xref: /linux/net/sctp/socket.c (revision 776cfebb430c7b22c208b1b17add97f354d97cab)
1 /* SCTP kernel reference Implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel reference Implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * The SCTP reference implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * The SCTP reference implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, write to
32  * the Free Software Foundation, 59 Temple Place - Suite 330,
33  * Boston, MA 02111-1307, USA.
34  *
35  * Please send any bug reports or fixes you make to the
36  * email address(es):
37  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
38  *
39  * Or submit a bug report through the following website:
40  *    http://www.sf.net/projects/lksctp
41  *
42  * Written or modified by:
43  *    La Monte H.P. Yarroll <piggy@acm.org>
44  *    Narasimha Budihal     <narsi@refcode.org>
45  *    Karl Knutson          <karl@athena.chicago.il.us>
46  *    Jon Grimm             <jgrimm@us.ibm.com>
47  *    Xingang Guo           <xingang.guo@intel.com>
48  *    Daisy Chang           <daisyc@us.ibm.com>
49  *    Sridhar Samudrala     <samudrala@us.ibm.com>
50  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
51  *    Ardelle Fan	    <ardelle.fan@intel.com>
52  *    Ryan Layer	    <rmlayer@us.ibm.com>
53  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
54  *    Kevin Gao             <kevin.gao@intel.com>
55  *
56  * Any bugs reported given to us we will try to fix... any fixes shared will
57  * be incorporated into the next SCTP release.
58  */
59 
60 #include <linux/config.h>
61 #include <linux/types.h>
62 #include <linux/kernel.h>
63 #include <linux/wait.h>
64 #include <linux/time.h>
65 #include <linux/ip.h>
66 #include <linux/fcntl.h>
67 #include <linux/poll.h>
68 #include <linux/init.h>
69 #include <linux/crypto.h>
70 
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
76 
77 #include <linux/socket.h> /* for sa_family_t */
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81 
82 /* WARNING:  Please do not remove the SCTP_STATIC attribute to
83  * any of the functions below as they are used to export functions
84  * used by a project regression testsuite.
85  */
86 
87 /* Forward declarations for internal helper functions. */
88 static int sctp_writeable(struct sock *sk);
89 static void sctp_wfree(struct sk_buff *skb);
90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
91 				size_t msg_len);
92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
94 static int sctp_wait_for_accept(struct sock *sk, long timeo);
95 static void sctp_wait_for_close(struct sock *sk, long timeo);
96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
97 					union sctp_addr *addr, int len);
98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
102 static int sctp_send_asconf(struct sctp_association *asoc,
103 			    struct sctp_chunk *chunk);
104 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
105 static int sctp_autobind(struct sock *sk);
106 static void sctp_sock_migrate(struct sock *, struct sock *,
107 			      struct sctp_association *, sctp_socket_type_t);
108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
109 
110 extern kmem_cache_t *sctp_bucket_cachep;
111 
112 /* Get the sndbuf space available at the time on the association.  */
113 static inline int sctp_wspace(struct sctp_association *asoc)
114 {
115 	struct sock *sk = asoc->base.sk;
116 	int amt = 0;
117 
118 	if (asoc->ep->sndbuf_policy) {
119 		/* make sure that no association uses more than sk_sndbuf */
120 		amt = sk->sk_sndbuf - asoc->sndbuf_used;
121 	} else {
122 		/* do socket level accounting */
123 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
124 	}
125 
126 	if (amt < 0)
127 		amt = 0;
128 
129 	return amt;
130 }
131 
132 /* Increment the used sndbuf space count of the corresponding association by
133  * the size of the outgoing data chunk.
134  * Also, set the skb destructor for sndbuf accounting later.
135  *
136  * Since it is always 1-1 between chunk and skb, and also a new skb is always
137  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
138  * destructor in the data chunk skb for the purpose of the sndbuf space
139  * tracking.
140  */
141 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
142 {
143 	struct sctp_association *asoc = chunk->asoc;
144 	struct sock *sk = asoc->base.sk;
145 
146 	/* The sndbuf space is tracked per association.  */
147 	sctp_association_hold(asoc);
148 
149 	skb_set_owner_w(chunk->skb, sk);
150 
151 	chunk->skb->destructor = sctp_wfree;
152 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
153 	*((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
154 
155 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
156 				sizeof(struct sk_buff) +
157 				sizeof(struct sctp_chunk);
158 
159 	sk->sk_wmem_queued += SCTP_DATA_SNDSIZE(chunk) +
160 				sizeof(struct sk_buff) +
161 				sizeof(struct sctp_chunk);
162 
163 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
164 }
165 
166 /* Verify that this is a valid address. */
167 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
168 				   int len)
169 {
170 	struct sctp_af *af;
171 
172 	/* Verify basic sockaddr. */
173 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
174 	if (!af)
175 		return -EINVAL;
176 
177 	/* Is this a valid SCTP address?  */
178 	if (!af->addr_valid(addr, sctp_sk(sk)))
179 		return -EINVAL;
180 
181 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
182 		return -EINVAL;
183 
184 	return 0;
185 }
186 
187 /* Look up the association by its id.  If this is not a UDP-style
188  * socket, the ID field is always ignored.
189  */
190 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
191 {
192 	struct sctp_association *asoc = NULL;
193 
194 	/* If this is not a UDP-style socket, assoc id should be ignored. */
195 	if (!sctp_style(sk, UDP)) {
196 		/* Return NULL if the socket state is not ESTABLISHED. It
197 		 * could be a TCP-style listening socket or a socket which
198 		 * hasn't yet called connect() to establish an association.
199 		 */
200 		if (!sctp_sstate(sk, ESTABLISHED))
201 			return NULL;
202 
203 		/* Get the first and the only association from the list. */
204 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
205 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
206 					  struct sctp_association, asocs);
207 		return asoc;
208 	}
209 
210 	/* Otherwise this is a UDP-style socket. */
211 	if (!id || (id == (sctp_assoc_t)-1))
212 		return NULL;
213 
214 	spin_lock_bh(&sctp_assocs_id_lock);
215 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
216 	spin_unlock_bh(&sctp_assocs_id_lock);
217 
218 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
219 		return NULL;
220 
221 	return asoc;
222 }
223 
224 /* Look up the transport from an address and an assoc id. If both address and
225  * id are specified, the associations matching the address and the id should be
226  * the same.
227  */
228 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
229 					      struct sockaddr_storage *addr,
230 					      sctp_assoc_t id)
231 {
232 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
233 	struct sctp_transport *transport;
234 	union sctp_addr *laddr = (union sctp_addr *)addr;
235 
236 	laddr->v4.sin_port = ntohs(laddr->v4.sin_port);
237 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
238 					       (union sctp_addr *)addr,
239 					       &transport);
240 	laddr->v4.sin_port = htons(laddr->v4.sin_port);
241 
242 	if (!addr_asoc)
243 		return NULL;
244 
245 	id_asoc = sctp_id2assoc(sk, id);
246 	if (id_asoc && (id_asoc != addr_asoc))
247 		return NULL;
248 
249 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
250 						(union sctp_addr *)addr);
251 
252 	return transport;
253 }
254 
255 /* API 3.1.2 bind() - UDP Style Syntax
256  * The syntax of bind() is,
257  *
258  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
259  *
260  *   sd      - the socket descriptor returned by socket().
261  *   addr    - the address structure (struct sockaddr_in or struct
262  *             sockaddr_in6 [RFC 2553]),
263  *   addr_len - the size of the address structure.
264  */
265 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len)
266 {
267 	int retval = 0;
268 
269 	sctp_lock_sock(sk);
270 
271 	SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, uaddr: %p, addr_len: %d)\n",
272 			  sk, uaddr, addr_len);
273 
274 	/* Disallow binding twice. */
275 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
276 		retval = sctp_do_bind(sk, (union sctp_addr *)uaddr,
277 				      addr_len);
278 	else
279 		retval = -EINVAL;
280 
281 	sctp_release_sock(sk);
282 
283 	return retval;
284 }
285 
286 static long sctp_get_port_local(struct sock *, union sctp_addr *);
287 
288 /* Verify this is a valid sockaddr. */
289 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
290 					union sctp_addr *addr, int len)
291 {
292 	struct sctp_af *af;
293 
294 	/* Check minimum size.  */
295 	if (len < sizeof (struct sockaddr))
296 		return NULL;
297 
298 	/* Does this PF support this AF? */
299 	if (!opt->pf->af_supported(addr->sa.sa_family, opt))
300 		return NULL;
301 
302 	/* If we get this far, af is valid. */
303 	af = sctp_get_af_specific(addr->sa.sa_family);
304 
305 	if (len < af->sockaddr_len)
306 		return NULL;
307 
308 	return af;
309 }
310 
311 /* Bind a local address either to an endpoint or to an association.  */
312 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
313 {
314 	struct sctp_sock *sp = sctp_sk(sk);
315 	struct sctp_endpoint *ep = sp->ep;
316 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
317 	struct sctp_af *af;
318 	unsigned short snum;
319 	int ret = 0;
320 
321 	SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d)\n",
322 			  sk, addr, len);
323 
324 	/* Common sockaddr verification. */
325 	af = sctp_sockaddr_af(sp, addr, len);
326 	if (!af)
327 		return -EINVAL;
328 
329 	/* PF specific bind() address verification. */
330 	if (!sp->pf->bind_verify(sp, addr))
331 		return -EADDRNOTAVAIL;
332 
333 	snum= ntohs(addr->v4.sin_port);
334 
335 	SCTP_DEBUG_PRINTK("sctp_do_bind: port: %d, new port: %d\n",
336 			  bp->port, snum);
337 
338 	/* We must either be unbound, or bind to the same port.  */
339 	if (bp->port && (snum != bp->port)) {
340 		SCTP_DEBUG_PRINTK("sctp_do_bind:"
341 				  " New port %d does not match existing port "
342 				  "%d.\n", snum, bp->port);
343 		return -EINVAL;
344 	}
345 
346 	if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
347 		return -EACCES;
348 
349 	/* Make sure we are allowed to bind here.
350 	 * The function sctp_get_port_local() does duplicate address
351 	 * detection.
352 	 */
353 	if ((ret = sctp_get_port_local(sk, addr))) {
354 		if (ret == (long) sk) {
355 			/* This endpoint has a conflicting address. */
356 			return -EINVAL;
357 		} else {
358 			return -EADDRINUSE;
359 		}
360 	}
361 
362 	/* Refresh ephemeral port.  */
363 	if (!bp->port)
364 		bp->port = inet_sk(sk)->num;
365 
366 	/* Add the address to the bind address list.  */
367 	sctp_local_bh_disable();
368 	sctp_write_lock(&ep->base.addr_lock);
369 
370 	/* Use GFP_ATOMIC since BHs are disabled.  */
371 	addr->v4.sin_port = ntohs(addr->v4.sin_port);
372 	ret = sctp_add_bind_addr(bp, addr, GFP_ATOMIC);
373 	addr->v4.sin_port = htons(addr->v4.sin_port);
374 	sctp_write_unlock(&ep->base.addr_lock);
375 	sctp_local_bh_enable();
376 
377 	/* Copy back into socket for getsockname() use. */
378 	if (!ret) {
379 		inet_sk(sk)->sport = htons(inet_sk(sk)->num);
380 		af->to_sk_saddr(addr, sk);
381 	}
382 
383 	return ret;
384 }
385 
386  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
387  *
388  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
389  * at any one time.  If a sender, after sending an ASCONF chunk, decides
390  * it needs to transfer another ASCONF Chunk, it MUST wait until the
391  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
392  * subsequent ASCONF. Note this restriction binds each side, so at any
393  * time two ASCONF may be in-transit on any given association (one sent
394  * from each endpoint).
395  */
396 static int sctp_send_asconf(struct sctp_association *asoc,
397 			    struct sctp_chunk *chunk)
398 {
399 	int		retval = 0;
400 
401 	/* If there is an outstanding ASCONF chunk, queue it for later
402 	 * transmission.
403 	 */
404 	if (asoc->addip_last_asconf) {
405 		__skb_queue_tail(&asoc->addip_chunks, (struct sk_buff *)chunk);
406 		goto out;
407 	}
408 
409 	/* Hold the chunk until an ASCONF_ACK is received. */
410 	sctp_chunk_hold(chunk);
411 	retval = sctp_primitive_ASCONF(asoc, chunk);
412 	if (retval)
413 		sctp_chunk_free(chunk);
414 	else
415 		asoc->addip_last_asconf = chunk;
416 
417 out:
418 	return retval;
419 }
420 
421 /* Add a list of addresses as bind addresses to local endpoint or
422  * association.
423  *
424  * Basically run through each address specified in the addrs/addrcnt
425  * array/length pair, determine if it is IPv6 or IPv4 and call
426  * sctp_do_bind() on it.
427  *
428  * If any of them fails, then the operation will be reversed and the
429  * ones that were added will be removed.
430  *
431  * Only sctp_setsockopt_bindx() is supposed to call this function.
432  */
433 int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
434 {
435 	int cnt;
436 	int retval = 0;
437 	void *addr_buf;
438 	struct sockaddr *sa_addr;
439 	struct sctp_af *af;
440 
441 	SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
442 			  sk, addrs, addrcnt);
443 
444 	addr_buf = addrs;
445 	for (cnt = 0; cnt < addrcnt; cnt++) {
446 		/* The list may contain either IPv4 or IPv6 address;
447 		 * determine the address length for walking thru the list.
448 		 */
449 		sa_addr = (struct sockaddr *)addr_buf;
450 		af = sctp_get_af_specific(sa_addr->sa_family);
451 		if (!af) {
452 			retval = -EINVAL;
453 			goto err_bindx_add;
454 		}
455 
456 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
457 				      af->sockaddr_len);
458 
459 		addr_buf += af->sockaddr_len;
460 
461 err_bindx_add:
462 		if (retval < 0) {
463 			/* Failed. Cleanup the ones that have been added */
464 			if (cnt > 0)
465 				sctp_bindx_rem(sk, addrs, cnt);
466 			return retval;
467 		}
468 	}
469 
470 	return retval;
471 }
472 
473 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
474  * associations that are part of the endpoint indicating that a list of local
475  * addresses are added to the endpoint.
476  *
477  * If any of the addresses is already in the bind address list of the
478  * association, we do not send the chunk for that association.  But it will not
479  * affect other associations.
480  *
481  * Only sctp_setsockopt_bindx() is supposed to call this function.
482  */
483 static int sctp_send_asconf_add_ip(struct sock		*sk,
484 				   struct sockaddr	*addrs,
485 				   int 			addrcnt)
486 {
487 	struct sctp_sock		*sp;
488 	struct sctp_endpoint		*ep;
489 	struct sctp_association		*asoc;
490 	struct sctp_bind_addr		*bp;
491 	struct sctp_chunk		*chunk;
492 	struct sctp_sockaddr_entry	*laddr;
493 	union sctp_addr			*addr;
494 	void				*addr_buf;
495 	struct sctp_af			*af;
496 	struct list_head		*pos;
497 	struct list_head		*p;
498 	int 				i;
499 	int 				retval = 0;
500 
501 	if (!sctp_addip_enable)
502 		return retval;
503 
504 	sp = sctp_sk(sk);
505 	ep = sp->ep;
506 
507 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
508 			  __FUNCTION__, sk, addrs, addrcnt);
509 
510 	list_for_each(pos, &ep->asocs) {
511 		asoc = list_entry(pos, struct sctp_association, asocs);
512 
513 		if (!asoc->peer.asconf_capable)
514 			continue;
515 
516 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
517 			continue;
518 
519 		if (!sctp_state(asoc, ESTABLISHED))
520 			continue;
521 
522 		/* Check if any address in the packed array of addresses is
523 	         * in the bind address list of the association. If so,
524 		 * do not send the asconf chunk to its peer, but continue with
525 		 * other associations.
526 		 */
527 		addr_buf = addrs;
528 		for (i = 0; i < addrcnt; i++) {
529 			addr = (union sctp_addr *)addr_buf;
530 			af = sctp_get_af_specific(addr->v4.sin_family);
531 			if (!af) {
532 				retval = -EINVAL;
533 				goto out;
534 			}
535 
536 			if (sctp_assoc_lookup_laddr(asoc, addr))
537 				break;
538 
539 			addr_buf += af->sockaddr_len;
540 		}
541 		if (i < addrcnt)
542 			continue;
543 
544 		/* Use the first address in bind addr list of association as
545 		 * Address Parameter of ASCONF CHUNK.
546 		 */
547 		sctp_read_lock(&asoc->base.addr_lock);
548 		bp = &asoc->base.bind_addr;
549 		p = bp->address_list.next;
550 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
551 		sctp_read_unlock(&asoc->base.addr_lock);
552 
553 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
554 						   addrcnt, SCTP_PARAM_ADD_IP);
555 		if (!chunk) {
556 			retval = -ENOMEM;
557 			goto out;
558 		}
559 
560 		retval = sctp_send_asconf(asoc, chunk);
561 
562 		/* FIXME: After sending the add address ASCONF chunk, we
563 		 * cannot append the address to the association's binding
564 		 * address list, because the new address may be used as the
565 		 * source of a message sent to the peer before the ASCONF
566 		 * chunk is received by the peer.  So we should wait until
567 		 * ASCONF_ACK is received.
568 		 */
569 	}
570 
571 out:
572 	return retval;
573 }
574 
575 /* Remove a list of addresses from bind addresses list.  Do not remove the
576  * last address.
577  *
578  * Basically run through each address specified in the addrs/addrcnt
579  * array/length pair, determine if it is IPv6 or IPv4 and call
580  * sctp_del_bind() on it.
581  *
582  * If any of them fails, then the operation will be reversed and the
583  * ones that were removed will be added back.
584  *
585  * At least one address has to be left; if only one address is
586  * available, the operation will return -EBUSY.
587  *
588  * Only sctp_setsockopt_bindx() is supposed to call this function.
589  */
590 int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
591 {
592 	struct sctp_sock *sp = sctp_sk(sk);
593 	struct sctp_endpoint *ep = sp->ep;
594 	int cnt;
595 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
596 	int retval = 0;
597 	union sctp_addr saveaddr;
598 	void *addr_buf;
599 	struct sockaddr *sa_addr;
600 	struct sctp_af *af;
601 
602 	SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
603 			  sk, addrs, addrcnt);
604 
605 	addr_buf = addrs;
606 	for (cnt = 0; cnt < addrcnt; cnt++) {
607 		/* If the bind address list is empty or if there is only one
608 		 * bind address, there is nothing more to be removed (we need
609 		 * at least one address here).
610 		 */
611 		if (list_empty(&bp->address_list) ||
612 		    (sctp_list_single_entry(&bp->address_list))) {
613 			retval = -EBUSY;
614 			goto err_bindx_rem;
615 		}
616 
617 		/* The list may contain either IPv4 or IPv6 address;
618 		 * determine the address length to copy the address to
619 		 * saveaddr.
620 		 */
621 		sa_addr = (struct sockaddr *)addr_buf;
622 		af = sctp_get_af_specific(sa_addr->sa_family);
623 		if (!af) {
624 			retval = -EINVAL;
625 			goto err_bindx_rem;
626 		}
627 		memcpy(&saveaddr, sa_addr, af->sockaddr_len);
628 		saveaddr.v4.sin_port = ntohs(saveaddr.v4.sin_port);
629 		if (saveaddr.v4.sin_port != bp->port) {
630 			retval = -EINVAL;
631 			goto err_bindx_rem;
632 		}
633 
634 		/* FIXME - There is probably a need to check if sk->sk_saddr and
635 		 * sk->sk_rcv_addr are currently set to one of the addresses to
636 		 * be removed. This is something which needs to be looked into
637 		 * when we are fixing the outstanding issues with multi-homing
638 		 * socket routing and failover schemes. Refer to comments in
639 		 * sctp_do_bind(). -daisy
640 		 */
641 		sctp_local_bh_disable();
642 		sctp_write_lock(&ep->base.addr_lock);
643 
644 		retval = sctp_del_bind_addr(bp, &saveaddr);
645 
646 		sctp_write_unlock(&ep->base.addr_lock);
647 		sctp_local_bh_enable();
648 
649 		addr_buf += af->sockaddr_len;
650 err_bindx_rem:
651 		if (retval < 0) {
652 			/* Failed. Add the ones that has been removed back */
653 			if (cnt > 0)
654 				sctp_bindx_add(sk, addrs, cnt);
655 			return retval;
656 		}
657 	}
658 
659 	return retval;
660 }
661 
662 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
663  * the associations that are part of the endpoint indicating that a list of
664  * local addresses are removed from the endpoint.
