xref: /linux/net/sctp/socket.c (revision 99b5aa3c10c7cff1e97239fda93649222fc12d25)
1 /* SCTP kernel reference Implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel reference Implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * The SCTP reference implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * The SCTP reference implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, write to
32  * the Free Software Foundation, 59 Temple Place - Suite 330,
33  * Boston, MA 02111-1307, USA.
34  *
35  * Please send any bug reports or fixes you make to the
36  * email address(es):
37  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
38  *
39  * Or submit a bug report through the following website:
40  *    http://www.sf.net/projects/lksctp
41  *
42  * Written or modified by:
43  *    La Monte H.P. Yarroll <piggy@acm.org>
44  *    Narasimha Budihal     <narsi@refcode.org>
45  *    Karl Knutson          <karl@athena.chicago.il.us>
46  *    Jon Grimm             <jgrimm@us.ibm.com>
47  *    Xingang Guo           <xingang.guo@intel.com>
48  *    Daisy Chang           <daisyc@us.ibm.com>
49  *    Sridhar Samudrala     <samudrala@us.ibm.com>
50  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
51  *    Ardelle Fan	    <ardelle.fan@intel.com>
52  *    Ryan Layer	    <rmlayer@us.ibm.com>
53  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
54  *    Kevin Gao             <kevin.gao@intel.com>
55  *
56  * Any bugs reported given to us we will try to fix... any fixes shared will
57  * be incorporated into the next SCTP release.
58  */
59 
60 #include <linux/types.h>
61 #include <linux/kernel.h>
62 #include <linux/wait.h>
63 #include <linux/time.h>
64 #include <linux/ip.h>
65 #include <linux/capability.h>
66 #include <linux/fcntl.h>
67 #include <linux/poll.h>
68 #include <linux/init.h>
69 #include <linux/crypto.h>
70 
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
76 
77 #include <linux/socket.h> /* for sa_family_t */
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81 
82 /* WARNING:  Please do not remove the SCTP_STATIC attribute to
83  * any of the functions below as they are used to export functions
84  * used by a project regression testsuite.
85  */
86 
87 /* Forward declarations for internal helper functions. */
88 static int sctp_writeable(struct sock *sk);
89 static void sctp_wfree(struct sk_buff *skb);
90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
91 				size_t msg_len);
92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
94 static int sctp_wait_for_accept(struct sock *sk, long timeo);
95 static void sctp_wait_for_close(struct sock *sk, long timeo);
96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
97 					union sctp_addr *addr, int len);
98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
102 static int sctp_send_asconf(struct sctp_association *asoc,
103 			    struct sctp_chunk *chunk);
104 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
105 static int sctp_autobind(struct sock *sk);
106 static void sctp_sock_migrate(struct sock *, struct sock *,
107 			      struct sctp_association *, sctp_socket_type_t);
108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
109 
110 extern struct kmem_cache *sctp_bucket_cachep;
111 
112 /* Get the sndbuf space available at the time on the association.  */
113 static inline int sctp_wspace(struct sctp_association *asoc)
114 {
115 	struct sock *sk = asoc->base.sk;
116 	int amt = 0;
117 
118 	if (asoc->ep->sndbuf_policy) {
119 		/* make sure that no association uses more than sk_sndbuf */
120 		amt = sk->sk_sndbuf - asoc->sndbuf_used;
121 	} else {
122 		/* do socket level accounting */
123 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
124 	}
125 
126 	if (amt < 0)
127 		amt = 0;
128 
129 	return amt;
130 }
131 
132 /* Increment the used sndbuf space count of the corresponding association by
133  * the size of the outgoing data chunk.
134  * Also, set the skb destructor for sndbuf accounting later.
135  *
136  * Since it is always 1-1 between chunk and skb, and also a new skb is always
137  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
138  * destructor in the data chunk skb for the purpose of the sndbuf space
139  * tracking.
140  */
141 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
142 {
143 	struct sctp_association *asoc = chunk->asoc;
144 	struct sock *sk = asoc->base.sk;
145 
146 	/* The sndbuf space is tracked per association.  */
147 	sctp_association_hold(asoc);
148 
149 	skb_set_owner_w(chunk->skb, sk);
150 
151 	chunk->skb->destructor = sctp_wfree;
152 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
153 	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
154 
155 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
156 				sizeof(struct sk_buff) +
157 				sizeof(struct sctp_chunk);
158 
159 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
160 }
161 
162 /* Verify that this is a valid address. */
163 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
164 				   int len)
165 {
166 	struct sctp_af *af;
167 
168 	/* Verify basic sockaddr. */
169 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
170 	if (!af)
171 		return -EINVAL;
172 
173 	/* Is this a valid SCTP address?  */
174 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
175 		return -EINVAL;
176 
177 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
178 		return -EINVAL;
179 
180 	return 0;
181 }
182 
183 /* Look up the association by its id.  If this is not a UDP-style
184  * socket, the ID field is always ignored.
185  */
186 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
187 {
188 	struct sctp_association *asoc = NULL;
189 
190 	/* If this is not a UDP-style socket, assoc id should be ignored. */
191 	if (!sctp_style(sk, UDP)) {
192 		/* Return NULL if the socket state is not ESTABLISHED. It
193 		 * could be a TCP-style listening socket or a socket which
194 		 * hasn't yet called connect() to establish an association.
195 		 */
196 		if (!sctp_sstate(sk, ESTABLISHED))
197 			return NULL;
198 
199 		/* Get the first and the only association from the list. */
200 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
201 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
202 					  struct sctp_association, asocs);
203 		return asoc;
204 	}
205 
206 	/* Otherwise this is a UDP-style socket. */
207 	if (!id || (id == (sctp_assoc_t)-1))
208 		return NULL;
209 
210 	spin_lock_bh(&sctp_assocs_id_lock);
211 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
212 	spin_unlock_bh(&sctp_assocs_id_lock);
213 
214 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
215 		return NULL;
216 
217 	return asoc;
218 }
219 
220 /* Look up the transport from an address and an assoc id. If both address and
221  * id are specified, the associations matching the address and the id should be
222  * the same.
223  */
224 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
225 					      struct sockaddr_storage *addr,
226 					      sctp_assoc_t id)
227 {
228 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
229 	struct sctp_transport *transport;
230 	union sctp_addr *laddr = (union sctp_addr *)addr;
231 
232 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
233 					       laddr,
234 					       &transport);
235 
236 	if (!addr_asoc)
237 		return NULL;
238 
239 	id_asoc = sctp_id2assoc(sk, id);
240 	if (id_asoc && (id_asoc != addr_asoc))
241 		return NULL;
242 
243 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
244 						(union sctp_addr *)addr);
245 
246 	return transport;
247 }
248 
249 /* API 3.1.2 bind() - UDP Style Syntax
250  * The syntax of bind() is,
251  *
252  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
253  *
254  *   sd      - the socket descriptor returned by socket().
255  *   addr    - the address structure (struct sockaddr_in or struct
256  *             sockaddr_in6 [RFC 2553]),
257  *   addr_len - the size of the address structure.
258  */
259 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
260 {
261 	int retval = 0;
262 
263 	sctp_lock_sock(sk);
264 
265 	SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
266 			  sk, addr, addr_len);
267 
268 	/* Disallow binding twice. */
269 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
270 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
271 				      addr_len);
272 	else
273 		retval = -EINVAL;
274 
275 	sctp_release_sock(sk);
276 
277 	return retval;
278 }
279 
280 static long sctp_get_port_local(struct sock *, union sctp_addr *);
281 
282 /* Verify this is a valid sockaddr. */
283 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
284 					union sctp_addr *addr, int len)
285 {
286 	struct sctp_af *af;
287 
288 	/* Check minimum size.  */
289 	if (len < sizeof (struct sockaddr))
290 		return NULL;
291 
292 	/* Does this PF support this AF? */
293 	if (!opt->pf->af_supported(addr->sa.sa_family, opt))
294 		return NULL;
295 
296 	/* If we get this far, af is valid. */
297 	af = sctp_get_af_specific(addr->sa.sa_family);
298 
299 	if (len < af->sockaddr_len)
300 		return NULL;
301 
302 	return af;
303 }
304 
305 /* Bind a local address either to an endpoint or to an association.  */
306 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
307 {
308 	struct sctp_sock *sp = sctp_sk(sk);
309 	struct sctp_endpoint *ep = sp->ep;
310 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
311 	struct sctp_af *af;
312 	unsigned short snum;
313 	int ret = 0;
314 
315 	/* Common sockaddr verification. */
316 	af = sctp_sockaddr_af(sp, addr, len);
317 	if (!af) {
318 		SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
319 				  sk, addr, len);
320 		return -EINVAL;
321 	}
322 
323 	snum = ntohs(addr->v4.sin_port);
324 
325 	SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
326 				 ", port: %d, new port: %d, len: %d)\n",
327 				 sk,
328 				 addr,
329 				 bp->port, snum,
330 				 len);
331 
332 	/* PF specific bind() address verification. */
333 	if (!sp->pf->bind_verify(sp, addr))
334 		return -EADDRNOTAVAIL;
335 
336 	/* We must either be unbound, or bind to the same port.  */
337 	if (bp->port && (snum != bp->port)) {
338 		SCTP_DEBUG_PRINTK("sctp_do_bind:"
339 				  " New port %d does not match existing port "
340 				  "%d.\n", snum, bp->port);
341 		return -EINVAL;
342 	}
343 
344 	if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
345 		return -EACCES;
346 
347 	/* Make sure we are allowed to bind here.
348 	 * The function sctp_get_port_local() does duplicate address
349 	 * detection.
350 	 */
351 	if ((ret = sctp_get_port_local(sk, addr))) {
352 		if (ret == (long) sk) {
353 			/* This endpoint has a conflicting address. */
354 			return -EINVAL;
355 		} else {
356 			return -EADDRINUSE;
357 		}
358 	}
359 
360 	/* Refresh ephemeral port.  */
361 	if (!bp->port)
362 		bp->port = inet_sk(sk)->num;
363 
364 	/* Add the address to the bind address list.  */
365 	sctp_local_bh_disable();
366 	sctp_write_lock(&ep->base.addr_lock);
367 
368 	/* Use GFP_ATOMIC since BHs are disabled.  */
369 	ret = sctp_add_bind_addr(bp, addr, 1, GFP_ATOMIC);
370 	sctp_write_unlock(&ep->base.addr_lock);
371 	sctp_local_bh_enable();
372 
373 	/* Copy back into socket for getsockname() use. */
374 	if (!ret) {
375 		inet_sk(sk)->sport = htons(inet_sk(sk)->num);
376 		af->to_sk_saddr(addr, sk);
377 	}
378 
379 	return ret;
380 }
381 
382  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
383  *
384  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
385  * at any one time.  If a sender, after sending an ASCONF chunk, decides
386  * it needs to transfer another ASCONF Chunk, it MUST wait until the
387  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
388  * subsequent ASCONF. Note this restriction binds each side, so at any
389  * time two ASCONF may be in-transit on any given association (one sent
390  * from each endpoint).
391  */
392 static int sctp_send_asconf(struct sctp_association *asoc,
393 			    struct sctp_chunk *chunk)
394 {
395 	int		retval = 0;
396 
397 	/* If there is an outstanding ASCONF chunk, queue it for later
398 	 * transmission.
399 	 */
400 	if (asoc->addip_last_asconf) {
401 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
402 		goto out;
403 	}
404 
405 	/* Hold the chunk until an ASCONF_ACK is received. */
406 	sctp_chunk_hold(chunk);
407 	retval = sctp_primitive_ASCONF(asoc, chunk);
408 	if (retval)
409 		sctp_chunk_free(chunk);
410 	else
411 		asoc->addip_last_asconf = chunk;
412 
413 out:
414 	return retval;
415 }
416 
417 /* Add a list of addresses as bind addresses to local endpoint or
418  * association.
419  *
420  * Basically run through each address specified in the addrs/addrcnt
421  * array/length pair, determine if it is IPv6 or IPv4 and call
422  * sctp_do_bind() on it.
423  *
424  * If any of them fails, then the operation will be reversed and the
425  * ones that were added will be removed.
426  *
427  * Only sctp_setsockopt_bindx() is supposed to call this function.
428  */
429 int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
430 {
431 	int cnt;
432 	int retval = 0;
433 	void *addr_buf;
434 	struct sockaddr *sa_addr;
435 	struct sctp_af *af;
436 
437 	SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
438 			  sk, addrs, addrcnt);
439 
440 	addr_buf = addrs;
441 	for (cnt = 0; cnt < addrcnt; cnt++) {
442 		/* The list may contain either IPv4 or IPv6 address;
443 		 * determine the address length for walking thru the list.
444 		 */
445 		sa_addr = (struct sockaddr *)addr_buf;
446 		af = sctp_get_af_specific(sa_addr->sa_family);
447 		if (!af) {
448 			retval = -EINVAL;
449 			goto err_bindx_add;
450 		}
451 
452 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
453 				      af->sockaddr_len);
454 
455 		addr_buf += af->sockaddr_len;
456 
457 err_bindx_add:
458 		if (retval < 0) {
459 			/* Failed. Cleanup the ones that have been added */
460 			if (cnt > 0)
461 				sctp_bindx_rem(sk, addrs, cnt);
462 			return retval;
463 		}
464 	}
465 
466 	return retval;
467 }
468 
469 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
470  * associations that are part of the endpoint indicating that a list of local
471  * addresses are added to the endpoint.
472  *
473  * If any of the addresses is already in the bind address list of the
474  * association, we do not send the chunk for that association.  But it will not
475  * affect other associations.
476  *
477  * Only sctp_setsockopt_bindx() is supposed to call this function.
478  */
479 static int sctp_send_asconf_add_ip(struct sock		*sk,
480 				   struct sockaddr	*addrs,
481 				   int 			addrcnt)
482 {
483 	struct sctp_sock		*sp;
484 	struct sctp_endpoint		*ep;
485 	struct sctp_association		*asoc;
486 	struct sctp_bind_addr		*bp;
487 	struct sctp_chunk		*chunk;
488 	struct sctp_sockaddr_entry	*laddr;
489 	union sctp_addr			*addr;
490 	union sctp_addr			saveaddr;
491 	void				*addr_buf;
492 	struct sctp_af			*af;
493 	struct list_head		*pos;
494 	struct list_head		*p;
495 	int 				i;
496 	int 				retval = 0;
497 
498 	if (!sctp_addip_enable)
499 		return retval;
500 
501 	sp = sctp_sk(sk);
502 	ep = sp->ep;
503 
504 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
505 			  __FUNCTION__, sk, addrs, addrcnt);
506 
507 	list_for_each(pos, &ep->asocs) {
508 		asoc = list_entry(pos, struct sctp_association, asocs);
509 
510 		if (!asoc->peer.asconf_capable)
511 			continue;
512 
513 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
514 			continue;
515 
516 		if (!sctp_state(asoc, ESTABLISHED))
517 			continue;
518 
519 		/* Check if any address in the packed array of addresses is
520 	         * in the bind address list of the association. If so,
521 		 * do not send the asconf chunk to its peer, but continue with
522 		 * other associations.
523 		 */
524 		addr_buf = addrs;
525 		for (i = 0; i < addrcnt; i++) {
526 			addr = (union sctp_addr *)addr_buf;
527 			af = sctp_get_af_specific(addr->v4.sin_family);
528 			if (!af) {
529 				retval = -EINVAL;
530 				goto out;
531 			}
532 
533 			if (sctp_assoc_lookup_laddr(asoc, addr))
534 				break;
535 
536 			addr_buf += af->sockaddr_len;
537 		}
538 		if (i < addrcnt)
539 			continue;
540 
541 		/* Use the first address in bind addr list of association as
542 		 * Address Parameter of ASCONF CHUNK.
543 		 */
544 		sctp_read_lock(&asoc->base.addr_lock);
545 		bp = &asoc->base.bind_addr;
546 		p = bp->address_list.next;
547 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
548 		sctp_read_unlock(&asoc->base.addr_lock);
549 
550 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
551 						   addrcnt, SCTP_PARAM_ADD_IP);
552 		if (!chunk) {
553 			retval = -ENOMEM;
554 			goto out;
555 		}
556 
557 		retval = sctp_send_asconf(asoc, chunk);
558 		if (retval)
559 			goto out;
560 
561 		/* Add the new addresses to the bind address list with
562 		 * use_as_src set to 0.
563 		 */
564 		sctp_local_bh_disable();
565 		sctp_write_lock(&asoc->base.addr_lock);
566 		addr_buf = addrs;
567 		for (i = 0; i < addrcnt; i++) {
568 			addr = (union sctp_addr *)addr_buf;
569 			af = sctp_get_af_specific(addr->v4.sin_family);
570 			memcpy(&saveaddr, addr, af->sockaddr_len);
571 			retval = sctp_add_bind_addr(bp, &saveaddr, 0,
572 						    GFP_ATOMIC);
573 			addr_buf += af->sockaddr_len;
574 		}
575 		sctp_write_unlock(&asoc->base.addr_lock);
576 		sctp_local_bh_enable();
577 	}
578 
579 out:
580 	return retval;
581 }
582 
583 /* Remove a list of addresses from bind addresses list.  Do not remove the
584  * last address.
585  *
586  * Basically run through each address specified in the addrs/addrcnt
587  * array/length pair, determine if it is IPv6 or IPv4 and call
588  * sctp_del_bind() on it.
589  *
590  * If any of them fails, then the operation will be reversed and the
591  * ones that were removed will be added back.
592  *
593  * At least one address has to be left; if only one address is
594  * available, the operation will return -EBUSY.
595  *
596  * Only sctp_setsockopt_bindx() is supposed to call this function.
597  */
598 int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
599 {
600 	struct sctp_sock *sp = sctp_sk(sk);
601 	struct sctp_endpoint *ep = sp->ep;
602 	int cnt;
603 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
604 	int retval = 0;
605 	void *addr_buf;
606 	union sctp_addr *sa_addr;
607 	struct sctp_af *af;
608 
609 	SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
610 			  sk, addrs, addrcnt);
611 
612 	addr_buf = addrs;
613 	for (cnt = 0; cnt < addrcnt; cnt++) {
614 		/* If the bind address list is empty or if there is only one
615 		 * bind address, there is nothing more to be removed (we need
616 		 * at least one address here).
617 		 */
618 		if (list_empty(&bp->address_list) ||
619 		    (sctp_list_single_entry(&bp->address_list))) {
620 			retval = -EBUSY;
621 			goto err_bindx_rem;
622 		}
623 
624 		sa_addr = (union sctp_addr *)addr_buf;
625 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
626 		if (!af) {
627 			retval = -EINVAL;
628 			goto err_bindx_rem;
629 		}
630 		if (sa_addr->v4.sin_port != htons(bp->port)) {
631 			retval = -EINVAL;
632 			goto err_bindx_rem;
633 		}
634 
635 		/* FIXME - There is probably a need to check if sk->sk_saddr and
636 		 * sk->sk_rcv_addr are currently set to one of the addresses to
637 		 * be removed. This is something which needs to be looked into
638 		 * when we are fixing the outstanding issues with multi-homing
639 		 * socket routing and failover schemes. Refer to comments in
640 		 * sctp_do_bind(). -daisy
641 		 */
642 		sctp_local_bh_disable();
643 		sctp_write_lock(&ep->base.addr_lock);
644 
645 		retval = sctp_del_bind_addr(bp, sa_addr);
646 
647 		sctp_write_unlock(&ep->base.addr_lock);
648 		sctp_local_bh_enable();
649 
650 		addr_buf += af->sockaddr_len;
651 err_bindx_rem:
652 		if (retval < 0) {
653 			/* Failed. Add the ones that has been removed back */
654 			if (cnt > 0)
655 				sctp_bindx_add(sk, addrs, cnt);
656 			return retval;
657 		}
658 	}
659 
660 	return retval;
661 }
662 
663 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
664  * the associations that are part of the endpoint indicating that a list of
665  * local addresses are removed from the endpoint.
666  *
667  * If any of the addresses is already in the bind address list of the
668  * association, we do not send the chunk for that association.  But it will not
669  * affect other associations.
670  *
671  * Only sctp_setsockopt_bindx() is supposed to call this function.
672  */
673 static int sctp_send_asconf_del_ip(struct sock		*sk,
674 				   struct sockaddr	*addrs,
675 				   int			addrcnt)
676 {
677 	struct sctp_sock	*sp;
678 	struct sctp_endpoint	*ep;
679 	struct sctp_association	*asoc;
680 	struct sctp_transport	*transport;
681 	struct sctp_bind_addr	*bp;
682 	struct sctp_chunk	*chunk;
683 	union sctp_addr		*laddr;
684 	void			*addr_buf;
685 	struct sctp_af		*af;
686 	struct list_head	*pos, *pos1;
687 	struct sctp_sockaddr_entry *saddr;
688 	int 			i;
689 	int 			retval = 0;
690 
691 	if (!sctp_addip_enable)
692 		return retval;
693 
694 	sp = sctp_sk(sk);
695 	ep = sp->ep;
696 
697 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
698 			  __FUNCTION__, sk, addrs, addrcnt);
699 
700 	list_for_each(pos, &ep->asocs) {
701 		asoc = list_entry(pos, struct sctp_association, asocs);
702 
703 		if (!asoc->peer.asconf_capable)
704 			continue;
705 
706 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
707 			continue;
708 
709 		if (!sctp_state(asoc, ESTABLISHED))
710 			continue;
711 
712 		/* Check if any address in the packed array of addresses is
713 	         * not present in the bind address list of the association.
714 		 * If so, do not send the asconf chunk to its peer, but
715 		 * continue with other associations.
716 		 */
717 		addr_buf = addrs;
718 		for (i = 0; i < addrcnt; i++) {
719 			laddr = (union sctp_addr *)addr_buf;
720 			af = sctp_get_af_specific(laddr->v4.sin_family);
721 			if (!af) {
722 				retval = -EINVAL;
723 				goto out;
724 			}
725 
726 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
727 				break;
728 
729 			addr_buf += af->sockaddr_len;
730 		}
731 		if (i < addrcnt)
732 			continue;
733 
734 		/* Find one address in the association's bind address list
735 		 * that is not in the packed array of addresses. This is to
736 		 * make sure that we do not delete all the addresses in the
737 		 * association.
738 		 */
739 		sctp_read_lock(&asoc->base.addr_lock);
740 		bp = &asoc->base.bind_addr;
741 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
742 					       addrcnt, sp);
743 		sctp_read_unlock(&asoc->base.addr_lock);
744 		if (!laddr)
745 			continue;
746 
747 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
748 						   SCTP_PARAM_DEL_IP);
749 		if (!chunk) {
750 			retval = -ENOMEM;
751 			goto out;
752 		}
753 
754 		/* Reset use_as_src flag for the addresses in the bind address
755 		 * list that are to be deleted.
756 		 */
757 		sctp_local_bh_disable();
758 		sctp_write_lock(&asoc->base.addr_lock);
759 		addr_buf = addrs;
760 		for (i = 0; i < addrcnt; i++) {
761 			laddr = (union sctp_addr *)addr_buf;
762 			af = sctp_get_af_specific(laddr->v4.sin_family);
763 			list_for_each(pos1, &bp->address_list) {
764 				saddr = list_entry(pos1,
765 						   struct sctp_sockaddr_entry,
766 						   list);
767 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
768 					saddr->use_as_src = 0;
769 			}
770 			addr_buf += af->sockaddr_len;
771 		}
772 		sctp_write_unlock(&asoc->base.addr_lock);
773 		sctp_local_bh_enable();
774 
775 		/* Update the route and saddr entries for all the transports
776 		 * as some of the addresses in the bind address list are
777 		 * about to be deleted and cannot be used as source addresses.
778 		 */
779 		list_for_each(pos1, &asoc->peer.transport_addr_list) {
780 			transport = list_entry(pos1, struct sctp_transport,
781 					       transports);
782 			dst_release(transport->dst);
783 			sctp_transport_route(transport, NULL,
784 					     sctp_sk(asoc->base.sk));
785 		}
786 
787 		retval = sctp_send_asconf(asoc, chunk);
788 	}
789 out:
790 	return retval;
791 }
792 
793 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
794  *
795  * API 8.1
796  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
797  *                int flags);
798  *
799  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
800  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
801  * or IPv6 addresses.
