1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, write to 32 * the Free Software Foundation, 59 Temple Place - Suite 330, 33 * Boston, MA 02111-1307, USA. 34 * 35 * Please send any bug reports or fixes you make to the 36 * email address(es): 37 * lksctp developers <lksctp-developers@lists.sourceforge.net> 38 * 39 * Or submit a bug report through the following website: 40 * http://www.sf.net/projects/lksctp 41 * 42 * Written or modified by: 43 * La Monte H.P. Yarroll <piggy@acm.org> 44 * Narasimha Budihal <narsi@refcode.org> 45 * Karl Knutson <karl@athena.chicago.il.us> 46 * Jon Grimm <jgrimm@us.ibm.com> 47 * Xingang Guo <xingang.guo@intel.com> 48 * Daisy Chang <daisyc@us.ibm.com> 49 * Sridhar Samudrala <samudrala@us.ibm.com> 50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 51 * Ardelle Fan <ardelle.fan@intel.com> 52 * Ryan Layer <rmlayer@us.ibm.com> 53 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 54 * Kevin Gao <kevin.gao@intel.com> 55 * 56 * Any bugs reported given to us we will try to fix... any fixes shared will 57 * be incorporated into the next SCTP release. 58 */ 59 60 #include <linux/types.h> 61 #include <linux/kernel.h> 62 #include <linux/wait.h> 63 #include <linux/time.h> 64 #include <linux/ip.h> 65 #include <linux/capability.h> 66 #include <linux/fcntl.h> 67 #include <linux/poll.h> 68 #include <linux/init.h> 69 #include <linux/crypto.h> 70 71 #include <net/ip.h> 72 #include <net/icmp.h> 73 #include <net/route.h> 74 #include <net/ipv6.h> 75 #include <net/inet_common.h> 76 77 #include <linux/socket.h> /* for sa_family_t */ 78 #include <net/sock.h> 79 #include <net/sctp/sctp.h> 80 #include <net/sctp/sm.h> 81 82 /* WARNING: Please do not remove the SCTP_STATIC attribute to 83 * any of the functions below as they are used to export functions 84 * used by a project regression testsuite. 85 */ 86 87 /* Forward declarations for internal helper functions. */ 88 static int sctp_writeable(struct sock *sk); 89 static void sctp_wfree(struct sk_buff *skb); 90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 91 size_t msg_len); 92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p); 93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 94 static int sctp_wait_for_accept(struct sock *sk, long timeo); 95 static void sctp_wait_for_close(struct sock *sk, long timeo); 96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 97 union sctp_addr *addr, int len); 98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 102 static int sctp_send_asconf(struct sctp_association *asoc, 103 struct sctp_chunk *chunk); 104 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 105 static int sctp_autobind(struct sock *sk); 106 static void sctp_sock_migrate(struct sock *, struct sock *, 107 struct sctp_association *, sctp_socket_type_t); 108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG; 109 110 extern struct kmem_cache *sctp_bucket_cachep; 111 extern int sysctl_sctp_mem[3]; 112 extern int sysctl_sctp_rmem[3]; 113 extern int sysctl_sctp_wmem[3]; 114 115 static int sctp_memory_pressure; 116 static atomic_t sctp_memory_allocated; 117 struct percpu_counter sctp_sockets_allocated; 118 119 static void sctp_enter_memory_pressure(struct sock *sk) 120 { 121 sctp_memory_pressure = 1; 122 } 123 124 125 /* Get the sndbuf space available at the time on the association. */ 126 static inline int sctp_wspace(struct sctp_association *asoc) 127 { 128 int amt; 129 130 if (asoc->ep->sndbuf_policy) 131 amt = asoc->sndbuf_used; 132 else 133 amt = sk_wmem_alloc_get(asoc->base.sk); 134 135 if (amt >= asoc->base.sk->sk_sndbuf) { 136 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 137 amt = 0; 138 else { 139 amt = sk_stream_wspace(asoc->base.sk); 140 if (amt < 0) 141 amt = 0; 142 } 143 } else { 144 amt = asoc->base.sk->sk_sndbuf - amt; 145 } 146 return amt; 147 } 148 149 /* Increment the used sndbuf space count of the corresponding association by 150 * the size of the outgoing data chunk. 151 * Also, set the skb destructor for sndbuf accounting later. 152 * 153 * Since it is always 1-1 between chunk and skb, and also a new skb is always 154 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 155 * destructor in the data chunk skb for the purpose of the sndbuf space 156 * tracking. 157 */ 158 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 159 { 160 struct sctp_association *asoc = chunk->asoc; 161 struct sock *sk = asoc->base.sk; 162 163 /* The sndbuf space is tracked per association. */ 164 sctp_association_hold(asoc); 165 166 skb_set_owner_w(chunk->skb, sk); 167 168 chunk->skb->destructor = sctp_wfree; 169 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 170 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 171 172 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 173 sizeof(struct sk_buff) + 174 sizeof(struct sctp_chunk); 175 176 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 177 sk->sk_wmem_queued += chunk->skb->truesize; 178 sk_mem_charge(sk, chunk->skb->truesize); 179 } 180 181 /* Verify that this is a valid address. */ 182 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 183 int len) 184 { 185 struct sctp_af *af; 186 187 /* Verify basic sockaddr. */ 188 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 189 if (!af) 190 return -EINVAL; 191 192 /* Is this a valid SCTP address? */ 193 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 194 return -EINVAL; 195 196 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 197 return -EINVAL; 198 199 return 0; 200 } 201 202 /* Look up the association by its id. If this is not a UDP-style 203 * socket, the ID field is always ignored. 204 */ 205 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 206 { 207 struct sctp_association *asoc = NULL; 208 209 /* If this is not a UDP-style socket, assoc id should be ignored. */ 210 if (!sctp_style(sk, UDP)) { 211 /* Return NULL if the socket state is not ESTABLISHED. It 212 * could be a TCP-style listening socket or a socket which 213 * hasn't yet called connect() to establish an association. 214 */ 215 if (!sctp_sstate(sk, ESTABLISHED)) 216 return NULL; 217 218 /* Get the first and the only association from the list. */ 219 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 220 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 221 struct sctp_association, asocs); 222 return asoc; 223 } 224 225 /* Otherwise this is a UDP-style socket. */ 226 if (!id || (id == (sctp_assoc_t)-1)) 227 return NULL; 228 229 spin_lock_bh(&sctp_assocs_id_lock); 230 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 231 spin_unlock_bh(&sctp_assocs_id_lock); 232 233 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 234 return NULL; 235 236 return asoc; 237 } 238 239 /* Look up the transport from an address and an assoc id. If both address and 240 * id are specified, the associations matching the address and the id should be 241 * the same. 242 */ 243 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 244 struct sockaddr_storage *addr, 245 sctp_assoc_t id) 246 { 247 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 248 struct sctp_transport *transport; 249 union sctp_addr *laddr = (union sctp_addr *)addr; 250 251 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 252 laddr, 253 &transport); 254 255 if (!addr_asoc) 256 return NULL; 257 258 id_asoc = sctp_id2assoc(sk, id); 259 if (id_asoc && (id_asoc != addr_asoc)) 260 return NULL; 261 262 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 263 (union sctp_addr *)addr); 264 265 return transport; 266 } 267 268 /* API 3.1.2 bind() - UDP Style Syntax 269 * The syntax of bind() is, 270 * 271 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 272 * 273 * sd - the socket descriptor returned by socket(). 274 * addr - the address structure (struct sockaddr_in or struct 275 * sockaddr_in6 [RFC 2553]), 276 * addr_len - the size of the address structure. 277 */ 278 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 279 { 280 int retval = 0; 281 282 sctp_lock_sock(sk); 283 284 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n", 285 sk, addr, addr_len); 286 287 /* Disallow binding twice. */ 288 if (!sctp_sk(sk)->ep->base.bind_addr.port) 289 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 290 addr_len); 291 else 292 retval = -EINVAL; 293 294 sctp_release_sock(sk); 295 296 return retval; 297 } 298 299 static long sctp_get_port_local(struct sock *, union sctp_addr *); 300 301 /* Verify this is a valid sockaddr. */ 302 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 303 union sctp_addr *addr, int len) 304 { 305 struct sctp_af *af; 306 307 /* Check minimum size. */ 308 if (len < sizeof (struct sockaddr)) 309 return NULL; 310 311 /* V4 mapped address are really of AF_INET family */ 312 if (addr->sa.sa_family == AF_INET6 && 313 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { 314 if (!opt->pf->af_supported(AF_INET, opt)) 315 return NULL; 316 } else { 317 /* Does this PF support this AF? */ 318 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 319 return NULL; 320 } 321 322 /* If we get this far, af is valid. */ 323 af = sctp_get_af_specific(addr->sa.sa_family); 324 325 if (len < af->sockaddr_len) 326 return NULL; 327 328 return af; 329 } 330 331 /* Bind a local address either to an endpoint or to an association. */ 332 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 333 { 334 struct sctp_sock *sp = sctp_sk(sk); 335 struct sctp_endpoint *ep = sp->ep; 336 struct sctp_bind_addr *bp = &ep->base.bind_addr; 337 struct sctp_af *af; 338 unsigned short snum; 339 int ret = 0; 340 341 /* Common sockaddr verification. */ 342 af = sctp_sockaddr_af(sp, addr, len); 343 if (!af) { 344 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n", 345 sk, addr, len); 346 return -EINVAL; 347 } 348 349 snum = ntohs(addr->v4.sin_port); 350 351 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ", 352 ", port: %d, new port: %d, len: %d)\n", 353 sk, 354 addr, 355 bp->port, snum, 356 len); 357 358 /* PF specific bind() address verification. */ 359 if (!sp->pf->bind_verify(sp, addr)) 360 return -EADDRNOTAVAIL; 361 362 /* We must either be unbound, or bind to the same port. 363 * It's OK to allow 0 ports if we are already bound. 364 * We'll just inhert an already bound port in this case 365 */ 366 if (bp->port) { 367 if (!snum) 368 snum = bp->port; 369 else if (snum != bp->port) { 370 SCTP_DEBUG_PRINTK("sctp_do_bind:" 371 " New port %d does not match existing port " 372 "%d.\n", snum, bp->port); 373 return -EINVAL; 374 } 375 } 376 377 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 378 return -EACCES; 379 380 /* See if the address matches any of the addresses we may have 381 * already bound before checking against other endpoints. 382 */ 383 if (sctp_bind_addr_match(bp, addr, sp)) 384 return -EINVAL; 385 386 /* Make sure we are allowed to bind here. 387 * The function sctp_get_port_local() does duplicate address 388 * detection. 389 */ 390 addr->v4.sin_port = htons(snum); 391 if ((ret = sctp_get_port_local(sk, addr))) { 392 return -EADDRINUSE; 393 } 394 395 /* Refresh ephemeral port. */ 396 if (!bp->port) 397 bp->port = inet_sk(sk)->num; 398 399 /* Add the address to the bind address list. 400 * Use GFP_ATOMIC since BHs will be disabled. 401 */ 402 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC); 403 404 /* Copy back into socket for getsockname() use. */ 405 if (!ret) { 406 inet_sk(sk)->sport = htons(inet_sk(sk)->num); 407 af->to_sk_saddr(addr, sk); 408 } 409 410 return ret; 411 } 412 413 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 414 * 415 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 416 * at any one time. If a sender, after sending an ASCONF chunk, decides 417 * it needs to transfer another ASCONF Chunk, it MUST wait until the 418 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 419 * subsequent ASCONF. Note this restriction binds each side, so at any 420 * time two ASCONF may be in-transit on any given association (one sent 421 * from each endpoint). 422 */ 423 static int sctp_send_asconf(struct sctp_association *asoc, 424 struct sctp_chunk *chunk) 425 { 426 int retval = 0; 427 428 /* If there is an outstanding ASCONF chunk, queue it for later 429 * transmission. 430 */ 431 if (asoc->addip_last_asconf) { 432 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 433 goto out; 434 } 435 436 /* Hold the chunk until an ASCONF_ACK is received. */ 437 sctp_chunk_hold(chunk); 438 retval = sctp_primitive_ASCONF(asoc, chunk); 439 if (retval) 440 sctp_chunk_free(chunk); 441 else 442 asoc->addip_last_asconf = chunk; 443 444 out: 445 return retval; 446 } 447 448 /* Add a list of addresses as bind addresses to local endpoint or 449 * association. 450 * 451 * Basically run through each address specified in the addrs/addrcnt 452 * array/length pair, determine if it is IPv6 or IPv4 and call 453 * sctp_do_bind() on it. 454 * 455 * If any of them fails, then the operation will be reversed and the 456 * ones that were added will be removed. 457 * 458 * Only sctp_setsockopt_bindx() is supposed to call this function. 459 */ 460 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 461 { 462 int cnt; 463 int retval = 0; 464 void *addr_buf; 465 struct sockaddr *sa_addr; 466 struct sctp_af *af; 467 468 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n", 469 sk, addrs, addrcnt); 470 471 addr_buf = addrs; 472 for (cnt = 0; cnt < addrcnt; cnt++) { 473 /* The list may contain either IPv4 or IPv6 address; 474 * determine the address length for walking thru the list. 475 */ 476 sa_addr = (struct sockaddr *)addr_buf; 477 af = sctp_get_af_specific(sa_addr->sa_family); 478 if (!af) { 479 retval = -EINVAL; 480 goto err_bindx_add; 481 } 482 483 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 484 af->sockaddr_len); 485 486 addr_buf += af->sockaddr_len; 487 488 err_bindx_add: 489 if (retval < 0) { 490 /* Failed. Cleanup the ones that have been added */ 491 if (cnt > 0) 492 sctp_bindx_rem(sk, addrs, cnt); 493 return retval; 494 } 495 } 496 497 return retval; 498 } 499 500 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 501 * associations that are part of the endpoint indicating that a list of local 502 * addresses are added to the endpoint. 503 * 504 * If any of the addresses is already in the bind address list of the 505 * association, we do not send the chunk for that association. But it will not 506 * affect other associations. 507 * 508 * Only sctp_setsockopt_bindx() is supposed to call this function. 509 */ 510 static int sctp_send_asconf_add_ip(struct sock *sk, 511 struct sockaddr *addrs, 512 int addrcnt) 513 { 514 struct sctp_sock *sp; 515 struct sctp_endpoint *ep; 516 struct sctp_association *asoc; 517 struct sctp_bind_addr *bp; 518 struct sctp_chunk *chunk; 519 struct sctp_sockaddr_entry *laddr; 520 union sctp_addr *addr; 521 union sctp_addr saveaddr; 522 void *addr_buf; 523 struct sctp_af *af; 524 struct list_head *p; 525 int i; 526 int retval = 0; 527 528 if (!sctp_addip_enable) 529 return retval; 530 531 sp = sctp_sk(sk); 532 ep = sp->ep; 533 534 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 535 __func__, sk, addrs, addrcnt); 536 537 list_for_each_entry(asoc, &ep->asocs, asocs) { 538 539 if (!asoc->peer.asconf_capable) 540 continue; 541 542 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 543 continue; 544 545 if (!sctp_state(asoc, ESTABLISHED)) 546 continue; 547 548 /* Check if any address in the packed array of addresses is 549 * in the bind address list of the association. If so, 550 * do not send the asconf chunk to its peer, but continue with 551 * other associations. 552 */ 553 addr_buf = addrs; 554 for (i = 0; i < addrcnt; i++) { 555 addr = (union sctp_addr *)addr_buf; 556 af = sctp_get_af_specific(addr->v4.sin_family); 557 if (!af) { 558 retval = -EINVAL; 559 goto out; 560 } 561 562 if (sctp_assoc_lookup_laddr(asoc, addr)) 563 break; 564 565 addr_buf += af->sockaddr_len; 566 } 567 if (i < addrcnt) 568 continue; 569 570 /* Use the first valid address in bind addr list of 571 * association as Address Parameter of ASCONF CHUNK. 572 */ 573 bp = &asoc->base.bind_addr; 574 p = bp->address_list.next; 575 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 576 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 577 addrcnt, SCTP_PARAM_ADD_IP); 578 if (!chunk) { 579 retval = -ENOMEM; 580 goto out; 581 } 582 583 retval = sctp_send_asconf(asoc, chunk); 584 if (retval) 585 goto out; 586 587 /* Add the new addresses to the bind address list with 588 * use_as_src set to 0. 589 */ 590 addr_buf = addrs; 591 for (i = 0; i < addrcnt; i++) { 592 addr = (union sctp_addr *)addr_buf; 593 af = sctp_get_af_specific(addr->v4.sin_family); 594 memcpy(&saveaddr, addr, af->sockaddr_len); 595 retval = sctp_add_bind_addr(bp, &saveaddr, 596 SCTP_ADDR_NEW, GFP_ATOMIC); 597 addr_buf += af->sockaddr_len; 598 } 599 } 600 601 out: 602 return retval; 603 } 604 605 /* Remove a list of addresses from bind addresses list. Do not remove the 606 * last address. 607 * 608 * Basically run through each address specified in the addrs/addrcnt 609 * array/length pair, determine if it is IPv6 or IPv4 and call 610 * sctp_del_bind() on it. 611 * 612 * If any of them fails, then the operation will be reversed and the 613 * ones that were removed will be added back. 614 * 615 * At least one address has to be left; if only one address is 616 * available, the operation will return -EBUSY. 617 * 618 * Only sctp_setsockopt_bindx() is supposed to call this function. 619 */ 620 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 621 { 622 struct sctp_sock *sp = sctp_sk(sk); 623 struct sctp_endpoint *ep = sp->ep; 624 int cnt; 625 struct sctp_bind_addr *bp = &ep->base.bind_addr; 626 int retval = 0; 627 void *addr_buf; 628 union sctp_addr *sa_addr; 629 struct sctp_af *af; 630 631 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n", 632 sk, addrs, addrcnt); 633 634 addr_buf = addrs; 635 for (cnt = 0; cnt < addrcnt; cnt++) { 636 /* If the bind address list is empty or if there is only one 637 * bind address, there is nothing more to be removed (we need 638 * at least one address here). 639 */ 640 if (list_empty(&bp->address_list) || 641 (sctp_list_single_entry(&bp->address_list))) { 642 retval = -EBUSY; 643 goto err_bindx_rem; 644 } 645 646 sa_addr = (union sctp_addr *)addr_buf; 647 af = sctp_get_af_specific(sa_addr->sa.sa_family); 648 if (!af) { 649 retval = -EINVAL; 650 goto err_bindx_rem; 651 } 652 653 if (!af->addr_valid(sa_addr, sp, NULL)) { 654 retval = -EADDRNOTAVAIL; 655 goto err_bindx_rem; 656 } 657 658 if (sa_addr->v4.sin_port != htons(bp->port)) { 659 retval = -EINVAL; 660 goto err_bindx_rem; 661 } 662 663 /* FIXME - There is probably a need to check if sk->sk_saddr and 664 * sk->sk_rcv_addr are currently set to one of the addresses to 665 * be removed. This is something which needs to be looked into 666 * when we are fixing the outstanding issues with multi-homing 667 * socket routing and failover schemes. Refer to comments in 668 * sctp_do_bind(). -daisy 669 */ 670 retval = sctp_del_bind_addr(bp, sa_addr); 671 672 addr_buf += af->sockaddr_len; 673 err_bindx_rem: 674 if (retval < 0) { 675 /* Failed. Add the ones that has been removed back */ 676 if (cnt > 0) 677 sctp_bindx_add(sk, addrs, cnt); 678 return retval; 679 } 680 } 681 682 return retval; 683 } 684 685 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 686 * the associations that are part of the endpoint indicating that a list of 687 * local addresses are removed from the endpoint. 688 * 689 * If any of the addresses is already in the bind address list of the 690 * association, we do not send the chunk for that association. But it will not 691 * affect other associations. 692 * 693 * Only sctp_setsockopt_bindx() is supposed to call this function. 694 */ 695 static int sctp_send_asconf_del_ip(struct sock *sk, 696 struct sockaddr *addrs, 697 int addrcnt) 698 { 699 struct sctp_sock *sp; 700 struct sctp_endpoint *ep; 701 struct sctp_association *asoc; 702 struct sctp_transport *transport; 703 struct sctp_bind_addr *bp; 704 struct sctp_chunk *chunk; 705 union sctp_addr *laddr; 706 void *addr_buf; 707 struct sctp_af *af; 708 struct sctp_sockaddr_entry *saddr; 709 int i; 710 int retval = 0; 711 712 if (!sctp_addip_enable) 713 return retval; 714 715 sp = sctp_sk(sk); 716 ep = sp->ep; 717 718 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 719 __func__, sk, addrs, addrcnt); 720 721 list_for_each_entry(asoc, &ep->asocs, asocs) { 722 723 if (!asoc->peer.asconf_capable) 724 continue; 725 726 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 727 continue; 728 729 if (!sctp_state(asoc, ESTABLISHED)) 730 continue; 731 732 /* Check if any address in the packed array of addresses is 733 * not present in the bind address list of the association. 734 * If so, do not send the asconf chunk to its peer, but 735 * continue with other associations. 736 */ 737 addr_buf = addrs; 738 for (i = 0; i < addrcnt; i++) { 739 laddr = (union sctp_addr *)addr_buf; 740 af = sctp_get_af_specific(laddr->v4.sin_family); 741 if (!af) { 742 retval = -EINVAL; 743 goto out; 744 } 745 746 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 747 break; 748 749 addr_buf += af->sockaddr_len; 750 } 751 if (i < addrcnt) 752 continue; 753 754 /* Find one address in the association's bind address list 755 * that is not in the packed array of addresses. This is to 756 * make sure that we do not delete all the addresses in the 757 * association. 758 */ 759 bp = &asoc->base.bind_addr; 760 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 761 addrcnt, sp); 762 if (!laddr) 763 continue; 764 765 /* We do not need RCU protection throughout this loop 766 * because this is done under a socket lock from the 767 * setsockopt call. 768 */ 769 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 770 SCTP_PARAM_DEL_IP); 771 if (!chunk) { 772 retval = -ENOMEM; 773 goto out; 774 } 775 776 /* Reset use_as_src flag for the addresses in the bind address 777 * list that are to be deleted. 778 */ 779 addr_buf = addrs; 780 for (i = 0; i < addrcnt; i++) { 781 laddr = (union sctp_addr *)addr_buf; 782 af = sctp_get_af_specific(laddr->v4.sin_family); 783 list_for_each_entry(saddr, &bp->address_list, list) { 784 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 785 saddr->state = SCTP_ADDR_DEL; 786 } 787 addr_buf += af->sockaddr_len; 788 } 789 790 /* Update the route and saddr entries for all the transports 791 * as some of the addresses in the bind address list are 792 * about to be deleted and cannot be used as source addresses. 793 */ 794 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 795 transports) { 796 dst_release(transport->dst); 797 sctp_transport_route(transport, NULL, 798 sctp_sk(asoc->base.sk)); 799 } 800 801 retval = sctp_send_asconf(asoc, chunk); 802 } 803 out: 804 return retval; 805 } 806 807 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 808 * 809 * API 8.1 810 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 811 * int flags); 812 * 813 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 814 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 815 * or IPv6 addresses. 816 * 817 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 818 * Section 3.1.2 for this usage. 819 * 820 * addrs is a pointer to an array of one or more socket addresses. Each 821 * address is contained in its appropriate structure (i.e. struct 822 * sockaddr_in or struct sockaddr_in6) the family of the address type 823 * must be used to distinguish the address length (note that this 824 * representation is termed a "packed array" of addresses). The caller 825 * specifies the number of addresses in the array with addrcnt. 826 * 827 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 828 * -1, and sets errno to the appropriate error code. 829 * 830 * For SCTP, the port given in each socket address must be the same, or 831 * sctp_bindx() will fail, setting errno to EINVAL. 832 * 833 * The flags parameter is formed from the bitwise OR of zero or more of 834 * the following currently defined flags: 835 * 836 * SCTP_BINDX_ADD_ADDR 837 * 838 * SCTP_BINDX_REM_ADDR 839 * 840 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 841 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 842 * addresses from the association. The two flags are mutually exclusive; 843 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 844 * not remove all addresses from an association; sctp_bindx() will 845 * reject such an attempt with EINVAL. 846 * 847 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 848 * additional addresses with an endpoint after calling bind(). Or use 849 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 850 * socket is associated with so that no new association accepted will be 851 * associated with those addresses. If the endpoint supports dynamic 852 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 853 * endpoint to send the appropriate message to the peer to change the 854 * peers address lists. 855 * 856 * Adding and removing addresses from a connected association is 857 * optional functionality. Implementations that do not support this 858 * functionality should return EOPNOTSUPP. 859 * 860 * Basically do nothing but copying the addresses from user to kernel 861 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 862 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 863 * from userspace. 864 * 865 * We don't use copy_from_user() for optimization: we first do the 866 * sanity checks (buffer size -fast- and access check-healthy 867 * pointer); if all of those succeed, then we can alloc the memory 868 * (expensive operation) needed to copy the data to kernel. Then we do 869 * the copying without checking the user space area 870 * (__copy_from_user()). 871 * 872 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 873 * it. 874 * 875 * sk The sk of the socket 876 * addrs The pointer to the addresses in user land 877 * addrssize Size of the addrs buffer 878 * op Operation to perform (add or remove, see the flags of 879 * sctp_bindx) 880 * 881 * Returns 0 if ok, <0 errno code on error. 