xref: /linux/net/sctp/socket.c (revision 71844fac1ed459024dd2a448d63d5b28b8c87daa)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, see
32  * <http://www.gnu.org/licenses/>.
33  *
34  * Please send any bug reports or fixes you make to the
35  * email address(es):
36  *    lksctp developers <linux-sctp@vger.kernel.org>
37  *
38  * Written or modified by:
39  *    La Monte H.P. Yarroll <piggy@acm.org>
40  *    Narasimha Budihal     <narsi@refcode.org>
41  *    Karl Knutson          <karl@athena.chicago.il.us>
42  *    Jon Grimm             <jgrimm@us.ibm.com>
43  *    Xingang Guo           <xingang.guo@intel.com>
44  *    Daisy Chang           <daisyc@us.ibm.com>
45  *    Sridhar Samudrala     <samudrala@us.ibm.com>
46  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
47  *    Ardelle Fan	    <ardelle.fan@intel.com>
48  *    Ryan Layer	    <rmlayer@us.ibm.com>
49  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
50  *    Kevin Gao             <kevin.gao@intel.com>
51  */
52 
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54 
55 #include <crypto/hash.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/wait.h>
59 #include <linux/time.h>
60 #include <linux/sched/signal.h>
61 #include <linux/ip.h>
62 #include <linux/capability.h>
63 #include <linux/fcntl.h>
64 #include <linux/poll.h>
65 #include <linux/init.h>
66 #include <linux/slab.h>
67 #include <linux/file.h>
68 #include <linux/compat.h>
69 #include <linux/rhashtable.h>
70 
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
76 #include <net/busy_poll.h>
77 
78 #include <linux/socket.h> /* for sa_family_t */
79 #include <linux/export.h>
80 #include <net/sock.h>
81 #include <net/sctp/sctp.h>
82 #include <net/sctp/sm.h>
83 #include <net/sctp/stream_sched.h>
84 
85 /* Forward declarations for internal helper functions. */
86 static bool sctp_writeable(struct sock *sk);
87 static void sctp_wfree(struct sk_buff *skb);
88 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
89 				size_t msg_len);
90 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
91 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
92 static int sctp_wait_for_accept(struct sock *sk, long timeo);
93 static void sctp_wait_for_close(struct sock *sk, long timeo);
94 static void sctp_destruct_sock(struct sock *sk);
95 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
96 					union sctp_addr *addr, int len);
97 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
98 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
99 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf(struct sctp_association *asoc,
102 			    struct sctp_chunk *chunk);
103 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
104 static int sctp_autobind(struct sock *sk);
105 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
106 			      struct sctp_association *assoc,
107 			      enum sctp_socket_type type);
108 
109 static unsigned long sctp_memory_pressure;
110 static atomic_long_t sctp_memory_allocated;
111 struct percpu_counter sctp_sockets_allocated;
112 
113 static void sctp_enter_memory_pressure(struct sock *sk)
114 {
115 	sctp_memory_pressure = 1;
116 }
117 
118 
119 /* Get the sndbuf space available at the time on the association.  */
120 static inline int sctp_wspace(struct sctp_association *asoc)
121 {
122 	struct sock *sk = asoc->base.sk;
123 
124 	return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used
125 				       : sk_stream_wspace(sk);
126 }
127 
128 /* Increment the used sndbuf space count of the corresponding association by
129  * the size of the outgoing data chunk.
130  * Also, set the skb destructor for sndbuf accounting later.
131  *
132  * Since it is always 1-1 between chunk and skb, and also a new skb is always
133  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
134  * destructor in the data chunk skb for the purpose of the sndbuf space
135  * tracking.
136  */
137 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
138 {
139 	struct sctp_association *asoc = chunk->asoc;
140 	struct sock *sk = asoc->base.sk;
141 
142 	/* The sndbuf space is tracked per association.  */
143 	sctp_association_hold(asoc);
144 
145 	if (chunk->shkey)
146 		sctp_auth_shkey_hold(chunk->shkey);
147 
148 	skb_set_owner_w(chunk->skb, sk);
149 
150 	chunk->skb->destructor = sctp_wfree;
151 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
152 	skb_shinfo(chunk->skb)->destructor_arg = chunk;
153 
154 	refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
155 	asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk);
156 	sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk);
157 	sk_mem_charge(sk, chunk->skb->truesize);
158 }
159 
160 static void sctp_clear_owner_w(struct sctp_chunk *chunk)
161 {
162 	skb_orphan(chunk->skb);
163 }
164 
165 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
166 				       void (*cb)(struct sctp_chunk *))
167 
168 {
169 	struct sctp_outq *q = &asoc->outqueue;
170 	struct sctp_transport *t;
171 	struct sctp_chunk *chunk;
172 
173 	list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
174 		list_for_each_entry(chunk, &t->transmitted, transmitted_list)
175 			cb(chunk);
176 
177 	list_for_each_entry(chunk, &q->retransmit, transmitted_list)
178 		cb(chunk);
179 
180 	list_for_each_entry(chunk, &q->sacked, transmitted_list)
181 		cb(chunk);
182 
183 	list_for_each_entry(chunk, &q->abandoned, transmitted_list)
184 		cb(chunk);
185 
186 	list_for_each_entry(chunk, &q->out_chunk_list, list)
187 		cb(chunk);
188 }
189 
190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
191 				 void (*cb)(struct sk_buff *, struct sock *))
192 
193 {
194 	struct sk_buff *skb, *tmp;
195 
196 	sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
197 		cb(skb, sk);
198 
199 	sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
200 		cb(skb, sk);
201 
202 	sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
203 		cb(skb, sk);
204 }
205 
206 /* Verify that this is a valid address. */
207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
208 				   int len)
209 {
210 	struct sctp_af *af;
211 
212 	/* Verify basic sockaddr. */
213 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
214 	if (!af)
215 		return -EINVAL;
216 
217 	/* Is this a valid SCTP address?  */
218 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
219 		return -EINVAL;
220 
221 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
222 		return -EINVAL;
223 
224 	return 0;
225 }
226 
227 /* Look up the association by its id.  If this is not a UDP-style
228  * socket, the ID field is always ignored.
229  */
230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
231 {
232 	struct sctp_association *asoc = NULL;
233 
234 	/* If this is not a UDP-style socket, assoc id should be ignored. */
235 	if (!sctp_style(sk, UDP)) {
236 		/* Return NULL if the socket state is not ESTABLISHED. It
237 		 * could be a TCP-style listening socket or a socket which
238 		 * hasn't yet called connect() to establish an association.
239 		 */
240 		if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
241 			return NULL;
242 
243 		/* Get the first and the only association from the list. */
244 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
245 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
246 					  struct sctp_association, asocs);
247 		return asoc;
248 	}
249 
250 	/* Otherwise this is a UDP-style socket. */
251 	if (!id || (id == (sctp_assoc_t)-1))
252 		return NULL;
253 
254 	spin_lock_bh(&sctp_assocs_id_lock);
255 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
256 	if (asoc && (asoc->base.sk != sk || asoc->base.dead))
257 		asoc = NULL;
258 	spin_unlock_bh(&sctp_assocs_id_lock);
259 
260 	return asoc;
261 }
262 
263 /* Look up the transport from an address and an assoc id. If both address and
264  * id are specified, the associations matching the address and the id should be
265  * the same.
266  */
267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
268 					      struct sockaddr_storage *addr,
269 					      sctp_assoc_t id)
270 {
271 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
272 	struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
273 	union sctp_addr *laddr = (union sctp_addr *)addr;
274 	struct sctp_transport *transport;
275 
276 	if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
277 		return NULL;
278 
279 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
280 					       laddr,
281 					       &transport);
282 
283 	if (!addr_asoc)
284 		return NULL;
285 
286 	id_asoc = sctp_id2assoc(sk, id);
287 	if (id_asoc && (id_asoc != addr_asoc))
288 		return NULL;
289 
290 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
291 						(union sctp_addr *)addr);
292 
293 	return transport;
294 }
295 
296 /* API 3.1.2 bind() - UDP Style Syntax
297  * The syntax of bind() is,
298  *
299  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
300  *
301  *   sd      - the socket descriptor returned by socket().
302  *   addr    - the address structure (struct sockaddr_in or struct
303  *             sockaddr_in6 [RFC 2553]),
304  *   addr_len - the size of the address structure.
305  */
306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
307 {
308 	int retval = 0;
309 
310 	lock_sock(sk);
311 
312 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
313 		 addr, addr_len);
314 
315 	/* Disallow binding twice. */
316 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
317 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
318 				      addr_len);
319 	else
320 		retval = -EINVAL;
321 
322 	release_sock(sk);
323 
324 	return retval;
325 }
326 
327 static long sctp_get_port_local(struct sock *, union sctp_addr *);
328 
329 /* Verify this is a valid sockaddr. */
330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
331 					union sctp_addr *addr, int len)
332 {
333 	struct sctp_af *af;
334 
335 	/* Check minimum size.  */
336 	if (len < sizeof (struct sockaddr))
337 		return NULL;
338 
339 	if (!opt->pf->af_supported(addr->sa.sa_family, opt))
340 		return NULL;
341 
342 	if (addr->sa.sa_family == AF_INET6) {
343 		if (len < SIN6_LEN_RFC2133)
344 			return NULL;
345 		/* V4 mapped address are really of AF_INET family */
346 		if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
347 		    !opt->pf->af_supported(AF_INET, opt))
348 			return NULL;
349 	}
350 
351 	/* If we get this far, af is valid. */
352 	af = sctp_get_af_specific(addr->sa.sa_family);
353 
354 	if (len < af->sockaddr_len)
355 		return NULL;
356 
357 	return af;
358 }
359 
360 /* Bind a local address either to an endpoint or to an association.  */
361 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
362 {
363 	struct net *net = sock_net(sk);
364 	struct sctp_sock *sp = sctp_sk(sk);
365 	struct sctp_endpoint *ep = sp->ep;
366 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
367 	struct sctp_af *af;
368 	unsigned short snum;
369 	int ret = 0;
370 
371 	/* Common sockaddr verification. */
372 	af = sctp_sockaddr_af(sp, addr, len);
373 	if (!af) {
374 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
375 			 __func__, sk, addr, len);
376 		return -EINVAL;
377 	}
378 
379 	snum = ntohs(addr->v4.sin_port);
380 
381 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
382 		 __func__, sk, &addr->sa, bp->port, snum, len);
383 
384 	/* PF specific bind() address verification. */
385 	if (!sp->pf->bind_verify(sp, addr))
386 		return -EADDRNOTAVAIL;
387 
388 	/* We must either be unbound, or bind to the same port.
389 	 * It's OK to allow 0 ports if we are already bound.
390 	 * We'll just inhert an already bound port in this case
391 	 */
392 	if (bp->port) {
393 		if (!snum)
394 			snum = bp->port;
395 		else if (snum != bp->port) {
396 			pr_debug("%s: new port %d doesn't match existing port "
397 				 "%d\n", __func__, snum, bp->port);
398 			return -EINVAL;
399 		}
400 	}
401 
402 	if (snum && snum < inet_prot_sock(net) &&
403 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
404 		return -EACCES;
405 
406 	/* See if the address matches any of the addresses we may have
407 	 * already bound before checking against other endpoints.
408 	 */
409 	if (sctp_bind_addr_match(bp, addr, sp))
410 		return -EINVAL;
411 
412 	/* Make sure we are allowed to bind here.
413 	 * The function sctp_get_port_local() does duplicate address
414 	 * detection.
415 	 */
416 	addr->v4.sin_port = htons(snum);
417 	if ((ret = sctp_get_port_local(sk, addr))) {
418 		return -EADDRINUSE;
419 	}
420 
421 	/* Refresh ephemeral port.  */
422 	if (!bp->port)
423 		bp->port = inet_sk(sk)->inet_num;
424 
425 	/* Add the address to the bind address list.
426 	 * Use GFP_ATOMIC since BHs will be disabled.
427 	 */
428 	ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
429 				 SCTP_ADDR_SRC, GFP_ATOMIC);
430 
431 	/* Copy back into socket for getsockname() use. */
432 	if (!ret) {
433 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
434 		sp->pf->to_sk_saddr(addr, sk);
435 	}
436 
437 	return ret;
438 }
439 
440  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
441  *
442  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
443  * at any one time.  If a sender, after sending an ASCONF chunk, decides
444  * it needs to transfer another ASCONF Chunk, it MUST wait until the
445  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
446  * subsequent ASCONF. Note this restriction binds each side, so at any
447  * time two ASCONF may be in-transit on any given association (one sent
448  * from each endpoint).
449  */
450 static int sctp_send_asconf(struct sctp_association *asoc,
451 			    struct sctp_chunk *chunk)
452 {
453 	struct net 	*net = sock_net(asoc->base.sk);
454 	int		retval = 0;
455 
456 	/* If there is an outstanding ASCONF chunk, queue it for later
457 	 * transmission.
458 	 */
459 	if (asoc->addip_last_asconf) {
460 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
461 		goto out;
462 	}
463 
464 	/* Hold the chunk until an ASCONF_ACK is received. */
465 	sctp_chunk_hold(chunk);
466 	retval = sctp_primitive_ASCONF(net, asoc, chunk);
467 	if (retval)
468 		sctp_chunk_free(chunk);
469 	else
470 		asoc->addip_last_asconf = chunk;
471 
472 out:
473 	return retval;
474 }
475 
476 /* Add a list of addresses as bind addresses to local endpoint or
477  * association.
478  *
479  * Basically run through each address specified in the addrs/addrcnt
480  * array/length pair, determine if it is IPv6 or IPv4 and call
481  * sctp_do_bind() on it.
482  *
483  * If any of them fails, then the operation will be reversed and the
484  * ones that were added will be removed.
485  *
486  * Only sctp_setsockopt_bindx() is supposed to call this function.
487  */
488 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
489 {
490 	int cnt;
491 	int retval = 0;
492 	void *addr_buf;
493 	struct sockaddr *sa_addr;
494 	struct sctp_af *af;
495 
496 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
497 		 addrs, addrcnt);
498 
499 	addr_buf = addrs;
500 	for (cnt = 0; cnt < addrcnt; cnt++) {
501 		/* The list may contain either IPv4 or IPv6 address;
502 		 * determine the address length for walking thru the list.
503 		 */
504 		sa_addr = addr_buf;
505 		af = sctp_get_af_specific(sa_addr->sa_family);
506 		if (!af) {
507 			retval = -EINVAL;
508 			goto err_bindx_add;
509 		}
510 
511 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
512 				      af->sockaddr_len);
513 
514 		addr_buf += af->sockaddr_len;
515 
516 err_bindx_add:
517 		if (retval < 0) {
518 			/* Failed. Cleanup the ones that have been added */
519 			if (cnt > 0)
520 				sctp_bindx_rem(sk, addrs, cnt);
521 			return retval;
522 		}
523 	}
524 
525 	return retval;
526 }
527 
528 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
529  * associations that are part of the endpoint indicating that a list of local
530  * addresses are added to the endpoint.
531  *
532  * If any of the addresses is already in the bind address list of the
533  * association, we do not send the chunk for that association.  But it will not
534  * affect other associations.
535  *
536  * Only sctp_setsockopt_bindx() is supposed to call this function.
537  */
538 static int sctp_send_asconf_add_ip(struct sock		*sk,
539 				   struct sockaddr	*addrs,
540 				   int 			addrcnt)
541 {
542 	struct net *net = sock_net(sk);
543 	struct sctp_sock		*sp;
544 	struct sctp_endpoint		*ep;
545 	struct sctp_association		*asoc;
546 	struct sctp_bind_addr		*bp;
547 	struct sctp_chunk		*chunk;
548 	struct sctp_sockaddr_entry	*laddr;
549 	union sctp_addr			*addr;
550 	union sctp_addr			saveaddr;
551 	void				*addr_buf;
552 	struct sctp_af			*af;
553 	struct list_head		*p;
554 	int 				i;
555 	int 				retval = 0;
556 
557 	if (!net->sctp.addip_enable)
558 		return retval;
559 
560 	sp = sctp_sk(sk);
561 	ep = sp->ep;
562 
563 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
564 		 __func__, sk, addrs, addrcnt);
565 
566 	list_for_each_entry(asoc, &ep->asocs, asocs) {
567 		if (!asoc->peer.asconf_capable)
568 			continue;
569 
570 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
571 			continue;
572 
573 		if (!sctp_state(asoc, ESTABLISHED))
574 			continue;
575 
576 		/* Check if any address in the packed array of addresses is
577 		 * in the bind address list of the association. If so,
578 		 * do not send the asconf chunk to its peer, but continue with
579 		 * other associations.
580 		 */
581 		addr_buf = addrs;
582 		for (i = 0; i < addrcnt; i++) {
583 			addr = addr_buf;
584 			af = sctp_get_af_specific(addr->v4.sin_family);
585 			if (!af) {
586 				retval = -EINVAL;
587 				goto out;
588 			}
589 
590 			if (sctp_assoc_lookup_laddr(asoc, addr))
591 				break;
592 
593 			addr_buf += af->sockaddr_len;
594 		}
595 		if (i < addrcnt)
596 			continue;
597 
598 		/* Use the first valid address in bind addr list of
599 		 * association as Address Parameter of ASCONF CHUNK.
600 		 */
601 		bp = &asoc->base.bind_addr;
602 		p = bp->address_list.next;
603 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
604 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
605 						   addrcnt, SCTP_PARAM_ADD_IP);
606 		if (!chunk) {
607 			retval = -ENOMEM;
608 			goto out;
609 		}
610 
611 		/* Add the new addresses to the bind address list with
612 		 * use_as_src set to 0.
613 		 */
614 		addr_buf = addrs;
615 		for (i = 0; i < addrcnt; i++) {
616 			addr = addr_buf;
617 			af = sctp_get_af_specific(addr->v4.sin_family);
618 			memcpy(&saveaddr, addr, af->sockaddr_len);
619 			retval = sctp_add_bind_addr(bp, &saveaddr,
620 						    sizeof(saveaddr),
621 						    SCTP_ADDR_NEW, GFP_ATOMIC);
622 			addr_buf += af->sockaddr_len;
623 		}
624 		if (asoc->src_out_of_asoc_ok) {
625 			struct sctp_transport *trans;
626 
627 			list_for_each_entry(trans,
628 			    &asoc->peer.transport_addr_list, transports) {
629 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
630 				    2*asoc->pathmtu, 4380));
631 				trans->ssthresh = asoc->peer.i.a_rwnd;
632 				trans->rto = asoc->rto_initial;
633 				sctp_max_rto(asoc, trans);
634 				trans->rtt = trans->srtt = trans->rttvar = 0;
635 				/* Clear the source and route cache */
636 				sctp_transport_route(trans, NULL,
637 						     sctp_sk(asoc->base.sk));
638 			}
639 		}
640 		retval = sctp_send_asconf(asoc, chunk);
641 	}
642 
643 out:
644 	return retval;
645 }
646 
647 /* Remove a list of addresses from bind addresses list.  Do not remove the
648  * last address.
649  *
650  * Basically run through each address specified in the addrs/addrcnt
651  * array/length pair, determine if it is IPv6 or IPv4 and call
652  * sctp_del_bind() on it.
653  *
654  * If any of them fails, then the operation will be reversed and the
655  * ones that were removed will be added back.
656  *
657  * At least one address has to be left; if only one address is
658  * available, the operation will return -EBUSY.
659  *
660  * Only sctp_setsockopt_bindx() is supposed to call this function.
661  */
662 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
663 {
664 	struct sctp_sock *sp = sctp_sk(sk);
665 	struct sctp_endpoint *ep = sp->ep;
666 	int cnt;
667 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
668 	int retval = 0;
669 	void *addr_buf;
670 	union sctp_addr *sa_addr;
671 	struct sctp_af *af;
672 
673 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
674 		 __func__, sk, addrs, addrcnt);
675 
676 	addr_buf = addrs;
677 	for (cnt = 0; cnt < addrcnt; cnt++) {
678 		/* If the bind address list is empty or if there is only one
679 		 * bind address, there is nothing more to be removed (we need
680 		 * at least one address here).
681 		 */
682 		if (list_empty(&bp->address_list) ||
683 		    (sctp_list_single_entry(&bp->address_list))) {
684 			retval = -EBUSY;
685 			goto err_bindx_rem;
686 		}
687 
688 		sa_addr = addr_buf;
689 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
690 		if (!af) {
691 			retval = -EINVAL;
692 			goto err_bindx_rem;
693 		}
694 
695 		if (!af->addr_valid(sa_addr, sp, NULL)) {
696 			retval = -EADDRNOTAVAIL;
697 			goto err_bindx_rem;
698 		}
699 
700 		if (sa_addr->v4.sin_port &&
701 		    sa_addr->v4.sin_port != htons(bp->port)) {
702 			retval = -EINVAL;
703 			goto err_bindx_rem;
704 		}
705 
706 		if (!sa_addr->v4.sin_port)
707 			sa_addr->v4.sin_port = htons(bp->port);
708 
709 		/* FIXME - There is probably a need to check if sk->sk_saddr and
710 		 * sk->sk_rcv_addr are currently set to one of the addresses to
711 		 * be removed. This is something which needs to be looked into
712 		 * when we are fixing the outstanding issues with multi-homing
713 		 * socket routing and failover schemes. Refer to comments in
714 		 * sctp_do_bind(). -daisy
715 		 */
716 		retval = sctp_del_bind_addr(bp, sa_addr);
717 
718 		addr_buf += af->sockaddr_len;
719 err_bindx_rem:
720 		if (retval < 0) {
721 			/* Failed. Add the ones that has been removed back */
722 			if (cnt > 0)
723 				sctp_bindx_add(sk, addrs, cnt);
724 			return retval;
725 		}
726 	}
727 
728 	return retval;
729 }
730 
731 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
732  * the associations that are part of the endpoint indicating that a list of
733  * local addresses are removed from the endpoint.
734  *
735  * If any of the addresses is already in the bind address list of the
736  * association, we do not send the chunk for that association.  But it will not
737  * affect other associations.
738  *
739  * Only sctp_setsockopt_bindx() is supposed to call this function.
740  */
741 static int sctp_send_asconf_del_ip(struct sock		*sk,
742 				   struct sockaddr	*addrs,
743 				   int			addrcnt)
744 {
745 	struct net *net = sock_net(sk);
746 	struct sctp_sock	*sp;
747 	struct sctp_endpoint	*ep;
748 	struct sctp_association	*asoc;
749 	struct sctp_transport	*transport;
750 	struct sctp_bind_addr	*bp;
751 	struct sctp_chunk	*chunk;
752 	union sctp_addr		*laddr;
753 	void			*addr_buf;
754 	struct sctp_af		*af;
755 	struct sctp_sockaddr_entry *saddr;
756 	int 			i;
757 	int 			retval = 0;
758 	int			stored = 0;
759 
760 	chunk = NULL;
761 	if (!net->sctp.addip_enable)
762 		return retval;
763 
764 	sp = sctp_sk(sk);
765 	ep = sp->ep;
766 
767 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
768 		 __func__, sk, addrs, addrcnt);
769 
770 	list_for_each_entry(asoc, &ep->asocs, asocs) {
771 
772 		if (!asoc->peer.asconf_capable)
773 			continue;
774 
775 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
776 			continue;
777 
778 		if (!sctp_state(asoc, ESTABLISHED))
779 			continue;
780 
781 		/* Check if any address in the packed array of addresses is
782 		 * not present in the bind address list of the association.
783 		 * If so, do not send the asconf chunk to its peer, but
784 		 * continue with other associations.
785 		 */
786 		addr_buf = addrs;
787 		for (i = 0; i < addrcnt; i++) {
788 			laddr = addr_buf;
789 			af = sctp_get_af_specific(laddr->v4.sin_family);
790 			if (!af) {
791 				retval = -EINVAL;
792 				goto out;
793 			}
794 
795 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
796 				break;
797 
798 			addr_buf += af->sockaddr_len;
799 		}
800 		if (i < addrcnt)
801 			continue;
802 
803 		/* Find one address in the association's bind address list
804 		 * that is not in the packed array of addresses. This is to
805 		 * make sure that we do not delete all the addresses in the
806 		 * association.
807 		 */
808 		bp = &asoc->base.bind_addr;
809 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
810 					       addrcnt, sp);
811 		if ((laddr == NULL) && (addrcnt == 1)) {
812 			if (asoc->asconf_addr_del_pending)
813 				continue;
814 			asoc->asconf_addr_del_pending =
815 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
816 			if (asoc->asconf_addr_del_pending == NULL) {
817 				retval = -ENOMEM;
818 				goto out;
819 			}
820 			asoc->asconf_addr_del_pending->sa.sa_family =
821 				    addrs->sa_family;
822 			asoc->asconf_addr_del_pending->v4.sin_port =
823 				    htons(bp->port);
824 			if (addrs->sa_family == AF_INET) {
825 				struct sockaddr_in *sin;
826 
827 				sin = (struct sockaddr_in *)addrs;
828 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
829 			} else if (addrs->sa_family == AF_INET6) {
830 				struct sockaddr_in6 *sin6;
831 
832 				sin6 = (struct sockaddr_in6 *)addrs;
833 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
834 			}
835 
836 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
837 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
838 				 asoc->asconf_addr_del_pending);
839 
840 			asoc->src_out_of_asoc_ok = 1;
841 			stored = 1;
842 			goto skip_mkasconf;
843 		}
844 
845 		if (laddr == NULL)
846 			return -EINVAL;
847 
848 		/* We do not need RCU protection throughout this loop
849 		 * because this is done under a socket lock from the
850 		 * setsockopt call.
851 		 */
852 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
853 						   SCTP_PARAM_DEL_IP);
854 		if (!chunk) {
855 			retval = -ENOMEM;
856 			goto out;
857 		}
858 
859 skip_mkasconf:
860 		/* Reset use_as_src flag for the addresses in the bind address
861 		 * list that are to be deleted.
862 		 */
863 		addr_buf = addrs;
864 		for (i = 0; i < addrcnt; i++) {
865 			laddr = addr_buf;
866 			af = sctp_get_af_specific(laddr->v4.sin_family);
867 			list_for_each_entry(saddr, &bp->address_list, list) {
868 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
869 					saddr->state = SCTP_ADDR_DEL;
870 			}
871 			addr_buf += af->sockaddr_len;
872 		}
873 
874 		/* Update the route and saddr entries for all the transports
875 		 * as some of the addresses in the bind address list are
876 		 * about to be deleted and cannot be used as source addresses.
877 		 */
878 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
879 					transports) {
880 			sctp_transport_route(transport, NULL,
881 					     sctp_sk(asoc->base.sk));
882 		}
883 
884 		if (stored)
885 			/* We don't need to transmit ASCONF */
886 			continue;
887 		retval = sctp_send_asconf(asoc, chunk);
888 	}
889 out:
890 	return retval;
891 }
892 
893 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
894 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
895 {
896 	struct sock *sk = sctp_opt2sk(sp);
897 	union sctp_addr *addr;
898 	struct sctp_af *af;
899 
900 	/* It is safe to write port space in caller. */
901 	addr = &addrw->a;
902 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
903 	af = sctp_get_af_specific(addr->sa.sa_family);
904 	if (!af)
905 		return -EINVAL;
906 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
907 		return -EINVAL;
908 
909 	if (addrw->state == SCTP_ADDR_NEW)
910 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
911 	else
912 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
913 }
914 
915 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
916  *
917  * API 8.1
918  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
919  *                int flags);
920  *
921  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
922  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
923  * or IPv6 addresses.
924  *
925  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
926  * Section 3.1.2 for this usage.
927  *
928  * addrs is a pointer to an array of one or more socket addresses. Each
929  * address is contained in its appropriate structure (i.e. struct
930  * sockaddr_in or struct sockaddr_in6) the family of the address type
931  * must be used to distinguish the address length (note that this
932  * representation is termed a "packed array" of addresses). The caller
933  * specifies the number of addresses in the array with addrcnt.
934  *
935  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
936  * -1, and sets errno to the appropriate error code.
937  *
938  * For SCTP, the port given in each socket address must be the same, or
939  * sctp_bindx() will fail, setting errno to EINVAL.
940  *
941  * The flags parameter is formed from the bitwise OR of zero or more of
942  * the following currently defined flags:
943  *
944  * SCTP_BINDX_ADD_ADDR
945  *
946  * SCTP_BINDX_REM_ADDR
947  *
948  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
949  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
950  * addresses from the association. The two flags are mutually exclusive;
951  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
952  * not remove all addresses from an association; sctp_bindx() will
953  * reject such an attempt with EINVAL.
954  *
955  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
956  * additional addresses with an endpoint after calling bind().  Or use
957  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
958  * socket is associated with so that no new association accepted will be
959  * associated with those addresses. If the endpoint supports dynamic
960  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
961  * endpoint to send the appropriate message to the peer to change the
962  * peers address lists.
963  *
964  * Adding and removing addresses from a connected association is
965  * optional functionality. Implementations that do not support this
966  * functionality should return EOPNOTSUPP.
967  *
968  * Basically do nothing but copying the addresses from user to kernel
969  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
970  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
971  * from userspace.
972  *
973  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
974  * it.
975  *
976  * sk        The sk of the socket
977  * addrs     The pointer to the addresses in user land
978  * addrssize Size of the addrs buffer
979  * op        Operation to perform (add or remove, see the flags of
980  *           sctp_bindx)
981  *
982  * Returns 0 if ok, <0 errno code on error.
983  */
984 static int sctp_setsockopt_bindx(struct sock *sk,
985 				 struct sockaddr __user *addrs,
986 				 int addrs_size, int op)
987 {
988 	struct sockaddr *kaddrs;
989 	int err;
990 	int addrcnt = 0;
991 	int walk_size = 0;
992 	struct sockaddr *sa_addr;
993 	void *addr_buf;
994 	struct sctp_af *af;
995 
996 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
997 		 __func__, sk, addrs, addrs_size, op);
998 
999 	if (unlikely(addrs_size <= 0))
1000 		return -EINVAL;
1001 
1002 	kaddrs = vmemdup_user(addrs, addrs_size);
1003 	if (unlikely(IS_ERR(kaddrs)))
1004 		return PTR_ERR(kaddrs);
1005 
1006 	/* Walk through the addrs buffer and count the number of addresses. */
1007 	addr_buf = kaddrs;
1008 	while (walk_size < addrs_size) {
1009 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1010 			kvfree(kaddrs);
1011 			return -EINVAL;
1012 		}
1013 
1014 		sa_addr = addr_buf;
1015 		af = sctp_get_af_specific(sa_addr->sa_family);
1016 
1017 		/* If the address family is not supported or if this address
1018 		 * causes the address buffer to overflow return EINVAL.
1019 		 */
1020 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1021 			kvfree(kaddrs);
1022 			return -EINVAL;
1023 		}
1024 		addrcnt++;
1025 		addr_buf += af->sockaddr_len;
1026 		walk_size += af->sockaddr_len;
1027 	}
1028 
1029 	/* Do the work. */
1030 	switch (op) {
1031 	case SCTP_BINDX_ADD_ADDR:
1032 		/* Allow security module to validate bindx addresses. */
1033 		err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
1034 						 (struct sockaddr *)kaddrs,
1035 						 addrs_size);
1036 		if (err)
1037 			goto out;
1038 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1039 		if (err)
1040 			goto out;
1041 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1042 		break;
1043 
1044 	case SCTP_BINDX_REM_ADDR:
1045 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1046 		if (err)
1047 			goto out;
1048 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1049 		break;
1050 
1051 	default:
1052 		err = -EINVAL;
1053 		break;
1054 	}
1055 
1056 out:
1057 	kvfree(kaddrs);
1058 
1059 	return err;
1060 }
1061 
1062 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1063  *
1064  * Common routine for handling connect() and sctp_connectx().
1065  * Connect will come in with just a single address.
1066  */
1067 static int __sctp_connect(struct sock *sk,
1068 			  struct sockaddr *kaddrs,
1069 			  int addrs_size, int flags,
1070 			  sctp_assoc_t *assoc_id)
1071 {
1072 	struct net *net = sock_net(sk);
1073 	struct sctp_sock *sp;
1074 	struct sctp_endpoint *ep;
1075 	struct sctp_association *asoc = NULL;
1076 	struct sctp_association *asoc2;
1077 	struct sctp_transport *transport;
1078 	union sctp_addr to;
1079 	enum sctp_scope scope;
1080 	long timeo;
1081 	int err = 0;
1082 	int addrcnt = 0;
1083 	int walk_size = 0;
1084 	union sctp_addr *sa_addr = NULL;
1085 	void *addr_buf;
1086 	unsigned short port;
1087 
1088 	sp = sctp_sk(sk);
1089 	ep = sp->ep;
1090 
1091 	/* connect() cannot be done on a socket that is already in ESTABLISHED
1092 	 * state - UDP-style peeled off socket or a TCP-style socket that
1093 	 * is already connected.
1094 	 * It cannot be done even on a TCP-style listening socket.
1095 	 */
1096 	if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1097 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1098 		err = -EISCONN;
1099 		goto out_free;
1100 	}
1101 
1102 	/* Walk through the addrs buffer and count the number of addresses. */
1103 	addr_buf = kaddrs;
1104 	while (walk_size < addrs_size) {
1105 		struct sctp_af *af;
1106 
1107 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1108 			err = -EINVAL;
1109 			goto out_free;
1110 		}
1111 
1112 		sa_addr = addr_buf;
1113 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1114 
1115 		/* If the address family is not supported or if this address
1116 		 * causes the address buffer to overflow return EINVAL.
1117 		 */
1118 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1119 			err = -EINVAL;
1120 			goto out_free;
1121 		}
1122 
1123 		port = ntohs(sa_addr->v4.sin_port);
1124 
1125 		/* Save current address so we can work with it */
1126 		memcpy(&to, sa_addr, af->sockaddr_len);
1127 
1128 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1129 		if (err)
1130 			goto out_free;
1131 
1132 		/* Make sure the destination port is correctly set
1133 		 * in all addresses.
1134 		 */
1135 		if (asoc && asoc->peer.port && asoc->peer.port != port) {
1136 			err = -EINVAL;
1137 			goto out_free;
1138 		}
1139 
1140 		/* Check if there already is a matching association on the
1141 		 * endpoint (other than the one created here).
1142 		 */
1143 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1144 		if (asoc2 && asoc2 != asoc) {
1145 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1146 				err = -EISCONN;
1147 			else
1148 				err = -EALREADY;
1149 			goto out_free;
1150 		}
1151 
1152 		/* If we could not find a matching association on the endpoint,
1153 		 * make sure that there is no peeled-off association matching
1154 		 * the peer address even on another socket.
1155 		 */
1156 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1157 			err = -EADDRNOTAVAIL;
1158 			goto out_free;
1159 		}
1160 
1161 		if (!asoc) {
1162 			/* If a bind() or sctp_bindx() is not called prior to
1163 			 * an sctp_connectx() call, the system picks an
1164 			 * ephemeral port and will choose an address set
1165 			 * equivalent to binding with a wildcard address.
1166 			 */
1167 			if (!ep->base.bind_addr.port) {
1168 				if (sctp_autobind(sk)) {
1169 					err = -EAGAIN;
1170 					goto out_free;
1171 				}
1172 			} else {
1173 				/*
1174 				 * If an unprivileged user inherits a 1-many
1175 				 * style socket with open associations on a
1176 				 * privileged port, it MAY be permitted to
1177 				 * accept new associations, but it SHOULD NOT
1178 				 * be permitted to open new associations.
1179 				 */
1180 				if (ep->base.bind_addr.port <
1181 				    inet_prot_sock(net) &&
1182 				    !ns_capable(net->user_ns,
1183 				    CAP_NET_BIND_SERVICE)) {
1184 					err = -EACCES;
1185 					goto out_free;
1186 				}
1187 			}
1188 
1189 			scope = sctp_scope(&to);
1190 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1191 			if (!asoc) {
1192 				err = -ENOMEM;
1193 				goto out_free;
1194 			}
1195 
1196 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1197 							      GFP_KERNEL);
1198 			if (err < 0) {
1199 				goto out_free;
1200 			}
1201 
1202 		}
1203 
1204 		/* Prime the peer's transport structures.  */
1205 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1206 						SCTP_UNKNOWN);
1207 		if (!transport) {
1208 			err = -ENOMEM;
1209 			goto out_free;
1210 		}
1211 
1212 		addrcnt++;
1213 		addr_buf += af->sockaddr_len;
1214 		walk_size += af->sockaddr_len;
1215 	}
1216 
1217 	/* In case the user of sctp_connectx() wants an association
1218 	 * id back, assign one now.
1219 	 */
1220 	if (assoc_id) {
1221 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1222 		if (err < 0)
1223 			goto out_free;
1224 	}
1225 
1226 	err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1227 	if (err < 0) {
1228 		goto out_free;
1229 	}
1230 
1231 	/* Initialize sk's dport and daddr for getpeername() */
1232 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1233 	sp->pf->to_sk_daddr(sa_addr, sk);
1234 	sk->sk_err = 0;
1235 
1236 	timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1237 
1238 	if (assoc_id)
1239 		*assoc_id = asoc->assoc_id;
1240 
1241 	err = sctp_wait_for_connect(asoc, &timeo);
1242 	/* Note: the asoc may be freed after the return of
1243 	 * sctp_wait_for_connect.