802  *
803  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
804  * Section 3.1.2 for this usage.
805  *
806  * addrs is a pointer to an array of one or more socket addresses. Each
807  * address is contained in its appropriate structure (i.e. struct
808  * sockaddr_in or struct sockaddr_in6) the family of the address type
809  * must be used to distinguish the address length (note that this
810  * representation is termed a "packed array" of addresses). The caller
811  * specifies the number of addresses in the array with addrcnt.
812  *
813  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
814  * -1, and sets errno to the appropriate error code.
815  *
816  * For SCTP, the port given in each socket address must be the same, or
817  * sctp_bindx() will fail, setting errno to EINVAL.
818  *
819  * The flags parameter is formed from the bitwise OR of zero or more of
820  * the following currently defined flags:
821  *
822  * SCTP_BINDX_ADD_ADDR
823  *
824  * SCTP_BINDX_REM_ADDR
825  *
826  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
827  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
828  * addresses from the association. The two flags are mutually exclusive;
829  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
830  * not remove all addresses from an association; sctp_bindx() will
831  * reject such an attempt with EINVAL.
832  *
833  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
834  * additional addresses with an endpoint after calling bind().  Or use
835  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
836  * socket is associated with so that no new association accepted will be
837  * associated with those addresses. If the endpoint supports dynamic
838  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
839  * endpoint to send the appropriate message to the peer to change the
840  * peers address lists.
841  *
842  * Adding and removing addresses from a connected association is
843  * optional functionality. Implementations that do not support this
844  * functionality should return EOPNOTSUPP.
845  *
846  * Basically do nothing but copying the addresses from user to kernel
847  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
848  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
849  * from userspace.
850  *
851  * We don't use copy_from_user() for optimization: we first do the
852  * sanity checks (buffer size -fast- and access check-healthy
853  * pointer); if all of those succeed, then we can alloc the memory
854  * (expensive operation) needed to copy the data to kernel. Then we do
855  * the copying without checking the user space area
856  * (__copy_from_user()).
857  *
858  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
859  * it.
860  *
861  * sk        The sk of the socket
862  * addrs     The pointer to the addresses in user land
863  * addrssize Size of the addrs buffer
864  * op        Operation to perform (add or remove, see the flags of
865  *           sctp_bindx)
866  *
867  * Returns 0 if ok, <0 errno code on error.
868  */
869 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
870 				      struct sockaddr __user *addrs,
871 				      int addrs_size, int op)
872 {
873 	struct sockaddr *kaddrs;
874 	int err;
875 	int addrcnt = 0;
876 	int walk_size = 0;
877 	struct sockaddr *sa_addr;
878 	void *addr_buf;
879 	struct sctp_af *af;
880 
881 	SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
882 			  " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
883 
884 	if (unlikely(addrs_size <= 0))
885 		return -EINVAL;
886 
887 	/* Check the user passed a healthy pointer.  */
888 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
889 		return -EFAULT;
890 
891 	/* Alloc space for the address array in kernel memory.  */
892 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
893 	if (unlikely(!kaddrs))
894 		return -ENOMEM;
895 
896 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
897 		kfree(kaddrs);
898 		return -EFAULT;
899 	}
900 
901 	/* Walk through the addrs buffer and count the number of addresses. */
902 	addr_buf = kaddrs;
903 	while (walk_size < addrs_size) {
904 		sa_addr = (struct sockaddr *)addr_buf;
905 		af = sctp_get_af_specific(sa_addr->sa_family);
906 
907 		/* If the address family is not supported or if this address
908 		 * causes the address buffer to overflow return EINVAL.
909 		 */
910 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
911 			kfree(kaddrs);
912 			return -EINVAL;
913 		}
914 		addrcnt++;
915 		addr_buf += af->sockaddr_len;
916 		walk_size += af->sockaddr_len;
917 	}
918 
919 	/* Do the work. */
920 	switch (op) {
921 	case SCTP_BINDX_ADD_ADDR:
922 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
923 		if (err)
924 			goto out;
925 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
926 		break;
927 
928 	case SCTP_BINDX_REM_ADDR:
929 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
930 		if (err)
931 			goto out;
932 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
933 		break;
934 
935 	default:
936 		err = -EINVAL;
937 		break;
938         };
939 
940 out:
941 	kfree(kaddrs);
942 
943 	return err;
944 }
945 
946 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
947  *
948  * Common routine for handling connect() and sctp_connectx().
949  * Connect will come in with just a single address.
950  */
951 static int __sctp_connect(struct sock* sk,
952 			  struct sockaddr *kaddrs,
953 			  int addrs_size)
954 {
955 	struct sctp_sock *sp;
956 	struct sctp_endpoint *ep;
957 	struct sctp_association *asoc = NULL;
958 	struct sctp_association *asoc2;
959 	struct sctp_transport *transport;
960 	union sctp_addr to;
961 	struct sctp_af *af;
962 	sctp_scope_t scope;
963 	long timeo;
964 	int err = 0;
965 	int addrcnt = 0;
966 	int walk_size = 0;
967 	union sctp_addr *sa_addr;
968 	void *addr_buf;
969 
970 	sp = sctp_sk(sk);
971 	ep = sp->ep;
972 
973 	/* connect() cannot be done on a socket that is already in ESTABLISHED
974 	 * state - UDP-style peeled off socket or a TCP-style socket that
975 	 * is already connected.
976 	 * It cannot be done even on a TCP-style listening socket.
977 	 */
978 	if (sctp_sstate(sk, ESTABLISHED) ||
979 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
980 		err = -EISCONN;
981 		goto out_free;
982 	}
983 
984 	/* Walk through the addrs buffer and count the number of addresses. */
985 	addr_buf = kaddrs;
986 	while (walk_size < addrs_size) {
987 		sa_addr = (union sctp_addr *)addr_buf;
988 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
989 
990 		/* If the address family is not supported or if this address
991 		 * causes the address buffer to overflow return EINVAL.
992 		 */
993 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
994 			err = -EINVAL;
995 			goto out_free;
996 		}
997 
998 		err = sctp_verify_addr(sk, sa_addr, af->sockaddr_len);
999 		if (err)
1000 			goto out_free;
1001 
1002 		memcpy(&to, sa_addr, af->sockaddr_len);
1003 
1004 		/* Check if there already is a matching association on the
1005 		 * endpoint (other than the one created here).
1006 		 */
1007 		asoc2 = sctp_endpoint_lookup_assoc(ep, sa_addr, &transport);
1008 		if (asoc2 && asoc2 != asoc) {
1009 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1010 				err = -EISCONN;
1011 			else
1012 				err = -EALREADY;
1013 			goto out_free;
1014 		}
1015 
1016 		/* If we could not find a matching association on the endpoint,
1017 		 * make sure that there is no peeled-off association matching
1018 		 * the peer address even on another socket.
1019 		 */
1020 		if (sctp_endpoint_is_peeled_off(ep, sa_addr)) {
1021 			err = -EADDRNOTAVAIL;
1022 			goto out_free;
1023 		}
1024 
1025 		if (!asoc) {
1026 			/* If a bind() or sctp_bindx() is not called prior to
1027 			 * an sctp_connectx() call, the system picks an
1028 			 * ephemeral port and will choose an address set
1029 			 * equivalent to binding with a wildcard address.
1030 			 */
1031 			if (!ep->base.bind_addr.port) {
1032 				if (sctp_autobind(sk)) {
1033 					err = -EAGAIN;
1034 					goto out_free;
1035 				}
1036 			} else {
1037 				/*
1038 				 * If an unprivileged user inherits a 1-many
1039 				 * style socket with open associations on a
1040 				 * privileged port, it MAY be permitted to
1041 				 * accept new associations, but it SHOULD NOT
1042 				 * be permitted to open new associations.
1043 				 */
1044 				if (ep->base.bind_addr.port < PROT_SOCK &&
1045 				    !capable(CAP_NET_BIND_SERVICE)) {
1046 					err = -EACCES;
1047 					goto out_free;
1048 				}
1049 			}
1050 
1051 			scope = sctp_scope(sa_addr);
1052 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1053 			if (!asoc) {
1054 				err = -ENOMEM;
1055 				goto out_free;
1056 			}
1057 		}
1058 
1059 		/* Prime the peer's transport structures.  */
1060 		transport = sctp_assoc_add_peer(asoc, sa_addr, GFP_KERNEL,
1061 						SCTP_UNKNOWN);
1062 		if (!transport) {
1063 			err = -ENOMEM;
1064 			goto out_free;
1065 		}
1066 
1067 		addrcnt++;
1068 		addr_buf += af->sockaddr_len;
1069 		walk_size += af->sockaddr_len;
1070 	}
1071 
1072 	err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1073 	if (err < 0) {
1074 		goto out_free;
1075 	}
1076 
1077 	err = sctp_primitive_ASSOCIATE(asoc, NULL);
1078 	if (err < 0) {
1079 		goto out_free;
1080 	}
1081 
1082 	/* Initialize sk's dport and daddr for getpeername() */
1083 	inet_sk(sk)->dport = htons(asoc->peer.port);
1084 	af = sctp_get_af_specific(to.sa.sa_family);
1085 	af->to_sk_daddr(&to, sk);
1086 	sk->sk_err = 0;
1087 
1088 	timeo = sock_sndtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK);
1089 	err = sctp_wait_for_connect(asoc, &timeo);
1090 
1091 	/* Don't free association on exit. */
1092 	asoc = NULL;
1093 
1094 out_free:
1095 
1096 	SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1097 		          " kaddrs: %p err: %d\n",
1098 	                  asoc, kaddrs, err);
1099 	if (asoc)
1100 		sctp_association_free(asoc);
1101 	return err;
1102 }
1103 
1104 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1105  *
1106  * API 8.9
1107  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt);
1108  *
1109  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1110  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1111  * or IPv6 addresses.
1112  *
1113  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1114  * Section 3.1.2 for this usage.
1115  *
1116  * addrs is a pointer to an array of one or more socket addresses. Each
1117  * address is contained in its appropriate structure (i.e. struct
1118  * sockaddr_in or struct sockaddr_in6) the family of the address type
1119  * must be used to distengish the address length (note that this
1120  * representation is termed a "packed array" of addresses). The caller
1121  * specifies the number of addresses in the array with addrcnt.
1122  *
1123  * On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns
1124  * -1, and sets errno to the appropriate error code.
1125  *
1126  * For SCTP, the port given in each socket address must be the same, or
1127  * sctp_connectx() will fail, setting errno to EINVAL.
1128  *
1129  * An application can use sctp_connectx to initiate an association with
1130  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1131  * allows a caller to specify multiple addresses at which a peer can be
1132  * reached.  The way the SCTP stack uses the list of addresses to set up
1133  * the association is implementation dependant.  This function only
1134  * specifies that the stack will try to make use of all the addresses in
1135  * the list when needed.
1136  *
1137  * Note that the list of addresses passed in is only used for setting up
1138  * the association.  It does not necessarily equal the set of addresses
1139  * the peer uses for the resulting association.  If the caller wants to
1140  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1141  * retrieve them after the association has been set up.
1142  *
1143  * Basically do nothing but copying the addresses from user to kernel
1144  * land and invoking either sctp_connectx(). This is used for tunneling
1145  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1146  *
1147  * We don't use copy_from_user() for optimization: we first do the
1148  * sanity checks (buffer size -fast- and access check-healthy
1149  * pointer); if all of those succeed, then we can alloc the memory
1150  * (expensive operation) needed to copy the data to kernel. Then we do
1151  * the copying without checking the user space area
1152  * (__copy_from_user()).
1153  *
1154  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1155  * it.
1156  *
1157  * sk        The sk of the socket
1158  * addrs     The pointer to the addresses in user land
1159  * addrssize Size of the addrs buffer
1160  *
1161  * Returns 0 if ok, <0 errno code on error.
1162  */
1163 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1164 				      struct sockaddr __user *addrs,
1165 				      int addrs_size)
1166 {
1167 	int err = 0;
1168 	struct sockaddr *kaddrs;
1169 
1170 	SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1171 			  __FUNCTION__, sk, addrs, addrs_size);
1172 
1173 	if (unlikely(addrs_size <= 0))
1174 		return -EINVAL;
1175 
1176 	/* Check the user passed a healthy pointer.  */
1177 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1178 		return -EFAULT;
1179 
1180 	/* Alloc space for the address array in kernel memory.  */
1181 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1182 	if (unlikely(!kaddrs))
1183 		return -ENOMEM;
1184 
1185 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1186 		err = -EFAULT;
1187 	} else {
1188 		err = __sctp_connect(sk, kaddrs, addrs_size);
1189 	}
1190 
1191 	kfree(kaddrs);
1192 	return err;
1193 }
1194 
1195 /* API 3.1.4 close() - UDP Style Syntax
1196  * Applications use close() to perform graceful shutdown (as described in
1197  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1198  * by a UDP-style socket.
1199  *
1200  * The syntax is
1201  *
1202  *   ret = close(int sd);
1203  *
1204  *   sd      - the socket descriptor of the associations to be closed.
1205  *
1206  * To gracefully shutdown a specific association represented by the
1207  * UDP-style socket, an application should use the sendmsg() call,
1208  * passing no user data, but including the appropriate flag in the
1209  * ancillary data (see Section xxxx).
1210  *
1211  * If sd in the close() call is a branched-off socket representing only
1212  * one association, the shutdown is performed on that association only.
1213  *
1214  * 4.1.6 close() - TCP Style Syntax
1215  *
1216  * Applications use close() to gracefully close down an association.
1217  *
1218  * The syntax is:
1219  *
1220  *    int close(int sd);
1221  *
1222  *      sd      - the socket descriptor of the association to be closed.
1223  *
1224  * After an application calls close() on a socket descriptor, no further
1225  * socket operations will succeed on that descriptor.
1226  *
1227  * API 7.1.4 SO_LINGER
1228  *
1229  * An application using the TCP-style socket can use this option to
1230  * perform the SCTP ABORT primitive.  The linger option structure is:
1231  *
1232  *  struct  linger {
1233  *     int     l_onoff;                // option on/off
1234  *     int     l_linger;               // linger time
1235  * };
1236  *
1237  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1238  * to 0, calling close() is the same as the ABORT primitive.  If the
1239  * value is set to a negative value, the setsockopt() call will return
1240  * an error.  If the value is set to a positive value linger_time, the
1241  * close() can be blocked for at most linger_time ms.  If the graceful
1242  * shutdown phase does not finish during this period, close() will
1243  * return but the graceful shutdown phase continues in the system.
1244  */
1245 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1246 {
1247 	struct sctp_endpoint *ep;
1248 	struct sctp_association *asoc;
1249 	struct list_head *pos, *temp;
1250 
1251 	SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1252 
1253 	sctp_lock_sock(sk);
1254 	sk->sk_shutdown = SHUTDOWN_MASK;
1255 
1256 	ep = sctp_sk(sk)->ep;
1257 
1258 	/* Walk all associations on an endpoint.  */
1259 	list_for_each_safe(pos, temp, &ep->asocs) {
1260 		asoc = list_entry(pos, struct sctp_association, asocs);
1261 
1262 		if (sctp_style(sk, TCP)) {
1263 			/* A closed association can still be in the list if
1264 			 * it belongs to a TCP-style listening socket that is
1265 			 * not yet accepted. If so, free it. If not, send an
1266 			 * ABORT or SHUTDOWN based on the linger options.
1267 			 */
1268 			if (sctp_state(asoc, CLOSED)) {
1269 				sctp_unhash_established(asoc);
1270 				sctp_association_free(asoc);
1271 				continue;
1272 			}
1273 		}
1274 
1275 		if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1276 			struct sctp_chunk *chunk;
1277 
1278 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1279 			if (chunk)
1280 				sctp_primitive_ABORT(asoc, chunk);
1281 		} else
1282 			sctp_primitive_SHUTDOWN(asoc, NULL);
1283 	}
1284 
1285 	/* Clean up any skbs sitting on the receive queue.  */
1286 	sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1287 	sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1288 
1289 	/* On a TCP-style socket, block for at most linger_time if set. */
1290 	if (sctp_style(sk, TCP) && timeout)
1291 		sctp_wait_for_close(sk, timeout);
1292 
1293 	/* This will run the backlog queue.  */
1294 	sctp_release_sock(sk);
1295 
1296 	/* Supposedly, no process has access to the socket, but
1297 	 * the net layers still may.
1298 	 */
1299 	sctp_local_bh_disable();
1300 	sctp_bh_lock_sock(sk);
1301 
1302 	/* Hold the sock, since sk_common_release() will put sock_put()
1303 	 * and we have just a little more cleanup.
1304 	 */
1305 	sock_hold(sk);
1306 	sk_common_release(sk);
1307 
1308 	sctp_bh_unlock_sock(sk);
1309 	sctp_local_bh_enable();
1310 
1311 	sock_put(sk);
1312 
1313 	SCTP_DBG_OBJCNT_DEC(sock);
1314 }
1315 
1316 /* Handle EPIPE error. */
1317 static int sctp_error(struct sock *sk, int flags, int err)
1318 {
1319 	if (err == -EPIPE)
1320 		err = sock_error(sk) ? : -EPIPE;
1321 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1322 		send_sig(SIGPIPE, current, 0);
1323 	return err;
1324 }
1325 
1326 /* API 3.1.3 sendmsg() - UDP Style Syntax
1327  *
1328  * An application uses sendmsg() and recvmsg() calls to transmit data to
1329  * and receive data from its peer.
1330  *
1331  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1332  *                  int flags);
1333  *
1334  *  socket  - the socket descriptor of the endpoint.
1335  *  message - pointer to the msghdr structure which contains a single
1336  *            user message and possibly some ancillary data.
1337  *
1338  *            See Section 5 for complete description of the data
1339  *            structures.
1340  *
1341  *  flags   - flags sent or received with the user message, see Section
1342  *            5 for complete description of the flags.
1343  *
1344  * Note:  This function could use a rewrite especially when explicit
1345  * connect support comes in.
1346  */
1347 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1348 
1349 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1350 
1351 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1352 			     struct msghdr *msg, size_t msg_len)
1353 {
1354 	struct sctp_sock *sp;
1355 	struct sctp_endpoint *ep;
1356 	struct sctp_association *new_asoc=NULL, *asoc=NULL;
1357 	struct sctp_transport *transport, *chunk_tp;
1358 	struct sctp_chunk *chunk;
1359 	union sctp_addr to;
1360 	struct sockaddr *msg_name = NULL;
1361 	struct sctp_sndrcvinfo default_sinfo = { 0 };
1362 	struct sctp_sndrcvinfo *sinfo;
1363 	struct sctp_initmsg *sinit;
1364 	sctp_assoc_t associd = 0;
1365 	sctp_cmsgs_t cmsgs = { NULL };
1366 	int err;
1367 	sctp_scope_t scope;
1368 	long timeo;
1369 	__u16 sinfo_flags = 0;
1370 	struct sctp_datamsg *datamsg;
1371 	struct list_head *pos;
1372 	int msg_flags = msg->msg_flags;
1373 
1374 	SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1375 			  sk, msg, msg_len);
1376 
1377 	err = 0;
1378 	sp = sctp_sk(sk);
1379 	ep = sp->ep;
1380 
1381 	SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1382 
1383 	/* We cannot send a message over a TCP-style listening socket. */
1384 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1385 		err = -EPIPE;
1386 		goto out_nounlock;
1387 	}
1388 
1389 	/* Parse out the SCTP CMSGs.  */
1390 	err = sctp_msghdr_parse(msg, &cmsgs);
1391 
1392 	if (err) {
1393 		SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1394 		goto out_nounlock;
1395 	}
1396 
1397 	/* Fetch the destination address for this packet.  This
1398 	 * address only selects the association--it is not necessarily
1399 	 * the address we will send to.
1400 	 * For a peeled-off socket, msg_name is ignored.
1401 	 */
1402 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1403 		int msg_namelen = msg->msg_namelen;
1404 
1405 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1406 				       msg_namelen);
1407 		if (err)
1408 			return err;
1409 
1410 		if (msg_namelen > sizeof(to))
1411 			msg_namelen = sizeof(to);
1412 		memcpy(&to, msg->msg_name, msg_namelen);
1413 		msg_name = msg->msg_name;
1414 	}
1415 
1416 	sinfo = cmsgs.info;
1417 	sinit = cmsgs.init;
1418 
1419 	/* Did the user specify SNDRCVINFO?  */
1420 	if (sinfo) {
1421 		sinfo_flags = sinfo->sinfo_flags;
1422 		associd = sinfo->sinfo_assoc_id;
1423 	}
1424 
1425 	SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1426 			  msg_len, sinfo_flags);
1427 
1428 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1429 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1430 		err = -EINVAL;
1431 		goto out_nounlock;
1432 	}
1433 
1434 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1435 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1436 	 * If SCTP_ABORT is set, the message length could be non zero with
1437 	 * the msg_iov set to the user abort reason.
1438  	 */
1439 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1440 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1441 		err = -EINVAL;
1442 		goto out_nounlock;
1443 	}
1444 
1445 	/* If SCTP_ADDR_OVER is set, there must be an address
1446 	 * specified in msg_name.
1447 	 */
1448 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1449 		err = -EINVAL;
1450 		goto out_nounlock;
1451 	}
1452 
1453 	transport = NULL;
1454 
1455 	SCTP_DEBUG_PRINTK("About to look up association.\n");
1456 
1457 	sctp_lock_sock(sk);
1458 
1459 	/* If a msg_name has been specified, assume this is to be used.  */
1460 	if (msg_name) {
1461 		/* Look for a matching association on the endpoint. */
1462 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1463 		if (!asoc) {
1464 			/* If we could not find a matching association on the
1465 			 * endpoint, make sure that it is not a TCP-style
1466 			 * socket that already has an association or there is
1467 			 * no peeled-off association on another socket.
1468 			 */
1469 			if ((sctp_style(sk, TCP) &&
1470 			     sctp_sstate(sk, ESTABLISHED)) ||
1471 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1472 				err = -EADDRNOTAVAIL;
1473 				goto out_unlock;
1474 			}
1475 		}
1476 	} else {
1477 		asoc = sctp_id2assoc(sk, associd);
1478 		if (!asoc) {
1479 			err = -EPIPE;
1480 			goto out_unlock;
1481 		}
1482 	}
1483 
1484 	if (asoc) {
1485 		SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1486 
1487 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1488 		 * socket that has an association in CLOSED state. This can
1489 		 * happen when an accepted socket has an association that is
1490 		 * already CLOSED.
1491 		 */
1492 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1493 			err = -EPIPE;
1494 			goto out_unlock;
1495 		}
1496 
1497 		if (sinfo_flags & SCTP_EOF) {
1498 			SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1499 					  asoc);
1500 			sctp_primitive_SHUTDOWN(asoc, NULL);
1501 			err = 0;
1502 			goto out_unlock;
1503 		}
1504 		if (sinfo_flags & SCTP_ABORT) {
1505 			struct sctp_chunk *chunk;
1506 
1507 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1508 			if (!chunk) {
1509 				err = -ENOMEM;
1510 				goto out_unlock;
1511 			}
1512 
1513 			SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1514 			sctp_primitive_ABORT(asoc, chunk);
1515 			err = 0;
1516 			goto out_unlock;
1517 		}
1518 	}
1519 
1520 	/* Do we need to create the association?  */
1521 	if (!asoc) {
1522 		SCTP_DEBUG_PRINTK("There is no association yet.\n");
1523 
1524 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1525 			err = -EINVAL;
1526 			goto out_unlock;
1527 		}
1528 
1529 		/* Check for invalid stream against the stream counts,
1530 		 * either the default or the user specified stream counts.