665  *
666  * If any of the addresses is already in the bind address list of the
667  * association, we do not send the chunk for that association.  But it will not
668  * affect other associations.
669  *
670  * Only sctp_setsockopt_bindx() is supposed to call this function.
671  */
672 static int sctp_send_asconf_del_ip(struct sock		*sk,
673 				   struct sockaddr	*addrs,
674 				   int			addrcnt)
675 {
676 	struct sctp_sock	*sp;
677 	struct sctp_endpoint	*ep;
678 	struct sctp_association	*asoc;
679 	struct sctp_bind_addr	*bp;
680 	struct sctp_chunk	*chunk;
681 	union sctp_addr		*laddr;
682 	void			*addr_buf;
683 	struct sctp_af		*af;
684 	struct list_head	*pos;
685 	int 			i;
686 	int 			retval = 0;
687 
688 	if (!sctp_addip_enable)
689 		return retval;
690 
691 	sp = sctp_sk(sk);
692 	ep = sp->ep;
693 
694 	SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
695 			  __FUNCTION__, sk, addrs, addrcnt);
696 
697 	list_for_each(pos, &ep->asocs) {
698 		asoc = list_entry(pos, struct sctp_association, asocs);
699 
700 		if (!asoc->peer.asconf_capable)
701 			continue;
702 
703 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
704 			continue;
705 
706 		if (!sctp_state(asoc, ESTABLISHED))
707 			continue;
708 
709 		/* Check if any address in the packed array of addresses is
710 	         * not present in the bind address list of the association.
711 		 * If so, do not send the asconf chunk to its peer, but
712 		 * continue with other associations.
713 		 */
714 		addr_buf = addrs;
715 		for (i = 0; i < addrcnt; i++) {
716 			laddr = (union sctp_addr *)addr_buf;
717 			af = sctp_get_af_specific(laddr->v4.sin_family);
718 			if (!af) {
719 				retval = -EINVAL;
720 				goto out;
721 			}
722 
723 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
724 				break;
725 
726 			addr_buf += af->sockaddr_len;
727 		}
728 		if (i < addrcnt)
729 			continue;
730 
731 		/* Find one address in the association's bind address list
732 		 * that is not in the packed array of addresses. This is to
733 		 * make sure that we do not delete all the addresses in the
734 		 * association.
735 		 */
736 		sctp_read_lock(&asoc->base.addr_lock);
737 		bp = &asoc->base.bind_addr;
738 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
739 					       addrcnt, sp);
740 		sctp_read_unlock(&asoc->base.addr_lock);
741 		if (!laddr)
742 			continue;
743 
744 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
745 						   SCTP_PARAM_DEL_IP);
746 		if (!chunk) {
747 			retval = -ENOMEM;
748 			goto out;
749 		}
750 
751 		retval = sctp_send_asconf(asoc, chunk);
752 
753 		/* FIXME: After sending the delete address ASCONF chunk, we
754 		 * cannot remove the addresses from the association's bind
755 		 * address list, because there maybe some packet send to
756 		 * the delete addresses, so we should wait until ASCONF_ACK
757 		 * packet is received.
758 		 */
759 	}
760 out:
761 	return retval;
762 }
763 
764 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
765  *
766  * API 8.1
767  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
768  *                int flags);
769  *
770  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
771  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
772  * or IPv6 addresses.
773  *
774  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
775  * Section 3.1.2 for this usage.
776  *
777  * addrs is a pointer to an array of one or more socket addresses. Each
778  * address is contained in its appropriate structure (i.e. struct
779  * sockaddr_in or struct sockaddr_in6) the family of the address type
780  * must be used to distengish the address length (note that this
781  * representation is termed a "packed array" of addresses). The caller
782  * specifies the number of addresses in the array with addrcnt.
783  *
784  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
785  * -1, and sets errno to the appropriate error code.
786  *
787  * For SCTP, the port given in each socket address must be the same, or
788  * sctp_bindx() will fail, setting errno to EINVAL.
789  *
790  * The flags parameter is formed from the bitwise OR of zero or more of
791  * the following currently defined flags:
792  *
793  * SCTP_BINDX_ADD_ADDR
794  *
795  * SCTP_BINDX_REM_ADDR
796  *
797  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
798  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
799  * addresses from the association. The two flags are mutually exclusive;
800  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
801  * not remove all addresses from an association; sctp_bindx() will
802  * reject such an attempt with EINVAL.
803  *
804  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
805  * additional addresses with an endpoint after calling bind().  Or use
806  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
807  * socket is associated with so that no new association accepted will be
808  * associated with those addresses. If the endpoint supports dynamic
809  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
810  * endpoint to send the appropriate message to the peer to change the
811  * peers address lists.
812  *
813  * Adding and removing addresses from a connected association is
814  * optional functionality. Implementations that do not support this
815  * functionality should return EOPNOTSUPP.
816  *
817  * Basically do nothing but copying the addresses from user to kernel
818  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
819  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() * from userspace.
820  *
821  * We don't use copy_from_user() for optimization: we first do the
822  * sanity checks (buffer size -fast- and access check-healthy
823  * pointer); if all of those succeed, then we can alloc the memory
824  * (expensive operation) needed to copy the data to kernel. Then we do
825  * the copying without checking the user space area
826  * (__copy_from_user()).
827  *
828  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
829  * it.
830  *
831  * sk        The sk of the socket
832  * addrs     The pointer to the addresses in user land
833  * addrssize Size of the addrs buffer
834  * op        Operation to perform (add or remove, see the flags of
835  *           sctp_bindx)
836  *
837  * Returns 0 if ok, <0 errno code on error.
838  */
839 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
840 				      struct sockaddr __user *addrs,
841 				      int addrs_size, int op)
842 {
843 	struct sockaddr *kaddrs;
844 	int err;
845 	int addrcnt = 0;
846 	int walk_size = 0;
847 	struct sockaddr *sa_addr;
848 	void *addr_buf;
849 	struct sctp_af *af;
850 
851 	SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
852 			  " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
853 
854 	if (unlikely(addrs_size <= 0))
855 		return -EINVAL;
856 
857 	/* Check the user passed a healthy pointer.  */
858 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
859 		return -EFAULT;
860 
861 	/* Alloc space for the address array in kernel memory.  */
862 	kaddrs = (struct sockaddr *)kmalloc(addrs_size, GFP_KERNEL);
863 	if (unlikely(!kaddrs))
864 		return -ENOMEM;
865 
866 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
867 		kfree(kaddrs);
868 		return -EFAULT;
869 	}
870 
871 	/* Walk through the addrs buffer and count the number of addresses. */
872 	addr_buf = kaddrs;
873 	while (walk_size < addrs_size) {
874 		sa_addr = (struct sockaddr *)addr_buf;
875 		af = sctp_get_af_specific(sa_addr->sa_family);
876 
877 		/* If the address family is not supported or if this address
878 		 * causes the address buffer to overflow return EINVAL.
879 		 */
880 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
881 			kfree(kaddrs);
882 			return -EINVAL;
883 		}
884 		addrcnt++;
885 		addr_buf += af->sockaddr_len;
886 		walk_size += af->sockaddr_len;
887 	}
888 
889 	/* Do the work. */
890 	switch (op) {
891 	case SCTP_BINDX_ADD_ADDR:
892 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
893 		if (err)
894 			goto out;
895 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
896 		break;
897 
898 	case SCTP_BINDX_REM_ADDR:
899 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
900 		if (err)
901 			goto out;
902 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
903 		break;
904 
905 	default:
906 		err = -EINVAL;
907 		break;
908         };
909 
910 out:
911 	kfree(kaddrs);
912 
913 	return err;
914 }
915 
916 /* API 3.1.4 close() - UDP Style Syntax
917  * Applications use close() to perform graceful shutdown (as described in
918  * Section 10.1 of [SCTP]) on ALL the associations currently represented
919  * by a UDP-style socket.
920  *
921  * The syntax is
922  *
923  *   ret = close(int sd);
924  *
925  *   sd      - the socket descriptor of the associations to be closed.
926  *
927  * To gracefully shutdown a specific association represented by the
928  * UDP-style socket, an application should use the sendmsg() call,
929  * passing no user data, but including the appropriate flag in the
930  * ancillary data (see Section xxxx).
931  *
932  * If sd in the close() call is a branched-off socket representing only
933  * one association, the shutdown is performed on that association only.
934  *
935  * 4.1.6 close() - TCP Style Syntax
936  *
937  * Applications use close() to gracefully close down an association.
938  *
939  * The syntax is:
940  *
941  *    int close(int sd);
942  *
943  *      sd      - the socket descriptor of the association to be closed.
944  *
945  * After an application calls close() on a socket descriptor, no further
946  * socket operations will succeed on that descriptor.
947  *
948  * API 7.1.4 SO_LINGER
949  *
950  * An application using the TCP-style socket can use this option to
951  * perform the SCTP ABORT primitive.  The linger option structure is:
952  *
953  *  struct  linger {
954  *     int     l_onoff;                // option on/off
955  *     int     l_linger;               // linger time
956  * };
957  *
958  * To enable the option, set l_onoff to 1.  If the l_linger value is set
959  * to 0, calling close() is the same as the ABORT primitive.  If the
960  * value is set to a negative value, the setsockopt() call will return
961  * an error.  If the value is set to a positive value linger_time, the
962  * close() can be blocked for at most linger_time ms.  If the graceful
963  * shutdown phase does not finish during this period, close() will
964  * return but the graceful shutdown phase continues in the system.
965  */
966 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
967 {
968 	struct sctp_endpoint *ep;
969 	struct sctp_association *asoc;
970 	struct list_head *pos, *temp;
971 
972 	SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
973 
974 	sctp_lock_sock(sk);
975 	sk->sk_shutdown = SHUTDOWN_MASK;
976 
977 	ep = sctp_sk(sk)->ep;
978 
979 	/* Walk all associations on a socket, not on an endpoint.  */
980 	list_for_each_safe(pos, temp, &ep->asocs) {
981 		asoc = list_entry(pos, struct sctp_association, asocs);
982 
983 		if (sctp_style(sk, TCP)) {
984 			/* A closed association can still be in the list if
985 			 * it belongs to a TCP-style listening socket that is
986 			 * not yet accepted. If so, free it. If not, send an
987 			 * ABORT or SHUTDOWN based on the linger options.
988 			 */
989 			if (sctp_state(asoc, CLOSED)) {
990 				sctp_unhash_established(asoc);
991 				sctp_association_free(asoc);
992 
993 			} else if (sock_flag(sk, SOCK_LINGER) &&
994 				   !sk->sk_lingertime)
995 				sctp_primitive_ABORT(asoc, NULL);
996 			else
997 				sctp_primitive_SHUTDOWN(asoc, NULL);
998 		} else
999 			sctp_primitive_SHUTDOWN(asoc, NULL);
1000 	}
1001 
1002 	/* Clean up any skbs sitting on the receive queue.  */
1003 	sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1004 	sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1005 
1006 	/* On a TCP-style socket, block for at most linger_time if set. */
1007 	if (sctp_style(sk, TCP) && timeout)
1008 		sctp_wait_for_close(sk, timeout);
1009 
1010 	/* This will run the backlog queue.  */
1011 	sctp_release_sock(sk);
1012 
1013 	/* Supposedly, no process has access to the socket, but
1014 	 * the net layers still may.
1015 	 */
1016 	sctp_local_bh_disable();
1017 	sctp_bh_lock_sock(sk);
1018 
1019 	/* Hold the sock, since sk_common_release() will put sock_put()
1020 	 * and we have just a little more cleanup.
1021 	 */
1022 	sock_hold(sk);
1023 	sk_common_release(sk);
1024 
1025 	sctp_bh_unlock_sock(sk);
1026 	sctp_local_bh_enable();
1027 
1028 	sock_put(sk);
1029 
1030 	SCTP_DBG_OBJCNT_DEC(sock);
1031 }
1032 
1033 /* Handle EPIPE error. */
1034 static int sctp_error(struct sock *sk, int flags, int err)
1035 {
1036 	if (err == -EPIPE)
1037 		err = sock_error(sk) ? : -EPIPE;
1038 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1039 		send_sig(SIGPIPE, current, 0);
1040 	return err;
1041 }
1042 
1043 /* API 3.1.3 sendmsg() - UDP Style Syntax
1044  *
1045  * An application uses sendmsg() and recvmsg() calls to transmit data to
1046  * and receive data from its peer.
1047  *
1048  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1049  *                  int flags);
1050  *
1051  *  socket  - the socket descriptor of the endpoint.
1052  *  message - pointer to the msghdr structure which contains a single
1053  *            user message and possibly some ancillary data.
1054  *
1055  *            See Section 5 for complete description of the data
1056  *            structures.
1057  *
1058  *  flags   - flags sent or received with the user message, see Section
1059  *            5 for complete description of the flags.
1060  *
1061  * Note:  This function could use a rewrite especially when explicit
1062  * connect support comes in.
1063  */
1064 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1065 
1066 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1067 
1068 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1069 			     struct msghdr *msg, size_t msg_len)
1070 {
1071 	struct sctp_sock *sp;
1072 	struct sctp_endpoint *ep;
1073 	struct sctp_association *new_asoc=NULL, *asoc=NULL;
1074 	struct sctp_transport *transport, *chunk_tp;
1075 	struct sctp_chunk *chunk;
1076 	union sctp_addr to;
1077 	struct sockaddr *msg_name = NULL;
1078 	struct sctp_sndrcvinfo default_sinfo = { 0 };
1079 	struct sctp_sndrcvinfo *sinfo;
1080 	struct sctp_initmsg *sinit;
1081 	sctp_assoc_t associd = 0;
1082 	sctp_cmsgs_t cmsgs = { NULL };
1083 	int err;
1084 	sctp_scope_t scope;
1085 	long timeo;
1086 	__u16 sinfo_flags = 0;
1087 	struct sctp_datamsg *datamsg;
1088 	struct list_head *pos;
1089 	int msg_flags = msg->msg_flags;
1090 
1091 	SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1092 			  sk, msg, msg_len);
1093 
1094 	err = 0;
1095 	sp = sctp_sk(sk);
1096 	ep = sp->ep;
1097 
1098 	SCTP_DEBUG_PRINTK("Using endpoint: %s.\n", ep->debug_name);
1099 
1100 	/* We cannot send a message over a TCP-style listening socket. */
1101 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1102 		err = -EPIPE;
1103 		goto out_nounlock;
1104 	}
1105 
1106 	/* Parse out the SCTP CMSGs.  */
1107 	err = sctp_msghdr_parse(msg, &cmsgs);
1108 
1109 	if (err) {
1110 		SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1111 		goto out_nounlock;
1112 	}
1113 
1114 	/* Fetch the destination address for this packet.  This
1115 	 * address only selects the association--it is not necessarily
1116 	 * the address we will send to.
1117 	 * For a peeled-off socket, msg_name is ignored.
1118 	 */
1119 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1120 		int msg_namelen = msg->msg_namelen;
1121 
1122 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1123 				       msg_namelen);
1124 		if (err)
1125 			return err;
1126 
1127 		if (msg_namelen > sizeof(to))
1128 			msg_namelen = sizeof(to);
1129 		memcpy(&to, msg->msg_name, msg_namelen);
1130 		SCTP_DEBUG_PRINTK("Just memcpy'd. msg_name is "
1131 				  "0x%x:%u.\n",
1132 				  to.v4.sin_addr.s_addr, to.v4.sin_port);
1133 
1134 		to.v4.sin_port = ntohs(to.v4.sin_port);
1135 		msg_name = msg->msg_name;
1136 	}
1137 
1138 	sinfo = cmsgs.info;
1139 	sinit = cmsgs.init;
1140 
1141 	/* Did the user specify SNDRCVINFO?  */
1142 	if (sinfo) {
1143 		sinfo_flags = sinfo->sinfo_flags;
1144 		associd = sinfo->sinfo_assoc_id;
1145 	}
1146 
1147 	SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1148 			  msg_len, sinfo_flags);
1149 
1150 	/* MSG_EOF or MSG_ABORT cannot be set on a TCP-style socket. */
1151 	if (sctp_style(sk, TCP) && (sinfo_flags & (MSG_EOF | MSG_ABORT))) {
1152 		err = -EINVAL;
1153 		goto out_nounlock;
1154 	}
1155 
1156 	/* If MSG_EOF is set, no data can be sent. Disallow sending zero
1157 	 * length messages when MSG_EOF|MSG_ABORT is not set.
1158 	 * If MSG_ABORT is set, the message length could be non zero with
1159 	 * the msg_iov set to the user abort reason.
1160  	 */
1161 	if (((sinfo_flags & MSG_EOF) && (msg_len > 0)) ||
1162 	    (!(sinfo_flags & (MSG_EOF|MSG_ABORT)) && (msg_len == 0))) {
1163 		err = -EINVAL;
1164 		goto out_nounlock;
1165 	}
1166 
1167 	/* If MSG_ADDR_OVER is set, there must be an address
1168 	 * specified in msg_name.
1169 	 */
1170 	if ((sinfo_flags & MSG_ADDR_OVER) && (!msg->msg_name)) {
1171 		err = -EINVAL;
1172 		goto out_nounlock;
1173 	}
1174 
1175 	transport = NULL;
1176 
1177 	SCTP_DEBUG_PRINTK("About to look up association.\n");
1178 
1179 	sctp_lock_sock(sk);
1180 
1181 	/* If a msg_name has been specified, assume this is to be used.  */
1182 	if (msg_name) {
1183 		/* Look for a matching association on the endpoint. */
1184 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1185 		if (!asoc) {
1186 			/* If we could not find a matching association on the
1187 			 * endpoint, make sure that it is not a TCP-style
1188 			 * socket that already has an association or there is
1189 			 * no peeled-off association on another socket.
1190 			 */
1191 			if ((sctp_style(sk, TCP) &&
1192 			     sctp_sstate(sk, ESTABLISHED)) ||
1193 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1194 				err = -EADDRNOTAVAIL;
1195 				goto out_unlock;
1196 			}
1197 		}
1198 	} else {
1199 		asoc = sctp_id2assoc(sk, associd);
1200 		if (!asoc) {
1201 			err = -EPIPE;
1202 			goto out_unlock;
1203 		}
1204 	}
1205 
1206 	if (asoc) {
1207 		SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1208 
1209 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1210 		 * socket that has an association in CLOSED state. This can
1211 		 * happen when an accepted socket has an association that is
1212 		 * already CLOSED.
1213 		 */
1214 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1215 			err = -EPIPE;
1216 			goto out_unlock;
1217 		}
1218 
1219 		if (sinfo_flags & MSG_EOF) {
1220 			SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1221 					  asoc);
1222 			sctp_primitive_SHUTDOWN(asoc, NULL);
1223 			err = 0;
1224 			goto out_unlock;
1225 		}
1226 		if (sinfo_flags & MSG_ABORT) {
1227 			SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1228 			sctp_primitive_ABORT(asoc, msg);
1229 			err = 0;
1230 			goto out_unlock;
1231 		}
1232 	}
1233 
1234 	/* Do we need to create the association?  */
1235 	if (!asoc) {
1236 		SCTP_DEBUG_PRINTK("There is no association yet.\n");
1237 
1238 		if (sinfo_flags & (MSG_EOF | MSG_ABORT)) {
1239 			err = -EINVAL;
1240 			goto out_unlock;
1241 		}
1242 
1243 		/* Check for invalid stream against the stream counts,
1244 		 * either the default or the user specified stream counts.
1245 		 */
1246 		if (sinfo) {
1247 			if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1248 				/* Check against the defaults. */
1249 				if (sinfo->sinfo_stream >=
1250 				    sp->initmsg.sinit_num_ostreams) {
1251 					err = -EINVAL;
1252 					goto out_unlock;
1253 				}
1254 			} else {
1255 				/* Check against the requested.  */
1256 				if (sinfo->sinfo_stream >=
1257 				    sinit->sinit_num_ostreams) {
1258 					err = -EINVAL;
1259 					goto out_unlock;
1260 				}
1261 			}
1262 		}
1263 
1264 		/*
1265 		 * API 3.1.2 bind() - UDP Style Syntax
1266 		 * If a bind() or sctp_bindx() is not called prior to a
1267 		 * sendmsg() call that initiates a new association, the
1268 		 * system picks an ephemeral port and will choose an address
1269 		 * set equivalent to binding with a wildcard address.
