining the object's length (the cmsg_len member). 8433 * Historically Berkeley-derived implementations have passed only one object 8434 * at a time, but this API allows multiple objects to be 8435 * passed in a single call to sendmsg() or recvmsg(). The following example 8436 * shows two ancillary data objects in a control buffer. 8437 * 8438 * |<--------------------------- msg_controllen -------------------------->| 8439 * | | 8440 * 8441 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8442 * 8443 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8444 * | | | 8445 * 8446 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8447 * 8448 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8449 * | | | | | 8450 * 8451 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8452 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8453 * 8454 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8455 * 8456 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8457 * ^ 8458 * | 8459 * 8460 * msg_control 8461 * points here 8462 */ 8463 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8464 { 8465 struct msghdr *my_msg = (struct msghdr *)msg; 8466 struct cmsghdr *cmsg; 8467 8468 for_each_cmsghdr(cmsg, my_msg) { 8469 if (!CMSG_OK(my_msg, cmsg)) 8470 return -EINVAL; 8471 8472 /* Should we parse this header or ignore? */ 8473 if (cmsg->cmsg_level != IPPROTO_SCTP) 8474 continue; 8475 8476 /* Strictly check lengths following example in SCM code. */ 8477 switch (cmsg->cmsg_type) { 8478 case SCTP_INIT: 8479 /* SCTP Socket API Extension 8480 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8481 * 8482 * This cmsghdr structure provides information for 8483 * initializing new SCTP associations with sendmsg(). 8484 * The SCTP_INITMSG socket option uses this same data 8485 * structure. This structure is not used for 8486 * recvmsg(). 8487 * 8488 * cmsg_level cmsg_type cmsg_data[] 8489 * ------------ ------------ ---------------------- 8490 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8491 */ 8492 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8493 return -EINVAL; 8494 8495 cmsgs->init = CMSG_DATA(cmsg); 8496 break; 8497 8498 case SCTP_SNDRCV: 8499 /* SCTP Socket API Extension 8500 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8501 * 8502 * This cmsghdr structure specifies SCTP options for 8503 * sendmsg() and describes SCTP header information 8504 * about a received message through recvmsg(). 8505 * 8506 * cmsg_level cmsg_type cmsg_data[] 8507 * ------------ ------------ ---------------------- 8508 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8509 */ 8510 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8511 return -EINVAL; 8512 8513 cmsgs->srinfo = CMSG_DATA(cmsg); 8514 8515 if (cmsgs->srinfo->sinfo_flags & 8516 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8517 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8518 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8519 return -EINVAL; 8520 break; 8521 8522 case SCTP_SNDINFO: 8523 /* SCTP Socket API Extension 8524 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8525 * 8526 * This cmsghdr structure specifies SCTP options for 8527 * sendmsg(). This structure and SCTP_RCVINFO replaces 8528 * SCTP_SNDRCV which has been deprecated. 