xref: /linux/net/sctp/socket.c (revision 93df8a1ed6231727c5db94a80b1a6bd5ee67cec3)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, see
32  * <http://www.gnu.org/licenses/>.
33  *
34  * Please send any bug reports or fixes you make to the
35  * email address(es):
36  *    lksctp developers <linux-sctp@vger.kernel.org>
37  *
38  * Written or modified by:
39  *    La Monte H.P. Yarroll <piggy@acm.org>
40  *    Narasimha Budihal     <narsi@refcode.org>
41  *    Karl Knutson          <karl@athena.chicago.il.us>
42  *    Jon Grimm             <jgrimm@us.ibm.com>
43  *    Xingang Guo           <xingang.guo@intel.com>
44  *    Daisy Chang           <daisyc@us.ibm.com>
45  *    Sridhar Samudrala     <samudrala@us.ibm.com>
46  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
47  *    Ardelle Fan	    <ardelle.fan@intel.com>
48  *    Ryan Layer	    <rmlayer@us.ibm.com>
49  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
50  *    Kevin Gao             <kevin.gao@intel.com>
51  */
52 
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54 
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/wait.h>
58 #include <linux/time.h>
59 #include <linux/ip.h>
60 #include <linux/capability.h>
61 #include <linux/fcntl.h>
62 #include <linux/poll.h>
63 #include <linux/init.h>
64 #include <linux/crypto.h>
65 #include <linux/slab.h>
66 #include <linux/file.h>
67 #include <linux/compat.h>
68 
69 #include <net/ip.h>
70 #include <net/icmp.h>
71 #include <net/route.h>
72 #include <net/ipv6.h>
73 #include <net/inet_common.h>
74 #include <net/busy_poll.h>
75 
76 #include <linux/socket.h> /* for sa_family_t */
77 #include <linux/export.h>
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81 
82 /* Forward declarations for internal helper functions. */
83 static int sctp_writeable(struct sock *sk);
84 static void sctp_wfree(struct sk_buff *skb);
85 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
86 				size_t msg_len);
87 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
88 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
89 static int sctp_wait_for_accept(struct sock *sk, long timeo);
90 static void sctp_wait_for_close(struct sock *sk, long timeo);
91 static void sctp_destruct_sock(struct sock *sk);
92 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
93 					union sctp_addr *addr, int len);
94 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
95 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
96 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
97 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
98 static int sctp_send_asconf(struct sctp_association *asoc,
99 			    struct sctp_chunk *chunk);
100 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
101 static int sctp_autobind(struct sock *sk);
102 static void sctp_sock_migrate(struct sock *, struct sock *,
103 			      struct sctp_association *, sctp_socket_type_t);
104 
105 static int sctp_memory_pressure;
106 static atomic_long_t sctp_memory_allocated;
107 struct percpu_counter sctp_sockets_allocated;
108 
109 static void sctp_enter_memory_pressure(struct sock *sk)
110 {
111 	sctp_memory_pressure = 1;
112 }
113 
114 
115 /* Get the sndbuf space available at the time on the association.  */
116 static inline int sctp_wspace(struct sctp_association *asoc)
117 {
118 	int amt;
119 
120 	if (asoc->ep->sndbuf_policy)
121 		amt = asoc->sndbuf_used;
122 	else
123 		amt = sk_wmem_alloc_get(asoc->base.sk);
124 
125 	if (amt >= asoc->base.sk->sk_sndbuf) {
126 		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
127 			amt = 0;
128 		else {
129 			amt = sk_stream_wspace(asoc->base.sk);
130 			if (amt < 0)
131 				amt = 0;
132 		}
133 	} else {
134 		amt = asoc->base.sk->sk_sndbuf - amt;
135 	}
136 	return amt;
137 }
138 
139 /* Increment the used sndbuf space count of the corresponding association by
140  * the size of the outgoing data chunk.
141  * Also, set the skb destructor for sndbuf accounting later.
142  *
143  * Since it is always 1-1 between chunk and skb, and also a new skb is always
144  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
145  * destructor in the data chunk skb for the purpose of the sndbuf space
146  * tracking.
147  */
148 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
149 {
150 	struct sctp_association *asoc = chunk->asoc;
151 	struct sock *sk = asoc->base.sk;
152 
153 	/* The sndbuf space is tracked per association.  */
154 	sctp_association_hold(asoc);
155 
156 	skb_set_owner_w(chunk->skb, sk);
157 
158 	chunk->skb->destructor = sctp_wfree;
159 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
160 	skb_shinfo(chunk->skb)->destructor_arg = chunk;
161 
162 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
163 				sizeof(struct sk_buff) +
164 				sizeof(struct sctp_chunk);
165 
166 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
167 	sk->sk_wmem_queued += chunk->skb->truesize;
168 	sk_mem_charge(sk, chunk->skb->truesize);
169 }
170 
171 /* Verify that this is a valid address. */
172 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
173 				   int len)
174 {
175 	struct sctp_af *af;
176 
177 	/* Verify basic sockaddr. */
178 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
179 	if (!af)
180 		return -EINVAL;
181 
182 	/* Is this a valid SCTP address?  */
183 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
184 		return -EINVAL;
185 
186 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
187 		return -EINVAL;
188 
189 	return 0;
190 }
191 
192 /* Look up the association by its id.  If this is not a UDP-style
193  * socket, the ID field is always ignored.
194  */
195 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
196 {
197 	struct sctp_association *asoc = NULL;
198 
199 	/* If this is not a UDP-style socket, assoc id should be ignored. */
200 	if (!sctp_style(sk, UDP)) {
201 		/* Return NULL if the socket state is not ESTABLISHED. It
202 		 * could be a TCP-style listening socket or a socket which
203 		 * hasn't yet called connect() to establish an association.
204 		 */
205 		if (!sctp_sstate(sk, ESTABLISHED))
206 			return NULL;
207 
208 		/* Get the first and the only association from the list. */
209 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
210 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
211 					  struct sctp_association, asocs);
212 		return asoc;
213 	}
214 
215 	/* Otherwise this is a UDP-style socket. */
216 	if (!id || (id == (sctp_assoc_t)-1))
217 		return NULL;
218 
219 	spin_lock_bh(&sctp_assocs_id_lock);
220 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
221 	spin_unlock_bh(&sctp_assocs_id_lock);
222 
223 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
224 		return NULL;
225 
226 	return asoc;
227 }
228 
229 /* Look up the transport from an address and an assoc id. If both address and
230  * id are specified, the associations matching the address and the id should be
231  * the same.
232  */
233 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
234 					      struct sockaddr_storage *addr,
235 					      sctp_assoc_t id)
236 {
237 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
238 	struct sctp_transport *transport;
239 	union sctp_addr *laddr = (union sctp_addr *)addr;
240 
241 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
242 					       laddr,
243 					       &transport);
244 
245 	if (!addr_asoc)
246 		return NULL;
247 
248 	id_asoc = sctp_id2assoc(sk, id);
249 	if (id_asoc && (id_asoc != addr_asoc))
250 		return NULL;
251 
252 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
253 						(union sctp_addr *)addr);
254 
255 	return transport;
256 }
257 
258 /* API 3.1.2 bind() - UDP Style Syntax
259  * The syntax of bind() is,
260  *
261  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
262  *
263  *   sd      - the socket descriptor returned by socket().
264  *   addr    - the address structure (struct sockaddr_in or struct
265  *             sockaddr_in6 [RFC 2553]),
266  *   addr_len - the size of the address structure.
267  */
268 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
269 {
270 	int retval = 0;
271 
272 	lock_sock(sk);
273 
274 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
275 		 addr, addr_len);
276 
277 	/* Disallow binding twice. */
278 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
279 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
280 				      addr_len);
281 	else
282 		retval = -EINVAL;
283 
284 	release_sock(sk);
285 
286 	return retval;
287 }
288 
289 static long sctp_get_port_local(struct sock *, union sctp_addr *);
290 
291 /* Verify this is a valid sockaddr. */
292 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
293 					union sctp_addr *addr, int len)
294 {
295 	struct sctp_af *af;
296 
297 	/* Check minimum size.  */
298 	if (len < sizeof (struct sockaddr))
299 		return NULL;
300 
301 	/* V4 mapped address are really of AF_INET family */
302 	if (addr->sa.sa_family == AF_INET6 &&
303 	    ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
304 		if (!opt->pf->af_supported(AF_INET, opt))
305 			return NULL;
306 	} else {
307 		/* Does this PF support this AF? */
308 		if (!opt->pf->af_supported(addr->sa.sa_family, opt))
309 			return NULL;
310 	}
311 
312 	/* If we get this far, af is valid. */
313 	af = sctp_get_af_specific(addr->sa.sa_family);
314 
315 	if (len < af->sockaddr_len)
316 		return NULL;
317 
318 	return af;
319 }
320 
321 /* Bind a local address either to an endpoint or to an association.  */
322 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
323 {
324 	struct net *net = sock_net(sk);
325 	struct sctp_sock *sp = sctp_sk(sk);
326 	struct sctp_endpoint *ep = sp->ep;
327 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
328 	struct sctp_af *af;
329 	unsigned short snum;
330 	int ret = 0;
331 
332 	/* Common sockaddr verification. */
333 	af = sctp_sockaddr_af(sp, addr, len);
334 	if (!af) {
335 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
336 			 __func__, sk, addr, len);
337 		return -EINVAL;
338 	}
339 
340 	snum = ntohs(addr->v4.sin_port);
341 
342 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
343 		 __func__, sk, &addr->sa, bp->port, snum, len);
344 
345 	/* PF specific bind() address verification. */
346 	if (!sp->pf->bind_verify(sp, addr))
347 		return -EADDRNOTAVAIL;
348 
349 	/* We must either be unbound, or bind to the same port.
350 	 * It's OK to allow 0 ports if we are already bound.
351 	 * We'll just inhert an already bound port in this case
352 	 */
353 	if (bp->port) {
354 		if (!snum)
355 			snum = bp->port;
356 		else if (snum != bp->port) {
357 			pr_debug("%s: new port %d doesn't match existing port "
358 				 "%d\n", __func__, snum, bp->port);
359 			return -EINVAL;
360 		}
361 	}
362 
363 	if (snum && snum < PROT_SOCK &&
364 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
365 		return -EACCES;
366 
367 	/* See if the address matches any of the addresses we may have
368 	 * already bound before checking against other endpoints.
369 	 */
370 	if (sctp_bind_addr_match(bp, addr, sp))
371 		return -EINVAL;
372 
373 	/* Make sure we are allowed to bind here.
374 	 * The function sctp_get_port_local() does duplicate address
375 	 * detection.
376 	 */
377 	addr->v4.sin_port = htons(snum);
378 	if ((ret = sctp_get_port_local(sk, addr))) {
379 		return -EADDRINUSE;
380 	}
381 
382 	/* Refresh ephemeral port.  */
383 	if (!bp->port)
384 		bp->port = inet_sk(sk)->inet_num;
385 
386 	/* Add the address to the bind address list.
387 	 * Use GFP_ATOMIC since BHs will be disabled.
388 	 */
389 	ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
390 
391 	/* Copy back into socket for getsockname() use. */
392 	if (!ret) {
393 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
394 		sp->pf->to_sk_saddr(addr, sk);
395 	}
396 
397 	return ret;
398 }
399 
400  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
401  *
402  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
403  * at any one time.  If a sender, after sending an ASCONF chunk, decides
404  * it needs to transfer another ASCONF Chunk, it MUST wait until the
405  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
406  * subsequent ASCONF. Note this restriction binds each side, so at any
407  * time two ASCONF may be in-transit on any given association (one sent
408  * from each endpoint).
409  */
410 static int sctp_send_asconf(struct sctp_association *asoc,
411 			    struct sctp_chunk *chunk)
412 {
413 	struct net 	*net = sock_net(asoc->base.sk);
414 	int		retval = 0;
415 
416 	/* If there is an outstanding ASCONF chunk, queue it for later
417 	 * transmission.
418 	 */
419 	if (asoc->addip_last_asconf) {
420 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
421 		goto out;
422 	}
423 
424 	/* Hold the chunk until an ASCONF_ACK is received. */
425 	sctp_chunk_hold(chunk);
426 	retval = sctp_primitive_ASCONF(net, asoc, chunk);
427 	if (retval)
428 		sctp_chunk_free(chunk);
429 	else
430 		asoc->addip_last_asconf = chunk;
431 
432 out:
433 	return retval;
434 }
435 
436 /* Add a list of addresses as bind addresses to local endpoint or
437  * association.
438  *
439  * Basically run through each address specified in the addrs/addrcnt
440  * array/length pair, determine if it is IPv6 or IPv4 and call
441  * sctp_do_bind() on it.
442  *
443  * If any of them fails, then the operation will be reversed and the
444  * ones that were added will be removed.
445  *
446  * Only sctp_setsockopt_bindx() is supposed to call this function.
447  */
448 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
449 {
450 	int cnt;
451 	int retval = 0;
452 	void *addr_buf;
453 	struct sockaddr *sa_addr;
454 	struct sctp_af *af;
455 
456 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
457 		 addrs, addrcnt);
458 
459 	addr_buf = addrs;
460 	for (cnt = 0; cnt < addrcnt; cnt++) {
461 		/* The list may contain either IPv4 or IPv6 address;
462 		 * determine the address length for walking thru the list.
463 		 */
464 		sa_addr = addr_buf;
465 		af = sctp_get_af_specific(sa_addr->sa_family);
466 		if (!af) {
467 			retval = -EINVAL;
468 			goto err_bindx_add;
469 		}
470 
471 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
472 				      af->sockaddr_len);
473 
474 		addr_buf += af->sockaddr_len;
475 
476 err_bindx_add:
477 		if (retval < 0) {
478 			/* Failed. Cleanup the ones that have been added */
479 			if (cnt > 0)
480 				sctp_bindx_rem(sk, addrs, cnt);
481 			return retval;
482 		}
483 	}
484 
485 	return retval;
486 }
487 
488 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
489  * associations that are part of the endpoint indicating that a list of local
490  * addresses are added to the endpoint.
491  *
492  * If any of the addresses is already in the bind address list of the
493  * association, we do not send the chunk for that association.  But it will not
494  * affect other associations.
495  *
496  * Only sctp_setsockopt_bindx() is supposed to call this function.
497  */
498 static int sctp_send_asconf_add_ip(struct sock		*sk,
499 				   struct sockaddr	*addrs,
500 				   int 			addrcnt)
501 {
502 	struct net *net = sock_net(sk);
503 	struct sctp_sock		*sp;
504 	struct sctp_endpoint		*ep;
505 	struct sctp_association		*asoc;
506 	struct sctp_bind_addr		*bp;
507 	struct sctp_chunk		*chunk;
508 	struct sctp_sockaddr_entry	*laddr;
509 	union sctp_addr			*addr;
510 	union sctp_addr			saveaddr;
511 	void				*addr_buf;
512 	struct sctp_af			*af;
513 	struct list_head		*p;
514 	int 				i;
515 	int 				retval = 0;
516 
517 	if (!net->sctp.addip_enable)
518 		return retval;
519 
520 	sp = sctp_sk(sk);
521 	ep = sp->ep;
522 
523 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
524 		 __func__, sk, addrs, addrcnt);
525 
526 	list_for_each_entry(asoc, &ep->asocs, asocs) {
527 		if (!asoc->peer.asconf_capable)
528 			continue;
529 
530 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
531 			continue;
532 
533 		if (!sctp_state(asoc, ESTABLISHED))
534 			continue;
535 
536 		/* Check if any address in the packed array of addresses is
537 		 * in the bind address list of the association. If so,
538 		 * do not send the asconf chunk to its peer, but continue with
539 		 * other associations.
540 		 */
541 		addr_buf = addrs;
542 		for (i = 0; i < addrcnt; i++) {
543 			addr = addr_buf;
544 			af = sctp_get_af_specific(addr->v4.sin_family);
545 			if (!af) {
546 				retval = -EINVAL;
547 				goto out;
548 			}
549 
550 			if (sctp_assoc_lookup_laddr(asoc, addr))
551 				break;
552 
553 			addr_buf += af->sockaddr_len;
554 		}
555 		if (i < addrcnt)
556 			continue;
557 
558 		/* Use the first valid address in bind addr list of
559 		 * association as Address Parameter of ASCONF CHUNK.
560 		 */
561 		bp = &asoc->base.bind_addr;
562 		p = bp->address_list.next;
563 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
564 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
565 						   addrcnt, SCTP_PARAM_ADD_IP);
566 		if (!chunk) {
567 			retval = -ENOMEM;
568 			goto out;
569 		}
570 
571 		/* Add the new addresses to the bind address list with
572 		 * use_as_src set to 0.
573 		 */
574 		addr_buf = addrs;
575 		for (i = 0; i < addrcnt; i++) {
576 			addr = addr_buf;
577 			af = sctp_get_af_specific(addr->v4.sin_family);
578 			memcpy(&saveaddr, addr, af->sockaddr_len);
579 			retval = sctp_add_bind_addr(bp, &saveaddr,
580 						    SCTP_ADDR_NEW, GFP_ATOMIC);
581 			addr_buf += af->sockaddr_len;
582 		}
583 		if (asoc->src_out_of_asoc_ok) {
584 			struct sctp_transport *trans;
585 
586 			list_for_each_entry(trans,
587 			    &asoc->peer.transport_addr_list, transports) {
588 				/* Clear the source and route cache */
589 				dst_release(trans->dst);
590 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
591 				    2*asoc->pathmtu, 4380));
592 				trans->ssthresh = asoc->peer.i.a_rwnd;
593 				trans->rto = asoc->rto_initial;
594 				sctp_max_rto(asoc, trans);
595 				trans->rtt = trans->srtt = trans->rttvar = 0;
596 				sctp_transport_route(trans, NULL,
597 				    sctp_sk(asoc->base.sk));
598 			}
599 		}
600 		retval = sctp_send_asconf(asoc, chunk);
601 	}
602 
603 out:
604 	return retval;
605 }
606 
607 /* Remove a list of addresses from bind addresses list.  Do not remove the
608  * last address.
609  *
610  * Basically run through each address specified in the addrs/addrcnt
611  * array/length pair, determine if it is IPv6 or IPv4 and call
612  * sctp_del_bind() on it.
613  *
614  * If any of them fails, then the operation will be reversed and the
615  * ones that were removed will be added back.
616  *
617  * At least one address has to be left; if only one address is
618  * available, the operation will return -EBUSY.
619  *
620  * Only sctp_setsockopt_bindx() is supposed to call this function.
621  */
622 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
623 {
624 	struct sctp_sock *sp = sctp_sk(sk);
625 	struct sctp_endpoint *ep = sp->ep;
626 	int cnt;
627 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
628 	int retval = 0;
629 	void *addr_buf;
630 	union sctp_addr *sa_addr;
631 	struct sctp_af *af;
632 
633 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
634 		 __func__, sk, addrs, addrcnt);
635 
636 	addr_buf = addrs;
637 	for (cnt = 0; cnt < addrcnt; cnt++) {
638 		/* If the bind address list is empty or if there is only one
639 		 * bind address, there is nothing more to be removed (we need
640 		 * at least one address here).
641 		 */
642 		if (list_empty(&bp->address_list) ||
643 		    (sctp_list_single_entry(&bp->address_list))) {
644 			retval = -EBUSY;
645 			goto err_bindx_rem;
646 		}
647 
648 		sa_addr = addr_buf;
649 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
650 		if (!af) {
651 			retval = -EINVAL;
652 			goto err_bindx_rem;
653 		}
654 
655 		if (!af->addr_valid(sa_addr, sp, NULL)) {
656 			retval = -EADDRNOTAVAIL;
657 			goto err_bindx_rem;
658 		}
659 
660 		if (sa_addr->v4.sin_port &&
661 		    sa_addr->v4.sin_port != htons(bp->port)) {
662 			retval = -EINVAL;
663 			goto err_bindx_rem;
664 		}
665 
666 		if (!sa_addr->v4.sin_port)
667 			sa_addr->v4.sin_port = htons(bp->port);
668 
669 		/* FIXME - There is probably a need to check if sk->sk_saddr and
670 		 * sk->sk_rcv_addr are currently set to one of the addresses to
671 		 * be removed. This is something which needs to be looked into
672 		 * when we are fixing the outstanding issues with multi-homing
673 		 * socket routing and failover schemes. Refer to comments in
674 		 * sctp_do_bind(). -daisy
675 		 */
676 		retval = sctp_del_bind_addr(bp, sa_addr);
677 
678 		addr_buf += af->sockaddr_len;
679 err_bindx_rem:
680 		if (retval < 0) {
681 			/* Failed. Add the ones that has been removed back */
682 			if (cnt > 0)
683 				sctp_bindx_add(sk, addrs, cnt);
684 			return retval;
685 		}
686 	}
687 
688 	return retval;
689 }
690 
691 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
692  * the associations that are part of the endpoint indicating that a list of
693  * local addresses are removed from the endpoint.
694  *
695  * If any of the addresses is already in the bind address list of the
696  * association, we do not send the chunk for that association.  But it will not
697  * affect other associations.
698  *
699  * Only sctp_setsockopt_bindx() is supposed to call this function.
700  */
701 static int sctp_send_asconf_del_ip(struct sock		*sk,
702 				   struct sockaddr	*addrs,
703 				   int			addrcnt)
704 {
705 	struct net *net = sock_net(sk);
706 	struct sctp_sock	*sp;
707 	struct sctp_endpoint	*ep;
708 	struct sctp_association	*asoc;
709 	struct sctp_transport	*transport;
710 	struct sctp_bind_addr	*bp;
711 	struct sctp_chunk	*chunk;
712 	union sctp_addr		*laddr;
713 	void			*addr_buf;
714 	struct sctp_af		*af;
715 	struct sctp_sockaddr_entry *saddr;
716 	int 			i;
717 	int 			retval = 0;
718 	int			stored = 0;
719 
720 	chunk = NULL;
721 	if (!net->sctp.addip_enable)
722 		return retval;
723 
724 	sp = sctp_sk(sk);
725 	ep = sp->ep;
726 
727 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
728 		 __func__, sk, addrs, addrcnt);
729 
730 	list_for_each_entry(asoc, &ep->asocs, asocs) {
731 
732 		if (!asoc->peer.asconf_capable)
733 			continue;
734 
735 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
736 			continue;
737 
738 		if (!sctp_state(asoc, ESTABLISHED))
739 			continue;
740 
741 		/* Check if any address in the packed array of addresses is
742 		 * not present in the bind address list of the association.
743 		 * If so, do not send the asconf chunk to its peer, but
744 		 * continue with other associations.
745 		 */
746 		addr_buf = addrs;
747 		for (i = 0; i < addrcnt; i++) {
748 			laddr = addr_buf;
749 			af = sctp_get_af_specific(laddr->v4.sin_family);
750 			if (!af) {
751 				retval = -EINVAL;
752 				goto out;
753 			}
754 
755 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
756 				break;
757 
758 			addr_buf += af->sockaddr_len;
759 		}
760 		if (i < addrcnt)
761 			continue;
762 
763 		/* Find one address in the association's bind address list
764 		 * that is not in the packed array of addresses. This is to
765 		 * make sure that we do not delete all the addresses in the
766 		 * association.
767 		 */
768 		bp = &asoc->base.bind_addr;
769 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
770 					       addrcnt, sp);
771 		if ((laddr == NULL) && (addrcnt == 1)) {
772 			if (asoc->asconf_addr_del_pending)
773 				continue;
774 			asoc->asconf_addr_del_pending =
775 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
776 			if (asoc->asconf_addr_del_pending == NULL) {
777 				retval = -ENOMEM;
778 				goto out;
779 			}
780 			asoc->asconf_addr_del_pending->sa.sa_family =
781 				    addrs->sa_family;
782 			asoc->asconf_addr_del_pending->v4.sin_port =
783 				    htons(bp->port);
784 			if (addrs->sa_family == AF_INET) {
785 				struct sockaddr_in *sin;
786 
787 				sin = (struct sockaddr_in *)addrs;
788 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
789 			} else if (addrs->sa_family == AF_INET6) {
790 				struct sockaddr_in6 *sin6;
791 
792 				sin6 = (struct sockaddr_in6 *)addrs;
793 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
794 			}
795 
796 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
797 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
798 				 asoc->asconf_addr_del_pending);
799 
800 			asoc->src_out_of_asoc_ok = 1;
801 			stored = 1;
802 			goto skip_mkasconf;
803 		}
804 
805 		if (laddr == NULL)
806 			return -EINVAL;
807 
808 		/* We do not need RCU protection throughout this loop
809 		 * because this is done under a socket lock from the
810 		 * setsockopt call.
811 		 */
812 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
813 						   SCTP_PARAM_DEL_IP);
814 		if (!chunk) {
815 			retval = -ENOMEM;
816 			goto out;
817 		}
818 
819 skip_mkasconf:
820 		/* Reset use_as_src flag for the addresses in the bind address
821 		 * list that are to be deleted.
822 		 */
823 		addr_buf = addrs;
824 		for (i = 0; i < addrcnt; i++) {
825 			laddr = addr_buf;
826 			af = sctp_get_af_specific(laddr->v4.sin_family);
827 			list_for_each_entry(saddr, &bp->address_list, list) {
828 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
829 					saddr->state = SCTP_ADDR_DEL;
830 			}
831 			addr_buf += af->sockaddr_len;
832 		}
833 
834 		/* Update the route and saddr entries for all the transports
835 		 * as some of the addresses in the bind address list are
836 		 * about to be deleted and cannot be used as source addresses.
837 		 */
838 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
839 					transports) {
840 			dst_release(transport->dst);
841 			sctp_transport_route(transport, NULL,
842 					     sctp_sk(asoc->base.sk));
843 		}
844 
845 		if (stored)
846 			/* We don't need to transmit ASCONF */
847 			continue;
848 		retval = sctp_send_asconf(asoc, chunk);
849 	}
850 out:
851 	return retval;
852 }
853 
854 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
855 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
856 {
857 	struct sock *sk = sctp_opt2sk(sp);
858 	union sctp_addr *addr;
859 	struct sctp_af *af;
860 
861 	/* It is safe to write port space in caller. */
862 	addr = &addrw->a;
863 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
864 	af = sctp_get_af_specific(addr->sa.sa_family);
865 	if (!af)
866 		return -EINVAL;
867 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
868 		return -EINVAL;
869 
870 	if (addrw->state == SCTP_ADDR_NEW)
871 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
872 	else
873 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
874 }
875 
876 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
877  *
878  * API 8.1
879  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
880  *                int flags);
881  *
882  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
883  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
884  * or IPv6 addresses.
885  *
886  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
887  * Section 3.1.2 for this usage.
888  *
889  * addrs is a pointer to an array of one or more socket addresses. Each
890  * address is contained in its appropriate structure (i.e. struct
891  * sockaddr_in or struct sockaddr_in6) the family of the address type
892  * must be used to distinguish the address length (note that this
893  * representation is termed a "packed array" of addresses). The caller
894  * specifies the number of addresses in the array with addrcnt.
895  *
896  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
897  * -1, and sets errno to the appropriate error code.
898  *
899  * For SCTP, the port given in each socket address must be the same, or
900  * sctp_bindx() will fail, setting errno to EINVAL.
901  *
902  * The flags parameter is formed from the bitwise OR of zero or more of
903  * the following currently defined flags:
904  *
905  * SCTP_BINDX_ADD_ADDR
906  *
907  * SCTP_BINDX_REM_ADDR
908  *
909  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
910  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
911  * addresses from the association. The two flags are mutually exclusive;
912  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
913  * not remove all addresses from an association; sctp_bindx() will
914  * reject such an attempt with EINVAL.
915  *
916  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
917  * additional addresses with an endpoint after calling bind().  Or use
918  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
919  * socket is associated with so that no new association accepted will be
920  * associated with those addresses. If the endpoint supports dynamic
921  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
922  * endpoint to send the appropriate message to the peer to change the
923  * peers address lists.
924  *
925  * Adding and removing addresses from a connected association is
926  * optional functionality. Implementations that do not support this
927  * functionality should return EOPNOTSUPP.
928  *
929  * Basically do nothing but copying the addresses from user to kernel
930  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
931  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
932  * from userspace.
933  *
934  * We don't use copy_from_user() for optimization: we first do the
935  * sanity checks (buffer size -fast- and access check-healthy
936  * pointer); if all of those succeed, then we can alloc the memory
937  * (expensive operation) needed to copy the data to kernel. Then we do
938  * the copying without checking the user space area
939  * (__copy_from_user()).
940  *
941  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
942  * it.
943  *
944  * sk        The sk of the socket
945  * addrs     The pointer to the addresses in user land
946  * addrssize Size of the addrs buffer
947  * op        Operation to perform (add or remove, see the flags of
948  *           sctp_bindx)
949  *
950  * Returns 0 if ok, <0 errno code on error.
951  */
952 static int sctp_setsockopt_bindx(struct sock *sk,
953 				 struct sockaddr __user *addrs,
954 				 int addrs_size, int op)
955 {
956 	struct sockaddr *kaddrs;
957 	int err;
958 	int addrcnt = 0;
959 	int walk_size = 0;
960 	struct sockaddr *sa_addr;
961 	void *addr_buf;
962 	struct sctp_af *af;
963 
964 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
965 		 __func__, sk, addrs, addrs_size, op);
966 
967 	if (unlikely(addrs_size <= 0))
968 		return -EINVAL;
969 
970 	/* Check the user passed a healthy pointer.  */
971 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
972 		return -EFAULT;
973 
974 	/* Alloc space for the address array in kernel memory.  */
975 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
976 	if (unlikely(!kaddrs))
977 		return -ENOMEM;
978 
979 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
980 		kfree(kaddrs);
981 		return -EFAULT;
982 	}
983 
984 	/* Walk through the addrs buffer and count the number of addresses. */
985 	addr_buf = kaddrs;
986 	while (walk_size < addrs_size) {
987 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
988 			kfree(kaddrs);
989 			return -EINVAL;
990 		}
991 
992 		sa_addr = addr_buf;
993 		af = sctp_get_af_specific(sa_addr->sa_family);
994 
995 		/* If the address family is not supported or if this address
996 		 * causes the address buffer to overflow return EINVAL.
