1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * (C) Copyright IBM Corp. 2001, 2004 4 * Copyright (c) 1999-2000 Cisco, Inc. 5 * Copyright (c) 1999-2001 Motorola, Inc. 6 * Copyright (c) 2001-2003 Intel Corp. 7 * Copyright (c) 2001-2002 Nokia, Inc. 8 * Copyright (c) 2001 La Monte H.P. Yarroll 9 * 10 * This file is part of the SCTP kernel implementation 11 * 12 * These functions interface with the sockets layer to implement the 13 * SCTP Extensions for the Sockets API. 14 * 15 * Note that the descriptions from the specification are USER level 16 * functions--this file is the functions which populate the struct proto 17 * for SCTP which is the BOTTOM of the sockets interface. 18 * 19 * Please send any bug reports or fixes you make to the 20 * email address(es): 21 * lksctp developers <linux-sctp@vger.kernel.org> 22 * 23 * Written or modified by: 24 * La Monte H.P. Yarroll <piggy@acm.org> 25 * Narasimha Budihal <narsi@refcode.org> 26 * Karl Knutson <karl@athena.chicago.il.us> 27 * Jon Grimm <jgrimm@us.ibm.com> 28 * Xingang Guo <xingang.guo@intel.com> 29 * Daisy Chang <daisyc@us.ibm.com> 30 * Sridhar Samudrala <samudrala@us.ibm.com> 31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 32 * Ardelle Fan <ardelle.fan@intel.com> 33 * Ryan Layer <rmlayer@us.ibm.com> 34 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 35 * Kevin Gao <kevin.gao@intel.com> 36 */ 37 38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 39 40 #include <crypto/hash.h> 41 #include <linux/types.h> 42 #include <linux/kernel.h> 43 #include <linux/wait.h> 44 #include <linux/time.h> 45 #include <linux/sched/signal.h> 46 #include <linux/ip.h> 47 #include <linux/capability.h> 48 #include <linux/fcntl.h> 49 #include <linux/poll.h> 50 #include <linux/init.h> 51 #include <linux/slab.h> 52 #include <linux/file.h> 53 #include <linux/compat.h> 54 #include <linux/rhashtable.h> 55 56 #include <net/ip.h> 57 #include <net/icmp.h> 58 #include <net/route.h> 59 #include <net/ipv6.h> 60 #include <net/inet_common.h> 61 #include <net/busy_poll.h> 62 #include <trace/events/sock.h> 63 64 #include <linux/socket.h> /* for sa_family_t */ 65 #include <linux/export.h> 66 #include <net/sock.h> 67 #include <net/sctp/sctp.h> 68 #include <net/sctp/sm.h> 69 #include <net/sctp/stream_sched.h> 70 71 /* Forward declarations for internal helper functions. */ 72 static bool sctp_writeable(struct sock *sk); 73 static void sctp_wfree(struct sk_buff *skb); 74 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 75 size_t msg_len); 76 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 77 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 78 static int sctp_wait_for_accept(struct sock *sk, long timeo); 79 static void sctp_wait_for_close(struct sock *sk, long timeo); 80 static void sctp_destruct_sock(struct sock *sk); 81 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 82 union sctp_addr *addr, int len); 83 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 84 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 85 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 86 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 87 static int sctp_send_asconf(struct sctp_association *asoc, 88 struct sctp_chunk *chunk); 89 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 90 static int sctp_autobind(struct sock *sk); 91 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 92 struct sctp_association *assoc, 93 enum sctp_socket_type type); 94 95 static unsigned long sctp_memory_pressure; 96 static atomic_long_t sctp_memory_allocated; 97 static DEFINE_PER_CPU(int, sctp_memory_per_cpu_fw_alloc); 98 struct percpu_counter sctp_sockets_allocated; 99 100 static void sctp_enter_memory_pressure(struct sock *sk) 101 { 102 sctp_memory_pressure = 1; 103 } 104 105 106 /* Get the sndbuf space available at the time on the association. */ 107 static inline int sctp_wspace(struct sctp_association *asoc) 108 { 109 struct sock *sk = asoc->base.sk; 110 111 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used 112 : sk_stream_wspace(sk); 113 } 114 115 /* Increment the used sndbuf space count of the corresponding association by 116 * the size of the outgoing data chunk. 117 * Also, set the skb destructor for sndbuf accounting later. 118 * 119 * Since it is always 1-1 between chunk and skb, and also a new skb is always 120 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 121 * destructor in the data chunk skb for the purpose of the sndbuf space 122 * tracking. 123 */ 124 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 125 { 126 struct sctp_association *asoc = chunk->asoc; 127 struct sock *sk = asoc->base.sk; 128 129 /* The sndbuf space is tracked per association. */ 130 sctp_association_hold(asoc); 131 132 if (chunk->shkey) 133 sctp_auth_shkey_hold(chunk->shkey); 134 135 skb_set_owner_w(chunk->skb, sk); 136 137 chunk->skb->destructor = sctp_wfree; 138 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 139 skb_shinfo(chunk->skb)->destructor_arg = chunk; 140 141 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 142 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); 143 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk); 144 sk_mem_charge(sk, chunk->skb->truesize); 145 } 146 147 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 148 { 149 skb_orphan(chunk->skb); 150 } 151 152 #define traverse_and_process() \ 153 do { \ 154 msg = chunk->msg; \ 155 if (msg == prev_msg) \ 156 continue; \ 157 list_for_each_entry(c, &msg->chunks, frag_list) { \ 158 if ((clear && asoc->base.sk == c->skb->sk) || \ 159 (!clear && asoc->base.sk != c->skb->sk)) \ 160 cb(c); \ 161 } \ 162 prev_msg = msg; \ 163 } while (0) 164 165 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 166 bool clear, 167 void (*cb)(struct sctp_chunk *)) 168 169 { 170 struct sctp_datamsg *msg, *prev_msg = NULL; 171 struct sctp_outq *q = &asoc->outqueue; 172 struct sctp_chunk *chunk, *c; 173 struct sctp_transport *t; 174 175 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 176 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 177 traverse_and_process(); 178 179 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 180 traverse_and_process(); 181 182 list_for_each_entry(chunk, &q->sacked, transmitted_list) 183 traverse_and_process(); 184 185 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 186 traverse_and_process(); 187 188 list_for_each_entry(chunk, &q->out_chunk_list, list) 189 traverse_and_process(); 190 } 191 192 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 193 void (*cb)(struct sk_buff *, struct sock *)) 194 195 { 196 struct sk_buff *skb, *tmp; 197 198 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 199 cb(skb, sk); 200 201 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 202 cb(skb, sk); 203 204 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 205 cb(skb, sk); 206 } 207 208 /* Verify that this is a valid address. */ 209 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 210 int len) 211 { 212 struct sctp_af *af; 213 214 /* Verify basic sockaddr. */ 215 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 216 if (!af) 217 return -EINVAL; 218 219 /* Is this a valid SCTP address? */ 220 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 221 return -EINVAL; 222 223 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 224 return -EINVAL; 225 226 return 0; 227 } 228 229 /* Look up the association by its id. If this is not a UDP-style 230 * socket, the ID field is always ignored. 231 */ 232 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 233 { 234 struct sctp_association *asoc = NULL; 235 236 /* If this is not a UDP-style socket, assoc id should be ignored. */ 237 if (!sctp_style(sk, UDP)) { 238 /* Return NULL if the socket state is not ESTABLISHED. It 239 * could be a TCP-style listening socket or a socket which 240 * hasn't yet called connect() to establish an association. 241 */ 242 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 243 return NULL; 244 245 /* Get the first and the only association from the list. */ 246 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 247 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 248 struct sctp_association, asocs); 249 return asoc; 250 } 251 252 /* Otherwise this is a UDP-style socket. */ 253 if (id <= SCTP_ALL_ASSOC) 254 return NULL; 255 256 spin_lock_bh(&sctp_assocs_id_lock); 257 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 258 if (asoc && (asoc->base.sk != sk || asoc->base.dead)) 259 asoc = NULL; 260 spin_unlock_bh(&sctp_assocs_id_lock); 261 262 return asoc; 263 } 264 265 /* Look up the transport from an address and an assoc id. If both address and 266 * id are specified, the associations matching the address and the id should be 267 * the same. 268 */ 269 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 270 struct sockaddr_storage *addr, 271 sctp_assoc_t id) 272 { 273 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 274 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 275 union sctp_addr *laddr = (union sctp_addr *)addr; 276 struct sctp_transport *transport; 277 278 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 279 return NULL; 280 281 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 282 laddr, 283 &transport); 284 285 if (!addr_asoc) 286 return NULL; 287 288 id_asoc = sctp_id2assoc(sk, id); 289 if (id_asoc && (id_asoc != addr_asoc)) 290 return NULL; 291 292 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 293 (union sctp_addr *)addr); 294 295 return transport; 296 } 297 298 /* API 3.1.2 bind() - UDP Style Syntax 299 * The syntax of bind() is, 300 * 301 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 302 * 303 * sd - the socket descriptor returned by socket(). 304 * addr - the address structure (struct sockaddr_in or struct 305 * sockaddr_in6 [RFC 2553]), 306 * addr_len - the size of the address structure. 307 */ 308 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 309 { 310 int retval = 0; 311 312 lock_sock(sk); 313 314 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 315 addr, addr_len); 316 317 /* Disallow binding twice. */ 318 if (!sctp_sk(sk)->ep->base.bind_addr.port) 319 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 320 addr_len); 321 else 322 retval = -EINVAL; 323 324 release_sock(sk); 325 326 return retval; 327 } 328 329 static int sctp_get_port_local(struct sock *, union sctp_addr *); 330 331 /* Verify this is a valid sockaddr. */ 332 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 333 union sctp_addr *addr, int len) 334 { 335 struct sctp_af *af; 336 337 /* Check minimum size. */ 338 if (len < sizeof (struct sockaddr)) 339 return NULL; 340 341 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 342 return NULL; 343 344 if (addr->sa.sa_family == AF_INET6) { 345 if (len < SIN6_LEN_RFC2133) 346 return NULL; 347 /* V4 mapped address are really of AF_INET family */ 348 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 349 !opt->pf->af_supported(AF_INET, opt)) 350 return NULL; 351 } 352 353 /* If we get this far, af is valid. */ 354 af = sctp_get_af_specific(addr->sa.sa_family); 355 356 if (len < af->sockaddr_len) 357 return NULL; 358 359 return af; 360 } 361 362 static void sctp_auto_asconf_init(struct sctp_sock *sp) 363 { 364 struct net *net = sock_net(&sp->inet.sk); 365 366 if (net->sctp.default_auto_asconf) { 367 spin_lock(&net->sctp.addr_wq_lock); 368 list_add_tail(&sp->auto_asconf_list, &net->sctp.auto_asconf_splist); 369 spin_unlock(&net->sctp.addr_wq_lock); 370 sp->do_auto_asconf = 1; 371 } 372 } 373 374 /* Bind a local address either to an endpoint or to an association. */ 375 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 376 { 377 struct net *net = sock_net(sk); 378 struct sctp_sock *sp = sctp_sk(sk); 379 struct sctp_endpoint *ep = sp->ep; 380 struct sctp_bind_addr *bp = &ep->base.bind_addr; 381 struct sctp_af *af; 382 unsigned short snum; 383 int ret = 0; 384 385 /* Common sockaddr verification. */ 386 af = sctp_sockaddr_af(sp, addr, len); 387 if (!af) { 388 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 389 __func__, sk, addr, len); 390 return -EINVAL; 391 } 392 393 snum = ntohs(addr->v4.sin_port); 394 395 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 396 __func__, sk, &addr->sa, bp->port, snum, len); 397 398 /* PF specific bind() address verification. */ 399 if (!sp->pf->bind_verify(sp, addr)) 400 return -EADDRNOTAVAIL; 401 402 /* We must either be unbound, or bind to the same port. 403 * It's OK to allow 0 ports if we are already bound. 404 * We'll just inhert an already bound port in this case 405 */ 406 if (bp->port) { 407 if (!snum) 408 snum = bp->port; 409 else if (snum != bp->port) { 410 pr_debug("%s: new port %d doesn't match existing port " 411 "%d\n", __func__, snum, bp->port); 412 return -EINVAL; 413 } 414 } 415 416 if (snum && inet_port_requires_bind_service(net, snum) && 417 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 418 return -EACCES; 419 420 /* See if the address matches any of the addresses we may have 421 * already bound before checking against other endpoints. 422 */ 423 if (sctp_bind_addr_match(bp, addr, sp)) 424 return -EINVAL; 425 426 /* Make sure we are allowed to bind here. 427 * The function sctp_get_port_local() does duplicate address 428 * detection. 429 */ 430 addr->v4.sin_port = htons(snum); 431 if (sctp_get_port_local(sk, addr)) 432 return -EADDRINUSE; 433 434 /* Refresh ephemeral port. */ 435 if (!bp->port) { 436 bp->port = inet_sk(sk)->inet_num; 437 sctp_auto_asconf_init(sp); 438 } 439 440 /* Add the address to the bind address list. 441 * Use GFP_ATOMIC since BHs will be disabled. 442 */ 443 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 444 SCTP_ADDR_SRC, GFP_ATOMIC); 445 446 if (ret) { 447 sctp_put_port(sk); 448 return ret; 449 } 450 /* Copy back into socket for getsockname() use. */ 451 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 452 sp->pf->to_sk_saddr(addr, sk); 453 454 return ret; 455 } 456 457 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 458 * 459 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 460 * at any one time. If a sender, after sending an ASCONF chunk, decides 461 * it needs to transfer another ASCONF Chunk, it MUST wait until the 462 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 463 * subsequent ASCONF. Note this restriction binds each side, so at any 464 * time two ASCONF may be in-transit on any given association (one sent 465 * from each endpoint). 466 */ 467 static int sctp_send_asconf(struct sctp_association *asoc, 468 struct sctp_chunk *chunk) 469 { 470 int retval = 0; 471 472 /* If there is an outstanding ASCONF chunk, queue it for later 473 * transmission. 474 */ 475 if (asoc->addip_last_asconf) { 476 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 477 goto out; 478 } 479 480 /* Hold the chunk until an ASCONF_ACK is received. */ 481 sctp_chunk_hold(chunk); 482 retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk); 483 if (retval) 484 sctp_chunk_free(chunk); 485 else 486 asoc->addip_last_asconf = chunk; 487 488 out: 489 return retval; 490 } 491 492 /* Add a list of addresses as bind addresses to local endpoint or 493 * association. 494 * 495 * Basically run through each address specified in the addrs/addrcnt 496 * array/length pair, determine if it is IPv6 or IPv4 and call 497 * sctp_do_bind() on it. 498 * 499 * If any of them fails, then the operation will be reversed and the 500 * ones that were added will be removed. 501 * 502 * Only sctp_setsockopt_bindx() is supposed to call this function. 503 */ 504 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 505 { 506 int cnt; 507 int retval = 0; 508 void *addr_buf; 509 struct sockaddr *sa_addr; 510 struct sctp_af *af; 511 512 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 513 addrs, addrcnt); 514 515 addr_buf = addrs; 516 for (cnt = 0; cnt < addrcnt; cnt++) { 517 /* The list may contain either IPv4 or IPv6 address; 518 * determine the address length for walking thru the list. 519 */ 520 sa_addr = addr_buf; 521 af = sctp_get_af_specific(sa_addr->sa_family); 522 if (!af) { 523 retval = -EINVAL; 524 goto err_bindx_add; 525 } 526 527 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 528 af->sockaddr_len); 529 530 addr_buf += af->sockaddr_len; 531 532 err_bindx_add: 533 if (retval < 0) { 534 /* Failed. Cleanup the ones that have been added */ 535 if (cnt > 0) 536 sctp_bindx_rem(sk, addrs, cnt); 537 return retval; 538 } 539 } 540 541 return retval; 542 } 543 544 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 545 * associations that are part of the endpoint indicating that a list of local 546 * addresses are added to the endpoint. 547 * 548 * If any of the addresses is already in the bind address list of the 549 * association, we do not send the chunk for that association. But it will not 550 * affect other associations. 551 * 552 * Only sctp_setsockopt_bindx() is supposed to call this function. 553 */ 554 static int sctp_send_asconf_add_ip(struct sock *sk, 555 struct sockaddr *addrs, 556 int addrcnt) 557 { 558 struct sctp_sock *sp; 559 struct sctp_endpoint *ep; 560 struct sctp_association *asoc; 561 struct sctp_bind_addr *bp; 562 struct sctp_chunk *chunk; 563 struct sctp_sockaddr_entry *laddr; 564 union sctp_addr *addr; 565 union sctp_addr saveaddr; 566 void *addr_buf; 567 struct sctp_af *af; 568 struct list_head *p; 569 int i; 570 int retval = 0; 571 572 sp = sctp_sk(sk); 573 ep = sp->ep; 574 575 if (!ep->asconf_enable) 576 return retval; 577 578 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 579 __func__, sk, addrs, addrcnt); 580 581 list_for_each_entry(asoc, &ep->asocs, asocs) { 582 if (!asoc->peer.asconf_capable) 583 continue; 584 585 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 586 continue; 587 588 if (!sctp_state(asoc, ESTABLISHED)) 589 continue; 590 591 /* Check if any address in the packed array of addresses is 592 * in the bind address list of the association. If so, 593 * do not send the asconf chunk to its peer, but continue with 594 * other associations. 595 */ 596 addr_buf = addrs; 597 for (i = 0; i < addrcnt; i++) { 598 addr = addr_buf; 599 af = sctp_get_af_specific(addr->v4.sin_family); 600 if (!af) { 601 retval = -EINVAL; 602 goto out; 603 } 604 605 if (sctp_assoc_lookup_laddr(asoc, addr)) 606 break; 607 608 addr_buf += af->sockaddr_len; 609 } 610 if (i < addrcnt) 611 continue; 612 613 /* Use the first valid address in bind addr list of 614 * association as Address Parameter of ASCONF CHUNK. 615 */ 616 bp = &asoc->base.bind_addr; 617 p = bp->address_list.next; 618 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 619 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 620 addrcnt, SCTP_PARAM_ADD_IP); 621 if (!chunk) { 622 retval = -ENOMEM; 623 goto out; 624 } 625 626 /* Add the new addresses to the bind address list with 627 * use_as_src set to 0. 628 */ 629 addr_buf = addrs; 630 for (i = 0; i < addrcnt; i++) { 631 addr = addr_buf; 632 af = sctp_get_af_specific(addr->v4.sin_family); 633 memcpy(&saveaddr, addr, af->sockaddr_len); 634 retval = sctp_add_bind_addr(bp, &saveaddr, 635 sizeof(saveaddr), 636 SCTP_ADDR_NEW, GFP_ATOMIC); 637 addr_buf += af->sockaddr_len; 638 } 639 if (asoc->src_out_of_asoc_ok) { 640 struct sctp_transport *trans; 641 642 list_for_each_entry(trans, 643 &asoc->peer.transport_addr_list, transports) { 644 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 645 2*asoc->pathmtu, 4380)); 646 trans->ssthresh = asoc->peer.i.a_rwnd; 647 trans->rto = asoc->rto_initial; 648 sctp_max_rto(asoc, trans); 649 trans->rtt = trans->srtt = trans->rttvar = 0; 650 /* Clear the source and route cache */ 651 sctp_transport_route(trans, NULL, 652 sctp_sk(asoc->base.sk)); 653 } 654 } 655 retval = sctp_send_asconf(asoc, chunk); 656 } 657 658 out: 659 return retval; 660 } 661 662 /* Remove a list of addresses from bind addresses list. Do not remove the 663 * last address. 664 * 665 * Basically run through each address specified in the addrs/addrcnt 666 * array/length pair, determine if it is IPv6 or IPv4 and call 667 * sctp_del_bind() on it. 668 * 669 * If any of them fails, then the operation will be reversed and the 670 * ones that were removed will be added back. 671 * 672 * At least one address has to be left; if only one address is 673 * available, the operation will return -EBUSY. 674 * 675 * Only sctp_setsockopt_bindx() is supposed to call this function. 676 */ 677 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 678 { 679 struct sctp_sock *sp = sctp_sk(sk); 680 struct sctp_endpoint *ep = sp->ep; 681 int cnt; 682 struct sctp_bind_addr *bp = &ep->base.bind_addr; 683 int retval = 0; 684 void *addr_buf; 685 union sctp_addr *sa_addr; 686 struct sctp_af *af; 687 688 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 689 __func__, sk, addrs, addrcnt); 690 691 addr_buf = addrs; 692 for (cnt = 0; cnt < addrcnt; cnt++) { 693 /* If the bind address list is empty or if there is only one 694 * bind address, there is nothing more to be removed (we need 695 * at least one address here). 696 */ 697 if (list_empty(&bp->address_list) || 698 (sctp_list_single_entry(&bp->address_list))) { 699 retval = -EBUSY; 700 goto err_bindx_rem; 701 } 702 703 sa_addr = addr_buf; 704 af = sctp_get_af_specific(sa_addr->sa.sa_family); 705 if (!af) { 706 retval = -EINVAL; 707 goto err_bindx_rem; 708 } 709 710 if (!af->addr_valid(sa_addr, sp, NULL)) { 711 retval = -EADDRNOTAVAIL; 712 goto err_bindx_rem; 713 } 714 715 if (sa_addr->v4.sin_port && 716 sa_addr->v4.sin_port != htons(bp->port)) { 717 retval = -EINVAL; 718 goto err_bindx_rem; 719 } 720 721 if (!sa_addr->v4.sin_port) 722 sa_addr->v4.sin_port = htons(bp->port); 723 724 /* FIXME - There is probably a need to check if sk->sk_saddr and 725 * sk->sk_rcv_addr are currently set to one of the addresses to 726 * be removed. This is something which needs to be looked into 727 * when we are fixing the outstanding issues with multi-homing 728 * socket routing and failover schemes. Refer to comments in 729 * sctp_do_bind(). -daisy 730 */ 731 retval = sctp_del_bind_addr(bp, sa_addr); 732 733 addr_buf += af->sockaddr_len; 734 err_bindx_rem: 735 if (retval < 0) { 736 /* Failed. Add the ones that has been removed back */ 737 if (cnt > 0) 738 sctp_bindx_add(sk, addrs, cnt); 739 return retval; 740 } 741 } 742 743 return retval; 744 } 745 746 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 747 * the associations that are part of the endpoint indicating that a list of 748 * local addresses are removed from the endpoint. 749 * 750 * If any of the addresses is already in the bind address list of the 751 * association, we do not send the chunk for that association. But it will not 752 * affect other associations. 753 * 754 * Only sctp_setsockopt_bindx() is supposed to call this function. 755 */ 756 static int sctp_send_asconf_del_ip(struct sock *sk, 757 struct sockaddr *addrs, 758 int addrcnt) 759 { 760 struct sctp_sock *sp; 761 struct sctp_endpoint *ep; 762 struct sctp_association *asoc; 763 struct sctp_transport *transport; 764 struct sctp_bind_addr *bp; 765 struct sctp_chunk *chunk; 766 union sctp_addr *laddr; 767 void *addr_buf; 768 struct sctp_af *af; 769 struct sctp_sockaddr_entry *saddr; 770 int i; 771 int retval = 0; 772 int stored = 0; 773 774 chunk = NULL; 775 sp = sctp_sk(sk); 776 ep = sp->ep; 777 778 if (!ep->asconf_enable) 779 return retval; 780 781 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 782 __func__, sk, addrs, addrcnt); 783 784 list_for_each_entry(asoc, &ep->asocs, asocs) { 785 786 if (!asoc->peer.asconf_capable) 787 continue; 788 789 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 790 continue; 791 792 if (!sctp_state(asoc, ESTABLISHED)) 793 continue; 794 795 /* Check if any address in the packed array of addresses is 796 * not present in the bind address list of the association. 797 * If so, do not send the asconf chunk to its peer, but 798 * continue with other associations. 799 */ 800 addr_buf = addrs; 801 for (i = 0; i < addrcnt; i++) { 802 laddr = addr_buf; 803 af = sctp_get_af_specific(laddr->v4.sin_family); 804 if (!af) { 805 retval = -EINVAL; 806 goto out; 807 } 808 809 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 810 break; 811 812 addr_buf += af->sockaddr_len; 813 } 814 if (i < addrcnt) 815 continue; 816 817 /* Find one address in the association's bind address list 818 * that is not in the packed array of addresses. This is to 819 * make sure that we do not delete all the addresses in the 820 * association. 821 */ 822 bp = &asoc->base.bind_addr; 823 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 824 addrcnt, sp); 825 if ((laddr == NULL) && (addrcnt == 1)) { 826 if (asoc->asconf_addr_del_pending) 827 continue; 828 asoc->asconf_addr_del_pending = 829 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 830 if (asoc->asconf_addr_del_pending == NULL) { 831 retval = -ENOMEM; 832 goto out; 833 } 834 asoc->asconf_addr_del_pending->sa.sa_family = 835 addrs->sa_family; 836 asoc->asconf_addr_del_pending->v4.sin_port = 837 htons(bp->port); 838 if (addrs->sa_family == AF_INET) { 839 struct sockaddr_in *sin; 840 841 sin = (struct sockaddr_in *)addrs; 842 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 843 } else if (addrs->sa_family == AF_INET6) { 844 struct sockaddr_in6 *sin6; 845 846 sin6 = (struct sockaddr_in6 *)addrs; 847 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 848 } 849 850 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 851 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 852 asoc->asconf_addr_del_pending); 853 854 asoc->src_out_of_asoc_ok = 1; 855 stored = 1; 856 goto skip_mkasconf; 857 } 858 859 if (laddr == NULL) 860 return -EINVAL; 861 862 /* We do not need RCU protection throughout this loop 863 * because this is done under a socket lock from the 864 * setsockopt call. 865 */ 866 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 867 SCTP_PARAM_DEL_IP); 868 if (!chunk) { 869 retval = -ENOMEM; 870 goto out; 871 } 872 873 skip_mkasconf: 874 /* Reset use_as_src flag for the addresses in the bind address 875 * list that are to be deleted. 876 */ 877 addr_buf = addrs; 878 for (i = 0; i < addrcnt; i++) { 879 laddr = addr_buf; 880 af = sctp_get_af_specific(laddr->v4.sin_family); 881 list_for_each_entry(saddr, &bp->address_list, list) { 882 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 883 saddr->state = SCTP_ADDR_DEL; 884 } 885 addr_buf += af->sockaddr_len; 886 } 887 888 /* Update the route and saddr entries for all the transports 889 * as some of the addresses in the bind address list are 890 * about to be deleted and cannot be used as source addresses. 891 */ 892 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 893 transports) { 894 sctp_transport_route(transport, NULL, 895 sctp_sk(asoc->base.sk)); 896 } 897 898 if (stored) 899 /* We don't need to transmit ASCONF */ 900 continue; 901 retval = sctp_send_asconf(asoc, chunk); 902 } 903 out: 904 return retval; 905 } 906 907 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 908 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 909 { 910 struct sock *sk = sctp_opt2sk(sp); 911 union sctp_addr *addr; 912 struct sctp_af *af; 913 914 /* It is safe to write port space in caller. */ 915 addr = &addrw->a; 916 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 917 af = sctp_get_af_specific(addr->sa.sa_family); 918 if (!af) 919 return -EINVAL; 920 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 921 return -EINVAL; 922 923 if (addrw->state == SCTP_ADDR_NEW) 924 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 925 else 926 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 927 } 928 929 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 930 * 931 * API 8.1 932 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 933 * int flags); 934 * 935 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 936 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 937 * or IPv6 addresses. 938 * 939 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 940 * Section 3.1.2 for this usage. 941 * 942 * addrs is a pointer to an array of one or more socket addresses. Each 943 * address is contained in its appropriate structure (i.e. struct 944 * sockaddr_in or struct sockaddr_in6) the family of the address type 945 * must be used to distinguish the address length (note that this 946 * representation is termed a "packed array" of addresses). The caller 947 * specifies the number of addresses in the array with addrcnt. 948 * 949 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 950 * -1, and sets errno to the appropriate error code. 951 * 952 * For SCTP, the port given in each socket address must be the same, or 953 * sctp_bindx() will fail, setting errno to EINVAL. 954 * 955 * The flags parameter is formed from the bitwise OR of zero or more of 956 * the following currently defined flags: 957 * 958 * SCTP_BINDX_ADD_ADDR 959 * 960 * SCTP_BINDX_REM_ADDR 961 * 962 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 963 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 964 * addresses from the association. The two flags are mutually exclusive; 965 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 966 * not remove all addresses from an association; sctp_bindx() will 967 * reject such an attempt with EINVAL. 968 * 969 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 970 * additional addresses with an endpoint after calling bind(). Or use 971 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 972 * socket is associated with so that no new association accepted will be 973 * associated with those addresses. If the endpoint supports dynamic 974 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 975 * endpoint to send the appropriate message to the peer to change the 976 * peers address lists. 977 * 978 * Adding and removing addresses from a connected association is 979 * optional functionality. Implementations that do not support this 980 * functionality should return EOPNOTSUPP. 981 * 982 * Basically do nothing but copying the addresses from user to kernel 983 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 984 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 985 * from userspace. 986 * 987 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 988 * it. 989 * 990 * sk The sk of the socket 991 * addrs The pointer to the addresses 992 * addrssize Size of the addrs buffer 993 * op Operation to perform (add or remove, see the flags of 994 * sctp_bindx) 995 * 996 * Returns 0 if ok, <0 errno code on error. 997 */ 998 static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs, 999 int addrs_size, int op) 1000 { 1001 int err; 1002 int addrcnt = 0; 1003 int walk_size = 0; 1004 struct sockaddr *sa_addr; 1005 void *addr_buf = addrs; 1006 struct sctp_af *af; 1007 1008 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 1009 __func__, sk, addr_buf, addrs_size, op); 1010 1011 if (unlikely(addrs_size <= 0)) 1012 return -EINVAL; 1013 1014 /* Walk through the addrs buffer and count the number of addresses. */ 1015 while (walk_size < addrs_size) { 1016 if (walk_size + sizeof(sa_family_t) > addrs_size) 1017 return -EINVAL; 1018 1019 sa_addr = addr_buf; 1020 af = sctp_get_af_specific(sa_addr->sa_family); 1021 1022 /* If the address family is not supported or if this address 1023 * causes the address buffer to overflow return EINVAL. 1024 */ 1025 if (!af || (walk_size + af->sockaddr_len) > addrs_size) 1026 return -EINVAL; 1027 addrcnt++; 1028 addr_buf += af->sockaddr_len; 1029 walk_size += af->sockaddr_len; 1030 } 1031 1032 /* Do the work. */ 1033 switch (op) { 1034 case SCTP_BINDX_ADD_ADDR: 1035 /* Allow security module to validate bindx addresses. */ 1036 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1037 addrs, addrs_size); 1038 if (err) 1039 return err; 1040 err = sctp_bindx_add(sk, addrs, addrcnt); 1041 if (err) 1042 return err; 1043 return sctp_send_asconf_add_ip(sk, addrs, addrcnt); 1044 case SCTP_BINDX_REM_ADDR: 1045 err = sctp_bindx_rem(sk, addrs, addrcnt); 1046 if (err) 1047 return err; 1048 return sctp_send_asconf_del_ip(sk, addrs, addrcnt); 1049 1050 default: 1051 return -EINVAL; 1052 } 1053 } 1054 1055 static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs, 1056 int addrlen) 1057 { 1058 int err; 1059 1060 lock_sock(sk); 1061 err = sctp_setsockopt_bindx(sk, addrs, addrlen, SCTP_BINDX_ADD_ADDR); 1062 release_sock(sk); 1063 return err; 1064 } 1065 1066 static int sctp_connect_new_asoc(struct sctp_endpoint *ep, 1067 const union sctp_addr *daddr, 1068 const struct sctp_initmsg *init, 1069 struct sctp_transport **tp) 1070 { 1071 struct sctp_association *asoc; 1072 struct sock *sk = ep->base.sk; 1073 struct net *net = sock_net(sk); 1074 enum sctp_scope scope; 1075 int err; 1076 1077 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1078 return -EADDRNOTAVAIL; 1079 1080 if (!ep->base.bind_addr.port) { 1081 if (sctp_autobind(sk)) 1082 return -EAGAIN; 1083 } else { 1084 if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) && 1085 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1086 return -EACCES; 1087 } 1088 1089 scope = sctp_scope(daddr); 1090 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1091 if (!asoc) 1092 return -ENOMEM; 1093 1094 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1095 if (err < 0) 1096 goto free; 1097 1098 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1099 if (!*tp) { 1100 err = -ENOMEM; 1101 goto free; 1102 } 1103 1104 if (!init) 1105 return 0; 1106 1107 if (init->sinit_num_ostreams) { 1108 __u16 outcnt = init->sinit_num_ostreams; 1109 1110 asoc->c.sinit_num_ostreams = outcnt; 1111 /* outcnt has been changed, need to re-init stream */ 1112 err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL); 1113 if (err) 1114 goto free; 1115 } 1116 1117 if (init->sinit_max_instreams) 1118 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1119 1120 if (init->sinit_max_attempts) 1121 asoc->max_init_attempts = init->sinit_max_attempts; 1122 1123 if (init->sinit_max_init_timeo) 1124 asoc->max_init_timeo = 1125 msecs_to_jiffies(init->sinit_max_init_timeo); 1126 1127 return 0; 1128 free: 1129 sctp_association_free(asoc); 1130 return err; 1131 } 1132 1133 static int sctp_connect_add_peer(struct sctp_association *asoc, 1134 union sctp_addr *daddr, int addr_len) 1135 { 1136 struct sctp_endpoint *ep = asoc->ep; 1137 struct sctp_association *old; 1138 struct sctp_transport *t; 1139 int err; 1140 1141 err = sctp_verify_addr(ep->base.sk, daddr, addr_len); 1142 if (err) 1143 return err; 1144 1145 old = sctp_endpoint_lookup_assoc(ep, daddr, &t); 1146 if (old && old != asoc) 1147 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1148 : -EALREADY; 1149 1150 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1151 return -EADDRNOTAVAIL; 1152 1153 t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1154 if (!t) 1155 return -ENOMEM; 1156 1157 return 0; 1158 } 1159 1160 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1161 * 1162 * Common routine for handling connect() and sctp_connectx(). 1163 * Connect will come in with just a single address. 1164 */ 1165 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs, 1166 int addrs_size, int flags, sctp_assoc_t *assoc_id) 1167 { 1168 struct sctp_sock *sp = sctp_sk(sk); 1169 struct sctp_endpoint *ep = sp->ep; 1170 struct sctp_transport *transport; 1171 struct sctp_association *asoc; 1172 void *addr_buf = kaddrs; 1173 union sctp_addr *daddr; 1174 struct sctp_af *af; 1175 int walk_size, err; 1176 long timeo; 1177 1178 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1179 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) 1180 return -EISCONN; 1181 1182 daddr = addr_buf; 1183 af = sctp_get_af_specific(daddr->sa.sa_family); 1184 if (!af || af->sockaddr_len > addrs_size) 1185 return -EINVAL; 1186 1187 err = sctp_verify_addr(sk, daddr, af->sockaddr_len); 1188 if (err) 1189 return err; 1190 1191 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1192 if (asoc) 1193 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1194 : -EALREADY; 1195 1196 err = sctp_connect_new_asoc(ep, daddr, NULL, &transport); 1197 if (err) 1198 return err; 1199 asoc = transport->asoc; 1200 1201 addr_buf += af->sockaddr_len; 1202 walk_size = af->sockaddr_len; 1203 while (walk_size < addrs_size) { 1204 err = -EINVAL; 1205 if (walk_size + sizeof(sa_family_t) > addrs_size) 1206 goto out_free; 1207 1208 daddr = addr_buf; 1209 af = sctp_get_af_specific(daddr->sa.sa_family); 1210 if (!af || af->sockaddr_len + walk_size > addrs_size) 1211 goto out_free; 1212 1213 if (asoc->peer.port != ntohs(daddr->v4.sin_port)) 1214 goto out_free; 1215 1216 err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len); 1217 if (err) 1218 goto out_free; 1219 1220 addr_buf += af->sockaddr_len; 1221 walk_size += af->sockaddr_len; 1222 } 1223 1224 /* In case the user of sctp_connectx() wants an association 1225 * id back, assign one now. 1226 */ 1227 if (assoc_id) { 1228 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1229 if (err < 0) 1230 goto out_free; 1231 } 1232 1233 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL); 1234 if (err < 0) 1235 goto out_free; 1236 1237 /* Initialize sk's dport and daddr for getpeername() */ 1238 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1239 sp->pf->to_sk_daddr(daddr, sk); 1240 sk->sk_err = 0; 1241 1242 if (assoc_id) 1243 *assoc_id = asoc->assoc_id; 1244 1245 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1246 return sctp_wait_for_connect(asoc, &timeo); 1247 1248 out_free: 1249 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1250 __func__, asoc, kaddrs, err); 1251 sctp_association_free(asoc); 1252 return err; 1253 } 1254 1255 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1256 * 1257 * API 8.9 1258 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1259 * sctp_assoc_t *asoc); 1260 * 1261 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1262 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1263 * or IPv6 addresses. 