1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * (C) Copyright IBM Corp. 2001, 2004 4 * Copyright (c) 1999-2000 Cisco, Inc. 5 * Copyright (c) 1999-2001 Motorola, Inc. 6 * Copyright (c) 2001-2003 Intel Corp. 7 * Copyright (c) 2001-2002 Nokia, Inc. 8 * Copyright (c) 2001 La Monte H.P. Yarroll 9 * 10 * This file is part of the SCTP kernel implementation 11 * 12 * These functions interface with the sockets layer to implement the 13 * SCTP Extensions for the Sockets API. 14 * 15 * Note that the descriptions from the specification are USER level 16 * functions--this file is the functions which populate the struct proto 17 * for SCTP which is the BOTTOM of the sockets interface. 18 * 19 * Please send any bug reports or fixes you make to the 20 * email address(es): 21 * lksctp developers <linux-sctp@vger.kernel.org> 22 * 23 * Written or modified by: 24 * La Monte H.P. Yarroll <piggy@acm.org> 25 * Narasimha Budihal <narsi@refcode.org> 26 * Karl Knutson <karl@athena.chicago.il.us> 27 * Jon Grimm <jgrimm@us.ibm.com> 28 * Xingang Guo <xingang.guo@intel.com> 29 * Daisy Chang <daisyc@us.ibm.com> 30 * Sridhar Samudrala <samudrala@us.ibm.com> 31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 32 * Ardelle Fan <ardelle.fan@intel.com> 33 * Ryan Layer <rmlayer@us.ibm.com> 34 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 35 * Kevin Gao <kevin.gao@intel.com> 36 */ 37 38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 39 40 #include <linux/types.h> 41 #include <linux/kernel.h> 42 #include <linux/wait.h> 43 #include <linux/time.h> 44 #include <linux/sched/signal.h> 45 #include <linux/ip.h> 46 #include <linux/capability.h> 47 #include <linux/fcntl.h> 48 #include <linux/poll.h> 49 #include <linux/init.h> 50 #include <linux/slab.h> 51 #include <linux/file.h> 52 #include <linux/compat.h> 53 #include <linux/rhashtable.h> 54 55 #include <net/ip.h> 56 #include <net/icmp.h> 57 #include <net/route.h> 58 #include <net/ipv6.h> 59 #include <net/inet_common.h> 60 #include <net/busy_poll.h> 61 #include <trace/events/sock.h> 62 63 #include <linux/socket.h> /* for sa_family_t */ 64 #include <linux/export.h> 65 #include <net/sock.h> 66 #include <net/sctp/sctp.h> 67 #include <net/sctp/sm.h> 68 #include <net/sctp/stream_sched.h> 69 #include <net/rps.h> 70 71 /* Forward declarations for internal helper functions. */ 72 static bool sctp_writeable(const struct sock *sk); 73 static void sctp_wfree(struct sk_buff *skb); 74 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, 75 struct sctp_transport *transport, 76 long *timeo_p, size_t msg_len); 77 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 78 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 79 static int sctp_wait_for_accept(struct sock *sk, long timeo); 80 static void sctp_wait_for_close(struct sock *sk, long timeo); 81 static void sctp_destruct_sock(struct sock *sk); 82 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 83 union sctp_addr *addr, int len); 84 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 85 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 86 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 87 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 88 static int sctp_send_asconf(struct sctp_association *asoc, 89 struct sctp_chunk *chunk); 90 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 91 static int sctp_autobind(struct sock *sk); 92 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 93 struct sctp_association *assoc, 94 enum sctp_socket_type type); 95 96 static unsigned long sctp_memory_pressure; 97 static atomic_long_t sctp_memory_allocated; 98 static DEFINE_PER_CPU(int, sctp_memory_per_cpu_fw_alloc); 99 struct percpu_counter sctp_sockets_allocated; 100 101 static void sctp_enter_memory_pressure(struct sock *sk) 102 { 103 WRITE_ONCE(sctp_memory_pressure, 1); 104 } 105 106 107 /* Get the sndbuf space available at the time on the association. */ 108 static inline int sctp_wspace(struct sctp_association *asoc) 109 { 110 struct sock *sk = asoc->base.sk; 111 112 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used 113 : sk_stream_wspace(sk); 114 } 115 116 /* Increment the used sndbuf space count of the corresponding association by 117 * the size of the outgoing data chunk. 118 * Also, set the skb destructor for sndbuf accounting later. 119 * 120 * Since it is always 1-1 between chunk and skb, and also a new skb is always 121 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 122 * destructor in the data chunk skb for the purpose of the sndbuf space 123 * tracking. 124 */ 125 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 126 { 127 struct sctp_association *asoc = chunk->asoc; 128 struct sock *sk = asoc->base.sk; 129 130 /* The sndbuf space is tracked per association. */ 131 sctp_association_hold(asoc); 132 133 if (chunk->shkey) 134 sctp_auth_shkey_hold(chunk->shkey); 135 136 skb_set_owner_w(chunk->skb, sk); 137 138 chunk->skb->destructor = sctp_wfree; 139 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 140 skb_shinfo(chunk->skb)->destructor_arg = chunk; 141 142 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 143 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); 144 sk_wmem_queued_add(sk, chunk->skb->truesize + sizeof(struct sctp_chunk)); 145 sk_mem_charge(sk, chunk->skb->truesize); 146 } 147 148 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 149 { 150 skb_orphan(chunk->skb); 151 } 152 153 #define traverse_and_process() \ 154 do { \ 155 msg = chunk->msg; \ 156 if (msg == prev_msg) \ 157 continue; \ 158 list_for_each_entry(c, &msg->chunks, frag_list) { \ 159 if ((clear && asoc->base.sk == c->skb->sk) || \ 160 (!clear && asoc->base.sk != c->skb->sk)) \ 161 cb(c); \ 162 } \ 163 prev_msg = msg; \ 164 } while (0) 165 166 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 167 bool clear, 168 void (*cb)(struct sctp_chunk *)) 169 170 { 171 struct sctp_datamsg *msg, *prev_msg = NULL; 172 struct sctp_outq *q = &asoc->outqueue; 173 struct sctp_chunk *chunk, *c; 174 struct sctp_transport *t; 175 176 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 177 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 178 traverse_and_process(); 179 180 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 181 traverse_and_process(); 182 183 list_for_each_entry(chunk, &q->sacked, transmitted_list) 184 traverse_and_process(); 185 186 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 187 traverse_and_process(); 188 189 list_for_each_entry(chunk, &q->out_chunk_list, list) 190 traverse_and_process(); 191 } 192 193 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 194 void (*cb)(struct sk_buff *, struct sock *)) 195 196 { 197 struct sk_buff *skb, *tmp; 198 199 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 200 cb(skb, sk); 201 202 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 203 cb(skb, sk); 204 205 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 206 cb(skb, sk); 207 } 208 209 /* Verify that this is a valid address. */ 210 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 211 int len) 212 { 213 struct sctp_af *af; 214 215 /* Verify basic sockaddr. */ 216 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 217 if (!af) 218 return -EINVAL; 219 220 /* Is this a valid SCTP address? */ 221 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 222 return -EINVAL; 223 224 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 225 return -EINVAL; 226 227 return 0; 228 } 229 230 /* Look up the association by its id. If this is not a UDP-style 231 * socket, the ID field is always ignored. 232 */ 233 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 234 { 235 struct sctp_association *asoc = NULL; 236 237 /* If this is not a UDP-style socket, assoc id should be ignored. */ 238 if (!sctp_style(sk, UDP)) { 239 /* Return NULL if the socket state is not ESTABLISHED. It 240 * could be a TCP-style listening socket or a socket which 241 * hasn't yet called connect() to establish an association. 242 */ 243 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 244 return NULL; 245 246 /* Get the first and the only association from the list. */ 247 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 248 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 249 struct sctp_association, asocs); 250 return asoc; 251 } 252 253 /* Otherwise this is a UDP-style socket. */ 254 if (id <= SCTP_ALL_ASSOC) 255 return NULL; 256 257 spin_lock_bh(&sctp_assocs_id_lock); 258 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 259 if (asoc && (asoc->base.sk != sk || asoc->base.dead)) 260 asoc = NULL; 261 spin_unlock_bh(&sctp_assocs_id_lock); 262 263 return asoc; 264 } 265 266 /* Look up the transport from an address and an assoc id. If both address and 267 * id are specified, the associations matching the address and the id should be 268 * the same. 269 */ 270 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 271 struct sockaddr_storage *addr, 272 sctp_assoc_t id) 273 { 274 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 275 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 276 union sctp_addr *laddr = (union sctp_addr *)addr; 277 struct sctp_transport *transport; 278 279 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 280 return NULL; 281 282 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 283 laddr, 284 &transport); 285 286 if (!addr_asoc) 287 return NULL; 288 289 id_asoc = sctp_id2assoc(sk, id); 290 if (id_asoc && (id_asoc != addr_asoc)) 291 return NULL; 292 293 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 294 (union sctp_addr *)addr); 295 296 return transport; 297 } 298 299 /* API 3.1.2 bind() - UDP Style Syntax 300 * The syntax of bind() is, 301 * 302 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 303 * 304 * sd - the socket descriptor returned by socket(). 305 * addr - the address structure (struct sockaddr_in or struct 306 * sockaddr_in6 [RFC 2553]), 307 * addr_len - the size of the address structure. 308 */ 309 static int sctp_bind(struct sock *sk, struct sockaddr_unsized *addr, 310 int addr_len) 311 { 312 int retval = 0; 313 314 lock_sock(sk); 315 316 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 317 addr, addr_len); 318 319 /* Disallow binding twice. */ 320 if (!sctp_sk(sk)->ep->base.bind_addr.port) 321 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 322 addr_len); 323 else 324 retval = -EINVAL; 325 326 release_sock(sk); 327 328 return retval; 329 } 330 331 static int sctp_get_port_local(struct sock *, union sctp_addr *); 332 333 /* Verify this is a valid sockaddr. */ 334 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 335 union sctp_addr *addr, int len) 336 { 337 struct sctp_af *af; 338 339 /* Check minimum size. */ 340 if (len < sizeof (struct sockaddr)) 341 return NULL; 342 343 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 344 return NULL; 345 346 if (addr->sa.sa_family == AF_INET6) { 347 if (len < SIN6_LEN_RFC2133) 348 return NULL; 349 /* V4 mapped address are really of AF_INET family */ 350 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 351 !opt->pf->af_supported(AF_INET, opt)) 352 return NULL; 353 } 354 355 /* If we get this far, af is valid. */ 356 af = sctp_get_af_specific(addr->sa.sa_family); 357 358 if (len < af->sockaddr_len) 359 return NULL; 360 361 return af; 362 } 363 364 static void sctp_auto_asconf_init(struct sctp_sock *sp) 365 { 366 struct net *net = sock_net(&sp->inet.sk); 367 368 if (net->sctp.default_auto_asconf) { 369 spin_lock_bh(&net->sctp.addr_wq_lock); 370 list_add_tail(&sp->auto_asconf_list, &net->sctp.auto_asconf_splist); 371 spin_unlock_bh(&net->sctp.addr_wq_lock); 372 sp->do_auto_asconf = 1; 373 } 374 } 375 376 /* Bind a local address either to an endpoint or to an association. */ 377 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 378 { 379 struct net *net = sock_net(sk); 380 struct sctp_sock *sp = sctp_sk(sk); 381 struct sctp_endpoint *ep = sp->ep; 382 struct sctp_bind_addr *bp = &ep->base.bind_addr; 383 struct sctp_af *af; 384 unsigned short snum; 385 int ret = 0; 386 387 /* Common sockaddr verification. */ 388 af = sctp_sockaddr_af(sp, addr, len); 389 if (!af) { 390 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 391 __func__, sk, addr, len); 392 return -EINVAL; 393 } 394 395 snum = ntohs(addr->v4.sin_port); 396 397 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 398 __func__, sk, &addr->sa, bp->port, snum, len); 399 400 /* PF specific bind() address verification. */ 401 if (!sp->pf->bind_verify(sp, addr)) 402 return -EADDRNOTAVAIL; 403 404 /* We must either be unbound, or bind to the same port. 405 * It's OK to allow 0 ports if we are already bound. 406 * We'll just inhert an already bound port in this case 407 */ 408 if (bp->port) { 409 if (!snum) 410 snum = bp->port; 411 else if (snum != bp->port) { 412 pr_debug("%s: new port %d doesn't match existing port " 413 "%d\n", __func__, snum, bp->port); 414 return -EINVAL; 415 } 416 } 417 418 if (snum && inet_port_requires_bind_service(net, snum) && 419 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 420 return -EACCES; 421 422 /* See if the address matches any of the addresses we may have 423 * already bound before checking against other endpoints. 424 */ 425 if (sctp_bind_addr_match(bp, addr, sp)) 426 return -EINVAL; 427 428 /* Make sure we are allowed to bind here. 429 * The function sctp_get_port_local() does duplicate address 430 * detection. 431 */ 432 addr->v4.sin_port = htons(snum); 433 if (sctp_get_port_local(sk, addr)) 434 return -EADDRINUSE; 435 436 /* Refresh ephemeral port. */ 437 if (!bp->port) { 438 bp->port = inet_sk(sk)->inet_num; 439 sctp_auto_asconf_init(sp); 440 } 441 442 /* Add the address to the bind address list. 443 * Use GFP_ATOMIC since BHs will be disabled. 444 */ 445 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 446 SCTP_ADDR_SRC, GFP_ATOMIC); 447 448 if (ret) { 449 sctp_put_port(sk); 450 return ret; 451 } 452 /* Copy back into socket for getsockname() use. */ 453 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 454 sp->pf->to_sk_saddr(addr, sk); 455 456 return ret; 457 } 458 459 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 460 * 461 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 462 * at any one time. If a sender, after sending an ASCONF chunk, decides 463 * it needs to transfer another ASCONF Chunk, it MUST wait until the 464 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 465 * subsequent ASCONF. Note this restriction binds each side, so at any 466 * time two ASCONF may be in-transit on any given association (one sent 467 * from each endpoint). 468 */ 469 static int sctp_send_asconf(struct sctp_association *asoc, 470 struct sctp_chunk *chunk) 471 { 472 int retval = 0; 473 474 /* If there is an outstanding ASCONF chunk, queue it for later 475 * transmission. 476 */ 477 if (asoc->addip_last_asconf) { 478 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 479 goto out; 480 } 481 482 /* Hold the chunk until an ASCONF_ACK is received. */ 483 sctp_chunk_hold(chunk); 484 retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk); 485 if (retval) 486 sctp_chunk_free(chunk); 487 else 488 asoc->addip_last_asconf = chunk; 489 490 out: 491 return retval; 492 } 493 494 /* Add a list of addresses as bind addresses to local endpoint or 495 * association. 496 * 497 * Basically run through each address specified in the addrs/addrcnt 498 * array/length pair, determine if it is IPv6 or IPv4 and call 499 * sctp_do_bind() on it. 500 * 501 * If any of them fails, then the operation will be reversed and the 502 * ones that were added will be removed. 503 * 504 * Only sctp_setsockopt_bindx() is supposed to call this function. 505 */ 506 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 507 { 508 int cnt; 509 int retval = 0; 510 void *addr_buf; 511 struct sockaddr *sa_addr; 512 struct sctp_af *af; 513 514 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 515 addrs, addrcnt); 516 517 addr_buf = addrs; 518 for (cnt = 0; cnt < addrcnt; cnt++) { 519 /* The list may contain either IPv4 or IPv6 address; 520 * determine the address length for walking thru the list. 521 */ 522 sa_addr = addr_buf; 523 af = sctp_get_af_specific(sa_addr->sa_family); 524 if (!af) { 525 retval = -EINVAL; 526 goto err_bindx_add; 527 } 528 529 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 530 af->sockaddr_len); 531 532 addr_buf += af->sockaddr_len; 533 534 err_bindx_add: 535 if (retval < 0) { 536 /* Failed. Cleanup the ones that have been added */ 537 if (cnt > 0) 538 sctp_bindx_rem(sk, addrs, cnt); 539 return retval; 540 } 541 } 542 543 return retval; 544 } 545 546 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 547 * associations that are part of the endpoint indicating that a list of local 548 * addresses are added to the endpoint. 549 * 550 * If any of the addresses is already in the bind address list of the 551 * association, we do not send the chunk for that association. But it will not 552 * affect other associations. 553 * 554 * Only sctp_setsockopt_bindx() is supposed to call this function. 555 */ 556 static int sctp_send_asconf_add_ip(struct sock *sk, 557 struct sockaddr *addrs, 558 int addrcnt) 559 { 560 struct sctp_sock *sp; 561 struct sctp_endpoint *ep; 562 struct sctp_association *asoc; 563 struct sctp_bind_addr *bp; 564 struct sctp_chunk *chunk; 565 struct sctp_sockaddr_entry *laddr; 566 union sctp_addr *addr; 567 union sctp_addr saveaddr; 568 void *addr_buf; 569 struct sctp_af *af; 570 struct list_head *p; 571 int i; 572 int retval = 0; 573 574 sp = sctp_sk(sk); 575 ep = sp->ep; 576 577 if (!ep->asconf_enable) 578 return retval; 579 580 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 581 __func__, sk, addrs, addrcnt); 582 583 list_for_each_entry(asoc, &ep->asocs, asocs) { 584 if (!asoc->peer.asconf_capable) 585 continue; 586 587 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 588 continue; 589 590 if (!sctp_state(asoc, ESTABLISHED)) 591 continue; 592 593 /* Check if any address in the packed array of addresses is 594 * in the bind address list of the association. If so, 595 * do not send the asconf chunk to its peer, but continue with 596 * other associations. 597 */ 598 addr_buf = addrs; 599 for (i = 0; i < addrcnt; i++) { 600 addr = addr_buf; 601 af = sctp_get_af_specific(addr->v4.sin_family); 602 if (!af) { 603 retval = -EINVAL; 604 goto out; 605 } 606 607 if (sctp_assoc_lookup_laddr(asoc, addr)) 608 break; 609 610 addr_buf += af->sockaddr_len; 611 } 612 if (i < addrcnt) 613 continue; 614 615 /* Use the first valid address in bind addr list of 616 * association as Address Parameter of ASCONF CHUNK. 617 */ 618 bp = &asoc->base.bind_addr; 619 p = bp->address_list.next; 620 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 621 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 622 addrcnt, SCTP_PARAM_ADD_IP); 623 if (!chunk) { 624 retval = -ENOMEM; 625 goto out; 626 } 627 628 /* Add the new addresses to the bind address list with 629 * use_as_src set to 0. 630 */ 631 addr_buf = addrs; 632 for (i = 0; i < addrcnt; i++) { 633 addr = addr_buf; 634 af = sctp_get_af_specific(addr->v4.sin_family); 635 memcpy(&saveaddr, addr, af->sockaddr_len); 636 retval = sctp_add_bind_addr(bp, &saveaddr, 637 sizeof(saveaddr), 638 SCTP_ADDR_NEW, GFP_ATOMIC); 639 addr_buf += af->sockaddr_len; 640 } 641 if (asoc->src_out_of_asoc_ok) { 642 struct sctp_transport *trans; 643 644 list_for_each_entry(trans, 645 &asoc->peer.transport_addr_list, transports) { 646 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 647 2*asoc->pathmtu, 4380)); 648 trans->ssthresh = asoc->peer.i.a_rwnd; 649 trans->rto = asoc->rto_initial; 650 sctp_max_rto(asoc, trans); 651 trans->rtt = trans->srtt = trans->rttvar = 0; 652 /* Clear the source and route cache */ 653 sctp_transport_route(trans, NULL, 654 sctp_sk(asoc->base.sk)); 655 } 656 } 657 retval = sctp_send_asconf(asoc, chunk); 658 } 659 660 out: 661 return retval; 662 } 663 664 /* Remove a list of addresses from bind addresses list. Do not remove the 665 * last address. 666 * 667 * Basically run through each address specified in the addrs/addrcnt 668 * array/length pair, determine if it is IPv6 or IPv4 and call 669 * sctp_del_bind() on it. 670 * 671 * If any of them fails, then the operation will be reversed and the 672 * ones that were removed will be added back. 673 * 674 * At least one address has to be left; if only one address is 675 * available, the operation will return -EBUSY. 676 * 677 * Only sctp_setsockopt_bindx() is supposed to call this function. 678 */ 679 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 680 { 681 struct sctp_sock *sp = sctp_sk(sk); 682 struct sctp_endpoint *ep = sp->ep; 683 int cnt; 684 struct sctp_bind_addr *bp = &ep->base.bind_addr; 685 int retval = 0; 686 void *addr_buf; 687 union sctp_addr *sa_addr; 688 struct sctp_af *af; 689 690 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 691 __func__, sk, addrs, addrcnt); 692 693 addr_buf = addrs; 694 for (cnt = 0; cnt < addrcnt; cnt++) { 695 /* If the bind address list is empty or if there is only one 696 * bind address, there is nothing more to be removed (we need 697 * at least one address here). 698 */ 699 if (list_empty(&bp->address_list) || 700 (sctp_list_single_entry(&bp->address_list))) { 701 retval = -EBUSY; 702 goto err_bindx_rem; 703 } 704 705 sa_addr = addr_buf; 706 af = sctp_get_af_specific(sa_addr->sa.sa_family); 707 if (!af) { 708 retval = -EINVAL; 709 goto err_bindx_rem; 710 } 711 712 if (!af->addr_valid(sa_addr, sp, NULL)) { 713 retval = -EADDRNOTAVAIL; 714 goto err_bindx_rem; 715 } 716 717 if (sa_addr->v4.sin_port && 718 sa_addr->v4.sin_port != htons(bp->port)) { 719 retval = -EINVAL; 720 goto err_bindx_rem; 721 } 722 723 if (!sa_addr->v4.sin_port) 724 sa_addr->v4.sin_port = htons(bp->port); 725 726 /* FIXME - There is probably a need to check if sk->sk_saddr and 727 * sk->sk_rcv_addr are currently set to one of the addresses to 728 * be removed. This is something which needs to be looked into 729 * when we are fixing the outstanding issues with multi-homing 730 * socket routing and failover schemes. Refer to comments in 731 * sctp_do_bind(). -daisy 732 */ 733 retval = sctp_del_bind_addr(bp, sa_addr); 734 735 addr_buf += af->sockaddr_len; 736 err_bindx_rem: 737 if (retval < 0) { 738 /* Failed. Add the ones that has been removed back */ 739 if (cnt > 0) 740 sctp_bindx_add(sk, addrs, cnt); 741 return retval; 742 } 743 } 744 745 return retval; 746 } 747 748 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 749 * the associations that are part of the endpoint indicating that a list of 750 * local addresses are removed from the endpoint. 751 * 752 * If any of the addresses is already in the bind address list of the 753 * association, we do not send the chunk for that association. But it will not 754 * affect other associations. 755 * 756 * Only sctp_setsockopt_bindx() is supposed to call this function. 757 */ 758 static int sctp_send_asconf_del_ip(struct sock *sk, 759 struct sockaddr *addrs, 760 int addrcnt) 761 { 762 struct sctp_sock *sp; 763 struct sctp_endpoint *ep; 764 struct sctp_association *asoc; 765 struct sctp_transport *transport; 766 struct sctp_bind_addr *bp; 767 struct sctp_chunk *chunk; 768 union sctp_addr *laddr; 769 void *addr_buf; 770 struct sctp_af *af; 771 struct sctp_sockaddr_entry *saddr; 772 int i; 773 int retval = 0; 774 int stored = 0; 775 776 chunk = NULL; 777 sp = sctp_sk(sk); 778 ep = sp->ep; 779 780 if (!ep->asconf_enable) 781 return retval; 782 783 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 784 __func__, sk, addrs, addrcnt); 785 786 list_for_each_entry(asoc, &ep->asocs, asocs) { 787 788 if (!asoc->peer.asconf_capable) 789 continue; 790 791 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 792 continue; 793 794 if (!sctp_state(asoc, ESTABLISHED)) 795 continue; 796 797 /* Check if any address in the packed array of addresses is 798 * not present in the bind address list of the association. 799 * If so, do not send the asconf chunk to its peer, but 800 * continue with other associations. 801 */ 802 addr_buf = addrs; 803 for (i = 0; i < addrcnt; i++) { 804 laddr = addr_buf; 805 af = sctp_get_af_specific(laddr->v4.sin_family); 806 if (!af) { 807 retval = -EINVAL; 808 goto out; 809 } 810 811 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 812 break; 813 814 addr_buf += af->sockaddr_len; 815 } 816 if (i < addrcnt) 817 continue; 818 819 /* Find one address in the association's bind address list 820 * that is not in the packed array of addresses. This is to 821 * make sure that we do not delete all the addresses in the 822 * association. 823 */ 824 bp = &asoc->base.bind_addr; 825 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 826 addrcnt, sp); 827 if ((laddr == NULL) && (addrcnt == 1)) { 828 if (asoc->asconf_addr_del_pending) 829 continue; 830 asoc->asconf_addr_del_pending = 831 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 832 if (asoc->asconf_addr_del_pending == NULL) { 833 retval = -ENOMEM; 834 goto out; 835 } 836 asoc->asconf_addr_del_pending->sa.sa_family = 837 addrs->sa_family; 838 asoc->asconf_addr_del_pending->v4.sin_port = 839 htons(bp->port); 840 if (addrs->sa_family == AF_INET) { 841 struct sockaddr_in *sin; 842 843 sin = (struct sockaddr_in *)addrs; 844 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 845 } else if (addrs->sa_family == AF_INET6) { 846 struct sockaddr_in6 *sin6; 847 848 sin6 = (struct sockaddr_in6 *)addrs; 849 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 850 } 851 852 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 853 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 854 asoc->asconf_addr_del_pending); 855 856 asoc->src_out_of_asoc_ok = 1; 857 stored = 1; 858 goto skip_mkasconf; 859 } 860 861 if (laddr == NULL) 862 return -EINVAL; 863 864 /* We do not need RCU protection throughout this loop 865 * because this is done under a socket lock from the 866 * setsockopt call. 867 */ 868 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 869 SCTP_PARAM_DEL_IP); 870 if (!chunk) { 871 retval = -ENOMEM; 872 goto out; 873 } 874 875 skip_mkasconf: 876 /* Reset use_as_src flag for the addresses in the bind address 877 * list that are to be deleted. 878 */ 879 addr_buf = addrs; 880 for (i = 0; i < addrcnt; i++) { 881 laddr = addr_buf; 882 af = sctp_get_af_specific(laddr->v4.sin_family); 883 list_for_each_entry(saddr, &bp->address_list, list) { 884 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 885 saddr->state = SCTP_ADDR_DEL; 886 } 887 addr_buf += af->sockaddr_len; 888 } 889 890 /* Update the route and saddr entries for all the transports 891 * as some of the addresses in the bind address list are 892 * about to be deleted and cannot be used as source addresses. 893 */ 894 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 895 transports) { 896 sctp_transport_route(transport, NULL, 897 sctp_sk(asoc->base.sk)); 898 } 899 900 if (stored) 901 /* We don't need to transmit ASCONF */ 902 continue; 903 retval = sctp_send_asconf(asoc, chunk); 904 } 905 out: 906 return retval; 907 } 908 909 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 910 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 911 { 912 struct sock *sk = sctp_opt2sk(sp); 913 union sctp_addr *addr; 914 struct sctp_af *af; 915 916 /* It is safe to write port space in caller. */ 917 addr = &addrw->a; 918 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 919 af = sctp_get_af_specific(addr->sa.sa_family); 920 if (!af) 921 return -EINVAL; 922 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 923 return -EINVAL; 924 925 if (addrw->state == SCTP_ADDR_NEW) 926 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 927 else 928 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 929 } 930 931 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 932 * 933 * API 8.1 934 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 935 * int flags); 936 * 937 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 938 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 939 * or IPv6 addresses. 940 * 941 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 942 * Section 3.1.2 for this usage. 943 * 944 * addrs is a pointer to an array of one or more socket addresses. Each 945 * address is contained in its appropriate structure (i.e. struct 946 * sockaddr_in or struct sockaddr_in6) the family of the address type 947 * must be used to distinguish the address length (note that this 948 * representation is termed a "packed array" of addresses). The caller 949 * specifies the number of addresses in the array with addrcnt. 950 * 951 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 952 * -1, and sets errno to the appropriate error code. 953 * 954 * For SCTP, the port given in each socket address must be the same, or 955 * sctp_bindx() will fail, setting errno to EINVAL. 956 * 957 * The flags parameter is formed from the bitwise OR of zero or more of 958 * the following currently defined flags: 959 * 960 * SCTP_BINDX_ADD_ADDR 961 * 962 * SCTP_BINDX_REM_ADDR 963 * 964 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 965 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 966 * addresses from the association. The two flags are mutually exclusive; 967 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 968 * not remove all addresses from an association; sctp_bindx() will 969 * reject such an attempt with EINVAL. 970 * 971 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 972 * additional addresses with an endpoint after calling bind(). Or use 973 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 974 * socket is associated with so that no new association accepted will be 975 * associated with those addresses. If the endpoint supports dynamic 976 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 977 * endpoint to send the appropriate message to the peer to change the 978 * peers address lists. 979 * 980 * Adding and removing addresses from a connected association is 981 * optional functionality. Implementations that do not support this 982 * functionality should return EOPNOTSUPP. 983 * 984 * Basically do nothing but copying the addresses from user to kernel 985 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 986 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 987 * from userspace. 988 * 989 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 990 * it. 991 * 992 * sk The sk of the socket 993 * addrs The pointer to the addresses 994 * addrssize Size of the addrs buffer 995 * op Operation to perform (add or remove, see the flags of 996 * sctp_bindx) 997 * 998 * Returns 0 if ok, <0 errno code on error. 999 */ 1000 static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs, 1001 int addrs_size, int op) 1002 { 1003 int err; 1004 int addrcnt = 0; 1005 int walk_size = 0; 1006 struct sockaddr *sa_addr; 1007 void *addr_buf = addrs; 1008 struct sctp_af *af; 1009 1010 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 1011 __func__, sk, addr_buf, addrs_size, op); 1012 1013 if (unlikely(addrs_size <= 0)) 1014 return -EINVAL; 1015 1016 /* Walk through the addrs buffer and count the number of addresses. */ 1017 while (walk_size < addrs_size) { 1018 if (walk_size + sizeof(sa_family_t) > addrs_size) 1019 return -EINVAL; 1020 1021 sa_addr = addr_buf; 1022 af = sctp_get_af_specific(sa_addr->sa_family); 1023 1024 /* If the address family is not supported or if this address 1025 * causes the address buffer to overflow return EINVAL. 1026 */ 1027 if (!af || (walk_size + af->sockaddr_len) > addrs_size) 1028 return -EINVAL; 1029 addrcnt++; 1030 addr_buf += af->sockaddr_len; 1031 walk_size += af->sockaddr_len; 1032 } 1033 1034 /* Do the work. */ 1035 switch (op) { 1036 case SCTP_BINDX_ADD_ADDR: 1037 /* Allow security module to validate bindx addresses. */ 1038 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1039 addrs, addrs_size); 1040 if (err) 1041 return err; 1042 err = sctp_bindx_add(sk, addrs, addrcnt); 1043 if (err) 1044 return err; 1045 return sctp_send_asconf_add_ip(sk, addrs, addrcnt); 1046 case SCTP_BINDX_REM_ADDR: 1047 err = sctp_bindx_rem(sk, addrs, addrcnt); 1048 if (err) 1049 return err; 1050 return sctp_send_asconf_del_ip(sk, addrs, addrcnt); 1051 1052 default: 1053 return -EINVAL; 1054 } 1055 } 1056 1057 static int sctp_bind_add(struct sock *sk, struct sockaddr_unsized *addrs, 1058 int addrlen) 1059 { 1060 int err; 1061 1062 lock_sock(sk); 1063 err = sctp_setsockopt_bindx(sk, (struct sockaddr *)addrs, addrlen, SCTP_BINDX_ADD_ADDR); 1064 release_sock(sk); 1065 return err; 1066 } 1067 1068 static int sctp_connect_new_asoc(struct sctp_endpoint *ep, 1069 const union sctp_addr *daddr, 1070 const struct sctp_initmsg *init, 1071 struct sctp_transport **tp) 1072 { 1073 struct sctp_association *asoc; 1074 struct sock *sk = ep->base.sk; 1075 struct net *net = sock_net(sk); 1076 enum sctp_scope scope; 1077 int err; 1078 1079 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1080 return -EADDRNOTAVAIL; 1081 1082 if (!ep->base.bind_addr.port) { 1083 if (sctp_autobind(sk)) 1084 return -EAGAIN; 1085 } else { 1086 if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) && 1087 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1088 return -EACCES; 1089 } 1090 1091 scope = sctp_scope(daddr); 1092 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1093 if (!asoc) 1094 return -ENOMEM; 1095 1096 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1097 if (err < 0) 1098 goto free; 1099 1100 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1101 if (!*tp) { 1102 err = -ENOMEM; 1103 goto free; 1104 } 1105 1106 if (!init) 1107 return 0; 1108 1109 if (init->sinit_num_ostreams) { 1110 __u16 outcnt = init->sinit_num_ostreams; 1111 1112 asoc->c.sinit_num_ostreams = outcnt; 1113 /* outcnt has been changed, need to re-init stream */ 1114 err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL); 1115 if (err) 1116 goto free; 1117 } 1118 1119 if (init->sinit_max_instreams) 1120 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1121 1122 if (init->sinit_max_attempts) 1123 asoc->max_init_attempts = init->sinit_max_attempts; 1124 1125 if (init->sinit_max_init_timeo) 1126 asoc->max_init_timeo = 1127 msecs_to_jiffies(init->sinit_max_init_timeo); 1128 1129 return 0; 1130 free: 1131 sctp_association_free(asoc); 1132 return err; 1133 } 1134 1135 static int sctp_connect_add_peer(struct sctp_association *asoc, 1136 union sctp_addr *daddr, int addr_len) 1137 { 1138 struct sctp_endpoint *ep = asoc->ep; 1139 struct sctp_association *old; 1140 struct sctp_transport *t; 1141 int err; 1142 1143 err = sctp_verify_addr(ep->base.sk, daddr, addr_len); 1144 if (err) 1145 return err; 1146 1147 old = sctp_endpoint_lookup_assoc(ep, daddr, &t); 1148 if (old && old != asoc) 1149 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1150 : -EALREADY; 1151 1152 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1153 return -EADDRNOTAVAIL; 1154 1155 t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1156 if (!t) 1157 return -ENOMEM; 1158 1159 return 0; 1160 } 1161 1162 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1163 * 1164 * Common routine for handling connect() and sctp_connectx(). 1165 * Connect will come in with just a single address. 