997 		 */
998 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
999 			kfree(kaddrs);
1000 			return -EINVAL;
1001 		}
1002 		addrcnt++;
1003 		addr_buf += af->sockaddr_len;
1004 		walk_size += af->sockaddr_len;
1005 	}
1006 
1007 	/* Do the work. */
1008 	switch (op) {
1009 	case SCTP_BINDX_ADD_ADDR:
1010 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1011 		if (err)
1012 			goto out;
1013 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1014 		break;
1015 
1016 	case SCTP_BINDX_REM_ADDR:
1017 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1018 		if (err)
1019 			goto out;
1020 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1021 		break;
1022 
1023 	default:
1024 		err = -EINVAL;
1025 		break;
1026 	}
1027 
1028 out:
1029 	kfree(kaddrs);
1030 
1031 	return err;
1032 }
1033 
1034 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1035  *
1036  * Common routine for handling connect() and sctp_connectx().
1037  * Connect will come in with just a single address.
1038  */
1039 static int __sctp_connect(struct sock *sk,
1040 			  struct sockaddr *kaddrs,
1041 			  int addrs_size,
1042 			  sctp_assoc_t *assoc_id)
1043 {
1044 	struct net *net = sock_net(sk);
1045 	struct sctp_sock *sp;
1046 	struct sctp_endpoint *ep;
1047 	struct sctp_association *asoc = NULL;
1048 	struct sctp_association *asoc2;
1049 	struct sctp_transport *transport;
1050 	union sctp_addr to;
1051 	sctp_scope_t scope;
1052 	long timeo;
1053 	int err = 0;
1054 	int addrcnt = 0;
1055 	int walk_size = 0;
1056 	union sctp_addr *sa_addr = NULL;
1057 	void *addr_buf;
1058 	unsigned short port;
1059 	unsigned int f_flags = 0;
1060 
1061 	sp = sctp_sk(sk);
1062 	ep = sp->ep;
1063 
1064 	/* connect() cannot be done on a socket that is already in ESTABLISHED
1065 	 * state - UDP-style peeled off socket or a TCP-style socket that
1066 	 * is already connected.
1067 	 * It cannot be done even on a TCP-style listening socket.
1068 	 */
1069 	if (sctp_sstate(sk, ESTABLISHED) ||
1070 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1071 		err = -EISCONN;
1072 		goto out_free;
1073 	}
1074 
1075 	/* Walk through the addrs buffer and count the number of addresses. */
1076 	addr_buf = kaddrs;
1077 	while (walk_size < addrs_size) {
1078 		struct sctp_af *af;
1079 
1080 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1081 			err = -EINVAL;
1082 			goto out_free;
1083 		}
1084 
1085 		sa_addr = addr_buf;
1086 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1087 
1088 		/* If the address family is not supported or if this address
1089 		 * causes the address buffer to overflow return EINVAL.
1090 		 */
1091 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1092 			err = -EINVAL;
1093 			goto out_free;
1094 		}
1095 
1096 		port = ntohs(sa_addr->v4.sin_port);
1097 
1098 		/* Save current address so we can work with it */
1099 		memcpy(&to, sa_addr, af->sockaddr_len);
1100 
1101 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1102 		if (err)
1103 			goto out_free;
1104 
1105 		/* Make sure the destination port is correctly set
1106 		 * in all addresses.
1107 		 */
1108 		if (asoc && asoc->peer.port && asoc->peer.port != port) {
1109 			err = -EINVAL;
1110 			goto out_free;
1111 		}
1112 
1113 		/* Check if there already is a matching association on the
1114 		 * endpoint (other than the one created here).
1115 		 */
1116 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1117 		if (asoc2 && asoc2 != asoc) {
1118 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1119 				err = -EISCONN;
1120 			else
1121 				err = -EALREADY;
1122 			goto out_free;
1123 		}
1124 
1125 		/* If we could not find a matching association on the endpoint,
1126 		 * make sure that there is no peeled-off association matching
1127 		 * the peer address even on another socket.
1128 		 */
1129 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1130 			err = -EADDRNOTAVAIL;
1131 			goto out_free;
1132 		}
1133 
1134 		if (!asoc) {
1135 			/* If a bind() or sctp_bindx() is not called prior to
1136 			 * an sctp_connectx() call, the system picks an
1137 			 * ephemeral port and will choose an address set
1138 			 * equivalent to binding with a wildcard address.
1139 			 */
1140 			if (!ep->base.bind_addr.port) {
1141 				if (sctp_autobind(sk)) {
1142 					err = -EAGAIN;
1143 					goto out_free;
1144 				}
1145 			} else {
1146 				/*
1147 				 * If an unprivileged user inherits a 1-many
1148 				 * style socket with open associations on a
1149 				 * privileged port, it MAY be permitted to
1150 				 * accept new associations, but it SHOULD NOT
1151 				 * be permitted to open new associations.
1152 				 */
1153 				if (ep->base.bind_addr.port < PROT_SOCK &&
1154 				    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1155 					err = -EACCES;
1156 					goto out_free;
1157 				}
1158 			}
1159 
1160 			scope = sctp_scope(&to);
1161 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1162 			if (!asoc) {
1163 				err = -ENOMEM;
1164 				goto out_free;
1165 			}
1166 
1167 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1168 							      GFP_KERNEL);
1169 			if (err < 0) {
1170 				goto out_free;
1171 			}
1172 
1173 		}
1174 
1175 		/* Prime the peer's transport structures.  */
1176 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1177 						SCTP_UNKNOWN);
1178 		if (!transport) {
1179 			err = -ENOMEM;
1180 			goto out_free;
1181 		}
1182 
1183 		addrcnt++;
1184 		addr_buf += af->sockaddr_len;
1185 		walk_size += af->sockaddr_len;
1186 	}
1187 
1188 	/* In case the user of sctp_connectx() wants an association
1189 	 * id back, assign one now.
1190 	 */
1191 	if (assoc_id) {
1192 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1193 		if (err < 0)
1194 			goto out_free;
1195 	}
1196 
1197 	err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1198 	if (err < 0) {
1199 		goto out_free;
1200 	}
1201 
1202 	/* Initialize sk's dport and daddr for getpeername() */
1203 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1204 	sp->pf->to_sk_daddr(sa_addr, sk);
1205 	sk->sk_err = 0;
1206 
1207 	/* in-kernel sockets don't generally have a file allocated to them
1208 	 * if all they do is call sock_create_kern().
1209 	 */
1210 	if (sk->sk_socket->file)
1211 		f_flags = sk->sk_socket->file->f_flags;
1212 
1213 	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1214 
1215 	err = sctp_wait_for_connect(asoc, &timeo);
1216 	if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1217 		*assoc_id = asoc->assoc_id;
1218 
1219 	/* Don't free association on exit. */
1220 	asoc = NULL;
1221 
1222 out_free:
1223 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1224 		 __func__, asoc, kaddrs, err);
1225 
1226 	if (asoc) {
1227 		/* sctp_primitive_ASSOCIATE may have added this association
1228 		 * To the hash table, try to unhash it, just in case, its a noop
1229 		 * if it wasn't hashed so we're safe
1230 		 */
1231 		sctp_unhash_established(asoc);
1232 		sctp_association_free(asoc);
1233 	}
1234 	return err;
1235 }
1236 
1237 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1238  *
1239  * API 8.9
1240  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1241  * 			sctp_assoc_t *asoc);
1242  *
1243  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1244  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1245  * or IPv6 addresses.
1246  *
1247  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1248  * Section 3.1.2 for this usage.
1249  *
1250  * addrs is a pointer to an array of one or more socket addresses. Each
1251  * address is contained in its appropriate structure (i.e. struct
1252  * sockaddr_in or struct sockaddr_in6) the family of the address type
1253  * must be used to distengish the address length (note that this
1254  * representation is termed a "packed array" of addresses). The caller
1255  * specifies the number of addresses in the array with addrcnt.
1256  *
1257  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1258  * the association id of the new association.  On failure, sctp_connectx()
1259  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1260  * is not touched by the kernel.
1261  *
1262  * For SCTP, the port given in each socket address must be the same, or
1263  * sctp_connectx() will fail, setting errno to EINVAL.
1264  *
1265  * An application can use sctp_connectx to initiate an association with
1266  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1267  * allows a caller to specify multiple addresses at which a peer can be
1268  * reached.  The way the SCTP stack uses the list of addresses to set up
1269  * the association is implementation dependent.  This function only
1270  * specifies that the stack will try to make use of all the addresses in
1271  * the list when needed.
1272  *
1273  * Note that the list of addresses passed in is only used for setting up
1274  * the association.  It does not necessarily equal the set of addresses
1275  * the peer uses for the resulting association.  If the caller wants to
1276  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1277  * retrieve them after the association has been set up.
1278  *
1279  * Basically do nothing but copying the addresses from user to kernel
1280  * land and invoking either sctp_connectx(). This is used for tunneling
1281  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1282  *
1283  * We don't use copy_from_user() for optimization: we first do the
1284  * sanity checks (buffer size -fast- and access check-healthy
1285  * pointer); if all of those succeed, then we can alloc the memory
1286  * (expensive operation) needed to copy the data to kernel. Then we do
1287  * the copying without checking the user space area
1288  * (__copy_from_user()).
1289  *
1290  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1291  * it.
1292  *
1293  * sk        The sk of the socket
1294  * addrs     The pointer to the addresses in user land
1295  * addrssize Size of the addrs buffer
1296  *
1297  * Returns >=0 if ok, <0 errno code on error.
1298  */
1299 static int __sctp_setsockopt_connectx(struct sock *sk,
1300 				      struct sockaddr __user *addrs,
1301 				      int addrs_size,
1302 				      sctp_assoc_t *assoc_id)
1303 {
1304 	int err = 0;
1305 	struct sockaddr *kaddrs;
1306 
1307 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1308 		 __func__, sk, addrs, addrs_size);
1309 
1310 	if (unlikely(addrs_size <= 0))
1311 		return -EINVAL;
1312 
1313 	/* Check the user passed a healthy pointer.  */
1314 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1315 		return -EFAULT;
1316 
1317 	/* Alloc space for the address array in kernel memory.  */
1318 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1319 	if (unlikely(!kaddrs))
1320 		return -ENOMEM;
1321 
1322 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1323 		err = -EFAULT;
1324 	} else {
1325 		err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1326 	}
1327 
1328 	kfree(kaddrs);
1329 
1330 	return err;
1331 }
1332 
1333 /*
1334  * This is an older interface.  It's kept for backward compatibility
1335  * to the option that doesn't provide association id.
1336  */
1337 static int sctp_setsockopt_connectx_old(struct sock *sk,
1338 					struct sockaddr __user *addrs,
1339 					int addrs_size)
1340 {
1341 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1342 }
1343 
1344 /*
1345  * New interface for the API.  The since the API is done with a socket
1346  * option, to make it simple we feed back the association id is as a return
1347  * indication to the call.  Error is always negative and association id is
1348  * always positive.
1349  */
1350 static int sctp_setsockopt_connectx(struct sock *sk,
1351 				    struct sockaddr __user *addrs,
1352 				    int addrs_size)
1353 {
1354 	sctp_assoc_t assoc_id = 0;
1355 	int err = 0;
1356 
1357 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1358 
1359 	if (err)
1360 		return err;
1361 	else
1362 		return assoc_id;
1363 }
1364 
1365 /*
1366  * New (hopefully final) interface for the API.
1367  * We use the sctp_getaddrs_old structure so that use-space library
1368  * can avoid any unnecessary allocations. The only different part
1369  * is that we store the actual length of the address buffer into the
1370  * addrs_num structure member. That way we can re-use the existing
1371  * code.
1372  */
1373 #ifdef CONFIG_COMPAT
1374 struct compat_sctp_getaddrs_old {
1375 	sctp_assoc_t	assoc_id;
1376 	s32		addr_num;
1377 	compat_uptr_t	addrs;		/* struct sockaddr * */
1378 };
1379 #endif
1380 
1381 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1382 				     char __user *optval,
1383 				     int __user *optlen)
1384 {
1385 	struct sctp_getaddrs_old param;
1386 	sctp_assoc_t assoc_id = 0;
1387 	int err = 0;
1388 
1389 #ifdef CONFIG_COMPAT
1390 	if (is_compat_task()) {
1391 		struct compat_sctp_getaddrs_old param32;
1392 
1393 		if (len < sizeof(param32))
1394 			return -EINVAL;
1395 		if (copy_from_user(&param32, optval, sizeof(param32)))
1396 			return -EFAULT;
1397 
1398 		param.assoc_id = param32.assoc_id;
1399 		param.addr_num = param32.addr_num;
1400 		param.addrs = compat_ptr(param32.addrs);
1401 	} else
1402 #endif
1403 	{
1404 		if (len < sizeof(param))
1405 			return -EINVAL;
1406 		if (copy_from_user(&param, optval, sizeof(param)))
1407 			return -EFAULT;
1408 	}
1409 
1410 	err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1411 					 param.addrs, param.addr_num,
1412 					 &assoc_id);
1413 	if (err == 0 || err == -EINPROGRESS) {
1414 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1415 			return -EFAULT;
1416 		if (put_user(sizeof(assoc_id), optlen))
1417 			return -EFAULT;
1418 	}
1419 
1420 	return err;
1421 }
1422 
1423 /* API 3.1.4 close() - UDP Style Syntax
1424  * Applications use close() to perform graceful shutdown (as described in
1425  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1426  * by a UDP-style socket.
1427  *
1428  * The syntax is
1429  *
1430  *   ret = close(int sd);
1431  *
1432  *   sd      - the socket descriptor of the associations to be closed.
1433  *
1434  * To gracefully shutdown a specific association represented by the
1435  * UDP-style socket, an application should use the sendmsg() call,
1436  * passing no user data, but including the appropriate flag in the
1437  * ancillary data (see Section xxxx).
1438  *
1439  * If sd in the close() call is a branched-off socket representing only
1440  * one association, the shutdown is performed on that association only.
1441  *
1442  * 4.1.6 close() - TCP Style Syntax
1443  *
1444  * Applications use close() to gracefully close down an association.
1445  *
1446  * The syntax is:
1447  *
1448  *    int close(int sd);
1449  *
1450  *      sd      - the socket descriptor of the association to be closed.
1451  *
1452  * After an application calls close() on a socket descriptor, no further
1453  * socket operations will succeed on that descriptor.
1454  *
1455  * API 7.1.4 SO_LINGER
1456  *
1457  * An application using the TCP-style socket can use this option to
1458  * perform the SCTP ABORT primitive.  The linger option structure is:
1459  *
1460  *  struct  linger {
1461  *     int     l_onoff;                // option on/off
1462  *     int     l_linger;               // linger time
1463  * };
1464  *
1465  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1466  * to 0, calling close() is the same as the ABORT primitive.  If the
1467  * value is set to a negative value, the setsockopt() call will return
1468  * an error.  If the value is set to a positive value linger_time, the
1469  * close() can be blocked for at most linger_time ms.  If the graceful
1470  * shutdown phase does not finish during this period, close() will
1471  * return but the graceful shutdown phase continues in the system.
1472  */
1473 static void sctp_close(struct sock *sk, long timeout)
1474 {
1475 	struct net *net = sock_net(sk);
1476 	struct sctp_endpoint *ep;
1477 	struct sctp_association *asoc;
1478 	struct list_head *pos, *temp;
1479 	unsigned int data_was_unread;
1480 
1481 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1482 
1483 	lock_sock(sk);
1484 	sk->sk_shutdown = SHUTDOWN_MASK;
1485 	sk->sk_state = SCTP_SS_CLOSING;
1486 
1487 	ep = sctp_sk(sk)->ep;
1488 
1489 	/* Clean up any skbs sitting on the receive queue.  */
1490 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1491 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1492 
1493 	/* Walk all associations on an endpoint.  */
1494 	list_for_each_safe(pos, temp, &ep->asocs) {
1495 		asoc = list_entry(pos, struct sctp_association, asocs);
1496 
1497 		if (sctp_style(sk, TCP)) {
1498 			/* A closed association can still be in the list if
1499 			 * it belongs to a TCP-style listening socket that is
1500 			 * not yet accepted. If so, free it. If not, send an
1501 			 * ABORT or SHUTDOWN based on the linger options.
1502 			 */
1503 			if (sctp_state(asoc, CLOSED)) {
1504 				sctp_unhash_established(asoc);
1505 				sctp_association_free(asoc);
1506 				continue;
1507 			}
1508 		}
1509 
1510 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1511 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1512 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1513 			struct sctp_chunk *chunk;
1514 
1515 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1516 			if (chunk)
1517 				sctp_primitive_ABORT(net, asoc, chunk);
1518 		} else
1519 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1520 	}
1521 
1522 	/* On a TCP-style socket, block for at most linger_time if set. */
1523 	if (sctp_style(sk, TCP) && timeout)
1524 		sctp_wait_for_close(sk, timeout);
1525 
1526 	/* This will run the backlog queue.  */
1527 	release_sock(sk);
1528 
1529 	/* Supposedly, no process has access to the socket, but
1530 	 * the net layers still may.
1531 	 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1532 	 * held and that should be grabbed before socket lock.
1533 	 */
1534 	spin_lock_bh(&net->sctp.addr_wq_lock);
1535 	bh_lock_sock(sk);
1536 
1537 	/* Hold the sock, since sk_common_release() will put sock_put()
1538 	 * and we have just a little more cleanup.
1539 	 */
1540 	sock_hold(sk);
1541 	sk_common_release(sk);
1542 
1543 	bh_unlock_sock(sk);
1544 	spin_unlock_bh(&net->sctp.addr_wq_lock);
1545 
1546 	sock_put(sk);
1547 
1548 	SCTP_DBG_OBJCNT_DEC(sock);
1549 }
1550 
1551 /* Handle EPIPE error. */
1552 static int sctp_error(struct sock *sk, int flags, int err)
1553 {
1554 	if (err == -EPIPE)
1555 		err = sock_error(sk) ? : -EPIPE;
1556 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1557 		send_sig(SIGPIPE, current, 0);
1558 	return err;
1559 }
1560 
1561 /* API 3.1.3 sendmsg() - UDP Style Syntax
1562  *
1563  * An application uses sendmsg() and recvmsg() calls to transmit data to
1564  * and receive data from its peer.
1565  *
1566  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1567  *                  int flags);
1568  *
1569  *  socket  - the socket descriptor of the endpoint.
1570  *  message - pointer to the msghdr structure which contains a single
1571  *            user message and possibly some ancillary data.
1572  *
1573  *            See Section 5 for complete description of the data
1574  *            structures.
1575  *
1576  *  flags   - flags sent or received with the user message, see Section
1577  *            5 for complete description of the flags.
1578  *
1579  * Note:  This function could use a rewrite especially when explicit
1580  * connect support comes in.
1581  */
1582 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1583 
1584 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1585 
1586 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1587 {
1588 	struct net *net = sock_net(sk);
1589 	struct sctp_sock *sp;
1590 	struct sctp_endpoint *ep;
1591 	struct sctp_association *new_asoc = NULL, *asoc = NULL;
1592 	struct sctp_transport *transport, *chunk_tp;
1593 	struct sctp_chunk *chunk;
1594 	union sctp_addr to;
1595 	struct sockaddr *msg_name = NULL;
1596 	struct sctp_sndrcvinfo default_sinfo;
1597 	struct sctp_sndrcvinfo *sinfo;
1598 	struct sctp_initmsg *sinit;
1599 	sctp_assoc_t associd = 0;
1600 	sctp_cmsgs_t cmsgs = { NULL };
1601 	sctp_scope_t scope;
1602 	bool fill_sinfo_ttl = false, wait_connect = false;
1603 	struct sctp_datamsg *datamsg;
1604 	int msg_flags = msg->msg_flags;
1605 	__u16 sinfo_flags = 0;
1606 	long timeo;
1607 	int err;
1608 
1609 	err = 0;
1610 	sp = sctp_sk(sk);
1611 	ep = sp->ep;
1612 
1613 	pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1614 		 msg, msg_len, ep);
1615 
1616 	/* We cannot send a message over a TCP-style listening socket. */
1617 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1618 		err = -EPIPE;
1619 		goto out_nounlock;
1620 	}
1621 
1622 	/* Parse out the SCTP CMSGs.  */
1623 	err = sctp_msghdr_parse(msg, &cmsgs);
1624 	if (err) {
1625 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1626 		goto out_nounlock;
1627 	}
1628 
1629 	/* Fetch the destination address for this packet.  This
1630 	 * address only selects the association--it is not necessarily
1631 	 * the address we will send to.
1632 	 * For a peeled-off socket, msg_name is ignored.
1633 	 */
1634 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1635 		int msg_namelen = msg->msg_namelen;
1636 
1637 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1638 				       msg_namelen);
1639 		if (err)
1640 			return err;
1641 
1642 		if (msg_namelen > sizeof(to))
1643 			msg_namelen = sizeof(to);
1644 		memcpy(&to, msg->msg_name, msg_namelen);
1645 		msg_name = msg->msg_name;
1646 	}
1647 
1648 	sinit = cmsgs.init;
1649 	if (cmsgs.sinfo != NULL) {
1650 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1651 		default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid;
1652 		default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags;
1653 		default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid;
1654 		default_sinfo.sinfo_context = cmsgs.sinfo->snd_context;
1655 		default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id;
1656 
1657 		sinfo = &default_sinfo;
1658 		fill_sinfo_ttl = true;
1659 	} else {
1660 		sinfo = cmsgs.srinfo;
1661 	}
1662 	/* Did the user specify SNDINFO/SNDRCVINFO? */
1663 	if (sinfo) {
1664 		sinfo_flags = sinfo->sinfo_flags;
1665 		associd = sinfo->sinfo_assoc_id;
1666 	}
1667 
1668 	pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1669 		 msg_len, sinfo_flags);
1670 
1671 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1672 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1673 		err = -EINVAL;
1674 		goto out_nounlock;
1675 	}
1676 
1677 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1678 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1679 	 * If SCTP_ABORT is set, the message length could be non zero with
1680 	 * the msg_iov set to the user abort reason.
1681 	 */
1682 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1683 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1684 		err = -EINVAL;
1685 		goto out_nounlock;
1686 	}
1687 
1688 	/* If SCTP_ADDR_OVER is set, there must be an address
1689 	 * specified in msg_name.
1690 	 */
1691 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1692 		err = -EINVAL;
1693 		goto out_nounlock;
1694 	}
1695 
1696 	transport = NULL;
1697 
1698 	pr_debug("%s: about to look up association\n", __func__);
1699 
1700 	lock_sock(sk);
1701 
1702 	/* If a msg_name has been specified, assume this is to be used.  */
1703 	if (msg_name) {
1704 		/* Look for a matching association on the endpoint. */
1705 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1706 		if (!asoc) {
1707 			/* If we could not find a matching association on the
1708 			 * endpoint, make sure that it is not a TCP-style
1709 			 * socket that already has an association or there is
1710 			 * no peeled-off association on another socket.
1711 			 */
1712 			if ((sctp_style(sk, TCP) &&
1713 			     sctp_sstate(sk, ESTABLISHED)) ||
1714 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1715 				err = -EADDRNOTAVAIL;
1716 				goto out_unlock;
1717 			}
1718 		}
1719 	} else {
1720 		asoc = sctp_id2assoc(sk, associd);
1721 		if (!asoc) {
1722 			err = -EPIPE;
1723 			goto out_unlock;
1724 		}
1725 	}
1726 
1727 	if (asoc) {
1728 		pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1729 
1730 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1731 		 * socket that has an association in CLOSED state. This can
1732 		 * happen when an accepted socket has an association that is
1733 		 * already CLOSED.
1734 		 */
1735 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1736 			err = -EPIPE;
1737 			goto out_unlock;
1738 		}
1739 
1740 		if (sinfo_flags & SCTP_EOF) {
1741 			pr_debug("%s: shutting down association:%p\n",
1742 				 __func__, asoc);
1743 
1744 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1745 			err = 0;
1746 			goto out_unlock;
1747 		}
1748 		if (sinfo_flags & SCTP_ABORT) {
1749 
1750 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1751 			if (!chunk) {
1752 				err = -ENOMEM;
1753 				goto out_unlock;
1754 			}
1755 
1756 			pr_debug("%s: aborting association:%p\n",
1757 				 __func__, asoc);
1758 
1759 			sctp_primitive_ABORT(net, asoc, chunk);
1760 			err = 0;
1761 			goto out_unlock;
1762 		}
1763 	}
1764 
1765 	/* Do we need to create the association?  */
1766 	if (!asoc) {
1767 		pr_debug("%s: there is no association yet\n", __func__);
1768 
1769 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1770 			err = -EINVAL;
1771 			goto out_unlock;
1772 		}
1773 
1774 		/* Check for invalid stream against the stream counts,
1775 		 * either the default or the user specified stream counts.
1776 		 */
1777 		if (sinfo) {
1778 			if (!sinit || !sinit->sinit_num_ostreams) {
1779 				/* Check against the defaults. */
1780 				if (sinfo->sinfo_stream >=
1781 				    sp->initmsg.sinit_num_ostreams) {
1782 					err = -EINVAL;
1783 					goto out_unlock;
1784 				}
1785 			} else {
1786 				/* Check against the requested.  */
1787 				if (sinfo->sinfo_stream >=
1788 				    sinit->sinit_num_ostreams) {
1789 					err = -EINVAL;
1790 					goto out_unlock;
1791 				}
1792 			}
1793 		}
1794 
1795 		/*
1796 		 * API 3.1.2 bind() - UDP Style Syntax
1797 		 * If a bind() or sctp_bindx() is not called prior to a
1798 		 * sendmsg() call that initiates a new association, the
1799 		 * system picks an ephemeral port and will choose an address
1800 		 * set equivalent to binding with a wildcard address.
1801 		 */
1802 		if (!ep->base.bind_addr.port) {
1803 			if (sctp_autobind(sk)) {
1804 				err = -EAGAIN;
1805 				goto out_unlock;
1806 			}
1807 		} else {
1808 			/*
1809 			 * If an unprivileged user inherits a one-to-many
1810 			 * style socket with open associations on a privileged
1811 			 * port, it MAY be permitted to accept new associations,
1812 			 * but it SHOULD NOT be permitted to open new
1813 			 * associations.
1814 			 */
1815 			if (ep->base.bind_addr.port < PROT_SOCK &&
1816 			    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1817 				err = -EACCES;
1818 				goto out_unlock;
1819 			}
1820 		}
1821 
1822 		scope = sctp_scope(&to);
1823 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1824 		if (!new_asoc) {
1825 			err = -ENOMEM;
1826 			goto out_unlock;
1827 		}
1828 		asoc = new_asoc;
1829 		err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1830 		if (err < 0) {
1831 			err = -ENOMEM;
1832 			goto out_free;
1833 		}
1834 
1835 		/* If the SCTP_INIT ancillary data is specified, set all
1836 		 * the association init values accordingly.
1837 		 */
1838 		if (sinit) {
1839 			if (sinit->sinit_num_ostreams) {
1840 				asoc->c.sinit_num_ostreams =
1841 					sinit->sinit_num_ostreams;
1842 			}
1843 			if (sinit->sinit_max_instreams) {
1844 				asoc->c.sinit_max_instreams =
1845 					sinit->sinit_max_instreams;
1846 			}
1847 			if (sinit->sinit_max_attempts) {
1848 				asoc->max_init_attempts
1849 					= sinit->sinit_max_attempts;
1850 			}
1851 			if (sinit->sinit_max_init_timeo) {
1852 				asoc->max_init_timeo =
1853 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1854 			}
1855 		}
1856 
1857 		/* Prime the peer's transport structures.  */
1858 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1859 		if (!transport) {
1860 			err = -ENOMEM;
1861 			goto out_free;
1862 		}
1863 	}
1864 
1865 	/* ASSERT: we have a valid association at this point.  */
1866 	pr_debug("%s: we have a valid association\n", __func__);
1867 
1868 	if (!sinfo) {
1869 		/* If the user didn't specify SNDINFO/SNDRCVINFO, make up
1870 		 * one with some defaults.
1871 		 */
1872 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1873 		default_sinfo.sinfo_stream = asoc->default_stream;
1874 		default_sinfo.sinfo_flags = asoc->default_flags;
1875 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1876 		default_sinfo.sinfo_context = asoc->default_context;
1877 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1878 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1879 
1880 		sinfo = &default_sinfo;
1881 	} else if (fill_sinfo_ttl) {
1882 		/* In case SNDINFO was specified, we still need to fill
1883 		 * it with a default ttl from the assoc here.
1884 		 */
1885 		sinfo->sinfo_timetolive = asoc->default_timetolive;
1886 	}
1887 
1888 	/* API 7.1.7, the sndbuf size per association bounds the
1889 	 * maximum size of data that can be sent in a single send call.
1890 	 */
1891 	if (msg_len > sk->sk_sndbuf) {
1892 		err = -EMSGSIZE;
1893 		goto out_free;
1894 	}
1895 
1896 	if (asoc->pmtu_pending)
1897 		sctp_assoc_pending_pmtu(sk, asoc);
1898 
1899 	/* If fragmentation is disabled and the message length exceeds the
1900 	 * association fragmentation point, return EMSGSIZE.  The I-D
1901 	 * does not specify what this error is, but this looks like
1902 	 * a great fit.