1531 		 */
1532 		if (sinfo) {
1533 			if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1534 				/* Check against the defaults. */
1535 				if (sinfo->sinfo_stream >=
1536 				    sp->initmsg.sinit_num_ostreams) {
1537 					err = -EINVAL;
1538 					goto out_unlock;
1539 				}
1540 			} else {
1541 				/* Check against the requested.  */
1542 				if (sinfo->sinfo_stream >=
1543 				    sinit->sinit_num_ostreams) {
1544 					err = -EINVAL;
1545 					goto out_unlock;
1546 				}
1547 			}
1548 		}
1549 
1550 		/*
1551 		 * API 3.1.2 bind() - UDP Style Syntax
1552 		 * If a bind() or sctp_bindx() is not called prior to a
1553 		 * sendmsg() call that initiates a new association, the
1554 		 * system picks an ephemeral port and will choose an address
1555 		 * set equivalent to binding with a wildcard address.
1556 		 */
1557 		if (!ep->base.bind_addr.port) {
1558 			if (sctp_autobind(sk)) {
1559 				err = -EAGAIN;
1560 				goto out_unlock;
1561 			}
1562 		} else {
1563 			/*
1564 			 * If an unprivileged user inherits a one-to-many
1565 			 * style socket with open associations on a privileged
1566 			 * port, it MAY be permitted to accept new associations,
1567 			 * but it SHOULD NOT be permitted to open new
1568 			 * associations.
1569 			 */
1570 			if (ep->base.bind_addr.port < PROT_SOCK &&
1571 			    !capable(CAP_NET_BIND_SERVICE)) {
1572 				err = -EACCES;
1573 				goto out_unlock;
1574 			}
1575 		}
1576 
1577 		scope = sctp_scope(&to);
1578 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1579 		if (!new_asoc) {
1580 			err = -ENOMEM;
1581 			goto out_unlock;
1582 		}
1583 		asoc = new_asoc;
1584 
1585 		/* If the SCTP_INIT ancillary data is specified, set all
1586 		 * the association init values accordingly.
1587 		 */
1588 		if (sinit) {
1589 			if (sinit->sinit_num_ostreams) {
1590 				asoc->c.sinit_num_ostreams =
1591 					sinit->sinit_num_ostreams;
1592 			}
1593 			if (sinit->sinit_max_instreams) {
1594 				asoc->c.sinit_max_instreams =
1595 					sinit->sinit_max_instreams;
1596 			}
1597 			if (sinit->sinit_max_attempts) {
1598 				asoc->max_init_attempts
1599 					= sinit->sinit_max_attempts;
1600 			}
1601 			if (sinit->sinit_max_init_timeo) {
1602 				asoc->max_init_timeo =
1603 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1604 			}
1605 		}
1606 
1607 		/* Prime the peer's transport structures.  */
1608 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1609 		if (!transport) {
1610 			err = -ENOMEM;
1611 			goto out_free;
1612 		}
1613 		err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1614 		if (err < 0) {
1615 			err = -ENOMEM;
1616 			goto out_free;
1617 		}
1618 	}
1619 
1620 	/* ASSERT: we have a valid association at this point.  */
1621 	SCTP_DEBUG_PRINTK("We have a valid association.\n");
1622 
1623 	if (!sinfo) {
1624 		/* If the user didn't specify SNDRCVINFO, make up one with
1625 		 * some defaults.
1626 		 */
1627 		default_sinfo.sinfo_stream = asoc->default_stream;
1628 		default_sinfo.sinfo_flags = asoc->default_flags;
1629 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1630 		default_sinfo.sinfo_context = asoc->default_context;
1631 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1632 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1633 		sinfo = &default_sinfo;
1634 	}
1635 
1636 	/* API 7.1.7, the sndbuf size per association bounds the
1637 	 * maximum size of data that can be sent in a single send call.
1638 	 */
1639 	if (msg_len > sk->sk_sndbuf) {
1640 		err = -EMSGSIZE;
1641 		goto out_free;
1642 	}
1643 
1644 	/* If fragmentation is disabled and the message length exceeds the
1645 	 * association fragmentation point, return EMSGSIZE.  The I-D
1646 	 * does not specify what this error is, but this looks like
1647 	 * a great fit.
1648 	 */
1649 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1650 		err = -EMSGSIZE;
1651 		goto out_free;
1652 	}
1653 
1654 	if (sinfo) {
1655 		/* Check for invalid stream. */
1656 		if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1657 			err = -EINVAL;
1658 			goto out_free;
1659 		}
1660 	}
1661 
1662 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1663 	if (!sctp_wspace(asoc)) {
1664 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1665 		if (err)
1666 			goto out_free;
1667 	}
1668 
1669 	/* If an address is passed with the sendto/sendmsg call, it is used
1670 	 * to override the primary destination address in the TCP model, or
1671 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1672 	 */
1673 	if ((sctp_style(sk, TCP) && msg_name) ||
1674 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1675 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1676 		if (!chunk_tp) {
1677 			err = -EINVAL;
1678 			goto out_free;
1679 		}
1680 	} else
1681 		chunk_tp = NULL;
1682 
1683 	/* Auto-connect, if we aren't connected already. */
1684 	if (sctp_state(asoc, CLOSED)) {
1685 		err = sctp_primitive_ASSOCIATE(asoc, NULL);
1686 		if (err < 0)
1687 			goto out_free;
1688 		SCTP_DEBUG_PRINTK("We associated primitively.\n");
1689 	}
1690 
1691 	/* Break the message into multiple chunks of maximum size. */
1692 	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1693 	if (!datamsg) {
1694 		err = -ENOMEM;
1695 		goto out_free;
1696 	}
1697 
1698 	/* Now send the (possibly) fragmented message. */
1699 	list_for_each(pos, &datamsg->chunks) {
1700 		chunk = list_entry(pos, struct sctp_chunk, frag_list);
1701 		sctp_datamsg_track(chunk);
1702 
1703 		/* Do accounting for the write space.  */
1704 		sctp_set_owner_w(chunk);
1705 
1706 		chunk->transport = chunk_tp;
1707 
1708 		/* Send it to the lower layers.  Note:  all chunks
1709 		 * must either fail or succeed.   The lower layer
1710 		 * works that way today.  Keep it that way or this
1711 		 * breaks.
1712 		 */
1713 		err = sctp_primitive_SEND(asoc, chunk);
1714 		/* Did the lower layer accept the chunk? */
1715 		if (err)
1716 			sctp_chunk_free(chunk);
1717 		SCTP_DEBUG_PRINTK("We sent primitively.\n");
1718 	}
1719 
1720 	sctp_datamsg_free(datamsg);
1721 	if (err)
1722 		goto out_free;
1723 	else
1724 		err = msg_len;
1725 
1726 	/* If we are already past ASSOCIATE, the lower
1727 	 * layers are responsible for association cleanup.
1728 	 */
1729 	goto out_unlock;
1730 
1731 out_free:
1732 	if (new_asoc)
1733 		sctp_association_free(asoc);
1734 out_unlock:
1735 	sctp_release_sock(sk);
1736 
1737 out_nounlock:
1738 	return sctp_error(sk, msg_flags, err);
1739 
1740 #if 0
1741 do_sock_err:
1742 	if (msg_len)
1743 		err = msg_len;
1744 	else
1745 		err = sock_error(sk);
1746 	goto out;
1747 
1748 do_interrupted:
1749 	if (msg_len)
1750 		err = msg_len;
1751 	goto out;
1752 #endif /* 0 */
1753 }
1754 
1755 /* This is an extended version of skb_pull() that removes the data from the
1756  * start of a skb even when data is spread across the list of skb's in the
1757  * frag_list. len specifies the total amount of data that needs to be removed.
1758  * when 'len' bytes could be removed from the skb, it returns 0.
1759  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
1760  * could not be removed.
1761  */
1762 static int sctp_skb_pull(struct sk_buff *skb, int len)
1763 {
1764 	struct sk_buff *list;
1765 	int skb_len = skb_headlen(skb);
1766 	int rlen;
1767 
1768 	if (len <= skb_len) {
1769 		__skb_pull(skb, len);
1770 		return 0;
1771 	}
1772 	len -= skb_len;
1773 	__skb_pull(skb, skb_len);
1774 
1775 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next) {
1776 		rlen = sctp_skb_pull(list, len);
1777 		skb->len -= (len-rlen);
1778 		skb->data_len -= (len-rlen);
1779 
1780 		if (!rlen)
1781 			return 0;
1782 
1783 		len = rlen;
1784 	}
1785 
1786 	return len;
1787 }
1788 
1789 /* API 3.1.3  recvmsg() - UDP Style Syntax
1790  *
1791  *  ssize_t recvmsg(int socket, struct msghdr *message,
1792  *                    int flags);
1793  *
1794  *  socket  - the socket descriptor of the endpoint.
1795  *  message - pointer to the msghdr structure which contains a single
1796  *            user message and possibly some ancillary data.
1797  *
1798  *            See Section 5 for complete description of the data
1799  *            structures.
1800  *
1801  *  flags   - flags sent or received with the user message, see Section
1802  *            5 for complete description of the flags.
1803  */
1804 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1805 
1806 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1807 			     struct msghdr *msg, size_t len, int noblock,
1808 			     int flags, int *addr_len)
1809 {
1810 	struct sctp_ulpevent *event = NULL;
1811 	struct sctp_sock *sp = sctp_sk(sk);
1812 	struct sk_buff *skb;
1813 	int copied;
1814 	int err = 0;
1815 	int skb_len;
1816 
1817 	SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1818 			  "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1819 			  "len", len, "knoblauch", noblock,
1820 			  "flags", flags, "addr_len", addr_len);
1821 
1822 	sctp_lock_sock(sk);
1823 
1824 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1825 		err = -ENOTCONN;
1826 		goto out;
1827 	}
1828 
1829 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1830 	if (!skb)
1831 		goto out;
1832 
1833 	/* Get the total length of the skb including any skb's in the
1834 	 * frag_list.
1835 	 */
1836 	skb_len = skb->len;
1837 
1838 	copied = skb_len;
1839 	if (copied > len)
1840 		copied = len;
1841 
1842 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1843 
1844 	event = sctp_skb2event(skb);
1845 
1846 	if (err)
1847 		goto out_free;
1848 
1849 	sock_recv_timestamp(msg, sk, skb);
1850 	if (sctp_ulpevent_is_notification(event)) {
1851 		msg->msg_flags |= MSG_NOTIFICATION;
1852 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
1853 	} else {
1854 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1855 	}
1856 
1857 	/* Check if we allow SCTP_SNDRCVINFO. */
1858 	if (sp->subscribe.sctp_data_io_event)
1859 		sctp_ulpevent_read_sndrcvinfo(event, msg);
1860 #if 0
1861 	/* FIXME: we should be calling IP/IPv6 layers.  */
1862 	if (sk->sk_protinfo.af_inet.cmsg_flags)
1863 		ip_cmsg_recv(msg, skb);
1864 #endif
1865 
1866 	err = copied;
1867 
1868 	/* If skb's length exceeds the user's buffer, update the skb and
1869 	 * push it back to the receive_queue so that the next call to
1870 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
1871 	 */
1872 	if (skb_len > copied) {
1873 		msg->msg_flags &= ~MSG_EOR;
1874 		if (flags & MSG_PEEK)
1875 			goto out_free;
1876 		sctp_skb_pull(skb, copied);
1877 		skb_queue_head(&sk->sk_receive_queue, skb);
1878 
1879 		/* When only partial message is copied to the user, increase
1880 		 * rwnd by that amount. If all the data in the skb is read,
1881 		 * rwnd is updated when the event is freed.
1882 		 */
1883 		sctp_assoc_rwnd_increase(event->asoc, copied);
1884 		goto out;
1885 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
1886 		   (event->msg_flags & MSG_EOR))
1887 		msg->msg_flags |= MSG_EOR;
1888 	else
1889 		msg->msg_flags &= ~MSG_EOR;
1890 
1891 out_free:
1892 	if (flags & MSG_PEEK) {
1893 		/* Release the skb reference acquired after peeking the skb in
1894 		 * sctp_skb_recv_datagram().
1895 		 */
1896 		kfree_skb(skb);
1897 	} else {
1898 		/* Free the event which includes releasing the reference to
1899 		 * the owner of the skb, freeing the skb and updating the
1900 		 * rwnd.
1901 		 */
1902 		sctp_ulpevent_free(event);
1903 	}
1904 out:
1905 	sctp_release_sock(sk);
1906 	return err;
1907 }
1908 
1909 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
1910  *
1911  * This option is a on/off flag.  If enabled no SCTP message
1912  * fragmentation will be performed.  Instead if a message being sent
1913  * exceeds the current PMTU size, the message will NOT be sent and
1914  * instead a error will be indicated to the user.
1915  */
1916 static int sctp_setsockopt_disable_fragments(struct sock *sk,
1917 					    char __user *optval, int optlen)
1918 {
1919 	int val;
1920 
1921 	if (optlen < sizeof(int))
1922 		return -EINVAL;
1923 
1924 	if (get_user(val, (int __user *)optval))
1925 		return -EFAULT;
1926 
1927 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
1928 
1929 	return 0;
1930 }
1931 
1932 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
1933 					int optlen)
1934 {
1935 	if (optlen != sizeof(struct sctp_event_subscribe))
1936 		return -EINVAL;
1937 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
1938 		return -EFAULT;
1939 	return 0;
1940 }
1941 
1942 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
1943  *
1944  * This socket option is applicable to the UDP-style socket only.  When
1945  * set it will cause associations that are idle for more than the
1946  * specified number of seconds to automatically close.  An association
1947  * being idle is defined an association that has NOT sent or received
1948  * user data.  The special value of '0' indicates that no automatic
1949  * close of any associations should be performed.  The option expects an
1950  * integer defining the number of seconds of idle time before an
1951  * association is closed.
1952  */
1953 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
1954 					    int optlen)
1955 {
1956 	struct sctp_sock *sp = sctp_sk(sk);
1957 
1958 	/* Applicable to UDP-style socket only */
1959 	if (sctp_style(sk, TCP))
1960 		return -EOPNOTSUPP;
1961 	if (optlen != sizeof(int))
1962 		return -EINVAL;
1963 	if (copy_from_user(&sp->autoclose, optval, optlen))
1964 		return -EFAULT;
1965 
1966 	return 0;
1967 }
1968 
1969 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
1970  *
1971  * Applications can enable or disable heartbeats for any peer address of
1972  * an association, modify an address's heartbeat interval, force a
1973  * heartbeat to be sent immediately, and adjust the address's maximum
1974  * number of retransmissions sent before an address is considered
1975  * unreachable.  The following structure is used to access and modify an
1976  * address's parameters:
1977  *
1978  *  struct sctp_paddrparams {
1979  *     sctp_assoc_t            spp_assoc_id;
1980  *     struct sockaddr_storage spp_address;
1981  *     uint32_t                spp_hbinterval;
1982  *     uint16_t                spp_pathmaxrxt;
1983  *     uint32_t                spp_pathmtu;
1984  *     uint32_t                spp_sackdelay;
1985  *     uint32_t                spp_flags;
1986  * };
1987  *
1988  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
1989  *                     application, and identifies the association for
1990  *                     this query.
1991  *   spp_address     - This specifies which address is of interest.
1992  *   spp_hbinterval  - This contains the value of the heartbeat interval,
1993  *                     in milliseconds.  If a  value of zero
1994  *                     is present in this field then no changes are to
1995  *                     be made to this parameter.
1996  *   spp_pathmaxrxt  - This contains the maximum number of
1997  *                     retransmissions before this address shall be
1998  *                     considered unreachable. If a  value of zero
1999  *                     is present in this field then no changes are to
2000  *                     be made to this parameter.
2001  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2002  *                     specified here will be the "fixed" path mtu.
2003  *                     Note that if the spp_address field is empty
2004  *                     then all associations on this address will
2005  *                     have this fixed path mtu set upon them.
2006  *
2007  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2008  *                     the number of milliseconds that sacks will be delayed
2009  *                     for. This value will apply to all addresses of an
2010  *                     association if the spp_address field is empty. Note
2011  *                     also, that if delayed sack is enabled and this
2012  *                     value is set to 0, no change is made to the last
2013  *                     recorded delayed sack timer value.
2014  *
2015  *   spp_flags       - These flags are used to control various features
2016  *                     on an association. The flag field may contain
2017  *                     zero or more of the following options.
2018  *
2019  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2020  *                     specified address. Note that if the address
2021  *                     field is empty all addresses for the association
2022  *                     have heartbeats enabled upon them.
2023  *
2024  *                     SPP_HB_DISABLE - Disable heartbeats on the
2025  *                     speicifed address. Note that if the address
2026  *                     field is empty all addresses for the association
2027  *                     will have their heartbeats disabled. Note also
2028  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2029  *                     mutually exclusive, only one of these two should
2030  *                     be specified. Enabling both fields will have
2031  *                     undetermined results.
2032  *
2033  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2034  *                     to be made immediately.
2035  *
2036  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2037  *                     discovery upon the specified address. Note that
2038  *                     if the address feild is empty then all addresses
2039  *                     on the association are effected.
2040  *
2041  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2042  *                     discovery upon the specified address. Note that
2043  *                     if the address feild is empty then all addresses
2044  *                     on the association are effected. Not also that
2045  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2046  *                     exclusive. Enabling both will have undetermined
2047  *                     results.
2048  *
2049  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2050  *                     on delayed sack. The time specified in spp_sackdelay
2051  *                     is used to specify the sack delay for this address. Note
2052  *                     that if spp_address is empty then all addresses will
2053  *                     enable delayed sack and take on the sack delay
2054  *                     value specified in spp_sackdelay.
2055  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2056  *                     off delayed sack. If the spp_address field is blank then
2057  *                     delayed sack is disabled for the entire association. Note
2058  *                     also that this field is mutually exclusive to
2059  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2060  *                     results.
2061  */
2062 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2063 				       struct sctp_transport   *trans,
2064 				       struct sctp_association *asoc,
2065 				       struct sctp_sock        *sp,
2066 				       int                      hb_change,
2067 				       int                      pmtud_change,
2068 				       int                      sackdelay_change)
2069 {
2070 	int error;
2071 
2072 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2073 		error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2074 		if (error)
2075 			return error;
2076 	}
2077 
2078 	if (params->spp_hbinterval) {
2079 		if (trans) {
2080 			trans->hbinterval = msecs_to_jiffies(params->spp_hbinterval);
2081 		} else if (asoc) {
2082 			asoc->hbinterval = msecs_to_jiffies(params->spp_hbinterval);
2083 		} else {
2084 			sp->hbinterval = params->spp_hbinterval;
2085 		}
2086 	}
2087 
2088 	if (hb_change) {
2089 		if (trans) {
2090 			trans->param_flags =
2091 				(trans->param_flags & ~SPP_HB) | hb_change;
2092 		} else if (asoc) {
2093 			asoc->param_flags =
2094 				(asoc->param_flags & ~SPP_HB) | hb_change;
2095 		} else {
2096 			sp->param_flags =
2097 				(sp->param_flags & ~SPP_HB) | hb_change;
2098 		}
2099 	}
2100 
2101 	if (params->spp_pathmtu) {
2102 		if (trans) {
2103 			trans->pathmtu = params->spp_pathmtu;
2104 			sctp_assoc_sync_pmtu(asoc);
2105 		} else if (asoc) {
2106 			asoc->pathmtu = params->spp_pathmtu;
2107 			sctp_frag_point(sp, params->spp_pathmtu);
2108 		} else {
2109 			sp->pathmtu = params->spp_pathmtu;
2110 		}
2111 	}
2112 
2113 	if (pmtud_change) {
2114 		if (trans) {
2115 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2116 				(params->spp_flags & SPP_PMTUD_ENABLE);
2117 			trans->param_flags =
2118 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2119 			if (update) {
2120 				sctp_transport_pmtu(trans);
2121 				sctp_assoc_sync_pmtu(asoc);
2122 			}
2123 		} else if (asoc) {
2124 			asoc->param_flags =
2125 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2126 		} else {
2127 			sp->param_flags =
2128 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2129 		}
2130 	}
2131 
2132 	if (params->spp_sackdelay) {
2133 		if (trans) {
2134 			trans->sackdelay =
2135 				msecs_to_jiffies(params->spp_sackdelay);
2136 		} else if (asoc) {
2137 			asoc->sackdelay =
2138 				msecs_to_jiffies(params->spp_sackdelay);
2139 		} else {
2140 			sp->sackdelay = params->spp_sackdelay;
2141 		}
2142 	}
2143 
2144 	if (sackdelay_change) {
2145 		if (trans) {
2146 			trans->param_flags =
2147 				(trans->param_flags & ~SPP_SACKDELAY) |
2148 				sackdelay_change;
2149 		} else if (asoc) {
2150 			asoc->param_flags =
2151 				(asoc->param_flags & ~SPP_SACKDELAY) |
2152 				sackdelay_change;
2153 		} else {
2154 			sp->param_flags =
2155 				(sp->param_flags & ~SPP_SACKDELAY) |
2156 				sackdelay_change;
2157 		}
2158 	}
2159 
2160 	if (params->spp_pathmaxrxt) {
2161 		if (trans) {
2162 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2163 		} else if (asoc) {
2164 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2165 		} else {
2166 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2167 		}
2168 	}
2169 
2170 	return 0;
2171 }
2172 
2173 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2174 					    char __user *optval, int optlen)
2175 {
2176 	struct sctp_paddrparams  params;
2177 	struct sctp_transport   *trans = NULL;
2178 	struct sctp_association *asoc = NULL;
2179 	struct sctp_sock        *sp = sctp_sk(sk);
2180 	int error;
2181 	int hb_change, pmtud_change, sackdelay_change;
2182 
2183 	if (optlen != sizeof(struct sctp_paddrparams))
2184 		return - EINVAL;
2185 
2186 	if (copy_from_user(&params, optval, optlen))
2187 		return -EFAULT;
2188 
2189 	/* Validate flags and value parameters. */
2190 	hb_change        = params.spp_flags & SPP_HB;
2191 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2192 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2193 
2194 	if (hb_change        == SPP_HB ||
2195 	    pmtud_change     == SPP_PMTUD ||
2196 	    sackdelay_change == SPP_SACKDELAY ||
2197 	    params.spp_sackdelay > 500 ||
2198 	    (params.spp_pathmtu
2199 	    && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2200 		return -EINVAL;
2201 
2202 	/* If an address other than INADDR_ANY is specified, and
2203 	 * no transport is found, then the request is invalid.
2204 	 */
2205 	if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
2206 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2207 					       params.spp_assoc_id);
2208 		if (!trans)
2209 			return -EINVAL;
2210 	}
2211 
2212 	/* Get association, if assoc_id != 0 and the socket is a one
2213 	 * to many style socket, and an association was not found, then
2214 	 * the id was invalid.
2215 	 */
2216 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2217 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2218 		return -EINVAL;
2219 
2220 	/* Heartbeat demand can only be sent on a transport or
2221 	 * association, but not a socket.
2222 	 */
2223 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2224 		return -EINVAL;
2225 
2226 	/* Process parameters. */
2227 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2228 					    hb_change, pmtud_change,
2229 					    sackdelay_change);
2230 
2231 	if (error)
2232 		return error;
2233 
2234 	/* If changes are for association, also apply parameters to each
2235 	 * transport.
2236 	 */
2237 	if (!trans && asoc) {
2238 		struct list_head *pos;
2239 
2240 		list_for_each(pos, &asoc->peer.transport_addr_list) {
2241 			trans = list_entry(pos, struct sctp_transport,
2242 					   transports);
2243 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2244 						    hb_change, pmtud_change,
2245 						    sackdelay_change);
2246 		}
2247 	}
2248 
2249 	return 0;
2250 }
2251 
2252 /* 7.1.24. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
2253  *
2254  *   This options will get or set the delayed ack timer.  The time is set
2255  *   in milliseconds.  If the assoc_id is 0, then this sets or gets the
2256  *   endpoints default delayed ack timer value.  If the assoc_id field is
2257  *   non-zero, then the set or get effects the specified association.
