1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, see 32 * <http://www.gnu.org/licenses/>. 33 * 34 * Please send any bug reports or fixes you make to the 35 * email address(es): 36 * lksctp developers <linux-sctp@vger.kernel.org> 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Narasimha Budihal <narsi@refcode.org> 41 * Karl Knutson <karl@athena.chicago.il.us> 42 * Jon Grimm <jgrimm@us.ibm.com> 43 * Xingang Guo <xingang.guo@intel.com> 44 * Daisy Chang <daisyc@us.ibm.com> 45 * Sridhar Samudrala <samudrala@us.ibm.com> 46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 47 * Ardelle Fan <ardelle.fan@intel.com> 48 * Ryan Layer <rmlayer@us.ibm.com> 49 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 50 * Kevin Gao <kevin.gao@intel.com> 51 */ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <linux/types.h> 56 #include <linux/kernel.h> 57 #include <linux/wait.h> 58 #include <linux/time.h> 59 #include <linux/ip.h> 60 #include <linux/capability.h> 61 #include <linux/fcntl.h> 62 #include <linux/poll.h> 63 #include <linux/init.h> 64 #include <linux/crypto.h> 65 #include <linux/slab.h> 66 #include <linux/file.h> 67 68 #include <net/ip.h> 69 #include <net/icmp.h> 70 #include <net/route.h> 71 #include <net/ipv6.h> 72 #include <net/inet_common.h> 73 74 #include <linux/socket.h> /* for sa_family_t */ 75 #include <linux/export.h> 76 #include <net/sock.h> 77 #include <net/sctp/sctp.h> 78 #include <net/sctp/sm.h> 79 80 /* Forward declarations for internal helper functions. */ 81 static int sctp_writeable(struct sock *sk); 82 static void sctp_wfree(struct sk_buff *skb); 83 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 84 size_t msg_len); 85 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p); 86 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 87 static int sctp_wait_for_accept(struct sock *sk, long timeo); 88 static void sctp_wait_for_close(struct sock *sk, long timeo); 89 static void sctp_destruct_sock(struct sock *sk); 90 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 91 union sctp_addr *addr, int len); 92 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 93 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 94 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 95 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 96 static int sctp_send_asconf(struct sctp_association *asoc, 97 struct sctp_chunk *chunk); 98 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 99 static int sctp_autobind(struct sock *sk); 100 static void sctp_sock_migrate(struct sock *, struct sock *, 101 struct sctp_association *, sctp_socket_type_t); 102 103 extern struct kmem_cache *sctp_bucket_cachep; 104 extern long sysctl_sctp_mem[3]; 105 extern int sysctl_sctp_rmem[3]; 106 extern int sysctl_sctp_wmem[3]; 107 108 static int sctp_memory_pressure; 109 static atomic_long_t sctp_memory_allocated; 110 struct percpu_counter sctp_sockets_allocated; 111 112 static void sctp_enter_memory_pressure(struct sock *sk) 113 { 114 sctp_memory_pressure = 1; 115 } 116 117 118 /* Get the sndbuf space available at the time on the association. */ 119 static inline int sctp_wspace(struct sctp_association *asoc) 120 { 121 int amt; 122 123 if (asoc->ep->sndbuf_policy) 124 amt = asoc->sndbuf_used; 125 else 126 amt = sk_wmem_alloc_get(asoc->base.sk); 127 128 if (amt >= asoc->base.sk->sk_sndbuf) { 129 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 130 amt = 0; 131 else { 132 amt = sk_stream_wspace(asoc->base.sk); 133 if (amt < 0) 134 amt = 0; 135 } 136 } else { 137 amt = asoc->base.sk->sk_sndbuf - amt; 138 } 139 return amt; 140 } 141 142 /* Increment the used sndbuf space count of the corresponding association by 143 * the size of the outgoing data chunk. 144 * Also, set the skb destructor for sndbuf accounting later. 145 * 146 * Since it is always 1-1 between chunk and skb, and also a new skb is always 147 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 148 * destructor in the data chunk skb for the purpose of the sndbuf space 149 * tracking. 150 */ 151 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 152 { 153 struct sctp_association *asoc = chunk->asoc; 154 struct sock *sk = asoc->base.sk; 155 156 /* The sndbuf space is tracked per association. */ 157 sctp_association_hold(asoc); 158 159 skb_set_owner_w(chunk->skb, sk); 160 161 chunk->skb->destructor = sctp_wfree; 162 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 163 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 164 165 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 166 sizeof(struct sk_buff) + 167 sizeof(struct sctp_chunk); 168 169 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 170 sk->sk_wmem_queued += chunk->skb->truesize; 171 sk_mem_charge(sk, chunk->skb->truesize); 172 } 173 174 /* Verify that this is a valid address. */ 175 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 176 int len) 177 { 178 struct sctp_af *af; 179 180 /* Verify basic sockaddr. */ 181 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 182 if (!af) 183 return -EINVAL; 184 185 /* Is this a valid SCTP address? */ 186 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 187 return -EINVAL; 188 189 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 190 return -EINVAL; 191 192 return 0; 193 } 194 195 /* Look up the association by its id. If this is not a UDP-style 196 * socket, the ID field is always ignored. 197 */ 198 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 199 { 200 struct sctp_association *asoc = NULL; 201 202 /* If this is not a UDP-style socket, assoc id should be ignored. */ 203 if (!sctp_style(sk, UDP)) { 204 /* Return NULL if the socket state is not ESTABLISHED. It 205 * could be a TCP-style listening socket or a socket which 206 * hasn't yet called connect() to establish an association. 207 */ 208 if (!sctp_sstate(sk, ESTABLISHED)) 209 return NULL; 210 211 /* Get the first and the only association from the list. */ 212 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 213 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 214 struct sctp_association, asocs); 215 return asoc; 216 } 217 218 /* Otherwise this is a UDP-style socket. */ 219 if (!id || (id == (sctp_assoc_t)-1)) 220 return NULL; 221 222 spin_lock_bh(&sctp_assocs_id_lock); 223 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 224 spin_unlock_bh(&sctp_assocs_id_lock); 225 226 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 227 return NULL; 228 229 return asoc; 230 } 231 232 /* Look up the transport from an address and an assoc id. If both address and 233 * id are specified, the associations matching the address and the id should be 234 * the same. 235 */ 236 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 237 struct sockaddr_storage *addr, 238 sctp_assoc_t id) 239 { 240 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 241 struct sctp_transport *transport; 242 union sctp_addr *laddr = (union sctp_addr *)addr; 243 244 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 245 laddr, 246 &transport); 247 248 if (!addr_asoc) 249 return NULL; 250 251 id_asoc = sctp_id2assoc(sk, id); 252 if (id_asoc && (id_asoc != addr_asoc)) 253 return NULL; 254 255 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 256 (union sctp_addr *)addr); 257 258 return transport; 259 } 260 261 /* API 3.1.2 bind() - UDP Style Syntax 262 * The syntax of bind() is, 263 * 264 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 265 * 266 * sd - the socket descriptor returned by socket(). 267 * addr - the address structure (struct sockaddr_in or struct 268 * sockaddr_in6 [RFC 2553]), 269 * addr_len - the size of the address structure. 270 */ 271 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 272 { 273 int retval = 0; 274 275 sctp_lock_sock(sk); 276 277 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 278 addr, addr_len); 279 280 /* Disallow binding twice. */ 281 if (!sctp_sk(sk)->ep->base.bind_addr.port) 282 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 283 addr_len); 284 else 285 retval = -EINVAL; 286 287 sctp_release_sock(sk); 288 289 return retval; 290 } 291 292 static long sctp_get_port_local(struct sock *, union sctp_addr *); 293 294 /* Verify this is a valid sockaddr. */ 295 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 296 union sctp_addr *addr, int len) 297 { 298 struct sctp_af *af; 299 300 /* Check minimum size. */ 301 if (len < sizeof (struct sockaddr)) 302 return NULL; 303 304 /* V4 mapped address are really of AF_INET family */ 305 if (addr->sa.sa_family == AF_INET6 && 306 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) { 307 if (!opt->pf->af_supported(AF_INET, opt)) 308 return NULL; 309 } else { 310 /* Does this PF support this AF? */ 311 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 312 return NULL; 313 } 314 315 /* If we get this far, af is valid. */ 316 af = sctp_get_af_specific(addr->sa.sa_family); 317 318 if (len < af->sockaddr_len) 319 return NULL; 320 321 return af; 322 } 323 324 /* Bind a local address either to an endpoint or to an association. */ 325 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 326 { 327 struct net *net = sock_net(sk); 328 struct sctp_sock *sp = sctp_sk(sk); 329 struct sctp_endpoint *ep = sp->ep; 330 struct sctp_bind_addr *bp = &ep->base.bind_addr; 331 struct sctp_af *af; 332 unsigned short snum; 333 int ret = 0; 334 335 /* Common sockaddr verification. */ 336 af = sctp_sockaddr_af(sp, addr, len); 337 if (!af) { 338 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 339 __func__, sk, addr, len); 340 return -EINVAL; 341 } 342 343 snum = ntohs(addr->v4.sin_port); 344 345 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 346 __func__, sk, &addr->sa, bp->port, snum, len); 347 348 /* PF specific bind() address verification. */ 349 if (!sp->pf->bind_verify(sp, addr)) 350 return -EADDRNOTAVAIL; 351 352 /* We must either be unbound, or bind to the same port. 353 * It's OK to allow 0 ports if we are already bound. 354 * We'll just inhert an already bound port in this case 355 */ 356 if (bp->port) { 357 if (!snum) 358 snum = bp->port; 359 else if (snum != bp->port) { 360 pr_debug("%s: new port %d doesn't match existing port " 361 "%d\n", __func__, snum, bp->port); 362 return -EINVAL; 363 } 364 } 365 366 if (snum && snum < PROT_SOCK && 367 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 368 return -EACCES; 369 370 /* See if the address matches any of the addresses we may have 371 * already bound before checking against other endpoints. 372 */ 373 if (sctp_bind_addr_match(bp, addr, sp)) 374 return -EINVAL; 375 376 /* Make sure we are allowed to bind here. 377 * The function sctp_get_port_local() does duplicate address 378 * detection. 379 */ 380 addr->v4.sin_port = htons(snum); 381 if ((ret = sctp_get_port_local(sk, addr))) { 382 return -EADDRINUSE; 383 } 384 385 /* Refresh ephemeral port. */ 386 if (!bp->port) 387 bp->port = inet_sk(sk)->inet_num; 388 389 /* Add the address to the bind address list. 390 * Use GFP_ATOMIC since BHs will be disabled. 391 */ 392 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC); 393 394 /* Copy back into socket for getsockname() use. */ 395 if (!ret) { 396 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 397 af->to_sk_saddr(addr, sk); 398 } 399 400 return ret; 401 } 402 403 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 404 * 405 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 406 * at any one time. If a sender, after sending an ASCONF chunk, decides 407 * it needs to transfer another ASCONF Chunk, it MUST wait until the 408 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 409 * subsequent ASCONF. Note this restriction binds each side, so at any 410 * time two ASCONF may be in-transit on any given association (one sent 411 * from each endpoint). 412 */ 413 static int sctp_send_asconf(struct sctp_association *asoc, 414 struct sctp_chunk *chunk) 415 { 416 struct net *net = sock_net(asoc->base.sk); 417 int retval = 0; 418 419 /* If there is an outstanding ASCONF chunk, queue it for later 420 * transmission. 421 */ 422 if (asoc->addip_last_asconf) { 423 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 424 goto out; 425 } 426 427 /* Hold the chunk until an ASCONF_ACK is received. */ 428 sctp_chunk_hold(chunk); 429 retval = sctp_primitive_ASCONF(net, asoc, chunk); 430 if (retval) 431 sctp_chunk_free(chunk); 432 else 433 asoc->addip_last_asconf = chunk; 434 435 out: 436 return retval; 437 } 438 439 /* Add a list of addresses as bind addresses to local endpoint or 440 * association. 441 * 442 * Basically run through each address specified in the addrs/addrcnt 443 * array/length pair, determine if it is IPv6 or IPv4 and call 444 * sctp_do_bind() on it. 445 * 446 * If any of them fails, then the operation will be reversed and the 447 * ones that were added will be removed. 448 * 449 * Only sctp_setsockopt_bindx() is supposed to call this function. 450 */ 451 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 452 { 453 int cnt; 454 int retval = 0; 455 void *addr_buf; 456 struct sockaddr *sa_addr; 457 struct sctp_af *af; 458 459 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 460 addrs, addrcnt); 461 462 addr_buf = addrs; 463 for (cnt = 0; cnt < addrcnt; cnt++) { 464 /* The list may contain either IPv4 or IPv6 address; 465 * determine the address length for walking thru the list. 466 */ 467 sa_addr = addr_buf; 468 af = sctp_get_af_specific(sa_addr->sa_family); 469 if (!af) { 470 retval = -EINVAL; 471 goto err_bindx_add; 472 } 473 474 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 475 af->sockaddr_len); 476 477 addr_buf += af->sockaddr_len; 478 479 err_bindx_add: 480 if (retval < 0) { 481 /* Failed. Cleanup the ones that have been added */ 482 if (cnt > 0) 483 sctp_bindx_rem(sk, addrs, cnt); 484 return retval; 485 } 486 } 487 488 return retval; 489 } 490 491 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 492 * associations that are part of the endpoint indicating that a list of local 493 * addresses are added to the endpoint. 494 * 495 * If any of the addresses is already in the bind address list of the 496 * association, we do not send the chunk for that association. But it will not 497 * affect other associations. 498 * 499 * Only sctp_setsockopt_bindx() is supposed to call this function. 500 */ 501 static int sctp_send_asconf_add_ip(struct sock *sk, 502 struct sockaddr *addrs, 503 int addrcnt) 504 { 505 struct net *net = sock_net(sk); 506 struct sctp_sock *sp; 507 struct sctp_endpoint *ep; 508 struct sctp_association *asoc; 509 struct sctp_bind_addr *bp; 510 struct sctp_chunk *chunk; 511 struct sctp_sockaddr_entry *laddr; 512 union sctp_addr *addr; 513 union sctp_addr saveaddr; 514 void *addr_buf; 515 struct sctp_af *af; 516 struct list_head *p; 517 int i; 518 int retval = 0; 519 520 if (!net->sctp.addip_enable) 521 return retval; 522 523 sp = sctp_sk(sk); 524 ep = sp->ep; 525 526 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 527 __func__, sk, addrs, addrcnt); 528 529 list_for_each_entry(asoc, &ep->asocs, asocs) { 530 if (!asoc->peer.asconf_capable) 531 continue; 532 533 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 534 continue; 535 536 if (!sctp_state(asoc, ESTABLISHED)) 537 continue; 538 539 /* Check if any address in the packed array of addresses is 540 * in the bind address list of the association. If so, 541 * do not send the asconf chunk to its peer, but continue with 542 * other associations. 543 */ 544 addr_buf = addrs; 545 for (i = 0; i < addrcnt; i++) { 546 addr = addr_buf; 547 af = sctp_get_af_specific(addr->v4.sin_family); 548 if (!af) { 549 retval = -EINVAL; 550 goto out; 551 } 552 553 if (sctp_assoc_lookup_laddr(asoc, addr)) 554 break; 555 556 addr_buf += af->sockaddr_len; 557 } 558 if (i < addrcnt) 559 continue; 560 561 /* Use the first valid address in bind addr list of 562 * association as Address Parameter of ASCONF CHUNK. 563 */ 564 bp = &asoc->base.bind_addr; 565 p = bp->address_list.next; 566 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 567 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 568 addrcnt, SCTP_PARAM_ADD_IP); 569 if (!chunk) { 570 retval = -ENOMEM; 571 goto out; 572 } 573 574 /* Add the new addresses to the bind address list with 575 * use_as_src set to 0. 576 */ 577 addr_buf = addrs; 578 for (i = 0; i < addrcnt; i++) { 579 addr = addr_buf; 580 af = sctp_get_af_specific(addr->v4.sin_family); 581 memcpy(&saveaddr, addr, af->sockaddr_len); 582 retval = sctp_add_bind_addr(bp, &saveaddr, 583 SCTP_ADDR_NEW, GFP_ATOMIC); 584 addr_buf += af->sockaddr_len; 585 } 586 if (asoc->src_out_of_asoc_ok) { 587 struct sctp_transport *trans; 588 589 list_for_each_entry(trans, 590 &asoc->peer.transport_addr_list, transports) { 591 /* Clear the source and route cache */ 592 dst_release(trans->dst); 593 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 594 2*asoc->pathmtu, 4380)); 595 trans->ssthresh = asoc->peer.i.a_rwnd; 596 trans->rto = asoc->rto_initial; 597 sctp_max_rto(asoc, trans); 598 trans->rtt = trans->srtt = trans->rttvar = 0; 599 sctp_transport_route(trans, NULL, 600 sctp_sk(asoc->base.sk)); 601 } 602 } 603 retval = sctp_send_asconf(asoc, chunk); 604 } 605 606 out: 607 return retval; 608 } 609 610 /* Remove a list of addresses from bind addresses list. Do not remove the 611 * last address. 612 * 613 * Basically run through each address specified in the addrs/addrcnt 614 * array/length pair, determine if it is IPv6 or IPv4 and call 615 * sctp_del_bind() on it. 616 * 617 * If any of them fails, then the operation will be reversed and the 618 * ones that were removed will be added back. 619 * 620 * At least one address has to be left; if only one address is 621 * available, the operation will return -EBUSY. 622 * 623 * Only sctp_setsockopt_bindx() is supposed to call this function. 624 */ 625 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 626 { 627 struct sctp_sock *sp = sctp_sk(sk); 628 struct sctp_endpoint *ep = sp->ep; 629 int cnt; 630 struct sctp_bind_addr *bp = &ep->base.bind_addr; 631 int retval = 0; 632 void *addr_buf; 633 union sctp_addr *sa_addr; 634 struct sctp_af *af; 635 636 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 637 __func__, sk, addrs, addrcnt); 638 639 addr_buf = addrs; 640 for (cnt = 0; cnt < addrcnt; cnt++) { 641 /* If the bind address list is empty or if there is only one 642 * bind address, there is nothing more to be removed (we need 643 * at least one address here). 644 */ 645 if (list_empty(&bp->address_list) || 646 (sctp_list_single_entry(&bp->address_list))) { 647 retval = -EBUSY; 648 goto err_bindx_rem; 649 } 650 651 sa_addr = addr_buf; 652 af = sctp_get_af_specific(sa_addr->sa.sa_family); 653 if (!af) { 654 retval = -EINVAL; 655 goto err_bindx_rem; 656 } 657 658 if (!af->addr_valid(sa_addr, sp, NULL)) { 659 retval = -EADDRNOTAVAIL; 660 goto err_bindx_rem; 661 } 662 663 if (sa_addr->v4.sin_port && 664 sa_addr->v4.sin_port != htons(bp->port)) { 665 retval = -EINVAL; 666 goto err_bindx_rem; 667 } 668 669 if (!sa_addr->v4.sin_port) 670 sa_addr->v4.sin_port = htons(bp->port); 671 672 /* FIXME - There is probably a need to check if sk->sk_saddr and 673 * sk->sk_rcv_addr are currently set to one of the addresses to 674 * be removed. This is something which needs to be looked into 675 * when we are fixing the outstanding issues with multi-homing 676 * socket routing and failover schemes. Refer to comments in 677 * sctp_do_bind(). -daisy 678 */ 679 retval = sctp_del_bind_addr(bp, sa_addr); 680 681 addr_buf += af->sockaddr_len; 682 err_bindx_rem: 683 if (retval < 0) { 684 /* Failed. Add the ones that has been removed back */ 685 if (cnt > 0) 686 sctp_bindx_add(sk, addrs, cnt); 687 return retval; 688 } 689 } 690 691 return retval; 692 } 693 694 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 695 * the associations that are part of the endpoint indicating that a list of 696 * local addresses are removed from the endpoint. 697 * 698 * If any of the addresses is already in the bind address list of the 699 * association, we do not send the chunk for that association. But it will not 700 * affect other associations. 701 * 702 * Only sctp_setsockopt_bindx() is supposed to call this function. 703 */ 704 static int sctp_send_asconf_del_ip(struct sock *sk, 705 struct sockaddr *addrs, 706 int addrcnt) 707 { 708 struct net *net = sock_net(sk); 709 struct sctp_sock *sp; 710 struct sctp_endpoint *ep; 711 struct sctp_association *asoc; 712 struct sctp_transport *transport; 713 struct sctp_bind_addr *bp; 714 struct sctp_chunk *chunk; 715 union sctp_addr *laddr; 716 void *addr_buf; 717 struct sctp_af *af; 718 struct sctp_sockaddr_entry *saddr; 719 int i; 720 int retval = 0; 721 int stored = 0; 722 723 chunk = NULL; 724 if (!net->sctp.addip_enable) 725 return retval; 726 727 sp = sctp_sk(sk); 728 ep = sp->ep; 729 730 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 731 __func__, sk, addrs, addrcnt); 732 733 list_for_each_entry(asoc, &ep->asocs, asocs) { 734 735 if (!asoc->peer.asconf_capable) 736 continue; 737 738 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 739 continue; 740 741 if (!sctp_state(asoc, ESTABLISHED)) 742 continue; 743 744 /* Check if any address in the packed array of addresses is 745 * not present in the bind address list of the association. 746 * If so, do not send the asconf chunk to its peer, but 747 * continue with other associations. 748 */ 749 addr_buf = addrs; 750 for (i = 0; i < addrcnt; i++) { 751 laddr = addr_buf; 752 af = sctp_get_af_specific(laddr->v4.sin_family); 753 if (!af) { 754 retval = -EINVAL; 755 goto out; 756 } 757 758 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 759 break; 760 761 addr_buf += af->sockaddr_len; 762 } 763 if (i < addrcnt) 764 continue; 765 766 /* Find one address in the association's bind address list 767 * that is not in the packed array of addresses. This is to 768 * make sure that we do not delete all the addresses in the 769 * association. 770 */ 771 bp = &asoc->base.bind_addr; 772 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 773 addrcnt, sp); 774 if ((laddr == NULL) && (addrcnt == 1)) { 775 if (asoc->asconf_addr_del_pending) 776 continue; 777 asoc->asconf_addr_del_pending = 778 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 779 if (asoc->asconf_addr_del_pending == NULL) { 780 retval = -ENOMEM; 781 goto out; 782 } 783 asoc->asconf_addr_del_pending->sa.sa_family = 784 addrs->sa_family; 785 asoc->asconf_addr_del_pending->v4.sin_port = 786 htons(bp->port); 787 if (addrs->sa_family == AF_INET) { 788 struct sockaddr_in *sin; 789 790 sin = (struct sockaddr_in *)addrs; 791 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 792 } else if (addrs->sa_family == AF_INET6) { 793 struct sockaddr_in6 *sin6; 794 795 sin6 = (struct sockaddr_in6 *)addrs; 796 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 797 } 798 799 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 800 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 801 asoc->asconf_addr_del_pending); 802 803 asoc->src_out_of_asoc_ok = 1; 804 stored = 1; 805 goto skip_mkasconf; 806 } 807 808 if (laddr == NULL) 809 return -EINVAL; 810 811 /* We do not need RCU protection throughout this loop 812 * because this is done under a socket lock from the 813 * setsockopt call. 814 */ 815 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 816 SCTP_PARAM_DEL_IP); 817 if (!chunk) { 818 retval = -ENOMEM; 819 goto out; 820 } 821 822 skip_mkasconf: 823 /* Reset use_as_src flag for the addresses in the bind address 824 * list that are to be deleted. 825 */ 826 addr_buf = addrs; 827 for (i = 0; i < addrcnt; i++) { 828 laddr = addr_buf; 829 af = sctp_get_af_specific(laddr->v4.sin_family); 830 list_for_each_entry(saddr, &bp->address_list, list) { 831 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 832 saddr->state = SCTP_ADDR_DEL; 833 } 834 addr_buf += af->sockaddr_len; 835 } 836 837 /* Update the route and saddr entries for all the transports 838 * as some of the addresses in the bind address list are 839 * about to be deleted and cannot be used as source addresses. 840 */ 841 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 842 transports) { 843 dst_release(transport->dst); 844 sctp_transport_route(transport, NULL, 845 sctp_sk(asoc->base.sk)); 846 } 847 848 if (stored) 849 /* We don't need to transmit ASCONF */ 850 continue; 851 retval = sctp_send_asconf(asoc, chunk); 852 } 853 out: 854 return retval; 855 } 856 857 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 858 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 859 { 860 struct sock *sk = sctp_opt2sk(sp); 861 union sctp_addr *addr; 862 struct sctp_af *af; 863 864 /* It is safe to write port space in caller. */ 865 addr = &addrw->a; 866 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 867 af = sctp_get_af_specific(addr->sa.sa_family); 868 if (!af) 869 return -EINVAL; 870 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 871 return -EINVAL; 872 873 if (addrw->state == SCTP_ADDR_NEW) 874 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 875 else 876 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 877 } 878 879 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 880 * 881 * API 8.1 882 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 883 * int flags); 884 * 885 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 886 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 887 * or IPv6 addresses. 888 * 889 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 890 * Section 3.1.2 for this usage. 891 * 892 * addrs is a pointer to an array of one or more socket addresses. Each 893 * address is contained in its appropriate structure (i.e. struct 894 * sockaddr_in or struct sockaddr_in6) the family of the address type 895 * must be used to distinguish the address length (note that this 896 * representation is termed a "packed array" of addresses). The caller 897 * specifies the number of addresses in the array with addrcnt. 898 * 899 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 900 * -1, and sets errno to the appropriate error code. 901 * 902 * For SCTP, the port given in each socket address must be the same, or 903 * sctp_bindx() will fail, setting errno to EINVAL. 904 * 905 * The flags parameter is formed from the bitwise OR of zero or more of 906 * the following currently defined flags: 907 * 908 * SCTP_BINDX_ADD_ADDR 909 * 910 * SCTP_BINDX_REM_ADDR 911 * 912 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 913 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 914 * addresses from the association. The two flags are mutually exclusive; 915 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 916 * not remove all addresses from an association; sctp_bindx() will 917 * reject such an attempt with EINVAL. 918 * 919 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 920 * additional addresses with an endpoint after calling bind(). Or use 921 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 922 * socket is associated with so that no new association accepted will be 923 * associated with those addresses. If the endpoint supports dynamic 924 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 925 * endpoint to send the appropriate message to the peer to change the 926 * peers address lists. 