1903 	 */
1904 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1905 		err = -EMSGSIZE;
1906 		goto out_free;
1907 	}
1908 
1909 	/* Check for invalid stream. */
1910 	if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1911 		err = -EINVAL;
1912 		goto out_free;
1913 	}
1914 
1915 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1916 	if (!sctp_wspace(asoc)) {
1917 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1918 		if (err)
1919 			goto out_free;
1920 	}
1921 
1922 	/* If an address is passed with the sendto/sendmsg call, it is used
1923 	 * to override the primary destination address in the TCP model, or
1924 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1925 	 */
1926 	if ((sctp_style(sk, TCP) && msg_name) ||
1927 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1928 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1929 		if (!chunk_tp) {
1930 			err = -EINVAL;
1931 			goto out_free;
1932 		}
1933 	} else
1934 		chunk_tp = NULL;
1935 
1936 	/* Auto-connect, if we aren't connected already. */
1937 	if (sctp_state(asoc, CLOSED)) {
1938 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1939 		if (err < 0)
1940 			goto out_free;
1941 
1942 		wait_connect = true;
1943 		pr_debug("%s: we associated primitively\n", __func__);
1944 	}
1945 
1946 	/* Break the message into multiple chunks of maximum size. */
1947 	datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1948 	if (IS_ERR(datamsg)) {
1949 		err = PTR_ERR(datamsg);
1950 		goto out_free;
1951 	}
1952 
1953 	/* Now send the (possibly) fragmented message. */
1954 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1955 		sctp_chunk_hold(chunk);
1956 
1957 		/* Do accounting for the write space.  */
1958 		sctp_set_owner_w(chunk);
1959 
1960 		chunk->transport = chunk_tp;
1961 	}
1962 
1963 	/* Send it to the lower layers.  Note:  all chunks
1964 	 * must either fail or succeed.   The lower layer
1965 	 * works that way today.  Keep it that way or this
1966 	 * breaks.
1967 	 */
1968 	err = sctp_primitive_SEND(net, asoc, datamsg);
1969 	/* Did the lower layer accept the chunk? */
1970 	if (err) {
1971 		sctp_datamsg_free(datamsg);
1972 		goto out_free;
1973 	}
1974 
1975 	pr_debug("%s: we sent primitively\n", __func__);
1976 
1977 	sctp_datamsg_put(datamsg);
1978 	err = msg_len;
1979 
1980 	if (unlikely(wait_connect)) {
1981 		timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT);
1982 		sctp_wait_for_connect(asoc, &timeo);
1983 	}
1984 
1985 	/* If we are already past ASSOCIATE, the lower
1986 	 * layers are responsible for association cleanup.
1987 	 */
1988 	goto out_unlock;
1989 
1990 out_free:
1991 	if (new_asoc) {
1992 		sctp_unhash_established(asoc);
1993 		sctp_association_free(asoc);
1994 	}
1995 out_unlock:
1996 	release_sock(sk);
1997 
1998 out_nounlock:
1999 	return sctp_error(sk, msg_flags, err);
2000 
2001 #if 0
2002 do_sock_err:
2003 	if (msg_len)
2004 		err = msg_len;
2005 	else
2006 		err = sock_error(sk);
2007 	goto out;
2008 
2009 do_interrupted:
2010 	if (msg_len)
2011 		err = msg_len;
2012 	goto out;
2013 #endif /* 0 */
2014 }
2015 
2016 /* This is an extended version of skb_pull() that removes the data from the
2017  * start of a skb even when data is spread across the list of skb's in the
2018  * frag_list. len specifies the total amount of data that needs to be removed.
2019  * when 'len' bytes could be removed from the skb, it returns 0.
2020  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
2021  * could not be removed.
2022  */
2023 static int sctp_skb_pull(struct sk_buff *skb, int len)
2024 {
2025 	struct sk_buff *list;
2026 	int skb_len = skb_headlen(skb);
2027 	int rlen;
2028 
2029 	if (len <= skb_len) {
2030 		__skb_pull(skb, len);
2031 		return 0;
2032 	}
2033 	len -= skb_len;
2034 	__skb_pull(skb, skb_len);
2035 
2036 	skb_walk_frags(skb, list) {
2037 		rlen = sctp_skb_pull(list, len);
2038 		skb->len -= (len-rlen);
2039 		skb->data_len -= (len-rlen);
2040 
2041 		if (!rlen)
2042 			return 0;
2043 
2044 		len = rlen;
2045 	}
2046 
2047 	return len;
2048 }
2049 
2050 /* API 3.1.3  recvmsg() - UDP Style Syntax
2051  *
2052  *  ssize_t recvmsg(int socket, struct msghdr *message,
2053  *                    int flags);
2054  *
2055  *  socket  - the socket descriptor of the endpoint.
2056  *  message - pointer to the msghdr structure which contains a single
2057  *            user message and possibly some ancillary data.
2058  *
2059  *            See Section 5 for complete description of the data
2060  *            structures.
2061  *
2062  *  flags   - flags sent or received with the user message, see Section
2063  *            5 for complete description of the flags.
2064  */
2065 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2066 			int noblock, int flags, int *addr_len)
2067 {
2068 	struct sctp_ulpevent *event = NULL;
2069 	struct sctp_sock *sp = sctp_sk(sk);
2070 	struct sk_buff *skb;
2071 	int copied;
2072 	int err = 0;
2073 	int skb_len;
2074 
2075 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2076 		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2077 		 addr_len);
2078 
2079 	lock_sock(sk);
2080 
2081 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2082 		err = -ENOTCONN;
2083 		goto out;
2084 	}
2085 
2086 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2087 	if (!skb)
2088 		goto out;
2089 
2090 	/* Get the total length of the skb including any skb's in the
2091 	 * frag_list.
2092 	 */
2093 	skb_len = skb->len;
2094 
2095 	copied = skb_len;
2096 	if (copied > len)
2097 		copied = len;
2098 
2099 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2100 
2101 	event = sctp_skb2event(skb);
2102 
2103 	if (err)
2104 		goto out_free;
2105 
2106 	sock_recv_ts_and_drops(msg, sk, skb);
2107 	if (sctp_ulpevent_is_notification(event)) {
2108 		msg->msg_flags |= MSG_NOTIFICATION;
2109 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2110 	} else {
2111 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2112 	}
2113 
2114 	/* Check if we allow SCTP_NXTINFO. */
2115 	if (sp->recvnxtinfo)
2116 		sctp_ulpevent_read_nxtinfo(event, msg, sk);
2117 	/* Check if we allow SCTP_RCVINFO. */
2118 	if (sp->recvrcvinfo)
2119 		sctp_ulpevent_read_rcvinfo(event, msg);
2120 	/* Check if we allow SCTP_SNDRCVINFO. */
2121 	if (sp->subscribe.sctp_data_io_event)
2122 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2123 
2124 	err = copied;
2125 
2126 	/* If skb's length exceeds the user's buffer, update the skb and
2127 	 * push it back to the receive_queue so that the next call to
2128 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2129 	 */
2130 	if (skb_len > copied) {
2131 		msg->msg_flags &= ~MSG_EOR;
2132 		if (flags & MSG_PEEK)
2133 			goto out_free;
2134 		sctp_skb_pull(skb, copied);
2135 		skb_queue_head(&sk->sk_receive_queue, skb);
2136 
2137 		/* When only partial message is copied to the user, increase
2138 		 * rwnd by that amount. If all the data in the skb is read,
2139 		 * rwnd is updated when the event is freed.
2140 		 */
2141 		if (!sctp_ulpevent_is_notification(event))
2142 			sctp_assoc_rwnd_increase(event->asoc, copied);
2143 		goto out;
2144 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2145 		   (event->msg_flags & MSG_EOR))
2146 		msg->msg_flags |= MSG_EOR;
2147 	else
2148 		msg->msg_flags &= ~MSG_EOR;
2149 
2150 out_free:
2151 	if (flags & MSG_PEEK) {
2152 		/* Release the skb reference acquired after peeking the skb in
2153 		 * sctp_skb_recv_datagram().
2154 		 */
2155 		kfree_skb(skb);
2156 	} else {
2157 		/* Free the event which includes releasing the reference to
2158 		 * the owner of the skb, freeing the skb and updating the
2159 		 * rwnd.
2160 		 */
2161 		sctp_ulpevent_free(event);
2162 	}
2163 out:
2164 	release_sock(sk);
2165 	return err;
2166 }
2167 
2168 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2169  *
2170  * This option is a on/off flag.  If enabled no SCTP message
2171  * fragmentation will be performed.  Instead if a message being sent
2172  * exceeds the current PMTU size, the message will NOT be sent and
2173  * instead a error will be indicated to the user.
2174  */
2175 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2176 					     char __user *optval,
2177 					     unsigned int optlen)
2178 {
2179 	int val;
2180 
2181 	if (optlen < sizeof(int))
2182 		return -EINVAL;
2183 
2184 	if (get_user(val, (int __user *)optval))
2185 		return -EFAULT;
2186 
2187 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2188 
2189 	return 0;
2190 }
2191 
2192 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2193 				  unsigned int optlen)
2194 {
2195 	struct sctp_association *asoc;
2196 	struct sctp_ulpevent *event;
2197 
2198 	if (optlen > sizeof(struct sctp_event_subscribe))
2199 		return -EINVAL;
2200 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2201 		return -EFAULT;
2202 
2203 	if (sctp_sk(sk)->subscribe.sctp_data_io_event)
2204 		pr_warn_ratelimited(DEPRECATED "%s (pid %d) "
2205 				    "Requested SCTP_SNDRCVINFO event.\n"
2206 				    "Use SCTP_RCVINFO through SCTP_RECVRCVINFO option instead.\n",
2207 				    current->comm, task_pid_nr(current));
2208 
2209 	/* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2210 	 * if there is no data to be sent or retransmit, the stack will
2211 	 * immediately send up this notification.
2212 	 */
2213 	if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2214 				       &sctp_sk(sk)->subscribe)) {
2215 		asoc = sctp_id2assoc(sk, 0);
2216 
2217 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2218 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2219 					GFP_ATOMIC);
2220 			if (!event)
2221 				return -ENOMEM;
2222 
2223 			sctp_ulpq_tail_event(&asoc->ulpq, event);
2224 		}
2225 	}
2226 
2227 	return 0;
2228 }
2229 
2230 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2231  *
2232  * This socket option is applicable to the UDP-style socket only.  When
2233  * set it will cause associations that are idle for more than the
2234  * specified number of seconds to automatically close.  An association
2235  * being idle is defined an association that has NOT sent or received
2236  * user data.  The special value of '0' indicates that no automatic
2237  * close of any associations should be performed.  The option expects an
2238  * integer defining the number of seconds of idle time before an
2239  * association is closed.
2240  */
2241 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2242 				     unsigned int optlen)
2243 {
2244 	struct sctp_sock *sp = sctp_sk(sk);
2245 	struct net *net = sock_net(sk);
2246 
2247 	/* Applicable to UDP-style socket only */
2248 	if (sctp_style(sk, TCP))
2249 		return -EOPNOTSUPP;
2250 	if (optlen != sizeof(int))
2251 		return -EINVAL;
2252 	if (copy_from_user(&sp->autoclose, optval, optlen))
2253 		return -EFAULT;
2254 
2255 	if (sp->autoclose > net->sctp.max_autoclose)
2256 		sp->autoclose = net->sctp.max_autoclose;
2257 
2258 	return 0;
2259 }
2260 
2261 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2262  *
2263  * Applications can enable or disable heartbeats for any peer address of
2264  * an association, modify an address's heartbeat interval, force a
2265  * heartbeat to be sent immediately, and adjust the address's maximum
2266  * number of retransmissions sent before an address is considered
2267  * unreachable.  The following structure is used to access and modify an
2268  * address's parameters:
2269  *
2270  *  struct sctp_paddrparams {
2271  *     sctp_assoc_t            spp_assoc_id;
2272  *     struct sockaddr_storage spp_address;
2273  *     uint32_t                spp_hbinterval;
2274  *     uint16_t                spp_pathmaxrxt;
2275  *     uint32_t                spp_pathmtu;
2276  *     uint32_t                spp_sackdelay;
2277  *     uint32_t                spp_flags;
2278  * };
2279  *
2280  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2281  *                     application, and identifies the association for
2282  *                     this query.
2283  *   spp_address     - This specifies which address is of interest.
2284  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2285  *                     in milliseconds.  If a  value of zero
2286  *                     is present in this field then no changes are to
2287  *                     be made to this parameter.
2288  *   spp_pathmaxrxt  - This contains the maximum number of
2289  *                     retransmissions before this address shall be
2290  *                     considered unreachable. If a  value of zero
2291  *                     is present in this field then no changes are to
2292  *                     be made to this parameter.
2293  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2294  *                     specified here will be the "fixed" path mtu.
2295  *                     Note that if the spp_address field is empty
2296  *                     then all associations on this address will
2297  *                     have this fixed path mtu set upon them.
2298  *
2299  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2300  *                     the number of milliseconds that sacks will be delayed
2301  *                     for. This value will apply to all addresses of an
2302  *                     association if the spp_address field is empty. Note
2303  *                     also, that if delayed sack is enabled and this
2304  *                     value is set to 0, no change is made to the last
2305  *                     recorded delayed sack timer value.
2306  *
2307  *   spp_flags       - These flags are used to control various features
2308  *                     on an association. The flag field may contain
2309  *                     zero or more of the following options.
2310  *
2311  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2312  *                     specified address. Note that if the address
2313  *                     field is empty all addresses for the association
2314  *                     have heartbeats enabled upon them.
2315  *
2316  *                     SPP_HB_DISABLE - Disable heartbeats on the
2317  *                     speicifed address. Note that if the address
2318  *                     field is empty all addresses for the association
2319  *                     will have their heartbeats disabled. Note also
2320  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2321  *                     mutually exclusive, only one of these two should
2322  *                     be specified. Enabling both fields will have
2323  *                     undetermined results.
2324  *
2325  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2326  *                     to be made immediately.
2327  *
2328  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2329  *                     heartbeat delayis to be set to the value of 0
2330  *                     milliseconds.
2331  *
2332  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2333  *                     discovery upon the specified address. Note that
2334  *                     if the address feild is empty then all addresses
2335  *                     on the association are effected.
2336  *
2337  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2338  *                     discovery upon the specified address. Note that
2339  *                     if the address feild is empty then all addresses
2340  *                     on the association are effected. Not also that
2341  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2342  *                     exclusive. Enabling both will have undetermined
2343  *                     results.
2344  *
2345  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2346  *                     on delayed sack. The time specified in spp_sackdelay
2347  *                     is used to specify the sack delay for this address. Note
2348  *                     that if spp_address is empty then all addresses will
2349  *                     enable delayed sack and take on the sack delay
2350  *                     value specified in spp_sackdelay.
2351  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2352  *                     off delayed sack. If the spp_address field is blank then
2353  *                     delayed sack is disabled for the entire association. Note
2354  *                     also that this field is mutually exclusive to
2355  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2356  *                     results.
2357  */
2358 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2359 				       struct sctp_transport   *trans,
2360 				       struct sctp_association *asoc,
2361 				       struct sctp_sock        *sp,
2362 				       int                      hb_change,
2363 				       int                      pmtud_change,
2364 				       int                      sackdelay_change)
2365 {
2366 	int error;
2367 
2368 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2369 		struct net *net = sock_net(trans->asoc->base.sk);
2370 
2371 		error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2372 		if (error)
2373 			return error;
2374 	}
2375 
2376 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2377 	 * this field is ignored.  Note also that a value of zero indicates
2378 	 * the current setting should be left unchanged.
2379 	 */
2380 	if (params->spp_flags & SPP_HB_ENABLE) {
2381 
2382 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2383 		 * set.  This lets us use 0 value when this flag
2384 		 * is set.
2385 		 */
2386 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2387 			params->spp_hbinterval = 0;
2388 
2389 		if (params->spp_hbinterval ||
2390 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2391 			if (trans) {
2392 				trans->hbinterval =
2393 				    msecs_to_jiffies(params->spp_hbinterval);
2394 			} else if (asoc) {
2395 				asoc->hbinterval =
2396 				    msecs_to_jiffies(params->spp_hbinterval);
2397 			} else {
2398 				sp->hbinterval = params->spp_hbinterval;
2399 			}
2400 		}
2401 	}
2402 
2403 	if (hb_change) {
2404 		if (trans) {
2405 			trans->param_flags =
2406 				(trans->param_flags & ~SPP_HB) | hb_change;
2407 		} else if (asoc) {
2408 			asoc->param_flags =
2409 				(asoc->param_flags & ~SPP_HB) | hb_change;
2410 		} else {
2411 			sp->param_flags =
2412 				(sp->param_flags & ~SPP_HB) | hb_change;
2413 		}
2414 	}
2415 
2416 	/* When Path MTU discovery is disabled the value specified here will
2417 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2418 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2419 	 * effect).
2420 	 */
2421 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2422 		if (trans) {
2423 			trans->pathmtu = params->spp_pathmtu;
2424 			sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2425 		} else if (asoc) {
2426 			asoc->pathmtu = params->spp_pathmtu;
2427 			sctp_frag_point(asoc, params->spp_pathmtu);
2428 		} else {
2429 			sp->pathmtu = params->spp_pathmtu;
2430 		}
2431 	}
2432 
2433 	if (pmtud_change) {
2434 		if (trans) {
2435 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2436 				(params->spp_flags & SPP_PMTUD_ENABLE);
2437 			trans->param_flags =
2438 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2439 			if (update) {
2440 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2441 				sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2442 			}
2443 		} else if (asoc) {
2444 			asoc->param_flags =
2445 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2446 		} else {
2447 			sp->param_flags =
2448 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2449 		}
2450 	}
2451 
2452 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2453 	 * value of this field is ignored.  Note also that a value of zero
2454 	 * indicates the current setting should be left unchanged.
2455 	 */
2456 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2457 		if (trans) {
2458 			trans->sackdelay =
2459 				msecs_to_jiffies(params->spp_sackdelay);
2460 		} else if (asoc) {
2461 			asoc->sackdelay =
2462 				msecs_to_jiffies(params->spp_sackdelay);
2463 		} else {
2464 			sp->sackdelay = params->spp_sackdelay;
2465 		}
2466 	}
2467 
2468 	if (sackdelay_change) {
2469 		if (trans) {
2470 			trans->param_flags =
2471 				(trans->param_flags & ~SPP_SACKDELAY) |
2472 				sackdelay_change;
2473 		} else if (asoc) {
2474 			asoc->param_flags =
2475 				(asoc->param_flags & ~SPP_SACKDELAY) |
2476 				sackdelay_change;
2477 		} else {
2478 			sp->param_flags =
2479 				(sp->param_flags & ~SPP_SACKDELAY) |
2480 				sackdelay_change;
2481 		}
2482 	}
2483 
2484 	/* Note that a value of zero indicates the current setting should be
2485 	   left unchanged.
2486 	 */
2487 	if (params->spp_pathmaxrxt) {
2488 		if (trans) {
2489 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2490 		} else if (asoc) {
2491 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2492 		} else {
2493 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2494 		}
2495 	}
2496 
2497 	return 0;
2498 }
2499 
2500 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2501 					    char __user *optval,
2502 					    unsigned int optlen)
2503 {
2504 	struct sctp_paddrparams  params;
2505 	struct sctp_transport   *trans = NULL;
2506 	struct sctp_association *asoc = NULL;
2507 	struct sctp_sock        *sp = sctp_sk(sk);
2508 	int error;
2509 	int hb_change, pmtud_change, sackdelay_change;
2510 
2511 	if (optlen != sizeof(struct sctp_paddrparams))
2512 		return -EINVAL;
2513 
2514 	if (copy_from_user(&params, optval, optlen))
2515 		return -EFAULT;
2516 
2517 	/* Validate flags and value parameters. */
2518 	hb_change        = params.spp_flags & SPP_HB;
2519 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2520 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2521 
2522 	if (hb_change        == SPP_HB ||
2523 	    pmtud_change     == SPP_PMTUD ||
2524 	    sackdelay_change == SPP_SACKDELAY ||
2525 	    params.spp_sackdelay > 500 ||
2526 	    (params.spp_pathmtu &&
2527 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2528 		return -EINVAL;
2529 
2530 	/* If an address other than INADDR_ANY is specified, and
2531 	 * no transport is found, then the request is invalid.
2532 	 */
2533 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2534 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2535 					       params.spp_assoc_id);
2536 		if (!trans)
2537 			return -EINVAL;
2538 	}
2539 
2540 	/* Get association, if assoc_id != 0 and the socket is a one
2541 	 * to many style socket, and an association was not found, then
2542 	 * the id was invalid.
2543 	 */
2544 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2545 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2546 		return -EINVAL;
2547 
2548 	/* Heartbeat demand can only be sent on a transport or
2549 	 * association, but not a socket.
2550 	 */
2551 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2552 		return -EINVAL;
2553 
2554 	/* Process parameters. */
2555 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2556 					    hb_change, pmtud_change,
2557 					    sackdelay_change);
2558 
2559 	if (error)
2560 		return error;
2561 
2562 	/* If changes are for association, also apply parameters to each
2563 	 * transport.
2564 	 */
2565 	if (!trans && asoc) {
2566 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2567 				transports) {
2568 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2569 						    hb_change, pmtud_change,
2570 						    sackdelay_change);
2571 		}
2572 	}
2573 
2574 	return 0;
2575 }
2576 
2577 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2578 {
2579 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2580 }
2581 
2582 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2583 {
2584 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2585 }
2586 
2587 /*
2588  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2589  *
2590  * This option will effect the way delayed acks are performed.  This
2591  * option allows you to get or set the delayed ack time, in
2592  * milliseconds.  It also allows changing the delayed ack frequency.
2593  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2594  * the assoc_id is 0, then this sets or gets the endpoints default
2595  * values.  If the assoc_id field is non-zero, then the set or get
2596  * effects the specified association for the one to many model (the
2597  * assoc_id field is ignored by the one to one model).  Note that if
2598  * sack_delay or sack_freq are 0 when setting this option, then the
2599  * current values will remain unchanged.
2600  *
2601  * struct sctp_sack_info {
2602  *     sctp_assoc_t            sack_assoc_id;
2603  *     uint32_t                sack_delay;
2604  *     uint32_t                sack_freq;
2605  * };
2606  *
2607  * sack_assoc_id -  This parameter, indicates which association the user
2608  *    is performing an action upon.  Note that if this field's value is
2609  *    zero then the endpoints default value is changed (effecting future
2610  *    associations only).
2611  *
2612  * sack_delay -  This parameter contains the number of milliseconds that
2613  *    the user is requesting the delayed ACK timer be set to.  Note that
2614  *    this value is defined in the standard to be between 200 and 500
2615  *    milliseconds.
2616  *
2617  * sack_freq -  This parameter contains the number of packets that must
2618  *    be received before a sack is sent without waiting for the delay
2619  *    timer to expire.  The default value for this is 2, setting this
2620  *    value to 1 will disable the delayed sack algorithm.
2621  */
2622 
2623 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2624 				       char __user *optval, unsigned int optlen)
2625 {
2626 	struct sctp_sack_info    params;
2627 	struct sctp_transport   *trans = NULL;
2628 	struct sctp_association *asoc = NULL;
2629 	struct sctp_sock        *sp = sctp_sk(sk);
2630 
2631 	if (optlen == sizeof(struct sctp_sack_info)) {
2632 		if (copy_from_user(&params, optval, optlen))
2633 			return -EFAULT;
2634 
2635 		if (params.sack_delay == 0 && params.sack_freq == 0)
2636 			return 0;
2637 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2638 		pr_warn_ratelimited(DEPRECATED
2639 				    "%s (pid %d) "
2640 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2641 				    "Use struct sctp_sack_info instead\n",
2642 				    current->comm, task_pid_nr(current));
2643 		if (copy_from_user(&params, optval, optlen))
2644 			return -EFAULT;
2645 
2646 		if (params.sack_delay == 0)
2647 			params.sack_freq = 1;
2648 		else
2649 			params.sack_freq = 0;
2650 	} else
2651 		return -EINVAL;
2652 
2653 	/* Validate value parameter. */
2654 	if (params.sack_delay > 500)
2655 		return -EINVAL;
2656 
2657 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2658 	 * to many style socket, and an association was not found, then
2659 	 * the id was invalid.
2660 	 */
2661 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2662 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2663 		return -EINVAL;
2664 
2665 	if (params.sack_delay) {
2666 		if (asoc) {
2667 			asoc->sackdelay =
2668 				msecs_to_jiffies(params.sack_delay);
2669 			asoc->param_flags =
2670 				sctp_spp_sackdelay_enable(asoc->param_flags);
2671 		} else {
2672 			sp->sackdelay = params.sack_delay;
2673 			sp->param_flags =
2674 				sctp_spp_sackdelay_enable(sp->param_flags);
2675 		}
2676 	}
2677 
2678 	if (params.sack_freq == 1) {
2679 		if (asoc) {
2680 			asoc->param_flags =
2681 				sctp_spp_sackdelay_disable(asoc->param_flags);
2682 		} else {
2683 			sp->param_flags =
2684 				sctp_spp_sackdelay_disable(sp->param_flags);
2685 		}
2686 	} else if (params.sack_freq > 1) {
2687 		if (asoc) {
2688 			asoc->sackfreq = params.sack_freq;
2689 			asoc->param_flags =
2690 				sctp_spp_sackdelay_enable(asoc->param_flags);
2691 		} else {
2692 			sp->sackfreq = params.sack_freq;
2693 			sp->param_flags =
2694 				sctp_spp_sackdelay_enable(sp->param_flags);
2695 		}
2696 	}
2697 
2698 	/* If change is for association, also apply to each transport. */
2699 	if (asoc) {
2700 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2701 				transports) {
2702 			if (params.sack_delay) {
2703 				trans->sackdelay =
2704 					msecs_to_jiffies(params.sack_delay);
2705 				trans->param_flags =
2706 					sctp_spp_sackdelay_enable(trans->param_flags);
2707 			}
2708 			if (params.sack_freq == 1) {
2709 				trans->param_flags =
2710 					sctp_spp_sackdelay_disable(trans->param_flags);
2711 			} else if (params.sack_freq > 1) {
2712 				trans->sackfreq = params.sack_freq;
2713 				trans->param_flags =
2714 					sctp_spp_sackdelay_enable(trans->param_flags);
2715 			}
2716 		}
2717 	}
2718 
2719 	return 0;
2720 }
2721 
2722 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2723  *
2724  * Applications can specify protocol parameters for the default association
2725  * initialization.  The option name argument to setsockopt() and getsockopt()
2726  * is SCTP_INITMSG.
2727  *
2728  * Setting initialization parameters is effective only on an unconnected
2729  * socket (for UDP-style sockets only future associations are effected
2730  * by the change).  With TCP-style sockets, this option is inherited by
2731  * sockets derived from a listener socket.
2732  */
2733 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2734 {
2735 	struct sctp_initmsg sinit;
2736 	struct sctp_sock *sp = sctp_sk(sk);
2737 
2738 	if (optlen != sizeof(struct sctp_initmsg))
2739 		return -EINVAL;
2740 	if (copy_from_user(&sinit, optval, optlen))
2741 		return -EFAULT;
2742 
2743 	if (sinit.sinit_num_ostreams)
2744 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2745 	if (sinit.sinit_max_instreams)
2746 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2747 	if (sinit.sinit_max_attempts)
2748 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2749 	if (sinit.sinit_max_init_timeo)
2750 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2751 
2752 	return 0;
2753 }
2754 
2755 /*
2756  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2757  *
2758  *   Applications that wish to use the sendto() system call may wish to
2759  *   specify a default set of parameters that would normally be supplied
2760  *   through the inclusion of ancillary data.  This socket option allows
2761  *   such an application to set the default sctp_sndrcvinfo structure.
2762  *   The application that wishes to use this socket option simply passes
2763  *   in to this call the sctp_sndrcvinfo structure defined in Section
2764  *   5.2.2) The input parameters accepted by this call include
2765  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2766  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2767  *   to this call if the caller is using the UDP model.
2768  */
2769 static int sctp_setsockopt_default_send_param(struct sock *sk,
2770 					      char __user *optval,
2771 					      unsigned int optlen)
2772 {
2773 	struct sctp_sock *sp = sctp_sk(sk);
2774 	struct sctp_association *asoc;
2775 	struct sctp_sndrcvinfo info;
2776 
2777 	if (optlen != sizeof(info))
2778 		return -EINVAL;
2779 	if (copy_from_user(&info, optval, optlen))
2780 		return -EFAULT;
2781 	if (info.sinfo_flags &
2782 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2783 	      SCTP_ABORT | SCTP_EOF))
2784 		return -EINVAL;
2785 
2786 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2787 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2788 		return -EINVAL;
2789 	if (asoc) {
2790 		asoc->default_stream = info.sinfo_stream;
2791 		asoc->default_flags = info.sinfo_flags;
2792 		asoc->default_ppid = info.sinfo_ppid;
2793 		asoc->default_context = info.sinfo_context;
2794 		asoc->default_timetolive = info.sinfo_timetolive;
2795 	} else {
2796 		sp->default_stream = info.sinfo_stream;
2797 		sp->default_flags = info.sinfo_flags;
2798 		sp->default_ppid = info.sinfo_ppid;
2799 		sp->default_context = info.sinfo_context;
2800 		sp->default_timetolive = info.sinfo_timetolive;
2801 	}
2802 
2803 	return 0;
2804 }
2805 
2806 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2807  * (SCTP_DEFAULT_SNDINFO)
2808  */
2809 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2810 					   char __user *optval,
2811 					   unsigned int optlen)
2812 {
2813 	struct sctp_sock *sp = sctp_sk(sk);
2814 	struct sctp_association *asoc;
2815 	struct sctp_sndinfo info;
2816 
2817 	if (optlen != sizeof(info))
2818 		return -EINVAL;
2819 	if (copy_from_user(&info, optval, optlen))
2820 		return -EFAULT;
2821 	if (info.snd_flags &
2822 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2823 	      SCTP_ABORT | SCTP_EOF))
2824 		return -EINVAL;
2825 
2826 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
2827 	if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
2828 		return -EINVAL;
2829 	if (asoc) {
2830 		asoc->default_stream = info.snd_sid;
2831 		asoc->default_flags = info.snd_flags;
2832 		asoc->default_ppid = info.snd_ppid;
2833 		asoc->default_context = info.snd_context;
2834 	} else {
2835 		sp->default_stream = info.snd_sid;
2836 		sp->default_flags = info.snd_flags;
2837 		sp->default_ppid = info.snd_ppid;
2838 		sp->default_context = info.snd_context;
2839 	}
2840 
2841 	return 0;
2842 }
2843 
2844 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2845  *
2846  * Requests that the local SCTP stack use the enclosed peer address as
2847  * the association primary.  The enclosed address must be one of the
2848  * association peer's addresses.
