xref: /linux/net/sctp/socket.c (revision 89e47d3b8a273b0eac21e4bf6d7fdb86b654fa16)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, see
32  * <http://www.gnu.org/licenses/>.
33  *
34  * Please send any bug reports or fixes you make to the
35  * email address(es):
36  *    lksctp developers <linux-sctp@vger.kernel.org>
37  *
38  * Written or modified by:
39  *    La Monte H.P. Yarroll <piggy@acm.org>
40  *    Narasimha Budihal     <narsi@refcode.org>
41  *    Karl Knutson          <karl@athena.chicago.il.us>
42  *    Jon Grimm             <jgrimm@us.ibm.com>
43  *    Xingang Guo           <xingang.guo@intel.com>
44  *    Daisy Chang           <daisyc@us.ibm.com>
45  *    Sridhar Samudrala     <samudrala@us.ibm.com>
46  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
47  *    Ardelle Fan	    <ardelle.fan@intel.com>
48  *    Ryan Layer	    <rmlayer@us.ibm.com>
49  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
50  *    Kevin Gao             <kevin.gao@intel.com>
51  */
52 
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54 
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/wait.h>
58 #include <linux/time.h>
59 #include <linux/ip.h>
60 #include <linux/capability.h>
61 #include <linux/fcntl.h>
62 #include <linux/poll.h>
63 #include <linux/init.h>
64 #include <linux/crypto.h>
65 #include <linux/slab.h>
66 #include <linux/file.h>
67 
68 #include <net/ip.h>
69 #include <net/icmp.h>
70 #include <net/route.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 
74 #include <linux/socket.h> /* for sa_family_t */
75 #include <linux/export.h>
76 #include <net/sock.h>
77 #include <net/sctp/sctp.h>
78 #include <net/sctp/sm.h>
79 
80 /* Forward declarations for internal helper functions. */
81 static int sctp_writeable(struct sock *sk);
82 static void sctp_wfree(struct sk_buff *skb);
83 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
84 				size_t msg_len);
85 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
86 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
87 static int sctp_wait_for_accept(struct sock *sk, long timeo);
88 static void sctp_wait_for_close(struct sock *sk, long timeo);
89 static void sctp_destruct_sock(struct sock *sk);
90 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
91 					union sctp_addr *addr, int len);
92 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
93 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
94 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
95 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
96 static int sctp_send_asconf(struct sctp_association *asoc,
97 			    struct sctp_chunk *chunk);
98 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
99 static int sctp_autobind(struct sock *sk);
100 static void sctp_sock_migrate(struct sock *, struct sock *,
101 			      struct sctp_association *, sctp_socket_type_t);
102 
103 extern struct kmem_cache *sctp_bucket_cachep;
104 extern long sysctl_sctp_mem[3];
105 extern int sysctl_sctp_rmem[3];
106 extern int sysctl_sctp_wmem[3];
107 
108 static int sctp_memory_pressure;
109 static atomic_long_t sctp_memory_allocated;
110 struct percpu_counter sctp_sockets_allocated;
111 
112 static void sctp_enter_memory_pressure(struct sock *sk)
113 {
114 	sctp_memory_pressure = 1;
115 }
116 
117 
118 /* Get the sndbuf space available at the time on the association.  */
119 static inline int sctp_wspace(struct sctp_association *asoc)
120 {
121 	int amt;
122 
123 	if (asoc->ep->sndbuf_policy)
124 		amt = asoc->sndbuf_used;
125 	else
126 		amt = sk_wmem_alloc_get(asoc->base.sk);
127 
128 	if (amt >= asoc->base.sk->sk_sndbuf) {
129 		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
130 			amt = 0;
131 		else {
132 			amt = sk_stream_wspace(asoc->base.sk);
133 			if (amt < 0)
134 				amt = 0;
135 		}
136 	} else {
137 		amt = asoc->base.sk->sk_sndbuf - amt;
138 	}
139 	return amt;
140 }
141 
142 /* Increment the used sndbuf space count of the corresponding association by
143  * the size of the outgoing data chunk.
144  * Also, set the skb destructor for sndbuf accounting later.
145  *
146  * Since it is always 1-1 between chunk and skb, and also a new skb is always
147  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
148  * destructor in the data chunk skb for the purpose of the sndbuf space
149  * tracking.
150  */
151 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
152 {
153 	struct sctp_association *asoc = chunk->asoc;
154 	struct sock *sk = asoc->base.sk;
155 
156 	/* The sndbuf space is tracked per association.  */
157 	sctp_association_hold(asoc);
158 
159 	skb_set_owner_w(chunk->skb, sk);
160 
161 	chunk->skb->destructor = sctp_wfree;
162 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
163 	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
164 
165 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
166 				sizeof(struct sk_buff) +
167 				sizeof(struct sctp_chunk);
168 
169 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
170 	sk->sk_wmem_queued += chunk->skb->truesize;
171 	sk_mem_charge(sk, chunk->skb->truesize);
172 }
173 
174 /* Verify that this is a valid address. */
175 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
176 				   int len)
177 {
178 	struct sctp_af *af;
179 
180 	/* Verify basic sockaddr. */
181 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
182 	if (!af)
183 		return -EINVAL;
184 
185 	/* Is this a valid SCTP address?  */
186 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
187 		return -EINVAL;
188 
189 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
190 		return -EINVAL;
191 
192 	return 0;
193 }
194 
195 /* Look up the association by its id.  If this is not a UDP-style
196  * socket, the ID field is always ignored.
197  */
198 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
199 {
200 	struct sctp_association *asoc = NULL;
201 
202 	/* If this is not a UDP-style socket, assoc id should be ignored. */
203 	if (!sctp_style(sk, UDP)) {
204 		/* Return NULL if the socket state is not ESTABLISHED. It
205 		 * could be a TCP-style listening socket or a socket which
206 		 * hasn't yet called connect() to establish an association.
207 		 */
208 		if (!sctp_sstate(sk, ESTABLISHED))
209 			return NULL;
210 
211 		/* Get the first and the only association from the list. */
212 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
213 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
214 					  struct sctp_association, asocs);
215 		return asoc;
216 	}
217 
218 	/* Otherwise this is a UDP-style socket. */
219 	if (!id || (id == (sctp_assoc_t)-1))
220 		return NULL;
221 
222 	spin_lock_bh(&sctp_assocs_id_lock);
223 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
224 	spin_unlock_bh(&sctp_assocs_id_lock);
225 
226 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
227 		return NULL;
228 
229 	return asoc;
230 }
231 
232 /* Look up the transport from an address and an assoc id. If both address and
233  * id are specified, the associations matching the address and the id should be
234  * the same.
235  */
236 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
237 					      struct sockaddr_storage *addr,
238 					      sctp_assoc_t id)
239 {
240 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
241 	struct sctp_transport *transport;
242 	union sctp_addr *laddr = (union sctp_addr *)addr;
243 
244 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
245 					       laddr,
246 					       &transport);
247 
248 	if (!addr_asoc)
249 		return NULL;
250 
251 	id_asoc = sctp_id2assoc(sk, id);
252 	if (id_asoc && (id_asoc != addr_asoc))
253 		return NULL;
254 
255 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
256 						(union sctp_addr *)addr);
257 
258 	return transport;
259 }
260 
261 /* API 3.1.2 bind() - UDP Style Syntax
262  * The syntax of bind() is,
263  *
264  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
265  *
266  *   sd      - the socket descriptor returned by socket().
267  *   addr    - the address structure (struct sockaddr_in or struct
268  *             sockaddr_in6 [RFC 2553]),
269  *   addr_len - the size of the address structure.
270  */
271 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
272 {
273 	int retval = 0;
274 
275 	sctp_lock_sock(sk);
276 
277 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
278 		 addr, addr_len);
279 
280 	/* Disallow binding twice. */
281 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
282 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
283 				      addr_len);
284 	else
285 		retval = -EINVAL;
286 
287 	sctp_release_sock(sk);
288 
289 	return retval;
290 }
291 
292 static long sctp_get_port_local(struct sock *, union sctp_addr *);
293 
294 /* Verify this is a valid sockaddr. */
295 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
296 					union sctp_addr *addr, int len)
297 {
298 	struct sctp_af *af;
299 
300 	/* Check minimum size.  */
301 	if (len < sizeof (struct sockaddr))
302 		return NULL;
303 
304 	/* V4 mapped address are really of AF_INET family */
305 	if (addr->sa.sa_family == AF_INET6 &&
306 	    ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
307 		if (!opt->pf->af_supported(AF_INET, opt))
308 			return NULL;
309 	} else {
310 		/* Does this PF support this AF? */
311 		if (!opt->pf->af_supported(addr->sa.sa_family, opt))
312 			return NULL;
313 	}
314 
315 	/* If we get this far, af is valid. */
316 	af = sctp_get_af_specific(addr->sa.sa_family);
317 
318 	if (len < af->sockaddr_len)
319 		return NULL;
320 
321 	return af;
322 }
323 
324 /* Bind a local address either to an endpoint or to an association.  */
325 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
326 {
327 	struct net *net = sock_net(sk);
328 	struct sctp_sock *sp = sctp_sk(sk);
329 	struct sctp_endpoint *ep = sp->ep;
330 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
331 	struct sctp_af *af;
332 	unsigned short snum;
333 	int ret = 0;
334 
335 	/* Common sockaddr verification. */
336 	af = sctp_sockaddr_af(sp, addr, len);
337 	if (!af) {
338 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
339 			 __func__, sk, addr, len);
340 		return -EINVAL;
341 	}
342 
343 	snum = ntohs(addr->v4.sin_port);
344 
345 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
346 		 __func__, sk, &addr->sa, bp->port, snum, len);
347 
348 	/* PF specific bind() address verification. */
349 	if (!sp->pf->bind_verify(sp, addr))
350 		return -EADDRNOTAVAIL;
351 
352 	/* We must either be unbound, or bind to the same port.
353 	 * It's OK to allow 0 ports if we are already bound.
354 	 * We'll just inhert an already bound port in this case
355 	 */
356 	if (bp->port) {
357 		if (!snum)
358 			snum = bp->port;
359 		else if (snum != bp->port) {
360 			pr_debug("%s: new port %d doesn't match existing port "
361 				 "%d\n", __func__, snum, bp->port);
362 			return -EINVAL;
363 		}
364 	}
365 
366 	if (snum && snum < PROT_SOCK &&
367 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
368 		return -EACCES;
369 
370 	/* See if the address matches any of the addresses we may have
371 	 * already bound before checking against other endpoints.
372 	 */
373 	if (sctp_bind_addr_match(bp, addr, sp))
374 		return -EINVAL;
375 
376 	/* Make sure we are allowed to bind here.
377 	 * The function sctp_get_port_local() does duplicate address
378 	 * detection.
379 	 */
380 	addr->v4.sin_port = htons(snum);
381 	if ((ret = sctp_get_port_local(sk, addr))) {
382 		return -EADDRINUSE;
383 	}
384 
385 	/* Refresh ephemeral port.  */
386 	if (!bp->port)
387 		bp->port = inet_sk(sk)->inet_num;
388 
389 	/* Add the address to the bind address list.
390 	 * Use GFP_ATOMIC since BHs will be disabled.
391 	 */
392 	ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
393 
394 	/* Copy back into socket for getsockname() use. */
395 	if (!ret) {
396 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
397 		af->to_sk_saddr(addr, sk);
398 	}
399 
400 	return ret;
401 }
402 
403  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
404  *
405  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
406  * at any one time.  If a sender, after sending an ASCONF chunk, decides
407  * it needs to transfer another ASCONF Chunk, it MUST wait until the
408  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
409  * subsequent ASCONF. Note this restriction binds each side, so at any
410  * time two ASCONF may be in-transit on any given association (one sent
411  * from each endpoint).
412  */
413 static int sctp_send_asconf(struct sctp_association *asoc,
414 			    struct sctp_chunk *chunk)
415 {
416 	struct net 	*net = sock_net(asoc->base.sk);
417 	int		retval = 0;
418 
419 	/* If there is an outstanding ASCONF chunk, queue it for later
420 	 * transmission.
421 	 */
422 	if (asoc->addip_last_asconf) {
423 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
424 		goto out;
425 	}
426 
427 	/* Hold the chunk until an ASCONF_ACK is received. */
428 	sctp_chunk_hold(chunk);
429 	retval = sctp_primitive_ASCONF(net, asoc, chunk);
430 	if (retval)
431 		sctp_chunk_free(chunk);
432 	else
433 		asoc->addip_last_asconf = chunk;
434 
435 out:
436 	return retval;
437 }
438 
439 /* Add a list of addresses as bind addresses to local endpoint or
440  * association.
441  *
442  * Basically run through each address specified in the addrs/addrcnt
443  * array/length pair, determine if it is IPv6 or IPv4 and call
444  * sctp_do_bind() on it.
445  *
446  * If any of them fails, then the operation will be reversed and the
447  * ones that were added will be removed.
448  *
449  * Only sctp_setsockopt_bindx() is supposed to call this function.
450  */
451 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
452 {
453 	int cnt;
454 	int retval = 0;
455 	void *addr_buf;
456 	struct sockaddr *sa_addr;
457 	struct sctp_af *af;
458 
459 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
460 		 addrs, addrcnt);
461 
462 	addr_buf = addrs;
463 	for (cnt = 0; cnt < addrcnt; cnt++) {
464 		/* The list may contain either IPv4 or IPv6 address;
465 		 * determine the address length for walking thru the list.
466 		 */
467 		sa_addr = addr_buf;
468 		af = sctp_get_af_specific(sa_addr->sa_family);
469 		if (!af) {
470 			retval = -EINVAL;
471 			goto err_bindx_add;
472 		}
473 
474 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
475 				      af->sockaddr_len);
476 
477 		addr_buf += af->sockaddr_len;
478 
479 err_bindx_add:
480 		if (retval < 0) {
481 			/* Failed. Cleanup the ones that have been added */
482 			if (cnt > 0)
483 				sctp_bindx_rem(sk, addrs, cnt);
484 			return retval;
485 		}
486 	}
487 
488 	return retval;
489 }
490 
491 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
492  * associations that are part of the endpoint indicating that a list of local
493  * addresses are added to the endpoint.
494  *
495  * If any of the addresses is already in the bind address list of the
496  * association, we do not send the chunk for that association.  But it will not
497  * affect other associations.
498  *
499  * Only sctp_setsockopt_bindx() is supposed to call this function.
500  */
501 static int sctp_send_asconf_add_ip(struct sock		*sk,
502 				   struct sockaddr	*addrs,
503 				   int 			addrcnt)
504 {
505 	struct net *net = sock_net(sk);
506 	struct sctp_sock		*sp;
507 	struct sctp_endpoint		*ep;
508 	struct sctp_association		*asoc;
509 	struct sctp_bind_addr		*bp;
510 	struct sctp_chunk		*chunk;
511 	struct sctp_sockaddr_entry	*laddr;
512 	union sctp_addr			*addr;
513 	union sctp_addr			saveaddr;
514 	void				*addr_buf;
515 	struct sctp_af			*af;
516 	struct list_head		*p;
517 	int 				i;
518 	int 				retval = 0;
519 
520 	if (!net->sctp.addip_enable)
521 		return retval;
522 
523 	sp = sctp_sk(sk);
524 	ep = sp->ep;
525 
526 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
527 		 __func__, sk, addrs, addrcnt);
528 
529 	list_for_each_entry(asoc, &ep->asocs, asocs) {
530 		if (!asoc->peer.asconf_capable)
531 			continue;
532 
533 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
534 			continue;
535 
536 		if (!sctp_state(asoc, ESTABLISHED))
537 			continue;
538 
539 		/* Check if any address in the packed array of addresses is
540 		 * in the bind address list of the association. If so,
541 		 * do not send the asconf chunk to its peer, but continue with
542 		 * other associations.
543 		 */
544 		addr_buf = addrs;
545 		for (i = 0; i < addrcnt; i++) {
546 			addr = addr_buf;
547 			af = sctp_get_af_specific(addr->v4.sin_family);
548 			if (!af) {
549 				retval = -EINVAL;
550 				goto out;
551 			}
552 
553 			if (sctp_assoc_lookup_laddr(asoc, addr))
554 				break;
555 
556 			addr_buf += af->sockaddr_len;
557 		}
558 		if (i < addrcnt)
559 			continue;
560 
561 		/* Use the first valid address in bind addr list of
562 		 * association as Address Parameter of ASCONF CHUNK.
563 		 */
564 		bp = &asoc->base.bind_addr;
565 		p = bp->address_list.next;
566 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
567 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
568 						   addrcnt, SCTP_PARAM_ADD_IP);
569 		if (!chunk) {
570 			retval = -ENOMEM;
571 			goto out;
572 		}
573 
574 		/* Add the new addresses to the bind address list with
575 		 * use_as_src set to 0.
576 		 */
577 		addr_buf = addrs;
578 		for (i = 0; i < addrcnt; i++) {
579 			addr = addr_buf;
580 			af = sctp_get_af_specific(addr->v4.sin_family);
581 			memcpy(&saveaddr, addr, af->sockaddr_len);
582 			retval = sctp_add_bind_addr(bp, &saveaddr,
583 						    SCTP_ADDR_NEW, GFP_ATOMIC);
584 			addr_buf += af->sockaddr_len;
585 		}
586 		if (asoc->src_out_of_asoc_ok) {
587 			struct sctp_transport *trans;
588 
589 			list_for_each_entry(trans,
590 			    &asoc->peer.transport_addr_list, transports) {
591 				/* Clear the source and route cache */
592 				dst_release(trans->dst);
593 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
594 				    2*asoc->pathmtu, 4380));
595 				trans->ssthresh = asoc->peer.i.a_rwnd;
596 				trans->rto = asoc->rto_initial;
597 				sctp_max_rto(asoc, trans);
598 				trans->rtt = trans->srtt = trans->rttvar = 0;
599 				sctp_transport_route(trans, NULL,
600 				    sctp_sk(asoc->base.sk));
601 			}
602 		}
603 		retval = sctp_send_asconf(asoc, chunk);
604 	}
605 
606 out:
607 	return retval;
608 }
609 
610 /* Remove a list of addresses from bind addresses list.  Do not remove the
611  * last address.
612  *
613  * Basically run through each address specified in the addrs/addrcnt
614  * array/length pair, determine if it is IPv6 or IPv4 and call
615  * sctp_del_bind() on it.
616  *
617  * If any of them fails, then the operation will be reversed and the
618  * ones that were removed will be added back.
619  *
620  * At least one address has to be left; if only one address is
621  * available, the operation will return -EBUSY.
622  *
623  * Only sctp_setsockopt_bindx() is supposed to call this function.
624  */
625 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
626 {
627 	struct sctp_sock *sp = sctp_sk(sk);
628 	struct sctp_endpoint *ep = sp->ep;
629 	int cnt;
630 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
631 	int retval = 0;
632 	void *addr_buf;
633 	union sctp_addr *sa_addr;
634 	struct sctp_af *af;
635 
636 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
637 		 __func__, sk, addrs, addrcnt);
638 
639 	addr_buf = addrs;
640 	for (cnt = 0; cnt < addrcnt; cnt++) {
641 		/* If the bind address list is empty or if there is only one
642 		 * bind address, there is nothing more to be removed (we need
643 		 * at least one address here).
644 		 */
645 		if (list_empty(&bp->address_list) ||
646 		    (sctp_list_single_entry(&bp->address_list))) {
647 			retval = -EBUSY;
648 			goto err_bindx_rem;
649 		}
650 
651 		sa_addr = addr_buf;
652 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
653 		if (!af) {
654 			retval = -EINVAL;
655 			goto err_bindx_rem;
656 		}
657 
658 		if (!af->addr_valid(sa_addr, sp, NULL)) {
659 			retval = -EADDRNOTAVAIL;
660 			goto err_bindx_rem;
661 		}
662 
663 		if (sa_addr->v4.sin_port &&
664 		    sa_addr->v4.sin_port != htons(bp->port)) {
665 			retval = -EINVAL;
666 			goto err_bindx_rem;
667 		}
668 
669 		if (!sa_addr->v4.sin_port)
670 			sa_addr->v4.sin_port = htons(bp->port);
671 
672 		/* FIXME - There is probably a need to check if sk->sk_saddr and
673 		 * sk->sk_rcv_addr are currently set to one of the addresses to
674 		 * be removed. This is something which needs to be looked into
675 		 * when we are fixing the outstanding issues with multi-homing
676 		 * socket routing and failover schemes. Refer to comments in
677 		 * sctp_do_bind(). -daisy
678 		 */
679 		retval = sctp_del_bind_addr(bp, sa_addr);
680 
681 		addr_buf += af->sockaddr_len;
682 err_bindx_rem:
683 		if (retval < 0) {
684 			/* Failed. Add the ones that has been removed back */
685 			if (cnt > 0)
686 				sctp_bindx_add(sk, addrs, cnt);
687 			return retval;
688 		}
689 	}
690 
691 	return retval;
692 }
693 
694 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
695  * the associations that are part of the endpoint indicating that a list of
696  * local addresses are removed from the endpoint.
697  *
698  * If any of the addresses is already in the bind address list of the
699  * association, we do not send the chunk for that association.  But it will not
700  * affect other associations.
701  *
702  * Only sctp_setsockopt_bindx() is supposed to call this function.
703  */
704 static int sctp_send_asconf_del_ip(struct sock		*sk,
705 				   struct sockaddr	*addrs,
706 				   int			addrcnt)
707 {
708 	struct net *net = sock_net(sk);
709 	struct sctp_sock	*sp;
710 	struct sctp_endpoint	*ep;
711 	struct sctp_association	*asoc;
712 	struct sctp_transport	*transport;
713 	struct sctp_bind_addr	*bp;
714 	struct sctp_chunk	*chunk;
715 	union sctp_addr		*laddr;
716 	void			*addr_buf;
717 	struct sctp_af		*af;
718 	struct sctp_sockaddr_entry *saddr;
719 	int 			i;
720 	int 			retval = 0;
721 	int			stored = 0;
722 
723 	chunk = NULL;
724 	if (!net->sctp.addip_enable)
725 		return retval;
726 
727 	sp = sctp_sk(sk);
728 	ep = sp->ep;
729 
730 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
731 		 __func__, sk, addrs, addrcnt);
732 
733 	list_for_each_entry(asoc, &ep->asocs, asocs) {
734 
735 		if (!asoc->peer.asconf_capable)
736 			continue;
737 
738 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
739 			continue;
740 
741 		if (!sctp_state(asoc, ESTABLISHED))
742 			continue;
743 
744 		/* Check if any address in the packed array of addresses is
745 		 * not present in the bind address list of the association.
746 		 * If so, do not send the asconf chunk to its peer, but
747 		 * continue with other associations.
748 		 */
749 		addr_buf = addrs;
750 		for (i = 0; i < addrcnt; i++) {
751 			laddr = addr_buf;
752 			af = sctp_get_af_specific(laddr->v4.sin_family);
753 			if (!af) {
754 				retval = -EINVAL;
755 				goto out;
756 			}
757 
758 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
759 				break;
760 
761 			addr_buf += af->sockaddr_len;
762 		}
763 		if (i < addrcnt)
764 			continue;
765 
766 		/* Find one address in the association's bind address list
767 		 * that is not in the packed array of addresses. This is to
768 		 * make sure that we do not delete all the addresses in the
769 		 * association.
770 		 */
771 		bp = &asoc->base.bind_addr;
772 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
773 					       addrcnt, sp);
774 		if ((laddr == NULL) && (addrcnt == 1)) {
775 			if (asoc->asconf_addr_del_pending)
776 				continue;
777 			asoc->asconf_addr_del_pending =
778 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
779 			if (asoc->asconf_addr_del_pending == NULL) {
780 				retval = -ENOMEM;
781 				goto out;
782 			}
783 			asoc->asconf_addr_del_pending->sa.sa_family =
784 				    addrs->sa_family;
785 			asoc->asconf_addr_del_pending->v4.sin_port =
786 				    htons(bp->port);
787 			if (addrs->sa_family == AF_INET) {
788 				struct sockaddr_in *sin;
789 
790 				sin = (struct sockaddr_in *)addrs;
791 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
792 			} else if (addrs->sa_family == AF_INET6) {
793 				struct sockaddr_in6 *sin6;
794 
795 				sin6 = (struct sockaddr_in6 *)addrs;
796 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
797 			}
798 
799 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
800 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
801 				 asoc->asconf_addr_del_pending);
802 
803 			asoc->src_out_of_asoc_ok = 1;
804 			stored = 1;
805 			goto skip_mkasconf;
806 		}
807 
808 		if (laddr == NULL)
809 			return -EINVAL;
810 
811 		/* We do not need RCU protection throughout this loop
812 		 * because this is done under a socket lock from the
813 		 * setsockopt call.
814 		 */
815 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
816 						   SCTP_PARAM_DEL_IP);
817 		if (!chunk) {
818 			retval = -ENOMEM;
819 			goto out;
820 		}
821 
822 skip_mkasconf:
823 		/* Reset use_as_src flag for the addresses in the bind address
824 		 * list that are to be deleted.
825 		 */
826 		addr_buf = addrs;
827 		for (i = 0; i < addrcnt; i++) {
828 			laddr = addr_buf;
829 			af = sctp_get_af_specific(laddr->v4.sin_family);
830 			list_for_each_entry(saddr, &bp->address_list, list) {
831 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
832 					saddr->state = SCTP_ADDR_DEL;
833 			}
834 			addr_buf += af->sockaddr_len;
835 		}
836 
837 		/* Update the route and saddr entries for all the transports
838 		 * as some of the addresses in the bind address list are
839 		 * about to be deleted and cannot be used as source addresses.
840 		 */
841 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
842 					transports) {
843 			dst_release(transport->dst);
844 			sctp_transport_route(transport, NULL,
845 					     sctp_sk(asoc->base.sk));
846 		}
847 
848 		if (stored)
849 			/* We don't need to transmit ASCONF */
850 			continue;
851 		retval = sctp_send_asconf(asoc, chunk);
852 	}
853 out:
854 	return retval;
855 }
856 
857 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
858 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
859 {
860 	struct sock *sk = sctp_opt2sk(sp);
861 	union sctp_addr *addr;
862 	struct sctp_af *af;
863 
864 	/* It is safe to write port space in caller. */
865 	addr = &addrw->a;
866 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
867 	af = sctp_get_af_specific(addr->sa.sa_family);
868 	if (!af)
869 		return -EINVAL;
870 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
871 		return -EINVAL;
872 
873 	if (addrw->state == SCTP_ADDR_NEW)
874 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
875 	else
876 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
877 }
878 
879 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
880  *
881  * API 8.1
882  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
883  *                int flags);
884  *
885  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
886  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
887  * or IPv6 addresses.
888  *
889  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
890  * Section 3.1.2 for this usage.
891  *
892  * addrs is a pointer to an array of one or more socket addresses. Each
893  * address is contained in its appropriate structure (i.e. struct
894  * sockaddr_in or struct sockaddr_in6) the family of the address type
895  * must be used to distinguish the address length (note that this
896  * representation is termed a "packed array" of addresses). The caller
897  * specifies the number of addresses in the array with addrcnt.
898  *
899  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
900  * -1, and sets errno to the appropriate error code.
901  *
902  * For SCTP, the port given in each socket address must be the same, or
903  * sctp_bindx() will fail, setting errno to EINVAL.
904  *
905  * The flags parameter is formed from the bitwise OR of zero or more of
906  * the following currently defined flags:
907  *
908  * SCTP_BINDX_ADD_ADDR
909  *
910  * SCTP_BINDX_REM_ADDR
911  *
912  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
913  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
914  * addresses from the association. The two flags are mutually exclusive;
915  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
916  * not remove all addresses from an association; sctp_bindx() will
917  * reject such an attempt with EINVAL.
918  *
919  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
920  * additional addresses with an endpoint after calling bind().  Or use
921  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
922  * socket is associated with so that no new association accepted will be
923  * associated with those addresses. If the endpoint supports dynamic
924  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
925  * endpoint to send the appropriate message to the peer to change the
926  * peers address lists.
927  *
928  * Adding and removing addresses from a connected association is
929  * optional functionality. Implementations that do not support this
930  * functionality should return EOPNOTSUPP.
931  *
932  * Basically do nothing but copying the addresses from user to kernel
933  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
934  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
935  * from userspace.
