1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, see 32 * <http://www.gnu.org/licenses/>. 33 * 34 * Please send any bug reports or fixes you make to the 35 * email address(es): 36 * lksctp developers <linux-sctp@vger.kernel.org> 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Narasimha Budihal <narsi@refcode.org> 41 * Karl Knutson <karl@athena.chicago.il.us> 42 * Jon Grimm <jgrimm@us.ibm.com> 43 * Xingang Guo <xingang.guo@intel.com> 44 * Daisy Chang <daisyc@us.ibm.com> 45 * Sridhar Samudrala <samudrala@us.ibm.com> 46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 47 * Ardelle Fan <ardelle.fan@intel.com> 48 * Ryan Layer <rmlayer@us.ibm.com> 49 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 50 * Kevin Gao <kevin.gao@intel.com> 51 */ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <crypto/hash.h> 56 #include <linux/types.h> 57 #include <linux/kernel.h> 58 #include <linux/wait.h> 59 #include <linux/time.h> 60 #include <linux/sched/signal.h> 61 #include <linux/ip.h> 62 #include <linux/capability.h> 63 #include <linux/fcntl.h> 64 #include <linux/poll.h> 65 #include <linux/init.h> 66 #include <linux/slab.h> 67 #include <linux/file.h> 68 #include <linux/compat.h> 69 #include <linux/rhashtable.h> 70 71 #include <net/ip.h> 72 #include <net/icmp.h> 73 #include <net/route.h> 74 #include <net/ipv6.h> 75 #include <net/inet_common.h> 76 #include <net/busy_poll.h> 77 78 #include <linux/socket.h> /* for sa_family_t */ 79 #include <linux/export.h> 80 #include <net/sock.h> 81 #include <net/sctp/sctp.h> 82 #include <net/sctp/sm.h> 83 #include <net/sctp/stream_sched.h> 84 85 /* Forward declarations for internal helper functions. */ 86 static bool sctp_writeable(struct sock *sk); 87 static void sctp_wfree(struct sk_buff *skb); 88 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 89 size_t msg_len); 90 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 91 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 92 static int sctp_wait_for_accept(struct sock *sk, long timeo); 93 static void sctp_wait_for_close(struct sock *sk, long timeo); 94 static void sctp_destruct_sock(struct sock *sk); 95 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 96 union sctp_addr *addr, int len); 97 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 98 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 99 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 100 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 101 static int sctp_send_asconf(struct sctp_association *asoc, 102 struct sctp_chunk *chunk); 103 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 104 static int sctp_autobind(struct sock *sk); 105 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 106 struct sctp_association *assoc, 107 enum sctp_socket_type type); 108 109 static unsigned long sctp_memory_pressure; 110 static atomic_long_t sctp_memory_allocated; 111 struct percpu_counter sctp_sockets_allocated; 112 113 static void sctp_enter_memory_pressure(struct sock *sk) 114 { 115 sctp_memory_pressure = 1; 116 } 117 118 119 /* Get the sndbuf space available at the time on the association. */ 120 static inline int sctp_wspace(struct sctp_association *asoc) 121 { 122 struct sock *sk = asoc->base.sk; 123 124 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used 125 : sk_stream_wspace(sk); 126 } 127 128 /* Increment the used sndbuf space count of the corresponding association by 129 * the size of the outgoing data chunk. 130 * Also, set the skb destructor for sndbuf accounting later. 131 * 132 * Since it is always 1-1 between chunk and skb, and also a new skb is always 133 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 134 * destructor in the data chunk skb for the purpose of the sndbuf space 135 * tracking. 136 */ 137 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 138 { 139 struct sctp_association *asoc = chunk->asoc; 140 struct sock *sk = asoc->base.sk; 141 142 /* The sndbuf space is tracked per association. */ 143 sctp_association_hold(asoc); 144 145 if (chunk->shkey) 146 sctp_auth_shkey_hold(chunk->shkey); 147 148 skb_set_owner_w(chunk->skb, sk); 149 150 chunk->skb->destructor = sctp_wfree; 151 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 152 skb_shinfo(chunk->skb)->destructor_arg = chunk; 153 154 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 155 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); 156 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk); 157 sk_mem_charge(sk, chunk->skb->truesize); 158 } 159 160 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 161 { 162 skb_orphan(chunk->skb); 163 } 164 165 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 166 void (*cb)(struct sctp_chunk *)) 167 168 { 169 struct sctp_outq *q = &asoc->outqueue; 170 struct sctp_transport *t; 171 struct sctp_chunk *chunk; 172 173 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 174 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 175 cb(chunk); 176 177 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 178 cb(chunk); 179 180 list_for_each_entry(chunk, &q->sacked, transmitted_list) 181 cb(chunk); 182 183 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 184 cb(chunk); 185 186 list_for_each_entry(chunk, &q->out_chunk_list, list) 187 cb(chunk); 188 } 189 190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 191 void (*cb)(struct sk_buff *, struct sock *)) 192 193 { 194 struct sk_buff *skb, *tmp; 195 196 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 197 cb(skb, sk); 198 199 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 200 cb(skb, sk); 201 202 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 203 cb(skb, sk); 204 } 205 206 /* Verify that this is a valid address. */ 207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 208 int len) 209 { 210 struct sctp_af *af; 211 212 /* Verify basic sockaddr. */ 213 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 214 if (!af) 215 return -EINVAL; 216 217 /* Is this a valid SCTP address? */ 218 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 219 return -EINVAL; 220 221 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 222 return -EINVAL; 223 224 return 0; 225 } 226 227 /* Look up the association by its id. If this is not a UDP-style 228 * socket, the ID field is always ignored. 229 */ 230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 231 { 232 struct sctp_association *asoc = NULL; 233 234 /* If this is not a UDP-style socket, assoc id should be ignored. */ 235 if (!sctp_style(sk, UDP)) { 236 /* Return NULL if the socket state is not ESTABLISHED. It 237 * could be a TCP-style listening socket or a socket which 238 * hasn't yet called connect() to establish an association. 239 */ 240 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 241 return NULL; 242 243 /* Get the first and the only association from the list. */ 244 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 245 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 246 struct sctp_association, asocs); 247 return asoc; 248 } 249 250 /* Otherwise this is a UDP-style socket. */ 251 if (!id || (id == (sctp_assoc_t)-1)) 252 return NULL; 253 254 spin_lock_bh(&sctp_assocs_id_lock); 255 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 256 if (asoc && (asoc->base.sk != sk || asoc->base.dead)) 257 asoc = NULL; 258 spin_unlock_bh(&sctp_assocs_id_lock); 259 260 return asoc; 261 } 262 263 /* Look up the transport from an address and an assoc id. If both address and 264 * id are specified, the associations matching the address and the id should be 265 * the same. 266 */ 267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 268 struct sockaddr_storage *addr, 269 sctp_assoc_t id) 270 { 271 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 272 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 273 union sctp_addr *laddr = (union sctp_addr *)addr; 274 struct sctp_transport *transport; 275 276 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 277 return NULL; 278 279 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 280 laddr, 281 &transport); 282 283 if (!addr_asoc) 284 return NULL; 285 286 id_asoc = sctp_id2assoc(sk, id); 287 if (id_asoc && (id_asoc != addr_asoc)) 288 return NULL; 289 290 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 291 (union sctp_addr *)addr); 292 293 return transport; 294 } 295 296 /* API 3.1.2 bind() - UDP Style Syntax 297 * The syntax of bind() is, 298 * 299 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 300 * 301 * sd - the socket descriptor returned by socket(). 302 * addr - the address structure (struct sockaddr_in or struct 303 * sockaddr_in6 [RFC 2553]), 304 * addr_len - the size of the address structure. 305 */ 306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 307 { 308 int retval = 0; 309 310 lock_sock(sk); 311 312 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 313 addr, addr_len); 314 315 /* Disallow binding twice. */ 316 if (!sctp_sk(sk)->ep->base.bind_addr.port) 317 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 318 addr_len); 319 else 320 retval = -EINVAL; 321 322 release_sock(sk); 323 324 return retval; 325 } 326 327 static long sctp_get_port_local(struct sock *, union sctp_addr *); 328 329 /* Verify this is a valid sockaddr. */ 330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 331 union sctp_addr *addr, int len) 332 { 333 struct sctp_af *af; 334 335 /* Check minimum size. */ 336 if (len < sizeof (struct sockaddr)) 337 return NULL; 338 339 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 340 return NULL; 341 342 if (addr->sa.sa_family == AF_INET6) { 343 if (len < SIN6_LEN_RFC2133) 344 return NULL; 345 /* V4 mapped address are really of AF_INET family */ 346 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 347 !opt->pf->af_supported(AF_INET, opt)) 348 return NULL; 349 } 350 351 /* If we get this far, af is valid. */ 352 af = sctp_get_af_specific(addr->sa.sa_family); 353 354 if (len < af->sockaddr_len) 355 return NULL; 356 357 return af; 358 } 359 360 /* Bind a local address either to an endpoint or to an association. */ 361 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 362 { 363 struct net *net = sock_net(sk); 364 struct sctp_sock *sp = sctp_sk(sk); 365 struct sctp_endpoint *ep = sp->ep; 366 struct sctp_bind_addr *bp = &ep->base.bind_addr; 367 struct sctp_af *af; 368 unsigned short snum; 369 int ret = 0; 370 371 /* Common sockaddr verification. */ 372 af = sctp_sockaddr_af(sp, addr, len); 373 if (!af) { 374 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 375 __func__, sk, addr, len); 376 return -EINVAL; 377 } 378 379 snum = ntohs(addr->v4.sin_port); 380 381 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 382 __func__, sk, &addr->sa, bp->port, snum, len); 383 384 /* PF specific bind() address verification. */ 385 if (!sp->pf->bind_verify(sp, addr)) 386 return -EADDRNOTAVAIL; 387 388 /* We must either be unbound, or bind to the same port. 389 * It's OK to allow 0 ports if we are already bound. 390 * We'll just inhert an already bound port in this case 391 */ 392 if (bp->port) { 393 if (!snum) 394 snum = bp->port; 395 else if (snum != bp->port) { 396 pr_debug("%s: new port %d doesn't match existing port " 397 "%d\n", __func__, snum, bp->port); 398 return -EINVAL; 399 } 400 } 401 402 if (snum && snum < inet_prot_sock(net) && 403 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 404 return -EACCES; 405 406 /* See if the address matches any of the addresses we may have 407 * already bound before checking against other endpoints. 408 */ 409 if (sctp_bind_addr_match(bp, addr, sp)) 410 return -EINVAL; 411 412 /* Make sure we are allowed to bind here. 413 * The function sctp_get_port_local() does duplicate address 414 * detection. 415 */ 416 addr->v4.sin_port = htons(snum); 417 if ((ret = sctp_get_port_local(sk, addr))) { 418 return -EADDRINUSE; 419 } 420 421 /* Refresh ephemeral port. */ 422 if (!bp->port) 423 bp->port = inet_sk(sk)->inet_num; 424 425 /* Add the address to the bind address list. 426 * Use GFP_ATOMIC since BHs will be disabled. 427 */ 428 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 429 SCTP_ADDR_SRC, GFP_ATOMIC); 430 431 /* Copy back into socket for getsockname() use. */ 432 if (!ret) { 433 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 434 sp->pf->to_sk_saddr(addr, sk); 435 } 436 437 return ret; 438 } 439 440 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 441 * 442 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 443 * at any one time. If a sender, after sending an ASCONF chunk, decides 444 * it needs to transfer another ASCONF Chunk, it MUST wait until the 445 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 446 * subsequent ASCONF. Note this restriction binds each side, so at any 447 * time two ASCONF may be in-transit on any given association (one sent 448 * from each endpoint). 449 */ 450 static int sctp_send_asconf(struct sctp_association *asoc, 451 struct sctp_chunk *chunk) 452 { 453 struct net *net = sock_net(asoc->base.sk); 454 int retval = 0; 455 456 /* If there is an outstanding ASCONF chunk, queue it for later 457 * transmission. 458 */ 459 if (asoc->addip_last_asconf) { 460 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 461 goto out; 462 } 463 464 /* Hold the chunk until an ASCONF_ACK is received. */ 465 sctp_chunk_hold(chunk); 466 retval = sctp_primitive_ASCONF(net, asoc, chunk); 467 if (retval) 468 sctp_chunk_free(chunk); 469 else 470 asoc->addip_last_asconf = chunk; 471 472 out: 473 return retval; 474 } 475 476 /* Add a list of addresses as bind addresses to local endpoint or 477 * association. 478 * 479 * Basically run through each address specified in the addrs/addrcnt 480 * array/length pair, determine if it is IPv6 or IPv4 and call 481 * sctp_do_bind() on it. 482 * 483 * If any of them fails, then the operation will be reversed and the 484 * ones that were added will be removed. 485 * 486 * Only sctp_setsockopt_bindx() is supposed to call this function. 487 */ 488 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 489 { 490 int cnt; 491 int retval = 0; 492 void *addr_buf; 493 struct sockaddr *sa_addr; 494 struct sctp_af *af; 495 496 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 497 addrs, addrcnt); 498 499 addr_buf = addrs; 500 for (cnt = 0; cnt < addrcnt; cnt++) { 501 /* The list may contain either IPv4 or IPv6 address; 502 * determine the address length for walking thru the list. 503 */ 504 sa_addr = addr_buf; 505 af = sctp_get_af_specific(sa_addr->sa_family); 506 if (!af) { 507 retval = -EINVAL; 508 goto err_bindx_add; 509 } 510 511 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 512 af->sockaddr_len); 513 514 addr_buf += af->sockaddr_len; 515 516 err_bindx_add: 517 if (retval < 0) { 518 /* Failed. Cleanup the ones that have been added */ 519 if (cnt > 0) 520 sctp_bindx_rem(sk, addrs, cnt); 521 return retval; 522 } 523 } 524 525 return retval; 526 } 527 528 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 529 * associations that are part of the endpoint indicating that a list of local 530 * addresses are added to the endpoint. 531 * 532 * If any of the addresses is already in the bind address list of the 533 * association, we do not send the chunk for that association. But it will not 534 * affect other associations. 535 * 536 * Only sctp_setsockopt_bindx() is supposed to call this function. 537 */ 538 static int sctp_send_asconf_add_ip(struct sock *sk, 539 struct sockaddr *addrs, 540 int addrcnt) 541 { 542 struct net *net = sock_net(sk); 543 struct sctp_sock *sp; 544 struct sctp_endpoint *ep; 545 struct sctp_association *asoc; 546 struct sctp_bind_addr *bp; 547 struct sctp_chunk *chunk; 548 struct sctp_sockaddr_entry *laddr; 549 union sctp_addr *addr; 550 union sctp_addr saveaddr; 551 void *addr_buf; 552 struct sctp_af *af; 553 struct list_head *p; 554 int i; 555 int retval = 0; 556 557 if (!net->sctp.addip_enable) 558 return retval; 559 560 sp = sctp_sk(sk); 561 ep = sp->ep; 562 563 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 564 __func__, sk, addrs, addrcnt); 565 566 list_for_each_entry(asoc, &ep->asocs, asocs) { 567 if (!asoc->peer.asconf_capable) 568 continue; 569 570 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 571 continue; 572 573 if (!sctp_state(asoc, ESTABLISHED)) 574 continue; 575 576 /* Check if any address in the packed array of addresses is 577 * in the bind address list of the association. If so, 578 * do not send the asconf chunk to its peer, but continue with 579 * other associations. 580 */ 581 addr_buf = addrs; 582 for (i = 0; i < addrcnt; i++) { 583 addr = addr_buf; 584 af = sctp_get_af_specific(addr->v4.sin_family); 585 if (!af) { 586 retval = -EINVAL; 587 goto out; 588 } 589 590 if (sctp_assoc_lookup_laddr(asoc, addr)) 591 break; 592 593 addr_buf += af->sockaddr_len; 594 } 595 if (i < addrcnt) 596 continue; 597 598 /* Use the first valid address in bind addr list of 599 * association as Address Parameter of ASCONF CHUNK. 600 */ 601 bp = &asoc->base.bind_addr; 602 p = bp->address_list.next; 603 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 604 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 605 addrcnt, SCTP_PARAM_ADD_IP); 606 if (!chunk) { 607 retval = -ENOMEM; 608 goto out; 609 } 610 611 /* Add the new addresses to the bind address list with 612 * use_as_src set to 0. 613 */ 614 addr_buf = addrs; 615 for (i = 0; i < addrcnt; i++) { 616 addr = addr_buf; 617 af = sctp_get_af_specific(addr->v4.sin_family); 618 memcpy(&saveaddr, addr, af->sockaddr_len); 619 retval = sctp_add_bind_addr(bp, &saveaddr, 620 sizeof(saveaddr), 621 SCTP_ADDR_NEW, GFP_ATOMIC); 622 addr_buf += af->sockaddr_len; 623 } 624 if (asoc->src_out_of_asoc_ok) { 625 struct sctp_transport *trans; 626 627 list_for_each_entry(trans, 628 &asoc->peer.transport_addr_list, transports) { 629 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 630 2*asoc->pathmtu, 4380)); 631 trans->ssthresh = asoc->peer.i.a_rwnd; 632 trans->rto = asoc->rto_initial; 633 sctp_max_rto(asoc, trans); 634 trans->rtt = trans->srtt = trans->rttvar = 0; 635 /* Clear the source and route cache */ 636 sctp_transport_route(trans, NULL, 637 sctp_sk(asoc->base.sk)); 638 } 639 } 640 retval = sctp_send_asconf(asoc, chunk); 641 } 642 643 out: 644 return retval; 645 } 646 647 /* Remove a list of addresses from bind addresses list. Do not remove the 648 * last address. 649 * 650 * Basically run through each address specified in the addrs/addrcnt 651 * array/length pair, determine if it is IPv6 or IPv4 and call 652 * sctp_del_bind() on it. 653 * 654 * If any of them fails, then the operation will be reversed and the 655 * ones that were removed will be added back. 656 * 657 * At least one address has to be left; if only one address is 658 * available, the operation will return -EBUSY. 659 * 660 * Only sctp_setsockopt_bindx() is supposed to call this function. 661 */ 662 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 663 { 664 struct sctp_sock *sp = sctp_sk(sk); 665 struct sctp_endpoint *ep = sp->ep; 666 int cnt; 667 struct sctp_bind_addr *bp = &ep->base.bind_addr; 668 int retval = 0; 669 void *addr_buf; 670 union sctp_addr *sa_addr; 671 struct sctp_af *af; 672 673 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 674 __func__, sk, addrs, addrcnt); 675 676 addr_buf = addrs; 677 for (cnt = 0; cnt < addrcnt; cnt++) { 678 /* If the bind address list is empty or if there is only one 679 * bind address, there is nothing more to be removed (we need 680 * at least one address here). 681 */ 682 if (list_empty(&bp->address_list) || 683 (sctp_list_single_entry(&bp->address_list))) { 684 retval = -EBUSY; 685 goto err_bindx_rem; 686 } 687 688 sa_addr = addr_buf; 689 af = sctp_get_af_specific(sa_addr->sa.sa_family); 690 if (!af) { 691 retval = -EINVAL; 692 goto err_bindx_rem; 693 } 694 695 if (!af->addr_valid(sa_addr, sp, NULL)) { 696 retval = -EADDRNOTAVAIL; 697 goto err_bindx_rem; 698 } 699 700 if (sa_addr->v4.sin_port && 701 sa_addr->v4.sin_port != htons(bp->port)) { 702 retval = -EINVAL; 703 goto err_bindx_rem; 704 } 705 706 if (!sa_addr->v4.sin_port) 707 sa_addr->v4.sin_port = htons(bp->port); 708 709 /* FIXME - There is probably a need to check if sk->sk_saddr and 710 * sk->sk_rcv_addr are currently set to one of the addresses to 711 * be removed. This is something which needs to be looked into 712 * when we are fixing the outstanding issues with multi-homing 713 * socket routing and failover schemes. Refer to comments in 714 * sctp_do_bind(). -daisy 715 */ 716 retval = sctp_del_bind_addr(bp, sa_addr); 717 718 addr_buf += af->sockaddr_len; 719 err_bindx_rem: 720 if (retval < 0) { 721 /* Failed. Add the ones that has been removed back */ 722 if (cnt > 0) 723 sctp_bindx_add(sk, addrs, cnt); 724 return retval; 725 } 726 } 727 728 return retval; 729 } 730 731 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 732 * the associations that are part of the endpoint indicating that a list of 733 * local addresses are removed from the endpoint. 734 * 735 * If any of the addresses is already in the bind address list of the 736 * association, we do not send the chunk for that association. But it will not 737 * affect other associations. 738 * 739 * Only sctp_setsockopt_bindx() is supposed to call this function. 740 */ 741 static int sctp_send_asconf_del_ip(struct sock *sk, 742 struct sockaddr *addrs, 743 int addrcnt) 744 { 745 struct net *net = sock_net(sk); 746 struct sctp_sock *sp; 747 struct sctp_endpoint *ep; 748 struct sctp_association *asoc; 749 struct sctp_transport *transport; 750 struct sctp_bind_addr *bp; 751 struct sctp_chunk *chunk; 752 union sctp_addr *laddr; 753 void *addr_buf; 754 struct sctp_af *af; 755 struct sctp_sockaddr_entry *saddr; 756 int i; 757 int retval = 0; 758 int stored = 0; 759 760 chunk = NULL; 761 if (!net->sctp.addip_enable) 762 return retval; 763 764 sp = sctp_sk(sk); 765 ep = sp->ep; 766 767 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 768 __func__, sk, addrs, addrcnt); 769 770 list_for_each_entry(asoc, &ep->asocs, asocs) { 771 772 if (!asoc->peer.asconf_capable) 773 continue; 774 775 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 776 continue; 777 778 if (!sctp_state(asoc, ESTABLISHED)) 779 continue; 780 781 /* Check if any address in the packed array of addresses is 782 * not present in the bind address list of the association. 783 * If so, do not send the asconf chunk to its peer, but 784 * continue with other associations. 785 */ 786 addr_buf = addrs; 787 for (i = 0; i < addrcnt; i++) { 788 laddr = addr_buf; 789 af = sctp_get_af_specific(laddr->v4.sin_family); 790 if (!af) { 791 retval = -EINVAL; 792 goto out; 793 } 794 795 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 796 break; 797 798 addr_buf += af->sockaddr_len; 799 } 800 if (i < addrcnt) 801 continue; 802 803 /* Find one address in the association's bind address list 804 * that is not in the packed array of addresses. This is to 805 * make sure that we do not delete all the addresses in the 806 * association. 807 */ 808 bp = &asoc->base.bind_addr; 809 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 810 addrcnt, sp); 811 if ((laddr == NULL) && (addrcnt == 1)) { 812 if (asoc->asconf_addr_del_pending) 813 continue; 814 asoc->asconf_addr_del_pending = 815 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 816 if (asoc->asconf_addr_del_pending == NULL) { 817 retval = -ENOMEM; 818 goto out; 819 } 820 asoc->asconf_addr_del_pending->sa.sa_family = 821 addrs->sa_family; 822 asoc->asconf_addr_del_pending->v4.sin_port = 823 htons(bp->port); 824 if (addrs->sa_family == AF_INET) { 825 struct sockaddr_in *sin; 826 827 sin = (struct sockaddr_in *)addrs; 828 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 829 } else if (addrs->sa_family == AF_INET6) { 830 struct sockaddr_in6 *sin6; 831 832 sin6 = (struct sockaddr_in6 *)addrs; 833 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 834 } 835 836 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 837 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 838 asoc->asconf_addr_del_pending); 839 840 asoc->src_out_of_asoc_ok = 1; 841 stored = 1; 842 goto skip_mkasconf; 843 } 844 845 if (laddr == NULL) 846 return -EINVAL; 847 848 /* We do not need RCU protection throughout this loop 849 * because this is done under a socket lock from the 850 * setsockopt call. 851 */ 852 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 853 SCTP_PARAM_DEL_IP); 854 if (!chunk) { 855 retval = -ENOMEM; 856 goto out; 857 } 858 859 skip_mkasconf: 860 /* Reset use_as_src flag for the addresses in the bind address 861 * list that are to be deleted. 862 */ 863 addr_buf = addrs; 864 for (i = 0; i < addrcnt; i++) { 865 laddr = addr_buf; 866 af = sctp_get_af_specific(laddr->v4.sin_family); 867 list_for_each_entry(saddr, &bp->address_list, list) { 868 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 869 saddr->state = SCTP_ADDR_DEL; 870 } 871 addr_buf += af->sockaddr_len; 872 } 873 874 /* Update the route and saddr entries for all the transports 875 * as some of the addresses in the bind address list are 876 * about to be deleted and cannot be used as source addresses. 877 */ 878 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 879 transports) { 880 sctp_transport_route(transport, NULL, 881 sctp_sk(asoc->base.sk)); 882 } 883 884 if (stored) 885 /* We don't need to transmit ASCONF */ 886 continue; 887 retval = sctp_send_asconf(asoc, chunk); 888 } 889 out: 890 return retval; 891 } 892 893 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 894 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 895 { 896 struct sock *sk = sctp_opt2sk(sp); 897 union sctp_addr *addr; 898 struct sctp_af *af; 899 900 /* It is safe to write port space in caller. */ 901 addr = &addrw->a; 902 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 903 af = sctp_get_af_specific(addr->sa.sa_family); 904 if (!af) 905 return -EINVAL; 906 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 907 return -EINVAL; 908 909 if (addrw->state == SCTP_ADDR_NEW) 910 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 911 else 912 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 913 } 914 915 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 916 * 917 * API 8.1 918 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 919 * int flags); 920 * 921 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 922 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 923 * or IPv6 addresses. 924 * 925 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 926 * Section 3.1.2 for this usage. 927 * 928 * addrs is a pointer to an array of one or more socket addresses. Each 929 * address is contained in its appropriate structure (i.e. struct 930 * sockaddr_in or struct sockaddr_in6) the family of the address type 931 * must be used to distinguish the address length (note that this 932 * representation is termed a "packed array" of addresses). The caller 933 * specifies the number of addresses in the array with addrcnt. 934 * 935 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 936 * -1, and sets errno to the appropriate error code. 937 * 938 * For SCTP, the port given in each socket address must be the same, or 939 * sctp_bindx() will fail, setting errno to EINVAL. 940 * 941 * The flags parameter is formed from the bitwise OR of zero or more of 942 * the following currently defined flags: 943 * 944 * SCTP_BINDX_ADD_ADDR 945 * 946 * SCTP_BINDX_REM_ADDR 947 * 948 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 949 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 950 * addresses from the association. The two flags are mutually exclusive; 951 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 952 * not remove all addresses from an association; sctp_bindx() will 953 * reject such an attempt with EINVAL. 954 * 955 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 956 * additional addresses with an endpoint after calling bind(). Or use 957 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 958 * socket is associated with so that no new association accepted will be 959 * associated with those addresses. If the endpoint supports dynamic 960 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 961 * endpoint to send the appropriate message to the peer to change the 962 * peers address lists. 963 * 964 * Adding and removing addresses from a connected association is 965 * optional functionality. Implementations that do not support this 966 * functionality should return EOPNOTSUPP. 967 * 968 * Basically do nothing but copying the addresses from user to kernel 969 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 970 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 971 * from userspace. 972 * 973 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 974 * it. 975 * 976 * sk The sk of the socket 977 * addrs The pointer to the addresses in user land 978 * addrssize Size of the addrs buffer 979 * op Operation to perform (add or remove, see the flags of 980 * sctp_bindx) 981 * 982 * Returns 0 if ok, <0 errno code on error. 983 */ 984 static int sctp_setsockopt_bindx(struct sock *sk, 985 struct sockaddr __user *addrs, 986 int addrs_size, int op) 987 { 988 struct sockaddr *kaddrs; 989 int err; 990 int addrcnt = 0; 991 int walk_size = 0; 992 struct sockaddr *sa_addr; 993 void *addr_buf; 994 struct sctp_af *af; 995 996 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 997 __func__, sk, addrs, addrs_size, op); 998 999 if (unlikely(addrs_size <= 0)) 1000 return -EINVAL; 1001 1002 kaddrs = vmemdup_user(addrs, addrs_size); 1003 if (unlikely(IS_ERR(kaddrs))) 1004 return PTR_ERR(kaddrs); 1005 1006 /* Walk through the addrs buffer and count the number of addresses. */ 1007 addr_buf = kaddrs; 1008 while (walk_size < addrs_size) { 1009 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1010 kvfree(kaddrs); 1011 return -EINVAL; 1012 } 1013 1014 sa_addr = addr_buf; 1015 af = sctp_get_af_specific(sa_addr->sa_family); 1016 1017 /* If the address family is not supported or if this address 1018 * causes the address buffer to overflow return EINVAL. 1019 */ 1020 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1021 kvfree(kaddrs); 1022 return -EINVAL; 1023 } 1024 addrcnt++; 1025 addr_buf += af->sockaddr_len; 1026 walk_size += af->sockaddr_len; 1027 } 1028 1029 /* Do the work. */ 1030 switch (op) { 1031 case SCTP_BINDX_ADD_ADDR: 1032 /* Allow security module to validate bindx addresses. */ 1033 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1034 (struct sockaddr *)kaddrs, 1035 addrs_size); 1036 if (err) 1037 goto out; 1038 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1039 if (err) 1040 goto out; 1041 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1042 break; 1043 1044 case SCTP_BINDX_REM_ADDR: 1045 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1046 if (err) 1047 goto out; 1048 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1049 break; 1050 1051 default: 1052 err = -EINVAL; 1053 break; 1054 } 1055 1056 out: 1057 kvfree(kaddrs); 1058 1059 return err; 1060 } 1061 1062 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1063 * 1064 * Common routine for handling connect() and sctp_connectx(). 1065 * Connect will come in with just a single address. 1066 */ 1067 static int __sctp_connect(struct sock *sk, 1068 struct sockaddr *kaddrs, 1069 int addrs_size, int flags, 1070 sctp_assoc_t *assoc_id) 1071 { 1072 struct net *net = sock_net(sk); 1073 struct sctp_sock *sp; 1074 struct sctp_endpoint *ep; 1075 struct sctp_association *asoc = NULL; 1076 struct sctp_association *asoc2; 1077 struct sctp_transport *transport; 1078 union sctp_addr to; 1079 enum sctp_scope scope; 1080 long timeo; 1081 int err = 0; 1082 int addrcnt = 0; 1083 int walk_size = 0; 1084 union sctp_addr *sa_addr = NULL; 1085 void *addr_buf; 1086 unsigned short port; 1087 1088 sp = sctp_sk(sk); 1089 ep = sp->ep; 1090 1091 /* connect() cannot be done on a socket that is already in ESTABLISHED 1092 * state - UDP-style peeled off socket or a TCP-style socket that 1093 * is already connected. 1094 * It cannot be done even on a TCP-style listening socket. 1095 */ 1096 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1097 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1098 err = -EISCONN; 1099 goto out_free; 1100 } 1101 1102 /* Walk through the addrs buffer and count the number of addresses. */ 1103 addr_buf = kaddrs; 1104 while (walk_size < addrs_size) { 1105 struct sctp_af *af; 1106 1107 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1108 err = -EINVAL; 1109 goto out_free; 1110 } 1111 1112 sa_addr = addr_buf; 1113 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1114 1115 /* If the address family is not supported or if this address 1116 * causes the address buffer to overflow return EINVAL. 1117 */ 1118 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1119 err = -EINVAL; 1120 goto out_free; 1121 } 1122 1123 port = ntohs(sa_addr->v4.sin_port); 1124 1125 /* Save current address so we can work with it */ 1126 memcpy(&to, sa_addr, af->sockaddr_len); 1127 1128 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1129 if (err) 1130 goto out_free; 1131 1132 /* Make sure the destination port is correctly set 1133 * in all addresses. 1134 */ 1135 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1136 err = -EINVAL; 1137 goto out_free; 1138 } 1139 1140 /* Check if there already is a matching association on the 1141 * endpoint (other than the one created here). 1142 */ 1143 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1144 if (asoc2 && asoc2 != asoc) { 1145 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1146 err = -EISCONN; 1147 else 1148 err = -EALREADY; 1149 goto out_free; 1150 } 1151 1152 /* If we could not find a matching association on the endpoint, 1153 * make sure that there is no peeled-off association matching 1154 * the peer address even on another socket. 1155 */ 1156 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1157 err = -EADDRNOTAVAIL; 1158 goto out_free; 1159 } 1160 1161 if (!asoc) { 1162 /* If a bind() or sctp_bindx() is not called prior to 1163 * an sctp_connectx() call, the system picks an 1164 * ephemeral port and will choose an address set 1165 * equivalent to binding with a wildcard address. 