xref: /linux/net/sctp/socket.c (revision 827634added7f38b7d724cab1dccdb2b004c13c3)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, see
32  * <http://www.gnu.org/licenses/>.
33  *
34  * Please send any bug reports or fixes you make to the
35  * email address(es):
36  *    lksctp developers <linux-sctp@vger.kernel.org>
37  *
38  * Written or modified by:
39  *    La Monte H.P. Yarroll <piggy@acm.org>
40  *    Narasimha Budihal     <narsi@refcode.org>
41  *    Karl Knutson          <karl@athena.chicago.il.us>
42  *    Jon Grimm             <jgrimm@us.ibm.com>
43  *    Xingang Guo           <xingang.guo@intel.com>
44  *    Daisy Chang           <daisyc@us.ibm.com>
45  *    Sridhar Samudrala     <samudrala@us.ibm.com>
46  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
47  *    Ardelle Fan	    <ardelle.fan@intel.com>
48  *    Ryan Layer	    <rmlayer@us.ibm.com>
49  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
50  *    Kevin Gao             <kevin.gao@intel.com>
51  */
52 
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54 
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/wait.h>
58 #include <linux/time.h>
59 #include <linux/ip.h>
60 #include <linux/capability.h>
61 #include <linux/fcntl.h>
62 #include <linux/poll.h>
63 #include <linux/init.h>
64 #include <linux/crypto.h>
65 #include <linux/slab.h>
66 #include <linux/file.h>
67 #include <linux/compat.h>
68 
69 #include <net/ip.h>
70 #include <net/icmp.h>
71 #include <net/route.h>
72 #include <net/ipv6.h>
73 #include <net/inet_common.h>
74 #include <net/busy_poll.h>
75 
76 #include <linux/socket.h> /* for sa_family_t */
77 #include <linux/export.h>
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81 
82 /* Forward declarations for internal helper functions. */
83 static int sctp_writeable(struct sock *sk);
84 static void sctp_wfree(struct sk_buff *skb);
85 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
86 				size_t msg_len);
87 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
88 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
89 static int sctp_wait_for_accept(struct sock *sk, long timeo);
90 static void sctp_wait_for_close(struct sock *sk, long timeo);
91 static void sctp_destruct_sock(struct sock *sk);
92 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
93 					union sctp_addr *addr, int len);
94 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
95 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
96 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
97 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
98 static int sctp_send_asconf(struct sctp_association *asoc,
99 			    struct sctp_chunk *chunk);
100 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
101 static int sctp_autobind(struct sock *sk);
102 static void sctp_sock_migrate(struct sock *, struct sock *,
103 			      struct sctp_association *, sctp_socket_type_t);
104 
105 static int sctp_memory_pressure;
106 static atomic_long_t sctp_memory_allocated;
107 struct percpu_counter sctp_sockets_allocated;
108 
109 static void sctp_enter_memory_pressure(struct sock *sk)
110 {
111 	sctp_memory_pressure = 1;
112 }
113 
114 
115 /* Get the sndbuf space available at the time on the association.  */
116 static inline int sctp_wspace(struct sctp_association *asoc)
117 {
118 	int amt;
119 
120 	if (asoc->ep->sndbuf_policy)
121 		amt = asoc->sndbuf_used;
122 	else
123 		amt = sk_wmem_alloc_get(asoc->base.sk);
124 
125 	if (amt >= asoc->base.sk->sk_sndbuf) {
126 		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
127 			amt = 0;
128 		else {
129 			amt = sk_stream_wspace(asoc->base.sk);
130 			if (amt < 0)
131 				amt = 0;
132 		}
133 	} else {
134 		amt = asoc->base.sk->sk_sndbuf - amt;
135 	}
136 	return amt;
137 }
138 
139 /* Increment the used sndbuf space count of the corresponding association by
140  * the size of the outgoing data chunk.
141  * Also, set the skb destructor for sndbuf accounting later.
142  *
143  * Since it is always 1-1 between chunk and skb, and also a new skb is always
144  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
145  * destructor in the data chunk skb for the purpose of the sndbuf space
146  * tracking.
147  */
148 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
149 {
150 	struct sctp_association *asoc = chunk->asoc;
151 	struct sock *sk = asoc->base.sk;
152 
153 	/* The sndbuf space is tracked per association.  */
154 	sctp_association_hold(asoc);
155 
156 	skb_set_owner_w(chunk->skb, sk);
157 
158 	chunk->skb->destructor = sctp_wfree;
159 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
160 	skb_shinfo(chunk->skb)->destructor_arg = chunk;
161 
162 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
163 				sizeof(struct sk_buff) +
164 				sizeof(struct sctp_chunk);
165 
166 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
167 	sk->sk_wmem_queued += chunk->skb->truesize;
168 	sk_mem_charge(sk, chunk->skb->truesize);
169 }
170 
171 /* Verify that this is a valid address. */
172 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
173 				   int len)
174 {
175 	struct sctp_af *af;
176 
177 	/* Verify basic sockaddr. */
178 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
179 	if (!af)
180 		return -EINVAL;
181 
182 	/* Is this a valid SCTP address?  */
183 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
184 		return -EINVAL;
185 
186 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
187 		return -EINVAL;
188 
189 	return 0;
190 }
191 
192 /* Look up the association by its id.  If this is not a UDP-style
193  * socket, the ID field is always ignored.
194  */
195 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
196 {
197 	struct sctp_association *asoc = NULL;
198 
199 	/* If this is not a UDP-style socket, assoc id should be ignored. */
200 	if (!sctp_style(sk, UDP)) {
201 		/* Return NULL if the socket state is not ESTABLISHED. It
202 		 * could be a TCP-style listening socket or a socket which
203 		 * hasn't yet called connect() to establish an association.
204 		 */
205 		if (!sctp_sstate(sk, ESTABLISHED))
206 			return NULL;
207 
208 		/* Get the first and the only association from the list. */
209 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
210 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
211 					  struct sctp_association, asocs);
212 		return asoc;
213 	}
214 
215 	/* Otherwise this is a UDP-style socket. */
216 	if (!id || (id == (sctp_assoc_t)-1))
217 		return NULL;
218 
219 	spin_lock_bh(&sctp_assocs_id_lock);
220 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
221 	spin_unlock_bh(&sctp_assocs_id_lock);
222 
223 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
224 		return NULL;
225 
226 	return asoc;
227 }
228 
229 /* Look up the transport from an address and an assoc id. If both address and
230  * id are specified, the associations matching the address and the id should be
231  * the same.
232  */
233 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
234 					      struct sockaddr_storage *addr,
235 					      sctp_assoc_t id)
236 {
237 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
238 	struct sctp_transport *transport;
239 	union sctp_addr *laddr = (union sctp_addr *)addr;
240 
241 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
242 					       laddr,
243 					       &transport);
244 
245 	if (!addr_asoc)
246 		return NULL;
247 
248 	id_asoc = sctp_id2assoc(sk, id);
249 	if (id_asoc && (id_asoc != addr_asoc))
250 		return NULL;
251 
252 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
253 						(union sctp_addr *)addr);
254 
255 	return transport;
256 }
257 
258 /* API 3.1.2 bind() - UDP Style Syntax
259  * The syntax of bind() is,
260  *
261  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
262  *
263  *   sd      - the socket descriptor returned by socket().
264  *   addr    - the address structure (struct sockaddr_in or struct
265  *             sockaddr_in6 [RFC 2553]),
266  *   addr_len - the size of the address structure.
267  */
268 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
269 {
270 	int retval = 0;
271 
272 	lock_sock(sk);
273 
274 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
275 		 addr, addr_len);
276 
277 	/* Disallow binding twice. */
278 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
279 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
280 				      addr_len);
281 	else
282 		retval = -EINVAL;
283 
284 	release_sock(sk);
285 
286 	return retval;
287 }
288 
289 static long sctp_get_port_local(struct sock *, union sctp_addr *);
290 
291 /* Verify this is a valid sockaddr. */
292 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
293 					union sctp_addr *addr, int len)
294 {
295 	struct sctp_af *af;
296 
297 	/* Check minimum size.  */
298 	if (len < sizeof (struct sockaddr))
299 		return NULL;
300 
301 	/* V4 mapped address are really of AF_INET family */
302 	if (addr->sa.sa_family == AF_INET6 &&
303 	    ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
304 		if (!opt->pf->af_supported(AF_INET, opt))
305 			return NULL;
306 	} else {
307 		/* Does this PF support this AF? */
308 		if (!opt->pf->af_supported(addr->sa.sa_family, opt))
309 			return NULL;
310 	}
311 
312 	/* If we get this far, af is valid. */
313 	af = sctp_get_af_specific(addr->sa.sa_family);
314 
315 	if (len < af->sockaddr_len)
316 		return NULL;
317 
318 	return af;
319 }
320 
321 /* Bind a local address either to an endpoint or to an association.  */
322 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
323 {
324 	struct net *net = sock_net(sk);
325 	struct sctp_sock *sp = sctp_sk(sk);
326 	struct sctp_endpoint *ep = sp->ep;
327 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
328 	struct sctp_af *af;
329 	unsigned short snum;
330 	int ret = 0;
331 
332 	/* Common sockaddr verification. */
333 	af = sctp_sockaddr_af(sp, addr, len);
334 	if (!af) {
335 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
336 			 __func__, sk, addr, len);
337 		return -EINVAL;
338 	}
339 
340 	snum = ntohs(addr->v4.sin_port);
341 
342 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
343 		 __func__, sk, &addr->sa, bp->port, snum, len);
344 
345 	/* PF specific bind() address verification. */
346 	if (!sp->pf->bind_verify(sp, addr))
347 		return -EADDRNOTAVAIL;
348 
349 	/* We must either be unbound, or bind to the same port.
350 	 * It's OK to allow 0 ports if we are already bound.
351 	 * We'll just inhert an already bound port in this case
352 	 */
353 	if (bp->port) {
354 		if (!snum)
355 			snum = bp->port;
356 		else if (snum != bp->port) {
357 			pr_debug("%s: new port %d doesn't match existing port "
358 				 "%d\n", __func__, snum, bp->port);
359 			return -EINVAL;
360 		}
361 	}
362 
363 	if (snum && snum < PROT_SOCK &&
364 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
365 		return -EACCES;
366 
367 	/* See if the address matches any of the addresses we may have
368 	 * already bound before checking against other endpoints.
369 	 */
370 	if (sctp_bind_addr_match(bp, addr, sp))
371 		return -EINVAL;
372 
373 	/* Make sure we are allowed to bind here.
374 	 * The function sctp_get_port_local() does duplicate address
375 	 * detection.
376 	 */
377 	addr->v4.sin_port = htons(snum);
378 	if ((ret = sctp_get_port_local(sk, addr))) {
379 		return -EADDRINUSE;
380 	}
381 
382 	/* Refresh ephemeral port.  */
383 	if (!bp->port)
384 		bp->port = inet_sk(sk)->inet_num;
385 
386 	/* Add the address to the bind address list.
387 	 * Use GFP_ATOMIC since BHs will be disabled.
388 	 */
389 	ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
390 
391 	/* Copy back into socket for getsockname() use. */
392 	if (!ret) {
393 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
394 		sp->pf->to_sk_saddr(addr, sk);
395 	}
396 
397 	return ret;
398 }
399 
400  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
401  *
402  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
403  * at any one time.  If a sender, after sending an ASCONF chunk, decides
404  * it needs to transfer another ASCONF Chunk, it MUST wait until the
405  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
406  * subsequent ASCONF. Note this restriction binds each side, so at any
407  * time two ASCONF may be in-transit on any given association (one sent
408  * from each endpoint).
409  */
410 static int sctp_send_asconf(struct sctp_association *asoc,
411 			    struct sctp_chunk *chunk)
412 {
413 	struct net 	*net = sock_net(asoc->base.sk);
414 	int		retval = 0;
415 
416 	/* If there is an outstanding ASCONF chunk, queue it for later
417 	 * transmission.
418 	 */
419 	if (asoc->addip_last_asconf) {
420 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
421 		goto out;
422 	}
423 
424 	/* Hold the chunk until an ASCONF_ACK is received. */
425 	sctp_chunk_hold(chunk);
426 	retval = sctp_primitive_ASCONF(net, asoc, chunk);
427 	if (retval)
428 		sctp_chunk_free(chunk);
429 	else
430 		asoc->addip_last_asconf = chunk;
431 
432 out:
433 	return retval;
434 }
435 
436 /* Add a list of addresses as bind addresses to local endpoint or
437  * association.
438  *
439  * Basically run through each address specified in the addrs/addrcnt
440  * array/length pair, determine if it is IPv6 or IPv4 and call
441  * sctp_do_bind() on it.
442  *
443  * If any of them fails, then the operation will be reversed and the
444  * ones that were added will be removed.
445  *
446  * Only sctp_setsockopt_bindx() is supposed to call this function.
447  */
448 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
449 {
450 	int cnt;
451 	int retval = 0;
452 	void *addr_buf;
453 	struct sockaddr *sa_addr;
454 	struct sctp_af *af;
455 
456 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
457 		 addrs, addrcnt);
458 
459 	addr_buf = addrs;
460 	for (cnt = 0; cnt < addrcnt; cnt++) {
461 		/* The list may contain either IPv4 or IPv6 address;
462 		 * determine the address length for walking thru the list.
463 		 */
464 		sa_addr = addr_buf;
465 		af = sctp_get_af_specific(sa_addr->sa_family);
466 		if (!af) {
467 			retval = -EINVAL;
468 			goto err_bindx_add;
469 		}
470 
471 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
472 				      af->sockaddr_len);
473 
474 		addr_buf += af->sockaddr_len;
475 
476 err_bindx_add:
477 		if (retval < 0) {
478 			/* Failed. Cleanup the ones that have been added */
479 			if (cnt > 0)
480 				sctp_bindx_rem(sk, addrs, cnt);
481 			return retval;
482 		}
483 	}
484 
485 	return retval;
486 }
487 
488 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
489  * associations that are part of the endpoint indicating that a list of local
490  * addresses are added to the endpoint.
491  *
492  * If any of the addresses is already in the bind address list of the
493  * association, we do not send the chunk for that association.  But it will not
494  * affect other associations.
495  *
496  * Only sctp_setsockopt_bindx() is supposed to call this function.
497  */
498 static int sctp_send_asconf_add_ip(struct sock		*sk,
499 				   struct sockaddr	*addrs,
500 				   int 			addrcnt)
501 {
502 	struct net *net = sock_net(sk);
503 	struct sctp_sock		*sp;
504 	struct sctp_endpoint		*ep;
505 	struct sctp_association		*asoc;
506 	struct sctp_bind_addr		*bp;
507 	struct sctp_chunk		*chunk;
508 	struct sctp_sockaddr_entry	*laddr;
509 	union sctp_addr			*addr;
510 	union sctp_addr			saveaddr;
511 	void				*addr_buf;
512 	struct sctp_af			*af;
513 	struct list_head		*p;
514 	int 				i;
515 	int 				retval = 0;
516 
517 	if (!net->sctp.addip_enable)
518 		return retval;
519 
520 	sp = sctp_sk(sk);
521 	ep = sp->ep;
522 
523 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
524 		 __func__, sk, addrs, addrcnt);
525 
526 	list_for_each_entry(asoc, &ep->asocs, asocs) {
527 		if (!asoc->peer.asconf_capable)
528 			continue;
529 
530 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
531 			continue;
532 
533 		if (!sctp_state(asoc, ESTABLISHED))
534 			continue;
535 
536 		/* Check if any address in the packed array of addresses is
537 		 * in the bind address list of the association. If so,
538 		 * do not send the asconf chunk to its peer, but continue with
539 		 * other associations.
540 		 */
541 		addr_buf = addrs;
542 		for (i = 0; i < addrcnt; i++) {
543 			addr = addr_buf;
544 			af = sctp_get_af_specific(addr->v4.sin_family);
545 			if (!af) {
546 				retval = -EINVAL;
547 				goto out;
548 			}
549 
550 			if (sctp_assoc_lookup_laddr(asoc, addr))
551 				break;
552 
553 			addr_buf += af->sockaddr_len;
554 		}
555 		if (i < addrcnt)
556 			continue;
557 
558 		/* Use the first valid address in bind addr list of
559 		 * association as Address Parameter of ASCONF CHUNK.
560 		 */
561 		bp = &asoc->base.bind_addr;
562 		p = bp->address_list.next;
563 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
564 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
565 						   addrcnt, SCTP_PARAM_ADD_IP);
566 		if (!chunk) {
567 			retval = -ENOMEM;
568 			goto out;
569 		}
570 
571 		/* Add the new addresses to the bind address list with
572 		 * use_as_src set to 0.
573 		 */
574 		addr_buf = addrs;
575 		for (i = 0; i < addrcnt; i++) {
576 			addr = addr_buf;
577 			af = sctp_get_af_specific(addr->v4.sin_family);
578 			memcpy(&saveaddr, addr, af->sockaddr_len);
579 			retval = sctp_add_bind_addr(bp, &saveaddr,
580 						    SCTP_ADDR_NEW, GFP_ATOMIC);
581 			addr_buf += af->sockaddr_len;
582 		}
583 		if (asoc->src_out_of_asoc_ok) {
584 			struct sctp_transport *trans;
585 
586 			list_for_each_entry(trans,
587 			    &asoc->peer.transport_addr_list, transports) {
588 				/* Clear the source and route cache */
589 				dst_release(trans->dst);
590 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
591 				    2*asoc->pathmtu, 4380));
592 				trans->ssthresh = asoc->peer.i.a_rwnd;
593 				trans->rto = asoc->rto_initial;
594 				sctp_max_rto(asoc, trans);
595 				trans->rtt = trans->srtt = trans->rttvar = 0;
596 				sctp_transport_route(trans, NULL,
597 				    sctp_sk(asoc->base.sk));
598 			}
599 		}
600 		retval = sctp_send_asconf(asoc, chunk);
601 	}
602 
603 out:
604 	return retval;
605 }
606 
607 /* Remove a list of addresses from bind addresses list.  Do not remove the
608  * last address.
609  *
610  * Basically run through each address specified in the addrs/addrcnt
611  * array/length pair, determine if it is IPv6 or IPv4 and call
612  * sctp_del_bind() on it.
613  *
614  * If any of them fails, then the operation will be reversed and the
615  * ones that were removed will be added back.
616  *
617  * At least one address has to be left; if only one address is
618  * available, the operation will return -EBUSY.
619  *
620  * Only sctp_setsockopt_bindx() is supposed to call this function.
621  */
622 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
623 {
624 	struct sctp_sock *sp = sctp_sk(sk);
625 	struct sctp_endpoint *ep = sp->ep;
626 	int cnt;
627 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
628 	int retval = 0;
629 	void *addr_buf;
630 	union sctp_addr *sa_addr;
631 	struct sctp_af *af;
632 
633 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
634 		 __func__, sk, addrs, addrcnt);
635 
636 	addr_buf = addrs;
637 	for (cnt = 0; cnt < addrcnt; cnt++) {
638 		/* If the bind address list is empty or if there is only one
639 		 * bind address, there is nothing more to be removed (we need
640 		 * at least one address here).
641 		 */
642 		if (list_empty(&bp->address_list) ||
643 		    (sctp_list_single_entry(&bp->address_list))) {
644 			retval = -EBUSY;
645 			goto err_bindx_rem;
646 		}
647 
648 		sa_addr = addr_buf;
649 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
650 		if (!af) {
651 			retval = -EINVAL;
652 			goto err_bindx_rem;
653 		}
654 
655 		if (!af->addr_valid(sa_addr, sp, NULL)) {
656 			retval = -EADDRNOTAVAIL;
657 			goto err_bindx_rem;
658 		}
659 
660 		if (sa_addr->v4.sin_port &&
661 		    sa_addr->v4.sin_port != htons(bp->port)) {
662 			retval = -EINVAL;
663 			goto err_bindx_rem;
664 		}
665 
666 		if (!sa_addr->v4.sin_port)
667 			sa_addr->v4.sin_port = htons(bp->port);
668 
669 		/* FIXME - There is probably a need to check if sk->sk_saddr and
670 		 * sk->sk_rcv_addr are currently set to one of the addresses to
671 		 * be removed. This is something which needs to be looked into
672 		 * when we are fixing the outstanding issues with multi-homing
673 		 * socket routing and failover schemes. Refer to comments in
674 		 * sctp_do_bind(). -daisy
675 		 */
676 		retval = sctp_del_bind_addr(bp, sa_addr);
677 
678 		addr_buf += af->sockaddr_len;
679 err_bindx_rem:
680 		if (retval < 0) {
681 			/* Failed. Add the ones that has been removed back */
682 			if (cnt > 0)
683 				sctp_bindx_add(sk, addrs, cnt);
684 			return retval;
685 		}
686 	}
687 
688 	return retval;
689 }
690 
691 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
692  * the associations that are part of the endpoint indicating that a list of
693  * local addresses are removed from the endpoint.
694  *
695  * If any of the addresses is already in the bind address list of the
696  * association, we do not send the chunk for that association.  But it will not
697  * affect other associations.
698  *
699  * Only sctp_setsockopt_bindx() is supposed to call this function.
700  */
701 static int sctp_send_asconf_del_ip(struct sock		*sk,
702 				   struct sockaddr	*addrs,
703 				   int			addrcnt)
704 {
705 	struct net *net = sock_net(sk);
706 	struct sctp_sock	*sp;
707 	struct sctp_endpoint	*ep;
708 	struct sctp_association	*asoc;
709 	struct sctp_transport	*transport;
710 	struct sctp_bind_addr	*bp;
711 	struct sctp_chunk	*chunk;
712 	union sctp_addr		*laddr;
713 	void			*addr_buf;
714 	struct sctp_af		*af;
715 	struct sctp_sockaddr_entry *saddr;
716 	int 			i;
717 	int 			retval = 0;
718 	int			stored = 0;
719 
720 	chunk = NULL;
721 	if (!net->sctp.addip_enable)
722 		return retval;
723 
724 	sp = sctp_sk(sk);
725 	ep = sp->ep;
726 
727 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
728 		 __func__, sk, addrs, addrcnt);
729 
730 	list_for_each_entry(asoc, &ep->asocs, asocs) {
731 
732 		if (!asoc->peer.asconf_capable)
733 			continue;
734 
735 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
736 			continue;
737 
738 		if (!sctp_state(asoc, ESTABLISHED))
739 			continue;
740 
741 		/* Check if any address in the packed array of addresses is
742 		 * not present in the bind address list of the association.
743 		 * If so, do not send the asconf chunk to its peer, but
744 		 * continue with other associations.
745 		 */
746 		addr_buf = addrs;
747 		for (i = 0; i < addrcnt; i++) {
748 			laddr = addr_buf;
749 			af = sctp_get_af_specific(laddr->v4.sin_family);
750 			if (!af) {
751 				retval = -EINVAL;
752 				goto out;
753 			}
754 
755 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
756 				break;
757 
758 			addr_buf += af->sockaddr_len;
759 		}
760 		if (i < addrcnt)
761 			continue;
762 
763 		/* Find one address in the association's bind address list
764 		 * that is not in the packed array of addresses. This is to
765 		 * make sure that we do not delete all the addresses in the
766 		 * association.
767 		 */
768 		bp = &asoc->base.bind_addr;
769 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
770 					       addrcnt, sp);
771 		if ((laddr == NULL) && (addrcnt == 1)) {
772 			if (asoc->asconf_addr_del_pending)
773 				continue;
774 			asoc->asconf_addr_del_pending =
775 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
776 			if (asoc->asconf_addr_del_pending == NULL) {
777 				retval = -ENOMEM;
778 				goto out;
779 			}
780 			asoc->asconf_addr_del_pending->sa.sa_family =
781 				    addrs->sa_family;
782 			asoc->asconf_addr_del_pending->v4.sin_port =
783 				    htons(bp->port);
784 			if (addrs->sa_family == AF_INET) {
785 				struct sockaddr_in *sin;
786 
787 				sin = (struct sockaddr_in *)addrs;
788 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
789 			} else if (addrs->sa_family == AF_INET6) {
790 				struct sockaddr_in6 *sin6;
791 
792 				sin6 = (struct sockaddr_in6 *)addrs;
793 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
794 			}
795 
796 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
797 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
798 				 asoc->asconf_addr_del_pending);
799 
800 			asoc->src_out_of_asoc_ok = 1;
801 			stored = 1;
802 			goto skip_mkasconf;
803 		}
804 
805 		if (laddr == NULL)
806 			return -EINVAL;
807 
808 		/* We do not need RCU protection throughout this loop
809 		 * because this is done under a socket lock from the
810 		 * setsockopt call.
811 		 */
812 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
813 						   SCTP_PARAM_DEL_IP);
814 		if (!chunk) {
815 			retval = -ENOMEM;
816 			goto out;
817 		}
818 
819 skip_mkasconf:
820 		/* Reset use_as_src flag for the addresses in the bind address
821 		 * list that are to be deleted.
822 		 */
823 		addr_buf = addrs;
824 		for (i = 0; i < addrcnt; i++) {
825 			laddr = addr_buf;
826 			af = sctp_get_af_specific(laddr->v4.sin_family);
827 			list_for_each_entry(saddr, &bp->address_list, list) {
828 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
829 					saddr->state = SCTP_ADDR_DEL;
830 			}
831 			addr_buf += af->sockaddr_len;
832 		}
833 
834 		/* Update the route and saddr entries for all the transports
835 		 * as some of the addresses in the bind address list are
836 		 * about to be deleted and cannot be used as source addresses.
837 		 */
838 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
839 					transports) {
840 			dst_release(transport->dst);
841 			sctp_transport_route(transport, NULL,
842 					     sctp_sk(asoc->base.sk));
843 		}
844 
845 		if (stored)
846 			/* We don't need to transmit ASCONF */
847 			continue;
848 		retval = sctp_send_asconf(asoc, chunk);
849 	}
850 out:
851 	return retval;
852 }
853 
854 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
855 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
856 {
857 	struct sock *sk = sctp_opt2sk(sp);
858 	union sctp_addr *addr;
859 	struct sctp_af *af;
860 
861 	/* It is safe to write port space in caller. */
862 	addr = &addrw->a;
863 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
864 	af = sctp_get_af_specific(addr->sa.sa_family);
865 	if (!af)
866 		return -EINVAL;
867 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
868 		return -EINVAL;
869 
870 	if (addrw->state == SCTP_ADDR_NEW)
871 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
872 	else
873 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
874 }
875 
876 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
877  *
878  * API 8.1
879  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
880  *                int flags);
881  *
882  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
883  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
884  * or IPv6 addresses.
885  *
886  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
887  * Section 3.1.2 for this usage.
888  *
889  * addrs is a pointer to an array of one or more socket addresses. Each
890  * address is contained in its appropriate structure (i.e. struct
891  * sockaddr_in or struct sockaddr_in6) the family of the address type
892  * must be used to distinguish the address length (note that this
893  * representation is termed a "packed array" of addresses). The caller
894  * specifies the number of addresses in the array with addrcnt.
895  *
896  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
897  * -1, and sets errno to the appropriate error code.
898  *
899  * For SCTP, the port given in each socket address must be the same, or
900  * sctp_bindx() will fail, setting errno to EINVAL.
901  *
902  * The flags parameter is formed from the bitwise OR of zero or more of
903  * the following currently defined flags:
904  *
905  * SCTP_BINDX_ADD_ADDR
906  *
907  * SCTP_BINDX_REM_ADDR
908  *
909  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
910  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
911  * addresses from the association. The two flags are mutually exclusive;
912  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
913  * not remove all addresses from an association; sctp_bindx() will
914  * reject such an attempt with EINVAL.
915  *
916  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
917  * additional addresses with an endpoint after calling bind().  Or use
918  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
919  * socket is associated with so that no new association accepted will be
920  * associated with those addresses. If the endpoint supports dynamic
921  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
922  * endpoint to send the appropriate message to the peer to change the
923  * peers address lists.
924  *
925  * Adding and removing addresses from a connected association is
926  * optional functionality. Implementations that do not support this
927  * functionality should return EOPNOTSUPP.
928  *
929  * Basically do nothing but copying the addresses from user to kernel
930  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
931  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
932  * from userspace.
933  *
934  * We don't use copy_from_user() for optimization: we first do the
935  * sanity checks (buffer size -fast- and access check-healthy
936  * pointer); if all of those succeed, then we can alloc the memory
937  * (expensive operation) needed to copy the data to kernel. Then we do
938  * the copying without checking the user space area
939  * (__copy_from_user()).
940  *
941  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
942  * it.
943  *
944  * sk        The sk of the socket
945  * addrs     The pointer to the addresses in user land
946  * addrssize Size of the addrs buffer
947  * op        Operation to perform (add or remove, see the flags of
948  *           sctp_bindx)
949  *
950  * Returns 0 if ok, <0 errno code on error.
951  */
952 static int sctp_setsockopt_bindx(struct sock *sk,
953 				 struct sockaddr __user *addrs,
954 				 int addrs_size, int op)
955 {
956 	struct sockaddr *kaddrs;
957 	int err;
958 	int addrcnt = 0;
959 	int walk_size = 0;
960 	struct sockaddr *sa_addr;
961 	void *addr_buf;
962 	struct sctp_af *af;
963 
964 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
965 		 __func__, sk, addrs, addrs_size, op);
966 
967 	if (unlikely(addrs_size <= 0))
968 		return -EINVAL;
969 
970 	/* Check the user passed a healthy pointer.  */
971 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
972 		return -EFAULT;
973 
974 	/* Alloc space for the address array in kernel memory.  */
975 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
976 	if (unlikely(!kaddrs))
977 		return -ENOMEM;
978 
979 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
980 		kfree(kaddrs);
981 		return -EFAULT;
982 	}
983 
984 	/* Walk through the addrs buffer and count the number of addresses. */
985 	addr_buf = kaddrs;
986 	while (walk_size < addrs_size) {
987 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
988 			kfree(kaddrs);
989 			return -EINVAL;
990 		}
991 
992 		sa_addr = addr_buf;
993 		af = sctp_get_af_specific(sa_addr->sa_family);
994 
995 		/* If the address family is not supported or if this address
996 		 * causes the address buffer to overflow return EINVAL.