936  *
937  * We don't use copy_from_user() for optimization: we first do the
938  * sanity checks (buffer size -fast- and access check-healthy
939  * pointer); if all of those succeed, then we can alloc the memory
940  * (expensive operation) needed to copy the data to kernel. Then we do
941  * the copying without checking the user space area
942  * (__copy_from_user()).
943  *
944  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
945  * it.
946  *
947  * sk        The sk of the socket
948  * addrs     The pointer to the addresses in user land
949  * addrssize Size of the addrs buffer
950  * op        Operation to perform (add or remove, see the flags of
951  *           sctp_bindx)
952  *
953  * Returns 0 if ok, <0 errno code on error.
954  */
955 static int sctp_setsockopt_bindx(struct sock* sk,
956 				 struct sockaddr __user *addrs,
957 				 int addrs_size, int op)
958 {
959 	struct sockaddr *kaddrs;
960 	int err;
961 	int addrcnt = 0;
962 	int walk_size = 0;
963 	struct sockaddr *sa_addr;
964 	void *addr_buf;
965 	struct sctp_af *af;
966 
967 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
968 		 __func__, sk, addrs, addrs_size, op);
969 
970 	if (unlikely(addrs_size <= 0))
971 		return -EINVAL;
972 
973 	/* Check the user passed a healthy pointer.  */
974 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
975 		return -EFAULT;
976 
977 	/* Alloc space for the address array in kernel memory.  */
978 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
979 	if (unlikely(!kaddrs))
980 		return -ENOMEM;
981 
982 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
983 		kfree(kaddrs);
984 		return -EFAULT;
985 	}
986 
987 	/* Walk through the addrs buffer and count the number of addresses. */
988 	addr_buf = kaddrs;
989 	while (walk_size < addrs_size) {
990 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
991 			kfree(kaddrs);
992 			return -EINVAL;
993 		}
994 
995 		sa_addr = addr_buf;
996 		af = sctp_get_af_specific(sa_addr->sa_family);
997 
998 		/* If the address family is not supported or if this address
999 		 * causes the address buffer to overflow return EINVAL.
1000 		 */
1001 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1002 			kfree(kaddrs);
1003 			return -EINVAL;
1004 		}
1005 		addrcnt++;
1006 		addr_buf += af->sockaddr_len;
1007 		walk_size += af->sockaddr_len;
1008 	}
1009 
1010 	/* Do the work. */
1011 	switch (op) {
1012 	case SCTP_BINDX_ADD_ADDR:
1013 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1014 		if (err)
1015 			goto out;
1016 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1017 		break;
1018 
1019 	case SCTP_BINDX_REM_ADDR:
1020 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1021 		if (err)
1022 			goto out;
1023 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1024 		break;
1025 
1026 	default:
1027 		err = -EINVAL;
1028 		break;
1029 	}
1030 
1031 out:
1032 	kfree(kaddrs);
1033 
1034 	return err;
1035 }
1036 
1037 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1038  *
1039  * Common routine for handling connect() and sctp_connectx().
1040  * Connect will come in with just a single address.
1041  */
1042 static int __sctp_connect(struct sock* sk,
1043 			  struct sockaddr *kaddrs,
1044 			  int addrs_size,
1045 			  sctp_assoc_t *assoc_id)
1046 {
1047 	struct net *net = sock_net(sk);
1048 	struct sctp_sock *sp;
1049 	struct sctp_endpoint *ep;
1050 	struct sctp_association *asoc = NULL;
1051 	struct sctp_association *asoc2;
1052 	struct sctp_transport *transport;
1053 	union sctp_addr to;
1054 	struct sctp_af *af;
1055 	sctp_scope_t scope;
1056 	long timeo;
1057 	int err = 0;
1058 	int addrcnt = 0;
1059 	int walk_size = 0;
1060 	union sctp_addr *sa_addr = NULL;
1061 	void *addr_buf;
1062 	unsigned short port;
1063 	unsigned int f_flags = 0;
1064 
1065 	sp = sctp_sk(sk);
1066 	ep = sp->ep;
1067 
1068 	/* connect() cannot be done on a socket that is already in ESTABLISHED
1069 	 * state - UDP-style peeled off socket or a TCP-style socket that
1070 	 * is already connected.
1071 	 * It cannot be done even on a TCP-style listening socket.
1072 	 */
1073 	if (sctp_sstate(sk, ESTABLISHED) ||
1074 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1075 		err = -EISCONN;
1076 		goto out_free;
1077 	}
1078 
1079 	/* Walk through the addrs buffer and count the number of addresses. */
1080 	addr_buf = kaddrs;
1081 	while (walk_size < addrs_size) {
1082 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1083 			err = -EINVAL;
1084 			goto out_free;
1085 		}
1086 
1087 		sa_addr = addr_buf;
1088 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1089 
1090 		/* If the address family is not supported or if this address
1091 		 * causes the address buffer to overflow return EINVAL.
1092 		 */
1093 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1094 			err = -EINVAL;
1095 			goto out_free;
1096 		}
1097 
1098 		port = ntohs(sa_addr->v4.sin_port);
1099 
1100 		/* Save current address so we can work with it */
1101 		memcpy(&to, sa_addr, af->sockaddr_len);
1102 
1103 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1104 		if (err)
1105 			goto out_free;
1106 
1107 		/* Make sure the destination port is correctly set
1108 		 * in all addresses.
1109 		 */
1110 		if (asoc && asoc->peer.port && asoc->peer.port != port) {
1111 			err = -EINVAL;
1112 			goto out_free;
1113 		}
1114 
1115 		/* Check if there already is a matching association on the
1116 		 * endpoint (other than the one created here).
1117 		 */
1118 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1119 		if (asoc2 && asoc2 != asoc) {
1120 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1121 				err = -EISCONN;
1122 			else
1123 				err = -EALREADY;
1124 			goto out_free;
1125 		}
1126 
1127 		/* If we could not find a matching association on the endpoint,
1128 		 * make sure that there is no peeled-off association matching
1129 		 * the peer address even on another socket.
1130 		 */
1131 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1132 			err = -EADDRNOTAVAIL;
1133 			goto out_free;
1134 		}
1135 
1136 		if (!asoc) {
1137 			/* If a bind() or sctp_bindx() is not called prior to
1138 			 * an sctp_connectx() call, the system picks an
1139 			 * ephemeral port and will choose an address set
1140 			 * equivalent to binding with a wildcard address.
1141 			 */
1142 			if (!ep->base.bind_addr.port) {
1143 				if (sctp_autobind(sk)) {
1144 					err = -EAGAIN;
1145 					goto out_free;
1146 				}
1147 			} else {
1148 				/*
1149 				 * If an unprivileged user inherits a 1-many
1150 				 * style socket with open associations on a
1151 				 * privileged port, it MAY be permitted to
1152 				 * accept new associations, but it SHOULD NOT
1153 				 * be permitted to open new associations.
1154 				 */
1155 				if (ep->base.bind_addr.port < PROT_SOCK &&
1156 				    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1157 					err = -EACCES;
1158 					goto out_free;
1159 				}
1160 			}
1161 
1162 			scope = sctp_scope(&to);
1163 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1164 			if (!asoc) {
1165 				err = -ENOMEM;
1166 				goto out_free;
1167 			}
1168 
1169 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1170 							      GFP_KERNEL);
1171 			if (err < 0) {
1172 				goto out_free;
1173 			}
1174 
1175 		}
1176 
1177 		/* Prime the peer's transport structures.  */
1178 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1179 						SCTP_UNKNOWN);
1180 		if (!transport) {
1181 			err = -ENOMEM;
1182 			goto out_free;
1183 		}
1184 
1185 		addrcnt++;
1186 		addr_buf += af->sockaddr_len;
1187 		walk_size += af->sockaddr_len;
1188 	}
1189 
1190 	/* In case the user of sctp_connectx() wants an association
1191 	 * id back, assign one now.
1192 	 */
1193 	if (assoc_id) {
1194 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1195 		if (err < 0)
1196 			goto out_free;
1197 	}
1198 
1199 	err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1200 	if (err < 0) {
1201 		goto out_free;
1202 	}
1203 
1204 	/* Initialize sk's dport and daddr for getpeername() */
1205 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1206 	af = sctp_get_af_specific(sa_addr->sa.sa_family);
1207 	af->to_sk_daddr(sa_addr, sk);
1208 	sk->sk_err = 0;
1209 
1210 	/* in-kernel sockets don't generally have a file allocated to them
1211 	 * if all they do is call sock_create_kern().
1212 	 */
1213 	if (sk->sk_socket->file)
1214 		f_flags = sk->sk_socket->file->f_flags;
1215 
1216 	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1217 
1218 	err = sctp_wait_for_connect(asoc, &timeo);
1219 	if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1220 		*assoc_id = asoc->assoc_id;
1221 
1222 	/* Don't free association on exit. */
1223 	asoc = NULL;
1224 
1225 out_free:
1226 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1227 		 __func__, asoc, kaddrs, err);
1228 
1229 	if (asoc) {
1230 		/* sctp_primitive_ASSOCIATE may have added this association
1231 		 * To the hash table, try to unhash it, just in case, its a noop
1232 		 * if it wasn't hashed so we're safe
1233 		 */
1234 		sctp_unhash_established(asoc);
1235 		sctp_association_free(asoc);
1236 	}
1237 	return err;
1238 }
1239 
1240 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1241  *
1242  * API 8.9
1243  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1244  * 			sctp_assoc_t *asoc);
1245  *
1246  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1247  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1248  * or IPv6 addresses.
1249  *
1250  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1251  * Section 3.1.2 for this usage.
1252  *
1253  * addrs is a pointer to an array of one or more socket addresses. Each
1254  * address is contained in its appropriate structure (i.e. struct
1255  * sockaddr_in or struct sockaddr_in6) the family of the address type
1256  * must be used to distengish the address length (note that this
1257  * representation is termed a "packed array" of addresses). The caller
1258  * specifies the number of addresses in the array with addrcnt.
1259  *
1260  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1261  * the association id of the new association.  On failure, sctp_connectx()
1262  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1263  * is not touched by the kernel.
1264  *
1265  * For SCTP, the port given in each socket address must be the same, or
1266  * sctp_connectx() will fail, setting errno to EINVAL.
1267  *
1268  * An application can use sctp_connectx to initiate an association with
1269  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1270  * allows a caller to specify multiple addresses at which a peer can be
1271  * reached.  The way the SCTP stack uses the list of addresses to set up
1272  * the association is implementation dependent.  This function only
1273  * specifies that the stack will try to make use of all the addresses in
1274  * the list when needed.
1275  *
1276  * Note that the list of addresses passed in is only used for setting up
1277  * the association.  It does not necessarily equal the set of addresses
1278  * the peer uses for the resulting association.  If the caller wants to
1279  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1280  * retrieve them after the association has been set up.
1281  *
1282  * Basically do nothing but copying the addresses from user to kernel
1283  * land and invoking either sctp_connectx(). This is used for tunneling
1284  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1285  *
1286  * We don't use copy_from_user() for optimization: we first do the
1287  * sanity checks (buffer size -fast- and access check-healthy
1288  * pointer); if all of those succeed, then we can alloc the memory
1289  * (expensive operation) needed to copy the data to kernel. Then we do
1290  * the copying without checking the user space area
1291  * (__copy_from_user()).
1292  *
1293  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1294  * it.
1295  *
1296  * sk        The sk of the socket
1297  * addrs     The pointer to the addresses in user land
1298  * addrssize Size of the addrs buffer
1299  *
1300  * Returns >=0 if ok, <0 errno code on error.
1301  */
1302 static int __sctp_setsockopt_connectx(struct sock* sk,
1303 				      struct sockaddr __user *addrs,
1304 				      int addrs_size,
1305 				      sctp_assoc_t *assoc_id)
1306 {
1307 	int err = 0;
1308 	struct sockaddr *kaddrs;
1309 
1310 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1311 		 __func__, sk, addrs, addrs_size);
1312 
1313 	if (unlikely(addrs_size <= 0))
1314 		return -EINVAL;
1315 
1316 	/* Check the user passed a healthy pointer.  */
1317 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1318 		return -EFAULT;
1319 
1320 	/* Alloc space for the address array in kernel memory.  */
1321 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1322 	if (unlikely(!kaddrs))
1323 		return -ENOMEM;
1324 
1325 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1326 		err = -EFAULT;
1327 	} else {
1328 		err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1329 	}
1330 
1331 	kfree(kaddrs);
1332 
1333 	return err;
1334 }
1335 
1336 /*
1337  * This is an older interface.  It's kept for backward compatibility
1338  * to the option that doesn't provide association id.
1339  */
1340 static int sctp_setsockopt_connectx_old(struct sock* sk,
1341 					struct sockaddr __user *addrs,
1342 					int addrs_size)
1343 {
1344 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1345 }
1346 
1347 /*
1348  * New interface for the API.  The since the API is done with a socket
1349  * option, to make it simple we feed back the association id is as a return
1350  * indication to the call.  Error is always negative and association id is
1351  * always positive.
1352  */
1353 static int sctp_setsockopt_connectx(struct sock* sk,
1354 				    struct sockaddr __user *addrs,
1355 				    int addrs_size)
1356 {
1357 	sctp_assoc_t assoc_id = 0;
1358 	int err = 0;
1359 
1360 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1361 
1362 	if (err)
1363 		return err;
1364 	else
1365 		return assoc_id;
1366 }
1367 
1368 /*
1369  * New (hopefully final) interface for the API.
1370  * We use the sctp_getaddrs_old structure so that use-space library
1371  * can avoid any unnecessary allocations.   The only defferent part
1372  * is that we store the actual length of the address buffer into the
1373  * addrs_num structure member.  That way we can re-use the existing
1374  * code.
1375  */
1376 static int sctp_getsockopt_connectx3(struct sock* sk, int len,
1377 				     char __user *optval,
1378 				     int __user *optlen)
1379 {
1380 	struct sctp_getaddrs_old param;
1381 	sctp_assoc_t assoc_id = 0;
1382 	int err = 0;
1383 
1384 	if (len < sizeof(param))
1385 		return -EINVAL;
1386 
1387 	if (copy_from_user(&param, optval, sizeof(param)))
1388 		return -EFAULT;
1389 
1390 	err = __sctp_setsockopt_connectx(sk,
1391 			(struct sockaddr __user *)param.addrs,
1392 			param.addr_num, &assoc_id);
1393 
1394 	if (err == 0 || err == -EINPROGRESS) {
1395 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1396 			return -EFAULT;
1397 		if (put_user(sizeof(assoc_id), optlen))
1398 			return -EFAULT;
1399 	}
1400 
1401 	return err;
1402 }
1403 
1404 /* API 3.1.4 close() - UDP Style Syntax
1405  * Applications use close() to perform graceful shutdown (as described in
1406  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1407  * by a UDP-style socket.
1408  *
1409  * The syntax is
1410  *
1411  *   ret = close(int sd);
1412  *
1413  *   sd      - the socket descriptor of the associations to be closed.
1414  *
1415  * To gracefully shutdown a specific association represented by the
1416  * UDP-style socket, an application should use the sendmsg() call,
1417  * passing no user data, but including the appropriate flag in the
1418  * ancillary data (see Section xxxx).
1419  *
1420  * If sd in the close() call is a branched-off socket representing only
1421  * one association, the shutdown is performed on that association only.
1422  *
1423  * 4.1.6 close() - TCP Style Syntax
1424  *
1425  * Applications use close() to gracefully close down an association.
1426  *
1427  * The syntax is:
1428  *
1429  *    int close(int sd);
1430  *
1431  *      sd      - the socket descriptor of the association to be closed.
1432  *
1433  * After an application calls close() on a socket descriptor, no further
1434  * socket operations will succeed on that descriptor.
1435  *
1436  * API 7.1.4 SO_LINGER
1437  *
1438  * An application using the TCP-style socket can use this option to
1439  * perform the SCTP ABORT primitive.  The linger option structure is:
1440  *
1441  *  struct  linger {
1442  *     int     l_onoff;                // option on/off
1443  *     int     l_linger;               // linger time
1444  * };
1445  *
1446  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1447  * to 0, calling close() is the same as the ABORT primitive.  If the
1448  * value is set to a negative value, the setsockopt() call will return
1449  * an error.  If the value is set to a positive value linger_time, the
1450  * close() can be blocked for at most linger_time ms.  If the graceful
1451  * shutdown phase does not finish during this period, close() will
1452  * return but the graceful shutdown phase continues in the system.
1453  */
1454 static void sctp_close(struct sock *sk, long timeout)
1455 {
1456 	struct net *net = sock_net(sk);
1457 	struct sctp_endpoint *ep;
1458 	struct sctp_association *asoc;
1459 	struct list_head *pos, *temp;
1460 	unsigned int data_was_unread;
1461 
1462 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1463 
1464 	sctp_lock_sock(sk);
1465 	sk->sk_shutdown = SHUTDOWN_MASK;
1466 	sk->sk_state = SCTP_SS_CLOSING;
1467 
1468 	ep = sctp_sk(sk)->ep;
1469 
1470 	/* Clean up any skbs sitting on the receive queue.  */
1471 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1472 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1473 
1474 	/* Walk all associations on an endpoint.  */
1475 	list_for_each_safe(pos, temp, &ep->asocs) {
1476 		asoc = list_entry(pos, struct sctp_association, asocs);
1477 
1478 		if (sctp_style(sk, TCP)) {
1479 			/* A closed association can still be in the list if
1480 			 * it belongs to a TCP-style listening socket that is
1481 			 * not yet accepted. If so, free it. If not, send an
1482 			 * ABORT or SHUTDOWN based on the linger options.
1483 			 */
1484 			if (sctp_state(asoc, CLOSED)) {
1485 				sctp_unhash_established(asoc);
1486 				sctp_association_free(asoc);
1487 				continue;
1488 			}
1489 		}
1490 
1491 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1492 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1493 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1494 			struct sctp_chunk *chunk;
1495 
1496 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1497 			if (chunk)
1498 				sctp_primitive_ABORT(net, asoc, chunk);
1499 		} else
1500 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1501 	}
1502 
1503 	/* On a TCP-style socket, block for at most linger_time if set. */
1504 	if (sctp_style(sk, TCP) && timeout)
1505 		sctp_wait_for_close(sk, timeout);
1506 
1507 	/* This will run the backlog queue.  */
1508 	sctp_release_sock(sk);
1509 
1510 	/* Supposedly, no process has access to the socket, but
1511 	 * the net layers still may.
1512 	 */
1513 	sctp_local_bh_disable();
1514 	sctp_bh_lock_sock(sk);
1515 
1516 	/* Hold the sock, since sk_common_release() will put sock_put()
1517 	 * and we have just a little more cleanup.
1518 	 */
1519 	sock_hold(sk);
1520 	sk_common_release(sk);
1521 
1522 	sctp_bh_unlock_sock(sk);
1523 	sctp_local_bh_enable();
1524 
1525 	sock_put(sk);
1526 
1527 	SCTP_DBG_OBJCNT_DEC(sock);
1528 }
1529 
1530 /* Handle EPIPE error. */
1531 static int sctp_error(struct sock *sk, int flags, int err)
1532 {
1533 	if (err == -EPIPE)
1534 		err = sock_error(sk) ? : -EPIPE;
1535 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1536 		send_sig(SIGPIPE, current, 0);
1537 	return err;
1538 }
1539 
1540 /* API 3.1.3 sendmsg() - UDP Style Syntax
1541  *
1542  * An application uses sendmsg() and recvmsg() calls to transmit data to
1543  * and receive data from its peer.
1544  *
1545  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1546  *                  int flags);
1547  *
1548  *  socket  - the socket descriptor of the endpoint.
1549  *  message - pointer to the msghdr structure which contains a single
1550  *            user message and possibly some ancillary data.
1551  *
1552  *            See Section 5 for complete description of the data
1553  *            structures.
1554  *
1555  *  flags   - flags sent or received with the user message, see Section
1556  *            5 for complete description of the flags.
1557  *
1558  * Note:  This function could use a rewrite especially when explicit
1559  * connect support comes in.
1560  */
1561 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1562 
1563 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1564 
1565 static int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1566 			struct msghdr *msg, size_t msg_len)
1567 {
1568 	struct net *net = sock_net(sk);
1569 	struct sctp_sock *sp;
1570 	struct sctp_endpoint *ep;
1571 	struct sctp_association *new_asoc=NULL, *asoc=NULL;
1572 	struct sctp_transport *transport, *chunk_tp;
1573 	struct sctp_chunk *chunk;
1574 	union sctp_addr to;
1575 	struct sockaddr *msg_name = NULL;
1576 	struct sctp_sndrcvinfo default_sinfo;
1577 	struct sctp_sndrcvinfo *sinfo;
1578 	struct sctp_initmsg *sinit;
1579 	sctp_assoc_t associd = 0;
1580 	sctp_cmsgs_t cmsgs = { NULL };
1581 	int err;
1582 	sctp_scope_t scope;
1583 	long timeo;
1584 	__u16 sinfo_flags = 0;
1585 	struct sctp_datamsg *datamsg;
1586 	int msg_flags = msg->msg_flags;
1587 
1588 	err = 0;
1589 	sp = sctp_sk(sk);
1590 	ep = sp->ep;
1591 
1592 	pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1593 		 msg, msg_len, ep);
1594 
1595 	/* We cannot send a message over a TCP-style listening socket. */
1596 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1597 		err = -EPIPE;
1598 		goto out_nounlock;
1599 	}
1600 
1601 	/* Parse out the SCTP CMSGs.  */
1602 	err = sctp_msghdr_parse(msg, &cmsgs);
1603 	if (err) {
1604 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1605 		goto out_nounlock;
1606 	}
1607 
1608 	/* Fetch the destination address for this packet.  This
1609 	 * address only selects the association--it is not necessarily
1610 	 * the address we will send to.
1611 	 * For a peeled-off socket, msg_name is ignored.
1612 	 */
1613 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1614 		int msg_namelen = msg->msg_namelen;
1615 
1616 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1617 				       msg_namelen);
1618 		if (err)
1619 			return err;
1620 
1621 		if (msg_namelen > sizeof(to))
1622 			msg_namelen = sizeof(to);
1623 		memcpy(&to, msg->msg_name, msg_namelen);
1624 		msg_name = msg->msg_name;
1625 	}
1626 
1627 	sinfo = cmsgs.info;
1628 	sinit = cmsgs.init;
1629 
1630 	/* Did the user specify SNDRCVINFO?  */
1631 	if (sinfo) {
1632 		sinfo_flags = sinfo->sinfo_flags;
1633 		associd = sinfo->sinfo_assoc_id;
1634 	}
1635 
1636 	pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1637 		 msg_len, sinfo_flags);
1638 
1639 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1640 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1641 		err = -EINVAL;
1642 		goto out_nounlock;
1643 	}
1644 
1645 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1646 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1647 	 * If SCTP_ABORT is set, the message length could be non zero with
1648 	 * the msg_iov set to the user abort reason.
1649 	 */
1650 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1651 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1652 		err = -EINVAL;
1653 		goto out_nounlock;
1654 	}
1655 
1656 	/* If SCTP_ADDR_OVER is set, there must be an address
1657 	 * specified in msg_name.
1658 	 */
1659 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1660 		err = -EINVAL;
1661 		goto out_nounlock;
1662 	}
1663 
1664 	transport = NULL;
1665 
1666 	pr_debug("%s: about to look up association\n", __func__);
1667 
1668 	sctp_lock_sock(sk);
1669 
1670 	/* If a msg_name has been specified, assume this is to be used.  */
1671 	if (msg_name) {
1672 		/* Look for a matching association on the endpoint. */
1673 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1674 		if (!asoc) {
1675 			/* If we could not find a matching association on the
1676 			 * endpoint, make sure that it is not a TCP-style
1677 			 * socket that already has an association or there is
1678 			 * no peeled-off association on another socket.
1679 			 */
1680 			if ((sctp_style(sk, TCP) &&
1681 			     sctp_sstate(sk, ESTABLISHED)) ||
1682 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1683 				err = -EADDRNOTAVAIL;
1684 				goto out_unlock;
1685 			}
1686 		}
1687 	} else {
1688 		asoc = sctp_id2assoc(sk, associd);
1689 		if (!asoc) {
1690 			err = -EPIPE;
1691 			goto out_unlock;
1692 		}
1693 	}
1694 
1695 	if (asoc) {
1696 		pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1697 
1698 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1699 		 * socket that has an association in CLOSED state. This can
1700 		 * happen when an accepted socket has an association that is
1701 		 * already CLOSED.
1702 		 */
1703 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1704 			err = -EPIPE;
1705 			goto out_unlock;
1706 		}
1707 
1708 		if (sinfo_flags & SCTP_EOF) {
1709 			pr_debug("%s: shutting down association:%p\n",
1710 				 __func__, asoc);
1711 
1712 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1713 			err = 0;
1714 			goto out_unlock;
1715 		}
1716 		if (sinfo_flags & SCTP_ABORT) {
1717 
1718 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1719 			if (!chunk) {
1720 				err = -ENOMEM;
1721 				goto out_unlock;
1722 			}
1723 
1724 			pr_debug("%s: aborting association:%p\n",
1725 				 __func__, asoc);
1726 
1727 			sctp_primitive_ABORT(net, asoc, chunk);
1728 			err = 0;
1729 			goto out_unlock;
1730 		}
1731 	}
1732 
1733 	/* Do we need to create the association?  */
1734 	if (!asoc) {
1735 		pr_debug("%s: there is no association yet\n", __func__);
1736 
1737 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1738 			err = -EINVAL;
1739 			goto out_unlock;
1740 		}
1741 
1742 		/* Check for invalid stream against the stream counts,
1743 		 * either the default or the user specified stream counts.
1744 		 */
1745 		if (sinfo) {
1746 			if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1747 				/* Check against the defaults. */
1748 				if (sinfo->sinfo_stream >=
1749 				    sp->initmsg.sinit_num_ostreams) {
1750 					err = -EINVAL;
1751 					goto out_unlock;
1752 				}
1753 			} else {
1754 				/* Check against the requested.  */
1755 				if (sinfo->sinfo_stream >=
1756 				    sinit->sinit_num_ostreams) {
1757 					err = -EINVAL;
1758 					goto out_unlock;
1759 				}
1760 			}
1761 		}
1762 
1763 		/*
1764 		 * API 3.1.2 bind() - UDP Style Syntax
1765 		 * If a bind() or sctp_bindx() is not called prior to a
1766 		 * sendmsg() call that initiates a new association, the
1767 		 * system picks an ephemeral port and will choose an address
1768 		 * set equivalent to binding with a wildcard address.
1769 		 */
1770 		if (!ep->base.bind_addr.port) {
1771 			if (sctp_autobind(sk)) {
1772 				err = -EAGAIN;
1773 				goto out_unlock;
1774 			}
1775 		} else {
1776 			/*
1777 			 * If an unprivileged user inherits a one-to-many
1778 			 * style socket with open associations on a privileged
1779 			 * port, it MAY be permitted to accept new associations,
1780 			 * but it SHOULD NOT be permitted to open new
1781 			 * associations.
1782 			 */
1783 			if (ep->base.bind_addr.port < PROT_SOCK &&
1784 			    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1785 				err = -EACCES;
1786 				goto out_unlock;
1787 			}
1788 		}
1789 
1790 		scope = sctp_scope(&to);
1791 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1792 		if (!new_asoc) {
1793 			err = -ENOMEM;
1794 			goto out_unlock;
1795 		}
1796 		asoc = new_asoc;
1797 		err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1798 		if (err < 0) {
1799 			err = -ENOMEM;
1800 			goto out_free;
1801 		}
1802 
1803 		/* If the SCTP_INIT ancillary data is specified, set all
1804 		 * the association init values accordingly.
1805 		 */
1806 		if (sinit) {
1807 			if (sinit->sinit_num_ostreams) {
1808 				asoc->c.sinit_num_ostreams =
1809 					sinit->sinit_num_ostreams;
1810 			}
1811 			if (sinit->sinit_max_instreams) {
1812 				asoc->c.sinit_max_instreams =
1813 					sinit->sinit_max_instreams;
1814 			}
1815 			if (sinit->sinit_max_attempts) {
1816 				asoc->max_init_attempts
1817 					= sinit->sinit_max_attempts;
1818 			}
1819 			if (sinit->sinit_max_init_timeo) {
1820 				asoc->max_init_timeo =
1821 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1822 			}
1823 		}
1824 
1825 		/* Prime the peer's transport structures.  */
1826 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1827 		if (!transport) {
1828 			err = -ENOMEM;
1829 			goto out_free;
1830 		}
1831 	}
1832 
1833 	/* ASSERT: we have a valid association at this point.  */
1834 	pr_debug("%s: we have a valid association\n", __func__);
1835 
1836 	if (!sinfo) {
1837 		/* If the user didn't specify SNDRCVINFO, make up one with
1838 		 * some defaults.