1166 */ 1167 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs, 1168 int addrs_size, int flags, sctp_assoc_t *assoc_id) 1169 { 1170 struct sctp_sock *sp = sctp_sk(sk); 1171 struct sctp_endpoint *ep = sp->ep; 1172 struct sctp_transport *transport; 1173 struct sctp_association *asoc; 1174 void *addr_buf = kaddrs; 1175 union sctp_addr *daddr; 1176 struct sctp_af *af; 1177 int walk_size, err; 1178 long timeo; 1179 1180 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1181 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) 1182 return -EISCONN; 1183 1184 daddr = addr_buf; 1185 af = sctp_get_af_specific(daddr->sa.sa_family); 1186 if (!af || af->sockaddr_len > addrs_size) 1187 return -EINVAL; 1188 1189 err = sctp_verify_addr(sk, daddr, af->sockaddr_len); 1190 if (err) 1191 return err; 1192 1193 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1194 if (asoc) 1195 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1196 : -EALREADY; 1197 1198 err = sctp_connect_new_asoc(ep, daddr, NULL, &transport); 1199 if (err) 1200 return err; 1201 asoc = transport->asoc; 1202 1203 addr_buf += af->sockaddr_len; 1204 walk_size = af->sockaddr_len; 1205 while (walk_size < addrs_size) { 1206 err = -EINVAL; 1207 if (walk_size + sizeof(sa_family_t) > addrs_size) 1208 goto out_free; 1209 1210 daddr = addr_buf; 1211 af = sctp_get_af_specific(daddr->sa.sa_family); 1212 if (!af || af->sockaddr_len + walk_size > addrs_size) 1213 goto out_free; 1214 1215 if (asoc->peer.port != ntohs(daddr->v4.sin_port)) 1216 goto out_free; 1217 1218 err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len); 1219 if (err) 1220 goto out_free; 1221 1222 addr_buf += af->sockaddr_len; 1223 walk_size += af->sockaddr_len; 1224 } 1225 1226 /* In case the user of sctp_connectx() wants an association 1227 * id back, assign one now. 1228 */ 1229 if (assoc_id) { 1230 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1231 if (err < 0) 1232 goto out_free; 1233 } 1234 1235 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL); 1236 if (err < 0) 1237 goto out_free; 1238 1239 /* Initialize sk's dport and daddr for getpeername() */ 1240 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1241 sp->pf->to_sk_daddr(daddr, sk); 1242 sk->sk_err = 0; 1243 1244 if (assoc_id) 1245 *assoc_id = asoc->assoc_id; 1246 1247 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1248 return sctp_wait_for_connect(asoc, &timeo); 1249 1250 out_free: 1251 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1252 __func__, asoc, kaddrs, err); 1253 sctp_association_free(asoc); 1254 return err; 1255 } 1256 1257 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1258 * 1259 * API 8.9 1260 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1261 * sctp_assoc_t *asoc); 1262 * 1263 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1264 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1265 * or IPv6 addresses. 1266 * 1267 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1268 * Section 3.1.2 for this usage. 1269 * 1270 * addrs is a pointer to an array of one or more socket addresses. Each 1271 * address is contained in its appropriate structure (i.e. struct 1272 * sockaddr_in or struct sockaddr_in6) the family of the address type 1273 * must be used to distengish the address length (note that this 1274 * representation is termed a "packed array" of addresses). The caller 1275 * specifies the number of addresses in the array with addrcnt. 1276 * 1277 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1278 * the association id of the new association. On failure, sctp_connectx() 1279 * returns -1, and sets errno to the appropriate error code. The assoc_id 1280 * is not touched by the kernel. 1281 * 1282 * For SCTP, the port given in each socket address must be the same, or 1283 * sctp_connectx() will fail, setting errno to EINVAL. 1284 * 1285 * An application can use sctp_connectx to initiate an association with 1286 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1287 * allows a caller to specify multiple addresses at which a peer can be 1288 * reached. The way the SCTP stack uses the list of addresses to set up 1289 * the association is implementation dependent. This function only 1290 * specifies that the stack will try to make use of all the addresses in 1291 * the list when needed. 1292 * 1293 * Note that the list of addresses passed in is only used for setting up 1294 * the association. It does not necessarily equal the set of addresses 1295 * the peer uses for the resulting association. If the caller wants to 1296 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1297 * retrieve them after the association has been set up. 1298 * 1299 * Basically do nothing but copying the addresses from user to kernel 1300 * land and invoking either sctp_connectx(). This is used for tunneling 1301 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1302 * 1303 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1304 * it. 1305 * 1306 * sk The sk of the socket 1307 * addrs The pointer to the addresses 1308 * addrssize Size of the addrs buffer 1309 * 1310 * Returns >=0 if ok, <0 errno code on error. 1311 */ 1312 static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs, 1313 int addrs_size, sctp_assoc_t *assoc_id) 1314 { 1315 int err = 0, flags = 0; 1316 1317 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1318 __func__, sk, kaddrs, addrs_size); 1319 1320 /* make sure the 1st addr's sa_family is accessible later */ 1321 if (unlikely(addrs_size < sizeof(sa_family_t))) 1322 return -EINVAL; 1323 1324 /* Allow security module to validate connectx addresses. */ 1325 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1326 (struct sockaddr *)kaddrs, 1327 addrs_size); 1328 if (err) 1329 return err; 1330 1331 /* in-kernel sockets don't generally have a file allocated to them 1332 * if all they do is call sock_create_kern(). 1333 */ 1334 if (sk->sk_socket->file) 1335 flags = sk->sk_socket->file->f_flags; 1336 1337 return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1338 } 1339 1340 /* 1341 * This is an older interface. It's kept for backward compatibility 1342 * to the option that doesn't provide association id. 1343 */ 1344 static int sctp_setsockopt_connectx_old(struct sock *sk, 1345 struct sockaddr *kaddrs, 1346 int addrs_size) 1347 { 1348 return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL); 1349 } 1350 1351 /* 1352 * New interface for the API. The since the API is done with a socket 1353 * option, to make it simple we feed back the association id is as a return 1354 * indication to the call. Error is always negative and association id is 1355 * always positive. 1356 */ 1357 static int sctp_setsockopt_connectx(struct sock *sk, 1358 struct sockaddr *kaddrs, 1359 int addrs_size) 1360 { 1361 sctp_assoc_t assoc_id = 0; 1362 int err = 0; 1363 1364 err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id); 1365 1366 if (err) 1367 return err; 1368 else 1369 return assoc_id; 1370 } 1371 1372 /* 1373 * New (hopefully final) interface for the API. 1374 * We use the sctp_getaddrs_old structure so that use-space library 1375 * can avoid any unnecessary allocations. The only different part 1376 * is that we store the actual length of the address buffer into the 1377 * addrs_num structure member. That way we can re-use the existing 1378 * code. 1379 */ 1380 #ifdef CONFIG_COMPAT 1381 struct compat_sctp_getaddrs_old { 1382 sctp_assoc_t assoc_id; 1383 s32 addr_num; 1384 compat_uptr_t addrs; /* struct sockaddr * */ 1385 }; 1386 #endif 1387 1388 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1389 char __user *optval, 1390 int __user *optlen) 1391 { 1392 struct sctp_getaddrs_old param; 1393 sctp_assoc_t assoc_id = 0; 1394 struct sockaddr *kaddrs; 1395 int err = 0; 1396 1397 #ifdef CONFIG_COMPAT 1398 if (in_compat_syscall()) { 1399 struct compat_sctp_getaddrs_old param32; 1400 1401 if (len < sizeof(param32)) 1402 return -EINVAL; 1403 if (copy_from_user(¶m32, optval, sizeof(param32))) 1404 return -EFAULT; 1405 1406 param.assoc_id = param32.assoc_id; 1407 param.addr_num = param32.addr_num; 1408 param.addrs = compat_ptr(param32.addrs); 1409 } else 1410 #endif 1411 { 1412 if (len < sizeof(param)) 1413 return -EINVAL; 1414 if (copy_from_user(¶m, optval, sizeof(param))) 1415 return -EFAULT; 1416 } 1417 1418 kaddrs = memdup_user(param.addrs, param.addr_num); 1419 if (IS_ERR(kaddrs)) 1420 return PTR_ERR(kaddrs); 1421 1422 err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id); 1423 kfree(kaddrs); 1424 if (err == 0 || err == -EINPROGRESS) { 1425 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1426 return -EFAULT; 1427 if (put_user(sizeof(assoc_id), optlen)) 1428 return -EFAULT; 1429 } 1430 1431 return err; 1432 } 1433 1434 /* API 3.1.4 close() - UDP Style Syntax 1435 * Applications use close() to perform graceful shutdown (as described in 1436 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1437 * by a UDP-style socket. 1438 * 1439 * The syntax is 1440 * 1441 * ret = close(int sd); 1442 * 1443 * sd - the socket descriptor of the associations to be closed. 1444 * 1445 * To gracefully shutdown a specific association represented by the 1446 * UDP-style socket, an application should use the sendmsg() call, 1447 * passing no user data, but including the appropriate flag in the 1448 * ancillary data (see Section xxxx). 1449 * 1450 * If sd in the close() call is a branched-off socket representing only 1451 * one association, the shutdown is performed on that association only. 1452 * 1453 * 4.1.6 close() - TCP Style Syntax 1454 * 1455 * Applications use close() to gracefully close down an association. 1456 * 1457 * The syntax is: 1458 * 1459 * int close(int sd); 1460 * 1461 * sd - the socket descriptor of the association to be closed. 1462 * 1463 * After an application calls close() on a socket descriptor, no further 1464 * socket operations will succeed on that descriptor. 1465 * 1466 * API 7.1.4 SO_LINGER 1467 * 1468 * An application using the TCP-style socket can use this option to 1469 * perform the SCTP ABORT primitive. The linger option structure is: 1470 * 1471 * struct linger { 1472 * int l_onoff; // option on/off 1473 * int l_linger; // linger time 1474 * }; 1475 * 1476 * To enable the option, set l_onoff to 1. If the l_linger value is set 1477 * to 0, calling close() is the same as the ABORT primitive. If the 1478 * value is set to a negative value, the setsockopt() call will return 1479 * an error. If the value is set to a positive value linger_time, the 1480 * close() can be blocked for at most linger_time ms. If the graceful 1481 * shutdown phase does not finish during this period, close() will 1482 * return but the graceful shutdown phase continues in the system. 1483 */ 1484 static void sctp_close(struct sock *sk, long timeout) 1485 { 1486 struct net *net = sock_net(sk); 1487 struct sctp_endpoint *ep; 1488 struct sctp_association *asoc; 1489 struct list_head *pos, *temp; 1490 unsigned int data_was_unread; 1491 1492 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1493 1494 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1495 sk->sk_shutdown = SHUTDOWN_MASK; 1496 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1497 1498 ep = sctp_sk(sk)->ep; 1499 1500 /* Clean up any skbs sitting on the receive queue. */ 1501 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1502 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1503 1504 /* Walk all associations on an endpoint. */ 1505 list_for_each_safe(pos, temp, &ep->asocs) { 1506 asoc = list_entry(pos, struct sctp_association, asocs); 1507 1508 if (sctp_style(sk, TCP)) { 1509 /* A closed association can still be in the list if 1510 * it belongs to a TCP-style listening socket that is 1511 * not yet accepted. If so, free it. If not, send an 1512 * ABORT or SHUTDOWN based on the linger options. 1513 */ 1514 if (sctp_state(asoc, CLOSED)) { 1515 sctp_association_free(asoc); 1516 continue; 1517 } 1518 } 1519 1520 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1521 !skb_queue_empty(&asoc->ulpq.reasm) || 1522 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1523 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1524 struct sctp_chunk *chunk; 1525 1526 chunk = sctp_make_abort_user(asoc, NULL, 0); 1527 sctp_primitive_ABORT(net, asoc, chunk); 1528 } else 1529 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1530 } 1531 1532 /* On a TCP-style socket, block for at most linger_time if set. */ 1533 if (sctp_style(sk, TCP) && timeout) 1534 sctp_wait_for_close(sk, timeout); 1535 1536 /* This will run the backlog queue. */ 1537 release_sock(sk); 1538 1539 /* Supposedly, no process has access to the socket, but 1540 * the net layers still may. 1541 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1542 * held and that should be grabbed before socket lock. 1543 */ 1544 spin_lock_bh(&net->sctp.addr_wq_lock); 1545 bh_lock_sock_nested(sk); 1546 1547 /* Hold the sock, since sk_common_release() will put sock_put() 1548 * and we have just a little more cleanup. 1549 */ 1550 sock_hold(sk); 1551 sk_common_release(sk); 1552 1553 bh_unlock_sock(sk); 1554 spin_unlock_bh(&net->sctp.addr_wq_lock); 1555 1556 sock_put(sk); 1557 } 1558 1559 /* Handle EPIPE error. */ 1560 static int sctp_error(struct sock *sk, int flags, int err) 1561 { 1562 if (err == -EPIPE) 1563 err = sock_error(sk) ? : -EPIPE; 1564 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1565 send_sig(SIGPIPE, current, 0); 1566 return err; 1567 } 1568 1569 /* API 3.1.3 sendmsg() - UDP Style Syntax 1570 * 1571 * An application uses sendmsg() and recvmsg() calls to transmit data to 1572 * and receive data from its peer. 1573 * 1574 * ssize_t sendmsg(int socket, const struct msghdr *message, 1575 * int flags); 1576 * 1577 * socket - the socket descriptor of the endpoint. 1578 * message - pointer to the msghdr structure which contains a single 1579 * user message and possibly some ancillary data. 1580 * 1581 * See Section 5 for complete description of the data 1582 * structures. 1583 * 1584 * flags - flags sent or received with the user message, see Section 1585 * 5 for complete description of the flags. 1586 * 1587 * Note: This function could use a rewrite especially when explicit 1588 * connect support comes in. 1589 */ 1590 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1591 1592 static int sctp_msghdr_parse(const struct msghdr *msg, 1593 struct sctp_cmsgs *cmsgs); 1594 1595 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1596 struct sctp_sndrcvinfo *srinfo, 1597 const struct msghdr *msg, size_t msg_len) 1598 { 1599 __u16 sflags; 1600 int err; 1601 1602 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1603 return -EPIPE; 1604 1605 if (msg_len > sk->sk_sndbuf) 1606 return -EMSGSIZE; 1607 1608 memset(cmsgs, 0, sizeof(*cmsgs)); 1609 err = sctp_msghdr_parse(msg, cmsgs); 1610 if (err) { 1611 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1612 return err; 1613 } 1614 1615 memset(srinfo, 0, sizeof(*srinfo)); 1616 if (cmsgs->srinfo) { 1617 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1618 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1619 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1620 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1621 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1622 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1623 } 1624 1625 if (cmsgs->sinfo) { 1626 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1627 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1628 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1629 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1630 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1631 } 1632 1633 if (cmsgs->prinfo) { 1634 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1635 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1636 cmsgs->prinfo->pr_policy); 1637 } 1638 1639 sflags = srinfo->sinfo_flags; 1640 if (!sflags && msg_len) 1641 return 0; 1642 1643 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1644 return -EINVAL; 1645 1646 if (((sflags & SCTP_EOF) && msg_len > 0) || 1647 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1648 return -EINVAL; 1649 1650 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1651 return -EINVAL; 1652 1653 return 0; 1654 } 1655 1656 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1657 struct sctp_cmsgs *cmsgs, 1658 union sctp_addr *daddr, 1659 struct sctp_transport **tp) 1660 { 1661 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1662 struct sctp_association *asoc; 1663 struct cmsghdr *cmsg; 1664 __be32 flowinfo = 0; 1665 struct sctp_af *af; 1666 int err; 1667 1668 *tp = NULL; 1669 1670 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1671 return -EINVAL; 1672 1673 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1674 sctp_sstate(sk, CLOSING))) 1675 return -EADDRNOTAVAIL; 1676 1677 /* Label connection socket for first association 1-to-many 1678 * style for client sequence socket()->sendmsg(). This 1679 * needs to be done before sctp_assoc_add_peer() as that will 1680 * set up the initial packet that needs to account for any 1681 * security ip options (CIPSO/CALIPSO) added to the packet. 1682 */ 1683 af = sctp_get_af_specific(daddr->sa.sa_family); 1684 if (!af) 1685 return -EINVAL; 1686 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1687 (struct sockaddr *)daddr, 1688 af->sockaddr_len); 1689 if (err < 0) 1690 return err; 1691 1692 err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp); 1693 if (err) 1694 return err; 1695 asoc = (*tp)->asoc; 1696 1697 if (!cmsgs->addrs_msg) 1698 return 0; 1699 1700 if (daddr->sa.sa_family == AF_INET6) 1701 flowinfo = daddr->v6.sin6_flowinfo; 1702 1703 /* sendv addr list parse */ 1704 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1705 union sctp_addr _daddr; 1706 int dlen; 1707 1708 if (cmsg->cmsg_level != IPPROTO_SCTP || 1709 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1710 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1711 continue; 1712 1713 daddr = &_daddr; 1714 memset(daddr, 0, sizeof(*daddr)); 1715 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1716 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1717 if (dlen < sizeof(struct in_addr)) { 1718 err = -EINVAL; 1719 goto free; 1720 } 1721 1722 dlen = sizeof(struct in_addr); 1723 daddr->v4.sin_family = AF_INET; 1724 daddr->v4.sin_port = htons(asoc->peer.port); 1725 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1726 } else { 1727 if (dlen < sizeof(struct in6_addr)) { 1728 err = -EINVAL; 1729 goto free; 1730 } 1731 1732 dlen = sizeof(struct in6_addr); 1733 daddr->v6.sin6_flowinfo = flowinfo; 1734 daddr->v6.sin6_family = AF_INET6; 1735 daddr->v6.sin6_port = htons(asoc->peer.port); 1736 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1737 } 1738 1739 err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr)); 1740 if (err) 1741 goto free; 1742 } 1743 1744 return 0; 1745 1746 free: 1747 sctp_association_free(asoc); 1748 return err; 1749 } 1750 1751 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1752 __u16 sflags, struct msghdr *msg, 1753 size_t msg_len) 1754 { 1755 struct sock *sk = asoc->base.sk; 1756 struct net *net = sock_net(sk); 1757 1758 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1759 return -EPIPE; 1760 1761 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1762 !sctp_state(asoc, ESTABLISHED)) 1763 return 0; 1764 1765 if (sflags & SCTP_EOF) { 1766 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1767 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1768 1769 return 0; 1770 } 1771 1772 if (sflags & SCTP_ABORT) { 1773 struct sctp_chunk *chunk; 1774 1775 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1776 if (!chunk) 1777 return -ENOMEM; 1778 1779 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1780 sctp_primitive_ABORT(net, asoc, chunk); 1781 iov_iter_revert(&msg->msg_iter, msg_len); 1782 1783 return 0; 1784 } 1785 1786 return 1; 1787 } 1788 1789 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1790 struct msghdr *msg, size_t msg_len, 1791 struct sctp_transport *transport, 1792 struct sctp_sndrcvinfo *sinfo) 1793 { 1794 struct sock *sk = asoc->base.sk; 1795 struct sctp_sock *sp = sctp_sk(sk); 1796 struct net *net = sock_net(sk); 1797 struct sctp_datamsg *datamsg; 1798 bool wait_connect = false; 1799 struct sctp_chunk *chunk; 1800 long timeo; 1801 int err; 1802 1803 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1804 err = -EINVAL; 1805 goto err; 1806 } 1807 1808 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { 1809 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1810 if (err) 1811 goto err; 1812 } 1813 1814 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1815 err = -EMSGSIZE; 1816 goto err; 1817 } 1818 1819 if (asoc->pmtu_pending) { 1820 if (sp->param_flags & SPP_PMTUD_ENABLE) 1821 sctp_assoc_sync_pmtu(asoc); 1822 asoc->pmtu_pending = 0; 1823 } 1824 1825 if (sctp_wspace(asoc) < (int)msg_len) 1826 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1827 1828 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) { 1829 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1830 err = sctp_wait_for_sndbuf(asoc, transport, &timeo, msg_len); 1831 if (err) 1832 goto err; 1833 if (unlikely(sinfo->sinfo_stream >= asoc->stream.outcnt)) { 1834 err = -EINVAL; 1835 goto err; 1836 } 1837 } 1838 1839 if (sctp_state(asoc, CLOSED)) { 1840 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1841 if (err) 1842 goto err; 1843 1844 if (asoc->ep->intl_enable) { 1845 timeo = sock_sndtimeo(sk, 0); 1846 err = sctp_wait_for_connect(asoc, &timeo); 1847 if (err) { 1848 err = -ESRCH; 1849 goto err; 1850 } 1851 } else { 1852 wait_connect = true; 1853 } 1854 1855 pr_debug("%s: we associated primitively\n", __func__); 1856 } 1857 1858 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1859 if (IS_ERR(datamsg)) { 1860 err = PTR_ERR(datamsg); 1861 goto err; 1862 } 1863 1864 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1865 1866 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1867 sctp_chunk_hold(chunk); 1868 sctp_set_owner_w(chunk); 1869 chunk->transport = transport; 1870 } 1871 1872 err = sctp_primitive_SEND(net, asoc, datamsg); 1873 if (err) { 1874 sctp_datamsg_free(datamsg); 1875 goto err; 1876 } 1877 1878 pr_debug("%s: we sent primitively\n", __func__); 1879 1880 sctp_datamsg_put(datamsg); 1881 1882 if (unlikely(wait_connect)) { 1883 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1884 sctp_wait_for_connect(asoc, &timeo); 1885 } 1886 1887 err = msg_len; 1888 1889 err: 1890 return err; 1891 } 1892 1893 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1894 const struct msghdr *msg, 1895 struct sctp_cmsgs *cmsgs) 1896 { 1897 union sctp_addr *daddr = NULL; 1898 int err; 1899 1900 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1901 int len = msg->msg_namelen; 1902 1903 if (len > sizeof(*daddr)) 1904 len = sizeof(*daddr); 1905 1906 daddr = (union sctp_addr *)msg->msg_name; 1907 1908 err = sctp_verify_addr(sk, daddr, len); 1909 if (err) 1910 return ERR_PTR(err); 1911 } 1912 1913 return daddr; 1914 } 1915 1916 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 1917 struct sctp_sndrcvinfo *sinfo, 1918 struct sctp_cmsgs *cmsgs) 1919 { 1920 if (!cmsgs->srinfo && !cmsgs->sinfo) { 1921 sinfo->sinfo_stream = asoc->default_stream; 1922 sinfo->sinfo_ppid = asoc->default_ppid; 1923 sinfo->sinfo_context = asoc->default_context; 1924 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 1925 1926 if (!cmsgs->prinfo) 1927 sinfo->sinfo_flags = asoc->default_flags; 1928 } 1929 1930 if (!cmsgs->srinfo && !cmsgs->prinfo) 1931 sinfo->sinfo_timetolive = asoc->default_timetolive; 1932 1933 if (cmsgs->authinfo) { 1934 /* Reuse sinfo_tsn to indicate that authinfo was set and 1935 * sinfo_ssn to save the keyid on tx path. 1936 */ 1937 sinfo->sinfo_tsn = 1; 1938 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 1939 } 1940 } 1941 1942 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1943 { 1944 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1945 struct sctp_transport *transport = NULL; 1946 struct sctp_sndrcvinfo _sinfo, *sinfo; 1947 struct sctp_association *asoc, *tmp; 1948 struct sctp_cmsgs cmsgs; 1949 union sctp_addr *daddr; 1950 bool new = false; 1951 __u16 sflags; 1952 int err; 1953 1954 /* Parse and get snd_info */ 1955 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 1956 if (err) 1957 goto out; 1958 1959 sinfo = &_sinfo; 1960 sflags = sinfo->sinfo_flags; 1961 1962 /* Get daddr from msg */ 1963 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 1964 if (IS_ERR(daddr)) { 1965 err = PTR_ERR(daddr); 1966 goto out; 1967 } 1968 1969 lock_sock(sk); 1970 1971 /* SCTP_SENDALL process */ 1972 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 1973 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) { 1974 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1975 msg_len); 1976 if (err == 0) 1977 continue; 1978 if (err < 0) 1979 goto out_unlock; 1980 1981 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 1982 1983 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 1984 NULL, sinfo); 1985 if (err < 0) 1986 goto out_unlock; 1987 1988 iov_iter_revert(&msg->msg_iter, err); 1989 } 1990 1991 goto out_unlock; 1992 } 1993 1994 /* Get and check or create asoc */ 1995 if (daddr) { 1996 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1997 if (asoc) { 1998 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1999 msg_len); 2000 if (err <= 0) 2001 goto out_unlock; 2002 } else { 2003 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 2004 &transport); 2005 if (err) 2006 goto out_unlock; 2007 2008 asoc = transport->asoc; 2009 new = true; 2010 } 2011 2012 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 2013 transport = NULL; 2014 } else { 2015 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2016 if (!asoc) { 2017 err = -EPIPE; 2018 goto out_unlock; 2019 } 2020 2021 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2022 if (err <= 0) 2023 goto out_unlock; 2024 } 2025 2026 /* Update snd_info with the asoc */ 2027 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2028 2029 /* Send msg to the asoc */ 2030 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2031 if (err < 0 && err != -ESRCH && new) 2032 sctp_association_free(asoc); 2033 2034 out_unlock: 2035 release_sock(sk); 2036 out: 2037 return sctp_error(sk, msg->msg_flags, err); 2038 } 2039 2040 /* This is an extended version of skb_pull() that removes the data from the 2041 * start of a skb even when data is spread across the list of skb's in the 2042 * frag_list. len specifies the total amount of data that needs to be removed. 2043 * when 'len' bytes could be removed from the skb, it returns 0. 2044 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2045 * could not be removed. 2046 */ 2047 static int sctp_skb_pull(struct sk_buff *skb, int len) 2048 { 2049 struct sk_buff *list; 2050 int skb_len = skb_headlen(skb); 2051 int rlen; 2052 2053 if (len <= skb_len) { 2054 __skb_pull(skb, len); 2055 return 0; 2056 } 2057 len -= skb_len; 2058 __skb_pull(skb, skb_len); 2059 2060 skb_walk_frags(skb, list) { 2061 rlen = sctp_skb_pull(list, len); 2062 skb->len -= (len-rlen); 2063 skb->data_len -= (len-rlen); 2064 2065 if (!rlen) 2066 return 0; 2067 2068 len = rlen; 2069 } 2070 2071 return len; 2072 } 2073 2074 /* API 3.1.3 recvmsg() - UDP Style Syntax 2075 * 2076 * ssize_t recvmsg(int socket, struct msghdr *message, 2077 * int flags); 2078 * 2079 * socket - the socket descriptor of the endpoint. 2080 * message - pointer to the msghdr structure which contains a single 2081 * user message and possibly some ancillary data. 2082 * 2083 * See Section 5 for complete description of the data 2084 * structures. 2085 * 2086 * flags - flags sent or received with the user message, see Section 2087 * 5 for complete description of the flags. 2088 */ 2089 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2090 int flags, int *addr_len) 2091 { 2092 struct sctp_ulpevent *event = NULL; 2093 struct sctp_sock *sp = sctp_sk(sk); 2094 struct sk_buff *skb, *head_skb; 2095 int copied; 2096 int err = 0; 2097 int skb_len; 2098 2099 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, flags:0x%x, addr_len:%p)\n", 2100 __func__, sk, msg, len, flags, addr_len); 2101 2102 if (unlikely(flags & MSG_ERRQUEUE)) 2103 return inet_recv_error(sk, msg, len, addr_len); 2104 2105 if (sk_can_busy_loop(sk) && 2106 skb_queue_empty_lockless(&sk->sk_receive_queue)) 2107 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2108 2109 lock_sock(sk); 2110 2111 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2112 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2113 err = -ENOTCONN; 2114 goto out; 2115 } 2116 2117 skb = sctp_skb_recv_datagram(sk, flags, &err); 2118 if (!skb) 2119 goto out; 2120 2121 /* Get the total length of the skb including any skb's in the 2122 * frag_list. 2123 */ 2124 skb_len = skb->len; 2125 2126 copied = skb_len; 2127 if (copied > len) 2128 copied = len; 2129 2130 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2131 2132 event = sctp_skb2event(skb); 2133 2134 if (err) 2135 goto out_free; 2136 2137 if (event->chunk && event->chunk->head_skb) 2138 head_skb = event->chunk->head_skb; 2139 else 2140 head_skb = skb; 2141 sock_recv_cmsgs(msg, sk, head_skb); 2142 if (sctp_ulpevent_is_notification(event)) { 2143 msg->msg_flags |= MSG_NOTIFICATION; 2144 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2145 } else { 2146 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2147 } 2148 2149 /* Check if we allow SCTP_NXTINFO. */ 2150 if (sp->recvnxtinfo) 2151 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2152 /* Check if we allow SCTP_RCVINFO. */ 2153 if (sp->recvrcvinfo) 2154 sctp_ulpevent_read_rcvinfo(event, msg); 2155 /* Check if we allow SCTP_SNDRCVINFO. */ 2156 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT)) 2157 sctp_ulpevent_read_sndrcvinfo(event, msg); 2158 2159 err = copied; 2160 2161 /* If skb's length exceeds the user's buffer, update the skb and 2162 * push it back to the receive_queue so that the next call to 2163 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2164 */ 2165 if (skb_len > copied) { 2166 msg->msg_flags &= ~MSG_EOR; 2167 if (flags & MSG_PEEK) 2168 goto out_free; 2169 sctp_skb_pull(skb, copied); 2170 skb_queue_head(&sk->sk_receive_queue, skb); 2171 2172 /* When only partial message is copied to the user, increase 2173 * rwnd by that amount. If all the data in the skb is read, 2174 * rwnd is updated when the event is freed. 2175 */ 2176 if (!sctp_ulpevent_is_notification(event)) 2177 sctp_assoc_rwnd_increase(event->asoc, copied); 2178 goto out; 2179 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2180 (event->msg_flags & MSG_EOR)) 2181 msg->msg_flags |= MSG_EOR; 2182 else 2183 msg->msg_flags &= ~MSG_EOR; 2184 2185 out_free: 2186 if (flags & MSG_PEEK) { 2187 /* Release the skb reference acquired after peeking the skb in 2188 * sctp_skb_recv_datagram(). 2189 */ 2190 kfree_skb(skb); 2191 } else { 2192 /* Free the event which includes releasing the reference to 2193 * the owner of the skb, freeing the skb and updating the 2194 * rwnd. 2195 */ 2196 sctp_ulpevent_free(event); 2197 } 2198 out: 2199 release_sock(sk); 2200 return err; 2201 } 2202 2203 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2204 * 2205 * This option is a on/off flag. If enabled no SCTP message 2206 * fragmentation will be performed. Instead if a message being sent 2207 * exceeds the current PMTU size, the message will NOT be sent and 2208 * instead a error will be indicated to the user. 2209 */ 2210 static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val, 2211 unsigned int optlen) 2212 { 2213 if (optlen < sizeof(int)) 2214 return -EINVAL; 2215 sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1; 2216 return 0; 2217 } 2218 2219 static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type, 2220 unsigned int optlen) 2221 { 2222 struct sctp_sock *sp = sctp_sk(sk); 2223 struct sctp_association *asoc; 2224 int i; 2225 2226 if (optlen > sizeof(struct sctp_event_subscribe)) 2227 return -EINVAL; 2228 2229 for (i = 0; i < optlen; i++) 2230 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i, 2231 sn_type[i]); 2232 2233 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2234 asoc->subscribe = sctp_sk(sk)->subscribe; 2235 2236 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2237 * if there is no data to be sent or retransmit, the stack will 2238 * immediately send up this notification. 2239 */ 2240 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) { 2241 struct sctp_ulpevent *event; 2242 2243 asoc = sctp_id2assoc(sk, 0); 2244 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2245 event = sctp_ulpevent_make_sender_dry_event(asoc, 2246 GFP_USER | __GFP_NOWARN); 2247 if (!event) 2248 return -ENOMEM; 2249 2250 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2251 } 2252 } 2253 2254 return 0; 2255 } 2256 2257 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2258 * 2259 * This socket option is applicable to the UDP-style socket only. When 2260 * set it will cause associations that are idle for more than the 2261 * specified number of seconds to automatically close. An association 2262 * being idle is defined an association that has NOT sent or received 2263 * user data. The special value of '0' indicates that no automatic 2264 * close of any associations should be performed. The option expects an 2265 * integer defining the number of seconds of idle time before an 2266 * association is closed. 2267 */ 2268 static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval, 2269 unsigned int optlen) 2270 { 2271 struct sctp_sock *sp = sctp_sk(sk); 2272 struct net *net = sock_net(sk); 2273 2274 /* Applicable to UDP-style socket only */ 2275 if (sctp_style(sk, TCP)) 2276 return -EOPNOTSUPP; 2277 if (optlen != sizeof(int)) 2278 return -EINVAL; 2279 2280 sp->autoclose = *optval; 2281 if (sp->autoclose > net->sctp.max_autoclose) 2282 sp->autoclose = net->sctp.max_autoclose; 2283 2284 return 0; 2285 } 2286 2287 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2288 * 2289 * Applications can enable or disable heartbeats for any peer address of 2290 * an association, modify an address's heartbeat interval, force a 2291 * heartbeat to be sent immediately, and adjust the address's maximum 2292 * number of retransmissions sent before an address is considered 2293 * unreachable. The following structure is used to access and modify an 2294 * address's parameters: 2295 * 2296 * struct sctp_paddrparams { 2297 * sctp_assoc_t spp_assoc_id; 2298 * struct sockaddr_storage spp_address; 2299 * uint32_t spp_hbinterval; 2300 * uint16_t spp_pathmaxrxt; 2301 * uint32_t spp_pathmtu; 2302 * uint32_t spp_sackdelay; 2303 * uint32_t spp_flags; 2304 * uint32_t spp_ipv6_flowlabel; 2305 * uint8_t spp_dscp; 2306 * }; 2307 * 2308 * spp_assoc_id - (one-to-many style socket) This is filled in the 2309 * application, and identifies the association for 2310 * this query. 2311 * spp_address - This specifies which address is of interest. 2312 * spp_hbinterval - This contains the value of the heartbeat interval, 2313 * in milliseconds. If a value of zero 2314 * is present in this field then no changes are to 2315 * be made to this parameter. 2316 * spp_pathmaxrxt - This contains the maximum number of 2317 * retransmissions before this address shall be 2318 * considered unreachable. If a value of zero 2319 * is present in this field then no changes are to 2320 * be made to this parameter. 2321 * spp_pathmtu - When Path MTU discovery is disabled the value 2322 * specified here will be the "fixed" path mtu. 2323 * Note that if the spp_address field is empty 2324 * then all associations on this address will 2325 * have this fixed path mtu set upon them. 2326 * 2327 * spp_sackdelay - When delayed sack is enabled, this value specifies 2328 * the number of milliseconds that sacks will be delayed 2329 * for. This value will apply to all addresses of an 2330 * association if the spp_address field is empty. Note 2331 * also, that if delayed sack is enabled and this 2332 * value is set to 0, no change is made to the last 2333 * recorded delayed sack timer value. 2334 * 2335 * spp_flags - These flags are used to control various features 2336 * on an association. The flag field may contain 2337 * zero or more of the following options. 2338 * 2339 * SPP_HB_ENABLE - Enable heartbeats on the 2340 * specified address. Note that if the address 2341 * field is empty all addresses for the association 2342 * have heartbeats enabled upon them. 2343 * 2344 * SPP_HB_DISABLE - Disable heartbeats on the 2345 * speicifed address. Note that if the address 2346 * field is empty all addresses for the association 2347 * will have their heartbeats disabled. Note also 2348 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2349 * mutually exclusive, only one of these two should 2350 * be specified. Enabling both fields will have 2351 * undetermined results. 2352 * 2353 * SPP_HB_DEMAND - Request a user initiated heartbeat 2354 * to be made immediately. 2355 * 2356 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2357 * heartbeat delayis to be set to the value of 0 2358 * milliseconds. 2359 * 2360 * SPP_PMTUD_ENABLE - This field will enable PMTU 2361 * discovery upon the specified address. Note that 2362 * if the address feild is empty then all addresses 2363 * on the association are effected. 2364 * 2365 * SPP_PMTUD_DISABLE - This field will disable PMTU 2366 * discovery upon the specified address. Note that 2367 * if the address feild is empty then all addresses 2368 * on the association are effected. Not also that 2369 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2370 * exclusive. Enabling both will have undetermined 2371 * results. 