1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, see 32 * <http://www.gnu.org/licenses/>. 33 * 34 * Please send any bug reports or fixes you make to the 35 * email address(es): 36 * lksctp developers <linux-sctp@vger.kernel.org> 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Narasimha Budihal <narsi@refcode.org> 41 * Karl Knutson <karl@athena.chicago.il.us> 42 * Jon Grimm <jgrimm@us.ibm.com> 43 * Xingang Guo <xingang.guo@intel.com> 44 * Daisy Chang <daisyc@us.ibm.com> 45 * Sridhar Samudrala <samudrala@us.ibm.com> 46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 47 * Ardelle Fan <ardelle.fan@intel.com> 48 * Ryan Layer <rmlayer@us.ibm.com> 49 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 50 * Kevin Gao <kevin.gao@intel.com> 51 */ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <linux/types.h> 56 #include <linux/kernel.h> 57 #include <linux/wait.h> 58 #include <linux/time.h> 59 #include <linux/ip.h> 60 #include <linux/capability.h> 61 #include <linux/fcntl.h> 62 #include <linux/poll.h> 63 #include <linux/init.h> 64 #include <linux/crypto.h> 65 #include <linux/slab.h> 66 #include <linux/file.h> 67 #include <linux/compat.h> 68 69 #include <net/ip.h> 70 #include <net/icmp.h> 71 #include <net/route.h> 72 #include <net/ipv6.h> 73 #include <net/inet_common.h> 74 #include <net/busy_poll.h> 75 76 #include <linux/socket.h> /* for sa_family_t */ 77 #include <linux/export.h> 78 #include <net/sock.h> 79 #include <net/sctp/sctp.h> 80 #include <net/sctp/sm.h> 81 82 /* Forward declarations for internal helper functions. */ 83 static int sctp_writeable(struct sock *sk); 84 static void sctp_wfree(struct sk_buff *skb); 85 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 86 size_t msg_len); 87 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 88 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 89 static int sctp_wait_for_accept(struct sock *sk, long timeo); 90 static void sctp_wait_for_close(struct sock *sk, long timeo); 91 static void sctp_destruct_sock(struct sock *sk); 92 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 93 union sctp_addr *addr, int len); 94 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 95 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 96 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 97 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 98 static int sctp_send_asconf(struct sctp_association *asoc, 99 struct sctp_chunk *chunk); 100 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 101 static int sctp_autobind(struct sock *sk); 102 static void sctp_sock_migrate(struct sock *, struct sock *, 103 struct sctp_association *, sctp_socket_type_t); 104 105 static int sctp_memory_pressure; 106 static atomic_long_t sctp_memory_allocated; 107 struct percpu_counter sctp_sockets_allocated; 108 109 static void sctp_enter_memory_pressure(struct sock *sk) 110 { 111 sctp_memory_pressure = 1; 112 } 113 114 115 /* Get the sndbuf space available at the time on the association. */ 116 static inline int sctp_wspace(struct sctp_association *asoc) 117 { 118 int amt; 119 120 if (asoc->ep->sndbuf_policy) 121 amt = asoc->sndbuf_used; 122 else 123 amt = sk_wmem_alloc_get(asoc->base.sk); 124 125 if (amt >= asoc->base.sk->sk_sndbuf) { 126 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 127 amt = 0; 128 else { 129 amt = sk_stream_wspace(asoc->base.sk); 130 if (amt < 0) 131 amt = 0; 132 } 133 } else { 134 amt = asoc->base.sk->sk_sndbuf - amt; 135 } 136 return amt; 137 } 138 139 /* Increment the used sndbuf space count of the corresponding association by 140 * the size of the outgoing data chunk. 141 * Also, set the skb destructor for sndbuf accounting later. 142 * 143 * Since it is always 1-1 between chunk and skb, and also a new skb is always 144 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 145 * destructor in the data chunk skb for the purpose of the sndbuf space 146 * tracking. 147 */ 148 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 149 { 150 struct sctp_association *asoc = chunk->asoc; 151 struct sock *sk = asoc->base.sk; 152 153 /* The sndbuf space is tracked per association. */ 154 sctp_association_hold(asoc); 155 156 skb_set_owner_w(chunk->skb, sk); 157 158 chunk->skb->destructor = sctp_wfree; 159 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 160 skb_shinfo(chunk->skb)->destructor_arg = chunk; 161 162 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 163 sizeof(struct sk_buff) + 164 sizeof(struct sctp_chunk); 165 166 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 167 sk->sk_wmem_queued += chunk->skb->truesize; 168 sk_mem_charge(sk, chunk->skb->truesize); 169 } 170 171 /* Verify that this is a valid address. */ 172 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 173 int len) 174 { 175 struct sctp_af *af; 176 177 /* Verify basic sockaddr. */ 178 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 179 if (!af) 180 return -EINVAL; 181 182 /* Is this a valid SCTP address? */ 183 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 184 return -EINVAL; 185 186 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 187 return -EINVAL; 188 189 return 0; 190 } 191 192 /* Look up the association by its id. If this is not a UDP-style 193 * socket, the ID field is always ignored. 194 */ 195 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 196 { 197 struct sctp_association *asoc = NULL; 198 199 /* If this is not a UDP-style socket, assoc id should be ignored. */ 200 if (!sctp_style(sk, UDP)) { 201 /* Return NULL if the socket state is not ESTABLISHED. It 202 * could be a TCP-style listening socket or a socket which 203 * hasn't yet called connect() to establish an association. 204 */ 205 if (!sctp_sstate(sk, ESTABLISHED)) 206 return NULL; 207 208 /* Get the first and the only association from the list. */ 209 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 210 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 211 struct sctp_association, asocs); 212 return asoc; 213 } 214 215 /* Otherwise this is a UDP-style socket. */ 216 if (!id || (id == (sctp_assoc_t)-1)) 217 return NULL; 218 219 spin_lock_bh(&sctp_assocs_id_lock); 220 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 221 spin_unlock_bh(&sctp_assocs_id_lock); 222 223 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 224 return NULL; 225 226 return asoc; 227 } 228 229 /* Look up the transport from an address and an assoc id. If both address and 230 * id are specified, the associations matching the address and the id should be 231 * the same. 232 */ 233 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 234 struct sockaddr_storage *addr, 235 sctp_assoc_t id) 236 { 237 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 238 struct sctp_transport *transport; 239 union sctp_addr *laddr = (union sctp_addr *)addr; 240 241 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 242 laddr, 243 &transport); 244 245 if (!addr_asoc) 246 return NULL; 247 248 id_asoc = sctp_id2assoc(sk, id); 249 if (id_asoc && (id_asoc != addr_asoc)) 250 return NULL; 251 252 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 253 (union sctp_addr *)addr); 254 255 return transport; 256 } 257 258 /* API 3.1.2 bind() - UDP Style Syntax 259 * The syntax of bind() is, 260 * 261 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 262 * 263 * sd - the socket descriptor returned by socket(). 264 * addr - the address structure (struct sockaddr_in or struct 265 * sockaddr_in6 [RFC 2553]), 266 * addr_len - the size of the address structure. 267 */ 268 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 269 { 270 int retval = 0; 271 272 lock_sock(sk); 273 274 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 275 addr, addr_len); 276 277 /* Disallow binding twice. */ 278 if (!sctp_sk(sk)->ep->base.bind_addr.port) 279 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 280 addr_len); 281 else 282 retval = -EINVAL; 283 284 release_sock(sk); 285 286 return retval; 287 } 288 289 static long sctp_get_port_local(struct sock *, union sctp_addr *); 290 291 /* Verify this is a valid sockaddr. */ 292 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 293 union sctp_addr *addr, int len) 294 { 295 struct sctp_af *af; 296 297 /* Check minimum size. */ 298 if (len < sizeof (struct sockaddr)) 299 return NULL; 300 301 /* V4 mapped address are really of AF_INET family */ 302 if (addr->sa.sa_family == AF_INET6 && 303 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { 304 if (!opt->pf->af_supported(AF_INET, opt)) 305 return NULL; 306 } else { 307 /* Does this PF support this AF? */ 308 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 309 return NULL; 310 } 311 312 /* If we get this far, af is valid. */ 313 af = sctp_get_af_specific(addr->sa.sa_family); 314 315 if (len < af->sockaddr_len) 316 return NULL; 317 318 return af; 319 } 320 321 /* Bind a local address either to an endpoint or to an association. */ 322 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 323 { 324 struct net *net = sock_net(sk); 325 struct sctp_sock *sp = sctp_sk(sk); 326 struct sctp_endpoint *ep = sp->ep; 327 struct sctp_bind_addr *bp = &ep->base.bind_addr; 328 struct sctp_af *af; 329 unsigned short snum; 330 int ret = 0; 331 332 /* Common sockaddr verification. */ 333 af = sctp_sockaddr_af(sp, addr, len); 334 if (!af) { 335 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 336 __func__, sk, addr, len); 337 return -EINVAL; 338 } 339 340 snum = ntohs(addr->v4.sin_port); 341 342 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 343 __func__, sk, &addr->sa, bp->port, snum, len); 344 345 /* PF specific bind() address verification. */ 346 if (!sp->pf->bind_verify(sp, addr)) 347 return -EADDRNOTAVAIL; 348 349 /* We must either be unbound, or bind to the same port. 350 * It's OK to allow 0 ports if we are already bound. 351 * We'll just inhert an already bound port in this case 352 */ 353 if (bp->port) { 354 if (!snum) 355 snum = bp->port; 356 else if (snum != bp->port) { 357 pr_debug("%s: new port %d doesn't match existing port " 358 "%d\n", __func__, snum, bp->port); 359 return -EINVAL; 360 } 361 } 362 363 if (snum && snum < PROT_SOCK && 364 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 365 return -EACCES; 366 367 /* See if the address matches any of the addresses we may have 368 * already bound before checking against other endpoints. 369 */ 370 if (sctp_bind_addr_match(bp, addr, sp)) 371 return -EINVAL; 372 373 /* Make sure we are allowed to bind here. 374 * The function sctp_get_port_local() does duplicate address 375 * detection. 376 */ 377 addr->v4.sin_port = htons(snum); 378 if ((ret = sctp_get_port_local(sk, addr))) { 379 return -EADDRINUSE; 380 } 381 382 /* Refresh ephemeral port. */ 383 if (!bp->port) 384 bp->port = inet_sk(sk)->inet_num; 385 386 /* Add the address to the bind address list. 387 * Use GFP_ATOMIC since BHs will be disabled. 388 */ 389 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC); 390 391 /* Copy back into socket for getsockname() use. */ 392 if (!ret) { 393 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 394 sp->pf->to_sk_saddr(addr, sk); 395 } 396 397 return ret; 398 } 399 400 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 401 * 402 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 403 * at any one time. If a sender, after sending an ASCONF chunk, decides 404 * it needs to transfer another ASCONF Chunk, it MUST wait until the 405 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 406 * subsequent ASCONF. Note this restriction binds each side, so at any 407 * time two ASCONF may be in-transit on any given association (one sent 408 * from each endpoint). 409 */ 410 static int sctp_send_asconf(struct sctp_association *asoc, 411 struct sctp_chunk *chunk) 412 { 413 struct net *net = sock_net(asoc->base.sk); 414 int retval = 0; 415 416 /* If there is an outstanding ASCONF chunk, queue it for later 417 * transmission. 418 */ 419 if (asoc->addip_last_asconf) { 420 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 421 goto out; 422 } 423 424 /* Hold the chunk until an ASCONF_ACK is received. */ 425 sctp_chunk_hold(chunk); 426 retval = sctp_primitive_ASCONF(net, asoc, chunk); 427 if (retval) 428 sctp_chunk_free(chunk); 429 else 430 asoc->addip_last_asconf = chunk; 431 432 out: 433 return retval; 434 } 435 436 /* Add a list of addresses as bind addresses to local endpoint or 437 * association. 438 * 439 * Basically run through each address specified in the addrs/addrcnt 440 * array/length pair, determine if it is IPv6 or IPv4 and call 441 * sctp_do_bind() on it. 442 * 443 * If any of them fails, then the operation will be reversed and the 444 * ones that were added will be removed. 445 * 446 * Only sctp_setsockopt_bindx() is supposed to call this function. 447 */ 448 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 449 { 450 int cnt; 451 int retval = 0; 452 void *addr_buf; 453 struct sockaddr *sa_addr; 454 struct sctp_af *af; 455 456 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 457 addrs, addrcnt); 458 459 addr_buf = addrs; 460 for (cnt = 0; cnt < addrcnt; cnt++) { 461 /* The list may contain either IPv4 or IPv6 address; 462 * determine the address length for walking thru the list. 463 */ 464 sa_addr = addr_buf; 465 af = sctp_get_af_specific(sa_addr->sa_family); 466 if (!af) { 467 retval = -EINVAL; 468 goto err_bindx_add; 469 } 470 471 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 472 af->sockaddr_len); 473 474 addr_buf += af->sockaddr_len; 475 476 err_bindx_add: 477 if (retval < 0) { 478 /* Failed. Cleanup the ones that have been added */ 479 if (cnt > 0) 480 sctp_bindx_rem(sk, addrs, cnt); 481 return retval; 482 } 483 } 484 485 return retval; 486 } 487 488 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 489 * associations that are part of the endpoint indicating that a list of local 490 * addresses are added to the endpoint. 491 * 492 * If any of the addresses is already in the bind address list of the 493 * association, we do not send the chunk for that association. But it will not 494 * affect other associations. 495 * 496 * Only sctp_setsockopt_bindx() is supposed to call this function. 497 */ 498 static int sctp_send_asconf_add_ip(struct sock *sk, 499 struct sockaddr *addrs, 500 int addrcnt) 501 { 502 struct net *net = sock_net(sk); 503 struct sctp_sock *sp; 504 struct sctp_endpoint *ep; 505 struct sctp_association *asoc; 506 struct sctp_bind_addr *bp; 507 struct sctp_chunk *chunk; 508 struct sctp_sockaddr_entry *laddr; 509 union sctp_addr *addr; 510 union sctp_addr saveaddr; 511 void *addr_buf; 512 struct sctp_af *af; 513 struct list_head *p; 514 int i; 515 int retval = 0; 516 517 if (!net->sctp.addip_enable) 518 return retval; 519 520 sp = sctp_sk(sk); 521 ep = sp->ep; 522 523 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 524 __func__, sk, addrs, addrcnt); 525 526 list_for_each_entry(asoc, &ep->asocs, asocs) { 527 if (!asoc->peer.asconf_capable) 528 continue; 529 530 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 531 continue; 532 533 if (!sctp_state(asoc, ESTABLISHED)) 534 continue; 535 536 /* Check if any address in the packed array of addresses is 537 * in the bind address list of the association. If so, 538 * do not send the asconf chunk to its peer, but continue with 539 * other associations. 540 */ 541 addr_buf = addrs; 542 for (i = 0; i < addrcnt; i++) { 543 addr = addr_buf; 544 af = sctp_get_af_specific(addr->v4.sin_family); 545 if (!af) { 546 retval = -EINVAL; 547 goto out; 548 } 549 550 if (sctp_assoc_lookup_laddr(asoc, addr)) 551 break; 552 553 addr_buf += af->sockaddr_len; 554 } 555 if (i < addrcnt) 556 continue; 557 558 /* Use the first valid address in bind addr list of 559 * association as Address Parameter of ASCONF CHUNK. 560 */ 561 bp = &asoc->base.bind_addr; 562 p = bp->address_list.next; 563 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 564 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 565 addrcnt, SCTP_PARAM_ADD_IP); 566 if (!chunk) { 567 retval = -ENOMEM; 568 goto out; 569 } 570 571 /* Add the new addresses to the bind address list with 572 * use_as_src set to 0. 573 */ 574 addr_buf = addrs; 575 for (i = 0; i < addrcnt; i++) { 576 addr = addr_buf; 577 af = sctp_get_af_specific(addr->v4.sin_family); 578 memcpy(&saveaddr, addr, af->sockaddr_len); 579 retval = sctp_add_bind_addr(bp, &saveaddr, 580 SCTP_ADDR_NEW, GFP_ATOMIC); 581 addr_buf += af->sockaddr_len; 582 } 583 if (asoc->src_out_of_asoc_ok) { 584 struct sctp_transport *trans; 585 586 list_for_each_entry(trans, 587 &asoc->peer.transport_addr_list, transports) { 588 /* Clear the source and route cache */ 589 dst_release(trans->dst); 590 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 591 2*asoc->pathmtu, 4380)); 592 trans->ssthresh = asoc->peer.i.a_rwnd; 593 trans->rto = asoc->rto_initial; 594 sctp_max_rto(asoc, trans); 595 trans->rtt = trans->srtt = trans->rttvar = 0; 596 sctp_transport_route(trans, NULL, 597 sctp_sk(asoc->base.sk)); 598 } 599 } 600 retval = sctp_send_asconf(asoc, chunk); 601 } 602 603 out: 604 return retval; 605 } 606 607 /* Remove a list of addresses from bind addresses list. Do not remove the 608 * last address. 609 * 610 * Basically run through each address specified in the addrs/addrcnt 611 * array/length pair, determine if it is IPv6 or IPv4 and call 612 * sctp_del_bind() on it. 613 * 614 * If any of them fails, then the operation will be reversed and the 615 * ones that were removed will be added back. 616 * 617 * At least one address has to be left; if only one address is 618 * available, the operation will return -EBUSY. 619 * 620 * Only sctp_setsockopt_bindx() is supposed to call this function. 621 */ 622 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 623 { 624 struct sctp_sock *sp = sctp_sk(sk); 625 struct sctp_endpoint *ep = sp->ep; 626 int cnt; 627 struct sctp_bind_addr *bp = &ep->base.bind_addr; 628 int retval = 0; 629 void *addr_buf; 630 union sctp_addr *sa_addr; 631 struct sctp_af *af; 632 633 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 634 __func__, sk, addrs, addrcnt); 635 636 addr_buf = addrs; 637 for (cnt = 0; cnt < addrcnt; cnt++) { 638 /* If the bind address list is empty or if there is only one 639 * bind address, there is nothing more to be removed (we need 640 * at least one address here). 641 */ 642 if (list_empty(&bp->address_list) || 643 (sctp_list_single_entry(&bp->address_list))) { 644 retval = -EBUSY; 645 goto err_bindx_rem; 646 } 647 648 sa_addr = addr_buf; 649 af = sctp_get_af_specific(sa_addr->sa.sa_family); 650 if (!af) { 651 retval = -EINVAL; 652 goto err_bindx_rem; 653 } 654 655 if (!af->addr_valid(sa_addr, sp, NULL)) { 656 retval = -EADDRNOTAVAIL; 657 goto err_bindx_rem; 658 } 659 660 if (sa_addr->v4.sin_port && 661 sa_addr->v4.sin_port != htons(bp->port)) { 662 retval = -EINVAL; 663 goto err_bindx_rem; 664 } 665 666 if (!sa_addr->v4.sin_port) 667 sa_addr->v4.sin_port = htons(bp->port); 668 669 /* FIXME - There is probably a need to check if sk->sk_saddr and 670 * sk->sk_rcv_addr are currently set to one of the addresses to 671 * be removed. This is something which needs to be looked into 672 * when we are fixing the outstanding issues with multi-homing 673 * socket routing and failover schemes. Refer to comments in 674 * sctp_do_bind(). -daisy 675 */ 676 retval = sctp_del_bind_addr(bp, sa_addr); 677 678 addr_buf += af->sockaddr_len; 679 err_bindx_rem: 680 if (retval < 0) { 681 /* Failed. Add the ones that has been removed back */ 682 if (cnt > 0) 683 sctp_bindx_add(sk, addrs, cnt); 684 return retval; 685 } 686 } 687 688 return retval; 689 } 690 691 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 692 * the associations that are part of the endpoint indicating that a list of 693 * local addresses are removed from the endpoint. 694 * 695 * If any of the addresses is already in the bind address list of the 696 * association, we do not send the chunk for that association. But it will not 697 * affect other associations. 698 * 699 * Only sctp_setsockopt_bindx() is supposed to call this function. 700 */ 701 static int sctp_send_asconf_del_ip(struct sock *sk, 702 struct sockaddr *addrs, 703 int addrcnt) 704 { 705 struct net *net = sock_net(sk); 706 struct sctp_sock *sp; 707 struct sctp_endpoint *ep; 708 struct sctp_association *asoc; 709 struct sctp_transport *transport; 710 struct sctp_bind_addr *bp; 711 struct sctp_chunk *chunk; 712 union sctp_addr *laddr; 713 void *addr_buf; 714 struct sctp_af *af; 715 struct sctp_sockaddr_entry *saddr; 716 int i; 717 int retval = 0; 718 int stored = 0; 719 720 chunk = NULL; 721 if (!net->sctp.addip_enable) 722 return retval; 723 724 sp = sctp_sk(sk); 725 ep = sp->ep; 726 727 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 728 __func__, sk, addrs, addrcnt); 729 730 list_for_each_entry(asoc, &ep->asocs, asocs) { 731 732 if (!asoc->peer.asconf_capable) 733 continue; 734 735 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 736 continue; 737 738 if (!sctp_state(asoc, ESTABLISHED)) 739 continue; 740 741 /* Check if any address in the packed array of addresses is 742 * not present in the bind address list of the association. 743 * If so, do not send the asconf chunk to its peer, but 744 * continue with other associations. 745 */ 746 addr_buf = addrs; 747 for (i = 0; i < addrcnt; i++) { 748 laddr = addr_buf; 749 af = sctp_get_af_specific(laddr->v4.sin_family); 750 if (!af) { 751 retval = -EINVAL; 752 goto out; 753 } 754 755 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 756 break; 757 758 addr_buf += af->sockaddr_len; 759 } 760 if (i < addrcnt) 761 continue; 762 763 /* Find one address in the association's bind address list 764 * that is not in the packed array of addresses. This is to 765 * make sure that we do not delete all the addresses in the 766 * association. 767 */ 768 bp = &asoc->base.bind_addr; 769 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 770 addrcnt, sp); 771 if ((laddr == NULL) && (addrcnt == 1)) { 772 if (asoc->asconf_addr_del_pending) 773 continue; 774 asoc->asconf_addr_del_pending = 775 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 776 if (asoc->asconf_addr_del_pending == NULL) { 777 retval = -ENOMEM; 778 goto out; 779 } 780 asoc->asconf_addr_del_pending->sa.sa_family = 781 addrs->sa_family; 782 asoc->asconf_addr_del_pending->v4.sin_port = 783 htons(bp->port); 784 if (addrs->sa_family == AF_INET) { 785 struct sockaddr_in *sin; 786 787 sin = (struct sockaddr_in *)addrs; 788 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 789 } else if (addrs->sa_family == AF_INET6) { 790 struct sockaddr_in6 *sin6; 791 792 sin6 = (struct sockaddr_in6 *)addrs; 793 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 794 } 795 796 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 797 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 798 asoc->asconf_addr_del_pending); 799 800 asoc->src_out_of_asoc_ok = 1; 801 stored = 1; 802 goto skip_mkasconf; 803 } 804 805 if (laddr == NULL) 806 return -EINVAL; 807 808 /* We do not need RCU protection throughout this loop 809 * because this is done under a socket lock from the 810 * setsockopt call. 811 */ 812 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 813 SCTP_PARAM_DEL_IP); 814 if (!chunk) { 815 retval = -ENOMEM; 816 goto out; 817 } 818 819 skip_mkasconf: 820 /* Reset use_as_src flag for the addresses in the bind address 821 * list that are to be deleted. 822 */ 823 addr_buf = addrs; 824 for (i = 0; i < addrcnt; i++) { 825 laddr = addr_buf; 826 af = sctp_get_af_specific(laddr->v4.sin_family); 827 list_for_each_entry(saddr, &bp->address_list, list) { 828 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 829 saddr->state = SCTP_ADDR_DEL; 830 } 831 addr_buf += af->sockaddr_len; 832 } 833 834 /* Update the route and saddr entries for all the transports 835 * as some of the addresses in the bind address list are 836 * about to be deleted and cannot be used as source addresses. 837 */ 838 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 839 transports) { 840 dst_release(transport->dst); 841 sctp_transport_route(transport, NULL, 842 sctp_sk(asoc->base.sk)); 843 } 844 845 if (stored) 846 /* We don't need to transmit ASCONF */ 847 continue; 848 retval = sctp_send_asconf(asoc, chunk); 849 } 850 out: 851 return retval; 852 } 853 854 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 855 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 856 { 857 struct sock *sk = sctp_opt2sk(sp); 858 union sctp_addr *addr; 859 struct sctp_af *af; 860 861 /* It is safe to write port space in caller. */ 862 addr = &addrw->a; 863 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 864 af = sctp_get_af_specific(addr->sa.sa_family); 865 if (!af) 866 return -EINVAL; 867 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 868 return -EINVAL; 869 870 if (addrw->state == SCTP_ADDR_NEW) 871 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 872 else 873 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 874 } 875 876 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 877 * 878 * API 8.1 879 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 880 * int flags); 881 * 882 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 883 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 884 * or IPv6 addresses. 885 * 886 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 887 * Section 3.1.2 for this usage. 888 * 889 * addrs is a pointer to an array of one or more socket addresses. Each 890 * address is contained in its appropriate structure (i.e. struct 891 * sockaddr_in or struct sockaddr_in6) the family of the address type 892 * must be used to distinguish the address length (note that this 893 * representation is termed a "packed array" of addresses). The caller 894 * specifies the number of addresses in the array with addrcnt. 895 * 896 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 897 * -1, and sets errno to the appropriate error code. 898 * 899 * For SCTP, the port given in each socket address must be the same, or 900 * sctp_bindx() will fail, setting errno to EINVAL. 901 * 902 * The flags parameter is formed from the bitwise OR of zero or more of 903 * the following currently defined flags: 904 * 905 * SCTP_BINDX_ADD_ADDR 906 * 907 * SCTP_BINDX_REM_ADDR 908 * 909 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 910 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 911 * addresses from the association. The two flags are mutually exclusive; 912 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 913 * not remove all addresses from an association; sctp_bindx() will 914 * reject such an attempt with EINVAL. 915 * 916 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 917 * additional addresses with an endpoint after calling bind(). Or use 918 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 919 * socket is associated with so that no new association accepted will be 920 * associated with those addresses. If the endpoint supports dynamic 921 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 922 * endpoint to send the appropriate message to the peer to change the 923 * peers address lists. 924 * 925 * Adding and removing addresses from a connected association is 926 * optional functionality. Implementations that do not support this 927 * functionality should return EOPNOTSUPP. 928 * 929 * Basically do nothing but copying the addresses from user to kernel 930 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 931 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 932 * from userspace. 933 * 934 * We don't use copy_from_user() for optimization: we first do the 935 * sanity checks (buffer size -fast- and access check-healthy 936 * pointer); if all of those succeed, then we can alloc the memory 937 * (expensive operation) needed to copy the data to kernel. Then we do 938 * the copying without checking the user space area 939 * (__copy_from_user()). 940 * 941 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 942 * it. 943 * 944 * sk The sk of the socket 945 * addrs The pointer to the addresses in user land 946 * addrssize Size of the addrs buffer 947 * op Operation to perform (add or remove, see the flags of 948 * sctp_bindx) 949 * 950 * Returns 0 if ok, <0 errno code on error. 