927 * 928 * Adding and removing addresses from a connected association is 929 * optional functionality. Implementations that do not support this 930 * functionality should return EOPNOTSUPP. 931 * 932 * Basically do nothing but copying the addresses from user to kernel 933 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 934 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 935 * from userspace. 936 * 937 * We don't use copy_from_user() for optimization: we first do the 938 * sanity checks (buffer size -fast- and access check-healthy 939 * pointer); if all of those succeed, then we can alloc the memory 940 * (expensive operation) needed to copy the data to kernel. Then we do 941 * the copying without checking the user space area 942 * (__copy_from_user()). 943 * 944 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 945 * it. 946 * 947 * sk The sk of the socket 948 * addrs The pointer to the addresses in user land 949 * addrssize Size of the addrs buffer 950 * op Operation to perform (add or remove, see the flags of 951 * sctp_bindx) 952 * 953 * Returns 0 if ok, <0 errno code on error. 954 */ 955 static int sctp_setsockopt_bindx(struct sock* sk, 956 struct sockaddr __user *addrs, 957 int addrs_size, int op) 958 { 959 struct sockaddr *kaddrs; 960 int err; 961 int addrcnt = 0; 962 int walk_size = 0; 963 struct sockaddr *sa_addr; 964 void *addr_buf; 965 struct sctp_af *af; 966 967 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 968 __func__, sk, addrs, addrs_size, op); 969 970 if (unlikely(addrs_size <= 0)) 971 return -EINVAL; 972 973 /* Check the user passed a healthy pointer. */ 974 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 975 return -EFAULT; 976 977 /* Alloc space for the address array in kernel memory. */ 978 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 979 if (unlikely(!kaddrs)) 980 return -ENOMEM; 981 982 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 983 kfree(kaddrs); 984 return -EFAULT; 985 } 986 987 /* Walk through the addrs buffer and count the number of addresses. */ 988 addr_buf = kaddrs; 989 while (walk_size < addrs_size) { 990 if (walk_size + sizeof(sa_family_t) > addrs_size) { 991 kfree(kaddrs); 992 return -EINVAL; 993 } 994 995 sa_addr = addr_buf; 996 af = sctp_get_af_specific(sa_addr->sa_family); 997 998 /* If the address family is not supported or if this address 999 * causes the address buffer to overflow return EINVAL. 1000 */ 1001 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1002 kfree(kaddrs); 1003 return -EINVAL; 1004 } 1005 addrcnt++; 1006 addr_buf += af->sockaddr_len; 1007 walk_size += af->sockaddr_len; 1008 } 1009 1010 /* Do the work. */ 1011 switch (op) { 1012 case SCTP_BINDX_ADD_ADDR: 1013 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1014 if (err) 1015 goto out; 1016 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1017 break; 1018 1019 case SCTP_BINDX_REM_ADDR: 1020 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1021 if (err) 1022 goto out; 1023 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1024 break; 1025 1026 default: 1027 err = -EINVAL; 1028 break; 1029 } 1030 1031 out: 1032 kfree(kaddrs); 1033 1034 return err; 1035 } 1036 1037 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1038 * 1039 * Common routine for handling connect() and sctp_connectx(). 1040 * Connect will come in with just a single address. 1041 */ 1042 static int __sctp_connect(struct sock* sk, 1043 struct sockaddr *kaddrs, 1044 int addrs_size, 1045 sctp_assoc_t *assoc_id) 1046 { 1047 struct net *net = sock_net(sk); 1048 struct sctp_sock *sp; 1049 struct sctp_endpoint *ep; 1050 struct sctp_association *asoc = NULL; 1051 struct sctp_association *asoc2; 1052 struct sctp_transport *transport; 1053 union sctp_addr to; 1054 struct sctp_af *af; 1055 sctp_scope_t scope; 1056 long timeo; 1057 int err = 0; 1058 int addrcnt = 0; 1059 int walk_size = 0; 1060 union sctp_addr *sa_addr = NULL; 1061 void *addr_buf; 1062 unsigned short port; 1063 unsigned int f_flags = 0; 1064 1065 sp = sctp_sk(sk); 1066 ep = sp->ep; 1067 1068 /* connect() cannot be done on a socket that is already in ESTABLISHED 1069 * state - UDP-style peeled off socket or a TCP-style socket that 1070 * is already connected. 1071 * It cannot be done even on a TCP-style listening socket. 1072 */ 1073 if (sctp_sstate(sk, ESTABLISHED) || 1074 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1075 err = -EISCONN; 1076 goto out_free; 1077 } 1078 1079 /* Walk through the addrs buffer and count the number of addresses. */ 1080 addr_buf = kaddrs; 1081 while (walk_size < addrs_size) { 1082 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1083 err = -EINVAL; 1084 goto out_free; 1085 } 1086 1087 sa_addr = addr_buf; 1088 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1089 1090 /* If the address family is not supported or if this address 1091 * causes the address buffer to overflow return EINVAL. 1092 */ 1093 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1094 err = -EINVAL; 1095 goto out_free; 1096 } 1097 1098 port = ntohs(sa_addr->v4.sin_port); 1099 1100 /* Save current address so we can work with it */ 1101 memcpy(&to, sa_addr, af->sockaddr_len); 1102 1103 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1104 if (err) 1105 goto out_free; 1106 1107 /* Make sure the destination port is correctly set 1108 * in all addresses. 1109 */ 1110 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1111 err = -EINVAL; 1112 goto out_free; 1113 } 1114 1115 /* Check if there already is a matching association on the 1116 * endpoint (other than the one created here). 1117 */ 1118 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1119 if (asoc2 && asoc2 != asoc) { 1120 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1121 err = -EISCONN; 1122 else 1123 err = -EALREADY; 1124 goto out_free; 1125 } 1126 1127 /* If we could not find a matching association on the endpoint, 1128 * make sure that there is no peeled-off association matching 1129 * the peer address even on another socket. 1130 */ 1131 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1132 err = -EADDRNOTAVAIL; 1133 goto out_free; 1134 } 1135 1136 if (!asoc) { 1137 /* If a bind() or sctp_bindx() is not called prior to 1138 * an sctp_connectx() call, the system picks an 1139 * ephemeral port and will choose an address set 1140 * equivalent to binding with a wildcard address. 1141 */ 1142 if (!ep->base.bind_addr.port) { 1143 if (sctp_autobind(sk)) { 1144 err = -EAGAIN; 1145 goto out_free; 1146 } 1147 } else { 1148 /* 1149 * If an unprivileged user inherits a 1-many 1150 * style socket with open associations on a 1151 * privileged port, it MAY be permitted to 1152 * accept new associations, but it SHOULD NOT 1153 * be permitted to open new associations. 1154 */ 1155 if (ep->base.bind_addr.port < PROT_SOCK && 1156 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) { 1157 err = -EACCES; 1158 goto out_free; 1159 } 1160 } 1161 1162 scope = sctp_scope(&to); 1163 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1164 if (!asoc) { 1165 err = -ENOMEM; 1166 goto out_free; 1167 } 1168 1169 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1170 GFP_KERNEL); 1171 if (err < 0) { 1172 goto out_free; 1173 } 1174 1175 } 1176 1177 /* Prime the peer's transport structures. */ 1178 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1179 SCTP_UNKNOWN); 1180 if (!transport) { 1181 err = -ENOMEM; 1182 goto out_free; 1183 } 1184 1185 addrcnt++; 1186 addr_buf += af->sockaddr_len; 1187 walk_size += af->sockaddr_len; 1188 } 1189 1190 /* In case the user of sctp_connectx() wants an association 1191 * id back, assign one now. 1192 */ 1193 if (assoc_id) { 1194 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1195 if (err < 0) 1196 goto out_free; 1197 } 1198 1199 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1200 if (err < 0) { 1201 goto out_free; 1202 } 1203 1204 /* Initialize sk's dport and daddr for getpeername() */ 1205 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1206 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1207 af->to_sk_daddr(sa_addr, sk); 1208 sk->sk_err = 0; 1209 1210 /* in-kernel sockets don't generally have a file allocated to them 1211 * if all they do is call sock_create_kern(). 1212 */ 1213 if (sk->sk_socket->file) 1214 f_flags = sk->sk_socket->file->f_flags; 1215 1216 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1217 1218 err = sctp_wait_for_connect(asoc, &timeo); 1219 if ((err == 0 || err == -EINPROGRESS) && assoc_id) 1220 *assoc_id = asoc->assoc_id; 1221 1222 /* Don't free association on exit. */ 1223 asoc = NULL; 1224 1225 out_free: 1226 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1227 __func__, asoc, kaddrs, err); 1228 1229 if (asoc) { 1230 /* sctp_primitive_ASSOCIATE may have added this association 1231 * To the hash table, try to unhash it, just in case, its a noop 1232 * if it wasn't hashed so we're safe 1233 */ 1234 sctp_unhash_established(asoc); 1235 sctp_association_free(asoc); 1236 } 1237 return err; 1238 } 1239 1240 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1241 * 1242 * API 8.9 1243 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1244 * sctp_assoc_t *asoc); 1245 * 1246 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1247 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1248 * or IPv6 addresses. 1249 * 1250 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1251 * Section 3.1.2 for this usage. 1252 * 1253 * addrs is a pointer to an array of one or more socket addresses. Each 1254 * address is contained in its appropriate structure (i.e. struct 1255 * sockaddr_in or struct sockaddr_in6) the family of the address type 1256 * must be used to distengish the address length (note that this 1257 * representation is termed a "packed array" of addresses). The caller 1258 * specifies the number of addresses in the array with addrcnt. 1259 * 1260 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1261 * the association id of the new association. On failure, sctp_connectx() 1262 * returns -1, and sets errno to the appropriate error code. The assoc_id 1263 * is not touched by the kernel. 1264 * 1265 * For SCTP, the port given in each socket address must be the same, or 1266 * sctp_connectx() will fail, setting errno to EINVAL. 1267 * 1268 * An application can use sctp_connectx to initiate an association with 1269 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1270 * allows a caller to specify multiple addresses at which a peer can be 1271 * reached. The way the SCTP stack uses the list of addresses to set up 1272 * the association is implementation dependent. This function only 1273 * specifies that the stack will try to make use of all the addresses in 1274 * the list when needed. 1275 * 1276 * Note that the list of addresses passed in is only used for setting up 1277 * the association. It does not necessarily equal the set of addresses 1278 * the peer uses for the resulting association. If the caller wants to 1279 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1280 * retrieve them after the association has been set up. 1281 * 1282 * Basically do nothing but copying the addresses from user to kernel 1283 * land and invoking either sctp_connectx(). This is used for tunneling 1284 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1285 * 1286 * We don't use copy_from_user() for optimization: we first do the 1287 * sanity checks (buffer size -fast- and access check-healthy 1288 * pointer); if all of those succeed, then we can alloc the memory 1289 * (expensive operation) needed to copy the data to kernel. Then we do 1290 * the copying without checking the user space area 1291 * (__copy_from_user()). 1292 * 1293 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1294 * it. 1295 * 1296 * sk The sk of the socket 1297 * addrs The pointer to the addresses in user land 1298 * addrssize Size of the addrs buffer 1299 * 1300 * Returns >=0 if ok, <0 errno code on error. 1301 */ 1302 static int __sctp_setsockopt_connectx(struct sock* sk, 1303 struct sockaddr __user *addrs, 1304 int addrs_size, 1305 sctp_assoc_t *assoc_id) 1306 { 1307 int err = 0; 1308 struct sockaddr *kaddrs; 1309 1310 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1311 __func__, sk, addrs, addrs_size); 1312 1313 if (unlikely(addrs_size <= 0)) 1314 return -EINVAL; 1315 1316 /* Check the user passed a healthy pointer. */ 1317 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1318 return -EFAULT; 1319 1320 /* Alloc space for the address array in kernel memory. */ 1321 kaddrs = kmalloc(addrs_size, GFP_KERNEL); 1322 if (unlikely(!kaddrs)) 1323 return -ENOMEM; 1324 1325 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1326 err = -EFAULT; 1327 } else { 1328 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1329 } 1330 1331 kfree(kaddrs); 1332 1333 return err; 1334 } 1335 1336 /* 1337 * This is an older interface. It's kept for backward compatibility 1338 * to the option that doesn't provide association id. 1339 */ 1340 static int sctp_setsockopt_connectx_old(struct sock* sk, 1341 struct sockaddr __user *addrs, 1342 int addrs_size) 1343 { 1344 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1345 } 1346 1347 /* 1348 * New interface for the API. The since the API is done with a socket 1349 * option, to make it simple we feed back the association id is as a return 1350 * indication to the call. Error is always negative and association id is 1351 * always positive. 1352 */ 1353 static int sctp_setsockopt_connectx(struct sock* sk, 1354 struct sockaddr __user *addrs, 1355 int addrs_size) 1356 { 1357 sctp_assoc_t assoc_id = 0; 1358 int err = 0; 1359 1360 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1361 1362 if (err) 1363 return err; 1364 else 1365 return assoc_id; 1366 } 1367 1368 /* 1369 * New (hopefully final) interface for the API. 1370 * We use the sctp_getaddrs_old structure so that use-space library 1371 * can avoid any unnecessary allocations. The only defferent part 1372 * is that we store the actual length of the address buffer into the 1373 * addrs_num structure member. That way we can re-use the existing 1374 * code. 1375 */ 1376 static int sctp_getsockopt_connectx3(struct sock* sk, int len, 1377 char __user *optval, 1378 int __user *optlen) 1379 { 1380 struct sctp_getaddrs_old param; 1381 sctp_assoc_t assoc_id = 0; 1382 int err = 0; 1383 1384 if (len < sizeof(param)) 1385 return -EINVAL; 1386 1387 if (copy_from_user(¶m, optval, sizeof(param))) 1388 return -EFAULT; 1389 1390 err = __sctp_setsockopt_connectx(sk, 1391 (struct sockaddr __user *)param.addrs, 1392 param.addr_num, &assoc_id); 1393 1394 if (err == 0 || err == -EINPROGRESS) { 1395 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1396 return -EFAULT; 1397 if (put_user(sizeof(assoc_id), optlen)) 1398 return -EFAULT; 1399 } 1400 1401 return err; 1402 } 1403 1404 /* API 3.1.4 close() - UDP Style Syntax 1405 * Applications use close() to perform graceful shutdown (as described in 1406 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1407 * by a UDP-style socket. 1408 * 1409 * The syntax is 1410 * 1411 * ret = close(int sd); 1412 * 1413 * sd - the socket descriptor of the associations to be closed. 1414 * 1415 * To gracefully shutdown a specific association represented by the 1416 * UDP-style socket, an application should use the sendmsg() call, 1417 * passing no user data, but including the appropriate flag in the 1418 * ancillary data (see Section xxxx). 1419 * 1420 * If sd in the close() call is a branched-off socket representing only 1421 * one association, the shutdown is performed on that association only. 1422 * 1423 * 4.1.6 close() - TCP Style Syntax 1424 * 1425 * Applications use close() to gracefully close down an association. 1426 * 1427 * The syntax is: 1428 * 1429 * int close(int sd); 1430 * 1431 * sd - the socket descriptor of the association to be closed. 1432 * 1433 * After an application calls close() on a socket descriptor, no further 1434 * socket operations will succeed on that descriptor. 1435 * 1436 * API 7.1.4 SO_LINGER 1437 * 1438 * An application using the TCP-style socket can use this option to 1439 * perform the SCTP ABORT primitive. The linger option structure is: 1440 * 1441 * struct linger { 1442 * int l_onoff; // option on/off 1443 * int l_linger; // linger time 1444 * }; 1445 * 1446 * To enable the option, set l_onoff to 1. If the l_linger value is set 1447 * to 0, calling close() is the same as the ABORT primitive. If the 1448 * value is set to a negative value, the setsockopt() call will return 1449 * an error. If the value is set to a positive value linger_time, the 1450 * close() can be blocked for at most linger_time ms. If the graceful 1451 * shutdown phase does not finish during this period, close() will 1452 * return but the graceful shutdown phase continues in the system. 1453 */ 1454 static void sctp_close(struct sock *sk, long timeout) 1455 { 1456 struct net *net = sock_net(sk); 1457 struct sctp_endpoint *ep; 1458 struct sctp_association *asoc; 1459 struct list_head *pos, *temp; 1460 unsigned int data_was_unread; 1461 1462 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1463 1464 sctp_lock_sock(sk); 1465 sk->sk_shutdown = SHUTDOWN_MASK; 1466 sk->sk_state = SCTP_SS_CLOSING; 1467 1468 ep = sctp_sk(sk)->ep; 1469 1470 /* Clean up any skbs sitting on the receive queue. */ 1471 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1472 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1473 1474 /* Walk all associations on an endpoint. */ 1475 list_for_each_safe(pos, temp, &ep->asocs) { 1476 asoc = list_entry(pos, struct sctp_association, asocs); 1477 1478 if (sctp_style(sk, TCP)) { 1479 /* A closed association can still be in the list if 1480 * it belongs to a TCP-style listening socket that is 1481 * not yet accepted. If so, free it. If not, send an 1482 * ABORT or SHUTDOWN based on the linger options. 1483 */ 1484 if (sctp_state(asoc, CLOSED)) { 1485 sctp_unhash_established(asoc); 1486 sctp_association_free(asoc); 1487 continue; 1488 } 1489 } 1490 1491 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1492 !skb_queue_empty(&asoc->ulpq.reasm) || 1493 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1494 struct sctp_chunk *chunk; 1495 1496 chunk = sctp_make_abort_user(asoc, NULL, 0); 1497 if (chunk) 1498 sctp_primitive_ABORT(net, asoc, chunk); 1499 } else 1500 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1501 } 1502 1503 /* On a TCP-style socket, block for at most linger_time if set. */ 1504 if (sctp_style(sk, TCP) && timeout) 1505 sctp_wait_for_close(sk, timeout); 1506 1507 /* This will run the backlog queue. */ 1508 sctp_release_sock(sk); 1509 1510 /* Supposedly, no process has access to the socket, but 1511 * the net layers still may. 1512 */ 1513 sctp_local_bh_disable(); 1514 sctp_bh_lock_sock(sk); 1515 1516 /* Hold the sock, since sk_common_release() will put sock_put() 1517 * and we have just a little more cleanup. 1518 */ 1519 sock_hold(sk); 1520 sk_common_release(sk); 1521 1522 sctp_bh_unlock_sock(sk); 1523 sctp_local_bh_enable(); 1524 1525 sock_put(sk); 1526 1527 SCTP_DBG_OBJCNT_DEC(sock); 1528 } 1529 1530 /* Handle EPIPE error. */ 1531 static int sctp_error(struct sock *sk, int flags, int err) 1532 { 1533 if (err == -EPIPE) 1534 err = sock_error(sk) ? : -EPIPE; 1535 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1536 send_sig(SIGPIPE, current, 0); 1537 return err; 1538 } 1539 1540 /* API 3.1.3 sendmsg() - UDP Style Syntax 1541 * 1542 * An application uses sendmsg() and recvmsg() calls to transmit data to 1543 * and receive data from its peer. 1544 * 1545 * ssize_t sendmsg(int socket, const struct msghdr *message, 1546 * int flags); 1547 * 1548 * socket - the socket descriptor of the endpoint. 1549 * message - pointer to the msghdr structure which contains a single 1550 * user message and possibly some ancillary data. 1551 * 1552 * See Section 5 for complete description of the data 1553 * structures. 1554 * 1555 * flags - flags sent or received with the user message, see Section 1556 * 5 for complete description of the flags. 1557 * 1558 * Note: This function could use a rewrite especially when explicit 1559 * connect support comes in. 1560 */ 1561 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1562 1563 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1564 1565 static int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1566 struct msghdr *msg, size_t msg_len) 1567 { 1568 struct net *net = sock_net(sk); 1569 struct sctp_sock *sp; 1570 struct sctp_endpoint *ep; 1571 struct sctp_association *new_asoc=NULL, *asoc=NULL; 1572 struct sctp_transport *transport, *chunk_tp; 1573 struct sctp_chunk *chunk; 1574 union sctp_addr to; 1575 struct sockaddr *msg_name = NULL; 1576 struct sctp_sndrcvinfo default_sinfo; 1577 struct sctp_sndrcvinfo *sinfo; 1578 struct sctp_initmsg *sinit; 1579 sctp_assoc_t associd = 0; 1580 sctp_cmsgs_t cmsgs = { NULL }; 1581 int err; 1582 sctp_scope_t scope; 1583 long timeo; 1584 __u16 sinfo_flags = 0; 1585 struct sctp_datamsg *datamsg; 1586 int msg_flags = msg->msg_flags; 1587 1588 err = 0; 1589 sp = sctp_sk(sk); 1590 ep = sp->ep; 1591 1592 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk, 1593 msg, msg_len, ep); 1594 1595 /* We cannot send a message over a TCP-style listening socket. */ 1596 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1597 err = -EPIPE; 1598 goto out_nounlock; 1599 } 1600 1601 /* Parse out the SCTP CMSGs. */ 1602 err = sctp_msghdr_parse(msg, &cmsgs); 1603 if (err) { 1604 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1605 goto out_nounlock; 1606 } 1607 1608 /* Fetch the destination address for this packet. This 1609 * address only selects the association--it is not necessarily 1610 * the address we will send to. 1611 * For a peeled-off socket, msg_name is ignored. 1612 */ 1613 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1614 int msg_namelen = msg->msg_namelen; 1615 1616 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1617 msg_namelen); 1618 if (err) 1619 return err; 1620 1621 if (msg_namelen > sizeof(to)) 1622 msg_namelen = sizeof(to); 1623 memcpy(&to, msg->msg_name, msg_namelen); 1624 msg_name = msg->msg_name; 1625 } 1626 1627 sinfo = cmsgs.info; 1628 sinit = cmsgs.init; 1629 1630 /* Did the user specify SNDRCVINFO? */ 1631 if (sinfo) { 1632 sinfo_flags = sinfo->sinfo_flags; 1633 associd = sinfo->sinfo_assoc_id; 1634 } 1635 1636 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__, 1637 msg_len, sinfo_flags); 1638 1639 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1640 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1641 err = -EINVAL; 1642 goto out_nounlock; 1643 } 1644 1645 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1646 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1647 * If SCTP_ABORT is set, the message length could be non zero with 1648 * the msg_iov set to the user abort reason. 1649 */ 1650 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1651 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1652 err = -EINVAL; 1653 goto out_nounlock; 1654 } 1655 1656 /* If SCTP_ADDR_OVER is set, there must be an address 1657 * specified in msg_name. 1658 */ 1659 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1660 err = -EINVAL; 1661 goto out_nounlock; 1662 } 1663 1664 transport = NULL; 1665 1666 pr_debug("%s: about to look up association\n", __func__); 1667 1668 sctp_lock_sock(sk); 1669 1670 /* If a msg_name has been specified, assume this is to be used. */ 1671 if (msg_name) { 1672 /* Look for a matching association on the endpoint. */ 1673 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1674 if (!asoc) { 1675 /* If we could not find a matching association on the 1676 * endpoint, make sure that it is not a TCP-style 1677 * socket that already has an association or there is 1678 * no peeled-off association on another socket. 1679 */ 1680 if ((sctp_style(sk, TCP) && 1681 sctp_sstate(sk, ESTABLISHED)) || 1682 sctp_endpoint_is_peeled_off(ep, &to)) { 1683 err = -EADDRNOTAVAIL; 1684 goto out_unlock; 1685 } 1686 } 1687 } else { 1688 asoc = sctp_id2assoc(sk, associd); 1689 if (!asoc) { 1690 err = -EPIPE; 1691 goto out_unlock; 1692 } 1693 } 1694 1695 if (asoc) { 1696 pr_debug("%s: just looked up association:%p\n", __func__, asoc); 1697 1698 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1699 * socket that has an association in CLOSED state. This can 1700 * happen when an accepted socket has an association that is 1701 * already CLOSED. 1702 */ 1703 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1704 err = -EPIPE; 1705 goto out_unlock; 1706 } 1707 1708 if (sinfo_flags & SCTP_EOF) { 1709 pr_debug("%s: shutting down association:%p\n", 1710 __func__, asoc); 1711 1712 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1713 err = 0; 1714 goto out_unlock; 1715 } 1716 if (sinfo_flags & SCTP_ABORT) { 1717 1718 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1719 if (!chunk) { 1720 err = -ENOMEM; 1721 goto out_unlock; 1722 } 1723 1724 pr_debug("%s: aborting association:%p\n", 1725 __func__, asoc); 1726 1727 sctp_primitive_ABORT(net, asoc, chunk); 1728 err = 0; 1729 goto out_unlock; 1730 } 1731 } 1732 1733 /* Do we need to create the association? */ 1734 if (!asoc) { 1735 pr_debug("%s: there is no association yet\n", __func__); 1736 1737 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1738 err = -EINVAL; 1739 goto out_unlock; 1740 } 1741 1742 /* Check for invalid stream against the stream counts, 1743 * either the default or the user specified stream counts. 1744 */ 1745 if (sinfo) { 1746 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) { 1747 /* Check against the defaults. */ 1748 if (sinfo->sinfo_stream >= 1749 sp->initmsg.sinit_num_ostreams) { 1750 err = -EINVAL; 1751 goto out_unlock; 1752 } 1753 } else { 1754 /* Check against the requested. */ 1755 if (sinfo->sinfo_stream >= 1756 sinit->sinit_num_ostreams) { 1757 err = -EINVAL; 1758 goto out_unlock; 1759 } 1760 } 1761 } 1762 1763 /* 1764 * API 3.1.2 bind() - UDP Style Syntax 1765 * If a bind() or sctp_bindx() is not called prior to a 1766 * sendmsg() call that initiates a new association, the 1767 * system picks an ephemeral port and will choose an address 1768 * set equivalent to binding with a wildcard address. 1769 */ 1770 if (!ep->base.bind_addr.port) { 1771 if (sctp_autobind(sk)) { 1772 err = -EAGAIN; 1773 goto out_unlock; 1774 } 1775 } else { 1776 /* 1777 * If an unprivileged user inherits a one-to-many 1778 * style socket with open associations on a privileged 1779 * port, it MAY be permitted to accept new associations, 1780 * but it SHOULD NOT be permitted to open new 1781 * associations. 1782 */ 1783 if (ep->base.bind_addr.port < PROT_SOCK && 1784 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) { 1785 err = -EACCES; 1786 goto out_unlock; 1787 } 1788 } 1789 1790 scope = sctp_scope(&to); 1791 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1792 if (!new_asoc) { 1793 err = -ENOMEM; 1794 goto out_unlock; 1795 } 1796 asoc = new_asoc; 1797 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1798 if (err < 0) { 1799 err = -ENOMEM; 1800 goto out_free; 1801 } 1802 1803 /* If the SCTP_INIT ancillary data is specified, set all 1804 * the association init values accordingly. 