xref: /linux/net/sctp/socket.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, write to
32  * the Free Software Foundation, 59 Temple Place - Suite 330,
33  * Boston, MA 02111-1307, USA.
34  *
35  * Please send any bug reports or fixes you make to the
36  * email address(es):
37  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
38  *
39  * Or submit a bug report through the following website:
40  *    http://www.sf.net/projects/lksctp
41  *
42  * Written or modified by:
43  *    La Monte H.P. Yarroll <piggy@acm.org>
44  *    Narasimha Budihal     <narsi@refcode.org>
45  *    Karl Knutson          <karl@athena.chicago.il.us>
46  *    Jon Grimm             <jgrimm@us.ibm.com>
47  *    Xingang Guo           <xingang.guo@intel.com>
48  *    Daisy Chang           <daisyc@us.ibm.com>
49  *    Sridhar Samudrala     <samudrala@us.ibm.com>
50  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
51  *    Ardelle Fan	    <ardelle.fan@intel.com>
52  *    Ryan Layer	    <rmlayer@us.ibm.com>
53  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
54  *    Kevin Gao             <kevin.gao@intel.com>
55  *
56  * Any bugs reported given to us we will try to fix... any fixes shared will
57  * be incorporated into the next SCTP release.
58  */
59 
60 #include <linux/types.h>
61 #include <linux/kernel.h>
62 #include <linux/wait.h>
63 #include <linux/time.h>
64 #include <linux/ip.h>
65 #include <linux/capability.h>
66 #include <linux/fcntl.h>
67 #include <linux/poll.h>
68 #include <linux/init.h>
69 #include <linux/crypto.h>
70 
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
76 
77 #include <linux/socket.h> /* for sa_family_t */
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81 
82 /* WARNING:  Please do not remove the SCTP_STATIC attribute to
83  * any of the functions below as they are used to export functions
84  * used by a project regression testsuite.
85  */
86 
87 /* Forward declarations for internal helper functions. */
88 static int sctp_writeable(struct sock *sk);
89 static void sctp_wfree(struct sk_buff *skb);
90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
91 				size_t msg_len);
92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
94 static int sctp_wait_for_accept(struct sock *sk, long timeo);
95 static void sctp_wait_for_close(struct sock *sk, long timeo);
96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
97 					union sctp_addr *addr, int len);
98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
102 static int sctp_send_asconf(struct sctp_association *asoc,
103 			    struct sctp_chunk *chunk);
104 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
105 static int sctp_autobind(struct sock *sk);
106 static void sctp_sock_migrate(struct sock *, struct sock *,
107 			      struct sctp_association *, sctp_socket_type_t);
108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
109 
110 extern struct kmem_cache *sctp_bucket_cachep;
111 extern int sysctl_sctp_mem[3];
112 extern int sysctl_sctp_rmem[3];
113 extern int sysctl_sctp_wmem[3];
114 
115 static int sctp_memory_pressure;
116 static atomic_t sctp_memory_allocated;
117 static atomic_t sctp_sockets_allocated;
118 
119 static void sctp_enter_memory_pressure(struct sock *sk)
120 {
121 	sctp_memory_pressure = 1;
122 }
123 
124 
125 /* Get the sndbuf space available at the time on the association.  */
126 static inline int sctp_wspace(struct sctp_association *asoc)
127 {
128 	int amt;
129 
130 	if (asoc->ep->sndbuf_policy)
131 		amt = asoc->sndbuf_used;
132 	else
133 		amt = atomic_read(&asoc->base.sk->sk_wmem_alloc);
134 
135 	if (amt >= asoc->base.sk->sk_sndbuf) {
136 		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
137 			amt = 0;
138 		else {
139 			amt = sk_stream_wspace(asoc->base.sk);
140 			if (amt < 0)
141 				amt = 0;
142 		}
143 	} else {
144 		amt = asoc->base.sk->sk_sndbuf - amt;
145 	}
146 	return amt;
147 }
148 
149 /* Increment the used sndbuf space count of the corresponding association by
150  * the size of the outgoing data chunk.
151  * Also, set the skb destructor for sndbuf accounting later.
152  *
153  * Since it is always 1-1 between chunk and skb, and also a new skb is always
154  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
155  * destructor in the data chunk skb for the purpose of the sndbuf space
156  * tracking.
157  */
158 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
159 {
160 	struct sctp_association *asoc = chunk->asoc;
161 	struct sock *sk = asoc->base.sk;
162 
163 	/* The sndbuf space is tracked per association.  */
164 	sctp_association_hold(asoc);
165 
166 	skb_set_owner_w(chunk->skb, sk);
167 
168 	chunk->skb->destructor = sctp_wfree;
169 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
170 	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
171 
172 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
173 				sizeof(struct sk_buff) +
174 				sizeof(struct sctp_chunk);
175 
176 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
177 	sk->sk_wmem_queued += chunk->skb->truesize;
178 	sk_mem_charge(sk, chunk->skb->truesize);
179 }
180 
181 /* Verify that this is a valid address. */
182 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
183 				   int len)
184 {
185 	struct sctp_af *af;
186 
187 	/* Verify basic sockaddr. */
188 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
189 	if (!af)
190 		return -EINVAL;
191 
192 	/* Is this a valid SCTP address?  */
193 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
194 		return -EINVAL;
195 
196 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
197 		return -EINVAL;
198 
199 	return 0;
200 }
201 
202 /* Look up the association by its id.  If this is not a UDP-style
203  * socket, the ID field is always ignored.
204  */
205 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
206 {
207 	struct sctp_association *asoc = NULL;
208 
209 	/* If this is not a UDP-style socket, assoc id should be ignored. */
210 	if (!sctp_style(sk, UDP)) {
211 		/* Return NULL if the socket state is not ESTABLISHED. It
212 		 * could be a TCP-style listening socket or a socket which
213 		 * hasn't yet called connect() to establish an association.
214 		 */
215 		if (!sctp_sstate(sk, ESTABLISHED))
216 			return NULL;
217 
218 		/* Get the first and the only association from the list. */
219 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
220 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
221 					  struct sctp_association, asocs);
222 		return asoc;
223 	}
224 
225 	/* Otherwise this is a UDP-style socket. */
226 	if (!id || (id == (sctp_assoc_t)-1))
227 		return NULL;
228 
229 	spin_lock_bh(&sctp_assocs_id_lock);
230 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
231 	spin_unlock_bh(&sctp_assocs_id_lock);
232 
233 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
234 		return NULL;
235 
236 	return asoc;
237 }
238 
239 /* Look up the transport from an address and an assoc id. If both address and
240  * id are specified, the associations matching the address and the id should be
241  * the same.
242  */
243 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
244 					      struct sockaddr_storage *addr,
245 					      sctp_assoc_t id)
246 {
247 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
248 	struct sctp_transport *transport;
249 	union sctp_addr *laddr = (union sctp_addr *)addr;
250 
251 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
252 					       laddr,
253 					       &transport);
254 
255 	if (!addr_asoc)
256 		return NULL;
257 
258 	id_asoc = sctp_id2assoc(sk, id);
259 	if (id_asoc && (id_asoc != addr_asoc))
260 		return NULL;
261 
262 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
263 						(union sctp_addr *)addr);
264 
265 	return transport;
266 }
267 
268 /* API 3.1.2 bind() - UDP Style Syntax
269  * The syntax of bind() is,
270  *
271  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
272  *
273  *   sd      - the socket descriptor returned by socket().
274  *   addr    - the address structure (struct sockaddr_in or struct
275  *             sockaddr_in6 [RFC 2553]),
276  *   addr_len - the size of the address structure.
277  */
278 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
279 {
280 	int retval = 0;
281 
282 	sctp_lock_sock(sk);
283 
284 	SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
285 			  sk, addr, addr_len);
286 
287 	/* Disallow binding twice. */
288 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
289 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
290 				      addr_len);
291 	else
292 		retval = -EINVAL;
293 
294 	sctp_release_sock(sk);
295 
296 	return retval;
297 }
298 
299 static long sctp_get_port_local(struct sock *, union sctp_addr *);
300 
301 /* Verify this is a valid sockaddr. */
302 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
303 					union sctp_addr *addr, int len)
304 {
305 	struct sctp_af *af;
306 
307 	/* Check minimum size.  */
308 	if (len < sizeof (struct sockaddr))
309 		return NULL;
310 
311 	/* V4 mapped address are really of AF_INET family */
312 	if (addr->sa.sa_family == AF_INET6 &&
313 	    ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
314 		if (!opt->pf->af_supported(AF_INET, opt))
315 			return NULL;
316 	} else {
317 		/* Does this PF support this AF? */
318 		if (!opt->pf->af_supported(addr->sa.sa_family, opt))
319 			return NULL;
320 	}
321 
322 	/* If we get this far, af is valid. */
323 	af = sctp_get_af_specific(addr->sa.sa_family);
324 
325 	if (len < af->sockaddr_len)
326 		return NULL;
327 
328 	return af;
329 }
330 
331 /* Bind a local address either to an endpoint or to an association.  */
332 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
333 {
334 	struct sctp_sock *sp = sctp_sk(sk);
335 	struct sctp_endpoint *ep = sp->ep;
336 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
337 	struct sctp_af *af;
338 	unsigned short snum;
339 	int ret = 0;
340 
341 	/* Common sockaddr verification. */
342 	af = sctp_sockaddr_af(sp, addr, len);
343 	if (!af) {
344 		SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
345 				  sk, addr, len);
346 		return -EINVAL;
347 	}
348 
349 	snum = ntohs(addr->v4.sin_port);
350 
351 	SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
352 				 ", port: %d, new port: %d, len: %d)\n",
353 				 sk,
354 				 addr,
355 				 bp->port, snum,
356 				 len);
357 
358 	/* PF specific bind() address verification. */
359 	if (!sp->pf->bind_verify(sp, addr))
360 		return -EADDRNOTAVAIL;
361 
362 	/* We must either be unbound, or bind to the same port.
363 	 * It's OK to allow 0 ports if we are already bound.
364 	 * We'll just inhert an already bound port in this case
365 	 */
366 	if (bp->port) {
367 		if (!snum)
368 			snum = bp->port;
369 		else if (snum != bp->port) {
370 			SCTP_DEBUG_PRINTK("sctp_do_bind:"
371 				  " New port %d does not match existing port "
372 				  "%d.\n", snum, bp->port);
373 			return -EINVAL;
374 		}
375 	}
376 
377 	if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
378 		return -EACCES;
379 
380 	/* See if the address matches any of the addresses we may have
381 	 * already bound before checking against other endpoints.
382 	 */
383 	if (sctp_bind_addr_match(bp, addr, sp))
384 		return -EINVAL;
385 
386 	/* Make sure we are allowed to bind here.
387 	 * The function sctp_get_port_local() does duplicate address
388 	 * detection.
389 	 */
390 	addr->v4.sin_port = htons(snum);
391 	if ((ret = sctp_get_port_local(sk, addr))) {
392 		return -EADDRINUSE;
393 	}
394 
395 	/* Refresh ephemeral port.  */
396 	if (!bp->port)
397 		bp->port = inet_sk(sk)->num;
398 
399 	/* Add the address to the bind address list.
400 	 * Use GFP_ATOMIC since BHs will be disabled.
401 	 */
402 	ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
403 
404 	/* Copy back into socket for getsockname() use. */
405 	if (!ret) {
406 		inet_sk(sk)->sport = htons(inet_sk(sk)->num);
407 		af->to_sk_saddr(addr, sk);
408 	}
409 
410 	return ret;
411 }
412 
413  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
414  *
415  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
416  * at any one time.  If a sender, after sending an ASCONF chunk, decides
417  * it needs to transfer another ASCONF Chunk, it MUST wait until the
418  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
419  * subsequent ASCONF. Note this restriction binds each side, so at any
420  * time two ASCONF may be in-transit on any given association (one sent
421  * from each endpoint).
422  */
423 static int sctp_send_asconf(struct sctp_association *asoc,
424 			    struct sctp_chunk *chunk)
425 {
426 	int		retval = 0;
427 
428 	/* If there is an outstanding ASCONF chunk, queue it for later
429 	 * transmission.
430 	 */
431 	if (asoc->addip_last_asconf) {
432 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
433 		goto out;
434 	}
435 
436 	/* Hold the chunk until an ASCONF_ACK is received. */
437 	sctp_chunk_hold(chunk);
438 	retval = sctp_primitive_ASCONF(asoc, chunk);
439 	if (retval)
440 		sctp_chunk_free(chunk);
441 	else
442 		asoc->addip_last_asconf = chunk;
443 
444 out:
445 	return retval;
446 }
447 
448 /* Add a list of addresses as bind addresses to local endpoint or
449  * association.
450  *
451  * Basically run through each address specified in the addrs/addrcnt
452  * array/length pair, determine if it is IPv6 or IPv4 and call
453  * sctp_do_bind() on it.
454  *
455  * If any of them fails, then the operation will be reversed and the
456  * ones that were added will be removed.
457  *
458  * Only sctp_setsockopt_bindx() is supposed to call this function.
459  */
460 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
461 {
462 	int cnt;
463 	int retval = 0;
464 	void *addr_buf;
465 	struct sockaddr *sa_addr;
466 	struct sctp_af *af;
467 
468 	SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
469 			  sk, addrs, addrcnt);
470 
471 	addr_buf = addrs;
472 	for (cnt = 0; cnt < addrcnt; cnt++) {
473 		/* The list may contain either IPv4 or IPv6 address;
474 		 * determine the address length for walking thru the list.
475 		 */
476 		sa_addr = (struct sockaddr *)addr_buf;
477 		af = sctp_get_af_specific(sa_addr->sa_family);
478 		if (!af) {
479 			retval = -EINVAL;
480 			goto err_bindx_add;
481 		}
482 
483 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
484 				      af->sockaddr_len);
485 
486 		addr_buf += af->sockaddr_len;
487 
488 err_bindx_add:
489 		if (retval < 0) {
490 			/* Failed. Cleanup the ones that have been added */
491 			if (cnt > 0)
492 				sctp_bindx_rem(sk, addrs, cnt);
493 			return retval;
494 		}
495 	}
496 
497 	return retval;
498 }
499 
500 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
501  * associations that are part of the endpoint indicating that a list of local
502  * addresses are added to the endpoint.
503  *
504  * If any of the addresses is already in the bind address list of the
505  * association, we do not send the chunk for that association.  But it will not
506  * affect other associations.
507  *
508  * Only sctp_setsockopt_bindx() is supposed to call this function.
509  */
510 static int sctp_send_asconf_add_ip(struct sock		*sk,
511 				   struct sockaddr	*addrs,
512 				   int 			addrcnt)
513 {
514 	struct sctp_sock		*sp;
515 	struct sctp_endpoint		*ep;
516 	struct sctp_association		*asoc;
517 	struct sctp_bind_addr		*bp;
518 	struct sctp_chunk		*chunk;
519 	struct sctp_sockaddr_entry	*laddr;
520 	union sctp_addr			*addr;
521 	union sctp_addr			saveaddr;
522 	void				*addr_buf;
523 	struct sctp_af			*af;
524 	struct list_head		*p;
525 	int 				i;
526 	int 				retval = 0;
527 
528 	if (!sctp_addip_enable)
529 		return retval;
530 
531 	sp = sctp_sk(sk);
532 	ep = sp->ep;
533 
534 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
535 			  __func__, sk, addrs, addrcnt);
536 
537 	list_for_each_entry(asoc, &ep->asocs, asocs) {
538 
539 		if (!asoc->peer.asconf_capable)
540 			continue;
541 
542 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
543 			continue;
544 
545 		if (!sctp_state(asoc, ESTABLISHED))
546 			continue;
547 
548 		/* Check if any address in the packed array of addresses is
549 		 * in the bind address list of the association. If so,
550 		 * do not send the asconf chunk to its peer, but continue with
551 		 * other associations.
552 		 */
553 		addr_buf = addrs;
554 		for (i = 0; i < addrcnt; i++) {
555 			addr = (union sctp_addr *)addr_buf;
556 			af = sctp_get_af_specific(addr->v4.sin_family);
557 			if (!af) {
558 				retval = -EINVAL;
559 				goto out;
560 			}
561 
562 			if (sctp_assoc_lookup_laddr(asoc, addr))
563 				break;
564 
565 			addr_buf += af->sockaddr_len;
566 		}
567 		if (i < addrcnt)
568 			continue;
569 
570 		/* Use the first valid address in bind addr list of
571 		 * association as Address Parameter of ASCONF CHUNK.
572 		 */
573 		bp = &asoc->base.bind_addr;
574 		p = bp->address_list.next;
575 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
576 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
577 						   addrcnt, SCTP_PARAM_ADD_IP);
578 		if (!chunk) {
579 			retval = -ENOMEM;
580 			goto out;
581 		}
582 
583 		retval = sctp_send_asconf(asoc, chunk);
584 		if (retval)
585 			goto out;
586 
587 		/* Add the new addresses to the bind address list with
588 		 * use_as_src set to 0.
589 		 */
590 		addr_buf = addrs;
591 		for (i = 0; i < addrcnt; i++) {
592 			addr = (union sctp_addr *)addr_buf;
593 			af = sctp_get_af_specific(addr->v4.sin_family);
594 			memcpy(&saveaddr, addr, af->sockaddr_len);
595 			retval = sctp_add_bind_addr(bp, &saveaddr,
596 						    SCTP_ADDR_NEW, GFP_ATOMIC);
597 			addr_buf += af->sockaddr_len;
598 		}
599 	}
600 
601 out:
602 	return retval;
603 }
604 
605 /* Remove a list of addresses from bind addresses list.  Do not remove the
606  * last address.
607  *
608  * Basically run through each address specified in the addrs/addrcnt
609  * array/length pair, determine if it is IPv6 or IPv4 and call
610  * sctp_del_bind() on it.
611  *
612  * If any of them fails, then the operation will be reversed and the
613  * ones that were removed will be added back.
614  *
615  * At least one address has to be left; if only one address is
616  * available, the operation will return -EBUSY.
617  *
618  * Only sctp_setsockopt_bindx() is supposed to call this function.
619  */
620 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
621 {
622 	struct sctp_sock *sp = sctp_sk(sk);
623 	struct sctp_endpoint *ep = sp->ep;
624 	int cnt;
625 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
626 	int retval = 0;
627 	void *addr_buf;
628 	union sctp_addr *sa_addr;
629 	struct sctp_af *af;
630 
631 	SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
632 			  sk, addrs, addrcnt);
633 
634 	addr_buf = addrs;
635 	for (cnt = 0; cnt < addrcnt; cnt++) {
636 		/* If the bind address list is empty or if there is only one
637 		 * bind address, there is nothing more to be removed (we need
638 		 * at least one address here).
639 		 */
640 		if (list_empty(&bp->address_list) ||
641 		    (sctp_list_single_entry(&bp->address_list))) {
642 			retval = -EBUSY;
643 			goto err_bindx_rem;
644 		}
645 
646 		sa_addr = (union sctp_addr *)addr_buf;
647 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
648 		if (!af) {
649 			retval = -EINVAL;
650 			goto err_bindx_rem;
651 		}
652 
653 		if (!af->addr_valid(sa_addr, sp, NULL)) {
654 			retval = -EADDRNOTAVAIL;
655 			goto err_bindx_rem;
656 		}
657 
658 		if (sa_addr->v4.sin_port != htons(bp->port)) {
659 			retval = -EINVAL;
660 			goto err_bindx_rem;
661 		}
662 
663 		/* FIXME - There is probably a need to check if sk->sk_saddr and
664 		 * sk->sk_rcv_addr are currently set to one of the addresses to
665 		 * be removed. This is something which needs to be looked into
666 		 * when we are fixing the outstanding issues with multi-homing
667 		 * socket routing and failover schemes. Refer to comments in
668 		 * sctp_do_bind(). -daisy
669 		 */
670 		retval = sctp_del_bind_addr(bp, sa_addr);
671 
672 		addr_buf += af->sockaddr_len;
673 err_bindx_rem:
674 		if (retval < 0) {
675 			/* Failed. Add the ones that has been removed back */
676 			if (cnt > 0)
677 				sctp_bindx_add(sk, addrs, cnt);
678 			return retval;
679 		}
680 	}
681 
682 	return retval;
683 }
684 
685 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
686  * the associations that are part of the endpoint indicating that a list of
687  * local addresses are removed from the endpoint.
688  *
689  * If any of the addresses is already in the bind address list of the
690  * association, we do not send the chunk for that association.  But it will not
691  * affect other associations.
692  *
693  * Only sctp_setsockopt_bindx() is supposed to call this function.
694  */
695 static int sctp_send_asconf_del_ip(struct sock		*sk,
696 				   struct sockaddr	*addrs,
697 				   int			addrcnt)
698 {
699 	struct sctp_sock	*sp;
700 	struct sctp_endpoint	*ep;
701 	struct sctp_association	*asoc;
702 	struct sctp_transport	*transport;
703 	struct sctp_bind_addr	*bp;
704 	struct sctp_chunk	*chunk;
705 	union sctp_addr		*laddr;
706 	void			*addr_buf;
707 	struct sctp_af		*af;
708 	struct sctp_sockaddr_entry *saddr;
709 	int 			i;
710 	int 			retval = 0;
711 
712 	if (!sctp_addip_enable)
713 		return retval;
714 
715 	sp = sctp_sk(sk);
716 	ep = sp->ep;
717 
718 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
719 			  __func__, sk, addrs, addrcnt);
720 
721 	list_for_each_entry(asoc, &ep->asocs, asocs) {
722 
723 		if (!asoc->peer.asconf_capable)
724 			continue;
725 
726 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
727 			continue;
728 
729 		if (!sctp_state(asoc, ESTABLISHED))
730 			continue;
731 
732 		/* Check if any address in the packed array of addresses is
733 		 * not present in the bind address list of the association.
734 		 * If so, do not send the asconf chunk to its peer, but
735 		 * continue with other associations.
736 		 */
737 		addr_buf = addrs;
738 		for (i = 0; i < addrcnt; i++) {
739 			laddr = (union sctp_addr *)addr_buf;
740 			af = sctp_get_af_specific(laddr->v4.sin_family);
741 			if (!af) {
742 				retval = -EINVAL;
743 				goto out;
744 			}
745 
746 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
747 				break;
748 
749 			addr_buf += af->sockaddr_len;
750 		}
751 		if (i < addrcnt)
752 			continue;
753 
754 		/* Find one address in the association's bind address list
755 		 * that is not in the packed array of addresses. This is to
756 		 * make sure that we do not delete all the addresses in the
757 		 * association.
758 		 */
759 		bp = &asoc->base.bind_addr;
760 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
761 					       addrcnt, sp);
762 		if (!laddr)
763 			continue;
764 
765 		/* We do not need RCU protection throughout this loop
766 		 * because this is done under a socket lock from the
767 		 * setsockopt call.
768 		 */
769 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
770 						   SCTP_PARAM_DEL_IP);
771 		if (!chunk) {
772 			retval = -ENOMEM;
773 			goto out;
774 		}
775 
776 		/* Reset use_as_src flag for the addresses in the bind address
777 		 * list that are to be deleted.
778 		 */
779 		addr_buf = addrs;
780 		for (i = 0; i < addrcnt; i++) {
781 			laddr = (union sctp_addr *)addr_buf;
782 			af = sctp_get_af_specific(laddr->v4.sin_family);
783 			list_for_each_entry(saddr, &bp->address_list, list) {
784 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
785 					saddr->state = SCTP_ADDR_DEL;
786 			}
787 			addr_buf += af->sockaddr_len;
788 		}
789 
790 		/* Update the route and saddr entries for all the transports
791 		 * as some of the addresses in the bind address list are
792 		 * about to be deleted and cannot be used as source addresses.
793 		 */
794 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
795 					transports) {
796 			dst_release(transport->dst);
797 			sctp_transport_route(transport, NULL,
798 					     sctp_sk(asoc->base.sk));
799 		}
800 
801 		retval = sctp_send_asconf(asoc, chunk);
802 	}
803 out:
804 	return retval;
805 }
806 
807 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
808  *
809  * API 8.1
810  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
811  *                int flags);
812  *
813  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
814  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
815  * or IPv6 addresses.
816  *
817  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
818  * Section 3.1.2 for this usage.
819  *
820  * addrs is a pointer to an array of one or more socket addresses. Each
821  * address is contained in its appropriate structure (i.e. struct
822  * sockaddr_in or struct sockaddr_in6) the family of the address type
823  * must be used to distinguish the address length (note that this
824  * representation is termed a "packed array" of addresses). The caller
825  * specifies the number of addresses in the array with addrcnt.
826  *
827  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
828  * -1, and sets errno to the appropriate error code.
829  *
830  * For SCTP, the port given in each socket address must be the same, or
831  * sctp_bindx() will fail, setting errno to EINVAL.
832  *
833  * The flags parameter is formed from the bitwise OR of zero or more of
834  * the following currently defined flags:
835  *
836  * SCTP_BINDX_ADD_ADDR
837  *
838  * SCTP_BINDX_REM_ADDR
839  *
840  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
841  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
842  * addresses from the association. The two flags are mutually exclusive;
843  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
844  * not remove all addresses from an association; sctp_bindx() will
845  * reject such an attempt with EINVAL.
846  *
847  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
848  * additional addresses with an endpoint after calling bind().  Or use
849  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
850  * socket is associated with so that no new association accepted will be
851  * associated with those addresses. If the endpoint supports dynamic
852  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
853  * endpoint to send the appropriate message to the peer to change the
854  * peers address lists.
855  *
856  * Adding and removing addresses from a connected association is
857  * optional functionality. Implementations that do not support this
858  * functionality should return EOPNOTSUPP.
859  *
860  * Basically do nothing but copying the addresses from user to kernel
861  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
862  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
863  * from userspace.
864  *
865  * We don't use copy_from_user() for optimization: we first do the
866  * sanity checks (buffer size -fast- and access check-healthy
867  * pointer); if all of those succeed, then we can alloc the memory
868  * (expensive operation) needed to copy the data to kernel. Then we do
869  * the copying without checking the user space area
870  * (__copy_from_user()).
871  *
872  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
873  * it.
874  *
875  * sk        The sk of the socket
876  * addrs     The pointer to the addresses in user land
877  * addrssize Size of the addrs buffer
878  * op        Operation to perform (add or remove, see the flags of
879  *           sctp_bindx)
880  *
881  * Returns 0 if ok, <0 errno code on error.
882  */
883 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
884 				      struct sockaddr __user *addrs,
885 				      int addrs_size, int op)
886 {
887 	struct sockaddr *kaddrs;
888 	int err;
889 	int addrcnt = 0;
890 	int walk_size = 0;
891 	struct sockaddr *sa_addr;
892 	void *addr_buf;
893 	struct sctp_af *af;
894 
895 	SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
896 			  " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
897 
898 	if (unlikely(addrs_size <= 0))
899 		return -EINVAL;
900 
901 	/* Check the user passed a healthy pointer.  */
902 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
903 		return -EFAULT;
904 
905 	/* Alloc space for the address array in kernel memory.  */
906 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
907 	if (unlikely(!kaddrs))
908 		return -ENOMEM;
909 
910 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
911 		kfree(kaddrs);
912 		return -EFAULT;
913 	}
914 
915 	/* Walk through the addrs buffer and count the number of addresses. */
916 	addr_buf = kaddrs;
917 	while (walk_size < addrs_size) {
918 		sa_addr = (struct sockaddr *)addr_buf;
919 		af = sctp_get_af_specific(sa_addr->sa_family);
920 
921 		/* If the address family is not supported or if this address
922 		 * causes the address buffer to overflow return EINVAL.