2258  *
2259  *   struct sctp_assoc_value {
2260  *       sctp_assoc_t            assoc_id;
2261  *       uint32_t                assoc_value;
2262  *   };
2263  *
2264  *     assoc_id    - This parameter, indicates which association the
2265  *                   user is preforming an action upon. Note that if
2266  *                   this field's value is zero then the endpoints
2267  *                   default value is changed (effecting future
2268  *                   associations only).
2269  *
2270  *     assoc_value - This parameter contains the number of milliseconds
2271  *                   that the user is requesting the delayed ACK timer
2272  *                   be set to. Note that this value is defined in
2273  *                   the standard to be between 200 and 500 milliseconds.
2274  *
2275  *                   Note: a value of zero will leave the value alone,
2276  *                   but disable SACK delay. A non-zero value will also
2277  *                   enable SACK delay.
2278  */
2279 
2280 static int sctp_setsockopt_delayed_ack_time(struct sock *sk,
2281 					    char __user *optval, int optlen)
2282 {
2283 	struct sctp_assoc_value  params;
2284 	struct sctp_transport   *trans = NULL;
2285 	struct sctp_association *asoc = NULL;
2286 	struct sctp_sock        *sp = sctp_sk(sk);
2287 
2288 	if (optlen != sizeof(struct sctp_assoc_value))
2289 		return - EINVAL;
2290 
2291 	if (copy_from_user(&params, optval, optlen))
2292 		return -EFAULT;
2293 
2294 	/* Validate value parameter. */
2295 	if (params.assoc_value > 500)
2296 		return -EINVAL;
2297 
2298 	/* Get association, if assoc_id != 0 and the socket is a one
2299 	 * to many style socket, and an association was not found, then
2300 	 * the id was invalid.
2301  	 */
2302 	asoc = sctp_id2assoc(sk, params.assoc_id);
2303 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
2304 		return -EINVAL;
2305 
2306 	if (params.assoc_value) {
2307 		if (asoc) {
2308 			asoc->sackdelay =
2309 				msecs_to_jiffies(params.assoc_value);
2310 			asoc->param_flags =
2311 				(asoc->param_flags & ~SPP_SACKDELAY) |
2312 				SPP_SACKDELAY_ENABLE;
2313 		} else {
2314 			sp->sackdelay = params.assoc_value;
2315 			sp->param_flags =
2316 				(sp->param_flags & ~SPP_SACKDELAY) |
2317 				SPP_SACKDELAY_ENABLE;
2318 		}
2319 	} else {
2320 		if (asoc) {
2321 			asoc->param_flags =
2322 				(asoc->param_flags & ~SPP_SACKDELAY) |
2323 				SPP_SACKDELAY_DISABLE;
2324 		} else {
2325 			sp->param_flags =
2326 				(sp->param_flags & ~SPP_SACKDELAY) |
2327 				SPP_SACKDELAY_DISABLE;
2328 		}
2329 	}
2330 
2331 	/* If change is for association, also apply to each transport. */
2332 	if (asoc) {
2333 		struct list_head *pos;
2334 
2335 		list_for_each(pos, &asoc->peer.transport_addr_list) {
2336 			trans = list_entry(pos, struct sctp_transport,
2337 					   transports);
2338 			if (params.assoc_value) {
2339 				trans->sackdelay =
2340 					msecs_to_jiffies(params.assoc_value);
2341 				trans->param_flags =
2342 					(trans->param_flags & ~SPP_SACKDELAY) |
2343 					SPP_SACKDELAY_ENABLE;
2344 			} else {
2345 				trans->param_flags =
2346 					(trans->param_flags & ~SPP_SACKDELAY) |
2347 					SPP_SACKDELAY_DISABLE;
2348 			}
2349 		}
2350 	}
2351 
2352 	return 0;
2353 }
2354 
2355 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2356  *
2357  * Applications can specify protocol parameters for the default association
2358  * initialization.  The option name argument to setsockopt() and getsockopt()
2359  * is SCTP_INITMSG.
2360  *
2361  * Setting initialization parameters is effective only on an unconnected
2362  * socket (for UDP-style sockets only future associations are effected
2363  * by the change).  With TCP-style sockets, this option is inherited by
2364  * sockets derived from a listener socket.
2365  */
2366 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen)
2367 {
2368 	struct sctp_initmsg sinit;
2369 	struct sctp_sock *sp = sctp_sk(sk);
2370 
2371 	if (optlen != sizeof(struct sctp_initmsg))
2372 		return -EINVAL;
2373 	if (copy_from_user(&sinit, optval, optlen))
2374 		return -EFAULT;
2375 
2376 	if (sinit.sinit_num_ostreams)
2377 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2378 	if (sinit.sinit_max_instreams)
2379 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2380 	if (sinit.sinit_max_attempts)
2381 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2382 	if (sinit.sinit_max_init_timeo)
2383 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2384 
2385 	return 0;
2386 }
2387 
2388 /*
2389  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2390  *
2391  *   Applications that wish to use the sendto() system call may wish to
2392  *   specify a default set of parameters that would normally be supplied
2393  *   through the inclusion of ancillary data.  This socket option allows
2394  *   such an application to set the default sctp_sndrcvinfo structure.
2395  *   The application that wishes to use this socket option simply passes
2396  *   in to this call the sctp_sndrcvinfo structure defined in Section
2397  *   5.2.2) The input parameters accepted by this call include
2398  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2399  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2400  *   to this call if the caller is using the UDP model.
2401  */
2402 static int sctp_setsockopt_default_send_param(struct sock *sk,
2403 						char __user *optval, int optlen)
2404 {
2405 	struct sctp_sndrcvinfo info;
2406 	struct sctp_association *asoc;
2407 	struct sctp_sock *sp = sctp_sk(sk);
2408 
2409 	if (optlen != sizeof(struct sctp_sndrcvinfo))
2410 		return -EINVAL;
2411 	if (copy_from_user(&info, optval, optlen))
2412 		return -EFAULT;
2413 
2414 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2415 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2416 		return -EINVAL;
2417 
2418 	if (asoc) {
2419 		asoc->default_stream = info.sinfo_stream;
2420 		asoc->default_flags = info.sinfo_flags;
2421 		asoc->default_ppid = info.sinfo_ppid;
2422 		asoc->default_context = info.sinfo_context;
2423 		asoc->default_timetolive = info.sinfo_timetolive;
2424 	} else {
2425 		sp->default_stream = info.sinfo_stream;
2426 		sp->default_flags = info.sinfo_flags;
2427 		sp->default_ppid = info.sinfo_ppid;
2428 		sp->default_context = info.sinfo_context;
2429 		sp->default_timetolive = info.sinfo_timetolive;
2430 	}
2431 
2432 	return 0;
2433 }
2434 
2435 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2436  *
2437  * Requests that the local SCTP stack use the enclosed peer address as
2438  * the association primary.  The enclosed address must be one of the
2439  * association peer's addresses.
2440  */
2441 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2442 					int optlen)
2443 {
2444 	struct sctp_prim prim;
2445 	struct sctp_transport *trans;
2446 
2447 	if (optlen != sizeof(struct sctp_prim))
2448 		return -EINVAL;
2449 
2450 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2451 		return -EFAULT;
2452 
2453 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2454 	if (!trans)
2455 		return -EINVAL;
2456 
2457 	sctp_assoc_set_primary(trans->asoc, trans);
2458 
2459 	return 0;
2460 }
2461 
2462 /*
2463  * 7.1.5 SCTP_NODELAY
2464  *
2465  * Turn on/off any Nagle-like algorithm.  This means that packets are
2466  * generally sent as soon as possible and no unnecessary delays are
2467  * introduced, at the cost of more packets in the network.  Expects an
2468  *  integer boolean flag.
2469  */
2470 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2471 					int optlen)
2472 {
2473 	int val;
2474 
2475 	if (optlen < sizeof(int))
2476 		return -EINVAL;
2477 	if (get_user(val, (int __user *)optval))
2478 		return -EFAULT;
2479 
2480 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2481 	return 0;
2482 }
2483 
2484 /*
2485  *
2486  * 7.1.1 SCTP_RTOINFO
2487  *
2488  * The protocol parameters used to initialize and bound retransmission
2489  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2490  * and modify these parameters.
2491  * All parameters are time values, in milliseconds.  A value of 0, when
2492  * modifying the parameters, indicates that the current value should not
2493  * be changed.
2494  *
2495  */
2496 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) {
2497 	struct sctp_rtoinfo rtoinfo;
2498 	struct sctp_association *asoc;
2499 
2500 	if (optlen != sizeof (struct sctp_rtoinfo))
2501 		return -EINVAL;
2502 
2503 	if (copy_from_user(&rtoinfo, optval, optlen))
2504 		return -EFAULT;
2505 
2506 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2507 
2508 	/* Set the values to the specific association */
2509 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2510 		return -EINVAL;
2511 
2512 	if (asoc) {
2513 		if (rtoinfo.srto_initial != 0)
2514 			asoc->rto_initial =
2515 				msecs_to_jiffies(rtoinfo.srto_initial);
2516 		if (rtoinfo.srto_max != 0)
2517 			asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2518 		if (rtoinfo.srto_min != 0)
2519 			asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2520 	} else {
2521 		/* If there is no association or the association-id = 0
2522 		 * set the values to the endpoint.
2523 		 */
2524 		struct sctp_sock *sp = sctp_sk(sk);
2525 
2526 		if (rtoinfo.srto_initial != 0)
2527 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2528 		if (rtoinfo.srto_max != 0)
2529 			sp->rtoinfo.srto_max = rtoinfo.srto_max;
2530 		if (rtoinfo.srto_min != 0)
2531 			sp->rtoinfo.srto_min = rtoinfo.srto_min;
2532 	}
2533 
2534 	return 0;
2535 }
2536 
2537 /*
2538  *
2539  * 7.1.2 SCTP_ASSOCINFO
2540  *
2541  * This option is used to tune the the maximum retransmission attempts
2542  * of the association.
2543  * Returns an error if the new association retransmission value is
2544  * greater than the sum of the retransmission value  of the peer.
2545  * See [SCTP] for more information.
2546  *
2547  */
2548 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen)
2549 {
2550 
2551 	struct sctp_assocparams assocparams;
2552 	struct sctp_association *asoc;
2553 
2554 	if (optlen != sizeof(struct sctp_assocparams))
2555 		return -EINVAL;
2556 	if (copy_from_user(&assocparams, optval, optlen))
2557 		return -EFAULT;
2558 
2559 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2560 
2561 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2562 		return -EINVAL;
2563 
2564 	/* Set the values to the specific association */
2565 	if (asoc) {
2566 		if (assocparams.sasoc_asocmaxrxt != 0) {
2567 			__u32 path_sum = 0;
2568 			int   paths = 0;
2569 			struct list_head *pos;
2570 			struct sctp_transport *peer_addr;
2571 
2572 			list_for_each(pos, &asoc->peer.transport_addr_list) {
2573 				peer_addr = list_entry(pos,
2574 						struct sctp_transport,
2575 						transports);
2576 				path_sum += peer_addr->pathmaxrxt;
2577 				paths++;
2578 			}
2579 
2580 			/* Only validate asocmaxrxt if we have more then
2581 			 * one path/transport.  We do this because path
2582 			 * retransmissions are only counted when we have more
2583 			 * then one path.
2584 			 */
2585 			if (paths > 1 &&
2586 			    assocparams.sasoc_asocmaxrxt > path_sum)
2587 				return -EINVAL;
2588 
2589 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2590 		}
2591 
2592 		if (assocparams.sasoc_cookie_life != 0) {
2593 			asoc->cookie_life.tv_sec =
2594 					assocparams.sasoc_cookie_life / 1000;
2595 			asoc->cookie_life.tv_usec =
2596 					(assocparams.sasoc_cookie_life % 1000)
2597 					* 1000;
2598 		}
2599 	} else {
2600 		/* Set the values to the endpoint */
2601 		struct sctp_sock *sp = sctp_sk(sk);
2602 
2603 		if (assocparams.sasoc_asocmaxrxt != 0)
2604 			sp->assocparams.sasoc_asocmaxrxt =
2605 						assocparams.sasoc_asocmaxrxt;
2606 		if (assocparams.sasoc_cookie_life != 0)
2607 			sp->assocparams.sasoc_cookie_life =
2608 						assocparams.sasoc_cookie_life;
2609 	}
2610 	return 0;
2611 }
2612 
2613 /*
2614  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2615  *
2616  * This socket option is a boolean flag which turns on or off mapped V4
2617  * addresses.  If this option is turned on and the socket is type
2618  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2619  * If this option is turned off, then no mapping will be done of V4
2620  * addresses and a user will receive both PF_INET6 and PF_INET type
2621  * addresses on the socket.
2622  */
2623 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen)
2624 {
2625 	int val;
2626 	struct sctp_sock *sp = sctp_sk(sk);
2627 
2628 	if (optlen < sizeof(int))
2629 		return -EINVAL;
2630 	if (get_user(val, (int __user *)optval))
2631 		return -EFAULT;
2632 	if (val)
2633 		sp->v4mapped = 1;
2634 	else
2635 		sp->v4mapped = 0;
2636 
2637 	return 0;
2638 }
2639 
2640 /*
2641  * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
2642  *
2643  * This socket option specifies the maximum size to put in any outgoing
2644  * SCTP chunk.  If a message is larger than this size it will be
2645  * fragmented by SCTP into the specified size.  Note that the underlying
2646  * SCTP implementation may fragment into smaller sized chunks when the
2647  * PMTU of the underlying association is smaller than the value set by
2648  * the user.
2649  */
2650 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen)
2651 {
2652 	struct sctp_association *asoc;
2653 	struct list_head *pos;
2654 	struct sctp_sock *sp = sctp_sk(sk);
2655 	int val;
2656 
2657 	if (optlen < sizeof(int))
2658 		return -EINVAL;
2659 	if (get_user(val, (int __user *)optval))
2660 		return -EFAULT;
2661 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2662 		return -EINVAL;
2663 	sp->user_frag = val;
2664 
2665 	/* Update the frag_point of the existing associations. */
2666 	list_for_each(pos, &(sp->ep->asocs)) {
2667 		asoc = list_entry(pos, struct sctp_association, asocs);
2668 		asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu);
2669 	}
2670 
2671 	return 0;
2672 }
2673 
2674 
2675 /*
2676  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2677  *
2678  *   Requests that the peer mark the enclosed address as the association
2679  *   primary. The enclosed address must be one of the association's
2680  *   locally bound addresses. The following structure is used to make a
2681  *   set primary request:
2682  */
2683 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2684 					     int optlen)
2685 {
2686 	struct sctp_sock	*sp;
2687 	struct sctp_endpoint	*ep;
2688 	struct sctp_association	*asoc = NULL;
2689 	struct sctp_setpeerprim	prim;
2690 	struct sctp_chunk	*chunk;
2691 	int 			err;
2692 
2693 	sp = sctp_sk(sk);
2694 	ep = sp->ep;
2695 
2696 	if (!sctp_addip_enable)
2697 		return -EPERM;
2698 
2699 	if (optlen != sizeof(struct sctp_setpeerprim))
2700 		return -EINVAL;
2701 
2702 	if (copy_from_user(&prim, optval, optlen))
2703 		return -EFAULT;
2704 
2705 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2706 	if (!asoc)
2707 		return -EINVAL;
2708 
2709 	if (!asoc->peer.asconf_capable)
2710 		return -EPERM;
2711 
2712 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2713 		return -EPERM;
2714 
2715 	if (!sctp_state(asoc, ESTABLISHED))
2716 		return -ENOTCONN;
2717 
2718 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2719 		return -EADDRNOTAVAIL;
2720 
2721 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
2722 	chunk = sctp_make_asconf_set_prim(asoc,
2723 					  (union sctp_addr *)&prim.sspp_addr);
2724 	if (!chunk)
2725 		return -ENOMEM;
2726 
2727 	err = sctp_send_asconf(asoc, chunk);
2728 
2729 	SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2730 
2731 	return err;
2732 }
2733 
2734 static int sctp_setsockopt_adaption_layer(struct sock *sk, char __user *optval,
2735 					  int optlen)
2736 {
2737 	struct sctp_setadaption adaption;
2738 
2739 	if (optlen != sizeof(struct sctp_setadaption))
2740 		return -EINVAL;
2741 	if (copy_from_user(&adaption, optval, optlen))
2742 		return -EFAULT;
2743 
2744 	sctp_sk(sk)->adaption_ind = adaption.ssb_adaption_ind;
2745 
2746 	return 0;
2747 }
2748 
2749 /*
2750  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
2751  *
2752  * The context field in the sctp_sndrcvinfo structure is normally only
2753  * used when a failed message is retrieved holding the value that was
2754  * sent down on the actual send call.  This option allows the setting of
2755  * a default context on an association basis that will be received on
2756  * reading messages from the peer.  This is especially helpful in the
2757  * one-2-many model for an application to keep some reference to an
2758  * internal state machine that is processing messages on the
2759  * association.  Note that the setting of this value only effects
2760  * received messages from the peer and does not effect the value that is
2761  * saved with outbound messages.
2762  */
2763 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
2764 				   int optlen)
2765 {
2766 	struct sctp_assoc_value params;
2767 	struct sctp_sock *sp;
2768 	struct sctp_association *asoc;
2769 
2770 	if (optlen != sizeof(struct sctp_assoc_value))
2771 		return -EINVAL;
2772 	if (copy_from_user(&params, optval, optlen))
2773 		return -EFAULT;
2774 
2775 	sp = sctp_sk(sk);
2776 
2777 	if (params.assoc_id != 0) {
2778 		asoc = sctp_id2assoc(sk, params.assoc_id);
2779 		if (!asoc)
2780 			return -EINVAL;
2781 		asoc->default_rcv_context = params.assoc_value;
2782 	} else {
2783 		sp->default_rcv_context = params.assoc_value;
2784 	}
2785 
2786 	return 0;
2787 }
2788 
2789 /* API 6.2 setsockopt(), getsockopt()
2790  *
2791  * Applications use setsockopt() and getsockopt() to set or retrieve
2792  * socket options.  Socket options are used to change the default
2793  * behavior of sockets calls.  They are described in Section 7.
2794  *
2795  * The syntax is:
2796  *
2797  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
2798  *                    int __user *optlen);
2799  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
2800  *                    int optlen);
2801  *
2802  *   sd      - the socket descript.
2803  *   level   - set to IPPROTO_SCTP for all SCTP options.
2804  *   optname - the option name.
2805  *   optval  - the buffer to store the value of the option.
2806  *   optlen  - the size of the buffer.
2807  */
2808 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
2809 				char __user *optval, int optlen)
2810 {
2811 	int retval = 0;
2812 
2813 	SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
2814 			  sk, optname);
2815 
2816 	/* I can hardly begin to describe how wrong this is.  This is
2817 	 * so broken as to be worse than useless.  The API draft
2818 	 * REALLY is NOT helpful here...  I am not convinced that the
2819 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
2820 	 * are at all well-founded.
2821 	 */
2822 	if (level != SOL_SCTP) {
2823 		struct sctp_af *af = sctp_sk(sk)->pf->af;
2824 		retval = af->setsockopt(sk, level, optname, optval, optlen);
2825 		goto out_nounlock;
2826 	}
2827 
2828 	sctp_lock_sock(sk);
2829 
2830 	switch (optname) {
2831 	case SCTP_SOCKOPT_BINDX_ADD:
2832 		/* 'optlen' is the size of the addresses buffer. */
2833 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2834 					       optlen, SCTP_BINDX_ADD_ADDR);
2835 		break;
2836 
2837 	case SCTP_SOCKOPT_BINDX_REM:
2838 		/* 'optlen' is the size of the addresses buffer. */
2839 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2840 					       optlen, SCTP_BINDX_REM_ADDR);
2841 		break;
2842 
2843 	case SCTP_SOCKOPT_CONNECTX:
2844 		/* 'optlen' is the size of the addresses buffer. */
2845 		retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval,
2846 					       optlen);
2847 		break;
2848 
2849 	case SCTP_DISABLE_FRAGMENTS:
2850 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
2851 		break;
2852 
2853 	case SCTP_EVENTS:
2854 		retval = sctp_setsockopt_events(sk, optval, optlen);
2855 		break;
2856 
2857 	case SCTP_AUTOCLOSE:
2858 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
2859 		break;
2860 
2861 	case SCTP_PEER_ADDR_PARAMS:
2862 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
2863 		break;
2864 
2865 	case SCTP_DELAYED_ACK_TIME:
2866 		retval = sctp_setsockopt_delayed_ack_time(sk, optval, optlen);
2867 		break;
2868 
2869 	case SCTP_INITMSG:
2870 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
2871 		break;
2872 	case SCTP_DEFAULT_SEND_PARAM:
2873 		retval = sctp_setsockopt_default_send_param(sk, optval,
2874 							    optlen);
2875 		break;
2876 	case SCTP_PRIMARY_ADDR:
2877 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
2878 		break;
2879 	case SCTP_SET_PEER_PRIMARY_ADDR:
2880 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
2881 		break;
2882 	case SCTP_NODELAY:
2883 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
2884 		break;
2885 	case SCTP_RTOINFO:
2886 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
2887 		break;
2888 	case SCTP_ASSOCINFO:
2889 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
2890 		break;
2891 	case SCTP_I_WANT_MAPPED_V4_ADDR:
2892 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
2893 		break;
2894 	case SCTP_MAXSEG:
2895 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
2896 		break;
2897 	case SCTP_ADAPTION_LAYER:
2898 		retval = sctp_setsockopt_adaption_layer(sk, optval, optlen);
2899 		break;
2900 	case SCTP_CONTEXT:
2901 		retval = sctp_setsockopt_context(sk, optval, optlen);
2902 		break;
2903 
2904 	default:
2905 		retval = -ENOPROTOOPT;
2906 		break;
2907 	};
2908 
2909 	sctp_release_sock(sk);
2910 
2911 out_nounlock:
2912 	return retval;
2913 }
2914 
2915 /* API 3.1.6 connect() - UDP Style Syntax
2916  *
2917  * An application may use the connect() call in the UDP model to initiate an
2918  * association without sending data.
2919  *
2920  * The syntax is:
2921  *
2922  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
2923  *
2924  * sd: the socket descriptor to have a new association added to.
2925  *
2926  * nam: the address structure (either struct sockaddr_in or struct
2927  *    sockaddr_in6 defined in RFC2553 [7]).
2928  *
2929  * len: the size of the address.
2930  */
2931 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
2932 			     int addr_len)
2933 {
2934 	int err = 0;
2935 	struct sctp_af *af;
2936 
2937 	sctp_lock_sock(sk);
2938 
2939 	SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
2940 			  __FUNCTION__, sk, addr, addr_len);
2941 
2942 	/* Validate addr_len before calling common connect/connectx routine. */
2943 	af = sctp_get_af_specific(addr->sa_family);
2944 	if (!af || addr_len < af->sockaddr_len) {
2945 		err = -EINVAL;
2946 	} else {
2947 		/* Pass correct addr len to common routine (so it knows there
2948 		 * is only one address being passed.
2949 		 */
2950 		err = __sctp_connect(sk, addr, af->sockaddr_len);
2951 	}
2952 
2953 	sctp_release_sock(sk);
2954 	return err;
2955 }
2956 
2957 /* FIXME: Write comments. */
2958 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
2959 {
2960 	return -EOPNOTSUPP; /* STUB */
2961 }
2962 
2963 /* 4.1.4 accept() - TCP Style Syntax
2964  *
2965  * Applications use accept() call to remove an established SCTP
2966  * association from the accept queue of the endpoint.  A new socket
2967  * descriptor will be returned from accept() to represent the newly
2968  * formed association.