1264 * 1265 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1266 * Section 3.1.2 for this usage. 1267 * 1268 * addrs is a pointer to an array of one or more socket addresses. Each 1269 * address is contained in its appropriate structure (i.e. struct 1270 * sockaddr_in or struct sockaddr_in6) the family of the address type 1271 * must be used to distengish the address length (note that this 1272 * representation is termed a "packed array" of addresses). The caller 1273 * specifies the number of addresses in the array with addrcnt. 1274 * 1275 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1276 * the association id of the new association. On failure, sctp_connectx() 1277 * returns -1, and sets errno to the appropriate error code. The assoc_id 1278 * is not touched by the kernel. 1279 * 1280 * For SCTP, the port given in each socket address must be the same, or 1281 * sctp_connectx() will fail, setting errno to EINVAL. 1282 * 1283 * An application can use sctp_connectx to initiate an association with 1284 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1285 * allows a caller to specify multiple addresses at which a peer can be 1286 * reached. The way the SCTP stack uses the list of addresses to set up 1287 * the association is implementation dependent. This function only 1288 * specifies that the stack will try to make use of all the addresses in 1289 * the list when needed. 1290 * 1291 * Note that the list of addresses passed in is only used for setting up 1292 * the association. It does not necessarily equal the set of addresses 1293 * the peer uses for the resulting association. If the caller wants to 1294 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1295 * retrieve them after the association has been set up. 1296 * 1297 * Basically do nothing but copying the addresses from user to kernel 1298 * land and invoking either sctp_connectx(). This is used for tunneling 1299 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1300 * 1301 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1302 * it. 1303 * 1304 * sk The sk of the socket 1305 * addrs The pointer to the addresses 1306 * addrssize Size of the addrs buffer 1307 * 1308 * Returns >=0 if ok, <0 errno code on error. 1309 */ 1310 static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs, 1311 int addrs_size, sctp_assoc_t *assoc_id) 1312 { 1313 int err = 0, flags = 0; 1314 1315 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1316 __func__, sk, kaddrs, addrs_size); 1317 1318 /* make sure the 1st addr's sa_family is accessible later */ 1319 if (unlikely(addrs_size < sizeof(sa_family_t))) 1320 return -EINVAL; 1321 1322 /* Allow security module to validate connectx addresses. */ 1323 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1324 (struct sockaddr *)kaddrs, 1325 addrs_size); 1326 if (err) 1327 return err; 1328 1329 /* in-kernel sockets don't generally have a file allocated to them 1330 * if all they do is call sock_create_kern(). 1331 */ 1332 if (sk->sk_socket->file) 1333 flags = sk->sk_socket->file->f_flags; 1334 1335 return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1336 } 1337 1338 /* 1339 * This is an older interface. It's kept for backward compatibility 1340 * to the option that doesn't provide association id. 1341 */ 1342 static int sctp_setsockopt_connectx_old(struct sock *sk, 1343 struct sockaddr *kaddrs, 1344 int addrs_size) 1345 { 1346 return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL); 1347 } 1348 1349 /* 1350 * New interface for the API. The since the API is done with a socket 1351 * option, to make it simple we feed back the association id is as a return 1352 * indication to the call. Error is always negative and association id is 1353 * always positive. 1354 */ 1355 static int sctp_setsockopt_connectx(struct sock *sk, 1356 struct sockaddr *kaddrs, 1357 int addrs_size) 1358 { 1359 sctp_assoc_t assoc_id = 0; 1360 int err = 0; 1361 1362 err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id); 1363 1364 if (err) 1365 return err; 1366 else 1367 return assoc_id; 1368 } 1369 1370 /* 1371 * New (hopefully final) interface for the API. 1372 * We use the sctp_getaddrs_old structure so that use-space library 1373 * can avoid any unnecessary allocations. The only different part 1374 * is that we store the actual length of the address buffer into the 1375 * addrs_num structure member. That way we can re-use the existing 1376 * code. 1377 */ 1378 #ifdef CONFIG_COMPAT 1379 struct compat_sctp_getaddrs_old { 1380 sctp_assoc_t assoc_id; 1381 s32 addr_num; 1382 compat_uptr_t addrs; /* struct sockaddr * */ 1383 }; 1384 #endif 1385 1386 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1387 char __user *optval, 1388 int __user *optlen) 1389 { 1390 struct sctp_getaddrs_old param; 1391 sctp_assoc_t assoc_id = 0; 1392 struct sockaddr *kaddrs; 1393 int err = 0; 1394 1395 #ifdef CONFIG_COMPAT 1396 if (in_compat_syscall()) { 1397 struct compat_sctp_getaddrs_old param32; 1398 1399 if (len < sizeof(param32)) 1400 return -EINVAL; 1401 if (copy_from_user(¶m32, optval, sizeof(param32))) 1402 return -EFAULT; 1403 1404 param.assoc_id = param32.assoc_id; 1405 param.addr_num = param32.addr_num; 1406 param.addrs = compat_ptr(param32.addrs); 1407 } else 1408 #endif 1409 { 1410 if (len < sizeof(param)) 1411 return -EINVAL; 1412 if (copy_from_user(¶m, optval, sizeof(param))) 1413 return -EFAULT; 1414 } 1415 1416 kaddrs = memdup_user(param.addrs, param.addr_num); 1417 if (IS_ERR(kaddrs)) 1418 return PTR_ERR(kaddrs); 1419 1420 err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id); 1421 kfree(kaddrs); 1422 if (err == 0 || err == -EINPROGRESS) { 1423 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1424 return -EFAULT; 1425 if (put_user(sizeof(assoc_id), optlen)) 1426 return -EFAULT; 1427 } 1428 1429 return err; 1430 } 1431 1432 /* API 3.1.4 close() - UDP Style Syntax 1433 * Applications use close() to perform graceful shutdown (as described in 1434 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1435 * by a UDP-style socket. 1436 * 1437 * The syntax is 1438 * 1439 * ret = close(int sd); 1440 * 1441 * sd - the socket descriptor of the associations to be closed. 1442 * 1443 * To gracefully shutdown a specific association represented by the 1444 * UDP-style socket, an application should use the sendmsg() call, 1445 * passing no user data, but including the appropriate flag in the 1446 * ancillary data (see Section xxxx). 1447 * 1448 * If sd in the close() call is a branched-off socket representing only 1449 * one association, the shutdown is performed on that association only. 1450 * 1451 * 4.1.6 close() - TCP Style Syntax 1452 * 1453 * Applications use close() to gracefully close down an association. 1454 * 1455 * The syntax is: 1456 * 1457 * int close(int sd); 1458 * 1459 * sd - the socket descriptor of the association to be closed. 1460 * 1461 * After an application calls close() on a socket descriptor, no further 1462 * socket operations will succeed on that descriptor. 1463 * 1464 * API 7.1.4 SO_LINGER 1465 * 1466 * An application using the TCP-style socket can use this option to 1467 * perform the SCTP ABORT primitive. The linger option structure is: 1468 * 1469 * struct linger { 1470 * int l_onoff; // option on/off 1471 * int l_linger; // linger time 1472 * }; 1473 * 1474 * To enable the option, set l_onoff to 1. If the l_linger value is set 1475 * to 0, calling close() is the same as the ABORT primitive. If the 1476 * value is set to a negative value, the setsockopt() call will return 1477 * an error. If the value is set to a positive value linger_time, the 1478 * close() can be blocked for at most linger_time ms. If the graceful 1479 * shutdown phase does not finish during this period, close() will 1480 * return but the graceful shutdown phase continues in the system. 1481 */ 1482 static void sctp_close(struct sock *sk, long timeout) 1483 { 1484 struct net *net = sock_net(sk); 1485 struct sctp_endpoint *ep; 1486 struct sctp_association *asoc; 1487 struct list_head *pos, *temp; 1488 unsigned int data_was_unread; 1489 1490 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1491 1492 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1493 sk->sk_shutdown = SHUTDOWN_MASK; 1494 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1495 1496 ep = sctp_sk(sk)->ep; 1497 1498 /* Clean up any skbs sitting on the receive queue. */ 1499 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1500 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1501 1502 /* Walk all associations on an endpoint. */ 1503 list_for_each_safe(pos, temp, &ep->asocs) { 1504 asoc = list_entry(pos, struct sctp_association, asocs); 1505 1506 if (sctp_style(sk, TCP)) { 1507 /* A closed association can still be in the list if 1508 * it belongs to a TCP-style listening socket that is 1509 * not yet accepted. If so, free it. If not, send an 1510 * ABORT or SHUTDOWN based on the linger options. 1511 */ 1512 if (sctp_state(asoc, CLOSED)) { 1513 sctp_association_free(asoc); 1514 continue; 1515 } 1516 } 1517 1518 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1519 !skb_queue_empty(&asoc->ulpq.reasm) || 1520 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1521 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1522 struct sctp_chunk *chunk; 1523 1524 chunk = sctp_make_abort_user(asoc, NULL, 0); 1525 sctp_primitive_ABORT(net, asoc, chunk); 1526 } else 1527 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1528 } 1529 1530 /* On a TCP-style socket, block for at most linger_time if set. */ 1531 if (sctp_style(sk, TCP) && timeout) 1532 sctp_wait_for_close(sk, timeout); 1533 1534 /* This will run the backlog queue. */ 1535 release_sock(sk); 1536 1537 /* Supposedly, no process has access to the socket, but 1538 * the net layers still may. 1539 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1540 * held and that should be grabbed before socket lock. 1541 */ 1542 spin_lock_bh(&net->sctp.addr_wq_lock); 1543 bh_lock_sock_nested(sk); 1544 1545 /* Hold the sock, since sk_common_release() will put sock_put() 1546 * and we have just a little more cleanup. 1547 */ 1548 sock_hold(sk); 1549 sk_common_release(sk); 1550 1551 bh_unlock_sock(sk); 1552 spin_unlock_bh(&net->sctp.addr_wq_lock); 1553 1554 sock_put(sk); 1555 1556 SCTP_DBG_OBJCNT_DEC(sock); 1557 } 1558 1559 /* Handle EPIPE error. */ 1560 static int sctp_error(struct sock *sk, int flags, int err) 1561 { 1562 if (err == -EPIPE) 1563 err = sock_error(sk) ? : -EPIPE; 1564 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1565 send_sig(SIGPIPE, current, 0); 1566 return err; 1567 } 1568 1569 /* API 3.1.3 sendmsg() - UDP Style Syntax 1570 * 1571 * An application uses sendmsg() and recvmsg() calls to transmit data to 1572 * and receive data from its peer. 1573 * 1574 * ssize_t sendmsg(int socket, const struct msghdr *message, 1575 * int flags); 1576 * 1577 * socket - the socket descriptor of the endpoint. 1578 * message - pointer to the msghdr structure which contains a single 1579 * user message and possibly some ancillary data. 1580 * 1581 * See Section 5 for complete description of the data 1582 * structures. 1583 * 1584 * flags - flags sent or received with the user message, see Section 1585 * 5 for complete description of the flags. 1586 * 1587 * Note: This function could use a rewrite especially when explicit 1588 * connect support comes in. 1589 */ 1590 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1591 1592 static int sctp_msghdr_parse(const struct msghdr *msg, 1593 struct sctp_cmsgs *cmsgs); 1594 1595 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1596 struct sctp_sndrcvinfo *srinfo, 1597 const struct msghdr *msg, size_t msg_len) 1598 { 1599 __u16 sflags; 1600 int err; 1601 1602 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1603 return -EPIPE; 1604 1605 if (msg_len > sk->sk_sndbuf) 1606 return -EMSGSIZE; 1607 1608 memset(cmsgs, 0, sizeof(*cmsgs)); 1609 err = sctp_msghdr_parse(msg, cmsgs); 1610 if (err) { 1611 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1612 return err; 1613 } 1614 1615 memset(srinfo, 0, sizeof(*srinfo)); 1616 if (cmsgs->srinfo) { 1617 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1618 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1619 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1620 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1621 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1622 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1623 } 1624 1625 if (cmsgs->sinfo) { 1626 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1627 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1628 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1629 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1630 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1631 } 1632 1633 if (cmsgs->prinfo) { 1634 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1635 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1636 cmsgs->prinfo->pr_policy); 1637 } 1638 1639 sflags = srinfo->sinfo_flags; 1640 if (!sflags && msg_len) 1641 return 0; 1642 1643 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1644 return -EINVAL; 1645 1646 if (((sflags & SCTP_EOF) && msg_len > 0) || 1647 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1648 return -EINVAL; 1649 1650 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1651 return -EINVAL; 1652 1653 return 0; 1654 } 1655 1656 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1657 struct sctp_cmsgs *cmsgs, 1658 union sctp_addr *daddr, 1659 struct sctp_transport **tp) 1660 { 1661 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1662 struct sctp_association *asoc; 1663 struct cmsghdr *cmsg; 1664 __be32 flowinfo = 0; 1665 struct sctp_af *af; 1666 int err; 1667 1668 *tp = NULL; 1669 1670 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1671 return -EINVAL; 1672 1673 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1674 sctp_sstate(sk, CLOSING))) 1675 return -EADDRNOTAVAIL; 1676 1677 /* Label connection socket for first association 1-to-many 1678 * style for client sequence socket()->sendmsg(). This 1679 * needs to be done before sctp_assoc_add_peer() as that will 1680 * set up the initial packet that needs to account for any 1681 * security ip options (CIPSO/CALIPSO) added to the packet. 1682 */ 1683 af = sctp_get_af_specific(daddr->sa.sa_family); 1684 if (!af) 1685 return -EINVAL; 1686 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1687 (struct sockaddr *)daddr, 1688 af->sockaddr_len); 1689 if (err < 0) 1690 return err; 1691 1692 err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp); 1693 if (err) 1694 return err; 1695 asoc = (*tp)->asoc; 1696 1697 if (!cmsgs->addrs_msg) 1698 return 0; 1699 1700 if (daddr->sa.sa_family == AF_INET6) 1701 flowinfo = daddr->v6.sin6_flowinfo; 1702 1703 /* sendv addr list parse */ 1704 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1705 union sctp_addr _daddr; 1706 int dlen; 1707 1708 if (cmsg->cmsg_level != IPPROTO_SCTP || 1709 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1710 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1711 continue; 1712 1713 daddr = &_daddr; 1714 memset(daddr, 0, sizeof(*daddr)); 1715 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1716 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1717 if (dlen < sizeof(struct in_addr)) { 1718 err = -EINVAL; 1719 goto free; 1720 } 1721 1722 dlen = sizeof(struct in_addr); 1723 daddr->v4.sin_family = AF_INET; 1724 daddr->v4.sin_port = htons(asoc->peer.port); 1725 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1726 } else { 1727 if (dlen < sizeof(struct in6_addr)) { 1728 err = -EINVAL; 1729 goto free; 1730 } 1731 1732 dlen = sizeof(struct in6_addr); 1733 daddr->v6.sin6_flowinfo = flowinfo; 1734 daddr->v6.sin6_family = AF_INET6; 1735 daddr->v6.sin6_port = htons(asoc->peer.port); 1736 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1737 } 1738 1739 err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr)); 1740 if (err) 1741 goto free; 1742 } 1743 1744 return 0; 1745 1746 free: 1747 sctp_association_free(asoc); 1748 return err; 1749 } 1750 1751 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1752 __u16 sflags, struct msghdr *msg, 1753 size_t msg_len) 1754 { 1755 struct sock *sk = asoc->base.sk; 1756 struct net *net = sock_net(sk); 1757 1758 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1759 return -EPIPE; 1760 1761 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1762 !sctp_state(asoc, ESTABLISHED)) 1763 return 0; 1764 1765 if (sflags & SCTP_EOF) { 1766 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1767 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1768 1769 return 0; 1770 } 1771 1772 if (sflags & SCTP_ABORT) { 1773 struct sctp_chunk *chunk; 1774 1775 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1776 if (!chunk) 1777 return -ENOMEM; 1778 1779 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1780 sctp_primitive_ABORT(net, asoc, chunk); 1781 iov_iter_revert(&msg->msg_iter, msg_len); 1782 1783 return 0; 1784 } 1785 1786 return 1; 1787 } 1788 1789 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1790 struct msghdr *msg, size_t msg_len, 1791 struct sctp_transport *transport, 1792 struct sctp_sndrcvinfo *sinfo) 1793 { 1794 struct sock *sk = asoc->base.sk; 1795 struct sctp_sock *sp = sctp_sk(sk); 1796 struct net *net = sock_net(sk); 1797 struct sctp_datamsg *datamsg; 1798 bool wait_connect = false; 1799 struct sctp_chunk *chunk; 1800 long timeo; 1801 int err; 1802 1803 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1804 err = -EINVAL; 1805 goto err; 1806 } 1807 1808 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { 1809 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1810 if (err) 1811 goto err; 1812 } 1813 1814 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1815 err = -EMSGSIZE; 1816 goto err; 1817 } 1818 1819 if (asoc->pmtu_pending) { 1820 if (sp->param_flags & SPP_PMTUD_ENABLE) 1821 sctp_assoc_sync_pmtu(asoc); 1822 asoc->pmtu_pending = 0; 1823 } 1824 1825 if (sctp_wspace(asoc) < (int)msg_len) 1826 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1827 1828 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) { 1829 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1830 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1831 if (err) 1832 goto err; 1833 } 1834 1835 if (sctp_state(asoc, CLOSED)) { 1836 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1837 if (err) 1838 goto err; 1839 1840 if (asoc->ep->intl_enable) { 1841 timeo = sock_sndtimeo(sk, 0); 1842 err = sctp_wait_for_connect(asoc, &timeo); 1843 if (err) { 1844 err = -ESRCH; 1845 goto err; 1846 } 1847 } else { 1848 wait_connect = true; 1849 } 1850 1851 pr_debug("%s: we associated primitively\n", __func__); 1852 } 1853 1854 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1855 if (IS_ERR(datamsg)) { 1856 err = PTR_ERR(datamsg); 1857 goto err; 1858 } 1859 1860 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1861 1862 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1863 sctp_chunk_hold(chunk); 1864 sctp_set_owner_w(chunk); 1865 chunk->transport = transport; 1866 } 1867 1868 err = sctp_primitive_SEND(net, asoc, datamsg); 1869 if (err) { 1870 sctp_datamsg_free(datamsg); 1871 goto err; 1872 } 1873 1874 pr_debug("%s: we sent primitively\n", __func__); 1875 1876 sctp_datamsg_put(datamsg); 1877 1878 if (unlikely(wait_connect)) { 1879 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1880 sctp_wait_for_connect(asoc, &timeo); 1881 } 1882 1883 err = msg_len; 1884 1885 err: 1886 return err; 1887 } 1888 1889 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1890 const struct msghdr *msg, 1891 struct sctp_cmsgs *cmsgs) 1892 { 1893 union sctp_addr *daddr = NULL; 1894 int err; 1895 1896 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1897 int len = msg->msg_namelen; 1898 1899 if (len > sizeof(*daddr)) 1900 len = sizeof(*daddr); 1901 1902 daddr = (union sctp_addr *)msg->msg_name; 1903 1904 err = sctp_verify_addr(sk, daddr, len); 1905 if (err) 1906 return ERR_PTR(err); 1907 } 1908 1909 return daddr; 1910 } 1911 1912 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 1913 struct sctp_sndrcvinfo *sinfo, 1914 struct sctp_cmsgs *cmsgs) 1915 { 1916 if (!cmsgs->srinfo && !cmsgs->sinfo) { 1917 sinfo->sinfo_stream = asoc->default_stream; 1918 sinfo->sinfo_ppid = asoc->default_ppid; 1919 sinfo->sinfo_context = asoc->default_context; 1920 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 1921 1922 if (!cmsgs->prinfo) 1923 sinfo->sinfo_flags = asoc->default_flags; 1924 } 1925 1926 if (!cmsgs->srinfo && !cmsgs->prinfo) 1927 sinfo->sinfo_timetolive = asoc->default_timetolive; 1928 1929 if (cmsgs->authinfo) { 1930 /* Reuse sinfo_tsn to indicate that authinfo was set and 1931 * sinfo_ssn to save the keyid on tx path. 1932 */ 1933 sinfo->sinfo_tsn = 1; 1934 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 1935 } 1936 } 1937 1938 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1939 { 1940 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1941 struct sctp_transport *transport = NULL; 1942 struct sctp_sndrcvinfo _sinfo, *sinfo; 1943 struct sctp_association *asoc, *tmp; 1944 struct sctp_cmsgs cmsgs; 1945 union sctp_addr *daddr; 1946 bool new = false; 1947 __u16 sflags; 1948 int err; 1949 1950 /* Parse and get snd_info */ 1951 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 1952 if (err) 1953 goto out; 1954 1955 sinfo = &_sinfo; 1956 sflags = sinfo->sinfo_flags; 1957 1958 /* Get daddr from msg */ 1959 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 1960 if (IS_ERR(daddr)) { 1961 err = PTR_ERR(daddr); 1962 goto out; 1963 } 1964 1965 lock_sock(sk); 1966 1967 /* SCTP_SENDALL process */ 1968 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 1969 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) { 1970 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1971 msg_len); 1972 if (err == 0) 1973 continue; 1974 if (err < 0) 1975 goto out_unlock; 1976 1977 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 1978 1979 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 1980 NULL, sinfo); 1981 if (err < 0) 1982 goto out_unlock; 1983 1984 iov_iter_revert(&msg->msg_iter, err); 1985 } 1986 1987 goto out_unlock; 1988 } 1989 1990 /* Get and check or create asoc */ 1991 if (daddr) { 1992 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1993 if (asoc) { 1994 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1995 msg_len); 1996 if (err <= 0) 1997 goto out_unlock; 1998 } else { 1999 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 2000 &transport); 2001 if (err) 2002 goto out_unlock; 2003 2004 asoc = transport->asoc; 2005 new = true; 2006 } 2007 2008 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 2009 transport = NULL; 2010 } else { 2011 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2012 if (!asoc) { 2013 err = -EPIPE; 2014 goto out_unlock; 2015 } 2016 2017 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2018 if (err <= 0) 2019 goto out_unlock; 2020 } 2021 2022 /* Update snd_info with the asoc */ 2023 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2024 2025 /* Send msg to the asoc */ 2026 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2027 if (err < 0 && err != -ESRCH && new) 2028 sctp_association_free(asoc); 2029 2030 out_unlock: 2031 release_sock(sk); 2032 out: 2033 return sctp_error(sk, msg->msg_flags, err); 2034 } 2035 2036 /* This is an extended version of skb_pull() that removes the data from the 2037 * start of a skb even when data is spread across the list of skb's in the 2038 * frag_list. len specifies the total amount of data that needs to be removed. 2039 * when 'len' bytes could be removed from the skb, it returns 0. 2040 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2041 * could not be removed. 2042 */ 2043 static int sctp_skb_pull(struct sk_buff *skb, int len) 2044 { 2045 struct sk_buff *list; 2046 int skb_len = skb_headlen(skb); 2047 int rlen; 2048 2049 if (len <= skb_len) { 2050 __skb_pull(skb, len); 2051 return 0; 2052 } 2053 len -= skb_len; 2054 __skb_pull(skb, skb_len); 2055 2056 skb_walk_frags(skb, list) { 2057 rlen = sctp_skb_pull(list, len); 2058 skb->len -= (len-rlen); 2059 skb->data_len -= (len-rlen); 2060 2061 if (!rlen) 2062 return 0; 2063 2064 len = rlen; 2065 } 2066 2067 return len; 2068 } 2069 2070 /* API 3.1.3 recvmsg() - UDP Style Syntax 2071 * 2072 * ssize_t recvmsg(int socket, struct msghdr *message, 2073 * int flags); 2074 * 2075 * socket - the socket descriptor of the endpoint. 2076 * message - pointer to the msghdr structure which contains a single 2077 * user message and possibly some ancillary data. 2078 * 2079 * See Section 5 for complete description of the data 2080 * structures. 2081 * 2082 * flags - flags sent or received with the user message, see Section 2083 * 5 for complete description of the flags. 2084 */ 2085 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2086 int flags, int *addr_len) 2087 { 2088 struct sctp_ulpevent *event = NULL; 2089 struct sctp_sock *sp = sctp_sk(sk); 2090 struct sk_buff *skb, *head_skb; 2091 int copied; 2092 int err = 0; 2093 int skb_len; 2094 2095 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, flags:0x%x, addr_len:%p)\n", 2096 __func__, sk, msg, len, flags, addr_len); 2097 2098 lock_sock(sk); 2099 2100 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2101 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2102 err = -ENOTCONN; 2103 goto out; 2104 } 2105 2106 skb = sctp_skb_recv_datagram(sk, flags, &err); 2107 if (!skb) 2108 goto out; 2109 2110 /* Get the total length of the skb including any skb's in the 2111 * frag_list. 2112 */ 2113 skb_len = skb->len; 2114 2115 copied = skb_len; 2116 if (copied > len) 2117 copied = len; 2118 2119 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2120 2121 event = sctp_skb2event(skb); 2122 2123 if (err) 2124 goto out_free; 2125 2126 if (event->chunk && event->chunk->head_skb) 2127 head_skb = event->chunk->head_skb; 2128 else 2129 head_skb = skb; 2130 sock_recv_cmsgs(msg, sk, head_skb); 2131 if (sctp_ulpevent_is_notification(event)) { 2132 msg->msg_flags |= MSG_NOTIFICATION; 2133 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2134 } else { 2135 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2136 } 2137 2138 /* Check if we allow SCTP_NXTINFO. */ 2139 if (sp->recvnxtinfo) 2140 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2141 /* Check if we allow SCTP_RCVINFO. */ 2142 if (sp->recvrcvinfo) 2143 sctp_ulpevent_read_rcvinfo(event, msg); 2144 /* Check if we allow SCTP_SNDRCVINFO. */ 2145 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT)) 2146 sctp_ulpevent_read_sndrcvinfo(event, msg); 2147 2148 err = copied; 2149 2150 /* If skb's length exceeds the user's buffer, update the skb and 2151 * push it back to the receive_queue so that the next call to 2152 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2153 */ 2154 if (skb_len > copied) { 2155 msg->msg_flags &= ~MSG_EOR; 2156 if (flags & MSG_PEEK) 2157 goto out_free; 2158 sctp_skb_pull(skb, copied); 2159 skb_queue_head(&sk->sk_receive_queue, skb); 2160 2161 /* When only partial message is copied to the user, increase 2162 * rwnd by that amount. If all the data in the skb is read, 2163 * rwnd is updated when the event is freed. 2164 */ 2165 if (!sctp_ulpevent_is_notification(event)) 2166 sctp_assoc_rwnd_increase(event->asoc, copied); 2167 goto out; 2168 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2169 (event->msg_flags & MSG_EOR)) 2170 msg->msg_flags |= MSG_EOR; 2171 else 2172 msg->msg_flags &= ~MSG_EOR; 2173 2174 out_free: 2175 if (flags & MSG_PEEK) { 2176 /* Release the skb reference acquired after peeking the skb in 2177 * sctp_skb_recv_datagram(). 2178 */ 2179 kfree_skb(skb); 2180 } else { 2181 /* Free the event which includes releasing the reference to 2182 * the owner of the skb, freeing the skb and updating the 2183 * rwnd. 2184 */ 2185 sctp_ulpevent_free(event); 2186 } 2187 out: 2188 release_sock(sk); 2189 return err; 2190 } 2191 2192 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2193 * 2194 * This option is a on/off flag. If enabled no SCTP message 2195 * fragmentation will be performed. Instead if a message being sent 2196 * exceeds the current PMTU size, the message will NOT be sent and 2197 * instead a error will be indicated to the user. 2198 */ 2199 static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val, 2200 unsigned int optlen) 2201 { 2202 if (optlen < sizeof(int)) 2203 return -EINVAL; 2204 sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1; 2205 return 0; 2206 } 2207 2208 static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type, 2209 unsigned int optlen) 2210 { 2211 struct sctp_sock *sp = sctp_sk(sk); 2212 struct sctp_association *asoc; 2213 int i; 2214 2215 if (optlen > sizeof(struct sctp_event_subscribe)) 2216 return -EINVAL; 2217 2218 for (i = 0; i < optlen; i++) 2219 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i, 2220 sn_type[i]); 2221 2222 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2223 asoc->subscribe = sctp_sk(sk)->subscribe; 2224 2225 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2226 * if there is no data to be sent or retransmit, the stack will 2227 * immediately send up this notification. 2228 */ 2229 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) { 2230 struct sctp_ulpevent *event; 2231 2232 asoc = sctp_id2assoc(sk, 0); 2233 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2234 event = sctp_ulpevent_make_sender_dry_event(asoc, 2235 GFP_USER | __GFP_NOWARN); 2236 if (!event) 2237 return -ENOMEM; 2238 2239 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2240 } 2241 } 2242 2243 return 0; 2244 } 2245 2246 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2247 * 2248 * This socket option is applicable to the UDP-style socket only. When 2249 * set it will cause associations that are idle for more than the 2250 * specified number of seconds to automatically close. An association 2251 * being idle is defined an association that has NOT sent or received 2252 * user data. The special value of '0' indicates that no automatic 2253 * close of any associations should be performed. The option expects an 2254 * integer defining the number of seconds of idle time before an 2255 * association is closed. 2256 */ 2257 static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval, 2258 unsigned int optlen) 2259 { 2260 struct sctp_sock *sp = sctp_sk(sk); 2261 struct net *net = sock_net(sk); 2262 2263 /* Applicable to UDP-style socket only */ 2264 if (sctp_style(sk, TCP)) 2265 return -EOPNOTSUPP; 2266 if (optlen != sizeof(int)) 2267 return -EINVAL; 2268 2269 sp->autoclose = *optval; 2270 if (sp->autoclose > net->sctp.max_autoclose) 2271 sp->autoclose = net->sctp.max_autoclose; 2272 2273 return 0; 2274 } 2275 2276 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2277 * 2278 * Applications can enable or disable heartbeats for any peer address of 2279 * an association, modify an address's heartbeat interval, force a 2280 * heartbeat to be sent immediately, and adjust the address's maximum 2281 * number of retransmissions sent before an address is considered 2282 * unreachable. The following structure is used to access and modify an 2283 * address's parameters: 2284 * 2285 * struct sctp_paddrparams { 2286 * sctp_assoc_t spp_assoc_id; 2287 * struct sockaddr_storage spp_address; 2288 * uint32_t spp_hbinterval; 2289 * uint16_t spp_pathmaxrxt; 2290 * uint32_t spp_pathmtu; 2291 * uint32_t spp_sackdelay; 2292 * uint32_t spp_flags; 2293 * uint32_t spp_ipv6_flowlabel; 2294 * uint8_t spp_dscp; 2295 * }; 2296 * 2297 * spp_assoc_id - (one-to-many style socket) This is filled in the 2298 * application, and identifies the association for 2299 * this query. 2300 * spp_address - This specifies which address is of interest. 2301 * spp_hbinterval - This contains the value of the heartbeat interval, 2302 * in milliseconds. If a value of zero 2303 * is present in this field then no changes are to 2304 * be made to this parameter. 2305 * spp_pathmaxrxt - This contains the maximum number of 2306 * retransmissions before this address shall be 2307 * considered unreachable. If a value of zero 2308 * is present in this field then no changes are to 2309 * be made to this parameter. 2310 * spp_pathmtu - When Path MTU discovery is disabled the value 2311 * specified here will be the "fixed" path mtu. 2312 * Note that if the spp_address field is empty 2313 * then all associations on this address will 2314 * have this fixed path mtu set upon them. 2315 * 2316 * spp_sackdelay - When delayed sack is enabled, this value specifies 2317 * the number of milliseconds that sacks will be delayed 2318 * for. This value will apply to all addresses of an 2319 * association if the spp_address field is empty. Note 2320 * also, that if delayed sack is enabled and this 2321 * value is set to 0, no change is made to the last 2322 * recorded delayed sack timer value. 2323 * 2324 * spp_flags - These flags are used to control various features 2325 * on an association. The flag field may contain 2326 * zero or more of the following options. 2327 * 2328 * SPP_HB_ENABLE - Enable heartbeats on the 2329 * specified address. Note that if the address 2330 * field is empty all addresses for the association 2331 * have heartbeats enabled upon them. 2332 * 2333 * SPP_HB_DISABLE - Disable heartbeats on the 2334 * speicifed address. Note that if the address 2335 * field is empty all addresses for the association 2336 * will have their heartbeats disabled. Note also 2337 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2338 * mutually exclusive, only one of these two should 2339 * be specified. Enabling both fields will have 2340 * undetermined results. 2341 * 2342 * SPP_HB_DEMAND - Request a user initiated heartbeat 2343 * to be made immediately. 2344 * 2345 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2346 * heartbeat delayis to be set to the value of 0 2347 * milliseconds. 2348 * 2349 * SPP_PMTUD_ENABLE - This field will enable PMTU 2350 * discovery upon the specified address. Note that 2351 * if the address feild is empty then all addresses 2352 * on the association are effected. 2353 * 2354 * SPP_PMTUD_DISABLE - This field will disable PMTU 2355 * discovery upon the specified address. Note that 2356 * if the address feild is empty then all addresses 2357 * on the association are effected. Not also that 2358 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2359 * exclusive. Enabling both will have undetermined 2360 * results. 2361 * 2362 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2363 * on delayed sack. The time specified in spp_sackdelay 2364 * is used to specify the sack delay for this address. Note 2365 * that if spp_address is empty then all addresses will 2366 * enable delayed sack and take on the sack delay 2367 * value specified in spp_sackdelay. 2368 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2369 * off delayed sack. If the spp_address field is blank then 2370 * delayed sack is disabled for the entire association. Note 2371 * also that this field is mutually exclusive to 2372 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2373 * results. 