1244 	 */
1245 
1246 	/* Don't free association on exit. */
1247 	asoc = NULL;
1248 
1249 out_free:
1250 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1251 		 __func__, asoc, kaddrs, err);
1252 
1253 	if (asoc) {
1254 		/* sctp_primitive_ASSOCIATE may have added this association
1255 		 * To the hash table, try to unhash it, just in case, its a noop
1256 		 * if it wasn't hashed so we're safe
1257 		 */
1258 		sctp_association_free(asoc);
1259 	}
1260 	return err;
1261 }
1262 
1263 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1264  *
1265  * API 8.9
1266  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1267  * 			sctp_assoc_t *asoc);
1268  *
1269  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1270  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1271  * or IPv6 addresses.
1272  *
1273  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1274  * Section 3.1.2 for this usage.
1275  *
1276  * addrs is a pointer to an array of one or more socket addresses. Each
1277  * address is contained in its appropriate structure (i.e. struct
1278  * sockaddr_in or struct sockaddr_in6) the family of the address type
1279  * must be used to distengish the address length (note that this
1280  * representation is termed a "packed array" of addresses). The caller
1281  * specifies the number of addresses in the array with addrcnt.
1282  *
1283  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1284  * the association id of the new association.  On failure, sctp_connectx()
1285  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1286  * is not touched by the kernel.
1287  *
1288  * For SCTP, the port given in each socket address must be the same, or
1289  * sctp_connectx() will fail, setting errno to EINVAL.
1290  *
1291  * An application can use sctp_connectx to initiate an association with
1292  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1293  * allows a caller to specify multiple addresses at which a peer can be
1294  * reached.  The way the SCTP stack uses the list of addresses to set up
1295  * the association is implementation dependent.  This function only
1296  * specifies that the stack will try to make use of all the addresses in
1297  * the list when needed.
1298  *
1299  * Note that the list of addresses passed in is only used for setting up
1300  * the association.  It does not necessarily equal the set of addresses
1301  * the peer uses for the resulting association.  If the caller wants to
1302  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1303  * retrieve them after the association has been set up.
1304  *
1305  * Basically do nothing but copying the addresses from user to kernel
1306  * land and invoking either sctp_connectx(). This is used for tunneling
1307  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1308  *
1309  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1310  * it.
1311  *
1312  * sk        The sk of the socket
1313  * addrs     The pointer to the addresses in user land
1314  * addrssize Size of the addrs buffer
1315  *
1316  * Returns >=0 if ok, <0 errno code on error.
1317  */
1318 static int __sctp_setsockopt_connectx(struct sock *sk,
1319 				      struct sockaddr __user *addrs,
1320 				      int addrs_size,
1321 				      sctp_assoc_t *assoc_id)
1322 {
1323 	struct sockaddr *kaddrs;
1324 	int err = 0, flags = 0;
1325 
1326 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1327 		 __func__, sk, addrs, addrs_size);
1328 
1329 	if (unlikely(addrs_size <= 0))
1330 		return -EINVAL;
1331 
1332 	kaddrs = vmemdup_user(addrs, addrs_size);
1333 	if (unlikely(IS_ERR(kaddrs)))
1334 		return PTR_ERR(kaddrs);
1335 
1336 	/* Allow security module to validate connectx addresses. */
1337 	err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
1338 					 (struct sockaddr *)kaddrs,
1339 					  addrs_size);
1340 	if (err)
1341 		goto out_free;
1342 
1343 	/* in-kernel sockets don't generally have a file allocated to them
1344 	 * if all they do is call sock_create_kern().
1345 	 */
1346 	if (sk->sk_socket->file)
1347 		flags = sk->sk_socket->file->f_flags;
1348 
1349 	err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
1350 
1351 out_free:
1352 	kvfree(kaddrs);
1353 
1354 	return err;
1355 }
1356 
1357 /*
1358  * This is an older interface.  It's kept for backward compatibility
1359  * to the option that doesn't provide association id.
1360  */
1361 static int sctp_setsockopt_connectx_old(struct sock *sk,
1362 					struct sockaddr __user *addrs,
1363 					int addrs_size)
1364 {
1365 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1366 }
1367 
1368 /*
1369  * New interface for the API.  The since the API is done with a socket
1370  * option, to make it simple we feed back the association id is as a return
1371  * indication to the call.  Error is always negative and association id is
1372  * always positive.
1373  */
1374 static int sctp_setsockopt_connectx(struct sock *sk,
1375 				    struct sockaddr __user *addrs,
1376 				    int addrs_size)
1377 {
1378 	sctp_assoc_t assoc_id = 0;
1379 	int err = 0;
1380 
1381 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1382 
1383 	if (err)
1384 		return err;
1385 	else
1386 		return assoc_id;
1387 }
1388 
1389 /*
1390  * New (hopefully final) interface for the API.
1391  * We use the sctp_getaddrs_old structure so that use-space library
1392  * can avoid any unnecessary allocations. The only different part
1393  * is that we store the actual length of the address buffer into the
1394  * addrs_num structure member. That way we can re-use the existing
1395  * code.
1396  */
1397 #ifdef CONFIG_COMPAT
1398 struct compat_sctp_getaddrs_old {
1399 	sctp_assoc_t	assoc_id;
1400 	s32		addr_num;
1401 	compat_uptr_t	addrs;		/* struct sockaddr * */
1402 };
1403 #endif
1404 
1405 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1406 				     char __user *optval,
1407 				     int __user *optlen)
1408 {
1409 	struct sctp_getaddrs_old param;
1410 	sctp_assoc_t assoc_id = 0;
1411 	int err = 0;
1412 
1413 #ifdef CONFIG_COMPAT
1414 	if (in_compat_syscall()) {
1415 		struct compat_sctp_getaddrs_old param32;
1416 
1417 		if (len < sizeof(param32))
1418 			return -EINVAL;
1419 		if (copy_from_user(&param32, optval, sizeof(param32)))
1420 			return -EFAULT;
1421 
1422 		param.assoc_id = param32.assoc_id;
1423 		param.addr_num = param32.addr_num;
1424 		param.addrs = compat_ptr(param32.addrs);
1425 	} else
1426 #endif
1427 	{
1428 		if (len < sizeof(param))
1429 			return -EINVAL;
1430 		if (copy_from_user(&param, optval, sizeof(param)))
1431 			return -EFAULT;
1432 	}
1433 
1434 	err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1435 					 param.addrs, param.addr_num,
1436 					 &assoc_id);
1437 	if (err == 0 || err == -EINPROGRESS) {
1438 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1439 			return -EFAULT;
1440 		if (put_user(sizeof(assoc_id), optlen))
1441 			return -EFAULT;
1442 	}
1443 
1444 	return err;
1445 }
1446 
1447 /* API 3.1.4 close() - UDP Style Syntax
1448  * Applications use close() to perform graceful shutdown (as described in
1449  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1450  * by a UDP-style socket.
1451  *
1452  * The syntax is
1453  *
1454  *   ret = close(int sd);
1455  *
1456  *   sd      - the socket descriptor of the associations to be closed.
1457  *
1458  * To gracefully shutdown a specific association represented by the
1459  * UDP-style socket, an application should use the sendmsg() call,
1460  * passing no user data, but including the appropriate flag in the
1461  * ancillary data (see Section xxxx).
1462  *
1463  * If sd in the close() call is a branched-off socket representing only
1464  * one association, the shutdown is performed on that association only.
1465  *
1466  * 4.1.6 close() - TCP Style Syntax
1467  *
1468  * Applications use close() to gracefully close down an association.
1469  *
1470  * The syntax is:
1471  *
1472  *    int close(int sd);
1473  *
1474  *      sd      - the socket descriptor of the association to be closed.
1475  *
1476  * After an application calls close() on a socket descriptor, no further
1477  * socket operations will succeed on that descriptor.
1478  *
1479  * API 7.1.4 SO_LINGER
1480  *
1481  * An application using the TCP-style socket can use this option to
1482  * perform the SCTP ABORT primitive.  The linger option structure is:
1483  *
1484  *  struct  linger {
1485  *     int     l_onoff;                // option on/off
1486  *     int     l_linger;               // linger time
1487  * };
1488  *
1489  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1490  * to 0, calling close() is the same as the ABORT primitive.  If the
1491  * value is set to a negative value, the setsockopt() call will return
1492  * an error.  If the value is set to a positive value linger_time, the
1493  * close() can be blocked for at most linger_time ms.  If the graceful
1494  * shutdown phase does not finish during this period, close() will
1495  * return but the graceful shutdown phase continues in the system.
1496  */
1497 static void sctp_close(struct sock *sk, long timeout)
1498 {
1499 	struct net *net = sock_net(sk);
1500 	struct sctp_endpoint *ep;
1501 	struct sctp_association *asoc;
1502 	struct list_head *pos, *temp;
1503 	unsigned int data_was_unread;
1504 
1505 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1506 
1507 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1508 	sk->sk_shutdown = SHUTDOWN_MASK;
1509 	inet_sk_set_state(sk, SCTP_SS_CLOSING);
1510 
1511 	ep = sctp_sk(sk)->ep;
1512 
1513 	/* Clean up any skbs sitting on the receive queue.  */
1514 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1515 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1516 
1517 	/* Walk all associations on an endpoint.  */
1518 	list_for_each_safe(pos, temp, &ep->asocs) {
1519 		asoc = list_entry(pos, struct sctp_association, asocs);
1520 
1521 		if (sctp_style(sk, TCP)) {
1522 			/* A closed association can still be in the list if
1523 			 * it belongs to a TCP-style listening socket that is
1524 			 * not yet accepted. If so, free it. If not, send an
1525 			 * ABORT or SHUTDOWN based on the linger options.
1526 			 */
1527 			if (sctp_state(asoc, CLOSED)) {
1528 				sctp_association_free(asoc);
1529 				continue;
1530 			}
1531 		}
1532 
1533 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1534 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1535 		    !skb_queue_empty(&asoc->ulpq.reasm_uo) ||
1536 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1537 			struct sctp_chunk *chunk;
1538 
1539 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1540 			sctp_primitive_ABORT(net, asoc, chunk);
1541 		} else
1542 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1543 	}
1544 
1545 	/* On a TCP-style socket, block for at most linger_time if set. */
1546 	if (sctp_style(sk, TCP) && timeout)
1547 		sctp_wait_for_close(sk, timeout);
1548 
1549 	/* This will run the backlog queue.  */
1550 	release_sock(sk);
1551 
1552 	/* Supposedly, no process has access to the socket, but
1553 	 * the net layers still may.
1554 	 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1555 	 * held and that should be grabbed before socket lock.
1556 	 */
1557 	spin_lock_bh(&net->sctp.addr_wq_lock);
1558 	bh_lock_sock_nested(sk);
1559 
1560 	/* Hold the sock, since sk_common_release() will put sock_put()
1561 	 * and we have just a little more cleanup.
1562 	 */
1563 	sock_hold(sk);
1564 	sk_common_release(sk);
1565 
1566 	bh_unlock_sock(sk);
1567 	spin_unlock_bh(&net->sctp.addr_wq_lock);
1568 
1569 	sock_put(sk);
1570 
1571 	SCTP_DBG_OBJCNT_DEC(sock);
1572 }
1573 
1574 /* Handle EPIPE error. */
1575 static int sctp_error(struct sock *sk, int flags, int err)
1576 {
1577 	if (err == -EPIPE)
1578 		err = sock_error(sk) ? : -EPIPE;
1579 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1580 		send_sig(SIGPIPE, current, 0);
1581 	return err;
1582 }
1583 
1584 /* API 3.1.3 sendmsg() - UDP Style Syntax
1585  *
1586  * An application uses sendmsg() and recvmsg() calls to transmit data to
1587  * and receive data from its peer.
1588  *
1589  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1590  *                  int flags);
1591  *
1592  *  socket  - the socket descriptor of the endpoint.
1593  *  message - pointer to the msghdr structure which contains a single
1594  *            user message and possibly some ancillary data.
1595  *
1596  *            See Section 5 for complete description of the data
1597  *            structures.
1598  *
1599  *  flags   - flags sent or received with the user message, see Section
1600  *            5 for complete description of the flags.
1601  *
1602  * Note:  This function could use a rewrite especially when explicit
1603  * connect support comes in.
1604  */
1605 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1606 
1607 static int sctp_msghdr_parse(const struct msghdr *msg,
1608 			     struct sctp_cmsgs *cmsgs);
1609 
1610 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
1611 			      struct sctp_sndrcvinfo *srinfo,
1612 			      const struct msghdr *msg, size_t msg_len)
1613 {
1614 	__u16 sflags;
1615 	int err;
1616 
1617 	if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
1618 		return -EPIPE;
1619 
1620 	if (msg_len > sk->sk_sndbuf)
1621 		return -EMSGSIZE;
1622 
1623 	memset(cmsgs, 0, sizeof(*cmsgs));
1624 	err = sctp_msghdr_parse(msg, cmsgs);
1625 	if (err) {
1626 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1627 		return err;
1628 	}
1629 
1630 	memset(srinfo, 0, sizeof(*srinfo));
1631 	if (cmsgs->srinfo) {
1632 		srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
1633 		srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
1634 		srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
1635 		srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
1636 		srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
1637 		srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
1638 	}
1639 
1640 	if (cmsgs->sinfo) {
1641 		srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
1642 		srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
1643 		srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
1644 		srinfo->sinfo_context = cmsgs->sinfo->snd_context;
1645 		srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
1646 	}
1647 
1648 	if (cmsgs->prinfo) {
1649 		srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
1650 		SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
1651 				   cmsgs->prinfo->pr_policy);
1652 	}
1653 
1654 	sflags = srinfo->sinfo_flags;
1655 	if (!sflags && msg_len)
1656 		return 0;
1657 
1658 	if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
1659 		return -EINVAL;
1660 
1661 	if (((sflags & SCTP_EOF) && msg_len > 0) ||
1662 	    (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
1663 		return -EINVAL;
1664 
1665 	if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
1666 		return -EINVAL;
1667 
1668 	return 0;
1669 }
1670 
1671 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
1672 				 struct sctp_cmsgs *cmsgs,
1673 				 union sctp_addr *daddr,
1674 				 struct sctp_transport **tp)
1675 {
1676 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1677 	struct net *net = sock_net(sk);
1678 	struct sctp_association *asoc;
1679 	enum sctp_scope scope;
1680 	struct cmsghdr *cmsg;
1681 	__be32 flowinfo = 0;
1682 	struct sctp_af *af;
1683 	int err;
1684 
1685 	*tp = NULL;
1686 
1687 	if (sflags & (SCTP_EOF | SCTP_ABORT))
1688 		return -EINVAL;
1689 
1690 	if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
1691 				    sctp_sstate(sk, CLOSING)))
1692 		return -EADDRNOTAVAIL;
1693 
1694 	if (sctp_endpoint_is_peeled_off(ep, daddr))
1695 		return -EADDRNOTAVAIL;
1696 
1697 	if (!ep->base.bind_addr.port) {
1698 		if (sctp_autobind(sk))
1699 			return -EAGAIN;
1700 	} else {
1701 		if (ep->base.bind_addr.port < inet_prot_sock(net) &&
1702 		    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
1703 			return -EACCES;
1704 	}
1705 
1706 	scope = sctp_scope(daddr);
1707 
1708 	/* Label connection socket for first association 1-to-many
1709 	 * style for client sequence socket()->sendmsg(). This
1710 	 * needs to be done before sctp_assoc_add_peer() as that will
1711 	 * set up the initial packet that needs to account for any
1712 	 * security ip options (CIPSO/CALIPSO) added to the packet.
1713 	 */
1714 	af = sctp_get_af_specific(daddr->sa.sa_family);
1715 	if (!af)
1716 		return -EINVAL;
1717 	err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
1718 					 (struct sockaddr *)daddr,
1719 					 af->sockaddr_len);
1720 	if (err < 0)
1721 		return err;
1722 
1723 	asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1724 	if (!asoc)
1725 		return -ENOMEM;
1726 
1727 	if (sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL) < 0) {
1728 		err = -ENOMEM;
1729 		goto free;
1730 	}
1731 
1732 	if (cmsgs->init) {
1733 		struct sctp_initmsg *init = cmsgs->init;
1734 
1735 		if (init->sinit_num_ostreams) {
1736 			__u16 outcnt = init->sinit_num_ostreams;
1737 
1738 			asoc->c.sinit_num_ostreams = outcnt;
1739 			/* outcnt has been changed, need to re-init stream */
1740 			err = sctp_stream_init(&asoc->stream, outcnt, 0,
1741 					       GFP_KERNEL);
1742 			if (err)
1743 				goto free;
1744 		}
1745 
1746 		if (init->sinit_max_instreams)
1747 			asoc->c.sinit_max_instreams = init->sinit_max_instreams;
1748 
1749 		if (init->sinit_max_attempts)
1750 			asoc->max_init_attempts = init->sinit_max_attempts;
1751 
1752 		if (init->sinit_max_init_timeo)
1753 			asoc->max_init_timeo =
1754 				msecs_to_jiffies(init->sinit_max_init_timeo);
1755 	}
1756 
1757 	*tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1758 	if (!*tp) {
1759 		err = -ENOMEM;
1760 		goto free;
1761 	}
1762 
1763 	if (!cmsgs->addrs_msg)
1764 		return 0;
1765 
1766 	if (daddr->sa.sa_family == AF_INET6)
1767 		flowinfo = daddr->v6.sin6_flowinfo;
1768 
1769 	/* sendv addr list parse */
1770 	for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
1771 		struct sctp_transport *transport;
1772 		struct sctp_association *old;
1773 		union sctp_addr _daddr;
1774 		int dlen;
1775 
1776 		if (cmsg->cmsg_level != IPPROTO_SCTP ||
1777 		    (cmsg->cmsg_type != SCTP_DSTADDRV4 &&
1778 		     cmsg->cmsg_type != SCTP_DSTADDRV6))
1779 			continue;
1780 
1781 		daddr = &_daddr;
1782 		memset(daddr, 0, sizeof(*daddr));
1783 		dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
1784 		if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
1785 			if (dlen < sizeof(struct in_addr)) {
1786 				err = -EINVAL;
1787 				goto free;
1788 			}
1789 
1790 			dlen = sizeof(struct in_addr);
1791 			daddr->v4.sin_family = AF_INET;
1792 			daddr->v4.sin_port = htons(asoc->peer.port);
1793 			memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
1794 		} else {
1795 			if (dlen < sizeof(struct in6_addr)) {
1796 				err = -EINVAL;
1797 				goto free;
1798 			}
1799 
1800 			dlen = sizeof(struct in6_addr);
1801 			daddr->v6.sin6_flowinfo = flowinfo;
1802 			daddr->v6.sin6_family = AF_INET6;
1803 			daddr->v6.sin6_port = htons(asoc->peer.port);
1804 			memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
1805 		}
1806 		err = sctp_verify_addr(sk, daddr, sizeof(*daddr));
1807 		if (err)
1808 			goto free;
1809 
1810 		old = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1811 		if (old && old != asoc) {
1812 			if (old->state >= SCTP_STATE_ESTABLISHED)
1813 				err = -EISCONN;
1814 			else
1815 				err = -EALREADY;
1816 			goto free;
1817 		}
1818 
1819 		if (sctp_endpoint_is_peeled_off(ep, daddr)) {
1820 			err = -EADDRNOTAVAIL;
1821 			goto free;
1822 		}
1823 
1824 		transport = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL,
1825 						SCTP_UNKNOWN);
1826 		if (!transport) {
1827 			err = -ENOMEM;
1828 			goto free;
1829 		}
1830 	}
1831 
1832 	return 0;
1833 
1834 free:
1835 	sctp_association_free(asoc);
1836 	return err;
1837 }
1838 
1839 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
1840 				     __u16 sflags, struct msghdr *msg,
1841 				     size_t msg_len)
1842 {
1843 	struct sock *sk = asoc->base.sk;
1844 	struct net *net = sock_net(sk);
1845 
1846 	if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
1847 		return -EPIPE;
1848 
1849 	if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
1850 	    !sctp_state(asoc, ESTABLISHED))
1851 		return 0;
1852 
1853 	if (sflags & SCTP_EOF) {
1854 		pr_debug("%s: shutting down association:%p\n", __func__, asoc);
1855 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
1856 
1857 		return 0;
1858 	}
1859 
1860 	if (sflags & SCTP_ABORT) {
1861 		struct sctp_chunk *chunk;
1862 
1863 		chunk = sctp_make_abort_user(asoc, msg, msg_len);
1864 		if (!chunk)
1865 			return -ENOMEM;
1866 
1867 		pr_debug("%s: aborting association:%p\n", __func__, asoc);
1868 		sctp_primitive_ABORT(net, asoc, chunk);
1869 
1870 		return 0;
1871 	}
1872 
1873 	return 1;
1874 }
1875 
1876 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
1877 				struct msghdr *msg, size_t msg_len,
1878 				struct sctp_transport *transport,
1879 				struct sctp_sndrcvinfo *sinfo)
1880 {
1881 	struct sock *sk = asoc->base.sk;
1882 	struct sctp_sock *sp = sctp_sk(sk);
1883 	struct net *net = sock_net(sk);
1884 	struct sctp_datamsg *datamsg;
1885 	bool wait_connect = false;
1886 	struct sctp_chunk *chunk;
1887 	long timeo;
1888 	int err;
1889 
1890 	if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1891 		err = -EINVAL;
1892 		goto err;
1893 	}
1894 
1895 	if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) {
1896 		err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
1897 		if (err)
1898 			goto err;
1899 	}
1900 
1901 	if (sp->disable_fragments && msg_len > asoc->frag_point) {
1902 		err = -EMSGSIZE;
1903 		goto err;
1904 	}
1905 
1906 	if (asoc->pmtu_pending) {
1907 		if (sp->param_flags & SPP_PMTUD_ENABLE)
1908 			sctp_assoc_sync_pmtu(asoc);
1909 		asoc->pmtu_pending = 0;
1910 	}
1911 
1912 	if (sctp_wspace(asoc) < (int)msg_len)
1913 		sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1914 
1915 	if (sctp_wspace(asoc) <= 0) {
1916 		timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1917 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1918 		if (err)
1919 			goto err;
1920 	}
1921 
1922 	if (sctp_state(asoc, CLOSED)) {
1923 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1924 		if (err)
1925 			goto err;
1926 
1927 		if (sp->strm_interleave) {
1928 			timeo = sock_sndtimeo(sk, 0);
1929 			err = sctp_wait_for_connect(asoc, &timeo);
1930 			if (err) {
1931 				err = -ESRCH;
1932 				goto err;
1933 			}
1934 		} else {
1935 			wait_connect = true;
1936 		}
1937 
1938 		pr_debug("%s: we associated primitively\n", __func__);
1939 	}
1940 
1941 	datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1942 	if (IS_ERR(datamsg)) {
1943 		err = PTR_ERR(datamsg);
1944 		goto err;
1945 	}
1946 
1947 	asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
1948 
1949 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1950 		sctp_chunk_hold(chunk);
1951 		sctp_set_owner_w(chunk);
1952 		chunk->transport = transport;
1953 	}
1954 
1955 	err = sctp_primitive_SEND(net, asoc, datamsg);
1956 	if (err) {
1957 		sctp_datamsg_free(datamsg);
1958 		goto err;
1959 	}
1960 
1961 	pr_debug("%s: we sent primitively\n", __func__);
1962 
1963 	sctp_datamsg_put(datamsg);
1964 
1965 	if (unlikely(wait_connect)) {
1966 		timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1967 		sctp_wait_for_connect(asoc, &timeo);
1968 	}
1969 
1970 	err = msg_len;
1971 
1972 err:
1973 	return err;
1974 }
1975 
1976 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
1977 					       const struct msghdr *msg,
1978 					       struct sctp_cmsgs *cmsgs)
1979 {
1980 	union sctp_addr *daddr = NULL;
1981 	int err;
1982 
1983 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1984 		int len = msg->msg_namelen;
1985 
1986 		if (len > sizeof(*daddr))
1987 			len = sizeof(*daddr);
1988 
1989 		daddr = (union sctp_addr *)msg->msg_name;
1990 
1991 		err = sctp_verify_addr(sk, daddr, len);
1992 		if (err)
1993 			return ERR_PTR(err);
1994 	}
1995 
1996 	return daddr;
1997 }
1998 
1999 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
2000 				      struct sctp_sndrcvinfo *sinfo,
2001 				      struct sctp_cmsgs *cmsgs)
2002 {
2003 	if (!cmsgs->srinfo && !cmsgs->sinfo) {
2004 		sinfo->sinfo_stream = asoc->default_stream;
2005 		sinfo->sinfo_ppid = asoc->default_ppid;
2006 		sinfo->sinfo_context = asoc->default_context;
2007 		sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
2008 
2009 		if (!cmsgs->prinfo)
2010 			sinfo->sinfo_flags = asoc->default_flags;
2011 	}
2012 
2013 	if (!cmsgs->srinfo && !cmsgs->prinfo)
2014 		sinfo->sinfo_timetolive = asoc->default_timetolive;
2015 
2016 	if (cmsgs->authinfo) {
2017 		/* Reuse sinfo_tsn to indicate that authinfo was set and
2018 		 * sinfo_ssn to save the keyid on tx path.
2019 		 */
2020 		sinfo->sinfo_tsn = 1;
2021 		sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
2022 	}
2023 }
2024 
2025 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
2026 {
2027 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
2028 	struct sctp_transport *transport = NULL;
2029 	struct sctp_sndrcvinfo _sinfo, *sinfo;
2030 	struct sctp_association *asoc;
2031 	struct sctp_cmsgs cmsgs;
2032 	union sctp_addr *daddr;
2033 	bool new = false;
2034 	__u16 sflags;
2035 	int err;
2036 
2037 	/* Parse and get snd_info */
2038 	err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len);
2039 	if (err)
2040 		goto out;
2041 
2042 	sinfo  = &_sinfo;
2043 	sflags = sinfo->sinfo_flags;
2044 
2045 	/* Get daddr from msg */
2046 	daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs);
2047 	if (IS_ERR(daddr)) {
2048 		err = PTR_ERR(daddr);
2049 		goto out;
2050 	}
2051 
2052 	lock_sock(sk);
2053 
2054 	/* SCTP_SENDALL process */
2055 	if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
2056 		list_for_each_entry(asoc, &ep->asocs, asocs) {
2057 			err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
2058 							msg_len);
2059 			if (err == 0)
2060 				continue;
2061 			if (err < 0)
2062 				goto out_unlock;
2063 
2064 			sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2065 
2066 			err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
2067 						   NULL, sinfo);
2068 			if (err < 0)
2069 				goto out_unlock;
2070 
2071 			iov_iter_revert(&msg->msg_iter, err);
2072 		}
2073 
2074 		goto out_unlock;
2075 	}
2076 
2077 	/* Get and check or create asoc */
2078 	if (daddr) {
2079 		asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
2080 		if (asoc) {
2081 			err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
2082 							msg_len);
2083 			if (err <= 0)
2084 				goto out_unlock;
2085 		} else {
2086 			err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr,
2087 						    &transport);
2088 			if (err)
2089 				goto out_unlock;
2090 
2091 			asoc = transport->asoc;
2092 			new = true;
2093 		}
2094 
2095 		if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
2096 			transport = NULL;
2097 	} else {
2098 		asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id);
2099 		if (!asoc) {
2100 			err = -EPIPE;
2101 			goto out_unlock;
2102 		}
2103 
2104 		err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
2105 		if (err <= 0)
2106 			goto out_unlock;
2107 	}
2108 
2109 	/* Update snd_info with the asoc */
2110 	sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2111 
2112 	/* Send msg to the asoc */
2113 	err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
2114 	if (err < 0 && err != -ESRCH && new)
2115 		sctp_association_free(asoc);
2116 
2117 out_unlock:
2118 	release_sock(sk);
2119 out:
2120 	return sctp_error(sk, msg->msg_flags, err);
2121 }
2122 
2123 /* This is an extended version of skb_pull() that removes the data from the
2124  * start of a skb even when data is spread across the list of skb's in the
2125  * frag_list. len specifies the total amount of data that needs to be removed.
2126  * when 'len' bytes could be removed from the skb, it returns 0.
2127  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
2128  * could not be removed.
2129  */
2130 static int sctp_skb_pull(struct sk_buff *skb, int len)
2131 {
2132 	struct sk_buff *list;
2133 	int skb_len = skb_headlen(skb);
2134 	int rlen;
2135 
2136 	if (len <= skb_len) {
2137 		__skb_pull(skb, len);
2138 		return 0;
2139 	}
2140 	len -= skb_len;
2141 	__skb_pull(skb, skb_len);
2142 
2143 	skb_walk_frags(skb, list) {
2144 		rlen = sctp_skb_pull(list, len);
2145 		skb->len -= (len-rlen);
2146 		skb->data_len -= (len-rlen);
2147 
2148 		if (!rlen)
2149 			return 0;
2150 
2151 		len = rlen;
2152 	}
2153 
2154 	return len;
2155 }
2156 
2157 /* API 3.1.3  recvmsg() - UDP Style Syntax
2158  *
2159  *  ssize_t recvmsg(int socket, struct msghdr *message,
2160  *                    int flags);
2161  *
2162  *  socket  - the socket descriptor of the endpoint.
2163  *  message - pointer to the msghdr structure which contains a single
2164  *            user message and possibly some ancillary data.
2165  *
2166  *            See Section 5 for complete description of the data
2167  *            structures.
2168  *
2169  *  flags   - flags sent or received with the user message, see Section
2170  *            5 for complete description of the flags.
2171  */
2172 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2173 			int noblock, int flags, int *addr_len)
2174 {
2175 	struct sctp_ulpevent *event = NULL;
2176 	struct sctp_sock *sp = sctp_sk(sk);
2177 	struct sk_buff *skb, *head_skb;
2178 	int copied;
2179 	int err = 0;
2180 	int skb_len;
2181 
2182 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2183 		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2184 		 addr_len);
2185 
2186 	lock_sock(sk);
2187 
2188 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2189 	    !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2190 		err = -ENOTCONN;
2191 		goto out;
2192 	}
2193 
2194 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2195 	if (!skb)
2196 		goto out;
2197 
2198 	/* Get the total length of the skb including any skb's in the
2199 	 * frag_list.
2200 	 */
2201 	skb_len = skb->len;
2202 
2203 	copied = skb_len;
2204 	if (copied > len)
2205 		copied = len;
2206 
2207 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2208 
2209 	event = sctp_skb2event(skb);
2210 
2211 	if (err)
2212 		goto out_free;
2213 
2214 	if (event->chunk && event->chunk->head_skb)
2215 		head_skb = event->chunk->head_skb;
2216 	else
2217 		head_skb = skb;
2218 	sock_recv_ts_and_drops(msg, sk, head_skb);
2219 	if (sctp_ulpevent_is_notification(event)) {
2220 		msg->msg_flags |= MSG_NOTIFICATION;
2221 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2222 	} else {
2223 		sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2224 	}
2225 
2226 	/* Check if we allow SCTP_NXTINFO. */
2227 	if (sp->recvnxtinfo)
2228 		sctp_ulpevent_read_nxtinfo(event, msg, sk);
2229 	/* Check if we allow SCTP_RCVINFO. */
2230 	if (sp->recvrcvinfo)
2231 		sctp_ulpevent_read_rcvinfo(event, msg);
2232 	/* Check if we allow SCTP_SNDRCVINFO. */
2233 	if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT))
2234 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2235 
2236 	err = copied;
2237 
2238 	/* If skb's length exceeds the user's buffer, update the skb and
2239 	 * push it back to the receive_queue so that the next call to
2240 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2241 	 */
2242 	if (skb_len > copied) {
2243 		msg->msg_flags &= ~MSG_EOR;
2244 		if (flags & MSG_PEEK)
2245 			goto out_free;
2246 		sctp_skb_pull(skb, copied);
2247 		skb_queue_head(&sk->sk_receive_queue, skb);
2248 
2249 		/* When only partial message is copied to the user, increase
2250 		 * rwnd by that amount. If all the data in the skb is read,
2251 		 * rwnd is updated when the event is freed.
2252 		 */
2253 		if (!sctp_ulpevent_is_notification(event))
2254 			sctp_assoc_rwnd_increase(event->asoc, copied);
2255 		goto out;
2256 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2257 		   (event->msg_flags & MSG_EOR))
2258 		msg->msg_flags |= MSG_EOR;
2259 	else
2260 		msg->msg_flags &= ~MSG_EOR;
2261 
2262 out_free:
2263 	if (flags & MSG_PEEK) {
2264 		/* Release the skb reference acquired after peeking the skb in
2265 		 * sctp_skb_recv_datagram().
2266 		 */
2267 		kfree_skb(skb);
2268 	} else {
2269 		/* Free the event which includes releasing the reference to
2270 		 * the owner of the skb, freeing the skb and updating the
2271 		 * rwnd.
2272 		 */
2273 		sctp_ulpevent_free(event);
2274 	}
2275 out:
2276 	release_sock(sk);
2277 	return err;
2278 }
2279 
2280 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2281  *
2282  * This option is a on/off flag.  If enabled no SCTP message
2283  * fragmentation will be performed.  Instead if a message being sent
2284  * exceeds the current PMTU size, the message will NOT be sent and
2285  * instead a error will be indicated to the user.
2286  */
2287 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2288 					     char __user *optval,
2289 					     unsigned int optlen)
2290 {
2291 	int val;
2292 
2293 	if (optlen < sizeof(int))
2294 		return -EINVAL;
2295 
2296 	if (get_user(val, (int __user *)optval))
2297 		return -EFAULT;
2298 
2299 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2300 
2301 	return 0;
2302 }
2303 
2304 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2305 				  unsigned int optlen)
2306 {
2307 	struct sctp_event_subscribe subscribe;
2308 	__u8 *sn_type = (__u8 *)&subscribe;
2309 	struct sctp_sock *sp = sctp_sk(sk);
2310 	struct sctp_association *asoc;
2311 	int i;
2312 
2313 	if (optlen > sizeof(struct sctp_event_subscribe))
2314 		return -EINVAL;
2315 
2316 	if (copy_from_user(&subscribe, optval, optlen))
2317 		return -EFAULT;
2318 
2319 	for (i = 0; i < optlen; i++)
2320 		sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i,
2321 				       sn_type[i]);
2322 
2323 	list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2324 		asoc->subscribe = sctp_sk(sk)->subscribe;
2325 
2326 	/* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2327 	 * if there is no data to be sent or retransmit, the stack will
2328 	 * immediately send up this notification.
2329 	 */
2330 	if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) {
2331 		struct sctp_ulpevent *event;
2332 
2333 		asoc = sctp_id2assoc(sk, 0);
2334 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2335 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2336 					GFP_USER | __GFP_NOWARN);
2337 			if (!event)
2338 				return -ENOMEM;
2339 
2340 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
2341 		}
2342 	}
2343 
2344 	return 0;
2345 }
2346 
2347 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2348  *
2349  * This socket option is applicable to the UDP-style socket only.  When
2350  * set it will cause associations that are idle for more than the
2351  * specified number of seconds to automatically close.  An association
2352  * being idle is defined an association that has NOT sent or received
2353  * user data.  The special value of '0' indicates that no automatic
2354  * close of any associations should be performed.  The option expects an
2355  * integer defining the number of seconds of idle time before an
2356  * association is closed.
2357  */
2358 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2359 				     unsigned int optlen)
2360 {
2361 	struct sctp_sock *sp = sctp_sk(sk);
2362 	struct net *net = sock_net(sk);
2363 
2364 	/* Applicable to UDP-style socket only */
2365 	if (sctp_style(sk, TCP))
2366 		return -EOPNOTSUPP;
2367 	if (optlen != sizeof(int))
2368 		return -EINVAL;
2369 	if (copy_from_user(&sp->autoclose, optval, optlen))
2370 		return -EFAULT;
2371 
2372 	if (sp->autoclose > net->sctp.max_autoclose)
2373 		sp->autoclose = net->sctp.max_autoclose;
2374 
2375 	return 0;
2376 }
2377 
2378 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2379  *
2380  * Applications can enable or disable heartbeats for any peer address of
2381  * an association, modify an address's heartbeat interval, force a
2382  * heartbeat to be sent immediately, and adjust the address's maximum
2383  * number of retransmissions sent before an address is considered
2384  * unreachable.  The following structure is used to access and modify an
2385  * address's parameters:
2386  *
2387  *  struct sctp_paddrparams {
2388  *     sctp_assoc_t            spp_assoc_id;
2389  *     struct sockaddr_storage spp_address;
2390  *     uint32_t                spp_hbinterval;
2391  *     uint16_t                spp_pathmaxrxt;
2392  *     uint32_t                spp_pathmtu;
2393  *     uint32_t                spp_sackdelay;
2394  *     uint32_t                spp_flags;
2395  *     uint32_t                spp_ipv6_flowlabel;
2396  *     uint8_t                 spp_dscp;
2397  * };
2398  *
2399  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2400  *                     application, and identifies the association for
2401  *                     this query.