8529 * 8530 * cmsg_level cmsg_type cmsg_data[] 8531 * ------------ ------------ --------------------- 8532 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8533 */ 8534 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8535 return -EINVAL; 8536 8537 cmsgs->sinfo = CMSG_DATA(cmsg); 8538 8539 if (cmsgs->sinfo->snd_flags & 8540 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8541 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8542 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8543 return -EINVAL; 8544 break; 8545 case SCTP_PRINFO: 8546 /* SCTP Socket API Extension 8547 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8548 * 8549 * This cmsghdr structure specifies SCTP options for sendmsg(). 8550 * 8551 * cmsg_level cmsg_type cmsg_data[] 8552 * ------------ ------------ --------------------- 8553 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8554 */ 8555 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8556 return -EINVAL; 8557 8558 cmsgs->prinfo = CMSG_DATA(cmsg); 8559 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8560 return -EINVAL; 8561 8562 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8563 cmsgs->prinfo->pr_value = 0; 8564 break; 8565 case SCTP_AUTHINFO: 8566 /* SCTP Socket API Extension 8567 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8568 * 8569 * This cmsghdr structure specifies SCTP options for sendmsg(). 8570 * 8571 * cmsg_level cmsg_type cmsg_data[] 8572 * ------------ ------------ --------------------- 8573 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8574 */ 8575 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8576 return -EINVAL; 8577 8578 cmsgs->authinfo = CMSG_DATA(cmsg); 8579 break; 8580 case SCTP_DSTADDRV4: 8581 case SCTP_DSTADDRV6: 8582 /* SCTP Socket API Extension 8583 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8584 * 8585 * This cmsghdr structure specifies SCTP options for sendmsg(). 8586 * 8587 * cmsg_level cmsg_type cmsg_data[] 8588 * ------------ ------------ --------------------- 8589 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8590 * ------------ ------------ --------------------- 8591 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8592 */ 8593 cmsgs->addrs_msg = my_msg; 8594 break; 8595 default: 8596 return -EINVAL; 8597 } 8598 } 8599 8600 return 0; 8601 } 8602 8603 /* 8604 * Wait for a packet.. 8605 * Note: This function is the same function as in core/datagram.c 8606 * with a few modifications to make lksctp work. 8607 */ 8608 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8609 { 8610 int error; 8611 DEFINE_WAIT(wait); 8612 8613 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8614 8615 /* Socket errors? */ 8616 error = sock_error(sk); 8617 if (error) 8618 goto out; 8619 8620 if (!skb_queue_empty(&sk->sk_receive_queue)) 8621 goto ready; 8622 8623 /* Socket shut down? */ 8624 if (sk->sk_shutdown & RCV_SHUTDOWN) 8625 goto out; 8626 8627 /* Sequenced packets can come disconnected. If so we report the 8628 * problem. 8629 */ 8630 error = -ENOTCONN; 8631 8632 /* Is there a good reason to think that we may receive some data? */ 8633 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8634 goto out; 8635 8636 /* Handle signals. */ 8637 if (signal_pending(current)) 8638 goto interrupted; 8639 8640 /* Let another process have a go. Since we are going to sleep 8641 * anyway. Note: This may cause odd behaviors if the message 8642 * does not fit in the user's buffer, but this seems to be the 8643 * only way to honor MSG_DONTWAIT realistically. 8644 */ 8645 release_sock(sk); 8646 *timeo_p = schedule_timeout(*timeo_p); 8647 lock_sock(sk); 8648 8649 ready: 8650 finish_wait(sk_sleep(sk), &wait); 8651 return 0; 8652 8653 interrupted: 8654 error = sock_intr_errno(*timeo_p); 8655 8656 out: 8657 finish_wait(sk_sleep(sk), &wait); 8658 *err = error; 8659 return error; 8660 } 8661 8662 /* Receive a datagram. 