1805 */ 1806 if (sinit) { 1807 if (sinit->sinit_num_ostreams) { 1808 asoc->c.sinit_num_ostreams = 1809 sinit->sinit_num_ostreams; 1810 } 1811 if (sinit->sinit_max_instreams) { 1812 asoc->c.sinit_max_instreams = 1813 sinit->sinit_max_instreams; 1814 } 1815 if (sinit->sinit_max_attempts) { 1816 asoc->max_init_attempts 1817 = sinit->sinit_max_attempts; 1818 } 1819 if (sinit->sinit_max_init_timeo) { 1820 asoc->max_init_timeo = 1821 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1822 } 1823 } 1824 1825 /* Prime the peer's transport structures. */ 1826 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1827 if (!transport) { 1828 err = -ENOMEM; 1829 goto out_free; 1830 } 1831 } 1832 1833 /* ASSERT: we have a valid association at this point. */ 1834 pr_debug("%s: we have a valid association\n", __func__); 1835 1836 if (!sinfo) { 1837 /* If the user didn't specify SNDRCVINFO, make up one with 1838 * some defaults. 1839 */ 1840 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1841 default_sinfo.sinfo_stream = asoc->default_stream; 1842 default_sinfo.sinfo_flags = asoc->default_flags; 1843 default_sinfo.sinfo_ppid = asoc->default_ppid; 1844 default_sinfo.sinfo_context = asoc->default_context; 1845 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1846 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1847 sinfo = &default_sinfo; 1848 } 1849 1850 /* API 7.1.7, the sndbuf size per association bounds the 1851 * maximum size of data that can be sent in a single send call. 1852 */ 1853 if (msg_len > sk->sk_sndbuf) { 1854 err = -EMSGSIZE; 1855 goto out_free; 1856 } 1857 1858 if (asoc->pmtu_pending) 1859 sctp_assoc_pending_pmtu(sk, asoc); 1860 1861 /* If fragmentation is disabled and the message length exceeds the 1862 * association fragmentation point, return EMSGSIZE. The I-D 1863 * does not specify what this error is, but this looks like 1864 * a great fit. 1865 */ 1866 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1867 err = -EMSGSIZE; 1868 goto out_free; 1869 } 1870 1871 /* Check for invalid stream. */ 1872 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1873 err = -EINVAL; 1874 goto out_free; 1875 } 1876 1877 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1878 if (!sctp_wspace(asoc)) { 1879 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1880 if (err) 1881 goto out_free; 1882 } 1883 1884 /* If an address is passed with the sendto/sendmsg call, it is used 1885 * to override the primary destination address in the TCP model, or 1886 * when SCTP_ADDR_OVER flag is set in the UDP model. 1887 */ 1888 if ((sctp_style(sk, TCP) && msg_name) || 1889 (sinfo_flags & SCTP_ADDR_OVER)) { 1890 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1891 if (!chunk_tp) { 1892 err = -EINVAL; 1893 goto out_free; 1894 } 1895 } else 1896 chunk_tp = NULL; 1897 1898 /* Auto-connect, if we aren't connected already. */ 1899 if (sctp_state(asoc, CLOSED)) { 1900 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1901 if (err < 0) 1902 goto out_free; 1903 1904 pr_debug("%s: we associated primitively\n", __func__); 1905 } 1906 1907 /* Break the message into multiple chunks of maximum size. */ 1908 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1909 if (IS_ERR(datamsg)) { 1910 err = PTR_ERR(datamsg); 1911 goto out_free; 1912 } 1913 1914 /* Now send the (possibly) fragmented message. */ 1915 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1916 sctp_chunk_hold(chunk); 1917 1918 /* Do accounting for the write space. */ 1919 sctp_set_owner_w(chunk); 1920 1921 chunk->transport = chunk_tp; 1922 } 1923 1924 /* Send it to the lower layers. Note: all chunks 1925 * must either fail or succeed. The lower layer 1926 * works that way today. Keep it that way or this 1927 * breaks. 1928 */ 1929 err = sctp_primitive_SEND(net, asoc, datamsg); 1930 /* Did the lower layer accept the chunk? */ 1931 if (err) { 1932 sctp_datamsg_free(datamsg); 1933 goto out_free; 1934 } 1935 1936 pr_debug("%s: we sent primitively\n", __func__); 1937 1938 sctp_datamsg_put(datamsg); 1939 err = msg_len; 1940 1941 /* If we are already past ASSOCIATE, the lower 1942 * layers are responsible for association cleanup. 1943 */ 1944 goto out_unlock; 1945 1946 out_free: 1947 if (new_asoc) { 1948 sctp_unhash_established(asoc); 1949 sctp_association_free(asoc); 1950 } 1951 out_unlock: 1952 sctp_release_sock(sk); 1953 1954 out_nounlock: 1955 return sctp_error(sk, msg_flags, err); 1956 1957 #if 0 1958 do_sock_err: 1959 if (msg_len) 1960 err = msg_len; 1961 else 1962 err = sock_error(sk); 1963 goto out; 1964 1965 do_interrupted: 1966 if (msg_len) 1967 err = msg_len; 1968 goto out; 1969 #endif /* 0 */ 1970 } 1971 1972 /* This is an extended version of skb_pull() that removes the data from the 1973 * start of a skb even when data is spread across the list of skb's in the 1974 * frag_list. len specifies the total amount of data that needs to be removed. 1975 * when 'len' bytes could be removed from the skb, it returns 0. 1976 * If 'len' exceeds the total skb length, it returns the no. of bytes that 1977 * could not be removed. 1978 */ 1979 static int sctp_skb_pull(struct sk_buff *skb, int len) 1980 { 1981 struct sk_buff *list; 1982 int skb_len = skb_headlen(skb); 1983 int rlen; 1984 1985 if (len <= skb_len) { 1986 __skb_pull(skb, len); 1987 return 0; 1988 } 1989 len -= skb_len; 1990 __skb_pull(skb, skb_len); 1991 1992 skb_walk_frags(skb, list) { 1993 rlen = sctp_skb_pull(list, len); 1994 skb->len -= (len-rlen); 1995 skb->data_len -= (len-rlen); 1996 1997 if (!rlen) 1998 return 0; 1999 2000 len = rlen; 2001 } 2002 2003 return len; 2004 } 2005 2006 /* API 3.1.3 recvmsg() - UDP Style Syntax 2007 * 2008 * ssize_t recvmsg(int socket, struct msghdr *message, 2009 * int flags); 2010 * 2011 * socket - the socket descriptor of the endpoint. 2012 * message - pointer to the msghdr structure which contains a single 2013 * user message and possibly some ancillary data. 2014 * 2015 * See Section 5 for complete description of the data 2016 * structures. 2017 * 2018 * flags - flags sent or received with the user message, see Section 2019 * 5 for complete description of the flags. 2020 */ 2021 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); 2022 2023 static int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 2024 struct msghdr *msg, size_t len, int noblock, 2025 int flags, int *addr_len) 2026 { 2027 struct sctp_ulpevent *event = NULL; 2028 struct sctp_sock *sp = sctp_sk(sk); 2029 struct sk_buff *skb; 2030 int copied; 2031 int err = 0; 2032 int skb_len; 2033 2034 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2035 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2036 addr_len); 2037 2038 sctp_lock_sock(sk); 2039 2040 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 2041 err = -ENOTCONN; 2042 goto out; 2043 } 2044 2045 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2046 if (!skb) 2047 goto out; 2048 2049 /* Get the total length of the skb including any skb's in the 2050 * frag_list. 2051 */ 2052 skb_len = skb->len; 2053 2054 copied = skb_len; 2055 if (copied > len) 2056 copied = len; 2057 2058 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 2059 2060 event = sctp_skb2event(skb); 2061 2062 if (err) 2063 goto out_free; 2064 2065 sock_recv_ts_and_drops(msg, sk, skb); 2066 if (sctp_ulpevent_is_notification(event)) { 2067 msg->msg_flags |= MSG_NOTIFICATION; 2068 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2069 } else { 2070 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 2071 } 2072 2073 /* Check if we allow SCTP_SNDRCVINFO. */ 2074 if (sp->subscribe.sctp_data_io_event) 2075 sctp_ulpevent_read_sndrcvinfo(event, msg); 2076 #if 0 2077 /* FIXME: we should be calling IP/IPv6 layers. */ 2078 if (sk->sk_protinfo.af_inet.cmsg_flags) 2079 ip_cmsg_recv(msg, skb); 2080 #endif 2081 2082 err = copied; 2083 2084 /* If skb's length exceeds the user's buffer, update the skb and 2085 * push it back to the receive_queue so that the next call to 2086 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2087 */ 2088 if (skb_len > copied) { 2089 msg->msg_flags &= ~MSG_EOR; 2090 if (flags & MSG_PEEK) 2091 goto out_free; 2092 sctp_skb_pull(skb, copied); 2093 skb_queue_head(&sk->sk_receive_queue, skb); 2094 2095 /* When only partial message is copied to the user, increase 2096 * rwnd by that amount. If all the data in the skb is read, 2097 * rwnd is updated when the event is freed. 2098 */ 2099 if (!sctp_ulpevent_is_notification(event)) 2100 sctp_assoc_rwnd_increase(event->asoc, copied); 2101 goto out; 2102 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2103 (event->msg_flags & MSG_EOR)) 2104 msg->msg_flags |= MSG_EOR; 2105 else 2106 msg->msg_flags &= ~MSG_EOR; 2107 2108 out_free: 2109 if (flags & MSG_PEEK) { 2110 /* Release the skb reference acquired after peeking the skb in 2111 * sctp_skb_recv_datagram(). 2112 */ 2113 kfree_skb(skb); 2114 } else { 2115 /* Free the event which includes releasing the reference to 2116 * the owner of the skb, freeing the skb and updating the 2117 * rwnd. 2118 */ 2119 sctp_ulpevent_free(event); 2120 } 2121 out: 2122 sctp_release_sock(sk); 2123 return err; 2124 } 2125 2126 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2127 * 2128 * This option is a on/off flag. If enabled no SCTP message 2129 * fragmentation will be performed. Instead if a message being sent 2130 * exceeds the current PMTU size, the message will NOT be sent and 2131 * instead a error will be indicated to the user. 2132 */ 2133 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2134 char __user *optval, 2135 unsigned int optlen) 2136 { 2137 int val; 2138 2139 if (optlen < sizeof(int)) 2140 return -EINVAL; 2141 2142 if (get_user(val, (int __user *)optval)) 2143 return -EFAULT; 2144 2145 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2146 2147 return 0; 2148 } 2149 2150 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2151 unsigned int optlen) 2152 { 2153 struct sctp_association *asoc; 2154 struct sctp_ulpevent *event; 2155 2156 if (optlen > sizeof(struct sctp_event_subscribe)) 2157 return -EINVAL; 2158 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2159 return -EFAULT; 2160 2161 /* 2162 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2163 * if there is no data to be sent or retransmit, the stack will 2164 * immediately send up this notification. 2165 */ 2166 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, 2167 &sctp_sk(sk)->subscribe)) { 2168 asoc = sctp_id2assoc(sk, 0); 2169 2170 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2171 event = sctp_ulpevent_make_sender_dry_event(asoc, 2172 GFP_ATOMIC); 2173 if (!event) 2174 return -ENOMEM; 2175 2176 sctp_ulpq_tail_event(&asoc->ulpq, event); 2177 } 2178 } 2179 2180 return 0; 2181 } 2182 2183 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2184 * 2185 * This socket option is applicable to the UDP-style socket only. When 2186 * set it will cause associations that are idle for more than the 2187 * specified number of seconds to automatically close. An association 2188 * being idle is defined an association that has NOT sent or received 2189 * user data. The special value of '0' indicates that no automatic 2190 * close of any associations should be performed. The option expects an 2191 * integer defining the number of seconds of idle time before an 2192 * association is closed. 2193 */ 2194 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2195 unsigned int optlen) 2196 { 2197 struct sctp_sock *sp = sctp_sk(sk); 2198 2199 /* Applicable to UDP-style socket only */ 2200 if (sctp_style(sk, TCP)) 2201 return -EOPNOTSUPP; 2202 if (optlen != sizeof(int)) 2203 return -EINVAL; 2204 if (copy_from_user(&sp->autoclose, optval, optlen)) 2205 return -EFAULT; 2206 2207 return 0; 2208 } 2209 2210 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2211 * 2212 * Applications can enable or disable heartbeats for any peer address of 2213 * an association, modify an address's heartbeat interval, force a 2214 * heartbeat to be sent immediately, and adjust the address's maximum 2215 * number of retransmissions sent before an address is considered 2216 * unreachable. The following structure is used to access and modify an 2217 * address's parameters: 2218 * 2219 * struct sctp_paddrparams { 2220 * sctp_assoc_t spp_assoc_id; 2221 * struct sockaddr_storage spp_address; 2222 * uint32_t spp_hbinterval; 2223 * uint16_t spp_pathmaxrxt; 2224 * uint32_t spp_pathmtu; 2225 * uint32_t spp_sackdelay; 2226 * uint32_t spp_flags; 2227 * }; 2228 * 2229 * spp_assoc_id - (one-to-many style socket) This is filled in the 2230 * application, and identifies the association for 2231 * this query. 2232 * spp_address - This specifies which address is of interest. 2233 * spp_hbinterval - This contains the value of the heartbeat interval, 2234 * in milliseconds. If a value of zero 2235 * is present in this field then no changes are to 2236 * be made to this parameter. 2237 * spp_pathmaxrxt - This contains the maximum number of 2238 * retransmissions before this address shall be 2239 * considered unreachable. If a value of zero 2240 * is present in this field then no changes are to 2241 * be made to this parameter. 2242 * spp_pathmtu - When Path MTU discovery is disabled the value 2243 * specified here will be the "fixed" path mtu. 2244 * Note that if the spp_address field is empty 2245 * then all associations on this address will 2246 * have this fixed path mtu set upon them. 2247 * 2248 * spp_sackdelay - When delayed sack is enabled, this value specifies 2249 * the number of milliseconds that sacks will be delayed 2250 * for. This value will apply to all addresses of an 2251 * association if the spp_address field is empty. Note 2252 * also, that if delayed sack is enabled and this 2253 * value is set to 0, no change is made to the last 2254 * recorded delayed sack timer value. 2255 * 2256 * spp_flags - These flags are used to control various features 2257 * on an association. The flag field may contain 2258 * zero or more of the following options. 2259 * 2260 * SPP_HB_ENABLE - Enable heartbeats on the 2261 * specified address. Note that if the address 2262 * field is empty all addresses for the association 2263 * have heartbeats enabled upon them. 2264 * 2265 * SPP_HB_DISABLE - Disable heartbeats on the 2266 * speicifed address. Note that if the address 2267 * field is empty all addresses for the association 2268 * will have their heartbeats disabled. Note also 2269 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2270 * mutually exclusive, only one of these two should 2271 * be specified. Enabling both fields will have 2272 * undetermined results. 2273 * 2274 * SPP_HB_DEMAND - Request a user initiated heartbeat 2275 * to be made immediately. 2276 * 2277 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2278 * heartbeat delayis to be set to the value of 0 2279 * milliseconds. 2280 * 2281 * SPP_PMTUD_ENABLE - This field will enable PMTU 2282 * discovery upon the specified address. Note that 2283 * if the address feild is empty then all addresses 2284 * on the association are effected. 2285 * 2286 * SPP_PMTUD_DISABLE - This field will disable PMTU 2287 * discovery upon the specified address. Note that 2288 * if the address feild is empty then all addresses 2289 * on the association are effected. Not also that 2290 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2291 * exclusive. Enabling both will have undetermined 2292 * results. 2293 * 2294 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2295 * on delayed sack. The time specified in spp_sackdelay 2296 * is used to specify the sack delay for this address. Note 2297 * that if spp_address is empty then all addresses will 2298 * enable delayed sack and take on the sack delay 2299 * value specified in spp_sackdelay. 2300 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2301 * off delayed sack. If the spp_address field is blank then 2302 * delayed sack is disabled for the entire association. Note 2303 * also that this field is mutually exclusive to 2304 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2305 * results. 2306 */ 2307 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2308 struct sctp_transport *trans, 2309 struct sctp_association *asoc, 2310 struct sctp_sock *sp, 2311 int hb_change, 2312 int pmtud_change, 2313 int sackdelay_change) 2314 { 2315 int error; 2316 2317 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2318 struct net *net = sock_net(trans->asoc->base.sk); 2319 2320 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2321 if (error) 2322 return error; 2323 } 2324 2325 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2326 * this field is ignored. Note also that a value of zero indicates 2327 * the current setting should be left unchanged. 2328 */ 2329 if (params->spp_flags & SPP_HB_ENABLE) { 2330 2331 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2332 * set. This lets us use 0 value when this flag 2333 * is set. 2334 */ 2335 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2336 params->spp_hbinterval = 0; 2337 2338 if (params->spp_hbinterval || 2339 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2340 if (trans) { 2341 trans->hbinterval = 2342 msecs_to_jiffies(params->spp_hbinterval); 2343 } else if (asoc) { 2344 asoc->hbinterval = 2345 msecs_to_jiffies(params->spp_hbinterval); 2346 } else { 2347 sp->hbinterval = params->spp_hbinterval; 2348 } 2349 } 2350 } 2351 2352 if (hb_change) { 2353 if (trans) { 2354 trans->param_flags = 2355 (trans->param_flags & ~SPP_HB) | hb_change; 2356 } else if (asoc) { 2357 asoc->param_flags = 2358 (asoc->param_flags & ~SPP_HB) | hb_change; 2359 } else { 2360 sp->param_flags = 2361 (sp->param_flags & ~SPP_HB) | hb_change; 2362 } 2363 } 2364 2365 /* When Path MTU discovery is disabled the value specified here will 2366 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2367 * include the flag SPP_PMTUD_DISABLE for this field to have any 2368 * effect). 2369 */ 2370 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2371 if (trans) { 2372 trans->pathmtu = params->spp_pathmtu; 2373 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc); 2374 } else if (asoc) { 2375 asoc->pathmtu = params->spp_pathmtu; 2376 sctp_frag_point(asoc, params->spp_pathmtu); 2377 } else { 2378 sp->pathmtu = params->spp_pathmtu; 2379 } 2380 } 2381 2382 if (pmtud_change) { 2383 if (trans) { 2384 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2385 (params->spp_flags & SPP_PMTUD_ENABLE); 2386 trans->param_flags = 2387 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2388 if (update) { 2389 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2390 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc); 2391 } 2392 } else if (asoc) { 2393 asoc->param_flags = 2394 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2395 } else { 2396 sp->param_flags = 2397 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2398 } 2399 } 2400 2401 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2402 * value of this field is ignored. Note also that a value of zero 2403 * indicates the current setting should be left unchanged. 2404 */ 2405 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2406 if (trans) { 2407 trans->sackdelay = 2408 msecs_to_jiffies(params->spp_sackdelay); 2409 } else if (asoc) { 2410 asoc->sackdelay = 2411 msecs_to_jiffies(params->spp_sackdelay); 2412 } else { 2413 sp->sackdelay = params->spp_sackdelay; 2414 } 2415 } 2416 2417 if (sackdelay_change) { 2418 if (trans) { 2419 trans->param_flags = 2420 (trans->param_flags & ~SPP_SACKDELAY) | 2421 sackdelay_change; 2422 } else if (asoc) { 2423 asoc->param_flags = 2424 (asoc->param_flags & ~SPP_SACKDELAY) | 2425 sackdelay_change; 2426 } else { 2427 sp->param_flags = 2428 (sp->param_flags & ~SPP_SACKDELAY) | 2429 sackdelay_change; 2430 } 2431 } 2432 2433 /* Note that a value of zero indicates the current setting should be 2434 left unchanged. 2435 */ 2436 if (params->spp_pathmaxrxt) { 2437 if (trans) { 2438 trans->pathmaxrxt = params->spp_pathmaxrxt; 2439 } else if (asoc) { 2440 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2441 } else { 2442 sp->pathmaxrxt = params->spp_pathmaxrxt; 2443 } 2444 } 2445 2446 return 0; 2447 } 2448 2449 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2450 char __user *optval, 2451 unsigned int optlen) 2452 { 2453 struct sctp_paddrparams params; 2454 struct sctp_transport *trans = NULL; 2455 struct sctp_association *asoc = NULL; 2456 struct sctp_sock *sp = sctp_sk(sk); 2457 int error; 2458 int hb_change, pmtud_change, sackdelay_change; 2459 2460 if (optlen != sizeof(struct sctp_paddrparams)) 2461 return - EINVAL; 2462 2463 if (copy_from_user(¶ms, optval, optlen)) 2464 return -EFAULT; 2465 2466 /* Validate flags and value parameters. */ 2467 hb_change = params.spp_flags & SPP_HB; 2468 pmtud_change = params.spp_flags & SPP_PMTUD; 2469 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2470 2471 if (hb_change == SPP_HB || 2472 pmtud_change == SPP_PMTUD || 2473 sackdelay_change == SPP_SACKDELAY || 2474 params.spp_sackdelay > 500 || 2475 (params.spp_pathmtu && 2476 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2477 return -EINVAL; 2478 2479 /* If an address other than INADDR_ANY is specified, and 2480 * no transport is found, then the request is invalid. 2481 */ 2482 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) { 2483 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2484 params.spp_assoc_id); 2485 if (!trans) 2486 return -EINVAL; 2487 } 2488 2489 /* Get association, if assoc_id != 0 and the socket is a one 2490 * to many style socket, and an association was not found, then 2491 * the id was invalid. 2492 */ 2493 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2494 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2495 return -EINVAL; 2496 2497 /* Heartbeat demand can only be sent on a transport or 2498 * association, but not a socket. 2499 */ 2500 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2501 return -EINVAL; 2502 2503 /* Process parameters. */ 2504 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2505 hb_change, pmtud_change, 2506 sackdelay_change); 2507 2508 if (error) 2509 return error; 2510 2511 /* If changes are for association, also apply parameters to each 2512 * transport. 2513 */ 2514 if (!trans && asoc) { 2515 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2516 transports) { 2517 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2518 hb_change, pmtud_change, 2519 sackdelay_change); 2520 } 2521 } 2522 2523 return 0; 2524 } 2525 2526 /* 2527 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2528 * 2529 * This option will effect the way delayed acks are performed. This 2530 * option allows you to get or set the delayed ack time, in 2531 * milliseconds. It also allows changing the delayed ack frequency. 2532 * Changing the frequency to 1 disables the delayed sack algorithm. If 2533 * the assoc_id is 0, then this sets or gets the endpoints default 2534 * values. If the assoc_id field is non-zero, then the set or get 2535 * effects the specified association for the one to many model (the 2536 * assoc_id field is ignored by the one to one model). Note that if 2537 * sack_delay or sack_freq are 0 when setting this option, then the 2538 * current values will remain unchanged. 2539 * 2540 * struct sctp_sack_info { 2541 * sctp_assoc_t sack_assoc_id; 2542 * uint32_t sack_delay; 2543 * uint32_t sack_freq; 2544 * }; 2545 * 2546 * sack_assoc_id - This parameter, indicates which association the user 2547 * is performing an action upon. Note that if this field's value is 2548 * zero then the endpoints default value is changed (effecting future 2549 * associations only). 2550 * 2551 * sack_delay - This parameter contains the number of milliseconds that 2552 * the user is requesting the delayed ACK timer be set to. Note that 2553 * this value is defined in the standard to be between 200 and 500 2554 * milliseconds. 2555 * 2556 * sack_freq - This parameter contains the number of packets that must 2557 * be received before a sack is sent without waiting for the delay 2558 * timer to expire. The default value for this is 2, setting this 2559 * value to 1 will disable the delayed sack algorithm. 2560 */ 2561 2562 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2563 char __user *optval, unsigned int optlen) 2564 { 2565 struct sctp_sack_info params; 2566 struct sctp_transport *trans = NULL; 2567 struct sctp_association *asoc = NULL; 2568 struct sctp_sock *sp = sctp_sk(sk); 2569 2570 if (optlen == sizeof(struct sctp_sack_info)) { 2571 if (copy_from_user(¶ms, optval, optlen)) 2572 return -EFAULT; 2573 2574 if (params.sack_delay == 0 && params.sack_freq == 0) 2575 return 0; 2576 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2577 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n"); 2578 pr_warn("Use struct sctp_sack_info instead\n"); 2579 if (copy_from_user(¶ms, optval, optlen)) 2580 return -EFAULT; 2581 2582 if (params.sack_delay == 0) 2583 params.sack_freq = 1; 2584 else 2585 params.sack_freq = 0; 2586 } else 2587 return - EINVAL; 2588 2589 /* Validate value parameter. */ 2590 if (params.sack_delay > 500) 2591 return -EINVAL; 2592 2593 /* Get association, if sack_assoc_id != 0 and the socket is a one 2594 * to many style socket, and an association was not found, then 2595 * the id was invalid. 2596 */ 2597 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2598 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2599 return -EINVAL; 2600 2601 if (params.sack_delay) { 2602 if (asoc) { 2603 asoc->sackdelay = 2604 msecs_to_jiffies(params.sack_delay); 2605 asoc->param_flags = 2606 (asoc->param_flags & ~SPP_SACKDELAY) | 2607 SPP_SACKDELAY_ENABLE; 2608 } else { 2609 sp->sackdelay = params.sack_delay; 2610 sp->param_flags = 2611 (sp->param_flags & ~SPP_SACKDELAY) | 2612 SPP_SACKDELAY_ENABLE; 2613 } 2614 } 2615 2616 if (params.sack_freq == 1) { 2617 if (asoc) { 2618 asoc->param_flags = 2619 (asoc->param_flags & ~SPP_SACKDELAY) | 2620 SPP_SACKDELAY_DISABLE; 2621 } else { 2622 sp->param_flags = 2623 (sp->param_flags & ~SPP_SACKDELAY) | 2624 SPP_SACKDELAY_DISABLE; 2625 } 2626 } else if (params.sack_freq > 1) { 2627 if (asoc) { 2628 asoc->sackfreq = params.sack_freq; 2629 asoc->param_flags = 2630 (asoc->param_flags & ~SPP_SACKDELAY) | 2631 SPP_SACKDELAY_ENABLE; 2632 } else { 2633 sp->sackfreq = params.sack_freq; 2634 sp->param_flags = 2635 (sp->param_flags & ~SPP_SACKDELAY) | 2636 SPP_SACKDELAY_ENABLE; 2637 } 2638 } 2639 2640 /* If change is for association, also apply to each transport. */ 2641 if (asoc) { 2642 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2643 transports) { 2644 if (params.sack_delay) { 2645 trans->sackdelay = 2646 msecs_to_jiffies(params.sack_delay); 2647 trans->param_flags = 2648 (trans->param_flags & ~SPP_SACKDELAY) | 2649 SPP_SACKDELAY_ENABLE; 2650 } 2651 if (params.sack_freq == 1) { 2652 trans->param_flags = 2653 (trans->param_flags & ~SPP_SACKDELAY) | 2654 SPP_SACKDELAY_DISABLE; 2655 } else if (params.sack_freq > 1) { 2656 trans->sackfreq = params.sack_freq; 2657 trans->param_flags = 2658 (trans->param_flags & ~SPP_SACKDELAY) | 2659 SPP_SACKDELAY_ENABLE; 2660 } 2661 } 2662 } 2663 2664 return 0; 2665 } 2666 2667 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2668 * 2669 * Applications can specify protocol parameters for the default association 2670 * initialization. The option name argument to setsockopt() and getsockopt() 2671 * is SCTP_INITMSG. 