2372 * 2373 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2374 * on delayed sack. The time specified in spp_sackdelay 2375 * is used to specify the sack delay for this address. Note 2376 * that if spp_address is empty then all addresses will 2377 * enable delayed sack and take on the sack delay 2378 * value specified in spp_sackdelay. 2379 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2380 * off delayed sack. If the spp_address field is blank then 2381 * delayed sack is disabled for the entire association. Note 2382 * also that this field is mutually exclusive to 2383 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2384 * results. 2385 * 2386 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2387 * setting of the IPV6 flow label value. The value is 2388 * contained in the spp_ipv6_flowlabel field. 2389 * Upon retrieval, this flag will be set to indicate that 2390 * the spp_ipv6_flowlabel field has a valid value returned. 2391 * If a specific destination address is set (in the 2392 * spp_address field), then the value returned is that of 2393 * the address. If just an association is specified (and 2394 * no address), then the association's default flow label 2395 * is returned. If neither an association nor a destination 2396 * is specified, then the socket's default flow label is 2397 * returned. For non-IPv6 sockets, this flag will be left 2398 * cleared. 2399 * 2400 * SPP_DSCP: Setting this flag enables the setting of the 2401 * Differentiated Services Code Point (DSCP) value 2402 * associated with either the association or a specific 2403 * address. The value is obtained in the spp_dscp field. 2404 * Upon retrieval, this flag will be set to indicate that 2405 * the spp_dscp field has a valid value returned. If a 2406 * specific destination address is set when called (in the 2407 * spp_address field), then that specific destination 2408 * address's DSCP value is returned. If just an association 2409 * is specified, then the association's default DSCP is 2410 * returned. If neither an association nor a destination is 2411 * specified, then the socket's default DSCP is returned. 2412 * 2413 * spp_ipv6_flowlabel 2414 * - This field is used in conjunction with the 2415 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2416 * The 20 least significant bits are used for the flow 2417 * label. This setting has precedence over any IPv6-layer 2418 * setting. 2419 * 2420 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2421 * and contains the DSCP. The 6 most significant bits are 2422 * used for the DSCP. This setting has precedence over any 2423 * IPv4- or IPv6- layer setting. 2424 */ 2425 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2426 struct sctp_transport *trans, 2427 struct sctp_association *asoc, 2428 struct sctp_sock *sp, 2429 int hb_change, 2430 int pmtud_change, 2431 int sackdelay_change) 2432 { 2433 int error; 2434 2435 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2436 error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net, 2437 trans->asoc, trans); 2438 if (error) 2439 return error; 2440 } 2441 2442 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2443 * this field is ignored. Note also that a value of zero indicates 2444 * the current setting should be left unchanged. 2445 */ 2446 if (params->spp_flags & SPP_HB_ENABLE) { 2447 2448 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2449 * set. This lets us use 0 value when this flag 2450 * is set. 2451 */ 2452 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2453 params->spp_hbinterval = 0; 2454 2455 if (params->spp_hbinterval || 2456 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2457 if (trans) { 2458 trans->hbinterval = 2459 msecs_to_jiffies(params->spp_hbinterval); 2460 sctp_transport_reset_hb_timer(trans); 2461 } else if (asoc) { 2462 asoc->hbinterval = 2463 msecs_to_jiffies(params->spp_hbinterval); 2464 } else { 2465 sp->hbinterval = params->spp_hbinterval; 2466 } 2467 } 2468 } 2469 2470 if (hb_change) { 2471 if (trans) { 2472 trans->param_flags = 2473 (trans->param_flags & ~SPP_HB) | hb_change; 2474 } else if (asoc) { 2475 asoc->param_flags = 2476 (asoc->param_flags & ~SPP_HB) | hb_change; 2477 } else { 2478 sp->param_flags = 2479 (sp->param_flags & ~SPP_HB) | hb_change; 2480 } 2481 } 2482 2483 /* When Path MTU discovery is disabled the value specified here will 2484 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2485 * include the flag SPP_PMTUD_DISABLE for this field to have any 2486 * effect). 2487 */ 2488 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2489 if (trans) { 2490 trans->pathmtu = params->spp_pathmtu; 2491 sctp_assoc_sync_pmtu(asoc); 2492 } else if (asoc) { 2493 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2494 } else { 2495 sp->pathmtu = params->spp_pathmtu; 2496 } 2497 } 2498 2499 if (pmtud_change) { 2500 if (trans) { 2501 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2502 (params->spp_flags & SPP_PMTUD_ENABLE); 2503 trans->param_flags = 2504 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2505 if (update) { 2506 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2507 sctp_assoc_sync_pmtu(asoc); 2508 } 2509 sctp_transport_pl_reset(trans); 2510 } else if (asoc) { 2511 asoc->param_flags = 2512 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2513 } else { 2514 sp->param_flags = 2515 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2516 } 2517 } 2518 2519 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2520 * value of this field is ignored. Note also that a value of zero 2521 * indicates the current setting should be left unchanged. 2522 */ 2523 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2524 if (trans) { 2525 trans->sackdelay = 2526 msecs_to_jiffies(params->spp_sackdelay); 2527 } else if (asoc) { 2528 asoc->sackdelay = 2529 msecs_to_jiffies(params->spp_sackdelay); 2530 } else { 2531 sp->sackdelay = params->spp_sackdelay; 2532 } 2533 } 2534 2535 if (sackdelay_change) { 2536 if (trans) { 2537 trans->param_flags = 2538 (trans->param_flags & ~SPP_SACKDELAY) | 2539 sackdelay_change; 2540 } else if (asoc) { 2541 asoc->param_flags = 2542 (asoc->param_flags & ~SPP_SACKDELAY) | 2543 sackdelay_change; 2544 } else { 2545 sp->param_flags = 2546 (sp->param_flags & ~SPP_SACKDELAY) | 2547 sackdelay_change; 2548 } 2549 } 2550 2551 /* Note that a value of zero indicates the current setting should be 2552 left unchanged. 2553 */ 2554 if (params->spp_pathmaxrxt) { 2555 if (trans) { 2556 trans->pathmaxrxt = params->spp_pathmaxrxt; 2557 } else if (asoc) { 2558 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2559 } else { 2560 sp->pathmaxrxt = params->spp_pathmaxrxt; 2561 } 2562 } 2563 2564 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2565 if (trans) { 2566 if (trans->ipaddr.sa.sa_family == AF_INET6) { 2567 trans->flowlabel = params->spp_ipv6_flowlabel & 2568 SCTP_FLOWLABEL_VAL_MASK; 2569 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2570 } 2571 } else if (asoc) { 2572 struct sctp_transport *t; 2573 2574 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2575 transports) { 2576 if (t->ipaddr.sa.sa_family != AF_INET6) 2577 continue; 2578 t->flowlabel = params->spp_ipv6_flowlabel & 2579 SCTP_FLOWLABEL_VAL_MASK; 2580 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2581 } 2582 asoc->flowlabel = params->spp_ipv6_flowlabel & 2583 SCTP_FLOWLABEL_VAL_MASK; 2584 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2585 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2586 sp->flowlabel = params->spp_ipv6_flowlabel & 2587 SCTP_FLOWLABEL_VAL_MASK; 2588 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2589 } 2590 } 2591 2592 if (params->spp_flags & SPP_DSCP) { 2593 if (trans) { 2594 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2595 trans->dscp |= SCTP_DSCP_SET_MASK; 2596 } else if (asoc) { 2597 struct sctp_transport *t; 2598 2599 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2600 transports) { 2601 t->dscp = params->spp_dscp & 2602 SCTP_DSCP_VAL_MASK; 2603 t->dscp |= SCTP_DSCP_SET_MASK; 2604 } 2605 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2606 asoc->dscp |= SCTP_DSCP_SET_MASK; 2607 } else { 2608 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2609 sp->dscp |= SCTP_DSCP_SET_MASK; 2610 } 2611 } 2612 2613 return 0; 2614 } 2615 2616 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2617 struct sctp_paddrparams *params, 2618 unsigned int optlen) 2619 { 2620 struct sctp_transport *trans = NULL; 2621 struct sctp_association *asoc = NULL; 2622 struct sctp_sock *sp = sctp_sk(sk); 2623 int error; 2624 int hb_change, pmtud_change, sackdelay_change; 2625 2626 if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2627 spp_ipv6_flowlabel), 4)) { 2628 if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2629 return -EINVAL; 2630 } else if (optlen != sizeof(*params)) { 2631 return -EINVAL; 2632 } 2633 2634 /* Validate flags and value parameters. */ 2635 hb_change = params->spp_flags & SPP_HB; 2636 pmtud_change = params->spp_flags & SPP_PMTUD; 2637 sackdelay_change = params->spp_flags & SPP_SACKDELAY; 2638 2639 if (hb_change == SPP_HB || 2640 pmtud_change == SPP_PMTUD || 2641 sackdelay_change == SPP_SACKDELAY || 2642 params->spp_sackdelay > 500 || 2643 (params->spp_pathmtu && 2644 params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2645 return -EINVAL; 2646 2647 /* If an address other than INADDR_ANY is specified, and 2648 * no transport is found, then the request is invalid. 2649 */ 2650 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spp_address)) { 2651 trans = sctp_addr_id2transport(sk, ¶ms->spp_address, 2652 params->spp_assoc_id); 2653 if (!trans) 2654 return -EINVAL; 2655 } 2656 2657 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 2658 * socket is a one to many style socket, and an association 2659 * was not found, then the id was invalid. 2660 */ 2661 asoc = sctp_id2assoc(sk, params->spp_assoc_id); 2662 if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC && 2663 sctp_style(sk, UDP)) 2664 return -EINVAL; 2665 2666 /* Heartbeat demand can only be sent on a transport or 2667 * association, but not a socket. 2668 */ 2669 if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2670 return -EINVAL; 2671 2672 /* Process parameters. */ 2673 error = sctp_apply_peer_addr_params(params, trans, asoc, sp, 2674 hb_change, pmtud_change, 2675 sackdelay_change); 2676 2677 if (error) 2678 return error; 2679 2680 /* If changes are for association, also apply parameters to each 2681 * transport. 2682 */ 2683 if (!trans && asoc) { 2684 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2685 transports) { 2686 sctp_apply_peer_addr_params(params, trans, asoc, sp, 2687 hb_change, pmtud_change, 2688 sackdelay_change); 2689 } 2690 } 2691 2692 return 0; 2693 } 2694 2695 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2696 { 2697 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2698 } 2699 2700 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2701 { 2702 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2703 } 2704 2705 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params, 2706 struct sctp_association *asoc) 2707 { 2708 struct sctp_transport *trans; 2709 2710 if (params->sack_delay) { 2711 asoc->sackdelay = msecs_to_jiffies(params->sack_delay); 2712 asoc->param_flags = 2713 sctp_spp_sackdelay_enable(asoc->param_flags); 2714 } 2715 if (params->sack_freq == 1) { 2716 asoc->param_flags = 2717 sctp_spp_sackdelay_disable(asoc->param_flags); 2718 } else if (params->sack_freq > 1) { 2719 asoc->sackfreq = params->sack_freq; 2720 asoc->param_flags = 2721 sctp_spp_sackdelay_enable(asoc->param_flags); 2722 } 2723 2724 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2725 transports) { 2726 if (params->sack_delay) { 2727 trans->sackdelay = msecs_to_jiffies(params->sack_delay); 2728 trans->param_flags = 2729 sctp_spp_sackdelay_enable(trans->param_flags); 2730 } 2731 if (params->sack_freq == 1) { 2732 trans->param_flags = 2733 sctp_spp_sackdelay_disable(trans->param_flags); 2734 } else if (params->sack_freq > 1) { 2735 trans->sackfreq = params->sack_freq; 2736 trans->param_flags = 2737 sctp_spp_sackdelay_enable(trans->param_flags); 2738 } 2739 } 2740 } 2741 2742 /* 2743 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2744 * 2745 * This option will effect the way delayed acks are performed. This 2746 * option allows you to get or set the delayed ack time, in 2747 * milliseconds. It also allows changing the delayed ack frequency. 2748 * Changing the frequency to 1 disables the delayed sack algorithm. If 2749 * the assoc_id is 0, then this sets or gets the endpoints default 2750 * values. If the assoc_id field is non-zero, then the set or get 2751 * effects the specified association for the one to many model (the 2752 * assoc_id field is ignored by the one to one model). Note that if 2753 * sack_delay or sack_freq are 0 when setting this option, then the 2754 * current values will remain unchanged. 2755 * 2756 * struct sctp_sack_info { 2757 * sctp_assoc_t sack_assoc_id; 2758 * uint32_t sack_delay; 2759 * uint32_t sack_freq; 2760 * }; 2761 * 2762 * sack_assoc_id - This parameter, indicates which association the user 2763 * is performing an action upon. Note that if this field's value is 2764 * zero then the endpoints default value is changed (effecting future 2765 * associations only). 2766 * 2767 * sack_delay - This parameter contains the number of milliseconds that 2768 * the user is requesting the delayed ACK timer be set to. Note that 2769 * this value is defined in the standard to be between 200 and 500 2770 * milliseconds. 2771 * 2772 * sack_freq - This parameter contains the number of packets that must 2773 * be received before a sack is sent without waiting for the delay 2774 * timer to expire. The default value for this is 2, setting this 2775 * value to 1 will disable the delayed sack algorithm. 2776 */ 2777 static int __sctp_setsockopt_delayed_ack(struct sock *sk, 2778 struct sctp_sack_info *params) 2779 { 2780 struct sctp_sock *sp = sctp_sk(sk); 2781 struct sctp_association *asoc; 2782 2783 /* Validate value parameter. */ 2784 if (params->sack_delay > 500) 2785 return -EINVAL; 2786 2787 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 2788 * socket is a one to many style socket, and an association 2789 * was not found, then the id was invalid. 2790 */ 2791 asoc = sctp_id2assoc(sk, params->sack_assoc_id); 2792 if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC && 2793 sctp_style(sk, UDP)) 2794 return -EINVAL; 2795 2796 if (asoc) { 2797 sctp_apply_asoc_delayed_ack(params, asoc); 2798 2799 return 0; 2800 } 2801 2802 if (sctp_style(sk, TCP)) 2803 params->sack_assoc_id = SCTP_FUTURE_ASSOC; 2804 2805 if (params->sack_assoc_id == SCTP_FUTURE_ASSOC || 2806 params->sack_assoc_id == SCTP_ALL_ASSOC) { 2807 if (params->sack_delay) { 2808 sp->sackdelay = params->sack_delay; 2809 sp->param_flags = 2810 sctp_spp_sackdelay_enable(sp->param_flags); 2811 } 2812 if (params->sack_freq == 1) { 2813 sp->param_flags = 2814 sctp_spp_sackdelay_disable(sp->param_flags); 2815 } else if (params->sack_freq > 1) { 2816 sp->sackfreq = params->sack_freq; 2817 sp->param_flags = 2818 sctp_spp_sackdelay_enable(sp->param_flags); 2819 } 2820 } 2821 2822 if (params->sack_assoc_id == SCTP_CURRENT_ASSOC || 2823 params->sack_assoc_id == SCTP_ALL_ASSOC) 2824 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2825 sctp_apply_asoc_delayed_ack(params, asoc); 2826 2827 return 0; 2828 } 2829 2830 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2831 struct sctp_sack_info *params, 2832 unsigned int optlen) 2833 { 2834 if (optlen == sizeof(struct sctp_assoc_value)) { 2835 struct sctp_assoc_value *v = (struct sctp_assoc_value *)params; 2836 struct sctp_sack_info p; 2837 2838 pr_warn_ratelimited(DEPRECATED 2839 "%s (pid %d) " 2840 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2841 "Use struct sctp_sack_info instead\n", 2842 current->comm, task_pid_nr(current)); 2843 2844 p.sack_assoc_id = v->assoc_id; 2845 p.sack_delay = v->assoc_value; 2846 p.sack_freq = v->assoc_value ? 0 : 1; 2847 return __sctp_setsockopt_delayed_ack(sk, &p); 2848 } 2849 2850 if (optlen != sizeof(struct sctp_sack_info)) 2851 return -EINVAL; 2852 if (params->sack_delay == 0 && params->sack_freq == 0) 2853 return 0; 2854 return __sctp_setsockopt_delayed_ack(sk, params); 2855 } 2856 2857 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2858 * 2859 * Applications can specify protocol parameters for the default association 2860 * initialization. The option name argument to setsockopt() and getsockopt() 2861 * is SCTP_INITMSG. 2862 * 2863 * Setting initialization parameters is effective only on an unconnected 2864 * socket (for UDP-style sockets only future associations are effected 2865 * by the change). With TCP-style sockets, this option is inherited by 2866 * sockets derived from a listener socket. 2867 */ 2868 static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit, 2869 unsigned int optlen) 2870 { 2871 struct sctp_sock *sp = sctp_sk(sk); 2872 2873 if (optlen != sizeof(struct sctp_initmsg)) 2874 return -EINVAL; 2875 2876 if (sinit->sinit_num_ostreams) 2877 sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams; 2878 if (sinit->sinit_max_instreams) 2879 sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams; 2880 if (sinit->sinit_max_attempts) 2881 sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts; 2882 if (sinit->sinit_max_init_timeo) 2883 sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo; 2884 2885 return 0; 2886 } 2887 2888 /* 2889 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2890 * 2891 * Applications that wish to use the sendto() system call may wish to 2892 * specify a default set of parameters that would normally be supplied 2893 * through the inclusion of ancillary data. This socket option allows 2894 * such an application to set the default sctp_sndrcvinfo structure. 2895 * The application that wishes to use this socket option simply passes 2896 * in to this call the sctp_sndrcvinfo structure defined in Section 2897 * 5.2.2) The input parameters accepted by this call include 2898 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2899 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2900 * to this call if the caller is using the UDP model. 2901 */ 2902 static int sctp_setsockopt_default_send_param(struct sock *sk, 2903 struct sctp_sndrcvinfo *info, 2904 unsigned int optlen) 2905 { 2906 struct sctp_sock *sp = sctp_sk(sk); 2907 struct sctp_association *asoc; 2908 2909 if (optlen != sizeof(*info)) 2910 return -EINVAL; 2911 if (info->sinfo_flags & 2912 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2913 SCTP_ABORT | SCTP_EOF)) 2914 return -EINVAL; 2915 2916 asoc = sctp_id2assoc(sk, info->sinfo_assoc_id); 2917 if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC && 2918 sctp_style(sk, UDP)) 2919 return -EINVAL; 2920 2921 if (asoc) { 2922 asoc->default_stream = info->sinfo_stream; 2923 asoc->default_flags = info->sinfo_flags; 2924 asoc->default_ppid = info->sinfo_ppid; 2925 asoc->default_context = info->sinfo_context; 2926 asoc->default_timetolive = info->sinfo_timetolive; 2927 2928 return 0; 2929 } 2930 2931 if (sctp_style(sk, TCP)) 2932 info->sinfo_assoc_id = SCTP_FUTURE_ASSOC; 2933 2934 if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC || 2935 info->sinfo_assoc_id == SCTP_ALL_ASSOC) { 2936 sp->default_stream = info->sinfo_stream; 2937 sp->default_flags = info->sinfo_flags; 2938 sp->default_ppid = info->sinfo_ppid; 2939 sp->default_context = info->sinfo_context; 2940 sp->default_timetolive = info->sinfo_timetolive; 2941 } 2942 2943 if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC || 2944 info->sinfo_assoc_id == SCTP_ALL_ASSOC) { 2945 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 2946 asoc->default_stream = info->sinfo_stream; 2947 asoc->default_flags = info->sinfo_flags; 2948 asoc->default_ppid = info->sinfo_ppid; 2949 asoc->default_context = info->sinfo_context; 2950 asoc->default_timetolive = info->sinfo_timetolive; 2951 } 2952 } 2953 2954 return 0; 2955 } 2956 2957 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2958 * (SCTP_DEFAULT_SNDINFO) 2959 */ 2960 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2961 struct sctp_sndinfo *info, 2962 unsigned int optlen) 2963 { 2964 struct sctp_sock *sp = sctp_sk(sk); 2965 struct sctp_association *asoc; 2966 2967 if (optlen != sizeof(*info)) 2968 return -EINVAL; 2969 if (info->snd_flags & 2970 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2971 SCTP_ABORT | SCTP_EOF)) 2972 return -EINVAL; 2973 2974 asoc = sctp_id2assoc(sk, info->snd_assoc_id); 2975 if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC && 2976 sctp_style(sk, UDP)) 2977 return -EINVAL; 2978 2979 if (asoc) { 2980 asoc->default_stream = info->snd_sid; 2981 asoc->default_flags = info->snd_flags; 2982 asoc->default_ppid = info->snd_ppid; 2983 asoc->default_context = info->snd_context; 2984 2985 return 0; 2986 } 2987 2988 if (sctp_style(sk, TCP)) 2989 info->snd_assoc_id = SCTP_FUTURE_ASSOC; 2990 2991 if (info->snd_assoc_id == SCTP_FUTURE_ASSOC || 2992 info->snd_assoc_id == SCTP_ALL_ASSOC) { 2993 sp->default_stream = info->snd_sid; 2994 sp->default_flags = info->snd_flags; 2995 sp->default_ppid = info->snd_ppid; 2996 sp->default_context = info->snd_context; 2997 } 2998 2999 if (info->snd_assoc_id == SCTP_CURRENT_ASSOC || 3000 info->snd_assoc_id == SCTP_ALL_ASSOC) { 3001 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 3002 asoc->default_stream = info->snd_sid; 3003 asoc->default_flags = info->snd_flags; 3004 asoc->default_ppid = info->snd_ppid; 3005 asoc->default_context = info->snd_context; 3006 } 3007 } 3008 3009 return 0; 3010 } 3011 3012 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 3013 * 3014 * Requests that the local SCTP stack use the enclosed peer address as 3015 * the association primary. The enclosed address must be one of the 3016 * association peer's addresses. 3017 */ 3018 static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim, 3019 unsigned int optlen) 3020 { 3021 struct sctp_transport *trans; 3022 struct sctp_af *af; 3023 int err; 3024 3025 if (optlen != sizeof(struct sctp_prim)) 3026 return -EINVAL; 3027 3028 /* Allow security module to validate address but need address len. */ 3029 af = sctp_get_af_specific(prim->ssp_addr.ss_family); 3030 if (!af) 3031 return -EINVAL; 3032 3033 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3034 (struct sockaddr *)&prim->ssp_addr, 3035 af->sockaddr_len); 3036 if (err) 3037 return err; 3038 3039 trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id); 3040 if (!trans) 3041 return -EINVAL; 3042 3043 sctp_assoc_set_primary(trans->asoc, trans); 3044 3045 return 0; 3046 } 3047 3048 /* 3049 * 7.1.5 SCTP_NODELAY 3050 * 3051 * Turn on/off any Nagle-like algorithm. This means that packets are 3052 * generally sent as soon as possible and no unnecessary delays are 3053 * introduced, at the cost of more packets in the network. Expects an 3054 * integer boolean flag. 3055 */ 3056 static int sctp_setsockopt_nodelay(struct sock *sk, int *val, 3057 unsigned int optlen) 3058 { 3059 if (optlen < sizeof(int)) 3060 return -EINVAL; 3061 sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1; 3062 return 0; 3063 } 3064 3065 /* 3066 * 3067 * 7.1.1 SCTP_RTOINFO 3068 * 3069 * The protocol parameters used to initialize and bound retransmission 3070 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3071 * and modify these parameters. 3072 * All parameters are time values, in milliseconds. A value of 0, when 3073 * modifying the parameters, indicates that the current value should not 3074 * be changed. 3075 * 3076 */ 3077 static int sctp_setsockopt_rtoinfo(struct sock *sk, 3078 struct sctp_rtoinfo *rtoinfo, 3079 unsigned int optlen) 3080 { 3081 struct sctp_association *asoc; 3082 unsigned long rto_min, rto_max; 3083 struct sctp_sock *sp = sctp_sk(sk); 3084 3085 if (optlen != sizeof (struct sctp_rtoinfo)) 3086 return -EINVAL; 3087 3088 asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id); 3089 3090 /* Set the values to the specific association */ 3091 if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC && 3092 sctp_style(sk, UDP)) 3093 return -EINVAL; 3094 3095 rto_max = rtoinfo->srto_max; 3096 rto_min = rtoinfo->srto_min; 3097 3098 if (rto_max) 3099 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3100 else 3101 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3102 3103 if (rto_min) 3104 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3105 else 3106 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3107 3108 if (rto_min > rto_max) 3109 return -EINVAL; 3110 3111 if (asoc) { 3112 if (rtoinfo->srto_initial != 0) 3113 asoc->rto_initial = 3114 msecs_to_jiffies(rtoinfo->srto_initial); 3115 asoc->rto_max = rto_max; 3116 asoc->rto_min = rto_min; 3117 } else { 3118 /* If there is no association or the association-id = 0 3119 * set the values to the endpoint. 3120 */ 3121 if (rtoinfo->srto_initial != 0) 3122 sp->rtoinfo.srto_initial = rtoinfo->srto_initial; 3123 sp->rtoinfo.srto_max = rto_max; 3124 sp->rtoinfo.srto_min = rto_min; 3125 } 3126 3127 return 0; 3128 } 3129 3130 /* 3131 * 3132 * 7.1.2 SCTP_ASSOCINFO 3133 * 3134 * This option is used to tune the maximum retransmission attempts 3135 * of the association. 3136 * Returns an error if the new association retransmission value is 3137 * greater than the sum of the retransmission value of the peer. 3138 * See [SCTP] for more information. 3139 * 3140 */ 3141 static int sctp_setsockopt_associnfo(struct sock *sk, 3142 struct sctp_assocparams *assocparams, 3143 unsigned int optlen) 3144 { 3145 3146 struct sctp_association *asoc; 3147 3148 if (optlen != sizeof(struct sctp_assocparams)) 3149 return -EINVAL; 3150 3151 asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id); 3152 3153 if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC && 3154 sctp_style(sk, UDP)) 3155 return -EINVAL; 3156 3157 /* Set the values to the specific association */ 3158 if (asoc) { 3159 if (assocparams->sasoc_asocmaxrxt != 0) { 3160 __u32 path_sum = 0; 3161 int paths = 0; 3162 struct sctp_transport *peer_addr; 3163 3164 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3165 transports) { 3166 path_sum += peer_addr->pathmaxrxt; 3167 paths++; 3168 } 3169 3170 /* Only validate asocmaxrxt if we have more than 3171 * one path/transport. We do this because path 3172 * retransmissions are only counted when we have more 3173 * then one path. 3174 */ 3175 if (paths > 1 && 3176 assocparams->sasoc_asocmaxrxt > path_sum) 3177 return -EINVAL; 3178 3179 asoc->max_retrans = assocparams->sasoc_asocmaxrxt; 3180 } 3181 3182 if (assocparams->sasoc_cookie_life != 0) 3183 asoc->cookie_life = 3184 ms_to_ktime(assocparams->sasoc_cookie_life); 3185 } else { 3186 /* Set the values to the endpoint */ 3187 struct sctp_sock *sp = sctp_sk(sk); 3188 3189 if (assocparams->sasoc_asocmaxrxt != 0) 3190 sp->assocparams.sasoc_asocmaxrxt = 3191 assocparams->sasoc_asocmaxrxt; 3192 if (assocparams->sasoc_cookie_life != 0) 3193 sp->assocparams.sasoc_cookie_life = 3194 assocparams->sasoc_cookie_life; 3195 } 3196 return 0; 3197 } 3198 3199 /* 3200 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3201 * 3202 * This socket option is a boolean flag which turns on or off mapped V4 3203 * addresses. If this option is turned on and the socket is type 3204 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3205 * If this option is turned off, then no mapping will be done of V4 3206 * addresses and a user will receive both PF_INET6 and PF_INET type 3207 * addresses on the socket. 3208 */ 3209 static int sctp_setsockopt_mappedv4(struct sock *sk, int *val, 3210 unsigned int optlen) 3211 { 3212 struct sctp_sock *sp = sctp_sk(sk); 3213 3214 if (optlen < sizeof(int)) 3215 return -EINVAL; 3216 if (*val) 3217 sp->v4mapped = 1; 3218 else 3219 sp->v4mapped = 0; 3220 3221 return 0; 3222 } 3223 3224 /* 3225 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3226 * This option will get or set the maximum size to put in any outgoing 3227 * SCTP DATA chunk. If a message is larger than this size it will be 3228 * fragmented by SCTP into the specified size. Note that the underlying 3229 * SCTP implementation may fragment into smaller sized chunks when the 3230 * PMTU of the underlying association is smaller than the value set by 3231 * the user. The default value for this option is '0' which indicates 3232 * the user is NOT limiting fragmentation and only the PMTU will effect 3233 * SCTP's choice of DATA chunk size. Note also that values set larger 3234 * than the maximum size of an IP datagram will effectively let SCTP 3235 * control fragmentation (i.e. the same as setting this option to 0). 3236 * 3237 * The following structure is used to access and modify this parameter: 3238 * 3239 * struct sctp_assoc_value { 3240 * sctp_assoc_t assoc_id; 3241 * uint32_t assoc_value; 3242 * }; 3243 * 3244 * assoc_id: This parameter is ignored for one-to-one style sockets. 3245 * For one-to-many style sockets this parameter indicates which 3246 * association the user is performing an action upon. Note that if 3247 * this field's value is zero then the endpoints default value is 3248 * changed (effecting future associations only). 3249 * assoc_value: This parameter specifies the maximum size in bytes. 3250 */ 3251 static int sctp_setsockopt_maxseg(struct sock *sk, 3252 struct sctp_assoc_value *params, 3253 unsigned int optlen) 3254 { 3255 struct sctp_sock *sp = sctp_sk(sk); 3256 struct sctp_association *asoc; 3257 sctp_assoc_t assoc_id; 3258 int val; 3259 3260 if (optlen == sizeof(int)) { 3261 pr_warn_ratelimited(DEPRECATED 3262 "%s (pid %d) " 3263 "Use of int in maxseg socket option.\n" 3264 "Use struct sctp_assoc_value instead\n", 3265 current->comm, task_pid_nr(current)); 3266 assoc_id = SCTP_FUTURE_ASSOC; 3267 val = *(int *)params; 3268 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3269 assoc_id = params->assoc_id; 3270 val = params->assoc_value; 3271 } else { 3272 return -EINVAL; 3273 } 3274 3275 asoc = sctp_id2assoc(sk, assoc_id); 3276 if (!asoc && assoc_id != SCTP_FUTURE_ASSOC && 3277 sctp_style(sk, UDP)) 3278 return -EINVAL; 3279 3280 if (val) { 3281 int min_len, max_len; 3282 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3283 sizeof(struct sctp_data_chunk); 3284 3285 min_len = sctp_min_frag_point(sp, datasize); 3286 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3287 3288 if (val < min_len || val > max_len) 3289 return -EINVAL; 3290 } 3291 3292 if (asoc) { 3293 asoc->user_frag = val; 3294 sctp_assoc_update_frag_point(asoc); 3295 } else { 3296 sp->user_frag = val; 3297 } 3298 3299 return 0; 3300 } 3301 3302 3303 /* 3304 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3305 * 3306 * Requests that the peer mark the enclosed address as the association 3307 * primary. The enclosed address must be one of the association's 3308 * locally bound addresses. The following structure is used to make a 3309 * set primary request: 3310 */ 3311 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, 3312 struct sctp_setpeerprim *prim, 3313 unsigned int optlen) 3314 { 3315 struct sctp_sock *sp; 3316 struct sctp_association *asoc = NULL; 3317 struct sctp_chunk *chunk; 3318 struct sctp_af *af; 3319 int err; 3320 3321 sp = sctp_sk(sk); 3322 3323 if (!sp->ep->asconf_enable) 3324 return -EPERM; 3325 3326 if (optlen != sizeof(struct sctp_setpeerprim)) 3327 return -EINVAL; 3328 3329 asoc = sctp_id2assoc(sk, prim->sspp_assoc_id); 3330 if (!asoc) 3331 return -EINVAL; 3332 3333 if (!asoc->peer.asconf_capable) 3334 return -EPERM; 3335 3336 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3337 return -EPERM; 3338 3339 if (!sctp_state(asoc, ESTABLISHED)) 3340 return -ENOTCONN; 3341 3342 af = sctp_get_af_specific(prim->sspp_addr.ss_family); 3343 if (!af) 3344 return -EINVAL; 3345 3346 if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL)) 3347 return -EADDRNOTAVAIL; 3348 3349 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr)) 3350 return -EADDRNOTAVAIL; 3351 3352 /* Allow security module to validate address. */ 3353 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3354 (struct sockaddr *)&prim->sspp_addr, 3355 af->sockaddr_len); 3356 if (err) 3357 return err; 3358 3359 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3360 chunk = sctp_make_asconf_set_prim(asoc, 3361 (union sctp_addr *)&prim->sspp_addr); 3362 if (!chunk) 3363 return -ENOMEM; 3364 3365 err = sctp_send_asconf(asoc, chunk); 3366 3367 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3368 3369 return err; 3370 } 3371 3372 static int sctp_setsockopt_adaptation_layer(struct sock *sk, 3373 struct sctp_setadaptation *adapt, 3374 unsigned int optlen) 3375 { 3376 if (optlen != sizeof(struct sctp_setadaptation)) 3377 return -EINVAL; 3378 3379 sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind; 3380 3381 return 0; 3382 } 3383 3384 /* 3385 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3386 * 3387 * The context field in the sctp_sndrcvinfo structure is normally only 3388 * used when a failed message is retrieved holding the value that was 3389 * sent down on the actual send call. This option allows the setting of 3390 * a default context on an association basis that will be received on 3391 * reading messages from the peer. This is especially helpful in the 3392 * one-2-many model for an application to keep some reference to an 3393 * internal state machine that is processing messages on the 3394 * association. Note that the setting of this value only effects 3395 * received messages from the peer and does not effect the value that is 3396 * saved with outbound messages. 3397 */ 3398 static int sctp_setsockopt_context(struct sock *sk, 3399 struct sctp_assoc_value *params, 3400 unsigned int optlen) 3401 { 3402 struct sctp_sock *sp = sctp_sk(sk); 3403 struct sctp_association *asoc; 3404 3405 if (optlen != sizeof(struct sctp_assoc_value)) 3406 return -EINVAL; 3407 3408 asoc = sctp_id2assoc(sk, params->assoc_id); 3409 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 3410 sctp_style(sk, UDP)) 3411 return -EINVAL; 3412 3413 if (asoc) { 3414 asoc->default_rcv_context = params->assoc_value; 3415 3416 return 0; 3417 } 3418 3419 if (sctp_style(sk, TCP)) 3420 params->assoc_id = SCTP_FUTURE_ASSOC; 3421 3422 if (params->assoc_id == SCTP_FUTURE_ASSOC || 3423 params->assoc_id == SCTP_ALL_ASSOC) 3424 sp->default_rcv_context = params->assoc_value; 3425 3426 if (params->assoc_id == SCTP_CURRENT_ASSOC || 3427 params->assoc_id == SCTP_ALL_ASSOC) 3428 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3429 asoc->default_rcv_context = params->assoc_value; 3430 3431 return 0; 3432 } 3433 3434 /* 3435 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3436 * 3437 * This options will at a minimum specify if the implementation is doing 3438 * fragmented interleave. Fragmented interleave, for a one to many 3439 * socket, is when subsequent calls to receive a message may return 3440 * parts of messages from different associations. Some implementations 3441 * may allow you to turn this value on or off. If so, when turned off, 3442 * no fragment interleave will occur (which will cause a head of line 3443 * blocking amongst multiple associations sharing the same one to many 3444 * socket). When this option is turned on, then each receive call may 3445 * come from a different association (thus the user must receive data 3446 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3447 * association each receive belongs to. 3448 * 3449 * This option takes a boolean value. A non-zero value indicates that 3450 * fragmented interleave is on. A value of zero indicates that 3451 * fragmented interleave is off. 3452 * 3453 * Note that it is important that an implementation that allows this 3454 * option to be turned on, have it off by default. Otherwise an unaware 3455 * application using the one to many model may become confused and act 3456 * incorrectly. 3457 */ 3458 static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val, 3459 unsigned int optlen) 3460 { 3461 if (optlen != sizeof(int)) 3462 return -EINVAL; 3463 3464 sctp_sk(sk)->frag_interleave = !!