882 */ 883 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk, 884 struct sockaddr __user *addrs, 885 int addrs_size, int op) 886 { 887 struct sockaddr *kaddrs; 888 int err; 889 int addrcnt = 0; 890 int walk_size = 0; 891 struct sockaddr *sa_addr; 892 void *addr_buf; 893 struct sctp_af *af; 894 895 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p" 896 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op); 897 898 if (unlikely(addrs_size <= 0)) 899 return -EINVAL; 900 901 /* Check the user passed a healthy pointer. */ 902 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 903 return -EFAULT; 904 905 /* Alloc space for the address array in kernel memory. */ 906 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 907 if (unlikely(!kaddrs)) 908 return -ENOMEM; 909 910 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 911 kfree(kaddrs); 912 return -EFAULT; 913 } 914 915 /* Walk through the addrs buffer and count the number of addresses. */ 916 addr_buf = kaddrs; 917 while (walk_size < addrs_size) { 918 sa_addr = (struct sockaddr *)addr_buf; 919 af = sctp_get_af_specific(sa_addr->sa_family); 920 921 /* If the address family is not supported or if this address 922 * causes the address buffer to overflow return EINVAL. 923 */ 924 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 925 kfree(kaddrs); 926 return -EINVAL; 927 } 928 addrcnt++; 929 addr_buf += af->sockaddr_len; 930 walk_size += af->sockaddr_len; 931 } 932 933 /* Do the work. */ 934 switch (op) { 935 case SCTP_BINDX_ADD_ADDR: 936 err = sctp_bindx_add(sk, kaddrs, addrcnt); 937 if (err) 938 goto out; 939 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 940 break; 941 942 case SCTP_BINDX_REM_ADDR: 943 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 944 if (err) 945 goto out; 946 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 947 break; 948 949 default: 950 err = -EINVAL; 951 break; 952 } 953 954 out: 955 kfree(kaddrs); 956 957 return err; 958 } 959 960 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 961 * 962 * Common routine for handling connect() and sctp_connectx(). 963 * Connect will come in with just a single address. 964 */ 965 static int __sctp_connect(struct sock* sk, 966 struct sockaddr *kaddrs, 967 int addrs_size, 968 sctp_assoc_t *assoc_id) 969 { 970 struct sctp_sock *sp; 971 struct sctp_endpoint *ep; 972 struct sctp_association *asoc = NULL; 973 struct sctp_association *asoc2; 974 struct sctp_transport *transport; 975 union sctp_addr to; 976 struct sctp_af *af; 977 sctp_scope_t scope; 978 long timeo; 979 int err = 0; 980 int addrcnt = 0; 981 int walk_size = 0; 982 union sctp_addr *sa_addr = NULL; 983 void *addr_buf; 984 unsigned short port; 985 unsigned int f_flags = 0; 986 987 sp = sctp_sk(sk); 988 ep = sp->ep; 989 990 /* connect() cannot be done on a socket that is already in ESTABLISHED 991 * state - UDP-style peeled off socket or a TCP-style socket that 992 * is already connected. 993 * It cannot be done even on a TCP-style listening socket. 994 */ 995 if (sctp_sstate(sk, ESTABLISHED) || 996 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 997 err = -EISCONN; 998 goto out_free; 999 } 1000 1001 /* Walk through the addrs buffer and count the number of addresses. */ 1002 addr_buf = kaddrs; 1003 while (walk_size < addrs_size) { 1004 sa_addr = (union sctp_addr *)addr_buf; 1005 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1006 port = ntohs(sa_addr->v4.sin_port); 1007 1008 /* If the address family is not supported or if this address 1009 * causes the address buffer to overflow return EINVAL. 1010 */ 1011 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1012 err = -EINVAL; 1013 goto out_free; 1014 } 1015 1016 /* Save current address so we can work with it */ 1017 memcpy(&to, sa_addr, af->sockaddr_len); 1018 1019 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1020 if (err) 1021 goto out_free; 1022 1023 /* Make sure the destination port is correctly set 1024 * in all addresses. 1025 */ 1026 if (asoc && asoc->peer.port && asoc->peer.port != port) 1027 goto out_free; 1028 1029 1030 /* Check if there already is a matching association on the 1031 * endpoint (other than the one created here). 1032 */ 1033 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1034 if (asoc2 && asoc2 != asoc) { 1035 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1036 err = -EISCONN; 1037 else 1038 err = -EALREADY; 1039 goto out_free; 1040 } 1041 1042 /* If we could not find a matching association on the endpoint, 1043 * make sure that there is no peeled-off association matching 1044 * the peer address even on another socket. 1045 */ 1046 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1047 err = -EADDRNOTAVAIL; 1048 goto out_free; 1049 } 1050 1051 if (!asoc) { 1052 /* If a bind() or sctp_bindx() is not called prior to 1053 * an sctp_connectx() call, the system picks an 1054 * ephemeral port and will choose an address set 1055 * equivalent to binding with a wildcard address. 1056 */ 1057 if (!ep->base.bind_addr.port) { 1058 if (sctp_autobind(sk)) { 1059 err = -EAGAIN; 1060 goto out_free; 1061 } 1062 } else { 1063 /* 1064 * If an unprivileged user inherits a 1-many 1065 * style socket with open associations on a 1066 * privileged port, it MAY be permitted to 1067 * accept new associations, but it SHOULD NOT 1068 * be permitted to open new associations. 1069 */ 1070 if (ep->base.bind_addr.port < PROT_SOCK && 1071 !capable(CAP_NET_BIND_SERVICE)) { 1072 err = -EACCES; 1073 goto out_free; 1074 } 1075 } 1076 1077 scope = sctp_scope(&to); 1078 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1079 if (!asoc) { 1080 err = -ENOMEM; 1081 goto out_free; 1082 } 1083 } 1084 1085 /* Prime the peer's transport structures. */ 1086 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1087 SCTP_UNKNOWN); 1088 if (!transport) { 1089 err = -ENOMEM; 1090 goto out_free; 1091 } 1092 1093 addrcnt++; 1094 addr_buf += af->sockaddr_len; 1095 walk_size += af->sockaddr_len; 1096 } 1097 1098 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1099 if (err < 0) { 1100 goto out_free; 1101 } 1102 1103 /* In case the user of sctp_connectx() wants an association 1104 * id back, assign one now. 1105 */ 1106 if (assoc_id) { 1107 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1108 if (err < 0) 1109 goto out_free; 1110 } 1111 1112 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1113 if (err < 0) { 1114 goto out_free; 1115 } 1116 1117 /* Initialize sk's dport and daddr for getpeername() */ 1118 inet_sk(sk)->dport = htons(asoc->peer.port); 1119 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1120 af->to_sk_daddr(sa_addr, sk); 1121 sk->sk_err = 0; 1122 1123 /* in-kernel sockets don't generally have a file allocated to them 1124 * if all they do is call sock_create_kern(). 1125 */ 1126 if (sk->sk_socket->file) 1127 f_flags = sk->sk_socket->file->f_flags; 1128 1129 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1130 1131 err = sctp_wait_for_connect(asoc, &timeo); 1132 if ((err == 0 || err == -EINPROGRESS) && assoc_id) 1133 *assoc_id = asoc->assoc_id; 1134 1135 /* Don't free association on exit. */ 1136 asoc = NULL; 1137 1138 out_free: 1139 1140 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p" 1141 " kaddrs: %p err: %d\n", 1142 asoc, kaddrs, err); 1143 if (asoc) 1144 sctp_association_free(asoc); 1145 return err; 1146 } 1147 1148 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1149 * 1150 * API 8.9 1151 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1152 * sctp_assoc_t *asoc); 1153 * 1154 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1155 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1156 * or IPv6 addresses. 1157 * 1158 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1159 * Section 3.1.2 for this usage. 1160 * 1161 * addrs is a pointer to an array of one or more socket addresses. Each 1162 * address is contained in its appropriate structure (i.e. struct 1163 * sockaddr_in or struct sockaddr_in6) the family of the address type 1164 * must be used to distengish the address length (note that this 1165 * representation is termed a "packed array" of addresses). The caller 1166 * specifies the number of addresses in the array with addrcnt. 1167 * 1168 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1169 * the association id of the new association. On failure, sctp_connectx() 1170 * returns -1, and sets errno to the appropriate error code. The assoc_id 1171 * is not touched by the kernel. 1172 * 1173 * For SCTP, the port given in each socket address must be the same, or 1174 * sctp_connectx() will fail, setting errno to EINVAL. 1175 * 1176 * An application can use sctp_connectx to initiate an association with 1177 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1178 * allows a caller to specify multiple addresses at which a peer can be 1179 * reached. The way the SCTP stack uses the list of addresses to set up 1180 * the association is implementation dependant. This function only 1181 * specifies that the stack will try to make use of all the addresses in 1182 * the list when needed. 1183 * 1184 * Note that the list of addresses passed in is only used for setting up 1185 * the association. It does not necessarily equal the set of addresses 1186 * the peer uses for the resulting association. If the caller wants to 1187 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1188 * retrieve them after the association has been set up. 1189 * 1190 * Basically do nothing but copying the addresses from user to kernel 1191 * land and invoking either sctp_connectx(). This is used for tunneling 1192 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1193 * 1194 * We don't use copy_from_user() for optimization: we first do the 1195 * sanity checks (buffer size -fast- and access check-healthy 1196 * pointer); if all of those succeed, then we can alloc the memory 1197 * (expensive operation) needed to copy the data to kernel. Then we do 1198 * the copying without checking the user space area 1199 * (__copy_from_user()). 1200 * 1201 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1202 * it. 1203 * 1204 * sk The sk of the socket 1205 * addrs The pointer to the addresses in user land 1206 * addrssize Size of the addrs buffer 1207 * 1208 * Returns >=0 if ok, <0 errno code on error. 1209 */ 1210 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk, 1211 struct sockaddr __user *addrs, 1212 int addrs_size, 1213 sctp_assoc_t *assoc_id) 1214 { 1215 int err = 0; 1216 struct sockaddr *kaddrs; 1217 1218 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n", 1219 __func__, sk, addrs, addrs_size); 1220 1221 if (unlikely(addrs_size <= 0)) 1222 return -EINVAL; 1223 1224 /* Check the user passed a healthy pointer. */ 1225 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1226 return -EFAULT; 1227 1228 /* Alloc space for the address array in kernel memory. */ 1229 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 1230 if (unlikely(!kaddrs)) 1231 return -ENOMEM; 1232 1233 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1234 err = -EFAULT; 1235 } else { 1236 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1237 } 1238 1239 kfree(kaddrs); 1240 1241 return err; 1242 } 1243 1244 /* 1245 * This is an older interface. It's kept for backward compatibility 1246 * to the option that doesn't provide association id. 1247 */ 1248 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk, 1249 struct sockaddr __user *addrs, 1250 int addrs_size) 1251 { 1252 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1253 } 1254 1255 /* 1256 * New interface for the API. The since the API is done with a socket 1257 * option, to make it simple we feed back the association id is as a return 1258 * indication to the call. Error is always negative and association id is 1259 * always positive. 1260 */ 1261 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk, 1262 struct sockaddr __user *addrs, 1263 int addrs_size) 1264 { 1265 sctp_assoc_t assoc_id = 0; 1266 int err = 0; 1267 1268 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1269 1270 if (err) 1271 return err; 1272 else 1273 return assoc_id; 1274 } 1275 1276 /* 1277 * New (hopefully final) interface for the API. The option buffer is used 1278 * both for the returned association id and the addresses. 1279 */ 1280 SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len, 1281 char __user *optval, 1282 int __user *optlen) 1283 { 1284 sctp_assoc_t assoc_id = 0; 1285 int err = 0; 1286 1287 if (len < sizeof(assoc_id)) 1288 return -EINVAL; 1289 1290 err = __sctp_setsockopt_connectx(sk, 1291 (struct sockaddr __user *)(optval + sizeof(assoc_id)), 1292 len - sizeof(assoc_id), &assoc_id); 1293 1294 if (err == 0 || err == -EINPROGRESS) { 1295 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1296 return -EFAULT; 1297 if (put_user(sizeof(assoc_id), optlen)) 1298 return -EFAULT; 1299 } 1300 1301 return err; 1302 } 1303 1304 /* API 3.1.4 close() - UDP Style Syntax 1305 * Applications use close() to perform graceful shutdown (as described in 1306 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1307 * by a UDP-style socket. 1308 * 1309 * The syntax is 1310 * 1311 * ret = close(int sd); 1312 * 1313 * sd - the socket descriptor of the associations to be closed. 1314 * 1315 * To gracefully shutdown a specific association represented by the 1316 * UDP-style socket, an application should use the sendmsg() call, 1317 * passing no user data, but including the appropriate flag in the 1318 * ancillary data (see Section xxxx). 1319 * 1320 * If sd in the close() call is a branched-off socket representing only 1321 * one association, the shutdown is performed on that association only. 1322 * 1323 * 4.1.6 close() - TCP Style Syntax 1324 * 1325 * Applications use close() to gracefully close down an association. 1326 * 1327 * The syntax is: 1328 * 1329 * int close(int sd); 1330 * 1331 * sd - the socket descriptor of the association to be closed. 1332 * 1333 * After an application calls close() on a socket descriptor, no further 1334 * socket operations will succeed on that descriptor. 1335 * 1336 * API 7.1.4 SO_LINGER 1337 * 1338 * An application using the TCP-style socket can use this option to 1339 * perform the SCTP ABORT primitive. The linger option structure is: 1340 * 1341 * struct linger { 1342 * int l_onoff; // option on/off 1343 * int l_linger; // linger time 1344 * }; 1345 * 1346 * To enable the option, set l_onoff to 1. If the l_linger value is set 1347 * to 0, calling close() is the same as the ABORT primitive. If the 1348 * value is set to a negative value, the setsockopt() call will return 1349 * an error. If the value is set to a positive value linger_time, the 1350 * close() can be blocked for at most linger_time ms. If the graceful 1351 * shutdown phase does not finish during this period, close() will 1352 * return but the graceful shutdown phase continues in the system. 1353 */ 1354 SCTP_STATIC void sctp_close(struct sock *sk, long timeout) 1355 { 1356 struct sctp_endpoint *ep; 1357 struct sctp_association *asoc; 1358 struct list_head *pos, *temp; 1359 1360 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout); 1361 1362 sctp_lock_sock(sk); 1363 sk->sk_shutdown = SHUTDOWN_MASK; 1364 sk->sk_state = SCTP_SS_CLOSING; 1365 1366 ep = sctp_sk(sk)->ep; 1367 1368 /* Walk all associations on an endpoint. */ 1369 list_for_each_safe(pos, temp, &ep->asocs) { 1370 asoc = list_entry(pos, struct sctp_association, asocs); 1371 1372 if (sctp_style(sk, TCP)) { 1373 /* A closed association can still be in the list if 1374 * it belongs to a TCP-style listening socket that is 1375 * not yet accepted. If so, free it. If not, send an 1376 * ABORT or SHUTDOWN based on the linger options. 1377 */ 1378 if (sctp_state(asoc, CLOSED)) { 1379 sctp_unhash_established(asoc); 1380 sctp_association_free(asoc); 1381 continue; 1382 } 1383 } 1384 1385 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 1386 struct sctp_chunk *chunk; 1387 1388 chunk = sctp_make_abort_user(asoc, NULL, 0); 1389 if (chunk) 1390 sctp_primitive_ABORT(asoc, chunk); 1391 } else 1392 sctp_primitive_SHUTDOWN(asoc, NULL); 1393 } 1394 1395 /* Clean up any skbs sitting on the receive queue. */ 1396 sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1397 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1398 1399 /* On a TCP-style socket, block for at most linger_time if set. */ 1400 if (sctp_style(sk, TCP) && timeout) 1401 sctp_wait_for_close(sk, timeout); 1402 1403 /* This will run the backlog queue. */ 1404 sctp_release_sock(sk); 1405 1406 /* Supposedly, no process has access to the socket, but 1407 * the net layers still may. 1408 */ 1409 sctp_local_bh_disable(); 1410 sctp_bh_lock_sock(sk); 1411 1412 /* Hold the sock, since sk_common_release() will put sock_put() 1413 * and we have just a little more cleanup. 1414 */ 1415 sock_hold(sk); 1416 sk_common_release(sk); 1417 1418 sctp_bh_unlock_sock(sk); 1419 sctp_local_bh_enable(); 1420 1421 sock_put(sk); 1422 1423 SCTP_DBG_OBJCNT_DEC(sock); 1424 } 1425 1426 /* Handle EPIPE error. */ 1427 static int sctp_error(struct sock *sk, int flags, int err) 1428 { 1429 if (err == -EPIPE) 1430 err = sock_error(sk) ? : -EPIPE; 1431 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1432 send_sig(SIGPIPE, current, 0); 1433 return err; 1434 } 1435 1436 /* API 3.1.3 sendmsg() - UDP Style Syntax 1437 * 1438 * An application uses sendmsg() and recvmsg() calls to transmit data to 1439 * and receive data from its peer. 1440 * 1441 * ssize_t sendmsg(int socket, const struct msghdr *message, 1442 * int flags); 1443 * 1444 * socket - the socket descriptor of the endpoint. 1445 * message - pointer to the msghdr structure which contains a single 1446 * user message and possibly some ancillary data. 1447 * 1448 * See Section 5 for complete description of the data 1449 * structures. 1450 * 1451 * flags - flags sent or received with the user message, see Section 1452 * 5 for complete description of the flags. 1453 * 1454 * Note: This function could use a rewrite especially when explicit 1455 * connect support comes in. 1456 */ 1457 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1458 1459 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1460 1461 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1462 struct msghdr *msg, size_t msg_len) 1463 { 1464 struct sctp_sock *sp; 1465 struct sctp_endpoint *ep; 1466 struct sctp_association *new_asoc=NULL, *asoc=NULL; 1467 struct sctp_transport *transport, *chunk_tp; 1468 struct sctp_chunk *chunk; 1469 union sctp_addr to; 1470 struct sockaddr *msg_name = NULL; 1471 struct sctp_sndrcvinfo default_sinfo = { 0 }; 1472 struct sctp_sndrcvinfo *sinfo; 1473 struct sctp_initmsg *sinit; 1474 sctp_assoc_t associd = 0; 1475 sctp_cmsgs_t cmsgs = { NULL }; 1476 int err; 1477 sctp_scope_t scope; 1478 long timeo; 1479 __u16 sinfo_flags = 0; 1480 struct sctp_datamsg *datamsg; 1481 int msg_flags = msg->msg_flags; 1482 1483 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n", 1484 sk, msg, msg_len); 1485 1486 err = 0; 1487 sp = sctp_sk(sk); 1488 ep = sp->ep; 1489 1490 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep); 1491 1492 /* We cannot send a message over a TCP-style listening socket. */ 1493 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1494 err = -EPIPE; 1495 goto out_nounlock; 1496 } 1497 1498 /* Parse out the SCTP CMSGs. */ 1499 err = sctp_msghdr_parse(msg, &cmsgs); 1500 1501 if (err) { 1502 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err); 1503 goto out_nounlock; 1504 } 1505 1506 /* Fetch the destination address for this packet. This 1507 * address only selects the association--it is not necessarily 1508 * the address we will send to. 1509 * For a peeled-off socket, msg_name is ignored. 1510 */ 1511 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1512 int msg_namelen = msg->msg_namelen; 1513 1514 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1515 msg_namelen); 1516 if (err) 1517 return err; 1518 1519 if (msg_namelen > sizeof(to)) 1520 msg_namelen = sizeof(to); 1521 memcpy(&to, msg->msg_name, msg_namelen); 1522 msg_name = msg->msg_name; 1523 } 1524 1525 sinfo = cmsgs.info; 1526 sinit = cmsgs.init; 1527 1528 /* Did the user specify SNDRCVINFO? */ 1529 if (sinfo) { 1530 sinfo_flags = sinfo->sinfo_flags; 1531 associd = sinfo->sinfo_assoc_id; 1532 } 1533 1534 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n", 1535 msg_len, sinfo_flags); 1536 1537 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1538 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1539 err = -EINVAL; 1540 goto out_nounlock; 1541 } 1542 1543 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1544 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1545 * If SCTP_ABORT is set, the message length could be non zero with 1546 * the msg_iov set to the user abort reason. 1547 */ 1548 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1549 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1550 err = -EINVAL; 1551 goto out_nounlock; 1552 } 1553 1554 /* If SCTP_ADDR_OVER is set, there must be an address 1555 * specified in msg_name. 1556 */ 1557 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1558 err = -EINVAL; 1559 goto out_nounlock; 1560 } 1561 1562 transport = NULL; 1563 1564 SCTP_DEBUG_PRINTK("About to look up association.\n"); 1565 1566 sctp_lock_sock(sk); 1567 1568 /* If a msg_name has been specified, assume this is to be used. */ 1569 if (msg_name) { 1570 /* Look for a matching association on the endpoint. */ 1571 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1572 if (!asoc) { 1573 /* If we could not find a matching association on the 1574 * endpoint, make sure that it is not a TCP-style 1575 * socket that already has an association or there is 1576 * no peeled-off association on another socket. 1577 */ 1578 if ((sctp_style(sk, TCP) && 1579 sctp_sstate(sk, ESTABLISHED)) || 1580 sctp_endpoint_is_peeled_off(ep, &to)) { 1581 err = -EADDRNOTAVAIL; 1582 goto out_unlock; 1583 } 1584 } 1585 } else { 1586 asoc = sctp_id2assoc(sk, associd); 1587 if (!asoc) { 1588 err = -EPIPE; 1589 goto out_unlock; 1590 } 1591 } 1592 1593 if (asoc) { 1594 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc); 1595 1596 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1597 * socket that has an association in CLOSED state. This can 1598 * happen when an accepted socket has an association that is 1599 * already CLOSED. 1600 */ 1601 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1602 err = -EPIPE; 1603 goto out_unlock; 1604 } 1605 1606 if (sinfo_flags & SCTP_EOF) { 1607 SCTP_DEBUG_PRINTK("Shutting down association: %p\n", 1608 asoc); 1609 sctp_primitive_SHUTDOWN(asoc, NULL); 1610 err = 0; 1611 goto out_unlock; 1612 } 1613 if (sinfo_flags & SCTP_ABORT) { 1614 1615 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1616 if (!chunk) { 1617 err = -ENOMEM; 1618 goto out_unlock; 1619 } 1620 1621 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc); 1622 sctp_primitive_ABORT(asoc, chunk); 1623 err = 0; 1624 goto out_unlock; 1625 } 1626 } 1627 1628 /* Do we need to create the association? */ 1629 if (!asoc) { 1630 SCTP_DEBUG_PRINTK("There is no association yet.\n"); 1631 1632 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1633 err = -EINVAL; 1634 goto out_unlock; 1635 } 1636 1637 /* Check for invalid stream against the stream counts, 1638 * either the default or the user specified stream counts. 1639 */ 1640 if (sinfo) { 1641 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) { 1642 /* Check against the defaults. */ 1643 if (sinfo->sinfo_stream >= 1644 sp->initmsg.sinit_num_ostreams) { 1645 err = -EINVAL; 1646 goto out_unlock; 1647 } 1648 } else { 1649 /* Check against the requested. */ 1650 if (sinfo->sinfo_stream >= 1651 sinit->sinit_num_ostreams) { 1652 err = -EINVAL; 1653 goto out_unlock; 1654 } 1655 } 1656 } 1657 1658 /* 1659 * API 3.1.2 bind() - UDP Style Syntax 1660 * If a bind() or sctp_bindx() is not called prior to a 1661 * sendmsg() call that initiates a new association, the 1662 * system picks an ephemeral port and will choose an address 1663 * set equivalent to binding with a wildcard address. 1664 */ 1665 if (!ep->base.bind_addr.port) { 1666 if (sctp_autobind(sk)) { 1667 err = -EAGAIN; 1668 goto out_unlock; 1669 } 1670 } else { 1671 /* 1672 * If an unprivileged user inherits a one-to-many 1673 * style socket with open associations on a privileged 1674 * port, it MAY be permitted to accept new associations, 1675 * but it SHOULD NOT be permitted to open new 1676 * associations. 1677 */ 1678 if (ep->base.bind_addr.port < PROT_SOCK && 1679 !capable(CAP_NET_BIND_SERVICE)) { 1680 err = -EACCES; 1681 goto out_unlock; 1682 } 1683 } 1684 1685 scope = sctp_scope(&to); 1686 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1687 if (!new_asoc) { 1688 err = -ENOMEM; 1689 goto out_unlock; 1690 } 1691 asoc = new_asoc; 1692 1693 /* If the SCTP_INIT ancillary data is specified, set all 1694 * the association init values accordingly. 1695 */ 1696 if (sinit) { 1697 if (sinit->sinit_num_ostreams) { 1698 asoc->c.sinit_num_ostreams = 1699 sinit->sinit_num_ostreams; 1700 } 1701 if (sinit->sinit_max_instreams) { 1702 asoc->c.sinit_max_instreams = 1703 sinit->sinit_max_instreams; 1704 } 1705 if (sinit->sinit_max_attempts) { 1706 asoc->max_init_attempts 1707 = sinit->sinit_max_attempts; 1708 } 1709 if (sinit->sinit_max_init_timeo) { 1710 asoc->max_init_timeo = 1711 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1712 } 1713 } 1714 1715 /* Prime the peer's transport structures. */ 1716 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1717 if (!transport) { 1718 err = -ENOMEM; 1719 goto out_free; 1720 } 1721 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1722 if (err < 0) { 1723 err = -ENOMEM; 1724 goto out_free; 1725 } 1726 } 1727 1728 /* ASSERT: we have a valid association at this point. */ 1729 SCTP_DEBUG_PRINTK("We have a valid association.\n"); 1730 1731 if (!sinfo) { 1732 /* If the user didn't specify SNDRCVINFO, make up one with 1733 * some defaults. 