1166 */ 1167 if (!ep->base.bind_addr.port) { 1168 if (sctp_autobind(sk)) { 1169 err = -EAGAIN; 1170 goto out_free; 1171 } 1172 } else { 1173 /* 1174 * If an unprivileged user inherits a 1-many 1175 * style socket with open associations on a 1176 * privileged port, it MAY be permitted to 1177 * accept new associations, but it SHOULD NOT 1178 * be permitted to open new associations. 1179 */ 1180 if (ep->base.bind_addr.port < 1181 inet_prot_sock(net) && 1182 !ns_capable(net->user_ns, 1183 CAP_NET_BIND_SERVICE)) { 1184 err = -EACCES; 1185 goto out_free; 1186 } 1187 } 1188 1189 scope = sctp_scope(&to); 1190 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1191 if (!asoc) { 1192 err = -ENOMEM; 1193 goto out_free; 1194 } 1195 1196 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1197 GFP_KERNEL); 1198 if (err < 0) { 1199 goto out_free; 1200 } 1201 1202 } 1203 1204 /* Prime the peer's transport structures. */ 1205 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1206 SCTP_UNKNOWN); 1207 if (!transport) { 1208 err = -ENOMEM; 1209 goto out_free; 1210 } 1211 1212 addrcnt++; 1213 addr_buf += af->sockaddr_len; 1214 walk_size += af->sockaddr_len; 1215 } 1216 1217 /* In case the user of sctp_connectx() wants an association 1218 * id back, assign one now. 1219 */ 1220 if (assoc_id) { 1221 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1222 if (err < 0) 1223 goto out_free; 1224 } 1225 1226 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1227 if (err < 0) { 1228 goto out_free; 1229 } 1230 1231 /* Initialize sk's dport and daddr for getpeername() */ 1232 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1233 sp->pf->to_sk_daddr(sa_addr, sk); 1234 sk->sk_err = 0; 1235 1236 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1237 1238 if (assoc_id) 1239 *assoc_id = asoc->assoc_id; 1240 1241 err = sctp_wait_for_connect(asoc, &timeo); 1242 /* Note: the asoc may be freed after the return of 1243 * sctp_wait_for_connect. 1244 */ 1245 1246 /* Don't free association on exit. */ 1247 asoc = NULL; 1248 1249 out_free: 1250 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1251 __func__, asoc, kaddrs, err); 1252 1253 if (asoc) { 1254 /* sctp_primitive_ASSOCIATE may have added this association 1255 * To the hash table, try to unhash it, just in case, its a noop 1256 * if it wasn't hashed so we're safe 1257 */ 1258 sctp_association_free(asoc); 1259 } 1260 return err; 1261 } 1262 1263 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1264 * 1265 * API 8.9 1266 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1267 * sctp_assoc_t *asoc); 1268 * 1269 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1270 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1271 * or IPv6 addresses. 1272 * 1273 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1274 * Section 3.1.2 for this usage. 1275 * 1276 * addrs is a pointer to an array of one or more socket addresses. Each 1277 * address is contained in its appropriate structure (i.e. struct 1278 * sockaddr_in or struct sockaddr_in6) the family of the address type 1279 * must be used to distengish the address length (note that this 1280 * representation is termed a "packed array" of addresses). The caller 1281 * specifies the number of addresses in the array with addrcnt. 1282 * 1283 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1284 * the association id of the new association. On failure, sctp_connectx() 1285 * returns -1, and sets errno to the appropriate error code. The assoc_id 1286 * is not touched by the kernel. 1287 * 1288 * For SCTP, the port given in each socket address must be the same, or 1289 * sctp_connectx() will fail, setting errno to EINVAL. 1290 * 1291 * An application can use sctp_connectx to initiate an association with 1292 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1293 * allows a caller to specify multiple addresses at which a peer can be 1294 * reached. The way the SCTP stack uses the list of addresses to set up 1295 * the association is implementation dependent. This function only 1296 * specifies that the stack will try to make use of all the addresses in 1297 * the list when needed. 1298 * 1299 * Note that the list of addresses passed in is only used for setting up 1300 * the association. It does not necessarily equal the set of addresses 1301 * the peer uses for the resulting association. If the caller wants to 1302 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1303 * retrieve them after the association has been set up. 1304 * 1305 * Basically do nothing but copying the addresses from user to kernel 1306 * land and invoking either sctp_connectx(). This is used for tunneling 1307 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1308 * 1309 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1310 * it. 1311 * 1312 * sk The sk of the socket 1313 * addrs The pointer to the addresses in user land 1314 * addrssize Size of the addrs buffer 1315 * 1316 * Returns >=0 if ok, <0 errno code on error. 1317 */ 1318 static int __sctp_setsockopt_connectx(struct sock *sk, 1319 struct sockaddr __user *addrs, 1320 int addrs_size, 1321 sctp_assoc_t *assoc_id) 1322 { 1323 struct sockaddr *kaddrs; 1324 int err = 0, flags = 0; 1325 1326 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1327 __func__, sk, addrs, addrs_size); 1328 1329 if (unlikely(addrs_size <= 0)) 1330 return -EINVAL; 1331 1332 kaddrs = vmemdup_user(addrs, addrs_size); 1333 if (unlikely(IS_ERR(kaddrs))) 1334 return PTR_ERR(kaddrs); 1335 1336 /* Allow security module to validate connectx addresses. */ 1337 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1338 (struct sockaddr *)kaddrs, 1339 addrs_size); 1340 if (err) 1341 goto out_free; 1342 1343 /* in-kernel sockets don't generally have a file allocated to them 1344 * if all they do is call sock_create_kern(). 1345 */ 1346 if (sk->sk_socket->file) 1347 flags = sk->sk_socket->file->f_flags; 1348 1349 err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1350 1351 out_free: 1352 kvfree(kaddrs); 1353 1354 return err; 1355 } 1356 1357 /* 1358 * This is an older interface. It's kept for backward compatibility 1359 * to the option that doesn't provide association id. 1360 */ 1361 static int sctp_setsockopt_connectx_old(struct sock *sk, 1362 struct sockaddr __user *addrs, 1363 int addrs_size) 1364 { 1365 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1366 } 1367 1368 /* 1369 * New interface for the API. The since the API is done with a socket 1370 * option, to make it simple we feed back the association id is as a return 1371 * indication to the call. Error is always negative and association id is 1372 * always positive. 1373 */ 1374 static int sctp_setsockopt_connectx(struct sock *sk, 1375 struct sockaddr __user *addrs, 1376 int addrs_size) 1377 { 1378 sctp_assoc_t assoc_id = 0; 1379 int err = 0; 1380 1381 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1382 1383 if (err) 1384 return err; 1385 else 1386 return assoc_id; 1387 } 1388 1389 /* 1390 * New (hopefully final) interface for the API. 1391 * We use the sctp_getaddrs_old structure so that use-space library 1392 * can avoid any unnecessary allocations. The only different part 1393 * is that we store the actual length of the address buffer into the 1394 * addrs_num structure member. That way we can re-use the existing 1395 * code. 1396 */ 1397 #ifdef CONFIG_COMPAT 1398 struct compat_sctp_getaddrs_old { 1399 sctp_assoc_t assoc_id; 1400 s32 addr_num; 1401 compat_uptr_t addrs; /* struct sockaddr * */ 1402 }; 1403 #endif 1404 1405 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1406 char __user *optval, 1407 int __user *optlen) 1408 { 1409 struct sctp_getaddrs_old param; 1410 sctp_assoc_t assoc_id = 0; 1411 int err = 0; 1412 1413 #ifdef CONFIG_COMPAT 1414 if (in_compat_syscall()) { 1415 struct compat_sctp_getaddrs_old param32; 1416 1417 if (len < sizeof(param32)) 1418 return -EINVAL; 1419 if (copy_from_user(¶m32, optval, sizeof(param32))) 1420 return -EFAULT; 1421 1422 param.assoc_id = param32.assoc_id; 1423 param.addr_num = param32.addr_num; 1424 param.addrs = compat_ptr(param32.addrs); 1425 } else 1426 #endif 1427 { 1428 if (len < sizeof(param)) 1429 return -EINVAL; 1430 if (copy_from_user(¶m, optval, sizeof(param))) 1431 return -EFAULT; 1432 } 1433 1434 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1435 param.addrs, param.addr_num, 1436 &assoc_id); 1437 if (err == 0 || err == -EINPROGRESS) { 1438 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1439 return -EFAULT; 1440 if (put_user(sizeof(assoc_id), optlen)) 1441 return -EFAULT; 1442 } 1443 1444 return err; 1445 } 1446 1447 /* API 3.1.4 close() - UDP Style Syntax 1448 * Applications use close() to perform graceful shutdown (as described in 1449 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1450 * by a UDP-style socket. 1451 * 1452 * The syntax is 1453 * 1454 * ret = close(int sd); 1455 * 1456 * sd - the socket descriptor of the associations to be closed. 1457 * 1458 * To gracefully shutdown a specific association represented by the 1459 * UDP-style socket, an application should use the sendmsg() call, 1460 * passing no user data, but including the appropriate flag in the 1461 * ancillary data (see Section xxxx). 1462 * 1463 * If sd in the close() call is a branched-off socket representing only 1464 * one association, the shutdown is performed on that association only. 1465 * 1466 * 4.1.6 close() - TCP Style Syntax 1467 * 1468 * Applications use close() to gracefully close down an association. 1469 * 1470 * The syntax is: 1471 * 1472 * int close(int sd); 1473 * 1474 * sd - the socket descriptor of the association to be closed. 1475 * 1476 * After an application calls close() on a socket descriptor, no further 1477 * socket operations will succeed on that descriptor. 1478 * 1479 * API 7.1.4 SO_LINGER 1480 * 1481 * An application using the TCP-style socket can use this option to 1482 * perform the SCTP ABORT primitive. The linger option structure is: 1483 * 1484 * struct linger { 1485 * int l_onoff; // option on/off 1486 * int l_linger; // linger time 1487 * }; 1488 * 1489 * To enable the option, set l_onoff to 1. If the l_linger value is set 1490 * to 0, calling close() is the same as the ABORT primitive. If the 1491 * value is set to a negative value, the setsockopt() call will return 1492 * an error. If the value is set to a positive value linger_time, the 1493 * close() can be blocked for at most linger_time ms. If the graceful 1494 * shutdown phase does not finish during this period, close() will 1495 * return but the graceful shutdown phase continues in the system. 1496 */ 1497 static void sctp_close(struct sock *sk, long timeout) 1498 { 1499 struct net *net = sock_net(sk); 1500 struct sctp_endpoint *ep; 1501 struct sctp_association *asoc; 1502 struct list_head *pos, *temp; 1503 unsigned int data_was_unread; 1504 1505 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1506 1507 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1508 sk->sk_shutdown = SHUTDOWN_MASK; 1509 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1510 1511 ep = sctp_sk(sk)->ep; 1512 1513 /* Clean up any skbs sitting on the receive queue. */ 1514 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1515 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1516 1517 /* Walk all associations on an endpoint. */ 1518 list_for_each_safe(pos, temp, &ep->asocs) { 1519 asoc = list_entry(pos, struct sctp_association, asocs); 1520 1521 if (sctp_style(sk, TCP)) { 1522 /* A closed association can still be in the list if 1523 * it belongs to a TCP-style listening socket that is 1524 * not yet accepted. If so, free it. If not, send an 1525 * ABORT or SHUTDOWN based on the linger options. 1526 */ 1527 if (sctp_state(asoc, CLOSED)) { 1528 sctp_association_free(asoc); 1529 continue; 1530 } 1531 } 1532 1533 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1534 !skb_queue_empty(&asoc->ulpq.reasm) || 1535 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1536 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1537 struct sctp_chunk *chunk; 1538 1539 chunk = sctp_make_abort_user(asoc, NULL, 0); 1540 sctp_primitive_ABORT(net, asoc, chunk); 1541 } else 1542 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1543 } 1544 1545 /* On a TCP-style socket, block for at most linger_time if set. */ 1546 if (sctp_style(sk, TCP) && timeout) 1547 sctp_wait_for_close(sk, timeout); 1548 1549 /* This will run the backlog queue. */ 1550 release_sock(sk); 1551 1552 /* Supposedly, no process has access to the socket, but 1553 * the net layers still may. 1554 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1555 * held and that should be grabbed before socket lock. 1556 */ 1557 spin_lock_bh(&net->sctp.addr_wq_lock); 1558 bh_lock_sock_nested(sk); 1559 1560 /* Hold the sock, since sk_common_release() will put sock_put() 1561 * and we have just a little more cleanup. 1562 */ 1563 sock_hold(sk); 1564 sk_common_release(sk); 1565 1566 bh_unlock_sock(sk); 1567 spin_unlock_bh(&net->sctp.addr_wq_lock); 1568 1569 sock_put(sk); 1570 1571 SCTP_DBG_OBJCNT_DEC(sock); 1572 } 1573 1574 /* Handle EPIPE error. */ 1575 static int sctp_error(struct sock *sk, int flags, int err) 1576 { 1577 if (err == -EPIPE) 1578 err = sock_error(sk) ? : -EPIPE; 1579 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1580 send_sig(SIGPIPE, current, 0); 1581 return err; 1582 } 1583 1584 /* API 3.1.3 sendmsg() - UDP Style Syntax 1585 * 1586 * An application uses sendmsg() and recvmsg() calls to transmit data to 1587 * and receive data from its peer. 1588 * 1589 * ssize_t sendmsg(int socket, const struct msghdr *message, 1590 * int flags); 1591 * 1592 * socket - the socket descriptor of the endpoint. 1593 * message - pointer to the msghdr structure which contains a single 1594 * user message and possibly some ancillary data. 1595 * 1596 * See Section 5 for complete description of the data 1597 * structures. 1598 * 1599 * flags - flags sent or received with the user message, see Section 1600 * 5 for complete description of the flags. 1601 * 1602 * Note: This function could use a rewrite especially when explicit 1603 * connect support comes in. 1604 */ 1605 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1606 1607 static int sctp_msghdr_parse(const struct msghdr *msg, 1608 struct sctp_cmsgs *cmsgs); 1609 1610 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1611 struct sctp_sndrcvinfo *srinfo, 1612 const struct msghdr *msg, size_t msg_len) 1613 { 1614 __u16 sflags; 1615 int err; 1616 1617 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1618 return -EPIPE; 1619 1620 if (msg_len > sk->sk_sndbuf) 1621 return -EMSGSIZE; 1622 1623 memset(cmsgs, 0, sizeof(*cmsgs)); 1624 err = sctp_msghdr_parse(msg, cmsgs); 1625 if (err) { 1626 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1627 return err; 1628 } 1629 1630 memset(srinfo, 0, sizeof(*srinfo)); 1631 if (cmsgs->srinfo) { 1632 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1633 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1634 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1635 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1636 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1637 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1638 } 1639 1640 if (cmsgs->sinfo) { 1641 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1642 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1643 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1644 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1645 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1646 } 1647 1648 if (cmsgs->prinfo) { 1649 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1650 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1651 cmsgs->prinfo->pr_policy); 1652 } 1653 1654 sflags = srinfo->sinfo_flags; 1655 if (!sflags && msg_len) 1656 return 0; 1657 1658 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1659 return -EINVAL; 1660 1661 if (((sflags & SCTP_EOF) && msg_len > 0) || 1662 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1663 return -EINVAL; 1664 1665 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1666 return -EINVAL; 1667 1668 return 0; 1669 } 1670 1671 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1672 struct sctp_cmsgs *cmsgs, 1673 union sctp_addr *daddr, 1674 struct sctp_transport **tp) 1675 { 1676 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1677 struct net *net = sock_net(sk); 1678 struct sctp_association *asoc; 1679 enum sctp_scope scope; 1680 struct cmsghdr *cmsg; 1681 __be32 flowinfo = 0; 1682 struct sctp_af *af; 1683 int err; 1684 1685 *tp = NULL; 1686 1687 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1688 return -EINVAL; 1689 1690 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1691 sctp_sstate(sk, CLOSING))) 1692 return -EADDRNOTAVAIL; 1693 1694 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1695 return -EADDRNOTAVAIL; 1696 1697 if (!ep->base.bind_addr.port) { 1698 if (sctp_autobind(sk)) 1699 return -EAGAIN; 1700 } else { 1701 if (ep->base.bind_addr.port < inet_prot_sock(net) && 1702 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1703 return -EACCES; 1704 } 1705 1706 scope = sctp_scope(daddr); 1707 1708 /* Label connection socket for first association 1-to-many 1709 * style for client sequence socket()->sendmsg(). This 1710 * needs to be done before sctp_assoc_add_peer() as that will 1711 * set up the initial packet that needs to account for any 1712 * security ip options (CIPSO/CALIPSO) added to the packet. 1713 */ 1714 af = sctp_get_af_specific(daddr->sa.sa_family); 1715 if (!af) 1716 return -EINVAL; 1717 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1718 (struct sockaddr *)daddr, 1719 af->sockaddr_len); 1720 if (err < 0) 1721 return err; 1722 1723 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1724 if (!asoc) 1725 return -ENOMEM; 1726 1727 if (sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL) < 0) { 1728 err = -ENOMEM; 1729 goto free; 1730 } 1731 1732 if (cmsgs->init) { 1733 struct sctp_initmsg *init = cmsgs->init; 1734 1735 if (init->sinit_num_ostreams) { 1736 __u16 outcnt = init->sinit_num_ostreams; 1737 1738 asoc->c.sinit_num_ostreams = outcnt; 1739 /* outcnt has been changed, need to re-init stream */ 1740 err = sctp_stream_init(&asoc->stream, outcnt, 0, 1741 GFP_KERNEL); 1742 if (err) 1743 goto free; 1744 } 1745 1746 if (init->sinit_max_instreams) 1747 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1748 1749 if (init->sinit_max_attempts) 1750 asoc->max_init_attempts = init->sinit_max_attempts; 1751 1752 if (init->sinit_max_init_timeo) 1753 asoc->max_init_timeo = 1754 msecs_to_jiffies(init->sinit_max_init_timeo); 1755 } 1756 1757 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1758 if (!*tp) { 1759 err = -ENOMEM; 1760 goto free; 1761 } 1762 1763 if (!cmsgs->addrs_msg) 1764 return 0; 1765 1766 if (daddr->sa.sa_family == AF_INET6) 1767 flowinfo = daddr->v6.sin6_flowinfo; 1768 1769 /* sendv addr list parse */ 1770 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1771 struct sctp_transport *transport; 1772 struct sctp_association *old; 1773 union sctp_addr _daddr; 1774 int dlen; 1775 1776 if (cmsg->cmsg_level != IPPROTO_SCTP || 1777 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1778 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1779 continue; 1780 1781 daddr = &_daddr; 1782 memset(daddr, 0, sizeof(*daddr)); 1783 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1784 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1785 if (dlen < sizeof(struct in_addr)) { 1786 err = -EINVAL; 1787 goto free; 1788 } 1789 1790 dlen = sizeof(struct in_addr); 1791 daddr->v4.sin_family = AF_INET; 1792 daddr->v4.sin_port = htons(asoc->peer.port); 1793 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1794 } else { 1795 if (dlen < sizeof(struct in6_addr)) { 1796 err = -EINVAL; 1797 goto free; 1798 } 1799 1800 dlen = sizeof(struct in6_addr); 1801 daddr->v6.sin6_flowinfo = flowinfo; 1802 daddr->v6.sin6_family = AF_INET6; 1803 daddr->v6.sin6_port = htons(asoc->peer.port); 1804 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1805 } 1806 err = sctp_verify_addr(sk, daddr, sizeof(*daddr)); 1807 if (err) 1808 goto free; 1809 1810 old = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1811 if (old && old != asoc) { 1812 if (old->state >= SCTP_STATE_ESTABLISHED) 1813 err = -EISCONN; 1814 else 1815 err = -EALREADY; 1816 goto free; 1817 } 1818 1819 if (sctp_endpoint_is_peeled_off(ep, daddr)) { 1820 err = -EADDRNOTAVAIL; 1821 goto free; 1822 } 1823 1824 transport = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, 1825 SCTP_UNKNOWN); 1826 if (!transport) { 1827 err = -ENOMEM; 1828 goto free; 1829 } 1830 } 1831 1832 return 0; 1833 1834 free: 1835 sctp_association_free(asoc); 1836 return err; 1837 } 1838 1839 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1840 __u16 sflags, struct msghdr *msg, 1841 size_t msg_len) 1842 { 1843 struct sock *sk = asoc->base.sk; 1844 struct net *net = sock_net(sk); 1845 1846 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1847 return -EPIPE; 1848 1849 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1850 !sctp_state(asoc, ESTABLISHED)) 1851 return 0; 1852 1853 if (sflags & SCTP_EOF) { 1854 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1855 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1856 1857 return 0; 1858 } 1859 1860 if (sflags & SCTP_ABORT) { 1861 struct sctp_chunk *chunk; 1862 1863 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1864 if (!chunk) 1865 return -ENOMEM; 1866 1867 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1868 sctp_primitive_ABORT(net, asoc, chunk); 1869 1870 return 0; 1871 } 1872 1873 return 1; 1874 } 1875 1876 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1877 struct msghdr *msg, size_t msg_len, 1878 struct sctp_transport *transport, 1879 struct sctp_sndrcvinfo *sinfo) 1880 { 1881 struct sock *sk = asoc->base.sk; 1882 struct sctp_sock *sp = sctp_sk(sk); 1883 struct net *net = sock_net(sk); 1884 struct sctp_datamsg *datamsg; 1885 bool wait_connect = false; 1886 struct sctp_chunk *chunk; 1887 long timeo; 1888 int err; 1889 1890 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1891 err = -EINVAL; 1892 goto err; 1893 } 1894 1895 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { 1896 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1897 if (err) 1898 goto err; 1899 } 1900 1901 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1902 err = -EMSGSIZE; 1903 goto err; 1904 } 1905 1906 if (asoc->pmtu_pending) { 1907 if (sp->param_flags & SPP_PMTUD_ENABLE) 1908 sctp_assoc_sync_pmtu(asoc); 1909 asoc->pmtu_pending = 0; 1910 } 1911 1912 if (sctp_wspace(asoc) < (int)msg_len) 1913 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1914 1915 if (sctp_wspace(asoc) <= 0) { 1916 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1917 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1918 if (err) 1919 goto err; 1920 } 1921 1922 if (sctp_state(asoc, CLOSED)) { 1923 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1924 if (err) 1925 goto err; 1926 1927 if (sp->strm_interleave) { 1928 timeo = sock_sndtimeo(sk, 0); 1929 err = sctp_wait_for_connect(asoc, &timeo); 1930 if (err) { 1931 err = -ESRCH; 1932 goto err; 1933 } 1934 } else { 1935 wait_connect = true; 1936 } 1937 1938 pr_debug("%s: we associated primitively\n", __func__); 1939 } 1940 1941 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1942 if (IS_ERR(datamsg)) { 1943 err = PTR_ERR(datamsg); 1944 goto err; 1945 } 1946 1947 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1948 1949 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1950 sctp_chunk_hold(chunk); 1951 sctp_set_owner_w(chunk); 1952 chunk->transport = transport; 1953 } 1954 1955 err = sctp_primitive_SEND(net, asoc, datamsg); 1956 if (err) { 1957 sctp_datamsg_free(datamsg); 1958 goto err; 1959 } 1960 1961 pr_debug("%s: we sent primitively\n", __func__); 1962 1963 sctp_datamsg_put(datamsg); 1964 1965 if (unlikely(wait_connect)) { 1966 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1967 sctp_wait_for_connect(asoc, &timeo); 1968 } 1969 1970 err = msg_len; 1971 1972 err: 1973 return err; 1974 } 1975 1976 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1977 const struct msghdr *msg, 1978 struct sctp_cmsgs *cmsgs) 1979 { 1980 union sctp_addr *daddr = NULL; 1981 int err; 1982 1983 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1984 int len = msg->msg_namelen; 1985 1986 if (len > sizeof(*daddr)) 1987 len = sizeof(*daddr); 1988 1989 daddr = (union sctp_addr *)msg->msg_name; 1990 1991 err = sctp_verify_addr(sk, daddr, len); 1992 if (err) 1993 return ERR_PTR(err); 1994 } 1995 1996 return daddr; 1997 } 1998 1999 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 2000 struct sctp_sndrcvinfo *sinfo, 2001 struct sctp_cmsgs *cmsgs) 2002 { 2003 if (!cmsgs->srinfo && !cmsgs->sinfo) { 2004 sinfo->sinfo_stream = asoc->default_stream; 2005 sinfo->sinfo_ppid = asoc->default_ppid; 2006 sinfo->sinfo_context = asoc->default_context; 2007 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 2008 2009 if (!cmsgs->prinfo) 2010 sinfo->sinfo_flags = asoc->default_flags; 2011 } 2012 2013 if (!cmsgs->srinfo && !cmsgs->prinfo) 2014 sinfo->sinfo_timetolive = asoc->default_timetolive; 2015 2016 if (cmsgs->authinfo) { 2017 /* Reuse sinfo_tsn to indicate that authinfo was set and 2018 * sinfo_ssn to save the keyid on tx path. 2019 */ 2020 sinfo->sinfo_tsn = 1; 2021 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 2022 } 2023 } 2024 2025 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 2026 { 2027 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 2028 struct sctp_transport *transport = NULL; 2029 struct sctp_sndrcvinfo _sinfo, *sinfo; 2030 struct sctp_association *asoc; 2031 struct sctp_cmsgs cmsgs; 2032 union sctp_addr *daddr; 2033 bool new = false; 2034 __u16 sflags; 2035 int err; 2036 2037 /* Parse and get snd_info */ 2038 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 2039 if (err) 2040 goto out; 2041 2042 sinfo = &_sinfo; 2043 sflags = sinfo->sinfo_flags; 2044 2045 /* Get daddr from msg */ 2046 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 2047 if (IS_ERR(daddr)) { 2048 err = PTR_ERR(daddr); 2049 goto out; 2050 } 2051 2052 lock_sock(sk); 2053 2054 /* SCTP_SENDALL process */ 2055 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 2056 list_for_each_entry(asoc, &ep->asocs, asocs) { 2057 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2058 msg_len); 2059 if (err == 0) 2060 continue; 2061 if (err < 0) 2062 goto out_unlock; 2063 2064 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2065 2066 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 2067 NULL, sinfo); 2068 if (err < 0) 2069 goto out_unlock; 2070 2071 iov_iter_revert(&msg->msg_iter, err); 2072 } 2073 2074 goto out_unlock; 2075 } 2076 2077 /* Get and check or create asoc */ 2078 if (daddr) { 2079 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 2080 if (asoc) { 2081 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2082 msg_len); 2083 if (err <= 0) 2084 goto out_unlock; 2085 } else { 2086 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 2087 &transport); 2088 if (err) 2089 goto out_unlock; 2090 2091 asoc = transport->asoc; 2092 new = true; 2093 } 2094 2095 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 2096 transport = NULL; 2097 } else { 2098 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2099 if (!asoc) { 2100 err = -EPIPE; 2101 goto out_unlock; 2102 } 2103 2104 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2105 if (err <= 0) 2106 goto out_unlock; 2107 } 2108 2109 /* Update snd_info with the asoc */ 2110 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2111 2112 /* Send msg to the asoc */ 2113 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2114 if (err < 0 && err != -ESRCH && new) 2115 sctp_association_free(asoc); 2116 2117 out_unlock: 2118 release_sock(sk); 2119 out: 2120 return sctp_error(sk, msg->msg_flags, err); 2121 } 2122 2123 /* This is an extended version of skb_pull() that removes the data from the 2124 * start of a skb even when data is spread across the list of skb's in the 2125 * frag_list. len specifies the total amount of data that needs to be removed. 2126 * when 'len' bytes could be removed from the skb, it returns 0. 2127 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2128 * could not be removed. 2129 */ 2130 static int sctp_skb_pull(struct sk_buff *skb, int len) 2131 { 2132 struct sk_buff *list; 2133 int skb_len = skb_headlen(skb); 2134 int rlen; 2135 2136 if (len <= skb_len) { 2137 __skb_pull(skb, len); 2138 return 0; 2139 } 2140 len -= skb_len; 2141 __skb_pull(skb, skb_len); 2142 2143 skb_walk_frags(skb, list) { 2144 rlen = sctp_skb_pull(list, len); 2145 skb->len -= (len-rlen); 2146 skb->data_len -= (len-rlen); 2147 2148 if (!rlen) 2149 return 0; 2150 2151 len = rlen; 2152 } 2153 2154 return len; 2155 } 2156 2157 /* API 3.1.3 recvmsg() - UDP Style Syntax 2158 * 2159 * ssize_t recvmsg(int socket, struct msghdr *message, 2160 * int flags); 2161 * 2162 * socket - the socket descriptor of the endpoint. 2163 * message - pointer to the msghdr structure which contains a single 2164 * user message and possibly some ancillary data. 2165 * 2166 * See Section 5 for complete description of the data 2167 * structures. 2168 * 2169 * flags - flags sent or received with the user message, see Section 2170 * 5 for complete description of the flags. 2171 */ 2172 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2173 int noblock, int flags, int *addr_len) 2174 { 2175 struct sctp_ulpevent *event = NULL; 2176 struct sctp_sock *sp = sctp_sk(sk); 2177 struct sk_buff *skb, *head_skb; 2178 int copied; 2179 int err = 0; 2180 int skb_len; 2181 2182 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2183 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2184 addr_len); 2185 2186 lock_sock(sk); 2187 2188 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2189 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2190 err = -ENOTCONN; 2191 goto out; 2192 } 2193 2194 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2195 if (!skb) 2196 goto out; 2197 2198 /* Get the total length of the skb including any skb's in the 2199 * frag_list. 2200 */ 2201 skb_len = skb->len; 2202 2203 copied = skb_len; 2204 if (copied > len) 2205 copied = len; 2206 2207 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2208 2209 event = sctp_skb2event(skb); 2210 2211 if (err) 2212 goto out_free; 2213 2214 if (event->chunk && event->chunk->head_skb) 2215 head_skb = event->chunk->head_skb; 2216 else 2217 head_skb = skb; 2218 sock_recv_ts_and_drops(msg, sk, head_skb); 2219 if (sctp_ulpevent_is_notification(event)) { 2220 msg->msg_flags |= MSG_NOTIFICATION; 2221 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2222 } else { 2223 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2224 } 2225 2226 /* Check if we allow SCTP_NXTINFO. */ 2227 if (sp->recvnxtinfo) 2228 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2229 /* Check if we allow SCTP_RCVINFO. */ 2230 if (sp->recvrcvinfo) 2231 sctp_ulpevent_read_rcvinfo(event, msg); 2232 /* Check if we allow SCTP_SNDRCVINFO. */ 2233 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT)) 2234 sctp_ulpevent_read_sndrcvinfo(event, msg); 2235 2236 err = copied; 2237 2238 /* If skb's length exceeds the user's buffer, update the skb and 2239 * push it back to the receive_queue so that the next call to 2240 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2241 */ 2242 if (skb_len > copied) { 2243 msg->msg_flags &= ~MSG_EOR; 2244 if (flags & MSG_PEEK) 2245 goto out_free; 2246 sctp_skb_pull(skb, copied); 2247 skb_queue_head(&sk->sk_receive_queue, skb); 2248 2249 /* When only partial message is copied to the user, increase 2250 * rwnd by that amount. If all the data in the skb is read, 2251 * rwnd is updated when the event is freed. 2252 */ 2253 if (!sctp_ulpevent_is_notification(event)) 2254 sctp_assoc_rwnd_increase(event->asoc, copied); 2255 goto out; 2256 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2257 (event->msg_flags & MSG_EOR)) 2258 msg->msg_flags |= MSG_EOR; 2259 else 2260 msg->msg_flags &= ~MSG_EOR; 2261 2262 out_free: 2263 if (flags & MSG_PEEK) { 2264 /* Release the skb reference acquired after peeking the skb in 2265 * sctp_skb_recv_datagram(). 2266 */ 2267 kfree_skb(skb); 2268 } else { 2269 /* Free the event which includes releasing the reference to 2270 * the owner of the skb, freeing the skb and updating the 2271 * rwnd. 2272 */ 2273 sctp_ulpevent_free(event); 2274 } 2275 out: 2276 release_sock(sk); 2277 return err; 2278 } 2279 2280 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2281 * 2282 * This option is a on/off flag. If enabled no SCTP message 2283 * fragmentation will be performed. Instead if a message being sent 2284 * exceeds the current PMTU size, the message will NOT be sent and 2285 * instead a error will be indicated to the user. 2286 */ 2287 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2288 char __user *optval, 2289 unsigned int optlen) 2290 { 2291 int val; 2292 2293 if (optlen < sizeof(int)) 2294 return -EINVAL; 2295 2296 if (get_user(val, (int __user *)optval)) 2297 return -EFAULT; 2298 2299 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2300 2301 return 0; 2302 } 2303 2304 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2305 unsigned int optlen) 2306 { 2307 struct sctp_event_subscribe subscribe; 2308 __u8 *sn_type = (__u8 *)&subscribe; 2309 struct sctp_sock *sp = sctp_sk(sk); 2310 struct sctp_association *asoc; 2311 int i; 2312 2313 if (optlen > sizeof(struct sctp_event_subscribe)) 2314 return -EINVAL; 2315 2316 if (copy_from_user(&subscribe, optval, optlen)) 2317 return -EFAULT; 2318 2319 for (i = 0; i < optlen; i++) 2320 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i, 2321 sn_type[i]); 2322 2323 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2324 asoc->subscribe = sctp_sk(sk)->subscribe; 2325 2326 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2327 * if there is no data to be sent or retransmit, the stack will 2328 * immediately send up this notification. 