1839 		 */
1840 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1841 		default_sinfo.sinfo_stream = asoc->default_stream;
1842 		default_sinfo.sinfo_flags = asoc->default_flags;
1843 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1844 		default_sinfo.sinfo_context = asoc->default_context;
1845 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1846 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1847 		sinfo = &default_sinfo;
1848 	}
1849 
1850 	/* API 7.1.7, the sndbuf size per association bounds the
1851 	 * maximum size of data that can be sent in a single send call.
1852 	 */
1853 	if (msg_len > sk->sk_sndbuf) {
1854 		err = -EMSGSIZE;
1855 		goto out_free;
1856 	}
1857 
1858 	if (asoc->pmtu_pending)
1859 		sctp_assoc_pending_pmtu(sk, asoc);
1860 
1861 	/* If fragmentation is disabled and the message length exceeds the
1862 	 * association fragmentation point, return EMSGSIZE.  The I-D
1863 	 * does not specify what this error is, but this looks like
1864 	 * a great fit.
1865 	 */
1866 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1867 		err = -EMSGSIZE;
1868 		goto out_free;
1869 	}
1870 
1871 	/* Check for invalid stream. */
1872 	if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1873 		err = -EINVAL;
1874 		goto out_free;
1875 	}
1876 
1877 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1878 	if (!sctp_wspace(asoc)) {
1879 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1880 		if (err)
1881 			goto out_free;
1882 	}
1883 
1884 	/* If an address is passed with the sendto/sendmsg call, it is used
1885 	 * to override the primary destination address in the TCP model, or
1886 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1887 	 */
1888 	if ((sctp_style(sk, TCP) && msg_name) ||
1889 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1890 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1891 		if (!chunk_tp) {
1892 			err = -EINVAL;
1893 			goto out_free;
1894 		}
1895 	} else
1896 		chunk_tp = NULL;
1897 
1898 	/* Auto-connect, if we aren't connected already. */
1899 	if (sctp_state(asoc, CLOSED)) {
1900 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1901 		if (err < 0)
1902 			goto out_free;
1903 
1904 		pr_debug("%s: we associated primitively\n", __func__);
1905 	}
1906 
1907 	/* Break the message into multiple chunks of maximum size. */
1908 	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1909 	if (IS_ERR(datamsg)) {
1910 		err = PTR_ERR(datamsg);
1911 		goto out_free;
1912 	}
1913 
1914 	/* Now send the (possibly) fragmented message. */
1915 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1916 		sctp_chunk_hold(chunk);
1917 
1918 		/* Do accounting for the write space.  */
1919 		sctp_set_owner_w(chunk);
1920 
1921 		chunk->transport = chunk_tp;
1922 	}
1923 
1924 	/* Send it to the lower layers.  Note:  all chunks
1925 	 * must either fail or succeed.   The lower layer
1926 	 * works that way today.  Keep it that way or this
1927 	 * breaks.
1928 	 */
1929 	err = sctp_primitive_SEND(net, asoc, datamsg);
1930 	/* Did the lower layer accept the chunk? */
1931 	if (err) {
1932 		sctp_datamsg_free(datamsg);
1933 		goto out_free;
1934 	}
1935 
1936 	pr_debug("%s: we sent primitively\n", __func__);
1937 
1938 	sctp_datamsg_put(datamsg);
1939 	err = msg_len;
1940 
1941 	/* If we are already past ASSOCIATE, the lower
1942 	 * layers are responsible for association cleanup.
1943 	 */
1944 	goto out_unlock;
1945 
1946 out_free:
1947 	if (new_asoc) {
1948 		sctp_unhash_established(asoc);
1949 		sctp_association_free(asoc);
1950 	}
1951 out_unlock:
1952 	sctp_release_sock(sk);
1953 
1954 out_nounlock:
1955 	return sctp_error(sk, msg_flags, err);
1956 
1957 #if 0
1958 do_sock_err:
1959 	if (msg_len)
1960 		err = msg_len;
1961 	else
1962 		err = sock_error(sk);
1963 	goto out;
1964 
1965 do_interrupted:
1966 	if (msg_len)
1967 		err = msg_len;
1968 	goto out;
1969 #endif /* 0 */
1970 }
1971 
1972 /* This is an extended version of skb_pull() that removes the data from the
1973  * start of a skb even when data is spread across the list of skb's in the
1974  * frag_list. len specifies the total amount of data that needs to be removed.
1975  * when 'len' bytes could be removed from the skb, it returns 0.
1976  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
1977  * could not be removed.
1978  */
1979 static int sctp_skb_pull(struct sk_buff *skb, int len)
1980 {
1981 	struct sk_buff *list;
1982 	int skb_len = skb_headlen(skb);
1983 	int rlen;
1984 
1985 	if (len <= skb_len) {
1986 		__skb_pull(skb, len);
1987 		return 0;
1988 	}
1989 	len -= skb_len;
1990 	__skb_pull(skb, skb_len);
1991 
1992 	skb_walk_frags(skb, list) {
1993 		rlen = sctp_skb_pull(list, len);
1994 		skb->len -= (len-rlen);
1995 		skb->data_len -= (len-rlen);
1996 
1997 		if (!rlen)
1998 			return 0;
1999 
2000 		len = rlen;
2001 	}
2002 
2003 	return len;
2004 }
2005 
2006 /* API 3.1.3  recvmsg() - UDP Style Syntax
2007  *
2008  *  ssize_t recvmsg(int socket, struct msghdr *message,
2009  *                    int flags);
2010  *
2011  *  socket  - the socket descriptor of the endpoint.
2012  *  message - pointer to the msghdr structure which contains a single
2013  *            user message and possibly some ancillary data.
2014  *
2015  *            See Section 5 for complete description of the data
2016  *            structures.
2017  *
2018  *  flags   - flags sent or received with the user message, see Section
2019  *            5 for complete description of the flags.
2020  */
2021 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
2022 
2023 static int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
2024 			struct msghdr *msg, size_t len, int noblock,
2025 			int flags, int *addr_len)
2026 {
2027 	struct sctp_ulpevent *event = NULL;
2028 	struct sctp_sock *sp = sctp_sk(sk);
2029 	struct sk_buff *skb;
2030 	int copied;
2031 	int err = 0;
2032 	int skb_len;
2033 
2034 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2035 		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2036 		 addr_len);
2037 
2038 	sctp_lock_sock(sk);
2039 
2040 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2041 		err = -ENOTCONN;
2042 		goto out;
2043 	}
2044 
2045 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2046 	if (!skb)
2047 		goto out;
2048 
2049 	/* Get the total length of the skb including any skb's in the
2050 	 * frag_list.
2051 	 */
2052 	skb_len = skb->len;
2053 
2054 	copied = skb_len;
2055 	if (copied > len)
2056 		copied = len;
2057 
2058 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2059 
2060 	event = sctp_skb2event(skb);
2061 
2062 	if (err)
2063 		goto out_free;
2064 
2065 	sock_recv_ts_and_drops(msg, sk, skb);
2066 	if (sctp_ulpevent_is_notification(event)) {
2067 		msg->msg_flags |= MSG_NOTIFICATION;
2068 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2069 	} else {
2070 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2071 	}
2072 
2073 	/* Check if we allow SCTP_SNDRCVINFO. */
2074 	if (sp->subscribe.sctp_data_io_event)
2075 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2076 #if 0
2077 	/* FIXME: we should be calling IP/IPv6 layers.  */
2078 	if (sk->sk_protinfo.af_inet.cmsg_flags)
2079 		ip_cmsg_recv(msg, skb);
2080 #endif
2081 
2082 	err = copied;
2083 
2084 	/* If skb's length exceeds the user's buffer, update the skb and
2085 	 * push it back to the receive_queue so that the next call to
2086 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2087 	 */
2088 	if (skb_len > copied) {
2089 		msg->msg_flags &= ~MSG_EOR;
2090 		if (flags & MSG_PEEK)
2091 			goto out_free;
2092 		sctp_skb_pull(skb, copied);
2093 		skb_queue_head(&sk->sk_receive_queue, skb);
2094 
2095 		/* When only partial message is copied to the user, increase
2096 		 * rwnd by that amount. If all the data in the skb is read,
2097 		 * rwnd is updated when the event is freed.
2098 		 */
2099 		if (!sctp_ulpevent_is_notification(event))
2100 			sctp_assoc_rwnd_increase(event->asoc, copied);
2101 		goto out;
2102 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2103 		   (event->msg_flags & MSG_EOR))
2104 		msg->msg_flags |= MSG_EOR;
2105 	else
2106 		msg->msg_flags &= ~MSG_EOR;
2107 
2108 out_free:
2109 	if (flags & MSG_PEEK) {
2110 		/* Release the skb reference acquired after peeking the skb in
2111 		 * sctp_skb_recv_datagram().
2112 		 */
2113 		kfree_skb(skb);
2114 	} else {
2115 		/* Free the event which includes releasing the reference to
2116 		 * the owner of the skb, freeing the skb and updating the
2117 		 * rwnd.
2118 		 */
2119 		sctp_ulpevent_free(event);
2120 	}
2121 out:
2122 	sctp_release_sock(sk);
2123 	return err;
2124 }
2125 
2126 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2127  *
2128  * This option is a on/off flag.  If enabled no SCTP message
2129  * fragmentation will be performed.  Instead if a message being sent
2130  * exceeds the current PMTU size, the message will NOT be sent and
2131  * instead a error will be indicated to the user.
2132  */
2133 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2134 					     char __user *optval,
2135 					     unsigned int optlen)
2136 {
2137 	int val;
2138 
2139 	if (optlen < sizeof(int))
2140 		return -EINVAL;
2141 
2142 	if (get_user(val, (int __user *)optval))
2143 		return -EFAULT;
2144 
2145 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2146 
2147 	return 0;
2148 }
2149 
2150 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2151 				  unsigned int optlen)
2152 {
2153 	struct sctp_association *asoc;
2154 	struct sctp_ulpevent *event;
2155 
2156 	if (optlen > sizeof(struct sctp_event_subscribe))
2157 		return -EINVAL;
2158 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2159 		return -EFAULT;
2160 
2161 	/*
2162 	 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2163 	 * if there is no data to be sent or retransmit, the stack will
2164 	 * immediately send up this notification.
2165 	 */
2166 	if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2167 				       &sctp_sk(sk)->subscribe)) {
2168 		asoc = sctp_id2assoc(sk, 0);
2169 
2170 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2171 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2172 					GFP_ATOMIC);
2173 			if (!event)
2174 				return -ENOMEM;
2175 
2176 			sctp_ulpq_tail_event(&asoc->ulpq, event);
2177 		}
2178 	}
2179 
2180 	return 0;
2181 }
2182 
2183 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2184  *
2185  * This socket option is applicable to the UDP-style socket only.  When
2186  * set it will cause associations that are idle for more than the
2187  * specified number of seconds to automatically close.  An association
2188  * being idle is defined an association that has NOT sent or received
2189  * user data.  The special value of '0' indicates that no automatic
2190  * close of any associations should be performed.  The option expects an
2191  * integer defining the number of seconds of idle time before an
2192  * association is closed.
2193  */
2194 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2195 				     unsigned int optlen)
2196 {
2197 	struct sctp_sock *sp = sctp_sk(sk);
2198 
2199 	/* Applicable to UDP-style socket only */
2200 	if (sctp_style(sk, TCP))
2201 		return -EOPNOTSUPP;
2202 	if (optlen != sizeof(int))
2203 		return -EINVAL;
2204 	if (copy_from_user(&sp->autoclose, optval, optlen))
2205 		return -EFAULT;
2206 
2207 	return 0;
2208 }
2209 
2210 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2211  *
2212  * Applications can enable or disable heartbeats for any peer address of
2213  * an association, modify an address's heartbeat interval, force a
2214  * heartbeat to be sent immediately, and adjust the address's maximum
2215  * number of retransmissions sent before an address is considered
2216  * unreachable.  The following structure is used to access and modify an
2217  * address's parameters:
2218  *
2219  *  struct sctp_paddrparams {
2220  *     sctp_assoc_t            spp_assoc_id;
2221  *     struct sockaddr_storage spp_address;
2222  *     uint32_t                spp_hbinterval;
2223  *     uint16_t                spp_pathmaxrxt;
2224  *     uint32_t                spp_pathmtu;
2225  *     uint32_t                spp_sackdelay;
2226  *     uint32_t                spp_flags;
2227  * };
2228  *
2229  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2230  *                     application, and identifies the association for
2231  *                     this query.
2232  *   spp_address     - This specifies which address is of interest.
2233  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2234  *                     in milliseconds.  If a  value of zero
2235  *                     is present in this field then no changes are to
2236  *                     be made to this parameter.
2237  *   spp_pathmaxrxt  - This contains the maximum number of
2238  *                     retransmissions before this address shall be
2239  *                     considered unreachable. If a  value of zero
2240  *                     is present in this field then no changes are to
2241  *                     be made to this parameter.
2242  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2243  *                     specified here will be the "fixed" path mtu.
2244  *                     Note that if the spp_address field is empty
2245  *                     then all associations on this address will
2246  *                     have this fixed path mtu set upon them.
2247  *
2248  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2249  *                     the number of milliseconds that sacks will be delayed
2250  *                     for. This value will apply to all addresses of an
2251  *                     association if the spp_address field is empty. Note
2252  *                     also, that if delayed sack is enabled and this
2253  *                     value is set to 0, no change is made to the last
2254  *                     recorded delayed sack timer value.
2255  *
2256  *   spp_flags       - These flags are used to control various features
2257  *                     on an association. The flag field may contain
2258  *                     zero or more of the following options.
2259  *
2260  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2261  *                     specified address. Note that if the address
2262  *                     field is empty all addresses for the association
2263  *                     have heartbeats enabled upon them.
2264  *
2265  *                     SPP_HB_DISABLE - Disable heartbeats on the
2266  *                     speicifed address. Note that if the address
2267  *                     field is empty all addresses for the association
2268  *                     will have their heartbeats disabled. Note also
2269  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2270  *                     mutually exclusive, only one of these two should
2271  *                     be specified. Enabling both fields will have
2272  *                     undetermined results.
2273  *
2274  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2275  *                     to be made immediately.
2276  *
2277  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2278  *                     heartbeat delayis to be set to the value of 0
2279  *                     milliseconds.
2280  *
2281  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2282  *                     discovery upon the specified address. Note that
2283  *                     if the address feild is empty then all addresses
2284  *                     on the association are effected.
2285  *
2286  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2287  *                     discovery upon the specified address. Note that
2288  *                     if the address feild is empty then all addresses
2289  *                     on the association are effected. Not also that
2290  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2291  *                     exclusive. Enabling both will have undetermined
2292  *                     results.
2293  *
2294  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2295  *                     on delayed sack. The time specified in spp_sackdelay
2296  *                     is used to specify the sack delay for this address. Note
2297  *                     that if spp_address is empty then all addresses will
2298  *                     enable delayed sack and take on the sack delay
2299  *                     value specified in spp_sackdelay.
2300  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2301  *                     off delayed sack. If the spp_address field is blank then
2302  *                     delayed sack is disabled for the entire association. Note
2303  *                     also that this field is mutually exclusive to
2304  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2305  *                     results.
2306  */
2307 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2308 				       struct sctp_transport   *trans,
2309 				       struct sctp_association *asoc,
2310 				       struct sctp_sock        *sp,
2311 				       int                      hb_change,
2312 				       int                      pmtud_change,
2313 				       int                      sackdelay_change)
2314 {
2315 	int error;
2316 
2317 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2318 		struct net *net = sock_net(trans->asoc->base.sk);
2319 
2320 		error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2321 		if (error)
2322 			return error;
2323 	}
2324 
2325 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2326 	 * this field is ignored.  Note also that a value of zero indicates
2327 	 * the current setting should be left unchanged.
2328 	 */
2329 	if (params->spp_flags & SPP_HB_ENABLE) {
2330 
2331 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2332 		 * set.  This lets us use 0 value when this flag
2333 		 * is set.
2334 		 */
2335 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2336 			params->spp_hbinterval = 0;
2337 
2338 		if (params->spp_hbinterval ||
2339 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2340 			if (trans) {
2341 				trans->hbinterval =
2342 				    msecs_to_jiffies(params->spp_hbinterval);
2343 			} else if (asoc) {
2344 				asoc->hbinterval =
2345 				    msecs_to_jiffies(params->spp_hbinterval);
2346 			} else {
2347 				sp->hbinterval = params->spp_hbinterval;
2348 			}
2349 		}
2350 	}
2351 
2352 	if (hb_change) {
2353 		if (trans) {
2354 			trans->param_flags =
2355 				(trans->param_flags & ~SPP_HB) | hb_change;
2356 		} else if (asoc) {
2357 			asoc->param_flags =
2358 				(asoc->param_flags & ~SPP_HB) | hb_change;
2359 		} else {
2360 			sp->param_flags =
2361 				(sp->param_flags & ~SPP_HB) | hb_change;
2362 		}
2363 	}
2364 
2365 	/* When Path MTU discovery is disabled the value specified here will
2366 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2367 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2368 	 * effect).
2369 	 */
2370 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2371 		if (trans) {
2372 			trans->pathmtu = params->spp_pathmtu;
2373 			sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2374 		} else if (asoc) {
2375 			asoc->pathmtu = params->spp_pathmtu;
2376 			sctp_frag_point(asoc, params->spp_pathmtu);
2377 		} else {
2378 			sp->pathmtu = params->spp_pathmtu;
2379 		}
2380 	}
2381 
2382 	if (pmtud_change) {
2383 		if (trans) {
2384 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2385 				(params->spp_flags & SPP_PMTUD_ENABLE);
2386 			trans->param_flags =
2387 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2388 			if (update) {
2389 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2390 				sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2391 			}
2392 		} else if (asoc) {
2393 			asoc->param_flags =
2394 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2395 		} else {
2396 			sp->param_flags =
2397 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2398 		}
2399 	}
2400 
2401 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2402 	 * value of this field is ignored.  Note also that a value of zero
2403 	 * indicates the current setting should be left unchanged.
2404 	 */
2405 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2406 		if (trans) {
2407 			trans->sackdelay =
2408 				msecs_to_jiffies(params->spp_sackdelay);
2409 		} else if (asoc) {
2410 			asoc->sackdelay =
2411 				msecs_to_jiffies(params->spp_sackdelay);
2412 		} else {
2413 			sp->sackdelay = params->spp_sackdelay;
2414 		}
2415 	}
2416 
2417 	if (sackdelay_change) {
2418 		if (trans) {
2419 			trans->param_flags =
2420 				(trans->param_flags & ~SPP_SACKDELAY) |
2421 				sackdelay_change;
2422 		} else if (asoc) {
2423 			asoc->param_flags =
2424 				(asoc->param_flags & ~SPP_SACKDELAY) |
2425 				sackdelay_change;
2426 		} else {
2427 			sp->param_flags =
2428 				(sp->param_flags & ~SPP_SACKDELAY) |
2429 				sackdelay_change;
2430 		}
2431 	}
2432 
2433 	/* Note that a value of zero indicates the current setting should be
2434 	   left unchanged.
2435 	 */
2436 	if (params->spp_pathmaxrxt) {
2437 		if (trans) {
2438 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2439 		} else if (asoc) {
2440 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2441 		} else {
2442 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2443 		}
2444 	}
2445 
2446 	return 0;
2447 }
2448 
2449 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2450 					    char __user *optval,
2451 					    unsigned int optlen)
2452 {
2453 	struct sctp_paddrparams  params;
2454 	struct sctp_transport   *trans = NULL;
2455 	struct sctp_association *asoc = NULL;
2456 	struct sctp_sock        *sp = sctp_sk(sk);
2457 	int error;
2458 	int hb_change, pmtud_change, sackdelay_change;
2459 
2460 	if (optlen != sizeof(struct sctp_paddrparams))
2461 		return - EINVAL;
2462 
2463 	if (copy_from_user(&params, optval, optlen))
2464 		return -EFAULT;
2465 
2466 	/* Validate flags and value parameters. */
2467 	hb_change        = params.spp_flags & SPP_HB;
2468 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2469 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2470 
2471 	if (hb_change        == SPP_HB ||
2472 	    pmtud_change     == SPP_PMTUD ||
2473 	    sackdelay_change == SPP_SACKDELAY ||
2474 	    params.spp_sackdelay > 500 ||
2475 	    (params.spp_pathmtu &&
2476 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2477 		return -EINVAL;
2478 
2479 	/* If an address other than INADDR_ANY is specified, and
2480 	 * no transport is found, then the request is invalid.
2481 	 */
2482 	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
2483 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2484 					       params.spp_assoc_id);
2485 		if (!trans)
2486 			return -EINVAL;
2487 	}
2488 
2489 	/* Get association, if assoc_id != 0 and the socket is a one
2490 	 * to many style socket, and an association was not found, then
2491 	 * the id was invalid.
2492 	 */
2493 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2494 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2495 		return -EINVAL;
2496 
2497 	/* Heartbeat demand can only be sent on a transport or
2498 	 * association, but not a socket.
2499 	 */
2500 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2501 		return -EINVAL;
2502 
2503 	/* Process parameters. */
2504 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2505 					    hb_change, pmtud_change,
2506 					    sackdelay_change);
2507 
2508 	if (error)
2509 		return error;
2510 
2511 	/* If changes are for association, also apply parameters to each
2512 	 * transport.
2513 	 */
2514 	if (!trans && asoc) {
2515 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2516 				transports) {
2517 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2518 						    hb_change, pmtud_change,
2519 						    sackdelay_change);
2520 		}
2521 	}
2522 
2523 	return 0;
2524 }
2525 
2526 /*
2527  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2528  *
2529  * This option will effect the way delayed acks are performed.  This
2530  * option allows you to get or set the delayed ack time, in
2531  * milliseconds.  It also allows changing the delayed ack frequency.
2532  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2533  * the assoc_id is 0, then this sets or gets the endpoints default
2534  * values.  If the assoc_id field is non-zero, then the set or get
2535  * effects the specified association for the one to many model (the
2536  * assoc_id field is ignored by the one to one model).  Note that if
2537  * sack_delay or sack_freq are 0 when setting this option, then the
2538  * current values will remain unchanged.
2539  *
2540  * struct sctp_sack_info {
2541  *     sctp_assoc_t            sack_assoc_id;
2542  *     uint32_t                sack_delay;
2543  *     uint32_t                sack_freq;
2544  * };
2545  *
2546  * sack_assoc_id -  This parameter, indicates which association the user
2547  *    is performing an action upon.  Note that if this field's value is
2548  *    zero then the endpoints default value is changed (effecting future
2549  *    associations only).
2550  *
2551  * sack_delay -  This parameter contains the number of milliseconds that
2552  *    the user is requesting the delayed ACK timer be set to.  Note that
2553  *    this value is defined in the standard to be between 200 and 500
2554  *    milliseconds.
2555  *
2556  * sack_freq -  This parameter contains the number of packets that must
2557  *    be received before a sack is sent without waiting for the delay
2558  *    timer to expire.  The default value for this is 2, setting this
2559  *    value to 1 will disable the delayed sack algorithm.
2560  */
2561 
2562 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2563 				       char __user *optval, unsigned int optlen)
2564 {
2565 	struct sctp_sack_info    params;
2566 	struct sctp_transport   *trans = NULL;
2567 	struct sctp_association *asoc = NULL;
2568 	struct sctp_sock        *sp = sctp_sk(sk);
2569 
2570 	if (optlen == sizeof(struct sctp_sack_info)) {
2571 		if (copy_from_user(&params, optval, optlen))
2572 			return -EFAULT;
2573 
2574 		if (params.sack_delay == 0 && params.sack_freq == 0)
2575 			return 0;
2576 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2577 		pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
2578 		pr_warn("Use struct sctp_sack_info instead\n");
2579 		if (copy_from_user(&params, optval, optlen))
2580 			return -EFAULT;
2581 
2582 		if (params.sack_delay == 0)
2583 			params.sack_freq = 1;
2584 		else
2585 			params.sack_freq = 0;
2586 	} else
2587 		return - EINVAL;
2588 
2589 	/* Validate value parameter. */
2590 	if (params.sack_delay > 500)
2591 		return -EINVAL;
2592 
2593 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2594 	 * to many style socket, and an association was not found, then
2595 	 * the id was invalid.
2596 	 */
2597 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2598 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2599 		return -EINVAL;
2600 
2601 	if (params.sack_delay) {
2602 		if (asoc) {
2603 			asoc->sackdelay =
2604 				msecs_to_jiffies(params.sack_delay);
2605 			asoc->param_flags =
2606 				(asoc->param_flags & ~SPP_SACKDELAY) |
2607 				SPP_SACKDELAY_ENABLE;
2608 		} else {
2609 			sp->sackdelay = params.sack_delay;
2610 			sp->param_flags =
2611 				(sp->param_flags & ~SPP_SACKDELAY) |
2612 				SPP_SACKDELAY_ENABLE;
2613 		}
2614 	}
2615 
2616 	if (params.sack_freq == 1) {
2617 		if (asoc) {
2618 			asoc->param_flags =
2619 				(asoc->param_flags & ~SPP_SACKDELAY) |
2620 				SPP_SACKDELAY_DISABLE;
2621 		} else {
2622 			sp->param_flags =
2623 				(sp->param_flags & ~SPP_SACKDELAY) |
2624 				SPP_SACKDELAY_DISABLE;
2625 		}
2626 	} else if (params.sack_freq > 1) {
2627 		if (asoc) {
2628 			asoc->sackfreq = params.sack_freq;
2629 			asoc->param_flags =
2630 				(asoc->param_flags & ~SPP_SACKDELAY) |
2631 				SPP_SACKDELAY_ENABLE;
2632 		} else {
2633 			sp->sackfreq = params.sack_freq;
2634 			sp->param_flags =
2635 				(sp->param_flags & ~SPP_SACKDELAY) |
2636 				SPP_SACKDELAY_ENABLE;
2637 		}
2638 	}
2639 
2640 	/* If change is for association, also apply to each transport. */
2641 	if (asoc) {
2642 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2643 				transports) {
2644 			if (params.sack_delay) {
2645 				trans->sackdelay =
2646 					msecs_to_jiffies(params.sack_delay);
2647 				trans->param_flags =
2648 					(trans->param_flags & ~SPP_SACKDELAY) |
2649 					SPP_SACKDELAY_ENABLE;
2650 			}
2651 			if (params.sack_freq == 1) {
2652 				trans->param_flags =
2653 					(trans->param_flags & ~SPP_SACKDELAY) |
2654 					SPP_SACKDELAY_DISABLE;
2655 			} else if (params.sack_freq > 1) {
2656 				trans->sackfreq = params.sack_freq;
2657 				trans->param_flags =
2658 					(trans->param_flags & ~SPP_SACKDELAY) |
2659 					SPP_SACKDELAY_ENABLE;
2660 			}
2661 		}
2662 	}
2663 
2664 	return 0;
2665 }
2666 
2667 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2668  *
2669  * Applications can specify protocol parameters for the default association
2670  * initialization.  The option name argument to setsockopt() and getsockopt()
2671  * is SCTP_INITMSG.
2672  *
2673  * Setting initialization parameters is effective only on an unconnected
2674  * socket (for UDP-style sockets only future associations are effected
2675  * by the change).  With TCP-style sockets, this option is inherited by
2676  * sockets derived from a listener socket.
2677  */
2678 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2679 {
2680 	struct sctp_initmsg sinit;
2681 	struct sctp_sock *sp = sctp_sk(sk);
2682 
2683 	if (optlen != sizeof(struct sctp_initmsg))
2684 		return -EINVAL;
2685 	if (copy_from_user(&sinit, optval, optlen))
2686 		return -EFAULT;
2687 
2688 	if (sinit.sinit_num_ostreams)
2689 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2690 	if (sinit.sinit_max_instreams)
2691 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2692 	if (sinit.sinit_max_attempts)
2693 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2694 	if (sinit.sinit_max_init_timeo)
2695 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2696 
2697 	return 0;
2698 }
2699 
2700 /*
2701  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2702  *
2703  *   Applications that wish to use the sendto() system call may wish to
2704  *   specify a default set of parameters that would normally be supplied
2705  *   through the inclusion of ancillary data.  This socket option allows
2706  *   such an application to set the default sctp_sndrcvinfo structure.