951 */ 952 static int sctp_setsockopt_bindx(struct sock *sk, 953 struct sockaddr __user *addrs, 954 int addrs_size, int op) 955 { 956 struct sockaddr *kaddrs; 957 int err; 958 int addrcnt = 0; 959 int walk_size = 0; 960 struct sockaddr *sa_addr; 961 void *addr_buf; 962 struct sctp_af *af; 963 964 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 965 __func__, sk, addrs, addrs_size, op); 966 967 if (unlikely(addrs_size <= 0)) 968 return -EINVAL; 969 970 /* Check the user passed a healthy pointer. */ 971 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 972 return -EFAULT; 973 974 /* Alloc space for the address array in kernel memory. */ 975 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 976 if (unlikely(!kaddrs)) 977 return -ENOMEM; 978 979 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 980 kfree(kaddrs); 981 return -EFAULT; 982 } 983 984 /* Walk through the addrs buffer and count the number of addresses. */ 985 addr_buf = kaddrs; 986 while (walk_size < addrs_size) { 987 if (walk_size + sizeof(sa_family_t) > addrs_size) { 988 kfree(kaddrs); 989 return -EINVAL; 990 } 991 992 sa_addr = addr_buf; 993 af = sctp_get_af_specific(sa_addr->sa_family); 994 995 /* If the address family is not supported or if this address 996 * causes the address buffer to overflow return EINVAL. 997 */ 998 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 999 kfree(kaddrs); 1000 return -EINVAL; 1001 } 1002 addrcnt++; 1003 addr_buf += af->sockaddr_len; 1004 walk_size += af->sockaddr_len; 1005 } 1006 1007 /* Do the work. */ 1008 switch (op) { 1009 case SCTP_BINDX_ADD_ADDR: 1010 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1011 if (err) 1012 goto out; 1013 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1014 break; 1015 1016 case SCTP_BINDX_REM_ADDR: 1017 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1018 if (err) 1019 goto out; 1020 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1021 break; 1022 1023 default: 1024 err = -EINVAL; 1025 break; 1026 } 1027 1028 out: 1029 kfree(kaddrs); 1030 1031 return err; 1032 } 1033 1034 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1035 * 1036 * Common routine for handling connect() and sctp_connectx(). 1037 * Connect will come in with just a single address. 1038 */ 1039 static int __sctp_connect(struct sock *sk, 1040 struct sockaddr *kaddrs, 1041 int addrs_size, 1042 sctp_assoc_t *assoc_id) 1043 { 1044 struct net *net = sock_net(sk); 1045 struct sctp_sock *sp; 1046 struct sctp_endpoint *ep; 1047 struct sctp_association *asoc = NULL; 1048 struct sctp_association *asoc2; 1049 struct sctp_transport *transport; 1050 union sctp_addr to; 1051 sctp_scope_t scope; 1052 long timeo; 1053 int err = 0; 1054 int addrcnt = 0; 1055 int walk_size = 0; 1056 union sctp_addr *sa_addr = NULL; 1057 void *addr_buf; 1058 unsigned short port; 1059 unsigned int f_flags = 0; 1060 1061 sp = sctp_sk(sk); 1062 ep = sp->ep; 1063 1064 /* connect() cannot be done on a socket that is already in ESTABLISHED 1065 * state - UDP-style peeled off socket or a TCP-style socket that 1066 * is already connected. 1067 * It cannot be done even on a TCP-style listening socket. 1068 */ 1069 if (sctp_sstate(sk, ESTABLISHED) || 1070 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1071 err = -EISCONN; 1072 goto out_free; 1073 } 1074 1075 /* Walk through the addrs buffer and count the number of addresses. */ 1076 addr_buf = kaddrs; 1077 while (walk_size < addrs_size) { 1078 struct sctp_af *af; 1079 1080 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1081 err = -EINVAL; 1082 goto out_free; 1083 } 1084 1085 sa_addr = addr_buf; 1086 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1087 1088 /* If the address family is not supported or if this address 1089 * causes the address buffer to overflow return EINVAL. 1090 */ 1091 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1092 err = -EINVAL; 1093 goto out_free; 1094 } 1095 1096 port = ntohs(sa_addr->v4.sin_port); 1097 1098 /* Save current address so we can work with it */ 1099 memcpy(&to, sa_addr, af->sockaddr_len); 1100 1101 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1102 if (err) 1103 goto out_free; 1104 1105 /* Make sure the destination port is correctly set 1106 * in all addresses. 1107 */ 1108 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1109 err = -EINVAL; 1110 goto out_free; 1111 } 1112 1113 /* Check if there already is a matching association on the 1114 * endpoint (other than the one created here). 1115 */ 1116 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1117 if (asoc2 && asoc2 != asoc) { 1118 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1119 err = -EISCONN; 1120 else 1121 err = -EALREADY; 1122 goto out_free; 1123 } 1124 1125 /* If we could not find a matching association on the endpoint, 1126 * make sure that there is no peeled-off association matching 1127 * the peer address even on another socket. 1128 */ 1129 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1130 err = -EADDRNOTAVAIL; 1131 goto out_free; 1132 } 1133 1134 if (!asoc) { 1135 /* If a bind() or sctp_bindx() is not called prior to 1136 * an sctp_connectx() call, the system picks an 1137 * ephemeral port and will choose an address set 1138 * equivalent to binding with a wildcard address. 1139 */ 1140 if (!ep->base.bind_addr.port) { 1141 if (sctp_autobind(sk)) { 1142 err = -EAGAIN; 1143 goto out_free; 1144 } 1145 } else { 1146 /* 1147 * If an unprivileged user inherits a 1-many 1148 * style socket with open associations on a 1149 * privileged port, it MAY be permitted to 1150 * accept new associations, but it SHOULD NOT 1151 * be permitted to open new associations. 1152 */ 1153 if (ep->base.bind_addr.port < PROT_SOCK && 1154 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) { 1155 err = -EACCES; 1156 goto out_free; 1157 } 1158 } 1159 1160 scope = sctp_scope(&to); 1161 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1162 if (!asoc) { 1163 err = -ENOMEM; 1164 goto out_free; 1165 } 1166 1167 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1168 GFP_KERNEL); 1169 if (err < 0) { 1170 goto out_free; 1171 } 1172 1173 } 1174 1175 /* Prime the peer's transport structures. */ 1176 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1177 SCTP_UNKNOWN); 1178 if (!transport) { 1179 err = -ENOMEM; 1180 goto out_free; 1181 } 1182 1183 addrcnt++; 1184 addr_buf += af->sockaddr_len; 1185 walk_size += af->sockaddr_len; 1186 } 1187 1188 /* In case the user of sctp_connectx() wants an association 1189 * id back, assign one now. 1190 */ 1191 if (assoc_id) { 1192 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1193 if (err < 0) 1194 goto out_free; 1195 } 1196 1197 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1198 if (err < 0) { 1199 goto out_free; 1200 } 1201 1202 /* Initialize sk's dport and daddr for getpeername() */ 1203 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1204 sp->pf->to_sk_daddr(sa_addr, sk); 1205 sk->sk_err = 0; 1206 1207 /* in-kernel sockets don't generally have a file allocated to them 1208 * if all they do is call sock_create_kern(). 1209 */ 1210 if (sk->sk_socket->file) 1211 f_flags = sk->sk_socket->file->f_flags; 1212 1213 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1214 1215 err = sctp_wait_for_connect(asoc, &timeo); 1216 if ((err == 0 || err == -EINPROGRESS) && assoc_id) 1217 *assoc_id = asoc->assoc_id; 1218 1219 /* Don't free association on exit. */ 1220 asoc = NULL; 1221 1222 out_free: 1223 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1224 __func__, asoc, kaddrs, err); 1225 1226 if (asoc) { 1227 /* sctp_primitive_ASSOCIATE may have added this association 1228 * To the hash table, try to unhash it, just in case, its a noop 1229 * if it wasn't hashed so we're safe 1230 */ 1231 sctp_unhash_established(asoc); 1232 sctp_association_free(asoc); 1233 } 1234 return err; 1235 } 1236 1237 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1238 * 1239 * API 8.9 1240 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1241 * sctp_assoc_t *asoc); 1242 * 1243 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1244 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1245 * or IPv6 addresses. 1246 * 1247 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1248 * Section 3.1.2 for this usage. 1249 * 1250 * addrs is a pointer to an array of one or more socket addresses. Each 1251 * address is contained in its appropriate structure (i.e. struct 1252 * sockaddr_in or struct sockaddr_in6) the family of the address type 1253 * must be used to distengish the address length (note that this 1254 * representation is termed a "packed array" of addresses). The caller 1255 * specifies the number of addresses in the array with addrcnt. 1256 * 1257 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1258 * the association id of the new association. On failure, sctp_connectx() 1259 * returns -1, and sets errno to the appropriate error code. The assoc_id 1260 * is not touched by the kernel. 1261 * 1262 * For SCTP, the port given in each socket address must be the same, or 1263 * sctp_connectx() will fail, setting errno to EINVAL. 1264 * 1265 * An application can use sctp_connectx to initiate an association with 1266 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1267 * allows a caller to specify multiple addresses at which a peer can be 1268 * reached. The way the SCTP stack uses the list of addresses to set up 1269 * the association is implementation dependent. This function only 1270 * specifies that the stack will try to make use of all the addresses in 1271 * the list when needed. 1272 * 1273 * Note that the list of addresses passed in is only used for setting up 1274 * the association. It does not necessarily equal the set of addresses 1275 * the peer uses for the resulting association. If the caller wants to 1276 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1277 * retrieve them after the association has been set up. 1278 * 1279 * Basically do nothing but copying the addresses from user to kernel 1280 * land and invoking either sctp_connectx(). This is used for tunneling 1281 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1282 * 1283 * We don't use copy_from_user() for optimization: we first do the 1284 * sanity checks (buffer size -fast- and access check-healthy 1285 * pointer); if all of those succeed, then we can alloc the memory 1286 * (expensive operation) needed to copy the data to kernel. Then we do 1287 * the copying without checking the user space area 1288 * (__copy_from_user()). 1289 * 1290 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1291 * it. 1292 * 1293 * sk The sk of the socket 1294 * addrs The pointer to the addresses in user land 1295 * addrssize Size of the addrs buffer 1296 * 1297 * Returns >=0 if ok, <0 errno code on error. 1298 */ 1299 static int __sctp_setsockopt_connectx(struct sock *sk, 1300 struct sockaddr __user *addrs, 1301 int addrs_size, 1302 sctp_assoc_t *assoc_id) 1303 { 1304 int err = 0; 1305 struct sockaddr *kaddrs; 1306 1307 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1308 __func__, sk, addrs, addrs_size); 1309 1310 if (unlikely(addrs_size <= 0)) 1311 return -EINVAL; 1312 1313 /* Check the user passed a healthy pointer. */ 1314 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1315 return -EFAULT; 1316 1317 /* Alloc space for the address array in kernel memory. */ 1318 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 1319 if (unlikely(!kaddrs)) 1320 return -ENOMEM; 1321 1322 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1323 err = -EFAULT; 1324 } else { 1325 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1326 } 1327 1328 kfree(kaddrs); 1329 1330 return err; 1331 } 1332 1333 /* 1334 * This is an older interface. It's kept for backward compatibility 1335 * to the option that doesn't provide association id. 1336 */ 1337 static int sctp_setsockopt_connectx_old(struct sock *sk, 1338 struct sockaddr __user *addrs, 1339 int addrs_size) 1340 { 1341 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1342 } 1343 1344 /* 1345 * New interface for the API. The since the API is done with a socket 1346 * option, to make it simple we feed back the association id is as a return 1347 * indication to the call. Error is always negative and association id is 1348 * always positive. 1349 */ 1350 static int sctp_setsockopt_connectx(struct sock *sk, 1351 struct sockaddr __user *addrs, 1352 int addrs_size) 1353 { 1354 sctp_assoc_t assoc_id = 0; 1355 int err = 0; 1356 1357 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1358 1359 if (err) 1360 return err; 1361 else 1362 return assoc_id; 1363 } 1364 1365 /* 1366 * New (hopefully final) interface for the API. 1367 * We use the sctp_getaddrs_old structure so that use-space library 1368 * can avoid any unnecessary allocations. The only different part 1369 * is that we store the actual length of the address buffer into the 1370 * addrs_num structure member. That way we can re-use the existing 1371 * code. 1372 */ 1373 #ifdef CONFIG_COMPAT 1374 struct compat_sctp_getaddrs_old { 1375 sctp_assoc_t assoc_id; 1376 s32 addr_num; 1377 compat_uptr_t addrs; /* struct sockaddr * */ 1378 }; 1379 #endif 1380 1381 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1382 char __user *optval, 1383 int __user *optlen) 1384 { 1385 struct sctp_getaddrs_old param; 1386 sctp_assoc_t assoc_id = 0; 1387 int err = 0; 1388 1389 #ifdef CONFIG_COMPAT 1390 if (is_compat_task()) { 1391 struct compat_sctp_getaddrs_old param32; 1392 1393 if (len < sizeof(param32)) 1394 return -EINVAL; 1395 if (copy_from_user(¶m32, optval, sizeof(param32))) 1396 return -EFAULT; 1397 1398 param.assoc_id = param32.assoc_id; 1399 param.addr_num = param32.addr_num; 1400 param.addrs = compat_ptr(param32.addrs); 1401 } else 1402 #endif 1403 { 1404 if (len < sizeof(param)) 1405 return -EINVAL; 1406 if (copy_from_user(¶m, optval, sizeof(param))) 1407 return -EFAULT; 1408 } 1409 1410 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1411 param.addrs, param.addr_num, 1412 &assoc_id); 1413 if (err == 0 || err == -EINPROGRESS) { 1414 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1415 return -EFAULT; 1416 if (put_user(sizeof(assoc_id), optlen)) 1417 return -EFAULT; 1418 } 1419 1420 return err; 1421 } 1422 1423 /* API 3.1.4 close() - UDP Style Syntax 1424 * Applications use close() to perform graceful shutdown (as described in 1425 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1426 * by a UDP-style socket. 1427 * 1428 * The syntax is 1429 * 1430 * ret = close(int sd); 1431 * 1432 * sd - the socket descriptor of the associations to be closed. 1433 * 1434 * To gracefully shutdown a specific association represented by the 1435 * UDP-style socket, an application should use the sendmsg() call, 1436 * passing no user data, but including the appropriate flag in the 1437 * ancillary data (see Section xxxx). 1438 * 1439 * If sd in the close() call is a branched-off socket representing only 1440 * one association, the shutdown is performed on that association only. 1441 * 1442 * 4.1.6 close() - TCP Style Syntax 1443 * 1444 * Applications use close() to gracefully close down an association. 1445 * 1446 * The syntax is: 1447 * 1448 * int close(int sd); 1449 * 1450 * sd - the socket descriptor of the association to be closed. 1451 * 1452 * After an application calls close() on a socket descriptor, no further 1453 * socket operations will succeed on that descriptor. 1454 * 1455 * API 7.1.4 SO_LINGER 1456 * 1457 * An application using the TCP-style socket can use this option to 1458 * perform the SCTP ABORT primitive. The linger option structure is: 1459 * 1460 * struct linger { 1461 * int l_onoff; // option on/off 1462 * int l_linger; // linger time 1463 * }; 1464 * 1465 * To enable the option, set l_onoff to 1. If the l_linger value is set 1466 * to 0, calling close() is the same as the ABORT primitive. If the 1467 * value is set to a negative value, the setsockopt() call will return 1468 * an error. If the value is set to a positive value linger_time, the 1469 * close() can be blocked for at most linger_time ms. If the graceful 1470 * shutdown phase does not finish during this period, close() will 1471 * return but the graceful shutdown phase continues in the system. 1472 */ 1473 static void sctp_close(struct sock *sk, long timeout) 1474 { 1475 struct net *net = sock_net(sk); 1476 struct sctp_endpoint *ep; 1477 struct sctp_association *asoc; 1478 struct list_head *pos, *temp; 1479 unsigned int data_was_unread; 1480 1481 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1482 1483 lock_sock(sk); 1484 sk->sk_shutdown = SHUTDOWN_MASK; 1485 sk->sk_state = SCTP_SS_CLOSING; 1486 1487 ep = sctp_sk(sk)->ep; 1488 1489 /* Clean up any skbs sitting on the receive queue. */ 1490 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1491 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1492 1493 /* Walk all associations on an endpoint. */ 1494 list_for_each_safe(pos, temp, &ep->asocs) { 1495 asoc = list_entry(pos, struct sctp_association, asocs); 1496 1497 if (sctp_style(sk, TCP)) { 1498 /* A closed association can still be in the list if 1499 * it belongs to a TCP-style listening socket that is 1500 * not yet accepted. If so, free it. If not, send an 1501 * ABORT or SHUTDOWN based on the linger options. 1502 */ 1503 if (sctp_state(asoc, CLOSED)) { 1504 sctp_unhash_established(asoc); 1505 sctp_association_free(asoc); 1506 continue; 1507 } 1508 } 1509 1510 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1511 !skb_queue_empty(&asoc->ulpq.reasm) || 1512 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1513 struct sctp_chunk *chunk; 1514 1515 chunk = sctp_make_abort_user(asoc, NULL, 0); 1516 if (chunk) 1517 sctp_primitive_ABORT(net, asoc, chunk); 1518 } else 1519 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1520 } 1521 1522 /* On a TCP-style socket, block for at most linger_time if set. */ 1523 if (sctp_style(sk, TCP) && timeout) 1524 sctp_wait_for_close(sk, timeout); 1525 1526 /* This will run the backlog queue. */ 1527 release_sock(sk); 1528 1529 /* Supposedly, no process has access to the socket, but 1530 * the net layers still may. 1531 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1532 * held and that should be grabbed before socket lock. 1533 */ 1534 spin_lock_bh(&net->sctp.addr_wq_lock); 1535 bh_lock_sock(sk); 1536 1537 /* Hold the sock, since sk_common_release() will put sock_put() 1538 * and we have just a little more cleanup. 1539 */ 1540 sock_hold(sk); 1541 sk_common_release(sk); 1542 1543 bh_unlock_sock(sk); 1544 spin_unlock_bh(&net->sctp.addr_wq_lock); 1545 1546 sock_put(sk); 1547 1548 SCTP_DBG_OBJCNT_DEC(sock); 1549 } 1550 1551 /* Handle EPIPE error. */ 1552 static int sctp_error(struct sock *sk, int flags, int err) 1553 { 1554 if (err == -EPIPE) 1555 err = sock_error(sk) ? : -EPIPE; 1556 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1557 send_sig(SIGPIPE, current, 0); 1558 return err; 1559 } 1560 1561 /* API 3.1.3 sendmsg() - UDP Style Syntax 1562 * 1563 * An application uses sendmsg() and recvmsg() calls to transmit data to 1564 * and receive data from its peer. 1565 * 1566 * ssize_t sendmsg(int socket, const struct msghdr *message, 1567 * int flags); 1568 * 1569 * socket - the socket descriptor of the endpoint. 1570 * message - pointer to the msghdr structure which contains a single 1571 * user message and possibly some ancillary data. 1572 * 1573 * See Section 5 for complete description of the data 1574 * structures. 1575 * 1576 * flags - flags sent or received with the user message, see Section 1577 * 5 for complete description of the flags. 1578 * 1579 * Note: This function could use a rewrite especially when explicit 1580 * connect support comes in. 1581 */ 1582 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1583 1584 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1585 1586 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1587 { 1588 struct net *net = sock_net(sk); 1589 struct sctp_sock *sp; 1590 struct sctp_endpoint *ep; 1591 struct sctp_association *new_asoc = NULL, *asoc = NULL; 1592 struct sctp_transport *transport, *chunk_tp; 1593 struct sctp_chunk *chunk; 1594 union sctp_addr to; 1595 struct sockaddr *msg_name = NULL; 1596 struct sctp_sndrcvinfo default_sinfo; 1597 struct sctp_sndrcvinfo *sinfo; 1598 struct sctp_initmsg *sinit; 1599 sctp_assoc_t associd = 0; 1600 sctp_cmsgs_t cmsgs = { NULL }; 1601 sctp_scope_t scope; 1602 bool fill_sinfo_ttl = false, wait_connect = false; 1603 struct sctp_datamsg *datamsg; 1604 int msg_flags = msg->msg_flags; 1605 __u16 sinfo_flags = 0; 1606 long timeo; 1607 int err; 1608 1609 err = 0; 1610 sp = sctp_sk(sk); 1611 ep = sp->ep; 1612 1613 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk, 1614 msg, msg_len, ep); 1615 1616 /* We cannot send a message over a TCP-style listening socket. */ 1617 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1618 err = -EPIPE; 1619 goto out_nounlock; 1620 } 1621 1622 /* Parse out the SCTP CMSGs. */ 1623 err = sctp_msghdr_parse(msg, &cmsgs); 1624 if (err) { 1625 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1626 goto out_nounlock; 1627 } 1628 1629 /* Fetch the destination address for this packet. This 1630 * address only selects the association--it is not necessarily 1631 * the address we will send to. 1632 * For a peeled-off socket, msg_name is ignored. 1633 */ 1634 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1635 int msg_namelen = msg->msg_namelen; 1636 1637 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1638 msg_namelen); 1639 if (err) 1640 return err; 1641 1642 if (msg_namelen > sizeof(to)) 1643 msg_namelen = sizeof(to); 1644 memcpy(&to, msg->msg_name, msg_namelen); 1645 msg_name = msg->msg_name; 1646 } 1647 1648 sinit = cmsgs.init; 1649 if (cmsgs.sinfo != NULL) { 1650 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1651 default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid; 1652 default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags; 1653 default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid; 1654 default_sinfo.sinfo_context = cmsgs.sinfo->snd_context; 1655 default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id; 1656 1657 sinfo = &default_sinfo; 1658 fill_sinfo_ttl = true; 1659 } else { 1660 sinfo = cmsgs.srinfo; 1661 } 1662 /* Did the user specify SNDINFO/SNDRCVINFO? */ 1663 if (sinfo) { 1664 sinfo_flags = sinfo->sinfo_flags; 1665 associd = sinfo->sinfo_assoc_id; 1666 } 1667 1668 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__, 1669 msg_len, sinfo_flags); 1670 1671 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1672 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1673 err = -EINVAL; 1674 goto out_nounlock; 1675 } 1676 1677 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1678 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1679 * If SCTP_ABORT is set, the message length could be non zero with 1680 * the msg_iov set to the user abort reason. 1681 */ 1682 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1683 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1684 err = -EINVAL; 1685 goto out_nounlock; 1686 } 1687 1688 /* If SCTP_ADDR_OVER is set, there must be an address 1689 * specified in msg_name. 1690 */ 1691 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1692 err = -EINVAL; 1693 goto out_nounlock; 1694 } 1695 1696 transport = NULL; 1697 1698 pr_debug("%s: about to look up association\n", __func__); 1699 1700 lock_sock(sk); 1701 1702 /* If a msg_name has been specified, assume this is to be used. */ 1703 if (msg_name) { 1704 /* Look for a matching association on the endpoint. */ 1705 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1706 if (!asoc) { 1707 /* If we could not find a matching association on the 1708 * endpoint, make sure that it is not a TCP-style 1709 * socket that already has an association or there is 1710 * no peeled-off association on another socket. 1711 */ 1712 if ((sctp_style(sk, TCP) && 1713 sctp_sstate(sk, ESTABLISHED)) || 1714 sctp_endpoint_is_peeled_off(ep, &to)) { 1715 err = -EADDRNOTAVAIL; 1716 goto out_unlock; 1717 } 1718 } 1719 } else { 1720 asoc = sctp_id2assoc(sk, associd); 1721 if (!asoc) { 1722 err = -EPIPE; 1723 goto out_unlock; 1724 } 1725 } 1726 1727 if (asoc) { 1728 pr_debug("%s: just looked up association:%p\n", __func__, asoc); 1729 1730 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1731 * socket that has an association in CLOSED state. This can 1732 * happen when an accepted socket has an association that is 1733 * already CLOSED. 1734 */ 1735 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1736 err = -EPIPE; 1737 goto out_unlock; 1738 } 1739 1740 if (sinfo_flags & SCTP_EOF) { 1741 pr_debug("%s: shutting down association:%p\n", 1742 __func__, asoc); 1743 1744 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1745 err = 0; 1746 goto out_unlock; 1747 } 1748 if (sinfo_flags & SCTP_ABORT) { 1749 1750 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1751 if (!chunk) { 1752 err = -ENOMEM; 1753 goto out_unlock; 1754 } 1755 1756 pr_debug("%s: aborting association:%p\n", 1757 __func__, asoc); 1758 1759 sctp_primitive_ABORT(net, asoc, chunk); 1760 err = 0; 1761 goto out_unlock; 1762 } 1763 } 1764 1765 /* Do we need to create the association? */ 1766 if (!asoc) { 1767 pr_debug("%s: there is no association yet\n", __func__); 1768 1769 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1770 err = -EINVAL; 1771 goto out_unlock; 1772 } 1773 1774 /* Check for invalid stream against the stream counts, 1775 * either the default or the user specified stream counts. 1776 */ 1777 if (sinfo) { 1778 if (!sinit || !sinit->sinit_num_ostreams) { 1779 /* Check against the defaults. */ 1780 if (sinfo->sinfo_stream >= 1781 sp->initmsg.sinit_num_ostreams) { 1782 err = -EINVAL; 1783 goto out_unlock; 1784 } 1785 } else { 1786 /* Check against the requested. */ 1787 if (sinfo->sinfo_stream >= 1788 sinit->sinit_num_ostreams) { 1789 err = -EINVAL; 1790 goto out_unlock; 1791 } 1792 } 1793 } 1794 1795 /* 1796 * API 3.1.2 bind() - UDP Style Syntax 1797 * If a bind() or sctp_bindx() is not called prior to a 1798 * sendmsg() call that initiates a new association, the 1799 * system picks an ephemeral port and will choose an address 1800 * set equivalent to binding with a wildcard address. 1801 */ 1802 if (!ep->base.bind_addr.port) { 1803 if (sctp_autobind(sk)) { 1804 err = -EAGAIN; 1805 goto out_unlock; 1806 } 1807 } else { 1808 /* 1809 * If an unprivileged user inherits a one-to-many 1810 * style socket with open associations on a privileged 1811 * port, it MAY be permitted to accept new associations, 1812 * but it SHOULD NOT be permitted to open new 1813 * associations. 1814 */ 1815 if (ep->base.bind_addr.port < PROT_SOCK && 1816 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) { 1817 err = -EACCES; 1818 goto out_unlock; 1819 } 1820 } 1821 1822 scope = sctp_scope(&to); 1823 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1824 if (!new_asoc) { 1825 err = -ENOMEM; 1826 goto out_unlock; 1827 } 1828 asoc = new_asoc; 1829 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1830 if (err < 0) { 1831 err = -ENOMEM; 1832 goto out_free; 1833 } 1834 1835 /* If the SCTP_INIT ancillary data is specified, set all 1836 * the association init values accordingly. 1837 */ 1838 if (sinit) { 1839 if (sinit->sinit_num_ostreams) { 1840 asoc->c.sinit_num_ostreams = 1841 sinit->sinit_num_ostreams; 1842 } 1843 if (sinit->sinit_max_instreams) { 1844 asoc->c.sinit_max_instreams = 1845 sinit->sinit_max_instreams; 1846 } 1847 if (sinit->sinit_max_attempts) { 1848 asoc->max_init_attempts 1849 = sinit->sinit_max_attempts; 1850 } 1851 if (sinit->sinit_max_init_timeo) { 1852 asoc->max_init_timeo = 1853 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1854 } 1855 } 1856 1857 /* Prime the peer's transport structures. */ 1858 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1859 if (!transport) { 1860 err = -ENOMEM; 1861 goto out_free; 1862 } 1863 } 1864 1865 /* ASSERT: we have a valid association at this point. */ 1866 pr_debug("%s: we have a valid association\n", __func__); 1867 1868 if (!sinfo) { 1869 /* If the user didn't specify SNDINFO/SNDRCVINFO, make up 1870 * one with some defaults. 