2402  *   spp_address     - This specifies which address is of interest.
2403  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2404  *                     in milliseconds.  If a  value of zero
2405  *                     is present in this field then no changes are to
2406  *                     be made to this parameter.
2407  *   spp_pathmaxrxt  - This contains the maximum number of
2408  *                     retransmissions before this address shall be
2409  *                     considered unreachable. If a  value of zero
2410  *                     is present in this field then no changes are to
2411  *                     be made to this parameter.
2412  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2413  *                     specified here will be the "fixed" path mtu.
2414  *                     Note that if the spp_address field is empty
2415  *                     then all associations on this address will
2416  *                     have this fixed path mtu set upon them.
2417  *
2418  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2419  *                     the number of milliseconds that sacks will be delayed
2420  *                     for. This value will apply to all addresses of an
2421  *                     association if the spp_address field is empty. Note
2422  *                     also, that if delayed sack is enabled and this
2423  *                     value is set to 0, no change is made to the last
2424  *                     recorded delayed sack timer value.
2425  *
2426  *   spp_flags       - These flags are used to control various features
2427  *                     on an association. The flag field may contain
2428  *                     zero or more of the following options.
2429  *
2430  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2431  *                     specified address. Note that if the address
2432  *                     field is empty all addresses for the association
2433  *                     have heartbeats enabled upon them.
2434  *
2435  *                     SPP_HB_DISABLE - Disable heartbeats on the
2436  *                     speicifed address. Note that if the address
2437  *                     field is empty all addresses for the association
2438  *                     will have their heartbeats disabled. Note also
2439  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2440  *                     mutually exclusive, only one of these two should
2441  *                     be specified. Enabling both fields will have
2442  *                     undetermined results.
2443  *
2444  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2445  *                     to be made immediately.
2446  *
2447  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2448  *                     heartbeat delayis to be set to the value of 0
2449  *                     milliseconds.
2450  *
2451  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2452  *                     discovery upon the specified address. Note that
2453  *                     if the address feild is empty then all addresses
2454  *                     on the association are effected.
2455  *
2456  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2457  *                     discovery upon the specified address. Note that
2458  *                     if the address feild is empty then all addresses
2459  *                     on the association are effected. Not also that
2460  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2461  *                     exclusive. Enabling both will have undetermined
2462  *                     results.
2463  *
2464  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2465  *                     on delayed sack. The time specified in spp_sackdelay
2466  *                     is used to specify the sack delay for this address. Note
2467  *                     that if spp_address is empty then all addresses will
2468  *                     enable delayed sack and take on the sack delay
2469  *                     value specified in spp_sackdelay.
2470  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2471  *                     off delayed sack. If the spp_address field is blank then
2472  *                     delayed sack is disabled for the entire association. Note
2473  *                     also that this field is mutually exclusive to
2474  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2475  *                     results.
2476  *
2477  *                     SPP_IPV6_FLOWLABEL:  Setting this flag enables the
2478  *                     setting of the IPV6 flow label value.  The value is
2479  *                     contained in the spp_ipv6_flowlabel field.
2480  *                     Upon retrieval, this flag will be set to indicate that
2481  *                     the spp_ipv6_flowlabel field has a valid value returned.
2482  *                     If a specific destination address is set (in the
2483  *                     spp_address field), then the value returned is that of
2484  *                     the address.  If just an association is specified (and
2485  *                     no address), then the association's default flow label
2486  *                     is returned.  If neither an association nor a destination
2487  *                     is specified, then the socket's default flow label is
2488  *                     returned.  For non-IPv6 sockets, this flag will be left
2489  *                     cleared.
2490  *
2491  *                     SPP_DSCP:  Setting this flag enables the setting of the
2492  *                     Differentiated Services Code Point (DSCP) value
2493  *                     associated with either the association or a specific
2494  *                     address.  The value is obtained in the spp_dscp field.
2495  *                     Upon retrieval, this flag will be set to indicate that
2496  *                     the spp_dscp field has a valid value returned.  If a
2497  *                     specific destination address is set when called (in the
2498  *                     spp_address field), then that specific destination
2499  *                     address's DSCP value is returned.  If just an association
2500  *                     is specified, then the association's default DSCP is
2501  *                     returned.  If neither an association nor a destination is
2502  *                     specified, then the socket's default DSCP is returned.
2503  *
2504  *   spp_ipv6_flowlabel
2505  *                   - This field is used in conjunction with the
2506  *                     SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
2507  *                     The 20 least significant bits are used for the flow
2508  *                     label.  This setting has precedence over any IPv6-layer
2509  *                     setting.
2510  *
2511  *   spp_dscp        - This field is used in conjunction with the SPP_DSCP flag
2512  *                     and contains the DSCP.  The 6 most significant bits are
2513  *                     used for the DSCP.  This setting has precedence over any
2514  *                     IPv4- or IPv6- layer setting.
2515  */
2516 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2517 				       struct sctp_transport   *trans,
2518 				       struct sctp_association *asoc,
2519 				       struct sctp_sock        *sp,
2520 				       int                      hb_change,
2521 				       int                      pmtud_change,
2522 				       int                      sackdelay_change)
2523 {
2524 	int error;
2525 
2526 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2527 		struct net *net = sock_net(trans->asoc->base.sk);
2528 
2529 		error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2530 		if (error)
2531 			return error;
2532 	}
2533 
2534 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2535 	 * this field is ignored.  Note also that a value of zero indicates
2536 	 * the current setting should be left unchanged.
2537 	 */
2538 	if (params->spp_flags & SPP_HB_ENABLE) {
2539 
2540 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2541 		 * set.  This lets us use 0 value when this flag
2542 		 * is set.
2543 		 */
2544 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2545 			params->spp_hbinterval = 0;
2546 
2547 		if (params->spp_hbinterval ||
2548 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2549 			if (trans) {
2550 				trans->hbinterval =
2551 				    msecs_to_jiffies(params->spp_hbinterval);
2552 			} else if (asoc) {
2553 				asoc->hbinterval =
2554 				    msecs_to_jiffies(params->spp_hbinterval);
2555 			} else {
2556 				sp->hbinterval = params->spp_hbinterval;
2557 			}
2558 		}
2559 	}
2560 
2561 	if (hb_change) {
2562 		if (trans) {
2563 			trans->param_flags =
2564 				(trans->param_flags & ~SPP_HB) | hb_change;
2565 		} else if (asoc) {
2566 			asoc->param_flags =
2567 				(asoc->param_flags & ~SPP_HB) | hb_change;
2568 		} else {
2569 			sp->param_flags =
2570 				(sp->param_flags & ~SPP_HB) | hb_change;
2571 		}
2572 	}
2573 
2574 	/* When Path MTU discovery is disabled the value specified here will
2575 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2576 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2577 	 * effect).
2578 	 */
2579 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2580 		if (trans) {
2581 			trans->pathmtu = params->spp_pathmtu;
2582 			sctp_assoc_sync_pmtu(asoc);
2583 		} else if (asoc) {
2584 			sctp_assoc_set_pmtu(asoc, params->spp_pathmtu);
2585 		} else {
2586 			sp->pathmtu = params->spp_pathmtu;
2587 		}
2588 	}
2589 
2590 	if (pmtud_change) {
2591 		if (trans) {
2592 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2593 				(params->spp_flags & SPP_PMTUD_ENABLE);
2594 			trans->param_flags =
2595 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2596 			if (update) {
2597 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2598 				sctp_assoc_sync_pmtu(asoc);
2599 			}
2600 		} else if (asoc) {
2601 			asoc->param_flags =
2602 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2603 		} else {
2604 			sp->param_flags =
2605 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2606 		}
2607 	}
2608 
2609 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2610 	 * value of this field is ignored.  Note also that a value of zero
2611 	 * indicates the current setting should be left unchanged.
2612 	 */
2613 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2614 		if (trans) {
2615 			trans->sackdelay =
2616 				msecs_to_jiffies(params->spp_sackdelay);
2617 		} else if (asoc) {
2618 			asoc->sackdelay =
2619 				msecs_to_jiffies(params->spp_sackdelay);
2620 		} else {
2621 			sp->sackdelay = params->spp_sackdelay;
2622 		}
2623 	}
2624 
2625 	if (sackdelay_change) {
2626 		if (trans) {
2627 			trans->param_flags =
2628 				(trans->param_flags & ~SPP_SACKDELAY) |
2629 				sackdelay_change;
2630 		} else if (asoc) {
2631 			asoc->param_flags =
2632 				(asoc->param_flags & ~SPP_SACKDELAY) |
2633 				sackdelay_change;
2634 		} else {
2635 			sp->param_flags =
2636 				(sp->param_flags & ~SPP_SACKDELAY) |
2637 				sackdelay_change;
2638 		}
2639 	}
2640 
2641 	/* Note that a value of zero indicates the current setting should be
2642 	   left unchanged.
2643 	 */
2644 	if (params->spp_pathmaxrxt) {
2645 		if (trans) {
2646 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2647 		} else if (asoc) {
2648 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2649 		} else {
2650 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2651 		}
2652 	}
2653 
2654 	if (params->spp_flags & SPP_IPV6_FLOWLABEL) {
2655 		if (trans) {
2656 			if (trans->ipaddr.sa.sa_family == AF_INET6) {
2657 				trans->flowlabel = params->spp_ipv6_flowlabel &
2658 						   SCTP_FLOWLABEL_VAL_MASK;
2659 				trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2660 			}
2661 		} else if (asoc) {
2662 			struct sctp_transport *t;
2663 
2664 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
2665 					    transports) {
2666 				if (t->ipaddr.sa.sa_family != AF_INET6)
2667 					continue;
2668 				t->flowlabel = params->spp_ipv6_flowlabel &
2669 					       SCTP_FLOWLABEL_VAL_MASK;
2670 				t->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2671 			}
2672 			asoc->flowlabel = params->spp_ipv6_flowlabel &
2673 					  SCTP_FLOWLABEL_VAL_MASK;
2674 			asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2675 		} else if (sctp_opt2sk(sp)->sk_family == AF_INET6) {
2676 			sp->flowlabel = params->spp_ipv6_flowlabel &
2677 					SCTP_FLOWLABEL_VAL_MASK;
2678 			sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2679 		}
2680 	}
2681 
2682 	if (params->spp_flags & SPP_DSCP) {
2683 		if (trans) {
2684 			trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2685 			trans->dscp |= SCTP_DSCP_SET_MASK;
2686 		} else if (asoc) {
2687 			struct sctp_transport *t;
2688 
2689 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
2690 					    transports) {
2691 				t->dscp = params->spp_dscp &
2692 					  SCTP_DSCP_VAL_MASK;
2693 				t->dscp |= SCTP_DSCP_SET_MASK;
2694 			}
2695 			asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2696 			asoc->dscp |= SCTP_DSCP_SET_MASK;
2697 		} else {
2698 			sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2699 			sp->dscp |= SCTP_DSCP_SET_MASK;
2700 		}
2701 	}
2702 
2703 	return 0;
2704 }
2705 
2706 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2707 					    char __user *optval,
2708 					    unsigned int optlen)
2709 {
2710 	struct sctp_paddrparams  params;
2711 	struct sctp_transport   *trans = NULL;
2712 	struct sctp_association *asoc = NULL;
2713 	struct sctp_sock        *sp = sctp_sk(sk);
2714 	int error;
2715 	int hb_change, pmtud_change, sackdelay_change;
2716 
2717 	if (optlen == sizeof(params)) {
2718 		if (copy_from_user(&params, optval, optlen))
2719 			return -EFAULT;
2720 	} else if (optlen == ALIGN(offsetof(struct sctp_paddrparams,
2721 					    spp_ipv6_flowlabel), 4)) {
2722 		if (copy_from_user(&params, optval, optlen))
2723 			return -EFAULT;
2724 		if (params.spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL))
2725 			return -EINVAL;
2726 	} else {
2727 		return -EINVAL;
2728 	}
2729 
2730 	/* Validate flags and value parameters. */
2731 	hb_change        = params.spp_flags & SPP_HB;
2732 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2733 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2734 
2735 	if (hb_change        == SPP_HB ||
2736 	    pmtud_change     == SPP_PMTUD ||
2737 	    sackdelay_change == SPP_SACKDELAY ||
2738 	    params.spp_sackdelay > 500 ||
2739 	    (params.spp_pathmtu &&
2740 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2741 		return -EINVAL;
2742 
2743 	/* If an address other than INADDR_ANY is specified, and
2744 	 * no transport is found, then the request is invalid.
2745 	 */
2746 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2747 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2748 					       params.spp_assoc_id);
2749 		if (!trans)
2750 			return -EINVAL;
2751 	}
2752 
2753 	/* Get association, if assoc_id != 0 and the socket is a one
2754 	 * to many style socket, and an association was not found, then
2755 	 * the id was invalid.
2756 	 */
2757 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2758 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2759 		return -EINVAL;
2760 
2761 	/* Heartbeat demand can only be sent on a transport or
2762 	 * association, but not a socket.
2763 	 */
2764 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2765 		return -EINVAL;
2766 
2767 	/* Process parameters. */
2768 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2769 					    hb_change, pmtud_change,
2770 					    sackdelay_change);
2771 
2772 	if (error)
2773 		return error;
2774 
2775 	/* If changes are for association, also apply parameters to each
2776 	 * transport.
2777 	 */
2778 	if (!trans && asoc) {
2779 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2780 				transports) {
2781 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2782 						    hb_change, pmtud_change,
2783 						    sackdelay_change);
2784 		}
2785 	}
2786 
2787 	return 0;
2788 }
2789 
2790 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2791 {
2792 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2793 }
2794 
2795 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2796 {
2797 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2798 }
2799 
2800 /*
2801  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2802  *
2803  * This option will effect the way delayed acks are performed.  This
2804  * option allows you to get or set the delayed ack time, in
2805  * milliseconds.  It also allows changing the delayed ack frequency.
2806  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2807  * the assoc_id is 0, then this sets or gets the endpoints default
2808  * values.  If the assoc_id field is non-zero, then the set or get
2809  * effects the specified association for the one to many model (the
2810  * assoc_id field is ignored by the one to one model).  Note that if
2811  * sack_delay or sack_freq are 0 when setting this option, then the
2812  * current values will remain unchanged.
2813  *
2814  * struct sctp_sack_info {
2815  *     sctp_assoc_t            sack_assoc_id;
2816  *     uint32_t                sack_delay;
2817  *     uint32_t                sack_freq;
2818  * };
2819  *
2820  * sack_assoc_id -  This parameter, indicates which association the user
2821  *    is performing an action upon.  Note that if this field's value is
2822  *    zero then the endpoints default value is changed (effecting future
2823  *    associations only).
2824  *
2825  * sack_delay -  This parameter contains the number of milliseconds that
2826  *    the user is requesting the delayed ACK timer be set to.  Note that
2827  *    this value is defined in the standard to be between 200 and 500
2828  *    milliseconds.
2829  *
2830  * sack_freq -  This parameter contains the number of packets that must
2831  *    be received before a sack is sent without waiting for the delay
2832  *    timer to expire.  The default value for this is 2, setting this
2833  *    value to 1 will disable the delayed sack algorithm.
2834  */
2835 
2836 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2837 				       char __user *optval, unsigned int optlen)
2838 {
2839 	struct sctp_sack_info    params;
2840 	struct sctp_transport   *trans = NULL;
2841 	struct sctp_association *asoc = NULL;
2842 	struct sctp_sock        *sp = sctp_sk(sk);
2843 
2844 	if (optlen == sizeof(struct sctp_sack_info)) {
2845 		if (copy_from_user(&params, optval, optlen))
2846 			return -EFAULT;
2847 
2848 		if (params.sack_delay == 0 && params.sack_freq == 0)
2849 			return 0;
2850 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2851 		pr_warn_ratelimited(DEPRECATED
2852 				    "%s (pid %d) "
2853 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2854 				    "Use struct sctp_sack_info instead\n",
2855 				    current->comm, task_pid_nr(current));
2856 		if (copy_from_user(&params, optval, optlen))
2857 			return -EFAULT;
2858 
2859 		if (params.sack_delay == 0)
2860 			params.sack_freq = 1;
2861 		else
2862 			params.sack_freq = 0;
2863 	} else
2864 		return -EINVAL;
2865 
2866 	/* Validate value parameter. */
2867 	if (params.sack_delay > 500)
2868 		return -EINVAL;
2869 
2870 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2871 	 * to many style socket, and an association was not found, then
2872 	 * the id was invalid.
2873 	 */
2874 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2875 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2876 		return -EINVAL;
2877 
2878 	if (params.sack_delay) {
2879 		if (asoc) {
2880 			asoc->sackdelay =
2881 				msecs_to_jiffies(params.sack_delay);
2882 			asoc->param_flags =
2883 				sctp_spp_sackdelay_enable(asoc->param_flags);
2884 		} else {
2885 			sp->sackdelay = params.sack_delay;
2886 			sp->param_flags =
2887 				sctp_spp_sackdelay_enable(sp->param_flags);
2888 		}
2889 	}
2890 
2891 	if (params.sack_freq == 1) {
2892 		if (asoc) {
2893 			asoc->param_flags =
2894 				sctp_spp_sackdelay_disable(asoc->param_flags);
2895 		} else {
2896 			sp->param_flags =
2897 				sctp_spp_sackdelay_disable(sp->param_flags);
2898 		}
2899 	} else if (params.sack_freq > 1) {
2900 		if (asoc) {
2901 			asoc->sackfreq = params.sack_freq;
2902 			asoc->param_flags =
2903 				sctp_spp_sackdelay_enable(asoc->param_flags);
2904 		} else {
2905 			sp->sackfreq = params.sack_freq;
2906 			sp->param_flags =
2907 				sctp_spp_sackdelay_enable(sp->param_flags);
2908 		}
2909 	}
2910 
2911 	/* If change is for association, also apply to each transport. */
2912 	if (asoc) {
2913 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2914 				transports) {
2915 			if (params.sack_delay) {
2916 				trans->sackdelay =
2917 					msecs_to_jiffies(params.sack_delay);
2918 				trans->param_flags =
2919 					sctp_spp_sackdelay_enable(trans->param_flags);
2920 			}
2921 			if (params.sack_freq == 1) {
2922 				trans->param_flags =
2923 					sctp_spp_sackdelay_disable(trans->param_flags);
2924 			} else if (params.sack_freq > 1) {
2925 				trans->sackfreq = params.sack_freq;
2926 				trans->param_flags =
2927 					sctp_spp_sackdelay_enable(trans->param_flags);
2928 			}
2929 		}
2930 	}
2931 
2932 	return 0;
2933 }
2934 
2935 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2936  *
2937  * Applications can specify protocol parameters for the default association
2938  * initialization.  The option name argument to setsockopt() and getsockopt()
2939  * is SCTP_INITMSG.
2940  *
2941  * Setting initialization parameters is effective only on an unconnected
2942  * socket (for UDP-style sockets only future associations are effected
2943  * by the change).  With TCP-style sockets, this option is inherited by
2944  * sockets derived from a listener socket.
2945  */
2946 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2947 {
2948 	struct sctp_initmsg sinit;
2949 	struct sctp_sock *sp = sctp_sk(sk);
2950 
2951 	if (optlen != sizeof(struct sctp_initmsg))
2952 		return -EINVAL;
2953 	if (copy_from_user(&sinit, optval, optlen))
2954 		return -EFAULT;
2955 
2956 	if (sinit.sinit_num_ostreams)
2957 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2958 	if (sinit.sinit_max_instreams)
2959 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2960 	if (sinit.sinit_max_attempts)
2961 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2962 	if (sinit.sinit_max_init_timeo)
2963 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2964 
2965 	return 0;
2966 }
2967 
2968 /*
2969  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2970  *
2971  *   Applications that wish to use the sendto() system call may wish to
2972  *   specify a default set of parameters that would normally be supplied
2973  *   through the inclusion of ancillary data.  This socket option allows
2974  *   such an application to set the default sctp_sndrcvinfo structure.
2975  *   The application that wishes to use this socket option simply passes
2976  *   in to this call the sctp_sndrcvinfo structure defined in Section
2977  *   5.2.2) The input parameters accepted by this call include
2978  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2979  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2980  *   to this call if the caller is using the UDP model.
2981  */
2982 static int sctp_setsockopt_default_send_param(struct sock *sk,
2983 					      char __user *optval,
2984 					      unsigned int optlen)
2985 {
2986 	struct sctp_sock *sp = sctp_sk(sk);
2987 	struct sctp_association *asoc;
2988 	struct sctp_sndrcvinfo info;
2989 
2990 	if (optlen != sizeof(info))
2991 		return -EINVAL;
2992 	if (copy_from_user(&info, optval, optlen))
2993 		return -EFAULT;
2994 	if (info.sinfo_flags &
2995 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2996 	      SCTP_ABORT | SCTP_EOF))
2997 		return -EINVAL;
2998 
2999 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
3000 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
3001 		return -EINVAL;
3002 	if (asoc) {
3003 		asoc->default_stream = info.sinfo_stream;
3004 		asoc->default_flags = info.sinfo_flags;
3005 		asoc->default_ppid = info.sinfo_ppid;
3006 		asoc->default_context = info.sinfo_context;
3007 		asoc->default_timetolive = info.sinfo_timetolive;
3008 	} else {
3009 		sp->default_stream = info.sinfo_stream;
3010 		sp->default_flags = info.sinfo_flags;
3011 		sp->default_ppid = info.sinfo_ppid;
3012 		sp->default_context = info.sinfo_context;
3013 		sp->default_timetolive = info.sinfo_timetolive;
3014 	}
3015 
3016 	return 0;
3017 }
3018 
3019 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
3020  * (SCTP_DEFAULT_SNDINFO)
3021  */
3022 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
3023 					   char __user *optval,
3024 					   unsigned int optlen)
3025 {
3026 	struct sctp_sock *sp = sctp_sk(sk);
3027 	struct sctp_association *asoc;
3028 	struct sctp_sndinfo info;
3029 
3030 	if (optlen != sizeof(info))
3031 		return -EINVAL;
3032 	if (copy_from_user(&info, optval, optlen))
3033 		return -EFAULT;
3034 	if (info.snd_flags &
3035 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
3036 	      SCTP_ABORT | SCTP_EOF))
3037 		return -EINVAL;
3038 
3039 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
3040 	if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
3041 		return -EINVAL;
3042 	if (asoc) {
3043 		asoc->default_stream = info.snd_sid;
3044 		asoc->default_flags = info.snd_flags;
3045 		asoc->default_ppid = info.snd_ppid;
3046 		asoc->default_context = info.snd_context;
3047 	} else {
3048 		sp->default_stream = info.snd_sid;
3049 		sp->default_flags = info.snd_flags;
3050 		sp->default_ppid = info.snd_ppid;
3051 		sp->default_context = info.snd_context;
3052 	}
3053 
3054 	return 0;
3055 }
3056 
3057 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
3058  *
3059  * Requests that the local SCTP stack use the enclosed peer address as
3060  * the association primary.  The enclosed address must be one of the
3061  * association peer's addresses.
3062  */
3063 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
3064 					unsigned int optlen)
3065 {
3066 	struct sctp_prim prim;
3067 	struct sctp_transport *trans;
3068 	struct sctp_af *af;
3069 	int err;
3070 
3071 	if (optlen != sizeof(struct sctp_prim))
3072 		return -EINVAL;
3073 
3074 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
3075 		return -EFAULT;
3076 
3077 	/* Allow security module to validate address but need address len. */
3078 	af = sctp_get_af_specific(prim.ssp_addr.ss_family);
3079 	if (!af)
3080 		return -EINVAL;
3081 
3082 	err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
3083 					 (struct sockaddr *)&prim.ssp_addr,
3084 					 af->sockaddr_len);
3085 	if (err)
3086 		return err;
3087 
3088 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
3089 	if (!trans)
3090 		return -EINVAL;
3091 
3092 	sctp_assoc_set_primary(trans->asoc, trans);
3093 
3094 	return 0;
3095 }
3096 
3097 /*
3098  * 7.1.5 SCTP_NODELAY
3099  *
3100  * Turn on/off any Nagle-like algorithm.  This means that packets are
3101  * generally sent as soon as possible and no unnecessary delays are
3102  * introduced, at the cost of more packets in the network.  Expects an
3103  *  integer boolean flag.
3104  */
3105 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
3106 				   unsigned int optlen)
3107 {
3108 	int val;
3109 
3110 	if (optlen < sizeof(int))
3111 		return -EINVAL;
3112 	if (get_user(val, (int __user *)optval))
3113 		return -EFAULT;
3114 
3115 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
3116 	return 0;
3117 }
3118 
3119 /*
3120  *
3121  * 7.1.1 SCTP_RTOINFO
3122  *
3123  * The protocol parameters used to initialize and bound retransmission
3124  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3125  * and modify these parameters.
3126  * All parameters are time values, in milliseconds.  A value of 0, when
3127  * modifying the parameters, indicates that the current value should not
3128  * be changed.
3129  *
3130  */
3131 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
3132 {
3133 	struct sctp_rtoinfo rtoinfo;
3134 	struct sctp_association *asoc;
3135 	unsigned long rto_min, rto_max;
3136 	struct sctp_sock *sp = sctp_sk(sk);
3137 
3138 	if (optlen != sizeof (struct sctp_rtoinfo))
3139 		return -EINVAL;
3140 
3141 	if (copy_from_user(&rtoinfo, optval, optlen))
3142 		return -EFAULT;
3143 
3144 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
3145 
3146 	/* Set the values to the specific association */
3147 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
3148 		return -EINVAL;
3149 
3150 	rto_max = rtoinfo.srto_max;
3151 	rto_min = rtoinfo.srto_min;
3152 
3153 	if (rto_max)
3154 		rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
3155 	else
3156 		rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
3157 
3158 	if (rto_min)
3159 		rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
3160 	else
3161 		rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
3162 
3163 	if (rto_min > rto_max)
3164 		return -EINVAL;
3165 
3166 	if (asoc) {
3167 		if (rtoinfo.srto_initial != 0)
3168 			asoc->rto_initial =
3169 				msecs_to_jiffies(rtoinfo.srto_initial);
3170 		asoc->rto_max = rto_max;
3171 		asoc->rto_min = rto_min;
3172 	} else {
3173 		/* If there is no association or the association-id = 0
3174 		 * set the values to the endpoint.
3175 		 */
3176 		if (rtoinfo.srto_initial != 0)
3177 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
3178 		sp->rtoinfo.srto_max = rto_max;
3179 		sp->rtoinfo.srto_min = rto_min;
3180 	}
3181 
3182 	return 0;
3183 }
3184 
3185 /*
3186  *
3187  * 7.1.2 SCTP_ASSOCINFO
3188  *
3189  * This option is used to tune the maximum retransmission attempts
3190  * of the association.
3191  * Returns an error if the new association retransmission value is
3192  * greater than the sum of the retransmission value  of the peer.
3193  * See [SCTP] for more information.
3194  *
3195  */
3196 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
3197 {
3198 
3199 	struct sctp_assocparams assocparams;
3200 	struct sctp_association *asoc;
3201 
3202 	if (optlen != sizeof(struct sctp_assocparams))
3203 		return -EINVAL;
3204 	if (copy_from_user(&assocparams, optval, optlen))
3205 		return -EFAULT;
3206 
3207 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
3208 
3209 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
3210 		return -EINVAL;
3211 
3212 	/* Set the values to the specific association */
3213 	if (asoc) {
3214 		if (assocparams.sasoc_asocmaxrxt != 0) {
3215 			__u32 path_sum = 0;
3216 			int   paths = 0;
3217 			struct sctp_transport *peer_addr;
3218 
3219 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3220 					transports) {
3221 				path_sum += peer_addr->pathmaxrxt;
3222 				paths++;
3223 			}
3224 
3225 			/* Only validate asocmaxrxt if we have more than
3226 			 * one path/transport.  We do this because path
3227 			 * retransmissions are only counted when we have more
3228 			 * then one path.
3229 			 */
3230 			if (paths > 1 &&
3231 			    assocparams.sasoc_asocmaxrxt > path_sum)
3232 				return -EINVAL;
3233 
3234 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3235 		}
3236 
3237 		if (assocparams.sasoc_cookie_life != 0)
3238 			asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3239 	} else {
3240 		/* Set the values to the endpoint */
3241 		struct sctp_sock *sp = sctp_sk(sk);
3242 
3243 		if (assocparams.sasoc_asocmaxrxt != 0)
3244 			sp->assocparams.sasoc_asocmaxrxt =
3245 						assocparams.sasoc_asocmaxrxt;
3246 		if (assocparams.sasoc_cookie_life != 0)
3247 			sp->assocparams.sasoc_cookie_life =
3248 						assocparams.sasoc_cookie_life;
3249 	}
3250 	return 0;
3251 }
3252 
3253 /*
3254  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3255  *
3256  * This socket option is a boolean flag which turns on or off mapped V4
3257  * addresses.  If this option is turned on and the socket is type
3258  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3259  * If this option is turned off, then no mapping will be done of V4
3260  * addresses and a user will receive both PF_INET6 and PF_INET type
3261  * addresses on the socket.
3262  */
3263 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3264 {
3265 	int val;
3266 	struct sctp_sock *sp = sctp_sk(sk);
3267 
3268 	if (optlen < sizeof(int))
3269 		return -EINVAL;
3270 	if (get_user(val, (int __user *)optval))
3271 		return -EFAULT;
3272 	if (val)
3273 		sp->v4mapped = 1;
3274 	else
3275 		sp->v4mapped = 0;
3276 
3277 	return 0;
3278 }
3279 
3280 /*
3281  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3282  * This option will get or set the maximum size to put in any outgoing
3283  * SCTP DATA chunk.  If a message is larger than this size it will be
3284  * fragmented by SCTP into the specified size.  Note that the underlying
3285  * SCTP implementation may fragment into smaller sized chunks when the
3286  * PMTU of the underlying association is smaller than the value set by
3287  * the user.  The default value for this option is '0' which indicates
3288  * the user is NOT limiting fragmentation and only the PMTU will effect
3289  * SCTP's choice of DATA chunk size.  Note also that values set larger
3290  * than the maximum size of an IP datagram will effectively let SCTP
3291  * control fragmentation (i.e. the same as setting this option to 0).
3292  *
3293  * The following structure is used to access and modify this parameter:
3294  *
3295  * struct sctp_assoc_value {
3296  *   sctp_assoc_t assoc_id;
3297  *   uint32_t assoc_value;
3298  * };
3299  *
3300  * assoc_id:  This parameter is ignored for one-to-one style sockets.
3301  *    For one-to-many style sockets this parameter indicates which
3302  *    association the user is performing an action upon.  Note that if
3303  *    this field's value is zero then the endpoints default value is
3304  *    changed (effecting future associations only).
3305  * assoc_value:  This parameter specifies the maximum size in bytes.
3306  */
3307 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3308 {
3309 	struct sctp_sock *sp = sctp_sk(sk);
3310 	struct sctp_assoc_value params;
3311 	struct sctp_association *asoc;
3312 	int val;
3313 
3314 	if (optlen == sizeof(int)) {
3315 		pr_warn_ratelimited(DEPRECATED
3316 				    "%s (pid %d) "
3317 				    "Use of int in maxseg socket option.\n"
3318 				    "Use struct sctp_assoc_value instead\n",
3319 				    current->comm, task_pid_nr(current));
3320 		if (copy_from_user(&val, optval, optlen))
3321 			return -EFAULT;
3322 		params.assoc_id = 0;
3323 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3324 		if (copy_from_user(&params, optval, optlen))
3325 			return -EFAULT;
3326 		val = params.assoc_value;
3327 	} else {
3328 		return -EINVAL;
3329 	}
3330 
3331 	asoc = sctp_id2assoc(sk, params.assoc_id);
3332 
3333 	if (val) {
3334 		int min_len, max_len;
3335 		__u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) :
3336 				 sizeof(struct sctp_data_chunk);
3337 
3338 		min_len = sctp_mtu_payload(sp, SCTP_DEFAULT_MINSEGMENT,
3339 					   datasize);
3340 		max_len = SCTP_MAX_CHUNK_LEN - datasize;
3341 
3342 		if (val < min_len || val > max_len)
3343 			return -EINVAL;
3344 	}
3345 
3346 	if (asoc) {
3347 		asoc->user_frag = val;
3348 		sctp_assoc_update_frag_point(asoc);
3349 	} else {
3350 		if (params.assoc_id && sctp_style(sk, UDP))
3351 			return -EINVAL;
3352 		sp->user_frag = val;
3353 	}
3354 
3355 	return 0;
3356 }
3357 
3358 
3359 /*
3360  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3361  *
3362  *   Requests that the peer mark the enclosed address as the association
3363  *   primary. The enclosed address must be one of the association's
3364  *   locally bound addresses. The following structure is used to make a
3365  *   set primary request:
3366  */
3367 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3368 					     unsigned int optlen)
3369 {
3370 	struct net *net = sock_net(sk);
3371 	struct sctp_sock	*sp;
3372 	struct sctp_association	*asoc = NULL;
3373 	struct sctp_setpeerprim	prim;
3374 	struct sctp_chunk	*chunk;
3375 	struct sctp_af		*af;
3376 	int 			err;
3377 
3378 	sp = sctp_sk(sk);
3379 
3380 	if (!net->sctp.addip_enable)
3381 		return -EPERM;
3382 
3383 	if (optlen != sizeof(struct sctp_setpeerprim))
3384 		return -EINVAL;
3385 
3386 	if (copy_from_user(&prim, optval, optlen))
3387 		return -EFAULT;
3388 
3389 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3390 	if (!asoc)
3391 		return -EINVAL;
3392 
3393 	if (!asoc->peer.asconf_capable)
3394 		return -EPERM;
3395 
3396 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3397 		return -EPERM;
3398 
3399 	if (!sctp_state(asoc, ESTABLISHED))
3400 		return -ENOTCONN;
3401 
3402 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3403 	if (!af)
3404 		return -EINVAL;
3405 
3406 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3407 		return -EADDRNOTAVAIL;
3408 
3409 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3410 		return -EADDRNOTAVAIL;
3411 
3412 	/* Allow security module to validate address. */
3413 	err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR,
3414 					 (struct sockaddr *)&prim.sspp_addr,
3415 					 af->sockaddr_len);
3416 	if (err)
3417 		return err;
3418 
3419 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3420 	chunk = sctp_make_asconf_set_prim(asoc,
3421 					  (union sctp_addr *)&prim.sspp_addr);
3422 	if (!chunk)
3423 		return -ENOMEM;
3424 
3425 	err = sctp_send_asconf(asoc, chunk);
3426 
3427 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3428 
3429 	return err;
3430 }
3431 
3432 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3433 					    unsigned int optlen)
3434 {
3435 	struct sctp_setadaptation adaptation;
3436 
3437 	if (optlen != sizeof(struct sctp_setadaptation))
3438 		return -EINVAL;
3439 	if (copy_from_user(&adaptation, optval, optlen))
3440 		return -EFAULT;
3441 
3442 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3443 
3444 	return 0;
3445 }
3446 
3447 /*
3448  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3449  *
3450  * The context field in the sctp_sndrcvinfo structure is normally only
3451  * used when a failed message is retrieved holding the value that was
3452  * sent down on the actual send call.  This option allows the setting of
3453  * a default context on an association basis that will be received on
3454  * reading messages from the peer.  This is especially helpful in the
3455  * one-2-many model for an application to keep some reference to an
3456  * internal state machine that is processing messages on the
3457  * association.  Note that the setting of this value only effects
3458  * received messages from the peer and does not effect the value that is
3459  * saved with outbound messages.
3460  */
3461 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3462 				   unsigned int optlen)
3463 {
3464 	struct sctp_assoc_value params;
3465 	struct sctp_sock *sp;
3466 	struct sctp_association *asoc;
3467 
3468 	if (optlen != sizeof(struct sctp_assoc_value))
3469 		return -EINVAL;
3470 	if (copy_from_user(&params, optval, optlen))
3471 		return -EFAULT;
3472 
3473 	sp = sctp_sk(sk);
3474 
3475 	if (params.assoc_id != 0) {
3476 		asoc = sctp_id2assoc(sk, params.assoc_id);
3477 		if (!asoc)
3478 			return -EINVAL;
3479 		asoc->default_rcv_context = params.assoc_value;
3480 	} else {
3481 		sp->default_rcv_context = params.assoc_value;
3482 	}
3483 
3484 	return 0;
3485 }
3486 
3487 /*
3488  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3489  *
3490  * This options will at a minimum specify if the implementation is doing
3491  * fragmented interleave.  Fragmented interleave, for a one to many
3492  * socket, is when subsequent calls to receive a message may return
3493  * parts of messages from different associations.  Some implementations
3494  * may allow you to turn this value on or off.  If so, when turned off,
3495  * no fragment interleave will occur (which will cause a head of line
3496  * blocking amongst multiple associations sharing the same one to many
3497  * socket).  When this option is turned on, then each receive call may
3498  * come from a different association (thus the user must receive data
3499  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3500  * association each receive belongs to.