923 		 */
924 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
925 			kfree(kaddrs);
926 			return -EINVAL;
927 		}
928 		addrcnt++;
929 		addr_buf += af->sockaddr_len;
930 		walk_size += af->sockaddr_len;
931 	}
932 
933 	/* Do the work. */
934 	switch (op) {
935 	case SCTP_BINDX_ADD_ADDR:
936 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
937 		if (err)
938 			goto out;
939 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
940 		break;
941 
942 	case SCTP_BINDX_REM_ADDR:
943 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
944 		if (err)
945 			goto out;
946 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
947 		break;
948 
949 	default:
950 		err = -EINVAL;
951 		break;
952 	}
953 
954 out:
955 	kfree(kaddrs);
956 
957 	return err;
958 }
959 
960 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
961  *
962  * Common routine for handling connect() and sctp_connectx().
963  * Connect will come in with just a single address.
964  */
965 static int __sctp_connect(struct sock* sk,
966 			  struct sockaddr *kaddrs,
967 			  int addrs_size,
968 			  sctp_assoc_t *assoc_id)
969 {
970 	struct sctp_sock *sp;
971 	struct sctp_endpoint *ep;
972 	struct sctp_association *asoc = NULL;
973 	struct sctp_association *asoc2;
974 	struct sctp_transport *transport;
975 	union sctp_addr to;
976 	struct sctp_af *af;
977 	sctp_scope_t scope;
978 	long timeo;
979 	int err = 0;
980 	int addrcnt = 0;
981 	int walk_size = 0;
982 	union sctp_addr *sa_addr = NULL;
983 	void *addr_buf;
984 	unsigned short port;
985 	unsigned int f_flags = 0;
986 
987 	sp = sctp_sk(sk);
988 	ep = sp->ep;
989 
990 	/* connect() cannot be done on a socket that is already in ESTABLISHED
991 	 * state - UDP-style peeled off socket or a TCP-style socket that
992 	 * is already connected.
993 	 * It cannot be done even on a TCP-style listening socket.
994 	 */
995 	if (sctp_sstate(sk, ESTABLISHED) ||
996 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
997 		err = -EISCONN;
998 		goto out_free;
999 	}
1000 
1001 	/* Walk through the addrs buffer and count the number of addresses. */
1002 	addr_buf = kaddrs;
1003 	while (walk_size < addrs_size) {
1004 		sa_addr = (union sctp_addr *)addr_buf;
1005 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1006 		port = ntohs(sa_addr->v4.sin_port);
1007 
1008 		/* If the address family is not supported or if this address
1009 		 * causes the address buffer to overflow return EINVAL.
1010 		 */
1011 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1012 			err = -EINVAL;
1013 			goto out_free;
1014 		}
1015 
1016 		/* Save current address so we can work with it */
1017 		memcpy(&to, sa_addr, af->sockaddr_len);
1018 
1019 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1020 		if (err)
1021 			goto out_free;
1022 
1023 		/* Make sure the destination port is correctly set
1024 		 * in all addresses.
1025 		 */
1026 		if (asoc && asoc->peer.port && asoc->peer.port != port)
1027 			goto out_free;
1028 
1029 
1030 		/* Check if there already is a matching association on the
1031 		 * endpoint (other than the one created here).
1032 		 */
1033 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1034 		if (asoc2 && asoc2 != asoc) {
1035 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1036 				err = -EISCONN;
1037 			else
1038 				err = -EALREADY;
1039 			goto out_free;
1040 		}
1041 
1042 		/* If we could not find a matching association on the endpoint,
1043 		 * make sure that there is no peeled-off association matching
1044 		 * the peer address even on another socket.
1045 		 */
1046 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1047 			err = -EADDRNOTAVAIL;
1048 			goto out_free;
1049 		}
1050 
1051 		if (!asoc) {
1052 			/* If a bind() or sctp_bindx() is not called prior to
1053 			 * an sctp_connectx() call, the system picks an
1054 			 * ephemeral port and will choose an address set
1055 			 * equivalent to binding with a wildcard address.
1056 			 */
1057 			if (!ep->base.bind_addr.port) {
1058 				if (sctp_autobind(sk)) {
1059 					err = -EAGAIN;
1060 					goto out_free;
1061 				}
1062 			} else {
1063 				/*
1064 				 * If an unprivileged user inherits a 1-many
1065 				 * style socket with open associations on a
1066 				 * privileged port, it MAY be permitted to
1067 				 * accept new associations, but it SHOULD NOT
1068 				 * be permitted to open new associations.
1069 				 */
1070 				if (ep->base.bind_addr.port < PROT_SOCK &&
1071 				    !capable(CAP_NET_BIND_SERVICE)) {
1072 					err = -EACCES;
1073 					goto out_free;
1074 				}
1075 			}
1076 
1077 			scope = sctp_scope(&to);
1078 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1079 			if (!asoc) {
1080 				err = -ENOMEM;
1081 				goto out_free;
1082 			}
1083 		}
1084 
1085 		/* Prime the peer's transport structures.  */
1086 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1087 						SCTP_UNKNOWN);
1088 		if (!transport) {
1089 			err = -ENOMEM;
1090 			goto out_free;
1091 		}
1092 
1093 		addrcnt++;
1094 		addr_buf += af->sockaddr_len;
1095 		walk_size += af->sockaddr_len;
1096 	}
1097 
1098 	err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1099 	if (err < 0) {
1100 		goto out_free;
1101 	}
1102 
1103 	err = sctp_primitive_ASSOCIATE(asoc, NULL);
1104 	if (err < 0) {
1105 		goto out_free;
1106 	}
1107 
1108 	/* Initialize sk's dport and daddr for getpeername() */
1109 	inet_sk(sk)->dport = htons(asoc->peer.port);
1110 	af = sctp_get_af_specific(sa_addr->sa.sa_family);
1111 	af->to_sk_daddr(sa_addr, sk);
1112 	sk->sk_err = 0;
1113 
1114 	/* in-kernel sockets don't generally have a file allocated to them
1115 	 * if all they do is call sock_create_kern().
1116 	 */
1117 	if (sk->sk_socket->file)
1118 		f_flags = sk->sk_socket->file->f_flags;
1119 
1120 	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1121 
1122 	err = sctp_wait_for_connect(asoc, &timeo);
1123 	if (!err && assoc_id)
1124 		*assoc_id = asoc->assoc_id;
1125 
1126 	/* Don't free association on exit. */
1127 	asoc = NULL;
1128 
1129 out_free:
1130 
1131 	SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1132 			  " kaddrs: %p err: %d\n",
1133 			  asoc, kaddrs, err);
1134 	if (asoc)
1135 		sctp_association_free(asoc);
1136 	return err;
1137 }
1138 
1139 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1140  *
1141  * API 8.9
1142  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1143  * 			sctp_assoc_t *asoc);
1144  *
1145  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1146  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1147  * or IPv6 addresses.
1148  *
1149  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1150  * Section 3.1.2 for this usage.
1151  *
1152  * addrs is a pointer to an array of one or more socket addresses. Each
1153  * address is contained in its appropriate structure (i.e. struct
1154  * sockaddr_in or struct sockaddr_in6) the family of the address type
1155  * must be used to distengish the address length (note that this
1156  * representation is termed a "packed array" of addresses). The caller
1157  * specifies the number of addresses in the array with addrcnt.
1158  *
1159  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1160  * the association id of the new association.  On failure, sctp_connectx()
1161  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1162  * is not touched by the kernel.
1163  *
1164  * For SCTP, the port given in each socket address must be the same, or
1165  * sctp_connectx() will fail, setting errno to EINVAL.
1166  *
1167  * An application can use sctp_connectx to initiate an association with
1168  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1169  * allows a caller to specify multiple addresses at which a peer can be
1170  * reached.  The way the SCTP stack uses the list of addresses to set up
1171  * the association is implementation dependant.  This function only
1172  * specifies that the stack will try to make use of all the addresses in
1173  * the list when needed.
1174  *
1175  * Note that the list of addresses passed in is only used for setting up
1176  * the association.  It does not necessarily equal the set of addresses
1177  * the peer uses for the resulting association.  If the caller wants to
1178  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1179  * retrieve them after the association has been set up.
1180  *
1181  * Basically do nothing but copying the addresses from user to kernel
1182  * land and invoking either sctp_connectx(). This is used for tunneling
1183  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1184  *
1185  * We don't use copy_from_user() for optimization: we first do the
1186  * sanity checks (buffer size -fast- and access check-healthy
1187  * pointer); if all of those succeed, then we can alloc the memory
1188  * (expensive operation) needed to copy the data to kernel. Then we do
1189  * the copying without checking the user space area
1190  * (__copy_from_user()).
1191  *
1192  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1193  * it.
1194  *
1195  * sk        The sk of the socket
1196  * addrs     The pointer to the addresses in user land
1197  * addrssize Size of the addrs buffer
1198  *
1199  * Returns >=0 if ok, <0 errno code on error.
1200  */
1201 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk,
1202 				      struct sockaddr __user *addrs,
1203 				      int addrs_size,
1204 				      sctp_assoc_t *assoc_id)
1205 {
1206 	int err = 0;
1207 	struct sockaddr *kaddrs;
1208 
1209 	SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1210 			  __func__, sk, addrs, addrs_size);
1211 
1212 	if (unlikely(addrs_size <= 0))
1213 		return -EINVAL;
1214 
1215 	/* Check the user passed a healthy pointer.  */
1216 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1217 		return -EFAULT;
1218 
1219 	/* Alloc space for the address array in kernel memory.  */
1220 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1221 	if (unlikely(!kaddrs))
1222 		return -ENOMEM;
1223 
1224 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1225 		err = -EFAULT;
1226 	} else {
1227 		err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1228 	}
1229 
1230 	kfree(kaddrs);
1231 
1232 	return err;
1233 }
1234 
1235 /*
1236  * This is an older interface.  It's kept for backward compatibility
1237  * to the option that doesn't provide association id.
1238  */
1239 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk,
1240 				      struct sockaddr __user *addrs,
1241 				      int addrs_size)
1242 {
1243 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1244 }
1245 
1246 /*
1247  * New interface for the API.  The since the API is done with a socket
1248  * option, to make it simple we feed back the association id is as a return
1249  * indication to the call.  Error is always negative and association id is
1250  * always positive.
1251  */
1252 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1253 				      struct sockaddr __user *addrs,
1254 				      int addrs_size)
1255 {
1256 	sctp_assoc_t assoc_id = 0;
1257 	int err = 0;
1258 
1259 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1260 
1261 	if (err)
1262 		return err;
1263 	else
1264 		return assoc_id;
1265 }
1266 
1267 /* API 3.1.4 close() - UDP Style Syntax
1268  * Applications use close() to perform graceful shutdown (as described in
1269  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1270  * by a UDP-style socket.
1271  *
1272  * The syntax is
1273  *
1274  *   ret = close(int sd);
1275  *
1276  *   sd      - the socket descriptor of the associations to be closed.
1277  *
1278  * To gracefully shutdown a specific association represented by the
1279  * UDP-style socket, an application should use the sendmsg() call,
1280  * passing no user data, but including the appropriate flag in the
1281  * ancillary data (see Section xxxx).
1282  *
1283  * If sd in the close() call is a branched-off socket representing only
1284  * one association, the shutdown is performed on that association only.
1285  *
1286  * 4.1.6 close() - TCP Style Syntax
1287  *
1288  * Applications use close() to gracefully close down an association.
1289  *
1290  * The syntax is:
1291  *
1292  *    int close(int sd);
1293  *
1294  *      sd      - the socket descriptor of the association to be closed.
1295  *
1296  * After an application calls close() on a socket descriptor, no further
1297  * socket operations will succeed on that descriptor.
1298  *
1299  * API 7.1.4 SO_LINGER
1300  *
1301  * An application using the TCP-style socket can use this option to
1302  * perform the SCTP ABORT primitive.  The linger option structure is:
1303  *
1304  *  struct  linger {
1305  *     int     l_onoff;                // option on/off
1306  *     int     l_linger;               // linger time
1307  * };
1308  *
1309  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1310  * to 0, calling close() is the same as the ABORT primitive.  If the
1311  * value is set to a negative value, the setsockopt() call will return
1312  * an error.  If the value is set to a positive value linger_time, the
1313  * close() can be blocked for at most linger_time ms.  If the graceful
1314  * shutdown phase does not finish during this period, close() will
1315  * return but the graceful shutdown phase continues in the system.
1316  */
1317 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1318 {
1319 	struct sctp_endpoint *ep;
1320 	struct sctp_association *asoc;
1321 	struct list_head *pos, *temp;
1322 
1323 	SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1324 
1325 	sctp_lock_sock(sk);
1326 	sk->sk_shutdown = SHUTDOWN_MASK;
1327 
1328 	ep = sctp_sk(sk)->ep;
1329 
1330 	/* Walk all associations on an endpoint.  */
1331 	list_for_each_safe(pos, temp, &ep->asocs) {
1332 		asoc = list_entry(pos, struct sctp_association, asocs);
1333 
1334 		if (sctp_style(sk, TCP)) {
1335 			/* A closed association can still be in the list if
1336 			 * it belongs to a TCP-style listening socket that is
1337 			 * not yet accepted. If so, free it. If not, send an
1338 			 * ABORT or SHUTDOWN based on the linger options.
1339 			 */
1340 			if (sctp_state(asoc, CLOSED)) {
1341 				sctp_unhash_established(asoc);
1342 				sctp_association_free(asoc);
1343 				continue;
1344 			}
1345 		}
1346 
1347 		if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1348 			struct sctp_chunk *chunk;
1349 
1350 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1351 			if (chunk)
1352 				sctp_primitive_ABORT(asoc, chunk);
1353 		} else
1354 			sctp_primitive_SHUTDOWN(asoc, NULL);
1355 	}
1356 
1357 	/* Clean up any skbs sitting on the receive queue.  */
1358 	sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1359 	sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1360 
1361 	/* On a TCP-style socket, block for at most linger_time if set. */
1362 	if (sctp_style(sk, TCP) && timeout)
1363 		sctp_wait_for_close(sk, timeout);
1364 
1365 	/* This will run the backlog queue.  */
1366 	sctp_release_sock(sk);
1367 
1368 	/* Supposedly, no process has access to the socket, but
1369 	 * the net layers still may.
1370 	 */
1371 	sctp_local_bh_disable();
1372 	sctp_bh_lock_sock(sk);
1373 
1374 	/* Hold the sock, since sk_common_release() will put sock_put()
1375 	 * and we have just a little more cleanup.
1376 	 */
1377 	sock_hold(sk);
1378 	sk_common_release(sk);
1379 
1380 	sctp_bh_unlock_sock(sk);
1381 	sctp_local_bh_enable();
1382 
1383 	sock_put(sk);
1384 
1385 	SCTP_DBG_OBJCNT_DEC(sock);
1386 }
1387 
1388 /* Handle EPIPE error. */
1389 static int sctp_error(struct sock *sk, int flags, int err)
1390 {
1391 	if (err == -EPIPE)
1392 		err = sock_error(sk) ? : -EPIPE;
1393 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1394 		send_sig(SIGPIPE, current, 0);
1395 	return err;
1396 }
1397 
1398 /* API 3.1.3 sendmsg() - UDP Style Syntax
1399  *
1400  * An application uses sendmsg() and recvmsg() calls to transmit data to
1401  * and receive data from its peer.
1402  *
1403  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1404  *                  int flags);
1405  *
1406  *  socket  - the socket descriptor of the endpoint.
1407  *  message - pointer to the msghdr structure which contains a single
1408  *            user message and possibly some ancillary data.
1409  *
1410  *            See Section 5 for complete description of the data
1411  *            structures.
1412  *
1413  *  flags   - flags sent or received with the user message, see Section
1414  *            5 for complete description of the flags.
1415  *
1416  * Note:  This function could use a rewrite especially when explicit
1417  * connect support comes in.
1418  */
1419 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1420 
1421 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1422 
1423 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1424 			     struct msghdr *msg, size_t msg_len)
1425 {
1426 	struct sctp_sock *sp;
1427 	struct sctp_endpoint *ep;
1428 	struct sctp_association *new_asoc=NULL, *asoc=NULL;
1429 	struct sctp_transport *transport, *chunk_tp;
1430 	struct sctp_chunk *chunk;
1431 	union sctp_addr to;
1432 	struct sockaddr *msg_name = NULL;
1433 	struct sctp_sndrcvinfo default_sinfo = { 0 };
1434 	struct sctp_sndrcvinfo *sinfo;
1435 	struct sctp_initmsg *sinit;
1436 	sctp_assoc_t associd = 0;
1437 	sctp_cmsgs_t cmsgs = { NULL };
1438 	int err;
1439 	sctp_scope_t scope;
1440 	long timeo;
1441 	__u16 sinfo_flags = 0;
1442 	struct sctp_datamsg *datamsg;
1443 	int msg_flags = msg->msg_flags;
1444 
1445 	SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1446 			  sk, msg, msg_len);
1447 
1448 	err = 0;
1449 	sp = sctp_sk(sk);
1450 	ep = sp->ep;
1451 
1452 	SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1453 
1454 	/* We cannot send a message over a TCP-style listening socket. */
1455 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1456 		err = -EPIPE;
1457 		goto out_nounlock;
1458 	}
1459 
1460 	/* Parse out the SCTP CMSGs.  */
1461 	err = sctp_msghdr_parse(msg, &cmsgs);
1462 
1463 	if (err) {
1464 		SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1465 		goto out_nounlock;
1466 	}
1467 
1468 	/* Fetch the destination address for this packet.  This
1469 	 * address only selects the association--it is not necessarily
1470 	 * the address we will send to.
1471 	 * For a peeled-off socket, msg_name is ignored.
1472 	 */
1473 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1474 		int msg_namelen = msg->msg_namelen;
1475 
1476 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1477 				       msg_namelen);
1478 		if (err)
1479 			return err;
1480 
1481 		if (msg_namelen > sizeof(to))
1482 			msg_namelen = sizeof(to);
1483 		memcpy(&to, msg->msg_name, msg_namelen);
1484 		msg_name = msg->msg_name;
1485 	}
1486 
1487 	sinfo = cmsgs.info;
1488 	sinit = cmsgs.init;
1489 
1490 	/* Did the user specify SNDRCVINFO?  */
1491 	if (sinfo) {
1492 		sinfo_flags = sinfo->sinfo_flags;
1493 		associd = sinfo->sinfo_assoc_id;
1494 	}
1495 
1496 	SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1497 			  msg_len, sinfo_flags);
1498 
1499 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1500 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1501 		err = -EINVAL;
1502 		goto out_nounlock;
1503 	}
1504 
1505 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1506 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1507 	 * If SCTP_ABORT is set, the message length could be non zero with
1508 	 * the msg_iov set to the user abort reason.
1509 	 */
1510 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1511 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1512 		err = -EINVAL;
1513 		goto out_nounlock;
1514 	}
1515 
1516 	/* If SCTP_ADDR_OVER is set, there must be an address
1517 	 * specified in msg_name.
1518 	 */
1519 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1520 		err = -EINVAL;
1521 		goto out_nounlock;
1522 	}
1523 
1524 	transport = NULL;
1525 
1526 	SCTP_DEBUG_PRINTK("About to look up association.\n");
1527 
1528 	sctp_lock_sock(sk);
1529 
1530 	/* If a msg_name has been specified, assume this is to be used.  */
1531 	if (msg_name) {
1532 		/* Look for a matching association on the endpoint. */
1533 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1534 		if (!asoc) {
1535 			/* If we could not find a matching association on the
1536 			 * endpoint, make sure that it is not a TCP-style
1537 			 * socket that already has an association or there is
1538 			 * no peeled-off association on another socket.
1539 			 */
1540 			if ((sctp_style(sk, TCP) &&
1541 			     sctp_sstate(sk, ESTABLISHED)) ||
1542 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1543 				err = -EADDRNOTAVAIL;
1544 				goto out_unlock;
1545 			}
1546 		}
1547 	} else {
1548 		asoc = sctp_id2assoc(sk, associd);
1549 		if (!asoc) {
1550 			err = -EPIPE;
1551 			goto out_unlock;
1552 		}
1553 	}
1554 
1555 	if (asoc) {
1556 		SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1557 
1558 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1559 		 * socket that has an association in CLOSED state. This can
1560 		 * happen when an accepted socket has an association that is
1561 		 * already CLOSED.
1562 		 */
1563 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1564 			err = -EPIPE;
1565 			goto out_unlock;
1566 		}
1567 
1568 		if (sinfo_flags & SCTP_EOF) {
1569 			SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1570 					  asoc);
1571 			sctp_primitive_SHUTDOWN(asoc, NULL);
1572 			err = 0;
1573 			goto out_unlock;
1574 		}
1575 		if (sinfo_flags & SCTP_ABORT) {
1576 
1577 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1578 			if (!chunk) {
1579 				err = -ENOMEM;
1580 				goto out_unlock;
1581 			}
1582 
1583 			SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1584 			sctp_primitive_ABORT(asoc, chunk);
1585 			err = 0;
1586 			goto out_unlock;
1587 		}
1588 	}
1589 
1590 	/* Do we need to create the association?  */
1591 	if (!asoc) {
1592 		SCTP_DEBUG_PRINTK("There is no association yet.\n");
1593 
1594 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1595 			err = -EINVAL;
1596 			goto out_unlock;
1597 		}
1598 
1599 		/* Check for invalid stream against the stream counts,
1600 		 * either the default or the user specified stream counts.
1601 		 */
1602 		if (sinfo) {
1603 			if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1604 				/* Check against the defaults. */
1605 				if (sinfo->sinfo_stream >=
1606 				    sp->initmsg.sinit_num_ostreams) {
1607 					err = -EINVAL;
1608 					goto out_unlock;
1609 				}
1610 			} else {
1611 				/* Check against the requested.  */
1612 				if (sinfo->sinfo_stream >=
1613 				    sinit->sinit_num_ostreams) {
1614 					err = -EINVAL;
1615 					goto out_unlock;
1616 				}
1617 			}
1618 		}
1619 
1620 		/*
1621 		 * API 3.1.2 bind() - UDP Style Syntax
1622 		 * If a bind() or sctp_bindx() is not called prior to a
1623 		 * sendmsg() call that initiates a new association, the
1624 		 * system picks an ephemeral port and will choose an address
1625 		 * set equivalent to binding with a wildcard address.
1626 		 */
1627 		if (!ep->base.bind_addr.port) {
1628 			if (sctp_autobind(sk)) {
1629 				err = -EAGAIN;
1630 				goto out_unlock;
1631 			}
1632 		} else {
1633 			/*
1634 			 * If an unprivileged user inherits a one-to-many
1635 			 * style socket with open associations on a privileged
1636 			 * port, it MAY be permitted to accept new associations,
1637 			 * but it SHOULD NOT be permitted to open new
1638 			 * associations.
1639 			 */
1640 			if (ep->base.bind_addr.port < PROT_SOCK &&
1641 			    !capable(CAP_NET_BIND_SERVICE)) {
1642 				err = -EACCES;
1643 				goto out_unlock;
1644 			}
1645 		}
1646 
1647 		scope = sctp_scope(&to);
1648 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1649 		if (!new_asoc) {
1650 			err = -ENOMEM;
1651 			goto out_unlock;
1652 		}
1653 		asoc = new_asoc;
1654 
1655 		/* If the SCTP_INIT ancillary data is specified, set all
1656 		 * the association init values accordingly.
1657 		 */
1658 		if (sinit) {
1659 			if (sinit->sinit_num_ostreams) {
1660 				asoc->c.sinit_num_ostreams =
1661 					sinit->sinit_num_ostreams;
1662 			}
1663 			if (sinit->sinit_max_instreams) {
1664 				asoc->c.sinit_max_instreams =
1665 					sinit->sinit_max_instreams;
1666 			}
1667 			if (sinit->sinit_max_attempts) {
1668 				asoc->max_init_attempts
1669 					= sinit->sinit_max_attempts;
1670 			}
1671 			if (sinit->sinit_max_init_timeo) {
1672 				asoc->max_init_timeo =
1673 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1674 			}
1675 		}
1676 
1677 		/* Prime the peer's transport structures.  */
1678 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1679 		if (!transport) {
1680 			err = -ENOMEM;
1681 			goto out_free;
1682 		}
1683 		err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1684 		if (err < 0) {
1685 			err = -ENOMEM;
1686 			goto out_free;
1687 		}
1688 	}
1689 
1690 	/* ASSERT: we have a valid association at this point.  */
1691 	SCTP_DEBUG_PRINTK("We have a valid association.\n");
1692 
1693 	if (!sinfo) {
1694 		/* If the user didn't specify SNDRCVINFO, make up one with
1695 		 * some defaults.
1696 		 */
1697 		default_sinfo.sinfo_stream = asoc->default_stream;
1698 		default_sinfo.sinfo_flags = asoc->default_flags;
1699 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1700 		default_sinfo.sinfo_context = asoc->default_context;
1701 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1702 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1703 		sinfo = &default_sinfo;
1704 	}
1705 
1706 	/* API 7.1.7, the sndbuf size per association bounds the
1707 	 * maximum size of data that can be sent in a single send call.
1708 	 */
1709 	if (msg_len > sk->sk_sndbuf) {
1710 		err = -EMSGSIZE;
1711 		goto out_free;
1712 	}
1713 
1714 	if (asoc->pmtu_pending)
1715 		sctp_assoc_pending_pmtu(asoc);
1716 
1717 	/* If fragmentation is disabled and the message length exceeds the
1718 	 * association fragmentation point, return EMSGSIZE.  The I-D
1719 	 * does not specify what this error is, but this looks like
1720 	 * a great fit.
1721 	 */
1722 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1723 		err = -EMSGSIZE;
1724 		goto out_free;
1725 	}
1726 
1727 	if (sinfo) {
1728 		/* Check for invalid stream. */
1729 		if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1730 			err = -EINVAL;
1731 			goto out_free;
1732 		}
1733 	}
1734 
1735 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1736 	if (!sctp_wspace(asoc)) {
1737 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1738 		if (err)
1739 			goto out_free;
1740 	}
1741 
1742 	/* If an address is passed with the sendto/sendmsg call, it is used
1743 	 * to override the primary destination address in the TCP model, or
1744 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1745 	 */
1746 	if ((sctp_style(sk, TCP) && msg_name) ||
1747 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1748 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1749 		if (!chunk_tp) {
1750 			err = -EINVAL;
1751 			goto out_free;
1752 		}
1753 	} else
1754 		chunk_tp = NULL;
1755 
1756 	/* Auto-connect, if we aren't connected already. */
1757 	if (sctp_state(asoc, CLOSED)) {
1758 		err = sctp_primitive_ASSOCIATE(asoc, NULL);
1759 		if (err < 0)
1760 			goto out_free;
1761 		SCTP_DEBUG_PRINTK("We associated primitively.\n");
1762 	}
1763 
1764 	/* Break the message into multiple chunks of maximum size. */
1765 	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1766 	if (!datamsg) {
1767 		err = -ENOMEM;
1768 		goto out_free;
1769 	}
1770 
1771 	/* Now send the (possibly) fragmented message. */
1772 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1773 		sctp_chunk_hold(chunk);
1774 
1775 		/* Do accounting for the write space.  */
1776 		sctp_set_owner_w(chunk);
1777 
1778 		chunk->transport = chunk_tp;
1779 
1780 		/* Send it to the lower layers.  Note:  all chunks
1781 		 * must either fail or succeed.   The lower layer
1782 		 * works that way today.  Keep it that way or this
1783 		 * breaks.