8663 * Note: This is pretty much the same routine as in core/datagram.c 8664 * with a few changes to make lksctp work. 8665 */ 8666 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 8667 int noblock, int *err) 8668 { 8669 int error; 8670 struct sk_buff *skb; 8671 long timeo; 8672 8673 timeo = sock_rcvtimeo(sk, noblock); 8674 8675 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 8676 MAX_SCHEDULE_TIMEOUT); 8677 8678 do { 8679 /* Again only user level code calls this function, 8680 * so nothing interrupt level 8681 * will suddenly eat the receive_queue. 8682 * 8683 * Look at current nfs client by the way... 8684 * However, this function was correct in any case. 8) 8685 */ 8686 if (flags & MSG_PEEK) { 8687 skb = skb_peek(&sk->sk_receive_queue); 8688 if (skb) 8689 refcount_inc(&skb->users); 8690 } else { 8691 skb = __skb_dequeue(&sk->sk_receive_queue); 8692 } 8693 8694 if (skb) 8695 return skb; 8696 8697 /* Caller is allowed not to check sk->sk_err before calling. */ 8698 error = sock_error(sk); 8699 if (error) 8700 goto no_packet; 8701 8702 if (sk->sk_shutdown & RCV_SHUTDOWN) 8703 break; 8704 8705 if (sk_can_busy_loop(sk)) { 8706 sk_busy_loop(sk, noblock); 8707 8708 if (!skb_queue_empty(&sk->sk_receive_queue)) 8709 continue; 8710 } 8711 8712 /* User doesn't want to wait. */ 8713 error = -EAGAIN; 8714 if (!timeo) 8715 goto no_packet; 8716 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 8717 8718 return NULL; 8719 8720 no_packet: 8721 *err = error; 8722 return NULL; 8723 } 8724 8725 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 8726 static void __sctp_write_space(struct sctp_association *asoc) 8727 { 8728 struct sock *sk = asoc->base.sk; 8729 8730 if (sctp_wspace(asoc) <= 0) 8731 return; 8732 8733 if (waitqueue_active(&asoc->wait)) 8734 wake_up_interruptible(&asoc->wait); 8735 8736 if (sctp_writeable(sk)) { 8737 struct socket_wq *wq; 8738 8739 rcu_read_lock(); 8740 wq = rcu_dereference(sk->sk_wq); 8741 if (wq) { 8742 if (waitqueue_active(&wq->wait)) 8743 wake_up_interruptible(&wq->wait); 8744 8745 /* Note that we try to include the Async I/O support 8746 * here by modeling from the current TCP/UDP code. 8747 * We have not tested with it yet. 8748 */ 8749 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 8750 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 8751 } 8752 rcu_read_unlock(); 8753 } 8754 } 8755 8756 static void sctp_wake_up_waiters(struct sock *sk, 8757 struct sctp_association *asoc) 8758 { 8759 struct sctp_association *tmp = asoc; 8760 8761 /* We do accounting for the sndbuf space per association, 8762 * so we only need to wake our own association. 8763 */ 8764 if (asoc->ep->sndbuf_policy) 8765 return __sctp_write_space(asoc); 8766 8767 /* If association goes down and is just flushing its 8768 * outq, then just normally notify others. 8769 */ 8770 if (asoc->base.dead) 8771 return sctp_write_space(sk); 8772 8773 /* Accounting for the sndbuf space is per socket, so we 8774 * need to wake up others, try to be fair and in case of 8775 * other associations, let them have a go first instead 8776 * of just doing a sctp_write_space() call. 8777 * 8778 * Note that we reach sctp_wake_up_waiters() only when 8779 * associations free up queued chunks, thus we are under 8780 * lock and the list of associations on a socket is 8781 * guaranteed not to change. 