3501  *
3502  * This option takes a boolean value.  A non-zero value indicates that
3503  * fragmented interleave is on.  A value of zero indicates that
3504  * fragmented interleave is off.
3505  *
3506  * Note that it is important that an implementation that allows this
3507  * option to be turned on, have it off by default.  Otherwise an unaware
3508  * application using the one to many model may become confused and act
3509  * incorrectly.
3510  */
3511 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3512 					       char __user *optval,
3513 					       unsigned int optlen)
3514 {
3515 	int val;
3516 
3517 	if (optlen != sizeof(int))
3518 		return -EINVAL;
3519 	if (get_user(val, (int __user *)optval))
3520 		return -EFAULT;
3521 
3522 	sctp_sk(sk)->frag_interleave = !!val;
3523 
3524 	if (!sctp_sk(sk)->frag_interleave)
3525 		sctp_sk(sk)->strm_interleave = 0;
3526 
3527 	return 0;
3528 }
3529 
3530 /*
3531  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3532  *       (SCTP_PARTIAL_DELIVERY_POINT)
3533  *
3534  * This option will set or get the SCTP partial delivery point.  This
3535  * point is the size of a message where the partial delivery API will be
3536  * invoked to help free up rwnd space for the peer.  Setting this to a
3537  * lower value will cause partial deliveries to happen more often.  The
3538  * calls argument is an integer that sets or gets the partial delivery
3539  * point.  Note also that the call will fail if the user attempts to set
3540  * this value larger than the socket receive buffer size.
3541  *
3542  * Note that any single message having a length smaller than or equal to
3543  * the SCTP partial delivery point will be delivered in one single read
3544  * call as long as the user provided buffer is large enough to hold the
3545  * message.
3546  */
3547 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3548 						  char __user *optval,
3549 						  unsigned int optlen)
3550 {
3551 	u32 val;
3552 
3553 	if (optlen != sizeof(u32))
3554 		return -EINVAL;
3555 	if (get_user(val, (int __user *)optval))
3556 		return -EFAULT;
3557 
3558 	/* Note: We double the receive buffer from what the user sets
3559 	 * it to be, also initial rwnd is based on rcvbuf/2.
3560 	 */
3561 	if (val > (sk->sk_rcvbuf >> 1))
3562 		return -EINVAL;
3563 
3564 	sctp_sk(sk)->pd_point = val;
3565 
3566 	return 0; /* is this the right error code? */
3567 }
3568 
3569 /*
3570  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3571  *
3572  * This option will allow a user to change the maximum burst of packets
3573  * that can be emitted by this association.  Note that the default value
3574  * is 4, and some implementations may restrict this setting so that it
3575  * can only be lowered.
3576  *
3577  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3578  * future associations inheriting the socket value.
3579  */
3580 static int sctp_setsockopt_maxburst(struct sock *sk,
3581 				    char __user *optval,
3582 				    unsigned int optlen)
3583 {
3584 	struct sctp_assoc_value params;
3585 	struct sctp_sock *sp;
3586 	struct sctp_association *asoc;
3587 	int val;
3588 	int assoc_id = 0;
3589 
3590 	if (optlen == sizeof(int)) {
3591 		pr_warn_ratelimited(DEPRECATED
3592 				    "%s (pid %d) "
3593 				    "Use of int in max_burst socket option deprecated.\n"
3594 				    "Use struct sctp_assoc_value instead\n",
3595 				    current->comm, task_pid_nr(current));
3596 		if (copy_from_user(&val, optval, optlen))
3597 			return -EFAULT;
3598 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3599 		if (copy_from_user(&params, optval, optlen))
3600 			return -EFAULT;
3601 		val = params.assoc_value;
3602 		assoc_id = params.assoc_id;
3603 	} else
3604 		return -EINVAL;
3605 
3606 	sp = sctp_sk(sk);
3607 
3608 	if (assoc_id != 0) {
3609 		asoc = sctp_id2assoc(sk, assoc_id);
3610 		if (!asoc)
3611 			return -EINVAL;
3612 		asoc->max_burst = val;
3613 	} else
3614 		sp->max_burst = val;
3615 
3616 	return 0;
3617 }
3618 
3619 /*
3620  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3621  *
3622  * This set option adds a chunk type that the user is requesting to be
3623  * received only in an authenticated way.  Changes to the list of chunks
3624  * will only effect future associations on the socket.
3625  */
3626 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3627 				      char __user *optval,
3628 				      unsigned int optlen)
3629 {
3630 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3631 	struct sctp_authchunk val;
3632 
3633 	if (!ep->auth_enable)
3634 		return -EACCES;
3635 
3636 	if (optlen != sizeof(struct sctp_authchunk))
3637 		return -EINVAL;
3638 	if (copy_from_user(&val, optval, optlen))
3639 		return -EFAULT;
3640 
3641 	switch (val.sauth_chunk) {
3642 	case SCTP_CID_INIT:
3643 	case SCTP_CID_INIT_ACK:
3644 	case SCTP_CID_SHUTDOWN_COMPLETE:
3645 	case SCTP_CID_AUTH:
3646 		return -EINVAL;
3647 	}
3648 
3649 	/* add this chunk id to the endpoint */
3650 	return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3651 }
3652 
3653 /*
3654  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3655  *
3656  * This option gets or sets the list of HMAC algorithms that the local
3657  * endpoint requires the peer to use.
3658  */
3659 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3660 				      char __user *optval,
3661 				      unsigned int optlen)
3662 {
3663 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3664 	struct sctp_hmacalgo *hmacs;
3665 	u32 idents;
3666 	int err;
3667 
3668 	if (!ep->auth_enable)
3669 		return -EACCES;
3670 
3671 	if (optlen < sizeof(struct sctp_hmacalgo))
3672 		return -EINVAL;
3673 	optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
3674 					     SCTP_AUTH_NUM_HMACS * sizeof(u16));
3675 
3676 	hmacs = memdup_user(optval, optlen);
3677 	if (IS_ERR(hmacs))
3678 		return PTR_ERR(hmacs);
3679 
3680 	idents = hmacs->shmac_num_idents;
3681 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3682 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3683 		err = -EINVAL;
3684 		goto out;
3685 	}
3686 
3687 	err = sctp_auth_ep_set_hmacs(ep, hmacs);
3688 out:
3689 	kfree(hmacs);
3690 	return err;
3691 }
3692 
3693 /*
3694  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3695  *
3696  * This option will set a shared secret key which is used to build an
3697  * association shared key.
3698  */
3699 static int sctp_setsockopt_auth_key(struct sock *sk,
3700 				    char __user *optval,
3701 				    unsigned int optlen)
3702 {
3703 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3704 	struct sctp_authkey *authkey;
3705 	struct sctp_association *asoc;
3706 	int ret;
3707 
3708 	if (!ep->auth_enable)
3709 		return -EACCES;
3710 
3711 	if (optlen <= sizeof(struct sctp_authkey))
3712 		return -EINVAL;
3713 	/* authkey->sca_keylength is u16, so optlen can't be bigger than
3714 	 * this.
3715 	 */
3716 	optlen = min_t(unsigned int, optlen, USHRT_MAX +
3717 					     sizeof(struct sctp_authkey));
3718 
3719 	authkey = memdup_user(optval, optlen);
3720 	if (IS_ERR(authkey))
3721 		return PTR_ERR(authkey);
3722 
3723 	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3724 		ret = -EINVAL;
3725 		goto out;
3726 	}
3727 
3728 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3729 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3730 		ret = -EINVAL;
3731 		goto out;
3732 	}
3733 
3734 	ret = sctp_auth_set_key(ep, asoc, authkey);
3735 out:
3736 	kzfree(authkey);
3737 	return ret;
3738 }
3739 
3740 /*
3741  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3742  *
3743  * This option will get or set the active shared key to be used to build
3744  * the association shared key.
3745  */
3746 static int sctp_setsockopt_active_key(struct sock *sk,
3747 				      char __user *optval,
3748 				      unsigned int optlen)
3749 {
3750 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3751 	struct sctp_authkeyid val;
3752 	struct sctp_association *asoc;
3753 
3754 	if (!ep->auth_enable)
3755 		return -EACCES;
3756 
3757 	if (optlen != sizeof(struct sctp_authkeyid))
3758 		return -EINVAL;
3759 	if (copy_from_user(&val, optval, optlen))
3760 		return -EFAULT;
3761 
3762 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3763 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3764 		return -EINVAL;
3765 
3766 	return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3767 }
3768 
3769 /*
3770  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3771  *
3772  * This set option will delete a shared secret key from use.
3773  */
3774 static int sctp_setsockopt_del_key(struct sock *sk,
3775 				   char __user *optval,
3776 				   unsigned int optlen)
3777 {
3778 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3779 	struct sctp_authkeyid val;
3780 	struct sctp_association *asoc;
3781 
3782 	if (!ep->auth_enable)
3783 		return -EACCES;
3784 
3785 	if (optlen != sizeof(struct sctp_authkeyid))
3786 		return -EINVAL;
3787 	if (copy_from_user(&val, optval, optlen))
3788 		return -EFAULT;
3789 
3790 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3791 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3792 		return -EINVAL;
3793 
3794 	return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3795 
3796 }
3797 
3798 /*
3799  * 8.3.4  Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)
3800  *
3801  * This set option will deactivate a shared secret key.
3802  */
3803 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval,
3804 					  unsigned int optlen)
3805 {
3806 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3807 	struct sctp_authkeyid val;
3808 	struct sctp_association *asoc;
3809 
3810 	if (!ep->auth_enable)
3811 		return -EACCES;
3812 
3813 	if (optlen != sizeof(struct sctp_authkeyid))
3814 		return -EINVAL;
3815 	if (copy_from_user(&val, optval, optlen))
3816 		return -EFAULT;
3817 
3818 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3819 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3820 		return -EINVAL;
3821 
3822 	return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber);
3823 }
3824 
3825 /*
3826  * 8.1.23 SCTP_AUTO_ASCONF
3827  *
3828  * This option will enable or disable the use of the automatic generation of
3829  * ASCONF chunks to add and delete addresses to an existing association.  Note
3830  * that this option has two caveats namely: a) it only affects sockets that
3831  * are bound to all addresses available to the SCTP stack, and b) the system
3832  * administrator may have an overriding control that turns the ASCONF feature
3833  * off no matter what setting the socket option may have.
3834  * This option expects an integer boolean flag, where a non-zero value turns on
3835  * the option, and a zero value turns off the option.
3836  * Note. In this implementation, socket operation overrides default parameter
3837  * being set by sysctl as well as FreeBSD implementation
3838  */
3839 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3840 					unsigned int optlen)
3841 {
3842 	int val;
3843 	struct sctp_sock *sp = sctp_sk(sk);
3844 
3845 	if (optlen < sizeof(int))
3846 		return -EINVAL;
3847 	if (get_user(val, (int __user *)optval))
3848 		return -EFAULT;
3849 	if (!sctp_is_ep_boundall(sk) && val)
3850 		return -EINVAL;
3851 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3852 		return 0;
3853 
3854 	spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3855 	if (val == 0 && sp->do_auto_asconf) {
3856 		list_del(&sp->auto_asconf_list);
3857 		sp->do_auto_asconf = 0;
3858 	} else if (val && !sp->do_auto_asconf) {
3859 		list_add_tail(&sp->auto_asconf_list,
3860 		    &sock_net(sk)->sctp.auto_asconf_splist);
3861 		sp->do_auto_asconf = 1;
3862 	}
3863 	spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3864 	return 0;
3865 }
3866 
3867 /*
3868  * SCTP_PEER_ADDR_THLDS
3869  *
3870  * This option allows us to alter the partially failed threshold for one or all
3871  * transports in an association.  See Section 6.1 of:
3872  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3873  */
3874 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3875 					    char __user *optval,
3876 					    unsigned int optlen)
3877 {
3878 	struct sctp_paddrthlds val;
3879 	struct sctp_transport *trans;
3880 	struct sctp_association *asoc;
3881 
3882 	if (optlen < sizeof(struct sctp_paddrthlds))
3883 		return -EINVAL;
3884 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3885 			   sizeof(struct sctp_paddrthlds)))
3886 		return -EFAULT;
3887 
3888 
3889 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3890 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3891 		if (!asoc)
3892 			return -ENOENT;
3893 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3894 				    transports) {
3895 			if (val.spt_pathmaxrxt)
3896 				trans->pathmaxrxt = val.spt_pathmaxrxt;
3897 			trans->pf_retrans = val.spt_pathpfthld;
3898 		}
3899 
3900 		if (val.spt_pathmaxrxt)
3901 			asoc->pathmaxrxt = val.spt_pathmaxrxt;
3902 		asoc->pf_retrans = val.spt_pathpfthld;
3903 	} else {
3904 		trans = sctp_addr_id2transport(sk, &val.spt_address,
3905 					       val.spt_assoc_id);
3906 		if (!trans)
3907 			return -ENOENT;
3908 
3909 		if (val.spt_pathmaxrxt)
3910 			trans->pathmaxrxt = val.spt_pathmaxrxt;
3911 		trans->pf_retrans = val.spt_pathpfthld;
3912 	}
3913 
3914 	return 0;
3915 }
3916 
3917 static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
3918 				       char __user *optval,
3919 				       unsigned int optlen)
3920 {
3921 	int val;
3922 
3923 	if (optlen < sizeof(int))
3924 		return -EINVAL;
3925 	if (get_user(val, (int __user *) optval))
3926 		return -EFAULT;
3927 
3928 	sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
3929 
3930 	return 0;
3931 }
3932 
3933 static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
3934 				       char __user *optval,
3935 				       unsigned int optlen)
3936 {
3937 	int val;
3938 
3939 	if (optlen < sizeof(int))
3940 		return -EINVAL;
3941 	if (get_user(val, (int __user *) optval))
3942 		return -EFAULT;
3943 
3944 	sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
3945 
3946 	return 0;
3947 }
3948 
3949 static int sctp_setsockopt_pr_supported(struct sock *sk,
3950 					char __user *optval,
3951 					unsigned int optlen)
3952 {
3953 	struct sctp_assoc_value params;
3954 
3955 	if (optlen != sizeof(params))
3956 		return -EINVAL;
3957 
3958 	if (copy_from_user(&params, optval, optlen))
3959 		return -EFAULT;
3960 
3961 	sctp_sk(sk)->ep->prsctp_enable = !!params.assoc_value;
3962 
3963 	return 0;
3964 }
3965 
3966 static int sctp_setsockopt_default_prinfo(struct sock *sk,
3967 					  char __user *optval,
3968 					  unsigned int optlen)
3969 {
3970 	struct sctp_default_prinfo info;
3971 	struct sctp_association *asoc;
3972 	int retval = -EINVAL;
3973 
3974 	if (optlen != sizeof(info))
3975 		goto out;
3976 
3977 	if (copy_from_user(&info, optval, sizeof(info))) {
3978 		retval = -EFAULT;
3979 		goto out;
3980 	}
3981 
3982 	if (info.pr_policy & ~SCTP_PR_SCTP_MASK)
3983 		goto out;
3984 
3985 	if (info.pr_policy == SCTP_PR_SCTP_NONE)
3986 		info.pr_value = 0;
3987 
3988 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
3989 	if (asoc) {
3990 		SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
3991 		asoc->default_timetolive = info.pr_value;
3992 	} else if (!info.pr_assoc_id) {
3993 		struct sctp_sock *sp = sctp_sk(sk);
3994 
3995 		SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy);
3996 		sp->default_timetolive = info.pr_value;
3997 	} else {
3998 		goto out;
3999 	}
4000 
4001 	retval = 0;
4002 
4003 out:
4004 	return retval;
4005 }
4006 
4007 static int sctp_setsockopt_reconfig_supported(struct sock *sk,
4008 					      char __user *optval,
4009 					      unsigned int optlen)
4010 {
4011 	struct sctp_assoc_value params;
4012 	struct sctp_association *asoc;
4013 	int retval = -EINVAL;
4014 
4015 	if (optlen != sizeof(params))
4016 		goto out;
4017 
4018 	if (copy_from_user(&params, optval, optlen)) {
4019 		retval = -EFAULT;
4020 		goto out;
4021 	}
4022 
4023 	asoc = sctp_id2assoc(sk, params.assoc_id);
4024 	if (asoc) {
4025 		asoc->reconf_enable = !!params.assoc_value;
4026 	} else if (!params.assoc_id) {
4027 		struct sctp_sock *sp = sctp_sk(sk);
4028 
4029 		sp->ep->reconf_enable = !!params.assoc_value;
4030 	} else {
4031 		goto out;
4032 	}
4033 
4034 	retval = 0;
4035 
4036 out:
4037 	return retval;
4038 }
4039 
4040 static int sctp_setsockopt_enable_strreset(struct sock *sk,
4041 					   char __user *optval,
4042 					   unsigned int optlen)
4043 {
4044 	struct sctp_assoc_value params;
4045 	struct sctp_association *asoc;
4046 	int retval = -EINVAL;
4047 
4048 	if (optlen != sizeof(params))
4049 		goto out;
4050 
4051 	if (copy_from_user(&params, optval, optlen)) {
4052 		retval = -EFAULT;
4053 		goto out;
4054 	}
4055 
4056 	if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
4057 		goto out;
4058 
4059 	asoc = sctp_id2assoc(sk, params.assoc_id);
4060 	if (asoc) {
4061 		asoc->strreset_enable = params.assoc_value;
4062 	} else if (!params.assoc_id) {
4063 		struct sctp_sock *sp = sctp_sk(sk);
4064 
4065 		sp->ep->strreset_enable = params.assoc_value;
4066 	} else {
4067 		goto out;
4068 	}
4069 
4070 	retval = 0;
4071 
4072 out:
4073 	return retval;
4074 }
4075 
4076 static int sctp_setsockopt_reset_streams(struct sock *sk,
4077 					 char __user *optval,
4078 					 unsigned int optlen)
4079 {
4080 	struct sctp_reset_streams *params;
4081 	struct sctp_association *asoc;
4082 	int retval = -EINVAL;
4083 
4084 	if (optlen < sizeof(*params))
4085 		return -EINVAL;
4086 	/* srs_number_streams is u16, so optlen can't be bigger than this. */
4087 	optlen = min_t(unsigned int, optlen, USHRT_MAX +
4088 					     sizeof(__u16) * sizeof(*params));
4089 
4090 	params = memdup_user(optval, optlen);
4091 	if (IS_ERR(params))
4092 		return PTR_ERR(params);
4093 
4094 	if (params->srs_number_streams * sizeof(__u16) >
4095 	    optlen - sizeof(*params))
4096 		goto out;
4097 
4098 	asoc = sctp_id2assoc(sk, params->srs_assoc_id);
4099 	if (!asoc)
4100 		goto out;
4101 
4102 	retval = sctp_send_reset_streams(asoc, params);
4103 
4104 out:
4105 	kfree(params);
4106 	return retval;
4107 }
4108 
4109 static int sctp_setsockopt_reset_assoc(struct sock *sk,
4110 				       char __user *optval,
4111 				       unsigned int optlen)
4112 {
4113 	struct sctp_association *asoc;
4114 	sctp_assoc_t associd;
4115 	int retval = -EINVAL;
4116 
4117 	if (optlen != sizeof(associd))
4118 		goto out;
4119 
4120 	if (copy_from_user(&associd, optval, optlen)) {
4121 		retval = -EFAULT;
4122 		goto out;
4123 	}
4124 
4125 	asoc = sctp_id2assoc(sk, associd);
4126 	if (!asoc)
4127 		goto out;
4128 
4129 	retval = sctp_send_reset_assoc(asoc);
4130 
4131 out:
4132 	return retval;
4133 }
4134 
4135 static int sctp_setsockopt_add_streams(struct sock *sk,
4136 				       char __user *optval,
4137 				       unsigned int optlen)
4138 {
4139 	struct sctp_association *asoc;
4140 	struct sctp_add_streams params;
4141 	int retval = -EINVAL;
4142 
4143 	if (optlen != sizeof(params))
4144 		goto out;
4145 
4146 	if (copy_from_user(&params, optval, optlen)) {
4147 		retval = -EFAULT;
4148 		goto out;
4149 	}
4150 
4151 	asoc = sctp_id2assoc(sk, params.sas_assoc_id);
4152 	if (!asoc)
4153 		goto out;
4154 
4155 	retval = sctp_send_add_streams(asoc, &params);
4156 
4157 out:
4158 	return retval;
4159 }
4160 
4161 static int sctp_setsockopt_scheduler(struct sock *sk,
4162 				     char __user *optval,
4163 				     unsigned int optlen)
4164 {
4165 	struct sctp_association *asoc;
4166 	struct sctp_assoc_value params;
4167 	int retval = -EINVAL;
4168 
4169 	if (optlen < sizeof(params))
4170 		goto out;
4171 
4172 	optlen = sizeof(params);
4173 	if (copy_from_user(&params, optval, optlen)) {
4174 		retval = -EFAULT;
4175 		goto out;
4176 	}
4177 
4178 	if (params.assoc_value > SCTP_SS_MAX)
4179 		goto out;
4180 
4181 	asoc = sctp_id2assoc(sk, params.assoc_id);
4182 	if (!asoc)
4183 		goto out;
4184 
4185 	retval = sctp_sched_set_sched(asoc, params.assoc_value);
4186 
4187 out:
4188 	return retval;
4189 }
4190 
4191 static int sctp_setsockopt_scheduler_value(struct sock *sk,
4192 					   char __user *optval,
4193 					   unsigned int optlen)
4194 {
4195 	struct sctp_association *asoc;
4196 	struct sctp_stream_value params;
4197 	int retval = -EINVAL;
4198 
4199 	if (optlen < sizeof(params))
4200 		goto out;
4201 
4202 	optlen = sizeof(params);
4203 	if (copy_from_user(&params, optval, optlen)) {
4204 		retval = -EFAULT;
4205 		goto out;
4206 	}
4207 
4208 	asoc = sctp_id2assoc(sk, params.assoc_id);
4209 	if (!asoc)
4210 		goto out;
4211 
4212 	retval = sctp_sched_set_value(asoc, params.stream_id,
4213 				      params.stream_value, GFP_KERNEL);
4214 
4215 out:
4216 	return retval;
4217 }
4218 
4219 static int sctp_setsockopt_interleaving_supported(struct sock *sk,
4220 						  char __user *optval,
4221 						  unsigned int optlen)
4222 {
4223 	struct sctp_sock *sp = sctp_sk(sk);
4224 	struct net *net = sock_net(sk);
4225 	struct sctp_assoc_value params;
4226 	int retval = -EINVAL;
4227 
4228 	if (optlen < sizeof(params))
4229 		goto out;
4230 
4231 	optlen = sizeof(params);
4232 	if (copy_from_user(&params, optval, optlen)) {
4233 		retval = -EFAULT;
4234 		goto out;
4235 	}
4236 
4237 	if (params.assoc_id)
4238 		goto out;
4239 
4240 	if (!net->sctp.intl_enable || !sp->frag_interleave) {
4241 		retval = -EPERM;
4242 		goto out;
4243 	}
4244 
4245 	sp->strm_interleave = !!params.assoc_value;
4246 
4247 	retval = 0;
4248 
4249 out:
4250 	return retval;
4251 }
4252 
4253 static int sctp_setsockopt_reuse_port(struct sock *sk, char __user *optval,
4254 				      unsigned int optlen)
4255 {
4256 	int val;
4257 
4258 	if (!sctp_style(sk, TCP))
4259 		return -EOPNOTSUPP;
4260 
4261 	if (sctp_sk(sk)->ep->base.bind_addr.port)
4262 		return -EFAULT;
4263 
4264 	if (optlen < sizeof(int))
4265 		return -EINVAL;
4266 
4267 	if (get_user(val, (int __user *)optval))
4268 		return -EFAULT;
4269 
4270 	sctp_sk(sk)->reuse = !!val;
4271 
4272 	return 0;
4273 }
4274 
4275 static int sctp_setsockopt_event(struct sock *sk, char __user *optval,
4276 				 unsigned int optlen)
4277 {
4278 	struct sctp_association *asoc;
4279 	struct sctp_ulpevent *event;
4280 	struct sctp_event param;
4281 	int retval = 0;
4282 
4283 	if (optlen < sizeof(param)) {
4284 		retval = -EINVAL;
4285 		goto out;
4286 	}
4287 
4288 	optlen = sizeof(param);
4289 	if (copy_from_user(&param, optval, optlen)) {
4290 		retval = -EFAULT;
4291 		goto out;
4292 	}
4293 
4294 	if (param.se_type < SCTP_SN_TYPE_BASE ||
4295 	    param.se_type > SCTP_SN_TYPE_MAX) {
4296 		retval = -EINVAL;
4297 		goto out;
4298 	}
4299 
4300 	asoc = sctp_id2assoc(sk, param.se_assoc_id);
4301 	if (!asoc) {
4302 		sctp_ulpevent_type_set(&sctp_sk(sk)->subscribe,
4303 				       param.se_type, param.se_on);
4304 		goto out;
4305 	}
4306 
4307 	sctp_ulpevent_type_set(&asoc->subscribe, param.se_type, param.se_on);
4308 
4309 	if (param.se_type == SCTP_SENDER_DRY_EVENT && param.se_on) {
4310 		if (sctp_outq_is_empty(&asoc->outqueue)) {
4311 			event = sctp_ulpevent_make_sender_dry_event(asoc,
4312 					GFP_USER | __GFP_NOWARN);
4313 			if (!event) {
4314 				retval = -ENOMEM;
4315 				goto out;
4316 			}
4317 
4318 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
4319 		}
4320 	}
4321 
4322 out:
4323 	return retval;
4324 }
4325 
4326 /* API 6.2 setsockopt(), getsockopt()
4327  *
4328  * Applications use setsockopt() and getsockopt() to set or retrieve
4329  * socket options.  Socket options are used to change the default
4330  * behavior of sockets calls.  They are described in Section 7.
4331  *
4332  * The syntax is:
4333  *
4334  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
4335  *                    int __user *optlen);
4336  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
4337  *                    int optlen);
4338  *
4339  *   sd      - the socket descript.
4340  *   level   - set to IPPROTO_SCTP for all SCTP options.
4341  *   optname - the option name.
4342  *   optval  - the buffer to store the value of the option.
4343  *   optlen  - the size of the buffer.
4344  */
4345 static int sctp_setsockopt(struct sock *sk, int level, int optname,
4346 			   char __user *optval, unsigned int optlen)
4347 {
4348 	int retval = 0;
4349 
4350 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
4351 
4352 	/* I can hardly begin to describe how wrong this is.  This is
4353 	 * so broken as to be worse than useless.  The API draft
4354 	 * REALLY is NOT helpful here...  I am not convinced that the
4355 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
4356 	 * are at all well-founded.
4357 	 */
4358 	if (level != SOL_SCTP) {
4359 		struct sctp_af *af = sctp_sk(sk)->pf->af;
4360 		retval = af->setsockopt(sk, level, optname, optval, optlen);
4361 		goto out_nounlock;
4362 	}
4363 
4364 	lock_sock(sk);
4365 
4366 	switch (optname) {
4367 	case SCTP_SOCKOPT_BINDX_ADD:
4368 		/* 'optlen' is the size of the addresses buffer. */
4369 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
4370 					       optlen, SCTP_BINDX_ADD_ADDR);
4371 		break;
4372 
4373 	case SCTP_SOCKOPT_BINDX_REM:
4374 		/* 'optlen' is the size of the addresses buffer. */
4375 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
4376 					       optlen, SCTP_BINDX_REM_ADDR);
4377 		break;
4378 
4379 	case SCTP_SOCKOPT_CONNECTX_OLD:
4380 		/* 'optlen' is the size of the addresses buffer. */
4381 		retval = sctp_setsockopt_connectx_old(sk,
4382 					    (struct sockaddr __user *)optval,
4383 					    optlen);
4384 		break;
4385 
4386 	case SCTP_SOCKOPT_CONNECTX:
4387 		/* 'optlen' is the size of the addresses buffer. */
4388 		retval = sctp_setsockopt_connectx(sk,
4389 					    (struct sockaddr __user *)optval,
4390 					    optlen);
4391 		break;
4392 
4393 	case SCTP_DISABLE_FRAGMENTS:
4394 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
4395 		break;
4396 
4397 	case SCTP_EVENTS:
4398 		retval = sctp_setsockopt_events(sk, optval, optlen);
4399 		break;
4400 
4401 	case SCTP_AUTOCLOSE:
4402 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
4403 		break;
4404 
4405 	case SCTP_PEER_ADDR_PARAMS:
4406 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
4407 		break;
4408 
4409 	case SCTP_DELAYED_SACK:
4410 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
4411 		break;
4412 	case SCTP_PARTIAL_DELIVERY_POINT:
4413 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
4414 		break;
4415 
4416 	case SCTP_INITMSG:
4417 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
4418 		break;
4419 	case SCTP_DEFAULT_SEND_PARAM:
4420 		retval = sctp_setsockopt_default_send_param(sk, optval,
4421 							    optlen);
4422 		break;
4423 	case SCTP_DEFAULT_SNDINFO:
4424 		retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
4425 		break;
4426 	case SCTP_PRIMARY_ADDR:
4427 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
4428 		break;
4429 	case SCTP_SET_PEER_PRIMARY_ADDR:
4430 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
4431 		break;
4432 	case SCTP_NODELAY:
4433 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
4434 		break;
4435 	case SCTP_RTOINFO:
4436 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
4437 		break;
4438 	case SCTP_ASSOCINFO:
4439 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
4440 		break;
4441 	case SCTP_I_WANT_MAPPED_V4_ADDR:
4442 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
4443 		break;
4444 	case SCTP_MAXSEG:
4445 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
4446 		break;
4447 	case SCTP_ADAPTATION_LAYER:
4448 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
4449 		break;
4450 	case SCTP_CONTEXT:
4451 		retval = sctp_setsockopt_context(sk, optval, optlen);
4452 		break;
4453 	case SCTP_FRAGMENT_INTERLEAVE:
4454 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
4455 		break;
4456 	case SCTP_MAX_BURST:
4457 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
4458 		break;
4459 	case SCTP_AUTH_CHUNK:
4460 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
4461 		break;
4462 	case SCTP_HMAC_IDENT:
4463 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
4464 		break;
4465 	case SCTP_AUTH_KEY:
4466 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
4467 		break;
4468 	case SCTP_AUTH_ACTIVE_KEY:
4469 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
4470 		break;
4471 	case SCTP_AUTH_DELETE_KEY:
4472 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
4473 		break;
4474 	case SCTP_AUTH_DEACTIVATE_KEY:
4475 		retval = sctp_setsockopt_deactivate_key(sk, optval, optlen);
4476 		break;
4477 	case SCTP_AUTO_ASCONF:
4478 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
4479 		break;
4480 	case SCTP_PEER_ADDR_THLDS:
4481 		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
4482 		break;
4483 	case SCTP_RECVRCVINFO:
4484 		retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
4485 		break;
4486 	case SCTP_RECVNXTINFO:
4487 		retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
4488 		break;
4489 	case SCTP_PR_SUPPORTED:
4490 		retval = sctp_setsockopt_pr_supported(sk, optval, optlen);
4491 		break;
4492 	case SCTP_DEFAULT_PRINFO:
4493 		retval = sctp_setsockopt_default_prinfo(sk, optval, optlen);
4494 		break;
4495 	case SCTP_RECONFIG_SUPPORTED:
4496 		retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen);
4497 		break;
4498 	case SCTP_ENABLE_STREAM_RESET:
4499 		retval = sctp_setsockopt_enable_strreset(sk, optval, optlen);
4500 		break;
4501 	case SCTP_RESET_STREAMS:
4502 		retval = sctp_setsockopt_reset_streams(sk, optval, optlen);
4503 		break;
4504 	case SCTP_RESET_ASSOC:
4505 		retval = sctp_setsockopt_reset_assoc(sk, optval, optlen);
4506 		break;
4507 	case SCTP_ADD_STREAMS:
4508 		retval = sctp_setsockopt_add_streams(sk, optval, optlen);
4509 		break;
4510 	case SCTP_STREAM_SCHEDULER:
4511 		retval = sctp_setsockopt_scheduler(sk, optval, optlen);
4512 		break;
4513 	case SCTP_STREAM_SCHEDULER_VALUE:
4514 		retval = sctp_setsockopt_scheduler_value(sk, optval, optlen);
4515 		break;
4516 	case SCTP_INTERLEAVING_SUPPORTED:
4517 		retval = sctp_setsockopt_interleaving_supported(sk, optval,
4518 								optlen);
4519 		break;
4520 	case SCTP_REUSE_PORT:
4521 		retval = sctp_setsockopt_reuse_port(sk, optval, optlen);
4522 		break;
4523 	case SCTP_EVENT:
4524 		retval = sctp_setsockopt_event(sk, optval, optlen);
4525 		break;
4526 	default:
4527 		retval = -ENOPROTOOPT;
4528 		break;
4529 	}
4530 
4531 	release_sock(sk);
4532 
4533 out_nounlock:
4534 	return retval;
4535 }
4536 
4537 /* API 3.1.6 connect() - UDP Style Syntax
4538  *
4539  * An application may use the connect() call in the UDP model to initiate an
4540  * association without sending data.
4541  *
4542  * The syntax is:
4543  *
4544  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4545  *
4546  * sd: the socket descriptor to have a new association added to.
4547  *
4548  * nam: the address structure (either struct sockaddr_in or struct
4549  *    sockaddr_in6 defined in RFC2553 [7]).
4550  *
4551  * len: the size of the address.
4552  */
4553 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4554 			int addr_len, int flags)
4555 {
4556 	struct inet_sock *inet = inet_sk(sk);
4557 	struct sctp_af *af;
4558 	int err = 0;
4559 
4560 	lock_sock(sk);
4561 
4562 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4563 		 addr, addr_len);
4564 
4565 	/* We may need to bind the socket. */
4566 	if (!inet->inet_num) {
4567 		if (sk->sk_prot->get_port(sk, 0)) {
4568 			release_sock(sk);
4569 			return -EAGAIN;
4570 		}
4571 		inet->inet_sport = htons(inet->inet_num);
4572 	}
4573 
4574 	/* Validate addr_len before calling common connect/connectx routine. */
4575 	af = sctp_get_af_specific(addr->sa_family);
4576 	if (!af || addr_len < af->sockaddr_len) {
4577 		err = -EINVAL;
4578 	} else {
4579 		/* Pass correct addr len to common routine (so it knows there
4580 		 * is only one address being passed.
4581 		 */
4582 		err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
4583 	}
4584 
4585 	release_sock(sk);
4586 	return err;
4587 }
4588 
4589 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
4590 		      int addr_len, int flags)
4591 {
4592 	if (addr_len < sizeof(uaddr->sa_family))
4593 		return -EINVAL;
4594 
4595 	if (uaddr->sa_family == AF_UNSPEC)
4596 		return -EOPNOTSUPP;
4597 
4598 	return sctp_connect(sock->sk, uaddr, addr_len, flags);
4599 }
4600 
4601 /* FIXME: Write comments. */
4602 static int sctp_disconnect(struct sock *sk, int flags)
4603 {
4604 	return -EOPNOTSUPP; /* STUB */
4605 }
4606 
4607 /* 4.1.4 accept() - TCP Style Syntax
4608  *
4609  * Applications use accept() call to remove an established SCTP
4610  * association from the accept queue of the endpoint.  A new socket
4611  * descriptor will be returned from accept() to represent the newly
4612  * formed association.
4613  */
4614 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4615 {
4616 	struct sctp_sock *sp;
4617 	struct sctp_endpoint *ep;
4618 	struct sock *newsk = NULL;
4619 	struct sctp_association *asoc;
4620 	long timeo;
4621 	int error = 0;
4622 
4623 	lock_sock(sk);
4624 
4625 	sp = sctp_sk(sk);
4626 	ep = sp->ep;
4627 
4628 	if (!sctp_style(sk, TCP)) {
4629 		error = -EOPNOTSUPP;
4630 		goto out;
4631 	}
4632 
4633 	if (!sctp_sstate(sk, LISTENING)) {
4634 		error = -EINVAL;
4635 		goto out;
4636 	}
4637 
4638 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4639 
4640 	error = sctp_wait_for_accept(sk, timeo);
4641 	if (error)
4642 		goto out;
4643 
4644 	/* We treat the list of associations on the endpoint as the accept
4645 	 * queue and pick the first association on the list.
4646 	 */
4647 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4648 
4649 	newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4650 	if (!newsk) {
4651 		error = -ENOMEM;
4652 		goto out;
4653 	}
4654 
4655 	/* Populate the fields of the newsk from the oldsk and migrate the
4656 	 * asoc to the newsk.