2329 */ 2330 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) { 2331 struct sctp_ulpevent *event; 2332 2333 asoc = sctp_id2assoc(sk, 0); 2334 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2335 event = sctp_ulpevent_make_sender_dry_event(asoc, 2336 GFP_USER | __GFP_NOWARN); 2337 if (!event) 2338 return -ENOMEM; 2339 2340 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2341 } 2342 } 2343 2344 return 0; 2345 } 2346 2347 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2348 * 2349 * This socket option is applicable to the UDP-style socket only. When 2350 * set it will cause associations that are idle for more than the 2351 * specified number of seconds to automatically close. An association 2352 * being idle is defined an association that has NOT sent or received 2353 * user data. The special value of '0' indicates that no automatic 2354 * close of any associations should be performed. The option expects an 2355 * integer defining the number of seconds of idle time before an 2356 * association is closed. 2357 */ 2358 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2359 unsigned int optlen) 2360 { 2361 struct sctp_sock *sp = sctp_sk(sk); 2362 struct net *net = sock_net(sk); 2363 2364 /* Applicable to UDP-style socket only */ 2365 if (sctp_style(sk, TCP)) 2366 return -EOPNOTSUPP; 2367 if (optlen != sizeof(int)) 2368 return -EINVAL; 2369 if (copy_from_user(&sp->autoclose, optval, optlen)) 2370 return -EFAULT; 2371 2372 if (sp->autoclose > net->sctp.max_autoclose) 2373 sp->autoclose = net->sctp.max_autoclose; 2374 2375 return 0; 2376 } 2377 2378 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2379 * 2380 * Applications can enable or disable heartbeats for any peer address of 2381 * an association, modify an address's heartbeat interval, force a 2382 * heartbeat to be sent immediately, and adjust the address's maximum 2383 * number of retransmissions sent before an address is considered 2384 * unreachable. The following structure is used to access and modify an 2385 * address's parameters: 2386 * 2387 * struct sctp_paddrparams { 2388 * sctp_assoc_t spp_assoc_id; 2389 * struct sockaddr_storage spp_address; 2390 * uint32_t spp_hbinterval; 2391 * uint16_t spp_pathmaxrxt; 2392 * uint32_t spp_pathmtu; 2393 * uint32_t spp_sackdelay; 2394 * uint32_t spp_flags; 2395 * uint32_t spp_ipv6_flowlabel; 2396 * uint8_t spp_dscp; 2397 * }; 2398 * 2399 * spp_assoc_id - (one-to-many style socket) This is filled in the 2400 * application, and identifies the association for 2401 * this query. 2402 * spp_address - This specifies which address is of interest. 2403 * spp_hbinterval - This contains the value of the heartbeat interval, 2404 * in milliseconds. If a value of zero 2405 * is present in this field then no changes are to 2406 * be made to this parameter. 2407 * spp_pathmaxrxt - This contains the maximum number of 2408 * retransmissions before this address shall be 2409 * considered unreachable. If a value of zero 2410 * is present in this field then no changes are to 2411 * be made to this parameter. 2412 * spp_pathmtu - When Path MTU discovery is disabled the value 2413 * specified here will be the "fixed" path mtu. 2414 * Note that if the spp_address field is empty 2415 * then all associations on this address will 2416 * have this fixed path mtu set upon them. 2417 * 2418 * spp_sackdelay - When delayed sack is enabled, this value specifies 2419 * the number of milliseconds that sacks will be delayed 2420 * for. This value will apply to all addresses of an 2421 * association if the spp_address field is empty. Note 2422 * also, that if delayed sack is enabled and this 2423 * value is set to 0, no change is made to the last 2424 * recorded delayed sack timer value. 2425 * 2426 * spp_flags - These flags are used to control various features 2427 * on an association. The flag field may contain 2428 * zero or more of the following options. 2429 * 2430 * SPP_HB_ENABLE - Enable heartbeats on the 2431 * specified address. Note that if the address 2432 * field is empty all addresses for the association 2433 * have heartbeats enabled upon them. 2434 * 2435 * SPP_HB_DISABLE - Disable heartbeats on the 2436 * speicifed address. Note that if the address 2437 * field is empty all addresses for the association 2438 * will have their heartbeats disabled. Note also 2439 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2440 * mutually exclusive, only one of these two should 2441 * be specified. Enabling both fields will have 2442 * undetermined results. 2443 * 2444 * SPP_HB_DEMAND - Request a user initiated heartbeat 2445 * to be made immediately. 2446 * 2447 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2448 * heartbeat delayis to be set to the value of 0 2449 * milliseconds. 2450 * 2451 * SPP_PMTUD_ENABLE - This field will enable PMTU 2452 * discovery upon the specified address. Note that 2453 * if the address feild is empty then all addresses 2454 * on the association are effected. 2455 * 2456 * SPP_PMTUD_DISABLE - This field will disable PMTU 2457 * discovery upon the specified address. Note that 2458 * if the address feild is empty then all addresses 2459 * on the association are effected. Not also that 2460 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2461 * exclusive. Enabling both will have undetermined 2462 * results. 2463 * 2464 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2465 * on delayed sack. The time specified in spp_sackdelay 2466 * is used to specify the sack delay for this address. Note 2467 * that if spp_address is empty then all addresses will 2468 * enable delayed sack and take on the sack delay 2469 * value specified in spp_sackdelay. 2470 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2471 * off delayed sack. If the spp_address field is blank then 2472 * delayed sack is disabled for the entire association. Note 2473 * also that this field is mutually exclusive to 2474 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2475 * results. 2476 * 2477 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2478 * setting of the IPV6 flow label value. The value is 2479 * contained in the spp_ipv6_flowlabel field. 2480 * Upon retrieval, this flag will be set to indicate that 2481 * the spp_ipv6_flowlabel field has a valid value returned. 2482 * If a specific destination address is set (in the 2483 * spp_address field), then the value returned is that of 2484 * the address. If just an association is specified (and 2485 * no address), then the association's default flow label 2486 * is returned. If neither an association nor a destination 2487 * is specified, then the socket's default flow label is 2488 * returned. For non-IPv6 sockets, this flag will be left 2489 * cleared. 2490 * 2491 * SPP_DSCP: Setting this flag enables the setting of the 2492 * Differentiated Services Code Point (DSCP) value 2493 * associated with either the association or a specific 2494 * address. The value is obtained in the spp_dscp field. 2495 * Upon retrieval, this flag will be set to indicate that 2496 * the spp_dscp field has a valid value returned. If a 2497 * specific destination address is set when called (in the 2498 * spp_address field), then that specific destination 2499 * address's DSCP value is returned. If just an association 2500 * is specified, then the association's default DSCP is 2501 * returned. If neither an association nor a destination is 2502 * specified, then the socket's default DSCP is returned. 2503 * 2504 * spp_ipv6_flowlabel 2505 * - This field is used in conjunction with the 2506 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2507 * The 20 least significant bits are used for the flow 2508 * label. This setting has precedence over any IPv6-layer 2509 * setting. 2510 * 2511 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2512 * and contains the DSCP. The 6 most significant bits are 2513 * used for the DSCP. This setting has precedence over any 2514 * IPv4- or IPv6- layer setting. 2515 */ 2516 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2517 struct sctp_transport *trans, 2518 struct sctp_association *asoc, 2519 struct sctp_sock *sp, 2520 int hb_change, 2521 int pmtud_change, 2522 int sackdelay_change) 2523 { 2524 int error; 2525 2526 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2527 struct net *net = sock_net(trans->asoc->base.sk); 2528 2529 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2530 if (error) 2531 return error; 2532 } 2533 2534 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2535 * this field is ignored. Note also that a value of zero indicates 2536 * the current setting should be left unchanged. 2537 */ 2538 if (params->spp_flags & SPP_HB_ENABLE) { 2539 2540 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2541 * set. This lets us use 0 value when this flag 2542 * is set. 2543 */ 2544 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2545 params->spp_hbinterval = 0; 2546 2547 if (params->spp_hbinterval || 2548 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2549 if (trans) { 2550 trans->hbinterval = 2551 msecs_to_jiffies(params->spp_hbinterval); 2552 } else if (asoc) { 2553 asoc->hbinterval = 2554 msecs_to_jiffies(params->spp_hbinterval); 2555 } else { 2556 sp->hbinterval = params->spp_hbinterval; 2557 } 2558 } 2559 } 2560 2561 if (hb_change) { 2562 if (trans) { 2563 trans->param_flags = 2564 (trans->param_flags & ~SPP_HB) | hb_change; 2565 } else if (asoc) { 2566 asoc->param_flags = 2567 (asoc->param_flags & ~SPP_HB) | hb_change; 2568 } else { 2569 sp->param_flags = 2570 (sp->param_flags & ~SPP_HB) | hb_change; 2571 } 2572 } 2573 2574 /* When Path MTU discovery is disabled the value specified here will 2575 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2576 * include the flag SPP_PMTUD_DISABLE for this field to have any 2577 * effect). 2578 */ 2579 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2580 if (trans) { 2581 trans->pathmtu = params->spp_pathmtu; 2582 sctp_assoc_sync_pmtu(asoc); 2583 } else if (asoc) { 2584 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2585 } else { 2586 sp->pathmtu = params->spp_pathmtu; 2587 } 2588 } 2589 2590 if (pmtud_change) { 2591 if (trans) { 2592 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2593 (params->spp_flags & SPP_PMTUD_ENABLE); 2594 trans->param_flags = 2595 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2596 if (update) { 2597 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2598 sctp_assoc_sync_pmtu(asoc); 2599 } 2600 } else if (asoc) { 2601 asoc->param_flags = 2602 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2603 } else { 2604 sp->param_flags = 2605 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2606 } 2607 } 2608 2609 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2610 * value of this field is ignored. Note also that a value of zero 2611 * indicates the current setting should be left unchanged. 2612 */ 2613 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2614 if (trans) { 2615 trans->sackdelay = 2616 msecs_to_jiffies(params->spp_sackdelay); 2617 } else if (asoc) { 2618 asoc->sackdelay = 2619 msecs_to_jiffies(params->spp_sackdelay); 2620 } else { 2621 sp->sackdelay = params->spp_sackdelay; 2622 } 2623 } 2624 2625 if (sackdelay_change) { 2626 if (trans) { 2627 trans->param_flags = 2628 (trans->param_flags & ~SPP_SACKDELAY) | 2629 sackdelay_change; 2630 } else if (asoc) { 2631 asoc->param_flags = 2632 (asoc->param_flags & ~SPP_SACKDELAY) | 2633 sackdelay_change; 2634 } else { 2635 sp->param_flags = 2636 (sp->param_flags & ~SPP_SACKDELAY) | 2637 sackdelay_change; 2638 } 2639 } 2640 2641 /* Note that a value of zero indicates the current setting should be 2642 left unchanged. 2643 */ 2644 if (params->spp_pathmaxrxt) { 2645 if (trans) { 2646 trans->pathmaxrxt = params->spp_pathmaxrxt; 2647 } else if (asoc) { 2648 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2649 } else { 2650 sp->pathmaxrxt = params->spp_pathmaxrxt; 2651 } 2652 } 2653 2654 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2655 if (trans) { 2656 if (trans->ipaddr.sa.sa_family == AF_INET6) { 2657 trans->flowlabel = params->spp_ipv6_flowlabel & 2658 SCTP_FLOWLABEL_VAL_MASK; 2659 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2660 } 2661 } else if (asoc) { 2662 struct sctp_transport *t; 2663 2664 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2665 transports) { 2666 if (t->ipaddr.sa.sa_family != AF_INET6) 2667 continue; 2668 t->flowlabel = params->spp_ipv6_flowlabel & 2669 SCTP_FLOWLABEL_VAL_MASK; 2670 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2671 } 2672 asoc->flowlabel = params->spp_ipv6_flowlabel & 2673 SCTP_FLOWLABEL_VAL_MASK; 2674 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2675 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2676 sp->flowlabel = params->spp_ipv6_flowlabel & 2677 SCTP_FLOWLABEL_VAL_MASK; 2678 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2679 } 2680 } 2681 2682 if (params->spp_flags & SPP_DSCP) { 2683 if (trans) { 2684 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2685 trans->dscp |= SCTP_DSCP_SET_MASK; 2686 } else if (asoc) { 2687 struct sctp_transport *t; 2688 2689 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2690 transports) { 2691 t->dscp = params->spp_dscp & 2692 SCTP_DSCP_VAL_MASK; 2693 t->dscp |= SCTP_DSCP_SET_MASK; 2694 } 2695 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2696 asoc->dscp |= SCTP_DSCP_SET_MASK; 2697 } else { 2698 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2699 sp->dscp |= SCTP_DSCP_SET_MASK; 2700 } 2701 } 2702 2703 return 0; 2704 } 2705 2706 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2707 char __user *optval, 2708 unsigned int optlen) 2709 { 2710 struct sctp_paddrparams params; 2711 struct sctp_transport *trans = NULL; 2712 struct sctp_association *asoc = NULL; 2713 struct sctp_sock *sp = sctp_sk(sk); 2714 int error; 2715 int hb_change, pmtud_change, sackdelay_change; 2716 2717 if (optlen == sizeof(params)) { 2718 if (copy_from_user(¶ms, optval, optlen)) 2719 return -EFAULT; 2720 } else if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2721 spp_ipv6_flowlabel), 4)) { 2722 if (copy_from_user(¶ms, optval, optlen)) 2723 return -EFAULT; 2724 if (params.spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2725 return -EINVAL; 2726 } else { 2727 return -EINVAL; 2728 } 2729 2730 /* Validate flags and value parameters. */ 2731 hb_change = params.spp_flags & SPP_HB; 2732 pmtud_change = params.spp_flags & SPP_PMTUD; 2733 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2734 2735 if (hb_change == SPP_HB || 2736 pmtud_change == SPP_PMTUD || 2737 sackdelay_change == SPP_SACKDELAY || 2738 params.spp_sackdelay > 500 || 2739 (params.spp_pathmtu && 2740 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2741 return -EINVAL; 2742 2743 /* If an address other than INADDR_ANY is specified, and 2744 * no transport is found, then the request is invalid. 2745 */ 2746 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2747 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2748 params.spp_assoc_id); 2749 if (!trans) 2750 return -EINVAL; 2751 } 2752 2753 /* Get association, if assoc_id != 0 and the socket is a one 2754 * to many style socket, and an association was not found, then 2755 * the id was invalid. 2756 */ 2757 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2758 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2759 return -EINVAL; 2760 2761 /* Heartbeat demand can only be sent on a transport or 2762 * association, but not a socket. 2763 */ 2764 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2765 return -EINVAL; 2766 2767 /* Process parameters. */ 2768 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2769 hb_change, pmtud_change, 2770 sackdelay_change); 2771 2772 if (error) 2773 return error; 2774 2775 /* If changes are for association, also apply parameters to each 2776 * transport. 2777 */ 2778 if (!trans && asoc) { 2779 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2780 transports) { 2781 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2782 hb_change, pmtud_change, 2783 sackdelay_change); 2784 } 2785 } 2786 2787 return 0; 2788 } 2789 2790 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2791 { 2792 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2793 } 2794 2795 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2796 { 2797 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2798 } 2799 2800 /* 2801 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2802 * 2803 * This option will effect the way delayed acks are performed. This 2804 * option allows you to get or set the delayed ack time, in 2805 * milliseconds. It also allows changing the delayed ack frequency. 2806 * Changing the frequency to 1 disables the delayed sack algorithm. If 2807 * the assoc_id is 0, then this sets or gets the endpoints default 2808 * values. If the assoc_id field is non-zero, then the set or get 2809 * effects the specified association for the one to many model (the 2810 * assoc_id field is ignored by the one to one model). Note that if 2811 * sack_delay or sack_freq are 0 when setting this option, then the 2812 * current values will remain unchanged. 2813 * 2814 * struct sctp_sack_info { 2815 * sctp_assoc_t sack_assoc_id; 2816 * uint32_t sack_delay; 2817 * uint32_t sack_freq; 2818 * }; 2819 * 2820 * sack_assoc_id - This parameter, indicates which association the user 2821 * is performing an action upon. Note that if this field's value is 2822 * zero then the endpoints default value is changed (effecting future 2823 * associations only). 2824 * 2825 * sack_delay - This parameter contains the number of milliseconds that 2826 * the user is requesting the delayed ACK timer be set to. Note that 2827 * this value is defined in the standard to be between 200 and 500 2828 * milliseconds. 2829 * 2830 * sack_freq - This parameter contains the number of packets that must 2831 * be received before a sack is sent without waiting for the delay 2832 * timer to expire. The default value for this is 2, setting this 2833 * value to 1 will disable the delayed sack algorithm. 2834 */ 2835 2836 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2837 char __user *optval, unsigned int optlen) 2838 { 2839 struct sctp_sack_info params; 2840 struct sctp_transport *trans = NULL; 2841 struct sctp_association *asoc = NULL; 2842 struct sctp_sock *sp = sctp_sk(sk); 2843 2844 if (optlen == sizeof(struct sctp_sack_info)) { 2845 if (copy_from_user(¶ms, optval, optlen)) 2846 return -EFAULT; 2847 2848 if (params.sack_delay == 0 && params.sack_freq == 0) 2849 return 0; 2850 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2851 pr_warn_ratelimited(DEPRECATED 2852 "%s (pid %d) " 2853 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2854 "Use struct sctp_sack_info instead\n", 2855 current->comm, task_pid_nr(current)); 2856 if (copy_from_user(¶ms, optval, optlen)) 2857 return -EFAULT; 2858 2859 if (params.sack_delay == 0) 2860 params.sack_freq = 1; 2861 else 2862 params.sack_freq = 0; 2863 } else 2864 return -EINVAL; 2865 2866 /* Validate value parameter. */ 2867 if (params.sack_delay > 500) 2868 return -EINVAL; 2869 2870 /* Get association, if sack_assoc_id != 0 and the socket is a one 2871 * to many style socket, and an association was not found, then 2872 * the id was invalid. 2873 */ 2874 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2875 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2876 return -EINVAL; 2877 2878 if (params.sack_delay) { 2879 if (asoc) { 2880 asoc->sackdelay = 2881 msecs_to_jiffies(params.sack_delay); 2882 asoc->param_flags = 2883 sctp_spp_sackdelay_enable(asoc->param_flags); 2884 } else { 2885 sp->sackdelay = params.sack_delay; 2886 sp->param_flags = 2887 sctp_spp_sackdelay_enable(sp->param_flags); 2888 } 2889 } 2890 2891 if (params.sack_freq == 1) { 2892 if (asoc) { 2893 asoc->param_flags = 2894 sctp_spp_sackdelay_disable(asoc->param_flags); 2895 } else { 2896 sp->param_flags = 2897 sctp_spp_sackdelay_disable(sp->param_flags); 2898 } 2899 } else if (params.sack_freq > 1) { 2900 if (asoc) { 2901 asoc->sackfreq = params.sack_freq; 2902 asoc->param_flags = 2903 sctp_spp_sackdelay_enable(asoc->param_flags); 2904 } else { 2905 sp->sackfreq = params.sack_freq; 2906 sp->param_flags = 2907 sctp_spp_sackdelay_enable(sp->param_flags); 2908 } 2909 } 2910 2911 /* If change is for association, also apply to each transport. */ 2912 if (asoc) { 2913 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2914 transports) { 2915 if (params.sack_delay) { 2916 trans->sackdelay = 2917 msecs_to_jiffies(params.sack_delay); 2918 trans->param_flags = 2919 sctp_spp_sackdelay_enable(trans->param_flags); 2920 } 2921 if (params.sack_freq == 1) { 2922 trans->param_flags = 2923 sctp_spp_sackdelay_disable(trans->param_flags); 2924 } else if (params.sack_freq > 1) { 2925 trans->sackfreq = params.sack_freq; 2926 trans->param_flags = 2927 sctp_spp_sackdelay_enable(trans->param_flags); 2928 } 2929 } 2930 } 2931 2932 return 0; 2933 } 2934 2935 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2936 * 2937 * Applications can specify protocol parameters for the default association 2938 * initialization. The option name argument to setsockopt() and getsockopt() 2939 * is SCTP_INITMSG. 2940 * 2941 * Setting initialization parameters is effective only on an unconnected 2942 * socket (for UDP-style sockets only future associations are effected 2943 * by the change). With TCP-style sockets, this option is inherited by 2944 * sockets derived from a listener socket. 2945 */ 2946 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2947 { 2948 struct sctp_initmsg sinit; 2949 struct sctp_sock *sp = sctp_sk(sk); 2950 2951 if (optlen != sizeof(struct sctp_initmsg)) 2952 return -EINVAL; 2953 if (copy_from_user(&sinit, optval, optlen)) 2954 return -EFAULT; 2955 2956 if (sinit.sinit_num_ostreams) 2957 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2958 if (sinit.sinit_max_instreams) 2959 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2960 if (sinit.sinit_max_attempts) 2961 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2962 if (sinit.sinit_max_init_timeo) 2963 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2964 2965 return 0; 2966 } 2967 2968 /* 2969 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2970 * 2971 * Applications that wish to use the sendto() system call may wish to 2972 * specify a default set of parameters that would normally be supplied 2973 * through the inclusion of ancillary data. This socket option allows 2974 * such an application to set the default sctp_sndrcvinfo structure. 2975 * The application that wishes to use this socket option simply passes 2976 * in to this call the sctp_sndrcvinfo structure defined in Section 2977 * 5.2.2) The input parameters accepted by this call include 2978 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2979 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2980 * to this call if the caller is using the UDP model. 2981 */ 2982 static int sctp_setsockopt_default_send_param(struct sock *sk, 2983 char __user *optval, 2984 unsigned int optlen) 2985 { 2986 struct sctp_sock *sp = sctp_sk(sk); 2987 struct sctp_association *asoc; 2988 struct sctp_sndrcvinfo info; 2989 2990 if (optlen != sizeof(info)) 2991 return -EINVAL; 2992 if (copy_from_user(&info, optval, optlen)) 2993 return -EFAULT; 2994 if (info.sinfo_flags & 2995 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2996 SCTP_ABORT | SCTP_EOF)) 2997 return -EINVAL; 2998 2999 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 3000 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 3001 return -EINVAL; 3002 if (asoc) { 3003 asoc->default_stream = info.sinfo_stream; 3004 asoc->default_flags = info.sinfo_flags; 3005 asoc->default_ppid = info.sinfo_ppid; 3006 asoc->default_context = info.sinfo_context; 3007 asoc->default_timetolive = info.sinfo_timetolive; 3008 } else { 3009 sp->default_stream = info.sinfo_stream; 3010 sp->default_flags = info.sinfo_flags; 3011 sp->default_ppid = info.sinfo_ppid; 3012 sp->default_context = info.sinfo_context; 3013 sp->default_timetolive = info.sinfo_timetolive; 3014 } 3015 3016 return 0; 3017 } 3018 3019 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 3020 * (SCTP_DEFAULT_SNDINFO) 3021 */ 3022 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 3023 char __user *optval, 3024 unsigned int optlen) 3025 { 3026 struct sctp_sock *sp = sctp_sk(sk); 3027 struct sctp_association *asoc; 3028 struct sctp_sndinfo info; 3029 3030 if (optlen != sizeof(info)) 3031 return -EINVAL; 3032 if (copy_from_user(&info, optval, optlen)) 3033 return -EFAULT; 3034 if (info.snd_flags & 3035 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 3036 SCTP_ABORT | SCTP_EOF)) 3037 return -EINVAL; 3038 3039 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 3040 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 3041 return -EINVAL; 3042 if (asoc) { 3043 asoc->default_stream = info.snd_sid; 3044 asoc->default_flags = info.snd_flags; 3045 asoc->default_ppid = info.snd_ppid; 3046 asoc->default_context = info.snd_context; 3047 } else { 3048 sp->default_stream = info.snd_sid; 3049 sp->default_flags = info.snd_flags; 3050 sp->default_ppid = info.snd_ppid; 3051 sp->default_context = info.snd_context; 3052 } 3053 3054 return 0; 3055 } 3056 3057 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 3058 * 3059 * Requests that the local SCTP stack use the enclosed peer address as 3060 * the association primary. The enclosed address must be one of the 3061 * association peer's addresses. 3062 */ 3063 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 3064 unsigned int optlen) 3065 { 3066 struct sctp_prim prim; 3067 struct sctp_transport *trans; 3068 struct sctp_af *af; 3069 int err; 3070 3071 if (optlen != sizeof(struct sctp_prim)) 3072 return -EINVAL; 3073 3074 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 3075 return -EFAULT; 3076 3077 /* Allow security module to validate address but need address len. */ 3078 af = sctp_get_af_specific(prim.ssp_addr.ss_family); 3079 if (!af) 3080 return -EINVAL; 3081 3082 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3083 (struct sockaddr *)&prim.ssp_addr, 3084 af->sockaddr_len); 3085 if (err) 3086 return err; 3087 3088 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 3089 if (!trans) 3090 return -EINVAL; 3091 3092 sctp_assoc_set_primary(trans->asoc, trans); 3093 3094 return 0; 3095 } 3096 3097 /* 3098 * 7.1.5 SCTP_NODELAY 3099 * 3100 * Turn on/off any Nagle-like algorithm. This means that packets are 3101 * generally sent as soon as possible and no unnecessary delays are 3102 * introduced, at the cost of more packets in the network. Expects an 3103 * integer boolean flag. 3104 */ 3105 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 3106 unsigned int optlen) 3107 { 3108 int val; 3109 3110 if (optlen < sizeof(int)) 3111 return -EINVAL; 3112 if (get_user(val, (int __user *)optval)) 3113 return -EFAULT; 3114 3115 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 3116 return 0; 3117 } 3118 3119 /* 3120 * 3121 * 7.1.1 SCTP_RTOINFO 3122 * 3123 * The protocol parameters used to initialize and bound retransmission 3124 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3125 * and modify these parameters. 3126 * All parameters are time values, in milliseconds. A value of 0, when 3127 * modifying the parameters, indicates that the current value should not 3128 * be changed. 3129 * 3130 */ 3131 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 3132 { 3133 struct sctp_rtoinfo rtoinfo; 3134 struct sctp_association *asoc; 3135 unsigned long rto_min, rto_max; 3136 struct sctp_sock *sp = sctp_sk(sk); 3137 3138 if (optlen != sizeof (struct sctp_rtoinfo)) 3139 return -EINVAL; 3140 3141 if (copy_from_user(&rtoinfo, optval, optlen)) 3142 return -EFAULT; 3143 3144 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 3145 3146 /* Set the values to the specific association */ 3147 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 3148 return -EINVAL; 3149 3150 rto_max = rtoinfo.srto_max; 3151 rto_min = rtoinfo.srto_min; 3152 3153 if (rto_max) 3154 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3155 else 3156 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3157 3158 if (rto_min) 3159 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3160 else 3161 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3162 3163 if (rto_min > rto_max) 3164 return -EINVAL; 3165 3166 if (asoc) { 3167 if (rtoinfo.srto_initial != 0) 3168 asoc->rto_initial = 3169 msecs_to_jiffies(rtoinfo.srto_initial); 3170 asoc->rto_max = rto_max; 3171 asoc->rto_min = rto_min; 3172 } else { 3173 /* If there is no association or the association-id = 0 3174 * set the values to the endpoint. 3175 */ 3176 if (rtoinfo.srto_initial != 0) 3177 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 3178 sp->rtoinfo.srto_max = rto_max; 3179 sp->rtoinfo.srto_min = rto_min; 3180 } 3181 3182 return 0; 3183 } 3184 3185 /* 3186 * 3187 * 7.1.2 SCTP_ASSOCINFO 3188 * 3189 * This option is used to tune the maximum retransmission attempts 3190 * of the association. 3191 * Returns an error if the new association retransmission value is 3192 * greater than the sum of the retransmission value of the peer. 3193 * See [SCTP] for more information. 3194 * 3195 */ 3196 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 3197 { 3198 3199 struct sctp_assocparams assocparams; 3200 struct sctp_association *asoc; 3201 3202 if (optlen != sizeof(struct sctp_assocparams)) 3203 return -EINVAL; 3204 if (copy_from_user(&assocparams, optval, optlen)) 3205 return -EFAULT; 3206 3207 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 3208 3209 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 3210 return -EINVAL; 3211 3212 /* Set the values to the specific association */ 3213 if (asoc) { 3214 if (assocparams.sasoc_asocmaxrxt != 0) { 3215 __u32 path_sum = 0; 3216 int paths = 0; 3217 struct sctp_transport *peer_addr; 3218 3219 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3220 transports) { 3221 path_sum += peer_addr->pathmaxrxt; 3222 paths++; 3223 } 3224 3225 /* Only validate asocmaxrxt if we have more than 3226 * one path/transport. We do this because path 3227 * retransmissions are only counted when we have more 3228 * then one path. 3229 */ 3230 if (paths > 1 && 3231 assocparams.sasoc_asocmaxrxt > path_sum) 3232 return -EINVAL; 3233 3234 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3235 } 3236 3237 if (assocparams.sasoc_cookie_life != 0) 3238 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3239 } else { 3240 /* Set the values to the endpoint */ 3241 struct sctp_sock *sp = sctp_sk(sk); 3242 3243 if (assocparams.sasoc_asocmaxrxt != 0) 3244 sp->assocparams.sasoc_asocmaxrxt = 3245 assocparams.sasoc_asocmaxrxt; 3246 if (assocparams.sasoc_cookie_life != 0) 3247 sp->assocparams.sasoc_cookie_life = 3248 assocparams.sasoc_cookie_life; 3249 } 3250 return 0; 3251 } 3252 3253 /* 3254 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3255 * 3256 * This socket option is a boolean flag which turns on or off mapped V4 3257 * addresses. If this option is turned on and the socket is type 3258 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3259 * If this option is turned off, then no mapping will be done of V4 3260 * addresses and a user will receive both PF_INET6 and PF_INET type 3261 * addresses on the socket. 3262 */ 3263 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3264 { 3265 int val; 3266 struct sctp_sock *sp = sctp_sk(sk); 3267 3268 if (optlen < sizeof(int)) 3269 return -EINVAL; 3270 if (get_user(val, (int __user *)optval)) 3271 return -EFAULT; 3272 if (val) 3273 sp->v4mapped = 1; 3274 else 3275 sp->v4mapped = 0; 3276 3277 return 0; 3278 } 3279 3280 /* 3281 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3282 * This option will get or set the maximum size to put in any outgoing 3283 * SCTP DATA chunk. If a message is larger than this size it will be 3284 * fragmented by SCTP into the specified size. Note that the underlying 3285 * SCTP implementation may fragment into smaller sized chunks when the 3286 * PMTU of the underlying association is smaller than the value set by 3287 * the user. The default value for this option is '0' which indicates 3288 * the user is NOT limiting fragmentation and only the PMTU will effect 3289 * SCTP's choice of DATA chunk size. Note also that values set larger 3290 * than the maximum size of an IP datagram will effectively let SCTP 3291 * control fragmentation (i.e. the same as setting this option to 0). 3292 * 3293 * The following structure is used to access and modify this parameter: 3294 * 3295 * struct sctp_assoc_value { 3296 * sctp_assoc_t assoc_id; 3297 * uint32_t assoc_value; 3298 * }; 3299 * 3300 * assoc_id: This parameter is ignored for one-to-one style sockets. 3301 * For one-to-many style sockets this parameter indicates which 3302 * association the user is performing an action upon. Note that if 3303 * this field's value is zero then the endpoints default value is 3304 * changed (effecting future associations only). 3305 * assoc_value: This parameter specifies the maximum size in bytes. 3306 */ 3307 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3308 { 3309 struct sctp_sock *sp = sctp_sk(sk); 3310 struct sctp_assoc_value params; 3311 struct sctp_association *asoc; 3312 int val; 3313 3314 if (optlen == sizeof(int)) { 3315 pr_warn_ratelimited(DEPRECATED 3316 "%s (pid %d) " 3317 "Use of int in maxseg socket option.