997 		 */
998 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
999 			kfree(kaddrs);
1000 			return -EINVAL;
1001 		}
1002 		addrcnt++;
1003 		addr_buf += af->sockaddr_len;
1004 		walk_size += af->sockaddr_len;
1005 	}
1006 
1007 	/* Do the work. */
1008 	switch (op) {
1009 	case SCTP_BINDX_ADD_ADDR:
1010 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1011 		if (err)
1012 			goto out;
1013 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1014 		break;
1015 
1016 	case SCTP_BINDX_REM_ADDR:
1017 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1018 		if (err)
1019 			goto out;
1020 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1021 		break;
1022 
1023 	default:
1024 		err = -EINVAL;
1025 		break;
1026 	}
1027 
1028 out:
1029 	kfree(kaddrs);
1030 
1031 	return err;
1032 }
1033 
1034 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1035  *
1036  * Common routine for handling connect() and sctp_connectx().
1037  * Connect will come in with just a single address.
1038  */
1039 static int __sctp_connect(struct sock *sk,
1040 			  struct sockaddr *kaddrs,
1041 			  int addrs_size,
1042 			  sctp_assoc_t *assoc_id)
1043 {
1044 	struct net *net = sock_net(sk);
1045 	struct sctp_sock *sp;
1046 	struct sctp_endpoint *ep;
1047 	struct sctp_association *asoc = NULL;
1048 	struct sctp_association *asoc2;
1049 	struct sctp_transport *transport;
1050 	union sctp_addr to;
1051 	sctp_scope_t scope;
1052 	long timeo;
1053 	int err = 0;
1054 	int addrcnt = 0;
1055 	int walk_size = 0;
1056 	union sctp_addr *sa_addr = NULL;
1057 	void *addr_buf;
1058 	unsigned short port;
1059 	unsigned int f_flags = 0;
1060 
1061 	sp = sctp_sk(sk);
1062 	ep = sp->ep;
1063 
1064 	/* connect() cannot be done on a socket that is already in ESTABLISHED
1065 	 * state - UDP-style peeled off socket or a TCP-style socket that
1066 	 * is already connected.
1067 	 * It cannot be done even on a TCP-style listening socket.
1068 	 */
1069 	if (sctp_sstate(sk, ESTABLISHED) ||
1070 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1071 		err = -EISCONN;
1072 		goto out_free;
1073 	}
1074 
1075 	/* Walk through the addrs buffer and count the number of addresses. */
1076 	addr_buf = kaddrs;
1077 	while (walk_size < addrs_size) {
1078 		struct sctp_af *af;
1079 
1080 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1081 			err = -EINVAL;
1082 			goto out_free;
1083 		}
1084 
1085 		sa_addr = addr_buf;
1086 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1087 
1088 		/* If the address family is not supported or if this address
1089 		 * causes the address buffer to overflow return EINVAL.
1090 		 */
1091 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1092 			err = -EINVAL;
1093 			goto out_free;
1094 		}
1095 
1096 		port = ntohs(sa_addr->v4.sin_port);
1097 
1098 		/* Save current address so we can work with it */
1099 		memcpy(&to, sa_addr, af->sockaddr_len);
1100 
1101 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1102 		if (err)
1103 			goto out_free;
1104 
1105 		/* Make sure the destination port is correctly set
1106 		 * in all addresses.
1107 		 */
1108 		if (asoc && asoc->peer.port && asoc->peer.port != port) {
1109 			err = -EINVAL;
1110 			goto out_free;
1111 		}
1112 
1113 		/* Check if there already is a matching association on the
1114 		 * endpoint (other than the one created here).
1115 		 */
1116 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1117 		if (asoc2 && asoc2 != asoc) {
1118 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1119 				err = -EISCONN;
1120 			else
1121 				err = -EALREADY;
1122 			goto out_free;
1123 		}
1124 
1125 		/* If we could not find a matching association on the endpoint,
1126 		 * make sure that there is no peeled-off association matching
1127 		 * the peer address even on another socket.
1128 		 */
1129 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1130 			err = -EADDRNOTAVAIL;
1131 			goto out_free;
1132 		}
1133 
1134 		if (!asoc) {
1135 			/* If a bind() or sctp_bindx() is not called prior to
1136 			 * an sctp_connectx() call, the system picks an
1137 			 * ephemeral port and will choose an address set
1138 			 * equivalent to binding with a wildcard address.
1139 			 */
1140 			if (!ep->base.bind_addr.port) {
1141 				if (sctp_autobind(sk)) {
1142 					err = -EAGAIN;
1143 					goto out_free;
1144 				}
1145 			} else {
1146 				/*
1147 				 * If an unprivileged user inherits a 1-many
1148 				 * style socket with open associations on a
1149 				 * privileged port, it MAY be permitted to
1150 				 * accept new associations, but it SHOULD NOT
1151 				 * be permitted to open new associations.
1152 				 */
1153 				if (ep->base.bind_addr.port < PROT_SOCK &&
1154 				    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1155 					err = -EACCES;
1156 					goto out_free;
1157 				}
1158 			}
1159 
1160 			scope = sctp_scope(&to);
1161 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1162 			if (!asoc) {
1163 				err = -ENOMEM;
1164 				goto out_free;
1165 			}
1166 
1167 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1168 							      GFP_KERNEL);
1169 			if (err < 0) {
1170 				goto out_free;
1171 			}
1172 
1173 		}
1174 
1175 		/* Prime the peer's transport structures.  */
1176 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1177 						SCTP_UNKNOWN);
1178 		if (!transport) {
1179 			err = -ENOMEM;
1180 			goto out_free;
1181 		}
1182 
1183 		addrcnt++;
1184 		addr_buf += af->sockaddr_len;
1185 		walk_size += af->sockaddr_len;
1186 	}
1187 
1188 	/* In case the user of sctp_connectx() wants an association
1189 	 * id back, assign one now.
1190 	 */
1191 	if (assoc_id) {
1192 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1193 		if (err < 0)
1194 			goto out_free;
1195 	}
1196 
1197 	err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1198 	if (err < 0) {
1199 		goto out_free;
1200 	}
1201 
1202 	/* Initialize sk's dport and daddr for getpeername() */
1203 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1204 	sp->pf->to_sk_daddr(sa_addr, sk);
1205 	sk->sk_err = 0;
1206 
1207 	/* in-kernel sockets don't generally have a file allocated to them
1208 	 * if all they do is call sock_create_kern().
1209 	 */
1210 	if (sk->sk_socket->file)
1211 		f_flags = sk->sk_socket->file->f_flags;
1212 
1213 	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1214 
1215 	err = sctp_wait_for_connect(asoc, &timeo);
1216 	if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1217 		*assoc_id = asoc->assoc_id;
1218 
1219 	/* Don't free association on exit. */
1220 	asoc = NULL;
1221 
1222 out_free:
1223 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1224 		 __func__, asoc, kaddrs, err);
1225 
1226 	if (asoc) {
1227 		/* sctp_primitive_ASSOCIATE may have added this association
1228 		 * To the hash table, try to unhash it, just in case, its a noop
1229 		 * if it wasn't hashed so we're safe
1230 		 */
1231 		sctp_unhash_established(asoc);
1232 		sctp_association_free(asoc);
1233 	}
1234 	return err;
1235 }
1236 
1237 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1238  *
1239  * API 8.9
1240  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1241  * 			sctp_assoc_t *asoc);
1242  *
1243  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1244  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1245  * or IPv6 addresses.
1246  *
1247  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1248  * Section 3.1.2 for this usage.
1249  *
1250  * addrs is a pointer to an array of one or more socket addresses. Each
1251  * address is contained in its appropriate structure (i.e. struct
1252  * sockaddr_in or struct sockaddr_in6) the family of the address type
1253  * must be used to distengish the address length (note that this
1254  * representation is termed a "packed array" of addresses). The caller
1255  * specifies the number of addresses in the array with addrcnt.
1256  *
1257  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1258  * the association id of the new association.  On failure, sctp_connectx()
1259  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1260  * is not touched by the kernel.
1261  *
1262  * For SCTP, the port given in each socket address must be the same, or
1263  * sctp_connectx() will fail, setting errno to EINVAL.
1264  *
1265  * An application can use sctp_connectx to initiate an association with
1266  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1267  * allows a caller to specify multiple addresses at which a peer can be
1268  * reached.  The way the SCTP stack uses the list of addresses to set up
1269  * the association is implementation dependent.  This function only
1270  * specifies that the stack will try to make use of all the addresses in
1271  * the list when needed.
1272  *
1273  * Note that the list of addresses passed in is only used for setting up
1274  * the association.  It does not necessarily equal the set of addresses
1275  * the peer uses for the resulting association.  If the caller wants to
1276  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1277  * retrieve them after the association has been set up.
1278  *
1279  * Basically do nothing but copying the addresses from user to kernel
1280  * land and invoking either sctp_connectx(). This is used for tunneling
1281  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1282  *
1283  * We don't use copy_from_user() for optimization: we first do the
1284  * sanity checks (buffer size -fast- and access check-healthy
1285  * pointer); if all of those succeed, then we can alloc the memory
1286  * (expensive operation) needed to copy the data to kernel. Then we do
1287  * the copying without checking the user space area
1288  * (__copy_from_user()).
1289  *
1290  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1291  * it.
1292  *
1293  * sk        The sk of the socket
1294  * addrs     The pointer to the addresses in user land
1295  * addrssize Size of the addrs buffer
1296  *
1297  * Returns >=0 if ok, <0 errno code on error.
1298  */
1299 static int __sctp_setsockopt_connectx(struct sock *sk,
1300 				      struct sockaddr __user *addrs,
1301 				      int addrs_size,
1302 				      sctp_assoc_t *assoc_id)
1303 {
1304 	int err = 0;
1305 	struct sockaddr *kaddrs;
1306 
1307 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1308 		 __func__, sk, addrs, addrs_size);
1309 
1310 	if (unlikely(addrs_size <= 0))
1311 		return -EINVAL;
1312 
1313 	/* Check the user passed a healthy pointer.  */
1314 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1315 		return -EFAULT;
1316 
1317 	/* Alloc space for the address array in kernel memory.  */
1318 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1319 	if (unlikely(!kaddrs))
1320 		return -ENOMEM;
1321 
1322 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1323 		err = -EFAULT;
1324 	} else {
1325 		err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1326 	}
1327 
1328 	kfree(kaddrs);
1329 
1330 	return err;
1331 }
1332 
1333 /*
1334  * This is an older interface.  It's kept for backward compatibility
1335  * to the option that doesn't provide association id.
1336  */
1337 static int sctp_setsockopt_connectx_old(struct sock *sk,
1338 					struct sockaddr __user *addrs,
1339 					int addrs_size)
1340 {
1341 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1342 }
1343 
1344 /*
1345  * New interface for the API.  The since the API is done with a socket
1346  * option, to make it simple we feed back the association id is as a return
1347  * indication to the call.  Error is always negative and association id is
1348  * always positive.
1349  */
1350 static int sctp_setsockopt_connectx(struct sock *sk,
1351 				    struct sockaddr __user *addrs,
1352 				    int addrs_size)
1353 {
1354 	sctp_assoc_t assoc_id = 0;
1355 	int err = 0;
1356 
1357 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1358 
1359 	if (err)
1360 		return err;
1361 	else
1362 		return assoc_id;
1363 }
1364 
1365 /*
1366  * New (hopefully final) interface for the API.
1367  * We use the sctp_getaddrs_old structure so that use-space library
1368  * can avoid any unnecessary allocations. The only different part
1369  * is that we store the actual length of the address buffer into the
1370  * addrs_num structure member. That way we can re-use the existing
1371  * code.
1372  */
1373 #ifdef CONFIG_COMPAT
1374 struct compat_sctp_getaddrs_old {
1375 	sctp_assoc_t	assoc_id;
1376 	s32		addr_num;
1377 	compat_uptr_t	addrs;		/* struct sockaddr * */
1378 };
1379 #endif
1380 
1381 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1382 				     char __user *optval,
1383 				     int __user *optlen)
1384 {
1385 	struct sctp_getaddrs_old param;
1386 	sctp_assoc_t assoc_id = 0;
1387 	int err = 0;
1388 
1389 #ifdef CONFIG_COMPAT
1390 	if (is_compat_task()) {
1391 		struct compat_sctp_getaddrs_old param32;
1392 
1393 		if (len < sizeof(param32))
1394 			return -EINVAL;
1395 		if (copy_from_user(&param32, optval, sizeof(param32)))
1396 			return -EFAULT;
1397 
1398 		param.assoc_id = param32.assoc_id;
1399 		param.addr_num = param32.addr_num;
1400 		param.addrs = compat_ptr(param32.addrs);
1401 	} else
1402 #endif
1403 	{
1404 		if (len < sizeof(param))
1405 			return -EINVAL;
1406 		if (copy_from_user(&param, optval, sizeof(param)))
1407 			return -EFAULT;
1408 	}
1409 
1410 	err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1411 					 param.addrs, param.addr_num,
1412 					 &assoc_id);
1413 	if (err == 0 || err == -EINPROGRESS) {
1414 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1415 			return -EFAULT;
1416 		if (put_user(sizeof(assoc_id), optlen))
1417 			return -EFAULT;
1418 	}
1419 
1420 	return err;
1421 }
1422 
1423 /* API 3.1.4 close() - UDP Style Syntax
1424  * Applications use close() to perform graceful shutdown (as described in
1425  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1426  * by a UDP-style socket.
1427  *
1428  * The syntax is
1429  *
1430  *   ret = close(int sd);
1431  *
1432  *   sd      - the socket descriptor of the associations to be closed.
1433  *
1434  * To gracefully shutdown a specific association represented by the
1435  * UDP-style socket, an application should use the sendmsg() call,
1436  * passing no user data, but including the appropriate flag in the
1437  * ancillary data (see Section xxxx).
1438  *
1439  * If sd in the close() call is a branched-off socket representing only
1440  * one association, the shutdown is performed on that association only.
1441  *
1442  * 4.1.6 close() - TCP Style Syntax
1443  *
1444  * Applications use close() to gracefully close down an association.
1445  *
1446  * The syntax is:
1447  *
1448  *    int close(int sd);
1449  *
1450  *      sd      - the socket descriptor of the association to be closed.
1451  *
1452  * After an application calls close() on a socket descriptor, no further
1453  * socket operations will succeed on that descriptor.
1454  *
1455  * API 7.1.4 SO_LINGER
1456  *
1457  * An application using the TCP-style socket can use this option to
1458  * perform the SCTP ABORT primitive.  The linger option structure is:
1459  *
1460  *  struct  linger {
1461  *     int     l_onoff;                // option on/off
1462  *     int     l_linger;               // linger time
1463  * };
1464  *
1465  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1466  * to 0, calling close() is the same as the ABORT primitive.  If the
1467  * value is set to a negative value, the setsockopt() call will return
1468  * an error.  If the value is set to a positive value linger_time, the
1469  * close() can be blocked for at most linger_time ms.  If the graceful
1470  * shutdown phase does not finish during this period, close() will
1471  * return but the graceful shutdown phase continues in the system.
1472  */
1473 static void sctp_close(struct sock *sk, long timeout)
1474 {
1475 	struct net *net = sock_net(sk);
1476 	struct sctp_endpoint *ep;
1477 	struct sctp_association *asoc;
1478 	struct list_head *pos, *temp;
1479 	unsigned int data_was_unread;
1480 
1481 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1482 
1483 	lock_sock(sk);
1484 	sk->sk_shutdown = SHUTDOWN_MASK;
1485 	sk->sk_state = SCTP_SS_CLOSING;
1486 
1487 	ep = sctp_sk(sk)->ep;
1488 
1489 	/* Clean up any skbs sitting on the receive queue.  */
1490 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1491 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1492 
1493 	/* Walk all associations on an endpoint.  */
1494 	list_for_each_safe(pos, temp, &ep->asocs) {
1495 		asoc = list_entry(pos, struct sctp_association, asocs);
1496 
1497 		if (sctp_style(sk, TCP)) {
1498 			/* A closed association can still be in the list if
1499 			 * it belongs to a TCP-style listening socket that is
1500 			 * not yet accepted. If so, free it. If not, send an
1501 			 * ABORT or SHUTDOWN based on the linger options.
1502 			 */
1503 			if (sctp_state(asoc, CLOSED)) {
1504 				sctp_unhash_established(asoc);
1505 				sctp_association_free(asoc);
1506 				continue;
1507 			}
1508 		}
1509 
1510 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1511 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1512 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1513 			struct sctp_chunk *chunk;
1514 
1515 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1516 			if (chunk)
1517 				sctp_primitive_ABORT(net, asoc, chunk);
1518 		} else
1519 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1520 	}
1521 
1522 	/* On a TCP-style socket, block for at most linger_time if set. */
1523 	if (sctp_style(sk, TCP) && timeout)
1524 		sctp_wait_for_close(sk, timeout);
1525 
1526 	/* This will run the backlog queue.  */
1527 	release_sock(sk);
1528 
1529 	/* Supposedly, no process has access to the socket, but
1530 	 * the net layers still may.
1531 	 */
1532 	local_bh_disable();
1533 	bh_lock_sock(sk);
1534 
1535 	/* Hold the sock, since sk_common_release() will put sock_put()
1536 	 * and we have just a little more cleanup.
1537 	 */
1538 	sock_hold(sk);
1539 	sk_common_release(sk);
1540 
1541 	bh_unlock_sock(sk);
1542 	local_bh_enable();
1543 
1544 	sock_put(sk);
1545 
1546 	SCTP_DBG_OBJCNT_DEC(sock);
1547 }
1548 
1549 /* Handle EPIPE error. */
1550 static int sctp_error(struct sock *sk, int flags, int err)
1551 {
1552 	if (err == -EPIPE)
1553 		err = sock_error(sk) ? : -EPIPE;
1554 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1555 		send_sig(SIGPIPE, current, 0);
1556 	return err;
1557 }
1558 
1559 /* API 3.1.3 sendmsg() - UDP Style Syntax
1560  *
1561  * An application uses sendmsg() and recvmsg() calls to transmit data to
1562  * and receive data from its peer.
1563  *
1564  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1565  *                  int flags);
1566  *
1567  *  socket  - the socket descriptor of the endpoint.
1568  *  message - pointer to the msghdr structure which contains a single
1569  *            user message and possibly some ancillary data.
1570  *
1571  *            See Section 5 for complete description of the data
1572  *            structures.
1573  *
1574  *  flags   - flags sent or received with the user message, see Section
1575  *            5 for complete description of the flags.
1576  *
1577  * Note:  This function could use a rewrite especially when explicit
1578  * connect support comes in.
1579  */
1580 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1581 
1582 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1583 
1584 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1585 {
1586 	struct net *net = sock_net(sk);
1587 	struct sctp_sock *sp;
1588 	struct sctp_endpoint *ep;
1589 	struct sctp_association *new_asoc = NULL, *asoc = NULL;
1590 	struct sctp_transport *transport, *chunk_tp;
1591 	struct sctp_chunk *chunk;
1592 	union sctp_addr to;
1593 	struct sockaddr *msg_name = NULL;
1594 	struct sctp_sndrcvinfo default_sinfo;
1595 	struct sctp_sndrcvinfo *sinfo;
1596 	struct sctp_initmsg *sinit;
1597 	sctp_assoc_t associd = 0;
1598 	sctp_cmsgs_t cmsgs = { NULL };
1599 	sctp_scope_t scope;
1600 	bool fill_sinfo_ttl = false, wait_connect = false;
1601 	struct sctp_datamsg *datamsg;
1602 	int msg_flags = msg->msg_flags;
1603 	__u16 sinfo_flags = 0;
1604 	long timeo;
1605 	int err;
1606 
1607 	err = 0;
1608 	sp = sctp_sk(sk);
1609 	ep = sp->ep;
1610 
1611 	pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1612 		 msg, msg_len, ep);
1613 
1614 	/* We cannot send a message over a TCP-style listening socket. */
1615 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1616 		err = -EPIPE;
1617 		goto out_nounlock;
1618 	}
1619 
1620 	/* Parse out the SCTP CMSGs.  */
1621 	err = sctp_msghdr_parse(msg, &cmsgs);
1622 	if (err) {
1623 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1624 		goto out_nounlock;
1625 	}
1626 
1627 	/* Fetch the destination address for this packet.  This
1628 	 * address only selects the association--it is not necessarily
1629 	 * the address we will send to.
1630 	 * For a peeled-off socket, msg_name is ignored.
1631 	 */
1632 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1633 		int msg_namelen = msg->msg_namelen;
1634 
1635 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1636 				       msg_namelen);
1637 		if (err)
1638 			return err;
1639 
1640 		if (msg_namelen > sizeof(to))
1641 			msg_namelen = sizeof(to);
1642 		memcpy(&to, msg->msg_name, msg_namelen);
1643 		msg_name = msg->msg_name;
1644 	}
1645 
1646 	sinit = cmsgs.init;
1647 	if (cmsgs.sinfo != NULL) {
1648 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1649 		default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid;
1650 		default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags;
1651 		default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid;
1652 		default_sinfo.sinfo_context = cmsgs.sinfo->snd_context;
1653 		default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id;
1654 
1655 		sinfo = &default_sinfo;
1656 		fill_sinfo_ttl = true;
1657 	} else {
1658 		sinfo = cmsgs.srinfo;
1659 	}
1660 	/* Did the user specify SNDINFO/SNDRCVINFO? */
1661 	if (sinfo) {
1662 		sinfo_flags = sinfo->sinfo_flags;
1663 		associd = sinfo->sinfo_assoc_id;
1664 	}
1665 
1666 	pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1667 		 msg_len, sinfo_flags);
1668 
1669 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1670 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1671 		err = -EINVAL;
1672 		goto out_nounlock;
1673 	}
1674 
1675 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1676 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1677 	 * If SCTP_ABORT is set, the message length could be non zero with
1678 	 * the msg_iov set to the user abort reason.
1679 	 */
1680 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1681 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1682 		err = -EINVAL;
1683 		goto out_nounlock;
1684 	}
1685 
1686 	/* If SCTP_ADDR_OVER is set, there must be an address
1687 	 * specified in msg_name.
1688 	 */
1689 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1690 		err = -EINVAL;
1691 		goto out_nounlock;
1692 	}
1693 
1694 	transport = NULL;
1695 
1696 	pr_debug("%s: about to look up association\n", __func__);
1697 
1698 	lock_sock(sk);
1699 
1700 	/* If a msg_name has been specified, assume this is to be used.  */
1701 	if (msg_name) {
1702 		/* Look for a matching association on the endpoint. */
1703 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1704 		if (!asoc) {
1705 			/* If we could not find a matching association on the
1706 			 * endpoint, make sure that it is not a TCP-style
1707 			 * socket that already has an association or there is
1708 			 * no peeled-off association on another socket.
1709 			 */
1710 			if ((sctp_style(sk, TCP) &&
1711 			     sctp_sstate(sk, ESTABLISHED)) ||
1712 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1713 				err = -EADDRNOTAVAIL;
1714 				goto out_unlock;
1715 			}
1716 		}
1717 	} else {
1718 		asoc = sctp_id2assoc(sk, associd);
1719 		if (!asoc) {
1720 			err = -EPIPE;
1721 			goto out_unlock;
1722 		}
1723 	}
1724 
1725 	if (asoc) {
1726 		pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1727 
1728 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1729 		 * socket that has an association in CLOSED state. This can
1730 		 * happen when an accepted socket has an association that is
1731 		 * already CLOSED.
1732 		 */
1733 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1734 			err = -EPIPE;
1735 			goto out_unlock;
1736 		}
1737 
1738 		if (sinfo_flags & SCTP_EOF) {
1739 			pr_debug("%s: shutting down association:%p\n",
1740 				 __func__, asoc);
1741 
1742 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1743 			err = 0;
1744 			goto out_unlock;
1745 		}
1746 		if (sinfo_flags & SCTP_ABORT) {
1747 
1748 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1749 			if (!chunk) {
1750 				err = -ENOMEM;
1751 				goto out_unlock;
1752 			}
1753 
1754 			pr_debug("%s: aborting association:%p\n",
1755 				 __func__, asoc);
1756 
1757 			sctp_primitive_ABORT(net, asoc, chunk);
1758 			err = 0;
1759 			goto out_unlock;
1760 		}
1761 	}
1762 
1763 	/* Do we need to create the association?  */
1764 	if (!asoc) {
1765 		pr_debug("%s: there is no association yet\n", __func__);
1766 
1767 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1768 			err = -EINVAL;
1769 			goto out_unlock;
1770 		}
1771 
1772 		/* Check for invalid stream against the stream counts,
1773 		 * either the default or the user specified stream counts.
1774 		 */
1775 		if (sinfo) {
1776 			if (!sinit || !sinit->sinit_num_ostreams) {
1777 				/* Check against the defaults. */
1778 				if (sinfo->sinfo_stream >=
1779 				    sp->initmsg.sinit_num_ostreams) {
1780 					err = -EINVAL;
1781 					goto out_unlock;
1782 				}
1783 			} else {
1784 				/* Check against the requested.  */
1785 				if (sinfo->sinfo_stream >=
1786 				    sinit->sinit_num_ostreams) {
1787 					err = -EINVAL;
1788 					goto out_unlock;
1789 				}
1790 			}
1791 		}
1792 
1793 		/*
1794 		 * API 3.1.2 bind() - UDP Style Syntax
1795 		 * If a bind() or sctp_bindx() is not called prior to a
1796 		 * sendmsg() call that initiates a new association, the
1797 		 * system picks an ephemeral port and will choose an address
1798 		 * set equivalent to binding with a wildcard address.
1799 		 */
1800 		if (!ep->base.bind_addr.port) {
1801 			if (sctp_autobind(sk)) {
1802 				err = -EAGAIN;
1803 				goto out_unlock;
1804 			}
1805 		} else {
1806 			/*
1807 			 * If an unprivileged user inherits a one-to-many
1808 			 * style socket with open associations on a privileged
1809 			 * port, it MAY be permitted to accept new associations,
1810 			 * but it SHOULD NOT be permitted to open new
1811 			 * associations.
1812 			 */
1813 			if (ep->base.bind_addr.port < PROT_SOCK &&
1814 			    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1815 				err = -EACCES;
1816 				goto out_unlock;
1817 			}
1818 		}
1819 
1820 		scope = sctp_scope(&to);
1821 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1822 		if (!new_asoc) {
1823 			err = -ENOMEM;
1824 			goto out_unlock;
1825 		}
1826 		asoc = new_asoc;
1827 		err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1828 		if (err < 0) {
1829 			err = -ENOMEM;
1830 			goto out_free;
1831 		}
1832 
1833 		/* If the SCTP_INIT ancillary data is specified, set all
1834 		 * the association init values accordingly.
1835 		 */
1836 		if (sinit) {
1837 			if (sinit->sinit_num_ostreams) {
1838 				asoc->c.sinit_num_ostreams =
1839 					sinit->sinit_num_ostreams;
1840 			}
1841 			if (sinit->sinit_max_instreams) {
1842 				asoc->c.sinit_max_instreams =
1843 					sinit->sinit_max_instreams;
1844 			}
1845 			if (sinit->sinit_max_attempts) {
1846 				asoc->max_init_attempts
1847 					= sinit->sinit_max_attempts;
1848 			}
1849 			if (sinit->sinit_max_init_timeo) {
1850 				asoc->max_init_timeo =
1851 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1852 			}
1853 		}
1854 
1855 		/* Prime the peer's transport structures.  */
1856 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1857 		if (!transport) {
1858 			err = -ENOMEM;
1859 			goto out_free;
1860 		}
1861 	}
1862 
1863 	/* ASSERT: we have a valid association at this point.  */
1864 	pr_debug("%s: we have a valid association\n", __func__);
1865 
1866 	if (!sinfo) {
1867 		/* If the user didn't specify SNDINFO/SNDRCVINFO, make up
1868 		 * one with some defaults.
1869 		 */
1870 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1871 		default_sinfo.sinfo_stream = asoc->default_stream;
1872 		default_sinfo.sinfo_flags = asoc->default_flags;
1873 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1874 		default_sinfo.sinfo_context = asoc->default_context;
1875 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1876 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1877 
1878 		sinfo = &default_sinfo;
1879 	} else if (fill_sinfo_ttl) {
1880 		/* In case SNDINFO was specified, we still need to fill
1881 		 * it with a default ttl from the assoc here.
1882 		 */
1883 		sinfo->sinfo_timetolive = asoc->default_timetolive;
1884 	}
1885 
1886 	/* API 7.1.7, the sndbuf size per association bounds the
1887 	 * maximum size of data that can be sent in a single send call.
1888 	 */
1889 	if (msg_len > sk->sk_sndbuf) {
1890 		err = -EMSGSIZE;
1891 		goto out_free;
1892 	}
1893 
1894 	if (asoc->pmtu_pending)
1895 		sctp_assoc_pending_pmtu(sk, asoc);
1896 
1897 	/* If fragmentation is disabled and the message length exceeds the
1898 	 * association fragmentation point, return EMSGSIZE.  The I-D
1899 	 * does not specify what this error is, but this looks like
1900 	 * a great fit.