1784 		 */
1785 		err = sctp_primitive_SEND(asoc, chunk);
1786 		/* Did the lower layer accept the chunk? */
1787 		if (err)
1788 			sctp_chunk_free(chunk);
1789 		SCTP_DEBUG_PRINTK("We sent primitively.\n");
1790 	}
1791 
1792 	sctp_datamsg_put(datamsg);
1793 	if (err)
1794 		goto out_free;
1795 	else
1796 		err = msg_len;
1797 
1798 	/* If we are already past ASSOCIATE, the lower
1799 	 * layers are responsible for association cleanup.
1800 	 */
1801 	goto out_unlock;
1802 
1803 out_free:
1804 	if (new_asoc)
1805 		sctp_association_free(asoc);
1806 out_unlock:
1807 	sctp_release_sock(sk);
1808 
1809 out_nounlock:
1810 	return sctp_error(sk, msg_flags, err);
1811 
1812 #if 0
1813 do_sock_err:
1814 	if (msg_len)
1815 		err = msg_len;
1816 	else
1817 		err = sock_error(sk);
1818 	goto out;
1819 
1820 do_interrupted:
1821 	if (msg_len)
1822 		err = msg_len;
1823 	goto out;
1824 #endif /* 0 */
1825 }
1826 
1827 /* This is an extended version of skb_pull() that removes the data from the
1828  * start of a skb even when data is spread across the list of skb's in the
1829  * frag_list. len specifies the total amount of data that needs to be removed.
1830  * when 'len' bytes could be removed from the skb, it returns 0.
1831  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
1832  * could not be removed.
1833  */
1834 static int sctp_skb_pull(struct sk_buff *skb, int len)
1835 {
1836 	struct sk_buff *list;
1837 	int skb_len = skb_headlen(skb);
1838 	int rlen;
1839 
1840 	if (len <= skb_len) {
1841 		__skb_pull(skb, len);
1842 		return 0;
1843 	}
1844 	len -= skb_len;
1845 	__skb_pull(skb, skb_len);
1846 
1847 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next) {
1848 		rlen = sctp_skb_pull(list, len);
1849 		skb->len -= (len-rlen);
1850 		skb->data_len -= (len-rlen);
1851 
1852 		if (!rlen)
1853 			return 0;
1854 
1855 		len = rlen;
1856 	}
1857 
1858 	return len;
1859 }
1860 
1861 /* API 3.1.3  recvmsg() - UDP Style Syntax
1862  *
1863  *  ssize_t recvmsg(int socket, struct msghdr *message,
1864  *                    int flags);
1865  *
1866  *  socket  - the socket descriptor of the endpoint.
1867  *  message - pointer to the msghdr structure which contains a single
1868  *            user message and possibly some ancillary data.
1869  *
1870  *            See Section 5 for complete description of the data
1871  *            structures.
1872  *
1873  *  flags   - flags sent or received with the user message, see Section
1874  *            5 for complete description of the flags.
1875  */
1876 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1877 
1878 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1879 			     struct msghdr *msg, size_t len, int noblock,
1880 			     int flags, int *addr_len)
1881 {
1882 	struct sctp_ulpevent *event = NULL;
1883 	struct sctp_sock *sp = sctp_sk(sk);
1884 	struct sk_buff *skb;
1885 	int copied;
1886 	int err = 0;
1887 	int skb_len;
1888 
1889 	SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1890 			  "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1891 			  "len", len, "knoblauch", noblock,
1892 			  "flags", flags, "addr_len", addr_len);
1893 
1894 	sctp_lock_sock(sk);
1895 
1896 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1897 		err = -ENOTCONN;
1898 		goto out;
1899 	}
1900 
1901 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1902 	if (!skb)
1903 		goto out;
1904 
1905 	/* Get the total length of the skb including any skb's in the
1906 	 * frag_list.
1907 	 */
1908 	skb_len = skb->len;
1909 
1910 	copied = skb_len;
1911 	if (copied > len)
1912 		copied = len;
1913 
1914 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1915 
1916 	event = sctp_skb2event(skb);
1917 
1918 	if (err)
1919 		goto out_free;
1920 
1921 	sock_recv_timestamp(msg, sk, skb);
1922 	if (sctp_ulpevent_is_notification(event)) {
1923 		msg->msg_flags |= MSG_NOTIFICATION;
1924 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
1925 	} else {
1926 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1927 	}
1928 
1929 	/* Check if we allow SCTP_SNDRCVINFO. */
1930 	if (sp->subscribe.sctp_data_io_event)
1931 		sctp_ulpevent_read_sndrcvinfo(event, msg);
1932 #if 0
1933 	/* FIXME: we should be calling IP/IPv6 layers.  */
1934 	if (sk->sk_protinfo.af_inet.cmsg_flags)
1935 		ip_cmsg_recv(msg, skb);
1936 #endif
1937 
1938 	err = copied;
1939 
1940 	/* If skb's length exceeds the user's buffer, update the skb and
1941 	 * push it back to the receive_queue so that the next call to
1942 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
1943 	 */
1944 	if (skb_len > copied) {
1945 		msg->msg_flags &= ~MSG_EOR;
1946 		if (flags & MSG_PEEK)
1947 			goto out_free;
1948 		sctp_skb_pull(skb, copied);
1949 		skb_queue_head(&sk->sk_receive_queue, skb);
1950 
1951 		/* When only partial message is copied to the user, increase
1952 		 * rwnd by that amount. If all the data in the skb is read,
1953 		 * rwnd is updated when the event is freed.
1954 		 */
1955 		if (!sctp_ulpevent_is_notification(event))
1956 			sctp_assoc_rwnd_increase(event->asoc, copied);
1957 		goto out;
1958 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
1959 		   (event->msg_flags & MSG_EOR))
1960 		msg->msg_flags |= MSG_EOR;
1961 	else
1962 		msg->msg_flags &= ~MSG_EOR;
1963 
1964 out_free:
1965 	if (flags & MSG_PEEK) {
1966 		/* Release the skb reference acquired after peeking the skb in
1967 		 * sctp_skb_recv_datagram().
1968 		 */
1969 		kfree_skb(skb);
1970 	} else {
1971 		/* Free the event which includes releasing the reference to
1972 		 * the owner of the skb, freeing the skb and updating the
1973 		 * rwnd.
1974 		 */
1975 		sctp_ulpevent_free(event);
1976 	}
1977 out:
1978 	sctp_release_sock(sk);
1979 	return err;
1980 }
1981 
1982 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
1983  *
1984  * This option is a on/off flag.  If enabled no SCTP message
1985  * fragmentation will be performed.  Instead if a message being sent
1986  * exceeds the current PMTU size, the message will NOT be sent and
1987  * instead a error will be indicated to the user.
1988  */
1989 static int sctp_setsockopt_disable_fragments(struct sock *sk,
1990 					    char __user *optval, int optlen)
1991 {
1992 	int val;
1993 
1994 	if (optlen < sizeof(int))
1995 		return -EINVAL;
1996 
1997 	if (get_user(val, (int __user *)optval))
1998 		return -EFAULT;
1999 
2000 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2001 
2002 	return 0;
2003 }
2004 
2005 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2006 					int optlen)
2007 {
2008 	if (optlen > sizeof(struct sctp_event_subscribe))
2009 		return -EINVAL;
2010 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2011 		return -EFAULT;
2012 	return 0;
2013 }
2014 
2015 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2016  *
2017  * This socket option is applicable to the UDP-style socket only.  When
2018  * set it will cause associations that are idle for more than the
2019  * specified number of seconds to automatically close.  An association
2020  * being idle is defined an association that has NOT sent or received
2021  * user data.  The special value of '0' indicates that no automatic
2022  * close of any associations should be performed.  The option expects an
2023  * integer defining the number of seconds of idle time before an
2024  * association is closed.
2025  */
2026 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2027 					    int optlen)
2028 {
2029 	struct sctp_sock *sp = sctp_sk(sk);
2030 
2031 	/* Applicable to UDP-style socket only */
2032 	if (sctp_style(sk, TCP))
2033 		return -EOPNOTSUPP;
2034 	if (optlen != sizeof(int))
2035 		return -EINVAL;
2036 	if (copy_from_user(&sp->autoclose, optval, optlen))
2037 		return -EFAULT;
2038 
2039 	return 0;
2040 }
2041 
2042 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2043  *
2044  * Applications can enable or disable heartbeats for any peer address of
2045  * an association, modify an address's heartbeat interval, force a
2046  * heartbeat to be sent immediately, and adjust the address's maximum
2047  * number of retransmissions sent before an address is considered
2048  * unreachable.  The following structure is used to access and modify an
2049  * address's parameters:
2050  *
2051  *  struct sctp_paddrparams {
2052  *     sctp_assoc_t            spp_assoc_id;
2053  *     struct sockaddr_storage spp_address;
2054  *     uint32_t                spp_hbinterval;
2055  *     uint16_t                spp_pathmaxrxt;
2056  *     uint32_t                spp_pathmtu;
2057  *     uint32_t                spp_sackdelay;
2058  *     uint32_t                spp_flags;
2059  * };
2060  *
2061  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2062  *                     application, and identifies the association for
2063  *                     this query.
2064  *   spp_address     - This specifies which address is of interest.
2065  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2066  *                     in milliseconds.  If a  value of zero
2067  *                     is present in this field then no changes are to
2068  *                     be made to this parameter.
2069  *   spp_pathmaxrxt  - This contains the maximum number of
2070  *                     retransmissions before this address shall be
2071  *                     considered unreachable. If a  value of zero
2072  *                     is present in this field then no changes are to
2073  *                     be made to this parameter.
2074  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2075  *                     specified here will be the "fixed" path mtu.
2076  *                     Note that if the spp_address field is empty
2077  *                     then all associations on this address will
2078  *                     have this fixed path mtu set upon them.
2079  *
2080  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2081  *                     the number of milliseconds that sacks will be delayed
2082  *                     for. This value will apply to all addresses of an
2083  *                     association if the spp_address field is empty. Note
2084  *                     also, that if delayed sack is enabled and this
2085  *                     value is set to 0, no change is made to the last
2086  *                     recorded delayed sack timer value.
2087  *
2088  *   spp_flags       - These flags are used to control various features
2089  *                     on an association. The flag field may contain
2090  *                     zero or more of the following options.
2091  *
2092  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2093  *                     specified address. Note that if the address
2094  *                     field is empty all addresses for the association
2095  *                     have heartbeats enabled upon them.
2096  *
2097  *                     SPP_HB_DISABLE - Disable heartbeats on the
2098  *                     speicifed address. Note that if the address
2099  *                     field is empty all addresses for the association
2100  *                     will have their heartbeats disabled. Note also
2101  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2102  *                     mutually exclusive, only one of these two should
2103  *                     be specified. Enabling both fields will have
2104  *                     undetermined results.
2105  *
2106  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2107  *                     to be made immediately.
2108  *
2109  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2110  *                     heartbeat delayis to be set to the value of 0
2111  *                     milliseconds.
2112  *
2113  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2114  *                     discovery upon the specified address. Note that
2115  *                     if the address feild is empty then all addresses
2116  *                     on the association are effected.
2117  *
2118  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2119  *                     discovery upon the specified address. Note that
2120  *                     if the address feild is empty then all addresses
2121  *                     on the association are effected. Not also that
2122  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2123  *                     exclusive. Enabling both will have undetermined
2124  *                     results.
2125  *
2126  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2127  *                     on delayed sack. The time specified in spp_sackdelay
2128  *                     is used to specify the sack delay for this address. Note
2129  *                     that if spp_address is empty then all addresses will
2130  *                     enable delayed sack and take on the sack delay
2131  *                     value specified in spp_sackdelay.
2132  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2133  *                     off delayed sack. If the spp_address field is blank then
2134  *                     delayed sack is disabled for the entire association. Note
2135  *                     also that this field is mutually exclusive to
2136  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2137  *                     results.
2138  */
2139 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2140 				       struct sctp_transport   *trans,
2141 				       struct sctp_association *asoc,
2142 				       struct sctp_sock        *sp,
2143 				       int                      hb_change,
2144 				       int                      pmtud_change,
2145 				       int                      sackdelay_change)
2146 {
2147 	int error;
2148 
2149 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2150 		error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2151 		if (error)
2152 			return error;
2153 	}
2154 
2155 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2156 	 * this field is ignored.  Note also that a value of zero indicates
2157 	 * the current setting should be left unchanged.
2158 	 */
2159 	if (params->spp_flags & SPP_HB_ENABLE) {
2160 
2161 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2162 		 * set.  This lets us use 0 value when this flag
2163 		 * is set.
2164 		 */
2165 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2166 			params->spp_hbinterval = 0;
2167 
2168 		if (params->spp_hbinterval ||
2169 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2170 			if (trans) {
2171 				trans->hbinterval =
2172 				    msecs_to_jiffies(params->spp_hbinterval);
2173 			} else if (asoc) {
2174 				asoc->hbinterval =
2175 				    msecs_to_jiffies(params->spp_hbinterval);
2176 			} else {
2177 				sp->hbinterval = params->spp_hbinterval;
2178 			}
2179 		}
2180 	}
2181 
2182 	if (hb_change) {
2183 		if (trans) {
2184 			trans->param_flags =
2185 				(trans->param_flags & ~SPP_HB) | hb_change;
2186 		} else if (asoc) {
2187 			asoc->param_flags =
2188 				(asoc->param_flags & ~SPP_HB) | hb_change;
2189 		} else {
2190 			sp->param_flags =
2191 				(sp->param_flags & ~SPP_HB) | hb_change;
2192 		}
2193 	}
2194 
2195 	/* When Path MTU discovery is disabled the value specified here will
2196 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2197 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2198 	 * effect).
2199 	 */
2200 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2201 		if (trans) {
2202 			trans->pathmtu = params->spp_pathmtu;
2203 			sctp_assoc_sync_pmtu(asoc);
2204 		} else if (asoc) {
2205 			asoc->pathmtu = params->spp_pathmtu;
2206 			sctp_frag_point(sp, params->spp_pathmtu);
2207 		} else {
2208 			sp->pathmtu = params->spp_pathmtu;
2209 		}
2210 	}
2211 
2212 	if (pmtud_change) {
2213 		if (trans) {
2214 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2215 				(params->spp_flags & SPP_PMTUD_ENABLE);
2216 			trans->param_flags =
2217 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2218 			if (update) {
2219 				sctp_transport_pmtu(trans);
2220 				sctp_assoc_sync_pmtu(asoc);
2221 			}
2222 		} else if (asoc) {
2223 			asoc->param_flags =
2224 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2225 		} else {
2226 			sp->param_flags =
2227 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2228 		}
2229 	}
2230 
2231 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2232 	 * value of this field is ignored.  Note also that a value of zero
2233 	 * indicates the current setting should be left unchanged.
2234 	 */
2235 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2236 		if (trans) {
2237 			trans->sackdelay =
2238 				msecs_to_jiffies(params->spp_sackdelay);
2239 		} else if (asoc) {
2240 			asoc->sackdelay =
2241 				msecs_to_jiffies(params->spp_sackdelay);
2242 		} else {
2243 			sp->sackdelay = params->spp_sackdelay;
2244 		}
2245 	}
2246 
2247 	if (sackdelay_change) {
2248 		if (trans) {
2249 			trans->param_flags =
2250 				(trans->param_flags & ~SPP_SACKDELAY) |
2251 				sackdelay_change;
2252 		} else if (asoc) {
2253 			asoc->param_flags =
2254 				(asoc->param_flags & ~SPP_SACKDELAY) |
2255 				sackdelay_change;
2256 		} else {
2257 			sp->param_flags =
2258 				(sp->param_flags & ~SPP_SACKDELAY) |
2259 				sackdelay_change;
2260 		}
2261 	}
2262 
2263 	/* Note that unless the spp_flag is set to SPP_PMTUD_ENABLE the value
2264 	 * of this field is ignored.  Note also that a value of zero
2265 	 * indicates the current setting should be left unchanged.
2266 	 */
2267 	if ((params->spp_flags & SPP_PMTUD_ENABLE) && params->spp_pathmaxrxt) {
2268 		if (trans) {
2269 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2270 		} else if (asoc) {
2271 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2272 		} else {
2273 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2274 		}
2275 	}
2276 
2277 	return 0;
2278 }
2279 
2280 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2281 					    char __user *optval, int optlen)
2282 {
2283 	struct sctp_paddrparams  params;
2284 	struct sctp_transport   *trans = NULL;
2285 	struct sctp_association *asoc = NULL;
2286 	struct sctp_sock        *sp = sctp_sk(sk);
2287 	int error;
2288 	int hb_change, pmtud_change, sackdelay_change;
2289 
2290 	if (optlen != sizeof(struct sctp_paddrparams))
2291 		return - EINVAL;
2292 
2293 	if (copy_from_user(&params, optval, optlen))
2294 		return -EFAULT;
2295 
2296 	/* Validate flags and value parameters. */
2297 	hb_change        = params.spp_flags & SPP_HB;
2298 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2299 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2300 
2301 	if (hb_change        == SPP_HB ||
2302 	    pmtud_change     == SPP_PMTUD ||
2303 	    sackdelay_change == SPP_SACKDELAY ||
2304 	    params.spp_sackdelay > 500 ||
2305 	    (params.spp_pathmtu
2306 	    && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2307 		return -EINVAL;
2308 
2309 	/* If an address other than INADDR_ANY is specified, and
2310 	 * no transport is found, then the request is invalid.
2311 	 */
2312 	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
2313 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2314 					       params.spp_assoc_id);
2315 		if (!trans)
2316 			return -EINVAL;
2317 	}
2318 
2319 	/* Get association, if assoc_id != 0 and the socket is a one
2320 	 * to many style socket, and an association was not found, then
2321 	 * the id was invalid.
2322 	 */
2323 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2324 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2325 		return -EINVAL;
2326 
2327 	/* Heartbeat demand can only be sent on a transport or
2328 	 * association, but not a socket.
2329 	 */
2330 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2331 		return -EINVAL;
2332 
2333 	/* Process parameters. */
2334 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2335 					    hb_change, pmtud_change,
2336 					    sackdelay_change);
2337 
2338 	if (error)
2339 		return error;
2340 
2341 	/* If changes are for association, also apply parameters to each
2342 	 * transport.
2343 	 */
2344 	if (!trans && asoc) {
2345 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2346 				transports) {
2347 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2348 						    hb_change, pmtud_change,
2349 						    sackdelay_change);
2350 		}
2351 	}
2352 
2353 	return 0;
2354 }
2355 
2356 /*
2357  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2358  *
2359  * This option will effect the way delayed acks are performed.  This
2360  * option allows you to get or set the delayed ack time, in
2361  * milliseconds.  It also allows changing the delayed ack frequency.
2362  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2363  * the assoc_id is 0, then this sets or gets the endpoints default
2364  * values.  If the assoc_id field is non-zero, then the set or get
2365  * effects the specified association for the one to many model (the
2366  * assoc_id field is ignored by the one to one model).  Note that if
2367  * sack_delay or sack_freq are 0 when setting this option, then the
2368  * current values will remain unchanged.
2369  *
2370  * struct sctp_sack_info {
2371  *     sctp_assoc_t            sack_assoc_id;
2372  *     uint32_t                sack_delay;
2373  *     uint32_t                sack_freq;
2374  * };
2375  *
2376  * sack_assoc_id -  This parameter, indicates which association the user
2377  *    is performing an action upon.  Note that if this field's value is
2378  *    zero then the endpoints default value is changed (effecting future
2379  *    associations only).
2380  *
2381  * sack_delay -  This parameter contains the number of milliseconds that
2382  *    the user is requesting the delayed ACK timer be set to.  Note that
2383  *    this value is defined in the standard to be between 200 and 500
2384  *    milliseconds.
2385  *
2386  * sack_freq -  This parameter contains the number of packets that must
2387  *    be received before a sack is sent without waiting for the delay
2388  *    timer to expire.  The default value for this is 2, setting this
2389  *    value to 1 will disable the delayed sack algorithm.
2390  */
2391 
2392 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2393 					    char __user *optval, int optlen)
2394 {
2395 	struct sctp_sack_info    params;
2396 	struct sctp_transport   *trans = NULL;
2397 	struct sctp_association *asoc = NULL;
2398 	struct sctp_sock        *sp = sctp_sk(sk);
2399 
2400 	if (optlen == sizeof(struct sctp_sack_info)) {
2401 		if (copy_from_user(&params, optval, optlen))
2402 			return -EFAULT;
2403 
2404 		if (params.sack_delay == 0 && params.sack_freq == 0)
2405 			return 0;
2406 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2407 		printk(KERN_WARNING "SCTP: Use of struct sctp_sack_info "
2408 		       "in delayed_ack socket option deprecated\n");
2409 		printk(KERN_WARNING "SCTP: struct sctp_sack_info instead\n");
2410 		if (copy_from_user(&params, optval, optlen))
2411 			return -EFAULT;
2412 
2413 		if (params.sack_delay == 0)
2414 			params.sack_freq = 1;
2415 		else
2416 			params.sack_freq = 0;
2417 	} else
2418 		return - EINVAL;
2419 
2420 	/* Validate value parameter. */
2421 	if (params.sack_delay > 500)
2422 		return -EINVAL;
2423 
2424 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2425 	 * to many style socket, and an association was not found, then
2426 	 * the id was invalid.
2427 	 */
2428 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2429 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2430 		return -EINVAL;
2431 
2432 	if (params.sack_delay) {
2433 		if (asoc) {
2434 			asoc->sackdelay =
2435 				msecs_to_jiffies(params.sack_delay);
2436 			asoc->param_flags =
2437 				(asoc->param_flags & ~SPP_SACKDELAY) |
2438 				SPP_SACKDELAY_ENABLE;
2439 		} else {
2440 			sp->sackdelay = params.sack_delay;
2441 			sp->param_flags =
2442 				(sp->param_flags & ~SPP_SACKDELAY) |
2443 				SPP_SACKDELAY_ENABLE;
2444 		}
2445 	}
2446 
2447 	if (params.sack_freq == 1) {
2448 		if (asoc) {
2449 			asoc->param_flags =
2450 				(asoc->param_flags & ~SPP_SACKDELAY) |
2451 				SPP_SACKDELAY_DISABLE;
2452 		} else {
2453 			sp->param_flags =
2454 				(sp->param_flags & ~SPP_SACKDELAY) |
2455 				SPP_SACKDELAY_DISABLE;
2456 		}
2457 	} else if (params.sack_freq > 1) {
2458 		if (asoc) {
2459 			asoc->sackfreq = params.sack_freq;
2460 			asoc->param_flags =
2461 				(asoc->param_flags & ~SPP_SACKDELAY) |
2462 				SPP_SACKDELAY_ENABLE;
2463 		} else {
2464 			sp->sackfreq = params.sack_freq;
2465 			sp->param_flags =
2466 				(sp->param_flags & ~SPP_SACKDELAY) |
2467 				SPP_SACKDELAY_ENABLE;
2468 		}
2469 	}
2470 
2471 	/* If change is for association, also apply to each transport. */
2472 	if (asoc) {
2473 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2474 				transports) {
2475 			if (params.sack_delay) {
2476 				trans->sackdelay =
2477 					msecs_to_jiffies(params.sack_delay);
2478 				trans->param_flags =
2479 					(trans->param_flags & ~SPP_SACKDELAY) |
2480 					SPP_SACKDELAY_ENABLE;
2481 			}
2482 			if (params.sack_freq == 1) {
2483 				trans->param_flags =
2484 					(trans->param_flags & ~SPP_SACKDELAY) |
2485 					SPP_SACKDELAY_DISABLE;
2486 			} else if (params.sack_freq > 1) {
2487 				trans->sackfreq = params.sack_freq;
2488 				trans->param_flags =
2489 					(trans->param_flags & ~SPP_SACKDELAY) |
2490 					SPP_SACKDELAY_ENABLE;
2491 			}
2492 		}
2493 	}
2494 
2495 	return 0;
2496 }
2497 
2498 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2499  *
2500  * Applications can specify protocol parameters for the default association
2501  * initialization.  The option name argument to setsockopt() and getsockopt()
2502  * is SCTP_INITMSG.
2503  *
2504  * Setting initialization parameters is effective only on an unconnected
2505  * socket (for UDP-style sockets only future associations are effected
2506  * by the change).  With TCP-style sockets, this option is inherited by
2507  * sockets derived from a listener socket.
2508  */
2509 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen)
2510 {
2511 	struct sctp_initmsg sinit;
2512 	struct sctp_sock *sp = sctp_sk(sk);
2513 
2514 	if (optlen != sizeof(struct sctp_initmsg))
2515 		return -EINVAL;
2516 	if (copy_from_user(&sinit, optval, optlen))
2517 		return -EFAULT;
2518 
2519 	if (sinit.sinit_num_ostreams)
2520 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2521 	if (sinit.sinit_max_instreams)
2522 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2523 	if (sinit.sinit_max_attempts)
2524 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2525 	if (sinit.sinit_max_init_timeo)
2526 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2527 
2528 	return 0;
2529 }
2530 
2531 /*
2532  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2533  *
2534  *   Applications that wish to use the sendto() system call may wish to
2535  *   specify a default set of parameters that would normally be supplied
2536  *   through the inclusion of ancillary data.  This socket option allows
2537  *   such an application to set the default sctp_sndrcvinfo structure.
2538  *   The application that wishes to use this socket option simply passes
2539  *   in to this call the sctp_sndrcvinfo structure defined in Section
2540  *   5.2.2) The input parameters accepted by this call include
2541  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2542  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2543  *   to this call if the caller is using the UDP model.
2544  */
2545 static int sctp_setsockopt_default_send_param(struct sock *sk,
2546 						char __user *optval, int optlen)
2547 {
2548 	struct sctp_sndrcvinfo info;
2549 	struct sctp_association *asoc;
2550 	struct sctp_sock *sp = sctp_sk(sk);
2551 
2552 	if (optlen != sizeof(struct sctp_sndrcvinfo))
2553 		return -EINVAL;
2554 	if (copy_from_user(&info, optval, optlen))
2555 		return -EFAULT;
2556 
2557 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2558 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2559 		return -EINVAL;
2560 
2561 	if (asoc) {
2562 		asoc->default_stream = info.sinfo_stream;
2563 		asoc->default_flags = info.sinfo_flags;
2564 		asoc->default_ppid = info.sinfo_ppid;
2565 		asoc->default_context = info.sinfo_context;
2566 		asoc->default_timetolive = info.sinfo_timetolive;
2567 	} else {
2568 		sp->default_stream = info.sinfo_stream;
2569 		sp->default_flags = info.sinfo_flags;
2570 		sp->default_ppid = info.sinfo_ppid;
2571 		sp->default_context = info.sinfo_context;
2572 		sp->default_timetolive = info.sinfo_timetolive;
2573 	}
2574 
2575 	return 0;
2576 }
2577 
2578 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2579  *
2580  * Requests that the local SCTP stack use the enclosed peer address as
2581  * the association primary.  The enclosed address must be one of the
2582  * association peer's addresses.