1734 */ 1735 default_sinfo.sinfo_stream = asoc->default_stream; 1736 default_sinfo.sinfo_flags = asoc->default_flags; 1737 default_sinfo.sinfo_ppid = asoc->default_ppid; 1738 default_sinfo.sinfo_context = asoc->default_context; 1739 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1740 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1741 sinfo = &default_sinfo; 1742 } 1743 1744 /* API 7.1.7, the sndbuf size per association bounds the 1745 * maximum size of data that can be sent in a single send call. 1746 */ 1747 if (msg_len > sk->sk_sndbuf) { 1748 err = -EMSGSIZE; 1749 goto out_free; 1750 } 1751 1752 if (asoc->pmtu_pending) 1753 sctp_assoc_pending_pmtu(asoc); 1754 1755 /* If fragmentation is disabled and the message length exceeds the 1756 * association fragmentation point, return EMSGSIZE. The I-D 1757 * does not specify what this error is, but this looks like 1758 * a great fit. 1759 */ 1760 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1761 err = -EMSGSIZE; 1762 goto out_free; 1763 } 1764 1765 if (sinfo) { 1766 /* Check for invalid stream. */ 1767 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1768 err = -EINVAL; 1769 goto out_free; 1770 } 1771 } 1772 1773 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1774 if (!sctp_wspace(asoc)) { 1775 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1776 if (err) 1777 goto out_free; 1778 } 1779 1780 /* If an address is passed with the sendto/sendmsg call, it is used 1781 * to override the primary destination address in the TCP model, or 1782 * when SCTP_ADDR_OVER flag is set in the UDP model. 1783 */ 1784 if ((sctp_style(sk, TCP) && msg_name) || 1785 (sinfo_flags & SCTP_ADDR_OVER)) { 1786 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1787 if (!chunk_tp) { 1788 err = -EINVAL; 1789 goto out_free; 1790 } 1791 } else 1792 chunk_tp = NULL; 1793 1794 /* Auto-connect, if we aren't connected already. */ 1795 if (sctp_state(asoc, CLOSED)) { 1796 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1797 if (err < 0) 1798 goto out_free; 1799 SCTP_DEBUG_PRINTK("We associated primitively.\n"); 1800 } 1801 1802 /* Break the message into multiple chunks of maximum size. */ 1803 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1804 if (!datamsg) { 1805 err = -ENOMEM; 1806 goto out_free; 1807 } 1808 1809 /* Now send the (possibly) fragmented message. */ 1810 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1811 sctp_chunk_hold(chunk); 1812 1813 /* Do accounting for the write space. */ 1814 sctp_set_owner_w(chunk); 1815 1816 chunk->transport = chunk_tp; 1817 } 1818 1819 /* Send it to the lower layers. Note: all chunks 1820 * must either fail or succeed. The lower layer 1821 * works that way today. Keep it that way or this 1822 * breaks. 1823 */ 1824 err = sctp_primitive_SEND(asoc, datamsg); 1825 /* Did the lower layer accept the chunk? */ 1826 if (err) 1827 sctp_datamsg_free(datamsg); 1828 else 1829 sctp_datamsg_put(datamsg); 1830 1831 SCTP_DEBUG_PRINTK("We sent primitively.\n"); 1832 1833 if (err) 1834 goto out_free; 1835 else 1836 err = msg_len; 1837 1838 /* If we are already past ASSOCIATE, the lower 1839 * layers are responsible for association cleanup. 1840 */ 1841 goto out_unlock; 1842 1843 out_free: 1844 if (new_asoc) 1845 sctp_association_free(asoc); 1846 out_unlock: 1847 sctp_release_sock(sk); 1848 1849 out_nounlock: 1850 return sctp_error(sk, msg_flags, err); 1851 1852 #if 0 1853 do_sock_err: 1854 if (msg_len) 1855 err = msg_len; 1856 else 1857 err = sock_error(sk); 1858 goto out; 1859 1860 do_interrupted: 1861 if (msg_len) 1862 err = msg_len; 1863 goto out; 1864 #endif /* 0 */ 1865 } 1866 1867 /* This is an extended version of skb_pull() that removes the data from the 1868 * start of a skb even when data is spread across the list of skb's in the 1869 * frag_list. len specifies the total amount of data that needs to be removed. 1870 * when 'len' bytes could be removed from the skb, it returns 0. 1871 * If 'len' exceeds the total skb length, it returns the no. of bytes that 1872 * could not be removed. 1873 */ 1874 static int sctp_skb_pull(struct sk_buff *skb, int len) 1875 { 1876 struct sk_buff *list; 1877 int skb_len = skb_headlen(skb); 1878 int rlen; 1879 1880 if (len <= skb_len) { 1881 __skb_pull(skb, len); 1882 return 0; 1883 } 1884 len -= skb_len; 1885 __skb_pull(skb, skb_len); 1886 1887 skb_walk_frags(skb, list) { 1888 rlen = sctp_skb_pull(list, len); 1889 skb->len -= (len-rlen); 1890 skb->data_len -= (len-rlen); 1891 1892 if (!rlen) 1893 return 0; 1894 1895 len = rlen; 1896 } 1897 1898 return len; 1899 } 1900 1901 /* API 3.1.3 recvmsg() - UDP Style Syntax 1902 * 1903 * ssize_t recvmsg(int socket, struct msghdr *message, 1904 * int flags); 1905 * 1906 * socket - the socket descriptor of the endpoint. 1907 * message - pointer to the msghdr structure which contains a single 1908 * user message and possibly some ancillary data. 1909 * 1910 * See Section 5 for complete description of the data 1911 * structures. 1912 * 1913 * flags - flags sent or received with the user message, see Section 1914 * 5 for complete description of the flags. 1915 */ 1916 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); 1917 1918 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 1919 struct msghdr *msg, size_t len, int noblock, 1920 int flags, int *addr_len) 1921 { 1922 struct sctp_ulpevent *event = NULL; 1923 struct sctp_sock *sp = sctp_sk(sk); 1924 struct sk_buff *skb; 1925 int copied; 1926 int err = 0; 1927 int skb_len; 1928 1929 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: " 1930 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg, 1931 "len", len, "knoblauch", noblock, 1932 "flags", flags, "addr_len", addr_len); 1933 1934 sctp_lock_sock(sk); 1935 1936 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 1937 err = -ENOTCONN; 1938 goto out; 1939 } 1940 1941 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 1942 if (!skb) 1943 goto out; 1944 1945 /* Get the total length of the skb including any skb's in the 1946 * frag_list. 1947 */ 1948 skb_len = skb->len; 1949 1950 copied = skb_len; 1951 if (copied > len) 1952 copied = len; 1953 1954 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 1955 1956 event = sctp_skb2event(skb); 1957 1958 if (err) 1959 goto out_free; 1960 1961 sock_recv_timestamp(msg, sk, skb); 1962 if (sctp_ulpevent_is_notification(event)) { 1963 msg->msg_flags |= MSG_NOTIFICATION; 1964 sp->pf->event_msgname(event, msg->msg_name, addr_len); 1965 } else { 1966 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 1967 } 1968 1969 /* Check if we allow SCTP_SNDRCVINFO. */ 1970 if (sp->subscribe.sctp_data_io_event) 1971 sctp_ulpevent_read_sndrcvinfo(event, msg); 1972 #if 0 1973 /* FIXME: we should be calling IP/IPv6 layers. */ 1974 if (sk->sk_protinfo.af_inet.cmsg_flags) 1975 ip_cmsg_recv(msg, skb); 1976 #endif 1977 1978 err = copied; 1979 1980 /* If skb's length exceeds the user's buffer, update the skb and 1981 * push it back to the receive_queue so that the next call to 1982 * recvmsg() will return the remaining data. Don't set MSG_EOR. 1983 */ 1984 if (skb_len > copied) { 1985 msg->msg_flags &= ~MSG_EOR; 1986 if (flags & MSG_PEEK) 1987 goto out_free; 1988 sctp_skb_pull(skb, copied); 1989 skb_queue_head(&sk->sk_receive_queue, skb); 1990 1991 /* When only partial message is copied to the user, increase 1992 * rwnd by that amount. If all the data in the skb is read, 1993 * rwnd is updated when the event is freed. 1994 */ 1995 if (!sctp_ulpevent_is_notification(event)) 1996 sctp_assoc_rwnd_increase(event->asoc, copied); 1997 goto out; 1998 } else if ((event->msg_flags & MSG_NOTIFICATION) || 1999 (event->msg_flags & MSG_EOR)) 2000 msg->msg_flags |= MSG_EOR; 2001 else 2002 msg->msg_flags &= ~MSG_EOR; 2003 2004 out_free: 2005 if (flags & MSG_PEEK) { 2006 /* Release the skb reference acquired after peeking the skb in 2007 * sctp_skb_recv_datagram(). 2008 */ 2009 kfree_skb(skb); 2010 } else { 2011 /* Free the event which includes releasing the reference to 2012 * the owner of the skb, freeing the skb and updating the 2013 * rwnd. 2014 */ 2015 sctp_ulpevent_free(event); 2016 } 2017 out: 2018 sctp_release_sock(sk); 2019 return err; 2020 } 2021 2022 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2023 * 2024 * This option is a on/off flag. If enabled no SCTP message 2025 * fragmentation will be performed. Instead if a message being sent 2026 * exceeds the current PMTU size, the message will NOT be sent and 2027 * instead a error will be indicated to the user. 2028 */ 2029 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2030 char __user *optval, 2031 unsigned int optlen) 2032 { 2033 int val; 2034 2035 if (optlen < sizeof(int)) 2036 return -EINVAL; 2037 2038 if (get_user(val, (int __user *)optval)) 2039 return -EFAULT; 2040 2041 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2042 2043 return 0; 2044 } 2045 2046 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2047 unsigned int optlen) 2048 { 2049 if (optlen > sizeof(struct sctp_event_subscribe)) 2050 return -EINVAL; 2051 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2052 return -EFAULT; 2053 return 0; 2054 } 2055 2056 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2057 * 2058 * This socket option is applicable to the UDP-style socket only. When 2059 * set it will cause associations that are idle for more than the 2060 * specified number of seconds to automatically close. An association 2061 * being idle is defined an association that has NOT sent or received 2062 * user data. The special value of '0' indicates that no automatic 2063 * close of any associations should be performed. The option expects an 2064 * integer defining the number of seconds of idle time before an 2065 * association is closed. 2066 */ 2067 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2068 unsigned int optlen) 2069 { 2070 struct sctp_sock *sp = sctp_sk(sk); 2071 2072 /* Applicable to UDP-style socket only */ 2073 if (sctp_style(sk, TCP)) 2074 return -EOPNOTSUPP; 2075 if (optlen != sizeof(int)) 2076 return -EINVAL; 2077 if (copy_from_user(&sp->autoclose, optval, optlen)) 2078 return -EFAULT; 2079 2080 return 0; 2081 } 2082 2083 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2084 * 2085 * Applications can enable or disable heartbeats for any peer address of 2086 * an association, modify an address's heartbeat interval, force a 2087 * heartbeat to be sent immediately, and adjust the address's maximum 2088 * number of retransmissions sent before an address is considered 2089 * unreachable. The following structure is used to access and modify an 2090 * address's parameters: 2091 * 2092 * struct sctp_paddrparams { 2093 * sctp_assoc_t spp_assoc_id; 2094 * struct sockaddr_storage spp_address; 2095 * uint32_t spp_hbinterval; 2096 * uint16_t spp_pathmaxrxt; 2097 * uint32_t spp_pathmtu; 2098 * uint32_t spp_sackdelay; 2099 * uint32_t spp_flags; 2100 * }; 2101 * 2102 * spp_assoc_id - (one-to-many style socket) This is filled in the 2103 * application, and identifies the association for 2104 * this query. 2105 * spp_address - This specifies which address is of interest. 2106 * spp_hbinterval - This contains the value of the heartbeat interval, 2107 * in milliseconds. If a value of zero 2108 * is present in this field then no changes are to 2109 * be made to this parameter. 2110 * spp_pathmaxrxt - This contains the maximum number of 2111 * retransmissions before this address shall be 2112 * considered unreachable. If a value of zero 2113 * is present in this field then no changes are to 2114 * be made to this parameter. 2115 * spp_pathmtu - When Path MTU discovery is disabled the value 2116 * specified here will be the "fixed" path mtu. 2117 * Note that if the spp_address field is empty 2118 * then all associations on this address will 2119 * have this fixed path mtu set upon them. 2120 * 2121 * spp_sackdelay - When delayed sack is enabled, this value specifies 2122 * the number of milliseconds that sacks will be delayed 2123 * for. This value will apply to all addresses of an 2124 * association if the spp_address field is empty. Note 2125 * also, that if delayed sack is enabled and this 2126 * value is set to 0, no change is made to the last 2127 * recorded delayed sack timer value. 2128 * 2129 * spp_flags - These flags are used to control various features 2130 * on an association. The flag field may contain 2131 * zero or more of the following options. 2132 * 2133 * SPP_HB_ENABLE - Enable heartbeats on the 2134 * specified address. Note that if the address 2135 * field is empty all addresses for the association 2136 * have heartbeats enabled upon them. 2137 * 2138 * SPP_HB_DISABLE - Disable heartbeats on the 2139 * speicifed address. Note that if the address 2140 * field is empty all addresses for the association 2141 * will have their heartbeats disabled. Note also 2142 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2143 * mutually exclusive, only one of these two should 2144 * be specified. Enabling both fields will have 2145 * undetermined results. 2146 * 2147 * SPP_HB_DEMAND - Request a user initiated heartbeat 2148 * to be made immediately. 2149 * 2150 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2151 * heartbeat delayis to be set to the value of 0 2152 * milliseconds. 2153 * 2154 * SPP_PMTUD_ENABLE - This field will enable PMTU 2155 * discovery upon the specified address. Note that 2156 * if the address feild is empty then all addresses 2157 * on the association are effected. 2158 * 2159 * SPP_PMTUD_DISABLE - This field will disable PMTU 2160 * discovery upon the specified address. Note that 2161 * if the address feild is empty then all addresses 2162 * on the association are effected. Not also that 2163 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2164 * exclusive. Enabling both will have undetermined 2165 * results. 2166 * 2167 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2168 * on delayed sack. The time specified in spp_sackdelay 2169 * is used to specify the sack delay for this address. Note 2170 * that if spp_address is empty then all addresses will 2171 * enable delayed sack and take on the sack delay 2172 * value specified in spp_sackdelay. 2173 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2174 * off delayed sack. If the spp_address field is blank then 2175 * delayed sack is disabled for the entire association. Note 2176 * also that this field is mutually exclusive to 2177 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2178 * results. 2179 */ 2180 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2181 struct sctp_transport *trans, 2182 struct sctp_association *asoc, 2183 struct sctp_sock *sp, 2184 int hb_change, 2185 int pmtud_change, 2186 int sackdelay_change) 2187 { 2188 int error; 2189 2190 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2191 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans); 2192 if (error) 2193 return error; 2194 } 2195 2196 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2197 * this field is ignored. Note also that a value of zero indicates 2198 * the current setting should be left unchanged. 2199 */ 2200 if (params->spp_flags & SPP_HB_ENABLE) { 2201 2202 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2203 * set. This lets us use 0 value when this flag 2204 * is set. 2205 */ 2206 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2207 params->spp_hbinterval = 0; 2208 2209 if (params->spp_hbinterval || 2210 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2211 if (trans) { 2212 trans->hbinterval = 2213 msecs_to_jiffies(params->spp_hbinterval); 2214 } else if (asoc) { 2215 asoc->hbinterval = 2216 msecs_to_jiffies(params->spp_hbinterval); 2217 } else { 2218 sp->hbinterval = params->spp_hbinterval; 2219 } 2220 } 2221 } 2222 2223 if (hb_change) { 2224 if (trans) { 2225 trans->param_flags = 2226 (trans->param_flags & ~SPP_HB) | hb_change; 2227 } else if (asoc) { 2228 asoc->param_flags = 2229 (asoc->param_flags & ~SPP_HB) | hb_change; 2230 } else { 2231 sp->param_flags = 2232 (sp->param_flags & ~SPP_HB) | hb_change; 2233 } 2234 } 2235 2236 /* When Path MTU discovery is disabled the value specified here will 2237 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2238 * include the flag SPP_PMTUD_DISABLE for this field to have any 2239 * effect). 2240 */ 2241 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2242 if (trans) { 2243 trans->pathmtu = params->spp_pathmtu; 2244 sctp_assoc_sync_pmtu(asoc); 2245 } else if (asoc) { 2246 asoc->pathmtu = params->spp_pathmtu; 2247 sctp_frag_point(asoc, params->spp_pathmtu); 2248 } else { 2249 sp->pathmtu = params->spp_pathmtu; 2250 } 2251 } 2252 2253 if (pmtud_change) { 2254 if (trans) { 2255 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2256 (params->spp_flags & SPP_PMTUD_ENABLE); 2257 trans->param_flags = 2258 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2259 if (update) { 2260 sctp_transport_pmtu(trans); 2261 sctp_assoc_sync_pmtu(asoc); 2262 } 2263 } else if (asoc) { 2264 asoc->param_flags = 2265 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2266 } else { 2267 sp->param_flags = 2268 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2269 } 2270 } 2271 2272 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2273 * value of this field is ignored. Note also that a value of zero 2274 * indicates the current setting should be left unchanged. 2275 */ 2276 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2277 if (trans) { 2278 trans->sackdelay = 2279 msecs_to_jiffies(params->spp_sackdelay); 2280 } else if (asoc) { 2281 asoc->sackdelay = 2282 msecs_to_jiffies(params->spp_sackdelay); 2283 } else { 2284 sp->sackdelay = params->spp_sackdelay; 2285 } 2286 } 2287 2288 if (sackdelay_change) { 2289 if (trans) { 2290 trans->param_flags = 2291 (trans->param_flags & ~SPP_SACKDELAY) | 2292 sackdelay_change; 2293 } else if (asoc) { 2294 asoc->param_flags = 2295 (asoc->param_flags & ~SPP_SACKDELAY) | 2296 sackdelay_change; 2297 } else { 2298 sp->param_flags = 2299 (sp->param_flags & ~SPP_SACKDELAY) | 2300 sackdelay_change; 2301 } 2302 } 2303 2304 /* Note that unless the spp_flag is set to SPP_PMTUD_ENABLE the value 2305 * of this field is ignored. Note also that a value of zero 2306 * indicates the current setting should be left unchanged. 2307 */ 2308 if ((params->spp_flags & SPP_PMTUD_ENABLE) && params->spp_pathmaxrxt) { 2309 if (trans) { 2310 trans->pathmaxrxt = params->spp_pathmaxrxt; 2311 } else if (asoc) { 2312 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2313 } else { 2314 sp->pathmaxrxt = params->spp_pathmaxrxt; 2315 } 2316 } 2317 2318 return 0; 2319 } 2320 2321 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2322 char __user *optval, 2323 unsigned int optlen) 2324 { 2325 struct sctp_paddrparams params; 2326 struct sctp_transport *trans = NULL; 2327 struct sctp_association *asoc = NULL; 2328 struct sctp_sock *sp = sctp_sk(sk); 2329 int error; 2330 int hb_change, pmtud_change, sackdelay_change; 2331 2332 if (optlen != sizeof(struct sctp_paddrparams)) 2333 return - EINVAL; 2334 2335 if (copy_from_user(¶ms, optval, optlen)) 2336 return -EFAULT; 2337 2338 /* Validate flags and value parameters. */ 2339 hb_change = params.spp_flags & SPP_HB; 2340 pmtud_change = params.spp_flags & SPP_PMTUD; 2341 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2342 2343 if (hb_change == SPP_HB || 2344 pmtud_change == SPP_PMTUD || 2345 sackdelay_change == SPP_SACKDELAY || 2346 params.spp_sackdelay > 500 || 2347 (params.spp_pathmtu 2348 && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2349 return -EINVAL; 2350 2351 /* If an address other than INADDR_ANY is specified, and 2352 * no transport is found, then the request is invalid. 2353 */ 2354 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) { 2355 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2356 params.spp_assoc_id); 2357 if (!trans) 2358 return -EINVAL; 2359 } 2360 2361 /* Get association, if assoc_id != 0 and the socket is a one 2362 * to many style socket, and an association was not found, then 2363 * the id was invalid. 2364 */ 2365 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2366 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2367 return -EINVAL; 2368 2369 /* Heartbeat demand can only be sent on a transport or 2370 * association, but not a socket. 2371 */ 2372 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2373 return -EINVAL; 2374 2375 /* Process parameters. */ 2376 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2377 hb_change, pmtud_change, 2378 sackdelay_change); 2379 2380 if (error) 2381 return error; 2382 2383 /* If changes are for association, also apply parameters to each 2384 * transport. 2385 */ 2386 if (!trans && asoc) { 2387 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2388 transports) { 2389 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2390 hb_change, pmtud_change, 2391 sackdelay_change); 2392 } 2393 } 2394 2395 return 0; 2396 } 2397 2398 /* 2399 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2400 * 2401 * This option will effect the way delayed acks are performed. This 2402 * option allows you to get or set the delayed ack time, in 2403 * milliseconds. It also allows changing the delayed ack frequency. 2404 * Changing the frequency to 1 disables the delayed sack algorithm. If 2405 * the assoc_id is 0, then this sets or gets the endpoints default 2406 * values. If the assoc_id field is non-zero, then the set or get 2407 * effects the specified association for the one to many model (the 2408 * assoc_id field is ignored by the one to one model). Note that if 2409 * sack_delay or sack_freq are 0 when setting this option, then the 2410 * current values will remain unchanged. 2411 * 2412 * struct sctp_sack_info { 2413 * sctp_assoc_t sack_assoc_id; 2414 * uint32_t sack_delay; 2415 * uint32_t sack_freq; 2416 * }; 2417 * 2418 * sack_assoc_id - This parameter, indicates which association the user 2419 * is performing an action upon. Note that if this field's value is 2420 * zero then the endpoints default value is changed (effecting future 2421 * associations only). 2422 * 2423 * sack_delay - This parameter contains the number of milliseconds that 2424 * the user is requesting the delayed ACK timer be set to. Note that 2425 * this value is defined in the standard to be between 200 and 500 2426 * milliseconds. 2427 * 2428 * sack_freq - This parameter contains the number of packets that must 2429 * be received before a sack is sent without waiting for the delay 2430 * timer to expire. The default value for this is 2, setting this 2431 * value to 1 will disable the delayed sack algorithm. 2432 */ 2433 2434 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2435 char __user *optval, unsigned int optlen) 2436 { 2437 struct sctp_sack_info params; 2438 struct sctp_transport *trans = NULL; 2439 struct sctp_association *asoc = NULL; 2440 struct sctp_sock *sp = sctp_sk(sk); 2441 2442 if (optlen == sizeof(struct sctp_sack_info)) { 2443 if (copy_from_user(¶ms, optval, optlen)) 2444 return -EFAULT; 2445 2446 if (params.sack_delay == 0 && params.sack_freq == 0) 2447 return 0; 2448 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2449 printk(KERN_WARNING "SCTP: Use of struct sctp_assoc_value " 2450 "in delayed_ack socket option deprecated\n"); 2451 printk(KERN_WARNING "SCTP: Use struct sctp_sack_info instead\n"); 2452 if (copy_from_user(¶ms, optval, optlen)) 2453 return -EFAULT; 2454 2455 if (params.sack_delay == 0) 2456 params.sack_freq = 1; 2457 else 2458 params.sack_freq = 0; 2459 } else 2460 return - EINVAL; 2461 2462 /* Validate value parameter. */ 2463 if (params.sack_delay > 500) 2464 return -EINVAL; 2465 2466 /* Get association, if sack_assoc_id != 0 and the socket is a one 2467 * to many style socket, and an association was not found, then 2468 * the id was invalid. 2469 */ 2470 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2471 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2472 return -EINVAL; 2473 2474 if (params.sack_delay) { 2475 if (asoc) { 2476 asoc->sackdelay = 2477 msecs_to_jiffies(params.sack_delay); 2478 asoc->param_flags = 2479 (asoc->param_flags & ~SPP_SACKDELAY) | 2480 SPP_SACKDELAY_ENABLE; 2481 } else { 2482 sp->sackdelay = params.sack_delay; 2483 sp->param_flags = 2484 (sp->param_flags & ~SPP_SACKDELAY) | 2485 SPP_SACKDELAY_ENABLE; 2486 } 2487 } 2488 2489 if (params.sack_freq == 1) { 2490 if (asoc) { 2491 asoc->param_flags = 2492 (asoc->param_flags & ~SPP_SACKDELAY) | 2493 SPP_SACKDELAY_DISABLE; 2494 } else { 2495 sp->param_flags = 2496 (sp->param_flags & ~SPP_SACKDELAY) | 2497 SPP_SACKDELAY_DISABLE; 2498 } 2499 } else if (params.sack_freq > 1) { 2500 if (asoc) { 2501 asoc->sackfreq = params.sack_freq; 2502 asoc->param_flags = 2503 (asoc->param_flags & ~SPP_SACKDELAY) | 2504 SPP_SACKDELAY_ENABLE; 2505 } else { 2506 sp->sackfreq = params.sack_freq; 2507 sp->param_flags = 2508 (sp->param_flags & ~SPP_SACKDELAY) | 2509 SPP_SACKDELAY_ENABLE; 2510 } 2511 } 2512 2513 /* If change is for association, also apply to each transport. */ 2514 if (asoc) { 2515 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2516 transports) { 2517 if (params.sack_delay) { 2518 trans->sackdelay = 2519 msecs_to_jiffies(params.sack_delay); 2520 trans->param_flags = 2521 (trans->param_flags & ~SPP_SACKDELAY) | 2522 SPP_SACKDELAY_ENABLE; 2523 } 2524 if (params.sack_freq == 1) { 2525 trans->param_flags = 2526 (trans->param_flags & ~SPP_SACKDELAY) | 2527 SPP_SACKDELAY_DISABLE; 2528 } else if (params.sack_freq > 1) { 2529 trans->sackfreq = params.sack_freq; 2530 trans->param_flags = 2531 (trans->param_flags & ~SPP_SACKDELAY) | 2532 SPP_SACKDELAY_ENABLE; 2533 } 2534 } 2535 } 2536 2537 return 0; 2538 } 2539 2540 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2541 * 2542 * Applications can specify protocol parameters for the default association 2543 * initialization. The option name argument to setsockopt() and getsockopt() 2544 * is SCTP_INITMSG. 2545 * 2546 * Setting initialization parameters is effective only on an unconnected 2547 * socket (for UDP-style sockets only future associations are effected 2548 * by the change). With TCP-style sockets, this option is inherited by 2549 * sockets derived from a listener socket. 2550 */ 2551 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2552 { 2553 struct sctp_initmsg sinit; 2554 struct sctp_sock *sp = sctp_sk(sk); 2555 2556 if (optlen != sizeof(struct sctp_initmsg)) 2557 return -EINVAL; 2558 if (copy_from_user(&sinit, optval, optlen)) 2559 return -EFAULT; 2560 2561 if (sinit.sinit_num_ostreams) 2562 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2563 if (sinit.sinit_max_instreams) 2564 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2565 if (sinit.sinit_max_attempts) 2566 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2567 if (sinit.sinit_max_init_timeo) 2568 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2569 2570 return 0; 2571 } 2572 2573 /* 2574 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2575 * 2576 * Applications that wish to use the sendto() system call may wish to 2577 * specify a default set of parameters that would normally be supplied 2578 * through the inclusion of ancillary data. This socket option allows 2579 * such an application to set the default sctp_sndrcvinfo structure. 