xref: /linux/net/sctp/socket.c (revision 913df4453f85f1fe79b35ecf3c9a0c0b707d22a2)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, write to
32  * the Free Software Foundation, 59 Temple Place - Suite 330,
33  * Boston, MA 02111-1307, USA.
34  *
35  * Please send any bug reports or fixes you make to the
36  * email address(es):
37  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
38  *
39  * Or submit a bug report through the following website:
40  *    http://www.sf.net/projects/lksctp
41  *
42  * Written or modified by:
43  *    La Monte H.P. Yarroll <piggy@acm.org>
44  *    Narasimha Budihal     <narsi@refcode.org>
45  *    Karl Knutson          <karl@athena.chicago.il.us>
46  *    Jon Grimm             <jgrimm@us.ibm.com>
47  *    Xingang Guo           <xingang.guo@intel.com>
48  *    Daisy Chang           <daisyc@us.ibm.com>
49  *    Sridhar Samudrala     <samudrala@us.ibm.com>
50  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
51  *    Ardelle Fan	    <ardelle.fan@intel.com>
52  *    Ryan Layer	    <rmlayer@us.ibm.com>
53  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
54  *    Kevin Gao             <kevin.gao@intel.com>
55  *
56  * Any bugs reported given to us we will try to fix... any fixes shared will
57  * be incorporated into the next SCTP release.
58  */
59 
60 #include <linux/types.h>
61 #include <linux/kernel.h>
62 #include <linux/wait.h>
63 #include <linux/time.h>
64 #include <linux/ip.h>
65 #include <linux/capability.h>
66 #include <linux/fcntl.h>
67 #include <linux/poll.h>
68 #include <linux/init.h>
69 #include <linux/crypto.h>
70 
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
76 
77 #include <linux/socket.h> /* for sa_family_t */
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81 
82 /* WARNING:  Please do not remove the SCTP_STATIC attribute to
83  * any of the functions below as they are used to export functions
84  * used by a project regression testsuite.
85  */
86 
87 /* Forward declarations for internal helper functions. */
88 static int sctp_writeable(struct sock *sk);
89 static void sctp_wfree(struct sk_buff *skb);
90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
91 				size_t msg_len);
92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
94 static int sctp_wait_for_accept(struct sock *sk, long timeo);
95 static void sctp_wait_for_close(struct sock *sk, long timeo);
96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
97 					union sctp_addr *addr, int len);
98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
102 static int sctp_send_asconf(struct sctp_association *asoc,
103 			    struct sctp_chunk *chunk);
104 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
105 static int sctp_autobind(struct sock *sk);
106 static void sctp_sock_migrate(struct sock *, struct sock *,
107 			      struct sctp_association *, sctp_socket_type_t);
108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
109 
110 extern struct kmem_cache *sctp_bucket_cachep;
111 extern int sysctl_sctp_mem[3];
112 extern int sysctl_sctp_rmem[3];
113 extern int sysctl_sctp_wmem[3];
114 
115 static int sctp_memory_pressure;
116 static atomic_t sctp_memory_allocated;
117 struct percpu_counter sctp_sockets_allocated;
118 
119 static void sctp_enter_memory_pressure(struct sock *sk)
120 {
121 	sctp_memory_pressure = 1;
122 }
123 
124 
125 /* Get the sndbuf space available at the time on the association.  */
126 static inline int sctp_wspace(struct sctp_association *asoc)
127 {
128 	int amt;
129 
130 	if (asoc->ep->sndbuf_policy)
131 		amt = asoc->sndbuf_used;
132 	else
133 		amt = sk_wmem_alloc_get(asoc->base.sk);
134 
135 	if (amt >= asoc->base.sk->sk_sndbuf) {
136 		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
137 			amt = 0;
138 		else {
139 			amt = sk_stream_wspace(asoc->base.sk);
140 			if (amt < 0)
141 				amt = 0;
142 		}
143 	} else {
144 		amt = asoc->base.sk->sk_sndbuf - amt;
145 	}
146 	return amt;
147 }
148 
149 /* Increment the used sndbuf space count of the corresponding association by
150  * the size of the outgoing data chunk.
151  * Also, set the skb destructor for sndbuf accounting later.
152  *
153  * Since it is always 1-1 between chunk and skb, and also a new skb is always
154  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
155  * destructor in the data chunk skb for the purpose of the sndbuf space
156  * tracking.
157  */
158 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
159 {
160 	struct sctp_association *asoc = chunk->asoc;
161 	struct sock *sk = asoc->base.sk;
162 
163 	/* The sndbuf space is tracked per association.  */
164 	sctp_association_hold(asoc);
165 
166 	skb_set_owner_w(chunk->skb, sk);
167 
168 	chunk->skb->destructor = sctp_wfree;
169 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
170 	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
171 
172 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
173 				sizeof(struct sk_buff) +
174 				sizeof(struct sctp_chunk);
175 
176 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
177 	sk->sk_wmem_queued += chunk->skb->truesize;
178 	sk_mem_charge(sk, chunk->skb->truesize);
179 }
180 
181 /* Verify that this is a valid address. */
182 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
183 				   int len)
184 {
185 	struct sctp_af *af;
186 
187 	/* Verify basic sockaddr. */
188 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
189 	if (!af)
190 		return -EINVAL;
191 
192 	/* Is this a valid SCTP address?  */
193 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
194 		return -EINVAL;
195 
196 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
197 		return -EINVAL;
198 
199 	return 0;
200 }
201 
202 /* Look up the association by its id.  If this is not a UDP-style
203  * socket, the ID field is always ignored.
204  */
205 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
206 {
207 	struct sctp_association *asoc = NULL;
208 
209 	/* If this is not a UDP-style socket, assoc id should be ignored. */
210 	if (!sctp_style(sk, UDP)) {
211 		/* Return NULL if the socket state is not ESTABLISHED. It
212 		 * could be a TCP-style listening socket or a socket which
213 		 * hasn't yet called connect() to establish an association.
214 		 */
215 		if (!sctp_sstate(sk, ESTABLISHED))
216 			return NULL;
217 
218 		/* Get the first and the only association from the list. */
219 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
220 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
221 					  struct sctp_association, asocs);
222 		return asoc;
223 	}
224 
225 	/* Otherwise this is a UDP-style socket. */
226 	if (!id || (id == (sctp_assoc_t)-1))
227 		return NULL;
228 
229 	spin_lock_bh(&sctp_assocs_id_lock);
230 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
231 	spin_unlock_bh(&sctp_assocs_id_lock);
232 
233 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
234 		return NULL;
235 
236 	return asoc;
237 }
238 
239 /* Look up the transport from an address and an assoc id. If both address and
240  * id are specified, the associations matching the address and the id should be
241  * the same.
242  */
243 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
244 					      struct sockaddr_storage *addr,
245 					      sctp_assoc_t id)
246 {
247 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
248 	struct sctp_transport *transport;
249 	union sctp_addr *laddr = (union sctp_addr *)addr;
250 
251 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
252 					       laddr,
253 					       &transport);
254 
255 	if (!addr_asoc)
256 		return NULL;
257 
258 	id_asoc = sctp_id2assoc(sk, id);
259 	if (id_asoc && (id_asoc != addr_asoc))
260 		return NULL;
261 
262 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
263 						(union sctp_addr *)addr);
264 
265 	return transport;
266 }
267 
268 /* API 3.1.2 bind() - UDP Style Syntax
269  * The syntax of bind() is,
270  *
271  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
272  *
273  *   sd      - the socket descriptor returned by socket().
274  *   addr    - the address structure (struct sockaddr_in or struct
275  *             sockaddr_in6 [RFC 2553]),
276  *   addr_len - the size of the address structure.
277  */
278 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
279 {
280 	int retval = 0;
281 
282 	sctp_lock_sock(sk);
283 
284 	SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
285 			  sk, addr, addr_len);
286 
287 	/* Disallow binding twice. */
288 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
289 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
290 				      addr_len);
291 	else
292 		retval = -EINVAL;
293 
294 	sctp_release_sock(sk);
295 
296 	return retval;
297 }
298 
299 static long sctp_get_port_local(struct sock *, union sctp_addr *);
300 
301 /* Verify this is a valid sockaddr. */
302 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
303 					union sctp_addr *addr, int len)
304 {
305 	struct sctp_af *af;
306 
307 	/* Check minimum size.  */
308 	if (len < sizeof (struct sockaddr))
309 		return NULL;
310 
311 	/* V4 mapped address are really of AF_INET family */
312 	if (addr->sa.sa_family == AF_INET6 &&
313 	    ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
314 		if (!opt->pf->af_supported(AF_INET, opt))
315 			return NULL;
316 	} else {
317 		/* Does this PF support this AF? */
318 		if (!opt->pf->af_supported(addr->sa.sa_family, opt))
319 			return NULL;
320 	}
321 
322 	/* If we get this far, af is valid. */
323 	af = sctp_get_af_specific(addr->sa.sa_family);
324 
325 	if (len < af->sockaddr_len)
326 		return NULL;
327 
328 	return af;
329 }
330 
331 /* Bind a local address either to an endpoint or to an association.  */
332 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
333 {
334 	struct sctp_sock *sp = sctp_sk(sk);
335 	struct sctp_endpoint *ep = sp->ep;
336 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
337 	struct sctp_af *af;
338 	unsigned short snum;
339 	int ret = 0;
340 
341 	/* Common sockaddr verification. */
342 	af = sctp_sockaddr_af(sp, addr, len);
343 	if (!af) {
344 		SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
345 				  sk, addr, len);
346 		return -EINVAL;
347 	}
348 
349 	snum = ntohs(addr->v4.sin_port);
350 
351 	SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
352 				 ", port: %d, new port: %d, len: %d)\n",
353 				 sk,
354 				 addr,
355 				 bp->port, snum,
356 				 len);
357 
358 	/* PF specific bind() address verification. */
359 	if (!sp->pf->bind_verify(sp, addr))
360 		return -EADDRNOTAVAIL;
361 
362 	/* We must either be unbound, or bind to the same port.
363 	 * It's OK to allow 0 ports if we are already bound.
364 	 * We'll just inhert an already bound port in this case
365 	 */
366 	if (bp->port) {
367 		if (!snum)
368 			snum = bp->port;
369 		else if (snum != bp->port) {
370 			SCTP_DEBUG_PRINTK("sctp_do_bind:"
371 				  " New port %d does not match existing port "
372 				  "%d.\n", snum, bp->port);
373 			return -EINVAL;
374 		}
375 	}
376 
377 	if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
378 		return -EACCES;
379 
380 	/* See if the address matches any of the addresses we may have
381 	 * already bound before checking against other endpoints.
382 	 */
383 	if (sctp_bind_addr_match(bp, addr, sp))
384 		return -EINVAL;
385 
386 	/* Make sure we are allowed to bind here.
387 	 * The function sctp_get_port_local() does duplicate address
388 	 * detection.
389 	 */
390 	addr->v4.sin_port = htons(snum);
391 	if ((ret = sctp_get_port_local(sk, addr))) {
392 		return -EADDRINUSE;
393 	}
394 
395 	/* Refresh ephemeral port.  */
396 	if (!bp->port)
397 		bp->port = inet_sk(sk)->num;
398 
399 	/* Add the address to the bind address list.
400 	 * Use GFP_ATOMIC since BHs will be disabled.
401 	 */
402 	ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
403 
404 	/* Copy back into socket for getsockname() use. */
405 	if (!ret) {
406 		inet_sk(sk)->sport = htons(inet_sk(sk)->num);
407 		af->to_sk_saddr(addr, sk);
408 	}
409 
410 	return ret;
411 }
412 
413  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
414  *
415  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
416  * at any one time.  If a sender, after sending an ASCONF chunk, decides
417  * it needs to transfer another ASCONF Chunk, it MUST wait until the
418  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
419  * subsequent ASCONF. Note this restriction binds each side, so at any
420  * time two ASCONF may be in-transit on any given association (one sent
421  * from each endpoint).
422  */
423 static int sctp_send_asconf(struct sctp_association *asoc,
424 			    struct sctp_chunk *chunk)
425 {
426 	int		retval = 0;
427 
428 	/* If there is an outstanding ASCONF chunk, queue it for later
429 	 * transmission.
430 	 */
431 	if (asoc->addip_last_asconf) {
432 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
433 		goto out;
434 	}
435 
436 	/* Hold the chunk until an ASCONF_ACK is received. */
437 	sctp_chunk_hold(chunk);
438 	retval = sctp_primitive_ASCONF(asoc, chunk);
439 	if (retval)
440 		sctp_chunk_free(chunk);
441 	else
442 		asoc->addip_last_asconf = chunk;
443 
444 out:
445 	return retval;
446 }
447 
448 /* Add a list of addresses as bind addresses to local endpoint or
449  * association.
450  *
451  * Basically run through each address specified in the addrs/addrcnt
452  * array/length pair, determine if it is IPv6 or IPv4 and call
453  * sctp_do_bind() on it.
454  *
455  * If any of them fails, then the operation will be reversed and the
456  * ones that were added will be removed.
457  *
458  * Only sctp_setsockopt_bindx() is supposed to call this function.
459  */
460 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
461 {
462 	int cnt;
463 	int retval = 0;
464 	void *addr_buf;
465 	struct sockaddr *sa_addr;
466 	struct sctp_af *af;
467 
468 	SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
469 			  sk, addrs, addrcnt);
470 
471 	addr_buf = addrs;
472 	for (cnt = 0; cnt < addrcnt; cnt++) {
473 		/* The list may contain either IPv4 or IPv6 address;
474 		 * determine the address length for walking thru the list.
475 		 */
476 		sa_addr = (struct sockaddr *)addr_buf;
477 		af = sctp_get_af_specific(sa_addr->sa_family);
478 		if (!af) {
479 			retval = -EINVAL;
480 			goto err_bindx_add;
481 		}
482 
483 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
484 				      af->sockaddr_len);
485 
486 		addr_buf += af->sockaddr_len;
487 
488 err_bindx_add:
489 		if (retval < 0) {
490 			/* Failed. Cleanup the ones that have been added */
491 			if (cnt > 0)
492 				sctp_bindx_rem(sk, addrs, cnt);
493 			return retval;
494 		}
495 	}
496 
497 	return retval;
498 }
499 
500 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
501  * associations that are part of the endpoint indicating that a list of local
502  * addresses are added to the endpoint.
503  *
504  * If any of the addresses is already in the bind address list of the
505  * association, we do not send the chunk for that association.  But it will not
506  * affect other associations.
507  *
508  * Only sctp_setsockopt_bindx() is supposed to call this function.
509  */
510 static int sctp_send_asconf_add_ip(struct sock		*sk,
511 				   struct sockaddr	*addrs,
512 				   int 			addrcnt)
513 {
514 	struct sctp_sock		*sp;
515 	struct sctp_endpoint		*ep;
516 	struct sctp_association		*asoc;
517 	struct sctp_bind_addr		*bp;
518 	struct sctp_chunk		*chunk;
519 	struct sctp_sockaddr_entry	*laddr;
520 	union sctp_addr			*addr;
521 	union sctp_addr			saveaddr;
522 	void				*addr_buf;
523 	struct sctp_af			*af;
524 	struct list_head		*p;
525 	int 				i;
526 	int 				retval = 0;
527 
528 	if (!sctp_addip_enable)
529 		return retval;
530 
531 	sp = sctp_sk(sk);
532 	ep = sp->ep;
533 
534 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
535 			  __func__, sk, addrs, addrcnt);
536 
537 	list_for_each_entry(asoc, &ep->asocs, asocs) {
538 
539 		if (!asoc->peer.asconf_capable)
540 			continue;
541 
542 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
543 			continue;
544 
545 		if (!sctp_state(asoc, ESTABLISHED))
546 			continue;
547 
548 		/* Check if any address in the packed array of addresses is
549 		 * in the bind address list of the association. If so,
550 		 * do not send the asconf chunk to its peer, but continue with
551 		 * other associations.
552 		 */
553 		addr_buf = addrs;
554 		for (i = 0; i < addrcnt; i++) {
555 			addr = (union sctp_addr *)addr_buf;
556 			af = sctp_get_af_specific(addr->v4.sin_family);
557 			if (!af) {
558 				retval = -EINVAL;
559 				goto out;
560 			}
561 
562 			if (sctp_assoc_lookup_laddr(asoc, addr))
563 				break;
564 
565 			addr_buf += af->sockaddr_len;
566 		}
567 		if (i < addrcnt)
568 			continue;
569 
570 		/* Use the first valid address in bind addr list of
571 		 * association as Address Parameter of ASCONF CHUNK.
572 		 */
573 		bp = &asoc->base.bind_addr;
574 		p = bp->address_list.next;
575 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
576 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
577 						   addrcnt, SCTP_PARAM_ADD_IP);
578 		if (!chunk) {
579 			retval = -ENOMEM;
580 			goto out;
581 		}
582 
583 		retval = sctp_send_asconf(asoc, chunk);
584 		if (retval)
585 			goto out;
586 
587 		/* Add the new addresses to the bind address list with
588 		 * use_as_src set to 0.
589 		 */
590 		addr_buf = addrs;
591 		for (i = 0; i < addrcnt; i++) {
592 			addr = (union sctp_addr *)addr_buf;
593 			af = sctp_get_af_specific(addr->v4.sin_family);
594 			memcpy(&saveaddr, addr, af->sockaddr_len);
595 			retval = sctp_add_bind_addr(bp, &saveaddr,
596 						    SCTP_ADDR_NEW, GFP_ATOMIC);
597 			addr_buf += af->sockaddr_len;
598 		}
599 	}
600 
601 out:
602 	return retval;
603 }
604 
605 /* Remove a list of addresses from bind addresses list.  Do not remove the
606  * last address.
607  *
608  * Basically run through each address specified in the addrs/addrcnt
609  * array/length pair, determine if it is IPv6 or IPv4 and call
610  * sctp_del_bind() on it.
611  *
612  * If any of them fails, then the operation will be reversed and the
613  * ones that were removed will be added back.
614  *
615  * At least one address has to be left; if only one address is
616  * available, the operation will return -EBUSY.
617  *
618  * Only sctp_setsockopt_bindx() is supposed to call this function.
619  */
620 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
621 {
622 	struct sctp_sock *sp = sctp_sk(sk);
623 	struct sctp_endpoint *ep = sp->ep;
624 	int cnt;
625 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
626 	int retval = 0;
627 	void *addr_buf;
628 	union sctp_addr *sa_addr;
629 	struct sctp_af *af;
630 
631 	SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
632 			  sk, addrs, addrcnt);
633 
634 	addr_buf = addrs;
635 	for (cnt = 0; cnt < addrcnt; cnt++) {
636 		/* If the bind address list is empty or if there is only one
637 		 * bind address, there is nothing more to be removed (we need
638 		 * at least one address here).
639 		 */
640 		if (list_empty(&bp->address_list) ||
641 		    (sctp_list_single_entry(&bp->address_list))) {
642 			retval = -EBUSY;
643 			goto err_bindx_rem;
644 		}
645 
646 		sa_addr = (union sctp_addr *)addr_buf;
647 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
648 		if (!af) {
649 			retval = -EINVAL;
650 			goto err_bindx_rem;
651 		}
652 
653 		if (!af->addr_valid(sa_addr, sp, NULL)) {
654 			retval = -EADDRNOTAVAIL;
655 			goto err_bindx_rem;
656 		}
657 
658 		if (sa_addr->v4.sin_port != htons(bp->port)) {
659 			retval = -EINVAL;
660 			goto err_bindx_rem;
661 		}
662 
663 		/* FIXME - There is probably a need to check if sk->sk_saddr and
664 		 * sk->sk_rcv_addr are currently set to one of the addresses to
665 		 * be removed. This is something which needs to be looked into
666 		 * when we are fixing the outstanding issues with multi-homing
667 		 * socket routing and failover schemes. Refer to comments in
668 		 * sctp_do_bind(). -daisy
669 		 */
670 		retval = sctp_del_bind_addr(bp, sa_addr);
671 
672 		addr_buf += af->sockaddr_len;
673 err_bindx_rem:
674 		if (retval < 0) {
675 			/* Failed. Add the ones that has been removed back */
676 			if (cnt > 0)
677 				sctp_bindx_add(sk, addrs, cnt);
678 			return retval;
679 		}
680 	}
681 
682 	return retval;
683 }
684 
685 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
686  * the associations that are part of the endpoint indicating that a list of
687  * local addresses are removed from the endpoint.
688  *
689  * If any of the addresses is already in the bind address list of the
690  * association, we do not send the chunk for that association.  But it will not
691  * affect other associations.
692  *
693  * Only sctp_setsockopt_bindx() is supposed to call this function.
694  */
695 static int sctp_send_asconf_del_ip(struct sock		*sk,
696 				   struct sockaddr	*addrs,
697 				   int			addrcnt)
698 {
699 	struct sctp_sock	*sp;
700 	struct sctp_endpoint	*ep;
701 	struct sctp_association	*asoc;
702 	struct sctp_transport	*transport;
703 	struct sctp_bind_addr	*bp;
704 	struct sctp_chunk	*chunk;
705 	union sctp_addr		*laddr;
706 	void			*addr_buf;
707 	struct sctp_af		*af;
708 	struct sctp_sockaddr_entry *saddr;
709 	int 			i;
710 	int 			retval = 0;
711 
712 	if (!sctp_addip_enable)
713 		return retval;
714 
715 	sp = sctp_sk(sk);
716 	ep = sp->ep;
717 
718 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
719 			  __func__, sk, addrs, addrcnt);
720 
721 	list_for_each_entry(asoc, &ep->asocs, asocs) {
722 
723 		if (!asoc->peer.asconf_capable)
724 			continue;
725 
726 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
727 			continue;
728 
729 		if (!sctp_state(asoc, ESTABLISHED))
730 			continue;
731 
732 		/* Check if any address in the packed array of addresses is
733 		 * not present in the bind address list of the association.
734 		 * If so, do not send the asconf chunk to its peer, but
735 		 * continue with other associations.
736 		 */
737 		addr_buf = addrs;
738 		for (i = 0; i < addrcnt; i++) {
739 			laddr = (union sctp_addr *)addr_buf;
740 			af = sctp_get_af_specific(laddr->v4.sin_family);
741 			if (!af) {
742 				retval = -EINVAL;
743 				goto out;
744 			}
745 
746 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
747 				break;
748 
749 			addr_buf += af->sockaddr_len;
750 		}
751 		if (i < addrcnt)
752 			continue;
753 
754 		/* Find one address in the association's bind address list
755 		 * that is not in the packed array of addresses. This is to
756 		 * make sure that we do not delete all the addresses in the
757 		 * association.
758 		 */
759 		bp = &asoc->base.bind_addr;
760 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
761 					       addrcnt, sp);
762 		if (!laddr)
763 			continue;
764 
765 		/* We do not need RCU protection throughout this loop
766 		 * because this is done under a socket lock from the
767 		 * setsockopt call.
768 		 */
769 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
770 						   SCTP_PARAM_DEL_IP);
771 		if (!chunk) {
772 			retval = -ENOMEM;
773 			goto out;
774 		}
775 
776 		/* Reset use_as_src flag for the addresses in the bind address
777 		 * list that are to be deleted.
778 		 */
779 		addr_buf = addrs;
780 		for (i = 0; i < addrcnt; i++) {
781 			laddr = (union sctp_addr *)addr_buf;
782 			af = sctp_get_af_specific(laddr->v4.sin_family);
783 			list_for_each_entry(saddr, &bp->address_list, list) {
784 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
785 					saddr->state = SCTP_ADDR_DEL;
786 			}
787 			addr_buf += af->sockaddr_len;
788 		}
789 
790 		/* Update the route and saddr entries for all the transports
791 		 * as some of the addresses in the bind address list are
792 		 * about to be deleted and cannot be used as source addresses.
793 		 */
794 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
795 					transports) {
796 			dst_release(transport->dst);
797 			sctp_transport_route(transport, NULL,
798 					     sctp_sk(asoc->base.sk));
799 		}
800 
801 		retval = sctp_send_asconf(asoc, chunk);
802 	}
803 out:
804 	return retval;
805 }
806 
807 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
808  *
809  * API 8.1
810  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
811  *                int flags);
812  *
813  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
814  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
815  * or IPv6 addresses.
816  *
817  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
818  * Section 3.1.2 for this usage.
819  *
820  * addrs is a pointer to an array of one or more socket addresses. Each
821  * address is contained in its appropriate structure (i.e. struct
822  * sockaddr_in or struct sockaddr_in6) the family of the address type
823  * must be used to distinguish the address length (note that this
824  * representation is termed a "packed array" of addresses). The caller
825  * specifies the number of addresses in the array with addrcnt.
826  *
827  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
828  * -1, and sets errno to the appropriate error code.
829  *
830  * For SCTP, the port given in each socket address must be the same, or
831  * sctp_bindx() will fail, setting errno to EINVAL.
832  *
833  * The flags parameter is formed from the bitwise OR of zero or more of
834  * the following currently defined flags:
835  *
836  * SCTP_BINDX_ADD_ADDR
837  *
838  * SCTP_BINDX_REM_ADDR
839  *
840  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
841  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
842  * addresses from the association. The two flags are mutually exclusive;
843  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
844  * not remove all addresses from an association; sctp_bindx() will
845  * reject such an attempt with EINVAL.
846  *
847  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
848  * additional addresses with an endpoint after calling bind().  Or use
849  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
850  * socket is associated with so that no new association accepted will be
851  * associated with those addresses. If the endpoint supports dynamic
852  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
853  * endpoint to send the appropriate message to the peer to change the
854  * peers address lists.
855  *
856  * Adding and removing addresses from a connected association is
857  * optional functionality. Implementations that do not support this
858  * functionality should return EOPNOTSUPP.
859  *
860  * Basically do nothing but copying the addresses from user to kernel
861  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
862  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
863  * from userspace.
864  *
865  * We don't use copy_from_user() for optimization: we first do the
866  * sanity checks (buffer size -fast- and access check-healthy
867  * pointer); if all of those succeed, then we can alloc the memory
868  * (expensive operation) needed to copy the data to kernel. Then we do
869  * the copying without checking the user space area
870  * (__copy_from_user()).
871  *
872  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
873  * it.
874  *
875  * sk        The sk of the socket
876  * addrs     The pointer to the addresses in user land
877  * addrssize Size of the addrs buffer
878  * op        Operation to perform (add or remove, see the flags of
879  *           sctp_bindx)
880  *
881  * Returns 0 if ok, <0 errno code on error.
882  */
883 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
884 				      struct sockaddr __user *addrs,
885 				      int addrs_size, int op)
886 {
887 	struct sockaddr *kaddrs;
888 	int err;
889 	int addrcnt = 0;
890 	int walk_size = 0;
891 	struct sockaddr *sa_addr;
892 	void *addr_buf;
893 	struct sctp_af *af;
894 
895 	SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
896 			  " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
897 
898 	if (unlikely(addrs_size <= 0))
899 		return -EINVAL;
900 
901 	/* Check the user passed a healthy pointer.  */
902 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
903 		return -EFAULT;
904 
905 	/* Alloc space for the address array in kernel memory.  */
906 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
907 	if (unlikely(!kaddrs))
908 		return -ENOMEM;
909 
910 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
911 		kfree(kaddrs);
912 		return -EFAULT;
913 	}
914 
915 	/* Walk through the addrs buffer and count the number of addresses. */
916 	addr_buf = kaddrs;
917 	while (walk_size < addrs_size) {
918 		sa_addr = (struct sockaddr *)addr_buf;
919 		af = sctp_get_af_specific(sa_addr->sa_family);
920 
921 		/* If the address family is not supported or if this address
922 		 * causes the address buffer to overflow return EINVAL.