4657 	 */
4658 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4659 
4660 out:
4661 	release_sock(sk);
4662 	*err = error;
4663 	return newsk;
4664 }
4665 
4666 /* The SCTP ioctl handler. */
4667 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4668 {
4669 	int rc = -ENOTCONN;
4670 
4671 	lock_sock(sk);
4672 
4673 	/*
4674 	 * SEQPACKET-style sockets in LISTENING state are valid, for
4675 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
4676 	 */
4677 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4678 		goto out;
4679 
4680 	switch (cmd) {
4681 	case SIOCINQ: {
4682 		struct sk_buff *skb;
4683 		unsigned int amount = 0;
4684 
4685 		skb = skb_peek(&sk->sk_receive_queue);
4686 		if (skb != NULL) {
4687 			/*
4688 			 * We will only return the amount of this packet since
4689 			 * that is all that will be read.
4690 			 */
4691 			amount = skb->len;
4692 		}
4693 		rc = put_user(amount, (int __user *)arg);
4694 		break;
4695 	}
4696 	default:
4697 		rc = -ENOIOCTLCMD;
4698 		break;
4699 	}
4700 out:
4701 	release_sock(sk);
4702 	return rc;
4703 }
4704 
4705 /* This is the function which gets called during socket creation to
4706  * initialized the SCTP-specific portion of the sock.
4707  * The sock structure should already be zero-filled memory.
4708  */
4709 static int sctp_init_sock(struct sock *sk)
4710 {
4711 	struct net *net = sock_net(sk);
4712 	struct sctp_sock *sp;
4713 
4714 	pr_debug("%s: sk:%p\n", __func__, sk);
4715 
4716 	sp = sctp_sk(sk);
4717 
4718 	/* Initialize the SCTP per socket area.  */
4719 	switch (sk->sk_type) {
4720 	case SOCK_SEQPACKET:
4721 		sp->type = SCTP_SOCKET_UDP;
4722 		break;
4723 	case SOCK_STREAM:
4724 		sp->type = SCTP_SOCKET_TCP;
4725 		break;
4726 	default:
4727 		return -ESOCKTNOSUPPORT;
4728 	}
4729 
4730 	sk->sk_gso_type = SKB_GSO_SCTP;
4731 
4732 	/* Initialize default send parameters. These parameters can be
4733 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4734 	 */
4735 	sp->default_stream = 0;
4736 	sp->default_ppid = 0;
4737 	sp->default_flags = 0;
4738 	sp->default_context = 0;
4739 	sp->default_timetolive = 0;
4740 
4741 	sp->default_rcv_context = 0;
4742 	sp->max_burst = net->sctp.max_burst;
4743 
4744 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4745 
4746 	/* Initialize default setup parameters. These parameters
4747 	 * can be modified with the SCTP_INITMSG socket option or
4748 	 * overridden by the SCTP_INIT CMSG.
4749 	 */
4750 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
4751 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
4752 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
4753 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4754 
4755 	/* Initialize default RTO related parameters.  These parameters can
4756 	 * be modified for with the SCTP_RTOINFO socket option.
4757 	 */
4758 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4759 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
4760 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
4761 
4762 	/* Initialize default association related parameters. These parameters
4763 	 * can be modified with the SCTP_ASSOCINFO socket option.
4764 	 */
4765 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4766 	sp->assocparams.sasoc_number_peer_destinations = 0;
4767 	sp->assocparams.sasoc_peer_rwnd = 0;
4768 	sp->assocparams.sasoc_local_rwnd = 0;
4769 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4770 
4771 	/* Initialize default event subscriptions. By default, all the
4772 	 * options are off.
4773 	 */
4774 	sp->subscribe = 0;
4775 
4776 	/* Default Peer Address Parameters.  These defaults can
4777 	 * be modified via SCTP_PEER_ADDR_PARAMS
4778 	 */
4779 	sp->hbinterval  = net->sctp.hb_interval;
4780 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
4781 	sp->pathmtu     = 0; /* allow default discovery */
4782 	sp->sackdelay   = net->sctp.sack_timeout;
4783 	sp->sackfreq	= 2;
4784 	sp->param_flags = SPP_HB_ENABLE |
4785 			  SPP_PMTUD_ENABLE |
4786 			  SPP_SACKDELAY_ENABLE;
4787 
4788 	/* If enabled no SCTP message fragmentation will be performed.
4789 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4790 	 */
4791 	sp->disable_fragments = 0;
4792 
4793 	/* Enable Nagle algorithm by default.  */
4794 	sp->nodelay           = 0;
4795 
4796 	sp->recvrcvinfo = 0;
4797 	sp->recvnxtinfo = 0;
4798 
4799 	/* Enable by default. */
4800 	sp->v4mapped          = 1;
4801 
4802 	/* Auto-close idle associations after the configured
4803 	 * number of seconds.  A value of 0 disables this
4804 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
4805 	 * for UDP-style sockets only.
4806 	 */
4807 	sp->autoclose         = 0;
4808 
4809 	/* User specified fragmentation limit. */
4810 	sp->user_frag         = 0;
4811 
4812 	sp->adaptation_ind = 0;
4813 
4814 	sp->pf = sctp_get_pf_specific(sk->sk_family);
4815 
4816 	/* Control variables for partial data delivery. */
4817 	atomic_set(&sp->pd_mode, 0);
4818 	skb_queue_head_init(&sp->pd_lobby);
4819 	sp->frag_interleave = 0;
4820 
4821 	/* Create a per socket endpoint structure.  Even if we
4822 	 * change the data structure relationships, this may still
4823 	 * be useful for storing pre-connect address information.
4824 	 */
4825 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4826 	if (!sp->ep)
4827 		return -ENOMEM;
4828 
4829 	sp->hmac = NULL;
4830 
4831 	sk->sk_destruct = sctp_destruct_sock;
4832 
4833 	SCTP_DBG_OBJCNT_INC(sock);
4834 
4835 	local_bh_disable();
4836 	sk_sockets_allocated_inc(sk);
4837 	sock_prot_inuse_add(net, sk->sk_prot, 1);
4838 
4839 	/* Nothing can fail after this block, otherwise
4840 	 * sctp_destroy_sock() will be called without addr_wq_lock held
4841 	 */
4842 	if (net->sctp.default_auto_asconf) {
4843 		spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
4844 		list_add_tail(&sp->auto_asconf_list,
4845 		    &net->sctp.auto_asconf_splist);
4846 		sp->do_auto_asconf = 1;
4847 		spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
4848 	} else {
4849 		sp->do_auto_asconf = 0;
4850 	}
4851 
4852 	local_bh_enable();
4853 
4854 	return 0;
4855 }
4856 
4857 /* Cleanup any SCTP per socket resources. Must be called with
4858  * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
4859  */
4860 static void sctp_destroy_sock(struct sock *sk)
4861 {
4862 	struct sctp_sock *sp;
4863 
4864 	pr_debug("%s: sk:%p\n", __func__, sk);
4865 
4866 	/* Release our hold on the endpoint. */
4867 	sp = sctp_sk(sk);
4868 	/* This could happen during socket init, thus we bail out
4869 	 * early, since the rest of the below is not setup either.
4870 	 */
4871 	if (sp->ep == NULL)
4872 		return;
4873 
4874 	if (sp->do_auto_asconf) {
4875 		sp->do_auto_asconf = 0;
4876 		list_del(&sp->auto_asconf_list);
4877 	}
4878 	sctp_endpoint_free(sp->ep);
4879 	local_bh_disable();
4880 	sk_sockets_allocated_dec(sk);
4881 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4882 	local_bh_enable();
4883 }
4884 
4885 /* Triggered when there are no references on the socket anymore */
4886 static void sctp_destruct_sock(struct sock *sk)
4887 {
4888 	struct sctp_sock *sp = sctp_sk(sk);
4889 
4890 	/* Free up the HMAC transform. */
4891 	crypto_free_shash(sp->hmac);
4892 
4893 	inet_sock_destruct(sk);
4894 }
4895 
4896 /* API 4.1.7 shutdown() - TCP Style Syntax
4897  *     int shutdown(int socket, int how);
4898  *
4899  *     sd      - the socket descriptor of the association to be closed.
4900  *     how     - Specifies the type of shutdown.  The  values  are
4901  *               as follows:
4902  *               SHUT_RD
4903  *                     Disables further receive operations. No SCTP
4904  *                     protocol action is taken.
4905  *               SHUT_WR
4906  *                     Disables further send operations, and initiates
4907  *                     the SCTP shutdown sequence.
4908  *               SHUT_RDWR
4909  *                     Disables further send  and  receive  operations
4910  *                     and initiates the SCTP shutdown sequence.
4911  */
4912 static void sctp_shutdown(struct sock *sk, int how)
4913 {
4914 	struct net *net = sock_net(sk);
4915 	struct sctp_endpoint *ep;
4916 
4917 	if (!sctp_style(sk, TCP))
4918 		return;
4919 
4920 	ep = sctp_sk(sk)->ep;
4921 	if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
4922 		struct sctp_association *asoc;
4923 
4924 		inet_sk_set_state(sk, SCTP_SS_CLOSING);
4925 		asoc = list_entry(ep->asocs.next,
4926 				  struct sctp_association, asocs);
4927 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
4928 	}
4929 }
4930 
4931 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
4932 		       struct sctp_info *info)
4933 {
4934 	struct sctp_transport *prim;
4935 	struct list_head *pos;
4936 	int mask;
4937 
4938 	memset(info, 0, sizeof(*info));
4939 	if (!asoc) {
4940 		struct sctp_sock *sp = sctp_sk(sk);
4941 
4942 		info->sctpi_s_autoclose = sp->autoclose;
4943 		info->sctpi_s_adaptation_ind = sp->adaptation_ind;
4944 		info->sctpi_s_pd_point = sp->pd_point;
4945 		info->sctpi_s_nodelay = sp->nodelay;
4946 		info->sctpi_s_disable_fragments = sp->disable_fragments;
4947 		info->sctpi_s_v4mapped = sp->v4mapped;
4948 		info->sctpi_s_frag_interleave = sp->frag_interleave;
4949 		info->sctpi_s_type = sp->type;
4950 
4951 		return 0;
4952 	}
4953 
4954 	info->sctpi_tag = asoc->c.my_vtag;
4955 	info->sctpi_state = asoc->state;
4956 	info->sctpi_rwnd = asoc->a_rwnd;
4957 	info->sctpi_unackdata = asoc->unack_data;
4958 	info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4959 	info->sctpi_instrms = asoc->stream.incnt;
4960 	info->sctpi_outstrms = asoc->stream.outcnt;
4961 	list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
4962 		info->sctpi_inqueue++;
4963 	list_for_each(pos, &asoc->outqueue.out_chunk_list)
4964 		info->sctpi_outqueue++;
4965 	info->sctpi_overall_error = asoc->overall_error_count;
4966 	info->sctpi_max_burst = asoc->max_burst;
4967 	info->sctpi_maxseg = asoc->frag_point;
4968 	info->sctpi_peer_rwnd = asoc->peer.rwnd;
4969 	info->sctpi_peer_tag = asoc->c.peer_vtag;
4970 
4971 	mask = asoc->peer.ecn_capable << 1;
4972 	mask = (mask | asoc->peer.ipv4_address) << 1;
4973 	mask = (mask | asoc->peer.ipv6_address) << 1;
4974 	mask = (mask | asoc->peer.hostname_address) << 1;
4975 	mask = (mask | asoc->peer.asconf_capable) << 1;
4976 	mask = (mask | asoc->peer.prsctp_capable) << 1;
4977 	mask = (mask | asoc->peer.auth_capable);
4978 	info->sctpi_peer_capable = mask;
4979 	mask = asoc->peer.sack_needed << 1;
4980 	mask = (mask | asoc->peer.sack_generation) << 1;
4981 	mask = (mask | asoc->peer.zero_window_announced);
4982 	info->sctpi_peer_sack = mask;
4983 
4984 	info->sctpi_isacks = asoc->stats.isacks;
4985 	info->sctpi_osacks = asoc->stats.osacks;
4986 	info->sctpi_opackets = asoc->stats.opackets;
4987 	info->sctpi_ipackets = asoc->stats.ipackets;
4988 	info->sctpi_rtxchunks = asoc->stats.rtxchunks;
4989 	info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
4990 	info->sctpi_idupchunks = asoc->stats.idupchunks;
4991 	info->sctpi_gapcnt = asoc->stats.gapcnt;
4992 	info->sctpi_ouodchunks = asoc->stats.ouodchunks;
4993 	info->sctpi_iuodchunks = asoc->stats.iuodchunks;
4994 	info->sctpi_oodchunks = asoc->stats.oodchunks;
4995 	info->sctpi_iodchunks = asoc->stats.iodchunks;
4996 	info->sctpi_octrlchunks = asoc->stats.octrlchunks;
4997 	info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
4998 
4999 	prim = asoc->peer.primary_path;
5000 	memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
5001 	info->sctpi_p_state = prim->state;
5002 	info->sctpi_p_cwnd = prim->cwnd;
5003 	info->sctpi_p_srtt = prim->srtt;
5004 	info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
5005 	info->sctpi_p_hbinterval = prim->hbinterval;
5006 	info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
5007 	info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
5008 	info->sctpi_p_ssthresh = prim->ssthresh;
5009 	info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
5010 	info->sctpi_p_flight_size = prim->flight_size;
5011 	info->sctpi_p_error = prim->error_count;
5012 
5013 	return 0;
5014 }
5015 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
5016 
5017 /* use callback to avoid exporting the core structure */
5018 void sctp_transport_walk_start(struct rhashtable_iter *iter)
5019 {
5020 	rhltable_walk_enter(&sctp_transport_hashtable, iter);
5021 
5022 	rhashtable_walk_start(iter);
5023 }
5024 
5025 void sctp_transport_walk_stop(struct rhashtable_iter *iter)
5026 {
5027 	rhashtable_walk_stop(iter);
5028 	rhashtable_walk_exit(iter);
5029 }
5030 
5031 struct sctp_transport *sctp_transport_get_next(struct net *net,
5032 					       struct rhashtable_iter *iter)
5033 {
5034 	struct sctp_transport *t;
5035 
5036 	t = rhashtable_walk_next(iter);
5037 	for (; t; t = rhashtable_walk_next(iter)) {
5038 		if (IS_ERR(t)) {
5039 			if (PTR_ERR(t) == -EAGAIN)
5040 				continue;
5041 			break;
5042 		}
5043 
5044 		if (!sctp_transport_hold(t))
5045 			continue;
5046 
5047 		if (net_eq(sock_net(t->asoc->base.sk), net) &&
5048 		    t->asoc->peer.primary_path == t)
5049 			break;
5050 
5051 		sctp_transport_put(t);
5052 	}
5053 
5054 	return t;
5055 }
5056 
5057 struct sctp_transport *sctp_transport_get_idx(struct net *net,
5058 					      struct rhashtable_iter *iter,
5059 					      int pos)
5060 {
5061 	struct sctp_transport *t;
5062 
5063 	if (!pos)
5064 		return SEQ_START_TOKEN;
5065 
5066 	while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) {
5067 		if (!--pos)
5068 			break;
5069 		sctp_transport_put(t);
5070 	}
5071 
5072 	return t;
5073 }
5074 
5075 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
5076 			   void *p) {
5077 	int err = 0;
5078 	int hash = 0;
5079 	struct sctp_ep_common *epb;
5080 	struct sctp_hashbucket *head;
5081 
5082 	for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
5083 	     hash++, head++) {
5084 		read_lock_bh(&head->lock);
5085 		sctp_for_each_hentry(epb, &head->chain) {
5086 			err = cb(sctp_ep(epb), p);
5087 			if (err)
5088 				break;
5089 		}
5090 		read_unlock_bh(&head->lock);
5091 	}
5092 
5093 	return err;
5094 }
5095 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
5096 
5097 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
5098 				  struct net *net,
5099 				  const union sctp_addr *laddr,
5100 				  const union sctp_addr *paddr, void *p)
5101 {
5102 	struct sctp_transport *transport;
5103 	int err;
5104 
5105 	rcu_read_lock();
5106 	transport = sctp_addrs_lookup_transport(net, laddr, paddr);
5107 	rcu_read_unlock();
5108 	if (!transport)
5109 		return -ENOENT;
5110 
5111 	err = cb(transport, p);
5112 	sctp_transport_put(transport);
5113 
5114 	return err;
5115 }
5116 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
5117 
5118 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
5119 			    int (*cb_done)(struct sctp_transport *, void *),
5120 			    struct net *net, int *pos, void *p) {
5121 	struct rhashtable_iter hti;
5122 	struct sctp_transport *tsp;
5123 	int ret;
5124 
5125 again:
5126 	ret = 0;
5127 	sctp_transport_walk_start(&hti);
5128 
5129 	tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
5130 	for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
5131 		ret = cb(tsp, p);
5132 		if (ret)
5133 			break;
5134 		(*pos)++;
5135 		sctp_transport_put(tsp);
5136 	}
5137 	sctp_transport_walk_stop(&hti);
5138 
5139 	if (ret) {
5140 		if (cb_done && !cb_done(tsp, p)) {
5141 			(*pos)++;
5142 			sctp_transport_put(tsp);
5143 			goto again;
5144 		}
5145 		sctp_transport_put(tsp);
5146 	}
5147 
5148 	return ret;
5149 }
5150 EXPORT_SYMBOL_GPL(sctp_for_each_transport);
5151 
5152 /* 7.2.1 Association Status (SCTP_STATUS)
5153 
5154  * Applications can retrieve current status information about an
5155  * association, including association state, peer receiver window size,
5156  * number of unacked data chunks, and number of data chunks pending
5157  * receipt.  This information is read-only.
5158  */
5159 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
5160 				       char __user *optval,
5161 				       int __user *optlen)
5162 {
5163 	struct sctp_status status;
5164 	struct sctp_association *asoc = NULL;
5165 	struct sctp_transport *transport;
5166 	sctp_assoc_t associd;
5167 	int retval = 0;
5168 
5169 	if (len < sizeof(status)) {
5170 		retval = -EINVAL;
5171 		goto out;
5172 	}
5173 
5174 	len = sizeof(status);
5175 	if (copy_from_user(&status, optval, len)) {
5176 		retval = -EFAULT;
5177 		goto out;
5178 	}
5179 
5180 	associd = status.sstat_assoc_id;
5181 	asoc = sctp_id2assoc(sk, associd);
5182 	if (!asoc) {
5183 		retval = -EINVAL;
5184 		goto out;
5185 	}
5186 
5187 	transport = asoc->peer.primary_path;
5188 
5189 	status.sstat_assoc_id = sctp_assoc2id(asoc);
5190 	status.sstat_state = sctp_assoc_to_state(asoc);
5191 	status.sstat_rwnd =  asoc->peer.rwnd;
5192 	status.sstat_unackdata = asoc->unack_data;
5193 
5194 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5195 	status.sstat_instrms = asoc->stream.incnt;
5196 	status.sstat_outstrms = asoc->stream.outcnt;
5197 	status.sstat_fragmentation_point = asoc->frag_point;
5198 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5199 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
5200 			transport->af_specific->sockaddr_len);
5201 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
5202 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
5203 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
5204 	status.sstat_primary.spinfo_state = transport->state;
5205 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
5206 	status.sstat_primary.spinfo_srtt = transport->srtt;
5207 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
5208 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
5209 
5210 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
5211 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
5212 
5213 	if (put_user(len, optlen)) {
5214 		retval = -EFAULT;
5215 		goto out;
5216 	}
5217 
5218 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
5219 		 __func__, len, status.sstat_state, status.sstat_rwnd,
5220 		 status.sstat_assoc_id);
5221 
5222 	if (copy_to_user(optval, &status, len)) {
5223 		retval = -EFAULT;
5224 		goto out;
5225 	}
5226 
5227 out:
5228 	return retval;
5229 }
5230 
5231 
5232 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
5233  *
5234  * Applications can retrieve information about a specific peer address
5235  * of an association, including its reachability state, congestion
5236  * window, and retransmission timer values.  This information is
5237  * read-only.
5238  */
5239 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
5240 					  char __user *optval,
5241 					  int __user *optlen)
5242 {
5243 	struct sctp_paddrinfo pinfo;
5244 	struct sctp_transport *transport;
5245 	int retval = 0;
5246 
5247 	if (len < sizeof(pinfo)) {
5248 		retval = -EINVAL;
5249 		goto out;
5250 	}
5251 
5252 	len = sizeof(pinfo);
5253 	if (copy_from_user(&pinfo, optval, len)) {
5254 		retval = -EFAULT;
5255 		goto out;
5256 	}
5257 
5258 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
5259 					   pinfo.spinfo_assoc_id);
5260 	if (!transport)
5261 		return -EINVAL;
5262 
5263 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5264 	pinfo.spinfo_state = transport->state;
5265 	pinfo.spinfo_cwnd = transport->cwnd;
5266 	pinfo.spinfo_srtt = transport->srtt;
5267 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
5268 	pinfo.spinfo_mtu = transport->pathmtu;
5269 
5270 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
5271 		pinfo.spinfo_state = SCTP_ACTIVE;
5272 
5273 	if (put_user(len, optlen)) {
5274 		retval = -EFAULT;
5275 		goto out;
5276 	}
5277 
5278 	if (copy_to_user(optval, &pinfo, len)) {
5279 		retval = -EFAULT;
5280 		goto out;
5281 	}
5282 
5283 out:
5284 	return retval;
5285 }
5286 
5287 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
5288  *
5289  * This option is a on/off flag.  If enabled no SCTP message
5290  * fragmentation will be performed.  Instead if a message being sent
5291  * exceeds the current PMTU size, the message will NOT be sent and
5292  * instead a error will be indicated to the user.
5293  */
5294 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
5295 					char __user *optval, int __user *optlen)
5296 {
5297 	int val;
5298 
5299 	if (len < sizeof(int))
5300 		return -EINVAL;
5301 
5302 	len = sizeof(int);
5303 	val = (sctp_sk(sk)->disable_fragments == 1);
5304 	if (put_user(len, optlen))
5305 		return -EFAULT;
5306 	if (copy_to_user(optval, &val, len))
5307 		return -EFAULT;
5308 	return 0;
5309 }
5310 
5311 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
5312  *
5313  * This socket option is used to specify various notifications and
5314  * ancillary data the user wishes to receive.
5315  */
5316 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
5317 				  int __user *optlen)
5318 {
5319 	struct sctp_event_subscribe subscribe;
5320 	__u8 *sn_type = (__u8 *)&subscribe;
5321 	int i;
5322 
5323 	if (len == 0)
5324 		return -EINVAL;
5325 	if (len > sizeof(struct sctp_event_subscribe))
5326 		len = sizeof(struct sctp_event_subscribe);
5327 	if (put_user(len, optlen))
5328 		return -EFAULT;
5329 
5330 	for (i = 0; i < len; i++)
5331 		sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe,
5332 							SCTP_SN_TYPE_BASE + i);
5333 
5334 	if (copy_to_user(optval, &subscribe, len))
5335 		return -EFAULT;
5336 
5337 	return 0;
5338 }
5339 
5340 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
5341  *
5342  * This socket option is applicable to the UDP-style socket only.  When
5343  * set it will cause associations that are idle for more than the
5344  * specified number of seconds to automatically close.  An association
5345  * being idle is defined an association that has NOT sent or received
5346  * user data.  The special value of '0' indicates that no automatic
5347  * close of any associations should be performed.  The option expects an
5348  * integer defining the number of seconds of idle time before an
5349  * association is closed.
5350  */
5351 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
5352 {
5353 	/* Applicable to UDP-style socket only */
5354 	if (sctp_style(sk, TCP))
5355 		return -EOPNOTSUPP;
5356 	if (len < sizeof(int))
5357 		return -EINVAL;
5358 	len = sizeof(int);
5359 	if (put_user(len, optlen))
5360 		return -EFAULT;
5361 	if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval))
5362 		return -EFAULT;
5363 	return 0;
5364 }
5365 
5366 /* Helper routine to branch off an association to a new socket.  */
5367 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
5368 {
5369 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
5370 	struct sctp_sock *sp = sctp_sk(sk);
5371 	struct socket *sock;
5372 	int err = 0;
5373 
5374 	/* Do not peel off from one netns to another one. */
5375 	if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
5376 		return -EINVAL;
5377 
5378 	if (!asoc)
5379 		return -EINVAL;
5380 
5381 	/* An association cannot be branched off from an already peeled-off
5382 	 * socket, nor is this supported for tcp style sockets.
5383 	 */
5384 	if (!sctp_style(sk, UDP))
5385 		return -EINVAL;
5386 
5387 	/* Create a new socket.  */
5388 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
5389 	if (err < 0)
5390 		return err;
5391 
5392 	sctp_copy_sock(sock->sk, sk, asoc);
5393 
5394 	/* Make peeled-off sockets more like 1-1 accepted sockets.
5395 	 * Set the daddr and initialize id to something more random and also
5396 	 * copy over any ip options.
5397 	 */
5398 	sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
5399 	sp->pf->copy_ip_options(sk, sock->sk);
5400 
5401 	/* Populate the fields of the newsk from the oldsk and migrate the
5402 	 * asoc to the newsk.
5403 	 */
5404 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5405 
5406 	*sockp = sock;
5407 
5408 	return err;
5409 }
5410 EXPORT_SYMBOL(sctp_do_peeloff);
5411 
5412 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5413 					  struct file **newfile, unsigned flags)
5414 {
5415 	struct socket *newsock;
5416 	int retval;
5417 
5418 	retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5419 	if (retval < 0)
5420 		goto out;
5421 
5422 	/* Map the socket to an unused fd that can be returned to the user.  */
5423 	retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
5424 	if (retval < 0) {
5425 		sock_release(newsock);
5426 		goto out;
5427 	}
5428 
5429 	*newfile = sock_alloc_file(newsock, 0, NULL);
5430 	if (IS_ERR(*newfile)) {
5431 		put_unused_fd(retval);
5432 		retval = PTR_ERR(*newfile);
5433 		*newfile = NULL;
5434 		return retval;
5435 	}
5436 
5437 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5438 		 retval);
5439 
5440 	peeloff->sd = retval;
5441 
5442 	if (flags & SOCK_NONBLOCK)
5443 		(*newfile)->f_flags |= O_NONBLOCK;
5444 out:
5445 	return retval;
5446 }
5447 
5448 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5449 {
5450 	sctp_peeloff_arg_t peeloff;
5451 	struct file *newfile = NULL;
5452 	int retval = 0;
5453 
5454 	if (len < sizeof(sctp_peeloff_arg_t))
5455 		return -EINVAL;
5456 	len = sizeof(sctp_peeloff_arg_t);
5457 	if (copy_from_user(&peeloff, optval, len))
5458 		return -EFAULT;
5459 
5460 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5461 	if (retval < 0)
5462 		goto out;
5463 
5464 	/* Return the fd mapped to the new socket.  */
5465 	if (put_user(len, optlen)) {
5466 		fput(newfile);
5467 		put_unused_fd(retval);
5468 		return -EFAULT;
5469 	}
5470 
5471 	if (copy_to_user(optval, &peeloff, len)) {
5472 		fput(newfile);
5473 		put_unused_fd(retval);
5474 		return -EFAULT;
5475 	}
5476 	fd_install(retval, newfile);
5477 out:
5478 	return retval;
5479 }
5480 
5481 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5482 					 char __user *optval, int __user *optlen)
5483 {
5484 	sctp_peeloff_flags_arg_t peeloff;
5485 	struct file *newfile = NULL;
5486 	int retval = 0;
5487 
5488 	if (len < sizeof(sctp_peeloff_flags_arg_t))
5489 		return -EINVAL;
5490 	len = sizeof(sctp_peeloff_flags_arg_t);
5491 	if (copy_from_user(&peeloff, optval, len))
5492 		return -EFAULT;
5493 
5494 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5495 						&newfile, peeloff.flags);
5496 	if (retval < 0)
5497 		goto out;
5498 
5499 	/* Return the fd mapped to the new socket.  */
5500 	if (put_user(len, optlen)) {
5501 		fput(newfile);
5502 		put_unused_fd(retval);
5503 		return -EFAULT;
5504 	}
5505 
5506 	if (copy_to_user(optval, &peeloff, len)) {
5507 		fput(newfile);
5508 		put_unused_fd(retval);
5509 		return -EFAULT;
5510 	}
5511 	fd_install(retval, newfile);
5512 out:
5513 	return retval;
5514 }
5515 
5516 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5517  *
5518  * Applications can enable or disable heartbeats for any peer address of
5519  * an association, modify an address's heartbeat interval, force a
5520  * heartbeat to be sent immediately, and adjust the address's maximum
5521  * number of retransmissions sent before an address is considered
5522  * unreachable.  The following structure is used to access and modify an
5523  * address's parameters:
5524  *
5525  *  struct sctp_paddrparams {
5526  *     sctp_assoc_t            spp_assoc_id;
5527  *     struct sockaddr_storage spp_address;
5528  *     uint32_t                spp_hbinterval;
5529  *     uint16_t                spp_pathmaxrxt;
5530  *     uint32_t                spp_pathmtu;
5531  *     uint32_t                spp_sackdelay;
5532  *     uint32_t                spp_flags;
5533  * };
5534  *
5535  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
5536  *                     application, and identifies the association for
5537  *                     this query.
5538  *   spp_address     - This specifies which address is of interest.
5539  *   spp_hbinterval  - This contains the value of the heartbeat interval,
5540  *                     in milliseconds.  If a  value of zero
5541  *                     is present in this field then no changes are to
5542  *                     be made to this parameter.
5543  *   spp_pathmaxrxt  - This contains the maximum number of
5544  *                     retransmissions before this address shall be
5545  *                     considered unreachable. If a  value of zero
5546  *                     is present in this field then no changes are to
5547  *                     be made to this parameter.
5548  *   spp_pathmtu     - When Path MTU discovery is disabled the value
5549  *                     specified here will be the "fixed" path mtu.
5550  *                     Note that if the spp_address field is empty
5551  *                     then all associations on this address will
5552  *                     have this fixed path mtu set upon them.
5553  *
5554  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
5555  *                     the number of milliseconds that sacks will be delayed
5556  *                     for. This value will apply to all addresses of an
5557  *                     association if the spp_address field is empty. Note
5558  *                     also, that if delayed sack is enabled and this
5559  *                     value is set to 0, no change is made to the last
5560  *                     recorded delayed sack timer value.
5561  *
5562  *   spp_flags       - These flags are used to control various features
5563  *                     on an association. The flag field may contain
5564  *                     zero or more of the following options.
5565  *
5566  *                     SPP_HB_ENABLE  - Enable heartbeats on the
5567  *                     specified address. Note that if the address
5568  *                     field is empty all addresses for the association
5569  *                     have heartbeats enabled upon them.
5570  *
5571  *                     SPP_HB_DISABLE - Disable heartbeats on the
5572  *                     speicifed address. Note that if the address
5573  *                     field is empty all addresses for the association
5574  *                     will have their heartbeats disabled. Note also
5575  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
5576  *                     mutually exclusive, only one of these two should
5577  *                     be specified. Enabling both fields will have
5578  *                     undetermined results.
5579  *
5580  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
5581  *                     to be made immediately.
5582  *
5583  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
5584  *                     discovery upon the specified address. Note that
5585  *                     if the address feild is empty then all addresses
5586  *                     on the association are effected.
5587  *
5588  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
5589  *                     discovery upon the specified address. Note that
5590  *                     if the address feild is empty then all addresses
5591  *                     on the association are effected. Not also that
5592  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5593  *                     exclusive. Enabling both will have undetermined
5594  *                     results.
5595  *
5596  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
5597  *                     on delayed sack. The time specified in spp_sackdelay
5598  *                     is used to specify the sack delay for this address. Note
5599  *                     that if spp_address is empty then all addresses will
5600  *                     enable delayed sack and take on the sack delay
5601  *                     value specified in spp_sackdelay.
5602  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
5603  *                     off delayed sack. If the spp_address field is blank then
5604  *                     delayed sack is disabled for the entire association. Note
5605  *                     also that this field is mutually exclusive to
5606  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
5607  *                     results.
5608  *
5609  *                     SPP_IPV6_FLOWLABEL:  Setting this flag enables the
5610  *                     setting of the IPV6 flow label value.  The value is
5611  *                     contained in the spp_ipv6_flowlabel field.
5612  *                     Upon retrieval, this flag will be set to indicate that
5613  *                     the spp_ipv6_flowlabel field has a valid value returned.
5614  *                     If a specific destination address is set (in the
5615  *                     spp_address field), then the value returned is that of
5616  *                     the address.  If just an association is specified (and
5617  *                     no address), then the association's default flow label
5618  *                     is returned.  If neither an association nor a destination
5619  *                     is specified, then the socket's default flow label is
5620  *                     returned.  For non-IPv6 sockets, this flag will be left
5621  *                     cleared.
5622  *
5623  *                     SPP_DSCP:  Setting this flag enables the setting of the
5624  *                     Differentiated Services Code Point (DSCP) value
5625  *                     associated with either the association or a specific
5626  *                     address.  The value is obtained in the spp_dscp field.
5627  *                     Upon retrieval, this flag will be set to indicate that
5628  *                     the spp_dscp field has a valid value returned.  If a
5629  *                     specific destination address is set when called (in the
5630  *                     spp_address field), then that specific destination
5631  *                     address's DSCP value is returned.  If just an association
5632  *                     is specified, then the association's default DSCP is
5633  *                     returned.  If neither an association nor a destination is
5634  *                     specified, then the socket's default DSCP is returned.
5635  *
5636  *   spp_ipv6_flowlabel
5637  *                   - This field is used in conjunction with the
5638  *                     SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
5639  *                     The 20 least significant bits are used for the flow
5640  *                     label.  This setting has precedence over any IPv6-layer
5641  *                     setting.
5642  *
5643  *   spp_dscp        - This field is used in conjunction with the SPP_DSCP flag
5644  *                     and contains the DSCP.  The 6 most significant bits are
5645  *                     used for the DSCP.  This setting has precedence over any
5646  *                     IPv4- or IPv6- layer setting.
5647  */
5648 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5649 					    char __user *optval, int __user *optlen)
5650 {
5651 	struct sctp_paddrparams  params;
5652 	struct sctp_transport   *trans = NULL;
5653 	struct sctp_association *asoc = NULL;
5654 	struct sctp_sock        *sp = sctp_sk(sk);
5655 
5656 	if (len >= sizeof(params))
5657 		len = sizeof(params);
5658 	else if (len >= ALIGN(offsetof(struct sctp_paddrparams,
5659 				       spp_ipv6_flowlabel), 4))
5660 		len = ALIGN(offsetof(struct sctp_paddrparams,
5661 				     spp_ipv6_flowlabel), 4);
5662 	else
5663 		return -EINVAL;
5664 
5665 	if (copy_from_user(&params, optval, len))
5666 		return -EFAULT;
5667 
5668 	/* If an address other than INADDR_ANY is specified, and
5669 	 * no transport is found, then the request is invalid.
5670 	 */
5671 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
5672 		trans = sctp_addr_id2transport(sk, &params.spp_address,
5673 					       params.spp_assoc_id);
5674 		if (!trans) {
5675 			pr_debug("%s: failed no transport\n", __func__);
5676 			return -EINVAL;
5677 		}
5678 	}
5679 
5680 	/* Get association, if assoc_id != 0 and the socket is a one
5681 	 * to many style socket, and an association was not found, then
5682 	 * the id was invalid.
5683 	 */
5684 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5685 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
5686 		pr_debug("%s: failed no association\n", __func__);
5687 		return -EINVAL;
5688 	}
5689 
5690 	if (trans) {
5691 		/* Fetch transport values. */
5692 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5693 		params.spp_pathmtu    = trans->pathmtu;
5694 		params.spp_pathmaxrxt = trans->pathmaxrxt;
5695 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
5696 
5697 		/*draft-11 doesn't say what to return in spp_flags*/
5698 		params.spp_flags      = trans->param_flags;
5699 		if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5700 			params.spp_ipv6_flowlabel = trans->flowlabel &
5701 						    SCTP_FLOWLABEL_VAL_MASK;
5702 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5703 		}
5704 		if (trans->dscp & SCTP_DSCP_SET_MASK) {
5705 			params.spp_dscp	= trans->dscp & SCTP_DSCP_VAL_MASK;
5706 			params.spp_flags |= SPP_DSCP;
5707 		}
5708 	} else if (asoc) {
5709 		/* Fetch association values. */
5710 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5711 		params.spp_pathmtu    = asoc->pathmtu;
5712 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
5713 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
5714 
5715 		/*draft-11 doesn't say what to return in spp_flags*/
5716 		params.spp_flags      = asoc->param_flags;
5717 		if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5718 			params.spp_ipv6_flowlabel = asoc->flowlabel &
5719 						    SCTP_FLOWLABEL_VAL_MASK;
5720 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5721 		}
5722 		if (asoc->dscp & SCTP_DSCP_SET_MASK) {
5723 			params.spp_dscp	= asoc->dscp & SCTP_DSCP_VAL_MASK;
5724 			params.spp_flags |= SPP_DSCP;
5725 		}
5726 	} else {
5727 		/* Fetch socket values. */
5728 		params.spp_hbinterval = sp->hbinterval;
5729 		params.spp_pathmtu    = sp->pathmtu;
5730 		params.spp_sackdelay  = sp->sackdelay;
5731 		params.spp_pathmaxrxt = sp->pathmaxrxt;
5732 
5733 		/*draft-11 doesn't say what to return in spp_flags*/
5734 		params.spp_flags      = sp->param_flags;
5735 		if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5736 			params.spp_ipv6_flowlabel = sp->flowlabel &
5737 						    SCTP_FLOWLABEL_VAL_MASK;
5738 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5739 		}
5740 		if (sp->dscp & SCTP_DSCP_SET_MASK) {
5741 			params.spp_dscp	= sp->dscp & SCTP_DSCP_VAL_MASK;
5742 			params.spp_flags |= SPP_DSCP;
5743 		}
5744 	}
5745 
5746 	if (copy_to_user(optval, &params, len))
5747 		return -EFAULT;
5748 
5749 	if (put_user(len, optlen))
5750 		return -EFAULT;
5751 
5752 	return 0;
5753 }
5754 
5755 /*
5756  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
5757  *
5758  * This option will effect the way delayed acks are performed.  This
5759  * option allows you to get or set the delayed ack time, in
5760  * milliseconds.  It also allows changing the delayed ack frequency.