\n" 3318 "Use struct sctp_assoc_value instead\n", 3319 current->comm, task_pid_nr(current)); 3320 if (copy_from_user(&val, optval, optlen)) 3321 return -EFAULT; 3322 params.assoc_id = 0; 3323 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3324 if (copy_from_user(¶ms, optval, optlen)) 3325 return -EFAULT; 3326 val = params.assoc_value; 3327 } else { 3328 return -EINVAL; 3329 } 3330 3331 asoc = sctp_id2assoc(sk, params.assoc_id); 3332 3333 if (val) { 3334 int min_len, max_len; 3335 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3336 sizeof(struct sctp_data_chunk); 3337 3338 min_len = sctp_mtu_payload(sp, SCTP_DEFAULT_MINSEGMENT, 3339 datasize); 3340 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3341 3342 if (val < min_len || val > max_len) 3343 return -EINVAL; 3344 } 3345 3346 if (asoc) { 3347 asoc->user_frag = val; 3348 sctp_assoc_update_frag_point(asoc); 3349 } else { 3350 if (params.assoc_id && sctp_style(sk, UDP)) 3351 return -EINVAL; 3352 sp->user_frag = val; 3353 } 3354 3355 return 0; 3356 } 3357 3358 3359 /* 3360 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3361 * 3362 * Requests that the peer mark the enclosed address as the association 3363 * primary. The enclosed address must be one of the association's 3364 * locally bound addresses. The following structure is used to make a 3365 * set primary request: 3366 */ 3367 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3368 unsigned int optlen) 3369 { 3370 struct net *net = sock_net(sk); 3371 struct sctp_sock *sp; 3372 struct sctp_association *asoc = NULL; 3373 struct sctp_setpeerprim prim; 3374 struct sctp_chunk *chunk; 3375 struct sctp_af *af; 3376 int err; 3377 3378 sp = sctp_sk(sk); 3379 3380 if (!net->sctp.addip_enable) 3381 return -EPERM; 3382 3383 if (optlen != sizeof(struct sctp_setpeerprim)) 3384 return -EINVAL; 3385 3386 if (copy_from_user(&prim, optval, optlen)) 3387 return -EFAULT; 3388 3389 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3390 if (!asoc) 3391 return -EINVAL; 3392 3393 if (!asoc->peer.asconf_capable) 3394 return -EPERM; 3395 3396 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3397 return -EPERM; 3398 3399 if (!sctp_state(asoc, ESTABLISHED)) 3400 return -ENOTCONN; 3401 3402 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3403 if (!af) 3404 return -EINVAL; 3405 3406 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3407 return -EADDRNOTAVAIL; 3408 3409 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3410 return -EADDRNOTAVAIL; 3411 3412 /* Allow security module to validate address. */ 3413 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3414 (struct sockaddr *)&prim.sspp_addr, 3415 af->sockaddr_len); 3416 if (err) 3417 return err; 3418 3419 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3420 chunk = sctp_make_asconf_set_prim(asoc, 3421 (union sctp_addr *)&prim.sspp_addr); 3422 if (!chunk) 3423 return -ENOMEM; 3424 3425 err = sctp_send_asconf(asoc, chunk); 3426 3427 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3428 3429 return err; 3430 } 3431 3432 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3433 unsigned int optlen) 3434 { 3435 struct sctp_setadaptation adaptation; 3436 3437 if (optlen != sizeof(struct sctp_setadaptation)) 3438 return -EINVAL; 3439 if (copy_from_user(&adaptation, optval, optlen)) 3440 return -EFAULT; 3441 3442 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3443 3444 return 0; 3445 } 3446 3447 /* 3448 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3449 * 3450 * The context field in the sctp_sndrcvinfo structure is normally only 3451 * used when a failed message is retrieved holding the value that was 3452 * sent down on the actual send call. This option allows the setting of 3453 * a default context on an association basis that will be received on 3454 * reading messages from the peer. This is especially helpful in the 3455 * one-2-many model for an application to keep some reference to an 3456 * internal state machine that is processing messages on the 3457 * association. Note that the setting of this value only effects 3458 * received messages from the peer and does not effect the value that is 3459 * saved with outbound messages. 3460 */ 3461 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3462 unsigned int optlen) 3463 { 3464 struct sctp_assoc_value params; 3465 struct sctp_sock *sp; 3466 struct sctp_association *asoc; 3467 3468 if (optlen != sizeof(struct sctp_assoc_value)) 3469 return -EINVAL; 3470 if (copy_from_user(¶ms, optval, optlen)) 3471 return -EFAULT; 3472 3473 sp = sctp_sk(sk); 3474 3475 if (params.assoc_id != 0) { 3476 asoc = sctp_id2assoc(sk, params.assoc_id); 3477 if (!asoc) 3478 return -EINVAL; 3479 asoc->default_rcv_context = params.assoc_value; 3480 } else { 3481 sp->default_rcv_context = params.assoc_value; 3482 } 3483 3484 return 0; 3485 } 3486 3487 /* 3488 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3489 * 3490 * This options will at a minimum specify if the implementation is doing 3491 * fragmented interleave. Fragmented interleave, for a one to many 3492 * socket, is when subsequent calls to receive a message may return 3493 * parts of messages from different associations. Some implementations 3494 * may allow you to turn this value on or off. If so, when turned off, 3495 * no fragment interleave will occur (which will cause a head of line 3496 * blocking amongst multiple associations sharing the same one to many 3497 * socket). When this option is turned on, then each receive call may 3498 * come from a different association (thus the user must receive data 3499 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3500 * association each receive belongs to. 3501 * 3502 * This option takes a boolean value. A non-zero value indicates that 3503 * fragmented interleave is on. A value of zero indicates that 3504 * fragmented interleave is off. 3505 * 3506 * Note that it is important that an implementation that allows this 3507 * option to be turned on, have it off by default. Otherwise an unaware 3508 * application using the one to many model may become confused and act 3509 * incorrectly. 3510 */ 3511 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3512 char __user *optval, 3513 unsigned int optlen) 3514 { 3515 int val; 3516 3517 if (optlen != sizeof(int)) 3518 return -EINVAL; 3519 if (get_user(val, (int __user *)optval)) 3520 return -EFAULT; 3521 3522 sctp_sk(sk)->frag_interleave = !!val; 3523 3524 if (!sctp_sk(sk)->frag_interleave) 3525 sctp_sk(sk)->strm_interleave = 0; 3526 3527 return 0; 3528 } 3529 3530 /* 3531 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3532 * (SCTP_PARTIAL_DELIVERY_POINT) 3533 * 3534 * This option will set or get the SCTP partial delivery point. This 3535 * point is the size of a message where the partial delivery API will be 3536 * invoked to help free up rwnd space for the peer. Setting this to a 3537 * lower value will cause partial deliveries to happen more often. The 3538 * calls argument is an integer that sets or gets the partial delivery 3539 * point. Note also that the call will fail if the user attempts to set 3540 * this value larger than the socket receive buffer size. 3541 * 3542 * Note that any single message having a length smaller than or equal to 3543 * the SCTP partial delivery point will be delivered in one single read 3544 * call as long as the user provided buffer is large enough to hold the 3545 * message. 3546 */ 3547 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3548 char __user *optval, 3549 unsigned int optlen) 3550 { 3551 u32 val; 3552 3553 if (optlen != sizeof(u32)) 3554 return -EINVAL; 3555 if (get_user(val, (int __user *)optval)) 3556 return -EFAULT; 3557 3558 /* Note: We double the receive buffer from what the user sets 3559 * it to be, also initial rwnd is based on rcvbuf/2. 3560 */ 3561 if (val > (sk->sk_rcvbuf >> 1)) 3562 return -EINVAL; 3563 3564 sctp_sk(sk)->pd_point = val; 3565 3566 return 0; /* is this the right error code? */ 3567 } 3568 3569 /* 3570 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3571 * 3572 * This option will allow a user to change the maximum burst of packets 3573 * that can be emitted by this association. Note that the default value 3574 * is 4, and some implementations may restrict this setting so that it 3575 * can only be lowered. 3576 * 3577 * NOTE: This text doesn't seem right. Do this on a socket basis with 3578 * future associations inheriting the socket value. 3579 */ 3580 static int sctp_setsockopt_maxburst(struct sock *sk, 3581 char __user *optval, 3582 unsigned int optlen) 3583 { 3584 struct sctp_assoc_value params; 3585 struct sctp_sock *sp; 3586 struct sctp_association *asoc; 3587 int val; 3588 int assoc_id = 0; 3589 3590 if (optlen == sizeof(int)) { 3591 pr_warn_ratelimited(DEPRECATED 3592 "%s (pid %d) " 3593 "Use of int in max_burst socket option deprecated.\n" 3594 "Use struct sctp_assoc_value instead\n", 3595 current->comm, task_pid_nr(current)); 3596 if (copy_from_user(&val, optval, optlen)) 3597 return -EFAULT; 3598 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3599 if (copy_from_user(¶ms, optval, optlen)) 3600 return -EFAULT; 3601 val = params.assoc_value; 3602 assoc_id = params.assoc_id; 3603 } else 3604 return -EINVAL; 3605 3606 sp = sctp_sk(sk); 3607 3608 if (assoc_id != 0) { 3609 asoc = sctp_id2assoc(sk, assoc_id); 3610 if (!asoc) 3611 return -EINVAL; 3612 asoc->max_burst = val; 3613 } else 3614 sp->max_burst = val; 3615 3616 return 0; 3617 } 3618 3619 /* 3620 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3621 * 3622 * This set option adds a chunk type that the user is requesting to be 3623 * received only in an authenticated way. Changes to the list of chunks 3624 * will only effect future associations on the socket. 3625 */ 3626 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3627 char __user *optval, 3628 unsigned int optlen) 3629 { 3630 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3631 struct sctp_authchunk val; 3632 3633 if (!ep->auth_enable) 3634 return -EACCES; 3635 3636 if (optlen != sizeof(struct sctp_authchunk)) 3637 return -EINVAL; 3638 if (copy_from_user(&val, optval, optlen)) 3639 return -EFAULT; 3640 3641 switch (val.sauth_chunk) { 3642 case SCTP_CID_INIT: 3643 case SCTP_CID_INIT_ACK: 3644 case SCTP_CID_SHUTDOWN_COMPLETE: 3645 case SCTP_CID_AUTH: 3646 return -EINVAL; 3647 } 3648 3649 /* add this chunk id to the endpoint */ 3650 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3651 } 3652 3653 /* 3654 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3655 * 3656 * This option gets or sets the list of HMAC algorithms that the local 3657 * endpoint requires the peer to use. 3658 */ 3659 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3660 char __user *optval, 3661 unsigned int optlen) 3662 { 3663 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3664 struct sctp_hmacalgo *hmacs; 3665 u32 idents; 3666 int err; 3667 3668 if (!ep->auth_enable) 3669 return -EACCES; 3670 3671 if (optlen < sizeof(struct sctp_hmacalgo)) 3672 return -EINVAL; 3673 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3674 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3675 3676 hmacs = memdup_user(optval, optlen); 3677 if (IS_ERR(hmacs)) 3678 return PTR_ERR(hmacs); 3679 3680 idents = hmacs->shmac_num_idents; 3681 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3682 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3683 err = -EINVAL; 3684 goto out; 3685 } 3686 3687 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3688 out: 3689 kfree(hmacs); 3690 return err; 3691 } 3692 3693 /* 3694 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3695 * 3696 * This option will set a shared secret key which is used to build an 3697 * association shared key. 3698 */ 3699 static int sctp_setsockopt_auth_key(struct sock *sk, 3700 char __user *optval, 3701 unsigned int optlen) 3702 { 3703 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3704 struct sctp_authkey *authkey; 3705 struct sctp_association *asoc; 3706 int ret; 3707 3708 if (!ep->auth_enable) 3709 return -EACCES; 3710 3711 if (optlen <= sizeof(struct sctp_authkey)) 3712 return -EINVAL; 3713 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3714 * this. 3715 */ 3716 optlen = min_t(unsigned int, optlen, USHRT_MAX + 3717 sizeof(struct sctp_authkey)); 3718 3719 authkey = memdup_user(optval, optlen); 3720 if (IS_ERR(authkey)) 3721 return PTR_ERR(authkey); 3722 3723 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3724 ret = -EINVAL; 3725 goto out; 3726 } 3727 3728 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3729 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3730 ret = -EINVAL; 3731 goto out; 3732 } 3733 3734 ret = sctp_auth_set_key(ep, asoc, authkey); 3735 out: 3736 kzfree(authkey); 3737 return ret; 3738 } 3739 3740 /* 3741 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3742 * 3743 * This option will get or set the active shared key to be used to build 3744 * the association shared key. 3745 */ 3746 static int sctp_setsockopt_active_key(struct sock *sk, 3747 char __user *optval, 3748 unsigned int optlen) 3749 { 3750 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3751 struct sctp_authkeyid val; 3752 struct sctp_association *asoc; 3753 3754 if (!ep->auth_enable) 3755 return -EACCES; 3756 3757 if (optlen != sizeof(struct sctp_authkeyid)) 3758 return -EINVAL; 3759 if (copy_from_user(&val, optval, optlen)) 3760 return -EFAULT; 3761 3762 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3763 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3764 return -EINVAL; 3765 3766 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3767 } 3768 3769 /* 3770 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3771 * 3772 * This set option will delete a shared secret key from use. 3773 */ 3774 static int sctp_setsockopt_del_key(struct sock *sk, 3775 char __user *optval, 3776 unsigned int optlen) 3777 { 3778 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3779 struct sctp_authkeyid val; 3780 struct sctp_association *asoc; 3781 3782 if (!ep->auth_enable) 3783 return -EACCES; 3784 3785 if (optlen != sizeof(struct sctp_authkeyid)) 3786 return -EINVAL; 3787 if (copy_from_user(&val, optval, optlen)) 3788 return -EFAULT; 3789 3790 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3791 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3792 return -EINVAL; 3793 3794 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3795 3796 } 3797 3798 /* 3799 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3800 * 3801 * This set option will deactivate a shared secret key. 3802 */ 3803 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval, 3804 unsigned int optlen) 3805 { 3806 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3807 struct sctp_authkeyid val; 3808 struct sctp_association *asoc; 3809 3810 if (!ep->auth_enable) 3811 return -EACCES; 3812 3813 if (optlen != sizeof(struct sctp_authkeyid)) 3814 return -EINVAL; 3815 if (copy_from_user(&val, optval, optlen)) 3816 return -EFAULT; 3817 3818 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3819 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3820 return -EINVAL; 3821 3822 return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber); 3823 } 3824 3825 /* 3826 * 8.1.23 SCTP_AUTO_ASCONF 3827 * 3828 * This option will enable or disable the use of the automatic generation of 3829 * ASCONF chunks to add and delete addresses to an existing association. Note 3830 * that this option has two caveats namely: a) it only affects sockets that 3831 * are bound to all addresses available to the SCTP stack, and b) the system 3832 * administrator may have an overriding control that turns the ASCONF feature 3833 * off no matter what setting the socket option may have. 3834 * This option expects an integer boolean flag, where a non-zero value turns on 3835 * the option, and a zero value turns off the option. 3836 * Note. In this implementation, socket operation overrides default parameter 3837 * being set by sysctl as well as FreeBSD implementation 3838 */ 3839 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3840 unsigned int optlen) 3841 { 3842 int val; 3843 struct sctp_sock *sp = sctp_sk(sk); 3844 3845 if (optlen < sizeof(int)) 3846 return -EINVAL; 3847 if (get_user(val, (int __user *)optval)) 3848 return -EFAULT; 3849 if (!sctp_is_ep_boundall(sk) && val) 3850 return -EINVAL; 3851 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3852 return 0; 3853 3854 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3855 if (val == 0 && sp->do_auto_asconf) { 3856 list_del(&sp->auto_asconf_list); 3857 sp->do_auto_asconf = 0; 3858 } else if (val && !sp->do_auto_asconf) { 3859 list_add_tail(&sp->auto_asconf_list, 3860 &sock_net(sk)->sctp.auto_asconf_splist); 3861 sp->do_auto_asconf = 1; 3862 } 3863 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3864 return 0; 3865 } 3866 3867 /* 3868 * SCTP_PEER_ADDR_THLDS 3869 * 3870 * This option allows us to alter the partially failed threshold for one or all 3871 * transports in an association. See Section 6.1 of: 3872 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3873 */ 3874 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3875 char __user *optval, 3876 unsigned int optlen) 3877 { 3878 struct sctp_paddrthlds val; 3879 struct sctp_transport *trans; 3880 struct sctp_association *asoc; 3881 3882 if (optlen < sizeof(struct sctp_paddrthlds)) 3883 return -EINVAL; 3884 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 3885 sizeof(struct sctp_paddrthlds))) 3886 return -EFAULT; 3887 3888 3889 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3890 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3891 if (!asoc) 3892 return -ENOENT; 3893 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3894 transports) { 3895 if (val.spt_pathmaxrxt) 3896 trans->pathmaxrxt = val.spt_pathmaxrxt; 3897 trans->pf_retrans = val.spt_pathpfthld; 3898 } 3899 3900 if (val.spt_pathmaxrxt) 3901 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3902 asoc->pf_retrans = val.spt_pathpfthld; 3903 } else { 3904 trans = sctp_addr_id2transport(sk, &val.spt_address, 3905 val.spt_assoc_id); 3906 if (!trans) 3907 return -ENOENT; 3908 3909 if (val.spt_pathmaxrxt) 3910 trans->pathmaxrxt = val.spt_pathmaxrxt; 3911 trans->pf_retrans = val.spt_pathpfthld; 3912 } 3913 3914 return 0; 3915 } 3916 3917 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 3918 char __user *optval, 3919 unsigned int optlen) 3920 { 3921 int val; 3922 3923 if (optlen < sizeof(int)) 3924 return -EINVAL; 3925 if (get_user(val, (int __user *) optval)) 3926 return -EFAULT; 3927 3928 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 3929 3930 return 0; 3931 } 3932 3933 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 3934 char __user *optval, 3935 unsigned int optlen) 3936 { 3937 int val; 3938 3939 if (optlen < sizeof(int)) 3940 return -EINVAL; 3941 if (get_user(val, (int __user *) optval)) 3942 return -EFAULT; 3943 3944 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 3945 3946 return 0; 3947 } 3948 3949 static int sctp_setsockopt_pr_supported(struct sock *sk, 3950 char __user *optval, 3951 unsigned int optlen) 3952 { 3953 struct sctp_assoc_value params; 3954 3955 if (optlen != sizeof(params)) 3956 return -EINVAL; 3957 3958 if (copy_from_user(¶ms, optval, optlen)) 3959 return -EFAULT; 3960 3961 sctp_sk(sk)->ep->prsctp_enable = !!params.assoc_value; 3962 3963 return 0; 3964 } 3965 3966 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3967 char __user *optval, 3968 unsigned int optlen) 3969 { 3970 struct sctp_default_prinfo info; 3971 struct sctp_association *asoc; 3972 int retval = -EINVAL; 3973 3974 if (optlen != sizeof(info)) 3975 goto out; 3976 3977 if (copy_from_user(&info, optval, sizeof(info))) { 3978 retval = -EFAULT; 3979 goto out; 3980 } 3981 3982 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 3983 goto out; 3984 3985 if (info.pr_policy == SCTP_PR_SCTP_NONE) 3986 info.pr_value = 0; 3987 3988 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 3989 if (asoc) { 3990 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 3991 asoc->default_timetolive = info.pr_value; 3992 } else if (!info.pr_assoc_id) { 3993 struct sctp_sock *sp = sctp_sk(sk); 3994 3995 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 3996 sp->default_timetolive = info.pr_value; 3997 } else { 3998 goto out; 3999 } 4000 4001 retval = 0; 4002 4003 out: 4004 return retval; 4005 } 4006 4007 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 4008 char __user *optval, 4009 unsigned int optlen) 4010 { 4011 struct sctp_assoc_value params; 4012 struct sctp_association *asoc; 4013 int retval = -EINVAL; 4014 4015 if (optlen != sizeof(params)) 4016 goto out; 4017 4018 if (copy_from_user(¶ms, optval, optlen)) { 4019 retval = -EFAULT; 4020 goto out; 4021 } 4022 4023 asoc = sctp_id2assoc(sk, params.assoc_id); 4024 if (asoc) { 4025 asoc->reconf_enable = !!params.assoc_value; 4026 } else if (!params.assoc_id) { 4027 struct sctp_sock *sp = sctp_sk(sk); 4028 4029 sp->ep->reconf_enable = !!params.assoc_value; 4030 } else { 4031 goto out; 4032 } 4033 4034 retval = 0; 4035 4036 out: 4037 return retval; 4038 } 4039 4040 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4041 char __user *optval, 4042 unsigned int optlen) 4043 { 4044 struct sctp_assoc_value params; 4045 struct sctp_association *asoc; 4046 int retval = -EINVAL; 4047 4048 if (optlen != sizeof(params)) 4049 goto out; 4050 4051 if (copy_from_user(¶ms, optval, optlen)) { 4052 retval = -EFAULT; 4053 goto out; 4054 } 4055 4056 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4057 goto out; 4058 4059 asoc = sctp_id2assoc(sk, params.assoc_id); 4060 if (asoc) { 4061 asoc->strreset_enable = params.assoc_value; 4062 } else if (!params.assoc_id) { 4063 struct sctp_sock *sp = sctp_sk(sk); 4064 4065 sp->ep->strreset_enable = params.assoc_value; 4066 } else { 4067 goto out; 4068 } 4069 4070 retval = 0; 4071 4072 out: 4073 return retval; 4074 } 4075 4076 static int sctp_setsockopt_reset_streams(struct sock *sk, 4077 char __user *optval, 4078 unsigned int optlen) 4079 { 4080 struct sctp_reset_streams *params; 4081 struct sctp_association *asoc; 4082 int retval = -EINVAL; 4083 4084 if (optlen < sizeof(*params)) 4085 return -EINVAL; 4086 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4087 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4088 sizeof(__u16) * sizeof(*params)); 4089 4090 params = memdup_user(optval, optlen); 4091 if (IS_ERR(params)) 4092 return PTR_ERR(params); 4093 4094 if (params->srs_number_streams * sizeof(__u16) > 4095 optlen - sizeof(*params)) 4096 goto out; 4097 4098 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4099 if (!asoc) 4100 goto out; 4101 4102 retval = sctp_send_reset_streams(asoc, params); 4103 4104 out: 4105 kfree(params); 4106 return retval; 4107 } 4108 4109 static int sctp_setsockopt_reset_assoc(struct sock *sk, 4110 char __user *optval, 4111 unsigned int optlen) 4112 { 4113 struct sctp_association *asoc; 4114 sctp_assoc_t associd; 4115 int retval = -EINVAL; 4116 4117 if (optlen != sizeof(associd)) 4118 goto out; 4119 4120 if (copy_from_user(&associd, optval, optlen)) { 4121 retval = -EFAULT; 4122 goto out; 4123 } 4124 4125 asoc = sctp_id2assoc(sk, associd); 4126 if (!asoc) 4127 goto out; 4128 4129 retval = sctp_send_reset_assoc(asoc); 4130 4131 out: 4132 return retval; 4133 } 4134 4135 static int sctp_setsockopt_add_streams(struct sock *sk, 4136 char __user *optval, 4137 unsigned int optlen) 4138 { 4139 struct sctp_association *asoc; 4140 struct sctp_add_streams params; 4141 int retval = -EINVAL; 4142 4143 if (optlen != sizeof(params)) 4144 goto out; 4145 4146 if (copy_from_user(¶ms, optval, optlen)) { 4147 retval = -EFAULT; 4148 goto out; 4149 } 4150 4151 asoc = sctp_id2assoc(sk, params.sas_assoc_id); 4152 if (!asoc) 4153 goto out; 4154 4155 retval = sctp_send_add_streams(asoc, ¶ms); 4156 4157 out: 4158 return retval; 4159 } 4160 4161 static int sctp_setsockopt_scheduler(struct sock *sk, 4162 char __user *optval, 4163 unsigned int optlen) 4164 { 4165 struct sctp_association *asoc; 4166 struct sctp_assoc_value params; 4167 int retval = -EINVAL; 4168 4169 if (optlen < sizeof(params)) 4170 goto out; 4171 4172 optlen = sizeof(params); 4173 if (copy_from_user(¶ms, optval, optlen)) { 4174 retval = -EFAULT; 4175 goto out; 4176 } 4177 4178 if (params.assoc_value > SCTP_SS_MAX) 4179 goto out; 4180 4181 asoc = sctp_id2assoc(sk, params.assoc_id); 4182 if (!asoc) 4183 goto out; 4184 4185 retval = sctp_sched_set_sched(asoc, params.assoc_value); 4186 4187 out: 4188 return retval; 4189 } 4190 4191 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4192 char __user *optval, 4193 unsigned int optlen) 4194 { 4195 struct sctp_association *asoc; 4196 struct sctp_stream_value params; 4197 int retval = -EINVAL; 4198 4199 if (optlen < sizeof(params)) 4200 goto out; 4201 4202 optlen = sizeof(params); 4203 if (copy_from_user(¶ms, optval, optlen)) { 4204 retval = -EFAULT; 4205 goto out; 4206 } 4207 4208 asoc = sctp_id2assoc(sk, params.assoc_id); 4209 if (!asoc) 4210 goto out; 4211 4212 retval = sctp_sched_set_value(asoc, params.stream_id, 4213 params.stream_value, GFP_KERNEL); 4214 4215 out: 4216 return retval; 4217 } 4218 4219 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4220 char __user *optval, 4221 unsigned int optlen) 4222 { 4223 struct sctp_sock *sp = sctp_sk(sk); 4224 struct net *net = sock_net(sk); 4225 struct sctp_assoc_value params; 4226 int retval = -EINVAL; 4227 4228 if (optlen < sizeof(params)) 4229 goto out; 4230 4231 optlen = sizeof(params); 4232 if (copy_from_user(¶ms, optval, optlen)) { 4233 retval = -EFAULT; 4234 goto out; 4235 } 4236 4237 if (params.assoc_id) 4238 goto out; 4239 4240 if (!net->sctp.intl_enable || !sp->frag_interleave) { 4241 retval = -EPERM; 4242 goto out; 4243 } 4244 4245 sp->strm_interleave = !!params.assoc_value; 4246 4247 retval = 0; 4248 4249 out: 4250 return retval; 4251 } 4252 4253 static int sctp_setsockopt_reuse_port(struct sock *sk, char __user *optval, 4254 unsigned int optlen) 4255 { 4256 int val; 4257 4258 if (!sctp_style(sk, TCP)) 4259 return -EOPNOTSUPP; 4260 4261 if (sctp_sk(sk)->ep->base.bind_addr.port) 4262 return -EFAULT; 4263 4264 if (optlen < sizeof(int)) 4265 return -EINVAL; 4266 4267 if (get_user(val, (int __user *)optval)) 4268 return -EFAULT; 4269 4270 sctp_sk(sk)->reuse = !!val; 4271 4272 return 0; 4273 } 4274 4275 static int sctp_setsockopt_event(struct sock *sk, char __user *optval, 4276 unsigned int optlen) 4277 { 4278 struct sctp_association *asoc; 4279 struct sctp_ulpevent *event; 4280 struct sctp_event param; 4281 int retval = 0; 4282 4283 if (optlen < sizeof(param)) { 4284 retval = -EINVAL; 4285 goto out; 4286 } 4287 4288 optlen = sizeof(param); 4289 if (copy_from_user(¶m, optval, optlen)) { 4290 retval = -EFAULT; 4291 goto out; 4292 } 4293 4294 if (param.se_type < SCTP_SN_TYPE_BASE || 4295 param.se_type > SCTP_SN_TYPE_MAX) { 4296 retval = -EINVAL; 4297 goto out; 4298 } 4299 4300 asoc = sctp_id2assoc(sk, param.se_assoc_id); 4301 if (!asoc) { 4302 sctp_ulpevent_type_set(&sctp_sk(sk)->subscribe, 4303 param.se_type, param.se_on); 4304 goto out; 4305 } 4306 4307 sctp_ulpevent_type_set(&asoc->subscribe, param.se_type, param.se_on); 4308 4309 if (param.se_type == SCTP_SENDER_DRY_EVENT && param.se_on) { 4310 if (sctp_outq_is_empty(&asoc->outqueue)) { 4311 event = sctp_ulpevent_make_sender_dry_event(asoc, 4312 GFP_USER | __GFP_NOWARN); 4313 if (!event) { 4314 retval = -ENOMEM; 4315 goto out; 4316 } 4317 4318 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 4319 } 4320 } 4321 4322 out: 4323 return retval; 4324 } 4325 4326 /* API 6.2 setsockopt(), getsockopt() 4327 * 4328 * Applications use setsockopt() and getsockopt() to set or retrieve 4329 * socket options. Socket options are used to change the default 4330 * behavior of sockets calls. They are described in Section 7. 4331 * 4332 * The syntax is: 4333 * 4334 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4335 * int __user *optlen); 4336 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4337 * int optlen); 4338 * 4339 * sd - the socket descript. 4340 * level - set to IPPROTO_SCTP for all SCTP options. 4341 * optname - the option name. 4342 * optval - the buffer to store the value of the option. 4343 * optlen - the size of the buffer. 4344 */ 4345 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4346 char __user *optval, unsigned int optlen) 4347 { 4348 int retval = 0; 4349 4350 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4351 4352 /* I can hardly begin to describe how wrong this is. This is 4353 * so broken as to be worse than useless. The API draft 4354 * REALLY is NOT helpful here... I am not convinced that the 4355 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4356 * are at all well-founded. 4357 */ 4358 if (level != SOL_SCTP) { 4359 struct sctp_af *af = sctp_sk(sk)->pf->af; 4360 retval = af->setsockopt(sk, level, optname, optval, optlen); 4361 goto out_nounlock; 4362 } 4363 4364 lock_sock(sk); 4365 4366 switch (optname) { 4367 case SCTP_SOCKOPT_BINDX_ADD: 4368 /* 'optlen' is the size of the addresses buffer. */ 4369 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4370 optlen, SCTP_BINDX_ADD_ADDR); 4371 break; 4372 4373 case SCTP_SOCKOPT_BINDX_REM: 4374 /* 'optlen' is the size of the addresses buffer. */ 4375 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4376 optlen, SCTP_BINDX_REM_ADDR); 4377 break; 4378 4379 case SCTP_SOCKOPT_CONNECTX_OLD: 4380 /* 'optlen' is the size of the addresses buffer. */ 4381 retval = sctp_setsockopt_connectx_old(sk, 4382 (struct sockaddr __user *)optval, 4383 optlen); 4384 break; 4385 4386 case SCTP_SOCKOPT_CONNECTX: 4387 /* 'optlen' is the size of the addresses buffer. */ 4388 retval = sctp_setsockopt_connectx(sk, 4389 (struct sockaddr __user *)optval, 4390 optlen); 4391 break; 4392 4393 case SCTP_DISABLE_FRAGMENTS: 4394 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 4395 break; 4396 4397 case SCTP_EVENTS: 4398 retval = sctp_setsockopt_events(sk, optval, optlen); 4399 break; 4400 4401 case SCTP_AUTOCLOSE: 4402 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 4403 break; 4404 4405 case SCTP_PEER_ADDR_PARAMS: 4406 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 4407 break; 4408 4409 case SCTP_DELAYED_SACK: 4410 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 4411 break; 4412 case SCTP_PARTIAL_DELIVERY_POINT: 4413 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 4414 break; 4415 4416 case SCTP_INITMSG: 4417 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 4418 break; 4419 case SCTP_DEFAULT_SEND_PARAM: 4420 retval = sctp_setsockopt_default_send_param(sk, optval, 4421 optlen); 4422 break; 4423 case SCTP_DEFAULT_SNDINFO: 4424 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 4425 break; 4426 case SCTP_PRIMARY_ADDR: 4427 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 4428 break; 4429 case SCTP_SET_PEER_PRIMARY_ADDR: 4430 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 4431 break; 4432 case SCTP_NODELAY: 4433 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 4434 break; 4435 case SCTP_RTOINFO: 4436 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 4437 break; 4438 case SCTP_ASSOCINFO: 4439 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 4440 break; 4441 case SCTP_I_WANT_MAPPED_V4_ADDR: 4442 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 4443 break; 4444 case SCTP_MAXSEG: 4445 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 4446 break; 4447 case SCTP_ADAPTATION_LAYER: 4448 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 4449 break; 4450 case SCTP_CONTEXT: 4451 retval = sctp_setsockopt_context(sk, optval, optlen); 4452 break; 4453 case SCTP_FRAGMENT_INTERLEAVE: 4454 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 4455 break; 4456 case SCTP_MAX_BURST: 4457 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 4458 break; 4459 case SCTP_AUTH_CHUNK: 4460 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 4461 break; 4462 case SCTP_HMAC_IDENT: 4463 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 4464 break; 4465 case SCTP_AUTH_KEY: 4466 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 4467 break; 4468 case SCTP_AUTH_ACTIVE_KEY: 4469 retval = sctp_setsockopt_active_key(sk, optval, optlen); 4470 break; 4471 case SCTP_AUTH_DELETE_KEY: 4472 retval = sctp_setsockopt_del_key(sk, optval, optlen); 4473 break; 4474 case SCTP_AUTH_DEACTIVATE_KEY: 4475 retval = sctp_setsockopt_deactivate_key(sk, optval, optlen); 4476 break; 4477 case SCTP_AUTO_ASCONF: 4478 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 4479 break; 4480 case SCTP_PEER_ADDR_THLDS: 4481 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 4482 break; 4483 case SCTP_RECVRCVINFO: 4484 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 4485 break; 4486 case SCTP_RECVNXTINFO: 4487 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 4488 break; 4489 case SCTP_PR_SUPPORTED: 4490 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 4491 break; 4492 case SCTP_DEFAULT_PRINFO: 4493 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 4494 break; 4495 case SCTP_RECONFIG_SUPPORTED: 4496 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen); 4497 break; 4498 case SCTP_ENABLE_STREAM_RESET: 4499 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen); 4500 break; 4501 case SCTP_RESET_STREAMS: 4502 retval = sctp_setsockopt_reset_streams(sk, optval, optlen); 4503 break; 4504 case SCTP_RESET_ASSOC: 4505 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen); 4506 break; 4507 case SCTP_ADD_STREAMS: 4508 retval = sctp_setsockopt_add_streams(sk, optval, optlen); 4509 break; 4510 case SCTP_STREAM_SCHEDULER: 4511 retval = sctp_setsockopt_scheduler(sk, optval, optlen); 4512 break; 4513 case SCTP_STREAM_SCHEDULER_VALUE: 4514 retval = sctp_setsockopt_scheduler_value(sk, optval, optlen); 4515 break; 4516 case SCTP_INTERLEAVING_SUPPORTED: 4517 retval = sctp_setsockopt_interleaving_supported(sk, optval, 4518 optlen); 4519 break; 4520 case SCTP_REUSE_PORT: 4521 retval = sctp_setsockopt_reuse_port(sk, optval, optlen); 4522 break; 4523 case SCTP_EVENT: 4524 retval = sctp_setsockopt_event(sk, optval, optlen); 4525 break; 4526 default: 4527 retval = -ENOPROTOOPT; 4528 break; 4529 } 4530 4531 release_sock(sk); 4532 4533 out_nounlock: 4534 return retval; 4535 } 4536 4537 /* API 3.1.6 connect() - UDP Style Syntax 4538 * 4539 * An application may use the connect() call in the UDP model to initiate an 4540 * association without sending data. 4541 * 4542 * The syntax is: 4543 * 4544 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4545 * 4546 * sd: the socket descriptor to have a new association added to. 4547 * 4548 * nam: the address structure (either struct sockaddr_in or struct 4549 * sockaddr_in6 defined in RFC2553 [7]). 