2969  */
2970 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
2971 {
2972 	struct sctp_sock *sp;
2973 	struct sctp_endpoint *ep;
2974 	struct sock *newsk = NULL;
2975 	struct sctp_association *asoc;
2976 	long timeo;
2977 	int error = 0;
2978 
2979 	sctp_lock_sock(sk);
2980 
2981 	sp = sctp_sk(sk);
2982 	ep = sp->ep;
2983 
2984 	if (!sctp_style(sk, TCP)) {
2985 		error = -EOPNOTSUPP;
2986 		goto out;
2987 	}
2988 
2989 	if (!sctp_sstate(sk, LISTENING)) {
2990 		error = -EINVAL;
2991 		goto out;
2992 	}
2993 
2994 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
2995 
2996 	error = sctp_wait_for_accept(sk, timeo);
2997 	if (error)
2998 		goto out;
2999 
3000 	/* We treat the list of associations on the endpoint as the accept
3001 	 * queue and pick the first association on the list.
3002 	 */
3003 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3004 
3005 	newsk = sp->pf->create_accept_sk(sk, asoc);
3006 	if (!newsk) {
3007 		error = -ENOMEM;
3008 		goto out;
3009 	}
3010 
3011 	/* Populate the fields of the newsk from the oldsk and migrate the
3012 	 * asoc to the newsk.
3013 	 */
3014 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3015 
3016 out:
3017 	sctp_release_sock(sk);
3018  	*err = error;
3019 	return newsk;
3020 }
3021 
3022 /* The SCTP ioctl handler. */
3023 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3024 {
3025 	return -ENOIOCTLCMD;
3026 }
3027 
3028 /* This is the function which gets called during socket creation to
3029  * initialized the SCTP-specific portion of the sock.
3030  * The sock structure should already be zero-filled memory.
3031  */
3032 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3033 {
3034 	struct sctp_endpoint *ep;
3035 	struct sctp_sock *sp;
3036 
3037 	SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3038 
3039 	sp = sctp_sk(sk);
3040 
3041 	/* Initialize the SCTP per socket area.  */
3042 	switch (sk->sk_type) {
3043 	case SOCK_SEQPACKET:
3044 		sp->type = SCTP_SOCKET_UDP;
3045 		break;
3046 	case SOCK_STREAM:
3047 		sp->type = SCTP_SOCKET_TCP;
3048 		break;
3049 	default:
3050 		return -ESOCKTNOSUPPORT;
3051 	}
3052 
3053 	/* Initialize default send parameters. These parameters can be
3054 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3055 	 */
3056 	sp->default_stream = 0;
3057 	sp->default_ppid = 0;
3058 	sp->default_flags = 0;
3059 	sp->default_context = 0;
3060 	sp->default_timetolive = 0;
3061 
3062 	sp->default_rcv_context = 0;
3063 
3064 	/* Initialize default setup parameters. These parameters
3065 	 * can be modified with the SCTP_INITMSG socket option or
3066 	 * overridden by the SCTP_INIT CMSG.
3067 	 */
3068 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
3069 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
3070 	sp->initmsg.sinit_max_attempts   = sctp_max_retrans_init;
3071 	sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3072 
3073 	/* Initialize default RTO related parameters.  These parameters can
3074 	 * be modified for with the SCTP_RTOINFO socket option.
3075 	 */
3076 	sp->rtoinfo.srto_initial = sctp_rto_initial;
3077 	sp->rtoinfo.srto_max     = sctp_rto_max;
3078 	sp->rtoinfo.srto_min     = sctp_rto_min;
3079 
3080 	/* Initialize default association related parameters. These parameters
3081 	 * can be modified with the SCTP_ASSOCINFO socket option.
3082 	 */
3083 	sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3084 	sp->assocparams.sasoc_number_peer_destinations = 0;
3085 	sp->assocparams.sasoc_peer_rwnd = 0;
3086 	sp->assocparams.sasoc_local_rwnd = 0;
3087 	sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3088 
3089 	/* Initialize default event subscriptions. By default, all the
3090 	 * options are off.
3091 	 */
3092 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3093 
3094 	/* Default Peer Address Parameters.  These defaults can
3095 	 * be modified via SCTP_PEER_ADDR_PARAMS
3096 	 */
3097 	sp->hbinterval  = sctp_hb_interval;
3098 	sp->pathmaxrxt  = sctp_max_retrans_path;
3099 	sp->pathmtu     = 0; // allow default discovery
3100 	sp->sackdelay   = sctp_sack_timeout;
3101 	sp->param_flags = SPP_HB_ENABLE |
3102 	                  SPP_PMTUD_ENABLE |
3103 	                  SPP_SACKDELAY_ENABLE;
3104 
3105 	/* If enabled no SCTP message fragmentation will be performed.
3106 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3107 	 */
3108 	sp->disable_fragments = 0;
3109 
3110 	/* Enable Nagle algorithm by default.  */
3111 	sp->nodelay           = 0;
3112 
3113 	/* Enable by default. */
3114 	sp->v4mapped          = 1;
3115 
3116 	/* Auto-close idle associations after the configured
3117 	 * number of seconds.  A value of 0 disables this
3118 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
3119 	 * for UDP-style sockets only.
3120 	 */
3121 	sp->autoclose         = 0;
3122 
3123 	/* User specified fragmentation limit. */
3124 	sp->user_frag         = 0;
3125 
3126 	sp->adaption_ind = 0;
3127 
3128 	sp->pf = sctp_get_pf_specific(sk->sk_family);
3129 
3130 	/* Control variables for partial data delivery. */
3131 	sp->pd_mode           = 0;
3132 	skb_queue_head_init(&sp->pd_lobby);
3133 
3134 	/* Create a per socket endpoint structure.  Even if we
3135 	 * change the data structure relationships, this may still
3136 	 * be useful for storing pre-connect address information.
3137 	 */
3138 	ep = sctp_endpoint_new(sk, GFP_KERNEL);
3139 	if (!ep)
3140 		return -ENOMEM;
3141 
3142 	sp->ep = ep;
3143 	sp->hmac = NULL;
3144 
3145 	SCTP_DBG_OBJCNT_INC(sock);
3146 	return 0;
3147 }
3148 
3149 /* Cleanup any SCTP per socket resources.  */
3150 SCTP_STATIC int sctp_destroy_sock(struct sock *sk)
3151 {
3152 	struct sctp_endpoint *ep;
3153 
3154 	SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3155 
3156 	/* Release our hold on the endpoint. */
3157 	ep = sctp_sk(sk)->ep;
3158 	sctp_endpoint_free(ep);
3159 
3160 	return 0;
3161 }
3162 
3163 /* API 4.1.7 shutdown() - TCP Style Syntax
3164  *     int shutdown(int socket, int how);
3165  *
3166  *     sd      - the socket descriptor of the association to be closed.
3167  *     how     - Specifies the type of shutdown.  The  values  are
3168  *               as follows:
3169  *               SHUT_RD
3170  *                     Disables further receive operations. No SCTP
3171  *                     protocol action is taken.
3172  *               SHUT_WR
3173  *                     Disables further send operations, and initiates
3174  *                     the SCTP shutdown sequence.
3175  *               SHUT_RDWR
3176  *                     Disables further send  and  receive  operations
3177  *                     and initiates the SCTP shutdown sequence.
3178  */
3179 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3180 {
3181 	struct sctp_endpoint *ep;
3182 	struct sctp_association *asoc;
3183 
3184 	if (!sctp_style(sk, TCP))
3185 		return;
3186 
3187 	if (how & SEND_SHUTDOWN) {
3188 		ep = sctp_sk(sk)->ep;
3189 		if (!list_empty(&ep->asocs)) {
3190 			asoc = list_entry(ep->asocs.next,
3191 					  struct sctp_association, asocs);
3192 			sctp_primitive_SHUTDOWN(asoc, NULL);
3193 		}
3194 	}
3195 }
3196 
3197 /* 7.2.1 Association Status (SCTP_STATUS)
3198 
3199  * Applications can retrieve current status information about an
3200  * association, including association state, peer receiver window size,
3201  * number of unacked data chunks, and number of data chunks pending
3202  * receipt.  This information is read-only.
3203  */
3204 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3205 				       char __user *optval,
3206 				       int __user *optlen)
3207 {
3208 	struct sctp_status status;
3209 	struct sctp_association *asoc = NULL;
3210 	struct sctp_transport *transport;
3211 	sctp_assoc_t associd;
3212 	int retval = 0;
3213 
3214 	if (len != sizeof(status)) {
3215 		retval = -EINVAL;
3216 		goto out;
3217 	}
3218 
3219 	if (copy_from_user(&status, optval, sizeof(status))) {
3220 		retval = -EFAULT;
3221 		goto out;
3222 	}
3223 
3224 	associd = status.sstat_assoc_id;
3225 	asoc = sctp_id2assoc(sk, associd);
3226 	if (!asoc) {
3227 		retval = -EINVAL;
3228 		goto out;
3229 	}
3230 
3231 	transport = asoc->peer.primary_path;
3232 
3233 	status.sstat_assoc_id = sctp_assoc2id(asoc);
3234 	status.sstat_state = asoc->state;
3235 	status.sstat_rwnd =  asoc->peer.rwnd;
3236 	status.sstat_unackdata = asoc->unack_data;
3237 
3238 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
3239 	status.sstat_instrms = asoc->c.sinit_max_instreams;
3240 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
3241 	status.sstat_fragmentation_point = asoc->frag_point;
3242 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3243 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
3244 			transport->af_specific->sockaddr_len);
3245 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
3246 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3247 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
3248 	status.sstat_primary.spinfo_state = transport->state;
3249 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
3250 	status.sstat_primary.spinfo_srtt = transport->srtt;
3251 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
3252 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
3253 
3254 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
3255 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
3256 
3257 	if (put_user(len, optlen)) {
3258 		retval = -EFAULT;
3259 		goto out;
3260 	}
3261 
3262 	SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
3263 			  len, status.sstat_state, status.sstat_rwnd,
3264 			  status.sstat_assoc_id);
3265 
3266 	if (copy_to_user(optval, &status, len)) {
3267 		retval = -EFAULT;
3268 		goto out;
3269 	}
3270 
3271 out:
3272 	return (retval);
3273 }
3274 
3275 
3276 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
3277  *
3278  * Applications can retrieve information about a specific peer address
3279  * of an association, including its reachability state, congestion
3280  * window, and retransmission timer values.  This information is
3281  * read-only.
3282  */
3283 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
3284 					  char __user *optval,
3285 					  int __user *optlen)
3286 {
3287 	struct sctp_paddrinfo pinfo;
3288 	struct sctp_transport *transport;
3289 	int retval = 0;
3290 
3291 	if (len != sizeof(pinfo)) {
3292 		retval = -EINVAL;
3293 		goto out;
3294 	}
3295 
3296 	if (copy_from_user(&pinfo, optval, sizeof(pinfo))) {
3297 		retval = -EFAULT;
3298 		goto out;
3299 	}
3300 
3301 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
3302 					   pinfo.spinfo_assoc_id);
3303 	if (!transport)
3304 		return -EINVAL;
3305 
3306 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3307 	pinfo.spinfo_state = transport->state;
3308 	pinfo.spinfo_cwnd = transport->cwnd;
3309 	pinfo.spinfo_srtt = transport->srtt;
3310 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
3311 	pinfo.spinfo_mtu = transport->pathmtu;
3312 
3313 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
3314 		pinfo.spinfo_state = SCTP_ACTIVE;
3315 
3316 	if (put_user(len, optlen)) {
3317 		retval = -EFAULT;
3318 		goto out;
3319 	}
3320 
3321 	if (copy_to_user(optval, &pinfo, len)) {
3322 		retval = -EFAULT;
3323 		goto out;
3324 	}
3325 
3326 out:
3327 	return (retval);
3328 }
3329 
3330 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
3331  *
3332  * This option is a on/off flag.  If enabled no SCTP message
3333  * fragmentation will be performed.  Instead if a message being sent
3334  * exceeds the current PMTU size, the message will NOT be sent and
3335  * instead a error will be indicated to the user.
3336  */
3337 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
3338 					char __user *optval, int __user *optlen)
3339 {
3340 	int val;
3341 
3342 	if (len < sizeof(int))
3343 		return -EINVAL;
3344 
3345 	len = sizeof(int);
3346 	val = (sctp_sk(sk)->disable_fragments == 1);
3347 	if (put_user(len, optlen))
3348 		return -EFAULT;
3349 	if (copy_to_user(optval, &val, len))
3350 		return -EFAULT;
3351 	return 0;
3352 }
3353 
3354 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
3355  *
3356  * This socket option is used to specify various notifications and
3357  * ancillary data the user wishes to receive.
3358  */
3359 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
3360 				  int __user *optlen)
3361 {
3362 	if (len != sizeof(struct sctp_event_subscribe))
3363 		return -EINVAL;
3364 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
3365 		return -EFAULT;
3366 	return 0;
3367 }
3368 
3369 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
3370  *
3371  * This socket option is applicable to the UDP-style socket only.  When
3372  * set it will cause associations that are idle for more than the
3373  * specified number of seconds to automatically close.  An association
3374  * being idle is defined an association that has NOT sent or received
3375  * user data.  The special value of '0' indicates that no automatic
3376  * close of any associations should be performed.  The option expects an
3377  * integer defining the number of seconds of idle time before an
3378  * association is closed.
3379  */
3380 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
3381 {
3382 	/* Applicable to UDP-style socket only */
3383 	if (sctp_style(sk, TCP))
3384 		return -EOPNOTSUPP;
3385 	if (len != sizeof(int))
3386 		return -EINVAL;
3387 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, len))
3388 		return -EFAULT;
3389 	return 0;
3390 }
3391 
3392 /* Helper routine to branch off an association to a new socket.  */
3393 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
3394 				struct socket **sockp)
3395 {
3396 	struct sock *sk = asoc->base.sk;
3397 	struct socket *sock;
3398 	struct inet_sock *inetsk;
3399 	int err = 0;
3400 
3401 	/* An association cannot be branched off from an already peeled-off
3402 	 * socket, nor is this supported for tcp style sockets.
3403 	 */
3404 	if (!sctp_style(sk, UDP))
3405 		return -EINVAL;
3406 
3407 	/* Create a new socket.  */
3408 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
3409 	if (err < 0)
3410 		return err;
3411 
3412 	/* Populate the fields of the newsk from the oldsk and migrate the
3413 	 * asoc to the newsk.
3414 	 */
3415 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
3416 
3417 	/* Make peeled-off sockets more like 1-1 accepted sockets.
3418 	 * Set the daddr and initialize id to something more random
3419 	 */
3420 	inetsk = inet_sk(sock->sk);
3421 	inetsk->daddr = asoc->peer.primary_addr.v4.sin_addr.s_addr;
3422 	inetsk->id = asoc->next_tsn ^ jiffies;
3423 
3424 	*sockp = sock;
3425 
3426 	return err;
3427 }
3428 
3429 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
3430 {
3431 	sctp_peeloff_arg_t peeloff;
3432 	struct socket *newsock;
3433 	int retval = 0;
3434 	struct sctp_association *asoc;
3435 
3436 	if (len != sizeof(sctp_peeloff_arg_t))
3437 		return -EINVAL;
3438 	if (copy_from_user(&peeloff, optval, len))
3439 		return -EFAULT;
3440 
3441 	asoc = sctp_id2assoc(sk, peeloff.associd);
3442 	if (!asoc) {
3443 		retval = -EINVAL;
3444 		goto out;
3445 	}
3446 
3447 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc);
3448 
3449 	retval = sctp_do_peeloff(asoc, &newsock);
3450 	if (retval < 0)
3451 		goto out;
3452 
3453 	/* Map the socket to an unused fd that can be returned to the user.  */
3454 	retval = sock_map_fd(newsock);
3455 	if (retval < 0) {
3456 		sock_release(newsock);
3457 		goto out;
3458 	}
3459 
3460 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
3461 			  __FUNCTION__, sk, asoc, newsock->sk, retval);
3462 
3463 	/* Return the fd mapped to the new socket.  */
3464 	peeloff.sd = retval;
3465 	if (copy_to_user(optval, &peeloff, len))
3466 		retval = -EFAULT;
3467 
3468 out:
3469 	return retval;
3470 }
3471 
3472 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
3473  *
3474  * Applications can enable or disable heartbeats for any peer address of
3475  * an association, modify an address's heartbeat interval, force a
3476  * heartbeat to be sent immediately, and adjust the address's maximum
3477  * number of retransmissions sent before an address is considered
3478  * unreachable.  The following structure is used to access and modify an
3479  * address's parameters:
3480  *
3481  *  struct sctp_paddrparams {
3482  *     sctp_assoc_t            spp_assoc_id;
3483  *     struct sockaddr_storage spp_address;
3484  *     uint32_t                spp_hbinterval;
3485  *     uint16_t                spp_pathmaxrxt;
3486  *     uint32_t                spp_pathmtu;
3487  *     uint32_t                spp_sackdelay;
3488  *     uint32_t                spp_flags;
3489  * };
3490  *
3491  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
3492  *                     application, and identifies the association for
3493  *                     this query.
3494  *   spp_address     - This specifies which address is of interest.
3495  *   spp_hbinterval  - This contains the value of the heartbeat interval,
3496  *                     in milliseconds.  If a  value of zero
3497  *                     is present in this field then no changes are to
3498  *                     be made to this parameter.
3499  *   spp_pathmaxrxt  - This contains the maximum number of
3500  *                     retransmissions before this address shall be
3501  *                     considered unreachable. If a  value of zero
3502  *                     is present in this field then no changes are to
3503  *                     be made to this parameter.
3504  *   spp_pathmtu     - When Path MTU discovery is disabled the value
3505  *                     specified here will be the "fixed" path mtu.
3506  *                     Note that if the spp_address field is empty
3507  *                     then all associations on this address will
3508  *                     have this fixed path mtu set upon them.
3509  *
3510  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
3511  *                     the number of milliseconds that sacks will be delayed
3512  *                     for. This value will apply to all addresses of an
3513  *                     association if the spp_address field is empty. Note
3514  *                     also, that if delayed sack is enabled and this
3515  *                     value is set to 0, no change is made to the last
3516  *                     recorded delayed sack timer value.
3517  *
3518  *   spp_flags       - These flags are used to control various features
3519  *                     on an association. The flag field may contain
3520  *                     zero or more of the following options.
3521  *
3522  *                     SPP_HB_ENABLE  - Enable heartbeats on the
3523  *                     specified address. Note that if the address
3524  *                     field is empty all addresses for the association
3525  *                     have heartbeats enabled upon them.
3526  *
3527  *                     SPP_HB_DISABLE - Disable heartbeats on the
3528  *                     speicifed address. Note that if the address
3529  *                     field is empty all addresses for the association
3530  *                     will have their heartbeats disabled. Note also
3531  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
3532  *                     mutually exclusive, only one of these two should
3533  *                     be specified. Enabling both fields will have
3534  *                     undetermined results.
3535  *
3536  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
3537  *                     to be made immediately.
3538  *
3539  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
3540  *                     discovery upon the specified address. Note that
3541  *                     if the address feild is empty then all addresses
3542  *                     on the association are effected.
3543  *
3544  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
3545  *                     discovery upon the specified address. Note that
3546  *                     if the address feild is empty then all addresses
3547  *                     on the association are effected. Not also that
3548  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
3549  *                     exclusive. Enabling both will have undetermined
3550  *                     results.
3551  *
3552  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
3553  *                     on delayed sack. The time specified in spp_sackdelay
3554  *                     is used to specify the sack delay for this address. Note
3555  *                     that if spp_address is empty then all addresses will
3556  *                     enable delayed sack and take on the sack delay
3557  *                     value specified in spp_sackdelay.
3558  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
3559  *                     off delayed sack. If the spp_address field is blank then
3560  *                     delayed sack is disabled for the entire association. Note
3561  *                     also that this field is mutually exclusive to
3562  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
3563  *                     results.
3564  */
3565 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
3566 					    char __user *optval, int __user *optlen)
3567 {
3568 	struct sctp_paddrparams  params;
3569 	struct sctp_transport   *trans = NULL;
3570 	struct sctp_association *asoc = NULL;
3571 	struct sctp_sock        *sp = sctp_sk(sk);
3572 
3573 	if (len != sizeof(struct sctp_paddrparams))
3574 		return -EINVAL;
3575 
3576 	if (copy_from_user(&params, optval, len))
3577 		return -EFAULT;
3578 
3579 	/* If an address other than INADDR_ANY is specified, and
3580 	 * no transport is found, then the request is invalid.
3581 	 */
3582 	if (!sctp_is_any(( union sctp_addr *)&params.spp_address)) {
3583 		trans = sctp_addr_id2transport(sk, &params.spp_address,
3584 					       params.spp_assoc_id);
3585 		if (!trans) {
3586 			SCTP_DEBUG_PRINTK("Failed no transport\n");
3587 			return -EINVAL;
3588 		}
3589 	}
3590 
3591 	/* Get association, if assoc_id != 0 and the socket is a one
3592 	 * to many style socket, and an association was not found, then
3593 	 * the id was invalid.
3594 	 */
3595 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
3596 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
3597 		SCTP_DEBUG_PRINTK("Failed no association\n");
3598 		return -EINVAL;
3599 	}
3600 
3601 	if (trans) {
3602 		/* Fetch transport values. */
3603 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
3604 		params.spp_pathmtu    = trans->pathmtu;
3605 		params.spp_pathmaxrxt = trans->pathmaxrxt;
3606 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
3607 
3608 		/*draft-11 doesn't say what to return in spp_flags*/
3609 		params.spp_flags      = trans->param_flags;
3610 	} else if (asoc) {
3611 		/* Fetch association values. */
3612 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
3613 		params.spp_pathmtu    = asoc->pathmtu;
3614 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
3615 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
3616 
3617 		/*draft-11 doesn't say what to return in spp_flags*/
3618 		params.spp_flags      = asoc->param_flags;
3619 	} else {
3620 		/* Fetch socket values. */
3621 		params.spp_hbinterval = sp->hbinterval;
3622 		params.spp_pathmtu    = sp->pathmtu;
3623 		params.spp_sackdelay  = sp->sackdelay;
3624 		params.spp_pathmaxrxt = sp->pathmaxrxt;
3625 
3626 		/*draft-11 doesn't say what to return in spp_flags*/
3627 		params.spp_flags      = sp->param_flags;
3628 	}
3629 
3630 	if (copy_to_user(optval, &params, len))
3631 		return -EFAULT;
3632 
3633 	if (put_user(len, optlen))
3634 		return -EFAULT;
3635 
3636 	return 0;
3637 }
3638 
3639 /* 7.1.24. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME)
3640  *
3641  *   This options will get or set the delayed ack timer.  The time is set
3642  *   in milliseconds.  If the assoc_id is 0, then this sets or gets the
3643  *   endpoints default delayed ack timer value.  If the assoc_id field is
3644  *   non-zero, then the set or get effects the specified association.
3645  *
3646  *   struct sctp_assoc_value {
3647  *       sctp_assoc_t            assoc_id;
3648  *       uint32_t                assoc_value;
3649  *   };
3650  *
3651  *     assoc_id    - This parameter, indicates which association the
3652  *                   user is preforming an action upon. Note that if
3653  *                   this field's value is zero then the endpoints
3654  *                   default value is changed (effecting future
3655  *                   associations only).
3656  *
3657  *     assoc_value - This parameter contains the number of milliseconds
3658  *                   that the user is requesting the delayed ACK timer
3659  *                   be set to. Note that this value is defined in
3660  *                   the standard to be between 200 and 500 milliseconds.
3661  *
3662  *                   Note: a value of zero will leave the value alone,
3663  *                   but disable SACK delay. A non-zero value will also
3664  *                   enable SACK delay.
3665  */
3666 static int sctp_getsockopt_delayed_ack_time(struct sock *sk, int len,
3667 					    char __user *optval,
3668 					    int __user *optlen)
3669 {
3670 	struct sctp_assoc_value  params;
3671 	struct sctp_association *asoc = NULL;
3672 	struct sctp_sock        *sp = sctp_sk(sk);
3673 
3674 	if (len != sizeof(struct sctp_assoc_value))
3675 		return - EINVAL;
3676 
3677 	if (copy_from_user(&params, optval, len))
3678 		return -EFAULT;
3679 
3680 	/* Get association, if assoc_id != 0 and the socket is a one
3681 	 * to many style socket, and an association was not found, then
3682 	 * the id was invalid.