2707  *   The application that wishes to use this socket option simply passes
2708  *   in to this call the sctp_sndrcvinfo structure defined in Section
2709  *   5.2.2) The input parameters accepted by this call include
2710  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2711  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2712  *   to this call if the caller is using the UDP model.
2713  */
2714 static int sctp_setsockopt_default_send_param(struct sock *sk,
2715 					      char __user *optval,
2716 					      unsigned int optlen)
2717 {
2718 	struct sctp_sndrcvinfo info;
2719 	struct sctp_association *asoc;
2720 	struct sctp_sock *sp = sctp_sk(sk);
2721 
2722 	if (optlen != sizeof(struct sctp_sndrcvinfo))
2723 		return -EINVAL;
2724 	if (copy_from_user(&info, optval, optlen))
2725 		return -EFAULT;
2726 
2727 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2728 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2729 		return -EINVAL;
2730 
2731 	if (asoc) {
2732 		asoc->default_stream = info.sinfo_stream;
2733 		asoc->default_flags = info.sinfo_flags;
2734 		asoc->default_ppid = info.sinfo_ppid;
2735 		asoc->default_context = info.sinfo_context;
2736 		asoc->default_timetolive = info.sinfo_timetolive;
2737 	} else {
2738 		sp->default_stream = info.sinfo_stream;
2739 		sp->default_flags = info.sinfo_flags;
2740 		sp->default_ppid = info.sinfo_ppid;
2741 		sp->default_context = info.sinfo_context;
2742 		sp->default_timetolive = info.sinfo_timetolive;
2743 	}
2744 
2745 	return 0;
2746 }
2747 
2748 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2749  *
2750  * Requests that the local SCTP stack use the enclosed peer address as
2751  * the association primary.  The enclosed address must be one of the
2752  * association peer's addresses.
2753  */
2754 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2755 					unsigned int optlen)
2756 {
2757 	struct sctp_prim prim;
2758 	struct sctp_transport *trans;
2759 
2760 	if (optlen != sizeof(struct sctp_prim))
2761 		return -EINVAL;
2762 
2763 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2764 		return -EFAULT;
2765 
2766 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2767 	if (!trans)
2768 		return -EINVAL;
2769 
2770 	sctp_assoc_set_primary(trans->asoc, trans);
2771 
2772 	return 0;
2773 }
2774 
2775 /*
2776  * 7.1.5 SCTP_NODELAY
2777  *
2778  * Turn on/off any Nagle-like algorithm.  This means that packets are
2779  * generally sent as soon as possible and no unnecessary delays are
2780  * introduced, at the cost of more packets in the network.  Expects an
2781  *  integer boolean flag.
2782  */
2783 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2784 				   unsigned int optlen)
2785 {
2786 	int val;
2787 
2788 	if (optlen < sizeof(int))
2789 		return -EINVAL;
2790 	if (get_user(val, (int __user *)optval))
2791 		return -EFAULT;
2792 
2793 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2794 	return 0;
2795 }
2796 
2797 /*
2798  *
2799  * 7.1.1 SCTP_RTOINFO
2800  *
2801  * The protocol parameters used to initialize and bound retransmission
2802  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2803  * and modify these parameters.
2804  * All parameters are time values, in milliseconds.  A value of 0, when
2805  * modifying the parameters, indicates that the current value should not
2806  * be changed.
2807  *
2808  */
2809 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2810 {
2811 	struct sctp_rtoinfo rtoinfo;
2812 	struct sctp_association *asoc;
2813 
2814 	if (optlen != sizeof (struct sctp_rtoinfo))
2815 		return -EINVAL;
2816 
2817 	if (copy_from_user(&rtoinfo, optval, optlen))
2818 		return -EFAULT;
2819 
2820 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2821 
2822 	/* Set the values to the specific association */
2823 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2824 		return -EINVAL;
2825 
2826 	if (asoc) {
2827 		if (rtoinfo.srto_initial != 0)
2828 			asoc->rto_initial =
2829 				msecs_to_jiffies(rtoinfo.srto_initial);
2830 		if (rtoinfo.srto_max != 0)
2831 			asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2832 		if (rtoinfo.srto_min != 0)
2833 			asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2834 	} else {
2835 		/* If there is no association or the association-id = 0
2836 		 * set the values to the endpoint.
2837 		 */
2838 		struct sctp_sock *sp = sctp_sk(sk);
2839 
2840 		if (rtoinfo.srto_initial != 0)
2841 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2842 		if (rtoinfo.srto_max != 0)
2843 			sp->rtoinfo.srto_max = rtoinfo.srto_max;
2844 		if (rtoinfo.srto_min != 0)
2845 			sp->rtoinfo.srto_min = rtoinfo.srto_min;
2846 	}
2847 
2848 	return 0;
2849 }
2850 
2851 /*
2852  *
2853  * 7.1.2 SCTP_ASSOCINFO
2854  *
2855  * This option is used to tune the maximum retransmission attempts
2856  * of the association.
2857  * Returns an error if the new association retransmission value is
2858  * greater than the sum of the retransmission value  of the peer.
2859  * See [SCTP] for more information.
2860  *
2861  */
2862 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2863 {
2864 
2865 	struct sctp_assocparams assocparams;
2866 	struct sctp_association *asoc;
2867 
2868 	if (optlen != sizeof(struct sctp_assocparams))
2869 		return -EINVAL;
2870 	if (copy_from_user(&assocparams, optval, optlen))
2871 		return -EFAULT;
2872 
2873 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2874 
2875 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2876 		return -EINVAL;
2877 
2878 	/* Set the values to the specific association */
2879 	if (asoc) {
2880 		if (assocparams.sasoc_asocmaxrxt != 0) {
2881 			__u32 path_sum = 0;
2882 			int   paths = 0;
2883 			struct sctp_transport *peer_addr;
2884 
2885 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2886 					transports) {
2887 				path_sum += peer_addr->pathmaxrxt;
2888 				paths++;
2889 			}
2890 
2891 			/* Only validate asocmaxrxt if we have more than
2892 			 * one path/transport.  We do this because path
2893 			 * retransmissions are only counted when we have more
2894 			 * then one path.
2895 			 */
2896 			if (paths > 1 &&
2897 			    assocparams.sasoc_asocmaxrxt > path_sum)
2898 				return -EINVAL;
2899 
2900 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2901 		}
2902 
2903 		if (assocparams.sasoc_cookie_life != 0)
2904 			asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
2905 	} else {
2906 		/* Set the values to the endpoint */
2907 		struct sctp_sock *sp = sctp_sk(sk);
2908 
2909 		if (assocparams.sasoc_asocmaxrxt != 0)
2910 			sp->assocparams.sasoc_asocmaxrxt =
2911 						assocparams.sasoc_asocmaxrxt;
2912 		if (assocparams.sasoc_cookie_life != 0)
2913 			sp->assocparams.sasoc_cookie_life =
2914 						assocparams.sasoc_cookie_life;
2915 	}
2916 	return 0;
2917 }
2918 
2919 /*
2920  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2921  *
2922  * This socket option is a boolean flag which turns on or off mapped V4
2923  * addresses.  If this option is turned on and the socket is type
2924  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2925  * If this option is turned off, then no mapping will be done of V4
2926  * addresses and a user will receive both PF_INET6 and PF_INET type
2927  * addresses on the socket.
2928  */
2929 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
2930 {
2931 	int val;
2932 	struct sctp_sock *sp = sctp_sk(sk);
2933 
2934 	if (optlen < sizeof(int))
2935 		return -EINVAL;
2936 	if (get_user(val, (int __user *)optval))
2937 		return -EFAULT;
2938 	if (val)
2939 		sp->v4mapped = 1;
2940 	else
2941 		sp->v4mapped = 0;
2942 
2943 	return 0;
2944 }
2945 
2946 /*
2947  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
2948  * This option will get or set the maximum size to put in any outgoing
2949  * SCTP DATA chunk.  If a message is larger than this size it will be
2950  * fragmented by SCTP into the specified size.  Note that the underlying
2951  * SCTP implementation may fragment into smaller sized chunks when the
2952  * PMTU of the underlying association is smaller than the value set by
2953  * the user.  The default value for this option is '0' which indicates
2954  * the user is NOT limiting fragmentation and only the PMTU will effect
2955  * SCTP's choice of DATA chunk size.  Note also that values set larger
2956  * than the maximum size of an IP datagram will effectively let SCTP
2957  * control fragmentation (i.e. the same as setting this option to 0).
2958  *
2959  * The following structure is used to access and modify this parameter:
2960  *
2961  * struct sctp_assoc_value {
2962  *   sctp_assoc_t assoc_id;
2963  *   uint32_t assoc_value;
2964  * };
2965  *
2966  * assoc_id:  This parameter is ignored for one-to-one style sockets.
2967  *    For one-to-many style sockets this parameter indicates which
2968  *    association the user is performing an action upon.  Note that if
2969  *    this field's value is zero then the endpoints default value is
2970  *    changed (effecting future associations only).
2971  * assoc_value:  This parameter specifies the maximum size in bytes.
2972  */
2973 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
2974 {
2975 	struct sctp_assoc_value params;
2976 	struct sctp_association *asoc;
2977 	struct sctp_sock *sp = sctp_sk(sk);
2978 	int val;
2979 
2980 	if (optlen == sizeof(int)) {
2981 		pr_warn("Use of int in maxseg socket option deprecated\n");
2982 		pr_warn("Use struct sctp_assoc_value instead\n");
2983 		if (copy_from_user(&val, optval, optlen))
2984 			return -EFAULT;
2985 		params.assoc_id = 0;
2986 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2987 		if (copy_from_user(&params, optval, optlen))
2988 			return -EFAULT;
2989 		val = params.assoc_value;
2990 	} else
2991 		return -EINVAL;
2992 
2993 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2994 		return -EINVAL;
2995 
2996 	asoc = sctp_id2assoc(sk, params.assoc_id);
2997 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
2998 		return -EINVAL;
2999 
3000 	if (asoc) {
3001 		if (val == 0) {
3002 			val = asoc->pathmtu;
3003 			val -= sp->pf->af->net_header_len;
3004 			val -= sizeof(struct sctphdr) +
3005 					sizeof(struct sctp_data_chunk);
3006 		}
3007 		asoc->user_frag = val;
3008 		asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3009 	} else {
3010 		sp->user_frag = val;
3011 	}
3012 
3013 	return 0;
3014 }
3015 
3016 
3017 /*
3018  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3019  *
3020  *   Requests that the peer mark the enclosed address as the association
3021  *   primary. The enclosed address must be one of the association's
3022  *   locally bound addresses. The following structure is used to make a
3023  *   set primary request:
3024  */
3025 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3026 					     unsigned int optlen)
3027 {
3028 	struct net *net = sock_net(sk);
3029 	struct sctp_sock	*sp;
3030 	struct sctp_association	*asoc = NULL;
3031 	struct sctp_setpeerprim	prim;
3032 	struct sctp_chunk	*chunk;
3033 	struct sctp_af		*af;
3034 	int 			err;
3035 
3036 	sp = sctp_sk(sk);
3037 
3038 	if (!net->sctp.addip_enable)
3039 		return -EPERM;
3040 
3041 	if (optlen != sizeof(struct sctp_setpeerprim))
3042 		return -EINVAL;
3043 
3044 	if (copy_from_user(&prim, optval, optlen))
3045 		return -EFAULT;
3046 
3047 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3048 	if (!asoc)
3049 		return -EINVAL;
3050 
3051 	if (!asoc->peer.asconf_capable)
3052 		return -EPERM;
3053 
3054 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3055 		return -EPERM;
3056 
3057 	if (!sctp_state(asoc, ESTABLISHED))
3058 		return -ENOTCONN;
3059 
3060 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3061 	if (!af)
3062 		return -EINVAL;
3063 
3064 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3065 		return -EADDRNOTAVAIL;
3066 
3067 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3068 		return -EADDRNOTAVAIL;
3069 
3070 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3071 	chunk = sctp_make_asconf_set_prim(asoc,
3072 					  (union sctp_addr *)&prim.sspp_addr);
3073 	if (!chunk)
3074 		return -ENOMEM;
3075 
3076 	err = sctp_send_asconf(asoc, chunk);
3077 
3078 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3079 
3080 	return err;
3081 }
3082 
3083 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3084 					    unsigned int optlen)
3085 {
3086 	struct sctp_setadaptation adaptation;
3087 
3088 	if (optlen != sizeof(struct sctp_setadaptation))
3089 		return -EINVAL;
3090 	if (copy_from_user(&adaptation, optval, optlen))
3091 		return -EFAULT;
3092 
3093 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3094 
3095 	return 0;
3096 }
3097 
3098 /*
3099  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3100  *
3101  * The context field in the sctp_sndrcvinfo structure is normally only
3102  * used when a failed message is retrieved holding the value that was
3103  * sent down on the actual send call.  This option allows the setting of
3104  * a default context on an association basis that will be received on
3105  * reading messages from the peer.  This is especially helpful in the
3106  * one-2-many model for an application to keep some reference to an
3107  * internal state machine that is processing messages on the
3108  * association.  Note that the setting of this value only effects
3109  * received messages from the peer and does not effect the value that is
3110  * saved with outbound messages.
3111  */
3112 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3113 				   unsigned int optlen)
3114 {
3115 	struct sctp_assoc_value params;
3116 	struct sctp_sock *sp;
3117 	struct sctp_association *asoc;
3118 
3119 	if (optlen != sizeof(struct sctp_assoc_value))
3120 		return -EINVAL;
3121 	if (copy_from_user(&params, optval, optlen))
3122 		return -EFAULT;
3123 
3124 	sp = sctp_sk(sk);
3125 
3126 	if (params.assoc_id != 0) {
3127 		asoc = sctp_id2assoc(sk, params.assoc_id);
3128 		if (!asoc)
3129 			return -EINVAL;
3130 		asoc->default_rcv_context = params.assoc_value;
3131 	} else {
3132 		sp->default_rcv_context = params.assoc_value;
3133 	}
3134 
3135 	return 0;
3136 }
3137 
3138 /*
3139  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3140  *
3141  * This options will at a minimum specify if the implementation is doing
3142  * fragmented interleave.  Fragmented interleave, for a one to many
3143  * socket, is when subsequent calls to receive a message may return
3144  * parts of messages from different associations.  Some implementations
3145  * may allow you to turn this value on or off.  If so, when turned off,
3146  * no fragment interleave will occur (which will cause a head of line
3147  * blocking amongst multiple associations sharing the same one to many
3148  * socket).  When this option is turned on, then each receive call may
3149  * come from a different association (thus the user must receive data
3150  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3151  * association each receive belongs to.
3152  *
3153  * This option takes a boolean value.  A non-zero value indicates that
3154  * fragmented interleave is on.  A value of zero indicates that
3155  * fragmented interleave is off.
3156  *
3157  * Note that it is important that an implementation that allows this
3158  * option to be turned on, have it off by default.  Otherwise an unaware
3159  * application using the one to many model may become confused and act
3160  * incorrectly.
3161  */
3162 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3163 					       char __user *optval,
3164 					       unsigned int optlen)
3165 {
3166 	int val;
3167 
3168 	if (optlen != sizeof(int))
3169 		return -EINVAL;
3170 	if (get_user(val, (int __user *)optval))
3171 		return -EFAULT;
3172 
3173 	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3174 
3175 	return 0;
3176 }
3177 
3178 /*
3179  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3180  *       (SCTP_PARTIAL_DELIVERY_POINT)
3181  *
3182  * This option will set or get the SCTP partial delivery point.  This
3183  * point is the size of a message where the partial delivery API will be
3184  * invoked to help free up rwnd space for the peer.  Setting this to a
3185  * lower value will cause partial deliveries to happen more often.  The
3186  * calls argument is an integer that sets or gets the partial delivery
3187  * point.  Note also that the call will fail if the user attempts to set
3188  * this value larger than the socket receive buffer size.
3189  *
3190  * Note that any single message having a length smaller than or equal to
3191  * the SCTP partial delivery point will be delivered in one single read
3192  * call as long as the user provided buffer is large enough to hold the
3193  * message.
3194  */
3195 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3196 						  char __user *optval,
3197 						  unsigned int optlen)
3198 {
3199 	u32 val;
3200 
3201 	if (optlen != sizeof(u32))
3202 		return -EINVAL;
3203 	if (get_user(val, (int __user *)optval))
3204 		return -EFAULT;
3205 
3206 	/* Note: We double the receive buffer from what the user sets
3207 	 * it to be, also initial rwnd is based on rcvbuf/2.
3208 	 */
3209 	if (val > (sk->sk_rcvbuf >> 1))
3210 		return -EINVAL;
3211 
3212 	sctp_sk(sk)->pd_point = val;
3213 
3214 	return 0; /* is this the right error code? */
3215 }
3216 
3217 /*
3218  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3219  *
3220  * This option will allow a user to change the maximum burst of packets
3221  * that can be emitted by this association.  Note that the default value
3222  * is 4, and some implementations may restrict this setting so that it
3223  * can only be lowered.
3224  *
3225  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3226  * future associations inheriting the socket value.
3227  */
3228 static int sctp_setsockopt_maxburst(struct sock *sk,
3229 				    char __user *optval,
3230 				    unsigned int optlen)
3231 {
3232 	struct sctp_assoc_value params;
3233 	struct sctp_sock *sp;
3234 	struct sctp_association *asoc;
3235 	int val;
3236 	int assoc_id = 0;
3237 
3238 	if (optlen == sizeof(int)) {
3239 		pr_warn("Use of int in max_burst socket option deprecated\n");
3240 		pr_warn("Use struct sctp_assoc_value instead\n");
3241 		if (copy_from_user(&val, optval, optlen))
3242 			return -EFAULT;
3243 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3244 		if (copy_from_user(&params, optval, optlen))
3245 			return -EFAULT;
3246 		val = params.assoc_value;
3247 		assoc_id = params.assoc_id;
3248 	} else
3249 		return -EINVAL;
3250 
3251 	sp = sctp_sk(sk);
3252 
3253 	if (assoc_id != 0) {
3254 		asoc = sctp_id2assoc(sk, assoc_id);
3255 		if (!asoc)
3256 			return -EINVAL;
3257 		asoc->max_burst = val;
3258 	} else
3259 		sp->max_burst = val;
3260 
3261 	return 0;
3262 }
3263 
3264 /*
3265  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3266  *
3267  * This set option adds a chunk type that the user is requesting to be
3268  * received only in an authenticated way.  Changes to the list of chunks
3269  * will only effect future associations on the socket.
3270  */
3271 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3272 				      char __user *optval,
3273 				      unsigned int optlen)
3274 {
3275 	struct net *net = sock_net(sk);
3276 	struct sctp_authchunk val;
3277 
3278 	if (!net->sctp.auth_enable)
3279 		return -EACCES;
3280 
3281 	if (optlen != sizeof(struct sctp_authchunk))
3282 		return -EINVAL;
3283 	if (copy_from_user(&val, optval, optlen))
3284 		return -EFAULT;
3285 
3286 	switch (val.sauth_chunk) {
3287 	case SCTP_CID_INIT:
3288 	case SCTP_CID_INIT_ACK:
3289 	case SCTP_CID_SHUTDOWN_COMPLETE:
3290 	case SCTP_CID_AUTH:
3291 		return -EINVAL;
3292 	}
3293 
3294 	/* add this chunk id to the endpoint */
3295 	return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3296 }
3297 
3298 /*
3299  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3300  *
3301  * This option gets or sets the list of HMAC algorithms that the local
3302  * endpoint requires the peer to use.
3303  */
3304 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3305 				      char __user *optval,
3306 				      unsigned int optlen)
3307 {
3308 	struct net *net = sock_net(sk);
3309 	struct sctp_hmacalgo *hmacs;
3310 	u32 idents;
3311 	int err;
3312 
3313 	if (!net->sctp.auth_enable)
3314 		return -EACCES;
3315 
3316 	if (optlen < sizeof(struct sctp_hmacalgo))
3317 		return -EINVAL;
3318 
3319 	hmacs= memdup_user(optval, optlen);
3320 	if (IS_ERR(hmacs))
3321 		return PTR_ERR(hmacs);
3322 
3323 	idents = hmacs->shmac_num_idents;
3324 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3325 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3326 		err = -EINVAL;
3327 		goto out;
3328 	}
3329 
3330 	err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3331 out:
3332 	kfree(hmacs);
3333 	return err;
3334 }
3335 
3336 /*
3337  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3338  *
3339  * This option will set a shared secret key which is used to build an
3340  * association shared key.
3341  */
3342 static int sctp_setsockopt_auth_key(struct sock *sk,
3343 				    char __user *optval,
3344 				    unsigned int optlen)
3345 {
3346 	struct net *net = sock_net(sk);
3347 	struct sctp_authkey *authkey;
3348 	struct sctp_association *asoc;
3349 	int ret;
3350 
3351 	if (!net->sctp.auth_enable)
3352 		return -EACCES;
3353 
3354 	if (optlen <= sizeof(struct sctp_authkey))
3355 		return -EINVAL;
3356 
3357 	authkey= memdup_user(optval, optlen);
3358 	if (IS_ERR(authkey))
3359 		return PTR_ERR(authkey);
3360 
3361 	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3362 		ret = -EINVAL;
3363 		goto out;
3364 	}
3365 
3366 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3367 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3368 		ret = -EINVAL;
3369 		goto out;
3370 	}
3371 
3372 	ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3373 out:
3374 	kzfree(authkey);
3375 	return ret;
3376 }
3377 
3378 /*
3379  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3380  *
3381  * This option will get or set the active shared key to be used to build
3382  * the association shared key.
3383  */
3384 static int sctp_setsockopt_active_key(struct sock *sk,
3385 				      char __user *optval,
3386 				      unsigned int optlen)
3387 {
3388 	struct net *net = sock_net(sk);
3389 	struct sctp_authkeyid val;
3390 	struct sctp_association *asoc;
3391 
3392 	if (!net->sctp.auth_enable)
3393 		return -EACCES;
3394 
3395 	if (optlen != sizeof(struct sctp_authkeyid))
3396 		return -EINVAL;
3397 	if (copy_from_user(&val, optval, optlen))
3398 		return -EFAULT;
3399 
3400 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3401 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3402 		return -EINVAL;
3403 
3404 	return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3405 					val.scact_keynumber);
3406 }
3407 
3408 /*
3409  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3410  *
3411  * This set option will delete a shared secret key from use.
3412  */
3413 static int sctp_setsockopt_del_key(struct sock *sk,
3414 				   char __user *optval,
3415 				   unsigned int optlen)
3416 {
3417 	struct net *net = sock_net(sk);
3418 	struct sctp_authkeyid val;
3419 	struct sctp_association *asoc;
3420 
3421 	if (!net->sctp.auth_enable)
3422 		return -EACCES;
3423 
3424 	if (optlen != sizeof(struct sctp_authkeyid))
3425 		return -EINVAL;
3426 	if (copy_from_user(&val, optval, optlen))
3427 		return -EFAULT;
3428 
3429 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3430 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3431 		return -EINVAL;
3432 
3433 	return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3434 				    val.scact_keynumber);
3435 
3436 }
3437 
3438 /*
3439  * 8.1.23 SCTP_AUTO_ASCONF
3440  *
3441  * This option will enable or disable the use of the automatic generation of
3442  * ASCONF chunks to add and delete addresses to an existing association.  Note
3443  * that this option has two caveats namely: a) it only affects sockets that
3444  * are bound to all addresses available to the SCTP stack, and b) the system
3445  * administrator may have an overriding control that turns the ASCONF feature
3446  * off no matter what setting the socket option may have.
3447  * This option expects an integer boolean flag, where a non-zero value turns on
3448  * the option, and a zero value turns off the option.
3449  * Note. In this implementation, socket operation overrides default parameter
3450  * being set by sysctl as well as FreeBSD implementation
3451  */
3452 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3453 					unsigned int optlen)
3454 {
3455 	int val;
3456 	struct sctp_sock *sp = sctp_sk(sk);
3457 
3458 	if (optlen < sizeof(int))
3459 		return -EINVAL;
3460 	if (get_user(val, (int __user *)optval))
3461 		return -EFAULT;
3462 	if (!sctp_is_ep_boundall(sk) && val)
3463 		return -EINVAL;
3464 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3465 		return 0;
3466 
3467 	if (val == 0 && sp->do_auto_asconf) {
3468 		list_del(&sp->auto_asconf_list);
3469 		sp->do_auto_asconf = 0;
3470 	} else if (val && !sp->do_auto_asconf) {
3471 		list_add_tail(&sp->auto_asconf_list,
3472 		    &sock_net(sk)->sctp.auto_asconf_splist);
3473 		sp->do_auto_asconf = 1;
3474 	}
3475 	return 0;
3476 }
3477 
3478 
3479 /*
3480  * SCTP_PEER_ADDR_THLDS
3481  *
3482  * This option allows us to alter the partially failed threshold for one or all
3483  * transports in an association.  See Section 6.1 of:
3484  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3485  */
3486 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3487 					    char __user *optval,
3488 					    unsigned int optlen)
3489 {
3490 	struct sctp_paddrthlds val;
3491 	struct sctp_transport *trans;
3492 	struct sctp_association *asoc;
3493 
3494 	if (optlen < sizeof(struct sctp_paddrthlds))
3495 		return -EINVAL;
3496 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3497 			   sizeof(struct sctp_paddrthlds)))
3498 		return -EFAULT;
3499 
3500 
3501 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3502 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3503 		if (!asoc)
3504 			return -ENOENT;
3505 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3506 				    transports) {
3507 			if (val.spt_pathmaxrxt)
3508 				trans->pathmaxrxt = val.spt_pathmaxrxt;
3509 			trans->pf_retrans = val.spt_pathpfthld;
3510 		}
3511 
3512 		if (val.spt_pathmaxrxt)
3513 			asoc->pathmaxrxt = val.spt_pathmaxrxt;
3514 		asoc->pf_retrans = val.spt_pathpfthld;
3515 	} else {
3516 		trans = sctp_addr_id2transport(sk, &val.spt_address,
3517 					       val.spt_assoc_id);
3518 		if (!trans)
3519 			return -ENOENT;
3520 
3521 		if (val.spt_pathmaxrxt)
3522 			trans->pathmaxrxt = val.spt_pathmaxrxt;
3523 		trans->pf_retrans = val.spt_pathpfthld;
3524 	}
3525 
3526 	return 0;
3527 }
3528 
3529 /* API 6.2 setsockopt(), getsockopt()
3530  *
3531  * Applications use setsockopt() and getsockopt() to set or retrieve
3532  * socket options.  Socket options are used to change the default
3533  * behavior of sockets calls.  They are described in Section 7.
3534  *
3535  * The syntax is:
3536  *
3537  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
3538  *                    int __user *optlen);
3539  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3540  *                    int optlen);
3541  *
3542  *   sd      - the socket descript.
3543  *   level   - set to IPPROTO_SCTP for all SCTP options.
3544  *   optname - the option name.
3545  *   optval  - the buffer to store the value of the option.
3546  *   optlen  - the size of the buffer.
3547  */
3548 static int sctp_setsockopt(struct sock *sk, int level, int optname,
3549 			   char __user *optval, unsigned int optlen)
3550 {
3551 	int retval = 0;
3552 
3553 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
3554 
3555 	/* I can hardly begin to describe how wrong this is.  This is
3556 	 * so broken as to be worse than useless.  The API draft
3557 	 * REALLY is NOT helpful here...  I am not convinced that the
3558 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3559 	 * are at all well-founded.