1270 		 */
1271 		if (!ep->base.bind_addr.port) {
1272 			if (sctp_autobind(sk)) {
1273 				err = -EAGAIN;
1274 				goto out_unlock;
1275 			}
1276 		}
1277 
1278 		scope = sctp_scope(&to);
1279 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1280 		if (!new_asoc) {
1281 			err = -ENOMEM;
1282 			goto out_unlock;
1283 		}
1284 		asoc = new_asoc;
1285 
1286 		/* If the SCTP_INIT ancillary data is specified, set all
1287 		 * the association init values accordingly.
1288 		 */
1289 		if (sinit) {
1290 			if (sinit->sinit_num_ostreams) {
1291 				asoc->c.sinit_num_ostreams =
1292 					sinit->sinit_num_ostreams;
1293 			}
1294 			if (sinit->sinit_max_instreams) {
1295 				asoc->c.sinit_max_instreams =
1296 					sinit->sinit_max_instreams;
1297 			}
1298 			if (sinit->sinit_max_attempts) {
1299 				asoc->max_init_attempts
1300 					= sinit->sinit_max_attempts;
1301 			}
1302 			if (sinit->sinit_max_init_timeo) {
1303 				asoc->max_init_timeo =
1304 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1305 			}
1306 		}
1307 
1308 		/* Prime the peer's transport structures.  */
1309 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL);
1310 		if (!transport) {
1311 			err = -ENOMEM;
1312 			goto out_free;
1313 		}
1314 		err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
1315 		if (err < 0) {
1316 			err = -ENOMEM;
1317 			goto out_free;
1318 		}
1319 	}
1320 
1321 	/* ASSERT: we have a valid association at this point.  */
1322 	SCTP_DEBUG_PRINTK("We have a valid association.\n");
1323 
1324 	if (!sinfo) {
1325 		/* If the user didn't specify SNDRCVINFO, make up one with
1326 		 * some defaults.
1327 		 */
1328 		default_sinfo.sinfo_stream = asoc->default_stream;
1329 		default_sinfo.sinfo_flags = asoc->default_flags;
1330 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1331 		default_sinfo.sinfo_context = asoc->default_context;
1332 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1333 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1334 		sinfo = &default_sinfo;
1335 	}
1336 
1337 	/* API 7.1.7, the sndbuf size per association bounds the
1338 	 * maximum size of data that can be sent in a single send call.
1339 	 */
1340 	if (msg_len > sk->sk_sndbuf) {
1341 		err = -EMSGSIZE;
1342 		goto out_free;
1343 	}
1344 
1345 	/* If fragmentation is disabled and the message length exceeds the
1346 	 * association fragmentation point, return EMSGSIZE.  The I-D
1347 	 * does not specify what this error is, but this looks like
1348 	 * a great fit.
1349 	 */
1350 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1351 		err = -EMSGSIZE;
1352 		goto out_free;
1353 	}
1354 
1355 	if (sinfo) {
1356 		/* Check for invalid stream. */
1357 		if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1358 			err = -EINVAL;
1359 			goto out_free;
1360 		}
1361 	}
1362 
1363 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1364 	if (!sctp_wspace(asoc)) {
1365 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1366 		if (err)
1367 			goto out_free;
1368 	}
1369 
1370 	/* If an address is passed with the sendto/sendmsg call, it is used
1371 	 * to override the primary destination address in the TCP model, or
1372 	 * when MSG_ADDR_OVER flag is set in the UDP model.
1373 	 */
1374 	if ((sctp_style(sk, TCP) && msg_name) ||
1375 	    (sinfo_flags & MSG_ADDR_OVER)) {
1376 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1377 		if (!chunk_tp) {
1378 			err = -EINVAL;
1379 			goto out_free;
1380 		}
1381 	} else
1382 		chunk_tp = NULL;
1383 
1384 	/* Auto-connect, if we aren't connected already. */
1385 	if (sctp_state(asoc, CLOSED)) {
1386 		err = sctp_primitive_ASSOCIATE(asoc, NULL);
1387 		if (err < 0)
1388 			goto out_free;
1389 		SCTP_DEBUG_PRINTK("We associated primitively.\n");
1390 	}
1391 
1392 	/* Break the message into multiple chunks of maximum size. */
1393 	datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1394 	if (!datamsg) {
1395 		err = -ENOMEM;
1396 		goto out_free;
1397 	}
1398 
1399 	/* Now send the (possibly) fragmented message. */
1400 	list_for_each(pos, &datamsg->chunks) {
1401 		chunk = list_entry(pos, struct sctp_chunk, frag_list);
1402 		sctp_datamsg_track(chunk);
1403 
1404 		/* Do accounting for the write space.  */
1405 		sctp_set_owner_w(chunk);
1406 
1407 		chunk->transport = chunk_tp;
1408 
1409 		/* Send it to the lower layers.  Note:  all chunks
1410 		 * must either fail or succeed.   The lower layer
1411 		 * works that way today.  Keep it that way or this
1412 		 * breaks.
1413 		 */
1414 		err = sctp_primitive_SEND(asoc, chunk);
1415 		/* Did the lower layer accept the chunk? */
1416 		if (err)
1417 			sctp_chunk_free(chunk);
1418 		SCTP_DEBUG_PRINTK("We sent primitively.\n");
1419 	}
1420 
1421 	sctp_datamsg_free(datamsg);
1422 	if (err)
1423 		goto out_free;
1424 	else
1425 		err = msg_len;
1426 
1427 	/* If we are already past ASSOCIATE, the lower
1428 	 * layers are responsible for association cleanup.
1429 	 */
1430 	goto out_unlock;
1431 
1432 out_free:
1433 	if (new_asoc)
1434 		sctp_association_free(asoc);
1435 out_unlock:
1436 	sctp_release_sock(sk);
1437 
1438 out_nounlock:
1439 	return sctp_error(sk, msg_flags, err);
1440 
1441 #if 0
1442 do_sock_err:
1443 	if (msg_len)
1444 		err = msg_len;
1445 	else
1446 		err = sock_error(sk);
1447 	goto out;
1448 
1449 do_interrupted:
1450 	if (msg_len)
1451 		err = msg_len;
1452 	goto out;
1453 #endif /* 0 */
1454 }
1455 
1456 /* This is an extended version of skb_pull() that removes the data from the
1457  * start of a skb even when data is spread across the list of skb's in the
1458  * frag_list. len specifies the total amount of data that needs to be removed.
1459  * when 'len' bytes could be removed from the skb, it returns 0.
1460  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
1461  * could not be removed.
1462  */
1463 static int sctp_skb_pull(struct sk_buff *skb, int len)
1464 {
1465 	struct sk_buff *list;
1466 	int skb_len = skb_headlen(skb);
1467 	int rlen;
1468 
1469 	if (len <= skb_len) {
1470 		__skb_pull(skb, len);
1471 		return 0;
1472 	}
1473 	len -= skb_len;
1474 	__skb_pull(skb, skb_len);
1475 
1476 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next) {
1477 		rlen = sctp_skb_pull(list, len);
1478 		skb->len -= (len-rlen);
1479 		skb->data_len -= (len-rlen);
1480 
1481 		if (!rlen)
1482 			return 0;
1483 
1484 		len = rlen;
1485 	}
1486 
1487 	return len;
1488 }
1489 
1490 /* API 3.1.3  recvmsg() - UDP Style Syntax
1491  *
1492  *  ssize_t recvmsg(int socket, struct msghdr *message,
1493  *                    int flags);
1494  *
1495  *  socket  - the socket descriptor of the endpoint.
1496  *  message - pointer to the msghdr structure which contains a single
1497  *            user message and possibly some ancillary data.
1498  *
1499  *            See Section 5 for complete description of the data
1500  *            structures.
1501  *
1502  *  flags   - flags sent or received with the user message, see Section
1503  *            5 for complete description of the flags.
1504  */
1505 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1506 
1507 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1508 			     struct msghdr *msg, size_t len, int noblock,
1509 			     int flags, int *addr_len)
1510 {
1511 	struct sctp_ulpevent *event = NULL;
1512 	struct sctp_sock *sp = sctp_sk(sk);
1513 	struct sk_buff *skb;
1514 	int copied;
1515 	int err = 0;
1516 	int skb_len;
1517 
1518 	SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1519 			  "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1520 			  "len", len, "knoblauch", noblock,
1521 			  "flags", flags, "addr_len", addr_len);
1522 
1523 	sctp_lock_sock(sk);
1524 
1525 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1526 		err = -ENOTCONN;
1527 		goto out;
1528 	}
1529 
1530 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1531 	if (!skb)
1532 		goto out;
1533 
1534 	/* Get the total length of the skb including any skb's in the
1535 	 * frag_list.
1536 	 */
1537 	skb_len = skb->len;
1538 
1539 	copied = skb_len;
1540 	if (copied > len)
1541 		copied = len;
1542 
1543 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1544 
1545 	event = sctp_skb2event(skb);
1546 
1547 	if (err)
1548 		goto out_free;
1549 
1550 	sock_recv_timestamp(msg, sk, skb);
1551 	if (sctp_ulpevent_is_notification(event)) {
1552 		msg->msg_flags |= MSG_NOTIFICATION;
1553 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
1554 	} else {
1555 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1556 	}
1557 
1558 	/* Check if we allow SCTP_SNDRCVINFO. */
1559 	if (sp->subscribe.sctp_data_io_event)
1560 		sctp_ulpevent_read_sndrcvinfo(event, msg);
1561 #if 0
1562 	/* FIXME: we should be calling IP/IPv6 layers.  */
1563 	if (sk->sk_protinfo.af_inet.cmsg_flags)
1564 		ip_cmsg_recv(msg, skb);
1565 #endif
1566 
1567 	err = copied;
1568 
1569 	/* If skb's length exceeds the user's buffer, update the skb and
1570 	 * push it back to the receive_queue so that the next call to
1571 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
1572 	 */
1573 	if (skb_len > copied) {
1574 		msg->msg_flags &= ~MSG_EOR;
1575 		if (flags & MSG_PEEK)
1576 			goto out_free;
1577 		sctp_skb_pull(skb, copied);
1578 		skb_queue_head(&sk->sk_receive_queue, skb);
1579 
1580 		/* When only partial message is copied to the user, increase
1581 		 * rwnd by that amount. If all the data in the skb is read,
1582 		 * rwnd is updated when the event is freed.
1583 		 */
1584 		sctp_assoc_rwnd_increase(event->asoc, copied);
1585 		goto out;
1586 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
1587 		   (event->msg_flags & MSG_EOR))
1588 		msg->msg_flags |= MSG_EOR;
1589 	else
1590 		msg->msg_flags &= ~MSG_EOR;
1591 
1592 out_free:
1593 	if (flags & MSG_PEEK) {
1594 		/* Release the skb reference acquired after peeking the skb in
1595 		 * sctp_skb_recv_datagram().
1596 		 */
1597 		kfree_skb(skb);
1598 	} else {
1599 		/* Free the event which includes releasing the reference to
1600 		 * the owner of the skb, freeing the skb and updating the
1601 		 * rwnd.
1602 		 */
1603 		sctp_ulpevent_free(event);
1604 	}
1605 out:
1606 	sctp_release_sock(sk);
1607 	return err;
1608 }
1609 
1610 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
1611  *
1612  * This option is a on/off flag.  If enabled no SCTP message
1613  * fragmentation will be performed.  Instead if a message being sent
1614  * exceeds the current PMTU size, the message will NOT be sent and
1615  * instead a error will be indicated to the user.
1616  */
1617 static int sctp_setsockopt_disable_fragments(struct sock *sk,
1618 					    char __user *optval, int optlen)
1619 {
1620 	int val;
1621 
1622 	if (optlen < sizeof(int))
1623 		return -EINVAL;
1624 
1625 	if (get_user(val, (int __user *)optval))
1626 		return -EFAULT;
1627 
1628 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
1629 
1630 	return 0;
1631 }
1632 
1633 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
1634 					int optlen)
1635 {
1636 	if (optlen != sizeof(struct sctp_event_subscribe))
1637 		return -EINVAL;
1638 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
1639 		return -EFAULT;
1640 	return 0;
1641 }
1642 
1643 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
1644  *
1645  * This socket option is applicable to the UDP-style socket only.  When
1646  * set it will cause associations that are idle for more than the
1647  * specified number of seconds to automatically close.  An association
1648  * being idle is defined an association that has NOT sent or received
1649  * user data.  The special value of '0' indicates that no automatic
1650  * close of any associations should be performed.  The option expects an
1651  * integer defining the number of seconds of idle time before an
1652  * association is closed.
1653  */
1654 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
1655 					    int optlen)
1656 {
1657 	struct sctp_sock *sp = sctp_sk(sk);
1658 
1659 	/* Applicable to UDP-style socket only */
1660 	if (sctp_style(sk, TCP))
1661 		return -EOPNOTSUPP;
1662 	if (optlen != sizeof(int))
1663 		return -EINVAL;
1664 	if (copy_from_user(&sp->autoclose, optval, optlen))
1665 		return -EFAULT;
1666 
1667 	sp->ep->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
1668 	return 0;
1669 }
1670 
1671 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
1672  *
1673  * Applications can enable or disable heartbeats for any peer address of
1674  * an association, modify an address's heartbeat interval, force a
1675  * heartbeat to be sent immediately, and adjust the address's maximum
1676  * number of retransmissions sent before an address is considered
1677  * unreachable.  The following structure is used to access and modify an
1678  * address's parameters:
1679  *
1680  *  struct sctp_paddrparams {
1681  *      sctp_assoc_t            spp_assoc_id;
1682  *      struct sockaddr_storage spp_address;
1683  *      uint32_t                spp_hbinterval;
1684  *      uint16_t                spp_pathmaxrxt;
1685  *  };
1686  *
1687  *   spp_assoc_id    - (UDP style socket) This is filled in the application,
1688  *                     and identifies the association for this query.
1689  *   spp_address     - This specifies which address is of interest.
1690  *   spp_hbinterval  - This contains the value of the heartbeat interval,
1691  *                     in milliseconds.  A value of 0, when modifying the
1692  *                     parameter, specifies that the heartbeat on this
1693  *                     address should be disabled. A value of UINT32_MAX
1694  *                     (4294967295), when modifying the parameter,
1695  *                     specifies that a heartbeat should be sent
1696  *                     immediately to the peer address, and the current
1697  *                     interval should remain unchanged.
1698  *   spp_pathmaxrxt  - This contains the maximum number of
1699  *                     retransmissions before this address shall be
1700  *                     considered unreachable.
1701  */
1702 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
1703 					    char __user *optval, int optlen)
1704 {
1705 	struct sctp_paddrparams params;
1706 	struct sctp_transport *trans;
1707 	int error;
1708 
1709 	if (optlen != sizeof(struct sctp_paddrparams))
1710 		return -EINVAL;
1711 	if (copy_from_user(&params, optval, optlen))
1712 		return -EFAULT;
1713 
1714 	/*
1715 	 * API 7. Socket Options (setting the default value for the endpoint)
1716 	 * All options that support specific settings on an association by
1717 	 * filling in either an association id variable or a sockaddr_storage
1718 	 * SHOULD also support setting of the same value for the entire endpoint
1719 	 * (i.e. future associations). To accomplish this the following logic is
1720 	 * used when setting one of these options:
1721 
1722 	 * c) If neither the sockaddr_storage or association identification is
1723 	 *    set i.e. the sockaddr_storage is set to all 0's (INADDR_ANY) and
1724 	 *    the association identification is 0, the settings are a default
1725 	 *    and to be applied to the endpoint (all future associations).
1726 	 */
1727 
1728 	/* update default value for endpoint (all future associations) */
1729 	if (!params.spp_assoc_id &&
1730 	    sctp_is_any(( union sctp_addr *)&params.spp_address)) {
1731 		/* Manual heartbeat on an endpoint is invalid. */
1732 		if (0xffffffff == params.spp_hbinterval)
1733 			return -EINVAL;
1734 		else if (params.spp_hbinterval)
1735 			sctp_sk(sk)->paddrparam.spp_hbinterval =
1736 						params.spp_hbinterval;
1737 		if (params.spp_pathmaxrxt)
1738 			sctp_sk(sk)->paddrparam.spp_pathmaxrxt =
1739 						params.spp_pathmaxrxt;
1740 		return 0;
1741 	}
1742 
1743 	trans = sctp_addr_id2transport(sk, &params.spp_address,
1744 				       params.spp_assoc_id);
1745 	if (!trans)
1746 		return -EINVAL;
1747 
1748 	/* Applications can enable or disable heartbeats for any peer address
1749 	 * of an association, modify an address's heartbeat interval, force a
1750 	 * heartbeat to be sent immediately, and adjust the address's maximum
1751 	 * number of retransmissions sent before an address is considered
1752 	 * unreachable.
1753 	 *
1754 	 * The value of the heartbeat interval, in milliseconds. A value of
1755 	 * UINT32_MAX (4294967295), when modifying the parameter, specifies
1756 	 * that a heartbeat should be sent immediately to the peer address,
1757 	 * and the current interval should remain unchanged.
1758 	 */
1759 	if (0xffffffff == params.spp_hbinterval) {
1760 		error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
1761 		if (error)
1762 			return error;
1763 	} else {
1764 	/* The value of the heartbeat interval, in milliseconds. A value of 0,
1765 	 * when modifying the parameter, specifies that the heartbeat on this
1766 	 * address should be disabled.
1767 	 */
1768 		if (params.spp_hbinterval) {
1769 			trans->hb_allowed = 1;
1770 			trans->hb_interval =
1771 				msecs_to_jiffies(params.spp_hbinterval);
1772 		} else
1773 			trans->hb_allowed = 0;
1774 	}
1775 
1776 	/* spp_pathmaxrxt contains the maximum number of retransmissions
1777 	 * before this address shall be considered unreachable.
1778 	 */
1779 	if (params.spp_pathmaxrxt)
1780 		trans->max_retrans = params.spp_pathmaxrxt;
1781 
1782 	return 0;
1783 }
1784 
1785 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
1786  *
1787  * Applications can specify protocol parameters for the default association
1788  * initialization.  The option name argument to setsockopt() and getsockopt()
1789  * is SCTP_INITMSG.
1790  *
1791  * Setting initialization parameters is effective only on an unconnected
1792  * socket (for UDP-style sockets only future associations are effected
1793  * by the change).  With TCP-style sockets, this option is inherited by
1794  * sockets derived from a listener socket.
1795  */
1796 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen)
1797 {
1798 	struct sctp_initmsg sinit;
1799 	struct sctp_sock *sp = sctp_sk(sk);
1800 
1801 	if (optlen != sizeof(struct sctp_initmsg))
1802 		return -EINVAL;
1803 	if (copy_from_user(&sinit, optval, optlen))
1804 		return -EFAULT;
1805 
1806 	if (sinit.sinit_num_ostreams)
1807 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
1808 	if (sinit.sinit_max_instreams)
1809 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
1810 	if (sinit.sinit_max_attempts)
1811 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
1812 	if (sinit.sinit_max_init_timeo)
1813 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
1814 
1815 	return 0;
1816 }
1817 
1818 /*
1819  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
1820  *
1821  *   Applications that wish to use the sendto() system call may wish to
1822  *   specify a default set of parameters that would normally be supplied
1823  *   through the inclusion of ancillary data.  This socket option allows
1824  *   such an application to set the default sctp_sndrcvinfo structure.
1825  *   The application that wishes to use this socket option simply passes
1826  *   in to this call the sctp_sndrcvinfo structure defined in Section
1827  *   5.2.2) The input parameters accepted by this call include
1828  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
1829  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
1830  *   to this call if the caller is using the UDP model.