3683  	 */
3684 	asoc = sctp_id2assoc(sk, params.assoc_id);
3685 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3686 		return -EINVAL;
3687 
3688 	if (asoc) {
3689 		/* Fetch association values. */
3690 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE)
3691 			params.assoc_value = jiffies_to_msecs(
3692 				asoc->sackdelay);
3693 		else
3694 			params.assoc_value = 0;
3695 	} else {
3696 		/* Fetch socket values. */
3697 		if (sp->param_flags & SPP_SACKDELAY_ENABLE)
3698 			params.assoc_value  = sp->sackdelay;
3699 		else
3700 			params.assoc_value  = 0;
3701 	}
3702 
3703 	if (copy_to_user(optval, &params, len))
3704 		return -EFAULT;
3705 
3706 	if (put_user(len, optlen))
3707 		return -EFAULT;
3708 
3709 	return 0;
3710 }
3711 
3712 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
3713  *
3714  * Applications can specify protocol parameters for the default association
3715  * initialization.  The option name argument to setsockopt() and getsockopt()
3716  * is SCTP_INITMSG.
3717  *
3718  * Setting initialization parameters is effective only on an unconnected
3719  * socket (for UDP-style sockets only future associations are effected
3720  * by the change).  With TCP-style sockets, this option is inherited by
3721  * sockets derived from a listener socket.
3722  */
3723 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
3724 {
3725 	if (len != sizeof(struct sctp_initmsg))
3726 		return -EINVAL;
3727 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
3728 		return -EFAULT;
3729 	return 0;
3730 }
3731 
3732 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len,
3733 					      char __user *optval,
3734 					      int __user *optlen)
3735 {
3736 	sctp_assoc_t id;
3737 	struct sctp_association *asoc;
3738 	struct list_head *pos;
3739 	int cnt = 0;
3740 
3741 	if (len != sizeof(sctp_assoc_t))
3742 		return -EINVAL;
3743 
3744 	if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
3745 		return -EFAULT;
3746 
3747 	/* For UDP-style sockets, id specifies the association to query.  */
3748 	asoc = sctp_id2assoc(sk, id);
3749 	if (!asoc)
3750 		return -EINVAL;
3751 
3752 	list_for_each(pos, &asoc->peer.transport_addr_list) {
3753 		cnt ++;
3754 	}
3755 
3756 	return cnt;
3757 }
3758 
3759 /*
3760  * Old API for getting list of peer addresses. Does not work for 32-bit
3761  * programs running on a 64-bit kernel
3762  */
3763 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len,
3764 					  char __user *optval,
3765 					  int __user *optlen)
3766 {
3767 	struct sctp_association *asoc;
3768 	struct list_head *pos;
3769 	int cnt = 0;
3770 	struct sctp_getaddrs_old getaddrs;
3771 	struct sctp_transport *from;
3772 	void __user *to;
3773 	union sctp_addr temp;
3774 	struct sctp_sock *sp = sctp_sk(sk);
3775 	int addrlen;
3776 
3777 	if (len != sizeof(struct sctp_getaddrs_old))
3778 		return -EINVAL;
3779 
3780 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old)))
3781 		return -EFAULT;
3782 
3783 	if (getaddrs.addr_num <= 0) return -EINVAL;
3784 
3785 	/* For UDP-style sockets, id specifies the association to query.  */
3786 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3787 	if (!asoc)
3788 		return -EINVAL;
3789 
3790 	to = (void __user *)getaddrs.addrs;
3791 	list_for_each(pos, &asoc->peer.transport_addr_list) {
3792 		from = list_entry(pos, struct sctp_transport, transports);
3793 		memcpy(&temp, &from->ipaddr, sizeof(temp));
3794 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3795 		addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
3796 		if (copy_to_user(to, &temp, addrlen))
3797 			return -EFAULT;
3798 		to += addrlen ;
3799 		cnt ++;
3800 		if (cnt >= getaddrs.addr_num) break;
3801 	}
3802 	getaddrs.addr_num = cnt;
3803 	if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old)))
3804 		return -EFAULT;
3805 
3806 	return 0;
3807 }
3808 
3809 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
3810 				      char __user *optval, int __user *optlen)
3811 {
3812 	struct sctp_association *asoc;
3813 	struct list_head *pos;
3814 	int cnt = 0;
3815 	struct sctp_getaddrs getaddrs;
3816 	struct sctp_transport *from;
3817 	void __user *to;
3818 	union sctp_addr temp;
3819 	struct sctp_sock *sp = sctp_sk(sk);
3820 	int addrlen;
3821 	size_t space_left;
3822 	int bytes_copied;
3823 
3824 	if (len < sizeof(struct sctp_getaddrs))
3825 		return -EINVAL;
3826 
3827 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
3828 		return -EFAULT;
3829 
3830 	/* For UDP-style sockets, id specifies the association to query.  */
3831 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3832 	if (!asoc)
3833 		return -EINVAL;
3834 
3835 	to = optval + offsetof(struct sctp_getaddrs,addrs);
3836 	space_left = len - sizeof(struct sctp_getaddrs) -
3837 			offsetof(struct sctp_getaddrs,addrs);
3838 
3839 	list_for_each(pos, &asoc->peer.transport_addr_list) {
3840 		from = list_entry(pos, struct sctp_transport, transports);
3841 		memcpy(&temp, &from->ipaddr, sizeof(temp));
3842 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3843 		addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
3844 		if(space_left < addrlen)
3845 			return -ENOMEM;
3846 		if (copy_to_user(to, &temp, addrlen))
3847 			return -EFAULT;
3848 		to += addrlen;
3849 		cnt++;
3850 		space_left -= addrlen;
3851 	}
3852 
3853 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
3854 		return -EFAULT;
3855 	bytes_copied = ((char __user *)to) - optval;
3856 	if (put_user(bytes_copied, optlen))
3857 		return -EFAULT;
3858 
3859 	return 0;
3860 }
3861 
3862 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len,
3863 					       char __user *optval,
3864 					       int __user *optlen)
3865 {
3866 	sctp_assoc_t id;
3867 	struct sctp_bind_addr *bp;
3868 	struct sctp_association *asoc;
3869 	struct list_head *pos, *temp;
3870 	struct sctp_sockaddr_entry *addr;
3871 	rwlock_t *addr_lock;
3872 	int cnt = 0;
3873 
3874 	if (len != sizeof(sctp_assoc_t))
3875 		return -EINVAL;
3876 
3877 	if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
3878 		return -EFAULT;
3879 
3880 	/*
3881 	 *  For UDP-style sockets, id specifies the association to query.
3882 	 *  If the id field is set to the value '0' then the locally bound
3883 	 *  addresses are returned without regard to any particular
3884 	 *  association.
3885 	 */
3886 	if (0 == id) {
3887 		bp = &sctp_sk(sk)->ep->base.bind_addr;
3888 		addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
3889 	} else {
3890 		asoc = sctp_id2assoc(sk, id);
3891 		if (!asoc)
3892 			return -EINVAL;
3893 		bp = &asoc->base.bind_addr;
3894 		addr_lock = &asoc->base.addr_lock;
3895 	}
3896 
3897 	sctp_read_lock(addr_lock);
3898 
3899 	/* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
3900 	 * addresses from the global local address list.
3901 	 */
3902 	if (sctp_list_single_entry(&bp->address_list)) {
3903 		addr = list_entry(bp->address_list.next,
3904 				  struct sctp_sockaddr_entry, list);
3905 		if (sctp_is_any(&addr->a)) {
3906 			list_for_each_safe(pos, temp, &sctp_local_addr_list) {
3907 				addr = list_entry(pos,
3908 						  struct sctp_sockaddr_entry,
3909 						  list);
3910 				if ((PF_INET == sk->sk_family) &&
3911 				    (AF_INET6 == addr->a.sa.sa_family))
3912 					continue;
3913 				cnt++;
3914 			}
3915 		} else {
3916 			cnt = 1;
3917 		}
3918 		goto done;
3919 	}
3920 
3921 	list_for_each(pos, &bp->address_list) {
3922 		cnt ++;
3923 	}
3924 
3925 done:
3926 	sctp_read_unlock(addr_lock);
3927 	return cnt;
3928 }
3929 
3930 /* Helper function that copies local addresses to user and returns the number
3931  * of addresses copied.
3932  */
3933 static int sctp_copy_laddrs_to_user_old(struct sock *sk, __u16 port, int max_addrs,
3934 					void __user *to)
3935 {
3936 	struct list_head *pos, *next;
3937 	struct sctp_sockaddr_entry *addr;
3938 	union sctp_addr temp;
3939 	int cnt = 0;
3940 	int addrlen;
3941 
3942 	list_for_each_safe(pos, next, &sctp_local_addr_list) {
3943 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3944 		if ((PF_INET == sk->sk_family) &&
3945 		    (AF_INET6 == addr->a.sa.sa_family))
3946 			continue;
3947 		memcpy(&temp, &addr->a, sizeof(temp));
3948 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3949 								&temp);
3950 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3951 		if (copy_to_user(to, &temp, addrlen))
3952 			return -EFAULT;
3953 
3954 		to += addrlen;
3955 		cnt ++;
3956 		if (cnt >= max_addrs) break;
3957 	}
3958 
3959 	return cnt;
3960 }
3961 
3962 static int sctp_copy_laddrs_to_user(struct sock *sk, __u16 port,
3963 				    void __user **to, size_t space_left)
3964 {
3965 	struct list_head *pos, *next;
3966 	struct sctp_sockaddr_entry *addr;
3967 	union sctp_addr temp;
3968 	int cnt = 0;
3969 	int addrlen;
3970 
3971 	list_for_each_safe(pos, next, &sctp_local_addr_list) {
3972 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3973 		if ((PF_INET == sk->sk_family) &&
3974 		    (AF_INET6 == addr->a.sa.sa_family))
3975 			continue;
3976 		memcpy(&temp, &addr->a, sizeof(temp));
3977 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3978 								&temp);
3979 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3980 		if(space_left<addrlen)
3981 			return -ENOMEM;
3982 		if (copy_to_user(*to, &temp, addrlen))
3983 			return -EFAULT;
3984 
3985 		*to += addrlen;
3986 		cnt ++;
3987 		space_left -= addrlen;
3988 	}
3989 
3990 	return cnt;
3991 }
3992 
3993 /* Old API for getting list of local addresses. Does not work for 32-bit
3994  * programs running on a 64-bit kernel
3995  */
3996 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len,
3997 					   char __user *optval, int __user *optlen)
3998 {
3999 	struct sctp_bind_addr *bp;
4000 	struct sctp_association *asoc;
4001 	struct list_head *pos;
4002 	int cnt = 0;
4003 	struct sctp_getaddrs_old getaddrs;
4004 	struct sctp_sockaddr_entry *addr;
4005 	void __user *to;
4006 	union sctp_addr temp;
4007 	struct sctp_sock *sp = sctp_sk(sk);
4008 	int addrlen;
4009 	rwlock_t *addr_lock;
4010 	int err = 0;
4011 
4012 	if (len != sizeof(struct sctp_getaddrs_old))
4013 		return -EINVAL;
4014 
4015 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old)))
4016 		return -EFAULT;
4017 
4018 	if (getaddrs.addr_num <= 0) return -EINVAL;
4019 	/*
4020 	 *  For UDP-style sockets, id specifies the association to query.
4021 	 *  If the id field is set to the value '0' then the locally bound
4022 	 *  addresses are returned without regard to any particular
4023 	 *  association.
4024 	 */
4025 	if (0 == getaddrs.assoc_id) {
4026 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4027 		addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
4028 	} else {
4029 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4030 		if (!asoc)
4031 			return -EINVAL;
4032 		bp = &asoc->base.bind_addr;
4033 		addr_lock = &asoc->base.addr_lock;
4034 	}
4035 
4036 	to = getaddrs.addrs;
4037 
4038 	sctp_read_lock(addr_lock);
4039 
4040 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4041 	 * addresses from the global local address list.
4042 	 */
4043 	if (sctp_list_single_entry(&bp->address_list)) {
4044 		addr = list_entry(bp->address_list.next,
4045 				  struct sctp_sockaddr_entry, list);
4046 		if (sctp_is_any(&addr->a)) {
4047 			cnt = sctp_copy_laddrs_to_user_old(sk, bp->port,
4048 							   getaddrs.addr_num,
4049 							   to);
4050 			if (cnt < 0) {
4051 				err = cnt;
4052 				goto unlock;
4053 			}
4054 			goto copy_getaddrs;
4055 		}
4056 	}
4057 
4058 	list_for_each(pos, &bp->address_list) {
4059 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
4060 		memcpy(&temp, &addr->a, sizeof(temp));
4061 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4062 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4063 		if (copy_to_user(to, &temp, addrlen)) {
4064 			err = -EFAULT;
4065 			goto unlock;
4066 		}
4067 		to += addrlen;
4068 		cnt ++;
4069 		if (cnt >= getaddrs.addr_num) break;
4070 	}
4071 
4072 copy_getaddrs:
4073 	getaddrs.addr_num = cnt;
4074 	if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old)))
4075 		err = -EFAULT;
4076 
4077 unlock:
4078 	sctp_read_unlock(addr_lock);
4079 	return err;
4080 }
4081 
4082 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4083 				       char __user *optval, int __user *optlen)
4084 {
4085 	struct sctp_bind_addr *bp;
4086 	struct sctp_association *asoc;
4087 	struct list_head *pos;
4088 	int cnt = 0;
4089 	struct sctp_getaddrs getaddrs;
4090 	struct sctp_sockaddr_entry *addr;
4091 	void __user *to;
4092 	union sctp_addr temp;
4093 	struct sctp_sock *sp = sctp_sk(sk);
4094 	int addrlen;
4095 	rwlock_t *addr_lock;
4096 	int err = 0;
4097 	size_t space_left;
4098 	int bytes_copied;
4099 
4100 	if (len <= sizeof(struct sctp_getaddrs))
4101 		return -EINVAL;
4102 
4103 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4104 		return -EFAULT;
4105 
4106 	/*
4107 	 *  For UDP-style sockets, id specifies the association to query.
4108 	 *  If the id field is set to the value '0' then the locally bound
4109 	 *  addresses are returned without regard to any particular
4110 	 *  association.
4111 	 */
4112 	if (0 == getaddrs.assoc_id) {
4113 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4114 		addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
4115 	} else {
4116 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4117 		if (!asoc)
4118 			return -EINVAL;
4119 		bp = &asoc->base.bind_addr;
4120 		addr_lock = &asoc->base.addr_lock;
4121 	}
4122 
4123 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4124 	space_left = len - sizeof(struct sctp_getaddrs) -
4125 			 offsetof(struct sctp_getaddrs,addrs);
4126 
4127 	sctp_read_lock(addr_lock);
4128 
4129 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4130 	 * addresses from the global local address list.
4131 	 */
4132 	if (sctp_list_single_entry(&bp->address_list)) {
4133 		addr = list_entry(bp->address_list.next,
4134 				  struct sctp_sockaddr_entry, list);
4135 		if (sctp_is_any(&addr->a)) {
4136 			cnt = sctp_copy_laddrs_to_user(sk, bp->port,
4137 						       &to, space_left);
4138 			if (cnt < 0) {
4139 				err = cnt;
4140 				goto unlock;
4141 			}
4142 			goto copy_getaddrs;
4143 		}
4144 	}
4145 
4146 	list_for_each(pos, &bp->address_list) {
4147 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
4148 		memcpy(&temp, &addr->a, sizeof(temp));
4149 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4150 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4151 		if(space_left < addrlen)
4152 			return -ENOMEM; /*fixme: right error?*/
4153 		if (copy_to_user(to, &temp, addrlen)) {
4154 			err = -EFAULT;
4155 			goto unlock;
4156 		}
4157 		to += addrlen;
4158 		cnt ++;
4159 		space_left -= addrlen;
4160 	}
4161 
4162 copy_getaddrs:
4163 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4164 		return -EFAULT;
4165 	bytes_copied = ((char __user *)to) - optval;
4166 	if (put_user(bytes_copied, optlen))
4167 		return -EFAULT;
4168 
4169 unlock:
4170 	sctp_read_unlock(addr_lock);
4171 	return err;
4172 }
4173 
4174 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4175  *
4176  * Requests that the local SCTP stack use the enclosed peer address as
4177  * the association primary.  The enclosed address must be one of the
4178  * association peer's addresses.
4179  */
4180 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4181 					char __user *optval, int __user *optlen)
4182 {
4183 	struct sctp_prim prim;
4184 	struct sctp_association *asoc;
4185 	struct sctp_sock *sp = sctp_sk(sk);
4186 
4187 	if (len != sizeof(struct sctp_prim))
4188 		return -EINVAL;
4189 
4190 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
4191 		return -EFAULT;
4192 
4193 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4194 	if (!asoc)
4195 		return -EINVAL;
4196 
4197 	if (!asoc->peer.primary_path)
4198 		return -ENOTCONN;
4199 
4200 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4201 		asoc->peer.primary_path->af_specific->sockaddr_len);
4202 
4203 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4204 			(union sctp_addr *)&prim.ssp_addr);
4205 
4206 	if (copy_to_user(optval, &prim, sizeof(struct sctp_prim)))
4207 		return -EFAULT;
4208 
4209 	return 0;
4210 }
4211 
4212 /*
4213  * 7.1.11  Set Adaption Layer Indicator (SCTP_ADAPTION_LAYER)
4214  *
4215  * Requests that the local endpoint set the specified Adaption Layer
4216  * Indication parameter for all future INIT and INIT-ACK exchanges.
4217  */
4218 static int sctp_getsockopt_adaption_layer(struct sock *sk, int len,
4219 				  char __user *optval, int __user *optlen)
4220 {
4221 	struct sctp_setadaption adaption;
4222 
4223 	if (len != sizeof(struct sctp_setadaption))
4224 		return -EINVAL;
4225 
4226 	adaption.ssb_adaption_ind = sctp_sk(sk)->adaption_ind;
4227 	if (copy_to_user(optval, &adaption, len))
4228 		return -EFAULT;
4229 
4230 	return 0;
4231 }
4232 
4233 /*
4234  *
4235  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4236  *
4237  *   Applications that wish to use the sendto() system call may wish to
4238  *   specify a default set of parameters that would normally be supplied
4239  *   through the inclusion of ancillary data.  This socket option allows
4240  *   such an application to set the default sctp_sndrcvinfo structure.
4241 
4242 
4243  *   The application that wishes to use this socket option simply passes
4244  *   in to this call the sctp_sndrcvinfo structure defined in Section
4245  *   5.2.2) The input parameters accepted by this call include
4246  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4247  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
4248  *   to this call if the caller is using the UDP model.
4249  *
4250  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
4251  */
4252 static int sctp_getsockopt_default_send_param(struct sock *sk,
4253 					int len, char __user *optval,
4254 					int __user *optlen)
4255 {
4256 	struct sctp_sndrcvinfo info;
4257 	struct sctp_association *asoc;
4258 	struct sctp_sock *sp = sctp_sk(sk);
4259 
4260 	if (len != sizeof(struct sctp_sndrcvinfo))
4261 		return -EINVAL;
4262 	if (copy_from_user(&info, optval, sizeof(struct sctp_sndrcvinfo)))
4263 		return -EFAULT;
4264 
4265 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4266 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4267 		return -EINVAL;
4268 
4269 	if (asoc) {
4270 		info.sinfo_stream = asoc->default_stream;
4271 		info.sinfo_flags = asoc->default_flags;
4272 		info.sinfo_ppid = asoc->default_ppid;
4273 		info.sinfo_context = asoc->default_context;
4274 		info.sinfo_timetolive = asoc->default_timetolive;
4275 	} else {
4276 		info.sinfo_stream = sp->default_stream;
4277 		info.sinfo_flags = sp->default_flags;
4278 		info.sinfo_ppid = sp->default_ppid;
4279 		info.sinfo_context = sp->default_context;
4280 		info.sinfo_timetolive = sp->default_timetolive;
4281 	}
4282 
4283 	if (copy_to_user(optval, &info, sizeof(struct sctp_sndrcvinfo)))
4284 		return -EFAULT;
4285 
4286 	return 0;
4287 }
4288 
4289 /*
4290  *
4291  * 7.1.5 SCTP_NODELAY
4292  *
4293  * Turn on/off any Nagle-like algorithm.  This means that packets are
4294  * generally sent as soon as possible and no unnecessary delays are
4295  * introduced, at the cost of more packets in the network.  Expects an
4296  * integer boolean flag.
4297  */
4298 
4299 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4300 				   char __user *optval, int __user *optlen)
4301 {
4302 	int val;
4303 
4304 	if (len < sizeof(int))
4305 		return -EINVAL;
4306 
4307 	len = sizeof(int);
4308 	val = (sctp_sk(sk)->nodelay == 1);
4309 	if (put_user(len, optlen))
4310 		return -EFAULT;
4311 	if (copy_to_user(optval, &val, len))
4312 		return -EFAULT;
4313 	return 0;
4314 }
4315 
4316 /*
4317  *
4318  * 7.1.1 SCTP_RTOINFO
4319  *
4320  * The protocol parameters used to initialize and bound retransmission
4321  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4322  * and modify these parameters.
4323  * All parameters are time values, in milliseconds.  A value of 0, when
4324  * modifying the parameters, indicates that the current value should not
4325  * be changed.
4326  *
4327  */
4328 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4329 				char __user *optval,
4330 				int __user *optlen) {
4331 	struct sctp_rtoinfo rtoinfo;
4332 	struct sctp_association *asoc;
4333 
4334 	if (len != sizeof (struct sctp_rtoinfo))
4335 		return -EINVAL;
4336 
4337 	if (copy_from_user(&rtoinfo, optval, sizeof (struct sctp_rtoinfo)))
4338 		return -EFAULT;
4339 
4340 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4341 
4342 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4343 		return -EINVAL;
4344 
4345 	/* Values corresponding to the specific association. */
4346 	if (asoc) {
4347 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4348 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4349 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4350 	} else {
4351 		/* Values corresponding to the endpoint. */
4352 		struct sctp_sock *sp = sctp_sk(sk);
4353 
4354 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4355 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
4356 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
4357 	}
4358 
4359 	if (put_user(len, optlen))
4360 		return -EFAULT;
4361 
4362 	if (copy_to_user(optval, &rtoinfo, len))
4363 		return -EFAULT;
4364 
4365 	return 0;
4366 }
4367 
4368 /*
4369  *
4370  * 7.1.2 SCTP_ASSOCINFO
4371  *
4372  * This option is used to tune the the maximum retransmission attempts
4373  * of the association.
4374  * Returns an error if the new association retransmission value is
4375  * greater than the sum of the retransmission value  of the peer.
4376  * See [SCTP] for more information.
4377  *
4378  */
4379 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4380 				     char __user *optval,
4381 				     int __user *optlen)
4382 {
4383 
4384 	struct sctp_assocparams assocparams;
4385 	struct sctp_association *asoc;
4386 	struct list_head *pos;
4387 	int cnt = 0;
4388 
4389 	if (len != sizeof (struct sctp_assocparams))
4390 		return -EINVAL;
4391 
4392 	if (copy_from_user(&assocparams, optval,
4393 			sizeof (struct sctp_assocparams)))
4394 		return -EFAULT;
4395 
4396 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4397 
4398 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4399 		return -EINVAL;
4400 
4401 	/* Values correspoinding to the specific association */
4402 	if (asoc) {
4403 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4404 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4405 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4406 		assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4407 						* 1000) +
4408 						(asoc->cookie_life.tv_usec
4409 						/ 1000);
4410 
4411 		list_for_each(pos, &asoc->peer.transport_addr_list) {
4412 			cnt ++;
4413 		}
4414 
4415 		assocparams.sasoc_number_peer_destinations = cnt;
4416 	} else {
4417 		/* Values corresponding to the endpoint */
4418 		struct sctp_sock *sp = sctp_sk(sk);
4419 
4420 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
4421 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
4422 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
4423 		assocparams.sasoc_cookie_life =
4424 					sp->assocparams.sasoc_cookie_life;
4425 		assocparams.sasoc_number_peer_destinations =
4426 					sp->assocparams.