923 		 */
924 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
925 			kfree(kaddrs);
926 			return -EINVAL;
927 		}
928 		addrcnt++;
929 		addr_buf += af->sockaddr_len;
930 		walk_size += af->sockaddr_len;
931 	}
932 
933 	/* Do the work. */
934 	switch (op) {
935 	case SCTP_BINDX_ADD_ADDR:
936 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
937 		if (err)
938 			goto out;
939 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
940 		break;
941 
942 	case SCTP_BINDX_REM_ADDR:
943 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
944 		if (err)
945 			goto out;
946 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
947 		break;
948 
949 	default:
950 		err = -EINVAL;
951 		break;
952 	}
953 
954 out:
955 	kfree(kaddrs);
956 
957 	return err;
958 }
959 
960 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
961  *
962  * Common routine for handling connect() and sctp_connectx().
963  * Connect will come in with just a single address.
964  */
965 static int __sctp_connect(struct sock* sk,
966 			  struct sockaddr *kaddrs,
967 			  int addrs_size,
968 			  sctp_assoc_t *assoc_id)
969 {
970 	struct sctp_sock *sp;
971 	struct sctp_endpoint *ep;
972 	struct sctp_association *asoc = NULL;
973 	struct sctp_association *asoc2;
974 	struct sctp_transport *transport;
975 	union sctp_addr to;
976 	struct sctp_af *af;
977 	sctp_scope_t scope;
978 	long timeo;
979 	int err = 0;
980 	int addrcnt = 0;
981 	int walk_size = 0;
982 	union sctp_addr *sa_addr = NULL;
983 	void *addr_buf;
984 	unsigned short port;
985 	unsigned int f_flags = 0;
986 
987 	sp = sctp_sk(sk);
988 	ep = sp->ep;
989 
990 	/* connect() cannot be done on a socket that is already in ESTABLISHED
991 	 * state - UDP-style peeled off socket or a TCP-style socket that
992 	 * is already connected.
993 	 * It cannot be done even on a TCP-style listening socket.
994 	 */
995 	if (sctp_sstate(sk, ESTABLISHED) ||
996 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
997 		err = -EISCONN;
998 		goto out_free;
999 	}
1000 
1001 	/* Walk through the addrs buffer and count the number of addresses. */
1002 	addr_buf = kaddrs;
1003 	while (walk_size < addrs_size) {
1004 		sa_addr = (union sctp_addr *)addr_buf;
1005 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1006 		port = ntohs(sa_addr->v4.sin_port);
1007 
1008 		/* If the address family is not supported or if this address
1009 		 * causes the address buffer to overflow return EINVAL.
1010 		 */
1011 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1012 			err = -EINVAL;
1013 			goto out_free;
1014 		}
1015 
1016 		/* Save current address so we can work with it */
1017 		memcpy(&to, sa_addr, af->sockaddr_len);
1018 
1019 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1020 		if (err)
1021 			goto out_free;
1022 
1023 		/* Make sure the destination port is correctly set
1024 		 * in all addresses.
1025 		 */
1026 		if (asoc && asoc->peer.port && asoc->peer.port != port)
1027 			goto out_free;
1028 
1029 
1030 		/* Check if there already is a matching association on the
1031 		 * endpoint (other than the one created here).
1032 		 */
1033 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1034 		if (asoc2 && asoc2 != asoc) {
1035 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1036 				err = -EISCONN;
1037 			else
1038 				err = -EALREADY;
1039 			goto out_free;
1040 		}
1041 
1042 		/* If we could not find a matching association on the endpoint,
1043 		 * make sure that there is no peeled-off association matching
1044 		 * the peer address even on another socket.
1045 		 */
1046 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1047 			err = -EADDRNOTAVAIL;
1048 			goto out_free;
1049 		}
1050 
1051 		if (!asoc) {
1052 			/* If a bind() or sctp_bindx() is not called prior to
1053 			 * an sctp_connectx() call, the system picks an
1054 			 * ephemeral port and will choose an address set
1055 			 * equivalent to binding with a wildcard address.
1056 			 */
1057 			if (!ep->base.bind_addr.port) {
1058 				if (sctp_autobind(sk)) {
1059 					err = -EAGAIN;
1060 					goto out_free;
1061 				}
1062 			} else {
1063 				/*
1064 				 * If an unprivileged user inherits a 1-many
1065 				 * style socket with open associations on a
1066 				 * privileged port, it MAY be permitted to
1067 				 * accept new associations, but it SHOULD NOT
1068 				 * be permitted to open new associations.
1069 				 */
1070 				if (ep->base.bind_addr.port < PROT_SOCK &&
1071 				    !capable(CAP_NET_BIND_SERVICE)) {
1072 					err = -EACCES;
1073 					goto out_free;
1074 				}
1075 			}
1076 
1077 			scope = sctp_scope(&to);
1078 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1079 			if (!asoc) {
1080 				err = -ENOMEM;
1081 				goto out_free;
1082 			}
1083 		}
1084 
1085 		/* Prime the peer's transport structures.  */
1086 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1087 						SCTP_UNKNOWN);
1088 		if (!transport) {
1089 			err = -ENOMEM;
1090 			goto out_free;
1091 		}
1092 
1093 		addrcnt++;
1094 		addr_buf += af->sockaddr_len;
1095 		walk_size += af->sockaddr_len;
1096 	}
1097 
1098 	err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1099 	if (err < 0) {
1100 		goto out_free;
1101 	}
1102 
1103 	/* In case the user of sctp_connectx() wants an association
1104 	 * id back, assign one now.
1105 	 */
1106 	if (assoc_id) {
1107 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1108 		if (err < 0)
1109 			goto out_free;
1110 	}
1111 
1112 	err = sctp_primitive_ASSOCIATE(asoc, NULL);
1113 	if (err < 0) {
1114 		goto out_free;
1115 	}
1116 
1117 	/* Initialize sk's dport and daddr for getpeername() */
1118 	inet_sk(sk)->dport = htons(asoc->peer.port);
1119 	af = sctp_get_af_specific(sa_addr->sa.sa_family);
1120 	af->to_sk_daddr(sa_addr, sk);
1121 	sk->sk_err = 0;
1122 
1123 	/* in-kernel sockets don't generally have a file allocated to them
1124 	 * if all they do is call sock_create_kern().
1125 	 */
1126 	if (sk->sk_socket->file)
1127 		f_flags = sk->sk_socket->file->f_flags;
1128 
1129 	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1130 
1131 	err = sctp_wait_for_connect(asoc, &timeo);
1132 	if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1133 		*assoc_id = asoc->assoc_id;
1134 
1135 	/* Don't free association on exit. */
1136 	asoc = NULL;
1137 
1138 out_free:
1139 
1140 	SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1141 			  " kaddrs: %p err: %d\n",
1142 			  asoc, kaddrs, err);
1143 	if (asoc)
1144 		sctp_association_free(asoc);
1145 	return err;
1146 }
1147 
1148 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1149  *
1150  * API 8.9
1151  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1152  * 			sctp_assoc_t *asoc);
1153  *
1154  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1155  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1156  * or IPv6 addresses.
1157  *
1158  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1159  * Section 3.1.2 for this usage.
1160  *
1161  * addrs is a pointer to an array of one or more socket addresses. Each
1162  * address is contained in its appropriate structure (i.e. struct
1163  * sockaddr_in or struct sockaddr_in6) the family of the address type
1164  * must be used to distengish the address length (note that this
1165  * representation is termed a "packed array" of addresses). The caller
1166  * specifies the number of addresses in the array with addrcnt.
1167  *
1168  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1169  * the association id of the new association.  On failure, sctp_connectx()
1170  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1171  * is not touched by the kernel.
1172  *
1173  * For SCTP, the port given in each socket address must be the same, or
1174  * sctp_connectx() will fail, setting errno to EINVAL.
1175  *
1176  * An application can use sctp_connectx to initiate an association with
1177  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1178  * allows a caller to specify multiple addresses at which a peer can be
1179  * reached.  The way the SCTP stack uses the list of addresses to set up
1180  * the association is implementation dependant.  This function only
1181  * specifies that the stack will try to make use of all the addresses in
1182  * the list when needed.
1183  *
1184  * Note that the list of addresses passed in is only used for setting up
1185  * the association.  It does not necessarily equal the set of addresses
1186  * the peer uses for the resulting association.  If the caller wants to
1187  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1188  * retrieve them after the association has been set up.
1189  *
1190  * Basically do nothing but copying the addresses from user to kernel
1191  * land and invoking either sctp_connectx(). This is used for tunneling
1192  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1193  *
1194  * We don't use copy_from_user() for optimization: we first do the
1195  * sanity checks (buffer size -fast- and access check-healthy
1196  * pointer); if all of those succeed, then we can alloc the memory
1197  * (expensive operation) needed to copy the data to kernel. Then we do
1198  * the copying without checking the user space area
1199  * (__copy_from_user()).
1200  *
1201  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1202  * it.
1203  *
1204  * sk        The sk of the socket
1205  * addrs     The pointer to the addresses in user land
1206  * addrssize Size of the addrs buffer
1207  *
1208  * Returns >=0 if ok, <0 errno code on error.
1209  */
1210 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk,
1211 				      struct sockaddr __user *addrs,
1212 				      int addrs_size,
1213 				      sctp_assoc_t *assoc_id)
1214 {
1215 	int err = 0;
1216 	struct sockaddr *kaddrs;
1217 
1218 	SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1219 			  __func__, sk, addrs, addrs_size);
1220 
1221 	if (unlikely(addrs_size <= 0))
1222 		return -EINVAL;
1223 
1224 	/* Check the user passed a healthy pointer.  */
1225 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1226 		return -EFAULT;
1227 
1228 	/* Alloc space for the address array in kernel memory.  */
1229 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1230 	if (unlikely(!kaddrs))
1231 		return -ENOMEM;
1232 
1233 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1234 		err = -EFAULT;
1235 	} else {
1236 		err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1237 	}
1238 
1239 	kfree(kaddrs);
1240 
1241 	return err;
1242 }
1243 
1244 /*
1245  * This is an older interface.  It's kept for backward compatibility
1246  * to the option that doesn't provide association id.
1247  */
1248 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk,
1249 				      struct sockaddr __user *addrs,
1250 				      int addrs_size)
1251 {
1252 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1253 }
1254 
1255 /*
1256  * New interface for the API.  The since the API is done with a socket
1257  * option, to make it simple we feed back the association id is as a return
1258  * indication to the call.  Error is always negative and association id is
1259  * always positive.
1260  */
1261 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1262 				      struct sockaddr __user *addrs,
1263 				      int addrs_size)
1264 {
1265 	sctp_assoc_t assoc_id = 0;
1266 	int err = 0;
1267 
1268 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1269 
1270 	if (err)
1271 		return err;
1272 	else
1273 		return assoc_id;
1274 }
1275 
1276 /*
1277  * New (hopefully final) interface for the API.  The option buffer is used
1278  * both for the returned association id and the addresses.
1279  */
1280 SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len,
1281 					char __user *optval,
1282 					int __user *optlen)
1283 {
1284 	sctp_assoc_t assoc_id = 0;
1285 	int err = 0;
1286 
1287 	if (len < sizeof(assoc_id))
1288 		return -EINVAL;
1289 
1290 	err = __sctp_setsockopt_connectx(sk,
1291 			(struct sockaddr __user *)(optval + sizeof(assoc_id)),
1292 			len - sizeof(assoc_id), &assoc_id);
1293 
1294 	if (err == 0 || err == -EINPROGRESS) {
1295 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1296 			return -EFAULT;
1297 		if (put_user(sizeof(assoc_id), optlen))
1298 			return -EFAULT;
1299 	}
1300 
1301 	return err;
1302 }
1303 
1304 /* API 3.1.4 close() - UDP Style Syntax
1305  * Applications use close() to perform graceful shutdown (as described in
1306  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1307  * by a UDP-style socket.
1308  *
1309  * The syntax is
1310  *
1311  *   ret = close(int sd);
1312  *
1313  *   sd      - the socket descriptor of the associations to be closed.
1314  *
1315  * To gracefully shutdown a specific association represented by the
1316  * UDP-style socket, an application should use the sendmsg() call,
1317  * passing no user data, but including the appropriate flag in the
1318  * ancillary data (see Section xxxx).
1319  *
1320  * If sd in the close() call is a branched-off socket representing only
1321  * one association, the shutdown is performed on that association only.
1322  *
1323  * 4.1.6 close() - TCP Style Syntax
1324  *
1325  * Applications use close() to gracefully close down an association.
1326  *
1327  * The syntax is:
1328  *
1329  *    int close(int sd);
1330  *
1331  *      sd      - the socket descriptor of the association to be closed.
1332  *
1333  * After an application calls close() on a socket descriptor, no further
1334  * socket operations will succeed on that descriptor.
1335  *
1336  * API 7.1.4 SO_LINGER
1337  *
1338  * An application using the TCP-style socket can use this option to
1339  * perform the SCTP ABORT primitive.  The linger option structure is:
1340  *
1341  *  struct  linger {
1342  *     int     l_onoff;                // option on/off
1343  *     int     l_linger;               // linger time
1344  * };
1345  *
1346  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1347  * to 0, calling close() is the same as the ABORT primitive.  If the
1348  * value is set to a negative value, the setsockopt() call will return
1349  * an error.  If the value is set to a positive value linger_time, the
1350  * close() can be blocked for at most linger_time ms.  If the graceful
1351  * shutdown phase does not finish during this period, close() will
1352  * return but the graceful shutdown phase continues in the system.
1353  */
1354 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1355 {
1356 	struct sctp_endpoint *ep;
1357 	struct sctp_association *asoc;
1358 	struct list_head *pos, *temp;
1359 
1360 	SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1361 
1362 	sctp_lock_sock(sk);
1363 	sk->sk_shutdown = SHUTDOWN_MASK;
1364 	sk->sk_state = SCTP_SS_CLOSING;
1365 
1366 	ep = sctp_sk(sk)->ep;
1367 
1368 	/* Walk all associations on an endpoint.  */
1369 	list_for_each_safe(pos, temp, &ep->asocs) {
1370 		asoc = list_entry(pos, struct sctp_association, asocs);
1371 
1372 		if (sctp_style(sk, TCP)) {
1373 			/* A closed association can still be in the list if
1374 			 * it belongs to a TCP-style listening socket that is
1375 			 * not yet accepted. If so, free it. If not, send an
1376 			 * ABORT or SHUTDOWN based on the linger options.
1377 			 */
1378 			if (sctp_state(asoc, CLOSED)) {
1379 				sctp_unhash_established(asoc);
1380 				sctp_association_free(asoc);
1381 				continue;
1382 			}
1383 		}
1384 
1385 		if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1386 			struct sctp_chunk *chunk;
1387 
1388 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1389 			if (chunk)
1390 				sctp_primitive_ABORT(asoc, chunk);
1391 		} else
1392 			sctp_primitive_SHUTDOWN(asoc, NULL);
1393 	}
1394 
1395 	/* Clean up any skbs sitting on the receive queue.  */
1396 	sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1397 	sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1398 
1399 	/* On a TCP-style socket, block for at most linger_time if set. */
1400 	if (sctp_style(sk, TCP) && timeout)
1401 		sctp_wait_for_close(sk, timeout);
1402 
1403 	/* This will run the backlog queue.  */
1404 	sctp_release_sock(sk);
1405 
1406 	/* Supposedly, no process has access to the socket, but
1407 	 * the net layers still may.
1408 	 */
1409 	sctp_local_bh_disable();
1410 	sctp_bh_lock_sock(sk);
1411 
1412 	/* Hold the sock, since sk_common_release() will put sock_put()
1413 	 * and we have just a little more cleanup.
1414 	 */
1415 	sock_hold(sk);
1416 	sk_common_release(sk);
1417 
1418 	sctp_bh_unlock_sock(sk);
1419 	sctp_local_bh_enable();
1420 
1421 	sock_put(sk);
1422 
1423 	SCTP_DBG_OBJCNT_DEC(sock);
1424 }
1425 
1426 /* Handle EPIPE error. */
1427 static int sctp_error(struct sock *sk, int flags, int err)
1428 {
1429 	if (err == -EPIPE)
1430 		err = sock_error(sk) ? : -EPIPE;
1431 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1432 		send_sig(SIGPIPE, current, 0);
1433 	return err;
1434 }
1435 
1436 /* API 3.1.3 sendmsg() - UDP Style Syntax
1437  *
1438  * An application uses sendmsg() and recvmsg() calls to transmit data to
1439  * and receive data from its peer.
1440  *
1441  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1442  *                  int flags);
1443  *
1444  *  socket  - the socket descriptor of the endpoint.
1445  *  message - pointer to the msghdr structure which contains a single
1446  *            user message and possibly some ancillary data.
1447  *
1448  *            See Section 5 for complete description of the data
1449  *            structures.
1450  *
1451  *  flags   - flags sent or received with the user message, see Section
1452  *            5 for complete description of the flags.
1453  *
1454  * Note:  This function could use a rewrite especially when explicit
1455  * connect support comes in.
1456  */
1457 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1458 
1459 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1460 
1461 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1462 			     struct msghdr *msg, size_t msg_len)
1463 {
1464 	struct sctp_sock *sp;
1465 	struct sctp_endpoint *ep;
1466 	struct sctp_association *new_asoc=NULL, *asoc=NULL;
1467 	struct sctp_transport *transport, *chunk_tp;
1468 	struct sctp_chunk *chunk;
1469 	union sctp_addr to;
1470 	struct sockaddr *msg_name = NULL;
1471 	struct sctp_sndrcvinfo default_sinfo = { 0 };
1472 	struct sctp_sndrcvinfo *sinfo;
1473 	struct sctp_initmsg *sinit;
1474 	sctp_assoc_t associd = 0;
1475 	sctp_cmsgs_t cmsgs = { NULL };
1476 	int err;
1477 	sctp_scope_t scope;
1478 	long timeo;
1479 	__u16 sinfo_flags = 0;
1480 	struct sctp_datamsg *datamsg;
1481 	int msg_flags = msg->msg_flags;
1482 
1483 	SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1484 			  sk, msg, msg_len);
1485 
1486 	err = 0;
1487 	sp = sctp_sk(sk);
1488 	ep = sp->ep;
1489 
1490 	SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1491 
1492 	/* We cannot send a message over a TCP-style listening socket. */
1493 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1494 		err = -EPIPE;
1495 		goto out_nounlock;
1496 	}
1497 
1498 	/* Parse out the SCTP CMSGs.  */
1499 	err = sctp_msghdr_parse(msg, &cmsgs);
1500 
1501 	if (err) {
1502 		SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1503 		goto out_nounlock;
1504 	}
1505 
1506 	/* Fetch the destination address for this packet.  This
1507 	 * address only selects the association--it is not necessarily
1508 	 * the address we will send to.
1509 	 * For a peeled-off socket, msg_name is ignored.
1510 	 */
1511 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1512 		int msg_namelen = msg->msg_namelen;
1513 
1514 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1515 				       msg_namelen);
1516 		if (err)
1517 			return err;
1518 
1519 		if (msg_namelen > sizeof(to))
1520 			msg_namelen = sizeof(to);
1521 		memcpy(&to, msg->msg_name, msg_namelen);
1522 		msg_name = msg->msg_name;
1523 	}
1524 
1525 	sinfo = cmsgs.info;
1526 	sinit = cmsgs.init;
1527 
1528 	/* Did the user specify SNDRCVINFO?  */
1529 	if (sinfo) {
1530 		sinfo_flags = sinfo->sinfo_flags;
1531 		associd = sinfo->sinfo_assoc_id;
1532 	}
1533 
1534 	SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1535 			  msg_len, sinfo_flags);
1536 
1537 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1538 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1539 		err = -EINVAL;
1540 		goto out_nounlock;
1541 	}
1542 
1543 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1544 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1545 	 * If SCTP_ABORT is set, the message length could be non zero with
1546 	 * the msg_iov set to the user abort reason.
1547 	 */
1548 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1549 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1550 		err = -EINVAL;
1551 		goto out_nounlock;
1552 	}
1553 
1554 	/* If SCTP_ADDR_OVER is set, there must be an address
1555 	 * specified in msg_name.
1556 	 */
1557 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1558 		err = -EINVAL;
1559 		goto out_nounlock;
1560 	}
1561 
1562 	transport = NULL;
1563 
1564 	SCTP_DEBUG_PRINTK("About to look up association.\n");
1565 
1566 	sctp_lock_sock(sk);
1567 
1568 	/* If a msg_name has been specified, assume this is to be used.  */
1569 	if (msg_name) {
1570 		/* Look for a matching association on the endpoint. */
1571 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1572 		if (!asoc) {
1573 			/* If we could not find a matching association on the
1574 			 * endpoint, make sure that it is not a TCP-style
1575 			 * socket that already has an association or there is
1576 			 * no peeled-off association on another socket.
1577 			 */
1578 			if ((sctp_style(sk, TCP) &&
1579 			     sctp_sstate(sk, ESTABLISHED)) ||
1580 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1581 				err = -EADDRNOTAVAIL;
1582 				goto out_unlock;
1583 			}
1584 		}
1585 	} else {
1586 		asoc = sctp_id2assoc(sk, associd);
1587 		if (!asoc) {
1588 			err = -EPIPE;
1589 			goto out_unlock;
1590 		}
1591 	}
1592 
1593 	if (asoc) {
1594 		SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1595 
1596 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1597 		 * socket that has an association in CLOSED state. This can
1598 		 * happen when an accepted socket has an association that is
1599 		 * already CLOSED.
1600 		 */
1601 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1602 			err = -EPIPE;
1603 			goto out_unlock;
1604 		}
1605 
1606 		if (sinfo_flags & SCTP_EOF) {
1607 			SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1608 					  asoc);
1609 			sctp_primitive_SHUTDOWN(asoc, NULL);
1610 			err = 0;
1611 			goto out_unlock;
1612 		}
1613 		if (sinfo_flags & SCTP_ABORT) {
1614 
1615 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1616 			if (!chunk) {
1617 				err = -ENOMEM;
1618 				goto out_unlock;
1619 			}
1620 
1621 			SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1622 			sctp_primitive_ABORT(asoc, chunk);
1623 			err = 0;
1624 			goto out_unlock;
1625 		}
1626 	}
1627 
1628 	/* Do we need to create the association?  */
1629 	if (!asoc) {
1630 		SCTP_DEBUG_PRINTK("There is no association yet.\n");
1631 
1632 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1633 			err = -EINVAL;
1634 			goto out_unlock;
1635 		}
1636 
1637 		/* Check for invalid stream against the stream counts,
1638 		 * either the default or the user specified stream counts.
1639 		 */
1640 		if (sinfo) {
1641 			if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1642 				/* Check against the defaults. */
1643 				if (sinfo->sinfo_stream >=
1644 				    sp->initmsg.sinit_num_ostreams) {
1645 					err = -EINVAL;
1646 					goto out_unlock;
1647 				}
1648 			} else {
1649 				/* Check against the requested.  */
1650 				if (sinfo->sinfo_stream >=
1651 				    sinit->sinit_num_ostreams) {
1652 					err = -EINVAL;
1653 					goto out_unlock;
1654 				}
1655 			}
1656 		}
1657 
1658 		/*
1659 		 * API 3.1.2 bind() - UDP Style Syntax
1660 		 * If a bind() or sctp_bindx() is not called prior to a
1661 		 * sendmsg() call that initiates a new association, the
1662 		 * system picks an ephemeral port and will choose an address
1663 		 * set equivalent to binding with a wildcard address.
1664 		 */
1665 		if (!ep->base.bind_addr.port) {
1666 			if (sctp_autobind(sk)) {
1667 				err = -EAGAIN;
1668 				goto out_unlock;
1669 			}
1670 		} else {
1671 			/*
1672 			 * If an unprivileged user inherits a one-to-many
1673 			 * style socket with open associations on a privileged
1674 			 * port, it MAY be permitted to accept new associations,
1675 			 * but it SHOULD NOT be permitted to open new
1676 			 * associations.
1677 			 */
1678 			if (ep->base.bind_addr.port < PROT_SOCK &&
1679 			    !capable(CAP_NET_BIND_SERVICE)) {
1680 				err = -EACCES;
1681 				goto out_unlock;
1682 			}
1683 		}
1684 
1685 		scope = sctp_scope(&to);
1686 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1687 		if (!new_asoc) {
1688 			err = -ENOMEM;
1689 			goto out_unlock;
1690 		}
1691 		asoc = new_asoc;
1692 
1693 		/* If the SCTP_INIT ancillary data is specified, set all
1694 		 * the association init values accordingly.
1695 		 */
1696 		if (sinit) {
1697 			if (sinit->sinit_num_ostreams) {
1698 				asoc->c.sinit_num_ostreams =
1699 					sinit->sinit_num_ostreams;
1700 			}
1701 			if (sinit->sinit_max_instreams) {
1702 				asoc->c.sinit_max_instreams =
1703 					sinit->sinit_max_instreams;
1704 			}
1705 			if (sinit->sinit_max_attempts) {
1706 				asoc->max_init_attempts
1707 					= sinit->sinit_max_attempts;
1708 			}
1709 			if (sinit->sinit_max_init_timeo) {
1710 				asoc->max_init_timeo =
1711 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1712 			}
1713 		}
1714 
1715 		/* Prime the peer's transport structures.  */
1716 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1717 		if (!transport) {
1718 			err = -ENOMEM;
1719 			goto out_free;
1720 		}
1721 		err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1722 		if (err < 0) {
1723 			err = -ENOMEM;
1724 			goto out_free;
1725 		}
1726 	}
1727 
1728 	/* ASSERT: we have a valid association at this point.  */
1729 	SCTP_DEBUG_PRINTK("We have a valid association.\n");
1730 
1731 	if (!sinfo) {
1732 		/* If the user didn't specify SNDRCVINFO, make up one with
1733 		 * some defaults.
1734 		 */
1735 		default_sinfo.sinfo_stream = asoc->default_stream;
1736 		default_sinfo.sinfo_flags = asoc->default_flags;
1737 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1738 		default_sinfo.sinfo_context = asoc->default_context;
1739 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1740 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1741 		sinfo = &default_sinfo;
1742 	}
1743 
1744 	/* API 7.1.7, the sndbuf size per association bounds the
1745 	 * maximum size of data that can be sent in a single send call.
1746 	 */
1747 	if (msg_len > sk->sk_sndbuf) {
1748 		err = -EMSGSIZE;
1749 		goto out_free;
1750 	}
1751 
1752 	if (asoc->pmtu_pending)
1753 		sctp_assoc_pending_pmtu(asoc);
1754 
1755 	/* If fragmentation is disabled and the message length exceeds the
1756 	 * association fragmentation point, return EMSGSIZE.  The I-D
1757 	 * does not specify what this error is, but this looks like
1758 	 * a great fit.
1759 	 */
1760 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1761 		err = -EMSGSIZE;
1762 		goto out_free;
1763 	}
1764 
1765 	if (sinfo) {
1766 		/* Check for invalid stream. */
1767 		if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1768 			err = -EINVAL;
1769 			goto out_free;
1770 		}
1771 	}
1772 
1773 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1774 	if (!sctp_wspace(asoc)) {
1775 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1776 		if (err)
1777 			goto out_free;
1778 	}
1779 
1780 	/* If an address is passed with the sendto/sendmsg call, it is used
1781 	 * to override the primary destination address in the TCP model, or
1782 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1783 	 */
1784 	if ((sctp_style(sk, TCP) && msg_name) ||
1785 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1786 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1787 		if (!chunk_tp) {
1788 			err = -EINVAL;
1789 			goto out_free;
1790 		}
1791 	} else
1792 		chunk_tp = NULL;
1793 
1794 	/* Auto-connect, if we aren't connected already. */
1795 	if (sctp_state(asoc, CLOSED)) {
1796 		err = sctp_primitive_ASSOCIATE(asoc, NULL);
1797 		if (err < 0)
1798 			goto out_free;
1799 		SCTP_DEBUG_PRINTK("We associated primitively.\n");
1800 	}
1801 
1802 	/* Break the message into multiple chunks of maximum size. */
1803 	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1804 	if (!datamsg) {
1805 		err = -ENOMEM;
1806 		goto out_free;
1807 	}
1808 
1809 	/* Now send the (possibly) fragmented message. */
1810 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1811 		sctp_chunk_hold(chunk);
1812 
1813 		/* Do accounting for the write space.  */
1814 		sctp_set_owner_w(chunk);
1815 
1816 		chunk->transport = chunk_tp;
1817 	}
1818 
1819 	/* Send it to the lower layers.  Note:  all chunks
1820 	 * must either fail or succeed.   The lower layer
1821 	 * works that way today.  Keep it that way or this
1822 	 * breaks.