2849  */
2850 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2851 					unsigned int optlen)
2852 {
2853 	struct sctp_prim prim;
2854 	struct sctp_transport *trans;
2855 
2856 	if (optlen != sizeof(struct sctp_prim))
2857 		return -EINVAL;
2858 
2859 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2860 		return -EFAULT;
2861 
2862 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2863 	if (!trans)
2864 		return -EINVAL;
2865 
2866 	sctp_assoc_set_primary(trans->asoc, trans);
2867 
2868 	return 0;
2869 }
2870 
2871 /*
2872  * 7.1.5 SCTP_NODELAY
2873  *
2874  * Turn on/off any Nagle-like algorithm.  This means that packets are
2875  * generally sent as soon as possible and no unnecessary delays are
2876  * introduced, at the cost of more packets in the network.  Expects an
2877  *  integer boolean flag.
2878  */
2879 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2880 				   unsigned int optlen)
2881 {
2882 	int val;
2883 
2884 	if (optlen < sizeof(int))
2885 		return -EINVAL;
2886 	if (get_user(val, (int __user *)optval))
2887 		return -EFAULT;
2888 
2889 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2890 	return 0;
2891 }
2892 
2893 /*
2894  *
2895  * 7.1.1 SCTP_RTOINFO
2896  *
2897  * The protocol parameters used to initialize and bound retransmission
2898  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2899  * and modify these parameters.
2900  * All parameters are time values, in milliseconds.  A value of 0, when
2901  * modifying the parameters, indicates that the current value should not
2902  * be changed.
2903  *
2904  */
2905 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2906 {
2907 	struct sctp_rtoinfo rtoinfo;
2908 	struct sctp_association *asoc;
2909 	unsigned long rto_min, rto_max;
2910 	struct sctp_sock *sp = sctp_sk(sk);
2911 
2912 	if (optlen != sizeof (struct sctp_rtoinfo))
2913 		return -EINVAL;
2914 
2915 	if (copy_from_user(&rtoinfo, optval, optlen))
2916 		return -EFAULT;
2917 
2918 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2919 
2920 	/* Set the values to the specific association */
2921 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2922 		return -EINVAL;
2923 
2924 	rto_max = rtoinfo.srto_max;
2925 	rto_min = rtoinfo.srto_min;
2926 
2927 	if (rto_max)
2928 		rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
2929 	else
2930 		rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
2931 
2932 	if (rto_min)
2933 		rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
2934 	else
2935 		rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
2936 
2937 	if (rto_min > rto_max)
2938 		return -EINVAL;
2939 
2940 	if (asoc) {
2941 		if (rtoinfo.srto_initial != 0)
2942 			asoc->rto_initial =
2943 				msecs_to_jiffies(rtoinfo.srto_initial);
2944 		asoc->rto_max = rto_max;
2945 		asoc->rto_min = rto_min;
2946 	} else {
2947 		/* If there is no association or the association-id = 0
2948 		 * set the values to the endpoint.
2949 		 */
2950 		if (rtoinfo.srto_initial != 0)
2951 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2952 		sp->rtoinfo.srto_max = rto_max;
2953 		sp->rtoinfo.srto_min = rto_min;
2954 	}
2955 
2956 	return 0;
2957 }
2958 
2959 /*
2960  *
2961  * 7.1.2 SCTP_ASSOCINFO
2962  *
2963  * This option is used to tune the maximum retransmission attempts
2964  * of the association.
2965  * Returns an error if the new association retransmission value is
2966  * greater than the sum of the retransmission value  of the peer.
2967  * See [SCTP] for more information.
2968  *
2969  */
2970 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2971 {
2972 
2973 	struct sctp_assocparams assocparams;
2974 	struct sctp_association *asoc;
2975 
2976 	if (optlen != sizeof(struct sctp_assocparams))
2977 		return -EINVAL;
2978 	if (copy_from_user(&assocparams, optval, optlen))
2979 		return -EFAULT;
2980 
2981 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2982 
2983 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2984 		return -EINVAL;
2985 
2986 	/* Set the values to the specific association */
2987 	if (asoc) {
2988 		if (assocparams.sasoc_asocmaxrxt != 0) {
2989 			__u32 path_sum = 0;
2990 			int   paths = 0;
2991 			struct sctp_transport *peer_addr;
2992 
2993 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2994 					transports) {
2995 				path_sum += peer_addr->pathmaxrxt;
2996 				paths++;
2997 			}
2998 
2999 			/* Only validate asocmaxrxt if we have more than
3000 			 * one path/transport.  We do this because path
3001 			 * retransmissions are only counted when we have more
3002 			 * then one path.
3003 			 */
3004 			if (paths > 1 &&
3005 			    assocparams.sasoc_asocmaxrxt > path_sum)
3006 				return -EINVAL;
3007 
3008 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3009 		}
3010 
3011 		if (assocparams.sasoc_cookie_life != 0)
3012 			asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3013 	} else {
3014 		/* Set the values to the endpoint */
3015 		struct sctp_sock *sp = sctp_sk(sk);
3016 
3017 		if (assocparams.sasoc_asocmaxrxt != 0)
3018 			sp->assocparams.sasoc_asocmaxrxt =
3019 						assocparams.sasoc_asocmaxrxt;
3020 		if (assocparams.sasoc_cookie_life != 0)
3021 			sp->assocparams.sasoc_cookie_life =
3022 						assocparams.sasoc_cookie_life;
3023 	}
3024 	return 0;
3025 }
3026 
3027 /*
3028  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3029  *
3030  * This socket option is a boolean flag which turns on or off mapped V4
3031  * addresses.  If this option is turned on and the socket is type
3032  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3033  * If this option is turned off, then no mapping will be done of V4
3034  * addresses and a user will receive both PF_INET6 and PF_INET type
3035  * addresses on the socket.
3036  */
3037 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3038 {
3039 	int val;
3040 	struct sctp_sock *sp = sctp_sk(sk);
3041 
3042 	if (optlen < sizeof(int))
3043 		return -EINVAL;
3044 	if (get_user(val, (int __user *)optval))
3045 		return -EFAULT;
3046 	if (val)
3047 		sp->v4mapped = 1;
3048 	else
3049 		sp->v4mapped = 0;
3050 
3051 	return 0;
3052 }
3053 
3054 /*
3055  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3056  * This option will get or set the maximum size to put in any outgoing
3057  * SCTP DATA chunk.  If a message is larger than this size it will be
3058  * fragmented by SCTP into the specified size.  Note that the underlying
3059  * SCTP implementation may fragment into smaller sized chunks when the
3060  * PMTU of the underlying association is smaller than the value set by
3061  * the user.  The default value for this option is '0' which indicates
3062  * the user is NOT limiting fragmentation and only the PMTU will effect
3063  * SCTP's choice of DATA chunk size.  Note also that values set larger
3064  * than the maximum size of an IP datagram will effectively let SCTP
3065  * control fragmentation (i.e. the same as setting this option to 0).
3066  *
3067  * The following structure is used to access and modify this parameter:
3068  *
3069  * struct sctp_assoc_value {
3070  *   sctp_assoc_t assoc_id;
3071  *   uint32_t assoc_value;
3072  * };
3073  *
3074  * assoc_id:  This parameter is ignored for one-to-one style sockets.
3075  *    For one-to-many style sockets this parameter indicates which
3076  *    association the user is performing an action upon.  Note that if
3077  *    this field's value is zero then the endpoints default value is
3078  *    changed (effecting future associations only).
3079  * assoc_value:  This parameter specifies the maximum size in bytes.
3080  */
3081 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3082 {
3083 	struct sctp_assoc_value params;
3084 	struct sctp_association *asoc;
3085 	struct sctp_sock *sp = sctp_sk(sk);
3086 	int val;
3087 
3088 	if (optlen == sizeof(int)) {
3089 		pr_warn_ratelimited(DEPRECATED
3090 				    "%s (pid %d) "
3091 				    "Use of int in maxseg socket option.\n"
3092 				    "Use struct sctp_assoc_value instead\n",
3093 				    current->comm, task_pid_nr(current));
3094 		if (copy_from_user(&val, optval, optlen))
3095 			return -EFAULT;
3096 		params.assoc_id = 0;
3097 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3098 		if (copy_from_user(&params, optval, optlen))
3099 			return -EFAULT;
3100 		val = params.assoc_value;
3101 	} else
3102 		return -EINVAL;
3103 
3104 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3105 		return -EINVAL;
3106 
3107 	asoc = sctp_id2assoc(sk, params.assoc_id);
3108 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3109 		return -EINVAL;
3110 
3111 	if (asoc) {
3112 		if (val == 0) {
3113 			val = asoc->pathmtu;
3114 			val -= sp->pf->af->net_header_len;
3115 			val -= sizeof(struct sctphdr) +
3116 					sizeof(struct sctp_data_chunk);
3117 		}
3118 		asoc->user_frag = val;
3119 		asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3120 	} else {
3121 		sp->user_frag = val;
3122 	}
3123 
3124 	return 0;
3125 }
3126 
3127 
3128 /*
3129  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3130  *
3131  *   Requests that the peer mark the enclosed address as the association
3132  *   primary. The enclosed address must be one of the association's
3133  *   locally bound addresses. The following structure is used to make a
3134  *   set primary request:
3135  */
3136 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3137 					     unsigned int optlen)
3138 {
3139 	struct net *net = sock_net(sk);
3140 	struct sctp_sock	*sp;
3141 	struct sctp_association	*asoc = NULL;
3142 	struct sctp_setpeerprim	prim;
3143 	struct sctp_chunk	*chunk;
3144 	struct sctp_af		*af;
3145 	int 			err;
3146 
3147 	sp = sctp_sk(sk);
3148 
3149 	if (!net->sctp.addip_enable)
3150 		return -EPERM;
3151 
3152 	if (optlen != sizeof(struct sctp_setpeerprim))
3153 		return -EINVAL;
3154 
3155 	if (copy_from_user(&prim, optval, optlen))
3156 		return -EFAULT;
3157 
3158 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3159 	if (!asoc)
3160 		return -EINVAL;
3161 
3162 	if (!asoc->peer.asconf_capable)
3163 		return -EPERM;
3164 
3165 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3166 		return -EPERM;
3167 
3168 	if (!sctp_state(asoc, ESTABLISHED))
3169 		return -ENOTCONN;
3170 
3171 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3172 	if (!af)
3173 		return -EINVAL;
3174 
3175 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3176 		return -EADDRNOTAVAIL;
3177 
3178 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3179 		return -EADDRNOTAVAIL;
3180 
3181 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3182 	chunk = sctp_make_asconf_set_prim(asoc,
3183 					  (union sctp_addr *)&prim.sspp_addr);
3184 	if (!chunk)
3185 		return -ENOMEM;
3186 
3187 	err = sctp_send_asconf(asoc, chunk);
3188 
3189 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3190 
3191 	return err;
3192 }
3193 
3194 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3195 					    unsigned int optlen)
3196 {
3197 	struct sctp_setadaptation adaptation;
3198 
3199 	if (optlen != sizeof(struct sctp_setadaptation))
3200 		return -EINVAL;
3201 	if (copy_from_user(&adaptation, optval, optlen))
3202 		return -EFAULT;
3203 
3204 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3205 
3206 	return 0;
3207 }
3208 
3209 /*
3210  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3211  *
3212  * The context field in the sctp_sndrcvinfo structure is normally only
3213  * used when a failed message is retrieved holding the value that was
3214  * sent down on the actual send call.  This option allows the setting of
3215  * a default context on an association basis that will be received on
3216  * reading messages from the peer.  This is especially helpful in the
3217  * one-2-many model for an application to keep some reference to an
3218  * internal state machine that is processing messages on the
3219  * association.  Note that the setting of this value only effects
3220  * received messages from the peer and does not effect the value that is
3221  * saved with outbound messages.
3222  */
3223 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3224 				   unsigned int optlen)
3225 {
3226 	struct sctp_assoc_value params;
3227 	struct sctp_sock *sp;
3228 	struct sctp_association *asoc;
3229 
3230 	if (optlen != sizeof(struct sctp_assoc_value))
3231 		return -EINVAL;
3232 	if (copy_from_user(&params, optval, optlen))
3233 		return -EFAULT;
3234 
3235 	sp = sctp_sk(sk);
3236 
3237 	if (params.assoc_id != 0) {
3238 		asoc = sctp_id2assoc(sk, params.assoc_id);
3239 		if (!asoc)
3240 			return -EINVAL;
3241 		asoc->default_rcv_context = params.assoc_value;
3242 	} else {
3243 		sp->default_rcv_context = params.assoc_value;
3244 	}
3245 
3246 	return 0;
3247 }
3248 
3249 /*
3250  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3251  *
3252  * This options will at a minimum specify if the implementation is doing
3253  * fragmented interleave.  Fragmented interleave, for a one to many
3254  * socket, is when subsequent calls to receive a message may return
3255  * parts of messages from different associations.  Some implementations
3256  * may allow you to turn this value on or off.  If so, when turned off,
3257  * no fragment interleave will occur (which will cause a head of line
3258  * blocking amongst multiple associations sharing the same one to many
3259  * socket).  When this option is turned on, then each receive call may
3260  * come from a different association (thus the user must receive data
3261  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3262  * association each receive belongs to.
3263  *
3264  * This option takes a boolean value.  A non-zero value indicates that
3265  * fragmented interleave is on.  A value of zero indicates that
3266  * fragmented interleave is off.
3267  *
3268  * Note that it is important that an implementation that allows this
3269  * option to be turned on, have it off by default.  Otherwise an unaware
3270  * application using the one to many model may become confused and act
3271  * incorrectly.
3272  */
3273 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3274 					       char __user *optval,
3275 					       unsigned int optlen)
3276 {
3277 	int val;
3278 
3279 	if (optlen != sizeof(int))
3280 		return -EINVAL;
3281 	if (get_user(val, (int __user *)optval))
3282 		return -EFAULT;
3283 
3284 	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3285 
3286 	return 0;
3287 }
3288 
3289 /*
3290  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3291  *       (SCTP_PARTIAL_DELIVERY_POINT)
3292  *
3293  * This option will set or get the SCTP partial delivery point.  This
3294  * point is the size of a message where the partial delivery API will be
3295  * invoked to help free up rwnd space for the peer.  Setting this to a
3296  * lower value will cause partial deliveries to happen more often.  The
3297  * calls argument is an integer that sets or gets the partial delivery
3298  * point.  Note also that the call will fail if the user attempts to set
3299  * this value larger than the socket receive buffer size.
3300  *
3301  * Note that any single message having a length smaller than or equal to
3302  * the SCTP partial delivery point will be delivered in one single read
3303  * call as long as the user provided buffer is large enough to hold the
3304  * message.
3305  */
3306 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3307 						  char __user *optval,
3308 						  unsigned int optlen)
3309 {
3310 	u32 val;
3311 
3312 	if (optlen != sizeof(u32))
3313 		return -EINVAL;
3314 	if (get_user(val, (int __user *)optval))
3315 		return -EFAULT;
3316 
3317 	/* Note: We double the receive buffer from what the user sets
3318 	 * it to be, also initial rwnd is based on rcvbuf/2.
3319 	 */
3320 	if (val > (sk->sk_rcvbuf >> 1))
3321 		return -EINVAL;
3322 
3323 	sctp_sk(sk)->pd_point = val;
3324 
3325 	return 0; /* is this the right error code? */
3326 }
3327 
3328 /*
3329  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3330  *
3331  * This option will allow a user to change the maximum burst of packets
3332  * that can be emitted by this association.  Note that the default value
3333  * is 4, and some implementations may restrict this setting so that it
3334  * can only be lowered.
3335  *
3336  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3337  * future associations inheriting the socket value.
3338  */
3339 static int sctp_setsockopt_maxburst(struct sock *sk,
3340 				    char __user *optval,
3341 				    unsigned int optlen)
3342 {
3343 	struct sctp_assoc_value params;
3344 	struct sctp_sock *sp;
3345 	struct sctp_association *asoc;
3346 	int val;
3347 	int assoc_id = 0;
3348 
3349 	if (optlen == sizeof(int)) {
3350 		pr_warn_ratelimited(DEPRECATED
3351 				    "%s (pid %d) "
3352 				    "Use of int in max_burst socket option deprecated.\n"
3353 				    "Use struct sctp_assoc_value instead\n",
3354 				    current->comm, task_pid_nr(current));
3355 		if (copy_from_user(&val, optval, optlen))
3356 			return -EFAULT;
3357 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3358 		if (copy_from_user(&params, optval, optlen))
3359 			return -EFAULT;
3360 		val = params.assoc_value;
3361 		assoc_id = params.assoc_id;
3362 	} else
3363 		return -EINVAL;
3364 
3365 	sp = sctp_sk(sk);
3366 
3367 	if (assoc_id != 0) {
3368 		asoc = sctp_id2assoc(sk, assoc_id);
3369 		if (!asoc)
3370 			return -EINVAL;
3371 		asoc->max_burst = val;
3372 	} else
3373 		sp->max_burst = val;
3374 
3375 	return 0;
3376 }
3377 
3378 /*
3379  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3380  *
3381  * This set option adds a chunk type that the user is requesting to be
3382  * received only in an authenticated way.  Changes to the list of chunks
3383  * will only effect future associations on the socket.
3384  */
3385 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3386 				      char __user *optval,
3387 				      unsigned int optlen)
3388 {
3389 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3390 	struct sctp_authchunk val;
3391 
3392 	if (!ep->auth_enable)
3393 		return -EACCES;
3394 
3395 	if (optlen != sizeof(struct sctp_authchunk))
3396 		return -EINVAL;
3397 	if (copy_from_user(&val, optval, optlen))
3398 		return -EFAULT;
3399 
3400 	switch (val.sauth_chunk) {
3401 	case SCTP_CID_INIT:
3402 	case SCTP_CID_INIT_ACK:
3403 	case SCTP_CID_SHUTDOWN_COMPLETE:
3404 	case SCTP_CID_AUTH:
3405 		return -EINVAL;
3406 	}
3407 
3408 	/* add this chunk id to the endpoint */
3409 	return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3410 }
3411 
3412 /*
3413  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3414  *
3415  * This option gets or sets the list of HMAC algorithms that the local
3416  * endpoint requires the peer to use.
3417  */
3418 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3419 				      char __user *optval,
3420 				      unsigned int optlen)
3421 {
3422 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3423 	struct sctp_hmacalgo *hmacs;
3424 	u32 idents;
3425 	int err;
3426 
3427 	if (!ep->auth_enable)
3428 		return -EACCES;
3429 
3430 	if (optlen < sizeof(struct sctp_hmacalgo))
3431 		return -EINVAL;
3432 
3433 	hmacs = memdup_user(optval, optlen);
3434 	if (IS_ERR(hmacs))
3435 		return PTR_ERR(hmacs);
3436 
3437 	idents = hmacs->shmac_num_idents;
3438 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3439 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3440 		err = -EINVAL;
3441 		goto out;
3442 	}
3443 
3444 	err = sctp_auth_ep_set_hmacs(ep, hmacs);
3445 out:
3446 	kfree(hmacs);
3447 	return err;
3448 }
3449 
3450 /*
3451  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3452  *
3453  * This option will set a shared secret key which is used to build an
3454  * association shared key.
3455  */
3456 static int sctp_setsockopt_auth_key(struct sock *sk,
3457 				    char __user *optval,
3458 				    unsigned int optlen)
3459 {
3460 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3461 	struct sctp_authkey *authkey;
3462 	struct sctp_association *asoc;
3463 	int ret;
3464 
3465 	if (!ep->auth_enable)
3466 		return -EACCES;
3467 
3468 	if (optlen <= sizeof(struct sctp_authkey))
3469 		return -EINVAL;
3470 
3471 	authkey = memdup_user(optval, optlen);
3472 	if (IS_ERR(authkey))
3473 		return PTR_ERR(authkey);
3474 
3475 	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3476 		ret = -EINVAL;
3477 		goto out;
3478 	}
3479 
3480 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3481 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3482 		ret = -EINVAL;
3483 		goto out;
3484 	}
3485 
3486 	ret = sctp_auth_set_key(ep, asoc, authkey);
3487 out:
3488 	kzfree(authkey);
3489 	return ret;
3490 }
3491 
3492 /*
3493  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3494  *
3495  * This option will get or set the active shared key to be used to build
3496  * the association shared key.
3497  */
3498 static int sctp_setsockopt_active_key(struct sock *sk,
3499 				      char __user *optval,
3500 				      unsigned int optlen)
3501 {
3502 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3503 	struct sctp_authkeyid val;
3504 	struct sctp_association *asoc;
3505 
3506 	if (!ep->auth_enable)
3507 		return -EACCES;
3508 
3509 	if (optlen != sizeof(struct sctp_authkeyid))
3510 		return -EINVAL;
3511 	if (copy_from_user(&val, optval, optlen))
3512 		return -EFAULT;
3513 
3514 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3515 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3516 		return -EINVAL;
3517 
3518 	return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3519 }
3520 
3521 /*
3522  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3523  *
3524  * This set option will delete a shared secret key from use.
3525  */
3526 static int sctp_setsockopt_del_key(struct sock *sk,
3527 				   char __user *optval,
3528 				   unsigned int optlen)
3529 {
3530 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3531 	struct sctp_authkeyid val;
3532 	struct sctp_association *asoc;
3533 
3534 	if (!ep->auth_enable)
3535 		return -EACCES;
3536 
3537 	if (optlen != sizeof(struct sctp_authkeyid))
3538 		return -EINVAL;
3539 	if (copy_from_user(&val, optval, optlen))
3540 		return -EFAULT;
3541 
3542 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3543 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3544 		return -EINVAL;
3545 
3546 	return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3547 
3548 }
3549 
3550 /*
3551  * 8.1.23 SCTP_AUTO_ASCONF
3552  *
3553  * This option will enable or disable the use of the automatic generation of
3554  * ASCONF chunks to add and delete addresses to an existing association.  Note
3555  * that this option has two caveats namely: a) it only affects sockets that
3556  * are bound to all addresses available to the SCTP stack, and b) the system
3557  * administrator may have an overriding control that turns the ASCONF feature
3558  * off no matter what setting the socket option may have.
3559  * This option expects an integer boolean flag, where a non-zero value turns on
3560  * the option, and a zero value turns off the option.
3561  * Note. In this implementation, socket operation overrides default parameter
3562  * being set by sysctl as well as FreeBSD implementation
3563  */
3564 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3565 					unsigned int optlen)
3566 {
3567 	int val;
3568 	struct sctp_sock *sp = sctp_sk(sk);
3569 
3570 	if (optlen < sizeof(int))
3571 		return -EINVAL;
3572 	if (get_user(val, (int __user *)optval))
3573 		return -EFAULT;
3574 	if (!sctp_is_ep_boundall(sk) && val)
3575 		return -EINVAL;
3576 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3577 		return 0;
3578 
3579 	spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3580 	if (val == 0 && sp->do_auto_asconf) {
3581 		list_del(&sp->auto_asconf_list);
3582 		sp->do_auto_asconf = 0;
3583 	} else if (val && !sp->do_auto_asconf) {
3584 		list_add_tail(&sp->auto_asconf_list,
3585 		    &sock_net(sk)->sctp.auto_asconf_splist);
3586 		sp->do_auto_asconf = 1;
3587 	}
3588 	spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3589 	return 0;
3590 }
3591 
3592 /*
3593  * SCTP_PEER_ADDR_THLDS
3594  *
3595  * This option allows us to alter the partially failed threshold for one or all
3596  * transports in an association.  See Section 6.1 of:
3597  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3598  */
3599 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3600 					    char __user *optval,
3601 					    unsigned int optlen)
3602 {
3603 	struct sctp_paddrthlds val;
3604 	struct sctp_transport *trans;
3605 	struct sctp_association *asoc;
3606 
3607 	if (optlen < sizeof(struct sctp_paddrthlds))
3608 		return -EINVAL;
3609 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3610 			   sizeof(struct sctp_paddrthlds)))
3611 		return -EFAULT;
3612 
3613 
3614 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3615 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3616 		if (!asoc)
3617 			return -ENOENT;
3618 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3619 				    transports) {
3620 			if (val.spt_pathmaxrxt)
3621 				trans->pathmaxrxt = val.spt_pathmaxrxt;
3622 			trans->pf_retrans = val.spt_pathpfthld;
3623 		}
3624 
3625 		if (val.spt_pathmaxrxt)
3626 			asoc->pathmaxrxt = val.spt_pathmaxrxt;
3627 		asoc->pf_retrans = val.spt_pathpfthld;
3628 	} else {
3629 		trans = sctp_addr_id2transport(sk, &val.spt_address,
3630 					       val.spt_assoc_id);
3631 		if (!trans)
3632 			return -ENOENT;
3633 
3634 		if (val.spt_pathmaxrxt)
3635 			trans->pathmaxrxt = val.spt_pathmaxrxt;
3636 		trans->pf_retrans = val.spt_pathpfthld;
3637 	}
3638 
3639 	return 0;
3640 }
3641 
3642 static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
3643 				       char __user *optval,
3644 				       unsigned int optlen)
3645 {
3646 	int val;
3647 
3648 	if (optlen < sizeof(int))
3649 		return -EINVAL;
3650 	if (get_user(val, (int __user *) optval))
3651 		return -EFAULT;
3652 
3653 	sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
3654 
3655 	return 0;
3656 }
3657 
3658 static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
3659 				       char __user *optval,
3660 				       unsigned int optlen)
3661 {
3662 	int val;
3663 
3664 	if (optlen < sizeof(int))
3665 		return -EINVAL;
3666 	if (get_user(val, (int __user *) optval))
3667 		return -EFAULT;
3668 
3669 	sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
3670 
3671 	return 0;
3672 }
3673 
3674 /* API 6.2 setsockopt(), getsockopt()
3675  *
3676  * Applications use setsockopt() and getsockopt() to set or retrieve
3677  * socket options.  Socket options are used to change the default
3678  * behavior of sockets calls.  They are described in Section 7.
3679  *
3680  * The syntax is:
3681  *
3682  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
3683  *                    int __user *optlen);
3684  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3685  *                    int optlen);
3686  *
3687  *   sd      - the socket descript.
3688  *   level   - set to IPPROTO_SCTP for all SCTP options.
3689  *   optname - the option name.
3690  *   optval  - the buffer to store the value of the option.
3691  *   optlen  - the size of the buffer.
3692  */
3693 static int sctp_setsockopt(struct sock *sk, int level, int optname,
3694 			   char __user *optval, unsigned int optlen)
3695 {
3696 	int retval = 0;
3697 
3698 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
3699 
3700 	/* I can hardly begin to describe how wrong this is.  This is
3701 	 * so broken as to be worse than useless.  The API draft
3702 	 * REALLY is NOT helpful here...  I am not convinced that the
3703 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3704 	 * are at all well-founded.