*val; 3465 3466 if (!sctp_sk(sk)->frag_interleave) 3467 sctp_sk(sk)->ep->intl_enable = 0; 3468 3469 return 0; 3470 } 3471 3472 /* 3473 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3474 * (SCTP_PARTIAL_DELIVERY_POINT) 3475 * 3476 * This option will set or get the SCTP partial delivery point. This 3477 * point is the size of a message where the partial delivery API will be 3478 * invoked to help free up rwnd space for the peer. Setting this to a 3479 * lower value will cause partial deliveries to happen more often. The 3480 * calls argument is an integer that sets or gets the partial delivery 3481 * point. Note also that the call will fail if the user attempts to set 3482 * this value larger than the socket receive buffer size. 3483 * 3484 * Note that any single message having a length smaller than or equal to 3485 * the SCTP partial delivery point will be delivered in one single read 3486 * call as long as the user provided buffer is large enough to hold the 3487 * message. 3488 */ 3489 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val, 3490 unsigned int optlen) 3491 { 3492 if (optlen != sizeof(u32)) 3493 return -EINVAL; 3494 3495 /* Note: We double the receive buffer from what the user sets 3496 * it to be, also initial rwnd is based on rcvbuf/2. 3497 */ 3498 if (*val > (sk->sk_rcvbuf >> 1)) 3499 return -EINVAL; 3500 3501 sctp_sk(sk)->pd_point = *val; 3502 3503 return 0; /* is this the right error code? */ 3504 } 3505 3506 /* 3507 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3508 * 3509 * This option will allow a user to change the maximum burst of packets 3510 * that can be emitted by this association. Note that the default value 3511 * is 4, and some implementations may restrict this setting so that it 3512 * can only be lowered. 3513 * 3514 * NOTE: This text doesn't seem right. Do this on a socket basis with 3515 * future associations inheriting the socket value. 3516 */ 3517 static int sctp_setsockopt_maxburst(struct sock *sk, 3518 struct sctp_assoc_value *params, 3519 unsigned int optlen) 3520 { 3521 struct sctp_sock *sp = sctp_sk(sk); 3522 struct sctp_association *asoc; 3523 sctp_assoc_t assoc_id; 3524 u32 assoc_value; 3525 3526 if (optlen == sizeof(int)) { 3527 pr_warn_ratelimited(DEPRECATED 3528 "%s (pid %d) " 3529 "Use of int in max_burst socket option deprecated.\n" 3530 "Use struct sctp_assoc_value instead\n", 3531 current->comm, task_pid_nr(current)); 3532 assoc_id = SCTP_FUTURE_ASSOC; 3533 assoc_value = *((int *)params); 3534 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3535 assoc_id = params->assoc_id; 3536 assoc_value = params->assoc_value; 3537 } else 3538 return -EINVAL; 3539 3540 asoc = sctp_id2assoc(sk, assoc_id); 3541 if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) 3542 return -EINVAL; 3543 3544 if (asoc) { 3545 asoc->max_burst = assoc_value; 3546 3547 return 0; 3548 } 3549 3550 if (sctp_style(sk, TCP)) 3551 assoc_id = SCTP_FUTURE_ASSOC; 3552 3553 if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC) 3554 sp->max_burst = assoc_value; 3555 3556 if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC) 3557 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3558 asoc->max_burst = assoc_value; 3559 3560 return 0; 3561 } 3562 3563 /* 3564 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3565 * 3566 * This set option adds a chunk type that the user is requesting to be 3567 * received only in an authenticated way. Changes to the list of chunks 3568 * will only effect future associations on the socket. 3569 */ 3570 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3571 struct sctp_authchunk *val, 3572 unsigned int optlen) 3573 { 3574 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3575 3576 if (!ep->auth_enable) 3577 return -EACCES; 3578 3579 if (optlen != sizeof(struct sctp_authchunk)) 3580 return -EINVAL; 3581 3582 switch (val->sauth_chunk) { 3583 case SCTP_CID_INIT: 3584 case SCTP_CID_INIT_ACK: 3585 case SCTP_CID_SHUTDOWN_COMPLETE: 3586 case SCTP_CID_AUTH: 3587 return -EINVAL; 3588 } 3589 3590 /* add this chunk id to the endpoint */ 3591 return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk); 3592 } 3593 3594 /* 3595 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3596 * 3597 * This option gets or sets the list of HMAC algorithms that the local 3598 * endpoint requires the peer to use. 3599 */ 3600 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3601 struct sctp_hmacalgo *hmacs, 3602 unsigned int optlen) 3603 { 3604 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3605 u32 idents; 3606 3607 if (!ep->auth_enable) 3608 return -EACCES; 3609 3610 if (optlen < sizeof(struct sctp_hmacalgo)) 3611 return -EINVAL; 3612 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3613 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3614 3615 idents = hmacs->shmac_num_idents; 3616 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3617 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) 3618 return -EINVAL; 3619 3620 return sctp_auth_ep_set_hmacs(ep, hmacs); 3621 } 3622 3623 /* 3624 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3625 * 3626 * This option will set a shared secret key which is used to build an 3627 * association shared key. 3628 */ 3629 static int sctp_setsockopt_auth_key(struct sock *sk, 3630 struct sctp_authkey *authkey, 3631 unsigned int optlen) 3632 { 3633 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3634 struct sctp_association *asoc; 3635 int ret = -EINVAL; 3636 3637 if (optlen <= sizeof(struct sctp_authkey)) 3638 return -EINVAL; 3639 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3640 * this. 3641 */ 3642 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey)); 3643 3644 if (authkey->sca_keylength > optlen - sizeof(*authkey)) 3645 goto out; 3646 3647 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3648 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC && 3649 sctp_style(sk, UDP)) 3650 goto out; 3651 3652 if (asoc) { 3653 ret = sctp_auth_set_key(ep, asoc, authkey); 3654 goto out; 3655 } 3656 3657 if (sctp_style(sk, TCP)) 3658 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC; 3659 3660 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC || 3661 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3662 ret = sctp_auth_set_key(ep, asoc, authkey); 3663 if (ret) 3664 goto out; 3665 } 3666 3667 ret = 0; 3668 3669 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC || 3670 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3671 list_for_each_entry(asoc, &ep->asocs, asocs) { 3672 int res = sctp_auth_set_key(ep, asoc, authkey); 3673 3674 if (res && !ret) 3675 ret = res; 3676 } 3677 } 3678 3679 out: 3680 memzero_explicit(authkey, optlen); 3681 return ret; 3682 } 3683 3684 /* 3685 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3686 * 3687 * This option will get or set the active shared key to be used to build 3688 * the association shared key. 3689 */ 3690 static int sctp_setsockopt_active_key(struct sock *sk, 3691 struct sctp_authkeyid *val, 3692 unsigned int optlen) 3693 { 3694 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3695 struct sctp_association *asoc; 3696 int ret = 0; 3697 3698 if (optlen != sizeof(struct sctp_authkeyid)) 3699 return -EINVAL; 3700 3701 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3702 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3703 sctp_style(sk, UDP)) 3704 return -EINVAL; 3705 3706 if (asoc) 3707 return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); 3708 3709 if (sctp_style(sk, TCP)) 3710 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3711 3712 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3713 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3714 ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); 3715 if (ret) 3716 return ret; 3717 } 3718 3719 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3720 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3721 list_for_each_entry(asoc, &ep->asocs, asocs) { 3722 int res = sctp_auth_set_active_key(ep, asoc, 3723 val->scact_keynumber); 3724 3725 if (res && !ret) 3726 ret = res; 3727 } 3728 } 3729 3730 return ret; 3731 } 3732 3733 /* 3734 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3735 * 3736 * This set option will delete a shared secret key from use. 3737 */ 3738 static int sctp_setsockopt_del_key(struct sock *sk, 3739 struct sctp_authkeyid *val, 3740 unsigned int optlen) 3741 { 3742 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3743 struct sctp_association *asoc; 3744 int ret = 0; 3745 3746 if (optlen != sizeof(struct sctp_authkeyid)) 3747 return -EINVAL; 3748 3749 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3750 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3751 sctp_style(sk, UDP)) 3752 return -EINVAL; 3753 3754 if (asoc) 3755 return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); 3756 3757 if (sctp_style(sk, TCP)) 3758 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3759 3760 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3761 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3762 ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); 3763 if (ret) 3764 return ret; 3765 } 3766 3767 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3768 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3769 list_for_each_entry(asoc, &ep->asocs, asocs) { 3770 int res = sctp_auth_del_key_id(ep, asoc, 3771 val->scact_keynumber); 3772 3773 if (res && !ret) 3774 ret = res; 3775 } 3776 } 3777 3778 return ret; 3779 } 3780 3781 /* 3782 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3783 * 3784 * This set option will deactivate a shared secret key. 3785 */ 3786 static int sctp_setsockopt_deactivate_key(struct sock *sk, 3787 struct sctp_authkeyid *val, 3788 unsigned int optlen) 3789 { 3790 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3791 struct sctp_association *asoc; 3792 int ret = 0; 3793 3794 if (optlen != sizeof(struct sctp_authkeyid)) 3795 return -EINVAL; 3796 3797 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3798 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3799 sctp_style(sk, UDP)) 3800 return -EINVAL; 3801 3802 if (asoc) 3803 return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); 3804 3805 if (sctp_style(sk, TCP)) 3806 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3807 3808 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3809 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3810 ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); 3811 if (ret) 3812 return ret; 3813 } 3814 3815 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3816 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3817 list_for_each_entry(asoc, &ep->asocs, asocs) { 3818 int res = sctp_auth_deact_key_id(ep, asoc, 3819 val->scact_keynumber); 3820 3821 if (res && !ret) 3822 ret = res; 3823 } 3824 } 3825 3826 return ret; 3827 } 3828 3829 /* 3830 * 8.1.23 SCTP_AUTO_ASCONF 3831 * 3832 * This option will enable or disable the use of the automatic generation of 3833 * ASCONF chunks to add and delete addresses to an existing association. Note 3834 * that this option has two caveats namely: a) it only affects sockets that 3835 * are bound to all addresses available to the SCTP stack, and b) the system 3836 * administrator may have an overriding control that turns the ASCONF feature 3837 * off no matter what setting the socket option may have. 3838 * This option expects an integer boolean flag, where a non-zero value turns on 3839 * the option, and a zero value turns off the option. 3840 * Note. In this implementation, socket operation overrides default parameter 3841 * being set by sysctl as well as FreeBSD implementation 3842 */ 3843 static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val, 3844 unsigned int optlen) 3845 { 3846 struct sctp_sock *sp = sctp_sk(sk); 3847 3848 if (optlen < sizeof(int)) 3849 return -EINVAL; 3850 if (!sctp_is_ep_boundall(sk) && *val) 3851 return -EINVAL; 3852 if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf)) 3853 return 0; 3854 3855 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3856 if (*val == 0 && sp->do_auto_asconf) { 3857 list_del(&sp->auto_asconf_list); 3858 sp->do_auto_asconf = 0; 3859 } else if (*val && !sp->do_auto_asconf) { 3860 list_add_tail(&sp->auto_asconf_list, 3861 &sock_net(sk)->sctp.auto_asconf_splist); 3862 sp->do_auto_asconf = 1; 3863 } 3864 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3865 return 0; 3866 } 3867 3868 /* 3869 * SCTP_PEER_ADDR_THLDS 3870 * 3871 * This option allows us to alter the partially failed threshold for one or all 3872 * transports in an association. See Section 6.1 of: 3873 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3874 */ 3875 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3876 struct sctp_paddrthlds_v2 *val, 3877 unsigned int optlen, bool v2) 3878 { 3879 struct sctp_transport *trans; 3880 struct sctp_association *asoc; 3881 int len; 3882 3883 len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds); 3884 if (optlen < len) 3885 return -EINVAL; 3886 3887 if (v2 && val->spt_pathpfthld > val->spt_pathcpthld) 3888 return -EINVAL; 3889 3890 if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) { 3891 trans = sctp_addr_id2transport(sk, &val->spt_address, 3892 val->spt_assoc_id); 3893 if (!trans) 3894 return -ENOENT; 3895 3896 if (val->spt_pathmaxrxt) 3897 trans->pathmaxrxt = val->spt_pathmaxrxt; 3898 if (v2) 3899 trans->ps_retrans = val->spt_pathcpthld; 3900 trans->pf_retrans = val->spt_pathpfthld; 3901 3902 return 0; 3903 } 3904 3905 asoc = sctp_id2assoc(sk, val->spt_assoc_id); 3906 if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC && 3907 sctp_style(sk, UDP)) 3908 return -EINVAL; 3909 3910 if (asoc) { 3911 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3912 transports) { 3913 if (val->spt_pathmaxrxt) 3914 trans->pathmaxrxt = val->spt_pathmaxrxt; 3915 if (v2) 3916 trans->ps_retrans = val->spt_pathcpthld; 3917 trans->pf_retrans = val->spt_pathpfthld; 3918 } 3919 3920 if (val->spt_pathmaxrxt) 3921 asoc->pathmaxrxt = val->spt_pathmaxrxt; 3922 if (v2) 3923 asoc->ps_retrans = val->spt_pathcpthld; 3924 asoc->pf_retrans = val->spt_pathpfthld; 3925 } else { 3926 struct sctp_sock *sp = sctp_sk(sk); 3927 3928 if (val->spt_pathmaxrxt) 3929 sp->pathmaxrxt = val->spt_pathmaxrxt; 3930 if (v2) 3931 sp->ps_retrans = val->spt_pathcpthld; 3932 sp->pf_retrans = val->spt_pathpfthld; 3933 } 3934 3935 return 0; 3936 } 3937 3938 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val, 3939 unsigned int optlen) 3940 { 3941 if (optlen < sizeof(int)) 3942 return -EINVAL; 3943 3944 sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1; 3945 3946 return 0; 3947 } 3948 3949 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val, 3950 unsigned int optlen) 3951 { 3952 if (optlen < sizeof(int)) 3953 return -EINVAL; 3954 3955 sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1; 3956 3957 return 0; 3958 } 3959 3960 static int sctp_setsockopt_pr_supported(struct sock *sk, 3961 struct sctp_assoc_value *params, 3962 unsigned int optlen) 3963 { 3964 struct sctp_association *asoc; 3965 3966 if (optlen != sizeof(*params)) 3967 return -EINVAL; 3968 3969 asoc = sctp_id2assoc(sk, params->assoc_id); 3970 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 3971 sctp_style(sk, UDP)) 3972 return -EINVAL; 3973 3974 sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value; 3975 3976 return 0; 3977 } 3978 3979 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3980 struct sctp_default_prinfo *info, 3981 unsigned int optlen) 3982 { 3983 struct sctp_sock *sp = sctp_sk(sk); 3984 struct sctp_association *asoc; 3985 int retval = -EINVAL; 3986 3987 if (optlen != sizeof(*info)) 3988 goto out; 3989 3990 if (info->pr_policy & ~SCTP_PR_SCTP_MASK) 3991 goto out; 3992 3993 if (info->pr_policy == SCTP_PR_SCTP_NONE) 3994 info->pr_value = 0; 3995 3996 asoc = sctp_id2assoc(sk, info->pr_assoc_id); 3997 if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC && 3998 sctp_style(sk, UDP)) 3999 goto out; 4000 4001 retval = 0; 4002 4003 if (asoc) { 4004 SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy); 4005 asoc->default_timetolive = info->pr_value; 4006 goto out; 4007 } 4008 4009 if (sctp_style(sk, TCP)) 4010 info->pr_assoc_id = SCTP_FUTURE_ASSOC; 4011 4012 if (info->pr_assoc_id == SCTP_FUTURE_ASSOC || 4013 info->pr_assoc_id == SCTP_ALL_ASSOC) { 4014 SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy); 4015 sp->default_timetolive = info->pr_value; 4016 } 4017 4018 if (info->pr_assoc_id == SCTP_CURRENT_ASSOC || 4019 info->pr_assoc_id == SCTP_ALL_ASSOC) { 4020 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4021 SCTP_PR_SET_POLICY(asoc->default_flags, 4022 info->pr_policy); 4023 asoc->default_timetolive = info->pr_value; 4024 } 4025 } 4026 4027 out: 4028 return retval; 4029 } 4030 4031 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 4032 struct sctp_assoc_value *params, 4033 unsigned int optlen) 4034 { 4035 struct sctp_association *asoc; 4036 int retval = -EINVAL; 4037 4038 if (optlen != sizeof(*params)) 4039 goto out; 4040 4041 asoc = sctp_id2assoc(sk, params->assoc_id); 4042 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4043 sctp_style(sk, UDP)) 4044 goto out; 4045 4046 sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value; 4047 4048 retval = 0; 4049 4050 out: 4051 return retval; 4052 } 4053 4054 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4055 struct sctp_assoc_value *params, 4056 unsigned int optlen) 4057 { 4058 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 4059 struct sctp_association *asoc; 4060 int retval = -EINVAL; 4061 4062 if (optlen != sizeof(*params)) 4063 goto out; 4064 4065 if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4066 goto out; 4067 4068 asoc = sctp_id2assoc(sk, params->assoc_id); 4069 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 4070 sctp_style(sk, UDP)) 4071 goto out; 4072 4073 retval = 0; 4074 4075 if (asoc) { 4076 asoc->strreset_enable = params->assoc_value; 4077 goto out; 4078 } 4079 4080 if (sctp_style(sk, TCP)) 4081 params->assoc_id = SCTP_FUTURE_ASSOC; 4082 4083 if (params->assoc_id == SCTP_FUTURE_ASSOC || 4084 params->assoc_id == SCTP_ALL_ASSOC) 4085 ep->strreset_enable = params->assoc_value; 4086 4087 if (params->assoc_id == SCTP_CURRENT_ASSOC || 4088 params->assoc_id == SCTP_ALL_ASSOC) 4089 list_for_each_entry(asoc, &ep->asocs, asocs) 4090 asoc->strreset_enable = params->assoc_value; 4091 4092 out: 4093 return retval; 4094 } 4095 4096 static int sctp_setsockopt_reset_streams(struct sock *sk, 4097 struct sctp_reset_streams *params, 4098 unsigned int optlen) 4099 { 4100 struct sctp_association *asoc; 4101 4102 if (optlen < sizeof(*params)) 4103 return -EINVAL; 4104 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4105 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4106 sizeof(__u16) * sizeof(*params)); 4107 4108 if (params->srs_number_streams * sizeof(__u16) > 4109 optlen - sizeof(*params)) 4110 return -EINVAL; 4111 4112 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4113 if (!asoc) 4114 return -EINVAL; 4115 4116 return sctp_send_reset_streams(asoc, params); 4117 } 4118 4119 static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd, 4120 unsigned int optlen) 4121 { 4122 struct sctp_association *asoc; 4123 4124 if (optlen != sizeof(*associd)) 4125 return -EINVAL; 4126 4127 asoc = sctp_id2assoc(sk, *associd); 4128 if (!asoc) 4129 return -EINVAL; 4130 4131 return sctp_send_reset_assoc(asoc); 4132 } 4133 4134 static int sctp_setsockopt_add_streams(struct sock *sk, 4135 struct sctp_add_streams *params, 4136 unsigned int optlen) 4137 { 4138 struct sctp_association *asoc; 4139 4140 if (optlen != sizeof(*params)) 4141 return -EINVAL; 4142 4143 asoc = sctp_id2assoc(sk, params->sas_assoc_id); 4144 if (!asoc) 4145 return -EINVAL; 4146 4147 return sctp_send_add_streams(asoc, params); 4148 } 4149 4150 static int sctp_setsockopt_scheduler(struct sock *sk, 4151 struct sctp_assoc_value *params, 4152 unsigned int optlen) 4153 { 4154 struct sctp_sock *sp = sctp_sk(sk); 4155 struct sctp_association *asoc; 4156 int retval = 0; 4157 4158 if (optlen < sizeof(*params)) 4159 return -EINVAL; 4160 4161 if (params->assoc_value > SCTP_SS_MAX) 4162 return -EINVAL; 4163 4164 asoc = sctp_id2assoc(sk, params->assoc_id); 4165 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 4166 sctp_style(sk, UDP)) 4167 return -EINVAL; 4168 4169 if (asoc) 4170 return sctp_sched_set_sched(asoc, params->assoc_value); 4171 4172 if (sctp_style(sk, TCP)) 4173 params->assoc_id = SCTP_FUTURE_ASSOC; 4174 4175 if (params->assoc_id == SCTP_FUTURE_ASSOC || 4176 params->assoc_id == SCTP_ALL_ASSOC) 4177 sp->default_ss = params->assoc_value; 4178 4179 if (params->assoc_id == SCTP_CURRENT_ASSOC || 4180 params->assoc_id == SCTP_ALL_ASSOC) { 4181 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4182 int ret = sctp_sched_set_sched(asoc, 4183 params->assoc_value); 4184 4185 if (ret && !retval) 4186 retval = ret; 4187 } 4188 } 4189 4190 return retval; 4191 } 4192 4193 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4194 struct sctp_stream_value *params, 4195 unsigned int optlen) 4196 { 4197 struct sctp_association *asoc; 4198 int retval = -EINVAL; 4199 4200 if (optlen < sizeof(*params)) 4201 goto out; 4202 4203 asoc = sctp_id2assoc(sk, params->assoc_id); 4204 if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC && 4205 sctp_style(sk, UDP)) 4206 goto out; 4207 4208 if (asoc) { 4209 retval = sctp_sched_set_value(asoc, params->stream_id, 4210 params->stream_value, GFP_KERNEL); 4211 goto out; 4212 } 4213 4214 retval = 0; 4215 4216 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) { 4217 int ret = sctp_sched_set_value(asoc, params->stream_id, 4218 params->stream_value, 4219 GFP_KERNEL); 4220 if (ret && !retval) /* try to return the 1st error. */ 4221 retval = ret; 4222 } 4223 4224 out: 4225 return retval; 4226 } 4227 4228 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4229 struct sctp_assoc_value *p, 4230 unsigned int optlen) 4231 { 4232 struct sctp_sock *sp = sctp_sk(sk); 4233 struct sctp_association *asoc; 4234 4235 if (optlen < sizeof(*p)) 4236 return -EINVAL; 4237 4238 asoc = sctp_id2assoc(sk, p->assoc_id); 4239 if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) 4240 return -EINVAL; 4241 4242 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) { 4243 return -EPERM; 4244 } 4245 4246 sp->ep->intl_enable = !!p->assoc_value; 4247 return 0; 4248 } 4249 4250 static int sctp_setsockopt_reuse_port(struct sock *sk, int *val, 4251 unsigned int optlen) 4252 { 4253 if (!sctp_style(sk, TCP)) 4254 return -EOPNOTSUPP; 4255 4256 if (sctp_sk(sk)->ep->base.bind_addr.port) 4257 return -EFAULT; 4258 4259 if (optlen < sizeof(int)) 4260 return -EINVAL; 4261 4262 sctp_sk(sk)->reuse = !!*val; 4263 4264 return 0; 4265 } 4266 4267 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param, 4268 struct sctp_association *asoc) 4269 { 4270 struct sctp_ulpevent *event; 4271 4272 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on); 4273 4274 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) { 4275 if (sctp_outq_is_empty(&asoc->outqueue)) { 4276 event = sctp_ulpevent_make_sender_dry_event(asoc, 4277 GFP_USER | __GFP_NOWARN); 4278 if (!event) 4279 return -ENOMEM; 4280 4281 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 4282 } 4283 } 4284 4285 return 0; 4286 } 4287 4288 static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param, 4289 unsigned int optlen) 4290 { 4291 struct sctp_sock *sp = sctp_sk(sk); 4292 struct sctp_association *asoc; 4293 int retval = 0; 4294 4295 if (optlen < sizeof(*param)) 4296 return -EINVAL; 4297 4298 if (param->se_type < SCTP_SN_TYPE_BASE || 4299 param->se_type > SCTP_SN_TYPE_MAX) 4300 return -EINVAL; 4301 4302 asoc = sctp_id2assoc(sk, param->se_assoc_id); 4303 if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC && 4304 sctp_style(sk, UDP)) 4305 return -EINVAL; 4306 4307 if (asoc) 4308 return sctp_assoc_ulpevent_type_set(param, asoc); 4309 4310 if (sctp_style(sk, TCP)) 4311 param->se_assoc_id = SCTP_FUTURE_ASSOC; 4312 4313 if (param->se_assoc_id == SCTP_FUTURE_ASSOC || 4314 param->se_assoc_id == SCTP_ALL_ASSOC) 4315 sctp_ulpevent_type_set(&sp->subscribe, 4316 param->se_type, param->se_on); 4317 4318 if (param->se_assoc_id == SCTP_CURRENT_ASSOC || 4319 param->se_assoc_id == SCTP_ALL_ASSOC) { 4320 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4321 int ret = sctp_assoc_ulpevent_type_set(param, asoc); 4322 4323 if (ret && !retval) 4324 retval = ret; 4325 } 4326 } 4327 4328 return retval; 4329 } 4330 4331 static int sctp_setsockopt_asconf_supported(struct sock *sk, 4332 struct sctp_assoc_value *params, 4333 unsigned int optlen) 4334 { 4335 struct sctp_association *asoc; 4336 struct sctp_endpoint *ep; 4337 int retval = -EINVAL; 4338 4339 if (optlen != sizeof(*params)) 4340 goto out; 4341 4342 asoc = sctp_id2assoc(sk, params->assoc_id); 4343 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4344 sctp_style(sk, UDP)) 4345 goto out; 4346 4347 ep = sctp_sk(sk)->ep; 4348 ep->asconf_enable = !!params->assoc_value; 4349 4350 if (ep->asconf_enable && ep->auth_enable) { 4351 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4352 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4353 } 4354 4355 retval = 0; 4356 4357 out: 4358 return retval; 4359 } 4360 4361 static int sctp_setsockopt_auth_supported(struct sock *sk, 4362 struct sctp_assoc_value *params, 4363 unsigned int optlen) 4364 { 4365 struct sctp_association *asoc; 4366 struct sctp_endpoint *ep; 4367 int retval = -EINVAL; 4368 4369 if (optlen != sizeof(*params)) 4370 goto out; 4371 4372 asoc = sctp_id2assoc(sk, params->assoc_id); 4373 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4374 sctp_style(sk, UDP)) 4375 goto out; 4376 4377 ep = sctp_sk(sk)->ep; 4378 if (params->assoc_value) { 4379 retval = sctp_auth_init(ep, GFP_KERNEL); 4380 if (retval) 4381 goto out; 4382 if (ep->asconf_enable) { 4383 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4384 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4385 } 4386 } 4387 4388 ep->auth_enable = !!params->assoc_value; 4389 retval = 0; 4390 4391 out: 4392 return retval; 4393 } 4394 4395 static int sctp_setsockopt_ecn_supported(struct sock *sk, 4396 struct sctp_assoc_value *params, 4397 unsigned int optlen) 4398 { 4399 struct sctp_association *asoc; 4400 int retval = -EINVAL; 4401 4402 if (optlen != sizeof(*params)) 4403 goto out; 4404 4405 asoc = sctp_id2assoc(sk, params->assoc_id); 4406 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4407 sctp_style(sk, UDP)) 4408 goto out; 4409 4410 sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value; 4411 retval = 0; 4412 4413 out: 4414 return retval; 4415 } 4416 4417 static int sctp_setsockopt_pf_expose(struct sock *sk, 4418 struct sctp_assoc_value *params, 4419 unsigned int optlen) 4420 { 4421 struct sctp_association *asoc; 4422 int retval = -EINVAL; 4423 4424 if (optlen != sizeof(*params)) 4425 goto out; 4426 4427 if (params->assoc_value > SCTP_PF_EXPOSE_MAX) 4428 goto out; 4429 4430 asoc = sctp_id2assoc(sk, params->assoc_id); 4431 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4432 sctp_style(sk, UDP)) 4433 goto out; 4434 4435 if (asoc) 4436 asoc->pf_expose = params->assoc_value; 4437 else 4438 sctp_sk(sk)->pf_expose = params->assoc_value; 4439 retval = 0; 4440 4441 out: 4442 return retval; 4443 } 4444 4445 static int sctp_setsockopt_encap_port(struct sock *sk, 4446 struct sctp_udpencaps *encap, 4447 unsigned int optlen) 4448 { 4449 struct sctp_association *asoc; 4450 struct sctp_transport *t; 4451 __be16 encap_port; 4452 4453 if (optlen != sizeof(*encap)) 4454 return -EINVAL; 4455 4456 /* If an address other than INADDR_ANY is specified, and 4457 * no transport is found, then the request is invalid. 4458 */ 4459 encap_port = (__force __be16)encap->sue_port; 4460 if (!sctp_is_any(sk, (union sctp_addr *)&encap->sue_address)) { 4461 t = sctp_addr_id2transport(sk, &encap->sue_address, 4462 encap->sue_assoc_id); 4463 if (!t) 4464 return -EINVAL; 4465 4466 t->encap_port = encap_port; 4467 return 0; 4468 } 4469 4470 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 4471 * socket is a one to many style socket, and an association 4472 * was not found, then the id was invalid. 4473 */ 4474 asoc = sctp_id2assoc(sk, encap->sue_assoc_id); 4475 if (!asoc && encap->sue_assoc_id != SCTP_FUTURE_ASSOC && 4476 sctp_style(sk, UDP)) 4477 return -EINVAL; 4478 4479 /* If changes are for association, also apply encap_port to 4480 * each transport. 4481 */ 4482 if (asoc) { 4483 list_for_each_entry(t, &asoc->peer.transport_addr_list, 4484 transports) 4485 t->encap_port = encap_port; 4486 4487 asoc->encap_port = encap_port; 4488 return 0; 4489 } 4490 4491 sctp_sk(sk)->encap_port = encap_port; 4492 return 0; 4493 } 4494 4495 static int sctp_setsockopt_probe_interval(struct sock *sk, 4496 struct sctp_probeinterval *params, 4497 unsigned int optlen) 4498 { 4499 struct sctp_association *asoc; 4500 struct sctp_transport *t; 4501 __u32 probe_interval; 4502 4503 if (optlen != sizeof(*params)) 4504 return -EINVAL; 4505 4506 probe_interval = params->spi_interval; 4507 if (probe_interval && probe_interval < SCTP_PROBE_TIMER_MIN) 4508 return -EINVAL; 4509 4510 /* If an address other than INADDR_ANY is specified, and 4511 * no transport is found, then the request is invalid. 4512 */ 4513 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spi_address)) { 4514 t = sctp_addr_id2transport(sk, ¶ms->spi_address, 4515 params->spi_assoc_id); 4516 if (!t) 4517 return -EINVAL; 4518 4519 t->probe_interval = msecs_to_jiffies(probe_interval); 4520 sctp_transport_pl_reset(t); 4521 return 0; 4522 } 4523 4524 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 4525 * socket is a one to many style socket, and an association 4526 * was not found, then the id was invalid. 4527 */ 4528 asoc = sctp_id2assoc(sk, params->spi_assoc_id); 4529 if (!asoc && params->spi_assoc_id != SCTP_FUTURE_ASSOC && 4530 sctp_style(sk, UDP)) 4531 return -EINVAL; 4532 4533 /* If changes are for association, also apply probe_interval to 4534 * each transport. 4535 */ 4536 if (asoc) { 4537 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) { 4538 t->probe_interval = msecs_to_jiffies(probe_interval); 4539 sctp_transport_pl_reset(t); 4540 } 4541 4542 asoc->probe_interval = msecs_to_jiffies(probe_interval); 4543 return 0; 4544 } 4545 4546 sctp_sk(sk)->probe_interval = probe_interval; 4547 return 0; 4548 } 4549 4550 /* API 6.2 setsockopt(), getsockopt() 4551 * 4552 * Applications use setsockopt() and getsockopt() to set or retrieve 4553 * socket options. Socket options are used to change the default 4554 * behavior of sockets calls. They are described in Section 7. 4555 * 4556 * The syntax is: 4557 * 4558 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4559 * int __user *optlen); 4560 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4561 * int optlen); 4562 * 4563 * sd - the socket descript. 4564 * level - set to IPPROTO_SCTP for all SCTP options. 4565 * optname - the option name. 4566 * optval - the buffer to store the value of the option. 4567 * optlen - the size of the buffer. 4568 */ 4569 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4570 sockptr_t optval, unsigned int optlen) 4571 { 4572 void *kopt = NULL; 4573 int retval = 0; 4574 4575 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4576 4577 /* I can hardly begin to describe how wrong this is. This is 4578 * so broken as to be worse than useless. The API draft 4579 * REALLY is NOT helpful here... I am not convinced that the 4580 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4581 * are at all well-founded. 4582 */ 4583 if (level != SOL_SCTP) { 4584 struct sctp_af *af = sctp_sk(sk)->pf->af; 4585 4586 return af->setsockopt(sk, level, optname, optval, optlen); 4587 } 4588 4589 if (optlen > 0) { 4590 /* Trim it to the biggest size sctp sockopt may need if necessary */ 4591 optlen = min_t(unsigned int, optlen, 4592 PAGE_ALIGN(USHRT_MAX + 4593 sizeof(__u16) * sizeof(struct sctp_reset_streams))); 4594 kopt = memdup_sockptr(optval, optlen); 4595 if (IS_ERR(kopt)) 4596 return PTR_ERR(kopt); 4597 } 4598 4599 lock_sock(sk); 4600 4601 switch (optname) { 4602 case SCTP_SOCKOPT_BINDX_ADD: 4603 /* 'optlen' is the size of the addresses buffer. */ 4604 retval = sctp_setsockopt_bindx(sk, kopt, optlen, 4605 SCTP_BINDX_ADD_ADDR); 4606 break; 4607 4608 case SCTP_SOCKOPT_BINDX_REM: 4609 /* 'optlen' is the size of the addresses buffer. */ 4610 retval = sctp_setsockopt_bindx(sk, kopt, optlen, 4611 SCTP_BINDX_REM_ADDR); 4612 break; 4613 4614 case SCTP_SOCKOPT_CONNECTX_OLD: 4615 /* 'optlen' is the size of the addresses buffer. */ 4616 retval = sctp_setsockopt_connectx_old(sk, kopt, optlen); 4617 break; 4618 4619 case SCTP_SOCKOPT_CONNECTX: 4620 /* 'optlen' is the size of the addresses buffer. */ 4621 retval = sctp_setsockopt_connectx(sk, kopt, optlen); 4622 break; 4623 4624 case SCTP_DISABLE_FRAGMENTS: 4625 retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen); 4626 break; 4627 4628 case SCTP_EVENTS: 4629 retval = sctp_setsockopt_events(sk, kopt, optlen); 4630 break; 4631 4632 case SCTP_AUTOCLOSE: 4633 retval = sctp_setsockopt_autoclose(sk, kopt, optlen); 4634 break; 4635 4636 case SCTP_PEER_ADDR_PARAMS: 4637 retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen); 4638 break; 4639 4640 case SCTP_DELAYED_SACK: 4641 retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen); 4642 break; 4643 case SCTP_PARTIAL_DELIVERY_POINT: 4644 retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen); 4645 break; 4646 4647 case SCTP_INITMSG: 4648 retval = sctp_setsockopt_initmsg(sk, kopt, optlen); 4649 break; 4650 case SCTP_DEFAULT_SEND_PARAM: 4651 retval = sctp_setsockopt_default_send_param(sk, kopt, optlen); 4652 break; 4653 case SCTP_DEFAULT_SNDINFO: 4654 retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen); 4655 break; 4656 case SCTP_PRIMARY_ADDR: 4657 retval = sctp_setsockopt_primary_addr(sk, kopt, optlen); 4658 break; 4659 case SCTP_SET_PEER_PRIMARY_ADDR: 4660 retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen); 4661 break; 4662 case SCTP_NODELAY: 4663 retval = sctp_setsockopt_nodelay(sk, kopt, optlen); 4664 break; 4665 case SCTP_RTOINFO: 4666 retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen); 4667 break; 4668 case SCTP_ASSOCINFO: 4669 retval = sctp_setsockopt_associnfo(sk, kopt, optlen); 4670 break; 4671 case SCTP_I_WANT_MAPPED_V4_ADDR: 4672 retval = sctp_setsockopt_mappedv4(sk, kopt, optlen); 4673 break; 4674 case SCTP_MAXSEG: 4675 retval = sctp_setsockopt_maxseg(sk, kopt, optlen); 4676 break; 4677 case SCTP_ADAPTATION_LAYER: 4678 retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen); 4679 break; 4680 case SCTP_CONTEXT: 4681 retval = sctp_setsockopt_context(sk, kopt, optlen); 4682 break; 4683 case SCTP_FRAGMENT_INTERLEAVE: 4684 retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen); 4685 break; 4686 case SCTP_MAX_BURST: 4687 retval = sctp_setsockopt_maxburst(sk, kopt, optlen); 4688 break; 4689 case SCTP_AUTH_CHUNK: 4690 retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen); 4691 break; 4692 case SCTP_HMAC_IDENT: 4693 retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen); 4694 break; 4695 case SCTP_AUTH_KEY: 4696 retval = sctp_setsockopt_auth_key(sk, kopt, optlen); 4697 break; 4698 case SCTP_AUTH_ACTIVE_KEY: 4699 retval = sctp_setsockopt_active_key(sk, kopt, optlen); 4700 break; 4701 case SCTP_AUTH_DELETE_KEY: 4702 retval = sctp_setsockopt_del_key(sk, kopt, optlen); 4703 break; 4704 case SCTP_AUTH_DEACTIVATE_KEY: 4705 retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen); 4706 break; 4707 case SCTP_AUTO_ASCONF: 4708 retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen); 4709 break; 4710 case SCTP_PEER_ADDR_THLDS: 4711 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen, 4712 false); 4713 break; 4714 case SCTP_PEER_ADDR_THLDS_V2: 4715 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen, 4716 true); 4717 break; 4718 case SCTP_RECVRCVINFO: 4719 retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen); 4720 break; 4721 case SCTP_RECVNXTINFO: 4722 retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen); 4723 break; 4724 case SCTP_PR_SUPPORTED: 4725 retval = sctp_setsockopt_pr_supported(sk, kopt, optlen); 4726 break; 4727 case SCTP_DEFAULT_PRINFO: 4728 retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen); 4729 break; 4730 case SCTP_RECONFIG_SUPPORTED: 4731 retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen); 4732 break; 4733 case SCTP_ENABLE_STREAM_RESET: 4734 retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen); 4735 break; 4736 case SCTP_RESET_STREAMS: 4737 retval = sctp_setsockopt_reset_streams(sk, kopt, optlen); 4738 break; 4739 case SCTP_RESET_ASSOC: 4740 retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen); 4741 break; 4742 case SCTP_ADD_STREAMS: 4743 retval = sctp_setsockopt_add_streams(sk, kopt, optlen); 4744 break; 4745 case SCTP_STREAM_SCHEDULER: 4746 retval = sctp_setsockopt_scheduler(sk, kopt, optlen); 4747 break; 4748 case SCTP_STREAM_SCHEDULER_VALUE: 4749 retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen); 4750 break; 4751 case SCTP_INTERLEAVING_SUPPORTED: 4752 retval = sctp_setsockopt_interleaving_supported(sk, kopt, 4753 optlen); 4754 break; 4755 case SCTP_REUSE_PORT: 4756 retval = sctp_setsockopt_reuse_port(sk, kopt, optlen); 4757 break; 4758 case SCTP_EVENT: 4759 retval = sctp_setsockopt_event(sk, kopt, optlen); 4760 break; 4761 case SCTP_ASCONF_SUPPORTED: 4762 retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen); 4763 break; 4764 case SCTP_AUTH_SUPPORTED: 4765 retval = sctp_setsockopt_auth_supported(sk, kopt, optlen); 4766 break; 4767 case SCTP_ECN_SUPPORTED: 4768 retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen); 4769 break; 4770 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 4771 retval = sctp_setsockopt_pf_expose(sk, kopt, optlen); 4772 break; 4773 case SCTP_REMOTE_UDP_ENCAPS_PORT: 4774 retval = sctp_setsockopt_encap_port(sk, kopt, optlen); 4775 break; 4776 case SCTP_PLPMTUD_PROBE_INTERVAL: 4777 retval = sctp_setsockopt_probe_interval(sk, kopt, optlen); 4778 break; 4779 default: 4780 retval = -ENOPROTOOPT; 4781 break; 4782 } 4783 4784 release_sock(sk); 4785 kfree(kopt); 4786 return retval; 4787 } 4788 4789 /* API 3.1.6 connect() - UDP Style Syntax 4790 * 4791 * An application may use the connect() call in the UDP model to initiate an 4792 * association without sending data. 4793 * 4794 * The syntax is: 4795 * 4796 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4797 * 4798 * sd: the socket descriptor to have a new association added to. 4799 * 4800 * nam: the address structure (either struct sockaddr_in or struct 4801 * sockaddr_in6 defined in RFC2553 [7]). 