2374 * 2375 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2376 * setting of the IPV6 flow label value. The value is 2377 * contained in the spp_ipv6_flowlabel field. 2378 * Upon retrieval, this flag will be set to indicate that 2379 * the spp_ipv6_flowlabel field has a valid value returned. 2380 * If a specific destination address is set (in the 2381 * spp_address field), then the value returned is that of 2382 * the address. If just an association is specified (and 2383 * no address), then the association's default flow label 2384 * is returned. If neither an association nor a destination 2385 * is specified, then the socket's default flow label is 2386 * returned. For non-IPv6 sockets, this flag will be left 2387 * cleared. 2388 * 2389 * SPP_DSCP: Setting this flag enables the setting of the 2390 * Differentiated Services Code Point (DSCP) value 2391 * associated with either the association or a specific 2392 * address. The value is obtained in the spp_dscp field. 2393 * Upon retrieval, this flag will be set to indicate that 2394 * the spp_dscp field has a valid value returned. If a 2395 * specific destination address is set when called (in the 2396 * spp_address field), then that specific destination 2397 * address's DSCP value is returned. If just an association 2398 * is specified, then the association's default DSCP is 2399 * returned. If neither an association nor a destination is 2400 * specified, then the socket's default DSCP is returned. 2401 * 2402 * spp_ipv6_flowlabel 2403 * - This field is used in conjunction with the 2404 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2405 * The 20 least significant bits are used for the flow 2406 * label. This setting has precedence over any IPv6-layer 2407 * setting. 2408 * 2409 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2410 * and contains the DSCP. The 6 most significant bits are 2411 * used for the DSCP. This setting has precedence over any 2412 * IPv4- or IPv6- layer setting. 2413 */ 2414 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2415 struct sctp_transport *trans, 2416 struct sctp_association *asoc, 2417 struct sctp_sock *sp, 2418 int hb_change, 2419 int pmtud_change, 2420 int sackdelay_change) 2421 { 2422 int error; 2423 2424 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2425 error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net, 2426 trans->asoc, trans); 2427 if (error) 2428 return error; 2429 } 2430 2431 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2432 * this field is ignored. Note also that a value of zero indicates 2433 * the current setting should be left unchanged. 2434 */ 2435 if (params->spp_flags & SPP_HB_ENABLE) { 2436 2437 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2438 * set. This lets us use 0 value when this flag 2439 * is set. 2440 */ 2441 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2442 params->spp_hbinterval = 0; 2443 2444 if (params->spp_hbinterval || 2445 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2446 if (trans) { 2447 trans->hbinterval = 2448 msecs_to_jiffies(params->spp_hbinterval); 2449 } else if (asoc) { 2450 asoc->hbinterval = 2451 msecs_to_jiffies(params->spp_hbinterval); 2452 } else { 2453 sp->hbinterval = params->spp_hbinterval; 2454 } 2455 } 2456 } 2457 2458 if (hb_change) { 2459 if (trans) { 2460 trans->param_flags = 2461 (trans->param_flags & ~SPP_HB) | hb_change; 2462 } else if (asoc) { 2463 asoc->param_flags = 2464 (asoc->param_flags & ~SPP_HB) | hb_change; 2465 } else { 2466 sp->param_flags = 2467 (sp->param_flags & ~SPP_HB) | hb_change; 2468 } 2469 } 2470 2471 /* When Path MTU discovery is disabled the value specified here will 2472 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2473 * include the flag SPP_PMTUD_DISABLE for this field to have any 2474 * effect). 2475 */ 2476 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2477 if (trans) { 2478 trans->pathmtu = params->spp_pathmtu; 2479 sctp_assoc_sync_pmtu(asoc); 2480 } else if (asoc) { 2481 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2482 } else { 2483 sp->pathmtu = params->spp_pathmtu; 2484 } 2485 } 2486 2487 if (pmtud_change) { 2488 if (trans) { 2489 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2490 (params->spp_flags & SPP_PMTUD_ENABLE); 2491 trans->param_flags = 2492 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2493 if (update) { 2494 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2495 sctp_assoc_sync_pmtu(asoc); 2496 } 2497 sctp_transport_pl_reset(trans); 2498 } else if (asoc) { 2499 asoc->param_flags = 2500 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2501 } else { 2502 sp->param_flags = 2503 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2504 } 2505 } 2506 2507 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2508 * value of this field is ignored. Note also that a value of zero 2509 * indicates the current setting should be left unchanged. 2510 */ 2511 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2512 if (trans) { 2513 trans->sackdelay = 2514 msecs_to_jiffies(params->spp_sackdelay); 2515 } else if (asoc) { 2516 asoc->sackdelay = 2517 msecs_to_jiffies(params->spp_sackdelay); 2518 } else { 2519 sp->sackdelay = params->spp_sackdelay; 2520 } 2521 } 2522 2523 if (sackdelay_change) { 2524 if (trans) { 2525 trans->param_flags = 2526 (trans->param_flags & ~SPP_SACKDELAY) | 2527 sackdelay_change; 2528 } else if (asoc) { 2529 asoc->param_flags = 2530 (asoc->param_flags & ~SPP_SACKDELAY) | 2531 sackdelay_change; 2532 } else { 2533 sp->param_flags = 2534 (sp->param_flags & ~SPP_SACKDELAY) | 2535 sackdelay_change; 2536 } 2537 } 2538 2539 /* Note that a value of zero indicates the current setting should be 2540 left unchanged. 2541 */ 2542 if (params->spp_pathmaxrxt) { 2543 if (trans) { 2544 trans->pathmaxrxt = params->spp_pathmaxrxt; 2545 } else if (asoc) { 2546 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2547 } else { 2548 sp->pathmaxrxt = params->spp_pathmaxrxt; 2549 } 2550 } 2551 2552 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2553 if (trans) { 2554 if (trans->ipaddr.sa.sa_family == AF_INET6) { 2555 trans->flowlabel = params->spp_ipv6_flowlabel & 2556 SCTP_FLOWLABEL_VAL_MASK; 2557 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2558 } 2559 } else if (asoc) { 2560 struct sctp_transport *t; 2561 2562 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2563 transports) { 2564 if (t->ipaddr.sa.sa_family != AF_INET6) 2565 continue; 2566 t->flowlabel = params->spp_ipv6_flowlabel & 2567 SCTP_FLOWLABEL_VAL_MASK; 2568 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2569 } 2570 asoc->flowlabel = params->spp_ipv6_flowlabel & 2571 SCTP_FLOWLABEL_VAL_MASK; 2572 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2573 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2574 sp->flowlabel = params->spp_ipv6_flowlabel & 2575 SCTP_FLOWLABEL_VAL_MASK; 2576 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2577 } 2578 } 2579 2580 if (params->spp_flags & SPP_DSCP) { 2581 if (trans) { 2582 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2583 trans->dscp |= SCTP_DSCP_SET_MASK; 2584 } else if (asoc) { 2585 struct sctp_transport *t; 2586 2587 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2588 transports) { 2589 t->dscp = params->spp_dscp & 2590 SCTP_DSCP_VAL_MASK; 2591 t->dscp |= SCTP_DSCP_SET_MASK; 2592 } 2593 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2594 asoc->dscp |= SCTP_DSCP_SET_MASK; 2595 } else { 2596 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2597 sp->dscp |= SCTP_DSCP_SET_MASK; 2598 } 2599 } 2600 2601 return 0; 2602 } 2603 2604 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2605 struct sctp_paddrparams *params, 2606 unsigned int optlen) 2607 { 2608 struct sctp_transport *trans = NULL; 2609 struct sctp_association *asoc = NULL; 2610 struct sctp_sock *sp = sctp_sk(sk); 2611 int error; 2612 int hb_change, pmtud_change, sackdelay_change; 2613 2614 if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2615 spp_ipv6_flowlabel), 4)) { 2616 if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2617 return -EINVAL; 2618 } else if (optlen != sizeof(*params)) { 2619 return -EINVAL; 2620 } 2621 2622 /* Validate flags and value parameters. */ 2623 hb_change = params->spp_flags & SPP_HB; 2624 pmtud_change = params->spp_flags & SPP_PMTUD; 2625 sackdelay_change = params->spp_flags & SPP_SACKDELAY; 2626 2627 if (hb_change == SPP_HB || 2628 pmtud_change == SPP_PMTUD || 2629 sackdelay_change == SPP_SACKDELAY || 2630 params->spp_sackdelay > 500 || 2631 (params->spp_pathmtu && 2632 params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2633 return -EINVAL; 2634 2635 /* If an address other than INADDR_ANY is specified, and 2636 * no transport is found, then the request is invalid. 2637 */ 2638 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spp_address)) { 2639 trans = sctp_addr_id2transport(sk, ¶ms->spp_address, 2640 params->spp_assoc_id); 2641 if (!trans) 2642 return -EINVAL; 2643 } 2644 2645 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 2646 * socket is a one to many style socket, and an association 2647 * was not found, then the id was invalid. 2648 */ 2649 asoc = sctp_id2assoc(sk, params->spp_assoc_id); 2650 if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC && 2651 sctp_style(sk, UDP)) 2652 return -EINVAL; 2653 2654 /* Heartbeat demand can only be sent on a transport or 2655 * association, but not a socket. 2656 */ 2657 if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2658 return -EINVAL; 2659 2660 /* Process parameters. */ 2661 error = sctp_apply_peer_addr_params(params, trans, asoc, sp, 2662 hb_change, pmtud_change, 2663 sackdelay_change); 2664 2665 if (error) 2666 return error; 2667 2668 /* If changes are for association, also apply parameters to each 2669 * transport. 2670 */ 2671 if (!trans && asoc) { 2672 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2673 transports) { 2674 sctp_apply_peer_addr_params(params, trans, asoc, sp, 2675 hb_change, pmtud_change, 2676 sackdelay_change); 2677 } 2678 } 2679 2680 return 0; 2681 } 2682 2683 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2684 { 2685 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2686 } 2687 2688 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2689 { 2690 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2691 } 2692 2693 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params, 2694 struct sctp_association *asoc) 2695 { 2696 struct sctp_transport *trans; 2697 2698 if (params->sack_delay) { 2699 asoc->sackdelay = msecs_to_jiffies(params->sack_delay); 2700 asoc->param_flags = 2701 sctp_spp_sackdelay_enable(asoc->param_flags); 2702 } 2703 if (params->sack_freq == 1) { 2704 asoc->param_flags = 2705 sctp_spp_sackdelay_disable(asoc->param_flags); 2706 } else if (params->sack_freq > 1) { 2707 asoc->sackfreq = params->sack_freq; 2708 asoc->param_flags = 2709 sctp_spp_sackdelay_enable(asoc->param_flags); 2710 } 2711 2712 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2713 transports) { 2714 if (params->sack_delay) { 2715 trans->sackdelay = msecs_to_jiffies(params->sack_delay); 2716 trans->param_flags = 2717 sctp_spp_sackdelay_enable(trans->param_flags); 2718 } 2719 if (params->sack_freq == 1) { 2720 trans->param_flags = 2721 sctp_spp_sackdelay_disable(trans->param_flags); 2722 } else if (params->sack_freq > 1) { 2723 trans->sackfreq = params->sack_freq; 2724 trans->param_flags = 2725 sctp_spp_sackdelay_enable(trans->param_flags); 2726 } 2727 } 2728 } 2729 2730 /* 2731 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2732 * 2733 * This option will effect the way delayed acks are performed. This 2734 * option allows you to get or set the delayed ack time, in 2735 * milliseconds. It also allows changing the delayed ack frequency. 2736 * Changing the frequency to 1 disables the delayed sack algorithm. If 2737 * the assoc_id is 0, then this sets or gets the endpoints default 2738 * values. If the assoc_id field is non-zero, then the set or get 2739 * effects the specified association for the one to many model (the 2740 * assoc_id field is ignored by the one to one model). Note that if 2741 * sack_delay or sack_freq are 0 when setting this option, then the 2742 * current values will remain unchanged. 2743 * 2744 * struct sctp_sack_info { 2745 * sctp_assoc_t sack_assoc_id; 2746 * uint32_t sack_delay; 2747 * uint32_t sack_freq; 2748 * }; 2749 * 2750 * sack_assoc_id - This parameter, indicates which association the user 2751 * is performing an action upon. Note that if this field's value is 2752 * zero then the endpoints default value is changed (effecting future 2753 * associations only). 2754 * 2755 * sack_delay - This parameter contains the number of milliseconds that 2756 * the user is requesting the delayed ACK timer be set to. Note that 2757 * this value is defined in the standard to be between 200 and 500 2758 * milliseconds. 2759 * 2760 * sack_freq - This parameter contains the number of packets that must 2761 * be received before a sack is sent without waiting for the delay 2762 * timer to expire. The default value for this is 2, setting this 2763 * value to 1 will disable the delayed sack algorithm. 2764 */ 2765 static int __sctp_setsockopt_delayed_ack(struct sock *sk, 2766 struct sctp_sack_info *params) 2767 { 2768 struct sctp_sock *sp = sctp_sk(sk); 2769 struct sctp_association *asoc; 2770 2771 /* Validate value parameter. */ 2772 if (params->sack_delay > 500) 2773 return -EINVAL; 2774 2775 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 2776 * socket is a one to many style socket, and an association 2777 * was not found, then the id was invalid. 2778 */ 2779 asoc = sctp_id2assoc(sk, params->sack_assoc_id); 2780 if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC && 2781 sctp_style(sk, UDP)) 2782 return -EINVAL; 2783 2784 if (asoc) { 2785 sctp_apply_asoc_delayed_ack(params, asoc); 2786 2787 return 0; 2788 } 2789 2790 if (sctp_style(sk, TCP)) 2791 params->sack_assoc_id = SCTP_FUTURE_ASSOC; 2792 2793 if (params->sack_assoc_id == SCTP_FUTURE_ASSOC || 2794 params->sack_assoc_id == SCTP_ALL_ASSOC) { 2795 if (params->sack_delay) { 2796 sp->sackdelay = params->sack_delay; 2797 sp->param_flags = 2798 sctp_spp_sackdelay_enable(sp->param_flags); 2799 } 2800 if (params->sack_freq == 1) { 2801 sp->param_flags = 2802 sctp_spp_sackdelay_disable(sp->param_flags); 2803 } else if (params->sack_freq > 1) { 2804 sp->sackfreq = params->sack_freq; 2805 sp->param_flags = 2806 sctp_spp_sackdelay_enable(sp->param_flags); 2807 } 2808 } 2809 2810 if (params->sack_assoc_id == SCTP_CURRENT_ASSOC || 2811 params->sack_assoc_id == SCTP_ALL_ASSOC) 2812 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2813 sctp_apply_asoc_delayed_ack(params, asoc); 2814 2815 return 0; 2816 } 2817 2818 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2819 struct sctp_sack_info *params, 2820 unsigned int optlen) 2821 { 2822 if (optlen == sizeof(struct sctp_assoc_value)) { 2823 struct sctp_assoc_value *v = (struct sctp_assoc_value *)params; 2824 struct sctp_sack_info p; 2825 2826 pr_warn_ratelimited(DEPRECATED 2827 "%s (pid %d) " 2828 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2829 "Use struct sctp_sack_info instead\n", 2830 current->comm, task_pid_nr(current)); 2831 2832 p.sack_assoc_id = v->assoc_id; 2833 p.sack_delay = v->assoc_value; 2834 p.sack_freq = v->assoc_value ? 0 : 1; 2835 return __sctp_setsockopt_delayed_ack(sk, &p); 2836 } 2837 2838 if (optlen != sizeof(struct sctp_sack_info)) 2839 return -EINVAL; 2840 if (params->sack_delay == 0 && params->sack_freq == 0) 2841 return 0; 2842 return __sctp_setsockopt_delayed_ack(sk, params); 2843 } 2844 2845 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2846 * 2847 * Applications can specify protocol parameters for the default association 2848 * initialization. The option name argument to setsockopt() and getsockopt() 2849 * is SCTP_INITMSG. 2850 * 2851 * Setting initialization parameters is effective only on an unconnected 2852 * socket (for UDP-style sockets only future associations are effected 2853 * by the change). With TCP-style sockets, this option is inherited by 2854 * sockets derived from a listener socket. 2855 */ 2856 static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit, 2857 unsigned int optlen) 2858 { 2859 struct sctp_sock *sp = sctp_sk(sk); 2860 2861 if (optlen != sizeof(struct sctp_initmsg)) 2862 return -EINVAL; 2863 2864 if (sinit->sinit_num_ostreams) 2865 sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams; 2866 if (sinit->sinit_max_instreams) 2867 sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams; 2868 if (sinit->sinit_max_attempts) 2869 sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts; 2870 if (sinit->sinit_max_init_timeo) 2871 sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo; 2872 2873 return 0; 2874 } 2875 2876 /* 2877 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2878 * 2879 * Applications that wish to use the sendto() system call may wish to 2880 * specify a default set of parameters that would normally be supplied 2881 * through the inclusion of ancillary data. This socket option allows 2882 * such an application to set the default sctp_sndrcvinfo structure. 2883 * The application that wishes to use this socket option simply passes 2884 * in to this call the sctp_sndrcvinfo structure defined in Section 2885 * 5.2.2) The input parameters accepted by this call include 2886 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2887 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2888 * to this call if the caller is using the UDP model. 2889 */ 2890 static int sctp_setsockopt_default_send_param(struct sock *sk, 2891 struct sctp_sndrcvinfo *info, 2892 unsigned int optlen) 2893 { 2894 struct sctp_sock *sp = sctp_sk(sk); 2895 struct sctp_association *asoc; 2896 2897 if (optlen != sizeof(*info)) 2898 return -EINVAL; 2899 if (info->sinfo_flags & 2900 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2901 SCTP_ABORT | SCTP_EOF)) 2902 return -EINVAL; 2903 2904 asoc = sctp_id2assoc(sk, info->sinfo_assoc_id); 2905 if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC && 2906 sctp_style(sk, UDP)) 2907 return -EINVAL; 2908 2909 if (asoc) { 2910 asoc->default_stream = info->sinfo_stream; 2911 asoc->default_flags = info->sinfo_flags; 2912 asoc->default_ppid = info->sinfo_ppid; 2913 asoc->default_context = info->sinfo_context; 2914 asoc->default_timetolive = info->sinfo_timetolive; 2915 2916 return 0; 2917 } 2918 2919 if (sctp_style(sk, TCP)) 2920 info->sinfo_assoc_id = SCTP_FUTURE_ASSOC; 2921 2922 if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC || 2923 info->sinfo_assoc_id == SCTP_ALL_ASSOC) { 2924 sp->default_stream = info->sinfo_stream; 2925 sp->default_flags = info->sinfo_flags; 2926 sp->default_ppid = info->sinfo_ppid; 2927 sp->default_context = info->sinfo_context; 2928 sp->default_timetolive = info->sinfo_timetolive; 2929 } 2930 2931 if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC || 2932 info->sinfo_assoc_id == SCTP_ALL_ASSOC) { 2933 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 2934 asoc->default_stream = info->sinfo_stream; 2935 asoc->default_flags = info->sinfo_flags; 2936 asoc->default_ppid = info->sinfo_ppid; 2937 asoc->default_context = info->sinfo_context; 2938 asoc->default_timetolive = info->sinfo_timetolive; 2939 } 2940 } 2941 2942 return 0; 2943 } 2944 2945 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2946 * (SCTP_DEFAULT_SNDINFO) 2947 */ 2948 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2949 struct sctp_sndinfo *info, 2950 unsigned int optlen) 2951 { 2952 struct sctp_sock *sp = sctp_sk(sk); 2953 struct sctp_association *asoc; 2954 2955 if (optlen != sizeof(*info)) 2956 return -EINVAL; 2957 if (info->snd_flags & 2958 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2959 SCTP_ABORT | SCTP_EOF)) 2960 return -EINVAL; 2961 2962 asoc = sctp_id2assoc(sk, info->snd_assoc_id); 2963 if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC && 2964 sctp_style(sk, UDP)) 2965 return -EINVAL; 2966 2967 if (asoc) { 2968 asoc->default_stream = info->snd_sid; 2969 asoc->default_flags = info->snd_flags; 2970 asoc->default_ppid = info->snd_ppid; 2971 asoc->default_context = info->snd_context; 2972 2973 return 0; 2974 } 2975 2976 if (sctp_style(sk, TCP)) 2977 info->snd_assoc_id = SCTP_FUTURE_ASSOC; 2978 2979 if (info->snd_assoc_id == SCTP_FUTURE_ASSOC || 2980 info->snd_assoc_id == SCTP_ALL_ASSOC) { 2981 sp->default_stream = info->snd_sid; 2982 sp->default_flags = info->snd_flags; 2983 sp->default_ppid = info->snd_ppid; 2984 sp->default_context = info->snd_context; 2985 } 2986 2987 if (info->snd_assoc_id == SCTP_CURRENT_ASSOC || 2988 info->snd_assoc_id == SCTP_ALL_ASSOC) { 2989 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 2990 asoc->default_stream = info->snd_sid; 2991 asoc->default_flags = info->snd_flags; 2992 asoc->default_ppid = info->snd_ppid; 2993 asoc->default_context = info->snd_context; 2994 } 2995 } 2996 2997 return 0; 2998 } 2999 3000 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 3001 * 3002 * Requests that the local SCTP stack use the enclosed peer address as 3003 * the association primary. The enclosed address must be one of the 3004 * association peer's addresses. 3005 */ 3006 static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim, 3007 unsigned int optlen) 3008 { 3009 struct sctp_transport *trans; 3010 struct sctp_af *af; 3011 int err; 3012 3013 if (optlen != sizeof(struct sctp_prim)) 3014 return -EINVAL; 3015 3016 /* Allow security module to validate address but need address len. */ 3017 af = sctp_get_af_specific(prim->ssp_addr.ss_family); 3018 if (!af) 3019 return -EINVAL; 3020 3021 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3022 (struct sockaddr *)&prim->ssp_addr, 3023 af->sockaddr_len); 3024 if (err) 3025 return err; 3026 3027 trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id); 3028 if (!trans) 3029 return -EINVAL; 3030 3031 sctp_assoc_set_primary(trans->asoc, trans); 3032 3033 return 0; 3034 } 3035 3036 /* 3037 * 7.1.5 SCTP_NODELAY 3038 * 3039 * Turn on/off any Nagle-like algorithm. This means that packets are 3040 * generally sent as soon as possible and no unnecessary delays are 3041 * introduced, at the cost of more packets in the network. Expects an 3042 * integer boolean flag. 3043 */ 3044 static int sctp_setsockopt_nodelay(struct sock *sk, int *val, 3045 unsigned int optlen) 3046 { 3047 if (optlen < sizeof(int)) 3048 return -EINVAL; 3049 sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1; 3050 return 0; 3051 } 3052 3053 /* 3054 * 3055 * 7.1.1 SCTP_RTOINFO 3056 * 3057 * The protocol parameters used to initialize and bound retransmission 3058 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3059 * and modify these parameters. 3060 * All parameters are time values, in milliseconds. A value of 0, when 3061 * modifying the parameters, indicates that the current value should not 3062 * be changed. 3063 * 3064 */ 3065 static int sctp_setsockopt_rtoinfo(struct sock *sk, 3066 struct sctp_rtoinfo *rtoinfo, 3067 unsigned int optlen) 3068 { 3069 struct sctp_association *asoc; 3070 unsigned long rto_min, rto_max; 3071 struct sctp_sock *sp = sctp_sk(sk); 3072 3073 if (optlen != sizeof (struct sctp_rtoinfo)) 3074 return -EINVAL; 3075 3076 asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id); 3077 3078 /* Set the values to the specific association */ 3079 if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC && 3080 sctp_style(sk, UDP)) 3081 return -EINVAL; 3082 3083 rto_max = rtoinfo->srto_max; 3084 rto_min = rtoinfo->srto_min; 3085 3086 if (rto_max) 3087 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3088 else 3089 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3090 3091 if (rto_min) 3092 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3093 else 3094 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3095 3096 if (rto_min > rto_max) 3097 return -EINVAL; 3098 3099 if (asoc) { 3100 if (rtoinfo->srto_initial != 0) 3101 asoc->rto_initial = 3102 msecs_to_jiffies(rtoinfo->srto_initial); 3103 asoc->rto_max = rto_max; 3104 asoc->rto_min = rto_min; 3105 } else { 3106 /* If there is no association or the association-id = 0 3107 * set the values to the endpoint. 3108 */ 3109 if (rtoinfo->srto_initial != 0) 3110 sp->rtoinfo.srto_initial = rtoinfo->srto_initial; 3111 sp->rtoinfo.srto_max = rto_max; 3112 sp->rtoinfo.srto_min = rto_min; 3113 } 3114 3115 return 0; 3116 } 3117 3118 /* 3119 * 3120 * 7.1.2 SCTP_ASSOCINFO 3121 * 3122 * This option is used to tune the maximum retransmission attempts 3123 * of the association. 3124 * Returns an error if the new association retransmission value is 3125 * greater than the sum of the retransmission value of the peer. 3126 * See [SCTP] for more information. 3127 * 3128 */ 3129 static int sctp_setsockopt_associnfo(struct sock *sk, 3130 struct sctp_assocparams *assocparams, 3131 unsigned int optlen) 3132 { 3133 3134 struct sctp_association *asoc; 3135 3136 if (optlen != sizeof(struct sctp_assocparams)) 3137 return -EINVAL; 3138 3139 asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id); 3140 3141 if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC && 3142 sctp_style(sk, UDP)) 3143 return -EINVAL; 3144 3145 /* Set the values to the specific association */ 3146 if (asoc) { 3147 if (assocparams->sasoc_asocmaxrxt != 0) { 3148 __u32 path_sum = 0; 3149 int paths = 0; 3150 struct sctp_transport *peer_addr; 3151 3152 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3153 transports) { 3154 path_sum += peer_addr->pathmaxrxt; 3155 paths++; 3156 } 3157 3158 /* Only validate asocmaxrxt if we have more than 3159 * one path/transport. We do this because path 3160 * retransmissions are only counted when we have more 3161 * then one path. 3162 */ 3163 if (paths > 1 && 3164 assocparams->sasoc_asocmaxrxt > path_sum) 3165 return -EINVAL; 3166 3167 asoc->max_retrans = assocparams->sasoc_asocmaxrxt; 3168 } 3169 3170 if (assocparams->sasoc_cookie_life != 0) 3171 asoc->cookie_life = 3172 ms_to_ktime(assocparams->sasoc_cookie_life); 3173 } else { 3174 /* Set the values to the endpoint */ 3175 struct sctp_sock *sp = sctp_sk(sk); 3176 3177 if (assocparams->sasoc_asocmaxrxt != 0) 3178 sp->assocparams.sasoc_asocmaxrxt = 3179 assocparams->sasoc_asocmaxrxt; 3180 if (assocparams->sasoc_cookie_life != 0) 3181 sp->assocparams.sasoc_cookie_life = 3182 assocparams->sasoc_cookie_life; 3183 } 3184 return 0; 3185 } 3186 3187 /* 3188 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3189 * 3190 * This socket option is a boolean flag which turns on or off mapped V4 3191 * addresses. If this option is turned on and the socket is type 3192 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3193 * If this option is turned off, then no mapping will be done of V4 3194 * addresses and a user will receive both PF_INET6 and PF_INET type 3195 * addresses on the socket. 3196 */ 3197 static int sctp_setsockopt_mappedv4(struct sock *sk, int *val, 3198 unsigned int optlen) 3199 { 3200 struct sctp_sock *sp = sctp_sk(sk); 3201 3202 if (optlen < sizeof(int)) 3203 return -EINVAL; 3204 if (*val) 3205 sp->v4mapped = 1; 3206 else 3207 sp->v4mapped = 0; 3208 3209 return 0; 3210 } 3211 3212 /* 3213 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3214 * This option will get or set the maximum size to put in any outgoing 3215 * SCTP DATA chunk. If a message is larger than this size it will be 3216 * fragmented by SCTP into the specified size. Note that the underlying 3217 * SCTP implementation may fragment into smaller sized chunks when the 3218 * PMTU of the underlying association is smaller than the value set by 3219 * the user. The default value for this option is '0' which indicates 3220 * the user is NOT limiting fragmentation and only the PMTU will effect 3221 * SCTP's choice of DATA chunk size. Note also that values set larger 3222 * than the maximum size of an IP datagram will effectively let SCTP 3223 * control fragmentation (i.e. the same as setting this option to 0). 3224 * 3225 * The following structure is used to access and modify this parameter: 3226 * 3227 * struct sctp_assoc_value { 3228 * sctp_assoc_t assoc_id; 3229 * uint32_t assoc_value; 3230 * }; 3231 * 3232 * assoc_id: This parameter is ignored for one-to-one style sockets. 3233 * For one-to-many style sockets this parameter indicates which 3234 * association the user is performing an action upon. Note that if 3235 * this field's value is zero then the endpoints default value is 3236 * changed (effecting future associations only). 3237 * assoc_value: This parameter specifies the maximum size in bytes. 3238 */ 3239 static int sctp_setsockopt_maxseg(struct sock *sk, 3240 struct sctp_assoc_value *params, 3241 unsigned int optlen) 3242 { 3243 struct sctp_sock *sp = sctp_sk(sk); 3244 struct sctp_association *asoc; 3245 sctp_assoc_t assoc_id; 3246 int val; 3247 3248 if (optlen == sizeof(int)) { 3249 pr_warn_ratelimited(DEPRECATED 3250 "%s (pid %d) " 3251 "Use of int in maxseg socket option.\n" 3252 "Use struct sctp_assoc_value instead\n", 3253 current->comm, task_pid_nr(current)); 3254 assoc_id = SCTP_FUTURE_ASSOC; 3255 val = *(int *)params; 3256 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3257 assoc_id = params->assoc_id; 3258 val = params->assoc_value; 3259 } else { 3260 return -EINVAL; 3261 } 3262 3263 asoc = sctp_id2assoc(sk, assoc_id); 3264 if (!asoc && assoc_id != SCTP_FUTURE_ASSOC && 3265 sctp_style(sk, UDP)) 3266 return -EINVAL; 3267 3268 if (val) { 3269 int min_len, max_len; 3270 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3271 sizeof(struct sctp_data_chunk); 3272 3273 min_len = sctp_min_frag_point(sp, datasize); 3274 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3275 3276 if (val < min_len || val > max_len) 3277 return -EINVAL; 3278 } 3279 3280 if (asoc) { 3281 asoc->user_frag = val; 3282 sctp_assoc_update_frag_point(asoc); 3283 } else { 3284 sp->user_frag = val; 3285 } 3286 3287 return 0; 3288 } 3289 3290 3291 /* 3292 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3293 * 3294 * Requests that the peer mark the enclosed address as the association 3295 * primary. The enclosed address must be one of the association's 3296 * locally bound addresses. The following structure is used to make a 3297 * set primary request: 3298 */ 3299 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, 3300 struct sctp_setpeerprim *prim, 3301 unsigned int optlen) 3302 { 3303 struct sctp_sock *sp; 3304 struct sctp_association *asoc = NULL; 3305 struct sctp_chunk *chunk; 3306 struct sctp_af *af; 3307 int err; 3308 3309 sp = sctp_sk(sk); 3310 3311 if (!sp->ep->asconf_enable) 3312 return -EPERM; 3313 3314 if (optlen != sizeof(struct sctp_setpeerprim)) 3315 return -EINVAL; 3316 3317 asoc = sctp_id2assoc(sk, prim->sspp_assoc_id); 3318 if (!asoc) 3319 return -EINVAL; 3320 3321 if (!asoc->peer.asconf_capable) 3322 return -EPERM; 3323 3324 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3325 return -EPERM; 3326 3327 if (!sctp_state(asoc, ESTABLISHED)) 3328 return -ENOTCONN; 3329 3330 af = sctp_get_af_specific(prim->sspp_addr.ss_family); 3331 if (!af) 3332 return -EINVAL; 3333 3334 if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL)) 3335 return -EADDRNOTAVAIL; 3336 3337 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr)) 3338 return -EADDRNOTAVAIL; 3339 3340 /* Allow security module to validate address. */ 3341 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3342 (struct sockaddr *)&prim->sspp_addr, 3343 af->sockaddr_len); 3344 if (err) 3345 return err; 3346 3347 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3348 chunk = sctp_make_asconf_set_prim(asoc, 3349 (union sctp_addr *)&prim->sspp_addr); 3350 if (!chunk) 3351 return -ENOMEM; 3352 3353 err = sctp_send_asconf(asoc, chunk); 3354 3355 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3356 3357 return err; 3358 } 3359 3360 static int sctp_setsockopt_adaptation_layer(struct sock *sk, 3361 struct sctp_setadaptation *adapt, 3362 unsigned int optlen) 3363 { 3364 if (optlen != sizeof(struct sctp_setadaptation)) 3365 return -EINVAL; 3366 3367 sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind; 3368 3369 return 0; 3370 } 3371 3372 /* 3373 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3374 * 3375 * The context field in the sctp_sndrcvinfo structure is normally only 3376 * used when a failed message is retrieved holding the value that was 3377 * sent down on the actual send call. This option allows the setting of 3378 * a default context on an association basis that will be received on 3379 * reading messages from the peer. This is especially helpful in the 3380 * one-2-many model for an application to keep some reference to an 3381 * internal state machine that is processing messages on the 3382 * association. Note that the setting of this value only effects 3383 * received messages from the peer and does not effect the value that is 3384 * saved with outbound messages. 3385 */ 3386 static int sctp_setsockopt_context(struct sock *sk, 3387 struct sctp_assoc_value *params, 3388 unsigned int optlen) 3389 { 3390 struct sctp_sock *sp = sctp_sk(sk); 3391 struct sctp_association *asoc; 3392 3393 if (optlen != sizeof(struct sctp_assoc_value)) 3394 return -EINVAL; 3395 3396 asoc = sctp_id2assoc(sk, params->assoc_id); 3397 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 3398 sctp_style(sk, UDP)) 3399 return -EINVAL; 3400 3401 if (asoc) { 3402 asoc->default_rcv_context = params->assoc_value; 3403 3404 return 0; 3405 } 3406 3407 if (sctp_style(sk, TCP)) 3408 params->assoc_id = SCTP_FUTURE_ASSOC; 3409 3410 if (params->assoc_id == SCTP_FUTURE_ASSOC || 3411 params->assoc_id == SCTP_ALL_ASSOC) 3412 sp->default_rcv_context = params->assoc_value; 3413 3414 if (params->assoc_id == SCTP_CURRENT_ASSOC || 3415 params->assoc_id == SCTP_ALL_ASSOC) 3416 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3417 asoc->default_rcv_context = params->assoc_value; 3418 3419 return 0; 3420 } 3421 3422 /* 3423 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3424 * 3425 * This options will at a minimum specify if the implementation is doing 3426 * fragmented interleave. Fragmented interleave, for a one to many 3427 * socket, is when subsequent calls to receive a message may return 3428 * parts of messages from different associations. Some implementations 3429 * may allow you to turn this value on or off. If so, when turned off, 3430 * no fragment interleave will occur (which will cause a head of line 3431 * blocking amongst multiple associations sharing the same one to many 3432 * socket). When this option is turned on, then each receive call may 3433 * come from a different association (thus the user must receive data 3434 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3435 * association each receive belongs to. 3436 * 3437 * This option takes a boolean value. A non-zero value indicates that 3438 * fragmented interleave is on. A value of zero indicates that 3439 * fragmented interleave is off. 3440 * 3441 * Note that it is important that an implementation that allows this 3442 * option to be turned on, have it off by default. Otherwise an unaware 3443 * application using the one to many model may become confused and act 3444 * incorrectly. 3445 */ 3446 static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val, 3447 unsigned int optlen) 3448 { 3449 if (optlen != sizeof(int)) 3450 return -EINVAL; 3451 3452 sctp_sk(sk)->frag_interleave = !!*val; 3453 3454 if (!sctp_sk(sk)->frag_interleave) 3455 sctp_sk(sk)->ep->intl_enable = 0; 3456 3457 return 0; 3458 } 3459 3460 /* 3461 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3462 * (SCTP_PARTIAL_DELIVERY_POINT) 3463 * 3464 * This option will set or get the SCTP partial delivery point. This 3465 * point is the size of a message where the partial delivery API will be 3466 * invoked to help free up rwnd space for the peer. Setting this to a 3467 * lower value will cause partial deliveries to happen more often. The 3468 * calls argument is an integer that sets or gets the partial delivery 3469 * point. Note also that the call will fail if the user attempts to set 3470 * this value larger than the socket receive buffer size. 3471 * 3472 * Note that any single message having a length smaller than or equal to 3473 * the SCTP partial delivery point will be delivered in one single read 3474 * call as long as the user provided buffer is large enough to hold the 3475 * message. 