3705 	 */
3706 	if (level != SOL_SCTP) {
3707 		struct sctp_af *af = sctp_sk(sk)->pf->af;
3708 		retval = af->setsockopt(sk, level, optname, optval, optlen);
3709 		goto out_nounlock;
3710 	}
3711 
3712 	lock_sock(sk);
3713 
3714 	switch (optname) {
3715 	case SCTP_SOCKOPT_BINDX_ADD:
3716 		/* 'optlen' is the size of the addresses buffer. */
3717 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3718 					       optlen, SCTP_BINDX_ADD_ADDR);
3719 		break;
3720 
3721 	case SCTP_SOCKOPT_BINDX_REM:
3722 		/* 'optlen' is the size of the addresses buffer. */
3723 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3724 					       optlen, SCTP_BINDX_REM_ADDR);
3725 		break;
3726 
3727 	case SCTP_SOCKOPT_CONNECTX_OLD:
3728 		/* 'optlen' is the size of the addresses buffer. */
3729 		retval = sctp_setsockopt_connectx_old(sk,
3730 					    (struct sockaddr __user *)optval,
3731 					    optlen);
3732 		break;
3733 
3734 	case SCTP_SOCKOPT_CONNECTX:
3735 		/* 'optlen' is the size of the addresses buffer. */
3736 		retval = sctp_setsockopt_connectx(sk,
3737 					    (struct sockaddr __user *)optval,
3738 					    optlen);
3739 		break;
3740 
3741 	case SCTP_DISABLE_FRAGMENTS:
3742 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3743 		break;
3744 
3745 	case SCTP_EVENTS:
3746 		retval = sctp_setsockopt_events(sk, optval, optlen);
3747 		break;
3748 
3749 	case SCTP_AUTOCLOSE:
3750 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3751 		break;
3752 
3753 	case SCTP_PEER_ADDR_PARAMS:
3754 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3755 		break;
3756 
3757 	case SCTP_DELAYED_SACK:
3758 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3759 		break;
3760 	case SCTP_PARTIAL_DELIVERY_POINT:
3761 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3762 		break;
3763 
3764 	case SCTP_INITMSG:
3765 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3766 		break;
3767 	case SCTP_DEFAULT_SEND_PARAM:
3768 		retval = sctp_setsockopt_default_send_param(sk, optval,
3769 							    optlen);
3770 		break;
3771 	case SCTP_DEFAULT_SNDINFO:
3772 		retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
3773 		break;
3774 	case SCTP_PRIMARY_ADDR:
3775 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3776 		break;
3777 	case SCTP_SET_PEER_PRIMARY_ADDR:
3778 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3779 		break;
3780 	case SCTP_NODELAY:
3781 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3782 		break;
3783 	case SCTP_RTOINFO:
3784 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3785 		break;
3786 	case SCTP_ASSOCINFO:
3787 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3788 		break;
3789 	case SCTP_I_WANT_MAPPED_V4_ADDR:
3790 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3791 		break;
3792 	case SCTP_MAXSEG:
3793 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3794 		break;
3795 	case SCTP_ADAPTATION_LAYER:
3796 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3797 		break;
3798 	case SCTP_CONTEXT:
3799 		retval = sctp_setsockopt_context(sk, optval, optlen);
3800 		break;
3801 	case SCTP_FRAGMENT_INTERLEAVE:
3802 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3803 		break;
3804 	case SCTP_MAX_BURST:
3805 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3806 		break;
3807 	case SCTP_AUTH_CHUNK:
3808 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3809 		break;
3810 	case SCTP_HMAC_IDENT:
3811 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3812 		break;
3813 	case SCTP_AUTH_KEY:
3814 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3815 		break;
3816 	case SCTP_AUTH_ACTIVE_KEY:
3817 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
3818 		break;
3819 	case SCTP_AUTH_DELETE_KEY:
3820 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
3821 		break;
3822 	case SCTP_AUTO_ASCONF:
3823 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3824 		break;
3825 	case SCTP_PEER_ADDR_THLDS:
3826 		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3827 		break;
3828 	case SCTP_RECVRCVINFO:
3829 		retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
3830 		break;
3831 	case SCTP_RECVNXTINFO:
3832 		retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
3833 		break;
3834 	default:
3835 		retval = -ENOPROTOOPT;
3836 		break;
3837 	}
3838 
3839 	release_sock(sk);
3840 
3841 out_nounlock:
3842 	return retval;
3843 }
3844 
3845 /* API 3.1.6 connect() - UDP Style Syntax
3846  *
3847  * An application may use the connect() call in the UDP model to initiate an
3848  * association without sending data.
3849  *
3850  * The syntax is:
3851  *
3852  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3853  *
3854  * sd: the socket descriptor to have a new association added to.
3855  *
3856  * nam: the address structure (either struct sockaddr_in or struct
3857  *    sockaddr_in6 defined in RFC2553 [7]).
3858  *
3859  * len: the size of the address.
3860  */
3861 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
3862 			int addr_len)
3863 {
3864 	int err = 0;
3865 	struct sctp_af *af;
3866 
3867 	lock_sock(sk);
3868 
3869 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
3870 		 addr, addr_len);
3871 
3872 	/* Validate addr_len before calling common connect/connectx routine. */
3873 	af = sctp_get_af_specific(addr->sa_family);
3874 	if (!af || addr_len < af->sockaddr_len) {
3875 		err = -EINVAL;
3876 	} else {
3877 		/* Pass correct addr len to common routine (so it knows there
3878 		 * is only one address being passed.
3879 		 */
3880 		err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3881 	}
3882 
3883 	release_sock(sk);
3884 	return err;
3885 }
3886 
3887 /* FIXME: Write comments. */
3888 static int sctp_disconnect(struct sock *sk, int flags)
3889 {
3890 	return -EOPNOTSUPP; /* STUB */
3891 }
3892 
3893 /* 4.1.4 accept() - TCP Style Syntax
3894  *
3895  * Applications use accept() call to remove an established SCTP
3896  * association from the accept queue of the endpoint.  A new socket
3897  * descriptor will be returned from accept() to represent the newly
3898  * formed association.
3899  */
3900 static struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3901 {
3902 	struct sctp_sock *sp;
3903 	struct sctp_endpoint *ep;
3904 	struct sock *newsk = NULL;
3905 	struct sctp_association *asoc;
3906 	long timeo;
3907 	int error = 0;
3908 
3909 	lock_sock(sk);
3910 
3911 	sp = sctp_sk(sk);
3912 	ep = sp->ep;
3913 
3914 	if (!sctp_style(sk, TCP)) {
3915 		error = -EOPNOTSUPP;
3916 		goto out;
3917 	}
3918 
3919 	if (!sctp_sstate(sk, LISTENING)) {
3920 		error = -EINVAL;
3921 		goto out;
3922 	}
3923 
3924 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3925 
3926 	error = sctp_wait_for_accept(sk, timeo);
3927 	if (error)
3928 		goto out;
3929 
3930 	/* We treat the list of associations on the endpoint as the accept
3931 	 * queue and pick the first association on the list.
3932 	 */
3933 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3934 
3935 	newsk = sp->pf->create_accept_sk(sk, asoc);
3936 	if (!newsk) {
3937 		error = -ENOMEM;
3938 		goto out;
3939 	}
3940 
3941 	/* Populate the fields of the newsk from the oldsk and migrate the
3942 	 * asoc to the newsk.
3943 	 */
3944 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3945 
3946 out:
3947 	release_sock(sk);
3948 	*err = error;
3949 	return newsk;
3950 }
3951 
3952 /* The SCTP ioctl handler. */
3953 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3954 {
3955 	int rc = -ENOTCONN;
3956 
3957 	lock_sock(sk);
3958 
3959 	/*
3960 	 * SEQPACKET-style sockets in LISTENING state are valid, for
3961 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
3962 	 */
3963 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3964 		goto out;
3965 
3966 	switch (cmd) {
3967 	case SIOCINQ: {
3968 		struct sk_buff *skb;
3969 		unsigned int amount = 0;
3970 
3971 		skb = skb_peek(&sk->sk_receive_queue);
3972 		if (skb != NULL) {
3973 			/*
3974 			 * We will only return the amount of this packet since
3975 			 * that is all that will be read.
3976 			 */
3977 			amount = skb->len;
3978 		}
3979 		rc = put_user(amount, (int __user *)arg);
3980 		break;
3981 	}
3982 	default:
3983 		rc = -ENOIOCTLCMD;
3984 		break;
3985 	}
3986 out:
3987 	release_sock(sk);
3988 	return rc;
3989 }
3990 
3991 /* This is the function which gets called during socket creation to
3992  * initialized the SCTP-specific portion of the sock.
3993  * The sock structure should already be zero-filled memory.
3994  */
3995 static int sctp_init_sock(struct sock *sk)
3996 {
3997 	struct net *net = sock_net(sk);
3998 	struct sctp_sock *sp;
3999 
4000 	pr_debug("%s: sk:%p\n", __func__, sk);
4001 
4002 	sp = sctp_sk(sk);
4003 
4004 	/* Initialize the SCTP per socket area.  */
4005 	switch (sk->sk_type) {
4006 	case SOCK_SEQPACKET:
4007 		sp->type = SCTP_SOCKET_UDP;
4008 		break;
4009 	case SOCK_STREAM:
4010 		sp->type = SCTP_SOCKET_TCP;
4011 		break;
4012 	default:
4013 		return -ESOCKTNOSUPPORT;
4014 	}
4015 
4016 	/* Initialize default send parameters. These parameters can be
4017 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4018 	 */
4019 	sp->default_stream = 0;
4020 	sp->default_ppid = 0;
4021 	sp->default_flags = 0;
4022 	sp->default_context = 0;
4023 	sp->default_timetolive = 0;
4024 
4025 	sp->default_rcv_context = 0;
4026 	sp->max_burst = net->sctp.max_burst;
4027 
4028 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4029 
4030 	/* Initialize default setup parameters. These parameters
4031 	 * can be modified with the SCTP_INITMSG socket option or
4032 	 * overridden by the SCTP_INIT CMSG.
4033 	 */
4034 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
4035 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
4036 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
4037 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4038 
4039 	/* Initialize default RTO related parameters.  These parameters can
4040 	 * be modified for with the SCTP_RTOINFO socket option.
4041 	 */
4042 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4043 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
4044 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
4045 
4046 	/* Initialize default association related parameters. These parameters
4047 	 * can be modified with the SCTP_ASSOCINFO socket option.
4048 	 */
4049 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4050 	sp->assocparams.sasoc_number_peer_destinations = 0;
4051 	sp->assocparams.sasoc_peer_rwnd = 0;
4052 	sp->assocparams.sasoc_local_rwnd = 0;
4053 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4054 
4055 	/* Initialize default event subscriptions. By default, all the
4056 	 * options are off.
4057 	 */
4058 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
4059 
4060 	/* Default Peer Address Parameters.  These defaults can
4061 	 * be modified via SCTP_PEER_ADDR_PARAMS
4062 	 */
4063 	sp->hbinterval  = net->sctp.hb_interval;
4064 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
4065 	sp->pathmtu     = 0; /* allow default discovery */
4066 	sp->sackdelay   = net->sctp.sack_timeout;
4067 	sp->sackfreq	= 2;
4068 	sp->param_flags = SPP_HB_ENABLE |
4069 			  SPP_PMTUD_ENABLE |
4070 			  SPP_SACKDELAY_ENABLE;
4071 
4072 	/* If enabled no SCTP message fragmentation will be performed.
4073 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4074 	 */
4075 	sp->disable_fragments = 0;
4076 
4077 	/* Enable Nagle algorithm by default.  */
4078 	sp->nodelay           = 0;
4079 
4080 	sp->recvrcvinfo = 0;
4081 	sp->recvnxtinfo = 0;
4082 
4083 	/* Enable by default. */
4084 	sp->v4mapped          = 1;
4085 
4086 	/* Auto-close idle associations after the configured
4087 	 * number of seconds.  A value of 0 disables this
4088 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
4089 	 * for UDP-style sockets only.
4090 	 */
4091 	sp->autoclose         = 0;
4092 
4093 	/* User specified fragmentation limit. */
4094 	sp->user_frag         = 0;
4095 
4096 	sp->adaptation_ind = 0;
4097 
4098 	sp->pf = sctp_get_pf_specific(sk->sk_family);
4099 
4100 	/* Control variables for partial data delivery. */
4101 	atomic_set(&sp->pd_mode, 0);
4102 	skb_queue_head_init(&sp->pd_lobby);
4103 	sp->frag_interleave = 0;
4104 
4105 	/* Create a per socket endpoint structure.  Even if we
4106 	 * change the data structure relationships, this may still
4107 	 * be useful for storing pre-connect address information.
4108 	 */
4109 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4110 	if (!sp->ep)
4111 		return -ENOMEM;
4112 
4113 	sp->hmac = NULL;
4114 
4115 	sk->sk_destruct = sctp_destruct_sock;
4116 
4117 	SCTP_DBG_OBJCNT_INC(sock);
4118 
4119 	local_bh_disable();
4120 	percpu_counter_inc(&sctp_sockets_allocated);
4121 	sock_prot_inuse_add(net, sk->sk_prot, 1);
4122 
4123 	/* Nothing can fail after this block, otherwise
4124 	 * sctp_destroy_sock() will be called without addr_wq_lock held
4125 	 */
4126 	if (net->sctp.default_auto_asconf) {
4127 		spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
4128 		list_add_tail(&sp->auto_asconf_list,
4129 		    &net->sctp.auto_asconf_splist);
4130 		sp->do_auto_asconf = 1;
4131 		spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
4132 	} else {
4133 		sp->do_auto_asconf = 0;
4134 	}
4135 
4136 	local_bh_enable();
4137 
4138 	return 0;
4139 }
4140 
4141 /* Cleanup any SCTP per socket resources. Must be called with
4142  * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
4143  */
4144 static void sctp_destroy_sock(struct sock *sk)
4145 {
4146 	struct sctp_sock *sp;
4147 
4148 	pr_debug("%s: sk:%p\n", __func__, sk);
4149 
4150 	/* Release our hold on the endpoint. */
4151 	sp = sctp_sk(sk);
4152 	/* This could happen during socket init, thus we bail out
4153 	 * early, since the rest of the below is not setup either.
4154 	 */
4155 	if (sp->ep == NULL)
4156 		return;
4157 
4158 	if (sp->do_auto_asconf) {
4159 		sp->do_auto_asconf = 0;
4160 		list_del(&sp->auto_asconf_list);
4161 	}
4162 	sctp_endpoint_free(sp->ep);
4163 	local_bh_disable();
4164 	percpu_counter_dec(&sctp_sockets_allocated);
4165 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4166 	local_bh_enable();
4167 }
4168 
4169 /* Triggered when there are no references on the socket anymore */
4170 static void sctp_destruct_sock(struct sock *sk)
4171 {
4172 	struct sctp_sock *sp = sctp_sk(sk);
4173 
4174 	/* Free up the HMAC transform. */
4175 	crypto_free_hash(sp->hmac);
4176 
4177 	inet_sock_destruct(sk);
4178 }
4179 
4180 /* API 4.1.7 shutdown() - TCP Style Syntax
4181  *     int shutdown(int socket, int how);
4182  *
4183  *     sd      - the socket descriptor of the association to be closed.
4184  *     how     - Specifies the type of shutdown.  The  values  are
4185  *               as follows:
4186  *               SHUT_RD
4187  *                     Disables further receive operations. No SCTP
4188  *                     protocol action is taken.
4189  *               SHUT_WR
4190  *                     Disables further send operations, and initiates
4191  *                     the SCTP shutdown sequence.
4192  *               SHUT_RDWR
4193  *                     Disables further send  and  receive  operations
4194  *                     and initiates the SCTP shutdown sequence.
4195  */
4196 static void sctp_shutdown(struct sock *sk, int how)
4197 {
4198 	struct net *net = sock_net(sk);
4199 	struct sctp_endpoint *ep;
4200 	struct sctp_association *asoc;
4201 
4202 	if (!sctp_style(sk, TCP))
4203 		return;
4204 
4205 	if (how & SEND_SHUTDOWN) {
4206 		ep = sctp_sk(sk)->ep;
4207 		if (!list_empty(&ep->asocs)) {
4208 			asoc = list_entry(ep->asocs.next,
4209 					  struct sctp_association, asocs);
4210 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
4211 		}
4212 	}
4213 }
4214 
4215 /* 7.2.1 Association Status (SCTP_STATUS)
4216 
4217  * Applications can retrieve current status information about an
4218  * association, including association state, peer receiver window size,
4219  * number of unacked data chunks, and number of data chunks pending
4220  * receipt.  This information is read-only.
4221  */
4222 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4223 				       char __user *optval,
4224 				       int __user *optlen)
4225 {
4226 	struct sctp_status status;
4227 	struct sctp_association *asoc = NULL;
4228 	struct sctp_transport *transport;
4229 	sctp_assoc_t associd;
4230 	int retval = 0;
4231 
4232 	if (len < sizeof(status)) {
4233 		retval = -EINVAL;
4234 		goto out;
4235 	}
4236 
4237 	len = sizeof(status);
4238 	if (copy_from_user(&status, optval, len)) {
4239 		retval = -EFAULT;
4240 		goto out;
4241 	}
4242 
4243 	associd = status.sstat_assoc_id;
4244 	asoc = sctp_id2assoc(sk, associd);
4245 	if (!asoc) {
4246 		retval = -EINVAL;
4247 		goto out;
4248 	}
4249 
4250 	transport = asoc->peer.primary_path;
4251 
4252 	status.sstat_assoc_id = sctp_assoc2id(asoc);
4253 	status.sstat_state = sctp_assoc_to_state(asoc);
4254 	status.sstat_rwnd =  asoc->peer.rwnd;
4255 	status.sstat_unackdata = asoc->unack_data;
4256 
4257 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4258 	status.sstat_instrms = asoc->c.sinit_max_instreams;
4259 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4260 	status.sstat_fragmentation_point = asoc->frag_point;
4261 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4262 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4263 			transport->af_specific->sockaddr_len);
4264 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
4265 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
4266 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
4267 	status.sstat_primary.spinfo_state = transport->state;
4268 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
4269 	status.sstat_primary.spinfo_srtt = transport->srtt;
4270 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4271 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
4272 
4273 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4274 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4275 
4276 	if (put_user(len, optlen)) {
4277 		retval = -EFAULT;
4278 		goto out;
4279 	}
4280 
4281 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4282 		 __func__, len, status.sstat_state, status.sstat_rwnd,
4283 		 status.sstat_assoc_id);
4284 
4285 	if (copy_to_user(optval, &status, len)) {
4286 		retval = -EFAULT;
4287 		goto out;
4288 	}
4289 
4290 out:
4291 	return retval;
4292 }
4293 
4294 
4295 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4296  *
4297  * Applications can retrieve information about a specific peer address
4298  * of an association, including its reachability state, congestion
4299  * window, and retransmission timer values.  This information is
4300  * read-only.
4301  */
4302 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4303 					  char __user *optval,
4304 					  int __user *optlen)
4305 {
4306 	struct sctp_paddrinfo pinfo;
4307 	struct sctp_transport *transport;
4308 	int retval = 0;
4309 
4310 	if (len < sizeof(pinfo)) {
4311 		retval = -EINVAL;
4312 		goto out;
4313 	}
4314 
4315 	len = sizeof(pinfo);
4316 	if (copy_from_user(&pinfo, optval, len)) {
4317 		retval = -EFAULT;
4318 		goto out;
4319 	}
4320 
4321 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4322 					   pinfo.spinfo_assoc_id);
4323 	if (!transport)
4324 		return -EINVAL;
4325 
4326 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4327 	pinfo.spinfo_state = transport->state;
4328 	pinfo.spinfo_cwnd = transport->cwnd;
4329 	pinfo.spinfo_srtt = transport->srtt;
4330 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4331 	pinfo.spinfo_mtu = transport->pathmtu;
4332 
4333 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
4334 		pinfo.spinfo_state = SCTP_ACTIVE;
4335 
4336 	if (put_user(len, optlen)) {
4337 		retval = -EFAULT;
4338 		goto out;
4339 	}
4340 
4341 	if (copy_to_user(optval, &pinfo, len)) {
4342 		retval = -EFAULT;
4343 		goto out;
4344 	}
4345 
4346 out:
4347 	return retval;
4348 }
4349 
4350 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4351  *
4352  * This option is a on/off flag.  If enabled no SCTP message
4353  * fragmentation will be performed.  Instead if a message being sent
4354  * exceeds the current PMTU size, the message will NOT be sent and
4355  * instead a error will be indicated to the user.
4356  */
4357 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4358 					char __user *optval, int __user *optlen)
4359 {
4360 	int val;
4361 
4362 	if (len < sizeof(int))
4363 		return -EINVAL;
4364 
4365 	len = sizeof(int);
4366 	val = (sctp_sk(sk)->disable_fragments == 1);
4367 	if (put_user(len, optlen))
4368 		return -EFAULT;
4369 	if (copy_to_user(optval, &val, len))
4370 		return -EFAULT;
4371 	return 0;
4372 }
4373 
4374 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4375  *
4376  * This socket option is used to specify various notifications and
4377  * ancillary data the user wishes to receive.
4378  */
4379 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4380 				  int __user *optlen)
4381 {
4382 	if (len <= 0)
4383 		return -EINVAL;
4384 	if (len > sizeof(struct sctp_event_subscribe))
4385 		len = sizeof(struct sctp_event_subscribe);
4386 	if (put_user(len, optlen))
4387 		return -EFAULT;
4388 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4389 		return -EFAULT;
4390 	return 0;
4391 }
4392 
4393 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4394  *
4395  * This socket option is applicable to the UDP-style socket only.  When
4396  * set it will cause associations that are idle for more than the
4397  * specified number of seconds to automatically close.  An association
4398  * being idle is defined an association that has NOT sent or received
4399  * user data.  The special value of '0' indicates that no automatic
4400  * close of any associations should be performed.  The option expects an
4401  * integer defining the number of seconds of idle time before an
4402  * association is closed.
4403  */
4404 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4405 {
4406 	/* Applicable to UDP-style socket only */
4407 	if (sctp_style(sk, TCP))
4408 		return -EOPNOTSUPP;
4409 	if (len < sizeof(int))
4410 		return -EINVAL;
4411 	len = sizeof(int);
4412 	if (put_user(len, optlen))
4413 		return -EFAULT;
4414 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4415 		return -EFAULT;
4416 	return 0;
4417 }
4418 
4419 /* Helper routine to branch off an association to a new socket.  */
4420 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4421 {
4422 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
4423 	struct sctp_sock *sp = sctp_sk(sk);
4424 	struct socket *sock;
4425 	int err = 0;
4426 
4427 	if (!asoc)
4428 		return -EINVAL;
4429 
4430 	/* An association cannot be branched off from an already peeled-off
4431 	 * socket, nor is this supported for tcp style sockets.
4432 	 */
4433 	if (!sctp_style(sk, UDP))
4434 		return -EINVAL;
4435 
4436 	/* Create a new socket.  */
4437 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4438 	if (err < 0)
4439 		return err;
4440 
4441 	sctp_copy_sock(sock->sk, sk, asoc);
4442 
4443 	/* Make peeled-off sockets more like 1-1 accepted sockets.
4444 	 * Set the daddr and initialize id to something more random
4445 	 */
4446 	sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
4447 
4448 	/* Populate the fields of the newsk from the oldsk and migrate the
4449 	 * asoc to the newsk.
4450 	 */
4451 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4452 
4453 	*sockp = sock;
4454 
4455 	return err;
4456 }
4457 EXPORT_SYMBOL(sctp_do_peeloff);
4458 
4459 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4460 {
4461 	sctp_peeloff_arg_t peeloff;
4462 	struct socket *newsock;
4463 	struct file *newfile;
4464 	int retval = 0;
4465 
4466 	if (len < sizeof(sctp_peeloff_arg_t))
4467 		return -EINVAL;
4468 	len = sizeof(sctp_peeloff_arg_t);
4469 	if (copy_from_user(&peeloff, optval, len))
4470 		return -EFAULT;
4471 
4472 	retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4473 	if (retval < 0)
4474 		goto out;
4475 
4476 	/* Map the socket to an unused fd that can be returned to the user.  */
4477 	retval = get_unused_fd_flags(0);
4478 	if (retval < 0) {
4479 		sock_release(newsock);
4480 		goto out;
4481 	}
4482 
4483 	newfile = sock_alloc_file(newsock, 0, NULL);
4484 	if (unlikely(IS_ERR(newfile))) {
4485 		put_unused_fd(retval);
4486 		sock_release(newsock);
4487 		return PTR_ERR(newfile);
4488 	}
4489 
4490 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
4491 		 retval);
4492 
4493 	/* Return the fd mapped to the new socket.  */
4494 	if (put_user(len, optlen)) {
4495 		fput(newfile);
4496 		put_unused_fd(retval);
4497 		return -EFAULT;
4498 	}
4499 	peeloff.sd = retval;
4500 	if (copy_to_user(optval, &peeloff, len)) {
4501 		fput(newfile);
4502 		put_unused_fd(retval);
4503 		return -EFAULT;
4504 	}
4505 	fd_install(retval, newfile);
4506 out:
4507 	return retval;
4508 }
4509 
4510 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4511  *
4512  * Applications can enable or disable heartbeats for any peer address of
4513  * an association, modify an address's heartbeat interval, force a
4514  * heartbeat to be sent immediately, and adjust the address's maximum
4515  * number of retransmissions sent before an address is considered
4516  * unreachable.  The following structure is used to access and modify an
4517  * address's parameters:
4518  *
4519  *  struct sctp_paddrparams {
4520  *     sctp_assoc_t            spp_assoc_id;
4521  *     struct sockaddr_storage spp_address;
4522  *     uint32_t                spp_hbinterval;
4523  *     uint16_t                spp_pathmaxrxt;
4524  *     uint32_t                spp_pathmtu;
4525  *     uint32_t                spp_sackdelay;
4526  *     uint32_t                spp_flags;
4527  * };
4528  *
4529  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
4530  *                     application, and identifies the association for
4531  *                     this query.
4532  *   spp_address     - This specifies which address is of interest.
4533  *   spp_hbinterval  - This contains the value of the heartbeat interval,
4534  *                     in milliseconds.  If a  value of zero
4535  *                     is present in this field then no changes are to
4536  *                     be made to this parameter.
4537  *   spp_pathmaxrxt  - This contains the maximum number of
4538  *                     retransmissions before this address shall be
4539  *                     considered unreachable. If a  value of zero
4540  *                     is present in this field then no changes are to
4541  *                     be made to this parameter.
4542  *   spp_pathmtu     - When Path MTU discovery is disabled the value
4543  *                     specified here will be the "fixed" path mtu.
4544  *                     Note that if the spp_address field is empty
4545  *                     then all associations on this address will
4546  *                     have this fixed path mtu set upon them.
4547  *
4548  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
4549  *                     the number of milliseconds that sacks will be delayed
4550  *                     for. This value will apply to all addresses of an
4551  *                     association if the spp_address field is empty. Note
4552  *                     also, that if delayed sack is enabled and this
4553  *                     value is set to 0, no change is made to the last
4554  *                     recorded delayed sack timer value.
4555  *
4556  *   spp_flags       - These flags are used to control various features
4557  *                     on an association. The flag field may contain
4558  *                     zero or more of the following options.
4559  *
4560  *                     SPP_HB_ENABLE  - Enable heartbeats on the
4561  *                     specified address. Note that if the address
4562  *                     field is empty all addresses for the association
4563  *                     have heartbeats enabled upon them.
4564  *
4565  *                     SPP_HB_DISABLE - Disable heartbeats on the
4566  *                     speicifed address. Note that if the address
4567  *                     field is empty all addresses for the association
4568  *                     will have their heartbeats disabled. Note also
4569  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
4570  *                     mutually exclusive, only one of these two should
4571  *                     be specified. Enabling both fields will have
4572  *                     undetermined results.
4573  *
4574  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
4575  *                     to be made immediately.
4576  *
4577  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
4578  *                     discovery upon the specified address. Note that
4579  *                     if the address feild is empty then all addresses
4580  *                     on the association are effected.
4581  *
4582  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
4583  *                     discovery upon the specified address. Note that
4584  *                     if the address feild is empty then all addresses
4585  *                     on the association are effected. Not also that
4586  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4587  *                     exclusive. Enabling both will have undetermined
4588  *                     results.
4589  *
4590  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
4591  *                     on delayed sack. The time specified in spp_sackdelay
4592  *                     is used to specify the sack delay for this address. Note
4593  *                     that if spp_address is empty then all addresses will
4594  *                     enable delayed sack and take on the sack delay
4595  *                     value specified in spp_sackdelay.
4596  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
4597  *                     off delayed sack. If the spp_address field is blank then
4598  *                     delayed sack is disabled for the entire association. Note
4599  *                     also that this field is mutually exclusive to
4600  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
4601  *                     results.
4602  */
4603 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4604 					    char __user *optval, int __user *optlen)
4605 {
4606 	struct sctp_paddrparams  params;
4607 	struct sctp_transport   *trans = NULL;
4608 	struct sctp_association *asoc = NULL;
4609 	struct sctp_sock        *sp = sctp_sk(sk);
4610 
4611 	if (len < sizeof(struct sctp_paddrparams))
4612 		return -EINVAL;
4613 	len = sizeof(struct sctp_paddrparams);
4614 	if (copy_from_user(&params, optval, len))
4615 		return -EFAULT;
4616 
4617 	/* If an address other than INADDR_ANY is specified, and
4618 	 * no transport is found, then the request is invalid.
4619 	 */
4620 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
4621 		trans = sctp_addr_id2transport(sk, &params.spp_address,
4622 					       params.spp_assoc_id);
4623 		if (!trans) {
4624 			pr_debug("%s: failed no transport\n", __func__);
4625 			return -EINVAL;
4626 		}
4627 	}
4628 
4629 	/* Get association, if assoc_id != 0 and the socket is a one
4630 	 * to many style socket, and an association was not found, then
4631 	 * the id was invalid.
4632 	 */
4633 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4634 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4635 		pr_debug("%s: failed no association\n", __func__);
4636 		return -EINVAL;
4637 	}
4638 
4639 	if (trans) {
4640 		/* Fetch transport values. */
4641 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4642 		params.spp_pathmtu    = trans->pathmtu;
4643 		params.spp_pathmaxrxt = trans->pathmaxrxt;
4644 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
4645 
4646 		/*draft-11 doesn't say what to return in spp_flags*/
4647 		params.spp_flags      = trans->param_flags;
4648 	} else if (asoc) {
4649 		/* Fetch association values. */
4650 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4651 		params.spp_pathmtu    = asoc->pathmtu;
4652 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
4653 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
4654 
4655 		/*draft-11 doesn't say what to return in spp_flags*/
4656 		params.spp_flags      = asoc->param_flags;
4657 	} else {
4658 		/* Fetch socket values. */
4659 		params.spp_hbinterval = sp->hbinterval;
4660 		params.spp_pathmtu    = sp->pathmtu;
4661 		params.spp_sackdelay  = sp->sackdelay;
4662 		params.spp_pathmaxrxt = sp->pathmaxrxt;
4663 
4664 		/*draft-11 doesn't say what to return in spp_flags*/
4665 		params.spp_flags      = sp->param_flags;
4666 	}
4667 
4668 	if (copy_to_user(optval, &params, len))
4669 		return -EFAULT;
4670 
4671 	if (put_user(len, optlen))
4672 		return -EFAULT;
4673 
4674 	return 0;
4675 }
4676 
4677 /*
4678  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
4679  *
4680  * This option will effect the way delayed acks are performed.  This
4681  * option allows you to get or set the delayed ack time, in
4682  * milliseconds.  It also allows changing the delayed ack frequency.