4550 * 4551 * len: the size of the address. 4552 */ 4553 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4554 int addr_len, int flags) 4555 { 4556 struct inet_sock *inet = inet_sk(sk); 4557 struct sctp_af *af; 4558 int err = 0; 4559 4560 lock_sock(sk); 4561 4562 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4563 addr, addr_len); 4564 4565 /* We may need to bind the socket. */ 4566 if (!inet->inet_num) { 4567 if (sk->sk_prot->get_port(sk, 0)) { 4568 release_sock(sk); 4569 return -EAGAIN; 4570 } 4571 inet->inet_sport = htons(inet->inet_num); 4572 } 4573 4574 /* Validate addr_len before calling common connect/connectx routine. */ 4575 af = sctp_get_af_specific(addr->sa_family); 4576 if (!af || addr_len < af->sockaddr_len) { 4577 err = -EINVAL; 4578 } else { 4579 /* Pass correct addr len to common routine (so it knows there 4580 * is only one address being passed. 4581 */ 4582 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4583 } 4584 4585 release_sock(sk); 4586 return err; 4587 } 4588 4589 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4590 int addr_len, int flags) 4591 { 4592 if (addr_len < sizeof(uaddr->sa_family)) 4593 return -EINVAL; 4594 4595 if (uaddr->sa_family == AF_UNSPEC) 4596 return -EOPNOTSUPP; 4597 4598 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4599 } 4600 4601 /* FIXME: Write comments. */ 4602 static int sctp_disconnect(struct sock *sk, int flags) 4603 { 4604 return -EOPNOTSUPP; /* STUB */ 4605 } 4606 4607 /* 4.1.4 accept() - TCP Style Syntax 4608 * 4609 * Applications use accept() call to remove an established SCTP 4610 * association from the accept queue of the endpoint. A new socket 4611 * descriptor will be returned from accept() to represent the newly 4612 * formed association. 4613 */ 4614 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4615 { 4616 struct sctp_sock *sp; 4617 struct sctp_endpoint *ep; 4618 struct sock *newsk = NULL; 4619 struct sctp_association *asoc; 4620 long timeo; 4621 int error = 0; 4622 4623 lock_sock(sk); 4624 4625 sp = sctp_sk(sk); 4626 ep = sp->ep; 4627 4628 if (!sctp_style(sk, TCP)) { 4629 error = -EOPNOTSUPP; 4630 goto out; 4631 } 4632 4633 if (!sctp_sstate(sk, LISTENING)) { 4634 error = -EINVAL; 4635 goto out; 4636 } 4637 4638 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4639 4640 error = sctp_wait_for_accept(sk, timeo); 4641 if (error) 4642 goto out; 4643 4644 /* We treat the list of associations on the endpoint as the accept 4645 * queue and pick the first association on the list. 4646 */ 4647 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4648 4649 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4650 if (!newsk) { 4651 error = -ENOMEM; 4652 goto out; 4653 } 4654 4655 /* Populate the fields of the newsk from the oldsk and migrate the 4656 * asoc to the newsk. 4657 */ 4658 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4659 4660 out: 4661 release_sock(sk); 4662 *err = error; 4663 return newsk; 4664 } 4665 4666 /* The SCTP ioctl handler. */ 4667 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4668 { 4669 int rc = -ENOTCONN; 4670 4671 lock_sock(sk); 4672 4673 /* 4674 * SEQPACKET-style sockets in LISTENING state are valid, for 4675 * SCTP, so only discard TCP-style sockets in LISTENING state. 4676 */ 4677 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4678 goto out; 4679 4680 switch (cmd) { 4681 case SIOCINQ: { 4682 struct sk_buff *skb; 4683 unsigned int amount = 0; 4684 4685 skb = skb_peek(&sk->sk_receive_queue); 4686 if (skb != NULL) { 4687 /* 4688 * We will only return the amount of this packet since 4689 * that is all that will be read. 4690 */ 4691 amount = skb->len; 4692 } 4693 rc = put_user(amount, (int __user *)arg); 4694 break; 4695 } 4696 default: 4697 rc = -ENOIOCTLCMD; 4698 break; 4699 } 4700 out: 4701 release_sock(sk); 4702 return rc; 4703 } 4704 4705 /* This is the function which gets called during socket creation to 4706 * initialized the SCTP-specific portion of the sock. 4707 * The sock structure should already be zero-filled memory. 4708 */ 4709 static int sctp_init_sock(struct sock *sk) 4710 { 4711 struct net *net = sock_net(sk); 4712 struct sctp_sock *sp; 4713 4714 pr_debug("%s: sk:%p\n", __func__, sk); 4715 4716 sp = sctp_sk(sk); 4717 4718 /* Initialize the SCTP per socket area. */ 4719 switch (sk->sk_type) { 4720 case SOCK_SEQPACKET: 4721 sp->type = SCTP_SOCKET_UDP; 4722 break; 4723 case SOCK_STREAM: 4724 sp->type = SCTP_SOCKET_TCP; 4725 break; 4726 default: 4727 return -ESOCKTNOSUPPORT; 4728 } 4729 4730 sk->sk_gso_type = SKB_GSO_SCTP; 4731 4732 /* Initialize default send parameters. These parameters can be 4733 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4734 */ 4735 sp->default_stream = 0; 4736 sp->default_ppid = 0; 4737 sp->default_flags = 0; 4738 sp->default_context = 0; 4739 sp->default_timetolive = 0; 4740 4741 sp->default_rcv_context = 0; 4742 sp->max_burst = net->sctp.max_burst; 4743 4744 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4745 4746 /* Initialize default setup parameters. These parameters 4747 * can be modified with the SCTP_INITMSG socket option or 4748 * overridden by the SCTP_INIT CMSG. 4749 */ 4750 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4751 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4752 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4753 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4754 4755 /* Initialize default RTO related parameters. These parameters can 4756 * be modified for with the SCTP_RTOINFO socket option. 4757 */ 4758 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4759 sp->rtoinfo.srto_max = net->sctp.rto_max; 4760 sp->rtoinfo.srto_min = net->sctp.rto_min; 4761 4762 /* Initialize default association related parameters. These parameters 4763 * can be modified with the SCTP_ASSOCINFO socket option. 4764 */ 4765 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4766 sp->assocparams.sasoc_number_peer_destinations = 0; 4767 sp->assocparams.sasoc_peer_rwnd = 0; 4768 sp->assocparams.sasoc_local_rwnd = 0; 4769 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 4770 4771 /* Initialize default event subscriptions. By default, all the 4772 * options are off. 4773 */ 4774 sp->subscribe = 0; 4775 4776 /* Default Peer Address Parameters. These defaults can 4777 * be modified via SCTP_PEER_ADDR_PARAMS 4778 */ 4779 sp->hbinterval = net->sctp.hb_interval; 4780 sp->pathmaxrxt = net->sctp.max_retrans_path; 4781 sp->pathmtu = 0; /* allow default discovery */ 4782 sp->sackdelay = net->sctp.sack_timeout; 4783 sp->sackfreq = 2; 4784 sp->param_flags = SPP_HB_ENABLE | 4785 SPP_PMTUD_ENABLE | 4786 SPP_SACKDELAY_ENABLE; 4787 4788 /* If enabled no SCTP message fragmentation will be performed. 4789 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 4790 */ 4791 sp->disable_fragments = 0; 4792 4793 /* Enable Nagle algorithm by default. */ 4794 sp->nodelay = 0; 4795 4796 sp->recvrcvinfo = 0; 4797 sp->recvnxtinfo = 0; 4798 4799 /* Enable by default. */ 4800 sp->v4mapped = 1; 4801 4802 /* Auto-close idle associations after the configured 4803 * number of seconds. A value of 0 disables this 4804 * feature. Configure through the SCTP_AUTOCLOSE socket option, 4805 * for UDP-style sockets only. 4806 */ 4807 sp->autoclose = 0; 4808 4809 /* User specified fragmentation limit. */ 4810 sp->user_frag = 0; 4811 4812 sp->adaptation_ind = 0; 4813 4814 sp->pf = sctp_get_pf_specific(sk->sk_family); 4815 4816 /* Control variables for partial data delivery. */ 4817 atomic_set(&sp->pd_mode, 0); 4818 skb_queue_head_init(&sp->pd_lobby); 4819 sp->frag_interleave = 0; 4820 4821 /* Create a per socket endpoint structure. Even if we 4822 * change the data structure relationships, this may still 4823 * be useful for storing pre-connect address information. 4824 */ 4825 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 4826 if (!sp->ep) 4827 return -ENOMEM; 4828 4829 sp->hmac = NULL; 4830 4831 sk->sk_destruct = sctp_destruct_sock; 4832 4833 SCTP_DBG_OBJCNT_INC(sock); 4834 4835 local_bh_disable(); 4836 sk_sockets_allocated_inc(sk); 4837 sock_prot_inuse_add(net, sk->sk_prot, 1); 4838 4839 /* Nothing can fail after this block, otherwise 4840 * sctp_destroy_sock() will be called without addr_wq_lock held 4841 */ 4842 if (net->sctp.default_auto_asconf) { 4843 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 4844 list_add_tail(&sp->auto_asconf_list, 4845 &net->sctp.auto_asconf_splist); 4846 sp->do_auto_asconf = 1; 4847 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 4848 } else { 4849 sp->do_auto_asconf = 0; 4850 } 4851 4852 local_bh_enable(); 4853 4854 return 0; 4855 } 4856 4857 /* Cleanup any SCTP per socket resources. Must be called with 4858 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 4859 */ 4860 static void sctp_destroy_sock(struct sock *sk) 4861 { 4862 struct sctp_sock *sp; 4863 4864 pr_debug("%s: sk:%p\n", __func__, sk); 4865 4866 /* Release our hold on the endpoint. */ 4867 sp = sctp_sk(sk); 4868 /* This could happen during socket init, thus we bail out 4869 * early, since the rest of the below is not setup either. 4870 */ 4871 if (sp->ep == NULL) 4872 return; 4873 4874 if (sp->do_auto_asconf) { 4875 sp->do_auto_asconf = 0; 4876 list_del(&sp->auto_asconf_list); 4877 } 4878 sctp_endpoint_free(sp->ep); 4879 local_bh_disable(); 4880 sk_sockets_allocated_dec(sk); 4881 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 4882 local_bh_enable(); 4883 } 4884 4885 /* Triggered when there are no references on the socket anymore */ 4886 static void sctp_destruct_sock(struct sock *sk) 4887 { 4888 struct sctp_sock *sp = sctp_sk(sk); 4889 4890 /* Free up the HMAC transform. */ 4891 crypto_free_shash(sp->hmac); 4892 4893 inet_sock_destruct(sk); 4894 } 4895 4896 /* API 4.1.7 shutdown() - TCP Style Syntax 4897 * int shutdown(int socket, int how); 4898 * 4899 * sd - the socket descriptor of the association to be closed. 4900 * how - Specifies the type of shutdown. The values are 4901 * as follows: 4902 * SHUT_RD 4903 * Disables further receive operations. No SCTP 4904 * protocol action is taken. 4905 * SHUT_WR 4906 * Disables further send operations, and initiates 4907 * the SCTP shutdown sequence. 4908 * SHUT_RDWR 4909 * Disables further send and receive operations 4910 * and initiates the SCTP shutdown sequence. 4911 */ 4912 static void sctp_shutdown(struct sock *sk, int how) 4913 { 4914 struct net *net = sock_net(sk); 4915 struct sctp_endpoint *ep; 4916 4917 if (!sctp_style(sk, TCP)) 4918 return; 4919 4920 ep = sctp_sk(sk)->ep; 4921 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 4922 struct sctp_association *asoc; 4923 4924 inet_sk_set_state(sk, SCTP_SS_CLOSING); 4925 asoc = list_entry(ep->asocs.next, 4926 struct sctp_association, asocs); 4927 sctp_primitive_SHUTDOWN(net, asoc, NULL); 4928 } 4929 } 4930 4931 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 4932 struct sctp_info *info) 4933 { 4934 struct sctp_transport *prim; 4935 struct list_head *pos; 4936 int mask; 4937 4938 memset(info, 0, sizeof(*info)); 4939 if (!asoc) { 4940 struct sctp_sock *sp = sctp_sk(sk); 4941 4942 info->sctpi_s_autoclose = sp->autoclose; 4943 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 4944 info->sctpi_s_pd_point = sp->pd_point; 4945 info->sctpi_s_nodelay = sp->nodelay; 4946 info->sctpi_s_disable_fragments = sp->disable_fragments; 4947 info->sctpi_s_v4mapped = sp->v4mapped; 4948 info->sctpi_s_frag_interleave = sp->frag_interleave; 4949 info->sctpi_s_type = sp->type; 4950 4951 return 0; 4952 } 4953 4954 info->sctpi_tag = asoc->c.my_vtag; 4955 info->sctpi_state = asoc->state; 4956 info->sctpi_rwnd = asoc->a_rwnd; 4957 info->sctpi_unackdata = asoc->unack_data; 4958 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4959 info->sctpi_instrms = asoc->stream.incnt; 4960 info->sctpi_outstrms = asoc->stream.outcnt; 4961 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 4962 info->sctpi_inqueue++; 4963 list_for_each(pos, &asoc->outqueue.out_chunk_list) 4964 info->sctpi_outqueue++; 4965 info->sctpi_overall_error = asoc->overall_error_count; 4966 info->sctpi_max_burst = asoc->max_burst; 4967 info->sctpi_maxseg = asoc->frag_point; 4968 info->sctpi_peer_rwnd = asoc->peer.rwnd; 4969 info->sctpi_peer_tag = asoc->c.peer_vtag; 4970 4971 mask = asoc->peer.ecn_capable << 1; 4972 mask = (mask | asoc->peer.ipv4_address) << 1; 4973 mask = (mask | asoc->peer.ipv6_address) << 1; 4974 mask = (mask | asoc->peer.hostname_address) << 1; 4975 mask = (mask | asoc->peer.asconf_capable) << 1; 4976 mask = (mask | asoc->peer.prsctp_capable) << 1; 4977 mask = (mask | asoc->peer.auth_capable); 4978 info->sctpi_peer_capable = mask; 4979 mask = asoc->peer.sack_needed << 1; 4980 mask = (mask | asoc->peer.sack_generation) << 1; 4981 mask = (mask | asoc->peer.zero_window_announced); 4982 info->sctpi_peer_sack = mask; 4983 4984 info->sctpi_isacks = asoc->stats.isacks; 4985 info->sctpi_osacks = asoc->stats.osacks; 4986 info->sctpi_opackets = asoc->stats.opackets; 4987 info->sctpi_ipackets = asoc->stats.ipackets; 4988 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 4989 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 4990 info->sctpi_idupchunks = asoc->stats.idupchunks; 4991 info->sctpi_gapcnt = asoc->stats.gapcnt; 4992 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 4993 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 4994 info->sctpi_oodchunks = asoc->stats.oodchunks; 4995 info->sctpi_iodchunks = asoc->stats.iodchunks; 4996 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 4997 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 4998 4999 prim = asoc->peer.primary_path; 5000 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 5001 info->sctpi_p_state = prim->state; 5002 info->sctpi_p_cwnd = prim->cwnd; 5003 info->sctpi_p_srtt = prim->srtt; 5004 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 5005 info->sctpi_p_hbinterval = prim->hbinterval; 5006 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 5007 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 5008 info->sctpi_p_ssthresh = prim->ssthresh; 5009 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 5010 info->sctpi_p_flight_size = prim->flight_size; 5011 info->sctpi_p_error = prim->error_count; 5012 5013 return 0; 5014 } 5015 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 5016 5017 /* use callback to avoid exporting the core structure */ 5018 void sctp_transport_walk_start(struct rhashtable_iter *iter) 5019 { 5020 rhltable_walk_enter(&sctp_transport_hashtable, iter); 5021 5022 rhashtable_walk_start(iter); 5023 } 5024 5025 void sctp_transport_walk_stop(struct rhashtable_iter *iter) 5026 { 5027 rhashtable_walk_stop(iter); 5028 rhashtable_walk_exit(iter); 5029 } 5030 5031 struct sctp_transport *sctp_transport_get_next(struct net *net, 5032 struct rhashtable_iter *iter) 5033 { 5034 struct sctp_transport *t; 5035 5036 t = rhashtable_walk_next(iter); 5037 for (; t; t = rhashtable_walk_next(iter)) { 5038 if (IS_ERR(t)) { 5039 if (PTR_ERR(t) == -EAGAIN) 5040 continue; 5041 break; 5042 } 5043 5044 if (!sctp_transport_hold(t)) 5045 continue; 5046 5047 if (net_eq(sock_net(t->asoc->base.sk), net) && 5048 t->asoc->peer.primary_path == t) 5049 break; 5050 5051 sctp_transport_put(t); 5052 } 5053 5054 return t; 5055 } 5056 5057 struct sctp_transport *sctp_transport_get_idx(struct net *net, 5058 struct rhashtable_iter *iter, 5059 int pos) 5060 { 5061 struct sctp_transport *t; 5062 5063 if (!pos) 5064 return SEQ_START_TOKEN; 5065 5066 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { 5067 if (!--pos) 5068 break; 5069 sctp_transport_put(t); 5070 } 5071 5072 return t; 5073 } 5074 5075 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5076 void *p) { 5077 int err = 0; 5078 int hash = 0; 5079 struct sctp_ep_common *epb; 5080 struct sctp_hashbucket *head; 5081 5082 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5083 hash++, head++) { 5084 read_lock_bh(&head->lock); 5085 sctp_for_each_hentry(epb, &head->chain) { 5086 err = cb(sctp_ep(epb), p); 5087 if (err) 5088 break; 5089 } 5090 read_unlock_bh(&head->lock); 5091 } 5092 5093 return err; 5094 } 5095 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5096 5097 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 5098 struct net *net, 5099 const union sctp_addr *laddr, 5100 const union sctp_addr *paddr, void *p) 5101 { 5102 struct sctp_transport *transport; 5103 int err; 5104 5105 rcu_read_lock(); 5106 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 5107 rcu_read_unlock(); 5108 if (!transport) 5109 return -ENOENT; 5110 5111 err = cb(transport, p); 5112 sctp_transport_put(transport); 5113 5114 return err; 5115 } 5116 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5117 5118 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 5119 int (*cb_done)(struct sctp_transport *, void *), 5120 struct net *net, int *pos, void *p) { 5121 struct rhashtable_iter hti; 5122 struct sctp_transport *tsp; 5123 int ret; 5124 5125 again: 5126 ret = 0; 5127 sctp_transport_walk_start(&hti); 5128 5129 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5130 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5131 ret = cb(tsp, p); 5132 if (ret) 5133 break; 5134 (*pos)++; 5135 sctp_transport_put(tsp); 5136 } 5137 sctp_transport_walk_stop(&hti); 5138 5139 if (ret) { 5140 if (cb_done && !cb_done(tsp, p)) { 5141 (*pos)++; 5142 sctp_transport_put(tsp); 5143 goto again; 5144 } 5145 sctp_transport_put(tsp); 5146 } 5147 5148 return ret; 5149 } 5150 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 5151 5152 /* 7.2.1 Association Status (SCTP_STATUS) 5153 5154 * Applications can retrieve current status information about an 5155 * association, including association state, peer receiver window size, 5156 * number of unacked data chunks, and number of data chunks pending 5157 * receipt. This information is read-only. 5158 */ 5159 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5160 char __user *optval, 5161 int __user *optlen) 5162 { 5163 struct sctp_status status; 5164 struct sctp_association *asoc = NULL; 5165 struct sctp_transport *transport; 5166 sctp_assoc_t associd; 5167 int retval = 0; 5168 5169 if (len < sizeof(status)) { 5170 retval = -EINVAL; 5171 goto out; 5172 } 5173 5174 len = sizeof(status); 5175 if (copy_from_user(&status, optval, len)) { 5176 retval = -EFAULT; 5177 goto out; 5178 } 5179 5180 associd = status.sstat_assoc_id; 5181 asoc = sctp_id2assoc(sk, associd); 5182 if (!asoc) { 5183 retval = -EINVAL; 5184 goto out; 5185 } 5186 5187 transport = asoc->peer.primary_path; 5188 5189 status.sstat_assoc_id = sctp_assoc2id(asoc); 5190 status.sstat_state = sctp_assoc_to_state(asoc); 5191 status.sstat_rwnd = asoc->peer.rwnd; 5192 status.sstat_unackdata = asoc->unack_data; 5193 5194 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5195 status.sstat_instrms = asoc->stream.incnt; 5196 status.sstat_outstrms = asoc->stream.outcnt; 5197 status.sstat_fragmentation_point = asoc->frag_point; 5198 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5199 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5200 transport->af_specific->sockaddr_len); 5201 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5202 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5203 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5204 status.sstat_primary.spinfo_state = transport->state; 5205 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5206 status.sstat_primary.spinfo_srtt = transport->srtt; 5207 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5208 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5209 5210 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5211 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5212 5213 if (put_user(len, optlen)) { 5214 retval = -EFAULT; 5215 goto out; 5216 } 5217 5218 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5219 __func__, len, status.sstat_state, status.sstat_rwnd, 5220 status.sstat_assoc_id); 5221 5222 if (copy_to_user(optval, &status, len)) { 5223 retval = -EFAULT; 5224 goto out; 5225 } 5226 5227 out: 5228 return retval; 5229 } 5230 5231 5232 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5233 * 5234 * Applications can retrieve information about a specific peer address 5235 * of an association, including its reachability state, congestion 5236 * window, and retransmission timer values. This information is 5237 * read-only. 5238 */ 5239 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5240 char __user *optval, 5241 int __user *optlen) 5242 { 5243 struct sctp_paddrinfo pinfo; 5244 struct sctp_transport *transport; 5245 int retval = 0; 5246 5247 if (len < sizeof(pinfo)) { 5248 retval = -EINVAL; 5249 goto out; 5250 } 5251 5252 len = sizeof(pinfo); 5253 if (copy_from_user(&pinfo, optval, len)) { 5254 retval = -EFAULT; 5255 goto out; 5256 } 5257 5258 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5259 pinfo.spinfo_assoc_id); 5260 if (!transport) 5261 return -EINVAL; 5262 5263 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5264 pinfo.spinfo_state = transport->state; 5265 pinfo.spinfo_cwnd = transport->cwnd; 5266 pinfo.spinfo_srtt = transport->srtt; 5267 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5268 pinfo.spinfo_mtu = transport->pathmtu; 5269 5270 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5271 pinfo.spinfo_state = SCTP_ACTIVE; 5272 5273 if (put_user(len, optlen)) { 5274 retval = -EFAULT; 5275 goto out; 5276 } 5277 5278 if (copy_to_user(optval, &pinfo, len)) { 5279 retval = -EFAULT; 5280 goto out; 5281 } 5282 5283 out: 5284 return retval; 5285 } 5286 5287 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5288 * 5289 * This option is a on/off flag. If enabled no SCTP message 5290 * fragmentation will be performed. Instead if a message being sent 5291 * exceeds the current PMTU size, the message will NOT be sent and 5292 * instead a error will be indicated to the user. 5293 */ 5294 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5295 char __user *optval, int __user *optlen) 5296 { 5297 int val; 5298 5299 if (len < sizeof(int)) 5300 return -EINVAL; 5301 5302 len = sizeof(int); 5303 val = (sctp_sk(sk)->disable_fragments == 1); 5304 if (put_user(len, optlen)) 5305 return -EFAULT; 5306 if (copy_to_user(optval, &val, len)) 5307 return -EFAULT; 5308 return 0; 5309 } 5310 5311 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5312 * 5313 * This socket option is used to specify various notifications and 5314 * ancillary data the user wishes to receive. 5315 */ 5316 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5317 int __user *optlen) 5318 { 5319 struct sctp_event_subscribe subscribe; 5320 __u8 *sn_type = (__u8 *)&subscribe; 5321 int i; 5322 5323 if (len == 0) 5324 return -EINVAL; 5325 if (len > sizeof(struct sctp_event_subscribe)) 5326 len = sizeof(struct sctp_event_subscribe); 5327 if (put_user(len, optlen)) 5328 return -EFAULT; 5329 5330 for (i = 0; i < len; i++) 5331 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe, 5332 SCTP_SN_TYPE_BASE + i); 5333 5334 if (copy_to_user(optval, &subscribe, len)) 5335 return -EFAULT; 5336 5337 return 0; 5338 } 5339 5340 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5341 * 5342 * This socket option is applicable to the UDP-style socket only. When 5343 * set it will cause associations that are idle for more than the 5344 * specified number of seconds to automatically close. An association 5345 * being idle is defined an association that has NOT sent or received 5346 * user data. The special value of '0' indicates that no automatic 5347 * close of any associations should be performed. The option expects an 5348 * integer defining the number of seconds of idle time before an 5349 * association is closed. 5350 */ 5351 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5352 { 5353 /* Applicable to UDP-style socket only */ 5354 if (sctp_style(sk, TCP)) 5355 return -EOPNOTSUPP; 5356 if (len < sizeof(int)) 5357 return -EINVAL; 5358 len = sizeof(int); 5359 if (put_user(len, optlen)) 5360 return -EFAULT; 5361 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5362 return -EFAULT; 5363 return 0; 5364 } 5365 5366 /* Helper routine to branch off an association to a new socket. */ 5367 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5368 { 5369 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5370 struct sctp_sock *sp = sctp_sk(sk); 5371 struct socket *sock; 5372 int err = 0; 5373 5374 /* Do not peel off from one netns to another one. */ 5375 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5376 return -EINVAL; 5377 5378 if (!asoc) 5379 return -EINVAL; 5380 5381 /* An association cannot be branched off from an already peeled-off 5382 * socket, nor is this supported for tcp style sockets. 5383 */ 5384 if (!sctp_style(sk, UDP)) 5385 return -EINVAL; 5386 5387 /* Create a new socket. */ 5388 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5389 if (err < 0) 5390 return err; 5391 5392 sctp_copy_sock(sock->sk, sk, asoc); 5393 5394 /* Make peeled-off sockets more like 1-1 accepted sockets. 5395 * Set the daddr and initialize id to something more random and also 5396 * copy over any ip options. 5397 */ 5398 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 5399 sp->pf->copy_ip_options(sk, sock->sk); 5400 5401 /* Populate the fields of the newsk from the oldsk and migrate the 5402 * asoc to the newsk. 5403 */ 5404 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5405 5406 *sockp = sock; 5407 5408 return err; 5409 } 5410 EXPORT_SYMBOL(sctp_do_peeloff); 5411 5412 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5413 struct file **newfile, unsigned flags) 5414 { 5415 struct socket *newsock; 5416 int retval; 5417 5418 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5419 if (retval < 0) 5420 goto out; 5421 5422 /* Map the socket to an unused fd that can be returned to the user. */ 5423 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5424 if (retval < 0) { 5425 sock_release(newsock); 5426 goto out; 5427 } 5428 5429 *newfile = sock_alloc_file(newsock, 0, NULL); 5430 if (IS_ERR(*newfile)) { 5431 put_unused_fd(retval); 5432 retval = PTR_ERR(*newfile); 5433 *newfile = NULL; 5434 return retval; 5435 } 5436 5437 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5438 retval); 5439 5440 peeloff->sd = retval; 5441 5442 if (flags & SOCK_NONBLOCK) 5443 (*newfile)->f_flags |= O_NONBLOCK; 5444 out: 5445 return retval; 5446 } 5447 5448 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5449 { 5450 sctp_peeloff_arg_t peeloff; 5451 struct file *newfile = NULL; 5452 int retval = 0; 5453 5454 if (len < sizeof(sctp_peeloff_arg_t)) 5455 return -EINVAL; 5456 len = sizeof(sctp_peeloff_arg_t); 5457 if (copy_from_user(&peeloff, optval, len)) 5458 return -EFAULT; 5459 5460 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5461 if (retval < 0) 5462 goto out; 5463 5464 /* Return the fd mapped to the new socket. */ 5465 if (put_user(len, optlen)) { 5466 fput(newfile); 5467 put_unused_fd(retval); 5468 return -EFAULT; 5469 } 5470 5471 if (copy_to_user(optval, &peeloff, len)) { 5472 fput(newfile); 5473 put_unused_fd(retval); 5474 return -EFAULT; 5475 } 5476 fd_install(retval, newfile); 5477 out: 5478 return retval; 5479 } 5480 5481 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5482 char __user *optval, int __user *optlen) 5483 { 5484 sctp_peeloff_flags_arg_t peeloff; 5485 struct file *newfile = NULL; 5486 int retval = 0; 5487 5488 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5489 return -EINVAL; 5490 len = sizeof(sctp_peeloff_flags_arg_t); 5491 if (copy_from_user(&peeloff, optval, len)) 5492 return -EFAULT; 5493 5494 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5495 &newfile, peeloff.flags); 5496 if (retval < 0) 5497 goto out; 5498 5499 /* Return the fd mapped to the new socket. */ 5500 if (put_user(len, optlen)) { 5501 fput(newfile); 5502 put_unused_fd(retval); 5503 return -EFAULT; 5504 } 5505 5506 if (copy_to_user(optval, &peeloff, len)) { 5507 fput(newfile); 5508 put_unused_fd(retval); 5509 return -EFAULT; 5510 } 5511 fd_install(retval, newfile); 5512 out: 5513 return retval; 5514 } 5515 5516 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5517 * 5518 * Applications can enable or disable heartbeats for any peer address of 5519 * an association, modify an address's heartbeat interval, force a 5520 * heartbeat to be sent immediately, and adjust the address's maximum 5521 * number of retransmissions sent before an address is considered 5522 * unreachable. The following structure is used to access and modify an 5523 * address's parameters: 5524 * 5525 * struct sctp_paddrparams { 5526 * sctp_assoc_t spp_assoc_id; 5527 * struct sockaddr_storage spp_address; 5528 * uint32_t spp_hbinterval; 5529 * uint16_t spp_pathmaxrxt; 5530 * uint32_t spp_pathmtu; 5531 * uint32_t spp_sackdelay; 5532 * uint32_t spp_flags; 5533 * }; 5534 * 5535 * spp_assoc_id - (one-to-many style socket) This is filled in the 5536 * application, and identifies the association for 5537 * this query. 5538 * spp_address - This specifies which address is of interest. 5539 * spp_hbinterval - This contains the value of the heartbeat interval, 5540 * in milliseconds. If a value of zero 5541 * is present in this field then no changes are to 5542 * be made to this parameter. 5543 * spp_pathmaxrxt - This contains the maximum number of 5544 * retransmissions before this address shall be 5545 * considered unreachable. If a value of zero 5546 * is present in this field then no changes are to 5547 * be made to this parameter. 5548 * spp_pathmtu - When Path MTU discovery is disabled the value 5549 * specified here will be the "fixed" path mtu. 5550 * Note that if the spp_address field is empty 5551 * then all associations on this address will 5552 * have this fixed path mtu set upon them. 5553 * 5554 * spp_sackdelay - When delayed sack is enabled, this value specifies 5555 * the number of milliseconds that sacks will be delayed 5556 * for. This value will apply to all addresses of an 5557 * association if the spp_address field is empty. Note 5558 * also, that if delayed sack is enabled and this 5559 * value is set to 0, no change is made to the last 5560 * recorded delayed sack timer value. 5561 * 5562 * spp_flags - These flags are used to control various features 5563 * on an association. The flag field may contain 5564 * zero or more of the following options. 5565 * 5566 * SPP_HB_ENABLE - Enable heartbeats on the 5567 * specified address. Note that if the address 5568 * field is empty all addresses for the association 5569 * have heartbeats enabled upon them. 5570 * 5571 * SPP_HB_DISABLE - Disable heartbeats on the 5572 * speicifed address. Note that if the address 5573 * field is empty all addresses for the association 5574 * will have their heartbeats disabled. Note also 5575 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5576 * mutually exclusive, only one of these two should 5577 * be specified. Enabling both fields will have 5578 * undetermined results. 5579 * 5580 * SPP_HB_DEMAND - Request a user initiated heartbeat 5581 * to be made immediately. 5582 * 5583 * SPP_PMTUD_ENABLE - This field will enable PMTU 5584 * discovery upon the specified address. Note that 5585 * if the address feild is empty then all addresses 5586 * on the association are effected. 5587 * 5588 * SPP_PMTUD_DISABLE - This field will disable PMTU 5589 * discovery upon the specified address. Note that 5590 * if the address feild is empty then all addresses 5591 * on the association are effected. Not also that 5592 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5593 * exclusive. Enabling both will have undetermined 5594 * results. 5595 * 5596 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5597 * on delayed sack. The time specified in spp_sackdelay 5598 * is used to specify the sack delay for this address. Note 5599 * that if spp_address is empty then all addresses will 5600 * enable delayed sack and take on the sack delay 5601 * value specified in spp_sackdelay. 5602 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5603 * off delayed sack. If the spp_address field is blank then 5604 * delayed sack is disabled for the entire association. Note 5605 * also that this field is mutually exclusive to 5606 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5607 * results. 5608 * 5609 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5610 * setting of the IPV6 flow label value. The value is 5611 * contained in the spp_ipv6_flowlabel field. 5612 * Upon retrieval, this flag will be set to indicate that 5613 * the spp_ipv6_flowlabel field has a valid value returned. 5614 * If a specific destination address is set (in the 5615 * spp_address field), then the value returned is that of 5616 * the address. If just an association is specified (and 5617 * no address), then the association's default flow label 5618 * is returned. If neither an association nor a destination 5619 * is specified, then the socket's default flow label is 5620 * returned. For non-IPv6 sockets, this flag will be left 5621 * cleared. 5622 * 5623 * SPP_DSCP: Setting this flag enables the setting of the 5624 * Differentiated Services Code Point (DSCP) value 5625 * associated with either the association or a specific 5626 * address. The value is obtained in the spp_dscp field. 