1871 */ 1872 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1873 default_sinfo.sinfo_stream = asoc->default_stream; 1874 default_sinfo.sinfo_flags = asoc->default_flags; 1875 default_sinfo.sinfo_ppid = asoc->default_ppid; 1876 default_sinfo.sinfo_context = asoc->default_context; 1877 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1878 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1879 1880 sinfo = &default_sinfo; 1881 } else if (fill_sinfo_ttl) { 1882 /* In case SNDINFO was specified, we still need to fill 1883 * it with a default ttl from the assoc here. 1884 */ 1885 sinfo->sinfo_timetolive = asoc->default_timetolive; 1886 } 1887 1888 /* API 7.1.7, the sndbuf size per association bounds the 1889 * maximum size of data that can be sent in a single send call. 1890 */ 1891 if (msg_len > sk->sk_sndbuf) { 1892 err = -EMSGSIZE; 1893 goto out_free; 1894 } 1895 1896 if (asoc->pmtu_pending) 1897 sctp_assoc_pending_pmtu(sk, asoc); 1898 1899 /* If fragmentation is disabled and the message length exceeds the 1900 * association fragmentation point, return EMSGSIZE. The I-D 1901 * does not specify what this error is, but this looks like 1902 * a great fit. 1903 */ 1904 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1905 err = -EMSGSIZE; 1906 goto out_free; 1907 } 1908 1909 /* Check for invalid stream. */ 1910 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1911 err = -EINVAL; 1912 goto out_free; 1913 } 1914 1915 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1916 if (!sctp_wspace(asoc)) { 1917 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1918 if (err) 1919 goto out_free; 1920 } 1921 1922 /* If an address is passed with the sendto/sendmsg call, it is used 1923 * to override the primary destination address in the TCP model, or 1924 * when SCTP_ADDR_OVER flag is set in the UDP model. 1925 */ 1926 if ((sctp_style(sk, TCP) && msg_name) || 1927 (sinfo_flags & SCTP_ADDR_OVER)) { 1928 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1929 if (!chunk_tp) { 1930 err = -EINVAL; 1931 goto out_free; 1932 } 1933 } else 1934 chunk_tp = NULL; 1935 1936 /* Auto-connect, if we aren't connected already. */ 1937 if (sctp_state(asoc, CLOSED)) { 1938 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1939 if (err < 0) 1940 goto out_free; 1941 1942 wait_connect = true; 1943 pr_debug("%s: we associated primitively\n", __func__); 1944 } 1945 1946 /* Break the message into multiple chunks of maximum size. */ 1947 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1948 if (IS_ERR(datamsg)) { 1949 err = PTR_ERR(datamsg); 1950 goto out_free; 1951 } 1952 1953 /* Now send the (possibly) fragmented message. */ 1954 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1955 sctp_chunk_hold(chunk); 1956 1957 /* Do accounting for the write space. */ 1958 sctp_set_owner_w(chunk); 1959 1960 chunk->transport = chunk_tp; 1961 } 1962 1963 /* Send it to the lower layers. Note: all chunks 1964 * must either fail or succeed. The lower layer 1965 * works that way today. Keep it that way or this 1966 * breaks. 1967 */ 1968 err = sctp_primitive_SEND(net, asoc, datamsg); 1969 /* Did the lower layer accept the chunk? */ 1970 if (err) { 1971 sctp_datamsg_free(datamsg); 1972 goto out_free; 1973 } 1974 1975 pr_debug("%s: we sent primitively\n", __func__); 1976 1977 sctp_datamsg_put(datamsg); 1978 err = msg_len; 1979 1980 if (unlikely(wait_connect)) { 1981 timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT); 1982 sctp_wait_for_connect(asoc, &timeo); 1983 } 1984 1985 /* If we are already past ASSOCIATE, the lower 1986 * layers are responsible for association cleanup. 1987 */ 1988 goto out_unlock; 1989 1990 out_free: 1991 if (new_asoc) { 1992 sctp_unhash_established(asoc); 1993 sctp_association_free(asoc); 1994 } 1995 out_unlock: 1996 release_sock(sk); 1997 1998 out_nounlock: 1999 return sctp_error(sk, msg_flags, err); 2000 2001 #if 0 2002 do_sock_err: 2003 if (msg_len) 2004 err = msg_len; 2005 else 2006 err = sock_error(sk); 2007 goto out; 2008 2009 do_interrupted: 2010 if (msg_len) 2011 err = msg_len; 2012 goto out; 2013 #endif /* 0 */ 2014 } 2015 2016 /* This is an extended version of skb_pull() that removes the data from the 2017 * start of a skb even when data is spread across the list of skb's in the 2018 * frag_list. len specifies the total amount of data that needs to be removed. 2019 * when 'len' bytes could be removed from the skb, it returns 0. 2020 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2021 * could not be removed. 2022 */ 2023 static int sctp_skb_pull(struct sk_buff *skb, int len) 2024 { 2025 struct sk_buff *list; 2026 int skb_len = skb_headlen(skb); 2027 int rlen; 2028 2029 if (len <= skb_len) { 2030 __skb_pull(skb, len); 2031 return 0; 2032 } 2033 len -= skb_len; 2034 __skb_pull(skb, skb_len); 2035 2036 skb_walk_frags(skb, list) { 2037 rlen = sctp_skb_pull(list, len); 2038 skb->len -= (len-rlen); 2039 skb->data_len -= (len-rlen); 2040 2041 if (!rlen) 2042 return 0; 2043 2044 len = rlen; 2045 } 2046 2047 return len; 2048 } 2049 2050 /* API 3.1.3 recvmsg() - UDP Style Syntax 2051 * 2052 * ssize_t recvmsg(int socket, struct msghdr *message, 2053 * int flags); 2054 * 2055 * socket - the socket descriptor of the endpoint. 2056 * message - pointer to the msghdr structure which contains a single 2057 * user message and possibly some ancillary data. 2058 * 2059 * See Section 5 for complete description of the data 2060 * structures. 2061 * 2062 * flags - flags sent or received with the user message, see Section 2063 * 5 for complete description of the flags. 2064 */ 2065 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2066 int noblock, int flags, int *addr_len) 2067 { 2068 struct sctp_ulpevent *event = NULL; 2069 struct sctp_sock *sp = sctp_sk(sk); 2070 struct sk_buff *skb; 2071 int copied; 2072 int err = 0; 2073 int skb_len; 2074 2075 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2076 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2077 addr_len); 2078 2079 lock_sock(sk); 2080 2081 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 2082 err = -ENOTCONN; 2083 goto out; 2084 } 2085 2086 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2087 if (!skb) 2088 goto out; 2089 2090 /* Get the total length of the skb including any skb's in the 2091 * frag_list. 2092 */ 2093 skb_len = skb->len; 2094 2095 copied = skb_len; 2096 if (copied > len) 2097 copied = len; 2098 2099 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2100 2101 event = sctp_skb2event(skb); 2102 2103 if (err) 2104 goto out_free; 2105 2106 sock_recv_ts_and_drops(msg, sk, skb); 2107 if (sctp_ulpevent_is_notification(event)) { 2108 msg->msg_flags |= MSG_NOTIFICATION; 2109 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2110 } else { 2111 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 2112 } 2113 2114 /* Check if we allow SCTP_NXTINFO. */ 2115 if (sp->recvnxtinfo) 2116 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2117 /* Check if we allow SCTP_RCVINFO. */ 2118 if (sp->recvrcvinfo) 2119 sctp_ulpevent_read_rcvinfo(event, msg); 2120 /* Check if we allow SCTP_SNDRCVINFO. */ 2121 if (sp->subscribe.sctp_data_io_event) 2122 sctp_ulpevent_read_sndrcvinfo(event, msg); 2123 2124 err = copied; 2125 2126 /* If skb's length exceeds the user's buffer, update the skb and 2127 * push it back to the receive_queue so that the next call to 2128 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2129 */ 2130 if (skb_len > copied) { 2131 msg->msg_flags &= ~MSG_EOR; 2132 if (flags & MSG_PEEK) 2133 goto out_free; 2134 sctp_skb_pull(skb, copied); 2135 skb_queue_head(&sk->sk_receive_queue, skb); 2136 2137 /* When only partial message is copied to the user, increase 2138 * rwnd by that amount. If all the data in the skb is read, 2139 * rwnd is updated when the event is freed. 2140 */ 2141 if (!sctp_ulpevent_is_notification(event)) 2142 sctp_assoc_rwnd_increase(event->asoc, copied); 2143 goto out; 2144 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2145 (event->msg_flags & MSG_EOR)) 2146 msg->msg_flags |= MSG_EOR; 2147 else 2148 msg->msg_flags &= ~MSG_EOR; 2149 2150 out_free: 2151 if (flags & MSG_PEEK) { 2152 /* Release the skb reference acquired after peeking the skb in 2153 * sctp_skb_recv_datagram(). 2154 */ 2155 kfree_skb(skb); 2156 } else { 2157 /* Free the event which includes releasing the reference to 2158 * the owner of the skb, freeing the skb and updating the 2159 * rwnd. 2160 */ 2161 sctp_ulpevent_free(event); 2162 } 2163 out: 2164 release_sock(sk); 2165 return err; 2166 } 2167 2168 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2169 * 2170 * This option is a on/off flag. If enabled no SCTP message 2171 * fragmentation will be performed. Instead if a message being sent 2172 * exceeds the current PMTU size, the message will NOT be sent and 2173 * instead a error will be indicated to the user. 2174 */ 2175 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2176 char __user *optval, 2177 unsigned int optlen) 2178 { 2179 int val; 2180 2181 if (optlen < sizeof(int)) 2182 return -EINVAL; 2183 2184 if (get_user(val, (int __user *)optval)) 2185 return -EFAULT; 2186 2187 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2188 2189 return 0; 2190 } 2191 2192 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2193 unsigned int optlen) 2194 { 2195 struct sctp_association *asoc; 2196 struct sctp_ulpevent *event; 2197 2198 if (optlen > sizeof(struct sctp_event_subscribe)) 2199 return -EINVAL; 2200 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2201 return -EFAULT; 2202 2203 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2204 * if there is no data to be sent or retransmit, the stack will 2205 * immediately send up this notification. 2206 */ 2207 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, 2208 &sctp_sk(sk)->subscribe)) { 2209 asoc = sctp_id2assoc(sk, 0); 2210 2211 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2212 event = sctp_ulpevent_make_sender_dry_event(asoc, 2213 GFP_ATOMIC); 2214 if (!event) 2215 return -ENOMEM; 2216 2217 sctp_ulpq_tail_event(&asoc->ulpq, event); 2218 } 2219 } 2220 2221 return 0; 2222 } 2223 2224 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2225 * 2226 * This socket option is applicable to the UDP-style socket only. When 2227 * set it will cause associations that are idle for more than the 2228 * specified number of seconds to automatically close. An association 2229 * being idle is defined an association that has NOT sent or received 2230 * user data. The special value of '0' indicates that no automatic 2231 * close of any associations should be performed. The option expects an 2232 * integer defining the number of seconds of idle time before an 2233 * association is closed. 2234 */ 2235 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2236 unsigned int optlen) 2237 { 2238 struct sctp_sock *sp = sctp_sk(sk); 2239 struct net *net = sock_net(sk); 2240 2241 /* Applicable to UDP-style socket only */ 2242 if (sctp_style(sk, TCP)) 2243 return -EOPNOTSUPP; 2244 if (optlen != sizeof(int)) 2245 return -EINVAL; 2246 if (copy_from_user(&sp->autoclose, optval, optlen)) 2247 return -EFAULT; 2248 2249 if (sp->autoclose > net->sctp.max_autoclose) 2250 sp->autoclose = net->sctp.max_autoclose; 2251 2252 return 0; 2253 } 2254 2255 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2256 * 2257 * Applications can enable or disable heartbeats for any peer address of 2258 * an association, modify an address's heartbeat interval, force a 2259 * heartbeat to be sent immediately, and adjust the address's maximum 2260 * number of retransmissions sent before an address is considered 2261 * unreachable. The following structure is used to access and modify an 2262 * address's parameters: 2263 * 2264 * struct sctp_paddrparams { 2265 * sctp_assoc_t spp_assoc_id; 2266 * struct sockaddr_storage spp_address; 2267 * uint32_t spp_hbinterval; 2268 * uint16_t spp_pathmaxrxt; 2269 * uint32_t spp_pathmtu; 2270 * uint32_t spp_sackdelay; 2271 * uint32_t spp_flags; 2272 * }; 2273 * 2274 * spp_assoc_id - (one-to-many style socket) This is filled in the 2275 * application, and identifies the association for 2276 * this query. 2277 * spp_address - This specifies which address is of interest. 2278 * spp_hbinterval - This contains the value of the heartbeat interval, 2279 * in milliseconds. If a value of zero 2280 * is present in this field then no changes are to 2281 * be made to this parameter. 2282 * spp_pathmaxrxt - This contains the maximum number of 2283 * retransmissions before this address shall be 2284 * considered unreachable. If a value of zero 2285 * is present in this field then no changes are to 2286 * be made to this parameter. 2287 * spp_pathmtu - When Path MTU discovery is disabled the value 2288 * specified here will be the "fixed" path mtu. 2289 * Note that if the spp_address field is empty 2290 * then all associations on this address will 2291 * have this fixed path mtu set upon them. 2292 * 2293 * spp_sackdelay - When delayed sack is enabled, this value specifies 2294 * the number of milliseconds that sacks will be delayed 2295 * for. This value will apply to all addresses of an 2296 * association if the spp_address field is empty. Note 2297 * also, that if delayed sack is enabled and this 2298 * value is set to 0, no change is made to the last 2299 * recorded delayed sack timer value. 2300 * 2301 * spp_flags - These flags are used to control various features 2302 * on an association. The flag field may contain 2303 * zero or more of the following options. 2304 * 2305 * SPP_HB_ENABLE - Enable heartbeats on the 2306 * specified address. Note that if the address 2307 * field is empty all addresses for the association 2308 * have heartbeats enabled upon them. 2309 * 2310 * SPP_HB_DISABLE - Disable heartbeats on the 2311 * speicifed address. Note that if the address 2312 * field is empty all addresses for the association 2313 * will have their heartbeats disabled. Note also 2314 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2315 * mutually exclusive, only one of these two should 2316 * be specified. Enabling both fields will have 2317 * undetermined results. 2318 * 2319 * SPP_HB_DEMAND - Request a user initiated heartbeat 2320 * to be made immediately. 2321 * 2322 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2323 * heartbeat delayis to be set to the value of 0 2324 * milliseconds. 2325 * 2326 * SPP_PMTUD_ENABLE - This field will enable PMTU 2327 * discovery upon the specified address. Note that 2328 * if the address feild is empty then all addresses 2329 * on the association are effected. 2330 * 2331 * SPP_PMTUD_DISABLE - This field will disable PMTU 2332 * discovery upon the specified address. Note that 2333 * if the address feild is empty then all addresses 2334 * on the association are effected. Not also that 2335 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2336 * exclusive. Enabling both will have undetermined 2337 * results. 2338 * 2339 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2340 * on delayed sack. The time specified in spp_sackdelay 2341 * is used to specify the sack delay for this address. Note 2342 * that if spp_address is empty then all addresses will 2343 * enable delayed sack and take on the sack delay 2344 * value specified in spp_sackdelay. 2345 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2346 * off delayed sack. If the spp_address field is blank then 2347 * delayed sack is disabled for the entire association. Note 2348 * also that this field is mutually exclusive to 2349 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2350 * results. 2351 */ 2352 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2353 struct sctp_transport *trans, 2354 struct sctp_association *asoc, 2355 struct sctp_sock *sp, 2356 int hb_change, 2357 int pmtud_change, 2358 int sackdelay_change) 2359 { 2360 int error; 2361 2362 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2363 struct net *net = sock_net(trans->asoc->base.sk); 2364 2365 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2366 if (error) 2367 return error; 2368 } 2369 2370 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2371 * this field is ignored. Note also that a value of zero indicates 2372 * the current setting should be left unchanged. 2373 */ 2374 if (params->spp_flags & SPP_HB_ENABLE) { 2375 2376 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2377 * set. This lets us use 0 value when this flag 2378 * is set. 2379 */ 2380 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2381 params->spp_hbinterval = 0; 2382 2383 if (params->spp_hbinterval || 2384 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2385 if (trans) { 2386 trans->hbinterval = 2387 msecs_to_jiffies(params->spp_hbinterval); 2388 } else if (asoc) { 2389 asoc->hbinterval = 2390 msecs_to_jiffies(params->spp_hbinterval); 2391 } else { 2392 sp->hbinterval = params->spp_hbinterval; 2393 } 2394 } 2395 } 2396 2397 if (hb_change) { 2398 if (trans) { 2399 trans->param_flags = 2400 (trans->param_flags & ~SPP_HB) | hb_change; 2401 } else if (asoc) { 2402 asoc->param_flags = 2403 (asoc->param_flags & ~SPP_HB) | hb_change; 2404 } else { 2405 sp->param_flags = 2406 (sp->param_flags & ~SPP_HB) | hb_change; 2407 } 2408 } 2409 2410 /* When Path MTU discovery is disabled the value specified here will 2411 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2412 * include the flag SPP_PMTUD_DISABLE for this field to have any 2413 * effect). 2414 */ 2415 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2416 if (trans) { 2417 trans->pathmtu = params->spp_pathmtu; 2418 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc); 2419 } else if (asoc) { 2420 asoc->pathmtu = params->spp_pathmtu; 2421 sctp_frag_point(asoc, params->spp_pathmtu); 2422 } else { 2423 sp->pathmtu = params->spp_pathmtu; 2424 } 2425 } 2426 2427 if (pmtud_change) { 2428 if (trans) { 2429 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2430 (params->spp_flags & SPP_PMTUD_ENABLE); 2431 trans->param_flags = 2432 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2433 if (update) { 2434 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2435 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc); 2436 } 2437 } else if (asoc) { 2438 asoc->param_flags = 2439 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2440 } else { 2441 sp->param_flags = 2442 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2443 } 2444 } 2445 2446 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2447 * value of this field is ignored. Note also that a value of zero 2448 * indicates the current setting should be left unchanged. 2449 */ 2450 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2451 if (trans) { 2452 trans->sackdelay = 2453 msecs_to_jiffies(params->spp_sackdelay); 2454 } else if (asoc) { 2455 asoc->sackdelay = 2456 msecs_to_jiffies(params->spp_sackdelay); 2457 } else { 2458 sp->sackdelay = params->spp_sackdelay; 2459 } 2460 } 2461 2462 if (sackdelay_change) { 2463 if (trans) { 2464 trans->param_flags = 2465 (trans->param_flags & ~SPP_SACKDELAY) | 2466 sackdelay_change; 2467 } else if (asoc) { 2468 asoc->param_flags = 2469 (asoc->param_flags & ~SPP_SACKDELAY) | 2470 sackdelay_change; 2471 } else { 2472 sp->param_flags = 2473 (sp->param_flags & ~SPP_SACKDELAY) | 2474 sackdelay_change; 2475 } 2476 } 2477 2478 /* Note that a value of zero indicates the current setting should be 2479 left unchanged. 2480 */ 2481 if (params->spp_pathmaxrxt) { 2482 if (trans) { 2483 trans->pathmaxrxt = params->spp_pathmaxrxt; 2484 } else if (asoc) { 2485 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2486 } else { 2487 sp->pathmaxrxt = params->spp_pathmaxrxt; 2488 } 2489 } 2490 2491 return 0; 2492 } 2493 2494 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2495 char __user *optval, 2496 unsigned int optlen) 2497 { 2498 struct sctp_paddrparams params; 2499 struct sctp_transport *trans = NULL; 2500 struct sctp_association *asoc = NULL; 2501 struct sctp_sock *sp = sctp_sk(sk); 2502 int error; 2503 int hb_change, pmtud_change, sackdelay_change; 2504 2505 if (optlen != sizeof(struct sctp_paddrparams)) 2506 return -EINVAL; 2507 2508 if (copy_from_user(¶ms, optval, optlen)) 2509 return -EFAULT; 2510 2511 /* Validate flags and value parameters. */ 2512 hb_change = params.spp_flags & SPP_HB; 2513 pmtud_change = params.spp_flags & SPP_PMTUD; 2514 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2515 2516 if (hb_change == SPP_HB || 2517 pmtud_change == SPP_PMTUD || 2518 sackdelay_change == SPP_SACKDELAY || 2519 params.spp_sackdelay > 500 || 2520 (params.spp_pathmtu && 2521 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2522 return -EINVAL; 2523 2524 /* If an address other than INADDR_ANY is specified, and 2525 * no transport is found, then the request is invalid. 2526 */ 2527 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2528 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2529 params.spp_assoc_id); 2530 if (!trans) 2531 return -EINVAL; 2532 } 2533 2534 /* Get association, if assoc_id != 0 and the socket is a one 2535 * to many style socket, and an association was not found, then 2536 * the id was invalid. 2537 */ 2538 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2539 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2540 return -EINVAL; 2541 2542 /* Heartbeat demand can only be sent on a transport or 2543 * association, but not a socket. 2544 */ 2545 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2546 return -EINVAL; 2547 2548 /* Process parameters. */ 2549 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2550 hb_change, pmtud_change, 2551 sackdelay_change); 2552 2553 if (error) 2554 return error; 2555 2556 /* If changes are for association, also apply parameters to each 2557 * transport. 2558 */ 2559 if (!trans && asoc) { 2560 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2561 transports) { 2562 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2563 hb_change, pmtud_change, 2564 sackdelay_change); 2565 } 2566 } 2567 2568 return 0; 2569 } 2570 2571 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2572 { 2573 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2574 } 2575 2576 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2577 { 2578 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2579 } 2580 2581 /* 2582 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2583 * 2584 * This option will effect the way delayed acks are performed. This 2585 * option allows you to get or set the delayed ack time, in 2586 * milliseconds. It also allows changing the delayed ack frequency. 2587 * Changing the frequency to 1 disables the delayed sack algorithm. If 2588 * the assoc_id is 0, then this sets or gets the endpoints default 2589 * values. If the assoc_id field is non-zero, then the set or get 2590 * effects the specified association for the one to many model (the 2591 * assoc_id field is ignored by the one to one model). Note that if 2592 * sack_delay or sack_freq are 0 when setting this option, then the 2593 * current values will remain unchanged. 2594 * 2595 * struct sctp_sack_info { 2596 * sctp_assoc_t sack_assoc_id; 2597 * uint32_t sack_delay; 2598 * uint32_t sack_freq; 2599 * }; 2600 * 2601 * sack_assoc_id - This parameter, indicates which association the user 2602 * is performing an action upon. Note that if this field's value is 2603 * zero then the endpoints default value is changed (effecting future 2604 * associations only). 2605 * 2606 * sack_delay - This parameter contains the number of milliseconds that 2607 * the user is requesting the delayed ACK timer be set to. Note that 2608 * this value is defined in the standard to be between 200 and 500 2609 * milliseconds. 2610 * 2611 * sack_freq - This parameter contains the number of packets that must 2612 * be received before a sack is sent without waiting for the delay 2613 * timer to expire. The default value for this is 2, setting this 2614 * value to 1 will disable the delayed sack algorithm. 2615 */ 2616 2617 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2618 char __user *optval, unsigned int optlen) 2619 { 2620 struct sctp_sack_info params; 2621 struct sctp_transport *trans = NULL; 2622 struct sctp_association *asoc = NULL; 2623 struct sctp_sock *sp = sctp_sk(sk); 2624 2625 if (optlen == sizeof(struct sctp_sack_info)) { 2626 if (copy_from_user(¶ms, optval, optlen)) 2627 return -EFAULT; 2628 2629 if (params.sack_delay == 0 && params.sack_freq == 0) 2630 return 0; 2631 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2632 pr_warn_ratelimited(DEPRECATED 2633 "%s (pid %d) " 2634 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2635 "Use struct sctp_sack_info instead\n", 2636 current->comm, task_pid_nr(current)); 2637 if (copy_from_user(¶ms, optval, optlen)) 2638 return -EFAULT; 2639 2640 if (params.sack_delay == 0) 2641 params.sack_freq = 1; 2642 else 2643 params.sack_freq = 0; 2644 } else 2645 return -EINVAL; 2646 2647 /* Validate value parameter. */ 2648 if (params.sack_delay > 500) 2649 return -EINVAL; 2650 2651 /* Get association, if sack_assoc_id != 0 and the socket is a one 2652 * to many style socket, and an association was not found, then 2653 * the id was invalid. 2654 */ 2655 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2656 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2657 return -EINVAL; 2658 2659 if (params.sack_delay) { 2660 if (asoc) { 2661 asoc->sackdelay = 2662 msecs_to_jiffies(params.sack_delay); 2663 asoc->param_flags = 2664 sctp_spp_sackdelay_enable(asoc->param_flags); 2665 } else { 2666 sp->sackdelay = params.sack_delay; 2667 sp->param_flags = 2668 sctp_spp_sackdelay_enable(sp->param_flags); 2669 } 2670 } 2671 2672 if (params.sack_freq == 1) { 2673 if (asoc) { 2674 asoc->param_flags = 2675 sctp_spp_sackdelay_disable(asoc->param_flags); 2676 } else { 2677 sp->param_flags = 2678 sctp_spp_sackdelay_disable(sp->param_flags); 2679 } 2680 } else if (params.sack_freq > 1) { 2681 if (asoc) { 2682 asoc->sackfreq = params.sack_freq; 2683 asoc->param_flags = 2684 sctp_spp_sackdelay_enable(asoc->param_flags); 2685 } else { 2686 sp->sackfreq = params.sack_freq; 2687 sp->param_flags = 2688 sctp_spp_sackdelay_enable(sp->param_flags); 2689 } 2690 } 2691 2692 /* If change is for association, also apply to each transport. */ 2693 if (asoc) { 2694 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2695 transports) { 2696 if (params.sack_delay) { 2697 trans->sackdelay = 2698 msecs_to_jiffies(params.sack_delay); 2699 trans->param_flags = 2700 sctp_spp_sackdelay_enable(trans->param_flags); 2701 } 2702 if (params.sack_freq == 1) { 2703 trans->param_flags = 2704 sctp_spp_sackdelay_disable(trans->param_flags); 2705 } else if (params.sack_freq > 1) { 2706 trans->sackfreq = params.sack_freq; 2707 trans->param_flags = 2708 sctp_spp_sackdelay_enable(trans->param_flags); 2709 } 2710 } 2711 } 2712 2713 return 0; 2714 } 2715 2716 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2717 * 2718 * Applications can specify protocol parameters for the default association 2719 * initialization. The option name argument to setsockopt() and getsockopt() 2720 * is SCTP_INITMSG. 2721 * 2722 * Setting initialization parameters is effective only on an unconnected 2723 * socket (for UDP-style sockets only future associations are effected 2724 * by the change). With TCP-style sockets, this option is inherited by 2725 * sockets derived from a listener socket. 2726 */ 2727 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2728 { 2729 struct sctp_initmsg sinit; 2730 struct sctp_sock *sp = sctp_sk(sk); 2731 2732 if (optlen != sizeof(struct sctp_initmsg)) 2733 return -EINVAL; 2734 if (copy_from_user(&sinit, optval, optlen)) 2735 return -EFAULT; 2736 2737 if (sinit.sinit_num_ostreams) 2738 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2739 if (sinit.sinit_max_instreams) 2740 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2741 if (sinit.sinit_max_attempts) 2742 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2743 if (sinit.sinit_max_init_timeo) 2744 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2745 2746 return 0; 2747 } 2748 2749 /* 2750 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2751 * 2752 * Applications that wish to use the sendto() system call may wish to 2753 * specify a default set of parameters that would normally be supplied 2754 * through the inclusion of ancillary data. This socket option allows 2755 * such an application to set the default sctp_sndrcvinfo structure. 