1901 	 */
1902 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1903 		err = -EMSGSIZE;
1904 		goto out_free;
1905 	}
1906 
1907 	/* Check for invalid stream. */
1908 	if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1909 		err = -EINVAL;
1910 		goto out_free;
1911 	}
1912 
1913 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1914 	if (!sctp_wspace(asoc)) {
1915 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1916 		if (err)
1917 			goto out_free;
1918 	}
1919 
1920 	/* If an address is passed with the sendto/sendmsg call, it is used
1921 	 * to override the primary destination address in the TCP model, or
1922 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1923 	 */
1924 	if ((sctp_style(sk, TCP) && msg_name) ||
1925 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1926 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1927 		if (!chunk_tp) {
1928 			err = -EINVAL;
1929 			goto out_free;
1930 		}
1931 	} else
1932 		chunk_tp = NULL;
1933 
1934 	/* Auto-connect, if we aren't connected already. */
1935 	if (sctp_state(asoc, CLOSED)) {
1936 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1937 		if (err < 0)
1938 			goto out_free;
1939 
1940 		wait_connect = true;
1941 		pr_debug("%s: we associated primitively\n", __func__);
1942 	}
1943 
1944 	/* Break the message into multiple chunks of maximum size. */
1945 	datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1946 	if (IS_ERR(datamsg)) {
1947 		err = PTR_ERR(datamsg);
1948 		goto out_free;
1949 	}
1950 
1951 	/* Now send the (possibly) fragmented message. */
1952 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1953 		sctp_chunk_hold(chunk);
1954 
1955 		/* Do accounting for the write space.  */
1956 		sctp_set_owner_w(chunk);
1957 
1958 		chunk->transport = chunk_tp;
1959 	}
1960 
1961 	/* Send it to the lower layers.  Note:  all chunks
1962 	 * must either fail or succeed.   The lower layer
1963 	 * works that way today.  Keep it that way or this
1964 	 * breaks.
1965 	 */
1966 	err = sctp_primitive_SEND(net, asoc, datamsg);
1967 	/* Did the lower layer accept the chunk? */
1968 	if (err) {
1969 		sctp_datamsg_free(datamsg);
1970 		goto out_free;
1971 	}
1972 
1973 	pr_debug("%s: we sent primitively\n", __func__);
1974 
1975 	sctp_datamsg_put(datamsg);
1976 	err = msg_len;
1977 
1978 	if (unlikely(wait_connect)) {
1979 		timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT);
1980 		sctp_wait_for_connect(asoc, &timeo);
1981 	}
1982 
1983 	/* If we are already past ASSOCIATE, the lower
1984 	 * layers are responsible for association cleanup.
1985 	 */
1986 	goto out_unlock;
1987 
1988 out_free:
1989 	if (new_asoc) {
1990 		sctp_unhash_established(asoc);
1991 		sctp_association_free(asoc);
1992 	}
1993 out_unlock:
1994 	release_sock(sk);
1995 
1996 out_nounlock:
1997 	return sctp_error(sk, msg_flags, err);
1998 
1999 #if 0
2000 do_sock_err:
2001 	if (msg_len)
2002 		err = msg_len;
2003 	else
2004 		err = sock_error(sk);
2005 	goto out;
2006 
2007 do_interrupted:
2008 	if (msg_len)
2009 		err = msg_len;
2010 	goto out;
2011 #endif /* 0 */
2012 }
2013 
2014 /* This is an extended version of skb_pull() that removes the data from the
2015  * start of a skb even when data is spread across the list of skb's in the
2016  * frag_list. len specifies the total amount of data that needs to be removed.
2017  * when 'len' bytes could be removed from the skb, it returns 0.
2018  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
2019  * could not be removed.
2020  */
2021 static int sctp_skb_pull(struct sk_buff *skb, int len)
2022 {
2023 	struct sk_buff *list;
2024 	int skb_len = skb_headlen(skb);
2025 	int rlen;
2026 
2027 	if (len <= skb_len) {
2028 		__skb_pull(skb, len);
2029 		return 0;
2030 	}
2031 	len -= skb_len;
2032 	__skb_pull(skb, skb_len);
2033 
2034 	skb_walk_frags(skb, list) {
2035 		rlen = sctp_skb_pull(list, len);
2036 		skb->len -= (len-rlen);
2037 		skb->data_len -= (len-rlen);
2038 
2039 		if (!rlen)
2040 			return 0;
2041 
2042 		len = rlen;
2043 	}
2044 
2045 	return len;
2046 }
2047 
2048 /* API 3.1.3  recvmsg() - UDP Style Syntax
2049  *
2050  *  ssize_t recvmsg(int socket, struct msghdr *message,
2051  *                    int flags);
2052  *
2053  *  socket  - the socket descriptor of the endpoint.
2054  *  message - pointer to the msghdr structure which contains a single
2055  *            user message and possibly some ancillary data.
2056  *
2057  *            See Section 5 for complete description of the data
2058  *            structures.
2059  *
2060  *  flags   - flags sent or received with the user message, see Section
2061  *            5 for complete description of the flags.
2062  */
2063 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2064 			int noblock, int flags, int *addr_len)
2065 {
2066 	struct sctp_ulpevent *event = NULL;
2067 	struct sctp_sock *sp = sctp_sk(sk);
2068 	struct sk_buff *skb;
2069 	int copied;
2070 	int err = 0;
2071 	int skb_len;
2072 
2073 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2074 		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2075 		 addr_len);
2076 
2077 	lock_sock(sk);
2078 
2079 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2080 		err = -ENOTCONN;
2081 		goto out;
2082 	}
2083 
2084 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2085 	if (!skb)
2086 		goto out;
2087 
2088 	/* Get the total length of the skb including any skb's in the
2089 	 * frag_list.
2090 	 */
2091 	skb_len = skb->len;
2092 
2093 	copied = skb_len;
2094 	if (copied > len)
2095 		copied = len;
2096 
2097 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2098 
2099 	event = sctp_skb2event(skb);
2100 
2101 	if (err)
2102 		goto out_free;
2103 
2104 	sock_recv_ts_and_drops(msg, sk, skb);
2105 	if (sctp_ulpevent_is_notification(event)) {
2106 		msg->msg_flags |= MSG_NOTIFICATION;
2107 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2108 	} else {
2109 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2110 	}
2111 
2112 	/* Check if we allow SCTP_NXTINFO. */
2113 	if (sp->recvnxtinfo)
2114 		sctp_ulpevent_read_nxtinfo(event, msg, sk);
2115 	/* Check if we allow SCTP_RCVINFO. */
2116 	if (sp->recvrcvinfo)
2117 		sctp_ulpevent_read_rcvinfo(event, msg);
2118 	/* Check if we allow SCTP_SNDRCVINFO. */
2119 	if (sp->subscribe.sctp_data_io_event)
2120 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2121 
2122 #if 0
2123 	/* FIXME: we should be calling IP/IPv6 layers.  */
2124 	if (sk->sk_protinfo.af_inet.cmsg_flags)
2125 		ip_cmsg_recv(msg, skb);
2126 #endif
2127 
2128 	err = copied;
2129 
2130 	/* If skb's length exceeds the user's buffer, update the skb and
2131 	 * push it back to the receive_queue so that the next call to
2132 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2133 	 */
2134 	if (skb_len > copied) {
2135 		msg->msg_flags &= ~MSG_EOR;
2136 		if (flags & MSG_PEEK)
2137 			goto out_free;
2138 		sctp_skb_pull(skb, copied);
2139 		skb_queue_head(&sk->sk_receive_queue, skb);
2140 
2141 		/* When only partial message is copied to the user, increase
2142 		 * rwnd by that amount. If all the data in the skb is read,
2143 		 * rwnd is updated when the event is freed.
2144 		 */
2145 		if (!sctp_ulpevent_is_notification(event))
2146 			sctp_assoc_rwnd_increase(event->asoc, copied);
2147 		goto out;
2148 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2149 		   (event->msg_flags & MSG_EOR))
2150 		msg->msg_flags |= MSG_EOR;
2151 	else
2152 		msg->msg_flags &= ~MSG_EOR;
2153 
2154 out_free:
2155 	if (flags & MSG_PEEK) {
2156 		/* Release the skb reference acquired after peeking the skb in
2157 		 * sctp_skb_recv_datagram().
2158 		 */
2159 		kfree_skb(skb);
2160 	} else {
2161 		/* Free the event which includes releasing the reference to
2162 		 * the owner of the skb, freeing the skb and updating the
2163 		 * rwnd.
2164 		 */
2165 		sctp_ulpevent_free(event);
2166 	}
2167 out:
2168 	release_sock(sk);
2169 	return err;
2170 }
2171 
2172 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2173  *
2174  * This option is a on/off flag.  If enabled no SCTP message
2175  * fragmentation will be performed.  Instead if a message being sent
2176  * exceeds the current PMTU size, the message will NOT be sent and
2177  * instead a error will be indicated to the user.
2178  */
2179 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2180 					     char __user *optval,
2181 					     unsigned int optlen)
2182 {
2183 	int val;
2184 
2185 	if (optlen < sizeof(int))
2186 		return -EINVAL;
2187 
2188 	if (get_user(val, (int __user *)optval))
2189 		return -EFAULT;
2190 
2191 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2192 
2193 	return 0;
2194 }
2195 
2196 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2197 				  unsigned int optlen)
2198 {
2199 	struct sctp_association *asoc;
2200 	struct sctp_ulpevent *event;
2201 
2202 	if (optlen > sizeof(struct sctp_event_subscribe))
2203 		return -EINVAL;
2204 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2205 		return -EFAULT;
2206 
2207 	if (sctp_sk(sk)->subscribe.sctp_data_io_event)
2208 		pr_warn_ratelimited(DEPRECATED "%s (pid %d) "
2209 				    "Requested SCTP_SNDRCVINFO event.\n"
2210 				    "Use SCTP_RCVINFO through SCTP_RECVRCVINFO option instead.\n",
2211 				    current->comm, task_pid_nr(current));
2212 
2213 	/* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2214 	 * if there is no data to be sent or retransmit, the stack will
2215 	 * immediately send up this notification.
2216 	 */
2217 	if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2218 				       &sctp_sk(sk)->subscribe)) {
2219 		asoc = sctp_id2assoc(sk, 0);
2220 
2221 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2222 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2223 					GFP_ATOMIC);
2224 			if (!event)
2225 				return -ENOMEM;
2226 
2227 			sctp_ulpq_tail_event(&asoc->ulpq, event);
2228 		}
2229 	}
2230 
2231 	return 0;
2232 }
2233 
2234 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2235  *
2236  * This socket option is applicable to the UDP-style socket only.  When
2237  * set it will cause associations that are idle for more than the
2238  * specified number of seconds to automatically close.  An association
2239  * being idle is defined an association that has NOT sent or received
2240  * user data.  The special value of '0' indicates that no automatic
2241  * close of any associations should be performed.  The option expects an
2242  * integer defining the number of seconds of idle time before an
2243  * association is closed.
2244  */
2245 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2246 				     unsigned int optlen)
2247 {
2248 	struct sctp_sock *sp = sctp_sk(sk);
2249 	struct net *net = sock_net(sk);
2250 
2251 	/* Applicable to UDP-style socket only */
2252 	if (sctp_style(sk, TCP))
2253 		return -EOPNOTSUPP;
2254 	if (optlen != sizeof(int))
2255 		return -EINVAL;
2256 	if (copy_from_user(&sp->autoclose, optval, optlen))
2257 		return -EFAULT;
2258 
2259 	if (sp->autoclose > net->sctp.max_autoclose)
2260 		sp->autoclose = net->sctp.max_autoclose;
2261 
2262 	return 0;
2263 }
2264 
2265 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2266  *
2267  * Applications can enable or disable heartbeats for any peer address of
2268  * an association, modify an address's heartbeat interval, force a
2269  * heartbeat to be sent immediately, and adjust the address's maximum
2270  * number of retransmissions sent before an address is considered
2271  * unreachable.  The following structure is used to access and modify an
2272  * address's parameters:
2273  *
2274  *  struct sctp_paddrparams {
2275  *     sctp_assoc_t            spp_assoc_id;
2276  *     struct sockaddr_storage spp_address;
2277  *     uint32_t                spp_hbinterval;
2278  *     uint16_t                spp_pathmaxrxt;
2279  *     uint32_t                spp_pathmtu;
2280  *     uint32_t                spp_sackdelay;
2281  *     uint32_t                spp_flags;
2282  * };
2283  *
2284  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2285  *                     application, and identifies the association for
2286  *                     this query.
2287  *   spp_address     - This specifies which address is of interest.
2288  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2289  *                     in milliseconds.  If a  value of zero
2290  *                     is present in this field then no changes are to
2291  *                     be made to this parameter.
2292  *   spp_pathmaxrxt  - This contains the maximum number of
2293  *                     retransmissions before this address shall be
2294  *                     considered unreachable. If a  value of zero
2295  *                     is present in this field then no changes are to
2296  *                     be made to this parameter.
2297  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2298  *                     specified here will be the "fixed" path mtu.
2299  *                     Note that if the spp_address field is empty
2300  *                     then all associations on this address will
2301  *                     have this fixed path mtu set upon them.
2302  *
2303  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2304  *                     the number of milliseconds that sacks will be delayed
2305  *                     for. This value will apply to all addresses of an
2306  *                     association if the spp_address field is empty. Note
2307  *                     also, that if delayed sack is enabled and this
2308  *                     value is set to 0, no change is made to the last
2309  *                     recorded delayed sack timer value.
2310  *
2311  *   spp_flags       - These flags are used to control various features
2312  *                     on an association. The flag field may contain
2313  *                     zero or more of the following options.
2314  *
2315  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2316  *                     specified address. Note that if the address
2317  *                     field is empty all addresses for the association
2318  *                     have heartbeats enabled upon them.
2319  *
2320  *                     SPP_HB_DISABLE - Disable heartbeats on the
2321  *                     speicifed address. Note that if the address
2322  *                     field is empty all addresses for the association
2323  *                     will have their heartbeats disabled. Note also
2324  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2325  *                     mutually exclusive, only one of these two should
2326  *                     be specified. Enabling both fields will have
2327  *                     undetermined results.
2328  *
2329  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2330  *                     to be made immediately.
2331  *
2332  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2333  *                     heartbeat delayis to be set to the value of 0
2334  *                     milliseconds.
2335  *
2336  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2337  *                     discovery upon the specified address. Note that
2338  *                     if the address feild is empty then all addresses
2339  *                     on the association are effected.
2340  *
2341  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2342  *                     discovery upon the specified address. Note that
2343  *                     if the address feild is empty then all addresses
2344  *                     on the association are effected. Not also that
2345  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2346  *                     exclusive. Enabling both will have undetermined
2347  *                     results.
2348  *
2349  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2350  *                     on delayed sack. The time specified in spp_sackdelay
2351  *                     is used to specify the sack delay for this address. Note
2352  *                     that if spp_address is empty then all addresses will
2353  *                     enable delayed sack and take on the sack delay
2354  *                     value specified in spp_sackdelay.
2355  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2356  *                     off delayed sack. If the spp_address field is blank then
2357  *                     delayed sack is disabled for the entire association. Note
2358  *                     also that this field is mutually exclusive to
2359  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2360  *                     results.
2361  */
2362 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2363 				       struct sctp_transport   *trans,
2364 				       struct sctp_association *asoc,
2365 				       struct sctp_sock        *sp,
2366 				       int                      hb_change,
2367 				       int                      pmtud_change,
2368 				       int                      sackdelay_change)
2369 {
2370 	int error;
2371 
2372 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2373 		struct net *net = sock_net(trans->asoc->base.sk);
2374 
2375 		error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2376 		if (error)
2377 			return error;
2378 	}
2379 
2380 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2381 	 * this field is ignored.  Note also that a value of zero indicates
2382 	 * the current setting should be left unchanged.
2383 	 */
2384 	if (params->spp_flags & SPP_HB_ENABLE) {
2385 
2386 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2387 		 * set.  This lets us use 0 value when this flag
2388 		 * is set.
2389 		 */
2390 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2391 			params->spp_hbinterval = 0;
2392 
2393 		if (params->spp_hbinterval ||
2394 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2395 			if (trans) {
2396 				trans->hbinterval =
2397 				    msecs_to_jiffies(params->spp_hbinterval);
2398 			} else if (asoc) {
2399 				asoc->hbinterval =
2400 				    msecs_to_jiffies(params->spp_hbinterval);
2401 			} else {
2402 				sp->hbinterval = params->spp_hbinterval;
2403 			}
2404 		}
2405 	}
2406 
2407 	if (hb_change) {
2408 		if (trans) {
2409 			trans->param_flags =
2410 				(trans->param_flags & ~SPP_HB) | hb_change;
2411 		} else if (asoc) {
2412 			asoc->param_flags =
2413 				(asoc->param_flags & ~SPP_HB) | hb_change;
2414 		} else {
2415 			sp->param_flags =
2416 				(sp->param_flags & ~SPP_HB) | hb_change;
2417 		}
2418 	}
2419 
2420 	/* When Path MTU discovery is disabled the value specified here will
2421 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2422 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2423 	 * effect).
2424 	 */
2425 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2426 		if (trans) {
2427 			trans->pathmtu = params->spp_pathmtu;
2428 			sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2429 		} else if (asoc) {
2430 			asoc->pathmtu = params->spp_pathmtu;
2431 			sctp_frag_point(asoc, params->spp_pathmtu);
2432 		} else {
2433 			sp->pathmtu = params->spp_pathmtu;
2434 		}
2435 	}
2436 
2437 	if (pmtud_change) {
2438 		if (trans) {
2439 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2440 				(params->spp_flags & SPP_PMTUD_ENABLE);
2441 			trans->param_flags =
2442 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2443 			if (update) {
2444 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2445 				sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2446 			}
2447 		} else if (asoc) {
2448 			asoc->param_flags =
2449 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2450 		} else {
2451 			sp->param_flags =
2452 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2453 		}
2454 	}
2455 
2456 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2457 	 * value of this field is ignored.  Note also that a value of zero
2458 	 * indicates the current setting should be left unchanged.
2459 	 */
2460 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2461 		if (trans) {
2462 			trans->sackdelay =
2463 				msecs_to_jiffies(params->spp_sackdelay);
2464 		} else if (asoc) {
2465 			asoc->sackdelay =
2466 				msecs_to_jiffies(params->spp_sackdelay);
2467 		} else {
2468 			sp->sackdelay = params->spp_sackdelay;
2469 		}
2470 	}
2471 
2472 	if (sackdelay_change) {
2473 		if (trans) {
2474 			trans->param_flags =
2475 				(trans->param_flags & ~SPP_SACKDELAY) |
2476 				sackdelay_change;
2477 		} else if (asoc) {
2478 			asoc->param_flags =
2479 				(asoc->param_flags & ~SPP_SACKDELAY) |
2480 				sackdelay_change;
2481 		} else {
2482 			sp->param_flags =
2483 				(sp->param_flags & ~SPP_SACKDELAY) |
2484 				sackdelay_change;
2485 		}
2486 	}
2487 
2488 	/* Note that a value of zero indicates the current setting should be
2489 	   left unchanged.
2490 	 */
2491 	if (params->spp_pathmaxrxt) {
2492 		if (trans) {
2493 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2494 		} else if (asoc) {
2495 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2496 		} else {
2497 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2498 		}
2499 	}
2500 
2501 	return 0;
2502 }
2503 
2504 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2505 					    char __user *optval,
2506 					    unsigned int optlen)
2507 {
2508 	struct sctp_paddrparams  params;
2509 	struct sctp_transport   *trans = NULL;
2510 	struct sctp_association *asoc = NULL;
2511 	struct sctp_sock        *sp = sctp_sk(sk);
2512 	int error;
2513 	int hb_change, pmtud_change, sackdelay_change;
2514 
2515 	if (optlen != sizeof(struct sctp_paddrparams))
2516 		return -EINVAL;
2517 
2518 	if (copy_from_user(&params, optval, optlen))
2519 		return -EFAULT;
2520 
2521 	/* Validate flags and value parameters. */
2522 	hb_change        = params.spp_flags & SPP_HB;
2523 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2524 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2525 
2526 	if (hb_change        == SPP_HB ||
2527 	    pmtud_change     == SPP_PMTUD ||
2528 	    sackdelay_change == SPP_SACKDELAY ||
2529 	    params.spp_sackdelay > 500 ||
2530 	    (params.spp_pathmtu &&
2531 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2532 		return -EINVAL;
2533 
2534 	/* If an address other than INADDR_ANY is specified, and
2535 	 * no transport is found, then the request is invalid.
2536 	 */
2537 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2538 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2539 					       params.spp_assoc_id);
2540 		if (!trans)
2541 			return -EINVAL;
2542 	}
2543 
2544 	/* Get association, if assoc_id != 0 and the socket is a one
2545 	 * to many style socket, and an association was not found, then
2546 	 * the id was invalid.
2547 	 */
2548 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2549 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2550 		return -EINVAL;
2551 
2552 	/* Heartbeat demand can only be sent on a transport or
2553 	 * association, but not a socket.
2554 	 */
2555 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2556 		return -EINVAL;
2557 
2558 	/* Process parameters. */
2559 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2560 					    hb_change, pmtud_change,
2561 					    sackdelay_change);
2562 
2563 	if (error)
2564 		return error;
2565 
2566 	/* If changes are for association, also apply parameters to each
2567 	 * transport.
2568 	 */
2569 	if (!trans && asoc) {
2570 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2571 				transports) {
2572 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2573 						    hb_change, pmtud_change,
2574 						    sackdelay_change);
2575 		}
2576 	}
2577 
2578 	return 0;
2579 }
2580 
2581 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2582 {
2583 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2584 }
2585 
2586 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2587 {
2588 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2589 }
2590 
2591 /*
2592  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2593  *
2594  * This option will effect the way delayed acks are performed.  This
2595  * option allows you to get or set the delayed ack time, in
2596  * milliseconds.  It also allows changing the delayed ack frequency.
2597  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2598  * the assoc_id is 0, then this sets or gets the endpoints default
2599  * values.  If the assoc_id field is non-zero, then the set or get
2600  * effects the specified association for the one to many model (the
2601  * assoc_id field is ignored by the one to one model).  Note that if
2602  * sack_delay or sack_freq are 0 when setting this option, then the
2603  * current values will remain unchanged.
2604  *
2605  * struct sctp_sack_info {
2606  *     sctp_assoc_t            sack_assoc_id;
2607  *     uint32_t                sack_delay;
2608  *     uint32_t                sack_freq;
2609  * };
2610  *
2611  * sack_assoc_id -  This parameter, indicates which association the user
2612  *    is performing an action upon.  Note that if this field's value is
2613  *    zero then the endpoints default value is changed (effecting future
2614  *    associations only).
2615  *
2616  * sack_delay -  This parameter contains the number of milliseconds that
2617  *    the user is requesting the delayed ACK timer be set to.  Note that
2618  *    this value is defined in the standard to be between 200 and 500
2619  *    milliseconds.
2620  *
2621  * sack_freq -  This parameter contains the number of packets that must
2622  *    be received before a sack is sent without waiting for the delay
2623  *    timer to expire.  The default value for this is 2, setting this
2624  *    value to 1 will disable the delayed sack algorithm.
2625  */
2626 
2627 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2628 				       char __user *optval, unsigned int optlen)
2629 {
2630 	struct sctp_sack_info    params;
2631 	struct sctp_transport   *trans = NULL;
2632 	struct sctp_association *asoc = NULL;
2633 	struct sctp_sock        *sp = sctp_sk(sk);
2634 
2635 	if (optlen == sizeof(struct sctp_sack_info)) {
2636 		if (copy_from_user(&params, optval, optlen))
2637 			return -EFAULT;
2638 
2639 		if (params.sack_delay == 0 && params.sack_freq == 0)
2640 			return 0;
2641 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2642 		pr_warn_ratelimited(DEPRECATED
2643 				    "%s (pid %d) "
2644 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2645 				    "Use struct sctp_sack_info instead\n",
2646 				    current->comm, task_pid_nr(current));
2647 		if (copy_from_user(&params, optval, optlen))
2648 			return -EFAULT;
2649 
2650 		if (params.sack_delay == 0)
2651 			params.sack_freq = 1;
2652 		else
2653 			params.sack_freq = 0;
2654 	} else
2655 		return -EINVAL;
2656 
2657 	/* Validate value parameter. */
2658 	if (params.sack_delay > 500)
2659 		return -EINVAL;
2660 
2661 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2662 	 * to many style socket, and an association was not found, then
2663 	 * the id was invalid.
2664 	 */
2665 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2666 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2667 		return -EINVAL;
2668 
2669 	if (params.sack_delay) {
2670 		if (asoc) {
2671 			asoc->sackdelay =
2672 				msecs_to_jiffies(params.sack_delay);
2673 			asoc->param_flags =
2674 				sctp_spp_sackdelay_enable(asoc->param_flags);
2675 		} else {
2676 			sp->sackdelay = params.sack_delay;
2677 			sp->param_flags =
2678 				sctp_spp_sackdelay_enable(sp->param_flags);
2679 		}
2680 	}
2681 
2682 	if (params.sack_freq == 1) {
2683 		if (asoc) {
2684 			asoc->param_flags =
2685 				sctp_spp_sackdelay_disable(asoc->param_flags);
2686 		} else {
2687 			sp->param_flags =
2688 				sctp_spp_sackdelay_disable(sp->param_flags);
2689 		}
2690 	} else if (params.sack_freq > 1) {
2691 		if (asoc) {
2692 			asoc->sackfreq = params.sack_freq;
2693 			asoc->param_flags =
2694 				sctp_spp_sackdelay_enable(asoc->param_flags);
2695 		} else {
2696 			sp->sackfreq = params.sack_freq;
2697 			sp->param_flags =
2698 				sctp_spp_sackdelay_enable(sp->param_flags);
2699 		}
2700 	}
2701 
2702 	/* If change is for association, also apply to each transport. */
2703 	if (asoc) {
2704 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2705 				transports) {
2706 			if (params.sack_delay) {
2707 				trans->sackdelay =
2708 					msecs_to_jiffies(params.sack_delay);
2709 				trans->param_flags =
2710 					sctp_spp_sackdelay_enable(trans->param_flags);
2711 			}
2712 			if (params.sack_freq == 1) {
2713 				trans->param_flags =
2714 					sctp_spp_sackdelay_disable(trans->param_flags);
2715 			} else if (params.sack_freq > 1) {
2716 				trans->sackfreq = params.sack_freq;
2717 				trans->param_flags =
2718 					sctp_spp_sackdelay_enable(trans->param_flags);
2719 			}
2720 		}
2721 	}
2722 
2723 	return 0;
2724 }
2725 
2726 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2727  *
2728  * Applications can specify protocol parameters for the default association
2729  * initialization.  The option name argument to setsockopt() and getsockopt()
2730  * is SCTP_INITMSG.
2731  *
2732  * Setting initialization parameters is effective only on an unconnected
2733  * socket (for UDP-style sockets only future associations are effected
2734  * by the change).  With TCP-style sockets, this option is inherited by
2735  * sockets derived from a listener socket.
2736  */
2737 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2738 {
2739 	struct sctp_initmsg sinit;
2740 	struct sctp_sock *sp = sctp_sk(sk);
2741 
2742 	if (optlen != sizeof(struct sctp_initmsg))
2743 		return -EINVAL;
2744 	if (copy_from_user(&sinit, optval, optlen))
2745 		return -EFAULT;
2746 
2747 	if (sinit.sinit_num_ostreams)
2748 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2749 	if (sinit.sinit_max_instreams)
2750 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2751 	if (sinit.sinit_max_attempts)
2752 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2753 	if (sinit.sinit_max_init_timeo)
2754 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2755 
2756 	return 0;
2757 }
2758 
2759 /*
2760  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2761  *
2762  *   Applications that wish to use the sendto() system call may wish to
2763  *   specify a default set of parameters that would normally be supplied
2764  *   through the inclusion of ancillary data.  This socket option allows
2765  *   such an application to set the default sctp_sndrcvinfo structure.
2766  *   The application that wishes to use this socket option simply passes
2767  *   in to this call the sctp_sndrcvinfo structure defined in Section
2768  *   5.2.2) The input parameters accepted by this call include
2769  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2770  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2771  *   to this call if the caller is using the UDP model.
2772  */
2773 static int sctp_setsockopt_default_send_param(struct sock *sk,
2774 					      char __user *optval,
2775 					      unsigned int optlen)
2776 {
2777 	struct sctp_sock *sp = sctp_sk(sk);
2778 	struct sctp_association *asoc;
2779 	struct sctp_sndrcvinfo info;
2780 
2781 	if (optlen != sizeof(info))
2782 		return -EINVAL;
2783 	if (copy_from_user(&info, optval, optlen))
2784 		return -EFAULT;
2785 	if (info.sinfo_flags &
2786 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2787 	      SCTP_ABORT | SCTP_EOF))
2788 		return -EINVAL;
2789 
2790 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2791 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2792 		return -EINVAL;
2793 	if (asoc) {
2794 		asoc->default_stream = info.sinfo_stream;
2795 		asoc->default_flags = info.sinfo_flags;
2796 		asoc->default_ppid = info.sinfo_ppid;
2797 		asoc->default_context = info.sinfo_context;
2798 		asoc->default_timetolive = info.sinfo_timetolive;
2799 	} else {
2800 		sp->default_stream = info.sinfo_stream;
2801 		sp->default_flags = info.sinfo_flags;
2802 		sp->default_ppid = info.sinfo_ppid;
2803 		sp->default_context = info.sinfo_context;
2804 		sp->default_timetolive = info.sinfo_timetolive;
2805 	}
2806 
2807 	return 0;
2808 }
2809 
2810 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2811  * (SCTP_DEFAULT_SNDINFO)
2812  */
2813 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2814 					   char __user *optval,
2815 					   unsigned int optlen)
2816 {
2817 	struct sctp_sock *sp = sctp_sk(sk);
2818 	struct sctp_association *asoc;
2819 	struct sctp_sndinfo info;
2820 
2821 	if (optlen != sizeof(info))
2822 		return -EINVAL;
2823 	if (copy_from_user(&info, optval, optlen))
2824 		return -EFAULT;
2825 	if (info.snd_flags &
2826 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2827 	      SCTP_ABORT | SCTP_EOF))
2828 		return -EINVAL;
2829 
2830 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
2831 	if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
2832 		return -EINVAL;
2833 	if (asoc) {
2834 		asoc->default_stream = info.snd_sid;
2835 		asoc->default_flags = info.snd_flags;
2836 		asoc->default_ppid = info.snd_ppid;
2837 		asoc->default_context = info.snd_context;
2838 	} else {
2839 		sp->default_stream = info.snd_sid;
2840 		sp->default_flags = info.snd_flags;
2841 		sp->default_ppid = info.snd_ppid;
2842 		sp->default_context = info.snd_context;
2843 	}
2844 
2845 	return 0;
2846 }
2847 
2848 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2849  *
2850  * Requests that the local SCTP stack use the enclosed peer address as
2851  * the association primary.  The enclosed address must be one of the
2852  * association peer's addresses.