3560 	 */
3561 	if (level != SOL_SCTP) {
3562 		struct sctp_af *af = sctp_sk(sk)->pf->af;
3563 		retval = af->setsockopt(sk, level, optname, optval, optlen);
3564 		goto out_nounlock;
3565 	}
3566 
3567 	sctp_lock_sock(sk);
3568 
3569 	switch (optname) {
3570 	case SCTP_SOCKOPT_BINDX_ADD:
3571 		/* 'optlen' is the size of the addresses buffer. */
3572 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3573 					       optlen, SCTP_BINDX_ADD_ADDR);
3574 		break;
3575 
3576 	case SCTP_SOCKOPT_BINDX_REM:
3577 		/* 'optlen' is the size of the addresses buffer. */
3578 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3579 					       optlen, SCTP_BINDX_REM_ADDR);
3580 		break;
3581 
3582 	case SCTP_SOCKOPT_CONNECTX_OLD:
3583 		/* 'optlen' is the size of the addresses buffer. */
3584 		retval = sctp_setsockopt_connectx_old(sk,
3585 					    (struct sockaddr __user *)optval,
3586 					    optlen);
3587 		break;
3588 
3589 	case SCTP_SOCKOPT_CONNECTX:
3590 		/* 'optlen' is the size of the addresses buffer. */
3591 		retval = sctp_setsockopt_connectx(sk,
3592 					    (struct sockaddr __user *)optval,
3593 					    optlen);
3594 		break;
3595 
3596 	case SCTP_DISABLE_FRAGMENTS:
3597 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3598 		break;
3599 
3600 	case SCTP_EVENTS:
3601 		retval = sctp_setsockopt_events(sk, optval, optlen);
3602 		break;
3603 
3604 	case SCTP_AUTOCLOSE:
3605 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3606 		break;
3607 
3608 	case SCTP_PEER_ADDR_PARAMS:
3609 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3610 		break;
3611 
3612 	case SCTP_DELAYED_SACK:
3613 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3614 		break;
3615 	case SCTP_PARTIAL_DELIVERY_POINT:
3616 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3617 		break;
3618 
3619 	case SCTP_INITMSG:
3620 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3621 		break;
3622 	case SCTP_DEFAULT_SEND_PARAM:
3623 		retval = sctp_setsockopt_default_send_param(sk, optval,
3624 							    optlen);
3625 		break;
3626 	case SCTP_PRIMARY_ADDR:
3627 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3628 		break;
3629 	case SCTP_SET_PEER_PRIMARY_ADDR:
3630 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3631 		break;
3632 	case SCTP_NODELAY:
3633 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3634 		break;
3635 	case SCTP_RTOINFO:
3636 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3637 		break;
3638 	case SCTP_ASSOCINFO:
3639 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3640 		break;
3641 	case SCTP_I_WANT_MAPPED_V4_ADDR:
3642 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3643 		break;
3644 	case SCTP_MAXSEG:
3645 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3646 		break;
3647 	case SCTP_ADAPTATION_LAYER:
3648 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3649 		break;
3650 	case SCTP_CONTEXT:
3651 		retval = sctp_setsockopt_context(sk, optval, optlen);
3652 		break;
3653 	case SCTP_FRAGMENT_INTERLEAVE:
3654 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3655 		break;
3656 	case SCTP_MAX_BURST:
3657 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3658 		break;
3659 	case SCTP_AUTH_CHUNK:
3660 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3661 		break;
3662 	case SCTP_HMAC_IDENT:
3663 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3664 		break;
3665 	case SCTP_AUTH_KEY:
3666 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3667 		break;
3668 	case SCTP_AUTH_ACTIVE_KEY:
3669 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
3670 		break;
3671 	case SCTP_AUTH_DELETE_KEY:
3672 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
3673 		break;
3674 	case SCTP_AUTO_ASCONF:
3675 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3676 		break;
3677 	case SCTP_PEER_ADDR_THLDS:
3678 		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3679 		break;
3680 	default:
3681 		retval = -ENOPROTOOPT;
3682 		break;
3683 	}
3684 
3685 	sctp_release_sock(sk);
3686 
3687 out_nounlock:
3688 	return retval;
3689 }
3690 
3691 /* API 3.1.6 connect() - UDP Style Syntax
3692  *
3693  * An application may use the connect() call in the UDP model to initiate an
3694  * association without sending data.
3695  *
3696  * The syntax is:
3697  *
3698  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3699  *
3700  * sd: the socket descriptor to have a new association added to.
3701  *
3702  * nam: the address structure (either struct sockaddr_in or struct
3703  *    sockaddr_in6 defined in RFC2553 [7]).
3704  *
3705  * len: the size of the address.
3706  */
3707 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
3708 			int addr_len)
3709 {
3710 	int err = 0;
3711 	struct sctp_af *af;
3712 
3713 	sctp_lock_sock(sk);
3714 
3715 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
3716 		 addr, addr_len);
3717 
3718 	/* Validate addr_len before calling common connect/connectx routine. */
3719 	af = sctp_get_af_specific(addr->sa_family);
3720 	if (!af || addr_len < af->sockaddr_len) {
3721 		err = -EINVAL;
3722 	} else {
3723 		/* Pass correct addr len to common routine (so it knows there
3724 		 * is only one address being passed.
3725 		 */
3726 		err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3727 	}
3728 
3729 	sctp_release_sock(sk);
3730 	return err;
3731 }
3732 
3733 /* FIXME: Write comments. */
3734 static int sctp_disconnect(struct sock *sk, int flags)
3735 {
3736 	return -EOPNOTSUPP; /* STUB */
3737 }
3738 
3739 /* 4.1.4 accept() - TCP Style Syntax
3740  *
3741  * Applications use accept() call to remove an established SCTP
3742  * association from the accept queue of the endpoint.  A new socket
3743  * descriptor will be returned from accept() to represent the newly
3744  * formed association.
3745  */
3746 static struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3747 {
3748 	struct sctp_sock *sp;
3749 	struct sctp_endpoint *ep;
3750 	struct sock *newsk = NULL;
3751 	struct sctp_association *asoc;
3752 	long timeo;
3753 	int error = 0;
3754 
3755 	sctp_lock_sock(sk);
3756 
3757 	sp = sctp_sk(sk);
3758 	ep = sp->ep;
3759 
3760 	if (!sctp_style(sk, TCP)) {
3761 		error = -EOPNOTSUPP;
3762 		goto out;
3763 	}
3764 
3765 	if (!sctp_sstate(sk, LISTENING)) {
3766 		error = -EINVAL;
3767 		goto out;
3768 	}
3769 
3770 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3771 
3772 	error = sctp_wait_for_accept(sk, timeo);
3773 	if (error)
3774 		goto out;
3775 
3776 	/* We treat the list of associations on the endpoint as the accept
3777 	 * queue and pick the first association on the list.
3778 	 */
3779 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3780 
3781 	newsk = sp->pf->create_accept_sk(sk, asoc);
3782 	if (!newsk) {
3783 		error = -ENOMEM;
3784 		goto out;
3785 	}
3786 
3787 	/* Populate the fields of the newsk from the oldsk and migrate the
3788 	 * asoc to the newsk.
3789 	 */
3790 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3791 
3792 out:
3793 	sctp_release_sock(sk);
3794 	*err = error;
3795 	return newsk;
3796 }
3797 
3798 /* The SCTP ioctl handler. */
3799 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3800 {
3801 	int rc = -ENOTCONN;
3802 
3803 	sctp_lock_sock(sk);
3804 
3805 	/*
3806 	 * SEQPACKET-style sockets in LISTENING state are valid, for
3807 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
3808 	 */
3809 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3810 		goto out;
3811 
3812 	switch (cmd) {
3813 	case SIOCINQ: {
3814 		struct sk_buff *skb;
3815 		unsigned int amount = 0;
3816 
3817 		skb = skb_peek(&sk->sk_receive_queue);
3818 		if (skb != NULL) {
3819 			/*
3820 			 * We will only return the amount of this packet since
3821 			 * that is all that will be read.
3822 			 */
3823 			amount = skb->len;
3824 		}
3825 		rc = put_user(amount, (int __user *)arg);
3826 		break;
3827 	}
3828 	default:
3829 		rc = -ENOIOCTLCMD;
3830 		break;
3831 	}
3832 out:
3833 	sctp_release_sock(sk);
3834 	return rc;
3835 }
3836 
3837 /* This is the function which gets called during socket creation to
3838  * initialized the SCTP-specific portion of the sock.
3839  * The sock structure should already be zero-filled memory.
3840  */
3841 static int sctp_init_sock(struct sock *sk)
3842 {
3843 	struct net *net = sock_net(sk);
3844 	struct sctp_sock *sp;
3845 
3846 	pr_debug("%s: sk:%p\n", __func__, sk);
3847 
3848 	sp = sctp_sk(sk);
3849 
3850 	/* Initialize the SCTP per socket area.  */
3851 	switch (sk->sk_type) {
3852 	case SOCK_SEQPACKET:
3853 		sp->type = SCTP_SOCKET_UDP;
3854 		break;
3855 	case SOCK_STREAM:
3856 		sp->type = SCTP_SOCKET_TCP;
3857 		break;
3858 	default:
3859 		return -ESOCKTNOSUPPORT;
3860 	}
3861 
3862 	/* Initialize default send parameters. These parameters can be
3863 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3864 	 */
3865 	sp->default_stream = 0;
3866 	sp->default_ppid = 0;
3867 	sp->default_flags = 0;
3868 	sp->default_context = 0;
3869 	sp->default_timetolive = 0;
3870 
3871 	sp->default_rcv_context = 0;
3872 	sp->max_burst = net->sctp.max_burst;
3873 
3874 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
3875 
3876 	/* Initialize default setup parameters. These parameters
3877 	 * can be modified with the SCTP_INITMSG socket option or
3878 	 * overridden by the SCTP_INIT CMSG.
3879 	 */
3880 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
3881 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
3882 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
3883 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
3884 
3885 	/* Initialize default RTO related parameters.  These parameters can
3886 	 * be modified for with the SCTP_RTOINFO socket option.
3887 	 */
3888 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
3889 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
3890 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
3891 
3892 	/* Initialize default association related parameters. These parameters
3893 	 * can be modified with the SCTP_ASSOCINFO socket option.
3894 	 */
3895 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
3896 	sp->assocparams.sasoc_number_peer_destinations = 0;
3897 	sp->assocparams.sasoc_peer_rwnd = 0;
3898 	sp->assocparams.sasoc_local_rwnd = 0;
3899 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
3900 
3901 	/* Initialize default event subscriptions. By default, all the
3902 	 * options are off.
3903 	 */
3904 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3905 
3906 	/* Default Peer Address Parameters.  These defaults can
3907 	 * be modified via SCTP_PEER_ADDR_PARAMS
3908 	 */
3909 	sp->hbinterval  = net->sctp.hb_interval;
3910 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
3911 	sp->pathmtu     = 0; // allow default discovery
3912 	sp->sackdelay   = net->sctp.sack_timeout;
3913 	sp->sackfreq	= 2;
3914 	sp->param_flags = SPP_HB_ENABLE |
3915 			  SPP_PMTUD_ENABLE |
3916 			  SPP_SACKDELAY_ENABLE;
3917 
3918 	/* If enabled no SCTP message fragmentation will be performed.
3919 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3920 	 */
3921 	sp->disable_fragments = 0;
3922 
3923 	/* Enable Nagle algorithm by default.  */
3924 	sp->nodelay           = 0;
3925 
3926 	/* Enable by default. */
3927 	sp->v4mapped          = 1;
3928 
3929 	/* Auto-close idle associations after the configured
3930 	 * number of seconds.  A value of 0 disables this
3931 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
3932 	 * for UDP-style sockets only.
3933 	 */
3934 	sp->autoclose         = 0;
3935 
3936 	/* User specified fragmentation limit. */
3937 	sp->user_frag         = 0;
3938 
3939 	sp->adaptation_ind = 0;
3940 
3941 	sp->pf = sctp_get_pf_specific(sk->sk_family);
3942 
3943 	/* Control variables for partial data delivery. */
3944 	atomic_set(&sp->pd_mode, 0);
3945 	skb_queue_head_init(&sp->pd_lobby);
3946 	sp->frag_interleave = 0;
3947 
3948 	/* Create a per socket endpoint structure.  Even if we
3949 	 * change the data structure relationships, this may still
3950 	 * be useful for storing pre-connect address information.
3951 	 */
3952 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
3953 	if (!sp->ep)
3954 		return -ENOMEM;
3955 
3956 	sp->hmac = NULL;
3957 
3958 	sk->sk_destruct = sctp_destruct_sock;
3959 
3960 	SCTP_DBG_OBJCNT_INC(sock);
3961 
3962 	local_bh_disable();
3963 	percpu_counter_inc(&sctp_sockets_allocated);
3964 	sock_prot_inuse_add(net, sk->sk_prot, 1);
3965 	if (net->sctp.default_auto_asconf) {
3966 		list_add_tail(&sp->auto_asconf_list,
3967 		    &net->sctp.auto_asconf_splist);
3968 		sp->do_auto_asconf = 1;
3969 	} else
3970 		sp->do_auto_asconf = 0;
3971 	local_bh_enable();
3972 
3973 	return 0;
3974 }
3975 
3976 /* Cleanup any SCTP per socket resources.  */
3977 static void sctp_destroy_sock(struct sock *sk)
3978 {
3979 	struct sctp_sock *sp;
3980 
3981 	pr_debug("%s: sk:%p\n", __func__, sk);
3982 
3983 	/* Release our hold on the endpoint. */
3984 	sp = sctp_sk(sk);
3985 	/* This could happen during socket init, thus we bail out
3986 	 * early, since the rest of the below is not setup either.
3987 	 */
3988 	if (sp->ep == NULL)
3989 		return;
3990 
3991 	if (sp->do_auto_asconf) {
3992 		sp->do_auto_asconf = 0;
3993 		list_del(&sp->auto_asconf_list);
3994 	}
3995 	sctp_endpoint_free(sp->ep);
3996 	local_bh_disable();
3997 	percpu_counter_dec(&sctp_sockets_allocated);
3998 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3999 	local_bh_enable();
4000 }
4001 
4002 /* Triggered when there are no references on the socket anymore */
4003 static void sctp_destruct_sock(struct sock *sk)
4004 {
4005 	struct sctp_sock *sp = sctp_sk(sk);
4006 
4007 	/* Free up the HMAC transform. */
4008 	crypto_free_hash(sp->hmac);
4009 
4010 	inet_sock_destruct(sk);
4011 }
4012 
4013 /* API 4.1.7 shutdown() - TCP Style Syntax
4014  *     int shutdown(int socket, int how);
4015  *
4016  *     sd      - the socket descriptor of the association to be closed.
4017  *     how     - Specifies the type of shutdown.  The  values  are
4018  *               as follows:
4019  *               SHUT_RD
4020  *                     Disables further receive operations. No SCTP
4021  *                     protocol action is taken.
4022  *               SHUT_WR
4023  *                     Disables further send operations, and initiates
4024  *                     the SCTP shutdown sequence.
4025  *               SHUT_RDWR
4026  *                     Disables further send  and  receive  operations
4027  *                     and initiates the SCTP shutdown sequence.
4028  */
4029 static void sctp_shutdown(struct sock *sk, int how)
4030 {
4031 	struct net *net = sock_net(sk);
4032 	struct sctp_endpoint *ep;
4033 	struct sctp_association *asoc;
4034 
4035 	if (!sctp_style(sk, TCP))
4036 		return;
4037 
4038 	if (how & SEND_SHUTDOWN) {
4039 		ep = sctp_sk(sk)->ep;
4040 		if (!list_empty(&ep->asocs)) {
4041 			asoc = list_entry(ep->asocs.next,
4042 					  struct sctp_association, asocs);
4043 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
4044 		}
4045 	}
4046 }
4047 
4048 /* 7.2.1 Association Status (SCTP_STATUS)
4049 
4050  * Applications can retrieve current status information about an
4051  * association, including association state, peer receiver window size,
4052  * number of unacked data chunks, and number of data chunks pending
4053  * receipt.  This information is read-only.
4054  */
4055 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4056 				       char __user *optval,
4057 				       int __user *optlen)
4058 {
4059 	struct sctp_status status;
4060 	struct sctp_association *asoc = NULL;
4061 	struct sctp_transport *transport;
4062 	sctp_assoc_t associd;
4063 	int retval = 0;
4064 
4065 	if (len < sizeof(status)) {
4066 		retval = -EINVAL;
4067 		goto out;
4068 	}
4069 
4070 	len = sizeof(status);
4071 	if (copy_from_user(&status, optval, len)) {
4072 		retval = -EFAULT;
4073 		goto out;
4074 	}
4075 
4076 	associd = status.sstat_assoc_id;
4077 	asoc = sctp_id2assoc(sk, associd);
4078 	if (!asoc) {
4079 		retval = -EINVAL;
4080 		goto out;
4081 	}
4082 
4083 	transport = asoc->peer.primary_path;
4084 
4085 	status.sstat_assoc_id = sctp_assoc2id(asoc);
4086 	status.sstat_state = asoc->state;
4087 	status.sstat_rwnd =  asoc->peer.rwnd;
4088 	status.sstat_unackdata = asoc->unack_data;
4089 
4090 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4091 	status.sstat_instrms = asoc->c.sinit_max_instreams;
4092 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4093 	status.sstat_fragmentation_point = asoc->frag_point;
4094 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4095 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4096 			transport->af_specific->sockaddr_len);
4097 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
4098 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4099 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
4100 	status.sstat_primary.spinfo_state = transport->state;
4101 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
4102 	status.sstat_primary.spinfo_srtt = transport->srtt;
4103 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4104 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
4105 
4106 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4107 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4108 
4109 	if (put_user(len, optlen)) {
4110 		retval = -EFAULT;
4111 		goto out;
4112 	}
4113 
4114 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4115 		 __func__, len, status.sstat_state, status.sstat_rwnd,
4116 		 status.sstat_assoc_id);
4117 
4118 	if (copy_to_user(optval, &status, len)) {
4119 		retval = -EFAULT;
4120 		goto out;
4121 	}
4122 
4123 out:
4124 	return retval;
4125 }
4126 
4127 
4128 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4129  *
4130  * Applications can retrieve information about a specific peer address
4131  * of an association, including its reachability state, congestion
4132  * window, and retransmission timer values.  This information is
4133  * read-only.
4134  */
4135 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4136 					  char __user *optval,
4137 					  int __user *optlen)
4138 {
4139 	struct sctp_paddrinfo pinfo;
4140 	struct sctp_transport *transport;
4141 	int retval = 0;
4142 
4143 	if (len < sizeof(pinfo)) {
4144 		retval = -EINVAL;
4145 		goto out;
4146 	}
4147 
4148 	len = sizeof(pinfo);
4149 	if (copy_from_user(&pinfo, optval, len)) {
4150 		retval = -EFAULT;
4151 		goto out;
4152 	}
4153 
4154 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4155 					   pinfo.spinfo_assoc_id);
4156 	if (!transport)
4157 		return -EINVAL;
4158 
4159 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4160 	pinfo.spinfo_state = transport->state;
4161 	pinfo.spinfo_cwnd = transport->cwnd;
4162 	pinfo.spinfo_srtt = transport->srtt;
4163 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4164 	pinfo.spinfo_mtu = transport->pathmtu;
4165 
4166 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
4167 		pinfo.spinfo_state = SCTP_ACTIVE;
4168 
4169 	if (put_user(len, optlen)) {
4170 		retval = -EFAULT;
4171 		goto out;
4172 	}
4173 
4174 	if (copy_to_user(optval, &pinfo, len)) {
4175 		retval = -EFAULT;
4176 		goto out;
4177 	}
4178 
4179 out:
4180 	return retval;
4181 }
4182 
4183 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4184  *
4185  * This option is a on/off flag.  If enabled no SCTP message
4186  * fragmentation will be performed.  Instead if a message being sent
4187  * exceeds the current PMTU size, the message will NOT be sent and
4188  * instead a error will be indicated to the user.
4189  */
4190 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4191 					char __user *optval, int __user *optlen)
4192 {
4193 	int val;
4194 
4195 	if (len < sizeof(int))
4196 		return -EINVAL;
4197 
4198 	len = sizeof(int);
4199 	val = (sctp_sk(sk)->disable_fragments == 1);
4200 	if (put_user(len, optlen))
4201 		return -EFAULT;
4202 	if (copy_to_user(optval, &val, len))
4203 		return -EFAULT;
4204 	return 0;
4205 }
4206 
4207 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4208  *
4209  * This socket option is used to specify various notifications and
4210  * ancillary data the user wishes to receive.
4211  */
4212 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4213 				  int __user *optlen)
4214 {
4215 	if (len <= 0)
4216 		return -EINVAL;
4217 	if (len > sizeof(struct sctp_event_subscribe))
4218 		len = sizeof(struct sctp_event_subscribe);
4219 	if (put_user(len, optlen))
4220 		return -EFAULT;
4221 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4222 		return -EFAULT;
4223 	return 0;
4224 }
4225 
4226 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4227  *
4228  * This socket option is applicable to the UDP-style socket only.  When
4229  * set it will cause associations that are idle for more than the
4230  * specified number of seconds to automatically close.  An association
4231  * being idle is defined an association that has NOT sent or received
4232  * user data.  The special value of '0' indicates that no automatic
4233  * close of any associations should be performed.  The option expects an
4234  * integer defining the number of seconds of idle time before an
4235  * association is closed.
4236  */
4237 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4238 {
4239 	/* Applicable to UDP-style socket only */
4240 	if (sctp_style(sk, TCP))
4241 		return -EOPNOTSUPP;
4242 	if (len < sizeof(int))
4243 		return -EINVAL;
4244 	len = sizeof(int);
4245 	if (put_user(len, optlen))
4246 		return -EFAULT;
4247 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4248 		return -EFAULT;
4249 	return 0;
4250 }
4251 
4252 /* Helper routine to branch off an association to a new socket.  */
4253 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4254 {
4255 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
4256 	struct socket *sock;
4257 	struct sctp_af *af;
4258 	int err = 0;
4259 
4260 	if (!asoc)
4261 		return -EINVAL;
4262 
4263 	/* An association cannot be branched off from an already peeled-off
4264 	 * socket, nor is this supported for tcp style sockets.
4265 	 */
4266 	if (!sctp_style(sk, UDP))
4267 		return -EINVAL;
4268 
4269 	/* Create a new socket.  */
4270 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4271 	if (err < 0)
4272 		return err;
4273 
4274 	sctp_copy_sock(sock->sk, sk, asoc);
4275 
4276 	/* Make peeled-off sockets more like 1-1 accepted sockets.
4277 	 * Set the daddr and initialize id to something more random
4278 	 */
4279 	af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
4280 	af->to_sk_daddr(&asoc->peer.primary_addr, sk);
4281 
4282 	/* Populate the fields of the newsk from the oldsk and migrate the
4283 	 * asoc to the newsk.
4284 	 */
4285 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4286 
4287 	*sockp = sock;
4288 
4289 	return err;
4290 }
4291 EXPORT_SYMBOL(sctp_do_peeloff);
4292 
4293 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4294 {
4295 	sctp_peeloff_arg_t peeloff;
4296 	struct socket *newsock;
4297 	struct file *newfile;
4298 	int retval = 0;
4299 
4300 	if (len < sizeof(sctp_peeloff_arg_t))
4301 		return -EINVAL;
4302 	len = sizeof(sctp_peeloff_arg_t);
4303 	if (copy_from_user(&peeloff, optval, len))
4304 		return -EFAULT;
4305 
4306 	retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4307 	if (retval < 0)
4308 		goto out;
4309 
4310 	/* Map the socket to an unused fd that can be returned to the user.  */
4311 	retval = get_unused_fd_flags(0);
4312 	if (retval < 0) {
4313 		sock_release(newsock);
4314 		goto out;
4315 	}
4316 
4317 	newfile = sock_alloc_file(newsock, 0, NULL);
4318 	if (unlikely(IS_ERR(newfile))) {
4319 		put_unused_fd(retval);
4320 		sock_release(newsock);
4321 		return PTR_ERR(newfile);
4322 	}
4323 
4324 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
4325 		 retval);
4326 
4327 	/* Return the fd mapped to the new socket.  */
4328 	if (put_user(len, optlen)) {
4329 		fput(newfile);
4330 		put_unused_fd(retval);
4331 		return -EFAULT;
4332 	}
4333 	peeloff.sd = retval;
4334 	if (copy_to_user(optval, &peeloff, len)) {
4335 		fput(newfile);
4336 		put_unused_fd(retval);
4337 		return -EFAULT;
4338 	}
4339 	fd_install(retval, newfile);
4340 out:
4341 	return retval;
4342 }
4343 
4344 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4345  *
4346  * Applications can enable or disable heartbeats for any peer address of
4347  * an association, modify an address's heartbeat interval, force a
4348  * heartbeat to be sent immediately, and adjust the address's maximum
4349  * number of retransmissions sent before an address is considered
4350  * unreachable.  The following structure is used to access and modify an
4351  * address's parameters:
4352  *
4353  *  struct sctp_paddrparams {
4354  *     sctp_assoc_t            spp_assoc_id;
4355  *     struct sockaddr_storage spp_address;
4356  *     uint32_t                spp_hbinterval;
4357  *     uint16_t                spp_pathmaxrxt;
4358  *     uint32_t                spp_pathmtu;
4359  *     uint32_t                spp_sackdelay;
4360  *     uint32_t                spp_flags;
4361  * };
4362  *
4363  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
4364  *                     application, and identifies the association for
4365  *                     this query.
4366  *   spp_address     - This specifies which address is of interest.
4367  *   spp_hbinterval  - This contains the value of the heartbeat interval,
4368  *                     in milliseconds.  If a  value of zero
4369  *                     is present in this field then no changes are to
4370  *                     be made to this parameter.
4371  *   spp_pathmaxrxt  - This contains the maximum number of
4372  *                     retransmissions before this address shall be
4373  *                     considered unreachable. If a  value of zero
4374  *                     is present in this field then no changes are to
4375  *                     be made to this parameter.
4376  *   spp_pathmtu     - When Path MTU discovery is disabled the value
4377  *                     specified here will be the "fixed" path mtu.
4378  *                     Note that if the spp_address field is empty
4379  *                     then all associations on this address will
4380  *                     have this fixed path mtu set upon them.
4381  *
4382  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
4383  *                     the number of milliseconds that sacks will be delayed
4384  *                     for. This value will apply to all addresses of an
4385  *                     association if the spp_address field is empty. Note
4386  *                     also, that if delayed sack is enabled and this
4387  *                     value is set to 0, no change is made to the last
4388  *                     recorded delayed sack timer value.
4389  *
4390  *   spp_flags       - These flags are used to control various features
4391  *                     on an association. The flag field may contain
4392  *                     zero or more of the following options.
4393  *
4394  *                     SPP_HB_ENABLE  - Enable heartbeats on the
4395  *                     specified address. Note that if the address
4396  *                     field is empty all addresses for the association
4397  *                     have heartbeats enabled upon them.
4398  *
4399  *                     SPP_HB_DISABLE - Disable heartbeats on the
4400  *                     speicifed address. Note that if the address
4401  *                     field is empty all addresses for the association
4402  *                     will have their heartbeats disabled. Note also
4403  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
4404  *                     mutually exclusive, only one of these two should
4405  *                     be specified. Enabling both fields will have
4406  *                     undetermined results.
4407  *
4408  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
4409  *                     to be made immediately.
4410  *
4411  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
4412  *                     discovery upon the specified address. Note that
4413  *                     if the address feild is empty then all addresses
4414  *                     on the association are effected.
4415  *
4416  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
4417  *                     discovery upon the specified address. Note that
4418  *                     if the address feild is empty then all addresses
4419  *                     on the association are effected. Not also that
4420  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4421  *                     exclusive. Enabling both will have undetermined
4422  *                     results.
4423  *
4424  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
4425  *                     on delayed sack. The time specified in spp_sackdelay
4426  *                     is used to specify the sack delay for this address. Note
4427  *                     that if spp_address is empty then all addresses will
4428  *                     enable delayed sack and take on the sack delay
4429  *                     value specified in spp_sackdelay.
4430  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
4431  *                     off delayed sack. If the spp_address field is blank then
4432  *                     delayed sack is disabled for the entire association. Note
4433  *                     also that this field is mutually exclusive to
4434  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
4435  *                     results.
4436  */
4437 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4438 					    char __user *optval, int __user *optlen)
4439 {
4440 	struct sctp_paddrparams  params;
4441 	struct sctp_transport   *trans = NULL;
4442 	struct sctp_association *asoc = NULL;
4443 	struct sctp_sock        *sp = sctp_sk(sk);
4444 
4445 	if (len < sizeof(struct sctp_paddrparams))
4446 		return -EINVAL;
4447 	len = sizeof(struct sctp_paddrparams);
4448 	if (copy_from_user(&params, optval, len))
4449 		return -EFAULT;
4450 
4451 	/* If an address other than INADDR_ANY is specified, and
4452 	 * no transport is found, then the request is invalid.