2756 * The application that wishes to use this socket option simply passes 2757 * in to this call the sctp_sndrcvinfo structure defined in Section 2758 * 5.2.2) The input parameters accepted by this call include 2759 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2760 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2761 * to this call if the caller is using the UDP model. 2762 */ 2763 static int sctp_setsockopt_default_send_param(struct sock *sk, 2764 char __user *optval, 2765 unsigned int optlen) 2766 { 2767 struct sctp_sock *sp = sctp_sk(sk); 2768 struct sctp_association *asoc; 2769 struct sctp_sndrcvinfo info; 2770 2771 if (optlen != sizeof(info)) 2772 return -EINVAL; 2773 if (copy_from_user(&info, optval, optlen)) 2774 return -EFAULT; 2775 if (info.sinfo_flags & 2776 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2777 SCTP_ABORT | SCTP_EOF)) 2778 return -EINVAL; 2779 2780 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2781 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2782 return -EINVAL; 2783 if (asoc) { 2784 asoc->default_stream = info.sinfo_stream; 2785 asoc->default_flags = info.sinfo_flags; 2786 asoc->default_ppid = info.sinfo_ppid; 2787 asoc->default_context = info.sinfo_context; 2788 asoc->default_timetolive = info.sinfo_timetolive; 2789 } else { 2790 sp->default_stream = info.sinfo_stream; 2791 sp->default_flags = info.sinfo_flags; 2792 sp->default_ppid = info.sinfo_ppid; 2793 sp->default_context = info.sinfo_context; 2794 sp->default_timetolive = info.sinfo_timetolive; 2795 } 2796 2797 return 0; 2798 } 2799 2800 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2801 * (SCTP_DEFAULT_SNDINFO) 2802 */ 2803 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2804 char __user *optval, 2805 unsigned int optlen) 2806 { 2807 struct sctp_sock *sp = sctp_sk(sk); 2808 struct sctp_association *asoc; 2809 struct sctp_sndinfo info; 2810 2811 if (optlen != sizeof(info)) 2812 return -EINVAL; 2813 if (copy_from_user(&info, optval, optlen)) 2814 return -EFAULT; 2815 if (info.snd_flags & 2816 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2817 SCTP_ABORT | SCTP_EOF)) 2818 return -EINVAL; 2819 2820 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 2821 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 2822 return -EINVAL; 2823 if (asoc) { 2824 asoc->default_stream = info.snd_sid; 2825 asoc->default_flags = info.snd_flags; 2826 asoc->default_ppid = info.snd_ppid; 2827 asoc->default_context = info.snd_context; 2828 } else { 2829 sp->default_stream = info.snd_sid; 2830 sp->default_flags = info.snd_flags; 2831 sp->default_ppid = info.snd_ppid; 2832 sp->default_context = info.snd_context; 2833 } 2834 2835 return 0; 2836 } 2837 2838 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2839 * 2840 * Requests that the local SCTP stack use the enclosed peer address as 2841 * the association primary. The enclosed address must be one of the 2842 * association peer's addresses. 2843 */ 2844 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2845 unsigned int optlen) 2846 { 2847 struct sctp_prim prim; 2848 struct sctp_transport *trans; 2849 2850 if (optlen != sizeof(struct sctp_prim)) 2851 return -EINVAL; 2852 2853 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2854 return -EFAULT; 2855 2856 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2857 if (!trans) 2858 return -EINVAL; 2859 2860 sctp_assoc_set_primary(trans->asoc, trans); 2861 2862 return 0; 2863 } 2864 2865 /* 2866 * 7.1.5 SCTP_NODELAY 2867 * 2868 * Turn on/off any Nagle-like algorithm. This means that packets are 2869 * generally sent as soon as possible and no unnecessary delays are 2870 * introduced, at the cost of more packets in the network. Expects an 2871 * integer boolean flag. 2872 */ 2873 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2874 unsigned int optlen) 2875 { 2876 int val; 2877 2878 if (optlen < sizeof(int)) 2879 return -EINVAL; 2880 if (get_user(val, (int __user *)optval)) 2881 return -EFAULT; 2882 2883 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2884 return 0; 2885 } 2886 2887 /* 2888 * 2889 * 7.1.1 SCTP_RTOINFO 2890 * 2891 * The protocol parameters used to initialize and bound retransmission 2892 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2893 * and modify these parameters. 2894 * All parameters are time values, in milliseconds. A value of 0, when 2895 * modifying the parameters, indicates that the current value should not 2896 * be changed. 2897 * 2898 */ 2899 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 2900 { 2901 struct sctp_rtoinfo rtoinfo; 2902 struct sctp_association *asoc; 2903 unsigned long rto_min, rto_max; 2904 struct sctp_sock *sp = sctp_sk(sk); 2905 2906 if (optlen != sizeof (struct sctp_rtoinfo)) 2907 return -EINVAL; 2908 2909 if (copy_from_user(&rtoinfo, optval, optlen)) 2910 return -EFAULT; 2911 2912 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2913 2914 /* Set the values to the specific association */ 2915 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2916 return -EINVAL; 2917 2918 rto_max = rtoinfo.srto_max; 2919 rto_min = rtoinfo.srto_min; 2920 2921 if (rto_max) 2922 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 2923 else 2924 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 2925 2926 if (rto_min) 2927 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 2928 else 2929 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 2930 2931 if (rto_min > rto_max) 2932 return -EINVAL; 2933 2934 if (asoc) { 2935 if (rtoinfo.srto_initial != 0) 2936 asoc->rto_initial = 2937 msecs_to_jiffies(rtoinfo.srto_initial); 2938 asoc->rto_max = rto_max; 2939 asoc->rto_min = rto_min; 2940 } else { 2941 /* If there is no association or the association-id = 0 2942 * set the values to the endpoint. 2943 */ 2944 if (rtoinfo.srto_initial != 0) 2945 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2946 sp->rtoinfo.srto_max = rto_max; 2947 sp->rtoinfo.srto_min = rto_min; 2948 } 2949 2950 return 0; 2951 } 2952 2953 /* 2954 * 2955 * 7.1.2 SCTP_ASSOCINFO 2956 * 2957 * This option is used to tune the maximum retransmission attempts 2958 * of the association. 2959 * Returns an error if the new association retransmission value is 2960 * greater than the sum of the retransmission value of the peer. 2961 * See [SCTP] for more information. 2962 * 2963 */ 2964 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 2965 { 2966 2967 struct sctp_assocparams assocparams; 2968 struct sctp_association *asoc; 2969 2970 if (optlen != sizeof(struct sctp_assocparams)) 2971 return -EINVAL; 2972 if (copy_from_user(&assocparams, optval, optlen)) 2973 return -EFAULT; 2974 2975 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2976 2977 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2978 return -EINVAL; 2979 2980 /* Set the values to the specific association */ 2981 if (asoc) { 2982 if (assocparams.sasoc_asocmaxrxt != 0) { 2983 __u32 path_sum = 0; 2984 int paths = 0; 2985 struct sctp_transport *peer_addr; 2986 2987 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 2988 transports) { 2989 path_sum += peer_addr->pathmaxrxt; 2990 paths++; 2991 } 2992 2993 /* Only validate asocmaxrxt if we have more than 2994 * one path/transport. We do this because path 2995 * retransmissions are only counted when we have more 2996 * then one path. 2997 */ 2998 if (paths > 1 && 2999 assocparams.sasoc_asocmaxrxt > path_sum) 3000 return -EINVAL; 3001 3002 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3003 } 3004 3005 if (assocparams.sasoc_cookie_life != 0) 3006 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3007 } else { 3008 /* Set the values to the endpoint */ 3009 struct sctp_sock *sp = sctp_sk(sk); 3010 3011 if (assocparams.sasoc_asocmaxrxt != 0) 3012 sp->assocparams.sasoc_asocmaxrxt = 3013 assocparams.sasoc_asocmaxrxt; 3014 if (assocparams.sasoc_cookie_life != 0) 3015 sp->assocparams.sasoc_cookie_life = 3016 assocparams.sasoc_cookie_life; 3017 } 3018 return 0; 3019 } 3020 3021 /* 3022 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3023 * 3024 * This socket option is a boolean flag which turns on or off mapped V4 3025 * addresses. If this option is turned on and the socket is type 3026 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3027 * If this option is turned off, then no mapping will be done of V4 3028 * addresses and a user will receive both PF_INET6 and PF_INET type 3029 * addresses on the socket. 3030 */ 3031 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3032 { 3033 int val; 3034 struct sctp_sock *sp = sctp_sk(sk); 3035 3036 if (optlen < sizeof(int)) 3037 return -EINVAL; 3038 if (get_user(val, (int __user *)optval)) 3039 return -EFAULT; 3040 if (val) 3041 sp->v4mapped = 1; 3042 else 3043 sp->v4mapped = 0; 3044 3045 return 0; 3046 } 3047 3048 /* 3049 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3050 * This option will get or set the maximum size to put in any outgoing 3051 * SCTP DATA chunk. If a message is larger than this size it will be 3052 * fragmented by SCTP into the specified size. Note that the underlying 3053 * SCTP implementation may fragment into smaller sized chunks when the 3054 * PMTU of the underlying association is smaller than the value set by 3055 * the user. The default value for this option is '0' which indicates 3056 * the user is NOT limiting fragmentation and only the PMTU will effect 3057 * SCTP's choice of DATA chunk size. Note also that values set larger 3058 * than the maximum size of an IP datagram will effectively let SCTP 3059 * control fragmentation (i.e. the same as setting this option to 0). 3060 * 3061 * The following structure is used to access and modify this parameter: 3062 * 3063 * struct sctp_assoc_value { 3064 * sctp_assoc_t assoc_id; 3065 * uint32_t assoc_value; 3066 * }; 3067 * 3068 * assoc_id: This parameter is ignored for one-to-one style sockets. 3069 * For one-to-many style sockets this parameter indicates which 3070 * association the user is performing an action upon. Note that if 3071 * this field's value is zero then the endpoints default value is 3072 * changed (effecting future associations only). 3073 * assoc_value: This parameter specifies the maximum size in bytes. 3074 */ 3075 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3076 { 3077 struct sctp_assoc_value params; 3078 struct sctp_association *asoc; 3079 struct sctp_sock *sp = sctp_sk(sk); 3080 int val; 3081 3082 if (optlen == sizeof(int)) { 3083 pr_warn_ratelimited(DEPRECATED 3084 "%s (pid %d) " 3085 "Use of int in maxseg socket option.\n" 3086 "Use struct sctp_assoc_value instead\n", 3087 current->comm, task_pid_nr(current)); 3088 if (copy_from_user(&val, optval, optlen)) 3089 return -EFAULT; 3090 params.assoc_id = 0; 3091 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3092 if (copy_from_user(¶ms, optval, optlen)) 3093 return -EFAULT; 3094 val = params.assoc_value; 3095 } else 3096 return -EINVAL; 3097 3098 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 3099 return -EINVAL; 3100 3101 asoc = sctp_id2assoc(sk, params.assoc_id); 3102 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 3103 return -EINVAL; 3104 3105 if (asoc) { 3106 if (val == 0) { 3107 val = asoc->pathmtu; 3108 val -= sp->pf->af->net_header_len; 3109 val -= sizeof(struct sctphdr) + 3110 sizeof(struct sctp_data_chunk); 3111 } 3112 asoc->user_frag = val; 3113 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 3114 } else { 3115 sp->user_frag = val; 3116 } 3117 3118 return 0; 3119 } 3120 3121 3122 /* 3123 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3124 * 3125 * Requests that the peer mark the enclosed address as the association 3126 * primary. The enclosed address must be one of the association's 3127 * locally bound addresses. The following structure is used to make a 3128 * set primary request: 3129 */ 3130 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3131 unsigned int optlen) 3132 { 3133 struct net *net = sock_net(sk); 3134 struct sctp_sock *sp; 3135 struct sctp_association *asoc = NULL; 3136 struct sctp_setpeerprim prim; 3137 struct sctp_chunk *chunk; 3138 struct sctp_af *af; 3139 int err; 3140 3141 sp = sctp_sk(sk); 3142 3143 if (!net->sctp.addip_enable) 3144 return -EPERM; 3145 3146 if (optlen != sizeof(struct sctp_setpeerprim)) 3147 return -EINVAL; 3148 3149 if (copy_from_user(&prim, optval, optlen)) 3150 return -EFAULT; 3151 3152 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3153 if (!asoc) 3154 return -EINVAL; 3155 3156 if (!asoc->peer.asconf_capable) 3157 return -EPERM; 3158 3159 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3160 return -EPERM; 3161 3162 if (!sctp_state(asoc, ESTABLISHED)) 3163 return -ENOTCONN; 3164 3165 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3166 if (!af) 3167 return -EINVAL; 3168 3169 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3170 return -EADDRNOTAVAIL; 3171 3172 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3173 return -EADDRNOTAVAIL; 3174 3175 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3176 chunk = sctp_make_asconf_set_prim(asoc, 3177 (union sctp_addr *)&prim.sspp_addr); 3178 if (!chunk) 3179 return -ENOMEM; 3180 3181 err = sctp_send_asconf(asoc, chunk); 3182 3183 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3184 3185 return err; 3186 } 3187 3188 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3189 unsigned int optlen) 3190 { 3191 struct sctp_setadaptation adaptation; 3192 3193 if (optlen != sizeof(struct sctp_setadaptation)) 3194 return -EINVAL; 3195 if (copy_from_user(&adaptation, optval, optlen)) 3196 return -EFAULT; 3197 3198 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3199 3200 return 0; 3201 } 3202 3203 /* 3204 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3205 * 3206 * The context field in the sctp_sndrcvinfo structure is normally only 3207 * used when a failed message is retrieved holding the value that was 3208 * sent down on the actual send call. This option allows the setting of 3209 * a default context on an association basis that will be received on 3210 * reading messages from the peer. This is especially helpful in the 3211 * one-2-many model for an application to keep some reference to an 3212 * internal state machine that is processing messages on the 3213 * association. Note that the setting of this value only effects 3214 * received messages from the peer and does not effect the value that is 3215 * saved with outbound messages. 3216 */ 3217 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3218 unsigned int optlen) 3219 { 3220 struct sctp_assoc_value params; 3221 struct sctp_sock *sp; 3222 struct sctp_association *asoc; 3223 3224 if (optlen != sizeof(struct sctp_assoc_value)) 3225 return -EINVAL; 3226 if (copy_from_user(¶ms, optval, optlen)) 3227 return -EFAULT; 3228 3229 sp = sctp_sk(sk); 3230 3231 if (params.assoc_id != 0) { 3232 asoc = sctp_id2assoc(sk, params.assoc_id); 3233 if (!asoc) 3234 return -EINVAL; 3235 asoc->default_rcv_context = params.assoc_value; 3236 } else { 3237 sp->default_rcv_context = params.assoc_value; 3238 } 3239 3240 return 0; 3241 } 3242 3243 /* 3244 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3245 * 3246 * This options will at a minimum specify if the implementation is doing 3247 * fragmented interleave. Fragmented interleave, for a one to many 3248 * socket, is when subsequent calls to receive a message may return 3249 * parts of messages from different associations. Some implementations 3250 * may allow you to turn this value on or off. If so, when turned off, 3251 * no fragment interleave will occur (which will cause a head of line 3252 * blocking amongst multiple associations sharing the same one to many 3253 * socket). When this option is turned on, then each receive call may 3254 * come from a different association (thus the user must receive data 3255 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3256 * association each receive belongs to. 3257 * 3258 * This option takes a boolean value. A non-zero value indicates that 3259 * fragmented interleave is on. A value of zero indicates that 3260 * fragmented interleave is off. 3261 * 3262 * Note that it is important that an implementation that allows this 3263 * option to be turned on, have it off by default. Otherwise an unaware 3264 * application using the one to many model may become confused and act 3265 * incorrectly. 3266 */ 3267 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3268 char __user *optval, 3269 unsigned int optlen) 3270 { 3271 int val; 3272 3273 if (optlen != sizeof(int)) 3274 return -EINVAL; 3275 if (get_user(val, (int __user *)optval)) 3276 return -EFAULT; 3277 3278 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 3279 3280 return 0; 3281 } 3282 3283 /* 3284 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3285 * (SCTP_PARTIAL_DELIVERY_POINT) 3286 * 3287 * This option will set or get the SCTP partial delivery point. This 3288 * point is the size of a message where the partial delivery API will be 3289 * invoked to help free up rwnd space for the peer. Setting this to a 3290 * lower value will cause partial deliveries to happen more often. The 3291 * calls argument is an integer that sets or gets the partial delivery 3292 * point. Note also that the call will fail if the user attempts to set 3293 * this value larger than the socket receive buffer size. 3294 * 3295 * Note that any single message having a length smaller than or equal to 3296 * the SCTP partial delivery point will be delivered in one single read 3297 * call as long as the user provided buffer is large enough to hold the 3298 * message. 3299 */ 3300 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3301 char __user *optval, 3302 unsigned int optlen) 3303 { 3304 u32 val; 3305 3306 if (optlen != sizeof(u32)) 3307 return -EINVAL; 3308 if (get_user(val, (int __user *)optval)) 3309 return -EFAULT; 3310 3311 /* Note: We double the receive buffer from what the user sets 3312 * it to be, also initial rwnd is based on rcvbuf/2. 3313 */ 3314 if (val > (sk->sk_rcvbuf >> 1)) 3315 return -EINVAL; 3316 3317 sctp_sk(sk)->pd_point = val; 3318 3319 return 0; /* is this the right error code? */ 3320 } 3321 3322 /* 3323 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3324 * 3325 * This option will allow a user to change the maximum burst of packets 3326 * that can be emitted by this association. Note that the default value 3327 * is 4, and some implementations may restrict this setting so that it 3328 * can only be lowered. 3329 * 3330 * NOTE: This text doesn't seem right. Do this on a socket basis with 3331 * future associations inheriting the socket value. 3332 */ 3333 static int sctp_setsockopt_maxburst(struct sock *sk, 3334 char __user *optval, 3335 unsigned int optlen) 3336 { 3337 struct sctp_assoc_value params; 3338 struct sctp_sock *sp; 3339 struct sctp_association *asoc; 3340 int val; 3341 int assoc_id = 0; 3342 3343 if (optlen == sizeof(int)) { 3344 pr_warn_ratelimited(DEPRECATED 3345 "%s (pid %d) " 3346 "Use of int in max_burst socket option deprecated.\n" 3347 "Use struct sctp_assoc_value instead\n", 3348 current->comm, task_pid_nr(current)); 3349 if (copy_from_user(&val, optval, optlen)) 3350 return -EFAULT; 3351 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3352 if (copy_from_user(¶ms, optval, optlen)) 3353 return -EFAULT; 3354 val = params.assoc_value; 3355 assoc_id = params.assoc_id; 3356 } else 3357 return -EINVAL; 3358 3359 sp = sctp_sk(sk); 3360 3361 if (assoc_id != 0) { 3362 asoc = sctp_id2assoc(sk, assoc_id); 3363 if (!asoc) 3364 return -EINVAL; 3365 asoc->max_burst = val; 3366 } else 3367 sp->max_burst = val; 3368 3369 return 0; 3370 } 3371 3372 /* 3373 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3374 * 3375 * This set option adds a chunk type that the user is requesting to be 3376 * received only in an authenticated way. Changes to the list of chunks 3377 * will only effect future associations on the socket. 3378 */ 3379 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3380 char __user *optval, 3381 unsigned int optlen) 3382 { 3383 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3384 struct sctp_authchunk val; 3385 3386 if (!ep->auth_enable) 3387 return -EACCES; 3388 3389 if (optlen != sizeof(struct sctp_authchunk)) 3390 return -EINVAL; 3391 if (copy_from_user(&val, optval, optlen)) 3392 return -EFAULT; 3393 3394 switch (val.sauth_chunk) { 3395 case SCTP_CID_INIT: 3396 case SCTP_CID_INIT_ACK: 3397 case SCTP_CID_SHUTDOWN_COMPLETE: 3398 case SCTP_CID_AUTH: 3399 return -EINVAL; 3400 } 3401 3402 /* add this chunk id to the endpoint */ 3403 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3404 } 3405 3406 /* 3407 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3408 * 3409 * This option gets or sets the list of HMAC algorithms that the local 3410 * endpoint requires the peer to use. 3411 */ 3412 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3413 char __user *optval, 3414 unsigned int optlen) 3415 { 3416 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3417 struct sctp_hmacalgo *hmacs; 3418 u32 idents; 3419 int err; 3420 3421 if (!ep->auth_enable) 3422 return -EACCES; 3423 3424 if (optlen < sizeof(struct sctp_hmacalgo)) 3425 return -EINVAL; 3426 3427 hmacs = memdup_user(optval, optlen); 3428 if (IS_ERR(hmacs)) 3429 return PTR_ERR(hmacs); 3430 3431 idents = hmacs->shmac_num_idents; 3432 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3433 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3434 err = -EINVAL; 3435 goto out; 3436 } 3437 3438 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3439 out: 3440 kfree(hmacs); 3441 return err; 3442 } 3443 3444 /* 3445 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3446 * 3447 * This option will set a shared secret key which is used to build an 3448 * association shared key. 3449 */ 3450 static int sctp_setsockopt_auth_key(struct sock *sk, 3451 char __user *optval, 3452 unsigned int optlen) 3453 { 3454 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3455 struct sctp_authkey *authkey; 3456 struct sctp_association *asoc; 3457 int ret; 3458 3459 if (!ep->auth_enable) 3460 return -EACCES; 3461 3462 if (optlen <= sizeof(struct sctp_authkey)) 3463 return -EINVAL; 3464 3465 authkey = memdup_user(optval, optlen); 3466 if (IS_ERR(authkey)) 3467 return PTR_ERR(authkey); 3468 3469 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3470 ret = -EINVAL; 3471 goto out; 3472 } 3473 3474 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3475 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3476 ret = -EINVAL; 3477 goto out; 3478 } 3479 3480 ret = sctp_auth_set_key(ep, asoc, authkey); 3481 out: 3482 kzfree(authkey); 3483 return ret; 3484 } 3485 3486 /* 3487 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3488 * 3489 * This option will get or set the active shared key to be used to build 3490 * the association shared key. 3491 */ 3492 static int sctp_setsockopt_active_key(struct sock *sk, 3493 char __user *optval, 3494 unsigned int optlen) 3495 { 3496 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3497 struct sctp_authkeyid val; 3498 struct sctp_association *asoc; 3499 3500 if (!ep->auth_enable) 3501 return -EACCES; 3502 3503 if (optlen != sizeof(struct sctp_authkeyid)) 3504 return -EINVAL; 3505 if (copy_from_user(&val, optval, optlen)) 3506 return -EFAULT; 3507 3508 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3509 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3510 return -EINVAL; 3511 3512 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3513 } 3514 3515 /* 3516 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3517 * 3518 * This set option will delete a shared secret key from use. 3519 */ 3520 static int sctp_setsockopt_del_key(struct sock *sk, 3521 char __user *optval, 3522 unsigned int optlen) 3523 { 3524 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3525 struct sctp_authkeyid val; 3526 struct sctp_association *asoc; 3527 3528 if (!ep->auth_enable) 3529 return -EACCES; 3530 3531 if (optlen != sizeof(struct sctp_authkeyid)) 3532 return -EINVAL; 3533 if (copy_from_user(&val, optval, optlen)) 3534 return -EFAULT; 3535 3536 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3537 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3538 return -EINVAL; 3539 3540 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3541 3542 } 3543 3544 /* 3545 * 8.1.23 SCTP_AUTO_ASCONF 3546 * 3547 * This option will enable or disable the use of the automatic generation of 3548 * ASCONF chunks to add and delete addresses to an existing association. Note 3549 * that this option has two caveats namely: a) it only affects sockets that 3550 * are bound to all addresses available to the SCTP stack, and b) the system 3551 * administrator may have an overriding control that turns the ASCONF feature 3552 * off no matter what setting the socket option may have. 3553 * This option expects an integer boolean flag, where a non-zero value turns on 3554 * the option, and a zero value turns off the option. 3555 * Note. In this implementation, socket operation overrides default parameter 3556 * being set by sysctl as well as FreeBSD implementation 3557 */ 3558 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3559 unsigned int optlen) 3560 { 3561 int val; 3562 struct sctp_sock *sp = sctp_sk(sk); 3563 3564 if (optlen < sizeof(int)) 3565 return -EINVAL; 3566 if (get_user(val, (int __user *)optval)) 3567 return -EFAULT; 3568 if (!sctp_is_ep_boundall(sk) && val) 3569 return -EINVAL; 3570 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3571 return 0; 3572 3573 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3574 if (val == 0 && sp->do_auto_asconf) { 3575 list_del(&sp->auto_asconf_list); 3576 sp->do_auto_asconf = 0; 3577 } else if (val && !sp->do_auto_asconf) { 3578 list_add_tail(&sp->auto_asconf_list, 3579 &sock_net(sk)->sctp.auto_asconf_splist); 3580 sp->do_auto_asconf = 1; 3581 } 3582 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3583 return 0; 3584 } 3585 3586 /* 3587 * SCTP_PEER_ADDR_THLDS 3588 * 3589 * This option allows us to alter the partially failed threshold for one or all 3590 * transports in an association. See Section 6.1 of: 3591 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3592 */ 3593 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3594 char __user *optval, 3595 unsigned int optlen) 3596 { 3597 struct sctp_paddrthlds val; 3598 struct sctp_transport *trans; 3599 struct sctp_association *asoc; 3600 3601 if (optlen < sizeof(struct sctp_paddrthlds)) 3602 return -EINVAL; 3603 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 3604 sizeof(struct sctp_paddrthlds))) 3605 return -EFAULT; 3606 3607 3608 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3609 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3610 if (!asoc) 3611 return -ENOENT; 3612 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3613 transports) { 3614 if (val.spt_pathmaxrxt) 3615 trans->pathmaxrxt = val.spt_pathmaxrxt; 3616 trans->pf_retrans = val.spt_pathpfthld; 3617 } 3618 3619 if (val.spt_pathmaxrxt) 3620 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3621 asoc->pf_retrans = val.spt_pathpfthld; 3622 } else { 3623 trans = sctp_addr_id2transport(sk, &val.spt_address, 3624 val.spt_assoc_id); 3625 if (!trans) 3626 return -ENOENT; 3627 3628 if (val.spt_pathmaxrxt) 3629 trans->pathmaxrxt = val.spt_pathmaxrxt; 3630 trans->pf_retrans = val.spt_pathpfthld; 3631 } 3632 3633 return 0; 3634 } 3635 3636 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 3637 char __user *optval, 3638 unsigned int optlen) 3639 { 3640 int val; 3641 3642 if (optlen < sizeof(int)) 3643 return -EINVAL; 3644 if (get_user(val, (int __user *) optval)) 3645 return -EFAULT; 3646 3647 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 3648 3649 return 0; 3650 } 3651 3652 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 3653 char __user *optval, 3654 unsigned int optlen) 3655 { 3656 int val; 3657 3658 if (optlen < sizeof(int)) 3659 return -EINVAL; 3660 if (get_user(val, (int __user *) optval)) 3661 return -EFAULT; 3662 3663 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 3664 3665 return 0; 3666 } 3667 3668 /* API 6.2 setsockopt(), getsockopt() 3669 * 3670 * Applications use setsockopt() and getsockopt() to set or retrieve 3671 * socket options. Socket options are used to change the default 3672 * behavior of sockets calls. They are described in Section 7. 