3476 */ 3477 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val, 3478 unsigned int optlen) 3479 { 3480 if (optlen != sizeof(u32)) 3481 return -EINVAL; 3482 3483 /* Note: We double the receive buffer from what the user sets 3484 * it to be, also initial rwnd is based on rcvbuf/2. 3485 */ 3486 if (*val > (sk->sk_rcvbuf >> 1)) 3487 return -EINVAL; 3488 3489 sctp_sk(sk)->pd_point = *val; 3490 3491 return 0; /* is this the right error code? */ 3492 } 3493 3494 /* 3495 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3496 * 3497 * This option will allow a user to change the maximum burst of packets 3498 * that can be emitted by this association. Note that the default value 3499 * is 4, and some implementations may restrict this setting so that it 3500 * can only be lowered. 3501 * 3502 * NOTE: This text doesn't seem right. Do this on a socket basis with 3503 * future associations inheriting the socket value. 3504 */ 3505 static int sctp_setsockopt_maxburst(struct sock *sk, 3506 struct sctp_assoc_value *params, 3507 unsigned int optlen) 3508 { 3509 struct sctp_sock *sp = sctp_sk(sk); 3510 struct sctp_association *asoc; 3511 sctp_assoc_t assoc_id; 3512 u32 assoc_value; 3513 3514 if (optlen == sizeof(int)) { 3515 pr_warn_ratelimited(DEPRECATED 3516 "%s (pid %d) " 3517 "Use of int in max_burst socket option deprecated.\n" 3518 "Use struct sctp_assoc_value instead\n", 3519 current->comm, task_pid_nr(current)); 3520 assoc_id = SCTP_FUTURE_ASSOC; 3521 assoc_value = *((int *)params); 3522 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3523 assoc_id = params->assoc_id; 3524 assoc_value = params->assoc_value; 3525 } else 3526 return -EINVAL; 3527 3528 asoc = sctp_id2assoc(sk, assoc_id); 3529 if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) 3530 return -EINVAL; 3531 3532 if (asoc) { 3533 asoc->max_burst = assoc_value; 3534 3535 return 0; 3536 } 3537 3538 if (sctp_style(sk, TCP)) 3539 assoc_id = SCTP_FUTURE_ASSOC; 3540 3541 if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC) 3542 sp->max_burst = assoc_value; 3543 3544 if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC) 3545 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3546 asoc->max_burst = assoc_value; 3547 3548 return 0; 3549 } 3550 3551 /* 3552 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3553 * 3554 * This set option adds a chunk type that the user is requesting to be 3555 * received only in an authenticated way. Changes to the list of chunks 3556 * will only effect future associations on the socket. 3557 */ 3558 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3559 struct sctp_authchunk *val, 3560 unsigned int optlen) 3561 { 3562 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3563 3564 if (!ep->auth_enable) 3565 return -EACCES; 3566 3567 if (optlen != sizeof(struct sctp_authchunk)) 3568 return -EINVAL; 3569 3570 switch (val->sauth_chunk) { 3571 case SCTP_CID_INIT: 3572 case SCTP_CID_INIT_ACK: 3573 case SCTP_CID_SHUTDOWN_COMPLETE: 3574 case SCTP_CID_AUTH: 3575 return -EINVAL; 3576 } 3577 3578 /* add this chunk id to the endpoint */ 3579 return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk); 3580 } 3581 3582 /* 3583 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3584 * 3585 * This option gets or sets the list of HMAC algorithms that the local 3586 * endpoint requires the peer to use. 3587 */ 3588 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3589 struct sctp_hmacalgo *hmacs, 3590 unsigned int optlen) 3591 { 3592 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3593 u32 idents; 3594 3595 if (!ep->auth_enable) 3596 return -EACCES; 3597 3598 if (optlen < sizeof(struct sctp_hmacalgo)) 3599 return -EINVAL; 3600 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3601 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3602 3603 idents = hmacs->shmac_num_idents; 3604 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3605 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) 3606 return -EINVAL; 3607 3608 return sctp_auth_ep_set_hmacs(ep, hmacs); 3609 } 3610 3611 /* 3612 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3613 * 3614 * This option will set a shared secret key which is used to build an 3615 * association shared key. 3616 */ 3617 static int sctp_setsockopt_auth_key(struct sock *sk, 3618 struct sctp_authkey *authkey, 3619 unsigned int optlen) 3620 { 3621 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3622 struct sctp_association *asoc; 3623 int ret = -EINVAL; 3624 3625 if (optlen <= sizeof(struct sctp_authkey)) 3626 return -EINVAL; 3627 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3628 * this. 3629 */ 3630 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey)); 3631 3632 if (authkey->sca_keylength > optlen - sizeof(*authkey)) 3633 goto out; 3634 3635 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3636 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC && 3637 sctp_style(sk, UDP)) 3638 goto out; 3639 3640 if (asoc) { 3641 ret = sctp_auth_set_key(ep, asoc, authkey); 3642 goto out; 3643 } 3644 3645 if (sctp_style(sk, TCP)) 3646 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC; 3647 3648 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC || 3649 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3650 ret = sctp_auth_set_key(ep, asoc, authkey); 3651 if (ret) 3652 goto out; 3653 } 3654 3655 ret = 0; 3656 3657 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC || 3658 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3659 list_for_each_entry(asoc, &ep->asocs, asocs) { 3660 int res = sctp_auth_set_key(ep, asoc, authkey); 3661 3662 if (res && !ret) 3663 ret = res; 3664 } 3665 } 3666 3667 out: 3668 memzero_explicit(authkey, optlen); 3669 return ret; 3670 } 3671 3672 /* 3673 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3674 * 3675 * This option will get or set the active shared key to be used to build 3676 * the association shared key. 3677 */ 3678 static int sctp_setsockopt_active_key(struct sock *sk, 3679 struct sctp_authkeyid *val, 3680 unsigned int optlen) 3681 { 3682 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3683 struct sctp_association *asoc; 3684 int ret = 0; 3685 3686 if (optlen != sizeof(struct sctp_authkeyid)) 3687 return -EINVAL; 3688 3689 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3690 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3691 sctp_style(sk, UDP)) 3692 return -EINVAL; 3693 3694 if (asoc) 3695 return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); 3696 3697 if (sctp_style(sk, TCP)) 3698 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3699 3700 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3701 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3702 ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); 3703 if (ret) 3704 return ret; 3705 } 3706 3707 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3708 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3709 list_for_each_entry(asoc, &ep->asocs, asocs) { 3710 int res = sctp_auth_set_active_key(ep, asoc, 3711 val->scact_keynumber); 3712 3713 if (res && !ret) 3714 ret = res; 3715 } 3716 } 3717 3718 return ret; 3719 } 3720 3721 /* 3722 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3723 * 3724 * This set option will delete a shared secret key from use. 3725 */ 3726 static int sctp_setsockopt_del_key(struct sock *sk, 3727 struct sctp_authkeyid *val, 3728 unsigned int optlen) 3729 { 3730 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3731 struct sctp_association *asoc; 3732 int ret = 0; 3733 3734 if (optlen != sizeof(struct sctp_authkeyid)) 3735 return -EINVAL; 3736 3737 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3738 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3739 sctp_style(sk, UDP)) 3740 return -EINVAL; 3741 3742 if (asoc) 3743 return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); 3744 3745 if (sctp_style(sk, TCP)) 3746 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3747 3748 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3749 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3750 ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); 3751 if (ret) 3752 return ret; 3753 } 3754 3755 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3756 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3757 list_for_each_entry(asoc, &ep->asocs, asocs) { 3758 int res = sctp_auth_del_key_id(ep, asoc, 3759 val->scact_keynumber); 3760 3761 if (res && !ret) 3762 ret = res; 3763 } 3764 } 3765 3766 return ret; 3767 } 3768 3769 /* 3770 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3771 * 3772 * This set option will deactivate a shared secret key. 3773 */ 3774 static int sctp_setsockopt_deactivate_key(struct sock *sk, 3775 struct sctp_authkeyid *val, 3776 unsigned int optlen) 3777 { 3778 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3779 struct sctp_association *asoc; 3780 int ret = 0; 3781 3782 if (optlen != sizeof(struct sctp_authkeyid)) 3783 return -EINVAL; 3784 3785 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3786 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3787 sctp_style(sk, UDP)) 3788 return -EINVAL; 3789 3790 if (asoc) 3791 return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); 3792 3793 if (sctp_style(sk, TCP)) 3794 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3795 3796 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3797 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3798 ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); 3799 if (ret) 3800 return ret; 3801 } 3802 3803 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3804 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3805 list_for_each_entry(asoc, &ep->asocs, asocs) { 3806 int res = sctp_auth_deact_key_id(ep, asoc, 3807 val->scact_keynumber); 3808 3809 if (res && !ret) 3810 ret = res; 3811 } 3812 } 3813 3814 return ret; 3815 } 3816 3817 /* 3818 * 8.1.23 SCTP_AUTO_ASCONF 3819 * 3820 * This option will enable or disable the use of the automatic generation of 3821 * ASCONF chunks to add and delete addresses to an existing association. Note 3822 * that this option has two caveats namely: a) it only affects sockets that 3823 * are bound to all addresses available to the SCTP stack, and b) the system 3824 * administrator may have an overriding control that turns the ASCONF feature 3825 * off no matter what setting the socket option may have. 3826 * This option expects an integer boolean flag, where a non-zero value turns on 3827 * the option, and a zero value turns off the option. 3828 * Note. In this implementation, socket operation overrides default parameter 3829 * being set by sysctl as well as FreeBSD implementation 3830 */ 3831 static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val, 3832 unsigned int optlen) 3833 { 3834 struct sctp_sock *sp = sctp_sk(sk); 3835 3836 if (optlen < sizeof(int)) 3837 return -EINVAL; 3838 if (!sctp_is_ep_boundall(sk) && *val) 3839 return -EINVAL; 3840 if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf)) 3841 return 0; 3842 3843 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3844 if (*val == 0 && sp->do_auto_asconf) { 3845 list_del(&sp->auto_asconf_list); 3846 sp->do_auto_asconf = 0; 3847 } else if (*val && !sp->do_auto_asconf) { 3848 list_add_tail(&sp->auto_asconf_list, 3849 &sock_net(sk)->sctp.auto_asconf_splist); 3850 sp->do_auto_asconf = 1; 3851 } 3852 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3853 return 0; 3854 } 3855 3856 /* 3857 * SCTP_PEER_ADDR_THLDS 3858 * 3859 * This option allows us to alter the partially failed threshold for one or all 3860 * transports in an association. See Section 6.1 of: 3861 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3862 */ 3863 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3864 struct sctp_paddrthlds_v2 *val, 3865 unsigned int optlen, bool v2) 3866 { 3867 struct sctp_transport *trans; 3868 struct sctp_association *asoc; 3869 int len; 3870 3871 len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds); 3872 if (optlen < len) 3873 return -EINVAL; 3874 3875 if (v2 && val->spt_pathpfthld > val->spt_pathcpthld) 3876 return -EINVAL; 3877 3878 if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) { 3879 trans = sctp_addr_id2transport(sk, &val->spt_address, 3880 val->spt_assoc_id); 3881 if (!trans) 3882 return -ENOENT; 3883 3884 if (val->spt_pathmaxrxt) 3885 trans->pathmaxrxt = val->spt_pathmaxrxt; 3886 if (v2) 3887 trans->ps_retrans = val->spt_pathcpthld; 3888 trans->pf_retrans = val->spt_pathpfthld; 3889 3890 return 0; 3891 } 3892 3893 asoc = sctp_id2assoc(sk, val->spt_assoc_id); 3894 if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC && 3895 sctp_style(sk, UDP)) 3896 return -EINVAL; 3897 3898 if (asoc) { 3899 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3900 transports) { 3901 if (val->spt_pathmaxrxt) 3902 trans->pathmaxrxt = val->spt_pathmaxrxt; 3903 if (v2) 3904 trans->ps_retrans = val->spt_pathcpthld; 3905 trans->pf_retrans = val->spt_pathpfthld; 3906 } 3907 3908 if (val->spt_pathmaxrxt) 3909 asoc->pathmaxrxt = val->spt_pathmaxrxt; 3910 if (v2) 3911 asoc->ps_retrans = val->spt_pathcpthld; 3912 asoc->pf_retrans = val->spt_pathpfthld; 3913 } else { 3914 struct sctp_sock *sp = sctp_sk(sk); 3915 3916 if (val->spt_pathmaxrxt) 3917 sp->pathmaxrxt = val->spt_pathmaxrxt; 3918 if (v2) 3919 sp->ps_retrans = val->spt_pathcpthld; 3920 sp->pf_retrans = val->spt_pathpfthld; 3921 } 3922 3923 return 0; 3924 } 3925 3926 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val, 3927 unsigned int optlen) 3928 { 3929 if (optlen < sizeof(int)) 3930 return -EINVAL; 3931 3932 sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1; 3933 3934 return 0; 3935 } 3936 3937 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val, 3938 unsigned int optlen) 3939 { 3940 if (optlen < sizeof(int)) 3941 return -EINVAL; 3942 3943 sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1; 3944 3945 return 0; 3946 } 3947 3948 static int sctp_setsockopt_pr_supported(struct sock *sk, 3949 struct sctp_assoc_value *params, 3950 unsigned int optlen) 3951 { 3952 struct sctp_association *asoc; 3953 3954 if (optlen != sizeof(*params)) 3955 return -EINVAL; 3956 3957 asoc = sctp_id2assoc(sk, params->assoc_id); 3958 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 3959 sctp_style(sk, UDP)) 3960 return -EINVAL; 3961 3962 sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value; 3963 3964 return 0; 3965 } 3966 3967 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3968 struct sctp_default_prinfo *info, 3969 unsigned int optlen) 3970 { 3971 struct sctp_sock *sp = sctp_sk(sk); 3972 struct sctp_association *asoc; 3973 int retval = -EINVAL; 3974 3975 if (optlen != sizeof(*info)) 3976 goto out; 3977 3978 if (info->pr_policy & ~SCTP_PR_SCTP_MASK) 3979 goto out; 3980 3981 if (info->pr_policy == SCTP_PR_SCTP_NONE) 3982 info->pr_value = 0; 3983 3984 asoc = sctp_id2assoc(sk, info->pr_assoc_id); 3985 if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC && 3986 sctp_style(sk, UDP)) 3987 goto out; 3988 3989 retval = 0; 3990 3991 if (asoc) { 3992 SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy); 3993 asoc->default_timetolive = info->pr_value; 3994 goto out; 3995 } 3996 3997 if (sctp_style(sk, TCP)) 3998 info->pr_assoc_id = SCTP_FUTURE_ASSOC; 3999 4000 if (info->pr_assoc_id == SCTP_FUTURE_ASSOC || 4001 info->pr_assoc_id == SCTP_ALL_ASSOC) { 4002 SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy); 4003 sp->default_timetolive = info->pr_value; 4004 } 4005 4006 if (info->pr_assoc_id == SCTP_CURRENT_ASSOC || 4007 info->pr_assoc_id == SCTP_ALL_ASSOC) { 4008 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4009 SCTP_PR_SET_POLICY(asoc->default_flags, 4010 info->pr_policy); 4011 asoc->default_timetolive = info->pr_value; 4012 } 4013 } 4014 4015 out: 4016 return retval; 4017 } 4018 4019 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 4020 struct sctp_assoc_value *params, 4021 unsigned int optlen) 4022 { 4023 struct sctp_association *asoc; 4024 int retval = -EINVAL; 4025 4026 if (optlen != sizeof(*params)) 4027 goto out; 4028 4029 asoc = sctp_id2assoc(sk, params->assoc_id); 4030 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4031 sctp_style(sk, UDP)) 4032 goto out; 4033 4034 sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value; 4035 4036 retval = 0; 4037 4038 out: 4039 return retval; 4040 } 4041 4042 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4043 struct sctp_assoc_value *params, 4044 unsigned int optlen) 4045 { 4046 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 4047 struct sctp_association *asoc; 4048 int retval = -EINVAL; 4049 4050 if (optlen != sizeof(*params)) 4051 goto out; 4052 4053 if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4054 goto out; 4055 4056 asoc = sctp_id2assoc(sk, params->assoc_id); 4057 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 4058 sctp_style(sk, UDP)) 4059 goto out; 4060 4061 retval = 0; 4062 4063 if (asoc) { 4064 asoc->strreset_enable = params->assoc_value; 4065 goto out; 4066 } 4067 4068 if (sctp_style(sk, TCP)) 4069 params->assoc_id = SCTP_FUTURE_ASSOC; 4070 4071 if (params->assoc_id == SCTP_FUTURE_ASSOC || 4072 params->assoc_id == SCTP_ALL_ASSOC) 4073 ep->strreset_enable = params->assoc_value; 4074 4075 if (params->assoc_id == SCTP_CURRENT_ASSOC || 4076 params->assoc_id == SCTP_ALL_ASSOC) 4077 list_for_each_entry(asoc, &ep->asocs, asocs) 4078 asoc->strreset_enable = params->assoc_value; 4079 4080 out: 4081 return retval; 4082 } 4083 4084 static int sctp_setsockopt_reset_streams(struct sock *sk, 4085 struct sctp_reset_streams *params, 4086 unsigned int optlen) 4087 { 4088 struct sctp_association *asoc; 4089 4090 if (optlen < sizeof(*params)) 4091 return -EINVAL; 4092 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4093 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4094 sizeof(__u16) * sizeof(*params)); 4095 4096 if (params->srs_number_streams * sizeof(__u16) > 4097 optlen - sizeof(*params)) 4098 return -EINVAL; 4099 4100 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4101 if (!asoc) 4102 return -EINVAL; 4103 4104 return sctp_send_reset_streams(asoc, params); 4105 } 4106 4107 static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd, 4108 unsigned int optlen) 4109 { 4110 struct sctp_association *asoc; 4111 4112 if (optlen != sizeof(*associd)) 4113 return -EINVAL; 4114 4115 asoc = sctp_id2assoc(sk, *associd); 4116 if (!asoc) 4117 return -EINVAL; 4118 4119 return sctp_send_reset_assoc(asoc); 4120 } 4121 4122 static int sctp_setsockopt_add_streams(struct sock *sk, 4123 struct sctp_add_streams *params, 4124 unsigned int optlen) 4125 { 4126 struct sctp_association *asoc; 4127 4128 if (optlen != sizeof(*params)) 4129 return -EINVAL; 4130 4131 asoc = sctp_id2assoc(sk, params->sas_assoc_id); 4132 if (!asoc) 4133 return -EINVAL; 4134 4135 return sctp_send_add_streams(asoc, params); 4136 } 4137 4138 static int sctp_setsockopt_scheduler(struct sock *sk, 4139 struct sctp_assoc_value *params, 4140 unsigned int optlen) 4141 { 4142 struct sctp_sock *sp = sctp_sk(sk); 4143 struct sctp_association *asoc; 4144 int retval = 0; 4145 4146 if (optlen < sizeof(*params)) 4147 return -EINVAL; 4148 4149 if (params->assoc_value > SCTP_SS_MAX) 4150 return -EINVAL; 4151 4152 asoc = sctp_id2assoc(sk, params->assoc_id); 4153 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 4154 sctp_style(sk, UDP)) 4155 return -EINVAL; 4156 4157 if (asoc) 4158 return sctp_sched_set_sched(asoc, params->assoc_value); 4159 4160 if (sctp_style(sk, TCP)) 4161 params->assoc_id = SCTP_FUTURE_ASSOC; 4162 4163 if (params->assoc_id == SCTP_FUTURE_ASSOC || 4164 params->assoc_id == SCTP_ALL_ASSOC) 4165 sp->default_ss = params->assoc_value; 4166 4167 if (params->assoc_id == SCTP_CURRENT_ASSOC || 4168 params->assoc_id == SCTP_ALL_ASSOC) { 4169 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4170 int ret = sctp_sched_set_sched(asoc, 4171 params->assoc_value); 4172 4173 if (ret && !retval) 4174 retval = ret; 4175 } 4176 } 4177 4178 return retval; 4179 } 4180 4181 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4182 struct sctp_stream_value *params, 4183 unsigned int optlen) 4184 { 4185 struct sctp_association *asoc; 4186 int retval = -EINVAL; 4187 4188 if (optlen < sizeof(*params)) 4189 goto out; 4190 4191 asoc = sctp_id2assoc(sk, params->assoc_id); 4192 if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC && 4193 sctp_style(sk, UDP)) 4194 goto out; 4195 4196 if (asoc) { 4197 retval = sctp_sched_set_value(asoc, params->stream_id, 4198 params->stream_value, GFP_KERNEL); 4199 goto out; 4200 } 4201 4202 retval = 0; 4203 4204 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) { 4205 int ret = sctp_sched_set_value(asoc, params->stream_id, 4206 params->stream_value, 4207 GFP_KERNEL); 4208 if (ret && !retval) /* try to return the 1st error. */ 4209 retval = ret; 4210 } 4211 4212 out: 4213 return retval; 4214 } 4215 4216 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4217 struct sctp_assoc_value *p, 4218 unsigned int optlen) 4219 { 4220 struct sctp_sock *sp = sctp_sk(sk); 4221 struct sctp_association *asoc; 4222 4223 if (optlen < sizeof(*p)) 4224 return -EINVAL; 4225 4226 asoc = sctp_id2assoc(sk, p->assoc_id); 4227 if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) 4228 return -EINVAL; 4229 4230 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) { 4231 return -EPERM; 4232 } 4233 4234 sp->ep->intl_enable = !!p->assoc_value; 4235 return 0; 4236 } 4237 4238 static int sctp_setsockopt_reuse_port(struct sock *sk, int *val, 4239 unsigned int optlen) 4240 { 4241 if (!sctp_style(sk, TCP)) 4242 return -EOPNOTSUPP; 4243 4244 if (sctp_sk(sk)->ep->base.bind_addr.port) 4245 return -EFAULT; 4246 4247 if (optlen < sizeof(int)) 4248 return -EINVAL; 4249 4250 sctp_sk(sk)->reuse = !!*val; 4251 4252 return 0; 4253 } 4254 4255 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param, 4256 struct sctp_association *asoc) 4257 { 4258 struct sctp_ulpevent *event; 4259 4260 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on); 4261 4262 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) { 4263 if (sctp_outq_is_empty(&asoc->outqueue)) { 4264 event = sctp_ulpevent_make_sender_dry_event(asoc, 4265 GFP_USER | __GFP_NOWARN); 4266 if (!event) 4267 return -ENOMEM; 4268 4269 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 4270 } 4271 } 4272 4273 return 0; 4274 } 4275 4276 static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param, 4277 unsigned int optlen) 4278 { 4279 struct sctp_sock *sp = sctp_sk(sk); 4280 struct sctp_association *asoc; 4281 int retval = 0; 4282 4283 if (optlen < sizeof(*param)) 4284 return -EINVAL; 4285 4286 if (param->se_type < SCTP_SN_TYPE_BASE || 4287 param->se_type > SCTP_SN_TYPE_MAX) 4288 return -EINVAL; 4289 4290 asoc = sctp_id2assoc(sk, param->se_assoc_id); 4291 if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC && 4292 sctp_style(sk, UDP)) 4293 return -EINVAL; 4294 4295 if (asoc) 4296 return sctp_assoc_ulpevent_type_set(param, asoc); 4297 4298 if (sctp_style(sk, TCP)) 4299 param->se_assoc_id = SCTP_FUTURE_ASSOC; 4300 4301 if (param->se_assoc_id == SCTP_FUTURE_ASSOC || 4302 param->se_assoc_id == SCTP_ALL_ASSOC) 4303 sctp_ulpevent_type_set(&sp->subscribe, 4304 param->se_type, param->se_on); 4305 4306 if (param->se_assoc_id == SCTP_CURRENT_ASSOC || 4307 param->se_assoc_id == SCTP_ALL_ASSOC) { 4308 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4309 int ret = sctp_assoc_ulpevent_type_set(param, asoc); 4310 4311 if (ret && !retval) 4312 retval = ret; 4313 } 4314 } 4315 4316 return retval; 4317 } 4318 4319 static int sctp_setsockopt_asconf_supported(struct sock *sk, 4320 struct sctp_assoc_value *params, 4321 unsigned int optlen) 4322 { 4323 struct sctp_association *asoc; 4324 struct sctp_endpoint *ep; 4325 int retval = -EINVAL; 4326 4327 if (optlen != sizeof(*params)) 4328 goto out; 4329 4330 asoc = sctp_id2assoc(sk, params->assoc_id); 4331 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4332 sctp_style(sk, UDP)) 4333 goto out; 4334 4335 ep = sctp_sk(sk)->ep; 4336 ep->asconf_enable = !!params->assoc_value; 4337 4338 if (ep->asconf_enable && ep->auth_enable) { 4339 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4340 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4341 } 4342 4343 retval = 0; 4344 4345 out: 4346 return retval; 4347 } 4348 4349 static int sctp_setsockopt_auth_supported(struct sock *sk, 4350 struct sctp_assoc_value *params, 4351 unsigned int optlen) 4352 { 4353 struct sctp_association *asoc; 4354 struct sctp_endpoint *ep; 4355 int retval = -EINVAL; 4356 4357 if (optlen != sizeof(*params)) 4358 goto out; 4359 4360 asoc = sctp_id2assoc(sk, params->assoc_id); 4361 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4362 sctp_style(sk, UDP)) 4363 goto out; 4364 4365 ep = sctp_sk(sk)->ep; 4366 if (params->assoc_value) { 4367 retval = sctp_auth_init(ep, GFP_KERNEL); 4368 if (retval) 4369 goto out; 4370 if (ep->asconf_enable) { 4371 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4372 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4373 } 4374 } 4375 4376 ep->auth_enable = !!params->assoc_value; 4377 retval = 0; 4378 4379 out: 4380 return retval; 4381 } 4382 4383 static int sctp_setsockopt_ecn_supported(struct sock *sk, 4384 struct sctp_assoc_value *params, 4385 unsigned int optlen) 4386 { 4387 struct sctp_association *asoc; 4388 int retval = -EINVAL; 4389 4390 if (optlen != sizeof(*params)) 4391 goto out; 4392 4393 asoc = sctp_id2assoc(sk, params->assoc_id); 4394 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4395 sctp_style(sk, UDP)) 4396 goto out; 4397 4398 sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value; 4399 retval = 0; 4400 4401 out: 4402 return retval; 4403 } 4404 4405 static int sctp_setsockopt_pf_expose(struct sock *sk, 4406 struct sctp_assoc_value *params, 4407 unsigned int optlen) 4408 { 4409 struct sctp_association *asoc; 4410 int retval = -EINVAL; 4411 4412 if (optlen != sizeof(*params)) 4413 goto out; 4414 4415 if (params->assoc_value > SCTP_PF_EXPOSE_MAX) 4416 goto out; 4417 4418 asoc = sctp_id2assoc(sk, params->assoc_id); 4419 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4420 sctp_style(sk, UDP)) 4421 goto out; 4422 4423 if (asoc) 4424 asoc->pf_expose = params->assoc_value; 4425 else 4426 sctp_sk(sk)->pf_expose = params->assoc_value; 4427 retval = 0; 4428 4429 out: 4430 return retval; 4431 } 4432 4433 static int sctp_setsockopt_encap_port(struct sock *sk, 4434 struct sctp_udpencaps *encap, 4435 unsigned int optlen) 4436 { 4437 struct sctp_association *asoc; 4438 struct sctp_transport *t; 4439 __be16 encap_port; 4440 4441 if (optlen != sizeof(*encap)) 4442 return -EINVAL; 4443 4444 /* If an address other than INADDR_ANY is specified, and 4445 * no transport is found, then the request is invalid. 4446 */ 4447 encap_port = (__force __be16)encap->sue_port; 4448 if (!sctp_is_any(sk, (union sctp_addr *)&encap->sue_address)) { 4449 t = sctp_addr_id2transport(sk, &encap->sue_address, 4450 encap->sue_assoc_id); 4451 if (!t) 4452 return -EINVAL; 4453 4454 t->encap_port = encap_port; 4455 return 0; 4456 } 4457 4458 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 4459 * socket is a one to many style socket, and an association 4460 * was not found, then the id was invalid. 4461 */ 4462 asoc = sctp_id2assoc(sk, encap->sue_assoc_id); 4463 if (!asoc && encap->sue_assoc_id != SCTP_FUTURE_ASSOC && 4464 sctp_style(sk, UDP)) 4465 return -EINVAL; 4466 4467 /* If changes are for association, also apply encap_port to 4468 * each transport. 4469 */ 4470 if (asoc) { 4471 list_for_each_entry(t, &asoc->peer.transport_addr_list, 4472 transports) 4473 t->encap_port = encap_port; 4474 4475 asoc->encap_port = encap_port; 4476 return 0; 4477 } 4478 4479 sctp_sk(sk)->encap_port = encap_port; 4480 return 0; 4481 } 4482 4483 static int sctp_setsockopt_probe_interval(struct sock *sk, 4484 struct sctp_probeinterval *params, 4485 unsigned int optlen) 4486 { 4487 struct sctp_association *asoc; 4488 struct sctp_transport *t; 4489 __u32 probe_interval; 4490 4491 if (optlen != sizeof(*params)) 4492 return -EINVAL; 4493 4494 probe_interval = params->spi_interval; 4495 if (probe_interval && probe_interval < SCTP_PROBE_TIMER_MIN) 4496 return -EINVAL; 4497 4498 /* If an address other than INADDR_ANY is specified, and 4499 * no transport is found, then the request is invalid. 4500 */ 4501 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spi_address)) { 4502 t = sctp_addr_id2transport(sk, ¶ms->spi_address, 4503 params->spi_assoc_id); 4504 if (!t) 4505 return -EINVAL; 4506 4507 t->probe_interval = msecs_to_jiffies(probe_interval); 4508 sctp_transport_pl_reset(t); 4509 return 0; 4510 } 4511 4512 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 4513 * socket is a one to many style socket, and an association 4514 * was not found, then the id was invalid. 4515 */ 4516 asoc = sctp_id2assoc(sk, params->spi_assoc_id); 4517 if (!asoc && params->spi_assoc_id != SCTP_FUTURE_ASSOC && 4518 sctp_style(sk, UDP)) 4519 return -EINVAL; 4520 4521 /* If changes are for association, also apply probe_interval to 4522 * each transport. 4523 */ 4524 if (asoc) { 4525 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) { 4526 t->probe_interval = msecs_to_jiffies(probe_interval); 4527 sctp_transport_pl_reset(t); 4528 } 4529 4530 asoc->probe_interval = msecs_to_jiffies(probe_interval); 4531 return 0; 4532 } 4533 4534 sctp_sk(sk)->probe_interval = probe_interval; 4535 return 0; 4536 } 4537 4538 /* API 6.2 setsockopt(), getsockopt() 4539 * 4540 * Applications use setsockopt() and getsockopt() to set or retrieve 4541 * socket options. Socket options are used to change the default 4542 * behavior of sockets calls. They are described in Section 7. 4543 * 4544 * The syntax is: 4545 * 4546 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4547 * int __user *optlen); 4548 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4549 * int optlen); 4550 * 4551 * sd - the socket descript. 4552 * level - set to IPPROTO_SCTP for all SCTP options. 4553 * optname - the option name. 4554 * optval - the buffer to store the value of the option. 4555 * optlen - the size of the buffer. 4556 */ 4557 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4558 sockptr_t optval, unsigned int optlen) 4559 { 4560 void *kopt = NULL; 4561 int retval = 0; 4562 4563 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4564 4565 /* I can hardly begin to describe how wrong this is. This is 4566 * so broken as to be worse than useless. The API draft 4567 * REALLY is NOT helpful here... I am not convinced that the 4568 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4569 * are at all well-founded. 4570 */ 4571 if (level != SOL_SCTP) { 4572 struct sctp_af *af = sctp_sk(sk)->pf->af; 4573 4574 return af->setsockopt(sk, level, optname, optval, optlen); 4575 } 4576 4577 if (optlen > 0) { 4578 /* Trim it to the biggest size sctp sockopt may need if necessary */ 4579 optlen = min_t(unsigned int, optlen, 4580 PAGE_ALIGN(USHRT_MAX + 4581 sizeof(__u16) * sizeof(struct sctp_reset_streams))); 4582 kopt = memdup_sockptr(optval, optlen); 4583 if (IS_ERR(kopt)) 4584 return PTR_ERR(kopt); 4585 } 4586 4587 lock_sock(sk); 4588 4589 switch (optname) { 4590 case SCTP_SOCKOPT_BINDX_ADD: 4591 /* 'optlen' is the size of the addresses buffer. */ 4592 retval = sctp_setsockopt_bindx(sk, kopt, optlen, 4593 SCTP_BINDX_ADD_ADDR); 4594 break; 4595 4596 case SCTP_SOCKOPT_BINDX_REM: 4597 /* 'optlen' is the size of the addresses buffer. */ 4598 retval = sctp_setsockopt_bindx(sk, kopt, optlen, 4599 SCTP_BINDX_REM_ADDR); 4600 break; 4601 4602 case SCTP_SOCKOPT_CONNECTX_OLD: 4603 /* 'optlen' is the size of the addresses buffer. */ 4604 retval = sctp_setsockopt_connectx_old(sk, kopt, optlen); 4605 break; 4606 4607 case SCTP_SOCKOPT_CONNECTX: 4608 /* 'optlen' is the size of the addresses buffer. */ 4609 retval = sctp_setsockopt_connectx(sk, kopt, optlen); 4610 break; 4611 4612 case SCTP_DISABLE_FRAGMENTS: 4613 retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen); 4614 break; 4615 4616 case SCTP_EVENTS: 4617 retval = sctp_setsockopt_events(sk, kopt, optlen); 4618 break; 4619 4620 case SCTP_AUTOCLOSE: 4621 retval = sctp_setsockopt_autoclose(sk, kopt, optlen); 4622 break; 4623 4624 case SCTP_PEER_ADDR_PARAMS: 4625 retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen); 4626 break; 4627 4628 case SCTP_DELAYED_SACK: 4629 retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen); 4630 break; 4631 case SCTP_PARTIAL_DELIVERY_POINT: 4632 retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen); 4633 break; 4634 4635 case SCTP_INITMSG: 4636 retval = sctp_setsockopt_initmsg(sk, kopt, optlen); 4637 break; 4638 case SCTP_DEFAULT_SEND_PARAM: 4639 retval = sctp_setsockopt_default_send_param(sk, kopt, optlen); 4640 break; 4641 case SCTP_DEFAULT_SNDINFO: 4642 retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen); 4643 break; 4644 case SCTP_PRIMARY_ADDR: 4645 retval = sctp_setsockopt_primary_addr(sk, kopt, optlen); 4646 break; 4647 case SCTP_SET_PEER_PRIMARY_ADDR: 4648 retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen); 4649 break; 4650 case SCTP_NODELAY: 4651 retval = sctp_setsockopt_nodelay(sk, kopt, optlen); 4652 break; 4653 case SCTP_RTOINFO: 4654 retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen); 4655 break; 4656 case SCTP_ASSOCINFO: 4657 retval = sctp_setsockopt_associnfo(sk, kopt, optlen); 4658 break; 4659 case SCTP_I_WANT_MAPPED_V4_ADDR: 4660 retval = sctp_setsockopt_mappedv4(sk, kopt, optlen); 4661 break; 4662 case SCTP_MAXSEG: 4663 retval = sctp_setsockopt_maxseg(sk, kopt, optlen); 4664 break; 4665 case SCTP_ADAPTATION_LAYER: 4666 retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen); 4667 break; 4668 case SCTP_CONTEXT: 4669 retval = sctp_setsockopt_context(sk, kopt, optlen); 4670 break; 4671 case SCTP_FRAGMENT_INTERLEAVE: 4672 retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen); 4673 break; 4674 case SCTP_MAX_BURST: 4675 retval = sctp_setsockopt_maxburst(sk, kopt, optlen); 4676 break; 4677 case SCTP_AUTH_CHUNK: 4678 retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen); 4679 break; 4680 case SCTP_HMAC_IDENT: 4681 retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen); 4682 break; 4683 case SCTP_AUTH_KEY: 4684 retval = sctp_setsockopt_auth_key(sk, kopt, optlen); 4685 break; 4686 case SCTP_AUTH_ACTIVE_KEY: 4687 retval = sctp_setsockopt_active_key(sk, kopt, optlen); 4688 break; 4689 case SCTP_AUTH_DELETE_KEY: 4690 retval = sctp_setsockopt_del_key(sk, kopt, optlen); 4691 break; 4692 case SCTP_AUTH_DEACTIVATE_KEY: 4693 retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen); 4694 break; 4695 case SCTP_AUTO_ASCONF: 4696 retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen); 4697 break; 4698 case SCTP_PEER_ADDR_THLDS: 4699 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen, 4700 false); 4701 break; 4702 case SCTP_PEER_ADDR_THLDS_V2: 4703 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen, 4704 true); 4705 break; 4706 case SCTP_RECVRCVINFO: 4707 retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen); 4708 break; 4709 case SCTP_RECVNXTINFO: 4710 retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen); 4711 break; 4712 case SCTP_PR_SUPPORTED: 4713 retval = sctp_setsockopt_pr_supported(sk, kopt, optlen); 4714 break; 4715 case SCTP_DEFAULT_PRINFO: 4716 retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen); 4717 break; 4718 case SCTP_RECONFIG_SUPPORTED: 4719 retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen); 4720 break; 4721 case SCTP_ENABLE_STREAM_RESET: 4722 retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen); 4723 break; 4724 case SCTP_RESET_STREAMS: 4725 retval = sctp_setsockopt_reset_streams(sk, kopt, optlen); 4726 break; 4727 case SCTP_RESET_ASSOC: 4728 retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen); 4729 break; 4730 case SCTP_ADD_STREAMS: 4731 retval = sctp_setsockopt_add_streams(sk, kopt, optlen); 4732 break; 4733 case SCTP_STREAM_SCHEDULER: 4734 retval = sctp_setsockopt_scheduler(sk, kopt, optlen); 4735 break; 4736 case SCTP_STREAM_SCHEDULER_VALUE: 4737 retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen); 4738 break; 4739 case SCTP_INTERLEAVING_SUPPORTED: 4740 retval = sctp_setsockopt_interleaving_supported(sk, kopt, 4741 optlen); 4742 break; 4743 case SCTP_REUSE_PORT: 4744 retval = sctp_setsockopt_reuse_port(sk, kopt, optlen); 4745 break; 4746 case SCTP_EVENT: 4747 retval = sctp_setsockopt_event(sk, kopt, optlen); 4748 break; 4749 case SCTP_ASCONF_SUPPORTED: 4750 retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen); 4751 break; 4752 case SCTP_AUTH_SUPPORTED: 4753 retval = sctp_setsockopt_auth_supported(sk, kopt, optlen); 4754 break; 4755 case SCTP_ECN_SUPPORTED: 4756 retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen); 4757 break; 4758 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 4759 retval = sctp_setsockopt_pf_expose(sk, kopt, optlen); 4760 break; 4761 case SCTP_REMOTE_UDP_ENCAPS_PORT: 4762 retval = sctp_setsockopt_encap_port(sk, kopt, optlen); 4763 break; 4764 case SCTP_PLPMTUD_PROBE_INTERVAL: 4765 retval = sctp_setsockopt_probe_interval(sk, kopt, optlen); 4766 break; 4767 default: 4768 retval = -ENOPROTOOPT; 4769 break; 4770 } 4771 4772 release_sock(sk); 4773 kfree(kopt); 4774 return retval; 4775 } 4776 4777 /* API 3.1.6 connect() - UDP Style Syntax 4778 * 4779 * An application may use the connect() call in the UDP model to initiate an 4780 * association without sending data. 4781 * 4782 * The syntax is: 4783 * 4784 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4785 * 4786 * sd: the socket descriptor to have a new association added to. 4787 * 4788 * nam: the address structure (either struct sockaddr_in or struct 4789 * sockaddr_in6 defined in RFC2553 [7]). 