4453 	 */
4454 	if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
4455 		trans = sctp_addr_id2transport(sk, &params.spp_address,
4456 					       params.spp_assoc_id);
4457 		if (!trans) {
4458 			pr_debug("%s: failed no transport\n", __func__);
4459 			return -EINVAL;
4460 		}
4461 	}
4462 
4463 	/* Get association, if assoc_id != 0 and the socket is a one
4464 	 * to many style socket, and an association was not found, then
4465 	 * the id was invalid.
4466 	 */
4467 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4468 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4469 		pr_debug("%s: failed no association\n", __func__);
4470 		return -EINVAL;
4471 	}
4472 
4473 	if (trans) {
4474 		/* Fetch transport values. */
4475 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4476 		params.spp_pathmtu    = trans->pathmtu;
4477 		params.spp_pathmaxrxt = trans->pathmaxrxt;
4478 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
4479 
4480 		/*draft-11 doesn't say what to return in spp_flags*/
4481 		params.spp_flags      = trans->param_flags;
4482 	} else if (asoc) {
4483 		/* Fetch association values. */
4484 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4485 		params.spp_pathmtu    = asoc->pathmtu;
4486 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
4487 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
4488 
4489 		/*draft-11 doesn't say what to return in spp_flags*/
4490 		params.spp_flags      = asoc->param_flags;
4491 	} else {
4492 		/* Fetch socket values. */
4493 		params.spp_hbinterval = sp->hbinterval;
4494 		params.spp_pathmtu    = sp->pathmtu;
4495 		params.spp_sackdelay  = sp->sackdelay;
4496 		params.spp_pathmaxrxt = sp->pathmaxrxt;
4497 
4498 		/*draft-11 doesn't say what to return in spp_flags*/
4499 		params.spp_flags      = sp->param_flags;
4500 	}
4501 
4502 	if (copy_to_user(optval, &params, len))
4503 		return -EFAULT;
4504 
4505 	if (put_user(len, optlen))
4506 		return -EFAULT;
4507 
4508 	return 0;
4509 }
4510 
4511 /*
4512  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
4513  *
4514  * This option will effect the way delayed acks are performed.  This
4515  * option allows you to get or set the delayed ack time, in
4516  * milliseconds.  It also allows changing the delayed ack frequency.
4517  * Changing the frequency to 1 disables the delayed sack algorithm.  If
4518  * the assoc_id is 0, then this sets or gets the endpoints default
4519  * values.  If the assoc_id field is non-zero, then the set or get
4520  * effects the specified association for the one to many model (the
4521  * assoc_id field is ignored by the one to one model).  Note that if
4522  * sack_delay or sack_freq are 0 when setting this option, then the
4523  * current values will remain unchanged.
4524  *
4525  * struct sctp_sack_info {
4526  *     sctp_assoc_t            sack_assoc_id;
4527  *     uint32_t                sack_delay;
4528  *     uint32_t                sack_freq;
4529  * };
4530  *
4531  * sack_assoc_id -  This parameter, indicates which association the user
4532  *    is performing an action upon.  Note that if this field's value is
4533  *    zero then the endpoints default value is changed (effecting future
4534  *    associations only).
4535  *
4536  * sack_delay -  This parameter contains the number of milliseconds that
4537  *    the user is requesting the delayed ACK timer be set to.  Note that
4538  *    this value is defined in the standard to be between 200 and 500
4539  *    milliseconds.
4540  *
4541  * sack_freq -  This parameter contains the number of packets that must
4542  *    be received before a sack is sent without waiting for the delay
4543  *    timer to expire.  The default value for this is 2, setting this
4544  *    value to 1 will disable the delayed sack algorithm.
4545  */
4546 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4547 					    char __user *optval,
4548 					    int __user *optlen)
4549 {
4550 	struct sctp_sack_info    params;
4551 	struct sctp_association *asoc = NULL;
4552 	struct sctp_sock        *sp = sctp_sk(sk);
4553 
4554 	if (len >= sizeof(struct sctp_sack_info)) {
4555 		len = sizeof(struct sctp_sack_info);
4556 
4557 		if (copy_from_user(&params, optval, len))
4558 			return -EFAULT;
4559 	} else if (len == sizeof(struct sctp_assoc_value)) {
4560 		pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
4561 		pr_warn("Use struct sctp_sack_info instead\n");
4562 		if (copy_from_user(&params, optval, len))
4563 			return -EFAULT;
4564 	} else
4565 		return - EINVAL;
4566 
4567 	/* Get association, if sack_assoc_id != 0 and the socket is a one
4568 	 * to many style socket, and an association was not found, then
4569 	 * the id was invalid.
4570 	 */
4571 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4572 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4573 		return -EINVAL;
4574 
4575 	if (asoc) {
4576 		/* Fetch association values. */
4577 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4578 			params.sack_delay = jiffies_to_msecs(
4579 				asoc->sackdelay);
4580 			params.sack_freq = asoc->sackfreq;
4581 
4582 		} else {
4583 			params.sack_delay = 0;
4584 			params.sack_freq = 1;
4585 		}
4586 	} else {
4587 		/* Fetch socket values. */
4588 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4589 			params.sack_delay  = sp->sackdelay;
4590 			params.sack_freq = sp->sackfreq;
4591 		} else {
4592 			params.sack_delay  = 0;
4593 			params.sack_freq = 1;
4594 		}
4595 	}
4596 
4597 	if (copy_to_user(optval, &params, len))
4598 		return -EFAULT;
4599 
4600 	if (put_user(len, optlen))
4601 		return -EFAULT;
4602 
4603 	return 0;
4604 }
4605 
4606 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4607  *
4608  * Applications can specify protocol parameters for the default association
4609  * initialization.  The option name argument to setsockopt() and getsockopt()
4610  * is SCTP_INITMSG.
4611  *
4612  * Setting initialization parameters is effective only on an unconnected
4613  * socket (for UDP-style sockets only future associations are effected
4614  * by the change).  With TCP-style sockets, this option is inherited by
4615  * sockets derived from a listener socket.
4616  */
4617 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4618 {
4619 	if (len < sizeof(struct sctp_initmsg))
4620 		return -EINVAL;
4621 	len = sizeof(struct sctp_initmsg);
4622 	if (put_user(len, optlen))
4623 		return -EFAULT;
4624 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4625 		return -EFAULT;
4626 	return 0;
4627 }
4628 
4629 
4630 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4631 				      char __user *optval, int __user *optlen)
4632 {
4633 	struct sctp_association *asoc;
4634 	int cnt = 0;
4635 	struct sctp_getaddrs getaddrs;
4636 	struct sctp_transport *from;
4637 	void __user *to;
4638 	union sctp_addr temp;
4639 	struct sctp_sock *sp = sctp_sk(sk);
4640 	int addrlen;
4641 	size_t space_left;
4642 	int bytes_copied;
4643 
4644 	if (len < sizeof(struct sctp_getaddrs))
4645 		return -EINVAL;
4646 
4647 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4648 		return -EFAULT;
4649 
4650 	/* For UDP-style sockets, id specifies the association to query.  */
4651 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4652 	if (!asoc)
4653 		return -EINVAL;
4654 
4655 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4656 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4657 
4658 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4659 				transports) {
4660 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4661 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4662 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4663 		if (space_left < addrlen)
4664 			return -ENOMEM;
4665 		if (copy_to_user(to, &temp, addrlen))
4666 			return -EFAULT;
4667 		to += addrlen;
4668 		cnt++;
4669 		space_left -= addrlen;
4670 	}
4671 
4672 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4673 		return -EFAULT;
4674 	bytes_copied = ((char __user *)to) - optval;
4675 	if (put_user(bytes_copied, optlen))
4676 		return -EFAULT;
4677 
4678 	return 0;
4679 }
4680 
4681 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4682 			    size_t space_left, int *bytes_copied)
4683 {
4684 	struct sctp_sockaddr_entry *addr;
4685 	union sctp_addr temp;
4686 	int cnt = 0;
4687 	int addrlen;
4688 	struct net *net = sock_net(sk);
4689 
4690 	rcu_read_lock();
4691 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
4692 		if (!addr->valid)
4693 			continue;
4694 
4695 		if ((PF_INET == sk->sk_family) &&
4696 		    (AF_INET6 == addr->a.sa.sa_family))
4697 			continue;
4698 		if ((PF_INET6 == sk->sk_family) &&
4699 		    inet_v6_ipv6only(sk) &&
4700 		    (AF_INET == addr->a.sa.sa_family))
4701 			continue;
4702 		memcpy(&temp, &addr->a, sizeof(temp));
4703 		if (!temp.v4.sin_port)
4704 			temp.v4.sin_port = htons(port);
4705 
4706 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4707 								&temp);
4708 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4709 		if (space_left < addrlen) {
4710 			cnt =  -ENOMEM;
4711 			break;
4712 		}
4713 		memcpy(to, &temp, addrlen);
4714 
4715 		to += addrlen;
4716 		cnt ++;
4717 		space_left -= addrlen;
4718 		*bytes_copied += addrlen;
4719 	}
4720 	rcu_read_unlock();
4721 
4722 	return cnt;
4723 }
4724 
4725 
4726 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4727 				       char __user *optval, int __user *optlen)
4728 {
4729 	struct sctp_bind_addr *bp;
4730 	struct sctp_association *asoc;
4731 	int cnt = 0;
4732 	struct sctp_getaddrs getaddrs;
4733 	struct sctp_sockaddr_entry *addr;
4734 	void __user *to;
4735 	union sctp_addr temp;
4736 	struct sctp_sock *sp = sctp_sk(sk);
4737 	int addrlen;
4738 	int err = 0;
4739 	size_t space_left;
4740 	int bytes_copied = 0;
4741 	void *addrs;
4742 	void *buf;
4743 
4744 	if (len < sizeof(struct sctp_getaddrs))
4745 		return -EINVAL;
4746 
4747 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4748 		return -EFAULT;
4749 
4750 	/*
4751 	 *  For UDP-style sockets, id specifies the association to query.
4752 	 *  If the id field is set to the value '0' then the locally bound
4753 	 *  addresses are returned without regard to any particular
4754 	 *  association.
4755 	 */
4756 	if (0 == getaddrs.assoc_id) {
4757 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4758 	} else {
4759 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4760 		if (!asoc)
4761 			return -EINVAL;
4762 		bp = &asoc->base.bind_addr;
4763 	}
4764 
4765 	to = optval + offsetof(struct sctp_getaddrs,addrs);
4766 	space_left = len - offsetof(struct sctp_getaddrs,addrs);
4767 
4768 	addrs = kmalloc(space_left, GFP_KERNEL);
4769 	if (!addrs)
4770 		return -ENOMEM;
4771 
4772 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4773 	 * addresses from the global local address list.
4774 	 */
4775 	if (sctp_list_single_entry(&bp->address_list)) {
4776 		addr = list_entry(bp->address_list.next,
4777 				  struct sctp_sockaddr_entry, list);
4778 		if (sctp_is_any(sk, &addr->a)) {
4779 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4780 						space_left, &bytes_copied);
4781 			if (cnt < 0) {
4782 				err = cnt;
4783 				goto out;
4784 			}
4785 			goto copy_getaddrs;
4786 		}
4787 	}
4788 
4789 	buf = addrs;
4790 	/* Protection on the bound address list is not needed since
4791 	 * in the socket option context we hold a socket lock and
4792 	 * thus the bound address list can't change.
4793 	 */
4794 	list_for_each_entry(addr, &bp->address_list, list) {
4795 		memcpy(&temp, &addr->a, sizeof(temp));
4796 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4797 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4798 		if (space_left < addrlen) {
4799 			err =  -ENOMEM; /*fixme: right error?*/
4800 			goto out;
4801 		}
4802 		memcpy(buf, &temp, addrlen);
4803 		buf += addrlen;
4804 		bytes_copied += addrlen;
4805 		cnt ++;
4806 		space_left -= addrlen;
4807 	}
4808 
4809 copy_getaddrs:
4810 	if (copy_to_user(to, addrs, bytes_copied)) {
4811 		err = -EFAULT;
4812 		goto out;
4813 	}
4814 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4815 		err = -EFAULT;
4816 		goto out;
4817 	}
4818 	if (put_user(bytes_copied, optlen))
4819 		err = -EFAULT;
4820 out:
4821 	kfree(addrs);
4822 	return err;
4823 }
4824 
4825 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4826  *
4827  * Requests that the local SCTP stack use the enclosed peer address as
4828  * the association primary.  The enclosed address must be one of the
4829  * association peer's addresses.
4830  */
4831 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4832 					char __user *optval, int __user *optlen)
4833 {
4834 	struct sctp_prim prim;
4835 	struct sctp_association *asoc;
4836 	struct sctp_sock *sp = sctp_sk(sk);
4837 
4838 	if (len < sizeof(struct sctp_prim))
4839 		return -EINVAL;
4840 
4841 	len = sizeof(struct sctp_prim);
4842 
4843 	if (copy_from_user(&prim, optval, len))
4844 		return -EFAULT;
4845 
4846 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4847 	if (!asoc)
4848 		return -EINVAL;
4849 
4850 	if (!asoc->peer.primary_path)
4851 		return -ENOTCONN;
4852 
4853 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4854 		asoc->peer.primary_path->af_specific->sockaddr_len);
4855 
4856 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4857 			(union sctp_addr *)&prim.ssp_addr);
4858 
4859 	if (put_user(len, optlen))
4860 		return -EFAULT;
4861 	if (copy_to_user(optval, &prim, len))
4862 		return -EFAULT;
4863 
4864 	return 0;
4865 }
4866 
4867 /*
4868  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4869  *
4870  * Requests that the local endpoint set the specified Adaptation Layer
4871  * Indication parameter for all future INIT and INIT-ACK exchanges.
4872  */
4873 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4874 				  char __user *optval, int __user *optlen)
4875 {
4876 	struct sctp_setadaptation adaptation;
4877 
4878 	if (len < sizeof(struct sctp_setadaptation))
4879 		return -EINVAL;
4880 
4881 	len = sizeof(struct sctp_setadaptation);
4882 
4883 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4884 
4885 	if (put_user(len, optlen))
4886 		return -EFAULT;
4887 	if (copy_to_user(optval, &adaptation, len))
4888 		return -EFAULT;
4889 
4890 	return 0;
4891 }
4892 
4893 /*
4894  *
4895  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4896  *
4897  *   Applications that wish to use the sendto() system call may wish to
4898  *   specify a default set of parameters that would normally be supplied
4899  *   through the inclusion of ancillary data.  This socket option allows
4900  *   such an application to set the default sctp_sndrcvinfo structure.
4901 
4902 
4903  *   The application that wishes to use this socket option simply passes
4904  *   in to this call the sctp_sndrcvinfo structure defined in Section
4905  *   5.2.2) The input parameters accepted by this call include
4906  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4907  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
4908  *   to this call if the caller is using the UDP model.
4909  *
4910  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
4911  */
4912 static int sctp_getsockopt_default_send_param(struct sock *sk,
4913 					int len, char __user *optval,
4914 					int __user *optlen)
4915 {
4916 	struct sctp_sndrcvinfo info;
4917 	struct sctp_association *asoc;
4918 	struct sctp_sock *sp = sctp_sk(sk);
4919 
4920 	if (len < sizeof(struct sctp_sndrcvinfo))
4921 		return -EINVAL;
4922 
4923 	len = sizeof(struct sctp_sndrcvinfo);
4924 
4925 	if (copy_from_user(&info, optval, len))
4926 		return -EFAULT;
4927 
4928 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4929 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4930 		return -EINVAL;
4931 
4932 	if (asoc) {
4933 		info.sinfo_stream = asoc->default_stream;
4934 		info.sinfo_flags = asoc->default_flags;
4935 		info.sinfo_ppid = asoc->default_ppid;
4936 		info.sinfo_context = asoc->default_context;
4937 		info.sinfo_timetolive = asoc->default_timetolive;
4938 	} else {
4939 		info.sinfo_stream = sp->default_stream;
4940 		info.sinfo_flags = sp->default_flags;
4941 		info.sinfo_ppid = sp->default_ppid;
4942 		info.sinfo_context = sp->default_context;
4943 		info.sinfo_timetolive = sp->default_timetolive;
4944 	}
4945 
4946 	if (put_user(len, optlen))
4947 		return -EFAULT;
4948 	if (copy_to_user(optval, &info, len))
4949 		return -EFAULT;
4950 
4951 	return 0;
4952 }
4953 
4954 /*
4955  *
4956  * 7.1.5 SCTP_NODELAY
4957  *
4958  * Turn on/off any Nagle-like algorithm.  This means that packets are
4959  * generally sent as soon as possible and no unnecessary delays are
4960  * introduced, at the cost of more packets in the network.  Expects an
4961  * integer boolean flag.
4962  */
4963 
4964 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4965 				   char __user *optval, int __user *optlen)
4966 {
4967 	int val;
4968 
4969 	if (len < sizeof(int))
4970 		return -EINVAL;
4971 
4972 	len = sizeof(int);
4973 	val = (sctp_sk(sk)->nodelay == 1);
4974 	if (put_user(len, optlen))
4975 		return -EFAULT;
4976 	if (copy_to_user(optval, &val, len))
4977 		return -EFAULT;
4978 	return 0;
4979 }
4980 
4981 /*
4982  *
4983  * 7.1.1 SCTP_RTOINFO
4984  *
4985  * The protocol parameters used to initialize and bound retransmission
4986  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4987  * and modify these parameters.
4988  * All parameters are time values, in milliseconds.  A value of 0, when
4989  * modifying the parameters, indicates that the current value should not
4990  * be changed.
4991  *
4992  */
4993 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4994 				char __user *optval,
4995 				int __user *optlen) {
4996 	struct sctp_rtoinfo rtoinfo;
4997 	struct sctp_association *asoc;
4998 
4999 	if (len < sizeof (struct sctp_rtoinfo))
5000 		return -EINVAL;
5001 
5002 	len = sizeof(struct sctp_rtoinfo);
5003 
5004 	if (copy_from_user(&rtoinfo, optval, len))
5005 		return -EFAULT;
5006 
5007 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5008 
5009 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5010 		return -EINVAL;
5011 
5012 	/* Values corresponding to the specific association. */
5013 	if (asoc) {
5014 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5015 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5016 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5017 	} else {
5018 		/* Values corresponding to the endpoint. */
5019 		struct sctp_sock *sp = sctp_sk(sk);
5020 
5021 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5022 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
5023 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
5024 	}
5025 
5026 	if (put_user(len, optlen))
5027 		return -EFAULT;
5028 
5029 	if (copy_to_user(optval, &rtoinfo, len))
5030 		return -EFAULT;
5031 
5032 	return 0;
5033 }
5034 
5035 /*
5036  *
5037  * 7.1.2 SCTP_ASSOCINFO
5038  *
5039  * This option is used to tune the maximum retransmission attempts
5040  * of the association.
5041  * Returns an error if the new association retransmission value is
5042  * greater than the sum of the retransmission value  of the peer.
5043  * See [SCTP] for more information.
5044  *
5045  */
5046 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5047 				     char __user *optval,
5048 				     int __user *optlen)
5049 {
5050 
5051 	struct sctp_assocparams assocparams;
5052 	struct sctp_association *asoc;
5053 	struct list_head *pos;
5054 	int cnt = 0;
5055 
5056 	if (len < sizeof (struct sctp_assocparams))
5057 		return -EINVAL;
5058 
5059 	len = sizeof(struct sctp_assocparams);
5060 
5061 	if (copy_from_user(&assocparams, optval, len))
5062 		return -EFAULT;
5063 
5064 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5065 
5066 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5067 		return -EINVAL;
5068 
5069 	/* Values correspoinding to the specific association */
5070 	if (asoc) {
5071 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5072 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5073 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5074 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5075 
5076 		list_for_each(pos, &asoc->peer.transport_addr_list) {
5077 			cnt ++;
5078 		}
5079 
5080 		assocparams.sasoc_number_peer_destinations = cnt;
5081 	} else {
5082 		/* Values corresponding to the endpoint */
5083 		struct sctp_sock *sp = sctp_sk(sk);
5084 
5085 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5086 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5087 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5088 		assocparams.sasoc_cookie_life =
5089 					sp->assocparams.sasoc_cookie_life;
5090 		assocparams.sasoc_number_peer_destinations =
5091 					sp->assocparams.
5092 					sasoc_number_peer_destinations;
5093 	}
5094 
5095 	if (put_user(len, optlen))
5096 		return -EFAULT;
5097 
5098 	if (copy_to_user(optval, &assocparams, len))
5099 		return -EFAULT;
5100 
5101 	return 0;
5102 }
5103 
5104 /*
5105  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5106  *
5107  * This socket option is a boolean flag which turns on or off mapped V4
5108  * addresses.  If this option is turned on and the socket is type
5109  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5110  * If this option is turned off, then no mapping will be done of V4
5111  * addresses and a user will receive both PF_INET6 and PF_INET type
5112  * addresses on the socket.
5113  */
5114 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5115 				    char __user *optval, int __user *optlen)
5116 {
5117 	int val;
5118 	struct sctp_sock *sp = sctp_sk(sk);
5119 
5120 	if (len < sizeof(int))
5121 		return -EINVAL;
5122 
5123 	len = sizeof(int);
5124 	val = sp->v4mapped;
5125 	if (put_user(len, optlen))
5126 		return -EFAULT;
5127 	if (copy_to_user(optval, &val, len))
5128 		return -EFAULT;
5129 
5130 	return 0;
5131 }
5132 
5133 /*
5134  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
5135  * (chapter and verse is quoted at sctp_setsockopt_context())
5136  */
5137 static int sctp_getsockopt_context(struct sock *sk, int len,
5138 				   char __user *optval, int __user *optlen)
5139 {
5140 	struct sctp_assoc_value params;
5141 	struct sctp_sock *sp;
5142 	struct sctp_association *asoc;
5143 
5144 	if (len < sizeof(struct sctp_assoc_value))
5145 		return -EINVAL;
5146 
5147 	len = sizeof(struct sctp_assoc_value);
5148 
5149 	if (copy_from_user(&params, optval, len))
5150 		return -EFAULT;
5151 
5152 	sp = sctp_sk(sk);
5153 
5154 	if (params.assoc_id != 0) {
5155 		asoc = sctp_id2assoc(sk, params.assoc_id);
5156 		if (!asoc)
5157 			return -EINVAL;
5158 		params.assoc_value = asoc->default_rcv_context;
5159 	} else {
5160 		params.assoc_value = sp->default_rcv_context;
5161 	}
5162 
5163 	if (put_user(len, optlen))
5164 		return -EFAULT;
5165 	if (copy_to_user(optval, &params, len))
5166 		return -EFAULT;
5167 
5168 	return 0;
5169 }
5170 
5171 /*
5172  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5173  * This option will get or set the maximum size to put in any outgoing
5174  * SCTP DATA chunk.  If a message is larger than this size it will be
5175  * fragmented by SCTP into the specified size.  Note that the underlying
5176  * SCTP implementation may fragment into smaller sized chunks when the
5177  * PMTU of the underlying association is smaller than the value set by
5178  * the user.  The default value for this option is '0' which indicates
5179  * the user is NOT limiting fragmentation and only the PMTU will effect
5180  * SCTP's choice of DATA chunk size.  Note also that values set larger
5181  * than the maximum size of an IP datagram will effectively let SCTP
5182  * control fragmentation (i.e. the same as setting this option to 0).
5183  *
5184  * The following structure is used to access and modify this parameter:
5185  *
5186  * struct sctp_assoc_value {
5187  *   sctp_assoc_t assoc_id;
5188  *   uint32_t assoc_value;
5189  * };
5190  *
5191  * assoc_id:  This parameter is ignored for one-to-one style sockets.
5192  *    For one-to-many style sockets this parameter indicates which
5193  *    association the user is performing an action upon.  Note that if
5194  *    this field's value is zero then the endpoints default value is
5195  *    changed (effecting future associations only).
5196  * assoc_value:  This parameter specifies the maximum size in bytes.
5197  */
5198 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5199 				  char __user *optval, int __user *optlen)
5200 {
5201 	struct sctp_assoc_value params;
5202 	struct sctp_association *asoc;
5203 
5204 	if (len == sizeof(int)) {
5205 		pr_warn("Use of int in maxseg socket option deprecated\n");
5206 		pr_warn("Use struct sctp_assoc_value instead\n");
5207 		params.assoc_id = 0;
5208 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5209 		len = sizeof(struct sctp_assoc_value);
5210 		if (copy_from_user(&params, optval, sizeof(params)))
5211 			return -EFAULT;
5212 	} else
5213 		return -EINVAL;
5214 
5215 	asoc = sctp_id2assoc(sk, params.assoc_id);
5216 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5217 		return -EINVAL;
5218 
5219 	if (asoc)
5220 		params.assoc_value = asoc->frag_point;
5221 	else
5222 		params.assoc_value = sctp_sk(sk)->user_frag;
5223 
5224 	if (put_user(len, optlen))
5225 		return -EFAULT;
5226 	if (len == sizeof(int)) {
5227 		if (copy_to_user(optval, &params.assoc_value, len))
5228 			return -EFAULT;
5229 	} else {
5230 		if (copy_to_user(optval, &params, len))
5231 			return -EFAULT;
5232 	}
5233 
5234 	return 0;
5235 }
5236 
5237 /*
5238  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5239  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5240  */
5241 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5242 					       char __user *optval, int __user *optlen)
5243 {
5244 	int val;
5245 
5246 	if (len < sizeof(int))
5247 		return -EINVAL;
5248 
5249 	len = sizeof(int);
5250 
5251 	val = sctp_sk(sk)->frag_interleave;
5252 	if (put_user(len, optlen))
5253 		return -EFAULT;
5254 	if (copy_to_user(optval, &val, len))
5255 		return -EFAULT;
5256 
5257 	return 0;
5258 }
5259 
5260 /*
5261  * 7.1.25.  Set or Get the sctp partial delivery point
5262  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5263  */
5264 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5265 						  char __user *optval,
5266 						  int __user *optlen)
5267 {
5268 	u32 val;
5269 
5270 	if (len < sizeof(u32))
5271 		return -EINVAL;
5272 
5273 	len = sizeof(u32);
5274 
5275 	val = sctp_sk(sk)->pd_point;
5276 	if (put_user(len, optlen))
5277 		return -EFAULT;
5278 	if (copy_to_user(optval, &val, len))
5279 		return -EFAULT;
5280 
5281 	return 0;
5282 }
5283 
5284 /*
5285  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
5286  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5287  */
5288 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5289 				    char __user *optval,
5290 				    int __user *optlen)
5291 {
5292 	struct sctp_assoc_value params;
5293 	struct sctp_sock *sp;
5294 	struct sctp_association *asoc;
5295 
5296 	if (len == sizeof(int)) {
5297 		pr_warn("Use of int in max_burst socket option deprecated\n");
5298 		pr_warn("Use struct sctp_assoc_value instead\n");
5299 		params.assoc_id = 0;
5300 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5301 		len = sizeof(struct sctp_assoc_value);
5302 		if (copy_from_user(&params, optval, len))
5303 			return -EFAULT;
5304 	} else
5305 		return -EINVAL;
5306 
5307 	sp = sctp_sk(sk);
5308 
5309 	if (params.assoc_id != 0) {
5310 		asoc = sctp_id2assoc(sk, params.assoc_id);
5311 		if (!asoc)
5312 			return -EINVAL;
5313 		params.assoc_value = asoc->max_burst;
5314 	} else
5315 		params.assoc_value = sp->max_burst;
5316 
5317 	if (len == sizeof(int)) {
5318 		if (copy_to_user(optval, &params.assoc_value, len))
5319 			return -EFAULT;
5320 	} else {
5321 		if (copy_to_user(optval, &params, len))
5322 			return -EFAULT;
5323 	}
5324 
5325 	return 0;
5326 
5327 }
5328 
5329 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5330 				    char __user *optval, int __user *optlen)
5331 {
5332 	struct net *net = sock_net(sk);
5333 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
5334 	struct sctp_hmac_algo_param *hmacs;
5335 	__u16 data_len = 0;
5336 	u32 num_idents;
5337 
5338 	if (!net->sctp.auth_enable)
5339 		return -EACCES;
5340 
5341 	hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5342 	data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5343 
5344 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
5345 		return -EINVAL;
5346 
5347 	len = sizeof(struct sctp_hmacalgo) + data_len;
5348 	num_idents = data_len / sizeof(u16);
5349 
5350 	if (put_user(len, optlen))
5351 		return -EFAULT;
5352 	if (put_user(num_idents, &p->shmac_num_idents))
5353 		return -EFAULT;
5354 	if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5355 		return -EFAULT;
5356 	return 0;
5357 }
5358 
5359 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5360 				    char __user *optval, int __user *optlen)
5361 {
5362 	struct net *net = sock_net(sk);
5363 	struct sctp_authkeyid val;
5364 	struct sctp_association *asoc;
5365 
5366 	if (!net->sctp.auth_enable)
5367 		return -EACCES;
5368 
5369 	if (len < sizeof(struct sctp_authkeyid))
5370 		return -EINVAL;
5371 	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5372 		return -EFAULT;
5373 
5374 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5375 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5376 		return -EINVAL;
5377 
5378 	if (asoc)
5379 		val.scact_keynumber = asoc->active_key_id;
5380 	else
5381 		val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5382 
5383 	len = sizeof(struct sctp_authkeyid);
5384 	if (put_user(len, optlen))
5385 		return -EFAULT;
5386 	if (copy_to_user(optval, &val, len))
5387 		return -EFAULT;
5388 
5389 	return 0;
5390 }
5391 
5392 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5393 				    char __user *optval, int __user *optlen)
5394 {
5395 	struct net *net = sock_net(sk);
5396 	struct sctp_authchunks __user *p = (void __user *)optval;
5397 	struct sctp_authchunks val;
5398 	struct sctp_association *asoc;
5399 	struct sctp_chunks_param *ch;
5400 	u32    num_chunks = 0;
5401 	char __user *to;
5402 
5403 	if (!net->sctp.auth_enable)
5404 		return -EACCES;
5405 
5406 	if (len < sizeof(struct sctp_authchunks))
5407 		return -EINVAL;
5408 
5409 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5410 		return -EFAULT;
5411 
5412 	to = p->gauth_chunks;
5413 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5414 	if (!asoc)
5415 		return -EINVAL;
5416 
5417 	ch = asoc->peer.peer_chunks;
5418 	if (!ch)
5419 		goto num;
5420 
5421 	/* See if the user provided enough room for all the data */
5422 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5423 	if (len < num_chunks)
5424 		return -EINVAL;
5425 
5426 	if (copy_to_user(to, ch->chunks, num_chunks))
5427 		return -EFAULT;
5428 num:
5429 	len = sizeof(struct sctp_authchunks) + num_chunks;
5430 	if (put_user(len, optlen)) return -EFAULT;
5431 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5432 		return -EFAULT;
5433 	return 0;
5434 }
5435 
5436 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5437 				    char __user *optval, int __user *optlen)
5438 {
5439 	struct net *net = sock_net(sk);
5440 	struct sctp_authchunks __user *p = (void __user *)optval;
5441 	struct sctp_authchunks val;
5442 	struct sctp_association *asoc;
5443 	struct sctp_chunks_param *ch;
5444 	u32    num_chunks = 0;
5445 	char __user *to;
5446 
5447 	if (!net->sctp.auth_enable)
5448 		return -EACCES;
5449 
5450 	if (len < sizeof(struct sctp_authchunks))
5451 		return -EINVAL;
5452 
5453 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5454 		return -EFAULT;
5455 
5456 	to = p->gauth_chunks;
5457 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5458 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5459 		return -EINVAL;
5460 
5461 	if (asoc)
5462 		ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5463 	else
5464 		ch = sctp_sk(sk)->ep->auth_chunk_list;
5465 
5466 	if (!ch)
5467 		goto num;
5468 
5469 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5470 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
5471 		return -EINVAL;
5472 
5473 	if (copy_to_user(to, ch->chunks, num_chunks))
5474 		return -EFAULT;
5475 num:
5476 	len = sizeof(struct sctp_authchunks) + num_chunks;
5477 	if (put_user(len, optlen))
5478 		return -EFAULT;
5479 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5480 		return -EFAULT;
5481 
5482 	return 0;
5483 }
5484 
5485 /*
5486  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5487  * This option gets the current number of associations that are attached
5488  * to a one-to-many style socket.  The option value is an uint32_t.