8782 */ 8783 for (tmp = list_next_entry(tmp, asocs); 1; 8784 tmp = list_next_entry(tmp, asocs)) { 8785 /* Manually skip the head element. */ 8786 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 8787 continue; 8788 /* Wake up association. */ 8789 __sctp_write_space(tmp); 8790 /* We've reached the end. */ 8791 if (tmp == asoc) 8792 break; 8793 } 8794 } 8795 8796 /* Do accounting for the sndbuf space. 8797 * Decrement the used sndbuf space of the corresponding association by the 8798 * data size which was just transmitted(freed). 8799 */ 8800 static void sctp_wfree(struct sk_buff *skb) 8801 { 8802 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 8803 struct sctp_association *asoc = chunk->asoc; 8804 struct sock *sk = asoc->base.sk; 8805 8806 sk_mem_uncharge(sk, skb->truesize); 8807 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk); 8808 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); 8809 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), 8810 &sk->sk_wmem_alloc)); 8811 8812 if (chunk->shkey) { 8813 struct sctp_shared_key *shkey = chunk->shkey; 8814 8815 /* refcnt == 2 and !list_empty mean after this release, it's 8816 * not being used anywhere, and it's time to notify userland 8817 * that this shkey can be freed if it's been deactivated. 8818 */ 8819 if (shkey->deactivated && !list_empty(&shkey->key_list) && 8820 refcount_read(&shkey->refcnt) == 2) { 8821 struct sctp_ulpevent *ev; 8822 8823 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 8824 SCTP_AUTH_FREE_KEY, 8825 GFP_KERNEL); 8826 if (ev) 8827 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 8828 } 8829 sctp_auth_shkey_release(chunk->shkey); 8830 } 8831 8832 sock_wfree(skb); 8833 sctp_wake_up_waiters(sk, asoc); 8834 8835 sctp_association_put(asoc); 8836 } 8837 8838 /* Do accounting for the receive space on the socket. 8839 * Accounting for the association is done in ulpevent.c 8840 * We set this as a destructor for the cloned data skbs so that 8841 * accounting is done at the correct time. 8842 */ 8843 void sctp_sock_rfree(struct sk_buff *skb) 8844 { 8845 struct sock *sk = skb->sk; 8846 struct sctp_ulpevent *event = sctp_skb2event(skb); 8847 8848 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 8849 8850 /* 8851 * Mimic the behavior of sock_rfree 8852 */ 8853 sk_mem_uncharge(sk, event->rmem_len); 8854 } 8855 8856 8857 /* Helper function to wait for space in the sndbuf. */ 8858 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 8859 size_t msg_len) 8860 { 8861 struct sock *sk = asoc->base.sk; 8862 long current_timeo = *timeo_p; 8863 DEFINE_WAIT(wait); 8864 int err = 0; 8865 8866 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 8867 *timeo_p, msg_len); 8868 8869 /* Increment the association's refcnt. */ 8870 sctp_association_hold(asoc); 8871 8872 /* Wait on the association specific sndbuf space. */ 8873 for (;;) { 8874 prepare_to_wait_exclusive(&asoc->wait, &wait, 8875 TASK_INTERRUPTIBLE); 8876 if (asoc->base.dead) 8877 goto do_dead; 8878 if (!*timeo_p) 8879 goto do_nonblock; 8880 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 8881 goto do_error; 8882 if (signal_pending(current)) 8883 goto do_interrupted; 8884 if ((int)msg_len <= sctp_wspace(asoc)) 8885 break; 8886 8887 /* Let another process have a go. Since we are going 8888 * to sleep anyway. 