4802 * 4803 * len: the size of the address. 4804 */ 4805 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4806 int addr_len, int flags) 4807 { 4808 struct sctp_af *af; 4809 int err = -EINVAL; 4810 4811 lock_sock(sk); 4812 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4813 addr, addr_len); 4814 4815 /* Validate addr_len before calling common connect/connectx routine. */ 4816 af = sctp_get_af_specific(addr->sa_family); 4817 if (af && addr_len >= af->sockaddr_len) 4818 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4819 4820 release_sock(sk); 4821 return err; 4822 } 4823 4824 int sctp_inet_connect(struct socket *sock, struct sockaddr_unsized *uaddr, 4825 int addr_len, int flags) 4826 { 4827 if (addr_len < sizeof(uaddr->sa_family)) 4828 return -EINVAL; 4829 4830 if (uaddr->sa_family == AF_UNSPEC) 4831 return -EOPNOTSUPP; 4832 4833 return sctp_connect(sock->sk, (struct sockaddr *)uaddr, addr_len, flags); 4834 } 4835 4836 /* Only called when shutdown a listening SCTP socket. */ 4837 static int sctp_disconnect(struct sock *sk, int flags) 4838 { 4839 if (!sctp_style(sk, TCP)) 4840 return -EOPNOTSUPP; 4841 4842 sk->sk_shutdown |= RCV_SHUTDOWN; 4843 return 0; 4844 } 4845 4846 static struct sock *sctp_clone_sock(struct sock *sk, 4847 struct sctp_association *asoc, 4848 enum sctp_socket_type type) 4849 { 4850 struct sock *newsk = sk_clone(sk, GFP_KERNEL, false); 4851 struct inet_sock *newinet; 4852 struct sctp_sock *newsp; 4853 int err = -ENOMEM; 4854 4855 if (!newsk) 4856 return ERR_PTR(err); 4857 4858 /* sk_clone() sets refcnt to 2 */ 4859 sock_put(newsk); 4860 4861 newinet = inet_sk(newsk); 4862 newsp = sctp_sk(newsk); 4863 4864 newsp->pf->to_sk_daddr(&asoc->peer.primary_addr, newsk); 4865 newinet->inet_dport = htons(asoc->peer.port); 4866 atomic_set(&newinet->inet_id, get_random_u16()); 4867 4868 inet_set_bit(MC_LOOP, newsk); 4869 newinet->mc_ttl = 1; 4870 newinet->mc_index = 0; 4871 newinet->mc_list = NULL; 4872 4873 #if IS_ENABLED(CONFIG_IPV6) 4874 if (sk->sk_family == AF_INET6) { 4875 struct ipv6_pinfo *newnp; 4876 4877 newinet->pinet6 = &((struct sctp6_sock *)newsk)->inet6; 4878 newinet->ipv6_fl_list = NULL; 4879 4880 newnp = inet6_sk(newsk); 4881 memcpy(newnp, inet6_sk(sk), sizeof(struct ipv6_pinfo)); 4882 newnp->ipv6_mc_list = NULL; 4883 newnp->ipv6_ac_list = NULL; 4884 } 4885 #endif 4886 4887 newsp->pf->copy_ip_options(sk, newsk); 4888 4889 newsp->do_auto_asconf = 0; 4890 skb_queue_head_init(&newsp->pd_lobby); 4891 4892 newsp->ep = sctp_endpoint_new(newsk, GFP_KERNEL); 4893 if (!newsp->ep) 4894 goto out_release; 4895 4896 SCTP_DBG_OBJCNT_INC(sock); 4897 sk_sockets_allocated_inc(newsk); 4898 sock_prot_inuse_add(sock_net(sk), newsk->sk_prot, 1); 4899 4900 err = sctp_sock_migrate(sk, newsk, asoc, type); 4901 if (err) 4902 goto out_release; 4903 4904 /* Set newsk security attributes from original sk and connection 4905 * security attribute from asoc. 4906 */ 4907 security_sctp_sk_clone(asoc, sk, newsk); 4908 4909 return newsk; 4910 4911 out_release: 4912 sk_common_release(newsk); 4913 return ERR_PTR(err); 4914 } 4915 4916 /* 4.1.4 accept() - TCP Style Syntax 4917 * 4918 * Applications use accept() call to remove an established SCTP 4919 * association from the accept queue of the endpoint. A new socket 4920 * descriptor will be returned from accept() to represent the newly 4921 * formed association. 4922 */ 4923 static struct sock *sctp_accept(struct sock *sk, struct proto_accept_arg *arg) 4924 { 4925 struct sctp_association *asoc; 4926 struct sock *newsk = NULL; 4927 int error = 0; 4928 long timeo; 4929 4930 lock_sock(sk); 4931 4932 if (!sctp_style(sk, TCP)) { 4933 error = -EOPNOTSUPP; 4934 goto out; 4935 } 4936 4937 if (!sctp_sstate(sk, LISTENING) || 4938 (sk->sk_shutdown & RCV_SHUTDOWN)) { 4939 error = -EINVAL; 4940 goto out; 4941 } 4942 4943 timeo = sock_rcvtimeo(sk, arg->flags & O_NONBLOCK); 4944 4945 error = sctp_wait_for_accept(sk, timeo); 4946 if (error) 4947 goto out; 4948 4949 /* We treat the list of associations on the endpoint as the accept 4950 * queue and pick the first association on the list. 4951 */ 4952 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 4953 struct sctp_association, asocs); 4954 4955 newsk = sctp_clone_sock(sk, asoc, SCTP_SOCKET_TCP); 4956 if (IS_ERR(newsk)) { 4957 error = PTR_ERR(newsk); 4958 newsk = NULL; 4959 } 4960 4961 out: 4962 release_sock(sk); 4963 arg->err = error; 4964 return newsk; 4965 } 4966 4967 /* The SCTP ioctl handler. */ 4968 static int sctp_ioctl(struct sock *sk, int cmd, int *karg) 4969 { 4970 int rc = -ENOTCONN; 4971 4972 lock_sock(sk); 4973 4974 /* 4975 * SEQPACKET-style sockets in LISTENING state are valid, for 4976 * SCTP, so only discard TCP-style sockets in LISTENING state. 4977 */ 4978 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4979 goto out; 4980 4981 switch (cmd) { 4982 case SIOCINQ: { 4983 struct sk_buff *skb; 4984 *karg = 0; 4985 4986 skb = skb_peek(&sk->sk_receive_queue); 4987 if (skb != NULL) { 4988 /* 4989 * We will only return the amount of this packet since 4990 * that is all that will be read. 4991 */ 4992 *karg = skb->len; 4993 } 4994 rc = 0; 4995 break; 4996 } 4997 default: 4998 rc = -ENOIOCTLCMD; 4999 break; 5000 } 5001 out: 5002 release_sock(sk); 5003 return rc; 5004 } 5005 5006 /* This is the function which gets called during socket creation to 5007 * initialized the SCTP-specific portion of the sock. 5008 * The sock structure should already be zero-filled memory. 5009 */ 5010 static int sctp_init_sock(struct sock *sk) 5011 { 5012 struct net *net = sock_net(sk); 5013 struct sctp_sock *sp; 5014 5015 pr_debug("%s: sk:%p\n", __func__, sk); 5016 5017 sp = sctp_sk(sk); 5018 5019 /* Initialize the SCTP per socket area. */ 5020 switch (sk->sk_type) { 5021 case SOCK_SEQPACKET: 5022 sp->type = SCTP_SOCKET_UDP; 5023 break; 5024 case SOCK_STREAM: 5025 sp->type = SCTP_SOCKET_TCP; 5026 break; 5027 default: 5028 return -ESOCKTNOSUPPORT; 5029 } 5030 5031 sk->sk_gso_type = SKB_GSO_SCTP; 5032 5033 /* Initialize default send parameters. These parameters can be 5034 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 5035 */ 5036 sp->default_stream = 0; 5037 sp->default_ppid = 0; 5038 sp->default_flags = 0; 5039 sp->default_context = 0; 5040 sp->default_timetolive = 0; 5041 5042 sp->default_rcv_context = 0; 5043 sp->max_burst = net->sctp.max_burst; 5044 5045 sp->cookie_auth_enable = net->sctp.cookie_auth_enable; 5046 5047 /* Initialize default setup parameters. These parameters 5048 * can be modified with the SCTP_INITMSG socket option or 5049 * overridden by the SCTP_INIT CMSG. 5050 */ 5051 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 5052 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 5053 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 5054 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 5055 5056 /* Initialize default RTO related parameters. These parameters can 5057 * be modified for with the SCTP_RTOINFO socket option. 5058 */ 5059 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 5060 sp->rtoinfo.srto_max = net->sctp.rto_max; 5061 sp->rtoinfo.srto_min = net->sctp.rto_min; 5062 5063 /* Initialize default association related parameters. These parameters 5064 * can be modified with the SCTP_ASSOCINFO socket option. 5065 */ 5066 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 5067 sp->assocparams.sasoc_number_peer_destinations = 0; 5068 sp->assocparams.sasoc_peer_rwnd = 0; 5069 sp->assocparams.sasoc_local_rwnd = 0; 5070 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 5071 5072 /* Initialize default event subscriptions. By default, all the 5073 * options are off. 5074 */ 5075 sp->subscribe = 0; 5076 5077 /* Default Peer Address Parameters. These defaults can 5078 * be modified via SCTP_PEER_ADDR_PARAMS 5079 */ 5080 sp->hbinterval = net->sctp.hb_interval; 5081 sp->udp_port = htons(net->sctp.udp_port); 5082 sp->encap_port = htons(net->sctp.encap_port); 5083 sp->pathmaxrxt = net->sctp.max_retrans_path; 5084 sp->pf_retrans = net->sctp.pf_retrans; 5085 sp->ps_retrans = net->sctp.ps_retrans; 5086 sp->pf_expose = net->sctp.pf_expose; 5087 sp->pathmtu = 0; /* allow default discovery */ 5088 sp->sackdelay = net->sctp.sack_timeout; 5089 sp->sackfreq = 2; 5090 sp->param_flags = SPP_HB_ENABLE | 5091 SPP_PMTUD_ENABLE | 5092 SPP_SACKDELAY_ENABLE; 5093 sp->default_ss = SCTP_SS_DEFAULT; 5094 5095 /* If enabled no SCTP message fragmentation will be performed. 5096 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 5097 */ 5098 sp->disable_fragments = 0; 5099 5100 /* Enable Nagle algorithm by default. */ 5101 sp->nodelay = 0; 5102 5103 sp->recvrcvinfo = 0; 5104 sp->recvnxtinfo = 0; 5105 5106 /* Enable by default. */ 5107 sp->v4mapped = 1; 5108 5109 /* Auto-close idle associations after the configured 5110 * number of seconds. A value of 0 disables this 5111 * feature. Configure through the SCTP_AUTOCLOSE socket option, 5112 * for UDP-style sockets only. 5113 */ 5114 sp->autoclose = 0; 5115 5116 /* User specified fragmentation limit. */ 5117 sp->user_frag = 0; 5118 5119 sp->adaptation_ind = 0; 5120 5121 sp->pf = sctp_get_pf_specific(sk->sk_family); 5122 5123 /* Control variables for partial data delivery. */ 5124 atomic_set(&sp->pd_mode, 0); 5125 skb_queue_head_init(&sp->pd_lobby); 5126 sp->frag_interleave = 0; 5127 sp->probe_interval = net->sctp.probe_interval; 5128 5129 /* Create a per socket endpoint structure. Even if we 5130 * change the data structure relationships, this may still 5131 * be useful for storing pre-connect address information. 5132 */ 5133 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 5134 if (!sp->ep) 5135 return -ENOMEM; 5136 5137 sk->sk_destruct = sctp_destruct_sock; 5138 5139 SCTP_DBG_OBJCNT_INC(sock); 5140 5141 sk_sockets_allocated_inc(sk); 5142 sock_prot_inuse_add(net, sk->sk_prot, 1); 5143 5144 return 0; 5145 } 5146 5147 /* Cleanup any SCTP per socket resources. Must be called with 5148 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 5149 */ 5150 static void sctp_destroy_sock(struct sock *sk) 5151 { 5152 struct sctp_sock *sp; 5153 5154 pr_debug("%s: sk:%p\n", __func__, sk); 5155 5156 /* Release our hold on the endpoint. */ 5157 sp = sctp_sk(sk); 5158 /* This could happen during socket init, thus we bail out 5159 * early, since the rest of the below is not setup either. 5160 */ 5161 if (sp->ep == NULL) 5162 return; 5163 5164 if (sp->do_auto_asconf) { 5165 sp->do_auto_asconf = 0; 5166 list_del(&sp->auto_asconf_list); 5167 } 5168 5169 sctp_endpoint_free(sp->ep); 5170 5171 sk_sockets_allocated_dec(sk); 5172 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 5173 SCTP_DBG_OBJCNT_DEC(sock); 5174 } 5175 5176 static void sctp_destruct_sock(struct sock *sk) 5177 { 5178 inet_sock_destruct(sk); 5179 } 5180 5181 /* API 4.1.7 shutdown() - TCP Style Syntax 5182 * int shutdown(int socket, int how); 5183 * 5184 * sd - the socket descriptor of the association to be closed. 5185 * how - Specifies the type of shutdown. The values are 5186 * as follows: 5187 * SHUT_RD 5188 * Disables further receive operations. No SCTP 5189 * protocol action is taken. 5190 * SHUT_WR 5191 * Disables further send operations, and initiates 5192 * the SCTP shutdown sequence. 5193 * SHUT_RDWR 5194 * Disables further send and receive operations 5195 * and initiates the SCTP shutdown sequence. 5196 */ 5197 static void sctp_shutdown(struct sock *sk, int how) 5198 { 5199 struct net *net = sock_net(sk); 5200 struct sctp_endpoint *ep; 5201 5202 if (!sctp_style(sk, TCP)) 5203 return; 5204 5205 ep = sctp_sk(sk)->ep; 5206 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 5207 struct sctp_association *asoc; 5208 5209 inet_sk_set_state(sk, SCTP_SS_CLOSING); 5210 asoc = list_entry(ep->asocs.next, 5211 struct sctp_association, asocs); 5212 sctp_primitive_SHUTDOWN(net, asoc, NULL); 5213 } 5214 } 5215 5216 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 5217 struct sctp_info *info) 5218 { 5219 struct sctp_transport *prim; 5220 struct list_head *pos; 5221 int mask; 5222 5223 memset(info, 0, sizeof(*info)); 5224 if (!asoc) { 5225 struct sctp_sock *sp = sctp_sk(sk); 5226 5227 info->sctpi_s_autoclose = sp->autoclose; 5228 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 5229 info->sctpi_s_pd_point = sp->pd_point; 5230 info->sctpi_s_nodelay = sp->nodelay; 5231 info->sctpi_s_disable_fragments = sp->disable_fragments; 5232 info->sctpi_s_v4mapped = sp->v4mapped; 5233 info->sctpi_s_frag_interleave = sp->frag_interleave; 5234 info->sctpi_s_type = sp->type; 5235 5236 return 0; 5237 } 5238 5239 info->sctpi_tag = asoc->c.my_vtag; 5240 info->sctpi_state = asoc->state; 5241 info->sctpi_rwnd = asoc->a_rwnd; 5242 info->sctpi_unackdata = asoc->unack_data; 5243 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5244 info->sctpi_instrms = asoc->stream.incnt; 5245 info->sctpi_outstrms = asoc->stream.outcnt; 5246 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 5247 info->sctpi_inqueue++; 5248 list_for_each(pos, &asoc->outqueue.out_chunk_list) 5249 info->sctpi_outqueue++; 5250 info->sctpi_overall_error = asoc->overall_error_count; 5251 info->sctpi_max_burst = asoc->max_burst; 5252 info->sctpi_maxseg = asoc->frag_point; 5253 info->sctpi_peer_rwnd = asoc->peer.rwnd; 5254 info->sctpi_peer_tag = asoc->c.peer_vtag; 5255 5256 mask = asoc->peer.intl_capable << 1; 5257 mask = (mask | asoc->peer.ecn_capable) << 1; 5258 mask = (mask | asoc->peer.ipv4_address) << 1; 5259 mask = (mask | asoc->peer.ipv6_address) << 1; 5260 mask = (mask | asoc->peer.reconf_capable) << 1; 5261 mask = (mask | asoc->peer.asconf_capable) << 1; 5262 mask = (mask | asoc->peer.prsctp_capable) << 1; 5263 mask = (mask | asoc->peer.auth_capable); 5264 info->sctpi_peer_capable = mask; 5265 mask = asoc->peer.sack_needed << 1; 5266 mask = (mask | asoc->peer.sack_generation) << 1; 5267 mask = (mask | asoc->peer.zero_window_announced); 5268 info->sctpi_peer_sack = mask; 5269 5270 info->sctpi_isacks = asoc->stats.isacks; 5271 info->sctpi_osacks = asoc->stats.osacks; 5272 info->sctpi_opackets = asoc->stats.opackets; 5273 info->sctpi_ipackets = asoc->stats.ipackets; 5274 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 5275 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 5276 info->sctpi_idupchunks = asoc->stats.idupchunks; 5277 info->sctpi_gapcnt = asoc->stats.gapcnt; 5278 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 5279 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 5280 info->sctpi_oodchunks = asoc->stats.oodchunks; 5281 info->sctpi_iodchunks = asoc->stats.iodchunks; 5282 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 5283 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 5284 5285 prim = asoc->peer.primary_path; 5286 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 5287 info->sctpi_p_state = prim->state; 5288 info->sctpi_p_cwnd = prim->cwnd; 5289 info->sctpi_p_srtt = prim->srtt; 5290 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 5291 info->sctpi_p_hbinterval = prim->hbinterval; 5292 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 5293 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 5294 info->sctpi_p_ssthresh = prim->ssthresh; 5295 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 5296 info->sctpi_p_flight_size = prim->flight_size; 5297 info->sctpi_p_error = prim->error_count; 5298 5299 return 0; 5300 } 5301 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 5302 5303 /* use callback to avoid exporting the core structure */ 5304 void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU) 5305 { 5306 rhltable_walk_enter(&sctp_transport_hashtable, iter); 5307 5308 rhashtable_walk_start(iter); 5309 } 5310 5311 void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU) 5312 { 5313 rhashtable_walk_stop(iter); 5314 rhashtable_walk_exit(iter); 5315 } 5316 5317 struct sctp_transport *sctp_transport_get_next(struct net *net, 5318 struct rhashtable_iter *iter) 5319 { 5320 struct sctp_transport *t; 5321 5322 t = rhashtable_walk_next(iter); 5323 for (; t; t = rhashtable_walk_next(iter)) { 5324 if (IS_ERR(t)) { 5325 if (PTR_ERR(t) == -EAGAIN) 5326 continue; 5327 break; 5328 } 5329 5330 if (!sctp_transport_hold(t)) 5331 continue; 5332 5333 if (net_eq(t->asoc->base.net, net) && 5334 t->asoc->peer.primary_path == t) 5335 break; 5336 5337 sctp_transport_put(t); 5338 } 5339 5340 return t; 5341 } 5342 5343 struct sctp_transport *sctp_transport_get_idx(struct net *net, 5344 struct rhashtable_iter *iter, 5345 int pos) 5346 { 5347 struct sctp_transport *t; 5348 5349 if (!pos) 5350 return SEQ_START_TOKEN; 5351 5352 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { 5353 if (!--pos) 5354 break; 5355 sctp_transport_put(t); 5356 } 5357 5358 return t; 5359 } 5360 5361 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5362 void *p) { 5363 int err = 0; 5364 int hash = 0; 5365 struct sctp_endpoint *ep; 5366 struct sctp_hashbucket *head; 5367 5368 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5369 hash++, head++) { 5370 read_lock_bh(&head->lock); 5371 sctp_for_each_hentry(ep, &head->chain) { 5372 err = cb(ep, p); 5373 if (err) 5374 break; 5375 } 5376 read_unlock_bh(&head->lock); 5377 } 5378 5379 return err; 5380 } 5381 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5382 5383 int sctp_transport_lookup_process(sctp_callback_t cb, struct net *net, 5384 const union sctp_addr *laddr, 5385 const union sctp_addr *paddr, void *p, int dif) 5386 { 5387 struct sctp_transport *transport; 5388 struct sctp_endpoint *ep; 5389 int err = -ENOENT; 5390 5391 rcu_read_lock(); 5392 transport = sctp_addrs_lookup_transport(net, laddr, paddr, dif, dif); 5393 if (!transport) { 5394 rcu_read_unlock(); 5395 return err; 5396 } 5397 ep = transport->asoc->ep; 5398 if (!sctp_endpoint_hold(ep)) { /* asoc can be peeled off */ 5399 sctp_transport_put(transport); 5400 rcu_read_unlock(); 5401 return err; 5402 } 5403 rcu_read_unlock(); 5404 5405 err = cb(ep, transport, p); 5406 sctp_endpoint_put(ep); 5407 sctp_transport_put(transport); 5408 return err; 5409 } 5410 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5411 5412 int sctp_transport_traverse_process(sctp_callback_t cb, sctp_callback_t cb_done, 5413 struct net *net, int *pos, void *p) 5414 { 5415 struct rhashtable_iter hti; 5416 struct sctp_transport *tsp; 5417 struct sctp_endpoint *ep; 5418 int ret; 5419 5420 again: 5421 ret = 0; 5422 sctp_transport_walk_start(&hti); 5423 5424 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5425 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5426 ep = tsp->asoc->ep; 5427 if (sctp_endpoint_hold(ep)) { /* asoc can be peeled off */ 5428 ret = cb(ep, tsp, p); 5429 if (ret) 5430 break; 5431 sctp_endpoint_put(ep); 5432 } 5433 (*pos)++; 5434 sctp_transport_put(tsp); 5435 } 5436 sctp_transport_walk_stop(&hti); 5437 5438 if (ret) { 5439 if (cb_done && !cb_done(ep, tsp, p)) { 5440 (*pos)++; 5441 sctp_endpoint_put(ep); 5442 sctp_transport_put(tsp); 5443 goto again; 5444 } 5445 sctp_endpoint_put(ep); 5446 sctp_transport_put(tsp); 5447 } 5448 5449 return ret; 5450 } 5451 EXPORT_SYMBOL_GPL(sctp_transport_traverse_process); 5452 5453 /* 7.2.1 Association Status (SCTP_STATUS) 5454 5455 * Applications can retrieve current status information about an 5456 * association, including association state, peer receiver window size, 5457 * number of unacked data chunks, and number of data chunks pending 5458 * receipt. This information is read-only. 5459 */ 5460 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5461 char __user *optval, 5462 int __user *optlen) 5463 { 5464 struct sctp_status status; 5465 struct sctp_association *asoc = NULL; 5466 struct sctp_transport *transport; 5467 sctp_assoc_t associd; 5468 int retval = 0; 5469 5470 if (len < sizeof(status)) { 5471 retval = -EINVAL; 5472 goto out; 5473 } 5474 5475 len = sizeof(status); 5476 if (copy_from_user(&status, optval, len)) { 5477 retval = -EFAULT; 5478 goto out; 5479 } 5480 5481 associd = status.sstat_assoc_id; 5482 asoc = sctp_id2assoc(sk, associd); 5483 if (!asoc) { 5484 retval = -EINVAL; 5485 goto out; 5486 } 5487 5488 transport = asoc->peer.primary_path; 5489 5490 status.sstat_assoc_id = sctp_assoc2id(asoc); 5491 status.sstat_state = sctp_assoc_to_state(asoc); 5492 status.sstat_rwnd = asoc->peer.rwnd; 5493 status.sstat_unackdata = asoc->unack_data; 5494 5495 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5496 status.sstat_instrms = asoc->stream.incnt; 5497 status.sstat_outstrms = asoc->stream.outcnt; 5498 status.sstat_fragmentation_point = asoc->frag_point; 5499 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5500 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5501 transport->af_specific->sockaddr_len); 5502 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5503 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5504 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5505 status.sstat_primary.spinfo_state = transport->state; 5506 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5507 status.sstat_primary.spinfo_srtt = transport->srtt; 5508 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5509 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5510 5511 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5512 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5513 5514 if (put_user(len, optlen)) { 5515 retval = -EFAULT; 5516 goto out; 5517 } 5518 5519 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5520 __func__, len, status.sstat_state, status.sstat_rwnd, 5521 status.sstat_assoc_id); 5522 5523 if (copy_to_user(optval, &status, len)) { 5524 retval = -EFAULT; 5525 goto out; 5526 } 5527 5528 out: 5529 return retval; 5530 } 5531 5532 5533 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5534 * 5535 * Applications can retrieve information about a specific peer address 5536 * of an association, including its reachability state, congestion 5537 * window, and retransmission timer values. This information is 5538 * read-only. 5539 */ 5540 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5541 char __user *optval, 5542 int __user *optlen) 5543 { 5544 struct sctp_paddrinfo pinfo; 5545 struct sctp_transport *transport; 5546 int retval = 0; 5547 5548 if (len < sizeof(pinfo)) { 5549 retval = -EINVAL; 5550 goto out; 5551 } 5552 5553 len = sizeof(pinfo); 5554 if (copy_from_user(&pinfo, optval, len)) { 5555 retval = -EFAULT; 5556 goto out; 5557 } 5558 5559 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5560 pinfo.spinfo_assoc_id); 5561 if (!transport) { 5562 retval = -EINVAL; 5563 goto out; 5564 } 5565 5566 if (transport->state == SCTP_PF && 5567 transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) { 5568 retval = -EACCES; 5569 goto out; 5570 } 5571 5572 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5573 pinfo.spinfo_state = transport->state; 5574 pinfo.spinfo_cwnd = transport->cwnd; 5575 pinfo.spinfo_srtt = transport->srtt; 5576 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5577 pinfo.spinfo_mtu = transport->pathmtu; 5578 5579 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5580 pinfo.spinfo_state = SCTP_ACTIVE; 5581 5582 if (put_user(len, optlen)) { 5583 retval = -EFAULT; 5584 goto out; 5585 } 5586 5587 if (copy_to_user(optval, &pinfo, len)) { 5588 retval = -EFAULT; 5589 goto out; 5590 } 5591 5592 out: 5593 return retval; 5594 } 5595 5596 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5597 * 5598 * This option is a on/off flag. If enabled no SCTP message 5599 * fragmentation will be performed. Instead if a message being sent 5600 * exceeds the current PMTU size, the message will NOT be sent and 5601 * instead a error will be indicated to the user. 5602 */ 5603 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5604 char __user *optval, int __user *optlen) 5605 { 5606 int val; 5607 5608 if (len < sizeof(int)) 5609 return -EINVAL; 5610 5611 len = sizeof(int); 5612 val = (sctp_sk(sk)->disable_fragments == 1); 5613 if (put_user(len, optlen)) 5614 return -EFAULT; 5615 if (copy_to_user(optval, &val, len)) 5616 return -EFAULT; 5617 return 0; 5618 } 5619 5620 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5621 * 5622 * This socket option is used to specify various notifications and 5623 * ancillary data the user wishes to receive. 5624 */ 5625 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5626 int __user *optlen) 5627 { 5628 struct sctp_event_subscribe subscribe; 5629 __u8 *sn_type = (__u8 *)&subscribe; 5630 int i; 5631 5632 if (len == 0) 5633 return -EINVAL; 5634 if (len > sizeof(struct sctp_event_subscribe)) 5635 len = sizeof(struct sctp_event_subscribe); 5636 if (put_user(len, optlen)) 5637 return -EFAULT; 5638 5639 for (i = 0; i < len; i++) 5640 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe, 5641 SCTP_SN_TYPE_BASE + i); 5642 5643 if (copy_to_user(optval, &subscribe, len)) 5644 return -EFAULT; 5645 5646 return 0; 5647 } 5648 5649 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5650 * 5651 * This socket option is applicable to the UDP-style socket only. When 5652 * set it will cause associations that are idle for more than the 5653 * specified number of seconds to automatically close. An association 5654 * being idle is defined an association that has NOT sent or received 5655 * user data. The special value of '0' indicates that no automatic 5656 * close of any associations should be performed. The option expects an 5657 * integer defining the number of seconds of idle time before an 5658 * association is closed. 5659 */ 5660 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5661 { 5662 /* Applicable to UDP-style socket only */ 5663 if (sctp_style(sk, TCP)) 5664 return -EOPNOTSUPP; 5665 if (len < sizeof(int)) 5666 return -EINVAL; 5667 len = sizeof(int); 5668 if (put_user(len, optlen)) 5669 return -EFAULT; 5670 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5671 return -EFAULT; 5672 return 0; 5673 } 5674 5675 /* Helper routine to branch off an association to a new socket. */ 5676 static int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, 5677 struct socket **sockp) 5678 { 5679 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5680 struct socket *sock; 5681 struct sock *newsk; 5682 int err = 0; 5683 5684 /* Do not peel off from one netns to another one. */ 5685 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5686 return -EINVAL; 5687 5688 if (!asoc) 5689 return -EINVAL; 5690 5691 /* An association cannot be branched off from an already peeled-off 5692 * socket, nor is this supported for tcp style sockets. 5693 */ 5694 if (!sctp_style(sk, UDP)) 5695 return -EINVAL; 5696 5697 err = sock_create_lite(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5698 if (err) 5699 return err; 5700 5701 newsk = sctp_clone_sock(sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5702 if (IS_ERR(newsk)) { 5703 sock_release(sock); 5704 *sockp = NULL; 5705 return PTR_ERR(newsk); 5706 } 5707 5708 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 5709 __inet_accept(sk->sk_socket, sock, newsk); 5710 release_sock(newsk); 5711 5712 sock->ops = sk->sk_socket->ops; 5713 __module_get(sock->ops->owner); 5714 5715 *sockp = sock; 5716 5717 return err; 5718 } 5719 5720 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5721 struct file **newfile, unsigned flags) 5722 { 5723 struct socket *newsock; 5724 int retval; 5725 5726 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5727 if (retval < 0) 5728 goto out; 5729 5730 /* Map the socket to an unused fd that can be returned to the user. */ 5731 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5732 if (retval < 0) { 5733 sock_release(newsock); 5734 goto out; 5735 } 5736 5737 *newfile = sock_alloc_file(newsock, 0, NULL); 5738 if (IS_ERR(*newfile)) { 5739 put_unused_fd(retval); 5740 retval = PTR_ERR(*newfile); 5741 *newfile = NULL; 5742 return retval; 5743 } 5744 5745 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5746 retval); 5747 5748 peeloff->sd = retval; 5749 5750 if (flags & SOCK_NONBLOCK) 5751 (*newfile)->f_flags |= O_NONBLOCK; 5752 out: 5753 return retval; 5754 } 5755 5756 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5757 { 5758 sctp_peeloff_arg_t peeloff; 5759 struct file *newfile = NULL; 5760 int retval = 0; 5761 5762 if (len < sizeof(sctp_peeloff_arg_t)) 5763 return -EINVAL; 5764 len = sizeof(sctp_peeloff_arg_t); 5765 if (copy_from_user(&peeloff, optval, len)) 5766 return -EFAULT; 5767 5768 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5769 if (retval < 0) 5770 goto out; 5771 5772 /* Return the fd mapped to the new socket. */ 5773 if (put_user(len, optlen)) { 5774 fput(newfile); 5775 put_unused_fd(retval); 5776 return -EFAULT; 5777 } 5778 5779 if (copy_to_user(optval, &peeloff, len)) { 5780 fput(newfile); 5781 put_unused_fd(retval); 5782 return -EFAULT; 5783 } 5784 fd_install(retval, newfile); 5785 out: 5786 return retval; 5787 } 5788 5789 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5790 char __user *optval, int __user *optlen) 5791 { 5792 sctp_peeloff_flags_arg_t peeloff; 5793 struct file *newfile = NULL; 5794 int retval = 0; 5795 5796 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5797 return -EINVAL; 5798 len = sizeof(sctp_peeloff_flags_arg_t); 5799 if (copy_from_user(&peeloff, optval, len)) 5800 return -EFAULT; 5801 5802 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5803 &newfile, peeloff.flags); 5804 if (retval < 0) 5805 goto out; 5806 5807 /* Return the fd mapped to the new socket. */ 5808 if (put_user(len, optlen)) { 5809 fput(newfile); 5810 put_unused_fd(retval); 5811 return -EFAULT; 5812 } 5813 5814 if (copy_to_user(optval, &peeloff, len)) { 5815 fput(newfile); 5816 put_unused_fd(retval); 5817 return -EFAULT; 5818 } 5819 fd_install(retval, newfile); 5820 out: 5821 return retval; 5822 } 5823 5824 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5825 * 5826 * Applications can enable or disable heartbeats for any peer address of 5827 * an association, modify an address's heartbeat interval, force a 5828 * heartbeat to be sent immediately, and adjust the address's maximum 5829 * number of retransmissions sent before an address is considered 5830 * unreachable. The following structure is used to access and modify an 5831 * address's parameters: 5832 * 5833 * struct sctp_paddrparams { 5834 * sctp_assoc_t spp_assoc_id; 5835 * struct sockaddr_storage spp_address; 5836 * uint32_t spp_hbinterval; 5837 * uint16_t spp_pathmaxrxt; 5838 * uint32_t spp_pathmtu; 5839 * uint32_t spp_sackdelay; 5840 * uint32_t spp_flags; 5841 * }; 5842 * 5843 * spp_assoc_id - (one-to-many style socket) This is filled in the 5844 * application, and identifies the association for 5845 * this query. 5846 * spp_address - This specifies which address is of interest. 5847 * spp_hbinterval - This contains the value of the heartbeat interval, 5848 * in milliseconds. If a value of zero 5849 * is present in this field then no changes are to 5850 * be made to this parameter. 5851 * spp_pathmaxrxt - This contains the maximum number of 5852 * retransmissions before this address shall be 5853 * considered unreachable. If a value of zero 5854 * is present in this field then no changes are to 5855 * be made to this parameter. 5856 * spp_pathmtu - When Path MTU discovery is disabled the value 5857 * specified here will be the "fixed" path mtu. 5858 * Note that if the spp_address field is empty 5859 * then all associations on this address will 5860 * have this fixed path mtu set upon them. 5861 * 5862 * spp_sackdelay - When delayed sack is enabled, this value specifies 5863 * the number of milliseconds that sacks will be delayed 5864 * for. This value will apply to all addresses of an 5865 * association if the spp_address field is empty. Note 5866 * also, that if delayed sack is enabled and this 5867 * value is set to 0, no change is made to the last 5868 * recorded delayed sack timer value. 5869 * 5870 * spp_flags - These flags are used to control various features 5871 * on an association. The flag field may contain 5872 * zero or more of the following options. 5873 * 5874 * SPP_HB_ENABLE - Enable heartbeats on the 5875 * specified address. Note that if the address 5876 * field is empty all addresses for the association 5877 * have heartbeats enabled upon them. 5878 * 5879 * SPP_HB_DISABLE - Disable heartbeats on the 5880 * speicifed address. Note that if the address 5881 * field is empty all addresses for the association 5882 * will have their heartbeats disabled. Note also 5883 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5884 * mutually exclusive, only one of these two should 5885 * be specified. Enabling both fields will have 5886 * undetermined results. 5887 * 5888 * SPP_HB_DEMAND - Request a user initiated heartbeat 5889 * to be made immediately. 5890 * 5891 * SPP_PMTUD_ENABLE - This field will enable PMTU 5892 * discovery upon the specified address. Note that 5893 * if the address feild is empty then all addresses 5894 * on the association are effected. 5895 * 5896 * SPP_PMTUD_DISABLE - This field will disable PMTU 5897 * discovery upon the specified address. Note that 5898 * if the address feild is empty then all addresses 5899 * on the association are effected. Not also that 5900 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5901 * exclusive. Enabling both will have undetermined 5902 * results. 5903 * 5904 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5905 * on delayed sack. The time specified in spp_sackdelay 5906 * is used to specify the sack delay for this address. Note 5907 * that if spp_address is empty then all addresses will 5908 * enable delayed sack and take on the sack delay 5909 * value specified in spp_sackdelay. 5910 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5911 * off delayed sack. If the spp_address field is blank then 5912 * delayed sack is disabled for the entire association. Note 5913 * also that this field is mutually exclusive to 5914 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5915 * results. 5916 * 5917 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5918 * setting of the IPV6 flow label value. The value is 5919 * contained in the spp_ipv6_flowlabel field. 5920 * Upon retrieval, this flag will be set to indicate that 5921 * the spp_ipv6_flowlabel field has a valid value returned. 