2583  */
2584 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2585 					int optlen)
2586 {
2587 	struct sctp_prim prim;
2588 	struct sctp_transport *trans;
2589 
2590 	if (optlen != sizeof(struct sctp_prim))
2591 		return -EINVAL;
2592 
2593 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2594 		return -EFAULT;
2595 
2596 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2597 	if (!trans)
2598 		return -EINVAL;
2599 
2600 	sctp_assoc_set_primary(trans->asoc, trans);
2601 
2602 	return 0;
2603 }
2604 
2605 /*
2606  * 7.1.5 SCTP_NODELAY
2607  *
2608  * Turn on/off any Nagle-like algorithm.  This means that packets are
2609  * generally sent as soon as possible and no unnecessary delays are
2610  * introduced, at the cost of more packets in the network.  Expects an
2611  *  integer boolean flag.
2612  */
2613 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2614 					int optlen)
2615 {
2616 	int val;
2617 
2618 	if (optlen < sizeof(int))
2619 		return -EINVAL;
2620 	if (get_user(val, (int __user *)optval))
2621 		return -EFAULT;
2622 
2623 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2624 	return 0;
2625 }
2626 
2627 /*
2628  *
2629  * 7.1.1 SCTP_RTOINFO
2630  *
2631  * The protocol parameters used to initialize and bound retransmission
2632  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2633  * and modify these parameters.
2634  * All parameters are time values, in milliseconds.  A value of 0, when
2635  * modifying the parameters, indicates that the current value should not
2636  * be changed.
2637  *
2638  */
2639 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) {
2640 	struct sctp_rtoinfo rtoinfo;
2641 	struct sctp_association *asoc;
2642 
2643 	if (optlen != sizeof (struct sctp_rtoinfo))
2644 		return -EINVAL;
2645 
2646 	if (copy_from_user(&rtoinfo, optval, optlen))
2647 		return -EFAULT;
2648 
2649 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2650 
2651 	/* Set the values to the specific association */
2652 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2653 		return -EINVAL;
2654 
2655 	if (asoc) {
2656 		if (rtoinfo.srto_initial != 0)
2657 			asoc->rto_initial =
2658 				msecs_to_jiffies(rtoinfo.srto_initial);
2659 		if (rtoinfo.srto_max != 0)
2660 			asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2661 		if (rtoinfo.srto_min != 0)
2662 			asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2663 	} else {
2664 		/* If there is no association or the association-id = 0
2665 		 * set the values to the endpoint.
2666 		 */
2667 		struct sctp_sock *sp = sctp_sk(sk);
2668 
2669 		if (rtoinfo.srto_initial != 0)
2670 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2671 		if (rtoinfo.srto_max != 0)
2672 			sp->rtoinfo.srto_max = rtoinfo.srto_max;
2673 		if (rtoinfo.srto_min != 0)
2674 			sp->rtoinfo.srto_min = rtoinfo.srto_min;
2675 	}
2676 
2677 	return 0;
2678 }
2679 
2680 /*
2681  *
2682  * 7.1.2 SCTP_ASSOCINFO
2683  *
2684  * This option is used to tune the maximum retransmission attempts
2685  * of the association.
2686  * Returns an error if the new association retransmission value is
2687  * greater than the sum of the retransmission value  of the peer.
2688  * See [SCTP] for more information.
2689  *
2690  */
2691 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen)
2692 {
2693 
2694 	struct sctp_assocparams assocparams;
2695 	struct sctp_association *asoc;
2696 
2697 	if (optlen != sizeof(struct sctp_assocparams))
2698 		return -EINVAL;
2699 	if (copy_from_user(&assocparams, optval, optlen))
2700 		return -EFAULT;
2701 
2702 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2703 
2704 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2705 		return -EINVAL;
2706 
2707 	/* Set the values to the specific association */
2708 	if (asoc) {
2709 		if (assocparams.sasoc_asocmaxrxt != 0) {
2710 			__u32 path_sum = 0;
2711 			int   paths = 0;
2712 			struct sctp_transport *peer_addr;
2713 
2714 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2715 					transports) {
2716 				path_sum += peer_addr->pathmaxrxt;
2717 				paths++;
2718 			}
2719 
2720 			/* Only validate asocmaxrxt if we have more then
2721 			 * one path/transport.  We do this because path
2722 			 * retransmissions are only counted when we have more
2723 			 * then one path.
2724 			 */
2725 			if (paths > 1 &&
2726 			    assocparams.sasoc_asocmaxrxt > path_sum)
2727 				return -EINVAL;
2728 
2729 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2730 		}
2731 
2732 		if (assocparams.sasoc_cookie_life != 0) {
2733 			asoc->cookie_life.tv_sec =
2734 					assocparams.sasoc_cookie_life / 1000;
2735 			asoc->cookie_life.tv_usec =
2736 					(assocparams.sasoc_cookie_life % 1000)
2737 					* 1000;
2738 		}
2739 	} else {
2740 		/* Set the values to the endpoint */
2741 		struct sctp_sock *sp = sctp_sk(sk);
2742 
2743 		if (assocparams.sasoc_asocmaxrxt != 0)
2744 			sp->assocparams.sasoc_asocmaxrxt =
2745 						assocparams.sasoc_asocmaxrxt;
2746 		if (assocparams.sasoc_cookie_life != 0)
2747 			sp->assocparams.sasoc_cookie_life =
2748 						assocparams.sasoc_cookie_life;
2749 	}
2750 	return 0;
2751 }
2752 
2753 /*
2754  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2755  *
2756  * This socket option is a boolean flag which turns on or off mapped V4
2757  * addresses.  If this option is turned on and the socket is type
2758  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2759  * If this option is turned off, then no mapping will be done of V4
2760  * addresses and a user will receive both PF_INET6 and PF_INET type
2761  * addresses on the socket.
2762  */
2763 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen)
2764 {
2765 	int val;
2766 	struct sctp_sock *sp = sctp_sk(sk);
2767 
2768 	if (optlen < sizeof(int))
2769 		return -EINVAL;
2770 	if (get_user(val, (int __user *)optval))
2771 		return -EFAULT;
2772 	if (val)
2773 		sp->v4mapped = 1;
2774 	else
2775 		sp->v4mapped = 0;
2776 
2777 	return 0;
2778 }
2779 
2780 /*
2781  * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
2782  *
2783  * This socket option specifies the maximum size to put in any outgoing
2784  * SCTP chunk.  If a message is larger than this size it will be
2785  * fragmented by SCTP into the specified size.  Note that the underlying
2786  * SCTP implementation may fragment into smaller sized chunks when the
2787  * PMTU of the underlying association is smaller than the value set by
2788  * the user.
2789  */
2790 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen)
2791 {
2792 	struct sctp_association *asoc;
2793 	struct sctp_sock *sp = sctp_sk(sk);
2794 	int val;
2795 
2796 	if (optlen < sizeof(int))
2797 		return -EINVAL;
2798 	if (get_user(val, (int __user *)optval))
2799 		return -EFAULT;
2800 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2801 		return -EINVAL;
2802 	sp->user_frag = val;
2803 
2804 	/* Update the frag_point of the existing associations. */
2805 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
2806 		asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu);
2807 	}
2808 
2809 	return 0;
2810 }
2811 
2812 
2813 /*
2814  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2815  *
2816  *   Requests that the peer mark the enclosed address as the association
2817  *   primary. The enclosed address must be one of the association's
2818  *   locally bound addresses. The following structure is used to make a
2819  *   set primary request:
2820  */
2821 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2822 					     int optlen)
2823 {
2824 	struct sctp_sock	*sp;
2825 	struct sctp_endpoint	*ep;
2826 	struct sctp_association	*asoc = NULL;
2827 	struct sctp_setpeerprim	prim;
2828 	struct sctp_chunk	*chunk;
2829 	int 			err;
2830 
2831 	sp = sctp_sk(sk);
2832 	ep = sp->ep;
2833 
2834 	if (!sctp_addip_enable)
2835 		return -EPERM;
2836 
2837 	if (optlen != sizeof(struct sctp_setpeerprim))
2838 		return -EINVAL;
2839 
2840 	if (copy_from_user(&prim, optval, optlen))
2841 		return -EFAULT;
2842 
2843 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2844 	if (!asoc)
2845 		return -EINVAL;
2846 
2847 	if (!asoc->peer.asconf_capable)
2848 		return -EPERM;
2849 
2850 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2851 		return -EPERM;
2852 
2853 	if (!sctp_state(asoc, ESTABLISHED))
2854 		return -ENOTCONN;
2855 
2856 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2857 		return -EADDRNOTAVAIL;
2858 
2859 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
2860 	chunk = sctp_make_asconf_set_prim(asoc,
2861 					  (union sctp_addr *)&prim.sspp_addr);
2862 	if (!chunk)
2863 		return -ENOMEM;
2864 
2865 	err = sctp_send_asconf(asoc, chunk);
2866 
2867 	SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2868 
2869 	return err;
2870 }
2871 
2872 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
2873 					  int optlen)
2874 {
2875 	struct sctp_setadaptation adaptation;
2876 
2877 	if (optlen != sizeof(struct sctp_setadaptation))
2878 		return -EINVAL;
2879 	if (copy_from_user(&adaptation, optval, optlen))
2880 		return -EFAULT;
2881 
2882 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
2883 
2884 	return 0;
2885 }
2886 
2887 /*
2888  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
2889  *
2890  * The context field in the sctp_sndrcvinfo structure is normally only
2891  * used when a failed message is retrieved holding the value that was
2892  * sent down on the actual send call.  This option allows the setting of
2893  * a default context on an association basis that will be received on
2894  * reading messages from the peer.  This is especially helpful in the
2895  * one-2-many model for an application to keep some reference to an
2896  * internal state machine that is processing messages on the
2897  * association.  Note that the setting of this value only effects
2898  * received messages from the peer and does not effect the value that is
2899  * saved with outbound messages.
2900  */
2901 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
2902 				   int optlen)
2903 {
2904 	struct sctp_assoc_value params;
2905 	struct sctp_sock *sp;
2906 	struct sctp_association *asoc;
2907 
2908 	if (optlen != sizeof(struct sctp_assoc_value))
2909 		return -EINVAL;
2910 	if (copy_from_user(&params, optval, optlen))
2911 		return -EFAULT;
2912 
2913 	sp = sctp_sk(sk);
2914 
2915 	if (params.assoc_id != 0) {
2916 		asoc = sctp_id2assoc(sk, params.assoc_id);
2917 		if (!asoc)
2918 			return -EINVAL;
2919 		asoc->default_rcv_context = params.assoc_value;
2920 	} else {
2921 		sp->default_rcv_context = params.assoc_value;
2922 	}
2923 
2924 	return 0;
2925 }
2926 
2927 /*
2928  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
2929  *
2930  * This options will at a minimum specify if the implementation is doing
2931  * fragmented interleave.  Fragmented interleave, for a one to many
2932  * socket, is when subsequent calls to receive a message may return
2933  * parts of messages from different associations.  Some implementations
2934  * may allow you to turn this value on or off.  If so, when turned off,
2935  * no fragment interleave will occur (which will cause a head of line
2936  * blocking amongst multiple associations sharing the same one to many
2937  * socket).  When this option is turned on, then each receive call may
2938  * come from a different association (thus the user must receive data
2939  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
2940  * association each receive belongs to.
2941  *
2942  * This option takes a boolean value.  A non-zero value indicates that
2943  * fragmented interleave is on.  A value of zero indicates that
2944  * fragmented interleave is off.
2945  *
2946  * Note that it is important that an implementation that allows this
2947  * option to be turned on, have it off by default.  Otherwise an unaware
2948  * application using the one to many model may become confused and act
2949  * incorrectly.
2950  */
2951 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
2952 					       char __user *optval,
2953 					       int optlen)
2954 {
2955 	int val;
2956 
2957 	if (optlen != sizeof(int))
2958 		return -EINVAL;
2959 	if (get_user(val, (int __user *)optval))
2960 		return -EFAULT;
2961 
2962 	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
2963 
2964 	return 0;
2965 }
2966 
2967 /*
2968  * 7.1.25.  Set or Get the sctp partial delivery point
2969  *       (SCTP_PARTIAL_DELIVERY_POINT)
2970  * This option will set or get the SCTP partial delivery point.  This
2971  * point is the size of a message where the partial delivery API will be
2972  * invoked to help free up rwnd space for the peer.  Setting this to a
2973  * lower value will cause partial delivery's to happen more often.  The
2974  * calls argument is an integer that sets or gets the partial delivery
2975  * point.
2976  */
2977 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
2978 						  char __user *optval,
2979 						  int optlen)
2980 {
2981 	u32 val;
2982 
2983 	if (optlen != sizeof(u32))
2984 		return -EINVAL;
2985 	if (get_user(val, (int __user *)optval))
2986 		return -EFAULT;
2987 
2988 	sctp_sk(sk)->pd_point = val;
2989 
2990 	return 0; /* is this the right error code? */
2991 }
2992 
2993 /*
2994  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
2995  *
2996  * This option will allow a user to change the maximum burst of packets
2997  * that can be emitted by this association.  Note that the default value
2998  * is 4, and some implementations may restrict this setting so that it
2999  * can only be lowered.
3000  *
3001  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3002  * future associations inheriting the socket value.
3003  */
3004 static int sctp_setsockopt_maxburst(struct sock *sk,
3005 				    char __user *optval,
3006 				    int optlen)
3007 {
3008 	struct sctp_assoc_value params;
3009 	struct sctp_sock *sp;
3010 	struct sctp_association *asoc;
3011 	int val;
3012 	int assoc_id = 0;
3013 
3014 	if (optlen < sizeof(int))
3015 		return -EINVAL;
3016 
3017 	if (optlen == sizeof(int)) {
3018 		printk(KERN_WARNING
3019 		   "SCTP: Use of int in max_burst socket option deprecated\n");
3020 		printk(KERN_WARNING
3021 		   "SCTP: Use struct sctp_assoc_value instead\n");
3022 		if (copy_from_user(&val, optval, optlen))
3023 			return -EFAULT;
3024 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3025 		if (copy_from_user(&params, optval, optlen))
3026 			return -EFAULT;
3027 		val = params.assoc_value;
3028 		assoc_id = params.assoc_id;
3029 	} else
3030 		return -EINVAL;
3031 
3032 	sp = sctp_sk(sk);
3033 
3034 	if (assoc_id != 0) {
3035 		asoc = sctp_id2assoc(sk, assoc_id);
3036 		if (!asoc)
3037 			return -EINVAL;
3038 		asoc->max_burst = val;
3039 	} else
3040 		sp->max_burst = val;
3041 
3042 	return 0;
3043 }
3044 
3045 /*
3046  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3047  *
3048  * This set option adds a chunk type that the user is requesting to be
3049  * received only in an authenticated way.  Changes to the list of chunks
3050  * will only effect future associations on the socket.
3051  */
3052 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3053 				    char __user *optval,
3054 				    int optlen)
3055 {
3056 	struct sctp_authchunk val;
3057 
3058 	if (!sctp_auth_enable)
3059 		return -EACCES;
3060 
3061 	if (optlen != sizeof(struct sctp_authchunk))
3062 		return -EINVAL;
3063 	if (copy_from_user(&val, optval, optlen))
3064 		return -EFAULT;
3065 
3066 	switch (val.sauth_chunk) {
3067 		case SCTP_CID_INIT:
3068 		case SCTP_CID_INIT_ACK:
3069 		case SCTP_CID_SHUTDOWN_COMPLETE:
3070 		case SCTP_CID_AUTH:
3071 			return -EINVAL;
3072 	}
3073 
3074 	/* add this chunk id to the endpoint */
3075 	return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3076 }
3077 
3078 /*
3079  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3080  *
3081  * This option gets or sets the list of HMAC algorithms that the local
3082  * endpoint requires the peer to use.
3083  */
3084 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3085 				    char __user *optval,
3086 				    int optlen)
3087 {
3088 	struct sctp_hmacalgo *hmacs;
3089 	u32 idents;
3090 	int err;
3091 
3092 	if (!sctp_auth_enable)
3093 		return -EACCES;
3094 
3095 	if (optlen < sizeof(struct sctp_hmacalgo))
3096 		return -EINVAL;
3097 
3098 	hmacs = kmalloc(optlen, GFP_KERNEL);
3099 	if (!hmacs)
3100 		return -ENOMEM;
3101 
3102 	if (copy_from_user(hmacs, optval, optlen)) {
3103 		err = -EFAULT;
3104 		goto out;
3105 	}
3106 
3107 	idents = hmacs->shmac_num_idents;
3108 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3109 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3110 		err = -EINVAL;
3111 		goto out;
3112 	}
3113 
3114 	err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3115 out:
3116 	kfree(hmacs);
3117 	return err;
3118 }
3119 
3120 /*
3121  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3122  *
3123  * This option will set a shared secret key which is used to build an
3124  * association shared key.
3125  */
3126 static int sctp_setsockopt_auth_key(struct sock *sk,
3127 				    char __user *optval,
3128 				    int optlen)
3129 {
3130 	struct sctp_authkey *authkey;
3131 	struct sctp_association *asoc;
3132 	int ret;
3133 
3134 	if (!sctp_auth_enable)
3135 		return -EACCES;
3136 
3137 	if (optlen <= sizeof(struct sctp_authkey))
3138 		return -EINVAL;
3139 
3140 	authkey = kmalloc(optlen, GFP_KERNEL);
3141 	if (!authkey)
3142 		return -ENOMEM;
3143 
3144 	if (copy_from_user(authkey, optval, optlen)) {
3145 		ret = -EFAULT;
3146 		goto out;
3147 	}
3148 
3149 	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3150 		ret = -EINVAL;
3151 		goto out;
3152 	}
3153 
3154 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3155 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3156 		ret = -EINVAL;
3157 		goto out;
3158 	}
3159 
3160 	ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3161 out:
3162 	kfree(authkey);
3163 	return ret;
3164 }
3165 
3166 /*
3167  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3168  *
3169  * This option will get or set the active shared key to be used to build
3170  * the association shared key.
3171  */
3172 static int sctp_setsockopt_active_key(struct sock *sk,
3173 					char __user *optval,
3174 					int optlen)
3175 {
3176 	struct sctp_authkeyid val;
3177 	struct sctp_association *asoc;
3178 
3179 	if (!sctp_auth_enable)
3180 		return -EACCES;
3181 
3182 	if (optlen != sizeof(struct sctp_authkeyid))
3183 		return -EINVAL;
3184 	if (copy_from_user(&val, optval, optlen))
3185 		return -EFAULT;
3186 
3187 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3188 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3189 		return -EINVAL;
3190 
3191 	return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3192 					val.scact_keynumber);
3193 }
3194 
3195 /*
3196  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3197  *
3198  * This set option will delete a shared secret key from use.
3199  */
3200 static int sctp_setsockopt_del_key(struct sock *sk,
3201 					char __user *optval,
3202 					int optlen)
3203 {
3204 	struct sctp_authkeyid val;
3205 	struct sctp_association *asoc;
3206 
3207 	if (!sctp_auth_enable)
3208 		return -EACCES;
3209 
3210 	if (optlen != sizeof(struct sctp_authkeyid))
3211 		return -EINVAL;
3212 	if (copy_from_user(&val, optval, optlen))
3213 		return -EFAULT;
3214 
3215 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3216 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3217 		return -EINVAL;
3218 
3219 	return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3220 				    val.scact_keynumber);
3221 
3222 }
3223 
3224 
3225 /* API 6.2 setsockopt(), getsockopt()
3226  *
3227  * Applications use setsockopt() and getsockopt() to set or retrieve
3228  * socket options.  Socket options are used to change the default
3229  * behavior of sockets calls.  They are described in Section 7.
3230  *
3231  * The syntax is:
3232  *
3233  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
3234  *                    int __user *optlen);
3235  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3236  *                    int optlen);
3237  *
3238  *   sd      - the socket descript.
3239  *   level   - set to IPPROTO_SCTP for all SCTP options.
3240  *   optname - the option name.
3241  *   optval  - the buffer to store the value of the option.
3242  *   optlen  - the size of the buffer.
3243  */
3244 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
3245 				char __user *optval, int optlen)
3246 {
3247 	int retval = 0;
3248 
3249 	SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
3250 			  sk, optname);
3251 
3252 	/* I can hardly begin to describe how wrong this is.  This is
3253 	 * so broken as to be worse than useless.  The API draft
3254 	 * REALLY is NOT helpful here...  I am not convinced that the
3255 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3256 	 * are at all well-founded.
3257 	 */
3258 	if (level != SOL_SCTP) {
3259 		struct sctp_af *af = sctp_sk(sk)->pf->af;
3260 		retval = af->setsockopt(sk, level, optname, optval, optlen);
3261 		goto out_nounlock;
3262 	}
3263 
3264 	sctp_lock_sock(sk);
3265 
3266 	switch (optname) {
3267 	case SCTP_SOCKOPT_BINDX_ADD:
3268 		/* 'optlen' is the size of the addresses buffer. */
3269 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3270 					       optlen, SCTP_BINDX_ADD_ADDR);
3271 		break;
3272 
3273 	case SCTP_SOCKOPT_BINDX_REM:
3274 		/* 'optlen' is the size of the addresses buffer. */
3275 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3276 					       optlen, SCTP_BINDX_REM_ADDR);
3277 		break;
3278 
3279 	case SCTP_SOCKOPT_CONNECTX_OLD:
3280 		/* 'optlen' is the size of the addresses buffer. */
3281 		retval = sctp_setsockopt_connectx_old(sk,
3282 					    (struct sockaddr __user *)optval,
3283 					    optlen);
3284 		break;
3285 
3286 	case SCTP_SOCKOPT_CONNECTX:
3287 		/* 'optlen' is the size of the addresses buffer. */
3288 		retval = sctp_setsockopt_connectx(sk,
3289 					    (struct sockaddr __user *)optval,
3290 					    optlen);
3291 		break;
3292 
3293 	case SCTP_DISABLE_FRAGMENTS:
3294 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3295 		break;
3296 
3297 	case SCTP_EVENTS:
3298 		retval = sctp_setsockopt_events(sk, optval, optlen);
3299 		break;
3300 
3301 	case SCTP_AUTOCLOSE:
3302 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3303 		break;
3304 
3305 	case SCTP_PEER_ADDR_PARAMS:
3306 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3307 		break;
3308 
3309 	case SCTP_DELAYED_ACK:
3310 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3311 		break;
3312 	case SCTP_PARTIAL_DELIVERY_POINT:
3313 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3314 		break;
3315 
3316 	case SCTP_INITMSG:
3317 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3318 		break;
3319 	case SCTP_DEFAULT_SEND_PARAM:
3320 		retval = sctp_setsockopt_default_send_param(sk, optval,
3321 							    optlen);
3322 		break;
3323 	case SCTP_PRIMARY_ADDR:
3324 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3325 		break;
3326 	case SCTP_SET_PEER_PRIMARY_ADDR:
3327 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3328 		break;
3329 	case SCTP_NODELAY:
3330 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3331 		break;
3332 	case SCTP_RTOINFO:
3333 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3334 		break;
3335 	case SCTP_ASSOCINFO:
3336 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3337 		break;
3338 	case SCTP_I_WANT_MAPPED_V4_ADDR:
3339 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3340 		break;
3341 	case SCTP_MAXSEG:
3342 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3343 		break;
3344 	case SCTP_ADAPTATION_LAYER:
3345 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3346 		break;
3347 	case SCTP_CONTEXT:
3348 		retval = sctp_setsockopt_context(sk, optval, optlen);
3349 		break;
3350 	case SCTP_FRAGMENT_INTERLEAVE:
3351 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3352 		break;
3353 	case SCTP_MAX_BURST:
3354 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3355 		break;
3356 	case SCTP_AUTH_CHUNK:
3357 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3358 		break;
3359 	case SCTP_HMAC_IDENT:
3360 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3361 		break;
3362 	case SCTP_AUTH_KEY:
3363 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3364 		break;
3365 	case SCTP_AUTH_ACTIVE_KEY:
3366 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
3367 		break;
3368 	case SCTP_AUTH_DELETE_KEY:
3369 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
3370 		break;
3371 	default:
3372 		retval = -ENOPROTOOPT;
3373 		break;
3374 	}
3375 
3376 	sctp_release_sock(sk);
3377 
3378 out_nounlock:
3379 	return retval;
3380 }
3381 
3382 /* API 3.1.6 connect() - UDP Style Syntax
3383  *
3384  * An application may use the connect() call in the UDP model to initiate an
3385  * association without sending data.
3386  *
3387  * The syntax is:
3388  *
3389  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3390  *
3391  * sd: the socket descriptor to have a new association added to.
3392  *
3393  * nam: the address structure (either struct sockaddr_in or struct
3394  *    sockaddr_in6 defined in RFC2553 [7]).
3395  *
3396  * len: the size of the address.
3397  */
3398 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3399 			     int addr_len)
3400 {
3401 	int err = 0;
3402 	struct sctp_af *af;
3403 
3404 	sctp_lock_sock(sk);
3405 
3406 	SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3407 			  __func__, sk, addr, addr_len);
3408 
3409 	/* Validate addr_len before calling common connect/connectx routine. */
3410 	af = sctp_get_af_specific(addr->sa_family);
3411 	if (!af || addr_len < af->sockaddr_len) {
3412 		err = -EINVAL;
3413 	} else {
3414 		/* Pass correct addr len to common routine (so it knows there
3415 		 * is only one address being passed.
3416 		 */
3417 		err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3418 	}
3419 
3420 	sctp_release_sock(sk);
3421 	return err;
3422 }
3423 
3424 /* FIXME: Write comments. */
3425 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3426 {
3427 	return -EOPNOTSUPP; /* STUB */
3428 }
3429 
3430 /* 4.1.4 accept() - TCP Style Syntax
3431  *
3432  * Applications use accept() call to remove an established SCTP
3433  * association from the accept queue of the endpoint.  A new socket
3434  * descriptor will be returned from accept() to represent the newly
3435  * formed association.
3436  */
3437 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3438 {
3439 	struct sctp_sock *sp;
3440 	struct sctp_endpoint *ep;
3441 	struct sock *newsk = NULL;
3442 	struct sctp_association *asoc;
3443 	long timeo;
3444 	int error = 0;
3445 
3446 	sctp_lock_sock(sk);
3447 
3448 	sp = sctp_sk(sk);
3449 	ep = sp->ep;
3450 
3451 	if (!sctp_style(sk, TCP)) {
3452 		error = -EOPNOTSUPP;
3453 		goto out;
3454 	}
3455 
3456 	if (!sctp_sstate(sk, LISTENING)) {
3457 		error = -EINVAL;
3458 		goto out;
3459 	}
3460 
3461 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3462 
3463 	error = sctp_wait_for_accept(sk, timeo);
3464 	if (error)
3465 		goto out;
3466 
3467 	/* We treat the list of associations on the endpoint as the accept
3468 	 * queue and pick the first association on the list.