3673 * 3674 * The syntax is: 3675 * 3676 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3677 * int __user *optlen); 3678 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3679 * int optlen); 3680 * 3681 * sd - the socket descript. 3682 * level - set to IPPROTO_SCTP for all SCTP options. 3683 * optname - the option name. 3684 * optval - the buffer to store the value of the option. 3685 * optlen - the size of the buffer. 3686 */ 3687 static int sctp_setsockopt(struct sock *sk, int level, int optname, 3688 char __user *optval, unsigned int optlen) 3689 { 3690 int retval = 0; 3691 3692 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 3693 3694 /* I can hardly begin to describe how wrong this is. This is 3695 * so broken as to be worse than useless. The API draft 3696 * REALLY is NOT helpful here... I am not convinced that the 3697 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3698 * are at all well-founded. 3699 */ 3700 if (level != SOL_SCTP) { 3701 struct sctp_af *af = sctp_sk(sk)->pf->af; 3702 retval = af->setsockopt(sk, level, optname, optval, optlen); 3703 goto out_nounlock; 3704 } 3705 3706 lock_sock(sk); 3707 3708 switch (optname) { 3709 case SCTP_SOCKOPT_BINDX_ADD: 3710 /* 'optlen' is the size of the addresses buffer. */ 3711 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3712 optlen, SCTP_BINDX_ADD_ADDR); 3713 break; 3714 3715 case SCTP_SOCKOPT_BINDX_REM: 3716 /* 'optlen' is the size of the addresses buffer. */ 3717 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3718 optlen, SCTP_BINDX_REM_ADDR); 3719 break; 3720 3721 case SCTP_SOCKOPT_CONNECTX_OLD: 3722 /* 'optlen' is the size of the addresses buffer. */ 3723 retval = sctp_setsockopt_connectx_old(sk, 3724 (struct sockaddr __user *)optval, 3725 optlen); 3726 break; 3727 3728 case SCTP_SOCKOPT_CONNECTX: 3729 /* 'optlen' is the size of the addresses buffer. */ 3730 retval = sctp_setsockopt_connectx(sk, 3731 (struct sockaddr __user *)optval, 3732 optlen); 3733 break; 3734 3735 case SCTP_DISABLE_FRAGMENTS: 3736 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3737 break; 3738 3739 case SCTP_EVENTS: 3740 retval = sctp_setsockopt_events(sk, optval, optlen); 3741 break; 3742 3743 case SCTP_AUTOCLOSE: 3744 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3745 break; 3746 3747 case SCTP_PEER_ADDR_PARAMS: 3748 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3749 break; 3750 3751 case SCTP_DELAYED_SACK: 3752 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 3753 break; 3754 case SCTP_PARTIAL_DELIVERY_POINT: 3755 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3756 break; 3757 3758 case SCTP_INITMSG: 3759 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3760 break; 3761 case SCTP_DEFAULT_SEND_PARAM: 3762 retval = sctp_setsockopt_default_send_param(sk, optval, 3763 optlen); 3764 break; 3765 case SCTP_DEFAULT_SNDINFO: 3766 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 3767 break; 3768 case SCTP_PRIMARY_ADDR: 3769 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3770 break; 3771 case SCTP_SET_PEER_PRIMARY_ADDR: 3772 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3773 break; 3774 case SCTP_NODELAY: 3775 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3776 break; 3777 case SCTP_RTOINFO: 3778 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3779 break; 3780 case SCTP_ASSOCINFO: 3781 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3782 break; 3783 case SCTP_I_WANT_MAPPED_V4_ADDR: 3784 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3785 break; 3786 case SCTP_MAXSEG: 3787 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3788 break; 3789 case SCTP_ADAPTATION_LAYER: 3790 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3791 break; 3792 case SCTP_CONTEXT: 3793 retval = sctp_setsockopt_context(sk, optval, optlen); 3794 break; 3795 case SCTP_FRAGMENT_INTERLEAVE: 3796 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 3797 break; 3798 case SCTP_MAX_BURST: 3799 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 3800 break; 3801 case SCTP_AUTH_CHUNK: 3802 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 3803 break; 3804 case SCTP_HMAC_IDENT: 3805 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 3806 break; 3807 case SCTP_AUTH_KEY: 3808 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 3809 break; 3810 case SCTP_AUTH_ACTIVE_KEY: 3811 retval = sctp_setsockopt_active_key(sk, optval, optlen); 3812 break; 3813 case SCTP_AUTH_DELETE_KEY: 3814 retval = sctp_setsockopt_del_key(sk, optval, optlen); 3815 break; 3816 case SCTP_AUTO_ASCONF: 3817 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 3818 break; 3819 case SCTP_PEER_ADDR_THLDS: 3820 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 3821 break; 3822 case SCTP_RECVRCVINFO: 3823 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 3824 break; 3825 case SCTP_RECVNXTINFO: 3826 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 3827 break; 3828 default: 3829 retval = -ENOPROTOOPT; 3830 break; 3831 } 3832 3833 release_sock(sk); 3834 3835 out_nounlock: 3836 return retval; 3837 } 3838 3839 /* API 3.1.6 connect() - UDP Style Syntax 3840 * 3841 * An application may use the connect() call in the UDP model to initiate an 3842 * association without sending data. 3843 * 3844 * The syntax is: 3845 * 3846 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 3847 * 3848 * sd: the socket descriptor to have a new association added to. 3849 * 3850 * nam: the address structure (either struct sockaddr_in or struct 3851 * sockaddr_in6 defined in RFC2553 [7]). 3852 * 3853 * len: the size of the address. 3854 */ 3855 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 3856 int addr_len) 3857 { 3858 int err = 0; 3859 struct sctp_af *af; 3860 3861 lock_sock(sk); 3862 3863 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 3864 addr, addr_len); 3865 3866 /* Validate addr_len before calling common connect/connectx routine. */ 3867 af = sctp_get_af_specific(addr->sa_family); 3868 if (!af || addr_len < af->sockaddr_len) { 3869 err = -EINVAL; 3870 } else { 3871 /* Pass correct addr len to common routine (so it knows there 3872 * is only one address being passed. 3873 */ 3874 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 3875 } 3876 3877 release_sock(sk); 3878 return err; 3879 } 3880 3881 /* FIXME: Write comments. */ 3882 static int sctp_disconnect(struct sock *sk, int flags) 3883 { 3884 return -EOPNOTSUPP; /* STUB */ 3885 } 3886 3887 /* 4.1.4 accept() - TCP Style Syntax 3888 * 3889 * Applications use accept() call to remove an established SCTP 3890 * association from the accept queue of the endpoint. A new socket 3891 * descriptor will be returned from accept() to represent the newly 3892 * formed association. 3893 */ 3894 static struct sock *sctp_accept(struct sock *sk, int flags, int *err) 3895 { 3896 struct sctp_sock *sp; 3897 struct sctp_endpoint *ep; 3898 struct sock *newsk = NULL; 3899 struct sctp_association *asoc; 3900 long timeo; 3901 int error = 0; 3902 3903 lock_sock(sk); 3904 3905 sp = sctp_sk(sk); 3906 ep = sp->ep; 3907 3908 if (!sctp_style(sk, TCP)) { 3909 error = -EOPNOTSUPP; 3910 goto out; 3911 } 3912 3913 if (!sctp_sstate(sk, LISTENING)) { 3914 error = -EINVAL; 3915 goto out; 3916 } 3917 3918 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 3919 3920 error = sctp_wait_for_accept(sk, timeo); 3921 if (error) 3922 goto out; 3923 3924 /* We treat the list of associations on the endpoint as the accept 3925 * queue and pick the first association on the list. 3926 */ 3927 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 3928 3929 newsk = sp->pf->create_accept_sk(sk, asoc); 3930 if (!newsk) { 3931 error = -ENOMEM; 3932 goto out; 3933 } 3934 3935 /* Populate the fields of the newsk from the oldsk and migrate the 3936 * asoc to the newsk. 3937 */ 3938 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 3939 3940 out: 3941 release_sock(sk); 3942 *err = error; 3943 return newsk; 3944 } 3945 3946 /* The SCTP ioctl handler. */ 3947 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3948 { 3949 int rc = -ENOTCONN; 3950 3951 lock_sock(sk); 3952 3953 /* 3954 * SEQPACKET-style sockets in LISTENING state are valid, for 3955 * SCTP, so only discard TCP-style sockets in LISTENING state. 3956 */ 3957 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 3958 goto out; 3959 3960 switch (cmd) { 3961 case SIOCINQ: { 3962 struct sk_buff *skb; 3963 unsigned int amount = 0; 3964 3965 skb = skb_peek(&sk->sk_receive_queue); 3966 if (skb != NULL) { 3967 /* 3968 * We will only return the amount of this packet since 3969 * that is all that will be read. 3970 */ 3971 amount = skb->len; 3972 } 3973 rc = put_user(amount, (int __user *)arg); 3974 break; 3975 } 3976 default: 3977 rc = -ENOIOCTLCMD; 3978 break; 3979 } 3980 out: 3981 release_sock(sk); 3982 return rc; 3983 } 3984 3985 /* This is the function which gets called during socket creation to 3986 * initialized the SCTP-specific portion of the sock. 3987 * The sock structure should already be zero-filled memory. 3988 */ 3989 static int sctp_init_sock(struct sock *sk) 3990 { 3991 struct net *net = sock_net(sk); 3992 struct sctp_sock *sp; 3993 3994 pr_debug("%s: sk:%p\n", __func__, sk); 3995 3996 sp = sctp_sk(sk); 3997 3998 /* Initialize the SCTP per socket area. */ 3999 switch (sk->sk_type) { 4000 case SOCK_SEQPACKET: 4001 sp->type = SCTP_SOCKET_UDP; 4002 break; 4003 case SOCK_STREAM: 4004 sp->type = SCTP_SOCKET_TCP; 4005 break; 4006 default: 4007 return -ESOCKTNOSUPPORT; 4008 } 4009 4010 /* Initialize default send parameters. These parameters can be 4011 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4012 */ 4013 sp->default_stream = 0; 4014 sp->default_ppid = 0; 4015 sp->default_flags = 0; 4016 sp->default_context = 0; 4017 sp->default_timetolive = 0; 4018 4019 sp->default_rcv_context = 0; 4020 sp->max_burst = net->sctp.max_burst; 4021 4022 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4023 4024 /* Initialize default setup parameters. These parameters 4025 * can be modified with the SCTP_INITMSG socket option or 4026 * overridden by the SCTP_INIT CMSG. 4027 */ 4028 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4029 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4030 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4031 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4032 4033 /* Initialize default RTO related parameters. These parameters can 4034 * be modified for with the SCTP_RTOINFO socket option. 4035 */ 4036 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4037 sp->rtoinfo.srto_max = net->sctp.rto_max; 4038 sp->rtoinfo.srto_min = net->sctp.rto_min; 4039 4040 /* Initialize default association related parameters. These parameters 4041 * can be modified with the SCTP_ASSOCINFO socket option. 4042 */ 4043 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4044 sp->assocparams.sasoc_number_peer_destinations = 0; 4045 sp->assocparams.sasoc_peer_rwnd = 0; 4046 sp->assocparams.sasoc_local_rwnd = 0; 4047 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 4048 4049 /* Initialize default event subscriptions. By default, all the 4050 * options are off. 4051 */ 4052 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 4053 4054 /* Default Peer Address Parameters. These defaults can 4055 * be modified via SCTP_PEER_ADDR_PARAMS 4056 */ 4057 sp->hbinterval = net->sctp.hb_interval; 4058 sp->pathmaxrxt = net->sctp.max_retrans_path; 4059 sp->pathmtu = 0; /* allow default discovery */ 4060 sp->sackdelay = net->sctp.sack_timeout; 4061 sp->sackfreq = 2; 4062 sp->param_flags = SPP_HB_ENABLE | 4063 SPP_PMTUD_ENABLE | 4064 SPP_SACKDELAY_ENABLE; 4065 4066 /* If enabled no SCTP message fragmentation will be performed. 4067 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 4068 */ 4069 sp->disable_fragments = 0; 4070 4071 /* Enable Nagle algorithm by default. */ 4072 sp->nodelay = 0; 4073 4074 sp->recvrcvinfo = 0; 4075 sp->recvnxtinfo = 0; 4076 4077 /* Enable by default. */ 4078 sp->v4mapped = 1; 4079 4080 /* Auto-close idle associations after the configured 4081 * number of seconds. A value of 0 disables this 4082 * feature. Configure through the SCTP_AUTOCLOSE socket option, 4083 * for UDP-style sockets only. 4084 */ 4085 sp->autoclose = 0; 4086 4087 /* User specified fragmentation limit. */ 4088 sp->user_frag = 0; 4089 4090 sp->adaptation_ind = 0; 4091 4092 sp->pf = sctp_get_pf_specific(sk->sk_family); 4093 4094 /* Control variables for partial data delivery. */ 4095 atomic_set(&sp->pd_mode, 0); 4096 skb_queue_head_init(&sp->pd_lobby); 4097 sp->frag_interleave = 0; 4098 4099 /* Create a per socket endpoint structure. Even if we 4100 * change the data structure relationships, this may still 4101 * be useful for storing pre-connect address information. 4102 */ 4103 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 4104 if (!sp->ep) 4105 return -ENOMEM; 4106 4107 sp->hmac = NULL; 4108 4109 sk->sk_destruct = sctp_destruct_sock; 4110 4111 SCTP_DBG_OBJCNT_INC(sock); 4112 4113 local_bh_disable(); 4114 percpu_counter_inc(&sctp_sockets_allocated); 4115 sock_prot_inuse_add(net, sk->sk_prot, 1); 4116 4117 /* Nothing can fail after this block, otherwise 4118 * sctp_destroy_sock() will be called without addr_wq_lock held 4119 */ 4120 if (net->sctp.default_auto_asconf) { 4121 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 4122 list_add_tail(&sp->auto_asconf_list, 4123 &net->sctp.auto_asconf_splist); 4124 sp->do_auto_asconf = 1; 4125 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 4126 } else { 4127 sp->do_auto_asconf = 0; 4128 } 4129 4130 local_bh_enable(); 4131 4132 return 0; 4133 } 4134 4135 /* Cleanup any SCTP per socket resources. Must be called with 4136 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 4137 */ 4138 static void sctp_destroy_sock(struct sock *sk) 4139 { 4140 struct sctp_sock *sp; 4141 4142 pr_debug("%s: sk:%p\n", __func__, sk); 4143 4144 /* Release our hold on the endpoint. */ 4145 sp = sctp_sk(sk); 4146 /* This could happen during socket init, thus we bail out 4147 * early, since the rest of the below is not setup either. 4148 */ 4149 if (sp->ep == NULL) 4150 return; 4151 4152 if (sp->do_auto_asconf) { 4153 sp->do_auto_asconf = 0; 4154 list_del(&sp->auto_asconf_list); 4155 } 4156 sctp_endpoint_free(sp->ep); 4157 local_bh_disable(); 4158 percpu_counter_dec(&sctp_sockets_allocated); 4159 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 4160 local_bh_enable(); 4161 } 4162 4163 /* Triggered when there are no references on the socket anymore */ 4164 static void sctp_destruct_sock(struct sock *sk) 4165 { 4166 struct sctp_sock *sp = sctp_sk(sk); 4167 4168 /* Free up the HMAC transform. */ 4169 crypto_free_hash(sp->hmac); 4170 4171 inet_sock_destruct(sk); 4172 } 4173 4174 /* API 4.1.7 shutdown() - TCP Style Syntax 4175 * int shutdown(int socket, int how); 4176 * 4177 * sd - the socket descriptor of the association to be closed. 4178 * how - Specifies the type of shutdown. The values are 4179 * as follows: 4180 * SHUT_RD 4181 * Disables further receive operations. No SCTP 4182 * protocol action is taken. 4183 * SHUT_WR 4184 * Disables further send operations, and initiates 4185 * the SCTP shutdown sequence. 4186 * SHUT_RDWR 4187 * Disables further send and receive operations 4188 * and initiates the SCTP shutdown sequence. 4189 */ 4190 static void sctp_shutdown(struct sock *sk, int how) 4191 { 4192 struct net *net = sock_net(sk); 4193 struct sctp_endpoint *ep; 4194 struct sctp_association *asoc; 4195 4196 if (!sctp_style(sk, TCP)) 4197 return; 4198 4199 if (how & SEND_SHUTDOWN) { 4200 ep = sctp_sk(sk)->ep; 4201 if (!list_empty(&ep->asocs)) { 4202 asoc = list_entry(ep->asocs.next, 4203 struct sctp_association, asocs); 4204 sctp_primitive_SHUTDOWN(net, asoc, NULL); 4205 } 4206 } 4207 } 4208 4209 /* 7.2.1 Association Status (SCTP_STATUS) 4210 4211 * Applications can retrieve current status information about an 4212 * association, including association state, peer receiver window size, 4213 * number of unacked data chunks, and number of data chunks pending 4214 * receipt. This information is read-only. 4215 */ 4216 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 4217 char __user *optval, 4218 int __user *optlen) 4219 { 4220 struct sctp_status status; 4221 struct sctp_association *asoc = NULL; 4222 struct sctp_transport *transport; 4223 sctp_assoc_t associd; 4224 int retval = 0; 4225 4226 if (len < sizeof(status)) { 4227 retval = -EINVAL; 4228 goto out; 4229 } 4230 4231 len = sizeof(status); 4232 if (copy_from_user(&status, optval, len)) { 4233 retval = -EFAULT; 4234 goto out; 4235 } 4236 4237 associd = status.sstat_assoc_id; 4238 asoc = sctp_id2assoc(sk, associd); 4239 if (!asoc) { 4240 retval = -EINVAL; 4241 goto out; 4242 } 4243 4244 transport = asoc->peer.primary_path; 4245 4246 status.sstat_assoc_id = sctp_assoc2id(asoc); 4247 status.sstat_state = sctp_assoc_to_state(asoc); 4248 status.sstat_rwnd = asoc->peer.rwnd; 4249 status.sstat_unackdata = asoc->unack_data; 4250 4251 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4252 status.sstat_instrms = asoc->c.sinit_max_instreams; 4253 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 4254 status.sstat_fragmentation_point = asoc->frag_point; 4255 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4256 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 4257 transport->af_specific->sockaddr_len); 4258 /* Map ipv4 address into v4-mapped-on-v6 address. */ 4259 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 4260 (union sctp_addr *)&status.sstat_primary.spinfo_address); 4261 status.sstat_primary.spinfo_state = transport->state; 4262 status.sstat_primary.spinfo_cwnd = transport->cwnd; 4263 status.sstat_primary.spinfo_srtt = transport->srtt; 4264 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 4265 status.sstat_primary.spinfo_mtu = transport->pathmtu; 4266 4267 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 4268 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 4269 4270 if (put_user(len, optlen)) { 4271 retval = -EFAULT; 4272 goto out; 4273 } 4274 4275 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 4276 __func__, len, status.sstat_state, status.sstat_rwnd, 4277 status.sstat_assoc_id); 4278 4279 if (copy_to_user(optval, &status, len)) { 4280 retval = -EFAULT; 4281 goto out; 4282 } 4283 4284 out: 4285 return retval; 4286 } 4287 4288 4289 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 4290 * 4291 * Applications can retrieve information about a specific peer address 4292 * of an association, including its reachability state, congestion 4293 * window, and retransmission timer values. This information is 4294 * read-only. 4295 */ 4296 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 4297 char __user *optval, 4298 int __user *optlen) 4299 { 4300 struct sctp_paddrinfo pinfo; 4301 struct sctp_transport *transport; 4302 int retval = 0; 4303 4304 if (len < sizeof(pinfo)) { 4305 retval = -EINVAL; 4306 goto out; 4307 } 4308 4309 len = sizeof(pinfo); 4310 if (copy_from_user(&pinfo, optval, len)) { 4311 retval = -EFAULT; 4312 goto out; 4313 } 4314 4315 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 4316 pinfo.spinfo_assoc_id); 4317 if (!transport) 4318 return -EINVAL; 4319 4320 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4321 pinfo.spinfo_state = transport->state; 4322 pinfo.spinfo_cwnd = transport->cwnd; 4323 pinfo.spinfo_srtt = transport->srtt; 4324 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 4325 pinfo.spinfo_mtu = transport->pathmtu; 4326 4327 if (pinfo.spinfo_state == SCTP_UNKNOWN) 4328 pinfo.spinfo_state = SCTP_ACTIVE; 4329 4330 if (put_user(len, optlen)) { 4331 retval = -EFAULT; 4332 goto out; 4333 } 4334 4335 if (copy_to_user(optval, &pinfo, len)) { 4336 retval = -EFAULT; 4337 goto out; 4338 } 4339 4340 out: 4341 return retval; 4342 } 4343 4344 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 4345 * 4346 * This option is a on/off flag. If enabled no SCTP message 4347 * fragmentation will be performed. Instead if a message being sent 4348 * exceeds the current PMTU size, the message will NOT be sent and 4349 * instead a error will be indicated to the user. 4350 */ 4351 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 4352 char __user *optval, int __user *optlen) 4353 { 4354 int val; 4355 4356 if (len < sizeof(int)) 4357 return -EINVAL; 4358 4359 len = sizeof(int); 4360 val = (sctp_sk(sk)->disable_fragments == 1); 4361 if (put_user(len, optlen)) 4362 return -EFAULT; 4363 if (copy_to_user(optval, &val, len)) 4364 return -EFAULT; 4365 return 0; 4366 } 4367 4368 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 4369 * 4370 * This socket option is used to specify various notifications and 4371 * ancillary data the user wishes to receive. 4372 */ 4373 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 4374 int __user *optlen) 4375 { 4376 if (len <= 0) 4377 return -EINVAL; 4378 if (len > sizeof(struct sctp_event_subscribe)) 4379 len = sizeof(struct sctp_event_subscribe); 4380 if (put_user(len, optlen)) 4381 return -EFAULT; 4382 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 4383 return -EFAULT; 4384 return 0; 4385 } 4386 4387 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 4388 * 4389 * This socket option is applicable to the UDP-style socket only. When 4390 * set it will cause associations that are idle for more than the 4391 * specified number of seconds to automatically close. An association 4392 * being idle is defined an association that has NOT sent or received 4393 * user data. The special value of '0' indicates that no automatic 4394 * close of any associations should be performed. The option expects an 4395 * integer defining the number of seconds of idle time before an 4396 * association is closed. 4397 */ 4398 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 4399 { 4400 /* Applicable to UDP-style socket only */ 4401 if (sctp_style(sk, TCP)) 4402 return -EOPNOTSUPP; 4403 if (len < sizeof(int)) 4404 return -EINVAL; 4405 len = sizeof(int); 4406 if (put_user(len, optlen)) 4407 return -EFAULT; 4408 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 4409 return -EFAULT; 4410 return 0; 4411 } 4412 4413 /* Helper routine to branch off an association to a new socket. */ 4414 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 4415 { 4416 struct sctp_association *asoc = sctp_id2assoc(sk, id); 4417 struct sctp_sock *sp = sctp_sk(sk); 4418 struct socket *sock; 4419 int err = 0; 4420 4421 if (!asoc) 4422 return -EINVAL; 4423 4424 /* An association cannot be branched off from an already peeled-off 4425 * socket, nor is this supported for tcp style sockets. 4426 */ 4427 if (!sctp_style(sk, UDP)) 4428 return -EINVAL; 4429 4430 /* Create a new socket. */ 4431 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 4432 if (err < 0) 4433 return err; 4434 4435 sctp_copy_sock(sock->sk, sk, asoc); 4436 4437 /* Make peeled-off sockets more like 1-1 accepted sockets. 4438 * Set the daddr and initialize id to something more random 4439 */ 4440 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 4441 4442 /* Populate the fields of the newsk from the oldsk and migrate the 4443 * asoc to the newsk. 4444 */ 4445 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 4446 4447 *sockp = sock; 4448 4449 return err; 4450 } 4451 EXPORT_SYMBOL(sctp_do_peeloff); 4452 4453 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 4454 { 4455 sctp_peeloff_arg_t peeloff; 4456 struct socket *newsock; 4457 struct file *newfile; 4458 int retval = 0; 4459 4460 if (len < sizeof(sctp_peeloff_arg_t)) 4461 return -EINVAL; 4462 len = sizeof(sctp_peeloff_arg_t); 4463 if (copy_from_user(&peeloff, optval, len)) 4464 return -EFAULT; 4465 4466 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock); 4467 if (retval < 0) 4468 goto out; 4469 4470 /* Map the socket to an unused fd that can be returned to the user. */ 4471 retval = get_unused_fd_flags(0); 4472 if (retval < 0) { 4473 sock_release(newsock); 4474 goto out; 4475 } 4476 4477 newfile = sock_alloc_file(newsock, 0, NULL); 4478 if (IS_ERR(newfile)) { 4479 put_unused_fd(retval); 4480 sock_release(newsock); 4481 return PTR_ERR(newfile); 4482 } 4483 4484 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 4485 retval); 4486 4487 /* Return the fd mapped to the new socket. */ 4488 if (put_user(len, optlen)) { 4489 fput(newfile); 4490 put_unused_fd(retval); 4491 return -EFAULT; 4492 } 4493 peeloff.sd = retval; 4494 if (copy_to_user(optval, &peeloff, len)) { 4495 fput(newfile); 4496 put_unused_fd(retval); 4497 return -EFAULT; 4498 } 4499 fd_install(retval, newfile); 4500 out: 4501 return retval; 4502 } 4503 4504 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 4505 * 4506 * Applications can enable or disable heartbeats for any peer address of 4507 * an association, modify an address's heartbeat interval, force a 4508 * heartbeat to be sent immediately, and adjust the address's maximum 4509 * number of retransmissions sent before an address is considered 4510 * unreachable. The following structure is used to access and modify an 4511 * address's parameters: 4512 * 4513 * struct sctp_paddrparams { 4514 * sctp_assoc_t spp_assoc_id; 4515 * struct sockaddr_storage spp_address; 4516 * uint32_t spp_hbinterval; 4517 * uint16_t spp_pathmaxrxt; 4518 * uint32_t spp_pathmtu; 4519 * uint32_t spp_sackdelay; 4520 * uint32_t spp_flags; 4521 * }; 4522 * 4523 * spp_assoc_id - (one-to-many style socket) This is filled in the 4524 * application, and identifies the association for 4525 * this query. 4526 * spp_address - This specifies which address is of interest. 4527 * spp_hbinterval - This contains the value of the heartbeat interval, 4528 * in milliseconds. If a value of zero 4529 * is present in this field then no changes are to 4530 * be made to this parameter. 4531 * spp_pathmaxrxt - This contains the maximum number of 4532 * retransmissions before this address shall be 4533 * considered unreachable. If a value of zero 4534 * is present in this field then no changes are to 4535 * be made to this parameter. 4536 * spp_pathmtu - When Path MTU discovery is disabled the value 4537 * specified here will be the "fixed" path mtu. 4538 * Note that if the spp_address field is empty 4539 * then all associations on this address will 4540 * have this fixed path mtu set upon them. 4541 * 4542 * spp_sackdelay - When delayed sack is enabled, this value specifies 4543 * the number of milliseconds that sacks will be delayed 4544 * for. This value will apply to all addresses of an 4545 * association if the spp_address field is empty. Note 4546 * also, that if delayed sack is enabled and this 4547 * value is set to 0, no change is made to the last 4548 * recorded delayed sack timer value. 4549 * 4550 * spp_flags - These flags are used to control various features 4551 * on an association. The flag field may contain 4552 * zero or more of the following options. 4553 * 4554 * SPP_HB_ENABLE - Enable heartbeats on the 4555 * specified address. Note that if the address 4556 * field is empty all addresses for the association 4557 * have heartbeats enabled upon them. 4558 * 4559 * SPP_HB_DISABLE - Disable heartbeats on the 4560 * speicifed address. Note that if the address 4561 * field is empty all addresses for the association 4562 * will have their heartbeats disabled. Note also 4563 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 4564 * mutually exclusive, only one of these two should 4565 * be specified. Enabling both fields will have 4566 * undetermined results. 4567 * 4568 * SPP_HB_DEMAND - Request a user initiated heartbeat 4569 * to be made immediately. 4570 * 4571 * SPP_PMTUD_ENABLE - This field will enable PMTU 4572 * discovery upon the specified address. Note that 4573 * if the address feild is empty then all addresses 4574 * on the association are effected. 