5627 * Upon retrieval, this flag will be set to indicate that 5628 * the spp_dscp field has a valid value returned. If a 5629 * specific destination address is set when called (in the 5630 * spp_address field), then that specific destination 5631 * address's DSCP value is returned. If just an association 5632 * is specified, then the association's default DSCP is 5633 * returned. If neither an association nor a destination is 5634 * specified, then the socket's default DSCP is returned. 5635 * 5636 * spp_ipv6_flowlabel 5637 * - This field is used in conjunction with the 5638 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5639 * The 20 least significant bits are used for the flow 5640 * label. This setting has precedence over any IPv6-layer 5641 * setting. 5642 * 5643 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5644 * and contains the DSCP. The 6 most significant bits are 5645 * used for the DSCP. This setting has precedence over any 5646 * IPv4- or IPv6- layer setting. 5647 */ 5648 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5649 char __user *optval, int __user *optlen) 5650 { 5651 struct sctp_paddrparams params; 5652 struct sctp_transport *trans = NULL; 5653 struct sctp_association *asoc = NULL; 5654 struct sctp_sock *sp = sctp_sk(sk); 5655 5656 if (len >= sizeof(params)) 5657 len = sizeof(params); 5658 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 5659 spp_ipv6_flowlabel), 4)) 5660 len = ALIGN(offsetof(struct sctp_paddrparams, 5661 spp_ipv6_flowlabel), 4); 5662 else 5663 return -EINVAL; 5664 5665 if (copy_from_user(¶ms, optval, len)) 5666 return -EFAULT; 5667 5668 /* If an address other than INADDR_ANY is specified, and 5669 * no transport is found, then the request is invalid. 5670 */ 5671 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5672 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5673 params.spp_assoc_id); 5674 if (!trans) { 5675 pr_debug("%s: failed no transport\n", __func__); 5676 return -EINVAL; 5677 } 5678 } 5679 5680 /* Get association, if assoc_id != 0 and the socket is a one 5681 * to many style socket, and an association was not found, then 5682 * the id was invalid. 5683 */ 5684 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5685 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 5686 pr_debug("%s: failed no association\n", __func__); 5687 return -EINVAL; 5688 } 5689 5690 if (trans) { 5691 /* Fetch transport values. */ 5692 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5693 params.spp_pathmtu = trans->pathmtu; 5694 params.spp_pathmaxrxt = trans->pathmaxrxt; 5695 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5696 5697 /*draft-11 doesn't say what to return in spp_flags*/ 5698 params.spp_flags = trans->param_flags; 5699 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5700 params.spp_ipv6_flowlabel = trans->flowlabel & 5701 SCTP_FLOWLABEL_VAL_MASK; 5702 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5703 } 5704 if (trans->dscp & SCTP_DSCP_SET_MASK) { 5705 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 5706 params.spp_flags |= SPP_DSCP; 5707 } 5708 } else if (asoc) { 5709 /* Fetch association values. */ 5710 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5711 params.spp_pathmtu = asoc->pathmtu; 5712 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5713 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5714 5715 /*draft-11 doesn't say what to return in spp_flags*/ 5716 params.spp_flags = asoc->param_flags; 5717 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5718 params.spp_ipv6_flowlabel = asoc->flowlabel & 5719 SCTP_FLOWLABEL_VAL_MASK; 5720 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5721 } 5722 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 5723 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 5724 params.spp_flags |= SPP_DSCP; 5725 } 5726 } else { 5727 /* Fetch socket values. */ 5728 params.spp_hbinterval = sp->hbinterval; 5729 params.spp_pathmtu = sp->pathmtu; 5730 params.spp_sackdelay = sp->sackdelay; 5731 params.spp_pathmaxrxt = sp->pathmaxrxt; 5732 5733 /*draft-11 doesn't say what to return in spp_flags*/ 5734 params.spp_flags = sp->param_flags; 5735 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5736 params.spp_ipv6_flowlabel = sp->flowlabel & 5737 SCTP_FLOWLABEL_VAL_MASK; 5738 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5739 } 5740 if (sp->dscp & SCTP_DSCP_SET_MASK) { 5741 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 5742 params.spp_flags |= SPP_DSCP; 5743 } 5744 } 5745 5746 if (copy_to_user(optval, ¶ms, len)) 5747 return -EFAULT; 5748 5749 if (put_user(len, optlen)) 5750 return -EFAULT; 5751 5752 return 0; 5753 } 5754 5755 /* 5756 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 5757 * 5758 * This option will effect the way delayed acks are performed. This 5759 * option allows you to get or set the delayed ack time, in 5760 * milliseconds. It also allows changing the delayed ack frequency. 5761 * Changing the frequency to 1 disables the delayed sack algorithm. If 5762 * the assoc_id is 0, then this sets or gets the endpoints default 5763 * values. If the assoc_id field is non-zero, then the set or get 5764 * effects the specified association for the one to many model (the 5765 * assoc_id field is ignored by the one to one model). Note that if 5766 * sack_delay or sack_freq are 0 when setting this option, then the 5767 * current values will remain unchanged. 5768 * 5769 * struct sctp_sack_info { 5770 * sctp_assoc_t sack_assoc_id; 5771 * uint32_t sack_delay; 5772 * uint32_t sack_freq; 5773 * }; 5774 * 5775 * sack_assoc_id - This parameter, indicates which association the user 5776 * is performing an action upon. Note that if this field's value is 5777 * zero then the endpoints default value is changed (effecting future 5778 * associations only). 5779 * 5780 * sack_delay - This parameter contains the number of milliseconds that 5781 * the user is requesting the delayed ACK timer be set to. Note that 5782 * this value is defined in the standard to be between 200 and 500 5783 * milliseconds. 5784 * 5785 * sack_freq - This parameter contains the number of packets that must 5786 * be received before a sack is sent without waiting for the delay 5787 * timer to expire. The default value for this is 2, setting this 5788 * value to 1 will disable the delayed sack algorithm. 5789 */ 5790 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 5791 char __user *optval, 5792 int __user *optlen) 5793 { 5794 struct sctp_sack_info params; 5795 struct sctp_association *asoc = NULL; 5796 struct sctp_sock *sp = sctp_sk(sk); 5797 5798 if (len >= sizeof(struct sctp_sack_info)) { 5799 len = sizeof(struct sctp_sack_info); 5800 5801 if (copy_from_user(¶ms, optval, len)) 5802 return -EFAULT; 5803 } else if (len == sizeof(struct sctp_assoc_value)) { 5804 pr_warn_ratelimited(DEPRECATED 5805 "%s (pid %d) " 5806 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 5807 "Use struct sctp_sack_info instead\n", 5808 current->comm, task_pid_nr(current)); 5809 if (copy_from_user(¶ms, optval, len)) 5810 return -EFAULT; 5811 } else 5812 return -EINVAL; 5813 5814 /* Get association, if sack_assoc_id != 0 and the socket is a one 5815 * to many style socket, and an association was not found, then 5816 * the id was invalid. 5817 */ 5818 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 5819 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 5820 return -EINVAL; 5821 5822 if (asoc) { 5823 /* Fetch association values. */ 5824 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 5825 params.sack_delay = jiffies_to_msecs( 5826 asoc->sackdelay); 5827 params.sack_freq = asoc->sackfreq; 5828 5829 } else { 5830 params.sack_delay = 0; 5831 params.sack_freq = 1; 5832 } 5833 } else { 5834 /* Fetch socket values. */ 5835 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 5836 params.sack_delay = sp->sackdelay; 5837 params.sack_freq = sp->sackfreq; 5838 } else { 5839 params.sack_delay = 0; 5840 params.sack_freq = 1; 5841 } 5842 } 5843 5844 if (copy_to_user(optval, ¶ms, len)) 5845 return -EFAULT; 5846 5847 if (put_user(len, optlen)) 5848 return -EFAULT; 5849 5850 return 0; 5851 } 5852 5853 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 5854 * 5855 * Applications can specify protocol parameters for the default association 5856 * initialization. The option name argument to setsockopt() and getsockopt() 5857 * is SCTP_INITMSG. 5858 * 5859 * Setting initialization parameters is effective only on an unconnected 5860 * socket (for UDP-style sockets only future associations are effected 5861 * by the change). With TCP-style sockets, this option is inherited by 5862 * sockets derived from a listener socket. 5863 */ 5864 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 5865 { 5866 if (len < sizeof(struct sctp_initmsg)) 5867 return -EINVAL; 5868 len = sizeof(struct sctp_initmsg); 5869 if (put_user(len, optlen)) 5870 return -EFAULT; 5871 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 5872 return -EFAULT; 5873 return 0; 5874 } 5875 5876 5877 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 5878 char __user *optval, int __user *optlen) 5879 { 5880 struct sctp_association *asoc; 5881 int cnt = 0; 5882 struct sctp_getaddrs getaddrs; 5883 struct sctp_transport *from; 5884 void __user *to; 5885 union sctp_addr temp; 5886 struct sctp_sock *sp = sctp_sk(sk); 5887 int addrlen; 5888 size_t space_left; 5889 int bytes_copied; 5890 5891 if (len < sizeof(struct sctp_getaddrs)) 5892 return -EINVAL; 5893 5894 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5895 return -EFAULT; 5896 5897 /* For UDP-style sockets, id specifies the association to query. */ 5898 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5899 if (!asoc) 5900 return -EINVAL; 5901 5902 to = optval + offsetof(struct sctp_getaddrs, addrs); 5903 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5904 5905 list_for_each_entry(from, &asoc->peer.transport_addr_list, 5906 transports) { 5907 memcpy(&temp, &from->ipaddr, sizeof(temp)); 5908 addrlen = sctp_get_pf_specific(sk->sk_family) 5909 ->addr_to_user(sp, &temp); 5910 if (space_left < addrlen) 5911 return -ENOMEM; 5912 if (copy_to_user(to, &temp, addrlen)) 5913 return -EFAULT; 5914 to += addrlen; 5915 cnt++; 5916 space_left -= addrlen; 5917 } 5918 5919 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 5920 return -EFAULT; 5921 bytes_copied = ((char __user *)to) - optval; 5922 if (put_user(bytes_copied, optlen)) 5923 return -EFAULT; 5924 5925 return 0; 5926 } 5927 5928 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 5929 size_t space_left, int *bytes_copied) 5930 { 5931 struct sctp_sockaddr_entry *addr; 5932 union sctp_addr temp; 5933 int cnt = 0; 5934 int addrlen; 5935 struct net *net = sock_net(sk); 5936 5937 rcu_read_lock(); 5938 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 5939 if (!addr->valid) 5940 continue; 5941 5942 if ((PF_INET == sk->sk_family) && 5943 (AF_INET6 == addr->a.sa.sa_family)) 5944 continue; 5945 if ((PF_INET6 == sk->sk_family) && 5946 inet_v6_ipv6only(sk) && 5947 (AF_INET == addr->a.sa.sa_family)) 5948 continue; 5949 memcpy(&temp, &addr->a, sizeof(temp)); 5950 if (!temp.v4.sin_port) 5951 temp.v4.sin_port = htons(port); 5952 5953 addrlen = sctp_get_pf_specific(sk->sk_family) 5954 ->addr_to_user(sctp_sk(sk), &temp); 5955 5956 if (space_left < addrlen) { 5957 cnt = -ENOMEM; 5958 break; 5959 } 5960 memcpy(to, &temp, addrlen); 5961 5962 to += addrlen; 5963 cnt++; 5964 space_left -= addrlen; 5965 *bytes_copied += addrlen; 5966 } 5967 rcu_read_unlock(); 5968 5969 return cnt; 5970 } 5971 5972 5973 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 5974 char __user *optval, int __user *optlen) 5975 { 5976 struct sctp_bind_addr *bp; 5977 struct sctp_association *asoc; 5978 int cnt = 0; 5979 struct sctp_getaddrs getaddrs; 5980 struct sctp_sockaddr_entry *addr; 5981 void __user *to; 5982 union sctp_addr temp; 5983 struct sctp_sock *sp = sctp_sk(sk); 5984 int addrlen; 5985 int err = 0; 5986 size_t space_left; 5987 int bytes_copied = 0; 5988 void *addrs; 5989 void *buf; 5990 5991 if (len < sizeof(struct sctp_getaddrs)) 5992 return -EINVAL; 5993 5994 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5995 return -EFAULT; 5996 5997 /* 5998 * For UDP-style sockets, id specifies the association to query. 5999 * If the id field is set to the value '0' then the locally bound 6000 * addresses are returned without regard to any particular 6001 * association. 6002 */ 6003 if (0 == getaddrs.assoc_id) { 6004 bp = &sctp_sk(sk)->ep->base.bind_addr; 6005 } else { 6006 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6007 if (!asoc) 6008 return -EINVAL; 6009 bp = &asoc->base.bind_addr; 6010 } 6011 6012 to = optval + offsetof(struct sctp_getaddrs, addrs); 6013 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6014 6015 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 6016 if (!addrs) 6017 return -ENOMEM; 6018 6019 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 6020 * addresses from the global local address list. 6021 */ 6022 if (sctp_list_single_entry(&bp->address_list)) { 6023 addr = list_entry(bp->address_list.next, 6024 struct sctp_sockaddr_entry, list); 6025 if (sctp_is_any(sk, &addr->a)) { 6026 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 6027 space_left, &bytes_copied); 6028 if (cnt < 0) { 6029 err = cnt; 6030 goto out; 6031 } 6032 goto copy_getaddrs; 6033 } 6034 } 6035 6036 buf = addrs; 6037 /* Protection on the bound address list is not needed since 6038 * in the socket option context we hold a socket lock and 6039 * thus the bound address list can't change. 6040 */ 6041 list_for_each_entry(addr, &bp->address_list, list) { 6042 memcpy(&temp, &addr->a, sizeof(temp)); 6043 addrlen = sctp_get_pf_specific(sk->sk_family) 6044 ->addr_to_user(sp, &temp); 6045 if (space_left < addrlen) { 6046 err = -ENOMEM; /*fixme: right error?*/ 6047 goto out; 6048 } 6049 memcpy(buf, &temp, addrlen); 6050 buf += addrlen; 6051 bytes_copied += addrlen; 6052 cnt++; 6053 space_left -= addrlen; 6054 } 6055 6056 copy_getaddrs: 6057 if (copy_to_user(to, addrs, bytes_copied)) { 6058 err = -EFAULT; 6059 goto out; 6060 } 6061 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 6062 err = -EFAULT; 6063 goto out; 6064 } 6065 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 6066 * but we can't change it anymore. 6067 */ 6068 if (put_user(bytes_copied, optlen)) 6069 err = -EFAULT; 6070 out: 6071 kfree(addrs); 6072 return err; 6073 } 6074 6075 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6076 * 6077 * Requests that the local SCTP stack use the enclosed peer address as 6078 * the association primary. The enclosed address must be one of the 6079 * association peer's addresses. 6080 */ 6081 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6082 char __user *optval, int __user *optlen) 6083 { 6084 struct sctp_prim prim; 6085 struct sctp_association *asoc; 6086 struct sctp_sock *sp = sctp_sk(sk); 6087 6088 if (len < sizeof(struct sctp_prim)) 6089 return -EINVAL; 6090 6091 len = sizeof(struct sctp_prim); 6092 6093 if (copy_from_user(&prim, optval, len)) 6094 return -EFAULT; 6095 6096 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6097 if (!asoc) 6098 return -EINVAL; 6099 6100 if (!asoc->peer.primary_path) 6101 return -ENOTCONN; 6102 6103 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6104 asoc->peer.primary_path->af_specific->sockaddr_len); 6105 6106 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6107 (union sctp_addr *)&prim.ssp_addr); 6108 6109 if (put_user(len, optlen)) 6110 return -EFAULT; 6111 if (copy_to_user(optval, &prim, len)) 6112 return -EFAULT; 6113 6114 return 0; 6115 } 6116 6117 /* 6118 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6119 * 6120 * Requests that the local endpoint set the specified Adaptation Layer 6121 * Indication parameter for all future INIT and INIT-ACK exchanges. 6122 */ 6123 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6124 char __user *optval, int __user *optlen) 6125 { 6126 struct sctp_setadaptation adaptation; 6127 6128 if (len < sizeof(struct sctp_setadaptation)) 6129 return -EINVAL; 6130 6131 len = sizeof(struct sctp_setadaptation); 6132 6133 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6134 6135 if (put_user(len, optlen)) 6136 return -EFAULT; 6137 if (copy_to_user(optval, &adaptation, len)) 6138 return -EFAULT; 6139 6140 return 0; 6141 } 6142 6143 /* 6144 * 6145 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6146 * 6147 * Applications that wish to use the sendto() system call may wish to 6148 * specify a default set of parameters that would normally be supplied 6149 * through the inclusion of ancillary data. This socket option allows 6150 * such an application to set the default sctp_sndrcvinfo structure. 6151 6152 6153 * The application that wishes to use this socket option simply passes 6154 * in to this call the sctp_sndrcvinfo structure defined in Section 6155 * 5.2.2) The input parameters accepted by this call include 6156 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6157 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6158 * to this call if the caller is using the UDP model. 6159 * 6160 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6161 */ 6162 static int sctp_getsockopt_default_send_param(struct sock *sk, 6163 int len, char __user *optval, 6164 int __user *optlen) 6165 { 6166 struct sctp_sock *sp = sctp_sk(sk); 6167 struct sctp_association *asoc; 6168 struct sctp_sndrcvinfo info; 6169 6170 if (len < sizeof(info)) 6171 return -EINVAL; 6172 6173 len = sizeof(info); 6174 6175 if (copy_from_user(&info, optval, len)) 6176 return -EFAULT; 6177 6178 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6179 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 6180 return -EINVAL; 6181 if (asoc) { 6182 info.sinfo_stream = asoc->default_stream; 6183 info.sinfo_flags = asoc->default_flags; 6184 info.sinfo_ppid = asoc->default_ppid; 6185 info.sinfo_context = asoc->default_context; 6186 info.sinfo_timetolive = asoc->default_timetolive; 6187 } else { 6188 info.sinfo_stream = sp->default_stream; 6189 info.sinfo_flags = sp->default_flags; 6190 info.sinfo_ppid = sp->default_ppid; 6191 info.sinfo_context = sp->default_context; 6192 info.sinfo_timetolive = sp->default_timetolive; 6193 } 6194 6195 if (put_user(len, optlen)) 6196 return -EFAULT; 6197 if (copy_to_user(optval, &info, len)) 6198 return -EFAULT; 6199 6200 return 0; 6201 } 6202 6203 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6204 * (SCTP_DEFAULT_SNDINFO) 6205 */ 6206 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6207 char __user *optval, 6208 int __user *optlen) 6209 { 6210 struct sctp_sock *sp = sctp_sk(sk); 6211 struct sctp_association *asoc; 6212 struct sctp_sndinfo info; 6213 6214 if (len < sizeof(info)) 6215 return -EINVAL; 6216 6217 len = sizeof(info); 6218 6219 if (copy_from_user(&info, optval, len)) 6220 return -EFAULT; 6221 6222 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6223 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 6224 return -EINVAL; 6225 if (asoc) { 6226 info.snd_sid = asoc->default_stream; 6227 info.snd_flags = asoc->default_flags; 6228 info.snd_ppid = asoc->default_ppid; 6229 info.snd_context = asoc->default_context; 6230 } else { 6231 info.snd_sid = sp->default_stream; 6232 info.snd_flags = sp->default_flags; 6233 info.snd_ppid = sp->default_ppid; 6234 info.snd_context = sp->default_context; 6235 } 6236 6237 if (put_user(len, optlen)) 6238 return -EFAULT; 6239 if (copy_to_user(optval, &info, len)) 6240 return -EFAULT; 6241 6242 return 0; 6243 } 6244 6245 /* 6246 * 6247 * 7.1.5 SCTP_NODELAY 6248 * 6249 * Turn on/off any Nagle-like algorithm. This means that packets are 6250 * generally sent as soon as possible and no unnecessary delays are 6251 * introduced, at the cost of more packets in the network. Expects an 6252 * integer boolean flag. 6253 */ 6254 6255 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6256 char __user *optval, int __user *optlen) 6257 { 6258 int val; 6259 6260 if (len < sizeof(int)) 6261 return -EINVAL; 6262 6263 len = sizeof(int); 6264 val = (sctp_sk(sk)->nodelay == 1); 6265 if (put_user(len, optlen)) 6266 return -EFAULT; 6267 if (copy_to_user(optval, &val, len)) 6268 return -EFAULT; 6269 return 0; 6270 } 6271 6272 /* 6273 * 6274 * 7.1.1 SCTP_RTOINFO 6275 * 6276 * The protocol parameters used to initialize and bound retransmission 6277 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6278 * and modify these parameters. 6279 * All parameters are time values, in milliseconds. A value of 0, when 6280 * modifying the parameters, indicates that the current value should not 6281 * be changed. 6282 * 6283 */ 6284 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6285 char __user *optval, 6286 int __user *optlen) { 6287 struct sctp_rtoinfo rtoinfo; 6288 struct sctp_association *asoc; 6289 6290 if (len < sizeof (struct sctp_rtoinfo)) 6291 return -EINVAL; 6292 6293 len = sizeof(struct sctp_rtoinfo); 6294 6295 if (copy_from_user(&rtoinfo, optval, len)) 6296 return -EFAULT; 6297 6298 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6299 6300 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 6301 return -EINVAL; 6302 6303 /* Values corresponding to the specific association. */ 6304 if (asoc) { 6305 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6306 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6307 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6308 } else { 6309 /* Values corresponding to the endpoint. */ 6310 struct sctp_sock *sp = sctp_sk(sk); 6311 6312 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6313 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6314 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6315 } 6316 6317 if (put_user(len, optlen)) 6318 return -EFAULT; 6319 6320 if (copy_to_user(optval, &rtoinfo, len)) 6321 return -EFAULT; 6322 6323 return 0; 6324 } 6325 6326 /* 6327 * 6328 * 7.1.2 SCTP_ASSOCINFO 6329 * 6330 * This option is used to tune the maximum retransmission attempts 6331 * of the association. 6332 * Returns an error if the new association retransmission value is 6333 * greater than the sum of the retransmission value of the peer. 6334 * See [SCTP] for more information. 6335 * 6336 */ 6337 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6338 char __user *optval, 6339 int __user *optlen) 6340 { 6341 6342 struct sctp_assocparams assocparams; 6343 struct sctp_association *asoc; 6344 struct list_head *pos; 6345 int cnt = 0; 6346 6347 if (len < sizeof (struct sctp_assocparams)) 6348 return -EINVAL; 6349 6350 len = sizeof(struct sctp_assocparams); 6351 6352 if (copy_from_user(&assocparams, optval, len)) 6353 return -EFAULT; 6354 6355 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6356 6357 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 6358 return -EINVAL; 6359 6360 /* Values correspoinding to the specific association */ 6361 if (asoc) { 6362 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6363 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6364 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6365 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6366 6367 list_for_each(pos, &asoc->peer.transport_addr_list) { 6368 cnt++; 6369 } 6370 6371 assocparams.sasoc_number_peer_destinations = cnt; 6372 } else { 6373 /* Values corresponding to the endpoint */ 6374 struct sctp_sock *sp = sctp_sk(sk); 6375 6376 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6377 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6378 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6379 assocparams.sasoc_cookie_life = 6380 sp->assocparams.sasoc_cookie_life; 6381 assocparams.sasoc_number_peer_destinations = 6382 sp->assocparams. 6383 sasoc_number_peer_destinations; 6384 } 6385 6386 if (put_user(len, optlen)) 6387 return -EFAULT; 6388 6389 if (copy_to_user(optval, &assocparams, len)) 6390 return -EFAULT; 6391 6392 return 0; 6393 } 6394 6395 /* 6396 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6397 * 6398 * This socket option is a boolean flag which turns on or off mapped V4 6399 * addresses. If this option is turned on and the socket is type 6400 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6401 * If this option is turned off, then no mapping will be done of V4 6402 * addresses and a user will receive both PF_INET6 and PF_INET type 6403 * addresses on the socket. 6404 */ 6405 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6406 char __user *optval, int __user *optlen) 6407 { 6408 int val; 6409 struct sctp_sock *sp = sctp_sk(sk); 6410 6411 if (len < sizeof(int)) 6412 return -EINVAL; 6413 6414 len = sizeof(int); 6415 val = sp->v4mapped; 6416 if (put_user(len, optlen)) 6417 return -EFAULT; 6418 if (copy_to_user(optval, &val, len)) 6419 return -EFAULT; 6420 6421 return 0; 6422 } 6423 6424 /* 6425 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6426 * (chapter and verse is quoted at sctp_setsockopt_context()) 6427 */ 6428 static int sctp_getsockopt_context(struct sock *sk, int len, 6429 char __user *optval, int __user *optlen) 6430 { 6431 struct sctp_assoc_value params; 6432 struct sctp_sock *sp; 6433 struct sctp_association *asoc; 6434 6435 if (len < sizeof(struct sctp_assoc_value)) 6436 return -EINVAL; 6437 6438 len = sizeof(struct sctp_assoc_value); 6439 6440 if (copy_from_user(¶ms, optval, len)) 6441 return -EFAULT; 6442 6443 sp = sctp_sk(sk); 6444 6445 if (params.assoc_id != 0) { 6446 asoc = sctp_id2assoc(sk, params.assoc_id); 6447 if (!asoc) 6448 return -EINVAL; 6449 params.assoc_value = asoc->default_rcv_context; 6450 } else { 6451 params.assoc_value = sp->default_rcv_context; 6452 } 6453 6454 if (put_user(len, optlen)) 6455 return -EFAULT; 6456 if (copy_to_user(optval, ¶ms, len)) 6457 return -EFAULT; 6458 6459 return 0; 6460 } 6461 6462 /* 6463 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6464 * This option will get or set the maximum size to put in any outgoing 6465 * SCTP DATA chunk. If a message is larger than this size it will be 6466 * fragmented by SCTP into the specified size. Note that the underlying 6467 * SCTP implementation may fragment into smaller sized chunks when the 6468 * PMTU of the underlying association is smaller than the value set by 6469 * the user. The default value for this option is '0' which indicates 6470 * the user is NOT limiting fragmentation and only the PMTU will effect 6471 * SCTP's choice of DATA chunk size. Note also that values set larger 6472 * than the maximum size of an IP datagram will effectively let SCTP 6473 * control fragmentation (i.e. the same as setting this option to 0). 6474 * 6475 * The following structure is used to access and modify this parameter: 6476 * 6477 * struct sctp_assoc_value { 6478 * sctp_assoc_t assoc_id; 6479 * uint32_t assoc_value; 6480 * }; 6481 * 6482 * assoc_id: This parameter is ignored for one-to-one style sockets. 6483 * For one-to-many style sockets this parameter indicates which 6484 * association the user is performing an action upon. Note that if 6485 * this field's value is zero then the endpoints default value is 6486 * changed (effecting future associations only). 6487 * assoc_value: This parameter specifies the maximum size in bytes. 6488 */ 6489 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6490 char __user *optval, int __user *optlen) 6491 { 6492 struct sctp_assoc_value params; 6493 struct sctp_association *asoc; 6494 6495 if (len == sizeof(int)) { 6496 pr_warn_ratelimited(DEPRECATED 6497 "%s (pid %d) " 6498 "Use of int in maxseg socket option.\n" 6499 "Use struct sctp_assoc_value instead\n", 6500 current->comm, task_pid_nr(current)); 6501 params.assoc_id = 0; 6502 } else if (len >= sizeof(struct sctp_assoc_value)) { 6503 len = sizeof(struct sctp_assoc_value); 6504 if (copy_from_user(¶ms, optval, len)) 6505 return -EFAULT; 6506 } else 6507 return -EINVAL; 6508 6509 asoc = sctp_id2assoc(sk, params.assoc_id); 6510 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 6511 return -EINVAL; 6512 6513 if (asoc) 6514 params.assoc_value = asoc->frag_point; 6515 else 6516 params.assoc_value = sctp_sk(sk)->user_frag; 6517 6518 if (put_user(len, optlen)) 6519 return -EFAULT; 6520 if (len == sizeof(int)) { 6521 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6522 return -EFAULT; 6523 } else { 6524 if (copy_to_user(optval, ¶ms, len)) 6525 return -EFAULT; 6526 } 6527 6528 return 0; 6529 } 6530 6531 /* 6532 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6533 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6534 */ 6535 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6536 char __user *optval, int __user *optlen) 6537 { 6538 int val; 6539 6540 if (len < sizeof(int)) 6541 return -EINVAL; 6542 6543 len = sizeof(int); 6544 6545 val = sctp_sk(sk)->frag_interleave; 6546 if (put_user(len, optlen)) 6547 return -EFAULT; 6548 if (copy_to_user(optval, &val, len)) 6549 return -EFAULT; 6550 6551 return 0; 6552 } 6553 6554 /* 6555 * 7.1.25. Set or Get the sctp partial delivery point 6556 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6557 */ 6558 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6559 char __user *optval, 6560 int __user *optlen) 6561 { 6562 u32 val; 6563 6564 if (len < sizeof(u32)) 6565 return -EINVAL; 6566 6567 len = sizeof(u32); 6568 6569 val = sctp_sk(sk)->pd_point; 6570 if (put_user(len, optlen)) 6571 return -EFAULT; 6572 if (copy_to_user(optval, &val, len)) 6573 return -EFAULT; 6574 6575 return 0; 6576 } 6577 6578 /* 6579 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6580 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6581 */ 6582 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6583 char __user *optval, 6584 int __user *optlen) 6585 { 6586 struct sctp_assoc_value params; 6587 struct sctp_sock *sp; 6588 struct sctp_association *asoc; 6589 6590 if (len == sizeof(int)) { 6591 pr_warn_ratelimited(DEPRECATED 6592 "%s (pid %d) " 6593 "Use of int in max_burst socket option.\n" 6594 "Use struct sctp_assoc_value instead\n", 6595 current->comm, task_pid_nr(current)); 6596 params.assoc_id = 0; 6597 } else if (len >= sizeof(struct sctp_assoc_value)) { 6598 len = sizeof(struct sctp_assoc_value); 6599 if (copy_from_user(¶ms, optval, len)) 6600 return -EFAULT; 6601 } else 6602 return -EINVAL; 6603 6604 sp = sctp_sk(sk); 6605 6606 if (params.assoc_id != 0) { 6607 asoc = sctp_id2assoc(sk, params.assoc_id); 6608 if (!asoc) 6609 return -EINVAL; 6610 params.assoc_value = asoc->max_burst; 6611 } else 6612 params.assoc_value = sp->max_burst; 6613 6614 if (len == sizeof(int)) { 6615 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6616 return -EFAULT; 6617 } else { 6618 if (copy_to_user(optval, ¶ms, len)) 6619 return -EFAULT; 6620 } 6621 6622 return 0; 6623 6624 } 6625 6626 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6627 char __user *optval, int __user *optlen) 6628 { 6629 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6630 struct sctp_hmacalgo __user *p = (void __user *)optval; 6631 struct sctp_hmac_algo_param *hmacs; 6632 __u16 data_len = 0; 6633 u32 num_idents; 6634 int i; 6635 6636 if (!ep->auth_enable) 6637 return -EACCES; 6638 6639 hmacs = ep->auth_hmacs_list; 6640 data_len = ntohs(hmacs->param_hdr.length) - 6641 sizeof(struct sctp_paramhdr); 6642 6643 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6644 return -EINVAL; 6645 6646 len = sizeof(struct sctp_hmacalgo) + data_len; 6647 num_idents = data_len / sizeof(u16); 6648 6649 if (put_user(len, optlen)) 6650 return -EFAULT; 6651 if (put_user(num_idents, &p->shmac_num_idents)) 6652 return -EFAULT; 6653 for (i = 0; i < num_idents; i++) { 6654 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6655 6656 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6657 return -EFAULT; 6658 } 6659 return 0; 6660 } 6661 6662 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6663 char __user *optval, int __user *optlen) 6664 { 6665 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6666 struct sctp_authkeyid val; 6667 struct sctp_association *asoc; 6668 6669 if (!ep->auth_enable) 6670 return -EACCES; 6671 6672 if (len < sizeof(struct sctp_authkeyid)) 6673 return -EINVAL; 6674 6675 len = sizeof(struct sctp_authkeyid); 6676 if (copy_from_user(&val, optval, len)) 6677 return -EFAULT; 6678 6679 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6680 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6681 return -EINVAL; 6682 6683 if (asoc) 6684 val.scact_keynumber = asoc->active_key_id; 6685 else 6686 val.scact_keynumber = ep->active_key_id; 6687 6688 if (put_user(len, optlen)) 6689 return -EFAULT; 6690 if (copy_to_user(optval, &val, len)) 6691 return -EFAULT; 6692 6693 return 0; 6694 } 6695 6696 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6697 char __user *optval, int __user *optlen) 6698 { 6699 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6700 struct sctp_authchunks __user *p = (void __user *)optval; 6701 struct sctp_authchunks val; 6702 struct sctp_association *asoc; 6703 struct sctp_chunks_param *ch; 6704 u32 num_chunks = 0; 6705 char __user *to; 6706 6707 if (!ep->auth_enable) 6708 return -EACCES; 6709 6710 if (len < sizeof(struct sctp_authchunks)) 6711 return -EINVAL; 6712 6713 if (copy_from_user(&val, optval, sizeof(val))) 6714 return -EFAULT; 6715 6716 to = p->gauth_chunks; 6717 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6718 if (!asoc) 6719 return -EINVAL; 6720 6721 ch = asoc->peer.peer_chunks; 6722 if (!ch) 6723 goto num; 6724 6725 /* See if the user provided enough room for all the data */ 6726 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6727 if (len < num_chunks) 6728 return -EINVAL; 6729 6730 if (copy_to_user(to, ch->chunks, num_chunks)) 6731 return -EFAULT; 6732 num: 6733 len = sizeof(struct sctp_authchunks) + num_chunks; 6734 if (put_user(len, optlen)) 6735 return -EFAULT; 6736 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6737 return -EFAULT; 6738 return 0; 6739 } 6740 6741 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 6742 char __user *optval, int __user *optlen) 6743 { 6744 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6745 struct sctp_authchunks __user *p = (void __user *)optval; 6746 struct sctp_authchunks val; 6747 struct sctp_association *asoc; 6748 struct sctp_chunks_param *ch; 6749 u32 num_chunks = 0; 6750 char __user *to; 6751 6752 if (!ep->auth_enable) 6753 return -EACCES; 6754 6755 if (len < sizeof(struct sctp_authchunks)) 6756 return -EINVAL; 6757 6758 if (copy_from_user(&val, optval, sizeof(val))) 6759 return -EFAULT; 6760 6761 to = p->gauth_chunks; 6762 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6763 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 6764 return -EINVAL; 6765 6766 if (asoc) 6767 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 6768 else 6769 ch = ep->auth_chunk_list; 6770 6771 if (!ch) 6772 goto num; 6773 6774 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6775 if (len < sizeof(struct sctp_authchunks) + num_chunks) 6776 return -EINVAL; 6777 6778 if (copy_to_user(to, ch->chunks, num_chunks)) 6779 return -EFAULT; 6780 num: 6781 len = sizeof(struct sctp_authchunks) + num_chunks; 6782 if (put_user(len, optlen)) 6783 return -EFAULT; 6784 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6785 return -EFAULT; 6786 6787 return 0; 6788 } 6789 6790 /* 6791 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 6792 * This option gets the current number of associations that are attached 6793 * to a one-to-many style socket. The option value is an uint32_t. 6794 */ 6795 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 6796 char __user *optval, int __user *optlen) 6797 { 6798 struct sctp_sock *sp = sctp_sk(sk); 6799 struct sctp_association *asoc; 6800 u32 val = 0; 6801 6802 if (sctp_style(sk, TCP)) 6803 return -EOPNOTSUPP; 6804 6805 if (len < sizeof(u32)) 6806 return -EINVAL; 6807 6808 len = sizeof(u32); 6809 6810 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6811 val++; 6812 } 6813 6814 if (put_user(len, optlen)) 6815 return -EFAULT; 6816 if (copy_to_user(optval, &val, len)) 6817 return -EFAULT; 6818 6819 return 0; 6820 } 6821 6822 /* 6823 * 8.1.23 SCTP_AUTO_ASCONF 6824 * See the corresponding setsockopt entry as description 6825 */ 6826 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 6827 char __user *optval, int __user *optlen) 6828 { 6829 int val = 0; 6830 6831 if (len < sizeof(int)) 6832 return -EINVAL; 6833 6834 len = sizeof(int); 6835 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 6836 val = 1; 6837 if (put_user(len, optlen)) 6838 return -EFAULT; 6839 if (copy_to_user(optval, &val, len)) 6840 return -EFAULT; 6841 return 0; 6842 } 6843 6844 /* 6845 * 8.2.6. Get the Current Identifiers of Associations 6846 * (SCTP_GET_ASSOC_ID_LIST) 6847 * 6848 * This option gets the current list of SCTP association identifiers of 6849 * the SCTP associations handled by a one-to-many style socket. 