3469 	 */
3470 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3471 
3472 	newsk = sp->pf->create_accept_sk(sk, asoc);
3473 	if (!newsk) {
3474 		error = -ENOMEM;
3475 		goto out;
3476 	}
3477 
3478 	/* Populate the fields of the newsk from the oldsk and migrate the
3479 	 * asoc to the newsk.
3480 	 */
3481 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3482 
3483 out:
3484 	sctp_release_sock(sk);
3485 	*err = error;
3486 	return newsk;
3487 }
3488 
3489 /* The SCTP ioctl handler. */
3490 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3491 {
3492 	return -ENOIOCTLCMD;
3493 }
3494 
3495 /* This is the function which gets called during socket creation to
3496  * initialized the SCTP-specific portion of the sock.
3497  * The sock structure should already be zero-filled memory.
3498  */
3499 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3500 {
3501 	struct sctp_endpoint *ep;
3502 	struct sctp_sock *sp;
3503 
3504 	SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3505 
3506 	sp = sctp_sk(sk);
3507 
3508 	/* Initialize the SCTP per socket area.  */
3509 	switch (sk->sk_type) {
3510 	case SOCK_SEQPACKET:
3511 		sp->type = SCTP_SOCKET_UDP;
3512 		break;
3513 	case SOCK_STREAM:
3514 		sp->type = SCTP_SOCKET_TCP;
3515 		break;
3516 	default:
3517 		return -ESOCKTNOSUPPORT;
3518 	}
3519 
3520 	/* Initialize default send parameters. These parameters can be
3521 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3522 	 */
3523 	sp->default_stream = 0;
3524 	sp->default_ppid = 0;
3525 	sp->default_flags = 0;
3526 	sp->default_context = 0;
3527 	sp->default_timetolive = 0;
3528 
3529 	sp->default_rcv_context = 0;
3530 	sp->max_burst = sctp_max_burst;
3531 
3532 	/* Initialize default setup parameters. These parameters
3533 	 * can be modified with the SCTP_INITMSG socket option or
3534 	 * overridden by the SCTP_INIT CMSG.
3535 	 */
3536 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
3537 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
3538 	sp->initmsg.sinit_max_attempts   = sctp_max_retrans_init;
3539 	sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3540 
3541 	/* Initialize default RTO related parameters.  These parameters can
3542 	 * be modified for with the SCTP_RTOINFO socket option.
3543 	 */
3544 	sp->rtoinfo.srto_initial = sctp_rto_initial;
3545 	sp->rtoinfo.srto_max     = sctp_rto_max;
3546 	sp->rtoinfo.srto_min     = sctp_rto_min;
3547 
3548 	/* Initialize default association related parameters. These parameters
3549 	 * can be modified with the SCTP_ASSOCINFO socket option.
3550 	 */
3551 	sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3552 	sp->assocparams.sasoc_number_peer_destinations = 0;
3553 	sp->assocparams.sasoc_peer_rwnd = 0;
3554 	sp->assocparams.sasoc_local_rwnd = 0;
3555 	sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3556 
3557 	/* Initialize default event subscriptions. By default, all the
3558 	 * options are off.
3559 	 */
3560 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3561 
3562 	/* Default Peer Address Parameters.  These defaults can
3563 	 * be modified via SCTP_PEER_ADDR_PARAMS
3564 	 */
3565 	sp->hbinterval  = sctp_hb_interval;
3566 	sp->pathmaxrxt  = sctp_max_retrans_path;
3567 	sp->pathmtu     = 0; // allow default discovery
3568 	sp->sackdelay   = sctp_sack_timeout;
3569 	sp->sackfreq	= 2;
3570 	sp->param_flags = SPP_HB_ENABLE |
3571 			  SPP_PMTUD_ENABLE |
3572 			  SPP_SACKDELAY_ENABLE;
3573 
3574 	/* If enabled no SCTP message fragmentation will be performed.
3575 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3576 	 */
3577 	sp->disable_fragments = 0;
3578 
3579 	/* Enable Nagle algorithm by default.  */
3580 	sp->nodelay           = 0;
3581 
3582 	/* Enable by default. */
3583 	sp->v4mapped          = 1;
3584 
3585 	/* Auto-close idle associations after the configured
3586 	 * number of seconds.  A value of 0 disables this
3587 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
3588 	 * for UDP-style sockets only.
3589 	 */
3590 	sp->autoclose         = 0;
3591 
3592 	/* User specified fragmentation limit. */
3593 	sp->user_frag         = 0;
3594 
3595 	sp->adaptation_ind = 0;
3596 
3597 	sp->pf = sctp_get_pf_specific(sk->sk_family);
3598 
3599 	/* Control variables for partial data delivery. */
3600 	atomic_set(&sp->pd_mode, 0);
3601 	skb_queue_head_init(&sp->pd_lobby);
3602 	sp->frag_interleave = 0;
3603 
3604 	/* Create a per socket endpoint structure.  Even if we
3605 	 * change the data structure relationships, this may still
3606 	 * be useful for storing pre-connect address information.
3607 	 */
3608 	ep = sctp_endpoint_new(sk, GFP_KERNEL);
3609 	if (!ep)
3610 		return -ENOMEM;
3611 
3612 	sp->ep = ep;
3613 	sp->hmac = NULL;
3614 
3615 	SCTP_DBG_OBJCNT_INC(sock);
3616 	atomic_inc(&sctp_sockets_allocated);
3617 	return 0;
3618 }
3619 
3620 /* Cleanup any SCTP per socket resources.  */
3621 SCTP_STATIC void sctp_destroy_sock(struct sock *sk)
3622 {
3623 	struct sctp_endpoint *ep;
3624 
3625 	SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3626 
3627 	/* Release our hold on the endpoint. */
3628 	ep = sctp_sk(sk)->ep;
3629 	sctp_endpoint_free(ep);
3630 	atomic_dec(&sctp_sockets_allocated);
3631 }
3632 
3633 /* API 4.1.7 shutdown() - TCP Style Syntax
3634  *     int shutdown(int socket, int how);
3635  *
3636  *     sd      - the socket descriptor of the association to be closed.
3637  *     how     - Specifies the type of shutdown.  The  values  are
3638  *               as follows:
3639  *               SHUT_RD
3640  *                     Disables further receive operations. No SCTP
3641  *                     protocol action is taken.
3642  *               SHUT_WR
3643  *                     Disables further send operations, and initiates
3644  *                     the SCTP shutdown sequence.
3645  *               SHUT_RDWR
3646  *                     Disables further send  and  receive  operations
3647  *                     and initiates the SCTP shutdown sequence.
3648  */
3649 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3650 {
3651 	struct sctp_endpoint *ep;
3652 	struct sctp_association *asoc;
3653 
3654 	if (!sctp_style(sk, TCP))
3655 		return;
3656 
3657 	if (how & SEND_SHUTDOWN) {
3658 		ep = sctp_sk(sk)->ep;
3659 		if (!list_empty(&ep->asocs)) {
3660 			asoc = list_entry(ep->asocs.next,
3661 					  struct sctp_association, asocs);
3662 			sctp_primitive_SHUTDOWN(asoc, NULL);
3663 		}
3664 	}
3665 }
3666 
3667 /* 7.2.1 Association Status (SCTP_STATUS)
3668 
3669  * Applications can retrieve current status information about an
3670  * association, including association state, peer receiver window size,
3671  * number of unacked data chunks, and number of data chunks pending
3672  * receipt.  This information is read-only.
3673  */
3674 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3675 				       char __user *optval,
3676 				       int __user *optlen)
3677 {
3678 	struct sctp_status status;
3679 	struct sctp_association *asoc = NULL;
3680 	struct sctp_transport *transport;
3681 	sctp_assoc_t associd;
3682 	int retval = 0;
3683 
3684 	if (len < sizeof(status)) {
3685 		retval = -EINVAL;
3686 		goto out;
3687 	}
3688 
3689 	len = sizeof(status);
3690 	if (copy_from_user(&status, optval, len)) {
3691 		retval = -EFAULT;
3692 		goto out;
3693 	}
3694 
3695 	associd = status.sstat_assoc_id;
3696 	asoc = sctp_id2assoc(sk, associd);
3697 	if (!asoc) {
3698 		retval = -EINVAL;
3699 		goto out;
3700 	}
3701 
3702 	transport = asoc->peer.primary_path;
3703 
3704 	status.sstat_assoc_id = sctp_assoc2id(asoc);
3705 	status.sstat_state = asoc->state;
3706 	status.sstat_rwnd =  asoc->peer.rwnd;
3707 	status.sstat_unackdata = asoc->unack_data;
3708 
3709 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
3710 	status.sstat_instrms = asoc->c.sinit_max_instreams;
3711 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
3712 	status.sstat_fragmentation_point = asoc->frag_point;
3713 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3714 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
3715 			transport->af_specific->sockaddr_len);
3716 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
3717 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3718 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
3719 	status.sstat_primary.spinfo_state = transport->state;
3720 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
3721 	status.sstat_primary.spinfo_srtt = transport->srtt;
3722 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
3723 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
3724 
3725 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
3726 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
3727 
3728 	if (put_user(len, optlen)) {
3729 		retval = -EFAULT;
3730 		goto out;
3731 	}
3732 
3733 	SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
3734 			  len, status.sstat_state, status.sstat_rwnd,
3735 			  status.sstat_assoc_id);
3736 
3737 	if (copy_to_user(optval, &status, len)) {
3738 		retval = -EFAULT;
3739 		goto out;
3740 	}
3741 
3742 out:
3743 	return (retval);
3744 }
3745 
3746 
3747 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
3748  *
3749  * Applications can retrieve information about a specific peer address
3750  * of an association, including its reachability state, congestion
3751  * window, and retransmission timer values.  This information is
3752  * read-only.
3753  */
3754 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
3755 					  char __user *optval,
3756 					  int __user *optlen)
3757 {
3758 	struct sctp_paddrinfo pinfo;
3759 	struct sctp_transport *transport;
3760 	int retval = 0;
3761 
3762 	if (len < sizeof(pinfo)) {
3763 		retval = -EINVAL;
3764 		goto out;
3765 	}
3766 
3767 	len = sizeof(pinfo);
3768 	if (copy_from_user(&pinfo, optval, len)) {
3769 		retval = -EFAULT;
3770 		goto out;
3771 	}
3772 
3773 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
3774 					   pinfo.spinfo_assoc_id);
3775 	if (!transport)
3776 		return -EINVAL;
3777 
3778 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3779 	pinfo.spinfo_state = transport->state;
3780 	pinfo.spinfo_cwnd = transport->cwnd;
3781 	pinfo.spinfo_srtt = transport->srtt;
3782 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
3783 	pinfo.spinfo_mtu = transport->pathmtu;
3784 
3785 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
3786 		pinfo.spinfo_state = SCTP_ACTIVE;
3787 
3788 	if (put_user(len, optlen)) {
3789 		retval = -EFAULT;
3790 		goto out;
3791 	}
3792 
3793 	if (copy_to_user(optval, &pinfo, len)) {
3794 		retval = -EFAULT;
3795 		goto out;
3796 	}
3797 
3798 out:
3799 	return (retval);
3800 }
3801 
3802 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
3803  *
3804  * This option is a on/off flag.  If enabled no SCTP message
3805  * fragmentation will be performed.  Instead if a message being sent
3806  * exceeds the current PMTU size, the message will NOT be sent and
3807  * instead a error will be indicated to the user.
3808  */
3809 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
3810 					char __user *optval, int __user *optlen)
3811 {
3812 	int val;
3813 
3814 	if (len < sizeof(int))
3815 		return -EINVAL;
3816 
3817 	len = sizeof(int);
3818 	val = (sctp_sk(sk)->disable_fragments == 1);
3819 	if (put_user(len, optlen))
3820 		return -EFAULT;
3821 	if (copy_to_user(optval, &val, len))
3822 		return -EFAULT;
3823 	return 0;
3824 }
3825 
3826 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
3827  *
3828  * This socket option is used to specify various notifications and
3829  * ancillary data the user wishes to receive.
3830  */
3831 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
3832 				  int __user *optlen)
3833 {
3834 	if (len < sizeof(struct sctp_event_subscribe))
3835 		return -EINVAL;
3836 	len = sizeof(struct sctp_event_subscribe);
3837 	if (put_user(len, optlen))
3838 		return -EFAULT;
3839 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
3840 		return -EFAULT;
3841 	return 0;
3842 }
3843 
3844 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
3845  *
3846  * This socket option is applicable to the UDP-style socket only.  When
3847  * set it will cause associations that are idle for more than the
3848  * specified number of seconds to automatically close.  An association
3849  * being idle is defined an association that has NOT sent or received
3850  * user data.  The special value of '0' indicates that no automatic
3851  * close of any associations should be performed.  The option expects an
3852  * integer defining the number of seconds of idle time before an
3853  * association is closed.
3854  */
3855 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
3856 {
3857 	/* Applicable to UDP-style socket only */
3858 	if (sctp_style(sk, TCP))
3859 		return -EOPNOTSUPP;
3860 	if (len < sizeof(int))
3861 		return -EINVAL;
3862 	len = sizeof(int);
3863 	if (put_user(len, optlen))
3864 		return -EFAULT;
3865 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
3866 		return -EFAULT;
3867 	return 0;
3868 }
3869 
3870 /* Helper routine to branch off an association to a new socket.  */
3871 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
3872 				struct socket **sockp)
3873 {
3874 	struct sock *sk = asoc->base.sk;
3875 	struct socket *sock;
3876 	struct inet_sock *inetsk;
3877 	struct sctp_af *af;
3878 	int err = 0;
3879 
3880 	/* An association cannot be branched off from an already peeled-off
3881 	 * socket, nor is this supported for tcp style sockets.
3882 	 */
3883 	if (!sctp_style(sk, UDP))
3884 		return -EINVAL;
3885 
3886 	/* Create a new socket.  */
3887 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
3888 	if (err < 0)
3889 		return err;
3890 
3891 	/* Populate the fields of the newsk from the oldsk and migrate the
3892 	 * asoc to the newsk.
3893 	 */
3894 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
3895 
3896 	/* Make peeled-off sockets more like 1-1 accepted sockets.
3897 	 * Set the daddr and initialize id to something more random
3898 	 */
3899 	af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
3900 	af->to_sk_daddr(&asoc->peer.primary_addr, sk);
3901 	inetsk = inet_sk(sock->sk);
3902 	inetsk->id = asoc->next_tsn ^ jiffies;
3903 
3904 	*sockp = sock;
3905 
3906 	return err;
3907 }
3908 
3909 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
3910 {
3911 	sctp_peeloff_arg_t peeloff;
3912 	struct socket *newsock;
3913 	int retval = 0;
3914 	struct sctp_association *asoc;
3915 
3916 	if (len < sizeof(sctp_peeloff_arg_t))
3917 		return -EINVAL;
3918 	len = sizeof(sctp_peeloff_arg_t);
3919 	if (copy_from_user(&peeloff, optval, len))
3920 		return -EFAULT;
3921 
3922 	asoc = sctp_id2assoc(sk, peeloff.associd);
3923 	if (!asoc) {
3924 		retval = -EINVAL;
3925 		goto out;
3926 	}
3927 
3928 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __func__, sk, asoc);
3929 
3930 	retval = sctp_do_peeloff(asoc, &newsock);
3931 	if (retval < 0)
3932 		goto out;
3933 
3934 	/* Map the socket to an unused fd that can be returned to the user.  */
3935 	retval = sock_map_fd(newsock, 0);
3936 	if (retval < 0) {
3937 		sock_release(newsock);
3938 		goto out;
3939 	}
3940 
3941 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
3942 			  __func__, sk, asoc, newsock->sk, retval);
3943 
3944 	/* Return the fd mapped to the new socket.  */
3945 	peeloff.sd = retval;
3946 	if (put_user(len, optlen))
3947 		return -EFAULT;
3948 	if (copy_to_user(optval, &peeloff, len))
3949 		retval = -EFAULT;
3950 
3951 out:
3952 	return retval;
3953 }
3954 
3955 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
3956  *
3957  * Applications can enable or disable heartbeats for any peer address of
3958  * an association, modify an address's heartbeat interval, force a
3959  * heartbeat to be sent immediately, and adjust the address's maximum
3960  * number of retransmissions sent before an address is considered
3961  * unreachable.  The following structure is used to access and modify an
3962  * address's parameters:
3963  *
3964  *  struct sctp_paddrparams {
3965  *     sctp_assoc_t            spp_assoc_id;
3966  *     struct sockaddr_storage spp_address;
3967  *     uint32_t                spp_hbinterval;
3968  *     uint16_t                spp_pathmaxrxt;
3969  *     uint32_t                spp_pathmtu;
3970  *     uint32_t                spp_sackdelay;
3971  *     uint32_t                spp_flags;
3972  * };
3973  *
3974  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
3975  *                     application, and identifies the association for
3976  *                     this query.
3977  *   spp_address     - This specifies which address is of interest.
3978  *   spp_hbinterval  - This contains the value of the heartbeat interval,
3979  *                     in milliseconds.  If a  value of zero
3980  *                     is present in this field then no changes are to
3981  *                     be made to this parameter.
3982  *   spp_pathmaxrxt  - This contains the maximum number of
3983  *                     retransmissions before this address shall be
3984  *                     considered unreachable. If a  value of zero
3985  *                     is present in this field then no changes are to
3986  *                     be made to this parameter.
3987  *   spp_pathmtu     - When Path MTU discovery is disabled the value
3988  *                     specified here will be the "fixed" path mtu.
3989  *                     Note that if the spp_address field is empty
3990  *                     then all associations on this address will
3991  *                     have this fixed path mtu set upon them.
3992  *
3993  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
3994  *                     the number of milliseconds that sacks will be delayed
3995  *                     for. This value will apply to all addresses of an
3996  *                     association if the spp_address field is empty. Note
3997  *                     also, that if delayed sack is enabled and this
3998  *                     value is set to 0, no change is made to the last
3999  *                     recorded delayed sack timer value.
4000  *
4001  *   spp_flags       - These flags are used to control various features
4002  *                     on an association. The flag field may contain
4003  *                     zero or more of the following options.
4004  *
4005  *                     SPP_HB_ENABLE  - Enable heartbeats on the
4006  *                     specified address. Note that if the address
4007  *                     field is empty all addresses for the association
4008  *                     have heartbeats enabled upon them.
4009  *
4010  *                     SPP_HB_DISABLE - Disable heartbeats on the
4011  *                     speicifed address. Note that if the address
4012  *                     field is empty all addresses for the association
4013  *                     will have their heartbeats disabled. Note also
4014  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
4015  *                     mutually exclusive, only one of these two should
4016  *                     be specified. Enabling both fields will have
4017  *                     undetermined results.
4018  *
4019  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
4020  *                     to be made immediately.
4021  *
4022  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
4023  *                     discovery upon the specified address. Note that
4024  *                     if the address feild is empty then all addresses
4025  *                     on the association are effected.
4026  *
4027  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
4028  *                     discovery upon the specified address. Note that
4029  *                     if the address feild is empty then all addresses
4030  *                     on the association are effected. Not also that
4031  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4032  *                     exclusive. Enabling both will have undetermined
4033  *                     results.
4034  *
4035  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
4036  *                     on delayed sack. The time specified in spp_sackdelay
4037  *                     is used to specify the sack delay for this address. Note
4038  *                     that if spp_address is empty then all addresses will
4039  *                     enable delayed sack and take on the sack delay
4040  *                     value specified in spp_sackdelay.
4041  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
4042  *                     off delayed sack. If the spp_address field is blank then
4043  *                     delayed sack is disabled for the entire association. Note
4044  *                     also that this field is mutually exclusive to
4045  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
4046  *                     results.
4047  */
4048 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4049 					    char __user *optval, int __user *optlen)
4050 {
4051 	struct sctp_paddrparams  params;
4052 	struct sctp_transport   *trans = NULL;
4053 	struct sctp_association *asoc = NULL;
4054 	struct sctp_sock        *sp = sctp_sk(sk);
4055 
4056 	if (len < sizeof(struct sctp_paddrparams))
4057 		return -EINVAL;
4058 	len = sizeof(struct sctp_paddrparams);
4059 	if (copy_from_user(&params, optval, len))
4060 		return -EFAULT;
4061 
4062 	/* If an address other than INADDR_ANY is specified, and
4063 	 * no transport is found, then the request is invalid.
4064 	 */
4065 	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
4066 		trans = sctp_addr_id2transport(sk, &params.spp_address,
4067 					       params.spp_assoc_id);
4068 		if (!trans) {
4069 			SCTP_DEBUG_PRINTK("Failed no transport\n");
4070 			return -EINVAL;
4071 		}
4072 	}
4073 
4074 	/* Get association, if assoc_id != 0 and the socket is a one
4075 	 * to many style socket, and an association was not found, then
4076 	 * the id was invalid.
4077 	 */
4078 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4079 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4080 		SCTP_DEBUG_PRINTK("Failed no association\n");
4081 		return -EINVAL;
4082 	}
4083 
4084 	if (trans) {
4085 		/* Fetch transport values. */
4086 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4087 		params.spp_pathmtu    = trans->pathmtu;
4088 		params.spp_pathmaxrxt = trans->pathmaxrxt;
4089 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
4090 
4091 		/*draft-11 doesn't say what to return in spp_flags*/
4092 		params.spp_flags      = trans->param_flags;
4093 	} else if (asoc) {
4094 		/* Fetch association values. */
4095 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4096 		params.spp_pathmtu    = asoc->pathmtu;
4097 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
4098 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
4099 
4100 		/*draft-11 doesn't say what to return in spp_flags*/
4101 		params.spp_flags      = asoc->param_flags;
4102 	} else {
4103 		/* Fetch socket values. */
4104 		params.spp_hbinterval = sp->hbinterval;
4105 		params.spp_pathmtu    = sp->pathmtu;
4106 		params.spp_sackdelay  = sp->sackdelay;
4107 		params.spp_pathmaxrxt = sp->pathmaxrxt;
4108 
4109 		/*draft-11 doesn't say what to return in spp_flags*/
4110 		params.spp_flags      = sp->param_flags;
4111 	}
4112 
4113 	if (copy_to_user(optval, &params, len))
4114 		return -EFAULT;
4115 
4116 	if (put_user(len, optlen))
4117 		return -EFAULT;
4118 
4119 	return 0;
4120 }
4121 
4122 /*
4123  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
4124  *
4125  * This option will effect the way delayed acks are performed.  This
4126  * option allows you to get or set the delayed ack time, in
4127  * milliseconds.  It also allows changing the delayed ack frequency.
4128  * Changing the frequency to 1 disables the delayed sack algorithm.  If
4129  * the assoc_id is 0, then this sets or gets the endpoints default
4130  * values.  If the assoc_id field is non-zero, then the set or get
4131  * effects the specified association for the one to many model (the
4132  * assoc_id field is ignored by the one to one model).  Note that if
4133  * sack_delay or sack_freq are 0 when setting this option, then the
4134  * current values will remain unchanged.
4135  *
4136  * struct sctp_sack_info {
4137  *     sctp_assoc_t            sack_assoc_id;
4138  *     uint32_t                sack_delay;
4139  *     uint32_t                sack_freq;
4140  * };
4141  *
4142  * sack_assoc_id -  This parameter, indicates which association the user
4143  *    is performing an action upon.  Note that if this field's value is
4144  *    zero then the endpoints default value is changed (effecting future
4145  *    associations only).
4146  *
4147  * sack_delay -  This parameter contains the number of milliseconds that
4148  *    the user is requesting the delayed ACK timer be set to.  Note that
4149  *    this value is defined in the standard to be between 200 and 500
4150  *    milliseconds.
4151  *
4152  * sack_freq -  This parameter contains the number of packets that must
4153  *    be received before a sack is sent without waiting for the delay
4154  *    timer to expire.  The default value for this is 2, setting this
4155  *    value to 1 will disable the delayed sack algorithm.
4156  */
4157 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4158 					    char __user *optval,
4159 					    int __user *optlen)
4160 {
4161 	struct sctp_sack_info    params;
4162 	struct sctp_association *asoc = NULL;
4163 	struct sctp_sock        *sp = sctp_sk(sk);
4164 
4165 	if (len >= sizeof(struct sctp_sack_info)) {
4166 		len = sizeof(struct sctp_sack_info);
4167 
4168 		if (copy_from_user(&params, optval, len))
4169 			return -EFAULT;
4170 	} else if (len == sizeof(struct sctp_assoc_value)) {
4171 		printk(KERN_WARNING "SCTP: Use of struct sctp_sack_info "
4172 		       "in delayed_ack socket option deprecated\n");
4173 		printk(KERN_WARNING "SCTP: struct sctp_sack_info instead\n");
4174 		if (copy_from_user(&params, optval, len))
4175 			return -EFAULT;
4176 	} else
4177 		return - EINVAL;
4178 
4179 	/* Get association, if sack_assoc_id != 0 and the socket is a one
4180 	 * to many style socket, and an association was not found, then
4181 	 * the id was invalid.
4182 	 */
4183 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4184 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4185 		return -EINVAL;
4186 
4187 	if (asoc) {
4188 		/* Fetch association values. */
4189 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4190 			params.sack_delay = jiffies_to_msecs(
4191 				asoc->sackdelay);
4192 			params.sack_freq = asoc->sackfreq;
4193 
4194 		} else {
4195 			params.sack_delay = 0;
4196 			params.sack_freq = 1;
4197 		}
4198 	} else {
4199 		/* Fetch socket values. */
4200 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4201 			params.sack_delay  = sp->sackdelay;
4202 			params.sack_freq = sp->sackfreq;
4203 		} else {
4204 			params.sack_delay  = 0;
4205 			params.sack_freq = 1;
4206 		}
4207 	}
4208 
4209 	if (copy_to_user(optval, &params, len))
4210 		return -EFAULT;
4211 
4212 	if (put_user(len, optlen))
4213 		return -EFAULT;
4214 
4215 	return 0;
4216 }
4217 
4218 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4219  *
4220  * Applications can specify protocol parameters for the default association
4221  * initialization.  The option name argument to setsockopt() and getsockopt()
4222  * is SCTP_INITMSG.
4223  *
4224  * Setting initialization parameters is effective only on an unconnected
4225  * socket (for UDP-style sockets only future associations are effected
4226  * by the change).  With TCP-style sockets, this option is inherited by
4227  * sockets derived from a listener socket.