4790 * 4791 * len: the size of the address. 4792 */ 4793 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4794 int addr_len, int flags) 4795 { 4796 struct sctp_af *af; 4797 int err = -EINVAL; 4798 4799 lock_sock(sk); 4800 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4801 addr, addr_len); 4802 4803 /* Validate addr_len before calling common connect/connectx routine. */ 4804 af = sctp_get_af_specific(addr->sa_family); 4805 if (af && addr_len >= af->sockaddr_len) 4806 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4807 4808 release_sock(sk); 4809 return err; 4810 } 4811 4812 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4813 int addr_len, int flags) 4814 { 4815 if (addr_len < sizeof(uaddr->sa_family)) 4816 return -EINVAL; 4817 4818 if (uaddr->sa_family == AF_UNSPEC) 4819 return -EOPNOTSUPP; 4820 4821 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4822 } 4823 4824 /* FIXME: Write comments. */ 4825 static int sctp_disconnect(struct sock *sk, int flags) 4826 { 4827 return -EOPNOTSUPP; /* STUB */ 4828 } 4829 4830 /* 4.1.4 accept() - TCP Style Syntax 4831 * 4832 * Applications use accept() call to remove an established SCTP 4833 * association from the accept queue of the endpoint. A new socket 4834 * descriptor will be returned from accept() to represent the newly 4835 * formed association. 4836 */ 4837 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4838 { 4839 struct sctp_sock *sp; 4840 struct sctp_endpoint *ep; 4841 struct sock *newsk = NULL; 4842 struct sctp_association *asoc; 4843 long timeo; 4844 int error = 0; 4845 4846 lock_sock(sk); 4847 4848 sp = sctp_sk(sk); 4849 ep = sp->ep; 4850 4851 if (!sctp_style(sk, TCP)) { 4852 error = -EOPNOTSUPP; 4853 goto out; 4854 } 4855 4856 if (!sctp_sstate(sk, LISTENING)) { 4857 error = -EINVAL; 4858 goto out; 4859 } 4860 4861 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4862 4863 error = sctp_wait_for_accept(sk, timeo); 4864 if (error) 4865 goto out; 4866 4867 /* We treat the list of associations on the endpoint as the accept 4868 * queue and pick the first association on the list. 4869 */ 4870 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4871 4872 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4873 if (!newsk) { 4874 error = -ENOMEM; 4875 goto out; 4876 } 4877 4878 /* Populate the fields of the newsk from the oldsk and migrate the 4879 * asoc to the newsk. 4880 */ 4881 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4882 if (error) { 4883 sk_common_release(newsk); 4884 newsk = NULL; 4885 } 4886 4887 out: 4888 release_sock(sk); 4889 *err = error; 4890 return newsk; 4891 } 4892 4893 /* The SCTP ioctl handler. */ 4894 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4895 { 4896 int rc = -ENOTCONN; 4897 4898 lock_sock(sk); 4899 4900 /* 4901 * SEQPACKET-style sockets in LISTENING state are valid, for 4902 * SCTP, so only discard TCP-style sockets in LISTENING state. 4903 */ 4904 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4905 goto out; 4906 4907 switch (cmd) { 4908 case SIOCINQ: { 4909 struct sk_buff *skb; 4910 unsigned int amount = 0; 4911 4912 skb = skb_peek(&sk->sk_receive_queue); 4913 if (skb != NULL) { 4914 /* 4915 * We will only return the amount of this packet since 4916 * that is all that will be read. 4917 */ 4918 amount = skb->len; 4919 } 4920 rc = put_user(amount, (int __user *)arg); 4921 break; 4922 } 4923 default: 4924 rc = -ENOIOCTLCMD; 4925 break; 4926 } 4927 out: 4928 release_sock(sk); 4929 return rc; 4930 } 4931 4932 /* This is the function which gets called during socket creation to 4933 * initialized the SCTP-specific portion of the sock. 4934 * The sock structure should already be zero-filled memory. 4935 */ 4936 static int sctp_init_sock(struct sock *sk) 4937 { 4938 struct net *net = sock_net(sk); 4939 struct sctp_sock *sp; 4940 4941 pr_debug("%s: sk:%p\n", __func__, sk); 4942 4943 sp = sctp_sk(sk); 4944 4945 /* Initialize the SCTP per socket area. */ 4946 switch (sk->sk_type) { 4947 case SOCK_SEQPACKET: 4948 sp->type = SCTP_SOCKET_UDP; 4949 break; 4950 case SOCK_STREAM: 4951 sp->type = SCTP_SOCKET_TCP; 4952 break; 4953 default: 4954 return -ESOCKTNOSUPPORT; 4955 } 4956 4957 sk->sk_gso_type = SKB_GSO_SCTP; 4958 4959 /* Initialize default send parameters. These parameters can be 4960 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4961 */ 4962 sp->default_stream = 0; 4963 sp->default_ppid = 0; 4964 sp->default_flags = 0; 4965 sp->default_context = 0; 4966 sp->default_timetolive = 0; 4967 4968 sp->default_rcv_context = 0; 4969 sp->max_burst = net->sctp.max_burst; 4970 4971 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4972 4973 /* Initialize default setup parameters. These parameters 4974 * can be modified with the SCTP_INITMSG socket option or 4975 * overridden by the SCTP_INIT CMSG. 4976 */ 4977 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4978 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4979 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4980 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4981 4982 /* Initialize default RTO related parameters. These parameters can 4983 * be modified for with the SCTP_RTOINFO socket option. 4984 */ 4985 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4986 sp->rtoinfo.srto_max = net->sctp.rto_max; 4987 sp->rtoinfo.srto_min = net->sctp.rto_min; 4988 4989 /* Initialize default association related parameters. These parameters 4990 * can be modified with the SCTP_ASSOCINFO socket option. 4991 */ 4992 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4993 sp->assocparams.sasoc_number_peer_destinations = 0; 4994 sp->assocparams.sasoc_peer_rwnd = 0; 4995 sp->assocparams.sasoc_local_rwnd = 0; 4996 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 4997 4998 /* Initialize default event subscriptions. By default, all the 4999 * options are off. 5000 */ 5001 sp->subscribe = 0; 5002 5003 /* Default Peer Address Parameters. These defaults can 5004 * be modified via SCTP_PEER_ADDR_PARAMS 5005 */ 5006 sp->hbinterval = net->sctp.hb_interval; 5007 sp->udp_port = htons(net->sctp.udp_port); 5008 sp->encap_port = htons(net->sctp.encap_port); 5009 sp->pathmaxrxt = net->sctp.max_retrans_path; 5010 sp->pf_retrans = net->sctp.pf_retrans; 5011 sp->ps_retrans = net->sctp.ps_retrans; 5012 sp->pf_expose = net->sctp.pf_expose; 5013 sp->pathmtu = 0; /* allow default discovery */ 5014 sp->sackdelay = net->sctp.sack_timeout; 5015 sp->sackfreq = 2; 5016 sp->param_flags = SPP_HB_ENABLE | 5017 SPP_PMTUD_ENABLE | 5018 SPP_SACKDELAY_ENABLE; 5019 sp->default_ss = SCTP_SS_DEFAULT; 5020 5021 /* If enabled no SCTP message fragmentation will be performed. 5022 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 5023 */ 5024 sp->disable_fragments = 0; 5025 5026 /* Enable Nagle algorithm by default. */ 5027 sp->nodelay = 0; 5028 5029 sp->recvrcvinfo = 0; 5030 sp->recvnxtinfo = 0; 5031 5032 /* Enable by default. */ 5033 sp->v4mapped = 1; 5034 5035 /* Auto-close idle associations after the configured 5036 * number of seconds. A value of 0 disables this 5037 * feature. Configure through the SCTP_AUTOCLOSE socket option, 5038 * for UDP-style sockets only. 5039 */ 5040 sp->autoclose = 0; 5041 5042 /* User specified fragmentation limit. */ 5043 sp->user_frag = 0; 5044 5045 sp->adaptation_ind = 0; 5046 5047 sp->pf = sctp_get_pf_specific(sk->sk_family); 5048 5049 /* Control variables for partial data delivery. */ 5050 atomic_set(&sp->pd_mode, 0); 5051 skb_queue_head_init(&sp->pd_lobby); 5052 sp->frag_interleave = 0; 5053 sp->probe_interval = net->sctp.probe_interval; 5054 5055 /* Create a per socket endpoint structure. Even if we 5056 * change the data structure relationships, this may still 5057 * be useful for storing pre-connect address information. 5058 */ 5059 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 5060 if (!sp->ep) 5061 return -ENOMEM; 5062 5063 sp->hmac = NULL; 5064 5065 sk->sk_destruct = sctp_destruct_sock; 5066 5067 SCTP_DBG_OBJCNT_INC(sock); 5068 5069 sk_sockets_allocated_inc(sk); 5070 sock_prot_inuse_add(net, sk->sk_prot, 1); 5071 5072 return 0; 5073 } 5074 5075 /* Cleanup any SCTP per socket resources. Must be called with 5076 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 5077 */ 5078 static void sctp_destroy_sock(struct sock *sk) 5079 { 5080 struct sctp_sock *sp; 5081 5082 pr_debug("%s: sk:%p\n", __func__, sk); 5083 5084 /* Release our hold on the endpoint. */ 5085 sp = sctp_sk(sk); 5086 /* This could happen during socket init, thus we bail out 5087 * early, since the rest of the below is not setup either. 5088 */ 5089 if (sp->ep == NULL) 5090 return; 5091 5092 if (sp->do_auto_asconf) { 5093 sp->do_auto_asconf = 0; 5094 list_del(&sp->auto_asconf_list); 5095 } 5096 sctp_endpoint_free(sp->ep); 5097 sk_sockets_allocated_dec(sk); 5098 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 5099 } 5100 5101 /* Triggered when there are no references on the socket anymore */ 5102 static void sctp_destruct_common(struct sock *sk) 5103 { 5104 struct sctp_sock *sp = sctp_sk(sk); 5105 5106 /* Free up the HMAC transform. */ 5107 crypto_free_shash(sp->hmac); 5108 } 5109 5110 static void sctp_destruct_sock(struct sock *sk) 5111 { 5112 sctp_destruct_common(sk); 5113 inet_sock_destruct(sk); 5114 } 5115 5116 /* API 4.1.7 shutdown() - TCP Style Syntax 5117 * int shutdown(int socket, int how); 5118 * 5119 * sd - the socket descriptor of the association to be closed. 5120 * how - Specifies the type of shutdown. The values are 5121 * as follows: 5122 * SHUT_RD 5123 * Disables further receive operations. No SCTP 5124 * protocol action is taken. 5125 * SHUT_WR 5126 * Disables further send operations, and initiates 5127 * the SCTP shutdown sequence. 5128 * SHUT_RDWR 5129 * Disables further send and receive operations 5130 * and initiates the SCTP shutdown sequence. 5131 */ 5132 static void sctp_shutdown(struct sock *sk, int how) 5133 { 5134 struct net *net = sock_net(sk); 5135 struct sctp_endpoint *ep; 5136 5137 if (!sctp_style(sk, TCP)) 5138 return; 5139 5140 ep = sctp_sk(sk)->ep; 5141 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 5142 struct sctp_association *asoc; 5143 5144 inet_sk_set_state(sk, SCTP_SS_CLOSING); 5145 asoc = list_entry(ep->asocs.next, 5146 struct sctp_association, asocs); 5147 sctp_primitive_SHUTDOWN(net, asoc, NULL); 5148 } 5149 } 5150 5151 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 5152 struct sctp_info *info) 5153 { 5154 struct sctp_transport *prim; 5155 struct list_head *pos; 5156 int mask; 5157 5158 memset(info, 0, sizeof(*info)); 5159 if (!asoc) { 5160 struct sctp_sock *sp = sctp_sk(sk); 5161 5162 info->sctpi_s_autoclose = sp->autoclose; 5163 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 5164 info->sctpi_s_pd_point = sp->pd_point; 5165 info->sctpi_s_nodelay = sp->nodelay; 5166 info->sctpi_s_disable_fragments = sp->disable_fragments; 5167 info->sctpi_s_v4mapped = sp->v4mapped; 5168 info->sctpi_s_frag_interleave = sp->frag_interleave; 5169 info->sctpi_s_type = sp->type; 5170 5171 return 0; 5172 } 5173 5174 info->sctpi_tag = asoc->c.my_vtag; 5175 info->sctpi_state = asoc->state; 5176 info->sctpi_rwnd = asoc->a_rwnd; 5177 info->sctpi_unackdata = asoc->unack_data; 5178 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5179 info->sctpi_instrms = asoc->stream.incnt; 5180 info->sctpi_outstrms = asoc->stream.outcnt; 5181 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 5182 info->sctpi_inqueue++; 5183 list_for_each(pos, &asoc->outqueue.out_chunk_list) 5184 info->sctpi_outqueue++; 5185 info->sctpi_overall_error = asoc->overall_error_count; 5186 info->sctpi_max_burst = asoc->max_burst; 5187 info->sctpi_maxseg = asoc->frag_point; 5188 info->sctpi_peer_rwnd = asoc->peer.rwnd; 5189 info->sctpi_peer_tag = asoc->c.peer_vtag; 5190 5191 mask = asoc->peer.ecn_capable << 1; 5192 mask = (mask | asoc->peer.ipv4_address) << 1; 5193 mask = (mask | asoc->peer.ipv6_address) << 1; 5194 mask = (mask | asoc->peer.hostname_address) << 1; 5195 mask = (mask | asoc->peer.asconf_capable) << 1; 5196 mask = (mask | asoc->peer.prsctp_capable) << 1; 5197 mask = (mask | asoc->peer.auth_capable); 5198 info->sctpi_peer_capable = mask; 5199 mask = asoc->peer.sack_needed << 1; 5200 mask = (mask | asoc->peer.sack_generation) << 1; 5201 mask = (mask | asoc->peer.zero_window_announced); 5202 info->sctpi_peer_sack = mask; 5203 5204 info->sctpi_isacks = asoc->stats.isacks; 5205 info->sctpi_osacks = asoc->stats.osacks; 5206 info->sctpi_opackets = asoc->stats.opackets; 5207 info->sctpi_ipackets = asoc->stats.ipackets; 5208 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 5209 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 5210 info->sctpi_idupchunks = asoc->stats.idupchunks; 5211 info->sctpi_gapcnt = asoc->stats.gapcnt; 5212 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 5213 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 5214 info->sctpi_oodchunks = asoc->stats.oodchunks; 5215 info->sctpi_iodchunks = asoc->stats.iodchunks; 5216 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 5217 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 5218 5219 prim = asoc->peer.primary_path; 5220 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 5221 info->sctpi_p_state = prim->state; 5222 info->sctpi_p_cwnd = prim->cwnd; 5223 info->sctpi_p_srtt = prim->srtt; 5224 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 5225 info->sctpi_p_hbinterval = prim->hbinterval; 5226 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 5227 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 5228 info->sctpi_p_ssthresh = prim->ssthresh; 5229 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 5230 info->sctpi_p_flight_size = prim->flight_size; 5231 info->sctpi_p_error = prim->error_count; 5232 5233 return 0; 5234 } 5235 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 5236 5237 /* use callback to avoid exporting the core structure */ 5238 void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU) 5239 { 5240 rhltable_walk_enter(&sctp_transport_hashtable, iter); 5241 5242 rhashtable_walk_start(iter); 5243 } 5244 5245 void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU) 5246 { 5247 rhashtable_walk_stop(iter); 5248 rhashtable_walk_exit(iter); 5249 } 5250 5251 struct sctp_transport *sctp_transport_get_next(struct net *net, 5252 struct rhashtable_iter *iter) 5253 { 5254 struct sctp_transport *t; 5255 5256 t = rhashtable_walk_next(iter); 5257 for (; t; t = rhashtable_walk_next(iter)) { 5258 if (IS_ERR(t)) { 5259 if (PTR_ERR(t) == -EAGAIN) 5260 continue; 5261 break; 5262 } 5263 5264 if (!sctp_transport_hold(t)) 5265 continue; 5266 5267 if (net_eq(t->asoc->base.net, net) && 5268 t->asoc->peer.primary_path == t) 5269 break; 5270 5271 sctp_transport_put(t); 5272 } 5273 5274 return t; 5275 } 5276 5277 struct sctp_transport *sctp_transport_get_idx(struct net *net, 5278 struct rhashtable_iter *iter, 5279 int pos) 5280 { 5281 struct sctp_transport *t; 5282 5283 if (!pos) 5284 return SEQ_START_TOKEN; 5285 5286 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { 5287 if (!--pos) 5288 break; 5289 sctp_transport_put(t); 5290 } 5291 5292 return t; 5293 } 5294 5295 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5296 void *p) { 5297 int err = 0; 5298 int hash = 0; 5299 struct sctp_endpoint *ep; 5300 struct sctp_hashbucket *head; 5301 5302 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5303 hash++, head++) { 5304 read_lock_bh(&head->lock); 5305 sctp_for_each_hentry(ep, &head->chain) { 5306 err = cb(ep, p); 5307 if (err) 5308 break; 5309 } 5310 read_unlock_bh(&head->lock); 5311 } 5312 5313 return err; 5314 } 5315 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5316 5317 int sctp_transport_lookup_process(sctp_callback_t cb, struct net *net, 5318 const union sctp_addr *laddr, 5319 const union sctp_addr *paddr, void *p, int dif) 5320 { 5321 struct sctp_transport *transport; 5322 struct sctp_endpoint *ep; 5323 int err = -ENOENT; 5324 5325 rcu_read_lock(); 5326 transport = sctp_addrs_lookup_transport(net, laddr, paddr, dif, dif); 5327 if (!transport) { 5328 rcu_read_unlock(); 5329 return err; 5330 } 5331 ep = transport->asoc->ep; 5332 if (!sctp_endpoint_hold(ep)) { /* asoc can be peeled off */ 5333 sctp_transport_put(transport); 5334 rcu_read_unlock(); 5335 return err; 5336 } 5337 rcu_read_unlock(); 5338 5339 err = cb(ep, transport, p); 5340 sctp_endpoint_put(ep); 5341 sctp_transport_put(transport); 5342 return err; 5343 } 5344 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5345 5346 int sctp_transport_traverse_process(sctp_callback_t cb, sctp_callback_t cb_done, 5347 struct net *net, int *pos, void *p) 5348 { 5349 struct rhashtable_iter hti; 5350 struct sctp_transport *tsp; 5351 struct sctp_endpoint *ep; 5352 int ret; 5353 5354 again: 5355 ret = 0; 5356 sctp_transport_walk_start(&hti); 5357 5358 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5359 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5360 ep = tsp->asoc->ep; 5361 if (sctp_endpoint_hold(ep)) { /* asoc can be peeled off */ 5362 ret = cb(ep, tsp, p); 5363 if (ret) 5364 break; 5365 sctp_endpoint_put(ep); 5366 } 5367 (*pos)++; 5368 sctp_transport_put(tsp); 5369 } 5370 sctp_transport_walk_stop(&hti); 5371 5372 if (ret) { 5373 if (cb_done && !cb_done(ep, tsp, p)) { 5374 (*pos)++; 5375 sctp_endpoint_put(ep); 5376 sctp_transport_put(tsp); 5377 goto again; 5378 } 5379 sctp_endpoint_put(ep); 5380 sctp_transport_put(tsp); 5381 } 5382 5383 return ret; 5384 } 5385 EXPORT_SYMBOL_GPL(sctp_transport_traverse_process); 5386 5387 /* 7.2.1 Association Status (SCTP_STATUS) 5388 5389 * Applications can retrieve current status information about an 5390 * association, including association state, peer receiver window size, 5391 * number of unacked data chunks, and number of data chunks pending 5392 * receipt. This information is read-only. 5393 */ 5394 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5395 char __user *optval, 5396 int __user *optlen) 5397 { 5398 struct sctp_status status; 5399 struct sctp_association *asoc = NULL; 5400 struct sctp_transport *transport; 5401 sctp_assoc_t associd; 5402 int retval = 0; 5403 5404 if (len < sizeof(status)) { 5405 retval = -EINVAL; 5406 goto out; 5407 } 5408 5409 len = sizeof(status); 5410 if (copy_from_user(&status, optval, len)) { 5411 retval = -EFAULT; 5412 goto out; 5413 } 5414 5415 associd = status.sstat_assoc_id; 5416 asoc = sctp_id2assoc(sk, associd); 5417 if (!asoc) { 5418 retval = -EINVAL; 5419 goto out; 5420 } 5421 5422 transport = asoc->peer.primary_path; 5423 5424 status.sstat_assoc_id = sctp_assoc2id(asoc); 5425 status.sstat_state = sctp_assoc_to_state(asoc); 5426 status.sstat_rwnd = asoc->peer.rwnd; 5427 status.sstat_unackdata = asoc->unack_data; 5428 5429 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5430 status.sstat_instrms = asoc->stream.incnt; 5431 status.sstat_outstrms = asoc->stream.outcnt; 5432 status.sstat_fragmentation_point = asoc->frag_point; 5433 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5434 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5435 transport->af_specific->sockaddr_len); 5436 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5437 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5438 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5439 status.sstat_primary.spinfo_state = transport->state; 5440 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5441 status.sstat_primary.spinfo_srtt = transport->srtt; 5442 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5443 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5444 5445 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5446 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5447 5448 if (put_user(len, optlen)) { 5449 retval = -EFAULT; 5450 goto out; 5451 } 5452 5453 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5454 __func__, len, status.sstat_state, status.sstat_rwnd, 5455 status.sstat_assoc_id); 5456 5457 if (copy_to_user(optval, &status, len)) { 5458 retval = -EFAULT; 5459 goto out; 5460 } 5461 5462 out: 5463 return retval; 5464 } 5465 5466 5467 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5468 * 5469 * Applications can retrieve information about a specific peer address 5470 * of an association, including its reachability state, congestion 5471 * window, and retransmission timer values. This information is 5472 * read-only. 5473 */ 5474 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5475 char __user *optval, 5476 int __user *optlen) 5477 { 5478 struct sctp_paddrinfo pinfo; 5479 struct sctp_transport *transport; 5480 int retval = 0; 5481 5482 if (len < sizeof(pinfo)) { 5483 retval = -EINVAL; 5484 goto out; 5485 } 5486 5487 len = sizeof(pinfo); 5488 if (copy_from_user(&pinfo, optval, len)) { 5489 retval = -EFAULT; 5490 goto out; 5491 } 5492 5493 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5494 pinfo.spinfo_assoc_id); 5495 if (!transport) { 5496 retval = -EINVAL; 5497 goto out; 5498 } 5499 5500 if (transport->state == SCTP_PF && 5501 transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) { 5502 retval = -EACCES; 5503 goto out; 5504 } 5505 5506 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5507 pinfo.spinfo_state = transport->state; 5508 pinfo.spinfo_cwnd = transport->cwnd; 5509 pinfo.spinfo_srtt = transport->srtt; 5510 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5511 pinfo.spinfo_mtu = transport->pathmtu; 5512 5513 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5514 pinfo.spinfo_state = SCTP_ACTIVE; 5515 5516 if (put_user(len, optlen)) { 5517 retval = -EFAULT; 5518 goto out; 5519 } 5520 5521 if (copy_to_user(optval, &pinfo, len)) { 5522 retval = -EFAULT; 5523 goto out; 5524 } 5525 5526 out: 5527 return retval; 5528 } 5529 5530 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5531 * 5532 * This option is a on/off flag. If enabled no SCTP message 5533 * fragmentation will be performed. Instead if a message being sent 5534 * exceeds the current PMTU size, the message will NOT be sent and 5535 * instead a error will be indicated to the user. 5536 */ 5537 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5538 char __user *optval, int __user *optlen) 5539 { 5540 int val; 5541 5542 if (len < sizeof(int)) 5543 return -EINVAL; 5544 5545 len = sizeof(int); 5546 val = (sctp_sk(sk)->disable_fragments == 1); 5547 if (put_user(len, optlen)) 5548 return -EFAULT; 5549 if (copy_to_user(optval, &val, len)) 5550 return -EFAULT; 5551 return 0; 5552 } 5553 5554 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5555 * 5556 * This socket option is used to specify various notifications and 5557 * ancillary data the user wishes to receive. 5558 */ 5559 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5560 int __user *optlen) 5561 { 5562 struct sctp_event_subscribe subscribe; 5563 __u8 *sn_type = (__u8 *)&subscribe; 5564 int i; 5565 5566 if (len == 0) 5567 return -EINVAL; 5568 if (len > sizeof(struct sctp_event_subscribe)) 5569 len = sizeof(struct sctp_event_subscribe); 5570 if (put_user(len, optlen)) 5571 return -EFAULT; 5572 5573 for (i = 0; i < len; i++) 5574 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe, 5575 SCTP_SN_TYPE_BASE + i); 5576 5577 if (copy_to_user(optval, &subscribe, len)) 5578 return -EFAULT; 5579 5580 return 0; 5581 } 5582 5583 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5584 * 5585 * This socket option is applicable to the UDP-style socket only. When 5586 * set it will cause associations that are idle for more than the 5587 * specified number of seconds to automatically close. An association 5588 * being idle is defined an association that has NOT sent or received 5589 * user data. The special value of '0' indicates that no automatic 5590 * close of any associations should be performed. The option expects an 5591 * integer defining the number of seconds of idle time before an 5592 * association is closed. 5593 */ 5594 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5595 { 5596 /* Applicable to UDP-style socket only */ 5597 if (sctp_style(sk, TCP)) 5598 return -EOPNOTSUPP; 5599 if (len < sizeof(int)) 5600 return -EINVAL; 5601 len = sizeof(int); 5602 if (put_user(len, optlen)) 5603 return -EFAULT; 5604 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5605 return -EFAULT; 5606 return 0; 5607 } 5608 5609 /* Helper routine to branch off an association to a new socket. */ 5610 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5611 { 5612 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5613 struct sctp_sock *sp = sctp_sk(sk); 5614 struct socket *sock; 5615 int err = 0; 5616 5617 /* Do not peel off from one netns to another one. */ 5618 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5619 return -EINVAL; 5620 5621 if (!asoc) 5622 return -EINVAL; 5623 5624 /* An association cannot be branched off from an already peeled-off 5625 * socket, nor is this supported for tcp style sockets. 5626 */ 5627 if (!sctp_style(sk, UDP)) 5628 return -EINVAL; 5629 5630 /* Create a new socket. */ 5631 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5632 if (err < 0) 5633 return err; 5634 5635 sctp_copy_sock(sock->sk, sk, asoc); 5636 5637 /* Make peeled-off sockets more like 1-1 accepted sockets. 5638 * Set the daddr and initialize id to something more random and also 5639 * copy over any ip options. 5640 */ 5641 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sock->sk); 5642 sp->pf->copy_ip_options(sk, sock->sk); 5643 5644 /* Populate the fields of the newsk from the oldsk and migrate the 5645 * asoc to the newsk. 5646 */ 5647 err = sctp_sock_migrate(sk, sock->sk, asoc, 5648 SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5649 if (err) { 5650 sock_release(sock); 5651 sock = NULL; 5652 } 5653 5654 *sockp = sock; 5655 5656 return err; 5657 } 5658 EXPORT_SYMBOL(sctp_do_peeloff); 5659 5660 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5661 struct file **newfile, unsigned flags) 5662 { 5663 struct socket *newsock; 5664 int retval; 5665 5666 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5667 if (retval < 0) 5668 goto out; 5669 5670 /* Map the socket to an unused fd that can be returned to the user. */ 5671 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5672 if (retval < 0) { 5673 sock_release(newsock); 5674 goto out; 5675 } 5676 5677 *newfile = sock_alloc_file(newsock, 0, NULL); 5678 if (IS_ERR(*newfile)) { 5679 put_unused_fd(retval); 5680 retval = PTR_ERR(*newfile); 5681 *newfile = NULL; 5682 return retval; 5683 } 5684 5685 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5686 retval); 5687 5688 peeloff->sd = retval; 5689 5690 if (flags & SOCK_NONBLOCK) 5691 (*newfile)->f_flags |= O_NONBLOCK; 5692 out: 5693 return retval; 5694 } 5695 5696 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5697 { 5698 sctp_peeloff_arg_t peeloff; 5699 struct file *newfile = NULL; 5700 int retval = 0; 5701 5702 if (len < sizeof(sctp_peeloff_arg_t)) 5703 return -EINVAL; 5704 len = sizeof(sctp_peeloff_arg_t); 5705 if (copy_from_user(&peeloff, optval, len)) 5706 return -EFAULT; 5707 5708 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5709 if (retval < 0) 5710 goto out; 5711 5712 /* Return the fd mapped to the new socket. */ 5713 if (put_user(len, optlen)) { 5714 fput(newfile); 5715 put_unused_fd(retval); 5716 return -EFAULT; 5717 } 5718 5719 if (copy_to_user(optval, &peeloff, len)) { 5720 fput(newfile); 5721 put_unused_fd(retval); 5722 return -EFAULT; 5723 } 5724 fd_install(retval, newfile); 5725 out: 5726 return retval; 5727 } 5728 5729 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5730 char __user *optval, int __user *optlen) 5731 { 5732 sctp_peeloff_flags_arg_t peeloff; 5733 struct file *newfile = NULL; 5734 int retval = 0; 5735 5736 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5737 return -EINVAL; 5738 len = sizeof(sctp_peeloff_flags_arg_t); 5739 if (copy_from_user(&peeloff, optval, len)) 5740 return -EFAULT; 5741 5742 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5743 &newfile, peeloff.flags); 5744 if (retval < 0) 5745 goto out; 5746 5747 /* Return the fd mapped to the new socket. */ 5748 if (put_user(len, optlen)) { 5749 fput(newfile); 5750 put_unused_fd(retval); 5751 return -EFAULT; 5752 } 5753 5754 if (copy_to_user(optval, &peeloff, len)) { 5755 fput(newfile); 5756 put_unused_fd(retval); 5757 return -EFAULT; 5758 } 5759 fd_install(retval, newfile); 5760 out: 5761 return retval; 5762 } 5763 5764 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5765 * 5766 * Applications can enable or disable heartbeats for any peer address of 5767 * an association, modify an address's heartbeat interval, force a 5768 * heartbeat to be sent immediately, and adjust the address's maximum 5769 * number of retransmissions sent before an address is considered 5770 * unreachable. The following structure is used to access and modify an 5771 * address's parameters: 5772 * 5773 * struct sctp_paddrparams { 5774 * sctp_assoc_t spp_assoc_id; 5775 * struct sockaddr_storage spp_address; 5776 * uint32_t spp_hbinterval; 5777 * uint16_t spp_pathmaxrxt; 5778 * uint32_t spp_pathmtu; 5779 * uint32_t spp_sackdelay; 5780 * uint32_t spp_flags; 5781 * }; 5782 * 5783 * spp_assoc_id - (one-to-many style socket) This is filled in the 5784 * application, and identifies the association for 5785 * this query. 5786 * spp_address - This specifies which address is of interest. 5787 * spp_hbinterval - This contains the value of the heartbeat interval, 5788 * in milliseconds. If a value of zero 5789 * is present in this field then no changes are to 5790 * be made to this parameter. 5791 * spp_pathmaxrxt - This contains the maximum number of 5792 * retransmissions before this address shall be 5793 * considered unreachable. If a value of zero 5794 * is present in this field then no changes are to 5795 * be made to this parameter. 5796 * spp_pathmtu - When Path MTU discovery is disabled the value 5797 * specified here will be the "fixed" path mtu. 5798 * Note that if the spp_address field is empty 5799 * then all associations on this address will 5800 * have this fixed path mtu set upon them. 5801 * 5802 * spp_sackdelay - When delayed sack is enabled, this value specifies 5803 * the number of milliseconds that sacks will be delayed 5804 * for. This value will apply to all addresses of an 5805 * association if the spp_address field is empty. Note 5806 * also, that if delayed sack is enabled and this 5807 * value is set to 0, no change is made to the last 5808 * recorded delayed sack timer value. 5809 * 5810 * spp_flags - These flags are used to control various features 5811 * on an association. The flag field may contain 5812 * zero or more of the following options. 5813 * 5814 * SPP_HB_ENABLE - Enable heartbeats on the 5815 * specified address. Note that if the address 5816 * field is empty all addresses for the association 5817 * have heartbeats enabled upon them. 5818 * 5819 * SPP_HB_DISABLE - Disable heartbeats on the 5820 * speicifed address. Note that if the address 5821 * field is empty all addresses for the association 5822 * will have their heartbeats disabled. Note also 5823 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5824 * mutually exclusive, only one of these two should 5825 * be specified. Enabling both fields will have 5826 * undetermined results. 5827 * 5828 * SPP_HB_DEMAND - Request a user initiated heartbeat 5829 * to be made immediately. 5830 * 5831 * SPP_PMTUD_ENABLE - This field will enable PMTU 5832 * discovery upon the specified address. Note that 5833 * if the address feild is empty then all addresses 5834 * on the association are effected. 5835 * 5836 * SPP_PMTUD_DISABLE - This field will disable PMTU 5837 * discovery upon the specified address. Note that 5838 * if the address feild is empty then all addresses 5839 * on the association are effected. Not also that 5840 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5841 * exclusive. Enabling both will have undetermined 5842 * results. 5843 * 5844 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5845 * on delayed sack. The time specified in spp_sackdelay 5846 * is used to specify the sack delay for this address. Note 5847 * that if spp_address is empty then all addresses will 5848 * enable delayed sack and take on the sack delay 5849 * value specified in spp_sackdelay. 5850 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5851 * off delayed sack. If the spp_address field is blank then 5852 * delayed sack is disabled for the entire association. Note 5853 * also that this field is mutually exclusive to 5854 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5855 * results. 5856 * 5857 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5858 * setting of the IPV6 flow label value. The value is 5859 * contained in the spp_ipv6_flowlabel field. 5860 * Upon retrieval, this flag will be set to indicate that 5861 * the spp_ipv6_flowlabel field has a valid value returned. 5862 * If a specific destination address is set (in the 5863 * spp_address field), then the value returned is that of 5864 * the address. If just an association is specified (and 5865 * no address), then the association's default flow label 5866 * is returned. If neither an association nor a destination 5867 * is specified, then the socket's default flow label is 5868 * returned. For non-IPv6 sockets, this flag will be left 5869 * cleared. 5870 * 5871 * SPP_DSCP: Setting this flag enables the setting of the 5872 * Differentiated Services Code Point (DSCP) value 5873 * associated with either the association or a specific 5874 * address. The value is obtained in the spp_dscp field. 5875 * Upon retrieval, this flag will be set to indicate that 5876 * the spp_dscp field has a valid value returned. If a 5877 * specific destination address is set when called (in the 5878 * spp_address field), then that specific destination 5879 * address's DSCP value is returned. If just an association 5880 * is specified, then the association's default DSCP is 5881 * returned. If neither an association nor a destination is 5882 * specified, then the socket's default DSCP is returned. 5883 * 5884 * spp_ipv6_flowlabel 5885 * - This field is used in conjunction with the 5886 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5887 * The 20 least significant bits are used for the flow 5888 * label. This setting has precedence over any IPv6-layer 5889 * setting. 5890 * 5891 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5892 * and contains the DSCP. The 6 most significant bits are 5893 * used for the DSCP. This setting has precedence over any 5894 * IPv4- or IPv6- layer setting. 5895 */ 5896 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5897 char __user *optval, int __user *optlen) 5898 { 5899 struct sctp_paddrparams params; 5900 struct sctp_transport *trans = NULL; 5901 struct sctp_association *asoc = NULL; 5902 struct sctp_sock *sp = sctp_sk(sk); 5903 5904 if (len >= sizeof(params)) 5905 len = sizeof(params); 5906 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 5907 spp_ipv6_flowlabel), 4)) 5908 len = ALIGN(offsetof(struct sctp_paddrparams, 5909 spp_ipv6_flowlabel), 4); 5910 else 5911 return -EINVAL; 5912 5913 if (copy_from_user(¶ms, optval, len)) 5914 return -EFAULT; 5915 5916 /* If an address other than INADDR_ANY is specified, and 5917 * no transport is found, then the request is invalid. 