2672 * 2673 * Setting initialization parameters is effective only on an unconnected 2674 * socket (for UDP-style sockets only future associations are effected 2675 * by the change). With TCP-style sockets, this option is inherited by 2676 * sockets derived from a listener socket. 2677 */ 2678 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2679 { 2680 struct sctp_initmsg sinit; 2681 struct sctp_sock *sp = sctp_sk(sk); 2682 2683 if (optlen != sizeof(struct sctp_initmsg)) 2684 return -EINVAL; 2685 if (copy_from_user(&sinit, optval, optlen)) 2686 return -EFAULT; 2687 2688 if (sinit.sinit_num_ostreams) 2689 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2690 if (sinit.sinit_max_instreams) 2691 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2692 if (sinit.sinit_max_attempts) 2693 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2694 if (sinit.sinit_max_init_timeo) 2695 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2696 2697 return 0; 2698 } 2699 2700 /* 2701 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2702 * 2703 * Applications that wish to use the sendto() system call may wish to 2704 * specify a default set of parameters that would normally be supplied 2705 * through the inclusion of ancillary data. This socket option allows 2706 * such an application to set the default sctp_sndrcvinfo structure. 2707 * The application that wishes to use this socket option simply passes 2708 * in to this call the sctp_sndrcvinfo structure defined in Section 2709 * 5.2.2) The input parameters accepted by this call include 2710 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2711 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2712 * to this call if the caller is using the UDP model. 2713 */ 2714 static int sctp_setsockopt_default_send_param(struct sock *sk, 2715 char __user *optval, 2716 unsigned int optlen) 2717 { 2718 struct sctp_sndrcvinfo info; 2719 struct sctp_association *asoc; 2720 struct sctp_sock *sp = sctp_sk(sk); 2721 2722 if (optlen != sizeof(struct sctp_sndrcvinfo)) 2723 return -EINVAL; 2724 if (copy_from_user(&info, optval, optlen)) 2725 return -EFAULT; 2726 2727 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2728 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2729 return -EINVAL; 2730 2731 if (asoc) { 2732 asoc->default_stream = info.sinfo_stream; 2733 asoc->default_flags = info.sinfo_flags; 2734 asoc->default_ppid = info.sinfo_ppid; 2735 asoc->default_context = info.sinfo_context; 2736 asoc->default_timetolive = info.sinfo_timetolive; 2737 } else { 2738 sp->default_stream = info.sinfo_stream; 2739 sp->default_flags = info.sinfo_flags; 2740 sp->default_ppid = info.sinfo_ppid; 2741 sp->default_context = info.sinfo_context; 2742 sp->default_timetolive = info.sinfo_timetolive; 2743 } 2744 2745 return 0; 2746 } 2747 2748 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2749 * 2750 * Requests that the local SCTP stack use the enclosed peer address as 2751 * the association primary. The enclosed address must be one of the 2752 * association peer's addresses. 2753 */ 2754 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2755 unsigned int optlen) 2756 { 2757 struct sctp_prim prim; 2758 struct sctp_transport *trans; 2759 2760 if (optlen != sizeof(struct sctp_prim)) 2761 return -EINVAL; 2762 2763 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2764 return -EFAULT; 2765 2766 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2767 if (!trans) 2768 return -EINVAL; 2769 2770 sctp_assoc_set_primary(trans->asoc, trans); 2771 2772 return 0; 2773 } 2774 2775 /* 2776 * 7.1.5 SCTP_NODELAY 2777 * 2778 * Turn on/off any Nagle-like algorithm. This means that packets are 2779 * generally sent as soon as possible and no unnecessary delays are 2780 * introduced, at the cost of more packets in the network. Expects an 2781 * integer boolean flag. 2782 */ 2783 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2784 unsigned int optlen) 2785 { 2786 int val; 2787 2788 if (optlen < sizeof(int)) 2789 return -EINVAL; 2790 if (get_user(val, (int __user *)optval)) 2791 return -EFAULT; 2792 2793 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2794 return 0; 2795 } 2796 2797 /* 2798 * 2799 * 7.1.1 SCTP_RTOINFO 2800 * 2801 * The protocol parameters used to initialize and bound retransmission 2802 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2803 * and modify these parameters. 2804 * All parameters are time values, in milliseconds. A value of 0, when 2805 * modifying the parameters, indicates that the current value should not 2806 * be changed. 2807 * 2808 */ 2809 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 2810 { 2811 struct sctp_rtoinfo rtoinfo; 2812 struct sctp_association *asoc; 2813 2814 if (optlen != sizeof (struct sctp_rtoinfo)) 2815 return -EINVAL; 2816 2817 if (copy_from_user(&rtoinfo, optval, optlen)) 2818 return -EFAULT; 2819 2820 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2821 2822 /* Set the values to the specific association */ 2823 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2824 return -EINVAL; 2825 2826 if (asoc) { 2827 if (rtoinfo.srto_initial != 0) 2828 asoc->rto_initial = 2829 msecs_to_jiffies(rtoinfo.srto_initial); 2830 if (rtoinfo.srto_max != 0) 2831 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max); 2832 if (rtoinfo.srto_min != 0) 2833 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min); 2834 } else { 2835 /* If there is no association or the association-id = 0 2836 * set the values to the endpoint. 2837 */ 2838 struct sctp_sock *sp = sctp_sk(sk); 2839 2840 if (rtoinfo.srto_initial != 0) 2841 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2842 if (rtoinfo.srto_max != 0) 2843 sp->rtoinfo.srto_max = rtoinfo.srto_max; 2844 if (rtoinfo.srto_min != 0) 2845 sp->rtoinfo.srto_min = rtoinfo.srto_min; 2846 } 2847 2848 return 0; 2849 } 2850 2851 /* 2852 * 2853 * 7.1.2 SCTP_ASSOCINFO 2854 * 2855 * This option is used to tune the maximum retransmission attempts 2856 * of the association. 2857 * Returns an error if the new association retransmission value is 2858 * greater than the sum of the retransmission value of the peer. 2859 * See [SCTP] for more information. 2860 * 2861 */ 2862 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 2863 { 2864 2865 struct sctp_assocparams assocparams; 2866 struct sctp_association *asoc; 2867 2868 if (optlen != sizeof(struct sctp_assocparams)) 2869 return -EINVAL; 2870 if (copy_from_user(&assocparams, optval, optlen)) 2871 return -EFAULT; 2872 2873 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2874 2875 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2876 return -EINVAL; 2877 2878 /* Set the values to the specific association */ 2879 if (asoc) { 2880 if (assocparams.sasoc_asocmaxrxt != 0) { 2881 __u32 path_sum = 0; 2882 int paths = 0; 2883 struct sctp_transport *peer_addr; 2884 2885 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 2886 transports) { 2887 path_sum += peer_addr->pathmaxrxt; 2888 paths++; 2889 } 2890 2891 /* Only validate asocmaxrxt if we have more than 2892 * one path/transport. We do this because path 2893 * retransmissions are only counted when we have more 2894 * then one path. 2895 */ 2896 if (paths > 1 && 2897 assocparams.sasoc_asocmaxrxt > path_sum) 2898 return -EINVAL; 2899 2900 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 2901 } 2902 2903 if (assocparams.sasoc_cookie_life != 0) 2904 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 2905 } else { 2906 /* Set the values to the endpoint */ 2907 struct sctp_sock *sp = sctp_sk(sk); 2908 2909 if (assocparams.sasoc_asocmaxrxt != 0) 2910 sp->assocparams.sasoc_asocmaxrxt = 2911 assocparams.sasoc_asocmaxrxt; 2912 if (assocparams.sasoc_cookie_life != 0) 2913 sp->assocparams.sasoc_cookie_life = 2914 assocparams.sasoc_cookie_life; 2915 } 2916 return 0; 2917 } 2918 2919 /* 2920 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 2921 * 2922 * This socket option is a boolean flag which turns on or off mapped V4 2923 * addresses. If this option is turned on and the socket is type 2924 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 2925 * If this option is turned off, then no mapping will be done of V4 2926 * addresses and a user will receive both PF_INET6 and PF_INET type 2927 * addresses on the socket. 2928 */ 2929 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 2930 { 2931 int val; 2932 struct sctp_sock *sp = sctp_sk(sk); 2933 2934 if (optlen < sizeof(int)) 2935 return -EINVAL; 2936 if (get_user(val, (int __user *)optval)) 2937 return -EFAULT; 2938 if (val) 2939 sp->v4mapped = 1; 2940 else 2941 sp->v4mapped = 0; 2942 2943 return 0; 2944 } 2945 2946 /* 2947 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 2948 * This option will get or set the maximum size to put in any outgoing 2949 * SCTP DATA chunk. If a message is larger than this size it will be 2950 * fragmented by SCTP into the specified size. Note that the underlying 2951 * SCTP implementation may fragment into smaller sized chunks when the 2952 * PMTU of the underlying association is smaller than the value set by 2953 * the user. The default value for this option is '0' which indicates 2954 * the user is NOT limiting fragmentation and only the PMTU will effect 2955 * SCTP's choice of DATA chunk size. Note also that values set larger 2956 * than the maximum size of an IP datagram will effectively let SCTP 2957 * control fragmentation (i.e. the same as setting this option to 0). 2958 * 2959 * The following structure is used to access and modify this parameter: 2960 * 2961 * struct sctp_assoc_value { 2962 * sctp_assoc_t assoc_id; 2963 * uint32_t assoc_value; 2964 * }; 2965 * 2966 * assoc_id: This parameter is ignored for one-to-one style sockets. 2967 * For one-to-many style sockets this parameter indicates which 2968 * association the user is performing an action upon. Note that if 2969 * this field's value is zero then the endpoints default value is 2970 * changed (effecting future associations only). 2971 * assoc_value: This parameter specifies the maximum size in bytes. 2972 */ 2973 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 2974 { 2975 struct sctp_assoc_value params; 2976 struct sctp_association *asoc; 2977 struct sctp_sock *sp = sctp_sk(sk); 2978 int val; 2979 2980 if (optlen == sizeof(int)) { 2981 pr_warn("Use of int in maxseg socket option deprecated\n"); 2982 pr_warn("Use struct sctp_assoc_value instead\n"); 2983 if (copy_from_user(&val, optval, optlen)) 2984 return -EFAULT; 2985 params.assoc_id = 0; 2986 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2987 if (copy_from_user(¶ms, optval, optlen)) 2988 return -EFAULT; 2989 val = params.assoc_value; 2990 } else 2991 return -EINVAL; 2992 2993 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 2994 return -EINVAL; 2995 2996 asoc = sctp_id2assoc(sk, params.assoc_id); 2997 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 2998 return -EINVAL; 2999 3000 if (asoc) { 3001 if (val == 0) { 3002 val = asoc->pathmtu; 3003 val -= sp->pf->af->net_header_len; 3004 val -= sizeof(struct sctphdr) + 3005 sizeof(struct sctp_data_chunk); 3006 } 3007 asoc->user_frag = val; 3008 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 3009 } else { 3010 sp->user_frag = val; 3011 } 3012 3013 return 0; 3014 } 3015 3016 3017 /* 3018 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3019 * 3020 * Requests that the peer mark the enclosed address as the association 3021 * primary. The enclosed address must be one of the association's 3022 * locally bound addresses. The following structure is used to make a 3023 * set primary request: 3024 */ 3025 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3026 unsigned int optlen) 3027 { 3028 struct net *net = sock_net(sk); 3029 struct sctp_sock *sp; 3030 struct sctp_association *asoc = NULL; 3031 struct sctp_setpeerprim prim; 3032 struct sctp_chunk *chunk; 3033 struct sctp_af *af; 3034 int err; 3035 3036 sp = sctp_sk(sk); 3037 3038 if (!net->sctp.addip_enable) 3039 return -EPERM; 3040 3041 if (optlen != sizeof(struct sctp_setpeerprim)) 3042 return -EINVAL; 3043 3044 if (copy_from_user(&prim, optval, optlen)) 3045 return -EFAULT; 3046 3047 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3048 if (!asoc) 3049 return -EINVAL; 3050 3051 if (!asoc->peer.asconf_capable) 3052 return -EPERM; 3053 3054 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3055 return -EPERM; 3056 3057 if (!sctp_state(asoc, ESTABLISHED)) 3058 return -ENOTCONN; 3059 3060 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3061 if (!af) 3062 return -EINVAL; 3063 3064 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3065 return -EADDRNOTAVAIL; 3066 3067 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3068 return -EADDRNOTAVAIL; 3069 3070 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3071 chunk = sctp_make_asconf_set_prim(asoc, 3072 (union sctp_addr *)&prim.sspp_addr); 3073 if (!chunk) 3074 return -ENOMEM; 3075 3076 err = sctp_send_asconf(asoc, chunk); 3077 3078 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3079 3080 return err; 3081 } 3082 3083 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3084 unsigned int optlen) 3085 { 3086 struct sctp_setadaptation adaptation; 3087 3088 if (optlen != sizeof(struct sctp_setadaptation)) 3089 return -EINVAL; 3090 if (copy_from_user(&adaptation, optval, optlen)) 3091 return -EFAULT; 3092 3093 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3094 3095 return 0; 3096 } 3097 3098 /* 3099 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3100 * 3101 * The context field in the sctp_sndrcvinfo structure is normally only 3102 * used when a failed message is retrieved holding the value that was 3103 * sent down on the actual send call. This option allows the setting of 3104 * a default context on an association basis that will be received on 3105 * reading messages from the peer. This is especially helpful in the 3106 * one-2-many model for an application to keep some reference to an 3107 * internal state machine that is processing messages on the 3108 * association. Note that the setting of this value only effects 3109 * received messages from the peer and does not effect the value that is 3110 * saved with outbound messages. 3111 */ 3112 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3113 unsigned int optlen) 3114 { 3115 struct sctp_assoc_value params; 3116 struct sctp_sock *sp; 3117 struct sctp_association *asoc; 3118 3119 if (optlen != sizeof(struct sctp_assoc_value)) 3120 return -EINVAL; 3121 if (copy_from_user(¶ms, optval, optlen)) 3122 return -EFAULT; 3123 3124 sp = sctp_sk(sk); 3125 3126 if (params.assoc_id != 0) { 3127 asoc = sctp_id2assoc(sk, params.assoc_id); 3128 if (!asoc) 3129 return -EINVAL; 3130 asoc->default_rcv_context = params.assoc_value; 3131 } else { 3132 sp->default_rcv_context = params.assoc_value; 3133 } 3134 3135 return 0; 3136 } 3137 3138 /* 3139 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3140 * 3141 * This options will at a minimum specify if the implementation is doing 3142 * fragmented interleave. Fragmented interleave, for a one to many 3143 * socket, is when subsequent calls to receive a message may return 3144 * parts of messages from different associations. Some implementations 3145 * may allow you to turn this value on or off. If so, when turned off, 3146 * no fragment interleave will occur (which will cause a head of line 3147 * blocking amongst multiple associations sharing the same one to many 3148 * socket). When this option is turned on, then each receive call may 3149 * come from a different association (thus the user must receive data 3150 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3151 * association each receive belongs to. 3152 * 3153 * This option takes a boolean value. A non-zero value indicates that 3154 * fragmented interleave is on. A value of zero indicates that 3155 * fragmented interleave is off. 3156 * 3157 * Note that it is important that an implementation that allows this 3158 * option to be turned on, have it off by default. Otherwise an unaware 3159 * application using the one to many model may become confused and act 3160 * incorrectly. 3161 */ 3162 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3163 char __user *optval, 3164 unsigned int optlen) 3165 { 3166 int val; 3167 3168 if (optlen != sizeof(int)) 3169 return -EINVAL; 3170 if (get_user(val, (int __user *)optval)) 3171 return -EFAULT; 3172 3173 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; 3174 3175 return 0; 3176 } 3177 3178 /* 3179 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3180 * (SCTP_PARTIAL_DELIVERY_POINT) 3181 * 3182 * This option will set or get the SCTP partial delivery point. This 3183 * point is the size of a message where the partial delivery API will be 3184 * invoked to help free up rwnd space for the peer. Setting this to a 3185 * lower value will cause partial deliveries to happen more often. The 3186 * calls argument is an integer that sets or gets the partial delivery 3187 * point. Note also that the call will fail if the user attempts to set 3188 * this value larger than the socket receive buffer size. 3189 * 3190 * Note that any single message having a length smaller than or equal to 3191 * the SCTP partial delivery point will be delivered in one single read 3192 * call as long as the user provided buffer is large enough to hold the 3193 * message. 3194 */ 3195 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3196 char __user *optval, 3197 unsigned int optlen) 3198 { 3199 u32 val; 3200 3201 if (optlen != sizeof(u32)) 3202 return -EINVAL; 3203 if (get_user(val, (int __user *)optval)) 3204 return -EFAULT; 3205 3206 /* Note: We double the receive buffer from what the user sets 3207 * it to be, also initial rwnd is based on rcvbuf/2. 3208 */ 3209 if (val > (sk->sk_rcvbuf >> 1)) 3210 return -EINVAL; 3211 3212 sctp_sk(sk)->pd_point = val; 3213 3214 return 0; /* is this the right error code? */ 3215 } 3216 3217 /* 3218 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3219 * 3220 * This option will allow a user to change the maximum burst of packets 3221 * that can be emitted by this association. Note that the default value 3222 * is 4, and some implementations may restrict this setting so that it 3223 * can only be lowered. 3224 * 3225 * NOTE: This text doesn't seem right. Do this on a socket basis with 3226 * future associations inheriting the socket value. 3227 */ 3228 static int sctp_setsockopt_maxburst(struct sock *sk, 3229 char __user *optval, 3230 unsigned int optlen) 3231 { 3232 struct sctp_assoc_value params; 3233 struct sctp_sock *sp; 3234 struct sctp_association *asoc; 3235 int val; 3236 int assoc_id = 0; 3237 3238 if (optlen == sizeof(int)) { 3239 pr_warn("Use of int in max_burst socket option deprecated\n"); 3240 pr_warn("Use struct sctp_assoc_value instead\n"); 3241 if (copy_from_user(&val, optval, optlen)) 3242 return -EFAULT; 3243 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3244 if (copy_from_user(¶ms, optval, optlen)) 3245 return -EFAULT; 3246 val = params.assoc_value; 3247 assoc_id = params.assoc_id; 3248 } else 3249 return -EINVAL; 3250 3251 sp = sctp_sk(sk); 3252 3253 if (assoc_id != 0) { 3254 asoc = sctp_id2assoc(sk, assoc_id); 3255 if (!asoc) 3256 return -EINVAL; 3257 asoc->max_burst = val; 3258 } else 3259 sp->max_burst = val; 3260 3261 return 0; 3262 } 3263 3264 /* 3265 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3266 * 3267 * This set option adds a chunk type that the user is requesting to be 3268 * received only in an authenticated way. Changes to the list of chunks 3269 * will only effect future associations on the socket. 3270 */ 3271 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3272 char __user *optval, 3273 unsigned int optlen) 3274 { 3275 struct net *net = sock_net(sk); 3276 struct sctp_authchunk val; 3277 3278 if (!net->sctp.auth_enable) 3279 return -EACCES; 3280 3281 if (optlen != sizeof(struct sctp_authchunk)) 3282 return -EINVAL; 3283 if (copy_from_user(&val, optval, optlen)) 3284 return -EFAULT; 3285 3286 switch (val.sauth_chunk) { 3287 case SCTP_CID_INIT: 3288 case SCTP_CID_INIT_ACK: 3289 case SCTP_CID_SHUTDOWN_COMPLETE: 3290 case SCTP_CID_AUTH: 3291 return -EINVAL; 3292 } 3293 3294 /* add this chunk id to the endpoint */ 3295 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk); 3296 } 3297 3298 /* 3299 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3300 * 3301 * This option gets or sets the list of HMAC algorithms that the local 3302 * endpoint requires the peer to use. 3303 */ 3304 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3305 char __user *optval, 3306 unsigned int optlen) 3307 { 3308 struct net *net = sock_net(sk); 3309 struct sctp_hmacalgo *hmacs; 3310 u32 idents; 3311 int err; 3312 3313 if (!net->sctp.auth_enable) 3314 return -EACCES; 3315 3316 if (optlen < sizeof(struct sctp_hmacalgo)) 3317 return -EINVAL; 3318 3319 hmacs= memdup_user(optval, optlen); 3320 if (IS_ERR(hmacs)) 3321 return PTR_ERR(hmacs); 3322 3323 idents = hmacs->shmac_num_idents; 3324 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3325 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3326 err = -EINVAL; 3327 goto out; 3328 } 3329 3330 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs); 3331 out: 3332 kfree(hmacs); 3333 return err; 3334 } 3335 3336 /* 3337 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3338 * 3339 * This option will set a shared secret key which is used to build an 3340 * association shared key. 3341 */ 3342 static int sctp_setsockopt_auth_key(struct sock *sk, 3343 char __user *optval, 3344 unsigned int optlen) 3345 { 3346 struct net *net = sock_net(sk); 3347 struct sctp_authkey *authkey; 3348 struct sctp_association *asoc; 3349 int ret; 3350 3351 if (!net->sctp.auth_enable) 3352 return -EACCES; 3353 3354 if (optlen <= sizeof(struct sctp_authkey)) 3355 return -EINVAL; 3356 3357 authkey= memdup_user(optval, optlen); 3358 if (IS_ERR(authkey)) 3359 return PTR_ERR(authkey); 3360 3361 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3362 ret = -EINVAL; 3363 goto out; 3364 } 3365 3366 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3367 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3368 ret = -EINVAL; 3369 goto out; 3370 } 3371 3372 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey); 3373 out: 3374 kzfree(authkey); 3375 return ret; 3376 } 3377 3378 /* 3379 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3380 * 3381 * This option will get or set the active shared key to be used to build 3382 * the association shared key. 3383 */ 3384 static int sctp_setsockopt_active_key(struct sock *sk, 3385 char __user *optval, 3386 unsigned int optlen) 3387 { 3388 struct net *net = sock_net(sk); 3389 struct sctp_authkeyid val; 3390 struct sctp_association *asoc; 3391 3392 if (!net->sctp.auth_enable) 3393 return -EACCES; 3394 3395 if (optlen != sizeof(struct sctp_authkeyid)) 3396 return -EINVAL; 3397 if (copy_from_user(&val, optval, optlen)) 3398 return -EFAULT; 3399 3400 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3401 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3402 return -EINVAL; 3403 3404 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc, 3405 val.scact_keynumber); 3406 } 3407 3408 /* 3409 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3410 * 3411 * This set option will delete a shared secret key from use. 3412 */ 3413 static int sctp_setsockopt_del_key(struct sock *sk, 3414 char __user *optval, 3415 unsigned int optlen) 3416 { 3417 struct net *net = sock_net(sk); 3418 struct sctp_authkeyid val; 3419 struct sctp_association *asoc; 3420 3421 if (!net->sctp.auth_enable) 3422 return -EACCES; 3423 3424 if (optlen != sizeof(struct sctp_authkeyid)) 3425 return -EINVAL; 3426 if (copy_from_user(&val, optval, optlen)) 3427 return -EFAULT; 3428 3429 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3430 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3431 return -EINVAL; 3432 3433 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc, 3434 val.scact_keynumber); 3435 3436 } 3437 3438 /* 3439 * 8.1.23 SCTP_AUTO_ASCONF 3440 * 3441 * This option will enable or disable the use of the automatic generation of 3442 * ASCONF chunks to add and delete addresses to an existing association. Note 3443 * that this option has two caveats namely: a) it only affects sockets that 3444 * are bound to all addresses available to the SCTP stack, and b) the system 3445 * administrator may have an overriding control that turns the ASCONF feature 3446 * off no matter what setting the socket option may have. 3447 * This option expects an integer boolean flag, where a non-zero value turns on 3448 * the option, and a zero value turns off the option. 3449 * Note. In this implementation, socket operation overrides default parameter 3450 * being set by sysctl as well as FreeBSD implementation 3451 */ 3452 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3453 unsigned int optlen) 3454 { 3455 int val; 3456 struct sctp_sock *sp = sctp_sk(sk); 3457 3458 if (optlen < sizeof(int)) 3459 return -EINVAL; 3460 if (get_user(val, (int __user *)optval)) 3461 return -EFAULT; 3462 if (!sctp_is_ep_boundall(sk) && val) 3463 return -EINVAL; 3464 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3465 return 0; 3466 3467 if (val == 0 && sp->do_auto_asconf) { 3468 list_del(&sp->auto_asconf_list); 3469 sp->do_auto_asconf = 0; 3470 } else if (val && !sp->do_auto_asconf) { 3471 list_add_tail(&sp->auto_asconf_list, 3472 &sock_net(sk)->sctp.auto_asconf_splist); 3473 sp->do_auto_asconf = 1; 3474 } 3475 return 0; 3476 } 3477 3478 3479 /* 3480 * SCTP_PEER_ADDR_THLDS 3481 * 3482 * This option allows us to alter the partially failed threshold for one or all 3483 * transports in an association. See Section 6.1 of: 3484 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3485 */ 3486 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3487 char __user *optval, 3488 unsigned int optlen) 3489 { 3490 struct sctp_paddrthlds val; 3491 struct sctp_transport *trans; 3492 struct sctp_association *asoc; 3493 3494 if (optlen < sizeof(struct sctp_paddrthlds)) 3495 return -EINVAL; 3496 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 3497 sizeof(struct sctp_paddrthlds))) 3498 return -EFAULT; 3499 3500 3501 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3502 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3503 if (!asoc) 3504 return -ENOENT; 3505 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3506 transports) { 3507 if (val.spt_pathmaxrxt) 3508 trans->pathmaxrxt = val.spt_pathmaxrxt; 3509 trans->pf_retrans = val.spt_pathpfthld; 3510 } 3511 3512 if (val.spt_pathmaxrxt) 3513 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3514 asoc->pf_retrans = val.spt_pathpfthld; 3515 } else { 3516 trans = sctp_addr_id2transport(sk, &val.spt_address, 3517 val.spt_assoc_id); 3518 if (!trans) 3519 return -ENOENT; 3520 3521 if (val.spt_pathmaxrxt) 3522 trans->pathmaxrxt = val.spt_pathmaxrxt; 3523 trans->pf_retrans = val.spt_pathpfthld; 3524 } 3525 3526 return 0; 3527 } 3528 3529 /* API 6.2 setsockopt(), getsockopt() 3530 * 3531 * Applications use setsockopt() and getsockopt() to set or retrieve 3532 * socket options. Socket options are used to change the default 3533 * behavior of sockets calls. They are described in Section 7. 