2580 * The application that wishes to use this socket option simply passes 2581 * in to this call the sctp_sndrcvinfo structure defined in Section 2582 * 5.2.2) The input parameters accepted by this call include 2583 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2584 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2585 * to this call if the caller is using the UDP model. 2586 */ 2587 static int sctp_setsockopt_default_send_param(struct sock *sk, 2588 char __user *optval, 2589 unsigned int optlen) 2590 { 2591 struct sctp_sndrcvinfo info; 2592 struct sctp_association *asoc; 2593 struct sctp_sock *sp = sctp_sk(sk); 2594 2595 if (optlen != sizeof(struct sctp_sndrcvinfo)) 2596 return -EINVAL; 2597 if (copy_from_user(&info, optval, optlen)) 2598 return -EFAULT; 2599 2600 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2601 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2602 return -EINVAL; 2603 2604 if (asoc) { 2605 asoc->default_stream = info.sinfo_stream; 2606 asoc->default_flags = info.sinfo_flags; 2607 asoc->default_ppid = info.sinfo_ppid; 2608 asoc->default_context = info.sinfo_context; 2609 asoc->default_timetolive = info.sinfo_timetolive; 2610 } else { 2611 sp->default_stream = info.sinfo_stream; 2612 sp->default_flags = info.sinfo_flags; 2613 sp->default_ppid = info.sinfo_ppid; 2614 sp->default_context = info.sinfo_context; 2615 sp->default_timetolive = info.sinfo_timetolive; 2616 } 2617 2618 return 0; 2619 } 2620 2621 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2622 * 2623 * Requests that the local SCTP stack use the enclosed peer address as 2624 * the association primary. The enclosed address must be one of the 2625 * association peer's addresses. 2626 */ 2627 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2628 unsigned int optlen) 2629 { 2630 struct sctp_prim prim; 2631 struct sctp_transport *trans; 2632 2633 if (optlen != sizeof(struct sctp_prim)) 2634 return -EINVAL; 2635 2636 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2637 return -EFAULT; 2638 2639 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2640 if (!trans) 2641 return -EINVAL; 2642 2643 sctp_assoc_set_primary(trans->asoc, trans); 2644 2645 return 0; 2646 } 2647 2648 /* 2649 * 7.1.5 SCTP_NODELAY 2650 * 2651 * Turn on/off any Nagle-like algorithm. This means that packets are 2652 * generally sent as soon as possible and no unnecessary delays are 2653 * introduced, at the cost of more packets in the network. Expects an 2654 * integer boolean flag. 2655 */ 2656 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2657 unsigned int optlen) 2658 { 2659 int val; 2660 2661 if (optlen < sizeof(int)) 2662 return -EINVAL; 2663 if (get_user(val, (int __user *)optval)) 2664 return -EFAULT; 2665 2666 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2667 return 0; 2668 } 2669 2670 /* 2671 * 2672 * 7.1.1 SCTP_RTOINFO 2673 * 2674 * The protocol parameters used to initialize and bound retransmission 2675 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2676 * and modify these parameters. 2677 * All parameters are time values, in milliseconds. A value of 0, when 2678 * modifying the parameters, indicates that the current value should not 2679 * be changed. 2680 * 2681 */ 2682 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 2683 { 2684 struct sctp_rtoinfo rtoinfo; 2685 struct sctp_association *asoc; 2686 2687 if (optlen != sizeof (struct sctp_rtoinfo)) 2688 return -EINVAL; 2689 2690 if (copy_from_user(&rtoinfo, optval, optlen)) 2691 return -EFAULT; 2692 2693 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2694 2695 /* Set the values to the specific association */ 2696 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2697 return -EINVAL; 2698 2699 if (asoc) { 2700 if (rtoinfo.srto_initial != 0) 2701 asoc->rto_initial = 2702 msecs_to_jiffies(rtoinfo.srto_initial); 2703 if (rtoinfo.srto_max != 0) 2704 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max); 2705 if (rtoinfo.srto_min != 0) 2706 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min); 2707 } else { 2708 /* If there is no association or the association-id = 0 2709 * set the values to the endpoint. 2710 */ 2711 struct sctp_sock *sp = sctp_sk(sk); 2712 2713 if (rtoinfo.srto_initial != 0) 2714 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2715 if (rtoinfo.srto_max != 0) 2716 sp->rtoinfo.srto_max = rtoinfo.srto_max; 2717 if (rtoinfo.srto_min != 0) 2718 sp->rtoinfo.srto_min = rtoinfo.srto_min; 2719 } 2720 2721 return 0; 2722 } 2723 2724 /* 2725 * 2726 * 7.1.2 SCTP_ASSOCINFO 2727 * 2728 * This option is used to tune the maximum retransmission attempts 2729 * of the association. 2730 * Returns an error if the new association retransmission value is 2731 * greater than the sum of the retransmission value of the peer. 2732 * See [SCTP] for more information. 2733 * 2734 */ 2735 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 2736 { 2737 2738 struct sctp_assocparams assocparams; 2739 struct sctp_association *asoc; 2740 2741 if (optlen != sizeof(struct sctp_assocparams)) 2742 return -EINVAL; 2743 if (copy_from_user(&assocparams, optval, optlen)) 2744 return -EFAULT; 2745 2746 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2747 2748 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2749 return -EINVAL; 2750 2751 /* Set the values to the specific association */ 2752 if (asoc) { 2753 if (assocparams.sasoc_asocmaxrxt != 0) { 2754 __u32 path_sum = 0; 2755 int paths = 0; 2756 struct sctp_transport *peer_addr; 2757 2758 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 2759 transports) { 2760 path_sum += peer_addr->pathmaxrxt; 2761 paths++; 2762 } 2763 2764 /* Only validate asocmaxrxt if we have more than 2765 * one path/transport. We do this because path 2766 * retransmissions are only counted when we have more 2767 * then one path. 2768 */ 2769 if (paths > 1 && 2770 assocparams.sasoc_asocmaxrxt > path_sum) 2771 return -EINVAL; 2772 2773 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 2774 } 2775 2776 if (assocparams.sasoc_cookie_life != 0) { 2777 asoc->cookie_life.tv_sec = 2778 assocparams.sasoc_cookie_life / 1000; 2779 asoc->cookie_life.tv_usec = 2780 (assocparams.sasoc_cookie_life % 1000) 2781 * 1000; 2782 } 2783 } else { 2784 /* Set the values to the endpoint */ 2785 struct sctp_sock *sp = sctp_sk(sk); 2786 2787 if (assocparams.sasoc_asocmaxrxt != 0) 2788 sp->assocparams.sasoc_asocmaxrxt = 2789 assocparams.sasoc_asocmaxrxt; 2790 if (assocparams.sasoc_cookie_life != 0) 2791 sp->assocparams.sasoc_cookie_life = 2792 assocparams.sasoc_cookie_life; 2793 } 2794 return 0; 2795 } 2796 2797 /* 2798 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 2799 * 2800 * This socket option is a boolean flag which turns on or off mapped V4 2801 * addresses. If this option is turned on and the socket is type 2802 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 2803 * If this option is turned off, then no mapping will be done of V4 2804 * addresses and a user will receive both PF_INET6 and PF_INET type 2805 * addresses on the socket. 2806 */ 2807 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 2808 { 2809 int val; 2810 struct sctp_sock *sp = sctp_sk(sk); 2811 2812 if (optlen < sizeof(int)) 2813 return -EINVAL; 2814 if (get_user(val, (int __user *)optval)) 2815 return -EFAULT; 2816 if (val) 2817 sp->v4mapped = 1; 2818 else 2819 sp->v4mapped = 0; 2820 2821 return 0; 2822 } 2823 2824 /* 2825 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 2826 * This option will get or set the maximum size to put in any outgoing 2827 * SCTP DATA chunk. If a message is larger than this size it will be 2828 * fragmented by SCTP into the specified size. Note that the underlying 2829 * SCTP implementation may fragment into smaller sized chunks when the 2830 * PMTU of the underlying association is smaller than the value set by 2831 * the user. The default value for this option is '0' which indicates 2832 * the user is NOT limiting fragmentation and only the PMTU will effect 2833 * SCTP's choice of DATA chunk size. Note also that values set larger 2834 * than the maximum size of an IP datagram will effectively let SCTP 2835 * control fragmentation (i.e. the same as setting this option to 0). 2836 * 2837 * The following structure is used to access and modify this parameter: 2838 * 2839 * struct sctp_assoc_value { 2840 * sctp_assoc_t assoc_id; 2841 * uint32_t assoc_value; 2842 * }; 2843 * 2844 * assoc_id: This parameter is ignored for one-to-one style sockets. 2845 * For one-to-many style sockets this parameter indicates which 2846 * association the user is performing an action upon. Note that if 2847 * this field's value is zero then the endpoints default value is 2848 * changed (effecting future associations only). 2849 * assoc_value: This parameter specifies the maximum size in bytes. 2850 */ 2851 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 2852 { 2853 struct sctp_assoc_value params; 2854 struct sctp_association *asoc; 2855 struct sctp_sock *sp = sctp_sk(sk); 2856 int val; 2857 2858 if (optlen == sizeof(int)) { 2859 printk(KERN_WARNING 2860 "SCTP: Use of int in maxseg socket option deprecated\n"); 2861 printk(KERN_WARNING 2862 "SCTP: Use struct sctp_assoc_value instead\n"); 2863 if (copy_from_user(&val, optval, optlen)) 2864 return -EFAULT; 2865 params.assoc_id = 0; 2866 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2867 if (copy_from_user(¶ms, optval, optlen)) 2868 return -EFAULT; 2869 val = params.assoc_value; 2870 } else 2871 return -EINVAL; 2872 2873 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 2874 return -EINVAL; 2875 2876 asoc = sctp_id2assoc(sk, params.assoc_id); 2877 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 2878 return -EINVAL; 2879 2880 if (asoc) { 2881 if (val == 0) { 2882 val = asoc->pathmtu; 2883 val -= sp->pf->af->net_header_len; 2884 val -= sizeof(struct sctphdr) + 2885 sizeof(struct sctp_data_chunk); 2886 } 2887 asoc->user_frag = val; 2888 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 2889 } else { 2890 sp->user_frag = val; 2891 } 2892 2893 return 0; 2894 } 2895 2896 2897 /* 2898 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 2899 * 2900 * Requests that the peer mark the enclosed address as the association 2901 * primary. The enclosed address must be one of the association's 2902 * locally bound addresses. The following structure is used to make a 2903 * set primary request: 2904 */ 2905 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 2906 unsigned int optlen) 2907 { 2908 struct sctp_sock *sp; 2909 struct sctp_endpoint *ep; 2910 struct sctp_association *asoc = NULL; 2911 struct sctp_setpeerprim prim; 2912 struct sctp_chunk *chunk; 2913 int err; 2914 2915 sp = sctp_sk(sk); 2916 ep = sp->ep; 2917 2918 if (!sctp_addip_enable) 2919 return -EPERM; 2920 2921 if (optlen != sizeof(struct sctp_setpeerprim)) 2922 return -EINVAL; 2923 2924 if (copy_from_user(&prim, optval, optlen)) 2925 return -EFAULT; 2926 2927 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 2928 if (!asoc) 2929 return -EINVAL; 2930 2931 if (!asoc->peer.asconf_capable) 2932 return -EPERM; 2933 2934 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 2935 return -EPERM; 2936 2937 if (!sctp_state(asoc, ESTABLISHED)) 2938 return -ENOTCONN; 2939 2940 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 2941 return -EADDRNOTAVAIL; 2942 2943 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 2944 chunk = sctp_make_asconf_set_prim(asoc, 2945 (union sctp_addr *)&prim.sspp_addr); 2946 if (!chunk) 2947 return -ENOMEM; 2948 2949 err = sctp_send_asconf(asoc, chunk); 2950 2951 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n"); 2952 2953 return err; 2954 } 2955 2956 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 2957 unsigned int optlen) 2958 { 2959 struct sctp_setadaptation adaptation; 2960 2961 if (optlen != sizeof(struct sctp_setadaptation)) 2962 return -EINVAL; 2963 if (copy_from_user(&adaptation, optval, optlen)) 2964 return -EFAULT; 2965 2966 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 2967 2968 return 0; 2969 } 2970 2971 /* 2972 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 2973 * 2974 * The context field in the sctp_sndrcvinfo structure is normally only 2975 * used when a failed message is retrieved holding the value that was 2976 * sent down on the actual send call. This option allows the setting of 2977 * a default context on an association basis that will be received on 2978 * reading messages from the peer. This is especially helpful in the 2979 * one-2-many model for an application to keep some reference to an 2980 * internal state machine that is processing messages on the 2981 * association. Note that the setting of this value only effects 2982 * received messages from the peer and does not effect the value that is 2983 * saved with outbound messages. 2984 */ 2985 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 2986 unsigned int optlen) 2987 { 2988 struct sctp_assoc_value params; 2989 struct sctp_sock *sp; 2990 struct sctp_association *asoc; 2991 2992 if (optlen != sizeof(struct sctp_assoc_value)) 2993 return -EINVAL; 2994 if (copy_from_user(¶ms, optval, optlen)) 2995 return -EFAULT; 2996 2997 sp = sctp_sk(sk); 2998 2999 if (params.assoc_id != 0) { 3000 asoc = sctp_id2assoc(sk, params.assoc_id); 3001 if (!asoc) 3002 return -EINVAL; 3003 asoc->default_rcv_context = params.assoc_value; 3004 } else { 3005 sp->default_rcv_context = params.assoc_value; 3006 } 3007 3008 return 0; 3009 } 3010 3011 /* 3012 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3013 * 3014 * This options will at a minimum specify if the implementation is doing 3015 * fragmented interleave. Fragmented interleave, for a one to many 3016 * socket, is when subsequent calls to receive a message may return 3017 * parts of messages from different associations. Some implementations 3018 * may allow you to turn this value on or off. If so, when turned off, 3019 * no fragment interleave will occur (which will cause a head of line 3020 * blocking amongst multiple associations sharing the same one to many 3021 * socket). When this option is turned on, then each receive call may 3022 * come from a different association (thus the user must receive data 3023 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3024 * association each receive belongs to. 3025 * 3026 * This option takes a boolean value. A non-zero value indicates that 3027 * fragmented interleave is on. A value of zero indicates that 3028 * fragmented interleave is off. 3029 * 3030 * Note that it is important that an implementation that allows this 3031 * option to be turned on, have it off by default. Otherwise an unaware 3032 * application using the one to many model may become confused and act 3033 * incorrectly. 3034 */ 3035 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3036 char __user *optval, 3037 unsigned int optlen) 3038 { 3039 int val; 3040 3041 if (optlen != sizeof(int)) 3042 return -EINVAL; 3043 if (get_user(val, (int __user *)optval)) 3044 return -EFAULT; 3045 3046 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 3047 3048 return 0; 3049 } 3050 3051 /* 3052 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3053 * (SCTP_PARTIAL_DELIVERY_POINT) 3054 * 3055 * This option will set or get the SCTP partial delivery point. This 3056 * point is the size of a message where the partial delivery API will be 3057 * invoked to help free up rwnd space for the peer. Setting this to a 3058 * lower value will cause partial deliveries to happen more often. The 3059 * calls argument is an integer that sets or gets the partial delivery 3060 * point. Note also that the call will fail if the user attempts to set 3061 * this value larger than the socket receive buffer size. 3062 * 3063 * Note that any single message having a length smaller than or equal to 3064 * the SCTP partial delivery point will be delivered in one single read 3065 * call as long as the user provided buffer is large enough to hold the 3066 * message. 3067 */ 3068 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3069 char __user *optval, 3070 unsigned int optlen) 3071 { 3072 u32 val; 3073 3074 if (optlen != sizeof(u32)) 3075 return -EINVAL; 3076 if (get_user(val, (int __user *)optval)) 3077 return -EFAULT; 3078 3079 /* Note: We double the receive buffer from what the user sets 3080 * it to be, also initial rwnd is based on rcvbuf/2. 3081 */ 3082 if (val > (sk->sk_rcvbuf >> 1)) 3083 return -EINVAL; 3084 3085 sctp_sk(sk)->pd_point = val; 3086 3087 return 0; /* is this the right error code? */ 3088 } 3089 3090 /* 3091 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3092 * 3093 * This option will allow a user to change the maximum burst of packets 3094 * that can be emitted by this association. Note that the default value 3095 * is 4, and some implementations may restrict this setting so that it 3096 * can only be lowered. 3097 * 3098 * NOTE: This text doesn't seem right. Do this on a socket basis with 3099 * future associations inheriting the socket value. 3100 */ 3101 static int sctp_setsockopt_maxburst(struct sock *sk, 3102 char __user *optval, 3103 unsigned int optlen) 3104 { 3105 struct sctp_assoc_value params; 3106 struct sctp_sock *sp; 3107 struct sctp_association *asoc; 3108 int val; 3109 int assoc_id = 0; 3110 3111 if (optlen == sizeof(int)) { 3112 printk(KERN_WARNING 3113 "SCTP: Use of int in max_burst socket option deprecated\n"); 3114 printk(KERN_WARNING 3115 "SCTP: Use struct sctp_assoc_value instead\n"); 3116 if (copy_from_user(&val, optval, optlen)) 3117 return -EFAULT; 3118 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3119 if (copy_from_user(¶ms, optval, optlen)) 3120 return -EFAULT; 3121 val = params.assoc_value; 3122 assoc_id = params.assoc_id; 3123 } else 3124 return -EINVAL; 3125 3126 sp = sctp_sk(sk); 3127 3128 if (assoc_id != 0) { 3129 asoc = sctp_id2assoc(sk, assoc_id); 3130 if (!asoc) 3131 return -EINVAL; 3132 asoc->max_burst = val; 3133 } else 3134 sp->max_burst = val; 3135 3136 return 0; 3137 } 3138 3139 /* 3140 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3141 * 3142 * This set option adds a chunk type that the user is requesting to be 3143 * received only in an authenticated way. Changes to the list of chunks 3144 * will only effect future associations on the socket. 3145 */ 3146 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3147 char __user *optval, 3148 unsigned int optlen) 3149 { 3150 struct sctp_authchunk val; 3151 3152 if (!sctp_auth_enable) 3153 return -EACCES; 3154 3155 if (optlen != sizeof(struct sctp_authchunk)) 3156 return -EINVAL; 3157 if (copy_from_user(&val, optval, optlen)) 3158 return -EFAULT; 3159 3160 switch (val.sauth_chunk) { 3161 case SCTP_CID_INIT: 3162 case SCTP_CID_INIT_ACK: 3163 case SCTP_CID_SHUTDOWN_COMPLETE: 3164 case SCTP_CID_AUTH: 3165 return -EINVAL; 3166 } 3167 3168 /* add this chunk id to the endpoint */ 3169 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk); 3170 } 3171 3172 /* 3173 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3174 * 3175 * This option gets or sets the list of HMAC algorithms that the local 3176 * endpoint requires the peer to use. 3177 */ 3178 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3179 char __user *optval, 3180 unsigned int optlen) 3181 { 3182 struct sctp_hmacalgo *hmacs; 3183 u32 idents; 3184 int err; 3185 3186 if (!sctp_auth_enable) 3187 return -EACCES; 3188 3189 if (optlen < sizeof(struct sctp_hmacalgo)) 3190 return -EINVAL; 3191 3192 hmacs = kmalloc(optlen, GFP_KERNEL); 3193 if (!hmacs) 3194 return -ENOMEM; 3195 3196 if (copy_from_user(hmacs, optval, optlen)) { 3197 err = -EFAULT; 3198 goto out; 3199 } 3200 3201 idents = hmacs->shmac_num_idents; 3202 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3203 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3204 err = -EINVAL; 3205 goto out; 3206 } 3207 3208 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs); 3209 out: 3210 kfree(hmacs); 3211 return err; 3212 } 3213 3214 /* 3215 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3216 * 3217 * This option will set a shared secret key which is used to build an 3218 * association shared key. 3219 */ 3220 static int sctp_setsockopt_auth_key(struct sock *sk, 3221 char __user *optval, 3222 unsigned int optlen) 3223 { 3224 struct sctp_authkey *authkey; 3225 struct sctp_association *asoc; 3226 int ret; 3227 3228 if (!sctp_auth_enable) 3229 return -EACCES; 3230 3231 if (optlen <= sizeof(struct sctp_authkey)) 3232 return -EINVAL; 3233 3234 authkey = kmalloc(optlen, GFP_KERNEL); 3235 if (!authkey) 3236 return -ENOMEM; 3237 3238 if (copy_from_user(authkey, optval, optlen)) { 3239 ret = -EFAULT; 3240 goto out; 3241 } 3242 3243 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3244 ret = -EINVAL; 3245 goto out; 3246 } 3247 3248 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3249 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3250 ret = -EINVAL; 3251 goto out; 3252 } 3253 3254 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey); 3255 out: 3256 kfree(authkey); 3257 return ret; 3258 } 3259 3260 /* 3261 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3262 * 3263 * This option will get or set the active shared key to be used to build 3264 * the association shared key. 3265 */ 3266 static int sctp_setsockopt_active_key(struct sock *sk, 3267 char __user *optval, 3268 unsigned int optlen) 3269 { 3270 struct sctp_authkeyid val; 3271 struct sctp_association *asoc; 3272 3273 if (!sctp_auth_enable) 3274 return -EACCES; 3275 3276 if (optlen != sizeof(struct sctp_authkeyid)) 3277 return -EINVAL; 3278 if (copy_from_user(&val, optval, optlen)) 3279 return -EFAULT; 3280 3281 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3282 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3283 return -EINVAL; 3284 3285 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc, 3286 val.scact_keynumber); 3287 } 3288 3289 /* 3290 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3291 * 3292 * This set option will delete a shared secret key from use. 3293 */ 3294 static int sctp_setsockopt_del_key(struct sock *sk, 3295 char __user *optval, 3296 unsigned int optlen) 3297 { 3298 struct sctp_authkeyid val; 3299 struct sctp_association *asoc; 3300 3301 if (!sctp_auth_enable) 3302 return -EACCES; 3303 3304 if (optlen != sizeof(struct sctp_authkeyid)) 3305 return -EINVAL; 3306 if (copy_from_user(&val, optval, optlen)) 3307 return -EFAULT; 3308 3309 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3310 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3311 return -EINVAL; 3312 3313 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc, 3314 val.scact_keynumber); 3315 3316 } 3317 3318 3319 /* API 6.2 setsockopt(), getsockopt() 3320 * 3321 * Applications use setsockopt() and getsockopt() to set or retrieve 3322 * socket options. Socket options are used to change the default 3323 * behavior of sockets calls. They are described in Section 7. 3324 * 3325 * The syntax is: 3326 * 3327 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3328 * int __user *optlen); 3329 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3330 * int optlen); 3331 * 3332 * sd - the socket descript. 3333 * level - set to IPPROTO_SCTP for all SCTP options. 3334 * optname - the option name. 3335 * optval - the buffer to store the value of the option. 3336 * optlen - the size of the buffer. 3337 */ 3338 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname, 3339 char __user *optval, unsigned int optlen) 3340 { 3341 int retval = 0; 3342 3343 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n", 3344 sk, optname); 3345 3346 /* I can hardly begin to describe how wrong this is. This is 3347 * so broken as to be worse than useless. The API draft 3348 * REALLY is NOT helpful here... I am not convinced that the 3349 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3350 * are at all well-founded. 3351 */ 3352 if (level != SOL_SCTP) { 3353 struct sctp_af *af = sctp_sk(sk)->pf->af; 3354 retval = af->setsockopt(sk, level, optname, optval, optlen); 3355 goto out_nounlock; 3356 } 3357 3358 sctp_lock_sock(sk); 3359 3360 switch (optname) { 3361 case SCTP_SOCKOPT_BINDX_ADD: 3362 /* 'optlen' is the size of the addresses buffer. */ 3363 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3364 optlen, SCTP_BINDX_ADD_ADDR); 3365 break; 3366 3367 case SCTP_SOCKOPT_BINDX_REM: 3368 /* 'optlen' is the size of the addresses buffer. */ 3369 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3370 optlen, SCTP_BINDX_REM_ADDR); 3371 break; 3372 3373 case SCTP_SOCKOPT_CONNECTX_OLD: 3374 /* 'optlen' is the size of the addresses buffer. */ 3375 retval = sctp_setsockopt_connectx_old(sk, 3376 (struct sockaddr __user *)optval, 3377 optlen); 3378 break; 3379 3380 case SCTP_SOCKOPT_CONNECTX: 3381 /* 'optlen' is the size of the addresses buffer. */ 3382 retval = sctp_setsockopt_connectx(sk, 3383 (struct sockaddr __user *)optval, 3384 optlen); 3385 break; 3386 3387 case SCTP_DISABLE_FRAGMENTS: 3388 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3389 break; 3390 3391 case SCTP_EVENTS: 3392 retval = sctp_setsockopt_events(sk, optval, optlen); 3393 break; 3394 3395 case SCTP_AUTOCLOSE: 3396 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3397 break; 3398 3399 case SCTP_PEER_ADDR_PARAMS: 3400 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3401 break; 3402 3403 case SCTP_DELAYED_ACK: 3404 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 3405 break; 3406 case SCTP_PARTIAL_DELIVERY_POINT: 3407 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3408 break; 3409 3410 case SCTP_INITMSG: 3411 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3412 break; 3413 case SCTP_DEFAULT_SEND_PARAM: 3414 retval = sctp_setsockopt_default_send_param(sk, optval, 3415 optlen); 3416 break; 3417 case SCTP_PRIMARY_ADDR: 3418 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3419 break; 3420 case SCTP_SET_PEER_PRIMARY_ADDR: 3421 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3422 break; 3423 case SCTP_NODELAY: 3424 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3425 break; 3426 case SCTP_RTOINFO: 3427 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3428 break; 3429 case SCTP_ASSOCINFO: 3430 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3431 break; 3432 case SCTP_I_WANT_MAPPED_V4_ADDR: 3433 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3434 break; 3435 case SCTP_MAXSEG: 3436 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3437 break; 3438 case SCTP_ADAPTATION_LAYER: 3439 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3440 break; 3441 case SCTP_CONTEXT: 3442 retval = sctp_setsockopt_context(sk, optval, optlen); 3443 break; 3444 case SCTP_FRAGMENT_INTERLEAVE: 3445 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 3446 break; 3447 case SCTP_MAX_BURST: 3448 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 3449 break; 3450 case SCTP_AUTH_CHUNK: 3451 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 3452 break; 3453 case SCTP_HMAC_IDENT: 3454 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 3455 break; 3456 case SCTP_AUTH_KEY: 3457 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 3458 break; 3459 case SCTP_AUTH_ACTIVE_KEY: 3460 retval = sctp_setsockopt_active_key(sk, optval, optlen); 3461 break; 3462 case SCTP_AUTH_DELETE_KEY: 3463 retval = sctp_setsockopt_del_key(sk, optval, optlen); 3464 break; 3465 default: 3466 retval = -ENOPROTOOPT; 3467 break; 3468 } 3469 3470 sctp_release_sock(sk); 3471 3472 out_nounlock: 3473 return retval; 3474 } 3475 3476 /* API 3.1.6 connect() - UDP Style Syntax 3477 * 3478 * An application may use the connect() call in the UDP model to initiate an 3479 * association without sending data. 3480 * 3481 * The syntax is: 3482 * 3483 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 3484 * 3485 * sd: the socket descriptor to have a new association added to. 3486 * 3487 * nam: the address structure (either struct sockaddr_in or struct 3488 * sockaddr_in6 defined in RFC2553 [7]). 