2853  */
2854 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2855 					unsigned int optlen)
2856 {
2857 	struct sctp_prim prim;
2858 	struct sctp_transport *trans;
2859 
2860 	if (optlen != sizeof(struct sctp_prim))
2861 		return -EINVAL;
2862 
2863 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2864 		return -EFAULT;
2865 
2866 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2867 	if (!trans)
2868 		return -EINVAL;
2869 
2870 	sctp_assoc_set_primary(trans->asoc, trans);
2871 
2872 	return 0;
2873 }
2874 
2875 /*
2876  * 7.1.5 SCTP_NODELAY
2877  *
2878  * Turn on/off any Nagle-like algorithm.  This means that packets are
2879  * generally sent as soon as possible and no unnecessary delays are
2880  * introduced, at the cost of more packets in the network.  Expects an
2881  *  integer boolean flag.
2882  */
2883 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2884 				   unsigned int optlen)
2885 {
2886 	int val;
2887 
2888 	if (optlen < sizeof(int))
2889 		return -EINVAL;
2890 	if (get_user(val, (int __user *)optval))
2891 		return -EFAULT;
2892 
2893 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2894 	return 0;
2895 }
2896 
2897 /*
2898  *
2899  * 7.1.1 SCTP_RTOINFO
2900  *
2901  * The protocol parameters used to initialize and bound retransmission
2902  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2903  * and modify these parameters.
2904  * All parameters are time values, in milliseconds.  A value of 0, when
2905  * modifying the parameters, indicates that the current value should not
2906  * be changed.
2907  *
2908  */
2909 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2910 {
2911 	struct sctp_rtoinfo rtoinfo;
2912 	struct sctp_association *asoc;
2913 	unsigned long rto_min, rto_max;
2914 	struct sctp_sock *sp = sctp_sk(sk);
2915 
2916 	if (optlen != sizeof (struct sctp_rtoinfo))
2917 		return -EINVAL;
2918 
2919 	if (copy_from_user(&rtoinfo, optval, optlen))
2920 		return -EFAULT;
2921 
2922 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2923 
2924 	/* Set the values to the specific association */
2925 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2926 		return -EINVAL;
2927 
2928 	rto_max = rtoinfo.srto_max;
2929 	rto_min = rtoinfo.srto_min;
2930 
2931 	if (rto_max)
2932 		rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
2933 	else
2934 		rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
2935 
2936 	if (rto_min)
2937 		rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
2938 	else
2939 		rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
2940 
2941 	if (rto_min > rto_max)
2942 		return -EINVAL;
2943 
2944 	if (asoc) {
2945 		if (rtoinfo.srto_initial != 0)
2946 			asoc->rto_initial =
2947 				msecs_to_jiffies(rtoinfo.srto_initial);
2948 		asoc->rto_max = rto_max;
2949 		asoc->rto_min = rto_min;
2950 	} else {
2951 		/* If there is no association or the association-id = 0
2952 		 * set the values to the endpoint.
2953 		 */
2954 		if (rtoinfo.srto_initial != 0)
2955 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2956 		sp->rtoinfo.srto_max = rto_max;
2957 		sp->rtoinfo.srto_min = rto_min;
2958 	}
2959 
2960 	return 0;
2961 }
2962 
2963 /*
2964  *
2965  * 7.1.2 SCTP_ASSOCINFO
2966  *
2967  * This option is used to tune the maximum retransmission attempts
2968  * of the association.
2969  * Returns an error if the new association retransmission value is
2970  * greater than the sum of the retransmission value  of the peer.
2971  * See [SCTP] for more information.
2972  *
2973  */
2974 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2975 {
2976 
2977 	struct sctp_assocparams assocparams;
2978 	struct sctp_association *asoc;
2979 
2980 	if (optlen != sizeof(struct sctp_assocparams))
2981 		return -EINVAL;
2982 	if (copy_from_user(&assocparams, optval, optlen))
2983 		return -EFAULT;
2984 
2985 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2986 
2987 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2988 		return -EINVAL;
2989 
2990 	/* Set the values to the specific association */
2991 	if (asoc) {
2992 		if (assocparams.sasoc_asocmaxrxt != 0) {
2993 			__u32 path_sum = 0;
2994 			int   paths = 0;
2995 			struct sctp_transport *peer_addr;
2996 
2997 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2998 					transports) {
2999 				path_sum += peer_addr->pathmaxrxt;
3000 				paths++;
3001 			}
3002 
3003 			/* Only validate asocmaxrxt if we have more than
3004 			 * one path/transport.  We do this because path
3005 			 * retransmissions are only counted when we have more
3006 			 * then one path.
3007 			 */
3008 			if (paths > 1 &&
3009 			    assocparams.sasoc_asocmaxrxt > path_sum)
3010 				return -EINVAL;
3011 
3012 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3013 		}
3014 
3015 		if (assocparams.sasoc_cookie_life != 0)
3016 			asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3017 	} else {
3018 		/* Set the values to the endpoint */
3019 		struct sctp_sock *sp = sctp_sk(sk);
3020 
3021 		if (assocparams.sasoc_asocmaxrxt != 0)
3022 			sp->assocparams.sasoc_asocmaxrxt =
3023 						assocparams.sasoc_asocmaxrxt;
3024 		if (assocparams.sasoc_cookie_life != 0)
3025 			sp->assocparams.sasoc_cookie_life =
3026 						assocparams.sasoc_cookie_life;
3027 	}
3028 	return 0;
3029 }
3030 
3031 /*
3032  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3033  *
3034  * This socket option is a boolean flag which turns on or off mapped V4
3035  * addresses.  If this option is turned on and the socket is type
3036  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3037  * If this option is turned off, then no mapping will be done of V4
3038  * addresses and a user will receive both PF_INET6 and PF_INET type
3039  * addresses on the socket.
3040  */
3041 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3042 {
3043 	int val;
3044 	struct sctp_sock *sp = sctp_sk(sk);
3045 
3046 	if (optlen < sizeof(int))
3047 		return -EINVAL;
3048 	if (get_user(val, (int __user *)optval))
3049 		return -EFAULT;
3050 	if (val)
3051 		sp->v4mapped = 1;
3052 	else
3053 		sp->v4mapped = 0;
3054 
3055 	return 0;
3056 }
3057 
3058 /*
3059  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3060  * This option will get or set the maximum size to put in any outgoing
3061  * SCTP DATA chunk.  If a message is larger than this size it will be
3062  * fragmented by SCTP into the specified size.  Note that the underlying
3063  * SCTP implementation may fragment into smaller sized chunks when the
3064  * PMTU of the underlying association is smaller than the value set by
3065  * the user.  The default value for this option is '0' which indicates
3066  * the user is NOT limiting fragmentation and only the PMTU will effect
3067  * SCTP's choice of DATA chunk size.  Note also that values set larger
3068  * than the maximum size of an IP datagram will effectively let SCTP
3069  * control fragmentation (i.e. the same as setting this option to 0).
3070  *
3071  * The following structure is used to access and modify this parameter:
3072  *
3073  * struct sctp_assoc_value {
3074  *   sctp_assoc_t assoc_id;
3075  *   uint32_t assoc_value;
3076  * };
3077  *
3078  * assoc_id:  This parameter is ignored for one-to-one style sockets.
3079  *    For one-to-many style sockets this parameter indicates which
3080  *    association the user is performing an action upon.  Note that if
3081  *    this field's value is zero then the endpoints default value is
3082  *    changed (effecting future associations only).
3083  * assoc_value:  This parameter specifies the maximum size in bytes.
3084  */
3085 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3086 {
3087 	struct sctp_assoc_value params;
3088 	struct sctp_association *asoc;
3089 	struct sctp_sock *sp = sctp_sk(sk);
3090 	int val;
3091 
3092 	if (optlen == sizeof(int)) {
3093 		pr_warn_ratelimited(DEPRECATED
3094 				    "%s (pid %d) "
3095 				    "Use of int in maxseg socket option.\n"
3096 				    "Use struct sctp_assoc_value instead\n",
3097 				    current->comm, task_pid_nr(current));
3098 		if (copy_from_user(&val, optval, optlen))
3099 			return -EFAULT;
3100 		params.assoc_id = 0;
3101 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3102 		if (copy_from_user(&params, optval, optlen))
3103 			return -EFAULT;
3104 		val = params.assoc_value;
3105 	} else
3106 		return -EINVAL;
3107 
3108 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3109 		return -EINVAL;
3110 
3111 	asoc = sctp_id2assoc(sk, params.assoc_id);
3112 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3113 		return -EINVAL;
3114 
3115 	if (asoc) {
3116 		if (val == 0) {
3117 			val = asoc->pathmtu;
3118 			val -= sp->pf->af->net_header_len;
3119 			val -= sizeof(struct sctphdr) +
3120 					sizeof(struct sctp_data_chunk);
3121 		}
3122 		asoc->user_frag = val;
3123 		asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3124 	} else {
3125 		sp->user_frag = val;
3126 	}
3127 
3128 	return 0;
3129 }
3130 
3131 
3132 /*
3133  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3134  *
3135  *   Requests that the peer mark the enclosed address as the association
3136  *   primary. The enclosed address must be one of the association's
3137  *   locally bound addresses. The following structure is used to make a
3138  *   set primary request:
3139  */
3140 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3141 					     unsigned int optlen)
3142 {
3143 	struct net *net = sock_net(sk);
3144 	struct sctp_sock	*sp;
3145 	struct sctp_association	*asoc = NULL;
3146 	struct sctp_setpeerprim	prim;
3147 	struct sctp_chunk	*chunk;
3148 	struct sctp_af		*af;
3149 	int 			err;
3150 
3151 	sp = sctp_sk(sk);
3152 
3153 	if (!net->sctp.addip_enable)
3154 		return -EPERM;
3155 
3156 	if (optlen != sizeof(struct sctp_setpeerprim))
3157 		return -EINVAL;
3158 
3159 	if (copy_from_user(&prim, optval, optlen))
3160 		return -EFAULT;
3161 
3162 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3163 	if (!asoc)
3164 		return -EINVAL;
3165 
3166 	if (!asoc->peer.asconf_capable)
3167 		return -EPERM;
3168 
3169 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3170 		return -EPERM;
3171 
3172 	if (!sctp_state(asoc, ESTABLISHED))
3173 		return -ENOTCONN;
3174 
3175 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3176 	if (!af)
3177 		return -EINVAL;
3178 
3179 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3180 		return -EADDRNOTAVAIL;
3181 
3182 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3183 		return -EADDRNOTAVAIL;
3184 
3185 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3186 	chunk = sctp_make_asconf_set_prim(asoc,
3187 					  (union sctp_addr *)&prim.sspp_addr);
3188 	if (!chunk)
3189 		return -ENOMEM;
3190 
3191 	err = sctp_send_asconf(asoc, chunk);
3192 
3193 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3194 
3195 	return err;
3196 }
3197 
3198 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3199 					    unsigned int optlen)
3200 {
3201 	struct sctp_setadaptation adaptation;
3202 
3203 	if (optlen != sizeof(struct sctp_setadaptation))
3204 		return -EINVAL;
3205 	if (copy_from_user(&adaptation, optval, optlen))
3206 		return -EFAULT;
3207 
3208 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3209 
3210 	return 0;
3211 }
3212 
3213 /*
3214  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3215  *
3216  * The context field in the sctp_sndrcvinfo structure is normally only
3217  * used when a failed message is retrieved holding the value that was
3218  * sent down on the actual send call.  This option allows the setting of
3219  * a default context on an association basis that will be received on
3220  * reading messages from the peer.  This is especially helpful in the
3221  * one-2-many model for an application to keep some reference to an
3222  * internal state machine that is processing messages on the
3223  * association.  Note that the setting of this value only effects
3224  * received messages from the peer and does not effect the value that is
3225  * saved with outbound messages.
3226  */
3227 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3228 				   unsigned int optlen)
3229 {
3230 	struct sctp_assoc_value params;
3231 	struct sctp_sock *sp;
3232 	struct sctp_association *asoc;
3233 
3234 	if (optlen != sizeof(struct sctp_assoc_value))
3235 		return -EINVAL;
3236 	if (copy_from_user(&params, optval, optlen))
3237 		return -EFAULT;
3238 
3239 	sp = sctp_sk(sk);
3240 
3241 	if (params.assoc_id != 0) {
3242 		asoc = sctp_id2assoc(sk, params.assoc_id);
3243 		if (!asoc)
3244 			return -EINVAL;
3245 		asoc->default_rcv_context = params.assoc_value;
3246 	} else {
3247 		sp->default_rcv_context = params.assoc_value;
3248 	}
3249 
3250 	return 0;
3251 }
3252 
3253 /*
3254  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3255  *
3256  * This options will at a minimum specify if the implementation is doing
3257  * fragmented interleave.  Fragmented interleave, for a one to many
3258  * socket, is when subsequent calls to receive a message may return
3259  * parts of messages from different associations.  Some implementations
3260  * may allow you to turn this value on or off.  If so, when turned off,
3261  * no fragment interleave will occur (which will cause a head of line
3262  * blocking amongst multiple associations sharing the same one to many
3263  * socket).  When this option is turned on, then each receive call may
3264  * come from a different association (thus the user must receive data
3265  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3266  * association each receive belongs to.
3267  *
3268  * This option takes a boolean value.  A non-zero value indicates that
3269  * fragmented interleave is on.  A value of zero indicates that
3270  * fragmented interleave is off.
3271  *
3272  * Note that it is important that an implementation that allows this
3273  * option to be turned on, have it off by default.  Otherwise an unaware
3274  * application using the one to many model may become confused and act
3275  * incorrectly.
3276  */
3277 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3278 					       char __user *optval,
3279 					       unsigned int optlen)
3280 {
3281 	int val;
3282 
3283 	if (optlen != sizeof(int))
3284 		return -EINVAL;
3285 	if (get_user(val, (int __user *)optval))
3286 		return -EFAULT;
3287 
3288 	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3289 
3290 	return 0;
3291 }
3292 
3293 /*
3294  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3295  *       (SCTP_PARTIAL_DELIVERY_POINT)
3296  *
3297  * This option will set or get the SCTP partial delivery point.  This
3298  * point is the size of a message where the partial delivery API will be
3299  * invoked to help free up rwnd space for the peer.  Setting this to a
3300  * lower value will cause partial deliveries to happen more often.  The
3301  * calls argument is an integer that sets or gets the partial delivery
3302  * point.  Note also that the call will fail if the user attempts to set
3303  * this value larger than the socket receive buffer size.
3304  *
3305  * Note that any single message having a length smaller than or equal to
3306  * the SCTP partial delivery point will be delivered in one single read
3307  * call as long as the user provided buffer is large enough to hold the
3308  * message.
3309  */
3310 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3311 						  char __user *optval,
3312 						  unsigned int optlen)
3313 {
3314 	u32 val;
3315 
3316 	if (optlen != sizeof(u32))
3317 		return -EINVAL;
3318 	if (get_user(val, (int __user *)optval))
3319 		return -EFAULT;
3320 
3321 	/* Note: We double the receive buffer from what the user sets
3322 	 * it to be, also initial rwnd is based on rcvbuf/2.
3323 	 */
3324 	if (val > (sk->sk_rcvbuf >> 1))
3325 		return -EINVAL;
3326 
3327 	sctp_sk(sk)->pd_point = val;
3328 
3329 	return 0; /* is this the right error code? */
3330 }
3331 
3332 /*
3333  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3334  *
3335  * This option will allow a user to change the maximum burst of packets
3336  * that can be emitted by this association.  Note that the default value
3337  * is 4, and some implementations may restrict this setting so that it
3338  * can only be lowered.
3339  *
3340  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3341  * future associations inheriting the socket value.
3342  */
3343 static int sctp_setsockopt_maxburst(struct sock *sk,
3344 				    char __user *optval,
3345 				    unsigned int optlen)
3346 {
3347 	struct sctp_assoc_value params;
3348 	struct sctp_sock *sp;
3349 	struct sctp_association *asoc;
3350 	int val;
3351 	int assoc_id = 0;
3352 
3353 	if (optlen == sizeof(int)) {
3354 		pr_warn_ratelimited(DEPRECATED
3355 				    "%s (pid %d) "
3356 				    "Use of int in max_burst socket option deprecated.\n"
3357 				    "Use struct sctp_assoc_value instead\n",
3358 				    current->comm, task_pid_nr(current));
3359 		if (copy_from_user(&val, optval, optlen))
3360 			return -EFAULT;
3361 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3362 		if (copy_from_user(&params, optval, optlen))
3363 			return -EFAULT;
3364 		val = params.assoc_value;
3365 		assoc_id = params.assoc_id;
3366 	} else
3367 		return -EINVAL;
3368 
3369 	sp = sctp_sk(sk);
3370 
3371 	if (assoc_id != 0) {
3372 		asoc = sctp_id2assoc(sk, assoc_id);
3373 		if (!asoc)
3374 			return -EINVAL;
3375 		asoc->max_burst = val;
3376 	} else
3377 		sp->max_burst = val;
3378 
3379 	return 0;
3380 }
3381 
3382 /*
3383  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3384  *
3385  * This set option adds a chunk type that the user is requesting to be
3386  * received only in an authenticated way.  Changes to the list of chunks
3387  * will only effect future associations on the socket.
3388  */
3389 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3390 				      char __user *optval,
3391 				      unsigned int optlen)
3392 {
3393 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3394 	struct sctp_authchunk val;
3395 
3396 	if (!ep->auth_enable)
3397 		return -EACCES;
3398 
3399 	if (optlen != sizeof(struct sctp_authchunk))
3400 		return -EINVAL;
3401 	if (copy_from_user(&val, optval, optlen))
3402 		return -EFAULT;
3403 
3404 	switch (val.sauth_chunk) {
3405 	case SCTP_CID_INIT:
3406 	case SCTP_CID_INIT_ACK:
3407 	case SCTP_CID_SHUTDOWN_COMPLETE:
3408 	case SCTP_CID_AUTH:
3409 		return -EINVAL;
3410 	}
3411 
3412 	/* add this chunk id to the endpoint */
3413 	return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3414 }
3415 
3416 /*
3417  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3418  *
3419  * This option gets or sets the list of HMAC algorithms that the local
3420  * endpoint requires the peer to use.
3421  */
3422 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3423 				      char __user *optval,
3424 				      unsigned int optlen)
3425 {
3426 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3427 	struct sctp_hmacalgo *hmacs;
3428 	u32 idents;
3429 	int err;
3430 
3431 	if (!ep->auth_enable)
3432 		return -EACCES;
3433 
3434 	if (optlen < sizeof(struct sctp_hmacalgo))
3435 		return -EINVAL;
3436 
3437 	hmacs = memdup_user(optval, optlen);
3438 	if (IS_ERR(hmacs))
3439 		return PTR_ERR(hmacs);
3440 
3441 	idents = hmacs->shmac_num_idents;
3442 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3443 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3444 		err = -EINVAL;
3445 		goto out;
3446 	}
3447 
3448 	err = sctp_auth_ep_set_hmacs(ep, hmacs);
3449 out:
3450 	kfree(hmacs);
3451 	return err;
3452 }
3453 
3454 /*
3455  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3456  *
3457  * This option will set a shared secret key which is used to build an
3458  * association shared key.
3459  */
3460 static int sctp_setsockopt_auth_key(struct sock *sk,
3461 				    char __user *optval,
3462 				    unsigned int optlen)
3463 {
3464 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3465 	struct sctp_authkey *authkey;
3466 	struct sctp_association *asoc;
3467 	int ret;
3468 
3469 	if (!ep->auth_enable)
3470 		return -EACCES;
3471 
3472 	if (optlen <= sizeof(struct sctp_authkey))
3473 		return -EINVAL;
3474 
3475 	authkey = memdup_user(optval, optlen);
3476 	if (IS_ERR(authkey))
3477 		return PTR_ERR(authkey);
3478 
3479 	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3480 		ret = -EINVAL;
3481 		goto out;
3482 	}
3483 
3484 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3485 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3486 		ret = -EINVAL;
3487 		goto out;
3488 	}
3489 
3490 	ret = sctp_auth_set_key(ep, asoc, authkey);
3491 out:
3492 	kzfree(authkey);
3493 	return ret;
3494 }
3495 
3496 /*
3497  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3498  *
3499  * This option will get or set the active shared key to be used to build
3500  * the association shared key.
3501  */
3502 static int sctp_setsockopt_active_key(struct sock *sk,
3503 				      char __user *optval,
3504 				      unsigned int optlen)
3505 {
3506 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3507 	struct sctp_authkeyid val;
3508 	struct sctp_association *asoc;
3509 
3510 	if (!ep->auth_enable)
3511 		return -EACCES;
3512 
3513 	if (optlen != sizeof(struct sctp_authkeyid))
3514 		return -EINVAL;
3515 	if (copy_from_user(&val, optval, optlen))
3516 		return -EFAULT;
3517 
3518 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3519 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3520 		return -EINVAL;
3521 
3522 	return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3523 }
3524 
3525 /*
3526  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3527  *
3528  * This set option will delete a shared secret key from use.
3529  */
3530 static int sctp_setsockopt_del_key(struct sock *sk,
3531 				   char __user *optval,
3532 				   unsigned int optlen)
3533 {
3534 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3535 	struct sctp_authkeyid val;
3536 	struct sctp_association *asoc;
3537 
3538 	if (!ep->auth_enable)
3539 		return -EACCES;
3540 
3541 	if (optlen != sizeof(struct sctp_authkeyid))
3542 		return -EINVAL;
3543 	if (copy_from_user(&val, optval, optlen))
3544 		return -EFAULT;
3545 
3546 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3547 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3548 		return -EINVAL;
3549 
3550 	return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3551 
3552 }
3553 
3554 /*
3555  * 8.1.23 SCTP_AUTO_ASCONF
3556  *
3557  * This option will enable or disable the use of the automatic generation of
3558  * ASCONF chunks to add and delete addresses to an existing association.  Note
3559  * that this option has two caveats namely: a) it only affects sockets that
3560  * are bound to all addresses available to the SCTP stack, and b) the system
3561  * administrator may have an overriding control that turns the ASCONF feature
3562  * off no matter what setting the socket option may have.
3563  * This option expects an integer boolean flag, where a non-zero value turns on
3564  * the option, and a zero value turns off the option.
3565  * Note. In this implementation, socket operation overrides default parameter
3566  * being set by sysctl as well as FreeBSD implementation
3567  */
3568 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3569 					unsigned int optlen)
3570 {
3571 	int val;
3572 	struct sctp_sock *sp = sctp_sk(sk);
3573 
3574 	if (optlen < sizeof(int))
3575 		return -EINVAL;
3576 	if (get_user(val, (int __user *)optval))
3577 		return -EFAULT;
3578 	if (!sctp_is_ep_boundall(sk) && val)
3579 		return -EINVAL;
3580 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3581 		return 0;
3582 
3583 	if (val == 0 && sp->do_auto_asconf) {
3584 		list_del(&sp->auto_asconf_list);
3585 		sp->do_auto_asconf = 0;
3586 	} else if (val && !sp->do_auto_asconf) {
3587 		list_add_tail(&sp->auto_asconf_list,
3588 		    &sock_net(sk)->sctp.auto_asconf_splist);
3589 		sp->do_auto_asconf = 1;
3590 	}
3591 	return 0;
3592 }
3593 
3594 /*
3595  * SCTP_PEER_ADDR_THLDS
3596  *
3597  * This option allows us to alter the partially failed threshold for one or all
3598  * transports in an association.  See Section 6.1 of:
3599  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3600  */
3601 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3602 					    char __user *optval,
3603 					    unsigned int optlen)
3604 {
3605 	struct sctp_paddrthlds val;
3606 	struct sctp_transport *trans;
3607 	struct sctp_association *asoc;
3608 
3609 	if (optlen < sizeof(struct sctp_paddrthlds))
3610 		return -EINVAL;
3611 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3612 			   sizeof(struct sctp_paddrthlds)))
3613 		return -EFAULT;
3614 
3615 
3616 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3617 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3618 		if (!asoc)
3619 			return -ENOENT;
3620 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3621 				    transports) {
3622 			if (val.spt_pathmaxrxt)
3623 				trans->pathmaxrxt = val.spt_pathmaxrxt;
3624 			trans->pf_retrans = val.spt_pathpfthld;
3625 		}
3626 
3627 		if (val.spt_pathmaxrxt)
3628 			asoc->pathmaxrxt = val.spt_pathmaxrxt;
3629 		asoc->pf_retrans = val.spt_pathpfthld;
3630 	} else {
3631 		trans = sctp_addr_id2transport(sk, &val.spt_address,
3632 					       val.spt_assoc_id);
3633 		if (!trans)
3634 			return -ENOENT;
3635 
3636 		if (val.spt_pathmaxrxt)
3637 			trans->pathmaxrxt = val.spt_pathmaxrxt;
3638 		trans->pf_retrans = val.spt_pathpfthld;
3639 	}
3640 
3641 	return 0;
3642 }
3643 
3644 static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
3645 				       char __user *optval,
3646 				       unsigned int optlen)
3647 {
3648 	int val;
3649 
3650 	if (optlen < sizeof(int))
3651 		return -EINVAL;
3652 	if (get_user(val, (int __user *) optval))
3653 		return -EFAULT;
3654 
3655 	sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
3656 
3657 	return 0;
3658 }
3659 
3660 static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
3661 				       char __user *optval,
3662 				       unsigned int optlen)
3663 {
3664 	int val;
3665 
3666 	if (optlen < sizeof(int))
3667 		return -EINVAL;
3668 	if (get_user(val, (int __user *) optval))
3669 		return -EFAULT;
3670 
3671 	sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
3672 
3673 	return 0;
3674 }
3675 
3676 /* API 6.2 setsockopt(), getsockopt()
3677  *
3678  * Applications use setsockopt() and getsockopt() to set or retrieve
3679  * socket options.  Socket options are used to change the default
3680  * behavior of sockets calls.  They are described in Section 7.
3681  *
3682  * The syntax is:
3683  *
3684  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
3685  *                    int __user *optlen);
3686  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3687  *                    int optlen);
3688  *
3689  *   sd      - the socket descript.
3690  *   level   - set to IPPROTO_SCTP for all SCTP options.
3691  *   optname - the option name.
3692  *   optval  - the buffer to store the value of the option.
3693  *   optlen  - the size of the buffer.
3694  */
3695 static int sctp_setsockopt(struct sock *sk, int level, int optname,
3696 			   char __user *optval, unsigned int optlen)
3697 {
3698 	int retval = 0;
3699 
3700 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
3701 
3702 	/* I can hardly begin to describe how wrong this is.  This is
3703 	 * so broken as to be worse than useless.  The API draft
3704 	 * REALLY is NOT helpful here...  I am not convinced that the
3705 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3706 	 * are at all well-founded.