4575 * 4576 * SPP_PMTUD_DISABLE - This field will disable PMTU 4577 * discovery upon the specified address. Note that 4578 * if the address feild is empty then all addresses 4579 * on the association are effected. Not also that 4580 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 4581 * exclusive. Enabling both will have undetermined 4582 * results. 4583 * 4584 * SPP_SACKDELAY_ENABLE - Setting this flag turns 4585 * on delayed sack. The time specified in spp_sackdelay 4586 * is used to specify the sack delay for this address. Note 4587 * that if spp_address is empty then all addresses will 4588 * enable delayed sack and take on the sack delay 4589 * value specified in spp_sackdelay. 4590 * SPP_SACKDELAY_DISABLE - Setting this flag turns 4591 * off delayed sack. If the spp_address field is blank then 4592 * delayed sack is disabled for the entire association. Note 4593 * also that this field is mutually exclusive to 4594 * SPP_SACKDELAY_ENABLE, setting both will have undefined 4595 * results. 4596 */ 4597 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 4598 char __user *optval, int __user *optlen) 4599 { 4600 struct sctp_paddrparams params; 4601 struct sctp_transport *trans = NULL; 4602 struct sctp_association *asoc = NULL; 4603 struct sctp_sock *sp = sctp_sk(sk); 4604 4605 if (len < sizeof(struct sctp_paddrparams)) 4606 return -EINVAL; 4607 len = sizeof(struct sctp_paddrparams); 4608 if (copy_from_user(¶ms, optval, len)) 4609 return -EFAULT; 4610 4611 /* If an address other than INADDR_ANY is specified, and 4612 * no transport is found, then the request is invalid. 4613 */ 4614 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 4615 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 4616 params.spp_assoc_id); 4617 if (!trans) { 4618 pr_debug("%s: failed no transport\n", __func__); 4619 return -EINVAL; 4620 } 4621 } 4622 4623 /* Get association, if assoc_id != 0 and the socket is a one 4624 * to many style socket, and an association was not found, then 4625 * the id was invalid. 4626 */ 4627 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 4628 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 4629 pr_debug("%s: failed no association\n", __func__); 4630 return -EINVAL; 4631 } 4632 4633 if (trans) { 4634 /* Fetch transport values. */ 4635 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 4636 params.spp_pathmtu = trans->pathmtu; 4637 params.spp_pathmaxrxt = trans->pathmaxrxt; 4638 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 4639 4640 /*draft-11 doesn't say what to return in spp_flags*/ 4641 params.spp_flags = trans->param_flags; 4642 } else if (asoc) { 4643 /* Fetch association values. */ 4644 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 4645 params.spp_pathmtu = asoc->pathmtu; 4646 params.spp_pathmaxrxt = asoc->pathmaxrxt; 4647 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 4648 4649 /*draft-11 doesn't say what to return in spp_flags*/ 4650 params.spp_flags = asoc->param_flags; 4651 } else { 4652 /* Fetch socket values. */ 4653 params.spp_hbinterval = sp->hbinterval; 4654 params.spp_pathmtu = sp->pathmtu; 4655 params.spp_sackdelay = sp->sackdelay; 4656 params.spp_pathmaxrxt = sp->pathmaxrxt; 4657 4658 /*draft-11 doesn't say what to return in spp_flags*/ 4659 params.spp_flags = sp->param_flags; 4660 } 4661 4662 if (copy_to_user(optval, ¶ms, len)) 4663 return -EFAULT; 4664 4665 if (put_user(len, optlen)) 4666 return -EFAULT; 4667 4668 return 0; 4669 } 4670 4671 /* 4672 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 4673 * 4674 * This option will effect the way delayed acks are performed. This 4675 * option allows you to get or set the delayed ack time, in 4676 * milliseconds. It also allows changing the delayed ack frequency. 4677 * Changing the frequency to 1 disables the delayed sack algorithm. If 4678 * the assoc_id is 0, then this sets or gets the endpoints default 4679 * values. If the assoc_id field is non-zero, then the set or get 4680 * effects the specified association for the one to many model (the 4681 * assoc_id field is ignored by the one to one model). Note that if 4682 * sack_delay or sack_freq are 0 when setting this option, then the 4683 * current values will remain unchanged. 4684 * 4685 * struct sctp_sack_info { 4686 * sctp_assoc_t sack_assoc_id; 4687 * uint32_t sack_delay; 4688 * uint32_t sack_freq; 4689 * }; 4690 * 4691 * sack_assoc_id - This parameter, indicates which association the user 4692 * is performing an action upon. Note that if this field's value is 4693 * zero then the endpoints default value is changed (effecting future 4694 * associations only). 4695 * 4696 * sack_delay - This parameter contains the number of milliseconds that 4697 * the user is requesting the delayed ACK timer be set to. Note that 4698 * this value is defined in the standard to be between 200 and 500 4699 * milliseconds. 4700 * 4701 * sack_freq - This parameter contains the number of packets that must 4702 * be received before a sack is sent without waiting for the delay 4703 * timer to expire. The default value for this is 2, setting this 4704 * value to 1 will disable the delayed sack algorithm. 4705 */ 4706 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 4707 char __user *optval, 4708 int __user *optlen) 4709 { 4710 struct sctp_sack_info params; 4711 struct sctp_association *asoc = NULL; 4712 struct sctp_sock *sp = sctp_sk(sk); 4713 4714 if (len >= sizeof(struct sctp_sack_info)) { 4715 len = sizeof(struct sctp_sack_info); 4716 4717 if (copy_from_user(¶ms, optval, len)) 4718 return -EFAULT; 4719 } else if (len == sizeof(struct sctp_assoc_value)) { 4720 pr_warn_ratelimited(DEPRECATED 4721 "%s (pid %d) " 4722 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 4723 "Use struct sctp_sack_info instead\n", 4724 current->comm, task_pid_nr(current)); 4725 if (copy_from_user(¶ms, optval, len)) 4726 return -EFAULT; 4727 } else 4728 return -EINVAL; 4729 4730 /* Get association, if sack_assoc_id != 0 and the socket is a one 4731 * to many style socket, and an association was not found, then 4732 * the id was invalid. 4733 */ 4734 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 4735 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 4736 return -EINVAL; 4737 4738 if (asoc) { 4739 /* Fetch association values. */ 4740 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 4741 params.sack_delay = jiffies_to_msecs( 4742 asoc->sackdelay); 4743 params.sack_freq = asoc->sackfreq; 4744 4745 } else { 4746 params.sack_delay = 0; 4747 params.sack_freq = 1; 4748 } 4749 } else { 4750 /* Fetch socket values. */ 4751 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 4752 params.sack_delay = sp->sackdelay; 4753 params.sack_freq = sp->sackfreq; 4754 } else { 4755 params.sack_delay = 0; 4756 params.sack_freq = 1; 4757 } 4758 } 4759 4760 if (copy_to_user(optval, ¶ms, len)) 4761 return -EFAULT; 4762 4763 if (put_user(len, optlen)) 4764 return -EFAULT; 4765 4766 return 0; 4767 } 4768 4769 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 4770 * 4771 * Applications can specify protocol parameters for the default association 4772 * initialization. The option name argument to setsockopt() and getsockopt() 4773 * is SCTP_INITMSG. 4774 * 4775 * Setting initialization parameters is effective only on an unconnected 4776 * socket (for UDP-style sockets only future associations are effected 4777 * by the change). With TCP-style sockets, this option is inherited by 4778 * sockets derived from a listener socket. 4779 */ 4780 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 4781 { 4782 if (len < sizeof(struct sctp_initmsg)) 4783 return -EINVAL; 4784 len = sizeof(struct sctp_initmsg); 4785 if (put_user(len, optlen)) 4786 return -EFAULT; 4787 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 4788 return -EFAULT; 4789 return 0; 4790 } 4791 4792 4793 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 4794 char __user *optval, int __user *optlen) 4795 { 4796 struct sctp_association *asoc; 4797 int cnt = 0; 4798 struct sctp_getaddrs getaddrs; 4799 struct sctp_transport *from; 4800 void __user *to; 4801 union sctp_addr temp; 4802 struct sctp_sock *sp = sctp_sk(sk); 4803 int addrlen; 4804 size_t space_left; 4805 int bytes_copied; 4806 4807 if (len < sizeof(struct sctp_getaddrs)) 4808 return -EINVAL; 4809 4810 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4811 return -EFAULT; 4812 4813 /* For UDP-style sockets, id specifies the association to query. */ 4814 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4815 if (!asoc) 4816 return -EINVAL; 4817 4818 to = optval + offsetof(struct sctp_getaddrs, addrs); 4819 space_left = len - offsetof(struct sctp_getaddrs, addrs); 4820 4821 list_for_each_entry(from, &asoc->peer.transport_addr_list, 4822 transports) { 4823 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4824 addrlen = sctp_get_pf_specific(sk->sk_family) 4825 ->addr_to_user(sp, &temp); 4826 if (space_left < addrlen) 4827 return -ENOMEM; 4828 if (copy_to_user(to, &temp, addrlen)) 4829 return -EFAULT; 4830 to += addrlen; 4831 cnt++; 4832 space_left -= addrlen; 4833 } 4834 4835 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4836 return -EFAULT; 4837 bytes_copied = ((char __user *)to) - optval; 4838 if (put_user(bytes_copied, optlen)) 4839 return -EFAULT; 4840 4841 return 0; 4842 } 4843 4844 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 4845 size_t space_left, int *bytes_copied) 4846 { 4847 struct sctp_sockaddr_entry *addr; 4848 union sctp_addr temp; 4849 int cnt = 0; 4850 int addrlen; 4851 struct net *net = sock_net(sk); 4852 4853 rcu_read_lock(); 4854 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 4855 if (!addr->valid) 4856 continue; 4857 4858 if ((PF_INET == sk->sk_family) && 4859 (AF_INET6 == addr->a.sa.sa_family)) 4860 continue; 4861 if ((PF_INET6 == sk->sk_family) && 4862 inet_v6_ipv6only(sk) && 4863 (AF_INET == addr->a.sa.sa_family)) 4864 continue; 4865 memcpy(&temp, &addr->a, sizeof(temp)); 4866 if (!temp.v4.sin_port) 4867 temp.v4.sin_port = htons(port); 4868 4869 addrlen = sctp_get_pf_specific(sk->sk_family) 4870 ->addr_to_user(sctp_sk(sk), &temp); 4871 4872 if (space_left < addrlen) { 4873 cnt = -ENOMEM; 4874 break; 4875 } 4876 memcpy(to, &temp, addrlen); 4877 4878 to += addrlen; 4879 cnt++; 4880 space_left -= addrlen; 4881 *bytes_copied += addrlen; 4882 } 4883 rcu_read_unlock(); 4884 4885 return cnt; 4886 } 4887 4888 4889 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 4890 char __user *optval, int __user *optlen) 4891 { 4892 struct sctp_bind_addr *bp; 4893 struct sctp_association *asoc; 4894 int cnt = 0; 4895 struct sctp_getaddrs getaddrs; 4896 struct sctp_sockaddr_entry *addr; 4897 void __user *to; 4898 union sctp_addr temp; 4899 struct sctp_sock *sp = sctp_sk(sk); 4900 int addrlen; 4901 int err = 0; 4902 size_t space_left; 4903 int bytes_copied = 0; 4904 void *addrs; 4905 void *buf; 4906 4907 if (len < sizeof(struct sctp_getaddrs)) 4908 return -EINVAL; 4909 4910 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4911 return -EFAULT; 4912 4913 /* 4914 * For UDP-style sockets, id specifies the association to query. 4915 * If the id field is set to the value '0' then the locally bound 4916 * addresses are returned without regard to any particular 4917 * association. 4918 */ 4919 if (0 == getaddrs.assoc_id) { 4920 bp = &sctp_sk(sk)->ep->base.bind_addr; 4921 } else { 4922 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4923 if (!asoc) 4924 return -EINVAL; 4925 bp = &asoc->base.bind_addr; 4926 } 4927 4928 to = optval + offsetof(struct sctp_getaddrs, addrs); 4929 space_left = len - offsetof(struct sctp_getaddrs, addrs); 4930 4931 addrs = kmalloc(space_left, GFP_KERNEL); 4932 if (!addrs) 4933 return -ENOMEM; 4934 4935 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4936 * addresses from the global local address list. 4937 */ 4938 if (sctp_list_single_entry(&bp->address_list)) { 4939 addr = list_entry(bp->address_list.next, 4940 struct sctp_sockaddr_entry, list); 4941 if (sctp_is_any(sk, &addr->a)) { 4942 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 4943 space_left, &bytes_copied); 4944 if (cnt < 0) { 4945 err = cnt; 4946 goto out; 4947 } 4948 goto copy_getaddrs; 4949 } 4950 } 4951 4952 buf = addrs; 4953 /* Protection on the bound address list is not needed since 4954 * in the socket option context we hold a socket lock and 4955 * thus the bound address list can't change. 4956 */ 4957 list_for_each_entry(addr, &bp->address_list, list) { 4958 memcpy(&temp, &addr->a, sizeof(temp)); 4959 addrlen = sctp_get_pf_specific(sk->sk_family) 4960 ->addr_to_user(sp, &temp); 4961 if (space_left < addrlen) { 4962 err = -ENOMEM; /*fixme: right error?*/ 4963 goto out; 4964 } 4965 memcpy(buf, &temp, addrlen); 4966 buf += addrlen; 4967 bytes_copied += addrlen; 4968 cnt++; 4969 space_left -= addrlen; 4970 } 4971 4972 copy_getaddrs: 4973 if (copy_to_user(to, addrs, bytes_copied)) { 4974 err = -EFAULT; 4975 goto out; 4976 } 4977 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 4978 err = -EFAULT; 4979 goto out; 4980 } 4981 if (put_user(bytes_copied, optlen)) 4982 err = -EFAULT; 4983 out: 4984 kfree(addrs); 4985 return err; 4986 } 4987 4988 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 4989 * 4990 * Requests that the local SCTP stack use the enclosed peer address as 4991 * the association primary. The enclosed address must be one of the 4992 * association peer's addresses. 4993 */ 4994 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 4995 char __user *optval, int __user *optlen) 4996 { 4997 struct sctp_prim prim; 4998 struct sctp_association *asoc; 4999 struct sctp_sock *sp = sctp_sk(sk); 5000 5001 if (len < sizeof(struct sctp_prim)) 5002 return -EINVAL; 5003 5004 len = sizeof(struct sctp_prim); 5005 5006 if (copy_from_user(&prim, optval, len)) 5007 return -EFAULT; 5008 5009 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 5010 if (!asoc) 5011 return -EINVAL; 5012 5013 if (!asoc->peer.primary_path) 5014 return -ENOTCONN; 5015 5016 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 5017 asoc->peer.primary_path->af_specific->sockaddr_len); 5018 5019 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 5020 (union sctp_addr *)&prim.ssp_addr); 5021 5022 if (put_user(len, optlen)) 5023 return -EFAULT; 5024 if (copy_to_user(optval, &prim, len)) 5025 return -EFAULT; 5026 5027 return 0; 5028 } 5029 5030 /* 5031 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 5032 * 5033 * Requests that the local endpoint set the specified Adaptation Layer 5034 * Indication parameter for all future INIT and INIT-ACK exchanges. 5035 */ 5036 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 5037 char __user *optval, int __user *optlen) 5038 { 5039 struct sctp_setadaptation adaptation; 5040 5041 if (len < sizeof(struct sctp_setadaptation)) 5042 return -EINVAL; 5043 5044 len = sizeof(struct sctp_setadaptation); 5045 5046 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 5047 5048 if (put_user(len, optlen)) 5049 return -EFAULT; 5050 if (copy_to_user(optval, &adaptation, len)) 5051 return -EFAULT; 5052 5053 return 0; 5054 } 5055 5056 /* 5057 * 5058 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 5059 * 5060 * Applications that wish to use the sendto() system call may wish to 5061 * specify a default set of parameters that would normally be supplied 5062 * through the inclusion of ancillary data. This socket option allows 5063 * such an application to set the default sctp_sndrcvinfo structure. 5064 5065 5066 * The application that wishes to use this socket option simply passes 5067 * in to this call the sctp_sndrcvinfo structure defined in Section 5068 * 5.2.2) The input parameters accepted by this call include 5069 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 5070 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 5071 * to this call if the caller is using the UDP model. 5072 * 5073 * For getsockopt, it get the default sctp_sndrcvinfo structure. 5074 */ 5075 static int sctp_getsockopt_default_send_param(struct sock *sk, 5076 int len, char __user *optval, 5077 int __user *optlen) 5078 { 5079 struct sctp_sock *sp = sctp_sk(sk); 5080 struct sctp_association *asoc; 5081 struct sctp_sndrcvinfo info; 5082 5083 if (len < sizeof(info)) 5084 return -EINVAL; 5085 5086 len = sizeof(info); 5087 5088 if (copy_from_user(&info, optval, len)) 5089 return -EFAULT; 5090 5091 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 5092 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 5093 return -EINVAL; 5094 if (asoc) { 5095 info.sinfo_stream = asoc->default_stream; 5096 info.sinfo_flags = asoc->default_flags; 5097 info.sinfo_ppid = asoc->default_ppid; 5098 info.sinfo_context = asoc->default_context; 5099 info.sinfo_timetolive = asoc->default_timetolive; 5100 } else { 5101 info.sinfo_stream = sp->default_stream; 5102 info.sinfo_flags = sp->default_flags; 5103 info.sinfo_ppid = sp->default_ppid; 5104 info.sinfo_context = sp->default_context; 5105 info.sinfo_timetolive = sp->default_timetolive; 5106 } 5107 5108 if (put_user(len, optlen)) 5109 return -EFAULT; 5110 if (copy_to_user(optval, &info, len)) 5111 return -EFAULT; 5112 5113 return 0; 5114 } 5115 5116 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 5117 * (SCTP_DEFAULT_SNDINFO) 5118 */ 5119 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 5120 char __user *optval, 5121 int __user *optlen) 5122 { 5123 struct sctp_sock *sp = sctp_sk(sk); 5124 struct sctp_association *asoc; 5125 struct sctp_sndinfo info; 5126 5127 if (len < sizeof(info)) 5128 return -EINVAL; 5129 5130 len = sizeof(info); 5131 5132 if (copy_from_user(&info, optval, len)) 5133 return -EFAULT; 5134 5135 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 5136 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 5137 return -EINVAL; 5138 if (asoc) { 5139 info.snd_sid = asoc->default_stream; 5140 info.snd_flags = asoc->default_flags; 5141 info.snd_ppid = asoc->default_ppid; 5142 info.snd_context = asoc->default_context; 5143 } else { 5144 info.snd_sid = sp->default_stream; 5145 info.snd_flags = sp->default_flags; 5146 info.snd_ppid = sp->default_ppid; 5147 info.snd_context = sp->default_context; 5148 } 5149 5150 if (put_user(len, optlen)) 5151 return -EFAULT; 5152 if (copy_to_user(optval, &info, len)) 5153 return -EFAULT; 5154 5155 return 0; 5156 } 5157 5158 /* 5159 * 5160 * 7.1.5 SCTP_NODELAY 5161 * 5162 * Turn on/off any Nagle-like algorithm. This means that packets are 5163 * generally sent as soon as possible and no unnecessary delays are 5164 * introduced, at the cost of more packets in the network. Expects an 5165 * integer boolean flag. 5166 */ 5167 5168 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 5169 char __user *optval, int __user *optlen) 5170 { 5171 int val; 5172 5173 if (len < sizeof(int)) 5174 return -EINVAL; 5175 5176 len = sizeof(int); 5177 val = (sctp_sk(sk)->nodelay == 1); 5178 if (put_user(len, optlen)) 5179 return -EFAULT; 5180 if (copy_to_user(optval, &val, len)) 5181 return -EFAULT; 5182 return 0; 5183 } 5184 5185 /* 5186 * 5187 * 7.1.1 SCTP_RTOINFO 5188 * 5189 * The protocol parameters used to initialize and bound retransmission 5190 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 5191 * and modify these parameters. 5192 * All parameters are time values, in milliseconds. A value of 0, when 5193 * modifying the parameters, indicates that the current value should not 5194 * be changed. 5195 * 5196 */ 5197 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 5198 char __user *optval, 5199 int __user *optlen) { 5200 struct sctp_rtoinfo rtoinfo; 5201 struct sctp_association *asoc; 5202 5203 if (len < sizeof (struct sctp_rtoinfo)) 5204 return -EINVAL; 5205 5206 len = sizeof(struct sctp_rtoinfo); 5207 5208 if (copy_from_user(&rtoinfo, optval, len)) 5209 return -EFAULT; 5210 5211 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 5212 5213 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 5214 return -EINVAL; 5215 5216 /* Values corresponding to the specific association. */ 5217 if (asoc) { 5218 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 5219 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 5220 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 5221 } else { 5222 /* Values corresponding to the endpoint. */ 5223 struct sctp_sock *sp = sctp_sk(sk); 5224 5225 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 5226 rtoinfo.srto_max = sp->rtoinfo.srto_max; 5227 rtoinfo.srto_min = sp->rtoinfo.srto_min; 5228 } 5229 5230 if (put_user(len, optlen)) 5231 return -EFAULT; 5232 5233 if (copy_to_user(optval, &rtoinfo, len)) 5234 return -EFAULT; 5235 5236 return 0; 5237 } 5238 5239 /* 5240 * 5241 * 7.1.2 SCTP_ASSOCINFO 5242 * 5243 * This option is used to tune the maximum retransmission attempts 5244 * of the association. 5245 * Returns an error if the new association retransmission value is 5246 * greater than the sum of the retransmission value of the peer. 5247 * See [SCTP] for more information. 5248 * 5249 */ 5250 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 5251 char __user *optval, 5252 int __user *optlen) 5253 { 5254 5255 struct sctp_assocparams assocparams; 5256 struct sctp_association *asoc; 5257 struct list_head *pos; 5258 int cnt = 0; 5259 5260 if (len < sizeof (struct sctp_assocparams)) 5261 return -EINVAL; 5262 5263 len = sizeof(struct sctp_assocparams); 5264 5265 if (copy_from_user(&assocparams, optval, len)) 5266 return -EFAULT; 5267 5268 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 5269 5270 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 5271 return -EINVAL; 5272 5273 /* Values correspoinding to the specific association */ 5274 if (asoc) { 5275 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 5276 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 5277 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 5278 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 5279 5280 list_for_each(pos, &asoc->peer.transport_addr_list) { 5281 cnt++; 5282 } 5283 5284 assocparams.sasoc_number_peer_destinations = cnt; 5285 } else { 5286 /* Values corresponding to the endpoint */ 5287 struct sctp_sock *sp = sctp_sk(sk); 5288 5289 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 5290 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 5291 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 5292 assocparams.sasoc_cookie_life = 5293 sp->assocparams.sasoc_cookie_life; 5294 assocparams.sasoc_number_peer_destinations = 5295 sp->assocparams. 5296 sasoc_number_peer_destinations; 5297 } 5298 5299 if (put_user(len, optlen)) 5300 return -EFAULT; 5301 5302 if (copy_to_user(optval, &assocparams, len)) 5303 return -EFAULT; 5304 5305 return 0; 5306 } 5307 5308 /* 5309 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 5310 * 5311 * This socket option is a boolean flag which turns on or off mapped V4 5312 * addresses. If this option is turned on and the socket is type 5313 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 5314 * If this option is turned off, then no mapping will be done of V4 5315 * addresses and a user will receive both PF_INET6 and PF_INET type 5316 * addresses on the socket. 5317 */ 5318 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 5319 char __user *optval, int __user *optlen) 5320 { 5321 int val; 5322 struct sctp_sock *sp = sctp_sk(sk); 5323 5324 if (len < sizeof(int)) 5325 return -EINVAL; 5326 5327 len = sizeof(int); 5328 val = sp->v4mapped; 5329 if (put_user(len, optlen)) 5330 return -EFAULT; 5331 if (copy_to_user(optval, &val, len)) 5332 return -EFAULT; 5333 5334 return 0; 5335 } 5336 5337 /* 5338 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 5339 * (chapter and verse is quoted at sctp_setsockopt_context()) 5340 */ 5341 static int sctp_getsockopt_context(struct sock *sk, int len, 5342 char __user *optval, int __user *optlen) 5343 { 5344 struct sctp_assoc_value params; 5345 struct sctp_sock *sp; 5346 struct sctp_association *asoc; 5347 5348 if (len < sizeof(struct sctp_assoc_value)) 5349 return -EINVAL; 5350 5351 len = sizeof(struct sctp_assoc_value); 5352 5353 if (copy_from_user(¶ms, optval, len)) 5354 return -EFAULT; 5355 5356 sp = sctp_sk(sk); 5357 5358 if (params.assoc_id != 0) { 5359 asoc = sctp_id2assoc(sk, params.assoc_id); 5360 if (!asoc) 5361 return -EINVAL; 5362 params.assoc_value = asoc->default_rcv_context; 5363 } else { 5364 params.assoc_value = sp->default_rcv_context; 5365 } 5366 5367 if (put_user(len, optlen)) 5368 return -EFAULT; 5369 if (copy_to_user(optval, ¶ms, len)) 5370 return -EFAULT; 5371 5372 return 0; 5373 } 5374 5375 /* 5376 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 5377 * This option will get or set the maximum size to put in any outgoing 5378 * SCTP DATA chunk. If a message is larger than this size it will be 5379 * fragmented by SCTP into the specified size. Note that the underlying 5380 * SCTP implementation may fragment into smaller sized chunks when the 5381 * PMTU of the underlying association is smaller than the value set by 5382 * the user. The default value for this option is '0' which indicates 5383 * the user is NOT limiting fragmentation and only the PMTU will effect 5384 * SCTP's choice of DATA chunk size. Note also that values set larger 5385 * than the maximum size of an IP datagram will effectively let SCTP 5386 * control fragmentation (i.e. the same as setting this option to 0). 5387 * 5388 * The following structure is used to access and modify this parameter: 5389 * 5390 * struct sctp_assoc_value { 5391 * sctp_assoc_t assoc_id; 5392 * uint32_t assoc_value; 5393 * }; 5394 * 5395 * assoc_id: This parameter is ignored for one-to-one style sockets. 5396 * For one-to-many style sockets this parameter indicates which 5397 * association the user is performing an action upon. Note that if 5398 * this field's value is zero then the endpoints default value is 5399 * changed (effecting future associations only). 5400 * assoc_value: This parameter specifies the maximum size in bytes. 5401 */ 5402 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 5403 char __user *optval, int __user *optlen) 5404 { 5405 struct sctp_assoc_value params; 5406 struct sctp_association *asoc; 5407 5408 if (len == sizeof(int)) { 5409 pr_warn_ratelimited(DEPRECATED 5410 "%s (pid %d) " 5411 "Use of int in maxseg socket option.\n" 5412 "Use struct sctp_assoc_value instead\n", 5413 current->comm, task_pid_nr(current)); 5414 params.assoc_id = 0; 5415 } else if (len >= sizeof(struct sctp_assoc_value)) { 5416 len = sizeof(struct sctp_assoc_value); 5417 if (copy_from_user(¶ms, optval, sizeof(params))) 5418 return -EFAULT; 5419 } else 5420 return -EINVAL; 5421 5422 asoc = sctp_id2assoc(sk, params.assoc_id); 5423 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 5424 return -EINVAL; 5425 5426 if (asoc) 5427 params.assoc_value = asoc->frag_point; 5428 else 5429 params.assoc_value = sctp_sk(sk)->user_frag; 5430 5431 if (put_user(len, optlen)) 5432 return -EFAULT; 5433 if (len == sizeof(int)) { 5434 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5435 return -EFAULT; 5436 } else { 5437 if (copy_to_user(optval, ¶ms, len)) 5438 return -EFAULT; 5439 } 5440 5441 return 0; 5442 } 5443 5444 /* 5445 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 5446 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 5447 */ 5448 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 5449 char __user *optval, int __user *optlen) 5450 { 5451 int val; 5452 5453 if (len < sizeof(int)) 5454 return -EINVAL; 5455 5456 len = sizeof(int); 5457 5458 val = sctp_sk(sk)->frag_interleave; 5459 if (put_user(len, optlen)) 5460 return -EFAULT; 5461 if (copy_to_user(optval, &val, len)) 5462 return -EFAULT; 5463 5464 return 0; 5465 } 5466 5467 /* 5468 * 7.1.25. Set or Get the sctp partial delivery point 5469 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 5470 */ 5471 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 5472 char __user *optval, 5473 int __user *optlen) 5474 { 5475 u32 val; 5476 5477 if (len < sizeof(u32)) 5478 return -EINVAL; 5479 5480 len = sizeof(u32); 5481 5482 val = sctp_sk(sk)->pd_point; 5483 if (put_user(len, optlen)) 5484 return -EFAULT; 5485 if (copy_to_user(optval, &val, len)) 5486 return -EFAULT; 5487 5488 return 0; 5489 } 5490 5491 /* 5492 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 5493 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 5494 */ 5495 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 5496 char __user *optval, 5497 int __user *optlen) 5498 { 5499 struct sctp_assoc_value params; 5500 struct sctp_sock *sp; 5501 struct sctp_association *asoc; 5502 5503 if (len == sizeof(int)) { 5504 pr_warn_ratelimited(DEPRECATED 5505 "%s (pid %d) " 5506 "Use of int in max_burst socket option.