1831  */
1832 static int sctp_setsockopt_default_send_param(struct sock *sk,
1833 						char __user *optval, int optlen)
1834 {
1835 	struct sctp_sndrcvinfo info;
1836 	struct sctp_association *asoc;
1837 	struct sctp_sock *sp = sctp_sk(sk);
1838 
1839 	if (optlen != sizeof(struct sctp_sndrcvinfo))
1840 		return -EINVAL;
1841 	if (copy_from_user(&info, optval, optlen))
1842 		return -EFAULT;
1843 
1844 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
1845 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
1846 		return -EINVAL;
1847 
1848 	if (asoc) {
1849 		asoc->default_stream = info.sinfo_stream;
1850 		asoc->default_flags = info.sinfo_flags;
1851 		asoc->default_ppid = info.sinfo_ppid;
1852 		asoc->default_context = info.sinfo_context;
1853 		asoc->default_timetolive = info.sinfo_timetolive;
1854 	} else {
1855 		sp->default_stream = info.sinfo_stream;
1856 		sp->default_flags = info.sinfo_flags;
1857 		sp->default_ppid = info.sinfo_ppid;
1858 		sp->default_context = info.sinfo_context;
1859 		sp->default_timetolive = info.sinfo_timetolive;
1860 	}
1861 
1862 	return 0;
1863 }
1864 
1865 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
1866  *
1867  * Requests that the local SCTP stack use the enclosed peer address as
1868  * the association primary.  The enclosed address must be one of the
1869  * association peer's addresses.
1870  */
1871 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
1872 					int optlen)
1873 {
1874 	struct sctp_prim prim;
1875 	struct sctp_transport *trans;
1876 
1877 	if (optlen != sizeof(struct sctp_prim))
1878 		return -EINVAL;
1879 
1880 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
1881 		return -EFAULT;
1882 
1883 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
1884 	if (!trans)
1885 		return -EINVAL;
1886 
1887 	sctp_assoc_set_primary(trans->asoc, trans);
1888 
1889 	return 0;
1890 }
1891 
1892 /*
1893  * 7.1.5 SCTP_NODELAY
1894  *
1895  * Turn on/off any Nagle-like algorithm.  This means that packets are
1896  * generally sent as soon as possible and no unnecessary delays are
1897  * introduced, at the cost of more packets in the network.  Expects an
1898  *  integer boolean flag.
1899  */
1900 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
1901 					int optlen)
1902 {
1903 	int val;
1904 
1905 	if (optlen < sizeof(int))
1906 		return -EINVAL;
1907 	if (get_user(val, (int __user *)optval))
1908 		return -EFAULT;
1909 
1910 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
1911 	return 0;
1912 }
1913 
1914 /*
1915  *
1916  * 7.1.1 SCTP_RTOINFO
1917  *
1918  * The protocol parameters used to initialize and bound retransmission
1919  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
1920  * and modify these parameters.
1921  * All parameters are time values, in milliseconds.  A value of 0, when
1922  * modifying the parameters, indicates that the current value should not
1923  * be changed.
1924  *
1925  */
1926 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) {
1927 	struct sctp_rtoinfo rtoinfo;
1928 	struct sctp_association *asoc;
1929 
1930 	if (optlen != sizeof (struct sctp_rtoinfo))
1931 		return -EINVAL;
1932 
1933 	if (copy_from_user(&rtoinfo, optval, optlen))
1934 		return -EFAULT;
1935 
1936 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
1937 
1938 	/* Set the values to the specific association */
1939 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
1940 		return -EINVAL;
1941 
1942 	if (asoc) {
1943 		if (rtoinfo.srto_initial != 0)
1944 			asoc->rto_initial =
1945 				msecs_to_jiffies(rtoinfo.srto_initial);
1946 		if (rtoinfo.srto_max != 0)
1947 			asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
1948 		if (rtoinfo.srto_min != 0)
1949 			asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
1950 	} else {
1951 		/* If there is no association or the association-id = 0
1952 		 * set the values to the endpoint.
1953 		 */
1954 		struct sctp_sock *sp = sctp_sk(sk);
1955 
1956 		if (rtoinfo.srto_initial != 0)
1957 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
1958 		if (rtoinfo.srto_max != 0)
1959 			sp->rtoinfo.srto_max = rtoinfo.srto_max;
1960 		if (rtoinfo.srto_min != 0)
1961 			sp->rtoinfo.srto_min = rtoinfo.srto_min;
1962 	}
1963 
1964 	return 0;
1965 }
1966 
1967 /*
1968  *
1969  * 7.1.2 SCTP_ASSOCINFO
1970  *
1971  * This option is used to tune the the maximum retransmission attempts
1972  * of the association.
1973  * Returns an error if the new association retransmission value is
1974  * greater than the sum of the retransmission value  of the peer.
1975  * See [SCTP] for more information.
1976  *
1977  */
1978 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen)
1979 {
1980 
1981 	struct sctp_assocparams assocparams;
1982 	struct sctp_association *asoc;
1983 
1984 	if (optlen != sizeof(struct sctp_assocparams))
1985 		return -EINVAL;
1986 	if (copy_from_user(&assocparams, optval, optlen))
1987 		return -EFAULT;
1988 
1989 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
1990 
1991 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
1992 		return -EINVAL;
1993 
1994 	/* Set the values to the specific association */
1995 	if (asoc) {
1996 		if (assocparams.sasoc_asocmaxrxt != 0)
1997 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
1998 		if (assocparams.sasoc_cookie_life != 0) {
1999 			asoc->cookie_life.tv_sec =
2000 					assocparams.sasoc_cookie_life / 1000;
2001 			asoc->cookie_life.tv_usec =
2002 					(assocparams.sasoc_cookie_life % 1000)
2003 					* 1000;
2004 		}
2005 	} else {
2006 		/* Set the values to the endpoint */
2007 		struct sctp_sock *sp = sctp_sk(sk);
2008 
2009 		if (assocparams.sasoc_asocmaxrxt != 0)
2010 			sp->assocparams.sasoc_asocmaxrxt =
2011 						assocparams.sasoc_asocmaxrxt;
2012 		if (assocparams.sasoc_cookie_life != 0)
2013 			sp->assocparams.sasoc_cookie_life =
2014 						assocparams.sasoc_cookie_life;
2015 	}
2016 	return 0;
2017 }
2018 
2019 /*
2020  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2021  *
2022  * This socket option is a boolean flag which turns on or off mapped V4
2023  * addresses.  If this option is turned on and the socket is type
2024  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2025  * If this option is turned off, then no mapping will be done of V4
2026  * addresses and a user will receive both PF_INET6 and PF_INET type
2027  * addresses on the socket.
2028  */
2029 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen)
2030 {
2031 	int val;
2032 	struct sctp_sock *sp = sctp_sk(sk);
2033 
2034 	if (optlen < sizeof(int))
2035 		return -EINVAL;
2036 	if (get_user(val, (int __user *)optval))
2037 		return -EFAULT;
2038 	if (val)
2039 		sp->v4mapped = 1;
2040 	else
2041 		sp->v4mapped = 0;
2042 
2043 	return 0;
2044 }
2045 
2046 /*
2047  * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
2048  *
2049  * This socket option specifies the maximum size to put in any outgoing
2050  * SCTP chunk.  If a message is larger than this size it will be
2051  * fragmented by SCTP into the specified size.  Note that the underlying
2052  * SCTP implementation may fragment into smaller sized chunks when the
2053  * PMTU of the underlying association is smaller than the value set by
2054  * the user.
2055  */
2056 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen)
2057 {
2058 	struct sctp_association *asoc;
2059 	struct list_head *pos;
2060 	struct sctp_sock *sp = sctp_sk(sk);
2061 	int val;
2062 
2063 	if (optlen < sizeof(int))
2064 		return -EINVAL;
2065 	if (get_user(val, (int __user *)optval))
2066 		return -EFAULT;
2067 	if ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))
2068 		return -EINVAL;
2069 	sp->user_frag = val;
2070 
2071 	if (val) {
2072 		/* Update the frag_point of the existing associations. */
2073 		list_for_each(pos, &(sp->ep->asocs)) {
2074 			asoc = list_entry(pos, struct sctp_association, asocs);
2075 			asoc->frag_point = sctp_frag_point(sp, asoc->pmtu);
2076 		}
2077 	}
2078 
2079 	return 0;
2080 }
2081 
2082 
2083 /*
2084  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2085  *
2086  *   Requests that the peer mark the enclosed address as the association
2087  *   primary. The enclosed address must be one of the association's
2088  *   locally bound addresses. The following structure is used to make a
2089  *   set primary request:
2090  */
2091 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2092 					     int optlen)
2093 {
2094 	struct sctp_sock	*sp;
2095 	struct sctp_endpoint	*ep;
2096 	struct sctp_association	*asoc = NULL;
2097 	struct sctp_setpeerprim	prim;
2098 	struct sctp_chunk	*chunk;
2099 	int 			err;
2100 
2101 	sp = sctp_sk(sk);
2102 	ep = sp->ep;
2103 
2104 	if (!sctp_addip_enable)
2105 		return -EPERM;
2106 
2107 	if (optlen != sizeof(struct sctp_setpeerprim))
2108 		return -EINVAL;
2109 
2110 	if (copy_from_user(&prim, optval, optlen))
2111 		return -EFAULT;
2112 
2113 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2114 	if (!asoc)
2115 		return -EINVAL;
2116 
2117 	if (!asoc->peer.asconf_capable)
2118 		return -EPERM;
2119 
2120 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2121 		return -EPERM;
2122 
2123 	if (!sctp_state(asoc, ESTABLISHED))
2124 		return -ENOTCONN;
2125 
2126 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2127 		return -EADDRNOTAVAIL;
2128 
2129 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
2130 	chunk = sctp_make_asconf_set_prim(asoc,
2131 					  (union sctp_addr *)&prim.sspp_addr);
2132 	if (!chunk)
2133 		return -ENOMEM;
2134 
2135 	err = sctp_send_asconf(asoc, chunk);
2136 
2137 	SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2138 
2139 	return err;
2140 }
2141 
2142 static int sctp_setsockopt_adaption_layer(struct sock *sk, char __user *optval,
2143 					  int optlen)
2144 {
2145 	__u32 val;
2146 
2147 	if (optlen < sizeof(__u32))
2148 		return -EINVAL;
2149 	if (copy_from_user(&val, optval, sizeof(__u32)))
2150 		return -EFAULT;
2151 
2152 	sctp_sk(sk)->adaption_ind = val;
2153 
2154 	return 0;
2155 }
2156 
2157 /* API 6.2 setsockopt(), getsockopt()
2158  *
2159  * Applications use setsockopt() and getsockopt() to set or retrieve
2160  * socket options.  Socket options are used to change the default
2161  * behavior of sockets calls.  They are described in Section 7.
2162  *
2163  * The syntax is:
2164  *
2165  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
2166  *                    int __user *optlen);
2167  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
2168  *                    int optlen);
2169  *
2170  *   sd      - the socket descript.
2171  *   level   - set to IPPROTO_SCTP for all SCTP options.
2172  *   optname - the option name.
2173  *   optval  - the buffer to store the value of the option.
2174  *   optlen  - the size of the buffer.
2175  */
2176 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
2177 				char __user *optval, int optlen)
2178 {
2179 	int retval = 0;
2180 
2181 	SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
2182 			  sk, optname);
2183 
2184 	/* I can hardly begin to describe how wrong this is.  This is
2185 	 * so broken as to be worse than useless.  The API draft
2186 	 * REALLY is NOT helpful here...  I am not convinced that the
2187 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
2188 	 * are at all well-founded.
2189 	 */
2190 	if (level != SOL_SCTP) {
2191 		struct sctp_af *af = sctp_sk(sk)->pf->af;
2192 		retval = af->setsockopt(sk, level, optname, optval, optlen);
2193 		goto out_nounlock;
2194 	}
2195 
2196 	sctp_lock_sock(sk);
2197 
2198 	switch (optname) {
2199 	case SCTP_SOCKOPT_BINDX_ADD:
2200 		/* 'optlen' is the size of the addresses buffer. */
2201 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2202 					       optlen, SCTP_BINDX_ADD_ADDR);
2203 		break;
2204 
2205 	case SCTP_SOCKOPT_BINDX_REM:
2206 		/* 'optlen' is the size of the addresses buffer. */
2207 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
2208 					       optlen, SCTP_BINDX_REM_ADDR);
2209 		break;
2210 
2211 	case SCTP_DISABLE_FRAGMENTS:
2212 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
2213 		break;
2214 
2215 	case SCTP_EVENTS:
2216 		retval = sctp_setsockopt_events(sk, optval, optlen);
2217 		break;
2218 
2219 	case SCTP_AUTOCLOSE:
2220 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
2221 		break;
2222 
2223 	case SCTP_PEER_ADDR_PARAMS:
2224 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
2225 		break;
2226 
2227 	case SCTP_INITMSG:
2228 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
2229 		break;
2230 	case SCTP_DEFAULT_SEND_PARAM:
2231 		retval = sctp_setsockopt_default_send_param(sk, optval,
2232 							    optlen);
2233 		break;
2234 	case SCTP_PRIMARY_ADDR:
2235 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
2236 		break;
2237 	case SCTP_SET_PEER_PRIMARY_ADDR:
2238 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
2239 		break;
2240 	case SCTP_NODELAY:
2241 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
2242 		break;
2243 	case SCTP_RTOINFO:
2244 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
2245 		break;
2246 	case SCTP_ASSOCINFO:
2247 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
2248 		break;
2249 	case SCTP_I_WANT_MAPPED_V4_ADDR:
2250 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
2251 		break;
2252 	case SCTP_MAXSEG:
2253 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
2254 		break;
2255 	case SCTP_ADAPTION_LAYER:
2256 		retval = sctp_setsockopt_adaption_layer(sk, optval, optlen);
2257 		break;
2258 
2259 	default:
2260 		retval = -ENOPROTOOPT;
2261 		break;
2262 	};
2263 
2264 	sctp_release_sock(sk);
2265 
2266 out_nounlock:
2267 	return retval;
2268 }
2269 
2270 /* API 3.1.6 connect() - UDP Style Syntax
2271  *
2272  * An application may use the connect() call in the UDP model to initiate an
2273  * association without sending data.
2274  *
2275  * The syntax is:
2276  *
2277  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
2278  *
2279  * sd: the socket descriptor to have a new association added to.
2280  *
2281  * nam: the address structure (either struct sockaddr_in or struct
2282  *    sockaddr_in6 defined in RFC2553 [7]).
2283  *
2284  * len: the size of the address.
2285  */
2286 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *uaddr,
2287 			     int addr_len)
2288 {
2289 	struct sctp_sock *sp;
2290 	struct sctp_endpoint *ep;
2291 	struct sctp_association *asoc;
2292 	struct sctp_transport *transport;
2293 	union sctp_addr to;
2294 	struct sctp_af *af;
2295 	sctp_scope_t scope;
2296 	long timeo;
2297 	int err = 0;
2298 
2299 	sctp_lock_sock(sk);
2300 
2301 	SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d)\n",
2302 			  __FUNCTION__, sk, uaddr, addr_len);
2303 
2304 	sp = sctp_sk(sk);
2305 	ep = sp->ep;
2306 
2307 	/* connect() cannot be done on a socket that is already in ESTABLISHED
2308 	 * state - UDP-style peeled off socket or a TCP-style socket that
2309 	 * is already connected.
2310 	 * It cannot be done even on a TCP-style listening socket.
2311 	 */
2312 	if (sctp_sstate(sk, ESTABLISHED) ||
2313 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
2314 		err = -EISCONN;
2315 		goto out_unlock;
2316 	}
2317 
2318 	err = sctp_verify_addr(sk, (union sctp_addr *)uaddr, addr_len);
2319 	if (err)
2320 		goto out_unlock;
2321 
2322 	if (addr_len > sizeof(to))
2323 		addr_len = sizeof(to);
2324 	memcpy(&to, uaddr, addr_len);
2325 	to.v4.sin_port = ntohs(to.v4.sin_port);
2326 
2327 	asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
2328 	if (asoc) {
2329 		if (asoc->state >= SCTP_STATE_ESTABLISHED)
2330 			err = -EISCONN;
2331 		else
2332 			err = -EALREADY;
2333 		goto out_unlock;
2334 	}
2335 
2336 	/* If we could not find a matching association on the endpoint,
2337 	 * make sure that there is no peeled-off association matching the
2338 	 * peer address even on another socket.
2339 	 */
2340 	if (sctp_endpoint_is_peeled_off(ep, &to)) {
2341 		err = -EADDRNOTAVAIL;
2342 		goto out_unlock;
2343 	}
2344 
2345 	/* If a bind() or sctp_bindx() is not called prior to a connect()
2346 	 * call, the system picks an ephemeral port and will choose an address
2347 	 * set equivalent to binding with a wildcard address.
2348 	 */
2349 	if (!ep->base.bind_addr.port) {
2350 		if (sctp_autobind(sk)) {
2351 			err = -EAGAIN;
2352 			goto out_unlock;
2353 		}
2354 	}
2355 
2356 	scope = sctp_scope(&to);
2357 	asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
2358 	if (!asoc) {
2359 		err = -ENOMEM;
2360 		goto out_unlock;
2361   	}
2362 
2363 	/* Prime the peer's transport structures.  */
2364 	transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL);
2365 	if (!transport) {
2366 		sctp_association_free(asoc);
2367 		goto out_unlock;
2368 	}
2369 	err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL);
2370 	if (err < 0) {
2371 		sctp_association_free(asoc);
2372 		goto out_unlock;
2373 	}
2374 
2375 	err = sctp_primitive_ASSOCIATE(asoc, NULL);
2376 	if (err < 0) {
2377 		sctp_association_free(asoc);
2378 		goto out_unlock;
2379 	}
2380 
2381 	/* Initialize sk's dport and daddr for getpeername() */
2382 	inet_sk(sk)->dport = htons(asoc->peer.port);
2383 	af = sctp_get_af_specific(to.sa.sa_family);
2384 	af->to_sk_daddr(&to, sk);
2385 
2386 	timeo = sock_sndtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK);
2387 	err = sctp_wait_for_connect(asoc, &timeo);
2388 
2389 out_unlock:
2390 	sctp_release_sock(sk);
2391 
2392 	return err;
2393 }
2394 
2395 /* FIXME: Write comments. */
2396 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
2397 {
2398 	return -EOPNOTSUPP; /* STUB */
2399 }
2400 
2401 /* 4.1.4 accept() - TCP Style Syntax
2402  *
2403  * Applications use accept() call to remove an established SCTP
2404  * association from the accept queue of the endpoint.  A new socket
2405  * descriptor will be returned from accept() to represent the newly
2406  * formed association.
2407  */
2408 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
2409 {
2410 	struct sctp_sock *sp;
2411 	struct sctp_endpoint *ep;
2412 	struct sock *newsk = NULL;
2413 	struct sctp_association *asoc;
2414 	long timeo;
2415 	int error = 0;
2416 
2417 	sctp_lock_sock(sk);
2418 
2419 	sp = sctp_sk(sk);
2420 	ep = sp->ep;
2421 
2422 	if (!sctp_style(sk, TCP)) {
2423 		error = -EOPNOTSUPP;
2424 		goto out;
2425 	}
2426 
2427 	if (!sctp_sstate(sk, LISTENING)) {
2428 		error = -EINVAL;
2429 		goto out;
2430 	}
2431 
2432 	timeo = sock_rcvtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK);
2433 
2434 	error = sctp_wait_for_accept(sk, timeo);
2435 	if (error)
2436 		goto out;
2437 
2438 	/* We treat the list of associations on the endpoint as the accept
2439 	 * queue and pick the first association on the list.
2440 	 */
2441 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
2442 
2443 	newsk = sp->pf->create_accept_sk(sk, asoc);
2444 	if (!newsk) {
2445 		error = -ENOMEM;
2446 		goto out;
2447 	}
2448 
2449 	/* Populate the fields of the newsk from the oldsk and migrate the
2450 	 * asoc to the newsk.
2451 	 */
2452 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
2453 
2454 out:
2455 	sctp_release_sock(sk);
2456  	*err = error;
2457 	return newsk;
2458 }
2459 
2460 /* The SCTP ioctl handler. */
2461 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
2462 {
2463 	return -ENOIOCTLCMD;
2464 }
2465 
2466 /* This is the function which gets called during socket creation to
2467  * initialized the SCTP-specific portion of the sock.
2468  * The sock structure should already be zero-filled memory.