4683  * Changing the frequency to 1 disables the delayed sack algorithm.  If
4684  * the assoc_id is 0, then this sets or gets the endpoints default
4685  * values.  If the assoc_id field is non-zero, then the set or get
4686  * effects the specified association for the one to many model (the
4687  * assoc_id field is ignored by the one to one model).  Note that if
4688  * sack_delay or sack_freq are 0 when setting this option, then the
4689  * current values will remain unchanged.
4690  *
4691  * struct sctp_sack_info {
4692  *     sctp_assoc_t            sack_assoc_id;
4693  *     uint32_t                sack_delay;
4694  *     uint32_t                sack_freq;
4695  * };
4696  *
4697  * sack_assoc_id -  This parameter, indicates which association the user
4698  *    is performing an action upon.  Note that if this field's value is
4699  *    zero then the endpoints default value is changed (effecting future
4700  *    associations only).
4701  *
4702  * sack_delay -  This parameter contains the number of milliseconds that
4703  *    the user is requesting the delayed ACK timer be set to.  Note that
4704  *    this value is defined in the standard to be between 200 and 500
4705  *    milliseconds.
4706  *
4707  * sack_freq -  This parameter contains the number of packets that must
4708  *    be received before a sack is sent without waiting for the delay
4709  *    timer to expire.  The default value for this is 2, setting this
4710  *    value to 1 will disable the delayed sack algorithm.
4711  */
4712 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4713 					    char __user *optval,
4714 					    int __user *optlen)
4715 {
4716 	struct sctp_sack_info    params;
4717 	struct sctp_association *asoc = NULL;
4718 	struct sctp_sock        *sp = sctp_sk(sk);
4719 
4720 	if (len >= sizeof(struct sctp_sack_info)) {
4721 		len = sizeof(struct sctp_sack_info);
4722 
4723 		if (copy_from_user(&params, optval, len))
4724 			return -EFAULT;
4725 	} else if (len == sizeof(struct sctp_assoc_value)) {
4726 		pr_warn_ratelimited(DEPRECATED
4727 				    "%s (pid %d) "
4728 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
4729 				    "Use struct sctp_sack_info instead\n",
4730 				    current->comm, task_pid_nr(current));
4731 		if (copy_from_user(&params, optval, len))
4732 			return -EFAULT;
4733 	} else
4734 		return -EINVAL;
4735 
4736 	/* Get association, if sack_assoc_id != 0 and the socket is a one
4737 	 * to many style socket, and an association was not found, then
4738 	 * the id was invalid.
4739 	 */
4740 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4741 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4742 		return -EINVAL;
4743 
4744 	if (asoc) {
4745 		/* Fetch association values. */
4746 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4747 			params.sack_delay = jiffies_to_msecs(
4748 				asoc->sackdelay);
4749 			params.sack_freq = asoc->sackfreq;
4750 
4751 		} else {
4752 			params.sack_delay = 0;
4753 			params.sack_freq = 1;
4754 		}
4755 	} else {
4756 		/* Fetch socket values. */
4757 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4758 			params.sack_delay  = sp->sackdelay;
4759 			params.sack_freq = sp->sackfreq;
4760 		} else {
4761 			params.sack_delay  = 0;
4762 			params.sack_freq = 1;
4763 		}
4764 	}
4765 
4766 	if (copy_to_user(optval, &params, len))
4767 		return -EFAULT;
4768 
4769 	if (put_user(len, optlen))
4770 		return -EFAULT;
4771 
4772 	return 0;
4773 }
4774 
4775 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4776  *
4777  * Applications can specify protocol parameters for the default association
4778  * initialization.  The option name argument to setsockopt() and getsockopt()
4779  * is SCTP_INITMSG.
4780  *
4781  * Setting initialization parameters is effective only on an unconnected
4782  * socket (for UDP-style sockets only future associations are effected
4783  * by the change).  With TCP-style sockets, this option is inherited by
4784  * sockets derived from a listener socket.
4785  */
4786 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4787 {
4788 	if (len < sizeof(struct sctp_initmsg))
4789 		return -EINVAL;
4790 	len = sizeof(struct sctp_initmsg);
4791 	if (put_user(len, optlen))
4792 		return -EFAULT;
4793 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4794 		return -EFAULT;
4795 	return 0;
4796 }
4797 
4798 
4799 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4800 				      char __user *optval, int __user *optlen)
4801 {
4802 	struct sctp_association *asoc;
4803 	int cnt = 0;
4804 	struct sctp_getaddrs getaddrs;
4805 	struct sctp_transport *from;
4806 	void __user *to;
4807 	union sctp_addr temp;
4808 	struct sctp_sock *sp = sctp_sk(sk);
4809 	int addrlen;
4810 	size_t space_left;
4811 	int bytes_copied;
4812 
4813 	if (len < sizeof(struct sctp_getaddrs))
4814 		return -EINVAL;
4815 
4816 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4817 		return -EFAULT;
4818 
4819 	/* For UDP-style sockets, id specifies the association to query.  */
4820 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4821 	if (!asoc)
4822 		return -EINVAL;
4823 
4824 	to = optval + offsetof(struct sctp_getaddrs, addrs);
4825 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
4826 
4827 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4828 				transports) {
4829 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4830 		addrlen = sctp_get_pf_specific(sk->sk_family)
4831 			      ->addr_to_user(sp, &temp);
4832 		if (space_left < addrlen)
4833 			return -ENOMEM;
4834 		if (copy_to_user(to, &temp, addrlen))
4835 			return -EFAULT;
4836 		to += addrlen;
4837 		cnt++;
4838 		space_left -= addrlen;
4839 	}
4840 
4841 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4842 		return -EFAULT;
4843 	bytes_copied = ((char __user *)to) - optval;
4844 	if (put_user(bytes_copied, optlen))
4845 		return -EFAULT;
4846 
4847 	return 0;
4848 }
4849 
4850 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4851 			    size_t space_left, int *bytes_copied)
4852 {
4853 	struct sctp_sockaddr_entry *addr;
4854 	union sctp_addr temp;
4855 	int cnt = 0;
4856 	int addrlen;
4857 	struct net *net = sock_net(sk);
4858 
4859 	rcu_read_lock();
4860 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
4861 		if (!addr->valid)
4862 			continue;
4863 
4864 		if ((PF_INET == sk->sk_family) &&
4865 		    (AF_INET6 == addr->a.sa.sa_family))
4866 			continue;
4867 		if ((PF_INET6 == sk->sk_family) &&
4868 		    inet_v6_ipv6only(sk) &&
4869 		    (AF_INET == addr->a.sa.sa_family))
4870 			continue;
4871 		memcpy(&temp, &addr->a, sizeof(temp));
4872 		if (!temp.v4.sin_port)
4873 			temp.v4.sin_port = htons(port);
4874 
4875 		addrlen = sctp_get_pf_specific(sk->sk_family)
4876 			      ->addr_to_user(sctp_sk(sk), &temp);
4877 
4878 		if (space_left < addrlen) {
4879 			cnt =  -ENOMEM;
4880 			break;
4881 		}
4882 		memcpy(to, &temp, addrlen);
4883 
4884 		to += addrlen;
4885 		cnt++;
4886 		space_left -= addrlen;
4887 		*bytes_copied += addrlen;
4888 	}
4889 	rcu_read_unlock();
4890 
4891 	return cnt;
4892 }
4893 
4894 
4895 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4896 				       char __user *optval, int __user *optlen)
4897 {
4898 	struct sctp_bind_addr *bp;
4899 	struct sctp_association *asoc;
4900 	int cnt = 0;
4901 	struct sctp_getaddrs getaddrs;
4902 	struct sctp_sockaddr_entry *addr;
4903 	void __user *to;
4904 	union sctp_addr temp;
4905 	struct sctp_sock *sp = sctp_sk(sk);
4906 	int addrlen;
4907 	int err = 0;
4908 	size_t space_left;
4909 	int bytes_copied = 0;
4910 	void *addrs;
4911 	void *buf;
4912 
4913 	if (len < sizeof(struct sctp_getaddrs))
4914 		return -EINVAL;
4915 
4916 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4917 		return -EFAULT;
4918 
4919 	/*
4920 	 *  For UDP-style sockets, id specifies the association to query.
4921 	 *  If the id field is set to the value '0' then the locally bound
4922 	 *  addresses are returned without regard to any particular
4923 	 *  association.
4924 	 */
4925 	if (0 == getaddrs.assoc_id) {
4926 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4927 	} else {
4928 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4929 		if (!asoc)
4930 			return -EINVAL;
4931 		bp = &asoc->base.bind_addr;
4932 	}
4933 
4934 	to = optval + offsetof(struct sctp_getaddrs, addrs);
4935 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
4936 
4937 	addrs = kmalloc(space_left, GFP_KERNEL);
4938 	if (!addrs)
4939 		return -ENOMEM;
4940 
4941 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4942 	 * addresses from the global local address list.
4943 	 */
4944 	if (sctp_list_single_entry(&bp->address_list)) {
4945 		addr = list_entry(bp->address_list.next,
4946 				  struct sctp_sockaddr_entry, list);
4947 		if (sctp_is_any(sk, &addr->a)) {
4948 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4949 						space_left, &bytes_copied);
4950 			if (cnt < 0) {
4951 				err = cnt;
4952 				goto out;
4953 			}
4954 			goto copy_getaddrs;
4955 		}
4956 	}
4957 
4958 	buf = addrs;
4959 	/* Protection on the bound address list is not needed since
4960 	 * in the socket option context we hold a socket lock and
4961 	 * thus the bound address list can't change.
4962 	 */
4963 	list_for_each_entry(addr, &bp->address_list, list) {
4964 		memcpy(&temp, &addr->a, sizeof(temp));
4965 		addrlen = sctp_get_pf_specific(sk->sk_family)
4966 			      ->addr_to_user(sp, &temp);
4967 		if (space_left < addrlen) {
4968 			err =  -ENOMEM; /*fixme: right error?*/
4969 			goto out;
4970 		}
4971 		memcpy(buf, &temp, addrlen);
4972 		buf += addrlen;
4973 		bytes_copied += addrlen;
4974 		cnt++;
4975 		space_left -= addrlen;
4976 	}
4977 
4978 copy_getaddrs:
4979 	if (copy_to_user(to, addrs, bytes_copied)) {
4980 		err = -EFAULT;
4981 		goto out;
4982 	}
4983 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4984 		err = -EFAULT;
4985 		goto out;
4986 	}
4987 	if (put_user(bytes_copied, optlen))
4988 		err = -EFAULT;
4989 out:
4990 	kfree(addrs);
4991 	return err;
4992 }
4993 
4994 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4995  *
4996  * Requests that the local SCTP stack use the enclosed peer address as
4997  * the association primary.  The enclosed address must be one of the
4998  * association peer's addresses.
4999  */
5000 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
5001 					char __user *optval, int __user *optlen)
5002 {
5003 	struct sctp_prim prim;
5004 	struct sctp_association *asoc;
5005 	struct sctp_sock *sp = sctp_sk(sk);
5006 
5007 	if (len < sizeof(struct sctp_prim))
5008 		return -EINVAL;
5009 
5010 	len = sizeof(struct sctp_prim);
5011 
5012 	if (copy_from_user(&prim, optval, len))
5013 		return -EFAULT;
5014 
5015 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
5016 	if (!asoc)
5017 		return -EINVAL;
5018 
5019 	if (!asoc->peer.primary_path)
5020 		return -ENOTCONN;
5021 
5022 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
5023 		asoc->peer.primary_path->af_specific->sockaddr_len);
5024 
5025 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
5026 			(union sctp_addr *)&prim.ssp_addr);
5027 
5028 	if (put_user(len, optlen))
5029 		return -EFAULT;
5030 	if (copy_to_user(optval, &prim, len))
5031 		return -EFAULT;
5032 
5033 	return 0;
5034 }
5035 
5036 /*
5037  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
5038  *
5039  * Requests that the local endpoint set the specified Adaptation Layer
5040  * Indication parameter for all future INIT and INIT-ACK exchanges.
5041  */
5042 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
5043 				  char __user *optval, int __user *optlen)
5044 {
5045 	struct sctp_setadaptation adaptation;
5046 
5047 	if (len < sizeof(struct sctp_setadaptation))
5048 		return -EINVAL;
5049 
5050 	len = sizeof(struct sctp_setadaptation);
5051 
5052 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
5053 
5054 	if (put_user(len, optlen))
5055 		return -EFAULT;
5056 	if (copy_to_user(optval, &adaptation, len))
5057 		return -EFAULT;
5058 
5059 	return 0;
5060 }
5061 
5062 /*
5063  *
5064  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
5065  *
5066  *   Applications that wish to use the sendto() system call may wish to
5067  *   specify a default set of parameters that would normally be supplied
5068  *   through the inclusion of ancillary data.  This socket option allows
5069  *   such an application to set the default sctp_sndrcvinfo structure.
5070 
5071 
5072  *   The application that wishes to use this socket option simply passes
5073  *   in to this call the sctp_sndrcvinfo structure defined in Section
5074  *   5.2.2) The input parameters accepted by this call include
5075  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
5076  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
5077  *   to this call if the caller is using the UDP model.
5078  *
5079  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
5080  */
5081 static int sctp_getsockopt_default_send_param(struct sock *sk,
5082 					int len, char __user *optval,
5083 					int __user *optlen)
5084 {
5085 	struct sctp_sock *sp = sctp_sk(sk);
5086 	struct sctp_association *asoc;
5087 	struct sctp_sndrcvinfo info;
5088 
5089 	if (len < sizeof(info))
5090 		return -EINVAL;
5091 
5092 	len = sizeof(info);
5093 
5094 	if (copy_from_user(&info, optval, len))
5095 		return -EFAULT;
5096 
5097 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
5098 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
5099 		return -EINVAL;
5100 	if (asoc) {
5101 		info.sinfo_stream = asoc->default_stream;
5102 		info.sinfo_flags = asoc->default_flags;
5103 		info.sinfo_ppid = asoc->default_ppid;
5104 		info.sinfo_context = asoc->default_context;
5105 		info.sinfo_timetolive = asoc->default_timetolive;
5106 	} else {
5107 		info.sinfo_stream = sp->default_stream;
5108 		info.sinfo_flags = sp->default_flags;
5109 		info.sinfo_ppid = sp->default_ppid;
5110 		info.sinfo_context = sp->default_context;
5111 		info.sinfo_timetolive = sp->default_timetolive;
5112 	}
5113 
5114 	if (put_user(len, optlen))
5115 		return -EFAULT;
5116 	if (copy_to_user(optval, &info, len))
5117 		return -EFAULT;
5118 
5119 	return 0;
5120 }
5121 
5122 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
5123  * (SCTP_DEFAULT_SNDINFO)
5124  */
5125 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
5126 					   char __user *optval,
5127 					   int __user *optlen)
5128 {
5129 	struct sctp_sock *sp = sctp_sk(sk);
5130 	struct sctp_association *asoc;
5131 	struct sctp_sndinfo info;
5132 
5133 	if (len < sizeof(info))
5134 		return -EINVAL;
5135 
5136 	len = sizeof(info);
5137 
5138 	if (copy_from_user(&info, optval, len))
5139 		return -EFAULT;
5140 
5141 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
5142 	if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
5143 		return -EINVAL;
5144 	if (asoc) {
5145 		info.snd_sid = asoc->default_stream;
5146 		info.snd_flags = asoc->default_flags;
5147 		info.snd_ppid = asoc->default_ppid;
5148 		info.snd_context = asoc->default_context;
5149 	} else {
5150 		info.snd_sid = sp->default_stream;
5151 		info.snd_flags = sp->default_flags;
5152 		info.snd_ppid = sp->default_ppid;
5153 		info.snd_context = sp->default_context;
5154 	}
5155 
5156 	if (put_user(len, optlen))
5157 		return -EFAULT;
5158 	if (copy_to_user(optval, &info, len))
5159 		return -EFAULT;
5160 
5161 	return 0;
5162 }
5163 
5164 /*
5165  *
5166  * 7.1.5 SCTP_NODELAY
5167  *
5168  * Turn on/off any Nagle-like algorithm.  This means that packets are
5169  * generally sent as soon as possible and no unnecessary delays are
5170  * introduced, at the cost of more packets in the network.  Expects an
5171  * integer boolean flag.
5172  */
5173 
5174 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
5175 				   char __user *optval, int __user *optlen)
5176 {
5177 	int val;
5178 
5179 	if (len < sizeof(int))
5180 		return -EINVAL;
5181 
5182 	len = sizeof(int);
5183 	val = (sctp_sk(sk)->nodelay == 1);
5184 	if (put_user(len, optlen))
5185 		return -EFAULT;
5186 	if (copy_to_user(optval, &val, len))
5187 		return -EFAULT;
5188 	return 0;
5189 }
5190 
5191 /*
5192  *
5193  * 7.1.1 SCTP_RTOINFO
5194  *
5195  * The protocol parameters used to initialize and bound retransmission
5196  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5197  * and modify these parameters.
5198  * All parameters are time values, in milliseconds.  A value of 0, when
5199  * modifying the parameters, indicates that the current value should not
5200  * be changed.
5201  *
5202  */
5203 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5204 				char __user *optval,
5205 				int __user *optlen) {
5206 	struct sctp_rtoinfo rtoinfo;
5207 	struct sctp_association *asoc;
5208 
5209 	if (len < sizeof (struct sctp_rtoinfo))
5210 		return -EINVAL;
5211 
5212 	len = sizeof(struct sctp_rtoinfo);
5213 
5214 	if (copy_from_user(&rtoinfo, optval, len))
5215 		return -EFAULT;
5216 
5217 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5218 
5219 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5220 		return -EINVAL;
5221 
5222 	/* Values corresponding to the specific association. */
5223 	if (asoc) {
5224 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5225 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5226 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5227 	} else {
5228 		/* Values corresponding to the endpoint. */
5229 		struct sctp_sock *sp = sctp_sk(sk);
5230 
5231 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5232 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
5233 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
5234 	}
5235 
5236 	if (put_user(len, optlen))
5237 		return -EFAULT;
5238 
5239 	if (copy_to_user(optval, &rtoinfo, len))
5240 		return -EFAULT;
5241 
5242 	return 0;
5243 }
5244 
5245 /*
5246  *
5247  * 7.1.2 SCTP_ASSOCINFO
5248  *
5249  * This option is used to tune the maximum retransmission attempts
5250  * of the association.
5251  * Returns an error if the new association retransmission value is
5252  * greater than the sum of the retransmission value  of the peer.
5253  * See [SCTP] for more information.
5254  *
5255  */
5256 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5257 				     char __user *optval,
5258 				     int __user *optlen)
5259 {
5260 
5261 	struct sctp_assocparams assocparams;
5262 	struct sctp_association *asoc;
5263 	struct list_head *pos;
5264 	int cnt = 0;
5265 
5266 	if (len < sizeof (struct sctp_assocparams))
5267 		return -EINVAL;
5268 
5269 	len = sizeof(struct sctp_assocparams);
5270 
5271 	if (copy_from_user(&assocparams, optval, len))
5272 		return -EFAULT;
5273 
5274 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5275 
5276 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5277 		return -EINVAL;
5278 
5279 	/* Values correspoinding to the specific association */
5280 	if (asoc) {
5281 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5282 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5283 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5284 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5285 
5286 		list_for_each(pos, &asoc->peer.transport_addr_list) {
5287 			cnt++;
5288 		}
5289 
5290 		assocparams.sasoc_number_peer_destinations = cnt;
5291 	} else {
5292 		/* Values corresponding to the endpoint */
5293 		struct sctp_sock *sp = sctp_sk(sk);
5294 
5295 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5296 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5297 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5298 		assocparams.sasoc_cookie_life =
5299 					sp->assocparams.sasoc_cookie_life;
5300 		assocparams.sasoc_number_peer_destinations =
5301 					sp->assocparams.
5302 					sasoc_number_peer_destinations;
5303 	}
5304 
5305 	if (put_user(len, optlen))
5306 		return -EFAULT;
5307 
5308 	if (copy_to_user(optval, &assocparams, len))
5309 		return -EFAULT;
5310 
5311 	return 0;
5312 }
5313 
5314 /*
5315  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5316  *
5317  * This socket option is a boolean flag which turns on or off mapped V4
5318  * addresses.  If this option is turned on and the socket is type
5319  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5320  * If this option is turned off, then no mapping will be done of V4
5321  * addresses and a user will receive both PF_INET6 and PF_INET type
5322  * addresses on the socket.
5323  */
5324 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5325 				    char __user *optval, int __user *optlen)
5326 {
5327 	int val;
5328 	struct sctp_sock *sp = sctp_sk(sk);
5329 
5330 	if (len < sizeof(int))
5331 		return -EINVAL;
5332 
5333 	len = sizeof(int);
5334 	val = sp->v4mapped;
5335 	if (put_user(len, optlen))
5336 		return -EFAULT;
5337 	if (copy_to_user(optval, &val, len))
5338 		return -EFAULT;
5339 
5340 	return 0;
5341 }
5342 
5343 /*
5344  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
5345  * (chapter and verse is quoted at sctp_setsockopt_context())
5346  */
5347 static int sctp_getsockopt_context(struct sock *sk, int len,
5348 				   char __user *optval, int __user *optlen)
5349 {
5350 	struct sctp_assoc_value params;
5351 	struct sctp_sock *sp;
5352 	struct sctp_association *asoc;
5353 
5354 	if (len < sizeof(struct sctp_assoc_value))
5355 		return -EINVAL;
5356 
5357 	len = sizeof(struct sctp_assoc_value);
5358 
5359 	if (copy_from_user(&params, optval, len))
5360 		return -EFAULT;
5361 
5362 	sp = sctp_sk(sk);
5363 
5364 	if (params.assoc_id != 0) {
5365 		asoc = sctp_id2assoc(sk, params.assoc_id);
5366 		if (!asoc)
5367 			return -EINVAL;
5368 		params.assoc_value = asoc->default_rcv_context;
5369 	} else {
5370 		params.assoc_value = sp->default_rcv_context;
5371 	}
5372 
5373 	if (put_user(len, optlen))
5374 		return -EFAULT;
5375 	if (copy_to_user(optval, &params, len))
5376 		return -EFAULT;
5377 
5378 	return 0;
5379 }
5380 
5381 /*
5382  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5383  * This option will get or set the maximum size to put in any outgoing
5384  * SCTP DATA chunk.  If a message is larger than this size it will be
5385  * fragmented by SCTP into the specified size.  Note that the underlying
5386  * SCTP implementation may fragment into smaller sized chunks when the
5387  * PMTU of the underlying association is smaller than the value set by
5388  * the user.  The default value for this option is '0' which indicates
5389  * the user is NOT limiting fragmentation and only the PMTU will effect
5390  * SCTP's choice of DATA chunk size.  Note also that values set larger
5391  * than the maximum size of an IP datagram will effectively let SCTP
5392  * control fragmentation (i.e. the same as setting this option to 0).
5393  *
5394  * The following structure is used to access and modify this parameter:
5395  *
5396  * struct sctp_assoc_value {
5397  *   sctp_assoc_t assoc_id;
5398  *   uint32_t assoc_value;
5399  * };
5400  *
5401  * assoc_id:  This parameter is ignored for one-to-one style sockets.
5402  *    For one-to-many style sockets this parameter indicates which
5403  *    association the user is performing an action upon.  Note that if
5404  *    this field's value is zero then the endpoints default value is
5405  *    changed (effecting future associations only).
5406  * assoc_value:  This parameter specifies the maximum size in bytes.
5407  */
5408 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5409 				  char __user *optval, int __user *optlen)
5410 {
5411 	struct sctp_assoc_value params;
5412 	struct sctp_association *asoc;
5413 
5414 	if (len == sizeof(int)) {
5415 		pr_warn_ratelimited(DEPRECATED
5416 				    "%s (pid %d) "
5417 				    "Use of int in maxseg socket option.\n"
5418 				    "Use struct sctp_assoc_value instead\n",
5419 				    current->comm, task_pid_nr(current));
5420 		params.assoc_id = 0;
5421 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5422 		len = sizeof(struct sctp_assoc_value);
5423 		if (copy_from_user(&params, optval, sizeof(params)))
5424 			return -EFAULT;
5425 	} else
5426 		return -EINVAL;
5427 
5428 	asoc = sctp_id2assoc(sk, params.assoc_id);
5429 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5430 		return -EINVAL;
5431 
5432 	if (asoc)
5433 		params.assoc_value = asoc->frag_point;
5434 	else
5435 		params.assoc_value = sctp_sk(sk)->user_frag;
5436 
5437 	if (put_user(len, optlen))
5438 		return -EFAULT;
5439 	if (len == sizeof(int)) {
5440 		if (copy_to_user(optval, &params.assoc_value, len))
5441 			return -EFAULT;
5442 	} else {
5443 		if (copy_to_user(optval, &params, len))
5444 			return -EFAULT;
5445 	}
5446 
5447 	return 0;
5448 }
5449 
5450 /*
5451  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5452  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5453  */
5454 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5455 					       char __user *optval, int __user *optlen)
5456 {
5457 	int val;
5458 
5459 	if (len < sizeof(int))
5460 		return -EINVAL;
5461 
5462 	len = sizeof(int);
5463 
5464 	val = sctp_sk(sk)->frag_interleave;
5465 	if (put_user(len, optlen))
5466 		return -EFAULT;
5467 	if (copy_to_user(optval, &val, len))
5468 		return -EFAULT;
5469 
5470 	return 0;
5471 }
5472 
5473 /*
5474  * 7.1.25.  Set or Get the sctp partial delivery point
5475  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5476  */
5477 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5478 						  char __user *optval,
5479 						  int __user *optlen)
5480 {
5481 	u32 val;
5482 
5483 	if (len < sizeof(u32))
5484 		return -EINVAL;
5485 
5486 	len = sizeof(u32);
5487 
5488 	val = sctp_sk(sk)->pd_point;
5489 	if (put_user(len, optlen))
5490 		return -EFAULT;
5491 	if (copy_to_user(optval, &val, len))
5492 		return -EFAULT;
5493 
5494 	return 0;
5495 }
5496 
5497 /*
5498  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
5499  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5500  */
5501 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5502 				    char __user *optval,
5503 				    int __user *optlen)
5504 {
5505 	struct sctp_assoc_value params;
5506 	struct sctp_sock *sp;
5507 	struct sctp_association *asoc;
5508 
5509 	if (len == sizeof(int)) {
5510 		pr_warn_ratelimited(DEPRECATED
5511 				    "%s (pid %d) "
5512 				    "Use of int in max_burst socket option.\n"
5513 				    "Use struct sctp_assoc_value instead\n",
5514 				    current->comm, task_pid_nr(current));
5515 		params.assoc_id = 0;
5516 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5517 		len = sizeof(struct sctp_assoc_value);
5518 		if (copy_from_user(&params, optval, len))
5519 			return -EFAULT;
5520 	} else
5521 		return -EINVAL;
5522 
5523 	sp = sctp_sk(sk);
5524 
5525 	if (params.assoc_id != 0) {
5526 		asoc = sctp_id2assoc(sk, params.assoc_id);
5527 		if (!asoc)
5528 			return -EINVAL;
5529 		params.assoc_value = asoc->max_burst;
5530 	} else
5531 		params.assoc_value = sp->max_burst;
5532 
5533 	if (len == sizeof(int)) {
5534 		if (copy_to_user(optval, &params.assoc_value, len))
5535 			return -EFAULT;
5536 	} else {
5537 		if (copy_to_user(optval, &params, len))
5538 			return -EFAULT;
5539 	}
5540 
5541 	return 0;
5542 
5543 }
5544 
5545 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5546 				    char __user *optval, int __user *optlen)
5547 {
5548 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5549 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
5550 	struct sctp_hmac_algo_param *hmacs;
5551 	__u16 data_len = 0;
5552 	u32 num_idents;
5553 
5554 	if (!ep->auth_enable)
5555 		return -EACCES;
5556 
5557 	hmacs = ep->auth_hmacs_list;
5558 	data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5559 
5560 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
5561 		return -EINVAL;
5562 
5563 	len = sizeof(struct sctp_hmacalgo) + data_len;
5564 	num_idents = data_len / sizeof(u16);
5565 
5566 	if (put_user(len, optlen))
5567 		return -EFAULT;
5568 	if (put_user(num_idents, &p->shmac_num_idents))
5569 		return -EFAULT;
5570 	if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5571 		return -EFAULT;
5572 	return 0;
5573 }
5574 
5575 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5576 				    char __user *optval, int __user *optlen)
5577 {
5578 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5579 	struct sctp_authkeyid val;
5580 	struct sctp_association *asoc;
5581 
5582 	if (!ep->auth_enable)
5583 		return -EACCES;
5584 
5585 	if (len < sizeof(struct sctp_authkeyid))
5586 		return -EINVAL;
5587 	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5588 		return -EFAULT;
5589 
5590 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5591 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5592 		return -EINVAL;
5593 
5594 	if (asoc)
5595 		val.scact_keynumber = asoc->active_key_id;
5596 	else
5597 		val.scact_keynumber = ep->active_key_id;
5598 
5599 	len = sizeof(struct sctp_authkeyid);
5600 	if (put_user(len, optlen))
5601 		return -EFAULT;
5602 	if (copy_to_user(optval, &val, len))
5603 		return -EFAULT;
5604 
5605 	return 0;
5606 }
5607 
5608 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5609 				    char __user *optval, int __user *optlen)
5610 {
5611 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5612 	struct sctp_authchunks __user *p = (void __user *)optval;
5613 	struct sctp_authchunks val;
5614 	struct sctp_association *asoc;
5615 	struct sctp_chunks_param *ch;
5616 	u32    num_chunks = 0;
5617 	char __user *to;
5618 
5619 	if (!ep->auth_enable)
5620 		return -EACCES;
5621 
5622 	if (len < sizeof(struct sctp_authchunks))
5623 		return -EINVAL;
5624 
5625 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5626 		return -EFAULT;
5627 
5628 	to = p->gauth_chunks;
5629 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5630 	if (!asoc)
5631 		return -EINVAL;
5632 
5633 	ch = asoc->peer.peer_chunks;
5634 	if (!ch)
5635 		goto num;
5636 
5637 	/* See if the user provided enough room for all the data */
5638 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5639 	if (len < num_chunks)
5640 		return -EINVAL;
5641 
5642 	if (copy_to_user(to, ch->chunks, num_chunks))
5643 		return -EFAULT;
5644 num:
5645 	len = sizeof(struct sctp_authchunks) + num_chunks;
5646 	if (put_user(len, optlen))
5647 		return -EFAULT;
5648 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5649 		return -EFAULT;
5650 	return 0;
5651 }
5652 
5653 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5654 				    char __user *optval, int __user *optlen)
5655 {
5656 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5657 	struct sctp_authchunks __user *p = (void __user *)optval;
5658 	struct sctp_authchunks val;
5659 	struct sctp_association *asoc;
5660 	struct sctp_chunks_param *ch;
5661 	u32    num_chunks = 0;
5662 	char __user *to;
5663 
5664 	if (!ep->auth_enable)
5665 		return -EACCES;
5666 
5667 	if (len < sizeof(struct sctp_authchunks))
5668 		return -EINVAL;
5669 
5670 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5671 		return -EFAULT;
5672 
5673 	to = p->gauth_chunks;
5674 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5675 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5676 		return -EINVAL;
5677 
5678 	if (asoc)
5679 		ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
5680 	else
5681 		ch = ep->auth_chunk_list;
5682 
5683 	if (!ch)
5684 		goto num;
5685 
5686 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5687 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
5688 		return -EINVAL;
5689 
5690 	if (copy_to_user(to, ch->chunks, num_chunks))
5691 		return -EFAULT;
5692 num:
5693 	len = sizeof(struct sctp_authchunks) + num_chunks;
5694 	if (put_user(len, optlen))
5695 		return -EFAULT;
5696 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5697 		return -EFAULT;
5698 
5699 	return 0;
5700 }
5701 
5702 /*
5703  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5704  * This option gets the current number of associations that are attached
5705  * to a one-to-many style socket.  The option value is an uint32_t.