3534 * 3535 * The syntax is: 3536 * 3537 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 3538 * int __user *optlen); 3539 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 3540 * int optlen); 3541 * 3542 * sd - the socket descript. 3543 * level - set to IPPROTO_SCTP for all SCTP options. 3544 * optname - the option name. 3545 * optval - the buffer to store the value of the option. 3546 * optlen - the size of the buffer. 3547 */ 3548 static int sctp_setsockopt(struct sock *sk, int level, int optname, 3549 char __user *optval, unsigned int optlen) 3550 { 3551 int retval = 0; 3552 3553 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 3554 3555 /* I can hardly begin to describe how wrong this is. This is 3556 * so broken as to be worse than useless. The API draft 3557 * REALLY is NOT helpful here... I am not convinced that the 3558 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 3559 * are at all well-founded. 3560 */ 3561 if (level != SOL_SCTP) { 3562 struct sctp_af *af = sctp_sk(sk)->pf->af; 3563 retval = af->setsockopt(sk, level, optname, optval, optlen); 3564 goto out_nounlock; 3565 } 3566 3567 sctp_lock_sock(sk); 3568 3569 switch (optname) { 3570 case SCTP_SOCKOPT_BINDX_ADD: 3571 /* 'optlen' is the size of the addresses buffer. */ 3572 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3573 optlen, SCTP_BINDX_ADD_ADDR); 3574 break; 3575 3576 case SCTP_SOCKOPT_BINDX_REM: 3577 /* 'optlen' is the size of the addresses buffer. */ 3578 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 3579 optlen, SCTP_BINDX_REM_ADDR); 3580 break; 3581 3582 case SCTP_SOCKOPT_CONNECTX_OLD: 3583 /* 'optlen' is the size of the addresses buffer. */ 3584 retval = sctp_setsockopt_connectx_old(sk, 3585 (struct sockaddr __user *)optval, 3586 optlen); 3587 break; 3588 3589 case SCTP_SOCKOPT_CONNECTX: 3590 /* 'optlen' is the size of the addresses buffer. */ 3591 retval = sctp_setsockopt_connectx(sk, 3592 (struct sockaddr __user *)optval, 3593 optlen); 3594 break; 3595 3596 case SCTP_DISABLE_FRAGMENTS: 3597 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 3598 break; 3599 3600 case SCTP_EVENTS: 3601 retval = sctp_setsockopt_events(sk, optval, optlen); 3602 break; 3603 3604 case SCTP_AUTOCLOSE: 3605 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 3606 break; 3607 3608 case SCTP_PEER_ADDR_PARAMS: 3609 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 3610 break; 3611 3612 case SCTP_DELAYED_SACK: 3613 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 3614 break; 3615 case SCTP_PARTIAL_DELIVERY_POINT: 3616 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 3617 break; 3618 3619 case SCTP_INITMSG: 3620 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 3621 break; 3622 case SCTP_DEFAULT_SEND_PARAM: 3623 retval = sctp_setsockopt_default_send_param(sk, optval, 3624 optlen); 3625 break; 3626 case SCTP_PRIMARY_ADDR: 3627 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 3628 break; 3629 case SCTP_SET_PEER_PRIMARY_ADDR: 3630 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 3631 break; 3632 case SCTP_NODELAY: 3633 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 3634 break; 3635 case SCTP_RTOINFO: 3636 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 3637 break; 3638 case SCTP_ASSOCINFO: 3639 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 3640 break; 3641 case SCTP_I_WANT_MAPPED_V4_ADDR: 3642 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 3643 break; 3644 case SCTP_MAXSEG: 3645 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 3646 break; 3647 case SCTP_ADAPTATION_LAYER: 3648 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 3649 break; 3650 case SCTP_CONTEXT: 3651 retval = sctp_setsockopt_context(sk, optval, optlen); 3652 break; 3653 case SCTP_FRAGMENT_INTERLEAVE: 3654 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 3655 break; 3656 case SCTP_MAX_BURST: 3657 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 3658 break; 3659 case SCTP_AUTH_CHUNK: 3660 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 3661 break; 3662 case SCTP_HMAC_IDENT: 3663 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 3664 break; 3665 case SCTP_AUTH_KEY: 3666 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 3667 break; 3668 case SCTP_AUTH_ACTIVE_KEY: 3669 retval = sctp_setsockopt_active_key(sk, optval, optlen); 3670 break; 3671 case SCTP_AUTH_DELETE_KEY: 3672 retval = sctp_setsockopt_del_key(sk, optval, optlen); 3673 break; 3674 case SCTP_AUTO_ASCONF: 3675 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 3676 break; 3677 case SCTP_PEER_ADDR_THLDS: 3678 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 3679 break; 3680 default: 3681 retval = -ENOPROTOOPT; 3682 break; 3683 } 3684 3685 sctp_release_sock(sk); 3686 3687 out_nounlock: 3688 return retval; 3689 } 3690 3691 /* API 3.1.6 connect() - UDP Style Syntax 3692 * 3693 * An application may use the connect() call in the UDP model to initiate an 3694 * association without sending data. 3695 * 3696 * The syntax is: 3697 * 3698 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 3699 * 3700 * sd: the socket descriptor to have a new association added to. 3701 * 3702 * nam: the address structure (either struct sockaddr_in or struct 3703 * sockaddr_in6 defined in RFC2553 [7]). 3704 * 3705 * len: the size of the address. 3706 */ 3707 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 3708 int addr_len) 3709 { 3710 int err = 0; 3711 struct sctp_af *af; 3712 3713 sctp_lock_sock(sk); 3714 3715 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 3716 addr, addr_len); 3717 3718 /* Validate addr_len before calling common connect/connectx routine. */ 3719 af = sctp_get_af_specific(addr->sa_family); 3720 if (!af || addr_len < af->sockaddr_len) { 3721 err = -EINVAL; 3722 } else { 3723 /* Pass correct addr len to common routine (so it knows there 3724 * is only one address being passed. 3725 */ 3726 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 3727 } 3728 3729 sctp_release_sock(sk); 3730 return err; 3731 } 3732 3733 /* FIXME: Write comments. */ 3734 static int sctp_disconnect(struct sock *sk, int flags) 3735 { 3736 return -EOPNOTSUPP; /* STUB */ 3737 } 3738 3739 /* 4.1.4 accept() - TCP Style Syntax 3740 * 3741 * Applications use accept() call to remove an established SCTP 3742 * association from the accept queue of the endpoint. A new socket 3743 * descriptor will be returned from accept() to represent the newly 3744 * formed association. 3745 */ 3746 static struct sock *sctp_accept(struct sock *sk, int flags, int *err) 3747 { 3748 struct sctp_sock *sp; 3749 struct sctp_endpoint *ep; 3750 struct sock *newsk = NULL; 3751 struct sctp_association *asoc; 3752 long timeo; 3753 int error = 0; 3754 3755 sctp_lock_sock(sk); 3756 3757 sp = sctp_sk(sk); 3758 ep = sp->ep; 3759 3760 if (!sctp_style(sk, TCP)) { 3761 error = -EOPNOTSUPP; 3762 goto out; 3763 } 3764 3765 if (!sctp_sstate(sk, LISTENING)) { 3766 error = -EINVAL; 3767 goto out; 3768 } 3769 3770 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 3771 3772 error = sctp_wait_for_accept(sk, timeo); 3773 if (error) 3774 goto out; 3775 3776 /* We treat the list of associations on the endpoint as the accept 3777 * queue and pick the first association on the list. 3778 */ 3779 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 3780 3781 newsk = sp->pf->create_accept_sk(sk, asoc); 3782 if (!newsk) { 3783 error = -ENOMEM; 3784 goto out; 3785 } 3786 3787 /* Populate the fields of the newsk from the oldsk and migrate the 3788 * asoc to the newsk. 3789 */ 3790 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 3791 3792 out: 3793 sctp_release_sock(sk); 3794 *err = error; 3795 return newsk; 3796 } 3797 3798 /* The SCTP ioctl handler. */ 3799 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3800 { 3801 int rc = -ENOTCONN; 3802 3803 sctp_lock_sock(sk); 3804 3805 /* 3806 * SEQPACKET-style sockets in LISTENING state are valid, for 3807 * SCTP, so only discard TCP-style sockets in LISTENING state. 3808 */ 3809 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 3810 goto out; 3811 3812 switch (cmd) { 3813 case SIOCINQ: { 3814 struct sk_buff *skb; 3815 unsigned int amount = 0; 3816 3817 skb = skb_peek(&sk->sk_receive_queue); 3818 if (skb != NULL) { 3819 /* 3820 * We will only return the amount of this packet since 3821 * that is all that will be read. 3822 */ 3823 amount = skb->len; 3824 } 3825 rc = put_user(amount, (int __user *)arg); 3826 break; 3827 } 3828 default: 3829 rc = -ENOIOCTLCMD; 3830 break; 3831 } 3832 out: 3833 sctp_release_sock(sk); 3834 return rc; 3835 } 3836 3837 /* This is the function which gets called during socket creation to 3838 * initialized the SCTP-specific portion of the sock. 3839 * The sock structure should already be zero-filled memory. 3840 */ 3841 static int sctp_init_sock(struct sock *sk) 3842 { 3843 struct net *net = sock_net(sk); 3844 struct sctp_sock *sp; 3845 3846 pr_debug("%s: sk:%p\n", __func__, sk); 3847 3848 sp = sctp_sk(sk); 3849 3850 /* Initialize the SCTP per socket area. */ 3851 switch (sk->sk_type) { 3852 case SOCK_SEQPACKET: 3853 sp->type = SCTP_SOCKET_UDP; 3854 break; 3855 case SOCK_STREAM: 3856 sp->type = SCTP_SOCKET_TCP; 3857 break; 3858 default: 3859 return -ESOCKTNOSUPPORT; 3860 } 3861 3862 /* Initialize default send parameters. These parameters can be 3863 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 3864 */ 3865 sp->default_stream = 0; 3866 sp->default_ppid = 0; 3867 sp->default_flags = 0; 3868 sp->default_context = 0; 3869 sp->default_timetolive = 0; 3870 3871 sp->default_rcv_context = 0; 3872 sp->max_burst = net->sctp.max_burst; 3873 3874 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 3875 3876 /* Initialize default setup parameters. These parameters 3877 * can be modified with the SCTP_INITMSG socket option or 3878 * overridden by the SCTP_INIT CMSG. 3879 */ 3880 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 3881 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 3882 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 3883 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 3884 3885 /* Initialize default RTO related parameters. These parameters can 3886 * be modified for with the SCTP_RTOINFO socket option. 3887 */ 3888 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 3889 sp->rtoinfo.srto_max = net->sctp.rto_max; 3890 sp->rtoinfo.srto_min = net->sctp.rto_min; 3891 3892 /* Initialize default association related parameters. These parameters 3893 * can be modified with the SCTP_ASSOCINFO socket option. 3894 */ 3895 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 3896 sp->assocparams.sasoc_number_peer_destinations = 0; 3897 sp->assocparams.sasoc_peer_rwnd = 0; 3898 sp->assocparams.sasoc_local_rwnd = 0; 3899 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 3900 3901 /* Initialize default event subscriptions. By default, all the 3902 * options are off. 3903 */ 3904 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 3905 3906 /* Default Peer Address Parameters. These defaults can 3907 * be modified via SCTP_PEER_ADDR_PARAMS 3908 */ 3909 sp->hbinterval = net->sctp.hb_interval; 3910 sp->pathmaxrxt = net->sctp.max_retrans_path; 3911 sp->pathmtu = 0; // allow default discovery 3912 sp->sackdelay = net->sctp.sack_timeout; 3913 sp->sackfreq = 2; 3914 sp->param_flags = SPP_HB_ENABLE | 3915 SPP_PMTUD_ENABLE | 3916 SPP_SACKDELAY_ENABLE; 3917 3918 /* If enabled no SCTP message fragmentation will be performed. 3919 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 3920 */ 3921 sp->disable_fragments = 0; 3922 3923 /* Enable Nagle algorithm by default. */ 3924 sp->nodelay = 0; 3925 3926 /* Enable by default. */ 3927 sp->v4mapped = 1; 3928 3929 /* Auto-close idle associations after the configured 3930 * number of seconds. A value of 0 disables this 3931 * feature. Configure through the SCTP_AUTOCLOSE socket option, 3932 * for UDP-style sockets only. 3933 */ 3934 sp->autoclose = 0; 3935 3936 /* User specified fragmentation limit. */ 3937 sp->user_frag = 0; 3938 3939 sp->adaptation_ind = 0; 3940 3941 sp->pf = sctp_get_pf_specific(sk->sk_family); 3942 3943 /* Control variables for partial data delivery. */ 3944 atomic_set(&sp->pd_mode, 0); 3945 skb_queue_head_init(&sp->pd_lobby); 3946 sp->frag_interleave = 0; 3947 3948 /* Create a per socket endpoint structure. Even if we 3949 * change the data structure relationships, this may still 3950 * be useful for storing pre-connect address information. 3951 */ 3952 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 3953 if (!sp->ep) 3954 return -ENOMEM; 3955 3956 sp->hmac = NULL; 3957 3958 sk->sk_destruct = sctp_destruct_sock; 3959 3960 SCTP_DBG_OBJCNT_INC(sock); 3961 3962 local_bh_disable(); 3963 percpu_counter_inc(&sctp_sockets_allocated); 3964 sock_prot_inuse_add(net, sk->sk_prot, 1); 3965 if (net->sctp.default_auto_asconf) { 3966 list_add_tail(&sp->auto_asconf_list, 3967 &net->sctp.auto_asconf_splist); 3968 sp->do_auto_asconf = 1; 3969 } else 3970 sp->do_auto_asconf = 0; 3971 local_bh_enable(); 3972 3973 return 0; 3974 } 3975 3976 /* Cleanup any SCTP per socket resources. */ 3977 static void sctp_destroy_sock(struct sock *sk) 3978 { 3979 struct sctp_sock *sp; 3980 3981 pr_debug("%s: sk:%p\n", __func__, sk); 3982 3983 /* Release our hold on the endpoint. */ 3984 sp = sctp_sk(sk); 3985 /* This could happen during socket init, thus we bail out 3986 * early, since the rest of the below is not setup either. 3987 */ 3988 if (sp->ep == NULL) 3989 return; 3990 3991 if (sp->do_auto_asconf) { 3992 sp->do_auto_asconf = 0; 3993 list_del(&sp->auto_asconf_list); 3994 } 3995 sctp_endpoint_free(sp->ep); 3996 local_bh_disable(); 3997 percpu_counter_dec(&sctp_sockets_allocated); 3998 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3999 local_bh_enable(); 4000 } 4001 4002 /* Triggered when there are no references on the socket anymore */ 4003 static void sctp_destruct_sock(struct sock *sk) 4004 { 4005 struct sctp_sock *sp = sctp_sk(sk); 4006 4007 /* Free up the HMAC transform. */ 4008 crypto_free_hash(sp->hmac); 4009 4010 inet_sock_destruct(sk); 4011 } 4012 4013 /* API 4.1.7 shutdown() - TCP Style Syntax 4014 * int shutdown(int socket, int how); 4015 * 4016 * sd - the socket descriptor of the association to be closed. 4017 * how - Specifies the type of shutdown. The values are 4018 * as follows: 4019 * SHUT_RD 4020 * Disables further receive operations. No SCTP 4021 * protocol action is taken. 4022 * SHUT_WR 4023 * Disables further send operations, and initiates 4024 * the SCTP shutdown sequence. 4025 * SHUT_RDWR 4026 * Disables further send and receive operations 4027 * and initiates the SCTP shutdown sequence. 4028 */ 4029 static void sctp_shutdown(struct sock *sk, int how) 4030 { 4031 struct net *net = sock_net(sk); 4032 struct sctp_endpoint *ep; 4033 struct sctp_association *asoc; 4034 4035 if (!sctp_style(sk, TCP)) 4036 return; 4037 4038 if (how & SEND_SHUTDOWN) { 4039 ep = sctp_sk(sk)->ep; 4040 if (!list_empty(&ep->asocs)) { 4041 asoc = list_entry(ep->asocs.next, 4042 struct sctp_association, asocs); 4043 sctp_primitive_SHUTDOWN(net, asoc, NULL); 4044 } 4045 } 4046 } 4047 4048 /* 7.2.1 Association Status (SCTP_STATUS) 4049 4050 * Applications can retrieve current status information about an 4051 * association, including association state, peer receiver window size, 4052 * number of unacked data chunks, and number of data chunks pending 4053 * receipt. This information is read-only. 4054 */ 4055 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 4056 char __user *optval, 4057 int __user *optlen) 4058 { 4059 struct sctp_status status; 4060 struct sctp_association *asoc = NULL; 4061 struct sctp_transport *transport; 4062 sctp_assoc_t associd; 4063 int retval = 0; 4064 4065 if (len < sizeof(status)) { 4066 retval = -EINVAL; 4067 goto out; 4068 } 4069 4070 len = sizeof(status); 4071 if (copy_from_user(&status, optval, len)) { 4072 retval = -EFAULT; 4073 goto out; 4074 } 4075 4076 associd = status.sstat_assoc_id; 4077 asoc = sctp_id2assoc(sk, associd); 4078 if (!asoc) { 4079 retval = -EINVAL; 4080 goto out; 4081 } 4082 4083 transport = asoc->peer.primary_path; 4084 4085 status.sstat_assoc_id = sctp_assoc2id(asoc); 4086 status.sstat_state = asoc->state; 4087 status.sstat_rwnd = asoc->peer.rwnd; 4088 status.sstat_unackdata = asoc->unack_data; 4089 4090 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4091 status.sstat_instrms = asoc->c.sinit_max_instreams; 4092 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 4093 status.sstat_fragmentation_point = asoc->frag_point; 4094 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4095 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 4096 transport->af_specific->sockaddr_len); 4097 /* Map ipv4 address into v4-mapped-on-v6 address. */ 4098 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4099 (union sctp_addr *)&status.sstat_primary.spinfo_address); 4100 status.sstat_primary.spinfo_state = transport->state; 4101 status.sstat_primary.spinfo_cwnd = transport->cwnd; 4102 status.sstat_primary.spinfo_srtt = transport->srtt; 4103 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 4104 status.sstat_primary.spinfo_mtu = transport->pathmtu; 4105 4106 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 4107 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 4108 4109 if (put_user(len, optlen)) { 4110 retval = -EFAULT; 4111 goto out; 4112 } 4113 4114 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 4115 __func__, len, status.sstat_state, status.sstat_rwnd, 4116 status.sstat_assoc_id); 4117 4118 if (copy_to_user(optval, &status, len)) { 4119 retval = -EFAULT; 4120 goto out; 4121 } 4122 4123 out: 4124 return retval; 4125 } 4126 4127 4128 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 4129 * 4130 * Applications can retrieve information about a specific peer address 4131 * of an association, including its reachability state, congestion 4132 * window, and retransmission timer values. This information is 4133 * read-only. 4134 */ 4135 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 4136 char __user *optval, 4137 int __user *optlen) 4138 { 4139 struct sctp_paddrinfo pinfo; 4140 struct sctp_transport *transport; 4141 int retval = 0; 4142 4143 if (len < sizeof(pinfo)) { 4144 retval = -EINVAL; 4145 goto out; 4146 } 4147 4148 len = sizeof(pinfo); 4149 if (copy_from_user(&pinfo, optval, len)) { 4150 retval = -EFAULT; 4151 goto out; 4152 } 4153 4154 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 4155 pinfo.spinfo_assoc_id); 4156 if (!transport) 4157 return -EINVAL; 4158 4159 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4160 pinfo.spinfo_state = transport->state; 4161 pinfo.spinfo_cwnd = transport->cwnd; 4162 pinfo.spinfo_srtt = transport->srtt; 4163 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 4164 pinfo.spinfo_mtu = transport->pathmtu; 4165 4166 if (pinfo.spinfo_state == SCTP_UNKNOWN) 4167 pinfo.spinfo_state = SCTP_ACTIVE; 4168 4169 if (put_user(len, optlen)) { 4170 retval = -EFAULT; 4171 goto out; 4172 } 4173 4174 if (copy_to_user(optval, &pinfo, len)) { 4175 retval = -EFAULT; 4176 goto out; 4177 } 4178 4179 out: 4180 return retval; 4181 } 4182 4183 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 4184 * 4185 * This option is a on/off flag. If enabled no SCTP message 4186 * fragmentation will be performed. Instead if a message being sent 4187 * exceeds the current PMTU size, the message will NOT be sent and 4188 * instead a error will be indicated to the user. 4189 */ 4190 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 4191 char __user *optval, int __user *optlen) 4192 { 4193 int val; 4194 4195 if (len < sizeof(int)) 4196 return -EINVAL; 4197 4198 len = sizeof(int); 4199 val = (sctp_sk(sk)->disable_fragments == 1); 4200 if (put_user(len, optlen)) 4201 return -EFAULT; 4202 if (copy_to_user(optval, &val, len)) 4203 return -EFAULT; 4204 return 0; 4205 } 4206 4207 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 4208 * 4209 * This socket option is used to specify various notifications and 4210 * ancillary data the user wishes to receive. 4211 */ 4212 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 4213 int __user *optlen) 4214 { 4215 if (len <= 0) 4216 return -EINVAL; 4217 if (len > sizeof(struct sctp_event_subscribe)) 4218 len = sizeof(struct sctp_event_subscribe); 4219 if (put_user(len, optlen)) 4220 return -EFAULT; 4221 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 4222 return -EFAULT; 4223 return 0; 4224 } 4225 4226 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 4227 * 4228 * This socket option is applicable to the UDP-style socket only. When 4229 * set it will cause associations that are idle for more than the 4230 * specified number of seconds to automatically close. An association 4231 * being idle is defined an association that has NOT sent or received 4232 * user data. The special value of '0' indicates that no automatic 4233 * close of any associations should be performed. The option expects an 4234 * integer defining the number of seconds of idle time before an 4235 * association is closed. 4236 */ 4237 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 4238 { 4239 /* Applicable to UDP-style socket only */ 4240 if (sctp_style(sk, TCP)) 4241 return -EOPNOTSUPP; 4242 if (len < sizeof(int)) 4243 return -EINVAL; 4244 len = sizeof(int); 4245 if (put_user(len, optlen)) 4246 return -EFAULT; 4247 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) 4248 return -EFAULT; 4249 return 0; 4250 } 4251 4252 /* Helper routine to branch off an association to a new socket. */ 4253 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 4254 { 4255 struct sctp_association *asoc = sctp_id2assoc(sk, id); 4256 struct socket *sock; 4257 struct sctp_af *af; 4258 int err = 0; 4259 4260 if (!asoc) 4261 return -EINVAL; 4262 4263 /* An association cannot be branched off from an already peeled-off 4264 * socket, nor is this supported for tcp style sockets. 4265 */ 4266 if (!sctp_style(sk, UDP)) 4267 return -EINVAL; 4268 4269 /* Create a new socket. */ 4270 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 4271 if (err < 0) 4272 return err; 4273 4274 sctp_copy_sock(sock->sk, sk, asoc); 4275 4276 /* Make peeled-off sockets more like 1-1 accepted sockets. 4277 * Set the daddr and initialize id to something more random 4278 */ 4279 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family); 4280 af->to_sk_daddr(&asoc->peer.primary_addr, sk); 4281 4282 /* Populate the fields of the newsk from the oldsk and migrate the 4283 * asoc to the newsk. 4284 */ 4285 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 4286 4287 *sockp = sock; 4288 4289 return err; 4290 } 4291 EXPORT_SYMBOL(sctp_do_peeloff); 4292 4293 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 4294 { 4295 sctp_peeloff_arg_t peeloff; 4296 struct socket *newsock; 4297 struct file *newfile; 4298 int retval = 0; 4299 4300 if (len < sizeof(sctp_peeloff_arg_t)) 4301 return -EINVAL; 4302 len = sizeof(sctp_peeloff_arg_t); 4303 if (copy_from_user(&peeloff, optval, len)) 4304 return -EFAULT; 4305 4306 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock); 4307 if (retval < 0) 4308 goto out; 4309 4310 /* Map the socket to an unused fd that can be returned to the user. */ 4311 retval = get_unused_fd_flags(0); 4312 if (retval < 0) { 4313 sock_release(newsock); 4314 goto out; 4315 } 4316 4317 newfile = sock_alloc_file(newsock, 0, NULL); 4318 if (unlikely(IS_ERR(newfile))) { 4319 put_unused_fd(retval); 4320 sock_release(newsock); 4321 return PTR_ERR(newfile); 4322 } 4323 4324 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 4325 retval); 4326 4327 /* Return the fd mapped to the new socket. */ 4328 if (put_user(len, optlen)) { 4329 fput(newfile); 4330 put_unused_fd(retval); 4331 return -EFAULT; 4332 } 4333 peeloff.sd = retval; 4334 if (copy_to_user(optval, &peeloff, len)) { 4335 fput(newfile); 4336 put_unused_fd(retval); 4337 return -EFAULT; 4338 } 4339 fd_install(retval, newfile); 4340 out: 4341 return retval; 4342 } 4343 4344 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 4345 * 4346 * Applications can enable or disable heartbeats for any peer address of 4347 * an association, modify an address's heartbeat interval, force a 4348 * heartbeat to be sent immediately, and adjust the address's maximum 4349 * number of retransmissions sent before an address is considered 4350 * unreachable. The following structure is used to access and modify an 4351 * address's parameters: 4352 * 4353 * struct sctp_paddrparams { 4354 * sctp_assoc_t spp_assoc_id; 4355 * struct sockaddr_storage spp_address; 4356 * uint32_t spp_hbinterval; 4357 * uint16_t spp_pathmaxrxt; 4358 * uint32_t spp_pathmtu; 4359 * uint32_t spp_sackdelay; 4360 * uint32_t spp_flags; 4361 * }; 4362 * 4363 * spp_assoc_id - (one-to-many style socket) This is filled in the 4364 * application, and identifies the association for 4365 * this query. 4366 * spp_address - This specifies which address is of interest. 4367 * spp_hbinterval - This contains the value of the heartbeat interval, 4368 * in milliseconds. If a value of zero 4369 * is present in this field then no changes are to 4370 * be made to this parameter. 4371 * spp_pathmaxrxt - This contains the maximum number of 4372 * retransmissions before this address shall be 4373 * considered unreachable. If a value of zero 4374 * is present in this field then no changes are to 4375 * be made to this parameter. 4376 * spp_pathmtu - When Path MTU discovery is disabled the value 4377 * specified here will be the "fixed" path mtu. 4378 * Note that if the spp_address field is empty 4379 * then all associations on this address will 4380 * have this fixed path mtu set upon them. 4381 * 4382 * spp_sackdelay - When delayed sack is enabled, this value specifies 4383 * the number of milliseconds that sacks will be delayed 4384 * for. This value will apply to all addresses of an 4385 * association if the spp_address field is empty. Note 4386 * also, that if delayed sack is enabled and this 4387 * value is set to 0, no change is made to the last 4388 * recorded delayed sack timer value. 4389 * 4390 * spp_flags - These flags are used to control various features 4391 * on an association. The flag field may contain 4392 * zero or more of the following options. 