2469  */
2470 SCTP_STATIC int sctp_init_sock(struct sock *sk)
2471 {
2472 	struct sctp_endpoint *ep;
2473 	struct sctp_sock *sp;
2474 
2475 	SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
2476 
2477 	sp = sctp_sk(sk);
2478 
2479 	/* Initialize the SCTP per socket area.  */
2480 	switch (sk->sk_type) {
2481 	case SOCK_SEQPACKET:
2482 		sp->type = SCTP_SOCKET_UDP;
2483 		break;
2484 	case SOCK_STREAM:
2485 		sp->type = SCTP_SOCKET_TCP;
2486 		break;
2487 	default:
2488 		return -ESOCKTNOSUPPORT;
2489 	}
2490 
2491 	/* Initialize default send parameters. These parameters can be
2492 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
2493 	 */
2494 	sp->default_stream = 0;
2495 	sp->default_ppid = 0;
2496 	sp->default_flags = 0;
2497 	sp->default_context = 0;
2498 	sp->default_timetolive = 0;
2499 
2500 	/* Initialize default setup parameters. These parameters
2501 	 * can be modified with the SCTP_INITMSG socket option or
2502 	 * overridden by the SCTP_INIT CMSG.
2503 	 */
2504 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
2505 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
2506 	sp->initmsg.sinit_max_attempts   = sctp_max_retrans_init;
2507 	sp->initmsg.sinit_max_init_timeo = jiffies_to_msecs(sctp_rto_max);
2508 
2509 	/* Initialize default RTO related parameters.  These parameters can
2510 	 * be modified for with the SCTP_RTOINFO socket option.
2511 	 */
2512 	sp->rtoinfo.srto_initial = jiffies_to_msecs(sctp_rto_initial);
2513 	sp->rtoinfo.srto_max     = jiffies_to_msecs(sctp_rto_max);
2514 	sp->rtoinfo.srto_min     = jiffies_to_msecs(sctp_rto_min);
2515 
2516 	/* Initialize default association related parameters. These parameters
2517 	 * can be modified with the SCTP_ASSOCINFO socket option.
2518 	 */
2519 	sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
2520 	sp->assocparams.sasoc_number_peer_destinations = 0;
2521 	sp->assocparams.sasoc_peer_rwnd = 0;
2522 	sp->assocparams.sasoc_local_rwnd = 0;
2523 	sp->assocparams.sasoc_cookie_life =
2524 		jiffies_to_msecs(sctp_valid_cookie_life);
2525 
2526 	/* Initialize default event subscriptions. By default, all the
2527 	 * options are off.
2528 	 */
2529 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
2530 
2531 	/* Default Peer Address Parameters.  These defaults can
2532 	 * be modified via SCTP_PEER_ADDR_PARAMS
2533 	 */
2534 	sp->paddrparam.spp_hbinterval = jiffies_to_msecs(sctp_hb_interval);
2535 	sp->paddrparam.spp_pathmaxrxt = sctp_max_retrans_path;
2536 
2537 	/* If enabled no SCTP message fragmentation will be performed.
2538 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
2539 	 */
2540 	sp->disable_fragments = 0;
2541 
2542 	/* Turn on/off any Nagle-like algorithm.  */
2543 	sp->nodelay           = 1;
2544 
2545 	/* Enable by default. */
2546 	sp->v4mapped          = 1;
2547 
2548 	/* Auto-close idle associations after the configured
2549 	 * number of seconds.  A value of 0 disables this
2550 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
2551 	 * for UDP-style sockets only.
2552 	 */
2553 	sp->autoclose         = 0;
2554 
2555 	/* User specified fragmentation limit. */
2556 	sp->user_frag         = 0;
2557 
2558 	sp->adaption_ind = 0;
2559 
2560 	sp->pf = sctp_get_pf_specific(sk->sk_family);
2561 
2562 	/* Control variables for partial data delivery. */
2563 	sp->pd_mode           = 0;
2564 	skb_queue_head_init(&sp->pd_lobby);
2565 
2566 	/* Create a per socket endpoint structure.  Even if we
2567 	 * change the data structure relationships, this may still
2568 	 * be useful for storing pre-connect address information.
2569 	 */
2570 	ep = sctp_endpoint_new(sk, GFP_KERNEL);
2571 	if (!ep)
2572 		return -ENOMEM;
2573 
2574 	sp->ep = ep;
2575 	sp->hmac = NULL;
2576 
2577 	SCTP_DBG_OBJCNT_INC(sock);
2578 	return 0;
2579 }
2580 
2581 /* Cleanup any SCTP per socket resources.  */
2582 SCTP_STATIC int sctp_destroy_sock(struct sock *sk)
2583 {
2584 	struct sctp_endpoint *ep;
2585 
2586 	SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
2587 
2588 	/* Release our hold on the endpoint. */
2589 	ep = sctp_sk(sk)->ep;
2590 	sctp_endpoint_free(ep);
2591 
2592 	return 0;
2593 }
2594 
2595 /* API 4.1.7 shutdown() - TCP Style Syntax
2596  *     int shutdown(int socket, int how);
2597  *
2598  *     sd      - the socket descriptor of the association to be closed.
2599  *     how     - Specifies the type of shutdown.  The  values  are
2600  *               as follows:
2601  *               SHUT_RD
2602  *                     Disables further receive operations. No SCTP
2603  *                     protocol action is taken.
2604  *               SHUT_WR
2605  *                     Disables further send operations, and initiates
2606  *                     the SCTP shutdown sequence.
2607  *               SHUT_RDWR
2608  *                     Disables further send  and  receive  operations
2609  *                     and initiates the SCTP shutdown sequence.
2610  */
2611 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
2612 {
2613 	struct sctp_endpoint *ep;
2614 	struct sctp_association *asoc;
2615 
2616 	if (!sctp_style(sk, TCP))
2617 		return;
2618 
2619 	if (how & SEND_SHUTDOWN) {
2620 		ep = sctp_sk(sk)->ep;
2621 		if (!list_empty(&ep->asocs)) {
2622 			asoc = list_entry(ep->asocs.next,
2623 					  struct sctp_association, asocs);
2624 			sctp_primitive_SHUTDOWN(asoc, NULL);
2625 		}
2626 	}
2627 }
2628 
2629 /* 7.2.1 Association Status (SCTP_STATUS)
2630 
2631  * Applications can retrieve current status information about an
2632  * association, including association state, peer receiver window size,
2633  * number of unacked data chunks, and number of data chunks pending
2634  * receipt.  This information is read-only.
2635  */
2636 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
2637 				       char __user *optval,
2638 				       int __user *optlen)
2639 {
2640 	struct sctp_status status;
2641 	struct sctp_association *asoc = NULL;
2642 	struct sctp_transport *transport;
2643 	sctp_assoc_t associd;
2644 	int retval = 0;
2645 
2646 	if (len != sizeof(status)) {
2647 		retval = -EINVAL;
2648 		goto out;
2649 	}
2650 
2651 	if (copy_from_user(&status, optval, sizeof(status))) {
2652 		retval = -EFAULT;
2653 		goto out;
2654 	}
2655 
2656 	associd = status.sstat_assoc_id;
2657 	asoc = sctp_id2assoc(sk, associd);
2658 	if (!asoc) {
2659 		retval = -EINVAL;
2660 		goto out;
2661 	}
2662 
2663 	transport = asoc->peer.primary_path;
2664 
2665 	status.sstat_assoc_id = sctp_assoc2id(asoc);
2666 	status.sstat_state = asoc->state;
2667 	status.sstat_rwnd =  asoc->peer.rwnd;
2668 	status.sstat_unackdata = asoc->unack_data;
2669 
2670 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
2671 	status.sstat_instrms = asoc->c.sinit_max_instreams;
2672 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
2673 	status.sstat_fragmentation_point = asoc->frag_point;
2674 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
2675 	memcpy(&status.sstat_primary.spinfo_address,
2676 	       &(transport->ipaddr), sizeof(union sctp_addr));
2677 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
2678 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
2679 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
2680 	status.sstat_primary.spinfo_state = transport->active;
2681 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
2682 	status.sstat_primary.spinfo_srtt = transport->srtt;
2683 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
2684 	status.sstat_primary.spinfo_mtu = transport->pmtu;
2685 
2686 	if (put_user(len, optlen)) {
2687 		retval = -EFAULT;
2688 		goto out;
2689 	}
2690 
2691 	SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
2692 			  len, status.sstat_state, status.sstat_rwnd,
2693 			  status.sstat_assoc_id);
2694 
2695 	if (copy_to_user(optval, &status, len)) {
2696 		retval = -EFAULT;
2697 		goto out;
2698 	}
2699 
2700 out:
2701 	return (retval);
2702 }
2703 
2704 
2705 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
2706  *
2707  * Applications can retrieve information about a specific peer address
2708  * of an association, including its reachability state, congestion
2709  * window, and retransmission timer values.  This information is
2710  * read-only.
2711  */
2712 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
2713 					  char __user *optval,
2714 					  int __user *optlen)
2715 {
2716 	struct sctp_paddrinfo pinfo;
2717 	struct sctp_transport *transport;
2718 	int retval = 0;
2719 
2720 	if (len != sizeof(pinfo)) {
2721 		retval = -EINVAL;
2722 		goto out;
2723 	}
2724 
2725 	if (copy_from_user(&pinfo, optval, sizeof(pinfo))) {
2726 		retval = -EFAULT;
2727 		goto out;
2728 	}
2729 
2730 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
2731 					   pinfo.spinfo_assoc_id);
2732 	if (!transport)
2733 		return -EINVAL;
2734 
2735 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
2736 	pinfo.spinfo_state = transport->active;
2737 	pinfo.spinfo_cwnd = transport->cwnd;
2738 	pinfo.spinfo_srtt = transport->srtt;
2739 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
2740 	pinfo.spinfo_mtu = transport->pmtu;
2741 
2742 	if (put_user(len, optlen)) {
2743 		retval = -EFAULT;
2744 		goto out;
2745 	}
2746 
2747 	if (copy_to_user(optval, &pinfo, len)) {
2748 		retval = -EFAULT;
2749 		goto out;
2750 	}
2751 
2752 out:
2753 	return (retval);
2754 }
2755 
2756 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2757  *
2758  * This option is a on/off flag.  If enabled no SCTP message
2759  * fragmentation will be performed.  Instead if a message being sent
2760  * exceeds the current PMTU size, the message will NOT be sent and
2761  * instead a error will be indicated to the user.
2762  */
2763 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
2764 					char __user *optval, int __user *optlen)
2765 {
2766 	int val;
2767 
2768 	if (len < sizeof(int))
2769 		return -EINVAL;
2770 
2771 	len = sizeof(int);
2772 	val = (sctp_sk(sk)->disable_fragments == 1);
2773 	if (put_user(len, optlen))
2774 		return -EFAULT;
2775 	if (copy_to_user(optval, &val, len))
2776 		return -EFAULT;
2777 	return 0;
2778 }
2779 
2780 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
2781  *
2782  * This socket option is used to specify various notifications and
2783  * ancillary data the user wishes to receive.
2784  */
2785 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
2786 				  int __user *optlen)
2787 {
2788 	if (len != sizeof(struct sctp_event_subscribe))
2789 		return -EINVAL;
2790 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
2791 		return -EFAULT;
2792 	return 0;
2793 }
2794 
2795 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2796  *
2797  * This socket option is applicable to the UDP-style socket only.  When
2798  * set it will cause associations that are idle for more than the
2799  * specified number of seconds to automatically close.  An association
2800  * being idle is defined an association that has NOT sent or received
2801  * user data.  The special value of '0' indicates that no automatic
2802  * close of any associations should be performed.  The option expects an
2803  * integer defining the number of seconds of idle time before an
2804  * association is closed.
2805  */
2806 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
2807 {
2808 	/* Applicable to UDP-style socket only */
2809 	if (sctp_style(sk, TCP))
2810 		return -EOPNOTSUPP;
2811 	if (len != sizeof(int))
2812 		return -EINVAL;
2813 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, len))
2814 		return -EFAULT;
2815 	return 0;
2816 }
2817 
2818 /* Helper routine to branch off an association to a new socket.  */
2819 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
2820 				struct socket **sockp)
2821 {
2822 	struct sock *sk = asoc->base.sk;
2823 	struct socket *sock;
2824 	int err = 0;
2825 
2826 	/* An association cannot be branched off from an already peeled-off
2827 	 * socket, nor is this supported for tcp style sockets.
2828 	 */
2829 	if (!sctp_style(sk, UDP))
2830 		return -EINVAL;
2831 
2832 	/* Create a new socket.  */
2833 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
2834 	if (err < 0)
2835 		return err;
2836 
2837 	/* Populate the fields of the newsk from the oldsk and migrate the
2838 	 * asoc to the newsk.
2839 	 */
2840 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
2841 	*sockp = sock;
2842 
2843 	return err;
2844 }
2845 
2846 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
2847 {
2848 	sctp_peeloff_arg_t peeloff;
2849 	struct socket *newsock;
2850 	int retval = 0;
2851 	struct sctp_association *asoc;
2852 
2853 	if (len != sizeof(sctp_peeloff_arg_t))
2854 		return -EINVAL;
2855 	if (copy_from_user(&peeloff, optval, len))
2856 		return -EFAULT;
2857 
2858 	asoc = sctp_id2assoc(sk, peeloff.associd);
2859 	if (!asoc) {
2860 		retval = -EINVAL;
2861 		goto out;
2862 	}
2863 
2864 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc);
2865 
2866 	retval = sctp_do_peeloff(asoc, &newsock);
2867 	if (retval < 0)
2868 		goto out;
2869 
2870 	/* Map the socket to an unused fd that can be returned to the user.  */
2871 	retval = sock_map_fd(newsock);
2872 	if (retval < 0) {
2873 		sock_release(newsock);
2874 		goto out;
2875 	}
2876 
2877 	SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
2878 			  __FUNCTION__, sk, asoc, newsock->sk, retval);
2879 
2880 	/* Return the fd mapped to the new socket.  */
2881 	peeloff.sd = retval;
2882 	if (copy_to_user(optval, &peeloff, len))
2883 		retval = -EFAULT;
2884 
2885 out:
2886 	return retval;
2887 }
2888 
2889 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2890  *
2891  * Applications can enable or disable heartbeats for any peer address of
2892  * an association, modify an address's heartbeat interval, force a
2893  * heartbeat to be sent immediately, and adjust the address's maximum
2894  * number of retransmissions sent before an address is considered
2895  * unreachable.  The following structure is used to access and modify an
2896  * address's parameters:
2897  *
2898  *  struct sctp_paddrparams {
2899  *      sctp_assoc_t            spp_assoc_id;
2900  *      struct sockaddr_storage spp_address;
2901  *      uint32_t                spp_hbinterval;
2902  *      uint16_t                spp_pathmaxrxt;
2903  *  };
2904  *
2905  *   spp_assoc_id    - (UDP style socket) This is filled in the application,
2906  *                     and identifies the association for this query.
2907  *   spp_address     - This specifies which address is of interest.
2908  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2909  *                     in milliseconds.  A value of 0, when modifying the
2910  *                     parameter, specifies that the heartbeat on this
2911  *                     address should be disabled. A value of UINT32_MAX
2912  *                     (4294967295), when modifying the parameter,
2913  *                     specifies that a heartbeat should be sent
2914  *                     immediately to the peer address, and the current
2915  *                     interval should remain unchanged.
2916  *   spp_pathmaxrxt  - This contains the maximum number of
2917  *                     retransmissions before this address shall be
2918  *                     considered unreachable.
2919  */
2920 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
2921 						char __user *optval, int __user *optlen)
2922 {
2923 	struct sctp_paddrparams params;
2924 	struct sctp_transport *trans;
2925 
2926 	if (len != sizeof(struct sctp_paddrparams))
2927 		return -EINVAL;
2928 	if (copy_from_user(&params, optval, len))
2929 		return -EFAULT;
2930 
2931 	/* If no association id is specified retrieve the default value
2932 	 * for the endpoint that will be used for all future associations
2933 	 */
2934 	if (!params.spp_assoc_id &&
2935 	    sctp_is_any(( union sctp_addr *)&params.spp_address)) {
2936 		params.spp_hbinterval = sctp_sk(sk)->paddrparam.spp_hbinterval;
2937 		params.spp_pathmaxrxt = sctp_sk(sk)->paddrparam.spp_pathmaxrxt;
2938 
2939 		goto done;
2940 	}
2941 
2942 	trans = sctp_addr_id2transport(sk, &params.spp_address,
2943 				       params.spp_assoc_id);
2944 	if (!trans)
2945 		return -EINVAL;
2946 
2947 	/* The value of the heartbeat interval, in milliseconds. A value of 0,
2948 	 * when modifying the parameter, specifies that the heartbeat on this
2949 	 * address should be disabled.
2950 	 */
2951 	if (!trans->hb_allowed)
2952 		params.spp_hbinterval = 0;
2953 	else
2954 		params.spp_hbinterval = jiffies_to_msecs(trans->hb_interval);
2955 
2956 	/* spp_pathmaxrxt contains the maximum number of retransmissions
2957 	 * before this address shall be considered unreachable.
2958 	 */
2959 	params.spp_pathmaxrxt = trans->max_retrans;
2960 
2961 done:
2962 	if (copy_to_user(optval, &params, len))
2963 		return -EFAULT;
2964 
2965 	if (put_user(len, optlen))
2966 		return -EFAULT;
2967 
2968 	return 0;
2969 }
2970 
2971 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2972  *
2973  * Applications can specify protocol parameters for the default association
2974  * initialization.  The option name argument to setsockopt() and getsockopt()
2975  * is SCTP_INITMSG.
2976  *
2977  * Setting initialization parameters is effective only on an unconnected
2978  * socket (for UDP-style sockets only future associations are effected
2979  * by the change).  With TCP-style sockets, this option is inherited by
2980  * sockets derived from a listener socket.
2981  */
2982 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
2983 {
2984 	if (len != sizeof(struct sctp_initmsg))
2985 		return -EINVAL;
2986 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
2987 		return -EFAULT;
2988 	return 0;
2989 }
2990 
2991 static int sctp_getsockopt_peer_addrs_num(struct sock *sk, int len,
2992 					  char __user *optval, int __user *optlen)
2993 {
2994 	sctp_assoc_t id;
2995 	struct sctp_association *asoc;
2996 	struct list_head *pos;
2997 	int cnt = 0;
2998 
2999 	if (len != sizeof(sctp_assoc_t))
3000 		return -EINVAL;
3001 
3002 	if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
3003 		return -EFAULT;
3004 
3005 	/* For UDP-style sockets, id specifies the association to query.  */
3006 	asoc = sctp_id2assoc(sk, id);
3007 	if (!asoc)
3008 		return -EINVAL;
3009 
3010 	list_for_each(pos, &asoc->peer.transport_addr_list) {
3011 		cnt ++;
3012 	}
3013 
3014 	return cnt;
3015 }
3016 
3017 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
3018 				      char __user *optval, int __user *optlen)
3019 {
3020 	struct sctp_association *asoc;
3021 	struct list_head *pos;
3022 	int cnt = 0;
3023 	struct sctp_getaddrs getaddrs;
3024 	struct sctp_transport *from;
3025 	void __user *to;
3026 	union sctp_addr temp;
3027 	struct sctp_sock *sp = sctp_sk(sk);
3028 	int addrlen;
3029 
3030 	if (len != sizeof(struct sctp_getaddrs))
3031 		return -EINVAL;
3032 
3033 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
3034 		return -EFAULT;
3035 
3036 	if (getaddrs.addr_num <= 0) return -EINVAL;
3037 
3038 	/* For UDP-style sockets, id specifies the association to query.  */
3039 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3040 	if (!asoc)
3041 		return -EINVAL;
3042 
3043 	to = (void __user *)getaddrs.addrs;
3044 	list_for_each(pos, &asoc->peer.transport_addr_list) {
3045 		from = list_entry(pos, struct sctp_transport, transports);
3046 		memcpy(&temp, &from->ipaddr, sizeof(temp));
3047 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3048 		addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
3049 		temp.v4.sin_port = htons(temp.v4.sin_port);
3050 		if (copy_to_user(to, &temp, addrlen))
3051 			return -EFAULT;
3052 		to += addrlen ;
3053 		cnt ++;
3054 		if (cnt >= getaddrs.addr_num) break;
3055 	}
3056 	getaddrs.addr_num = cnt;
3057 	if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs)))
3058 		return -EFAULT;
3059 
3060 	return 0;
3061 }
3062 
3063 static int sctp_getsockopt_local_addrs_num(struct sock *sk, int len,
3064 						char __user *optval,
3065 						int __user *optlen)
3066 {
3067 	sctp_assoc_t id;
3068 	struct sctp_bind_addr *bp;
3069 	struct sctp_association *asoc;
3070 	struct list_head *pos;
3071 	struct sctp_sockaddr_entry *addr;
3072 	rwlock_t *addr_lock;
3073 	unsigned long flags;
3074 	int cnt = 0;
3075 
3076 	if (len != sizeof(sctp_assoc_t))
3077 		return -EINVAL;
3078 
3079 	if (copy_from_user(&id, optval, sizeof(sctp_assoc_t)))
3080 		return -EFAULT;
3081 
3082 	/*
3083 	 *  For UDP-style sockets, id specifies the association to query.