8889 */ 8890 release_sock(sk); 8891 current_timeo = schedule_timeout(current_timeo); 8892 lock_sock(sk); 8893 if (sk != asoc->base.sk) 8894 goto do_error; 8895 8896 *timeo_p = current_timeo; 8897 } 8898 8899 out: 8900 finish_wait(&asoc->wait, &wait); 8901 8902 /* Release the association's refcnt. */ 8903 sctp_association_put(asoc); 8904 8905 return err; 8906 8907 do_dead: 8908 err = -ESRCH; 8909 goto out; 8910 8911 do_error: 8912 err = -EPIPE; 8913 goto out; 8914 8915 do_interrupted: 8916 err = sock_intr_errno(*timeo_p); 8917 goto out; 8918 8919 do_nonblock: 8920 err = -EAGAIN; 8921 goto out; 8922 } 8923 8924 void sctp_data_ready(struct sock *sk) 8925 { 8926 struct socket_wq *wq; 8927 8928 rcu_read_lock(); 8929 wq = rcu_dereference(sk->sk_wq); 8930 if (skwq_has_sleeper(wq)) 8931 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 8932 EPOLLRDNORM | EPOLLRDBAND); 8933 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 8934 rcu_read_unlock(); 8935 } 8936 8937 /* If socket sndbuf has changed, wake up all per association waiters. */ 8938 void sctp_write_space(struct sock *sk) 8939 { 8940 struct sctp_association *asoc; 8941 8942 /* Wake up the tasks in each wait queue. */ 8943 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 8944 __sctp_write_space(asoc); 8945 } 8946 } 8947 8948 /* Is there any sndbuf space available on the socket? 8949 * 8950 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 8951 * associations on the same socket. For a UDP-style socket with 8952 * multiple associations, it is possible for it to be "unwriteable" 8953 * prematurely. I assume that this is acceptable because 8954 * a premature "unwriteable" is better than an accidental "writeable" which 8955 * would cause an unwanted block under certain circumstances. For the 1-1 8956 * UDP-style sockets or TCP-style sockets, this code should work. 8957 * - Daisy 8958 */ 8959 static bool sctp_writeable(struct sock *sk) 8960 { 8961 return sk->sk_sndbuf > sk->sk_wmem_queued; 8962 } 8963 8964 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 8965 * returns immediately with EINPROGRESS. 8966 */ 8967 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 8968 { 8969 struct sock *sk = asoc->base.sk; 8970 int err = 0; 8971 long current_timeo = *timeo_p; 8972 DEFINE_WAIT(wait); 8973 8974 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 8975 8976 /* Increment the association's refcnt. */ 8977 sctp_association_hold(asoc); 8978 8979 for (;;) { 8980 prepare_to_wait_exclusive(&asoc->wait, &wait, 8981 TASK_INTERRUPTIBLE); 8982 if (!*timeo_p) 8983 goto do_nonblock; 8984 if (sk->sk_shutdown & RCV_SHUTDOWN) 8985 break; 8986 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 8987 asoc->base.dead) 8988 goto do_error; 8989 if (signal_pending(current)) 8990 goto do_interrupted; 8991 8992 if (sctp_state(asoc, ESTABLISHED)) 8993 break; 8994 8995 /* Let another process have a go. Since we are going 8996 * to sleep anyway. 8997 */ 8998 release_sock(sk); 8999 current_timeo = schedule_timeout(current_timeo); 9000 lock_sock(sk); 9001 9002 *timeo_p = current_timeo; 9003 } 9004 9005 out: 9006 finish_wait(&asoc->wait, &wait); 9007 9008 /* Release the association's refcnt. */ 9009 sctp_association_put(asoc); 9010 9011 return err; 9012 9013 do_error: 9014 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 9015 err = -ETIMEDOUT; 9016 else 9017 err = -ECONNREFUSED; 9018 goto out; 9019 9020 do_interrupted: 9021 err = sock_intr_errno(*timeo_p); 9022 goto out; 9023 9024 do_nonblock: 9025 err = -EINPROGRESS; 9026 goto out; 9027 } 9028 9029 static int sctp_wait_for_accept(struct sock *sk, long timeo) 9030 { 9031 struct sctp_endpoint *ep; 9032 int err = 0; 9033 DEFINE_WAIT(wait); 9034 9035 ep = sctp_sk(sk)->ep; 9036 9037 9038 for (;;) { 9039 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 9040 TASK_INTERRUPTIBLE); 9041 9042 if (list_empty(&ep->asocs)) { 9043 release_sock(sk); 9044 timeo = schedule_timeout(timeo); 9045 lock_sock(sk); 9046 } 9047 9048 err = -EINVAL; 9049 if (!sctp_sstate(sk, LISTENING)) 9050 break; 9051 9052 err = 0; 9053 if (!list_empty(&ep->asocs)) 9054 break; 9055 9056 err = sock_intr_errno(timeo); 9057 if (signal_pending(current)) 9058 break; 9059 9060 err = -EAGAIN; 9061 if (!timeo) 9062 break; 9063 } 9064 9065 finish_wait(sk_sleep(sk), &wait); 9066 9067 return err; 9068 } 9069 9070 static void sctp_wait_for_close(struct sock *sk, long timeout) 9071 { 9072 DEFINE_WAIT(wait); 9073 9074 do { 9075 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 9076 if (list_empty(&sctp_sk(sk)->ep->asocs)) 9077 break; 9078 release_sock(sk); 9079 timeout = schedule_timeout(timeout); 9080 lock_sock(sk); 9081 } while (!signal_pending(current) && timeout); 9082 9083 finish_wait(sk_sleep(sk), &wait); 9084 } 9085 9086 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 9087 { 9088 struct sk_buff *frag; 9089 9090 if (!skb->data_len) 9091 goto done; 9092 9093 /* Don't forget the fragments. */ 9094 skb_walk_frags(skb, frag) 9095 sctp_skb_set_owner_r_frag(frag, sk); 9096 9097 done: 9098 sctp_skb_set_owner_r(skb, sk); 9099 } 9100 9101 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 9102 struct sctp_association *asoc) 9103 { 9104 struct inet_sock *inet = inet_sk(sk); 9105 struct inet_sock *newinet; 9106 struct sctp_sock *sp = sctp_sk(sk); 9107 struct sctp_endpoint *ep = sp->ep; 9108 9109 newsk->sk_type = sk->sk_type; 9110 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 9111 newsk->sk_flags = sk->sk_flags; 9112 newsk->sk_tsflags = sk->sk_tsflags; 9113 newsk->sk_no_check_tx = sk->sk_no_check_tx; 9114 newsk->sk_no_check_rx = sk->sk_no_check_rx; 9115 newsk->sk_reuse = sk->sk_reuse; 9116 sctp_sk(newsk)->reuse = sp->reuse; 9117 9118 newsk->sk_shutdown = sk->sk_shutdown; 9119 newsk->sk_destruct = sctp_destruct_sock; 9120 newsk->sk_family = sk->sk_family; 9121 newsk->sk_protocol = IPPROTO_SCTP; 9122 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 9123 newsk->sk_sndbuf = sk->sk_sndbuf; 9124 newsk->sk_rcvbuf = sk->sk_rcvbuf; 9125 newsk->sk_lingertime = sk->sk_lingertime; 9126 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 9127 newsk->sk_sndtimeo = sk->sk_sndtimeo; 9128 newsk->sk_rxhash = sk->sk_rxhash; 9129 9130 newinet = inet_sk(newsk); 9131 9132 /* Initialize sk's sport, dport, rcv_saddr and daddr for 9133 * getsockname() and getpeername() 9134 */ 9135 newinet->inet_sport = inet->inet_sport; 9136 newinet->inet_saddr = inet->inet_saddr; 9137 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 9138 newinet->inet_dport = htons(asoc->peer.port); 9139 newinet->pmtudisc = inet->pmtudisc; 9140 newinet->inet_id = asoc->next_tsn ^ jiffies; 9141 9142 newinet->uc_ttl = inet->uc_ttl; 9143 newinet->mc_loop = 1; 9144 newinet->mc_ttl = 1; 9145 newinet->mc_index = 0; 9146 newinet->mc_list = NULL; 9147 9148 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 9149 net_enable_timestamp(); 9150 9151 /* Set newsk security attributes from orginal sk and connection 9152 * security attribute from ep. 9153 */ 9154 security_sctp_sk_clone(ep, sk, newsk); 9155 } 9156 9157 static inline void sctp_copy_descendant(struct sock *sk_to, 9158 const struct sock *sk_from) 9159 { 9160 int ancestor_size = sizeof(struct inet_sock) + 9161 sizeof(struct sctp_sock) - 9162 offsetof(struct sctp_sock, auto_asconf_list); 9163 9164 if (sk_from->sk_family == PF_INET6) 9165 ancestor_size += sizeof(struct ipv6_pinfo); 9166 9167 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 9168 } 9169 9170 /* Populate the fields of the newsk from the oldsk and migrate the assoc 9171 * and its messages to the newsk. 