3489 * 3490 * len: the size of the address. 3491 */ 3492 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr, 3493 int addr_len) 3494 { 3495 int err = 0; 3496 struct sctp_af *af; 3497 3498 sctp_lock_sock(sk); 3499 3500 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n", 3501 __func__, sk, addr, addr_len); 3502 3503 /* Validate addr_len before calling common connect/connectx routine. */ 3504 af = sctp_get_af_specific(addr->sa_family); 3505 if (!af || addr_len < af->sockaddr_len) { 3506 err = -EINVAL; 3507 } else { 3508 /* Pass correct addr len to common routine (so it knows there 3509 * is only one address being passed. 3510 */ 3511 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 3512 } 3513 3514 sctp_release_sock(sk); 3515 return err; 3516 } 3517 3518 /* FIXME: Write comments. */ 3519 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags) 3520 { 3521 return -EOPNOTSUPP; /* STUB */ 3522 } 3523 3524 /* 4.1.4 accept() - TCP Style Syntax 3525 * 3526 * Applications use accept() call to remove an established SCTP 3527 * association from the accept queue of the endpoint. A new socket 3528 * descriptor will be returned from accept() to represent the newly 3529 * formed association. 3530 */ 3531 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err) 3532 { 3533 struct sctp_sock *sp; 3534 struct sctp_endpoint *ep; 3535 struct sock *newsk = NULL; 3536 struct sctp_association *asoc; 3537 long timeo; 3538 int error = 0; 3539 3540 sctp_lock_sock(sk); 3541 3542 sp = sctp_sk(sk); 3543 ep = sp->ep; 3544 3545 if (!sctp_style(sk, TCP)) { 3546 error = -EOPNOTSUPP; 3547 goto out; 3548 } 3549 3550 if (!sctp_sstate(sk, LISTENING)) { 3551 error = -EINVAL; 3552 goto out; 3553 } 3554 3555 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 3556 3557 error = sctp_wait_for_accept(sk, timeo); 3558 if (error) 3559 goto out; 3560 3561 /* We treat the list of associations on the endpoint as the accept 3562 * queue and pick the first association on the list. 3563 */ 3564 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 3565 3566 newsk = sp->pf->create_accept_sk(sk, asoc); 3567 if (!newsk) { 3568 error = -ENOMEM; 3569 goto out; 3570 } 3571 3572 /* Populate the fields of the newsk from the oldsk and migrate the 3573 * asoc to the newsk. 3574 */ 3575 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 3576 3577 out: 3578 sctp_release_sock(sk); 3579 *err = error; 3580 return newsk; 3581 } 3582 3583 /* The SCTP ioctl handler. */ 3584 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3585 { 3586 return -ENOIOCTLCMD; 3587 } 3588 3589 /* This is the function which gets called during socket creation to 3590 * initialized the SCTP-specific portion of the sock. 3591 * The sock structure should already be zero-filled memory. 3592 */ 3593 SCTP_STATIC int sctp_init_sock(struct sock *sk) 3594 { 3595 struct sctp_endpoint *ep; 3596 struct sctp_sock *sp; 3597 3598 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk); 3599 3600 sp = sctp_sk(sk); 3601 3602 /* Initialize the SCTP per socket area. */ 3603 switch (sk->sk_type) { 3604 case SOCK_SEQPACKET: 3605 sp->type = SCTP_SOCKET_UDP; 3606 break; 3607 case SOCK_STREAM: 3608 sp->type = SCTP_SOCKET_TCP; 3609 break; 3610 default: 3611 return -ESOCKTNOSUPPORT; 3612 } 3613 3614 /* Initialize default send parameters. These parameters can be 3615 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 3616 */ 3617 sp->default_stream = 0; 3618 sp->default_ppid = 0; 3619 sp->default_flags = 0; 3620 sp->default_context = 0; 3621 sp->default_timetolive = 0; 3622 3623 sp->default_rcv_context = 0; 3624 sp->max_burst = sctp_max_burst; 3625 3626 /* Initialize default setup parameters. These parameters 3627 * can be modified with the SCTP_INITMSG socket option or 3628 * overridden by the SCTP_INIT CMSG. 3629 */ 3630 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 3631 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 3632 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init; 3633 sp->initmsg.sinit_max_init_timeo = sctp_rto_max; 3634 3635 /* Initialize default RTO related parameters. These parameters can 3636 * be modified for with the SCTP_RTOINFO socket option. 3637 */ 3638 sp->rtoinfo.srto_initial = sctp_rto_initial; 3639 sp->rtoinfo.srto_max = sctp_rto_max; 3640 sp->rtoinfo.srto_min = sctp_rto_min; 3641 3642 /* Initialize default association related parameters. These parameters 3643 * can be modified with the SCTP_ASSOCINFO socket option. 3644 */ 3645 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association; 3646 sp->assocparams.sasoc_number_peer_destinations = 0; 3647 sp->assocparams.sasoc_peer_rwnd = 0; 3648 sp->assocparams.sasoc_local_rwnd = 0; 3649 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life; 3650 3651 /* Initialize default event subscriptions. By default, all the 3652 * options are off. 3653 */ 3654 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 3655 3656 /* Default Peer Address Parameters. These defaults can 3657 * be modified via SCTP_PEER_ADDR_PARAMS 3658 */ 3659 sp->hbinterval = sctp_hb_interval; 3660 sp->pathmaxrxt = sctp_max_retrans_path; 3661 sp->pathmtu = 0; // allow default discovery 3662 sp->sackdelay = sctp_sack_timeout; 3663 sp->sackfreq = 2; 3664 sp->param_flags = SPP_HB_ENABLE | 3665 SPP_PMTUD_ENABLE | 3666 SPP_SACKDELAY_ENABLE; 3667 3668 /* If enabled no SCTP message fragmentation will be performed. 3669 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 3670 */ 3671 sp->disable_fragments = 0; 3672 3673 /* Enable Nagle algorithm by default. */ 3674 sp->nodelay = 0; 3675 3676 /* Enable by default. */ 3677 sp->v4mapped = 1; 3678 3679 /* Auto-close idle associations after the configured 3680 * number of seconds. A value of 0 disables this 3681 * feature. Configure through the SCTP_AUTOCLOSE socket option, 3682 * for UDP-style sockets only. 3683 */ 3684 sp->autoclose = 0; 3685 3686 /* User specified fragmentation limit. */ 3687 sp->user_frag = 0; 3688 3689 sp->adaptation_ind = 0; 3690 3691 sp->pf = sctp_get_pf_specific(sk->sk_family); 3692 3693 /* Control variables for partial data delivery. */ 3694 atomic_set(&sp->pd_mode, 0); 3695 skb_queue_head_init(&sp->pd_lobby); 3696 sp->frag_interleave = 0; 3697 3698 /* Create a per socket endpoint structure. Even if we 3699 * change the data structure relationships, this may still 3700 * be useful for storing pre-connect address information. 3701 */ 3702 ep = sctp_endpoint_new(sk, GFP_KERNEL); 3703 if (!ep) 3704 return -ENOMEM; 3705 3706 sp->ep = ep; 3707 sp->hmac = NULL; 3708 3709 SCTP_DBG_OBJCNT_INC(sock); 3710 percpu_counter_inc(&sctp_sockets_allocated); 3711 3712 local_bh_disable(); 3713 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3714 local_bh_enable(); 3715 3716 return 0; 3717 } 3718 3719 /* Cleanup any SCTP per socket resources. */ 3720 SCTP_STATIC void sctp_destroy_sock(struct sock *sk) 3721 { 3722 struct sctp_endpoint *ep; 3723 3724 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk); 3725 3726 /* Release our hold on the endpoint. */ 3727 ep = sctp_sk(sk)->ep; 3728 sctp_endpoint_free(ep); 3729 percpu_counter_dec(&sctp_sockets_allocated); 3730 local_bh_disable(); 3731 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3732 local_bh_enable(); 3733 } 3734 3735 /* API 4.1.7 shutdown() - TCP Style Syntax 3736 * int shutdown(int socket, int how); 3737 * 3738 * sd - the socket descriptor of the association to be closed. 3739 * how - Specifies the type of shutdown. The values are 3740 * as follows: 3741 * SHUT_RD 3742 * Disables further receive operations. No SCTP 3743 * protocol action is taken. 3744 * SHUT_WR 3745 * Disables further send operations, and initiates 3746 * the SCTP shutdown sequence. 3747 * SHUT_RDWR 3748 * Disables further send and receive operations 3749 * and initiates the SCTP shutdown sequence. 3750 */ 3751 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how) 3752 { 3753 struct sctp_endpoint *ep; 3754 struct sctp_association *asoc; 3755 3756 if (!sctp_style(sk, TCP)) 3757 return; 3758 3759 if (how & SEND_SHUTDOWN) { 3760 ep = sctp_sk(sk)->ep; 3761 if (!list_empty(&ep->asocs)) { 3762 asoc = list_entry(ep->asocs.next, 3763 struct sctp_association, asocs); 3764 sctp_primitive_SHUTDOWN(asoc, NULL); 3765 } 3766 } 3767 } 3768 3769 /* 7.2.1 Association Status (SCTP_STATUS) 3770 3771 * Applications can retrieve current status information about an 3772 * association, including association state, peer receiver window size, 3773 * number of unacked data chunks, and number of data chunks pending 3774 * receipt. This information is read-only. 3775 */ 3776 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 3777 char __user *optval, 3778 int __user *optlen) 3779 { 3780 struct sctp_status status; 3781 struct sctp_association *asoc = NULL; 3782 struct sctp_transport *transport; 3783 sctp_assoc_t associd; 3784 int retval = 0; 3785 3786 if (len < sizeof(status)) { 3787 retval = -EINVAL; 3788 goto out; 3789 } 3790 3791 len = sizeof(status); 3792 if (copy_from_user(&status, optval, len)) { 3793 retval = -EFAULT; 3794 goto out; 3795 } 3796 3797 associd = status.sstat_assoc_id; 3798 asoc = sctp_id2assoc(sk, associd); 3799 if (!asoc) { 3800 retval = -EINVAL; 3801 goto out; 3802 } 3803 3804 transport = asoc->peer.primary_path; 3805 3806 status.sstat_assoc_id = sctp_assoc2id(asoc); 3807 status.sstat_state = asoc->state; 3808 status.sstat_rwnd = asoc->peer.rwnd; 3809 status.sstat_unackdata = asoc->unack_data; 3810 3811 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 3812 status.sstat_instrms = asoc->c.sinit_max_instreams; 3813 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 3814 status.sstat_fragmentation_point = asoc->frag_point; 3815 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3816 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 3817 transport->af_specific->sockaddr_len); 3818 /* Map ipv4 address into v4-mapped-on-v6 address. */ 3819 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 3820 (union sctp_addr *)&status.sstat_primary.spinfo_address); 3821 status.sstat_primary.spinfo_state = transport->state; 3822 status.sstat_primary.spinfo_cwnd = transport->cwnd; 3823 status.sstat_primary.spinfo_srtt = transport->srtt; 3824 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 3825 status.sstat_primary.spinfo_mtu = transport->pathmtu; 3826 3827 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 3828 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 3829 3830 if (put_user(len, optlen)) { 3831 retval = -EFAULT; 3832 goto out; 3833 } 3834 3835 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n", 3836 len, status.sstat_state, status.sstat_rwnd, 3837 status.sstat_assoc_id); 3838 3839 if (copy_to_user(optval, &status, len)) { 3840 retval = -EFAULT; 3841 goto out; 3842 } 3843 3844 out: 3845 return (retval); 3846 } 3847 3848 3849 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 3850 * 3851 * Applications can retrieve information about a specific peer address 3852 * of an association, including its reachability state, congestion 3853 * window, and retransmission timer values. This information is 3854 * read-only. 3855 */ 3856 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 3857 char __user *optval, 3858 int __user *optlen) 3859 { 3860 struct sctp_paddrinfo pinfo; 3861 struct sctp_transport *transport; 3862 int retval = 0; 3863 3864 if (len < sizeof(pinfo)) { 3865 retval = -EINVAL; 3866 goto out; 3867 } 3868 3869 len = sizeof(pinfo); 3870 if (copy_from_user(&pinfo, optval, len)) { 3871 retval = -EFAULT; 3872 goto out; 3873 } 3874 3875 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 3876 pinfo.spinfo_assoc_id); 3877 if (!transport) 3878 return -EINVAL; 3879 3880 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 3881 pinfo.spinfo_state = transport->state; 3882 pinfo.spinfo_cwnd = transport->cwnd; 3883 pinfo.spinfo_srtt = transport->srtt; 3884 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 3885 pinfo.spinfo_mtu = transport->pathmtu; 3886 3887 if (pinfo.spinfo_state == SCTP_UNKNOWN) 3888 pinfo.spinfo_state = SCTP_ACTIVE; 3889 3890 if (put_user(len, optlen)) { 3891 retval = -EFAULT; 3892 goto out; 3893 } 3894 3895 if (copy_to_user(optval, &pinfo, len)) { 3896 retval = -EFAULT; 3897 goto out; 3898 } 3899 3900 out: 3901 return (retval); 3902 } 3903 3904 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 3905 * 3906 * This option is a on/off flag. If enabled no SCTP message 3907 * fragmentation will be performed. Instead if a message being sent 3908 * exceeds the current PMTU size, the message will NOT be sent and 3909 * instead a error will be indicated to the user. 3910 */ 3911 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 3912 char __user *optval, int __user *optlen) 3913 { 3914 int val; 3915 3916 if (len < sizeof(int)) 3917 return -EINVAL; 3918 3919 len = sizeof(int); 3920 val = (sctp_sk(sk)->disable_fragments == 1); 3921 if (put_user(len, optlen)) 3922 return -EFAULT; 3923 if (copy_to_user(optval, &val, len)) 3924 return -EFAULT; 3925 return 0; 3926 } 3927 3928 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 3929 * 3930 * This socket option is used to specify various notifications and 3931 * ancillary data the user wishes to receive. 3932 */ 3933 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 3934 int __user *optlen) 3935 { 3936 if (len < sizeof(struct sctp_event_subscribe)) 3937 return -EINVAL; 3938 len = sizeof(struct sctp_event_subscribe); 3939 if (put_user(len, optlen)) 3940 return -EFAULT; 3941 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 3942 return -EFAULT; 3943 return 0; 3944 } 3945 3946 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 3947 * 3948 * This socket option is applicable to the UDP-style socket only. When 3949 * set it will cause associations that are idle for more than the 3950 * specified number of seconds to automatically close. An association 3951 * being idle is defined an association that has NOT sent or received 3952 * user data. The special value of '0' indicates that no automatic 3953 * close of any associations should be performed. The option expects an 3954 * integer defining the number of seconds of idle time before an 3955 * association is closed. 3956 */ 3957 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 3958 { 3959 /* Applicable to UDP-style socket only */ 3960 if (sctp_style(sk, TCP)) 3961 return -EOPNOTSUPP; 3962 if (len < sizeof(int)) 3963 return -EINVAL; 3964 len = sizeof(int); 3965 if (put_user(len, optlen)) 3966 return -EFAULT; 3967 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 3968 return -EFAULT; 3969 return 0; 3970 } 3971 3972 /* Helper routine to branch off an association to a new socket. */ 3973 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc, 3974 struct socket **sockp) 3975 { 3976 struct sock *sk = asoc->base.sk; 3977 struct socket *sock; 3978 struct sctp_af *af; 3979 int err = 0; 3980 3981 /* An association cannot be branched off from an already peeled-off 3982 * socket, nor is this supported for tcp style sockets. 3983 */ 3984 if (!sctp_style(sk, UDP)) 3985 return -EINVAL; 3986 3987 /* Create a new socket. */ 3988 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 3989 if (err < 0) 3990 return err; 3991 3992 sctp_copy_sock(sock->sk, sk, asoc); 3993 3994 /* Make peeled-off sockets more like 1-1 accepted sockets. 3995 * Set the daddr and initialize id to something more random 3996 */ 3997 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family); 3998 af->to_sk_daddr(&asoc->peer.primary_addr, sk); 3999 4000 /* Populate the fields of the newsk from the oldsk and migrate the 4001 * asoc to the newsk. 4002 */ 4003 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 4004 4005 *sockp = sock; 4006 4007 return err; 4008 } 4009 4010 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 4011 { 4012 sctp_peeloff_arg_t peeloff; 4013 struct socket *newsock; 4014 int retval = 0; 4015 struct sctp_association *asoc; 4016 4017 if (len < sizeof(sctp_peeloff_arg_t)) 4018 return -EINVAL; 4019 len = sizeof(sctp_peeloff_arg_t); 4020 if (copy_from_user(&peeloff, optval, len)) 4021 return -EFAULT; 4022 4023 asoc = sctp_id2assoc(sk, peeloff.associd); 4024 if (!asoc) { 4025 retval = -EINVAL; 4026 goto out; 4027 } 4028 4029 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __func__, sk, asoc); 4030 4031 retval = sctp_do_peeloff(asoc, &newsock); 4032 if (retval < 0) 4033 goto out; 4034 4035 /* Map the socket to an unused fd that can be returned to the user. */ 4036 retval = sock_map_fd(newsock, 0); 4037 if (retval < 0) { 4038 sock_release(newsock); 4039 goto out; 4040 } 4041 4042 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n", 4043 __func__, sk, asoc, newsock->sk, retval); 4044 4045 /* Return the fd mapped to the new socket. */ 4046 peeloff.sd = retval; 4047 if (put_user(len, optlen)) 4048 return -EFAULT; 4049 if (copy_to_user(optval, &peeloff, len)) 4050 retval = -EFAULT; 4051 4052 out: 4053 return retval; 4054 } 4055 4056 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 4057 * 4058 * Applications can enable or disable heartbeats for any peer address of 4059 * an association, modify an address's heartbeat interval, force a 4060 * heartbeat to be sent immediately, and adjust the address's maximum 4061 * number of retransmissions sent before an address is considered 4062 * unreachable. The following structure is used to access and modify an 4063 * address's parameters: 4064 * 4065 * struct sctp_paddrparams { 4066 * sctp_assoc_t spp_assoc_id; 4067 * struct sockaddr_storage spp_address; 4068 * uint32_t spp_hbinterval; 4069 * uint16_t spp_pathmaxrxt; 4070 * uint32_t spp_pathmtu; 4071 * uint32_t spp_sackdelay; 4072 * uint32_t spp_flags; 4073 * }; 4074 * 4075 * spp_assoc_id - (one-to-many style socket) This is filled in the 4076 * application, and identifies the association for 4077 * this query. 4078 * spp_address - This specifies which address is of interest. 4079 * spp_hbinterval - This contains the value of the heartbeat interval, 4080 * in milliseconds. If a value of zero 4081 * is present in this field then no changes are to 4082 * be made to this parameter. 4083 * spp_pathmaxrxt - This contains the maximum number of 4084 * retransmissions before this address shall be 4085 * considered unreachable. If a value of zero 4086 * is present in this field then no changes are to 4087 * be made to this parameter. 4088 * spp_pathmtu - When Path MTU discovery is disabled the value 4089 * specified here will be the "fixed" path mtu. 4090 * Note that if the spp_address field is empty 4091 * then all associations on this address will 4092 * have this fixed path mtu set upon them. 4093 * 4094 * spp_sackdelay - When delayed sack is enabled, this value specifies 4095 * the number of milliseconds that sacks will be delayed 4096 * for. This value will apply to all addresses of an 4097 * association if the spp_address field is empty. Note 4098 * also, that if delayed sack is enabled and this 4099 * value is set to 0, no change is made to the last 4100 * recorded delayed sack timer value. 4101 * 4102 * spp_flags - These flags are used to control various features 4103 * on an association. The flag field may contain 4104 * zero or more of the following options. 4105 * 4106 * SPP_HB_ENABLE - Enable heartbeats on the 4107 * specified address. Note that if the address 4108 * field is empty all addresses for the association 4109 * have heartbeats enabled upon them. 4110 * 4111 * SPP_HB_DISABLE - Disable heartbeats on the 4112 * speicifed address. Note that if the address 4113 * field is empty all addresses for the association 4114 * will have their heartbeats disabled. Note also 4115 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 4116 * mutually exclusive, only one of these two should 4117 * be specified. Enabling both fields will have 4118 * undetermined results. 4119 * 4120 * SPP_HB_DEMAND - Request a user initiated heartbeat 4121 * to be made immediately. 4122 * 4123 * SPP_PMTUD_ENABLE - This field will enable PMTU 4124 * discovery upon the specified address. Note that 4125 * if the address feild is empty then all addresses 4126 * on the association are effected. 4127 * 4128 * SPP_PMTUD_DISABLE - This field will disable PMTU 4129 * discovery upon the specified address. Note that 4130 * if the address feild is empty then all addresses 4131 * on the association are effected. Not also that 4132 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 4133 * exclusive. Enabling both will have undetermined 4134 * results. 4135 * 4136 * SPP_SACKDELAY_ENABLE - Setting this flag turns 4137 * on delayed sack. The time specified in spp_sackdelay 4138 * is used to specify the sack delay for this address. Note 4139 * that if spp_address is empty then all addresses will 4140 * enable delayed sack and take on the sack delay 4141 * value specified in spp_sackdelay. 4142 * SPP_SACKDELAY_DISABLE - Setting this flag turns 4143 * off delayed sack. If the spp_address field is blank then 4144 * delayed sack is disabled for the entire association. Note 4145 * also that this field is mutually exclusive to 4146 * SPP_SACKDELAY_ENABLE, setting both will have undefined 4147 * results. 4148 */ 4149 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 4150 char __user *optval, int __user *optlen) 4151 { 4152 struct sctp_paddrparams params; 4153 struct sctp_transport *trans = NULL; 4154 struct sctp_association *asoc = NULL; 4155 struct sctp_sock *sp = sctp_sk(sk); 4156 4157 if (len < sizeof(struct sctp_paddrparams)) 4158 return -EINVAL; 4159 len = sizeof(struct sctp_paddrparams); 4160 if (copy_from_user(¶ms, optval, len)) 4161 return -EFAULT; 4162 4163 /* If an address other than INADDR_ANY is specified, and 4164 * no transport is found, then the request is invalid. 4165 */ 4166 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) { 4167 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 4168 params.spp_assoc_id); 4169 if (!trans) { 4170 SCTP_DEBUG_PRINTK("Failed no transport\n"); 4171 return -EINVAL; 4172 } 4173 } 4174 4175 /* Get association, if assoc_id != 0 and the socket is a one 4176 * to many style socket, and an association was not found, then 4177 * the id was invalid. 4178 */ 4179 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 4180 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 4181 SCTP_DEBUG_PRINTK("Failed no association\n"); 4182 return -EINVAL; 4183 } 4184 4185 if (trans) { 4186 /* Fetch transport values. */ 4187 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 4188 params.spp_pathmtu = trans->pathmtu; 4189 params.spp_pathmaxrxt = trans->pathmaxrxt; 4190 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 4191 4192 /*draft-11 doesn't say what to return in spp_flags*/ 4193 params.spp_flags = trans->param_flags; 4194 } else if (asoc) { 4195 /* Fetch association values. */ 4196 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 4197 params.spp_pathmtu = asoc->pathmtu; 4198 params.spp_pathmaxrxt = asoc->pathmaxrxt; 4199 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 4200 4201 /*draft-11 doesn't say what to return in spp_flags*/ 4202 params.spp_flags = asoc->param_flags; 4203 } else { 4204 /* Fetch socket values. */ 4205 params.spp_hbinterval = sp->hbinterval; 4206 params.spp_pathmtu = sp->pathmtu; 4207 params.spp_sackdelay = sp->sackdelay; 4208 params.spp_pathmaxrxt = sp->pathmaxrxt; 4209 4210 /*draft-11 doesn't say what to return in spp_flags*/ 4211 params.spp_flags = sp->param_flags; 4212 } 4213 4214 if (copy_to_user(optval, ¶ms, len)) 4215 return -EFAULT; 4216 4217 if (put_user(len, optlen)) 4218 return -EFAULT; 4219 4220 return 0; 4221 } 4222 4223 /* 4224 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 4225 * 4226 * This option will effect the way delayed acks are performed. This 4227 * option allows you to get or set the delayed ack time, in 4228 * milliseconds. It also allows changing the delayed ack frequency. 4229 * Changing the frequency to 1 disables the delayed sack algorithm. If 4230 * the assoc_id is 0, then this sets or gets the endpoints default 4231 * values. If the assoc_id field is non-zero, then the set or get 4232 * effects the specified association for the one to many model (the 4233 * assoc_id field is ignored by the one to one model). Note that if 4234 * sack_delay or sack_freq are 0 when setting this option, then the 4235 * current values will remain unchanged. 