\n" 5507 "Use struct sctp_assoc_value instead\n", 5508 current->comm, task_pid_nr(current)); 5509 params.assoc_id = 0; 5510 } else if (len >= sizeof(struct sctp_assoc_value)) { 5511 len = sizeof(struct sctp_assoc_value); 5512 if (copy_from_user(¶ms, optval, len)) 5513 return -EFAULT; 5514 } else 5515 return -EINVAL; 5516 5517 sp = sctp_sk(sk); 5518 5519 if (params.assoc_id != 0) { 5520 asoc = sctp_id2assoc(sk, params.assoc_id); 5521 if (!asoc) 5522 return -EINVAL; 5523 params.assoc_value = asoc->max_burst; 5524 } else 5525 params.assoc_value = sp->max_burst; 5526 5527 if (len == sizeof(int)) { 5528 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5529 return -EFAULT; 5530 } else { 5531 if (copy_to_user(optval, ¶ms, len)) 5532 return -EFAULT; 5533 } 5534 5535 return 0; 5536 5537 } 5538 5539 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 5540 char __user *optval, int __user *optlen) 5541 { 5542 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5543 struct sctp_hmacalgo __user *p = (void __user *)optval; 5544 struct sctp_hmac_algo_param *hmacs; 5545 __u16 data_len = 0; 5546 u32 num_idents; 5547 5548 if (!ep->auth_enable) 5549 return -EACCES; 5550 5551 hmacs = ep->auth_hmacs_list; 5552 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t); 5553 5554 if (len < sizeof(struct sctp_hmacalgo) + data_len) 5555 return -EINVAL; 5556 5557 len = sizeof(struct sctp_hmacalgo) + data_len; 5558 num_idents = data_len / sizeof(u16); 5559 5560 if (put_user(len, optlen)) 5561 return -EFAULT; 5562 if (put_user(num_idents, &p->shmac_num_idents)) 5563 return -EFAULT; 5564 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len)) 5565 return -EFAULT; 5566 return 0; 5567 } 5568 5569 static int sctp_getsockopt_active_key(struct sock *sk, int len, 5570 char __user *optval, int __user *optlen) 5571 { 5572 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5573 struct sctp_authkeyid val; 5574 struct sctp_association *asoc; 5575 5576 if (!ep->auth_enable) 5577 return -EACCES; 5578 5579 if (len < sizeof(struct sctp_authkeyid)) 5580 return -EINVAL; 5581 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 5582 return -EFAULT; 5583 5584 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 5585 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 5586 return -EINVAL; 5587 5588 if (asoc) 5589 val.scact_keynumber = asoc->active_key_id; 5590 else 5591 val.scact_keynumber = ep->active_key_id; 5592 5593 len = sizeof(struct sctp_authkeyid); 5594 if (put_user(len, optlen)) 5595 return -EFAULT; 5596 if (copy_to_user(optval, &val, len)) 5597 return -EFAULT; 5598 5599 return 0; 5600 } 5601 5602 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 5603 char __user *optval, int __user *optlen) 5604 { 5605 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5606 struct sctp_authchunks __user *p = (void __user *)optval; 5607 struct sctp_authchunks val; 5608 struct sctp_association *asoc; 5609 struct sctp_chunks_param *ch; 5610 u32 num_chunks = 0; 5611 char __user *to; 5612 5613 if (!ep->auth_enable) 5614 return -EACCES; 5615 5616 if (len < sizeof(struct sctp_authchunks)) 5617 return -EINVAL; 5618 5619 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5620 return -EFAULT; 5621 5622 to = p->gauth_chunks; 5623 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5624 if (!asoc) 5625 return -EINVAL; 5626 5627 ch = asoc->peer.peer_chunks; 5628 if (!ch) 5629 goto num; 5630 5631 /* See if the user provided enough room for all the data */ 5632 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5633 if (len < num_chunks) 5634 return -EINVAL; 5635 5636 if (copy_to_user(to, ch->chunks, num_chunks)) 5637 return -EFAULT; 5638 num: 5639 len = sizeof(struct sctp_authchunks) + num_chunks; 5640 if (put_user(len, optlen)) 5641 return -EFAULT; 5642 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5643 return -EFAULT; 5644 return 0; 5645 } 5646 5647 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 5648 char __user *optval, int __user *optlen) 5649 { 5650 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5651 struct sctp_authchunks __user *p = (void __user *)optval; 5652 struct sctp_authchunks val; 5653 struct sctp_association *asoc; 5654 struct sctp_chunks_param *ch; 5655 u32 num_chunks = 0; 5656 char __user *to; 5657 5658 if (!ep->auth_enable) 5659 return -EACCES; 5660 5661 if (len < sizeof(struct sctp_authchunks)) 5662 return -EINVAL; 5663 5664 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5665 return -EFAULT; 5666 5667 to = p->gauth_chunks; 5668 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5669 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 5670 return -EINVAL; 5671 5672 if (asoc) 5673 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 5674 else 5675 ch = ep->auth_chunk_list; 5676 5677 if (!ch) 5678 goto num; 5679 5680 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5681 if (len < sizeof(struct sctp_authchunks) + num_chunks) 5682 return -EINVAL; 5683 5684 if (copy_to_user(to, ch->chunks, num_chunks)) 5685 return -EFAULT; 5686 num: 5687 len = sizeof(struct sctp_authchunks) + num_chunks; 5688 if (put_user(len, optlen)) 5689 return -EFAULT; 5690 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5691 return -EFAULT; 5692 5693 return 0; 5694 } 5695 5696 /* 5697 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 5698 * This option gets the current number of associations that are attached 5699 * to a one-to-many style socket. The option value is an uint32_t. 5700 */ 5701 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 5702 char __user *optval, int __user *optlen) 5703 { 5704 struct sctp_sock *sp = sctp_sk(sk); 5705 struct sctp_association *asoc; 5706 u32 val = 0; 5707 5708 if (sctp_style(sk, TCP)) 5709 return -EOPNOTSUPP; 5710 5711 if (len < sizeof(u32)) 5712 return -EINVAL; 5713 5714 len = sizeof(u32); 5715 5716 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5717 val++; 5718 } 5719 5720 if (put_user(len, optlen)) 5721 return -EFAULT; 5722 if (copy_to_user(optval, &val, len)) 5723 return -EFAULT; 5724 5725 return 0; 5726 } 5727 5728 /* 5729 * 8.1.23 SCTP_AUTO_ASCONF 5730 * See the corresponding setsockopt entry as description 5731 */ 5732 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 5733 char __user *optval, int __user *optlen) 5734 { 5735 int val = 0; 5736 5737 if (len < sizeof(int)) 5738 return -EINVAL; 5739 5740 len = sizeof(int); 5741 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 5742 val = 1; 5743 if (put_user(len, optlen)) 5744 return -EFAULT; 5745 if (copy_to_user(optval, &val, len)) 5746 return -EFAULT; 5747 return 0; 5748 } 5749 5750 /* 5751 * 8.2.6. Get the Current Identifiers of Associations 5752 * (SCTP_GET_ASSOC_ID_LIST) 5753 * 5754 * This option gets the current list of SCTP association identifiers of 5755 * the SCTP associations handled by a one-to-many style socket. 5756 */ 5757 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 5758 char __user *optval, int __user *optlen) 5759 { 5760 struct sctp_sock *sp = sctp_sk(sk); 5761 struct sctp_association *asoc; 5762 struct sctp_assoc_ids *ids; 5763 u32 num = 0; 5764 5765 if (sctp_style(sk, TCP)) 5766 return -EOPNOTSUPP; 5767 5768 if (len < sizeof(struct sctp_assoc_ids)) 5769 return -EINVAL; 5770 5771 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5772 num++; 5773 } 5774 5775 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 5776 return -EINVAL; 5777 5778 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 5779 5780 ids = kmalloc(len, GFP_KERNEL); 5781 if (unlikely(!ids)) 5782 return -ENOMEM; 5783 5784 ids->gaids_number_of_ids = num; 5785 num = 0; 5786 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5787 ids->gaids_assoc_id[num++] = asoc->assoc_id; 5788 } 5789 5790 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 5791 kfree(ids); 5792 return -EFAULT; 5793 } 5794 5795 kfree(ids); 5796 return 0; 5797 } 5798 5799 /* 5800 * SCTP_PEER_ADDR_THLDS 5801 * 5802 * This option allows us to fetch the partially failed threshold for one or all 5803 * transports in an association. See Section 6.1 of: 5804 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 5805 */ 5806 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 5807 char __user *optval, 5808 int len, 5809 int __user *optlen) 5810 { 5811 struct sctp_paddrthlds val; 5812 struct sctp_transport *trans; 5813 struct sctp_association *asoc; 5814 5815 if (len < sizeof(struct sctp_paddrthlds)) 5816 return -EINVAL; 5817 len = sizeof(struct sctp_paddrthlds); 5818 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 5819 return -EFAULT; 5820 5821 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 5822 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 5823 if (!asoc) 5824 return -ENOENT; 5825 5826 val.spt_pathpfthld = asoc->pf_retrans; 5827 val.spt_pathmaxrxt = asoc->pathmaxrxt; 5828 } else { 5829 trans = sctp_addr_id2transport(sk, &val.spt_address, 5830 val.spt_assoc_id); 5831 if (!trans) 5832 return -ENOENT; 5833 5834 val.spt_pathmaxrxt = trans->pathmaxrxt; 5835 val.spt_pathpfthld = trans->pf_retrans; 5836 } 5837 5838 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 5839 return -EFAULT; 5840 5841 return 0; 5842 } 5843 5844 /* 5845 * SCTP_GET_ASSOC_STATS 5846 * 5847 * This option retrieves local per endpoint statistics. It is modeled 5848 * after OpenSolaris' implementation 5849 */ 5850 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 5851 char __user *optval, 5852 int __user *optlen) 5853 { 5854 struct sctp_assoc_stats sas; 5855 struct sctp_association *asoc = NULL; 5856 5857 /* User must provide at least the assoc id */ 5858 if (len < sizeof(sctp_assoc_t)) 5859 return -EINVAL; 5860 5861 /* Allow the struct to grow and fill in as much as possible */ 5862 len = min_t(size_t, len, sizeof(sas)); 5863 5864 if (copy_from_user(&sas, optval, len)) 5865 return -EFAULT; 5866 5867 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 5868 if (!asoc) 5869 return -EINVAL; 5870 5871 sas.sas_rtxchunks = asoc->stats.rtxchunks; 5872 sas.sas_gapcnt = asoc->stats.gapcnt; 5873 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 5874 sas.sas_osacks = asoc->stats.osacks; 5875 sas.sas_isacks = asoc->stats.isacks; 5876 sas.sas_octrlchunks = asoc->stats.octrlchunks; 5877 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 5878 sas.sas_oodchunks = asoc->stats.oodchunks; 5879 sas.sas_iodchunks = asoc->stats.iodchunks; 5880 sas.sas_ouodchunks = asoc->stats.ouodchunks; 5881 sas.sas_iuodchunks = asoc->stats.iuodchunks; 5882 sas.sas_idupchunks = asoc->stats.idupchunks; 5883 sas.sas_opackets = asoc->stats.opackets; 5884 sas.sas_ipackets = asoc->stats.ipackets; 5885 5886 /* New high max rto observed, will return 0 if not a single 5887 * RTO update took place. obs_rto_ipaddr will be bogus 5888 * in such a case 5889 */ 5890 sas.sas_maxrto = asoc->stats.max_obs_rto; 5891 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 5892 sizeof(struct sockaddr_storage)); 5893 5894 /* Mark beginning of a new observation period */ 5895 asoc->stats.max_obs_rto = asoc->rto_min; 5896 5897 if (put_user(len, optlen)) 5898 return -EFAULT; 5899 5900 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 5901 5902 if (copy_to_user(optval, &sas, len)) 5903 return -EFAULT; 5904 5905 return 0; 5906 } 5907 5908 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 5909 char __user *optval, 5910 int __user *optlen) 5911 { 5912 int val = 0; 5913 5914 if (len < sizeof(int)) 5915 return -EINVAL; 5916 5917 len = sizeof(int); 5918 if (sctp_sk(sk)->recvrcvinfo) 5919 val = 1; 5920 if (put_user(len, optlen)) 5921 return -EFAULT; 5922 if (copy_to_user(optval, &val, len)) 5923 return -EFAULT; 5924 5925 return 0; 5926 } 5927 5928 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 5929 char __user *optval, 5930 int __user *optlen) 5931 { 5932 int val = 0; 5933 5934 if (len < sizeof(int)) 5935 return -EINVAL; 5936 5937 len = sizeof(int); 5938 if (sctp_sk(sk)->recvnxtinfo) 5939 val = 1; 5940 if (put_user(len, optlen)) 5941 return -EFAULT; 5942 if (copy_to_user(optval, &val, len)) 5943 return -EFAULT; 5944 5945 return 0; 5946 } 5947 5948 static int sctp_getsockopt(struct sock *sk, int level, int optname, 5949 char __user *optval, int __user *optlen) 5950 { 5951 int retval = 0; 5952 int len; 5953 5954 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 5955 5956 /* I can hardly begin to describe how wrong this is. This is 5957 * so broken as to be worse than useless. The API draft 5958 * REALLY is NOT helpful here... I am not convinced that the 5959 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 5960 * are at all well-founded. 5961 */ 5962 if (level != SOL_SCTP) { 5963 struct sctp_af *af = sctp_sk(sk)->pf->af; 5964 5965 retval = af->getsockopt(sk, level, optname, optval, optlen); 5966 return retval; 5967 } 5968 5969 if (get_user(len, optlen)) 5970 return -EFAULT; 5971 5972 lock_sock(sk); 5973 5974 switch (optname) { 5975 case SCTP_STATUS: 5976 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 5977 break; 5978 case SCTP_DISABLE_FRAGMENTS: 5979 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 5980 optlen); 5981 break; 5982 case SCTP_EVENTS: 5983 retval = sctp_getsockopt_events(sk, len, optval, optlen); 5984 break; 5985 case SCTP_AUTOCLOSE: 5986 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 5987 break; 5988 case SCTP_SOCKOPT_PEELOFF: 5989 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 5990 break; 5991 case SCTP_PEER_ADDR_PARAMS: 5992 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 5993 optlen); 5994 break; 5995 case SCTP_DELAYED_SACK: 5996 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 5997 optlen); 5998 break; 5999 case SCTP_INITMSG: 6000 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 6001 break; 6002 case SCTP_GET_PEER_ADDRS: 6003 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 6004 optlen); 6005 break; 6006 case SCTP_GET_LOCAL_ADDRS: 6007 retval = sctp_getsockopt_local_addrs(sk, len, optval, 6008 optlen); 6009 break; 6010 case SCTP_SOCKOPT_CONNECTX3: 6011 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 6012 break; 6013 case SCTP_DEFAULT_SEND_PARAM: 6014 retval = sctp_getsockopt_default_send_param(sk, len, 6015 optval, optlen); 6016 break; 6017 case SCTP_DEFAULT_SNDINFO: 6018 retval = sctp_getsockopt_default_sndinfo(sk, len, 6019 optval, optlen); 6020 break; 6021 case SCTP_PRIMARY_ADDR: 6022 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 6023 break; 6024 case SCTP_NODELAY: 6025 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 6026 break; 6027 case SCTP_RTOINFO: 6028 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 6029 break; 6030 case SCTP_ASSOCINFO: 6031 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 6032 break; 6033 case SCTP_I_WANT_MAPPED_V4_ADDR: 6034 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 6035 break; 6036 case SCTP_MAXSEG: 6037 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 6038 break; 6039 case SCTP_GET_PEER_ADDR_INFO: 6040 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 6041 optlen); 6042 break; 6043 case SCTP_ADAPTATION_LAYER: 6044 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 6045 optlen); 6046 break; 6047 case SCTP_CONTEXT: 6048 retval = sctp_getsockopt_context(sk, len, optval, optlen); 6049 break; 6050 case SCTP_FRAGMENT_INTERLEAVE: 6051 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 6052 optlen); 6053 break; 6054 case SCTP_PARTIAL_DELIVERY_POINT: 6055 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 6056 optlen); 6057 break; 6058 case SCTP_MAX_BURST: 6059 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 6060 break; 6061 case SCTP_AUTH_KEY: 6062 case SCTP_AUTH_CHUNK: 6063 case SCTP_AUTH_DELETE_KEY: 6064 retval = -EOPNOTSUPP; 6065 break; 6066 case SCTP_HMAC_IDENT: 6067 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 6068 break; 6069 case SCTP_AUTH_ACTIVE_KEY: 6070 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 6071 break; 6072 case SCTP_PEER_AUTH_CHUNKS: 6073 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 6074 optlen); 6075 break; 6076 case SCTP_LOCAL_AUTH_CHUNKS: 6077 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 6078 optlen); 6079 break; 6080 case SCTP_GET_ASSOC_NUMBER: 6081 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 6082 break; 6083 case SCTP_GET_ASSOC_ID_LIST: 6084 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 6085 break; 6086 case SCTP_AUTO_ASCONF: 6087 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 6088 break; 6089 case SCTP_PEER_ADDR_THLDS: 6090 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 6091 break; 6092 case SCTP_GET_ASSOC_STATS: 6093 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 6094 break; 6095 case SCTP_RECVRCVINFO: 6096 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 6097 break; 6098 case SCTP_RECVNXTINFO: 6099 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 6100 break; 6101 default: 6102 retval = -ENOPROTOOPT; 6103 break; 6104 } 6105 6106 release_sock(sk); 6107 return retval; 6108 } 6109 6110 static void sctp_hash(struct sock *sk) 6111 { 6112 /* STUB */ 6113 } 6114 6115 static void sctp_unhash(struct sock *sk) 6116 { 6117 /* STUB */ 6118 } 6119 6120 /* Check if port is acceptable. Possibly find first available port. 6121 * 6122 * The port hash table (contained in the 'global' SCTP protocol storage 6123 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 6124 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 6125 * list (the list number is the port number hashed out, so as you 6126 * would expect from a hash function, all the ports in a given list have 6127 * such a number that hashes out to the same list number; you were 6128 * expecting that, right?); so each list has a set of ports, with a 6129 * link to the socket (struct sock) that uses it, the port number and 6130 * a fastreuse flag (FIXME: NPI ipg). 6131 */ 6132 static struct sctp_bind_bucket *sctp_bucket_create( 6133 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 6134 6135 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 6136 { 6137 struct sctp_bind_hashbucket *head; /* hash list */ 6138 struct sctp_bind_bucket *pp; 6139 unsigned short snum; 6140 int ret; 6141 6142 snum = ntohs(addr->v4.sin_port); 6143 6144 pr_debug("%s: begins, snum:%d\n", __func__, snum); 6145 6146 local_bh_disable(); 6147 6148 if (snum == 0) { 6149 /* Search for an available port. */ 6150 int low, high, remaining, index; 6151 unsigned int rover; 6152 struct net *net = sock_net(sk); 6153 6154 inet_get_local_port_range(net, &low, &high); 6155 remaining = (high - low) + 1; 6156 rover = prandom_u32() % remaining + low; 6157 6158 do { 6159 rover++; 6160 if ((rover < low) || (rover > high)) 6161 rover = low; 6162 if (inet_is_local_reserved_port(net, rover)) 6163 continue; 6164 index = sctp_phashfn(sock_net(sk), rover); 6165 head = &sctp_port_hashtable[index]; 6166 spin_lock(&head->lock); 6167 sctp_for_each_hentry(pp, &head->chain) 6168 if ((pp->port == rover) && 6169 net_eq(sock_net(sk), pp->net)) 6170 goto next; 6171 break; 6172 next: 6173 spin_unlock(&head->lock); 6174 } while (--remaining > 0); 6175 6176 /* Exhausted local port range during search? */ 6177 ret = 1; 6178 if (remaining <= 0) 6179 goto fail; 6180 6181 /* OK, here is the one we will use. HEAD (the port 6182 * hash table list entry) is non-NULL and we hold it's 6183 * mutex. 6184 */ 6185 snum = rover; 6186 } else { 6187 /* We are given an specific port number; we verify 6188 * that it is not being used. If it is used, we will 6189 * exahust the search in the hash list corresponding 6190 * to the port number (snum) - we detect that with the 6191 * port iterator, pp being NULL. 6192 */ 6193 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 6194 spin_lock(&head->lock); 6195 sctp_for_each_hentry(pp, &head->chain) { 6196 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 6197 goto pp_found; 6198 } 6199 } 6200 pp = NULL; 6201 goto pp_not_found; 6202 pp_found: 6203 if (!hlist_empty(&pp->owner)) { 6204 /* We had a port hash table hit - there is an 6205 * available port (pp != NULL) and it is being 6206 * used by other socket (pp->owner not empty); that other 6207 * socket is going to be sk2. 6208 */ 6209 int reuse = sk->sk_reuse; 6210 struct sock *sk2; 6211 6212 pr_debug("%s: found a possible match\n", __func__); 6213 6214 if (pp->fastreuse && sk->sk_reuse && 6215 sk->sk_state != SCTP_SS_LISTENING) 6216 goto success; 6217 6218 /* Run through the list of sockets bound to the port 6219 * (pp->port) [via the pointers bind_next and 6220 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 6221 * we get the endpoint they describe and run through 6222 * the endpoint's list of IP (v4 or v6) addresses, 6223 * comparing each of the addresses with the address of 6224 * the socket sk. If we find a match, then that means 6225 * that this port/socket (sk) combination are already 6226 * in an endpoint. 6227 */ 6228 sk_for_each_bound(sk2, &pp->owner) { 6229 struct sctp_endpoint *ep2; 6230 ep2 = sctp_sk(sk2)->ep; 6231 6232 if (sk == sk2 || 6233 (reuse && sk2->sk_reuse && 6234 sk2->sk_state != SCTP_SS_LISTENING)) 6235 continue; 6236 6237 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 6238 sctp_sk(sk2), sctp_sk(sk))) { 6239 ret = (long)sk2; 6240 goto fail_unlock; 6241 } 6242 } 6243 6244 pr_debug("%s: found a match\n", __func__); 6245 } 6246 pp_not_found: 6247 /* If there was a hash table miss, create a new port. */ 6248 ret = 1; 6249 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 6250 goto fail_unlock; 6251 6252 /* In either case (hit or miss), make sure fastreuse is 1 only 6253 * if sk->sk_reuse is too (that is, if the caller requested 6254 * SO_REUSEADDR on this socket -sk-). 6255 */ 6256 if (hlist_empty(&pp->owner)) { 6257 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 6258 pp->fastreuse = 1; 6259 else 6260 pp->fastreuse = 0; 6261 } else if (pp->fastreuse && 6262 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 6263 pp->fastreuse = 0; 6264 6265 /* We are set, so fill up all the data in the hash table 6266 * entry, tie the socket list information with the rest of the 6267 * sockets FIXME: Blurry, NPI (ipg). 6268 */ 6269 success: 6270 if (!sctp_sk(sk)->bind_hash) { 6271 inet_sk(sk)->inet_num = snum; 6272 sk_add_bind_node(sk, &pp->owner); 6273 sctp_sk(sk)->bind_hash = pp; 6274 } 6275 ret = 0; 6276 6277 fail_unlock: 6278 spin_unlock(&head->lock); 6279 6280 fail: 6281 local_bh_enable(); 6282 return ret; 6283 } 6284 6285 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 6286 * port is requested. 6287 */ 6288 static int sctp_get_port(struct sock *sk, unsigned short snum) 6289 { 6290 union sctp_addr addr; 6291 struct sctp_af *af = sctp_sk(sk)->pf->af; 6292 6293 /* Set up a dummy address struct from the sk. */ 6294 af->from_sk(&addr, sk); 6295 addr.v4.sin_port = htons(snum); 6296 6297 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 6298 return !!sctp_get_port_local(sk, &addr); 6299 } 6300 6301 /* 6302 * Move a socket to LISTENING state. 6303 */ 6304 static int sctp_listen_start(struct sock *sk, int backlog) 6305 { 6306 struct sctp_sock *sp = sctp_sk(sk); 6307 struct sctp_endpoint *ep = sp->ep; 6308 struct crypto_hash *tfm = NULL; 6309 char alg[32]; 6310 6311 /* Allocate HMAC for generating cookie. */ 6312 if (!sp->hmac && sp->sctp_hmac_alg) { 6313 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 6314 tfm = crypto_alloc_hash(alg, 0, CRYPTO_ALG_ASYNC); 6315 if (IS_ERR(tfm)) { 6316 net_info_ratelimited("failed to load transform for %s: %ld\n", 6317 sp->sctp_hmac_alg, PTR_ERR(tfm)); 6318 return -ENOSYS; 6319 } 6320 sctp_sk(sk)->hmac = tfm; 6321 } 6322 6323 /* 6324 * If a bind() or sctp_bindx() is not called prior to a listen() 6325 * call that allows new associations to be accepted, the system 6326 * picks an ephemeral port and will choose an address set equivalent 6327 * to binding with a wildcard address. 6328 * 6329 * This is not currently spelled out in the SCTP sockets 6330 * extensions draft, but follows the practice as seen in TCP 6331 * sockets. 6332 * 6333 */ 6334 sk->sk_state = SCTP_SS_LISTENING; 6335 if (!ep->base.bind_addr.port) { 6336 if (sctp_autobind(sk)) 6337 return -EAGAIN; 6338 } else { 6339 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 6340 sk->sk_state = SCTP_SS_CLOSED; 6341 return -EADDRINUSE; 6342 } 6343 } 6344 6345 sk->sk_max_ack_backlog = backlog; 6346 sctp_hash_endpoint(ep); 6347 return 0; 6348 } 6349 6350 /* 6351 * 4.1.3 / 5.1.3 listen() 6352 * 6353 * By default, new associations are not accepted for UDP style sockets. 6354 * An application uses listen() to mark a socket as being able to 6355 * accept new associations. 6356 * 6357 * On TCP style sockets, applications use listen() to ready the SCTP 6358 * endpoint for accepting inbound associations. 6359 * 6360 * On both types of endpoints a backlog of '0' disables listening. 6361 * 6362 * Move a socket to LISTENING state. 6363 */ 6364 int sctp_inet_listen(struct socket *sock, int backlog) 6365 { 6366 struct sock *sk = sock->sk; 6367 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6368 int err = -EINVAL; 6369 6370 if (unlikely(backlog < 0)) 6371 return err; 6372 6373 lock_sock(sk); 6374 6375 /* Peeled-off sockets are not allowed to listen(). */ 6376 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 6377 goto out; 6378 6379 if (sock->state != SS_UNCONNECTED) 6380 goto out; 6381 6382 /* If backlog is zero, disable listening. */ 6383 if (!backlog) { 6384 if (sctp_sstate(sk, CLOSED)) 6385 goto out; 6386 6387 err = 0; 6388 sctp_unhash_endpoint(ep); 6389 sk->sk_state = SCTP_SS_CLOSED; 6390 if (sk->sk_reuse) 6391 sctp_sk(sk)->bind_hash->fastreuse = 1; 6392 goto out; 6393 } 6394 6395 /* If we are already listening, just update the backlog */ 6396 if (sctp_sstate(sk, LISTENING)) 6397 sk->sk_max_ack_backlog = backlog; 6398 else { 6399 err = sctp_listen_start(sk, backlog); 6400 if (err) 6401 goto out; 6402 } 6403 6404 err = 0; 6405 out: 6406 release_sock(sk); 6407 return err; 6408 } 6409 6410 /* 6411 * This function is done by modeling the current datagram_poll() and the 6412 * tcp_poll(). Note that, based on these implementations, we don't 6413 * lock the socket in this function, even though it seems that, 6414 * ideally, locking or some other mechanisms can be used to ensure 6415 * the integrity of the counters (sndbuf and wmem_alloc) used 6416 * in this place. We assume that we don't need locks either until proven 6417 * otherwise. 6418 * 6419 * Another thing to note is that we include the Async I/O support 6420 * here, again, by modeling the current TCP/UDP code. We don't have 6421 * a good way to test with it yet. 6422 */ 6423 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 6424 { 6425 struct sock *sk = sock->sk; 6426 struct sctp_sock *sp = sctp_sk(sk); 6427 unsigned int mask; 6428 6429 poll_wait(file, sk_sleep(sk), wait); 6430 6431 /* A TCP-style listening socket becomes readable when the accept queue 6432 * is not empty. 6433 */ 6434 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 6435 return (!list_empty(&sp->ep->asocs)) ? 