5761  * Changing the frequency to 1 disables the delayed sack algorithm.  If
5762  * the assoc_id is 0, then this sets or gets the endpoints default
5763  * values.  If the assoc_id field is non-zero, then the set or get
5764  * effects the specified association for the one to many model (the
5765  * assoc_id field is ignored by the one to one model).  Note that if
5766  * sack_delay or sack_freq are 0 when setting this option, then the
5767  * current values will remain unchanged.
5768  *
5769  * struct sctp_sack_info {
5770  *     sctp_assoc_t            sack_assoc_id;
5771  *     uint32_t                sack_delay;
5772  *     uint32_t                sack_freq;
5773  * };
5774  *
5775  * sack_assoc_id -  This parameter, indicates which association the user
5776  *    is performing an action upon.  Note that if this field's value is
5777  *    zero then the endpoints default value is changed (effecting future
5778  *    associations only).
5779  *
5780  * sack_delay -  This parameter contains the number of milliseconds that
5781  *    the user is requesting the delayed ACK timer be set to.  Note that
5782  *    this value is defined in the standard to be between 200 and 500
5783  *    milliseconds.
5784  *
5785  * sack_freq -  This parameter contains the number of packets that must
5786  *    be received before a sack is sent without waiting for the delay
5787  *    timer to expire.  The default value for this is 2, setting this
5788  *    value to 1 will disable the delayed sack algorithm.
5789  */
5790 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
5791 					    char __user *optval,
5792 					    int __user *optlen)
5793 {
5794 	struct sctp_sack_info    params;
5795 	struct sctp_association *asoc = NULL;
5796 	struct sctp_sock        *sp = sctp_sk(sk);
5797 
5798 	if (len >= sizeof(struct sctp_sack_info)) {
5799 		len = sizeof(struct sctp_sack_info);
5800 
5801 		if (copy_from_user(&params, optval, len))
5802 			return -EFAULT;
5803 	} else if (len == sizeof(struct sctp_assoc_value)) {
5804 		pr_warn_ratelimited(DEPRECATED
5805 				    "%s (pid %d) "
5806 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
5807 				    "Use struct sctp_sack_info instead\n",
5808 				    current->comm, task_pid_nr(current));
5809 		if (copy_from_user(&params, optval, len))
5810 			return -EFAULT;
5811 	} else
5812 		return -EINVAL;
5813 
5814 	/* Get association, if sack_assoc_id != 0 and the socket is a one
5815 	 * to many style socket, and an association was not found, then
5816 	 * the id was invalid.
5817 	 */
5818 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
5819 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
5820 		return -EINVAL;
5821 
5822 	if (asoc) {
5823 		/* Fetch association values. */
5824 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
5825 			params.sack_delay = jiffies_to_msecs(
5826 				asoc->sackdelay);
5827 			params.sack_freq = asoc->sackfreq;
5828 
5829 		} else {
5830 			params.sack_delay = 0;
5831 			params.sack_freq = 1;
5832 		}
5833 	} else {
5834 		/* Fetch socket values. */
5835 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
5836 			params.sack_delay  = sp->sackdelay;
5837 			params.sack_freq = sp->sackfreq;
5838 		} else {
5839 			params.sack_delay  = 0;
5840 			params.sack_freq = 1;
5841 		}
5842 	}
5843 
5844 	if (copy_to_user(optval, &params, len))
5845 		return -EFAULT;
5846 
5847 	if (put_user(len, optlen))
5848 		return -EFAULT;
5849 
5850 	return 0;
5851 }
5852 
5853 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
5854  *
5855  * Applications can specify protocol parameters for the default association
5856  * initialization.  The option name argument to setsockopt() and getsockopt()
5857  * is SCTP_INITMSG.
5858  *
5859  * Setting initialization parameters is effective only on an unconnected
5860  * socket (for UDP-style sockets only future associations are effected
5861  * by the change).  With TCP-style sockets, this option is inherited by
5862  * sockets derived from a listener socket.
5863  */
5864 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
5865 {
5866 	if (len < sizeof(struct sctp_initmsg))
5867 		return -EINVAL;
5868 	len = sizeof(struct sctp_initmsg);
5869 	if (put_user(len, optlen))
5870 		return -EFAULT;
5871 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
5872 		return -EFAULT;
5873 	return 0;
5874 }
5875 
5876 
5877 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
5878 				      char __user *optval, int __user *optlen)
5879 {
5880 	struct sctp_association *asoc;
5881 	int cnt = 0;
5882 	struct sctp_getaddrs getaddrs;
5883 	struct sctp_transport *from;
5884 	void __user *to;
5885 	union sctp_addr temp;
5886 	struct sctp_sock *sp = sctp_sk(sk);
5887 	int addrlen;
5888 	size_t space_left;
5889 	int bytes_copied;
5890 
5891 	if (len < sizeof(struct sctp_getaddrs))
5892 		return -EINVAL;
5893 
5894 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5895 		return -EFAULT;
5896 
5897 	/* For UDP-style sockets, id specifies the association to query.  */
5898 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5899 	if (!asoc)
5900 		return -EINVAL;
5901 
5902 	to = optval + offsetof(struct sctp_getaddrs, addrs);
5903 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
5904 
5905 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
5906 				transports) {
5907 		memcpy(&temp, &from->ipaddr, sizeof(temp));
5908 		addrlen = sctp_get_pf_specific(sk->sk_family)
5909 			      ->addr_to_user(sp, &temp);
5910 		if (space_left < addrlen)
5911 			return -ENOMEM;
5912 		if (copy_to_user(to, &temp, addrlen))
5913 			return -EFAULT;
5914 		to += addrlen;
5915 		cnt++;
5916 		space_left -= addrlen;
5917 	}
5918 
5919 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
5920 		return -EFAULT;
5921 	bytes_copied = ((char __user *)to) - optval;
5922 	if (put_user(bytes_copied, optlen))
5923 		return -EFAULT;
5924 
5925 	return 0;
5926 }
5927 
5928 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
5929 			    size_t space_left, int *bytes_copied)
5930 {
5931 	struct sctp_sockaddr_entry *addr;
5932 	union sctp_addr temp;
5933 	int cnt = 0;
5934 	int addrlen;
5935 	struct net *net = sock_net(sk);
5936 
5937 	rcu_read_lock();
5938 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
5939 		if (!addr->valid)
5940 			continue;
5941 
5942 		if ((PF_INET == sk->sk_family) &&
5943 		    (AF_INET6 == addr->a.sa.sa_family))
5944 			continue;
5945 		if ((PF_INET6 == sk->sk_family) &&
5946 		    inet_v6_ipv6only(sk) &&
5947 		    (AF_INET == addr->a.sa.sa_family))
5948 			continue;
5949 		memcpy(&temp, &addr->a, sizeof(temp));
5950 		if (!temp.v4.sin_port)
5951 			temp.v4.sin_port = htons(port);
5952 
5953 		addrlen = sctp_get_pf_specific(sk->sk_family)
5954 			      ->addr_to_user(sctp_sk(sk), &temp);
5955 
5956 		if (space_left < addrlen) {
5957 			cnt =  -ENOMEM;
5958 			break;
5959 		}
5960 		memcpy(to, &temp, addrlen);
5961 
5962 		to += addrlen;
5963 		cnt++;
5964 		space_left -= addrlen;
5965 		*bytes_copied += addrlen;
5966 	}
5967 	rcu_read_unlock();
5968 
5969 	return cnt;
5970 }
5971 
5972 
5973 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
5974 				       char __user *optval, int __user *optlen)
5975 {
5976 	struct sctp_bind_addr *bp;
5977 	struct sctp_association *asoc;
5978 	int cnt = 0;
5979 	struct sctp_getaddrs getaddrs;
5980 	struct sctp_sockaddr_entry *addr;
5981 	void __user *to;
5982 	union sctp_addr temp;
5983 	struct sctp_sock *sp = sctp_sk(sk);
5984 	int addrlen;
5985 	int err = 0;
5986 	size_t space_left;
5987 	int bytes_copied = 0;
5988 	void *addrs;
5989 	void *buf;
5990 
5991 	if (len < sizeof(struct sctp_getaddrs))
5992 		return -EINVAL;
5993 
5994 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5995 		return -EFAULT;
5996 
5997 	/*
5998 	 *  For UDP-style sockets, id specifies the association to query.
5999 	 *  If the id field is set to the value '0' then the locally bound
6000 	 *  addresses are returned without regard to any particular
6001 	 *  association.
6002 	 */
6003 	if (0 == getaddrs.assoc_id) {
6004 		bp = &sctp_sk(sk)->ep->base.bind_addr;
6005 	} else {
6006 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6007 		if (!asoc)
6008 			return -EINVAL;
6009 		bp = &asoc->base.bind_addr;
6010 	}
6011 
6012 	to = optval + offsetof(struct sctp_getaddrs, addrs);
6013 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
6014 
6015 	addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
6016 	if (!addrs)
6017 		return -ENOMEM;
6018 
6019 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
6020 	 * addresses from the global local address list.
6021 	 */
6022 	if (sctp_list_single_entry(&bp->address_list)) {
6023 		addr = list_entry(bp->address_list.next,
6024 				  struct sctp_sockaddr_entry, list);
6025 		if (sctp_is_any(sk, &addr->a)) {
6026 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
6027 						space_left, &bytes_copied);
6028 			if (cnt < 0) {
6029 				err = cnt;
6030 				goto out;
6031 			}
6032 			goto copy_getaddrs;
6033 		}
6034 	}
6035 
6036 	buf = addrs;
6037 	/* Protection on the bound address list is not needed since
6038 	 * in the socket option context we hold a socket lock and
6039 	 * thus the bound address list can't change.
6040 	 */
6041 	list_for_each_entry(addr, &bp->address_list, list) {
6042 		memcpy(&temp, &addr->a, sizeof(temp));
6043 		addrlen = sctp_get_pf_specific(sk->sk_family)
6044 			      ->addr_to_user(sp, &temp);
6045 		if (space_left < addrlen) {
6046 			err =  -ENOMEM; /*fixme: right error?*/
6047 			goto out;
6048 		}
6049 		memcpy(buf, &temp, addrlen);
6050 		buf += addrlen;
6051 		bytes_copied += addrlen;
6052 		cnt++;
6053 		space_left -= addrlen;
6054 	}
6055 
6056 copy_getaddrs:
6057 	if (copy_to_user(to, addrs, bytes_copied)) {
6058 		err = -EFAULT;
6059 		goto out;
6060 	}
6061 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
6062 		err = -EFAULT;
6063 		goto out;
6064 	}
6065 	/* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
6066 	 * but we can't change it anymore.
6067 	 */
6068 	if (put_user(bytes_copied, optlen))
6069 		err = -EFAULT;
6070 out:
6071 	kfree(addrs);
6072 	return err;
6073 }
6074 
6075 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
6076  *
6077  * Requests that the local SCTP stack use the enclosed peer address as
6078  * the association primary.  The enclosed address must be one of the
6079  * association peer's addresses.
6080  */
6081 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
6082 					char __user *optval, int __user *optlen)
6083 {
6084 	struct sctp_prim prim;
6085 	struct sctp_association *asoc;
6086 	struct sctp_sock *sp = sctp_sk(sk);
6087 
6088 	if (len < sizeof(struct sctp_prim))
6089 		return -EINVAL;
6090 
6091 	len = sizeof(struct sctp_prim);
6092 
6093 	if (copy_from_user(&prim, optval, len))
6094 		return -EFAULT;
6095 
6096 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
6097 	if (!asoc)
6098 		return -EINVAL;
6099 
6100 	if (!asoc->peer.primary_path)
6101 		return -ENOTCONN;
6102 
6103 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
6104 		asoc->peer.primary_path->af_specific->sockaddr_len);
6105 
6106 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
6107 			(union sctp_addr *)&prim.ssp_addr);
6108 
6109 	if (put_user(len, optlen))
6110 		return -EFAULT;
6111 	if (copy_to_user(optval, &prim, len))
6112 		return -EFAULT;
6113 
6114 	return 0;
6115 }
6116 
6117 /*
6118  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
6119  *
6120  * Requests that the local endpoint set the specified Adaptation Layer
6121  * Indication parameter for all future INIT and INIT-ACK exchanges.
6122  */
6123 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
6124 				  char __user *optval, int __user *optlen)
6125 {
6126 	struct sctp_setadaptation adaptation;
6127 
6128 	if (len < sizeof(struct sctp_setadaptation))
6129 		return -EINVAL;
6130 
6131 	len = sizeof(struct sctp_setadaptation);
6132 
6133 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
6134 
6135 	if (put_user(len, optlen))
6136 		return -EFAULT;
6137 	if (copy_to_user(optval, &adaptation, len))
6138 		return -EFAULT;
6139 
6140 	return 0;
6141 }
6142 
6143 /*
6144  *
6145  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
6146  *
6147  *   Applications that wish to use the sendto() system call may wish to
6148  *   specify a default set of parameters that would normally be supplied
6149  *   through the inclusion of ancillary data.  This socket option allows
6150  *   such an application to set the default sctp_sndrcvinfo structure.
6151 
6152 
6153  *   The application that wishes to use this socket option simply passes
6154  *   in to this call the sctp_sndrcvinfo structure defined in Section
6155  *   5.2.2) The input parameters accepted by this call include
6156  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
6157  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
6158  *   to this call if the caller is using the UDP model.
6159  *
6160  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
6161  */
6162 static int sctp_getsockopt_default_send_param(struct sock *sk,
6163 					int len, char __user *optval,
6164 					int __user *optlen)
6165 {
6166 	struct sctp_sock *sp = sctp_sk(sk);
6167 	struct sctp_association *asoc;
6168 	struct sctp_sndrcvinfo info;
6169 
6170 	if (len < sizeof(info))
6171 		return -EINVAL;
6172 
6173 	len = sizeof(info);
6174 
6175 	if (copy_from_user(&info, optval, len))
6176 		return -EFAULT;
6177 
6178 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
6179 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
6180 		return -EINVAL;
6181 	if (asoc) {
6182 		info.sinfo_stream = asoc->default_stream;
6183 		info.sinfo_flags = asoc->default_flags;
6184 		info.sinfo_ppid = asoc->default_ppid;
6185 		info.sinfo_context = asoc->default_context;
6186 		info.sinfo_timetolive = asoc->default_timetolive;
6187 	} else {
6188 		info.sinfo_stream = sp->default_stream;
6189 		info.sinfo_flags = sp->default_flags;
6190 		info.sinfo_ppid = sp->default_ppid;
6191 		info.sinfo_context = sp->default_context;
6192 		info.sinfo_timetolive = sp->default_timetolive;
6193 	}
6194 
6195 	if (put_user(len, optlen))
6196 		return -EFAULT;
6197 	if (copy_to_user(optval, &info, len))
6198 		return -EFAULT;
6199 
6200 	return 0;
6201 }
6202 
6203 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
6204  * (SCTP_DEFAULT_SNDINFO)
6205  */
6206 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
6207 					   char __user *optval,
6208 					   int __user *optlen)
6209 {
6210 	struct sctp_sock *sp = sctp_sk(sk);
6211 	struct sctp_association *asoc;
6212 	struct sctp_sndinfo info;
6213 
6214 	if (len < sizeof(info))
6215 		return -EINVAL;
6216 
6217 	len = sizeof(info);
6218 
6219 	if (copy_from_user(&info, optval, len))
6220 		return -EFAULT;
6221 
6222 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
6223 	if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
6224 		return -EINVAL;
6225 	if (asoc) {
6226 		info.snd_sid = asoc->default_stream;
6227 		info.snd_flags = asoc->default_flags;
6228 		info.snd_ppid = asoc->default_ppid;
6229 		info.snd_context = asoc->default_context;
6230 	} else {
6231 		info.snd_sid = sp->default_stream;
6232 		info.snd_flags = sp->default_flags;
6233 		info.snd_ppid = sp->default_ppid;
6234 		info.snd_context = sp->default_context;
6235 	}
6236 
6237 	if (put_user(len, optlen))
6238 		return -EFAULT;
6239 	if (copy_to_user(optval, &info, len))
6240 		return -EFAULT;
6241 
6242 	return 0;
6243 }
6244 
6245 /*
6246  *
6247  * 7.1.5 SCTP_NODELAY
6248  *
6249  * Turn on/off any Nagle-like algorithm.  This means that packets are
6250  * generally sent as soon as possible and no unnecessary delays are
6251  * introduced, at the cost of more packets in the network.  Expects an
6252  * integer boolean flag.
6253  */
6254 
6255 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
6256 				   char __user *optval, int __user *optlen)
6257 {
6258 	int val;
6259 
6260 	if (len < sizeof(int))
6261 		return -EINVAL;
6262 
6263 	len = sizeof(int);
6264 	val = (sctp_sk(sk)->nodelay == 1);
6265 	if (put_user(len, optlen))
6266 		return -EFAULT;
6267 	if (copy_to_user(optval, &val, len))
6268 		return -EFAULT;
6269 	return 0;
6270 }
6271 
6272 /*
6273  *
6274  * 7.1.1 SCTP_RTOINFO
6275  *
6276  * The protocol parameters used to initialize and bound retransmission
6277  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
6278  * and modify these parameters.
6279  * All parameters are time values, in milliseconds.  A value of 0, when
6280  * modifying the parameters, indicates that the current value should not
6281  * be changed.
6282  *
6283  */
6284 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
6285 				char __user *optval,
6286 				int __user *optlen) {
6287 	struct sctp_rtoinfo rtoinfo;
6288 	struct sctp_association *asoc;
6289 
6290 	if (len < sizeof (struct sctp_rtoinfo))
6291 		return -EINVAL;
6292 
6293 	len = sizeof(struct sctp_rtoinfo);
6294 
6295 	if (copy_from_user(&rtoinfo, optval, len))
6296 		return -EFAULT;
6297 
6298 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
6299 
6300 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
6301 		return -EINVAL;
6302 
6303 	/* Values corresponding to the specific association. */
6304 	if (asoc) {
6305 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
6306 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
6307 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
6308 	} else {
6309 		/* Values corresponding to the endpoint. */
6310 		struct sctp_sock *sp = sctp_sk(sk);
6311 
6312 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
6313 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
6314 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
6315 	}
6316 
6317 	if (put_user(len, optlen))
6318 		return -EFAULT;
6319 
6320 	if (copy_to_user(optval, &rtoinfo, len))
6321 		return -EFAULT;
6322 
6323 	return 0;
6324 }
6325 
6326 /*
6327  *
6328  * 7.1.2 SCTP_ASSOCINFO
6329  *
6330  * This option is used to tune the maximum retransmission attempts
6331  * of the association.
6332  * Returns an error if the new association retransmission value is
6333  * greater than the sum of the retransmission value  of the peer.
6334  * See [SCTP] for more information.
6335  *
6336  */
6337 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
6338 				     char __user *optval,
6339 				     int __user *optlen)
6340 {
6341 
6342 	struct sctp_assocparams assocparams;
6343 	struct sctp_association *asoc;
6344 	struct list_head *pos;
6345 	int cnt = 0;
6346 
6347 	if (len < sizeof (struct sctp_assocparams))
6348 		return -EINVAL;
6349 
6350 	len = sizeof(struct sctp_assocparams);
6351 
6352 	if (copy_from_user(&assocparams, optval, len))
6353 		return -EFAULT;
6354 
6355 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
6356 
6357 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
6358 		return -EINVAL;
6359 
6360 	/* Values correspoinding to the specific association */
6361 	if (asoc) {
6362 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
6363 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
6364 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
6365 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
6366 
6367 		list_for_each(pos, &asoc->peer.transport_addr_list) {
6368 			cnt++;
6369 		}
6370 
6371 		assocparams.sasoc_number_peer_destinations = cnt;
6372 	} else {
6373 		/* Values corresponding to the endpoint */
6374 		struct sctp_sock *sp = sctp_sk(sk);
6375 
6376 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
6377 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
6378 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
6379 		assocparams.sasoc_cookie_life =
6380 					sp->assocparams.sasoc_cookie_life;
6381 		assocparams.sasoc_number_peer_destinations =
6382 					sp->assocparams.
6383 					sasoc_number_peer_destinations;
6384 	}
6385 
6386 	if (put_user(len, optlen))
6387 		return -EFAULT;
6388 
6389 	if (copy_to_user(optval, &assocparams, len))
6390 		return -EFAULT;
6391 
6392 	return 0;
6393 }
6394 
6395 /*
6396  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
6397  *
6398  * This socket option is a boolean flag which turns on or off mapped V4
6399  * addresses.  If this option is turned on and the socket is type
6400  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
6401  * If this option is turned off, then no mapping will be done of V4
6402  * addresses and a user will receive both PF_INET6 and PF_INET type
6403  * addresses on the socket.
6404  */
6405 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
6406 				    char __user *optval, int __user *optlen)
6407 {
6408 	int val;
6409 	struct sctp_sock *sp = sctp_sk(sk);
6410 
6411 	if (len < sizeof(int))
6412 		return -EINVAL;
6413 
6414 	len = sizeof(int);
6415 	val = sp->v4mapped;
6416 	if (put_user(len, optlen))
6417 		return -EFAULT;
6418 	if (copy_to_user(optval, &val, len))
6419 		return -EFAULT;
6420 
6421 	return 0;
6422 }
6423 
6424 /*
6425  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
6426  * (chapter and verse is quoted at sctp_setsockopt_context())
6427  */
6428 static int sctp_getsockopt_context(struct sock *sk, int len,
6429 				   char __user *optval, int __user *optlen)
6430 {
6431 	struct sctp_assoc_value params;
6432 	struct sctp_sock *sp;
6433 	struct sctp_association *asoc;
6434 
6435 	if (len < sizeof(struct sctp_assoc_value))
6436 		return -EINVAL;
6437 
6438 	len = sizeof(struct sctp_assoc_value);
6439 
6440 	if (copy_from_user(&params, optval, len))
6441 		return -EFAULT;
6442 
6443 	sp = sctp_sk(sk);
6444 
6445 	if (params.assoc_id != 0) {
6446 		asoc = sctp_id2assoc(sk, params.assoc_id);
6447 		if (!asoc)
6448 			return -EINVAL;
6449 		params.assoc_value = asoc->default_rcv_context;
6450 	} else {
6451 		params.assoc_value = sp->default_rcv_context;
6452 	}
6453 
6454 	if (put_user(len, optlen))
6455 		return -EFAULT;
6456 	if (copy_to_user(optval, &params, len))
6457 		return -EFAULT;
6458 
6459 	return 0;
6460 }
6461 
6462 /*
6463  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6464  * This option will get or set the maximum size to put in any outgoing
6465  * SCTP DATA chunk.  If a message is larger than this size it will be
6466  * fragmented by SCTP into the specified size.  Note that the underlying
6467  * SCTP implementation may fragment into smaller sized chunks when the
6468  * PMTU of the underlying association is smaller than the value set by
6469  * the user.  The default value for this option is '0' which indicates
6470  * the user is NOT limiting fragmentation and only the PMTU will effect
6471  * SCTP's choice of DATA chunk size.  Note also that values set larger
6472  * than the maximum size of an IP datagram will effectively let SCTP
6473  * control fragmentation (i.e. the same as setting this option to 0).
6474  *
6475  * The following structure is used to access and modify this parameter:
6476  *
6477  * struct sctp_assoc_value {
6478  *   sctp_assoc_t assoc_id;
6479  *   uint32_t assoc_value;
6480  * };
6481  *
6482  * assoc_id:  This parameter is ignored for one-to-one style sockets.
6483  *    For one-to-many style sockets this parameter indicates which
6484  *    association the user is performing an action upon.  Note that if
6485  *    this field's value is zero then the endpoints default value is
6486  *    changed (effecting future associations only).
6487  * assoc_value:  This parameter specifies the maximum size in bytes.
6488  */
6489 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6490 				  char __user *optval, int __user *optlen)
6491 {
6492 	struct sctp_assoc_value params;
6493 	struct sctp_association *asoc;
6494 
6495 	if (len == sizeof(int)) {
6496 		pr_warn_ratelimited(DEPRECATED
6497 				    "%s (pid %d) "
6498 				    "Use of int in maxseg socket option.\n"
6499 				    "Use struct sctp_assoc_value instead\n",
6500 				    current->comm, task_pid_nr(current));
6501 		params.assoc_id = 0;
6502 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6503 		len = sizeof(struct sctp_assoc_value);
6504 		if (copy_from_user(&params, optval, len))
6505 			return -EFAULT;
6506 	} else
6507 		return -EINVAL;
6508 
6509 	asoc = sctp_id2assoc(sk, params.assoc_id);
6510 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
6511 		return -EINVAL;
6512 
6513 	if (asoc)
6514 		params.assoc_value = asoc->frag_point;
6515 	else
6516 		params.assoc_value = sctp_sk(sk)->user_frag;
6517 
6518 	if (put_user(len, optlen))
6519 		return -EFAULT;
6520 	if (len == sizeof(int)) {
6521 		if (copy_to_user(optval, &params.assoc_value, len))
6522 			return -EFAULT;
6523 	} else {
6524 		if (copy_to_user(optval, &params, len))
6525 			return -EFAULT;
6526 	}
6527 
6528 	return 0;
6529 }
6530 
6531 /*
6532  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6533  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6534  */
6535 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6536 					       char __user *optval, int __user *optlen)
6537 {
6538 	int val;
6539 
6540 	if (len < sizeof(int))
6541 		return -EINVAL;
6542 
6543 	len = sizeof(int);
6544 
6545 	val = sctp_sk(sk)->frag_interleave;
6546 	if (put_user(len, optlen))
6547 		return -EFAULT;
6548 	if (copy_to_user(optval, &val, len))
6549 		return -EFAULT;
6550 
6551 	return 0;
6552 }
6553 
6554 /*
6555  * 7.1.25.  Set or Get the sctp partial delivery point
6556  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6557  */
6558 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6559 						  char __user *optval,
6560 						  int __user *optlen)
6561 {
6562 	u32 val;
6563 
6564 	if (len < sizeof(u32))
6565 		return -EINVAL;
6566 
6567 	len = sizeof(u32);
6568 
6569 	val = sctp_sk(sk)->pd_point;
6570 	if (put_user(len, optlen))
6571 		return -EFAULT;
6572 	if (copy_to_user(optval, &val, len))
6573 		return -EFAULT;
6574 
6575 	return 0;
6576 }
6577 
6578 /*
6579  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
6580  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6581  */
6582 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6583 				    char __user *optval,
6584 				    int __user *optlen)
6585 {
6586 	struct sctp_assoc_value params;
6587 	struct sctp_sock *sp;
6588 	struct sctp_association *asoc;
6589 
6590 	if (len == sizeof(int)) {
6591 		pr_warn_ratelimited(DEPRECATED
6592 				    "%s (pid %d) "
6593 				    "Use of int in max_burst socket option.\n"
6594 				    "Use struct sctp_assoc_value instead\n",
6595 				    current->comm, task_pid_nr(current));
6596 		params.assoc_id = 0;
6597 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6598 		len = sizeof(struct sctp_assoc_value);
6599 		if (copy_from_user(&params, optval, len))
6600 			return -EFAULT;
6601 	} else
6602 		return -EINVAL;
6603 
6604 	sp = sctp_sk(sk);
6605 
6606 	if (params.assoc_id != 0) {
6607 		asoc = sctp_id2assoc(sk, params.assoc_id);
6608 		if (!asoc)
6609 			return -EINVAL;
6610 		params.assoc_value = asoc->max_burst;
6611 	} else
6612 		params.assoc_value = sp->max_burst;
6613 
6614 	if (len == sizeof(int)) {
6615 		if (copy_to_user(optval, &params.assoc_value, len))
6616 			return -EFAULT;
6617 	} else {
6618 		if (copy_to_user(optval, &params, len))
6619 			return -EFAULT;
6620 	}
6621 
6622 	return 0;
6623 
6624 }
6625 
6626 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6627 				    char __user *optval, int __user *optlen)
6628 {
6629 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6630 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
6631 	struct sctp_hmac_algo_param *hmacs;
6632 	__u16 data_len = 0;
6633 	u32 num_idents;
6634 	int i;
6635 
6636 	if (!ep->auth_enable)
6637 		return -EACCES;
6638 
6639 	hmacs = ep->auth_hmacs_list;
6640 	data_len = ntohs(hmacs->param_hdr.length) -
6641 		   sizeof(struct sctp_paramhdr);
6642 
6643 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
6644 		return -EINVAL;
6645 
6646 	len = sizeof(struct sctp_hmacalgo) + data_len;
6647 	num_idents = data_len / sizeof(u16);
6648 
6649 	if (put_user(len, optlen))
6650 		return -EFAULT;
6651 	if (put_user(num_idents, &p->shmac_num_idents))
6652 		return -EFAULT;
6653 	for (i = 0; i < num_idents; i++) {
6654 		__u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6655 
6656 		if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6657 			return -EFAULT;
6658 	}
6659 	return 0;
6660 }
6661 
6662 static int sctp_getsockopt_active_key(struct sock *sk, int len,
6663 				    char __user *optval, int __user *optlen)
6664 {
6665 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6666 	struct sctp_authkeyid val;
6667 	struct sctp_association *asoc;
6668 
6669 	if (!ep->auth_enable)
6670 		return -EACCES;
6671 
6672 	if (len < sizeof(struct sctp_authkeyid))
6673 		return -EINVAL;
6674 
6675 	len = sizeof(struct sctp_authkeyid);
6676 	if (copy_from_user(&val, optval, len))
6677 		return -EFAULT;
6678 
6679 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6680 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6681 		return -EINVAL;
6682 
6683 	if (asoc)
6684 		val.scact_keynumber = asoc->active_key_id;
6685 	else
6686 		val.scact_keynumber = ep->active_key_id;
6687 
6688 	if (put_user(len, optlen))
6689 		return -EFAULT;
6690 	if (copy_to_user(optval, &val, len))
6691 		return -EFAULT;
6692 
6693 	return 0;
6694 }
6695 
6696 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6697 				    char __user *optval, int __user *optlen)
6698 {
6699 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6700 	struct sctp_authchunks __user *p = (void __user *)optval;
6701 	struct sctp_authchunks val;
6702 	struct sctp_association *asoc;
6703 	struct sctp_chunks_param *ch;
6704 	u32    num_chunks = 0;
6705 	char __user *to;
6706 
6707 	if (!ep->auth_enable)
6708 		return -EACCES;
6709 
6710 	if (len < sizeof(struct sctp_authchunks))
6711 		return -EINVAL;
6712 
6713 	if (copy_from_user(&val, optval, sizeof(val)))
6714 		return -EFAULT;
6715 
6716 	to = p->gauth_chunks;
6717 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6718 	if (!asoc)
6719 		return -EINVAL;
6720 
6721 	ch = asoc->peer.peer_chunks;
6722 	if (!ch)
6723 		goto num;
6724 
6725 	/* See if the user provided enough room for all the data */
6726 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6727 	if (len < num_chunks)
6728 		return -EINVAL;
6729 
6730 	if (copy_to_user(to, ch->chunks, num_chunks))
6731 		return -EFAULT;
6732 num:
6733 	len = sizeof(struct sctp_authchunks) + num_chunks;
6734 	if (put_user(len, optlen))
6735 		return -EFAULT;
6736 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
6737 		return -EFAULT;
6738 	return 0;
6739 }
6740 
6741 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
6742 				    char __user *optval, int __user *optlen)
6743 {
6744 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6745 	struct sctp_authchunks __user *p = (void __user *)optval;
6746 	struct sctp_authchunks val;
6747 	struct sctp_association *asoc;
6748 	struct sctp_chunks_param *ch;
6749 	u32    num_chunks = 0;
6750 	char __user *to;
6751 
6752 	if (!ep->auth_enable)
6753 		return -EACCES;
6754 
6755 	if (len < sizeof(struct sctp_authchunks))
6756 		return -EINVAL;
6757 
6758 	if (copy_from_user(&val, optval, sizeof(val)))
6759 		return -EFAULT;
6760 
6761 	to = p->gauth_chunks;
6762 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6763 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
6764 		return -EINVAL;
6765 
6766 	if (asoc)
6767 		ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
6768 	else
6769 		ch = ep->auth_chunk_list;
6770 
6771 	if (!ch)
6772 		goto num;
6773 
6774 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6775 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
6776 		return -EINVAL;
6777 
6778 	if (copy_to_user(to, ch->chunks, num_chunks))
6779 		return -EFAULT;
6780 num:
6781 	len = sizeof(struct sctp_authchunks) + num_chunks;
6782 	if (put_user(len, optlen))
6783 		return -EFAULT;
6784 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
6785 		return -EFAULT;
6786 
6787 	return 0;
6788 }
6789 
6790 /*
6791  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
6792  * This option gets the current number of associations that are attached
6793  * to a one-to-many style socket.  The option value is an uint32_t.
6794  */
6795 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
6796 				    char __user *optval, int __user *optlen)
6797 {
6798 	struct sctp_sock *sp = sctp_sk(sk);
6799 	struct sctp_association *asoc;
6800 	u32 val = 0;
6801 
6802 	if (sctp_style(sk, TCP))
6803 		return -EOPNOTSUPP;
6804 
6805 	if (len < sizeof(u32))
6806 		return -EINVAL;
6807 
6808 	len = sizeof(u32);
6809 
6810 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6811 		val++;
6812 	}
6813 
6814 	if (put_user(len, optlen))
6815 		return -EFAULT;
6816 	if (copy_to_user(optval, &val, len))
6817 		return -EFAULT;
6818 
6819 	return 0;
6820 }
6821 
6822 /*
6823  * 8.1.23 SCTP_AUTO_ASCONF
6824  * See the corresponding setsockopt entry as description
6825  */
6826 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
6827 				   char __user *optval, int __user *optlen)
6828 {
6829 	int val = 0;
6830 
6831 	if (len < sizeof(int))
6832 		return -EINVAL;
6833 
6834 	len = sizeof(int);
6835 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
6836 		val = 1;
6837 	if (put_user(len, optlen))
6838 		return -EFAULT;
6839 	if (copy_to_user(optval, &val, len))
6840 		return -EFAULT;
6841 	return 0;
6842 }
6843 
6844 /*
6845  * 8.2.6. Get the Current Identifiers of Associations
6846  *        (SCTP_GET_ASSOC_ID_LIST)
6847  *
6848  * This option gets the current list of SCTP association identifiers of
6849  * the SCTP associations handled by a one-to-many style socket.