1823 	 */
1824 	err = sctp_primitive_SEND(asoc, datamsg);
1825 	/* Did the lower layer accept the chunk? */
1826 	if (err)
1827 		sctp_datamsg_free(datamsg);
1828 	else
1829 		sctp_datamsg_put(datamsg);
1830 
1831 	SCTP_DEBUG_PRINTK("We sent primitively.\n");
1832 
1833 	if (err)
1834 		goto out_free;
1835 	else
1836 		err = msg_len;
1837 
1838 	/* If we are already past ASSOCIATE, the lower
1839 	 * layers are responsible for association cleanup.
1840 	 */
1841 	goto out_unlock;
1842 
1843 out_free:
1844 	if (new_asoc)
1845 		sctp_association_free(asoc);
1846 out_unlock:
1847 	sctp_release_sock(sk);
1848 
1849 out_nounlock:
1850 	return sctp_error(sk, msg_flags, err);
1851 
1852 #if 0
1853 do_sock_err:
1854 	if (msg_len)
1855 		err = msg_len;
1856 	else
1857 		err = sock_error(sk);
1858 	goto out;
1859 
1860 do_interrupted:
1861 	if (msg_len)
1862 		err = msg_len;
1863 	goto out;
1864 #endif /* 0 */
1865 }
1866 
1867 /* This is an extended version of skb_pull() that removes the data from the
1868  * start of a skb even when data is spread across the list of skb's in the
1869  * frag_list. len specifies the total amount of data that needs to be removed.
1870  * when 'len' bytes could be removed from the skb, it returns 0.
1871  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
1872  * could not be removed.
1873  */
1874 static int sctp_skb_pull(struct sk_buff *skb, int len)
1875 {
1876 	struct sk_buff *list;
1877 	int skb_len = skb_headlen(skb);
1878 	int rlen;
1879 
1880 	if (len <= skb_len) {
1881 		__skb_pull(skb, len);
1882 		return 0;
1883 	}
1884 	len -= skb_len;
1885 	__skb_pull(skb, skb_len);
1886 
1887 	skb_walk_frags(skb, list) {
1888 		rlen = sctp_skb_pull(list, len);
1889 		skb->len -= (len-rlen);
1890 		skb->data_len -= (len-rlen);
1891 
1892 		if (!rlen)
1893 			return 0;
1894 
1895 		len = rlen;
1896 	}
1897 
1898 	return len;
1899 }
1900 
1901 /* API 3.1.3  recvmsg() - UDP Style Syntax
1902  *
1903  *  ssize_t recvmsg(int socket, struct msghdr *message,
1904  *                    int flags);
1905  *
1906  *  socket  - the socket descriptor of the endpoint.
1907  *  message - pointer to the msghdr structure which contains a single
1908  *            user message and possibly some ancillary data.
1909  *
1910  *            See Section 5 for complete description of the data
1911  *            structures.
1912  *
1913  *  flags   - flags sent or received with the user message, see Section
1914  *            5 for complete description of the flags.
1915  */
1916 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1917 
1918 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1919 			     struct msghdr *msg, size_t len, int noblock,
1920 			     int flags, int *addr_len)
1921 {
1922 	struct sctp_ulpevent *event = NULL;
1923 	struct sctp_sock *sp = sctp_sk(sk);
1924 	struct sk_buff *skb;
1925 	int copied;
1926 	int err = 0;
1927 	int skb_len;
1928 
1929 	SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1930 			  "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1931 			  "len", len, "knoblauch", noblock,
1932 			  "flags", flags, "addr_len", addr_len);
1933 
1934 	sctp_lock_sock(sk);
1935 
1936 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1937 		err = -ENOTCONN;
1938 		goto out;
1939 	}
1940 
1941 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1942 	if (!skb)
1943 		goto out;
1944 
1945 	/* Get the total length of the skb including any skb's in the
1946 	 * frag_list.
1947 	 */
1948 	skb_len = skb->len;
1949 
1950 	copied = skb_len;
1951 	if (copied > len)
1952 		copied = len;
1953 
1954 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1955 
1956 	event = sctp_skb2event(skb);
1957 
1958 	if (err)
1959 		goto out_free;
1960 
1961 	sock_recv_timestamp(msg, sk, skb);
1962 	if (sctp_ulpevent_is_notification(event)) {
1963 		msg->msg_flags |= MSG_NOTIFICATION;
1964 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
1965 	} else {
1966 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1967 	}
1968 
1969 	/* Check if we allow SCTP_SNDRCVINFO. */
1970 	if (sp->subscribe.sctp_data_io_event)
1971 		sctp_ulpevent_read_sndrcvinfo(event, msg);
1972 #if 0
1973 	/* FIXME: we should be calling IP/IPv6 layers.  */
1974 	if (sk->sk_protinfo.af_inet.cmsg_flags)
1975 		ip_cmsg_recv(msg, skb);
1976 #endif
1977 
1978 	err = copied;
1979 
1980 	/* If skb's length exceeds the user's buffer, update the skb and
1981 	 * push it back to the receive_queue so that the next call to
1982 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
1983 	 */
1984 	if (skb_len > copied) {
1985 		msg->msg_flags &= ~MSG_EOR;
1986 		if (flags & MSG_PEEK)
1987 			goto out_free;
1988 		sctp_skb_pull(skb, copied);
1989 		skb_queue_head(&sk->sk_receive_queue, skb);
1990 
1991 		/* When only partial message is copied to the user, increase
1992 		 * rwnd by that amount. If all the data in the skb is read,
1993 		 * rwnd is updated when the event is freed.
1994 		 */
1995 		if (!sctp_ulpevent_is_notification(event))
1996 			sctp_assoc_rwnd_increase(event->asoc, copied);
1997 		goto out;
1998 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
1999 		   (event->msg_flags & MSG_EOR))
2000 		msg->msg_flags |= MSG_EOR;
2001 	else
2002 		msg->msg_flags &= ~MSG_EOR;
2003 
2004 out_free:
2005 	if (flags & MSG_PEEK) {
2006 		/* Release the skb reference acquired after peeking the skb in
2007 		 * sctp_skb_recv_datagram().
2008 		 */
2009 		kfree_skb(skb);
2010 	} else {
2011 		/* Free the event which includes releasing the reference to
2012 		 * the owner of the skb, freeing the skb and updating the
2013 		 * rwnd.
2014 		 */
2015 		sctp_ulpevent_free(event);
2016 	}
2017 out:
2018 	sctp_release_sock(sk);
2019 	return err;
2020 }
2021 
2022 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2023  *
2024  * This option is a on/off flag.  If enabled no SCTP message
2025  * fragmentation will be performed.  Instead if a message being sent
2026  * exceeds the current PMTU size, the message will NOT be sent and
2027  * instead a error will be indicated to the user.
2028  */
2029 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2030 					     char __user *optval,
2031 					     unsigned int optlen)
2032 {
2033 	int val;
2034 
2035 	if (optlen < sizeof(int))
2036 		return -EINVAL;
2037 
2038 	if (get_user(val, (int __user *)optval))
2039 		return -EFAULT;
2040 
2041 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2042 
2043 	return 0;
2044 }
2045 
2046 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2047 				  unsigned int optlen)
2048 {
2049 	if (optlen > sizeof(struct sctp_event_subscribe))
2050 		return -EINVAL;
2051 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2052 		return -EFAULT;
2053 	return 0;
2054 }
2055 
2056 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2057  *
2058  * This socket option is applicable to the UDP-style socket only.  When
2059  * set it will cause associations that are idle for more than the
2060  * specified number of seconds to automatically close.  An association
2061  * being idle is defined an association that has NOT sent or received
2062  * user data.  The special value of '0' indicates that no automatic
2063  * close of any associations should be performed.  The option expects an
2064  * integer defining the number of seconds of idle time before an
2065  * association is closed.
2066  */
2067 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2068 				     unsigned int optlen)
2069 {
2070 	struct sctp_sock *sp = sctp_sk(sk);
2071 
2072 	/* Applicable to UDP-style socket only */
2073 	if (sctp_style(sk, TCP))
2074 		return -EOPNOTSUPP;
2075 	if (optlen != sizeof(int))
2076 		return -EINVAL;
2077 	if (copy_from_user(&sp->autoclose, optval, optlen))
2078 		return -EFAULT;
2079 
2080 	return 0;
2081 }
2082 
2083 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2084  *
2085  * Applications can enable or disable heartbeats for any peer address of
2086  * an association, modify an address's heartbeat interval, force a
2087  * heartbeat to be sent immediately, and adjust the address's maximum
2088  * number of retransmissions sent before an address is considered
2089  * unreachable.  The following structure is used to access and modify an
2090  * address's parameters:
2091  *
2092  *  struct sctp_paddrparams {
2093  *     sctp_assoc_t            spp_assoc_id;
2094  *     struct sockaddr_storage spp_address;
2095  *     uint32_t                spp_hbinterval;
2096  *     uint16_t                spp_pathmaxrxt;
2097  *     uint32_t                spp_pathmtu;
2098  *     uint32_t                spp_sackdelay;
2099  *     uint32_t                spp_flags;
2100  * };
2101  *
2102  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2103  *                     application, and identifies the association for
2104  *                     this query.
2105  *   spp_address     - This specifies which address is of interest.
2106  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2107  *                     in milliseconds.  If a  value of zero
2108  *                     is present in this field then no changes are to
2109  *                     be made to this parameter.
2110  *   spp_pathmaxrxt  - This contains the maximum number of
2111  *                     retransmissions before this address shall be
2112  *                     considered unreachable. If a  value of zero
2113  *                     is present in this field then no changes are to
2114  *                     be made to this parameter.
2115  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2116  *                     specified here will be the "fixed" path mtu.
2117  *                     Note that if the spp_address field is empty
2118  *                     then all associations on this address will
2119  *                     have this fixed path mtu set upon them.
2120  *
2121  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2122  *                     the number of milliseconds that sacks will be delayed
2123  *                     for. This value will apply to all addresses of an
2124  *                     association if the spp_address field is empty. Note
2125  *                     also, that if delayed sack is enabled and this
2126  *                     value is set to 0, no change is made to the last
2127  *                     recorded delayed sack timer value.
2128  *
2129  *   spp_flags       - These flags are used to control various features
2130  *                     on an association. The flag field may contain
2131  *                     zero or more of the following options.
2132  *
2133  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2134  *                     specified address. Note that if the address
2135  *                     field is empty all addresses for the association
2136  *                     have heartbeats enabled upon them.
2137  *
2138  *                     SPP_HB_DISABLE - Disable heartbeats on the
2139  *                     speicifed address. Note that if the address
2140  *                     field is empty all addresses for the association
2141  *                     will have their heartbeats disabled. Note also
2142  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2143  *                     mutually exclusive, only one of these two should
2144  *                     be specified. Enabling both fields will have
2145  *                     undetermined results.
2146  *
2147  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2148  *                     to be made immediately.
2149  *
2150  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2151  *                     heartbeat delayis to be set to the value of 0
2152  *                     milliseconds.
2153  *
2154  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2155  *                     discovery upon the specified address. Note that
2156  *                     if the address feild is empty then all addresses
2157  *                     on the association are effected.
2158  *
2159  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2160  *                     discovery upon the specified address. Note that
2161  *                     if the address feild is empty then all addresses
2162  *                     on the association are effected. Not also that
2163  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2164  *                     exclusive. Enabling both will have undetermined
2165  *                     results.
2166  *
2167  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2168  *                     on delayed sack. The time specified in spp_sackdelay
2169  *                     is used to specify the sack delay for this address. Note
2170  *                     that if spp_address is empty then all addresses will
2171  *                     enable delayed sack and take on the sack delay
2172  *                     value specified in spp_sackdelay.
2173  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2174  *                     off delayed sack. If the spp_address field is blank then
2175  *                     delayed sack is disabled for the entire association. Note
2176  *                     also that this field is mutually exclusive to
2177  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2178  *                     results.
2179  */
2180 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2181 				       struct sctp_transport   *trans,
2182 				       struct sctp_association *asoc,
2183 				       struct sctp_sock        *sp,
2184 				       int                      hb_change,
2185 				       int                      pmtud_change,
2186 				       int                      sackdelay_change)
2187 {
2188 	int error;
2189 
2190 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2191 		error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2192 		if (error)
2193 			return error;
2194 	}
2195 
2196 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2197 	 * this field is ignored.  Note also that a value of zero indicates
2198 	 * the current setting should be left unchanged.
2199 	 */
2200 	if (params->spp_flags & SPP_HB_ENABLE) {
2201 
2202 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2203 		 * set.  This lets us use 0 value when this flag
2204 		 * is set.
2205 		 */
2206 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2207 			params->spp_hbinterval = 0;
2208 
2209 		if (params->spp_hbinterval ||
2210 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2211 			if (trans) {
2212 				trans->hbinterval =
2213 				    msecs_to_jiffies(params->spp_hbinterval);
2214 			} else if (asoc) {
2215 				asoc->hbinterval =
2216 				    msecs_to_jiffies(params->spp_hbinterval);
2217 			} else {
2218 				sp->hbinterval = params->spp_hbinterval;
2219 			}
2220 		}
2221 	}
2222 
2223 	if (hb_change) {
2224 		if (trans) {
2225 			trans->param_flags =
2226 				(trans->param_flags & ~SPP_HB) | hb_change;
2227 		} else if (asoc) {
2228 			asoc->param_flags =
2229 				(asoc->param_flags & ~SPP_HB) | hb_change;
2230 		} else {
2231 			sp->param_flags =
2232 				(sp->param_flags & ~SPP_HB) | hb_change;
2233 		}
2234 	}
2235 
2236 	/* When Path MTU discovery is disabled the value specified here will
2237 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2238 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2239 	 * effect).
2240 	 */
2241 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2242 		if (trans) {
2243 			trans->pathmtu = params->spp_pathmtu;
2244 			sctp_assoc_sync_pmtu(asoc);
2245 		} else if (asoc) {
2246 			asoc->pathmtu = params->spp_pathmtu;
2247 			sctp_frag_point(asoc, params->spp_pathmtu);
2248 		} else {
2249 			sp->pathmtu = params->spp_pathmtu;
2250 		}
2251 	}
2252 
2253 	if (pmtud_change) {
2254 		if (trans) {
2255 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2256 				(params->spp_flags & SPP_PMTUD_ENABLE);
2257 			trans->param_flags =
2258 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2259 			if (update) {
2260 				sctp_transport_pmtu(trans);
2261 				sctp_assoc_sync_pmtu(asoc);
2262 			}
2263 		} else if (asoc) {
2264 			asoc->param_flags =
2265 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2266 		} else {
2267 			sp->param_flags =
2268 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2269 		}
2270 	}
2271 
2272 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2273 	 * value of this field is ignored.  Note also that a value of zero
2274 	 * indicates the current setting should be left unchanged.
2275 	 */
2276 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2277 		if (trans) {
2278 			trans->sackdelay =
2279 				msecs_to_jiffies(params->spp_sackdelay);
2280 		} else if (asoc) {
2281 			asoc->sackdelay =
2282 				msecs_to_jiffies(params->spp_sackdelay);
2283 		} else {
2284 			sp->sackdelay = params->spp_sackdelay;
2285 		}
2286 	}
2287 
2288 	if (sackdelay_change) {
2289 		if (trans) {
2290 			trans->param_flags =
2291 				(trans->param_flags & ~SPP_SACKDELAY) |
2292 				sackdelay_change;
2293 		} else if (asoc) {
2294 			asoc->param_flags =
2295 				(asoc->param_flags & ~SPP_SACKDELAY) |
2296 				sackdelay_change;
2297 		} else {
2298 			sp->param_flags =
2299 				(sp->param_flags & ~SPP_SACKDELAY) |
2300 				sackdelay_change;
2301 		}
2302 	}
2303 
2304 	/* Note that unless the spp_flag is set to SPP_PMTUD_ENABLE the value
2305 	 * of this field is ignored.  Note also that a value of zero
2306 	 * indicates the current setting should be left unchanged.
2307 	 */
2308 	if ((params->spp_flags & SPP_PMTUD_ENABLE) && params->spp_pathmaxrxt) {
2309 		if (trans) {
2310 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2311 		} else if (asoc) {
2312 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2313 		} else {
2314 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2315 		}
2316 	}
2317 
2318 	return 0;
2319 }
2320 
2321 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2322 					    char __user *optval,
2323 					    unsigned int optlen)
2324 {
2325 	struct sctp_paddrparams  params;
2326 	struct sctp_transport   *trans = NULL;
2327 	struct sctp_association *asoc = NULL;
2328 	struct sctp_sock        *sp = sctp_sk(sk);
2329 	int error;
2330 	int hb_change, pmtud_change, sackdelay_change;
2331 
2332 	if (optlen != sizeof(struct sctp_paddrparams))
2333 		return - EINVAL;
2334 
2335 	if (copy_from_user(&params, optval, optlen))
2336 		return -EFAULT;
2337 
2338 	/* Validate flags and value parameters. */
2339 	hb_change        = params.spp_flags & SPP_HB;
2340 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2341 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2342 
2343 	if (hb_change        == SPP_HB ||
2344 	    pmtud_change     == SPP_PMTUD ||
2345 	    sackdelay_change == SPP_SACKDELAY ||
2346 	    params.spp_sackdelay > 500 ||
2347 	    (params.spp_pathmtu
2348 	    && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2349 		return -EINVAL;
2350 
2351 	/* If an address other than INADDR_ANY is specified, and
2352 	 * no transport is found, then the request is invalid.
2353 	 */
2354 	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
2355 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2356 					       params.spp_assoc_id);
2357 		if (!trans)
2358 			return -EINVAL;
2359 	}
2360 
2361 	/* Get association, if assoc_id != 0 and the socket is a one
2362 	 * to many style socket, and an association was not found, then
2363 	 * the id was invalid.
2364 	 */
2365 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2366 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2367 		return -EINVAL;
2368 
2369 	/* Heartbeat demand can only be sent on a transport or
2370 	 * association, but not a socket.
2371 	 */
2372 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2373 		return -EINVAL;
2374 
2375 	/* Process parameters. */
2376 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2377 					    hb_change, pmtud_change,
2378 					    sackdelay_change);
2379 
2380 	if (error)
2381 		return error;
2382 
2383 	/* If changes are for association, also apply parameters to each
2384 	 * transport.
2385 	 */
2386 	if (!trans && asoc) {
2387 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2388 				transports) {
2389 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2390 						    hb_change, pmtud_change,
2391 						    sackdelay_change);
2392 		}
2393 	}
2394 
2395 	return 0;
2396 }
2397 
2398 /*
2399  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2400  *
2401  * This option will effect the way delayed acks are performed.  This
2402  * option allows you to get or set the delayed ack time, in
2403  * milliseconds.  It also allows changing the delayed ack frequency.
2404  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2405  * the assoc_id is 0, then this sets or gets the endpoints default
2406  * values.  If the assoc_id field is non-zero, then the set or get
2407  * effects the specified association for the one to many model (the
2408  * assoc_id field is ignored by the one to one model).  Note that if
2409  * sack_delay or sack_freq are 0 when setting this option, then the
2410  * current values will remain unchanged.
2411  *
2412  * struct sctp_sack_info {
2413  *     sctp_assoc_t            sack_assoc_id;
2414  *     uint32_t                sack_delay;
2415  *     uint32_t                sack_freq;
2416  * };
2417  *
2418  * sack_assoc_id -  This parameter, indicates which association the user
2419  *    is performing an action upon.  Note that if this field's value is
2420  *    zero then the endpoints default value is changed (effecting future
2421  *    associations only).
2422  *
2423  * sack_delay -  This parameter contains the number of milliseconds that
2424  *    the user is requesting the delayed ACK timer be set to.  Note that
2425  *    this value is defined in the standard to be between 200 and 500
2426  *    milliseconds.
2427  *
2428  * sack_freq -  This parameter contains the number of packets that must
2429  *    be received before a sack is sent without waiting for the delay
2430  *    timer to expire.  The default value for this is 2, setting this
2431  *    value to 1 will disable the delayed sack algorithm.
2432  */
2433 
2434 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2435 				       char __user *optval, unsigned int optlen)
2436 {
2437 	struct sctp_sack_info    params;
2438 	struct sctp_transport   *trans = NULL;
2439 	struct sctp_association *asoc = NULL;
2440 	struct sctp_sock        *sp = sctp_sk(sk);
2441 
2442 	if (optlen == sizeof(struct sctp_sack_info)) {
2443 		if (copy_from_user(&params, optval, optlen))
2444 			return -EFAULT;
2445 
2446 		if (params.sack_delay == 0 && params.sack_freq == 0)
2447 			return 0;
2448 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2449 		printk(KERN_WARNING "SCTP: Use of struct sctp_assoc_value "
2450 		       "in delayed_ack socket option deprecated\n");
2451 		printk(KERN_WARNING "SCTP: Use struct sctp_sack_info instead\n");
2452 		if (copy_from_user(&params, optval, optlen))
2453 			return -EFAULT;
2454 
2455 		if (params.sack_delay == 0)
2456 			params.sack_freq = 1;
2457 		else
2458 			params.sack_freq = 0;
2459 	} else
2460 		return - EINVAL;
2461 
2462 	/* Validate value parameter. */
2463 	if (params.sack_delay > 500)
2464 		return -EINVAL;
2465 
2466 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2467 	 * to many style socket, and an association was not found, then
2468 	 * the id was invalid.
2469 	 */
2470 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2471 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2472 		return -EINVAL;
2473 
2474 	if (params.sack_delay) {
2475 		if (asoc) {
2476 			asoc->sackdelay =
2477 				msecs_to_jiffies(params.sack_delay);
2478 			asoc->param_flags =
2479 				(asoc->param_flags & ~SPP_SACKDELAY) |
2480 				SPP_SACKDELAY_ENABLE;
2481 		} else {
2482 			sp->sackdelay = params.sack_delay;
2483 			sp->param_flags =
2484 				(sp->param_flags & ~SPP_SACKDELAY) |
2485 				SPP_SACKDELAY_ENABLE;
2486 		}
2487 	}
2488 
2489 	if (params.sack_freq == 1) {
2490 		if (asoc) {
2491 			asoc->param_flags =
2492 				(asoc->param_flags & ~SPP_SACKDELAY) |
2493 				SPP_SACKDELAY_DISABLE;
2494 		} else {
2495 			sp->param_flags =
2496 				(sp->param_flags & ~SPP_SACKDELAY) |
2497 				SPP_SACKDELAY_DISABLE;
2498 		}
2499 	} else if (params.sack_freq > 1) {
2500 		if (asoc) {
2501 			asoc->sackfreq = params.sack_freq;
2502 			asoc->param_flags =
2503 				(asoc->param_flags & ~SPP_SACKDELAY) |
2504 				SPP_SACKDELAY_ENABLE;
2505 		} else {
2506 			sp->sackfreq = params.sack_freq;
2507 			sp->param_flags =
2508 				(sp->param_flags & ~SPP_SACKDELAY) |
2509 				SPP_SACKDELAY_ENABLE;
2510 		}
2511 	}
2512 
2513 	/* If change is for association, also apply to each transport. */
2514 	if (asoc) {
2515 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2516 				transports) {
2517 			if (params.sack_delay) {
2518 				trans->sackdelay =
2519 					msecs_to_jiffies(params.sack_delay);
2520 				trans->param_flags =
2521 					(trans->param_flags & ~SPP_SACKDELAY) |
2522 					SPP_SACKDELAY_ENABLE;
2523 			}
2524 			if (params.sack_freq == 1) {
2525 				trans->param_flags =
2526 					(trans->param_flags & ~SPP_SACKDELAY) |
2527 					SPP_SACKDELAY_DISABLE;
2528 			} else if (params.sack_freq > 1) {
2529 				trans->sackfreq = params.sack_freq;
2530 				trans->param_flags =
2531 					(trans->param_flags & ~SPP_SACKDELAY) |
2532 					SPP_SACKDELAY_ENABLE;
2533 			}
2534 		}
2535 	}
2536 
2537 	return 0;
2538 }
2539 
2540 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2541  *
2542  * Applications can specify protocol parameters for the default association
2543  * initialization.  The option name argument to setsockopt() and getsockopt()
2544  * is SCTP_INITMSG.
2545  *
2546  * Setting initialization parameters is effective only on an unconnected
2547  * socket (for UDP-style sockets only future associations are effected
2548  * by the change).  With TCP-style sockets, this option is inherited by
2549  * sockets derived from a listener socket.
2550  */
2551 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2552 {
2553 	struct sctp_initmsg sinit;
2554 	struct sctp_sock *sp = sctp_sk(sk);
2555 
2556 	if (optlen != sizeof(struct sctp_initmsg))
2557 		return -EINVAL;
2558 	if (copy_from_user(&sinit, optval, optlen))
2559 		return -EFAULT;
2560 
2561 	if (sinit.sinit_num_ostreams)
2562 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2563 	if (sinit.sinit_max_instreams)
2564 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2565 	if (sinit.sinit_max_attempts)
2566 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2567 	if (sinit.sinit_max_init_timeo)
2568 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2569 
2570 	return 0;
2571 }
2572 
2573 /*
2574  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2575  *
2576  *   Applications that wish to use the sendto() system call may wish to
2577  *   specify a default set of parameters that would normally be supplied
2578  *   through the inclusion of ancillary data.  This socket option allows
2579  *   such an application to set the default sctp_sndrcvinfo structure.
2580  *   The application that wishes to use this socket option simply passes
2581  *   in to this call the sctp_sndrcvinfo structure defined in Section
2582  *   5.2.2) The input parameters accepted by this call include
2583  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2584  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2585  *   to this call if the caller is using the UDP model.
2586  */
2587 static int sctp_setsockopt_default_send_param(struct sock *sk,
2588 					      char __user *optval,
2589 					      unsigned int optlen)
2590 {
2591 	struct sctp_sndrcvinfo info;
2592 	struct sctp_association *asoc;
2593 	struct sctp_sock *sp = sctp_sk(sk);
2594 
2595 	if (optlen != sizeof(struct sctp_sndrcvinfo))
2596 		return -EINVAL;
2597 	if (copy_from_user(&info, optval, optlen))
2598 		return -EFAULT;
2599 
2600 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2601 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2602 		return -EINVAL;
2603 
2604 	if (asoc) {
2605 		asoc->default_stream = info.sinfo_stream;
2606 		asoc->default_flags = info.sinfo_flags;
2607 		asoc->default_ppid = info.sinfo_ppid;
2608 		asoc->default_context = info.sinfo_context;
2609 		asoc->default_timetolive = info.sinfo_timetolive;
2610 	} else {
2611 		sp->default_stream = info.sinfo_stream;
2612 		sp->default_flags = info.sinfo_flags;
2613 		sp->default_ppid = info.sinfo_ppid;
2614 		sp->default_context = info.sinfo_context;
2615 		sp->default_timetolive = info.sinfo_timetolive;
2616 	}
2617 
2618 	return 0;
2619 }
2620 
2621 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2622  *
2623  * Requests that the local SCTP stack use the enclosed peer address as
2624  * the association primary.  The enclosed address must be one of the
2625  * association peer's addresses.