3707 	 */
3708 	if (level != SOL_SCTP) {
3709 		struct sctp_af *af = sctp_sk(sk)->pf->af;
3710 		retval = af->setsockopt(sk, level, optname, optval, optlen);
3711 		goto out_nounlock;
3712 	}
3713 
3714 	lock_sock(sk);
3715 
3716 	switch (optname) {
3717 	case SCTP_SOCKOPT_BINDX_ADD:
3718 		/* 'optlen' is the size of the addresses buffer. */
3719 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3720 					       optlen, SCTP_BINDX_ADD_ADDR);
3721 		break;
3722 
3723 	case SCTP_SOCKOPT_BINDX_REM:
3724 		/* 'optlen' is the size of the addresses buffer. */
3725 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3726 					       optlen, SCTP_BINDX_REM_ADDR);
3727 		break;
3728 
3729 	case SCTP_SOCKOPT_CONNECTX_OLD:
3730 		/* 'optlen' is the size of the addresses buffer. */
3731 		retval = sctp_setsockopt_connectx_old(sk,
3732 					    (struct sockaddr __user *)optval,
3733 					    optlen);
3734 		break;
3735 
3736 	case SCTP_SOCKOPT_CONNECTX:
3737 		/* 'optlen' is the size of the addresses buffer. */
3738 		retval = sctp_setsockopt_connectx(sk,
3739 					    (struct sockaddr __user *)optval,
3740 					    optlen);
3741 		break;
3742 
3743 	case SCTP_DISABLE_FRAGMENTS:
3744 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3745 		break;
3746 
3747 	case SCTP_EVENTS:
3748 		retval = sctp_setsockopt_events(sk, optval, optlen);
3749 		break;
3750 
3751 	case SCTP_AUTOCLOSE:
3752 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3753 		break;
3754 
3755 	case SCTP_PEER_ADDR_PARAMS:
3756 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3757 		break;
3758 
3759 	case SCTP_DELAYED_SACK:
3760 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3761 		break;
3762 	case SCTP_PARTIAL_DELIVERY_POINT:
3763 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3764 		break;
3765 
3766 	case SCTP_INITMSG:
3767 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3768 		break;
3769 	case SCTP_DEFAULT_SEND_PARAM:
3770 		retval = sctp_setsockopt_default_send_param(sk, optval,
3771 							    optlen);
3772 		break;
3773 	case SCTP_DEFAULT_SNDINFO:
3774 		retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
3775 		break;
3776 	case SCTP_PRIMARY_ADDR:
3777 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3778 		break;
3779 	case SCTP_SET_PEER_PRIMARY_ADDR:
3780 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3781 		break;
3782 	case SCTP_NODELAY:
3783 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3784 		break;
3785 	case SCTP_RTOINFO:
3786 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3787 		break;
3788 	case SCTP_ASSOCINFO:
3789 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3790 		break;
3791 	case SCTP_I_WANT_MAPPED_V4_ADDR:
3792 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3793 		break;
3794 	case SCTP_MAXSEG:
3795 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3796 		break;
3797 	case SCTP_ADAPTATION_LAYER:
3798 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3799 		break;
3800 	case SCTP_CONTEXT:
3801 		retval = sctp_setsockopt_context(sk, optval, optlen);
3802 		break;
3803 	case SCTP_FRAGMENT_INTERLEAVE:
3804 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3805 		break;
3806 	case SCTP_MAX_BURST:
3807 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3808 		break;
3809 	case SCTP_AUTH_CHUNK:
3810 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3811 		break;
3812 	case SCTP_HMAC_IDENT:
3813 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3814 		break;
3815 	case SCTP_AUTH_KEY:
3816 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3817 		break;
3818 	case SCTP_AUTH_ACTIVE_KEY:
3819 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
3820 		break;
3821 	case SCTP_AUTH_DELETE_KEY:
3822 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
3823 		break;
3824 	case SCTP_AUTO_ASCONF:
3825 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3826 		break;
3827 	case SCTP_PEER_ADDR_THLDS:
3828 		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3829 		break;
3830 	case SCTP_RECVRCVINFO:
3831 		retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
3832 		break;
3833 	case SCTP_RECVNXTINFO:
3834 		retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
3835 		break;
3836 	default:
3837 		retval = -ENOPROTOOPT;
3838 		break;
3839 	}
3840 
3841 	release_sock(sk);
3842 
3843 out_nounlock:
3844 	return retval;
3845 }
3846 
3847 /* API 3.1.6 connect() - UDP Style Syntax
3848  *
3849  * An application may use the connect() call in the UDP model to initiate an
3850  * association without sending data.
3851  *
3852  * The syntax is:
3853  *
3854  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3855  *
3856  * sd: the socket descriptor to have a new association added to.
3857  *
3858  * nam: the address structure (either struct sockaddr_in or struct
3859  *    sockaddr_in6 defined in RFC2553 [7]).
3860  *
3861  * len: the size of the address.
3862  */
3863 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
3864 			int addr_len)
3865 {
3866 	int err = 0;
3867 	struct sctp_af *af;
3868 
3869 	lock_sock(sk);
3870 
3871 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
3872 		 addr, addr_len);
3873 
3874 	/* Validate addr_len before calling common connect/connectx routine. */
3875 	af = sctp_get_af_specific(addr->sa_family);
3876 	if (!af || addr_len < af->sockaddr_len) {
3877 		err = -EINVAL;
3878 	} else {
3879 		/* Pass correct addr len to common routine (so it knows there
3880 		 * is only one address being passed.
3881 		 */
3882 		err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3883 	}
3884 
3885 	release_sock(sk);
3886 	return err;
3887 }
3888 
3889 /* FIXME: Write comments. */
3890 static int sctp_disconnect(struct sock *sk, int flags)
3891 {
3892 	return -EOPNOTSUPP; /* STUB */
3893 }
3894 
3895 /* 4.1.4 accept() - TCP Style Syntax
3896  *
3897  * Applications use accept() call to remove an established SCTP
3898  * association from the accept queue of the endpoint.  A new socket
3899  * descriptor will be returned from accept() to represent the newly
3900  * formed association.
3901  */
3902 static struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3903 {
3904 	struct sctp_sock *sp;
3905 	struct sctp_endpoint *ep;
3906 	struct sock *newsk = NULL;
3907 	struct sctp_association *asoc;
3908 	long timeo;
3909 	int error = 0;
3910 
3911 	lock_sock(sk);
3912 
3913 	sp = sctp_sk(sk);
3914 	ep = sp->ep;
3915 
3916 	if (!sctp_style(sk, TCP)) {
3917 		error = -EOPNOTSUPP;
3918 		goto out;
3919 	}
3920 
3921 	if (!sctp_sstate(sk, LISTENING)) {
3922 		error = -EINVAL;
3923 		goto out;
3924 	}
3925 
3926 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3927 
3928 	error = sctp_wait_for_accept(sk, timeo);
3929 	if (error)
3930 		goto out;
3931 
3932 	/* We treat the list of associations on the endpoint as the accept
3933 	 * queue and pick the first association on the list.
3934 	 */
3935 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3936 
3937 	newsk = sp->pf->create_accept_sk(sk, asoc);
3938 	if (!newsk) {
3939 		error = -ENOMEM;
3940 		goto out;
3941 	}
3942 
3943 	/* Populate the fields of the newsk from the oldsk and migrate the
3944 	 * asoc to the newsk.
3945 	 */
3946 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3947 
3948 out:
3949 	release_sock(sk);
3950 	*err = error;
3951 	return newsk;
3952 }
3953 
3954 /* The SCTP ioctl handler. */
3955 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3956 {
3957 	int rc = -ENOTCONN;
3958 
3959 	lock_sock(sk);
3960 
3961 	/*
3962 	 * SEQPACKET-style sockets in LISTENING state are valid, for
3963 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
3964 	 */
3965 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3966 		goto out;
3967 
3968 	switch (cmd) {
3969 	case SIOCINQ: {
3970 		struct sk_buff *skb;
3971 		unsigned int amount = 0;
3972 
3973 		skb = skb_peek(&sk->sk_receive_queue);
3974 		if (skb != NULL) {
3975 			/*
3976 			 * We will only return the amount of this packet since
3977 			 * that is all that will be read.
3978 			 */
3979 			amount = skb->len;
3980 		}
3981 		rc = put_user(amount, (int __user *)arg);
3982 		break;
3983 	}
3984 	default:
3985 		rc = -ENOIOCTLCMD;
3986 		break;
3987 	}
3988 out:
3989 	release_sock(sk);
3990 	return rc;
3991 }
3992 
3993 /* This is the function which gets called during socket creation to
3994  * initialized the SCTP-specific portion of the sock.
3995  * The sock structure should already be zero-filled memory.
3996  */
3997 static int sctp_init_sock(struct sock *sk)
3998 {
3999 	struct net *net = sock_net(sk);
4000 	struct sctp_sock *sp;
4001 
4002 	pr_debug("%s: sk:%p\n", __func__, sk);
4003 
4004 	sp = sctp_sk(sk);
4005 
4006 	/* Initialize the SCTP per socket area.  */
4007 	switch (sk->sk_type) {
4008 	case SOCK_SEQPACKET:
4009 		sp->type = SCTP_SOCKET_UDP;
4010 		break;
4011 	case SOCK_STREAM:
4012 		sp->type = SCTP_SOCKET_TCP;
4013 		break;
4014 	default:
4015 		return -ESOCKTNOSUPPORT;
4016 	}
4017 
4018 	/* Initialize default send parameters. These parameters can be
4019 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4020 	 */
4021 	sp->default_stream = 0;
4022 	sp->default_ppid = 0;
4023 	sp->default_flags = 0;
4024 	sp->default_context = 0;
4025 	sp->default_timetolive = 0;
4026 
4027 	sp->default_rcv_context = 0;
4028 	sp->max_burst = net->sctp.max_burst;
4029 
4030 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4031 
4032 	/* Initialize default setup parameters. These parameters
4033 	 * can be modified with the SCTP_INITMSG socket option or
4034 	 * overridden by the SCTP_INIT CMSG.
4035 	 */
4036 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
4037 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
4038 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
4039 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4040 
4041 	/* Initialize default RTO related parameters.  These parameters can
4042 	 * be modified for with the SCTP_RTOINFO socket option.
4043 	 */
4044 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4045 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
4046 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
4047 
4048 	/* Initialize default association related parameters. These parameters
4049 	 * can be modified with the SCTP_ASSOCINFO socket option.
4050 	 */
4051 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4052 	sp->assocparams.sasoc_number_peer_destinations = 0;
4053 	sp->assocparams.sasoc_peer_rwnd = 0;
4054 	sp->assocparams.sasoc_local_rwnd = 0;
4055 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4056 
4057 	/* Initialize default event subscriptions. By default, all the
4058 	 * options are off.
4059 	 */
4060 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
4061 
4062 	/* Default Peer Address Parameters.  These defaults can
4063 	 * be modified via SCTP_PEER_ADDR_PARAMS
4064 	 */
4065 	sp->hbinterval  = net->sctp.hb_interval;
4066 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
4067 	sp->pathmtu     = 0; /* allow default discovery */
4068 	sp->sackdelay   = net->sctp.sack_timeout;
4069 	sp->sackfreq	= 2;
4070 	sp->param_flags = SPP_HB_ENABLE |
4071 			  SPP_PMTUD_ENABLE |
4072 			  SPP_SACKDELAY_ENABLE;
4073 
4074 	/* If enabled no SCTP message fragmentation will be performed.
4075 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4076 	 */
4077 	sp->disable_fragments = 0;
4078 
4079 	/* Enable Nagle algorithm by default.  */
4080 	sp->nodelay           = 0;
4081 
4082 	sp->recvrcvinfo = 0;
4083 	sp->recvnxtinfo = 0;
4084 
4085 	/* Enable by default. */
4086 	sp->v4mapped          = 1;
4087 
4088 	/* Auto-close idle associations after the configured
4089 	 * number of seconds.  A value of 0 disables this
4090 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
4091 	 * for UDP-style sockets only.
4092 	 */
4093 	sp->autoclose         = 0;
4094 
4095 	/* User specified fragmentation limit. */
4096 	sp->user_frag         = 0;
4097 
4098 	sp->adaptation_ind = 0;
4099 
4100 	sp->pf = sctp_get_pf_specific(sk->sk_family);
4101 
4102 	/* Control variables for partial data delivery. */
4103 	atomic_set(&sp->pd_mode, 0);
4104 	skb_queue_head_init(&sp->pd_lobby);
4105 	sp->frag_interleave = 0;
4106 
4107 	/* Create a per socket endpoint structure.  Even if we
4108 	 * change the data structure relationships, this may still
4109 	 * be useful for storing pre-connect address information.
4110 	 */
4111 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4112 	if (!sp->ep)
4113 		return -ENOMEM;
4114 
4115 	sp->hmac = NULL;
4116 
4117 	sk->sk_destruct = sctp_destruct_sock;
4118 
4119 	SCTP_DBG_OBJCNT_INC(sock);
4120 
4121 	local_bh_disable();
4122 	percpu_counter_inc(&sctp_sockets_allocated);
4123 	sock_prot_inuse_add(net, sk->sk_prot, 1);
4124 	if (net->sctp.default_auto_asconf) {
4125 		list_add_tail(&sp->auto_asconf_list,
4126 		    &net->sctp.auto_asconf_splist);
4127 		sp->do_auto_asconf = 1;
4128 	} else
4129 		sp->do_auto_asconf = 0;
4130 	local_bh_enable();
4131 
4132 	return 0;
4133 }
4134 
4135 /* Cleanup any SCTP per socket resources.  */
4136 static void sctp_destroy_sock(struct sock *sk)
4137 {
4138 	struct sctp_sock *sp;
4139 
4140 	pr_debug("%s: sk:%p\n", __func__, sk);
4141 
4142 	/* Release our hold on the endpoint. */
4143 	sp = sctp_sk(sk);
4144 	/* This could happen during socket init, thus we bail out
4145 	 * early, since the rest of the below is not setup either.
4146 	 */
4147 	if (sp->ep == NULL)
4148 		return;
4149 
4150 	if (sp->do_auto_asconf) {
4151 		sp->do_auto_asconf = 0;
4152 		list_del(&sp->auto_asconf_list);
4153 	}
4154 	sctp_endpoint_free(sp->ep);
4155 	local_bh_disable();
4156 	percpu_counter_dec(&sctp_sockets_allocated);
4157 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4158 	local_bh_enable();
4159 }
4160 
4161 /* Triggered when there are no references on the socket anymore */
4162 static void sctp_destruct_sock(struct sock *sk)
4163 {
4164 	struct sctp_sock *sp = sctp_sk(sk);
4165 
4166 	/* Free up the HMAC transform. */
4167 	crypto_free_hash(sp->hmac);
4168 
4169 	inet_sock_destruct(sk);
4170 }
4171 
4172 /* API 4.1.7 shutdown() - TCP Style Syntax
4173  *     int shutdown(int socket, int how);
4174  *
4175  *     sd      - the socket descriptor of the association to be closed.
4176  *     how     - Specifies the type of shutdown.  The  values  are
4177  *               as follows:
4178  *               SHUT_RD
4179  *                     Disables further receive operations. No SCTP
4180  *                     protocol action is taken.
4181  *               SHUT_WR
4182  *                     Disables further send operations, and initiates
4183  *                     the SCTP shutdown sequence.
4184  *               SHUT_RDWR
4185  *                     Disables further send  and  receive  operations
4186  *                     and initiates the SCTP shutdown sequence.
4187  */
4188 static void sctp_shutdown(struct sock *sk, int how)
4189 {
4190 	struct net *net = sock_net(sk);
4191 	struct sctp_endpoint *ep;
4192 	struct sctp_association *asoc;
4193 
4194 	if (!sctp_style(sk, TCP))
4195 		return;
4196 
4197 	if (how & SEND_SHUTDOWN) {
4198 		ep = sctp_sk(sk)->ep;
4199 		if (!list_empty(&ep->asocs)) {
4200 			asoc = list_entry(ep->asocs.next,
4201 					  struct sctp_association, asocs);
4202 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
4203 		}
4204 	}
4205 }
4206 
4207 /* 7.2.1 Association Status (SCTP_STATUS)
4208 
4209  * Applications can retrieve current status information about an
4210  * association, including association state, peer receiver window size,
4211  * number of unacked data chunks, and number of data chunks pending
4212  * receipt.  This information is read-only.
4213  */
4214 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4215 				       char __user *optval,
4216 				       int __user *optlen)
4217 {
4218 	struct sctp_status status;
4219 	struct sctp_association *asoc = NULL;
4220 	struct sctp_transport *transport;
4221 	sctp_assoc_t associd;
4222 	int retval = 0;
4223 
4224 	if (len < sizeof(status)) {
4225 		retval = -EINVAL;
4226 		goto out;
4227 	}
4228 
4229 	len = sizeof(status);
4230 	if (copy_from_user(&status, optval, len)) {
4231 		retval = -EFAULT;
4232 		goto out;
4233 	}
4234 
4235 	associd = status.sstat_assoc_id;
4236 	asoc = sctp_id2assoc(sk, associd);
4237 	if (!asoc) {
4238 		retval = -EINVAL;
4239 		goto out;
4240 	}
4241 
4242 	transport = asoc->peer.primary_path;
4243 
4244 	status.sstat_assoc_id = sctp_assoc2id(asoc);
4245 	status.sstat_state = sctp_assoc_to_state(asoc);
4246 	status.sstat_rwnd =  asoc->peer.rwnd;
4247 	status.sstat_unackdata = asoc->unack_data;
4248 
4249 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4250 	status.sstat_instrms = asoc->c.sinit_max_instreams;
4251 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4252 	status.sstat_fragmentation_point = asoc->frag_point;
4253 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4254 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4255 			transport->af_specific->sockaddr_len);
4256 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
4257 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
4258 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
4259 	status.sstat_primary.spinfo_state = transport->state;
4260 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
4261 	status.sstat_primary.spinfo_srtt = transport->srtt;
4262 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4263 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
4264 
4265 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4266 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4267 
4268 	if (put_user(len, optlen)) {
4269 		retval = -EFAULT;
4270 		goto out;
4271 	}
4272 
4273 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4274 		 __func__, len, status.sstat_state, status.sstat_rwnd,
4275 		 status.sstat_assoc_id);
4276 
4277 	if (copy_to_user(optval, &status, len)) {
4278 		retval = -EFAULT;
4279 		goto out;
4280 	}
4281 
4282 out:
4283 	return retval;
4284 }
4285 
4286 
4287 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4288  *
4289  * Applications can retrieve information about a specific peer address
4290  * of an association, including its reachability state, congestion
4291  * window, and retransmission timer values.  This information is
4292  * read-only.
4293  */
4294 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4295 					  char __user *optval,
4296 					  int __user *optlen)
4297 {
4298 	struct sctp_paddrinfo pinfo;
4299 	struct sctp_transport *transport;
4300 	int retval = 0;
4301 
4302 	if (len < sizeof(pinfo)) {
4303 		retval = -EINVAL;
4304 		goto out;
4305 	}
4306 
4307 	len = sizeof(pinfo);
4308 	if (copy_from_user(&pinfo, optval, len)) {
4309 		retval = -EFAULT;
4310 		goto out;
4311 	}
4312 
4313 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4314 					   pinfo.spinfo_assoc_id);
4315 	if (!transport)
4316 		return -EINVAL;
4317 
4318 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4319 	pinfo.spinfo_state = transport->state;
4320 	pinfo.spinfo_cwnd = transport->cwnd;
4321 	pinfo.spinfo_srtt = transport->srtt;
4322 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4323 	pinfo.spinfo_mtu = transport->pathmtu;
4324 
4325 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
4326 		pinfo.spinfo_state = SCTP_ACTIVE;
4327 
4328 	if (put_user(len, optlen)) {
4329 		retval = -EFAULT;
4330 		goto out;
4331 	}
4332 
4333 	if (copy_to_user(optval, &pinfo, len)) {
4334 		retval = -EFAULT;
4335 		goto out;
4336 	}
4337 
4338 out:
4339 	return retval;
4340 }
4341 
4342 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4343  *
4344  * This option is a on/off flag.  If enabled no SCTP message
4345  * fragmentation will be performed.  Instead if a message being sent
4346  * exceeds the current PMTU size, the message will NOT be sent and
4347  * instead a error will be indicated to the user.
4348  */
4349 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4350 					char __user *optval, int __user *optlen)
4351 {
4352 	int val;
4353 
4354 	if (len < sizeof(int))
4355 		return -EINVAL;
4356 
4357 	len = sizeof(int);
4358 	val = (sctp_sk(sk)->disable_fragments == 1);
4359 	if (put_user(len, optlen))
4360 		return -EFAULT;
4361 	if (copy_to_user(optval, &val, len))
4362 		return -EFAULT;
4363 	return 0;
4364 }
4365 
4366 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4367  *
4368  * This socket option is used to specify various notifications and
4369  * ancillary data the user wishes to receive.
4370  */
4371 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4372 				  int __user *optlen)
4373 {
4374 	if (len <= 0)
4375 		return -EINVAL;
4376 	if (len > sizeof(struct sctp_event_subscribe))
4377 		len = sizeof(struct sctp_event_subscribe);
4378 	if (put_user(len, optlen))
4379 		return -EFAULT;
4380 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4381 		return -EFAULT;
4382 	return 0;
4383 }
4384 
4385 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4386  *
4387  * This socket option is applicable to the UDP-style socket only.  When
4388  * set it will cause associations that are idle for more than the
4389  * specified number of seconds to automatically close.  An association
4390  * being idle is defined an association that has NOT sent or received
4391  * user data.  The special value of '0' indicates that no automatic
4392  * close of any associations should be performed.  The option expects an
4393  * integer defining the number of seconds of idle time before an
4394  * association is closed.
4395  */
4396 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4397 {
4398 	/* Applicable to UDP-style socket only */
4399 	if (sctp_style(sk, TCP))
4400 		return -EOPNOTSUPP;
4401 	if (len < sizeof(int))
4402 		return -EINVAL;
4403 	len = sizeof(int);
4404 	if (put_user(len, optlen))
4405 		return -EFAULT;
4406 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4407 		return -EFAULT;
4408 	return 0;
4409 }
4410 
4411 /* Helper routine to branch off an association to a new socket.  */
4412 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4413 {
4414 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
4415 	struct sctp_sock *sp = sctp_sk(sk);
4416 	struct socket *sock;
4417 	int err = 0;
4418 
4419 	if (!asoc)
4420 		return -EINVAL;
4421 
4422 	/* An association cannot be branched off from an already peeled-off
4423 	 * socket, nor is this supported for tcp style sockets.
4424 	 */
4425 	if (!sctp_style(sk, UDP))
4426 		return -EINVAL;
4427 
4428 	/* Create a new socket.  */
4429 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4430 	if (err < 0)
4431 		return err;
4432 
4433 	sctp_copy_sock(sock->sk, sk, asoc);
4434 
4435 	/* Make peeled-off sockets more like 1-1 accepted sockets.
4436 	 * Set the daddr and initialize id to something more random
4437 	 */
4438 	sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
4439 
4440 	/* Populate the fields of the newsk from the oldsk and migrate the
4441 	 * asoc to the newsk.
4442 	 */
4443 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4444 
4445 	*sockp = sock;
4446 
4447 	return err;
4448 }
4449 EXPORT_SYMBOL(sctp_do_peeloff);
4450 
4451 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4452 {
4453 	sctp_peeloff_arg_t peeloff;
4454 	struct socket *newsock;
4455 	struct file *newfile;
4456 	int retval = 0;
4457 
4458 	if (len < sizeof(sctp_peeloff_arg_t))
4459 		return -EINVAL;
4460 	len = sizeof(sctp_peeloff_arg_t);
4461 	if (copy_from_user(&peeloff, optval, len))
4462 		return -EFAULT;
4463 
4464 	retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4465 	if (retval < 0)
4466 		goto out;
4467 
4468 	/* Map the socket to an unused fd that can be returned to the user.  */
4469 	retval = get_unused_fd_flags(0);
4470 	if (retval < 0) {
4471 		sock_release(newsock);
4472 		goto out;
4473 	}
4474 
4475 	newfile = sock_alloc_file(newsock, 0, NULL);
4476 	if (unlikely(IS_ERR(newfile))) {
4477 		put_unused_fd(retval);
4478 		sock_release(newsock);
4479 		return PTR_ERR(newfile);
4480 	}
4481 
4482 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
4483 		 retval);
4484 
4485 	/* Return the fd mapped to the new socket.  */
4486 	if (put_user(len, optlen)) {
4487 		fput(newfile);
4488 		put_unused_fd(retval);
4489 		return -EFAULT;
4490 	}
4491 	peeloff.sd = retval;
4492 	if (copy_to_user(optval, &peeloff, len)) {
4493 		fput(newfile);
4494 		put_unused_fd(retval);
4495 		return -EFAULT;
4496 	}
4497 	fd_install(retval, newfile);
4498 out:
4499 	return retval;
4500 }
4501 
4502 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4503  *
4504  * Applications can enable or disable heartbeats for any peer address of
4505  * an association, modify an address's heartbeat interval, force a
4506  * heartbeat to be sent immediately, and adjust the address's maximum
4507  * number of retransmissions sent before an address is considered
4508  * unreachable.  The following structure is used to access and modify an
4509  * address's parameters:
4510  *
4511  *  struct sctp_paddrparams {
4512  *     sctp_assoc_t            spp_assoc_id;
4513  *     struct sockaddr_storage spp_address;
4514  *     uint32_t                spp_hbinterval;
4515  *     uint16_t                spp_pathmaxrxt;
4516  *     uint32_t                spp_pathmtu;
4517  *     uint32_t                spp_sackdelay;
4518  *     uint32_t                spp_flags;
4519  * };
4520  *
4521  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
4522  *                     application, and identifies the association for
4523  *                     this query.
4524  *   spp_address     - This specifies which address is of interest.
4525  *   spp_hbinterval  - This contains the value of the heartbeat interval,
4526  *                     in milliseconds.  If a  value of zero
4527  *                     is present in this field then no changes are to
4528  *                     be made to this parameter.
4529  *   spp_pathmaxrxt  - This contains the maximum number of
4530  *                     retransmissions before this address shall be
4531  *                     considered unreachable. If a  value of zero
4532  *                     is present in this field then no changes are to
4533  *                     be made to this parameter.
4534  *   spp_pathmtu     - When Path MTU discovery is disabled the value
4535  *                     specified here will be the "fixed" path mtu.
4536  *                     Note that if the spp_address field is empty
4537  *                     then all associations on this address will
4538  *                     have this fixed path mtu set upon them.
4539  *
4540  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
4541  *                     the number of milliseconds that sacks will be delayed
4542  *                     for. This value will apply to all addresses of an
4543  *                     association if the spp_address field is empty. Note
4544  *                     also, that if delayed sack is enabled and this
4545  *                     value is set to 0, no change is made to the last
4546  *                     recorded delayed sack timer value.
4547  *
4548  *   spp_flags       - These flags are used to control various features
4549  *                     on an association. The flag field may contain
4550  *                     zero or more of the following options.
4551  *
4552  *                     SPP_HB_ENABLE  - Enable heartbeats on the
4553  *                     specified address. Note that if the address
4554  *                     field is empty all addresses for the association
4555  *                     have heartbeats enabled upon them.
4556  *
4557  *                     SPP_HB_DISABLE - Disable heartbeats on the
4558  *                     speicifed address. Note that if the address
4559  *                     field is empty all addresses for the association
4560  *                     will have their heartbeats disabled. Note also
4561  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
4562  *                     mutually exclusive, only one of these two should
4563  *                     be specified. Enabling both fields will have
4564  *                     undetermined results.
4565  *
4566  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
4567  *                     to be made immediately.
4568  *
4569  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
4570  *                     discovery upon the specified address. Note that
4571  *                     if the address feild is empty then all addresses
4572  *                     on the association are effected.
4573  *
4574  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
4575  *                     discovery upon the specified address. Note that
4576  *                     if the address feild is empty then all addresses
4577  *                     on the association are effected. Not also that
4578  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4579  *                     exclusive. Enabling both will have undetermined
4580  *                     results.
4581  *
4582  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
4583  *                     on delayed sack. The time specified in spp_sackdelay
4584  *                     is used to specify the sack delay for this address. Note
4585  *                     that if spp_address is empty then all addresses will
4586  *                     enable delayed sack and take on the sack delay
4587  *                     value specified in spp_sackdelay.
4588  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
4589  *                     off delayed sack. If the spp_address field is blank then
4590  *                     delayed sack is disabled for the entire association. Note
4591  *                     also that this field is mutually exclusive to
4592  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
4593  *                     results.
4594  */
4595 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4596 					    char __user *optval, int __user *optlen)
4597 {
4598 	struct sctp_paddrparams  params;
4599 	struct sctp_transport   *trans = NULL;
4600 	struct sctp_association *asoc = NULL;
4601 	struct sctp_sock        *sp = sctp_sk(sk);
4602 
4603 	if (len < sizeof(struct sctp_paddrparams))
4604 		return -EINVAL;
4605 	len = sizeof(struct sctp_paddrparams);
4606 	if (copy_from_user(&params, optval, len))
4607 		return -EFAULT;
4608 
4609 	/* If an address other than INADDR_ANY is specified, and
4610 	 * no transport is found, then the request is invalid.
4611 	 */
4612 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
4613 		trans = sctp_addr_id2transport(sk, &params.spp_address,
4614 					       params.spp_assoc_id);
4615 		if (!trans) {
4616 			pr_debug("%s: failed no transport\n", __func__);
4617 			return -EINVAL;
4618 		}
4619 	}
4620 
4621 	/* Get association, if assoc_id != 0 and the socket is a one
4622 	 * to many style socket, and an association was not found, then
4623 	 * the id was invalid.
4624 	 */
4625 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4626 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4627 		pr_debug("%s: failed no association\n", __func__);
4628 		return -EINVAL;
4629 	}
4630 
4631 	if (trans) {
4632 		/* Fetch transport values. */
4633 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4634 		params.spp_pathmtu    = trans->pathmtu;
4635 		params.spp_pathmaxrxt = trans->pathmaxrxt;
4636 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
4637 
4638 		/*draft-11 doesn't say what to return in spp_flags*/
4639 		params.spp_flags      = trans->param_flags;
4640 	} else if (asoc) {
4641 		/* Fetch association values. */
4642 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4643 		params.spp_pathmtu    = asoc->pathmtu;
4644 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
4645 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
4646 
4647 		/*draft-11 doesn't say what to return in spp_flags*/
4648 		params.spp_flags      = asoc->param_flags;
4649 	} else {
4650 		/* Fetch socket values. */
4651 		params.spp_hbinterval = sp->hbinterval;
4652 		params.spp_pathmtu    = sp->pathmtu;
4653 		params.spp_sackdelay  = sp->sackdelay;
4654 		params.spp_pathmaxrxt = sp->pathmaxrxt;
4655 
4656 		/*draft-11 doesn't say what to return in spp_flags*/
4657 		params.spp_flags      = sp->param_flags;
4658 	}
4659 
4660 	if (copy_to_user(optval, &params, len))
4661 		return -EFAULT;
4662 
4663 	if (put_user(len, optlen))
4664 		return -EFAULT;
4665 
4666 	return 0;
4667 }
4668 
4669 /*
4670  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
4671  *
4672  * This option will effect the way delayed acks are performed.  This
4673  * option allows you to get or set the delayed ack time, in
4674  * milliseconds.  It also allows changing the delayed ack frequency.