4427 					sasoc_number_peer_destinations;
4428 	}
4429 
4430 	if (put_user(len, optlen))
4431 		return -EFAULT;
4432 
4433 	if (copy_to_user(optval, &assocparams, len))
4434 		return -EFAULT;
4435 
4436 	return 0;
4437 }
4438 
4439 /*
4440  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
4441  *
4442  * This socket option is a boolean flag which turns on or off mapped V4
4443  * addresses.  If this option is turned on and the socket is type
4444  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
4445  * If this option is turned off, then no mapping will be done of V4
4446  * addresses and a user will receive both PF_INET6 and PF_INET type
4447  * addresses on the socket.
4448  */
4449 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
4450 				    char __user *optval, int __user *optlen)
4451 {
4452 	int val;
4453 	struct sctp_sock *sp = sctp_sk(sk);
4454 
4455 	if (len < sizeof(int))
4456 		return -EINVAL;
4457 
4458 	len = sizeof(int);
4459 	val = sp->v4mapped;
4460 	if (put_user(len, optlen))
4461 		return -EFAULT;
4462 	if (copy_to_user(optval, &val, len))
4463 		return -EFAULT;
4464 
4465 	return 0;
4466 }
4467 
4468 /*
4469  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
4470  * (chapter and verse is quoted at sctp_setsockopt_context())
4471  */
4472 static int sctp_getsockopt_context(struct sock *sk, int len,
4473 				   char __user *optval, int __user *optlen)
4474 {
4475 	struct sctp_assoc_value params;
4476 	struct sctp_sock *sp;
4477 	struct sctp_association *asoc;
4478 
4479 	if (len != sizeof(struct sctp_assoc_value))
4480 		return -EINVAL;
4481 
4482 	if (copy_from_user(&params, optval, len))
4483 		return -EFAULT;
4484 
4485 	sp = sctp_sk(sk);
4486 
4487 	if (params.assoc_id != 0) {
4488 		asoc = sctp_id2assoc(sk, params.assoc_id);
4489 		if (!asoc)
4490 			return -EINVAL;
4491 		params.assoc_value = asoc->default_rcv_context;
4492 	} else {
4493 		params.assoc_value = sp->default_rcv_context;
4494 	}
4495 
4496 	if (put_user(len, optlen))
4497 		return -EFAULT;
4498 	if (copy_to_user(optval, &params, len))
4499 		return -EFAULT;
4500 
4501 	return 0;
4502 }
4503 
4504 /*
4505  * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
4506  *
4507  * This socket option specifies the maximum size to put in any outgoing
4508  * SCTP chunk.  If a message is larger than this size it will be
4509  * fragmented by SCTP into the specified size.  Note that the underlying
4510  * SCTP implementation may fragment into smaller sized chunks when the
4511  * PMTU of the underlying association is smaller than the value set by
4512  * the user.
4513  */
4514 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
4515 				  char __user *optval, int __user *optlen)
4516 {
4517 	int val;
4518 
4519 	if (len < sizeof(int))
4520 		return -EINVAL;
4521 
4522 	len = sizeof(int);
4523 
4524 	val = sctp_sk(sk)->user_frag;
4525 	if (put_user(len, optlen))
4526 		return -EFAULT;
4527 	if (copy_to_user(optval, &val, len))
4528 		return -EFAULT;
4529 
4530 	return 0;
4531 }
4532 
4533 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
4534 				char __user *optval, int __user *optlen)
4535 {
4536 	int retval = 0;
4537 	int len;
4538 
4539 	SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
4540 			  sk, optname);
4541 
4542 	/* I can hardly begin to describe how wrong this is.  This is
4543 	 * so broken as to be worse than useless.  The API draft
4544 	 * REALLY is NOT helpful here...  I am not convinced that the
4545 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
4546 	 * are at all well-founded.
4547 	 */
4548 	if (level != SOL_SCTP) {
4549 		struct sctp_af *af = sctp_sk(sk)->pf->af;
4550 
4551 		retval = af->getsockopt(sk, level, optname, optval, optlen);
4552 		return retval;
4553 	}
4554 
4555 	if (get_user(len, optlen))
4556 		return -EFAULT;
4557 
4558 	sctp_lock_sock(sk);
4559 
4560 	switch (optname) {
4561 	case SCTP_STATUS:
4562 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
4563 		break;
4564 	case SCTP_DISABLE_FRAGMENTS:
4565 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
4566 							   optlen);
4567 		break;
4568 	case SCTP_EVENTS:
4569 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
4570 		break;
4571 	case SCTP_AUTOCLOSE:
4572 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
4573 		break;
4574 	case SCTP_SOCKOPT_PEELOFF:
4575 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
4576 		break;
4577 	case SCTP_PEER_ADDR_PARAMS:
4578 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
4579 							  optlen);
4580 		break;
4581 	case SCTP_DELAYED_ACK_TIME:
4582 		retval = sctp_getsockopt_delayed_ack_time(sk, len, optval,
4583 							  optlen);
4584 		break;
4585 	case SCTP_INITMSG:
4586 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
4587 		break;
4588 	case SCTP_GET_PEER_ADDRS_NUM_OLD:
4589 		retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval,
4590 							    optlen);
4591 		break;
4592 	case SCTP_GET_LOCAL_ADDRS_NUM_OLD:
4593 		retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval,
4594 							     optlen);
4595 		break;
4596 	case SCTP_GET_PEER_ADDRS_OLD:
4597 		retval = sctp_getsockopt_peer_addrs_old(sk, len, optval,
4598 							optlen);
4599 		break;
4600 	case SCTP_GET_LOCAL_ADDRS_OLD:
4601 		retval = sctp_getsockopt_local_addrs_old(sk, len, optval,
4602 							 optlen);
4603 		break;
4604 	case SCTP_GET_PEER_ADDRS:
4605 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
4606 						    optlen);
4607 		break;
4608 	case SCTP_GET_LOCAL_ADDRS:
4609 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
4610 						     optlen);
4611 		break;
4612 	case SCTP_DEFAULT_SEND_PARAM:
4613 		retval = sctp_getsockopt_default_send_param(sk, len,
4614 							    optval, optlen);
4615 		break;
4616 	case SCTP_PRIMARY_ADDR:
4617 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
4618 		break;
4619 	case SCTP_NODELAY:
4620 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
4621 		break;
4622 	case SCTP_RTOINFO:
4623 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
4624 		break;
4625 	case SCTP_ASSOCINFO:
4626 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
4627 		break;
4628 	case SCTP_I_WANT_MAPPED_V4_ADDR:
4629 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
4630 		break;
4631 	case SCTP_MAXSEG:
4632 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
4633 		break;
4634 	case SCTP_GET_PEER_ADDR_INFO:
4635 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
4636 							optlen);
4637 		break;
4638 	case SCTP_ADAPTION_LAYER:
4639 		retval = sctp_getsockopt_adaption_layer(sk, len, optval,
4640 							optlen);
4641 		break;
4642 	case SCTP_CONTEXT:
4643 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
4644 		break;
4645 	default:
4646 		retval = -ENOPROTOOPT;
4647 		break;
4648 	};
4649 
4650 	sctp_release_sock(sk);
4651 	return retval;
4652 }
4653 
4654 static void sctp_hash(struct sock *sk)
4655 {
4656 	/* STUB */
4657 }
4658 
4659 static void sctp_unhash(struct sock *sk)
4660 {
4661 	/* STUB */
4662 }
4663 
4664 /* Check if port is acceptable.  Possibly find first available port.
4665  *
4666  * The port hash table (contained in the 'global' SCTP protocol storage
4667  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
4668  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
4669  * list (the list number is the port number hashed out, so as you
4670  * would expect from a hash function, all the ports in a given list have
4671  * such a number that hashes out to the same list number; you were
4672  * expecting that, right?); so each list has a set of ports, with a
4673  * link to the socket (struct sock) that uses it, the port number and
4674  * a fastreuse flag (FIXME: NPI ipg).
4675  */
4676 static struct sctp_bind_bucket *sctp_bucket_create(
4677 	struct sctp_bind_hashbucket *head, unsigned short snum);
4678 
4679 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
4680 {
4681 	struct sctp_bind_hashbucket *head; /* hash list */
4682 	struct sctp_bind_bucket *pp; /* hash list port iterator */
4683 	unsigned short snum;
4684 	int ret;
4685 
4686 	snum = ntohs(addr->v4.sin_port);
4687 
4688 	SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
4689 	sctp_local_bh_disable();
4690 
4691 	if (snum == 0) {
4692 		/* Search for an available port.
4693 		 *
4694 		 * 'sctp_port_rover' was the last port assigned, so
4695 		 * we start to search from 'sctp_port_rover +
4696 		 * 1'. What we do is first check if port 'rover' is
4697 		 * already in the hash table; if not, we use that; if
4698 		 * it is, we try next.
4699 		 */
4700 		int low = sysctl_local_port_range[0];
4701 		int high = sysctl_local_port_range[1];
4702 		int remaining = (high - low) + 1;
4703 		int rover;
4704 		int index;
4705 
4706 		sctp_spin_lock(&sctp_port_alloc_lock);
4707 		rover = sctp_port_rover;
4708 		do {
4709 			rover++;
4710 			if ((rover < low) || (rover > high))
4711 				rover = low;
4712 			index = sctp_phashfn(rover);
4713 			head = &sctp_port_hashtable[index];
4714 			sctp_spin_lock(&head->lock);
4715 			for (pp = head->chain; pp; pp = pp->next)
4716 				if (pp->port == rover)
4717 					goto next;
4718 			break;
4719 		next:
4720 			sctp_spin_unlock(&head->lock);
4721 		} while (--remaining > 0);
4722 		sctp_port_rover = rover;
4723 		sctp_spin_unlock(&sctp_port_alloc_lock);
4724 
4725 		/* Exhausted local port range during search? */
4726 		ret = 1;
4727 		if (remaining <= 0)
4728 			goto fail;
4729 
4730 		/* OK, here is the one we will use.  HEAD (the port
4731 		 * hash table list entry) is non-NULL and we hold it's
4732 		 * mutex.
4733 		 */
4734 		snum = rover;
4735 	} else {
4736 		/* We are given an specific port number; we verify
4737 		 * that it is not being used. If it is used, we will
4738 		 * exahust the search in the hash list corresponding
4739 		 * to the port number (snum) - we detect that with the
4740 		 * port iterator, pp being NULL.
4741 		 */
4742 		head = &sctp_port_hashtable[sctp_phashfn(snum)];
4743 		sctp_spin_lock(&head->lock);
4744 		for (pp = head->chain; pp; pp = pp->next) {
4745 			if (pp->port == snum)
4746 				goto pp_found;
4747 		}
4748 	}
4749 	pp = NULL;
4750 	goto pp_not_found;
4751 pp_found:
4752 	if (!hlist_empty(&pp->owner)) {
4753 		/* We had a port hash table hit - there is an
4754 		 * available port (pp != NULL) and it is being
4755 		 * used by other socket (pp->owner not empty); that other
4756 		 * socket is going to be sk2.
4757 		 */
4758 		int reuse = sk->sk_reuse;
4759 		struct sock *sk2;
4760 		struct hlist_node *node;
4761 
4762 		SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
4763 		if (pp->fastreuse && sk->sk_reuse)
4764 			goto success;
4765 
4766 		/* Run through the list of sockets bound to the port
4767 		 * (pp->port) [via the pointers bind_next and
4768 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
4769 		 * we get the endpoint they describe and run through
4770 		 * the endpoint's list of IP (v4 or v6) addresses,
4771 		 * comparing each of the addresses with the address of
4772 		 * the socket sk. If we find a match, then that means
4773 		 * that this port/socket (sk) combination are already
4774 		 * in an endpoint.
4775 		 */
4776 		sk_for_each_bound(sk2, node, &pp->owner) {
4777 			struct sctp_endpoint *ep2;
4778 			ep2 = sctp_sk(sk2)->ep;
4779 
4780 			if (reuse && sk2->sk_reuse)
4781 				continue;
4782 
4783 			if (sctp_bind_addr_match(&ep2->base.bind_addr, addr,
4784 						 sctp_sk(sk))) {
4785 				ret = (long)sk2;
4786 				goto fail_unlock;
4787 			}
4788 		}
4789 		SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
4790 	}
4791 pp_not_found:
4792 	/* If there was a hash table miss, create a new port.  */
4793 	ret = 1;
4794 	if (!pp && !(pp = sctp_bucket_create(head, snum)))
4795 		goto fail_unlock;
4796 
4797 	/* In either case (hit or miss), make sure fastreuse is 1 only
4798 	 * if sk->sk_reuse is too (that is, if the caller requested
4799 	 * SO_REUSEADDR on this socket -sk-).
4800 	 */
4801 	if (hlist_empty(&pp->owner))
4802 		pp->fastreuse = sk->sk_reuse ? 1 : 0;
4803 	else if (pp->fastreuse && !sk->sk_reuse)
4804 		pp->fastreuse = 0;
4805 
4806 	/* We are set, so fill up all the data in the hash table
4807 	 * entry, tie the socket list information with the rest of the
4808 	 * sockets FIXME: Blurry, NPI (ipg).
4809 	 */
4810 success:
4811 	inet_sk(sk)->num = snum;
4812 	if (!sctp_sk(sk)->bind_hash) {
4813 		sk_add_bind_node(sk, &pp->owner);
4814 		sctp_sk(sk)->bind_hash = pp;
4815 	}
4816 	ret = 0;
4817 
4818 fail_unlock:
4819 	sctp_spin_unlock(&head->lock);
4820 
4821 fail:
4822 	sctp_local_bh_enable();
4823 	return ret;
4824 }
4825 
4826 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
4827  * port is requested.
4828  */
4829 static int sctp_get_port(struct sock *sk, unsigned short snum)
4830 {
4831 	long ret;
4832 	union sctp_addr addr;
4833 	struct sctp_af *af = sctp_sk(sk)->pf->af;
4834 
4835 	/* Set up a dummy address struct from the sk. */
4836 	af->from_sk(&addr, sk);
4837 	addr.v4.sin_port = htons(snum);
4838 
4839 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
4840 	ret = sctp_get_port_local(sk, &addr);
4841 
4842 	return (ret ? 1 : 0);
4843 }
4844 
4845 /*
4846  * 3.1.3 listen() - UDP Style Syntax
4847  *
4848  *   By default, new associations are not accepted for UDP style sockets.
4849  *   An application uses listen() to mark a socket as being able to
4850  *   accept new associations.
4851  */
4852 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog)
4853 {
4854 	struct sctp_sock *sp = sctp_sk(sk);
4855 	struct sctp_endpoint *ep = sp->ep;
4856 
4857 	/* Only UDP style sockets that are not peeled off are allowed to
4858 	 * listen().
4859 	 */
4860 	if (!sctp_style(sk, UDP))
4861 		return -EINVAL;
4862 
4863 	/* If backlog is zero, disable listening. */
4864 	if (!backlog) {
4865 		if (sctp_sstate(sk, CLOSED))
4866 			return 0;
4867 
4868 		sctp_unhash_endpoint(ep);
4869 		sk->sk_state = SCTP_SS_CLOSED;
4870 	}
4871 
4872 	/* Return if we are already listening. */
4873 	if (sctp_sstate(sk, LISTENING))
4874 		return 0;
4875 
4876 	/*
4877 	 * If a bind() or sctp_bindx() is not called prior to a listen()
4878 	 * call that allows new associations to be accepted, the system
4879 	 * picks an ephemeral port and will choose an address set equivalent
4880 	 * to binding with a wildcard address.
4881 	 *
4882 	 * This is not currently spelled out in the SCTP sockets
4883 	 * extensions draft, but follows the practice as seen in TCP
4884 	 * sockets.
4885 	 */
4886 	if (!ep->base.bind_addr.port) {
4887 		if (sctp_autobind(sk))
4888 			return -EAGAIN;
4889 	}
4890 	sk->sk_state = SCTP_SS_LISTENING;
4891 	sctp_hash_endpoint(ep);
4892 	return 0;
4893 }
4894 
4895 /*
4896  * 4.1.3 listen() - TCP Style Syntax
4897  *
4898  *   Applications uses listen() to ready the SCTP endpoint for accepting
4899  *   inbound associations.
4900  */
4901 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog)
4902 {
4903 	struct sctp_sock *sp = sctp_sk(sk);
4904 	struct sctp_endpoint *ep = sp->ep;
4905 
4906 	/* If backlog is zero, disable listening. */
4907 	if (!backlog) {
4908 		if (sctp_sstate(sk, CLOSED))
4909 			return 0;
4910 
4911 		sctp_unhash_endpoint(ep);
4912 		sk->sk_state = SCTP_SS_CLOSED;
4913 	}
4914 
4915 	if (sctp_sstate(sk, LISTENING))
4916 		return 0;
4917 
4918 	/*
4919 	 * If a bind() or sctp_bindx() is not called prior to a listen()
4920 	 * call that allows new associations to be accepted, the system
4921 	 * picks an ephemeral port and will choose an address set equivalent
4922 	 * to binding with a wildcard address.
4923 	 *
4924 	 * This is not currently spelled out in the SCTP sockets
4925 	 * extensions draft, but follows the practice as seen in TCP
4926 	 * sockets.
4927 	 */
4928 	if (!ep->base.bind_addr.port) {
4929 		if (sctp_autobind(sk))
4930 			return -EAGAIN;
4931 	}
4932 	sk->sk_state = SCTP_SS_LISTENING;
4933 	sk->sk_max_ack_backlog = backlog;
4934 	sctp_hash_endpoint(ep);
4935 	return 0;
4936 }
4937 
4938 /*
4939  *  Move a socket to LISTENING state.
4940  */
4941 int sctp_inet_listen(struct socket *sock, int backlog)
4942 {
4943 	struct sock *sk = sock->sk;
4944 	struct crypto_hash *tfm = NULL;
4945 	int err = -EINVAL;
4946 
4947 	if (unlikely(backlog < 0))
4948 		goto out;
4949 
4950 	sctp_lock_sock(sk);
4951 
4952 	if (sock->state != SS_UNCONNECTED)
4953 		goto out;
4954 
4955 	/* Allocate HMAC for generating cookie. */
4956 	if (sctp_hmac_alg) {
4957 		tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
4958 		if (!tfm) {
4959 			err = -ENOSYS;
4960 			goto out;
4961 		}
4962 	}
4963 
4964 	switch (sock->type) {
4965 	case SOCK_SEQPACKET:
4966 		err = sctp_seqpacket_listen(sk, backlog);
4967 		break;
4968 	case SOCK_STREAM:
4969 		err = sctp_stream_listen(sk, backlog);
4970 		break;
4971 	default:
4972 		break;
4973 	};
4974 	if (err)
4975 		goto cleanup;
4976 
4977 	/* Store away the transform reference. */
4978 	sctp_sk(sk)->hmac = tfm;
4979 out:
4980 	sctp_release_sock(sk);
4981 	return err;
4982 cleanup:
4983 	crypto_free_hash(tfm);
4984 	goto out;
4985 }
4986 
4987 /*
4988  * This function is done by modeling the current datagram_poll() and the
4989  * tcp_poll().  Note that, based on these implementations, we don't
4990  * lock the socket in this function, even though it seems that,
4991  * ideally, locking or some other mechanisms can be used to ensure
4992  * the integrity of the counters (sndbuf and wmem_alloc) used
4993  * in this place.  We assume that we don't need locks either until proven
4994  * otherwise.
4995  *
4996  * Another thing to note is that we include the Async I/O support
4997  * here, again, by modeling the current TCP/UDP code.  We don't have
4998  * a good way to test with it yet.
4999  */
5000 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
5001 {
5002 	struct sock *sk = sock->sk;
5003 	struct sctp_sock *sp = sctp_sk(sk);
5004 	unsigned int mask;
5005 
5006 	poll_wait(file, sk->sk_sleep, wait);
5007 
5008 	/* A TCP-style listening socket becomes readable when the accept queue
5009 	 * is not empty.
5010 	 */
5011 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
5012 		return (!list_empty(&sp->ep->asocs)) ?
5013 		       	(POLLIN | POLLRDNORM) : 0;
5014 
5015 	mask = 0;
5016 
5017 	/* Is there any exceptional events?  */
5018 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
5019 		mask |= POLLERR;
5020 	if (sk->sk_shutdown & RCV_SHUTDOWN)
5021 		mask |= POLLRDHUP;
5022 	if (sk->sk_shutdown == SHUTDOWN_MASK)
5023 		mask |= POLLHUP;
5024 
5025 	/* Is it readable?  Reconsider this code with TCP-style support.  */
5026 	if (!skb_queue_empty(&sk->sk_receive_queue) ||
5027 	    (sk->sk_shutdown & RCV_SHUTDOWN))
5028 		mask |= POLLIN | POLLRDNORM;
5029 
5030 	/* The association is either gone or not ready.  */
5031 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
5032 		return mask;
5033 
5034 	/* Is it writable?  */
5035 	if (sctp_writeable(sk)) {
5036 		mask |= POLLOUT | POLLWRNORM;
5037 	} else {
5038 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
5039 		/*
5040 		 * Since the socket is not locked, the buffer
5041 		 * might be made available after the writeable check and
5042 		 * before the bit is set.  This could cause a lost I/O
5043 		 * signal.  tcp_poll() has a race breaker for this race
5044 		 * condition.  Based on their implementation, we put
5045 		 * in the following code to cover it as well.
5046 		 */
5047 		if (sctp_writeable(sk))
5048 			mask |= POLLOUT | POLLWRNORM;
5049 	}
5050 	return mask;
5051 }
5052 
5053 /********************************************************************
5054  * 2nd Level Abstractions
5055  ********************************************************************/
5056 
5057 static struct sctp_bind_bucket *sctp_bucket_create(
5058 	struct sctp_bind_hashbucket *head, unsigned short snum)
5059 {
5060 	struct sctp_bind_bucket *pp;
5061 
5062 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
5063 	SCTP_DBG_OBJCNT_INC(bind_bucket);
5064 	if (pp) {
5065 		pp->port = snum;
5066 		pp->fastreuse = 0;
5067 		INIT_HLIST_HEAD(&pp->owner);
5068 		if ((pp->next = head->chain) != NULL)
5069 			pp->next->pprev = &pp->next;
5070 		head->chain = pp;
5071 		pp->pprev = &head->chain;
5072 	}
5073 	return pp;
5074 }
5075 
5076 /* Caller must hold hashbucket lock for this tb with local BH disabled */
5077 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
5078 {
5079 	if (pp && hlist_empty(&pp->owner)) {
5080 		if (pp->next)
5081 			pp->next->pprev = pp->pprev;
5082 		*(pp->pprev) = pp->next;
5083 		kmem_cache_free(sctp_bucket_cachep, pp);
5084 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
5085 	}
5086 }
5087 
5088 /* Release this socket's reference to a local port.  */
5089 static inline void __sctp_put_port(struct sock *sk)
5090 {
5091 	struct sctp_bind_hashbucket *head =
5092 		&sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)];
5093 	struct sctp_bind_bucket *pp;
5094 
5095 	sctp_spin_lock(&head->lock);
5096 	pp = sctp_sk(sk)->bind_hash;
5097 	__sk_del_bind_node(sk);
5098 	sctp_sk(sk)->bind_hash = NULL;
5099 	inet_sk(sk)->num = 0;
5100 	sctp_bucket_destroy(pp);
5101 	sctp_spin_unlock(&head->lock);
5102 }
5103 
5104 void sctp_put_port(struct sock *sk)
5105 {
5106 	sctp_local_bh_disable();
5107 	__sctp_put_port(sk);
5108 	sctp_local_bh_enable();
5109 }
5110 
5111 /*
5112  * The system picks an ephemeral port and choose an address set equivalent
5113  * to binding with a wildcard address.
5114  * One of those addresses will be the primary address for the association.
5115  * This automatically enables the multihoming capability of SCTP.