2626  */
2627 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2628 					unsigned int optlen)
2629 {
2630 	struct sctp_prim prim;
2631 	struct sctp_transport *trans;
2632 
2633 	if (optlen != sizeof(struct sctp_prim))
2634 		return -EINVAL;
2635 
2636 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2637 		return -EFAULT;
2638 
2639 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2640 	if (!trans)
2641 		return -EINVAL;
2642 
2643 	sctp_assoc_set_primary(trans->asoc, trans);
2644 
2645 	return 0;
2646 }
2647 
2648 /*
2649  * 7.1.5 SCTP_NODELAY
2650  *
2651  * Turn on/off any Nagle-like algorithm.  This means that packets are
2652  * generally sent as soon as possible and no unnecessary delays are
2653  * introduced, at the cost of more packets in the network.  Expects an
2654  *  integer boolean flag.
2655  */
2656 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2657 				   unsigned int optlen)
2658 {
2659 	int val;
2660 
2661 	if (optlen < sizeof(int))
2662 		return -EINVAL;
2663 	if (get_user(val, (int __user *)optval))
2664 		return -EFAULT;
2665 
2666 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2667 	return 0;
2668 }
2669 
2670 /*
2671  *
2672  * 7.1.1 SCTP_RTOINFO
2673  *
2674  * The protocol parameters used to initialize and bound retransmission
2675  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2676  * and modify these parameters.
2677  * All parameters are time values, in milliseconds.  A value of 0, when
2678  * modifying the parameters, indicates that the current value should not
2679  * be changed.
2680  *
2681  */
2682 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2683 {
2684 	struct sctp_rtoinfo rtoinfo;
2685 	struct sctp_association *asoc;
2686 
2687 	if (optlen != sizeof (struct sctp_rtoinfo))
2688 		return -EINVAL;
2689 
2690 	if (copy_from_user(&rtoinfo, optval, optlen))
2691 		return -EFAULT;
2692 
2693 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2694 
2695 	/* Set the values to the specific association */
2696 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2697 		return -EINVAL;
2698 
2699 	if (asoc) {
2700 		if (rtoinfo.srto_initial != 0)
2701 			asoc->rto_initial =
2702 				msecs_to_jiffies(rtoinfo.srto_initial);
2703 		if (rtoinfo.srto_max != 0)
2704 			asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2705 		if (rtoinfo.srto_min != 0)
2706 			asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2707 	} else {
2708 		/* If there is no association or the association-id = 0
2709 		 * set the values to the endpoint.
2710 		 */
2711 		struct sctp_sock *sp = sctp_sk(sk);
2712 
2713 		if (rtoinfo.srto_initial != 0)
2714 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2715 		if (rtoinfo.srto_max != 0)
2716 			sp->rtoinfo.srto_max = rtoinfo.srto_max;
2717 		if (rtoinfo.srto_min != 0)
2718 			sp->rtoinfo.srto_min = rtoinfo.srto_min;
2719 	}
2720 
2721 	return 0;
2722 }
2723 
2724 /*
2725  *
2726  * 7.1.2 SCTP_ASSOCINFO
2727  *
2728  * This option is used to tune the maximum retransmission attempts
2729  * of the association.
2730  * Returns an error if the new association retransmission value is
2731  * greater than the sum of the retransmission value  of the peer.
2732  * See [SCTP] for more information.
2733  *
2734  */
2735 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2736 {
2737 
2738 	struct sctp_assocparams assocparams;
2739 	struct sctp_association *asoc;
2740 
2741 	if (optlen != sizeof(struct sctp_assocparams))
2742 		return -EINVAL;
2743 	if (copy_from_user(&assocparams, optval, optlen))
2744 		return -EFAULT;
2745 
2746 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2747 
2748 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2749 		return -EINVAL;
2750 
2751 	/* Set the values to the specific association */
2752 	if (asoc) {
2753 		if (assocparams.sasoc_asocmaxrxt != 0) {
2754 			__u32 path_sum = 0;
2755 			int   paths = 0;
2756 			struct sctp_transport *peer_addr;
2757 
2758 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2759 					transports) {
2760 				path_sum += peer_addr->pathmaxrxt;
2761 				paths++;
2762 			}
2763 
2764 			/* Only validate asocmaxrxt if we have more than
2765 			 * one path/transport.  We do this because path
2766 			 * retransmissions are only counted when we have more
2767 			 * then one path.
2768 			 */
2769 			if (paths > 1 &&
2770 			    assocparams.sasoc_asocmaxrxt > path_sum)
2771 				return -EINVAL;
2772 
2773 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2774 		}
2775 
2776 		if (assocparams.sasoc_cookie_life != 0) {
2777 			asoc->cookie_life.tv_sec =
2778 					assocparams.sasoc_cookie_life / 1000;
2779 			asoc->cookie_life.tv_usec =
2780 					(assocparams.sasoc_cookie_life % 1000)
2781 					* 1000;
2782 		}
2783 	} else {
2784 		/* Set the values to the endpoint */
2785 		struct sctp_sock *sp = sctp_sk(sk);
2786 
2787 		if (assocparams.sasoc_asocmaxrxt != 0)
2788 			sp->assocparams.sasoc_asocmaxrxt =
2789 						assocparams.sasoc_asocmaxrxt;
2790 		if (assocparams.sasoc_cookie_life != 0)
2791 			sp->assocparams.sasoc_cookie_life =
2792 						assocparams.sasoc_cookie_life;
2793 	}
2794 	return 0;
2795 }
2796 
2797 /*
2798  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2799  *
2800  * This socket option is a boolean flag which turns on or off mapped V4
2801  * addresses.  If this option is turned on and the socket is type
2802  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2803  * If this option is turned off, then no mapping will be done of V4
2804  * addresses and a user will receive both PF_INET6 and PF_INET type
2805  * addresses on the socket.
2806  */
2807 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
2808 {
2809 	int val;
2810 	struct sctp_sock *sp = sctp_sk(sk);
2811 
2812 	if (optlen < sizeof(int))
2813 		return -EINVAL;
2814 	if (get_user(val, (int __user *)optval))
2815 		return -EFAULT;
2816 	if (val)
2817 		sp->v4mapped = 1;
2818 	else
2819 		sp->v4mapped = 0;
2820 
2821 	return 0;
2822 }
2823 
2824 /*
2825  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
2826  * This option will get or set the maximum size to put in any outgoing
2827  * SCTP DATA chunk.  If a message is larger than this size it will be
2828  * fragmented by SCTP into the specified size.  Note that the underlying
2829  * SCTP implementation may fragment into smaller sized chunks when the
2830  * PMTU of the underlying association is smaller than the value set by
2831  * the user.  The default value for this option is '0' which indicates
2832  * the user is NOT limiting fragmentation and only the PMTU will effect
2833  * SCTP's choice of DATA chunk size.  Note also that values set larger
2834  * than the maximum size of an IP datagram will effectively let SCTP
2835  * control fragmentation (i.e. the same as setting this option to 0).
2836  *
2837  * The following structure is used to access and modify this parameter:
2838  *
2839  * struct sctp_assoc_value {
2840  *   sctp_assoc_t assoc_id;
2841  *   uint32_t assoc_value;
2842  * };
2843  *
2844  * assoc_id:  This parameter is ignored for one-to-one style sockets.
2845  *    For one-to-many style sockets this parameter indicates which
2846  *    association the user is performing an action upon.  Note that if
2847  *    this field's value is zero then the endpoints default value is
2848  *    changed (effecting future associations only).
2849  * assoc_value:  This parameter specifies the maximum size in bytes.
2850  */
2851 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
2852 {
2853 	struct sctp_assoc_value params;
2854 	struct sctp_association *asoc;
2855 	struct sctp_sock *sp = sctp_sk(sk);
2856 	int val;
2857 
2858 	if (optlen == sizeof(int)) {
2859 		printk(KERN_WARNING
2860 		   "SCTP: Use of int in maxseg socket option deprecated\n");
2861 		printk(KERN_WARNING
2862 		   "SCTP: Use struct sctp_assoc_value instead\n");
2863 		if (copy_from_user(&val, optval, optlen))
2864 			return -EFAULT;
2865 		params.assoc_id = 0;
2866 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2867 		if (copy_from_user(&params, optval, optlen))
2868 			return -EFAULT;
2869 		val = params.assoc_value;
2870 	} else
2871 		return -EINVAL;
2872 
2873 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2874 		return -EINVAL;
2875 
2876 	asoc = sctp_id2assoc(sk, params.assoc_id);
2877 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
2878 		return -EINVAL;
2879 
2880 	if (asoc) {
2881 		if (val == 0) {
2882 			val = asoc->pathmtu;
2883 			val -= sp->pf->af->net_header_len;
2884 			val -= sizeof(struct sctphdr) +
2885 					sizeof(struct sctp_data_chunk);
2886 		}
2887 		asoc->user_frag = val;
2888 		asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
2889 	} else {
2890 		sp->user_frag = val;
2891 	}
2892 
2893 	return 0;
2894 }
2895 
2896 
2897 /*
2898  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2899  *
2900  *   Requests that the peer mark the enclosed address as the association
2901  *   primary. The enclosed address must be one of the association's
2902  *   locally bound addresses. The following structure is used to make a
2903  *   set primary request:
2904  */
2905 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2906 					     unsigned int optlen)
2907 {
2908 	struct sctp_sock	*sp;
2909 	struct sctp_endpoint	*ep;
2910 	struct sctp_association	*asoc = NULL;
2911 	struct sctp_setpeerprim	prim;
2912 	struct sctp_chunk	*chunk;
2913 	int 			err;
2914 
2915 	sp = sctp_sk(sk);
2916 	ep = sp->ep;
2917 
2918 	if (!sctp_addip_enable)
2919 		return -EPERM;
2920 
2921 	if (optlen != sizeof(struct sctp_setpeerprim))
2922 		return -EINVAL;
2923 
2924 	if (copy_from_user(&prim, optval, optlen))
2925 		return -EFAULT;
2926 
2927 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2928 	if (!asoc)
2929 		return -EINVAL;
2930 
2931 	if (!asoc->peer.asconf_capable)
2932 		return -EPERM;
2933 
2934 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2935 		return -EPERM;
2936 
2937 	if (!sctp_state(asoc, ESTABLISHED))
2938 		return -ENOTCONN;
2939 
2940 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2941 		return -EADDRNOTAVAIL;
2942 
2943 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
2944 	chunk = sctp_make_asconf_set_prim(asoc,
2945 					  (union sctp_addr *)&prim.sspp_addr);
2946 	if (!chunk)
2947 		return -ENOMEM;
2948 
2949 	err = sctp_send_asconf(asoc, chunk);
2950 
2951 	SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2952 
2953 	return err;
2954 }
2955 
2956 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
2957 					    unsigned int optlen)
2958 {
2959 	struct sctp_setadaptation adaptation;
2960 
2961 	if (optlen != sizeof(struct sctp_setadaptation))
2962 		return -EINVAL;
2963 	if (copy_from_user(&adaptation, optval, optlen))
2964 		return -EFAULT;
2965 
2966 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
2967 
2968 	return 0;
2969 }
2970 
2971 /*
2972  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
2973  *
2974  * The context field in the sctp_sndrcvinfo structure is normally only
2975  * used when a failed message is retrieved holding the value that was
2976  * sent down on the actual send call.  This option allows the setting of
2977  * a default context on an association basis that will be received on
2978  * reading messages from the peer.  This is especially helpful in the
2979  * one-2-many model for an application to keep some reference to an
2980  * internal state machine that is processing messages on the
2981  * association.  Note that the setting of this value only effects
2982  * received messages from the peer and does not effect the value that is
2983  * saved with outbound messages.
2984  */
2985 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
2986 				   unsigned int optlen)
2987 {
2988 	struct sctp_assoc_value params;
2989 	struct sctp_sock *sp;
2990 	struct sctp_association *asoc;
2991 
2992 	if (optlen != sizeof(struct sctp_assoc_value))
2993 		return -EINVAL;
2994 	if (copy_from_user(&params, optval, optlen))
2995 		return -EFAULT;
2996 
2997 	sp = sctp_sk(sk);
2998 
2999 	if (params.assoc_id != 0) {
3000 		asoc = sctp_id2assoc(sk, params.assoc_id);
3001 		if (!asoc)
3002 			return -EINVAL;
3003 		asoc->default_rcv_context = params.assoc_value;
3004 	} else {
3005 		sp->default_rcv_context = params.assoc_value;
3006 	}
3007 
3008 	return 0;
3009 }
3010 
3011 /*
3012  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3013  *
3014  * This options will at a minimum specify if the implementation is doing
3015  * fragmented interleave.  Fragmented interleave, for a one to many
3016  * socket, is when subsequent calls to receive a message may return
3017  * parts of messages from different associations.  Some implementations
3018  * may allow you to turn this value on or off.  If so, when turned off,
3019  * no fragment interleave will occur (which will cause a head of line
3020  * blocking amongst multiple associations sharing the same one to many
3021  * socket).  When this option is turned on, then each receive call may
3022  * come from a different association (thus the user must receive data
3023  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3024  * association each receive belongs to.
3025  *
3026  * This option takes a boolean value.  A non-zero value indicates that
3027  * fragmented interleave is on.  A value of zero indicates that
3028  * fragmented interleave is off.
3029  *
3030  * Note that it is important that an implementation that allows this
3031  * option to be turned on, have it off by default.  Otherwise an unaware
3032  * application using the one to many model may become confused and act
3033  * incorrectly.
3034  */
3035 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3036 					       char __user *optval,
3037 					       unsigned int optlen)
3038 {
3039 	int val;
3040 
3041 	if (optlen != sizeof(int))
3042 		return -EINVAL;
3043 	if (get_user(val, (int __user *)optval))
3044 		return -EFAULT;
3045 
3046 	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3047 
3048 	return 0;
3049 }
3050 
3051 /*
3052  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3053  *       (SCTP_PARTIAL_DELIVERY_POINT)
3054  *
3055  * This option will set or get the SCTP partial delivery point.  This
3056  * point is the size of a message where the partial delivery API will be
3057  * invoked to help free up rwnd space for the peer.  Setting this to a
3058  * lower value will cause partial deliveries to happen more often.  The
3059  * calls argument is an integer that sets or gets the partial delivery
3060  * point.  Note also that the call will fail if the user attempts to set
3061  * this value larger than the socket receive buffer size.
3062  *
3063  * Note that any single message having a length smaller than or equal to
3064  * the SCTP partial delivery point will be delivered in one single read
3065  * call as long as the user provided buffer is large enough to hold the
3066  * message.
3067  */
3068 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3069 						  char __user *optval,
3070 						  unsigned int optlen)
3071 {
3072 	u32 val;
3073 
3074 	if (optlen != sizeof(u32))
3075 		return -EINVAL;
3076 	if (get_user(val, (int __user *)optval))
3077 		return -EFAULT;
3078 
3079 	/* Note: We double the receive buffer from what the user sets
3080 	 * it to be, also initial rwnd is based on rcvbuf/2.
3081 	 */
3082 	if (val > (sk->sk_rcvbuf >> 1))
3083 		return -EINVAL;
3084 
3085 	sctp_sk(sk)->pd_point = val;
3086 
3087 	return 0; /* is this the right error code? */
3088 }
3089 
3090 /*
3091  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3092  *
3093  * This option will allow a user to change the maximum burst of packets
3094  * that can be emitted by this association.  Note that the default value
3095  * is 4, and some implementations may restrict this setting so that it
3096  * can only be lowered.
3097  *
3098  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3099  * future associations inheriting the socket value.
3100  */
3101 static int sctp_setsockopt_maxburst(struct sock *sk,
3102 				    char __user *optval,
3103 				    unsigned int optlen)
3104 {
3105 	struct sctp_assoc_value params;
3106 	struct sctp_sock *sp;
3107 	struct sctp_association *asoc;
3108 	int val;
3109 	int assoc_id = 0;
3110 
3111 	if (optlen == sizeof(int)) {
3112 		printk(KERN_WARNING
3113 		   "SCTP: Use of int in max_burst socket option deprecated\n");
3114 		printk(KERN_WARNING
3115 		   "SCTP: Use struct sctp_assoc_value instead\n");
3116 		if (copy_from_user(&val, optval, optlen))
3117 			return -EFAULT;
3118 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3119 		if (copy_from_user(&params, optval, optlen))
3120 			return -EFAULT;
3121 		val = params.assoc_value;
3122 		assoc_id = params.assoc_id;
3123 	} else
3124 		return -EINVAL;
3125 
3126 	sp = sctp_sk(sk);
3127 
3128 	if (assoc_id != 0) {
3129 		asoc = sctp_id2assoc(sk, assoc_id);
3130 		if (!asoc)
3131 			return -EINVAL;
3132 		asoc->max_burst = val;
3133 	} else
3134 		sp->max_burst = val;
3135 
3136 	return 0;
3137 }
3138 
3139 /*
3140  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3141  *
3142  * This set option adds a chunk type that the user is requesting to be
3143  * received only in an authenticated way.  Changes to the list of chunks
3144  * will only effect future associations on the socket.
3145  */
3146 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3147 				      char __user *optval,
3148 				      unsigned int optlen)
3149 {
3150 	struct sctp_authchunk val;
3151 
3152 	if (!sctp_auth_enable)
3153 		return -EACCES;
3154 
3155 	if (optlen != sizeof(struct sctp_authchunk))
3156 		return -EINVAL;
3157 	if (copy_from_user(&val, optval, optlen))
3158 		return -EFAULT;
3159 
3160 	switch (val.sauth_chunk) {
3161 		case SCTP_CID_INIT:
3162 		case SCTP_CID_INIT_ACK:
3163 		case SCTP_CID_SHUTDOWN_COMPLETE:
3164 		case SCTP_CID_AUTH:
3165 			return -EINVAL;
3166 	}
3167 
3168 	/* add this chunk id to the endpoint */
3169 	return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3170 }
3171 
3172 /*
3173  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3174  *
3175  * This option gets or sets the list of HMAC algorithms that the local
3176  * endpoint requires the peer to use.
3177  */
3178 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3179 				      char __user *optval,
3180 				      unsigned int optlen)
3181 {
3182 	struct sctp_hmacalgo *hmacs;
3183 	u32 idents;
3184 	int err;
3185 
3186 	if (!sctp_auth_enable)
3187 		return -EACCES;
3188 
3189 	if (optlen < sizeof(struct sctp_hmacalgo))
3190 		return -EINVAL;
3191 
3192 	hmacs = kmalloc(optlen, GFP_KERNEL);
3193 	if (!hmacs)
3194 		return -ENOMEM;
3195 
3196 	if (copy_from_user(hmacs, optval, optlen)) {
3197 		err = -EFAULT;
3198 		goto out;
3199 	}
3200 
3201 	idents = hmacs->shmac_num_idents;
3202 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3203 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3204 		err = -EINVAL;
3205 		goto out;
3206 	}
3207 
3208 	err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3209 out:
3210 	kfree(hmacs);
3211 	return err;
3212 }
3213 
3214 /*
3215  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3216  *
3217  * This option will set a shared secret key which is used to build an
3218  * association shared key.
3219  */
3220 static int sctp_setsockopt_auth_key(struct sock *sk,
3221 				    char __user *optval,
3222 				    unsigned int optlen)
3223 {
3224 	struct sctp_authkey *authkey;
3225 	struct sctp_association *asoc;
3226 	int ret;
3227 
3228 	if (!sctp_auth_enable)
3229 		return -EACCES;
3230 
3231 	if (optlen <= sizeof(struct sctp_authkey))
3232 		return -EINVAL;
3233 
3234 	authkey = kmalloc(optlen, GFP_KERNEL);
3235 	if (!authkey)
3236 		return -ENOMEM;
3237 
3238 	if (copy_from_user(authkey, optval, optlen)) {
3239 		ret = -EFAULT;
3240 		goto out;
3241 	}
3242 
3243 	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3244 		ret = -EINVAL;
3245 		goto out;
3246 	}
3247 
3248 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3249 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3250 		ret = -EINVAL;
3251 		goto out;
3252 	}
3253 
3254 	ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3255 out:
3256 	kfree(authkey);
3257 	return ret;
3258 }
3259 
3260 /*
3261  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3262  *
3263  * This option will get or set the active shared key to be used to build
3264  * the association shared key.
3265  */
3266 static int sctp_setsockopt_active_key(struct sock *sk,
3267 				      char __user *optval,
3268 				      unsigned int optlen)
3269 {
3270 	struct sctp_authkeyid val;
3271 	struct sctp_association *asoc;
3272 
3273 	if (!sctp_auth_enable)
3274 		return -EACCES;
3275 
3276 	if (optlen != sizeof(struct sctp_authkeyid))
3277 		return -EINVAL;
3278 	if (copy_from_user(&val, optval, optlen))
3279 		return -EFAULT;
3280 
3281 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3282 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3283 		return -EINVAL;
3284 
3285 	return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3286 					val.scact_keynumber);
3287 }
3288 
3289 /*
3290  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3291  *
3292  * This set option will delete a shared secret key from use.
3293  */
3294 static int sctp_setsockopt_del_key(struct sock *sk,
3295 				   char __user *optval,
3296 				   unsigned int optlen)
3297 {
3298 	struct sctp_authkeyid val;
3299 	struct sctp_association *asoc;
3300 
3301 	if (!sctp_auth_enable)
3302 		return -EACCES;
3303 
3304 	if (optlen != sizeof(struct sctp_authkeyid))
3305 		return -EINVAL;
3306 	if (copy_from_user(&val, optval, optlen))
3307 		return -EFAULT;
3308 
3309 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3310 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3311 		return -EINVAL;
3312 
3313 	return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3314 				    val.scact_keynumber);
3315 
3316 }
3317 
3318 
3319 /* API 6.2 setsockopt(), getsockopt()
3320  *
3321  * Applications use setsockopt() and getsockopt() to set or retrieve
3322  * socket options.  Socket options are used to change the default
3323  * behavior of sockets calls.  They are described in Section 7.
3324  *
3325  * The syntax is:
3326  *
3327  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
3328  *                    int __user *optlen);
3329  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3330  *                    int optlen);
3331  *
3332  *   sd      - the socket descript.
3333  *   level   - set to IPPROTO_SCTP for all SCTP options.
3334  *   optname - the option name.
3335  *   optval  - the buffer to store the value of the option.
3336  *   optlen  - the size of the buffer.
3337  */
3338 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
3339 				char __user *optval, unsigned int optlen)
3340 {
3341 	int retval = 0;
3342 
3343 	SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
3344 			  sk, optname);
3345 
3346 	/* I can hardly begin to describe how wrong this is.  This is
3347 	 * so broken as to be worse than useless.  The API draft
3348 	 * REALLY is NOT helpful here...  I am not convinced that the
3349 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3350 	 * are at all well-founded.
3351 	 */
3352 	if (level != SOL_SCTP) {
3353 		struct sctp_af *af = sctp_sk(sk)->pf->af;
3354 		retval = af->setsockopt(sk, level, optname, optval, optlen);
3355 		goto out_nounlock;
3356 	}
3357 
3358 	sctp_lock_sock(sk);
3359 
3360 	switch (optname) {
3361 	case SCTP_SOCKOPT_BINDX_ADD:
3362 		/* 'optlen' is the size of the addresses buffer. */
3363 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3364 					       optlen, SCTP_BINDX_ADD_ADDR);
3365 		break;
3366 
3367 	case SCTP_SOCKOPT_BINDX_REM:
3368 		/* 'optlen' is the size of the addresses buffer. */
3369 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3370 					       optlen, SCTP_BINDX_REM_ADDR);
3371 		break;
3372 
3373 	case SCTP_SOCKOPT_CONNECTX_OLD:
3374 		/* 'optlen' is the size of the addresses buffer. */
3375 		retval = sctp_setsockopt_connectx_old(sk,
3376 					    (struct sockaddr __user *)optval,
3377 					    optlen);
3378 		break;
3379 
3380 	case SCTP_SOCKOPT_CONNECTX:
3381 		/* 'optlen' is the size of the addresses buffer. */
3382 		retval = sctp_setsockopt_connectx(sk,
3383 					    (struct sockaddr __user *)optval,
3384 					    optlen);
3385 		break;
3386 
3387 	case SCTP_DISABLE_FRAGMENTS:
3388 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3389 		break;
3390 
3391 	case SCTP_EVENTS:
3392 		retval = sctp_setsockopt_events(sk, optval, optlen);
3393 		break;
3394 
3395 	case SCTP_AUTOCLOSE:
3396 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3397 		break;
3398 
3399 	case SCTP_PEER_ADDR_PARAMS:
3400 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3401 		break;
3402 
3403 	case SCTP_DELAYED_ACK:
3404 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3405 		break;
3406 	case SCTP_PARTIAL_DELIVERY_POINT:
3407 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3408 		break;
3409 
3410 	case SCTP_INITMSG:
3411 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3412 		break;
3413 	case SCTP_DEFAULT_SEND_PARAM:
3414 		retval = sctp_setsockopt_default_send_param(sk, optval,
3415 							    optlen);
3416 		break;
3417 	case SCTP_PRIMARY_ADDR:
3418 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3419 		break;
3420 	case SCTP_SET_PEER_PRIMARY_ADDR:
3421 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3422 		break;
3423 	case SCTP_NODELAY:
3424 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3425 		break;
3426 	case SCTP_RTOINFO:
3427 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3428 		break;
3429 	case SCTP_ASSOCINFO:
3430 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3431 		break;
3432 	case SCTP_I_WANT_MAPPED_V4_ADDR:
3433 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3434 		break;
3435 	case SCTP_MAXSEG:
3436 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3437 		break;
3438 	case SCTP_ADAPTATION_LAYER:
3439 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3440 		break;
3441 	case SCTP_CONTEXT:
3442 		retval = sctp_setsockopt_context(sk, optval, optlen);
3443 		break;
3444 	case SCTP_FRAGMENT_INTERLEAVE:
3445 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3446 		break;
3447 	case SCTP_MAX_BURST:
3448 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3449 		break;
3450 	case SCTP_AUTH_CHUNK:
3451 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3452 		break;
3453 	case SCTP_HMAC_IDENT:
3454 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3455 		break;
3456 	case SCTP_AUTH_KEY:
3457 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3458 		break;
3459 	case SCTP_AUTH_ACTIVE_KEY:
3460 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
3461 		break;
3462 	case SCTP_AUTH_DELETE_KEY:
3463 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
3464 		break;
3465 	default:
3466 		retval = -ENOPROTOOPT;
3467 		break;
3468 	}
3469 
3470 	sctp_release_sock(sk);
3471 
3472 out_nounlock:
3473 	return retval;
3474 }
3475 
3476 /* API 3.1.6 connect() - UDP Style Syntax
3477  *
3478  * An application may use the connect() call in the UDP model to initiate an
3479  * association without sending data.
3480  *
3481  * The syntax is:
3482  *
3483  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3484  *
3485  * sd: the socket descriptor to have a new association added to.
3486  *
3487  * nam: the address structure (either struct sockaddr_in or struct
3488  *    sockaddr_in6 defined in RFC2553 [7]).
3489  *
3490  * len: the size of the address.
3491  */
3492 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3493 			     int addr_len)
3494 {
3495 	int err = 0;
3496 	struct sctp_af *af;
3497 
3498 	sctp_lock_sock(sk);
3499 
3500 	SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3501 			  __func__, sk, addr, addr_len);
3502 
3503 	/* Validate addr_len before calling common connect/connectx routine. */
3504 	af = sctp_get_af_specific(addr->sa_family);
3505 	if (!af || addr_len < af->sockaddr_len) {
3506 		err = -EINVAL;
3507 	} else {
3508 		/* Pass correct addr len to common routine (so it knows there
3509 		 * is only one address being passed.
3510 		 */
3511 		err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3512 	}
3513 
3514 	sctp_release_sock(sk);
3515 	return err;
3516 }
3517 
3518 /* FIXME: Write comments. */
3519 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3520 {
3521 	return -EOPNOTSUPP; /* STUB */
3522 }
3523 
3524 /* 4.1.4 accept() - TCP Style Syntax
3525  *
3526  * Applications use accept() call to remove an established SCTP
3527  * association from the accept queue of the endpoint.  A new socket
3528  * descriptor will be returned from accept() to represent the newly
3529  * formed association.