6850 */ 6851 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 6852 char __user *optval, int __user *optlen) 6853 { 6854 struct sctp_sock *sp = sctp_sk(sk); 6855 struct sctp_association *asoc; 6856 struct sctp_assoc_ids *ids; 6857 u32 num = 0; 6858 6859 if (sctp_style(sk, TCP)) 6860 return -EOPNOTSUPP; 6861 6862 if (len < sizeof(struct sctp_assoc_ids)) 6863 return -EINVAL; 6864 6865 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6866 num++; 6867 } 6868 6869 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 6870 return -EINVAL; 6871 6872 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 6873 6874 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 6875 if (unlikely(!ids)) 6876 return -ENOMEM; 6877 6878 ids->gaids_number_of_ids = num; 6879 num = 0; 6880 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6881 ids->gaids_assoc_id[num++] = asoc->assoc_id; 6882 } 6883 6884 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 6885 kfree(ids); 6886 return -EFAULT; 6887 } 6888 6889 kfree(ids); 6890 return 0; 6891 } 6892 6893 /* 6894 * SCTP_PEER_ADDR_THLDS 6895 * 6896 * This option allows us to fetch the partially failed threshold for one or all 6897 * transports in an association. See Section 6.1 of: 6898 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 6899 */ 6900 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 6901 char __user *optval, 6902 int len, 6903 int __user *optlen) 6904 { 6905 struct sctp_paddrthlds val; 6906 struct sctp_transport *trans; 6907 struct sctp_association *asoc; 6908 6909 if (len < sizeof(struct sctp_paddrthlds)) 6910 return -EINVAL; 6911 len = sizeof(struct sctp_paddrthlds); 6912 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 6913 return -EFAULT; 6914 6915 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 6916 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 6917 if (!asoc) 6918 return -ENOENT; 6919 6920 val.spt_pathpfthld = asoc->pf_retrans; 6921 val.spt_pathmaxrxt = asoc->pathmaxrxt; 6922 } else { 6923 trans = sctp_addr_id2transport(sk, &val.spt_address, 6924 val.spt_assoc_id); 6925 if (!trans) 6926 return -ENOENT; 6927 6928 val.spt_pathmaxrxt = trans->pathmaxrxt; 6929 val.spt_pathpfthld = trans->pf_retrans; 6930 } 6931 6932 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 6933 return -EFAULT; 6934 6935 return 0; 6936 } 6937 6938 /* 6939 * SCTP_GET_ASSOC_STATS 6940 * 6941 * This option retrieves local per endpoint statistics. It is modeled 6942 * after OpenSolaris' implementation 6943 */ 6944 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 6945 char __user *optval, 6946 int __user *optlen) 6947 { 6948 struct sctp_assoc_stats sas; 6949 struct sctp_association *asoc = NULL; 6950 6951 /* User must provide at least the assoc id */ 6952 if (len < sizeof(sctp_assoc_t)) 6953 return -EINVAL; 6954 6955 /* Allow the struct to grow and fill in as much as possible */ 6956 len = min_t(size_t, len, sizeof(sas)); 6957 6958 if (copy_from_user(&sas, optval, len)) 6959 return -EFAULT; 6960 6961 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 6962 if (!asoc) 6963 return -EINVAL; 6964 6965 sas.sas_rtxchunks = asoc->stats.rtxchunks; 6966 sas.sas_gapcnt = asoc->stats.gapcnt; 6967 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 6968 sas.sas_osacks = asoc->stats.osacks; 6969 sas.sas_isacks = asoc->stats.isacks; 6970 sas.sas_octrlchunks = asoc->stats.octrlchunks; 6971 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 6972 sas.sas_oodchunks = asoc->stats.oodchunks; 6973 sas.sas_iodchunks = asoc->stats.iodchunks; 6974 sas.sas_ouodchunks = asoc->stats.ouodchunks; 6975 sas.sas_iuodchunks = asoc->stats.iuodchunks; 6976 sas.sas_idupchunks = asoc->stats.idupchunks; 6977 sas.sas_opackets = asoc->stats.opackets; 6978 sas.sas_ipackets = asoc->stats.ipackets; 6979 6980 /* New high max rto observed, will return 0 if not a single 6981 * RTO update took place. obs_rto_ipaddr will be bogus 6982 * in such a case 6983 */ 6984 sas.sas_maxrto = asoc->stats.max_obs_rto; 6985 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 6986 sizeof(struct sockaddr_storage)); 6987 6988 /* Mark beginning of a new observation period */ 6989 asoc->stats.max_obs_rto = asoc->rto_min; 6990 6991 if (put_user(len, optlen)) 6992 return -EFAULT; 6993 6994 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 6995 6996 if (copy_to_user(optval, &sas, len)) 6997 return -EFAULT; 6998 6999 return 0; 7000 } 7001 7002 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 7003 char __user *optval, 7004 int __user *optlen) 7005 { 7006 int val = 0; 7007 7008 if (len < sizeof(int)) 7009 return -EINVAL; 7010 7011 len = sizeof(int); 7012 if (sctp_sk(sk)->recvrcvinfo) 7013 val = 1; 7014 if (put_user(len, optlen)) 7015 return -EFAULT; 7016 if (copy_to_user(optval, &val, len)) 7017 return -EFAULT; 7018 7019 return 0; 7020 } 7021 7022 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 7023 char __user *optval, 7024 int __user *optlen) 7025 { 7026 int val = 0; 7027 7028 if (len < sizeof(int)) 7029 return -EINVAL; 7030 7031 len = sizeof(int); 7032 if (sctp_sk(sk)->recvnxtinfo) 7033 val = 1; 7034 if (put_user(len, optlen)) 7035 return -EFAULT; 7036 if (copy_to_user(optval, &val, len)) 7037 return -EFAULT; 7038 7039 return 0; 7040 } 7041 7042 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 7043 char __user *optval, 7044 int __user *optlen) 7045 { 7046 struct sctp_assoc_value params; 7047 struct sctp_association *asoc; 7048 int retval = -EFAULT; 7049 7050 if (len < sizeof(params)) { 7051 retval = -EINVAL; 7052 goto out; 7053 } 7054 7055 len = sizeof(params); 7056 if (copy_from_user(¶ms, optval, len)) 7057 goto out; 7058 7059 asoc = sctp_id2assoc(sk, params.assoc_id); 7060 if (asoc) { 7061 params.assoc_value = asoc->prsctp_enable; 7062 } else if (!params.assoc_id) { 7063 struct sctp_sock *sp = sctp_sk(sk); 7064 7065 params.assoc_value = sp->ep->prsctp_enable; 7066 } else { 7067 retval = -EINVAL; 7068 goto out; 7069 } 7070 7071 if (put_user(len, optlen)) 7072 goto out; 7073 7074 if (copy_to_user(optval, ¶ms, len)) 7075 goto out; 7076 7077 retval = 0; 7078 7079 out: 7080 return retval; 7081 } 7082 7083 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7084 char __user *optval, 7085 int __user *optlen) 7086 { 7087 struct sctp_default_prinfo info; 7088 struct sctp_association *asoc; 7089 int retval = -EFAULT; 7090 7091 if (len < sizeof(info)) { 7092 retval = -EINVAL; 7093 goto out; 7094 } 7095 7096 len = sizeof(info); 7097 if (copy_from_user(&info, optval, len)) 7098 goto out; 7099 7100 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7101 if (asoc) { 7102 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7103 info.pr_value = asoc->default_timetolive; 7104 } else if (!info.pr_assoc_id) { 7105 struct sctp_sock *sp = sctp_sk(sk); 7106 7107 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7108 info.pr_value = sp->default_timetolive; 7109 } else { 7110 retval = -EINVAL; 7111 goto out; 7112 } 7113 7114 if (put_user(len, optlen)) 7115 goto out; 7116 7117 if (copy_to_user(optval, &info, len)) 7118 goto out; 7119 7120 retval = 0; 7121 7122 out: 7123 return retval; 7124 } 7125 7126 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7127 char __user *optval, 7128 int __user *optlen) 7129 { 7130 struct sctp_prstatus params; 7131 struct sctp_association *asoc; 7132 int policy; 7133 int retval = -EINVAL; 7134 7135 if (len < sizeof(params)) 7136 goto out; 7137 7138 len = sizeof(params); 7139 if (copy_from_user(¶ms, optval, len)) { 7140 retval = -EFAULT; 7141 goto out; 7142 } 7143 7144 policy = params.sprstat_policy; 7145 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7146 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7147 goto out; 7148 7149 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7150 if (!asoc) 7151 goto out; 7152 7153 if (policy == SCTP_PR_SCTP_ALL) { 7154 params.sprstat_abandoned_unsent = 0; 7155 params.sprstat_abandoned_sent = 0; 7156 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7157 params.sprstat_abandoned_unsent += 7158 asoc->abandoned_unsent[policy]; 7159 params.sprstat_abandoned_sent += 7160 asoc->abandoned_sent[policy]; 7161 } 7162 } else { 7163 params.sprstat_abandoned_unsent = 7164 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7165 params.sprstat_abandoned_sent = 7166 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7167 } 7168 7169 if (put_user(len, optlen)) { 7170 retval = -EFAULT; 7171 goto out; 7172 } 7173 7174 if (copy_to_user(optval, ¶ms, len)) { 7175 retval = -EFAULT; 7176 goto out; 7177 } 7178 7179 retval = 0; 7180 7181 out: 7182 return retval; 7183 } 7184 7185 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7186 char __user *optval, 7187 int __user *optlen) 7188 { 7189 struct sctp_stream_out_ext *streamoute; 7190 struct sctp_association *asoc; 7191 struct sctp_prstatus params; 7192 int retval = -EINVAL; 7193 int policy; 7194 7195 if (len < sizeof(params)) 7196 goto out; 7197 7198 len = sizeof(params); 7199 if (copy_from_user(¶ms, optval, len)) { 7200 retval = -EFAULT; 7201 goto out; 7202 } 7203 7204 policy = params.sprstat_policy; 7205 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7206 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7207 goto out; 7208 7209 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7210 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7211 goto out; 7212 7213 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; 7214 if (!streamoute) { 7215 /* Not allocated yet, means all stats are 0 */ 7216 params.sprstat_abandoned_unsent = 0; 7217 params.sprstat_abandoned_sent = 0; 7218 retval = 0; 7219 goto out; 7220 } 7221 7222 if (policy == SCTP_PR_SCTP_ALL) { 7223 params.sprstat_abandoned_unsent = 0; 7224 params.sprstat_abandoned_sent = 0; 7225 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7226 params.sprstat_abandoned_unsent += 7227 streamoute->abandoned_unsent[policy]; 7228 params.sprstat_abandoned_sent += 7229 streamoute->abandoned_sent[policy]; 7230 } 7231 } else { 7232 params.sprstat_abandoned_unsent = 7233 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7234 params.sprstat_abandoned_sent = 7235 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7236 } 7237 7238 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7239 retval = -EFAULT; 7240 goto out; 7241 } 7242 7243 retval = 0; 7244 7245 out: 7246 return retval; 7247 } 7248 7249 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7250 char __user *optval, 7251 int __user *optlen) 7252 { 7253 struct sctp_assoc_value params; 7254 struct sctp_association *asoc; 7255 int retval = -EFAULT; 7256 7257 if (len < sizeof(params)) { 7258 retval = -EINVAL; 7259 goto out; 7260 } 7261 7262 len = sizeof(params); 7263 if (copy_from_user(¶ms, optval, len)) 7264 goto out; 7265 7266 asoc = sctp_id2assoc(sk, params.assoc_id); 7267 if (asoc) { 7268 params.assoc_value = asoc->reconf_enable; 7269 } else if (!params.assoc_id) { 7270 struct sctp_sock *sp = sctp_sk(sk); 7271 7272 params.assoc_value = sp->ep->reconf_enable; 7273 } else { 7274 retval = -EINVAL; 7275 goto out; 7276 } 7277 7278 if (put_user(len, optlen)) 7279 goto out; 7280 7281 if (copy_to_user(optval, ¶ms, len)) 7282 goto out; 7283 7284 retval = 0; 7285 7286 out: 7287 return retval; 7288 } 7289 7290 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7291 char __user *optval, 7292 int __user *optlen) 7293 { 7294 struct sctp_assoc_value params; 7295 struct sctp_association *asoc; 7296 int retval = -EFAULT; 7297 7298 if (len < sizeof(params)) { 7299 retval = -EINVAL; 7300 goto out; 7301 } 7302 7303 len = sizeof(params); 7304 if (copy_from_user(¶ms, optval, len)) 7305 goto out; 7306 7307 asoc = sctp_id2assoc(sk, params.assoc_id); 7308 if (asoc) { 7309 params.assoc_value = asoc->strreset_enable; 7310 } else if (!params.assoc_id) { 7311 struct sctp_sock *sp = sctp_sk(sk); 7312 7313 params.assoc_value = sp->ep->strreset_enable; 7314 } else { 7315 retval = -EINVAL; 7316 goto out; 7317 } 7318 7319 if (put_user(len, optlen)) 7320 goto out; 7321 7322 if (copy_to_user(optval, ¶ms, len)) 7323 goto out; 7324 7325 retval = 0; 7326 7327 out: 7328 return retval; 7329 } 7330 7331 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7332 char __user *optval, 7333 int __user *optlen) 7334 { 7335 struct sctp_assoc_value params; 7336 struct sctp_association *asoc; 7337 int retval = -EFAULT; 7338 7339 if (len < sizeof(params)) { 7340 retval = -EINVAL; 7341 goto out; 7342 } 7343 7344 len = sizeof(params); 7345 if (copy_from_user(¶ms, optval, len)) 7346 goto out; 7347 7348 asoc = sctp_id2assoc(sk, params.assoc_id); 7349 if (!asoc) { 7350 retval = -EINVAL; 7351 goto out; 7352 } 7353 7354 params.assoc_value = sctp_sched_get_sched(asoc); 7355 7356 if (put_user(len, optlen)) 7357 goto out; 7358 7359 if (copy_to_user(optval, ¶ms, len)) 7360 goto out; 7361 7362 retval = 0; 7363 7364 out: 7365 return retval; 7366 } 7367 7368 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7369 char __user *optval, 7370 int __user *optlen) 7371 { 7372 struct sctp_stream_value params; 7373 struct sctp_association *asoc; 7374 int retval = -EFAULT; 7375 7376 if (len < sizeof(params)) { 7377 retval = -EINVAL; 7378 goto out; 7379 } 7380 7381 len = sizeof(params); 7382 if (copy_from_user(¶ms, optval, len)) 7383 goto out; 7384 7385 asoc = sctp_id2assoc(sk, params.assoc_id); 7386 if (!asoc) { 7387 retval = -EINVAL; 7388 goto out; 7389 } 7390 7391 retval = sctp_sched_get_value(asoc, params.stream_id, 7392 ¶ms.stream_value); 7393 if (retval) 7394 goto out; 7395 7396 if (put_user(len, optlen)) { 7397 retval = -EFAULT; 7398 goto out; 7399 } 7400 7401 if (copy_to_user(optval, ¶ms, len)) { 7402 retval = -EFAULT; 7403 goto out; 7404 } 7405 7406 out: 7407 return retval; 7408 } 7409 7410 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7411 char __user *optval, 7412 int __user *optlen) 7413 { 7414 struct sctp_assoc_value params; 7415 struct sctp_association *asoc; 7416 int retval = -EFAULT; 7417 7418 if (len < sizeof(params)) { 7419 retval = -EINVAL; 7420 goto out; 7421 } 7422 7423 len = sizeof(params); 7424 if (copy_from_user(¶ms, optval, len)) 7425 goto out; 7426 7427 asoc = sctp_id2assoc(sk, params.assoc_id); 7428 if (asoc) { 7429 params.assoc_value = asoc->intl_enable; 7430 } else if (!params.assoc_id) { 7431 struct sctp_sock *sp = sctp_sk(sk); 7432 7433 params.assoc_value = sp->strm_interleave; 7434 } else { 7435 retval = -EINVAL; 7436 goto out; 7437 } 7438 7439 if (put_user(len, optlen)) 7440 goto out; 7441 7442 if (copy_to_user(optval, ¶ms, len)) 7443 goto out; 7444 7445 retval = 0; 7446 7447 out: 7448 return retval; 7449 } 7450 7451 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7452 char __user *optval, 7453 int __user *optlen) 7454 { 7455 int val; 7456 7457 if (len < sizeof(int)) 7458 return -EINVAL; 7459 7460 len = sizeof(int); 7461 val = sctp_sk(sk)->reuse; 7462 if (put_user(len, optlen)) 7463 return -EFAULT; 7464 7465 if (copy_to_user(optval, &val, len)) 7466 return -EFAULT; 7467 7468 return 0; 7469 } 7470 7471 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval, 7472 int __user *optlen) 7473 { 7474 struct sctp_association *asoc; 7475 struct sctp_event param; 7476 __u16 subscribe; 7477 7478 if (len < sizeof(param)) 7479 return -EINVAL; 7480 7481 len = sizeof(param); 7482 if (copy_from_user(¶m, optval, len)) 7483 return -EFAULT; 7484 7485 if (param.se_type < SCTP_SN_TYPE_BASE || 7486 param.se_type > SCTP_SN_TYPE_MAX) 7487 return -EINVAL; 7488 7489 asoc = sctp_id2assoc(sk, param.se_assoc_id); 7490 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe; 7491 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type); 7492 7493 if (put_user(len, optlen)) 7494 return -EFAULT; 7495 7496 if (copy_to_user(optval, ¶m, len)) 7497 return -EFAULT; 7498 7499 return 0; 7500 } 7501 7502 static int sctp_getsockopt(struct sock *sk, int level, int optname, 7503 char __user *optval, int __user *optlen) 7504 { 7505 int retval = 0; 7506 int len; 7507 7508 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 7509 7510 /* I can hardly begin to describe how wrong this is. This is 7511 * so broken as to be worse than useless. The API draft 7512 * REALLY is NOT helpful here... I am not convinced that the 7513 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 7514 * are at all well-founded. 7515 */ 7516 if (level != SOL_SCTP) { 7517 struct sctp_af *af = sctp_sk(sk)->pf->af; 7518 7519 retval = af->getsockopt(sk, level, optname, optval, optlen); 7520 return retval; 7521 } 7522 7523 if (get_user(len, optlen)) 7524 return -EFAULT; 7525 7526 if (len < 0) 7527 return -EINVAL; 7528 7529 lock_sock(sk); 7530 7531 switch (optname) { 7532 case SCTP_STATUS: 7533 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 7534 break; 7535 case SCTP_DISABLE_FRAGMENTS: 7536 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 7537 optlen); 7538 break; 7539 case SCTP_EVENTS: 7540 retval = sctp_getsockopt_events(sk, len, optval, optlen); 7541 break; 7542 case SCTP_AUTOCLOSE: 7543 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 7544 break; 7545 case SCTP_SOCKOPT_PEELOFF: 7546 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 7547 break; 7548 case SCTP_SOCKOPT_PEELOFF_FLAGS: 7549 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 7550 break; 7551 case SCTP_PEER_ADDR_PARAMS: 7552 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 7553 optlen); 7554 break; 7555 case SCTP_DELAYED_SACK: 7556 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 7557 optlen); 7558 break; 7559 case SCTP_INITMSG: 7560 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 7561 break; 7562 case SCTP_GET_PEER_ADDRS: 7563 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 7564 optlen); 7565 break; 7566 case SCTP_GET_LOCAL_ADDRS: 7567 retval = sctp_getsockopt_local_addrs(sk, len, optval, 7568 optlen); 7569 break; 7570 case SCTP_SOCKOPT_CONNECTX3: 7571 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 7572 break; 7573 case SCTP_DEFAULT_SEND_PARAM: 7574 retval = sctp_getsockopt_default_send_param(sk, len, 7575 optval, optlen); 7576 break; 7577 case SCTP_DEFAULT_SNDINFO: 7578 retval = sctp_getsockopt_default_sndinfo(sk, len, 7579 optval, optlen); 7580 break; 7581 case SCTP_PRIMARY_ADDR: 7582 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 7583 break; 7584 case SCTP_NODELAY: 7585 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 7586 break; 7587 case SCTP_RTOINFO: 7588 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 7589 break; 7590 case SCTP_ASSOCINFO: 7591 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 7592 break; 7593 case SCTP_I_WANT_MAPPED_V4_ADDR: 7594 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 7595 break; 7596 case SCTP_MAXSEG: 7597 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 7598 break; 7599 case SCTP_GET_PEER_ADDR_INFO: 7600 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 7601 optlen); 7602 break; 7603 case SCTP_ADAPTATION_LAYER: 7604 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 7605 optlen); 7606 break; 7607 case SCTP_CONTEXT: 7608 retval = sctp_getsockopt_context(sk, len, optval, optlen); 7609 break; 7610 case SCTP_FRAGMENT_INTERLEAVE: 7611 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 7612 optlen); 7613 break; 7614 case SCTP_PARTIAL_DELIVERY_POINT: 7615 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 7616 optlen); 7617 break; 7618 case SCTP_MAX_BURST: 7619 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 7620 break; 7621 case SCTP_AUTH_KEY: 7622 case SCTP_AUTH_CHUNK: 7623 case SCTP_AUTH_DELETE_KEY: 7624 case SCTP_AUTH_DEACTIVATE_KEY: 7625 retval = -EOPNOTSUPP; 7626 break; 7627 case SCTP_HMAC_IDENT: 7628 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 7629 break; 7630 case SCTP_AUTH_ACTIVE_KEY: 7631 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 7632 break; 7633 case SCTP_PEER_AUTH_CHUNKS: 7634 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 7635 optlen); 7636 break; 7637 case SCTP_LOCAL_AUTH_CHUNKS: 7638 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 7639 optlen); 7640 break; 7641 case SCTP_GET_ASSOC_NUMBER: 7642 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 7643 break; 7644 case SCTP_GET_ASSOC_ID_LIST: 7645 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 7646 break; 7647 case SCTP_AUTO_ASCONF: 7648 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 7649 break; 7650 case SCTP_PEER_ADDR_THLDS: 7651 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 7652 break; 7653 case SCTP_GET_ASSOC_STATS: 7654 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 7655 break; 7656 case SCTP_RECVRCVINFO: 7657 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 7658 break; 7659 case SCTP_RECVNXTINFO: 7660 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 7661 break; 7662 case SCTP_PR_SUPPORTED: 7663 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 7664 break; 7665 case SCTP_DEFAULT_PRINFO: 7666 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 7667 optlen); 7668 break; 7669 case SCTP_PR_ASSOC_STATUS: 7670 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 7671 optlen); 7672 break; 7673 case SCTP_PR_STREAM_STATUS: 7674 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 7675 optlen); 7676 break; 7677 case SCTP_RECONFIG_SUPPORTED: 7678 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 7679 optlen); 7680 break; 7681 case SCTP_ENABLE_STREAM_RESET: 7682 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 7683 optlen); 7684 break; 7685 case SCTP_STREAM_SCHEDULER: 7686 retval = sctp_getsockopt_scheduler(sk, len, optval, 7687 optlen); 7688 break; 7689 case SCTP_STREAM_SCHEDULER_VALUE: 7690 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 7691 optlen); 7692 break; 7693 case SCTP_INTERLEAVING_SUPPORTED: 7694 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 7695 optlen); 7696 break; 7697 case SCTP_REUSE_PORT: 7698 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 7699 break; 7700 case SCTP_EVENT: 7701 retval = sctp_getsockopt_event(sk, len, optval, optlen); 7702 break; 7703 default: 7704 retval = -ENOPROTOOPT; 7705 break; 7706 } 7707 7708 release_sock(sk); 7709 return retval; 7710 } 7711 7712 static int sctp_hash(struct sock *sk) 7713 { 7714 /* STUB */ 7715 return 0; 7716 } 7717 7718 static void sctp_unhash(struct sock *sk) 7719 { 7720 /* STUB */ 7721 } 7722 7723 /* Check if port is acceptable. Possibly find first available port. 7724 * 7725 * The port hash table (contained in the 'global' SCTP protocol storage 7726 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 7727 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 7728 * list (the list number is the port number hashed out, so as you 7729 * would expect from a hash function, all the ports in a given list have 7730 * such a number that hashes out to the same list number; you were 7731 * expecting that, right?); so each list has a set of ports, with a 7732 * link to the socket (struct sock) that uses it, the port number and 7733 * a fastreuse flag (FIXME: NPI ipg). 7734 */ 7735 static struct sctp_bind_bucket *sctp_bucket_create( 7736 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 7737 7738 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 7739 { 7740 struct sctp_sock *sp = sctp_sk(sk); 7741 bool reuse = (sk->sk_reuse || sp->reuse); 7742 struct sctp_bind_hashbucket *head; /* hash list */ 7743 kuid_t uid = sock_i_uid(sk); 7744 struct sctp_bind_bucket *pp; 7745 unsigned short snum; 7746 int ret; 7747 7748 snum = ntohs(addr->v4.sin_port); 7749 7750 pr_debug("%s: begins, snum:%d\n", __func__, snum); 7751 7752 local_bh_disable(); 7753 7754 if (snum == 0) { 7755 /* Search for an available port. */ 7756 int low, high, remaining, index; 7757 unsigned int rover; 7758 struct net *net = sock_net(sk); 7759 7760 inet_get_local_port_range(net, &low, &high); 7761 remaining = (high - low) + 1; 7762 rover = prandom_u32() % remaining + low; 7763 7764 do { 7765 rover++; 7766 if ((rover < low) || (rover > high)) 7767 rover = low; 7768 if (inet_is_local_reserved_port(net, rover)) 7769 continue; 7770 index = sctp_phashfn(sock_net(sk), rover); 7771 head = &sctp_port_hashtable[index]; 7772 spin_lock(&head->lock); 7773 sctp_for_each_hentry(pp, &head->chain) 7774 if ((pp->port == rover) && 7775 net_eq(sock_net(sk), pp->net)) 7776 goto next; 7777 break; 7778 next: 7779 spin_unlock(&head->lock); 7780 } while (--remaining > 0); 7781 7782 /* Exhausted local port range during search? */ 7783 ret = 1; 7784 if (remaining <= 0) 7785 goto fail; 7786 7787 /* OK, here is the one we will use. HEAD (the port 7788 * hash table list entry) is non-NULL and we hold it's 7789 * mutex. 7790 */ 7791 snum = rover; 7792 } else { 7793 /* We are given an specific port number; we verify 7794 * that it is not being used. If it is used, we will 7795 * exahust the search in the hash list corresponding 7796 * to the port number (snum) - we detect that with the 7797 * port iterator, pp being NULL. 7798 */ 7799 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 7800 spin_lock(&head->lock); 7801 sctp_for_each_hentry(pp, &head->chain) { 7802 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 7803 goto pp_found; 7804 } 7805 } 7806 pp = NULL; 7807 goto pp_not_found; 7808 pp_found: 7809 if (!hlist_empty(&pp->owner)) { 7810 /* We had a port hash table hit - there is an 7811 * available port (pp != NULL) and it is being 7812 * used by other socket (pp->owner not empty); that other 7813 * socket is going to be sk2. 7814 */ 7815 struct sock *sk2; 7816 7817 pr_debug("%s: found a possible match\n", __func__); 7818 7819 if ((pp->fastreuse && reuse && 7820 sk->sk_state != SCTP_SS_LISTENING) || 7821 (pp->fastreuseport && sk->sk_reuseport && 7822 uid_eq(pp->fastuid, uid))) 7823 goto success; 7824 7825 /* Run through the list of sockets bound to the port 7826 * (pp->port) [via the pointers bind_next and 7827 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 7828 * we get the endpoint they describe and run through 7829 * the endpoint's list of IP (v4 or v6) addresses, 7830 * comparing each of the addresses with the address of 7831 * the socket sk. If we find a match, then that means 7832 * that this port/socket (sk) combination are already 7833 * in an endpoint. 7834 */ 7835 sk_for_each_bound(sk2, &pp->owner) { 7836 struct sctp_sock *sp2 = sctp_sk(sk2); 7837 struct sctp_endpoint *ep2 = sp2->ep; 7838 7839 if (sk == sk2 || 7840 (reuse && (sk2->sk_reuse || sp2->reuse) && 7841 sk2->sk_state != SCTP_SS_LISTENING) || 7842 (sk->sk_reuseport && sk2->sk_reuseport && 7843 uid_eq(uid, sock_i_uid(sk2)))) 7844 continue; 7845 7846 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, 7847 addr, sp2, sp)) { 7848 ret = (long)sk2; 7849 goto fail_unlock; 7850 } 7851 } 7852 7853 pr_debug("%s: found a match\n", __func__); 7854 } 7855 pp_not_found: 7856 /* If there was a hash table miss, create a new port. */ 7857 ret = 1; 7858 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 7859 goto fail_unlock; 7860 7861 /* In either case (hit or miss), make sure fastreuse is 1 only 7862 * if sk->sk_reuse is too (that is, if the caller requested 7863 * SO_REUSEADDR on this socket -sk-). 7864 */ 7865 if (hlist_empty(&pp->owner)) { 7866 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 7867 pp->fastreuse = 1; 7868 else 7869 pp->fastreuse = 0; 7870 7871 if (sk->sk_reuseport) { 7872 pp->fastreuseport = 1; 7873 pp->fastuid = uid; 7874 } else { 7875 pp->fastreuseport = 0; 7876 } 7877 } else { 7878 if (pp->fastreuse && 7879 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 7880 pp->fastreuse = 0; 7881 7882 if (pp->fastreuseport && 7883 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid))) 7884 pp->fastreuseport = 0; 7885 } 7886 7887 /* We are set, so fill up all the data in the hash table 7888 * entry, tie the socket list information with the rest of the 7889 * sockets FIXME: Blurry, NPI (ipg). 7890 */ 7891 success: 7892 if (!sp->bind_hash) { 7893 inet_sk(sk)->inet_num = snum; 7894 sk_add_bind_node(sk, &pp->owner); 7895 sp->bind_hash = pp; 7896 } 7897 ret = 0; 7898 7899 fail_unlock: 7900 spin_unlock(&head->lock); 7901 7902 fail: 7903 local_bh_enable(); 7904 return ret; 7905 } 7906 7907 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 7908 * port is requested. 7909 */ 7910 static int sctp_get_port(struct sock *sk, unsigned short snum) 7911 { 7912 union sctp_addr addr; 7913 struct sctp_af *af = sctp_sk(sk)->pf->af; 7914 7915 /* Set up a dummy address struct from the sk. */ 7916 af->from_sk(&addr, sk); 7917 addr.v4.sin_port = htons(snum); 7918 7919 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 7920 return !!sctp_get_port_local(sk, &addr); 7921 } 7922 7923 /* 7924 * Move a socket to LISTENING state. 7925 */ 7926 static int sctp_listen_start(struct sock *sk, int backlog) 7927 { 7928 struct sctp_sock *sp = sctp_sk(sk); 7929 struct sctp_endpoint *ep = sp->ep; 7930 struct crypto_shash *tfm = NULL; 7931 char alg[32]; 7932 7933 /* Allocate HMAC for generating cookie. */ 7934 if (!sp->hmac && sp->sctp_hmac_alg) { 7935 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 7936 tfm = crypto_alloc_shash(alg, 0, 0); 7937 if (IS_ERR(tfm)) { 7938 net_info_ratelimited("failed to load transform for %s: %ld\n", 7939 sp->sctp_hmac_alg, PTR_ERR(tfm)); 7940 return -ENOSYS; 7941 } 7942 sctp_sk(sk)->hmac = tfm; 7943 } 7944 7945 /* 7946 * If a bind() or sctp_bindx() is not called prior to a listen() 7947 * call that allows new associations to be accepted, the system 7948 * picks an ephemeral port and will choose an address set equivalent 7949 * to binding with a wildcard address. 7950 * 7951 * This is not currently spelled out in the SCTP sockets 7952 * extensions draft, but follows the practice as seen in TCP 7953 * sockets. 7954 * 7955 */ 7956 inet_sk_set_state(sk, SCTP_SS_LISTENING); 7957 if (!ep->base.bind_addr.port) { 7958 if (sctp_autobind(sk)) 7959 return -EAGAIN; 7960 } else { 7961 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 7962 inet_sk_set_state(sk, SCTP_SS_CLOSED); 7963 return -EADDRINUSE; 7964 } 7965 } 7966 7967 sk->sk_max_ack_backlog = backlog; 7968 return sctp_hash_endpoint(ep); 7969 } 7970 7971 /* 7972 * 4.1.3 / 5.1.3 listen() 7973 * 7974 * By default, new associations are not accepted for UDP style sockets. 7975 * An application uses listen() to mark a socket as being able to 7976 * accept new associations. 7977 * 7978 * On TCP style sockets, applications use listen() to ready the SCTP 7979 * endpoint for accepting inbound associations. 7980 * 7981 * On both types of endpoints a backlog of '0' disables listening. 7982 * 7983 * Move a socket to LISTENING state. 