6436 (POLLIN | POLLRDNORM) : 0; 6437 6438 mask = 0; 6439 6440 /* Is there any exceptional events? */ 6441 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 6442 mask |= POLLERR | 6443 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0); 6444 if (sk->sk_shutdown & RCV_SHUTDOWN) 6445 mask |= POLLRDHUP | POLLIN | POLLRDNORM; 6446 if (sk->sk_shutdown == SHUTDOWN_MASK) 6447 mask |= POLLHUP; 6448 6449 /* Is it readable? Reconsider this code with TCP-style support. */ 6450 if (!skb_queue_empty(&sk->sk_receive_queue)) 6451 mask |= POLLIN | POLLRDNORM; 6452 6453 /* The association is either gone or not ready. */ 6454 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 6455 return mask; 6456 6457 /* Is it writable? */ 6458 if (sctp_writeable(sk)) { 6459 mask |= POLLOUT | POLLWRNORM; 6460 } else { 6461 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 6462 /* 6463 * Since the socket is not locked, the buffer 6464 * might be made available after the writeable check and 6465 * before the bit is set. This could cause a lost I/O 6466 * signal. tcp_poll() has a race breaker for this race 6467 * condition. Based on their implementation, we put 6468 * in the following code to cover it as well. 6469 */ 6470 if (sctp_writeable(sk)) 6471 mask |= POLLOUT | POLLWRNORM; 6472 } 6473 return mask; 6474 } 6475 6476 /******************************************************************** 6477 * 2nd Level Abstractions 6478 ********************************************************************/ 6479 6480 static struct sctp_bind_bucket *sctp_bucket_create( 6481 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 6482 { 6483 struct sctp_bind_bucket *pp; 6484 6485 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 6486 if (pp) { 6487 SCTP_DBG_OBJCNT_INC(bind_bucket); 6488 pp->port = snum; 6489 pp->fastreuse = 0; 6490 INIT_HLIST_HEAD(&pp->owner); 6491 pp->net = net; 6492 hlist_add_head(&pp->node, &head->chain); 6493 } 6494 return pp; 6495 } 6496 6497 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 6498 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 6499 { 6500 if (pp && hlist_empty(&pp->owner)) { 6501 __hlist_del(&pp->node); 6502 kmem_cache_free(sctp_bucket_cachep, pp); 6503 SCTP_DBG_OBJCNT_DEC(bind_bucket); 6504 } 6505 } 6506 6507 /* Release this socket's reference to a local port. */ 6508 static inline void __sctp_put_port(struct sock *sk) 6509 { 6510 struct sctp_bind_hashbucket *head = 6511 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 6512 inet_sk(sk)->inet_num)]; 6513 struct sctp_bind_bucket *pp; 6514 6515 spin_lock(&head->lock); 6516 pp = sctp_sk(sk)->bind_hash; 6517 __sk_del_bind_node(sk); 6518 sctp_sk(sk)->bind_hash = NULL; 6519 inet_sk(sk)->inet_num = 0; 6520 sctp_bucket_destroy(pp); 6521 spin_unlock(&head->lock); 6522 } 6523 6524 void sctp_put_port(struct sock *sk) 6525 { 6526 local_bh_disable(); 6527 __sctp_put_port(sk); 6528 local_bh_enable(); 6529 } 6530 6531 /* 6532 * The system picks an ephemeral port and choose an address set equivalent 6533 * to binding with a wildcard address. 6534 * One of those addresses will be the primary address for the association. 6535 * This automatically enables the multihoming capability of SCTP. 6536 */ 6537 static int sctp_autobind(struct sock *sk) 6538 { 6539 union sctp_addr autoaddr; 6540 struct sctp_af *af; 6541 __be16 port; 6542 6543 /* Initialize a local sockaddr structure to INADDR_ANY. */ 6544 af = sctp_sk(sk)->pf->af; 6545 6546 port = htons(inet_sk(sk)->inet_num); 6547 af->inaddr_any(&autoaddr, port); 6548 6549 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 6550 } 6551 6552 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 6553 * 6554 * From RFC 2292 6555 * 4.2 The cmsghdr Structure * 6556 * 6557 * When ancillary data is sent or received, any number of ancillary data 6558 * objects can be specified by the msg_control and msg_controllen members of 6559 * the msghdr structure, because each object is preceded by 6560 * a cmsghdr structure defining the object's length (the cmsg_len member). 6561 * Historically Berkeley-derived implementations have passed only one object 6562 * at a time, but this API allows multiple objects to be 6563 * passed in a single call to sendmsg() or recvmsg(). The following example 6564 * shows two ancillary data objects in a control buffer. 6565 * 6566 * |<--------------------------- msg_controllen -------------------------->| 6567 * | | 6568 * 6569 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 6570 * 6571 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 6572 * | | | 6573 * 6574 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 6575 * 6576 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 6577 * | | | | | 6578 * 6579 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6580 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 6581 * 6582 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 6583 * 6584 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6585 * ^ 6586 * | 6587 * 6588 * msg_control 6589 * points here 6590 */ 6591 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs) 6592 { 6593 struct cmsghdr *cmsg; 6594 struct msghdr *my_msg = (struct msghdr *)msg; 6595 6596 for_each_cmsghdr(cmsg, my_msg) { 6597 if (!CMSG_OK(my_msg, cmsg)) 6598 return -EINVAL; 6599 6600 /* Should we parse this header or ignore? */ 6601 if (cmsg->cmsg_level != IPPROTO_SCTP) 6602 continue; 6603 6604 /* Strictly check lengths following example in SCM code. */ 6605 switch (cmsg->cmsg_type) { 6606 case SCTP_INIT: 6607 /* SCTP Socket API Extension 6608 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 6609 * 6610 * This cmsghdr structure provides information for 6611 * initializing new SCTP associations with sendmsg(). 6612 * The SCTP_INITMSG socket option uses this same data 6613 * structure. This structure is not used for 6614 * recvmsg(). 6615 * 6616 * cmsg_level cmsg_type cmsg_data[] 6617 * ------------ ------------ ---------------------- 6618 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 6619 */ 6620 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 6621 return -EINVAL; 6622 6623 cmsgs->init = CMSG_DATA(cmsg); 6624 break; 6625 6626 case SCTP_SNDRCV: 6627 /* SCTP Socket API Extension 6628 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 6629 * 6630 * This cmsghdr structure specifies SCTP options for 6631 * sendmsg() and describes SCTP header information 6632 * about a received message through recvmsg(). 6633 * 6634 * cmsg_level cmsg_type cmsg_data[] 6635 * ------------ ------------ ---------------------- 6636 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 6637 */ 6638 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 6639 return -EINVAL; 6640 6641 cmsgs->srinfo = CMSG_DATA(cmsg); 6642 6643 if (cmsgs->srinfo->sinfo_flags & 6644 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 6645 SCTP_ABORT | SCTP_EOF)) 6646 return -EINVAL; 6647 break; 6648 6649 case SCTP_SNDINFO: 6650 /* SCTP Socket API Extension 6651 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 6652 * 6653 * This cmsghdr structure specifies SCTP options for 6654 * sendmsg(). This structure and SCTP_RCVINFO replaces 6655 * SCTP_SNDRCV which has been deprecated. 6656 * 6657 * cmsg_level cmsg_type cmsg_data[] 6658 * ------------ ------------ --------------------- 6659 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 6660 */ 6661 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 6662 return -EINVAL; 6663 6664 cmsgs->sinfo = CMSG_DATA(cmsg); 6665 6666 if (cmsgs->sinfo->snd_flags & 6667 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 6668 SCTP_ABORT | SCTP_EOF)) 6669 return -EINVAL; 6670 break; 6671 default: 6672 return -EINVAL; 6673 } 6674 } 6675 6676 return 0; 6677 } 6678 6679 /* 6680 * Wait for a packet.. 6681 * Note: This function is the same function as in core/datagram.c 6682 * with a few modifications to make lksctp work. 6683 */ 6684 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 6685 { 6686 int error; 6687 DEFINE_WAIT(wait); 6688 6689 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 6690 6691 /* Socket errors? */ 6692 error = sock_error(sk); 6693 if (error) 6694 goto out; 6695 6696 if (!skb_queue_empty(&sk->sk_receive_queue)) 6697 goto ready; 6698 6699 /* Socket shut down? */ 6700 if (sk->sk_shutdown & RCV_SHUTDOWN) 6701 goto out; 6702 6703 /* Sequenced packets can come disconnected. If so we report the 6704 * problem. 6705 */ 6706 error = -ENOTCONN; 6707 6708 /* Is there a good reason to think that we may receive some data? */ 6709 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 6710 goto out; 6711 6712 /* Handle signals. */ 6713 if (signal_pending(current)) 6714 goto interrupted; 6715 6716 /* Let another process have a go. Since we are going to sleep 6717 * anyway. Note: This may cause odd behaviors if the message 6718 * does not fit in the user's buffer, but this seems to be the 6719 * only way to honor MSG_DONTWAIT realistically. 6720 */ 6721 release_sock(sk); 6722 *timeo_p = schedule_timeout(*timeo_p); 6723 lock_sock(sk); 6724 6725 ready: 6726 finish_wait(sk_sleep(sk), &wait); 6727 return 0; 6728 6729 interrupted: 6730 error = sock_intr_errno(*timeo_p); 6731 6732 out: 6733 finish_wait(sk_sleep(sk), &wait); 6734 *err = error; 6735 return error; 6736 } 6737 6738 /* Receive a datagram. 6739 * Note: This is pretty much the same routine as in core/datagram.c 6740 * with a few changes to make lksctp work. 6741 */ 6742 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 6743 int noblock, int *err) 6744 { 6745 int error; 6746 struct sk_buff *skb; 6747 long timeo; 6748 6749 timeo = sock_rcvtimeo(sk, noblock); 6750 6751 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 6752 MAX_SCHEDULE_TIMEOUT); 6753 6754 do { 6755 /* Again only user level code calls this function, 6756 * so nothing interrupt level 6757 * will suddenly eat the receive_queue. 6758 * 6759 * Look at current nfs client by the way... 6760 * However, this function was correct in any case. 8) 6761 */ 6762 if (flags & MSG_PEEK) { 6763 spin_lock_bh(&sk->sk_receive_queue.lock); 6764 skb = skb_peek(&sk->sk_receive_queue); 6765 if (skb) 6766 atomic_inc(&skb->users); 6767 spin_unlock_bh(&sk->sk_receive_queue.lock); 6768 } else { 6769 skb = skb_dequeue(&sk->sk_receive_queue); 6770 } 6771 6772 if (skb) 6773 return skb; 6774 6775 /* Caller is allowed not to check sk->sk_err before calling. */ 6776 error = sock_error(sk); 6777 if (error) 6778 goto no_packet; 6779 6780 if (sk->sk_shutdown & RCV_SHUTDOWN) 6781 break; 6782 6783 if (sk_can_busy_loop(sk) && 6784 sk_busy_loop(sk, noblock)) 6785 continue; 6786 6787 /* User doesn't want to wait. */ 6788 error = -EAGAIN; 6789 if (!timeo) 6790 goto no_packet; 6791 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 6792 6793 return NULL; 6794 6795 no_packet: 6796 *err = error; 6797 return NULL; 6798 } 6799 6800 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 6801 static void __sctp_write_space(struct sctp_association *asoc) 6802 { 6803 struct sock *sk = asoc->base.sk; 6804 struct socket *sock = sk->sk_socket; 6805 6806 if ((sctp_wspace(asoc) > 0) && sock) { 6807 if (waitqueue_active(&asoc->wait)) 6808 wake_up_interruptible(&asoc->wait); 6809 6810 if (sctp_writeable(sk)) { 6811 wait_queue_head_t *wq = sk_sleep(sk); 6812 6813 if (wq && waitqueue_active(wq)) 6814 wake_up_interruptible(wq); 6815 6816 /* Note that we try to include the Async I/O support 6817 * here by modeling from the current TCP/UDP code. 6818 * We have not tested with it yet. 6819 */ 6820 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 6821 sock_wake_async(sock, 6822 SOCK_WAKE_SPACE, POLL_OUT); 6823 } 6824 } 6825 } 6826 6827 static void sctp_wake_up_waiters(struct sock *sk, 6828 struct sctp_association *asoc) 6829 { 6830 struct sctp_association *tmp = asoc; 6831 6832 /* We do accounting for the sndbuf space per association, 6833 * so we only need to wake our own association. 6834 */ 6835 if (asoc->ep->sndbuf_policy) 6836 return __sctp_write_space(asoc); 6837 6838 /* If association goes down and is just flushing its 6839 * outq, then just normally notify others. 6840 */ 6841 if (asoc->base.dead) 6842 return sctp_write_space(sk); 6843 6844 /* Accounting for the sndbuf space is per socket, so we 6845 * need to wake up others, try to be fair and in case of 6846 * other associations, let them have a go first instead 6847 * of just doing a sctp_write_space() call. 6848 * 6849 * Note that we reach sctp_wake_up_waiters() only when 6850 * associations free up queued chunks, thus we are under 6851 * lock and the list of associations on a socket is 6852 * guaranteed not to change. 6853 */ 6854 for (tmp = list_next_entry(tmp, asocs); 1; 6855 tmp = list_next_entry(tmp, asocs)) { 6856 /* Manually skip the head element. */ 6857 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 6858 continue; 6859 /* Wake up association. */ 6860 __sctp_write_space(tmp); 6861 /* We've reached the end. */ 6862 if (tmp == asoc) 6863 break; 6864 } 6865 } 6866 6867 /* Do accounting for the sndbuf space. 6868 * Decrement the used sndbuf space of the corresponding association by the 6869 * data size which was just transmitted(freed). 6870 */ 6871 static void sctp_wfree(struct sk_buff *skb) 6872 { 6873 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 6874 struct sctp_association *asoc = chunk->asoc; 6875 struct sock *sk = asoc->base.sk; 6876 6877 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 6878 sizeof(struct sk_buff) + 6879 sizeof(struct sctp_chunk); 6880 6881 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 6882 6883 /* 6884 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 6885 */ 6886 sk->sk_wmem_queued -= skb->truesize; 6887 sk_mem_uncharge(sk, skb->truesize); 6888 6889 sock_wfree(skb); 6890 sctp_wake_up_waiters(sk, asoc); 6891 6892 sctp_association_put(asoc); 6893 } 6894 6895 /* Do accounting for the receive space on the socket. 6896 * Accounting for the association is done in ulpevent.c 6897 * We set this as a destructor for the cloned data skbs so that 6898 * accounting is done at the correct time. 6899 */ 6900 void sctp_sock_rfree(struct sk_buff *skb) 6901 { 6902 struct sock *sk = skb->sk; 6903 struct sctp_ulpevent *event = sctp_skb2event(skb); 6904 6905 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 6906 6907 /* 6908 * Mimic the behavior of sock_rfree 6909 */ 6910 sk_mem_uncharge(sk, event->rmem_len); 6911 } 6912 6913 6914 /* Helper function to wait for space in the sndbuf. */ 6915 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 6916 size_t msg_len) 6917 { 6918 struct sock *sk = asoc->base.sk; 6919 int err = 0; 6920 long current_timeo = *timeo_p; 6921 DEFINE_WAIT(wait); 6922 6923 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 6924 *timeo_p, msg_len); 6925 6926 /* Increment the association's refcnt. */ 6927 sctp_association_hold(asoc); 6928 6929 /* Wait on the association specific sndbuf space. */ 6930 for (;;) { 6931 prepare_to_wait_exclusive(&asoc->wait, &wait, 6932 TASK_INTERRUPTIBLE); 6933 if (!*timeo_p) 6934 goto do_nonblock; 6935 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6936 asoc->base.dead) 6937 goto do_error; 6938 if (signal_pending(current)) 6939 goto do_interrupted; 6940 if (msg_len <= sctp_wspace(asoc)) 6941 break; 6942 6943 /* Let another process have a go. Since we are going 6944 * to sleep anyway. 6945 */ 6946 release_sock(sk); 6947 current_timeo = schedule_timeout(current_timeo); 6948 BUG_ON(sk != asoc->base.sk); 6949 lock_sock(sk); 6950 6951 *timeo_p = current_timeo; 6952 } 6953 6954 out: 6955 finish_wait(&asoc->wait, &wait); 6956 6957 /* Release the association's refcnt. */ 6958 sctp_association_put(asoc); 6959 6960 return err; 6961 6962 do_error: 6963 err = -EPIPE; 6964 goto out; 6965 6966 do_interrupted: 6967 err = sock_intr_errno(*timeo_p); 6968 goto out; 6969 6970 do_nonblock: 6971 err = -EAGAIN; 6972 goto out; 6973 } 6974 6975 void sctp_data_ready(struct sock *sk) 6976 { 6977 struct socket_wq *wq; 6978 6979 rcu_read_lock(); 6980 wq = rcu_dereference(sk->sk_wq); 6981 if (wq_has_sleeper(wq)) 6982 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | 6983 POLLRDNORM | POLLRDBAND); 6984 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 6985 rcu_read_unlock(); 6986 } 6987 6988 /* If socket sndbuf has changed, wake up all per association waiters. */ 6989 void sctp_write_space(struct sock *sk) 6990 { 6991 struct sctp_association *asoc; 6992 6993 /* Wake up the tasks in each wait queue. */ 6994 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 6995 __sctp_write_space(asoc); 6996 } 6997 } 6998 6999 /* Is there any sndbuf space available on the socket? 7000 * 7001 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 7002 * associations on the same socket. For a UDP-style socket with 7003 * multiple associations, it is possible for it to be "unwriteable" 7004 * prematurely. I assume that this is acceptable because 7005 * a premature "unwriteable" is better than an accidental "writeable" which 7006 * would cause an unwanted block under certain circumstances. For the 1-1 7007 * UDP-style sockets or TCP-style sockets, this code should work. 7008 * - Daisy 7009 */ 7010 static int sctp_writeable(struct sock *sk) 7011 { 7012 int amt = 0; 7013 7014 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 7015 if (amt < 0) 7016 amt = 0; 7017 return amt; 7018 } 7019 7020 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 7021 * returns immediately with EINPROGRESS. 7022 */ 7023 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 7024 { 7025 struct sock *sk = asoc->base.sk; 7026 int err = 0; 7027 long current_timeo = *timeo_p; 7028 DEFINE_WAIT(wait); 7029 7030 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 7031 7032 /* Increment the association's refcnt. */ 7033 sctp_association_hold(asoc); 7034 7035 for (;;) { 7036 prepare_to_wait_exclusive(&asoc->wait, &wait, 7037 TASK_INTERRUPTIBLE); 7038 if (!*timeo_p) 7039 goto do_nonblock; 7040 if (sk->sk_shutdown & RCV_SHUTDOWN) 7041 break; 7042 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 7043 asoc->base.dead) 7044 goto do_error; 7045 if (signal_pending(current)) 7046 goto do_interrupted; 7047 7048 if (sctp_state(asoc, ESTABLISHED)) 7049 break; 7050 7051 /* Let another process have a go. Since we are going 7052 * to sleep anyway. 7053 */ 7054 release_sock(sk); 7055 current_timeo = schedule_timeout(current_timeo); 7056 lock_sock(sk); 7057 7058 *timeo_p = current_timeo; 7059 } 7060 7061 out: 7062 finish_wait(&asoc->wait, &wait); 7063 7064 /* Release the association's refcnt. */ 7065 sctp_association_put(asoc); 7066 7067 return err; 7068 7069 do_error: 7070 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 7071 err = -ETIMEDOUT; 7072 else 7073 err = -ECONNREFUSED; 7074 goto out; 7075 7076 do_interrupted: 7077 err = sock_intr_errno(*timeo_p); 7078 goto out; 7079 7080 do_nonblock: 7081 err = -EINPROGRESS; 7082 goto out; 7083 } 7084 7085 static int sctp_wait_for_accept(struct sock *sk, long timeo) 7086 { 7087 struct sctp_endpoint *ep; 7088 int err = 0; 7089 DEFINE_WAIT(wait); 7090 7091 ep = sctp_sk(sk)->ep; 7092 7093 7094 for (;;) { 7095 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 7096 TASK_INTERRUPTIBLE); 7097 7098 if (list_empty(&ep->asocs)) { 7099 release_sock(sk); 7100 timeo = schedule_timeout(timeo); 7101 lock_sock(sk); 7102 } 7103 7104 err = -EINVAL; 7105 if (!sctp_sstate(sk, LISTENING)) 7106 break; 7107 7108 err = 0; 7109 if (!list_empty(&ep->asocs)) 7110 break; 7111 7112 err = sock_intr_errno(timeo); 7113 if (signal_pending(current)) 7114 break; 7115 7116 err = -EAGAIN; 7117 if (!timeo) 7118 break; 7119 } 7120 7121 finish_wait(sk_sleep(sk), &wait); 7122 7123 return err; 7124 } 7125 7126 static void sctp_wait_for_close(struct sock *sk, long timeout) 7127 { 7128 DEFINE_WAIT(wait); 7129 7130 do { 7131 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 7132 if (list_empty(&sctp_sk(sk)->ep->asocs)) 7133 break; 7134 release_sock(sk); 7135 timeout = schedule_timeout(timeout); 7136 lock_sock(sk); 7137 } while (!signal_pending(current) && timeout); 7138 7139 finish_wait(sk_sleep(sk), &wait); 7140 } 7141 7142 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 7143 { 7144 struct sk_buff *frag; 7145 7146 if (!skb->data_len) 7147 goto done; 7148 7149 /* Don't forget the fragments. */ 7150 skb_walk_frags(skb, frag) 7151 sctp_skb_set_owner_r_frag(frag, sk); 7152 7153 done: 7154 sctp_skb_set_owner_r(skb, sk); 7155 } 7156 7157 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 7158 struct sctp_association *asoc) 7159 { 7160 struct inet_sock *inet = inet_sk(sk); 7161 struct inet_sock *newinet; 7162 7163 newsk->sk_type = sk->sk_type; 7164 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 7165 newsk->sk_flags = sk->sk_flags; 7166 newsk->sk_no_check_tx = sk->sk_no_check_tx; 7167 newsk->sk_no_check_rx = sk->sk_no_check_rx; 7168 newsk->sk_reuse = sk->sk_reuse; 7169 7170 newsk->sk_shutdown = sk->sk_shutdown; 7171 newsk->sk_destruct = sctp_destruct_sock; 7172 newsk->sk_family = sk->sk_family; 7173 newsk->sk_protocol = IPPROTO_SCTP; 7174 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 7175 newsk->sk_sndbuf = sk->sk_sndbuf; 7176 newsk->sk_rcvbuf = sk->sk_rcvbuf; 7177 newsk->sk_lingertime = sk->sk_lingertime; 7178 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 7179 newsk->sk_sndtimeo = sk->sk_sndtimeo; 7180 7181 newinet = inet_sk(newsk); 7182 7183 /* Initialize sk's sport, dport, rcv_saddr and daddr for 7184 * getsockname() and getpeername() 7185 */ 7186 newinet->inet_sport = inet->inet_sport; 7187 newinet->inet_saddr = inet->inet_saddr; 7188 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 7189 newinet->inet_dport = htons(asoc->peer.port); 7190 newinet->pmtudisc = inet->pmtudisc; 7191 newinet->inet_id = asoc->next_tsn ^ jiffies; 7192 7193 newinet->uc_ttl = inet->uc_ttl; 7194 newinet->mc_loop = 1; 7195 newinet->mc_ttl = 1; 7196 newinet->mc_index = 0; 7197 newinet->mc_list = NULL; 7198 } 7199 7200 static inline void sctp_copy_descendant(struct sock *sk_to, 7201 const struct sock *sk_from) 7202 { 7203 int ancestor_size = sizeof(struct inet_sock) + 7204 sizeof(struct sctp_sock) - 7205 offsetof(struct sctp_sock, auto_asconf_list); 7206 7207 if (sk_from->sk_family == PF_INET6) 7208 ancestor_size += sizeof(struct ipv6_pinfo); 7209 7210 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 7211 } 7212 7213 /* Populate the fields of the newsk from the oldsk and migrate the assoc 7214 * and its messages to the newsk. 7215 */ 7216 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 7217 struct sctp_association *assoc, 7218 sctp_socket_type_t type) 7219 { 7220 struct sctp_sock *oldsp = sctp_sk(oldsk); 7221 struct sctp_sock *newsp = sctp_sk(newsk); 7222 struct sctp_bind_bucket *pp; /* hash list port iterator */ 7223 struct sctp_endpoint *newep = newsp->ep; 7224 struct sk_buff *skb, *tmp; 7225 struct sctp_ulpevent *event; 7226 struct sctp_bind_hashbucket *head; 7227 7228 /* Migrate socket buffer sizes and all the socket level options to the 7229 * new socket. 7230 */ 7231 newsk->sk_sndbuf = oldsk->sk_sndbuf; 7232 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 7233 /* Brute force copy old sctp opt. */ 7234 sctp_copy_descendant(newsk, oldsk); 7235 7236 /* Restore the ep value that was overwritten with the above structure 7237 * copy. 7238 */ 7239 newsp->ep = newep; 7240 newsp->hmac = NULL; 7241 7242 /* Hook this new socket in to the bind_hash list. */ 7243 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 7244 inet_sk(oldsk)->inet_num)]; 7245 local_bh_disable(); 7246 spin_lock(&head->lock); 7247 pp = sctp_sk(oldsk)->bind_hash; 7248 sk_add_bind_node(newsk, &pp->owner); 7249 sctp_sk(newsk)->bind_hash = pp; 7250 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 7251 spin_unlock(&head->lock); 7252 local_bh_enable(); 7253 7254 /* Copy the bind_addr list from the original endpoint to the new 7255 * endpoint so that we can handle restarts properly 7256 */ 7257 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 7258 &oldsp->ep->base.bind_addr, GFP_KERNEL); 7259 7260 /* Move any messages in the old socket's receive queue that are for the 7261 * peeled off association to the new socket's receive queue. 7262 */ 7263 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 7264 event = sctp_skb2event(skb); 7265 if (event->asoc == assoc) { 7266 __skb_unlink(skb, &oldsk->sk_receive_queue); 7267 __skb_queue_tail(&newsk->sk_receive_queue, skb); 7268 sctp_skb_set_owner_r_frag(skb, newsk); 7269 } 7270 } 7271 7272 /* Clean up any messages pending delivery due to partial 7273 * delivery. Three cases: 7274 * 1) No partial deliver; no work. 7275 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 7276 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 7277 */ 7278 skb_queue_head_init(&newsp->pd_lobby); 7279 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 7280 7281 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 7282 struct sk_buff_head *queue; 7283 7284 /* Decide which queue to move pd_lobby skbs to. */ 7285 if (assoc->ulpq.pd_mode) { 7286 queue = &newsp->pd_lobby; 7287 } else 7288 queue = &newsk->sk_receive_queue; 7289 7290 /* Walk through the pd_lobby, looking for skbs that 7291 * need moved to the new socket. 7292 */ 7293 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 7294 event = sctp_skb2event(skb); 7295 if (event->asoc == assoc) { 7296 __skb_unlink(skb, &oldsp->pd_lobby); 7297 __skb_queue_tail(queue, skb); 7298 sctp_skb_set_owner_r_frag(skb, newsk); 7299 } 7300 } 7301 7302 /* Clear up any skbs waiting for the partial 7303 * delivery to finish. 7304 */ 7305 if (assoc->ulpq.pd_mode) 7306 sctp_clear_pd(oldsk, NULL); 7307 7308 } 7309 7310 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) 7311 sctp_skb_set_owner_r_frag(skb, newsk); 7312 7313 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) 7314 sctp_skb_set_owner_r_frag(skb, newsk); 7315 7316 /* Set the type of socket to indicate that it is peeled off from the 7317 * original UDP-style socket or created with the accept() call on a 7318 * TCP-style socket.. 7319 */ 7320 newsp->type = type; 7321 7322 /* Mark the new socket "in-use" by the user so that any packets 7323 * that may arrive on the association after we've moved it are 7324 * queued to the backlog. This prevents a potential race between 7325 * backlog processing on the old socket and new-packet processing 7326 * on the new socket. 7327 * 7328 * The caller has just allocated newsk so we can guarantee that other 7329 * paths won't try to lock it and then oldsk. 7330 */ 7331 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 7332 sctp_assoc_migrate(assoc, newsk); 7333 7334 /* If the association on the newsk is already closed before accept() 7335 * is called, set RCV_SHUTDOWN flag. 7336 */ 7337 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 7338 newsk->sk_shutdown |= RCV_SHUTDOWN; 7339 7340 newsk->sk_state = SCTP_SS_ESTABLISHED; 7341 release_sock(newsk); 7342 } 7343 7344 7345 /* This proto struct describes the ULP interface for SCTP. */ 7346 struct proto sctp_prot = { 7347 .name = "SCTP", 7348 .owner = THIS_MODULE, 7349 .close = sctp_close, 7350 .connect = sctp_connect, 7351 .disconnect = sctp_disconnect, 7352 .accept = sctp_accept, 7353 .ioctl = sctp_ioctl, 7354 .init = sctp_init_sock, 7355 .destroy = sctp_destroy_sock, 7356 .shutdown = sctp_shutdown, 7357 .setsockopt = sctp_setsockopt, 7358 .getsockopt = sctp_getsockopt, 7359 .sendmsg = sctp_sendmsg, 7360 .recvmsg = sctp_recvmsg, 7361 .bind = sctp_bind, 7362 .backlog_rcv = sctp_backlog_rcv, 7363 .hash = sctp_hash, 7364 .unhash = sctp_unhash, 7365 .get_port = sctp_get_port, 7366 .obj_size = sizeof(struct sctp_sock), 7367 .sysctl_mem = sysctl_sctp_mem, 7368 .sysctl_rmem = sysctl_sctp_rmem, 7369 .sysctl_wmem = sysctl_sctp_wmem, 7370 .memory_pressure = &sctp_memory_pressure, 7371 .enter_memory_pressure = sctp_enter_memory_pressure, 7372 .memory_allocated = &sctp_memory_allocated, 7373 .sockets_allocated = &sctp_sockets_allocated, 7374 }; 7375 7376 #if IS_ENABLED(CONFIG_IPV6) 7377 7378 struct proto sctpv6_prot = { 7379 .name = "SCTPv6", 7380 .owner = THIS_MODULE, 7381 .close = sctp_close, 7382 .connect = sctp_connect, 7383 .disconnect = sctp_disconnect, 7384 .accept = sctp_accept, 7385 .ioctl = sctp_ioctl, 7386 .init = sctp_init_sock, 7387 .destroy = sctp_destroy_sock, 7388 .shutdown = sctp_shutdown, 7389 .setsockopt = sctp_setsockopt, 7390 .getsockopt = sctp_getsockopt, 7391 .sendmsg = sctp_sendmsg, 7392 .recvmsg = sctp_recvmsg, 7393 .bind = sctp_bind, 7394 .backlog_rcv = sctp_backlog_rcv, 7395 .hash = sctp_hash, 7396 .unhash = sctp_unhash, 7397 .get_port = sctp_get_port, 7398 .obj_size = sizeof(struct sctp6_sock), 7399 .sysctl_mem = sysctl_sctp_mem, 7400 .sysctl_rmem = sysctl_sctp_rmem, 7401 .sysctl_wmem = sysctl_sctp_wmem, 7402 .memory_pressure = &sctp_memory_pressure, 7403 .enter_memory_pressure = sctp_enter_memory_pressure, 7404 .memory_allocated = &sctp_memory_allocated, 7405 .sockets_allocated = &sctp_sockets_allocated, 7406 }; 7407 #endif /* IS_ENABLED(CONFIG_IPV6) */ 7408