3530  */
3531 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3532 {
3533 	struct sctp_sock *sp;
3534 	struct sctp_endpoint *ep;
3535 	struct sock *newsk = NULL;
3536 	struct sctp_association *asoc;
3537 	long timeo;
3538 	int error = 0;
3539 
3540 	sctp_lock_sock(sk);
3541 
3542 	sp = sctp_sk(sk);
3543 	ep = sp->ep;
3544 
3545 	if (!sctp_style(sk, TCP)) {
3546 		error = -EOPNOTSUPP;
3547 		goto out;
3548 	}
3549 
3550 	if (!sctp_sstate(sk, LISTENING)) {
3551 		error = -EINVAL;
3552 		goto out;
3553 	}
3554 
3555 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3556 
3557 	error = sctp_wait_for_accept(sk, timeo);
3558 	if (error)
3559 		goto out;
3560 
3561 	/* We treat the list of associations on the endpoint as the accept
3562 	 * queue and pick the first association on the list.
3563 	 */
3564 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3565 
3566 	newsk = sp->pf->create_accept_sk(sk, asoc);
3567 	if (!newsk) {
3568 		error = -ENOMEM;
3569 		goto out;
3570 	}
3571 
3572 	/* Populate the fields of the newsk from the oldsk and migrate the
3573 	 * asoc to the newsk.
3574 	 */
3575 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3576 
3577 out:
3578 	sctp_release_sock(sk);
3579 	*err = error;
3580 	return newsk;
3581 }
3582 
3583 /* The SCTP ioctl handler. */
3584 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3585 {
3586 	return -ENOIOCTLCMD;
3587 }
3588 
3589 /* This is the function which gets called during socket creation to
3590  * initialized the SCTP-specific portion of the sock.
3591  * The sock structure should already be zero-filled memory.
3592  */
3593 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3594 {
3595 	struct sctp_endpoint *ep;
3596 	struct sctp_sock *sp;
3597 
3598 	SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3599 
3600 	sp = sctp_sk(sk);
3601 
3602 	/* Initialize the SCTP per socket area.  */
3603 	switch (sk->sk_type) {
3604 	case SOCK_SEQPACKET:
3605 		sp->type = SCTP_SOCKET_UDP;
3606 		break;
3607 	case SOCK_STREAM:
3608 		sp->type = SCTP_SOCKET_TCP;
3609 		break;
3610 	default:
3611 		return -ESOCKTNOSUPPORT;
3612 	}
3613 
3614 	/* Initialize default send parameters. These parameters can be
3615 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3616 	 */
3617 	sp->default_stream = 0;
3618 	sp->default_ppid = 0;
3619 	sp->default_flags = 0;
3620 	sp->default_context = 0;
3621 	sp->default_timetolive = 0;
3622 
3623 	sp->default_rcv_context = 0;
3624 	sp->max_burst = sctp_max_burst;
3625 
3626 	/* Initialize default setup parameters. These parameters
3627 	 * can be modified with the SCTP_INITMSG socket option or
3628 	 * overridden by the SCTP_INIT CMSG.
3629 	 */
3630 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
3631 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
3632 	sp->initmsg.sinit_max_attempts   = sctp_max_retrans_init;
3633 	sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3634 
3635 	/* Initialize default RTO related parameters.  These parameters can
3636 	 * be modified for with the SCTP_RTOINFO socket option.
3637 	 */
3638 	sp->rtoinfo.srto_initial = sctp_rto_initial;
3639 	sp->rtoinfo.srto_max     = sctp_rto_max;
3640 	sp->rtoinfo.srto_min     = sctp_rto_min;
3641 
3642 	/* Initialize default association related parameters. These parameters
3643 	 * can be modified with the SCTP_ASSOCINFO socket option.
3644 	 */
3645 	sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3646 	sp->assocparams.sasoc_number_peer_destinations = 0;
3647 	sp->assocparams.sasoc_peer_rwnd = 0;
3648 	sp->assocparams.sasoc_local_rwnd = 0;
3649 	sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3650 
3651 	/* Initialize default event subscriptions. By default, all the
3652 	 * options are off.
3653 	 */
3654 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3655 
3656 	/* Default Peer Address Parameters.  These defaults can
3657 	 * be modified via SCTP_PEER_ADDR_PARAMS
3658 	 */
3659 	sp->hbinterval  = sctp_hb_interval;
3660 	sp->pathmaxrxt  = sctp_max_retrans_path;
3661 	sp->pathmtu     = 0; // allow default discovery
3662 	sp->sackdelay   = sctp_sack_timeout;
3663 	sp->sackfreq	= 2;
3664 	sp->param_flags = SPP_HB_ENABLE |
3665 			  SPP_PMTUD_ENABLE |
3666 			  SPP_SACKDELAY_ENABLE;
3667 
3668 	/* If enabled no SCTP message fragmentation will be performed.
3669 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3670 	 */
3671 	sp->disable_fragments = 0;
3672 
3673 	/* Enable Nagle algorithm by default.  */
3674 	sp->nodelay           = 0;
3675 
3676 	/* Enable by default. */
3677 	sp->v4mapped          = 1;
3678 
3679 	/* Auto-close idle associations after the configured
3680 	 * number of seconds.  A value of 0 disables this
3681 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
3682 	 * for UDP-style sockets only.
3683 	 */
3684 	sp->autoclose         = 0;
3685 
3686 	/* User specified fragmentation limit. */
3687 	sp->user_frag         = 0;
3688 
3689 	sp->adaptation_ind = 0;
3690 
3691 	sp->pf = sctp_get_pf_specific(sk->sk_family);
3692 
3693 	/* Control variables for partial data delivery. */
3694 	atomic_set(&sp->pd_mode, 0);
3695 	skb_queue_head_init(&sp->pd_lobby);
3696 	sp->frag_interleave = 0;
3697 
3698 	/* Create a per socket endpoint structure.  Even if we
3699 	 * change the data structure relationships, this may still
3700 	 * be useful for storing pre-connect address information.
3701 	 */
3702 	ep = sctp_endpoint_new(sk, GFP_KERNEL);
3703 	if (!ep)
3704 		return -ENOMEM;
3705 
3706 	sp->ep = ep;
3707 	sp->hmac = NULL;
3708 
3709 	SCTP_DBG_OBJCNT_INC(sock);
3710 	percpu_counter_inc(&sctp_sockets_allocated);
3711 
3712 	local_bh_disable();
3713 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3714 	local_bh_enable();
3715 
3716 	return 0;
3717 }
3718 
3719 /* Cleanup any SCTP per socket resources.  */
3720 SCTP_STATIC void sctp_destroy_sock(struct sock *sk)
3721 {
3722 	struct sctp_endpoint *ep;
3723 
3724 	SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3725 
3726 	/* Release our hold on the endpoint. */
3727 	ep = sctp_sk(sk)->ep;
3728 	sctp_endpoint_free(ep);
3729 	percpu_counter_dec(&sctp_sockets_allocated);
3730 	local_bh_disable();
3731 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3732 	local_bh_enable();
3733 }
3734 
3735 /* API 4.1.7 shutdown() - TCP Style Syntax
3736  *     int shutdown(int socket, int how);
3737  *
3738  *     sd      - the socket descriptor of the association to be closed.
3739  *     how     - Specifies the type of shutdown.  The  values  are
3740  *               as follows:
3741  *               SHUT_RD
3742  *                     Disables further receive operations. No SCTP
3743  *                     protocol action is taken.
3744  *               SHUT_WR
3745  *                     Disables further send operations, and initiates
3746  *                     the SCTP shutdown sequence.
3747  *               SHUT_RDWR
3748  *                     Disables further send  and  receive  operations
3749  *                     and initiates the SCTP shutdown sequence.
3750  */
3751 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3752 {
3753 	struct sctp_endpoint *ep;
3754 	struct sctp_association *asoc;
3755 
3756 	if (!sctp_style(sk, TCP))
3757 		return;
3758 
3759 	if (how & SEND_SHUTDOWN) {
3760 		ep = sctp_sk(sk)->ep;
3761 		if (!list_empty(&ep->asocs)) {
3762 			asoc = list_entry(ep->asocs.next,
3763 					  struct sctp_association, asocs);
3764 			sctp_primitive_SHUTDOWN(asoc, NULL);
3765 		}
3766 	}
3767 }
3768 
3769 /* 7.2.1 Association Status (SCTP_STATUS)
3770 
3771  * Applications can retrieve current status information about an
3772  * association, including association state, peer receiver window size,
3773  * number of unacked data chunks, and number of data chunks pending
3774  * receipt.  This information is read-only.
3775  */
3776 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3777 				       char __user *optval,
3778 				       int __user *optlen)
3779 {
3780 	struct sctp_status status;
3781 	struct sctp_association *asoc = NULL;
3782 	struct sctp_transport *transport;
3783 	sctp_assoc_t associd;
3784 	int retval = 0;
3785 
3786 	if (len < sizeof(status)) {
3787 		retval = -EINVAL;
3788 		goto out;
3789 	}
3790 
3791 	len = sizeof(status);
3792 	if (copy_from_user(&status, optval, len)) {
3793 		retval = -EFAULT;
3794 		goto out;
3795 	}
3796 
3797 	associd = status.sstat_assoc_id;
3798 	asoc = sctp_id2assoc(sk, associd);
3799 	if (!asoc) {
3800 		retval = -EINVAL;
3801 		goto out;
3802 	}
3803 
3804 	transport = asoc->peer.primary_path;
3805 
3806 	status.sstat_assoc_id = sctp_assoc2id(asoc);
3807 	status.sstat_state = asoc->state;
3808 	status.sstat_rwnd =  asoc->peer.rwnd;
3809 	status.sstat_unackdata = asoc->unack_data;
3810 
3811 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
3812 	status.sstat_instrms = asoc->c.sinit_max_instreams;
3813 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
3814 	status.sstat_fragmentation_point = asoc->frag_point;
3815 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3816 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
3817 			transport->af_specific->sockaddr_len);
3818 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
3819 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3820 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
3821 	status.sstat_primary.spinfo_state = transport->state;
3822 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
3823 	status.sstat_primary.spinfo_srtt = transport->srtt;
3824 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
3825 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
3826 
3827 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
3828 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
3829 
3830 	if (put_user(len, optlen)) {
3831 		retval = -EFAULT;
3832 		goto out;
3833 	}
3834 
3835 	SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
3836 			  len, status.sstat_state, status.sstat_rwnd,
3837 			  status.sstat_assoc_id);
3838 
3839 	if (copy_to_user(optval, &status, len)) {
3840 		retval = -EFAULT;
3841 		goto out;
3842 	}
3843 
3844 out:
3845 	return (retval);
3846 }
3847 
3848 
3849 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
3850  *
3851  * Applications can retrieve information about a specific peer address
3852  * of an association, including its reachability state, congestion
3853  * window, and retransmission timer values.  This information is
3854  * read-only.
3855  */
3856 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
3857 					  char __user *optval,
3858 					  int __user *optlen)
3859 {
3860 	struct sctp_paddrinfo pinfo;
3861 	struct sctp_transport *transport;
3862 	int retval = 0;
3863 
3864 	if (len < sizeof(pinfo)) {
3865 		retval = -EINVAL;
3866 		goto out;
3867 	}
3868 
3869 	len = sizeof(pinfo);
3870 	if (copy_from_user(&pinfo, optval, len)) {
3871 		retval = -EFAULT;
3872 		goto out;
3873 	}
3874 
3875 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
3876 					   pinfo.spinfo_assoc_id);
3877 	if (!transport)
3878 		return -EINVAL;
3879 
3880 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3881 	pinfo.spinfo_state = transport->state;
3882 	pinfo.spinfo_cwnd = transport->cwnd;
3883 	pinfo.spinfo_srtt = transport->srtt;
3884 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
3885 	pinfo.spinfo_mtu = transport->pathmtu;
3886 
3887 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
3888 		pinfo.spinfo_state = SCTP_ACTIVE;
3889 
3890 	if (put_user(len, optlen)) {
3891 		retval = -EFAULT;
3892 		goto out;
3893 	}
3894 
3895 	if (copy_to_user(optval, &pinfo, len)) {
3896 		retval = -EFAULT;
3897 		goto out;
3898 	}
3899 
3900 out:
3901 	return (retval);
3902 }
3903 
3904 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
3905  *
3906  * This option is a on/off flag.  If enabled no SCTP message
3907  * fragmentation will be performed.  Instead if a message being sent
3908  * exceeds the current PMTU size, the message will NOT be sent and
3909  * instead a error will be indicated to the user.
3910  */
3911 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
3912 					char __user *optval, int __user *optlen)
3913 {
3914 	int val;
3915 
3916 	if (len < sizeof(int))
3917 		return -EINVAL;
3918 
3919 	len = sizeof(int);
3920 	val = (sctp_sk(sk)->disable_fragments == 1);
3921 	if (put_user(len, optlen))
3922 		return -EFAULT;
3923 	if (copy_to_user(optval, &val, len))
3924 		return -EFAULT;
3925 	return 0;
3926 }
3927 
3928 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
3929  *
3930  * This socket option is used to specify various notifications and
3931  * ancillary data the user wishes to receive.
3932  */
3933 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
3934 				  int __user *optlen)
3935 {
3936 	if (len < sizeof(struct sctp_event_subscribe))
3937 		return -EINVAL;
3938 	len = sizeof(struct sctp_event_subscribe);
3939 	if (put_user(len, optlen))
3940 		return -EFAULT;
3941 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
3942 		return -EFAULT;
3943 	return 0;
3944 }
3945 
3946 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
3947  *
3948  * This socket option is applicable to the UDP-style socket only.  When
3949  * set it will cause associations that are idle for more than the
3950  * specified number of seconds to automatically close.  An association
3951  * being idle is defined an association that has NOT sent or received
3952  * user data.  The special value of '0' indicates that no automatic
3953  * close of any associations should be performed.  The option expects an
3954  * integer defining the number of seconds of idle time before an
3955  * association is closed.
3956  */
3957 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
3958 {
3959 	/* Applicable to UDP-style socket only */
3960 	if (sctp_style(sk, TCP))
3961 		return -EOPNOTSUPP;
3962 	if (len < sizeof(int))
3963 		return -EINVAL;
3964 	len = sizeof(int);
3965 	if (put_user(len, optlen))
3966 		return -EFAULT;
3967 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
3968 		return -EFAULT;
3969 	return 0;
3970 }
3971 
3972 /* Helper routine to branch off an association to a new socket.  */
3973 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
3974 				struct socket **sockp)
3975 {
3976 	struct sock *sk = asoc->base.sk;
3977 	struct socket *sock;
3978 	struct sctp_af *af;
3979 	int err = 0;
3980 
3981 	/* An association cannot be branched off from an already peeled-off
3982 	 * socket, nor is this supported for tcp style sockets.
3983 	 */
3984 	if (!sctp_style(sk, UDP))
3985 		return -EINVAL;
3986 
3987 	/* Create a new socket.  */
3988 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
3989 	if (err < 0)
3990 		return err;
3991 
3992 	sctp_copy_sock(sock->sk, sk, asoc);
3993 
3994 	/* Make peeled-off sockets more like 1-1 accepted sockets.
3995 	 * Set the daddr and initialize id to something more random
3996 	 */
3997 	af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
3998 	af->to_sk_daddr(&asoc->peer.primary_addr, sk);
3999 
4000 	/* Populate the fields of the newsk from the oldsk and migrate the
4001 	 * asoc to the newsk.
4002 	 */
4003 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4004 
4005 	*sockp = sock;
4006 
4007 	return err;
4008 }
4009 
4010 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4011 {
4012 	sctp_peeloff_arg_t peeloff;
4013 	struct socket *newsock;
4014 	int retval = 0;
4015 	struct sctp_association *asoc;
4016 
4017 	if (len < sizeof(sctp_peeloff_arg_t))
4018 		return -EINVAL;
4019 	len = sizeof(sctp_peeloff_arg_t);
4020 	if (copy_from_user(&peeloff, optval, len))
4021 		return -EFAULT;
4022 
4023 	asoc = sctp_id2assoc(sk, peeloff.associd);
4024 	if (!asoc) {
4025 		retval = -EINVAL;
4026 		goto out;
4027 	}
4028 
4029 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __func__, sk, asoc);
4030 
4031 	retval = sctp_do_peeloff(asoc, &newsock);
4032 	if (retval < 0)
4033 		goto out;
4034 
4035 	/* Map the socket to an unused fd that can be returned to the user.  */
4036 	retval = sock_map_fd(newsock, 0);
4037 	if (retval < 0) {
4038 		sock_release(newsock);
4039 		goto out;
4040 	}
4041 
4042 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
4043 			  __func__, sk, asoc, newsock->sk, retval);
4044 
4045 	/* Return the fd mapped to the new socket.  */
4046 	peeloff.sd = retval;
4047 	if (put_user(len, optlen))
4048 		return -EFAULT;
4049 	if (copy_to_user(optval, &peeloff, len))
4050 		retval = -EFAULT;
4051 
4052 out:
4053 	return retval;
4054 }
4055 
4056 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4057  *
4058  * Applications can enable or disable heartbeats for any peer address of
4059  * an association, modify an address's heartbeat interval, force a
4060  * heartbeat to be sent immediately, and adjust the address's maximum
4061  * number of retransmissions sent before an address is considered
4062  * unreachable.  The following structure is used to access and modify an
4063  * address's parameters:
4064  *
4065  *  struct sctp_paddrparams {
4066  *     sctp_assoc_t            spp_assoc_id;
4067  *     struct sockaddr_storage spp_address;
4068  *     uint32_t                spp_hbinterval;
4069  *     uint16_t                spp_pathmaxrxt;
4070  *     uint32_t                spp_pathmtu;
4071  *     uint32_t                spp_sackdelay;
4072  *     uint32_t                spp_flags;
4073  * };
4074  *
4075  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
4076  *                     application, and identifies the association for
4077  *                     this query.
4078  *   spp_address     - This specifies which address is of interest.
4079  *   spp_hbinterval  - This contains the value of the heartbeat interval,
4080  *                     in milliseconds.  If a  value of zero
4081  *                     is present in this field then no changes are to
4082  *                     be made to this parameter.
4083  *   spp_pathmaxrxt  - This contains the maximum number of
4084  *                     retransmissions before this address shall be
4085  *                     considered unreachable. If a  value of zero
4086  *                     is present in this field then no changes are to
4087  *                     be made to this parameter.
4088  *   spp_pathmtu     - When Path MTU discovery is disabled the value
4089  *                     specified here will be the "fixed" path mtu.
4090  *                     Note that if the spp_address field is empty
4091  *                     then all associations on this address will
4092  *                     have this fixed path mtu set upon them.
4093  *
4094  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
4095  *                     the number of milliseconds that sacks will be delayed
4096  *                     for. This value will apply to all addresses of an
4097  *                     association if the spp_address field is empty. Note
4098  *                     also, that if delayed sack is enabled and this
4099  *                     value is set to 0, no change is made to the last
4100  *                     recorded delayed sack timer value.
4101  *
4102  *   spp_flags       - These flags are used to control various features
4103  *                     on an association. The flag field may contain
4104  *                     zero or more of the following options.
4105  *
4106  *                     SPP_HB_ENABLE  - Enable heartbeats on the
4107  *                     specified address. Note that if the address
4108  *                     field is empty all addresses for the association
4109  *                     have heartbeats enabled upon them.
4110  *
4111  *                     SPP_HB_DISABLE - Disable heartbeats on the
4112  *                     speicifed address. Note that if the address
4113  *                     field is empty all addresses for the association
4114  *                     will have their heartbeats disabled. Note also
4115  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
4116  *                     mutually exclusive, only one of these two should
4117  *                     be specified. Enabling both fields will have
4118  *                     undetermined results.
4119  *
4120  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
4121  *                     to be made immediately.
4122  *
4123  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
4124  *                     discovery upon the specified address. Note that
4125  *                     if the address feild is empty then all addresses
4126  *                     on the association are effected.
4127  *
4128  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
4129  *                     discovery upon the specified address. Note that
4130  *                     if the address feild is empty then all addresses
4131  *                     on the association are effected. Not also that
4132  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4133  *                     exclusive. Enabling both will have undetermined
4134  *                     results.
4135  *
4136  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
4137  *                     on delayed sack. The time specified in spp_sackdelay
4138  *                     is used to specify the sack delay for this address. Note
4139  *                     that if spp_address is empty then all addresses will
4140  *                     enable delayed sack and take on the sack delay
4141  *                     value specified in spp_sackdelay.
4142  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
4143  *                     off delayed sack. If the spp_address field is blank then
4144  *                     delayed sack is disabled for the entire association. Note
4145  *                     also that this field is mutually exclusive to
4146  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
4147  *                     results.
4148  */
4149 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4150 					    char __user *optval, int __user *optlen)
4151 {
4152 	struct sctp_paddrparams  params;
4153 	struct sctp_transport   *trans = NULL;
4154 	struct sctp_association *asoc = NULL;
4155 	struct sctp_sock        *sp = sctp_sk(sk);
4156 
4157 	if (len < sizeof(struct sctp_paddrparams))
4158 		return -EINVAL;
4159 	len = sizeof(struct sctp_paddrparams);
4160 	if (copy_from_user(&params, optval, len))
4161 		return -EFAULT;
4162 
4163 	/* If an address other than INADDR_ANY is specified, and
4164 	 * no transport is found, then the request is invalid.
4165 	 */
4166 	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
4167 		trans = sctp_addr_id2transport(sk, &params.spp_address,
4168 					       params.spp_assoc_id);
4169 		if (!trans) {
4170 			SCTP_DEBUG_PRINTK("Failed no transport\n");
4171 			return -EINVAL;
4172 		}
4173 	}
4174 
4175 	/* Get association, if assoc_id != 0 and the socket is a one
4176 	 * to many style socket, and an association was not found, then
4177 	 * the id was invalid.
4178 	 */
4179 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4180 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4181 		SCTP_DEBUG_PRINTK("Failed no association\n");
4182 		return -EINVAL;
4183 	}
4184 
4185 	if (trans) {
4186 		/* Fetch transport values. */
4187 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4188 		params.spp_pathmtu    = trans->pathmtu;
4189 		params.spp_pathmaxrxt = trans->pathmaxrxt;
4190 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
4191 
4192 		/*draft-11 doesn't say what to return in spp_flags*/
4193 		params.spp_flags      = trans->param_flags;
4194 	} else if (asoc) {
4195 		/* Fetch association values. */
4196 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4197 		params.spp_pathmtu    = asoc->pathmtu;
4198 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
4199 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
4200 
4201 		/*draft-11 doesn't say what to return in spp_flags*/
4202 		params.spp_flags      = asoc->param_flags;
4203 	} else {
4204 		/* Fetch socket values. */
4205 		params.spp_hbinterval = sp->hbinterval;
4206 		params.spp_pathmtu    = sp->pathmtu;
4207 		params.spp_sackdelay  = sp->sackdelay;
4208 		params.spp_pathmaxrxt = sp->pathmaxrxt;
4209 
4210 		/*draft-11 doesn't say what to return in spp_flags*/
4211 		params.spp_flags      = sp->param_flags;
4212 	}
4213 
4214 	if (copy_to_user(optval, &params, len))
4215 		return -EFAULT;
4216 
4217 	if (put_user(len, optlen))
4218 		return -EFAULT;
4219 
4220 	return 0;
4221 }
4222 
4223 /*
4224  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
4225  *
4226  * This option will effect the way delayed acks are performed.  This
4227  * option allows you to get or set the delayed ack time, in
4228  * milliseconds.  It also allows changing the delayed ack frequency.
4229  * Changing the frequency to 1 disables the delayed sack algorithm.  If
4230  * the assoc_id is 0, then this sets or gets the endpoints default
4231  * values.  If the assoc_id field is non-zero, then the set or get
4232  * effects the specified association for the one to many model (the
4233  * assoc_id field is ignored by the one to one model).  Note that if
4234  * sack_delay or sack_freq are 0 when setting this option, then the
4235  * current values will remain unchanged.
4236  *
4237  * struct sctp_sack_info {
4238  *     sctp_assoc_t            sack_assoc_id;
4239  *     uint32_t                sack_delay;
4240  *     uint32_t                sack_freq;
4241  * };
4242  *
4243  * sack_assoc_id -  This parameter, indicates which association the user
4244  *    is performing an action upon.  Note that if this field's value is
4245  *    zero then the endpoints default value is changed (effecting future
4246  *    associations only).
4247  *
4248  * sack_delay -  This parameter contains the number of milliseconds that
4249  *    the user is requesting the delayed ACK timer be set to.  Note that
4250  *    this value is defined in the standard to be between 200 and 500
4251  *    milliseconds.
4252  *
4253  * sack_freq -  This parameter contains the number of packets that must
4254  *    be received before a sack is sent without waiting for the delay
4255  *    timer to expire.  The default value for this is 2, setting this
4256  *    value to 1 will disable the delayed sack algorithm.
4257  */
4258 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4259 					    char __user *optval,
4260 					    int __user *optlen)
4261 {
4262 	struct sctp_sack_info    params;
4263 	struct sctp_association *asoc = NULL;
4264 	struct sctp_sock        *sp = sctp_sk(sk);
4265 
4266 	if (len >= sizeof(struct sctp_sack_info)) {
4267 		len = sizeof(struct sctp_sack_info);
4268 
4269 		if (copy_from_user(&params, optval, len))
4270 			return -EFAULT;
4271 	} else if (len == sizeof(struct sctp_assoc_value)) {
4272 		printk(KERN_WARNING "SCTP: Use of struct sctp_assoc_value "
4273 		       "in delayed_ack socket option deprecated\n");
4274 		printk(KERN_WARNING "SCTP: Use struct sctp_sack_info instead\n");
4275 		if (copy_from_user(&params, optval, len))
4276 			return -EFAULT;
4277 	} else
4278 		return - EINVAL;
4279 
4280 	/* Get association, if sack_assoc_id != 0 and the socket is a one
4281 	 * to many style socket, and an association was not found, then
4282 	 * the id was invalid.
4283 	 */
4284 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4285 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4286 		return -EINVAL;
4287 
4288 	if (asoc) {
4289 		/* Fetch association values. */
4290 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4291 			params.sack_delay = jiffies_to_msecs(
4292 				asoc->sackdelay);
4293 			params.sack_freq = asoc->sackfreq;
4294 
4295 		} else {
4296 			params.sack_delay = 0;
4297 			params.sack_freq = 1;
4298 		}
4299 	} else {
4300 		/* Fetch socket values. */
4301 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4302 			params.sack_delay  = sp->sackdelay;
4303 			params.sack_freq = sp->sackfreq;
4304 		} else {
4305 			params.sack_delay  = 0;
4306 			params.sack_freq = 1;
4307 		}
4308 	}
4309 
4310 	if (copy_to_user(optval, &params, len))
4311 		return -EFAULT;
4312 
4313 	if (put_user(len, optlen))
4314 		return -EFAULT;
4315 
4316 	return 0;
4317 }
4318 
4319 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4320  *
4321  * Applications can specify protocol parameters for the default association
4322  * initialization.  The option name argument to setsockopt() and getsockopt()
4323  * is SCTP_INITMSG.
4324  *
4325  * Setting initialization parameters is effective only on an unconnected
4326  * socket (for UDP-style sockets only future associations are effected
4327  * by the change).  With TCP-style sockets, this option is inherited by
4328  * sockets derived from a listener socket.