4675  * Changing the frequency to 1 disables the delayed sack algorithm.  If
4676  * the assoc_id is 0, then this sets or gets the endpoints default
4677  * values.  If the assoc_id field is non-zero, then the set or get
4678  * effects the specified association for the one to many model (the
4679  * assoc_id field is ignored by the one to one model).  Note that if
4680  * sack_delay or sack_freq are 0 when setting this option, then the
4681  * current values will remain unchanged.
4682  *
4683  * struct sctp_sack_info {
4684  *     sctp_assoc_t            sack_assoc_id;
4685  *     uint32_t                sack_delay;
4686  *     uint32_t                sack_freq;
4687  * };
4688  *
4689  * sack_assoc_id -  This parameter, indicates which association the user
4690  *    is performing an action upon.  Note that if this field's value is
4691  *    zero then the endpoints default value is changed (effecting future
4692  *    associations only).
4693  *
4694  * sack_delay -  This parameter contains the number of milliseconds that
4695  *    the user is requesting the delayed ACK timer be set to.  Note that
4696  *    this value is defined in the standard to be between 200 and 500
4697  *    milliseconds.
4698  *
4699  * sack_freq -  This parameter contains the number of packets that must
4700  *    be received before a sack is sent without waiting for the delay
4701  *    timer to expire.  The default value for this is 2, setting this
4702  *    value to 1 will disable the delayed sack algorithm.
4703  */
4704 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4705 					    char __user *optval,
4706 					    int __user *optlen)
4707 {
4708 	struct sctp_sack_info    params;
4709 	struct sctp_association *asoc = NULL;
4710 	struct sctp_sock        *sp = sctp_sk(sk);
4711 
4712 	if (len >= sizeof(struct sctp_sack_info)) {
4713 		len = sizeof(struct sctp_sack_info);
4714 
4715 		if (copy_from_user(&params, optval, len))
4716 			return -EFAULT;
4717 	} else if (len == sizeof(struct sctp_assoc_value)) {
4718 		pr_warn_ratelimited(DEPRECATED
4719 				    "%s (pid %d) "
4720 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
4721 				    "Use struct sctp_sack_info instead\n",
4722 				    current->comm, task_pid_nr(current));
4723 		if (copy_from_user(&params, optval, len))
4724 			return -EFAULT;
4725 	} else
4726 		return -EINVAL;
4727 
4728 	/* Get association, if sack_assoc_id != 0 and the socket is a one
4729 	 * to many style socket, and an association was not found, then
4730 	 * the id was invalid.
4731 	 */
4732 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4733 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4734 		return -EINVAL;
4735 
4736 	if (asoc) {
4737 		/* Fetch association values. */
4738 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4739 			params.sack_delay = jiffies_to_msecs(
4740 				asoc->sackdelay);
4741 			params.sack_freq = asoc->sackfreq;
4742 
4743 		} else {
4744 			params.sack_delay = 0;
4745 			params.sack_freq = 1;
4746 		}
4747 	} else {
4748 		/* Fetch socket values. */
4749 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4750 			params.sack_delay  = sp->sackdelay;
4751 			params.sack_freq = sp->sackfreq;
4752 		} else {
4753 			params.sack_delay  = 0;
4754 			params.sack_freq = 1;
4755 		}
4756 	}
4757 
4758 	if (copy_to_user(optval, &params, len))
4759 		return -EFAULT;
4760 
4761 	if (put_user(len, optlen))
4762 		return -EFAULT;
4763 
4764 	return 0;
4765 }
4766 
4767 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4768  *
4769  * Applications can specify protocol parameters for the default association
4770  * initialization.  The option name argument to setsockopt() and getsockopt()
4771  * is SCTP_INITMSG.
4772  *
4773  * Setting initialization parameters is effective only on an unconnected
4774  * socket (for UDP-style sockets only future associations are effected
4775  * by the change).  With TCP-style sockets, this option is inherited by
4776  * sockets derived from a listener socket.
4777  */
4778 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4779 {
4780 	if (len < sizeof(struct sctp_initmsg))
4781 		return -EINVAL;
4782 	len = sizeof(struct sctp_initmsg);
4783 	if (put_user(len, optlen))
4784 		return -EFAULT;
4785 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4786 		return -EFAULT;
4787 	return 0;
4788 }
4789 
4790 
4791 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4792 				      char __user *optval, int __user *optlen)
4793 {
4794 	struct sctp_association *asoc;
4795 	int cnt = 0;
4796 	struct sctp_getaddrs getaddrs;
4797 	struct sctp_transport *from;
4798 	void __user *to;
4799 	union sctp_addr temp;
4800 	struct sctp_sock *sp = sctp_sk(sk);
4801 	int addrlen;
4802 	size_t space_left;
4803 	int bytes_copied;
4804 
4805 	if (len < sizeof(struct sctp_getaddrs))
4806 		return -EINVAL;
4807 
4808 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4809 		return -EFAULT;
4810 
4811 	/* For UDP-style sockets, id specifies the association to query.  */
4812 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4813 	if (!asoc)
4814 		return -EINVAL;
4815 
4816 	to = optval + offsetof(struct sctp_getaddrs, addrs);
4817 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
4818 
4819 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4820 				transports) {
4821 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4822 		addrlen = sctp_get_pf_specific(sk->sk_family)
4823 			      ->addr_to_user(sp, &temp);
4824 		if (space_left < addrlen)
4825 			return -ENOMEM;
4826 		if (copy_to_user(to, &temp, addrlen))
4827 			return -EFAULT;
4828 		to += addrlen;
4829 		cnt++;
4830 		space_left -= addrlen;
4831 	}
4832 
4833 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4834 		return -EFAULT;
4835 	bytes_copied = ((char __user *)to) - optval;
4836 	if (put_user(bytes_copied, optlen))
4837 		return -EFAULT;
4838 
4839 	return 0;
4840 }
4841 
4842 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4843 			    size_t space_left, int *bytes_copied)
4844 {
4845 	struct sctp_sockaddr_entry *addr;
4846 	union sctp_addr temp;
4847 	int cnt = 0;
4848 	int addrlen;
4849 	struct net *net = sock_net(sk);
4850 
4851 	rcu_read_lock();
4852 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
4853 		if (!addr->valid)
4854 			continue;
4855 
4856 		if ((PF_INET == sk->sk_family) &&
4857 		    (AF_INET6 == addr->a.sa.sa_family))
4858 			continue;
4859 		if ((PF_INET6 == sk->sk_family) &&
4860 		    inet_v6_ipv6only(sk) &&
4861 		    (AF_INET == addr->a.sa.sa_family))
4862 			continue;
4863 		memcpy(&temp, &addr->a, sizeof(temp));
4864 		if (!temp.v4.sin_port)
4865 			temp.v4.sin_port = htons(port);
4866 
4867 		addrlen = sctp_get_pf_specific(sk->sk_family)
4868 			      ->addr_to_user(sctp_sk(sk), &temp);
4869 
4870 		if (space_left < addrlen) {
4871 			cnt =  -ENOMEM;
4872 			break;
4873 		}
4874 		memcpy(to, &temp, addrlen);
4875 
4876 		to += addrlen;
4877 		cnt++;
4878 		space_left -= addrlen;
4879 		*bytes_copied += addrlen;
4880 	}
4881 	rcu_read_unlock();
4882 
4883 	return cnt;
4884 }
4885 
4886 
4887 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4888 				       char __user *optval, int __user *optlen)
4889 {
4890 	struct sctp_bind_addr *bp;
4891 	struct sctp_association *asoc;
4892 	int cnt = 0;
4893 	struct sctp_getaddrs getaddrs;
4894 	struct sctp_sockaddr_entry *addr;
4895 	void __user *to;
4896 	union sctp_addr temp;
4897 	struct sctp_sock *sp = sctp_sk(sk);
4898 	int addrlen;
4899 	int err = 0;
4900 	size_t space_left;
4901 	int bytes_copied = 0;
4902 	void *addrs;
4903 	void *buf;
4904 
4905 	if (len < sizeof(struct sctp_getaddrs))
4906 		return -EINVAL;
4907 
4908 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4909 		return -EFAULT;
4910 
4911 	/*
4912 	 *  For UDP-style sockets, id specifies the association to query.
4913 	 *  If the id field is set to the value '0' then the locally bound
4914 	 *  addresses are returned without regard to any particular
4915 	 *  association.
4916 	 */
4917 	if (0 == getaddrs.assoc_id) {
4918 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4919 	} else {
4920 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4921 		if (!asoc)
4922 			return -EINVAL;
4923 		bp = &asoc->base.bind_addr;
4924 	}
4925 
4926 	to = optval + offsetof(struct sctp_getaddrs, addrs);
4927 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
4928 
4929 	addrs = kmalloc(space_left, GFP_KERNEL);
4930 	if (!addrs)
4931 		return -ENOMEM;
4932 
4933 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4934 	 * addresses from the global local address list.
4935 	 */
4936 	if (sctp_list_single_entry(&bp->address_list)) {
4937 		addr = list_entry(bp->address_list.next,
4938 				  struct sctp_sockaddr_entry, list);
4939 		if (sctp_is_any(sk, &addr->a)) {
4940 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4941 						space_left, &bytes_copied);
4942 			if (cnt < 0) {
4943 				err = cnt;
4944 				goto out;
4945 			}
4946 			goto copy_getaddrs;
4947 		}
4948 	}
4949 
4950 	buf = addrs;
4951 	/* Protection on the bound address list is not needed since
4952 	 * in the socket option context we hold a socket lock and
4953 	 * thus the bound address list can't change.
4954 	 */
4955 	list_for_each_entry(addr, &bp->address_list, list) {
4956 		memcpy(&temp, &addr->a, sizeof(temp));
4957 		addrlen = sctp_get_pf_specific(sk->sk_family)
4958 			      ->addr_to_user(sp, &temp);
4959 		if (space_left < addrlen) {
4960 			err =  -ENOMEM; /*fixme: right error?*/
4961 			goto out;
4962 		}
4963 		memcpy(buf, &temp, addrlen);
4964 		buf += addrlen;
4965 		bytes_copied += addrlen;
4966 		cnt++;
4967 		space_left -= addrlen;
4968 	}
4969 
4970 copy_getaddrs:
4971 	if (copy_to_user(to, addrs, bytes_copied)) {
4972 		err = -EFAULT;
4973 		goto out;
4974 	}
4975 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4976 		err = -EFAULT;
4977 		goto out;
4978 	}
4979 	if (put_user(bytes_copied, optlen))
4980 		err = -EFAULT;
4981 out:
4982 	kfree(addrs);
4983 	return err;
4984 }
4985 
4986 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4987  *
4988  * Requests that the local SCTP stack use the enclosed peer address as
4989  * the association primary.  The enclosed address must be one of the
4990  * association peer's addresses.
4991  */
4992 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4993 					char __user *optval, int __user *optlen)
4994 {
4995 	struct sctp_prim prim;
4996 	struct sctp_association *asoc;
4997 	struct sctp_sock *sp = sctp_sk(sk);
4998 
4999 	if (len < sizeof(struct sctp_prim))
5000 		return -EINVAL;
5001 
5002 	len = sizeof(struct sctp_prim);
5003 
5004 	if (copy_from_user(&prim, optval, len))
5005 		return -EFAULT;
5006 
5007 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
5008 	if (!asoc)
5009 		return -EINVAL;
5010 
5011 	if (!asoc->peer.primary_path)
5012 		return -ENOTCONN;
5013 
5014 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
5015 		asoc->peer.primary_path->af_specific->sockaddr_len);
5016 
5017 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
5018 			(union sctp_addr *)&prim.ssp_addr);
5019 
5020 	if (put_user(len, optlen))
5021 		return -EFAULT;
5022 	if (copy_to_user(optval, &prim, len))
5023 		return -EFAULT;
5024 
5025 	return 0;
5026 }
5027 
5028 /*
5029  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
5030  *
5031  * Requests that the local endpoint set the specified Adaptation Layer
5032  * Indication parameter for all future INIT and INIT-ACK exchanges.
5033  */
5034 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
5035 				  char __user *optval, int __user *optlen)
5036 {
5037 	struct sctp_setadaptation adaptation;
5038 
5039 	if (len < sizeof(struct sctp_setadaptation))
5040 		return -EINVAL;
5041 
5042 	len = sizeof(struct sctp_setadaptation);
5043 
5044 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
5045 
5046 	if (put_user(len, optlen))
5047 		return -EFAULT;
5048 	if (copy_to_user(optval, &adaptation, len))
5049 		return -EFAULT;
5050 
5051 	return 0;
5052 }
5053 
5054 /*
5055  *
5056  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
5057  *
5058  *   Applications that wish to use the sendto() system call may wish to
5059  *   specify a default set of parameters that would normally be supplied
5060  *   through the inclusion of ancillary data.  This socket option allows
5061  *   such an application to set the default sctp_sndrcvinfo structure.
5062 
5063 
5064  *   The application that wishes to use this socket option simply passes
5065  *   in to this call the sctp_sndrcvinfo structure defined in Section
5066  *   5.2.2) The input parameters accepted by this call include
5067  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
5068  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
5069  *   to this call if the caller is using the UDP model.
5070  *
5071  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
5072  */
5073 static int sctp_getsockopt_default_send_param(struct sock *sk,
5074 					int len, char __user *optval,
5075 					int __user *optlen)
5076 {
5077 	struct sctp_sock *sp = sctp_sk(sk);
5078 	struct sctp_association *asoc;
5079 	struct sctp_sndrcvinfo info;
5080 
5081 	if (len < sizeof(info))
5082 		return -EINVAL;
5083 
5084 	len = sizeof(info);
5085 
5086 	if (copy_from_user(&info, optval, len))
5087 		return -EFAULT;
5088 
5089 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
5090 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
5091 		return -EINVAL;
5092 	if (asoc) {
5093 		info.sinfo_stream = asoc->default_stream;
5094 		info.sinfo_flags = asoc->default_flags;
5095 		info.sinfo_ppid = asoc->default_ppid;
5096 		info.sinfo_context = asoc->default_context;
5097 		info.sinfo_timetolive = asoc->default_timetolive;
5098 	} else {
5099 		info.sinfo_stream = sp->default_stream;
5100 		info.sinfo_flags = sp->default_flags;
5101 		info.sinfo_ppid = sp->default_ppid;
5102 		info.sinfo_context = sp->default_context;
5103 		info.sinfo_timetolive = sp->default_timetolive;
5104 	}
5105 
5106 	if (put_user(len, optlen))
5107 		return -EFAULT;
5108 	if (copy_to_user(optval, &info, len))
5109 		return -EFAULT;
5110 
5111 	return 0;
5112 }
5113 
5114 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
5115  * (SCTP_DEFAULT_SNDINFO)
5116  */
5117 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
5118 					   char __user *optval,
5119 					   int __user *optlen)
5120 {
5121 	struct sctp_sock *sp = sctp_sk(sk);
5122 	struct sctp_association *asoc;
5123 	struct sctp_sndinfo info;
5124 
5125 	if (len < sizeof(info))
5126 		return -EINVAL;
5127 
5128 	len = sizeof(info);
5129 
5130 	if (copy_from_user(&info, optval, len))
5131 		return -EFAULT;
5132 
5133 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
5134 	if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
5135 		return -EINVAL;
5136 	if (asoc) {
5137 		info.snd_sid = asoc->default_stream;
5138 		info.snd_flags = asoc->default_flags;
5139 		info.snd_ppid = asoc->default_ppid;
5140 		info.snd_context = asoc->default_context;
5141 	} else {
5142 		info.snd_sid = sp->default_stream;
5143 		info.snd_flags = sp->default_flags;
5144 		info.snd_ppid = sp->default_ppid;
5145 		info.snd_context = sp->default_context;
5146 	}
5147 
5148 	if (put_user(len, optlen))
5149 		return -EFAULT;
5150 	if (copy_to_user(optval, &info, len))
5151 		return -EFAULT;
5152 
5153 	return 0;
5154 }
5155 
5156 /*
5157  *
5158  * 7.1.5 SCTP_NODELAY
5159  *
5160  * Turn on/off any Nagle-like algorithm.  This means that packets are
5161  * generally sent as soon as possible and no unnecessary delays are
5162  * introduced, at the cost of more packets in the network.  Expects an
5163  * integer boolean flag.
5164  */
5165 
5166 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
5167 				   char __user *optval, int __user *optlen)
5168 {
5169 	int val;
5170 
5171 	if (len < sizeof(int))
5172 		return -EINVAL;
5173 
5174 	len = sizeof(int);
5175 	val = (sctp_sk(sk)->nodelay == 1);
5176 	if (put_user(len, optlen))
5177 		return -EFAULT;
5178 	if (copy_to_user(optval, &val, len))
5179 		return -EFAULT;
5180 	return 0;
5181 }
5182 
5183 /*
5184  *
5185  * 7.1.1 SCTP_RTOINFO
5186  *
5187  * The protocol parameters used to initialize and bound retransmission
5188  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5189  * and modify these parameters.
5190  * All parameters are time values, in milliseconds.  A value of 0, when
5191  * modifying the parameters, indicates that the current value should not
5192  * be changed.
5193  *
5194  */
5195 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5196 				char __user *optval,
5197 				int __user *optlen) {
5198 	struct sctp_rtoinfo rtoinfo;
5199 	struct sctp_association *asoc;
5200 
5201 	if (len < sizeof (struct sctp_rtoinfo))
5202 		return -EINVAL;
5203 
5204 	len = sizeof(struct sctp_rtoinfo);
5205 
5206 	if (copy_from_user(&rtoinfo, optval, len))
5207 		return -EFAULT;
5208 
5209 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5210 
5211 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5212 		return -EINVAL;
5213 
5214 	/* Values corresponding to the specific association. */
5215 	if (asoc) {
5216 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5217 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5218 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5219 	} else {
5220 		/* Values corresponding to the endpoint. */
5221 		struct sctp_sock *sp = sctp_sk(sk);
5222 
5223 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5224 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
5225 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
5226 	}
5227 
5228 	if (put_user(len, optlen))
5229 		return -EFAULT;
5230 
5231 	if (copy_to_user(optval, &rtoinfo, len))
5232 		return -EFAULT;
5233 
5234 	return 0;
5235 }
5236 
5237 /*
5238  *
5239  * 7.1.2 SCTP_ASSOCINFO
5240  *
5241  * This option is used to tune the maximum retransmission attempts
5242  * of the association.
5243  * Returns an error if the new association retransmission value is
5244  * greater than the sum of the retransmission value  of the peer.
5245  * See [SCTP] for more information.
5246  *
5247  */
5248 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5249 				     char __user *optval,
5250 				     int __user *optlen)
5251 {
5252 
5253 	struct sctp_assocparams assocparams;
5254 	struct sctp_association *asoc;
5255 	struct list_head *pos;
5256 	int cnt = 0;
5257 
5258 	if (len < sizeof (struct sctp_assocparams))
5259 		return -EINVAL;
5260 
5261 	len = sizeof(struct sctp_assocparams);
5262 
5263 	if (copy_from_user(&assocparams, optval, len))
5264 		return -EFAULT;
5265 
5266 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5267 
5268 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5269 		return -EINVAL;
5270 
5271 	/* Values correspoinding to the specific association */
5272 	if (asoc) {
5273 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5274 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5275 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5276 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5277 
5278 		list_for_each(pos, &asoc->peer.transport_addr_list) {
5279 			cnt++;
5280 		}
5281 
5282 		assocparams.sasoc_number_peer_destinations = cnt;
5283 	} else {
5284 		/* Values corresponding to the endpoint */
5285 		struct sctp_sock *sp = sctp_sk(sk);
5286 
5287 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5288 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5289 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5290 		assocparams.sasoc_cookie_life =
5291 					sp->assocparams.sasoc_cookie_life;
5292 		assocparams.sasoc_number_peer_destinations =
5293 					sp->assocparams.
5294 					sasoc_number_peer_destinations;
5295 	}
5296 
5297 	if (put_user(len, optlen))
5298 		return -EFAULT;
5299 
5300 	if (copy_to_user(optval, &assocparams, len))
5301 		return -EFAULT;
5302 
5303 	return 0;
5304 }
5305 
5306 /*
5307  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5308  *
5309  * This socket option is a boolean flag which turns on or off mapped V4
5310  * addresses.  If this option is turned on and the socket is type
5311  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5312  * If this option is turned off, then no mapping will be done of V4
5313  * addresses and a user will receive both PF_INET6 and PF_INET type
5314  * addresses on the socket.
5315  */
5316 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5317 				    char __user *optval, int __user *optlen)
5318 {
5319 	int val;
5320 	struct sctp_sock *sp = sctp_sk(sk);
5321 
5322 	if (len < sizeof(int))
5323 		return -EINVAL;
5324 
5325 	len = sizeof(int);
5326 	val = sp->v4mapped;
5327 	if (put_user(len, optlen))
5328 		return -EFAULT;
5329 	if (copy_to_user(optval, &val, len))
5330 		return -EFAULT;
5331 
5332 	return 0;
5333 }
5334 
5335 /*
5336  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
5337  * (chapter and verse is quoted at sctp_setsockopt_context())
5338  */
5339 static int sctp_getsockopt_context(struct sock *sk, int len,
5340 				   char __user *optval, int __user *optlen)
5341 {
5342 	struct sctp_assoc_value params;
5343 	struct sctp_sock *sp;
5344 	struct sctp_association *asoc;
5345 
5346 	if (len < sizeof(struct sctp_assoc_value))
5347 		return -EINVAL;
5348 
5349 	len = sizeof(struct sctp_assoc_value);
5350 
5351 	if (copy_from_user(&params, optval, len))
5352 		return -EFAULT;
5353 
5354 	sp = sctp_sk(sk);
5355 
5356 	if (params.assoc_id != 0) {
5357 		asoc = sctp_id2assoc(sk, params.assoc_id);
5358 		if (!asoc)
5359 			return -EINVAL;
5360 		params.assoc_value = asoc->default_rcv_context;
5361 	} else {
5362 		params.assoc_value = sp->default_rcv_context;
5363 	}
5364 
5365 	if (put_user(len, optlen))
5366 		return -EFAULT;
5367 	if (copy_to_user(optval, &params, len))
5368 		return -EFAULT;
5369 
5370 	return 0;
5371 }
5372 
5373 /*
5374  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5375  * This option will get or set the maximum size to put in any outgoing
5376  * SCTP DATA chunk.  If a message is larger than this size it will be
5377  * fragmented by SCTP into the specified size.  Note that the underlying
5378  * SCTP implementation may fragment into smaller sized chunks when the
5379  * PMTU of the underlying association is smaller than the value set by
5380  * the user.  The default value for this option is '0' which indicates
5381  * the user is NOT limiting fragmentation and only the PMTU will effect
5382  * SCTP's choice of DATA chunk size.  Note also that values set larger
5383  * than the maximum size of an IP datagram will effectively let SCTP
5384  * control fragmentation (i.e. the same as setting this option to 0).
5385  *
5386  * The following structure is used to access and modify this parameter:
5387  *
5388  * struct sctp_assoc_value {
5389  *   sctp_assoc_t assoc_id;
5390  *   uint32_t assoc_value;
5391  * };
5392  *
5393  * assoc_id:  This parameter is ignored for one-to-one style sockets.
5394  *    For one-to-many style sockets this parameter indicates which
5395  *    association the user is performing an action upon.  Note that if
5396  *    this field's value is zero then the endpoints default value is
5397  *    changed (effecting future associations only).
5398  * assoc_value:  This parameter specifies the maximum size in bytes.
5399  */
5400 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5401 				  char __user *optval, int __user *optlen)
5402 {
5403 	struct sctp_assoc_value params;
5404 	struct sctp_association *asoc;
5405 
5406 	if (len == sizeof(int)) {
5407 		pr_warn_ratelimited(DEPRECATED
5408 				    "%s (pid %d) "
5409 				    "Use of int in maxseg socket option.\n"
5410 				    "Use struct sctp_assoc_value instead\n",
5411 				    current->comm, task_pid_nr(current));
5412 		params.assoc_id = 0;
5413 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5414 		len = sizeof(struct sctp_assoc_value);
5415 		if (copy_from_user(&params, optval, sizeof(params)))
5416 			return -EFAULT;
5417 	} else
5418 		return -EINVAL;
5419 
5420 	asoc = sctp_id2assoc(sk, params.assoc_id);
5421 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5422 		return -EINVAL;
5423 
5424 	if (asoc)
5425 		params.assoc_value = asoc->frag_point;
5426 	else
5427 		params.assoc_value = sctp_sk(sk)->user_frag;
5428 
5429 	if (put_user(len, optlen))
5430 		return -EFAULT;
5431 	if (len == sizeof(int)) {
5432 		if (copy_to_user(optval, &params.assoc_value, len))
5433 			return -EFAULT;
5434 	} else {
5435 		if (copy_to_user(optval, &params, len))
5436 			return -EFAULT;
5437 	}
5438 
5439 	return 0;
5440 }
5441 
5442 /*
5443  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5444  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5445  */
5446 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5447 					       char __user *optval, int __user *optlen)
5448 {
5449 	int val;
5450 
5451 	if (len < sizeof(int))
5452 		return -EINVAL;
5453 
5454 	len = sizeof(int);
5455 
5456 	val = sctp_sk(sk)->frag_interleave;
5457 	if (put_user(len, optlen))
5458 		return -EFAULT;
5459 	if (copy_to_user(optval, &val, len))
5460 		return -EFAULT;
5461 
5462 	return 0;
5463 }
5464 
5465 /*
5466  * 7.1.25.  Set or Get the sctp partial delivery point
5467  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5468  */
5469 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5470 						  char __user *optval,
5471 						  int __user *optlen)
5472 {
5473 	u32 val;
5474 
5475 	if (len < sizeof(u32))
5476 		return -EINVAL;
5477 
5478 	len = sizeof(u32);
5479 
5480 	val = sctp_sk(sk)->pd_point;
5481 	if (put_user(len, optlen))
5482 		return -EFAULT;
5483 	if (copy_to_user(optval, &val, len))
5484 		return -EFAULT;
5485 
5486 	return 0;
5487 }
5488 
5489 /*
5490  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
5491  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5492  */
5493 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5494 				    char __user *optval,
5495 				    int __user *optlen)
5496 {
5497 	struct sctp_assoc_value params;
5498 	struct sctp_sock *sp;
5499 	struct sctp_association *asoc;
5500 
5501 	if (len == sizeof(int)) {
5502 		pr_warn_ratelimited(DEPRECATED
5503 				    "%s (pid %d) "
5504 				    "Use of int in max_burst socket option.\n"
5505 				    "Use struct sctp_assoc_value instead\n",
5506 				    current->comm, task_pid_nr(current));
5507 		params.assoc_id = 0;
5508 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5509 		len = sizeof(struct sctp_assoc_value);
5510 		if (copy_from_user(&params, optval, len))
5511 			return -EFAULT;
5512 	} else
5513 		return -EINVAL;
5514 
5515 	sp = sctp_sk(sk);
5516 
5517 	if (params.assoc_id != 0) {
5518 		asoc = sctp_id2assoc(sk, params.assoc_id);
5519 		if (!asoc)
5520 			return -EINVAL;
5521 		params.assoc_value = asoc->max_burst;
5522 	} else
5523 		params.assoc_value = sp->max_burst;
5524 
5525 	if (len == sizeof(int)) {
5526 		if (copy_to_user(optval, &params.assoc_value, len))
5527 			return -EFAULT;
5528 	} else {
5529 		if (copy_to_user(optval, &params, len))
5530 			return -EFAULT;
5531 	}
5532 
5533 	return 0;
5534 
5535 }
5536 
5537 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5538 				    char __user *optval, int __user *optlen)
5539 {
5540 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5541 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
5542 	struct sctp_hmac_algo_param *hmacs;
5543 	__u16 data_len = 0;
5544 	u32 num_idents;
5545 
5546 	if (!ep->auth_enable)
5547 		return -EACCES;
5548 
5549 	hmacs = ep->auth_hmacs_list;
5550 	data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5551 
5552 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
5553 		return -EINVAL;
5554 
5555 	len = sizeof(struct sctp_hmacalgo) + data_len;
5556 	num_idents = data_len / sizeof(u16);
5557 
5558 	if (put_user(len, optlen))
5559 		return -EFAULT;
5560 	if (put_user(num_idents, &p->shmac_num_idents))
5561 		return -EFAULT;
5562 	if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5563 		return -EFAULT;
5564 	return 0;
5565 }
5566 
5567 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5568 				    char __user *optval, int __user *optlen)
5569 {
5570 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5571 	struct sctp_authkeyid val;
5572 	struct sctp_association *asoc;
5573 
5574 	if (!ep->auth_enable)
5575 		return -EACCES;
5576 
5577 	if (len < sizeof(struct sctp_authkeyid))
5578 		return -EINVAL;
5579 	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5580 		return -EFAULT;
5581 
5582 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5583 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5584 		return -EINVAL;
5585 
5586 	if (asoc)
5587 		val.scact_keynumber = asoc->active_key_id;
5588 	else
5589 		val.scact_keynumber = ep->active_key_id;
5590 
5591 	len = sizeof(struct sctp_authkeyid);
5592 	if (put_user(len, optlen))
5593 		return -EFAULT;
5594 	if (copy_to_user(optval, &val, len))
5595 		return -EFAULT;
5596 
5597 	return 0;
5598 }
5599 
5600 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5601 				    char __user *optval, int __user *optlen)
5602 {
5603 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5604 	struct sctp_authchunks __user *p = (void __user *)optval;
5605 	struct sctp_authchunks val;
5606 	struct sctp_association *asoc;
5607 	struct sctp_chunks_param *ch;
5608 	u32    num_chunks = 0;
5609 	char __user *to;
5610 
5611 	if (!ep->auth_enable)
5612 		return -EACCES;
5613 
5614 	if (len < sizeof(struct sctp_authchunks))
5615 		return -EINVAL;
5616 
5617 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5618 		return -EFAULT;
5619 
5620 	to = p->gauth_chunks;
5621 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5622 	if (!asoc)
5623 		return -EINVAL;
5624 
5625 	ch = asoc->peer.peer_chunks;
5626 	if (!ch)
5627 		goto num;
5628 
5629 	/* See if the user provided enough room for all the data */
5630 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5631 	if (len < num_chunks)
5632 		return -EINVAL;
5633 
5634 	if (copy_to_user(to, ch->chunks, num_chunks))
5635 		return -EFAULT;
5636 num:
5637 	len = sizeof(struct sctp_authchunks) + num_chunks;
5638 	if (put_user(len, optlen))
5639 		return -EFAULT;
5640 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5641 		return -EFAULT;
5642 	return 0;
5643 }
5644 
5645 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5646 				    char __user *optval, int __user *optlen)
5647 {
5648 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5649 	struct sctp_authchunks __user *p = (void __user *)optval;
5650 	struct sctp_authchunks val;
5651 	struct sctp_association *asoc;
5652 	struct sctp_chunks_param *ch;
5653 	u32    num_chunks = 0;
5654 	char __user *to;
5655 
5656 	if (!ep->auth_enable)
5657 		return -EACCES;
5658 
5659 	if (len < sizeof(struct sctp_authchunks))
5660 		return -EINVAL;
5661 
5662 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5663 		return -EFAULT;
5664 
5665 	to = p->gauth_chunks;
5666 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5667 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5668 		return -EINVAL;
5669 
5670 	if (asoc)
5671 		ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
5672 	else
5673 		ch = ep->auth_chunk_list;
5674 
5675 	if (!ch)
5676 		goto num;
5677 
5678 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5679 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
5680 		return -EINVAL;
5681 
5682 	if (copy_to_user(to, ch->chunks, num_chunks))
5683 		return -EFAULT;
5684 num:
5685 	len = sizeof(struct sctp_authchunks) + num_chunks;
5686 	if (put_user(len, optlen))
5687 		return -EFAULT;
5688 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5689 		return -EFAULT;
5690 
5691 	return 0;
5692 }
5693 
5694 /*
5695  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5696  * This option gets the current number of associations that are attached
5697  * to a one-to-many style socket.  The option value is an uint32_t.