4393 * 4394 * SPP_HB_ENABLE - Enable heartbeats on the 4395 * specified address. Note that if the address 4396 * field is empty all addresses for the association 4397 * have heartbeats enabled upon them. 4398 * 4399 * SPP_HB_DISABLE - Disable heartbeats on the 4400 * speicifed address. Note that if the address 4401 * field is empty all addresses for the association 4402 * will have their heartbeats disabled. Note also 4403 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 4404 * mutually exclusive, only one of these two should 4405 * be specified. Enabling both fields will have 4406 * undetermined results. 4407 * 4408 * SPP_HB_DEMAND - Request a user initiated heartbeat 4409 * to be made immediately. 4410 * 4411 * SPP_PMTUD_ENABLE - This field will enable PMTU 4412 * discovery upon the specified address. Note that 4413 * if the address feild is empty then all addresses 4414 * on the association are effected. 4415 * 4416 * SPP_PMTUD_DISABLE - This field will disable PMTU 4417 * discovery upon the specified address. Note that 4418 * if the address feild is empty then all addresses 4419 * on the association are effected. Not also that 4420 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 4421 * exclusive. Enabling both will have undetermined 4422 * results. 4423 * 4424 * SPP_SACKDELAY_ENABLE - Setting this flag turns 4425 * on delayed sack. The time specified in spp_sackdelay 4426 * is used to specify the sack delay for this address. Note 4427 * that if spp_address is empty then all addresses will 4428 * enable delayed sack and take on the sack delay 4429 * value specified in spp_sackdelay. 4430 * SPP_SACKDELAY_DISABLE - Setting this flag turns 4431 * off delayed sack. If the spp_address field is blank then 4432 * delayed sack is disabled for the entire association. Note 4433 * also that this field is mutually exclusive to 4434 * SPP_SACKDELAY_ENABLE, setting both will have undefined 4435 * results. 4436 */ 4437 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 4438 char __user *optval, int __user *optlen) 4439 { 4440 struct sctp_paddrparams params; 4441 struct sctp_transport *trans = NULL; 4442 struct sctp_association *asoc = NULL; 4443 struct sctp_sock *sp = sctp_sk(sk); 4444 4445 if (len < sizeof(struct sctp_paddrparams)) 4446 return -EINVAL; 4447 len = sizeof(struct sctp_paddrparams); 4448 if (copy_from_user(¶ms, optval, len)) 4449 return -EFAULT; 4450 4451 /* If an address other than INADDR_ANY is specified, and 4452 * no transport is found, then the request is invalid. 4453 */ 4454 if (!sctp_is_any(sk, ( union sctp_addr *)¶ms.spp_address)) { 4455 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 4456 params.spp_assoc_id); 4457 if (!trans) { 4458 pr_debug("%s: failed no transport\n", __func__); 4459 return -EINVAL; 4460 } 4461 } 4462 4463 /* Get association, if assoc_id != 0 and the socket is a one 4464 * to many style socket, and an association was not found, then 4465 * the id was invalid. 4466 */ 4467 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 4468 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 4469 pr_debug("%s: failed no association\n", __func__); 4470 return -EINVAL; 4471 } 4472 4473 if (trans) { 4474 /* Fetch transport values. */ 4475 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 4476 params.spp_pathmtu = trans->pathmtu; 4477 params.spp_pathmaxrxt = trans->pathmaxrxt; 4478 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 4479 4480 /*draft-11 doesn't say what to return in spp_flags*/ 4481 params.spp_flags = trans->param_flags; 4482 } else if (asoc) { 4483 /* Fetch association values. */ 4484 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 4485 params.spp_pathmtu = asoc->pathmtu; 4486 params.spp_pathmaxrxt = asoc->pathmaxrxt; 4487 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 4488 4489 /*draft-11 doesn't say what to return in spp_flags*/ 4490 params.spp_flags = asoc->param_flags; 4491 } else { 4492 /* Fetch socket values. */ 4493 params.spp_hbinterval = sp->hbinterval; 4494 params.spp_pathmtu = sp->pathmtu; 4495 params.spp_sackdelay = sp->sackdelay; 4496 params.spp_pathmaxrxt = sp->pathmaxrxt; 4497 4498 /*draft-11 doesn't say what to return in spp_flags*/ 4499 params.spp_flags = sp->param_flags; 4500 } 4501 4502 if (copy_to_user(optval, ¶ms, len)) 4503 return -EFAULT; 4504 4505 if (put_user(len, optlen)) 4506 return -EFAULT; 4507 4508 return 0; 4509 } 4510 4511 /* 4512 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 4513 * 4514 * This option will effect the way delayed acks are performed. This 4515 * option allows you to get or set the delayed ack time, in 4516 * milliseconds. It also allows changing the delayed ack frequency. 4517 * Changing the frequency to 1 disables the delayed sack algorithm. If 4518 * the assoc_id is 0, then this sets or gets the endpoints default 4519 * values. If the assoc_id field is non-zero, then the set or get 4520 * effects the specified association for the one to many model (the 4521 * assoc_id field is ignored by the one to one model). Note that if 4522 * sack_delay or sack_freq are 0 when setting this option, then the 4523 * current values will remain unchanged. 4524 * 4525 * struct sctp_sack_info { 4526 * sctp_assoc_t sack_assoc_id; 4527 * uint32_t sack_delay; 4528 * uint32_t sack_freq; 4529 * }; 4530 * 4531 * sack_assoc_id - This parameter, indicates which association the user 4532 * is performing an action upon. Note that if this field's value is 4533 * zero then the endpoints default value is changed (effecting future 4534 * associations only). 4535 * 4536 * sack_delay - This parameter contains the number of milliseconds that 4537 * the user is requesting the delayed ACK timer be set to. Note that 4538 * this value is defined in the standard to be between 200 and 500 4539 * milliseconds. 4540 * 4541 * sack_freq - This parameter contains the number of packets that must 4542 * be received before a sack is sent without waiting for the delay 4543 * timer to expire. The default value for this is 2, setting this 4544 * value to 1 will disable the delayed sack algorithm. 4545 */ 4546 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 4547 char __user *optval, 4548 int __user *optlen) 4549 { 4550 struct sctp_sack_info params; 4551 struct sctp_association *asoc = NULL; 4552 struct sctp_sock *sp = sctp_sk(sk); 4553 4554 if (len >= sizeof(struct sctp_sack_info)) { 4555 len = sizeof(struct sctp_sack_info); 4556 4557 if (copy_from_user(¶ms, optval, len)) 4558 return -EFAULT; 4559 } else if (len == sizeof(struct sctp_assoc_value)) { 4560 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n"); 4561 pr_warn("Use struct sctp_sack_info instead\n"); 4562 if (copy_from_user(¶ms, optval, len)) 4563 return -EFAULT; 4564 } else 4565 return - EINVAL; 4566 4567 /* Get association, if sack_assoc_id != 0 and the socket is a one 4568 * to many style socket, and an association was not found, then 4569 * the id was invalid. 4570 */ 4571 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 4572 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 4573 return -EINVAL; 4574 4575 if (asoc) { 4576 /* Fetch association values. */ 4577 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 4578 params.sack_delay = jiffies_to_msecs( 4579 asoc->sackdelay); 4580 params.sack_freq = asoc->sackfreq; 4581 4582 } else { 4583 params.sack_delay = 0; 4584 params.sack_freq = 1; 4585 } 4586 } else { 4587 /* Fetch socket values. */ 4588 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 4589 params.sack_delay = sp->sackdelay; 4590 params.sack_freq = sp->sackfreq; 4591 } else { 4592 params.sack_delay = 0; 4593 params.sack_freq = 1; 4594 } 4595 } 4596 4597 if (copy_to_user(optval, ¶ms, len)) 4598 return -EFAULT; 4599 4600 if (put_user(len, optlen)) 4601 return -EFAULT; 4602 4603 return 0; 4604 } 4605 4606 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 4607 * 4608 * Applications can specify protocol parameters for the default association 4609 * initialization. The option name argument to setsockopt() and getsockopt() 4610 * is SCTP_INITMSG. 4611 * 4612 * Setting initialization parameters is effective only on an unconnected 4613 * socket (for UDP-style sockets only future associations are effected 4614 * by the change). With TCP-style sockets, this option is inherited by 4615 * sockets derived from a listener socket. 4616 */ 4617 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 4618 { 4619 if (len < sizeof(struct sctp_initmsg)) 4620 return -EINVAL; 4621 len = sizeof(struct sctp_initmsg); 4622 if (put_user(len, optlen)) 4623 return -EFAULT; 4624 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 4625 return -EFAULT; 4626 return 0; 4627 } 4628 4629 4630 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 4631 char __user *optval, int __user *optlen) 4632 { 4633 struct sctp_association *asoc; 4634 int cnt = 0; 4635 struct sctp_getaddrs getaddrs; 4636 struct sctp_transport *from; 4637 void __user *to; 4638 union sctp_addr temp; 4639 struct sctp_sock *sp = sctp_sk(sk); 4640 int addrlen; 4641 size_t space_left; 4642 int bytes_copied; 4643 4644 if (len < sizeof(struct sctp_getaddrs)) 4645 return -EINVAL; 4646 4647 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4648 return -EFAULT; 4649 4650 /* For UDP-style sockets, id specifies the association to query. */ 4651 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4652 if (!asoc) 4653 return -EINVAL; 4654 4655 to = optval + offsetof(struct sctp_getaddrs,addrs); 4656 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4657 4658 list_for_each_entry(from, &asoc->peer.transport_addr_list, 4659 transports) { 4660 memcpy(&temp, &from->ipaddr, sizeof(temp)); 4661 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4662 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4663 if (space_left < addrlen) 4664 return -ENOMEM; 4665 if (copy_to_user(to, &temp, addrlen)) 4666 return -EFAULT; 4667 to += addrlen; 4668 cnt++; 4669 space_left -= addrlen; 4670 } 4671 4672 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 4673 return -EFAULT; 4674 bytes_copied = ((char __user *)to) - optval; 4675 if (put_user(bytes_copied, optlen)) 4676 return -EFAULT; 4677 4678 return 0; 4679 } 4680 4681 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 4682 size_t space_left, int *bytes_copied) 4683 { 4684 struct sctp_sockaddr_entry *addr; 4685 union sctp_addr temp; 4686 int cnt = 0; 4687 int addrlen; 4688 struct net *net = sock_net(sk); 4689 4690 rcu_read_lock(); 4691 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 4692 if (!addr->valid) 4693 continue; 4694 4695 if ((PF_INET == sk->sk_family) && 4696 (AF_INET6 == addr->a.sa.sa_family)) 4697 continue; 4698 if ((PF_INET6 == sk->sk_family) && 4699 inet_v6_ipv6only(sk) && 4700 (AF_INET == addr->a.sa.sa_family)) 4701 continue; 4702 memcpy(&temp, &addr->a, sizeof(temp)); 4703 if (!temp.v4.sin_port) 4704 temp.v4.sin_port = htons(port); 4705 4706 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 4707 &temp); 4708 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4709 if (space_left < addrlen) { 4710 cnt = -ENOMEM; 4711 break; 4712 } 4713 memcpy(to, &temp, addrlen); 4714 4715 to += addrlen; 4716 cnt ++; 4717 space_left -= addrlen; 4718 *bytes_copied += addrlen; 4719 } 4720 rcu_read_unlock(); 4721 4722 return cnt; 4723 } 4724 4725 4726 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 4727 char __user *optval, int __user *optlen) 4728 { 4729 struct sctp_bind_addr *bp; 4730 struct sctp_association *asoc; 4731 int cnt = 0; 4732 struct sctp_getaddrs getaddrs; 4733 struct sctp_sockaddr_entry *addr; 4734 void __user *to; 4735 union sctp_addr temp; 4736 struct sctp_sock *sp = sctp_sk(sk); 4737 int addrlen; 4738 int err = 0; 4739 size_t space_left; 4740 int bytes_copied = 0; 4741 void *addrs; 4742 void *buf; 4743 4744 if (len < sizeof(struct sctp_getaddrs)) 4745 return -EINVAL; 4746 4747 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 4748 return -EFAULT; 4749 4750 /* 4751 * For UDP-style sockets, id specifies the association to query. 4752 * If the id field is set to the value '0' then the locally bound 4753 * addresses are returned without regard to any particular 4754 * association. 4755 */ 4756 if (0 == getaddrs.assoc_id) { 4757 bp = &sctp_sk(sk)->ep->base.bind_addr; 4758 } else { 4759 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 4760 if (!asoc) 4761 return -EINVAL; 4762 bp = &asoc->base.bind_addr; 4763 } 4764 4765 to = optval + offsetof(struct sctp_getaddrs,addrs); 4766 space_left = len - offsetof(struct sctp_getaddrs,addrs); 4767 4768 addrs = kmalloc(space_left, GFP_KERNEL); 4769 if (!addrs) 4770 return -ENOMEM; 4771 4772 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 4773 * addresses from the global local address list. 4774 */ 4775 if (sctp_list_single_entry(&bp->address_list)) { 4776 addr = list_entry(bp->address_list.next, 4777 struct sctp_sockaddr_entry, list); 4778 if (sctp_is_any(sk, &addr->a)) { 4779 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 4780 space_left, &bytes_copied); 4781 if (cnt < 0) { 4782 err = cnt; 4783 goto out; 4784 } 4785 goto copy_getaddrs; 4786 } 4787 } 4788 4789 buf = addrs; 4790 /* Protection on the bound address list is not needed since 4791 * in the socket option context we hold a socket lock and 4792 * thus the bound address list can't change. 4793 */ 4794 list_for_each_entry(addr, &bp->address_list, list) { 4795 memcpy(&temp, &addr->a, sizeof(temp)); 4796 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 4797 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 4798 if (space_left < addrlen) { 4799 err = -ENOMEM; /*fixme: right error?*/ 4800 goto out; 4801 } 4802 memcpy(buf, &temp, addrlen); 4803 buf += addrlen; 4804 bytes_copied += addrlen; 4805 cnt ++; 4806 space_left -= addrlen; 4807 } 4808 4809 copy_getaddrs: 4810 if (copy_to_user(to, addrs, bytes_copied)) { 4811 err = -EFAULT; 4812 goto out; 4813 } 4814 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 4815 err = -EFAULT; 4816 goto out; 4817 } 4818 if (put_user(bytes_copied, optlen)) 4819 err = -EFAULT; 4820 out: 4821 kfree(addrs); 4822 return err; 4823 } 4824 4825 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 4826 * 4827 * Requests that the local SCTP stack use the enclosed peer address as 4828 * the association primary. The enclosed address must be one of the 4829 * association peer's addresses. 4830 */ 4831 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 4832 char __user *optval, int __user *optlen) 4833 { 4834 struct sctp_prim prim; 4835 struct sctp_association *asoc; 4836 struct sctp_sock *sp = sctp_sk(sk); 4837 4838 if (len < sizeof(struct sctp_prim)) 4839 return -EINVAL; 4840 4841 len = sizeof(struct sctp_prim); 4842 4843 if (copy_from_user(&prim, optval, len)) 4844 return -EFAULT; 4845 4846 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 4847 if (!asoc) 4848 return -EINVAL; 4849 4850 if (!asoc->peer.primary_path) 4851 return -ENOTCONN; 4852 4853 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 4854 asoc->peer.primary_path->af_specific->sockaddr_len); 4855 4856 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, 4857 (union sctp_addr *)&prim.ssp_addr); 4858 4859 if (put_user(len, optlen)) 4860 return -EFAULT; 4861 if (copy_to_user(optval, &prim, len)) 4862 return -EFAULT; 4863 4864 return 0; 4865 } 4866 4867 /* 4868 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 4869 * 4870 * Requests that the local endpoint set the specified Adaptation Layer 4871 * Indication parameter for all future INIT and INIT-ACK exchanges. 4872 */ 4873 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 4874 char __user *optval, int __user *optlen) 4875 { 4876 struct sctp_setadaptation adaptation; 4877 4878 if (len < sizeof(struct sctp_setadaptation)) 4879 return -EINVAL; 4880 4881 len = sizeof(struct sctp_setadaptation); 4882 4883 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 4884 4885 if (put_user(len, optlen)) 4886 return -EFAULT; 4887 if (copy_to_user(optval, &adaptation, len)) 4888 return -EFAULT; 4889 4890 return 0; 4891 } 4892 4893 /* 4894 * 4895 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 4896 * 4897 * Applications that wish to use the sendto() system call may wish to 4898 * specify a default set of parameters that would normally be supplied 4899 * through the inclusion of ancillary data. This socket option allows 4900 * such an application to set the default sctp_sndrcvinfo structure. 4901 4902 4903 * The application that wishes to use this socket option simply passes 4904 * in to this call the sctp_sndrcvinfo structure defined in Section 4905 * 5.2.2) The input parameters accepted by this call include 4906 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 4907 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 4908 * to this call if the caller is using the UDP model. 4909 * 4910 * For getsockopt, it get the default sctp_sndrcvinfo structure. 4911 */ 4912 static int sctp_getsockopt_default_send_param(struct sock *sk, 4913 int len, char __user *optval, 4914 int __user *optlen) 4915 { 4916 struct sctp_sndrcvinfo info; 4917 struct sctp_association *asoc; 4918 struct sctp_sock *sp = sctp_sk(sk); 4919 4920 if (len < sizeof(struct sctp_sndrcvinfo)) 4921 return -EINVAL; 4922 4923 len = sizeof(struct sctp_sndrcvinfo); 4924 4925 if (copy_from_user(&info, optval, len)) 4926 return -EFAULT; 4927 4928 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 4929 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 4930 return -EINVAL; 4931 4932 if (asoc) { 4933 info.sinfo_stream = asoc->default_stream; 4934 info.sinfo_flags = asoc->default_flags; 4935 info.sinfo_ppid = asoc->default_ppid; 4936 info.sinfo_context = asoc->default_context; 4937 info.sinfo_timetolive = asoc->default_timetolive; 4938 } else { 4939 info.sinfo_stream = sp->default_stream; 4940 info.sinfo_flags = sp->default_flags; 4941 info.sinfo_ppid = sp->default_ppid; 4942 info.sinfo_context = sp->default_context; 4943 info.sinfo_timetolive = sp->default_timetolive; 4944 } 4945 4946 if (put_user(len, optlen)) 4947 return -EFAULT; 4948 if (copy_to_user(optval, &info, len)) 4949 return -EFAULT; 4950 4951 return 0; 4952 } 4953 4954 /* 4955 * 4956 * 7.1.5 SCTP_NODELAY 4957 * 4958 * Turn on/off any Nagle-like algorithm. This means that packets are 4959 * generally sent as soon as possible and no unnecessary delays are 4960 * introduced, at the cost of more packets in the network. Expects an 4961 * integer boolean flag. 4962 */ 4963 4964 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 4965 char __user *optval, int __user *optlen) 4966 { 4967 int val; 4968 4969 if (len < sizeof(int)) 4970 return -EINVAL; 4971 4972 len = sizeof(int); 4973 val = (sctp_sk(sk)->nodelay == 1); 4974 if (put_user(len, optlen)) 4975 return -EFAULT; 4976 if (copy_to_user(optval, &val, len)) 4977 return -EFAULT; 4978 return 0; 4979 } 4980 4981 /* 4982 * 4983 * 7.1.1 SCTP_RTOINFO 4984 * 4985 * The protocol parameters used to initialize and bound retransmission 4986 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 4987 * and modify these parameters. 4988 * All parameters are time values, in milliseconds. A value of 0, when 4989 * modifying the parameters, indicates that the current value should not 4990 * be changed. 4991 * 4992 */ 4993 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 4994 char __user *optval, 4995 int __user *optlen) { 4996 struct sctp_rtoinfo rtoinfo; 4997 struct sctp_association *asoc; 4998 4999 if (len < sizeof (struct sctp_rtoinfo)) 5000 return -EINVAL; 5001 5002 len = sizeof(struct sctp_rtoinfo); 5003 5004 if (copy_from_user(&rtoinfo, optval, len)) 5005 return -EFAULT; 5006 5007 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 5008 5009 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 5010 return -EINVAL; 5011 5012 /* Values corresponding to the specific association. */ 5013 if (asoc) { 5014 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 5015 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 5016 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 5017 } else { 5018 /* Values corresponding to the endpoint. */ 5019 struct sctp_sock *sp = sctp_sk(sk); 5020 5021 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 5022 rtoinfo.srto_max = sp->rtoinfo.srto_max; 5023 rtoinfo.srto_min = sp->rtoinfo.srto_min; 5024 } 5025 5026 if (put_user(len, optlen)) 5027 return -EFAULT; 5028 5029 if (copy_to_user(optval, &rtoinfo, len)) 5030 return -EFAULT; 5031 5032 return 0; 5033 } 5034 5035 /* 5036 * 5037 * 7.1.2 SCTP_ASSOCINFO 5038 * 5039 * This option is used to tune the maximum retransmission attempts 5040 * of the association. 5041 * Returns an error if the new association retransmission value is 5042 * greater than the sum of the retransmission value of the peer. 5043 * See [SCTP] for more information. 5044 * 5045 */ 5046 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 5047 char __user *optval, 5048 int __user *optlen) 5049 { 5050 5051 struct sctp_assocparams assocparams; 5052 struct sctp_association *asoc; 5053 struct list_head *pos; 5054 int cnt = 0; 5055 5056 if (len < sizeof (struct sctp_assocparams)) 5057 return -EINVAL; 5058 5059 len = sizeof(struct sctp_assocparams); 5060 5061 if (copy_from_user(&assocparams, optval, len)) 5062 return -EFAULT; 5063 5064 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 5065 5066 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 5067 return -EINVAL; 5068 5069 /* Values correspoinding to the specific association */ 5070 if (asoc) { 5071 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 5072 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 5073 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 5074 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 5075 5076 list_for_each(pos, &asoc->peer.transport_addr_list) { 5077 cnt ++; 5078 } 5079 5080 assocparams.sasoc_number_peer_destinations = cnt; 5081 } else { 5082 /* Values corresponding to the endpoint */ 5083 struct sctp_sock *sp = sctp_sk(sk); 5084 5085 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 5086 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 5087 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 5088 assocparams.sasoc_cookie_life = 5089 sp->assocparams.sasoc_cookie_life; 5090 assocparams.sasoc_number_peer_destinations = 5091 sp->assocparams. 5092 sasoc_number_peer_destinations; 5093 } 5094 5095 if (put_user(len, optlen)) 5096 return -EFAULT; 5097 5098 if (copy_to_user(optval, &assocparams, len)) 5099 return -EFAULT; 5100 5101 return 0; 5102 } 5103 5104 /* 5105 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 5106 * 5107 * This socket option is a boolean flag which turns on or off mapped V4 5108 * addresses. If this option is turned on and the socket is type 5109 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 5110 * If this option is turned off, then no mapping will be done of V4 5111 * addresses and a user will receive both PF_INET6 and PF_INET type 5112 * addresses on the socket. 5113 */ 5114 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 5115 char __user *optval, int __user *optlen) 5116 { 5117 int val; 5118 struct sctp_sock *sp = sctp_sk(sk); 5119 5120 if (len < sizeof(int)) 5121 return -EINVAL; 5122 5123 len = sizeof(int); 5124 val = sp->v4mapped; 5125 if (put_user(len, optlen)) 5126 return -EFAULT; 5127 if (copy_to_user(optval, &val, len)) 5128 return -EFAULT; 5129 5130 return 0; 5131 } 5132 5133 /* 5134 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 5135 * (chapter and verse is quoted at sctp_setsockopt_context()) 5136 */ 5137 static int sctp_getsockopt_context(struct sock *sk, int len, 5138 char __user *optval, int __user *optlen) 5139 { 5140 struct sctp_assoc_value params; 5141 struct sctp_sock *sp; 5142 struct sctp_association *asoc; 5143 5144 if (len < sizeof(struct sctp_assoc_value)) 5145 return -EINVAL; 5146 5147 len = sizeof(struct sctp_assoc_value); 5148 5149 if (copy_from_user(¶ms, optval, len)) 5150 return -EFAULT; 5151 5152 sp = sctp_sk(sk); 5153 5154 if (params.assoc_id != 0) { 5155 asoc = sctp_id2assoc(sk, params.assoc_id); 5156 if (!asoc) 5157 return -EINVAL; 5158 params.assoc_value = asoc->default_rcv_context; 5159 } else { 5160 params.assoc_value = sp->default_rcv_context; 5161 } 5162 5163 if (put_user(len, optlen)) 5164 return -EFAULT; 5165 if (copy_to_user(optval, ¶ms, len)) 5166 return -EFAULT; 5167 5168 return 0; 5169 } 5170 5171 /* 5172 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 5173 * This option will get or set the maximum size to put in any outgoing 5174 * SCTP DATA chunk. If a message is larger than this size it will be 5175 * fragmented by SCTP into the specified size. Note that the underlying 5176 * SCTP implementation may fragment into smaller sized chunks when the 5177 * PMTU of the underlying association is smaller than the value set by 5178 * the user. The default value for this option is '0' which indicates 5179 * the user is NOT limiting fragmentation and only the PMTU will effect 5180 * SCTP's choice of DATA chunk size. Note also that values set larger 5181 * than the maximum size of an IP datagram will effectively let SCTP 5182 * control fragmentation (i.e. the same as setting this option to 0). 5183 * 5184 * The following structure is used to access and modify this parameter: 5185 * 5186 * struct sctp_assoc_value { 5187 * sctp_assoc_t assoc_id; 5188 * uint32_t assoc_value; 5189 * }; 5190 * 5191 * assoc_id: This parameter is ignored for one-to-one style sockets. 5192 * For one-to-many style sockets this parameter indicates which 5193 * association the user is performing an action upon. Note that if 5194 * this field's value is zero then the endpoints default value is 5195 * changed (effecting future associations only). 5196 * assoc_value: This parameter specifies the maximum size in bytes. 