5706  */
5707 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5708 				    char __user *optval, int __user *optlen)
5709 {
5710 	struct sctp_sock *sp = sctp_sk(sk);
5711 	struct sctp_association *asoc;
5712 	u32 val = 0;
5713 
5714 	if (sctp_style(sk, TCP))
5715 		return -EOPNOTSUPP;
5716 
5717 	if (len < sizeof(u32))
5718 		return -EINVAL;
5719 
5720 	len = sizeof(u32);
5721 
5722 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5723 		val++;
5724 	}
5725 
5726 	if (put_user(len, optlen))
5727 		return -EFAULT;
5728 	if (copy_to_user(optval, &val, len))
5729 		return -EFAULT;
5730 
5731 	return 0;
5732 }
5733 
5734 /*
5735  * 8.1.23 SCTP_AUTO_ASCONF
5736  * See the corresponding setsockopt entry as description
5737  */
5738 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5739 				   char __user *optval, int __user *optlen)
5740 {
5741 	int val = 0;
5742 
5743 	if (len < sizeof(int))
5744 		return -EINVAL;
5745 
5746 	len = sizeof(int);
5747 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5748 		val = 1;
5749 	if (put_user(len, optlen))
5750 		return -EFAULT;
5751 	if (copy_to_user(optval, &val, len))
5752 		return -EFAULT;
5753 	return 0;
5754 }
5755 
5756 /*
5757  * 8.2.6. Get the Current Identifiers of Associations
5758  *        (SCTP_GET_ASSOC_ID_LIST)
5759  *
5760  * This option gets the current list of SCTP association identifiers of
5761  * the SCTP associations handled by a one-to-many style socket.
5762  */
5763 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5764 				    char __user *optval, int __user *optlen)
5765 {
5766 	struct sctp_sock *sp = sctp_sk(sk);
5767 	struct sctp_association *asoc;
5768 	struct sctp_assoc_ids *ids;
5769 	u32 num = 0;
5770 
5771 	if (sctp_style(sk, TCP))
5772 		return -EOPNOTSUPP;
5773 
5774 	if (len < sizeof(struct sctp_assoc_ids))
5775 		return -EINVAL;
5776 
5777 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5778 		num++;
5779 	}
5780 
5781 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5782 		return -EINVAL;
5783 
5784 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5785 
5786 	ids = kmalloc(len, GFP_KERNEL);
5787 	if (unlikely(!ids))
5788 		return -ENOMEM;
5789 
5790 	ids->gaids_number_of_ids = num;
5791 	num = 0;
5792 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5793 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
5794 	}
5795 
5796 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5797 		kfree(ids);
5798 		return -EFAULT;
5799 	}
5800 
5801 	kfree(ids);
5802 	return 0;
5803 }
5804 
5805 /*
5806  * SCTP_PEER_ADDR_THLDS
5807  *
5808  * This option allows us to fetch the partially failed threshold for one or all
5809  * transports in an association.  See Section 6.1 of:
5810  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
5811  */
5812 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
5813 					    char __user *optval,
5814 					    int len,
5815 					    int __user *optlen)
5816 {
5817 	struct sctp_paddrthlds val;
5818 	struct sctp_transport *trans;
5819 	struct sctp_association *asoc;
5820 
5821 	if (len < sizeof(struct sctp_paddrthlds))
5822 		return -EINVAL;
5823 	len = sizeof(struct sctp_paddrthlds);
5824 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
5825 		return -EFAULT;
5826 
5827 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
5828 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
5829 		if (!asoc)
5830 			return -ENOENT;
5831 
5832 		val.spt_pathpfthld = asoc->pf_retrans;
5833 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
5834 	} else {
5835 		trans = sctp_addr_id2transport(sk, &val.spt_address,
5836 					       val.spt_assoc_id);
5837 		if (!trans)
5838 			return -ENOENT;
5839 
5840 		val.spt_pathmaxrxt = trans->pathmaxrxt;
5841 		val.spt_pathpfthld = trans->pf_retrans;
5842 	}
5843 
5844 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
5845 		return -EFAULT;
5846 
5847 	return 0;
5848 }
5849 
5850 /*
5851  * SCTP_GET_ASSOC_STATS
5852  *
5853  * This option retrieves local per endpoint statistics. It is modeled
5854  * after OpenSolaris' implementation
5855  */
5856 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
5857 				       char __user *optval,
5858 				       int __user *optlen)
5859 {
5860 	struct sctp_assoc_stats sas;
5861 	struct sctp_association *asoc = NULL;
5862 
5863 	/* User must provide at least the assoc id */
5864 	if (len < sizeof(sctp_assoc_t))
5865 		return -EINVAL;
5866 
5867 	/* Allow the struct to grow and fill in as much as possible */
5868 	len = min_t(size_t, len, sizeof(sas));
5869 
5870 	if (copy_from_user(&sas, optval, len))
5871 		return -EFAULT;
5872 
5873 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
5874 	if (!asoc)
5875 		return -EINVAL;
5876 
5877 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
5878 	sas.sas_gapcnt = asoc->stats.gapcnt;
5879 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
5880 	sas.sas_osacks = asoc->stats.osacks;
5881 	sas.sas_isacks = asoc->stats.isacks;
5882 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
5883 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
5884 	sas.sas_oodchunks = asoc->stats.oodchunks;
5885 	sas.sas_iodchunks = asoc->stats.iodchunks;
5886 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
5887 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
5888 	sas.sas_idupchunks = asoc->stats.idupchunks;
5889 	sas.sas_opackets = asoc->stats.opackets;
5890 	sas.sas_ipackets = asoc->stats.ipackets;
5891 
5892 	/* New high max rto observed, will return 0 if not a single
5893 	 * RTO update took place. obs_rto_ipaddr will be bogus
5894 	 * in such a case
5895 	 */
5896 	sas.sas_maxrto = asoc->stats.max_obs_rto;
5897 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
5898 		sizeof(struct sockaddr_storage));
5899 
5900 	/* Mark beginning of a new observation period */
5901 	asoc->stats.max_obs_rto = asoc->rto_min;
5902 
5903 	if (put_user(len, optlen))
5904 		return -EFAULT;
5905 
5906 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
5907 
5908 	if (copy_to_user(optval, &sas, len))
5909 		return -EFAULT;
5910 
5911 	return 0;
5912 }
5913 
5914 static int sctp_getsockopt_recvrcvinfo(struct sock *sk,	int len,
5915 				       char __user *optval,
5916 				       int __user *optlen)
5917 {
5918 	int val = 0;
5919 
5920 	if (len < sizeof(int))
5921 		return -EINVAL;
5922 
5923 	len = sizeof(int);
5924 	if (sctp_sk(sk)->recvrcvinfo)
5925 		val = 1;
5926 	if (put_user(len, optlen))
5927 		return -EFAULT;
5928 	if (copy_to_user(optval, &val, len))
5929 		return -EFAULT;
5930 
5931 	return 0;
5932 }
5933 
5934 static int sctp_getsockopt_recvnxtinfo(struct sock *sk,	int len,
5935 				       char __user *optval,
5936 				       int __user *optlen)
5937 {
5938 	int val = 0;
5939 
5940 	if (len < sizeof(int))
5941 		return -EINVAL;
5942 
5943 	len = sizeof(int);
5944 	if (sctp_sk(sk)->recvnxtinfo)
5945 		val = 1;
5946 	if (put_user(len, optlen))
5947 		return -EFAULT;
5948 	if (copy_to_user(optval, &val, len))
5949 		return -EFAULT;
5950 
5951 	return 0;
5952 }
5953 
5954 static int sctp_getsockopt(struct sock *sk, int level, int optname,
5955 			   char __user *optval, int __user *optlen)
5956 {
5957 	int retval = 0;
5958 	int len;
5959 
5960 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
5961 
5962 	/* I can hardly begin to describe how wrong this is.  This is
5963 	 * so broken as to be worse than useless.  The API draft
5964 	 * REALLY is NOT helpful here...  I am not convinced that the
5965 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5966 	 * are at all well-founded.
5967 	 */
5968 	if (level != SOL_SCTP) {
5969 		struct sctp_af *af = sctp_sk(sk)->pf->af;
5970 
5971 		retval = af->getsockopt(sk, level, optname, optval, optlen);
5972 		return retval;
5973 	}
5974 
5975 	if (get_user(len, optlen))
5976 		return -EFAULT;
5977 
5978 	lock_sock(sk);
5979 
5980 	switch (optname) {
5981 	case SCTP_STATUS:
5982 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5983 		break;
5984 	case SCTP_DISABLE_FRAGMENTS:
5985 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5986 							   optlen);
5987 		break;
5988 	case SCTP_EVENTS:
5989 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
5990 		break;
5991 	case SCTP_AUTOCLOSE:
5992 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5993 		break;
5994 	case SCTP_SOCKOPT_PEELOFF:
5995 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5996 		break;
5997 	case SCTP_PEER_ADDR_PARAMS:
5998 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5999 							  optlen);
6000 		break;
6001 	case SCTP_DELAYED_SACK:
6002 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
6003 							  optlen);
6004 		break;
6005 	case SCTP_INITMSG:
6006 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
6007 		break;
6008 	case SCTP_GET_PEER_ADDRS:
6009 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
6010 						    optlen);
6011 		break;
6012 	case SCTP_GET_LOCAL_ADDRS:
6013 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
6014 						     optlen);
6015 		break;
6016 	case SCTP_SOCKOPT_CONNECTX3:
6017 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
6018 		break;
6019 	case SCTP_DEFAULT_SEND_PARAM:
6020 		retval = sctp_getsockopt_default_send_param(sk, len,
6021 							    optval, optlen);
6022 		break;
6023 	case SCTP_DEFAULT_SNDINFO:
6024 		retval = sctp_getsockopt_default_sndinfo(sk, len,
6025 							 optval, optlen);
6026 		break;
6027 	case SCTP_PRIMARY_ADDR:
6028 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
6029 		break;
6030 	case SCTP_NODELAY:
6031 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
6032 		break;
6033 	case SCTP_RTOINFO:
6034 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
6035 		break;
6036 	case SCTP_ASSOCINFO:
6037 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
6038 		break;
6039 	case SCTP_I_WANT_MAPPED_V4_ADDR:
6040 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
6041 		break;
6042 	case SCTP_MAXSEG:
6043 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
6044 		break;
6045 	case SCTP_GET_PEER_ADDR_INFO:
6046 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
6047 							optlen);
6048 		break;
6049 	case SCTP_ADAPTATION_LAYER:
6050 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
6051 							optlen);
6052 		break;
6053 	case SCTP_CONTEXT:
6054 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
6055 		break;
6056 	case SCTP_FRAGMENT_INTERLEAVE:
6057 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
6058 							     optlen);
6059 		break;
6060 	case SCTP_PARTIAL_DELIVERY_POINT:
6061 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
6062 								optlen);
6063 		break;
6064 	case SCTP_MAX_BURST:
6065 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
6066 		break;
6067 	case SCTP_AUTH_KEY:
6068 	case SCTP_AUTH_CHUNK:
6069 	case SCTP_AUTH_DELETE_KEY:
6070 		retval = -EOPNOTSUPP;
6071 		break;
6072 	case SCTP_HMAC_IDENT:
6073 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
6074 		break;
6075 	case SCTP_AUTH_ACTIVE_KEY:
6076 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
6077 		break;
6078 	case SCTP_PEER_AUTH_CHUNKS:
6079 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
6080 							optlen);
6081 		break;
6082 	case SCTP_LOCAL_AUTH_CHUNKS:
6083 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
6084 							optlen);
6085 		break;
6086 	case SCTP_GET_ASSOC_NUMBER:
6087 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
6088 		break;
6089 	case SCTP_GET_ASSOC_ID_LIST:
6090 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
6091 		break;
6092 	case SCTP_AUTO_ASCONF:
6093 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
6094 		break;
6095 	case SCTP_PEER_ADDR_THLDS:
6096 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
6097 		break;
6098 	case SCTP_GET_ASSOC_STATS:
6099 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
6100 		break;
6101 	case SCTP_RECVRCVINFO:
6102 		retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
6103 		break;
6104 	case SCTP_RECVNXTINFO:
6105 		retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
6106 		break;
6107 	default:
6108 		retval = -ENOPROTOOPT;
6109 		break;
6110 	}
6111 
6112 	release_sock(sk);
6113 	return retval;
6114 }
6115 
6116 static void sctp_hash(struct sock *sk)
6117 {
6118 	/* STUB */
6119 }
6120 
6121 static void sctp_unhash(struct sock *sk)
6122 {
6123 	/* STUB */
6124 }
6125 
6126 /* Check if port is acceptable.  Possibly find first available port.
6127  *
6128  * The port hash table (contained in the 'global' SCTP protocol storage
6129  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
6130  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
6131  * list (the list number is the port number hashed out, so as you
6132  * would expect from a hash function, all the ports in a given list have
6133  * such a number that hashes out to the same list number; you were
6134  * expecting that, right?); so each list has a set of ports, with a
6135  * link to the socket (struct sock) that uses it, the port number and
6136  * a fastreuse flag (FIXME: NPI ipg).
6137  */
6138 static struct sctp_bind_bucket *sctp_bucket_create(
6139 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
6140 
6141 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
6142 {
6143 	struct sctp_bind_hashbucket *head; /* hash list */
6144 	struct sctp_bind_bucket *pp;
6145 	unsigned short snum;
6146 	int ret;
6147 
6148 	snum = ntohs(addr->v4.sin_port);
6149 
6150 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
6151 
6152 	local_bh_disable();
6153 
6154 	if (snum == 0) {
6155 		/* Search for an available port. */
6156 		int low, high, remaining, index;
6157 		unsigned int rover;
6158 		struct net *net = sock_net(sk);
6159 
6160 		inet_get_local_port_range(net, &low, &high);
6161 		remaining = (high - low) + 1;
6162 		rover = prandom_u32() % remaining + low;
6163 
6164 		do {
6165 			rover++;
6166 			if ((rover < low) || (rover > high))
6167 				rover = low;
6168 			if (inet_is_local_reserved_port(net, rover))
6169 				continue;
6170 			index = sctp_phashfn(sock_net(sk), rover);
6171 			head = &sctp_port_hashtable[index];
6172 			spin_lock(&head->lock);
6173 			sctp_for_each_hentry(pp, &head->chain)
6174 				if ((pp->port == rover) &&
6175 				    net_eq(sock_net(sk), pp->net))
6176 					goto next;
6177 			break;
6178 		next:
6179 			spin_unlock(&head->lock);
6180 		} while (--remaining > 0);
6181 
6182 		/* Exhausted local port range during search? */
6183 		ret = 1;
6184 		if (remaining <= 0)
6185 			goto fail;
6186 
6187 		/* OK, here is the one we will use.  HEAD (the port
6188 		 * hash table list entry) is non-NULL and we hold it's
6189 		 * mutex.
6190 		 */
6191 		snum = rover;
6192 	} else {
6193 		/* We are given an specific port number; we verify
6194 		 * that it is not being used. If it is used, we will
6195 		 * exahust the search in the hash list corresponding
6196 		 * to the port number (snum) - we detect that with the
6197 		 * port iterator, pp being NULL.
6198 		 */
6199 		head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
6200 		spin_lock(&head->lock);
6201 		sctp_for_each_hentry(pp, &head->chain) {
6202 			if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
6203 				goto pp_found;
6204 		}
6205 	}
6206 	pp = NULL;
6207 	goto pp_not_found;
6208 pp_found:
6209 	if (!hlist_empty(&pp->owner)) {
6210 		/* We had a port hash table hit - there is an
6211 		 * available port (pp != NULL) and it is being
6212 		 * used by other socket (pp->owner not empty); that other
6213 		 * socket is going to be sk2.
6214 		 */
6215 		int reuse = sk->sk_reuse;
6216 		struct sock *sk2;
6217 
6218 		pr_debug("%s: found a possible match\n", __func__);
6219 
6220 		if (pp->fastreuse && sk->sk_reuse &&
6221 			sk->sk_state != SCTP_SS_LISTENING)
6222 			goto success;
6223 
6224 		/* Run through the list of sockets bound to the port
6225 		 * (pp->port) [via the pointers bind_next and
6226 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
6227 		 * we get the endpoint they describe and run through
6228 		 * the endpoint's list of IP (v4 or v6) addresses,
6229 		 * comparing each of the addresses with the address of
6230 		 * the socket sk. If we find a match, then that means
6231 		 * that this port/socket (sk) combination are already
6232 		 * in an endpoint.
6233 		 */
6234 		sk_for_each_bound(sk2, &pp->owner) {
6235 			struct sctp_endpoint *ep2;
6236 			ep2 = sctp_sk(sk2)->ep;
6237 
6238 			if (sk == sk2 ||
6239 			    (reuse && sk2->sk_reuse &&
6240 			     sk2->sk_state != SCTP_SS_LISTENING))
6241 				continue;
6242 
6243 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
6244 						 sctp_sk(sk2), sctp_sk(sk))) {
6245 				ret = (long)sk2;
6246 				goto fail_unlock;
6247 			}
6248 		}
6249 
6250 		pr_debug("%s: found a match\n", __func__);
6251 	}
6252 pp_not_found:
6253 	/* If there was a hash table miss, create a new port.  */
6254 	ret = 1;
6255 	if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
6256 		goto fail_unlock;
6257 
6258 	/* In either case (hit or miss), make sure fastreuse is 1 only
6259 	 * if sk->sk_reuse is too (that is, if the caller requested
6260 	 * SO_REUSEADDR on this socket -sk-).
6261 	 */
6262 	if (hlist_empty(&pp->owner)) {
6263 		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
6264 			pp->fastreuse = 1;
6265 		else
6266 			pp->fastreuse = 0;
6267 	} else if (pp->fastreuse &&
6268 		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6269 		pp->fastreuse = 0;
6270 
6271 	/* We are set, so fill up all the data in the hash table
6272 	 * entry, tie the socket list information with the rest of the
6273 	 * sockets FIXME: Blurry, NPI (ipg).
6274 	 */
6275 success:
6276 	if (!sctp_sk(sk)->bind_hash) {
6277 		inet_sk(sk)->inet_num = snum;
6278 		sk_add_bind_node(sk, &pp->owner);
6279 		sctp_sk(sk)->bind_hash = pp;
6280 	}
6281 	ret = 0;
6282 
6283 fail_unlock:
6284 	spin_unlock(&head->lock);
6285 
6286 fail:
6287 	local_bh_enable();
6288 	return ret;
6289 }
6290 
6291 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
6292  * port is requested.
6293  */
6294 static int sctp_get_port(struct sock *sk, unsigned short snum)
6295 {
6296 	union sctp_addr addr;
6297 	struct sctp_af *af = sctp_sk(sk)->pf->af;
6298 
6299 	/* Set up a dummy address struct from the sk. */
6300 	af->from_sk(&addr, sk);
6301 	addr.v4.sin_port = htons(snum);
6302 
6303 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
6304 	return !!sctp_get_port_local(sk, &addr);
6305 }
6306 
6307 /*
6308  *  Move a socket to LISTENING state.
6309  */
6310 static int sctp_listen_start(struct sock *sk, int backlog)
6311 {
6312 	struct sctp_sock *sp = sctp_sk(sk);
6313 	struct sctp_endpoint *ep = sp->ep;
6314 	struct crypto_hash *tfm = NULL;
6315 	char alg[32];
6316 
6317 	/* Allocate HMAC for generating cookie. */
6318 	if (!sp->hmac && sp->sctp_hmac_alg) {
6319 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6320 		tfm = crypto_alloc_hash(alg, 0, CRYPTO_ALG_ASYNC);
6321 		if (IS_ERR(tfm)) {
6322 			net_info_ratelimited("failed to load transform for %s: %ld\n",
6323 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
6324 			return -ENOSYS;
6325 		}
6326 		sctp_sk(sk)->hmac = tfm;
6327 	}
6328 
6329 	/*
6330 	 * If a bind() or sctp_bindx() is not called prior to a listen()
6331 	 * call that allows new associations to be accepted, the system
6332 	 * picks an ephemeral port and will choose an address set equivalent
6333 	 * to binding with a wildcard address.
6334 	 *
6335 	 * This is not currently spelled out in the SCTP sockets
6336 	 * extensions draft, but follows the practice as seen in TCP
6337 	 * sockets.
6338 	 *
6339 	 */
6340 	sk->sk_state = SCTP_SS_LISTENING;
6341 	if (!ep->base.bind_addr.port) {
6342 		if (sctp_autobind(sk))
6343 			return -EAGAIN;
6344 	} else {
6345 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6346 			sk->sk_state = SCTP_SS_CLOSED;
6347 			return -EADDRINUSE;
6348 		}
6349 	}
6350 
6351 	sk->sk_max_ack_backlog = backlog;
6352 	sctp_hash_endpoint(ep);
6353 	return 0;
6354 }
6355 
6356 /*
6357  * 4.1.3 / 5.1.3 listen()
6358  *
6359  *   By default, new associations are not accepted for UDP style sockets.
6360  *   An application uses listen() to mark a socket as being able to
6361  *   accept new associations.
6362  *
6363  *   On TCP style sockets, applications use listen() to ready the SCTP
6364  *   endpoint for accepting inbound associations.
6365  *
6366  *   On both types of endpoints a backlog of '0' disables listening.
6367  *
6368  *  Move a socket to LISTENING state.
6369  */
6370 int sctp_inet_listen(struct socket *sock, int backlog)
6371 {
6372 	struct sock *sk = sock->sk;
6373 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6374 	int err = -EINVAL;
6375 
6376 	if (unlikely(backlog < 0))
6377 		return err;
6378 
6379 	lock_sock(sk);
6380 
6381 	/* Peeled-off sockets are not allowed to listen().  */
6382 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6383 		goto out;
6384 
6385 	if (sock->state != SS_UNCONNECTED)
6386 		goto out;
6387 
6388 	/* If backlog is zero, disable listening. */
6389 	if (!backlog) {
6390 		if (sctp_sstate(sk, CLOSED))
6391 			goto out;
6392 
6393 		err = 0;
6394 		sctp_unhash_endpoint(ep);
6395 		sk->sk_state = SCTP_SS_CLOSED;
6396 		if (sk->sk_reuse)
6397 			sctp_sk(sk)->bind_hash->fastreuse = 1;
6398 		goto out;
6399 	}
6400 
6401 	/* If we are already listening, just update the backlog */
6402 	if (sctp_sstate(sk, LISTENING))
6403 		sk->sk_max_ack_backlog = backlog;
6404 	else {
6405 		err = sctp_listen_start(sk, backlog);
6406 		if (err)
6407 			goto out;
6408 	}
6409 
6410 	err = 0;
6411 out:
6412 	release_sock(sk);
6413 	return err;
6414 }
6415 
6416 /*
6417  * This function is done by modeling the current datagram_poll() and the
6418  * tcp_poll().  Note that, based on these implementations, we don't
6419  * lock the socket in this function, even though it seems that,
6420  * ideally, locking or some other mechanisms can be used to ensure
6421  * the integrity of the counters (sndbuf and wmem_alloc) used
6422  * in this place.  We assume that we don't need locks either until proven
6423  * otherwise.
6424  *
6425  * Another thing to note is that we include the Async I/O support
6426  * here, again, by modeling the current TCP/UDP code.  We don't have
6427  * a good way to test with it yet.
6428  */
6429 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6430 {
6431 	struct sock *sk = sock->sk;
6432 	struct sctp_sock *sp = sctp_sk(sk);
6433 	unsigned int mask;
6434 
6435 	poll_wait(file, sk_sleep(sk), wait);
6436 
6437 	/* A TCP-style listening socket becomes readable when the accept queue
6438 	 * is not empty.
6439 	 */
6440 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6441 		return (!list_empty(&sp->ep->asocs)) ?
6442 			(POLLIN | POLLRDNORM) : 0;
6443 
6444 	mask = 0;
6445 
6446 	/* Is there any exceptional events?  */
6447 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6448 		mask |= POLLERR |
6449 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
6450 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6451 		mask |= POLLRDHUP | POLLIN | POLLRDNORM;
6452 	if (sk->sk_shutdown == SHUTDOWN_MASK)
6453 		mask |= POLLHUP;
6454 
6455 	/* Is it readable?  Reconsider this code with TCP-style support.  */
6456 	if (!skb_queue_empty(&sk->sk_receive_queue))
6457 		mask |= POLLIN | POLLRDNORM;
6458 
6459 	/* The association is either gone or not ready.  */
6460 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6461 		return mask;
6462 
6463 	/* Is it writable?  */
6464 	if (sctp_writeable(sk)) {
6465 		mask |= POLLOUT | POLLWRNORM;
6466 	} else {
6467 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
6468 		/*
6469 		 * Since the socket is not locked, the buffer
6470 		 * might be made available after the writeable check and
6471 		 * before the bit is set.  This could cause a lost I/O
6472 		 * signal.  tcp_poll() has a race breaker for this race
6473 		 * condition.  Based on their implementation, we put
6474 		 * in the following code to cover it as well.
6475 		 */
6476 		if (sctp_writeable(sk))
6477 			mask |= POLLOUT | POLLWRNORM;
6478 	}
6479 	return mask;
6480 }
6481 
6482 /********************************************************************
6483  * 2nd Level Abstractions
6484  ********************************************************************/
6485 
6486 static struct sctp_bind_bucket *sctp_bucket_create(
6487 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
6488 {
6489 	struct sctp_bind_bucket *pp;
6490 
6491 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6492 	if (pp) {
6493 		SCTP_DBG_OBJCNT_INC(bind_bucket);
6494 		pp->port = snum;
6495 		pp->fastreuse = 0;
6496 		INIT_HLIST_HEAD(&pp->owner);
6497 		pp->net = net;
6498 		hlist_add_head(&pp->node, &head->chain);
6499 	}
6500 	return pp;
6501 }
6502 
6503 /* Caller must hold hashbucket lock for this tb with local BH disabled */
6504 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6505 {
6506 	if (pp && hlist_empty(&pp->owner)) {
6507 		__hlist_del(&pp->node);
6508 		kmem_cache_free(sctp_bucket_cachep, pp);
6509 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
6510 	}
6511 }
6512 
6513 /* Release this socket's reference to a local port.  */
6514 static inline void __sctp_put_port(struct sock *sk)
6515 {
6516 	struct sctp_bind_hashbucket *head =
6517 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
6518 						  inet_sk(sk)->inet_num)];
6519 	struct sctp_bind_bucket *pp;
6520 
6521 	spin_lock(&head->lock);
6522 	pp = sctp_sk(sk)->bind_hash;
6523 	__sk_del_bind_node(sk);
6524 	sctp_sk(sk)->bind_hash = NULL;
6525 	inet_sk(sk)->inet_num = 0;
6526 	sctp_bucket_destroy(pp);
6527 	spin_unlock(&head->lock);
6528 }
6529 
6530 void sctp_put_port(struct sock *sk)
6531 {
6532 	local_bh_disable();
6533 	__sctp_put_port(sk);
6534 	local_bh_enable();
6535 }
6536 
6537 /*
6538  * The system picks an ephemeral port and choose an address set equivalent
6539  * to binding with a wildcard address.
6540  * One of those addresses will be the primary address for the association.