4236 * 4237 * struct sctp_sack_info { 4238 * sctp_assoc_t sack_assoc_id; 4239 * uint32_t sack_delay; 4240 * uint32_t sack_freq; 4241 * }; 4242 * 4243 * sack_assoc_id - This parameter, indicates which association the user 4244 * is performing an action upon. Note that if this field's value is 4245 * zero then the endpoints default value is changed (effecting future 4246 * associations only). 4247 * 4248 * sack_delay - This parameter contains the number of milliseconds that 4249 * the user is requesting the delayed ACK timer be set to. Note that 4250 * this value is defined in the standard to be between 200 and 500 4251 * milliseconds. 4252 * 4253 * sack_freq - This parameter contains the number of packets that must 4254 * be received before a sack is sent without waiting for the delay 4255 * timer to expire. The default value for this is 2, setting this 4256 * value to 1 will disable the delayed sack algorithm. 4257 */ 4258 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 4259 char __user *optval, 4260 int __user *optlen) 4261 { 4262 struct sctp_sack_info params; 4263 struct sctp_association *asoc = NULL; 4264 struct sctp_sock *sp = sctp_sk(sk); 4265 4266 if (len >= sizeof(struct sctp_sack_info)) { 4267 len = sizeof(struct sctp_sack_info); 4268 4269 if (copy_from_user(¶ms, optval, len)) 4270 return -EFAULT; 4271 } else if (len == sizeof(struct sctp_assoc_value)) { 4272 printk(KERN_WARNING "SCTP: Use of struct sctp_assoc_value " 4273 "in delayed_ack socket option deprecated\n"); 4274 printk(KERN_WARNING "SCTP: Use struct sctp_sack_info instead\n"); 4275 if (copy_from_user(¶ms, optval, len)) 4276 return -EFAULT; 4277 } else 4278 return - EINVAL; 4279 4280 /* Get association, if sack_assoc_id != 0 and the socket is a one 4281 * to many style socket, and an association was not found, then 4282 * the id was invalid. 4283 */ 4284 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 4285 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 4286 return -EINVAL; 4287 4288 if (asoc) { 4289 /* Fetch association values. */ 4290 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 4291 params.sack_delay = jiffies_to_msecs( 4292 asoc->sackdelay); 4293 params.sack_freq = asoc->sackfreq; 4294 4295 } else { 4296 params.sack_delay = 0; 4297 params.sack_freq = 1; 4298 } 4299 } else { 4300 /* Fetch socket values. */ 4301 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 4302 params.sack_delay = sp->sackdelay; 4303 params.sack_freq = sp->sackfreq; 4304 } else { 4305 params.sack_delay = 0; 4306 params.sack_freq = 1; 4307 } 4308 } 4309 4310 if (copy_to_user(optval, ¶ms, len)) 4311 return -EFAULT; 4312 4313 if (put_user(len, optlen)) 4314 return -EFAULT; 4315 4316 return 0; 4317 } 4318 4319 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 4320 * 4321 * Applications can specify protocol parameters for the default association 4322 * initialization. The option name argument to setsockopt() and getsockopt() 4323 * is SCTP_INITMSG. 4324 * 4325 * Setting initialization parameters is effective only on an unconnected 4326 * socket (for UDP-style sockets only future associations are effected 4327 * by the change). With TCP-style sockets, this option is inherited by 4328 * sockets derived from a listener socket. 4329 */ 4330 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 4331 { 4332 if (len < sizeof(struct sctp_initmsg)) 4333 return -EINVAL; 4334 len = sizeof(struct sctp_initmsg); 4335 if (put_user(len, optlen)) 4336 return -EFAULT; 4337 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 4338 return -EFAULT; 4339 return 0; 4340 } 4341 4342 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len, 4343 char __user *optval, 4344 int __user *optlen) 4345 { 4346 sctp_assoc_t id; 4347 struct sctp_association *asoc; 4348 struct list_head *pos; 4349 int cnt = 0; 4350 4351 if (len < sizeof(sctp_assoc_t)) 4352 return -EINVAL; 4353 4354 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 4355 return -EFAULT; 4356 4357 printk(KERN_WARNING "SCTP: Use of SCTP_GET_PEER_ADDRS_NUM_OLD " 4358 "socket option deprecated\n"); 4359 /* For UDP-style sockets, id specifies the association to query. */ 4360 asoc = sctp_id2assoc(sk, id); 4361 if (!asoc) 4362 return -EINVAL; 4363 4364 list_for_each(pos, &asoc->peer.transport_addr_list) { 4365 cnt ++; 4366 } 4367 4368 return cnt; 4369 } 4370 4371 /* 4372 * Old API for getting list of peer addresses. Does not work for 32-bit 4373 * programs running on a 64-bit kernel 4374 */ 4375 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len, 4376 char __user *optval, 4377 int __user *optlen) 4378 { 4379 struct sctp_association *asoc; 4380 int cnt = 0; 4381 struct sctp_getaddrs_old getaddrs; 4382 struct sctp_transport *from; 4383 void __user *to; 4384 union sctp_addr temp; 4385 struct sctp_sock *sp = sctp_sk(sk); 4386 int addrlen; 4387 4388 if (len < sizeof(struct sctp_getaddrs_old)) 4389 return -EINVAL; 4390 4391 len = sizeof(struct sctp_getaddrs_old); 4392 4393 if (copy_from_user(&getaddrs, optval, len)) 4394 return -EFAULT; 4395 4396 if (getaddrs.addr_num <= 0) return -EINVAL; 4397 4398 printk(KERN_WARNING "SCTP: Use of SCTP_GET_PEER_ADDRS_OLD " 4399 "socket option deprecated\n"); 4400 4401 /* For UDP-style sockets, id specifies the association to query. */ 4402 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4403 if (!asoc) 4404 return -EINVAL; 4405 4406 to = (void __user *)getaddrs.addrs; 4407 list_for_each_entry(from, &asoc->peer.transport_addr_list, 4408 transports) { 4409 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4410 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4411 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 4412 if (copy_to_user(to, &temp, addrlen)) 4413 return -EFAULT; 4414 to += addrlen ; 4415 cnt ++; 4416 if (cnt >= getaddrs.addr_num) break; 4417 } 4418 getaddrs.addr_num = cnt; 4419 if (put_user(len, optlen)) 4420 return -EFAULT; 4421 if (copy_to_user(optval, &getaddrs, len)) 4422 return -EFAULT; 4423 4424 return 0; 4425 } 4426 4427 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 4428 char __user *optval, int __user *optlen) 4429 { 4430 struct sctp_association *asoc; 4431 int cnt = 0; 4432 struct sctp_getaddrs getaddrs; 4433 struct sctp_transport *from; 4434 void __user *to; 4435 union sctp_addr temp; 4436 struct sctp_sock *sp = sctp_sk(sk); 4437 int addrlen; 4438 size_t space_left; 4439 int bytes_copied; 4440 4441 if (len < sizeof(struct sctp_getaddrs)) 4442 return -EINVAL; 4443 4444 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4445 return -EFAULT; 4446 4447 /* For UDP-style sockets, id specifies the association to query. */ 4448 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4449 if (!asoc) 4450 return -EINVAL; 4451 4452 to = optval + offsetof(struct sctp_getaddrs,addrs); 4453 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4454 4455 list_for_each_entry(from, &asoc->peer.transport_addr_list, 4456 transports) { 4457 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4458 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4459 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 4460 if (space_left < addrlen) 4461 return -ENOMEM; 4462 if (copy_to_user(to, &temp, addrlen)) 4463 return -EFAULT; 4464 to += addrlen; 4465 cnt++; 4466 space_left -= addrlen; 4467 } 4468 4469 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4470 return -EFAULT; 4471 bytes_copied = ((char __user *)to) - optval; 4472 if (put_user(bytes_copied, optlen)) 4473 return -EFAULT; 4474 4475 return 0; 4476 } 4477 4478 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len, 4479 char __user *optval, 4480 int __user *optlen) 4481 { 4482 sctp_assoc_t id; 4483 struct sctp_bind_addr *bp; 4484 struct sctp_association *asoc; 4485 struct sctp_sockaddr_entry *addr; 4486 int cnt = 0; 4487 4488 if (len < sizeof(sctp_assoc_t)) 4489 return -EINVAL; 4490 4491 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 4492 return -EFAULT; 4493 4494 printk(KERN_WARNING "SCTP: Use of SCTP_GET_LOCAL_ADDRS_NUM_OLD " 4495 "socket option deprecated\n"); 4496 4497 /* 4498 * For UDP-style sockets, id specifies the association to query. 4499 * If the id field is set to the value '0' then the locally bound 4500 * addresses are returned without regard to any particular 4501 * association. 4502 */ 4503 if (0 == id) { 4504 bp = &sctp_sk(sk)->ep->base.bind_addr; 4505 } else { 4506 asoc = sctp_id2assoc(sk, id); 4507 if (!asoc) 4508 return -EINVAL; 4509 bp = &asoc->base.bind_addr; 4510 } 4511 4512 /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid 4513 * addresses from the global local address list. 4514 */ 4515 if (sctp_list_single_entry(&bp->address_list)) { 4516 addr = list_entry(bp->address_list.next, 4517 struct sctp_sockaddr_entry, list); 4518 if (sctp_is_any(sk, &addr->a)) { 4519 rcu_read_lock(); 4520 list_for_each_entry_rcu(addr, 4521 &sctp_local_addr_list, list) { 4522 if (!addr->valid) 4523 continue; 4524 4525 if ((PF_INET == sk->sk_family) && 4526 (AF_INET6 == addr->a.sa.sa_family)) 4527 continue; 4528 4529 if ((PF_INET6 == sk->sk_family) && 4530 inet_v6_ipv6only(sk) && 4531 (AF_INET == addr->a.sa.sa_family)) 4532 continue; 4533 4534 cnt++; 4535 } 4536 rcu_read_unlock(); 4537 } else { 4538 cnt = 1; 4539 } 4540 goto done; 4541 } 4542 4543 /* Protection on the bound address list is not needed, 4544 * since in the socket option context we hold the socket lock, 4545 * so there is no way that the bound address list can change. 4546 */ 4547 list_for_each_entry(addr, &bp->address_list, list) { 4548 cnt ++; 4549 } 4550 done: 4551 return cnt; 4552 } 4553 4554 /* Helper function that copies local addresses to user and returns the number 4555 * of addresses copied. 4556 */ 4557 static int sctp_copy_laddrs_old(struct sock *sk, __u16 port, 4558 int max_addrs, void *to, 4559 int *bytes_copied) 4560 { 4561 struct sctp_sockaddr_entry *addr; 4562 union sctp_addr temp; 4563 int cnt = 0; 4564 int addrlen; 4565 4566 rcu_read_lock(); 4567 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) { 4568 if (!addr->valid) 4569 continue; 4570 4571 if ((PF_INET == sk->sk_family) && 4572 (AF_INET6 == addr->a.sa.sa_family)) 4573 continue; 4574 if ((PF_INET6 == sk->sk_family) && 4575 inet_v6_ipv6only(sk) && 4576 (AF_INET == addr->a.sa.sa_family)) 4577 continue; 4578 memcpy(&temp, &addr->a, sizeof(temp)); 4579 if (!temp.v4.sin_port) 4580 temp.v4.sin_port = htons(port); 4581 4582 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4583 &temp); 4584 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4585 memcpy(to, &temp, addrlen); 4586 4587 to += addrlen; 4588 *bytes_copied += addrlen; 4589 cnt ++; 4590 if (cnt >= max_addrs) break; 4591 } 4592 rcu_read_unlock(); 4593 4594 return cnt; 4595 } 4596 4597 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 4598 size_t space_left, int *bytes_copied) 4599 { 4600 struct sctp_sockaddr_entry *addr; 4601 union sctp_addr temp; 4602 int cnt = 0; 4603 int addrlen; 4604 4605 rcu_read_lock(); 4606 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) { 4607 if (!addr->valid) 4608 continue; 4609 4610 if ((PF_INET == sk->sk_family) && 4611 (AF_INET6 == addr->a.sa.sa_family)) 4612 continue; 4613 if ((PF_INET6 == sk->sk_family) && 4614 inet_v6_ipv6only(sk) && 4615 (AF_INET == addr->a.sa.sa_family)) 4616 continue; 4617 memcpy(&temp, &addr->a, sizeof(temp)); 4618 if (!temp.v4.sin_port) 4619 temp.v4.sin_port = htons(port); 4620 4621 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4622 &temp); 4623 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4624 if (space_left < addrlen) { 4625 cnt = -ENOMEM; 4626 break; 4627 } 4628 memcpy(to, &temp, addrlen); 4629 4630 to += addrlen; 4631 cnt ++; 4632 space_left -= addrlen; 4633 *bytes_copied += addrlen; 4634 } 4635 rcu_read_unlock(); 4636 4637 return cnt; 4638 } 4639 4640 /* Old API for getting list of local addresses. Does not work for 32-bit 4641 * programs running on a 64-bit kernel 4642 */ 4643 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len, 4644 char __user *optval, int __user *optlen) 4645 { 4646 struct sctp_bind_addr *bp; 4647 struct sctp_association *asoc; 4648 int cnt = 0; 4649 struct sctp_getaddrs_old getaddrs; 4650 struct sctp_sockaddr_entry *addr; 4651 void __user *to; 4652 union sctp_addr temp; 4653 struct sctp_sock *sp = sctp_sk(sk); 4654 int addrlen; 4655 int err = 0; 4656 void *addrs; 4657 void *buf; 4658 int bytes_copied = 0; 4659 4660 if (len < sizeof(struct sctp_getaddrs_old)) 4661 return -EINVAL; 4662 4663 len = sizeof(struct sctp_getaddrs_old); 4664 if (copy_from_user(&getaddrs, optval, len)) 4665 return -EFAULT; 4666 4667 if (getaddrs.addr_num <= 0 || 4668 getaddrs.addr_num >= (INT_MAX / sizeof(union sctp_addr))) 4669 return -EINVAL; 4670 4671 printk(KERN_WARNING "SCTP: Use of SCTP_GET_LOCAL_ADDRS_OLD " 4672 "socket option deprecated\n"); 4673 4674 /* 4675 * For UDP-style sockets, id specifies the association to query. 4676 * If the id field is set to the value '0' then the locally bound 4677 * addresses are returned without regard to any particular 4678 * association. 4679 */ 4680 if (0 == getaddrs.assoc_id) { 4681 bp = &sctp_sk(sk)->ep->base.bind_addr; 4682 } else { 4683 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4684 if (!asoc) 4685 return -EINVAL; 4686 bp = &asoc->base.bind_addr; 4687 } 4688 4689 to = getaddrs.addrs; 4690 4691 /* Allocate space for a local instance of packed array to hold all 4692 * the data. We store addresses here first and then put write them 4693 * to the user in one shot. 4694 */ 4695 addrs = kmalloc(sizeof(union sctp_addr) * getaddrs.addr_num, 4696 GFP_KERNEL); 4697 if (!addrs) 4698 return -ENOMEM; 4699 4700 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4701 * addresses from the global local address list. 4702 */ 4703 if (sctp_list_single_entry(&bp->address_list)) { 4704 addr = list_entry(bp->address_list.next, 4705 struct sctp_sockaddr_entry, list); 4706 if (sctp_is_any(sk, &addr->a)) { 4707 cnt = sctp_copy_laddrs_old(sk, bp->port, 4708 getaddrs.addr_num, 4709 addrs, &bytes_copied); 4710 goto copy_getaddrs; 4711 } 4712 } 4713 4714 buf = addrs; 4715 /* Protection on the bound address list is not needed since 4716 * in the socket option context we hold a socket lock and 4717 * thus the bound address list can't change. 4718 */ 4719 list_for_each_entry(addr, &bp->address_list, list) { 4720 memcpy(&temp, &addr->a, sizeof(temp)); 4721 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4722 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4723 memcpy(buf, &temp, addrlen); 4724 buf += addrlen; 4725 bytes_copied += addrlen; 4726 cnt ++; 4727 if (cnt >= getaddrs.addr_num) break; 4728 } 4729 4730 copy_getaddrs: 4731 /* copy the entire address list into the user provided space */ 4732 if (copy_to_user(to, addrs, bytes_copied)) { 4733 err = -EFAULT; 4734 goto error; 4735 } 4736 4737 /* copy the leading structure back to user */ 4738 getaddrs.addr_num = cnt; 4739 if (copy_to_user(optval, &getaddrs, len)) 4740 err = -EFAULT; 4741 4742 error: 4743 kfree(addrs); 4744 return err; 4745 } 4746 4747 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 4748 char __user *optval, int __user *optlen) 4749 { 4750 struct sctp_bind_addr *bp; 4751 struct sctp_association *asoc; 4752 int cnt = 0; 4753 struct sctp_getaddrs getaddrs; 4754 struct sctp_sockaddr_entry *addr; 4755 void __user *to; 4756 union sctp_addr temp; 4757 struct sctp_sock *sp = sctp_sk(sk); 4758 int addrlen; 4759 int err = 0; 4760 size_t space_left; 4761 int bytes_copied = 0; 4762 void *addrs; 4763 void *buf; 4764 4765 if (len < sizeof(struct sctp_getaddrs)) 4766 return -EINVAL; 4767 4768 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4769 return -EFAULT; 4770 4771 /* 4772 * For UDP-style sockets, id specifies the association to query. 4773 * If the id field is set to the value '0' then the locally bound 4774 * addresses are returned without regard to any particular 4775 * association. 4776 */ 4777 if (0 == getaddrs.assoc_id) { 4778 bp = &sctp_sk(sk)->ep->base.bind_addr; 4779 } else { 4780 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4781 if (!asoc) 4782 return -EINVAL; 4783 bp = &asoc->base.bind_addr; 4784 } 4785 4786 to = optval + offsetof(struct sctp_getaddrs,addrs); 4787 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4788 4789 addrs = kmalloc(space_left, GFP_KERNEL); 4790 if (!addrs) 4791 return -ENOMEM; 4792 4793 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4794 * addresses from the global local address list. 4795 */ 4796 if (sctp_list_single_entry(&bp->address_list)) { 4797 addr = list_entry(bp->address_list.next, 4798 struct sctp_sockaddr_entry, list); 4799 if (sctp_is_any(sk, &addr->a)) { 4800 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 4801 space_left, &bytes_copied); 4802 if (cnt < 0) { 4803 err = cnt; 4804 goto out; 4805 } 4806 goto copy_getaddrs; 4807 } 4808 } 4809 4810 buf = addrs; 4811 /* Protection on the bound address list is not needed since 4812 * in the socket option context we hold a socket lock and 4813 * thus the bound address list can't change. 4814 */ 4815 list_for_each_entry(addr, &bp->address_list, list) { 4816 memcpy(&temp, &addr->a, sizeof(temp)); 4817 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4818 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4819 if (space_left < addrlen) { 4820 err = -ENOMEM; /*fixme: right error?*/ 4821 goto out; 4822 } 4823 memcpy(buf, &temp, addrlen); 4824 buf += addrlen; 4825 bytes_copied += addrlen; 4826 cnt ++; 4827 space_left -= addrlen; 4828 } 4829 4830 copy_getaddrs: 4831 if (copy_to_user(to, addrs, bytes_copied)) { 4832 err = -EFAULT; 4833 goto out; 4834 } 4835 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 4836 err = -EFAULT; 4837 goto out; 4838 } 4839 if (put_user(bytes_copied, optlen)) 4840 err = -EFAULT; 4841 out: 4842 kfree(addrs); 4843 return err; 4844 } 4845 4846 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 4847 * 4848 * Requests that the local SCTP stack use the enclosed peer address as 4849 * the association primary. The enclosed address must be one of the 4850 * association peer's addresses. 4851 */ 4852 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 4853 char __user *optval, int __user *optlen) 4854 { 4855 struct sctp_prim prim; 4856 struct sctp_association *asoc; 4857 struct sctp_sock *sp = sctp_sk(sk); 4858 4859 if (len < sizeof(struct sctp_prim)) 4860 return -EINVAL; 4861 4862 len = sizeof(struct sctp_prim); 4863 4864 if (copy_from_user(&prim, optval, len)) 4865 return -EFAULT; 4866 4867 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 4868 if (!asoc) 4869 return -EINVAL; 4870 4871 if (!asoc->peer.primary_path) 4872 return -ENOTCONN; 4873 4874 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 4875 asoc->peer.primary_path->af_specific->sockaddr_len); 4876 4877 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, 4878 (union sctp_addr *)&prim.ssp_addr); 4879 4880 if (put_user(len, optlen)) 4881 return -EFAULT; 4882 if (copy_to_user(optval, &prim, len)) 4883 return -EFAULT; 4884 4885 return 0; 4886 } 4887 4888 /* 4889 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 4890 * 4891 * Requests that the local endpoint set the specified Adaptation Layer 4892 * Indication parameter for all future INIT and INIT-ACK exchanges. 4893 */ 4894 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 4895 char __user *optval, int __user *optlen) 4896 { 4897 struct sctp_setadaptation adaptation; 4898 4899 if (len < sizeof(struct sctp_setadaptation)) 4900 return -EINVAL; 4901 4902 len = sizeof(struct sctp_setadaptation); 4903 4904 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 4905 4906 if (put_user(len, optlen)) 4907 return -EFAULT; 4908 if (copy_to_user(optval, &adaptation, len)) 4909 return -EFAULT; 4910 4911 return 0; 4912 } 4913 4914 /* 4915 * 4916 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 4917 * 4918 * Applications that wish to use the sendto() system call may wish to 4919 * specify a default set of parameters that would normally be supplied 4920 * through the inclusion of ancillary data. This socket option allows 4921 * such an application to set the default sctp_sndrcvinfo structure. 4922 4923 4924 * The application that wishes to use this socket option simply passes 4925 * in to this call the sctp_sndrcvinfo structure defined in Section 4926 * 5.2.2) The input parameters accepted by this call include 4927 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 4928 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 4929 * to this call if the caller is using the UDP model. 4930 * 4931 * For getsockopt, it get the default sctp_sndrcvinfo structure. 4932 */ 4933 static int sctp_getsockopt_default_send_param(struct sock *sk, 4934 int len, char __user *optval, 4935 int __user *optlen) 4936 { 4937 struct sctp_sndrcvinfo info; 4938 struct sctp_association *asoc; 4939 struct sctp_sock *sp = sctp_sk(sk); 4940 4941 if (len < sizeof(struct sctp_sndrcvinfo)) 4942 return -EINVAL; 4943 4944 len = sizeof(struct sctp_sndrcvinfo); 4945 4946 if (copy_from_user(&info, optval, len)) 4947 return -EFAULT; 4948 4949 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 4950 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 4951 return -EINVAL; 4952 4953 if (asoc) { 4954 info.sinfo_stream = asoc->default_stream; 4955 info.sinfo_flags = asoc->default_flags; 4956 info.sinfo_ppid = asoc->default_ppid; 4957 info.sinfo_context = asoc->default_context; 4958 info.sinfo_timetolive = asoc->default_timetolive; 4959 } else { 4960 info.sinfo_stream = sp->default_stream; 4961 info.sinfo_flags = sp->default_flags; 4962 info.sinfo_ppid = sp->default_ppid; 4963 info.sinfo_context = sp->default_context; 4964 info.sinfo_timetolive = sp->default_timetolive; 4965 } 4966 4967 if (put_user(len, optlen)) 4968 return -EFAULT; 4969 if (copy_to_user(optval, &info, len)) 4970 return -EFAULT; 4971 4972 return 0; 4973 } 4974 4975 /* 4976 * 4977 * 7.1.5 SCTP_NODELAY 4978 * 4979 * Turn on/off any Nagle-like algorithm. This means that packets are 4980 * generally sent as soon as possible and no unnecessary delays are 4981 * introduced, at the cost of more packets in the network. Expects an 4982 * integer boolean flag. 4983 */ 4984 4985 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 4986 char __user *optval, int __user *optlen) 4987 { 4988 int val; 4989 4990 if (len < sizeof(int)) 4991 return -EINVAL; 4992 4993 len = sizeof(int); 4994 val = (sctp_sk(sk)->nodelay == 1); 4995 if (put_user(len, optlen)) 4996 return -EFAULT; 4997 if (copy_to_user(optval, &val, len)) 4998 return -EFAULT; 4999 return 0; 5000 } 5001 5002 /* 5003 * 5004 * 7.1.1 SCTP_RTOINFO 5005 * 5006 * The protocol parameters used to initialize and bound retransmission 5007 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 5008 * and modify these parameters. 5009 * All parameters are time values, in milliseconds. A value of 0, when 5010 * modifying the parameters, indicates that the current value should not 5011 * be changed. 5012 * 5013 */ 5014 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 5015 char __user *optval, 5016 int __user *optlen) { 5017 struct sctp_rtoinfo rtoinfo; 5018 struct sctp_association *asoc; 5019 5020 if (len < sizeof (struct sctp_rtoinfo)) 5021 return -EINVAL; 5022 5023 len = sizeof(struct sctp_rtoinfo); 5024 5025 if (copy_from_user(&rtoinfo, optval, len)) 5026 return -EFAULT; 5027 5028 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 5029 5030 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 5031 return -EINVAL; 5032 5033 /* Values corresponding to the specific association. */ 5034 if (asoc) { 5035 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 5036 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 5037 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 5038 } else { 5039 /* Values corresponding to the endpoint. */ 5040 struct sctp_sock *sp = sctp_sk(sk); 5041 5042 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 5043 rtoinfo.srto_max = sp->rtoinfo.srto_max; 5044 rtoinfo.srto_min = sp->rtoinfo.srto_min; 5045 } 5046 5047 if (put_user(len, optlen)) 5048 return -EFAULT; 5049 5050 if (copy_to_user(optval, &rtoinfo, len)) 5051 return -EFAULT; 5052 5053 return 0; 5054 } 5055 5056 /* 5057 * 5058 * 7.1.2 SCTP_ASSOCINFO 5059 * 5060 * This option is used to tune the maximum retransmission attempts 5061 * of the association. 5062 * Returns an error if the new association retransmission value is 5063 * greater than the sum of the retransmission value of the peer. 5064 * See [SCTP] for more information. 5065 * 5066 */ 5067 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 5068 char __user *optval, 5069 int __user *optlen) 5070 { 5071 5072 struct sctp_assocparams assocparams; 5073 struct sctp_association *asoc; 5074 struct list_head *pos; 5075 int cnt = 0; 5076 5077 if (len < sizeof (struct sctp_assocparams)) 5078 return -EINVAL; 5079 5080 len = sizeof(struct sctp_assocparams); 5081 5082 if (copy_from_user(&assocparams, optval, len)) 5083 return -EFAULT; 5084 5085 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 5086 5087 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 5088 return -EINVAL; 5089 5090 /* Values correspoinding to the specific association */ 5091 if (asoc) { 5092 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 5093 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 5094 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 5095 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec 5096 * 1000) + 5097 (asoc->cookie_life.tv_usec 5098 / 1000); 5099 5100 list_for_each(pos, &asoc->peer.transport_addr_list) { 5101 cnt ++; 5102 } 5103 5104 assocparams.sasoc_number_peer_destinations = cnt; 5105 } else { 5106 /* Values corresponding to the endpoint */ 5107 struct sctp_sock *sp = sctp_sk(sk); 5108 5109 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 5110 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 5111 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 5112 assocparams.sasoc_cookie_life = 5113 sp->assocparams.sasoc_cookie_life; 5114 assocparams.sasoc_number_peer_destinations = 5115 sp->assocparams. 5116 sasoc_number_peer_destinations; 5117 } 5118 5119 if (put_user(len, optlen)) 5120 return -EFAULT; 5121 5122 if (copy_to_user(optval, &assocparams, len)) 5123 return -EFAULT; 5124 5125 return 0; 5126 } 5127 5128 /* 5129 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 5130 * 5131 * This socket option is a boolean flag which turns on or off mapped V4 5132 * addresses. If this option is turned on and the socket is type 5133 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 5134 * If this option is turned off, then no mapping will be done of V4 5135 * addresses and a user will receive both PF_INET6 and PF_INET type 5136 * addresses on the socket. 