6850  */
6851 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
6852 				    char __user *optval, int __user *optlen)
6853 {
6854 	struct sctp_sock *sp = sctp_sk(sk);
6855 	struct sctp_association *asoc;
6856 	struct sctp_assoc_ids *ids;
6857 	u32 num = 0;
6858 
6859 	if (sctp_style(sk, TCP))
6860 		return -EOPNOTSUPP;
6861 
6862 	if (len < sizeof(struct sctp_assoc_ids))
6863 		return -EINVAL;
6864 
6865 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6866 		num++;
6867 	}
6868 
6869 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
6870 		return -EINVAL;
6871 
6872 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
6873 
6874 	ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
6875 	if (unlikely(!ids))
6876 		return -ENOMEM;
6877 
6878 	ids->gaids_number_of_ids = num;
6879 	num = 0;
6880 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6881 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
6882 	}
6883 
6884 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
6885 		kfree(ids);
6886 		return -EFAULT;
6887 	}
6888 
6889 	kfree(ids);
6890 	return 0;
6891 }
6892 
6893 /*
6894  * SCTP_PEER_ADDR_THLDS
6895  *
6896  * This option allows us to fetch the partially failed threshold for one or all
6897  * transports in an association.  See Section 6.1 of:
6898  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
6899  */
6900 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
6901 					    char __user *optval,
6902 					    int len,
6903 					    int __user *optlen)
6904 {
6905 	struct sctp_paddrthlds val;
6906 	struct sctp_transport *trans;
6907 	struct sctp_association *asoc;
6908 
6909 	if (len < sizeof(struct sctp_paddrthlds))
6910 		return -EINVAL;
6911 	len = sizeof(struct sctp_paddrthlds);
6912 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
6913 		return -EFAULT;
6914 
6915 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
6916 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
6917 		if (!asoc)
6918 			return -ENOENT;
6919 
6920 		val.spt_pathpfthld = asoc->pf_retrans;
6921 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
6922 	} else {
6923 		trans = sctp_addr_id2transport(sk, &val.spt_address,
6924 					       val.spt_assoc_id);
6925 		if (!trans)
6926 			return -ENOENT;
6927 
6928 		val.spt_pathmaxrxt = trans->pathmaxrxt;
6929 		val.spt_pathpfthld = trans->pf_retrans;
6930 	}
6931 
6932 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
6933 		return -EFAULT;
6934 
6935 	return 0;
6936 }
6937 
6938 /*
6939  * SCTP_GET_ASSOC_STATS
6940  *
6941  * This option retrieves local per endpoint statistics. It is modeled
6942  * after OpenSolaris' implementation
6943  */
6944 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
6945 				       char __user *optval,
6946 				       int __user *optlen)
6947 {
6948 	struct sctp_assoc_stats sas;
6949 	struct sctp_association *asoc = NULL;
6950 
6951 	/* User must provide at least the assoc id */
6952 	if (len < sizeof(sctp_assoc_t))
6953 		return -EINVAL;
6954 
6955 	/* Allow the struct to grow and fill in as much as possible */
6956 	len = min_t(size_t, len, sizeof(sas));
6957 
6958 	if (copy_from_user(&sas, optval, len))
6959 		return -EFAULT;
6960 
6961 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
6962 	if (!asoc)
6963 		return -EINVAL;
6964 
6965 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
6966 	sas.sas_gapcnt = asoc->stats.gapcnt;
6967 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
6968 	sas.sas_osacks = asoc->stats.osacks;
6969 	sas.sas_isacks = asoc->stats.isacks;
6970 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
6971 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
6972 	sas.sas_oodchunks = asoc->stats.oodchunks;
6973 	sas.sas_iodchunks = asoc->stats.iodchunks;
6974 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
6975 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
6976 	sas.sas_idupchunks = asoc->stats.idupchunks;
6977 	sas.sas_opackets = asoc->stats.opackets;
6978 	sas.sas_ipackets = asoc->stats.ipackets;
6979 
6980 	/* New high max rto observed, will return 0 if not a single
6981 	 * RTO update took place. obs_rto_ipaddr will be bogus
6982 	 * in such a case
6983 	 */
6984 	sas.sas_maxrto = asoc->stats.max_obs_rto;
6985 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
6986 		sizeof(struct sockaddr_storage));
6987 
6988 	/* Mark beginning of a new observation period */
6989 	asoc->stats.max_obs_rto = asoc->rto_min;
6990 
6991 	if (put_user(len, optlen))
6992 		return -EFAULT;
6993 
6994 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
6995 
6996 	if (copy_to_user(optval, &sas, len))
6997 		return -EFAULT;
6998 
6999 	return 0;
7000 }
7001 
7002 static int sctp_getsockopt_recvrcvinfo(struct sock *sk,	int len,
7003 				       char __user *optval,
7004 				       int __user *optlen)
7005 {
7006 	int val = 0;
7007 
7008 	if (len < sizeof(int))
7009 		return -EINVAL;
7010 
7011 	len = sizeof(int);
7012 	if (sctp_sk(sk)->recvrcvinfo)
7013 		val = 1;
7014 	if (put_user(len, optlen))
7015 		return -EFAULT;
7016 	if (copy_to_user(optval, &val, len))
7017 		return -EFAULT;
7018 
7019 	return 0;
7020 }
7021 
7022 static int sctp_getsockopt_recvnxtinfo(struct sock *sk,	int len,
7023 				       char __user *optval,
7024 				       int __user *optlen)
7025 {
7026 	int val = 0;
7027 
7028 	if (len < sizeof(int))
7029 		return -EINVAL;
7030 
7031 	len = sizeof(int);
7032 	if (sctp_sk(sk)->recvnxtinfo)
7033 		val = 1;
7034 	if (put_user(len, optlen))
7035 		return -EFAULT;
7036 	if (copy_to_user(optval, &val, len))
7037 		return -EFAULT;
7038 
7039 	return 0;
7040 }
7041 
7042 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
7043 					char __user *optval,
7044 					int __user *optlen)
7045 {
7046 	struct sctp_assoc_value params;
7047 	struct sctp_association *asoc;
7048 	int retval = -EFAULT;
7049 
7050 	if (len < sizeof(params)) {
7051 		retval = -EINVAL;
7052 		goto out;
7053 	}
7054 
7055 	len = sizeof(params);
7056 	if (copy_from_user(&params, optval, len))
7057 		goto out;
7058 
7059 	asoc = sctp_id2assoc(sk, params.assoc_id);
7060 	if (asoc) {
7061 		params.assoc_value = asoc->prsctp_enable;
7062 	} else if (!params.assoc_id) {
7063 		struct sctp_sock *sp = sctp_sk(sk);
7064 
7065 		params.assoc_value = sp->ep->prsctp_enable;
7066 	} else {
7067 		retval = -EINVAL;
7068 		goto out;
7069 	}
7070 
7071 	if (put_user(len, optlen))
7072 		goto out;
7073 
7074 	if (copy_to_user(optval, &params, len))
7075 		goto out;
7076 
7077 	retval = 0;
7078 
7079 out:
7080 	return retval;
7081 }
7082 
7083 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
7084 					  char __user *optval,
7085 					  int __user *optlen)
7086 {
7087 	struct sctp_default_prinfo info;
7088 	struct sctp_association *asoc;
7089 	int retval = -EFAULT;
7090 
7091 	if (len < sizeof(info)) {
7092 		retval = -EINVAL;
7093 		goto out;
7094 	}
7095 
7096 	len = sizeof(info);
7097 	if (copy_from_user(&info, optval, len))
7098 		goto out;
7099 
7100 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
7101 	if (asoc) {
7102 		info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
7103 		info.pr_value = asoc->default_timetolive;
7104 	} else if (!info.pr_assoc_id) {
7105 		struct sctp_sock *sp = sctp_sk(sk);
7106 
7107 		info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
7108 		info.pr_value = sp->default_timetolive;
7109 	} else {
7110 		retval = -EINVAL;
7111 		goto out;
7112 	}
7113 
7114 	if (put_user(len, optlen))
7115 		goto out;
7116 
7117 	if (copy_to_user(optval, &info, len))
7118 		goto out;
7119 
7120 	retval = 0;
7121 
7122 out:
7123 	return retval;
7124 }
7125 
7126 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
7127 					  char __user *optval,
7128 					  int __user *optlen)
7129 {
7130 	struct sctp_prstatus params;
7131 	struct sctp_association *asoc;
7132 	int policy;
7133 	int retval = -EINVAL;
7134 
7135 	if (len < sizeof(params))
7136 		goto out;
7137 
7138 	len = sizeof(params);
7139 	if (copy_from_user(&params, optval, len)) {
7140 		retval = -EFAULT;
7141 		goto out;
7142 	}
7143 
7144 	policy = params.sprstat_policy;
7145 	if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7146 	    ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7147 		goto out;
7148 
7149 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7150 	if (!asoc)
7151 		goto out;
7152 
7153 	if (policy == SCTP_PR_SCTP_ALL) {
7154 		params.sprstat_abandoned_unsent = 0;
7155 		params.sprstat_abandoned_sent = 0;
7156 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7157 			params.sprstat_abandoned_unsent +=
7158 				asoc->abandoned_unsent[policy];
7159 			params.sprstat_abandoned_sent +=
7160 				asoc->abandoned_sent[policy];
7161 		}
7162 	} else {
7163 		params.sprstat_abandoned_unsent =
7164 			asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7165 		params.sprstat_abandoned_sent =
7166 			asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
7167 	}
7168 
7169 	if (put_user(len, optlen)) {
7170 		retval = -EFAULT;
7171 		goto out;
7172 	}
7173 
7174 	if (copy_to_user(optval, &params, len)) {
7175 		retval = -EFAULT;
7176 		goto out;
7177 	}
7178 
7179 	retval = 0;
7180 
7181 out:
7182 	return retval;
7183 }
7184 
7185 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
7186 					   char __user *optval,
7187 					   int __user *optlen)
7188 {
7189 	struct sctp_stream_out_ext *streamoute;
7190 	struct sctp_association *asoc;
7191 	struct sctp_prstatus params;
7192 	int retval = -EINVAL;
7193 	int policy;
7194 
7195 	if (len < sizeof(params))
7196 		goto out;
7197 
7198 	len = sizeof(params);
7199 	if (copy_from_user(&params, optval, len)) {
7200 		retval = -EFAULT;
7201 		goto out;
7202 	}
7203 
7204 	policy = params.sprstat_policy;
7205 	if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7206 	    ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7207 		goto out;
7208 
7209 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7210 	if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
7211 		goto out;
7212 
7213 	streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext;
7214 	if (!streamoute) {
7215 		/* Not allocated yet, means all stats are 0 */
7216 		params.sprstat_abandoned_unsent = 0;
7217 		params.sprstat_abandoned_sent = 0;
7218 		retval = 0;
7219 		goto out;
7220 	}
7221 
7222 	if (policy == SCTP_PR_SCTP_ALL) {
7223 		params.sprstat_abandoned_unsent = 0;
7224 		params.sprstat_abandoned_sent = 0;
7225 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7226 			params.sprstat_abandoned_unsent +=
7227 				streamoute->abandoned_unsent[policy];
7228 			params.sprstat_abandoned_sent +=
7229 				streamoute->abandoned_sent[policy];
7230 		}
7231 	} else {
7232 		params.sprstat_abandoned_unsent =
7233 			streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7234 		params.sprstat_abandoned_sent =
7235 			streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
7236 	}
7237 
7238 	if (put_user(len, optlen) || copy_to_user(optval, &params, len)) {
7239 		retval = -EFAULT;
7240 		goto out;
7241 	}
7242 
7243 	retval = 0;
7244 
7245 out:
7246 	return retval;
7247 }
7248 
7249 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
7250 					      char __user *optval,
7251 					      int __user *optlen)
7252 {
7253 	struct sctp_assoc_value params;
7254 	struct sctp_association *asoc;
7255 	int retval = -EFAULT;
7256 
7257 	if (len < sizeof(params)) {
7258 		retval = -EINVAL;
7259 		goto out;
7260 	}
7261 
7262 	len = sizeof(params);
7263 	if (copy_from_user(&params, optval, len))
7264 		goto out;
7265 
7266 	asoc = sctp_id2assoc(sk, params.assoc_id);
7267 	if (asoc) {
7268 		params.assoc_value = asoc->reconf_enable;
7269 	} else if (!params.assoc_id) {
7270 		struct sctp_sock *sp = sctp_sk(sk);
7271 
7272 		params.assoc_value = sp->ep->reconf_enable;
7273 	} else {
7274 		retval = -EINVAL;
7275 		goto out;
7276 	}
7277 
7278 	if (put_user(len, optlen))
7279 		goto out;
7280 
7281 	if (copy_to_user(optval, &params, len))
7282 		goto out;
7283 
7284 	retval = 0;
7285 
7286 out:
7287 	return retval;
7288 }
7289 
7290 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
7291 					   char __user *optval,
7292 					   int __user *optlen)
7293 {
7294 	struct sctp_assoc_value params;
7295 	struct sctp_association *asoc;
7296 	int retval = -EFAULT;
7297 
7298 	if (len < sizeof(params)) {
7299 		retval = -EINVAL;
7300 		goto out;
7301 	}
7302 
7303 	len = sizeof(params);
7304 	if (copy_from_user(&params, optval, len))
7305 		goto out;
7306 
7307 	asoc = sctp_id2assoc(sk, params.assoc_id);
7308 	if (asoc) {
7309 		params.assoc_value = asoc->strreset_enable;
7310 	} else if (!params.assoc_id) {
7311 		struct sctp_sock *sp = sctp_sk(sk);
7312 
7313 		params.assoc_value = sp->ep->strreset_enable;
7314 	} else {
7315 		retval = -EINVAL;
7316 		goto out;
7317 	}
7318 
7319 	if (put_user(len, optlen))
7320 		goto out;
7321 
7322 	if (copy_to_user(optval, &params, len))
7323 		goto out;
7324 
7325 	retval = 0;
7326 
7327 out:
7328 	return retval;
7329 }
7330 
7331 static int sctp_getsockopt_scheduler(struct sock *sk, int len,
7332 				     char __user *optval,
7333 				     int __user *optlen)
7334 {
7335 	struct sctp_assoc_value params;
7336 	struct sctp_association *asoc;
7337 	int retval = -EFAULT;
7338 
7339 	if (len < sizeof(params)) {
7340 		retval = -EINVAL;
7341 		goto out;
7342 	}
7343 
7344 	len = sizeof(params);
7345 	if (copy_from_user(&params, optval, len))
7346 		goto out;
7347 
7348 	asoc = sctp_id2assoc(sk, params.assoc_id);
7349 	if (!asoc) {
7350 		retval = -EINVAL;
7351 		goto out;
7352 	}
7353 
7354 	params.assoc_value = sctp_sched_get_sched(asoc);
7355 
7356 	if (put_user(len, optlen))
7357 		goto out;
7358 
7359 	if (copy_to_user(optval, &params, len))
7360 		goto out;
7361 
7362 	retval = 0;
7363 
7364 out:
7365 	return retval;
7366 }
7367 
7368 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
7369 					   char __user *optval,
7370 					   int __user *optlen)
7371 {
7372 	struct sctp_stream_value params;
7373 	struct sctp_association *asoc;
7374 	int retval = -EFAULT;
7375 
7376 	if (len < sizeof(params)) {
7377 		retval = -EINVAL;
7378 		goto out;
7379 	}
7380 
7381 	len = sizeof(params);
7382 	if (copy_from_user(&params, optval, len))
7383 		goto out;
7384 
7385 	asoc = sctp_id2assoc(sk, params.assoc_id);
7386 	if (!asoc) {
7387 		retval = -EINVAL;
7388 		goto out;
7389 	}
7390 
7391 	retval = sctp_sched_get_value(asoc, params.stream_id,
7392 				      &params.stream_value);
7393 	if (retval)
7394 		goto out;
7395 
7396 	if (put_user(len, optlen)) {
7397 		retval = -EFAULT;
7398 		goto out;
7399 	}
7400 
7401 	if (copy_to_user(optval, &params, len)) {
7402 		retval = -EFAULT;
7403 		goto out;
7404 	}
7405 
7406 out:
7407 	return retval;
7408 }
7409 
7410 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len,
7411 						  char __user *optval,
7412 						  int __user *optlen)
7413 {
7414 	struct sctp_assoc_value params;
7415 	struct sctp_association *asoc;
7416 	int retval = -EFAULT;
7417 
7418 	if (len < sizeof(params)) {
7419 		retval = -EINVAL;
7420 		goto out;
7421 	}
7422 
7423 	len = sizeof(params);
7424 	if (copy_from_user(&params, optval, len))
7425 		goto out;
7426 
7427 	asoc = sctp_id2assoc(sk, params.assoc_id);
7428 	if (asoc) {
7429 		params.assoc_value = asoc->intl_enable;
7430 	} else if (!params.assoc_id) {
7431 		struct sctp_sock *sp = sctp_sk(sk);
7432 
7433 		params.assoc_value = sp->strm_interleave;
7434 	} else {
7435 		retval = -EINVAL;
7436 		goto out;
7437 	}
7438 
7439 	if (put_user(len, optlen))
7440 		goto out;
7441 
7442 	if (copy_to_user(optval, &params, len))
7443 		goto out;
7444 
7445 	retval = 0;
7446 
7447 out:
7448 	return retval;
7449 }
7450 
7451 static int sctp_getsockopt_reuse_port(struct sock *sk, int len,
7452 				      char __user *optval,
7453 				      int __user *optlen)
7454 {
7455 	int val;
7456 
7457 	if (len < sizeof(int))
7458 		return -EINVAL;
7459 
7460 	len = sizeof(int);
7461 	val = sctp_sk(sk)->reuse;
7462 	if (put_user(len, optlen))
7463 		return -EFAULT;
7464 
7465 	if (copy_to_user(optval, &val, len))
7466 		return -EFAULT;
7467 
7468 	return 0;
7469 }
7470 
7471 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval,
7472 				 int __user *optlen)
7473 {
7474 	struct sctp_association *asoc;
7475 	struct sctp_event param;
7476 	__u16 subscribe;
7477 
7478 	if (len < sizeof(param))
7479 		return -EINVAL;
7480 
7481 	len = sizeof(param);
7482 	if (copy_from_user(&param, optval, len))
7483 		return -EFAULT;
7484 
7485 	if (param.se_type < SCTP_SN_TYPE_BASE ||
7486 	    param.se_type > SCTP_SN_TYPE_MAX)
7487 		return -EINVAL;
7488 
7489 	asoc = sctp_id2assoc(sk, param.se_assoc_id);
7490 	subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe;
7491 	param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type);
7492 
7493 	if (put_user(len, optlen))
7494 		return -EFAULT;
7495 
7496 	if (copy_to_user(optval, &param, len))
7497 		return -EFAULT;
7498 
7499 	return 0;
7500 }
7501 
7502 static int sctp_getsockopt(struct sock *sk, int level, int optname,
7503 			   char __user *optval, int __user *optlen)
7504 {
7505 	int retval = 0;
7506 	int len;
7507 
7508 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
7509 
7510 	/* I can hardly begin to describe how wrong this is.  This is
7511 	 * so broken as to be worse than useless.  The API draft
7512 	 * REALLY is NOT helpful here...  I am not convinced that the
7513 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
7514 	 * are at all well-founded.
7515 	 */
7516 	if (level != SOL_SCTP) {
7517 		struct sctp_af *af = sctp_sk(sk)->pf->af;
7518 
7519 		retval = af->getsockopt(sk, level, optname, optval, optlen);
7520 		return retval;
7521 	}
7522 
7523 	if (get_user(len, optlen))
7524 		return -EFAULT;
7525 
7526 	if (len < 0)
7527 		return -EINVAL;
7528 
7529 	lock_sock(sk);
7530 
7531 	switch (optname) {
7532 	case SCTP_STATUS:
7533 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
7534 		break;
7535 	case SCTP_DISABLE_FRAGMENTS:
7536 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
7537 							   optlen);
7538 		break;
7539 	case SCTP_EVENTS:
7540 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
7541 		break;
7542 	case SCTP_AUTOCLOSE:
7543 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
7544 		break;
7545 	case SCTP_SOCKOPT_PEELOFF:
7546 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
7547 		break;
7548 	case SCTP_SOCKOPT_PEELOFF_FLAGS:
7549 		retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
7550 		break;
7551 	case SCTP_PEER_ADDR_PARAMS:
7552 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
7553 							  optlen);
7554 		break;
7555 	case SCTP_DELAYED_SACK:
7556 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
7557 							  optlen);
7558 		break;
7559 	case SCTP_INITMSG:
7560 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
7561 		break;
7562 	case SCTP_GET_PEER_ADDRS:
7563 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
7564 						    optlen);
7565 		break;
7566 	case SCTP_GET_LOCAL_ADDRS:
7567 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
7568 						     optlen);
7569 		break;
7570 	case SCTP_SOCKOPT_CONNECTX3:
7571 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
7572 		break;
7573 	case SCTP_DEFAULT_SEND_PARAM:
7574 		retval = sctp_getsockopt_default_send_param(sk, len,
7575 							    optval, optlen);
7576 		break;
7577 	case SCTP_DEFAULT_SNDINFO:
7578 		retval = sctp_getsockopt_default_sndinfo(sk, len,
7579 							 optval, optlen);
7580 		break;
7581 	case SCTP_PRIMARY_ADDR:
7582 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
7583 		break;
7584 	case SCTP_NODELAY:
7585 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
7586 		break;
7587 	case SCTP_RTOINFO:
7588 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
7589 		break;
7590 	case SCTP_ASSOCINFO:
7591 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
7592 		break;
7593 	case SCTP_I_WANT_MAPPED_V4_ADDR:
7594 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
7595 		break;
7596 	case SCTP_MAXSEG:
7597 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
7598 		break;
7599 	case SCTP_GET_PEER_ADDR_INFO:
7600 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
7601 							optlen);
7602 		break;
7603 	case SCTP_ADAPTATION_LAYER:
7604 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
7605 							optlen);
7606 		break;
7607 	case SCTP_CONTEXT:
7608 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
7609 		break;
7610 	case SCTP_FRAGMENT_INTERLEAVE:
7611 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
7612 							     optlen);
7613 		break;
7614 	case SCTP_PARTIAL_DELIVERY_POINT:
7615 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
7616 								optlen);
7617 		break;
7618 	case SCTP_MAX_BURST:
7619 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
7620 		break;
7621 	case SCTP_AUTH_KEY:
7622 	case SCTP_AUTH_CHUNK:
7623 	case SCTP_AUTH_DELETE_KEY:
7624 	case SCTP_AUTH_DEACTIVATE_KEY:
7625 		retval = -EOPNOTSUPP;
7626 		break;
7627 	case SCTP_HMAC_IDENT:
7628 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
7629 		break;
7630 	case SCTP_AUTH_ACTIVE_KEY:
7631 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
7632 		break;
7633 	case SCTP_PEER_AUTH_CHUNKS:
7634 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
7635 							optlen);
7636 		break;
7637 	case SCTP_LOCAL_AUTH_CHUNKS:
7638 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
7639 							optlen);
7640 		break;
7641 	case SCTP_GET_ASSOC_NUMBER:
7642 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
7643 		break;
7644 	case SCTP_GET_ASSOC_ID_LIST:
7645 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
7646 		break;
7647 	case SCTP_AUTO_ASCONF:
7648 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
7649 		break;
7650 	case SCTP_PEER_ADDR_THLDS:
7651 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
7652 		break;
7653 	case SCTP_GET_ASSOC_STATS:
7654 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
7655 		break;
7656 	case SCTP_RECVRCVINFO:
7657 		retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
7658 		break;
7659 	case SCTP_RECVNXTINFO:
7660 		retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
7661 		break;
7662 	case SCTP_PR_SUPPORTED:
7663 		retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
7664 		break;
7665 	case SCTP_DEFAULT_PRINFO:
7666 		retval = sctp_getsockopt_default_prinfo(sk, len, optval,
7667 							optlen);
7668 		break;
7669 	case SCTP_PR_ASSOC_STATUS:
7670 		retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
7671 							optlen);
7672 		break;
7673 	case SCTP_PR_STREAM_STATUS:
7674 		retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
7675 							 optlen);
7676 		break;
7677 	case SCTP_RECONFIG_SUPPORTED:
7678 		retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
7679 							    optlen);
7680 		break;
7681 	case SCTP_ENABLE_STREAM_RESET:
7682 		retval = sctp_getsockopt_enable_strreset(sk, len, optval,
7683 							 optlen);
7684 		break;
7685 	case SCTP_STREAM_SCHEDULER:
7686 		retval = sctp_getsockopt_scheduler(sk, len, optval,
7687 						   optlen);
7688 		break;
7689 	case SCTP_STREAM_SCHEDULER_VALUE:
7690 		retval = sctp_getsockopt_scheduler_value(sk, len, optval,
7691 							 optlen);
7692 		break;
7693 	case SCTP_INTERLEAVING_SUPPORTED:
7694 		retval = sctp_getsockopt_interleaving_supported(sk, len, optval,
7695 								optlen);
7696 		break;
7697 	case SCTP_REUSE_PORT:
7698 		retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen);
7699 		break;
7700 	case SCTP_EVENT:
7701 		retval = sctp_getsockopt_event(sk, len, optval, optlen);
7702 		break;
7703 	default:
7704 		retval = -ENOPROTOOPT;
7705 		break;
7706 	}
7707 
7708 	release_sock(sk);
7709 	return retval;
7710 }
7711 
7712 static int sctp_hash(struct sock *sk)
7713 {
7714 	/* STUB */
7715 	return 0;
7716 }
7717 
7718 static void sctp_unhash(struct sock *sk)
7719 {
7720 	/* STUB */
7721 }
7722 
7723 /* Check if port is acceptable.  Possibly find first available port.
7724  *
7725  * The port hash table (contained in the 'global' SCTP protocol storage
7726  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
7727  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
7728  * list (the list number is the port number hashed out, so as you
7729  * would expect from a hash function, all the ports in a given list have
7730  * such a number that hashes out to the same list number; you were
7731  * expecting that, right?); so each list has a set of ports, with a
7732  * link to the socket (struct sock) that uses it, the port number and
7733  * a fastreuse flag (FIXME: NPI ipg).
7734  */
7735 static struct sctp_bind_bucket *sctp_bucket_create(
7736 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
7737 
7738 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
7739 {
7740 	struct sctp_sock *sp = sctp_sk(sk);
7741 	bool reuse = (sk->sk_reuse || sp->reuse);
7742 	struct sctp_bind_hashbucket *head; /* hash list */
7743 	kuid_t uid = sock_i_uid(sk);
7744 	struct sctp_bind_bucket *pp;
7745 	unsigned short snum;
7746 	int ret;
7747 
7748 	snum = ntohs(addr->v4.sin_port);
7749 
7750 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
7751 
7752 	local_bh_disable();
7753 
7754 	if (snum == 0) {
7755 		/* Search for an available port. */
7756 		int low, high, remaining, index;
7757 		unsigned int rover;
7758 		struct net *net = sock_net(sk);
7759 
7760 		inet_get_local_port_range(net, &low, &high);
7761 		remaining = (high - low) + 1;
7762 		rover = prandom_u32() % remaining + low;
7763 
7764 		do {
7765 			rover++;
7766 			if ((rover < low) || (rover > high))
7767 				rover = low;
7768 			if (inet_is_local_reserved_port(net, rover))
7769 				continue;
7770 			index = sctp_phashfn(sock_net(sk), rover);
7771 			head = &sctp_port_hashtable[index];
7772 			spin_lock(&head->lock);
7773 			sctp_for_each_hentry(pp, &head->chain)
7774 				if ((pp->port == rover) &&
7775 				    net_eq(sock_net(sk), pp->net))
7776 					goto next;
7777 			break;
7778 		next:
7779 			spin_unlock(&head->lock);
7780 		} while (--remaining > 0);
7781 
7782 		/* Exhausted local port range during search? */
7783 		ret = 1;
7784 		if (remaining <= 0)
7785 			goto fail;
7786 
7787 		/* OK, here is the one we will use.  HEAD (the port
7788 		 * hash table list entry) is non-NULL and we hold it's
7789 		 * mutex.
7790 		 */
7791 		snum = rover;
7792 	} else {
7793 		/* We are given an specific port number; we verify
7794 		 * that it is not being used. If it is used, we will
7795 		 * exahust the search in the hash list corresponding
7796 		 * to the port number (snum) - we detect that with the
7797 		 * port iterator, pp being NULL.
7798 		 */
7799 		head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
7800 		spin_lock(&head->lock);
7801 		sctp_for_each_hentry(pp, &head->chain) {
7802 			if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
7803 				goto pp_found;
7804 		}
7805 	}
7806 	pp = NULL;
7807 	goto pp_not_found;
7808 pp_found:
7809 	if (!hlist_empty(&pp->owner)) {
7810 		/* We had a port hash table hit - there is an
7811 		 * available port (pp != NULL) and it is being
7812 		 * used by other socket (pp->owner not empty); that other
7813 		 * socket is going to be sk2.
7814 		 */
7815 		struct sock *sk2;
7816 
7817 		pr_debug("%s: found a possible match\n", __func__);
7818 
7819 		if ((pp->fastreuse && reuse &&
7820 		     sk->sk_state != SCTP_SS_LISTENING) ||
7821 		    (pp->fastreuseport && sk->sk_reuseport &&
7822 		     uid_eq(pp->fastuid, uid)))
7823 			goto success;
7824 
7825 		/* Run through the list of sockets bound to the port
7826 		 * (pp->port) [via the pointers bind_next and
7827 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
7828 		 * we get the endpoint they describe and run through
7829 		 * the endpoint's list of IP (v4 or v6) addresses,
7830 		 * comparing each of the addresses with the address of
7831 		 * the socket sk. If we find a match, then that means
7832 		 * that this port/socket (sk) combination are already
7833 		 * in an endpoint.
7834 		 */
7835 		sk_for_each_bound(sk2, &pp->owner) {
7836 			struct sctp_sock *sp2 = sctp_sk(sk2);
7837 			struct sctp_endpoint *ep2 = sp2->ep;
7838 
7839 			if (sk == sk2 ||
7840 			    (reuse && (sk2->sk_reuse || sp2->reuse) &&
7841 			     sk2->sk_state != SCTP_SS_LISTENING) ||
7842 			    (sk->sk_reuseport && sk2->sk_reuseport &&
7843 			     uid_eq(uid, sock_i_uid(sk2))))
7844 				continue;
7845 
7846 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr,
7847 						    addr, sp2, sp)) {
7848 				ret = (long)sk2;
7849 				goto fail_unlock;
7850 			}
7851 		}
7852 
7853 		pr_debug("%s: found a match\n", __func__);
7854 	}
7855 pp_not_found:
7856 	/* If there was a hash table miss, create a new port.  */
7857 	ret = 1;
7858 	if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
7859 		goto fail_unlock;
7860 
7861 	/* In either case (hit or miss), make sure fastreuse is 1 only
7862 	 * if sk->sk_reuse is too (that is, if the caller requested
7863 	 * SO_REUSEADDR on this socket -sk-).
7864 	 */
7865 	if (hlist_empty(&pp->owner)) {
7866 		if (reuse && sk->sk_state != SCTP_SS_LISTENING)
7867 			pp->fastreuse = 1;
7868 		else
7869 			pp->fastreuse = 0;
7870 
7871 		if (sk->sk_reuseport) {
7872 			pp->fastreuseport = 1;
7873 			pp->fastuid = uid;
7874 		} else {
7875 			pp->fastreuseport = 0;
7876 		}
7877 	} else {
7878 		if (pp->fastreuse &&
7879 		    (!reuse || sk->sk_state == SCTP_SS_LISTENING))
7880 			pp->fastreuse = 0;
7881 
7882 		if (pp->fastreuseport &&
7883 		    (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid)))
7884 			pp->fastreuseport = 0;
7885 	}
7886 
7887 	/* We are set, so fill up all the data in the hash table
7888 	 * entry, tie the socket list information with the rest of the
7889 	 * sockets FIXME: Blurry, NPI (ipg).
7890 	 */
7891 success:
7892 	if (!sp->bind_hash) {
7893 		inet_sk(sk)->inet_num = snum;
7894 		sk_add_bind_node(sk, &pp->owner);
7895 		sp->bind_hash = pp;
7896 	}
7897 	ret = 0;
7898 
7899 fail_unlock:
7900 	spin_unlock(&head->lock);
7901 
7902 fail:
7903 	local_bh_enable();
7904 	return ret;
7905 }
7906 
7907 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
7908  * port is requested.
7909  */
7910 static int sctp_get_port(struct sock *sk, unsigned short snum)
7911 {
7912 	union sctp_addr addr;
7913 	struct sctp_af *af = sctp_sk(sk)->pf->af;
7914 
7915 	/* Set up a dummy address struct from the sk. */
7916 	af->from_sk(&addr, sk);
7917 	addr.v4.sin_port = htons(snum);
7918 
7919 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
7920 	return !!sctp_get_port_local(sk, &addr);
7921 }
7922 
7923 /*
7924  *  Move a socket to LISTENING state.
7925  */
7926 static int sctp_listen_start(struct sock *sk, int backlog)
7927 {
7928 	struct sctp_sock *sp = sctp_sk(sk);
7929 	struct sctp_endpoint *ep = sp->ep;
7930 	struct crypto_shash *tfm = NULL;
7931 	char alg[32];
7932 
7933 	/* Allocate HMAC for generating cookie. */
7934 	if (!sp->hmac && sp->sctp_hmac_alg) {
7935 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
7936 		tfm = crypto_alloc_shash(alg, 0, 0);
7937 		if (IS_ERR(tfm)) {
7938 			net_info_ratelimited("failed to load transform for %s: %ld\n",
7939 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
7940 			return -ENOSYS;
7941 		}
7942 		sctp_sk(sk)->hmac = tfm;
7943 	}
7944 
7945 	/*
7946 	 * If a bind() or sctp_bindx() is not called prior to a listen()
7947 	 * call that allows new associations to be accepted, the system
7948 	 * picks an ephemeral port and will choose an address set equivalent
7949 	 * to binding with a wildcard address.
7950 	 *
7951 	 * This is not currently spelled out in the SCTP sockets
7952 	 * extensions draft, but follows the practice as seen in TCP
7953 	 * sockets.
7954 	 *
7955 	 */
7956 	inet_sk_set_state(sk, SCTP_SS_LISTENING);
7957 	if (!ep->base.bind_addr.port) {
7958 		if (sctp_autobind(sk))
7959 			return -EAGAIN;
7960 	} else {
7961 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
7962 			inet_sk_set_state(sk, SCTP_SS_CLOSED);
7963 			return -EADDRINUSE;
7964 		}
7965 	}
7966 
7967 	sk->sk_max_ack_backlog = backlog;
7968 	return sctp_hash_endpoint(ep);
7969 }
7970 
7971 /*
7972  * 4.1.3 / 5.1.3 listen()
7973  *
7974  *   By default, new associations are not accepted for UDP style sockets.
7975  *   An application uses listen() to mark a socket as being able to
7976  *   accept new associations.
7977  *
7978  *   On TCP style sockets, applications use listen() to ready the SCTP
7979  *   endpoint for accepting inbound associations.
7980  *
7981  *   On both types of endpoints a backlog of '0' disables listening.
7982  *
7983  *  Move a socket to LISTENING state.
7984  */
7985 int sctp_inet_listen(struct socket *sock, int backlog)
7986 {
7987 	struct sock *sk = sock->sk;
7988 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
7989 	int err = -EINVAL;
7990 
7991 	if (unlikely(backlog < 0))
7992 		return err;
7993 
7994 	lock_sock(sk);
7995 
7996 	/* Peeled-off sockets are not allowed to listen().  */
7997 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
7998 		goto out;
7999 
8000 	if (sock->state != SS_UNCONNECTED)
8001 		goto out;
8002 
8003 	if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
8004 		goto out;
8005 
8006 	/* If backlog is zero, disable listening. */
8007 	if (!backlog) {
8008 		if (sctp_sstate(sk, CLOSED))
8009 			goto out;
8010 
8011 		err = 0;
8012 		sctp_unhash_endpoint(ep);
8013 		sk->sk_state = SCTP_SS_CLOSED;
8014 		if (sk->sk_reuse || sctp_sk(sk)->reuse)
8015 			sctp_sk(sk)->bind_hash->fastreuse = 1;
8016 		goto out;
8017 	}
8018 
8019 	/* If we are already listening, just update the backlog */
8020 	if (sctp_sstate(sk, LISTENING))
8021 		sk->sk_max_ack_backlog = backlog;
8022 	else {
8023 		err = sctp_listen_start(sk, backlog);
8024 		if (err)
8025 			goto out;
8026 	}
8027 
8028 	err = 0;
8029 out:
8030 	release_sock(sk);
8031 	return err;
8032 }
8033 
8034 /*
8035  * This function is done by modeling the current datagram_poll() and the
8036  * tcp_poll().  Note that, based on these implementations, we don't
8037  * lock the socket in this function, even though it seems that,
8038  * ideally, locking or some other mechanisms can be used to ensure
8039  * the integrity of the counters (sndbuf and wmem_alloc) used
8040  * in this place.  We assume that we don't need locks either until proven
8041  * otherwise.
8042  *
8043  * Another thing to note is that we include the Async I/O support
8044  * here, again, by modeling the current TCP/UDP code.  We don't have
8045  * a good way to test with it yet.
8046  */
8047 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
8048 {
8049 	struct sock *sk = sock->sk;
8050 	struct sctp_sock *sp = sctp_sk(sk);
8051 	__poll_t mask;
8052 
8053 	poll_wait(file, sk_sleep(sk), wait);
8054 
8055 	sock_rps_record_flow(sk);
8056 
8057 	/* A TCP-style listening socket becomes readable when the accept queue
8058 	 * is not empty.
8059 	 */
8060 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
8061 		return (!list_empty(&sp->ep->asocs)) ?