5197 */ 5198 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 5199 char __user *optval, int __user *optlen) 5200 { 5201 struct sctp_assoc_value params; 5202 struct sctp_association *asoc; 5203 5204 if (len == sizeof(int)) { 5205 pr_warn("Use of int in maxseg socket option deprecated\n"); 5206 pr_warn("Use struct sctp_assoc_value instead\n"); 5207 params.assoc_id = 0; 5208 } else if (len >= sizeof(struct sctp_assoc_value)) { 5209 len = sizeof(struct sctp_assoc_value); 5210 if (copy_from_user(¶ms, optval, sizeof(params))) 5211 return -EFAULT; 5212 } else 5213 return -EINVAL; 5214 5215 asoc = sctp_id2assoc(sk, params.assoc_id); 5216 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 5217 return -EINVAL; 5218 5219 if (asoc) 5220 params.assoc_value = asoc->frag_point; 5221 else 5222 params.assoc_value = sctp_sk(sk)->user_frag; 5223 5224 if (put_user(len, optlen)) 5225 return -EFAULT; 5226 if (len == sizeof(int)) { 5227 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5228 return -EFAULT; 5229 } else { 5230 if (copy_to_user(optval, ¶ms, len)) 5231 return -EFAULT; 5232 } 5233 5234 return 0; 5235 } 5236 5237 /* 5238 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 5239 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 5240 */ 5241 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 5242 char __user *optval, int __user *optlen) 5243 { 5244 int val; 5245 5246 if (len < sizeof(int)) 5247 return -EINVAL; 5248 5249 len = sizeof(int); 5250 5251 val = sctp_sk(sk)->frag_interleave; 5252 if (put_user(len, optlen)) 5253 return -EFAULT; 5254 if (copy_to_user(optval, &val, len)) 5255 return -EFAULT; 5256 5257 return 0; 5258 } 5259 5260 /* 5261 * 7.1.25. Set or Get the sctp partial delivery point 5262 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 5263 */ 5264 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 5265 char __user *optval, 5266 int __user *optlen) 5267 { 5268 u32 val; 5269 5270 if (len < sizeof(u32)) 5271 return -EINVAL; 5272 5273 len = sizeof(u32); 5274 5275 val = sctp_sk(sk)->pd_point; 5276 if (put_user(len, optlen)) 5277 return -EFAULT; 5278 if (copy_to_user(optval, &val, len)) 5279 return -EFAULT; 5280 5281 return 0; 5282 } 5283 5284 /* 5285 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 5286 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 5287 */ 5288 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 5289 char __user *optval, 5290 int __user *optlen) 5291 { 5292 struct sctp_assoc_value params; 5293 struct sctp_sock *sp; 5294 struct sctp_association *asoc; 5295 5296 if (len == sizeof(int)) { 5297 pr_warn("Use of int in max_burst socket option deprecated\n"); 5298 pr_warn("Use struct sctp_assoc_value instead\n"); 5299 params.assoc_id = 0; 5300 } else if (len >= sizeof(struct sctp_assoc_value)) { 5301 len = sizeof(struct sctp_assoc_value); 5302 if (copy_from_user(¶ms, optval, len)) 5303 return -EFAULT; 5304 } else 5305 return -EINVAL; 5306 5307 sp = sctp_sk(sk); 5308 5309 if (params.assoc_id != 0) { 5310 asoc = sctp_id2assoc(sk, params.assoc_id); 5311 if (!asoc) 5312 return -EINVAL; 5313 params.assoc_value = asoc->max_burst; 5314 } else 5315 params.assoc_value = sp->max_burst; 5316 5317 if (len == sizeof(int)) { 5318 if (copy_to_user(optval, ¶ms.assoc_value, len)) 5319 return -EFAULT; 5320 } else { 5321 if (copy_to_user(optval, ¶ms, len)) 5322 return -EFAULT; 5323 } 5324 5325 return 0; 5326 5327 } 5328 5329 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 5330 char __user *optval, int __user *optlen) 5331 { 5332 struct net *net = sock_net(sk); 5333 struct sctp_hmacalgo __user *p = (void __user *)optval; 5334 struct sctp_hmac_algo_param *hmacs; 5335 __u16 data_len = 0; 5336 u32 num_idents; 5337 5338 if (!net->sctp.auth_enable) 5339 return -EACCES; 5340 5341 hmacs = sctp_sk(sk)->ep->auth_hmacs_list; 5342 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t); 5343 5344 if (len < sizeof(struct sctp_hmacalgo) + data_len) 5345 return -EINVAL; 5346 5347 len = sizeof(struct sctp_hmacalgo) + data_len; 5348 num_idents = data_len / sizeof(u16); 5349 5350 if (put_user(len, optlen)) 5351 return -EFAULT; 5352 if (put_user(num_idents, &p->shmac_num_idents)) 5353 return -EFAULT; 5354 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len)) 5355 return -EFAULT; 5356 return 0; 5357 } 5358 5359 static int sctp_getsockopt_active_key(struct sock *sk, int len, 5360 char __user *optval, int __user *optlen) 5361 { 5362 struct net *net = sock_net(sk); 5363 struct sctp_authkeyid val; 5364 struct sctp_association *asoc; 5365 5366 if (!net->sctp.auth_enable) 5367 return -EACCES; 5368 5369 if (len < sizeof(struct sctp_authkeyid)) 5370 return -EINVAL; 5371 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid))) 5372 return -EFAULT; 5373 5374 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 5375 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 5376 return -EINVAL; 5377 5378 if (asoc) 5379 val.scact_keynumber = asoc->active_key_id; 5380 else 5381 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id; 5382 5383 len = sizeof(struct sctp_authkeyid); 5384 if (put_user(len, optlen)) 5385 return -EFAULT; 5386 if (copy_to_user(optval, &val, len)) 5387 return -EFAULT; 5388 5389 return 0; 5390 } 5391 5392 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 5393 char __user *optval, int __user *optlen) 5394 { 5395 struct net *net = sock_net(sk); 5396 struct sctp_authchunks __user *p = (void __user *)optval; 5397 struct sctp_authchunks val; 5398 struct sctp_association *asoc; 5399 struct sctp_chunks_param *ch; 5400 u32 num_chunks = 0; 5401 char __user *to; 5402 5403 if (!net->sctp.auth_enable) 5404 return -EACCES; 5405 5406 if (len < sizeof(struct sctp_authchunks)) 5407 return -EINVAL; 5408 5409 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5410 return -EFAULT; 5411 5412 to = p->gauth_chunks; 5413 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5414 if (!asoc) 5415 return -EINVAL; 5416 5417 ch = asoc->peer.peer_chunks; 5418 if (!ch) 5419 goto num; 5420 5421 /* See if the user provided enough room for all the data */ 5422 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5423 if (len < num_chunks) 5424 return -EINVAL; 5425 5426 if (copy_to_user(to, ch->chunks, num_chunks)) 5427 return -EFAULT; 5428 num: 5429 len = sizeof(struct sctp_authchunks) + num_chunks; 5430 if (put_user(len, optlen)) return -EFAULT; 5431 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5432 return -EFAULT; 5433 return 0; 5434 } 5435 5436 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 5437 char __user *optval, int __user *optlen) 5438 { 5439 struct net *net = sock_net(sk); 5440 struct sctp_authchunks __user *p = (void __user *)optval; 5441 struct sctp_authchunks val; 5442 struct sctp_association *asoc; 5443 struct sctp_chunks_param *ch; 5444 u32 num_chunks = 0; 5445 char __user *to; 5446 5447 if (!net->sctp.auth_enable) 5448 return -EACCES; 5449 5450 if (len < sizeof(struct sctp_authchunks)) 5451 return -EINVAL; 5452 5453 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks))) 5454 return -EFAULT; 5455 5456 to = p->gauth_chunks; 5457 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 5458 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 5459 return -EINVAL; 5460 5461 if (asoc) 5462 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks; 5463 else 5464 ch = sctp_sk(sk)->ep->auth_chunk_list; 5465 5466 if (!ch) 5467 goto num; 5468 5469 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t); 5470 if (len < sizeof(struct sctp_authchunks) + num_chunks) 5471 return -EINVAL; 5472 5473 if (copy_to_user(to, ch->chunks, num_chunks)) 5474 return -EFAULT; 5475 num: 5476 len = sizeof(struct sctp_authchunks) + num_chunks; 5477 if (put_user(len, optlen)) 5478 return -EFAULT; 5479 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 5480 return -EFAULT; 5481 5482 return 0; 5483 } 5484 5485 /* 5486 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 5487 * This option gets the current number of associations that are attached 5488 * to a one-to-many style socket. The option value is an uint32_t. 5489 */ 5490 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 5491 char __user *optval, int __user *optlen) 5492 { 5493 struct sctp_sock *sp = sctp_sk(sk); 5494 struct sctp_association *asoc; 5495 u32 val = 0; 5496 5497 if (sctp_style(sk, TCP)) 5498 return -EOPNOTSUPP; 5499 5500 if (len < sizeof(u32)) 5501 return -EINVAL; 5502 5503 len = sizeof(u32); 5504 5505 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5506 val++; 5507 } 5508 5509 if (put_user(len, optlen)) 5510 return -EFAULT; 5511 if (copy_to_user(optval, &val, len)) 5512 return -EFAULT; 5513 5514 return 0; 5515 } 5516 5517 /* 5518 * 8.1.23 SCTP_AUTO_ASCONF 5519 * See the corresponding setsockopt entry as description 5520 */ 5521 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 5522 char __user *optval, int __user *optlen) 5523 { 5524 int val = 0; 5525 5526 if (len < sizeof(int)) 5527 return -EINVAL; 5528 5529 len = sizeof(int); 5530 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 5531 val = 1; 5532 if (put_user(len, optlen)) 5533 return -EFAULT; 5534 if (copy_to_user(optval, &val, len)) 5535 return -EFAULT; 5536 return 0; 5537 } 5538 5539 /* 5540 * 8.2.6. Get the Current Identifiers of Associations 5541 * (SCTP_GET_ASSOC_ID_LIST) 5542 * 5543 * This option gets the current list of SCTP association identifiers of 5544 * the SCTP associations handled by a one-to-many style socket. 5545 */ 5546 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 5547 char __user *optval, int __user *optlen) 5548 { 5549 struct sctp_sock *sp = sctp_sk(sk); 5550 struct sctp_association *asoc; 5551 struct sctp_assoc_ids *ids; 5552 u32 num = 0; 5553 5554 if (sctp_style(sk, TCP)) 5555 return -EOPNOTSUPP; 5556 5557 if (len < sizeof(struct sctp_assoc_ids)) 5558 return -EINVAL; 5559 5560 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5561 num++; 5562 } 5563 5564 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 5565 return -EINVAL; 5566 5567 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 5568 5569 ids = kmalloc(len, GFP_KERNEL); 5570 if (unlikely(!ids)) 5571 return -ENOMEM; 5572 5573 ids->gaids_number_of_ids = num; 5574 num = 0; 5575 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 5576 ids->gaids_assoc_id[num++] = asoc->assoc_id; 5577 } 5578 5579 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 5580 kfree(ids); 5581 return -EFAULT; 5582 } 5583 5584 kfree(ids); 5585 return 0; 5586 } 5587 5588 /* 5589 * SCTP_PEER_ADDR_THLDS 5590 * 5591 * This option allows us to fetch the partially failed threshold for one or all 5592 * transports in an association. See Section 6.1 of: 5593 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 5594 */ 5595 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 5596 char __user *optval, 5597 int len, 5598 int __user *optlen) 5599 { 5600 struct sctp_paddrthlds val; 5601 struct sctp_transport *trans; 5602 struct sctp_association *asoc; 5603 5604 if (len < sizeof(struct sctp_paddrthlds)) 5605 return -EINVAL; 5606 len = sizeof(struct sctp_paddrthlds); 5607 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 5608 return -EFAULT; 5609 5610 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 5611 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 5612 if (!asoc) 5613 return -ENOENT; 5614 5615 val.spt_pathpfthld = asoc->pf_retrans; 5616 val.spt_pathmaxrxt = asoc->pathmaxrxt; 5617 } else { 5618 trans = sctp_addr_id2transport(sk, &val.spt_address, 5619 val.spt_assoc_id); 5620 if (!trans) 5621 return -ENOENT; 5622 5623 val.spt_pathmaxrxt = trans->pathmaxrxt; 5624 val.spt_pathpfthld = trans->pf_retrans; 5625 } 5626 5627 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 5628 return -EFAULT; 5629 5630 return 0; 5631 } 5632 5633 /* 5634 * SCTP_GET_ASSOC_STATS 5635 * 5636 * This option retrieves local per endpoint statistics. It is modeled 5637 * after OpenSolaris' implementation 5638 */ 5639 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 5640 char __user *optval, 5641 int __user *optlen) 5642 { 5643 struct sctp_assoc_stats sas; 5644 struct sctp_association *asoc = NULL; 5645 5646 /* User must provide at least the assoc id */ 5647 if (len < sizeof(sctp_assoc_t)) 5648 return -EINVAL; 5649 5650 /* Allow the struct to grow and fill in as much as possible */ 5651 len = min_t(size_t, len, sizeof(sas)); 5652 5653 if (copy_from_user(&sas, optval, len)) 5654 return -EFAULT; 5655 5656 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 5657 if (!asoc) 5658 return -EINVAL; 5659 5660 sas.sas_rtxchunks = asoc->stats.rtxchunks; 5661 sas.sas_gapcnt = asoc->stats.gapcnt; 5662 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 5663 sas.sas_osacks = asoc->stats.osacks; 5664 sas.sas_isacks = asoc->stats.isacks; 5665 sas.sas_octrlchunks = asoc->stats.octrlchunks; 5666 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 5667 sas.sas_oodchunks = asoc->stats.oodchunks; 5668 sas.sas_iodchunks = asoc->stats.iodchunks; 5669 sas.sas_ouodchunks = asoc->stats.ouodchunks; 5670 sas.sas_iuodchunks = asoc->stats.iuodchunks; 5671 sas.sas_idupchunks = asoc->stats.idupchunks; 5672 sas.sas_opackets = asoc->stats.opackets; 5673 sas.sas_ipackets = asoc->stats.ipackets; 5674 5675 /* New high max rto observed, will return 0 if not a single 5676 * RTO update took place. obs_rto_ipaddr will be bogus 5677 * in such a case 5678 */ 5679 sas.sas_maxrto = asoc->stats.max_obs_rto; 5680 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 5681 sizeof(struct sockaddr_storage)); 5682 5683 /* Mark beginning of a new observation period */ 5684 asoc->stats.max_obs_rto = asoc->rto_min; 5685 5686 if (put_user(len, optlen)) 5687 return -EFAULT; 5688 5689 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 5690 5691 if (copy_to_user(optval, &sas, len)) 5692 return -EFAULT; 5693 5694 return 0; 5695 } 5696 5697 static int sctp_getsockopt(struct sock *sk, int level, int optname, 5698 char __user *optval, int __user *optlen) 5699 { 5700 int retval = 0; 5701 int len; 5702 5703 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 5704 5705 /* I can hardly begin to describe how wrong this is. This is 5706 * so broken as to be worse than useless. The API draft 5707 * REALLY is NOT helpful here... I am not convinced that the 5708 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 5709 * are at all well-founded. 5710 */ 5711 if (level != SOL_SCTP) { 5712 struct sctp_af *af = sctp_sk(sk)->pf->af; 5713 5714 retval = af->getsockopt(sk, level, optname, optval, optlen); 5715 return retval; 5716 } 5717 5718 if (get_user(len, optlen)) 5719 return -EFAULT; 5720 5721 sctp_lock_sock(sk); 5722 5723 switch (optname) { 5724 case SCTP_STATUS: 5725 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 5726 break; 5727 case SCTP_DISABLE_FRAGMENTS: 5728 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 5729 optlen); 5730 break; 5731 case SCTP_EVENTS: 5732 retval = sctp_getsockopt_events(sk, len, optval, optlen); 5733 break; 5734 case SCTP_AUTOCLOSE: 5735 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 5736 break; 5737 case SCTP_SOCKOPT_PEELOFF: 5738 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 5739 break; 5740 case SCTP_PEER_ADDR_PARAMS: 5741 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 5742 optlen); 5743 break; 5744 case SCTP_DELAYED_SACK: 5745 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 5746 optlen); 5747 break; 5748 case SCTP_INITMSG: 5749 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 5750 break; 5751 case SCTP_GET_PEER_ADDRS: 5752 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 5753 optlen); 5754 break; 5755 case SCTP_GET_LOCAL_ADDRS: 5756 retval = sctp_getsockopt_local_addrs(sk, len, optval, 5757 optlen); 5758 break; 5759 case SCTP_SOCKOPT_CONNECTX3: 5760 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 5761 break; 5762 case SCTP_DEFAULT_SEND_PARAM: 5763 retval = sctp_getsockopt_default_send_param(sk, len, 5764 optval, optlen); 5765 break; 5766 case SCTP_PRIMARY_ADDR: 5767 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 5768 break; 5769 case SCTP_NODELAY: 5770 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 5771 break; 5772 case SCTP_RTOINFO: 5773 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 5774 break; 5775 case SCTP_ASSOCINFO: 5776 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 5777 break; 5778 case SCTP_I_WANT_MAPPED_V4_ADDR: 5779 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 5780 break; 5781 case SCTP_MAXSEG: 5782 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 5783 break; 5784 case SCTP_GET_PEER_ADDR_INFO: 5785 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 5786 optlen); 5787 break; 5788 case SCTP_ADAPTATION_LAYER: 5789 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 5790 optlen); 5791 break; 5792 case SCTP_CONTEXT: 5793 retval = sctp_getsockopt_context(sk, len, optval, optlen); 5794 break; 5795 case SCTP_FRAGMENT_INTERLEAVE: 5796 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 5797 optlen); 5798 break; 5799 case SCTP_PARTIAL_DELIVERY_POINT: 5800 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 5801 optlen); 5802 break; 5803 case SCTP_MAX_BURST: 5804 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 5805 break; 5806 case SCTP_AUTH_KEY: 5807 case SCTP_AUTH_CHUNK: 5808 case SCTP_AUTH_DELETE_KEY: 5809 retval = -EOPNOTSUPP; 5810 break; 5811 case SCTP_HMAC_IDENT: 5812 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 5813 break; 5814 case SCTP_AUTH_ACTIVE_KEY: 5815 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 5816 break; 5817 case SCTP_PEER_AUTH_CHUNKS: 5818 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 5819 optlen); 5820 break; 5821 case SCTP_LOCAL_AUTH_CHUNKS: 5822 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 5823 optlen); 5824 break; 5825 case SCTP_GET_ASSOC_NUMBER: 5826 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 5827 break; 5828 case SCTP_GET_ASSOC_ID_LIST: 5829 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 5830 break; 5831 case SCTP_AUTO_ASCONF: 5832 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 5833 break; 5834 case SCTP_PEER_ADDR_THLDS: 5835 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 5836 break; 5837 case SCTP_GET_ASSOC_STATS: 5838 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 5839 break; 5840 default: 5841 retval = -ENOPROTOOPT; 5842 break; 5843 } 5844 5845 sctp_release_sock(sk); 5846 return retval; 5847 } 5848 5849 static void sctp_hash(struct sock *sk) 5850 { 5851 /* STUB */ 5852 } 5853 5854 static void sctp_unhash(struct sock *sk) 5855 { 5856 /* STUB */ 5857 } 5858 5859 /* Check if port is acceptable. Possibly find first available port. 5860 * 5861 * The port hash table (contained in the 'global' SCTP protocol storage 5862 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 5863 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 5864 * list (the list number is the port number hashed out, so as you 5865 * would expect from a hash function, all the ports in a given list have 5866 * such a number that hashes out to the same list number; you were 5867 * expecting that, right?); so each list has a set of ports, with a 5868 * link to the socket (struct sock) that uses it, the port number and 5869 * a fastreuse flag (FIXME: NPI ipg). 5870 */ 5871 static struct sctp_bind_bucket *sctp_bucket_create( 5872 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 5873 5874 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 5875 { 5876 struct sctp_bind_hashbucket *head; /* hash list */ 5877 struct sctp_bind_bucket *pp; 5878 unsigned short snum; 5879 int ret; 5880 5881 snum = ntohs(addr->v4.sin_port); 5882 5883 pr_debug("%s: begins, snum:%d\n", __func__, snum); 5884 5885 sctp_local_bh_disable(); 5886 5887 if (snum == 0) { 5888 /* Search for an available port. */ 5889 int low, high, remaining, index; 5890 unsigned int rover; 5891 5892 inet_get_local_port_range(sock_net(sk), &low, &high); 5893 remaining = (high - low) + 1; 5894 rover = net_random() % remaining + low; 5895 5896 do { 5897 rover++; 5898 if ((rover < low) || (rover > high)) 5899 rover = low; 5900 if (inet_is_reserved_local_port(rover)) 5901 continue; 5902 index = sctp_phashfn(sock_net(sk), rover); 5903 head = &sctp_port_hashtable[index]; 5904 sctp_spin_lock(&head->lock); 5905 sctp_for_each_hentry(pp, &head->chain) 5906 if ((pp->port == rover) && 5907 net_eq(sock_net(sk), pp->net)) 5908 goto next; 5909 break; 5910 next: 5911 sctp_spin_unlock(&head->lock); 5912 } while (--remaining > 0); 5913 5914 /* Exhausted local port range during search? */ 5915 ret = 1; 5916 if (remaining <= 0) 5917 goto fail; 5918 5919 /* OK, here is the one we will use. HEAD (the port 5920 * hash table list entry) is non-NULL and we hold it's 5921 * mutex. 5922 */ 5923 snum = rover; 5924 } else { 5925 /* We are given an specific port number; we verify 5926 * that it is not being used. If it is used, we will 5927 * exahust the search in the hash list corresponding 5928 * to the port number (snum) - we detect that with the 5929 * port iterator, pp being NULL. 5930 */ 5931 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 5932 sctp_spin_lock(&head->lock); 5933 sctp_for_each_hentry(pp, &head->chain) { 5934 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 5935 goto pp_found; 5936 } 5937 } 5938 pp = NULL; 5939 goto pp_not_found; 5940 pp_found: 5941 if (!hlist_empty(&pp->owner)) { 5942 /* We had a port hash table hit - there is an 5943 * available port (pp != NULL) and it is being 5944 * used by other socket (pp->owner not empty); that other 5945 * socket is going to be sk2. 5946 */ 5947 int reuse = sk->sk_reuse; 5948 struct sock *sk2; 5949 5950 pr_debug("%s: found a possible match\n", __func__); 5951 5952 if (pp->fastreuse && sk->sk_reuse && 5953 sk->sk_state != SCTP_SS_LISTENING) 5954 goto success; 5955 5956 /* Run through the list of sockets bound to the port 5957 * (pp->port) [via the pointers bind_next and 5958 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 5959 * we get the endpoint they describe and run through 5960 * the endpoint's list of IP (v4 or v6) addresses, 5961 * comparing each of the addresses with the address of 5962 * the socket sk. If we find a match, then that means 5963 * that this port/socket (sk) combination are already 5964 * in an endpoint. 5965 */ 5966 sk_for_each_bound(sk2, &pp->owner) { 5967 struct sctp_endpoint *ep2; 5968 ep2 = sctp_sk(sk2)->ep; 5969 5970 if (sk == sk2 || 5971 (reuse && sk2->sk_reuse && 5972 sk2->sk_state != SCTP_SS_LISTENING)) 5973 continue; 5974 5975 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 5976 sctp_sk(sk2), sctp_sk(sk))) { 5977 ret = (long)sk2; 5978 goto fail_unlock; 5979 } 5980 } 5981 5982 pr_debug("%s: found a match\n", __func__); 5983 } 5984 pp_not_found: 5985 /* If there was a hash table miss, create a new port. */ 5986 ret = 1; 5987 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 5988 goto fail_unlock; 5989 5990 /* In either case (hit or miss), make sure fastreuse is 1 only 5991 * if sk->sk_reuse is too (that is, if the caller requested 5992 * SO_REUSEADDR on this socket -sk-). 5993 */ 5994 if (hlist_empty(&pp->owner)) { 5995 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 5996 pp->fastreuse = 1; 5997 else 5998 pp->fastreuse = 0; 5999 } else if (pp->fastreuse && 6000 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 6001 pp->fastreuse = 0; 6002 6003 /* We are set, so fill up all the data in the hash table 6004 * entry, tie the socket list information with the rest of the 6005 * sockets FIXME: Blurry, NPI (ipg). 6006 */ 6007 success: 6008 if (!sctp_sk(sk)->bind_hash) { 6009 inet_sk(sk)->inet_num = snum; 6010 sk_add_bind_node(sk, &pp->owner); 6011 sctp_sk(sk)->bind_hash = pp; 6012 } 6013 ret = 0; 6014 6015 fail_unlock: 6016 sctp_spin_unlock(&head->lock); 6017 6018 fail: 6019 sctp_local_bh_enable(); 6020 return ret; 6021 } 6022 6023 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 6024 * port is requested. 6025 */ 6026 static int sctp_get_port(struct sock *sk, unsigned short snum) 6027 { 6028 union sctp_addr addr; 6029 struct sctp_af *af = sctp_sk(sk)->pf->af; 6030 6031 /* Set up a dummy address struct from the sk. */ 6032 af->from_sk(&addr, sk); 6033 addr.v4.sin_port = htons(snum); 6034 6035 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 6036 return !!sctp_get_port_local(sk, &addr); 6037 } 6038 6039 /* 6040 * Move a socket to LISTENING state. 6041 */ 6042 static int sctp_listen_start(struct sock *sk, int backlog) 6043 { 6044 struct sctp_sock *sp = sctp_sk(sk); 6045 struct sctp_endpoint *ep = sp->ep; 6046 struct crypto_hash *tfm = NULL; 6047 char alg[32]; 6048 6049 /* Allocate HMAC for generating cookie. */ 6050 if (!sp->hmac && sp->sctp_hmac_alg) { 6051 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 6052 tfm = crypto_alloc_hash(alg, 0, CRYPTO_ALG_ASYNC); 6053 if (IS_ERR(tfm)) { 6054 net_info_ratelimited("failed to load transform for %s: %ld\n", 6055 sp->sctp_hmac_alg, PTR_ERR(tfm)); 6056 return -ENOSYS; 6057 } 6058 sctp_sk(sk)->hmac = tfm; 6059 } 6060 6061 /* 6062 * If a bind() or sctp_bindx() is not called prior to a listen() 6063 * call that allows new associations to be accepted, the system 6064 * picks an ephemeral port and will choose an address set equivalent 6065 * to binding with a wildcard address. 6066 * 6067 * This is not currently spelled out in the SCTP sockets 6068 * extensions draft, but follows the practice as seen in TCP 6069 * sockets. 6070 * 6071 */ 6072 sk->sk_state = SCTP_SS_LISTENING; 6073 if (!ep->base.bind_addr.port) { 6074 if (sctp_autobind(sk)) 6075 return -EAGAIN; 6076 } else { 6077 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 6078 sk->sk_state = SCTP_SS_CLOSED; 6079 return -EADDRINUSE; 6080 } 6081 } 6082 6083 sk->sk_max_ack_backlog = backlog; 6084 sctp_hash_endpoint(ep); 6085 return 0; 6086 } 6087 6088 /* 6089 * 4.1.3 / 5.1.3 listen() 6090 * 6091 * By default, new associations are not accepted for UDP style sockets. 6092 * An application uses listen() to mark a socket as being able to 6093 * accept new associations. 6094 * 6095 * On TCP style sockets, applications use listen() to ready the SCTP 6096 * endpoint for accepting inbound associations. 6097 * 6098 * On both types of endpoints a backlog of '0' disables listening. 6099 * 6100 * Move a socket to LISTENING state. 6101 */ 6102 int sctp_inet_listen(struct socket *sock, int backlog) 6103 { 6104 struct sock *sk = sock->sk; 6105 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6106 int err = -EINVAL; 6107 6108 if (unlikely(backlog < 0)) 6109 return err; 6110 6111 sctp_lock_sock(sk); 6112 6113 /* Peeled-off sockets are not allowed to listen(). */ 6114 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 6115 goto out; 6116 6117 if (sock->state != SS_UNCONNECTED) 6118 goto out; 6119 6120 /* If backlog is zero, disable listening. */ 6121 if (!backlog) { 6122 if (sctp_sstate(sk, CLOSED)) 6123 goto out; 6124 6125 err = 0; 6126 sctp_unhash_endpoint(ep); 6127 sk->sk_state = SCTP_SS_CLOSED; 6128 if (sk->sk_reuse) 6129 sctp_sk(sk)->bind_hash->fastreuse = 1; 6130 goto out; 6131 } 6132 6133 /* If we are already listening, just update the backlog */ 6134 if (sctp_sstate(sk, LISTENING)) 6135 sk->sk_max_ack_backlog = backlog; 6136 else { 6137 err = sctp_listen_start(sk, backlog); 6138 if (err) 6139 goto out; 6140 } 6141 6142 err = 0; 6143 out: 6144 sctp_release_sock(sk); 6145 return err; 6146 } 6147 6148 /* 6149 * This function is done by modeling the current datagram_poll() and the 6150 * tcp_poll(). Note that, based on these implementations, we don't 6151 * lock the socket in this function, even though it seems that, 6152 * ideally, locking or some other mechanisms can be used to ensure 6153 * the integrity of the counters (sndbuf and wmem_alloc) used 6154 * in this place. We assume that we don't need locks either until proven 6155 * otherwise. 6156 * 6157 * Another thing to note is that we include the Async I/O support 6158 * here, again, by modeling the current TCP/UDP code. We don't have 6159 * a good way to test with it yet. 6160 */ 6161 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 6162 { 6163 struct sock *sk = sock->sk; 6164 struct sctp_sock *sp = sctp_sk(sk); 6165 unsigned int mask; 6166 6167 poll_wait(file, sk_sleep(sk), wait); 6168 6169 /* A TCP-style listening socket becomes readable when the accept queue 6170 * is not empty. 