4228  */
4229 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4230 {
4231 	if (len < sizeof(struct sctp_initmsg))
4232 		return -EINVAL;
4233 	len = sizeof(struct sctp_initmsg);
4234 	if (put_user(len, optlen))
4235 		return -EFAULT;
4236 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4237 		return -EFAULT;
4238 	return 0;
4239 }
4240 
4241 static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len,
4242 					      char __user *optval,
4243 					      int __user *optlen)
4244 {
4245 	sctp_assoc_t id;
4246 	struct sctp_association *asoc;
4247 	struct list_head *pos;
4248 	int cnt = 0;
4249 
4250 	if (len < sizeof(sctp_assoc_t))
4251 		return -EINVAL;
4252 
4253 	if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
4254 		return -EFAULT;
4255 
4256 	printk(KERN_WARNING "SCTP: Use of SCTP_GET_PEER_ADDRS_NUM_OLD "
4257 			    "socket option deprecated\n");
4258 	/* For UDP-style sockets, id specifies the association to query.  */
4259 	asoc = sctp_id2assoc(sk, id);
4260 	if (!asoc)
4261 		return -EINVAL;
4262 
4263 	list_for_each(pos, &asoc->peer.transport_addr_list) {
4264 		cnt ++;
4265 	}
4266 
4267 	return cnt;
4268 }
4269 
4270 /*
4271  * Old API for getting list of peer addresses. Does not work for 32-bit
4272  * programs running on a 64-bit kernel
4273  */
4274 static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len,
4275 					  char __user *optval,
4276 					  int __user *optlen)
4277 {
4278 	struct sctp_association *asoc;
4279 	int cnt = 0;
4280 	struct sctp_getaddrs_old getaddrs;
4281 	struct sctp_transport *from;
4282 	void __user *to;
4283 	union sctp_addr temp;
4284 	struct sctp_sock *sp = sctp_sk(sk);
4285 	int addrlen;
4286 
4287 	if (len < sizeof(struct sctp_getaddrs_old))
4288 		return -EINVAL;
4289 
4290 	len = sizeof(struct sctp_getaddrs_old);
4291 
4292 	if (copy_from_user(&getaddrs, optval, len))
4293 		return -EFAULT;
4294 
4295 	if (getaddrs.addr_num <= 0) return -EINVAL;
4296 
4297 	printk(KERN_WARNING "SCTP: Use of SCTP_GET_PEER_ADDRS_OLD "
4298 			    "socket option deprecated\n");
4299 
4300 	/* For UDP-style sockets, id specifies the association to query.  */
4301 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4302 	if (!asoc)
4303 		return -EINVAL;
4304 
4305 	to = (void __user *)getaddrs.addrs;
4306 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4307 				transports) {
4308 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4309 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4310 		addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
4311 		if (copy_to_user(to, &temp, addrlen))
4312 			return -EFAULT;
4313 		to += addrlen ;
4314 		cnt ++;
4315 		if (cnt >= getaddrs.addr_num) break;
4316 	}
4317 	getaddrs.addr_num = cnt;
4318 	if (put_user(len, optlen))
4319 		return -EFAULT;
4320 	if (copy_to_user(optval, &getaddrs, len))
4321 		return -EFAULT;
4322 
4323 	return 0;
4324 }
4325 
4326 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4327 				      char __user *optval, int __user *optlen)
4328 {
4329 	struct sctp_association *asoc;
4330 	int cnt = 0;
4331 	struct sctp_getaddrs getaddrs;
4332 	struct sctp_transport *from;
4333 	void __user *to;
4334 	union sctp_addr temp;
4335 	struct sctp_sock *sp = sctp_sk(sk);
4336 	int addrlen;
4337 	size_t space_left;
4338 	int bytes_copied;
4339 
4340 	if (len < sizeof(struct sctp_getaddrs))
4341 		return -EINVAL;
4342 
4343 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4344 		return -EFAULT;
4345 
4346 	/* For UDP-style sockets, id specifies the association to query.  */
4347 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4348 	if (!asoc)
4349 		return -EINVAL;
4350 
4351 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4352 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4353 
4354 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4355 				transports) {
4356 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4357 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4358 		addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
4359 		if (space_left < addrlen)
4360 			return -ENOMEM;
4361 		if (copy_to_user(to, &temp, addrlen))
4362 			return -EFAULT;
4363 		to += addrlen;
4364 		cnt++;
4365 		space_left -= addrlen;
4366 	}
4367 
4368 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4369 		return -EFAULT;
4370 	bytes_copied = ((char __user *)to) - optval;
4371 	if (put_user(bytes_copied, optlen))
4372 		return -EFAULT;
4373 
4374 	return 0;
4375 }
4376 
4377 static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len,
4378 					       char __user *optval,
4379 					       int __user *optlen)
4380 {
4381 	sctp_assoc_t id;
4382 	struct sctp_bind_addr *bp;
4383 	struct sctp_association *asoc;
4384 	struct sctp_sockaddr_entry *addr;
4385 	int cnt = 0;
4386 
4387 	if (len < sizeof(sctp_assoc_t))
4388 		return -EINVAL;
4389 
4390 	if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
4391 		return -EFAULT;
4392 
4393 	printk(KERN_WARNING "SCTP: Use of SCTP_GET_LOCAL_ADDRS_NUM_OLD "
4394 			    "socket option deprecated\n");
4395 
4396 	/*
4397 	 *  For UDP-style sockets, id specifies the association to query.
4398 	 *  If the id field is set to the value '0' then the locally bound
4399 	 *  addresses are returned without regard to any particular
4400 	 *  association.
4401 	 */
4402 	if (0 == id) {
4403 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4404 	} else {
4405 		asoc = sctp_id2assoc(sk, id);
4406 		if (!asoc)
4407 			return -EINVAL;
4408 		bp = &asoc->base.bind_addr;
4409 	}
4410 
4411 	/* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
4412 	 * addresses from the global local address list.
4413 	 */
4414 	if (sctp_list_single_entry(&bp->address_list)) {
4415 		addr = list_entry(bp->address_list.next,
4416 				  struct sctp_sockaddr_entry, list);
4417 		if (sctp_is_any(sk, &addr->a)) {
4418 			rcu_read_lock();
4419 			list_for_each_entry_rcu(addr,
4420 						&sctp_local_addr_list, list) {
4421 				if (!addr->valid)
4422 					continue;
4423 
4424 				if ((PF_INET == sk->sk_family) &&
4425 				    (AF_INET6 == addr->a.sa.sa_family))
4426 					continue;
4427 
4428 				if ((PF_INET6 == sk->sk_family) &&
4429 				    inet_v6_ipv6only(sk) &&
4430 				    (AF_INET == addr->a.sa.sa_family))
4431 					continue;
4432 
4433 				cnt++;
4434 			}
4435 			rcu_read_unlock();
4436 		} else {
4437 			cnt = 1;
4438 		}
4439 		goto done;
4440 	}
4441 
4442 	/* Protection on the bound address list is not needed,
4443 	 * since in the socket option context we hold the socket lock,
4444 	 * so there is no way that the bound address list can change.
4445 	 */
4446 	list_for_each_entry(addr, &bp->address_list, list) {
4447 		cnt ++;
4448 	}
4449 done:
4450 	return cnt;
4451 }
4452 
4453 /* Helper function that copies local addresses to user and returns the number
4454  * of addresses copied.
4455  */
4456 static int sctp_copy_laddrs_old(struct sock *sk, __u16 port,
4457 					int max_addrs, void *to,
4458 					int *bytes_copied)
4459 {
4460 	struct sctp_sockaddr_entry *addr;
4461 	union sctp_addr temp;
4462 	int cnt = 0;
4463 	int addrlen;
4464 
4465 	rcu_read_lock();
4466 	list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4467 		if (!addr->valid)
4468 			continue;
4469 
4470 		if ((PF_INET == sk->sk_family) &&
4471 		    (AF_INET6 == addr->a.sa.sa_family))
4472 			continue;
4473 		if ((PF_INET6 == sk->sk_family) &&
4474 		    inet_v6_ipv6only(sk) &&
4475 		    (AF_INET == addr->a.sa.sa_family))
4476 			continue;
4477 		memcpy(&temp, &addr->a, sizeof(temp));
4478 		if (!temp.v4.sin_port)
4479 			temp.v4.sin_port = htons(port);
4480 
4481 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4482 								&temp);
4483 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4484 		memcpy(to, &temp, addrlen);
4485 
4486 		to += addrlen;
4487 		*bytes_copied += addrlen;
4488 		cnt ++;
4489 		if (cnt >= max_addrs) break;
4490 	}
4491 	rcu_read_unlock();
4492 
4493 	return cnt;
4494 }
4495 
4496 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4497 			    size_t space_left, int *bytes_copied)
4498 {
4499 	struct sctp_sockaddr_entry *addr;
4500 	union sctp_addr temp;
4501 	int cnt = 0;
4502 	int addrlen;
4503 
4504 	rcu_read_lock();
4505 	list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4506 		if (!addr->valid)
4507 			continue;
4508 
4509 		if ((PF_INET == sk->sk_family) &&
4510 		    (AF_INET6 == addr->a.sa.sa_family))
4511 			continue;
4512 		if ((PF_INET6 == sk->sk_family) &&
4513 		    inet_v6_ipv6only(sk) &&
4514 		    (AF_INET == addr->a.sa.sa_family))
4515 			continue;
4516 		memcpy(&temp, &addr->a, sizeof(temp));
4517 		if (!temp.v4.sin_port)
4518 			temp.v4.sin_port = htons(port);
4519 
4520 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4521 								&temp);
4522 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4523 		if (space_left < addrlen) {
4524 			cnt =  -ENOMEM;
4525 			break;
4526 		}
4527 		memcpy(to, &temp, addrlen);
4528 
4529 		to += addrlen;
4530 		cnt ++;
4531 		space_left -= addrlen;
4532 		*bytes_copied += addrlen;
4533 	}
4534 	rcu_read_unlock();
4535 
4536 	return cnt;
4537 }
4538 
4539 /* Old API for getting list of local addresses. Does not work for 32-bit
4540  * programs running on a 64-bit kernel
4541  */
4542 static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len,
4543 					   char __user *optval, int __user *optlen)
4544 {
4545 	struct sctp_bind_addr *bp;
4546 	struct sctp_association *asoc;
4547 	int cnt = 0;
4548 	struct sctp_getaddrs_old getaddrs;
4549 	struct sctp_sockaddr_entry *addr;
4550 	void __user *to;
4551 	union sctp_addr temp;
4552 	struct sctp_sock *sp = sctp_sk(sk);
4553 	int addrlen;
4554 	int err = 0;
4555 	void *addrs;
4556 	void *buf;
4557 	int bytes_copied = 0;
4558 
4559 	if (len < sizeof(struct sctp_getaddrs_old))
4560 		return -EINVAL;
4561 
4562 	len = sizeof(struct sctp_getaddrs_old);
4563 	if (copy_from_user(&getaddrs, optval, len))
4564 		return -EFAULT;
4565 
4566 	if (getaddrs.addr_num <= 0 ||
4567 	    getaddrs.addr_num >= (INT_MAX / sizeof(union sctp_addr)))
4568 		return -EINVAL;
4569 
4570 	printk(KERN_WARNING "SCTP: Use of SCTP_GET_LOCAL_ADDRS_OLD "
4571 			    "socket option deprecated\n");
4572 
4573 	/*
4574 	 *  For UDP-style sockets, id specifies the association to query.
4575 	 *  If the id field is set to the value '0' then the locally bound
4576 	 *  addresses are returned without regard to any particular
4577 	 *  association.
4578 	 */
4579 	if (0 == getaddrs.assoc_id) {
4580 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4581 	} else {
4582 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4583 		if (!asoc)
4584 			return -EINVAL;
4585 		bp = &asoc->base.bind_addr;
4586 	}
4587 
4588 	to = getaddrs.addrs;
4589 
4590 	/* Allocate space for a local instance of packed array to hold all
4591 	 * the data.  We store addresses here first and then put write them
4592 	 * to the user in one shot.
4593 	 */
4594 	addrs = kmalloc(sizeof(union sctp_addr) * getaddrs.addr_num,
4595 			GFP_KERNEL);
4596 	if (!addrs)
4597 		return -ENOMEM;
4598 
4599 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4600 	 * addresses from the global local address list.
4601 	 */
4602 	if (sctp_list_single_entry(&bp->address_list)) {
4603 		addr = list_entry(bp->address_list.next,
4604 				  struct sctp_sockaddr_entry, list);
4605 		if (sctp_is_any(sk, &addr->a)) {
4606 			cnt = sctp_copy_laddrs_old(sk, bp->port,
4607 						   getaddrs.addr_num,
4608 						   addrs, &bytes_copied);
4609 			goto copy_getaddrs;
4610 		}
4611 	}
4612 
4613 	buf = addrs;
4614 	/* Protection on the bound address list is not needed since
4615 	 * in the socket option context we hold a socket lock and
4616 	 * thus the bound address list can't change.
4617 	 */
4618 	list_for_each_entry(addr, &bp->address_list, list) {
4619 		memcpy(&temp, &addr->a, sizeof(temp));
4620 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4621 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4622 		memcpy(buf, &temp, addrlen);
4623 		buf += addrlen;
4624 		bytes_copied += addrlen;
4625 		cnt ++;
4626 		if (cnt >= getaddrs.addr_num) break;
4627 	}
4628 
4629 copy_getaddrs:
4630 	/* copy the entire address list into the user provided space */
4631 	if (copy_to_user(to, addrs, bytes_copied)) {
4632 		err = -EFAULT;
4633 		goto error;
4634 	}
4635 
4636 	/* copy the leading structure back to user */
4637 	getaddrs.addr_num = cnt;
4638 	if (copy_to_user(optval, &getaddrs, len))
4639 		err = -EFAULT;
4640 
4641 error:
4642 	kfree(addrs);
4643 	return err;
4644 }
4645 
4646 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4647 				       char __user *optval, int __user *optlen)
4648 {
4649 	struct sctp_bind_addr *bp;
4650 	struct sctp_association *asoc;
4651 	int cnt = 0;
4652 	struct sctp_getaddrs getaddrs;
4653 	struct sctp_sockaddr_entry *addr;
4654 	void __user *to;
4655 	union sctp_addr temp;
4656 	struct sctp_sock *sp = sctp_sk(sk);
4657 	int addrlen;
4658 	int err = 0;
4659 	size_t space_left;
4660 	int bytes_copied = 0;
4661 	void *addrs;
4662 	void *buf;
4663 
4664 	if (len < sizeof(struct sctp_getaddrs))
4665 		return -EINVAL;
4666 
4667 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4668 		return -EFAULT;
4669 
4670 	/*
4671 	 *  For UDP-style sockets, id specifies the association to query.
4672 	 *  If the id field is set to the value '0' then the locally bound
4673 	 *  addresses are returned without regard to any particular
4674 	 *  association.
4675 	 */
4676 	if (0 == getaddrs.assoc_id) {
4677 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4678 	} else {
4679 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4680 		if (!asoc)
4681 			return -EINVAL;
4682 		bp = &asoc->base.bind_addr;
4683 	}
4684 
4685 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4686 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4687 
4688 	addrs = kmalloc(space_left, GFP_KERNEL);
4689 	if (!addrs)
4690 		return -ENOMEM;
4691 
4692 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4693 	 * addresses from the global local address list.
4694 	 */
4695 	if (sctp_list_single_entry(&bp->address_list)) {
4696 		addr = list_entry(bp->address_list.next,
4697 				  struct sctp_sockaddr_entry, list);
4698 		if (sctp_is_any(sk, &addr->a)) {
4699 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4700 						space_left, &bytes_copied);
4701 			if (cnt < 0) {
4702 				err = cnt;
4703 				goto out;
4704 			}
4705 			goto copy_getaddrs;
4706 		}
4707 	}
4708 
4709 	buf = addrs;
4710 	/* Protection on the bound address list is not needed since
4711 	 * in the socket option context we hold a socket lock and
4712 	 * thus the bound address list can't change.
4713 	 */
4714 	list_for_each_entry(addr, &bp->address_list, list) {
4715 		memcpy(&temp, &addr->a, sizeof(temp));
4716 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4717 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4718 		if (space_left < addrlen) {
4719 			err =  -ENOMEM; /*fixme: right error?*/
4720 			goto out;
4721 		}
4722 		memcpy(buf, &temp, addrlen);
4723 		buf += addrlen;
4724 		bytes_copied += addrlen;
4725 		cnt ++;
4726 		space_left -= addrlen;
4727 	}
4728 
4729 copy_getaddrs:
4730 	if (copy_to_user(to, addrs, bytes_copied)) {
4731 		err = -EFAULT;
4732 		goto out;
4733 	}
4734 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4735 		err = -EFAULT;
4736 		goto out;
4737 	}
4738 	if (put_user(bytes_copied, optlen))
4739 		err = -EFAULT;
4740 out:
4741 	kfree(addrs);
4742 	return err;
4743 }
4744 
4745 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4746  *
4747  * Requests that the local SCTP stack use the enclosed peer address as
4748  * the association primary.  The enclosed address must be one of the
4749  * association peer's addresses.
4750  */
4751 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4752 					char __user *optval, int __user *optlen)
4753 {
4754 	struct sctp_prim prim;
4755 	struct sctp_association *asoc;
4756 	struct sctp_sock *sp = sctp_sk(sk);
4757 
4758 	if (len < sizeof(struct sctp_prim))
4759 		return -EINVAL;
4760 
4761 	len = sizeof(struct sctp_prim);
4762 
4763 	if (copy_from_user(&prim, optval, len))
4764 		return -EFAULT;
4765 
4766 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4767 	if (!asoc)
4768 		return -EINVAL;
4769 
4770 	if (!asoc->peer.primary_path)
4771 		return -ENOTCONN;
4772 
4773 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4774 		asoc->peer.primary_path->af_specific->sockaddr_len);
4775 
4776 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4777 			(union sctp_addr *)&prim.ssp_addr);
4778 
4779 	if (put_user(len, optlen))
4780 		return -EFAULT;
4781 	if (copy_to_user(optval, &prim, len))
4782 		return -EFAULT;
4783 
4784 	return 0;
4785 }
4786 
4787 /*
4788  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4789  *
4790  * Requests that the local endpoint set the specified Adaptation Layer
4791  * Indication parameter for all future INIT and INIT-ACK exchanges.
4792  */
4793 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4794 				  char __user *optval, int __user *optlen)
4795 {
4796 	struct sctp_setadaptation adaptation;
4797 
4798 	if (len < sizeof(struct sctp_setadaptation))
4799 		return -EINVAL;
4800 
4801 	len = sizeof(struct sctp_setadaptation);
4802 
4803 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4804 
4805 	if (put_user(len, optlen))
4806 		return -EFAULT;
4807 	if (copy_to_user(optval, &adaptation, len))
4808 		return -EFAULT;
4809 
4810 	return 0;
4811 }
4812 
4813 /*
4814  *
4815  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4816  *
4817  *   Applications that wish to use the sendto() system call may wish to
4818  *   specify a default set of parameters that would normally be supplied
4819  *   through the inclusion of ancillary data.  This socket option allows
4820  *   such an application to set the default sctp_sndrcvinfo structure.
4821 
4822 
4823  *   The application that wishes to use this socket option simply passes
4824  *   in to this call the sctp_sndrcvinfo structure defined in Section
4825  *   5.2.2) The input parameters accepted by this call include
4826  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4827  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
4828  *   to this call if the caller is using the UDP model.
4829  *
4830  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
4831  */
4832 static int sctp_getsockopt_default_send_param(struct sock *sk,
4833 					int len, char __user *optval,
4834 					int __user *optlen)
4835 {
4836 	struct sctp_sndrcvinfo info;
4837 	struct sctp_association *asoc;
4838 	struct sctp_sock *sp = sctp_sk(sk);
4839 
4840 	if (len < sizeof(struct sctp_sndrcvinfo))
4841 		return -EINVAL;
4842 
4843 	len = sizeof(struct sctp_sndrcvinfo);
4844 
4845 	if (copy_from_user(&info, optval, len))
4846 		return -EFAULT;
4847 
4848 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4849 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4850 		return -EINVAL;
4851 
4852 	if (asoc) {
4853 		info.sinfo_stream = asoc->default_stream;
4854 		info.sinfo_flags = asoc->default_flags;
4855 		info.sinfo_ppid = asoc->default_ppid;
4856 		info.sinfo_context = asoc->default_context;
4857 		info.sinfo_timetolive = asoc->default_timetolive;
4858 	} else {
4859 		info.sinfo_stream = sp->default_stream;
4860 		info.sinfo_flags = sp->default_flags;
4861 		info.sinfo_ppid = sp->default_ppid;
4862 		info.sinfo_context = sp->default_context;
4863 		info.sinfo_timetolive = sp->default_timetolive;
4864 	}
4865 
4866 	if (put_user(len, optlen))
4867 		return -EFAULT;
4868 	if (copy_to_user(optval, &info, len))
4869 		return -EFAULT;
4870 
4871 	return 0;
4872 }
4873 
4874 /*
4875  *
4876  * 7.1.5 SCTP_NODELAY
4877  *
4878  * Turn on/off any Nagle-like algorithm.  This means that packets are
4879  * generally sent as soon as possible and no unnecessary delays are
4880  * introduced, at the cost of more packets in the network.  Expects an
4881  * integer boolean flag.
4882  */
4883 
4884 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4885 				   char __user *optval, int __user *optlen)
4886 {
4887 	int val;
4888 
4889 	if (len < sizeof(int))
4890 		return -EINVAL;
4891 
4892 	len = sizeof(int);
4893 	val = (sctp_sk(sk)->nodelay == 1);
4894 	if (put_user(len, optlen))
4895 		return -EFAULT;
4896 	if (copy_to_user(optval, &val, len))
4897 		return -EFAULT;
4898 	return 0;
4899 }
4900 
4901 /*
4902  *
4903  * 7.1.1 SCTP_RTOINFO
4904  *
4905  * The protocol parameters used to initialize and bound retransmission
4906  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4907  * and modify these parameters.
4908  * All parameters are time values, in milliseconds.  A value of 0, when
4909  * modifying the parameters, indicates that the current value should not
4910  * be changed.
4911  *
4912  */
4913 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4914 				char __user *optval,
4915 				int __user *optlen) {
4916 	struct sctp_rtoinfo rtoinfo;
4917 	struct sctp_association *asoc;
4918 
4919 	if (len < sizeof (struct sctp_rtoinfo))
4920 		return -EINVAL;
4921 
4922 	len = sizeof(struct sctp_rtoinfo);
4923 
4924 	if (copy_from_user(&rtoinfo, optval, len))
4925 		return -EFAULT;
4926 
4927 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4928 
4929 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4930 		return -EINVAL;
4931 
4932 	/* Values corresponding to the specific association. */
4933 	if (asoc) {
4934 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4935 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4936 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4937 	} else {
4938 		/* Values corresponding to the endpoint. */
4939 		struct sctp_sock *sp = sctp_sk(sk);
4940 
4941 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4942 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
4943 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
4944 	}
4945 
4946 	if (put_user(len, optlen))
4947 		return -EFAULT;
4948 
4949 	if (copy_to_user(optval, &rtoinfo, len))
4950 		return -EFAULT;
4951 
4952 	return 0;
4953 }
4954 
4955 /*
4956  *
4957  * 7.1.2 SCTP_ASSOCINFO
4958  *
4959  * This option is used to tune the maximum retransmission attempts
4960  * of the association.
4961  * Returns an error if the new association retransmission value is
4962  * greater than the sum of the retransmission value  of the peer.
4963  * See [SCTP] for more information.
4964  *
4965  */
4966 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4967 				     char __user *optval,
4968 				     int __user *optlen)
4969 {
4970 
4971 	struct sctp_assocparams assocparams;
4972 	struct sctp_association *asoc;
4973 	struct list_head *pos;
4974 	int cnt = 0;
4975 
4976 	if (len < sizeof (struct sctp_assocparams))
4977 		return -EINVAL;
4978 
4979 	len = sizeof(struct sctp_assocparams);
4980 
4981 	if (copy_from_user(&assocparams, optval, len))
4982 		return -EFAULT;
4983 
4984 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4985 
4986 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4987 		return -EINVAL;
4988 
4989 	/* Values correspoinding to the specific association */
4990 	if (asoc) {
4991 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4992 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4993 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4994 		assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4995 						* 1000) +
4996 						(asoc->cookie_life.tv_usec
4997 						/ 1000);
4998 
4999 		list_for_each(pos, &asoc->peer.transport_addr_list) {
5000 			cnt ++;
5001 		}
5002 
5003 		assocparams.sasoc_number_peer_destinations = cnt;
5004 	} else {
5005 		/* Values corresponding to the endpoint */
5006 		struct sctp_sock *sp = sctp_sk(sk);
5007 
5008 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5009 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5010 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5011 		assocparams.sasoc_cookie_life =
5012 					sp->assocparams.sasoc_cookie_life;
5013 		assocparams.sasoc_number_peer_destinations =
5014 					sp->assocparams.
5015 					sasoc_number_peer_destinations;
5016 	}
5017 
5018 	if (put_user(len, optlen))
5019 		return -EFAULT;
5020 
5021 	if (copy_to_user(optval, &assocparams, len))
5022 		return -EFAULT;
5023 
5024 	return 0;
5025 }
5026 
5027 /*
5028  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5029  *
5030  * This socket option is a boolean flag which turns on or off mapped V4
5031  * addresses.  If this option is turned on and the socket is type
5032  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5033  * If this option is turned off, then no mapping will be done of V4
5034  * addresses and a user will receive both PF_INET6 and PF_INET type
5035  * addresses on the socket.
5036  */
5037 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5038 				    char __user *optval, int __user *optlen)
5039 {
5040 	int val;
5041 	struct sctp_sock *sp = sctp_sk(sk);
5042 
5043 	if (len < sizeof(int))
5044 		return -EINVAL;
5045 
5046 	len = sizeof(int);
5047 	val = sp->v4mapped;
5048 	if (put_user(len, optlen))
5049 		return -EFAULT;
5050 	if (copy_to_user(optval, &val, len))
5051 		return -EFAULT;
5052 
5053 	return 0;
5054 }
5055 
5056 /*
5057  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
5058  * (chapter and verse is quoted at sctp_setsockopt_context())
5059  */
5060 static int sctp_getsockopt_context(struct sock *sk, int len,
5061 				   char __user *optval, int __user *optlen)
5062 {
5063 	struct sctp_assoc_value params;
5064 	struct sctp_sock *sp;
5065 	struct sctp_association *asoc;
5066 
5067 	if (len < sizeof(struct sctp_assoc_value))
5068 		return -EINVAL;
5069 
5070 	len = sizeof(struct sctp_assoc_value);
5071 
5072 	if (copy_from_user(&params, optval, len))
5073 		return -EFAULT;
5074 
5075 	sp = sctp_sk(sk);
5076 
5077 	if (params.assoc_id != 0) {
5078 		asoc = sctp_id2assoc(sk, params.assoc_id);
5079 		if (!asoc)
5080 			return -EINVAL;
5081 		params.assoc_value = asoc->default_rcv_context;
5082 	} else {
5083 		params.assoc_value = sp->default_rcv_context;
5084 	}
5085 
5086 	if (put_user(len, optlen))
5087 		return -EFAULT;
5088 	if (copy_to_user(optval, &params, len))
5089 		return -EFAULT;
5090 
5091 	return 0;
5092 }
5093 
5094 /*
5095  * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
5096  *
5097  * This socket option specifies the maximum size to put in any outgoing
5098  * SCTP chunk.  If a message is larger than this size it will be
5099  * fragmented by SCTP into the specified size.  Note that the underlying
5100  * SCTP implementation may fragment into smaller sized chunks when the
5101  * PMTU of the underlying association is smaller than the value set by
5102  * the user.