5918 */ 5919 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5920 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5921 params.spp_assoc_id); 5922 if (!trans) { 5923 pr_debug("%s: failed no transport\n", __func__); 5924 return -EINVAL; 5925 } 5926 } 5927 5928 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 5929 * socket is a one to many style socket, and an association 5930 * was not found, then the id was invalid. 5931 */ 5932 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5933 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 5934 sctp_style(sk, UDP)) { 5935 pr_debug("%s: failed no association\n", __func__); 5936 return -EINVAL; 5937 } 5938 5939 if (trans) { 5940 /* Fetch transport values. */ 5941 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5942 params.spp_pathmtu = trans->pathmtu; 5943 params.spp_pathmaxrxt = trans->pathmaxrxt; 5944 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5945 5946 /*draft-11 doesn't say what to return in spp_flags*/ 5947 params.spp_flags = trans->param_flags; 5948 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5949 params.spp_ipv6_flowlabel = trans->flowlabel & 5950 SCTP_FLOWLABEL_VAL_MASK; 5951 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5952 } 5953 if (trans->dscp & SCTP_DSCP_SET_MASK) { 5954 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 5955 params.spp_flags |= SPP_DSCP; 5956 } 5957 } else if (asoc) { 5958 /* Fetch association values. */ 5959 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5960 params.spp_pathmtu = asoc->pathmtu; 5961 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5962 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5963 5964 /*draft-11 doesn't say what to return in spp_flags*/ 5965 params.spp_flags = asoc->param_flags; 5966 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5967 params.spp_ipv6_flowlabel = asoc->flowlabel & 5968 SCTP_FLOWLABEL_VAL_MASK; 5969 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5970 } 5971 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 5972 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 5973 params.spp_flags |= SPP_DSCP; 5974 } 5975 } else { 5976 /* Fetch socket values. */ 5977 params.spp_hbinterval = sp->hbinterval; 5978 params.spp_pathmtu = sp->pathmtu; 5979 params.spp_sackdelay = sp->sackdelay; 5980 params.spp_pathmaxrxt = sp->pathmaxrxt; 5981 5982 /*draft-11 doesn't say what to return in spp_flags*/ 5983 params.spp_flags = sp->param_flags; 5984 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5985 params.spp_ipv6_flowlabel = sp->flowlabel & 5986 SCTP_FLOWLABEL_VAL_MASK; 5987 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5988 } 5989 if (sp->dscp & SCTP_DSCP_SET_MASK) { 5990 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 5991 params.spp_flags |= SPP_DSCP; 5992 } 5993 } 5994 5995 if (copy_to_user(optval, ¶ms, len)) 5996 return -EFAULT; 5997 5998 if (put_user(len, optlen)) 5999 return -EFAULT; 6000 6001 return 0; 6002 } 6003 6004 /* 6005 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 6006 * 6007 * This option will effect the way delayed acks are performed. This 6008 * option allows you to get or set the delayed ack time, in 6009 * milliseconds. It also allows changing the delayed ack frequency. 6010 * Changing the frequency to 1 disables the delayed sack algorithm. If 6011 * the assoc_id is 0, then this sets or gets the endpoints default 6012 * values. If the assoc_id field is non-zero, then the set or get 6013 * effects the specified association for the one to many model (the 6014 * assoc_id field is ignored by the one to one model). Note that if 6015 * sack_delay or sack_freq are 0 when setting this option, then the 6016 * current values will remain unchanged. 6017 * 6018 * struct sctp_sack_info { 6019 * sctp_assoc_t sack_assoc_id; 6020 * uint32_t sack_delay; 6021 * uint32_t sack_freq; 6022 * }; 6023 * 6024 * sack_assoc_id - This parameter, indicates which association the user 6025 * is performing an action upon. Note that if this field's value is 6026 * zero then the endpoints default value is changed (effecting future 6027 * associations only). 6028 * 6029 * sack_delay - This parameter contains the number of milliseconds that 6030 * the user is requesting the delayed ACK timer be set to. Note that 6031 * this value is defined in the standard to be between 200 and 500 6032 * milliseconds. 6033 * 6034 * sack_freq - This parameter contains the number of packets that must 6035 * be received before a sack is sent without waiting for the delay 6036 * timer to expire. The default value for this is 2, setting this 6037 * value to 1 will disable the delayed sack algorithm. 6038 */ 6039 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 6040 char __user *optval, 6041 int __user *optlen) 6042 { 6043 struct sctp_sack_info params; 6044 struct sctp_association *asoc = NULL; 6045 struct sctp_sock *sp = sctp_sk(sk); 6046 6047 if (len >= sizeof(struct sctp_sack_info)) { 6048 len = sizeof(struct sctp_sack_info); 6049 6050 if (copy_from_user(¶ms, optval, len)) 6051 return -EFAULT; 6052 } else if (len == sizeof(struct sctp_assoc_value)) { 6053 pr_warn_ratelimited(DEPRECATED 6054 "%s (pid %d) " 6055 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 6056 "Use struct sctp_sack_info instead\n", 6057 current->comm, task_pid_nr(current)); 6058 if (copy_from_user(¶ms, optval, len)) 6059 return -EFAULT; 6060 } else 6061 return -EINVAL; 6062 6063 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 6064 * socket is a one to many style socket, and an association 6065 * was not found, then the id was invalid. 6066 */ 6067 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 6068 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC && 6069 sctp_style(sk, UDP)) 6070 return -EINVAL; 6071 6072 if (asoc) { 6073 /* Fetch association values. */ 6074 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 6075 params.sack_delay = jiffies_to_msecs(asoc->sackdelay); 6076 params.sack_freq = asoc->sackfreq; 6077 6078 } else { 6079 params.sack_delay = 0; 6080 params.sack_freq = 1; 6081 } 6082 } else { 6083 /* Fetch socket values. */ 6084 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 6085 params.sack_delay = sp->sackdelay; 6086 params.sack_freq = sp->sackfreq; 6087 } else { 6088 params.sack_delay = 0; 6089 params.sack_freq = 1; 6090 } 6091 } 6092 6093 if (copy_to_user(optval, ¶ms, len)) 6094 return -EFAULT; 6095 6096 if (put_user(len, optlen)) 6097 return -EFAULT; 6098 6099 return 0; 6100 } 6101 6102 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 6103 * 6104 * Applications can specify protocol parameters for the default association 6105 * initialization. The option name argument to setsockopt() and getsockopt() 6106 * is SCTP_INITMSG. 6107 * 6108 * Setting initialization parameters is effective only on an unconnected 6109 * socket (for UDP-style sockets only future associations are effected 6110 * by the change). With TCP-style sockets, this option is inherited by 6111 * sockets derived from a listener socket. 6112 */ 6113 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 6114 { 6115 if (len < sizeof(struct sctp_initmsg)) 6116 return -EINVAL; 6117 len = sizeof(struct sctp_initmsg); 6118 if (put_user(len, optlen)) 6119 return -EFAULT; 6120 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 6121 return -EFAULT; 6122 return 0; 6123 } 6124 6125 6126 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 6127 char __user *optval, int __user *optlen) 6128 { 6129 struct sctp_association *asoc; 6130 int cnt = 0; 6131 struct sctp_getaddrs getaddrs; 6132 struct sctp_transport *from; 6133 void __user *to; 6134 union sctp_addr temp; 6135 struct sctp_sock *sp = sctp_sk(sk); 6136 int addrlen; 6137 size_t space_left; 6138 int bytes_copied; 6139 6140 if (len < sizeof(struct sctp_getaddrs)) 6141 return -EINVAL; 6142 6143 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6144 return -EFAULT; 6145 6146 /* For UDP-style sockets, id specifies the association to query. */ 6147 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6148 if (!asoc) 6149 return -EINVAL; 6150 6151 to = optval + offsetof(struct sctp_getaddrs, addrs); 6152 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6153 6154 list_for_each_entry(from, &asoc->peer.transport_addr_list, 6155 transports) { 6156 memcpy(&temp, &from->ipaddr, sizeof(temp)); 6157 addrlen = sctp_get_pf_specific(sk->sk_family) 6158 ->addr_to_user(sp, &temp); 6159 if (space_left < addrlen) 6160 return -ENOMEM; 6161 if (copy_to_user(to, &temp, addrlen)) 6162 return -EFAULT; 6163 to += addrlen; 6164 cnt++; 6165 space_left -= addrlen; 6166 } 6167 6168 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 6169 return -EFAULT; 6170 bytes_copied = ((char __user *)to) - optval; 6171 if (put_user(bytes_copied, optlen)) 6172 return -EFAULT; 6173 6174 return 0; 6175 } 6176 6177 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 6178 size_t space_left, int *bytes_copied) 6179 { 6180 struct sctp_sockaddr_entry *addr; 6181 union sctp_addr temp; 6182 int cnt = 0; 6183 int addrlen; 6184 struct net *net = sock_net(sk); 6185 6186 rcu_read_lock(); 6187 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 6188 if (!addr->valid) 6189 continue; 6190 6191 if ((PF_INET == sk->sk_family) && 6192 (AF_INET6 == addr->a.sa.sa_family)) 6193 continue; 6194 if ((PF_INET6 == sk->sk_family) && 6195 inet_v6_ipv6only(sk) && 6196 (AF_INET == addr->a.sa.sa_family)) 6197 continue; 6198 memcpy(&temp, &addr->a, sizeof(temp)); 6199 if (!temp.v4.sin_port) 6200 temp.v4.sin_port = htons(port); 6201 6202 addrlen = sctp_get_pf_specific(sk->sk_family) 6203 ->addr_to_user(sctp_sk(sk), &temp); 6204 6205 if (space_left < addrlen) { 6206 cnt = -ENOMEM; 6207 break; 6208 } 6209 memcpy(to, &temp, addrlen); 6210 6211 to += addrlen; 6212 cnt++; 6213 space_left -= addrlen; 6214 *bytes_copied += addrlen; 6215 } 6216 rcu_read_unlock(); 6217 6218 return cnt; 6219 } 6220 6221 6222 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 6223 char __user *optval, int __user *optlen) 6224 { 6225 struct sctp_bind_addr *bp; 6226 struct sctp_association *asoc; 6227 int cnt = 0; 6228 struct sctp_getaddrs getaddrs; 6229 struct sctp_sockaddr_entry *addr; 6230 void __user *to; 6231 union sctp_addr temp; 6232 struct sctp_sock *sp = sctp_sk(sk); 6233 int addrlen; 6234 int err = 0; 6235 size_t space_left; 6236 int bytes_copied = 0; 6237 void *addrs; 6238 void *buf; 6239 6240 if (len < sizeof(struct sctp_getaddrs)) 6241 return -EINVAL; 6242 6243 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6244 return -EFAULT; 6245 6246 /* 6247 * For UDP-style sockets, id specifies the association to query. 6248 * If the id field is set to the value '0' then the locally bound 6249 * addresses are returned without regard to any particular 6250 * association. 6251 */ 6252 if (0 == getaddrs.assoc_id) { 6253 bp = &sctp_sk(sk)->ep->base.bind_addr; 6254 } else { 6255 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6256 if (!asoc) 6257 return -EINVAL; 6258 bp = &asoc->base.bind_addr; 6259 } 6260 6261 to = optval + offsetof(struct sctp_getaddrs, addrs); 6262 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6263 6264 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 6265 if (!addrs) 6266 return -ENOMEM; 6267 6268 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 6269 * addresses from the global local address list. 6270 */ 6271 if (sctp_list_single_entry(&bp->address_list)) { 6272 addr = list_entry(bp->address_list.next, 6273 struct sctp_sockaddr_entry, list); 6274 if (sctp_is_any(sk, &addr->a)) { 6275 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 6276 space_left, &bytes_copied); 6277 if (cnt < 0) { 6278 err = cnt; 6279 goto out; 6280 } 6281 goto copy_getaddrs; 6282 } 6283 } 6284 6285 buf = addrs; 6286 /* Protection on the bound address list is not needed since 6287 * in the socket option context we hold a socket lock and 6288 * thus the bound address list can't change. 6289 */ 6290 list_for_each_entry(addr, &bp->address_list, list) { 6291 memcpy(&temp, &addr->a, sizeof(temp)); 6292 addrlen = sctp_get_pf_specific(sk->sk_family) 6293 ->addr_to_user(sp, &temp); 6294 if (space_left < addrlen) { 6295 err = -ENOMEM; /*fixme: right error?*/ 6296 goto out; 6297 } 6298 memcpy(buf, &temp, addrlen); 6299 buf += addrlen; 6300 bytes_copied += addrlen; 6301 cnt++; 6302 space_left -= addrlen; 6303 } 6304 6305 copy_getaddrs: 6306 if (copy_to_user(to, addrs, bytes_copied)) { 6307 err = -EFAULT; 6308 goto out; 6309 } 6310 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 6311 err = -EFAULT; 6312 goto out; 6313 } 6314 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 6315 * but we can't change it anymore. 6316 */ 6317 if (put_user(bytes_copied, optlen)) 6318 err = -EFAULT; 6319 out: 6320 kfree(addrs); 6321 return err; 6322 } 6323 6324 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6325 * 6326 * Requests that the local SCTP stack use the enclosed peer address as 6327 * the association primary. The enclosed address must be one of the 6328 * association peer's addresses. 6329 */ 6330 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6331 char __user *optval, int __user *optlen) 6332 { 6333 struct sctp_prim prim; 6334 struct sctp_association *asoc; 6335 struct sctp_sock *sp = sctp_sk(sk); 6336 6337 if (len < sizeof(struct sctp_prim)) 6338 return -EINVAL; 6339 6340 len = sizeof(struct sctp_prim); 6341 6342 if (copy_from_user(&prim, optval, len)) 6343 return -EFAULT; 6344 6345 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6346 if (!asoc) 6347 return -EINVAL; 6348 6349 if (!asoc->peer.primary_path) 6350 return -ENOTCONN; 6351 6352 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6353 asoc->peer.primary_path->af_specific->sockaddr_len); 6354 6355 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6356 (union sctp_addr *)&prim.ssp_addr); 6357 6358 if (put_user(len, optlen)) 6359 return -EFAULT; 6360 if (copy_to_user(optval, &prim, len)) 6361 return -EFAULT; 6362 6363 return 0; 6364 } 6365 6366 /* 6367 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6368 * 6369 * Requests that the local endpoint set the specified Adaptation Layer 6370 * Indication parameter for all future INIT and INIT-ACK exchanges. 6371 */ 6372 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6373 char __user *optval, int __user *optlen) 6374 { 6375 struct sctp_setadaptation adaptation; 6376 6377 if (len < sizeof(struct sctp_setadaptation)) 6378 return -EINVAL; 6379 6380 len = sizeof(struct sctp_setadaptation); 6381 6382 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6383 6384 if (put_user(len, optlen)) 6385 return -EFAULT; 6386 if (copy_to_user(optval, &adaptation, len)) 6387 return -EFAULT; 6388 6389 return 0; 6390 } 6391 6392 /* 6393 * 6394 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6395 * 6396 * Applications that wish to use the sendto() system call may wish to 6397 * specify a default set of parameters that would normally be supplied 6398 * through the inclusion of ancillary data. This socket option allows 6399 * such an application to set the default sctp_sndrcvinfo structure. 6400 6401 6402 * The application that wishes to use this socket option simply passes 6403 * in to this call the sctp_sndrcvinfo structure defined in Section 6404 * 5.2.2) The input parameters accepted by this call include 6405 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6406 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6407 * to this call if the caller is using the UDP model. 6408 * 6409 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6410 */ 6411 static int sctp_getsockopt_default_send_param(struct sock *sk, 6412 int len, char __user *optval, 6413 int __user *optlen) 6414 { 6415 struct sctp_sock *sp = sctp_sk(sk); 6416 struct sctp_association *asoc; 6417 struct sctp_sndrcvinfo info; 6418 6419 if (len < sizeof(info)) 6420 return -EINVAL; 6421 6422 len = sizeof(info); 6423 6424 if (copy_from_user(&info, optval, len)) 6425 return -EFAULT; 6426 6427 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6428 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC && 6429 sctp_style(sk, UDP)) 6430 return -EINVAL; 6431 6432 if (asoc) { 6433 info.sinfo_stream = asoc->default_stream; 6434 info.sinfo_flags = asoc->default_flags; 6435 info.sinfo_ppid = asoc->default_ppid; 6436 info.sinfo_context = asoc->default_context; 6437 info.sinfo_timetolive = asoc->default_timetolive; 6438 } else { 6439 info.sinfo_stream = sp->default_stream; 6440 info.sinfo_flags = sp->default_flags; 6441 info.sinfo_ppid = sp->default_ppid; 6442 info.sinfo_context = sp->default_context; 6443 info.sinfo_timetolive = sp->default_timetolive; 6444 } 6445 6446 if (put_user(len, optlen)) 6447 return -EFAULT; 6448 if (copy_to_user(optval, &info, len)) 6449 return -EFAULT; 6450 6451 return 0; 6452 } 6453 6454 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6455 * (SCTP_DEFAULT_SNDINFO) 6456 */ 6457 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6458 char __user *optval, 6459 int __user *optlen) 6460 { 6461 struct sctp_sock *sp = sctp_sk(sk); 6462 struct sctp_association *asoc; 6463 struct sctp_sndinfo info; 6464 6465 if (len < sizeof(info)) 6466 return -EINVAL; 6467 6468 len = sizeof(info); 6469 6470 if (copy_from_user(&info, optval, len)) 6471 return -EFAULT; 6472 6473 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6474 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC && 6475 sctp_style(sk, UDP)) 6476 return -EINVAL; 6477 6478 if (asoc) { 6479 info.snd_sid = asoc->default_stream; 6480 info.snd_flags = asoc->default_flags; 6481 info.snd_ppid = asoc->default_ppid; 6482 info.snd_context = asoc->default_context; 6483 } else { 6484 info.snd_sid = sp->default_stream; 6485 info.snd_flags = sp->default_flags; 6486 info.snd_ppid = sp->default_ppid; 6487 info.snd_context = sp->default_context; 6488 } 6489 6490 if (put_user(len, optlen)) 6491 return -EFAULT; 6492 if (copy_to_user(optval, &info, len)) 6493 return -EFAULT; 6494 6495 return 0; 6496 } 6497 6498 /* 6499 * 6500 * 7.1.5 SCTP_NODELAY 6501 * 6502 * Turn on/off any Nagle-like algorithm. This means that packets are 6503 * generally sent as soon as possible and no unnecessary delays are 6504 * introduced, at the cost of more packets in the network. Expects an 6505 * integer boolean flag. 6506 */ 6507 6508 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6509 char __user *optval, int __user *optlen) 6510 { 6511 int val; 6512 6513 if (len < sizeof(int)) 6514 return -EINVAL; 6515 6516 len = sizeof(int); 6517 val = (sctp_sk(sk)->nodelay == 1); 6518 if (put_user(len, optlen)) 6519 return -EFAULT; 6520 if (copy_to_user(optval, &val, len)) 6521 return -EFAULT; 6522 return 0; 6523 } 6524 6525 /* 6526 * 6527 * 7.1.1 SCTP_RTOINFO 6528 * 6529 * The protocol parameters used to initialize and bound retransmission 6530 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6531 * and modify these parameters. 6532 * All parameters are time values, in milliseconds. A value of 0, when 6533 * modifying the parameters, indicates that the current value should not 6534 * be changed. 6535 * 6536 */ 6537 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6538 char __user *optval, 6539 int __user *optlen) { 6540 struct sctp_rtoinfo rtoinfo; 6541 struct sctp_association *asoc; 6542 6543 if (len < sizeof (struct sctp_rtoinfo)) 6544 return -EINVAL; 6545 6546 len = sizeof(struct sctp_rtoinfo); 6547 6548 if (copy_from_user(&rtoinfo, optval, len)) 6549 return -EFAULT; 6550 6551 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6552 6553 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 6554 sctp_style(sk, UDP)) 6555 return -EINVAL; 6556 6557 /* Values corresponding to the specific association. */ 6558 if (asoc) { 6559 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6560 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6561 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6562 } else { 6563 /* Values corresponding to the endpoint. */ 6564 struct sctp_sock *sp = sctp_sk(sk); 6565 6566 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6567 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6568 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6569 } 6570 6571 if (put_user(len, optlen)) 6572 return -EFAULT; 6573 6574 if (copy_to_user(optval, &rtoinfo, len)) 6575 return -EFAULT; 6576 6577 return 0; 6578 } 6579 6580 /* 6581 * 6582 * 7.1.2 SCTP_ASSOCINFO 6583 * 6584 * This option is used to tune the maximum retransmission attempts 6585 * of the association. 6586 * Returns an error if the new association retransmission value is 6587 * greater than the sum of the retransmission value of the peer. 6588 * See [SCTP] for more information. 6589 * 6590 */ 6591 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6592 char __user *optval, 6593 int __user *optlen) 6594 { 6595 6596 struct sctp_assocparams assocparams; 6597 struct sctp_association *asoc; 6598 struct list_head *pos; 6599 int cnt = 0; 6600 6601 if (len < sizeof (struct sctp_assocparams)) 6602 return -EINVAL; 6603 6604 len = sizeof(struct sctp_assocparams); 6605 6606 if (copy_from_user(&assocparams, optval, len)) 6607 return -EFAULT; 6608 6609 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6610 6611 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 6612 sctp_style(sk, UDP)) 6613 return -EINVAL; 6614 6615 /* Values correspoinding to the specific association */ 6616 if (asoc) { 6617 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6618 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6619 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6620 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6621 6622 list_for_each(pos, &asoc->peer.transport_addr_list) { 6623 cnt++; 6624 } 6625 6626 assocparams.sasoc_number_peer_destinations = cnt; 6627 } else { 6628 /* Values corresponding to the endpoint */ 6629 struct sctp_sock *sp = sctp_sk(sk); 6630 6631 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6632 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6633 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6634 assocparams.sasoc_cookie_life = 6635 sp->assocparams.sasoc_cookie_life; 6636 assocparams.sasoc_number_peer_destinations = 6637 sp->assocparams. 6638 sasoc_number_peer_destinations; 6639 } 6640 6641 if (put_user(len, optlen)) 6642 return -EFAULT; 6643 6644 if (copy_to_user(optval, &assocparams, len)) 6645 return -EFAULT; 6646 6647 return 0; 6648 } 6649 6650 /* 6651 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6652 * 6653 * This socket option is a boolean flag which turns on or off mapped V4 6654 * addresses. If this option is turned on and the socket is type 6655 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6656 * If this option is turned off, then no mapping will be done of V4 6657 * addresses and a user will receive both PF_INET6 and PF_INET type 6658 * addresses on the socket. 6659 */ 6660 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6661 char __user *optval, int __user *optlen) 6662 { 6663 int val; 6664 struct sctp_sock *sp = sctp_sk(sk); 6665 6666 if (len < sizeof(int)) 6667 return -EINVAL; 6668 6669 len = sizeof(int); 6670 val = sp->v4mapped; 6671 if (put_user(len, optlen)) 6672 return -EFAULT; 6673 if (copy_to_user(optval, &val, len)) 6674 return -EFAULT; 6675 6676 return 0; 6677 } 6678 6679 /* 6680 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6681 * (chapter and verse is quoted at sctp_setsockopt_context()) 6682 */ 6683 static int sctp_getsockopt_context(struct sock *sk, int len, 6684 char __user *optval, int __user *optlen) 6685 { 6686 struct sctp_assoc_value params; 6687 struct sctp_association *asoc; 6688 6689 if (len < sizeof(struct sctp_assoc_value)) 6690 return -EINVAL; 6691 6692 len = sizeof(struct sctp_assoc_value); 6693 6694 if (copy_from_user(¶ms, optval, len)) 6695 return -EFAULT; 6696 6697 asoc = sctp_id2assoc(sk, params.assoc_id); 6698 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6699 sctp_style(sk, UDP)) 6700 return -EINVAL; 6701 6702 params.assoc_value = asoc ? asoc->default_rcv_context 6703 : sctp_sk(sk)->default_rcv_context; 6704 6705 if (put_user(len, optlen)) 6706 return -EFAULT; 6707 if (copy_to_user(optval, ¶ms, len)) 6708 return -EFAULT; 6709 6710 return 0; 6711 } 6712 6713 /* 6714 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6715 * This option will get or set the maximum size to put in any outgoing 6716 * SCTP DATA chunk. If a message is larger than this size it will be 6717 * fragmented by SCTP into the specified size. Note that the underlying 6718 * SCTP implementation may fragment into smaller sized chunks when the 6719 * PMTU of the underlying association is smaller than the value set by 6720 * the user. The default value for this option is '0' which indicates 6721 * the user is NOT limiting fragmentation and only the PMTU will effect 6722 * SCTP's choice of DATA chunk size. Note also that values set larger 6723 * than the maximum size of an IP datagram will effectively let SCTP 6724 * control fragmentation (i.e. the same as setting this option to 0). 6725 * 6726 * The following structure is used to access and modify this parameter: 6727 * 6728 * struct sctp_assoc_value { 6729 * sctp_assoc_t assoc_id; 6730 * uint32_t assoc_value; 6731 * }; 6732 * 6733 * assoc_id: This parameter is ignored for one-to-one style sockets. 6734 * For one-to-many style sockets this parameter indicates which 6735 * association the user is performing an action upon. Note that if 6736 * this field's value is zero then the endpoints default value is 6737 * changed (effecting future associations only). 6738 * assoc_value: This parameter specifies the maximum size in bytes. 6739 */ 6740 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6741 char __user *optval, int __user *optlen) 6742 { 6743 struct sctp_assoc_value params; 6744 struct sctp_association *asoc; 6745 6746 if (len == sizeof(int)) { 6747 pr_warn_ratelimited(DEPRECATED 6748 "%s (pid %d) " 6749 "Use of int in maxseg socket option.\n" 6750 "Use struct sctp_assoc_value instead\n", 6751 current->comm, task_pid_nr(current)); 6752 params.assoc_id = SCTP_FUTURE_ASSOC; 6753 } else if (len >= sizeof(struct sctp_assoc_value)) { 6754 len = sizeof(struct sctp_assoc_value); 6755 if (copy_from_user(¶ms, optval, len)) 6756 return -EFAULT; 6757 } else 6758 return -EINVAL; 6759 6760 asoc = sctp_id2assoc(sk, params.assoc_id); 6761 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6762 sctp_style(sk, UDP)) 6763 return -EINVAL; 6764 6765 if (asoc) 6766 params.assoc_value = asoc->frag_point; 6767 else 6768 params.assoc_value = sctp_sk(sk)->user_frag; 6769 6770 if (put_user(len, optlen)) 6771 return -EFAULT; 6772 if (len == sizeof(int)) { 6773 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6774 return -EFAULT; 6775 } else { 6776 if (copy_to_user(optval, ¶ms, len)) 6777 return -EFAULT; 6778 } 6779 6780 return 0; 6781 } 6782 6783 /* 6784 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6785 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6786 */ 6787 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6788 char __user *optval, int __user *optlen) 6789 { 6790 int val; 6791 6792 if (len < sizeof(int)) 6793 return -EINVAL; 6794 6795 len = sizeof(int); 6796 6797 val = sctp_sk(sk)->frag_interleave; 6798 if (put_user(len, optlen)) 6799 return -EFAULT; 6800 if (copy_to_user(optval, &val, len)) 6801 return -EFAULT; 6802 6803 return 0; 6804 } 6805 6806 /* 6807 * 7.1.25. Set or Get the sctp partial delivery point 6808 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6809 */ 6810 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6811 char __user *optval, 6812 int __user *optlen) 6813 { 6814 u32 val; 6815 6816 if (len < sizeof(u32)) 6817 return -EINVAL; 6818 6819 len = sizeof(u32); 6820 6821 val = sctp_sk(sk)->pd_point; 6822 if (put_user(len, optlen)) 6823 return -EFAULT; 6824 if (copy_to_user(optval, &val, len)) 6825 return -EFAULT; 6826 6827 return 0; 6828 } 6829 6830 /* 6831 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6832 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6833 */ 6834 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6835 char __user *optval, 6836 int __user *optlen) 6837 { 6838 struct sctp_assoc_value params; 6839 struct sctp_association *asoc; 6840 6841 if (len == sizeof(int)) { 6842 pr_warn_ratelimited(DEPRECATED 6843 "%s (pid %d) " 6844 "Use of int in max_burst socket option.\n" 6845 "Use struct sctp_assoc_value instead\n", 6846 current->comm, task_pid_nr(current)); 6847 params.assoc_id = SCTP_FUTURE_ASSOC; 6848 } else if (len >= sizeof(struct sctp_assoc_value)) { 6849 len = sizeof(struct sctp_assoc_value); 6850 if (copy_from_user(¶ms, optval, len)) 6851 return -EFAULT; 6852 } else 6853 return -EINVAL; 6854 6855 asoc = sctp_id2assoc(sk, params.assoc_id); 6856 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6857 sctp_style(sk, UDP)) 6858 return -EINVAL; 6859 6860 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst; 6861 6862 if (len == sizeof(int)) { 6863 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6864 return -EFAULT; 6865 } else { 6866 if (copy_to_user(optval, ¶ms, len)) 6867 return -EFAULT; 6868 } 6869 6870 return 0; 6871 6872 } 6873 6874 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6875 char __user *optval, int __user *optlen) 6876 { 6877 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6878 struct sctp_hmacalgo __user *p = (void __user *)optval; 6879 struct sctp_hmac_algo_param *hmacs; 6880 __u16 data_len = 0; 6881 u32 num_idents; 6882 int i; 6883 6884 if (!ep->auth_enable) 6885 return -EACCES; 6886 6887 hmacs = ep->auth_hmacs_list; 6888 data_len = ntohs(hmacs->param_hdr.length) - 6889 sizeof(struct sctp_paramhdr); 6890 6891 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6892 return -EINVAL; 6893 6894 len = sizeof(struct sctp_hmacalgo) + data_len; 6895 num_idents = data_len / sizeof(u16); 6896 6897 if (put_user(len, optlen)) 6898 return -EFAULT; 6899 if (put_user(num_idents, &p->shmac_num_idents)) 6900 return -EFAULT; 6901 for (i = 0; i < num_idents; i++) { 6902 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6903 6904 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6905 return -EFAULT; 6906 } 6907 return 0; 6908 } 6909 6910 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6911 char __user *optval, int __user *optlen) 6912 { 6913 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6914 struct sctp_authkeyid val; 6915 struct sctp_association *asoc; 6916 6917 if (len < sizeof(struct sctp_authkeyid)) 6918 return -EINVAL; 6919 6920 len = sizeof(struct sctp_authkeyid); 6921 if (copy_from_user(&val, optval, len)) 6922 return -EFAULT; 6923 6924 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6925 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6926 return -EINVAL; 6927 6928 if (asoc) { 6929 if (!asoc->peer.auth_capable) 6930 return -EACCES; 6931 val.scact_keynumber = asoc->active_key_id; 6932 } else { 6933 if (!ep->auth_enable) 6934 return -EACCES; 6935 val.scact_keynumber = ep->active_key_id; 6936 } 6937 6938 if (put_user(len, optlen)) 6939 return -EFAULT; 6940 if (copy_to_user(optval, &val, len)) 6941 return -EFAULT; 6942 6943 return 0; 6944 } 6945 6946 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6947 char __user *optval, int __user *optlen) 6948 { 6949 struct sctp_authchunks __user *p = (void __user *)optval; 6950 struct sctp_authchunks val; 6951 struct sctp_association *asoc; 6952 struct sctp_chunks_param *ch; 6953 u32 num_chunks = 0; 6954 char __user *to; 6955 6956 if (len < sizeof(struct sctp_authchunks)) 6957 return -EINVAL; 6958 6959 if (copy_from_user(&val, optval, sizeof(val))) 6960 return -EFAULT; 6961 6962 to = p->gauth_chunks; 6963 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6964 if (!asoc) 6965 return -EINVAL; 6966 6967 if (!asoc->peer.auth_capable) 6968 return -EACCES; 6969 6970 ch = asoc->peer.peer_chunks; 6971 if (!ch) 6972 goto num; 6973 6974 /* See if the user provided enough room for all the data */ 6975 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6976 if (len < num_chunks) 6977 return -EINVAL; 6978 6979 if (copy_to_user(to, ch->chunks, num_chunks)) 6980 return -EFAULT; 6981 num: 6982 len = sizeof(struct sctp_authchunks) + num_chunks; 6983 if (put_user(len, optlen)) 6984 return -EFAULT; 6985 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6986 return -EFAULT; 6987 return 0; 6988 } 6989 6990 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 6991 char __user *optval, int __user *optlen) 6992 { 6993 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6994 struct sctp_authchunks __user *p = (void __user *)optval; 6995 struct sctp_authchunks val; 6996 struct sctp_association *asoc; 6997 struct sctp_chunks_param *ch; 6998 u32 num_chunks = 0; 6999 char __user *to; 7000 7001 if (len < sizeof(struct sctp_authchunks)) 7002 return -EINVAL; 7003 7004 if (copy_from_user(&val, optval, sizeof(val))) 7005 return -EFAULT; 7006 7007 to = p->gauth_chunks; 7008 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 7009 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC && 7010 sctp_style(sk, UDP)) 7011 return -EINVAL; 7012 7013 if (asoc) { 7014 if (!asoc->peer.auth_capable) 7015 return -EACCES; 7016 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 7017 } else { 7018 if (!ep->auth_enable) 7019 return -EACCES; 7020 ch = ep->auth_chunk_list; 7021 } 7022 if (!ch) 7023 goto num; 7024 7025 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7026 if (len < sizeof(struct sctp_authchunks) + num_chunks) 7027 return -EINVAL; 7028 7029 if (copy_to_user(to, ch->chunks, num_chunks)) 7030 return -EFAULT; 7031 num: 7032 len = sizeof(struct sctp_authchunks) + num_chunks; 7033 if (put_user(len, optlen)) 7034 return -EFAULT; 7035 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7036 return -EFAULT; 7037 7038 return 0; 7039 } 7040 7041 /* 7042 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 7043 * This option gets the current number of associations that are attached 7044 * to a one-to-many style socket. The option value is an uint32_t. 7045 */ 7046 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 7047 char __user *optval, int __user *optlen) 7048 { 7049 struct sctp_sock *sp = sctp_sk(sk); 7050 struct sctp_association *asoc; 7051 u32 val = 0; 7052 7053 if (sctp_style(sk, TCP)) 7054 return -EOPNOTSUPP; 7055 7056 if (len < sizeof(u32)) 7057 return -EINVAL; 7058 7059 len = sizeof(u32); 7060 7061 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7062 val++; 7063 } 7064 7065 if (put_user(len, optlen)) 7066 return -EFAULT; 7067 if (copy_to_user(optval, &val, len)) 7068 return -EFAULT; 7069 7070 return 0; 7071 } 7072 7073 /* 7074 * 8.1.23 SCTP_AUTO_ASCONF 7075 * See the corresponding setsockopt entry as description 7076 */ 7077 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 7078 char __user *optval, int __user *optlen) 7079 { 7080 int val = 0; 7081 7082 if (len < sizeof(int)) 7083 return -EINVAL; 7084 7085 len = sizeof(int); 7086 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 7087 val = 1; 7088 if (put_user(len, optlen)) 7089 return -EFAULT; 7090 if (copy_to_user(optval, &val, len)) 7091 return -EFAULT; 7092 return 0; 7093 } 7094 7095 /* 7096 * 8.2.6. Get the Current Identifiers of Associations 7097 * (SCTP_GET_ASSOC_ID_LIST) 7098 * 7099 * This option gets the current list of SCTP association identifiers of 7100 * the SCTP associations handled by a one-to-many style socket. 