5922 * If a specific destination address is set (in the 5923 * spp_address field), then the value returned is that of 5924 * the address. If just an association is specified (and 5925 * no address), then the association's default flow label 5926 * is returned. If neither an association nor a destination 5927 * is specified, then the socket's default flow label is 5928 * returned. For non-IPv6 sockets, this flag will be left 5929 * cleared. 5930 * 5931 * SPP_DSCP: Setting this flag enables the setting of the 5932 * Differentiated Services Code Point (DSCP) value 5933 * associated with either the association or a specific 5934 * address. The value is obtained in the spp_dscp field. 5935 * Upon retrieval, this flag will be set to indicate that 5936 * the spp_dscp field has a valid value returned. If a 5937 * specific destination address is set when called (in the 5938 * spp_address field), then that specific destination 5939 * address's DSCP value is returned. If just an association 5940 * is specified, then the association's default DSCP is 5941 * returned. If neither an association nor a destination is 5942 * specified, then the socket's default DSCP is returned. 5943 * 5944 * spp_ipv6_flowlabel 5945 * - This field is used in conjunction with the 5946 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5947 * The 20 least significant bits are used for the flow 5948 * label. This setting has precedence over any IPv6-layer 5949 * setting. 5950 * 5951 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5952 * and contains the DSCP. The 6 most significant bits are 5953 * used for the DSCP. This setting has precedence over any 5954 * IPv4- or IPv6- layer setting. 5955 */ 5956 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5957 char __user *optval, int __user *optlen) 5958 { 5959 struct sctp_paddrparams params; 5960 struct sctp_transport *trans = NULL; 5961 struct sctp_association *asoc = NULL; 5962 struct sctp_sock *sp = sctp_sk(sk); 5963 5964 if (len >= sizeof(params)) 5965 len = sizeof(params); 5966 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 5967 spp_ipv6_flowlabel), 4)) 5968 len = ALIGN(offsetof(struct sctp_paddrparams, 5969 spp_ipv6_flowlabel), 4); 5970 else 5971 return -EINVAL; 5972 5973 if (copy_from_user(¶ms, optval, len)) 5974 return -EFAULT; 5975 5976 /* If an address other than INADDR_ANY is specified, and 5977 * no transport is found, then the request is invalid. 5978 */ 5979 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5980 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5981 params.spp_assoc_id); 5982 if (!trans) { 5983 pr_debug("%s: failed no transport\n", __func__); 5984 return -EINVAL; 5985 } 5986 } 5987 5988 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 5989 * socket is a one to many style socket, and an association 5990 * was not found, then the id was invalid. 5991 */ 5992 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5993 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 5994 sctp_style(sk, UDP)) { 5995 pr_debug("%s: failed no association\n", __func__); 5996 return -EINVAL; 5997 } 5998 5999 if (trans) { 6000 /* Fetch transport values. */ 6001 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 6002 params.spp_pathmtu = trans->pathmtu; 6003 params.spp_pathmaxrxt = trans->pathmaxrxt; 6004 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 6005 6006 /*draft-11 doesn't say what to return in spp_flags*/ 6007 params.spp_flags = trans->param_flags; 6008 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 6009 params.spp_ipv6_flowlabel = trans->flowlabel & 6010 SCTP_FLOWLABEL_VAL_MASK; 6011 params.spp_flags |= SPP_IPV6_FLOWLABEL; 6012 } 6013 if (trans->dscp & SCTP_DSCP_SET_MASK) { 6014 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 6015 params.spp_flags |= SPP_DSCP; 6016 } 6017 } else if (asoc) { 6018 /* Fetch association values. */ 6019 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 6020 params.spp_pathmtu = asoc->pathmtu; 6021 params.spp_pathmaxrxt = asoc->pathmaxrxt; 6022 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 6023 6024 /*draft-11 doesn't say what to return in spp_flags*/ 6025 params.spp_flags = asoc->param_flags; 6026 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 6027 params.spp_ipv6_flowlabel = asoc->flowlabel & 6028 SCTP_FLOWLABEL_VAL_MASK; 6029 params.spp_flags |= SPP_IPV6_FLOWLABEL; 6030 } 6031 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 6032 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 6033 params.spp_flags |= SPP_DSCP; 6034 } 6035 } else { 6036 /* Fetch socket values. */ 6037 params.spp_hbinterval = sp->hbinterval; 6038 params.spp_pathmtu = sp->pathmtu; 6039 params.spp_sackdelay = sp->sackdelay; 6040 params.spp_pathmaxrxt = sp->pathmaxrxt; 6041 6042 /*draft-11 doesn't say what to return in spp_flags*/ 6043 params.spp_flags = sp->param_flags; 6044 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 6045 params.spp_ipv6_flowlabel = sp->flowlabel & 6046 SCTP_FLOWLABEL_VAL_MASK; 6047 params.spp_flags |= SPP_IPV6_FLOWLABEL; 6048 } 6049 if (sp->dscp & SCTP_DSCP_SET_MASK) { 6050 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 6051 params.spp_flags |= SPP_DSCP; 6052 } 6053 } 6054 6055 if (copy_to_user(optval, ¶ms, len)) 6056 return -EFAULT; 6057 6058 if (put_user(len, optlen)) 6059 return -EFAULT; 6060 6061 return 0; 6062 } 6063 6064 /* 6065 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 6066 * 6067 * This option will effect the way delayed acks are performed. This 6068 * option allows you to get or set the delayed ack time, in 6069 * milliseconds. It also allows changing the delayed ack frequency. 6070 * Changing the frequency to 1 disables the delayed sack algorithm. If 6071 * the assoc_id is 0, then this sets or gets the endpoints default 6072 * values. If the assoc_id field is non-zero, then the set or get 6073 * effects the specified association for the one to many model (the 6074 * assoc_id field is ignored by the one to one model). Note that if 6075 * sack_delay or sack_freq are 0 when setting this option, then the 6076 * current values will remain unchanged. 6077 * 6078 * struct sctp_sack_info { 6079 * sctp_assoc_t sack_assoc_id; 6080 * uint32_t sack_delay; 6081 * uint32_t sack_freq; 6082 * }; 6083 * 6084 * sack_assoc_id - This parameter, indicates which association the user 6085 * is performing an action upon. Note that if this field's value is 6086 * zero then the endpoints default value is changed (effecting future 6087 * associations only). 6088 * 6089 * sack_delay - This parameter contains the number of milliseconds that 6090 * the user is requesting the delayed ACK timer be set to. Note that 6091 * this value is defined in the standard to be between 200 and 500 6092 * milliseconds. 6093 * 6094 * sack_freq - This parameter contains the number of packets that must 6095 * be received before a sack is sent without waiting for the delay 6096 * timer to expire. The default value for this is 2, setting this 6097 * value to 1 will disable the delayed sack algorithm. 6098 */ 6099 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 6100 char __user *optval, 6101 int __user *optlen) 6102 { 6103 struct sctp_sack_info params; 6104 struct sctp_association *asoc = NULL; 6105 struct sctp_sock *sp = sctp_sk(sk); 6106 6107 if (len >= sizeof(struct sctp_sack_info)) { 6108 len = sizeof(struct sctp_sack_info); 6109 6110 if (copy_from_user(¶ms, optval, len)) 6111 return -EFAULT; 6112 } else if (len == sizeof(struct sctp_assoc_value)) { 6113 pr_warn_ratelimited(DEPRECATED 6114 "%s (pid %d) " 6115 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 6116 "Use struct sctp_sack_info instead\n", 6117 current->comm, task_pid_nr(current)); 6118 if (copy_from_user(¶ms, optval, len)) 6119 return -EFAULT; 6120 } else 6121 return -EINVAL; 6122 6123 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 6124 * socket is a one to many style socket, and an association 6125 * was not found, then the id was invalid. 6126 */ 6127 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 6128 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC && 6129 sctp_style(sk, UDP)) 6130 return -EINVAL; 6131 6132 if (asoc) { 6133 /* Fetch association values. */ 6134 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 6135 params.sack_delay = jiffies_to_msecs(asoc->sackdelay); 6136 params.sack_freq = asoc->sackfreq; 6137 6138 } else { 6139 params.sack_delay = 0; 6140 params.sack_freq = 1; 6141 } 6142 } else { 6143 /* Fetch socket values. */ 6144 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 6145 params.sack_delay = sp->sackdelay; 6146 params.sack_freq = sp->sackfreq; 6147 } else { 6148 params.sack_delay = 0; 6149 params.sack_freq = 1; 6150 } 6151 } 6152 6153 if (copy_to_user(optval, ¶ms, len)) 6154 return -EFAULT; 6155 6156 if (put_user(len, optlen)) 6157 return -EFAULT; 6158 6159 return 0; 6160 } 6161 6162 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 6163 * 6164 * Applications can specify protocol parameters for the default association 6165 * initialization. The option name argument to setsockopt() and getsockopt() 6166 * is SCTP_INITMSG. 6167 * 6168 * Setting initialization parameters is effective only on an unconnected 6169 * socket (for UDP-style sockets only future associations are effected 6170 * by the change). With TCP-style sockets, this option is inherited by 6171 * sockets derived from a listener socket. 6172 */ 6173 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 6174 { 6175 if (len < sizeof(struct sctp_initmsg)) 6176 return -EINVAL; 6177 len = sizeof(struct sctp_initmsg); 6178 if (put_user(len, optlen)) 6179 return -EFAULT; 6180 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 6181 return -EFAULT; 6182 return 0; 6183 } 6184 6185 6186 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 6187 char __user *optval, int __user *optlen) 6188 { 6189 struct sctp_association *asoc; 6190 int cnt = 0; 6191 struct sctp_getaddrs getaddrs; 6192 struct sctp_transport *from; 6193 void __user *to; 6194 union sctp_addr temp; 6195 struct sctp_sock *sp = sctp_sk(sk); 6196 int addrlen; 6197 size_t space_left; 6198 int bytes_copied; 6199 6200 if (len < sizeof(struct sctp_getaddrs)) 6201 return -EINVAL; 6202 6203 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6204 return -EFAULT; 6205 6206 /* For UDP-style sockets, id specifies the association to query. */ 6207 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6208 if (!asoc) 6209 return -EINVAL; 6210 6211 to = optval + offsetof(struct sctp_getaddrs, addrs); 6212 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6213 6214 list_for_each_entry(from, &asoc->peer.transport_addr_list, 6215 transports) { 6216 memcpy(&temp, &from->ipaddr, sizeof(temp)); 6217 addrlen = sctp_get_pf_specific(sk->sk_family) 6218 ->addr_to_user(sp, &temp); 6219 if (space_left < addrlen) 6220 return -ENOMEM; 6221 if (copy_to_user(to, &temp, addrlen)) 6222 return -EFAULT; 6223 to += addrlen; 6224 cnt++; 6225 space_left -= addrlen; 6226 } 6227 6228 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 6229 return -EFAULT; 6230 bytes_copied = ((char __user *)to) - optval; 6231 if (put_user(bytes_copied, optlen)) 6232 return -EFAULT; 6233 6234 return 0; 6235 } 6236 6237 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 6238 size_t space_left, int *bytes_copied) 6239 { 6240 struct sctp_sockaddr_entry *addr; 6241 union sctp_addr temp; 6242 int cnt = 0; 6243 int addrlen; 6244 struct net *net = sock_net(sk); 6245 6246 rcu_read_lock(); 6247 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 6248 if (!addr->valid) 6249 continue; 6250 6251 if ((PF_INET == sk->sk_family) && 6252 (AF_INET6 == addr->a.sa.sa_family)) 6253 continue; 6254 if ((PF_INET6 == sk->sk_family) && 6255 inet_v6_ipv6only(sk) && 6256 (AF_INET == addr->a.sa.sa_family)) 6257 continue; 6258 memcpy(&temp, &addr->a, sizeof(temp)); 6259 if (!temp.v4.sin_port) 6260 temp.v4.sin_port = htons(port); 6261 6262 addrlen = sctp_get_pf_specific(sk->sk_family) 6263 ->addr_to_user(sctp_sk(sk), &temp); 6264 6265 if (space_left < addrlen) { 6266 cnt = -ENOMEM; 6267 break; 6268 } 6269 memcpy(to, &temp, addrlen); 6270 6271 to += addrlen; 6272 cnt++; 6273 space_left -= addrlen; 6274 *bytes_copied += addrlen; 6275 } 6276 rcu_read_unlock(); 6277 6278 return cnt; 6279 } 6280 6281 6282 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 6283 char __user *optval, int __user *optlen) 6284 { 6285 struct sctp_bind_addr *bp; 6286 struct sctp_association *asoc; 6287 int cnt = 0; 6288 struct sctp_getaddrs getaddrs; 6289 struct sctp_sockaddr_entry *addr; 6290 void __user *to; 6291 union sctp_addr temp; 6292 struct sctp_sock *sp = sctp_sk(sk); 6293 int addrlen; 6294 int err = 0; 6295 size_t space_left; 6296 int bytes_copied = 0; 6297 void *addrs; 6298 void *buf; 6299 6300 if (len < sizeof(struct sctp_getaddrs)) 6301 return -EINVAL; 6302 6303 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6304 return -EFAULT; 6305 6306 /* 6307 * For UDP-style sockets, id specifies the association to query. 6308 * If the id field is set to the value '0' then the locally bound 6309 * addresses are returned without regard to any particular 6310 * association. 6311 */ 6312 if (0 == getaddrs.assoc_id) { 6313 bp = &sctp_sk(sk)->ep->base.bind_addr; 6314 } else { 6315 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6316 if (!asoc) 6317 return -EINVAL; 6318 bp = &asoc->base.bind_addr; 6319 } 6320 6321 to = optval + offsetof(struct sctp_getaddrs, addrs); 6322 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6323 6324 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 6325 if (!addrs) 6326 return -ENOMEM; 6327 6328 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 6329 * addresses from the global local address list. 6330 */ 6331 if (sctp_list_single_entry(&bp->address_list)) { 6332 addr = list_entry(bp->address_list.next, 6333 struct sctp_sockaddr_entry, list); 6334 if (sctp_is_any(sk, &addr->a)) { 6335 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 6336 space_left, &bytes_copied); 6337 if (cnt < 0) { 6338 err = cnt; 6339 goto out; 6340 } 6341 goto copy_getaddrs; 6342 } 6343 } 6344 6345 buf = addrs; 6346 /* Protection on the bound address list is not needed since 6347 * in the socket option context we hold a socket lock and 6348 * thus the bound address list can't change. 6349 */ 6350 list_for_each_entry(addr, &bp->address_list, list) { 6351 memcpy(&temp, &addr->a, sizeof(temp)); 6352 addrlen = sctp_get_pf_specific(sk->sk_family) 6353 ->addr_to_user(sp, &temp); 6354 if (space_left < addrlen) { 6355 err = -ENOMEM; /*fixme: right error?*/ 6356 goto out; 6357 } 6358 memcpy(buf, &temp, addrlen); 6359 buf += addrlen; 6360 bytes_copied += addrlen; 6361 cnt++; 6362 space_left -= addrlen; 6363 } 6364 6365 copy_getaddrs: 6366 if (copy_to_user(to, addrs, bytes_copied)) { 6367 err = -EFAULT; 6368 goto out; 6369 } 6370 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 6371 err = -EFAULT; 6372 goto out; 6373 } 6374 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 6375 * but we can't change it anymore. 6376 */ 6377 if (put_user(bytes_copied, optlen)) 6378 err = -EFAULT; 6379 out: 6380 kfree(addrs); 6381 return err; 6382 } 6383 6384 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6385 * 6386 * Requests that the local SCTP stack use the enclosed peer address as 6387 * the association primary. The enclosed address must be one of the 6388 * association peer's addresses. 6389 */ 6390 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6391 char __user *optval, int __user *optlen) 6392 { 6393 struct sctp_prim prim; 6394 struct sctp_association *asoc; 6395 struct sctp_sock *sp = sctp_sk(sk); 6396 6397 if (len < sizeof(struct sctp_prim)) 6398 return -EINVAL; 6399 6400 len = sizeof(struct sctp_prim); 6401 6402 if (copy_from_user(&prim, optval, len)) 6403 return -EFAULT; 6404 6405 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6406 if (!asoc) 6407 return -EINVAL; 6408 6409 if (!asoc->peer.primary_path) 6410 return -ENOTCONN; 6411 6412 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6413 asoc->peer.primary_path->af_specific->sockaddr_len); 6414 6415 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6416 (union sctp_addr *)&prim.ssp_addr); 6417 6418 if (put_user(len, optlen)) 6419 return -EFAULT; 6420 if (copy_to_user(optval, &prim, len)) 6421 return -EFAULT; 6422 6423 return 0; 6424 } 6425 6426 /* 6427 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6428 * 6429 * Requests that the local endpoint set the specified Adaptation Layer 6430 * Indication parameter for all future INIT and INIT-ACK exchanges. 6431 */ 6432 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6433 char __user *optval, int __user *optlen) 6434 { 6435 struct sctp_setadaptation adaptation; 6436 6437 if (len < sizeof(struct sctp_setadaptation)) 6438 return -EINVAL; 6439 6440 len = sizeof(struct sctp_setadaptation); 6441 6442 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6443 6444 if (put_user(len, optlen)) 6445 return -EFAULT; 6446 if (copy_to_user(optval, &adaptation, len)) 6447 return -EFAULT; 6448 6449 return 0; 6450 } 6451 6452 /* 6453 * 6454 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6455 * 6456 * Applications that wish to use the sendto() system call may wish to 6457 * specify a default set of parameters that would normally be supplied 6458 * through the inclusion of ancillary data. This socket option allows 6459 * such an application to set the default sctp_sndrcvinfo structure. 6460 6461 6462 * The application that wishes to use this socket option simply passes 6463 * in to this call the sctp_sndrcvinfo structure defined in Section 6464 * 5.2.2) The input parameters accepted by this call include 6465 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6466 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6467 * to this call if the caller is using the UDP model. 6468 * 6469 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6470 */ 6471 static int sctp_getsockopt_default_send_param(struct sock *sk, 6472 int len, char __user *optval, 6473 int __user *optlen) 6474 { 6475 struct sctp_sock *sp = sctp_sk(sk); 6476 struct sctp_association *asoc; 6477 struct sctp_sndrcvinfo info; 6478 6479 if (len < sizeof(info)) 6480 return -EINVAL; 6481 6482 len = sizeof(info); 6483 6484 if (copy_from_user(&info, optval, len)) 6485 return -EFAULT; 6486 6487 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6488 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC && 6489 sctp_style(sk, UDP)) 6490 return -EINVAL; 6491 6492 if (asoc) { 6493 info.sinfo_stream = asoc->default_stream; 6494 info.sinfo_flags = asoc->default_flags; 6495 info.sinfo_ppid = asoc->default_ppid; 6496 info.sinfo_context = asoc->default_context; 6497 info.sinfo_timetolive = asoc->default_timetolive; 6498 } else { 6499 info.sinfo_stream = sp->default_stream; 6500 info.sinfo_flags = sp->default_flags; 6501 info.sinfo_ppid = sp->default_ppid; 6502 info.sinfo_context = sp->default_context; 6503 info.sinfo_timetolive = sp->default_timetolive; 6504 } 6505 6506 if (put_user(len, optlen)) 6507 return -EFAULT; 6508 if (copy_to_user(optval, &info, len)) 6509 return -EFAULT; 6510 6511 return 0; 6512 } 6513 6514 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6515 * (SCTP_DEFAULT_SNDINFO) 6516 */ 6517 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6518 char __user *optval, 6519 int __user *optlen) 6520 { 6521 struct sctp_sock *sp = sctp_sk(sk); 6522 struct sctp_association *asoc; 6523 struct sctp_sndinfo info; 6524 6525 if (len < sizeof(info)) 6526 return -EINVAL; 6527 6528 len = sizeof(info); 6529 6530 if (copy_from_user(&info, optval, len)) 6531 return -EFAULT; 6532 6533 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6534 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC && 6535 sctp_style(sk, UDP)) 6536 return -EINVAL; 6537 6538 if (asoc) { 6539 info.snd_sid = asoc->default_stream; 6540 info.snd_flags = asoc->default_flags; 6541 info.snd_ppid = asoc->default_ppid; 6542 info.snd_context = asoc->default_context; 6543 } else { 6544 info.snd_sid = sp->default_stream; 6545 info.snd_flags = sp->default_flags; 6546 info.snd_ppid = sp->default_ppid; 6547 info.snd_context = sp->default_context; 6548 } 6549 6550 if (put_user(len, optlen)) 6551 return -EFAULT; 6552 if (copy_to_user(optval, &info, len)) 6553 return -EFAULT; 6554 6555 return 0; 6556 } 6557 6558 /* 6559 * 6560 * 7.1.5 SCTP_NODELAY 6561 * 6562 * Turn on/off any Nagle-like algorithm. This means that packets are 6563 * generally sent as soon as possible and no unnecessary delays are 6564 * introduced, at the cost of more packets in the network. Expects an 6565 * integer boolean flag. 6566 */ 6567 6568 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6569 char __user *optval, int __user *optlen) 6570 { 6571 int val; 6572 6573 if (len < sizeof(int)) 6574 return -EINVAL; 6575 6576 len = sizeof(int); 6577 val = (sctp_sk(sk)->nodelay == 1); 6578 if (put_user(len, optlen)) 6579 return -EFAULT; 6580 if (copy_to_user(optval, &val, len)) 6581 return -EFAULT; 6582 return 0; 6583 } 6584 6585 /* 6586 * 6587 * 7.1.1 SCTP_RTOINFO 6588 * 6589 * The protocol parameters used to initialize and bound retransmission 6590 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6591 * and modify these parameters. 6592 * All parameters are time values, in milliseconds. A value of 0, when 6593 * modifying the parameters, indicates that the current value should not 6594 * be changed. 6595 * 6596 */ 6597 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6598 char __user *optval, 6599 int __user *optlen) { 6600 struct sctp_rtoinfo rtoinfo; 6601 struct sctp_association *asoc; 6602 6603 if (len < sizeof (struct sctp_rtoinfo)) 6604 return -EINVAL; 6605 6606 len = sizeof(struct sctp_rtoinfo); 6607 6608 if (copy_from_user(&rtoinfo, optval, len)) 6609 return -EFAULT; 6610 6611 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6612 6613 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 6614 sctp_style(sk, UDP)) 6615 return -EINVAL; 6616 6617 /* Values corresponding to the specific association. */ 6618 if (asoc) { 6619 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6620 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6621 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6622 } else { 6623 /* Values corresponding to the endpoint. */ 6624 struct sctp_sock *sp = sctp_sk(sk); 6625 6626 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6627 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6628 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6629 } 6630 6631 if (put_user(len, optlen)) 6632 return -EFAULT; 6633 6634 if (copy_to_user(optval, &rtoinfo, len)) 6635 return -EFAULT; 6636 6637 return 0; 6638 } 6639 6640 /* 6641 * 6642 * 7.1.2 SCTP_ASSOCINFO 6643 * 6644 * This option is used to tune the maximum retransmission attempts 6645 * of the association. 6646 * Returns an error if the new association retransmission value is 6647 * greater than the sum of the retransmission value of the peer. 6648 * See [SCTP] for more information. 6649 * 6650 */ 6651 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6652 char __user *optval, 6653 int __user *optlen) 6654 { 6655 6656 struct sctp_assocparams assocparams; 6657 struct sctp_association *asoc; 6658 struct list_head *pos; 6659 int cnt = 0; 6660 6661 if (len < sizeof (struct sctp_assocparams)) 6662 return -EINVAL; 6663 6664 len = sizeof(struct sctp_assocparams); 6665 6666 if (copy_from_user(&assocparams, optval, len)) 6667 return -EFAULT; 6668 6669 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6670 6671 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 6672 sctp_style(sk, UDP)) 6673 return -EINVAL; 6674 6675 /* Values correspoinding to the specific association */ 6676 if (asoc) { 6677 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6678 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6679 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6680 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6681 6682 list_for_each(pos, &asoc->peer.transport_addr_list) { 6683 cnt++; 6684 } 6685 6686 assocparams.sasoc_number_peer_destinations = cnt; 6687 } else { 6688 /* Values corresponding to the endpoint */ 6689 struct sctp_sock *sp = sctp_sk(sk); 6690 6691 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6692 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6693 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6694 assocparams.sasoc_cookie_life = 6695 sp->assocparams.sasoc_cookie_life; 6696 assocparams.sasoc_number_peer_destinations = 6697 sp->assocparams. 6698 sasoc_number_peer_destinations; 6699 } 6700 6701 if (put_user(len, optlen)) 6702 return -EFAULT; 6703 6704 if (copy_to_user(optval, &assocparams, len)) 6705 return -EFAULT; 6706 6707 return 0; 6708 } 6709 6710 /* 6711 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6712 * 6713 * This socket option is a boolean flag which turns on or off mapped V4 6714 * addresses. If this option is turned on and the socket is type 6715 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6716 * If this option is turned off, then no mapping will be done of V4 6717 * addresses and a user will receive both PF_INET6 and PF_INET type 6718 * addresses on the socket. 6719 */ 6720 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6721 char __user *optval, int __user *optlen) 6722 { 6723 int val; 6724 struct sctp_sock *sp = sctp_sk(sk); 6725 6726 if (len < sizeof(int)) 6727 return -EINVAL; 6728 6729 len = sizeof(int); 6730 val = sp->v4mapped; 6731 if (put_user(len, optlen)) 6732 return -EFAULT; 6733 if (copy_to_user(optval, &val, len)) 6734 return -EFAULT; 6735 6736 return 0; 6737 } 6738 6739 /* 6740 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6741 * (chapter and verse is quoted at sctp_setsockopt_context()) 6742 */ 6743 static int sctp_getsockopt_context(struct sock *sk, int len, 6744 char __user *optval, int __user *optlen) 6745 { 6746 struct sctp_assoc_value params; 6747 struct sctp_association *asoc; 6748 6749 if (len < sizeof(struct sctp_assoc_value)) 6750 return -EINVAL; 6751 6752 len = sizeof(struct sctp_assoc_value); 6753 6754 if (copy_from_user(¶ms, optval, len)) 6755 return -EFAULT; 6756 6757 asoc = sctp_id2assoc(sk, params.assoc_id); 6758 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6759 sctp_style(sk, UDP)) 6760 return -EINVAL; 6761 6762 params.assoc_value = asoc ? asoc->default_rcv_context 6763 : sctp_sk(sk)->default_rcv_context; 6764 6765 if (put_user(len, optlen)) 6766 return -EFAULT; 6767 if (copy_to_user(optval, ¶ms, len)) 6768 return -EFAULT; 6769 6770 return 0; 6771 } 6772 6773 /* 6774 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6775 * This option will get or set the maximum size to put in any outgoing 6776 * SCTP DATA chunk. If a message is larger than this size it will be 6777 * fragmented by SCTP into the specified size. Note that the underlying 6778 * SCTP implementation may fragment into smaller sized chunks when the 6779 * PMTU of the underlying association is smaller than the value set by 6780 * the user. The default value for this option is '0' which indicates 6781 * the user is NOT limiting fragmentation and only the PMTU will effect 6782 * SCTP's choice of DATA chunk size. Note also that values set larger 6783 * than the maximum size of an IP datagram will effectively let SCTP 6784 * control fragmentation (i.e. the same as setting this option to 0). 6785 * 6786 * The following structure is used to access and modify this parameter: 6787 * 6788 * struct sctp_assoc_value { 6789 * sctp_assoc_t assoc_id; 6790 * uint32_t assoc_value; 6791 * }; 6792 * 6793 * assoc_id: This parameter is ignored for one-to-one style sockets. 6794 * For one-to-many style sockets this parameter indicates which 6795 * association the user is performing an action upon. Note that if 6796 * this field's value is zero then the endpoints default value is 6797 * changed (effecting future associations only). 6798 * assoc_value: This parameter specifies the maximum size in bytes. 6799 */ 6800 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6801 char __user *optval, int __user *optlen) 6802 { 6803 struct sctp_assoc_value params; 6804 struct sctp_association *asoc; 6805 6806 if (len == sizeof(int)) { 6807 pr_warn_ratelimited(DEPRECATED 6808 "%s (pid %d) " 6809 "Use of int in maxseg socket option.\n" 6810 "Use struct sctp_assoc_value instead\n", 6811 current->comm, task_pid_nr(current)); 6812 params.assoc_id = SCTP_FUTURE_ASSOC; 6813 } else if (len >= sizeof(struct sctp_assoc_value)) { 6814 len = sizeof(struct sctp_assoc_value); 6815 if (copy_from_user(¶ms, optval, len)) 6816 return -EFAULT; 6817 } else 6818 return -EINVAL; 6819 6820 asoc = sctp_id2assoc(sk, params.assoc_id); 6821 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6822 sctp_style(sk, UDP)) 6823 return -EINVAL; 6824 6825 if (asoc) 6826 params.assoc_value = asoc->frag_point; 6827 else 6828 params.assoc_value = sctp_sk(sk)->user_frag; 6829 6830 if (put_user(len, optlen)) 6831 return -EFAULT; 6832 if (len == sizeof(int)) { 6833 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6834 return -EFAULT; 6835 } else { 6836 if (copy_to_user(optval, ¶ms, len)) 6837 return -EFAULT; 6838 } 6839 6840 return 0; 6841 } 6842 6843 /* 6844 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6845 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6846 */ 6847 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6848 char __user *optval, int __user *optlen) 6849 { 6850 int val; 6851 6852 if (len < sizeof(int)) 6853 return -EINVAL; 6854 6855 len = sizeof(int); 6856 6857 val = sctp_sk(sk)->frag_interleave; 6858 if (put_user(len, optlen)) 6859 return -EFAULT; 6860 if (copy_to_user(optval, &val, len)) 6861 return -EFAULT; 6862 6863 return 0; 6864 } 6865 6866 /* 6867 * 7.1.25. Set or Get the sctp partial delivery point 6868 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6869 */ 6870 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6871 char __user *optval, 6872 int __user *optlen) 6873 { 6874 u32 val; 6875 6876 if (len < sizeof(u32)) 6877 return -EINVAL; 6878 6879 len = sizeof(u32); 6880 6881 val = sctp_sk(sk)->pd_point; 6882 if (put_user(len, optlen)) 6883 return -EFAULT; 6884 if (copy_to_user(optval, &val, len)) 6885 return -EFAULT; 6886 6887 return 0; 6888 } 6889 6890 /* 6891 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6892 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6893 */ 6894 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6895 char __user *optval, 6896 int __user *optlen) 6897 { 6898 struct sctp_assoc_value params; 6899 struct sctp_association *asoc; 6900 6901 if (len == sizeof(int)) { 6902 pr_warn_ratelimited(DEPRECATED 6903 "%s (pid %d) " 6904 "Use of int in max_burst socket option.\n" 6905 "Use struct sctp_assoc_value instead\n", 6906 current->comm, task_pid_nr(current)); 6907 params.assoc_id = SCTP_FUTURE_ASSOC; 6908 } else if (len >= sizeof(struct sctp_assoc_value)) { 6909 len = sizeof(struct sctp_assoc_value); 6910 if (copy_from_user(¶ms, optval, len)) 6911 return -EFAULT; 6912 } else 6913 return -EINVAL; 6914 6915 asoc = sctp_id2assoc(sk, params.assoc_id); 6916 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6917 sctp_style(sk, UDP)) 6918 return -EINVAL; 6919 6920 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst; 6921 6922 if (len == sizeof(int)) { 6923 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6924 return -EFAULT; 6925 } else { 6926 if (copy_to_user(optval, ¶ms, len)) 6927 return -EFAULT; 6928 } 6929 6930 return 0; 6931 6932 } 6933 6934 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6935 char __user *optval, int __user *optlen) 6936 { 6937 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6938 struct sctp_hmacalgo __user *p = (void __user *)optval; 6939 struct sctp_hmac_algo_param *hmacs; 6940 __u16 data_len = 0; 6941 u32 num_idents; 6942 int i; 6943 6944 if (!ep->auth_enable) 6945 return -EACCES; 6946 6947 hmacs = ep->auth_hmacs_list; 6948 data_len = ntohs(hmacs->param_hdr.length) - 6949 sizeof(struct sctp_paramhdr); 6950 6951 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6952 return -EINVAL; 6953 6954 len = sizeof(struct sctp_hmacalgo) + data_len; 6955 num_idents = data_len / sizeof(u16); 6956 6957 if (put_user(len, optlen)) 6958 return -EFAULT; 6959 if (put_user(num_idents, &p->shmac_num_idents)) 6960 return -EFAULT; 6961 for (i = 0; i < num_idents; i++) { 6962 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6963 6964 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6965 return -EFAULT; 6966 } 6967 return 0; 6968 } 6969 6970 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6971 char __user *optval, int __user *optlen) 6972 { 6973 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6974 struct sctp_authkeyid val; 6975 struct sctp_association *asoc; 6976 6977 if (len < sizeof(struct sctp_authkeyid)) 6978 return -EINVAL; 6979 6980 len = sizeof(struct sctp_authkeyid); 6981 if (copy_from_user(&val, optval, len)) 6982 return -EFAULT; 6983 6984 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6985 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6986 return -EINVAL; 6987 6988 if (asoc) { 6989 if (!asoc->peer.auth_capable) 6990 return -EACCES; 6991 val.scact_keynumber = asoc->active_key_id; 6992 } else { 6993 if (!ep->auth_enable) 6994 return -EACCES; 6995 val.scact_keynumber = ep->active_key_id; 6996 } 6997 6998 if (put_user(len, optlen)) 6999 return -EFAULT; 7000 if (copy_to_user(optval, &val, len)) 7001 return -EFAULT; 7002 7003 return 0; 7004 } 7005 7006 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 7007 char __user *optval, int __user *optlen) 7008 { 7009 struct sctp_authchunks __user *p = (void __user *)optval; 7010 struct sctp_authchunks val; 7011 struct sctp_association *asoc; 7012 struct sctp_chunks_param *ch; 7013 u32 num_chunks = 0; 7014 char __user *to; 7015 7016 if (len < sizeof(struct sctp_authchunks)) 7017 return -EINVAL; 7018 7019 if (copy_from_user(&val, optval, sizeof(val))) 7020 return -EFAULT; 7021 7022 to = p->gauth_chunks; 7023 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 7024 if (!asoc) 7025 return -EINVAL; 7026 7027 if (!asoc->peer.auth_capable) 7028 return -EACCES; 7029 7030 ch = asoc->peer.peer_chunks; 7031 if (!ch) 7032 goto num; 7033 7034 /* See if the user provided enough room for all the data */ 7035 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7036 if (len < num_chunks) 7037 return -EINVAL; 7038 7039 if (copy_to_user(to, ch->chunks, num_chunks)) 7040 return -EFAULT; 7041 num: 7042 len = sizeof(struct sctp_authchunks) + num_chunks; 7043 if (put_user(len, optlen)) 7044 return -EFAULT; 7045 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7046 return -EFAULT; 7047 return 0; 7048 } 7049 7050 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 7051 char __user *optval, int __user *optlen) 7052 { 7053 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7054 struct sctp_authchunks __user *p = (void __user *)optval; 7055 struct sctp_authchunks val; 7056 struct sctp_association *asoc; 7057 struct sctp_chunks_param *ch; 7058 u32 num_chunks = 0; 7059 char __user *to; 7060 7061 if (len < sizeof(struct sctp_authchunks)) 7062 return -EINVAL; 7063 7064 if (copy_from_user(&val, optval, sizeof(val))) 7065 return -EFAULT; 7066 7067 to = p->gauth_chunks; 7068 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 7069 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC && 7070 sctp_style(sk, UDP)) 7071 return -EINVAL; 7072 7073 if (asoc) { 7074 if (!asoc->peer.auth_capable) 7075 return -EACCES; 7076 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 7077 } else { 7078 if (!ep->auth_enable) 7079 return -EACCES; 7080 ch = ep->auth_chunk_list; 7081 } 7082 if (!ch) 7083 goto num; 7084 7085 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7086 if (len < sizeof(struct sctp_authchunks) + num_chunks) 7087 return -EINVAL; 7088 7089 if (copy_to_user(to, ch->chunks, num_chunks)) 7090 return -EFAULT; 7091 num: 7092 len = sizeof(struct sctp_authchunks) + num_chunks; 7093 if (put_user(len, optlen)) 7094 return -EFAULT; 7095 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7096 return -EFAULT; 7097 7098 return 0; 7099 } 7100 7101 /* 7102 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 7103 * This option gets the current number of associations that are attached 7104 * to a one-to-many style socket. The option value is an uint32_t. 7105 */ 7106 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 7107 char __user *optval, int __user *optlen) 7108 { 7109 struct sctp_sock *sp = sctp_sk(sk); 7110 struct sctp_association *asoc; 7111 u32 val = 0; 7112 7113 if (sctp_style(sk, TCP)) 7114 return -EOPNOTSUPP; 7115 7116 if (len < sizeof(u32)) 7117 return -EINVAL; 7118 7119 len = sizeof(u32); 7120 7121 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7122 val++; 7123 } 7124 7125 if (put_user(len, optlen)) 7126 return -EFAULT; 7127 if (copy_to_user(optval, &val, len)) 7128 return -EFAULT; 7129 7130 return 0; 7131 } 7132 7133 /* 7134 * 8.1.23 SCTP_AUTO_ASCONF 7135 * See the corresponding setsockopt entry as description 7136 */ 7137 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 7138 char __user *optval, int __user *optlen) 7139 { 7140 int val = 0; 7141 7142 if (len < sizeof(int)) 7143 return -EINVAL; 7144 7145 len = sizeof(int); 7146 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 7147 val = 1; 7148 if (put_user(len, optlen)) 7149 return -EFAULT; 7150 if (copy_to_user(optval, &val, len)) 7151 return -EFAULT; 7152 return 0; 7153 } 7154 7155 /* 7156 * 8.2.6. Get the Current Identifiers of Associations 7157 * (SCTP_GET_ASSOC_ID_LIST) 7158 * 7159 * This option gets the current list of SCTP association identifiers of 7160 * the SCTP associations handled by a one-to-many style socket. 