5698  */
5699 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5700 				    char __user *optval, int __user *optlen)
5701 {
5702 	struct sctp_sock *sp = sctp_sk(sk);
5703 	struct sctp_association *asoc;
5704 	u32 val = 0;
5705 
5706 	if (sctp_style(sk, TCP))
5707 		return -EOPNOTSUPP;
5708 
5709 	if (len < sizeof(u32))
5710 		return -EINVAL;
5711 
5712 	len = sizeof(u32);
5713 
5714 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5715 		val++;
5716 	}
5717 
5718 	if (put_user(len, optlen))
5719 		return -EFAULT;
5720 	if (copy_to_user(optval, &val, len))
5721 		return -EFAULT;
5722 
5723 	return 0;
5724 }
5725 
5726 /*
5727  * 8.1.23 SCTP_AUTO_ASCONF
5728  * See the corresponding setsockopt entry as description
5729  */
5730 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5731 				   char __user *optval, int __user *optlen)
5732 {
5733 	int val = 0;
5734 
5735 	if (len < sizeof(int))
5736 		return -EINVAL;
5737 
5738 	len = sizeof(int);
5739 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5740 		val = 1;
5741 	if (put_user(len, optlen))
5742 		return -EFAULT;
5743 	if (copy_to_user(optval, &val, len))
5744 		return -EFAULT;
5745 	return 0;
5746 }
5747 
5748 /*
5749  * 8.2.6. Get the Current Identifiers of Associations
5750  *        (SCTP_GET_ASSOC_ID_LIST)
5751  *
5752  * This option gets the current list of SCTP association identifiers of
5753  * the SCTP associations handled by a one-to-many style socket.
5754  */
5755 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5756 				    char __user *optval, int __user *optlen)
5757 {
5758 	struct sctp_sock *sp = sctp_sk(sk);
5759 	struct sctp_association *asoc;
5760 	struct sctp_assoc_ids *ids;
5761 	u32 num = 0;
5762 
5763 	if (sctp_style(sk, TCP))
5764 		return -EOPNOTSUPP;
5765 
5766 	if (len < sizeof(struct sctp_assoc_ids))
5767 		return -EINVAL;
5768 
5769 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5770 		num++;
5771 	}
5772 
5773 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5774 		return -EINVAL;
5775 
5776 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5777 
5778 	ids = kmalloc(len, GFP_KERNEL);
5779 	if (unlikely(!ids))
5780 		return -ENOMEM;
5781 
5782 	ids->gaids_number_of_ids = num;
5783 	num = 0;
5784 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5785 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
5786 	}
5787 
5788 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5789 		kfree(ids);
5790 		return -EFAULT;
5791 	}
5792 
5793 	kfree(ids);
5794 	return 0;
5795 }
5796 
5797 /*
5798  * SCTP_PEER_ADDR_THLDS
5799  *
5800  * This option allows us to fetch the partially failed threshold for one or all
5801  * transports in an association.  See Section 6.1 of:
5802  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
5803  */
5804 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
5805 					    char __user *optval,
5806 					    int len,
5807 					    int __user *optlen)
5808 {
5809 	struct sctp_paddrthlds val;
5810 	struct sctp_transport *trans;
5811 	struct sctp_association *asoc;
5812 
5813 	if (len < sizeof(struct sctp_paddrthlds))
5814 		return -EINVAL;
5815 	len = sizeof(struct sctp_paddrthlds);
5816 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
5817 		return -EFAULT;
5818 
5819 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
5820 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
5821 		if (!asoc)
5822 			return -ENOENT;
5823 
5824 		val.spt_pathpfthld = asoc->pf_retrans;
5825 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
5826 	} else {
5827 		trans = sctp_addr_id2transport(sk, &val.spt_address,
5828 					       val.spt_assoc_id);
5829 		if (!trans)
5830 			return -ENOENT;
5831 
5832 		val.spt_pathmaxrxt = trans->pathmaxrxt;
5833 		val.spt_pathpfthld = trans->pf_retrans;
5834 	}
5835 
5836 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
5837 		return -EFAULT;
5838 
5839 	return 0;
5840 }
5841 
5842 /*
5843  * SCTP_GET_ASSOC_STATS
5844  *
5845  * This option retrieves local per endpoint statistics. It is modeled
5846  * after OpenSolaris' implementation
5847  */
5848 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
5849 				       char __user *optval,
5850 				       int __user *optlen)
5851 {
5852 	struct sctp_assoc_stats sas;
5853 	struct sctp_association *asoc = NULL;
5854 
5855 	/* User must provide at least the assoc id */
5856 	if (len < sizeof(sctp_assoc_t))
5857 		return -EINVAL;
5858 
5859 	/* Allow the struct to grow and fill in as much as possible */
5860 	len = min_t(size_t, len, sizeof(sas));
5861 
5862 	if (copy_from_user(&sas, optval, len))
5863 		return -EFAULT;
5864 
5865 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
5866 	if (!asoc)
5867 		return -EINVAL;
5868 
5869 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
5870 	sas.sas_gapcnt = asoc->stats.gapcnt;
5871 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
5872 	sas.sas_osacks = asoc->stats.osacks;
5873 	sas.sas_isacks = asoc->stats.isacks;
5874 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
5875 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
5876 	sas.sas_oodchunks = asoc->stats.oodchunks;
5877 	sas.sas_iodchunks = asoc->stats.iodchunks;
5878 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
5879 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
5880 	sas.sas_idupchunks = asoc->stats.idupchunks;
5881 	sas.sas_opackets = asoc->stats.opackets;
5882 	sas.sas_ipackets = asoc->stats.ipackets;
5883 
5884 	/* New high max rto observed, will return 0 if not a single
5885 	 * RTO update took place. obs_rto_ipaddr will be bogus
5886 	 * in such a case
5887 	 */
5888 	sas.sas_maxrto = asoc->stats.max_obs_rto;
5889 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
5890 		sizeof(struct sockaddr_storage));
5891 
5892 	/* Mark beginning of a new observation period */
5893 	asoc->stats.max_obs_rto = asoc->rto_min;
5894 
5895 	if (put_user(len, optlen))
5896 		return -EFAULT;
5897 
5898 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
5899 
5900 	if (copy_to_user(optval, &sas, len))
5901 		return -EFAULT;
5902 
5903 	return 0;
5904 }
5905 
5906 static int sctp_getsockopt_recvrcvinfo(struct sock *sk,	int len,
5907 				       char __user *optval,
5908 				       int __user *optlen)
5909 {
5910 	int val = 0;
5911 
5912 	if (len < sizeof(int))
5913 		return -EINVAL;
5914 
5915 	len = sizeof(int);
5916 	if (sctp_sk(sk)->recvrcvinfo)
5917 		val = 1;
5918 	if (put_user(len, optlen))
5919 		return -EFAULT;
5920 	if (copy_to_user(optval, &val, len))
5921 		return -EFAULT;
5922 
5923 	return 0;
5924 }
5925 
5926 static int sctp_getsockopt_recvnxtinfo(struct sock *sk,	int len,
5927 				       char __user *optval,
5928 				       int __user *optlen)
5929 {
5930 	int val = 0;
5931 
5932 	if (len < sizeof(int))
5933 		return -EINVAL;
5934 
5935 	len = sizeof(int);
5936 	if (sctp_sk(sk)->recvnxtinfo)
5937 		val = 1;
5938 	if (put_user(len, optlen))
5939 		return -EFAULT;
5940 	if (copy_to_user(optval, &val, len))
5941 		return -EFAULT;
5942 
5943 	return 0;
5944 }
5945 
5946 static int sctp_getsockopt(struct sock *sk, int level, int optname,
5947 			   char __user *optval, int __user *optlen)
5948 {
5949 	int retval = 0;
5950 	int len;
5951 
5952 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
5953 
5954 	/* I can hardly begin to describe how wrong this is.  This is
5955 	 * so broken as to be worse than useless.  The API draft
5956 	 * REALLY is NOT helpful here...  I am not convinced that the
5957 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5958 	 * are at all well-founded.
5959 	 */
5960 	if (level != SOL_SCTP) {
5961 		struct sctp_af *af = sctp_sk(sk)->pf->af;
5962 
5963 		retval = af->getsockopt(sk, level, optname, optval, optlen);
5964 		return retval;
5965 	}
5966 
5967 	if (get_user(len, optlen))
5968 		return -EFAULT;
5969 
5970 	lock_sock(sk);
5971 
5972 	switch (optname) {
5973 	case SCTP_STATUS:
5974 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5975 		break;
5976 	case SCTP_DISABLE_FRAGMENTS:
5977 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5978 							   optlen);
5979 		break;
5980 	case SCTP_EVENTS:
5981 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
5982 		break;
5983 	case SCTP_AUTOCLOSE:
5984 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5985 		break;
5986 	case SCTP_SOCKOPT_PEELOFF:
5987 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5988 		break;
5989 	case SCTP_PEER_ADDR_PARAMS:
5990 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5991 							  optlen);
5992 		break;
5993 	case SCTP_DELAYED_SACK:
5994 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5995 							  optlen);
5996 		break;
5997 	case SCTP_INITMSG:
5998 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5999 		break;
6000 	case SCTP_GET_PEER_ADDRS:
6001 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
6002 						    optlen);
6003 		break;
6004 	case SCTP_GET_LOCAL_ADDRS:
6005 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
6006 						     optlen);
6007 		break;
6008 	case SCTP_SOCKOPT_CONNECTX3:
6009 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
6010 		break;
6011 	case SCTP_DEFAULT_SEND_PARAM:
6012 		retval = sctp_getsockopt_default_send_param(sk, len,
6013 							    optval, optlen);
6014 		break;
6015 	case SCTP_DEFAULT_SNDINFO:
6016 		retval = sctp_getsockopt_default_sndinfo(sk, len,
6017 							 optval, optlen);
6018 		break;
6019 	case SCTP_PRIMARY_ADDR:
6020 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
6021 		break;
6022 	case SCTP_NODELAY:
6023 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
6024 		break;
6025 	case SCTP_RTOINFO:
6026 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
6027 		break;
6028 	case SCTP_ASSOCINFO:
6029 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
6030 		break;
6031 	case SCTP_I_WANT_MAPPED_V4_ADDR:
6032 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
6033 		break;
6034 	case SCTP_MAXSEG:
6035 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
6036 		break;
6037 	case SCTP_GET_PEER_ADDR_INFO:
6038 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
6039 							optlen);
6040 		break;
6041 	case SCTP_ADAPTATION_LAYER:
6042 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
6043 							optlen);
6044 		break;
6045 	case SCTP_CONTEXT:
6046 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
6047 		break;
6048 	case SCTP_FRAGMENT_INTERLEAVE:
6049 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
6050 							     optlen);
6051 		break;
6052 	case SCTP_PARTIAL_DELIVERY_POINT:
6053 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
6054 								optlen);
6055 		break;
6056 	case SCTP_MAX_BURST:
6057 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
6058 		break;
6059 	case SCTP_AUTH_KEY:
6060 	case SCTP_AUTH_CHUNK:
6061 	case SCTP_AUTH_DELETE_KEY:
6062 		retval = -EOPNOTSUPP;
6063 		break;
6064 	case SCTP_HMAC_IDENT:
6065 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
6066 		break;
6067 	case SCTP_AUTH_ACTIVE_KEY:
6068 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
6069 		break;
6070 	case SCTP_PEER_AUTH_CHUNKS:
6071 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
6072 							optlen);
6073 		break;
6074 	case SCTP_LOCAL_AUTH_CHUNKS:
6075 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
6076 							optlen);
6077 		break;
6078 	case SCTP_GET_ASSOC_NUMBER:
6079 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
6080 		break;
6081 	case SCTP_GET_ASSOC_ID_LIST:
6082 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
6083 		break;
6084 	case SCTP_AUTO_ASCONF:
6085 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
6086 		break;
6087 	case SCTP_PEER_ADDR_THLDS:
6088 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
6089 		break;
6090 	case SCTP_GET_ASSOC_STATS:
6091 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
6092 		break;
6093 	case SCTP_RECVRCVINFO:
6094 		retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
6095 		break;
6096 	case SCTP_RECVNXTINFO:
6097 		retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
6098 		break;
6099 	default:
6100 		retval = -ENOPROTOOPT;
6101 		break;
6102 	}
6103 
6104 	release_sock(sk);
6105 	return retval;
6106 }
6107 
6108 static void sctp_hash(struct sock *sk)
6109 {
6110 	/* STUB */
6111 }
6112 
6113 static void sctp_unhash(struct sock *sk)
6114 {
6115 	/* STUB */
6116 }
6117 
6118 /* Check if port is acceptable.  Possibly find first available port.
6119  *
6120  * The port hash table (contained in the 'global' SCTP protocol storage
6121  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
6122  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
6123  * list (the list number is the port number hashed out, so as you
6124  * would expect from a hash function, all the ports in a given list have
6125  * such a number that hashes out to the same list number; you were
6126  * expecting that, right?); so each list has a set of ports, with a
6127  * link to the socket (struct sock) that uses it, the port number and
6128  * a fastreuse flag (FIXME: NPI ipg).
6129  */
6130 static struct sctp_bind_bucket *sctp_bucket_create(
6131 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
6132 
6133 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
6134 {
6135 	struct sctp_bind_hashbucket *head; /* hash list */
6136 	struct sctp_bind_bucket *pp;
6137 	unsigned short snum;
6138 	int ret;
6139 
6140 	snum = ntohs(addr->v4.sin_port);
6141 
6142 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
6143 
6144 	local_bh_disable();
6145 
6146 	if (snum == 0) {
6147 		/* Search for an available port. */
6148 		int low, high, remaining, index;
6149 		unsigned int rover;
6150 		struct net *net = sock_net(sk);
6151 
6152 		inet_get_local_port_range(net, &low, &high);
6153 		remaining = (high - low) + 1;
6154 		rover = prandom_u32() % remaining + low;
6155 
6156 		do {
6157 			rover++;
6158 			if ((rover < low) || (rover > high))
6159 				rover = low;
6160 			if (inet_is_local_reserved_port(net, rover))
6161 				continue;
6162 			index = sctp_phashfn(sock_net(sk), rover);
6163 			head = &sctp_port_hashtable[index];
6164 			spin_lock(&head->lock);
6165 			sctp_for_each_hentry(pp, &head->chain)
6166 				if ((pp->port == rover) &&
6167 				    net_eq(sock_net(sk), pp->net))
6168 					goto next;
6169 			break;
6170 		next:
6171 			spin_unlock(&head->lock);
6172 		} while (--remaining > 0);
6173 
6174 		/* Exhausted local port range during search? */
6175 		ret = 1;
6176 		if (remaining <= 0)
6177 			goto fail;
6178 
6179 		/* OK, here is the one we will use.  HEAD (the port
6180 		 * hash table list entry) is non-NULL and we hold it's
6181 		 * mutex.
6182 		 */
6183 		snum = rover;
6184 	} else {
6185 		/* We are given an specific port number; we verify
6186 		 * that it is not being used. If it is used, we will
6187 		 * exahust the search in the hash list corresponding
6188 		 * to the port number (snum) - we detect that with the
6189 		 * port iterator, pp being NULL.
6190 		 */
6191 		head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
6192 		spin_lock(&head->lock);
6193 		sctp_for_each_hentry(pp, &head->chain) {
6194 			if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
6195 				goto pp_found;
6196 		}
6197 	}
6198 	pp = NULL;
6199 	goto pp_not_found;
6200 pp_found:
6201 	if (!hlist_empty(&pp->owner)) {
6202 		/* We had a port hash table hit - there is an
6203 		 * available port (pp != NULL) and it is being
6204 		 * used by other socket (pp->owner not empty); that other
6205 		 * socket is going to be sk2.
6206 		 */
6207 		int reuse = sk->sk_reuse;
6208 		struct sock *sk2;
6209 
6210 		pr_debug("%s: found a possible match\n", __func__);
6211 
6212 		if (pp->fastreuse && sk->sk_reuse &&
6213 			sk->sk_state != SCTP_SS_LISTENING)
6214 			goto success;
6215 
6216 		/* Run through the list of sockets bound to the port
6217 		 * (pp->port) [via the pointers bind_next and
6218 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
6219 		 * we get the endpoint they describe and run through
6220 		 * the endpoint's list of IP (v4 or v6) addresses,
6221 		 * comparing each of the addresses with the address of
6222 		 * the socket sk. If we find a match, then that means
6223 		 * that this port/socket (sk) combination are already
6224 		 * in an endpoint.
6225 		 */
6226 		sk_for_each_bound(sk2, &pp->owner) {
6227 			struct sctp_endpoint *ep2;
6228 			ep2 = sctp_sk(sk2)->ep;
6229 
6230 			if (sk == sk2 ||
6231 			    (reuse && sk2->sk_reuse &&
6232 			     sk2->sk_state != SCTP_SS_LISTENING))
6233 				continue;
6234 
6235 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
6236 						 sctp_sk(sk2), sctp_sk(sk))) {
6237 				ret = (long)sk2;
6238 				goto fail_unlock;
6239 			}
6240 		}
6241 
6242 		pr_debug("%s: found a match\n", __func__);
6243 	}
6244 pp_not_found:
6245 	/* If there was a hash table miss, create a new port.  */
6246 	ret = 1;
6247 	if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
6248 		goto fail_unlock;
6249 
6250 	/* In either case (hit or miss), make sure fastreuse is 1 only
6251 	 * if sk->sk_reuse is too (that is, if the caller requested
6252 	 * SO_REUSEADDR on this socket -sk-).
6253 	 */
6254 	if (hlist_empty(&pp->owner)) {
6255 		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
6256 			pp->fastreuse = 1;
6257 		else
6258 			pp->fastreuse = 0;
6259 	} else if (pp->fastreuse &&
6260 		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6261 		pp->fastreuse = 0;
6262 
6263 	/* We are set, so fill up all the data in the hash table
6264 	 * entry, tie the socket list information with the rest of the
6265 	 * sockets FIXME: Blurry, NPI (ipg).
6266 	 */
6267 success:
6268 	if (!sctp_sk(sk)->bind_hash) {
6269 		inet_sk(sk)->inet_num = snum;
6270 		sk_add_bind_node(sk, &pp->owner);
6271 		sctp_sk(sk)->bind_hash = pp;
6272 	}
6273 	ret = 0;
6274 
6275 fail_unlock:
6276 	spin_unlock(&head->lock);
6277 
6278 fail:
6279 	local_bh_enable();
6280 	return ret;
6281 }
6282 
6283 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
6284  * port is requested.
6285  */
6286 static int sctp_get_port(struct sock *sk, unsigned short snum)
6287 {
6288 	union sctp_addr addr;
6289 	struct sctp_af *af = sctp_sk(sk)->pf->af;
6290 
6291 	/* Set up a dummy address struct from the sk. */
6292 	af->from_sk(&addr, sk);
6293 	addr.v4.sin_port = htons(snum);
6294 
6295 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
6296 	return !!sctp_get_port_local(sk, &addr);
6297 }
6298 
6299 /*
6300  *  Move a socket to LISTENING state.
6301  */
6302 static int sctp_listen_start(struct sock *sk, int backlog)
6303 {
6304 	struct sctp_sock *sp = sctp_sk(sk);
6305 	struct sctp_endpoint *ep = sp->ep;
6306 	struct crypto_hash *tfm = NULL;
6307 	char alg[32];
6308 
6309 	/* Allocate HMAC for generating cookie. */
6310 	if (!sp->hmac && sp->sctp_hmac_alg) {
6311 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6312 		tfm = crypto_alloc_hash(alg, 0, CRYPTO_ALG_ASYNC);
6313 		if (IS_ERR(tfm)) {
6314 			net_info_ratelimited("failed to load transform for %s: %ld\n",
6315 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
6316 			return -ENOSYS;
6317 		}
6318 		sctp_sk(sk)->hmac = tfm;
6319 	}
6320 
6321 	/*
6322 	 * If a bind() or sctp_bindx() is not called prior to a listen()
6323 	 * call that allows new associations to be accepted, the system
6324 	 * picks an ephemeral port and will choose an address set equivalent
6325 	 * to binding with a wildcard address.
6326 	 *
6327 	 * This is not currently spelled out in the SCTP sockets
6328 	 * extensions draft, but follows the practice as seen in TCP
6329 	 * sockets.
6330 	 *
6331 	 */
6332 	sk->sk_state = SCTP_SS_LISTENING;
6333 	if (!ep->base.bind_addr.port) {
6334 		if (sctp_autobind(sk))
6335 			return -EAGAIN;
6336 	} else {
6337 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6338 			sk->sk_state = SCTP_SS_CLOSED;
6339 			return -EADDRINUSE;
6340 		}
6341 	}
6342 
6343 	sk->sk_max_ack_backlog = backlog;
6344 	sctp_hash_endpoint(ep);
6345 	return 0;
6346 }
6347 
6348 /*
6349  * 4.1.3 / 5.1.3 listen()
6350  *
6351  *   By default, new associations are not accepted for UDP style sockets.
6352  *   An application uses listen() to mark a socket as being able to
6353  *   accept new associations.
6354  *
6355  *   On TCP style sockets, applications use listen() to ready the SCTP
6356  *   endpoint for accepting inbound associations.
6357  *
6358  *   On both types of endpoints a backlog of '0' disables listening.
6359  *
6360  *  Move a socket to LISTENING state.
6361  */
6362 int sctp_inet_listen(struct socket *sock, int backlog)
6363 {
6364 	struct sock *sk = sock->sk;
6365 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6366 	int err = -EINVAL;
6367 
6368 	if (unlikely(backlog < 0))
6369 		return err;
6370 
6371 	lock_sock(sk);
6372 
6373 	/* Peeled-off sockets are not allowed to listen().  */
6374 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6375 		goto out;
6376 
6377 	if (sock->state != SS_UNCONNECTED)
6378 		goto out;
6379 
6380 	/* If backlog is zero, disable listening. */
6381 	if (!backlog) {
6382 		if (sctp_sstate(sk, CLOSED))
6383 			goto out;
6384 
6385 		err = 0;
6386 		sctp_unhash_endpoint(ep);
6387 		sk->sk_state = SCTP_SS_CLOSED;
6388 		if (sk->sk_reuse)
6389 			sctp_sk(sk)->bind_hash->fastreuse = 1;
6390 		goto out;
6391 	}
6392 
6393 	/* If we are already listening, just update the backlog */
6394 	if (sctp_sstate(sk, LISTENING))
6395 		sk->sk_max_ack_backlog = backlog;
6396 	else {
6397 		err = sctp_listen_start(sk, backlog);
6398 		if (err)
6399 			goto out;
6400 	}
6401 
6402 	err = 0;
6403 out:
6404 	release_sock(sk);
6405 	return err;
6406 }
6407 
6408 /*
6409  * This function is done by modeling the current datagram_poll() and the
6410  * tcp_poll().  Note that, based on these implementations, we don't
6411  * lock the socket in this function, even though it seems that,
6412  * ideally, locking or some other mechanisms can be used to ensure
6413  * the integrity of the counters (sndbuf and wmem_alloc) used
6414  * in this place.  We assume that we don't need locks either until proven
6415  * otherwise.
6416  *
6417  * Another thing to note is that we include the Async I/O support
6418  * here, again, by modeling the current TCP/UDP code.  We don't have
6419  * a good way to test with it yet.
6420  */
6421 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6422 {
6423 	struct sock *sk = sock->sk;
6424 	struct sctp_sock *sp = sctp_sk(sk);
6425 	unsigned int mask;
6426 
6427 	poll_wait(file, sk_sleep(sk), wait);
6428 
6429 	/* A TCP-style listening socket becomes readable when the accept queue
6430 	 * is not empty.
6431 	 */
6432 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6433 		return (!list_empty(&sp->ep->asocs)) ?
6434 			(POLLIN | POLLRDNORM) : 0;
6435 
6436 	mask = 0;
6437 
6438 	/* Is there any exceptional events?  */
6439 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6440 		mask |= POLLERR |
6441 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
6442 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6443 		mask |= POLLRDHUP | POLLIN | POLLRDNORM;
6444 	if (sk->sk_shutdown == SHUTDOWN_MASK)
6445 		mask |= POLLHUP;
6446 
6447 	/* Is it readable?  Reconsider this code with TCP-style support.  */
6448 	if (!skb_queue_empty(&sk->sk_receive_queue))
6449 		mask |= POLLIN | POLLRDNORM;
6450 
6451 	/* The association is either gone or not ready.  */
6452 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6453 		return mask;
6454 
6455 	/* Is it writable?  */
6456 	if (sctp_writeable(sk)) {
6457 		mask |= POLLOUT | POLLWRNORM;
6458 	} else {
6459 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
6460 		/*
6461 		 * Since the socket is not locked, the buffer
6462 		 * might be made available after the writeable check and
6463 		 * before the bit is set.  This could cause a lost I/O
6464 		 * signal.  tcp_poll() has a race breaker for this race
6465 		 * condition.  Based on their implementation, we put
6466 		 * in the following code to cover it as well.
6467 		 */
6468 		if (sctp_writeable(sk))
6469 			mask |= POLLOUT | POLLWRNORM;
6470 	}
6471 	return mask;
6472 }
6473 
6474 /********************************************************************
6475  * 2nd Level Abstractions
6476  ********************************************************************/
6477 
6478 static struct sctp_bind_bucket *sctp_bucket_create(
6479 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
6480 {
6481 	struct sctp_bind_bucket *pp;
6482 
6483 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6484 	if (pp) {
6485 		SCTP_DBG_OBJCNT_INC(bind_bucket);
6486 		pp->port = snum;
6487 		pp->fastreuse = 0;
6488 		INIT_HLIST_HEAD(&pp->owner);
6489 		pp->net = net;
6490 		hlist_add_head(&pp->node, &head->chain);
6491 	}
6492 	return pp;
6493 }
6494 
6495 /* Caller must hold hashbucket lock for this tb with local BH disabled */
6496 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6497 {
6498 	if (pp && hlist_empty(&pp->owner)) {
6499 		__hlist_del(&pp->node);
6500 		kmem_cache_free(sctp_bucket_cachep, pp);
6501 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
6502 	}
6503 }
6504 
6505 /* Release this socket's reference to a local port.  */
6506 static inline void __sctp_put_port(struct sock *sk)
6507 {
6508 	struct sctp_bind_hashbucket *head =
6509 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
6510 						  inet_sk(sk)->inet_num)];
6511 	struct sctp_bind_bucket *pp;
6512 
6513 	spin_lock(&head->lock);
6514 	pp = sctp_sk(sk)->bind_hash;
6515 	__sk_del_bind_node(sk);
6516 	sctp_sk(sk)->bind_hash = NULL;
6517 	inet_sk(sk)->inet_num = 0;
6518 	sctp_bucket_destroy(pp);
6519 	spin_unlock(&head->lock);
6520 }
6521 
6522 void sctp_put_port(struct sock *sk)
6523 {
6524 	local_bh_disable();
6525 	__sctp_put_port(sk);
6526 	local_bh_enable();
6527 }
6528 
6529 /*
6530  * The system picks an ephemeral port and choose an address set equivalent
6531  * to binding with a wildcard address.