4329  */
4330 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4331 {
4332 	if (len < sizeof(struct sctp_initmsg))
4333 		return -EINVAL;
4334 	len = sizeof(struct sctp_initmsg);
4335 	if (put_user(len, optlen))
4336 		return -EFAULT;
4337 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4338 		return -EFAULT;
4339 	return 0;
4340 }
4341 
4342 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len,
4343 					      char __user *optval,
4344 					      int __user *optlen)
4345 {
4346 	sctp_assoc_t id;
4347 	struct sctp_association *asoc;
4348 	struct list_head *pos;
4349 	int cnt = 0;
4350 
4351 	if (len < sizeof(sctp_assoc_t))
4352 		return -EINVAL;
4353 
4354 	if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
4355 		return -EFAULT;
4356 
4357 	printk(KERN_WARNING "SCTP: Use of SCTP_GET_PEER_ADDRS_NUM_OLD "
4358 			    "socket option deprecated\n");
4359 	/* For UDP-style sockets, id specifies the association to query.  */
4360 	asoc = sctp_id2assoc(sk, id);
4361 	if (!asoc)
4362 		return -EINVAL;
4363 
4364 	list_for_each(pos, &asoc->peer.transport_addr_list) {
4365 		cnt ++;
4366 	}
4367 
4368 	return cnt;
4369 }
4370 
4371 /*
4372  * Old API for getting list of peer addresses. Does not work for 32-bit
4373  * programs running on a 64-bit kernel
4374  */
4375 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len,
4376 					  char __user *optval,
4377 					  int __user *optlen)
4378 {
4379 	struct sctp_association *asoc;
4380 	int cnt = 0;
4381 	struct sctp_getaddrs_old getaddrs;
4382 	struct sctp_transport *from;
4383 	void __user *to;
4384 	union sctp_addr temp;
4385 	struct sctp_sock *sp = sctp_sk(sk);
4386 	int addrlen;
4387 
4388 	if (len < sizeof(struct sctp_getaddrs_old))
4389 		return -EINVAL;
4390 
4391 	len = sizeof(struct sctp_getaddrs_old);
4392 
4393 	if (copy_from_user(&getaddrs, optval, len))
4394 		return -EFAULT;
4395 
4396 	if (getaddrs.addr_num <= 0) return -EINVAL;
4397 
4398 	printk(KERN_WARNING "SCTP: Use of SCTP_GET_PEER_ADDRS_OLD "
4399 			    "socket option deprecated\n");
4400 
4401 	/* For UDP-style sockets, id specifies the association to query.  */
4402 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4403 	if (!asoc)
4404 		return -EINVAL;
4405 
4406 	to = (void __user *)getaddrs.addrs;
4407 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4408 				transports) {
4409 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4410 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4411 		addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
4412 		if (copy_to_user(to, &temp, addrlen))
4413 			return -EFAULT;
4414 		to += addrlen ;
4415 		cnt ++;
4416 		if (cnt >= getaddrs.addr_num) break;
4417 	}
4418 	getaddrs.addr_num = cnt;
4419 	if (put_user(len, optlen))
4420 		return -EFAULT;
4421 	if (copy_to_user(optval, &getaddrs, len))
4422 		return -EFAULT;
4423 
4424 	return 0;
4425 }
4426 
4427 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4428 				      char __user *optval, int __user *optlen)
4429 {
4430 	struct sctp_association *asoc;
4431 	int cnt = 0;
4432 	struct sctp_getaddrs getaddrs;
4433 	struct sctp_transport *from;
4434 	void __user *to;
4435 	union sctp_addr temp;
4436 	struct sctp_sock *sp = sctp_sk(sk);
4437 	int addrlen;
4438 	size_t space_left;
4439 	int bytes_copied;
4440 
4441 	if (len < sizeof(struct sctp_getaddrs))
4442 		return -EINVAL;
4443 
4444 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4445 		return -EFAULT;
4446 
4447 	/* For UDP-style sockets, id specifies the association to query.  */
4448 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4449 	if (!asoc)
4450 		return -EINVAL;
4451 
4452 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4453 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4454 
4455 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4456 				transports) {
4457 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4458 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4459 		addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
4460 		if (space_left < addrlen)
4461 			return -ENOMEM;
4462 		if (copy_to_user(to, &temp, addrlen))
4463 			return -EFAULT;
4464 		to += addrlen;
4465 		cnt++;
4466 		space_left -= addrlen;
4467 	}
4468 
4469 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4470 		return -EFAULT;
4471 	bytes_copied = ((char __user *)to) - optval;
4472 	if (put_user(bytes_copied, optlen))
4473 		return -EFAULT;
4474 
4475 	return 0;
4476 }
4477 
4478 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len,
4479 					       char __user *optval,
4480 					       int __user *optlen)
4481 {
4482 	sctp_assoc_t id;
4483 	struct sctp_bind_addr *bp;
4484 	struct sctp_association *asoc;
4485 	struct sctp_sockaddr_entry *addr;
4486 	int cnt = 0;
4487 
4488 	if (len < sizeof(sctp_assoc_t))
4489 		return -EINVAL;
4490 
4491 	if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
4492 		return -EFAULT;
4493 
4494 	printk(KERN_WARNING "SCTP: Use of SCTP_GET_LOCAL_ADDRS_NUM_OLD "
4495 			    "socket option deprecated\n");
4496 
4497 	/*
4498 	 *  For UDP-style sockets, id specifies the association to query.
4499 	 *  If the id field is set to the value '0' then the locally bound
4500 	 *  addresses are returned without regard to any particular
4501 	 *  association.
4502 	 */
4503 	if (0 == id) {
4504 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4505 	} else {
4506 		asoc = sctp_id2assoc(sk, id);
4507 		if (!asoc)
4508 			return -EINVAL;
4509 		bp = &asoc->base.bind_addr;
4510 	}
4511 
4512 	/* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
4513 	 * addresses from the global local address list.
4514 	 */
4515 	if (sctp_list_single_entry(&bp->address_list)) {
4516 		addr = list_entry(bp->address_list.next,
4517 				  struct sctp_sockaddr_entry, list);
4518 		if (sctp_is_any(sk, &addr->a)) {
4519 			rcu_read_lock();
4520 			list_for_each_entry_rcu(addr,
4521 						&sctp_local_addr_list, list) {
4522 				if (!addr->valid)
4523 					continue;
4524 
4525 				if ((PF_INET == sk->sk_family) &&
4526 				    (AF_INET6 == addr->a.sa.sa_family))
4527 					continue;
4528 
4529 				if ((PF_INET6 == sk->sk_family) &&
4530 				    inet_v6_ipv6only(sk) &&
4531 				    (AF_INET == addr->a.sa.sa_family))
4532 					continue;
4533 
4534 				cnt++;
4535 			}
4536 			rcu_read_unlock();
4537 		} else {
4538 			cnt = 1;
4539 		}
4540 		goto done;
4541 	}
4542 
4543 	/* Protection on the bound address list is not needed,
4544 	 * since in the socket option context we hold the socket lock,
4545 	 * so there is no way that the bound address list can change.
4546 	 */
4547 	list_for_each_entry(addr, &bp->address_list, list) {
4548 		cnt ++;
4549 	}
4550 done:
4551 	return cnt;
4552 }
4553 
4554 /* Helper function that copies local addresses to user and returns the number
4555  * of addresses copied.
4556  */
4557 static int sctp_copy_laddrs_old(struct sock *sk, __u16 port,
4558 					int max_addrs, void *to,
4559 					int *bytes_copied)
4560 {
4561 	struct sctp_sockaddr_entry *addr;
4562 	union sctp_addr temp;
4563 	int cnt = 0;
4564 	int addrlen;
4565 
4566 	rcu_read_lock();
4567 	list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4568 		if (!addr->valid)
4569 			continue;
4570 
4571 		if ((PF_INET == sk->sk_family) &&
4572 		    (AF_INET6 == addr->a.sa.sa_family))
4573 			continue;
4574 		if ((PF_INET6 == sk->sk_family) &&
4575 		    inet_v6_ipv6only(sk) &&
4576 		    (AF_INET == addr->a.sa.sa_family))
4577 			continue;
4578 		memcpy(&temp, &addr->a, sizeof(temp));
4579 		if (!temp.v4.sin_port)
4580 			temp.v4.sin_port = htons(port);
4581 
4582 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4583 								&temp);
4584 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4585 		memcpy(to, &temp, addrlen);
4586 
4587 		to += addrlen;
4588 		*bytes_copied += addrlen;
4589 		cnt ++;
4590 		if (cnt >= max_addrs) break;
4591 	}
4592 	rcu_read_unlock();
4593 
4594 	return cnt;
4595 }
4596 
4597 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4598 			    size_t space_left, int *bytes_copied)
4599 {
4600 	struct sctp_sockaddr_entry *addr;
4601 	union sctp_addr temp;
4602 	int cnt = 0;
4603 	int addrlen;
4604 
4605 	rcu_read_lock();
4606 	list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4607 		if (!addr->valid)
4608 			continue;
4609 
4610 		if ((PF_INET == sk->sk_family) &&
4611 		    (AF_INET6 == addr->a.sa.sa_family))
4612 			continue;
4613 		if ((PF_INET6 == sk->sk_family) &&
4614 		    inet_v6_ipv6only(sk) &&
4615 		    (AF_INET == addr->a.sa.sa_family))
4616 			continue;
4617 		memcpy(&temp, &addr->a, sizeof(temp));
4618 		if (!temp.v4.sin_port)
4619 			temp.v4.sin_port = htons(port);
4620 
4621 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4622 								&temp);
4623 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4624 		if (space_left < addrlen) {
4625 			cnt =  -ENOMEM;
4626 			break;
4627 		}
4628 		memcpy(to, &temp, addrlen);
4629 
4630 		to += addrlen;
4631 		cnt ++;
4632 		space_left -= addrlen;
4633 		*bytes_copied += addrlen;
4634 	}
4635 	rcu_read_unlock();
4636 
4637 	return cnt;
4638 }
4639 
4640 /* Old API for getting list of local addresses. Does not work for 32-bit
4641  * programs running on a 64-bit kernel
4642  */
4643 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len,
4644 					   char __user *optval, int __user *optlen)
4645 {
4646 	struct sctp_bind_addr *bp;
4647 	struct sctp_association *asoc;
4648 	int cnt = 0;
4649 	struct sctp_getaddrs_old getaddrs;
4650 	struct sctp_sockaddr_entry *addr;
4651 	void __user *to;
4652 	union sctp_addr temp;
4653 	struct sctp_sock *sp = sctp_sk(sk);
4654 	int addrlen;
4655 	int err = 0;
4656 	void *addrs;
4657 	void *buf;
4658 	int bytes_copied = 0;
4659 
4660 	if (len < sizeof(struct sctp_getaddrs_old))
4661 		return -EINVAL;
4662 
4663 	len = sizeof(struct sctp_getaddrs_old);
4664 	if (copy_from_user(&getaddrs, optval, len))
4665 		return -EFAULT;
4666 
4667 	if (getaddrs.addr_num <= 0 ||
4668 	    getaddrs.addr_num >= (INT_MAX / sizeof(union sctp_addr)))
4669 		return -EINVAL;
4670 
4671 	printk(KERN_WARNING "SCTP: Use of SCTP_GET_LOCAL_ADDRS_OLD "
4672 			    "socket option deprecated\n");
4673 
4674 	/*
4675 	 *  For UDP-style sockets, id specifies the association to query.
4676 	 *  If the id field is set to the value '0' then the locally bound
4677 	 *  addresses are returned without regard to any particular
4678 	 *  association.
4679 	 */
4680 	if (0 == getaddrs.assoc_id) {
4681 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4682 	} else {
4683 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4684 		if (!asoc)
4685 			return -EINVAL;
4686 		bp = &asoc->base.bind_addr;
4687 	}
4688 
4689 	to = getaddrs.addrs;
4690 
4691 	/* Allocate space for a local instance of packed array to hold all
4692 	 * the data.  We store addresses here first and then put write them
4693 	 * to the user in one shot.
4694 	 */
4695 	addrs = kmalloc(sizeof(union sctp_addr) * getaddrs.addr_num,
4696 			GFP_KERNEL);
4697 	if (!addrs)
4698 		return -ENOMEM;
4699 
4700 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4701 	 * addresses from the global local address list.
4702 	 */
4703 	if (sctp_list_single_entry(&bp->address_list)) {
4704 		addr = list_entry(bp->address_list.next,
4705 				  struct sctp_sockaddr_entry, list);
4706 		if (sctp_is_any(sk, &addr->a)) {
4707 			cnt = sctp_copy_laddrs_old(sk, bp->port,
4708 						   getaddrs.addr_num,
4709 						   addrs, &bytes_copied);
4710 			goto copy_getaddrs;
4711 		}
4712 	}
4713 
4714 	buf = addrs;
4715 	/* Protection on the bound address list is not needed since
4716 	 * in the socket option context we hold a socket lock and
4717 	 * thus the bound address list can't change.
4718 	 */
4719 	list_for_each_entry(addr, &bp->address_list, list) {
4720 		memcpy(&temp, &addr->a, sizeof(temp));
4721 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4722 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4723 		memcpy(buf, &temp, addrlen);
4724 		buf += addrlen;
4725 		bytes_copied += addrlen;
4726 		cnt ++;
4727 		if (cnt >= getaddrs.addr_num) break;
4728 	}
4729 
4730 copy_getaddrs:
4731 	/* copy the entire address list into the user provided space */
4732 	if (copy_to_user(to, addrs, bytes_copied)) {
4733 		err = -EFAULT;
4734 		goto error;
4735 	}
4736 
4737 	/* copy the leading structure back to user */
4738 	getaddrs.addr_num = cnt;
4739 	if (copy_to_user(optval, &getaddrs, len))
4740 		err = -EFAULT;
4741 
4742 error:
4743 	kfree(addrs);
4744 	return err;
4745 }
4746 
4747 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4748 				       char __user *optval, int __user *optlen)
4749 {
4750 	struct sctp_bind_addr *bp;
4751 	struct sctp_association *asoc;
4752 	int cnt = 0;
4753 	struct sctp_getaddrs getaddrs;
4754 	struct sctp_sockaddr_entry *addr;
4755 	void __user *to;
4756 	union sctp_addr temp;
4757 	struct sctp_sock *sp = sctp_sk(sk);
4758 	int addrlen;
4759 	int err = 0;
4760 	size_t space_left;
4761 	int bytes_copied = 0;
4762 	void *addrs;
4763 	void *buf;
4764 
4765 	if (len < sizeof(struct sctp_getaddrs))
4766 		return -EINVAL;
4767 
4768 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4769 		return -EFAULT;
4770 
4771 	/*
4772 	 *  For UDP-style sockets, id specifies the association to query.
4773 	 *  If the id field is set to the value '0' then the locally bound
4774 	 *  addresses are returned without regard to any particular
4775 	 *  association.
4776 	 */
4777 	if (0 == getaddrs.assoc_id) {
4778 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4779 	} else {
4780 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4781 		if (!asoc)
4782 			return -EINVAL;
4783 		bp = &asoc->base.bind_addr;
4784 	}
4785 
4786 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4787 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4788 
4789 	addrs = kmalloc(space_left, GFP_KERNEL);
4790 	if (!addrs)
4791 		return -ENOMEM;
4792 
4793 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4794 	 * addresses from the global local address list.
4795 	 */
4796 	if (sctp_list_single_entry(&bp->address_list)) {
4797 		addr = list_entry(bp->address_list.next,
4798 				  struct sctp_sockaddr_entry, list);
4799 		if (sctp_is_any(sk, &addr->a)) {
4800 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4801 						space_left, &bytes_copied);
4802 			if (cnt < 0) {
4803 				err = cnt;
4804 				goto out;
4805 			}
4806 			goto copy_getaddrs;
4807 		}
4808 	}
4809 
4810 	buf = addrs;
4811 	/* Protection on the bound address list is not needed since
4812 	 * in the socket option context we hold a socket lock and
4813 	 * thus the bound address list can't change.
4814 	 */
4815 	list_for_each_entry(addr, &bp->address_list, list) {
4816 		memcpy(&temp, &addr->a, sizeof(temp));
4817 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4818 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4819 		if (space_left < addrlen) {
4820 			err =  -ENOMEM; /*fixme: right error?*/
4821 			goto out;
4822 		}
4823 		memcpy(buf, &temp, addrlen);
4824 		buf += addrlen;
4825 		bytes_copied += addrlen;
4826 		cnt ++;
4827 		space_left -= addrlen;
4828 	}
4829 
4830 copy_getaddrs:
4831 	if (copy_to_user(to, addrs, bytes_copied)) {
4832 		err = -EFAULT;
4833 		goto out;
4834 	}
4835 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4836 		err = -EFAULT;
4837 		goto out;
4838 	}
4839 	if (put_user(bytes_copied, optlen))
4840 		err = -EFAULT;
4841 out:
4842 	kfree(addrs);
4843 	return err;
4844 }
4845 
4846 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4847  *
4848  * Requests that the local SCTP stack use the enclosed peer address as
4849  * the association primary.  The enclosed address must be one of the
4850  * association peer's addresses.
4851  */
4852 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4853 					char __user *optval, int __user *optlen)
4854 {
4855 	struct sctp_prim prim;
4856 	struct sctp_association *asoc;
4857 	struct sctp_sock *sp = sctp_sk(sk);
4858 
4859 	if (len < sizeof(struct sctp_prim))
4860 		return -EINVAL;
4861 
4862 	len = sizeof(struct sctp_prim);
4863 
4864 	if (copy_from_user(&prim, optval, len))
4865 		return -EFAULT;
4866 
4867 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4868 	if (!asoc)
4869 		return -EINVAL;
4870 
4871 	if (!asoc->peer.primary_path)
4872 		return -ENOTCONN;
4873 
4874 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4875 		asoc->peer.primary_path->af_specific->sockaddr_len);
4876 
4877 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4878 			(union sctp_addr *)&prim.ssp_addr);
4879 
4880 	if (put_user(len, optlen))
4881 		return -EFAULT;
4882 	if (copy_to_user(optval, &prim, len))
4883 		return -EFAULT;
4884 
4885 	return 0;
4886 }
4887 
4888 /*
4889  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4890  *
4891  * Requests that the local endpoint set the specified Adaptation Layer
4892  * Indication parameter for all future INIT and INIT-ACK exchanges.
4893  */
4894 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4895 				  char __user *optval, int __user *optlen)
4896 {
4897 	struct sctp_setadaptation adaptation;
4898 
4899 	if (len < sizeof(struct sctp_setadaptation))
4900 		return -EINVAL;
4901 
4902 	len = sizeof(struct sctp_setadaptation);
4903 
4904 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4905 
4906 	if (put_user(len, optlen))
4907 		return -EFAULT;
4908 	if (copy_to_user(optval, &adaptation, len))
4909 		return -EFAULT;
4910 
4911 	return 0;
4912 }
4913 
4914 /*
4915  *
4916  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4917  *
4918  *   Applications that wish to use the sendto() system call may wish to
4919  *   specify a default set of parameters that would normally be supplied
4920  *   through the inclusion of ancillary data.  This socket option allows
4921  *   such an application to set the default sctp_sndrcvinfo structure.
4922 
4923 
4924  *   The application that wishes to use this socket option simply passes
4925  *   in to this call the sctp_sndrcvinfo structure defined in Section
4926  *   5.2.2) The input parameters accepted by this call include
4927  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4928  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
4929  *   to this call if the caller is using the UDP model.
4930  *
4931  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
4932  */
4933 static int sctp_getsockopt_default_send_param(struct sock *sk,
4934 					int len, char __user *optval,
4935 					int __user *optlen)
4936 {
4937 	struct sctp_sndrcvinfo info;
4938 	struct sctp_association *asoc;
4939 	struct sctp_sock *sp = sctp_sk(sk);
4940 
4941 	if (len < sizeof(struct sctp_sndrcvinfo))
4942 		return -EINVAL;
4943 
4944 	len = sizeof(struct sctp_sndrcvinfo);
4945 
4946 	if (copy_from_user(&info, optval, len))
4947 		return -EFAULT;
4948 
4949 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4950 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4951 		return -EINVAL;
4952 
4953 	if (asoc) {
4954 		info.sinfo_stream = asoc->default_stream;
4955 		info.sinfo_flags = asoc->default_flags;
4956 		info.sinfo_ppid = asoc->default_ppid;
4957 		info.sinfo_context = asoc->default_context;
4958 		info.sinfo_timetolive = asoc->default_timetolive;
4959 	} else {
4960 		info.sinfo_stream = sp->default_stream;
4961 		info.sinfo_flags = sp->default_flags;
4962 		info.sinfo_ppid = sp->default_ppid;
4963 		info.sinfo_context = sp->default_context;
4964 		info.sinfo_timetolive = sp->default_timetolive;
4965 	}
4966 
4967 	if (put_user(len, optlen))
4968 		return -EFAULT;
4969 	if (copy_to_user(optval, &info, len))
4970 		return -EFAULT;
4971 
4972 	return 0;
4973 }
4974 
4975 /*
4976  *
4977  * 7.1.5 SCTP_NODELAY
4978  *
4979  * Turn on/off any Nagle-like algorithm.  This means that packets are
4980  * generally sent as soon as possible and no unnecessary delays are
4981  * introduced, at the cost of more packets in the network.  Expects an
4982  * integer boolean flag.
4983  */
4984 
4985 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4986 				   char __user *optval, int __user *optlen)
4987 {
4988 	int val;
4989 
4990 	if (len < sizeof(int))
4991 		return -EINVAL;
4992 
4993 	len = sizeof(int);
4994 	val = (sctp_sk(sk)->nodelay == 1);
4995 	if (put_user(len, optlen))
4996 		return -EFAULT;
4997 	if (copy_to_user(optval, &val, len))
4998 		return -EFAULT;
4999 	return 0;
5000 }
5001 
5002 /*
5003  *
5004  * 7.1.1 SCTP_RTOINFO
5005  *
5006  * The protocol parameters used to initialize and bound retransmission
5007  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5008  * and modify these parameters.
5009  * All parameters are time values, in milliseconds.  A value of 0, when
5010  * modifying the parameters, indicates that the current value should not
5011  * be changed.
5012  *
5013  */
5014 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5015 				char __user *optval,
5016 				int __user *optlen) {
5017 	struct sctp_rtoinfo rtoinfo;
5018 	struct sctp_association *asoc;
5019 
5020 	if (len < sizeof (struct sctp_rtoinfo))
5021 		return -EINVAL;
5022 
5023 	len = sizeof(struct sctp_rtoinfo);
5024 
5025 	if (copy_from_user(&rtoinfo, optval, len))
5026 		return -EFAULT;
5027 
5028 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5029 
5030 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5031 		return -EINVAL;
5032 
5033 	/* Values corresponding to the specific association. */
5034 	if (asoc) {
5035 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5036 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5037 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5038 	} else {
5039 		/* Values corresponding to the endpoint. */
5040 		struct sctp_sock *sp = sctp_sk(sk);
5041 
5042 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5043 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
5044 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
5045 	}
5046 
5047 	if (put_user(len, optlen))
5048 		return -EFAULT;
5049 
5050 	if (copy_to_user(optval, &rtoinfo, len))
5051 		return -EFAULT;
5052 
5053 	return 0;
5054 }
5055 
5056 /*
5057  *
5058  * 7.1.2 SCTP_ASSOCINFO
5059  *
5060  * This option is used to tune the maximum retransmission attempts
5061  * of the association.
5062  * Returns an error if the new association retransmission value is
5063  * greater than the sum of the retransmission value  of the peer.
5064  * See [SCTP] for more information.
5065  *
5066  */
5067 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5068 				     char __user *optval,
5069 				     int __user *optlen)
5070 {
5071 
5072 	struct sctp_assocparams assocparams;
5073 	struct sctp_association *asoc;
5074 	struct list_head *pos;
5075 	int cnt = 0;
5076 
5077 	if (len < sizeof (struct sctp_assocparams))
5078 		return -EINVAL;
5079 
5080 	len = sizeof(struct sctp_assocparams);
5081 
5082 	if (copy_from_user(&assocparams, optval, len))
5083 		return -EFAULT;
5084 
5085 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5086 
5087 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5088 		return -EINVAL;
5089 
5090 	/* Values correspoinding to the specific association */
5091 	if (asoc) {
5092 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5093 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5094 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5095 		assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
5096 						* 1000) +
5097 						(asoc->cookie_life.tv_usec
5098 						/ 1000);
5099 
5100 		list_for_each(pos, &asoc->peer.transport_addr_list) {
5101 			cnt ++;
5102 		}
5103 
5104 		assocparams.sasoc_number_peer_destinations = cnt;
5105 	} else {
5106 		/* Values corresponding to the endpoint */
5107 		struct sctp_sock *sp = sctp_sk(sk);
5108 
5109 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5110 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5111 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5112 		assocparams.sasoc_cookie_life =
5113 					sp->assocparams.sasoc_cookie_life;
5114 		assocparams.sasoc_number_peer_destinations =
5115 					sp->assocparams.
5116 					sasoc_number_peer_destinations;
5117 	}
5118 
5119 	if (put_user(len, optlen))
5120 		return -EFAULT;
5121 
5122 	if (copy_to_user(optval, &assocparams, len))
5123 		return -EFAULT;
5124 
5125 	return 0;
5126 }
5127 
5128 /*
5129  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5130  *
5131  * This socket option is a boolean flag which turns on or off mapped V4
5132  * addresses.  If this option is turned on and the socket is type
5133  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5134  * If this option is turned off, then no mapping will be done of V4
5135  * addresses and a user will receive both PF_INET6 and PF_INET type
5136  * addresses on the socket.
5137  */
5138 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5139 				    char __user *optval, int __user *optlen)
5140 {
5141 	int val;
5142 	struct sctp_sock *sp = sctp_sk(sk);
5143 
5144 	if (len < sizeof(int))
5145 		return -EINVAL;
5146 
5147 	len = sizeof(int);
5148 	val = sp->v4mapped;
5149 	if (put_user(len, optlen))
5150 		return -EFAULT;
5151 	if (copy_to_user(optval, &val, len))
5152 		return -EFAULT;
5153 
5154 	return 0;
5155 }
5156 
5157 /*
5158  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
5159  * (chapter and verse is quoted at sctp_setsockopt_context())
5160  */
5161 static int sctp_getsockopt_context(struct sock *sk, int len,
5162 				   char __user *optval, int __user *optlen)
5163 {
5164 	struct sctp_assoc_value params;
5165 	struct sctp_sock *sp;
5166 	struct sctp_association *asoc;
5167 
5168 	if (len < sizeof(struct sctp_assoc_value))
5169 		return -EINVAL;
5170 
5171 	len = sizeof(struct sctp_assoc_value);
5172 
5173 	if (copy_from_user(&params, optval, len))
5174 		return -EFAULT;
5175 
5176 	sp = sctp_sk(sk);
5177 
5178 	if (params.assoc_id != 0) {
5179 		asoc = sctp_id2assoc(sk, params.assoc_id);
5180 		if (!asoc)
5181 			return -EINVAL;
5182 		params.assoc_value = asoc->default_rcv_context;
5183 	} else {
5184 		params.assoc_value = sp->default_rcv_context;
5185 	}
5186 
5187 	if (put_user(len, optlen))
5188 		return -EFAULT;
5189 	if (copy_to_user(optval, &params, len))
5190 		return -EFAULT;
5191 
5192 	return 0;
5193 }
5194 
5195 /*
5196  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5197  * This option will get or set the maximum size to put in any outgoing
5198  * SCTP DATA chunk.  If a message is larger than this size it will be
5199  * fragmented by SCTP into the specified size.  Note that the underlying
5200  * SCTP implementation may fragment into smaller sized chunks when the
5201  * PMTU of the underlying association is smaller than the value set by
5202  * the user.  The default value for this option is '0' which indicates
5203  * the user is NOT limiting fragmentation and only the PMTU will effect
5204  * SCTP's choice of DATA chunk size.  Note also that values set larger
5205  * than the maximum size of an IP datagram will effectively let SCTP
5206  * control fragmentation (i.e. the same as setting this option to 0).
5207  *
5208  * The following structure is used to access and modify this parameter:
5209  *
5210  * struct sctp_assoc_value {
5211  *   sctp_assoc_t assoc_id;
5212  *   uint32_t assoc_value;
5213  * };
5214  *
5215  * assoc_id:  This parameter is ignored for one-to-one style sockets.