3084 	 *  If the id field is set to the value '0' then the locally bound
3085 	 *  addresses are returned without regard to any particular
3086 	 *  association.
3087 	 */
3088 	if (0 == id) {
3089 		bp = &sctp_sk(sk)->ep->base.bind_addr;
3090 		addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
3091 	} else {
3092 		asoc = sctp_id2assoc(sk, id);
3093 		if (!asoc)
3094 			return -EINVAL;
3095 		bp = &asoc->base.bind_addr;
3096 		addr_lock = &asoc->base.addr_lock;
3097 	}
3098 
3099 	sctp_read_lock(addr_lock);
3100 
3101 	/* If the endpoint is bound to 0.0.0.0 or ::0, count the valid
3102 	 * addresses from the global local address list.
3103 	 */
3104 	if (sctp_list_single_entry(&bp->address_list)) {
3105 		addr = list_entry(bp->address_list.next,
3106 				  struct sctp_sockaddr_entry, list);
3107 		if (sctp_is_any(&addr->a)) {
3108 			sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3109 			list_for_each(pos, &sctp_local_addr_list) {
3110 				addr = list_entry(pos,
3111 						  struct sctp_sockaddr_entry,
3112 						  list);
3113 				if ((PF_INET == sk->sk_family) &&
3114 				    (AF_INET6 == addr->a.sa.sa_family))
3115 					continue;
3116 				cnt++;
3117 			}
3118 			sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3119 						    flags);
3120 		} else {
3121 			cnt = 1;
3122 		}
3123 		goto done;
3124 	}
3125 
3126 	list_for_each(pos, &bp->address_list) {
3127 		cnt ++;
3128 	}
3129 
3130 done:
3131 	sctp_read_unlock(addr_lock);
3132 	return cnt;
3133 }
3134 
3135 /* Helper function that copies local addresses to user and returns the number
3136  * of addresses copied.
3137  */
3138 static int sctp_copy_laddrs_to_user(struct sock *sk, __u16 port, int max_addrs,
3139 				    void __user *to)
3140 {
3141 	struct list_head *pos;
3142 	struct sctp_sockaddr_entry *addr;
3143 	unsigned long flags;
3144 	union sctp_addr temp;
3145 	int cnt = 0;
3146 	int addrlen;
3147 
3148 	sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags);
3149 	list_for_each(pos, &sctp_local_addr_list) {
3150 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3151 		if ((PF_INET == sk->sk_family) &&
3152 		    (AF_INET6 == addr->a.sa.sa_family))
3153 			continue;
3154 		memcpy(&temp, &addr->a, sizeof(temp));
3155 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3156 								&temp);
3157 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3158 		temp.v4.sin_port = htons(port);
3159 		if (copy_to_user(to, &temp, addrlen)) {
3160 			sctp_spin_unlock_irqrestore(&sctp_local_addr_lock,
3161 						    flags);
3162 			return -EFAULT;
3163 		}
3164 		to += addrlen;
3165 		cnt ++;
3166 		if (cnt >= max_addrs) break;
3167 	}
3168 	sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags);
3169 
3170 	return cnt;
3171 }
3172 
3173 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
3174 				       char __user *optval, int __user *optlen)
3175 {
3176 	struct sctp_bind_addr *bp;
3177 	struct sctp_association *asoc;
3178 	struct list_head *pos;
3179 	int cnt = 0;
3180 	struct sctp_getaddrs getaddrs;
3181 	struct sctp_sockaddr_entry *addr;
3182 	void __user *to;
3183 	union sctp_addr temp;
3184 	struct sctp_sock *sp = sctp_sk(sk);
3185 	int addrlen;
3186 	rwlock_t *addr_lock;
3187 	int err = 0;
3188 
3189 	if (len != sizeof(struct sctp_getaddrs))
3190 		return -EINVAL;
3191 
3192 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
3193 		return -EFAULT;
3194 
3195 	if (getaddrs.addr_num <= 0) return -EINVAL;
3196 	/*
3197 	 *  For UDP-style sockets, id specifies the association to query.
3198 	 *  If the id field is set to the value '0' then the locally bound
3199 	 *  addresses are returned without regard to any particular
3200 	 *  association.
3201 	 */
3202 	if (0 == getaddrs.assoc_id) {
3203 		bp = &sctp_sk(sk)->ep->base.bind_addr;
3204 		addr_lock = &sctp_sk(sk)->ep->base.addr_lock;
3205 	} else {
3206 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
3207 		if (!asoc)
3208 			return -EINVAL;
3209 		bp = &asoc->base.bind_addr;
3210 		addr_lock = &asoc->base.addr_lock;
3211 	}
3212 
3213 	to = getaddrs.addrs;
3214 
3215 	sctp_read_lock(addr_lock);
3216 
3217 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
3218 	 * addresses from the global local address list.
3219 	 */
3220 	if (sctp_list_single_entry(&bp->address_list)) {
3221 		addr = list_entry(bp->address_list.next,
3222 				  struct sctp_sockaddr_entry, list);
3223 		if (sctp_is_any(&addr->a)) {
3224 			cnt = sctp_copy_laddrs_to_user(sk, bp->port,
3225 						       getaddrs.addr_num, to);
3226 			if (cnt < 0) {
3227 				err = cnt;
3228 				goto unlock;
3229 			}
3230 			goto copy_getaddrs;
3231 		}
3232 	}
3233 
3234 	list_for_each(pos, &bp->address_list) {
3235 		addr = list_entry(pos, struct sctp_sockaddr_entry, list);
3236 		memcpy(&temp, &addr->a, sizeof(temp));
3237 		sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
3238 		addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
3239 		temp.v4.sin_port = htons(temp.v4.sin_port);
3240 		if (copy_to_user(to, &temp, addrlen)) {
3241 			err = -EFAULT;
3242 			goto unlock;
3243 		}
3244 		to += addrlen;
3245 		cnt ++;
3246 		if (cnt >= getaddrs.addr_num) break;
3247 	}
3248 
3249 copy_getaddrs:
3250 	getaddrs.addr_num = cnt;
3251 	if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs)))
3252 		err = -EFAULT;
3253 
3254 unlock:
3255 	sctp_read_unlock(addr_lock);
3256 	return err;
3257 }
3258 
3259 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
3260  *
3261  * Requests that the local SCTP stack use the enclosed peer address as
3262  * the association primary.  The enclosed address must be one of the
3263  * association peer's addresses.
3264  */
3265 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
3266 					char __user *optval, int __user *optlen)
3267 {
3268 	struct sctp_prim prim;
3269 	struct sctp_association *asoc;
3270 	struct sctp_sock *sp = sctp_sk(sk);
3271 
3272 	if (len != sizeof(struct sctp_prim))
3273 		return -EINVAL;
3274 
3275 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
3276 		return -EFAULT;
3277 
3278 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
3279 	if (!asoc)
3280 		return -EINVAL;
3281 
3282 	if (!asoc->peer.primary_path)
3283 		return -ENOTCONN;
3284 
3285 	asoc->peer.primary_path->ipaddr.v4.sin_port =
3286 		htons(asoc->peer.primary_path->ipaddr.v4.sin_port);
3287 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
3288 	       sizeof(union sctp_addr));
3289 	asoc->peer.primary_path->ipaddr.v4.sin_port =
3290 		ntohs(asoc->peer.primary_path->ipaddr.v4.sin_port);
3291 
3292 	sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
3293 			(union sctp_addr *)&prim.ssp_addr);
3294 
3295 	if (copy_to_user(optval, &prim, sizeof(struct sctp_prim)))
3296 		return -EFAULT;
3297 
3298 	return 0;
3299 }
3300 
3301 /*
3302  * 7.1.11  Set Adaption Layer Indicator (SCTP_ADAPTION_LAYER)
3303  *
3304  * Requests that the local endpoint set the specified Adaption Layer
3305  * Indication parameter for all future INIT and INIT-ACK exchanges.
3306  */
3307 static int sctp_getsockopt_adaption_layer(struct sock *sk, int len,
3308 				  char __user *optval, int __user *optlen)
3309 {
3310 	__u32 val;
3311 
3312 	if (len < sizeof(__u32))
3313 		return -EINVAL;
3314 
3315 	len = sizeof(__u32);
3316 	val = sctp_sk(sk)->adaption_ind;
3317 	if (put_user(len, optlen))
3318 		return -EFAULT;
3319 	if (copy_to_user(optval, &val, len))
3320 		return -EFAULT;
3321 	return 0;
3322 }
3323 
3324 /*
3325  *
3326  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
3327  *
3328  *   Applications that wish to use the sendto() system call may wish to
3329  *   specify a default set of parameters that would normally be supplied
3330  *   through the inclusion of ancillary data.  This socket option allows
3331  *   such an application to set the default sctp_sndrcvinfo structure.
3332 
3333 
3334  *   The application that wishes to use this socket option simply passes
3335  *   in to this call the sctp_sndrcvinfo structure defined in Section
3336  *   5.2.2) The input parameters accepted by this call include
3337  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
3338  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
3339  *   to this call if the caller is using the UDP model.
3340  *
3341  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
3342  */
3343 static int sctp_getsockopt_default_send_param(struct sock *sk,
3344 					int len, char __user *optval,
3345 					int __user *optlen)
3346 {
3347 	struct sctp_sndrcvinfo info;
3348 	struct sctp_association *asoc;
3349 	struct sctp_sock *sp = sctp_sk(sk);
3350 
3351 	if (len != sizeof(struct sctp_sndrcvinfo))
3352 		return -EINVAL;
3353 	if (copy_from_user(&info, optval, sizeof(struct sctp_sndrcvinfo)))
3354 		return -EFAULT;
3355 
3356 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
3357 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
3358 		return -EINVAL;
3359 
3360 	if (asoc) {
3361 		info.sinfo_stream = asoc->default_stream;
3362 		info.sinfo_flags = asoc->default_flags;
3363 		info.sinfo_ppid = asoc->default_ppid;
3364 		info.sinfo_context = asoc->default_context;
3365 		info.sinfo_timetolive = asoc->default_timetolive;
3366 	} else {
3367 		info.sinfo_stream = sp->default_stream;
3368 		info.sinfo_flags = sp->default_flags;
3369 		info.sinfo_ppid = sp->default_ppid;
3370 		info.sinfo_context = sp->default_context;
3371 		info.sinfo_timetolive = sp->default_timetolive;
3372 	}
3373 
3374 	if (copy_to_user(optval, &info, sizeof(struct sctp_sndrcvinfo)))
3375 		return -EFAULT;
3376 
3377 	return 0;
3378 }
3379 
3380 /*
3381  *
3382  * 7.1.5 SCTP_NODELAY
3383  *
3384  * Turn on/off any Nagle-like algorithm.  This means that packets are
3385  * generally sent as soon as possible and no unnecessary delays are
3386  * introduced, at the cost of more packets in the network.  Expects an
3387  * integer boolean flag.
3388  */
3389 
3390 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
3391 				   char __user *optval, int __user *optlen)
3392 {
3393 	int val;
3394 
3395 	if (len < sizeof(int))
3396 		return -EINVAL;
3397 
3398 	len = sizeof(int);
3399 	val = (sctp_sk(sk)->nodelay == 1);
3400 	if (put_user(len, optlen))
3401 		return -EFAULT;
3402 	if (copy_to_user(optval, &val, len))
3403 		return -EFAULT;
3404 	return 0;
3405 }
3406 
3407 /*
3408  *
3409  * 7.1.1 SCTP_RTOINFO
3410  *
3411  * The protocol parameters used to initialize and bound retransmission
3412  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3413  * and modify these parameters.
3414  * All parameters are time values, in milliseconds.  A value of 0, when
3415  * modifying the parameters, indicates that the current value should not
3416  * be changed.
3417  *
3418  */
3419 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
3420 				char __user *optval,
3421 				int __user *optlen) {
3422 	struct sctp_rtoinfo rtoinfo;
3423 	struct sctp_association *asoc;
3424 
3425 	if (len != sizeof (struct sctp_rtoinfo))
3426 		return -EINVAL;
3427 
3428 	if (copy_from_user(&rtoinfo, optval, sizeof (struct sctp_rtoinfo)))
3429 		return -EFAULT;
3430 
3431 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
3432 
3433 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
3434 		return -EINVAL;
3435 
3436 	/* Values corresponding to the specific association. */
3437 	if (asoc) {
3438 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
3439 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
3440 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
3441 	} else {
3442 		/* Values corresponding to the endpoint. */
3443 		struct sctp_sock *sp = sctp_sk(sk);
3444 
3445 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
3446 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
3447 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
3448 	}
3449 
3450 	if (put_user(len, optlen))
3451 		return -EFAULT;
3452 
3453 	if (copy_to_user(optval, &rtoinfo, len))
3454 		return -EFAULT;
3455 
3456 	return 0;
3457 }
3458 
3459 /*
3460  *
3461  * 7.1.2 SCTP_ASSOCINFO
3462  *
3463  * This option is used to tune the the maximum retransmission attempts
3464  * of the association.
3465  * Returns an error if the new association retransmission value is
3466  * greater than the sum of the retransmission value  of the peer.
3467  * See [SCTP] for more information.
3468  *
3469  */
3470 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
3471 				     char __user *optval,
3472 				     int __user *optlen)
3473 {
3474 
3475 	struct sctp_assocparams assocparams;
3476 	struct sctp_association *asoc;
3477 	struct list_head *pos;
3478 	int cnt = 0;
3479 
3480 	if (len != sizeof (struct sctp_assocparams))
3481 		return -EINVAL;
3482 
3483 	if (copy_from_user(&assocparams, optval,
3484 			sizeof (struct sctp_assocparams)))
3485 		return -EFAULT;
3486 
3487 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
3488 
3489 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
3490 		return -EINVAL;
3491 
3492 	/* Values correspoinding to the specific association */
3493 	if (asoc) {
3494 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
3495 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
3496 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
3497 		assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
3498 						* 1000) +
3499 						(asoc->cookie_life.tv_usec
3500 						/ 1000);
3501 
3502 		list_for_each(pos, &asoc->peer.transport_addr_list) {
3503 			cnt ++;
3504 		}
3505 
3506 		assocparams.sasoc_number_peer_destinations = cnt;
3507 	} else {
3508 		/* Values corresponding to the endpoint */
3509 		struct sctp_sock *sp = sctp_sk(sk);
3510 
3511 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
3512 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
3513 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
3514 		assocparams.sasoc_cookie_life =
3515 					sp->assocparams.sasoc_cookie_life;
3516 		assocparams.sasoc_number_peer_destinations =
3517 					sp->assocparams.
3518 					sasoc_number_peer_destinations;
3519 	}
3520 
3521 	if (put_user(len, optlen))
3522 		return -EFAULT;
3523 
3524 	if (copy_to_user(optval, &assocparams, len))
3525 		return -EFAULT;
3526 
3527 	return 0;
3528 }
3529 
3530 /*
3531  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3532  *
3533  * This socket option is a boolean flag which turns on or off mapped V4
3534  * addresses.  If this option is turned on and the socket is type
3535  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3536  * If this option is turned off, then no mapping will be done of V4
3537  * addresses and a user will receive both PF_INET6 and PF_INET type
3538  * addresses on the socket.
3539  */
3540 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
3541 				    char __user *optval, int __user *optlen)
3542 {
3543 	int val;
3544 	struct sctp_sock *sp = sctp_sk(sk);
3545 
3546 	if (len < sizeof(int))
3547 		return -EINVAL;
3548 
3549 	len = sizeof(int);
3550 	val = sp->v4mapped;
3551 	if (put_user(len, optlen))
3552 		return -EFAULT;
3553 	if (copy_to_user(optval, &val, len))
3554 		return -EFAULT;
3555 
3556 	return 0;
3557 }
3558 
3559 /*
3560  * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG)
3561  *
3562  * This socket option specifies the maximum size to put in any outgoing
3563  * SCTP chunk.  If a message is larger than this size it will be
3564  * fragmented by SCTP into the specified size.  Note that the underlying
3565  * SCTP implementation may fragment into smaller sized chunks when the
3566  * PMTU of the underlying association is smaller than the value set by
3567  * the user.
3568  */
3569 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
3570 				  char __user *optval, int __user *optlen)
3571 {
3572 	int val;
3573 
3574 	if (len < sizeof(int))
3575 		return -EINVAL;
3576 
3577 	len = sizeof(int);
3578 
3579 	val = sctp_sk(sk)->user_frag;
3580 	if (put_user(len, optlen))
3581 		return -EFAULT;
3582 	if (copy_to_user(optval, &val, len))
3583 		return -EFAULT;
3584 
3585 	return 0;
3586 }
3587 
3588 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
3589 				char __user *optval, int __user *optlen)
3590 {
3591 	int retval = 0;
3592 	int len;
3593 
3594 	SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p, ...)\n", sk);
3595 
3596 	/* I can hardly begin to describe how wrong this is.  This is
3597 	 * so broken as to be worse than useless.  The API draft
3598 	 * REALLY is NOT helpful here...  I am not convinced that the
3599 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
3600 	 * are at all well-founded.
3601 	 */
3602 	if (level != SOL_SCTP) {
3603 		struct sctp_af *af = sctp_sk(sk)->pf->af;
3604 
3605 		retval = af->getsockopt(sk, level, optname, optval, optlen);
3606 		return retval;
3607 	}
3608 
3609 	if (get_user(len, optlen))
3610 		return -EFAULT;
3611 
3612 	sctp_lock_sock(sk);
3613 
3614 	switch (optname) {
3615 	case SCTP_STATUS:
3616 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
3617 		break;
3618 	case SCTP_DISABLE_FRAGMENTS:
3619 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
3620 							   optlen);
3621 		break;
3622 	case SCTP_EVENTS:
3623 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
3624 		break;
3625 	case SCTP_AUTOCLOSE:
3626 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
3627 		break;
3628 	case SCTP_SOCKOPT_PEELOFF:
3629 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
3630 		break;
3631 	case SCTP_PEER_ADDR_PARAMS:
3632 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
3633 							  optlen);
3634 		break;
3635 	case SCTP_INITMSG:
3636 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
3637 		break;
3638 	case SCTP_GET_PEER_ADDRS_NUM:
3639 		retval = sctp_getsockopt_peer_addrs_num(sk, len, optval,
3640 							optlen);
3641 		break;
3642 	case SCTP_GET_LOCAL_ADDRS_NUM:
3643 		retval = sctp_getsockopt_local_addrs_num(sk, len, optval,
3644 							 optlen);
3645 		break;
3646 	case SCTP_GET_PEER_ADDRS:
3647 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
3648 						    optlen);
3649 		break;
3650 	case SCTP_GET_LOCAL_ADDRS:
3651 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
3652 						     optlen);
3653 		break;
3654 	case SCTP_DEFAULT_SEND_PARAM:
3655 		retval = sctp_getsockopt_default_send_param(sk, len,
3656 							    optval, optlen);
3657 		break;
3658 	case SCTP_PRIMARY_ADDR:
3659 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
3660 		break;
3661 	case SCTP_NODELAY:
3662 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
3663 		break;
3664 	case SCTP_RTOINFO:
3665 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
3666 		break;
3667 	case SCTP_ASSOCINFO:
3668 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
3669 		break;
3670 	case SCTP_I_WANT_MAPPED_V4_ADDR:
3671 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
3672 		break;
3673 	case SCTP_MAXSEG:
3674 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
3675 		break;
3676 	case SCTP_GET_PEER_ADDR_INFO:
3677 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
3678 							optlen);
3679 		break;
3680 	case SCTP_ADAPTION_LAYER:
3681 		retval = sctp_getsockopt_adaption_layer(sk, len, optval,
3682 							optlen);
3683 		break;
3684 	default:
3685 		retval = -ENOPROTOOPT;
3686 		break;
3687 	};
3688 
3689 	sctp_release_sock(sk);
3690 	return retval;
3691 }
3692 
3693 static void sctp_hash(struct sock *sk)
3694 {
3695 	/* STUB */
3696 }
3697 
3698 static void sctp_unhash(struct sock *sk)
3699 {
3700 	/* STUB */
3701 }
3702 
3703 /* Check if port is acceptable.  Possibly find first available port.