6532  * One of those addresses will be the primary address for the association.
6533  * This automatically enables the multihoming capability of SCTP.
6534  */
6535 static int sctp_autobind(struct sock *sk)
6536 {
6537 	union sctp_addr autoaddr;
6538 	struct sctp_af *af;
6539 	__be16 port;
6540 
6541 	/* Initialize a local sockaddr structure to INADDR_ANY. */
6542 	af = sctp_sk(sk)->pf->af;
6543 
6544 	port = htons(inet_sk(sk)->inet_num);
6545 	af->inaddr_any(&autoaddr, port);
6546 
6547 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6548 }
6549 
6550 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
6551  *
6552  * From RFC 2292
6553  * 4.2 The cmsghdr Structure *
6554  *
6555  * When ancillary data is sent or received, any number of ancillary data
6556  * objects can be specified by the msg_control and msg_controllen members of
6557  * the msghdr structure, because each object is preceded by
6558  * a cmsghdr structure defining the object's length (the cmsg_len member).
6559  * Historically Berkeley-derived implementations have passed only one object
6560  * at a time, but this API allows multiple objects to be
6561  * passed in a single call to sendmsg() or recvmsg(). The following example
6562  * shows two ancillary data objects in a control buffer.
6563  *
6564  *   |<--------------------------- msg_controllen -------------------------->|
6565  *   |                                                                       |
6566  *
6567  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
6568  *
6569  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6570  *   |                                   |                                   |
6571  *
6572  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
6573  *
6574  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
6575  *   |                                |  |                                |  |
6576  *
6577  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6578  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
6579  *
6580  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
6581  *
6582  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6583  *    ^
6584  *    |
6585  *
6586  * msg_control
6587  * points here
6588  */
6589 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs)
6590 {
6591 	struct cmsghdr *cmsg;
6592 	struct msghdr *my_msg = (struct msghdr *)msg;
6593 
6594 	for_each_cmsghdr(cmsg, my_msg) {
6595 		if (!CMSG_OK(my_msg, cmsg))
6596 			return -EINVAL;
6597 
6598 		/* Should we parse this header or ignore?  */
6599 		if (cmsg->cmsg_level != IPPROTO_SCTP)
6600 			continue;
6601 
6602 		/* Strictly check lengths following example in SCM code.  */
6603 		switch (cmsg->cmsg_type) {
6604 		case SCTP_INIT:
6605 			/* SCTP Socket API Extension
6606 			 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
6607 			 *
6608 			 * This cmsghdr structure provides information for
6609 			 * initializing new SCTP associations with sendmsg().
6610 			 * The SCTP_INITMSG socket option uses this same data
6611 			 * structure.  This structure is not used for
6612 			 * recvmsg().
6613 			 *
6614 			 * cmsg_level    cmsg_type      cmsg_data[]
6615 			 * ------------  ------------   ----------------------
6616 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
6617 			 */
6618 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
6619 				return -EINVAL;
6620 
6621 			cmsgs->init = CMSG_DATA(cmsg);
6622 			break;
6623 
6624 		case SCTP_SNDRCV:
6625 			/* SCTP Socket API Extension
6626 			 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
6627 			 *
6628 			 * This cmsghdr structure specifies SCTP options for
6629 			 * sendmsg() and describes SCTP header information
6630 			 * about a received message through recvmsg().
6631 			 *
6632 			 * cmsg_level    cmsg_type      cmsg_data[]
6633 			 * ------------  ------------   ----------------------
6634 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
6635 			 */
6636 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6637 				return -EINVAL;
6638 
6639 			cmsgs->srinfo = CMSG_DATA(cmsg);
6640 
6641 			if (cmsgs->srinfo->sinfo_flags &
6642 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6643 			      SCTP_ABORT | SCTP_EOF))
6644 				return -EINVAL;
6645 			break;
6646 
6647 		case SCTP_SNDINFO:
6648 			/* SCTP Socket API Extension
6649 			 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
6650 			 *
6651 			 * This cmsghdr structure specifies SCTP options for
6652 			 * sendmsg(). This structure and SCTP_RCVINFO replaces
6653 			 * SCTP_SNDRCV which has been deprecated.
6654 			 *
6655 			 * cmsg_level    cmsg_type      cmsg_data[]
6656 			 * ------------  ------------   ---------------------
6657 			 * IPPROTO_SCTP  SCTP_SNDINFO    struct sctp_sndinfo
6658 			 */
6659 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
6660 				return -EINVAL;
6661 
6662 			cmsgs->sinfo = CMSG_DATA(cmsg);
6663 
6664 			if (cmsgs->sinfo->snd_flags &
6665 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6666 			      SCTP_ABORT | SCTP_EOF))
6667 				return -EINVAL;
6668 			break;
6669 		default:
6670 			return -EINVAL;
6671 		}
6672 	}
6673 
6674 	return 0;
6675 }
6676 
6677 /*
6678  * Wait for a packet..
6679  * Note: This function is the same function as in core/datagram.c
6680  * with a few modifications to make lksctp work.
6681  */
6682 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
6683 {
6684 	int error;
6685 	DEFINE_WAIT(wait);
6686 
6687 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6688 
6689 	/* Socket errors? */
6690 	error = sock_error(sk);
6691 	if (error)
6692 		goto out;
6693 
6694 	if (!skb_queue_empty(&sk->sk_receive_queue))
6695 		goto ready;
6696 
6697 	/* Socket shut down?  */
6698 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6699 		goto out;
6700 
6701 	/* Sequenced packets can come disconnected.  If so we report the
6702 	 * problem.
6703 	 */
6704 	error = -ENOTCONN;
6705 
6706 	/* Is there a good reason to think that we may receive some data?  */
6707 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6708 		goto out;
6709 
6710 	/* Handle signals.  */
6711 	if (signal_pending(current))
6712 		goto interrupted;
6713 
6714 	/* Let another process have a go.  Since we are going to sleep
6715 	 * anyway.  Note: This may cause odd behaviors if the message
6716 	 * does not fit in the user's buffer, but this seems to be the
6717 	 * only way to honor MSG_DONTWAIT realistically.
6718 	 */
6719 	release_sock(sk);
6720 	*timeo_p = schedule_timeout(*timeo_p);
6721 	lock_sock(sk);
6722 
6723 ready:
6724 	finish_wait(sk_sleep(sk), &wait);
6725 	return 0;
6726 
6727 interrupted:
6728 	error = sock_intr_errno(*timeo_p);
6729 
6730 out:
6731 	finish_wait(sk_sleep(sk), &wait);
6732 	*err = error;
6733 	return error;
6734 }
6735 
6736 /* Receive a datagram.
6737  * Note: This is pretty much the same routine as in core/datagram.c
6738  * with a few changes to make lksctp work.
6739  */
6740 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6741 				       int noblock, int *err)
6742 {
6743 	int error;
6744 	struct sk_buff *skb;
6745 	long timeo;
6746 
6747 	timeo = sock_rcvtimeo(sk, noblock);
6748 
6749 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
6750 		 MAX_SCHEDULE_TIMEOUT);
6751 
6752 	do {
6753 		/* Again only user level code calls this function,
6754 		 * so nothing interrupt level
6755 		 * will suddenly eat the receive_queue.
6756 		 *
6757 		 *  Look at current nfs client by the way...
6758 		 *  However, this function was correct in any case. 8)
6759 		 */
6760 		if (flags & MSG_PEEK) {
6761 			spin_lock_bh(&sk->sk_receive_queue.lock);
6762 			skb = skb_peek(&sk->sk_receive_queue);
6763 			if (skb)
6764 				atomic_inc(&skb->users);
6765 			spin_unlock_bh(&sk->sk_receive_queue.lock);
6766 		} else {
6767 			skb = skb_dequeue(&sk->sk_receive_queue);
6768 		}
6769 
6770 		if (skb)
6771 			return skb;
6772 
6773 		/* Caller is allowed not to check sk->sk_err before calling. */
6774 		error = sock_error(sk);
6775 		if (error)
6776 			goto no_packet;
6777 
6778 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6779 			break;
6780 
6781 		if (sk_can_busy_loop(sk) &&
6782 		    sk_busy_loop(sk, noblock))
6783 			continue;
6784 
6785 		/* User doesn't want to wait.  */
6786 		error = -EAGAIN;
6787 		if (!timeo)
6788 			goto no_packet;
6789 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6790 
6791 	return NULL;
6792 
6793 no_packet:
6794 	*err = error;
6795 	return NULL;
6796 }
6797 
6798 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
6799 static void __sctp_write_space(struct sctp_association *asoc)
6800 {
6801 	struct sock *sk = asoc->base.sk;
6802 	struct socket *sock = sk->sk_socket;
6803 
6804 	if ((sctp_wspace(asoc) > 0) && sock) {
6805 		if (waitqueue_active(&asoc->wait))
6806 			wake_up_interruptible(&asoc->wait);
6807 
6808 		if (sctp_writeable(sk)) {
6809 			wait_queue_head_t *wq = sk_sleep(sk);
6810 
6811 			if (wq && waitqueue_active(wq))
6812 				wake_up_interruptible(wq);
6813 
6814 			/* Note that we try to include the Async I/O support
6815 			 * here by modeling from the current TCP/UDP code.
6816 			 * We have not tested with it yet.
6817 			 */
6818 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6819 				sock_wake_async(sock,
6820 						SOCK_WAKE_SPACE, POLL_OUT);
6821 		}
6822 	}
6823 }
6824 
6825 static void sctp_wake_up_waiters(struct sock *sk,
6826 				 struct sctp_association *asoc)
6827 {
6828 	struct sctp_association *tmp = asoc;
6829 
6830 	/* We do accounting for the sndbuf space per association,
6831 	 * so we only need to wake our own association.
6832 	 */
6833 	if (asoc->ep->sndbuf_policy)
6834 		return __sctp_write_space(asoc);
6835 
6836 	/* If association goes down and is just flushing its
6837 	 * outq, then just normally notify others.
6838 	 */
6839 	if (asoc->base.dead)
6840 		return sctp_write_space(sk);
6841 
6842 	/* Accounting for the sndbuf space is per socket, so we
6843 	 * need to wake up others, try to be fair and in case of
6844 	 * other associations, let them have a go first instead
6845 	 * of just doing a sctp_write_space() call.
6846 	 *
6847 	 * Note that we reach sctp_wake_up_waiters() only when
6848 	 * associations free up queued chunks, thus we are under
6849 	 * lock and the list of associations on a socket is
6850 	 * guaranteed not to change.
6851 	 */
6852 	for (tmp = list_next_entry(tmp, asocs); 1;
6853 	     tmp = list_next_entry(tmp, asocs)) {
6854 		/* Manually skip the head element. */
6855 		if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
6856 			continue;
6857 		/* Wake up association. */
6858 		__sctp_write_space(tmp);
6859 		/* We've reached the end. */
6860 		if (tmp == asoc)
6861 			break;
6862 	}
6863 }
6864 
6865 /* Do accounting for the sndbuf space.
6866  * Decrement the used sndbuf space of the corresponding association by the
6867  * data size which was just transmitted(freed).
6868  */
6869 static void sctp_wfree(struct sk_buff *skb)
6870 {
6871 	struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
6872 	struct sctp_association *asoc = chunk->asoc;
6873 	struct sock *sk = asoc->base.sk;
6874 
6875 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6876 				sizeof(struct sk_buff) +
6877 				sizeof(struct sctp_chunk);
6878 
6879 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6880 
6881 	/*
6882 	 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6883 	 */
6884 	sk->sk_wmem_queued   -= skb->truesize;
6885 	sk_mem_uncharge(sk, skb->truesize);
6886 
6887 	sock_wfree(skb);
6888 	sctp_wake_up_waiters(sk, asoc);
6889 
6890 	sctp_association_put(asoc);
6891 }
6892 
6893 /* Do accounting for the receive space on the socket.
6894  * Accounting for the association is done in ulpevent.c
6895  * We set this as a destructor for the cloned data skbs so that
6896  * accounting is done at the correct time.
6897  */
6898 void sctp_sock_rfree(struct sk_buff *skb)
6899 {
6900 	struct sock *sk = skb->sk;
6901 	struct sctp_ulpevent *event = sctp_skb2event(skb);
6902 
6903 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6904 
6905 	/*
6906 	 * Mimic the behavior of sock_rfree
6907 	 */
6908 	sk_mem_uncharge(sk, event->rmem_len);
6909 }
6910 
6911 
6912 /* Helper function to wait for space in the sndbuf.  */
6913 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6914 				size_t msg_len)
6915 {
6916 	struct sock *sk = asoc->base.sk;
6917 	int err = 0;
6918 	long current_timeo = *timeo_p;
6919 	DEFINE_WAIT(wait);
6920 
6921 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
6922 		 *timeo_p, msg_len);
6923 
6924 	/* Increment the association's refcnt.  */
6925 	sctp_association_hold(asoc);
6926 
6927 	/* Wait on the association specific sndbuf space. */
6928 	for (;;) {
6929 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6930 					  TASK_INTERRUPTIBLE);
6931 		if (!*timeo_p)
6932 			goto do_nonblock;
6933 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6934 		    asoc->base.dead)
6935 			goto do_error;
6936 		if (signal_pending(current))
6937 			goto do_interrupted;
6938 		if (msg_len <= sctp_wspace(asoc))
6939 			break;
6940 
6941 		/* Let another process have a go.  Since we are going
6942 		 * to sleep anyway.
6943 		 */
6944 		release_sock(sk);
6945 		current_timeo = schedule_timeout(current_timeo);
6946 		BUG_ON(sk != asoc->base.sk);
6947 		lock_sock(sk);
6948 
6949 		*timeo_p = current_timeo;
6950 	}
6951 
6952 out:
6953 	finish_wait(&asoc->wait, &wait);
6954 
6955 	/* Release the association's refcnt.  */
6956 	sctp_association_put(asoc);
6957 
6958 	return err;
6959 
6960 do_error:
6961 	err = -EPIPE;
6962 	goto out;
6963 
6964 do_interrupted:
6965 	err = sock_intr_errno(*timeo_p);
6966 	goto out;
6967 
6968 do_nonblock:
6969 	err = -EAGAIN;
6970 	goto out;
6971 }
6972 
6973 void sctp_data_ready(struct sock *sk)
6974 {
6975 	struct socket_wq *wq;
6976 
6977 	rcu_read_lock();
6978 	wq = rcu_dereference(sk->sk_wq);
6979 	if (wq_has_sleeper(wq))
6980 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6981 						POLLRDNORM | POLLRDBAND);
6982 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6983 	rcu_read_unlock();
6984 }
6985 
6986 /* If socket sndbuf has changed, wake up all per association waiters.  */
6987 void sctp_write_space(struct sock *sk)
6988 {
6989 	struct sctp_association *asoc;
6990 
6991 	/* Wake up the tasks in each wait queue.  */
6992 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6993 		__sctp_write_space(asoc);
6994 	}
6995 }
6996 
6997 /* Is there any sndbuf space available on the socket?
6998  *
6999  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
7000  * associations on the same socket.  For a UDP-style socket with
7001  * multiple associations, it is possible for it to be "unwriteable"
7002  * prematurely.  I assume that this is acceptable because
7003  * a premature "unwriteable" is better than an accidental "writeable" which
7004  * would cause an unwanted block under certain circumstances.  For the 1-1
7005  * UDP-style sockets or TCP-style sockets, this code should work.
7006  *  - Daisy
7007  */
7008 static int sctp_writeable(struct sock *sk)
7009 {
7010 	int amt = 0;
7011 
7012 	amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
7013 	if (amt < 0)
7014 		amt = 0;
7015 	return amt;
7016 }
7017 
7018 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
7019  * returns immediately with EINPROGRESS.
7020  */
7021 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
7022 {
7023 	struct sock *sk = asoc->base.sk;
7024 	int err = 0;
7025 	long current_timeo = *timeo_p;
7026 	DEFINE_WAIT(wait);
7027 
7028 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
7029 
7030 	/* Increment the association's refcnt.  */
7031 	sctp_association_hold(asoc);
7032 
7033 	for (;;) {
7034 		prepare_to_wait_exclusive(&asoc->wait, &wait,
7035 					  TASK_INTERRUPTIBLE);
7036 		if (!*timeo_p)
7037 			goto do_nonblock;
7038 		if (sk->sk_shutdown & RCV_SHUTDOWN)
7039 			break;
7040 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7041 		    asoc->base.dead)
7042 			goto do_error;
7043 		if (signal_pending(current))
7044 			goto do_interrupted;
7045 
7046 		if (sctp_state(asoc, ESTABLISHED))
7047 			break;
7048 
7049 		/* Let another process have a go.  Since we are going
7050 		 * to sleep anyway.
7051 		 */
7052 		release_sock(sk);
7053 		current_timeo = schedule_timeout(current_timeo);
7054 		lock_sock(sk);
7055 
7056 		*timeo_p = current_timeo;
7057 	}
7058 
7059 out:
7060 	finish_wait(&asoc->wait, &wait);
7061 
7062 	/* Release the association's refcnt.  */
7063 	sctp_association_put(asoc);
7064 
7065 	return err;
7066 
7067 do_error:
7068 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
7069 		err = -ETIMEDOUT;
7070 	else
7071 		err = -ECONNREFUSED;
7072 	goto out;
7073 
7074 do_interrupted:
7075 	err = sock_intr_errno(*timeo_p);
7076 	goto out;
7077 
7078 do_nonblock:
7079 	err = -EINPROGRESS;
7080 	goto out;
7081 }
7082 
7083 static int sctp_wait_for_accept(struct sock *sk, long timeo)
7084 {
7085 	struct sctp_endpoint *ep;
7086 	int err = 0;
7087 	DEFINE_WAIT(wait);
7088 
7089 	ep = sctp_sk(sk)->ep;
7090 
7091 
7092 	for (;;) {
7093 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
7094 					  TASK_INTERRUPTIBLE);
7095 
7096 		if (list_empty(&ep->asocs)) {
7097 			release_sock(sk);
7098 			timeo = schedule_timeout(timeo);
7099 			lock_sock(sk);
7100 		}
7101 
7102 		err = -EINVAL;
7103 		if (!sctp_sstate(sk, LISTENING))
7104 			break;
7105 
7106 		err = 0;
7107 		if (!list_empty(&ep->asocs))
7108 			break;
7109 
7110 		err = sock_intr_errno(timeo);
7111 		if (signal_pending(current))
7112 			break;
7113 
7114 		err = -EAGAIN;
7115 		if (!timeo)
7116 			break;
7117 	}
7118 
7119 	finish_wait(sk_sleep(sk), &wait);
7120 
7121 	return err;
7122 }
7123 
7124 static void sctp_wait_for_close(struct sock *sk, long timeout)
7125 {
7126 	DEFINE_WAIT(wait);
7127 
7128 	do {
7129 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7130 		if (list_empty(&sctp_sk(sk)->ep->asocs))
7131 			break;
7132 		release_sock(sk);
7133 		timeout = schedule_timeout(timeout);
7134 		lock_sock(sk);
7135 	} while (!signal_pending(current) && timeout);
7136 
7137 	finish_wait(sk_sleep(sk), &wait);
7138 }
7139 
7140 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
7141 {
7142 	struct sk_buff *frag;
7143 
7144 	if (!skb->data_len)
7145 		goto done;
7146 
7147 	/* Don't forget the fragments. */
7148 	skb_walk_frags(skb, frag)
7149 		sctp_skb_set_owner_r_frag(frag, sk);
7150 
7151 done:
7152 	sctp_skb_set_owner_r(skb, sk);
7153 }
7154 
7155 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
7156 		    struct sctp_association *asoc)
7157 {
7158 	struct inet_sock *inet = inet_sk(sk);
7159 	struct inet_sock *newinet;
7160 
7161 	newsk->sk_type = sk->sk_type;
7162 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
7163 	newsk->sk_flags = sk->sk_flags;
7164 	newsk->sk_no_check_tx = sk->sk_no_check_tx;
7165 	newsk->sk_no_check_rx = sk->sk_no_check_rx;
7166 	newsk->sk_reuse = sk->sk_reuse;
7167 
7168 	newsk->sk_shutdown = sk->sk_shutdown;
7169 	newsk->sk_destruct = sctp_destruct_sock;
7170 	newsk->sk_family = sk->sk_family;
7171 	newsk->sk_protocol = IPPROTO_SCTP;
7172 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
7173 	newsk->sk_sndbuf = sk->sk_sndbuf;
7174 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
7175 	newsk->sk_lingertime = sk->sk_lingertime;
7176 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
7177 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
7178 
7179 	newinet = inet_sk(newsk);
7180 
7181 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
7182 	 * getsockname() and getpeername()
7183 	 */
7184 	newinet->inet_sport = inet->inet_sport;
7185 	newinet->inet_saddr = inet->inet_saddr;
7186 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
7187 	newinet->inet_dport = htons(asoc->peer.port);
7188 	newinet->pmtudisc = inet->pmtudisc;
7189 	newinet->inet_id = asoc->next_tsn ^ jiffies;
7190 
7191 	newinet->uc_ttl = inet->uc_ttl;
7192 	newinet->mc_loop = 1;
7193 	newinet->mc_ttl = 1;
7194 	newinet->mc_index = 0;
7195 	newinet->mc_list = NULL;
7196 }
7197 
7198 /* Populate the fields of the newsk from the oldsk and migrate the assoc
7199  * and its messages to the newsk.
7200  */
7201 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
7202 			      struct sctp_association *assoc,
7203 			      sctp_socket_type_t type)
7204 {
7205 	struct sctp_sock *oldsp = sctp_sk(oldsk);
7206 	struct sctp_sock *newsp = sctp_sk(newsk);
7207 	struct sctp_bind_bucket *pp; /* hash list port iterator */
7208 	struct sctp_endpoint *newep = newsp->ep;
7209 	struct sk_buff *skb, *tmp;
7210 	struct sctp_ulpevent *event;
7211 	struct sctp_bind_hashbucket *head;
7212 	struct list_head tmplist;
7213 
7214 	/* Migrate socket buffer sizes and all the socket level options to the
7215 	 * new socket.
7216 	 */
7217 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
7218 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
7219 	/* Brute force copy old sctp opt. */
7220 	if (oldsp->do_auto_asconf) {
7221 		memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist));
7222 		inet_sk_copy_descendant(newsk, oldsk);
7223 		memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist));
7224 	} else
7225 		inet_sk_copy_descendant(newsk, oldsk);
7226 
7227 	/* Restore the ep value that was overwritten with the above structure
7228 	 * copy.
7229 	 */
7230 	newsp->ep = newep;
7231 	newsp->hmac = NULL;
7232 
7233 	/* Hook this new socket in to the bind_hash list. */
7234 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
7235 						 inet_sk(oldsk)->inet_num)];
7236 	local_bh_disable();
7237 	spin_lock(&head->lock);
7238 	pp = sctp_sk(oldsk)->bind_hash;
7239 	sk_add_bind_node(newsk, &pp->owner);
7240 	sctp_sk(newsk)->bind_hash = pp;
7241 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
7242 	spin_unlock(&head->lock);
7243 	local_bh_enable();
7244 
7245 	/* Copy the bind_addr list from the original endpoint to the new
7246 	 * endpoint so that we can handle restarts properly
7247 	 */
7248 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
7249 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
7250 
7251 	/* Move any messages in the old socket's receive queue that are for the
7252 	 * peeled off association to the new socket's receive queue.
7253 	 */
7254 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
7255 		event = sctp_skb2event(skb);
7256 		if (event->asoc == assoc) {
7257 			__skb_unlink(skb, &oldsk->sk_receive_queue);
7258 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
7259 			sctp_skb_set_owner_r_frag(skb, newsk);
7260 		}
7261 	}
7262 
7263 	/* Clean up any messages pending delivery due to partial
7264 	 * delivery.   Three cases:
7265 	 * 1) No partial deliver;  no work.
7266 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
7267 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
7268 	 */
7269 	skb_queue_head_init(&newsp->pd_lobby);
7270 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
7271 
7272 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
7273 		struct sk_buff_head *queue;
7274 
7275 		/* Decide which queue to move pd_lobby skbs to. */
7276 		if (assoc->ulpq.pd_mode) {
7277 			queue = &newsp->pd_lobby;
7278 		} else
7279 			queue = &newsk->sk_receive_queue;
7280 
7281 		/* Walk through the pd_lobby, looking for skbs that
7282 		 * need moved to the new socket.
7283 		 */
7284 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
7285 			event = sctp_skb2event(skb);
7286 			if (event->asoc == assoc) {
7287 				__skb_unlink(skb, &oldsp->pd_lobby);
7288 				__skb_queue_tail(queue, skb);
7289 				sctp_skb_set_owner_r_frag(skb, newsk);
7290 			}
7291 		}
7292 
7293 		/* Clear up any skbs waiting for the partial
7294 		 * delivery to finish.
7295 		 */
7296 		if (assoc->ulpq.pd_mode)
7297 			sctp_clear_pd(oldsk, NULL);
7298 
7299 	}
7300 
7301 	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
7302 		sctp_skb_set_owner_r_frag(skb, newsk);
7303 
7304 	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
7305 		sctp_skb_set_owner_r_frag(skb, newsk);
7306 
7307 	/* Set the type of socket to indicate that it is peeled off from the
7308 	 * original UDP-style socket or created with the accept() call on a
7309 	 * TCP-style socket..
7310 	 */
7311 	newsp->type = type;
7312 
7313 	/* Mark the new socket "in-use" by the user so that any packets
7314 	 * that may arrive on the association after we've moved it are
7315 	 * queued to the backlog.  This prevents a potential race between
7316 	 * backlog processing on the old socket and new-packet processing
7317 	 * on the new socket.
7318 	 *
7319 	 * The caller has just allocated newsk so we can guarantee that other
7320 	 * paths won't try to lock it and then oldsk.
7321 	 */
7322 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7323 	sctp_assoc_migrate(assoc, newsk);
7324 
7325 	/* If the association on the newsk is already closed before accept()
7326 	 * is called, set RCV_SHUTDOWN flag.
7327 	 */
7328 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
7329 		newsk->sk_shutdown |= RCV_SHUTDOWN;
7330 
7331 	newsk->sk_state = SCTP_SS_ESTABLISHED;
7332 	release_sock(newsk);
7333 }
7334 
7335 
7336 /* This proto struct describes the ULP interface for SCTP.  */
7337 struct proto sctp_prot = {
7338 	.name        =	"SCTP",
7339 	.owner       =	THIS_MODULE,
7340 	.close       =	sctp_close,
7341 	.connect     =	sctp_connect,
7342 	.disconnect  =	sctp_disconnect,
7343 	.accept      =	sctp_accept,
7344 	.ioctl       =	sctp_ioctl,
7345 	.init        =	sctp_init_sock,
7346 	.destroy     =	sctp_destroy_sock,
7347 	.shutdown    =	sctp_shutdown,
7348 	.setsockopt  =	sctp_setsockopt,
7349 	.getsockopt  =	sctp_getsockopt,
7350 	.sendmsg     =	sctp_sendmsg,
7351 	.recvmsg     =	sctp_recvmsg,
7352 	.bind        =	sctp_bind,
7353 	.backlog_rcv =	sctp_backlog_rcv,
7354 	.hash        =	sctp_hash,
7355 	.unhash      =	sctp_unhash,
7356 	.get_port    =	sctp_get_port,
7357 	.obj_size    =  sizeof(struct sctp_sock),
7358 	.sysctl_mem  =  sysctl_sctp_mem,
7359 	.sysctl_rmem =  sysctl_sctp_rmem,
7360 	.sysctl_wmem =  sysctl_sctp_wmem,
7361 	.memory_pressure = &sctp_memory_pressure,
7362 	.enter_memory_pressure = sctp_enter_memory_pressure,
7363 	.memory_allocated = &sctp_memory_allocated,
7364 	.sockets_allocated = &sctp_sockets_allocated,
7365 };
7366 
7367 #if IS_ENABLED(CONFIG_IPV6)
7368 
7369 struct proto sctpv6_prot = {
7370 	.name		= "SCTPv6",
7371 	.owner		= THIS_MODULE,
7372 	.close		= sctp_close,
7373 	.connect	= sctp_connect,
7374 	.disconnect	= sctp_disconnect,
7375 	.accept		= sctp_accept,
7376 	.ioctl		= sctp_ioctl,
7377 	.init		= sctp_init_sock,
7378 	.destroy	= sctp_destroy_sock,
7379 	.shutdown	= sctp_shutdown,
7380 	.setsockopt	= sctp_setsockopt,
7381 	.getsockopt	= sctp_getsockopt,
7382 	.sendmsg	= sctp_sendmsg,
7383 	.recvmsg	= sctp_recvmsg,
7384 	.bind		= sctp_bind,
7385 	.backlog_rcv	= sctp_backlog_rcv,
7386 	.hash		= sctp_hash,
7387 	.unhash		= sctp_unhash,
7388 	.get_port	= sctp_get_port,
7389 	.obj_size	= sizeof(struct sctp6_sock),
7390 	.sysctl_mem	= sysctl_sctp_mem,
7391 	.sysctl_rmem	= sysctl_sctp_rmem,
7392 	.sysctl_wmem	= sysctl_sctp_wmem,
7393 	.memory_pressure = &sctp_memory_pressure,
7394 	.enter_memory_pressure = sctp_enter_memory_pressure,
7395 	.memory_allocated = &sctp_memory_allocated,
7396 	.sockets_allocated = &sctp_sockets_allocated,
7397 };
7398 #endif /* IS_ENABLED(CONFIG_IPV6) */
7399