9172 */ 9173 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 9174 struct sctp_association *assoc, 9175 enum sctp_socket_type type) 9176 { 9177 struct sctp_sock *oldsp = sctp_sk(oldsk); 9178 struct sctp_sock *newsp = sctp_sk(newsk); 9179 struct sctp_bind_bucket *pp; /* hash list port iterator */ 9180 struct sctp_endpoint *newep = newsp->ep; 9181 struct sk_buff *skb, *tmp; 9182 struct sctp_ulpevent *event; 9183 struct sctp_bind_hashbucket *head; 9184 9185 /* Migrate socket buffer sizes and all the socket level options to the 9186 * new socket. 9187 */ 9188 newsk->sk_sndbuf = oldsk->sk_sndbuf; 9189 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 9190 /* Brute force copy old sctp opt. */ 9191 sctp_copy_descendant(newsk, oldsk); 9192 9193 /* Restore the ep value that was overwritten with the above structure 9194 * copy. 9195 */ 9196 newsp->ep = newep; 9197 newsp->hmac = NULL; 9198 9199 /* Hook this new socket in to the bind_hash list. */ 9200 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 9201 inet_sk(oldsk)->inet_num)]; 9202 spin_lock_bh(&head->lock); 9203 pp = sctp_sk(oldsk)->bind_hash; 9204 sk_add_bind_node(newsk, &pp->owner); 9205 sctp_sk(newsk)->bind_hash = pp; 9206 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 9207 spin_unlock_bh(&head->lock); 9208 9209 /* Copy the bind_addr list from the original endpoint to the new 9210 * endpoint so that we can handle restarts properly 9211 */ 9212 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 9213 &oldsp->ep->base.bind_addr, GFP_KERNEL); 9214 9215 /* Move any messages in the old socket's receive queue that are for the 9216 * peeled off association to the new socket's receive queue. 9217 */ 9218 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 9219 event = sctp_skb2event(skb); 9220 if (event->asoc == assoc) { 9221 __skb_unlink(skb, &oldsk->sk_receive_queue); 9222 __skb_queue_tail(&newsk->sk_receive_queue, skb); 9223 sctp_skb_set_owner_r_frag(skb, newsk); 9224 } 9225 } 9226 9227 /* Clean up any messages pending delivery due to partial 9228 * delivery. Three cases: 9229 * 1) No partial deliver; no work. 9230 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 9231 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 9232 */ 9233 skb_queue_head_init(&newsp->pd_lobby); 9234 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 9235 9236 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 9237 struct sk_buff_head *queue; 9238 9239 /* Decide which queue to move pd_lobby skbs to. */ 9240 if (assoc->ulpq.pd_mode) { 9241 queue = &newsp->pd_lobby; 9242 } else 9243 queue = &newsk->sk_receive_queue; 9244 9245 /* Walk through the pd_lobby, looking for skbs that 9246 * need moved to the new socket. 9247 */ 9248 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 9249 event = sctp_skb2event(skb); 9250 if (event->asoc == assoc) { 9251 __skb_unlink(skb, &oldsp->pd_lobby); 9252 __skb_queue_tail(queue, skb); 9253 sctp_skb_set_owner_r_frag(skb, newsk); 9254 } 9255 } 9256 9257 /* Clear up any skbs waiting for the partial 9258 * delivery to finish. 9259 */ 9260 if (assoc->ulpq.pd_mode) 9261 sctp_clear_pd(oldsk, NULL); 9262 9263 } 9264 9265 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 9266 9267 /* Set the type of socket to indicate that it is peeled off from the 9268 * original UDP-style socket or created with the accept() call on a 9269 * TCP-style socket.. 9270 */ 9271 newsp->type = type; 9272 9273 /* Mark the new socket "in-use" by the user so that any packets 9274 * that may arrive on the association after we've moved it are 9275 * queued to the backlog. This prevents a potential race between 9276 * backlog processing on the old socket and new-packet processing 9277 * on the new socket. 