3704  *
3705  * The port hash table (contained in the 'global' SCTP protocol storage
3706  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
3707  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
3708  * list (the list number is the port number hashed out, so as you
3709  * would expect from a hash function, all the ports in a given list have
3710  * such a number that hashes out to the same list number; you were
3711  * expecting that, right?); so each list has a set of ports, with a
3712  * link to the socket (struct sock) that uses it, the port number and
3713  * a fastreuse flag (FIXME: NPI ipg).
3714  */
3715 static struct sctp_bind_bucket *sctp_bucket_create(
3716 	struct sctp_bind_hashbucket *head, unsigned short snum);
3717 
3718 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
3719 {
3720 	struct sctp_bind_hashbucket *head; /* hash list */
3721 	struct sctp_bind_bucket *pp; /* hash list port iterator */
3722 	unsigned short snum;
3723 	int ret;
3724 
3725 	/* NOTE:  Remember to put this back to net order. */
3726 	addr->v4.sin_port = ntohs(addr->v4.sin_port);
3727 	snum = addr->v4.sin_port;
3728 
3729 	SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
3730 	sctp_local_bh_disable();
3731 
3732 	if (snum == 0) {
3733 		/* Search for an available port.
3734 		 *
3735 		 * 'sctp_port_rover' was the last port assigned, so
3736 		 * we start to search from 'sctp_port_rover +
3737 		 * 1'. What we do is first check if port 'rover' is
3738 		 * already in the hash table; if not, we use that; if
3739 		 * it is, we try next.
3740 		 */
3741 		int low = sysctl_local_port_range[0];
3742 		int high = sysctl_local_port_range[1];
3743 		int remaining = (high - low) + 1;
3744 		int rover;
3745 		int index;
3746 
3747 		sctp_spin_lock(&sctp_port_alloc_lock);
3748 		rover = sctp_port_rover;
3749 		do {
3750 			rover++;
3751 			if ((rover < low) || (rover > high))
3752 				rover = low;
3753 			index = sctp_phashfn(rover);
3754 			head = &sctp_port_hashtable[index];
3755 			sctp_spin_lock(&head->lock);
3756 			for (pp = head->chain; pp; pp = pp->next)
3757 				if (pp->port == rover)
3758 					goto next;
3759 			break;
3760 		next:
3761 			sctp_spin_unlock(&head->lock);
3762 		} while (--remaining > 0);
3763 		sctp_port_rover = rover;
3764 		sctp_spin_unlock(&sctp_port_alloc_lock);
3765 
3766 		/* Exhausted local port range during search? */
3767 		ret = 1;
3768 		if (remaining <= 0)
3769 			goto fail;
3770 
3771 		/* OK, here is the one we will use.  HEAD (the port
3772 		 * hash table list entry) is non-NULL and we hold it's
3773 		 * mutex.
3774 		 */
3775 		snum = rover;
3776 	} else {
3777 		/* We are given an specific port number; we verify
3778 		 * that it is not being used. If it is used, we will
3779 		 * exahust the search in the hash list corresponding
3780 		 * to the port number (snum) - we detect that with the
3781 		 * port iterator, pp being NULL.
3782 		 */
3783 		head = &sctp_port_hashtable[sctp_phashfn(snum)];
3784 		sctp_spin_lock(&head->lock);
3785 		for (pp = head->chain; pp; pp = pp->next) {
3786 			if (pp->port == snum)
3787 				goto pp_found;
3788 		}
3789 	}
3790 	pp = NULL;
3791 	goto pp_not_found;
3792 pp_found:
3793 	if (!hlist_empty(&pp->owner)) {
3794 		/* We had a port hash table hit - there is an
3795 		 * available port (pp != NULL) and it is being
3796 		 * used by other socket (pp->owner not empty); that other
3797 		 * socket is going to be sk2.
3798 		 */
3799 		int reuse = sk->sk_reuse;
3800 		struct sock *sk2;
3801 		struct hlist_node *node;
3802 
3803 		SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
3804 		if (pp->fastreuse && sk->sk_reuse)
3805 			goto success;
3806 
3807 		/* Run through the list of sockets bound to the port
3808 		 * (pp->port) [via the pointers bind_next and
3809 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
3810 		 * we get the endpoint they describe and run through
3811 		 * the endpoint's list of IP (v4 or v6) addresses,
3812 		 * comparing each of the addresses with the address of
3813 		 * the socket sk. If we find a match, then that means
3814 		 * that this port/socket (sk) combination are already
3815 		 * in an endpoint.
3816 		 */
3817 		sk_for_each_bound(sk2, node, &pp->owner) {
3818 			struct sctp_endpoint *ep2;
3819 			ep2 = sctp_sk(sk2)->ep;
3820 
3821 			if (reuse && sk2->sk_reuse)
3822 				continue;
3823 
3824 			if (sctp_bind_addr_match(&ep2->base.bind_addr, addr,
3825 						 sctp_sk(sk))) {
3826 				ret = (long)sk2;
3827 				goto fail_unlock;
3828 			}
3829 		}
3830 		SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
3831 	}
3832 pp_not_found:
3833 	/* If there was a hash table miss, create a new port.  */
3834 	ret = 1;
3835 	if (!pp && !(pp = sctp_bucket_create(head, snum)))
3836 		goto fail_unlock;
3837 
3838 	/* In either case (hit or miss), make sure fastreuse is 1 only
3839 	 * if sk->sk_reuse is too (that is, if the caller requested
3840 	 * SO_REUSEADDR on this socket -sk-).
3841 	 */
3842 	if (hlist_empty(&pp->owner))
3843 		pp->fastreuse = sk->sk_reuse ? 1 : 0;
3844 	else if (pp->fastreuse && !sk->sk_reuse)
3845 		pp->fastreuse = 0;
3846 
3847 	/* We are set, so fill up all the data in the hash table
3848 	 * entry, tie the socket list information with the rest of the
3849 	 * sockets FIXME: Blurry, NPI (ipg).
3850 	 */
3851 success:
3852 	inet_sk(sk)->num = snum;
3853 	if (!sctp_sk(sk)->bind_hash) {
3854 		sk_add_bind_node(sk, &pp->owner);
3855 		sctp_sk(sk)->bind_hash = pp;
3856 	}
3857 	ret = 0;
3858 
3859 fail_unlock:
3860 	sctp_spin_unlock(&head->lock);
3861 
3862 fail:
3863 	sctp_local_bh_enable();
3864 	addr->v4.sin_port = htons(addr->v4.sin_port);
3865 	return ret;
3866 }
3867 
3868 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
3869  * port is requested.
3870  */
3871 static int sctp_get_port(struct sock *sk, unsigned short snum)
3872 {
3873 	long ret;
3874 	union sctp_addr addr;
3875 	struct sctp_af *af = sctp_sk(sk)->pf->af;
3876 
3877 	/* Set up a dummy address struct from the sk. */
3878 	af->from_sk(&addr, sk);
3879 	addr.v4.sin_port = htons(snum);
3880 
3881 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
3882 	ret = sctp_get_port_local(sk, &addr);
3883 
3884 	return (ret ? 1 : 0);
3885 }
3886 
3887 /*
3888  * 3.1.3 listen() - UDP Style Syntax
3889  *
3890  *   By default, new associations are not accepted for UDP style sockets.
3891  *   An application uses listen() to mark a socket as being able to
3892  *   accept new associations.
3893  */
3894 SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog)
3895 {
3896 	struct sctp_sock *sp = sctp_sk(sk);
3897 	struct sctp_endpoint *ep = sp->ep;
3898 
3899 	/* Only UDP style sockets that are not peeled off are allowed to
3900 	 * listen().
3901 	 */
3902 	if (!sctp_style(sk, UDP))
3903 		return -EINVAL;
3904 
3905 	/* If backlog is zero, disable listening. */
3906 	if (!backlog) {
3907 		if (sctp_sstate(sk, CLOSED))
3908 			return 0;
3909 
3910 		sctp_unhash_endpoint(ep);
3911 		sk->sk_state = SCTP_SS_CLOSED;
3912 	}
3913 
3914 	/* Return if we are already listening. */
3915 	if (sctp_sstate(sk, LISTENING))
3916 		return 0;
3917 
3918 	/*
3919 	 * If a bind() or sctp_bindx() is not called prior to a listen()
3920 	 * call that allows new associations to be accepted, the system
3921 	 * picks an ephemeral port and will choose an address set equivalent
3922 	 * to binding with a wildcard address.
3923 	 *
3924 	 * This is not currently spelled out in the SCTP sockets
3925 	 * extensions draft, but follows the practice as seen in TCP
3926 	 * sockets.
3927 	 */
3928 	if (!ep->base.bind_addr.port) {
3929 		if (sctp_autobind(sk))
3930 			return -EAGAIN;
3931 	}
3932 	sk->sk_state = SCTP_SS_LISTENING;
3933 	sctp_hash_endpoint(ep);
3934 	return 0;
3935 }
3936 
3937 /*
3938  * 4.1.3 listen() - TCP Style Syntax
3939  *
3940  *   Applications uses listen() to ready the SCTP endpoint for accepting
3941  *   inbound associations.
3942  */
3943 SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog)
3944 {
3945 	struct sctp_sock *sp = sctp_sk(sk);
3946 	struct sctp_endpoint *ep = sp->ep;
3947 
3948 	/* If backlog is zero, disable listening. */
3949 	if (!backlog) {
3950 		if (sctp_sstate(sk, CLOSED))
3951 			return 0;
3952 
3953 		sctp_unhash_endpoint(ep);
3954 		sk->sk_state = SCTP_SS_CLOSED;
3955 	}
3956 
3957 	if (sctp_sstate(sk, LISTENING))
3958 		return 0;
3959 
3960 	/*
3961 	 * If a bind() or sctp_bindx() is not called prior to a listen()
3962 	 * call that allows new associations to be accepted, the system
3963 	 * picks an ephemeral port and will choose an address set equivalent
3964 	 * to binding with a wildcard address.
3965 	 *
3966 	 * This is not currently spelled out in the SCTP sockets
3967 	 * extensions draft, but follows the practice as seen in TCP
3968 	 * sockets.
3969 	 */
3970 	if (!ep->base.bind_addr.port) {
3971 		if (sctp_autobind(sk))
3972 			return -EAGAIN;
3973 	}
3974 	sk->sk_state = SCTP_SS_LISTENING;
3975 	sk->sk_max_ack_backlog = backlog;
3976 	sctp_hash_endpoint(ep);
3977 	return 0;
3978 }
3979 
3980 /*
3981  *  Move a socket to LISTENING state.
3982  */
3983 int sctp_inet_listen(struct socket *sock, int backlog)
3984 {
3985 	struct sock *sk = sock->sk;
3986 	struct crypto_tfm *tfm=NULL;
3987 	int err = -EINVAL;
3988 
3989 	if (unlikely(backlog < 0))
3990 		goto out;
3991 
3992 	sctp_lock_sock(sk);
3993 
3994 	if (sock->state != SS_UNCONNECTED)
3995 		goto out;
3996 
3997 	/* Allocate HMAC for generating cookie. */
3998 	if (sctp_hmac_alg) {
3999 		tfm = sctp_crypto_alloc_tfm(sctp_hmac_alg, 0);
4000 		if (!tfm) {
4001 			err = -ENOSYS;
4002 			goto out;
4003 		}
4004 	}
4005 
4006 	switch (sock->type) {
4007 	case SOCK_SEQPACKET:
4008 		err = sctp_seqpacket_listen(sk, backlog);
4009 		break;
4010 	case SOCK_STREAM:
4011 		err = sctp_stream_listen(sk, backlog);
4012 		break;
4013 	default:
4014 		break;
4015 	};
4016 	if (err)
4017 		goto cleanup;
4018 
4019 	/* Store away the transform reference. */
4020 	sctp_sk(sk)->hmac = tfm;
4021 out:
4022 	sctp_release_sock(sk);
4023 	return err;
4024 cleanup:
4025 	if (tfm)
4026 		sctp_crypto_free_tfm(tfm);
4027 	goto out;
4028 }
4029 
4030 /*
4031  * This function is done by modeling the current datagram_poll() and the
4032  * tcp_poll().  Note that, based on these implementations, we don't
4033  * lock the socket in this function, even though it seems that,
4034  * ideally, locking or some other mechanisms can be used to ensure
4035  * the integrity of the counters (sndbuf and wmem_queued) used
4036  * in this place.  We assume that we don't need locks either until proven
4037  * otherwise.
4038  *
4039  * Another thing to note is that we include the Async I/O support
4040  * here, again, by modeling the current TCP/UDP code.  We don't have
4041  * a good way to test with it yet.
4042  */
4043 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
4044 {
4045 	struct sock *sk = sock->sk;
4046 	struct sctp_sock *sp = sctp_sk(sk);
4047 	unsigned int mask;
4048 
4049 	poll_wait(file, sk->sk_sleep, wait);
4050 
4051 	/* A TCP-style listening socket becomes readable when the accept queue
4052 	 * is not empty.
4053 	 */
4054 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4055 		return (!list_empty(&sp->ep->asocs)) ?
4056 		       	(POLLIN | POLLRDNORM) : 0;
4057 
4058 	mask = 0;
4059 
4060 	/* Is there any exceptional events?  */
4061 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
4062 		mask |= POLLERR;
4063 	if (sk->sk_shutdown == SHUTDOWN_MASK)
4064 		mask |= POLLHUP;
4065 
4066 	/* Is it readable?  Reconsider this code with TCP-style support.  */
4067 	if (!skb_queue_empty(&sk->sk_receive_queue) ||
4068 	    (sk->sk_shutdown & RCV_SHUTDOWN))
4069 		mask |= POLLIN | POLLRDNORM;
4070 
4071 	/* The association is either gone or not ready.  */
4072 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
4073 		return mask;
4074 
4075 	/* Is it writable?  */
4076 	if (sctp_writeable(sk)) {
4077 		mask |= POLLOUT | POLLWRNORM;
4078 	} else {
4079 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
4080 		/*
4081 		 * Since the socket is not locked, the buffer
4082 		 * might be made available after the writeable check and
4083 		 * before the bit is set.  This could cause a lost I/O
4084 		 * signal.  tcp_poll() has a race breaker for this race
4085 		 * condition.  Based on their implementation, we put
4086 		 * in the following code to cover it as well.
4087 		 */
4088 		if (sctp_writeable(sk))
4089 			mask |= POLLOUT | POLLWRNORM;
4090 	}
4091 	return mask;
4092 }
4093 
4094 /********************************************************************
4095  * 2nd Level Abstractions
4096  ********************************************************************/
4097 
4098 static struct sctp_bind_bucket *sctp_bucket_create(
4099 	struct sctp_bind_hashbucket *head, unsigned short snum)
4100 {
4101 	struct sctp_bind_bucket *pp;
4102 
4103 	pp = kmem_cache_alloc(sctp_bucket_cachep, SLAB_ATOMIC);
4104 	SCTP_DBG_OBJCNT_INC(bind_bucket);
4105 	if (pp) {
4106 		pp->port = snum;
4107 		pp->fastreuse = 0;
4108 		INIT_HLIST_HEAD(&pp->owner);
4109 		if ((pp->next = head->chain) != NULL)
4110 			pp->next->pprev = &pp->next;
4111 		head->chain = pp;
4112 		pp->pprev = &head->chain;
4113 	}
4114 	return pp;
4115 }
4116 
4117 /* Caller must hold hashbucket lock for this tb with local BH disabled */
4118 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
4119 {
4120 	if (hlist_empty(&pp->owner)) {
4121 		if (pp->next)
4122 			pp->next->pprev = pp->pprev;
4123 		*(pp->pprev) = pp->next;
4124 		kmem_cache_free(sctp_bucket_cachep, pp);
4125 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
4126 	}
4127 }
4128 
4129 /* Release this socket's reference to a local port.  */
4130 static inline void __sctp_put_port(struct sock *sk)
4131 {
4132 	struct sctp_bind_hashbucket *head =
4133 		&sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)];
4134 	struct sctp_bind_bucket *pp;
4135 
4136 	sctp_spin_lock(&head->lock);
4137 	pp = sctp_sk(sk)->bind_hash;
4138 	__sk_del_bind_node(sk);
4139 	sctp_sk(sk)->bind_hash = NULL;
4140 	inet_sk(sk)->num = 0;
4141 	sctp_bucket_destroy(pp);
4142 	sctp_spin_unlock(&head->lock);
4143 }
4144 
4145 void sctp_put_port(struct sock *sk)
4146 {
4147 	sctp_local_bh_disable();
4148 	__sctp_put_port(sk);
4149 	sctp_local_bh_enable();
4150 }
4151 
4152 /*
4153  * The system picks an ephemeral port and choose an address set equivalent
4154  * to binding with a wildcard address.
4155  * One of those addresses will be the primary address for the association.
4156  * This automatically enables the multihoming capability of SCTP.
4157  */
4158 static int sctp_autobind(struct sock *sk)
4159 {
4160 	union sctp_addr autoaddr;
4161 	struct sctp_af *af;
4162 	unsigned short port;
4163 
4164 	/* Initialize a local sockaddr structure to INADDR_ANY. */
4165 	af = sctp_sk(sk)->pf->af;
4166 
4167 	port = htons(inet_sk(sk)->num);
4168 	af->inaddr_any(&autoaddr, port);
4169 
4170 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
4171 }
4172 
4173 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
4174  *
4175  * From RFC 2292
4176  * 4.2 The cmsghdr Structure *
4177  *
4178  * When ancillary data is sent or received, any number of ancillary data
4179  * objects can be specified by the msg_control and msg_controllen members of
4180  * the msghdr structure, because each object is preceded by
4181  * a cmsghdr structure defining the object's length (the cmsg_len member).
4182  * Historically Berkeley-derived implementations have passed only one object
4183  * at a time, but this API allows multiple objects to be
4184  * passed in a single call to sendmsg() or recvmsg(). The following example
4185  * shows two ancillary data objects in a control buffer.
4186  *
4187  *   |<--------------------------- msg_controllen -------------------------->|
4188  *   |                                                                       |
4189  *
4190  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
4191  *
4192  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
4193  *   |                                   |                                   |
4194  *
4195  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
4196  *
4197  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
4198  *   |                                |  |                                |  |
4199  *
4200  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
4201  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
4202  *
4203  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
4204  *
4205  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
4206  *    ^
4207  *    |
4208  *
4209  * msg_control
4210  * points here
4211  */
4212 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
4213 				  sctp_cmsgs_t *cmsgs)
4214 {
4215 	struct cmsghdr *cmsg;
4216 
4217 	for (cmsg = CMSG_FIRSTHDR(msg);
4218 	     cmsg != NULL;
4219 	     cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) {
4220 		if (!CMSG_OK(msg, cmsg))
4221 			return -EINVAL;
4222 
4223 		/* Should we parse this header or ignore?  */
4224 		if (cmsg->cmsg_level != IPPROTO_SCTP)
4225 			continue;
4226 
4227 		/* Strictly check lengths following example in SCM code.  */
4228 		switch (cmsg->cmsg_type) {
4229 		case SCTP_INIT:
4230 			/* SCTP Socket API Extension
4231 			 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
4232 			 *
4233 			 * This cmsghdr structure provides information for
4234 			 * initializing new SCTP associations with sendmsg().
4235 			 * The SCTP_INITMSG socket option uses this same data
4236 			 * structure.  This structure is not used for
4237 			 * recvmsg().