7101 */ 7102 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 7103 char __user *optval, int __user *optlen) 7104 { 7105 struct sctp_sock *sp = sctp_sk(sk); 7106 struct sctp_association *asoc; 7107 struct sctp_assoc_ids *ids; 7108 u32 num = 0; 7109 7110 if (sctp_style(sk, TCP)) 7111 return -EOPNOTSUPP; 7112 7113 if (len < sizeof(struct sctp_assoc_ids)) 7114 return -EINVAL; 7115 7116 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7117 num++; 7118 } 7119 7120 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 7121 return -EINVAL; 7122 7123 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 7124 7125 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 7126 if (unlikely(!ids)) 7127 return -ENOMEM; 7128 7129 ids->gaids_number_of_ids = num; 7130 num = 0; 7131 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7132 ids->gaids_assoc_id[num++] = asoc->assoc_id; 7133 } 7134 7135 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 7136 kfree(ids); 7137 return -EFAULT; 7138 } 7139 7140 kfree(ids); 7141 return 0; 7142 } 7143 7144 /* 7145 * SCTP_PEER_ADDR_THLDS 7146 * 7147 * This option allows us to fetch the partially failed threshold for one or all 7148 * transports in an association. See Section 6.1 of: 7149 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 7150 */ 7151 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 7152 char __user *optval, int len, 7153 int __user *optlen, bool v2) 7154 { 7155 struct sctp_paddrthlds_v2 val; 7156 struct sctp_transport *trans; 7157 struct sctp_association *asoc; 7158 int min; 7159 7160 min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds); 7161 if (len < min) 7162 return -EINVAL; 7163 len = min; 7164 if (copy_from_user(&val, optval, len)) 7165 return -EFAULT; 7166 7167 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 7168 trans = sctp_addr_id2transport(sk, &val.spt_address, 7169 val.spt_assoc_id); 7170 if (!trans) 7171 return -ENOENT; 7172 7173 val.spt_pathmaxrxt = trans->pathmaxrxt; 7174 val.spt_pathpfthld = trans->pf_retrans; 7175 val.spt_pathcpthld = trans->ps_retrans; 7176 7177 goto out; 7178 } 7179 7180 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 7181 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 7182 sctp_style(sk, UDP)) 7183 return -EINVAL; 7184 7185 if (asoc) { 7186 val.spt_pathpfthld = asoc->pf_retrans; 7187 val.spt_pathmaxrxt = asoc->pathmaxrxt; 7188 val.spt_pathcpthld = asoc->ps_retrans; 7189 } else { 7190 struct sctp_sock *sp = sctp_sk(sk); 7191 7192 val.spt_pathpfthld = sp->pf_retrans; 7193 val.spt_pathmaxrxt = sp->pathmaxrxt; 7194 val.spt_pathcpthld = sp->ps_retrans; 7195 } 7196 7197 out: 7198 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 7199 return -EFAULT; 7200 7201 return 0; 7202 } 7203 7204 /* 7205 * SCTP_GET_ASSOC_STATS 7206 * 7207 * This option retrieves local per endpoint statistics. It is modeled 7208 * after OpenSolaris' implementation 7209 */ 7210 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 7211 char __user *optval, 7212 int __user *optlen) 7213 { 7214 struct sctp_assoc_stats sas; 7215 struct sctp_association *asoc = NULL; 7216 7217 /* User must provide at least the assoc id */ 7218 if (len < sizeof(sctp_assoc_t)) 7219 return -EINVAL; 7220 7221 /* Allow the struct to grow and fill in as much as possible */ 7222 len = min_t(size_t, len, sizeof(sas)); 7223 7224 if (copy_from_user(&sas, optval, len)) 7225 return -EFAULT; 7226 7227 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 7228 if (!asoc) 7229 return -EINVAL; 7230 7231 sas.sas_rtxchunks = asoc->stats.rtxchunks; 7232 sas.sas_gapcnt = asoc->stats.gapcnt; 7233 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 7234 sas.sas_osacks = asoc->stats.osacks; 7235 sas.sas_isacks = asoc->stats.isacks; 7236 sas.sas_octrlchunks = asoc->stats.octrlchunks; 7237 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 7238 sas.sas_oodchunks = asoc->stats.oodchunks; 7239 sas.sas_iodchunks = asoc->stats.iodchunks; 7240 sas.sas_ouodchunks = asoc->stats.ouodchunks; 7241 sas.sas_iuodchunks = asoc->stats.iuodchunks; 7242 sas.sas_idupchunks = asoc->stats.idupchunks; 7243 sas.sas_opackets = asoc->stats.opackets; 7244 sas.sas_ipackets = asoc->stats.ipackets; 7245 7246 /* New high max rto observed, will return 0 if not a single 7247 * RTO update took place. obs_rto_ipaddr will be bogus 7248 * in such a case 7249 */ 7250 sas.sas_maxrto = asoc->stats.max_obs_rto; 7251 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 7252 sizeof(struct sockaddr_storage)); 7253 7254 /* Mark beginning of a new observation period */ 7255 asoc->stats.max_obs_rto = asoc->rto_min; 7256 7257 if (put_user(len, optlen)) 7258 return -EFAULT; 7259 7260 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 7261 7262 if (copy_to_user(optval, &sas, len)) 7263 return -EFAULT; 7264 7265 return 0; 7266 } 7267 7268 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 7269 char __user *optval, 7270 int __user *optlen) 7271 { 7272 int val = 0; 7273 7274 if (len < sizeof(int)) 7275 return -EINVAL; 7276 7277 len = sizeof(int); 7278 if (sctp_sk(sk)->recvrcvinfo) 7279 val = 1; 7280 if (put_user(len, optlen)) 7281 return -EFAULT; 7282 if (copy_to_user(optval, &val, len)) 7283 return -EFAULT; 7284 7285 return 0; 7286 } 7287 7288 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 7289 char __user *optval, 7290 int __user *optlen) 7291 { 7292 int val = 0; 7293 7294 if (len < sizeof(int)) 7295 return -EINVAL; 7296 7297 len = sizeof(int); 7298 if (sctp_sk(sk)->recvnxtinfo) 7299 val = 1; 7300 if (put_user(len, optlen)) 7301 return -EFAULT; 7302 if (copy_to_user(optval, &val, len)) 7303 return -EFAULT; 7304 7305 return 0; 7306 } 7307 7308 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 7309 char __user *optval, 7310 int __user *optlen) 7311 { 7312 struct sctp_assoc_value params; 7313 struct sctp_association *asoc; 7314 int retval = -EFAULT; 7315 7316 if (len < sizeof(params)) { 7317 retval = -EINVAL; 7318 goto out; 7319 } 7320 7321 len = sizeof(params); 7322 if (copy_from_user(¶ms, optval, len)) 7323 goto out; 7324 7325 asoc = sctp_id2assoc(sk, params.assoc_id); 7326 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7327 sctp_style(sk, UDP)) { 7328 retval = -EINVAL; 7329 goto out; 7330 } 7331 7332 params.assoc_value = asoc ? asoc->peer.prsctp_capable 7333 : sctp_sk(sk)->ep->prsctp_enable; 7334 7335 if (put_user(len, optlen)) 7336 goto out; 7337 7338 if (copy_to_user(optval, ¶ms, len)) 7339 goto out; 7340 7341 retval = 0; 7342 7343 out: 7344 return retval; 7345 } 7346 7347 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7348 char __user *optval, 7349 int __user *optlen) 7350 { 7351 struct sctp_default_prinfo info; 7352 struct sctp_association *asoc; 7353 int retval = -EFAULT; 7354 7355 if (len < sizeof(info)) { 7356 retval = -EINVAL; 7357 goto out; 7358 } 7359 7360 len = sizeof(info); 7361 if (copy_from_user(&info, optval, len)) 7362 goto out; 7363 7364 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7365 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC && 7366 sctp_style(sk, UDP)) { 7367 retval = -EINVAL; 7368 goto out; 7369 } 7370 7371 if (asoc) { 7372 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7373 info.pr_value = asoc->default_timetolive; 7374 } else { 7375 struct sctp_sock *sp = sctp_sk(sk); 7376 7377 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7378 info.pr_value = sp->default_timetolive; 7379 } 7380 7381 if (put_user(len, optlen)) 7382 goto out; 7383 7384 if (copy_to_user(optval, &info, len)) 7385 goto out; 7386 7387 retval = 0; 7388 7389 out: 7390 return retval; 7391 } 7392 7393 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7394 char __user *optval, 7395 int __user *optlen) 7396 { 7397 struct sctp_prstatus params; 7398 struct sctp_association *asoc; 7399 int policy; 7400 int retval = -EINVAL; 7401 7402 if (len < sizeof(params)) 7403 goto out; 7404 7405 len = sizeof(params); 7406 if (copy_from_user(¶ms, optval, len)) { 7407 retval = -EFAULT; 7408 goto out; 7409 } 7410 7411 policy = params.sprstat_policy; 7412 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7413 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7414 goto out; 7415 7416 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7417 if (!asoc) 7418 goto out; 7419 7420 if (policy == SCTP_PR_SCTP_ALL) { 7421 params.sprstat_abandoned_unsent = 0; 7422 params.sprstat_abandoned_sent = 0; 7423 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7424 params.sprstat_abandoned_unsent += 7425 asoc->abandoned_unsent[policy]; 7426 params.sprstat_abandoned_sent += 7427 asoc->abandoned_sent[policy]; 7428 } 7429 } else { 7430 params.sprstat_abandoned_unsent = 7431 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7432 params.sprstat_abandoned_sent = 7433 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7434 } 7435 7436 if (put_user(len, optlen)) { 7437 retval = -EFAULT; 7438 goto out; 7439 } 7440 7441 if (copy_to_user(optval, ¶ms, len)) { 7442 retval = -EFAULT; 7443 goto out; 7444 } 7445 7446 retval = 0; 7447 7448 out: 7449 return retval; 7450 } 7451 7452 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7453 char __user *optval, 7454 int __user *optlen) 7455 { 7456 struct sctp_stream_out_ext *streamoute; 7457 struct sctp_association *asoc; 7458 struct sctp_prstatus params; 7459 int retval = -EINVAL; 7460 int policy; 7461 7462 if (len < sizeof(params)) 7463 goto out; 7464 7465 len = sizeof(params); 7466 if (copy_from_user(¶ms, optval, len)) { 7467 retval = -EFAULT; 7468 goto out; 7469 } 7470 7471 policy = params.sprstat_policy; 7472 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7473 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7474 goto out; 7475 7476 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7477 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7478 goto out; 7479 7480 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; 7481 if (!streamoute) { 7482 /* Not allocated yet, means all stats are 0 */ 7483 params.sprstat_abandoned_unsent = 0; 7484 params.sprstat_abandoned_sent = 0; 7485 retval = 0; 7486 goto out; 7487 } 7488 7489 if (policy == SCTP_PR_SCTP_ALL) { 7490 params.sprstat_abandoned_unsent = 0; 7491 params.sprstat_abandoned_sent = 0; 7492 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7493 params.sprstat_abandoned_unsent += 7494 streamoute->abandoned_unsent[policy]; 7495 params.sprstat_abandoned_sent += 7496 streamoute->abandoned_sent[policy]; 7497 } 7498 } else { 7499 params.sprstat_abandoned_unsent = 7500 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7501 params.sprstat_abandoned_sent = 7502 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7503 } 7504 7505 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7506 retval = -EFAULT; 7507 goto out; 7508 } 7509 7510 retval = 0; 7511 7512 out: 7513 return retval; 7514 } 7515 7516 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7517 char __user *optval, 7518 int __user *optlen) 7519 { 7520 struct sctp_assoc_value params; 7521 struct sctp_association *asoc; 7522 int retval = -EFAULT; 7523 7524 if (len < sizeof(params)) { 7525 retval = -EINVAL; 7526 goto out; 7527 } 7528 7529 len = sizeof(params); 7530 if (copy_from_user(¶ms, optval, len)) 7531 goto out; 7532 7533 asoc = sctp_id2assoc(sk, params.assoc_id); 7534 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7535 sctp_style(sk, UDP)) { 7536 retval = -EINVAL; 7537 goto out; 7538 } 7539 7540 params.assoc_value = asoc ? asoc->peer.reconf_capable 7541 : sctp_sk(sk)->ep->reconf_enable; 7542 7543 if (put_user(len, optlen)) 7544 goto out; 7545 7546 if (copy_to_user(optval, ¶ms, len)) 7547 goto out; 7548 7549 retval = 0; 7550 7551 out: 7552 return retval; 7553 } 7554 7555 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7556 char __user *optval, 7557 int __user *optlen) 7558 { 7559 struct sctp_assoc_value params; 7560 struct sctp_association *asoc; 7561 int retval = -EFAULT; 7562 7563 if (len < sizeof(params)) { 7564 retval = -EINVAL; 7565 goto out; 7566 } 7567 7568 len = sizeof(params); 7569 if (copy_from_user(¶ms, optval, len)) 7570 goto out; 7571 7572 asoc = sctp_id2assoc(sk, params.assoc_id); 7573 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7574 sctp_style(sk, UDP)) { 7575 retval = -EINVAL; 7576 goto out; 7577 } 7578 7579 params.assoc_value = asoc ? asoc->strreset_enable 7580 : sctp_sk(sk)->ep->strreset_enable; 7581 7582 if (put_user(len, optlen)) 7583 goto out; 7584 7585 if (copy_to_user(optval, ¶ms, len)) 7586 goto out; 7587 7588 retval = 0; 7589 7590 out: 7591 return retval; 7592 } 7593 7594 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7595 char __user *optval, 7596 int __user *optlen) 7597 { 7598 struct sctp_assoc_value params; 7599 struct sctp_association *asoc; 7600 int retval = -EFAULT; 7601 7602 if (len < sizeof(params)) { 7603 retval = -EINVAL; 7604 goto out; 7605 } 7606 7607 len = sizeof(params); 7608 if (copy_from_user(¶ms, optval, len)) 7609 goto out; 7610 7611 asoc = sctp_id2assoc(sk, params.assoc_id); 7612 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7613 sctp_style(sk, UDP)) { 7614 retval = -EINVAL; 7615 goto out; 7616 } 7617 7618 params.assoc_value = asoc ? sctp_sched_get_sched(asoc) 7619 : sctp_sk(sk)->default_ss; 7620 7621 if (put_user(len, optlen)) 7622 goto out; 7623 7624 if (copy_to_user(optval, ¶ms, len)) 7625 goto out; 7626 7627 retval = 0; 7628 7629 out: 7630 return retval; 7631 } 7632 7633 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7634 char __user *optval, 7635 int __user *optlen) 7636 { 7637 struct sctp_stream_value params; 7638 struct sctp_association *asoc; 7639 int retval = -EFAULT; 7640 7641 if (len < sizeof(params)) { 7642 retval = -EINVAL; 7643 goto out; 7644 } 7645 7646 len = sizeof(params); 7647 if (copy_from_user(¶ms, optval, len)) 7648 goto out; 7649 7650 asoc = sctp_id2assoc(sk, params.assoc_id); 7651 if (!asoc) { 7652 retval = -EINVAL; 7653 goto out; 7654 } 7655 7656 retval = sctp_sched_get_value(asoc, params.stream_id, 7657 ¶ms.stream_value); 7658 if (retval) 7659 goto out; 7660 7661 if (put_user(len, optlen)) { 7662 retval = -EFAULT; 7663 goto out; 7664 } 7665 7666 if (copy_to_user(optval, ¶ms, len)) { 7667 retval = -EFAULT; 7668 goto out; 7669 } 7670 7671 out: 7672 return retval; 7673 } 7674 7675 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7676 char __user *optval, 7677 int __user *optlen) 7678 { 7679 struct sctp_assoc_value params; 7680 struct sctp_association *asoc; 7681 int retval = -EFAULT; 7682 7683 if (len < sizeof(params)) { 7684 retval = -EINVAL; 7685 goto out; 7686 } 7687 7688 len = sizeof(params); 7689 if (copy_from_user(¶ms, optval, len)) 7690 goto out; 7691 7692 asoc = sctp_id2assoc(sk, params.assoc_id); 7693 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7694 sctp_style(sk, UDP)) { 7695 retval = -EINVAL; 7696 goto out; 7697 } 7698 7699 params.assoc_value = asoc ? asoc->peer.intl_capable 7700 : sctp_sk(sk)->ep->intl_enable; 7701 7702 if (put_user(len, optlen)) 7703 goto out; 7704 7705 if (copy_to_user(optval, ¶ms, len)) 7706 goto out; 7707 7708 retval = 0; 7709 7710 out: 7711 return retval; 7712 } 7713 7714 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7715 char __user *optval, 7716 int __user *optlen) 7717 { 7718 int val; 7719 7720 if (len < sizeof(int)) 7721 return -EINVAL; 7722 7723 len = sizeof(int); 7724 val = sctp_sk(sk)->reuse; 7725 if (put_user(len, optlen)) 7726 return -EFAULT; 7727 7728 if (copy_to_user(optval, &val, len)) 7729 return -EFAULT; 7730 7731 return 0; 7732 } 7733 7734 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval, 7735 int __user *optlen) 7736 { 7737 struct sctp_association *asoc; 7738 struct sctp_event param; 7739 __u16 subscribe; 7740 7741 if (len < sizeof(param)) 7742 return -EINVAL; 7743 7744 len = sizeof(param); 7745 if (copy_from_user(¶m, optval, len)) 7746 return -EFAULT; 7747 7748 if (param.se_type < SCTP_SN_TYPE_BASE || 7749 param.se_type > SCTP_SN_TYPE_MAX) 7750 return -EINVAL; 7751 7752 asoc = sctp_id2assoc(sk, param.se_assoc_id); 7753 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC && 7754 sctp_style(sk, UDP)) 7755 return -EINVAL; 7756 7757 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe; 7758 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type); 7759 7760 if (put_user(len, optlen)) 7761 return -EFAULT; 7762 7763 if (copy_to_user(optval, ¶m, len)) 7764 return -EFAULT; 7765 7766 return 0; 7767 } 7768 7769 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len, 7770 char __user *optval, 7771 int __user *optlen) 7772 { 7773 struct sctp_assoc_value params; 7774 struct sctp_association *asoc; 7775 int retval = -EFAULT; 7776 7777 if (len < sizeof(params)) { 7778 retval = -EINVAL; 7779 goto out; 7780 } 7781 7782 len = sizeof(params); 7783 if (copy_from_user(¶ms, optval, len)) 7784 goto out; 7785 7786 asoc = sctp_id2assoc(sk, params.assoc_id); 7787 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7788 sctp_style(sk, UDP)) { 7789 retval = -EINVAL; 7790 goto out; 7791 } 7792 7793 params.assoc_value = asoc ? asoc->peer.asconf_capable 7794 : sctp_sk(sk)->ep->asconf_enable; 7795 7796 if (put_user(len, optlen)) 7797 goto out; 7798 7799 if (copy_to_user(optval, ¶ms, len)) 7800 goto out; 7801 7802 retval = 0; 7803 7804 out: 7805 return retval; 7806 } 7807 7808 static int sctp_getsockopt_auth_supported(struct sock *sk, int len, 7809 char __user *optval, 7810 int __user *optlen) 7811 { 7812 struct sctp_assoc_value params; 7813 struct sctp_association *asoc; 7814 int retval = -EFAULT; 7815 7816 if (len < sizeof(params)) { 7817 retval = -EINVAL; 7818 goto out; 7819 } 7820 7821 len = sizeof(params); 7822 if (copy_from_user(¶ms, optval, len)) 7823 goto out; 7824 7825 asoc = sctp_id2assoc(sk, params.assoc_id); 7826 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7827 sctp_style(sk, UDP)) { 7828 retval = -EINVAL; 7829 goto out; 7830 } 7831 7832 params.assoc_value = asoc ? asoc->peer.auth_capable 7833 : sctp_sk(sk)->ep->auth_enable; 7834 7835 if (put_user(len, optlen)) 7836 goto out; 7837 7838 if (copy_to_user(optval, ¶ms, len)) 7839 goto out; 7840 7841 retval = 0; 7842 7843 out: 7844 return retval; 7845 } 7846 7847 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len, 7848 char __user *optval, 7849 int __user *optlen) 7850 { 7851 struct sctp_assoc_value params; 7852 struct sctp_association *asoc; 7853 int retval = -EFAULT; 7854 7855 if (len < sizeof(params)) { 7856 retval = -EINVAL; 7857 goto out; 7858 } 7859 7860 len = sizeof(params); 7861 if (copy_from_user(¶ms, optval, len)) 7862 goto out; 7863 7864 asoc = sctp_id2assoc(sk, params.assoc_id); 7865 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7866 sctp_style(sk, UDP)) { 7867 retval = -EINVAL; 7868 goto out; 7869 } 7870 7871 params.assoc_value = asoc ? asoc->peer.ecn_capable 7872 : sctp_sk(sk)->ep->ecn_enable; 7873 7874 if (put_user(len, optlen)) 7875 goto out; 7876 7877 if (copy_to_user(optval, ¶ms, len)) 7878 goto out; 7879 7880 retval = 0; 7881 7882 out: 7883 return retval; 7884 } 7885 7886 static int sctp_getsockopt_pf_expose(struct sock *sk, int len, 7887 char __user *optval, 7888 int __user *optlen) 7889 { 7890 struct sctp_assoc_value params; 7891 struct sctp_association *asoc; 7892 int retval = -EFAULT; 7893 7894 if (len < sizeof(params)) { 7895 retval = -EINVAL; 7896 goto out; 7897 } 7898 7899 len = sizeof(params); 7900 if (copy_from_user(¶ms, optval, len)) 7901 goto out; 7902 7903 asoc = sctp_id2assoc(sk, params.assoc_id); 7904 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7905 sctp_style(sk, UDP)) { 7906 retval = -EINVAL; 7907 goto out; 7908 } 7909 7910 params.assoc_value = asoc ? asoc->pf_expose 7911 : sctp_sk(sk)->pf_expose; 7912 7913 if (put_user(len, optlen)) 7914 goto out; 7915 7916 if (copy_to_user(optval, ¶ms, len)) 7917 goto out; 7918 7919 retval = 0; 7920 7921 out: 7922 return retval; 7923 } 7924 7925 static int sctp_getsockopt_encap_port(struct sock *sk, int len, 7926 char __user *optval, int __user *optlen) 7927 { 7928 struct sctp_association *asoc; 7929 struct sctp_udpencaps encap; 7930 struct sctp_transport *t; 7931 __be16 encap_port; 7932 7933 if (len < sizeof(encap)) 7934 return -EINVAL; 7935 7936 len = sizeof(encap); 7937 if (copy_from_user(&encap, optval, len)) 7938 return -EFAULT; 7939 7940 /* If an address other than INADDR_ANY is specified, and 7941 * no transport is found, then the request is invalid. 7942 */ 7943 if (!sctp_is_any(sk, (union sctp_addr *)&encap.sue_address)) { 7944 t = sctp_addr_id2transport(sk, &encap.sue_address, 7945 encap.sue_assoc_id); 7946 if (!t) { 7947 pr_debug("%s: failed no transport\n", __func__); 7948 return -EINVAL; 7949 } 7950 7951 encap_port = t->encap_port; 7952 goto out; 7953 } 7954 7955 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 7956 * socket is a one to many style socket, and an association 7957 * was not found, then the id was invalid. 7958 */ 7959 asoc = sctp_id2assoc(sk, encap.sue_assoc_id); 7960 if (!asoc && encap.sue_assoc_id != SCTP_FUTURE_ASSOC && 7961 sctp_style(sk, UDP)) { 7962 pr_debug("%s: failed no association\n", __func__); 7963 return -EINVAL; 7964 } 7965 7966 if (asoc) { 7967 encap_port = asoc->encap_port; 7968 goto out; 7969 } 7970 7971 encap_port = sctp_sk(sk)->encap_port; 7972 7973 out: 7974 encap.sue_port = (__force uint16_t)encap_port; 7975 if (copy_to_user(optval, &encap, len)) 7976 return -EFAULT; 7977 7978 if (put_user(len, optlen)) 7979 return -EFAULT; 7980 7981 return 0; 7982 } 7983 7984 static int sctp_getsockopt_probe_interval(struct sock *sk, int len, 7985 char __user *optval, 7986 int __user *optlen) 7987 { 7988 struct sctp_probeinterval params; 7989 struct sctp_association *asoc; 7990 struct sctp_transport *t; 7991 __u32 probe_interval; 7992 7993 if (len < sizeof(params)) 7994 return -EINVAL; 7995 7996 len = sizeof(params); 7997 if (copy_from_user(¶ms, optval, len)) 7998 return -EFAULT; 7999 8000 /* If an address other than INADDR_ANY is specified, and 8001 * no transport is found, then the request is invalid. 8002 */ 8003 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spi_address)) { 8004 t = sctp_addr_id2transport(sk, ¶ms.spi_address, 8005 params.spi_assoc_id); 8006 if (!t) { 8007 pr_debug("%s: failed no transport\n", __func__); 8008 return -EINVAL; 8009 } 8010 8011 probe_interval = jiffies_to_msecs(t->probe_interval); 8012 goto out; 8013 } 8014 8015 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 8016 * socket is a one to many style socket, and an association 8017 * was not found, then the id was invalid. 8018 */ 8019 asoc = sctp_id2assoc(sk, params.spi_assoc_id); 8020 if (!asoc && params.spi_assoc_id != SCTP_FUTURE_ASSOC && 8021 sctp_style(sk, UDP)) { 8022 pr_debug("%s: failed no association\n", __func__); 8023 return -EINVAL; 8024 } 8025 8026 if (asoc) { 8027 probe_interval = jiffies_to_msecs(asoc->probe_interval); 8028 goto out; 8029 } 8030 8031 probe_interval = sctp_sk(sk)->probe_interval; 8032 8033 out: 8034 params.spi_interval = probe_interval; 8035 if (copy_to_user(optval, ¶ms, len)) 8036 return -EFAULT; 8037 8038 if (put_user(len, optlen)) 8039 return -EFAULT; 8040 8041 return 0; 8042 } 8043 8044 static int sctp_getsockopt(struct sock *sk, int level, int optname, 8045 char __user *optval, int __user *optlen) 8046 { 8047 int retval = 0; 8048 int len; 8049 8050 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 8051 8052 /* I can hardly begin to describe how wrong this is. This is 8053 * so broken as to be worse than useless. The API draft 8054 * REALLY is NOT helpful here... I am not convinced that the 8055 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 8056 * are at all well-founded. 8057 */ 8058 if (level != SOL_SCTP) { 8059 struct sctp_af *af = sctp_sk(sk)->pf->af; 8060 8061 retval = af->getsockopt(sk, level, optname, optval, optlen); 8062 return retval; 8063 } 8064 8065 if (get_user(len, optlen)) 8066 return -EFAULT; 8067 8068 if (len < 0) 8069 return -EINVAL; 8070 8071 lock_sock(sk); 8072 8073 switch (optname) { 8074 case SCTP_STATUS: 8075 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 8076 break; 8077 case SCTP_DISABLE_FRAGMENTS: 8078 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 8079 optlen); 8080 break; 8081 case SCTP_EVENTS: 8082 retval = sctp_getsockopt_events(sk, len, optval, optlen); 8083 break; 8084 case SCTP_AUTOCLOSE: 8085 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 8086 break; 8087 case SCTP_SOCKOPT_PEELOFF: 8088 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 8089 break; 8090 case SCTP_SOCKOPT_PEELOFF_FLAGS: 8091 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 8092 break; 8093 case SCTP_PEER_ADDR_PARAMS: 8094 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 8095 optlen); 8096 break; 8097 case SCTP_DELAYED_SACK: 8098 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 8099 optlen); 8100 break; 8101 case SCTP_INITMSG: 8102 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 8103 break; 8104 case SCTP_GET_PEER_ADDRS: 8105 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 8106 optlen); 8107 break; 8108 case SCTP_GET_LOCAL_ADDRS: 8109 retval = sctp_getsockopt_local_addrs(sk, len, optval, 8110 optlen); 8111 break; 8112 case SCTP_SOCKOPT_CONNECTX3: 8113 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 8114 break; 8115 case SCTP_DEFAULT_SEND_PARAM: 8116 retval = sctp_getsockopt_default_send_param(sk, len, 8117 optval, optlen); 8118 break; 8119 case SCTP_DEFAULT_SNDINFO: 8120 retval = sctp_getsockopt_default_sndinfo(sk, len, 8121 optval, optlen); 8122 break; 8123 case SCTP_PRIMARY_ADDR: 8124 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 8125 break; 8126 case SCTP_NODELAY: 8127 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 8128 break; 8129 case SCTP_RTOINFO: 8130 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 8131 break; 8132 case SCTP_ASSOCINFO: 8133 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 8134 break; 8135 case SCTP_I_WANT_MAPPED_V4_ADDR: 8136 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 8137 break; 8138 case SCTP_MAXSEG: 8139 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 8140 break; 8141 case SCTP_GET_PEER_ADDR_INFO: 8142 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 8143 optlen); 8144 break; 8145 case SCTP_ADAPTATION_LAYER: 8146 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 8147 optlen); 8148 break; 8149 case SCTP_CONTEXT: 8150 retval = sctp_getsockopt_context(sk, len, optval, optlen); 8151 break; 8152 case SCTP_FRAGMENT_INTERLEAVE: 8153 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 8154 optlen); 8155 break; 8156 case SCTP_PARTIAL_DELIVERY_POINT: 8157 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 8158 optlen); 8159 break; 8160 case SCTP_MAX_BURST: 8161 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 8162 break; 8163 case SCTP_AUTH_KEY: 8164 case SCTP_AUTH_CHUNK: 8165 case SCTP_AUTH_DELETE_KEY: 8166 case SCTP_AUTH_DEACTIVATE_KEY: 8167 retval = -EOPNOTSUPP; 8168 break; 8169 case SCTP_HMAC_IDENT: 8170 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 8171 break; 8172 case SCTP_AUTH_ACTIVE_KEY: 8173 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 8174 break; 8175 case SCTP_PEER_AUTH_CHUNKS: 8176 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 8177 optlen); 8178 break; 8179 case SCTP_LOCAL_AUTH_CHUNKS: 8180 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 8181 optlen); 8182 break; 8183 case SCTP_GET_ASSOC_NUMBER: 8184 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 8185 break; 8186 case SCTP_GET_ASSOC_ID_LIST: 8187 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 8188 break; 8189 case SCTP_AUTO_ASCONF: 8190 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 8191 break; 8192 case SCTP_PEER_ADDR_THLDS: 8193 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8194 optlen, false); 8195 break; 8196 case SCTP_PEER_ADDR_THLDS_V2: 8197 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8198 optlen, true); 8199 break; 8200 case SCTP_GET_ASSOC_STATS: 8201 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 8202 break; 8203 case SCTP_RECVRCVINFO: 8204 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 8205 break; 8206 case SCTP_RECVNXTINFO: 8207 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 8208 break; 8209 case SCTP_PR_SUPPORTED: 8210 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 8211 break; 8212 case SCTP_DEFAULT_PRINFO: 8213 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 8214 optlen); 8215 break; 8216 case SCTP_PR_ASSOC_STATUS: 8217 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 8218 optlen); 8219 break; 8220 case SCTP_PR_STREAM_STATUS: 8221 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 8222 optlen); 8223 break; 8224 case SCTP_RECONFIG_SUPPORTED: 8225 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 8226 optlen); 8227 break; 8228 case SCTP_ENABLE_STREAM_RESET: 8229 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 8230 optlen); 8231 break; 8232 case SCTP_STREAM_SCHEDULER: 8233 retval = sctp_getsockopt_scheduler(sk, len, optval, 8234 optlen); 8235 break; 8236 case SCTP_STREAM_SCHEDULER_VALUE: 8237 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 8238 optlen); 8239 break; 8240 case SCTP_INTERLEAVING_SUPPORTED: 8241 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 8242 optlen); 8243 break; 8244 case SCTP_REUSE_PORT: 8245 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 8246 break; 8247 case SCTP_EVENT: 8248 retval = sctp_getsockopt_event(sk, len, optval, optlen); 8249 break; 8250 case SCTP_ASCONF_SUPPORTED: 8251 retval = sctp_getsockopt_asconf_supported(sk, len, optval, 8252 optlen); 8253 break; 8254 case SCTP_AUTH_SUPPORTED: 8255 retval = sctp_getsockopt_auth_supported(sk, len, optval, 8256 optlen); 8257 break; 8258 case SCTP_ECN_SUPPORTED: 8259 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen); 8260 break; 8261 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 8262 retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen); 8263 break; 8264 case SCTP_REMOTE_UDP_ENCAPS_PORT: 8265 retval = sctp_getsockopt_encap_port(sk, len, optval, optlen); 8266 break; 8267 case SCTP_PLPMTUD_PROBE_INTERVAL: 8268 retval = sctp_getsockopt_probe_interval(sk, len, optval, optlen); 8269 break; 8270 default: 8271 retval = -ENOPROTOOPT; 8272 break; 8273 } 8274 8275 release_sock(sk); 8276 return retval; 8277 } 8278 8279 static int sctp_hash(struct sock *sk) 8280 { 8281 /* STUB */ 8282 return 0; 8283 } 8284 8285 static void sctp_unhash(struct sock *sk) 8286 { 8287 /* STUB */ 8288 } 8289 8290 /* Check if port is acceptable. Possibly find first available port. 8291 * 8292 * The port hash table (contained in the 'global' SCTP protocol storage 8293 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 8294 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 8295 * list (the list number is the port number hashed out, so as you 8296 * would expect from a hash function, all the ports in a given list have 8297 * such a number that hashes out to the same list number; you were 8298 * expecting that, right?); so each list has a set of ports, with a 8299 * link to the socket (struct sock) that uses it, the port number and 8300 * a fastreuse flag (FIXME: NPI ipg). 8301 */ 8302 static struct sctp_bind_bucket *sctp_bucket_create( 8303 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 8304 8305 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 8306 { 8307 struct sctp_sock *sp = sctp_sk(sk); 8308 bool reuse = (sk->sk_reuse || sp->reuse); 8309 struct sctp_bind_hashbucket *head; /* hash list */ 8310 struct net *net = sock_net(sk); 8311 kuid_t uid = sock_i_uid(sk); 8312 struct sctp_bind_bucket *pp; 8313 unsigned short snum; 8314 int ret; 8315 8316 snum = ntohs(addr->v4.sin_port); 8317 8318 pr_debug("%s: begins, snum:%d\n", __func__, snum); 8319 8320 if (snum == 0) { 8321 /* Search for an available port. */ 8322 int low, high, remaining, index; 8323 unsigned int rover; 8324 8325 inet_sk_get_local_port_range(sk, &low, &high); 8326 remaining = (high - low) + 1; 8327 rover = get_random_u32_below(remaining) + low; 8328 8329 do { 8330 rover++; 8331 if ((rover < low) || (rover > high)) 8332 rover = low; 8333 if (inet_is_local_reserved_port(net, rover)) 8334 continue; 8335 index = sctp_phashfn(net, rover); 8336 head = &sctp_port_hashtable[index]; 8337 spin_lock_bh(&head->lock); 8338 sctp_for_each_hentry(pp, &head->chain) 8339 if ((pp->port == rover) && 8340 net_eq(net, pp->net)) 8341 goto next; 8342 break; 8343 next: 8344 spin_unlock_bh(&head->lock); 8345 cond_resched(); 8346 } while (--remaining > 0); 8347 8348 /* Exhausted local port range during search? */ 8349 ret = 1; 8350 if (remaining <= 0) 8351 return ret; 8352 8353 /* OK, here is the one we will use. HEAD (the port 8354 * hash table list entry) is non-NULL and we hold it's 8355 * mutex. 8356 */ 8357 snum = rover; 8358 } else { 8359 /* We are given an specific port number; we verify 8360 * that it is not being used. If it is used, we will 8361 * exahust the search in the hash list corresponding 8362 * to the port number (snum) - we detect that with the 8363 * port iterator, pp being NULL. 8364 */ 8365 head = &sctp_port_hashtable[sctp_phashfn(net, snum)]; 8366 spin_lock_bh(&head->lock); 8367 sctp_for_each_hentry(pp, &head->chain) { 8368 if ((pp->port == snum) && net_eq(pp->net, net)) 8369 goto pp_found; 8370 } 8371 } 8372 pp = NULL; 8373 goto pp_not_found; 8374 pp_found: 8375 if (!hlist_empty(&pp->owner)) { 8376 /* We had a port hash table hit - there is an 8377 * available port (pp != NULL) and it is being 8378 * used by other socket (pp->owner not empty); that other 8379 * socket is going to be sk2. 8380 */ 8381 struct sock *sk2; 8382 8383 pr_debug("%s: found a possible match\n", __func__); 8384 8385 if ((pp->fastreuse && reuse && 8386 sk->sk_state != SCTP_SS_LISTENING) || 8387 (pp->fastreuseport && sk->sk_reuseport && 8388 uid_eq(pp->fastuid, uid))) 8389 goto success; 8390 8391 /* Run through the list of sockets bound to the port 8392 * (pp->port) [via the pointers bind_next and 8393 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 8394 * we get the endpoint they describe and run through 8395 * the endpoint's list of IP (v4 or v6) addresses, 8396 * comparing each of the addresses with the address of 8397 * the socket sk. If we find a match, then that means 8398 * that this port/socket (sk) combination are already 8399 * in an endpoint. 8400 */ 8401 sk_for_each_bound(sk2, &pp->owner) { 8402 int bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if); 8403 struct sctp_sock *sp2 = sctp_sk(sk2); 8404 struct sctp_endpoint *ep2 = sp2->ep; 8405 8406 if (sk == sk2 || 8407 (reuse && (sk2->sk_reuse || sp2->reuse) && 8408 sk2->sk_state != SCTP_SS_LISTENING) || 8409 (sk->sk_reuseport && sk2->sk_reuseport && 8410 uid_eq(uid, sock_i_uid(sk2)))) 8411 continue; 8412 8413 if ((!sk->sk_bound_dev_if || !bound_dev_if2 || 8414 sk->sk_bound_dev_if == bound_dev_if2) && 8415 sctp_bind_addr_conflict(&ep2->base.bind_addr, 8416 addr, sp2, sp)) { 8417 ret = 1; 8418 goto fail_unlock; 8419 } 8420 } 8421 8422 pr_debug("%s: found a match\n", __func__); 8423 } 8424 pp_not_found: 8425 /* If there was a hash table miss, create a new port. */ 8426 ret = 1; 8427 if (!pp && !(pp = sctp_bucket_create(head, net, snum))) 8428 goto fail_unlock; 8429 8430 /* In either case (hit or miss), make sure fastreuse is 1 only 8431 * if sk->sk_reuse is too (that is, if the caller requested 8432 * SO_REUSEADDR on this socket -sk-). 8433 */ 8434 if (hlist_empty(&pp->owner)) { 8435 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 8436 pp->fastreuse = 1; 8437 else 8438 pp->fastreuse = 0; 8439 8440 if (sk->sk_reuseport) { 8441 pp->fastreuseport = 1; 8442 pp->fastuid = uid; 8443 } else { 8444 pp->fastreuseport = 0; 8445 } 8446 } else { 8447 if (pp->fastreuse && 8448 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 8449 pp->fastreuse = 0; 8450 8451 if (pp->fastreuseport && 8452 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid))) 8453 pp->fastreuseport = 0; 8454 } 8455 8456 /* We are set, so fill up all the data in the hash table 8457 * entry, tie the socket list information with the rest of the 8458 * sockets FIXME: Blurry, NPI (ipg). 8459 */ 8460 success: 8461 if (!sp->bind_hash) { 8462 inet_sk(sk)->inet_num = snum; 8463 sk_add_bind_node(sk, &pp->owner); 8464 sp->bind_hash = pp; 8465 } 8466 ret = 0; 8467 8468 fail_unlock: 8469 spin_unlock_bh(&head->lock); 8470 return ret; 8471 } 8472 8473 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 8474 * port is requested. 8475 */ 8476 static int sctp_get_port(struct sock *sk, unsigned short snum) 8477 { 8478 union sctp_addr addr; 8479 struct sctp_af *af = sctp_sk(sk)->pf->af; 8480 8481 /* Set up a dummy address struct from the sk. */ 8482 af->from_sk(&addr, sk); 8483 addr.v4.sin_port = htons(snum); 8484 8485 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 8486 return sctp_get_port_local(sk, &addr); 8487 } 8488 8489 /* 8490 * Move a socket to LISTENING state. 8491 */ 8492 static int sctp_listen_start(struct sock *sk, int backlog) 8493 { 8494 struct sctp_sock *sp = sctp_sk(sk); 8495 struct sctp_endpoint *ep = sp->ep; 8496 struct crypto_shash *tfm = NULL; 8497 char alg[32]; 8498 8499 /* Allocate HMAC for generating cookie. */ 8500 if (!sp->hmac && sp->sctp_hmac_alg) { 8501 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 8502 tfm = crypto_alloc_shash(alg, 0, 0); 8503 if (IS_ERR(tfm)) { 8504 net_info_ratelimited("failed to load transform for %s: %ld\n", 8505 sp->sctp_hmac_alg, PTR_ERR(tfm)); 8506 return -ENOSYS; 8507 } 8508 sctp_sk(sk)->hmac = tfm; 8509 } 8510 8511 /* 8512 * If a bind() or sctp_bindx() is not called prior to a listen() 8513 * call that allows new associations to be accepted, the system 8514 * picks an ephemeral port and will choose an address set equivalent 8515 * to binding with a wildcard address. 