7161 */ 7162 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 7163 char __user *optval, int __user *optlen) 7164 { 7165 struct sctp_sock *sp = sctp_sk(sk); 7166 struct sctp_association *asoc; 7167 struct sctp_assoc_ids *ids; 7168 size_t ids_size; 7169 u32 num = 0; 7170 7171 if (sctp_style(sk, TCP)) 7172 return -EOPNOTSUPP; 7173 7174 if (len < sizeof(struct sctp_assoc_ids)) 7175 return -EINVAL; 7176 7177 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7178 num++; 7179 } 7180 7181 ids_size = struct_size(ids, gaids_assoc_id, num); 7182 if (len < ids_size) 7183 return -EINVAL; 7184 7185 len = ids_size; 7186 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 7187 if (unlikely(!ids)) 7188 return -ENOMEM; 7189 7190 ids->gaids_number_of_ids = num; 7191 num = 0; 7192 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7193 ids->gaids_assoc_id[num++] = asoc->assoc_id; 7194 } 7195 7196 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 7197 kfree(ids); 7198 return -EFAULT; 7199 } 7200 7201 kfree(ids); 7202 return 0; 7203 } 7204 7205 /* 7206 * SCTP_PEER_ADDR_THLDS 7207 * 7208 * This option allows us to fetch the partially failed threshold for one or all 7209 * transports in an association. See Section 6.1 of: 7210 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 7211 */ 7212 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 7213 char __user *optval, int len, 7214 int __user *optlen, bool v2) 7215 { 7216 struct sctp_paddrthlds_v2 val; 7217 struct sctp_transport *trans; 7218 struct sctp_association *asoc; 7219 int min; 7220 7221 min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds); 7222 if (len < min) 7223 return -EINVAL; 7224 len = min; 7225 if (copy_from_user(&val, optval, len)) 7226 return -EFAULT; 7227 7228 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 7229 trans = sctp_addr_id2transport(sk, &val.spt_address, 7230 val.spt_assoc_id); 7231 if (!trans) 7232 return -ENOENT; 7233 7234 val.spt_pathmaxrxt = trans->pathmaxrxt; 7235 val.spt_pathpfthld = trans->pf_retrans; 7236 val.spt_pathcpthld = trans->ps_retrans; 7237 7238 goto out; 7239 } 7240 7241 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 7242 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 7243 sctp_style(sk, UDP)) 7244 return -EINVAL; 7245 7246 if (asoc) { 7247 val.spt_pathpfthld = asoc->pf_retrans; 7248 val.spt_pathmaxrxt = asoc->pathmaxrxt; 7249 val.spt_pathcpthld = asoc->ps_retrans; 7250 } else { 7251 struct sctp_sock *sp = sctp_sk(sk); 7252 7253 val.spt_pathpfthld = sp->pf_retrans; 7254 val.spt_pathmaxrxt = sp->pathmaxrxt; 7255 val.spt_pathcpthld = sp->ps_retrans; 7256 } 7257 7258 out: 7259 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 7260 return -EFAULT; 7261 7262 return 0; 7263 } 7264 7265 /* 7266 * SCTP_GET_ASSOC_STATS 7267 * 7268 * This option retrieves local per endpoint statistics. It is modeled 7269 * after OpenSolaris' implementation 7270 */ 7271 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 7272 char __user *optval, 7273 int __user *optlen) 7274 { 7275 struct sctp_assoc_stats sas; 7276 struct sctp_association *asoc = NULL; 7277 7278 /* User must provide at least the assoc id */ 7279 if (len < sizeof(sctp_assoc_t)) 7280 return -EINVAL; 7281 7282 /* Allow the struct to grow and fill in as much as possible */ 7283 len = min_t(size_t, len, sizeof(sas)); 7284 7285 if (copy_from_user(&sas, optval, len)) 7286 return -EFAULT; 7287 7288 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 7289 if (!asoc) 7290 return -EINVAL; 7291 7292 sas.sas_rtxchunks = asoc->stats.rtxchunks; 7293 sas.sas_gapcnt = asoc->stats.gapcnt; 7294 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 7295 sas.sas_osacks = asoc->stats.osacks; 7296 sas.sas_isacks = asoc->stats.isacks; 7297 sas.sas_octrlchunks = asoc->stats.octrlchunks; 7298 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 7299 sas.sas_oodchunks = asoc->stats.oodchunks; 7300 sas.sas_iodchunks = asoc->stats.iodchunks; 7301 sas.sas_ouodchunks = asoc->stats.ouodchunks; 7302 sas.sas_iuodchunks = asoc->stats.iuodchunks; 7303 sas.sas_idupchunks = asoc->stats.idupchunks; 7304 sas.sas_opackets = asoc->stats.opackets; 7305 sas.sas_ipackets = asoc->stats.ipackets; 7306 7307 /* New high max rto observed, will return 0 if not a single 7308 * RTO update took place. obs_rto_ipaddr will be bogus 7309 * in such a case 7310 */ 7311 sas.sas_maxrto = asoc->stats.max_obs_rto; 7312 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 7313 sizeof(struct sockaddr_storage)); 7314 7315 /* Mark beginning of a new observation period */ 7316 asoc->stats.max_obs_rto = asoc->rto_min; 7317 7318 if (put_user(len, optlen)) 7319 return -EFAULT; 7320 7321 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 7322 7323 if (copy_to_user(optval, &sas, len)) 7324 return -EFAULT; 7325 7326 return 0; 7327 } 7328 7329 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 7330 char __user *optval, 7331 int __user *optlen) 7332 { 7333 int val = 0; 7334 7335 if (len < sizeof(int)) 7336 return -EINVAL; 7337 7338 len = sizeof(int); 7339 if (sctp_sk(sk)->recvrcvinfo) 7340 val = 1; 7341 if (put_user(len, optlen)) 7342 return -EFAULT; 7343 if (copy_to_user(optval, &val, len)) 7344 return -EFAULT; 7345 7346 return 0; 7347 } 7348 7349 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 7350 char __user *optval, 7351 int __user *optlen) 7352 { 7353 int val = 0; 7354 7355 if (len < sizeof(int)) 7356 return -EINVAL; 7357 7358 len = sizeof(int); 7359 if (sctp_sk(sk)->recvnxtinfo) 7360 val = 1; 7361 if (put_user(len, optlen)) 7362 return -EFAULT; 7363 if (copy_to_user(optval, &val, len)) 7364 return -EFAULT; 7365 7366 return 0; 7367 } 7368 7369 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 7370 char __user *optval, 7371 int __user *optlen) 7372 { 7373 struct sctp_assoc_value params; 7374 struct sctp_association *asoc; 7375 int retval = -EFAULT; 7376 7377 if (len < sizeof(params)) { 7378 retval = -EINVAL; 7379 goto out; 7380 } 7381 7382 len = sizeof(params); 7383 if (copy_from_user(¶ms, optval, len)) 7384 goto out; 7385 7386 asoc = sctp_id2assoc(sk, params.assoc_id); 7387 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7388 sctp_style(sk, UDP)) { 7389 retval = -EINVAL; 7390 goto out; 7391 } 7392 7393 params.assoc_value = asoc ? asoc->peer.prsctp_capable 7394 : sctp_sk(sk)->ep->prsctp_enable; 7395 7396 if (put_user(len, optlen)) 7397 goto out; 7398 7399 if (copy_to_user(optval, ¶ms, len)) 7400 goto out; 7401 7402 retval = 0; 7403 7404 out: 7405 return retval; 7406 } 7407 7408 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7409 char __user *optval, 7410 int __user *optlen) 7411 { 7412 struct sctp_default_prinfo info; 7413 struct sctp_association *asoc; 7414 int retval = -EFAULT; 7415 7416 if (len < sizeof(info)) { 7417 retval = -EINVAL; 7418 goto out; 7419 } 7420 7421 len = sizeof(info); 7422 if (copy_from_user(&info, optval, len)) 7423 goto out; 7424 7425 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7426 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC && 7427 sctp_style(sk, UDP)) { 7428 retval = -EINVAL; 7429 goto out; 7430 } 7431 7432 if (asoc) { 7433 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7434 info.pr_value = asoc->default_timetolive; 7435 } else { 7436 struct sctp_sock *sp = sctp_sk(sk); 7437 7438 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7439 info.pr_value = sp->default_timetolive; 7440 } 7441 7442 if (put_user(len, optlen)) 7443 goto out; 7444 7445 if (copy_to_user(optval, &info, len)) 7446 goto out; 7447 7448 retval = 0; 7449 7450 out: 7451 return retval; 7452 } 7453 7454 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7455 char __user *optval, 7456 int __user *optlen) 7457 { 7458 struct sctp_prstatus params; 7459 struct sctp_association *asoc; 7460 int policy; 7461 int retval = -EINVAL; 7462 7463 if (len < sizeof(params)) 7464 goto out; 7465 7466 len = sizeof(params); 7467 if (copy_from_user(¶ms, optval, len)) { 7468 retval = -EFAULT; 7469 goto out; 7470 } 7471 7472 policy = params.sprstat_policy; 7473 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7474 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7475 goto out; 7476 7477 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7478 if (!asoc) 7479 goto out; 7480 7481 if (policy == SCTP_PR_SCTP_ALL) { 7482 params.sprstat_abandoned_unsent = 0; 7483 params.sprstat_abandoned_sent = 0; 7484 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7485 params.sprstat_abandoned_unsent += 7486 asoc->abandoned_unsent[policy]; 7487 params.sprstat_abandoned_sent += 7488 asoc->abandoned_sent[policy]; 7489 } 7490 } else { 7491 params.sprstat_abandoned_unsent = 7492 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7493 params.sprstat_abandoned_sent = 7494 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7495 } 7496 7497 if (put_user(len, optlen)) { 7498 retval = -EFAULT; 7499 goto out; 7500 } 7501 7502 if (copy_to_user(optval, ¶ms, len)) { 7503 retval = -EFAULT; 7504 goto out; 7505 } 7506 7507 retval = 0; 7508 7509 out: 7510 return retval; 7511 } 7512 7513 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7514 char __user *optval, 7515 int __user *optlen) 7516 { 7517 struct sctp_stream_out_ext *streamoute; 7518 struct sctp_association *asoc; 7519 struct sctp_prstatus params; 7520 int retval = -EINVAL; 7521 int policy; 7522 7523 if (len < sizeof(params)) 7524 goto out; 7525 7526 len = sizeof(params); 7527 if (copy_from_user(¶ms, optval, len)) { 7528 retval = -EFAULT; 7529 goto out; 7530 } 7531 7532 policy = params.sprstat_policy; 7533 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7534 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7535 goto out; 7536 7537 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7538 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7539 goto out; 7540 7541 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; 7542 if (!streamoute) { 7543 /* Not allocated yet, means all stats are 0 */ 7544 params.sprstat_abandoned_unsent = 0; 7545 params.sprstat_abandoned_sent = 0; 7546 retval = 0; 7547 goto out; 7548 } 7549 7550 if (policy == SCTP_PR_SCTP_ALL) { 7551 params.sprstat_abandoned_unsent = 0; 7552 params.sprstat_abandoned_sent = 0; 7553 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7554 params.sprstat_abandoned_unsent += 7555 streamoute->abandoned_unsent[policy]; 7556 params.sprstat_abandoned_sent += 7557 streamoute->abandoned_sent[policy]; 7558 } 7559 } else { 7560 params.sprstat_abandoned_unsent = 7561 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7562 params.sprstat_abandoned_sent = 7563 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7564 } 7565 7566 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7567 retval = -EFAULT; 7568 goto out; 7569 } 7570 7571 retval = 0; 7572 7573 out: 7574 return retval; 7575 } 7576 7577 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7578 char __user *optval, 7579 int __user *optlen) 7580 { 7581 struct sctp_assoc_value params; 7582 struct sctp_association *asoc; 7583 int retval = -EFAULT; 7584 7585 if (len < sizeof(params)) { 7586 retval = -EINVAL; 7587 goto out; 7588 } 7589 7590 len = sizeof(params); 7591 if (copy_from_user(¶ms, optval, len)) 7592 goto out; 7593 7594 asoc = sctp_id2assoc(sk, params.assoc_id); 7595 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7596 sctp_style(sk, UDP)) { 7597 retval = -EINVAL; 7598 goto out; 7599 } 7600 7601 params.assoc_value = asoc ? asoc->peer.reconf_capable 7602 : sctp_sk(sk)->ep->reconf_enable; 7603 7604 if (put_user(len, optlen)) 7605 goto out; 7606 7607 if (copy_to_user(optval, ¶ms, len)) 7608 goto out; 7609 7610 retval = 0; 7611 7612 out: 7613 return retval; 7614 } 7615 7616 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7617 char __user *optval, 7618 int __user *optlen) 7619 { 7620 struct sctp_assoc_value params; 7621 struct sctp_association *asoc; 7622 int retval = -EFAULT; 7623 7624 if (len < sizeof(params)) { 7625 retval = -EINVAL; 7626 goto out; 7627 } 7628 7629 len = sizeof(params); 7630 if (copy_from_user(¶ms, optval, len)) 7631 goto out; 7632 7633 asoc = sctp_id2assoc(sk, params.assoc_id); 7634 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7635 sctp_style(sk, UDP)) { 7636 retval = -EINVAL; 7637 goto out; 7638 } 7639 7640 params.assoc_value = asoc ? asoc->strreset_enable 7641 : sctp_sk(sk)->ep->strreset_enable; 7642 7643 if (put_user(len, optlen)) 7644 goto out; 7645 7646 if (copy_to_user(optval, ¶ms, len)) 7647 goto out; 7648 7649 retval = 0; 7650 7651 out: 7652 return retval; 7653 } 7654 7655 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7656 char __user *optval, 7657 int __user *optlen) 7658 { 7659 struct sctp_assoc_value params; 7660 struct sctp_association *asoc; 7661 int retval = -EFAULT; 7662 7663 if (len < sizeof(params)) { 7664 retval = -EINVAL; 7665 goto out; 7666 } 7667 7668 len = sizeof(params); 7669 if (copy_from_user(¶ms, optval, len)) 7670 goto out; 7671 7672 asoc = sctp_id2assoc(sk, params.assoc_id); 7673 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7674 sctp_style(sk, UDP)) { 7675 retval = -EINVAL; 7676 goto out; 7677 } 7678 7679 params.assoc_value = asoc ? sctp_sched_get_sched(asoc) 7680 : sctp_sk(sk)->default_ss; 7681 7682 if (put_user(len, optlen)) 7683 goto out; 7684 7685 if (copy_to_user(optval, ¶ms, len)) 7686 goto out; 7687 7688 retval = 0; 7689 7690 out: 7691 return retval; 7692 } 7693 7694 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7695 char __user *optval, 7696 int __user *optlen) 7697 { 7698 struct sctp_stream_value params; 7699 struct sctp_association *asoc; 7700 int retval = -EFAULT; 7701 7702 if (len < sizeof(params)) { 7703 retval = -EINVAL; 7704 goto out; 7705 } 7706 7707 len = sizeof(params); 7708 if (copy_from_user(¶ms, optval, len)) 7709 goto out; 7710 7711 asoc = sctp_id2assoc(sk, params.assoc_id); 7712 if (!asoc) { 7713 retval = -EINVAL; 7714 goto out; 7715 } 7716 7717 retval = sctp_sched_get_value(asoc, params.stream_id, 7718 ¶ms.stream_value); 7719 if (retval) 7720 goto out; 7721 7722 if (put_user(len, optlen)) { 7723 retval = -EFAULT; 7724 goto out; 7725 } 7726 7727 if (copy_to_user(optval, ¶ms, len)) { 7728 retval = -EFAULT; 7729 goto out; 7730 } 7731 7732 out: 7733 return retval; 7734 } 7735 7736 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7737 char __user *optval, 7738 int __user *optlen) 7739 { 7740 struct sctp_assoc_value params; 7741 struct sctp_association *asoc; 7742 int retval = -EFAULT; 7743 7744 if (len < sizeof(params)) { 7745 retval = -EINVAL; 7746 goto out; 7747 } 7748 7749 len = sizeof(params); 7750 if (copy_from_user(¶ms, optval, len)) 7751 goto out; 7752 7753 asoc = sctp_id2assoc(sk, params.assoc_id); 7754 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7755 sctp_style(sk, UDP)) { 7756 retval = -EINVAL; 7757 goto out; 7758 } 7759 7760 params.assoc_value = asoc ? asoc->peer.intl_capable 7761 : sctp_sk(sk)->ep->intl_enable; 7762 7763 if (put_user(len, optlen)) 7764 goto out; 7765 7766 if (copy_to_user(optval, ¶ms, len)) 7767 goto out; 7768 7769 retval = 0; 7770 7771 out: 7772 return retval; 7773 } 7774 7775 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7776 char __user *optval, 7777 int __user *optlen) 7778 { 7779 int val; 7780 7781 if (len < sizeof(int)) 7782 return -EINVAL; 7783 7784 len = sizeof(int); 7785 val = sctp_sk(sk)->reuse; 7786 if (put_user(len, optlen)) 7787 return -EFAULT; 7788 7789 if (copy_to_user(optval, &val, len)) 7790 return -EFAULT; 7791 7792 return 0; 7793 } 7794 7795 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval, 7796 int __user *optlen) 7797 { 7798 struct sctp_association *asoc; 7799 struct sctp_event param; 7800 __u16 subscribe; 7801 7802 if (len < sizeof(param)) 7803 return -EINVAL; 7804 7805 len = sizeof(param); 7806 if (copy_from_user(¶m, optval, len)) 7807 return -EFAULT; 7808 7809 if (param.se_type < SCTP_SN_TYPE_BASE || 7810 param.se_type > SCTP_SN_TYPE_MAX) 7811 return -EINVAL; 7812 7813 asoc = sctp_id2assoc(sk, param.se_assoc_id); 7814 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC && 7815 sctp_style(sk, UDP)) 7816 return -EINVAL; 7817 7818 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe; 7819 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type); 7820 7821 if (put_user(len, optlen)) 7822 return -EFAULT; 7823 7824 if (copy_to_user(optval, ¶m, len)) 7825 return -EFAULT; 7826 7827 return 0; 7828 } 7829 7830 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len, 7831 char __user *optval, 7832 int __user *optlen) 7833 { 7834 struct sctp_assoc_value params; 7835 struct sctp_association *asoc; 7836 int retval = -EFAULT; 7837 7838 if (len < sizeof(params)) { 7839 retval = -EINVAL; 7840 goto out; 7841 } 7842 7843 len = sizeof(params); 7844 if (copy_from_user(¶ms, optval, len)) 7845 goto out; 7846 7847 asoc = sctp_id2assoc(sk, params.assoc_id); 7848 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7849 sctp_style(sk, UDP)) { 7850 retval = -EINVAL; 7851 goto out; 7852 } 7853 7854 params.assoc_value = asoc ? asoc->peer.asconf_capable 7855 : sctp_sk(sk)->ep->asconf_enable; 7856 7857 if (put_user(len, optlen)) 7858 goto out; 7859 7860 if (copy_to_user(optval, ¶ms, len)) 7861 goto out; 7862 7863 retval = 0; 7864 7865 out: 7866 return retval; 7867 } 7868 7869 static int sctp_getsockopt_auth_supported(struct sock *sk, int len, 7870 char __user *optval, 7871 int __user *optlen) 7872 { 7873 struct sctp_assoc_value params; 7874 struct sctp_association *asoc; 7875 int retval = -EFAULT; 7876 7877 if (len < sizeof(params)) { 7878 retval = -EINVAL; 7879 goto out; 7880 } 7881 7882 len = sizeof(params); 7883 if (copy_from_user(¶ms, optval, len)) 7884 goto out; 7885 7886 asoc = sctp_id2assoc(sk, params.assoc_id); 7887 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7888 sctp_style(sk, UDP)) { 7889 retval = -EINVAL; 7890 goto out; 7891 } 7892 7893 params.assoc_value = asoc ? asoc->peer.auth_capable 7894 : sctp_sk(sk)->ep->auth_enable; 7895 7896 if (put_user(len, optlen)) 7897 goto out; 7898 7899 if (copy_to_user(optval, ¶ms, len)) 7900 goto out; 7901 7902 retval = 0; 7903 7904 out: 7905 return retval; 7906 } 7907 7908 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len, 7909 char __user *optval, 7910 int __user *optlen) 7911 { 7912 struct sctp_assoc_value params; 7913 struct sctp_association *asoc; 7914 int retval = -EFAULT; 7915 7916 if (len < sizeof(params)) { 7917 retval = -EINVAL; 7918 goto out; 7919 } 7920 7921 len = sizeof(params); 7922 if (copy_from_user(¶ms, optval, len)) 7923 goto out; 7924 7925 asoc = sctp_id2assoc(sk, params.assoc_id); 7926 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7927 sctp_style(sk, UDP)) { 7928 retval = -EINVAL; 7929 goto out; 7930 } 7931 7932 params.assoc_value = asoc ? asoc->peer.ecn_capable 7933 : sctp_sk(sk)->ep->ecn_enable; 7934 7935 if (put_user(len, optlen)) 7936 goto out; 7937 7938 if (copy_to_user(optval, ¶ms, len)) 7939 goto out; 7940 7941 retval = 0; 7942 7943 out: 7944 return retval; 7945 } 7946 7947 static int sctp_getsockopt_pf_expose(struct sock *sk, int len, 7948 char __user *optval, 7949 int __user *optlen) 7950 { 7951 struct sctp_assoc_value params; 7952 struct sctp_association *asoc; 7953 int retval = -EFAULT; 7954 7955 if (len < sizeof(params)) { 7956 retval = -EINVAL; 7957 goto out; 7958 } 7959 7960 len = sizeof(params); 7961 if (copy_from_user(¶ms, optval, len)) 7962 goto out; 7963 7964 asoc = sctp_id2assoc(sk, params.assoc_id); 7965 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7966 sctp_style(sk, UDP)) { 7967 retval = -EINVAL; 7968 goto out; 7969 } 7970 7971 params.assoc_value = asoc ? asoc->pf_expose 7972 : sctp_sk(sk)->pf_expose; 7973 7974 if (put_user(len, optlen)) 7975 goto out; 7976 7977 if (copy_to_user(optval, ¶ms, len)) 7978 goto out; 7979 7980 retval = 0; 7981 7982 out: 7983 return retval; 7984 } 7985 7986 static int sctp_getsockopt_encap_port(struct sock *sk, int len, 7987 char __user *optval, int __user *optlen) 7988 { 7989 struct sctp_association *asoc; 7990 struct sctp_udpencaps encap; 7991 struct sctp_transport *t; 7992 __be16 encap_port; 7993 7994 if (len < sizeof(encap)) 7995 return -EINVAL; 7996 7997 len = sizeof(encap); 7998 if (copy_from_user(&encap, optval, len)) 7999 return -EFAULT; 8000 8001 /* If an address other than INADDR_ANY is specified, and 8002 * no transport is found, then the request is invalid. 8003 */ 8004 if (!sctp_is_any(sk, (union sctp_addr *)&encap.sue_address)) { 8005 t = sctp_addr_id2transport(sk, &encap.sue_address, 8006 encap.sue_assoc_id); 8007 if (!t) { 8008 pr_debug("%s: failed no transport\n", __func__); 8009 return -EINVAL; 8010 } 8011 8012 encap_port = t->encap_port; 8013 goto out; 8014 } 8015 8016 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 8017 * socket is a one to many style socket, and an association 8018 * was not found, then the id was invalid. 8019 */ 8020 asoc = sctp_id2assoc(sk, encap.sue_assoc_id); 8021 if (!asoc && encap.sue_assoc_id != SCTP_FUTURE_ASSOC && 8022 sctp_style(sk, UDP)) { 8023 pr_debug("%s: failed no association\n", __func__); 8024 return -EINVAL; 8025 } 8026 8027 if (asoc) { 8028 encap_port = asoc->encap_port; 8029 goto out; 8030 } 8031 8032 encap_port = sctp_sk(sk)->encap_port; 8033 8034 out: 8035 encap.sue_port = (__force uint16_t)encap_port; 8036 if (copy_to_user(optval, &encap, len)) 8037 return -EFAULT; 8038 8039 if (put_user(len, optlen)) 8040 return -EFAULT; 8041 8042 return 0; 8043 } 8044 8045 static int sctp_getsockopt_probe_interval(struct sock *sk, int len, 8046 char __user *optval, 8047 int __user *optlen) 8048 { 8049 struct sctp_probeinterval params; 8050 struct sctp_association *asoc; 8051 struct sctp_transport *t; 8052 __u32 probe_interval; 8053 8054 if (len < sizeof(params)) 8055 return -EINVAL; 8056 8057 len = sizeof(params); 8058 if (copy_from_user(¶ms, optval, len)) 8059 return -EFAULT; 8060 8061 /* If an address other than INADDR_ANY is specified, and 8062 * no transport is found, then the request is invalid. 8063 */ 8064 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spi_address)) { 8065 t = sctp_addr_id2transport(sk, ¶ms.spi_address, 8066 params.spi_assoc_id); 8067 if (!t) { 8068 pr_debug("%s: failed no transport\n", __func__); 8069 return -EINVAL; 8070 } 8071 8072 probe_interval = jiffies_to_msecs(t->probe_interval); 8073 goto out; 8074 } 8075 8076 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 8077 * socket is a one to many style socket, and an association 8078 * was not found, then the id was invalid. 8079 */ 8080 asoc = sctp_id2assoc(sk, params.spi_assoc_id); 8081 if (!asoc && params.spi_assoc_id != SCTP_FUTURE_ASSOC && 8082 sctp_style(sk, UDP)) { 8083 pr_debug("%s: failed no association\n", __func__); 8084 return -EINVAL; 8085 } 8086 8087 if (asoc) { 8088 probe_interval = jiffies_to_msecs(asoc->probe_interval); 8089 goto out; 8090 } 8091 8092 probe_interval = sctp_sk(sk)->probe_interval; 8093 8094 out: 8095 params.spi_interval = probe_interval; 8096 if (copy_to_user(optval, ¶ms, len)) 8097 return -EFAULT; 8098 8099 if (put_user(len, optlen)) 8100 return -EFAULT; 8101 8102 return 0; 8103 } 8104 8105 static int sctp_getsockopt(struct sock *sk, int level, int optname, 8106 char __user *optval, int __user *optlen) 8107 { 8108 int retval = 0; 8109 int len; 8110 8111 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 8112 8113 /* I can hardly begin to describe how wrong this is. This is 8114 * so broken as to be worse than useless. The API draft 8115 * REALLY is NOT helpful here... I am not convinced that the 8116 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 8117 * are at all well-founded. 8118 */ 8119 if (level != SOL_SCTP) { 8120 struct sctp_af *af = sctp_sk(sk)->pf->af; 8121 8122 retval = af->getsockopt(sk, level, optname, optval, optlen); 8123 return retval; 8124 } 8125 8126 if (get_user(len, optlen)) 8127 return -EFAULT; 8128 8129 if (len < 0) 8130 return -EINVAL; 8131 8132 lock_sock(sk); 8133 8134 switch (optname) { 8135 case SCTP_STATUS: 8136 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 8137 break; 8138 case SCTP_DISABLE_FRAGMENTS: 8139 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 8140 optlen); 8141 break; 8142 case SCTP_EVENTS: 8143 retval = sctp_getsockopt_events(sk, len, optval, optlen); 8144 break; 8145 case SCTP_AUTOCLOSE: 8146 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 8147 break; 8148 case SCTP_SOCKOPT_PEELOFF: 8149 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 8150 break; 8151 case SCTP_SOCKOPT_PEELOFF_FLAGS: 8152 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 8153 break; 8154 case SCTP_PEER_ADDR_PARAMS: 8155 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 8156 optlen); 8157 break; 8158 case SCTP_DELAYED_SACK: 8159 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 8160 optlen); 8161 break; 8162 case SCTP_INITMSG: 8163 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 8164 break; 8165 case SCTP_GET_PEER_ADDRS: 8166 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 8167 optlen); 8168 break; 8169 case SCTP_GET_LOCAL_ADDRS: 8170 retval = sctp_getsockopt_local_addrs(sk, len, optval, 8171 optlen); 8172 break; 8173 case SCTP_SOCKOPT_CONNECTX3: 8174 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 8175 break; 8176 case SCTP_DEFAULT_SEND_PARAM: 8177 retval = sctp_getsockopt_default_send_param(sk, len, 8178 optval, optlen); 8179 break; 8180 case SCTP_DEFAULT_SNDINFO: 8181 retval = sctp_getsockopt_default_sndinfo(sk, len, 8182 optval, optlen); 8183 break; 8184 case SCTP_PRIMARY_ADDR: 8185 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 8186 break; 8187 case SCTP_NODELAY: 8188 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 8189 break; 8190 case SCTP_RTOINFO: 8191 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 8192 break; 8193 case SCTP_ASSOCINFO: 8194 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 8195 break; 8196 case SCTP_I_WANT_MAPPED_V4_ADDR: 8197 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 8198 break; 8199 case SCTP_MAXSEG: 8200 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 8201 break; 8202 case SCTP_GET_PEER_ADDR_INFO: 8203 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 8204 optlen); 8205 break; 8206 case SCTP_ADAPTATION_LAYER: 8207 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 8208 optlen); 8209 break; 8210 case SCTP_CONTEXT: 8211 retval = sctp_getsockopt_context(sk, len, optval, optlen); 8212 break; 8213 case SCTP_FRAGMENT_INTERLEAVE: 8214 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 8215 optlen); 8216 break; 8217 case SCTP_PARTIAL_DELIVERY_POINT: 8218 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 8219 optlen); 8220 break; 8221 case SCTP_MAX_BURST: 8222 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 8223 break; 8224 case SCTP_AUTH_KEY: 8225 case SCTP_AUTH_CHUNK: 8226 case SCTP_AUTH_DELETE_KEY: 8227 case SCTP_AUTH_DEACTIVATE_KEY: 8228 retval = -EOPNOTSUPP; 8229 break; 8230 case SCTP_HMAC_IDENT: 8231 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 8232 break; 8233 case SCTP_AUTH_ACTIVE_KEY: 8234 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 8235 break; 8236 case SCTP_PEER_AUTH_CHUNKS: 8237 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 8238 optlen); 8239 break; 8240 case SCTP_LOCAL_AUTH_CHUNKS: 8241 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 8242 optlen); 8243 break; 8244 case SCTP_GET_ASSOC_NUMBER: 8245 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 8246 break; 8247 case SCTP_GET_ASSOC_ID_LIST: 8248 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 8249 break; 8250 case SCTP_AUTO_ASCONF: 8251 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 8252 break; 8253 case SCTP_PEER_ADDR_THLDS: 8254 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8255 optlen, false); 8256 break; 8257 case SCTP_PEER_ADDR_THLDS_V2: 8258 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8259 optlen, true); 8260 break; 8261 case SCTP_GET_ASSOC_STATS: 8262 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 8263 break; 8264 case SCTP_RECVRCVINFO: 8265 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 8266 break; 8267 case SCTP_RECVNXTINFO: 8268 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 8269 break; 8270 case SCTP_PR_SUPPORTED: 8271 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 8272 break; 8273 case SCTP_DEFAULT_PRINFO: 8274 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 8275 optlen); 8276 break; 8277 case SCTP_PR_ASSOC_STATUS: 8278 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 8279 optlen); 8280 break; 8281 case SCTP_PR_STREAM_STATUS: 8282 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 8283 optlen); 8284 break; 8285 case SCTP_RECONFIG_SUPPORTED: 8286 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 8287 optlen); 8288 break; 8289 case SCTP_ENABLE_STREAM_RESET: 8290 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 8291 optlen); 8292 break; 8293 case SCTP_STREAM_SCHEDULER: 8294 retval = sctp_getsockopt_scheduler(sk, len, optval, 8295 optlen); 8296 break; 8297 case SCTP_STREAM_SCHEDULER_VALUE: 8298 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 8299 optlen); 8300 break; 8301 case SCTP_INTERLEAVING_SUPPORTED: 8302 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 8303 optlen); 8304 break; 8305 case SCTP_REUSE_PORT: 8306 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 8307 break; 8308 case SCTP_EVENT: 8309 retval = sctp_getsockopt_event(sk, len, optval, optlen); 8310 break; 8311 case SCTP_ASCONF_SUPPORTED: 8312 retval = sctp_getsockopt_asconf_supported(sk, len, optval, 8313 optlen); 8314 break; 8315 case SCTP_AUTH_SUPPORTED: 8316 retval = sctp_getsockopt_auth_supported(sk, len, optval, 8317 optlen); 8318 break; 8319 case SCTP_ECN_SUPPORTED: 8320 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen); 8321 break; 8322 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 8323 retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen); 8324 break; 8325 case SCTP_REMOTE_UDP_ENCAPS_PORT: 8326 retval = sctp_getsockopt_encap_port(sk, len, optval, optlen); 8327 break; 8328 case SCTP_PLPMTUD_PROBE_INTERVAL: 8329 retval = sctp_getsockopt_probe_interval(sk, len, optval, optlen); 8330 break; 8331 default: 8332 retval = -ENOPROTOOPT; 8333 break; 8334 } 8335 8336 release_sock(sk); 8337 return retval; 8338 } 8339 8340 static bool sctp_bpf_bypass_getsockopt(int level, int optname) 8341 { 8342 if (level == SOL_SCTP) { 8343 switch (optname) { 8344 case SCTP_SOCKOPT_PEELOFF: 8345 case SCTP_SOCKOPT_PEELOFF_FLAGS: 8346 case SCTP_SOCKOPT_CONNECTX3: 8347 return true; 8348 default: 8349 return false; 8350 } 8351 } 8352 8353 return false; 8354 } 8355 8356 static int sctp_hash(struct sock *sk) 8357 { 8358 /* STUB */ 8359 return 0; 8360 } 8361 8362 static void sctp_unhash(struct sock *sk) 8363 { 8364 sock_rps_delete_flow(sk); 8365 } 8366 8367 /* Check if port is acceptable. Possibly find first available port. 8368 * 8369 * The port hash table (contained in the 'global' SCTP protocol storage 8370 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 8371 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 8372 * list (the list number is the port number hashed out, so as you 8373 * would expect from a hash function, all the ports in a given list have 8374 * such a number that hashes out to the same list number; you were 8375 * expecting that, right?); so each list has a set of ports, with a 8376 * link to the socket (struct sock) that uses it, the port number and 8377 * a fastreuse flag (FIXME: NPI ipg). 8378 */ 8379 static struct sctp_bind_bucket *sctp_bucket_create( 8380 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 8381 8382 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 8383 { 8384 struct sctp_sock *sp = sctp_sk(sk); 8385 bool reuse = (sk->sk_reuse || sp->reuse); 8386 struct sctp_bind_hashbucket *head; /* hash list */ 8387 struct net *net = sock_net(sk); 8388 struct sctp_bind_bucket *pp; 8389 kuid_t uid = sk_uid(sk); 8390 unsigned short snum; 8391 int ret; 8392 8393 snum = ntohs(addr->v4.sin_port); 8394 8395 pr_debug("%s: begins, snum:%d\n", __func__, snum); 8396 8397 if (snum == 0) { 8398 /* Search for an available port. */ 8399 int low, high, remaining, index; 8400 unsigned int rover; 8401 8402 inet_sk_get_local_port_range(sk, &low, &high); 8403 remaining = (high - low) + 1; 8404 rover = get_random_u32_below(remaining) + low; 8405 8406 do { 8407 rover++; 8408 if ((rover < low) || (rover > high)) 8409 rover = low; 8410 if (inet_is_local_reserved_port(net, rover)) 8411 continue; 8412 index = sctp_phashfn(net, rover); 8413 head = &sctp_port_hashtable[index]; 8414 spin_lock_bh(&head->lock); 8415 sctp_for_each_hentry(pp, &head->chain) 8416 if ((pp->port == rover) && 8417 net_eq(net, pp->net)) 8418 goto next; 8419 break; 8420 next: 8421 spin_unlock_bh(&head->lock); 8422 cond_resched(); 8423 } while (--remaining > 0); 8424 8425 /* Exhausted local port range during search? */ 8426 ret = 1; 8427 if (remaining <= 0) 8428 return ret; 8429 8430 /* OK, here is the one we will use. HEAD (the port 8431 * hash table list entry) is non-NULL and we hold it's 8432 * mutex. 8433 */ 8434 snum = rover; 8435 } else { 8436 /* We are given an specific port number; we verify 8437 * that it is not being used. If it is used, we will 8438 * exahust the search in the hash list corresponding 8439 * to the port number (snum) - we detect that with the 8440 * port iterator, pp being NULL. 8441 */ 8442 head = &sctp_port_hashtable[sctp_phashfn(net, snum)]; 8443 spin_lock_bh(&head->lock); 8444 sctp_for_each_hentry(pp, &head->chain) { 8445 if ((pp->port == snum) && net_eq(pp->net, net)) 8446 goto pp_found; 8447 } 8448 } 8449 pp = NULL; 8450 goto pp_not_found; 8451 pp_found: 8452 if (!hlist_empty(&pp->owner)) { 8453 /* We had a port hash table hit - there is an 8454 * available port (pp != NULL) and it is being 8455 * used by other socket (pp->owner not empty); that other 8456 * socket is going to be sk2. 8457 */ 8458 struct sock *sk2; 8459 8460 pr_debug("%s: found a possible match\n", __func__); 8461 8462 if ((pp->fastreuse && reuse && 8463 sk->sk_state != SCTP_SS_LISTENING) || 8464 (pp->fastreuseport && sk->sk_reuseport && 8465 uid_eq(pp->fastuid, uid))) 8466 goto success; 8467 8468 /* Run through the list of sockets bound to the port 8469 * (pp->port) [via the pointers bind_next and 8470 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 8471 * we get the endpoint they describe and run through 8472 * the endpoint's list of IP (v4 or v6) addresses, 8473 * comparing each of the addresses with the address of 8474 * the socket sk. If we find a match, then that means 8475 * that this port/socket (sk) combination are already 8476 * in an endpoint. 8477 */ 8478 sk_for_each_bound(sk2, &pp->owner) { 8479 int bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if); 8480 struct sctp_sock *sp2 = sctp_sk(sk2); 8481 struct sctp_endpoint *ep2 = sp2->ep; 8482 8483 if (sk == sk2 || 8484 (reuse && (sk2->sk_reuse || sp2->reuse) && 8485 sk2->sk_state != SCTP_SS_LISTENING) || 8486 (sk->sk_reuseport && sk2->sk_reuseport && 8487 uid_eq(uid, sk_uid(sk2)))) 8488 continue; 8489 8490 if ((!sk->sk_bound_dev_if || !bound_dev_if2 || 8491 sk->sk_bound_dev_if == bound_dev_if2) && 8492 sctp_bind_addr_conflict(&ep2->base.bind_addr, 8493 addr, sp2, sp)) { 8494 ret = 1; 8495 goto fail_unlock; 8496 } 8497 } 8498 8499 pr_debug("%s: found a match\n", __func__); 8500 } 8501 pp_not_found: 8502 /* If there was a hash table miss, create a new port. */ 8503 ret = 1; 8504 if (!pp && !