5103  */
5104 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5105 				  char __user *optval, int __user *optlen)
5106 {
5107 	int val;
5108 
5109 	if (len < sizeof(int))
5110 		return -EINVAL;
5111 
5112 	len = sizeof(int);
5113 
5114 	val = sctp_sk(sk)->user_frag;
5115 	if (put_user(len, optlen))
5116 		return -EFAULT;
5117 	if (copy_to_user(optval, &val, len))
5118 		return -EFAULT;
5119 
5120 	return 0;
5121 }
5122 
5123 /*
5124  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5125  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5126  */
5127 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5128 					       char __user *optval, int __user *optlen)
5129 {
5130 	int val;
5131 
5132 	if (len < sizeof(int))
5133 		return -EINVAL;
5134 
5135 	len = sizeof(int);
5136 
5137 	val = sctp_sk(sk)->frag_interleave;
5138 	if (put_user(len, optlen))
5139 		return -EFAULT;
5140 	if (copy_to_user(optval, &val, len))
5141 		return -EFAULT;
5142 
5143 	return 0;
5144 }
5145 
5146 /*
5147  * 7.1.25.  Set or Get the sctp partial delivery point
5148  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5149  */
5150 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5151 						  char __user *optval,
5152 						  int __user *optlen)
5153 {
5154 	u32 val;
5155 
5156 	if (len < sizeof(u32))
5157 		return -EINVAL;
5158 
5159 	len = sizeof(u32);
5160 
5161 	val = sctp_sk(sk)->pd_point;
5162 	if (put_user(len, optlen))
5163 		return -EFAULT;
5164 	if (copy_to_user(optval, &val, len))
5165 		return -EFAULT;
5166 
5167 	return -ENOTSUPP;
5168 }
5169 
5170 /*
5171  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
5172  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5173  */
5174 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5175 				    char __user *optval,
5176 				    int __user *optlen)
5177 {
5178 	struct sctp_assoc_value params;
5179 	struct sctp_sock *sp;
5180 	struct sctp_association *asoc;
5181 
5182 	if (len < sizeof(int))
5183 		return -EINVAL;
5184 
5185 	if (len == sizeof(int)) {
5186 		printk(KERN_WARNING
5187 		   "SCTP: Use of int in max_burst socket option deprecated\n");
5188 		printk(KERN_WARNING
5189 		   "SCTP: Use struct sctp_assoc_value instead\n");
5190 		params.assoc_id = 0;
5191 	} else if (len == sizeof (struct sctp_assoc_value)) {
5192 		if (copy_from_user(&params, optval, len))
5193 			return -EFAULT;
5194 	} else
5195 		return -EINVAL;
5196 
5197 	sp = sctp_sk(sk);
5198 
5199 	if (params.assoc_id != 0) {
5200 		asoc = sctp_id2assoc(sk, params.assoc_id);
5201 		if (!asoc)
5202 			return -EINVAL;
5203 		params.assoc_value = asoc->max_burst;
5204 	} else
5205 		params.assoc_value = sp->max_burst;
5206 
5207 	if (len == sizeof(int)) {
5208 		if (copy_to_user(optval, &params.assoc_value, len))
5209 			return -EFAULT;
5210 	} else {
5211 		if (copy_to_user(optval, &params, len))
5212 			return -EFAULT;
5213 	}
5214 
5215 	return 0;
5216 
5217 }
5218 
5219 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5220 				    char __user *optval, int __user *optlen)
5221 {
5222 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
5223 	struct sctp_hmac_algo_param *hmacs;
5224 	__u16 data_len = 0;
5225 	u32 num_idents;
5226 
5227 	if (!sctp_auth_enable)
5228 		return -EACCES;
5229 
5230 	hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5231 	data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5232 
5233 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
5234 		return -EINVAL;
5235 
5236 	len = sizeof(struct sctp_hmacalgo) + data_len;
5237 	num_idents = data_len / sizeof(u16);
5238 
5239 	if (put_user(len, optlen))
5240 		return -EFAULT;
5241 	if (put_user(num_idents, &p->shmac_num_idents))
5242 		return -EFAULT;
5243 	if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5244 		return -EFAULT;
5245 	return 0;
5246 }
5247 
5248 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5249 				    char __user *optval, int __user *optlen)
5250 {
5251 	struct sctp_authkeyid val;
5252 	struct sctp_association *asoc;
5253 
5254 	if (!sctp_auth_enable)
5255 		return -EACCES;
5256 
5257 	if (len < sizeof(struct sctp_authkeyid))
5258 		return -EINVAL;
5259 	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5260 		return -EFAULT;
5261 
5262 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5263 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5264 		return -EINVAL;
5265 
5266 	if (asoc)
5267 		val.scact_keynumber = asoc->active_key_id;
5268 	else
5269 		val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5270 
5271 	len = sizeof(struct sctp_authkeyid);
5272 	if (put_user(len, optlen))
5273 		return -EFAULT;
5274 	if (copy_to_user(optval, &val, len))
5275 		return -EFAULT;
5276 
5277 	return 0;
5278 }
5279 
5280 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5281 				    char __user *optval, int __user *optlen)
5282 {
5283 	struct sctp_authchunks __user *p = (void __user *)optval;
5284 	struct sctp_authchunks val;
5285 	struct sctp_association *asoc;
5286 	struct sctp_chunks_param *ch;
5287 	u32    num_chunks = 0;
5288 	char __user *to;
5289 
5290 	if (!sctp_auth_enable)
5291 		return -EACCES;
5292 
5293 	if (len < sizeof(struct sctp_authchunks))
5294 		return -EINVAL;
5295 
5296 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5297 		return -EFAULT;
5298 
5299 	to = p->gauth_chunks;
5300 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5301 	if (!asoc)
5302 		return -EINVAL;
5303 
5304 	ch = asoc->peer.peer_chunks;
5305 	if (!ch)
5306 		goto num;
5307 
5308 	/* See if the user provided enough room for all the data */
5309 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5310 	if (len < num_chunks)
5311 		return -EINVAL;
5312 
5313 	if (copy_to_user(to, ch->chunks, num_chunks))
5314 		return -EFAULT;
5315 num:
5316 	len = sizeof(struct sctp_authchunks) + num_chunks;
5317 	if (put_user(len, optlen)) return -EFAULT;
5318 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5319 		return -EFAULT;
5320 	return 0;
5321 }
5322 
5323 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5324 				    char __user *optval, int __user *optlen)
5325 {
5326 	struct sctp_authchunks __user *p = (void __user *)optval;
5327 	struct sctp_authchunks val;
5328 	struct sctp_association *asoc;
5329 	struct sctp_chunks_param *ch;
5330 	u32    num_chunks = 0;
5331 	char __user *to;
5332 
5333 	if (!sctp_auth_enable)
5334 		return -EACCES;
5335 
5336 	if (len < sizeof(struct sctp_authchunks))
5337 		return -EINVAL;
5338 
5339 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5340 		return -EFAULT;
5341 
5342 	to = p->gauth_chunks;
5343 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5344 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5345 		return -EINVAL;
5346 
5347 	if (asoc)
5348 		ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5349 	else
5350 		ch = sctp_sk(sk)->ep->auth_chunk_list;
5351 
5352 	if (!ch)
5353 		goto num;
5354 
5355 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5356 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
5357 		return -EINVAL;
5358 
5359 	if (copy_to_user(to, ch->chunks, num_chunks))
5360 		return -EFAULT;
5361 num:
5362 	len = sizeof(struct sctp_authchunks) + num_chunks;
5363 	if (put_user(len, optlen))
5364 		return -EFAULT;
5365 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5366 		return -EFAULT;
5367 
5368 	return 0;
5369 }
5370 
5371 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
5372 				char __user *optval, int __user *optlen)
5373 {
5374 	int retval = 0;
5375 	int len;
5376 
5377 	SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
5378 			  sk, optname);
5379 
5380 	/* I can hardly begin to describe how wrong this is.  This is
5381 	 * so broken as to be worse than useless.  The API draft
5382 	 * REALLY is NOT helpful here...  I am not convinced that the
5383 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5384 	 * are at all well-founded.
5385 	 */
5386 	if (level != SOL_SCTP) {
5387 		struct sctp_af *af = sctp_sk(sk)->pf->af;
5388 
5389 		retval = af->getsockopt(sk, level, optname, optval, optlen);
5390 		return retval;
5391 	}
5392 
5393 	if (get_user(len, optlen))
5394 		return -EFAULT;
5395 
5396 	sctp_lock_sock(sk);
5397 
5398 	switch (optname) {
5399 	case SCTP_STATUS:
5400 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5401 		break;
5402 	case SCTP_DISABLE_FRAGMENTS:
5403 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5404 							   optlen);
5405 		break;
5406 	case SCTP_EVENTS:
5407 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
5408 		break;
5409 	case SCTP_AUTOCLOSE:
5410 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5411 		break;
5412 	case SCTP_SOCKOPT_PEELOFF:
5413 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5414 		break;
5415 	case SCTP_PEER_ADDR_PARAMS:
5416 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5417 							  optlen);
5418 		break;
5419 	case SCTP_DELAYED_ACK:
5420 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5421 							  optlen);
5422 		break;
5423 	case SCTP_INITMSG:
5424 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5425 		break;
5426 	case SCTP_GET_PEER_ADDRS_NUM_OLD:
5427 		retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval,
5428 							    optlen);
5429 		break;
5430 	case SCTP_GET_LOCAL_ADDRS_NUM_OLD:
5431 		retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval,
5432 							     optlen);
5433 		break;
5434 	case SCTP_GET_PEER_ADDRS_OLD:
5435 		retval = sctp_getsockopt_peer_addrs_old(sk, len, optval,
5436 							optlen);
5437 		break;
5438 	case SCTP_GET_LOCAL_ADDRS_OLD:
5439 		retval = sctp_getsockopt_local_addrs_old(sk, len, optval,
5440 							 optlen);
5441 		break;
5442 	case SCTP_GET_PEER_ADDRS:
5443 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5444 						    optlen);
5445 		break;
5446 	case SCTP_GET_LOCAL_ADDRS:
5447 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
5448 						     optlen);
5449 		break;
5450 	case SCTP_DEFAULT_SEND_PARAM:
5451 		retval = sctp_getsockopt_default_send_param(sk, len,
5452 							    optval, optlen);
5453 		break;
5454 	case SCTP_PRIMARY_ADDR:
5455 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5456 		break;
5457 	case SCTP_NODELAY:
5458 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5459 		break;
5460 	case SCTP_RTOINFO:
5461 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5462 		break;
5463 	case SCTP_ASSOCINFO:
5464 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5465 		break;
5466 	case SCTP_I_WANT_MAPPED_V4_ADDR:
5467 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5468 		break;
5469 	case SCTP_MAXSEG:
5470 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5471 		break;
5472 	case SCTP_GET_PEER_ADDR_INFO:
5473 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5474 							optlen);
5475 		break;
5476 	case SCTP_ADAPTATION_LAYER:
5477 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5478 							optlen);
5479 		break;
5480 	case SCTP_CONTEXT:
5481 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
5482 		break;
5483 	case SCTP_FRAGMENT_INTERLEAVE:
5484 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5485 							     optlen);
5486 		break;
5487 	case SCTP_PARTIAL_DELIVERY_POINT:
5488 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5489 								optlen);
5490 		break;
5491 	case SCTP_MAX_BURST:
5492 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5493 		break;
5494 	case SCTP_AUTH_KEY:
5495 	case SCTP_AUTH_CHUNK:
5496 	case SCTP_AUTH_DELETE_KEY:
5497 		retval = -EOPNOTSUPP;
5498 		break;
5499 	case SCTP_HMAC_IDENT:
5500 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5501 		break;
5502 	case SCTP_AUTH_ACTIVE_KEY:
5503 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5504 		break;
5505 	case SCTP_PEER_AUTH_CHUNKS:
5506 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5507 							optlen);
5508 		break;
5509 	case SCTP_LOCAL_AUTH_CHUNKS:
5510 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5511 							optlen);
5512 		break;
5513 	default:
5514 		retval = -ENOPROTOOPT;
5515 		break;
5516 	}
5517 
5518 	sctp_release_sock(sk);
5519 	return retval;
5520 }
5521 
5522 static void sctp_hash(struct sock *sk)
5523 {
5524 	/* STUB */
5525 }
5526 
5527 static void sctp_unhash(struct sock *sk)
5528 {
5529 	/* STUB */
5530 }
5531 
5532 /* Check if port is acceptable.  Possibly find first available port.
5533  *
5534  * The port hash table (contained in the 'global' SCTP protocol storage
5535  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5536  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5537  * list (the list number is the port number hashed out, so as you
5538  * would expect from a hash function, all the ports in a given list have
5539  * such a number that hashes out to the same list number; you were
5540  * expecting that, right?); so each list has a set of ports, with a
5541  * link to the socket (struct sock) that uses it, the port number and
5542  * a fastreuse flag (FIXME: NPI ipg).
5543  */
5544 static struct sctp_bind_bucket *sctp_bucket_create(
5545 	struct sctp_bind_hashbucket *head, unsigned short snum);
5546 
5547 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5548 {
5549 	struct sctp_bind_hashbucket *head; /* hash list */
5550 	struct sctp_bind_bucket *pp; /* hash list port iterator */
5551 	struct hlist_node *node;
5552 	unsigned short snum;
5553 	int ret;
5554 
5555 	snum = ntohs(addr->v4.sin_port);
5556 
5557 	SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5558 	sctp_local_bh_disable();
5559 
5560 	if (snum == 0) {
5561 		/* Search for an available port. */
5562 		int low, high, remaining, index;
5563 		unsigned int rover;
5564 
5565 		inet_get_local_port_range(&low, &high);
5566 		remaining = (high - low) + 1;
5567 		rover = net_random() % remaining + low;
5568 
5569 		do {
5570 			rover++;
5571 			if ((rover < low) || (rover > high))
5572 				rover = low;
5573 			index = sctp_phashfn(rover);
5574 			head = &sctp_port_hashtable[index];
5575 			sctp_spin_lock(&head->lock);
5576 			sctp_for_each_hentry(pp, node, &head->chain)
5577 				if (pp->port == rover)
5578 					goto next;
5579 			break;
5580 		next:
5581 			sctp_spin_unlock(&head->lock);
5582 		} while (--remaining > 0);
5583 
5584 		/* Exhausted local port range during search? */
5585 		ret = 1;
5586 		if (remaining <= 0)
5587 			goto fail;
5588 
5589 		/* OK, here is the one we will use.  HEAD (the port
5590 		 * hash table list entry) is non-NULL and we hold it's
5591 		 * mutex.
5592 		 */
5593 		snum = rover;
5594 	} else {
5595 		/* We are given an specific port number; we verify
5596 		 * that it is not being used. If it is used, we will
5597 		 * exahust the search in the hash list corresponding
5598 		 * to the port number (snum) - we detect that with the
5599 		 * port iterator, pp being NULL.
5600 		 */
5601 		head = &sctp_port_hashtable[sctp_phashfn(snum)];
5602 		sctp_spin_lock(&head->lock);
5603 		sctp_for_each_hentry(pp, node, &head->chain) {
5604 			if (pp->port == snum)
5605 				goto pp_found;
5606 		}
5607 	}
5608 	pp = NULL;
5609 	goto pp_not_found;
5610 pp_found:
5611 	if (!hlist_empty(&pp->owner)) {
5612 		/* We had a port hash table hit - there is an
5613 		 * available port (pp != NULL) and it is being
5614 		 * used by other socket (pp->owner not empty); that other
5615 		 * socket is going to be sk2.
5616 		 */
5617 		int reuse = sk->sk_reuse;
5618 		struct sock *sk2;
5619 		struct hlist_node *node;
5620 
5621 		SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5622 		if (pp->fastreuse && sk->sk_reuse &&
5623 			sk->sk_state != SCTP_SS_LISTENING)
5624 			goto success;
5625 
5626 		/* Run through the list of sockets bound to the port
5627 		 * (pp->port) [via the pointers bind_next and
5628 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5629 		 * we get the endpoint they describe and run through
5630 		 * the endpoint's list of IP (v4 or v6) addresses,
5631 		 * comparing each of the addresses with the address of
5632 		 * the socket sk. If we find a match, then that means
5633 		 * that this port/socket (sk) combination are already
5634 		 * in an endpoint.
5635 		 */
5636 		sk_for_each_bound(sk2, node, &pp->owner) {
5637 			struct sctp_endpoint *ep2;
5638 			ep2 = sctp_sk(sk2)->ep;
5639 
5640 			if (sk == sk2 ||
5641 			    (reuse && sk2->sk_reuse &&
5642 			     sk2->sk_state != SCTP_SS_LISTENING))
5643 				continue;
5644 
5645 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
5646 						 sctp_sk(sk2), sctp_sk(sk))) {
5647 				ret = (long)sk2;
5648 				goto fail_unlock;
5649 			}
5650 		}
5651 		SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5652 	}
5653 pp_not_found:
5654 	/* If there was a hash table miss, create a new port.  */
5655 	ret = 1;
5656 	if (!pp && !(pp = sctp_bucket_create(head, snum)))
5657 		goto fail_unlock;
5658 
5659 	/* In either case (hit or miss), make sure fastreuse is 1 only
5660 	 * if sk->sk_reuse is too (that is, if the caller requested
5661 	 * SO_REUSEADDR on this socket -sk-).
5662 	 */
5663 	if (hlist_empty(&pp->owner)) {
5664 		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5665 			pp->fastreuse = 1;
5666 		else
5667 			pp->fastreuse = 0;
5668 	} else if (pp->fastreuse &&
5669 		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
5670 		pp->fastreuse = 0;
5671 
5672 	/* We are set, so fill up all the data in the hash table
5673 	 * entry, tie the socket list information with the rest of the
5674 	 * sockets FIXME: Blurry, NPI (ipg).
5675 	 */
5676 success:
5677 	if (!sctp_sk(sk)->bind_hash) {
5678 		inet_sk(sk)->num = snum;
5679 		sk_add_bind_node(sk, &pp->owner);
5680 		sctp_sk(sk)->bind_hash = pp;
5681 	}
5682 	ret = 0;
5683 
5684 fail_unlock:
5685 	sctp_spin_unlock(&head->lock);
5686 
5687 fail:
5688 	sctp_local_bh_enable();
5689 	return ret;
5690 }
5691 
5692 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
5693  * port is requested.
5694  */
5695 static int sctp_get_port(struct sock *sk, unsigned short snum)
5696 {
5697 	long ret;
5698 	union sctp_addr addr;
5699 	struct sctp_af *af = sctp_sk(sk)->pf->af;
5700 
5701 	/* Set up a dummy address struct from the sk. */
5702 	af->from_sk(&addr, sk);
5703 	addr.v4.sin_port = htons(snum);
5704 
5705 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
5706 	ret = sctp_get_port_local(sk, &addr);
5707 
5708 	return (ret ? 1 : 0);
5709 }
5710 
5711 /*
5712  * 3.1.3 listen() - UDP Style Syntax
5713  *
5714  *   By default, new associations are not accepted for UDP style sockets.
5715  *   An application uses listen() to mark a socket as being able to
5716  *   accept new associations.
5717  */
5718 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog)
5719 {
5720 	struct sctp_sock *sp = sctp_sk(sk);
5721 	struct sctp_endpoint *ep = sp->ep;
5722 
5723 	/* Only UDP style sockets that are not peeled off are allowed to
5724 	 * listen().
5725 	 */
5726 	if (!sctp_style(sk, UDP))
5727 		return -EINVAL;
5728 
5729 	/* If backlog is zero, disable listening. */
5730 	if (!backlog) {
5731 		if (sctp_sstate(sk, CLOSED))
5732 			return 0;
5733 
5734 		sctp_unhash_endpoint(ep);
5735 		sk->sk_state = SCTP_SS_CLOSED;
5736 		return 0;
5737 	}
5738 
5739 	/* Return if we are already listening. */
5740 	if (sctp_sstate(sk, LISTENING))
5741 		return 0;
5742 
5743 	/*
5744 	 * If a bind() or sctp_bindx() is not called prior to a listen()
5745 	 * call that allows new associations to be accepted, the system
5746 	 * picks an ephemeral port and will choose an address set equivalent
5747 	 * to binding with a wildcard address.
5748 	 *
5749 	 * This is not currently spelled out in the SCTP sockets
5750 	 * extensions draft, but follows the practice as seen in TCP
5751 	 * sockets.
5752 	 *
5753 	 * Additionally, turn off fastreuse flag since we are not listening
5754 	 */
5755 	sk->sk_state = SCTP_SS_LISTENING;
5756 	if (!ep->base.bind_addr.port) {
5757 		if (sctp_autobind(sk))
5758 			return -EAGAIN;
5759 	} else {
5760 		if (sctp_get_port(sk, inet_sk(sk)->num)) {
5761 			sk->sk_state = SCTP_SS_CLOSED;
5762 			return -EADDRINUSE;
5763 		}
5764 		sctp_sk(sk)->bind_hash->fastreuse = 0;
5765 	}
5766 
5767 	sctp_hash_endpoint(ep);
5768 	return 0;
5769 }
5770 
5771 /*
5772  * 4.1.3 listen() - TCP Style Syntax
5773  *
5774  *   Applications uses listen() to ready the SCTP endpoint for accepting
5775  *   inbound associations.
5776  */
5777 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog)
5778 {
5779 	struct sctp_sock *sp = sctp_sk(sk);
5780 	struct sctp_endpoint *ep = sp->ep;
5781 
5782 	/* If backlog is zero, disable listening. */
5783 	if (!backlog) {
5784 		if (sctp_sstate(sk, CLOSED))
5785 			return 0;
5786 
5787 		sctp_unhash_endpoint(ep);
5788 		sk->sk_state = SCTP_SS_CLOSED;
5789 		return 0;
5790 	}
5791 
5792 	if (sctp_sstate(sk, LISTENING))
5793 		return 0;
5794 
5795 	/*
5796 	 * If a bind() or sctp_bindx() is not called prior to a listen()
5797 	 * call that allows new associations to be accepted, the system
5798 	 * picks an ephemeral port and will choose an address set equivalent
5799 	 * to binding with a wildcard address.
5800 	 *
5801 	 * This is not currently spelled out in the SCTP sockets
5802 	 * extensions draft, but follows the practice as seen in TCP
5803 	 * sockets.
5804 	 */
5805 	sk->sk_state = SCTP_SS_LISTENING;
5806 	if (!ep->base.bind_addr.port) {
5807 		if (sctp_autobind(sk))
5808 			return -EAGAIN;
5809 	} else
5810 		sctp_sk(sk)->bind_hash->fastreuse = 0;
5811 
5812 	sk->sk_max_ack_backlog = backlog;
5813 	sctp_hash_endpoint(ep);
5814 	return 0;
5815 }
5816 
5817 /*
5818  *  Move a socket to LISTENING state.
5819  */
5820 int sctp_inet_listen(struct socket *sock, int backlog)
5821 {
5822 	struct sock *sk = sock->sk;
5823 	struct crypto_hash *tfm = NULL;
5824 	int err = -EINVAL;
5825 
5826 	if (unlikely(backlog < 0))
5827 		goto out;
5828 
5829 	sctp_lock_sock(sk);
5830 
5831 	if (sock->state != SS_UNCONNECTED)
5832 		goto out;
5833 
5834 	/* Allocate HMAC for generating cookie. */
5835 	if (!sctp_sk(sk)->hmac && sctp_hmac_alg) {
5836 		tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
5837 		if (IS_ERR(tfm)) {
5838 			if (net_ratelimit()) {
5839 				printk(KERN_INFO
5840 				       "SCTP: failed to load transform for %s: %ld\n",
5841 					sctp_hmac_alg, PTR_ERR(tfm));
5842 			}
5843 			err = -ENOSYS;
5844 			goto out;
5845 		}
5846 	}
5847 
5848 	switch (sock->type) {
5849 	case SOCK_SEQPACKET:
5850 		err = sctp_seqpacket_listen(sk, backlog);
5851 		break;
5852 	case SOCK_STREAM:
5853 		err = sctp_stream_listen(sk, backlog);
5854 		break;
5855 	default:
5856 		break;
5857 	}
5858 
5859 	if (err)
5860 		goto cleanup;
5861 
5862 	/* Store away the transform reference. */
5863 	if (!sctp_sk(sk)->hmac)
5864 		sctp_sk(sk)->hmac = tfm;
5865 out:
5866 	sctp_release_sock(sk);
5867 	return err;
5868 cleanup:
5869 	crypto_free_hash(tfm);
5870 	goto out;
5871 }
5872 
5873 /*
5874  * This function is done by modeling the current datagram_poll() and the
5875  * tcp_poll().  Note that, based on these implementations, we don't
5876  * lock the socket in this function, even though it seems that,
5877  * ideally, locking or some other mechanisms can be used to ensure
5878  * the integrity of the counters (sndbuf and wmem_alloc) used
5879  * in this place.  We assume that we don't need locks either until proven
5880  * otherwise.
5881  *
5882  * Another thing to note is that we include the Async I/O support
5883  * here, again, by modeling the current TCP/UDP code.  We don't have
5884  * a good way to test with it yet.
5885  */
5886 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
5887 {
5888 	struct sock *sk = sock->sk;
5889 	struct sctp_sock *sp = sctp_sk(sk);
5890 	unsigned int mask;
5891 
5892 	poll_wait(file, sk->sk_sleep, wait);
5893 
5894 	/* A TCP-style listening socket becomes readable when the accept queue
5895 	 * is not empty.
5896 	 */
5897 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
5898 		return (!list_empty(&sp->ep->asocs)) ?
5899 			(POLLIN | POLLRDNORM) : 0;
5900 
5901 	mask = 0;
5902 
5903 	/* Is there any exceptional events?  */
5904 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
5905 		mask |= POLLERR;
5906 	if (sk->sk_shutdown & RCV_SHUTDOWN)
5907 		mask |= POLLRDHUP;
5908 	if (sk->sk_shutdown == SHUTDOWN_MASK)
5909 		mask |= POLLHUP;
5910 
5911 	/* Is it readable?  Reconsider this code with TCP-style support.  */
5912 	if (!skb_queue_empty(&sk->sk_receive_queue) ||
5913 	    (sk->sk_shutdown & RCV_SHUTDOWN))
5914 		mask |= POLLIN | POLLRDNORM;
5915 
5916 	/* The association is either gone or not ready.  */
5917 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
5918 		return mask;
5919 
5920 	/* Is it writable?  */
5921 	if (sctp_writeable(sk)) {
5922 		mask |= POLLOUT | POLLWRNORM;
5923 	} else {
5924 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
5925 		/*
5926 		 * Since the socket is not locked, the buffer
5927 		 * might be made available after the writeable check and
5928 		 * before the bit is set.  This could cause a lost I/O
5929 		 * signal.  tcp_poll() has a race breaker for this race
5930 		 * condition.  Based on their implementation, we put
5931 		 * in the following code to cover it as well.