4238 			 *
4239 			 * cmsg_level    cmsg_type      cmsg_data[]
4240 			 * ------------  ------------   ----------------------
4241 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
4242 			 */
4243 			if (cmsg->cmsg_len !=
4244 			    CMSG_LEN(sizeof(struct sctp_initmsg)))
4245 				return -EINVAL;
4246 			cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
4247 			break;
4248 
4249 		case SCTP_SNDRCV:
4250 			/* SCTP Socket API Extension
4251 			 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
4252 			 *
4253 			 * This cmsghdr structure specifies SCTP options for
4254 			 * sendmsg() and describes SCTP header information
4255 			 * about a received message through recvmsg().
4256 			 *
4257 			 * cmsg_level    cmsg_type      cmsg_data[]
4258 			 * ------------  ------------   ----------------------
4259 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
4260 			 */
4261 			if (cmsg->cmsg_len !=
4262 			    CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
4263 				return -EINVAL;
4264 
4265 			cmsgs->info =
4266 				(struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
4267 
4268 			/* Minimally, validate the sinfo_flags. */
4269 			if (cmsgs->info->sinfo_flags &
4270 			    ~(MSG_UNORDERED | MSG_ADDR_OVER |
4271 			      MSG_ABORT | MSG_EOF))
4272 				return -EINVAL;
4273 			break;
4274 
4275 		default:
4276 			return -EINVAL;
4277 		};
4278 	}
4279 	return 0;
4280 }
4281 
4282 /*
4283  * Wait for a packet..
4284  * Note: This function is the same function as in core/datagram.c
4285  * with a few modifications to make lksctp work.
4286  */
4287 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
4288 {
4289 	int error;
4290 	DEFINE_WAIT(wait);
4291 
4292 	prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
4293 
4294 	/* Socket errors? */
4295 	error = sock_error(sk);
4296 	if (error)
4297 		goto out;
4298 
4299 	if (!skb_queue_empty(&sk->sk_receive_queue))
4300 		goto ready;
4301 
4302 	/* Socket shut down?  */
4303 	if (sk->sk_shutdown & RCV_SHUTDOWN)
4304 		goto out;
4305 
4306 	/* Sequenced packets can come disconnected.  If so we report the
4307 	 * problem.
4308 	 */
4309 	error = -ENOTCONN;
4310 
4311 	/* Is there a good reason to think that we may receive some data?  */
4312 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
4313 		goto out;
4314 
4315 	/* Handle signals.  */
4316 	if (signal_pending(current))
4317 		goto interrupted;
4318 
4319 	/* Let another process have a go.  Since we are going to sleep
4320 	 * anyway.  Note: This may cause odd behaviors if the message
4321 	 * does not fit in the user's buffer, but this seems to be the
4322 	 * only way to honor MSG_DONTWAIT realistically.
4323 	 */
4324 	sctp_release_sock(sk);
4325 	*timeo_p = schedule_timeout(*timeo_p);
4326 	sctp_lock_sock(sk);
4327 
4328 ready:
4329 	finish_wait(sk->sk_sleep, &wait);
4330 	return 0;
4331 
4332 interrupted:
4333 	error = sock_intr_errno(*timeo_p);
4334 
4335 out:
4336 	finish_wait(sk->sk_sleep, &wait);
4337 	*err = error;
4338 	return error;
4339 }
4340 
4341 /* Receive a datagram.
4342  * Note: This is pretty much the same routine as in core/datagram.c
4343  * with a few changes to make lksctp work.
4344  */
4345 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
4346 					      int noblock, int *err)
4347 {
4348 	int error;
4349 	struct sk_buff *skb;
4350 	long timeo;
4351 
4352 	/* Caller is allowed not to check sk->sk_err before calling.  */
4353 	error = sock_error(sk);
4354 	if (error)
4355 		goto no_packet;
4356 
4357 	timeo = sock_rcvtimeo(sk, noblock);
4358 
4359 	SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
4360 			  timeo, MAX_SCHEDULE_TIMEOUT);
4361 
4362 	do {
4363 		/* Again only user level code calls this function,
4364 		 * so nothing interrupt level
4365 		 * will suddenly eat the receive_queue.
4366 		 *
4367 		 *  Look at current nfs client by the way...
4368 		 *  However, this function was corrent in any case. 8)
4369 		 */
4370 		if (flags & MSG_PEEK) {
4371 			unsigned long cpu_flags;
4372 
4373 			sctp_spin_lock_irqsave(&sk->sk_receive_queue.lock,
4374 					       cpu_flags);
4375 			skb = skb_peek(&sk->sk_receive_queue);
4376 			if (skb)
4377 				atomic_inc(&skb->users);
4378 			sctp_spin_unlock_irqrestore(&sk->sk_receive_queue.lock,
4379 						    cpu_flags);
4380 		} else {
4381 			skb = skb_dequeue(&sk->sk_receive_queue);
4382 		}
4383 
4384 		if (skb)
4385 			return skb;
4386 
4387 		if (sk->sk_shutdown & RCV_SHUTDOWN)
4388 			break;
4389 
4390 		/* User doesn't want to wait.  */
4391 		error = -EAGAIN;
4392 		if (!timeo)
4393 			goto no_packet;
4394 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
4395 
4396 	return NULL;
4397 
4398 no_packet:
4399 	*err = error;
4400 	return NULL;
4401 }
4402 
4403 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
4404 static void __sctp_write_space(struct sctp_association *asoc)
4405 {
4406 	struct sock *sk = asoc->base.sk;
4407 	struct socket *sock = sk->sk_socket;
4408 
4409 	if ((sctp_wspace(asoc) > 0) && sock) {
4410 		if (waitqueue_active(&asoc->wait))
4411 			wake_up_interruptible(&asoc->wait);
4412 
4413 		if (sctp_writeable(sk)) {
4414 			if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
4415 				wake_up_interruptible(sk->sk_sleep);
4416 
4417 			/* Note that we try to include the Async I/O support
4418 			 * here by modeling from the current TCP/UDP code.
4419 			 * We have not tested with it yet.
4420 			 */
4421 			if (sock->fasync_list &&
4422 			    !(sk->sk_shutdown & SEND_SHUTDOWN))
4423 				sock_wake_async(sock, 2, POLL_OUT);
4424 		}
4425 	}
4426 }
4427 
4428 /* Do accounting for the sndbuf space.
4429  * Decrement the used sndbuf space of the corresponding association by the
4430  * data size which was just transmitted(freed).
4431  */
4432 static void sctp_wfree(struct sk_buff *skb)
4433 {
4434 	struct sctp_association *asoc;
4435 	struct sctp_chunk *chunk;
4436 	struct sock *sk;
4437 
4438 	/* Get the saved chunk pointer.  */
4439 	chunk = *((struct sctp_chunk **)(skb->cb));
4440 	asoc = chunk->asoc;
4441 	sk = asoc->base.sk;
4442 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
4443 				sizeof(struct sk_buff) +
4444 				sizeof(struct sctp_chunk);
4445 
4446 	sk->sk_wmem_queued -= SCTP_DATA_SNDSIZE(chunk) +
4447 				sizeof(struct sk_buff) +
4448 				sizeof(struct sctp_chunk);
4449 
4450 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
4451 
4452 	sock_wfree(skb);
4453 	__sctp_write_space(asoc);
4454 
4455 	sctp_association_put(asoc);
4456 }
4457 
4458 /* Helper function to wait for space in the sndbuf.  */
4459 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
4460 				size_t msg_len)
4461 {
4462 	struct sock *sk = asoc->base.sk;
4463 	int err = 0;
4464 	long current_timeo = *timeo_p;
4465 	DEFINE_WAIT(wait);
4466 
4467 	SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
4468 	                  asoc, (long)(*timeo_p), msg_len);
4469 
4470 	/* Increment the association's refcnt.  */
4471 	sctp_association_hold(asoc);
4472 
4473 	/* Wait on the association specific sndbuf space. */
4474 	for (;;) {
4475 		prepare_to_wait_exclusive(&asoc->wait, &wait,
4476 					  TASK_INTERRUPTIBLE);
4477 		if (!*timeo_p)
4478 			goto do_nonblock;
4479 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
4480 		    asoc->base.dead)
4481 			goto do_error;
4482 		if (signal_pending(current))
4483 			goto do_interrupted;
4484 		if (msg_len <= sctp_wspace(asoc))
4485 			break;
4486 
4487 		/* Let another process have a go.  Since we are going
4488 		 * to sleep anyway.
4489 		 */
4490 		sctp_release_sock(sk);
4491 		current_timeo = schedule_timeout(current_timeo);
4492 		sctp_lock_sock(sk);
4493 
4494 		*timeo_p = current_timeo;
4495 	}
4496 
4497 out:
4498 	finish_wait(&asoc->wait, &wait);
4499 
4500 	/* Release the association's refcnt.  */
4501 	sctp_association_put(asoc);
4502 
4503 	return err;
4504 
4505 do_error:
4506 	err = -EPIPE;
4507 	goto out;
4508 
4509 do_interrupted:
4510 	err = sock_intr_errno(*timeo_p);
4511 	goto out;
4512 
4513 do_nonblock:
4514 	err = -EAGAIN;
4515 	goto out;
4516 }
4517 
4518 /* If socket sndbuf has changed, wake up all per association waiters.  */
4519 void sctp_write_space(struct sock *sk)
4520 {
4521 	struct sctp_association *asoc;
4522 	struct list_head *pos;
4523 
4524 	/* Wake up the tasks in each wait queue.  */
4525 	list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) {
4526 		asoc = list_entry(pos, struct sctp_association, asocs);
4527 		__sctp_write_space(asoc);
4528 	}
4529 }
4530 
4531 /* Is there any sndbuf space available on the socket?
4532  *
4533  * Note that wmem_queued is the sum of the send buffers on all of the
4534  * associations on the same socket.  For a UDP-style socket with
4535  * multiple associations, it is possible for it to be "unwriteable"
4536  * prematurely.  I assume that this is acceptable because
4537  * a premature "unwriteable" is better than an accidental "writeable" which
4538  * would cause an unwanted block under certain circumstances.  For the 1-1
4539  * UDP-style sockets or TCP-style sockets, this code should work.
4540  *  - Daisy
4541  */
4542 static int sctp_writeable(struct sock *sk)
4543 {
4544 	int amt = 0;
4545 
4546 	amt = sk->sk_sndbuf - sk->sk_wmem_queued;
4547 	if (amt < 0)
4548 		amt = 0;
4549 	return amt;
4550 }
4551 
4552 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
4553  * returns immediately with EINPROGRESS.
4554  */
4555 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
4556 {
4557 	struct sock *sk = asoc->base.sk;
4558 	int err = 0;
4559 	long current_timeo = *timeo_p;
4560 	DEFINE_WAIT(wait);
4561 
4562 	SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc,
4563 			  (long)(*timeo_p));
4564 
4565 	/* Increment the association's refcnt.  */
4566 	sctp_association_hold(asoc);
4567 
4568 	for (;;) {
4569 		prepare_to_wait_exclusive(&asoc->wait, &wait,
4570 					  TASK_INTERRUPTIBLE);
4571 		if (!*timeo_p)
4572 			goto do_nonblock;
4573 		if (sk->sk_shutdown & RCV_SHUTDOWN)
4574 			break;
4575 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
4576 		    asoc->base.dead)
4577 			goto do_error;
4578 		if (signal_pending(current))
4579 			goto do_interrupted;
4580 
4581 		if (sctp_state(asoc, ESTABLISHED))
4582 			break;
4583 
4584 		/* Let another process have a go.  Since we are going
4585 		 * to sleep anyway.
4586 		 */
4587 		sctp_release_sock(sk);
4588 		current_timeo = schedule_timeout(current_timeo);
4589 		sctp_lock_sock(sk);
4590 
4591 		*timeo_p = current_timeo;
4592 	}
4593 
4594 out:
4595 	finish_wait(&asoc->wait, &wait);
4596 
4597 	/* Release the association's refcnt.  */
4598 	sctp_association_put(asoc);
4599 
4600 	return err;
4601 
4602 do_error:
4603 	if (asoc->counters[SCTP_COUNTER_INIT_ERROR] + 1 >=
4604 					 	asoc->max_init_attempts)
4605 		err = -ETIMEDOUT;
4606 	else
4607 		err = -ECONNREFUSED;
4608 	goto out;
4609 
4610 do_interrupted:
4611 	err = sock_intr_errno(*timeo_p);
4612 	goto out;
4613 
4614 do_nonblock:
4615 	err = -EINPROGRESS;
4616 	goto out;
4617 }
4618 
4619 static int sctp_wait_for_accept(struct sock *sk, long timeo)
4620 {
4621 	struct sctp_endpoint *ep;
4622 	int err = 0;
4623 	DEFINE_WAIT(wait);
4624 
4625 	ep = sctp_sk(sk)->ep;
4626 
4627 
4628 	for (;;) {
4629 		prepare_to_wait_exclusive(sk->sk_sleep, &wait,
4630 					  TASK_INTERRUPTIBLE);
4631 
4632 		if (list_empty(&ep->asocs)) {
4633 			sctp_release_sock(sk);
4634 			timeo = schedule_timeout(timeo);
4635 			sctp_lock_sock(sk);
4636 		}
4637 
4638 		err = -EINVAL;
4639 		if (!sctp_sstate(sk, LISTENING))
4640 			break;
4641 
4642 		err = 0;
4643 		if (!list_empty(&ep->asocs))
4644 			break;
4645 
4646 		err = sock_intr_errno(timeo);
4647 		if (signal_pending(current))
4648 			break;
4649 
4650 		err = -EAGAIN;
4651 		if (!timeo)
4652 			break;
4653 	}
4654 
4655 	finish_wait(sk->sk_sleep, &wait);
4656 
4657 	return err;
4658 }
4659 
4660 void sctp_wait_for_close(struct sock *sk, long timeout)
4661 {
4662 	DEFINE_WAIT(wait);
4663 
4664 	do {
4665 		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
4666 		if (list_empty(&sctp_sk(sk)->ep->asocs))
4667 			break;
4668 		sctp_release_sock(sk);
4669 		timeout = schedule_timeout(timeout);
4670 		sctp_lock_sock(sk);
4671 	} while (!signal_pending(current) && timeout);
4672 
4673 	finish_wait(sk->sk_sleep, &wait);
4674 }
4675 
4676 /* Populate the fields of the newsk from the oldsk and migrate the assoc
4677  * and its messages to the newsk.
4678  */
4679 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
4680 			      struct sctp_association *assoc,
4681 			      sctp_socket_type_t type)
4682 {
4683 	struct sctp_sock *oldsp = sctp_sk(oldsk);
4684 	struct sctp_sock *newsp = sctp_sk(newsk);
4685 	struct sctp_bind_bucket *pp; /* hash list port iterator */
4686 	struct sctp_endpoint *newep = newsp->ep;
4687 	struct sk_buff *skb, *tmp;
4688 	struct sctp_ulpevent *event;
4689 
4690 	/* Migrate socket buffer sizes and all the socket level options to the
4691 	 * new socket.
4692 	 */
4693 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
4694 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
4695 	/* Brute force copy old sctp opt. */
4696 	inet_sk_copy_descendant(newsk, oldsk);
4697 
4698 	/* Restore the ep value that was overwritten with the above structure
4699 	 * copy.
4700 	 */
4701 	newsp->ep = newep;
4702 	newsp->hmac = NULL;
4703 
4704 	/* Hook this new socket in to the bind_hash list. */
4705 	pp = sctp_sk(oldsk)->bind_hash;
4706 	sk_add_bind_node(newsk, &pp->owner);
4707 	sctp_sk(newsk)->bind_hash = pp;
4708 	inet_sk(newsk)->num = inet_sk(oldsk)->num;
4709 
4710 	/* Move any messages in the old socket's receive queue that are for the
4711 	 * peeled off association to the new socket's receive queue.
4712 	 */
4713 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
4714 		event = sctp_skb2event(skb);
4715 		if (event->asoc == assoc) {
4716 			__skb_unlink(skb, skb->list);
4717 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
4718 		}
4719 	}
4720 
4721 	/* Clean up any messages pending delivery due to partial
4722 	 * delivery.   Three cases:
4723 	 * 1) No partial deliver;  no work.
4724 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
4725 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
4726 	 */
4727 	skb_queue_head_init(&newsp->pd_lobby);
4728 	sctp_sk(newsk)->pd_mode = assoc->ulpq.pd_mode;
4729 
4730 	if (sctp_sk(oldsk)->pd_mode) {
4731 		struct sk_buff_head *queue;
4732 
4733 		/* Decide which queue to move pd_lobby skbs to. */
4734 		if (assoc->ulpq.pd_mode) {
4735 			queue = &newsp->pd_lobby;
4736 		} else
4737 			queue = &newsk->sk_receive_queue;
4738 
4739 		/* Walk through the pd_lobby, looking for skbs that
4740 		 * need moved to the new socket.
4741 		 */
4742 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
4743 			event = sctp_skb2event(skb);
4744 			if (event->asoc == assoc) {
4745 				__skb_unlink(skb, skb->list);
4746 				__skb_queue_tail(queue, skb);
4747 			}
4748 		}
4749 
4750 		/* Clear up any skbs waiting for the partial
4751 		 * delivery to finish.
4752 		 */
4753 		if (assoc->ulpq.pd_mode)
4754 			sctp_clear_pd(oldsk);
4755 
4756 	}
4757 
4758 	/* Set the type of socket to indicate that it is peeled off from the
4759 	 * original UDP-style socket or created with the accept() call on a
4760 	 * TCP-style socket..
4761 	 */
4762 	newsp->type = type;
4763 
4764 	/* Migrate the association to the new socket. */
4765 	sctp_assoc_migrate(assoc, newsk);
4766 
4767 	/* If the association on the newsk is already closed before accept()
4768 	 * is called, set RCV_SHUTDOWN flag.
4769 	 */
4770 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
4771 		newsk->sk_shutdown |= RCV_SHUTDOWN;
4772 
4773 	newsk->sk_state = SCTP_SS_ESTABLISHED;
4774 }
4775 
4776 /* This proto struct describes the ULP interface for SCTP.  */
4777 struct proto sctp_prot = {
4778 	.name        =	"SCTP",
4779 	.owner       =	THIS_MODULE,
4780 	.close       =	sctp_close,
4781 	.connect     =	sctp_connect,
4782 	.disconnect  =	sctp_disconnect,
4783 	.accept      =	sctp_accept,
4784 	.ioctl       =	sctp_ioctl,
4785 	.init        =	sctp_init_sock,
4786 	.destroy     =	sctp_destroy_sock,
4787 	.shutdown    =	sctp_shutdown,
4788 	.setsockopt  =	sctp_setsockopt,
4789 	.getsockopt  =	sctp_getsockopt,
4790 	.sendmsg     =	sctp_sendmsg,
4791 	.recvmsg     =	sctp_recvmsg,
4792 	.bind        =	sctp_bind,
4793 	.backlog_rcv =	sctp_backlog_rcv,
4794 	.hash        =	sctp_hash,
4795 	.unhash      =	sctp_unhash,
4796 	.get_port    =	sctp_get_port,
4797 	.obj_size    =  sizeof(struct sctp_sock),
4798 };
4799 
4800 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4801 struct proto sctpv6_prot = {
4802 	.name		= "SCTPv6",
4803 	.owner		= THIS_MODULE,
4804 	.close		= sctp_close,
4805 	.connect	= sctp_connect,
4806 	.disconnect	= sctp_disconnect,
4807 	.accept		= sctp_accept,
4808 	.ioctl		= sctp_ioctl,
4809 	.init		= sctp_init_sock,
4810 	.destroy	= sctp_destroy_sock,
4811 	.shutdown	= sctp_shutdown,
4812 	.setsockopt	= sctp_setsockopt,
4813 	.getsockopt	= sctp_getsockopt,
4814 	.sendmsg	= sctp_sendmsg,
4815 	.recvmsg	= sctp_recvmsg,
4816 	.bind		= sctp_bind,
4817 	.backlog_rcv	= sctp_backlog_rcv,
4818 	.hash		= sctp_hash,
4819 	.unhash		= sctp_unhash,
4820 	.get_port	= sctp_get_port,
4821 	.obj_size	= sizeof(struct sctp6_sock),
4822 };
4823 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
4824