8516 * 8517 * This is not currently spelled out in the SCTP sockets 8518 * extensions draft, but follows the practice as seen in TCP 8519 * sockets. 8520 * 8521 */ 8522 inet_sk_set_state(sk, SCTP_SS_LISTENING); 8523 if (!ep->base.bind_addr.port) { 8524 if (sctp_autobind(sk)) 8525 return -EAGAIN; 8526 } else { 8527 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 8528 inet_sk_set_state(sk, SCTP_SS_CLOSED); 8529 return -EADDRINUSE; 8530 } 8531 } 8532 8533 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8534 return sctp_hash_endpoint(ep); 8535 } 8536 8537 /* 8538 * 4.1.3 / 5.1.3 listen() 8539 * 8540 * By default, new associations are not accepted for UDP style sockets. 8541 * An application uses listen() to mark a socket as being able to 8542 * accept new associations. 8543 * 8544 * On TCP style sockets, applications use listen() to ready the SCTP 8545 * endpoint for accepting inbound associations. 8546 * 8547 * On both types of endpoints a backlog of '0' disables listening. 8548 * 8549 * Move a socket to LISTENING state. 8550 */ 8551 int sctp_inet_listen(struct socket *sock, int backlog) 8552 { 8553 struct sock *sk = sock->sk; 8554 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 8555 int err = -EINVAL; 8556 8557 if (unlikely(backlog < 0)) 8558 return err; 8559 8560 lock_sock(sk); 8561 8562 /* Peeled-off sockets are not allowed to listen(). */ 8563 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 8564 goto out; 8565 8566 if (sock->state != SS_UNCONNECTED) 8567 goto out; 8568 8569 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 8570 goto out; 8571 8572 /* If backlog is zero, disable listening. */ 8573 if (!backlog) { 8574 if (sctp_sstate(sk, CLOSED)) 8575 goto out; 8576 8577 err = 0; 8578 sctp_unhash_endpoint(ep); 8579 sk->sk_state = SCTP_SS_CLOSED; 8580 if (sk->sk_reuse || sctp_sk(sk)->reuse) 8581 sctp_sk(sk)->bind_hash->fastreuse = 1; 8582 goto out; 8583 } 8584 8585 /* If we are already listening, just update the backlog */ 8586 if (sctp_sstate(sk, LISTENING)) 8587 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8588 else { 8589 err = sctp_listen_start(sk, backlog); 8590 if (err) 8591 goto out; 8592 } 8593 8594 err = 0; 8595 out: 8596 release_sock(sk); 8597 return err; 8598 } 8599 8600 /* 8601 * This function is done by modeling the current datagram_poll() and the 8602 * tcp_poll(). Note that, based on these implementations, we don't 8603 * lock the socket in this function, even though it seems that, 8604 * ideally, locking or some other mechanisms can be used to ensure 8605 * the integrity of the counters (sndbuf and wmem_alloc) used 8606 * in this place. We assume that we don't need locks either until proven 8607 * otherwise. 8608 * 8609 * Another thing to note is that we include the Async I/O support 8610 * here, again, by modeling the current TCP/UDP code. We don't have 8611 * a good way to test with it yet. 8612 */ 8613 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 8614 { 8615 struct sock *sk = sock->sk; 8616 struct sctp_sock *sp = sctp_sk(sk); 8617 __poll_t mask; 8618 8619 poll_wait(file, sk_sleep(sk), wait); 8620 8621 sock_rps_record_flow(sk); 8622 8623 /* A TCP-style listening socket becomes readable when the accept queue 8624 * is not empty. 8625 */ 8626 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 8627 return (!list_empty(&sp->ep->asocs)) ? 8628 (EPOLLIN | EPOLLRDNORM) : 0; 8629 8630 mask = 0; 8631 8632 /* Is there any exceptional events? */ 8633 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 8634 mask |= EPOLLERR | 8635 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 8636 if (sk->sk_shutdown & RCV_SHUTDOWN) 8637 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 8638 if (sk->sk_shutdown == SHUTDOWN_MASK) 8639 mask |= EPOLLHUP; 8640 8641 /* Is it readable? Reconsider this code with TCP-style support. */ 8642 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 8643 mask |= EPOLLIN | EPOLLRDNORM; 8644 8645 /* The association is either gone or not ready. */ 8646 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 8647 return mask; 8648 8649 /* Is it writable? */ 8650 if (sctp_writeable(sk)) { 8651 mask |= EPOLLOUT | EPOLLWRNORM; 8652 } else { 8653 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 8654 /* 8655 * Since the socket is not locked, the buffer 8656 * might be made available after the writeable check and 8657 * before the bit is set. This could cause a lost I/O 8658 * signal. tcp_poll() has a race breaker for this race 8659 * condition. Based on their implementation, we put 8660 * in the following code to cover it as well. 8661 */ 8662 if (sctp_writeable(sk)) 8663 mask |= EPOLLOUT | EPOLLWRNORM; 8664 } 8665 return mask; 8666 } 8667 8668 /******************************************************************** 8669 * 2nd Level Abstractions 8670 ********************************************************************/ 8671 8672 static struct sctp_bind_bucket *sctp_bucket_create( 8673 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 8674 { 8675 struct sctp_bind_bucket *pp; 8676 8677 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 8678 if (pp) { 8679 SCTP_DBG_OBJCNT_INC(bind_bucket); 8680 pp->port = snum; 8681 pp->fastreuse = 0; 8682 INIT_HLIST_HEAD(&pp->owner); 8683 pp->net = net; 8684 hlist_add_head(&pp->node, &head->chain); 8685 } 8686 return pp; 8687 } 8688 8689 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 8690 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 8691 { 8692 if (pp && hlist_empty(&pp->owner)) { 8693 __hlist_del(&pp->node); 8694 kmem_cache_free(sctp_bucket_cachep, pp); 8695 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8696 } 8697 } 8698 8699 /* Release this socket's reference to a local port. */ 8700 static inline void __sctp_put_port(struct sock *sk) 8701 { 8702 struct sctp_bind_hashbucket *head = 8703 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8704 inet_sk(sk)->inet_num)]; 8705 struct sctp_bind_bucket *pp; 8706 8707 spin_lock(&head->lock); 8708 pp = sctp_sk(sk)->bind_hash; 8709 __sk_del_bind_node(sk); 8710 sctp_sk(sk)->bind_hash = NULL; 8711 inet_sk(sk)->inet_num = 0; 8712 sctp_bucket_destroy(pp); 8713 spin_unlock(&head->lock); 8714 } 8715 8716 void sctp_put_port(struct sock *sk) 8717 { 8718 local_bh_disable(); 8719 __sctp_put_port(sk); 8720 local_bh_enable(); 8721 } 8722 8723 /* 8724 * The system picks an ephemeral port and choose an address set equivalent 8725 * to binding with a wildcard address. 8726 * One of those addresses will be the primary address for the association. 8727 * This automatically enables the multihoming capability of SCTP. 8728 */ 8729 static int sctp_autobind(struct sock *sk) 8730 { 8731 union sctp_addr autoaddr; 8732 struct sctp_af *af; 8733 __be16 port; 8734 8735 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8736 af = sctp_sk(sk)->pf->af; 8737 8738 port = htons(inet_sk(sk)->inet_num); 8739 af->inaddr_any(&autoaddr, port); 8740 8741 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8742 } 8743 8744 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8745 * 8746 * From RFC 2292 8747 * 4.2 The cmsghdr Structure * 8748 * 8749 * When ancillary data is sent or received, any number of ancillary data 8750 * objects can be specified by the msg_control and msg_controllen members of 8751 * the msghdr structure, because each object is preceded by 8752 * a cmsghdr structure defining the object's length (the cmsg_len member). 8753 * Historically Berkeley-derived implementations have passed only one object 8754 * at a time, but this API allows multiple objects to be 8755 * passed in a single call to sendmsg() or recvmsg(). The following example 8756 * shows two ancillary data objects in a control buffer. 8757 * 8758 * |<--------------------------- msg_controllen -------------------------->| 8759 * | | 8760 * 8761 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8762 * 8763 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8764 * | | | 8765 * 8766 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8767 * 8768 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8769 * | | | | | 8770 * 8771 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8772 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8773 * 8774 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8775 * 8776 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8777 * ^ 8778 * | 8779 * 8780 * msg_control 8781 * points here 8782 */ 8783 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8784 { 8785 struct msghdr *my_msg = (struct msghdr *)msg; 8786 struct cmsghdr *cmsg; 8787 8788 for_each_cmsghdr(cmsg, my_msg) { 8789 if (!CMSG_OK(my_msg, cmsg)) 8790 return -EINVAL; 8791 8792 /* Should we parse this header or ignore? */ 8793 if (cmsg->cmsg_level != IPPROTO_SCTP) 8794 continue; 8795 8796 /* Strictly check lengths following example in SCM code. */ 8797 switch (cmsg->cmsg_type) { 8798 case SCTP_INIT: 8799 /* SCTP Socket API Extension 8800 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8801 * 8802 * This cmsghdr structure provides information for 8803 * initializing new SCTP associations with sendmsg(). 8804 * The SCTP_INITMSG socket option uses this same data 8805 * structure. This structure is not used for 8806 * recvmsg(). 8807 * 8808 * cmsg_level cmsg_type cmsg_data[] 8809 * ------------ ------------ ---------------------- 8810 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8811 */ 8812 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8813 return -EINVAL; 8814 8815 cmsgs->init = CMSG_DATA(cmsg); 8816 break; 8817 8818 case SCTP_SNDRCV: 8819 /* SCTP Socket API Extension 8820 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8821 * 8822 * This cmsghdr structure specifies SCTP options for 8823 * sendmsg() and describes SCTP header information 8824 * about a received message through recvmsg(). 8825 * 8826 * cmsg_level cmsg_type cmsg_data[] 8827 * ------------ ------------ ---------------------- 8828 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8829 */ 8830 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8831 return -EINVAL; 8832 8833 cmsgs->srinfo = CMSG_DATA(cmsg); 8834 8835 if (cmsgs->srinfo->sinfo_flags & 8836 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8837 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8838 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8839 return -EINVAL; 8840 break; 8841 8842 case SCTP_SNDINFO: 8843 /* SCTP Socket API Extension 8844 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8845 * 8846 * This cmsghdr structure specifies SCTP options for 8847 * sendmsg(). This structure and SCTP_RCVINFO replaces 8848 * SCTP_SNDRCV which has been deprecated. 8849 * 8850 * cmsg_level cmsg_type cmsg_data[] 8851 * ------------ ------------ --------------------- 8852 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8853 */ 8854 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8855 return -EINVAL; 8856 8857 cmsgs->sinfo = CMSG_DATA(cmsg); 8858 8859 if (cmsgs->sinfo->snd_flags & 8860 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8861 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8862 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8863 return -EINVAL; 8864 break; 8865 case SCTP_PRINFO: 8866 /* SCTP Socket API Extension 8867 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8868 * 8869 * This cmsghdr structure specifies SCTP options for sendmsg(). 8870 * 8871 * cmsg_level cmsg_type cmsg_data[] 8872 * ------------ ------------ --------------------- 8873 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8874 */ 8875 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8876 return -EINVAL; 8877 8878 cmsgs->prinfo = CMSG_DATA(cmsg); 8879 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8880 return -EINVAL; 8881 8882 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8883 cmsgs->prinfo->pr_value = 0; 8884 break; 8885 case SCTP_AUTHINFO: 8886 /* SCTP Socket API Extension 8887 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8888 * 8889 * This cmsghdr structure specifies SCTP options for sendmsg(). 8890 * 8891 * cmsg_level cmsg_type cmsg_data[] 8892 * ------------ ------------ --------------------- 8893 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8894 */ 8895 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8896 return -EINVAL; 8897 8898 cmsgs->authinfo = CMSG_DATA(cmsg); 8899 break; 8900 case SCTP_DSTADDRV4: 8901 case SCTP_DSTADDRV6: 8902 /* SCTP Socket API Extension 8903 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8904 * 8905 * This cmsghdr structure specifies SCTP options for sendmsg(). 8906 * 8907 * cmsg_level cmsg_type cmsg_data[] 8908 * ------------ ------------ --------------------- 8909 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8910 * ------------ ------------ --------------------- 8911 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8912 */ 8913 cmsgs->addrs_msg = my_msg; 8914 break; 8915 default: 8916 return -EINVAL; 8917 } 8918 } 8919 8920 return 0; 8921 } 8922 8923 /* 8924 * Wait for a packet.. 8925 * Note: This function is the same function as in core/datagram.c 8926 * with a few modifications to make lksctp work. 8927 */ 8928 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8929 { 8930 int error; 8931 DEFINE_WAIT(wait); 8932 8933 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8934 8935 /* Socket errors? */ 8936 error = sock_error(sk); 8937 if (error) 8938 goto out; 8939 8940 if (!skb_queue_empty(&sk->sk_receive_queue)) 8941 goto ready; 8942 8943 /* Socket shut down? */ 8944 if (sk->sk_shutdown & RCV_SHUTDOWN) 8945 goto out; 8946 8947 /* Sequenced packets can come disconnected. If so we report the 8948 * problem. 8949 */ 8950 error = -ENOTCONN; 8951 8952 /* Is there a good reason to think that we may receive some data? */ 8953 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8954 goto out; 8955 8956 /* Handle signals. */ 8957 if (signal_pending(current)) 8958 goto interrupted; 8959 8960 /* Let another process have a go. Since we are going to sleep 8961 * anyway. Note: This may cause odd behaviors if the message 8962 * does not fit in the user's buffer, but this seems to be the 8963 * only way to honor MSG_DONTWAIT realistically. 8964 */ 8965 release_sock(sk); 8966 *timeo_p = schedule_timeout(*timeo_p); 8967 lock_sock(sk); 8968 8969 ready: 8970 finish_wait(sk_sleep(sk), &wait); 8971 return 0; 8972 8973 interrupted: 8974 error = sock_intr_errno(*timeo_p); 8975 8976 out: 8977 finish_wait(sk_sleep(sk), &wait); 8978 *err = error; 8979 return error; 8980 } 8981 8982 /* Receive a datagram. 8983 * Note: This is pretty much the same routine as in core/datagram.c 8984 * with a few changes to make lksctp work. 8985 */ 8986 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, int *err) 8987 { 8988 int error; 8989 struct sk_buff *skb; 8990 long timeo; 8991 8992 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 8993 8994 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 8995 MAX_SCHEDULE_TIMEOUT); 8996 8997 do { 8998 /* Again only user level code calls this function, 8999 * so nothing interrupt level 9000 * will suddenly eat the receive_queue. 9001 * 9002 * Look at current nfs client by the way... 9003 * However, this function was correct in any case. 8) 9004 */ 9005 if (flags & MSG_PEEK) { 9006 skb = skb_peek(&sk->sk_receive_queue); 9007 if (skb) 9008 refcount_inc(&skb->users); 9009 } else { 9010 skb = __skb_dequeue(&sk->sk_receive_queue); 9011 } 9012 9013 if (skb) 9014 return skb; 9015 9016 /* Caller is allowed not to check sk->sk_err before calling. */ 9017 error = sock_error(sk); 9018 if (error) 9019 goto no_packet; 9020 9021 if (sk->sk_shutdown & RCV_SHUTDOWN) 9022 break; 9023 9024 if (sk_can_busy_loop(sk)) { 9025 sk_busy_loop(sk, flags & MSG_DONTWAIT); 9026 9027 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 9028 continue; 9029 } 9030 9031 /* User doesn't want to wait. */ 9032 error = -EAGAIN; 9033 if (!timeo) 9034 goto no_packet; 9035 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 9036 9037 return NULL; 9038 9039 no_packet: 9040 *err = error; 9041 return NULL; 9042 } 9043 9044 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 9045 static void __sctp_write_space(struct sctp_association *asoc) 9046 { 9047 struct sock *sk = asoc->base.sk; 9048 9049 if (sctp_wspace(asoc) <= 0) 9050 return; 9051 9052 if (waitqueue_active(&asoc->wait)) 9053 wake_up_interruptible(&asoc->wait); 9054 9055 if (sctp_writeable(sk)) { 9056 struct socket_wq *wq; 9057 9058 rcu_read_lock(); 9059 wq = rcu_dereference(sk->sk_wq); 9060 if (wq) { 9061 if (waitqueue_active(&wq->wait)) 9062 wake_up_interruptible(&wq->wait); 9063 9064 /* Note that we try to include the Async I/O support 9065 * here by modeling from the current TCP/UDP code. 9066 * We have not tested with it yet. 9067 */ 9068 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 9069 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 9070 } 9071 rcu_read_unlock(); 9072 } 9073 } 9074 9075 static void sctp_wake_up_waiters(struct sock *sk, 9076 struct sctp_association *asoc) 9077 { 9078 struct sctp_association *tmp = asoc; 9079 9080 /* We do accounting for the sndbuf space per association, 9081 * so we only need to wake our own association. 9082 */ 9083 if (asoc->ep->sndbuf_policy) 9084 return __sctp_write_space(asoc); 9085 9086 /* If association goes down and is just flushing its 9087 * outq, then just normally notify others. 9088 */ 9089 if (asoc->base.dead) 9090 return sctp_write_space(sk); 9091 9092 /* Accounting for the sndbuf space is per socket, so we 9093 * need to wake up others, try to be fair and in case of 9094 * other associations, let them have a go first instead 9095 * of just doing a sctp_write_space() call. 9096 * 9097 * Note that we reach sctp_wake_up_waiters() only when 9098 * associations free up queued chunks, thus we are under 9099 * lock and the list of associations on a socket is 9100 * guaranteed not to change. 9101 */ 9102 for (tmp = list_next_entry(tmp, asocs); 1; 9103 tmp = list_next_entry(tmp, asocs)) { 9104 /* Manually skip the head element. */ 9105 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 9106 continue; 9107 /* Wake up association. */ 9108 __sctp_write_space(tmp); 9109 /* We've reached the end. */ 9110 if (tmp == asoc) 9111 break; 9112 } 9113 } 9114 9115 /* Do accounting for the sndbuf space. 9116 * Decrement the used sndbuf space of the corresponding association by the 9117 * data size which was just transmitted(freed). 9118 */ 9119 static void sctp_wfree(struct sk_buff *skb) 9120 { 9121 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 9122 struct sctp_association *asoc = chunk->asoc; 9123 struct sock *sk = asoc->base.sk; 9124 9125 sk_mem_uncharge(sk, skb->truesize); 9126 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk); 9127 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); 9128 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), 9129 &sk->sk_wmem_alloc)); 9130 9131 if (chunk->shkey) { 9132 struct sctp_shared_key *shkey = chunk->shkey; 9133 9134 /* refcnt == 2 and !list_empty mean after this release, it's 9135 * not being used anywhere, and it's time to notify userland 9136 * that this shkey can be freed if it's been deactivated. 9137 */ 9138 if (shkey->deactivated && !list_empty(&shkey->key_list) && 9139 refcount_read(&shkey->refcnt) == 2) { 9140 struct sctp_ulpevent *ev; 9141 9142 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 9143 SCTP_AUTH_FREE_KEY, 9144 GFP_KERNEL); 9145 if (ev) 9146 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 9147 } 9148 sctp_auth_shkey_release(chunk->shkey); 9149 } 9150 9151 sock_wfree(skb); 9152 sctp_wake_up_waiters(sk, asoc); 9153 9154 sctp_association_put(asoc); 9155 } 9156 9157 /* Do accounting for the receive space on the socket. 9158 * Accounting for the association is done in ulpevent.c 9159 * We set this as a destructor for the cloned data skbs so that 9160 * accounting is done at the correct time. 9161 */ 9162 void sctp_sock_rfree(struct sk_buff *skb) 9163 { 9164 struct sock *sk = skb->sk; 9165 struct sctp_ulpevent *event = sctp_skb2event(skb); 9166 9167 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 9168 9169 /* 9170 * Mimic the behavior of sock_rfree 9171 */ 9172 sk_mem_uncharge(sk, event->rmem_len); 9173 } 9174 9175 9176 /* Helper function to wait for space in the sndbuf. */ 9177 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 9178 size_t msg_len) 9179 { 9180 struct sock *sk = asoc->base.sk; 9181 long current_timeo = *timeo_p; 9182 DEFINE_WAIT(wait); 9183 int err = 0; 9184 9185 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 9186 *timeo_p, msg_len); 9187 9188 /* Increment the association's refcnt. */ 9189 sctp_association_hold(asoc); 9190 9191 /* Wait on the association specific sndbuf space. */ 9192 for (;;) { 9193 prepare_to_wait_exclusive(&asoc->wait, &wait, 9194 TASK_INTERRUPTIBLE); 9195 if (asoc->base.dead) 9196 goto do_dead; 9197 if (!*timeo_p) 9198 goto do_nonblock; 9199 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 9200 goto do_error; 9201 if (signal_pending(current)) 9202 goto do_interrupted; 9203 if ((int)msg_len <= sctp_wspace(asoc) && 9204 sk_wmem_schedule(sk, msg_len)) 9205 break; 9206 9207 /* Let another process have a go. Since we are going 9208 * to sleep anyway. 9209 */ 9210 release_sock(sk); 9211 current_timeo = schedule_timeout(current_timeo); 9212 lock_sock(sk); 9213 if (sk != asoc->base.sk) 9214 goto do_error; 9215 9216 *timeo_p = current_timeo; 9217 } 9218 9219 out: 9220 finish_wait(&asoc->wait, &wait); 9221 9222 /* Release the association's refcnt. */ 9223 sctp_association_put(asoc); 9224 9225 return err; 9226 9227 do_dead: 9228 err = -ESRCH; 9229 goto out; 9230 9231 do_error: 9232 err = -EPIPE; 9233 goto out; 9234 9235 do_interrupted: 9236 err = sock_intr_errno(*timeo_p); 9237 goto out; 9238 9239 do_nonblock: 9240 err = -EAGAIN; 9241 goto out; 9242 } 9243 9244 void sctp_data_ready(struct sock *sk) 9245 { 9246 struct socket_wq *wq; 9247 9248 trace_sk_data_ready(sk); 9249 9250 rcu_read_lock(); 9251 wq = rcu_dereference(sk->sk_wq); 9252 if (skwq_has_sleeper(wq)) 9253 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 9254 EPOLLRDNORM | EPOLLRDBAND); 9255 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 9256 rcu_read_unlock(); 9257 } 9258 9259 /* If socket sndbuf has changed, wake up all per association waiters. */ 9260 void sctp_write_space(struct sock *sk) 9261 { 9262 struct sctp_association *asoc; 9263 9264 /* Wake up the tasks in each wait queue. */ 9265 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 9266 __sctp_write_space(asoc); 9267 } 9268 } 9269 9270 /* Is there any sndbuf space available on the socket? 9271 * 9272 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 9273 * associations on the same socket. For a UDP-style socket with 9274 * multiple associations, it is possible for it to be "unwriteable" 9275 * prematurely. I assume that this is acceptable because 9276 * a premature "unwriteable" is better than an accidental "writeable" which 9277 * would cause an unwanted block under certain circumstances. For the 1-1 9278 * UDP-style sockets or TCP-style sockets, this code should work. 9279 * - Daisy 9280 */ 9281 static bool sctp_writeable(struct sock *sk) 9282 { 9283 return sk->sk_sndbuf > sk->sk_wmem_queued; 9284 } 9285 9286 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 9287 * returns immediately with EINPROGRESS. 9288 */ 9289 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 9290 { 9291 struct sock *sk = asoc->base.sk; 9292 int err = 0; 9293 long current_timeo = *timeo_p; 9294 DEFINE_WAIT(wait); 9295 9296 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 9297 9298 /* Increment the association's refcnt. */ 9299 sctp_association_hold(asoc); 9300 9301 for (;;) { 9302 prepare_to_wait_exclusive(&asoc->wait, &wait, 9303 TASK_INTERRUPTIBLE); 9304 if (!*timeo_p) 9305 goto do_nonblock; 9306 if (sk->sk_shutdown & RCV_SHUTDOWN) 9307 break; 9308 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 9309 asoc->base.dead) 9310 goto do_error; 9311 if (signal_pending(current)) 9312 goto do_interrupted; 9313 9314 if (sctp_state(asoc, ESTABLISHED)) 9315 break; 9316 9317 /* Let another process have a go. Since we are going 9318 * to sleep anyway. 9319 */ 9320 release_sock(sk); 9321 current_timeo = schedule_timeout(current_timeo); 9322 lock_sock(sk); 9323 9324 *timeo_p = current_timeo; 9325 } 9326 9327 out: 9328 finish_wait(&asoc->wait, &wait); 9329 9330 /* Release the association's refcnt. */ 9331 sctp_association_put(asoc); 9332 9333 return err; 9334 9335 do_error: 9336 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 9337 err = -ETIMEDOUT; 9338 else 9339 err = -ECONNREFUSED; 9340 goto out; 9341 9342 do_interrupted: 9343 err = sock_intr_errno(*timeo_p); 9344 goto out; 9345 9346 do_nonblock: 9347 err = -EINPROGRESS; 9348 goto out; 9349 } 9350 9351 static int sctp_wait_for_accept(struct sock *sk, long timeo) 9352 { 9353 struct sctp_endpoint *ep; 9354 int err = 0; 9355 DEFINE_WAIT(wait); 9356 9357 ep = sctp_sk(sk)->ep; 9358 9359 9360 for (;;) { 9361 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 9362 TASK_INTERRUPTIBLE); 9363 9364 if (list_empty(&ep->asocs)) { 9365 release_sock(sk); 9366 timeo = schedule_timeout(timeo); 9367 lock_sock(sk); 9368 } 9369 9370 err = -EINVAL; 9371 if (!sctp_sstate(sk, LISTENING)) 9372 break; 9373 9374 err = 0; 9375 if (!list_empty(&ep->asocs)) 9376 break; 9377 9378 err = sock_intr_errno(timeo); 9379 if (signal_pending(current)) 9380 break; 9381 9382 err = -EAGAIN; 9383 if (!timeo) 9384 break; 9385 } 9386 9387 finish_wait(sk_sleep(sk), &wait); 9388 9389 return err; 9390 } 9391 9392 static void sctp_wait_for_close(struct sock *sk, long timeout) 9393 { 9394 DEFINE_WAIT(wait); 9395 9396 do { 9397 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 9398 if (list_empty(&sctp_sk(sk)->ep->asocs)) 9399 break; 9400 release_sock(sk); 9401 timeout = schedule_timeout(timeout); 9402 lock_sock(sk); 9403 } while (!signal_pending(current) && timeout); 9404 9405 finish_wait(sk_sleep(sk), &wait); 9406 } 9407 9408 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 9409 { 9410 struct sk_buff *frag; 9411 9412 if (!skb->data_len) 9413 goto done; 9414 9415 /* Don't forget the fragments. */ 9416 skb_walk_frags(skb, frag) 9417 sctp_skb_set_owner_r_frag(frag, sk); 9418 9419 done: 9420 sctp_skb_set_owner_r(skb, sk); 9421 } 9422 9423 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 9424 struct sctp_association *asoc) 9425 { 9426 struct inet_sock *inet = inet_sk(sk); 9427 struct inet_sock *newinet; 9428 struct sctp_sock *sp = sctp_sk(sk); 9429 9430 newsk->sk_type = sk->sk_type; 9431 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 9432 newsk->sk_flags = sk->sk_flags; 9433 newsk->sk_tsflags = sk->sk_tsflags; 9434 newsk->sk_no_check_tx = sk->sk_no_check_tx; 9435 newsk->sk_no_check_rx = sk->sk_no_check_rx; 9436 newsk->sk_reuse = sk->sk_reuse; 9437 sctp_sk(newsk)->reuse = sp->reuse; 9438 9439 newsk->sk_shutdown = sk->sk_shutdown; 9440 newsk->sk_destruct = sk->sk_destruct; 9441 newsk->sk_family = sk->sk_family; 9442 newsk->sk_protocol = IPPROTO_SCTP; 9443 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 9444 newsk->sk_sndbuf = sk->sk_sndbuf; 9445 newsk->sk_rcvbuf = sk->sk_rcvbuf; 9446 newsk->sk_lingertime = sk->sk_lingertime; 9447 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 9448 newsk->sk_sndtimeo = sk->sk_sndtimeo; 9449 newsk->sk_rxhash = sk->sk_rxhash; 9450 9451 newinet = inet_sk(newsk); 9452 9453 /* Initialize sk's sport, dport, rcv_saddr and daddr for 9454 * getsockname() and getpeername() 9455 */ 9456 newinet->inet_sport = inet->inet_sport; 9457 newinet->inet_saddr = inet->inet_saddr; 9458 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 9459 newinet->inet_dport = htons(asoc->peer.port); 9460 newinet->pmtudisc = inet->pmtudisc; 9461 newinet->inet_id = get_random_u16(); 9462 9463 newinet->uc_ttl = inet->uc_ttl; 9464 newinet->mc_loop = 1; 9465 newinet->mc_ttl = 1; 9466 newinet->mc_index = 0; 9467 newinet->mc_list = NULL; 9468 9469 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 9470 net_enable_timestamp(); 9471 9472 /* Set newsk security attributes from original sk and connection 9473 * security attribute from asoc. 9474 */ 9475 security_sctp_sk_clone(asoc, sk, newsk); 9476 } 9477 9478 static inline void sctp_copy_descendant(struct sock *sk_to, 9479 const struct sock *sk_from) 9480 { 9481 size_t ancestor_size = sizeof(struct inet_sock); 9482 9483 ancestor_size += sk_from->sk_prot->obj_size; 9484 ancestor_size -= offsetof(struct sctp_sock, pd_lobby); 9485 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 9486 } 9487 9488 /* Populate the fields of the newsk from the oldsk and migrate the assoc 9489 * and its messages to the newsk. 9490 */ 9491 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 9492 struct sctp_association *assoc, 9493 enum sctp_socket_type type) 9494 { 9495 struct sctp_sock *oldsp = sctp_sk(oldsk); 9496 struct sctp_sock *newsp = sctp_sk(newsk); 9497 struct sctp_bind_bucket *pp; /* hash list port iterator */ 9498 struct sctp_endpoint *newep = newsp->ep; 9499 struct sk_buff *skb, *tmp; 9500 struct sctp_ulpevent *event; 9501 struct sctp_bind_hashbucket *head; 9502 int err; 9503 9504 /* Migrate socket buffer sizes and all the socket level options to the 9505 * new socket. 9506 */ 9507 newsk->sk_sndbuf = oldsk->sk_sndbuf; 9508 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 9509 /* Brute force copy old sctp opt. */ 9510 sctp_copy_descendant(newsk, oldsk); 9511 9512 /* Restore the ep value that was overwritten with the above structure 9513 * copy. 9514 */ 9515 newsp->ep = newep; 9516 newsp->hmac = NULL; 9517 9518 /* Hook this new socket in to the bind_hash list. */ 9519 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 9520 inet_sk(oldsk)->inet_num)]; 9521 spin_lock_bh(&head->lock); 9522 pp = sctp_sk(oldsk)->bind_hash; 9523 sk_add_bind_node(newsk, &pp->owner); 9524 sctp_sk(newsk)->bind_hash = pp; 9525 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 9526 spin_unlock_bh(&head->lock); 9527 9528 /* Copy the bind_addr list from the original endpoint to the new 9529 * endpoint so that we can handle restarts properly 9530 */ 9531 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 9532 &oldsp->ep->base.bind_addr, GFP_KERNEL); 9533 if (err) 9534 return err; 9535 9536 /* New ep's auth_hmacs should be set if old ep's is set, in case 9537 * that net->sctp.auth_enable has been changed to 0 by users and 9538 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init(). 9539 */ 9540 if (oldsp->ep->auth_hmacs) { 9541 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL); 9542 if (err) 9543 return err; 9544 } 9545 9546 sctp_auto_asconf_init(newsp); 9547 9548 /* Move any messages in the old socket's receive queue that are for the 9549 * peeled off association to the new socket's receive queue. 9550 */ 9551 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 9552 event = sctp_skb2event(skb); 9553 if (event->asoc == assoc) { 9554 __skb_unlink(skb, &oldsk->sk_receive_queue); 9555 __skb_queue_tail(&newsk->sk_receive_queue, skb); 9556 sctp_skb_set_owner_r_frag(skb, newsk); 9557 } 9558 } 9559 9560 /* Clean up any messages pending delivery due to partial 9561 * delivery. Three cases: 9562 * 1) No partial deliver; no work. 9563 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 9564 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 9565 */ 9566 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 9567 9568 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 9569 struct sk_buff_head *queue; 9570 9571 /* Decide which queue to move pd_lobby skbs to. */ 9572 if (assoc->ulpq.pd_mode) { 9573 queue = &newsp->pd_lobby; 9574 } else 9575 queue = &newsk->sk_receive_queue; 9576 9577 /* Walk through the pd_lobby, looking for skbs that 9578 * need moved to the new socket. 9579 */ 9580 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 9581 event = sctp_skb2event(skb); 9582 if (event->asoc == assoc) { 9583 __skb_unlink(skb, &oldsp->pd_lobby); 9584 __skb_queue_tail(queue, skb); 9585 sctp_skb_set_owner_r_frag(skb, newsk); 9586 } 9587 } 9588 9589 /* Clear up any skbs waiting for the partial 9590 * delivery to finish. 9591 */ 9592 if (assoc->ulpq.pd_mode) 9593 sctp_clear_pd(oldsk, NULL); 9594 9595 } 9596 9597 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 9598 9599 /* Set the type of socket to indicate that it is peeled off from the 9600 * original UDP-style socket or created with the accept() call on a 9601 * TCP-style socket.. 9602 */ 9603 newsp->type = type; 9604 9605 /* Mark the new socket "in-use" by the user so that any packets 9606 * that may arrive on the association after we've moved it are 9607 * queued to the backlog. This prevents a potential race between 9608 * backlog processing on the old socket and new-packet processing 9609 * on the new socket. 9610 * 9611 * The caller has just allocated newsk so we can guarantee that other 9612 * paths won't try to lock it and then oldsk. 9613 */ 9614 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 9615 sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w); 9616 sctp_assoc_migrate(assoc, newsk); 9617 sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w); 9618 9619 /* If the association on the newsk is already closed before accept() 9620 * is called, set RCV_SHUTDOWN flag. 9621 */ 9622 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 9623 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 9624 newsk->sk_shutdown |= RCV_SHUTDOWN; 9625 } else { 9626 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 9627 } 9628 9629 release_sock(newsk); 9630 9631 return 0; 9632 } 9633 9634 9635 /* This proto struct describes the ULP interface for SCTP. */ 9636 struct proto sctp_prot = { 9637 .name = "SCTP", 9638 .owner = THIS_MODULE, 9639 .close = sctp_close, 9640 .disconnect = sctp_disconnect, 9641 .accept = sctp_accept, 9642 .ioctl = sctp_ioctl, 9643 .init = sctp_init_sock, 9644 .destroy = sctp_destroy_sock, 9645 .shutdown = sctp_shutdown, 9646 .setsockopt = sctp_setsockopt, 9647 .getsockopt = sctp_getsockopt, 9648 .sendmsg = sctp_sendmsg, 9649 .recvmsg = sctp_recvmsg, 9650 .bind = sctp_bind, 9651 .bind_add = sctp_bind_add, 9652 .backlog_rcv = sctp_backlog_rcv, 9653 .hash = sctp_hash, 9654 .unhash = sctp_unhash, 9655 .no_autobind = true, 9656 .obj_size = sizeof(struct sctp_sock), 9657 .useroffset = offsetof(struct sctp_sock, subscribe), 9658 .usersize = offsetof(struct sctp_sock, initmsg) - 9659 offsetof(struct sctp_sock, subscribe) + 9660 sizeof_field(struct sctp_sock, initmsg), 9661 .sysctl_mem = sysctl_sctp_mem, 9662 .sysctl_rmem = sysctl_sctp_rmem, 9663 .sysctl_wmem = sysctl_sctp_wmem, 9664 .memory_pressure = &sctp_memory_pressure, 9665 .enter_memory_pressure = sctp_enter_memory_pressure, 9666 9667 .memory_allocated = &sctp_memory_allocated, 9668 .per_cpu_fw_alloc = &sctp_memory_per_cpu_fw_alloc, 9669 9670 .sockets_allocated = &sctp_sockets_allocated, 9671 }; 9672 9673 #if IS_ENABLED(CONFIG_IPV6) 9674 9675 static void sctp_v6_destruct_sock(struct sock *sk) 9676 { 9677 sctp_destruct_common(sk); 9678 inet6_sock_destruct(sk); 9679 } 9680 9681 static int sctp_v6_init_sock(struct sock *sk) 9682 { 9683 int ret = sctp_init_sock(sk); 9684 9685 if (!ret) 9686 sk->sk_destruct = sctp_v6_destruct_sock; 9687 9688 return ret; 9689 } 9690 9691 struct proto sctpv6_prot = { 9692 .name = "SCTPv6", 9693 .owner = THIS_MODULE, 9694 .close = sctp_close, 9695 .disconnect = sctp_disconnect, 9696 .accept = sctp_accept, 9697 .ioctl = sctp_ioctl, 9698 .init = sctp_v6_init_sock, 9699 .destroy = sctp_destroy_sock, 9700 .shutdown = sctp_shutdown, 9701 .setsockopt = sctp_setsockopt, 9702 .getsockopt = sctp_getsockopt, 9703 .sendmsg = sctp_sendmsg, 9704 .recvmsg = sctp_recvmsg, 9705 .bind = sctp_bind, 9706 .bind_add = sctp_bind_add, 9707 .backlog_rcv = sctp_backlog_rcv, 9708 .hash = sctp_hash, 9709 .unhash = sctp_unhash, 9710 .no_autobind = true, 9711 .obj_size = sizeof(struct sctp6_sock), 9712 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 9713 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 9714 offsetof(struct sctp6_sock, sctp.subscribe) + 9715 sizeof_field(struct sctp6_sock, sctp.initmsg), 9716 .sysctl_mem = sysctl_sctp_mem, 9717 .sysctl_rmem = sysctl_sctp_rmem, 9718 .sysctl_wmem = sysctl_sctp_wmem, 9719 .memory_pressure = &sctp_memory_pressure, 9720 .enter_memory_pressure = sctp_enter_memory_pressure, 9721 9722 .memory_allocated = &sctp_memory_allocated, 9723 .per_cpu_fw_alloc = &sctp_memory_per_cpu_fw_alloc, 9724 9725 .sockets_allocated = &sctp_sockets_allocated, 9726 }; 9727 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9728