5137 */ 5138 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 5139 char __user *optval, int __user *optlen) 5140 { 5141 int val; 5142 struct sctp_sock *sp = sctp_sk(sk); 5143 5144 if (len < sizeof(int)) 5145 return -EINVAL; 5146 5147 len = sizeof(int); 5148 val = sp->v4mapped; 5149 if (put_user(len, optlen)) 5150 return -EFAULT; 5151 if (copy_to_user(optval, &val, len)) 5152 return -EFAULT; 5153 5154 return 0; 5155 } 5156 5157 /* 5158 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 5159 * (chapter and verse is quoted at sctp_setsockopt_context()) 5160 */ 5161 static int sctp_getsockopt_context(struct sock *sk, int len, 5162 char __user *optval, int __user *optlen) 5163 { 5164 struct sctp_assoc_value params; 5165 struct sctp_sock *sp; 5166 struct sctp_association *asoc; 5167 5168 if (len < sizeof(struct sctp_assoc_value)) 5169 return -EINVAL; 5170 5171 len = sizeof(struct sctp_assoc_value); 5172 5173 if (copy_from_user(¶ms, optval, len)) 5174 return -EFAULT; 5175 5176 sp = sctp_sk(sk); 5177 5178 if (params.assoc_id != 0) { 5179 asoc = sctp_id2assoc(sk, params.assoc_id); 5180 if (!asoc) 5181 return -EINVAL; 5182 params.assoc_value = asoc->default_rcv_context; 5183 } else { 5184 params.assoc_value = sp->default_rcv_context; 5185 } 5186 5187 if (put_user(len, optlen)) 5188 return -EFAULT; 5189 if (copy_to_user(optval, ¶ms, len)) 5190 return -EFAULT; 5191 5192 return 0; 5193 } 5194 5195 /* 5196 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 5197 * This option will get or set the maximum size to put in any outgoing 5198 * SCTP DATA chunk. If a message is larger than this size it will be 5199 * fragmented by SCTP into the specified size. Note that the underlying 5200 * SCTP implementation may fragment into smaller sized chunks when the 5201 * PMTU of the underlying association is smaller than the value set by 5202 * the user. The default value for this option is '0' which indicates 5203 * the user is NOT limiting fragmentation and only the PMTU will effect 5204 * SCTP's choice of DATA chunk size. Note also that values set larger 5205 * than the maximum size of an IP datagram will effectively let SCTP 5206 * control fragmentation (i.e. the same as setting this option to 0). 5207 * 5208 * The following structure is used to access and modify this parameter: 5209 * 5210 * struct sctp_assoc_value { 5211 * sctp_assoc_t assoc_id; 5212 * uint32_t assoc_value; 5213 * }; 5214 * 5215 * assoc_id: This parameter is ignored for one-to-one style sockets. 5216 * For one-to-many style sockets this parameter indicates which 5217 * association the user is performing an action upon. Note that if 5218 * this field's value is zero then the endpoints default value is 5219 * changed (effecting future associations only). 5220 * assoc_value: This parameter specifies the maximum size in bytes. 5221 */ 5222 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 5223 char __user *optval, int __user *optlen) 5224 { 5225 struct sctp_assoc_value params; 5226 struct sctp_association *asoc; 5227 5228 if (len == sizeof(int)) { 5229 printk(KERN_WARNING 5230 "SCTP: Use of int in maxseg socket option deprecated\n"); 5231 printk(KERN_WARNING 5232 "SCTP: Use struct sctp_assoc_value instead\n"); 5233 params.assoc_id = 0; 5234 } else if (len >= sizeof(struct sctp_assoc_value)) { 5235 len = sizeof(struct sctp_assoc_value); 5236 if (copy_from_user(¶ms, optval, sizeof(params))) 5237 return -EFAULT; 5238 } else 5239 return -EINVAL; 5240 5241 asoc = sctp_id2assoc(sk, params.assoc_id); 5242 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 5243 return -EINVAL; 5244 5245 if (asoc) 5246 params.assoc_value = asoc->frag_point; 5247 else 5248 params.assoc_value = sctp_sk(sk)->user_frag; 5249 5250 if (put_user(len, optlen)) 5251 return -EFAULT; 5252 if (len == sizeof(int)) { 5253 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5254 return -EFAULT; 5255 } else { 5256 if (copy_to_user(optval, ¶ms, len)) 5257 return -EFAULT; 5258 } 5259 5260 return 0; 5261 } 5262 5263 /* 5264 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 5265 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 5266 */ 5267 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 5268 char __user *optval, int __user *optlen) 5269 { 5270 int val; 5271 5272 if (len < sizeof(int)) 5273 return -EINVAL; 5274 5275 len = sizeof(int); 5276 5277 val = sctp_sk(sk)->frag_interleave; 5278 if (put_user(len, optlen)) 5279 return -EFAULT; 5280 if (copy_to_user(optval, &val, len)) 5281 return -EFAULT; 5282 5283 return 0; 5284 } 5285 5286 /* 5287 * 7.1.25. Set or Get the sctp partial delivery point 5288 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 5289 */ 5290 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 5291 char __user *optval, 5292 int __user *optlen) 5293 { 5294 u32 val; 5295 5296 if (len < sizeof(u32)) 5297 return -EINVAL; 5298 5299 len = sizeof(u32); 5300 5301 val = sctp_sk(sk)->pd_point; 5302 if (put_user(len, optlen)) 5303 return -EFAULT; 5304 if (copy_to_user(optval, &val, len)) 5305 return -EFAULT; 5306 5307 return -ENOTSUPP; 5308 } 5309 5310 /* 5311 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 5312 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 5313 */ 5314 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 5315 char __user *optval, 5316 int __user *optlen) 5317 { 5318 struct sctp_assoc_value params; 5319 struct sctp_sock *sp; 5320 struct sctp_association *asoc; 5321 5322 if (len == sizeof(int)) { 5323 printk(KERN_WARNING 5324 "SCTP: Use of int in max_burst socket option deprecated\n"); 5325 printk(KERN_WARNING 5326 "SCTP: Use struct sctp_assoc_value instead\n"); 5327 params.assoc_id = 0; 5328 } else if (len >= sizeof(struct sctp_assoc_value)) { 5329 len = sizeof(struct sctp_assoc_value); 5330 if (copy_from_user(¶ms, optval, len)) 5331 return -EFAULT; 5332 } else 5333 return -EINVAL; 5334 5335 sp = sctp_sk(sk); 5336 5337 if (params.assoc_id != 0) { 5338 asoc = sctp_id2assoc(sk, params.assoc_id); 5339 if (!asoc) 5340 return -EINVAL; 5341 params.assoc_value = asoc->max_burst; 5342 } else 5343 params.assoc_value = sp->max_burst; 5344 5345 if (len == sizeof(int)) { 5346 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5347 return -EFAULT; 5348 } else { 5349 if (copy_to_user(optval, ¶ms, len)) 5350 return -EFAULT; 5351 } 5352 5353 return 0; 5354 5355 } 5356 5357 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 5358 char __user *optval, int __user *optlen) 5359 { 5360 struct sctp_hmacalgo __user *p = (void __user *)optval; 5361 struct sctp_hmac_algo_param *hmacs; 5362 __u16 data_len = 0; 5363 u32 num_idents; 5364 5365 if (!sctp_auth_enable) 5366 return -EACCES; 5367 5368 hmacs = sctp_sk(sk)->ep->auth_hmacs_list; 5369 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t); 5370 5371 if (len < sizeof(struct sctp_hmacalgo) + data_len) 5372 return -EINVAL; 5373 5374 len = sizeof(struct sctp_hmacalgo) + data_len; 5375 num_idents = data_len / sizeof(u16); 5376 5377 if (put_user(len, optlen)) 5378 return -EFAULT; 5379 if (put_user(num_idents, &p->shmac_num_idents)) 5380 return -EFAULT; 5381 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len)) 5382 return -EFAULT; 5383 return 0; 5384 } 5385 5386 static int sctp_getsockopt_active_key(struct sock *sk, int len, 5387 char __user *optval, int __user *optlen) 5388 { 5389 struct sctp_authkeyid val; 5390 struct sctp_association *asoc; 5391 5392 if (!sctp_auth_enable) 5393 return -EACCES; 5394 5395 if (len < sizeof(struct sctp_authkeyid)) 5396 return -EINVAL; 5397 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 5398 return -EFAULT; 5399 5400 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 5401 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 5402 return -EINVAL; 5403 5404 if (asoc) 5405 val.scact_keynumber = asoc->active_key_id; 5406 else 5407 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id; 5408 5409 len = sizeof(struct sctp_authkeyid); 5410 if (put_user(len, optlen)) 5411 return -EFAULT; 5412 if (copy_to_user(optval, &val, len)) 5413 return -EFAULT; 5414 5415 return 0; 5416 } 5417 5418 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 5419 char __user *optval, int __user *optlen) 5420 { 5421 struct sctp_authchunks __user *p = (void __user *)optval; 5422 struct sctp_authchunks val; 5423 struct sctp_association *asoc; 5424 struct sctp_chunks_param *ch; 5425 u32 num_chunks = 0; 5426 char __user *to; 5427 5428 if (!sctp_auth_enable) 5429 return -EACCES; 5430 5431 if (len < sizeof(struct sctp_authchunks)) 5432 return -EINVAL; 5433 5434 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5435 return -EFAULT; 5436 5437 to = p->gauth_chunks; 5438 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5439 if (!asoc) 5440 return -EINVAL; 5441 5442 ch = asoc->peer.peer_chunks; 5443 if (!ch) 5444 goto num; 5445 5446 /* See if the user provided enough room for all the data */ 5447 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5448 if (len < num_chunks) 5449 return -EINVAL; 5450 5451 if (copy_to_user(to, ch->chunks, num_chunks)) 5452 return -EFAULT; 5453 num: 5454 len = sizeof(struct sctp_authchunks) + num_chunks; 5455 if (put_user(len, optlen)) return -EFAULT; 5456 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5457 return -EFAULT; 5458 return 0; 5459 } 5460 5461 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 5462 char __user *optval, int __user *optlen) 5463 { 5464 struct sctp_authchunks __user *p = (void __user *)optval; 5465 struct sctp_authchunks val; 5466 struct sctp_association *asoc; 5467 struct sctp_chunks_param *ch; 5468 u32 num_chunks = 0; 5469 char __user *to; 5470 5471 if (!sctp_auth_enable) 5472 return -EACCES; 5473 5474 if (len < sizeof(struct sctp_authchunks)) 5475 return -EINVAL; 5476 5477 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5478 return -EFAULT; 5479 5480 to = p->gauth_chunks; 5481 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5482 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 5483 return -EINVAL; 5484 5485 if (asoc) 5486 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks; 5487 else 5488 ch = sctp_sk(sk)->ep->auth_chunk_list; 5489 5490 if (!ch) 5491 goto num; 5492 5493 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5494 if (len < sizeof(struct sctp_authchunks) + num_chunks) 5495 return -EINVAL; 5496 5497 if (copy_to_user(to, ch->chunks, num_chunks)) 5498 return -EFAULT; 5499 num: 5500 len = sizeof(struct sctp_authchunks) + num_chunks; 5501 if (put_user(len, optlen)) 5502 return -EFAULT; 5503 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5504 return -EFAULT; 5505 5506 return 0; 5507 } 5508 5509 /* 5510 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 5511 * This option gets the current number of associations that are attached 5512 * to a one-to-many style socket. The option value is an uint32_t. 5513 */ 5514 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 5515 char __user *optval, int __user *optlen) 5516 { 5517 struct sctp_sock *sp = sctp_sk(sk); 5518 struct sctp_association *asoc; 5519 u32 val = 0; 5520 5521 if (sctp_style(sk, TCP)) 5522 return -EOPNOTSUPP; 5523 5524 if (len < sizeof(u32)) 5525 return -EINVAL; 5526 5527 len = sizeof(u32); 5528 5529 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5530 val++; 5531 } 5532 5533 if (put_user(len, optlen)) 5534 return -EFAULT; 5535 if (copy_to_user(optval, &val, len)) 5536 return -EFAULT; 5537 5538 return 0; 5539 } 5540 5541 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname, 5542 char __user *optval, int __user *optlen) 5543 { 5544 int retval = 0; 5545 int len; 5546 5547 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n", 5548 sk, optname); 5549 5550 /* I can hardly begin to describe how wrong this is. This is 5551 * so broken as to be worse than useless. The API draft 5552 * REALLY is NOT helpful here... I am not convinced that the 5553 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 5554 * are at all well-founded. 5555 */ 5556 if (level != SOL_SCTP) { 5557 struct sctp_af *af = sctp_sk(sk)->pf->af; 5558 5559 retval = af->getsockopt(sk, level, optname, optval, optlen); 5560 return retval; 5561 } 5562 5563 if (get_user(len, optlen)) 5564 return -EFAULT; 5565 5566 sctp_lock_sock(sk); 5567 5568 switch (optname) { 5569 case SCTP_STATUS: 5570 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 5571 break; 5572 case SCTP_DISABLE_FRAGMENTS: 5573 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 5574 optlen); 5575 break; 5576 case SCTP_EVENTS: 5577 retval = sctp_getsockopt_events(sk, len, optval, optlen); 5578 break; 5579 case SCTP_AUTOCLOSE: 5580 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 5581 break; 5582 case SCTP_SOCKOPT_PEELOFF: 5583 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 5584 break; 5585 case SCTP_PEER_ADDR_PARAMS: 5586 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 5587 optlen); 5588 break; 5589 case SCTP_DELAYED_ACK: 5590 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 5591 optlen); 5592 break; 5593 case SCTP_INITMSG: 5594 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 5595 break; 5596 case SCTP_GET_PEER_ADDRS_NUM_OLD: 5597 retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval, 5598 optlen); 5599 break; 5600 case SCTP_GET_LOCAL_ADDRS_NUM_OLD: 5601 retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval, 5602 optlen); 5603 break; 5604 case SCTP_GET_PEER_ADDRS_OLD: 5605 retval = sctp_getsockopt_peer_addrs_old(sk, len, optval, 5606 optlen); 5607 break; 5608 case SCTP_GET_LOCAL_ADDRS_OLD: 5609 retval = sctp_getsockopt_local_addrs_old(sk, len, optval, 5610 optlen); 5611 break; 5612 case SCTP_GET_PEER_ADDRS: 5613 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 5614 optlen); 5615 break; 5616 case SCTP_GET_LOCAL_ADDRS: 5617 retval = sctp_getsockopt_local_addrs(sk, len, optval, 5618 optlen); 5619 break; 5620 case SCTP_SOCKOPT_CONNECTX3: 5621 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 5622 break; 5623 case SCTP_DEFAULT_SEND_PARAM: 5624 retval = sctp_getsockopt_default_send_param(sk, len, 5625 optval, optlen); 5626 break; 5627 case SCTP_PRIMARY_ADDR: 5628 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 5629 break; 5630 case SCTP_NODELAY: 5631 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 5632 break; 5633 case SCTP_RTOINFO: 5634 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 5635 break; 5636 case SCTP_ASSOCINFO: 5637 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 5638 break; 5639 case SCTP_I_WANT_MAPPED_V4_ADDR: 5640 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 5641 break; 5642 case SCTP_MAXSEG: 5643 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 5644 break; 5645 case SCTP_GET_PEER_ADDR_INFO: 5646 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 5647 optlen); 5648 break; 5649 case SCTP_ADAPTATION_LAYER: 5650 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 5651 optlen); 5652 break; 5653 case SCTP_CONTEXT: 5654 retval = sctp_getsockopt_context(sk, len, optval, optlen); 5655 break; 5656 case SCTP_FRAGMENT_INTERLEAVE: 5657 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 5658 optlen); 5659 break; 5660 case SCTP_PARTIAL_DELIVERY_POINT: 5661 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 5662 optlen); 5663 break; 5664 case SCTP_MAX_BURST: 5665 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 5666 break; 5667 case SCTP_AUTH_KEY: 5668 case SCTP_AUTH_CHUNK: 5669 case SCTP_AUTH_DELETE_KEY: 5670 retval = -EOPNOTSUPP; 5671 break; 5672 case SCTP_HMAC_IDENT: 5673 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 5674 break; 5675 case SCTP_AUTH_ACTIVE_KEY: 5676 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 5677 break; 5678 case SCTP_PEER_AUTH_CHUNKS: 5679 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 5680 optlen); 5681 break; 5682 case SCTP_LOCAL_AUTH_CHUNKS: 5683 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 5684 optlen); 5685 break; 5686 case SCTP_GET_ASSOC_NUMBER: 5687 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 5688 break; 5689 default: 5690 retval = -ENOPROTOOPT; 5691 break; 5692 } 5693 5694 sctp_release_sock(sk); 5695 return retval; 5696 } 5697 5698 static void sctp_hash(struct sock *sk) 5699 { 5700 /* STUB */ 5701 } 5702 5703 static void sctp_unhash(struct sock *sk) 5704 { 5705 /* STUB */ 5706 } 5707 5708 /* Check if port is acceptable. Possibly find first available port. 5709 * 5710 * The port hash table (contained in the 'global' SCTP protocol storage 5711 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 5712 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 5713 * list (the list number is the port number hashed out, so as you 5714 * would expect from a hash function, all the ports in a given list have 5715 * such a number that hashes out to the same list number; you were 5716 * expecting that, right?); so each list has a set of ports, with a 5717 * link to the socket (struct sock) that uses it, the port number and 5718 * a fastreuse flag (FIXME: NPI ipg). 5719 */ 5720 static struct sctp_bind_bucket *sctp_bucket_create( 5721 struct sctp_bind_hashbucket *head, unsigned short snum); 5722 5723 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 5724 { 5725 struct sctp_bind_hashbucket *head; /* hash list */ 5726 struct sctp_bind_bucket *pp; /* hash list port iterator */ 5727 struct hlist_node *node; 5728 unsigned short snum; 5729 int ret; 5730 5731 snum = ntohs(addr->v4.sin_port); 5732 5733 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum); 5734 sctp_local_bh_disable(); 5735 5736 if (snum == 0) { 5737 /* Search for an available port. */ 5738 int low, high, remaining, index; 5739 unsigned int rover; 5740 5741 inet_get_local_port_range(&low, &high); 5742 remaining = (high - low) + 1; 5743 rover = net_random() % remaining + low; 5744 5745 do { 5746 rover++; 5747 if ((rover < low) || (rover > high)) 5748 rover = low; 5749 index = sctp_phashfn(rover); 5750 head = &sctp_port_hashtable[index]; 5751 sctp_spin_lock(&head->lock); 5752 sctp_for_each_hentry(pp, node, &head->chain) 5753 if (pp->port == rover) 5754 goto next; 5755 break; 5756 next: 5757 sctp_spin_unlock(&head->lock); 5758 } while (--remaining > 0); 5759 5760 /* Exhausted local port range during search? */ 5761 ret = 1; 5762 if (remaining <= 0) 5763 goto fail; 5764 5765 /* OK, here is the one we will use. HEAD (the port 5766 * hash table list entry) is non-NULL and we hold it's 5767 * mutex. 5768 */ 5769 snum = rover; 5770 } else { 5771 /* We are given an specific port number; we verify 5772 * that it is not being used. If it is used, we will 5773 * exahust the search in the hash list corresponding 5774 * to the port number (snum) - we detect that with the 5775 * port iterator, pp being NULL. 5776 */ 5777 head = &sctp_port_hashtable[sctp_phashfn(snum)]; 5778 sctp_spin_lock(&head->lock); 5779 sctp_for_each_hentry(pp, node, &head->chain) { 5780 if (pp->port == snum) 5781 goto pp_found; 5782 } 5783 } 5784 pp = NULL; 5785 goto pp_not_found; 5786 pp_found: 5787 if (!hlist_empty(&pp->owner)) { 5788 /* We had a port hash table hit - there is an 5789 * available port (pp != NULL) and it is being 5790 * used by other socket (pp->owner not empty); that other 5791 * socket is going to be sk2. 5792 */ 5793 int reuse = sk->sk_reuse; 5794 struct sock *sk2; 5795 struct hlist_node *node; 5796 5797 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n"); 5798 if (pp->fastreuse && sk->sk_reuse && 5799 sk->sk_state != SCTP_SS_LISTENING) 5800 goto success; 5801 5802 /* Run through the list of sockets bound to the port 5803 * (pp->port) [via the pointers bind_next and 5804 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 5805 * we get the endpoint they describe and run through 5806 * the endpoint's list of IP (v4 or v6) addresses, 5807 * comparing each of the addresses with the address of 5808 * the socket sk. If we find a match, then that means 5809 * that this port/socket (sk) combination are already 5810 * in an endpoint. 5811 */ 5812 sk_for_each_bound(sk2, node, &pp->owner) { 5813 struct sctp_endpoint *ep2; 5814 ep2 = sctp_sk(sk2)->ep; 5815 5816 if (sk == sk2 || 5817 (reuse && sk2->sk_reuse && 5818 sk2->sk_state != SCTP_SS_LISTENING)) 5819 continue; 5820 5821 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 5822 sctp_sk(sk2), sctp_sk(sk))) { 5823 ret = (long)sk2; 5824 goto fail_unlock; 5825 } 5826 } 5827 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n"); 5828 } 5829 pp_not_found: 5830 /* If there was a hash table miss, create a new port. */ 5831 ret = 1; 5832 if (!pp && !(pp = sctp_bucket_create(head, snum))) 5833 goto fail_unlock; 5834 5835 /* In either case (hit or miss), make sure fastreuse is 1 only 5836 * if sk->sk_reuse is too (that is, if the caller requested 5837 * SO_REUSEADDR on this socket -sk-). 5838 */ 5839 if (hlist_empty(&pp->owner)) { 5840 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 5841 pp->fastreuse = 1; 5842 else 5843 pp->fastreuse = 0; 5844 } else if (pp->fastreuse && 5845 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 5846 pp->fastreuse = 0; 5847 5848 /* We are set, so fill up all the data in the hash table 5849 * entry, tie the socket list information with the rest of the 5850 * sockets FIXME: Blurry, NPI (ipg). 5851 */ 5852 success: 5853 if (!sctp_sk(sk)->bind_hash) { 5854 inet_sk(sk)->num = snum; 5855 sk_add_bind_node(sk, &pp->owner); 5856 sctp_sk(sk)->bind_hash = pp; 5857 } 5858 ret = 0; 5859 5860 fail_unlock: 5861 sctp_spin_unlock(&head->lock); 5862 5863 fail: 5864 sctp_local_bh_enable(); 5865 return ret; 5866 } 5867 5868 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 5869 * port is requested. 5870 */ 5871 static int sctp_get_port(struct sock *sk, unsigned short snum) 5872 { 5873 long ret; 5874 union sctp_addr addr; 5875 struct sctp_af *af = sctp_sk(sk)->pf->af; 5876 5877 /* Set up a dummy address struct from the sk. */ 5878 af->from_sk(&addr, sk); 5879 addr.v4.sin_port = htons(snum); 5880 5881 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 5882 ret = sctp_get_port_local(sk, &addr); 5883 5884 return (ret ? 1 : 0); 5885 } 5886 5887 /* 5888 * Move a socket to LISTENING state. 5889 */ 5890 SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog) 5891 { 5892 struct sctp_sock *sp = sctp_sk(sk); 5893 struct sctp_endpoint *ep = sp->ep; 5894 struct crypto_hash *tfm = NULL; 5895 5896 /* Allocate HMAC for generating cookie. */ 5897 if (!sctp_sk(sk)->hmac && sctp_hmac_alg) { 5898 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC); 5899 if (IS_ERR(tfm)) { 5900 if (net_ratelimit()) { 5901 printk(KERN_INFO 5902 "SCTP: failed to load transform for %s: %ld\n", 5903 sctp_hmac_alg, PTR_ERR(tfm)); 5904 } 5905 return -ENOSYS; 5906 } 5907 sctp_sk(sk)->hmac = tfm; 5908 } 5909 5910 /* 5911 * If a bind() or sctp_bindx() is not called prior to a listen() 5912 * call that allows new associations to be accepted, the system 5913 * picks an ephemeral port and will choose an address set equivalent 5914 * to binding with a wildcard address. 5915 * 5916 * This is not currently spelled out in the SCTP sockets 5917 * extensions draft, but follows the practice as seen in TCP 5918 * sockets. 5919 * 5920 */ 5921 sk->sk_state = SCTP_SS_LISTENING; 5922 if (!ep->base.bind_addr.port) { 5923 if (sctp_autobind(sk)) 5924 return -EAGAIN; 5925 } else { 5926 if (sctp_get_port(sk, inet_sk(sk)->num)) { 5927 sk->sk_state = SCTP_SS_CLOSED; 5928 return -EADDRINUSE; 5929 } 5930 } 5931 5932 sk->sk_max_ack_backlog = backlog; 5933 sctp_hash_endpoint(ep); 5934 return 0; 5935 } 5936 5937 /* 5938 * 4.1.3 / 5.1.3 listen() 5939 * 5940 * By default, new associations are not accepted for UDP style sockets. 5941 * An application uses listen() to mark a socket as being able to 5942 * accept new associations. 5943 * 5944 * On TCP style sockets, applications use listen() to ready the SCTP 5945 * endpoint for accepting inbound associations. 5946 * 5947 * On both types of endpoints a backlog of '0' disables listening. 5948 * 5949 * Move a socket to LISTENING state. 5950 */ 5951 int sctp_inet_listen(struct socket *sock, int backlog) 5952 { 5953 struct sock *sk = sock->sk; 5954 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 5955 int err = -EINVAL; 5956 5957 if (unlikely(backlog < 0)) 5958 return err; 5959 5960 sctp_lock_sock(sk); 5961 5962 /* Peeled-off sockets are not allowed to listen(). */ 5963 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 5964 goto out; 5965 5966 if (sock->state != SS_UNCONNECTED) 5967 goto out; 5968 5969 /* If backlog is zero, disable listening. */ 5970 if (!backlog) { 5971 if (sctp_sstate(sk, CLOSED)) 5972 goto out; 5973 5974 err = 0; 5975 sctp_unhash_endpoint(ep); 5976 sk->sk_state = SCTP_SS_CLOSED; 5977 if (sk->sk_reuse) 5978 sctp_sk(sk)->bind_hash->fastreuse = 1; 5979 goto out; 5980 } 5981 5982 /* If we are already listening, just update the backlog */ 5983 if (sctp_sstate(sk, LISTENING)) 5984 sk->sk_max_ack_backlog = backlog; 5985 else { 5986 err = sctp_listen_start(sk, backlog); 5987 if (err) 5988 goto out; 5989 } 5990 5991 err = 0; 5992 out: 5993 sctp_release_sock(sk); 5994 return err; 5995 } 5996 5997 /* 5998 * This function is done by modeling the current datagram_poll() and the 5999 * tcp_poll(). Note that, based on these implementations, we don't 6000 * lock the socket in this function, even though it seems that, 6001 * ideally, locking or some other mechanisms can be used to ensure 6002 * the integrity of the counters (sndbuf and wmem_alloc) used 6003 * in this place. We assume that we don't need locks either until proven 6004 * otherwise. 6005 * 6006 * Another thing to note is that we include the Async I/O support 6007 * here, again, by modeling the current TCP/UDP code. We don't have 6008 * a good way to test with it yet. 6009 */ 6010 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 6011 { 6012 struct sock *sk = sock->sk; 6013 struct sctp_sock *sp = sctp_sk(sk); 6014 unsigned int mask; 6015 6016 poll_wait(file, sk->sk_sleep, wait); 6017 6018 /* A TCP-style listening socket becomes readable when the accept queue 6019 * is not empty. 6020 */ 6021 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 6022 return (!list_empty(&sp->ep->asocs)) ? 