9278 * 9279 * The caller has just allocated newsk so we can guarantee that other 9280 * paths won't try to lock it and then oldsk. 9281 */ 9282 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 9283 sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w); 9284 sctp_assoc_migrate(assoc, newsk); 9285 sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w); 9286 9287 /* If the association on the newsk is already closed before accept() 9288 * is called, set RCV_SHUTDOWN flag. 9289 */ 9290 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 9291 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 9292 newsk->sk_shutdown |= RCV_SHUTDOWN; 9293 } else { 9294 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 9295 } 9296 9297 release_sock(newsk); 9298 } 9299 9300 9301 /* This proto struct describes the ULP interface for SCTP. */ 9302 struct proto sctp_prot = { 9303 .name = "SCTP", 9304 .owner = THIS_MODULE, 9305 .close = sctp_close, 9306 .disconnect = sctp_disconnect, 9307 .accept = sctp_accept, 9308 .ioctl = sctp_ioctl, 9309 .init = sctp_init_sock, 9310 .destroy = sctp_destroy_sock, 9311 .shutdown = sctp_shutdown, 9312 .setsockopt = sctp_setsockopt, 9313 .getsockopt = sctp_getsockopt, 9314 .sendmsg = sctp_sendmsg, 9315 .recvmsg = sctp_recvmsg, 9316 .bind = sctp_bind, 9317 .backlog_rcv = sctp_backlog_rcv, 9318 .hash = sctp_hash, 9319 .unhash = sctp_unhash, 9320 .get_port = sctp_get_port, 9321 .obj_size = sizeof(struct sctp_sock), 9322 .useroffset = offsetof(struct sctp_sock, subscribe), 9323 .usersize = offsetof(struct sctp_sock, initmsg) - 9324 offsetof(struct sctp_sock, subscribe) + 9325 sizeof_field(struct sctp_sock, initmsg), 9326 .sysctl_mem = sysctl_sctp_mem, 9327 .sysctl_rmem = sysctl_sctp_rmem, 9328 .sysctl_wmem = sysctl_sctp_wmem, 9329 .memory_pressure = &sctp_memory_pressure, 9330 .enter_memory_pressure = sctp_enter_memory_pressure, 9331 .memory_allocated = &sctp_memory_allocated, 9332 .sockets_allocated = &sctp_sockets_allocated, 9333 }; 9334 9335 #if IS_ENABLED(CONFIG_IPV6) 9336 9337 #include <net/transp_v6.h> 9338 static void sctp_v6_destroy_sock(struct sock *sk) 9339 { 9340 sctp_destroy_sock(sk); 9341 inet6_destroy_sock(sk); 9342 } 9343 9344 struct proto sctpv6_prot = { 9345 .name = "SCTPv6", 9346 .owner = THIS_MODULE, 9347 .close = sctp_close, 9348 .disconnect = sctp_disconnect, 9349 .accept = sctp_accept, 9350 .ioctl = sctp_ioctl, 9351 .init = sctp_init_sock, 9352 .destroy = sctp_v6_destroy_sock, 9353 .shutdown = sctp_shutdown, 9354 .setsockopt = sctp_setsockopt, 9355 .getsockopt = sctp_getsockopt, 9356 .sendmsg = sctp_sendmsg, 9357 .recvmsg = sctp_recvmsg, 9358 .bind = sctp_bind, 9359 .backlog_rcv = sctp_backlog_rcv, 9360 .hash = sctp_hash, 9361 .unhash = sctp_unhash, 9362 .get_port = sctp_get_port, 9363 .obj_size = sizeof(struct sctp6_sock), 9364 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 9365 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 9366 offsetof(struct sctp6_sock, sctp.subscribe) + 9367 sizeof_field(struct sctp6_sock, sctp.initmsg), 9368 .sysctl_mem = sysctl_sctp_mem, 9369 .sysctl_rmem = sysctl_sctp_rmem, 9370 .sysctl_wmem = sysctl_sctp_wmem, 9371 .memory_pressure = &sctp_memory_pressure, 9372 .enter_memory_pressure = sctp_enter_memory_pressure, 9373 .memory_allocated = &sctp_memory_allocated, 9374 .sockets_allocated = &sctp_sockets_allocated, 9375 }; 9376 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9377