8062 			(EPOLLIN | EPOLLRDNORM) : 0;
8063 
8064 	mask = 0;
8065 
8066 	/* Is there any exceptional events?  */
8067 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
8068 		mask |= EPOLLERR |
8069 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
8070 	if (sk->sk_shutdown & RCV_SHUTDOWN)
8071 		mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
8072 	if (sk->sk_shutdown == SHUTDOWN_MASK)
8073 		mask |= EPOLLHUP;
8074 
8075 	/* Is it readable?  Reconsider this code with TCP-style support.  */
8076 	if (!skb_queue_empty(&sk->sk_receive_queue))
8077 		mask |= EPOLLIN | EPOLLRDNORM;
8078 
8079 	/* The association is either gone or not ready.  */
8080 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
8081 		return mask;
8082 
8083 	/* Is it writable?  */
8084 	if (sctp_writeable(sk)) {
8085 		mask |= EPOLLOUT | EPOLLWRNORM;
8086 	} else {
8087 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
8088 		/*
8089 		 * Since the socket is not locked, the buffer
8090 		 * might be made available after the writeable check and
8091 		 * before the bit is set.  This could cause a lost I/O
8092 		 * signal.  tcp_poll() has a race breaker for this race
8093 		 * condition.  Based on their implementation, we put
8094 		 * in the following code to cover it as well.
8095 		 */
8096 		if (sctp_writeable(sk))
8097 			mask |= EPOLLOUT | EPOLLWRNORM;
8098 	}
8099 	return mask;
8100 }
8101 
8102 /********************************************************************
8103  * 2nd Level Abstractions
8104  ********************************************************************/
8105 
8106 static struct sctp_bind_bucket *sctp_bucket_create(
8107 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
8108 {
8109 	struct sctp_bind_bucket *pp;
8110 
8111 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
8112 	if (pp) {
8113 		SCTP_DBG_OBJCNT_INC(bind_bucket);
8114 		pp->port = snum;
8115 		pp->fastreuse = 0;
8116 		INIT_HLIST_HEAD(&pp->owner);
8117 		pp->net = net;
8118 		hlist_add_head(&pp->node, &head->chain);
8119 	}
8120 	return pp;
8121 }
8122 
8123 /* Caller must hold hashbucket lock for this tb with local BH disabled */
8124 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
8125 {
8126 	if (pp && hlist_empty(&pp->owner)) {
8127 		__hlist_del(&pp->node);
8128 		kmem_cache_free(sctp_bucket_cachep, pp);
8129 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
8130 	}
8131 }
8132 
8133 /* Release this socket's reference to a local port.  */
8134 static inline void __sctp_put_port(struct sock *sk)
8135 {
8136 	struct sctp_bind_hashbucket *head =
8137 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
8138 						  inet_sk(sk)->inet_num)];
8139 	struct sctp_bind_bucket *pp;
8140 
8141 	spin_lock(&head->lock);
8142 	pp = sctp_sk(sk)->bind_hash;
8143 	__sk_del_bind_node(sk);
8144 	sctp_sk(sk)->bind_hash = NULL;
8145 	inet_sk(sk)->inet_num = 0;
8146 	sctp_bucket_destroy(pp);
8147 	spin_unlock(&head->lock);
8148 }
8149 
8150 void sctp_put_port(struct sock *sk)
8151 {
8152 	local_bh_disable();
8153 	__sctp_put_port(sk);
8154 	local_bh_enable();
8155 }
8156 
8157 /*
8158  * The system picks an ephemeral port and choose an address set equivalent
8159  * to binding with a wildcard address.
8160  * One of those addresses will be the primary address for the association.
8161  * This automatically enables the multihoming capability of SCTP.
8162  */
8163 static int sctp_autobind(struct sock *sk)
8164 {
8165 	union sctp_addr autoaddr;
8166 	struct sctp_af *af;
8167 	__be16 port;
8168 
8169 	/* Initialize a local sockaddr structure to INADDR_ANY. */
8170 	af = sctp_sk(sk)->pf->af;
8171 
8172 	port = htons(inet_sk(sk)->inet_num);
8173 	af->inaddr_any(&autoaddr, port);
8174 
8175 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
8176 }
8177 
8178 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
8179  *
8180  * From RFC 2292
8181  * 4.2 The cmsghdr Structure *
8182  *
8183  * When ancillary data is sent or received, any number of ancillary data
8184  * objects can be specified by the msg_control and msg_controllen members of
8185  * the msghdr structure, because each object is preceded by
8186  * a cmsghdr structure defining the object's length (the cmsg_len member).
8187  * Historically Berkeley-derived implementations have passed only one object
8188  * at a time, but this API allows multiple objects to be
8189  * passed in a single call to sendmsg() or recvmsg(). The following example
8190  * shows two ancillary data objects in a control buffer.
8191  *
8192  *   |<--------------------------- msg_controllen -------------------------->|
8193  *   |                                                                       |
8194  *
8195  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
8196  *
8197  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
8198  *   |                                   |                                   |
8199  *
8200  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
8201  *
8202  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
8203  *   |                                |  |                                |  |
8204  *
8205  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8206  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
8207  *
8208  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
8209  *
8210  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8211  *    ^
8212  *    |
8213  *
8214  * msg_control
8215  * points here
8216  */
8217 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
8218 {
8219 	struct msghdr *my_msg = (struct msghdr *)msg;
8220 	struct cmsghdr *cmsg;
8221 
8222 	for_each_cmsghdr(cmsg, my_msg) {
8223 		if (!CMSG_OK(my_msg, cmsg))
8224 			return -EINVAL;
8225 
8226 		/* Should we parse this header or ignore?  */
8227 		if (cmsg->cmsg_level != IPPROTO_SCTP)
8228 			continue;
8229 
8230 		/* Strictly check lengths following example in SCM code.  */
8231 		switch (cmsg->cmsg_type) {
8232 		case SCTP_INIT:
8233 			/* SCTP Socket API Extension
8234 			 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
8235 			 *
8236 			 * This cmsghdr structure provides information for
8237 			 * initializing new SCTP associations with sendmsg().
8238 			 * The SCTP_INITMSG socket option uses this same data
8239 			 * structure.  This structure is not used for
8240 			 * recvmsg().
8241 			 *
8242 			 * cmsg_level    cmsg_type      cmsg_data[]
8243 			 * ------------  ------------   ----------------------
8244 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
8245 			 */
8246 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
8247 				return -EINVAL;
8248 
8249 			cmsgs->init = CMSG_DATA(cmsg);
8250 			break;
8251 
8252 		case SCTP_SNDRCV:
8253 			/* SCTP Socket API Extension
8254 			 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
8255 			 *
8256 			 * This cmsghdr structure specifies SCTP options for
8257 			 * sendmsg() and describes SCTP header information
8258 			 * about a received message through recvmsg().
8259 			 *
8260 			 * cmsg_level    cmsg_type      cmsg_data[]
8261 			 * ------------  ------------   ----------------------
8262 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
8263 			 */
8264 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
8265 				return -EINVAL;
8266 
8267 			cmsgs->srinfo = CMSG_DATA(cmsg);
8268 
8269 			if (cmsgs->srinfo->sinfo_flags &
8270 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8271 			      SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8272 			      SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8273 				return -EINVAL;
8274 			break;
8275 
8276 		case SCTP_SNDINFO:
8277 			/* SCTP Socket API Extension
8278 			 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
8279 			 *
8280 			 * This cmsghdr structure specifies SCTP options for
8281 			 * sendmsg(). This structure and SCTP_RCVINFO replaces
8282 			 * SCTP_SNDRCV which has been deprecated.
8283 			 *
8284 			 * cmsg_level    cmsg_type      cmsg_data[]
8285 			 * ------------  ------------   ---------------------
8286 			 * IPPROTO_SCTP  SCTP_SNDINFO    struct sctp_sndinfo
8287 			 */
8288 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
8289 				return -EINVAL;
8290 
8291 			cmsgs->sinfo = CMSG_DATA(cmsg);
8292 
8293 			if (cmsgs->sinfo->snd_flags &
8294 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8295 			      SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8296 			      SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8297 				return -EINVAL;
8298 			break;
8299 		case SCTP_PRINFO:
8300 			/* SCTP Socket API Extension
8301 			 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO)
8302 			 *
8303 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8304 			 *
8305 			 * cmsg_level    cmsg_type      cmsg_data[]
8306 			 * ------------  ------------   ---------------------
8307 			 * IPPROTO_SCTP  SCTP_PRINFO    struct sctp_prinfo
8308 			 */
8309 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo)))
8310 				return -EINVAL;
8311 
8312 			cmsgs->prinfo = CMSG_DATA(cmsg);
8313 			if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK)
8314 				return -EINVAL;
8315 
8316 			if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE)
8317 				cmsgs->prinfo->pr_value = 0;
8318 			break;
8319 		case SCTP_AUTHINFO:
8320 			/* SCTP Socket API Extension
8321 			 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO)
8322 			 *
8323 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8324 			 *
8325 			 * cmsg_level    cmsg_type      cmsg_data[]
8326 			 * ------------  ------------   ---------------------
8327 			 * IPPROTO_SCTP  SCTP_AUTHINFO  struct sctp_authinfo
8328 			 */
8329 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo)))
8330 				return -EINVAL;
8331 
8332 			cmsgs->authinfo = CMSG_DATA(cmsg);
8333 			break;
8334 		case SCTP_DSTADDRV4:
8335 		case SCTP_DSTADDRV6:
8336 			/* SCTP Socket API Extension
8337 			 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6)
8338 			 *
8339 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8340 			 *
8341 			 * cmsg_level    cmsg_type         cmsg_data[]
8342 			 * ------------  ------------   ---------------------
8343 			 * IPPROTO_SCTP  SCTP_DSTADDRV4 struct in_addr
8344 			 * ------------  ------------   ---------------------
8345 			 * IPPROTO_SCTP  SCTP_DSTADDRV6 struct in6_addr
8346 			 */
8347 			cmsgs->addrs_msg = my_msg;
8348 			break;
8349 		default:
8350 			return -EINVAL;
8351 		}
8352 	}
8353 
8354 	return 0;
8355 }
8356 
8357 /*
8358  * Wait for a packet..
8359  * Note: This function is the same function as in core/datagram.c
8360  * with a few modifications to make lksctp work.
8361  */
8362 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
8363 {
8364 	int error;
8365 	DEFINE_WAIT(wait);
8366 
8367 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8368 
8369 	/* Socket errors? */
8370 	error = sock_error(sk);
8371 	if (error)
8372 		goto out;
8373 
8374 	if (!skb_queue_empty(&sk->sk_receive_queue))
8375 		goto ready;
8376 
8377 	/* Socket shut down?  */
8378 	if (sk->sk_shutdown & RCV_SHUTDOWN)
8379 		goto out;
8380 
8381 	/* Sequenced packets can come disconnected.  If so we report the
8382 	 * problem.
8383 	 */
8384 	error = -ENOTCONN;
8385 
8386 	/* Is there a good reason to think that we may receive some data?  */
8387 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
8388 		goto out;
8389 
8390 	/* Handle signals.  */
8391 	if (signal_pending(current))
8392 		goto interrupted;
8393 
8394 	/* Let another process have a go.  Since we are going to sleep
8395 	 * anyway.  Note: This may cause odd behaviors if the message
8396 	 * does not fit in the user's buffer, but this seems to be the
8397 	 * only way to honor MSG_DONTWAIT realistically.
8398 	 */
8399 	release_sock(sk);
8400 	*timeo_p = schedule_timeout(*timeo_p);
8401 	lock_sock(sk);
8402 
8403 ready:
8404 	finish_wait(sk_sleep(sk), &wait);
8405 	return 0;
8406 
8407 interrupted:
8408 	error = sock_intr_errno(*timeo_p);
8409 
8410 out:
8411 	finish_wait(sk_sleep(sk), &wait);
8412 	*err = error;
8413 	return error;
8414 }
8415 
8416 /* Receive a datagram.
8417  * Note: This is pretty much the same routine as in core/datagram.c
8418  * with a few changes to make lksctp work.
8419  */
8420 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
8421 				       int noblock, int *err)
8422 {
8423 	int error;
8424 	struct sk_buff *skb;
8425 	long timeo;
8426 
8427 	timeo = sock_rcvtimeo(sk, noblock);
8428 
8429 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
8430 		 MAX_SCHEDULE_TIMEOUT);
8431 
8432 	do {
8433 		/* Again only user level code calls this function,
8434 		 * so nothing interrupt level
8435 		 * will suddenly eat the receive_queue.
8436 		 *
8437 		 *  Look at current nfs client by the way...
8438 		 *  However, this function was correct in any case. 8)
8439 		 */
8440 		if (flags & MSG_PEEK) {
8441 			skb = skb_peek(&sk->sk_receive_queue);
8442 			if (skb)
8443 				refcount_inc(&skb->users);
8444 		} else {
8445 			skb = __skb_dequeue(&sk->sk_receive_queue);
8446 		}
8447 
8448 		if (skb)
8449 			return skb;
8450 
8451 		/* Caller is allowed not to check sk->sk_err before calling. */
8452 		error = sock_error(sk);
8453 		if (error)
8454 			goto no_packet;
8455 
8456 		if (sk->sk_shutdown & RCV_SHUTDOWN)
8457 			break;
8458 
8459 		if (sk_can_busy_loop(sk)) {
8460 			sk_busy_loop(sk, noblock);
8461 
8462 			if (!skb_queue_empty(&sk->sk_receive_queue))
8463 				continue;
8464 		}
8465 
8466 		/* User doesn't want to wait.  */
8467 		error = -EAGAIN;
8468 		if (!timeo)
8469 			goto no_packet;
8470 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
8471 
8472 	return NULL;
8473 
8474 no_packet:
8475 	*err = error;
8476 	return NULL;
8477 }
8478 
8479 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
8480 static void __sctp_write_space(struct sctp_association *asoc)
8481 {
8482 	struct sock *sk = asoc->base.sk;
8483 
8484 	if (sctp_wspace(asoc) <= 0)
8485 		return;
8486 
8487 	if (waitqueue_active(&asoc->wait))
8488 		wake_up_interruptible(&asoc->wait);
8489 
8490 	if (sctp_writeable(sk)) {
8491 		struct socket_wq *wq;
8492 
8493 		rcu_read_lock();
8494 		wq = rcu_dereference(sk->sk_wq);
8495 		if (wq) {
8496 			if (waitqueue_active(&wq->wait))
8497 				wake_up_interruptible(&wq->wait);
8498 
8499 			/* Note that we try to include the Async I/O support
8500 			 * here by modeling from the current TCP/UDP code.
8501 			 * We have not tested with it yet.
8502 			 */
8503 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
8504 				sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
8505 		}
8506 		rcu_read_unlock();
8507 	}
8508 }
8509 
8510 static void sctp_wake_up_waiters(struct sock *sk,
8511 				 struct sctp_association *asoc)
8512 {
8513 	struct sctp_association *tmp = asoc;
8514 
8515 	/* We do accounting for the sndbuf space per association,
8516 	 * so we only need to wake our own association.
8517 	 */
8518 	if (asoc->ep->sndbuf_policy)
8519 		return __sctp_write_space(asoc);
8520 
8521 	/* If association goes down and is just flushing its
8522 	 * outq, then just normally notify others.
8523 	 */
8524 	if (asoc->base.dead)
8525 		return sctp_write_space(sk);
8526 
8527 	/* Accounting for the sndbuf space is per socket, so we
8528 	 * need to wake up others, try to be fair and in case of
8529 	 * other associations, let them have a go first instead
8530 	 * of just doing a sctp_write_space() call.
8531 	 *
8532 	 * Note that we reach sctp_wake_up_waiters() only when
8533 	 * associations free up queued chunks, thus we are under
8534 	 * lock and the list of associations on a socket is
8535 	 * guaranteed not to change.
8536 	 */
8537 	for (tmp = list_next_entry(tmp, asocs); 1;
8538 	     tmp = list_next_entry(tmp, asocs)) {
8539 		/* Manually skip the head element. */
8540 		if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
8541 			continue;
8542 		/* Wake up association. */
8543 		__sctp_write_space(tmp);
8544 		/* We've reached the end. */
8545 		if (tmp == asoc)
8546 			break;
8547 	}
8548 }
8549 
8550 /* Do accounting for the sndbuf space.
8551  * Decrement the used sndbuf space of the corresponding association by the
8552  * data size which was just transmitted(freed).
8553  */
8554 static void sctp_wfree(struct sk_buff *skb)
8555 {
8556 	struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
8557 	struct sctp_association *asoc = chunk->asoc;
8558 	struct sock *sk = asoc->base.sk;
8559 
8560 	sk_mem_uncharge(sk, skb->truesize);
8561 	sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk);
8562 	asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk);
8563 	WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk),
8564 				      &sk->sk_wmem_alloc));
8565 
8566 	if (chunk->shkey) {
8567 		struct sctp_shared_key *shkey = chunk->shkey;
8568 
8569 		/* refcnt == 2 and !list_empty mean after this release, it's
8570 		 * not being used anywhere, and it's time to notify userland
8571 		 * that this shkey can be freed if it's been deactivated.
8572 		 */
8573 		if (shkey->deactivated && !list_empty(&shkey->key_list) &&
8574 		    refcount_read(&shkey->refcnt) == 2) {
8575 			struct sctp_ulpevent *ev;
8576 
8577 			ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id,
8578 							SCTP_AUTH_FREE_KEY,
8579 							GFP_KERNEL);
8580 			if (ev)
8581 				asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
8582 		}
8583 		sctp_auth_shkey_release(chunk->shkey);
8584 	}
8585 
8586 	sock_wfree(skb);
8587 	sctp_wake_up_waiters(sk, asoc);
8588 
8589 	sctp_association_put(asoc);
8590 }
8591 
8592 /* Do accounting for the receive space on the socket.
8593  * Accounting for the association is done in ulpevent.c
8594  * We set this as a destructor for the cloned data skbs so that
8595  * accounting is done at the correct time.
8596  */
8597 void sctp_sock_rfree(struct sk_buff *skb)
8598 {
8599 	struct sock *sk = skb->sk;
8600 	struct sctp_ulpevent *event = sctp_skb2event(skb);
8601 
8602 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
8603 
8604 	/*
8605 	 * Mimic the behavior of sock_rfree
8606 	 */
8607 	sk_mem_uncharge(sk, event->rmem_len);
8608 }
8609 
8610 
8611 /* Helper function to wait for space in the sndbuf.  */
8612 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
8613 				size_t msg_len)
8614 {
8615 	struct sock *sk = asoc->base.sk;
8616 	long current_timeo = *timeo_p;
8617 	DEFINE_WAIT(wait);
8618 	int err = 0;
8619 
8620 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
8621 		 *timeo_p, msg_len);
8622 
8623 	/* Increment the association's refcnt.  */
8624 	sctp_association_hold(asoc);
8625 
8626 	/* Wait on the association specific sndbuf space. */
8627 	for (;;) {
8628 		prepare_to_wait_exclusive(&asoc->wait, &wait,
8629 					  TASK_INTERRUPTIBLE);
8630 		if (asoc->base.dead)
8631 			goto do_dead;
8632 		if (!*timeo_p)
8633 			goto do_nonblock;
8634 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
8635 			goto do_error;
8636 		if (signal_pending(current))
8637 			goto do_interrupted;
8638 		if ((int)msg_len <= sctp_wspace(asoc))
8639 			break;
8640 
8641 		/* Let another process have a go.  Since we are going
8642 		 * to sleep anyway.
8643 		 */
8644 		release_sock(sk);
8645 		current_timeo = schedule_timeout(current_timeo);
8646 		lock_sock(sk);
8647 		if (sk != asoc->base.sk)
8648 			goto do_error;
8649 
8650 		*timeo_p = current_timeo;
8651 	}
8652 
8653 out:
8654 	finish_wait(&asoc->wait, &wait);
8655 
8656 	/* Release the association's refcnt.  */
8657 	sctp_association_put(asoc);
8658 
8659 	return err;
8660 
8661 do_dead:
8662 	err = -ESRCH;
8663 	goto out;
8664 
8665 do_error:
8666 	err = -EPIPE;
8667 	goto out;
8668 
8669 do_interrupted:
8670 	err = sock_intr_errno(*timeo_p);
8671 	goto out;
8672 
8673 do_nonblock:
8674 	err = -EAGAIN;
8675 	goto out;
8676 }
8677 
8678 void sctp_data_ready(struct sock *sk)
8679 {
8680 	struct socket_wq *wq;
8681 
8682 	rcu_read_lock();
8683 	wq = rcu_dereference(sk->sk_wq);
8684 	if (skwq_has_sleeper(wq))
8685 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN |
8686 						EPOLLRDNORM | EPOLLRDBAND);
8687 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
8688 	rcu_read_unlock();
8689 }
8690 
8691 /* If socket sndbuf has changed, wake up all per association waiters.  */
8692 void sctp_write_space(struct sock *sk)
8693 {
8694 	struct sctp_association *asoc;
8695 
8696 	/* Wake up the tasks in each wait queue.  */
8697 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
8698 		__sctp_write_space(asoc);
8699 	}
8700 }
8701 
8702 /* Is there any sndbuf space available on the socket?
8703  *
8704  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
8705  * associations on the same socket.  For a UDP-style socket with
8706  * multiple associations, it is possible for it to be "unwriteable"
8707  * prematurely.  I assume that this is acceptable because
8708  * a premature "unwriteable" is better than an accidental "writeable" which
8709  * would cause an unwanted block under certain circumstances.  For the 1-1
8710  * UDP-style sockets or TCP-style sockets, this code should work.
8711  *  - Daisy
8712  */
8713 static bool sctp_writeable(struct sock *sk)
8714 {
8715 	return sk->sk_sndbuf > sk->sk_wmem_queued;
8716 }
8717 
8718 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
8719  * returns immediately with EINPROGRESS.
8720  */
8721 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
8722 {
8723 	struct sock *sk = asoc->base.sk;
8724 	int err = 0;
8725 	long current_timeo = *timeo_p;
8726 	DEFINE_WAIT(wait);
8727 
8728 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
8729 
8730 	/* Increment the association's refcnt.  */
8731 	sctp_association_hold(asoc);
8732 
8733 	for (;;) {
8734 		prepare_to_wait_exclusive(&asoc->wait, &wait,
8735 					  TASK_INTERRUPTIBLE);
8736 		if (!*timeo_p)
8737 			goto do_nonblock;
8738 		if (sk->sk_shutdown & RCV_SHUTDOWN)
8739 			break;
8740 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
8741 		    asoc->base.dead)
8742 			goto do_error;
8743 		if (signal_pending(current))
8744 			goto do_interrupted;
8745 
8746 		if (sctp_state(asoc, ESTABLISHED))
8747 			break;
8748 
8749 		/* Let another process have a go.  Since we are going
8750 		 * to sleep anyway.
8751 		 */
8752 		release_sock(sk);
8753 		current_timeo = schedule_timeout(current_timeo);
8754 		lock_sock(sk);
8755 
8756 		*timeo_p = current_timeo;
8757 	}
8758 
8759 out:
8760 	finish_wait(&asoc->wait, &wait);
8761 
8762 	/* Release the association's refcnt.  */
8763 	sctp_association_put(asoc);
8764 
8765 	return err;
8766 
8767 do_error:
8768 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
8769 		err = -ETIMEDOUT;
8770 	else
8771 		err = -ECONNREFUSED;
8772 	goto out;
8773 
8774 do_interrupted:
8775 	err = sock_intr_errno(*timeo_p);
8776 	goto out;
8777 
8778 do_nonblock:
8779 	err = -EINPROGRESS;
8780 	goto out;
8781 }
8782 
8783 static int sctp_wait_for_accept(struct sock *sk, long timeo)
8784 {
8785 	struct sctp_endpoint *ep;
8786 	int err = 0;
8787 	DEFINE_WAIT(wait);
8788 
8789 	ep = sctp_sk(sk)->ep;
8790 
8791 
8792 	for (;;) {
8793 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
8794 					  TASK_INTERRUPTIBLE);
8795 
8796 		if (list_empty(&ep->asocs)) {
8797 			release_sock(sk);
8798 			timeo = schedule_timeout(timeo);
8799 			lock_sock(sk);
8800 		}
8801 
8802 		err = -EINVAL;
8803 		if (!sctp_sstate(sk, LISTENING))
8804 			break;
8805 
8806 		err = 0;
8807 		if (!list_empty(&ep->asocs))
8808 			break;
8809 
8810 		err = sock_intr_errno(timeo);
8811 		if (signal_pending(current))
8812 			break;
8813 
8814 		err = -EAGAIN;
8815 		if (!timeo)
8816 			break;
8817 	}
8818 
8819 	finish_wait(sk_sleep(sk), &wait);
8820 
8821 	return err;
8822 }
8823 
8824 static void sctp_wait_for_close(struct sock *sk, long timeout)
8825 {
8826 	DEFINE_WAIT(wait);
8827 
8828 	do {
8829 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8830 		if (list_empty(&sctp_sk(sk)->ep->asocs))
8831 			break;
8832 		release_sock(sk);
8833 		timeout = schedule_timeout(timeout);
8834 		lock_sock(sk);
8835 	} while (!signal_pending(current) && timeout);
8836 
8837 	finish_wait(sk_sleep(sk), &wait);
8838 }
8839 
8840 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
8841 {
8842 	struct sk_buff *frag;
8843 
8844 	if (!skb->data_len)
8845 		goto done;
8846 
8847 	/* Don't forget the fragments. */
8848 	skb_walk_frags(skb, frag)
8849 		sctp_skb_set_owner_r_frag(frag, sk);
8850 
8851 done:
8852 	sctp_skb_set_owner_r(skb, sk);
8853 }
8854 
8855 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
8856 		    struct sctp_association *asoc)
8857 {
8858 	struct inet_sock *inet = inet_sk(sk);
8859 	struct inet_sock *newinet;
8860 	struct sctp_sock *sp = sctp_sk(sk);
8861 	struct sctp_endpoint *ep = sp->ep;
8862 
8863 	newsk->sk_type = sk->sk_type;
8864 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
8865 	newsk->sk_flags = sk->sk_flags;
8866 	newsk->sk_tsflags = sk->sk_tsflags;
8867 	newsk->sk_no_check_tx = sk->sk_no_check_tx;
8868 	newsk->sk_no_check_rx = sk->sk_no_check_rx;
8869 	newsk->sk_reuse = sk->sk_reuse;
8870 	sctp_sk(newsk)->reuse = sp->reuse;
8871 
8872 	newsk->sk_shutdown = sk->sk_shutdown;
8873 	newsk->sk_destruct = sctp_destruct_sock;
8874 	newsk->sk_family = sk->sk_family;
8875 	newsk->sk_protocol = IPPROTO_SCTP;
8876 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
8877 	newsk->sk_sndbuf = sk->sk_sndbuf;
8878 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
8879 	newsk->sk_lingertime = sk->sk_lingertime;
8880 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
8881 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
8882 	newsk->sk_rxhash = sk->sk_rxhash;
8883 
8884 	newinet = inet_sk(newsk);
8885 
8886 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
8887 	 * getsockname() and getpeername()
8888 	 */
8889 	newinet->inet_sport = inet->inet_sport;
8890 	newinet->inet_saddr = inet->inet_saddr;
8891 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
8892 	newinet->inet_dport = htons(asoc->peer.port);
8893 	newinet->pmtudisc = inet->pmtudisc;
8894 	newinet->inet_id = asoc->next_tsn ^ jiffies;
8895 
8896 	newinet->uc_ttl = inet->uc_ttl;
8897 	newinet->mc_loop = 1;
8898 	newinet->mc_ttl = 1;
8899 	newinet->mc_index = 0;
8900 	newinet->mc_list = NULL;
8901 
8902 	if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
8903 		net_enable_timestamp();
8904 
8905 	/* Set newsk security attributes from orginal sk and connection
8906 	 * security attribute from ep.
8907 	 */
8908 	security_sctp_sk_clone(ep, sk, newsk);
8909 }
8910 
8911 static inline void sctp_copy_descendant(struct sock *sk_to,
8912 					const struct sock *sk_from)
8913 {
8914 	int ancestor_size = sizeof(struct inet_sock) +
8915 			    sizeof(struct sctp_sock) -
8916 			    offsetof(struct sctp_sock, auto_asconf_list);
8917 
8918 	if (sk_from->sk_family == PF_INET6)
8919 		ancestor_size += sizeof(struct ipv6_pinfo);
8920 
8921 	__inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
8922 }
8923 
8924 /* Populate the fields of the newsk from the oldsk and migrate the assoc
8925  * and its messages to the newsk.
8926  */
8927 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
8928 			      struct sctp_association *assoc,
8929 			      enum sctp_socket_type type)
8930 {
8931 	struct sctp_sock *oldsp = sctp_sk(oldsk);
8932 	struct sctp_sock *newsp = sctp_sk(newsk);
8933 	struct sctp_bind_bucket *pp; /* hash list port iterator */
8934 	struct sctp_endpoint *newep = newsp->ep;
8935 	struct sk_buff *skb, *tmp;
8936 	struct sctp_ulpevent *event;
8937 	struct sctp_bind_hashbucket *head;
8938 
8939 	/* Migrate socket buffer sizes and all the socket level options to the
8940 	 * new socket.
8941 	 */
8942 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
8943 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
8944 	/* Brute force copy old sctp opt. */
8945 	sctp_copy_descendant(newsk, oldsk);
8946 
8947 	/* Restore the ep value that was overwritten with the above structure
8948 	 * copy.
8949 	 */
8950 	newsp->ep = newep;
8951 	newsp->hmac = NULL;
8952 
8953 	/* Hook this new socket in to the bind_hash list. */
8954 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
8955 						 inet_sk(oldsk)->inet_num)];
8956 	spin_lock_bh(&head->lock);
8957 	pp = sctp_sk(oldsk)->bind_hash;
8958 	sk_add_bind_node(newsk, &pp->owner);
8959 	sctp_sk(newsk)->bind_hash = pp;
8960 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
8961 	spin_unlock_bh(&head->lock);
8962 
8963 	/* Copy the bind_addr list from the original endpoint to the new
8964 	 * endpoint so that we can handle restarts properly
8965 	 */
8966 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
8967 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
8968 
8969 	/* Move any messages in the old socket's receive queue that are for the
8970 	 * peeled off association to the new socket's receive queue.
8971 	 */
8972 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
8973 		event = sctp_skb2event(skb);
8974 		if (event->asoc == assoc) {
8975 			__skb_unlink(skb, &oldsk->sk_receive_queue);
8976 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
8977 			sctp_skb_set_owner_r_frag(skb, newsk);
8978 		}
8979 	}
8980 
8981 	/* Clean up any messages pending delivery due to partial
8982 	 * delivery.   Three cases:
8983 	 * 1) No partial deliver;  no work.
8984 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
8985 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
8986 	 */
8987 	skb_queue_head_init(&newsp->pd_lobby);
8988 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
8989 
8990 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
8991 		struct sk_buff_head *queue;
8992 
8993 		/* Decide which queue to move pd_lobby skbs to. */
8994 		if (assoc->ulpq.pd_mode) {
8995 			queue = &newsp->pd_lobby;
8996 		} else
8997 			queue = &newsk->sk_receive_queue;
8998 
8999 		/* Walk through the pd_lobby, looking for skbs that
9000 		 * need moved to the new socket.
9001 		 */
9002 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
9003 			event = sctp_skb2event(skb);
9004 			if (event->asoc == assoc) {
9005 				__skb_unlink(skb, &oldsp->pd_lobby);
9006 				__skb_queue_tail(queue, skb);
9007 				sctp_skb_set_owner_r_frag(skb, newsk);
9008 			}
9009 		}
9010 
9011 		/* Clear up any skbs waiting for the partial
9012 		 * delivery to finish.
9013 		 */
9014 		if (assoc->ulpq.pd_mode)
9015 			sctp_clear_pd(oldsk, NULL);
9016 
9017 	}
9018 
9019 	sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag);
9020 
9021 	/* Set the type of socket to indicate that it is peeled off from the
9022 	 * original UDP-style socket or created with the accept() call on a
9023 	 * TCP-style socket..
9024 	 */
9025 	newsp->type = type;
9026 
9027 	/* Mark the new socket "in-use" by the user so that any packets
9028 	 * that may arrive on the association after we've moved it are
9029 	 * queued to the backlog.  This prevents a potential race between
9030 	 * backlog processing on the old socket and new-packet processing
9031 	 * on the new socket.
9032 	 *
9033 	 * The caller has just allocated newsk so we can guarantee that other
9034 	 * paths won't try to lock it and then oldsk.
9035 	 */
9036 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
9037 	sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w);
9038 	sctp_assoc_migrate(assoc, newsk);
9039 	sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w);
9040 
9041 	/* If the association on the newsk is already closed before accept()
9042 	 * is called, set RCV_SHUTDOWN flag.
9043 	 */
9044 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
9045 		inet_sk_set_state(newsk, SCTP_SS_CLOSED);
9046 		newsk->sk_shutdown |= RCV_SHUTDOWN;
9047 	} else {
9048 		inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED);
9049 	}
9050 
9051 	release_sock(newsk);
9052 }
9053 
9054 
9055 /* This proto struct describes the ULP interface for SCTP.  */
9056 struct proto sctp_prot = {
9057 	.name        =	"SCTP",
9058 	.owner       =	THIS_MODULE,
9059 	.close       =	sctp_close,
9060 	.disconnect  =	sctp_disconnect,
9061 	.accept      =	sctp_accept,
9062 	.ioctl       =	sctp_ioctl,
9063 	.init        =	sctp_init_sock,
9064 	.destroy     =	sctp_destroy_sock,
9065 	.shutdown    =	sctp_shutdown,
9066 	.setsockopt  =	sctp_setsockopt,
9067 	.getsockopt  =	sctp_getsockopt,
9068 	.sendmsg     =	sctp_sendmsg,
9069 	.recvmsg     =	sctp_recvmsg,
9070 	.bind        =	sctp_bind,
9071 	.backlog_rcv =	sctp_backlog_rcv,
9072 	.hash        =	sctp_hash,
9073 	.unhash      =	sctp_unhash,
9074 	.get_port    =	sctp_get_port,
9075 	.obj_size    =  sizeof(struct sctp_sock),
9076 	.useroffset  =  offsetof(struct sctp_sock, subscribe),
9077 	.usersize    =  offsetof(struct sctp_sock, initmsg) -
9078 				offsetof(struct sctp_sock, subscribe) +
9079 				sizeof_field(struct sctp_sock, initmsg),
9080 	.sysctl_mem  =  sysctl_sctp_mem,
9081 	.sysctl_rmem =  sysctl_sctp_rmem,
9082 	.sysctl_wmem =  sysctl_sctp_wmem,
9083 	.memory_pressure = &sctp_memory_pressure,
9084 	.enter_memory_pressure = sctp_enter_memory_pressure,
9085 	.memory_allocated = &sctp_memory_allocated,
9086 	.sockets_allocated = &sctp_sockets_allocated,
9087 };
9088 
9089 #if IS_ENABLED(CONFIG_IPV6)
9090 
9091 #include <net/transp_v6.h>
9092 static void sctp_v6_destroy_sock(struct sock *sk)
9093 {
9094 	sctp_destroy_sock(sk);
9095 	inet6_destroy_sock(sk);
9096 }
9097 
9098 struct proto sctpv6_prot = {
9099 	.name		= "SCTPv6",
9100 	.owner		= THIS_MODULE,
9101 	.close		= sctp_close,
9102 	.disconnect	= sctp_disconnect,
9103 	.accept		= sctp_accept,
9104 	.ioctl		= sctp_ioctl,
9105 	.init		= sctp_init_sock,
9106 	.destroy	= sctp_v6_destroy_sock,
9107 	.shutdown	= sctp_shutdown,
9108 	.setsockopt	= sctp_setsockopt,
9109 	.getsockopt	= sctp_getsockopt,
9110 	.sendmsg	= sctp_sendmsg,
9111 	.recvmsg	= sctp_recvmsg,
9112 	.bind		= sctp_bind,
9113 	.backlog_rcv	= sctp_backlog_rcv,
9114 	.hash		= sctp_hash,
9115 	.unhash		= sctp_unhash,
9116 	.get_port	= sctp_get_port,
9117 	.obj_size	= sizeof(struct sctp6_sock),
9118 	.useroffset	= offsetof(struct sctp6_sock, sctp.subscribe),
9119 	.usersize	= offsetof(struct sctp6_sock, sctp.initmsg) -
9120 				offsetof(struct sctp6_sock, sctp.subscribe) +
9121 				sizeof_field(struct sctp6_sock, sctp.initmsg),
9122 	.sysctl_mem	= sysctl_sctp_mem,
9123 	.sysctl_rmem	= sysctl_sctp_rmem,
9124 	.sysctl_wmem	= sysctl_sctp_wmem,
9125 	.memory_pressure = &sctp_memory_pressure,
9126 	.enter_memory_pressure = sctp_enter_memory_pressure,
9127 	.memory_allocated = &sctp_memory_allocated,
9128 	.sockets_allocated = &sctp_sockets_allocated,
9129 };
9130 #endif /* IS_ENABLED(CONFIG_IPV6) */
9131