5216  *    For one-to-many style sockets this parameter indicates which
5217  *    association the user is performing an action upon.  Note that if
5218  *    this field's value is zero then the endpoints default value is
5219  *    changed (effecting future associations only).
5220  * assoc_value:  This parameter specifies the maximum size in bytes.
5221  */
5222 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5223 				  char __user *optval, int __user *optlen)
5224 {
5225 	struct sctp_assoc_value params;
5226 	struct sctp_association *asoc;
5227 
5228 	if (len == sizeof(int)) {
5229 		printk(KERN_WARNING
5230 		   "SCTP: Use of int in maxseg socket option deprecated\n");
5231 		printk(KERN_WARNING
5232 		   "SCTP: Use struct sctp_assoc_value instead\n");
5233 		params.assoc_id = 0;
5234 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5235 		len = sizeof(struct sctp_assoc_value);
5236 		if (copy_from_user(&params, optval, sizeof(params)))
5237 			return -EFAULT;
5238 	} else
5239 		return -EINVAL;
5240 
5241 	asoc = sctp_id2assoc(sk, params.assoc_id);
5242 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5243 		return -EINVAL;
5244 
5245 	if (asoc)
5246 		params.assoc_value = asoc->frag_point;
5247 	else
5248 		params.assoc_value = sctp_sk(sk)->user_frag;
5249 
5250 	if (put_user(len, optlen))
5251 		return -EFAULT;
5252 	if (len == sizeof(int)) {
5253 		if (copy_to_user(optval, &params.assoc_value, len))
5254 			return -EFAULT;
5255 	} else {
5256 		if (copy_to_user(optval, &params, len))
5257 			return -EFAULT;
5258 	}
5259 
5260 	return 0;
5261 }
5262 
5263 /*
5264  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5265  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5266  */
5267 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5268 					       char __user *optval, int __user *optlen)
5269 {
5270 	int val;
5271 
5272 	if (len < sizeof(int))
5273 		return -EINVAL;
5274 
5275 	len = sizeof(int);
5276 
5277 	val = sctp_sk(sk)->frag_interleave;
5278 	if (put_user(len, optlen))
5279 		return -EFAULT;
5280 	if (copy_to_user(optval, &val, len))
5281 		return -EFAULT;
5282 
5283 	return 0;
5284 }
5285 
5286 /*
5287  * 7.1.25.  Set or Get the sctp partial delivery point
5288  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5289  */
5290 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5291 						  char __user *optval,
5292 						  int __user *optlen)
5293 {
5294 	u32 val;
5295 
5296 	if (len < sizeof(u32))
5297 		return -EINVAL;
5298 
5299 	len = sizeof(u32);
5300 
5301 	val = sctp_sk(sk)->pd_point;
5302 	if (put_user(len, optlen))
5303 		return -EFAULT;
5304 	if (copy_to_user(optval, &val, len))
5305 		return -EFAULT;
5306 
5307 	return -ENOTSUPP;
5308 }
5309 
5310 /*
5311  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
5312  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5313  */
5314 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5315 				    char __user *optval,
5316 				    int __user *optlen)
5317 {
5318 	struct sctp_assoc_value params;
5319 	struct sctp_sock *sp;
5320 	struct sctp_association *asoc;
5321 
5322 	if (len == sizeof(int)) {
5323 		printk(KERN_WARNING
5324 		   "SCTP: Use of int in max_burst socket option deprecated\n");
5325 		printk(KERN_WARNING
5326 		   "SCTP: Use struct sctp_assoc_value instead\n");
5327 		params.assoc_id = 0;
5328 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5329 		len = sizeof(struct sctp_assoc_value);
5330 		if (copy_from_user(&params, optval, len))
5331 			return -EFAULT;
5332 	} else
5333 		return -EINVAL;
5334 
5335 	sp = sctp_sk(sk);
5336 
5337 	if (params.assoc_id != 0) {
5338 		asoc = sctp_id2assoc(sk, params.assoc_id);
5339 		if (!asoc)
5340 			return -EINVAL;
5341 		params.assoc_value = asoc->max_burst;
5342 	} else
5343 		params.assoc_value = sp->max_burst;
5344 
5345 	if (len == sizeof(int)) {
5346 		if (copy_to_user(optval, &params.assoc_value, len))
5347 			return -EFAULT;
5348 	} else {
5349 		if (copy_to_user(optval, &params, len))
5350 			return -EFAULT;
5351 	}
5352 
5353 	return 0;
5354 
5355 }
5356 
5357 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5358 				    char __user *optval, int __user *optlen)
5359 {
5360 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
5361 	struct sctp_hmac_algo_param *hmacs;
5362 	__u16 data_len = 0;
5363 	u32 num_idents;
5364 
5365 	if (!sctp_auth_enable)
5366 		return -EACCES;
5367 
5368 	hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5369 	data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5370 
5371 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
5372 		return -EINVAL;
5373 
5374 	len = sizeof(struct sctp_hmacalgo) + data_len;
5375 	num_idents = data_len / sizeof(u16);
5376 
5377 	if (put_user(len, optlen))
5378 		return -EFAULT;
5379 	if (put_user(num_idents, &p->shmac_num_idents))
5380 		return -EFAULT;
5381 	if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5382 		return -EFAULT;
5383 	return 0;
5384 }
5385 
5386 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5387 				    char __user *optval, int __user *optlen)
5388 {
5389 	struct sctp_authkeyid val;
5390 	struct sctp_association *asoc;
5391 
5392 	if (!sctp_auth_enable)
5393 		return -EACCES;
5394 
5395 	if (len < sizeof(struct sctp_authkeyid))
5396 		return -EINVAL;
5397 	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5398 		return -EFAULT;
5399 
5400 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5401 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5402 		return -EINVAL;
5403 
5404 	if (asoc)
5405 		val.scact_keynumber = asoc->active_key_id;
5406 	else
5407 		val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5408 
5409 	len = sizeof(struct sctp_authkeyid);
5410 	if (put_user(len, optlen))
5411 		return -EFAULT;
5412 	if (copy_to_user(optval, &val, len))
5413 		return -EFAULT;
5414 
5415 	return 0;
5416 }
5417 
5418 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5419 				    char __user *optval, int __user *optlen)
5420 {
5421 	struct sctp_authchunks __user *p = (void __user *)optval;
5422 	struct sctp_authchunks val;
5423 	struct sctp_association *asoc;
5424 	struct sctp_chunks_param *ch;
5425 	u32    num_chunks = 0;
5426 	char __user *to;
5427 
5428 	if (!sctp_auth_enable)
5429 		return -EACCES;
5430 
5431 	if (len < sizeof(struct sctp_authchunks))
5432 		return -EINVAL;
5433 
5434 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5435 		return -EFAULT;
5436 
5437 	to = p->gauth_chunks;
5438 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5439 	if (!asoc)
5440 		return -EINVAL;
5441 
5442 	ch = asoc->peer.peer_chunks;
5443 	if (!ch)
5444 		goto num;
5445 
5446 	/* See if the user provided enough room for all the data */
5447 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5448 	if (len < num_chunks)
5449 		return -EINVAL;
5450 
5451 	if (copy_to_user(to, ch->chunks, num_chunks))
5452 		return -EFAULT;
5453 num:
5454 	len = sizeof(struct sctp_authchunks) + num_chunks;
5455 	if (put_user(len, optlen)) return -EFAULT;
5456 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5457 		return -EFAULT;
5458 	return 0;
5459 }
5460 
5461 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5462 				    char __user *optval, int __user *optlen)
5463 {
5464 	struct sctp_authchunks __user *p = (void __user *)optval;
5465 	struct sctp_authchunks val;
5466 	struct sctp_association *asoc;
5467 	struct sctp_chunks_param *ch;
5468 	u32    num_chunks = 0;
5469 	char __user *to;
5470 
5471 	if (!sctp_auth_enable)
5472 		return -EACCES;
5473 
5474 	if (len < sizeof(struct sctp_authchunks))
5475 		return -EINVAL;
5476 
5477 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5478 		return -EFAULT;
5479 
5480 	to = p->gauth_chunks;
5481 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5482 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5483 		return -EINVAL;
5484 
5485 	if (asoc)
5486 		ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5487 	else
5488 		ch = sctp_sk(sk)->ep->auth_chunk_list;
5489 
5490 	if (!ch)
5491 		goto num;
5492 
5493 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5494 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
5495 		return -EINVAL;
5496 
5497 	if (copy_to_user(to, ch->chunks, num_chunks))
5498 		return -EFAULT;
5499 num:
5500 	len = sizeof(struct sctp_authchunks) + num_chunks;
5501 	if (put_user(len, optlen))
5502 		return -EFAULT;
5503 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5504 		return -EFAULT;
5505 
5506 	return 0;
5507 }
5508 
5509 /*
5510  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5511  * This option gets the current number of associations that are attached
5512  * to a one-to-many style socket.  The option value is an uint32_t.
5513  */
5514 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5515 				    char __user *optval, int __user *optlen)
5516 {
5517 	struct sctp_sock *sp = sctp_sk(sk);
5518 	struct sctp_association *asoc;
5519 	u32 val = 0;
5520 
5521 	if (sctp_style(sk, TCP))
5522 		return -EOPNOTSUPP;
5523 
5524 	if (len < sizeof(u32))
5525 		return -EINVAL;
5526 
5527 	len = sizeof(u32);
5528 
5529 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5530 		val++;
5531 	}
5532 
5533 	if (put_user(len, optlen))
5534 		return -EFAULT;
5535 	if (copy_to_user(optval, &val, len))
5536 		return -EFAULT;
5537 
5538 	return 0;
5539 }
5540 
5541 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
5542 				char __user *optval, int __user *optlen)
5543 {
5544 	int retval = 0;
5545 	int len;
5546 
5547 	SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
5548 			  sk, optname);
5549 
5550 	/* I can hardly begin to describe how wrong this is.  This is
5551 	 * so broken as to be worse than useless.  The API draft
5552 	 * REALLY is NOT helpful here...  I am not convinced that the
5553 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5554 	 * are at all well-founded.
5555 	 */
5556 	if (level != SOL_SCTP) {
5557 		struct sctp_af *af = sctp_sk(sk)->pf->af;
5558 
5559 		retval = af->getsockopt(sk, level, optname, optval, optlen);
5560 		return retval;
5561 	}
5562 
5563 	if (get_user(len, optlen))
5564 		return -EFAULT;
5565 
5566 	sctp_lock_sock(sk);
5567 
5568 	switch (optname) {
5569 	case SCTP_STATUS:
5570 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5571 		break;
5572 	case SCTP_DISABLE_FRAGMENTS:
5573 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5574 							   optlen);
5575 		break;
5576 	case SCTP_EVENTS:
5577 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
5578 		break;
5579 	case SCTP_AUTOCLOSE:
5580 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5581 		break;
5582 	case SCTP_SOCKOPT_PEELOFF:
5583 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5584 		break;
5585 	case SCTP_PEER_ADDR_PARAMS:
5586 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5587 							  optlen);
5588 		break;
5589 	case SCTP_DELAYED_ACK:
5590 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5591 							  optlen);
5592 		break;
5593 	case SCTP_INITMSG:
5594 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5595 		break;
5596 	case SCTP_GET_PEER_ADDRS_NUM_OLD:
5597 		retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval,
5598 							    optlen);
5599 		break;
5600 	case SCTP_GET_LOCAL_ADDRS_NUM_OLD:
5601 		retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval,
5602 							     optlen);
5603 		break;
5604 	case SCTP_GET_PEER_ADDRS_OLD:
5605 		retval = sctp_getsockopt_peer_addrs_old(sk, len, optval,
5606 							optlen);
5607 		break;
5608 	case SCTP_GET_LOCAL_ADDRS_OLD:
5609 		retval = sctp_getsockopt_local_addrs_old(sk, len, optval,
5610 							 optlen);
5611 		break;
5612 	case SCTP_GET_PEER_ADDRS:
5613 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5614 						    optlen);
5615 		break;
5616 	case SCTP_GET_LOCAL_ADDRS:
5617 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
5618 						     optlen);
5619 		break;
5620 	case SCTP_SOCKOPT_CONNECTX3:
5621 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
5622 		break;
5623 	case SCTP_DEFAULT_SEND_PARAM:
5624 		retval = sctp_getsockopt_default_send_param(sk, len,
5625 							    optval, optlen);
5626 		break;
5627 	case SCTP_PRIMARY_ADDR:
5628 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5629 		break;
5630 	case SCTP_NODELAY:
5631 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5632 		break;
5633 	case SCTP_RTOINFO:
5634 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5635 		break;
5636 	case SCTP_ASSOCINFO:
5637 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5638 		break;
5639 	case SCTP_I_WANT_MAPPED_V4_ADDR:
5640 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5641 		break;
5642 	case SCTP_MAXSEG:
5643 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5644 		break;
5645 	case SCTP_GET_PEER_ADDR_INFO:
5646 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5647 							optlen);
5648 		break;
5649 	case SCTP_ADAPTATION_LAYER:
5650 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5651 							optlen);
5652 		break;
5653 	case SCTP_CONTEXT:
5654 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
5655 		break;
5656 	case SCTP_FRAGMENT_INTERLEAVE:
5657 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5658 							     optlen);
5659 		break;
5660 	case SCTP_PARTIAL_DELIVERY_POINT:
5661 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5662 								optlen);
5663 		break;
5664 	case SCTP_MAX_BURST:
5665 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5666 		break;
5667 	case SCTP_AUTH_KEY:
5668 	case SCTP_AUTH_CHUNK:
5669 	case SCTP_AUTH_DELETE_KEY:
5670 		retval = -EOPNOTSUPP;
5671 		break;
5672 	case SCTP_HMAC_IDENT:
5673 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5674 		break;
5675 	case SCTP_AUTH_ACTIVE_KEY:
5676 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5677 		break;
5678 	case SCTP_PEER_AUTH_CHUNKS:
5679 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5680 							optlen);
5681 		break;
5682 	case SCTP_LOCAL_AUTH_CHUNKS:
5683 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5684 							optlen);
5685 		break;
5686 	case SCTP_GET_ASSOC_NUMBER:
5687 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
5688 		break;
5689 	default:
5690 		retval = -ENOPROTOOPT;
5691 		break;
5692 	}
5693 
5694 	sctp_release_sock(sk);
5695 	return retval;
5696 }
5697 
5698 static void sctp_hash(struct sock *sk)
5699 {
5700 	/* STUB */
5701 }
5702 
5703 static void sctp_unhash(struct sock *sk)
5704 {
5705 	/* STUB */
5706 }
5707 
5708 /* Check if port is acceptable.  Possibly find first available port.
5709  *
5710  * The port hash table (contained in the 'global' SCTP protocol storage
5711  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5712  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5713  * list (the list number is the port number hashed out, so as you
5714  * would expect from a hash function, all the ports in a given list have
5715  * such a number that hashes out to the same list number; you were
5716  * expecting that, right?); so each list has a set of ports, with a
5717  * link to the socket (struct sock) that uses it, the port number and
5718  * a fastreuse flag (FIXME: NPI ipg).
5719  */
5720 static struct sctp_bind_bucket *sctp_bucket_create(
5721 	struct sctp_bind_hashbucket *head, unsigned short snum);
5722 
5723 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5724 {
5725 	struct sctp_bind_hashbucket *head; /* hash list */
5726 	struct sctp_bind_bucket *pp; /* hash list port iterator */
5727 	struct hlist_node *node;
5728 	unsigned short snum;
5729 	int ret;
5730 
5731 	snum = ntohs(addr->v4.sin_port);
5732 
5733 	SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5734 	sctp_local_bh_disable();
5735 
5736 	if (snum == 0) {
5737 		/* Search for an available port. */
5738 		int low, high, remaining, index;
5739 		unsigned int rover;
5740 
5741 		inet_get_local_port_range(&low, &high);
5742 		remaining = (high - low) + 1;
5743 		rover = net_random() % remaining + low;
5744 
5745 		do {
5746 			rover++;
5747 			if ((rover < low) || (rover > high))
5748 				rover = low;
5749 			index = sctp_phashfn(rover);
5750 			head = &sctp_port_hashtable[index];
5751 			sctp_spin_lock(&head->lock);
5752 			sctp_for_each_hentry(pp, node, &head->chain)
5753 				if (pp->port == rover)
5754 					goto next;
5755 			break;
5756 		next:
5757 			sctp_spin_unlock(&head->lock);
5758 		} while (--remaining > 0);
5759 
5760 		/* Exhausted local port range during search? */
5761 		ret = 1;
5762 		if (remaining <= 0)
5763 			goto fail;
5764 
5765 		/* OK, here is the one we will use.  HEAD (the port
5766 		 * hash table list entry) is non-NULL and we hold it's
5767 		 * mutex.
5768 		 */
5769 		snum = rover;
5770 	} else {
5771 		/* We are given an specific port number; we verify
5772 		 * that it is not being used. If it is used, we will
5773 		 * exahust the search in the hash list corresponding
5774 		 * to the port number (snum) - we detect that with the
5775 		 * port iterator, pp being NULL.
5776 		 */
5777 		head = &sctp_port_hashtable[sctp_phashfn(snum)];
5778 		sctp_spin_lock(&head->lock);
5779 		sctp_for_each_hentry(pp, node, &head->chain) {
5780 			if (pp->port == snum)
5781 				goto pp_found;
5782 		}
5783 	}
5784 	pp = NULL;
5785 	goto pp_not_found;
5786 pp_found:
5787 	if (!hlist_empty(&pp->owner)) {
5788 		/* We had a port hash table hit - there is an
5789 		 * available port (pp != NULL) and it is being
5790 		 * used by other socket (pp->owner not empty); that other
5791 		 * socket is going to be sk2.
5792 		 */
5793 		int reuse = sk->sk_reuse;
5794 		struct sock *sk2;
5795 		struct hlist_node *node;
5796 
5797 		SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5798 		if (pp->fastreuse && sk->sk_reuse &&
5799 			sk->sk_state != SCTP_SS_LISTENING)
5800 			goto success;
5801 
5802 		/* Run through the list of sockets bound to the port
5803 		 * (pp->port) [via the pointers bind_next and
5804 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5805 		 * we get the endpoint they describe and run through
5806 		 * the endpoint's list of IP (v4 or v6) addresses,
5807 		 * comparing each of the addresses with the address of
5808 		 * the socket sk. If we find a match, then that means
5809 		 * that this port/socket (sk) combination are already
5810 		 * in an endpoint.
5811 		 */
5812 		sk_for_each_bound(sk2, node, &pp->owner) {
5813 			struct sctp_endpoint *ep2;
5814 			ep2 = sctp_sk(sk2)->ep;
5815 
5816 			if (sk == sk2 ||
5817 			    (reuse && sk2->sk_reuse &&
5818 			     sk2->sk_state != SCTP_SS_LISTENING))
5819 				continue;
5820 
5821 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
5822 						 sctp_sk(sk2), sctp_sk(sk))) {
5823 				ret = (long)sk2;
5824 				goto fail_unlock;
5825 			}
5826 		}
5827 		SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5828 	}
5829 pp_not_found:
5830 	/* If there was a hash table miss, create a new port.  */
5831 	ret = 1;
5832 	if (!pp && !(pp = sctp_bucket_create(head, snum)))
5833 		goto fail_unlock;
5834 
5835 	/* In either case (hit or miss), make sure fastreuse is 1 only
5836 	 * if sk->sk_reuse is too (that is, if the caller requested
5837 	 * SO_REUSEADDR on this socket -sk-).
5838 	 */
5839 	if (hlist_empty(&pp->owner)) {
5840 		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5841 			pp->fastreuse = 1;
5842 		else
5843 			pp->fastreuse = 0;
5844 	} else if (pp->fastreuse &&
5845 		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
5846 		pp->fastreuse = 0;
5847 
5848 	/* We are set, so fill up all the data in the hash table
5849 	 * entry, tie the socket list information with the rest of the
5850 	 * sockets FIXME: Blurry, NPI (ipg).
5851 	 */
5852 success:
5853 	if (!sctp_sk(sk)->bind_hash) {
5854 		inet_sk(sk)->num = snum;
5855 		sk_add_bind_node(sk, &pp->owner);
5856 		sctp_sk(sk)->bind_hash = pp;
5857 	}
5858 	ret = 0;
5859 
5860 fail_unlock:
5861 	sctp_spin_unlock(&head->lock);
5862 
5863 fail:
5864 	sctp_local_bh_enable();
5865 	return ret;
5866 }
5867 
5868 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
5869  * port is requested.
5870  */
5871 static int sctp_get_port(struct sock *sk, unsigned short snum)
5872 {
5873 	long ret;
5874 	union sctp_addr addr;
5875 	struct sctp_af *af = sctp_sk(sk)->pf->af;
5876 
5877 	/* Set up a dummy address struct from the sk. */
5878 	af->from_sk(&addr, sk);
5879 	addr.v4.sin_port = htons(snum);
5880 
5881 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
5882 	ret = sctp_get_port_local(sk, &addr);
5883 
5884 	return (ret ? 1 : 0);
5885 }
5886 
5887 /*
5888  *  Move a socket to LISTENING state.
5889  */
5890 SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog)
5891 {
5892 	struct sctp_sock *sp = sctp_sk(sk);
5893 	struct sctp_endpoint *ep = sp->ep;
5894 	struct crypto_hash *tfm = NULL;
5895 
5896 	/* Allocate HMAC for generating cookie. */
5897 	if (!sctp_sk(sk)->hmac && sctp_hmac_alg) {
5898 		tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
5899 		if (IS_ERR(tfm)) {
5900 			if (net_ratelimit()) {
5901 				printk(KERN_INFO
5902 				       "SCTP: failed to load transform for %s: %ld\n",
5903 					sctp_hmac_alg, PTR_ERR(tfm));
5904 			}
5905 			return -ENOSYS;
5906 		}
5907 		sctp_sk(sk)->hmac = tfm;
5908 	}
5909 
5910 	/*
5911 	 * If a bind() or sctp_bindx() is not called prior to a listen()
5912 	 * call that allows new associations to be accepted, the system
5913 	 * picks an ephemeral port and will choose an address set equivalent
5914 	 * to binding with a wildcard address.
5915 	 *
5916 	 * This is not currently spelled out in the SCTP sockets
5917 	 * extensions draft, but follows the practice as seen in TCP
5918 	 * sockets.
5919 	 *
5920 	 */
5921 	sk->sk_state = SCTP_SS_LISTENING;
5922 	if (!ep->base.bind_addr.port) {
5923 		if (sctp_autobind(sk))
5924 			return -EAGAIN;
5925 	} else {
5926 		if (sctp_get_port(sk, inet_sk(sk)->num)) {
5927 			sk->sk_state = SCTP_SS_CLOSED;
5928 			return -EADDRINUSE;
5929 		}
5930 	}
5931 
5932 	sk->sk_max_ack_backlog = backlog;
5933 	sctp_hash_endpoint(ep);
5934 	return 0;
5935 }
5936 
5937 /*
5938  * 4.1.3 / 5.1.3 listen()
5939  *
5940  *   By default, new associations are not accepted for UDP style sockets.
5941  *   An application uses listen() to mark a socket as being able to
5942  *   accept new associations.
5943  *
5944  *   On TCP style sockets, applications use listen() to ready the SCTP
5945  *   endpoint for accepting inbound associations.
5946  *
5947  *   On both types of endpoints a backlog of '0' disables listening.
5948  *
5949  *  Move a socket to LISTENING state.
5950  */
5951 int sctp_inet_listen(struct socket *sock, int backlog)
5952 {
5953 	struct sock *sk = sock->sk;
5954 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5955 	int err = -EINVAL;
5956 
5957 	if (unlikely(backlog < 0))
5958 		return err;
5959 
5960 	sctp_lock_sock(sk);
5961 
5962 	/* Peeled-off sockets are not allowed to listen().  */
5963 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
5964 		goto out;
5965 
5966 	if (sock->state != SS_UNCONNECTED)
5967 		goto out;
5968 
5969 	/* If backlog is zero, disable listening. */
5970 	if (!backlog) {
5971 		if (sctp_sstate(sk, CLOSED))
5972 			goto out;
5973 
5974 		err = 0;
5975 		sctp_unhash_endpoint(ep);
5976 		sk->sk_state = SCTP_SS_CLOSED;
5977 		if (sk->sk_reuse)
5978 			sctp_sk(sk)->bind_hash->fastreuse = 1;
5979 		goto out;
5980 	}
5981 
5982 	/* If we are already listening, just update the backlog */
5983 	if (sctp_sstate(sk, LISTENING))
5984 		sk->sk_max_ack_backlog = backlog;
5985 	else {
5986 		err = sctp_listen_start(sk, backlog);
5987 		if (err)
5988 			goto out;
5989 	}
5990 
5991 	err = 0;
5992 out:
5993 	sctp_release_sock(sk);
5994 	return err;
5995 }
5996 
5997 /*
5998  * This function is done by modeling the current datagram_poll() and the
5999  * tcp_poll().  Note that, based on these implementations, we don't
6000  * lock the socket in this function, even though it seems that,
6001  * ideally, locking or some other mechanisms can be used to ensure
6002  * the integrity of the counters (sndbuf and wmem_alloc) used
6003  * in this place.  We assume that we don't need locks either until proven
6004  * otherwise.
6005  *
6006  * Another thing to note is that we include the Async I/O support
6007  * here, again, by modeling the current TCP/UDP code.  We don't have
6008  * a good way to test with it yet.
6009  */
6010 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6011 {
6012 	struct sock *sk = sock->sk;
6013 	struct sctp_sock *sp = sctp_sk(sk);
6014 	unsigned int mask;
6015 
6016 	poll_wait(file, sk->sk_sleep, wait);
6017 
6018 	/* A TCP-style listening socket becomes readable when the accept queue
6019 	 * is not empty.
6020 	 */
6021 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6022 		return (!list_empty(&sp->ep->asocs)) ?
6023 			(POLLIN | POLLRDNORM) : 0;
6024 
6025 	mask = 0;
6026 
6027 	/* Is there any exceptional events?  */
6028 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6029 		mask |= POLLERR;
6030 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6031 		mask |= POLLRDHUP;
6032 	if (sk->sk_shutdown == SHUTDOWN_MASK)
6033 		mask |= POLLHUP;
6034 
6035 	/* Is it readable?  Reconsider this code with TCP-style support.  */
6036 	if (!skb_queue_empty(&sk->sk_receive_queue) ||
6037 	    (sk->sk_shutdown & RCV_SHUTDOWN))
6038 		mask |= POLLIN | POLLRDNORM;
6039 
6040 	/* The association is either gone or not ready.  */
6041 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6042 		return mask;
6043 
6044 	/* Is it writable?  */
6045 	if (sctp_writeable(sk)) {
6046 		mask |= POLLOUT | POLLWRNORM;
6047 	} else {
6048 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
6049 		/*
6050 		 * Since the socket is not locked, the buffer
6051 		 * might be made available after the writeable check and
6052 		 * before the bit is set.  This could cause a lost I/O
6053 		 * signal.  tcp_poll() has a race breaker for this race
6054 		 * condition.  Based on their implementation, we put
6055 		 * in the following code to cover it as well.