6023 (POLLIN | POLLRDNORM) : 0; 6024 6025 mask = 0; 6026 6027 /* Is there any exceptional events? */ 6028 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 6029 mask |= POLLERR; 6030 if (sk->sk_shutdown & RCV_SHUTDOWN) 6031 mask |= POLLRDHUP; 6032 if (sk->sk_shutdown == SHUTDOWN_MASK) 6033 mask |= POLLHUP; 6034 6035 /* Is it readable? Reconsider this code with TCP-style support. */ 6036 if (!skb_queue_empty(&sk->sk_receive_queue) || 6037 (sk->sk_shutdown & RCV_SHUTDOWN)) 6038 mask |= POLLIN | POLLRDNORM; 6039 6040 /* The association is either gone or not ready. */ 6041 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 6042 return mask; 6043 6044 /* Is it writable? */ 6045 if (sctp_writeable(sk)) { 6046 mask |= POLLOUT | POLLWRNORM; 6047 } else { 6048 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 6049 /* 6050 * Since the socket is not locked, the buffer 6051 * might be made available after the writeable check and 6052 * before the bit is set. This could cause a lost I/O 6053 * signal. tcp_poll() has a race breaker for this race 6054 * condition. Based on their implementation, we put 6055 * in the following code to cover it as well. 6056 */ 6057 if (sctp_writeable(sk)) 6058 mask |= POLLOUT | POLLWRNORM; 6059 } 6060 return mask; 6061 } 6062 6063 /******************************************************************** 6064 * 2nd Level Abstractions 6065 ********************************************************************/ 6066 6067 static struct sctp_bind_bucket *sctp_bucket_create( 6068 struct sctp_bind_hashbucket *head, unsigned short snum) 6069 { 6070 struct sctp_bind_bucket *pp; 6071 6072 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 6073 if (pp) { 6074 SCTP_DBG_OBJCNT_INC(bind_bucket); 6075 pp->port = snum; 6076 pp->fastreuse = 0; 6077 INIT_HLIST_HEAD(&pp->owner); 6078 hlist_add_head(&pp->node, &head->chain); 6079 } 6080 return pp; 6081 } 6082 6083 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 6084 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 6085 { 6086 if (pp && hlist_empty(&pp->owner)) { 6087 __hlist_del(&pp->node); 6088 kmem_cache_free(sctp_bucket_cachep, pp); 6089 SCTP_DBG_OBJCNT_DEC(bind_bucket); 6090 } 6091 } 6092 6093 /* Release this socket's reference to a local port. */ 6094 static inline void __sctp_put_port(struct sock *sk) 6095 { 6096 struct sctp_bind_hashbucket *head = 6097 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)]; 6098 struct sctp_bind_bucket *pp; 6099 6100 sctp_spin_lock(&head->lock); 6101 pp = sctp_sk(sk)->bind_hash; 6102 __sk_del_bind_node(sk); 6103 sctp_sk(sk)->bind_hash = NULL; 6104 inet_sk(sk)->num = 0; 6105 sctp_bucket_destroy(pp); 6106 sctp_spin_unlock(&head->lock); 6107 } 6108 6109 void sctp_put_port(struct sock *sk) 6110 { 6111 sctp_local_bh_disable(); 6112 __sctp_put_port(sk); 6113 sctp_local_bh_enable(); 6114 } 6115 6116 /* 6117 * The system picks an ephemeral port and choose an address set equivalent 6118 * to binding with a wildcard address. 6119 * One of those addresses will be the primary address for the association. 6120 * This automatically enables the multihoming capability of SCTP. 6121 */ 6122 static int sctp_autobind(struct sock *sk) 6123 { 6124 union sctp_addr autoaddr; 6125 struct sctp_af *af; 6126 __be16 port; 6127 6128 /* Initialize a local sockaddr structure to INADDR_ANY. */ 6129 af = sctp_sk(sk)->pf->af; 6130 6131 port = htons(inet_sk(sk)->num); 6132 af->inaddr_any(&autoaddr, port); 6133 6134 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 6135 } 6136 6137 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 6138 * 6139 * From RFC 2292 6140 * 4.2 The cmsghdr Structure * 6141 * 6142 * When ancillary data is sent or received, any number of ancillary data 6143 * objects can be specified by the msg_control and msg_controllen members of 6144 * the msghdr structure, because each object is preceded by 6145 * a cmsghdr structure defining the object's length (the cmsg_len member). 6146 * Historically Berkeley-derived implementations have passed only one object 6147 * at a time, but this API allows multiple objects to be 6148 * passed in a single call to sendmsg() or recvmsg(). The following example 6149 * shows two ancillary data objects in a control buffer. 6150 * 6151 * |<--------------------------- msg_controllen -------------------------->| 6152 * | | 6153 * 6154 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 6155 * 6156 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 6157 * | | | 6158 * 6159 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 6160 * 6161 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 6162 * | | | | | 6163 * 6164 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6165 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 6166 * 6167 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 6168 * 6169 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6170 * ^ 6171 * | 6172 * 6173 * msg_control 6174 * points here 6175 */ 6176 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg, 6177 sctp_cmsgs_t *cmsgs) 6178 { 6179 struct cmsghdr *cmsg; 6180 struct msghdr *my_msg = (struct msghdr *)msg; 6181 6182 for (cmsg = CMSG_FIRSTHDR(msg); 6183 cmsg != NULL; 6184 cmsg = CMSG_NXTHDR(my_msg, cmsg)) { 6185 if (!CMSG_OK(my_msg, cmsg)) 6186 return -EINVAL; 6187 6188 /* Should we parse this header or ignore? */ 6189 if (cmsg->cmsg_level != IPPROTO_SCTP) 6190 continue; 6191 6192 /* Strictly check lengths following example in SCM code. */ 6193 switch (cmsg->cmsg_type) { 6194 case SCTP_INIT: 6195 /* SCTP Socket API Extension 6196 * 5.2.1 SCTP Initiation Structure (SCTP_INIT) 6197 * 6198 * This cmsghdr structure provides information for 6199 * initializing new SCTP associations with sendmsg(). 6200 * The SCTP_INITMSG socket option uses this same data 6201 * structure. This structure is not used for 6202 * recvmsg(). 6203 * 6204 * cmsg_level cmsg_type cmsg_data[] 6205 * ------------ ------------ ---------------------- 6206 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 6207 */ 6208 if (cmsg->cmsg_len != 6209 CMSG_LEN(sizeof(struct sctp_initmsg))) 6210 return -EINVAL; 6211 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); 6212 break; 6213 6214 case SCTP_SNDRCV: 6215 /* SCTP Socket API Extension 6216 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) 6217 * 6218 * This cmsghdr structure specifies SCTP options for 6219 * sendmsg() and describes SCTP header information 6220 * about a received message through recvmsg(). 6221 * 6222 * cmsg_level cmsg_type cmsg_data[] 6223 * ------------ ------------ ---------------------- 6224 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 6225 */ 6226 if (cmsg->cmsg_len != 6227 CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 6228 return -EINVAL; 6229 6230 cmsgs->info = 6231 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); 6232 6233 /* Minimally, validate the sinfo_flags. */ 6234 if (cmsgs->info->sinfo_flags & 6235 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 6236 SCTP_ABORT | SCTP_EOF)) 6237 return -EINVAL; 6238 break; 6239 6240 default: 6241 return -EINVAL; 6242 } 6243 } 6244 return 0; 6245 } 6246 6247 /* 6248 * Wait for a packet.. 6249 * Note: This function is the same function as in core/datagram.c 6250 * with a few modifications to make lksctp work. 6251 */ 6252 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p) 6253 { 6254 int error; 6255 DEFINE_WAIT(wait); 6256 6257 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 6258 6259 /* Socket errors? */ 6260 error = sock_error(sk); 6261 if (error) 6262 goto out; 6263 6264 if (!skb_queue_empty(&sk->sk_receive_queue)) 6265 goto ready; 6266 6267 /* Socket shut down? */ 6268 if (sk->sk_shutdown & RCV_SHUTDOWN) 6269 goto out; 6270 6271 /* Sequenced packets can come disconnected. If so we report the 6272 * problem. 6273 */ 6274 error = -ENOTCONN; 6275 6276 /* Is there a good reason to think that we may receive some data? */ 6277 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 6278 goto out; 6279 6280 /* Handle signals. */ 6281 if (signal_pending(current)) 6282 goto interrupted; 6283 6284 /* Let another process have a go. Since we are going to sleep 6285 * anyway. Note: This may cause odd behaviors if the message 6286 * does not fit in the user's buffer, but this seems to be the 6287 * only way to honor MSG_DONTWAIT realistically. 6288 */ 6289 sctp_release_sock(sk); 6290 *timeo_p = schedule_timeout(*timeo_p); 6291 sctp_lock_sock(sk); 6292 6293 ready: 6294 finish_wait(sk->sk_sleep, &wait); 6295 return 0; 6296 6297 interrupted: 6298 error = sock_intr_errno(*timeo_p); 6299 6300 out: 6301 finish_wait(sk->sk_sleep, &wait); 6302 *err = error; 6303 return error; 6304 } 6305 6306 /* Receive a datagram. 6307 * Note: This is pretty much the same routine as in core/datagram.c 6308 * with a few changes to make lksctp work. 6309 */ 6310 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 6311 int noblock, int *err) 6312 { 6313 int error; 6314 struct sk_buff *skb; 6315 long timeo; 6316 6317 timeo = sock_rcvtimeo(sk, noblock); 6318 6319 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n", 6320 timeo, MAX_SCHEDULE_TIMEOUT); 6321 6322 do { 6323 /* Again only user level code calls this function, 6324 * so nothing interrupt level 6325 * will suddenly eat the receive_queue. 6326 * 6327 * Look at current nfs client by the way... 6328 * However, this function was corrent in any case. 8) 6329 */ 6330 if (flags & MSG_PEEK) { 6331 spin_lock_bh(&sk->sk_receive_queue.lock); 6332 skb = skb_peek(&sk->sk_receive_queue); 6333 if (skb) 6334 atomic_inc(&skb->users); 6335 spin_unlock_bh(&sk->sk_receive_queue.lock); 6336 } else { 6337 skb = skb_dequeue(&sk->sk_receive_queue); 6338 } 6339 6340 if (skb) 6341 return skb; 6342 6343 /* Caller is allowed not to check sk->sk_err before calling. */ 6344 error = sock_error(sk); 6345 if (error) 6346 goto no_packet; 6347 6348 if (sk->sk_shutdown & RCV_SHUTDOWN) 6349 break; 6350 6351 /* User doesn't want to wait. */ 6352 error = -EAGAIN; 6353 if (!timeo) 6354 goto no_packet; 6355 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 6356 6357 return NULL; 6358 6359 no_packet: 6360 *err = error; 6361 return NULL; 6362 } 6363 6364 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 6365 static void __sctp_write_space(struct sctp_association *asoc) 6366 { 6367 struct sock *sk = asoc->base.sk; 6368 struct socket *sock = sk->sk_socket; 6369 6370 if ((sctp_wspace(asoc) > 0) && sock) { 6371 if (waitqueue_active(&asoc->wait)) 6372 wake_up_interruptible(&asoc->wait); 6373 6374 if (sctp_writeable(sk)) { 6375 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 6376 wake_up_interruptible(sk->sk_sleep); 6377 6378 /* Note that we try to include the Async I/O support 6379 * here by modeling from the current TCP/UDP code. 6380 * We have not tested with it yet. 6381 */ 6382 if (sock->fasync_list && 6383 !(sk->sk_shutdown & SEND_SHUTDOWN)) 6384 sock_wake_async(sock, 6385 SOCK_WAKE_SPACE, POLL_OUT); 6386 } 6387 } 6388 } 6389 6390 /* Do accounting for the sndbuf space. 6391 * Decrement the used sndbuf space of the corresponding association by the 6392 * data size which was just transmitted(freed). 6393 */ 6394 static void sctp_wfree(struct sk_buff *skb) 6395 { 6396 struct sctp_association *asoc; 6397 struct sctp_chunk *chunk; 6398 struct sock *sk; 6399 6400 /* Get the saved chunk pointer. */ 6401 chunk = *((struct sctp_chunk **)(skb->cb)); 6402 asoc = chunk->asoc; 6403 sk = asoc->base.sk; 6404 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 6405 sizeof(struct sk_buff) + 6406 sizeof(struct sctp_chunk); 6407 6408 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 6409 6410 /* 6411 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 6412 */ 6413 sk->sk_wmem_queued -= skb->truesize; 6414 sk_mem_uncharge(sk, skb->truesize); 6415 6416 sock_wfree(skb); 6417 __sctp_write_space(asoc); 6418 6419 sctp_association_put(asoc); 6420 } 6421 6422 /* Do accounting for the receive space on the socket. 6423 * Accounting for the association is done in ulpevent.c 6424 * We set this as a destructor for the cloned data skbs so that 6425 * accounting is done at the correct time. 6426 */ 6427 void sctp_sock_rfree(struct sk_buff *skb) 6428 { 6429 struct sock *sk = skb->sk; 6430 struct sctp_ulpevent *event = sctp_skb2event(skb); 6431 6432 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 6433 6434 /* 6435 * Mimic the behavior of sock_rfree 6436 */ 6437 sk_mem_uncharge(sk, event->rmem_len); 6438 } 6439 6440 6441 /* Helper function to wait for space in the sndbuf. */ 6442 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 6443 size_t msg_len) 6444 { 6445 struct sock *sk = asoc->base.sk; 6446 int err = 0; 6447 long current_timeo = *timeo_p; 6448 DEFINE_WAIT(wait); 6449 6450 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n", 6451 asoc, (long)(*timeo_p), msg_len); 6452 6453 /* Increment the association's refcnt. */ 6454 sctp_association_hold(asoc); 6455 6456 /* Wait on the association specific sndbuf space. */ 6457 for (;;) { 6458 prepare_to_wait_exclusive(&asoc->wait, &wait, 6459 TASK_INTERRUPTIBLE); 6460 if (!*timeo_p) 6461 goto do_nonblock; 6462 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6463 asoc->base.dead) 6464 goto do_error; 6465 if (signal_pending(current)) 6466 goto do_interrupted; 6467 if (msg_len <= sctp_wspace(asoc)) 6468 break; 6469 6470 /* Let another process have a go. Since we are going 6471 * to sleep anyway. 6472 */ 6473 sctp_release_sock(sk); 6474 current_timeo = schedule_timeout(current_timeo); 6475 BUG_ON(sk != asoc->base.sk); 6476 sctp_lock_sock(sk); 6477 6478 *timeo_p = current_timeo; 6479 } 6480 6481 out: 6482 finish_wait(&asoc->wait, &wait); 6483 6484 /* Release the association's refcnt. */ 6485 sctp_association_put(asoc); 6486 6487 return err; 6488 6489 do_error: 6490 err = -EPIPE; 6491 goto out; 6492 6493 do_interrupted: 6494 err = sock_intr_errno(*timeo_p); 6495 goto out; 6496 6497 do_nonblock: 6498 err = -EAGAIN; 6499 goto out; 6500 } 6501 6502 /* If socket sndbuf has changed, wake up all per association waiters. */ 6503 void sctp_write_space(struct sock *sk) 6504 { 6505 struct sctp_association *asoc; 6506 6507 /* Wake up the tasks in each wait queue. */ 6508 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 6509 __sctp_write_space(asoc); 6510 } 6511 } 6512 6513 /* Is there any sndbuf space available on the socket? 6514 * 6515 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 6516 * associations on the same socket. For a UDP-style socket with 6517 * multiple associations, it is possible for it to be "unwriteable" 6518 * prematurely. I assume that this is acceptable because 6519 * a premature "unwriteable" is better than an accidental "writeable" which 6520 * would cause an unwanted block under certain circumstances. For the 1-1 6521 * UDP-style sockets or TCP-style sockets, this code should work. 6522 * - Daisy 6523 */ 6524 static int sctp_writeable(struct sock *sk) 6525 { 6526 int amt = 0; 6527 6528 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 6529 if (amt < 0) 6530 amt = 0; 6531 return amt; 6532 } 6533 6534 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 6535 * returns immediately with EINPROGRESS. 6536 */ 6537 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 6538 { 6539 struct sock *sk = asoc->base.sk; 6540 int err = 0; 6541 long current_timeo = *timeo_p; 6542 DEFINE_WAIT(wait); 6543 6544 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc, 6545 (long)(*timeo_p)); 6546 6547 /* Increment the association's refcnt. */ 6548 sctp_association_hold(asoc); 6549 6550 for (;;) { 6551 prepare_to_wait_exclusive(&asoc->wait, &wait, 6552 TASK_INTERRUPTIBLE); 6553 if (!*timeo_p) 6554 goto do_nonblock; 6555 if (sk->sk_shutdown & RCV_SHUTDOWN) 6556 break; 6557 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6558 asoc->base.dead) 6559 goto do_error; 6560 if (signal_pending(current)) 6561 goto do_interrupted; 6562 6563 if (sctp_state(asoc, ESTABLISHED)) 6564 break; 6565 6566 /* Let another process have a go. Since we are going 6567 * to sleep anyway. 6568 */ 6569 sctp_release_sock(sk); 6570 current_timeo = schedule_timeout(current_timeo); 6571 sctp_lock_sock(sk); 6572 6573 *timeo_p = current_timeo; 6574 } 6575 6576 out: 6577 finish_wait(&asoc->wait, &wait); 6578 6579 /* Release the association's refcnt. */ 6580 sctp_association_put(asoc); 6581 6582 return err; 6583 6584 do_error: 6585 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 6586 err = -ETIMEDOUT; 6587 else 6588 err = -ECONNREFUSED; 6589 goto out; 6590 6591 do_interrupted: 6592 err = sock_intr_errno(*timeo_p); 6593 goto out; 6594 6595 do_nonblock: 6596 err = -EINPROGRESS; 6597 goto out; 6598 } 6599 6600 static int sctp_wait_for_accept(struct sock *sk, long timeo) 6601 { 6602 struct sctp_endpoint *ep; 6603 int err = 0; 6604 DEFINE_WAIT(wait); 6605 6606 ep = sctp_sk(sk)->ep; 6607 6608 6609 for (;;) { 6610 prepare_to_wait_exclusive(sk->sk_sleep, &wait, 6611 TASK_INTERRUPTIBLE); 6612 6613 if (list_empty(&ep->asocs)) { 6614 sctp_release_sock(sk); 6615 timeo = schedule_timeout(timeo); 6616 sctp_lock_sock(sk); 6617 } 6618 6619 err = -EINVAL; 6620 if (!sctp_sstate(sk, LISTENING)) 6621 break; 6622 6623 err = 0; 6624 if (!list_empty(&ep->asocs)) 6625 break; 6626 6627 err = sock_intr_errno(timeo); 6628 if (signal_pending(current)) 6629 break; 6630 6631 err = -EAGAIN; 6632 if (!timeo) 6633 break; 6634 } 6635 6636 finish_wait(sk->sk_sleep, &wait); 6637 6638 return err; 6639 } 6640 6641 static void sctp_wait_for_close(struct sock *sk, long timeout) 6642 { 6643 DEFINE_WAIT(wait); 6644 6645 do { 6646 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 6647 if (list_empty(&sctp_sk(sk)->ep->asocs)) 6648 break; 6649 sctp_release_sock(sk); 6650 timeout = schedule_timeout(timeout); 6651 sctp_lock_sock(sk); 6652 } while (!signal_pending(current) && timeout); 6653 6654 finish_wait(sk->sk_sleep, &wait); 6655 } 6656 6657 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 6658 { 6659 struct sk_buff *frag; 6660 6661 if (!skb->data_len) 6662 goto done; 6663 6664 /* Don't forget the fragments. */ 6665 skb_walk_frags(skb, frag) 6666 sctp_skb_set_owner_r_frag(frag, sk); 6667 6668 done: 6669 sctp_skb_set_owner_r(skb, sk); 6670 } 6671 6672 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 6673 struct sctp_association *asoc) 6674 { 6675 struct inet_sock *inet = inet_sk(sk); 6676 struct inet_sock *newinet = inet_sk(newsk); 6677 6678 newsk->sk_type = sk->sk_type; 6679 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 6680 newsk->sk_flags = sk->sk_flags; 6681 newsk->sk_no_check = sk->sk_no_check; 6682 newsk->sk_reuse = sk->sk_reuse; 6683 6684 newsk->sk_shutdown = sk->sk_shutdown; 6685 newsk->sk_destruct = inet_sock_destruct; 6686 newsk->sk_family = sk->sk_family; 6687 newsk->sk_protocol = IPPROTO_SCTP; 6688 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 6689 newsk->sk_sndbuf = sk->sk_sndbuf; 6690 newsk->sk_rcvbuf = sk->sk_rcvbuf; 6691 newsk->sk_lingertime = sk->sk_lingertime; 6692 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 6693 newsk->sk_sndtimeo = sk->sk_sndtimeo; 6694 6695 newinet = inet_sk(newsk); 6696 6697 /* Initialize sk's sport, dport, rcv_saddr and daddr for 6698 * getsockname() and getpeername() 6699 */ 6700 newinet->sport = inet->sport; 6701 newinet->saddr = inet->saddr; 6702 newinet->rcv_saddr = inet->rcv_saddr; 6703 newinet->dport = htons(asoc->peer.port); 6704 newinet->pmtudisc = inet->pmtudisc; 6705 newinet->id = asoc->next_tsn ^ jiffies; 6706 6707 newinet->uc_ttl = inet->uc_ttl; 6708 newinet->mc_loop = 1; 6709 newinet->mc_ttl = 1; 6710 newinet->mc_index = 0; 6711 newinet->mc_list = NULL; 6712 } 6713 6714 /* Populate the fields of the newsk from the oldsk and migrate the assoc 6715 * and its messages to the newsk. 6716 */ 6717 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 6718 struct sctp_association *assoc, 6719 sctp_socket_type_t type) 6720 { 6721 struct sctp_sock *oldsp = sctp_sk(oldsk); 6722 struct sctp_sock *newsp = sctp_sk(newsk); 6723 struct sctp_bind_bucket *pp; /* hash list port iterator */ 6724 struct sctp_endpoint *newep = newsp->ep; 6725 struct sk_buff *skb, *tmp; 6726 struct sctp_ulpevent *event; 6727 struct sctp_bind_hashbucket *head; 6728 6729 /* Migrate socket buffer sizes and all the socket level options to the 6730 * new socket. 6731 */ 6732 newsk->sk_sndbuf = oldsk->sk_sndbuf; 6733 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 6734 /* Brute force copy old sctp opt. */ 6735 inet_sk_copy_descendant(newsk, oldsk); 6736 6737 /* Restore the ep value that was overwritten with the above structure 6738 * copy. 6739 */ 6740 newsp->ep = newep; 6741 newsp->hmac = NULL; 6742 6743 /* Hook this new socket in to the bind_hash list. */ 6744 head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->num)]; 6745 sctp_local_bh_disable(); 6746 sctp_spin_lock(&head->lock); 6747 pp = sctp_sk(oldsk)->bind_hash; 6748 sk_add_bind_node(newsk, &pp->owner); 6749 sctp_sk(newsk)->bind_hash = pp; 6750 inet_sk(newsk)->num = inet_sk(oldsk)->num; 6751 sctp_spin_unlock(&head->lock); 6752 sctp_local_bh_enable(); 6753 6754 /* Copy the bind_addr list from the original endpoint to the new 6755 * endpoint so that we can handle restarts properly 6756 */ 6757 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 6758 &oldsp->ep->base.bind_addr, GFP_KERNEL); 6759 6760 /* Move any messages in the old socket's receive queue that are for the 6761 * peeled off association to the new socket's receive queue. 6762 */ 6763 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 6764 event = sctp_skb2event(skb); 6765 if (event->asoc == assoc) { 6766 __skb_unlink(skb, &oldsk->sk_receive_queue); 6767 __skb_queue_tail(&newsk->sk_receive_queue, skb); 6768 sctp_skb_set_owner_r_frag(skb, newsk); 6769 } 6770 } 6771 6772 /* Clean up any messages pending delivery due to partial 6773 * delivery. Three cases: 6774 * 1) No partial deliver; no work. 6775 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 6776 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 6777 */ 6778 skb_queue_head_init(&newsp->pd_lobby); 6779 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 6780 6781 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 6782 struct sk_buff_head *queue; 6783 6784 /* Decide which queue to move pd_lobby skbs to. */ 6785 if (assoc->ulpq.pd_mode) { 6786 queue = &newsp->pd_lobby; 6787 } else 6788 queue = &newsk->sk_receive_queue; 6789 6790 /* Walk through the pd_lobby, looking for skbs that 6791 * need moved to the new socket. 6792 */ 6793 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 6794 event = sctp_skb2event(skb); 6795 if (event->asoc == assoc) { 6796 __skb_unlink(skb, &oldsp->pd_lobby); 6797 __skb_queue_tail(queue, skb); 6798 sctp_skb_set_owner_r_frag(skb, newsk); 6799 } 6800 } 6801 6802 /* Clear up any skbs waiting for the partial 6803 * delivery to finish. 6804 */ 6805 if (assoc->ulpq.pd_mode) 6806 sctp_clear_pd(oldsk, NULL); 6807 6808 } 6809 6810 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) 6811 sctp_skb_set_owner_r_frag(skb, newsk); 6812 6813 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) 6814 sctp_skb_set_owner_r_frag(skb, newsk); 6815 6816 /* Set the type of socket to indicate that it is peeled off from the 6817 * original UDP-style socket or created with the accept() call on a 6818 * TCP-style socket.. 6819 */ 6820 newsp->type = type; 6821 6822 /* Mark the new socket "in-use" by the user so that any packets 6823 * that may arrive on the association after we've moved it are 6824 * queued to the backlog. This prevents a potential race between 6825 * backlog processing on the old socket and new-packet processing 6826 * on the new socket. 6827 * 6828 * The caller has just allocated newsk so we can guarantee that other 6829 * paths won't try to lock it and then oldsk. 6830 */ 6831 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 6832 sctp_assoc_migrate(assoc, newsk); 6833 6834 /* If the association on the newsk is already closed before accept() 6835 * is called, set RCV_SHUTDOWN flag. 6836 */ 6837 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 6838 newsk->sk_shutdown |= RCV_SHUTDOWN; 6839 6840 newsk->sk_state = SCTP_SS_ESTABLISHED; 6841 sctp_release_sock(newsk); 6842 } 6843 6844 6845 /* This proto struct describes the ULP interface for SCTP. */ 6846 struct proto sctp_prot = { 6847 .name = "SCTP", 6848 .owner = THIS_MODULE, 6849 .close = sctp_close, 6850 .connect = sctp_connect, 6851 .disconnect = sctp_disconnect, 6852 .accept = sctp_accept, 6853 .ioctl = sctp_ioctl, 6854 .init = sctp_init_sock, 6855 .destroy = sctp_destroy_sock, 6856 .shutdown = sctp_shutdown, 6857 .setsockopt = sctp_setsockopt, 6858 .getsockopt = sctp_getsockopt, 6859 .sendmsg = sctp_sendmsg, 6860 .recvmsg = sctp_recvmsg, 6861 .bind = sctp_bind, 6862 .backlog_rcv = sctp_backlog_rcv, 6863 .hash = sctp_hash, 6864 .unhash = sctp_unhash, 6865 .get_port = sctp_get_port, 6866 .obj_size = sizeof(struct sctp_sock), 6867 .sysctl_mem = sysctl_sctp_mem, 6868 .sysctl_rmem = sysctl_sctp_rmem, 6869 .sysctl_wmem = sysctl_sctp_wmem, 6870 .memory_pressure = &sctp_memory_pressure, 6871 .enter_memory_pressure = sctp_enter_memory_pressure, 6872 .memory_allocated = &sctp_memory_allocated, 6873 .sockets_allocated = &sctp_sockets_allocated, 6874 }; 6875 6876 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 6877 6878 struct proto sctpv6_prot = { 6879 .name = "SCTPv6", 6880 .owner = THIS_MODULE, 6881 .close = sctp_close, 6882 .connect = sctp_connect, 6883 .disconnect = sctp_disconnect, 6884 .accept = sctp_accept, 6885 .ioctl = sctp_ioctl, 6886 .init = sctp_init_sock, 6887 .destroy = sctp_destroy_sock, 6888 .shutdown = sctp_shutdown, 6889 .setsockopt = sctp_setsockopt, 6890 .getsockopt = sctp_getsockopt, 6891 .sendmsg = sctp_sendmsg, 6892 .recvmsg = sctp_recvmsg, 6893 .bind = sctp_bind, 6894 .backlog_rcv = sctp_backlog_rcv, 6895 .hash = sctp_hash, 6896 .unhash = sctp_unhash, 6897 .get_port = sctp_get_port, 6898 .obj_size = sizeof(struct sctp6_sock), 6899 .sysctl_mem = sysctl_sctp_mem, 6900 .sysctl_rmem = sysctl_sctp_rmem, 6901 .sysctl_wmem = sysctl_sctp_wmem, 6902 .memory_pressure = &sctp_memory_pressure, 6903 .enter_memory_pressure = sctp_enter_memory_pressure, 6904 .memory_allocated = &sctp_memory_allocated, 6905 .sockets_allocated = &sctp_sockets_allocated, 6906 }; 6907 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */ 6908