7984 */ 7985 int sctp_inet_listen(struct socket *sock, int backlog) 7986 { 7987 struct sock *sk = sock->sk; 7988 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7989 int err = -EINVAL; 7990 7991 if (unlikely(backlog < 0)) 7992 return err; 7993 7994 lock_sock(sk); 7995 7996 /* Peeled-off sockets are not allowed to listen(). */ 7997 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 7998 goto out; 7999 8000 if (sock->state != SS_UNCONNECTED) 8001 goto out; 8002 8003 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 8004 goto out; 8005 8006 /* If backlog is zero, disable listening. */ 8007 if (!backlog) { 8008 if (sctp_sstate(sk, CLOSED)) 8009 goto out; 8010 8011 err = 0; 8012 sctp_unhash_endpoint(ep); 8013 sk->sk_state = SCTP_SS_CLOSED; 8014 if (sk->sk_reuse || sctp_sk(sk)->reuse) 8015 sctp_sk(sk)->bind_hash->fastreuse = 1; 8016 goto out; 8017 } 8018 8019 /* If we are already listening, just update the backlog */ 8020 if (sctp_sstate(sk, LISTENING)) 8021 sk->sk_max_ack_backlog = backlog; 8022 else { 8023 err = sctp_listen_start(sk, backlog); 8024 if (err) 8025 goto out; 8026 } 8027 8028 err = 0; 8029 out: 8030 release_sock(sk); 8031 return err; 8032 } 8033 8034 /* 8035 * This function is done by modeling the current datagram_poll() and the 8036 * tcp_poll(). Note that, based on these implementations, we don't 8037 * lock the socket in this function, even though it seems that, 8038 * ideally, locking or some other mechanisms can be used to ensure 8039 * the integrity of the counters (sndbuf and wmem_alloc) used 8040 * in this place. We assume that we don't need locks either until proven 8041 * otherwise. 8042 * 8043 * Another thing to note is that we include the Async I/O support 8044 * here, again, by modeling the current TCP/UDP code. We don't have 8045 * a good way to test with it yet. 8046 */ 8047 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 8048 { 8049 struct sock *sk = sock->sk; 8050 struct sctp_sock *sp = sctp_sk(sk); 8051 __poll_t mask; 8052 8053 poll_wait(file, sk_sleep(sk), wait); 8054 8055 sock_rps_record_flow(sk); 8056 8057 /* A TCP-style listening socket becomes readable when the accept queue 8058 * is not empty. 8059 */ 8060 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 8061 return (!list_empty(&sp->ep->asocs)) ? 8062 (EPOLLIN | EPOLLRDNORM) : 0; 8063 8064 mask = 0; 8065 8066 /* Is there any exceptional events? */ 8067 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 8068 mask |= EPOLLERR | 8069 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 8070 if (sk->sk_shutdown & RCV_SHUTDOWN) 8071 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 8072 if (sk->sk_shutdown == SHUTDOWN_MASK) 8073 mask |= EPOLLHUP; 8074 8075 /* Is it readable? Reconsider this code with TCP-style support. */ 8076 if (!skb_queue_empty(&sk->sk_receive_queue)) 8077 mask |= EPOLLIN | EPOLLRDNORM; 8078 8079 /* The association is either gone or not ready. */ 8080 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 8081 return mask; 8082 8083 /* Is it writable? */ 8084 if (sctp_writeable(sk)) { 8085 mask |= EPOLLOUT | EPOLLWRNORM; 8086 } else { 8087 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 8088 /* 8089 * Since the socket is not locked, the buffer 8090 * might be made available after the writeable check and 8091 * before the bit is set. This could cause a lost I/O 8092 * signal. tcp_poll() has a race breaker for this race 8093 * condition. Based on their implementation, we put 8094 * in the following code to cover it as well. 8095 */ 8096 if (sctp_writeable(sk)) 8097 mask |= EPOLLOUT | EPOLLWRNORM; 8098 } 8099 return mask; 8100 } 8101 8102 /******************************************************************** 8103 * 2nd Level Abstractions 8104 ********************************************************************/ 8105 8106 static struct sctp_bind_bucket *sctp_bucket_create( 8107 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 8108 { 8109 struct sctp_bind_bucket *pp; 8110 8111 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 8112 if (pp) { 8113 SCTP_DBG_OBJCNT_INC(bind_bucket); 8114 pp->port = snum; 8115 pp->fastreuse = 0; 8116 INIT_HLIST_HEAD(&pp->owner); 8117 pp->net = net; 8118 hlist_add_head(&pp->node, &head->chain); 8119 } 8120 return pp; 8121 } 8122 8123 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 8124 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 8125 { 8126 if (pp && hlist_empty(&pp->owner)) { 8127 __hlist_del(&pp->node); 8128 kmem_cache_free(sctp_bucket_cachep, pp); 8129 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8130 } 8131 } 8132 8133 /* Release this socket's reference to a local port. */ 8134 static inline void __sctp_put_port(struct sock *sk) 8135 { 8136 struct sctp_bind_hashbucket *head = 8137 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8138 inet_sk(sk)->inet_num)]; 8139 struct sctp_bind_bucket *pp; 8140 8141 spin_lock(&head->lock); 8142 pp = sctp_sk(sk)->bind_hash; 8143 __sk_del_bind_node(sk); 8144 sctp_sk(sk)->bind_hash = NULL; 8145 inet_sk(sk)->inet_num = 0; 8146 sctp_bucket_destroy(pp); 8147 spin_unlock(&head->lock); 8148 } 8149 8150 void sctp_put_port(struct sock *sk) 8151 { 8152 local_bh_disable(); 8153 __sctp_put_port(sk); 8154 local_bh_enable(); 8155 } 8156 8157 /* 8158 * The system picks an ephemeral port and choose an address set equivalent 8159 * to binding with a wildcard address. 8160 * One of those addresses will be the primary address for the association. 8161 * This automatically enables the multihoming capability of SCTP. 8162 */ 8163 static int sctp_autobind(struct sock *sk) 8164 { 8165 union sctp_addr autoaddr; 8166 struct sctp_af *af; 8167 __be16 port; 8168 8169 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8170 af = sctp_sk(sk)->pf->af; 8171 8172 port = htons(inet_sk(sk)->inet_num); 8173 af->inaddr_any(&autoaddr, port); 8174 8175 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8176 } 8177 8178 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8179 * 8180 * From RFC 2292 8181 * 4.2 The cmsghdr Structure * 8182 * 8183 * When ancillary data is sent or received, any number of ancillary data 8184 * objects can be specified by the msg_control and msg_controllen members of 8185 * the msghdr structure, because each object is preceded by 8186 * a cmsghdr structure defining the object's length (the cmsg_len member). 8187 * Historically Berkeley-derived implementations have passed only one object 8188 * at a time, but this API allows multiple objects to be 8189 * passed in a single call to sendmsg() or recvmsg(). The following example 8190 * shows two ancillary data objects in a control buffer. 8191 * 8192 * |<--------------------------- msg_controllen -------------------------->| 8193 * | | 8194 * 8195 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8196 * 8197 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8198 * | | | 8199 * 8200 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8201 * 8202 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8203 * | | | | | 8204 * 8205 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8206 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8207 * 8208 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8209 * 8210 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8211 * ^ 8212 * | 8213 * 8214 * msg_control 8215 * points here 8216 */ 8217 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8218 { 8219 struct msghdr *my_msg = (struct msghdr *)msg; 8220 struct cmsghdr *cmsg; 8221 8222 for_each_cmsghdr(cmsg, my_msg) { 8223 if (!CMSG_OK(my_msg, cmsg)) 8224 return -EINVAL; 8225 8226 /* Should we parse this header or ignore? */ 8227 if (cmsg->cmsg_level != IPPROTO_SCTP) 8228 continue; 8229 8230 /* Strictly check lengths following example in SCM code. */ 8231 switch (cmsg->cmsg_type) { 8232 case SCTP_INIT: 8233 /* SCTP Socket API Extension 8234 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8235 * 8236 * This cmsghdr structure provides information for 8237 * initializing new SCTP associations with sendmsg(). 8238 * The SCTP_INITMSG socket option uses this same data 8239 * structure. This structure is not used for 8240 * recvmsg(). 8241 * 8242 * cmsg_level cmsg_type cmsg_data[] 8243 * ------------ ------------ ---------------------- 8244 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8245 */ 8246 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8247 return -EINVAL; 8248 8249 cmsgs->init = CMSG_DATA(cmsg); 8250 break; 8251 8252 case SCTP_SNDRCV: 8253 /* SCTP Socket API Extension 8254 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8255 * 8256 * This cmsghdr structure specifies SCTP options for 8257 * sendmsg() and describes SCTP header information 8258 * about a received message through recvmsg(). 8259 * 8260 * cmsg_level cmsg_type cmsg_data[] 8261 * ------------ ------------ ---------------------- 8262 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8263 */ 8264 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8265 return -EINVAL; 8266 8267 cmsgs->srinfo = CMSG_DATA(cmsg); 8268 8269 if (cmsgs->srinfo->sinfo_flags & 8270 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8271 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8272 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8273 return -EINVAL; 8274 break; 8275 8276 case SCTP_SNDINFO: 8277 /* SCTP Socket API Extension 8278 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8279 * 8280 * This cmsghdr structure specifies SCTP options for 8281 * sendmsg(). This structure and SCTP_RCVINFO replaces 8282 * SCTP_SNDRCV which has been deprecated. 8283 * 8284 * cmsg_level cmsg_type cmsg_data[] 8285 * ------------ ------------ --------------------- 8286 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8287 */ 8288 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8289 return -EINVAL; 8290 8291 cmsgs->sinfo = CMSG_DATA(cmsg); 8292 8293 if (cmsgs->sinfo->snd_flags & 8294 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8295 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8296 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8297 return -EINVAL; 8298 break; 8299 case SCTP_PRINFO: 8300 /* SCTP Socket API Extension 8301 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8302 * 8303 * This cmsghdr structure specifies SCTP options for sendmsg(). 8304 * 8305 * cmsg_level cmsg_type cmsg_data[] 8306 * ------------ ------------ --------------------- 8307 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8308 */ 8309 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8310 return -EINVAL; 8311 8312 cmsgs->prinfo = CMSG_DATA(cmsg); 8313 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8314 return -EINVAL; 8315 8316 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8317 cmsgs->prinfo->pr_value = 0; 8318 break; 8319 case SCTP_AUTHINFO: 8320 /* SCTP Socket API Extension 8321 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8322 * 8323 * This cmsghdr structure specifies SCTP options for sendmsg(). 8324 * 8325 * cmsg_level cmsg_type cmsg_data[] 8326 * ------------ ------------ --------------------- 8327 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8328 */ 8329 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8330 return -EINVAL; 8331 8332 cmsgs->authinfo = CMSG_DATA(cmsg); 8333 break; 8334 case SCTP_DSTADDRV4: 8335 case SCTP_DSTADDRV6: 8336 /* SCTP Socket API Extension 8337 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8338 * 8339 * This cmsghdr structure specifies SCTP options for sendmsg(). 8340 * 8341 * cmsg_level cmsg_type cmsg_data[] 8342 * ------------ ------------ --------------------- 8343 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8344 * ------------ ------------ --------------------- 8345 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8346 */ 8347 cmsgs->addrs_msg = my_msg; 8348 break; 8349 default: 8350 return -EINVAL; 8351 } 8352 } 8353 8354 return 0; 8355 } 8356 8357 /* 8358 * Wait for a packet.. 8359 * Note: This function is the same function as in core/datagram.c 8360 * with a few modifications to make lksctp work. 8361 */ 8362 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8363 { 8364 int error; 8365 DEFINE_WAIT(wait); 8366 8367 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8368 8369 /* Socket errors? */ 8370 error = sock_error(sk); 8371 if (error) 8372 goto out; 8373 8374 if (!skb_queue_empty(&sk->sk_receive_queue)) 8375 goto ready; 8376 8377 /* Socket shut down? */ 8378 if (sk->sk_shutdown & RCV_SHUTDOWN) 8379 goto out; 8380 8381 /* Sequenced packets can come disconnected. If so we report the 8382 * problem. 8383 */ 8384 error = -ENOTCONN; 8385 8386 /* Is there a good reason to think that we may receive some data? */ 8387 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 8388 goto out; 8389 8390 /* Handle signals. */ 8391 if (signal_pending(current)) 8392 goto interrupted; 8393 8394 /* Let another process have a go. Since we are going to sleep 8395 * anyway. Note: This may cause odd behaviors if the message 8396 * does not fit in the user's buffer, but this seems to be the 8397 * only way to honor MSG_DONTWAIT realistically. 8398 */ 8399 release_sock(sk); 8400 *timeo_p = schedule_timeout(*timeo_p); 8401 lock_sock(sk); 8402 8403 ready: 8404 finish_wait(sk_sleep(sk), &wait); 8405 return 0; 8406 8407 interrupted: 8408 error = sock_intr_errno(*timeo_p); 8409 8410 out: 8411 finish_wait(sk_sleep(sk), &wait); 8412 *err = error; 8413 return error; 8414 } 8415 8416 /* Receive a datagram. 8417 * Note: This is pretty much the same routine as in core/datagram.c 8418 * with a few changes to make lksctp work. 8419 */ 8420 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 8421 int noblock, int *err) 8422 { 8423 int error; 8424 struct sk_buff *skb; 8425 long timeo; 8426 8427 timeo = sock_rcvtimeo(sk, noblock); 8428 8429 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 8430 MAX_SCHEDULE_TIMEOUT); 8431 8432 do { 8433 /* Again only user level code calls this function, 8434 * so nothing interrupt level 8435 * will suddenly eat the receive_queue. 8436 * 8437 * Look at current nfs client by the way... 8438 * However, this function was correct in any case. 8) 8439 */ 8440 if (flags & MSG_PEEK) { 8441 skb = skb_peek(&sk->sk_receive_queue); 8442 if (skb) 8443 refcount_inc(&skb->users); 8444 } else { 8445 skb = __skb_dequeue(&sk->sk_receive_queue); 8446 } 8447 8448 if (skb) 8449 return skb; 8450 8451 /* Caller is allowed not to check sk->sk_err before calling. */ 8452 error = sock_error(sk); 8453 if (error) 8454 goto no_packet; 8455 8456 if (sk->sk_shutdown & RCV_SHUTDOWN) 8457 break; 8458 8459 if (sk_can_busy_loop(sk)) { 8460 sk_busy_loop(sk, noblock); 8461 8462 if (!skb_queue_empty(&sk->sk_receive_queue)) 8463 continue; 8464 } 8465 8466 /* User doesn't want to wait. */ 8467 error = -EAGAIN; 8468 if (!timeo) 8469 goto no_packet; 8470 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 8471 8472 return NULL; 8473 8474 no_packet: 8475 *err = error; 8476 return NULL; 8477 } 8478 8479 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 8480 static void __sctp_write_space(struct sctp_association *asoc) 8481 { 8482 struct sock *sk = asoc->base.sk; 8483 8484 if (sctp_wspace(asoc) <= 0) 8485 return; 8486 8487 if (waitqueue_active(&asoc->wait)) 8488 wake_up_interruptible(&asoc->wait); 8489 8490 if (sctp_writeable(sk)) { 8491 struct socket_wq *wq; 8492 8493 rcu_read_lock(); 8494 wq = rcu_dereference(sk->sk_wq); 8495 if (wq) { 8496 if (waitqueue_active(&wq->wait)) 8497 wake_up_interruptible(&wq->wait); 8498 8499 /* Note that we try to include the Async I/O support 8500 * here by modeling from the current TCP/UDP code. 8501 * We have not tested with it yet. 8502 */ 8503 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 8504 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 8505 } 8506 rcu_read_unlock(); 8507 } 8508 } 8509 8510 static void sctp_wake_up_waiters(struct sock *sk, 8511 struct sctp_association *asoc) 8512 { 8513 struct sctp_association *tmp = asoc; 8514 8515 /* We do accounting for the sndbuf space per association, 8516 * so we only need to wake our own association. 8517 */ 8518 if (asoc->ep->sndbuf_policy) 8519 return __sctp_write_space(asoc); 8520 8521 /* If association goes down and is just flushing its 8522 * outq, then just normally notify others. 8523 */ 8524 if (asoc->base.dead) 8525 return sctp_write_space(sk); 8526 8527 /* Accounting for the sndbuf space is per socket, so we 8528 * need to wake up others, try to be fair and in case of 8529 * other associations, let them have a go first instead 8530 * of just doing a sctp_write_space() call. 8531 * 8532 * Note that we reach sctp_wake_up_waiters() only when 8533 * associations free up queued chunks, thus we are under 8534 * lock and the list of associations on a socket is 8535 * guaranteed not to change. 8536 */ 8537 for (tmp = list_next_entry(tmp, asocs); 1; 8538 tmp = list_next_entry(tmp, asocs)) { 8539 /* Manually skip the head element. */ 8540 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 8541 continue; 8542 /* Wake up association. */ 8543 __sctp_write_space(tmp); 8544 /* We've reached the end. */ 8545 if (tmp == asoc) 8546 break; 8547 } 8548 } 8549 8550 /* Do accounting for the sndbuf space. 8551 * Decrement the used sndbuf space of the corresponding association by the 8552 * data size which was just transmitted(freed). 8553 */ 8554 static void sctp_wfree(struct sk_buff *skb) 8555 { 8556 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 8557 struct sctp_association *asoc = chunk->asoc; 8558 struct sock *sk = asoc->base.sk; 8559 8560 sk_mem_uncharge(sk, skb->truesize); 8561 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk); 8562 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); 8563 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), 8564 &sk->sk_wmem_alloc)); 8565 8566 if (chunk->shkey) { 8567 struct sctp_shared_key *shkey = chunk->shkey; 8568 8569 /* refcnt == 2 and !list_empty mean after this release, it's 8570 * not being used anywhere, and it's time to notify userland 8571 * that this shkey can be freed if it's been deactivated. 8572 */ 8573 if (shkey->deactivated && !list_empty(&shkey->key_list) && 8574 refcount_read(&shkey->refcnt) == 2) { 8575 struct sctp_ulpevent *ev; 8576 8577 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 8578 SCTP_AUTH_FREE_KEY, 8579 GFP_KERNEL); 8580 if (ev) 8581 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 8582 } 8583 sctp_auth_shkey_release(chunk->shkey); 8584 } 8585 8586 sock_wfree(skb); 8587 sctp_wake_up_waiters(sk, asoc); 8588 8589 sctp_association_put(asoc); 8590 } 8591 8592 /* Do accounting for the receive space on the socket. 8593 * Accounting for the association is done in ulpevent.c 8594 * We set this as a destructor for the cloned data skbs so that 8595 * accounting is done at the correct time. 8596 */ 8597 void sctp_sock_rfree(struct sk_buff *skb) 8598 { 8599 struct sock *sk = skb->sk; 8600 struct sctp_ulpevent *event = sctp_skb2event(skb); 8601 8602 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 8603 8604 /* 8605 * Mimic the behavior of sock_rfree 8606 */ 8607 sk_mem_uncharge(sk, event->rmem_len); 8608 } 8609 8610 8611 /* Helper function to wait for space in the sndbuf. */ 8612 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 8613 size_t msg_len) 8614 { 8615 struct sock *sk = asoc->base.sk; 8616 long current_timeo = *timeo_p; 8617 DEFINE_WAIT(wait); 8618 int err = 0; 8619 8620 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 8621 *timeo_p, msg_len); 8622 8623 /* Increment the association's refcnt. */ 8624 sctp_association_hold(asoc); 8625 8626 /* Wait on the association specific sndbuf space. */ 8627 for (;;) { 8628 prepare_to_wait_exclusive(&asoc->wait, &wait, 8629 TASK_INTERRUPTIBLE); 8630 if (asoc->base.dead) 8631 goto do_dead; 8632 if (!*timeo_p) 8633 goto do_nonblock; 8634 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 8635 goto do_error; 8636 if (signal_pending(current)) 8637 goto do_interrupted; 8638 if ((int)msg_len <= sctp_wspace(asoc)) 8639 break; 8640 8641 /* Let another process have a go. Since we are going 8642 * to sleep anyway. 8643 */ 8644 release_sock(sk); 8645 current_timeo = schedule_timeout(current_timeo); 8646 lock_sock(sk); 8647 if (sk != asoc->base.sk) 8648 goto do_error; 8649 8650 *timeo_p = current_timeo; 8651 } 8652 8653 out: 8654 finish_wait(&asoc->wait, &wait); 8655 8656 /* Release the association's refcnt. */ 8657 sctp_association_put(asoc); 8658 8659 return err; 8660 8661 do_dead: 8662 err = -ESRCH; 8663 goto out; 8664 8665 do_error: 8666 err = -EPIPE; 8667 goto out; 8668 8669 do_interrupted: 8670 err = sock_intr_errno(*timeo_p); 8671 goto out; 8672 8673 do_nonblock: 8674 err = -EAGAIN; 8675 goto out; 8676 } 8677 8678 void sctp_data_ready(struct sock *sk) 8679 { 8680 struct socket_wq *wq; 8681 8682 rcu_read_lock(); 8683 wq = rcu_dereference(sk->sk_wq); 8684 if (skwq_has_sleeper(wq)) 8685 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 8686 EPOLLRDNORM | EPOLLRDBAND); 8687 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 8688 rcu_read_unlock(); 8689 } 8690 8691 /* If socket sndbuf has changed, wake up all per association waiters. */ 8692 void sctp_write_space(struct sock *sk) 8693 { 8694 struct sctp_association *asoc; 8695 8696 /* Wake up the tasks in each wait queue. */ 8697 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 8698 __sctp_write_space(asoc); 8699 } 8700 } 8701 8702 /* Is there any sndbuf space available on the socket? 8703 * 8704 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 8705 * associations on the same socket. For a UDP-style socket with 8706 * multiple associations, it is possible for it to be "unwriteable" 8707 * prematurely. I assume that this is acceptable because 8708 * a premature "unwriteable" is better than an accidental "writeable" which 8709 * would cause an unwanted block under certain circumstances. For the 1-1 8710 * UDP-style sockets or TCP-style sockets, this code should work. 8711 * - Daisy 8712 */ 8713 static bool sctp_writeable(struct sock *sk) 8714 { 8715 return sk->sk_sndbuf > sk->sk_wmem_queued; 8716 } 8717 8718 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 8719 * returns immediately with EINPROGRESS. 8720 */ 8721 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 8722 { 8723 struct sock *sk = asoc->base.sk; 8724 int err = 0; 8725 long current_timeo = *timeo_p; 8726 DEFINE_WAIT(wait); 8727 8728 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 8729 8730 /* Increment the association's refcnt. */ 8731 sctp_association_hold(asoc); 8732 8733 for (;;) { 8734 prepare_to_wait_exclusive(&asoc->wait, &wait, 8735 TASK_INTERRUPTIBLE); 8736 if (!*timeo_p) 8737 goto do_nonblock; 8738 if (sk->sk_shutdown & RCV_SHUTDOWN) 8739 break; 8740 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 8741 asoc->base.dead) 8742 goto do_error; 8743 if (signal_pending(current)) 8744 goto do_interrupted; 8745 8746 if (sctp_state(asoc, ESTABLISHED)) 8747 break; 8748 8749 /* Let another process have a go. Since we are going 8750 * to sleep anyway. 8751 */ 8752 release_sock(sk); 8753 current_timeo = schedule_timeout(current_timeo); 8754 lock_sock(sk); 8755 8756 *timeo_p = current_timeo; 8757 } 8758 8759 out: 8760 finish_wait(&asoc->wait, &wait); 8761 8762 /* Release the association's refcnt. */ 8763 sctp_association_put(asoc); 8764 8765 return err; 8766 8767 do_error: 8768 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 8769 err = -ETIMEDOUT; 8770 else 8771 err = -ECONNREFUSED; 8772 goto out; 8773 8774 do_interrupted: 8775 err = sock_intr_errno(*timeo_p); 8776 goto out; 8777 8778 do_nonblock: 8779 err = -EINPROGRESS; 8780 goto out; 8781 } 8782 8783 static int sctp_wait_for_accept(struct sock *sk, long timeo) 8784 { 8785 struct sctp_endpoint *ep; 8786 int err = 0; 8787 DEFINE_WAIT(wait); 8788 8789 ep = sctp_sk(sk)->ep; 8790 8791 8792 for (;;) { 8793 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 8794 TASK_INTERRUPTIBLE); 8795 8796 if (list_empty(&ep->asocs)) { 8797 release_sock(sk); 8798 timeo = schedule_timeout(timeo); 8799 lock_sock(sk); 8800 } 8801 8802 err = -EINVAL; 8803 if (!sctp_sstate(sk, LISTENING)) 8804 break; 8805 8806 err = 0; 8807 if (!list_empty(&ep->asocs)) 8808 break; 8809 8810 err = sock_intr_errno(timeo); 8811 if (signal_pending(current)) 8812 break; 8813 8814 err = -EAGAIN; 8815 if (!timeo) 8816 break; 8817 } 8818 8819 finish_wait(sk_sleep(sk), &wait); 8820 8821 return err; 8822 } 8823 8824 static void sctp_wait_for_close(struct sock *sk, long timeout) 8825 { 8826 DEFINE_WAIT(wait); 8827 8828 do { 8829 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8830 if (list_empty(&sctp_sk(sk)->ep->asocs)) 8831 break; 8832 release_sock(sk); 8833 timeout = schedule_timeout(timeout); 8834 lock_sock(sk); 8835 } while (!signal_pending(current) && timeout); 8836 8837 finish_wait(sk_sleep(sk), &wait); 8838 } 8839 8840 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 8841 { 8842 struct sk_buff *frag; 8843 8844 if (!skb->data_len) 8845 goto done; 8846 8847 /* Don't forget the fragments. */ 8848 skb_walk_frags(skb, frag) 8849 sctp_skb_set_owner_r_frag(frag, sk); 8850 8851 done: 8852 sctp_skb_set_owner_r(skb, sk); 8853 } 8854 8855 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 8856 struct sctp_association *asoc) 8857 { 8858 struct inet_sock *inet = inet_sk(sk); 8859 struct inet_sock *newinet; 8860 struct sctp_sock *sp = sctp_sk(sk); 8861 struct sctp_endpoint *ep = sp->ep; 8862 8863 newsk->sk_type = sk->sk_type; 8864 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 8865 newsk->sk_flags = sk->sk_flags; 8866 newsk->sk_tsflags = sk->sk_tsflags; 8867 newsk->sk_no_check_tx = sk->sk_no_check_tx; 8868 newsk->sk_no_check_rx = sk->sk_no_check_rx; 8869 newsk->sk_reuse = sk->sk_reuse; 8870 sctp_sk(newsk)->reuse = sp->reuse; 8871 8872 newsk->sk_shutdown = sk->sk_shutdown; 8873 newsk->sk_destruct = sctp_destruct_sock; 8874 newsk->sk_family = sk->sk_family; 8875 newsk->sk_protocol = IPPROTO_SCTP; 8876 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 8877 newsk->sk_sndbuf = sk->sk_sndbuf; 8878 newsk->sk_rcvbuf = sk->sk_rcvbuf; 8879 newsk->sk_lingertime = sk->sk_lingertime; 8880 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 8881 newsk->sk_sndtimeo = sk->sk_sndtimeo; 8882 newsk->sk_rxhash = sk->sk_rxhash; 8883 8884 newinet = inet_sk(newsk); 8885 8886 /* Initialize sk's sport, dport, rcv_saddr and daddr for 8887 * getsockname() and getpeername() 8888 */ 8889 newinet->inet_sport = inet->inet_sport; 8890 newinet->inet_saddr = inet->inet_saddr; 8891 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 8892 newinet->inet_dport = htons(asoc->peer.port); 8893 newinet->pmtudisc = inet->pmtudisc; 8894 newinet->inet_id = asoc->next_tsn ^ jiffies; 8895 8896 newinet->uc_ttl = inet->uc_ttl; 8897 newinet->mc_loop = 1; 8898 newinet->mc_ttl = 1; 8899 newinet->mc_index = 0; 8900 newinet->mc_list = NULL; 8901 8902 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 8903 net_enable_timestamp(); 8904 8905 /* Set newsk security attributes from orginal sk and connection 8906 * security attribute from ep. 8907 */ 8908 security_sctp_sk_clone(ep, sk, newsk); 8909 } 8910 8911 static inline void sctp_copy_descendant(struct sock *sk_to, 8912 const struct sock *sk_from) 8913 { 8914 int ancestor_size = sizeof(struct inet_sock) + 8915 sizeof(struct sctp_sock) - 8916 offsetof(struct sctp_sock, auto_asconf_list); 8917 8918 if (sk_from->sk_family == PF_INET6) 8919 ancestor_size += sizeof(struct ipv6_pinfo); 8920 8921 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 8922 } 8923 8924 /* Populate the fields of the newsk from the oldsk and migrate the assoc 8925 * and its messages to the newsk. 8926 */ 8927 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 8928 struct sctp_association *assoc, 8929 enum sctp_socket_type type) 8930 { 8931 struct sctp_sock *oldsp = sctp_sk(oldsk); 8932 struct sctp_sock *newsp = sctp_sk(newsk); 8933 struct sctp_bind_bucket *pp; /* hash list port iterator */ 8934 struct sctp_endpoint *newep = newsp->ep; 8935 struct sk_buff *skb, *tmp; 8936 struct sctp_ulpevent *event; 8937 struct sctp_bind_hashbucket *head; 8938 8939 /* Migrate socket buffer sizes and all the socket level options to the 8940 * new socket. 8941 */ 8942 newsk->sk_sndbuf = oldsk->sk_sndbuf; 8943 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 8944 /* Brute force copy old sctp opt. */ 8945 sctp_copy_descendant(newsk, oldsk); 8946 8947 /* Restore the ep value that was overwritten with the above structure 8948 * copy. 8949 */ 8950 newsp->ep = newep; 8951 newsp->hmac = NULL; 8952 8953 /* Hook this new socket in to the bind_hash list. */ 8954 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 8955 inet_sk(oldsk)->inet_num)]; 8956 spin_lock_bh(&head->lock); 8957 pp = sctp_sk(oldsk)->bind_hash; 8958 sk_add_bind_node(newsk, &pp->owner); 8959 sctp_sk(newsk)->bind_hash = pp; 8960 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 8961 spin_unlock_bh(&head->lock); 8962 8963 /* Copy the bind_addr list from the original endpoint to the new 8964 * endpoint so that we can handle restarts properly 8965 */ 8966 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 8967 &oldsp->ep->base.bind_addr, GFP_KERNEL); 8968 8969 /* Move any messages in the old socket's receive queue that are for the 8970 * peeled off association to the new socket's receive queue. 8971 */ 8972 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 8973 event = sctp_skb2event(skb); 8974 if (event->asoc == assoc) { 8975 __skb_unlink(skb, &oldsk->sk_receive_queue); 8976 __skb_queue_tail(&newsk->sk_receive_queue, skb); 8977 sctp_skb_set_owner_r_frag(skb, newsk); 8978 } 8979 } 8980 8981 /* Clean up any messages pending delivery due to partial 8982 * delivery. Three cases: 8983 * 1) No partial deliver; no work. 8984 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 8985 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 8986 */ 8987 skb_queue_head_init(&newsp->pd_lobby); 8988 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 8989 8990 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 8991 struct sk_buff_head *queue; 8992 8993 /* Decide which queue to move pd_lobby skbs to. */ 8994 if (assoc->ulpq.pd_mode) { 8995 queue = &newsp->pd_lobby; 8996 } else 8997 queue = &newsk->sk_receive_queue; 8998 8999 /* Walk through the pd_lobby, looking for skbs that 9000 * need moved to the new socket. 9001 */ 9002 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 9003 event = sctp_skb2event(skb); 9004 if (event->asoc == assoc) { 9005 __skb_unlink(skb, &oldsp->pd_lobby); 9006 __skb_queue_tail(queue, skb); 9007 sctp_skb_set_owner_r_frag(skb, newsk); 9008 } 9009 } 9010 9011 /* Clear up any skbs waiting for the partial 9012 * delivery to finish. 9013 */ 9014 if (assoc->ulpq.pd_mode) 9015 sctp_clear_pd(oldsk, NULL); 9016 9017 } 9018 9019 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 9020 9021 /* Set the type of socket to indicate that it is peeled off from the 9022 * original UDP-style socket or created with the accept() call on a 9023 * TCP-style socket.. 9024 */ 9025 newsp->type = type; 9026 9027 /* Mark the new socket "in-use" by the user so that any packets 9028 * that may arrive on the association after we've moved it are 9029 * queued to the backlog. This prevents a potential race between 9030 * backlog processing on the old socket and new-packet processing 9031 * on the new socket. 9032 * 9033 * The caller has just allocated newsk so we can guarantee that other 9034 * paths won't try to lock it and then oldsk. 9035 */ 9036 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 9037 sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w); 9038 sctp_assoc_migrate(assoc, newsk); 9039 sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w); 9040 9041 /* If the association on the newsk is already closed before accept() 9042 * is called, set RCV_SHUTDOWN flag. 9043 */ 9044 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 9045 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 9046 newsk->sk_shutdown |= RCV_SHUTDOWN; 9047 } else { 9048 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 9049 } 9050 9051 release_sock(newsk); 9052 } 9053 9054 9055 /* This proto struct describes the ULP interface for SCTP. */ 9056 struct proto sctp_prot = { 9057 .name = "SCTP", 9058 .owner = THIS_MODULE, 9059 .close = sctp_close, 9060 .disconnect = sctp_disconnect, 9061 .accept = sctp_accept, 9062 .ioctl = sctp_ioctl, 9063 .init = sctp_init_sock, 9064 .destroy = sctp_destroy_sock, 9065 .shutdown = sctp_shutdown, 9066 .setsockopt = sctp_setsockopt, 9067 .getsockopt = sctp_getsockopt, 9068 .sendmsg = sctp_sendmsg, 9069 .recvmsg = sctp_recvmsg, 9070 .bind = sctp_bind, 9071 .backlog_rcv = sctp_backlog_rcv, 9072 .hash = sctp_hash, 9073 .unhash = sctp_unhash, 9074 .get_port = sctp_get_port, 9075 .obj_size = sizeof(struct sctp_sock), 9076 .useroffset = offsetof(struct sctp_sock, subscribe), 9077 .usersize = offsetof(struct sctp_sock, initmsg) - 9078 offsetof(struct sctp_sock, subscribe) + 9079 sizeof_field(struct sctp_sock, initmsg), 9080 .sysctl_mem = sysctl_sctp_mem, 9081 .sysctl_rmem = sysctl_sctp_rmem, 9082 .sysctl_wmem = sysctl_sctp_wmem, 9083 .memory_pressure = &sctp_memory_pressure, 9084 .enter_memory_pressure = sctp_enter_memory_pressure, 9085 .memory_allocated = &sctp_memory_allocated, 9086 .sockets_allocated = &sctp_sockets_allocated, 9087 }; 9088 9089 #if IS_ENABLED(CONFIG_IPV6) 9090 9091 #include <net/transp_v6.h> 9092 static void sctp_v6_destroy_sock(struct sock *sk) 9093 { 9094 sctp_destroy_sock(sk); 9095 inet6_destroy_sock(sk); 9096 } 9097 9098 struct proto sctpv6_prot = { 9099 .name = "SCTPv6", 9100 .owner = THIS_MODULE, 9101 .close = sctp_close, 9102 .disconnect = sctp_disconnect, 9103 .accept = sctp_accept, 9104 .ioctl = sctp_ioctl, 9105 .init = sctp_init_sock, 9106 .destroy = sctp_v6_destroy_sock, 9107 .shutdown = sctp_shutdown, 9108 .setsockopt = sctp_setsockopt, 9109 .getsockopt = sctp_getsockopt, 9110 .sendmsg = sctp_sendmsg, 9111 .recvmsg = sctp_recvmsg, 9112 .bind = sctp_bind, 9113 .backlog_rcv = sctp_backlog_rcv, 9114 .hash = sctp_hash, 9115 .unhash = sctp_unhash, 9116 .get_port = sctp_get_port, 9117 .obj_size = sizeof(struct sctp6_sock), 9118 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 9119 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 9120 offsetof(struct sctp6_sock, sctp.subscribe) + 9121 sizeof_field(struct sctp6_sock, sctp.initmsg), 9122 .sysctl_mem = sysctl_sctp_mem, 9123 .sysctl_rmem = sysctl_sctp_rmem, 9124 .sysctl_wmem = sysctl_sctp_wmem, 9125 .memory_pressure = &sctp_memory_pressure, 9126 .enter_memory_pressure = sctp_enter_memory_pressure, 9127 .memory_allocated = &sctp_memory_allocated, 9128 .sockets_allocated = &sctp_sockets_allocated, 9129 }; 9130 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9131