6171 */ 6172 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 6173 return (!list_empty(&sp->ep->asocs)) ? 6174 (POLLIN | POLLRDNORM) : 0; 6175 6176 mask = 0; 6177 6178 /* Is there any exceptional events? */ 6179 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 6180 mask |= POLLERR | 6181 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0); 6182 if (sk->sk_shutdown & RCV_SHUTDOWN) 6183 mask |= POLLRDHUP | POLLIN | POLLRDNORM; 6184 if (sk->sk_shutdown == SHUTDOWN_MASK) 6185 mask |= POLLHUP; 6186 6187 /* Is it readable? Reconsider this code with TCP-style support. */ 6188 if (!skb_queue_empty(&sk->sk_receive_queue)) 6189 mask |= POLLIN | POLLRDNORM; 6190 6191 /* The association is either gone or not ready. */ 6192 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 6193 return mask; 6194 6195 /* Is it writable? */ 6196 if (sctp_writeable(sk)) { 6197 mask |= POLLOUT | POLLWRNORM; 6198 } else { 6199 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 6200 /* 6201 * Since the socket is not locked, the buffer 6202 * might be made available after the writeable check and 6203 * before the bit is set. This could cause a lost I/O 6204 * signal. tcp_poll() has a race breaker for this race 6205 * condition. Based on their implementation, we put 6206 * in the following code to cover it as well. 6207 */ 6208 if (sctp_writeable(sk)) 6209 mask |= POLLOUT | POLLWRNORM; 6210 } 6211 return mask; 6212 } 6213 6214 /******************************************************************** 6215 * 2nd Level Abstractions 6216 ********************************************************************/ 6217 6218 static struct sctp_bind_bucket *sctp_bucket_create( 6219 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 6220 { 6221 struct sctp_bind_bucket *pp; 6222 6223 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 6224 if (pp) { 6225 SCTP_DBG_OBJCNT_INC(bind_bucket); 6226 pp->port = snum; 6227 pp->fastreuse = 0; 6228 INIT_HLIST_HEAD(&pp->owner); 6229 pp->net = net; 6230 hlist_add_head(&pp->node, &head->chain); 6231 } 6232 return pp; 6233 } 6234 6235 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 6236 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 6237 { 6238 if (pp && hlist_empty(&pp->owner)) { 6239 __hlist_del(&pp->node); 6240 kmem_cache_free(sctp_bucket_cachep, pp); 6241 SCTP_DBG_OBJCNT_DEC(bind_bucket); 6242 } 6243 } 6244 6245 /* Release this socket's reference to a local port. */ 6246 static inline void __sctp_put_port(struct sock *sk) 6247 { 6248 struct sctp_bind_hashbucket *head = 6249 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 6250 inet_sk(sk)->inet_num)]; 6251 struct sctp_bind_bucket *pp; 6252 6253 sctp_spin_lock(&head->lock); 6254 pp = sctp_sk(sk)->bind_hash; 6255 __sk_del_bind_node(sk); 6256 sctp_sk(sk)->bind_hash = NULL; 6257 inet_sk(sk)->inet_num = 0; 6258 sctp_bucket_destroy(pp); 6259 sctp_spin_unlock(&head->lock); 6260 } 6261 6262 void sctp_put_port(struct sock *sk) 6263 { 6264 sctp_local_bh_disable(); 6265 __sctp_put_port(sk); 6266 sctp_local_bh_enable(); 6267 } 6268 6269 /* 6270 * The system picks an ephemeral port and choose an address set equivalent 6271 * to binding with a wildcard address. 6272 * One of those addresses will be the primary address for the association. 6273 * This automatically enables the multihoming capability of SCTP. 6274 */ 6275 static int sctp_autobind(struct sock *sk) 6276 { 6277 union sctp_addr autoaddr; 6278 struct sctp_af *af; 6279 __be16 port; 6280 6281 /* Initialize a local sockaddr structure to INADDR_ANY. */ 6282 af = sctp_sk(sk)->pf->af; 6283 6284 port = htons(inet_sk(sk)->inet_num); 6285 af->inaddr_any(&autoaddr, port); 6286 6287 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 6288 } 6289 6290 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 6291 * 6292 * From RFC 2292 6293 * 4.2 The cmsghdr Structure * 6294 * 6295 * When ancillary data is sent or received, any number of ancillary data 6296 * objects can be specified by the msg_control and msg_controllen members of 6297 * the msghdr structure, because each object is preceded by 6298 * a cmsghdr structure defining the object's length (the cmsg_len member). 6299 * Historically Berkeley-derived implementations have passed only one object 6300 * at a time, but this API allows multiple objects to be 6301 * passed in a single call to sendmsg() or recvmsg(). The following example 6302 * shows two ancillary data objects in a control buffer. 6303 * 6304 * |<--------------------------- msg_controllen -------------------------->| 6305 * | | 6306 * 6307 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 6308 * 6309 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 6310 * | | | 6311 * 6312 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 6313 * 6314 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 6315 * | | | | | 6316 * 6317 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6318 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 6319 * 6320 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 6321 * 6322 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 6323 * ^ 6324 * | 6325 * 6326 * msg_control 6327 * points here 6328 */ 6329 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs) 6330 { 6331 struct cmsghdr *cmsg; 6332 struct msghdr *my_msg = (struct msghdr *)msg; 6333 6334 for (cmsg = CMSG_FIRSTHDR(msg); 6335 cmsg != NULL; 6336 cmsg = CMSG_NXTHDR(my_msg, cmsg)) { 6337 if (!CMSG_OK(my_msg, cmsg)) 6338 return -EINVAL; 6339 6340 /* Should we parse this header or ignore? */ 6341 if (cmsg->cmsg_level != IPPROTO_SCTP) 6342 continue; 6343 6344 /* Strictly check lengths following example in SCM code. */ 6345 switch (cmsg->cmsg_type) { 6346 case SCTP_INIT: 6347 /* SCTP Socket API Extension 6348 * 5.2.1 SCTP Initiation Structure (SCTP_INIT) 6349 * 6350 * This cmsghdr structure provides information for 6351 * initializing new SCTP associations with sendmsg(). 6352 * The SCTP_INITMSG socket option uses this same data 6353 * structure. This structure is not used for 6354 * recvmsg(). 6355 * 6356 * cmsg_level cmsg_type cmsg_data[] 6357 * ------------ ------------ ---------------------- 6358 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 6359 */ 6360 if (cmsg->cmsg_len != 6361 CMSG_LEN(sizeof(struct sctp_initmsg))) 6362 return -EINVAL; 6363 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); 6364 break; 6365 6366 case SCTP_SNDRCV: 6367 /* SCTP Socket API Extension 6368 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) 6369 * 6370 * This cmsghdr structure specifies SCTP options for 6371 * sendmsg() and describes SCTP header information 6372 * about a received message through recvmsg(). 6373 * 6374 * cmsg_level cmsg_type cmsg_data[] 6375 * ------------ ------------ ---------------------- 6376 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 6377 */ 6378 if (cmsg->cmsg_len != 6379 CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 6380 return -EINVAL; 6381 6382 cmsgs->info = 6383 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); 6384 6385 /* Minimally, validate the sinfo_flags. */ 6386 if (cmsgs->info->sinfo_flags & 6387 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 6388 SCTP_ABORT | SCTP_EOF)) 6389 return -EINVAL; 6390 break; 6391 6392 default: 6393 return -EINVAL; 6394 } 6395 } 6396 return 0; 6397 } 6398 6399 /* 6400 * Wait for a packet.. 6401 * Note: This function is the same function as in core/datagram.c 6402 * with a few modifications to make lksctp work. 6403 */ 6404 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p) 6405 { 6406 int error; 6407 DEFINE_WAIT(wait); 6408 6409 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 6410 6411 /* Socket errors? */ 6412 error = sock_error(sk); 6413 if (error) 6414 goto out; 6415 6416 if (!skb_queue_empty(&sk->sk_receive_queue)) 6417 goto ready; 6418 6419 /* Socket shut down? */ 6420 if (sk->sk_shutdown & RCV_SHUTDOWN) 6421 goto out; 6422 6423 /* Sequenced packets can come disconnected. If so we report the 6424 * problem. 6425 */ 6426 error = -ENOTCONN; 6427 6428 /* Is there a good reason to think that we may receive some data? */ 6429 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 6430 goto out; 6431 6432 /* Handle signals. */ 6433 if (signal_pending(current)) 6434 goto interrupted; 6435 6436 /* Let another process have a go. Since we are going to sleep 6437 * anyway. Note: This may cause odd behaviors if the message 6438 * does not fit in the user's buffer, but this seems to be the 6439 * only way to honor MSG_DONTWAIT realistically. 6440 */ 6441 sctp_release_sock(sk); 6442 *timeo_p = schedule_timeout(*timeo_p); 6443 sctp_lock_sock(sk); 6444 6445 ready: 6446 finish_wait(sk_sleep(sk), &wait); 6447 return 0; 6448 6449 interrupted: 6450 error = sock_intr_errno(*timeo_p); 6451 6452 out: 6453 finish_wait(sk_sleep(sk), &wait); 6454 *err = error; 6455 return error; 6456 } 6457 6458 /* Receive a datagram. 6459 * Note: This is pretty much the same routine as in core/datagram.c 6460 * with a few changes to make lksctp work. 6461 */ 6462 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 6463 int noblock, int *err) 6464 { 6465 int error; 6466 struct sk_buff *skb; 6467 long timeo; 6468 6469 timeo = sock_rcvtimeo(sk, noblock); 6470 6471 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 6472 MAX_SCHEDULE_TIMEOUT); 6473 6474 do { 6475 /* Again only user level code calls this function, 6476 * so nothing interrupt level 6477 * will suddenly eat the receive_queue. 6478 * 6479 * Look at current nfs client by the way... 6480 * However, this function was correct in any case. 8) 6481 */ 6482 if (flags & MSG_PEEK) { 6483 spin_lock_bh(&sk->sk_receive_queue.lock); 6484 skb = skb_peek(&sk->sk_receive_queue); 6485 if (skb) 6486 atomic_inc(&skb->users); 6487 spin_unlock_bh(&sk->sk_receive_queue.lock); 6488 } else { 6489 skb = skb_dequeue(&sk->sk_receive_queue); 6490 } 6491 6492 if (skb) 6493 return skb; 6494 6495 /* Caller is allowed not to check sk->sk_err before calling. */ 6496 error = sock_error(sk); 6497 if (error) 6498 goto no_packet; 6499 6500 if (sk->sk_shutdown & RCV_SHUTDOWN) 6501 break; 6502 6503 /* User doesn't want to wait. */ 6504 error = -EAGAIN; 6505 if (!timeo) 6506 goto no_packet; 6507 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 6508 6509 return NULL; 6510 6511 no_packet: 6512 *err = error; 6513 return NULL; 6514 } 6515 6516 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 6517 static void __sctp_write_space(struct sctp_association *asoc) 6518 { 6519 struct sock *sk = asoc->base.sk; 6520 struct socket *sock = sk->sk_socket; 6521 6522 if ((sctp_wspace(asoc) > 0) && sock) { 6523 if (waitqueue_active(&asoc->wait)) 6524 wake_up_interruptible(&asoc->wait); 6525 6526 if (sctp_writeable(sk)) { 6527 wait_queue_head_t *wq = sk_sleep(sk); 6528 6529 if (wq && waitqueue_active(wq)) 6530 wake_up_interruptible(wq); 6531 6532 /* Note that we try to include the Async I/O support 6533 * here by modeling from the current TCP/UDP code. 6534 * We have not tested with it yet. 6535 */ 6536 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 6537 sock_wake_async(sock, 6538 SOCK_WAKE_SPACE, POLL_OUT); 6539 } 6540 } 6541 } 6542 6543 /* Do accounting for the sndbuf space. 6544 * Decrement the used sndbuf space of the corresponding association by the 6545 * data size which was just transmitted(freed). 6546 */ 6547 static void sctp_wfree(struct sk_buff *skb) 6548 { 6549 struct sctp_association *asoc; 6550 struct sctp_chunk *chunk; 6551 struct sock *sk; 6552 6553 /* Get the saved chunk pointer. */ 6554 chunk = *((struct sctp_chunk **)(skb->cb)); 6555 asoc = chunk->asoc; 6556 sk = asoc->base.sk; 6557 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 6558 sizeof(struct sk_buff) + 6559 sizeof(struct sctp_chunk); 6560 6561 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 6562 6563 /* 6564 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 6565 */ 6566 sk->sk_wmem_queued -= skb->truesize; 6567 sk_mem_uncharge(sk, skb->truesize); 6568 6569 sock_wfree(skb); 6570 __sctp_write_space(asoc); 6571 6572 sctp_association_put(asoc); 6573 } 6574 6575 /* Do accounting for the receive space on the socket. 6576 * Accounting for the association is done in ulpevent.c 6577 * We set this as a destructor for the cloned data skbs so that 6578 * accounting is done at the correct time. 6579 */ 6580 void sctp_sock_rfree(struct sk_buff *skb) 6581 { 6582 struct sock *sk = skb->sk; 6583 struct sctp_ulpevent *event = sctp_skb2event(skb); 6584 6585 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 6586 6587 /* 6588 * Mimic the behavior of sock_rfree 6589 */ 6590 sk_mem_uncharge(sk, event->rmem_len); 6591 } 6592 6593 6594 /* Helper function to wait for space in the sndbuf. */ 6595 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 6596 size_t msg_len) 6597 { 6598 struct sock *sk = asoc->base.sk; 6599 int err = 0; 6600 long current_timeo = *timeo_p; 6601 DEFINE_WAIT(wait); 6602 6603 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 6604 *timeo_p, msg_len); 6605 6606 /* Increment the association's refcnt. */ 6607 sctp_association_hold(asoc); 6608 6609 /* Wait on the association specific sndbuf space. */ 6610 for (;;) { 6611 prepare_to_wait_exclusive(&asoc->wait, &wait, 6612 TASK_INTERRUPTIBLE); 6613 if (!*timeo_p) 6614 goto do_nonblock; 6615 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6616 asoc->base.dead) 6617 goto do_error; 6618 if (signal_pending(current)) 6619 goto do_interrupted; 6620 if (msg_len <= sctp_wspace(asoc)) 6621 break; 6622 6623 /* Let another process have a go. Since we are going 6624 * to sleep anyway. 6625 */ 6626 sctp_release_sock(sk); 6627 current_timeo = schedule_timeout(current_timeo); 6628 BUG_ON(sk != asoc->base.sk); 6629 sctp_lock_sock(sk); 6630 6631 *timeo_p = current_timeo; 6632 } 6633 6634 out: 6635 finish_wait(&asoc->wait, &wait); 6636 6637 /* Release the association's refcnt. */ 6638 sctp_association_put(asoc); 6639 6640 return err; 6641 6642 do_error: 6643 err = -EPIPE; 6644 goto out; 6645 6646 do_interrupted: 6647 err = sock_intr_errno(*timeo_p); 6648 goto out; 6649 6650 do_nonblock: 6651 err = -EAGAIN; 6652 goto out; 6653 } 6654 6655 void sctp_data_ready(struct sock *sk, int len) 6656 { 6657 struct socket_wq *wq; 6658 6659 rcu_read_lock(); 6660 wq = rcu_dereference(sk->sk_wq); 6661 if (wq_has_sleeper(wq)) 6662 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | 6663 POLLRDNORM | POLLRDBAND); 6664 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 6665 rcu_read_unlock(); 6666 } 6667 6668 /* If socket sndbuf has changed, wake up all per association waiters. */ 6669 void sctp_write_space(struct sock *sk) 6670 { 6671 struct sctp_association *asoc; 6672 6673 /* Wake up the tasks in each wait queue. */ 6674 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 6675 __sctp_write_space(asoc); 6676 } 6677 } 6678 6679 /* Is there any sndbuf space available on the socket? 6680 * 6681 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 6682 * associations on the same socket. For a UDP-style socket with 6683 * multiple associations, it is possible for it to be "unwriteable" 6684 * prematurely. I assume that this is acceptable because 6685 * a premature "unwriteable" is better than an accidental "writeable" which 6686 * would cause an unwanted block under certain circumstances. For the 1-1 6687 * UDP-style sockets or TCP-style sockets, this code should work. 6688 * - Daisy 6689 */ 6690 static int sctp_writeable(struct sock *sk) 6691 { 6692 int amt = 0; 6693 6694 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 6695 if (amt < 0) 6696 amt = 0; 6697 return amt; 6698 } 6699 6700 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 6701 * returns immediately with EINPROGRESS. 6702 */ 6703 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 6704 { 6705 struct sock *sk = asoc->base.sk; 6706 int err = 0; 6707 long current_timeo = *timeo_p; 6708 DEFINE_WAIT(wait); 6709 6710 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 6711 6712 /* Increment the association's refcnt. */ 6713 sctp_association_hold(asoc); 6714 6715 for (;;) { 6716 prepare_to_wait_exclusive(&asoc->wait, &wait, 6717 TASK_INTERRUPTIBLE); 6718 if (!*timeo_p) 6719 goto do_nonblock; 6720 if (sk->sk_shutdown & RCV_SHUTDOWN) 6721 break; 6722 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 6723 asoc->base.dead) 6724 goto do_error; 6725 if (signal_pending(current)) 6726 goto do_interrupted; 6727 6728 if (sctp_state(asoc, ESTABLISHED)) 6729 break; 6730 6731 /* Let another process have a go. Since we are going 6732 * to sleep anyway. 6733 */ 6734 sctp_release_sock(sk); 6735 current_timeo = schedule_timeout(current_timeo); 6736 sctp_lock_sock(sk); 6737 6738 *timeo_p = current_timeo; 6739 } 6740 6741 out: 6742 finish_wait(&asoc->wait, &wait); 6743 6744 /* Release the association's refcnt. */ 6745 sctp_association_put(asoc); 6746 6747 return err; 6748 6749 do_error: 6750 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 6751 err = -ETIMEDOUT; 6752 else 6753 err = -ECONNREFUSED; 6754 goto out; 6755 6756 do_interrupted: 6757 err = sock_intr_errno(*timeo_p); 6758 goto out; 6759 6760 do_nonblock: 6761 err = -EINPROGRESS; 6762 goto out; 6763 } 6764 6765 static int sctp_wait_for_accept(struct sock *sk, long timeo) 6766 { 6767 struct sctp_endpoint *ep; 6768 int err = 0; 6769 DEFINE_WAIT(wait); 6770 6771 ep = sctp_sk(sk)->ep; 6772 6773 6774 for (;;) { 6775 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 6776 TASK_INTERRUPTIBLE); 6777 6778 if (list_empty(&ep->asocs)) { 6779 sctp_release_sock(sk); 6780 timeo = schedule_timeout(timeo); 6781 sctp_lock_sock(sk); 6782 } 6783 6784 err = -EINVAL; 6785 if (!sctp_sstate(sk, LISTENING)) 6786 break; 6787 6788 err = 0; 6789 if (!list_empty(&ep->asocs)) 6790 break; 6791 6792 err = sock_intr_errno(timeo); 6793 if (signal_pending(current)) 6794 break; 6795 6796 err = -EAGAIN; 6797 if (!timeo) 6798 break; 6799 } 6800 6801 finish_wait(sk_sleep(sk), &wait); 6802 6803 return err; 6804 } 6805 6806 static void sctp_wait_for_close(struct sock *sk, long timeout) 6807 { 6808 DEFINE_WAIT(wait); 6809 6810 do { 6811 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 6812 if (list_empty(&sctp_sk(sk)->ep->asocs)) 6813 break; 6814 sctp_release_sock(sk); 6815 timeout = schedule_timeout(timeout); 6816 sctp_lock_sock(sk); 6817 } while (!signal_pending(current) && timeout); 6818 6819 finish_wait(sk_sleep(sk), &wait); 6820 } 6821 6822 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 6823 { 6824 struct sk_buff *frag; 6825 6826 if (!skb->data_len) 6827 goto done; 6828 6829 /* Don't forget the fragments. */ 6830 skb_walk_frags(skb, frag) 6831 sctp_skb_set_owner_r_frag(frag, sk); 6832 6833 done: 6834 sctp_skb_set_owner_r(skb, sk); 6835 } 6836 6837 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 6838 struct sctp_association *asoc) 6839 { 6840 struct inet_sock *inet = inet_sk(sk); 6841 struct inet_sock *newinet; 6842 6843 newsk->sk_type = sk->sk_type; 6844 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 6845 newsk->sk_flags = sk->sk_flags; 6846 newsk->sk_no_check = sk->sk_no_check; 6847 newsk->sk_reuse = sk->sk_reuse; 6848 6849 newsk->sk_shutdown = sk->sk_shutdown; 6850 newsk->sk_destruct = sctp_destruct_sock; 6851 newsk->sk_family = sk->sk_family; 6852 newsk->sk_protocol = IPPROTO_SCTP; 6853 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 6854 newsk->sk_sndbuf = sk->sk_sndbuf; 6855 newsk->sk_rcvbuf = sk->sk_rcvbuf; 6856 newsk->sk_lingertime = sk->sk_lingertime; 6857 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 6858 newsk->sk_sndtimeo = sk->sk_sndtimeo; 6859 6860 newinet = inet_sk(newsk); 6861 6862 /* Initialize sk's sport, dport, rcv_saddr and daddr for 6863 * getsockname() and getpeername() 6864 */ 6865 newinet->inet_sport = inet->inet_sport; 6866 newinet->inet_saddr = inet->inet_saddr; 6867 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 6868 newinet->inet_dport = htons(asoc->peer.port); 6869 newinet->pmtudisc = inet->pmtudisc; 6870 newinet->inet_id = asoc->next_tsn ^ jiffies; 6871 6872 newinet->uc_ttl = inet->uc_ttl; 6873 newinet->mc_loop = 1; 6874 newinet->mc_ttl = 1; 6875 newinet->mc_index = 0; 6876 newinet->mc_list = NULL; 6877 } 6878 6879 /* Populate the fields of the newsk from the oldsk and migrate the assoc 6880 * and its messages to the newsk. 6881 */ 6882 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 6883 struct sctp_association *assoc, 6884 sctp_socket_type_t type) 6885 { 6886 struct sctp_sock *oldsp = sctp_sk(oldsk); 6887 struct sctp_sock *newsp = sctp_sk(newsk); 6888 struct sctp_bind_bucket *pp; /* hash list port iterator */ 6889 struct sctp_endpoint *newep = newsp->ep; 6890 struct sk_buff *skb, *tmp; 6891 struct sctp_ulpevent *event; 6892 struct sctp_bind_hashbucket *head; 6893 struct list_head tmplist; 6894 6895 /* Migrate socket buffer sizes and all the socket level options to the 6896 * new socket. 6897 */ 6898 newsk->sk_sndbuf = oldsk->sk_sndbuf; 6899 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 6900 /* Brute force copy old sctp opt. */ 6901 if (oldsp->do_auto_asconf) { 6902 memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist)); 6903 inet_sk_copy_descendant(newsk, oldsk); 6904 memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist)); 6905 } else 6906 inet_sk_copy_descendant(newsk, oldsk); 6907 6908 /* Restore the ep value that was overwritten with the above structure 6909 * copy. 6910 */ 6911 newsp->ep = newep; 6912 newsp->hmac = NULL; 6913 6914 /* Hook this new socket in to the bind_hash list. */ 6915 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 6916 inet_sk(oldsk)->inet_num)]; 6917 sctp_local_bh_disable(); 6918 sctp_spin_lock(&head->lock); 6919 pp = sctp_sk(oldsk)->bind_hash; 6920 sk_add_bind_node(newsk, &pp->owner); 6921 sctp_sk(newsk)->bind_hash = pp; 6922 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 6923 sctp_spin_unlock(&head->lock); 6924 sctp_local_bh_enable(); 6925 6926 /* Copy the bind_addr list from the original endpoint to the new 6927 * endpoint so that we can handle restarts properly 6928 */ 6929 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 6930 &oldsp->ep->base.bind_addr, GFP_KERNEL); 6931 6932 /* Move any messages in the old socket's receive queue that are for the 6933 * peeled off association to the new socket's receive queue. 6934 */ 6935 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 6936 event = sctp_skb2event(skb); 6937 if (event->asoc == assoc) { 6938 __skb_unlink(skb, &oldsk->sk_receive_queue); 6939 __skb_queue_tail(&newsk->sk_receive_queue, skb); 6940 sctp_skb_set_owner_r_frag(skb, newsk); 6941 } 6942 } 6943 6944 /* Clean up any messages pending delivery due to partial 6945 * delivery. Three cases: 6946 * 1) No partial deliver; no work. 6947 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 6948 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 6949 */ 6950 skb_queue_head_init(&newsp->pd_lobby); 6951 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 6952 6953 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 6954 struct sk_buff_head *queue; 6955 6956 /* Decide which queue to move pd_lobby skbs to. */ 6957 if (assoc->ulpq.pd_mode) { 6958 queue = &newsp->pd_lobby; 6959 } else 6960 queue = &newsk->sk_receive_queue; 6961 6962 /* Walk through the pd_lobby, looking for skbs that 6963 * need moved to the new socket. 6964 */ 6965 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 6966 event = sctp_skb2event(skb); 6967 if (event->asoc == assoc) { 6968 __skb_unlink(skb, &oldsp->pd_lobby); 6969 __skb_queue_tail(queue, skb); 6970 sctp_skb_set_owner_r_frag(skb, newsk); 6971 } 6972 } 6973 6974 /* Clear up any skbs waiting for the partial 6975 * delivery to finish. 6976 */ 6977 if (assoc->ulpq.pd_mode) 6978 sctp_clear_pd(oldsk, NULL); 6979 6980 } 6981 6982 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) 6983 sctp_skb_set_owner_r_frag(skb, newsk); 6984 6985 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) 6986 sctp_skb_set_owner_r_frag(skb, newsk); 6987 6988 /* Set the type of socket to indicate that it is peeled off from the 6989 * original UDP-style socket or created with the accept() call on a 6990 * TCP-style socket.. 6991 */ 6992 newsp->type = type; 6993 6994 /* Mark the new socket "in-use" by the user so that any packets 6995 * that may arrive on the association after we've moved it are 6996 * queued to the backlog. This prevents a potential race between 6997 * backlog processing on the old socket and new-packet processing 6998 * on the new socket. 6999 * 7000 * The caller has just allocated newsk so we can guarantee that other 7001 * paths won't try to lock it and then oldsk. 7002 */ 7003 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 7004 sctp_assoc_migrate(assoc, newsk); 7005 7006 /* If the association on the newsk is already closed before accept() 7007 * is called, set RCV_SHUTDOWN flag. 7008 */ 7009 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 7010 newsk->sk_shutdown |= RCV_SHUTDOWN; 7011 7012 newsk->sk_state = SCTP_SS_ESTABLISHED; 7013 sctp_release_sock(newsk); 7014 } 7015 7016 7017 /* This proto struct describes the ULP interface for SCTP. */ 7018 struct proto sctp_prot = { 7019 .name = "SCTP", 7020 .owner = THIS_MODULE, 7021 .close = sctp_close, 7022 .connect = sctp_connect, 7023 .disconnect = sctp_disconnect, 7024 .accept = sctp_accept, 7025 .ioctl = sctp_ioctl, 7026 .init = sctp_init_sock, 7027 .destroy = sctp_destroy_sock, 7028 .shutdown = sctp_shutdown, 7029 .setsockopt = sctp_setsockopt, 7030 .getsockopt = sctp_getsockopt, 7031 .sendmsg = sctp_sendmsg, 7032 .recvmsg = sctp_recvmsg, 7033 .bind = sctp_bind, 7034 .backlog_rcv = sctp_backlog_rcv, 7035 .hash = sctp_hash, 7036 .unhash = sctp_unhash, 7037 .get_port = sctp_get_port, 7038 .obj_size = sizeof(struct sctp_sock), 7039 .sysctl_mem = sysctl_sctp_mem, 7040 .sysctl_rmem = sysctl_sctp_rmem, 7041 .sysctl_wmem = sysctl_sctp_wmem, 7042 .memory_pressure = &sctp_memory_pressure, 7043 .enter_memory_pressure = sctp_enter_memory_pressure, 7044 .memory_allocated = &sctp_memory_allocated, 7045 .sockets_allocated = &sctp_sockets_allocated, 7046 }; 7047 7048 #if IS_ENABLED(CONFIG_IPV6) 7049 7050 struct proto sctpv6_prot = { 7051 .name = "SCTPv6", 7052 .owner = THIS_MODULE, 7053 .close = sctp_close, 7054 .connect = sctp_connect, 7055 .disconnect = sctp_disconnect, 7056 .accept = sctp_accept, 7057 .ioctl = sctp_ioctl, 7058 .init = sctp_init_sock, 7059 .destroy = sctp_destroy_sock, 7060 .shutdown = sctp_shutdown, 7061 .setsockopt = sctp_setsockopt, 7062 .getsockopt = sctp_getsockopt, 7063 .sendmsg = sctp_sendmsg, 7064 .recvmsg = sctp_recvmsg, 7065 .bind = sctp_bind, 7066 .backlog_rcv = sctp_backlog_rcv, 7067 .hash = sctp_hash, 7068 .unhash = sctp_unhash, 7069 .get_port = sctp_get_port, 7070 .obj_size = sizeof(struct sctp6_sock), 7071 .sysctl_mem = sysctl_sctp_mem, 7072 .sysctl_rmem = sysctl_sctp_rmem, 7073 .sysctl_wmem = sysctl_sctp_wmem, 7074 .memory_pressure = &sctp_memory_pressure, 7075 .enter_memory_pressure = sctp_enter_memory_pressure, 7076 .memory_allocated = &sctp_memory_allocated, 7077 .sockets_allocated = &sctp_sockets_allocated, 7078 }; 7079 #endif /* IS_ENABLED(CONFIG_IPV6) */ 7080