(pp = sctp_bucket_create(head, net, snum))) 8505 goto fail_unlock; 8506 8507 /* In either case (hit or miss), make sure fastreuse is 1 only 8508 * if sk->sk_reuse is too (that is, if the caller requested 8509 * SO_REUSEADDR on this socket -sk-). 8510 */ 8511 if (hlist_empty(&pp->owner)) { 8512 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 8513 pp->fastreuse = 1; 8514 else 8515 pp->fastreuse = 0; 8516 8517 if (sk->sk_reuseport) { 8518 pp->fastreuseport = 1; 8519 pp->fastuid = uid; 8520 } else { 8521 pp->fastreuseport = 0; 8522 } 8523 } else { 8524 if (pp->fastreuse && 8525 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 8526 pp->fastreuse = 0; 8527 8528 if (pp->fastreuseport && 8529 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid))) 8530 pp->fastreuseport = 0; 8531 } 8532 8533 /* We are set, so fill up all the data in the hash table 8534 * entry, tie the socket list information with the rest of the 8535 * sockets FIXME: Blurry, NPI (ipg). 8536 */ 8537 success: 8538 if (!sp->bind_hash) { 8539 inet_sk(sk)->inet_num = snum; 8540 sk_add_bind_node(sk, &pp->owner); 8541 sp->bind_hash = pp; 8542 } 8543 ret = 0; 8544 8545 fail_unlock: 8546 spin_unlock_bh(&head->lock); 8547 return ret; 8548 } 8549 8550 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 8551 * port is requested. 8552 */ 8553 static int sctp_get_port(struct sock *sk, unsigned short snum) 8554 { 8555 union sctp_addr addr; 8556 struct sctp_af *af = sctp_sk(sk)->pf->af; 8557 8558 /* Set up a dummy address struct from the sk. */ 8559 af->from_sk(&addr, sk); 8560 addr.v4.sin_port = htons(snum); 8561 8562 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 8563 return sctp_get_port_local(sk, &addr); 8564 } 8565 8566 /* 8567 * Move a socket to LISTENING state. 8568 */ 8569 static int sctp_listen_start(struct sock *sk, int backlog) 8570 { 8571 struct sctp_sock *sp = sctp_sk(sk); 8572 struct sctp_endpoint *ep = sp->ep; 8573 int err; 8574 8575 /* 8576 * If a bind() or sctp_bindx() is not called prior to a listen() 8577 * call that allows new associations to be accepted, the system 8578 * picks an ephemeral port and will choose an address set equivalent 8579 * to binding with a wildcard address. 8580 * 8581 * This is not currently spelled out in the SCTP sockets 8582 * extensions draft, but follows the practice as seen in TCP 8583 * sockets. 8584 * 8585 */ 8586 inet_sk_set_state(sk, SCTP_SS_LISTENING); 8587 if (!ep->base.bind_addr.port) { 8588 if (sctp_autobind(sk)) { 8589 err = -EAGAIN; 8590 goto err; 8591 } 8592 } else { 8593 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 8594 err = -EADDRINUSE; 8595 goto err; 8596 } 8597 } 8598 8599 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8600 err = sctp_hash_endpoint(ep); 8601 if (err) 8602 goto err; 8603 8604 return 0; 8605 err: 8606 inet_sk_set_state(sk, SCTP_SS_CLOSED); 8607 return err; 8608 } 8609 8610 /* 8611 * 4.1.3 / 5.1.3 listen() 8612 * 8613 * By default, new associations are not accepted for UDP style sockets. 8614 * An application uses listen() to mark a socket as being able to 8615 * accept new associations. 8616 * 8617 * On TCP style sockets, applications use listen() to ready the SCTP 8618 * endpoint for accepting inbound associations. 8619 * 8620 * On both types of endpoints a backlog of '0' disables listening. 8621 * 8622 * Move a socket to LISTENING state. 8623 */ 8624 int sctp_inet_listen(struct socket *sock, int backlog) 8625 { 8626 struct sock *sk = sock->sk; 8627 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 8628 int err = -EINVAL; 8629 8630 if (unlikely(backlog < 0)) 8631 return err; 8632 8633 lock_sock(sk); 8634 8635 /* Peeled-off sockets are not allowed to listen(). */ 8636 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 8637 goto out; 8638 8639 if (sock->state != SS_UNCONNECTED) 8640 goto out; 8641 8642 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 8643 goto out; 8644 8645 /* If backlog is zero, disable listening. */ 8646 if (!backlog) { 8647 if (sctp_sstate(sk, CLOSED)) 8648 goto out; 8649 8650 err = 0; 8651 sctp_unhash_endpoint(ep); 8652 sk->sk_state = SCTP_SS_CLOSED; 8653 if (sk->sk_reuse || sctp_sk(sk)->reuse) 8654 sctp_sk(sk)->bind_hash->fastreuse = 1; 8655 goto out; 8656 } 8657 8658 /* If we are already listening, just update the backlog */ 8659 if (sctp_sstate(sk, LISTENING)) 8660 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8661 else { 8662 err = sctp_listen_start(sk, backlog); 8663 if (err) 8664 goto out; 8665 } 8666 8667 err = 0; 8668 out: 8669 release_sock(sk); 8670 return err; 8671 } 8672 8673 /* 8674 * This function is done by modeling the current datagram_poll() and the 8675 * tcp_poll(). Note that, based on these implementations, we don't 8676 * lock the socket in this function, even though it seems that, 8677 * ideally, locking or some other mechanisms can be used to ensure 8678 * the integrity of the counters (sndbuf and wmem_alloc) used 8679 * in this place. We assume that we don't need locks either until proven 8680 * otherwise. 8681 * 8682 * Another thing to note is that we include the Async I/O support 8683 * here, again, by modeling the current TCP/UDP code. We don't have 8684 * a good way to test with it yet. 8685 */ 8686 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 8687 { 8688 struct sock *sk = sock->sk; 8689 struct sctp_sock *sp = sctp_sk(sk); 8690 __poll_t mask; 8691 8692 poll_wait(file, sk_sleep(sk), wait); 8693 8694 sock_rps_record_flow(sk); 8695 8696 /* A TCP-style listening socket becomes readable when the accept queue 8697 * is not empty. 8698 */ 8699 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 8700 return (!list_empty(&sp->ep->asocs)) ? 8701 (EPOLLIN | EPOLLRDNORM) : 0; 8702 8703 mask = 0; 8704 8705 /* Is there any exceptional events? */ 8706 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 8707 mask |= EPOLLERR | 8708 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 8709 if (sk->sk_shutdown & RCV_SHUTDOWN) 8710 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 8711 if (sk->sk_shutdown == SHUTDOWN_MASK) 8712 mask |= EPOLLHUP; 8713 8714 /* Is it readable? Reconsider this code with TCP-style support. */ 8715 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 8716 mask |= EPOLLIN | EPOLLRDNORM; 8717 8718 /* The association is either gone or not ready. */ 8719 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 8720 return mask; 8721 8722 /* Is it writable? */ 8723 if (sctp_writeable(sk)) { 8724 mask |= EPOLLOUT | EPOLLWRNORM; 8725 } else { 8726 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 8727 /* 8728 * Since the socket is not locked, the buffer 8729 * might be made available after the writeable check and 8730 * before the bit is set. This could cause a lost I/O 8731 * signal. tcp_poll() has a race breaker for this race 8732 * condition. Based on their implementation, we put 8733 * in the following code to cover it as well. 8734 */ 8735 if (sctp_writeable(sk)) 8736 mask |= EPOLLOUT | EPOLLWRNORM; 8737 } 8738 return mask; 8739 } 8740 8741 /******************************************************************** 8742 * 2nd Level Abstractions 8743 ********************************************************************/ 8744 8745 static struct sctp_bind_bucket *sctp_bucket_create( 8746 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 8747 { 8748 struct sctp_bind_bucket *pp; 8749 8750 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 8751 if (pp) { 8752 SCTP_DBG_OBJCNT_INC(bind_bucket); 8753 pp->port = snum; 8754 pp->fastreuse = 0; 8755 INIT_HLIST_HEAD(&pp->owner); 8756 pp->net = net; 8757 hlist_add_head(&pp->node, &head->chain); 8758 } 8759 return pp; 8760 } 8761 8762 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 8763 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 8764 { 8765 if (pp && hlist_empty(&pp->owner)) { 8766 __hlist_del(&pp->node); 8767 kmem_cache_free(sctp_bucket_cachep, pp); 8768 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8769 } 8770 } 8771 8772 /* Release this socket's reference to a local port. */ 8773 static inline void __sctp_put_port(struct sock *sk) 8774 { 8775 struct sctp_bind_hashbucket *head = 8776 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8777 inet_sk(sk)->inet_num)]; 8778 struct sctp_bind_bucket *pp; 8779 8780 spin_lock(&head->lock); 8781 pp = sctp_sk(sk)->bind_hash; 8782 __sk_del_bind_node(sk); 8783 sctp_sk(sk)->bind_hash = NULL; 8784 inet_sk(sk)->inet_num = 0; 8785 sctp_bucket_destroy(pp); 8786 spin_unlock(&head->lock); 8787 } 8788 8789 void sctp_put_port(struct sock *sk) 8790 { 8791 local_bh_disable(); 8792 __sctp_put_port(sk); 8793 local_bh_enable(); 8794 } 8795 8796 /* 8797 * The system picks an ephemeral port and choose an address set equivalent 8798 * to binding with a wildcard address. 8799 * One of those addresses will be the primary address for the association. 8800 * This automatically enables the multihoming capability of SCTP. 8801 */ 8802 static int sctp_autobind(struct sock *sk) 8803 { 8804 union sctp_addr autoaddr; 8805 struct sctp_af *af; 8806 __be16 port; 8807 8808 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8809 af = sctp_sk(sk)->pf->af; 8810 8811 port = htons(inet_sk(sk)->inet_num); 8812 af->inaddr_any(&autoaddr, port); 8813 8814 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8815 } 8816 8817 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8818 * 8819 * From RFC 2292 8820 * 4.2 The cmsghdr Structure * 8821 * 8822 * When ancillary data is sent or received, any number of ancillary data 8823 * objects can be specified by the msg_control and msg_controllen members of 8824 * the msghdr structure, because each object is preceded by 8825 * a cmsghdr structure defining the object's length (the cmsg_len member). 8826 * Historically Berkeley-derived implementations have passed only one object 8827 * at a time, but this API allows multiple objects to be 8828 * passed in a single call to sendmsg() or recvmsg(). The following example 8829 * shows two ancillary data objects in a control buffer. 8830 * 8831 * |<--------------------------- msg_controllen -------------------------->| 8832 * | | 8833 * 8834 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8835 * 8836 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8837 * | | | 8838 * 8839 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8840 * 8841 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8842 * | | | | | 8843 * 8844 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8845 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8846 * 8847 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8848 * 8849 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8850 * ^ 8851 * | 8852 * 8853 * msg_control 8854 * points here 8855 */ 8856 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8857 { 8858 struct msghdr *my_msg = (struct msghdr *)msg; 8859 struct cmsghdr *cmsg; 8860 8861 for_each_cmsghdr(cmsg, my_msg) { 8862 if (!CMSG_OK(my_msg, cmsg)) 8863 return -EINVAL; 8864 8865 /* Should we parse this header or ignore? */ 8866 if (cmsg->cmsg_level != IPPROTO_SCTP) 8867 continue; 8868 8869 /* Strictly check lengths following example in SCM code. */ 8870 switch (cmsg->cmsg_type) { 8871 case SCTP_INIT: 8872 /* SCTP Socket API Extension 8873 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8874 * 8875 * This cmsghdr structure provides information for 8876 * initializing new SCTP associations with sendmsg(). 8877 * The SCTP_INITMSG socket option uses this same data 8878 * structure. This structure is not used for 8879 * recvmsg(). 8880 * 8881 * cmsg_level cmsg_type cmsg_data[] 8882 * ------------ ------------ ---------------------- 8883 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8884 */ 8885 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8886 return -EINVAL; 8887 8888 cmsgs->init = CMSG_DATA(cmsg); 8889 break; 8890 8891 case SCTP_SNDRCV: 8892 /* SCTP Socket API Extension 8893 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8894 * 8895 * This cmsghdr structure specifies SCTP options for 8896 * sendmsg() and describes SCTP header information 8897 * about a received message through recvmsg(). 8898 * 8899 * cmsg_level cmsg_type cmsg_data[] 8900 * ------------ ------------ ---------------------- 8901 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8902 */ 8903 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8904 return -EINVAL; 8905 8906 cmsgs->srinfo = CMSG_DATA(cmsg); 8907 8908 if (cmsgs->srinfo->sinfo_flags & 8909 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8910 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8911 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8912 return -EINVAL; 8913 break; 8914 8915 case SCTP_SNDINFO: 8916 /* SCTP Socket API Extension 8917 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8918 * 8919 * This cmsghdr structure specifies SCTP options for 8920 * sendmsg(). This structure and SCTP_RCVINFO replaces 8921 * SCTP_SNDRCV which has been deprecated. 8922 * 8923 * cmsg_level cmsg_type cmsg_data[] 8924 * ------------ ------------ --------------------- 8925 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8926 */ 8927 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8928 return -EINVAL; 8929 8930 cmsgs->sinfo = CMSG_DATA(cmsg); 8931 8932 if (cmsgs->sinfo->snd_flags & 8933 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8934 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8935 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8936 return -EINVAL; 8937 break; 8938 case SCTP_PRINFO: 8939 /* SCTP Socket API Extension 8940 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8941 * 8942 * This cmsghdr structure specifies SCTP options for sendmsg(). 8943 * 8944 * cmsg_level cmsg_type cmsg_data[] 8945 * ------------ ------------ --------------------- 8946 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8947 */ 8948 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8949 return -EINVAL; 8950 8951 cmsgs->prinfo = CMSG_DATA(cmsg); 8952 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8953 return -EINVAL; 8954 8955 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8956 cmsgs->prinfo->pr_value = 0; 8957 break; 8958 case SCTP_AUTHINFO: 8959 /* SCTP Socket API Extension 8960 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8961 * 8962 * This cmsghdr structure specifies SCTP options for sendmsg(). 8963 * 8964 * cmsg_level cmsg_type cmsg_data[] 8965 * ------------ ------------ --------------------- 8966 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8967 */ 8968 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8969 return -EINVAL; 8970 8971 cmsgs->authinfo = CMSG_DATA(cmsg); 8972 break; 8973 case SCTP_DSTADDRV4: 8974 case SCTP_DSTADDRV6: 8975 /* SCTP Socket API Extension 8976 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8977 * 8978 * This cmsghdr structure specifies SCTP options for sendmsg(). 8979 * 8980 * cmsg_level cmsg_type cmsg_data[] 8981 * ------------ ------------ --------------------- 8982 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8983 * ------------ ------------ --------------------- 8984 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8985 */ 8986 cmsgs->addrs_msg = my_msg; 8987 break; 8988 default: 8989 return -EINVAL; 8990 } 8991 } 8992 8993 return 0; 8994 } 8995 8996 /* 8997 * Wait for a packet.. 8998 * Note: This function is the same function as in core/datagram.c 8999 * with a few modifications to make lksctp work. 9000 */ 9001 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 9002 { 9003 int error; 9004 DEFINE_WAIT(wait); 9005 9006 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 9007 9008 /* Socket errors? */ 9009 error = sock_error(sk); 9010 if (error) 9011 goto out; 9012 9013 if (!skb_queue_empty(&sk->sk_receive_queue)) 9014 goto ready; 9015 9016 /* Socket shut down? */ 9017 if (sk->sk_shutdown & RCV_SHUTDOWN) 9018 goto out; 9019 9020 /* Sequenced packets can come disconnected. If so we report the 9021 * problem. 9022 */ 9023 error = -ENOTCONN; 9024 9025 /* Is there a good reason to think that we may receive some data? */ 9026 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 9027 goto out; 9028 9029 /* Handle signals. */ 9030 if (signal_pending(current)) 9031 goto interrupted; 9032 9033 /* Let another process have a go. Since we are going to sleep 9034 * anyway. Note: This may cause odd behaviors if the message 9035 * does not fit in the user's buffer, but this seems to be the 9036 * only way to honor MSG_DONTWAIT realistically. 9037 */ 9038 release_sock(sk); 9039 *timeo_p = schedule_timeout(*timeo_p); 9040 lock_sock(sk); 9041 9042 ready: 9043 finish_wait(sk_sleep(sk), &wait); 9044 return 0; 9045 9046 interrupted: 9047 error = sock_intr_errno(*timeo_p); 9048 9049 out: 9050 finish_wait(sk_sleep(sk), &wait); 9051 *err = error; 9052 return error; 9053 } 9054 9055 /* Receive a datagram. 9056 * Note: This is pretty much the same routine as in core/datagram.c 9057 * with a few changes to make lksctp work. 9058 */ 9059 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, int *err) 9060 { 9061 int error; 9062 struct sk_buff *skb; 9063 long timeo; 9064 9065 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 9066 9067 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 9068 MAX_SCHEDULE_TIMEOUT); 9069 9070 do { 9071 /* Again only user level code calls this function, 9072 * so nothing interrupt level 9073 * will suddenly eat the receive_queue. 9074 * 9075 * Look at current nfs client by the way... 9076 * However, this function was correct in any case. 8) 9077 */ 9078 if (flags & MSG_PEEK) { 9079 skb = skb_peek(&sk->sk_receive_queue); 9080 if (skb) 9081 refcount_inc(&skb->users); 9082 } else { 9083 skb = __skb_dequeue(&sk->sk_receive_queue); 9084 } 9085 9086 if (skb) 9087 return skb; 9088 9089 /* Caller is allowed not to check sk->sk_err before calling. */ 9090 error = sock_error(sk); 9091 if (error) 9092 goto no_packet; 9093 9094 if (sk->sk_shutdown & RCV_SHUTDOWN) 9095 break; 9096 9097 9098 /* User doesn't want to wait. */ 9099 error = -EAGAIN; 9100 if (!timeo) 9101 goto no_packet; 9102 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 9103 9104 return NULL; 9105 9106 no_packet: 9107 *err = error; 9108 return NULL; 9109 } 9110 9111 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 9112 static void __sctp_write_space(struct sctp_association *asoc) 9113 { 9114 struct sock *sk = asoc->base.sk; 9115 9116 if (sctp_wspace(asoc) <= 0) 9117 return; 9118 9119 if (waitqueue_active(&asoc->wait)) 9120 wake_up_interruptible(&asoc->wait); 9121 9122 if (sctp_writeable(sk)) { 9123 struct socket_wq *wq; 9124 9125 rcu_read_lock(); 9126 wq = rcu_dereference(sk->sk_wq); 9127 if (wq) { 9128 if (waitqueue_active(&wq->wait)) 9129 wake_up_interruptible_poll(&wq->wait, EPOLLOUT | 9130 EPOLLWRNORM | EPOLLWRBAND); 9131 9132 /* Note that we try to include the Async I/O support 9133 * here by modeling from the current TCP/UDP code. 9134 * We have not tested with it yet. 9135 */ 9136 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 9137 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 9138 } 9139 rcu_read_unlock(); 9140 } 9141 } 9142 9143 static void sctp_wake_up_waiters(struct sock *sk, 9144 struct sctp_association *asoc) 9145 { 9146 struct sctp_association *tmp = asoc; 9147 9148 /* We do accounting for the sndbuf space per association, 9149 * so we only need to wake our own association. 9150 */ 9151 if (asoc->ep->sndbuf_policy) 9152 return __sctp_write_space(asoc); 9153 9154 /* If association goes down and is just flushing its 9155 * outq, then just normally notify others. 9156 */ 9157 if (asoc->base.dead) 9158 return sctp_write_space(sk); 9159 9160 /* Accounting for the sndbuf space is per socket, so we 9161 * need to wake up others, try to be fair and in case of 9162 * other associations, let them have a go first instead 9163 * of just doing a sctp_write_space() call. 9164 * 9165 * Note that we reach sctp_wake_up_waiters() only when 9166 * associations free up queued chunks, thus we are under 9167 * lock and the list of associations on a socket is 9168 * guaranteed not to change. 9169 */ 9170 for (tmp = list_next_entry(tmp, asocs); 1; 9171 tmp = list_next_entry(tmp, asocs)) { 9172 /* Manually skip the head element. */ 9173 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 9174 continue; 9175 /* Wake up association. */ 9176 __sctp_write_space(tmp); 9177 /* We've reached the end. */ 9178 if (tmp == asoc) 9179 break; 9180 } 9181 } 9182 9183 /* Do accounting for the sndbuf space. 9184 * Decrement the used sndbuf space of the corresponding association by the 9185 * data size which was just transmitted(freed). 9186 */ 9187 static void sctp_wfree(struct sk_buff *skb) 9188 { 9189 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 9190 struct sctp_association *asoc = chunk->asoc; 9191 struct sock *sk = asoc->base.sk; 9192 9193 sk_mem_uncharge(sk, skb->truesize); 9194 sk_wmem_queued_add(sk, -(skb->truesize + sizeof(struct sctp_chunk))); 9195 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); 9196 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), 9197 &sk->sk_wmem_alloc)); 9198 9199 if (chunk->shkey) { 9200 struct sctp_shared_key *shkey = chunk->shkey; 9201 9202 /* refcnt == 2 and !list_empty mean after this release, it's 9203 * not being used anywhere, and it's time to notify userland 9204 * that this shkey can be freed if it's been deactivated. 9205 */ 9206 if (shkey->deactivated && !list_empty(&shkey->key_list) && 9207 refcount_read(&shkey->refcnt) == 2) { 9208 struct sctp_ulpevent *ev; 9209 9210 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 9211 SCTP_AUTH_FREE_KEY, 9212 GFP_KERNEL); 9213 if (ev) 9214 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 9215 } 9216 sctp_auth_shkey_release(chunk->shkey); 9217 } 9218 9219 sock_wfree(skb); 9220 sctp_wake_up_waiters(sk, asoc); 9221 9222 sctp_association_put(asoc); 9223 } 9224 9225 /* Do accounting for the receive space on the socket. 9226 * Accounting for the association is done in ulpevent.c 9227 * We set this as a destructor for the cloned data skbs so that 9228 * accounting is done at the correct time. 9229 */ 9230 void sctp_sock_rfree(struct sk_buff *skb) 9231 { 9232 struct sock *sk = skb->sk; 9233 struct sctp_ulpevent *event = sctp_skb2event(skb); 9234 9235 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 9236 9237 /* 9238 * Mimic the behavior of sock_rfree 9239 */ 9240 sk_mem_uncharge(sk, event->rmem_len); 9241 } 9242 9243 9244 /* Helper function to wait for space in the sndbuf. */ 9245 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, 9246 struct sctp_transport *transport, 9247 long *timeo_p, size_t msg_len) 9248 { 9249 struct sock *sk = asoc->base.sk; 9250 long current_timeo = *timeo_p; 9251 DEFINE_WAIT(wait); 9252 int err = 0; 9253 9254 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 9255 *timeo_p, msg_len); 9256 9257 /* Increment the transport and association's refcnt. */ 9258 if (transport) 9259 sctp_transport_hold(transport); 9260 sctp_association_hold(asoc); 9261 9262 /* Wait on the association specific sndbuf space. */ 9263 for (;;) { 9264 prepare_to_wait_exclusive(&asoc->wait, &wait, 9265 TASK_INTERRUPTIBLE); 9266 if (asoc->base.dead) 9267 goto do_dead; 9268 if ((!*timeo_p) || (transport && transport->dead)) 9269 goto do_nonblock; 9270 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 9271 goto do_error; 9272 if (signal_pending(current)) 9273 goto do_interrupted; 9274 if ((int)msg_len <= sctp_wspace(asoc) && 9275 sk_wmem_schedule(sk, msg_len)) 9276 break; 9277 9278 /* Let another process have a go. Since we are going 9279 * to sleep anyway. 9280 */ 9281 release_sock(sk); 9282 current_timeo = schedule_timeout(current_timeo); 9283 lock_sock(sk); 9284 if (sk != asoc->base.sk) 9285 goto do_error; 9286 9287 *timeo_p = current_timeo; 9288 } 9289 9290 out: 9291 finish_wait(&asoc->wait, &wait); 9292 9293 /* Release the transport and association's refcnt. */ 9294 if (transport) 9295 sctp_transport_put(transport); 9296 sctp_association_put(asoc); 9297 9298 return err; 9299 9300 do_dead: 9301 err = -ESRCH; 9302 goto out; 9303 9304 do_error: 9305 err = -EPIPE; 9306 goto out; 9307 9308 do_interrupted: 9309 err = sock_intr_errno(*timeo_p); 9310 goto out; 9311 9312 do_nonblock: 9313 err = -EAGAIN; 9314 goto out; 9315 } 9316 9317 void sctp_data_ready(struct sock *sk) 9318 { 9319 struct socket_wq *wq; 9320 9321 trace_sk_data_ready(sk); 9322 9323 rcu_read_lock(); 9324 wq = rcu_dereference(sk->sk_wq); 9325 if (skwq_has_sleeper(wq)) 9326 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 9327 EPOLLRDNORM | EPOLLRDBAND); 9328 sk_wake_async_rcu(sk, SOCK_WAKE_WAITD, POLL_IN); 9329 rcu_read_unlock(); 9330 } 9331 9332 /* If socket sndbuf has changed, wake up all per association waiters. */ 9333 void sctp_write_space(struct sock *sk) 9334 { 9335 struct sctp_association *asoc; 9336 9337 /* Wake up the tasks in each wait queue. */ 9338 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 9339 __sctp_write_space(asoc); 9340 } 9341 } 9342 9343 /* Is there any sndbuf space available on the socket? 9344 * 9345 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 9346 * associations on the same socket. For a UDP-style socket with 9347 * multiple associations, it is possible for it to be "unwriteable" 9348 * prematurely. I assume that this is acceptable because 9349 * a premature "unwriteable" is better than an accidental "writeable" which 9350 * would cause an unwanted block under certain circumstances. For the 1-1 9351 * UDP-style sockets or TCP-style sockets, this code should work. 9352 * - Daisy 9353 */ 9354 static bool sctp_writeable(const struct sock *sk) 9355 { 9356 return READ_ONCE(sk->sk_sndbuf) > READ_ONCE(sk->sk_wmem_queued); 9357 } 9358 9359 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 9360 * returns immediately with EINPROGRESS. 9361 */ 9362 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 9363 { 9364 struct sock *sk = asoc->base.sk; 9365 int err = 0; 9366 long current_timeo = *timeo_p; 9367 DEFINE_WAIT(wait); 9368 9369 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 9370 9371 /* Increment the association's refcnt. */ 9372 sctp_association_hold(asoc); 9373 9374 for (;;) { 9375 prepare_to_wait_exclusive(&asoc->wait, &wait, 9376 TASK_INTERRUPTIBLE); 9377 if (!*timeo_p) 9378 goto do_nonblock; 9379 if (sk->sk_shutdown & RCV_SHUTDOWN) 9380 break; 9381 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 9382 asoc->base.dead) 9383 goto do_error; 9384 if (signal_pending(current)) 9385 goto do_interrupted; 9386 9387 if (sctp_state(asoc, ESTABLISHED)) 9388 break; 9389 9390 /* Let another process have a go. Since we are going 9391 * to sleep anyway. 9392 */ 9393 release_sock(sk); 9394 current_timeo = schedule_timeout(current_timeo); 9395 lock_sock(sk); 9396 9397 *timeo_p = current_timeo; 9398 } 9399 9400 out: 9401 finish_wait(&asoc->wait, &wait); 9402 9403 /* Release the association's refcnt. */ 9404 sctp_association_put(asoc); 9405 9406 return err; 9407 9408 do_error: 9409 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 9410 err = -ETIMEDOUT; 9411 else 9412 err = -ECONNREFUSED; 9413 goto out; 9414 9415 do_interrupted: 9416 err = sock_intr_errno(*timeo_p); 9417 goto out; 9418 9419 do_nonblock: 9420 err = -EINPROGRESS; 9421 goto out; 9422 } 9423 9424 static int sctp_wait_for_accept(struct sock *sk, long timeo) 9425 { 9426 struct sctp_endpoint *ep; 9427 int err = 0; 9428 DEFINE_WAIT(wait); 9429 9430 ep = sctp_sk(sk)->ep; 9431 9432 9433 for (;;) { 9434 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 9435 TASK_INTERRUPTIBLE); 9436 9437 if (list_empty(&ep->asocs)) { 9438 release_sock(sk); 9439 timeo = schedule_timeout(timeo); 9440 lock_sock(sk); 9441 } 9442 9443 err = -EINVAL; 9444 if (!sctp_sstate(sk, LISTENING) || 9445 (sk->sk_shutdown & RCV_SHUTDOWN)) 9446 break; 9447 9448 err = 0; 9449 if (!list_empty(&ep->asocs)) 9450 break; 9451 9452 err = sock_intr_errno(timeo); 9453 if (signal_pending(current)) 9454 break; 9455 9456 err = -EAGAIN; 9457 if (!timeo) 9458 break; 9459 } 9460 9461 finish_wait(sk_sleep(sk), &wait); 9462 9463 return err; 9464 } 9465 9466 static void sctp_wait_for_close(struct sock *sk, long timeout) 9467 { 9468 DEFINE_WAIT(wait); 9469 9470 do { 9471 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 9472 if (list_empty(&sctp_sk(sk)->ep->asocs)) 9473 break; 9474 release_sock(sk); 9475 timeout = schedule_timeout(timeout); 9476 lock_sock(sk); 9477 } while (!signal_pending(current) && timeout); 9478 9479 finish_wait(sk_sleep(sk), &wait); 9480 } 9481 9482 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 9483 { 9484 struct sk_buff *frag; 9485 9486 if (!skb->data_len) 9487 goto done; 9488 9489 /* Don't forget the fragments. */ 9490 skb_walk_frags(skb, frag) 9491 sctp_skb_set_owner_r_frag(frag, sk); 9492 9493 done: 9494 sctp_skb_set_owner_r(skb, sk); 9495 } 9496 9497 /* Populate the fields of the newsk from the oldsk and migrate the assoc 9498 * and its messages to the newsk. 9499 */ 9500 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 9501 struct sctp_association *assoc, 9502 enum sctp_socket_type type) 9503 { 9504 struct sctp_sock *oldsp = sctp_sk(oldsk); 9505 struct sctp_sock *newsp = sctp_sk(newsk); 9506 struct sctp_bind_bucket *pp; /* hash list port iterator */ 9507 struct sctp_endpoint *newep = newsp->ep; 9508 struct sk_buff *skb, *tmp; 9509 struct sctp_ulpevent *event; 9510 struct sctp_bind_hashbucket *head; 9511 int err; 9512 9513 /* Restore the ep value that was overwritten with the above structure 9514 * copy. 9515 */ 9516 newsp->ep = newep; 9517 9518 /* Hook this new socket in to the bind_hash list. */ 9519 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 9520 inet_sk(oldsk)->inet_num)]; 9521 spin_lock_bh(&head->lock); 9522 pp = sctp_sk(oldsk)->bind_hash; 9523 sk_add_bind_node(newsk, &pp->owner); 9524 sctp_sk(newsk)->bind_hash = pp; 9525 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 9526 spin_unlock_bh(&head->lock); 9527 9528 /* Copy the bind_addr list from the original endpoint to the new 9529 * endpoint so that we can handle restarts properly 9530 */ 9531 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 9532 &oldsp->ep->base.bind_addr, GFP_KERNEL); 9533 if (err) 9534 return err; 9535 9536 sctp_auto_asconf_init(newsp); 9537 9538 /* Move any messages in the old socket's receive queue that are for the 9539 * peeled off association to the new socket's receive queue. 9540 */ 9541 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 9542 event = sctp_skb2event(skb); 9543 if (event->asoc == assoc) { 9544 __skb_unlink(skb, &oldsk->sk_receive_queue); 9545 __skb_queue_tail(&newsk->sk_receive_queue, skb); 9546 sctp_skb_set_owner_r_frag(skb, newsk); 9547 } 9548 } 9549 9550 /* Clean up any messages pending delivery due to partial 9551 * delivery. Three cases: 9552 * 1) No partial deliver; no work. 9553 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 9554 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 9555 */ 9556 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 9557 9558 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 9559 struct sk_buff_head *queue; 9560 9561 /* Decide which queue to move pd_lobby skbs to. */ 9562 if (assoc->ulpq.pd_mode) { 9563 queue = &newsp->pd_lobby; 9564 } else 9565 queue = &newsk->sk_receive_queue; 9566 9567 /* Walk through the pd_lobby, looking for skbs that 9568 * need moved to the new socket. 9569 */ 9570 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 9571 event = sctp_skb2event(skb); 9572 if (event->asoc == assoc) { 9573 __skb_unlink(skb, &oldsp->pd_lobby); 9574 __skb_queue_tail(queue, skb); 9575 sctp_skb_set_owner_r_frag(skb, newsk); 9576 } 9577 } 9578 9579 /* Clear up any skbs waiting for the partial 9580 * delivery to finish. 9581 */ 9582 if (assoc->ulpq.pd_mode) 9583 sctp_clear_pd(oldsk, NULL); 9584 9585 } 9586 9587 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 9588 9589 /* Set the type of socket to indicate that it is peeled off from the 9590 * original UDP-style socket or created with the accept() call on a 9591 * TCP-style socket.. 9592 */ 9593 newsp->type = type; 9594 9595 /* Mark the new socket "in-use" by the user so that any packets 9596 * that may arrive on the association after we've moved it are 9597 * queued to the backlog. This prevents a potential race between 9598 * backlog processing on the old socket and new-packet processing 9599 * on the new socket. 9600 * 9601 * The caller has just allocated newsk so we can guarantee that other 9602 * paths won't try to lock it and then oldsk. 9603 */ 9604 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 9605 sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w); 9606 sctp_assoc_migrate(assoc, newsk); 9607 sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w); 9608 9609 /* If the association on the newsk is already closed before accept() 9610 * is called, set RCV_SHUTDOWN flag. 9611 */ 9612 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 9613 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 9614 newsk->sk_shutdown |= RCV_SHUTDOWN; 9615 } else { 9616 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 9617 } 9618 9619 release_sock(newsk); 9620 9621 return 0; 9622 } 9623 9624 9625 /* This proto struct describes the ULP interface for SCTP. */ 9626 struct proto sctp_prot = { 9627 .name = "SCTP", 9628 .owner = THIS_MODULE, 9629 .close = sctp_close, 9630 .disconnect = sctp_disconnect, 9631 .accept = sctp_accept, 9632 .ioctl = sctp_ioctl, 9633 .init = sctp_init_sock, 9634 .destroy = sctp_destroy_sock, 9635 .shutdown = sctp_shutdown, 9636 .setsockopt = sctp_setsockopt, 9637 .getsockopt = sctp_getsockopt, 9638 .bpf_bypass_getsockopt = sctp_bpf_bypass_getsockopt, 9639 .sendmsg = sctp_sendmsg, 9640 .recvmsg = sctp_recvmsg, 9641 .bind = sctp_bind, 9642 .bind_add = sctp_bind_add, 9643 .backlog_rcv = sctp_backlog_rcv, 9644 .hash = sctp_hash, 9645 .unhash = sctp_unhash, 9646 .no_autobind = true, 9647 .obj_size = sizeof(struct sctp_sock), 9648 .useroffset = offsetof(struct sctp_sock, subscribe), 9649 .usersize = offsetof(struct sctp_sock, initmsg) - 9650 offsetof(struct sctp_sock, subscribe) + 9651 sizeof_field(struct sctp_sock, initmsg), 9652 .sysctl_mem = sysctl_sctp_mem, 9653 .sysctl_rmem = sysctl_sctp_rmem, 9654 .sysctl_wmem = sysctl_sctp_wmem, 9655 .memory_pressure = &sctp_memory_pressure, 9656 .enter_memory_pressure = sctp_enter_memory_pressure, 9657 9658 .memory_allocated = &sctp_memory_allocated, 9659 .per_cpu_fw_alloc = &sctp_memory_per_cpu_fw_alloc, 9660 9661 .sockets_allocated = &sctp_sockets_allocated, 9662 }; 9663 9664 #if IS_ENABLED(CONFIG_IPV6) 9665 9666 static void sctp_v6_destruct_sock(struct sock *sk) 9667 { 9668 inet6_sock_destruct(sk); 9669 } 9670 9671 static int sctp_v6_init_sock(struct sock *sk) 9672 { 9673 int ret = sctp_init_sock(sk); 9674 9675 if (!ret) 9676 sk->sk_destruct = sctp_v6_destruct_sock; 9677 9678 return ret; 9679 } 9680 9681 struct proto sctpv6_prot = { 9682 .name = "SCTPv6", 9683 .owner = THIS_MODULE, 9684 .close = sctp_close, 9685 .disconnect = sctp_disconnect, 9686 .accept = sctp_accept, 9687 .ioctl = sctp_ioctl, 9688 .init = sctp_v6_init_sock, 9689 .destroy = sctp_destroy_sock, 9690 .shutdown = sctp_shutdown, 9691 .setsockopt = sctp_setsockopt, 9692 .getsockopt = sctp_getsockopt, 9693 .bpf_bypass_getsockopt = sctp_bpf_bypass_getsockopt, 9694 .sendmsg = sctp_sendmsg, 9695 .recvmsg = sctp_recvmsg, 9696 .bind = sctp_bind, 9697 .bind_add = sctp_bind_add, 9698 .backlog_rcv = sctp_backlog_rcv, 9699 .hash = sctp_hash, 9700 .unhash = sctp_unhash, 9701 .no_autobind = true, 9702 .obj_size = sizeof(struct sctp6_sock), 9703 .ipv6_pinfo_offset = offsetof(struct sctp6_sock, inet6), 9704 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 9705 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 9706 offsetof(struct sctp6_sock, sctp.subscribe) + 9707 sizeof_field(struct sctp6_sock, sctp.initmsg), 9708 .sysctl_mem = sysctl_sctp_mem, 9709 .sysctl_rmem = sysctl_sctp_rmem, 9710 .sysctl_wmem = sysctl_sctp_wmem, 9711 .memory_pressure = &sctp_memory_pressure, 9712 .enter_memory_pressure = sctp_enter_memory_pressure, 9713 9714 .memory_allocated = &sctp_memory_allocated, 9715 .per_cpu_fw_alloc = &sctp_memory_per_cpu_fw_alloc, 9716 9717 .sockets_allocated = &sctp_sockets_allocated, 9718 }; 9719 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9720