5116  */
5117 static int sctp_autobind(struct sock *sk)
5118 {
5119 	union sctp_addr autoaddr;
5120 	struct sctp_af *af;
5121 	__be16 port;
5122 
5123 	/* Initialize a local sockaddr structure to INADDR_ANY. */
5124 	af = sctp_sk(sk)->pf->af;
5125 
5126 	port = htons(inet_sk(sk)->num);
5127 	af->inaddr_any(&autoaddr, port);
5128 
5129 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
5130 }
5131 
5132 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
5133  *
5134  * From RFC 2292
5135  * 4.2 The cmsghdr Structure *
5136  *
5137  * When ancillary data is sent or received, any number of ancillary data
5138  * objects can be specified by the msg_control and msg_controllen members of
5139  * the msghdr structure, because each object is preceded by
5140  * a cmsghdr structure defining the object's length (the cmsg_len member).
5141  * Historically Berkeley-derived implementations have passed only one object
5142  * at a time, but this API allows multiple objects to be
5143  * passed in a single call to sendmsg() or recvmsg(). The following example
5144  * shows two ancillary data objects in a control buffer.
5145  *
5146  *   |<--------------------------- msg_controllen -------------------------->|
5147  *   |                                                                       |
5148  *
5149  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
5150  *
5151  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
5152  *   |                                   |                                   |
5153  *
5154  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
5155  *
5156  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
5157  *   |                                |  |                                |  |
5158  *
5159  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5160  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
5161  *
5162  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
5163  *
5164  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5165  *    ^
5166  *    |
5167  *
5168  * msg_control
5169  * points here
5170  */
5171 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
5172 				  sctp_cmsgs_t *cmsgs)
5173 {
5174 	struct cmsghdr *cmsg;
5175 
5176 	for (cmsg = CMSG_FIRSTHDR(msg);
5177 	     cmsg != NULL;
5178 	     cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) {
5179 		if (!CMSG_OK(msg, cmsg))
5180 			return -EINVAL;
5181 
5182 		/* Should we parse this header or ignore?  */
5183 		if (cmsg->cmsg_level != IPPROTO_SCTP)
5184 			continue;
5185 
5186 		/* Strictly check lengths following example in SCM code.  */
5187 		switch (cmsg->cmsg_type) {
5188 		case SCTP_INIT:
5189 			/* SCTP Socket API Extension
5190 			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
5191 			 *
5192 			 * This cmsghdr structure provides information for
5193 			 * initializing new SCTP associations with sendmsg().
5194 			 * The SCTP_INITMSG socket option uses this same data
5195 			 * structure.  This structure is not used for
5196 			 * recvmsg().
5197 			 *
5198 			 * cmsg_level    cmsg_type      cmsg_data[]
5199 			 * ------------  ------------   ----------------------
5200 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
5201 			 */
5202 			if (cmsg->cmsg_len !=
5203 			    CMSG_LEN(sizeof(struct sctp_initmsg)))
5204 				return -EINVAL;
5205 			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
5206 			break;
5207 
5208 		case SCTP_SNDRCV:
5209 			/* SCTP Socket API Extension
5210 			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
5211 			 *
5212 			 * This cmsghdr structure specifies SCTP options for
5213 			 * sendmsg() and describes SCTP header information
5214 			 * about a received message through recvmsg().
5215 			 *
5216 			 * cmsg_level    cmsg_type      cmsg_data[]
5217 			 * ------------  ------------   ----------------------
5218 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
5219 			 */
5220 			if (cmsg->cmsg_len !=
5221 			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
5222 				return -EINVAL;
5223 
5224 			cmsgs->info =
5225 				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
5226 
5227 			/* Minimally, validate the sinfo_flags. */
5228 			if (cmsgs->info->sinfo_flags &
5229 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
5230 			      SCTP_ABORT | SCTP_EOF))
5231 				return -EINVAL;
5232 			break;
5233 
5234 		default:
5235 			return -EINVAL;
5236 		};
5237 	}
5238 	return 0;
5239 }
5240 
5241 /*
5242  * Wait for a packet..
5243  * Note: This function is the same function as in core/datagram.c
5244  * with a few modifications to make lksctp work.
5245  */
5246 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
5247 {
5248 	int error;
5249 	DEFINE_WAIT(wait);
5250 
5251 	prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5252 
5253 	/* Socket errors? */
5254 	error = sock_error(sk);
5255 	if (error)
5256 		goto out;
5257 
5258 	if (!skb_queue_empty(&sk->sk_receive_queue))
5259 		goto ready;
5260 
5261 	/* Socket shut down?  */
5262 	if (sk->sk_shutdown & RCV_SHUTDOWN)
5263 		goto out;
5264 
5265 	/* Sequenced packets can come disconnected.  If so we report the
5266 	 * problem.
5267 	 */
5268 	error = -ENOTCONN;
5269 
5270 	/* Is there a good reason to think that we may receive some data?  */
5271 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
5272 		goto out;
5273 
5274 	/* Handle signals.  */
5275 	if (signal_pending(current))
5276 		goto interrupted;
5277 
5278 	/* Let another process have a go.  Since we are going to sleep
5279 	 * anyway.  Note: This may cause odd behaviors if the message
5280 	 * does not fit in the user's buffer, but this seems to be the
5281 	 * only way to honor MSG_DONTWAIT realistically.
5282 	 */
5283 	sctp_release_sock(sk);
5284 	*timeo_p = schedule_timeout(*timeo_p);
5285 	sctp_lock_sock(sk);
5286 
5287 ready:
5288 	finish_wait(sk->sk_sleep, &wait);
5289 	return 0;
5290 
5291 interrupted:
5292 	error = sock_intr_errno(*timeo_p);
5293 
5294 out:
5295 	finish_wait(sk->sk_sleep, &wait);
5296 	*err = error;
5297 	return error;
5298 }
5299 
5300 /* Receive a datagram.
5301  * Note: This is pretty much the same routine as in core/datagram.c
5302  * with a few changes to make lksctp work.
5303  */
5304 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
5305 					      int noblock, int *err)
5306 {
5307 	int error;
5308 	struct sk_buff *skb;
5309 	long timeo;
5310 
5311 	timeo = sock_rcvtimeo(sk, noblock);
5312 
5313 	SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
5314 			  timeo, MAX_SCHEDULE_TIMEOUT);
5315 
5316 	do {
5317 		/* Again only user level code calls this function,
5318 		 * so nothing interrupt level
5319 		 * will suddenly eat the receive_queue.
5320 		 *
5321 		 *  Look at current nfs client by the way...
5322 		 *  However, this function was corrent in any case. 8)
5323 		 */
5324 		if (flags & MSG_PEEK) {
5325 			spin_lock_bh(&sk->sk_receive_queue.lock);
5326 			skb = skb_peek(&sk->sk_receive_queue);
5327 			if (skb)
5328 				atomic_inc(&skb->users);
5329 			spin_unlock_bh(&sk->sk_receive_queue.lock);
5330 		} else {
5331 			skb = skb_dequeue(&sk->sk_receive_queue);
5332 		}
5333 
5334 		if (skb)
5335 			return skb;
5336 
5337 		/* Caller is allowed not to check sk->sk_err before calling. */
5338 		error = sock_error(sk);
5339 		if (error)
5340 			goto no_packet;
5341 
5342 		if (sk->sk_shutdown & RCV_SHUTDOWN)
5343 			break;
5344 
5345 		/* User doesn't want to wait.  */
5346 		error = -EAGAIN;
5347 		if (!timeo)
5348 			goto no_packet;
5349 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
5350 
5351 	return NULL;
5352 
5353 no_packet:
5354 	*err = error;
5355 	return NULL;
5356 }
5357 
5358 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
5359 static void __sctp_write_space(struct sctp_association *asoc)
5360 {
5361 	struct sock *sk = asoc->base.sk;
5362 	struct socket *sock = sk->sk_socket;
5363 
5364 	if ((sctp_wspace(asoc) > 0) && sock) {
5365 		if (waitqueue_active(&asoc->wait))
5366 			wake_up_interruptible(&asoc->wait);
5367 
5368 		if (sctp_writeable(sk)) {
5369 			if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
5370 				wake_up_interruptible(sk->sk_sleep);
5371 
5372 			/* Note that we try to include the Async I/O support
5373 			 * here by modeling from the current TCP/UDP code.
5374 			 * We have not tested with it yet.
5375 			 */
5376 			if (sock->fasync_list &&
5377 			    !(sk->sk_shutdown & SEND_SHUTDOWN))
5378 				sock_wake_async(sock, 2, POLL_OUT);
5379 		}
5380 	}
5381 }
5382 
5383 /* Do accounting for the sndbuf space.
5384  * Decrement the used sndbuf space of the corresponding association by the
5385  * data size which was just transmitted(freed).
5386  */
5387 static void sctp_wfree(struct sk_buff *skb)
5388 {
5389 	struct sctp_association *asoc;
5390 	struct sctp_chunk *chunk;
5391 	struct sock *sk;
5392 
5393 	/* Get the saved chunk pointer.  */
5394 	chunk = *((struct sctp_chunk **)(skb->cb));
5395 	asoc = chunk->asoc;
5396 	sk = asoc->base.sk;
5397 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
5398 				sizeof(struct sk_buff) +
5399 				sizeof(struct sctp_chunk);
5400 
5401 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
5402 
5403 	sock_wfree(skb);
5404 	__sctp_write_space(asoc);
5405 
5406 	sctp_association_put(asoc);
5407 }
5408 
5409 /* Do accounting for the receive space on the socket.
5410  * Accounting for the association is done in ulpevent.c
5411  * We set this as a destructor for the cloned data skbs so that
5412  * accounting is done at the correct time.
5413  */
5414 void sctp_sock_rfree(struct sk_buff *skb)
5415 {
5416 	struct sock *sk = skb->sk;
5417 	struct sctp_ulpevent *event = sctp_skb2event(skb);
5418 
5419 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
5420 }
5421 
5422 
5423 /* Helper function to wait for space in the sndbuf.  */
5424 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
5425 				size_t msg_len)
5426 {
5427 	struct sock *sk = asoc->base.sk;
5428 	int err = 0;
5429 	long current_timeo = *timeo_p;
5430 	DEFINE_WAIT(wait);
5431 
5432 	SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
5433 	                  asoc, (long)(*timeo_p), msg_len);
5434 
5435 	/* Increment the association's refcnt.  */
5436 	sctp_association_hold(asoc);
5437 
5438 	/* Wait on the association specific sndbuf space. */
5439 	for (;;) {
5440 		prepare_to_wait_exclusive(&asoc->wait, &wait,
5441 					  TASK_INTERRUPTIBLE);
5442 		if (!*timeo_p)
5443 			goto do_nonblock;
5444 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
5445 		    asoc->base.dead)
5446 			goto do_error;
5447 		if (signal_pending(current))
5448 			goto do_interrupted;
5449 		if (msg_len <= sctp_wspace(asoc))
5450 			break;
5451 
5452 		/* Let another process have a go.  Since we are going
5453 		 * to sleep anyway.
5454 		 */
5455 		sctp_release_sock(sk);
5456 		current_timeo = schedule_timeout(current_timeo);
5457 		BUG_ON(sk != asoc->base.sk);
5458 		sctp_lock_sock(sk);
5459 
5460 		*timeo_p = current_timeo;
5461 	}
5462 
5463 out:
5464 	finish_wait(&asoc->wait, &wait);
5465 
5466 	/* Release the association's refcnt.  */
5467 	sctp_association_put(asoc);
5468 
5469 	return err;
5470 
5471 do_error:
5472 	err = -EPIPE;
5473 	goto out;
5474 
5475 do_interrupted:
5476 	err = sock_intr_errno(*timeo_p);
5477 	goto out;
5478 
5479 do_nonblock:
5480 	err = -EAGAIN;
5481 	goto out;
5482 }
5483 
5484 /* If socket sndbuf has changed, wake up all per association waiters.  */
5485 void sctp_write_space(struct sock *sk)
5486 {
5487 	struct sctp_association *asoc;
5488 	struct list_head *pos;
5489 
5490 	/* Wake up the tasks in each wait queue.  */
5491 	list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) {
5492 		asoc = list_entry(pos, struct sctp_association, asocs);
5493 		__sctp_write_space(asoc);
5494 	}
5495 }
5496 
5497 /* Is there any sndbuf space available on the socket?
5498  *
5499  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
5500  * associations on the same socket.  For a UDP-style socket with
5501  * multiple associations, it is possible for it to be "unwriteable"
5502  * prematurely.  I assume that this is acceptable because
5503  * a premature "unwriteable" is better than an accidental "writeable" which
5504  * would cause an unwanted block under certain circumstances.  For the 1-1
5505  * UDP-style sockets or TCP-style sockets, this code should work.
5506  *  - Daisy
5507  */
5508 static int sctp_writeable(struct sock *sk)
5509 {
5510 	int amt = 0;
5511 
5512 	amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
5513 	if (amt < 0)
5514 		amt = 0;
5515 	return amt;
5516 }
5517 
5518 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
5519  * returns immediately with EINPROGRESS.
5520  */
5521 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
5522 {
5523 	struct sock *sk = asoc->base.sk;
5524 	int err = 0;
5525 	long current_timeo = *timeo_p;
5526 	DEFINE_WAIT(wait);
5527 
5528 	SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc,
5529 			  (long)(*timeo_p));
5530 
5531 	/* Increment the association's refcnt.  */
5532 	sctp_association_hold(asoc);
5533 
5534 	for (;;) {
5535 		prepare_to_wait_exclusive(&asoc->wait, &wait,
5536 					  TASK_INTERRUPTIBLE);
5537 		if (!*timeo_p)
5538 			goto do_nonblock;
5539 		if (sk->sk_shutdown & RCV_SHUTDOWN)
5540 			break;
5541 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
5542 		    asoc->base.dead)
5543 			goto do_error;
5544 		if (signal_pending(current))
5545 			goto do_interrupted;
5546 
5547 		if (sctp_state(asoc, ESTABLISHED))
5548 			break;
5549 
5550 		/* Let another process have a go.  Since we are going
5551 		 * to sleep anyway.
5552 		 */
5553 		sctp_release_sock(sk);
5554 		current_timeo = schedule_timeout(current_timeo);
5555 		sctp_lock_sock(sk);
5556 
5557 		*timeo_p = current_timeo;
5558 	}
5559 
5560 out:
5561 	finish_wait(&asoc->wait, &wait);
5562 
5563 	/* Release the association's refcnt.  */
5564 	sctp_association_put(asoc);
5565 
5566 	return err;
5567 
5568 do_error:
5569 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
5570 		err = -ETIMEDOUT;
5571 	else
5572 		err = -ECONNREFUSED;
5573 	goto out;
5574 
5575 do_interrupted:
5576 	err = sock_intr_errno(*timeo_p);
5577 	goto out;
5578 
5579 do_nonblock:
5580 	err = -EINPROGRESS;
5581 	goto out;
5582 }
5583 
5584 static int sctp_wait_for_accept(struct sock *sk, long timeo)
5585 {
5586 	struct sctp_endpoint *ep;
5587 	int err = 0;
5588 	DEFINE_WAIT(wait);
5589 
5590 	ep = sctp_sk(sk)->ep;
5591 
5592 
5593 	for (;;) {
5594 		prepare_to_wait_exclusive(sk->sk_sleep, &wait,
5595 					  TASK_INTERRUPTIBLE);
5596 
5597 		if (list_empty(&ep->asocs)) {
5598 			sctp_release_sock(sk);
5599 			timeo = schedule_timeout(timeo);
5600 			sctp_lock_sock(sk);
5601 		}
5602 
5603 		err = -EINVAL;
5604 		if (!sctp_sstate(sk, LISTENING))
5605 			break;
5606 
5607 		err = 0;
5608 		if (!list_empty(&ep->asocs))
5609 			break;
5610 
5611 		err = sock_intr_errno(timeo);
5612 		if (signal_pending(current))
5613 			break;
5614 
5615 		err = -EAGAIN;
5616 		if (!timeo)
5617 			break;
5618 	}
5619 
5620 	finish_wait(sk->sk_sleep, &wait);
5621 
5622 	return err;
5623 }
5624 
5625 void sctp_wait_for_close(struct sock *sk, long timeout)
5626 {
5627 	DEFINE_WAIT(wait);
5628 
5629 	do {
5630 		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5631 		if (list_empty(&sctp_sk(sk)->ep->asocs))
5632 			break;
5633 		sctp_release_sock(sk);
5634 		timeout = schedule_timeout(timeout);
5635 		sctp_lock_sock(sk);
5636 	} while (!signal_pending(current) && timeout);
5637 
5638 	finish_wait(sk->sk_sleep, &wait);
5639 }
5640 
5641 /* Populate the fields of the newsk from the oldsk and migrate the assoc
5642  * and its messages to the newsk.
5643  */
5644 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
5645 			      struct sctp_association *assoc,
5646 			      sctp_socket_type_t type)
5647 {
5648 	struct sctp_sock *oldsp = sctp_sk(oldsk);
5649 	struct sctp_sock *newsp = sctp_sk(newsk);
5650 	struct sctp_bind_bucket *pp; /* hash list port iterator */
5651 	struct sctp_endpoint *newep = newsp->ep;
5652 	struct sk_buff *skb, *tmp;
5653 	struct sctp_ulpevent *event;
5654 	int flags = 0;
5655 
5656 	/* Migrate socket buffer sizes and all the socket level options to the
5657 	 * new socket.
5658 	 */
5659 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
5660 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
5661 	/* Brute force copy old sctp opt. */
5662 	inet_sk_copy_descendant(newsk, oldsk);
5663 
5664 	/* Restore the ep value that was overwritten with the above structure
5665 	 * copy.
5666 	 */
5667 	newsp->ep = newep;
5668 	newsp->hmac = NULL;
5669 
5670 	/* Hook this new socket in to the bind_hash list. */
5671 	pp = sctp_sk(oldsk)->bind_hash;
5672 	sk_add_bind_node(newsk, &pp->owner);
5673 	sctp_sk(newsk)->bind_hash = pp;
5674 	inet_sk(newsk)->num = inet_sk(oldsk)->num;
5675 
5676 	/* Copy the bind_addr list from the original endpoint to the new
5677 	 * endpoint so that we can handle restarts properly
5678 	 */
5679 	if (PF_INET6 == assoc->base.sk->sk_family)
5680 		flags = SCTP_ADDR6_ALLOWED;
5681 	if (assoc->peer.ipv4_address)
5682 		flags |= SCTP_ADDR4_PEERSUPP;
5683 	if (assoc->peer.ipv6_address)
5684 		flags |= SCTP_ADDR6_PEERSUPP;
5685 	sctp_bind_addr_copy(&newsp->ep->base.bind_addr,
5686 			     &oldsp->ep->base.bind_addr,
5687 			     SCTP_SCOPE_GLOBAL, GFP_KERNEL, flags);
5688 
5689 	/* Move any messages in the old socket's receive queue that are for the
5690 	 * peeled off association to the new socket's receive queue.
5691 	 */
5692 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
5693 		event = sctp_skb2event(skb);
5694 		if (event->asoc == assoc) {
5695 			sctp_sock_rfree(skb);
5696 			__skb_unlink(skb, &oldsk->sk_receive_queue);
5697 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
5698 			sctp_skb_set_owner_r(skb, newsk);
5699 		}
5700 	}
5701 
5702 	/* Clean up any messages pending delivery due to partial
5703 	 * delivery.   Three cases:
5704 	 * 1) No partial deliver;  no work.
5705 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
5706 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
5707 	 */
5708 	skb_queue_head_init(&newsp->pd_lobby);
5709 	sctp_sk(newsk)->pd_mode = assoc->ulpq.pd_mode;
5710 
5711 	if (sctp_sk(oldsk)->pd_mode) {
5712 		struct sk_buff_head *queue;
5713 
5714 		/* Decide which queue to move pd_lobby skbs to. */
5715 		if (assoc->ulpq.pd_mode) {
5716 			queue = &newsp->pd_lobby;
5717 		} else
5718 			queue = &newsk->sk_receive_queue;
5719 
5720 		/* Walk through the pd_lobby, looking for skbs that
5721 		 * need moved to the new socket.
5722 		 */
5723 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
5724 			event = sctp_skb2event(skb);
5725 			if (event->asoc == assoc) {
5726 				sctp_sock_rfree(skb);
5727 				__skb_unlink(skb, &oldsp->pd_lobby);
5728 				__skb_queue_tail(queue, skb);
5729 				sctp_skb_set_owner_r(skb, newsk);
5730 			}
5731 		}
5732 
5733 		/* Clear up any skbs waiting for the partial
5734 		 * delivery to finish.
5735 		 */
5736 		if (assoc->ulpq.pd_mode)
5737 			sctp_clear_pd(oldsk);
5738 
5739 	}
5740 
5741 	/* Set the type of socket to indicate that it is peeled off from the
5742 	 * original UDP-style socket or created with the accept() call on a
5743 	 * TCP-style socket..
5744 	 */
5745 	newsp->type = type;
5746 
5747 	/* Mark the new socket "in-use" by the user so that any packets
5748 	 * that may arrive on the association after we've moved it are
5749 	 * queued to the backlog.  This prevents a potential race between
5750 	 * backlog processing on the old socket and new-packet processing
5751 	 * on the new socket.
5752 	 */
5753 	sctp_lock_sock(newsk);
5754 	sctp_assoc_migrate(assoc, newsk);
5755 
5756 	/* If the association on the newsk is already closed before accept()
5757 	 * is called, set RCV_SHUTDOWN flag.
5758 	 */
5759 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
5760 		newsk->sk_shutdown |= RCV_SHUTDOWN;
5761 
5762 	newsk->sk_state = SCTP_SS_ESTABLISHED;
5763 	sctp_release_sock(newsk);
5764 }
5765 
5766 /* This proto struct describes the ULP interface for SCTP.  */
5767 struct proto sctp_prot = {
5768 	.name        =	"SCTP",
5769 	.owner       =	THIS_MODULE,
5770 	.close       =	sctp_close,
5771 	.connect     =	sctp_connect,
5772 	.disconnect  =	sctp_disconnect,
5773 	.accept      =	sctp_accept,
5774 	.ioctl       =	sctp_ioctl,
5775 	.init        =	sctp_init_sock,
5776 	.destroy     =	sctp_destroy_sock,
5777 	.shutdown    =	sctp_shutdown,
5778 	.setsockopt  =	sctp_setsockopt,
5779 	.getsockopt  =	sctp_getsockopt,
5780 	.sendmsg     =	sctp_sendmsg,
5781 	.recvmsg     =	sctp_recvmsg,
5782 	.bind        =	sctp_bind,
5783 	.backlog_rcv =	sctp_backlog_rcv,
5784 	.hash        =	sctp_hash,
5785 	.unhash      =	sctp_unhash,
5786 	.get_port    =	sctp_get_port,
5787 	.obj_size    =  sizeof(struct sctp_sock),
5788 };
5789 
5790 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5791 struct proto sctpv6_prot = {
5792 	.name		= "SCTPv6",
5793 	.owner		= THIS_MODULE,
5794 	.close		= sctp_close,
5795 	.connect	= sctp_connect,
5796 	.disconnect	= sctp_disconnect,
5797 	.accept		= sctp_accept,
5798 	.ioctl		= sctp_ioctl,
5799 	.init		= sctp_init_sock,
5800 	.destroy	= sctp_destroy_sock,
5801 	.shutdown	= sctp_shutdown,
5802 	.setsockopt	= sctp_setsockopt,
5803 	.getsockopt	= sctp_getsockopt,
5804 	.sendmsg	= sctp_sendmsg,
5805 	.recvmsg	= sctp_recvmsg,
5806 	.bind		= sctp_bind,
5807 	.backlog_rcv	= sctp_backlog_rcv,
5808 	.hash		= sctp_hash,
5809 	.unhash		= sctp_unhash,
5810 	.get_port	= sctp_get_port,
5811 	.obj_size	= sizeof(struct sctp6_sock),
5812 };
5813 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
5814