6056 		 */
6057 		if (sctp_writeable(sk))
6058 			mask |= POLLOUT | POLLWRNORM;
6059 	}
6060 	return mask;
6061 }
6062 
6063 /********************************************************************
6064  * 2nd Level Abstractions
6065  ********************************************************************/
6066 
6067 static struct sctp_bind_bucket *sctp_bucket_create(
6068 	struct sctp_bind_hashbucket *head, unsigned short snum)
6069 {
6070 	struct sctp_bind_bucket *pp;
6071 
6072 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6073 	if (pp) {
6074 		SCTP_DBG_OBJCNT_INC(bind_bucket);
6075 		pp->port = snum;
6076 		pp->fastreuse = 0;
6077 		INIT_HLIST_HEAD(&pp->owner);
6078 		hlist_add_head(&pp->node, &head->chain);
6079 	}
6080 	return pp;
6081 }
6082 
6083 /* Caller must hold hashbucket lock for this tb with local BH disabled */
6084 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6085 {
6086 	if (pp && hlist_empty(&pp->owner)) {
6087 		__hlist_del(&pp->node);
6088 		kmem_cache_free(sctp_bucket_cachep, pp);
6089 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
6090 	}
6091 }
6092 
6093 /* Release this socket's reference to a local port.  */
6094 static inline void __sctp_put_port(struct sock *sk)
6095 {
6096 	struct sctp_bind_hashbucket *head =
6097 		&sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)];
6098 	struct sctp_bind_bucket *pp;
6099 
6100 	sctp_spin_lock(&head->lock);
6101 	pp = sctp_sk(sk)->bind_hash;
6102 	__sk_del_bind_node(sk);
6103 	sctp_sk(sk)->bind_hash = NULL;
6104 	inet_sk(sk)->num = 0;
6105 	sctp_bucket_destroy(pp);
6106 	sctp_spin_unlock(&head->lock);
6107 }
6108 
6109 void sctp_put_port(struct sock *sk)
6110 {
6111 	sctp_local_bh_disable();
6112 	__sctp_put_port(sk);
6113 	sctp_local_bh_enable();
6114 }
6115 
6116 /*
6117  * The system picks an ephemeral port and choose an address set equivalent
6118  * to binding with a wildcard address.
6119  * One of those addresses will be the primary address for the association.
6120  * This automatically enables the multihoming capability of SCTP.
6121  */
6122 static int sctp_autobind(struct sock *sk)
6123 {
6124 	union sctp_addr autoaddr;
6125 	struct sctp_af *af;
6126 	__be16 port;
6127 
6128 	/* Initialize a local sockaddr structure to INADDR_ANY. */
6129 	af = sctp_sk(sk)->pf->af;
6130 
6131 	port = htons(inet_sk(sk)->num);
6132 	af->inaddr_any(&autoaddr, port);
6133 
6134 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6135 }
6136 
6137 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
6138  *
6139  * From RFC 2292
6140  * 4.2 The cmsghdr Structure *
6141  *
6142  * When ancillary data is sent or received, any number of ancillary data
6143  * objects can be specified by the msg_control and msg_controllen members of
6144  * the msghdr structure, because each object is preceded by
6145  * a cmsghdr structure defining the object's length (the cmsg_len member).
6146  * Historically Berkeley-derived implementations have passed only one object
6147  * at a time, but this API allows multiple objects to be
6148  * passed in a single call to sendmsg() or recvmsg(). The following example
6149  * shows two ancillary data objects in a control buffer.
6150  *
6151  *   |<--------------------------- msg_controllen -------------------------->|
6152  *   |                                                                       |
6153  *
6154  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
6155  *
6156  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6157  *   |                                   |                                   |
6158  *
6159  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
6160  *
6161  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
6162  *   |                                |  |                                |  |
6163  *
6164  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6165  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
6166  *
6167  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
6168  *
6169  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6170  *    ^
6171  *    |
6172  *
6173  * msg_control
6174  * points here
6175  */
6176 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
6177 				  sctp_cmsgs_t *cmsgs)
6178 {
6179 	struct cmsghdr *cmsg;
6180 	struct msghdr *my_msg = (struct msghdr *)msg;
6181 
6182 	for (cmsg = CMSG_FIRSTHDR(msg);
6183 	     cmsg != NULL;
6184 	     cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
6185 		if (!CMSG_OK(my_msg, cmsg))
6186 			return -EINVAL;
6187 
6188 		/* Should we parse this header or ignore?  */
6189 		if (cmsg->cmsg_level != IPPROTO_SCTP)
6190 			continue;
6191 
6192 		/* Strictly check lengths following example in SCM code.  */
6193 		switch (cmsg->cmsg_type) {
6194 		case SCTP_INIT:
6195 			/* SCTP Socket API Extension
6196 			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
6197 			 *
6198 			 * This cmsghdr structure provides information for
6199 			 * initializing new SCTP associations with sendmsg().
6200 			 * The SCTP_INITMSG socket option uses this same data
6201 			 * structure.  This structure is not used for
6202 			 * recvmsg().
6203 			 *
6204 			 * cmsg_level    cmsg_type      cmsg_data[]
6205 			 * ------------  ------------   ----------------------
6206 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
6207 			 */
6208 			if (cmsg->cmsg_len !=
6209 			    CMSG_LEN(sizeof(struct sctp_initmsg)))
6210 				return -EINVAL;
6211 			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
6212 			break;
6213 
6214 		case SCTP_SNDRCV:
6215 			/* SCTP Socket API Extension
6216 			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6217 			 *
6218 			 * This cmsghdr structure specifies SCTP options for
6219 			 * sendmsg() and describes SCTP header information
6220 			 * about a received message through recvmsg().
6221 			 *
6222 			 * cmsg_level    cmsg_type      cmsg_data[]
6223 			 * ------------  ------------   ----------------------
6224 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
6225 			 */
6226 			if (cmsg->cmsg_len !=
6227 			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6228 				return -EINVAL;
6229 
6230 			cmsgs->info =
6231 				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6232 
6233 			/* Minimally, validate the sinfo_flags. */
6234 			if (cmsgs->info->sinfo_flags &
6235 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6236 			      SCTP_ABORT | SCTP_EOF))
6237 				return -EINVAL;
6238 			break;
6239 
6240 		default:
6241 			return -EINVAL;
6242 		}
6243 	}
6244 	return 0;
6245 }
6246 
6247 /*
6248  * Wait for a packet..
6249  * Note: This function is the same function as in core/datagram.c
6250  * with a few modifications to make lksctp work.
6251  */
6252 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
6253 {
6254 	int error;
6255 	DEFINE_WAIT(wait);
6256 
6257 	prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
6258 
6259 	/* Socket errors? */
6260 	error = sock_error(sk);
6261 	if (error)
6262 		goto out;
6263 
6264 	if (!skb_queue_empty(&sk->sk_receive_queue))
6265 		goto ready;
6266 
6267 	/* Socket shut down?  */
6268 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6269 		goto out;
6270 
6271 	/* Sequenced packets can come disconnected.  If so we report the
6272 	 * problem.
6273 	 */
6274 	error = -ENOTCONN;
6275 
6276 	/* Is there a good reason to think that we may receive some data?  */
6277 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6278 		goto out;
6279 
6280 	/* Handle signals.  */
6281 	if (signal_pending(current))
6282 		goto interrupted;
6283 
6284 	/* Let another process have a go.  Since we are going to sleep
6285 	 * anyway.  Note: This may cause odd behaviors if the message
6286 	 * does not fit in the user's buffer, but this seems to be the
6287 	 * only way to honor MSG_DONTWAIT realistically.
6288 	 */
6289 	sctp_release_sock(sk);
6290 	*timeo_p = schedule_timeout(*timeo_p);
6291 	sctp_lock_sock(sk);
6292 
6293 ready:
6294 	finish_wait(sk->sk_sleep, &wait);
6295 	return 0;
6296 
6297 interrupted:
6298 	error = sock_intr_errno(*timeo_p);
6299 
6300 out:
6301 	finish_wait(sk->sk_sleep, &wait);
6302 	*err = error;
6303 	return error;
6304 }
6305 
6306 /* Receive a datagram.
6307  * Note: This is pretty much the same routine as in core/datagram.c
6308  * with a few changes to make lksctp work.
6309  */
6310 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6311 					      int noblock, int *err)
6312 {
6313 	int error;
6314 	struct sk_buff *skb;
6315 	long timeo;
6316 
6317 	timeo = sock_rcvtimeo(sk, noblock);
6318 
6319 	SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
6320 			  timeo, MAX_SCHEDULE_TIMEOUT);
6321 
6322 	do {
6323 		/* Again only user level code calls this function,
6324 		 * so nothing interrupt level
6325 		 * will suddenly eat the receive_queue.
6326 		 *
6327 		 *  Look at current nfs client by the way...
6328 		 *  However, this function was corrent in any case. 8)
6329 		 */
6330 		if (flags & MSG_PEEK) {
6331 			spin_lock_bh(&sk->sk_receive_queue.lock);
6332 			skb = skb_peek(&sk->sk_receive_queue);
6333 			if (skb)
6334 				atomic_inc(&skb->users);
6335 			spin_unlock_bh(&sk->sk_receive_queue.lock);
6336 		} else {
6337 			skb = skb_dequeue(&sk->sk_receive_queue);
6338 		}
6339 
6340 		if (skb)
6341 			return skb;
6342 
6343 		/* Caller is allowed not to check sk->sk_err before calling. */
6344 		error = sock_error(sk);
6345 		if (error)
6346 			goto no_packet;
6347 
6348 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6349 			break;
6350 
6351 		/* User doesn't want to wait.  */
6352 		error = -EAGAIN;
6353 		if (!timeo)
6354 			goto no_packet;
6355 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6356 
6357 	return NULL;
6358 
6359 no_packet:
6360 	*err = error;
6361 	return NULL;
6362 }
6363 
6364 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
6365 static void __sctp_write_space(struct sctp_association *asoc)
6366 {
6367 	struct sock *sk = asoc->base.sk;
6368 	struct socket *sock = sk->sk_socket;
6369 
6370 	if ((sctp_wspace(asoc) > 0) && sock) {
6371 		if (waitqueue_active(&asoc->wait))
6372 			wake_up_interruptible(&asoc->wait);
6373 
6374 		if (sctp_writeable(sk)) {
6375 			if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
6376 				wake_up_interruptible(sk->sk_sleep);
6377 
6378 			/* Note that we try to include the Async I/O support
6379 			 * here by modeling from the current TCP/UDP code.
6380 			 * We have not tested with it yet.
6381 			 */
6382 			if (sock->fasync_list &&
6383 			    !(sk->sk_shutdown & SEND_SHUTDOWN))
6384 				sock_wake_async(sock,
6385 						SOCK_WAKE_SPACE, POLL_OUT);
6386 		}
6387 	}
6388 }
6389 
6390 /* Do accounting for the sndbuf space.
6391  * Decrement the used sndbuf space of the corresponding association by the
6392  * data size which was just transmitted(freed).
6393  */
6394 static void sctp_wfree(struct sk_buff *skb)
6395 {
6396 	struct sctp_association *asoc;
6397 	struct sctp_chunk *chunk;
6398 	struct sock *sk;
6399 
6400 	/* Get the saved chunk pointer.  */
6401 	chunk = *((struct sctp_chunk **)(skb->cb));
6402 	asoc = chunk->asoc;
6403 	sk = asoc->base.sk;
6404 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6405 				sizeof(struct sk_buff) +
6406 				sizeof(struct sctp_chunk);
6407 
6408 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6409 
6410 	/*
6411 	 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6412 	 */
6413 	sk->sk_wmem_queued   -= skb->truesize;
6414 	sk_mem_uncharge(sk, skb->truesize);
6415 
6416 	sock_wfree(skb);
6417 	__sctp_write_space(asoc);
6418 
6419 	sctp_association_put(asoc);
6420 }
6421 
6422 /* Do accounting for the receive space on the socket.
6423  * Accounting for the association is done in ulpevent.c
6424  * We set this as a destructor for the cloned data skbs so that
6425  * accounting is done at the correct time.
6426  */
6427 void sctp_sock_rfree(struct sk_buff *skb)
6428 {
6429 	struct sock *sk = skb->sk;
6430 	struct sctp_ulpevent *event = sctp_skb2event(skb);
6431 
6432 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6433 
6434 	/*
6435 	 * Mimic the behavior of sock_rfree
6436 	 */
6437 	sk_mem_uncharge(sk, event->rmem_len);
6438 }
6439 
6440 
6441 /* Helper function to wait for space in the sndbuf.  */
6442 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6443 				size_t msg_len)
6444 {
6445 	struct sock *sk = asoc->base.sk;
6446 	int err = 0;
6447 	long current_timeo = *timeo_p;
6448 	DEFINE_WAIT(wait);
6449 
6450 	SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
6451 			  asoc, (long)(*timeo_p), msg_len);
6452 
6453 	/* Increment the association's refcnt.  */
6454 	sctp_association_hold(asoc);
6455 
6456 	/* Wait on the association specific sndbuf space. */
6457 	for (;;) {
6458 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6459 					  TASK_INTERRUPTIBLE);
6460 		if (!*timeo_p)
6461 			goto do_nonblock;
6462 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6463 		    asoc->base.dead)
6464 			goto do_error;
6465 		if (signal_pending(current))
6466 			goto do_interrupted;
6467 		if (msg_len <= sctp_wspace(asoc))
6468 			break;
6469 
6470 		/* Let another process have a go.  Since we are going
6471 		 * to sleep anyway.
6472 		 */
6473 		sctp_release_sock(sk);
6474 		current_timeo = schedule_timeout(current_timeo);
6475 		BUG_ON(sk != asoc->base.sk);
6476 		sctp_lock_sock(sk);
6477 
6478 		*timeo_p = current_timeo;
6479 	}
6480 
6481 out:
6482 	finish_wait(&asoc->wait, &wait);
6483 
6484 	/* Release the association's refcnt.  */
6485 	sctp_association_put(asoc);
6486 
6487 	return err;
6488 
6489 do_error:
6490 	err = -EPIPE;
6491 	goto out;
6492 
6493 do_interrupted:
6494 	err = sock_intr_errno(*timeo_p);
6495 	goto out;
6496 
6497 do_nonblock:
6498 	err = -EAGAIN;
6499 	goto out;
6500 }
6501 
6502 /* If socket sndbuf has changed, wake up all per association waiters.  */
6503 void sctp_write_space(struct sock *sk)
6504 {
6505 	struct sctp_association *asoc;
6506 
6507 	/* Wake up the tasks in each wait queue.  */
6508 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6509 		__sctp_write_space(asoc);
6510 	}
6511 }
6512 
6513 /* Is there any sndbuf space available on the socket?
6514  *
6515  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6516  * associations on the same socket.  For a UDP-style socket with
6517  * multiple associations, it is possible for it to be "unwriteable"
6518  * prematurely.  I assume that this is acceptable because
6519  * a premature "unwriteable" is better than an accidental "writeable" which
6520  * would cause an unwanted block under certain circumstances.  For the 1-1
6521  * UDP-style sockets or TCP-style sockets, this code should work.
6522  *  - Daisy
6523  */
6524 static int sctp_writeable(struct sock *sk)
6525 {
6526 	int amt = 0;
6527 
6528 	amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
6529 	if (amt < 0)
6530 		amt = 0;
6531 	return amt;
6532 }
6533 
6534 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6535  * returns immediately with EINPROGRESS.
6536  */
6537 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6538 {
6539 	struct sock *sk = asoc->base.sk;
6540 	int err = 0;
6541 	long current_timeo = *timeo_p;
6542 	DEFINE_WAIT(wait);
6543 
6544 	SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc,
6545 			  (long)(*timeo_p));
6546 
6547 	/* Increment the association's refcnt.  */
6548 	sctp_association_hold(asoc);
6549 
6550 	for (;;) {
6551 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6552 					  TASK_INTERRUPTIBLE);
6553 		if (!*timeo_p)
6554 			goto do_nonblock;
6555 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6556 			break;
6557 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6558 		    asoc->base.dead)
6559 			goto do_error;
6560 		if (signal_pending(current))
6561 			goto do_interrupted;
6562 
6563 		if (sctp_state(asoc, ESTABLISHED))
6564 			break;
6565 
6566 		/* Let another process have a go.  Since we are going
6567 		 * to sleep anyway.
6568 		 */
6569 		sctp_release_sock(sk);
6570 		current_timeo = schedule_timeout(current_timeo);
6571 		sctp_lock_sock(sk);
6572 
6573 		*timeo_p = current_timeo;
6574 	}
6575 
6576 out:
6577 	finish_wait(&asoc->wait, &wait);
6578 
6579 	/* Release the association's refcnt.  */
6580 	sctp_association_put(asoc);
6581 
6582 	return err;
6583 
6584 do_error:
6585 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6586 		err = -ETIMEDOUT;
6587 	else
6588 		err = -ECONNREFUSED;
6589 	goto out;
6590 
6591 do_interrupted:
6592 	err = sock_intr_errno(*timeo_p);
6593 	goto out;
6594 
6595 do_nonblock:
6596 	err = -EINPROGRESS;
6597 	goto out;
6598 }
6599 
6600 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6601 {
6602 	struct sctp_endpoint *ep;
6603 	int err = 0;
6604 	DEFINE_WAIT(wait);
6605 
6606 	ep = sctp_sk(sk)->ep;
6607 
6608 
6609 	for (;;) {
6610 		prepare_to_wait_exclusive(sk->sk_sleep, &wait,
6611 					  TASK_INTERRUPTIBLE);
6612 
6613 		if (list_empty(&ep->asocs)) {
6614 			sctp_release_sock(sk);
6615 			timeo = schedule_timeout(timeo);
6616 			sctp_lock_sock(sk);
6617 		}
6618 
6619 		err = -EINVAL;
6620 		if (!sctp_sstate(sk, LISTENING))
6621 			break;
6622 
6623 		err = 0;
6624 		if (!list_empty(&ep->asocs))
6625 			break;
6626 
6627 		err = sock_intr_errno(timeo);
6628 		if (signal_pending(current))
6629 			break;
6630 
6631 		err = -EAGAIN;
6632 		if (!timeo)
6633 			break;
6634 	}
6635 
6636 	finish_wait(sk->sk_sleep, &wait);
6637 
6638 	return err;
6639 }
6640 
6641 static void sctp_wait_for_close(struct sock *sk, long timeout)
6642 {
6643 	DEFINE_WAIT(wait);
6644 
6645 	do {
6646 		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
6647 		if (list_empty(&sctp_sk(sk)->ep->asocs))
6648 			break;
6649 		sctp_release_sock(sk);
6650 		timeout = schedule_timeout(timeout);
6651 		sctp_lock_sock(sk);
6652 	} while (!signal_pending(current) && timeout);
6653 
6654 	finish_wait(sk->sk_sleep, &wait);
6655 }
6656 
6657 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6658 {
6659 	struct sk_buff *frag;
6660 
6661 	if (!skb->data_len)
6662 		goto done;
6663 
6664 	/* Don't forget the fragments. */
6665 	skb_walk_frags(skb, frag)
6666 		sctp_skb_set_owner_r_frag(frag, sk);
6667 
6668 done:
6669 	sctp_skb_set_owner_r(skb, sk);
6670 }
6671 
6672 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
6673 		    struct sctp_association *asoc)
6674 {
6675 	struct inet_sock *inet = inet_sk(sk);
6676 	struct inet_sock *newinet = inet_sk(newsk);
6677 
6678 	newsk->sk_type = sk->sk_type;
6679 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
6680 	newsk->sk_flags = sk->sk_flags;
6681 	newsk->sk_no_check = sk->sk_no_check;
6682 	newsk->sk_reuse = sk->sk_reuse;
6683 
6684 	newsk->sk_shutdown = sk->sk_shutdown;
6685 	newsk->sk_destruct = inet_sock_destruct;
6686 	newsk->sk_family = sk->sk_family;
6687 	newsk->sk_protocol = IPPROTO_SCTP;
6688 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
6689 	newsk->sk_sndbuf = sk->sk_sndbuf;
6690 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
6691 	newsk->sk_lingertime = sk->sk_lingertime;
6692 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
6693 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
6694 
6695 	newinet = inet_sk(newsk);
6696 
6697 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
6698 	 * getsockname() and getpeername()
6699 	 */
6700 	newinet->sport = inet->sport;
6701 	newinet->saddr = inet->saddr;
6702 	newinet->rcv_saddr = inet->rcv_saddr;
6703 	newinet->dport = htons(asoc->peer.port);
6704 	newinet->pmtudisc = inet->pmtudisc;
6705 	newinet->id = asoc->next_tsn ^ jiffies;
6706 
6707 	newinet->uc_ttl = inet->uc_ttl;
6708 	newinet->mc_loop = 1;
6709 	newinet->mc_ttl = 1;
6710 	newinet->mc_index = 0;
6711 	newinet->mc_list = NULL;
6712 }
6713 
6714 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6715  * and its messages to the newsk.
6716  */
6717 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6718 			      struct sctp_association *assoc,
6719 			      sctp_socket_type_t type)
6720 {
6721 	struct sctp_sock *oldsp = sctp_sk(oldsk);
6722 	struct sctp_sock *newsp = sctp_sk(newsk);
6723 	struct sctp_bind_bucket *pp; /* hash list port iterator */
6724 	struct sctp_endpoint *newep = newsp->ep;
6725 	struct sk_buff *skb, *tmp;
6726 	struct sctp_ulpevent *event;
6727 	struct sctp_bind_hashbucket *head;
6728 
6729 	/* Migrate socket buffer sizes and all the socket level options to the
6730 	 * new socket.
6731 	 */
6732 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
6733 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6734 	/* Brute force copy old sctp opt. */
6735 	inet_sk_copy_descendant(newsk, oldsk);
6736 
6737 	/* Restore the ep value that was overwritten with the above structure
6738 	 * copy.
6739 	 */
6740 	newsp->ep = newep;
6741 	newsp->hmac = NULL;
6742 
6743 	/* Hook this new socket in to the bind_hash list. */
6744 	head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->num)];
6745 	sctp_local_bh_disable();
6746 	sctp_spin_lock(&head->lock);
6747 	pp = sctp_sk(oldsk)->bind_hash;
6748 	sk_add_bind_node(newsk, &pp->owner);
6749 	sctp_sk(newsk)->bind_hash = pp;
6750 	inet_sk(newsk)->num = inet_sk(oldsk)->num;
6751 	sctp_spin_unlock(&head->lock);
6752 	sctp_local_bh_enable();
6753 
6754 	/* Copy the bind_addr list from the original endpoint to the new
6755 	 * endpoint so that we can handle restarts properly
6756 	 */
6757 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6758 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
6759 
6760 	/* Move any messages in the old socket's receive queue that are for the
6761 	 * peeled off association to the new socket's receive queue.
6762 	 */
6763 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6764 		event = sctp_skb2event(skb);
6765 		if (event->asoc == assoc) {
6766 			__skb_unlink(skb, &oldsk->sk_receive_queue);
6767 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
6768 			sctp_skb_set_owner_r_frag(skb, newsk);
6769 		}
6770 	}
6771 
6772 	/* Clean up any messages pending delivery due to partial
6773 	 * delivery.   Three cases:
6774 	 * 1) No partial deliver;  no work.
6775 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6776 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6777 	 */
6778 	skb_queue_head_init(&newsp->pd_lobby);
6779 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6780 
6781 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6782 		struct sk_buff_head *queue;
6783 
6784 		/* Decide which queue to move pd_lobby skbs to. */
6785 		if (assoc->ulpq.pd_mode) {
6786 			queue = &newsp->pd_lobby;
6787 		} else
6788 			queue = &newsk->sk_receive_queue;
6789 
6790 		/* Walk through the pd_lobby, looking for skbs that
6791 		 * need moved to the new socket.
6792 		 */
6793 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6794 			event = sctp_skb2event(skb);
6795 			if (event->asoc == assoc) {
6796 				__skb_unlink(skb, &oldsp->pd_lobby);
6797 				__skb_queue_tail(queue, skb);
6798 				sctp_skb_set_owner_r_frag(skb, newsk);
6799 			}
6800 		}
6801 
6802 		/* Clear up any skbs waiting for the partial
6803 		 * delivery to finish.
6804 		 */
6805 		if (assoc->ulpq.pd_mode)
6806 			sctp_clear_pd(oldsk, NULL);
6807 
6808 	}
6809 
6810 	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
6811 		sctp_skb_set_owner_r_frag(skb, newsk);
6812 
6813 	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
6814 		sctp_skb_set_owner_r_frag(skb, newsk);
6815 
6816 	/* Set the type of socket to indicate that it is peeled off from the
6817 	 * original UDP-style socket or created with the accept() call on a
6818 	 * TCP-style socket..
6819 	 */
6820 	newsp->type = type;
6821 
6822 	/* Mark the new socket "in-use" by the user so that any packets
6823 	 * that may arrive on the association after we've moved it are
6824 	 * queued to the backlog.  This prevents a potential race between
6825 	 * backlog processing on the old socket and new-packet processing
6826 	 * on the new socket.
6827 	 *
6828 	 * The caller has just allocated newsk so we can guarantee that other
6829 	 * paths won't try to lock it and then oldsk.
6830 	 */
6831 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
6832 	sctp_assoc_migrate(assoc, newsk);
6833 
6834 	/* If the association on the newsk is already closed before accept()
6835 	 * is called, set RCV_SHUTDOWN flag.
6836 	 */
6837 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
6838 		newsk->sk_shutdown |= RCV_SHUTDOWN;
6839 
6840 	newsk->sk_state = SCTP_SS_ESTABLISHED;
6841 	sctp_release_sock(newsk);
6842 }
6843 
6844 
6845 /* This proto struct describes the ULP interface for SCTP.  */
6846 struct proto sctp_prot = {
6847 	.name        =	"SCTP",
6848 	.owner       =	THIS_MODULE,
6849 	.close       =	sctp_close,
6850 	.connect     =	sctp_connect,
6851 	.disconnect  =	sctp_disconnect,
6852 	.accept      =	sctp_accept,
6853 	.ioctl       =	sctp_ioctl,
6854 	.init        =	sctp_init_sock,
6855 	.destroy     =	sctp_destroy_sock,
6856 	.shutdown    =	sctp_shutdown,
6857 	.setsockopt  =	sctp_setsockopt,
6858 	.getsockopt  =	sctp_getsockopt,
6859 	.sendmsg     =	sctp_sendmsg,
6860 	.recvmsg     =	sctp_recvmsg,
6861 	.bind        =	sctp_bind,
6862 	.backlog_rcv =	sctp_backlog_rcv,
6863 	.hash        =	sctp_hash,
6864 	.unhash      =	sctp_unhash,
6865 	.get_port    =	sctp_get_port,
6866 	.obj_size    =  sizeof(struct sctp_sock),
6867 	.sysctl_mem  =  sysctl_sctp_mem,
6868 	.sysctl_rmem =  sysctl_sctp_rmem,
6869 	.sysctl_wmem =  sysctl_sctp_wmem,
6870 	.memory_pressure = &sctp_memory_pressure,
6871 	.enter_memory_pressure = sctp_enter_memory_pressure,
6872 	.memory_allocated = &sctp_memory_allocated,
6873 	.sockets_allocated = &sctp_sockets_allocated,
6874 };
6875 
6876 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6877 
6878 struct proto sctpv6_prot = {
6879 	.name		= "SCTPv6",
6880 	.owner		= THIS_MODULE,
6881 	.close		= sctp_close,
6882 	.connect	= sctp_connect,
6883 	.disconnect	= sctp_disconnect,
6884 	.accept		= sctp_accept,
6885 	.ioctl		= sctp_ioctl,
6886 	.init		= sctp_init_sock,
6887 	.destroy	= sctp_destroy_sock,
6888 	.shutdown	= sctp_shutdown,
6889 	.setsockopt	= sctp_setsockopt,
6890 	.getsockopt	= sctp_getsockopt,
6891 	.sendmsg	= sctp_sendmsg,
6892 	.recvmsg	= sctp_recvmsg,
6893 	.bind		= sctp_bind,
6894 	.backlog_rcv	= sctp_backlog_rcv,
6895 	.hash		= sctp_hash,
6896 	.unhash		= sctp_unhash,
6897 	.get_port	= sctp_get_port,
6898 	.obj_size	= sizeof(struct sctp6_sock),
6899 	.sysctl_mem	= sysctl_sctp_mem,
6900 	.sysctl_rmem	= sysctl_sctp_rmem,
6901 	.sysctl_wmem	= sysctl_sctp_wmem,
6902 	.memory_pressure = &sctp_memory_pressure,
6903 	.enter_memory_pressure = sctp_enter_memory_pressure,
6904 	.memory_allocated = &sctp_memory_allocated,
6905 	.sockets_allocated = &sctp_sockets_allocated,
6906 };
6907 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
6908