6541  * This automatically enables the multihoming capability of SCTP.
6542  */
6543 static int sctp_autobind(struct sock *sk)
6544 {
6545 	union sctp_addr autoaddr;
6546 	struct sctp_af *af;
6547 	__be16 port;
6548 
6549 	/* Initialize a local sockaddr structure to INADDR_ANY. */
6550 	af = sctp_sk(sk)->pf->af;
6551 
6552 	port = htons(inet_sk(sk)->inet_num);
6553 	af->inaddr_any(&autoaddr, port);
6554 
6555 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6556 }
6557 
6558 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
6559  *
6560  * From RFC 2292
6561  * 4.2 The cmsghdr Structure *
6562  *
6563  * When ancillary data is sent or received, any number of ancillary data
6564  * objects can be specified by the msg_control and msg_controllen members of
6565  * the msghdr structure, because each object is preceded by
6566  * a cmsghdr structure defining the object's length (the cmsg_len member).
6567  * Historically Berkeley-derived implementations have passed only one object
6568  * at a time, but this API allows multiple objects to be
6569  * passed in a single call to sendmsg() or recvmsg(). The following example
6570  * shows two ancillary data objects in a control buffer.
6571  *
6572  *   |<--------------------------- msg_controllen -------------------------->|
6573  *   |                                                                       |
6574  *
6575  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
6576  *
6577  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6578  *   |                                   |                                   |
6579  *
6580  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
6581  *
6582  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
6583  *   |                                |  |                                |  |
6584  *
6585  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6586  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
6587  *
6588  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
6589  *
6590  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6591  *    ^
6592  *    |
6593  *
6594  * msg_control
6595  * points here
6596  */
6597 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs)
6598 {
6599 	struct cmsghdr *cmsg;
6600 	struct msghdr *my_msg = (struct msghdr *)msg;
6601 
6602 	for_each_cmsghdr(cmsg, my_msg) {
6603 		if (!CMSG_OK(my_msg, cmsg))
6604 			return -EINVAL;
6605 
6606 		/* Should we parse this header or ignore?  */
6607 		if (cmsg->cmsg_level != IPPROTO_SCTP)
6608 			continue;
6609 
6610 		/* Strictly check lengths following example in SCM code.  */
6611 		switch (cmsg->cmsg_type) {
6612 		case SCTP_INIT:
6613 			/* SCTP Socket API Extension
6614 			 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
6615 			 *
6616 			 * This cmsghdr structure provides information for
6617 			 * initializing new SCTP associations with sendmsg().
6618 			 * The SCTP_INITMSG socket option uses this same data
6619 			 * structure.  This structure is not used for
6620 			 * recvmsg().
6621 			 *
6622 			 * cmsg_level    cmsg_type      cmsg_data[]
6623 			 * ------------  ------------   ----------------------
6624 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
6625 			 */
6626 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
6627 				return -EINVAL;
6628 
6629 			cmsgs->init = CMSG_DATA(cmsg);
6630 			break;
6631 
6632 		case SCTP_SNDRCV:
6633 			/* SCTP Socket API Extension
6634 			 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
6635 			 *
6636 			 * This cmsghdr structure specifies SCTP options for
6637 			 * sendmsg() and describes SCTP header information
6638 			 * about a received message through recvmsg().
6639 			 *
6640 			 * cmsg_level    cmsg_type      cmsg_data[]
6641 			 * ------------  ------------   ----------------------
6642 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
6643 			 */
6644 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6645 				return -EINVAL;
6646 
6647 			cmsgs->srinfo = CMSG_DATA(cmsg);
6648 
6649 			if (cmsgs->srinfo->sinfo_flags &
6650 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6651 			      SCTP_ABORT | SCTP_EOF))
6652 				return -EINVAL;
6653 			break;
6654 
6655 		case SCTP_SNDINFO:
6656 			/* SCTP Socket API Extension
6657 			 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
6658 			 *
6659 			 * This cmsghdr structure specifies SCTP options for
6660 			 * sendmsg(). This structure and SCTP_RCVINFO replaces
6661 			 * SCTP_SNDRCV which has been deprecated.
6662 			 *
6663 			 * cmsg_level    cmsg_type      cmsg_data[]
6664 			 * ------------  ------------   ---------------------
6665 			 * IPPROTO_SCTP  SCTP_SNDINFO    struct sctp_sndinfo
6666 			 */
6667 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
6668 				return -EINVAL;
6669 
6670 			cmsgs->sinfo = CMSG_DATA(cmsg);
6671 
6672 			if (cmsgs->sinfo->snd_flags &
6673 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6674 			      SCTP_ABORT | SCTP_EOF))
6675 				return -EINVAL;
6676 			break;
6677 		default:
6678 			return -EINVAL;
6679 		}
6680 	}
6681 
6682 	return 0;
6683 }
6684 
6685 /*
6686  * Wait for a packet..
6687  * Note: This function is the same function as in core/datagram.c
6688  * with a few modifications to make lksctp work.
6689  */
6690 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
6691 {
6692 	int error;
6693 	DEFINE_WAIT(wait);
6694 
6695 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6696 
6697 	/* Socket errors? */
6698 	error = sock_error(sk);
6699 	if (error)
6700 		goto out;
6701 
6702 	if (!skb_queue_empty(&sk->sk_receive_queue))
6703 		goto ready;
6704 
6705 	/* Socket shut down?  */
6706 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6707 		goto out;
6708 
6709 	/* Sequenced packets can come disconnected.  If so we report the
6710 	 * problem.
6711 	 */
6712 	error = -ENOTCONN;
6713 
6714 	/* Is there a good reason to think that we may receive some data?  */
6715 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6716 		goto out;
6717 
6718 	/* Handle signals.  */
6719 	if (signal_pending(current))
6720 		goto interrupted;
6721 
6722 	/* Let another process have a go.  Since we are going to sleep
6723 	 * anyway.  Note: This may cause odd behaviors if the message
6724 	 * does not fit in the user's buffer, but this seems to be the
6725 	 * only way to honor MSG_DONTWAIT realistically.
6726 	 */
6727 	release_sock(sk);
6728 	*timeo_p = schedule_timeout(*timeo_p);
6729 	lock_sock(sk);
6730 
6731 ready:
6732 	finish_wait(sk_sleep(sk), &wait);
6733 	return 0;
6734 
6735 interrupted:
6736 	error = sock_intr_errno(*timeo_p);
6737 
6738 out:
6739 	finish_wait(sk_sleep(sk), &wait);
6740 	*err = error;
6741 	return error;
6742 }
6743 
6744 /* Receive a datagram.
6745  * Note: This is pretty much the same routine as in core/datagram.c
6746  * with a few changes to make lksctp work.
6747  */
6748 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6749 				       int noblock, int *err)
6750 {
6751 	int error;
6752 	struct sk_buff *skb;
6753 	long timeo;
6754 
6755 	timeo = sock_rcvtimeo(sk, noblock);
6756 
6757 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
6758 		 MAX_SCHEDULE_TIMEOUT);
6759 
6760 	do {
6761 		/* Again only user level code calls this function,
6762 		 * so nothing interrupt level
6763 		 * will suddenly eat the receive_queue.
6764 		 *
6765 		 *  Look at current nfs client by the way...
6766 		 *  However, this function was correct in any case. 8)
6767 		 */
6768 		if (flags & MSG_PEEK) {
6769 			spin_lock_bh(&sk->sk_receive_queue.lock);
6770 			skb = skb_peek(&sk->sk_receive_queue);
6771 			if (skb)
6772 				atomic_inc(&skb->users);
6773 			spin_unlock_bh(&sk->sk_receive_queue.lock);
6774 		} else {
6775 			skb = skb_dequeue(&sk->sk_receive_queue);
6776 		}
6777 
6778 		if (skb)
6779 			return skb;
6780 
6781 		/* Caller is allowed not to check sk->sk_err before calling. */
6782 		error = sock_error(sk);
6783 		if (error)
6784 			goto no_packet;
6785 
6786 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6787 			break;
6788 
6789 		if (sk_can_busy_loop(sk) &&
6790 		    sk_busy_loop(sk, noblock))
6791 			continue;
6792 
6793 		/* User doesn't want to wait.  */
6794 		error = -EAGAIN;
6795 		if (!timeo)
6796 			goto no_packet;
6797 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6798 
6799 	return NULL;
6800 
6801 no_packet:
6802 	*err = error;
6803 	return NULL;
6804 }
6805 
6806 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
6807 static void __sctp_write_space(struct sctp_association *asoc)
6808 {
6809 	struct sock *sk = asoc->base.sk;
6810 	struct socket *sock = sk->sk_socket;
6811 
6812 	if ((sctp_wspace(asoc) > 0) && sock) {
6813 		if (waitqueue_active(&asoc->wait))
6814 			wake_up_interruptible(&asoc->wait);
6815 
6816 		if (sctp_writeable(sk)) {
6817 			wait_queue_head_t *wq = sk_sleep(sk);
6818 
6819 			if (wq && waitqueue_active(wq))
6820 				wake_up_interruptible(wq);
6821 
6822 			/* Note that we try to include the Async I/O support
6823 			 * here by modeling from the current TCP/UDP code.
6824 			 * We have not tested with it yet.
6825 			 */
6826 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6827 				sock_wake_async(sock,
6828 						SOCK_WAKE_SPACE, POLL_OUT);
6829 		}
6830 	}
6831 }
6832 
6833 static void sctp_wake_up_waiters(struct sock *sk,
6834 				 struct sctp_association *asoc)
6835 {
6836 	struct sctp_association *tmp = asoc;
6837 
6838 	/* We do accounting for the sndbuf space per association,
6839 	 * so we only need to wake our own association.
6840 	 */
6841 	if (asoc->ep->sndbuf_policy)
6842 		return __sctp_write_space(asoc);
6843 
6844 	/* If association goes down and is just flushing its
6845 	 * outq, then just normally notify others.
6846 	 */
6847 	if (asoc->base.dead)
6848 		return sctp_write_space(sk);
6849 
6850 	/* Accounting for the sndbuf space is per socket, so we
6851 	 * need to wake up others, try to be fair and in case of
6852 	 * other associations, let them have a go first instead
6853 	 * of just doing a sctp_write_space() call.
6854 	 *
6855 	 * Note that we reach sctp_wake_up_waiters() only when
6856 	 * associations free up queued chunks, thus we are under
6857 	 * lock and the list of associations on a socket is
6858 	 * guaranteed not to change.
6859 	 */
6860 	for (tmp = list_next_entry(tmp, asocs); 1;
6861 	     tmp = list_next_entry(tmp, asocs)) {
6862 		/* Manually skip the head element. */
6863 		if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
6864 			continue;
6865 		/* Wake up association. */
6866 		__sctp_write_space(tmp);
6867 		/* We've reached the end. */
6868 		if (tmp == asoc)
6869 			break;
6870 	}
6871 }
6872 
6873 /* Do accounting for the sndbuf space.
6874  * Decrement the used sndbuf space of the corresponding association by the
6875  * data size which was just transmitted(freed).
6876  */
6877 static void sctp_wfree(struct sk_buff *skb)
6878 {
6879 	struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
6880 	struct sctp_association *asoc = chunk->asoc;
6881 	struct sock *sk = asoc->base.sk;
6882 
6883 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6884 				sizeof(struct sk_buff) +
6885 				sizeof(struct sctp_chunk);
6886 
6887 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6888 
6889 	/*
6890 	 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6891 	 */
6892 	sk->sk_wmem_queued   -= skb->truesize;
6893 	sk_mem_uncharge(sk, skb->truesize);
6894 
6895 	sock_wfree(skb);
6896 	sctp_wake_up_waiters(sk, asoc);
6897 
6898 	sctp_association_put(asoc);
6899 }
6900 
6901 /* Do accounting for the receive space on the socket.
6902  * Accounting for the association is done in ulpevent.c
6903  * We set this as a destructor for the cloned data skbs so that
6904  * accounting is done at the correct time.
6905  */
6906 void sctp_sock_rfree(struct sk_buff *skb)
6907 {
6908 	struct sock *sk = skb->sk;
6909 	struct sctp_ulpevent *event = sctp_skb2event(skb);
6910 
6911 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6912 
6913 	/*
6914 	 * Mimic the behavior of sock_rfree
6915 	 */
6916 	sk_mem_uncharge(sk, event->rmem_len);
6917 }
6918 
6919 
6920 /* Helper function to wait for space in the sndbuf.  */
6921 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6922 				size_t msg_len)
6923 {
6924 	struct sock *sk = asoc->base.sk;
6925 	int err = 0;
6926 	long current_timeo = *timeo_p;
6927 	DEFINE_WAIT(wait);
6928 
6929 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
6930 		 *timeo_p, msg_len);
6931 
6932 	/* Increment the association's refcnt.  */
6933 	sctp_association_hold(asoc);
6934 
6935 	/* Wait on the association specific sndbuf space. */
6936 	for (;;) {
6937 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6938 					  TASK_INTERRUPTIBLE);
6939 		if (!*timeo_p)
6940 			goto do_nonblock;
6941 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6942 		    asoc->base.dead)
6943 			goto do_error;
6944 		if (signal_pending(current))
6945 			goto do_interrupted;
6946 		if (msg_len <= sctp_wspace(asoc))
6947 			break;
6948 
6949 		/* Let another process have a go.  Since we are going
6950 		 * to sleep anyway.
6951 		 */
6952 		release_sock(sk);
6953 		current_timeo = schedule_timeout(current_timeo);
6954 		BUG_ON(sk != asoc->base.sk);
6955 		lock_sock(sk);
6956 
6957 		*timeo_p = current_timeo;
6958 	}
6959 
6960 out:
6961 	finish_wait(&asoc->wait, &wait);
6962 
6963 	/* Release the association's refcnt.  */
6964 	sctp_association_put(asoc);
6965 
6966 	return err;
6967 
6968 do_error:
6969 	err = -EPIPE;
6970 	goto out;
6971 
6972 do_interrupted:
6973 	err = sock_intr_errno(*timeo_p);
6974 	goto out;
6975 
6976 do_nonblock:
6977 	err = -EAGAIN;
6978 	goto out;
6979 }
6980 
6981 void sctp_data_ready(struct sock *sk)
6982 {
6983 	struct socket_wq *wq;
6984 
6985 	rcu_read_lock();
6986 	wq = rcu_dereference(sk->sk_wq);
6987 	if (wq_has_sleeper(wq))
6988 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6989 						POLLRDNORM | POLLRDBAND);
6990 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6991 	rcu_read_unlock();
6992 }
6993 
6994 /* If socket sndbuf has changed, wake up all per association waiters.  */
6995 void sctp_write_space(struct sock *sk)
6996 {
6997 	struct sctp_association *asoc;
6998 
6999 	/* Wake up the tasks in each wait queue.  */
7000 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
7001 		__sctp_write_space(asoc);
7002 	}
7003 }
7004 
7005 /* Is there any sndbuf space available on the socket?
7006  *
7007  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
7008  * associations on the same socket.  For a UDP-style socket with
7009  * multiple associations, it is possible for it to be "unwriteable"
7010  * prematurely.  I assume that this is acceptable because
7011  * a premature "unwriteable" is better than an accidental "writeable" which
7012  * would cause an unwanted block under certain circumstances.  For the 1-1
7013  * UDP-style sockets or TCP-style sockets, this code should work.
7014  *  - Daisy
7015  */
7016 static int sctp_writeable(struct sock *sk)
7017 {
7018 	int amt = 0;
7019 
7020 	amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
7021 	if (amt < 0)
7022 		amt = 0;
7023 	return amt;
7024 }
7025 
7026 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
7027  * returns immediately with EINPROGRESS.
7028  */
7029 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
7030 {
7031 	struct sock *sk = asoc->base.sk;
7032 	int err = 0;
7033 	long current_timeo = *timeo_p;
7034 	DEFINE_WAIT(wait);
7035 
7036 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
7037 
7038 	/* Increment the association's refcnt.  */
7039 	sctp_association_hold(asoc);
7040 
7041 	for (;;) {
7042 		prepare_to_wait_exclusive(&asoc->wait, &wait,
7043 					  TASK_INTERRUPTIBLE);
7044 		if (!*timeo_p)
7045 			goto do_nonblock;
7046 		if (sk->sk_shutdown & RCV_SHUTDOWN)
7047 			break;
7048 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7049 		    asoc->base.dead)
7050 			goto do_error;
7051 		if (signal_pending(current))
7052 			goto do_interrupted;
7053 
7054 		if (sctp_state(asoc, ESTABLISHED))
7055 			break;
7056 
7057 		/* Let another process have a go.  Since we are going
7058 		 * to sleep anyway.
7059 		 */
7060 		release_sock(sk);
7061 		current_timeo = schedule_timeout(current_timeo);
7062 		lock_sock(sk);
7063 
7064 		*timeo_p = current_timeo;
7065 	}
7066 
7067 out:
7068 	finish_wait(&asoc->wait, &wait);
7069 
7070 	/* Release the association's refcnt.  */
7071 	sctp_association_put(asoc);
7072 
7073 	return err;
7074 
7075 do_error:
7076 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
7077 		err = -ETIMEDOUT;
7078 	else
7079 		err = -ECONNREFUSED;
7080 	goto out;
7081 
7082 do_interrupted:
7083 	err = sock_intr_errno(*timeo_p);
7084 	goto out;
7085 
7086 do_nonblock:
7087 	err = -EINPROGRESS;
7088 	goto out;
7089 }
7090 
7091 static int sctp_wait_for_accept(struct sock *sk, long timeo)
7092 {
7093 	struct sctp_endpoint *ep;
7094 	int err = 0;
7095 	DEFINE_WAIT(wait);
7096 
7097 	ep = sctp_sk(sk)->ep;
7098 
7099 
7100 	for (;;) {
7101 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
7102 					  TASK_INTERRUPTIBLE);
7103 
7104 		if (list_empty(&ep->asocs)) {
7105 			release_sock(sk);
7106 			timeo = schedule_timeout(timeo);
7107 			lock_sock(sk);
7108 		}
7109 
7110 		err = -EINVAL;
7111 		if (!sctp_sstate(sk, LISTENING))
7112 			break;
7113 
7114 		err = 0;
7115 		if (!list_empty(&ep->asocs))
7116 			break;
7117 
7118 		err = sock_intr_errno(timeo);
7119 		if (signal_pending(current))
7120 			break;
7121 
7122 		err = -EAGAIN;
7123 		if (!timeo)
7124 			break;
7125 	}
7126 
7127 	finish_wait(sk_sleep(sk), &wait);
7128 
7129 	return err;
7130 }
7131 
7132 static void sctp_wait_for_close(struct sock *sk, long timeout)
7133 {
7134 	DEFINE_WAIT(wait);
7135 
7136 	do {
7137 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7138 		if (list_empty(&sctp_sk(sk)->ep->asocs))
7139 			break;
7140 		release_sock(sk);
7141 		timeout = schedule_timeout(timeout);
7142 		lock_sock(sk);
7143 	} while (!signal_pending(current) && timeout);
7144 
7145 	finish_wait(sk_sleep(sk), &wait);
7146 }
7147 
7148 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
7149 {
7150 	struct sk_buff *frag;
7151 
7152 	if (!skb->data_len)
7153 		goto done;
7154 
7155 	/* Don't forget the fragments. */
7156 	skb_walk_frags(skb, frag)
7157 		sctp_skb_set_owner_r_frag(frag, sk);
7158 
7159 done:
7160 	sctp_skb_set_owner_r(skb, sk);
7161 }
7162 
7163 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
7164 		    struct sctp_association *asoc)
7165 {
7166 	struct inet_sock *inet = inet_sk(sk);
7167 	struct inet_sock *newinet;
7168 
7169 	newsk->sk_type = sk->sk_type;
7170 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
7171 	newsk->sk_flags = sk->sk_flags;
7172 	newsk->sk_no_check_tx = sk->sk_no_check_tx;
7173 	newsk->sk_no_check_rx = sk->sk_no_check_rx;
7174 	newsk->sk_reuse = sk->sk_reuse;
7175 
7176 	newsk->sk_shutdown = sk->sk_shutdown;
7177 	newsk->sk_destruct = sctp_destruct_sock;
7178 	newsk->sk_family = sk->sk_family;
7179 	newsk->sk_protocol = IPPROTO_SCTP;
7180 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
7181 	newsk->sk_sndbuf = sk->sk_sndbuf;
7182 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
7183 	newsk->sk_lingertime = sk->sk_lingertime;
7184 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
7185 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
7186 
7187 	newinet = inet_sk(newsk);
7188 
7189 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
7190 	 * getsockname() and getpeername()
7191 	 */
7192 	newinet->inet_sport = inet->inet_sport;
7193 	newinet->inet_saddr = inet->inet_saddr;
7194 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
7195 	newinet->inet_dport = htons(asoc->peer.port);
7196 	newinet->pmtudisc = inet->pmtudisc;
7197 	newinet->inet_id = asoc->next_tsn ^ jiffies;
7198 
7199 	newinet->uc_ttl = inet->uc_ttl;
7200 	newinet->mc_loop = 1;
7201 	newinet->mc_ttl = 1;
7202 	newinet->mc_index = 0;
7203 	newinet->mc_list = NULL;
7204 }
7205 
7206 static inline void sctp_copy_descendant(struct sock *sk_to,
7207 					const struct sock *sk_from)
7208 {
7209 	int ancestor_size = sizeof(struct inet_sock) +
7210 			    sizeof(struct sctp_sock) -
7211 			    offsetof(struct sctp_sock, auto_asconf_list);
7212 
7213 	if (sk_from->sk_family == PF_INET6)
7214 		ancestor_size += sizeof(struct ipv6_pinfo);
7215 
7216 	__inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
7217 }
7218 
7219 /* Populate the fields of the newsk from the oldsk and migrate the assoc
7220  * and its messages to the newsk.
7221  */
7222 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
7223 			      struct sctp_association *assoc,
7224 			      sctp_socket_type_t type)
7225 {
7226 	struct sctp_sock *oldsp = sctp_sk(oldsk);
7227 	struct sctp_sock *newsp = sctp_sk(newsk);
7228 	struct sctp_bind_bucket *pp; /* hash list port iterator */
7229 	struct sctp_endpoint *newep = newsp->ep;
7230 	struct sk_buff *skb, *tmp;
7231 	struct sctp_ulpevent *event;
7232 	struct sctp_bind_hashbucket *head;
7233 
7234 	/* Migrate socket buffer sizes and all the socket level options to the
7235 	 * new socket.
7236 	 */
7237 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
7238 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
7239 	/* Brute force copy old sctp opt. */
7240 	sctp_copy_descendant(newsk, oldsk);
7241 
7242 	/* Restore the ep value that was overwritten with the above structure
7243 	 * copy.
7244 	 */
7245 	newsp->ep = newep;
7246 	newsp->hmac = NULL;
7247 
7248 	/* Hook this new socket in to the bind_hash list. */
7249 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
7250 						 inet_sk(oldsk)->inet_num)];
7251 	local_bh_disable();
7252 	spin_lock(&head->lock);
7253 	pp = sctp_sk(oldsk)->bind_hash;
7254 	sk_add_bind_node(newsk, &pp->owner);
7255 	sctp_sk(newsk)->bind_hash = pp;
7256 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
7257 	spin_unlock(&head->lock);
7258 	local_bh_enable();
7259 
7260 	/* Copy the bind_addr list from the original endpoint to the new
7261 	 * endpoint so that we can handle restarts properly
7262 	 */
7263 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
7264 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
7265 
7266 	/* Move any messages in the old socket's receive queue that are for the
7267 	 * peeled off association to the new socket's receive queue.
7268 	 */
7269 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
7270 		event = sctp_skb2event(skb);
7271 		if (event->asoc == assoc) {
7272 			__skb_unlink(skb, &oldsk->sk_receive_queue);
7273 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
7274 			sctp_skb_set_owner_r_frag(skb, newsk);
7275 		}
7276 	}
7277 
7278 	/* Clean up any messages pending delivery due to partial
7279 	 * delivery.   Three cases:
7280 	 * 1) No partial deliver;  no work.
7281 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
7282 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
7283 	 */
7284 	skb_queue_head_init(&newsp->pd_lobby);
7285 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
7286 
7287 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
7288 		struct sk_buff_head *queue;
7289 
7290 		/* Decide which queue to move pd_lobby skbs to. */
7291 		if (assoc->ulpq.pd_mode) {
7292 			queue = &newsp->pd_lobby;
7293 		} else
7294 			queue = &newsk->sk_receive_queue;
7295 
7296 		/* Walk through the pd_lobby, looking for skbs that
7297 		 * need moved to the new socket.
7298 		 */
7299 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
7300 			event = sctp_skb2event(skb);
7301 			if (event->asoc == assoc) {
7302 				__skb_unlink(skb, &oldsp->pd_lobby);
7303 				__skb_queue_tail(queue, skb);
7304 				sctp_skb_set_owner_r_frag(skb, newsk);
7305 			}
7306 		}
7307 
7308 		/* Clear up any skbs waiting for the partial
7309 		 * delivery to finish.
7310 		 */
7311 		if (assoc->ulpq.pd_mode)
7312 			sctp_clear_pd(oldsk, NULL);
7313 
7314 	}
7315 
7316 	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
7317 		sctp_skb_set_owner_r_frag(skb, newsk);
7318 
7319 	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
7320 		sctp_skb_set_owner_r_frag(skb, newsk);
7321 
7322 	/* Set the type of socket to indicate that it is peeled off from the
7323 	 * original UDP-style socket or created with the accept() call on a
7324 	 * TCP-style socket..
7325 	 */
7326 	newsp->type = type;
7327 
7328 	/* Mark the new socket "in-use" by the user so that any packets
7329 	 * that may arrive on the association after we've moved it are
7330 	 * queued to the backlog.  This prevents a potential race between
7331 	 * backlog processing on the old socket and new-packet processing
7332 	 * on the new socket.
7333 	 *
7334 	 * The caller has just allocated newsk so we can guarantee that other
7335 	 * paths won't try to lock it and then oldsk.
7336 	 */
7337 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7338 	sctp_assoc_migrate(assoc, newsk);
7339 
7340 	/* If the association on the newsk is already closed before accept()
7341 	 * is called, set RCV_SHUTDOWN flag.
7342 	 */
7343 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
7344 		newsk->sk_shutdown |= RCV_SHUTDOWN;
7345 
7346 	newsk->sk_state = SCTP_SS_ESTABLISHED;
7347 	release_sock(newsk);
7348 }
7349 
7350 
7351 /* This proto struct describes the ULP interface for SCTP.  */
7352 struct proto sctp_prot = {
7353 	.name        =	"SCTP",
7354 	.owner       =	THIS_MODULE,
7355 	.close       =	sctp_close,
7356 	.connect     =	sctp_connect,
7357 	.disconnect  =	sctp_disconnect,
7358 	.accept      =	sctp_accept,
7359 	.ioctl       =	sctp_ioctl,
7360 	.init        =	sctp_init_sock,
7361 	.destroy     =	sctp_destroy_sock,
7362 	.shutdown    =	sctp_shutdown,
7363 	.setsockopt  =	sctp_setsockopt,
7364 	.getsockopt  =	sctp_getsockopt,
7365 	.sendmsg     =	sctp_sendmsg,
7366 	.recvmsg     =	sctp_recvmsg,
7367 	.bind        =	sctp_bind,
7368 	.backlog_rcv =	sctp_backlog_rcv,
7369 	.hash        =	sctp_hash,
7370 	.unhash      =	sctp_unhash,
7371 	.get_port    =	sctp_get_port,
7372 	.obj_size    =  sizeof(struct sctp_sock),
7373 	.sysctl_mem  =  sysctl_sctp_mem,
7374 	.sysctl_rmem =  sysctl_sctp_rmem,
7375 	.sysctl_wmem =  sysctl_sctp_wmem,
7376 	.memory_pressure = &sctp_memory_pressure,
7377 	.enter_memory_pressure = sctp_enter_memory_pressure,
7378 	.memory_allocated = &sctp_memory_allocated,
7379 	.sockets_allocated = &sctp_sockets_allocated,
7380 };
7381 
7382 #if IS_ENABLED(CONFIG_IPV6)
7383 
7384 struct proto sctpv6_prot = {
7385 	.name		= "SCTPv6",
7386 	.owner		= THIS_MODULE,
7387 	.close		= sctp_close,
7388 	.connect	= sctp_connect,
7389 	.disconnect	= sctp_disconnect,
7390 	.accept		= sctp_accept,
7391 	.ioctl		= sctp_ioctl,
7392 	.init		= sctp_init_sock,
7393 	.destroy	= sctp_destroy_sock,
7394 	.shutdown	= sctp_shutdown,
7395 	.setsockopt	= sctp_setsockopt,
7396 	.getsockopt	= sctp_getsockopt,
7397 	.sendmsg	= sctp_sendmsg,
7398 	.recvmsg	= sctp_recvmsg,
7399 	.bind		= sctp_bind,
7400 	.backlog_rcv	= sctp_backlog_rcv,
7401 	.hash		= sctp_hash,
7402 	.unhash		= sctp_unhash,
7403 	.get_port	= sctp_get_port,
7404 	.obj_size	= sizeof(struct sctp6_sock),
7405 	.sysctl_mem	= sysctl_sctp_mem,
7406 	.sysctl_rmem	= sysctl_sctp_rmem,
7407 	.sysctl_wmem	= sysctl_sctp_wmem,
7408 	.memory_pressure = &sctp_memory_pressure,
7409 	.enter_memory_pressure = sctp_enter_memory_pressure,
7410 	.memory_allocated = &sctp_memory_allocated,
7411 	.sockets_allocated = &sctp_sockets_allocated,
7412 };
7413 #endif /* IS_ENABLED(CONFIG_IPV6) */
7414