5932 		 */
5933 		if (sctp_writeable(sk))
5934 			mask |= POLLOUT | POLLWRNORM;
5935 	}
5936 	return mask;
5937 }
5938 
5939 /********************************************************************
5940  * 2nd Level Abstractions
5941  ********************************************************************/
5942 
5943 static struct sctp_bind_bucket *sctp_bucket_create(
5944 	struct sctp_bind_hashbucket *head, unsigned short snum)
5945 {
5946 	struct sctp_bind_bucket *pp;
5947 
5948 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
5949 	if (pp) {
5950 		SCTP_DBG_OBJCNT_INC(bind_bucket);
5951 		pp->port = snum;
5952 		pp->fastreuse = 0;
5953 		INIT_HLIST_HEAD(&pp->owner);
5954 		hlist_add_head(&pp->node, &head->chain);
5955 	}
5956 	return pp;
5957 }
5958 
5959 /* Caller must hold hashbucket lock for this tb with local BH disabled */
5960 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
5961 {
5962 	if (pp && hlist_empty(&pp->owner)) {
5963 		__hlist_del(&pp->node);
5964 		kmem_cache_free(sctp_bucket_cachep, pp);
5965 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
5966 	}
5967 }
5968 
5969 /* Release this socket's reference to a local port.  */
5970 static inline void __sctp_put_port(struct sock *sk)
5971 {
5972 	struct sctp_bind_hashbucket *head =
5973 		&sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)];
5974 	struct sctp_bind_bucket *pp;
5975 
5976 	sctp_spin_lock(&head->lock);
5977 	pp = sctp_sk(sk)->bind_hash;
5978 	__sk_del_bind_node(sk);
5979 	sctp_sk(sk)->bind_hash = NULL;
5980 	inet_sk(sk)->num = 0;
5981 	sctp_bucket_destroy(pp);
5982 	sctp_spin_unlock(&head->lock);
5983 }
5984 
5985 void sctp_put_port(struct sock *sk)
5986 {
5987 	sctp_local_bh_disable();
5988 	__sctp_put_port(sk);
5989 	sctp_local_bh_enable();
5990 }
5991 
5992 /*
5993  * The system picks an ephemeral port and choose an address set equivalent
5994  * to binding with a wildcard address.
5995  * One of those addresses will be the primary address for the association.
5996  * This automatically enables the multihoming capability of SCTP.
5997  */
5998 static int sctp_autobind(struct sock *sk)
5999 {
6000 	union sctp_addr autoaddr;
6001 	struct sctp_af *af;
6002 	__be16 port;
6003 
6004 	/* Initialize a local sockaddr structure to INADDR_ANY. */
6005 	af = sctp_sk(sk)->pf->af;
6006 
6007 	port = htons(inet_sk(sk)->num);
6008 	af->inaddr_any(&autoaddr, port);
6009 
6010 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6011 }
6012 
6013 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
6014  *
6015  * From RFC 2292
6016  * 4.2 The cmsghdr Structure *
6017  *
6018  * When ancillary data is sent or received, any number of ancillary data
6019  * objects can be specified by the msg_control and msg_controllen members of
6020  * the msghdr structure, because each object is preceded by
6021  * a cmsghdr structure defining the object's length (the cmsg_len member).
6022  * Historically Berkeley-derived implementations have passed only one object
6023  * at a time, but this API allows multiple objects to be
6024  * passed in a single call to sendmsg() or recvmsg(). The following example
6025  * shows two ancillary data objects in a control buffer.
6026  *
6027  *   |<--------------------------- msg_controllen -------------------------->|
6028  *   |                                                                       |
6029  *
6030  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
6031  *
6032  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6033  *   |                                   |                                   |
6034  *
6035  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
6036  *
6037  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
6038  *   |                                |  |                                |  |
6039  *
6040  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6041  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
6042  *
6043  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
6044  *
6045  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6046  *    ^
6047  *    |
6048  *
6049  * msg_control
6050  * points here
6051  */
6052 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
6053 				  sctp_cmsgs_t *cmsgs)
6054 {
6055 	struct cmsghdr *cmsg;
6056 	struct msghdr *my_msg = (struct msghdr *)msg;
6057 
6058 	for (cmsg = CMSG_FIRSTHDR(msg);
6059 	     cmsg != NULL;
6060 	     cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
6061 		if (!CMSG_OK(my_msg, cmsg))
6062 			return -EINVAL;
6063 
6064 		/* Should we parse this header or ignore?  */
6065 		if (cmsg->cmsg_level != IPPROTO_SCTP)
6066 			continue;
6067 
6068 		/* Strictly check lengths following example in SCM code.  */
6069 		switch (cmsg->cmsg_type) {
6070 		case SCTP_INIT:
6071 			/* SCTP Socket API Extension
6072 			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
6073 			 *
6074 			 * This cmsghdr structure provides information for
6075 			 * initializing new SCTP associations with sendmsg().
6076 			 * The SCTP_INITMSG socket option uses this same data
6077 			 * structure.  This structure is not used for
6078 			 * recvmsg().
6079 			 *
6080 			 * cmsg_level    cmsg_type      cmsg_data[]
6081 			 * ------------  ------------   ----------------------
6082 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
6083 			 */
6084 			if (cmsg->cmsg_len !=
6085 			    CMSG_LEN(sizeof(struct sctp_initmsg)))
6086 				return -EINVAL;
6087 			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
6088 			break;
6089 
6090 		case SCTP_SNDRCV:
6091 			/* SCTP Socket API Extension
6092 			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6093 			 *
6094 			 * This cmsghdr structure specifies SCTP options for
6095 			 * sendmsg() and describes SCTP header information
6096 			 * about a received message through recvmsg().
6097 			 *
6098 			 * cmsg_level    cmsg_type      cmsg_data[]
6099 			 * ------------  ------------   ----------------------
6100 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
6101 			 */
6102 			if (cmsg->cmsg_len !=
6103 			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6104 				return -EINVAL;
6105 
6106 			cmsgs->info =
6107 				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6108 
6109 			/* Minimally, validate the sinfo_flags. */
6110 			if (cmsgs->info->sinfo_flags &
6111 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6112 			      SCTP_ABORT | SCTP_EOF))
6113 				return -EINVAL;
6114 			break;
6115 
6116 		default:
6117 			return -EINVAL;
6118 		}
6119 	}
6120 	return 0;
6121 }
6122 
6123 /*
6124  * Wait for a packet..
6125  * Note: This function is the same function as in core/datagram.c
6126  * with a few modifications to make lksctp work.
6127  */
6128 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
6129 {
6130 	int error;
6131 	DEFINE_WAIT(wait);
6132 
6133 	prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
6134 
6135 	/* Socket errors? */
6136 	error = sock_error(sk);
6137 	if (error)
6138 		goto out;
6139 
6140 	if (!skb_queue_empty(&sk->sk_receive_queue))
6141 		goto ready;
6142 
6143 	/* Socket shut down?  */
6144 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6145 		goto out;
6146 
6147 	/* Sequenced packets can come disconnected.  If so we report the
6148 	 * problem.
6149 	 */
6150 	error = -ENOTCONN;
6151 
6152 	/* Is there a good reason to think that we may receive some data?  */
6153 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6154 		goto out;
6155 
6156 	/* Handle signals.  */
6157 	if (signal_pending(current))
6158 		goto interrupted;
6159 
6160 	/* Let another process have a go.  Since we are going to sleep
6161 	 * anyway.  Note: This may cause odd behaviors if the message
6162 	 * does not fit in the user's buffer, but this seems to be the
6163 	 * only way to honor MSG_DONTWAIT realistically.
6164 	 */
6165 	sctp_release_sock(sk);
6166 	*timeo_p = schedule_timeout(*timeo_p);
6167 	sctp_lock_sock(sk);
6168 
6169 ready:
6170 	finish_wait(sk->sk_sleep, &wait);
6171 	return 0;
6172 
6173 interrupted:
6174 	error = sock_intr_errno(*timeo_p);
6175 
6176 out:
6177 	finish_wait(sk->sk_sleep, &wait);
6178 	*err = error;
6179 	return error;
6180 }
6181 
6182 /* Receive a datagram.
6183  * Note: This is pretty much the same routine as in core/datagram.c
6184  * with a few changes to make lksctp work.
6185  */
6186 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6187 					      int noblock, int *err)
6188 {
6189 	int error;
6190 	struct sk_buff *skb;
6191 	long timeo;
6192 
6193 	timeo = sock_rcvtimeo(sk, noblock);
6194 
6195 	SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
6196 			  timeo, MAX_SCHEDULE_TIMEOUT);
6197 
6198 	do {
6199 		/* Again only user level code calls this function,
6200 		 * so nothing interrupt level
6201 		 * will suddenly eat the receive_queue.
6202 		 *
6203 		 *  Look at current nfs client by the way...
6204 		 *  However, this function was corrent in any case. 8)
6205 		 */
6206 		if (flags & MSG_PEEK) {
6207 			spin_lock_bh(&sk->sk_receive_queue.lock);
6208 			skb = skb_peek(&sk->sk_receive_queue);
6209 			if (skb)
6210 				atomic_inc(&skb->users);
6211 			spin_unlock_bh(&sk->sk_receive_queue.lock);
6212 		} else {
6213 			skb = skb_dequeue(&sk->sk_receive_queue);
6214 		}
6215 
6216 		if (skb)
6217 			return skb;
6218 
6219 		/* Caller is allowed not to check sk->sk_err before calling. */
6220 		error = sock_error(sk);
6221 		if (error)
6222 			goto no_packet;
6223 
6224 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6225 			break;
6226 
6227 		/* User doesn't want to wait.  */
6228 		error = -EAGAIN;
6229 		if (!timeo)
6230 			goto no_packet;
6231 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6232 
6233 	return NULL;
6234 
6235 no_packet:
6236 	*err = error;
6237 	return NULL;
6238 }
6239 
6240 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
6241 static void __sctp_write_space(struct sctp_association *asoc)
6242 {
6243 	struct sock *sk = asoc->base.sk;
6244 	struct socket *sock = sk->sk_socket;
6245 
6246 	if ((sctp_wspace(asoc) > 0) && sock) {
6247 		if (waitqueue_active(&asoc->wait))
6248 			wake_up_interruptible(&asoc->wait);
6249 
6250 		if (sctp_writeable(sk)) {
6251 			if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
6252 				wake_up_interruptible(sk->sk_sleep);
6253 
6254 			/* Note that we try to include the Async I/O support
6255 			 * here by modeling from the current TCP/UDP code.
6256 			 * We have not tested with it yet.
6257 			 */
6258 			if (sock->fasync_list &&
6259 			    !(sk->sk_shutdown & SEND_SHUTDOWN))
6260 				sock_wake_async(sock,
6261 						SOCK_WAKE_SPACE, POLL_OUT);
6262 		}
6263 	}
6264 }
6265 
6266 /* Do accounting for the sndbuf space.
6267  * Decrement the used sndbuf space of the corresponding association by the
6268  * data size which was just transmitted(freed).
6269  */
6270 static void sctp_wfree(struct sk_buff *skb)
6271 {
6272 	struct sctp_association *asoc;
6273 	struct sctp_chunk *chunk;
6274 	struct sock *sk;
6275 
6276 	/* Get the saved chunk pointer.  */
6277 	chunk = *((struct sctp_chunk **)(skb->cb));
6278 	asoc = chunk->asoc;
6279 	sk = asoc->base.sk;
6280 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6281 				sizeof(struct sk_buff) +
6282 				sizeof(struct sctp_chunk);
6283 
6284 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6285 
6286 	/*
6287 	 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6288 	 */
6289 	sk->sk_wmem_queued   -= skb->truesize;
6290 	sk_mem_uncharge(sk, skb->truesize);
6291 
6292 	sock_wfree(skb);
6293 	__sctp_write_space(asoc);
6294 
6295 	sctp_association_put(asoc);
6296 }
6297 
6298 /* Do accounting for the receive space on the socket.
6299  * Accounting for the association is done in ulpevent.c
6300  * We set this as a destructor for the cloned data skbs so that
6301  * accounting is done at the correct time.
6302  */
6303 void sctp_sock_rfree(struct sk_buff *skb)
6304 {
6305 	struct sock *sk = skb->sk;
6306 	struct sctp_ulpevent *event = sctp_skb2event(skb);
6307 
6308 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6309 
6310 	/*
6311 	 * Mimic the behavior of sock_rfree
6312 	 */
6313 	sk_mem_uncharge(sk, event->rmem_len);
6314 }
6315 
6316 
6317 /* Helper function to wait for space in the sndbuf.  */
6318 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6319 				size_t msg_len)
6320 {
6321 	struct sock *sk = asoc->base.sk;
6322 	int err = 0;
6323 	long current_timeo = *timeo_p;
6324 	DEFINE_WAIT(wait);
6325 
6326 	SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
6327 			  asoc, (long)(*timeo_p), msg_len);
6328 
6329 	/* Increment the association's refcnt.  */
6330 	sctp_association_hold(asoc);
6331 
6332 	/* Wait on the association specific sndbuf space. */
6333 	for (;;) {
6334 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6335 					  TASK_INTERRUPTIBLE);
6336 		if (!*timeo_p)
6337 			goto do_nonblock;
6338 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6339 		    asoc->base.dead)
6340 			goto do_error;
6341 		if (signal_pending(current))
6342 			goto do_interrupted;
6343 		if (msg_len <= sctp_wspace(asoc))
6344 			break;
6345 
6346 		/* Let another process have a go.  Since we are going
6347 		 * to sleep anyway.
6348 		 */
6349 		sctp_release_sock(sk);
6350 		current_timeo = schedule_timeout(current_timeo);
6351 		BUG_ON(sk != asoc->base.sk);
6352 		sctp_lock_sock(sk);
6353 
6354 		*timeo_p = current_timeo;
6355 	}
6356 
6357 out:
6358 	finish_wait(&asoc->wait, &wait);
6359 
6360 	/* Release the association's refcnt.  */
6361 	sctp_association_put(asoc);
6362 
6363 	return err;
6364 
6365 do_error:
6366 	err = -EPIPE;
6367 	goto out;
6368 
6369 do_interrupted:
6370 	err = sock_intr_errno(*timeo_p);
6371 	goto out;
6372 
6373 do_nonblock:
6374 	err = -EAGAIN;
6375 	goto out;
6376 }
6377 
6378 /* If socket sndbuf has changed, wake up all per association waiters.  */
6379 void sctp_write_space(struct sock *sk)
6380 {
6381 	struct sctp_association *asoc;
6382 
6383 	/* Wake up the tasks in each wait queue.  */
6384 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6385 		__sctp_write_space(asoc);
6386 	}
6387 }
6388 
6389 /* Is there any sndbuf space available on the socket?
6390  *
6391  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6392  * associations on the same socket.  For a UDP-style socket with
6393  * multiple associations, it is possible for it to be "unwriteable"
6394  * prematurely.  I assume that this is acceptable because
6395  * a premature "unwriteable" is better than an accidental "writeable" which
6396  * would cause an unwanted block under certain circumstances.  For the 1-1
6397  * UDP-style sockets or TCP-style sockets, this code should work.
6398  *  - Daisy
6399  */
6400 static int sctp_writeable(struct sock *sk)
6401 {
6402 	int amt = 0;
6403 
6404 	amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
6405 	if (amt < 0)
6406 		amt = 0;
6407 	return amt;
6408 }
6409 
6410 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6411  * returns immediately with EINPROGRESS.
6412  */
6413 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6414 {
6415 	struct sock *sk = asoc->base.sk;
6416 	int err = 0;
6417 	long current_timeo = *timeo_p;
6418 	DEFINE_WAIT(wait);
6419 
6420 	SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc,
6421 			  (long)(*timeo_p));
6422 
6423 	/* Increment the association's refcnt.  */
6424 	sctp_association_hold(asoc);
6425 
6426 	for (;;) {
6427 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6428 					  TASK_INTERRUPTIBLE);
6429 		if (!*timeo_p)
6430 			goto do_nonblock;
6431 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6432 			break;
6433 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6434 		    asoc->base.dead)
6435 			goto do_error;
6436 		if (signal_pending(current))
6437 			goto do_interrupted;
6438 
6439 		if (sctp_state(asoc, ESTABLISHED))
6440 			break;
6441 
6442 		/* Let another process have a go.  Since we are going
6443 		 * to sleep anyway.
6444 		 */
6445 		sctp_release_sock(sk);
6446 		current_timeo = schedule_timeout(current_timeo);
6447 		sctp_lock_sock(sk);
6448 
6449 		*timeo_p = current_timeo;
6450 	}
6451 
6452 out:
6453 	finish_wait(&asoc->wait, &wait);
6454 
6455 	/* Release the association's refcnt.  */
6456 	sctp_association_put(asoc);
6457 
6458 	return err;
6459 
6460 do_error:
6461 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6462 		err = -ETIMEDOUT;
6463 	else
6464 		err = -ECONNREFUSED;
6465 	goto out;
6466 
6467 do_interrupted:
6468 	err = sock_intr_errno(*timeo_p);
6469 	goto out;
6470 
6471 do_nonblock:
6472 	err = -EINPROGRESS;
6473 	goto out;
6474 }
6475 
6476 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6477 {
6478 	struct sctp_endpoint *ep;
6479 	int err = 0;
6480 	DEFINE_WAIT(wait);
6481 
6482 	ep = sctp_sk(sk)->ep;
6483 
6484 
6485 	for (;;) {
6486 		prepare_to_wait_exclusive(sk->sk_sleep, &wait,
6487 					  TASK_INTERRUPTIBLE);
6488 
6489 		if (list_empty(&ep->asocs)) {
6490 			sctp_release_sock(sk);
6491 			timeo = schedule_timeout(timeo);
6492 			sctp_lock_sock(sk);
6493 		}
6494 
6495 		err = -EINVAL;
6496 		if (!sctp_sstate(sk, LISTENING))
6497 			break;
6498 
6499 		err = 0;
6500 		if (!list_empty(&ep->asocs))
6501 			break;
6502 
6503 		err = sock_intr_errno(timeo);
6504 		if (signal_pending(current))
6505 			break;
6506 
6507 		err = -EAGAIN;
6508 		if (!timeo)
6509 			break;
6510 	}
6511 
6512 	finish_wait(sk->sk_sleep, &wait);
6513 
6514 	return err;
6515 }
6516 
6517 static void sctp_wait_for_close(struct sock *sk, long timeout)
6518 {
6519 	DEFINE_WAIT(wait);
6520 
6521 	do {
6522 		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
6523 		if (list_empty(&sctp_sk(sk)->ep->asocs))
6524 			break;
6525 		sctp_release_sock(sk);
6526 		timeout = schedule_timeout(timeout);
6527 		sctp_lock_sock(sk);
6528 	} while (!signal_pending(current) && timeout);
6529 
6530 	finish_wait(sk->sk_sleep, &wait);
6531 }
6532 
6533 static void sctp_sock_rfree_frag(struct sk_buff *skb)
6534 {
6535 	struct sk_buff *frag;
6536 
6537 	if (!skb->data_len)
6538 		goto done;
6539 
6540 	/* Don't forget the fragments. */
6541 	for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next)
6542 		sctp_sock_rfree_frag(frag);
6543 
6544 done:
6545 	sctp_sock_rfree(skb);
6546 }
6547 
6548 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6549 {
6550 	struct sk_buff *frag;
6551 
6552 	if (!skb->data_len)
6553 		goto done;
6554 
6555 	/* Don't forget the fragments. */
6556 	for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next)
6557 		sctp_skb_set_owner_r_frag(frag, sk);
6558 
6559 done:
6560 	sctp_skb_set_owner_r(skb, sk);
6561 }
6562 
6563 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6564  * and its messages to the newsk.
6565  */
6566 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6567 			      struct sctp_association *assoc,
6568 			      sctp_socket_type_t type)
6569 {
6570 	struct sctp_sock *oldsp = sctp_sk(oldsk);
6571 	struct sctp_sock *newsp = sctp_sk(newsk);
6572 	struct sctp_bind_bucket *pp; /* hash list port iterator */
6573 	struct sctp_endpoint *newep = newsp->ep;
6574 	struct sk_buff *skb, *tmp;
6575 	struct sctp_ulpevent *event;
6576 	struct sctp_bind_hashbucket *head;
6577 
6578 	/* Migrate socket buffer sizes and all the socket level options to the
6579 	 * new socket.
6580 	 */
6581 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
6582 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6583 	/* Brute force copy old sctp opt. */
6584 	inet_sk_copy_descendant(newsk, oldsk);
6585 
6586 	/* Restore the ep value that was overwritten with the above structure
6587 	 * copy.
6588 	 */
6589 	newsp->ep = newep;
6590 	newsp->hmac = NULL;
6591 
6592 	/* Hook this new socket in to the bind_hash list. */
6593 	head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->num)];
6594 	sctp_local_bh_disable();
6595 	sctp_spin_lock(&head->lock);
6596 	pp = sctp_sk(oldsk)->bind_hash;
6597 	sk_add_bind_node(newsk, &pp->owner);
6598 	sctp_sk(newsk)->bind_hash = pp;
6599 	inet_sk(newsk)->num = inet_sk(oldsk)->num;
6600 	sctp_spin_unlock(&head->lock);
6601 	sctp_local_bh_enable();
6602 
6603 	/* Copy the bind_addr list from the original endpoint to the new
6604 	 * endpoint so that we can handle restarts properly
6605 	 */
6606 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6607 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
6608 
6609 	/* Move any messages in the old socket's receive queue that are for the
6610 	 * peeled off association to the new socket's receive queue.
6611 	 */
6612 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6613 		event = sctp_skb2event(skb);
6614 		if (event->asoc == assoc) {
6615 			sctp_sock_rfree_frag(skb);
6616 			__skb_unlink(skb, &oldsk->sk_receive_queue);
6617 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
6618 			sctp_skb_set_owner_r_frag(skb, newsk);
6619 		}
6620 	}
6621 
6622 	/* Clean up any messages pending delivery due to partial
6623 	 * delivery.   Three cases:
6624 	 * 1) No partial deliver;  no work.
6625 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6626 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6627 	 */
6628 	skb_queue_head_init(&newsp->pd_lobby);
6629 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6630 
6631 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6632 		struct sk_buff_head *queue;
6633 
6634 		/* Decide which queue to move pd_lobby skbs to. */
6635 		if (assoc->ulpq.pd_mode) {
6636 			queue = &newsp->pd_lobby;
6637 		} else
6638 			queue = &newsk->sk_receive_queue;
6639 
6640 		/* Walk through the pd_lobby, looking for skbs that
6641 		 * need moved to the new socket.
6642 		 */
6643 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6644 			event = sctp_skb2event(skb);
6645 			if (event->asoc == assoc) {
6646 				sctp_sock_rfree_frag(skb);
6647 				__skb_unlink(skb, &oldsp->pd_lobby);
6648 				__skb_queue_tail(queue, skb);
6649 				sctp_skb_set_owner_r_frag(skb, newsk);
6650 			}
6651 		}
6652 
6653 		/* Clear up any skbs waiting for the partial
6654 		 * delivery to finish.
6655 		 */
6656 		if (assoc->ulpq.pd_mode)
6657 			sctp_clear_pd(oldsk, NULL);
6658 
6659 	}
6660 
6661 	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) {
6662 		sctp_sock_rfree_frag(skb);
6663 		sctp_skb_set_owner_r_frag(skb, newsk);
6664 	}
6665 
6666 	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) {
6667 		sctp_sock_rfree_frag(skb);
6668 		sctp_skb_set_owner_r_frag(skb, newsk);
6669 	}
6670 
6671 	/* Set the type of socket to indicate that it is peeled off from the
6672 	 * original UDP-style socket or created with the accept() call on a
6673 	 * TCP-style socket..
6674 	 */
6675 	newsp->type = type;
6676 
6677 	/* Mark the new socket "in-use" by the user so that any packets
6678 	 * that may arrive on the association after we've moved it are
6679 	 * queued to the backlog.  This prevents a potential race between
6680 	 * backlog processing on the old socket and new-packet processing
6681 	 * on the new socket.
6682 	 *
6683 	 * The caller has just allocated newsk so we can guarantee that other
6684 	 * paths won't try to lock it and then oldsk.
6685 	 */
6686 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
6687 	sctp_assoc_migrate(assoc, newsk);
6688 
6689 	/* If the association on the newsk is already closed before accept()
6690 	 * is called, set RCV_SHUTDOWN flag.
6691 	 */
6692 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
6693 		newsk->sk_shutdown |= RCV_SHUTDOWN;
6694 
6695 	newsk->sk_state = SCTP_SS_ESTABLISHED;
6696 	sctp_release_sock(newsk);
6697 }
6698 
6699 
6700 /* This proto struct describes the ULP interface for SCTP.  */
6701 struct proto sctp_prot = {
6702 	.name        =	"SCTP",
6703 	.owner       =	THIS_MODULE,
6704 	.close       =	sctp_close,
6705 	.connect     =	sctp_connect,
6706 	.disconnect  =	sctp_disconnect,
6707 	.accept      =	sctp_accept,
6708 	.ioctl       =	sctp_ioctl,
6709 	.init        =	sctp_init_sock,
6710 	.destroy     =	sctp_destroy_sock,
6711 	.shutdown    =	sctp_shutdown,
6712 	.setsockopt  =	sctp_setsockopt,
6713 	.getsockopt  =	sctp_getsockopt,
6714 	.sendmsg     =	sctp_sendmsg,
6715 	.recvmsg     =	sctp_recvmsg,
6716 	.bind        =	sctp_bind,
6717 	.backlog_rcv =	sctp_backlog_rcv,
6718 	.hash        =	sctp_hash,
6719 	.unhash      =	sctp_unhash,
6720 	.get_port    =	sctp_get_port,
6721 	.obj_size    =  sizeof(struct sctp_sock),
6722 	.sysctl_mem  =  sysctl_sctp_mem,
6723 	.sysctl_rmem =  sysctl_sctp_rmem,
6724 	.sysctl_wmem =  sysctl_sctp_wmem,
6725 	.memory_pressure = &sctp_memory_pressure,
6726 	.enter_memory_pressure = sctp_enter_memory_pressure,
6727 	.memory_allocated = &sctp_memory_allocated,
6728 	.sockets_allocated = &sctp_sockets_allocated,
6729 };
6730 
6731 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6732 
6733 struct proto sctpv6_prot = {
6734 	.name		= "SCTPv6",
6735 	.owner		= THIS_MODULE,
6736 	.close		= sctp_close,
6737 	.connect	= sctp_connect,
6738 	.disconnect	= sctp_disconnect,
6739 	.accept		= sctp_accept,
6740 	.ioctl		= sctp_ioctl,
6741 	.init		= sctp_init_sock,
6742 	.destroy	= sctp_destroy_sock,
6743 	.shutdown	= sctp_shutdown,
6744 	.setsockopt	= sctp_setsockopt,
6745 	.getsockopt	= sctp_getsockopt,
6746 	.sendmsg	= sctp_sendmsg,
6747 	.recvmsg	= sctp_recvmsg,
6748 	.bind		= sctp_bind,
6749 	.backlog_rcv	= sctp_backlog_rcv,
6750 	.hash		= sctp_hash,
6751 	.unhash		= sctp_unhash,
6752 	.get_port	= sctp_get_port,
6753 	.obj_size	= sizeof(struct sctp6_sock),
6754 	.sysctl_mem	= sysctl_sctp_mem,
6755 	.sysctl_rmem	= sysctl_sctp_rmem,
6756 	.sysctl_wmem	= sysctl_sctp_wmem,
6757 	.memory_pressure = &sctp_memory_pressure,
6758 	.enter_memory_pressure = sctp_enter_memory_pressure,
6759 	.memory_allocated = &sctp_memory_allocated,
6760 	.sockets_allocated = &sctp_sockets_allocated,
6761 };
6762 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
6763