5489  */
5490 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5491 				    char __user *optval, int __user *optlen)
5492 {
5493 	struct sctp_sock *sp = sctp_sk(sk);
5494 	struct sctp_association *asoc;
5495 	u32 val = 0;
5496 
5497 	if (sctp_style(sk, TCP))
5498 		return -EOPNOTSUPP;
5499 
5500 	if (len < sizeof(u32))
5501 		return -EINVAL;
5502 
5503 	len = sizeof(u32);
5504 
5505 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5506 		val++;
5507 	}
5508 
5509 	if (put_user(len, optlen))
5510 		return -EFAULT;
5511 	if (copy_to_user(optval, &val, len))
5512 		return -EFAULT;
5513 
5514 	return 0;
5515 }
5516 
5517 /*
5518  * 8.1.23 SCTP_AUTO_ASCONF
5519  * See the corresponding setsockopt entry as description
5520  */
5521 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5522 				   char __user *optval, int __user *optlen)
5523 {
5524 	int val = 0;
5525 
5526 	if (len < sizeof(int))
5527 		return -EINVAL;
5528 
5529 	len = sizeof(int);
5530 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5531 		val = 1;
5532 	if (put_user(len, optlen))
5533 		return -EFAULT;
5534 	if (copy_to_user(optval, &val, len))
5535 		return -EFAULT;
5536 	return 0;
5537 }
5538 
5539 /*
5540  * 8.2.6. Get the Current Identifiers of Associations
5541  *        (SCTP_GET_ASSOC_ID_LIST)
5542  *
5543  * This option gets the current list of SCTP association identifiers of
5544  * the SCTP associations handled by a one-to-many style socket.
5545  */
5546 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5547 				    char __user *optval, int __user *optlen)
5548 {
5549 	struct sctp_sock *sp = sctp_sk(sk);
5550 	struct sctp_association *asoc;
5551 	struct sctp_assoc_ids *ids;
5552 	u32 num = 0;
5553 
5554 	if (sctp_style(sk, TCP))
5555 		return -EOPNOTSUPP;
5556 
5557 	if (len < sizeof(struct sctp_assoc_ids))
5558 		return -EINVAL;
5559 
5560 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5561 		num++;
5562 	}
5563 
5564 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5565 		return -EINVAL;
5566 
5567 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5568 
5569 	ids = kmalloc(len, GFP_KERNEL);
5570 	if (unlikely(!ids))
5571 		return -ENOMEM;
5572 
5573 	ids->gaids_number_of_ids = num;
5574 	num = 0;
5575 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5576 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
5577 	}
5578 
5579 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5580 		kfree(ids);
5581 		return -EFAULT;
5582 	}
5583 
5584 	kfree(ids);
5585 	return 0;
5586 }
5587 
5588 /*
5589  * SCTP_PEER_ADDR_THLDS
5590  *
5591  * This option allows us to fetch the partially failed threshold for one or all
5592  * transports in an association.  See Section 6.1 of:
5593  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
5594  */
5595 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
5596 					    char __user *optval,
5597 					    int len,
5598 					    int __user *optlen)
5599 {
5600 	struct sctp_paddrthlds val;
5601 	struct sctp_transport *trans;
5602 	struct sctp_association *asoc;
5603 
5604 	if (len < sizeof(struct sctp_paddrthlds))
5605 		return -EINVAL;
5606 	len = sizeof(struct sctp_paddrthlds);
5607 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
5608 		return -EFAULT;
5609 
5610 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
5611 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
5612 		if (!asoc)
5613 			return -ENOENT;
5614 
5615 		val.spt_pathpfthld = asoc->pf_retrans;
5616 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
5617 	} else {
5618 		trans = sctp_addr_id2transport(sk, &val.spt_address,
5619 					       val.spt_assoc_id);
5620 		if (!trans)
5621 			return -ENOENT;
5622 
5623 		val.spt_pathmaxrxt = trans->pathmaxrxt;
5624 		val.spt_pathpfthld = trans->pf_retrans;
5625 	}
5626 
5627 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
5628 		return -EFAULT;
5629 
5630 	return 0;
5631 }
5632 
5633 /*
5634  * SCTP_GET_ASSOC_STATS
5635  *
5636  * This option retrieves local per endpoint statistics. It is modeled
5637  * after OpenSolaris' implementation
5638  */
5639 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
5640 				       char __user *optval,
5641 				       int __user *optlen)
5642 {
5643 	struct sctp_assoc_stats sas;
5644 	struct sctp_association *asoc = NULL;
5645 
5646 	/* User must provide at least the assoc id */
5647 	if (len < sizeof(sctp_assoc_t))
5648 		return -EINVAL;
5649 
5650 	/* Allow the struct to grow and fill in as much as possible */
5651 	len = min_t(size_t, len, sizeof(sas));
5652 
5653 	if (copy_from_user(&sas, optval, len))
5654 		return -EFAULT;
5655 
5656 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
5657 	if (!asoc)
5658 		return -EINVAL;
5659 
5660 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
5661 	sas.sas_gapcnt = asoc->stats.gapcnt;
5662 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
5663 	sas.sas_osacks = asoc->stats.osacks;
5664 	sas.sas_isacks = asoc->stats.isacks;
5665 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
5666 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
5667 	sas.sas_oodchunks = asoc->stats.oodchunks;
5668 	sas.sas_iodchunks = asoc->stats.iodchunks;
5669 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
5670 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
5671 	sas.sas_idupchunks = asoc->stats.idupchunks;
5672 	sas.sas_opackets = asoc->stats.opackets;
5673 	sas.sas_ipackets = asoc->stats.ipackets;
5674 
5675 	/* New high max rto observed, will return 0 if not a single
5676 	 * RTO update took place. obs_rto_ipaddr will be bogus
5677 	 * in such a case
5678 	 */
5679 	sas.sas_maxrto = asoc->stats.max_obs_rto;
5680 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
5681 		sizeof(struct sockaddr_storage));
5682 
5683 	/* Mark beginning of a new observation period */
5684 	asoc->stats.max_obs_rto = asoc->rto_min;
5685 
5686 	if (put_user(len, optlen))
5687 		return -EFAULT;
5688 
5689 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
5690 
5691 	if (copy_to_user(optval, &sas, len))
5692 		return -EFAULT;
5693 
5694 	return 0;
5695 }
5696 
5697 static int sctp_getsockopt(struct sock *sk, int level, int optname,
5698 			   char __user *optval, int __user *optlen)
5699 {
5700 	int retval = 0;
5701 	int len;
5702 
5703 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
5704 
5705 	/* I can hardly begin to describe how wrong this is.  This is
5706 	 * so broken as to be worse than useless.  The API draft
5707 	 * REALLY is NOT helpful here...  I am not convinced that the
5708 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5709 	 * are at all well-founded.
5710 	 */
5711 	if (level != SOL_SCTP) {
5712 		struct sctp_af *af = sctp_sk(sk)->pf->af;
5713 
5714 		retval = af->getsockopt(sk, level, optname, optval, optlen);
5715 		return retval;
5716 	}
5717 
5718 	if (get_user(len, optlen))
5719 		return -EFAULT;
5720 
5721 	sctp_lock_sock(sk);
5722 
5723 	switch (optname) {
5724 	case SCTP_STATUS:
5725 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5726 		break;
5727 	case SCTP_DISABLE_FRAGMENTS:
5728 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5729 							   optlen);
5730 		break;
5731 	case SCTP_EVENTS:
5732 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
5733 		break;
5734 	case SCTP_AUTOCLOSE:
5735 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5736 		break;
5737 	case SCTP_SOCKOPT_PEELOFF:
5738 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5739 		break;
5740 	case SCTP_PEER_ADDR_PARAMS:
5741 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5742 							  optlen);
5743 		break;
5744 	case SCTP_DELAYED_SACK:
5745 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5746 							  optlen);
5747 		break;
5748 	case SCTP_INITMSG:
5749 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5750 		break;
5751 	case SCTP_GET_PEER_ADDRS:
5752 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5753 						    optlen);
5754 		break;
5755 	case SCTP_GET_LOCAL_ADDRS:
5756 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
5757 						     optlen);
5758 		break;
5759 	case SCTP_SOCKOPT_CONNECTX3:
5760 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
5761 		break;
5762 	case SCTP_DEFAULT_SEND_PARAM:
5763 		retval = sctp_getsockopt_default_send_param(sk, len,
5764 							    optval, optlen);
5765 		break;
5766 	case SCTP_PRIMARY_ADDR:
5767 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5768 		break;
5769 	case SCTP_NODELAY:
5770 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5771 		break;
5772 	case SCTP_RTOINFO:
5773 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5774 		break;
5775 	case SCTP_ASSOCINFO:
5776 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5777 		break;
5778 	case SCTP_I_WANT_MAPPED_V4_ADDR:
5779 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5780 		break;
5781 	case SCTP_MAXSEG:
5782 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5783 		break;
5784 	case SCTP_GET_PEER_ADDR_INFO:
5785 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5786 							optlen);
5787 		break;
5788 	case SCTP_ADAPTATION_LAYER:
5789 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5790 							optlen);
5791 		break;
5792 	case SCTP_CONTEXT:
5793 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
5794 		break;
5795 	case SCTP_FRAGMENT_INTERLEAVE:
5796 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5797 							     optlen);
5798 		break;
5799 	case SCTP_PARTIAL_DELIVERY_POINT:
5800 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5801 								optlen);
5802 		break;
5803 	case SCTP_MAX_BURST:
5804 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5805 		break;
5806 	case SCTP_AUTH_KEY:
5807 	case SCTP_AUTH_CHUNK:
5808 	case SCTP_AUTH_DELETE_KEY:
5809 		retval = -EOPNOTSUPP;
5810 		break;
5811 	case SCTP_HMAC_IDENT:
5812 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5813 		break;
5814 	case SCTP_AUTH_ACTIVE_KEY:
5815 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5816 		break;
5817 	case SCTP_PEER_AUTH_CHUNKS:
5818 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5819 							optlen);
5820 		break;
5821 	case SCTP_LOCAL_AUTH_CHUNKS:
5822 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5823 							optlen);
5824 		break;
5825 	case SCTP_GET_ASSOC_NUMBER:
5826 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
5827 		break;
5828 	case SCTP_GET_ASSOC_ID_LIST:
5829 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
5830 		break;
5831 	case SCTP_AUTO_ASCONF:
5832 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
5833 		break;
5834 	case SCTP_PEER_ADDR_THLDS:
5835 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
5836 		break;
5837 	case SCTP_GET_ASSOC_STATS:
5838 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
5839 		break;
5840 	default:
5841 		retval = -ENOPROTOOPT;
5842 		break;
5843 	}
5844 
5845 	sctp_release_sock(sk);
5846 	return retval;
5847 }
5848 
5849 static void sctp_hash(struct sock *sk)
5850 {
5851 	/* STUB */
5852 }
5853 
5854 static void sctp_unhash(struct sock *sk)
5855 {
5856 	/* STUB */
5857 }
5858 
5859 /* Check if port is acceptable.  Possibly find first available port.
5860  *
5861  * The port hash table (contained in the 'global' SCTP protocol storage
5862  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5863  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5864  * list (the list number is the port number hashed out, so as you
5865  * would expect from a hash function, all the ports in a given list have
5866  * such a number that hashes out to the same list number; you were
5867  * expecting that, right?); so each list has a set of ports, with a
5868  * link to the socket (struct sock) that uses it, the port number and
5869  * a fastreuse flag (FIXME: NPI ipg).
5870  */
5871 static struct sctp_bind_bucket *sctp_bucket_create(
5872 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
5873 
5874 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5875 {
5876 	struct sctp_bind_hashbucket *head; /* hash list */
5877 	struct sctp_bind_bucket *pp;
5878 	unsigned short snum;
5879 	int ret;
5880 
5881 	snum = ntohs(addr->v4.sin_port);
5882 
5883 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
5884 
5885 	sctp_local_bh_disable();
5886 
5887 	if (snum == 0) {
5888 		/* Search for an available port. */
5889 		int low, high, remaining, index;
5890 		unsigned int rover;
5891 
5892 		inet_get_local_port_range(sock_net(sk), &low, &high);
5893 		remaining = (high - low) + 1;
5894 		rover = net_random() % remaining + low;
5895 
5896 		do {
5897 			rover++;
5898 			if ((rover < low) || (rover > high))
5899 				rover = low;
5900 			if (inet_is_reserved_local_port(rover))
5901 				continue;
5902 			index = sctp_phashfn(sock_net(sk), rover);
5903 			head = &sctp_port_hashtable[index];
5904 			sctp_spin_lock(&head->lock);
5905 			sctp_for_each_hentry(pp, &head->chain)
5906 				if ((pp->port == rover) &&
5907 				    net_eq(sock_net(sk), pp->net))
5908 					goto next;
5909 			break;
5910 		next:
5911 			sctp_spin_unlock(&head->lock);
5912 		} while (--remaining > 0);
5913 
5914 		/* Exhausted local port range during search? */
5915 		ret = 1;
5916 		if (remaining <= 0)
5917 			goto fail;
5918 
5919 		/* OK, here is the one we will use.  HEAD (the port
5920 		 * hash table list entry) is non-NULL and we hold it's
5921 		 * mutex.
5922 		 */
5923 		snum = rover;
5924 	} else {
5925 		/* We are given an specific port number; we verify
5926 		 * that it is not being used. If it is used, we will
5927 		 * exahust the search in the hash list corresponding
5928 		 * to the port number (snum) - we detect that with the
5929 		 * port iterator, pp being NULL.
5930 		 */
5931 		head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
5932 		sctp_spin_lock(&head->lock);
5933 		sctp_for_each_hentry(pp, &head->chain) {
5934 			if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
5935 				goto pp_found;
5936 		}
5937 	}
5938 	pp = NULL;
5939 	goto pp_not_found;
5940 pp_found:
5941 	if (!hlist_empty(&pp->owner)) {
5942 		/* We had a port hash table hit - there is an
5943 		 * available port (pp != NULL) and it is being
5944 		 * used by other socket (pp->owner not empty); that other
5945 		 * socket is going to be sk2.
5946 		 */
5947 		int reuse = sk->sk_reuse;
5948 		struct sock *sk2;
5949 
5950 		pr_debug("%s: found a possible match\n", __func__);
5951 
5952 		if (pp->fastreuse && sk->sk_reuse &&
5953 			sk->sk_state != SCTP_SS_LISTENING)
5954 			goto success;
5955 
5956 		/* Run through the list of sockets bound to the port
5957 		 * (pp->port) [via the pointers bind_next and
5958 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5959 		 * we get the endpoint they describe and run through
5960 		 * the endpoint's list of IP (v4 or v6) addresses,
5961 		 * comparing each of the addresses with the address of
5962 		 * the socket sk. If we find a match, then that means
5963 		 * that this port/socket (sk) combination are already
5964 		 * in an endpoint.
5965 		 */
5966 		sk_for_each_bound(sk2, &pp->owner) {
5967 			struct sctp_endpoint *ep2;
5968 			ep2 = sctp_sk(sk2)->ep;
5969 
5970 			if (sk == sk2 ||
5971 			    (reuse && sk2->sk_reuse &&
5972 			     sk2->sk_state != SCTP_SS_LISTENING))
5973 				continue;
5974 
5975 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
5976 						 sctp_sk(sk2), sctp_sk(sk))) {
5977 				ret = (long)sk2;
5978 				goto fail_unlock;
5979 			}
5980 		}
5981 
5982 		pr_debug("%s: found a match\n", __func__);
5983 	}
5984 pp_not_found:
5985 	/* If there was a hash table miss, create a new port.  */
5986 	ret = 1;
5987 	if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
5988 		goto fail_unlock;
5989 
5990 	/* In either case (hit or miss), make sure fastreuse is 1 only
5991 	 * if sk->sk_reuse is too (that is, if the caller requested
5992 	 * SO_REUSEADDR on this socket -sk-).
5993 	 */
5994 	if (hlist_empty(&pp->owner)) {
5995 		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5996 			pp->fastreuse = 1;
5997 		else
5998 			pp->fastreuse = 0;
5999 	} else if (pp->fastreuse &&
6000 		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6001 		pp->fastreuse = 0;
6002 
6003 	/* We are set, so fill up all the data in the hash table
6004 	 * entry, tie the socket list information with the rest of the
6005 	 * sockets FIXME: Blurry, NPI (ipg).
6006 	 */
6007 success:
6008 	if (!sctp_sk(sk)->bind_hash) {
6009 		inet_sk(sk)->inet_num = snum;
6010 		sk_add_bind_node(sk, &pp->owner);
6011 		sctp_sk(sk)->bind_hash = pp;
6012 	}
6013 	ret = 0;
6014 
6015 fail_unlock:
6016 	sctp_spin_unlock(&head->lock);
6017 
6018 fail:
6019 	sctp_local_bh_enable();
6020 	return ret;
6021 }
6022 
6023 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
6024  * port is requested.
6025  */
6026 static int sctp_get_port(struct sock *sk, unsigned short snum)
6027 {
6028 	union sctp_addr addr;
6029 	struct sctp_af *af = sctp_sk(sk)->pf->af;
6030 
6031 	/* Set up a dummy address struct from the sk. */
6032 	af->from_sk(&addr, sk);
6033 	addr.v4.sin_port = htons(snum);
6034 
6035 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
6036 	return !!sctp_get_port_local(sk, &addr);
6037 }
6038 
6039 /*
6040  *  Move a socket to LISTENING state.
6041  */
6042 static int sctp_listen_start(struct sock *sk, int backlog)
6043 {
6044 	struct sctp_sock *sp = sctp_sk(sk);
6045 	struct sctp_endpoint *ep = sp->ep;
6046 	struct crypto_hash *tfm = NULL;
6047 	char alg[32];
6048 
6049 	/* Allocate HMAC for generating cookie. */
6050 	if (!sp->hmac && sp->sctp_hmac_alg) {
6051 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6052 		tfm = crypto_alloc_hash(alg, 0, CRYPTO_ALG_ASYNC);
6053 		if (IS_ERR(tfm)) {
6054 			net_info_ratelimited("failed to load transform for %s: %ld\n",
6055 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
6056 			return -ENOSYS;
6057 		}
6058 		sctp_sk(sk)->hmac = tfm;
6059 	}
6060 
6061 	/*
6062 	 * If a bind() or sctp_bindx() is not called prior to a listen()
6063 	 * call that allows new associations to be accepted, the system
6064 	 * picks an ephemeral port and will choose an address set equivalent
6065 	 * to binding with a wildcard address.
6066 	 *
6067 	 * This is not currently spelled out in the SCTP sockets
6068 	 * extensions draft, but follows the practice as seen in TCP
6069 	 * sockets.
6070 	 *
6071 	 */
6072 	sk->sk_state = SCTP_SS_LISTENING;
6073 	if (!ep->base.bind_addr.port) {
6074 		if (sctp_autobind(sk))
6075 			return -EAGAIN;
6076 	} else {
6077 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6078 			sk->sk_state = SCTP_SS_CLOSED;
6079 			return -EADDRINUSE;
6080 		}
6081 	}
6082 
6083 	sk->sk_max_ack_backlog = backlog;
6084 	sctp_hash_endpoint(ep);
6085 	return 0;
6086 }
6087 
6088 /*
6089  * 4.1.3 / 5.1.3 listen()
6090  *
6091  *   By default, new associations are not accepted for UDP style sockets.
6092  *   An application uses listen() to mark a socket as being able to
6093  *   accept new associations.
6094  *
6095  *   On TCP style sockets, applications use listen() to ready the SCTP
6096  *   endpoint for accepting inbound associations.
6097  *
6098  *   On both types of endpoints a backlog of '0' disables listening.
6099  *
6100  *  Move a socket to LISTENING state.
6101  */
6102 int sctp_inet_listen(struct socket *sock, int backlog)
6103 {
6104 	struct sock *sk = sock->sk;
6105 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6106 	int err = -EINVAL;
6107 
6108 	if (unlikely(backlog < 0))
6109 		return err;
6110 
6111 	sctp_lock_sock(sk);
6112 
6113 	/* Peeled-off sockets are not allowed to listen().  */
6114 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6115 		goto out;
6116 
6117 	if (sock->state != SS_UNCONNECTED)
6118 		goto out;
6119 
6120 	/* If backlog is zero, disable listening. */
6121 	if (!backlog) {
6122 		if (sctp_sstate(sk, CLOSED))
6123 			goto out;
6124 
6125 		err = 0;
6126 		sctp_unhash_endpoint(ep);
6127 		sk->sk_state = SCTP_SS_CLOSED;
6128 		if (sk->sk_reuse)
6129 			sctp_sk(sk)->bind_hash->fastreuse = 1;
6130 		goto out;
6131 	}
6132 
6133 	/* If we are already listening, just update the backlog */
6134 	if (sctp_sstate(sk, LISTENING))
6135 		sk->sk_max_ack_backlog = backlog;
6136 	else {
6137 		err = sctp_listen_start(sk, backlog);
6138 		if (err)
6139 			goto out;
6140 	}
6141 
6142 	err = 0;
6143 out:
6144 	sctp_release_sock(sk);
6145 	return err;
6146 }
6147 
6148 /*
6149  * This function is done by modeling the current datagram_poll() and the
6150  * tcp_poll().  Note that, based on these implementations, we don't
6151  * lock the socket in this function, even though it seems that,
6152  * ideally, locking or some other mechanisms can be used to ensure
6153  * the integrity of the counters (sndbuf and wmem_alloc) used
6154  * in this place.  We assume that we don't need locks either until proven
6155  * otherwise.
6156  *
6157  * Another thing to note is that we include the Async I/O support
6158  * here, again, by modeling the current TCP/UDP code.  We don't have
6159  * a good way to test with it yet.
6160  */
6161 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6162 {
6163 	struct sock *sk = sock->sk;
6164 	struct sctp_sock *sp = sctp_sk(sk);
6165 	unsigned int mask;
6166 
6167 	poll_wait(file, sk_sleep(sk), wait);
6168 
6169 	/* A TCP-style listening socket becomes readable when the accept queue
6170 	 * is not empty.
6171 	 */
6172 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6173 		return (!list_empty(&sp->ep->asocs)) ?
6174 			(POLLIN | POLLRDNORM) : 0;
6175 
6176 	mask = 0;
6177 
6178 	/* Is there any exceptional events?  */
6179 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6180 		mask |= POLLERR |
6181 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
6182 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6183 		mask |= POLLRDHUP | POLLIN | POLLRDNORM;
6184 	if (sk->sk_shutdown == SHUTDOWN_MASK)
6185 		mask |= POLLHUP;
6186 
6187 	/* Is it readable?  Reconsider this code with TCP-style support.  */
6188 	if (!skb_queue_empty(&sk->sk_receive_queue))
6189 		mask |= POLLIN | POLLRDNORM;
6190 
6191 	/* The association is either gone or not ready.  */
6192 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6193 		return mask;
6194 
6195 	/* Is it writable?  */
6196 	if (sctp_writeable(sk)) {
6197 		mask |= POLLOUT | POLLWRNORM;
6198 	} else {
6199 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
6200 		/*
6201 		 * Since the socket is not locked, the buffer
6202 		 * might be made available after the writeable check and
6203 		 * before the bit is set.  This could cause a lost I/O
6204 		 * signal.  tcp_poll() has a race breaker for this race
6205 		 * condition.  Based on their implementation, we put
6206 		 * in the following code to cover it as well.
6207 		 */
6208 		if (sctp_writeable(sk))
6209 			mask |= POLLOUT | POLLWRNORM;
6210 	}
6211 	return mask;
6212 }
6213 
6214 /********************************************************************
6215  * 2nd Level Abstractions
6216  ********************************************************************/
6217 
6218 static struct sctp_bind_bucket *sctp_bucket_create(
6219 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
6220 {
6221 	struct sctp_bind_bucket *pp;
6222 
6223 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6224 	if (pp) {
6225 		SCTP_DBG_OBJCNT_INC(bind_bucket);
6226 		pp->port = snum;
6227 		pp->fastreuse = 0;
6228 		INIT_HLIST_HEAD(&pp->owner);
6229 		pp->net = net;
6230 		hlist_add_head(&pp->node, &head->chain);
6231 	}
6232 	return pp;
6233 }
6234 
6235 /* Caller must hold hashbucket lock for this tb with local BH disabled */
6236 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6237 {
6238 	if (pp && hlist_empty(&pp->owner)) {
6239 		__hlist_del(&pp->node);
6240 		kmem_cache_free(sctp_bucket_cachep, pp);
6241 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
6242 	}
6243 }
6244 
6245 /* Release this socket's reference to a local port.  */
6246 static inline void __sctp_put_port(struct sock *sk)
6247 {
6248 	struct sctp_bind_hashbucket *head =
6249 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
6250 						  inet_sk(sk)->inet_num)];
6251 	struct sctp_bind_bucket *pp;
6252 
6253 	sctp_spin_lock(&head->lock);
6254 	pp = sctp_sk(sk)->bind_hash;
6255 	__sk_del_bind_node(sk);
6256 	sctp_sk(sk)->bind_hash = NULL;
6257 	inet_sk(sk)->inet_num = 0;
6258 	sctp_bucket_destroy(pp);
6259 	sctp_spin_unlock(&head->lock);
6260 }
6261 
6262 void sctp_put_port(struct sock *sk)
6263 {
6264 	sctp_local_bh_disable();
6265 	__sctp_put_port(sk);
6266 	sctp_local_bh_enable();
6267 }
6268 
6269 /*
6270  * The system picks an ephemeral port and choose an address set equivalent
6271  * to binding with a wildcard address.
6272  * One of those addresses will be the primary address for the association.
6273  * This automatically enables the multihoming capability of SCTP.
6274  */
6275 static int sctp_autobind(struct sock *sk)
6276 {
6277 	union sctp_addr autoaddr;
6278 	struct sctp_af *af;
6279 	__be16 port;
6280 
6281 	/* Initialize a local sockaddr structure to INADDR_ANY. */
6282 	af = sctp_sk(sk)->pf->af;
6283 
6284 	port = htons(inet_sk(sk)->inet_num);
6285 	af->inaddr_any(&autoaddr, port);
6286 
6287 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6288 }
6289 
6290 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
6291  *
6292  * From RFC 2292
6293  * 4.2 The cmsghdr Structure *
6294  *
6295  * When ancillary data is sent or received, any number of ancillary data
6296  * objects can be specified by the msg_control and msg_controllen members of
6297  * the msghdr structure, because each object is preceded by
6298  * a cmsghdr structure defining the object's length (the cmsg_len member).
6299  * Historically Berkeley-derived implementations have passed only one object
6300  * at a time, but this API allows multiple objects to be
6301  * passed in a single call to sendmsg() or recvmsg(). The following example
6302  * shows two ancillary data objects in a control buffer.
6303  *
6304  *   |<--------------------------- msg_controllen -------------------------->|
6305  *   |                                                                       |
6306  *
6307  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
6308  *
6309  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6310  *   |                                   |                                   |
6311  *
6312  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
6313  *
6314  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
6315  *   |                                |  |                                |  |
6316  *
6317  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6318  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
6319  *
6320  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
6321  *
6322  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6323  *    ^
6324  *    |
6325  *
6326  * msg_control
6327  * points here
6328  */
6329 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs)
6330 {
6331 	struct cmsghdr *cmsg;
6332 	struct msghdr *my_msg = (struct msghdr *)msg;
6333 
6334 	for (cmsg = CMSG_FIRSTHDR(msg);
6335 	     cmsg != NULL;
6336 	     cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
6337 		if (!CMSG_OK(my_msg, cmsg))
6338 			return -EINVAL;
6339 
6340 		/* Should we parse this header or ignore?  */
6341 		if (cmsg->cmsg_level != IPPROTO_SCTP)
6342 			continue;
6343 
6344 		/* Strictly check lengths following example in SCM code.  */
6345 		switch (cmsg->cmsg_type) {
6346 		case SCTP_INIT:
6347 			/* SCTP Socket API Extension
6348 			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
6349 			 *
6350 			 * This cmsghdr structure provides information for
6351 			 * initializing new SCTP associations with sendmsg().
6352 			 * The SCTP_INITMSG socket option uses this same data
6353 			 * structure.  This structure is not used for
6354 			 * recvmsg().
6355 			 *
6356 			 * cmsg_level    cmsg_type      cmsg_data[]
6357 			 * ------------  ------------   ----------------------
6358 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
6359 			 */
6360 			if (cmsg->cmsg_len !=
6361 			    CMSG_LEN(sizeof(struct sctp_initmsg)))
6362 				return -EINVAL;
6363 			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
6364 			break;
6365 
6366 		case SCTP_SNDRCV:
6367 			/* SCTP Socket API Extension
6368 			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6369 			 *
6370 			 * This cmsghdr structure specifies SCTP options for
6371 			 * sendmsg() and describes SCTP header information
6372 			 * about a received message through recvmsg().
6373 			 *
6374 			 * cmsg_level    cmsg_type      cmsg_data[]
6375 			 * ------------  ------------   ----------------------
6376 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
6377 			 */
6378 			if (cmsg->cmsg_len !=
6379 			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6380 				return -EINVAL;
6381 
6382 			cmsgs->info =
6383 				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6384 
6385 			/* Minimally, validate the sinfo_flags. */
6386 			if (cmsgs->info->sinfo_flags &
6387 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6388 			      SCTP_ABORT | SCTP_EOF))
6389 				return -EINVAL;
6390 			break;
6391 
6392 		default:
6393 			return -EINVAL;
6394 		}
6395 	}
6396 	return 0;
6397 }
6398 
6399 /*
6400  * Wait for a packet..
6401  * Note: This function is the same function as in core/datagram.c
6402  * with a few modifications to make lksctp work.
6403  */
6404 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
6405 {
6406 	int error;
6407 	DEFINE_WAIT(wait);
6408 
6409 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6410 
6411 	/* Socket errors? */
6412 	error = sock_error(sk);
6413 	if (error)
6414 		goto out;
6415 
6416 	if (!skb_queue_empty(&sk->sk_receive_queue))
6417 		goto ready;
6418 
6419 	/* Socket shut down?  */
6420 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6421 		goto out;
6422 
6423 	/* Sequenced packets can come disconnected.  If so we report the
6424 	 * problem.
6425 	 */
6426 	error = -ENOTCONN;
6427 
6428 	/* Is there a good reason to think that we may receive some data?  */
6429 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6430 		goto out;
6431 
6432 	/* Handle signals.  */
6433 	if (signal_pending(current))
6434 		goto interrupted;
6435 
6436 	/* Let another process have a go.  Since we are going to sleep
6437 	 * anyway.  Note: This may cause odd behaviors if the message
6438 	 * does not fit in the user's buffer, but this seems to be the
6439 	 * only way to honor MSG_DONTWAIT realistically.
6440 	 */
6441 	sctp_release_sock(sk);
6442 	*timeo_p = schedule_timeout(*timeo_p);
6443 	sctp_lock_sock(sk);
6444 
6445 ready:
6446 	finish_wait(sk_sleep(sk), &wait);
6447 	return 0;
6448 
6449 interrupted:
6450 	error = sock_intr_errno(*timeo_p);
6451 
6452 out:
6453 	finish_wait(sk_sleep(sk), &wait);
6454 	*err = error;
6455 	return error;
6456 }
6457 
6458 /* Receive a datagram.
6459  * Note: This is pretty much the same routine as in core/datagram.c
6460  * with a few changes to make lksctp work.
6461  */
6462 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6463 					      int noblock, int *err)
6464 {
6465 	int error;
6466 	struct sk_buff *skb;
6467 	long timeo;
6468 
6469 	timeo = sock_rcvtimeo(sk, noblock);
6470 
6471 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
6472 		 MAX_SCHEDULE_TIMEOUT);
6473 
6474 	do {
6475 		/* Again only user level code calls this function,
6476 		 * so nothing interrupt level
6477 		 * will suddenly eat the receive_queue.
6478 		 *
6479 		 *  Look at current nfs client by the way...
6480 		 *  However, this function was correct in any case. 8)
6481 		 */
6482 		if (flags & MSG_PEEK) {
6483 			spin_lock_bh(&sk->sk_receive_queue.lock);
6484 			skb = skb_peek(&sk->sk_receive_queue);
6485 			if (skb)
6486 				atomic_inc(&skb->users);
6487 			spin_unlock_bh(&sk->sk_receive_queue.lock);
6488 		} else {
6489 			skb = skb_dequeue(&sk->sk_receive_queue);
6490 		}
6491 
6492 		if (skb)
6493 			return skb;
6494 
6495 		/* Caller is allowed not to check sk->sk_err before calling. */
6496 		error = sock_error(sk);
6497 		if (error)
6498 			goto no_packet;
6499 
6500 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6501 			break;
6502 
6503 		/* User doesn't want to wait.  */
6504 		error = -EAGAIN;
6505 		if (!timeo)
6506 			goto no_packet;
6507 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6508 
6509 	return NULL;
6510 
6511 no_packet:
6512 	*err = error;
6513 	return NULL;
6514 }
6515 
6516 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
6517 static void __sctp_write_space(struct sctp_association *asoc)
6518 {
6519 	struct sock *sk = asoc->base.sk;
6520 	struct socket *sock = sk->sk_socket;
6521 
6522 	if ((sctp_wspace(asoc) > 0) && sock) {
6523 		if (waitqueue_active(&asoc->wait))
6524 			wake_up_interruptible(&asoc->wait);
6525 
6526 		if (sctp_writeable(sk)) {
6527 			wait_queue_head_t *wq = sk_sleep(sk);
6528 
6529 			if (wq && waitqueue_active(wq))
6530 				wake_up_interruptible(wq);
6531 
6532 			/* Note that we try to include the Async I/O support
6533 			 * here by modeling from the current TCP/UDP code.
6534 			 * We have not tested with it yet.
6535 			 */
6536 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6537 				sock_wake_async(sock,
6538 						SOCK_WAKE_SPACE, POLL_OUT);
6539 		}
6540 	}
6541 }
6542 
6543 /* Do accounting for the sndbuf space.
6544  * Decrement the used sndbuf space of the corresponding association by the
6545  * data size which was just transmitted(freed).
6546  */
6547 static void sctp_wfree(struct sk_buff *skb)
6548 {
6549 	struct sctp_association *asoc;
6550 	struct sctp_chunk *chunk;
6551 	struct sock *sk;
6552 
6553 	/* Get the saved chunk pointer.  */
6554 	chunk = *((struct sctp_chunk **)(skb->cb));
6555 	asoc = chunk->asoc;
6556 	sk = asoc->base.sk;
6557 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6558 				sizeof(struct sk_buff) +
6559 				sizeof(struct sctp_chunk);
6560 
6561 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6562 
6563 	/*
6564 	 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6565 	 */
6566 	sk->sk_wmem_queued   -= skb->truesize;
6567 	sk_mem_uncharge(sk, skb->truesize);
6568 
6569 	sock_wfree(skb);
6570 	__sctp_write_space(asoc);
6571 
6572 	sctp_association_put(asoc);
6573 }
6574 
6575 /* Do accounting for the receive space on the socket.
6576  * Accounting for the association is done in ulpevent.c
6577  * We set this as a destructor for the cloned data skbs so that
6578  * accounting is done at the correct time.
6579  */
6580 void sctp_sock_rfree(struct sk_buff *skb)
6581 {
6582 	struct sock *sk = skb->sk;
6583 	struct sctp_ulpevent *event = sctp_skb2event(skb);
6584 
6585 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6586 
6587 	/*
6588 	 * Mimic the behavior of sock_rfree
6589 	 */
6590 	sk_mem_uncharge(sk, event->rmem_len);
6591 }
6592 
6593 
6594 /* Helper function to wait for space in the sndbuf.  */
6595 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6596 				size_t msg_len)
6597 {
6598 	struct sock *sk = asoc->base.sk;
6599 	int err = 0;
6600 	long current_timeo = *timeo_p;
6601 	DEFINE_WAIT(wait);
6602 
6603 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
6604 		 *timeo_p, msg_len);
6605 
6606 	/* Increment the association's refcnt.  */
6607 	sctp_association_hold(asoc);
6608 
6609 	/* Wait on the association specific sndbuf space. */
6610 	for (;;) {
6611 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6612 					  TASK_INTERRUPTIBLE);
6613 		if (!*timeo_p)
6614 			goto do_nonblock;
6615 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6616 		    asoc->base.dead)
6617 			goto do_error;
6618 		if (signal_pending(current))
6619 			goto do_interrupted;
6620 		if (msg_len <= sctp_wspace(asoc))
6621 			break;
6622 
6623 		/* Let another process have a go.  Since we are going
6624 		 * to sleep anyway.
6625 		 */
6626 		sctp_release_sock(sk);
6627 		current_timeo = schedule_timeout(current_timeo);
6628 		BUG_ON(sk != asoc->base.sk);
6629 		sctp_lock_sock(sk);
6630 
6631 		*timeo_p = current_timeo;
6632 	}
6633 
6634 out:
6635 	finish_wait(&asoc->wait, &wait);
6636 
6637 	/* Release the association's refcnt.  */
6638 	sctp_association_put(asoc);
6639 
6640 	return err;
6641 
6642 do_error:
6643 	err = -EPIPE;
6644 	goto out;
6645 
6646 do_interrupted:
6647 	err = sock_intr_errno(*timeo_p);
6648 	goto out;
6649 
6650 do_nonblock:
6651 	err = -EAGAIN;
6652 	goto out;
6653 }
6654 
6655 void sctp_data_ready(struct sock *sk, int len)
6656 {
6657 	struct socket_wq *wq;
6658 
6659 	rcu_read_lock();
6660 	wq = rcu_dereference(sk->sk_wq);
6661 	if (wq_has_sleeper(wq))
6662 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6663 						POLLRDNORM | POLLRDBAND);
6664 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6665 	rcu_read_unlock();
6666 }
6667 
6668 /* If socket sndbuf has changed, wake up all per association waiters.  */
6669 void sctp_write_space(struct sock *sk)
6670 {
6671 	struct sctp_association *asoc;
6672 
6673 	/* Wake up the tasks in each wait queue.  */
6674 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6675 		__sctp_write_space(asoc);
6676 	}
6677 }
6678 
6679 /* Is there any sndbuf space available on the socket?
6680  *
6681  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6682  * associations on the same socket.  For a UDP-style socket with
6683  * multiple associations, it is possible for it to be "unwriteable"
6684  * prematurely.  I assume that this is acceptable because
6685  * a premature "unwriteable" is better than an accidental "writeable" which
6686  * would cause an unwanted block under certain circumstances.  For the 1-1
6687  * UDP-style sockets or TCP-style sockets, this code should work.
6688  *  - Daisy
6689  */
6690 static int sctp_writeable(struct sock *sk)
6691 {
6692 	int amt = 0;
6693 
6694 	amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
6695 	if (amt < 0)
6696 		amt = 0;
6697 	return amt;
6698 }
6699 
6700 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6701  * returns immediately with EINPROGRESS.
6702  */
6703 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6704 {
6705 	struct sock *sk = asoc->base.sk;
6706 	int err = 0;
6707 	long current_timeo = *timeo_p;
6708 	DEFINE_WAIT(wait);
6709 
6710 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
6711 
6712 	/* Increment the association's refcnt.  */
6713 	sctp_association_hold(asoc);
6714 
6715 	for (;;) {
6716 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6717 					  TASK_INTERRUPTIBLE);
6718 		if (!*timeo_p)
6719 			goto do_nonblock;
6720 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6721 			break;
6722 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6723 		    asoc->base.dead)
6724 			goto do_error;
6725 		if (signal_pending(current))
6726 			goto do_interrupted;
6727 
6728 		if (sctp_state(asoc, ESTABLISHED))
6729 			break;
6730 
6731 		/* Let another process have a go.  Since we are going
6732 		 * to sleep anyway.
6733 		 */
6734 		sctp_release_sock(sk);
6735 		current_timeo = schedule_timeout(current_timeo);
6736 		sctp_lock_sock(sk);
6737 
6738 		*timeo_p = current_timeo;
6739 	}
6740 
6741 out:
6742 	finish_wait(&asoc->wait, &wait);
6743 
6744 	/* Release the association's refcnt.  */
6745 	sctp_association_put(asoc);
6746 
6747 	return err;
6748 
6749 do_error:
6750 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6751 		err = -ETIMEDOUT;
6752 	else
6753 		err = -ECONNREFUSED;
6754 	goto out;
6755 
6756 do_interrupted:
6757 	err = sock_intr_errno(*timeo_p);
6758 	goto out;
6759 
6760 do_nonblock:
6761 	err = -EINPROGRESS;
6762 	goto out;
6763 }
6764 
6765 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6766 {
6767 	struct sctp_endpoint *ep;
6768 	int err = 0;
6769 	DEFINE_WAIT(wait);
6770 
6771 	ep = sctp_sk(sk)->ep;
6772 
6773 
6774 	for (;;) {
6775 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
6776 					  TASK_INTERRUPTIBLE);
6777 
6778 		if (list_empty(&ep->asocs)) {
6779 			sctp_release_sock(sk);
6780 			timeo = schedule_timeout(timeo);
6781 			sctp_lock_sock(sk);
6782 		}
6783 
6784 		err = -EINVAL;
6785 		if (!sctp_sstate(sk, LISTENING))
6786 			break;
6787 
6788 		err = 0;
6789 		if (!list_empty(&ep->asocs))
6790 			break;
6791 
6792 		err = sock_intr_errno(timeo);
6793 		if (signal_pending(current))
6794 			break;
6795 
6796 		err = -EAGAIN;
6797 		if (!timeo)
6798 			break;
6799 	}
6800 
6801 	finish_wait(sk_sleep(sk), &wait);
6802 
6803 	return err;
6804 }
6805 
6806 static void sctp_wait_for_close(struct sock *sk, long timeout)
6807 {
6808 	DEFINE_WAIT(wait);
6809 
6810 	do {
6811 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6812 		if (list_empty(&sctp_sk(sk)->ep->asocs))
6813 			break;
6814 		sctp_release_sock(sk);
6815 		timeout = schedule_timeout(timeout);
6816 		sctp_lock_sock(sk);
6817 	} while (!signal_pending(current) && timeout);
6818 
6819 	finish_wait(sk_sleep(sk), &wait);
6820 }
6821 
6822 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6823 {
6824 	struct sk_buff *frag;
6825 
6826 	if (!skb->data_len)
6827 		goto done;
6828 
6829 	/* Don't forget the fragments. */
6830 	skb_walk_frags(skb, frag)
6831 		sctp_skb_set_owner_r_frag(frag, sk);
6832 
6833 done:
6834 	sctp_skb_set_owner_r(skb, sk);
6835 }
6836 
6837 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
6838 		    struct sctp_association *asoc)
6839 {
6840 	struct inet_sock *inet = inet_sk(sk);
6841 	struct inet_sock *newinet;
6842 
6843 	newsk->sk_type = sk->sk_type;
6844 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
6845 	newsk->sk_flags = sk->sk_flags;
6846 	newsk->sk_no_check = sk->sk_no_check;
6847 	newsk->sk_reuse = sk->sk_reuse;
6848 
6849 	newsk->sk_shutdown = sk->sk_shutdown;
6850 	newsk->sk_destruct = sctp_destruct_sock;
6851 	newsk->sk_family = sk->sk_family;
6852 	newsk->sk_protocol = IPPROTO_SCTP;
6853 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
6854 	newsk->sk_sndbuf = sk->sk_sndbuf;
6855 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
6856 	newsk->sk_lingertime = sk->sk_lingertime;
6857 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
6858 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
6859 
6860 	newinet = inet_sk(newsk);
6861 
6862 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
6863 	 * getsockname() and getpeername()
6864 	 */
6865 	newinet->inet_sport = inet->inet_sport;
6866 	newinet->inet_saddr = inet->inet_saddr;
6867 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
6868 	newinet->inet_dport = htons(asoc->peer.port);
6869 	newinet->pmtudisc = inet->pmtudisc;
6870 	newinet->inet_id = asoc->next_tsn ^ jiffies;
6871 
6872 	newinet->uc_ttl = inet->uc_ttl;
6873 	newinet->mc_loop = 1;
6874 	newinet->mc_ttl = 1;
6875 	newinet->mc_index = 0;
6876 	newinet->mc_list = NULL;
6877 }
6878 
6879 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6880  * and its messages to the newsk.
6881  */
6882 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6883 			      struct sctp_association *assoc,
6884 			      sctp_socket_type_t type)
6885 {
6886 	struct sctp_sock *oldsp = sctp_sk(oldsk);
6887 	struct sctp_sock *newsp = sctp_sk(newsk);
6888 	struct sctp_bind_bucket *pp; /* hash list port iterator */
6889 	struct sctp_endpoint *newep = newsp->ep;
6890 	struct sk_buff *skb, *tmp;
6891 	struct sctp_ulpevent *event;
6892 	struct sctp_bind_hashbucket *head;
6893 	struct list_head tmplist;
6894 
6895 	/* Migrate socket buffer sizes and all the socket level options to the
6896 	 * new socket.
6897 	 */
6898 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
6899 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6900 	/* Brute force copy old sctp opt. */
6901 	if (oldsp->do_auto_asconf) {
6902 		memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist));
6903 		inet_sk_copy_descendant(newsk, oldsk);
6904 		memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist));
6905 	} else
6906 		inet_sk_copy_descendant(newsk, oldsk);
6907 
6908 	/* Restore the ep value that was overwritten with the above structure
6909 	 * copy.
6910 	 */
6911 	newsp->ep = newep;
6912 	newsp->hmac = NULL;
6913 
6914 	/* Hook this new socket in to the bind_hash list. */
6915 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
6916 						 inet_sk(oldsk)->inet_num)];
6917 	sctp_local_bh_disable();
6918 	sctp_spin_lock(&head->lock);
6919 	pp = sctp_sk(oldsk)->bind_hash;
6920 	sk_add_bind_node(newsk, &pp->owner);
6921 	sctp_sk(newsk)->bind_hash = pp;
6922 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
6923 	sctp_spin_unlock(&head->lock);
6924 	sctp_local_bh_enable();
6925 
6926 	/* Copy the bind_addr list from the original endpoint to the new
6927 	 * endpoint so that we can handle restarts properly
6928 	 */
6929 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6930 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
6931 
6932 	/* Move any messages in the old socket's receive queue that are for the
6933 	 * peeled off association to the new socket's receive queue.
6934 	 */
6935 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6936 		event = sctp_skb2event(skb);
6937 		if (event->asoc == assoc) {
6938 			__skb_unlink(skb, &oldsk->sk_receive_queue);
6939 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
6940 			sctp_skb_set_owner_r_frag(skb, newsk);
6941 		}
6942 	}
6943 
6944 	/* Clean up any messages pending delivery due to partial
6945 	 * delivery.   Three cases:
6946 	 * 1) No partial deliver;  no work.
6947 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6948 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6949 	 */
6950 	skb_queue_head_init(&newsp->pd_lobby);
6951 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6952 
6953 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6954 		struct sk_buff_head *queue;
6955 
6956 		/* Decide which queue to move pd_lobby skbs to. */
6957 		if (assoc->ulpq.pd_mode) {
6958 			queue = &newsp->pd_lobby;
6959 		} else
6960 			queue = &newsk->sk_receive_queue;
6961 
6962 		/* Walk through the pd_lobby, looking for skbs that
6963 		 * need moved to the new socket.
6964 		 */
6965 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6966 			event = sctp_skb2event(skb);
6967 			if (event->asoc == assoc) {
6968 				__skb_unlink(skb, &oldsp->pd_lobby);
6969 				__skb_queue_tail(queue, skb);
6970 				sctp_skb_set_owner_r_frag(skb, newsk);
6971 			}
6972 		}
6973 
6974 		/* Clear up any skbs waiting for the partial
6975 		 * delivery to finish.
6976 		 */
6977 		if (assoc->ulpq.pd_mode)
6978 			sctp_clear_pd(oldsk, NULL);
6979 
6980 	}
6981 
6982 	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
6983 		sctp_skb_set_owner_r_frag(skb, newsk);
6984 
6985 	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
6986 		sctp_skb_set_owner_r_frag(skb, newsk);
6987 
6988 	/* Set the type of socket to indicate that it is peeled off from the
6989 	 * original UDP-style socket or created with the accept() call on a
6990 	 * TCP-style socket..
6991 	 */
6992 	newsp->type = type;
6993 
6994 	/* Mark the new socket "in-use" by the user so that any packets
6995 	 * that may arrive on the association after we've moved it are
6996 	 * queued to the backlog.  This prevents a potential race between
6997 	 * backlog processing on the old socket and new-packet processing
6998 	 * on the new socket.
6999 	 *
7000 	 * The caller has just allocated newsk so we can guarantee that other
7001 	 * paths won't try to lock it and then oldsk.
7002 	 */
7003 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7004 	sctp_assoc_migrate(assoc, newsk);
7005 
7006 	/* If the association on the newsk is already closed before accept()
7007 	 * is called, set RCV_SHUTDOWN flag.
7008 	 */
7009 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
7010 		newsk->sk_shutdown |= RCV_SHUTDOWN;
7011 
7012 	newsk->sk_state = SCTP_SS_ESTABLISHED;
7013 	sctp_release_sock(newsk);
7014 }
7015 
7016 
7017 /* This proto struct describes the ULP interface for SCTP.  */
7018 struct proto sctp_prot = {
7019 	.name        =	"SCTP",
7020 	.owner       =	THIS_MODULE,
7021 	.close       =	sctp_close,
7022 	.connect     =	sctp_connect,
7023 	.disconnect  =	sctp_disconnect,
7024 	.accept      =	sctp_accept,
7025 	.ioctl       =	sctp_ioctl,
7026 	.init        =	sctp_init_sock,
7027 	.destroy     =	sctp_destroy_sock,
7028 	.shutdown    =	sctp_shutdown,
7029 	.setsockopt  =	sctp_setsockopt,
7030 	.getsockopt  =	sctp_getsockopt,
7031 	.sendmsg     =	sctp_sendmsg,
7032 	.recvmsg     =	sctp_recvmsg,
7033 	.bind        =	sctp_bind,
7034 	.backlog_rcv =	sctp_backlog_rcv,
7035 	.hash        =	sctp_hash,
7036 	.unhash      =	sctp_unhash,
7037 	.get_port    =	sctp_get_port,
7038 	.obj_size    =  sizeof(struct sctp_sock),
7039 	.sysctl_mem  =  sysctl_sctp_mem,
7040 	.sysctl_rmem =  sysctl_sctp_rmem,
7041 	.sysctl_wmem =  sysctl_sctp_wmem,
7042 	.memory_pressure = &sctp_memory_pressure,
7043 	.enter_memory_pressure = sctp_enter_memory_pressure,
7044 	.memory_allocated = &sctp_memory_allocated,
7045 	.sockets_allocated = &sctp_sockets_allocated,
7046 };
7047 
7048 #if IS_ENABLED(CONFIG_IPV6)
7049 
7050 struct proto sctpv6_prot = {
7051 	.name		= "SCTPv6",
7052 	.owner		= THIS_MODULE,
7053 	.close		= sctp_close,
7054 	.connect	= sctp_connect,
7055 	.disconnect	= sctp_disconnect,
7056 	.accept		= sctp_accept,
7057 	.ioctl		= sctp_ioctl,
7058 	.init		= sctp_init_sock,
7059 	.destroy	= sctp_destroy_sock,
7060 	.shutdown	= sctp_shutdown,
7061 	.setsockopt	= sctp_setsockopt,
7062 	.getsockopt	= sctp_getsockopt,
7063 	.sendmsg	= sctp_sendmsg,
7064 	.recvmsg	= sctp_recvmsg,
7065 	.bind		= sctp_bind,
7066 	.backlog_rcv	= sctp_backlog_rcv,
7067 	.hash		= sctp_hash,
7068 	.unhash		= sctp_unhash,
7069 	.get_port	= sctp_get_port,
7070 	.obj_size	= sizeof(struct sctp6_sock),
7071 	.sysctl_mem	= sysctl_sctp_mem,
7072 	.sysctl_rmem	= sysctl_sctp_rmem,
7073 	.sysctl_wmem	= sysctl_sctp_wmem,
7074 	.memory_pressure = &sctp_memory_pressure,
7075 	.enter_memory_pressure = sctp_enter_memory_pressure,
7076 	.memory_allocated = &sctp_memory_allocated,
7077 	.sockets_allocated = &sctp_sockets_allocated,
7078 };
7079 #endif /* IS_ENABLED(CONFIG_IPV6) */
7080